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Every moment of light and dark is a miracle.
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BPZ (Beńıtez, 2011) and models in respectively the second and third columns.
In the remaining columns we compare the impact that the covariance term has
with different concentration-mass relations that do not include the covariance
term. These include models from Diemer & Kravtsov (2014); Bhattacharya et al.
(2013); Prada et al. (2012); Duffy et al. (2008); Bocquet et al. (2016). We find
that introducing the covariance term can have a ∼ 1σ on posterior constraints,
at the same level of different choices of concentration-mass relations, and that
the photometric redshift error for source galaxies makes a minimal impact on the
scaling relations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

xiv



LIST OF TABLES

3.1 Ingredients used to infer cosmology with galaxy clusters. . . . . . . . . . . . . . 32

4.1 Maximum Likelihood estimates and 68% CL errors of richness-mass model pa-
rameters for redMaPPer clusters as a function of halo orientation cos(i) and for
the full cluster sample (”All”). The middle box shows results when all 3 model
parameters are allowed to vary with cos(i) (3-parameter model); right-most box
shows results when only ln(A) is allowed to vary (1-parameter model). Also shown
are the Bayesian Information Criterion (BIC) values for each case; the slightly
lower values for the 1-parameter model indicate that it is marginally preferred.
The reduced chi-square statistics χ2/ν ∼ 1 show that the 1-parameter model is
a good fit to the data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2 Best fit parameters for Equation 4.22 across different mass and redshift bins. . . 76

5.1 Notations employed in our framework for the covariance in §5.2.3 . . . . . . . . 93
5.2 Scaling Relation Conventions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.3 Notations employed in exploring the secondary halo parameter dependence . . . 101
5.4 Priors for the model. We introduce two sets of priors. In the ”full” models, the

parameters are given physical (i.e., τ > 0, s > 0) but non-informative uniform
or log-uniform priors. In the “reduced” case, assuming that Cov(∆Σ, lnNgal |
M, z) = 0 at large scales, we restrict g = −1 while assigning the same set of
priors to all other parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.5 Functional forms to model Cov(∆Σ, lnNgal). The radius in log-space x is trans-
formed to x̃ ≡ (x − γ)/τ by a horizontal offset γ and a characteristic scale τ .
The functions f(x̃) are normalized so that f(x̃) asymptotically goes to 1 at +∞,
-1 at −∞, f(0) = 0 and f ′(0) = 1. Finally, we wrap f(x̃) by the function
p(f(x̃)) ≡ s(f(x̃ + g) to include a vertical offset g and amplitude parameter s.
Together θ ∈ {τ, γ, g, s} form the set of model parameters that allow us to make
apple-to-apple comparisons between models. . . . . . . . . . . . . . . . . . . . 135

5.6 Summary statistics for Cov(∆Σ, Ngal | M, z) binned by R200c and M200c, with
Ngal defined inside the halo R200c. Columns 2-5 are the best-fit parameters for
the nominal error function and their 1σ ranges. Columns 6-8 are the difference
between the DIC of the logistics, algebraic, and inverse tangent models with
the nominal error function, respectively. Column 9 is the right-tail p-value as
measured by the χ2 statistic with 20-4 = 16 degrees of freedom. Across all
bins with applicable posterior constraints, the error function out-performs or is
comparable to alternative functional forms as indicated by the difference in DIC,
and has p ≥ 0.01 in all but one bin. In two bins M200c ∈ [5× 1014, 1× 1015) at
z = 0.49 and M200c ∈ [2× 1014, 5× 1015) at z = 1.03 the size of the covariance is
too small relative to the size of their errors for shape parameters to be constrained.
The covariance in these two bins is consistent with null at p = 0.01 and p = 0.05
levels, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

xv



5.7 Summary statistics for Cov(∆Σ, Ngal | M, z) binned by R200c and M200c with
Ngal defined inside the halo R200c for the reduced error function model. Com-
pared with the full error function model, the performance of the reduced model
varies from bin to bin – using ∆DIC > 3 as a statistically significant result, it
outperforms the full model in 5/9 overlapping bins, under-performs in 3/9 bins,
and is comparable in 2 bins. The reduced model is able to yield convergent chains
for M200c ∈ [5× 1014, 1× 1015) at z = 0.49 and M200c ∈ [2× 1014, 5× 1015) at
z = 1.03 but with poor constraints on the parameters. . . . . . . . . . . . . . . 143

5.8 Best-fit parameters, global R2, and explanatory power indicators for log-richness
modeled in Equation (5.20). Values in parentheses represent 1σ confidence inter-
vals to the partial slopes β. The partial F -statistic, defined in Equation (5.41),
is used to quantify the explanatory power of each variable. A higher partial F-
statistic indicates a greater amount of predictive power uniquely attributed to
that variable. Statistical significance is determined by an F-statistic of F > 10. . 146

xvi



ACKNOWLEDGMENTS

Earning my PhD was the hardest thing I’ve done in my life so far. I couldn’t have done it

without the support of many individuals, some of whom I want to acknowledge here. This

cannot possibly be an exhaustive list so please forgive me for the inevitable omissions.

First and foremost I thank my advisor Joshua Frieman. Your patience and support

throughout the years in guiding me to become to become both an independent and col-

laborative researcher is immensely appreciated. I additionally thank members of my thesis

committee Chihway Chang, Irina Zhuravleva and Rich Kron for offering me valuable advice

in my research direction.

I owe it to many colleagues who at various stages in my career offered me valuable sup-

port in my research and career. They include Yuanyuan Zhang, Haoyi (Heidi) Wu, Daisuke

Nagai, Arya Farahi, Erwin Lau, Jim Annis, Maria Elidaiana da Silva Pereira, Constantin

Payerne, Celine Combet, Tom Diehl, Andrew Hearin, Chunhao To, Matteo Costanzi, Sebas-

tian Bocquet, Eduardo Rozo, Alex Drlica-Wagner, Leslie Rogers, Lindsey Bleem, Bradford

Benson, John Carlstrom, Steve Padin and many others.

I thank the friends I made in our department and the wider astronomy community. They

are Huanqing Chen, Rostom Mbarek, Emily Gilbert, Samantha Usman, Dhayaa Anbajagane,

James Lasker, Ross Cawthon, Phil Mansfield, Tae-Hyeon Shin, Johnny Esteves, Abby Lee,

Andresa Campos, Wei Quan, Andrea Bryant, Rebecca Diesing, Lucas Secco, Gabriela Mar-

ques, Anowar Shajib, Giulia Giannini, Jason Poh, Conghao Zhou, Matt Kwiecien, Manwei

Chen, Nicholas Mehrle and many more.

Outside of astronomy I thank the friends and mentors I came across in different walks of

life. Special shout out to members of the UChicago meditation group and Windmill drama

club.

Lastly, I thank my parents for their unwavering support and unconditional love.

xvii



ABSTRACT

In my thesis, I use state-of-the-art simulations to model and quantitatively resolve several of

the important systematics for cluster cosmology. First, I quantify the impact of triaxiality,

that is, the ellipsoidal shapes and orientations of clusters, on cluster observables and explore

the relation between triaxiality and other major systematics such as miscentering and projec-

tion effects. Second, I quantify and develop a model for the previously unexplored covariance

between cluster observables. The covariance study divides into two parts, one focused on

the intrinsic covariance of cluster signals due to the underlying formation physics, and the

second that includes a realistic cluster finder to quantify the impact of extrinsic terms due

to observational effects on the covariance. These results have been included in the analysis

of current optical surveys as DES and will be useful for stage IV cluster surveys as LSST

and DESI.
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CHAPTER 1

INTRODUCTION

The leading paradigm of cosmology is the ΛCDM model, or the concordance model. The

two main ingredients proposed by this model are cold dark matter and dark energy in the

form of the uniform density vacuum energy Λ. During the 80s, observations of the clustering

of matter in the universe made evident that the perturbations of the baryon-photon plasma

at recombination was not large enough to seed the structure observed in the low redshift

universe. Cold dark matter was introduced as a plausible scenario in which non-relativistic

dark matter decoupled from radiation at early times and collapsed into deep enough potential

wells for baryonic matter to trace, forming the structures we observe today (Davis et al., 1985;

Peebles, 1982). Vacuum energy was introduced in the 90s when measurements for a CDM-

only universe produced a matter spectrum inconsistent with large scale clustering of galaxies

at late times and temperature anisotropies of the Cosmic Microwave Background at early

times (Efstathiou et al., 1990; Kofman et al., 1993). The existence of a vacuum-energy like

form of dark energy was confirmed when two teams independently demonstrated through the

luminosity-distance relation extrapolated to high redshifts using Type IA Supernovae (SNe

IA) that the universe was expanding at an accelerating rate (Riess et al., 1998; Perlmutter

et al., 1999).

Galaxy clusters are powerful probes of cosmology. Arising from the peaks in the initial

density fluctuations of the universe, galaxy clusters have collapsed since then to become the

most massive gravitational bound structures in the universe. The number density of clusters

is sensitive to the amplitude of the initial density fluctuations. Furthermore, the expansion

rate of the universe not only dilutes their number density in the sky but their growth of

structure. This double sensitivity to both the geometry of the universe and its growth of

structure makes galaxy clusters a unique probe. Measurements of the cluster abundance as a

function of cluster mass and redshift can be used to constrain Ωm, the matter density of the

1



universe, and σ8, the matter density fluctuation amplitude, provided that cluster masses can

be determined with both high precision and accuracy. The constraints provided by galaxy

clusters are nearly orthogonal to constraints by CMB anisotropy, making clusters not only

a competitive probe in its own right but a complementary probe when combined with other

measurements.

Within the ΛCDM paradigm, a series of theoretical uncertainties need to be modeled.

Since the 90s, simulations have improved drastically in their ability to model the number

density of halos, known as the halo mass function, as well as halo clustering properties

over a wide mass and redshift range. The modeling of these properties are hampered by

baryonic effects including radiative cooling, star formation, supernovae and active galactic

nuclei (AGN) feedback that suppress the halo-matter power spectrum at small scales and

alter the shape of the halo mass function.

Observationally, one cannot directly measure the masses of clusters, but must rather infer

them using a mass proxy such as luminosity or the richness estimator in the optical regime,

the integrated Compton-Y signal YSZ in the millimeter regime, or the luminosity (LX) or

temperature (TX) in the X-ray regime. To make inferences on their masses one has to make

certain assumptions on the morphology and dynamical state of clusters. One must also take

into consideration the selection function of cluster finders. In the optical regime, some of the

main observational systematics include photometric redshift uncertainty, projection effects,

triaxiality, miscentering, and cluster galaxy member contamination. These effects have to be

accurately modeled to yield accurate and precise cosmology constraints. Such systematics

are at a level on par with statistical uncertainties in stage-III surveys as DES, HSC, KiDS-

100 and will soon dominate in stage-IV surveys as DESI, LSST, Euclid, Roman, CMB-S4

and eROSITA.

This thesis uses state-of-the-art simulations to forward model systematic biases relating

to the weak lensing profile and mass-estimator calibration in the optical regime. The results
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of this work have been utilized by DES and LSST-DESC. The thesis is organized as follows:

Chapter 2 provides a basic overview of cosmology theory. Beginning with Einstein’s

theory of general relativity I introduce basic cosmology concepts and the statistical framework

for describing density perturbations. I walk readers through the main eras of ΛCDM universe

and offer a summary of the landscape of models beyond ΛCDM.

Chapter 3 offers an introduction to galaxy clusters. I present readers with a summary of

the theoretical framework for depicting the formation of galaxy clusters as well as conventions

used to describe their density profiles and mass definitions. I then lead readers through a

summary of the modeling of the halo mass function and scaling relations which are crucial

models for cluster cosmology. Lastly in this chapter, I describe how one can combine the

ingredients as laid out in this chapter to yield cluster cosmology constraints.

Chapter 4 aims to quantify the effect of triaxiality bias on weak lensing analyses. We offer

analytic templates for the triaxiality bias of observed-richness and lensing profiles. These

templates are mapped as corrections to the richness-binned lensing profiles for redMaPPer

clusters. The resulting mass bias confirms the DES Y1 finding that triaxiality is a leading

source of bias in cluster cosmology. However, the richness-dependence of the bias confirms

that triaxiality does not fully resolve the tension at low-richness between DES Y1 cluster

cosmology and other probes. We also test if triaxiality is correlated with two other systemat-

ics — miscentering and projection effects. Our model can be used for quantifying the impact

of triaxiality bias on cosmological constraints for upcoming weak lensing surveys of galaxy

clusters.

Chapter 5 quantifies the intrinsic correlation of optical cluster observables. Specifically,

we study the covariance between the weak lensing signal and the“true”cluster galaxy number

count as measured within a spherical volume that is void of projection effects. By quantifying

the impact of this covariance on mass calibration, this work reveals a significant source

of systematic uncertainty. Our results reveal a negative covariance at small radial scales
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(R ≲ R200c) and a null covariance at large scales (R ≳ R200c). We attribute the difference

between our results and the positive bias seen in other works with (mock)-cluster finders

to projection effects. By modeling the true richness and lensing signal as multi-(log)-linear

equations of secondary halo properties, we provide a quantitative explanation for the physical

origin of the negative covariance at small scales.

Chapter 6 uses a realistic mock-cluster finder on a mock LSST catalog to measure the

impact of the total covariance that includes projection effects. Because of the ray tracing

resolution of the simulation we only extract the lensing signals at large scales. We find

that in most bins there exhibits a slight positive covariance between optical observables

which is consistent with expectations from projection effects. Propagating the impact onto

cluster scaling relations, we find that the large scale covariance can shift the scaling relation

parameters by up to ∼ 1σ, roughly the shift when adopting different concentration-mass

relations. We find that the impact of the covariance is much greater than the bias introduced

from the addition of photometric redshift errors for the source galaxy sample.

Chapter 7 offers final remarks.
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CHAPTER 2

THEORETICAL FRAMEWORK OF COSMOLOGY

2.1 General Relativity

Our model of the universe at large scales is based on Einstein’s theory of General Relativity.

This theory provides a theoretical framework for describing the curvature of spacetime is a

pseudo-Riemannian manifold and the the motion of particles within curved spacetime.

Under this framework, the metric tensor gµν is used to describe the spacetime interval

between two (infinitesimal) distance squared between two points:

ds2 = gµνx
µxν . (2.1)

In Minkowski space the metric tensor is described as

ηµν =



1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


, (2.2)

in which case the spacetime interval can be described by Euclidean geometry, i.e.

ds2 = c2dt2 − dx2 − dy2 − dz2. (2.3)

We will see later on the spacetime interval described in a pseudo-Riemannian manifold in

the case of General Relativity as is the case with our universe at large scales. The spacetime

interval is considered timelike for ds2 > 0, spacelike for ds2 < 0 and null for ds2 = 0. The

proper time τ which characterizes the time elapsed for an observer following the spacetime
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trajectory is related to ds2 by

τ =
1

c

∫ √
ds2 =

1

c

∫ √
gµν

dxµ(λ)

dλ

dxν(λ)

dλ
dλ, (2.4)

where we have specified the four-vector coordinate xµ by some parameter λ. To obtain the

geodesic one can use calculus of variation methods to find the solution to Equation (2.4)

that minimizes the proper time. This leads us to the geodesic equation that governs the

trajectory for a photon or a massless particle traveling at the speed of light:

d2xµ

dλ2
+ Γ

µ
ρσ

dxρ

dλ

dxσ

dλ
= 0, (2.5)

where Γ
µ
ρσ are the Christoffel symbols related to the metric tensor by the non-linear relation:

Γσµν =
1

2
gσρ(∂µgνρ + ∂νgρµ − ∂ρgµν). (2.6)

We can contrast General Relativity with Newtonian physics. In the Newtonian paradigm,

the motion of objects is governed by the Possion equation

∇2Φ = 4πGρ, (2.7)

with G denoting the gravitational constant, ρ the matter density and Φ the gravitational

potential. In flat Euclidean space the components of the Christoffel symbol in Equation (2.6)

vanish and we are left with a linear geodesic equation d2xµ

dλ2
= 0. In curved spacetime the

geodesic equation in (2.5) are complicated non-linear differential equations with respect to

the metric tensor gµν . The relation of matter and curved spacetime in General Relativity

can be summarized by what’s known as Einstein’s field equations:

Rµν −
1

2
gµνR + gµνΛ =

8πG

c4
Tµν , (2.8)
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in which Rµν is the rank-2 Ricci tensor, R the scalar curvature, Tµν the rank-2 energy-

momentum tensor and Λ the cosmological constant.

2.2 FLRW Universe

The cosmological principles states that at large enough scales (≳ 150 Mpc) the universe looks

homogeneous and isotropic. Under these two assumptions, an expanding/contracting curved

universe can be described by the Friedman-Lemâıtre-Robertson-Walker (FLRW) metric:

ds2 = −c2dt2 + a2(t)
[ dr2

1− kr2
+ r2(dθ2 + sin2 θdϕ2)

]
, (2.9)

where a(t) is the scale factor, the coordinates (r, θ, ϕ) are comoving coordinates with respect

to the rest frame, and k = −1, 0, 1 describes the curvature of the universe. The case k = −1

describes an open universe characterized by a three-hyperboloid manifold, k = 0 a flat

universe, and k = 1 a closed universe characterized by a three-sphere manifold.

In hyperspherical coordinates the FLRW metric can be written as:

ds2 = −c2dt2 + a2(t)
[
dχ2 + χ2(dθ2 + sin2 θdϕ2)

]
, (2.10)

where χ is:

χ(r) =



√
k
−1

sin(
√
kr) if k = 1

r if k = 0

√
k
−1

sinh(
√
kr) if k = −1

(2.11)

We may describe the matter in the universe at these scales as a perfect fluid that is

isotropic in its rest frame and has no heat flow or viscosity. The components of the energy-

momentum tensor Tµν of this fluid are fully specified by its density ρ and pressure p. In

terms of its rest frame four-velocity µµ = {1, 0, 0, 0} the energy-momentum tensor for a
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perfect fluid is

Tµν = (p+ ρ)µµµν + pgµν . (2.12)

Substituting Eq. (2.12) into the right hand side of Eq. (2.8) and the components of the

FLRW metric into the left hand side of Eq. (2.8) we arrive at a set of two differential

equations for the scale factor a(t) known as the Friedman equations:

( ȧ
a

)2
=

8πG

3
ρ− kc2

a2
+

Λc2

3
(2.13)

ä

a
=

−4πG

3c2
(ρc2 + 3p) +

Λ

c2
. (2.14)

The quantity H ≡ ȧ
a is the Hubble parameter which governs the rate of the expansion of

the universe. From measurements of the Cosmic Microwave Background (CMB) by Planck,

the Hubble constant H0 at present day is determined to be H0 = 67.4± 0.5 km s−1Mpc−1

(Planck Collaboration et al., 2020).

2.3 Cosmological Redshift and Distances

The cosmological redshift can be directly derived from the FLRW metric. Along the photon

path ds = dθ = dϕ = 0, and hence for an incoming photon

χ =

∫ tR

tE

cdt

a(t)
=

∫ rE

0

1

(1− kr2)1/2
dr. (2.15)

This quantity in the metric is in comoving units that are independent of the overall scale a(t)

of the universe. If at a second (infinitesimally separated) instant δtE the emitter seconds a
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second light pulse received at tR + δtR we have

∫ tR+δtR

tE+δtE

cdt

a(t)
=

∫ rE

0

1

(1− kr2)1/2
dr =

∫ tR

tE

cdt

a(t)
. (2.16)

If it follows that δtE and δtR are sufficiently small that a(t) can be taken as constant, it

follows from the equality that

1 + z =
a(tR)

a(tE)
. (2.17)

Conventionally we define a0 = 1 at the present day and hence 1 + z = 1/a.

The luminosity distance is an operational definition that characterizes the relation be-

tween the absolute luminosity and flux received on a curved hyper-sphere. Analogous to

Euclidean geometry its definition is given by

dL =
( L

4πF

)1/2
. (2.18)

To obtain the flux, we recognize that the proper area of a curved hyper-sphere is A =

4πχ2(r). The flux of the photons is firstly diminished by one power of the scale factor by

the redshift in photon frequency from the time of emission tE and another by the reduction

in photon arriving rate. Hence the observed flux is given by:

F =
L

4πχ
a(tE). (2.19)

The luminosity distance is evaluated as:

dL = χ/a(t) (2.20)

We then introduce the angular diameter distance as another operational definition. A

source with proper diameter ℓ in Euclidean geometry would subtend an angle ∆θ at an
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distance dA. Based on this analogy we can derive the angular diameter distance using the

FLWR metric assuming r and ϕ are constant along the photon path in the transverse plane.

From which the proper distance is ℓ = a(t)χ∆θ. The angular diameter distance after dividing

by ∆θ is then:

dA = a(t)χ (2.21)

2.4 Evolution of the Scale Factor

As a matter of convenience and convention it is desirable to re-scale the densities by the

critical density

ρcrit =
3H2

8πG
. (2.22)

Dividing by the critical density of the universe, one can now describe the densities by their

densities parameters

Ωi(t) ≡
ρi
ρcrit

=
8πG

3H2(t)
ρi(t). (2.23)

In this way the first of the Friedman equations can be re-written in its more conventional

form of

H2(t) =
8πG

3

∑
Ωi(t)−

c2k

a2
(2.24)

The density contributions of the universe come from radiation which is a sum of photons

and neutrinos (ρr = ργ + ρν), matter as a sum of baryonic matter and dark matter (ρm =

ρb+ ρdm), vacuum density ρΛ = Λc2

8πG . In some instances one may characterize the curvature

with the curvature density ρk = −3kc2

8πGa2
for conformity in notational convention though it is

not strictly speaking a physical matter/energy density . Rescaling the densities in terms of

their density parameters we find that

Ω = Ωr + Ωm + ΩΛ = 1− Ωk. (2.25)

10



In most standard cosmology models we consider Ωk = 0. The flatness hypothesis comes from

the cosmic Inflation theory (Guth, 1981) in which the universe at around 10−36 seconds after

the Big Bang undergoes rapid exponential expansion such that regardless of the initial value

of Ω it will soon reach a value close to 1, or in other words Ωk ≈ 0. Ω = 1 or when the

density is equal to the critical density ρcrit suggest a flat universe, Ω > 1 is a closed universe,

and Ω < 1 an open universe.

We now derive the evolution of the different density components under this convention.

To do so we impose energy-momentum conservation. This requires

∇µT
µν = 0, (2.26)

which leads to the continuity equation

ρ̇+ (ρ+
p

c2
)
3ȧ

a
= 0. (2.27)

We can further remove a degree of freedom by imposing an equation of state that connects

the pressure with density

p = ωρc2. (2.28)

Substituting the equation of state equation into Eq. (2.27) and integrating with respect to

the scale factor we obtain

ρi ∝ a−3(1+ωi), (2.29)

which by sustituting into Eq. (2.24) we find

Ωi = Ωi,0

(H0

H

)2
a−3(1+ωi), (2.30)

where Ωi,0 and H0 are respectively the density parameter and Hubble parameter at present
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day, and by which we have generalized the density parameter to include the curvature term.

The equation of state parameter is ωr = 1/3 for radiation, ωm = 0 for non-relativistic matter,

ωk = −1/3, ωΛ = −1 for vacuum energy under the concordance model. The evolution of

the scale factor can now be re-written in a more elegant form as

(
da

dt

)2

= H2
0

(
Ωr,0a

−4 + Ωm,0a
−3 + Ωk,0a

−2 + ΩΛ,0

)
. (2.31)

The evolution of the scale factor may be solved numerically by integrating Eq. (2.31) with

constraints on the present day energy budget constrained from experiments. At different

eras in the evolution history of the universe one may make simplifying assumptions such

that the evolution of the scale factor may be derived in an analytic form. We present the

different eras in the section below.

2.5 Statistics of the Density Field

The FLRW metric derived under the cosmological principle is a good approximation to

describing the evolution of the universe at very large scales when we can assume homogeneity.

At small scales fluctuations in matter densities exist. They are seeded by small fluctuations

that can be described using linear perturbation theory which grow over time. This section

summarizes the statistical properties of the large scale structure of the universe.

We define the overdensity with the symbol δ, defined as

δ(x, t) =
ρ(x, t)− ρ̄(t)

ρ̄(t)
, (2.32)

where ρ(x, t) is the mass density localized in time and space, and ρ̄(t) the mean matter

density in all space at a given time. Under standard inflationary models (see Section 2.6)

the primordial density fluctuations are Gaussian, meaning that δ satisfies the probability
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distribution

P (δ)dδ =
1√
2πσ

exp
−δ2

2σ2
dδ, (2.33)

set initially around δ ≈ 10−5, and remain Gaussian up until recent times as δ ≳ 1. Here σ

is the mean smoothed matter fluctuation which we will derive later in this section.

For a Gaussian density fluctuation, the matter distribution can be described entirely by

the two point correlation function

ξ(r) = ⟨δ(x)δ(x+ r)⟩x, (2.34)

with the subscript x denoting that the average is taken over all space. This two point correla-

tion function describes the excess in matter density due to matter clustering at a separation

of r. Because of the assumed isotropy of the universe we drop the angular dependence of r

on the left hand side of the equation such that the dependence only depends on the distance

r = |r|.

We can transform real space coordinates to Fourier space wavenumbers k⃗

δ
k⃗
=

1√
V

∫
δ(r⃗)eik⃗·r⃗d3r, (2.35)

where V is the comoving volume. We describe the power spectra P (k) as the Fourier trans-

form of the two-point correlation function

P (k) = ⟨δ
k⃗
δ∗
k⃗
⟩ (2.36)

=
1

V

∫ ∫
ξ(r12)e

−ik⃗·r⃗1eik⃗·r⃗2d3r⃗1d3r⃗2, (2.37)

which after trivially integrating over
∫
d3r⃗2 = V and switching to polar coordinates for the
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integration of the volume element we get

P (k) =
4π

k

∫ ∞

0
ξ(r)r sin(kr)dr, (2.38)

where once again due to the isotropy of the universe P (k) does not depend on the direction-

ality of k⃗ but only its norm k.

We can inverse-Fourier transform P (k) at the limit r → 0 to get the zero-lag correlation

which is simply the variance of the density fluctuations

ξ(0) = lim
r→0

=
1

2π2

∫
P (k) lim

r→0

sin(kr)

kr
k2dk (2.39)

≡
∫

∆2(k)d ln k, (2.40)

where we have defined the quantity

∆2(k) ≡ k3P (k)

2π2
(2.41)

as the unitless logarithmic band power, which gives the contribution to the variance in density

per wavenumber. In practice this power spectrum is grainy at small scales, so we often apply

a window function to compute a smoothed average of the power spectrum. A popular choice

is the top-hat window function

WTH(r, R) =
1

(4π/3)R3
H(R− r), (2.42)

where H(R − r) is the Heaviside step function for a smoothing radius of R. The window

function needs to be convoled with the overdensity δ in real space. Fortunately, convolution

in real space translates to multiplication in Fourier space. In Fourier space the window
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function is

WTH(k,R) = 3
j1(k,R)

kR
, (2.43)

where j1 is the Bessel function of order 1. The smoothed power spectrum is

P (k,R) = |W (k,R)|2P (k). (2.44)

Applying this to the zero-lag two point correlation we arrive at the mean amplitude squared

of the smoothed matter fluctuation

σ2(R) =

∫
∆2(k)

(j1(k,R)

kR

)2
d ln k. (2.45)

An important quantity in cosmology is the smoothed mean matter fluctuation at 8 Mpc h−1

for the present day:

σ8 = σ(R = 8 Mpc h−1, z = 0). (2.46)

The scale size is chosen as cosmologists first studied the clustering of galaxies around galaxy

clusters which are around 5−10 Mpc h−1 in physical scale. The quantity σ8 can be thought

of one way to normalize the amplitude of the power spectrum.

Having presented the formalism for describing matter density fluctuations, we can derive

the initial power spectrum using Newtonian perturbation theory. To do so, we start with

the three fundamental equations governing the evolution of fluids

Dρ

Dt
+ ρ(∇ · µ) = 0 (Continuity equation) (2.47)

∇2Φ = 4πGρ (Poisson equation) (2.48)

Dµ

Dt
= −∇ρ

ρ
−∇Φ (Euler equation) (2.49)

in which the symbol D
Dt represents the Lagrangian derivative and µ the velocity of the fluid
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in comoving coordinates. We perturb the steady state solution by switching from comoving

to physical coordinates and by introducing the peculiar velocity of the object in relation to

the bulk motion of the fluid. Invoking the first law of thermodynamics (TdS = dU + pdV )

for isentropic (adiabatic) initial conditions (∇S = 0) we arrive at a 2nd order differential

equation

∂2δk
∂t2

+ 2
ȧ

a

∂δk
∂t

= −ω2δ, (2.50)

where

ω2 = (k2 − k2J )
c2s
a2

, (2.51)

which defines the characteristic Jean’s length

λJ ≡ 2πa

kJ
= cs

√
π

Gρ̄
, (2.52)

where the speed of sound cs ≡
(
∂P
∂ρ

)1/2
. The solution to this differential equation only

permits oscillating modes for modes with k > kJ from an effect known as Jean’s instability

and permits growing modes for k < kJ . Because the speed of sound is close to the speed of

light (cs ≈ c/
√
3) before recombination (see different eras in Section 2.6 ) the Jean’s length

is too large for modes within the horizon to collapse. Only after radiation-matter equality

does the speed of sound fall enough to allow growing modes for modes within the horizon

distance. We characterize the growth of structure by the linear growth factor D(a) =
δ(a)
δ(1)

,

which for a ωΛ = −1 universe takes on the form

D(a) ∝ H(a)

H0

∫ a

0

da′

[Ωm/a′ + ΩΛa
′2 + (1− Ωm − ΩΛ)]

3/2
. (2.53)

The linear growth factor only grows logarithmically with time during the radiation dominated

era and as t3/2 during matter domination and as e2Ht during dark energy dominated era.

The initial power spectrum PI(k) was speculated independently by Harrison, Zel’dovich,
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and Peebles (Harrison, 1970; Zeldovich, 1972; Peebles & Yu, 1970) to be PI(k) ∝ kn, with

the spectral index n ≈ 1. If n is much greater than 1 too many black holes would form too

early, and n much less than 1 would predict the overabundance of superclusters and voids.

From Inflation (see Section 2.6) this value is predicted to be n = 1− 6ϵ+ 2η +O(ϵ2, η2) to

be close but slightly less than 1, where ϵ and η are called slow-roll inflationary parameters.

The latest constraints from Planck yield a spectra index of n = 0.9654 ± 0.0042 (Planck

Collaboration et al., 2020).

The power spectrum evolves over time from the initial power spectrum as

P (k, a) = PI(k)D
2(a)T 2(k, a). (2.54)

The transfer function T (k, a) is needed to modulate the power spectrum as different modes

enter the horizon distance at different scales during different eras of the universe. Computing

T (k, a) requires solving the Boltzmann equation in a perturbed FLRW metric. Asymptoti-

cally speaking T (k, a) ≈ 1 during the matter dominated era as for modes that entered the

horizon scale after matter-radiation equality due to (near) scale invariance predicted by in-

flation. The characteristic horizon distance at the time of equality is L0 ≈ 12(Ωmh2)−1 Mpc

≈ 100 Mpc. Modes that entered the horizon during the radiation dominated era were stunted

due to the logarithmic growth of the linear growth factor and the transfer function is sup-

pressed by a factor of k−2. Asymptotically then we have that P (k) ∝ kn for k ≪ 1/L0 and

P (k) ∝ kn−4 for k ≫ 1/L0.

2.6 ΛCDM Cosmology

The leading paradigm of cosmology is ΛCDM (Λ for dark energy, CDM for cold dark mat-

ter). In this model the universe started from the Big Bang at 13.8 billion years ago from

a singularity at a very hot and dense state. As the name states, the two main assumption
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of the ΛCDM model is the presence of cold dark matter and vacuum energy Λ, in addition

to ordinary matter (e.g. leptons, quarks, hadrons) that in astronomy we denote as baryonic

matter.

Without dark matter gravity from ordinary matter along would not be strong enough for

the universe to form overdensities as galaxies and galaxy clusters. The first evidence of dark

matter came from Fritz Zwicky who inferred the mass of the Coma cluster by the motion of

its galaxy members through the virial theorem and contrasted it with the total mass from

counting the number of galaxies (Zwicky, 1937) , where he concluded that the difference

between these two mass estimates is from an unknown substance he coined dark matter;

later Vera Rubin fitted observations of the rotation curves of galaxies with inferred mass

profiles and found that dark matter should exceed baryonic mass by a factor of six to one

(Rubin et al., 1980). Depending on the travel speed of dark matter when decoupled from

baryonic matter we can categorize dark matter into hot dark matter (HDM), warm dark

matter (WDM) and cold dark matter (CDM). Our measurements of the power spectrum

prefers the CDM model. In the HDM model, dark matter traveling at relativistic speeds

will quickly escape low mass density fluctuations. The only structures that survive are high

mass objects with M ≳ 1015M⊙ and smaller structures forming inside it in a top-down

hierarchical model; warm dark matter is an intermediate category that also suppresses the

formation of structure at small scales; CDM models, because of the small travel speed of

dark matter forms structure in a bottom-up hierarchy that is consistent with measurements

of the power spectrum.

Dark energy is proposed as a vacuum energy with negative pressure to explain the accel-

erated expansion of the universe. It was first proposed by Einstein as an additional term to

the Einstein field equations to maintain a static universe. As Hubble in 1929 discovered that

the universe was expanding by showing that the redshift of galaxies was proportional to their

distances away from Earth (Hubble, 1929). The idea of a static universe fell out of the favor
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and Einstein remarked the cosmological constant his “greatest blunder.” In the 90s, cosmol-

ogists revived the cosmological constant to explain the discrepancy between observations of

large scale structure with an Einstein-de Sitter model Ωm = 1 with no dark energy as well as

the uncomfortablely high observed expansion age H0t0 compared to de-Sitter models due to

cosmic acceleration. Two teams Riess and Perlmutter (Riess et al., 1998; Perlmutter et al.,

1999) used high redshift type IA supernovae (SNe IA) to measure the Hubble diagram to

much farther distances than was possible before. They showed that high redshift SNe IA

were dimmer than was expected from a decelerating universe and yielded constraints on ΩΛ

consistent with an accelerating universe. A very large discrepancy still exists today known

as the cosmological constant problem (Weinberg, 1989) is that were dark energy vacuum

energy predicted from quantum field theory, the energy density inferred from cosmological

probes and predicted from quantum field theory differ by 120 orders of magnitude. Invoking

the hypothetical symmetry between fermions and bosons in a supersymmetric (SUSY) world

would reduce this discrepancy to 60 orders of magnitude, one that is still embarrassingly

large.

Here we summary some of the crucial periods during of the expansion history of the

universe:

Inflationary era (t = 10−36 − 10−32 s, z =?) At a period 10−36 − 10−32 seconds after the

Big Bang the universe underwent a period of what’s known as Inflation, during which

the energy budget was dominated by a cosmological-constant type of vacuum energy.

In a simplest single-scalar-field inflationary model the energy budget is described by

a homogenuous scalar field ϕ. Comparing the scalar-field with the energy-momentum

tensor of a perfect fluid its density and pressure can be described as

ρϕ =
1

2
ϕ̇2 + V (ϕ) (2.55)

pϕ =
1

2
ϕ̇2 − V (ϕ), (2.56)
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where 1
2 ϕ̇

2 can be thought of as the effective kinetic energy term and V (ϕ) the potential

term. Substituting the pressure and density into the Friedmann equations we arrive at

the Euler-Lagrange equation for the scalar field:

ϕ̈+ 3Hϕ̇+ V (ϕ) = 0. (2.57)

There is no fundamental theory that describes the form of the potential V (ϕ) so it is

taken arbitrarily so long as it solves the three outstanding problems of the standard Big

Bang model — the horizon problem, flatness problem and monopole problem, as we

will discuss here. The horizon problems comes from the uniformity of the temperature

in the CMB which suggests that particles came into causal contact to form a thermal

bath. Under the standard Big Bang models, patches of sky above roughly 2 degrees

apart should be larger than the horizon distance at the time of last scattering. The

flatness problem states how the universe is fine tuned to have an energy density Ω ≈ 1

or in other words Ωk ≈ 0 when Ω = 1 is an unstable critical point, such that in

most solutions to the Friedmann equation when Ω is not close enough to unity the

universe will quickly collapse or rapidly expand and cool within the first second of

the Big Bang. Lastly comes the monopole problem which is the lack of evidence for

magnetic monopoles when many theories in particle physics predicts its existence. We

will discuss how inflation can simultaneously solve all three problems.

One condition that the potential energy has to meet is to be flat enough for enough

expansion to occur and has to reach a minimum that marks the end of inflationary

period. The first of these conditions is called the slow-roll approximation. Using the

slow-roll approximation, at the beginning of inflation V (ϕ) ≫ 1
2 ϕ̇

2, and the equation

of state ω ≡ ρϕ
pϕ

≈ −1. Inflation acts as an effective cosmological constant that drives

the scale factor to expand as

a(t) ∝ exp (Ht), (2.58)
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causing the universe to expand by a factor of over 1030 over a very short amount of

time.

This rapid expansion solves the horizon problem as pre-Inflation the typical comoving

scales of the universe satisfy λ < 1/H for the universe to be in thermal equilibrium.

The initial quantum fluctuations pre- and during Inflation seed the fluctuations in the

temperature of the CMB and through perturbations under gravity as the universe grew

seeded the structures of the universe today such as galaxy clusters. During inflation

many modes quickly bacame super-horizon scale. At the end of inflation some of the

modes re-entered horizon scales, forming the clustering of matter and radiation we see

in the universe today.

Inflation solves the flatness problem as the rapid expansion during Inflation forces Ω

to be extremely close to unity regardless of its value pre-Inflation.

The monopole problem is solved as when the universe reached the end of Inflation

V (ϕ) = 0, ω = 1 and the potential energy is converted into quark-gluon plasma and

leptons in a process called reheating. During this process the temperature does not get

hot enough to generate unwanted thermal relics as magnetic monopoles, causing their

densities to dilute to negligible levels.

Radiation Dominated Era (z = ? - 3500) Coming out of Inflation the universe was initially

dominated by radiation. Due to an unknown process called “baryogenesis” there is a

slight preference of particles over anti-particles formed, and this excess in abundance

“freezes out” as the expansion rate of the universe exceeds the pair annihilation rate.

Neutrinos were first to decouple from the thermal bath at around t ∼ 1 s after the

Big Bang, followed by electrons from their position pairs to form e− + e+ ⇌ γ + γ at

around t ∼ 10 s; Big Bang necleosynthesis took place at around t ∼ 20 minutes when

proton-neutron interactions fell out of equilibrium and neutrons either decayed into

protons or fused with them to form helium-4, deuterium and trace amounts of higher
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elements.

The energy budget of the universe during this era can be approximated by Ω ≈ Ωr.

Substituting this into the Friedmann equation (Eq. (2.24)) using the equation of state

for radiation we find that at this era the scale factor grows as a(t) ∝ t1/2.

Matter Dominated Era (z=3500 - z=0.4) At matter domination Ω ≈ Ωm the scale factor

grows as a(t) ∝ t2/3. At around z ∼ 1400 the temperature cooled down enough to slow

down the reaction e− + p ⇌ H + γ for neutral hydrogen to form in a period known as

recombination. At z ∼ 1100 Thomson scattering e− + γ ⇌ e− + γ becomes inefficient

enough that the mean free path of the photons exceeds the size of cosmological scales in

a period called last scattering that formed the Cosmic Microwave Background. Between

last scattering to z ∼ 30 in what is known as the “Dark Ages”, structures seeded by

quantum fluctuation during Inflation began to clump under the linear perturbation

regime but they have not collapsed to form stars and galaxies. From z ∼ 30− 10 in a

period known as reionization the first stars started to form, reionizing the intergalactic

medium.

Relevant to this thesis work, the first proto-galaxy-clusters formed at around z ∼ 2.

Due to the bottom-up hierarchical formation of halos in the cold dark matter paradigm

large structures as galaxy clusters were late to form. Proto-clusters have collapsed but

are in evolutionary states that are not fully virialized until z ∼ 1 for most clusters.

Chapter 2 will give a more detailed overview of galaxy clusters.

Dark Energy Dominated Era (z = 0.4-0.0) At around z=0.4 the universe energy budget

reached a point when dark energy started to dominate. The negative pressure of dark

energy is responsible for the cosmic acceleration ä > 0 we observe in the universe today.

The scale factor grows as a(t) ∝ exp (
√

Λ/3t) for a dark energy dominated universe.

According to ΛCDM the universe expansion will continue to accelerate resulting in a
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Big Freeze scenario. Other models of dark energy such as quintessence propose a scalar

field that alters the equation of state ω of dark energy over time that could result in

the universe collapsing on itself in a scenario known as the Big Crunch.

2.7 Beyond ΛCDM

The ΛCDM model has been the canonical model for cosmology in the past few decades.

While successful in many regards, the model currently runs into a disprepancy between

late-time and early-time probes in constraining H0 and S8 ≡
√

Ωm/0.3σ8.

The H0 tension refers to the discrepancy in measured H0 values from early-time and late-

time probes. Early time probes as measurements of the CMB temperature anisotropy by

Planck (Planck Collaboration et al., 2020) reports a H0 = 67.27±0.60 km/s/Mpc. Baryonic

Acoustic Oscillation (BAO) with prior on the baryonic density derived from deuterium mea-

surements from Big Bang Nucleosynthesis (BBN) constraints when combined with galaxy

clustering and weak lensing also yield low values of H0 (Krause et al., 2017; Troxel et al.,

2018; Abbott et al., 2018). In contrast, late time probes as the Cepheid distance scale from

the SH0ES Collaboration report values of H0 = 74.03± 1.42 km/s/Mpc (Reid et al., 2019).

The result is consistent with other late type probes as time delay from strong lensing (Wong

et al., 2019). We observe a 4.4σ tension inferred by the SH0ES collaboration and Planck.

This tension may be alleviated by using the Tip of the Red Giant (TRGB) distance scale

(Freedman, 2021) which suggests that the H0 tension may be due to systematics with local

distance ladder measurements. The nature of this tension is not yet known and it is open to

a new physics interpretation.

Adding to the confusion is the S8 tension. Combined measurements from galaxy weak

lensing measurements as Kids-1000 and DES Y3 yield S8 = 0.769 ± 0.016 (Abbott et al.,

2023). The value obtained from Planck is S8 = 0.834 ± 0.016, at a 2.9σ tension with late-

stage probes (Planck Collaboration et al., 2020). The eROSITA survey for galaxy clusters
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yielded S8 = 0.86 ± 0.01 which is consistent with CMB measurements but at a 3σ tension

with other late-time probes (Ghirardini et al., 2024). This hints that the S8 tension may

be in due to uncertainties in the intrinsic alignment of galaxies on shape measurements,

uncertainties in the non-linear power spectrum and baryonic feedback processes that effect

cosmic shear (Mandelbaum, 2018; Huterer, 2023) that do not require extensions to ΛCDM.

To resolve these tensions a wide range of new physics models beyond ΛCDM have been

proposed. Many of these introduce Dark Energy set in at early epochs of the universe or vary

the equation of state of Dark Energy from a constant ω = −1 (Karwal & Kamionkowski,

2016; Guo et al., 2019; Lin et al., 2019; Valentino et al., 2020). Others have proposed in-

creasing the relativistic degrees of freedom at recombination, parameterized by the number

of equilavent light neutrino species Neff (Mangano et al., 2005; de Salas & Pastor, 2016;

Akita & Yamaguchi, 2020). Another solution is Modified Newtonian Dynamics (MOND)

models that modify gravity at different redshifts or scales (Mangano et al., 2005; Rossi et al.,

2019; Ballardini et al., 2020; Akita & Yamaguchi, 2020; Valentino et al., 2020). Modified

recombination histories have been examined as a potential solution as an earlier recombina-

tion redshift would infer a smaller sound horizon that is compatible with a larger Hubble

constant (Hart & Chluba, 2017; Chiang & Slosar, 2018; Jedamzik & Pogosian, 2020; Bose

& Lombriser, 2021). Most of the extension to ΛCDM cannot simultaneously resolve the H0

and S8 tensions, leaving these discrepancies as open problems in cosmology. We refer to

Di Valentino et al. (2021); Abdalla et al. (2022) for complete reviews of this problem.
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CHAPTER 3

GALAXY CLUSTERS AND COSMOLOGY

3.1 Formation of Galaxy Clusters

Galaxy clusters are formed during the non-linear perturbation regime when δ ≳ 1. The

simplest of the non-linear collapse models is the top-hat spherical model in an Einstein-de

Sitter universe (Ωm = 1). In this model the evolution of the collapse is fully specified by a

top-hat radius R(t) that satisfies the equation of motion for a shell at radius R free falling

from the gravitational acceleration of a uniform sphere of mass M = 4π
3 (1 + δi)ρ̄R

3
i :

d2R

dt2
= −GM

R2
= −4πG

3
ρ̄(1 + δ̄)R. (3.1)

By its parametric solution the equation can be solved analytically. Its solution includes a

turnaround time tta when the perturbation is at its largest scale at the onset of collapse,

and a collapse time tcoll which under the top-hat model is twice the turnaround time. Taken

literally, due to the runaway gravitational collapse the radius at tcoll is r → 0 which clearly is

not the case. This unphysical instability is resolved due to a process of violent relaxation as

described by Lynden-Bell in which dark matter inside the cluster fragmented into subunits

and its tidal effects of neighboring perturbations resulted in the dynamic motion of mass

creating a non-uniform density profile. Clusters in dynamical equilibrium satisfy the Virial

theorem:

K +
1

2
V = 0, (3.2)

where K is the kinetic energy and V the gravitational potential energy. The density

contrast between the virialized cluster and the background density for an EdS universe

∆vir ≡ ρcoll/ρb = 18π2 ≈ 177. The density contrast for models with Ωm < 1 is larger as

initial density perturbations δi of the same value have a larger initial radius and therefore
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take longer to collapse. Simulations based studies (Bryan & Norman, 1998) have provided

model fits of the density contrast for cosmologies with varying Ωm and ΩΛ.

We can use linear perturbation theory to extrapolate the expected overdensity at the

time of collapse δc = δtaD+(tcoll)/D+(tta). The linear growth factor D+(a) ∝ a ∝ t2/3

during the matter dominated era, and from tcoll ≈ 2tta in the top-hat isotropic model, we

have δc ≈ 1.68, a value that’s independent of cosmology up at the 1 − 2% level. This is

because the cosmology dependence of δta and D+(a) roughly cancel out (Percival, 2005).

Clusters clearly reside in the non-linear regime as their actual density contrast at the time of

their collapse far exceeds that predicted by linear perturbation. This value δc is nonetheless

important for determining the abundance of halos as only objects with density contrasts

δ > δc can collapse into gravitationally bound halos.

The peak height ν is defined as the critical overdensity over the density fluctuation σ at

the radius of the cluster:

ν =
δc

σ(z,R)
, (3.3)

in which σ(z, R) = σ(z = 0, R)D+(z), as opposed to δc(z) that does not vary with redshift, is

very sensitive to the cluster redshift and evolves ν from 1 to increasing values with increasing

redshift.

The top-hat model serves as a good starting point to intuitively grasp the physics of

cluster formation. Notwithstanding, it brushes off many of the complexities in realistic

scenarios that are usually calibrated using N-body simulations. Most notably, clusters do

not have a sharp edge, but have a smooth density profile, and therefore do not have a distinct

collapse time as different radii collapse at different epochs. The shapes of clusters are triaxial

are are tidally coupled to the filamentary large scale structures connecting clusters. Finally,

from the bottom-up hierarchical formation model for cold dark matter, the density field is

not smooth but rather contains sub-structures lumped inside parent sub-structures. We refer

readers to (Kravtsov & Borgani, 2012) for a review.
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3.2 Density Profiles and Mass Definitions

Under hydrostatic equilibrium the inward gravitational force balances out the gas pressure

exerted outwards ∇ϕ = −∇p/ρg. For a collisionless system such as dark matter the hydro-

static equilibrium is given by Jean’s equation:

MJ (< r) =
rσ2r
G

[d ln ν(r)
d ln r

+
d lnσr(r)

2

d ln r
+ 2β(r)

]
, (3.4)

in which β = 1 − 2
σ2t
2σ2r

is the orbit anisotropy parameter defined by the tangential velocity

dispersion σt(r) and radial velocity dispersion σr(r) (Binney & Tremaine, 2008).

Cluster masses are typically defined by enclosing a radius with average density contrast

∆. The radius of the cluster R∆ is implied by solving the equation

M(< r) =
4π

3
∆ρ(z)R3, (3.5)

where ρ(z) is the reference density at the redshift. This is usually taken to be the critical

density ρcrit or the background matter density ρb. The overdensity usually takes on the

values ∆ = 200 for optical surveys as it resembles ∆vir for the top-hat model described

above, and for X-ray and millimeter wave surveys it is usually taken to be ∆ = 500, 2500 as

most of the signal comes from the inner region of the cluster at these wavelengths.

The density profile of cluster can take one on several parametric forms. The simplest of

these models is the Singular Isothermal Sphere (SIS) profile

ρ(r) =
σ2v

2πGr2
. (3.6)

This comes from the assumption that particles inside the cluster are isothermal and exhibit

a Maxwellian velocity distribution. As we will see the complexities inside the cluster cause

the densities to deviate from ρ ∝ r−2.
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The most commonly accepted form of parameterization is the Navarro-Frenk-White

(NFW) (Navarro et al., 1997) profile:

ρNFW (r) =
4ρs(

r
rs

)(
1 + ( r

rs
)2
) , (3.7)

with rs the scaled radius. Asymptotically it exhibits ρ ∝ r−1 for r ≪ rs and ρ ∝ r−3 for

r ≫ rs. This formalism allows us to introduce the concentration parameter c∆ = R∆/rs.

The concentration exhibits a negative relation with mass in what is known as assembly bias

from the top-down hierarchical formation of clusters. Many studies such as Bhattacharya

et al. (2011); Ludlow et al. (2016); Diemer & Joyce (2019) have aimed to parameterize the

concentration-mass relation. Lithwick & Dalal (2011) showed that shape of the profile is

produced from adiabatic contraction from its initial shape.

3.3 Halo Abundances

We describe here the halo abundance model originally described by Press & Schechter (1974)

that formed the basis for prescriptions of most halo abundance models to date. According

to Press & Schechter (1974), only overdensities at a smoothing scale σ(R) with δs > δc

can collapse into halos. We can interchange R with M by applying a top-hat filter to the

smoothed overdensity with M = 4π/3ρ̄R3 inside the top-hat radius. The initial density

perturbation follow Gaussian statistics, and hence the fraction of objects that will collapse

into mass exceeding M follows

F (> M) =
1√

2πσ(M)

∫ ∞

δc
exp

[ −δ2s

2σ(M)

]
dδs. (3.8)

We expect that in the limit that M → 0 one would recover F (0) = 1, recovering the whole

content of the universe. Yet the Press-Schechter formalism underpredicts this ratio by a
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factor of 1/2. This is explained by recognizing that half of the sub-halos are absorbed into

larger halos, and a fudge factor of 2 is appended to the halo function.

Modeling of the halo-mass function n(M) is an active area of research. Bond et al.

(1991) provided a more rigorous exursion set model to account for the factor of 2 in the

halo mass function. Sheth & Tormen (2002) extended the Press-Schechter ansatz to include

ellipoisdal collapse. Many cosmological simulations have sought to parameterize the halo

mass function by the universal variable ν(M, z) that accounts for both mass and redshift

dependence (Jenkins et al., 2001; Evrard et al., 2002; Lukić et al., 2007; Bhattacharya et al.,

2011). In particular, Tinker et al. (2008) captured the universality of halo-mass function up

to 10% up to z = 2.5 using the formula:

n(M, z) =
ρ

M
f(M, z)

d lnσ−1
M

dM
, (3.9)

with f(σ(M, z)) of the form

f(σ) = A
[(σ

b

)−a
+ 1
]
exp (−c/σ2), (3.10)

with (A, a, b, c) best-fit values provided for different overdensity mass definitions.

3.4 Scaling Relations

Cluster properties are expected to be self-similar across mass ranges. The Kaiser model

(Kaiser, 1986) assumes that the initial power spectrum is scale invariant P (k) ∝ kn and that

the physics of cluster formation does not introduce new scale dependence. The model further

assumes that under hydrostatic equilibrium (Eq. (3.4)) the logarithmic slope of temperature

and gas density of the intracluster medium with respect to radius does not depend on the
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mass. Under these assumptions X-ray temperature has the scaling relation

TX ∝ M

R
∝ [E(z)M∆]2/3. (3.11)

The X-ray luminosity in soft band regions with T > 2 keV is almost independent of temper-

ature and has the scaling relation

LX,soft ∝ ρgasr
3Λ(TX) ∝ M∆E(z)2, (3.12)

in which Λ(TX) is the radiative cooling function. The mass dependence of the X-ray lumi-

nosity in the soft band region T = 0.5 − 2 keV is harder to model. Blanchard et al. (1992)

considered a model for which the radiative cooling function across the entire temperature

range scales as T
1/2
X , such that the bolometric X-ray luminosity scales as

LX,bol ∝ M
4/3
∆ E(z)7/3. (3.13)

The quantity YX = MgasT is proportional to the global thermal energy of the ICM. As

TX ∝ M2/3 and Mgas ∝ M∆ under the Kaiser model, YX scales with mass as

YX ∝ M
5/3
∆ E(z)2/3. (3.14)

Analogously in the millimeter regime one can derive an integrated YSZ proportional to the

total energy of the Sunyaev-Zel’dovich distortion of the CMB around the cluster. The dis-

tortion of the temperature of the CMB due to the SZ effect is

∆TCMB

TCMB
= g(ν)y(θ), (3.15)

where g(ν) is the frequency dependence and y(θ) the local Compton-y parameter linearly
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related to the total gas pressure along the line of sight. Assuming spherical symmetry we

can integrate this signal towards the cluster edge to arrive at the total Compton-y parameter

YSZ ∝
∫

y(r)2πrdr ∝ M
5/3
∆ E(z)2/3. (3.16)

In the optical regime red galaxies around the cluster center that fall into the red-sequence

in the color-magnitude diagram are probabilistically weighed and summed into a quantity

known as richness λ (Rozo et al., 2010; Rykoff et al., 2014). Assuming that galaxies on

average have a stellar mass m∗ and that the total stellar mass of the cluster is M∗, the

richness scales with mass as

λ ∝ M∗
m∗

∝ M∆ (3.17)

3.5 Cluster Cosmology

We can infer cosmology by inferring the best-fit cosmological parameter with cluster observ-

ables. Bayes theorem states that

P (M|D) = P (D|M)
P (M)

P (D)
, (3.18)

where M and D are respectively short hand notations for model and data parameters. We

denote P (M|D) as the posterior, P (D|M) the likelihood, P (M) the prior and P (D) the

evidence. The ratio of evidence P (D1)/P (D2) is called the Bayes factor and is used to

compare the statistical evidence between two different models. When assessing parameters

within a single model it is usually discarded as a constant term that does not influence the

posterior distribution.

Bayes theorem suggests that data points are fixed and that the model follows a probability

distribution. The posterior for one measurements using the Bayesian approach can be taken

as the prior for a newer dataset, a process knonw as Bayesian updating. Contrast this with the
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Table 3.1: Ingredients used to infer cosmology with galaxy clusters.

Parameter Description

pc Cosmological parameters
po Observable-mass relation parameters
p = {pc,po} Combined parameters
O True observable quantities

Ô Measured observable quantities
Φ Selection function
dV

dzdΩs
Volume element

Ωs Survey area

frequentist approach that treats the model as fixed and the measured data as drawing from

a probability distribution when conducting every single experiment procedure. As we only

have one universe the frequentist approach fell out of favor to pave the way for the Bayesian

approach. The ergodicity hypothesis in cosmology states that this particular realization

of our universe has the average properties of the ensemble of all hypothetical realizations

under our cosmological model. As a reference, Efstathiou (2003) compares the results of the

statistics of the CMB quadrupole moment using both the Bayesian and frequentist approach.

To infer cosmology we need to introduce the following ingredients in Table 3.1. We start

with the differential number count of clusters given by

dN

dmdzdÔ
= Ωs

dV

dzdΩs
n(m, z)P (Ô|m, z,p)Φ(Ô,m, z). (3.19)

Due to the self-similarity of clusters P (Ôi|m, z,p) is usually assumed to form a power-

law relation with mass. The selection function Φ depends on the survey depth and cluster

observable. As the measured observable typically suffers from a wide range of systematic

biases, one needs to convert the measured observables Ô to the true observables O by forward
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modeling the relation P (Ô|O,m, z,p). The volume element is described by

dV = DH
D2
M (z)

E(z)
dΩsdz, (3.20)

where DH = c/H0 is the Hubble distance and D2
M (z) the transverse comoving distance.

Once we recover the “true” observables we need to model the joint distribution between

observables. Most often they are taken to be multivariate correlated Gaussians of the form

P (O|m, z,p) =
1

(2π)n/2| detC|1/2
exp

[
(O − ⟨O⟩)TC−1(O − ⟨O⟩)

]
, (3.21)

with C the covariance matrix between observables. The predicted number count given the

measured observables is now

dN

dÔ
= Ωs

∫
dm

∫
dz

∫
dO dV

dzdΩs
Φ(Ô,m, z)P (Ô|O,m, z,p)P (O|m, z,p)n(m, z) (3.22)

The total expected number count is determined by marginalizing over the observable space

Ntot =

∫
dÔdN

dÔ
|p. (3.23)

When binned by the multivariate observable Ô the number of clusters in each stacked bin

is usually small enough that we can assign a Poisson likelihood to the measured rate of

detection of clusters. The posterior distribution for p can be found by sampling with Monte-

Carlo Markov Chains the log-likelihood

lnL(p) =
∑
i

(
ln

dN

dÔ

) dN
dÔi

−Ntot + const, (3.24)

where ln dN
dÔ is the logarithm of the predicted number count in a given bin according to our

model and dN
dÔi

the measured number count.
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Clusters are powerful probes of cosmology as they are sensitive both to the geometry

of the universe due to the cosmological dependence of dV and the growth of structure as

parameterized by the halo mass function. We can use them to constraint the matter density

of the universe, Ωm, the amplitude of density fluctuations, σ8, the equation of state parameter

for dark energy, w, and the amplitude of primordial non-Gaussianity, e.g., fNL.
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CHAPTER 4

IMPACT OF CLUSTER TRIAXIALITY ON WEAK LENSING

MEASUREMENTS

4.1 Introduction

The Dark Energy Survey (DES) used the 4-m Blanco Telescope and the Dark Energy Camera

(Flaugher et al., 2015) to carry out a multi-band, 5,000 deg2 survey over six years, with the

primary goal of constraining cosmology and the nature of dark energy. Given its depth and

wide-area coverage, DES observed ∼100,000 galaxy clusters up to redshift ∼ 1 (Melchior

et al., 2017). Initial cluster cosmology results, based on the first year of data (DES Y1),

were published in Abbott et al. (2020). The cluster observable that DES Y1 employed

as a mass proxy is a probabilistic cluster galaxy count called richness, computed with the

redMaPPer algorithm (Rykoff et al., 2012).

Gravitational lensing, the shearing of galaxy images by foreground mass concentrations, is

one of the most powerful methods for calibrating cluster mass-observable relations (Johnston

et al., 2007; Gruen et al., 2014; Simet et al., 2017; McClintock et al., 2019). DES calibrates the

cluster MOR through statistical weak lensing, in which shears from an ensemble of clusters

are stacked to achieve high signal-to-noise (Bartelmann et al., 2001). In DES, stacked shear

profiles are estimated for clusters binned in redMaPPer richness, enabling a determination

of the mean halo mass as a function of richness (Melchior et al., 2017; McClintock et al.,

2019).

Systematic effects in cluster selection or in calibration of the cluster MOR, if uncorrected

for, can lead to biased cosmological inference from cluster abundance measurements. One

such systematic arises from cluster triaxiality, the intrinsically elliptical shapes of galaxy

clusters. N-body simulations indicate that dark halos can have major-to-minor axis ratios

as high as 1.5 (Jing & Suto, 2002; Oguri et al., 2005), as confirmed observationally through
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cluster weak lensing ellipticity measurements (Clampitt & Jain, 2016; Shin et al., 2018).

Failing to account for cluster halo triaxiality may result in an overestimate of cluster mass

by as much as 3-6% for stacked weak lensing measurements (Dietrich et al., 2014). Triaxiality

was identified as one of the most important sources of systematic bias in the DES Y1 cluster

lensing analysis, significant at the 2% level (McClintock et al., 2019). Recently Osato et al.

(2018) showed that triaxiality not only biases the cluster surface mass density in the “one-

halo” regime but also affects the surface density profile in the “two-halo” regime.

In this paper, we use redMaPPer cluster samples and associated halo catalogs in the

Buzzard simulations to quantify cluster selection bias related to halo triaxiality properties

such as orientation and ellipticity. We evaluate the impact of the triaxiality selection bias on

1) the richness–mass relation and 2) the excess surface mass density of individual halos (Osato

et al., 2018). The stacked surface density profiles modeled with a triaxiality selection bias

deviate from the isotropically stacked profiles; we find results comparable to those previously

reported in the literature.

The paper is organized as follows. In Section 2, we describe the simulation data set

used in the study and the halo–cluster matching algorithm. In Section 3 we examine the

orientation and ellipticity distributions of triaxial halos associated with redMaPPer-selected

clusters, quantifying the preference for halo orientation along the line of sight. In Section

4 we examine the boost in cluster richness for a given mass resulting from this orientation

selection bias in the cluster sample. In Section 5 we test for correlation of halo triaxiality

with other leading systematics, finding no evidence for such. In Section 6 we study halo

surface mass densities as a function of orientation and the effect of orientation selection bias

on stacked surface density measurements. We conclude in Section 7.

Throughout, we assume a flat ΛCDM cosmology with Ωm = 0.283, and H0 = 70km

s−1Mpc−1. Distances and masses, unless otherwise noted, are defined in units of h−1 Mpc

and h−1 M⊙.
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4.2 The Simulation Data Set

4.2.1 Buzzard simulations

We make use of the N-body simulation catalogs from the suite of Buzzard simulations

(DeRose et al., 2019) with the ΛCDM parameters given above. Detailed descriptions of

the simulations can be found in MacCrann et al. (2018); DeRose et al. (2019); Wechsler

et al. (2021); here we present a brief overview.

Halos are found by ROCKSTAR (Behroozi et al., 2013) with masses defined by M200b,

or more commonly referred to as M200m, the mass enclosed in a radius within which the

average matter density is 200 times the mean background matter density of the universe

at the halo redshift. Galaxies are assigned to dark matter particles using ADDGALS, an

empirical algorithm that places galaxies on dark matter particles based on a galaxy–dark

matter relation learned from subhalo abundance matching catalogs and that is designed to

accurately reproduce galaxy luminosities, colors, and spatial clustering over large volumes

(DeRose et al., 2019). In particular, each massive halo is assigned a luminous, red galaxy at

its center with the central galaxy’s r-band absolute magnitude calibrated against the halo’s

virial mass (Wechsler et al., 2021).

The Buzzard flock is a set of 18 realizations of simulations that cover the DES Y1 foot-

print, each realization covering ∼1800 square degrees of the sky (Abbott et al., 2020; Drlica-

Wagner et al., 2018). The galaxy catalog is complete toward a r-band magnitude of ∼ 26.5

and z=2.35. By tuning the luminosity function of galaxies and their red fraction, the pho-

tometric redshift and errors follow the DES Y1 GOLD catalog, the the DES science-quality

photometric catalog produced from Y1 data to enable cosmological analyses. To account for

the masking of the DES Y1 footprint, Buzzard randomly downsampled galaxies by FRAC-

GOOD, the percentage of un-masked pixels within a tile of the sky. As a second step, only

galaxies that are brighter in the z-band than the local 10σ limiting magnitude are included
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in the galaxy catalog.

The Buzzard simulations simultaneously achieve good spatial resolution and large vol-

ume by dividing the lightcone into three simulation boxes covering the redshift ranges

z ∈ [0.0, 0.34), [0.34, 0.90), and [0.90, 2.35), with respective minimally resolved dark mat-

ter particle masses of 2.7 × 1010 h−1 M⊙, 1.3 × 1011 h−1 M⊙, and 4.8 × 1011 h−1 M⊙.

The increased resolution at low redshift captures non-linear structures at late times, while

the lower resolution at high redshift enables the catalogs to encompass larger total volume.

Particles are evolved using the L-Gadget2 code designed to efficiently run large-volume dark-

matter only simulations (Springel et al., 2005).

4.2.2 redMaPPer cluster sample

With the advent of wide-field-imaging surveys, a plethora of optical cluster finding algorithms

have emerged, such as those based on galaxy photometric redshifts, e.g. Kepner & Kim

(2000), Soares-Santos et al. (2011), Wen et al. (2012), and Oguri (2014). In this paper, we

study the cluster sample identified with the redMaPPer algorithm (Rykoff et al., 2014), which

identifies cluster candidates as spatial over-densities of red-sequence galaxies. Clusters are

assumed to be centered on a galaxy, with the central galaxy selected based on its luminosity

and color (brightest central galaxy, or BCG). The algorithm also produces a richness estimate,

λ, for each cluster candidate, a probabilistic count of cluster red-sequence galaxies above a

luminosity threshold and inside a spatial aperture defined by Rλ = 1h−1 Mpc(λ/100)0.2

determined from iterative richness estimations.

The redMaPPer algorithm uses a sample of observed clusters with spectroscopic redshifts

as a training set to build the initial redshift-dependent red-sequence model which cluster

galaxies are fitted onto to determine the photometric redshift zλ. The DES Y1 redMaPPer

photometric redshifts are unbiased at the |∆z| ≤ 0.003 level, and have a median photometric

redshift scatter σz/(1 + z) ≈ 0.006.
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For DES Y1 cluster cosmology, redMaPPer clusters are taken from the GOLD galaxy

catalog (Drlica-Wagner et al., 2018). The clusters are restricted to the redshift interval to

z ∈ [0.2, 0.65] and λ > 20, totaling 6504 clusters in the footprint. redMaPPer performance

below redshift z = 0.2 is compromised by the lack of u-band data, while there are relatively

few galaxy clusters in the catalog above redshift z = 0.65 (Abbott et al., 2020).

The redMaPPer cluster finder has been applied to the Buzzard catalogs to identify galaxy

clusters. The Buzzard simulations come with a caveat that their richness-mass relation

is biased low relative to the DES Y1 data which may is likely attributed to the spatial

dependence of galaxy colors at small scales (DeRose et al., 2019). Nonetheless, we describe

in Section 4.4 how we can use Buzzard to study the relative difference in richness-mass across

orientation bins.

In this project, for sample completeness we make use of a redMaPPer sample with a max-

imum cluster redshift of z < 0.90 which is around the redshift detection limit of redMaPPer

and the limit of the Buzzard light cone, and for sample purity we apply a richness cut of

λ > 20 (Rykoff et al., 2016; McClintock et al., 2019). Halos are also cut at masses below

5× 1013 h−1M⊙ which roughly corresponds to a richness of 20.

4.2.3 Cluster halo matching algorithm

Here we outline how redMaPPer clusters are matched to Buzzard halos. First, a cluster is

labeled as centered or miscentered based on whether or not its redMaPPer BCG is a central

galaxy in a Buzzard halo. Centered clusters have BCGs that share the same ID as that of the

halo central galaxy; in this case, the cluster and halo central coordinates perfectly match. By

this criterion, 63% of redMaPPer clusters are centered; the remaining were matched using

the halo-cluster algorithm described below. A more detailed description of the centering

properties of the redMaPPer catalogs can be found in Section 4.5.1.

The miscentered redMaPPer clusters were matched to Buzzard dark matter halos by
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proximity. Halos were ranked by halo mass, and clusters were ranked by richness, both in

descending order. We first search for halo-cluster pairs with redshift separation ∆z ≤ 0.05

between cluster photometric redshift and true halo redshift. This range of redshift separation

is large compared to the typical photometric redshift error, ∆z ∼ 0.005, for redMaPPer-

selected clusters. Then, for each halo, we identify those redMaPPer clusters with BCGs

within a projected 2-D, comoving radius of 2 h−1 Mpc of the halo central galaxy. If there

are multiple redMaPPer clusters satisfying these separation criteria, we match the halo to

the richest such cluster that hasn’t been previously matched. For each cluster, we repeat

this matching process, selecting halos satisfying the redshift and projected distance criteria,

and then choosing the most massive such halo still on the list as the one to be associated

with that cluster. Clusters and halos that uniquely match with each other in both matching

steps are considered valid matches.

Of the 24,243 initially identified redMaPPer cluster candidates in the suite of 18 catalogs,

23,658 or 97% are uniquely matched to a halo with the above prescription. We do not consider

the non-uniquely matched clusters in this study.

This halo–cluster matching algorithm was cross-checked with an independent halo–cluster

matching algorithm used in Farahi et al. (2016) that rank-orders halos and clusters by the

number of galaxies they have in common. Using the Aardvark simulation, Farahi et al.

(2016) uniquely matched 99% of redMaPPer clusters to halos, showing excellent agreement

with this paper’s algorithm on the completeness and uniqueness of cluster-to-halo matches.

We cross checked our matching algorithm with that of Farahi et al. (2016) in a different

version of Buzzard with a smaller patch of sky containing several hundred clusters and found

almost identical halo-cluster pairings.

Due to the high number of particles per halo, Poisson noise plays a negligible role in our

ellipticity measurements: at low redshift, with a mass resolution of 2.7 × 1010 h−1 M⊙, a

typical 3×1014 h−1 M⊙-mass halo found through redMaPPer corresponding to a richness of
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∼ 40 will contain ∼ 10, 000 particles, and the same-mass halo at high redshift, with a poorer

mass resolution of 1.3 × 1011 h−1 M⊙, contains ∼ 3, 000 particles. Simulations conducted

by Jing & Suto (2002) demonstrated that these large numbers of particles per halo make

Poisson noise negligible for our purposes. We do not consider halos with fewer than 100

particles with poor shape convergence, corresponding to group size objects with richnesses

well below our λ > 20 cut.

4.3 Cluster Halo Triaxiality and Selection Bias

Previous studies have shown that optical cluster finders preferentially select halos with their

major axes oriented along the line of sight (Corless & King, 2008; Dietrich et al., 2014). In this

Section, we quantify this orientation bias of selected clusters using the redMaPPer catalogs

and the Buzzard simulations. We also explore whether a cluster ellipticity selection effect

exists, i.e., whether redMaPPer preferentially selects halos that are more or less elliptical

than randomly selected halos.

4.3.1 Measurement of halo ellipticity and orientation

We make use of a quadrupole moment tensor method (Bett (2012) and references therein)

to measure the shapes and orientations of halos. Many such algorithms solve for halo shapes

by using particles inside a spherical envelope (Dietrich et al., 2014; Osato et al., 2018);

this has the advantage of allowing easy comparison with other results, but it systematically

underestimates the axial ratios for ellipsoidal profiles, an effect known as “edge bias.” As

described below, we correct for such an effect by using an iterative method to determine the

shape of the enclosing envelope, in the vein of earlier works such as Dubinski & Carlberg

(1991), Katz (1991) and Warren et al. (1992). To do so, we first measure the shape of the

halo using particles inside a spherical envelope; once the axis ratios and the principal axes

are found, the envelope adapts iteratively until both the axis ratios of the halo inside the
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Figure 4.1: Upper panel: A 2-D distribution plot of the true M200m and z of halos before and
after matching with redMaPPer clusters. The halos are cut atM200m > 5×1013 h−1M⊙ and
a redshift cut of z < 0.90 and are sparsely sampled for better visualization. Lower panel:
The probability density function of the observed richness λobs before and after matching
with halos. Because of the high match rate of redMaPPer clusters the two distributions are
nearly identical.
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envelope and the shape of the ellipsoidal envelope itself converge.

We now describe the halo ellipticity measurement algorithm in detail. It involves nested

iteration of both the principal axes, as determined from the quadrupole moment tensor, and

of the envelope shape. In the initial iteration, l = 0, of the envelope shape, the envelope

is set to be a sphere centered on the halo center with a radius equal to the virial radius of

the halo, Rvir. The reduced quadrupole moment tensor is then calculated for the NP dark

matter particles inside the envelope. This tensor, with its principal-axis directions solved at

the k-th iteration, is defined as:

M(k)
ij =

1

N
(k)
P

N
(k)
p∑

p=1

R
(k)
p,iR

(k)
p,j(

R
(k)
p
)2 , (4.1)

where Rp,i and Rp,j are the distances from the center along Cartesian coordinate axes of the

p-th particle and Rk
p is the triaxial radius, defined below, of the p-th particle solved at the

k-th iteration.

We define a, b, and c as the major, intermediate, and minor axes lengths of a particle

projected onto the unit sphere and q ≡ c
a and s ≡ b

a as the minor-major and intermediate-

major axis ratios; the physical distances to the p-th particle along the minor, intermediate

and major axes are denoted Xp, Yp and Zp. In this notation, the triaxial radius at the k-th

iteration of the particle is expressed as:

R
(k)
p =

√√√√( Xp

q(k−1)

)2

+

(
Yp

s(k−1)

)2

+ Z2
p . (4.2)

The axis lengths projected onto the unit sphere are the square roots of the eigenvalues of

the reduced tensor, and the axis directions are the corresponding eigenvectors. After each

iteration, the principle axes are rotated by the rotation matrix M (k), where each row in

the matrix is a principle axis found from the reduced tensor in the previous iteration. The
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reduced tensor is computed again under the rotated coordinates. Starting from q(k=0) = 1

and s(k=0) = 1, the tensor is considered to have converged if

∣∣∣∣∣1− q(k)

q(k−1)

∣∣∣∣∣ < 10−6 and

∣∣∣∣∣1− s(k)

s(k−1)

∣∣∣∣∣ < 10−6 , (4.3)

and is deemed divergent if convergence is not reached before the number of iterations k

exceeds 100.

The total rotation matrix after n rotations is

Mtot = M (n) . . .M (k) . . .M (1) , (4.4)

where each row in Mtot gives the direction of the corresponding halo axis prior to rotation.

If after k iterations the axis ratios derived from the tensor converge, then the elliptical

envelope of the particles is advanced from the previous l−1-th to the l-th (for l > 0) iteration,

adapting its axis ratios and orientation to those of the halo as determined from the tensor

with the previous envelope. Particles with elliptical distances of

R
(l)
p ≡

√√√√(X
(l−1)
p

q(l−1)

)2

+

(
Y
(l−1)
p

s(l−1)

)2

+ (Z
(l−1)
p )2 < Rvir (4.5)

are selected. The sequence initializes at q(l=0) = s(l=0) = 1, and (X0
p , Y

0
p , Z

0
p) along the

original (x, y, z) axes of our coordinate system and converges using the same criteria as for

the shape of the halo inside the envelope, Cf. equation 4.3. The shape of the halo is said to

be convergent only if both the shape of the halo particles found inside the envelope and the

shape of the envelope itself both converge.

We applied this technique to measure the shapes of simulated halos that are matched to

the redMaPPer clusters; of the 23,658 matched redMaPPer clusters, the halo shape measure-

ments converge by the above criteria for 22,790 of them. We use this sample in the following
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Figure 4.2: Axis ratios, q and s, for redMaPPer-matched halos measured with spherical vs.
adaptive ellipsoidal envelopes. Solid black lines show the mean ratios in each axis-ratio bin,
and the blue bands indicate the 1−σ scatter. Dashed lines would correspond to no difference
in axis ratios between the two methods. The results demonstrate that edge bias reduces the
measured ellipticities of halos from their true values, with larger bias at higher ellipticities
(smaller q and s).
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sections to explore orientation bias.

We can gauge the impact of the edge bias on halo shape measurement by comparing

results with the adaptive ellipsoidal envelope to those using a fixed spherical envelope. In

Fig. 4.2, we plot the halo axis ratios q and s found using spherical envelopes (ordinates) with

those from the adaptive ellipsoidal envelopes (abscissas). We see clearly that the axis ratios

are biased high (ellipticities biased low) when using spherical envelopes, with larger bias at

higher ellipticities (lower values of the axis ratios). These results are in qualitative agreement

with those of Shin et al. (2018), who studied 2-D projected ellipticities of observed galaxies

in redMaPPer clusters. They found that the inferred 2-D ellipticity, e ≡ (1 + q)/(1 − q)

where q is the axis ratio for a 2-D ellipse, deviates by as much as 0.1 when using a circular

aperture for the redMaPPer (Rykoff et al., 2014) cluster finder, Rλ = 1h−1 Mpc(λ/100)0.2,

due to the cut-off of satellite galaxies along the major axis; they also found that the bias in

ellipticity becomes worse at higher ellipticity (smaller q).

4.3.2 Distributions of cluster halo orientation and ellipticity

Armed with measurements of halo shapes for redMaPPer clusters, in this subsection we

study the distributions of halo ellipticity and orientation. To test for redMaPPer-associated

selection biases, we compare these distributions to those for a sample of 36,445 randomly

selected halos with convergent shape measurements from the Buzzard catalog. The orien-

tation of interest is the angle between the halo major axis and the line of sight, which we

denote by i; a non-uniform distribution of i would signal the preferential selection of (pro-

late) clusters with these vectors aligned. For this analysis, we adopt the orientation bins

cos(i) ∈ [0.0, 0.2), [0.2, 0.4), [0.4, 0.6), [0.6, 0.8), [0.8, 1.0).

The distributions of axis ratios for redMaPPer-matched halos and for randomly selected

halos are shown for different orientation bins in the upper panels of Figure 4.3. Previous

N-body studies found that more massive halos tend to be more elliptical (Kasun & Evrard,
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Figure 4.3: Top panels : Axis-ratio distributions for redMaPPer-matched clusters binned by
orientation and for randomly selected halos from the Buzzard simulations. Bottom panels :
Mean axis ratios with 1σ errors from jackknife resampling. Applying the 3σ significance cutoff
rule, no significant shift is found in the shape parameters q and s for redMaPPer-matched
and randomly selected halos. Also is the case that no statistically significant difference is
found in the mean ellipticities across different orientation bins.
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2005) as a result of tidal forces and mergers. To account for this effect, we resampled the

randomly selected halos to match the halo mass function of the redMaPPer-matched halos.

The upper panels of Fig. 4.3 indicate that the ellipticity distributions of the redMaPPer-

matched halos are qualitatively very similar to those for the resampled random halos, with

little dependence on orientation.

To quantify this comparison, in the bottom panels of Fig. 4.3 we show the mean axis-

ratios for the redMaPPer-matched halos in different orientation bins (in blue), along with

the means for the random halos (in grey). The errors on these measurements are estimated

by jackknife resampling, with the simulated survey footprint split by the k-means algorithm

kmeans radec1 into 40 non-overlapping patches—the error estimates come from the variance

among the patches, each of them 37.5 square degrees. With this kind of spatial jackknife, the

choice of the size of the jackknife patch is a compromise: for very large patch size, the number

of patches (samples) would be too small to get a meaningful statistical sample; for very small

patch size, large-scale structure would be highly correlated across adjacent patches, so they

could not be treated as quasi-independent for error estimation.

The mean axis ratios differ by 0.7 and 1.2% for q and s respectively for redMaPPer vs.

random halos. To determine if these differences are significant, we conduct a null-hypothesis

test on q and s with their standard errors modeled as Student’s t distributions. We find a

1.4σ difference in the minor-to-major axis ratio q for redMaPPer vs. randomly sampled halos

and a 1.8σ difference in the intermediate-to-major axis ratio s. There are no statistically

significant shifts in mean axis ratios for redMaPPer halos between different cos(i) bins. Thus,

we do not find strong evidence of shifts in the ellipticity distributions.

Figure 4.4 (top panel) shows a similar analysis to that above, but now for the distribu-

tion of halo orientation in 3 different richness bins. In this case, there is a clear signal of

orientation bias in the redMaPPer-matched clusters, with preferential selection of clusters

1. Code written by Erin Sheldon. Source: https://github.com/esheldon/kmeans_radec

48

https://github.com/esheldon/kmeans_radec


with major axis oriented along the line of sight. The effect is more pronounced for clusters of

higher richness: the lower panel shows an increase in the mean value of cos(i) with richness.

Using the same method of null hypothesis testing, we find that the mean value of cos(i) for

redMaPPer halos of 0.555 ± 0.002 is boosted compared to that for randomly selected halos

with a 13.8σ significance. There is also a statistically significant shift in the mean value of

cos(i) between richness bins: the mean cos(i) for λ ∈ [30.0, 50.0) (λ ∈ [50.0, 274.0)) exceeds

that for λ ∈ [20.0, 30.0) at 3.7σ (4.8σ) significance. As a null test, we find that the randomly

selected halos have a mean cos(i) consistent with 0.50.

In the next subsection, we will interpret the correlation of mean cos(i) with richness seen

in Fig. 4.4 as due to the boosting of observed richness for clusters (of fixed mass) oriented

along the line of sight.

4.4 Effect of Orientation on the Richness–Mass Relation

Since we have shown that the orientation distribution of redMaPPer-selected clusters is

biased, it is important to understand how this may impact the observed cluster richness-

mass relation, a key ingredient in cluster cosmology. In this Section, we explore how the

cluster richness-mass relation varies with cluster orientation.

Figure 4.5 shows the empirical relation between Buzzard halo mass (defined by M200m)

and observed richness for the redMaPPer-matched clusters. Following previous work (Saro

et al., 2015; Simet et al., 2017; Melchior et al., 2017; McClintock et al., 2019), we model the

relation between cluster mean richness µ(λ) and halo mass M as a linear relation between

ln(λ) and ln(M), with a pivot point at 1014 M⊙:

µ(lnλ) = ln(A) +B ×
(
ln(M/M⊙)− 14 ln(10)

)
. (4.6)

We do not consider the redshift evolution of the richness-mass relation as results from pre-
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Figure 4.4: Top panel : Distribution of cos(i) for redMaPPer-matched halos in 3 richness bins
and for randomly selected halos. Bottom panel : The mean cos(i) for redMaPPer-selected
halos is boosted relative to that for randomly selected halos (0.50, not shown). The mean
value of cos(i) also increases with redMaPPer richness. Errors are estimated from jackknife
resampling.
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Figure 4.5: Left panel: Solid line labelled “Combined” shows the best-fit model to the full
sample assuming a linear relationship between ln(λ) and ln(M). Dashed lines show best-fit
models in each orientation bin, with the amplitude ln(A) allowed to vary from bin to bin. For
halos of fixed mass, those oriented along the line of sight have larger observed redMaPPer
richness. The dashed horizontal line indicates the richness cut at λ > 20 and dashed vertical
line the mass cut at M > 5× 1013 h−1M⊙. Color coded is the density of the scatter points
in the parameter space, with brighter colors indicating a higher density. Right panel: The
richness distribution in mass bins for all data points overlaid with a truncated Gaussian fit
using the best-fit parameters in the “Combined” 1-parameter model. In lower mass bins the
best fit mean log-richness µ(lnλ) is lower than the mean log-richness of the data points, as
the peak of the truncated Gaussian fit lies below the λ > 20 cutoff.
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Figure 4.6: Posterior distributions of the richness–mass parameters derived using all
redMaPPer-matched clusters. The shaded regions in the 2-D distributions show the 68
and 95% confidence regions; shaded regions in 1-D plots indicate the 68% confidence regions
for the marginalized parameters. Posteriors for templates in different orientation bins share
the same features.

vious multiwavelength scaling relations of galaxy clusters have prescribed a global redshift

fit to the richness-mass relation (Simet et al., 2017) or those that do model the redshift

dependence find it consistent with a null dependence (Saro et al., 2015; Melchior et al., 2017;

McClintock et al., 2019; Bleem et al., 2020). In a recent work, To et al. (2021b) used Buzzard

simulations to quantify the large scale bias of redMaPPer-redMaGic cross correlation that

has a redshift dependence at 1− σ from null and that could be explained by the increase in

observed richness at higher redshift from stronger projection effects.

We model the scatter of richness at fixed mass as truncated log-normal scatter that cuts

off clusters with λ < 20:

P (lnλ|lnM) ∝ N (µ(lnλ), σ(lnλ))H(λ− 20) , (4.7)

where H(x) is the Heaviside step function. The variance σ2 is the sum of the intrinsic
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Figure 4.7: Dependence of redMaPPer richness–mass model parameters on halo orientation
cos(i). Horizontal bands show the mean and 68% CL range for the global (full-sample) fit
for each parameter. The top panel shows best-fit amplitude ln(A) vs. orientation when
the other 2 parameters are allowed to vary with orientation (3-parameter model) and when
they are fixed (1-parameter model), indicating little difference. The Bayesian Information
Criterion (BIC) test favors the 1-parameter model.
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variance σ20 and a Poisson term due to finite richness,

σ2(lnλ) = σ20 +
exp(µ(lnλ))− 1

exp(2µ(lnλ))
. (4.8)

According to Bayes’ theorem, the posterior likelihood of the model parameters is given

by

P (A,B, σ0|λ,M) ∝ P (λ,M |A,B, σ0)P (A,B, σ0), (4.9)

where P (A,B, σ0) is the joint prior on the parameters which we set as non-informative

uniform distributions.

The maximum likelihood estimates for the model parameters are found with a Markov

Chain Monte-Carlo (MCMC) method implemented through the pymc module, assuming

uniform priors for A, B, and σ0. We run chains of 106 steps for each run, thin them

by selecting every 200 steps, and remove the first 3000 steps (after thinning) as burn-in,

yielding 2000 steps to sample the posterior distribution.

The solid line labelled “Combined” in Fig. 4.5 shows the best-fit model to the richness-

mass relation for the full redMaPPer sample, with parameters given in the bottom line

of Table 4.1. The posterior distributions for the ”Combined” model parameters shown in

Figure 4.6 show good convergence of the parameters and minimal correlation among them.

The same trends are produced (but not shown) in the posterior distributions for different

orientation bins. The reduced chi-square statistics shown in Table 4.1 show that the model

is a good fit to the data.

Next, we assume that the richness-mass model of Eqns. (4.6-4.8) applies separately in

each orientation bin. The 3-parameter model in each orientation bin is fit independently,

with the results shown in Figure 4.7 and parameter values in the middle box of Table 4.1. We

find that most of the dependence on orientation comes from the boosting of the amplitude

parameter, ln(A), with cos(i). We therefore also consider a model in which only ln(A) varies
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with orientation, with the other 2 parameters fixed to their global values. The top panel of

Fig. 4.7 and Table 4.1 show that this 1-parameter model makes no appreciable change in

the best-fit values of ln(A) in each bin. Moreover, reducing the number of parameters does

not significantly compromise the goodness-of-fit of the MLE model relative to the number of

extra parameters: as shown in Table 4.1, the reduced Bayesian Information Criterion (BIC)

for the 1-parameter vs. the 3-parameter model marginally favors the simpler model.

The best-fit 1-parameter models in each orientation bin are indicated by the dashed

lines in Fig. 4.5: the effect of orientation bias on the richness–mass relation is a boost in

the amplitude, that is, in observed richness, at fixed halo mass, for halos with major axes

aligned with the line of sight.

While the orientation-bias model studied here captures the behavior of redMaPPer-

selected halos in the Buzzard simulations, a caveat is in order before applying the model

to redMaPPer-selected clusters in the real universe. In particular, the redMaPPer richness

at fixed halo mass in Buzzard has been found to be systematically lower at a 3σ level from

that for redMaPPer clusters with weak-lensing calibrated masses in DES Y1 data (DeRose

et al., 2019) which can be traced to the underestimation of the halo occupation distribution

(HOD) of red galaxies identified by the red sequence in Buzzard. If this systematic is rela-

tively independent of richness, we expect our model for the difference in richness amplitude

with orientation, ∆ ln(A), to retain its validity, even if the central values of ln(A), B and σ0

differ (note that the intrinsic scatter σ0 is not constrained in the McClintock et al. (2019)

weak lensing analysis of DES Y1 clusters). The dependence of the richness–mass relation on

the HOD of red-sequence galaxies can be tested with studies using other simulations, such

as the latest cosmoDC2 (Korytov et al., 2019), which populates halos with galaxies using a

different set of semi-analytic and empirical methods from ADDGALS. Alternatively, one can

construct and analyze new redMaPPer catalogs from the Buzzard simulations after injecting

red-sequence galaxies to match the HOD of DES Y1 data.
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4.5 Correlation of Triaxiality with Other Systematics

Orientation bias is one significant systematic for the cluster richness-mass relation; mis-

centering and projection effects are two others. In modeling these systematics for cluster

cosmology, it is important to know the degree to which they may be correlated. In this

Section, we explore possible correlation of orientation bias with the other two.

4.5.1 Miscentering

As noted above in Section 4.2.3, in the simulated cluster catalog 37% of the matched clusters

are miscentered in the sense that the galaxy identified by redMapper as the BCG is not the

central galaxy in the corresponding Buzzard halo. In both the simulation and the real

universe, miscentering can happen for a number of reasons. For example, a recent halo

merger may result in two nearly-central galaxies of comparable luminosity, or a recent burst

of star formation may move the central galaxy’s color off the locus of the red sequence.

(Cooke et al., 2019; Ragone-Figueroa et al., 2020; Zenteno et al., 2020). Alternatively, a

red foreground galaxy along the line of sight to a cluster may be misidentified as the BCG,

although Section 4.5.2 indicates that this is rare in the Buzzard simulations.

The miscentering distribution for redMapper clusters in DES Y1 data was estimated

through comparison of redMaPPer BCG angular positions with the peaks of X-ray emission

for a subsample of clusters with Chandra archival data (Zhang et al., 2019). A number

of studies have indicated that X-ray peaks are accurate proxies for the centers of cluster

potential wells, though they are subject to systematic errors as well (Lin & Mohr, 2003;

Song et al., 2012; Stott et al., 2012; Mahdavi et al., 2013; Lauer et al., 2014). In Zhang

et al. (2019), based on 144 redMaPPer clusters with X-ray data, 75± 8% of the redMapper

clusters were found to be centered, i.e., they have very small projected separation between

redMaPPer BCG and X-ray centroid. For the remainder, the distribution of radial separation

between redMaPPer BCGs and X-ray peaks was modeled as a sum of a declining exponential
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and a gamma function.

Here, we study the distribution of projected separation, Rsep, between redMaPPer BCGs

and Buzzard central galaxies for halo-matched clusters in the simulation. Since the separation

is expected to scale with cluster size, we use the scaled separation, Rsep/Rλ, where Rλ =

1h−1 Mpc(λ/100)0.2 is the characteristic circular aperture for the redMaPPer cluster finder.

We note here the difference in definition between centers. In real data the centering

property for a single cluster is not known. Rather the separation distance between optical

and X-ray center is modeled as a joint distribution for centered and miscentered clusters with

the centered fraction as a model parameter with a maximum likelihood of 75% ± 8%. By

contrast, Buzzard populates halo centers with galaxies using the ADDGALS algorithm, the

centering of each individual cluster is a known quantity determined by whether the central

galaxy determined by redMaPPer and the halo are one and the same. Among the 23658

halo-matched clusters, 14905 were correctly centered and 8753 are miscentered, the centered

fraction being 63% which is within 2σ the centering fraction using X-ray follow-up (Zhang

et al., 2019). We define the distance between the redMaPPer chosen BCG and the true halo

center as the miscentering separation distance Rsep.

The resulting separation distribution is shown in Fig. 4.8; the distribution is peaked at

Rsep = 0.1Rλ, with a tail that extends to Rsep ≃ Rλ. The shape of the distribution is

well-fit by a Γ distribution of functional form

Pmiscent(x|τ) =
x

τ2
exp

(
− x/τ

)
, (4.10)

where x ≡ Rsep/Rλ. Using methods of least squares, the best fit characteristic scale is found

to be τ = 0.16 which is well within the 1−σ range of the characteristic scale for Chandra to

DES center offset found in Zhang et al. (2019). Using the Kolmogorov-Smirnov test, we find

that the binned dataset is consistent with the best-fit Gamma distribution at a α = 0.05

significance level.
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We study differences in the properties of the centered and miscentered cluster populations

in the simulation in Fig. 4.9. The upper panel shows that the probability distribution of

cluster mass for the centered population is peaked at a slightly higher mass than for the

miscentered population, that is, it is the lower-mass clusters that tend to be miscentered,

which suggests that this may be a mass dependent bias more prone to low-mass and low-

richness clusters. The same trend was not observed with X-ray luminosity and temperature,

variables sensitive to the cluster mass with a sample size of only 144 redMaPPer SDSS clusters

with X-ray follow up (Zhang et al., 2019). Near-future X-ray surveys as eRosita (Hofmann

et al., 2017), which aims to detect 105 clusters with a lower mass limit of ∼ 1014 M⊙, will

provide a much better handle on the mass distribution of centered and miscentered clusters.

The lower panel of Fig. 4.9 shows that the normalized richness distribution of the centered

clusters is higher than that of the miscentered ones at λ > 60, though the difference is

marginal.

The centered fraction increases with increasing richness, from 63% for the full sample

(λ > 20) to 60% for λ > 40, 67% for λ > 60 and 69% for λ > 80. This trend is qualitatively

consistent with the consistency test carried out on data by Zhang et al. (2019): they compared

redMaPPer BCG positions for DES and SDSS clusters where the two data sets overlap and

found that for λ > 40 a large fraction of the BCG positions were within 0.05Rλ of each

other. The archival data from XMM and Chandra has a sharp richness cutoff of λ ⪆ 70

(Farahi et al., 2019b), so any trend of miscentering of BCGs relative to X-ray centroids with

richness is not yet detectable with current data.

To quantify the impact of miscentering on the redMaPPer richness estimate in the Buz-

zard simulations, we consider two approaches. The first method is to recalculate the observed

richness by assigning the cluster center onto a different galaxy. It has the advantage that it

can also be applied to cluster data but the disadvantage that it involves additional assump-

tions that have not been fully tested. For each cluster, the redMaPPer algorithm initially
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identifies five galaxies as candidates for the BCG. At the end of its iterative procedure, it

assigns a final probability of being the BCG to each of these five, produces richness estimates,

λi, i = 1, ..., 5 assuming each of them is the BCG, and identifies the most probable as the

BCG, with corresponding richness estimate λi. As the probability of it being the true center

drops for each candidate, a comparison of richness for clusters targeted at different central

candidates would yield information on the potential degree of miscentering for each cluster.

In this first approach, we can quantify the bias in miscentering by taking the ratio of the

richness centered at the second most probable galaxy to the first most probable cluster central

galaxy among the 5 candidates identified by redMaPPer. This ratio λ2/λ1 is an indication of

the potential bias in observed richness that miscentering could play when choosing a different

cluster center. Among the many selection effects of redMaPPer that come into play in the

measurement of this quantity, it is primary a function of the separation distance between

the two central candidates—λ2/λ1 shifts downward from unity with increasing separation

distance RRM sep between the cluster candidates, and also notably so does the dispersion

increase with RRM sep. Here RRM sep is the separation distance between the two redMaPPer

central candidates which in some clusters could be the halo-cluster separation distance Rsep

but is often not the case. As shown in the left panels of Fig. 4.10 and in Fig. 4.8, Rsep goes

out to ∼ 1Rλ while RRM sep can be extended to ∼ 2.5Rλ.

The second method of quantifying the impact of miscentering on richness gives a“ground-

truth” estimate of the richness bias, but it can only be estimated in the simulation, not from

observations. There is a version of the redMapper catalog for the Buzzard simulation, called

the halorun catalog, in which the redMaPPer BCG is constrained to be the halo central

galaxy for each halo-matched cluster. By construction, correctly centered clusters in the

fullrun redMaPPer catalog that we have been discussing so far have the same richness as

those in the halorun catalog. On the other hand, for the miscentered fullrun clusters, there
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is a bias in the estimated richness due to miscentering characterized by

∆λ

λ
=

λfullrun − λhalorun
λfullrun

. (4.11)

This fractional shift in richness is plotted as a function of the scaled miscentering separation

in the lower left panel of Fig. 4.10.

It is apparent from visual inspection in the left panels of Fig. 4.10 that both methods of

quantifying miscentering bias that richness bias increases in amplitude and dispersion with

scaled separation as has been shown using DES Y1 clusters with X-ray follow-up data.

Having shown that the miscentering properties of the Buzzard redMaPPer catalog are

consistent with those in DES Y1 data, we now turn to examining whether miscentering and

triaxiality are correlated systematics. We do this by measuring the miscentering bias as a

function of halo orientation, using both of the metrics described above. As the right panels

of Fig. 4.10 show, we find that the mean values and dispersion of the two metrics have

no systematic dependence on cos(i). Miscentering and triaxiality can thus be treated as

independent systematics.

The fact that we find no correlation between these two systematics is useful for the mod-

eling of systematics in future weak lensing studies but should not come as too unexpected in

light of their different physical origins. Miscentering occurs when mergers introduce identical

central galaxy candidates or from the star formation properties of the central galaxy that

shifts its color out of the red-sequence (Cooke et al., 2019; Ragone-Figueroa et al., 2020;

Zenteno et al., 2020), effects completely different from the geometric boosting in richness

when clusters are oriented along the line of sight that induce triaxiality bias.

We also test if miscentering can be attributed to line of sight projections whose effect on

clusters we describe in detail in subsection 4.5.2. If miscentering is due to projection effects

then the BCG at the center of the matched-halo would be of a different redshift and not

belong as a member of the matched redMaPPer cluster. Within the allowed ∆z±0.05 redshift
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Figure 4.8: Probability distribution of the projected separation between Buzzard halo central
galaxies and redMaPPer BCGs in the miscentered population. Scatter plots are the binned
mock data points with Poisson error and the line is the best fit Gamma distribution. The
two distributions are consistent according to the Kolmogorov-Smirnov test at a α = 0.05
significance level.

separation between halo and cluster in our matching algorithm, all of the BCGs at the halo

center belong as a member of the matched redMaPPer cluster. Additional tests beyond the

scope of this paper need to be conducted to in order to conclude whether miscentering can

be attributed to projection effects and if so to what degree, but simulations from Buzzard

suggests that this may not be a strong effect.
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Figure 4.9: Upper panel: Mass distribution of the centered and miscentered redMaPPer
clusters in the Buzzard simulations. The centered population is peaked at a higher mass.
Lower panel: Richness distributions of centered and miscentered clusters and for the entire
cluster sample. The inset plot shows a slightly higher fraction of centered clusters at high
richness. 63



Figure 4.10: Left panels: Richness bias vs. miscentering separation for redMaPPer clusters
in the Buzzard simulation. Both richness bias metrics λ2/λ1 and ∆λ/λ show larger bias
and increased dispersion at larger miscentering distance. Right panels: Richness bias vs.
orientation. The mean values of the richness bias metrics show no correlation with halo
orientation angle, cos(i).
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4.5.2 Projection

In this section we test for correlations between triaxiality and projection effects. Projections

effects were modeled and quantified in Costanzi et al. (2019) using a different Buzzard halo

catalog populated according to the assigned “true” richness–mass relation of Simet et al.

(2017), and adopts an empirically calibrated back/foreground contamination to account for

projection effects on the observed richness. We denote this catalog as the C19 projection

catalog. Below we summarize the properties of projection effects and the quantities used in

the C19 projection mock catalog for our analysis.

Cluster richness suffers from projection effects when non-member galaxies along the line

of sight to a cluster are mistakenly classified as cluster members. These may be randomly

located galaxies along the line of sight, galaxies spatially correlated with the cluster due

to large-scale (e.g., filamentary) structure, or galaxies in a lower-richness cluster along the

line of sight that “leak” into a larger one, a process in redMaPPer known as percolation

(Costanzi et al., 2019). In combination, they bias the observed richness λobs away from the

true richness λtrue by the amount:

λobs − λtrue = ∆bkg +∆
prj
non−cor +∆

prj
LSS +∆prc, (4.12)

where each term on the right hand side of the equation respectively denotes the background,

non-correlated projection, large scale structure and percolation term.

Each component contributes to the observed richness in a different form. Background

scatter, ∆bkg, is assumed to be normally distributed around the true richness. The sum

of the projection terms due to non-correlated clusters, ∆
prj
non−cor, and correlated large-scale

structure, ∆
prj
LSS, are modeled as an exponential function with a cutoff at ∆prj ⩾ 0, to ensure

an upscatter of λobs as is physically motivated. The observed richness is painted on in the

mock catalog by summing the richness of clusters along the light of sight weighted by the
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redshift kernel w(∆z, z):

λobsi = λtruei +∆
prj
i = λtruei +

N∑
j ̸=i

λtruej fAijw(∆zij , zj), (4.13)

where fAij is the geometric masking fraction of object j over i for an object j that’s (partially)

in the line of sight of i, and w(∆zij , zj) the redshift kernel which, as a function of redshift

of i and the redshift separation between i and j is modeled as the functional form:

w(∆z|zcl) =
{

1− (∆z)2

σz(zcl)2
, |∆z| < σz(zcl)

0, otherwise,
(4.14)

which can be interpreted intuitively as the diminishing strength of projection effects with

redshift separation |∆z| up to a maximum separation of σz(zcl).

For each cluster, its σclz (z) is fitted by sliding the redMaPPer redshift center away from

the true cluster redshift so as to remove the excess richness ∆prj due to projection as a func-

tion of the redshift separation between assigned and true redMaPPer redshift. To recover

the “leakage” function for clean line of sights, Costanzi et al. (2019) chooses the lower 5% of

clusters in a given redshift as the leakage function. It is fit with a piecewise log-linear model

with a transition at z = 0.32. Data from SDSS redMaPPer clusters (Costanzi et al., 2019)

show that at z ≲ 0.3 projections are from the width of the red-sequence and increase mono-

tonically with increasing redshift from increasing photometric errors. At z ≳ 0.3 projection

effects flatten out as the SDSS survey is no longer volume limited but magnitude limited,

the faintest cluster galaxies residing near the magnitude limit of the survey at redshift above

0.3.

In this paper we introduce the derived quantity

log
(
σ
proxy
z (zcl)

)
= log

(
σclz (zcl)

)
− log

(
σ5%z (zcl)

)
(4.15)
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as the difference between the log-scaled σz of an individual cluster and the lower 5% envelope

of σz for all clusters at the redshift bin of the cluster. This quantity σ
proxy
z (zcl) can be seen

as the level of intrinsic excess projection after eliminating background noise and redshift-

dependent observational biases.

Percolation is added into the full model of projection when clusters of lower richness are

“absorbed” into one with higher richness. For each cluster j with richness smaller than that

of i, the richness is taken from j to i by the amount

∆
prc
i =

N∑
j<i

λtruej

(
1− fAijw(∆zij , zj)

)
, (4.16)

whose probability distribution P (∆prc|λtrue, z) is empirically determined to well resemble a

boxcar function with ∆prc ∈ [−λtrue, 0].

In the C19 projection catalog, each cluster is assigned a true richness using an empirically

calibrated richness–mass relation from Simet et al. (2017) and given an observed richness

using the projection effect algorithm described above by way of the redshift kernel w(∆z|zcl).

Hence the difference between the true and observed richness in this mock is due to projection

effects alone. The probability distribution for P (∆|λtrue, z) for each component is then fit

using this C19 projection mock, and upon convolution of the probability distributions for each

individual component in Equation 4.12 we arrive at the final expression for P (λobs|λtrue, z).

We refer the reader to Costanzi et al. (2019) for the full expression and best-fit parameters.

All halos in the mock projection catalog are artificially assigned an observed and true richness,

whether or not such a halo could be detected and matched to a redMaPPer cluster. The

observed richness is thus biased only from projection effects and does not suffer from all the

other selection effects, including triaxiality and miscentering, that would exist had the halos

undergone redMaPPer detection and cluster matching. This technique effectively isolates

projection effects from potentially correlated systematics in the same vein that we used the
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halorun catalog to isolate miscentering effects.

We find that projection effects are independent from triaxiality. Figure 4.11(a) shows

that σproxy, the strength of projection effects due to large-scale structure, is not correlated

with cos(i). We further inspect the full scope of projection effects by studying the fractional

difference between the observed and true richness in the projection mock catalog,

∆λprj
λprj

=
λobsprj − λtrue

λobsprj

, (4.17)

which shows no correlation with cos (i), as shown in Figure 4.11(b). Finally, we run our fit

to the richness–mass relation in the projection catalog of λobsprj binned in cos(i) and observe

no difference in the observed richness–mass relation, shown in Figure 4.12. The 1− σ range

of the best-fit parameters for the log-linear richness–mass template between different cos(i)

bins all closely overlap with each other, with no clear trend.

The lack of correlation between projection and orientation may be puzzling at first in

light of a common physical origin of these effects. The ΛCDM model of hierarchical structure

formation facilitates the preferential gravitational collapse of dark matter halos that become

galaxy clusters along the nodes of large-scale filaments. It is also widely understood that a

halo’s semi-major axis is preferentially aligned with the direction of the associated filament

for halos residing in over-densities (e.g. Hahn et al. (2007), Forero-Romero et al. (2014)). It

is thus sensible to expect a correlation between the strength of projection effects and halo

orientation for halos residing in filaments.

The lack of correlation can be explained by the stochasticity of these effects along with

the fact that not all halos share the same physical origin for this set of systematics. The

boosting in richness from projection is from uncorrelated background noise and correlated

large scale structure, the latter playing a much larger role. Adding the large scale structure

into the modeling of the observed richness for projection boost the richness perturbation ∆prj

by a factor of 2 and 4 in the λtrue range 20− 100 (Costanzi et al., 2019). It is also observed
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by N-body simulations from Sunayama et al. (2020) that a minority of clusters that reside in

large scale filaments is responsible for the boosting of the stacked weak lensing signal of halos

(see Section 4.6 on weak lensing) due to projection effects. This set of studies suggests that

a small batch of clusters is responsible for the large degree of bias from projection effects.

Triaxiality bias, on the other hand, can occur whether halos reside in large scale filaments

or in voids. That all halos, regardless of its external environment, is subject to the same

degree of triaxiality bias while not the case for projection bias would explain the lack of

correlation among an ensemble of stacked clusters. It would be interesting as a follow-

up study to know if the correlation between projection and triaxiality can be detected for

the minority of clusters residing in large scale structures that heavily boost the projection

observable, but for the purposes of modeling redMaPPer selection effects, it is sufficient to

know that for the entire sample of λobs > 20 clusters detectable by redMaPPer, projection

and triaxiality can be treated as separate systematics. A further study using spectroscopic

redshift measurements of redMaPPer member galaxies from Magellan telescope data (Gruen

D., in prep.) will provide the shape and orientation of clusters as well as test for non-member

galaxies projected along the line of sight misidentified by redMaPPer, serving as a follow-up

test of the correlation of these systematics using real data.

4.6 Effect of Halo Orientation on the Weak Lensing Profile

The effects of triaxiality on cluster optical detection are twofold—one through the boosting

of the richness-mass relation as was covered in Section 4.4, the other through the boosting

of radially dependent weak lensing signals.

This section quantifies the latter effect. It is split into three subsections—Section 4.6.1

models the boosting effect of the cluster weak lensing signal in the Buzzard simulations

for individual halos before applying the redMaPPer cluster finder; Section 4.6.2 combines

the result from Section 4.6.1 and our richness-mass model from Section 4.4 to predict the
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(a) Correlation of σproxy
z with halo orientation.

(b) Correlation of ∆λ
λ with halo orientation.

Figure 4.11: Correlation of projection strengths and halo orientations measured in two mock
catalogs. Top panel shows the measurement in the Buzzard simulations, where the σ

proxy
z

(defined in Equation 4.15) is used to estimate the strength of projection effects. Bottom
panel shows the measurement in the C19 projection mock, which is constructed using the
same halo catalog as the Buzzard simulations. In the C19 catalog the galaxies are populated
using a richness–mass relation and the observed richness is generated using a semi-analytic
model (described in Section 4.5.2). In this mock, because we know the true galaxy content
in each halo, we use the fractional difference between the observed richness and true richness
(defined in Equation 4.17) as a proxy for projection. In both panels, we find there is no
correlation between projection strengths and halo orientations.
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Figure 4.12: Observed richness–mass relation for different orientation bins in the projection
mock catalog. No difference is observed in the observed richness–mass relation in the pro-
jection catalog with clusters of different orientation bins. The 1− σ contours for the best fit
parameters ln (A), B and σ0 (not shown) in all bins closely overlap with one another, indi-
cating no correlation between the two systematics. The dashed horizontal line indicates the
richness cut at λ > 20 and dashed vertical line the mass cut at M200m > 5× 1013 h−1M⊙.
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observed boosting in stacked cluster lensing profiles at different richness bins after redMaPPer

selection; Section 4.6.3 uses the result from Section 4.6.2 to conduct a Fisher matrix forecast

on the mass bias of triaxiality for redMaPPer clusters stacked in different richness bins.

4.6.1 Modeling the effects of halo orientation on excess surface density

before redMaPPer selection

In this section, we measure the excess surface densities of all halos with convergent shape

measurements in a lightcone of z < 0.90. The masses of halos are binned in mass bins of

[5 × 1013, 1014), [1014, 2 × 1014), [2 × 1014, 4 × 1014) and [4 × 1014, ∞) h−1M⊙, and

redshift bins of [0, 0.34), [0.34, 0.5), [0.5, 0.7) and [0.7, 0.9), for a total of 16 bins.

Another common expression for the density inside a halo is the halo–matter correlation

ξhm(r), which is related to the surface density Σ through the relation

Σ(R) = ρm

∫ +∞

−∞

(
1 + ξhm

(
r =

√
R2 + z2

))
dz, (4.18)

where ρm is the mean matter density at the redshift of the cluster, R is the projected radius

in the plane of the sky, and z is the length along the line of sight.

In weak lensing, the tangential shear γt of the galaxies relative to the center of each

foreground halo is related to the excess surface density by the relation

Σcritγt = Σ(< R)− Σ(R) ≡ ∆Σ(R), (4.19)

where the critical surface density Σcrit defined as

∆Σcrit =
c2

4πG

Ds

DlDls
, (4.20)

and where Ds, Dl and Dls refer to the angular diameter distances to the source, to the lens,
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and between the lens and source, respectively.

In this paper we measure ∆Σ(R), which has a one-to-one relationship with Σ(R) and γt,

all of which can be determined from the underlying halo–matter correlation ξhm(r) and a

fiducial cosmology for determining Σcrit. In the following sections, in order to reduce the

clutter in the equations for modelling excess surface density as a function of orientation we

use µ as a shorthand for cos(i).

When we measure ∆Σ(R) from the simulations, we use projected radii R extending

from 0.1 h−1 Mpc to 100 h−1 Mpc in 30 equally log-spaced bins, and a projected distance

symmetric about the halo of ∆Dp = 10, 50, 100, 200 h−1 Mpc. For ease of visualization,

the orientation dependence is plotted and fitted onto a template as the quantity

F (R, µ) = log
∆Σ(R, µ)

∆Σ(R)
, (4.21)

where ∆Σ(R, µ) is the average profile in an orientation bin for a given mass and redshift bin,

and ∆Σ(R) is the averaged profile across all orientation bins in the same mass and redshift

bin.

The shapes of the profiles can be roughly divided into the“one-halo” regime (R ≲ R200m)

and the “two-halo” regime (R ≳ R200m) (Fig. 4.13). In the one-halo regime, halos with their

major axes oriented towards the line of sight are boosted in their surface density relative

to the mean, a result well explained by the triaxial halo model (Oguri et al., 2005; Corless

& King, 2008). The transition between the one- and two-halo regimes produces a neck in

the surface density, where the halo–matter correlation from neither regime dominates. In

the two-halo regime, the trends of the lensing ratios in different orientation become inverted

with respect to unity when increasing the projection depth from ∆Dp = 10h−1Mpc to

∆Dp = 200h−1Mpc. At ∆Dp = 10h−1Mpc, the ratio of excess surface densities in the two-

halo regime of high cos (i) halos drop below the mean, which may be explained by an under-

dense region surrounding the plane perpendicular to the major axes of the halos. As one
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moves towards larger projection depths, halos with higher cos (i) exhibit boosted ∆Σ profiles

in the two-halo regime relative to the mean as a result of the alignment of halos with their

underlying large scale structure, i.e., the large projection depth captures much of the mass in

the large-scale filaments for halos with cos(i) ∼ 1 (Hahn et al. (2007), Forero-Romero et al.

(2014)). Because of the similarity of excess surface density profiles for ∆Dp = 100 h−1Mpc

and ∆Dp = 200h−1Mpc, we deem the projection length ∆Dp = 100 h−1Mpc as convergent.

The excess surface density profiles in the one- and two-halo regimes and their dependence

on projection depth agree well with Osato et al. (2018), who built profiles for a simulation

of similar projections depths and with comparable mass resolution.

We model the log ratio of excess surface density, F (R, µ), in a µ ≡ cos(i) bin relative to

the mean with six free parameters given by the product of a multipole expansion over cos(i)

and a Cauchy function:

F (R, µ) = A(µ)f(R)

A(µ) = A0 + A1µ+ A2µ
2 + A3µ

3

f(x ≡ ln(R)) = 1− 1

(x− x0)2 + γ
. (4.22)

The bottleneck shape of the ∆Σ profiles binned by cos(i) is well captured by the Cauchy

function in most of the mass and redshift bins, with best-fit parameters and p-values listed

in Table 4.2 and plotted in Figure 4.14. The parameters show no clear sign of monotonic

evolution with mass or redshift that may hint at underlying physics, but they do differ in

value from bin to bin, so for greater accuracy the templates are divided into different bins

when estimating the stacked mass bias due to triaxiality as will be shown in subsection 4.6.3.

The best-fit parameters are determined using a Nelder-Mead minimization method; with 10

log-spaced bins in each cos (i) binned ∆Σ profile and 5 cos (i) bins, the templates are fitted

with 6 free parameters, totalling 5 × 10 − 6 = 44 degrees of freedom; the χ2 and p-value
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are calculated for each fit. Of the 16 fits, 8 have left- or right-handed p-values within 0.01,

and 11 within 0.001. The over-fitted templates occur in high-mass or high-redshift bins,

which suffer larger errors from the dearth of dark matter particle sampled in each bin, and

the under-fitted ones result from a mismatch in the “two-halo regime” that exhibits more

poorly constrained trends from bin to bin and the behavior of which is less well understood.

Qualitatively, the fits preserve the basic underlying shape of the excess surface density ratios,

as shown in Fig. 4.14.

The templates provided could be used as correction terms for Stage III and IV weak

lensing cluster surveys such as in the comsoSIS pipeline (Zuntz et al. (2015)) for DES-Y3.

4.6.2 Modeling the effects of halo orientation on richness-binned excess

surface density after redMaPPer selection
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Stacking refers to the process of building averaged excess surface density profiles of halos

in different richness bins. This subsection describes the process of stacking used by the DES

survey to calibrate the richness–mass relation and presents the effect of triaxiality on the

stacked surface density.

The shapes of source galaxies behind a cluster along the line of sight will have small

tangential distortions due to gravitational lensing. While individual distortions are small,

this tangential shear can be measured at high signal to noise as a function of projected radial

separation R in the stacked images of source galaxies around clusters binned, e.g., in richness

and redshift. In the weak lensing regime, the tangential shear is related to the source-galaxy

ellipticity by

γt ≈ eT + noise, (4.23)

where eT is the source ellipticity rotated to the tangential frame, and the noise is due to

intrinsic ellipticities of the source galaxies (shape noise) and measurement uncertainty. The

tangential shear, γt, as directly measured by observations can be converted to ∆Σ(R) through

Equation 5.5. This paper directly measures ∆Σ(R) by computing the 2D dark-matter density

along a cylinder of given projection depth centered around the cluster.

The model excess surface density is obtained by integrating the halo–matter correlation

ξhm(r) along the line of sight as in equation 5.2, and subtracting that from the mean surface

density inside the projected radius as in equation 5.5. Typically, the halo–matter correlation

in the “one-halo” regime is modeled as a spherical Navarro-Frenk-White (NFW) (Navarro

et al., 1997) profile ρNFW(r|M),

ξ1h(r|M) =
ρNFW(r|M)

ρm0
− 1, (4.24)

and the “two-halo” term as a linear matter correlation (Hayashi & White, 2008) scaled by
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Figure 4.13: ∆Σ(R, µ) for M ∈ [1014, 5× 1014) M⊙ as a function of projection depth, ∆Dp.
The lensing ratios in the “two-halo” regime reverses trends from low to high projection depth
as a result of alignment of clusters with the large scale structure. The profiles with ∆Dp =

100 h−1 Mpc are deemed convergent due to their similarity with the ∆Dp = 200 h−1 Mpc
profiles. 78
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Figure 4.14: Stacked ∆Σ profiles in different orientations bins (solid lines) vs. Cauchy
function fits (dashed lines) to the profiles governed by Equation 4.22 and with best fit
parameters listed in Table 4.2. Error bars are the 1 − σ deviations in measurements in a
given orientation and radial bin.
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the halo bias, (e.g. Tinker et al. (2010)):

ξ2h(r|M) = b2(M)ξlin(r). (4.25)

At the transition between the two regimes, DES Y1 follows Zu et al. (2014) in setting

the halo–matter correlation to the maximum value of the two terms, i.e.,

ξhm(r|M) = max {ξ1h(r|M), ξ2h(r|M)} (4.26)

In our analysis we reproduce the surface density templates from the procedures in the

DES Y1 analysis using publicly available code—the linear power spectrum computed from

CLASS (Lesgourgues (2011); Blas et al. (2011)) and the excess surface density computed from

the cluster toolkit module2, which uses the spherical NFW profile for the “one-halo” term

and refers to Tinker et al. (2010) for the halo bias—to generate isotropic profiles, which we

denote ∆Σ(R), calculated by integrating through Equation 5.2 ξhm in the form of Equation

5.7. In the “one-halo” regime we parametrize the NFW profile with a nominal concentration

of c200m = 5.

We investigate the difference in the stacked profile between the isotropic ∆Σ(R) and

∆Σ(R,M, µ), the stacked profile as a function of orientation dependence.

The orientation dependence has two components—one is the scaling of individual lensing

profiles by exp(F (R, µ)) as described in Section 4.6.1, and the other the effect of richness-

mass, P (λ|M,µ), as modeled in Section 4.4, on the mass distribution of redMaPPer-selected

clusters. The second component, P (λ|M,µ), biases the mass distribution of clusters in a

2. Code written by Tom McClintock. Source: http://cluster-toolkit.readthedocs.io/en/latest/index.html
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richness bin P̃ (M) through the form

P̃ (M) =

∫
dµ

∫ λ2

λ1

dλP (M,λ, µ)

=

∫
dµ

∫ λ2

λ1

dλP (λ|M,µ)P (µ|M)P (M)

and safely assuming that P (µ|M) is constant,

∝
∫

dµ

∫ λ2

λ1

dλP (λ|M,µ)P (M), (4.27)

where P (M) is the mass function of redMaPPer-selected clusters.

The conditional probability of richness, P (λ|M,µ), is log-normally distributed around a

mean richness governed by Equation 4.6, and the standard deviation is given by equation

4.8. The equations are fit to the one-parameter model in which only log(A), the intercept

of the log(λ)-log(M) relation, is allowed to vary with orientation. We use a cubic spline to

interpolate log(A) for µ ∈ [0, 1). The halo-mass function of redMaPPer-selected clusters,

P (M), is constructed from a discrete histogram with 30 log-spaced mass bins in the mass

range of the clusters.

Taking into account the two components for orientation dependence, the stacked surface

density in a richness bin becomes

∆Σ(R,M, µ) for λ ∈ [λ1, λ2)

=

∫
dM ∆Σ(R,M, µ)P̃ (M)

=

∫
dµ

∫
dM

∫ λ2

λ1

dλ ∆Σ(R,M, µ)P (λ|M,µ)P (µ|M)P (M)

∝
∫

dµ

∫
dM

∫ λ2

λ1

dλ ∆Σ(R,M, µ)P (λ|M,µ)P (M) (4.28)

The excess surface densities are computed for ⟨∆Σ(M,R, µ)⟩ using equation 4.28 and

∆Σ(M,R) using equations 5.3–5.7. We define the fractional difference with the shorthand
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notation

δ⟨∆Σ⟩ = ∆Σ(R, µ)−∆Σ(R)

∆Σ(R)
. (4.29)

4.6.3 Mass bias estimation of stacked clusters

We are interested in estimating the effect of triaxiality on the mean weak lensing mass in

clusters stacked in richness bins. The weak lensing mass is an observed quantity in weak

lensing surveys derived by fitting the observed lensing profile to an analytic profile in a

procedure akin to that in Section 4.6.2 and is used to constrain the mass-richness relation.

We estimate the bias due to triaxiality on the weak lensing mass for stacked clusters by

propagating the error on the lensing observable onto the mass model parameter using a

Fisher matrix approximation.

In the most generic sense, the Fisher matrix Fij in a given radial bin is defined as:

Fij(R) =
∂⟨∆Σ⟩(R)

∂pi
Cov(⟨∆Σ⟩(R))−1∂⟨∆Σ⟩(R)

∂pj
, (4.30)

where the partial derivatives are of surface density profiles with respect to model parameters

pi of cluster mass M and concentration c, and the covariance matrix is that of surface density

as a function of radius.

The mass-bias for stacked clusters due to triaxiality is given by the expression

δMbinned =
∑
j

(F−1)ij

[
(δ⟨∆Σ⟩)Cov(⟨∆Σ⟩)−1∂∆Σ

∂pj

]
, (4.31)

estimated by inserting the fractional difference of stacked profiles, δ(∆Σ), into the bracketed

expression and marginalizing over the concentration parameter. The total bias is then the
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weighted sum of all mass and redshift bins marginalized over concentration and radius:

δMtotal =
∑
M,z

P (M, z|λ)

∑
j,R

(F−1)ij(R)

(
δ⟨∆Σ⟩Cov(⟨∆Σ⟩)−1∂∆Σ

∂pj

) . (4.32)

The ⟨∆Σ⟩ profiles are binned in richness intervals of λ ∈ [20, 30), [30, 50), and [50, ∞),

and are further divided into the same mass and redshift bins when computing individual

∆Σ(R) templates as described in Section 4.6.1. We make the simplifying assumption that

the partial derivative of the bin-averaged surface density profile is well approximated by that

for a numerical model for an individual halo, with M taken at the midpoint of the mass bin,

and c derived from redshift and mass using the relation

c200m = c0

(M

M0

)−β
, (4.33)

with functional form and best fit parameters of c0 = 4.6 at z = 0.22 and β = 0.13 at a pivot

mass of M0 = 1014h−1M⊙ (Mandelbaum et al., 2008), calculated at the midpoint value of

said mass bin. The concentration-mass relation from Mandelbaum et al. (2008) is derived

from a red-sequence finder in the SDSS survey in redshifts and mass ranges compatible with

redMaPPer on DES Y1. We find that the impact on different concentration-mass relations

e.g. (Oguri et al., 2012; Diemer & Joyce, 2019) has a sub 1% impact on the mass bias

when folded into Eqn. 4.32. The approximation of ⟨∆Σ(R)⟩ profiles is computed using

cluster toolkit for the Buzzard cosmological parameters.

The covariance matrix for cluster weak lensing is taken from Wu et al. (2019), who

calculated the matrices from a combination of analytic calculations and high-resolution N-

body simulations for radii between 0.1 and 100 h−1 Mpc, discretized at 15 equally log-spaced

bins. The covariance comes from a combination of shape noise, large scale structure and

intrinsic noise. Modeled on a DES-like simulation with a galaxy density of ns ∼ 10/arcmin,

the covariance is dominated by shape noise at projected radii ⪅ 5h−1 Mpc. The covariance
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matrices are binned by mass in bins of [1014, 2 × 1014), [2 × 1014, 4 × 1014) and [4 ×

1014, ∞) h−1M⊙, and in lens/source redshift slices of {zl = 0.3, zs = 0.75}, {zl = 0.5, zs =

1.25} and {zl = 0.7, zs = 1.75}, with zl denoting the lens redshift and zs the source redshift.

To address the different binning schemes used in the lensing covariance and stacked

lensing profiles, we choose to evaluate the covariance at the central redshift slice of {zl =

0.5, zs = 1.25}, since the redshift dependence of the lensing covariance is weak. Because the

covariance matrix is not applicable for masses below 1014 h−1M⊙, we ignore ⟨∆Σ(M, z)⟩

in the modeling for Equation 4.32 for the lowest mass bin of [5 × 1013, 1 × 1014) h−1M⊙.

Making this mass cut removes 35% of the redMaPPer clusters in total.

Using the covariance matrix from Wu et al. (2019) and the mass-concentration relation of

Mandelbaum et al. (2008), we calculate the total mass bias through the propagation of bias

from the lensing signal onto the mass model parameter through a Fisher matrix forecast. As

shown in Figure 4.15, the mass is biased high at 1− 5%, consistent with findings from ? and

Dietrich et al. (2014) and is highest at mid-richness ranges.

4.6.4 Comparison with DES Y1

Our weak lensing mass bias estimated from this paper is on the lower end but within 2σ of

the bias estimated from the DES Y1 cluster cosmology paper (Abbott et al., 2020), which

showed that the total bias for both triaxiality and projection effect is around 10% − 20%

depending on the richness and redshift bin.

The DES Y1 paper tested for systematics by controlling for variables that may introduce

bias. The lensing profiles of two samples were compared—one selected by richness bins with

its mass distribution left free to vary, and the second tracing the mass distribution of the

richness-selected sample with its richness free to vary. The ratio of these profiles is an estimate

of the total systematic bias due to redMaPPer selection in a given richness bin and radial

range. The effects of triaxiality and projection effects can be teased out by re-sampling their
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proxies cos (i) and σ(z) in the richness-selected sample to match the mass-selected sample.

One notable finding in the DES Y1 cluster cosmology result is that known selection

effects as orientation and projection resolve the weak mass discrepancy with other probes at

λ > 30 but fail to expalin the discrepancy in the λ ∈ [20, 30) range. This point was shown by

comparing the weak lensing mass from the data with the inferred weak lensing mass using the

cluster abundance information alone, combined with cosmological constraints derived from

DES 3× 2 point correlations (Abbott et al., 2018) (known as NC + 3× 2). The comparison

showed that the weak lensing mass after correcting for selection effects is consistent with NC

+ 3× 2 at λ > 30 but the ratio is biased high at λ ∈ [20, 30) when correcting for triaxiality

and projection effects will only lower the inferred weak lensing mass.

We find in this paper that whe accounting for triaxiality biases the weak lensing mass will

be lowered across all richnesses at a level consistent with findings in DES Y1. At λ ∈ [20, 30)

other unaccounted-for systematics must be at play that biases the weak lensing mass high

compared to other probes.

4.7 Conclusion

The main findings of this work are as follows:

1. We find that the 3D axis ratios of redMaPPer-selected halos is consistent with the

distribution of halos overall.

2. We find that the log-richness amplitude ln(A) of redMaPPer clusters for a given mass

is boosted from the lowest to highest orientation bin with a significance of 14σ.

3. We find a null correlation between the bias in richness due to triaxiality and those

for two other leading systematics in DES Y1 cluster cosmology—miscentering and

projection—and offer explanations or follow-up studies for this result. The null corre-

lation with projection effects was verified using both the Buzzard and C19 projection
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Figure 4.15: Fractional difference in lensing profiles δ⟨∆Σ⟩ for redMaPPer-selected clusters
stacked in bins of richness. The total mass bias for each richness bin is measured by marginal-
izing δ⟨∆Σ⟩ as shown in plot through Equation 4.32 through propagating the errors of the
lensing profile onto the mass model parameter using a Fisher forecast.
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mock, catalogs with different galaxy-halo connection models.

4. We confirm the bottleneck shape in the transition between one- and two-halo regimes

for halo lensing profiles first discovered by Osato et al. (2018) and fit it to redshift- and

mass-dependent templates.

5. We quantify through items (ii) and (iv) the DES observable of richness-stacked redMaP-

Per cluster lensing profiles to predict a positive mass bias of 1− 5% due to triaxiality.

6. We find that the mean P (cos i) and the mass bias are both richness dependent and

largest at mid-to-high richness, in accordance with the DES Y1 result that triaxiality

does not fully resolve the tension in weak lensing mass at low richness.

Our findings are based on redMaPPer catalogs constructed using galaxies in the Buzzard

simulations. The realistic red-sequence galaxy model in the Buzzard simulations allows

us to run the redMaPPer algorithm in the same way as it was run on DES-Y1 data and

hence enables us to quantify various selection effects introduced by the cluster finder. While

this analysis provides evidence of redMaPPer selection effects and quantifies the relations

between different systematics, we must acknowledge that there is one important caveat in

this approach: the performance of the redMaPPer cluster finder depends on how galaxies

are populated in the simulations, which might not precisely match the real universe. Since

this analysis is only done on one specific simulation, the result in this paper can serve as a

guidance for constructing a flexible enough model used in the analysis of real data.

These findings shed light on the impact of triaxiality on cluster selection, both their

physical quantities and observed signals. Specifically, items (ii) and (iv) may be used as

templates for current and near future weak lensing surveys as correction terms for this

systematic. One important future work is to perform this analysis on different mock galaxy

catalogs with different assumptions about the relations between galaxies and dark matter.

Such an analysis will be essential to addressing the dependence of cluster finder performance
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on galaxy population models.
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CHAPTER 5

CORRELATED SCATTER FOR OPTICAL OBSERVABLES

5.1 Introduction

Cluster abundance and its evolution with redshift are linked to the constituents of the Uni-

verse through the growth of cosmic structure. (Allen et al., 2011, for a review). Cluster

abundance measured in large-scale galaxy surveys offers power constraints on cosmological

parameters (e.g., Vikhlinin et al., 2009; Mantz et al., 2015; de Haan et al., 2016; Mantz et al.,

2016a; Dark Energy Survey Collaboration et al., 2016; Pierre et al., 2016; Costanzi et al.,

2021). These constraints are based on accurate cluster mass measurements, which are not

directly observable and must be inferred. Cluster mass calibration has been identified as

one of the leading systematic uncertainties in cosmological constraints using galaxy cluster

abundance (Mantz et al., 2010; Rozo et al., 2010; von der Linden et al., 2014; Applegate

et al., 2014; Dodelson et al., 2016; Murata et al., 2019; Costanzi et al., 2021). Accurate

mappings between a population of massive clusters and their observables are thus critical

and essential in cluster cosmology. Considerable effort has been put into measuring the

statistical relationships between masses and observable properties that reflect their baryon

contents (see Giodini et al., 2013, for a review) and quantifying the sources of uncertainties.

The Dark Energy Survey (DES) cluster cosmology from the Year 1 dataset (Abbott et al.,

2020) reported tension in Ωm — the mean matter density of the universe — with the DES

3x2pt probe that utilizes three two-point functions from the DES galaxy survey (Abbott

et al., 2018). The tension between these two probes that utilize the same underlying dataset

may be attributed to systematics that bias the weak lensing mass of clusters low at the low

mass end (To et al., 2021a; Costanzi et al., 2021). A possible origin for this discrepancy

is that cluster masses are biased low due to systematics in cluster mass calibration. On

the other hand, the tension can also originate from new physics that extends the Standard

89



Dark Matter 
Particles Galaxy Model

Particle Based 
Architecture for Efficient 

MPI Runs

KLLR

Template fitting

3D Cluster Boundary Definition

HMF

Prior on covariance 
shape parameters

Mass-Observable RelationCluster Lensing 

Removal of mass dependency 
for noiseless observables

Dependence on 
secondary halo parameters

Correction to WL Observables

S. 2—3

Binned by mass, redshift and 
secondary halo parameters

Appendix B

S. 6.2

S. 6.1

S. 6.3

S. 4.1—4.3

S. 5

S. 2.2 & 3.1—3.2

Figure 5.1: Graphic representation of the modeling of Cov(∆Σ, lnNgal | M, z) — the co-
variance between the halo weak lensing signal ∆Σ(R) and log-richness lnNgal conditioned
on mass and redshift — and its dependence with secondary halo parameters Π. The labels
marked S. XX point to the location in the text. A full list of the notations used in this
paper is introduced in Table 5.1 & 5.2.
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Cosmological model. Thus, it is important to understand the systematics of cluster mass

calibration. Cluster masses estimated from X-ray and SZ data are known to suffer from

hydrostatic bias (Pratt et al., 2019). Conversely, cluster masses estimated from weak lensing

have the potential to be more accurate compared to X-ray and SZ cluster masses. The

systematics in the weak lensing mass calibration has just started to be explored recently

(Applegate et al., 2014; Schrabback et al., 2018; McClintock et al., 2019; Kiiveri et al., 2021;

Wu et al., 2022).

A relatively unexplored category of cluster systematics is the covariance between different

cluster properties, including cluster observables and mass proxies. In cluster mass calibration,

it is often assumed that this property covariance is negligible. However, as initially pointed

out by Nord et al. (2008) and later shown in Evrard et al. (2014) and Farahi et al. (2018),

non-zero property covariances between cluster observables can induce non-trivial, additive

bias in cluster mass. As property covariance is additive, the systematic uncertainties that

it induces will not be mitigated with the reduction of statistical errors as the sample size of

the cluster increases. To achieve accurate cosmological constraints with the next generation

of large-scale cluster surveys, it is imperative that systematic uncertainties in the property

covariance be accurately and precisely quantified.

Although the property covariance linking mass to observable properties is becoming better

understood and measured (Wu et al., 2015; Mantz et al., 2016a; Farahi et al., 2018, 2019a;

Sereno et al., 2020), studies that specifically investigate weak lensing property covariance

are scarce, which poses a challenge for upcoming lensing surveys of galaxy clusters such as

the Rubin (Ivezić et al., 2019) observatories. To achieve the percentage-level lensing mass

calibration goals for the upcoming observations, the property covariance of weak lensing

must be quantified.

The physical origins of property covariance in lensing signals of galaxy clusters can be

attributed to the halo formation history of the cluster and baryonic physics (Xhakaj et al.,
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2022). Developing a first-principle physical model for the property covariance as a function

of halo formation history and baryonic physics is a daunting task due to the highly non-linear

and multi-scale physics involved in cluster formation. To make progress, in this paper, we

adopt a simulation-based, data-driven approach whereby we develop semi-analytical para-

metric models of property covariance, which we then calibrate with cosmological simulations.

We then apply our model to quantify the bias induced due to a non-zero property covariance

in the expected weak lensing signal and the mass-observable scaling relation.

As will be presented in §5.3, a key element of this analysis is the estimation of true cluster

richness by encircling clusters within a 3D radius within the physical vicinity of the halo

center, as opposed to a 2D projected radius used by cluster finders as redMaPPer (Rykoff

et al., 2014) by identifying galaxies within the red-sequence band in the color-magnitude

space — the major difference being the removal of projection effects, or the mis-identification

of non-cluster galaxies in the 2D projected radius from the photometric redshift uncertainty

of the red-sequence when estimating the true richness from a gravitationally bound region

around the halo. Furthermore, as this simulation-based study does not introduce other

observational systematics as shape noise of galaxies, point spread function, miscentering,

among others, this study can be used to explore the intrinsic covariance between observables

prior to the addition of extrinsic systematics as projection effects. Our results will not only

provide insight into the physical origin of the covariance, the difference between the total

covariance as measured by observations and the intrinsic covariance will provide estimates

on the amplitude of the extrinsic component.

The goals of this work are to (i) develop an analytical model that accounts for and quan-

tifies the effect of non-zero covariance on cluster mass calibration, (ii) quantify this property

covariance utilizing cosmological simulations, (iii) update uncertainties on inferred cluster

mass estimates, and (iv) explain the physical origin of the covariance using secondary halo

parameters. The rest of this paper is organized as follows. In §5.2, we present a population-
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Table 5.1: Notations employed in our framework for the covariance in §5.2.3

Parameter Explanation

∆Σ Weak lensing signal

M halo mass in M⊙h−1

Ngal optical richness enclosed inside 3D radius
z redshift
rp projected and normalised radius

based analytical framework. In §5.3, we describe the simulations and data-vector employed

in this work. In §5.4, we present our measurements and the covariance model. In §5.5, we

present the impact of the covariance on weak lensing mass calibration. In §5.6, we quantify

the physical origin of the covariance by parameterizing it using secondary halo parameters.

In §5.7, we compare our work with those that employ realistic cluster finders. We conclude

in §5.8.

5.2 Theoretical Framework

This section presents a theoretical framework that examines the impact of covariance on

mass-observable scaling relations. In §5.2.1 we introduce the definitions of richness and weak

lensing excess surface mass density and their scaling relations with cluster mass. We then

describe the model of property covariance of richness and excess surface mass density in

§5.2.2. In §5.2.3, we model the impact of covariance on stacked observable scaling relations.

Finally, in §5.2.4, we develop a theoretical framework that explains the covariance based on

a set of secondary halo parameters. A graphic representation of the outline of the paper is

shown in Figure 5.1. The notations used in this section to describe the covariance are listed

in Table 5.1 and notations for scaling relations are listed in Table 5.2.
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Table 5.2: Scaling Relation Conventions.

Parameter Explanation

πa normalization in scaling relation ⟨a | M⟩
αa slope in scaling relation ⟨a | M⟩
σa scatter about ⟨a | M⟩
ra,b correlation between a and b at fixed M
πa|b normalisation in scaling relation ⟨a | b⟩
αa|b slope in scaling relation ⟨a | b⟩
σa|b scatter about ⟨a | b⟩
a, b a, b ∈ {∆Σ, lnNgal}

5.2.1 Observable-mass relations

Excess Surface Mass Density ∆Σ from Weak Lensing

In weak lensing measurements of galaxy clusters, the key observable is the excess surface

mass density, denoted ∆Σ. The excess surface mass density is defined as

∆Σ(M, z, rp) = Σ(M, z,< rp)− Σ(M, z, rp), (5.1)

where Σ(M, z,< rp) denotes the average surface mass density within projected radius rp,

and Σ(M, z, rp) represents the average of the surface mass density at rp. We model the

average surface mass density Σ as

Σ(rp) = ρm

∫ +∞

−∞

(
1 + ξhm

(
r =

√
r2p + χ2

))
dχ, (5.2)

where ρm is the mean matter density at the redshift of the cluster, R is the projected radius

in the plane of the sky, χ is the comoving distance along the line of sight centered around the

cluster, and ξhm(r) is the halo-matter correlation function which characterises the total mass

density within a halo. Under the halo model, the halo-matter correlation function consists
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of a “one-halo” term:

ξ1h(r|M) =
ρNFW(r|M)

ρm0
− 1, (5.3)

and a “two-halo” term:

ξ2h(r|M) = b(M)ξlin(r), (5.4)

where ρNFW is the Navarro-Frenk-White (NFW) density profile (Navarro et al., 1997), and

ξlin is the linear matter correlation function, and b is the halo bias parameter.

In weak lensing, the excess surface density ∆Σ is tied to the tangential shear γt of the

galaxies relative to the center of each foreground halo by the relation

Σcritγt = Σ(< R)− Σ(R) ≡ ∆Σ(R), (5.5)

where the critical surface density Σcrit defined as

∆Σcrit =
c2

4πG

Ds

DlDls
, (5.6)

and where Ds, Dl, and Dls refer to the angular diameter distances to the source, the lens,

and between the lens and source, respectively.

In this work, for each halo of mass M at redshift z, we compute the corresponding

∆Σ profile. We compare these measurements with theoretical predictions — in the one-halo

regime we model the cluster overdensity as NFW profiles with their concentration determined

by concentration-mass models of Prada et al. (2012), Ludlow et al. (2016) and Diemer & Joyce

(2019), whereas in the two-halo term we adopt the linear matter correlation ξmm multiplied

by halo biases using the Tinker et al. (2010), Pillepich et al. (2010) and Bhattacharya et al.

(2011) models to derive the halo-matter correlation ξhm. At the transition radius between

the one- and two-halo regimes, we follow SDSS (Zu et al., 2014) in setting the halo–matter
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correlation to the maximum value of the two terms, i.e.,

ξhm(r|M) = max{ξ1h(r|M), ξ2h(r|M)}. (5.7)

In Fig. 5.2, the theoretical models described above are compared with our measurements of

∆Σ in cosmological simulations to validate our data product.

We model the mean ⟨∆Σ | M, z, rp⟩ at fixed mass M , redshift z, and projected radius rp

as a log-linear relation given by

⟨∆Σ | M, z, rp⟩1 = π∆Σ(M, rp, z) + α∆Σ(M, rp, z) lnM, (5.8)

where α∆Σ is the power-law slope of the relation and π∆Σ is a normalization that is a

function of redshift and mass.

Optical Richness Ngal

Optical richness Ngal is an observable measure of the abundance of galaxies within a galaxy

cluster. It is often defined as the number of detected member galaxies brighter than a certain

luminosity threshold within a given aperture or radius around the cluster centre. Richness

is often used as a proxy for cluster mass, as more massive clusters are expected to have more

member galaxies (e.g., Rozo et al., 2014; Rykoff et al., 2014). The richness-mass scaling

relation relates the richness of a galaxy cluster to its mass. In this work, we consider the

mean Ngal-M∆ scaling relation expressed as

⟨lnNgal | M∆, z⟩1 = πNgal
(M, z) + αNgal

(M, z) lnM∆. (5.9)

where M∆ is the mass of the halo within a radius where the mean density is ∆ times the

critical density of the universe, αNgal
(M, z) is the power-law slope of the relation, πNgal

(M, z)
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is a normalisation that is a function of redshift and mass.

Halo Mass and Radius Definitions

A common approach to defining a radial boundary of a galaxy cluster is such that the average

matter density inside a given radius is the product of a reference overdensity ∆ref times the

critical (ρc) or mean density (ρm) of the universe at that redshift. The critical density is

defined as

ρc =
3H2

0

8πG
E(z), (5.10)

where E(z)2 = Ωm,0(1+ z)3+ΩΛ,0, Ωm,0 is the present day matter fraction of the universe,

ΩΛ,0 is the dark energy fraction at the present age such that Ωm,0+ΩΛ,0 = 1 for a flat universe

ignoring the minimal contribution from the radiation fraction. The mean (background)

density is defined as

ρb =
3H2

0

8πG
(Ωm,0(1 + z)3). (5.11)

The overdensity ∆c = 200 is commonly chosen as the reference overdensity in optical weak

lensing studies and is closely related to the virial radius. Another radius definition is the

virial radius Rvir, with overdensity values calibrated from cosmological simulations (Bryan &

Norman, 1998). In this work, we use R200c and Rvir to scale various observations, including

the ∆Σ measurements and richness. Since the covariance is close to zero at the outskirts

R ≳ R200c as shown in §5.4, we adopt rp = R/R200c and rp = R/Rvir as our normalised

radii, as the cluster properties are more self-similar with respect to ρc(z) compared to ρb(z)

(Diemer & Kravtsov, 2014; Lau et al., 2015). To test for the robustness of our covariance

against different radii definitions, we also introduce a physical radius of a toy model of a

constant R = 1 Mpc/h; here h = 0.6777 is the reduced Hubble constant used in this study.
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5.2.2 Covariance between ∆Σ and Ngal

In optical surveys, we cannot expect the covariance between richness Ngal and the excess

surface mass density ∆Σ to be zero. Ignoring this covariance will lead to bias in cluster mass

inferred from the excess surface mass density of the cluster selected based on richness. This

work aims to quantify and analyse this covariance and its impact on the mass calibration

relation. To achieve this objective, we must first specify the joint probability distribution

of excess surface mass density and richness, p(∆Σ, lnNgal | M, z, rp). In this work, we

assume that the joint distribution follows a multivariate normal distribution (Stanek et al.,

2010; Evrard et al., 2014; Mulroy et al., 2019; Miyatake et al., 2022), which is fully specified

with two components, the mean vector and the property covariance. We have checked the

goodness of this assumption in Appendix 5.9.4.

From the mean observable-mass scaling relations in Equation (5.8) and Equation (5.9),

the scaling relation between these two observables can be modeled as a local linear relation

given by

⟨∆Σ | Ngal, z, rp⟩ = π∆Σ|Ngal
(Ngal, z, rp) + α∆Σ|Ngal

(Ngal, z, rp) lnNgal, (5.12)

where π and α are the normalization and slope of the model.

The property covariance matrix is a combination of scatter and correlation between the

scatter of ∆Σ and lnNgal at a fixed halo mass, redshift, and projected radius. We use

σNgal
(M, z) and σ∆Σ(M, z, rp) to denote the scatter of the observable-mass relation for

lnNgal and ∆Σ, respectively, and use rNgal,∆Σ(M, z, rp) to denote the correlation between

these scatters. The covariance matrix is then given by

Covi,j(M, z, rp) = ri,j(M, z, rp) σi(M, z, rp) σj(M, z, rp), (5.13)

where i and j ∈ {∆Σ, lnNgal}. Specifically, the covariance between ∆Σ and Ngal can be
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expressed in terms of the residuals about the mean quantities

Cov∆Σ,Ngal
(M, z, rp) = Cov(res∆Σ(M, z, rp), resNgal

(M, z)), (5.14)

where the residuals of the ∆Σ and Ngal are, respectively, are given by

res∆Σ(M, z, rp) = ∆Σ− ⟨∆Σ | M, z, rp⟩, (5.15)

resNgal
(M, z) = lnNgal − ⟨lnNgal | M, z⟩. (5.16)

To model the mass dependencies of the mean profiles of ∆Σ and lnNgal, we employ the

Kernel Localised Linear Regression (KLLR, Farahi et al., 2022a) method. This regression

method fits a locally linear model while capturing globally non-linear trends in data and

has shown to be effective in modeling halo mass dependencies in scaling relations (Farahi

et al., 2018; Wu et al., 2022; Anbajagane et al., 2022). By developing a local-linear model

of ∆Σ− lnNgal with respect to the halo mass and computing the residuals about the mean

relation, we remove the bias in the scatter due to the mass dependence and reduce the

overall size of the scatter. As shown in Fig. 5.4 the 1− σ of the covariance is determined by

bootstrap resampling.

5.2.3 Corrections to the ∆Σ−Ngal relation due to Covariance

The shape of the halo mass function plays an important role in evaluating the conditional

mean value of ⟨∆Σ | Ngal, z, rp⟩ where the scatter between two observables with a fixed halo

mass is correlated. Ignoring the contribution from the correlated scatter, to the zeroth order,

the expected ∆Σ evaluated at fixed richness is given by Equation (5.12). This is the model

that has been used in mass calibration with stacked weak lensing profiles (Johnston et al.,

2007; Kettula et al., 2015; McClintock et al., 2019; Chiu et al., 2020; Lesci et al., 2022).
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The first- and second-order approximations of the scaling relation are given by

⟨∆Σ | Ngal, z⟩1 = ⟨∆Σ | Ngal, z⟩fid +
γ1

αNgal

× Cov(∆Σ, lnNgal), (5.17)

and

⟨∆Σ|Ngal, z⟩2 = ⟨∆Σ | Ngal, z⟩fid+ (5.18)

Cov(∆Σ, lnNgal)×
[ xs

α2Ngal

(αNgal
γ1 + γ2(lnNgal − πNgal

))
]
,

where ⟨∆Σ | Ngal, z⟩fid is the fiducial relation taking into account the curvature of the HMF

but independent of the covariance; xs = (1 + γ2σ
2
M |Ngal,1

)−1 is the compression factor due

to curvature of the HMF, the subscript 1 denoting that the scatter is taken from the HMF

expanded to first order; here we omit the (M, z) dependence of the covariance as a shorthand

notation. These expansions around the pivot mass are for halos centered around a narrow

enough mass bin. We show explicitly in Fig. 5.9 that the first-order expansion converges

using our binning method. The derivations for the first and second-order expansion terms

can be found in Evrard et al. (2014) and Farahi et al. (2018) and the derivation for this

particular expression of the second-order term is shown in Appendix 5.9.3.

Here γ1 and γ2 are the parameters for the first and second-order approximations to the

mass dependence of the halo mass function (e.g., Evrard et al., 2014):

dnhmf(M, z)

d lnM
≈ A(z) exp

[
−γ1(M, z) lnM − 1

2
γ2(M, z)(lnM)2

]
. (5.19)

where A(z) is the normalisation of the mass function due to the redshift alone. In deriving

the above approximations, we have made use of the fact that Cov(∆Σ, lnNgal|M, z) ≡

r∆Σ,Ngal
σ∆ΣσNgal

. The terms σ∆Σ, σNgal
, rNgal,∆Σ, γ1 and γ2 are evaluated at the mass

implied by ⟨lnM | Ngal⟩.
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Table 5.3: Notations employed in exploring the secondary halo parameter dependence

Parameter Explanation

Π Set of secondary halo parameters
Γinst instantaneous mass accretion rate (MAR)
Γ100Myr mean MAR over the past 100 Myr
Γdyn mean MAR over virial dynamical time
Γ2dyn mean MAR over two virial dynamical time
Γpeak Growth rate of peak mass from current z to z+0.5
a1/2 Half mass scale factor

cvir Rvir concentration
T/|U| Absolute value of the kinetic to potential energy ratio

Xoff Offset of density peak from mean particle position (kpc h−1)

These property covariance correction terms are absent in the current literature. A key fea-

ture of this approximation method is that the second-order solution has better than percent-

level accuracy when the halo mass function is known (Farahi et al., 2016). In Figure 5.9, we

demonstrate that the statistical uncertainties for the first-order correction in Equation (6.18)

is larger than the uncertainty in the halo mass function and the uncertainty due to the

second-order halo mass approximation.

5.2.4 Secondary halo parameter dependence of Cov(∆Σ, lnNgal|M, z)

We elucidate the physical origin of the covariance between ∆Σ and lnNgal by developing a

phenomenological model based on the secondary halo parameters listed in Table 5.3. These

parameters are computed from the ROCKSTAR halo finder (Behroozi et al., 2013). They

capture the halo’s mass accretion history , which we hypothesise is the driving force be-

hind the observed covariance. To incorporate these parameters into our model, we extend

Equations (5.8) and (5.9) by introducing multi-linear terms that include the secondary halo
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parameters denoted by the vector Π:

(lnNgal | Π,M, z) =⟨lnNgal | M, z⟩1 + β⃗
⊺
Ngal

(M, z) · Π+ ϵNgal

=πNgal
(M, z) + αNgal

(M, z) lnM+

β⃗
⊺
Ngal

(M, z) · Π+ ϵNgal
. (5.20)

(∆Σ | Π,M, z) =⟨∆Σ | M, z⟩1 + β⃗
⊺
∆Σ(M, z) · Π+ ϵ∆Σ

=π∆Σ(M, z) + α∆Σ(M, z) lnM+

β⃗
⊺
∆Σ(M, z) · Π+ ϵ∆Σ, (5.21)

where Π is a vector of secondary halo parameters of potential interest listed in Table 5.3, and

ϵ∆Σ and ϵNgal
are normally distributed intrinsic scatter terms with zero means and uncorre-

lated variances. In Appendix 5.9.5 we show that the residual conditioned on secondary halo

parameters can largely be assumed to be Gaussian. Additionally, we assume ⟨ϵNgal
ϵ∆Σ⟩ = 0,

which implies that the scatter about the mean relations is uncorrelated after factoring in the

secondary properties.

Due to the bilinearity and distributive properties of covariance, combining Equation (5.20)

and Equation (5.21) yields:

Cov(∆Σ, lnNgal | M, z) = Cov(⟨∆Σ⟩1, ⟨Ngal⟩1) + Cov(⟨∆Σ⟩1, β⃗⊺Ngal
· Π)

+ Cov(⟨∆Σ⟩1, ϵNgal
) + Cov(β⃗

⊺
∆Σ · Π, ⟨lnNgal⟩1)

+ Cov(β⃗
⊺
∆Σ · Π, β⃗⊺Ngal

· Π) + Cov(β⃗
⊺
∆Σ · Π, ϵNgal

)

+ Cov(ϵ∆Σ, ⟨lnNgal⟩1) + Cov(ϵ∆Σ, β⃗
⊺
Ngal

· Π)

+ Cov(ϵNgal
, ϵ∆Σ), (5.22)

where we omit the explicit (M, z) dependence in ⟨∆Σ | M, z⟩1, ⟨lnNgal | M, z⟩1, β⃗⊺∆Σ(M, z),
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β⃗
⊺
Ngal

(M, z), ϵNgal
(M, z) and ϵ∆Σ(M, z) to simplify the notation. The KLLR method is

utilised to estimate these mass-dependent parameters. All terms involving ⟨∆Σ⟩ and ⟨lnNgal⟩

vanish, as these terms are independent of Π by definition. Terms involving ϵNgal
and ϵ∆Σ also

go to zero, as they are uncorrelated Gaussian scatters. Only the term Cov(β⃗
⊺
∆Σ ·Π, β⃗⊺Ngal

·Π)

remains, and hence our final expression for the covariance is

Cov(∆Σ, lnNgal | M, z) = Cov(β⃗
⊺
∆Σ · Π, β⃗⊺Ngal

· Π) (5.23)

= β⃗
⊺
∆ΣCov(Π,Π)

⃗βNgal
.

To estimate the error in the covariance due to each of the secondary halo parameters,

we compute Cov(∆Σ,Πi|M, z) for each secondary halo parameter i in each (rp, M , z) bin

and take their standard deviations as the error measurement. Modeling the richness-mass

relation as in Equation (5.20) and using the same derivation as in Equation (5.22), we arrive

at the expression

Cov(∆Σ, lnNgal|M, z) =
∑
i

βNgal,i(M, z) Cov(∆Σ,Πi|M, z), (5.24)

in which the error from each contributing term in Π is the standard deviation for

Cov(∆Σ,Πi|M, z) multiplied by the partial richness slope βNgal,i. The total variance of

Cov(∆Σ, lnNgal|M, z) are the errors of each term added in quadrature.

We test the validity of this model by checking how well the secondary halo parameters

can explain covariance between lensing and richness in §5.6. After subtracting the covariance

from each of the Πi terms, the full covariance should be consistent with null, given the

uncertainty. Our results confirm that the dependency of secondary halo parameters can

indeed explain the covariance.
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5.3 Dataset and Measurements

In this section, we describe the measurements on the individual ingredients that make up

the covariance — ∆Σ the lensing signal in §5.3.1 and lnNgal the log-richness measurement

in §5.3.2.

5.3.1 Measurements of ∆Σ

We employ the MultiDark Planck 2 (MDPL2) cosmological simulation (Klypin et al., 2016)

to measure halo properties. The MDPL2 is a gravity-only N -body simulation, consisting of

38403 particles in a periodic box with a side length of Lbox = 1 h−1Gpc, yielding a particle

mass resolution of approximately mp ≈ 1.51 × 109h−1M⊙. The simulation was conducted

with a flat ΛCDM cosmology similar to Planck Collaboration et al. (2014), with the following

parameters: h = 0.6777, Ωm = 0.307115, ΩΛ = 0.692885, σ8 = 0.829, and ns = 0.96. We

use the surface over-density of down-sampled dark matter particles to measure the weak

lensing signal. We selected cluster-sized halos using the ROCKSTAR (Behroozi et al., 2013)

halo catalogue, which includes the primary halo property of mass and redshift and a set

of secondary halo properties listed in Table 5.3 that we utilise in this analysis. To capture

the contribution of both the one- and two-halo terms to ξhm, we use a projection depth of

Dp = 200 Mpc h−1 to calculate ∆Σ (e.g., Costanzi et al., 2019; Sunayama et al., 2020). The

MDPL2 data products are publicly available through the MultiDark Database (Riebe et al.,

2013) and can be downloaded from the CosmoSim website1.

The excess overdensity, ∆Σ, is calculated by integrating the masses of the dark matter

particles in annuli of increasing radius centred around the halo centre. However, since clusters

do not have a well-defined boundary, we compare the results of two radial binning schemes.

The first scheme uses 20 equally log-spaced ratios between 0.1 and 10 times Rvir, while the

second scheme spans 0.1 to 10 times R200c. We consider the measurements binned at R200c

1. https://www.cosmosim.org
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as our final results to be consistent with the weak lensing literature. Figure 5.2 shows that

our measurements are consistent with most models of the concentration-mass and halo-bias

models at a 1σ level.

At a projection depth of Dp = 200 Mpc h−1, the projection effects can be modeled as a

multiplicative bias (Sunayama, 2023). In Sunayama (2023) the projection effects on ∆Σ are

modelled as ∆Σobs = (1+α)∆Σtrue, where α = 18.4±8.6%. Although the multiplicative bias

of projection effects may increase the amplitude of Cov(∆Σ, lnNgal) by a factor of (1 + α),

we argue that it does not introduce an additive bias into our model for Cov(∆Σ, lnNgal).

This is because, under the richness model and ∆Σ in Equations (5.20) and (5.21), only terms

in richness that are correlated with projection effects will contribute to the covariance. As

demonstrated in §5.3.2, we enclose the halo within a 3D physical radius, so the number count

Ngal of galaxies should not include projection effects. Therefore, projection effects should

not introduce an additive bias to our covariance.

To remove the 2D integrated background density, we first computed the background

density of the universe (ρb) at the cluster redshift using the cosmological parameters of the

MDPL2 simulation. The integrated 2-D background density is given by Σb = 2Dpρb, where

factor 2 comes from the integration of the foreground and background densities.

5.3.2 Measurements of Ngal

Dataset for Ngal — SAGE galaxy catalog

The Semi-Analytic GALAXY Evolution (SAGE) is a catalogue of galaxies within MDPL2,

generated through a post-processing step that places galaxies onto N-body simulations. This

approach, known as a semi-analytic model (SAM), is computationally efficient compared to

hydrodynamical simulations with fully self-consistent baryonic physics. SAMs reduce the

computational time required by two to three orders of magnitude, allowing us to populate

the entire 1 (Gpc/h)3 simulation volume with galaxies. SAGE’s statistical power enables us
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Figure 5.2: The measured ∆Σ profiles using downsampled particles for every 10 particles
and theoretical ∆Σ as computed from the NFW profile using different concentration-mass
relations (LHS in legend) in the one-halo regime and different halo-bias models (RHS in
legend) in the two halo regimes, with errors taken to be 1 − σ standard deviations; the
measurements are consistent with theoretical predictions and the size of the errors is too
large to distinguish between models. The same conclusion (not shown) holds for ∆Σ binned
by Rvir.
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to conduct stacked weak lensing analyses.

The baryonic prescription of SAGE is based on the work of Croton et al. (2016), which

includes updated physics in baryonic transfer processes such as gas infall, cooling, heating,

and reionization. It also includes an intra-cluster star component for central galaxies and

addresses the orphan galaxy problem by adding the stellar mass of disrupted satellite galaxies

as intra-”cluster” mass. SAGE’s primary data constraint is the stellar mass function at

z = 0. Secondary constraints include the star formation rate density history (Somerville

et al., 2001), the Baryonic Tully-Fisher relation (Stark et al., 2009), the mass metallicity

relation of galaxies (Tremonti et al., 2004), and the black hole–bulge mass relation (Stark

et al., 2009).

Model for Ngal

To determine the number of galaxies inside a cluster-sized halo, we utilise the SAGE semi-

analytic model and compute the total number of galaxies within a 3D radius around the halo

centre. We compare the true richness (Ngal) to M200c scaling relations between different

models and the observed richness-mass relations from Costanzi et al. (2021) using data

from the DES Year-1 catalogue and mass-observable-relation from the South Pole Telescope

(SPT) cluster catalogue (see Figure 5.3). The observed richness-mass relation is fitted as a

log-linear model with 2 − σ error bars that trace the posterior of the best-fit richness-mass

model parameters. The M500c mass definition in the catalogue is converted to M200c using

an NFW profile for the surface density of the cluster and adopting the Diemer & Joyce (2019)

concentration-mass relation anchored at z = 0.35, which is roughly the median redshift of

the cluster sample.

We use the KLLR method to determine the local linear fit for our Ngal-mass model,

which relaxes the assumption of global log-linearity (Anbajagane et al., 2020). Realistic

cluster finders, such as redMaPPer (Rykoff et al., 2014), impose a colour-magnitude cut or
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a stellar mass cut, which are highly dependent on the red-sequence model or the spectral

energy density model. We found that imposing a stellar mass cut of 10.5 log(M/M⊙) would

correspond roughly to the bottom 5% percentile of SDSS detected galaxies (Maraston et al.,

2013). However, this drastically decreases the number of galaxies in a halo, with most having

Ngal in the single digits. As we are interested in the intrinsic covariance from the physical

properties of the halo, we do not impose additional magnitude or stellar mass cuts. We

confirm that, as described in Croton et al. (2016), the galaxy stellar mass distribution at

z = 0 is consistent with the best-fit double Schechter function calibrated with low-redshift

galaxies from the Galaxy and Mass Assembly (GAMA) (Baldry et al., 2012) down to stellar

masses of M > 108.5M⊙.

Figure 5.3 illustrates that our Ngal-mass models, which count the number of galaxies

within a physical 3D radius and impose no colour-magnitude cut as redMaPPer does, resem-

ble the general behavior of the observed richness-mass relations in terms of both slope and

intercept. However, we acknowledge that redMaPPer may suffer from projection effects that

artificially inflate the number count of red-sequence galaxies within its aperture because of

line-of-sight structures. Additionally, the Ngal count within the Rvir radius exceeds that of

R200c as Rvir is greater than R200c. In the toy model scenario, where we use a constant 1

Mpc h−1 radius, the slope of the mass-richness relation starts to decrease as the mass in-

creases due to the increasing physical size of the clusters, as expected. The diversity of cluster

radii and the resulting variation in the local slope and intercept of the Ngal-mass relations

demonstrate the robustness of our covariance model. In Section 5.4, we show that different

radii/mass definitions have little impact on the parameters of our covariance model, thus

establishing its independence from different reference radii, the definitions of cluster edges,

and the resulting richness-mass relations.
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Figure 5.3: Using different prescriptions of the richness count, we compare with the SPT-
DES data (Costanzi et al., 2021). The richness estimator, with no stellar or color-magnitude
cut, shows a similar trend with the data. In §5.4, we show that the results are robust to
changes in the definition of the number count estimator.
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5.4 Results: Covariance Shape and Evolution

In this section, we report the measurements for our covariance. In Figure 5.4, we find an anti-

correlation between Ngal and ∆Σ at small scales across most redshift and mass bins spanned

by our dataset, which we fit with the best-fit “Sigmoid” functional form of the expression

Cov(x̃) = s
(
erf(

√
π

2
x̃) + g

)
, (5.25)

with x ≡ logR/R200c the log-radius and x̃ ≡ (x− γ)/τ the scaled and offset log-radius. In

Appendix 5.9.1, we offer statistical verification of the best-fit functional form.

We first describe the evolution of the covariance in §5.4.1 by binning across the (M, z)

bins. Next, in §5.4.2, we present an alternative binning scheme based on halo peak height

that can provide insight into the dependence of the time formation history of the covariance

scale.

5.4.1 Binned in (M, z)

Our best-fit parameters in Table 5.6 indicate that in 9 out of 12 (M, z) bins, the

Cov(∆Σ, lnNgal | M, z) rejects the null-correlation hypothesis with high statistical sig-

nificance (p − value < 0.01). However, in two bins, specifically M200c ∈ [5 × 1014, 1 ×

1015) M⊙h−1 at z = 0.49 and M200c ∈ [2 × 1014, 5 × 1015) M⊙h−1 at z = 1.03, the

magnitude of the covariance is relatively small compared to the size of their errors. Con-

sequently, it becomes challenging to constrain the shape parameters in these two bins, and

the covariance is consistent with the null hypothesis. Furthermore, we exclude the bin

M200c ∈ [5×1014, 1×1015) M⊙h−1, z = 1.03 due to the limited number of halos it contains.

Our results suggest that the shape of the covariances can be accurately described by the

full error function. Additionally, for R ≥ Rvir or R ≥ R200c, the covariance aligns with the

null-correlation hypothesis. This alignment is reflected in the fact that all nine bins with
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Figure 5.4: Measured against the left hand side y-axis are measurements of Cov(∆Σ,
Ngal|M, z) with 1σ errors and different functional forms using the full model. The functions
are classes of ”Sigmoid” functions. In all bins, the error function outperforms other functional
forms in their DIC parameters, providing good χ2 values. For M200c ∈ [5× 1014, 1× 1015)
at z = 0.49 and M200c ∈ [2 × 1014, 5 × 1015) at z = 1.03, the posteriors of the full models
do not converge as the size of the covariance is too small. Measured against the right-hand
side y-axis are the correlation coefficients r∆Σ,Ngal|M,z with smoothed bands representing

the 1− σ error. The errors are measured by bootstrap resampling.
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constrained posterior shape have best-fit g values within 2σ of g = −1. Deviations from

g = −1 can be interpreted as evidence of disagreements with the Press-Schechter formalism

(Press & Schechter, 1974) of spherical collapse halos, which can be originated from the

presence of anisotropic or non-Gaussian matter distribution around halos at large scales

(Lokken et al., 2022), or it can be an indicator of an open-shell model of halos that allows

for the bulk transfer of baryonic and dark matter in and out of the halo potential well during

the non-linear collapse.

With g = −1 fixed, the reduced error function marginally improves the constraints

in most bins. However, with the reduced model, we can provide posterior constraints for

M200c ∈ [5× 1014, 1× 1015)M⊙h−1 at z = 0.49 and M200c ∈ [2× 1014, 5× 1015)M⊙h−1 at

z = 1.03, which the full model failed to constrain but with very loose posterior constraints.

The estimated parameters for both the full and reduced models are presented in Table 5.6

and Table 5.7, respectively.

To assess the impact of varying the definition of the halo radius on our measurements of

the shape of the covariance, we considered two factors: the scale dependence of ∆Σ discussed

in §5.2.1 and §5.3.1, and the alteration of the richness-mass relation as shown in Figure 5.3 in

§5.3.2. Figure 5.5 demonstrates that there is no apparent evolution of the shape parameters

θ ∈ {τ, γ, g} when altering the scale dependence for ∆Σ or the true richness count. However,

we find marginal 3σ evidence of a difference in the amplitude parameter of the covariance s

when changing the scale normalisation from rp = R/R200c to rp = R/Rvir while using the

same true richness count. As halos exhibit more self-similarity in the inner regions when

scaled by R200c (Diemer & Kravtsov, 2014), we adopt this as our radius normalisation and

use the number of galaxies enclosed within R200c as our true richness count.

Subsequently, we explored the evolution of the shape parameters with respect to (M, z)

and found no strong mass dependence. However, we observed a monotonically decreasing

redshift dependence of the amplitude parameter s, as illustrated in Figure 5.6. To explain
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both the halo mass and the redshift dependence, we used the peak height of the halo, ν(M, z).

5.4.2 Binned by peak height

An alternative binning scheme that encapsulates both the halo mass and redshift information

is to bin halos by the peak height parameter, defined as

ν =
δc

σ(R, a)
, (5.26)

where δc(z) is the collapse overdensity at which gravitational collapses enter the non-linear

regime and σ(R, a) is the smoothing scale seen in Equation (5.33) at the radius of the cluster.

For an Einstein-de Sitter universe (Ωm = 1, ΩΛ = 0) δc ≈ 1.686 at the epoch of collapse and

is weakly dependent on cosmology and redshift (Percival, 2005). σ(R, a) scales as σ(M,a) =

σ(M,a = 1)D+0(a) at the linear collapse regime, where D+0(a) ≡ D+(a)/D+(a = 1). Here

D+(a) is the linear growth factor defined as

D+(a) =
5ΩM

2
E(a)

∫ a

0

da′

[a′E(a′)]3
, (5.27)

for a ΛCDM cosmology, where E(a) ≡ H(a)/H0 is the normalised Hubble parameter. σ(R, z)

depends strongly on redshift, and hence, the peak height ν strongly depends on the halo

radius and the redshift of non-linear collapse.

The peak height has been adopted to simplify the mass and redshift dependence in various

halo properties, such as halo concentration (Prada et al., 2012) and halo triaxiality (Allgood

et al., 2006). Here, we explore whether the peak height can serve as a universal parameter

to explain the scale and shape of Cov(∆Σ, lnNgal | M, z). We bin the halos into deciles of

ν and set posterior constraints on the shape of the covariance using our erf model in the

full model case. In the highest decile (90%-100% percentile), we reject the null-correlation

hypothesis at the p = 0.01 level, but due to the size of the error bars, the shape of the
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Figure 5.5: Evolution of Cov(∆Σ, Ngal | M, z) shape parameters with respect to mass and
radial binning schemes and Ngal definition at fixed redshift at z=0. ∆Σ is binned in equal
log-space radial bins in R/R200c or R/Rvir; for each radial binning, the number count of
galaxies inside the cluster is given by a constant radius of 1 Mpch−1 or R200c when binned by
R200c and Rvir when binned by Rvir. We find no strong evolution in the shape or scale of the
covariance under different binning schemes or Ngal definitions. The trend is consistent across
different redshift bins and demonstrates the robustness of the covariance under different true
richness definitions. The error bars indicate the 1− σ distribution of the posteriors.

114



0.2

0.4

0.6 z=0.00
z=0.49
z=1.03

1.0

0.8

0.6

0.4

1.04

1.02

1.00

0.98

g

1014 1015

M200c(M h 1)

0.1

0.5
1
2
3

10
12

×
s

Figure 5.6: Evolution of Cov(∆Σ, Ngal | M, z) shape parameters of the error function with
respect to mass and redshift, binned in units of R200c and with Ngal taken to be the number
of clusters inside the R200c radius of the cluster. There is no strong dependence of τ , γ, and
g with respect to mass and redshift and a strong monotonically decreasing s with respect to
redshift. At M200c ∈ [5×1014, 1×1015), z = 0.49 and M200c ∈ [2×1014, 5×1015), z = 1.03
the covariance is consistent with null at p = 0.01 and p = 0.05 levels, respectively. The error
bars indicate the 1− σ distribution of the posteriors.

115



1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
log10(R/R200c)

5

4

3

2

1

0

Co
v(

,ln
N g

al
) (

M
h/

M
pc

2 )
2

1e12

[1.6, 1.8)
[1.8, 2)
[2, 2.2)
[2.2, 2.4)
[2.4, 2.6)
[2.6, 2.7)
[2.7, 2.9)
[2.9, 3.1)
[3.1, 3.4)
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parameters τ , γ, and g and largely unconstrained and s = 1012×0.16+0.34
−0.12. Due to the large

degeneracy, we exclude the highest decile from our dataset and limit the range of our model

to ν ∈ [1.57, 3.40), which spans 0% to 90% of our sample set. The large error bars may be

due to the fact that the halo abundance as a function of ν falls precipitously around ν ∼ 4,

so the highest decile spans a wide tail of high ν ∈ [3.4, 4.6). The plots in Figure 5.7 are the

best-fit templates when binned by peak height, and Figure 5.8 shows the best-fit parameters

as a function of peak height. We do not see a strong dependence on the peak height for τ ,

γ and g. For s, its dependence on ν can be modeled as a log-linear relation of the form

log10(s) = Cs + αν, (5.28)

with Cs = 13.07+0.26
−0.26 and α = −0.44+0.11

−0.11. At the highest decile, the s = 1012 × 0.16+0.34
−0.12

falls within the 1σ confidence band of the log-linear fit. Compared to the first nine deciles,

the fit yields a χ2 p-value of 0.73. The negative slope between s and ν indicates that more

massive halos at the cosmic era of their formation exhibit a lesser anti-correlation between

∆Σ and lnNgal.

5.5 Impact of Cov(∆Σ, lnNgal | M, z) on Weak Lensing Measurements

To assess the impact of Cov(∆Σ, lnNgal | M, z) on the scaling relation ⟨∆Σ | Ngal, z⟩, we

utilise Equation (6.18) for the first-order correction and Equation (5.18) for the 2nd order.

The mean mass of the halos in each (M, z) bin is chosen as the pivot mass around which

the HMF is Taylor expanded, and the intercept πNgal
and slope αNgal

for the richness-mass

scaling relation shown in Equation (5.9) are computed locally at the pivot point in each bin

(M, z) bin. Our mock data, binned in R200c, yields results that are consistent with the global

richness-mass relation found in the literature (Bocquet et al., 2016; Costanzi et al., 2021; To

et al., 2021a), as shown in Figure 5.3.
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Figure 5.9: The percent level change in stacked ∆Σ measurements after including the co-
variance terms in Equations (6.18) and (5.18) as denoted by ∆Σcov and without applying
corrections as denoted by ∆Σfid. The slope and curvature of the halo mass function are
calculated numerically from the Tinker et al. (2008) halo mass function in our nominal cor-
rection. The errors are taken from bootstrapped errors of the covariance. We compare
the results with first-order corrections from other halo mass functions using Watson et al.
(2013); Bocquet et al. (2016); Despali et al. (2016). We find that the percentile difference in
∆Σ far exceeds the uncertainty in the choice of halo mass functions, and that second-order
corrections are subdominant to the first-order correction itself, which is at a ∼ 1% level
at small scales for ∆Σ and propagates into an upward correction of stacked halo mass of
δM/M ∼ 2− 3% for most bins after applying the correction.
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For the correction terms, we adopt the Tinker et al. (2008) halo mass function as our

nominal model and compute the numeric log-derivative for values of γ1 and γ2, the log-slope

and curvature of the halo mass function around the pivot mass. We compare the Tinker mass

function results with others, including Watson et al. (2013); Bocquet et al. (2016); Despali

et al. (2016), and find that the difference is subdominant to the first-order correction, which

is at a ∼ 1% level at small scales, as shown in Figure 5.9.

To estimate the mass bias in each bin, we stack ⟨∆Σ | M, z⟩ and model the profiles

as if they were individual halos with a mean mass, redshift and concentration as described

in Equations (5.2)-(5.7). We assume NFW profile using the concentration-mass model of

Diemer & Joyce (2019) in the one-halo regime. The two-halo regime should not be affected,

as the covariance is consistent with zero at R ≳ R200c. We convert the 3D overdensity of

the modeled halo ξhm to ∆Σ using Equations (5.2) and (5.5), and then apply the first-order

correction in Equation (6.18). Using a Monte Carlo method we obtain the expected mass

with and without this correction and report the change in the mean halo mass with this

correction for each (M, z) bin. As shown in Figure 5.9, we find that adding the correction

leads to an upward correction of the stacked halo mass of approximately δM/M ∼ 2 − 3%

for most (M, z) bins.

5.6 Explaining the Covariance

5.6.1 Secondary halo parameter dependence of lnNgal

We employed a multi-variable linear regression model to determine the best-fit when in-

corporating secondary properties in the regression. Initially, considering the full set of

parameters listed in Table 5.3, we applied a backward modeling scheme to identify the

relevant parameters of interest. Details of this process can be found in Appendix 5.9.5,

which led to the selection of the following secondary halo parameters for our model: Π ⊂
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{Γ2dyn, a1/2, cvir, T/|U |, Xoff}. The resulting model demonstrated good explanatory power,

as indicated by a high R2 coefficient. Additionally, the model passed various tests, including

variance inflation, global F-statistic, partial F-statistic, T-statistic, scatter heteroscedasticity,

and scatter normality in most cases. Specifically, through a comparison of Fpartial values, we

found that richness could be modeled by a multi-linear equation involving all secondary halo

parameters. Further information can be found in Table 5.8, where the F-statistic demon-

strates that all parameters are statistically significant. Only when considered collectively

can they accurately reflect the dependence of richness on halo formation history.

To establish informative priors for upcoming weak lensing surveys such as HSC and LSST,

we examined whether the dependence of Ngal on secondary halo properties, as inferred from

the slope βNgal
, aligns with arguments based on halo formation physics. We expected that

βNgal,cvir resulting from the formation of satellite galaxies (equivalent to Ngal−1 in the pres-

ence of a central galaxy) within halos would exhibit a negative relation, i.e., βNgal,cvir < 0.

Simulation-based studies have suggested that early-forming halos possess higher concentra-

tions (Wechsler et al., 2002), and correspondingly, high-concentration halos (which form

early) have fewer satellite galaxies due to galaxy mergers within the halos (Zentner et al.,

2005). This effect is known as galaxy assembly bias (Wechsler & Tinker, 2018) — the change

in galaxy properties inside a halo at fixed mass due to the halo formation history. There is

marginal evidence of the existence of assembly bias from recent observations using galaxy

clustering techniques (Zentner et al., 2019; Wang et al., 2022), as well as measurements of

the magnitude gap between the brightest central galaxy (BCG) and a neighboring galaxy as

a proxy for formation time (Hearin et al., 2013; Golden-Marx & Miller, 2018; Farahi et al.,

2020).

As noted in Table 5.8, the signs of βNgal,i for the remaining parameters i ∈

{a1/2, T/|U |,Γ2dyn, Xoff} align with our expectations of assembly bias in most bins — late-

forming clusters undergo more rapid mass accretion (higher Γ2dyn) and are less virialized
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(higher T/|U|), and because they also from the galaxy assembly bias mentioned above are

richer in galaxy number counts when conditioned on the mass, we expect a positive partial

slope βNgal,Γ2dyn
and βNgal,T/|U|. The case for a1/2 and Xoff is more complicated. Under

the isolated formation of halos a1/2 and Xoff would be smaller for earlier forming halos due

to the monotonic mass accretion and relaxation of halos over long time scales. However, as

halos undergo mergers and tidal stripping the monotonicity of the parameters over time is

not guaranteed. Therefore, we see a mixture of positive and negative partial slopes βNgal,a1/2

and βNgal,Xoff
in these cases. To describe the physical mechanisms on a case-by-case basis

would require that we probe into the halo merger tree history of individual halos.

In this paper, we take a closer look at the sign of βNgal,cvir and observe that while the

partial scope matches our expectations in most bins, in some mass bins at medium and high

redshifts it changes signs from negative at lower redshifts to positive at higher ones. While

we observe a diminishing impact of secondary halo properties on richness (indicated by a

smaller absolute value for βNgal,cvir), the reversal of the coefficient’s sign cannot be solely

attributed to statistical fluctuations around zero, as some values are inconsistent with zero

at levels exceeding 3σ.

This issue can be attributed to the effect of major mergers on concentration. Recent

studies (Ludlow et al., 2012; Wang et al., 2022; Lee et al., 2023) have shown that halos, during

major merger events, experience a transient fluctuation in concentration before returning to

the mean relation over a time period slightly less than the dynamical time of the halo.

The measured concentration spike during major mergers, particularly prominent at higher

redshifts, could explain a positive β{Ngal,cvir}.

To test this hypothesis, we employ a toy model that divides halos in each (M, z) bin

based on the median Γ1dyn into low-Γ1dyn and high-Γ1dyn subsamples. Given the timescale

of mergers to be roughly the dynamical time of the halo, we choose Γ1dyn as a good proxy for

potential merger events even though this parameter is excluded in the final linear regression
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model due to multicollinearity (see Appendix 5.9.5.)

Figure 5.10 displays the halo concentration plotted against the richness residuals, sepa-

rated by Γ1dyn, at benchmark bins of M200c ∈ [5× 1013, 1× 1014) M⊙h−1 at three different

redshift snapshots of z = 0, 0.49, 1.03. At z = 0, we observe a negative slope as expected

from halo formation physics for both low-Γ1dyn and high-Γ1dyn subsamples, as well as for

the overall sample. Furthermore, we observe a change in the slope between the low-Γ1dyn

and high-Γ1dyn sub-samples, which can be explained by the gradual increase (or decrease) in

concentration (Γ1dyn) over time, even without major merger events (Wechsler et al., 2002;

Zhao et al., 2003; Lu et al., 2006). At redshifts of z = 0.49, 1.03, we observe a positive

slope in the overall and/or high-Γ1dyn samples, which contradicts the scaling relations be-

tween HOD and concentration in models that track their gradual evolution over T ≫ T1dyn.

However, in the presence of major mergers, when Γ1dyn is significantly enhanced, the halo

concentration may also experience a transient spike after the merger. The deviation from

hydrostatic equilibrium provides a plausible explanation for a positive β{Ngal, cvir}, which

could be fully tested on MDPL2 through the reconstruction of halo merger trees, an analysis

beyond the scope of this paper.

5.6.2 Secondary halo parameter dependence of ∆Σ

In this section, we employ a multi-linear regression approach to model the lensing signal,

similar to the methodology described in §5.6.1. We extend this approach to the model

P (∆Σ|Ngal(Π),M, z) as a linear function of Π. Upon analysing different (M, z, rp) bins,

we observe that the reduced parameters Π ⊂ {a1/2, cvir, T/U,Γ2dyn, Xoff} pass the variance

inflation factor (VIF) test for multi-collinearity, or in other words we showed that the variance

is not inflated and thereby made less reliable in the case that the secondary halo parameters

in the full model are highly correlated. As with the case for the lensing signal, this indicates

that lnNgal can be described without redundancy by a linear decomposition of these reduced
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Figure 5.10: Residual log-richness versus concentration relation in subsets of halo mass
accretion rate (MAR). The figure consists of three panels — left, middle, and right panels
corresponding to z = 0, z = 0.49, and z = 1.03, respectively, all on a benchmark mass bin of
M200c ∈ [5×1013, 1×1014)M⊙h−1. The sample is split into low and high Γ1dyn based on their
median values. The scatter plot illustrates the data points, while the shaded regions show
the best-fit linear fit with 1σ confidence interval for the main sample and each sub-sample.
At z = 0, the richness-concentration relation exhibits a negative slope, consistent with our
expectations of halo formation physics. The slopes for the low and high Γ1dyn subsamples
diverge due to the negative correlation between concentration and MAR. However, at z =
0.49 and z = 1.03, the slopes for the entire sample and/or the high Γ1dyn subsample become
positive, contrary to our observations of the richness-concentration relation. In contrast, the
low Γ1dyn subsample still shows a negative slope. These findings suggest that at medium to
high redshifts, a subset of unrelaxed and recently merged halos with high MAR could elevate
the concentration from its expected value at hydrostatic equilibrium.
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Figure 5.11: The dependence of ∆Σ on accretion history parameters in M200c ∈ [2×1014, 5×
1014)M⊙h−2, z = 0. In each of the 5 panels is plotted the ∆Σ in different quintiles of
the accretion history parameter Π ∈ {a1/2, cvir, T/|U |,Γ2dyn, Xoff} compared to the mean

∆Σ. For {a1/2, T/|U |,Γ2dyn, Xoff} there is a strong negative correlation at small scales at

R ≲ R200c and for cvir we find a strong positive correlation at R ≲ R200c. Comparing the
width of ∆Σ binned at different quintiles of Π with the standard deviation of the profiles,
we find that accretion history parameters account for much of the variance at small scales
and play a negligible role at large scales.
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parameters. Furthermore, most bins exhibit homoscedasticity, as confirmed by passing the

Breusch-Pagan Lagrange multiplier test. This implies that the scatter terms σ∆Σ and σΠi

remain constant within each bin, with a few exceptions. Lastly, the scatter σ∆Σ|Ngal
in most

bins (with a few exceptions) meets the criteria of the Shapiro-Wilk test for Gaussianity,

suggesting that the distribution closely resembles a Gaussian distribution.

The multi-linear regression is a good fit to the conditioned lensing signal if we assume

that P (lnNgal|M, z) and P (∆Σ|M, z) can be modeled with a normal distribution (e.g.,

Anbajagane et al., 2020; Costanzi et al., 2021; To et al., 2021a). In this case P (∆Σ |

Ngal,M, z) is a multi-linear equation with respect to the secondary halo parameters with

mean

⟨∆Σ|Ngal,M, z⟩ = ⟨∆Σ|Ngal,M, z⟩ (5.29)

+C1σ∆Σ

(∑
i

βNgal,i

σΠi

ρ∆Σ−Πi
× (Πi − ⟨Πi|M, z⟩)

)

and is normally distributed around the mean with variance

σ2∆Σ| lnNgal
= σ20 + C2

∑
i

β2Ngal,i
σ2Πi

(1− ρ2∆Σ−Πi
)+ (5.30)

C3

j ̸=i∑
i,j

ρΠi−Πj
σΠi

σΠj
.

The parameters C1, C2, C3, and σ0 can be explicitly derived where P (lnNgal|M, z) and

P (∆Σ|M, z) are known, but the exact values are not essential for this paper. We refer the

reader to Appendix 5.9.6 for derivations of Equations (5.29) & (5.30).

We note that only in bins of R ≲ R200c do the multilinear regression models pass the

global F-statistic test and the T-statistic test for each parameter. This result suggests that,

at R ≳ R200c, we find little correlation between ∆Σ and Πi. Because the scatter still passes

the Shapiro-Walk test for Gaussanity, the conditional probability P (∆Σ|Ngal,M, z) at large
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scales is still normally distributed, but with ρ∆Σ−Πi
= 0. By setting ρ∆Σ−Πi

= 0 the

variance can be reduced to

σ2∆Σ|Ngal
= σ20 +

∑
i

β2Ngal,i
σ2Πi

+

j ̸=i∑
i,j

ρΠi−Πj
σΠi

σΠj
. (5.31)

We visualise the dependence of ρ∆Σ−Πi
on R/R200c in Figure 5.11. By dividing ∆Σ

into quintiles of Πi we find a strong correlation for all parameters at R ≲ R200c and a

null correlation at R ≳ R200c. On small scales, our results show a positive correlation

for concentration and a negative correlation for {a1/2, T/U,Γ2dyn, Xoff}. We observe that

this trend holds for all (M, z) bins plotted for a benchmark bin of M200c ∈ [2 × 1014, 5 ×

1014)M⊙h−1 at z = 0.

The dependence of ∆Σ on secondary halo parameters qualitatively agrees with Xhakaj

et al. (2022) wherein they targeted a narrow mass bin, with residual mass dependency inside

the bin resampled so that mass follows the same distribution. In our work, we remove the

mass dependency with the KLLR method (Farahi et al., 2022a), which achieves the same

effect. We extend their results to mass and redshift bins probed by the optical surveys

and quantitatively show that the dependence of ∆Σ on Π can be modeled as a multi-linear

equation.

5.6.3 Results: secondary halo parameter dependence of

Cov(∆Σ, lnNgal | M, z)

In Figure 5.12, we observe that the total covariance Cov(∆Σ, lnNgal|M, z), which remains

after removing the contribution of each secondary halo parameter βNgal,iCov(∆Σ,Πi|M, z),

is consistent with zero at a significance threshold of 0.05 in all bins. The errors on the total

covariance and individual contributions are computed using bootstrapping, and the errors

on the remaining term are determined by adding the errors of the total and individual terms
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in quadrature.

Based on our hypothesis in Equation (5.24), we conclude that the set of secondary halo

parameters Π, which are related to the formation time and the mass accretion history of the

halos, can fully explain the joint distribution of ∆Σ and lnNgal given the precision allowed

by current errors, limited by the resolution limit (see Appendix 5.9.2 for information on

particle resolution and measurement errors).

Since the joint distribution of ∆Σ and lnNgal follows a multivariate normal distribution,

P (∆Σ, lnNgal|M, z) is completely characterised by its mean relation and Cov(∆Σ, lnNgal |

M, z). It should be noted that the contribution of each individual parameter to the total

covariance, βNgal,iCov(∆Σ,Πi | M, z), is determined by the richness dependency captured by

the slope βNgal,i and the ∆Σ dependency represented by Cov(∆Σ,Πi | M, z). Qualitatively,

individual contributions to total covariance maintain their sign when both ∆Σ and Ngal con-

tributions preserve their sign. Consistent with the arguments of halo formation, Π correlates

with ∆Σ at small scales, as demonstrated in Figure 5.11 across all (M, z) bins. In most cases,

the dependence of the richness on secondary halo parameters also maintains its sign across

the (M, z) bins. In instances where we encounter a sign reversal in the lnNgal−cvir relation,

we speculate that it is due to a transient increase in concentration following a major merger.

Furthermore, the total and individual contributions to the covariance tend to decrease

in magnitude at smaller scales with increasing redshift. This decrease in covariance can be

attributed to two factors: the decreasing explanatory power of Π on richness, as indicated

by the decreasing values of R2 and Fpartial values in Table 5.8, and the decreasing absolute

value of Cov(∆Σ,Πi | M, z). This trend aligns with the idea that as halos have more time

to form, the secondary halo properties related to the mass accretion history become more

significant both in richness and in ∆Σ. As discussed in §5.4, the dependence of the mass

and redshift on covariance can be explained by the halo peak height, ν(M, z).

128



1.0 0.5 0.0 0.5 1.0

4

2

0

2
M200c [5 × 1013, 1 × 1014) M h 1

z=0.00

1.0 0.5 0.0 0.5 1.0

M200c [5 × 1013, 1 × 1014) M h 1

z=0.49

1.0 0.5 0.0 0.5 1.0

M200c [5 × 1013, 1 × 1014) M h 1

z=1.03

1.0 0.5 0.0 0.5 1.0

4

2

0

2
M200c [1 × 1014, 2 × 1014) M h 1

1.0 0.5 0.0 0.5 1.0

M200c [1 × 1014, 2 × 1014) M h 1

1.0 0.5 0.0 0.5 1.0

M200c [1 × 1014, 2 × 1014) M h 1

1.0 0.5 0.0 0.5 1.0

4

2

0

2
M200c [2 × 1014, 5 × 1014) M h 1

1.0 0.5 0.0 0.5 1.0

M200c [2 × 1014, 5 × 1014) M h 1

1.0 0.5 0.0 0.5 1.0

M200c [2 × 1014, 5 × 1014) M h 1

1.0 0.5 0.0 0.5 1.0

4

2

0

2
M200c [5 × 1014, 1 × 1015) M h 1

Total
T/|U|
c_vir
Halfmass_Scale
Acc_Rate_2*Tdyn
Xoff
Remaining

1.0 0.5 0.0 0.5 1.0

M200c [5 × 1014, 1 × 1015) M h 1

log10(R/R200c)

10
12

×
n,

iC
ov

(
,

|M
,z

) (
M

h/
M

pc
2 )

Figure 5.12: The dependence of Cov(∆Σ, lnNgal) on secondary halo parameters Π. The
solid blue line is the total covariance. The dashed lines of the lines represent the covariance
contribution coming from each of the secondary halo parameters modeled and governed by
Equation (5.24), where Cov(∆Σ,Π|M, z) comes from the dependence of ∆Σ and the slope βi
is the dependency of richness. The thick black dashed line is the remaining covariance after
removing the contribution from each Πi term; the errors are obtained by adding the total
and individual errors in quadrature without considering the correlations between terms. In
agreement with our hypothesis in Equation (5.24), the remaining term is consistent with null
at a p < 0.01 level for all bins.
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5.7 Discussions

Intrinsic vs. Extrinsic Covariance. Our study distinguishes between the intrinsic covari-

ance investigated here and that observed in empirical cluster data sets. This distinction arises

from systematic biases introduced by the cluster-finding algorithm (extrinsic component) and

the underlying physics governing halo formation (intrinsic component). Specifically, our anal-

ysis involves counting galaxies in 3D physical space. In contrast, a realistic cluster finder like

redMaPPer (Rykoff et al., 2014) employs a probabilistic assignment of galaxies to halos in

2D physical space, considering projected radii and redshift through color matching onto the

red sequence. Our study does not account for the observational systematics in redMaPPer

associated with uncertainties in photometric redshifts and projection effects (Rozo et al.,

2014; Farahi et al., 2016).

We find that the fractional amplitude of the bias and the scale dependence on the lensing

signal observed in our results (Fig. 5.9) are comparable to those reported by Farahi et al.

(2022b), who measured the covariance between the dark matter density and the galaxy

number count enclosed inside a halo after applying a realistic stellar mass cut. The enclosed

mass within a 3D radius using the IllustrisTNG100 simulation is anchored at z = 0.24. By

comparing our findings to those obtained using a realistic cluster finder such as redMaPPer,

we can unravel intrinsic and extrinsic contributions to the covariance between weak lensing

observables (Wu et al., 2022). This work provides more profound insights into the distinct

effects originating from the underlying physics and the methodology employed in cluster-

finding algorithms (Euclid Collaboration et al., 2019).

Projection Effects. A noteworthy distinction arises regarding the covariance observed in

our study compared to others examining clusters in projected space. Projection effects can

potentially introduce a sign flip in covariance, as they can positively bias both ∆Σ and

richness (Costanzi et al., 2019; Wu et al., 2022; Zhang & Annis, 2022; Zhang et al., 2023).
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Particularly, Zhang et al. (2023) showed that the lensing signal can be affected both at large

and small scales from the preferential alignment of halo orientation with the underlying

large-scale structure filament. Wu et al. (2022) detected a positive correlation between ∆Σ

and lnNgal employing Buzzard simulations, where ∆Σ were measured using dark matter

particles and galaxy counts were performed within a cylindrical region of depth 60 Mpc/h.

Their investigation revealed that the positive correlation primarily stems from galaxy number

counts beyond the halo’s virial radius and within 60 Mpc/h. On the other hand, using the

Dark Quest emulator and HOD-based galaxy catalogues (Nishimichi et al., 2019), Sunayama

et al. (2020) found negligible deviations from the mean relation at small scales and an overall

reduction in selection bias at large scales, approximately halving the effect observed by Wu

et al. (2022). Furthermore, Huang et al. (2022), using data from the Subaru Hyper Suprime-

Cam (HSC) survey, observed that the selection bias is most prominent in the vicinity of

the transition from the one-halo to the two-halo regime, as evidenced by the comparison

between the outer stellar mass proxy and richness. In a study based on the IllustrisTNG300

simulation, Zhang & Annis (2022) discovered a net positive correlation between the fitted

weak lensing mass and the projected 2D number count of the halo when conditioned on the

halo mass.

These results suggest that projection effects can potentially introduce a positively cor-

related bias to both ∆Σ and Ngal. We can estimate the impact of projection effects by

comparing the intrinsic covariance measured in our study with the total covariance observed

in the projected space. Consequently, our results serve two essential purposes: (i) elucidat-

ing the physical origins of the negative covariance and (ii) discerning intrinsic and extrinsic

components to determine the covariance attributable to projection effects accurately.

Radial Dependence. There is a notable difference in the reported amplitude and scale

dependence of covariance, which can be attributed to discrepancies in the employed halo

occupation density models. Notably, a distinctive scale dependence discrepancy exists be-
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tween simulation-based investigations of projection effects (Sunayama et al., 2020; Wu et al.,

2022; Salcedo et al., 2020) and observational data from the HSC (Huang et al., 2022). In

particular, the analysis of observational data reveals a prominent 1 Mpc bump, which could

be explained by uncertainties inherent in observations, such as miscentering effects. It is

crucial to gain insight into the sensitivity of the covariance with respect to the model pa-

rameters and the influence of selection effects. Understanding these factors is essential to

comprehensively interpret and account for the observed covariance in galaxy cluster survey

studies.

Accuracy vs. Precision. The statistical power of current and future surveys enables us

to determine the normalisation and slope of the mass–observable relations at a few percent

levels (e.g., ?Mantz et al., 2016b; Mulroy et al., 2019; To et al., 2021a). However, these

estimates are susceptible to known and unknown sources of systematic errors that inflate the

uncertainties. These uncertainties introduce biases and degrade the accuracy of the results.

Therefore, it is essential to carefully identify, quantify, and account for these systematic

effects to ensure robust and reliable measurements. In this work, we focus on studying one

of these sources of systematic uncertainty that was not considered previously.

5.8 Summary

This work reveals insights into the scale-dependent covariance between weak lensing observ-

ables and the physical properties of the halo. Using the MDPL2 N-body simulation with

galaxies painted using the SAGE semi-analytic model, we present several key findings:

• We observe that the intrinsic covariance between ∆Σ and lnNgal enclosed within a 3D

radius is negative at small scales and null at large scales in (lnM, z) ranges that cover

optical surveys.

• We model the shape of the covariance across all bins using an error function that is
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insensitive to the radius definition used to define halo boundaries.

• We find that the magnitude of the covariance is relatively insensitive to mass and

decreases considerably with increasing redshift. The (M, z) dependence of the shape

of the covariance can be encapsulated by the peak height parameter ν(M, z), which

suggests that the scale of the covariance is related to the formation history of halos.

• We show that incorporating the covariance into ⟨∆Σ|Ngal, z, rp⟩ using the first-order

expansion of the halo mass function yields about > 1% bias on ⟨∆Σ|Ngal, z, rp⟩ at

small scales, which implies a mass bias of > 2% in the halo mass estimates in most

bins.

• Our analysis reveals that the covariance between lnNgal and ∆Σ can be fully explained

by secondary halo parameters related to the history of the halo assembly. This finding

provides strong evidence that the non-zero covariance results from the variation in the

formation history of dark matter halos.

5.9 Appendix

5.9.1 Functional form

This section aims to characterize the shape of the covariance across mass and redshift

bins by fitting a template curve. The process involves several transformations and ad-

justments. First, a logarithmic transformation is applied to the radial bins, denoted as

x = log10(R/R200c). Then, a horizontal offset is introduced using a parameter γ, and scal-

ing is applied using a parameter τ . This results in a transformed variable x̃ = (x− γ)/τ .

To analyze the transformed data vector f(x̃), we test a set of functional forms presented

in Table 5.5. The normalization factors and coefficients associated with these functions are

chosen in such a way that f(x̃) approaches 1 at large scales, -1 at small scales, f ′(0) = 1 and
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Parameters
Priors

Full Reduced

τ Uniform (0, 10) Uniform (0, 10)
γ Uniform (-5, 5) Uniform (-5, 5)
g Uniform (-2, 1) Fixed at g = −1

10−12 × s Log-uniform (0.01, 10) Log-uniform (0.01, 10)

Table 5.4: Priors for the model. We introduce two sets of priors. In the ”full” models, the
parameters are given physical (i.e., τ > 0, s > 0) but non-informative uniform or log-uniform
priors. In the “reduced” case, assuming that Cov(∆Σ, lnNgal | M, z) = 0 at large scales, we
restrict g = −1 while assigning the same set of priors to all other parameters.

f(0) = 0.

A linear transformation of f(x̃) is then performed, given by s
(
f(x̃)+g

)
, where g represents

a vertical shift and s represents a scaling factor. The magnitude of s is comparable to the

magnitude of Cov(∆Σ, lnNgal | M, z), while the parameters γ, τ, g are of the order of unity.

These parameters, along with s, form the set of parameters denoted as θ ∈ {τ, γ, g, s}, which

define our best-fit model. If g = −1, it implies a zero covariance at large scales. We fit two

models: a full model with all parameters free, and a reduced model with g = −1, and the

rest of the parameters free. The priors for the parameters are specified in Table 5.4.

For the full model, we choose the error function as our fiducial functional form. The

estimated parameters for both the full and reduced models are presented in Table 5.6 and

Table 5.7, respectively. Appendix 5.9.4 provides robustness testing to determine the best-

fit model for our covariance. In Table 5.6, we compare the model parameters, χ2 p-value,

and the difference in Deviance Information Criterion (DIC) with our fiducial model using

the candidate functions listed in Table 5.5. The error function generally outperforms other

models when all parameters θ ∈ {τ, γ, g, s} are allowed to vary. Table 5.7 shows that the

DIC of the reduced error function (g = −1) marginally outperforms the full error function

in most cases, along with the posterior constraints of parameters shown in Figure 5.14.
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Error function (fiducial) s
(
erf(

√
π
2 x̃) + g

)
Logistics function s

(
2

1+ex̃
− 1 + g

)
Inverse tangent s

(
2
π arctan

(π
2 x̃
)
+ g
)

Algebraic second order s(x̃/(1 + x̃2)1/2 + g)

Table 5.5: Functional forms to model Cov(∆Σ, lnNgal). The radius in log-space x is trans-
formed to x̃ ≡ (x− γ)/τ by a horizontal offset γ and a characteristic scale τ . The functions
f(x̃) are normalized so that f(x̃) asymptotically goes to 1 at +∞, -1 at −∞, f(0) = 0
and f ′(0) = 1. Finally, we wrap f(x̃) by the function p(f(x̃)) ≡ s(f(x̃ + g) to include a
vertical offset g and amplitude parameter s. Together θ ∈ {τ, γ, g, s} form the set of model
parameters that allow us to make apple-to-apple comparisons between models.

5.9.2 Particle resolution and its impact on measurement errors

Using the 300 Cori Haswell node hours allocated by the NERSC to this project, we measured

∆Σ for ∼ 5000 clusters using dark matter particles downsampled by a factor of 10, in 20

log-spaced radial bins, at a projection depth of 200 h−1Mpc.

At a downsampling rate of 10, our effective dark matter particle resolution isMp ≈ 1.51×

1010h−1M⊙. The error in ∆Σ comes from three sources: (i) cosmic variance, (ii) Poisson

noise, and (iii) the intrinsic diversity of halos accounted for by secondary halo properties. In

§5.6.2, we presented the contribution to ∆Σ scatter from secondary halo properties. Here,

we compare the Poisson noise to the cosmic variance floor.

The cosmic variance introduces fluctuations in a 2D surface density fluctuation, given by

δ∆Σ(R) = Dpρmσ(R), (5.32)

where Dp = 200h−1Mpc is the projection depth, ρm(z) is the mean density of the universe

at that redshift, and σ(R) is the root mean squared matter density fluctuation, given by

σ2(R) =

∫
∆2(k)

(3j1(kR)

kR

)2
d ln k, (5.33)
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which is smoothed over an area of A = 4πR2, ∆2(k) is the matter power spectrum for a

wavenumber k, and j1 is the Bessel function of the first order.

Figure 5.13 shows the standard error of ∆Σ at a benchmark bin M200c ∈ [1 × 1014, 2 ×

1014)M⊙h−1 at z=0.00. At particle downsampling factors of 200, 100, and 10, the reduction

in error is consistent with the Poisson term of
√
N , indicating that at these sampling rates,

Poisson noise dominates. At our current downsampling rate of nth=10, the standard error is

just above the cosmic variance floor at small scales and drops below the cosmic variance floor

at large scales. In the ideal case that Poisson noise accounts for all the standard error, fully

sampling all particles (nth=1, red dotted line) will reduce the standard error by a factor

of
√
10, rendering it just below the cosmic variance floor at small scales. In the realistic

case that the standard error for ∆Σ contributes from both Poisson noise and the intrinsic

diversity of halo profiles, the fully sampled standard error should be on par with the cosmic

variance at small scales. A future study with fully sampled particles should yield greater

statistical constraints.

5.9.3 Derivation of second order expansion around the HMF

Following the formalism from Evrard et al. (2014) we derive Equation 5.18. The mean

observable-mass scaling relation is given by the expression

⟨si | lnM0⟩ = αi lnM0 + πi, (5.34)

for si ∈ {∆Σ, lnNgal} and pivot mass M0. We now denote the deviation from the mean

relation as δi, which from rearranging the terms in Equation (5.34) is given by δi =
(si−πi)

αi
−

lnM0. From Evrard et al. (2014) the expression for the observable scaling relation for generic

observables {a, b} that follow a log-linear scaling relation as in Equation (5.34) is given by

⟨δb | sa⟩ = xa
[
⟨lnM | sa⟩+ (γ1 + γ2δa)rabσlnM |a,1σlnM |b,1

]
, (5.35)
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Figure 5.13: The standard error of ∆Σ measurements tested on a benchmark bin of M200c ∈
[1 × 1014, 2 × 1014)M⊙h−1 at z=0. The standard error is estimated using the bootstrap
method for the N = 500 clusters with dark matter particles downsampled by a factor of 200,
100, and 10 (solid lines). At our current resolution (nth=10, solid green line), the standard
error is just above the cosmic variance at small scales and drops below the cosmic variance
at large scales. The solid black line is density fluctuation estimated from the cosmic variance
floor, as described in Equations (5.33) and (5.32). In the ideal case that Poisson noise
accounts for all the standard error, fully sampling all particles (nth = 1, red dotted line) will
reduce the standard error by a factor of

√
10, rendering it just below the cosmic variance

floor at small scales. In the realistic case that the standard error for ∆Σ contributes from
both Poisson noise and the intrinsic diversity of halo profiles, the fully sampled standard
error should be on par with the cosmic variance at small scales.

137



where γ1 and γ2 are the first and second order coefficients of the Taylor expansion of the

HMF around the pivot mass M0 and xa = (1 + γ2σ
2
lnM |a,1)

−1 the curvature term. The

subscript 1 denotes the scatter for the HMF expanded to first order.

We now convert the left hand side of Equation (5.35) from the deviation from the mean

scaling relation, δb, to the observable sb to arrive at the expression

⟨sb | sa⟩ =
[
αbxa⟨lnM | sa⟩+ lnM0 − πb

]
+[

αbxa(γ1 + γ2δa)rab
]
σlnM |a,1σlnM |b,1

=⟨b | a, z⟩fid+

Cov(a, b)×
[xa
α2a

(αaγ1 + γ2(sa − πa))
]
, (5.36)

where we made use of the fact Cov(a, b|M, z) = rabσa|Mσb|M and that the mass scat-

ter conditioned on the observable to first order is related to the observable scatter by

σlnM |a,1 = σa|M/αa, as shown in Equation 4 in Evrard et al. (2014) for the multivariate

case. Substituting lnNgal for a and ∆Σ for b yields the expression for Equation (5.18).

5.9.4 Robustness testing of covariance modeling

The shape posterior is sampled by a Monto Carlo Markov Chain (MCMC) using the emcee

package (Foreman-Mackey et al., 2013). We test for convergence by ensuring that the number

of steps exceeds 100tauto for all parameters, where tauto is the integrated autocorrelation time

as defined by Goodman & Weare (2010) and by ensuring that the convergence diagnostic

denoted with R (Gelman & Rubin, 1992) across all walkers satisfy R < 1.05.
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The posterior distribution according to Bayes theorem is given as:

p(θ|{yi}) ∝ p({yi}|θ)p(θ) (5.37)

=
∏
i

p(yi|θ)p(θ), (5.38)

where the second line assumes independent and identical distribution (i.i.d) for the data

vectors. We set uniform priors p(θ) shown in Table 5.4 with signs and ranges motivated by

the shape of the covariance (i.e., a negative γ and positive τ to offset f(x̃) to the left and a

positive s and negative g shifts the fitted curve downwards).

We measure the goodness of fit using the left-tail p-value for the χ2 with Ndata−Ndim =

20− 4 = 16 degrees of freedom. We compare between models by the Deviance Information

Criterion defined as

DIC = 2D(θ)−D(θ), (5.39)

where θ is the best-fit parameters, and D(θ) is defined as

D(θ) ≡ −2 log (P ({xi}|θ)). (5.40)

The performance between different functional forms (Table 5.5) is reported in Table 5.4.

The summary statistics for the posterior distribution of the covariance models are listed

in Table 5.6 as plotted against measurements in Figure 5.4. Among the functions, the error

function has either a better or comparable fit to all other functions in all other bins, as

indicated by their DIC parameters. In two bins M200c ∈ [5× 1014, 1× 1015) at z = 0.49 and

M200c ∈ [2×1014, 5×1015) at z = 1.03, the amplitude of the covariance is too small relative

to their errors for shape parameters to be well-constrained. The right tail p-value for χ2 is

p > 0.05 for all but one bin. For this reason, we take the full error function as the nominal

functional form.

139



For R ≥ Rvir or R ≥ R200c, we find the covariance to be null at p-values > 0.01. A

zero covariance at large scales implies g = −1 which coincides with the reduced model. We

compare the results of the error function of the reduced model to the full model and find their

performance varies from bin to bin as indicated by the DIC (Table 5.7). The posteriors of

the reduced model provide marginally tighter constraints than the full model (Figure 5.14).
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5.9.5 Modeling secondary properties

We describe the linear regression model for richness used in §5.6.1. The same methodology

is applied to ∆Σ in §5.6.2.

To model the expected natural logarithm of galaxy count (lnNgal), we decompose it

linearly using secondary halo parameters listed in Table 5.3, as shown in Equation (5.20). We

employ the least squares method for linear regression and examine parameter redundancies.

For over half of the bins, the parameters Γinst, Γ100Myr, Γ2dyn, and Γpeak exhibit collinearity,

with Variance Inflation Factors (VIF) exceeding 5. This outcome is expected, as these

quantities represent the same physical quantities smoothed over different time scales. As

for the reduced set of non-collinear parameters, their correlation coefficient are quantified in

Shin & Diemer (2023) using the Erebos simulation suite. To determine which parameters to

retain, we utilize the partial F-statistic.

Table 5.8 demonstrates the diminishing explanatory power of Π on the richness as seen

by the diminishing R2 and Fpartial. We consider the partial F-statistic serves as a heuristic

measure for the explanatory power of a variable, defined as:

Fpartial =
(RSSEreduced − RSSEfull)/p

RSSEfull/(n− k)
, (5.41)

where RSSE is the residual sum of squared errors for the reduced model after removing the

parameter in question and the full model containing Π ⊂ {a1/2, cvir, T/U,Γ2dyn, Xoff}, p is

the number of parameters removed from the full model which in our case is by construction

set to p = 1, n the number of data points, and k is the number of parameters in the full

backward model. This statistic can be shown to be proportional to the contribution to the

total R2 uniquely explained by this parameter alone.

A partial F-statistic test reveals that Γ2dyn exhibits the highest partial F-statistic of all

accretion rate parameters. Therefore, we retain this parameter in the reduced dimensional
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Mass & redshift
Error function (reduced): s

(
erf(

√
π
2 x̃)− 1

)
τ γ 1012 × s ∆DICerf−full p-value

[5× 1013, 1× 1014), z = 0.00 0.44+0.04
−0.04 −0.63+0.07

−0.09 2.66+0.56
−0.39 -5.2 0.06

[1× 1014, 2× 1014), z = 0.00 0.69+0.11
−0.09 −0.98+0.20

−0.27 4.102.311.19 4.5 0.96

[2× 1014, 5× 1014), z = 0.00 0.40+0.04
−0.03 −0.50+0.05

−0.06 1.90+0.26
−0.20 0.2 0.78

[5× 1014, 1× 1015), z = 0.00 0.29+0.04
−0.04 −0.40+0.04

−0.04 1.12+0.13
−0.11 6.1 0.005

[5× 1013, 1× 1014), z = 0.49 0.25+0.04
−0.03 −0.35+0.04

−0.04 0.79+0.08
−0.07 6.2 0.57

[1× 1014, 2× 1014), z = 0.49 0.38+0.14
−0.09 −0.48+0.12

−0.24 0.85+0.46
−0.19 -6.9 0.81

[2× 1014, 5× 1014), z = 0.49 0.25+0.21
−0.12 −0.55+0.14

−0.42 0.40+0.69
−0.13 NA 0.48

[5× 1014, 1× 1015), z = 0.49 0.61+0.27
−0.24 −0.90+0.49

−0.76 1.01+3.05
−0.60 -5.7 0.99

[5× 1013, 1× 1014), z = 1.03 0.20+0.06
−0.05 −0.35+0.06

−0.08 0.38+0.07
−0.06 -0.75 0.04

[1× 1014, 2× 1014), z = 1.03 0.22+0.06
−0.05 −0.42+0.06

−0.8 0.54+0.11
−0.09 3.9 0.3

[2× 1014, 5× 1014), z = 1.03 5.97+2.76
−3.01 −0.55+3.30

−2.99 0.02+0.02
−0.008 NA 0.15

Table 5.7: Summary statistics for Cov(∆Σ, Ngal | M, z) binned by R200c and M200c with
Ngal defined inside the halo R200c for the reduced error function model. Compared with
the full error function model, the performance of the reduced model varies from bin to bin
– using ∆DIC > 3 as a statistically significant result, it outperforms the full model in 5/9
overlapping bins, under-performs in 3/9 bins, and is comparable in 2 bins. The reduced
model is able to yield convergent chains for M200c ∈ [5 × 1014, 1 × 1015) at z = 0.49 and
M200c ∈ [2× 1014, 5× 1015) at z = 1.03 but with poor constraints on the parameters.
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Figure 5.14: Posterior distribution of shape parameters in a benchmark bin of M200c/Mvir ∈
[2 × 1014, 5 × 1014) at z = 0.00 under different binning schemes rp and Ngal models with
different halo boundaries Rhalo. The marginalized parameter constraints for the full model
closely overlap one another, and using the reduced model with g = −1 marginally improves
the posterior constraints. The plot was generated using pygtc (Bocquet & Carter, 2016).
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linear regression. The final model includes the following parameters Π ⊂

{a1/2, cvir, T/U,Γ2dyn, Xoff}. To ensure the robustness of the linear model across all bins,

we perform the following tests:

• Variance inflation factor (VIF) test with a cutoff of 5 to detect multicollinearity.

• Global F-statistic for the entire model with a significance level of 0.05 to examine the

correlation between the dependent variable and all parameters.

• Partial F-statistic for the entire parameter set to compare the relative importance of

each parameter. The Partial F-statistic measures the additional contribution of each

parameter to the multi-linear fit by estimating its corresponding R2 value.

• T-statistic for each parameter to verify that the coefficients significantly deviate from

zero at a significance level of 0.05.

• Breusch-Pagan Lagrange Multiplier test (Breusch & Pagan, 1979) at a significance level

of 0.05 to assess heteroscedasticity.

• Shapiro-Wilk test (Shapiro & Wilk, 1965) at a significance level of 0.05 to evaluate the

Gaussianity of residuals.

Across all bins, the reduced model successfully satisfies the first four tests. However, some

bins fail the Shapiro-Wilk test due to a negative skew and positive kurtosis. Nonetheless, a

visual examination of Q-Q plots indicates that the residuals predominantly follow a Gaussian

distribution, except for deviations at the tail ends. Q-Q plots, quantile-quantile plots, are

visualization tools used to compare the quantiles of a dataset to the quantiles of a theoretical

distribution, typically a normal distribution. They provide a visual assessment of how well

the data aligns with the assumed distribution.
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5.9.6 Derivation of P (∆Σ | Ngal,m, z)

We demonstrate that P (∆Σ | Ngal,M, z) can be modeled as a multi-linear relation of sec-

ondary halo parameters of mean and variance given by Equations (5.29) and (5.30).

From our assertion that P (∆Σ, Π⃗ | M, z) is a bivariate normal, the conditional probability

P (Πi | ∆Σ,M, z) in each radial bin can be expressed as a normal distribution with mean

⟨Πi|∆Σ,M, z⟩ = ⟨Πi|M, z⟩+ ρΠi−∆Σ
σΠi

σ∆Σ
(∆Σ− ⟨∆Σ|M, z⟩), (5.42)

and variance

σ2Πi|∆Σ = σ2Πi
(1− ρ2Πi−∆Σ). (5.43)

Here, we omit the radial dependence R/R200c for all variables and the conditional dependence

on (M, z) in the subscripts for ρ and σ (i.e., σ∆Σ should be explicitly written as σ∆Σ|M,z(R)).

For an independent random variable Z = X+Y with X and Y uncorrelated independent

random variables with distributions of the form ∼ N (u, σ2) and ∼ N (ν, τ2), respectively,

Z is another Gaussian of N (u + v, σ2 + τ2). In the case that X and Y are correlated, we

must introduce a cross term in the variance of probability distribution Z, namely P (Z) ∼

N (u+ v, σ2 + 2ρX−Y στ + τ2).

In our specific case, we want to model the distribution P (
∑

i βs,iΠi | ∆Σ,M, z) from

P (Πi | ∆Σ,M, z) and the correlation here refers to the correction between secondary halo

parameter ρΠi,Πj
.2 From the convolution theorem and the expressions for P (Πi | ∆Σ,M, z)

in Equations (5.42) and (5.43), we obtain the expression for P (lnNgal | ∆Σ,M, z) as a

2. In §5.6.2, we show through the Variance Inflation test that set of reduced model parameters Π ∈
{a1/2, cvir, T/U,Γ∗

2dyn, Xoff} are not multi-collinear.
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normal distribution with mean:

⟨lnNgal|∆Σ,M, z⟩ = ⟨lnNgal,0|∆Σ,M, z⟩+ (5.44)

σ∆Σ

(∑
i

βNgal,i

σΠi

ρ∆Σ−Πi
×(Πi − ⟨Πi|M, z⟩)

)
,

and variance

σ2lnNgal|∆Σ = σ2Ngal,0
+
∑
i

β2Ngal,i
σ2Πi

(1− ρ2∆Σ−Πi
)+ (5.45)

j ̸=i∑
i,j

ρΠi−Πj
σΠi

σΠj
.

We now want to derive the scaling relations for P (∆Σ | Ngal,M, z). From the Bayes theorem,

P (∆Σ | Ngal,M, z) = P (lnNgal | ∆Σ,M, z)
P (∆Σ | M, z)

P (lnNgal | M, z)
, (5.46)

wherein we assume that P (lnNgal|M, z) and P (∆Σ|M, z) can be modeled as normal distri-

butions, then P (∆Σ | Ngal,M, z) is another normal distribution with mean

⟨∆Σ|Ngal,M, z⟩ = ⟨∆Σ|Ngal,0,M, z⟩ (5.47)

+C1σ∆Σ

(∑
i

βNgal,i

σΠi

ρ∆Σ−Πi
× (Πi − ⟨Πi|M, z⟩)

)

and variance

σ2∆Σ| lnNgal
= σ20 + C2

∑
i

β2Ngal,i
σ2Πi

(1− ρ2∆Σ−Πi
)+ (5.48)

C3

j ̸=i∑
i,j

ρΠi−Πj
σΠi

σΠj
.

148



The parameter C1 for the mean relation can be explicitly derived if we know the posterior

distribution of P (lnNgal|M, z) and P (∆Σ|M, z) by the exercise of completing the squares

inside the exponents, i.e. by matching the quadratic, linear and constant terms inside the

exponents of normal distributions on the left and right hand sides of Equation (5.46).

The parameters C2, C3, and σ0 can be explicitly derived first by using the variance of

product law of correlated Gaussians, i.e. Var(Z ≡ XY ) = 1 + ρ2 after transforming X and

Y into unit variance, zero mean Gaussians with correlation efficient ρ, and then by using the

variance of quotient approximation

Var(X/Y) =
(µX
µY

)2[σ2R
µ2R

− 2
Cov(X,Y)

µXµY
+

σ2X
µ2Y

]
, (5.49)

where µX , σ2X are the mean and variances of P (∆Σ | M, z) and µY , σ
2
Y the mean and

variances of P (lnNgal | M, z) in our specific case.

The exact values of C1, C2, C3, and σ0 are not essential for this paper as we aim to derive

a general expression for P (∆Σ | Ngal,M, z) as a function of secondary halo parameters.
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CHAPTER 6

TOTAL COVARIANCE AND IMPACT ON OPTICAL SCALING

RELATIONS

6.1 Introduction

The previous chapter (Ch.5) measured the intrinsic covariance between cluster optical ob-

servables due to their formation history, parameterized by the secondary halo parameters

such as the mass accretion rate and halo concentration.

Comparing those results with previous works might suggest an incompatibility in the sign

of the covariance. Wu et al. (2022) measured the ratio of ∆Σ between an “observed” and

“expected” sample and found a ratio above unity at large scales using a semi-realistic cluster

finder. The study paints galaxies onto N-body dark matter halos using a semi-analytic model,

and identifies as cluster members galaxies within a cylinder centered around the halo center.

The height of the cylinder is extended to 60 Mpc to mimic projection effects of realistic

cluster finders that misidentify galaxies along the line of sight not gravitational bound to

the cluster. The “expected” sample conditions on the clusters true mass and samples their

observed richness, taken as the number count of galaxies within the cylinder. The“observed”

sample conditions on the cluster richness to match the “expected” data set. In the case that

richness is a non-biased proxy of mass the ratios of lensing signals from these samples would

be consistent with unity. A ratio above unity suggests a positive correlation between ∆Σ

and λ when conditioned on the true mass.

Other studies have likewise found a positive bias. Sunayama et al. (2020), using a different

simulation that paints galaxies using a halo occupation density (HOD) approach likewise

found a positive bias between the “expected” and “observed” lensing signal at large scales

when counting galaxies inside a cylinder. Comparing with Wu et al. (2022) the covariance

they found at small scales is close to null and the amplitude of the bias at large scales is
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around a factor of 2 smaller. Using real data collected by HSC, Huang et al. (2022) took

the ratio of lensing signals between those selected by redMaPPer (Rykoff et al., 2014) and

another proxy that measures the total stellar mass at an annulus of 50-100 kpc around the

brightest central galaxy. The latter, because of its smaller radii and the steep fall off of the

galaxy luminosity with radius, e.g as modeled by a Sersic profile (Sérsic, 1963), should not

be contaminated by projection effects. Huang et al. (2022) found an increase in the lensing

ratio at around 1 Mpc. These studies that take into account the projection effects of realistic

clusters yield a positive sign. Different among them are the radial dependence and amplitude

of the positive bias, which remains a open problem in the field.

The difference in signs between the work in the previous chapter and other studies that

measure the bias using a (semi)-realistic cluster finder suggests that the total covariance is

a sum of an intrinsic term due to the formation physics of cluster and extrinsic terms that

take into account observational biases as projection effects, miscentering, and photometric

redshift errors.

This work examines the impact of the total covariance and its impact on cluster scaling

relations using a mock catalog that mimics realistic cluster finders for the Vera Rubin Legacy

Survey of Space and Time (LSST) (Ivezić et al., 2019). It additionally explores the impact

that photometric redshift errors has on the posterior distribution of the model parameters

and compares the magnitude of observational systematics with different choices in modeling

the concentration-mass relation.

LSST is a stage-IV photometric survey that will cover 18,000 square degrees of the sky

and will reach redshifts up to z = 3. For cluster science it will detect over 1,000,000 group

sized or more massive objects in its 10 year run. The number count of cluster sized objects

is more than an order of magnitude more than Stage-III surveys as DES and the fainter

magnitude limits will push our sample to lower mass and higher redshift thresholds, allowing

us to construct a more complete and pure dataset. For this work we use the Dark Energy
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Science Collaboration Data Challenge 2 (DESC DC2) mock catalogs (Abolfathi et al., 2021)

accompanied with this survey to model the impact of observational systematics on cluster

scaling relations.

6.2 Theoretical Framework

This section introduces the modeling of the mass-richness relation, the cluster abundance

and the cluster lensing profiles.

6.2.1 Mass-richness relation

We forward model the conditional probability P (λ|m, z) as

P (λ|m, z) ∝ 1

λ
exp

− [lnλ− ⟨lnλ|m, z⟩]2
σ2
lnλ|m,z

 , (6.1)

in which the mean richness is modeled as

⟨lnλ|m, z⟩ = lnλ0 + µz log

(
1 + z

1 + z0

)
+ µm log10

(
m

m0

)
, (6.2)

and the conditional scatter is given by

σlnλ|m,z = σlnλ0 + σz log

(
1 + z

1 + z0

)
+ σm log10

(
m

m0

)
. (6.3)

The parameters lnλ0, µz, µm, σlnλ0 , σz and σm are taken as free parameters, and m0 and

z0 are fixed pivot values.
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6.2.2 Cluster number count

We will observe a set of cluster counts {N̂1≤k≤nb} in nb redshift-richness bins. For richness-

detected clusters, the redshift-richness cluster number density is given by the following for-

mula

d2N(λ, z)

dzdλ
= Ω

∫ +∞

mmin

dm
dn(m, z)

dm

d2V (z)

dzdΩ
Φ(λ,m, z)P (λ|m, z), (6.4)

where Ω is the survey sky area, Φ(λ,m, z) is the redMaPPer selection function and P (λ|m, z)

corresponds to the forward modeling of the mass-richness relation. The mass mmin corre-

spond to the limit mass accessible in the survey, generally set by the selection function. The

observable in the DC2 simulations is the cluster counts, so the predicted cluster count in the

i-th richness and j-th redshift bin is given by

Nij =

∫ zi+1

zi

dz

∫ λj+1

λj

dλ
d2N(λ, z)

dzdλ
. (6.5)

The selection function Φ associated to the cluster finder algorithm and survey strategy. It

reflects the fact that the cluster finder algorithm may miss a non-negligible fraction of true

clusters of galaxies that are in reality associated to halos, as well as detect “false” clusters

that are not related to underlying collapsed dark matter structures. In this work, we follow

the selection function parametrization from Aguena & Lima (2018). The selection function

is then given by

Φ(λ,m, z, zobs) =
c(m, z)

p(λ, zobs)
, (6.6)

where c(m, z) is the completeness and p(λ, zobs) is the purity. The selection function usually

accounts for the true halo redshift z and the observed redshift zobs of the detected galaxy

cluster, that may differ from the true halo redshift. Here, we consider z = zobs for sim-

plicity otherwise it should account for the conditional distribution P (zobs|z). We see that

completeness and purity answer two different questions about cluster detection: (i) contam-
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ination: does the cluster finder miss some halos, and if yes how many? (ii) purity: does

the cluster finder detect some ”false” clusters, and if yes how many? The selection function

can be accessed by running the cluster finder on simulations, by performing a geometrical

match between the detected clusters and the true dark matter halos. It then allows to dis-

entangle between the effects of purity and completeness. Here, because we are already using

simulations, we can directly measure these quantities.

6.2.3 Cluster weak lensing

The matter content around the cluster arise from its single contribution (1-halo term), but

also from the matter density from its neighboring halos (2-halo term). Thus, the full ∆Σ

profile is given by the sum of two contributions ∆Σ(R) = ∆Σ1h(R) +∆Σ2h(R). The 1-halo

term ∆Σ1h is computed using a given expression of single halo matter density field. The

2-halo term ∆Σ2h(R) denotes the contribution of the surrounding halos to the dark matter

density field, and writes (Oguri & Takada, 2011)

∆Σ2h(R) =
ρm(z)b(M, z)

(1 + z)3DA(z)
2

∫
ldl

(2π)
Pmm(kl, z)J2(lθ), (6.7)

where Pmm(k, z) is the linear matter power spectrum at the halo redshift z, θ is the separation

angle given by R/DA(z) and J2 is the second order Bessel function of the first kind. ρm(z)

is the physical matter density at redshift z, and b(M, z) is the halo bias at mass M and

redshift z. The scaled wave vector kl is given by kl = l/(DA(z)(1 + z)).

For a given sample of clusters within the i-redshift bin and the j-redshift bin, the total

predicted excess surface density profile is given by

∆Σij =
1

Nij

∫ zi+1

zi

dz

∫ λj+1

λj

dλ

∫ +∞

mmin

dm×

d2N(m, z)

dzdm
c(m, z)P (λ|m, z)∆Σ(R|m, z).

(6.8)
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In this paper, we estimate the excess surface density signal around an ensemble of clusters

rather than for individual clusters. This stacking strategy increases the signal-to-noise ratio

and is particularly interesting for low mass clusters, for which the strength of gravitational

lensing is weak. Moreover, the stacking strategy allows to average the shear signal over

the intrinsic triaxiality of individual dark matter halos within the stack, and to recover the

hypothesis of an effective spherical symmetry of the average cluster, since the halo properties

are fitted using a spherical model.

The maximum likelihood estimator of ∆Σ considering a stack of Nl clusters where each

one has Nls(R) background sources in the radial bin [R,R+∆R] can be written (Shirasaki

& Takada, 2018; Sheldon et al., 2004)

∆̂Σ+(R) =

Nl∑
l=1

Nls(R)∑
s=1

w̃lsΣ̂crit(zs, zl)ϵ
l,s
+ (6.9)

where the sum runs over all lens-source (l, s) pairs, located at the physical projected radius

interval [R,R+∆R[ from the lens l. Here, ϵ
l,s
+ = −[ϵ1 cos(2ϕs)+ϵ2 sin(2ϕs)] is the tangential

ellipticity of the galaxy s relative to the lens l, and ϕs is the polar angle of the galaxy relative

to its lens. The quantity Σ̂crit(zs, zl) is the effective critical surface mass density of the lens-

source system, averaged over the photometric redshift probability density function p(zs) of

the galaxy with index s, such as

Σ̂crit(zs, zl)
−1 =

∫ +∞

zl

dzs p(zs)Σcrit(zs, zl)
−1. (6.10)

The weights wls maximize the signal-to-noise ratio for this estimator (Sheldon et al., 2004)
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and can be written as the product wls = w
geo
ls w

shape
ls such as

w
geo
ls = ⟨Σ̂crit(zs, zl)⟩−2, (6.11)

w
shape
ls =

1

σ2rms(ϵ
+
s ) + σ2meas(ϵ

+
s )

. (6.12)

The quantity σrms(ϵ
+
s ) is the standard deviation of the tangential component of the ellipticity,

whereas σmeas(ϵ
+
s ) denotes the error on shape measurement. In the ideal case where galaxy

redshifts and shapes are perfectly known, these weights reduce to w
geo
ls = (Σcrit(zs, zl))

−2

and w
shape
ls = 1/σ2rms(ϵ

+
s ). The weights w̃ls are defined with respect to wls such that they

are normalized to 1 in each radial bin.

6.3 Covariance between Optical Observables

One relatively unexplored category of cluster systematics is the covariance between different

cluster properties. In the regime of weak lensing for optically selected clusters, this would be

the covariance between the two cluster observables — tangential shear and richness — left

unconstrained in previous cluster cosmology analyses as McClintock et al. (2019); Abbott

et al. (2020).

As first pointed out by Nord et al. (2008) and later shown in Evrard et al. (2014) and

Farahi et al. (2018), the property covariance can induce additive biases that cannot be

mitigated with increased sample size and reduced shape noise (Wu et al., 2019). To achieve

percent-level mass calibration of clusters, this new category of systematics must be accurately

and precisely quantified (Rozo et al., 2014). Here, we follow the prescription of Zhang

et al. (2024) in modeling and quantifying the systematic uncertainty induced by property

covariance of optically selected clusters.

We make a note of the difference between intrinsic and extrinsic covariance. In Zhang

et al. (2024) the authors measured the intrinsic covariance of cluster weak lensing observables
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by encircling galaxies within a 3D physical radius around the halo to measure the “true”

richnesses and directly measured the integrated dark matter density around the halo. This

“ground-truth”measured of the covariance is caused by the galaxy assembly bias, the degree

of which can be quantified by secondary halo properties (e.g. concentration, mass accretion

rate, kinetic-to-potential energy ratio) that relate to the formation history of the cluster-

sized halo. In this work we measure the total covariance (intrinsic + extrinsic) using the

mock redMaPPer cluster finder algorithm to determine the observed richness and the galaxy

shear as a proxy for the surface density. This realistic mock catalog introduces observational

systematic as blending of galaxies (Nourbakhsh et al., 2022), photometric redshift uncertainty

(Graham et al., 2017) and shape noise (Wu et al., 2019) for the galaxy shear signal and

projection and percolation effects (Costanzi et al., 2019), triaxiality bias (Zhang et al., 2023)

and a set of other observational and modeling systematics (McClintock et al., 2019) related

to a realistic cluster finder as redMaPPer.

Our goal is to model and corrected for the systematic uncertainty of ⟨∆Σ(R)⟩m selected

in richness-redshift stacks of m as described in (6.9) and a log-richness-mass mean relation

given by (6.2). Generally speaking, the observable-mass relation can be modeled according

to Evrard et al. (2014) as

s = π(z)+α lnM, (6.13)

where s is the vector of observables, π(z) a constant that captures the normalization and

redshift dependence, and α the partial slope with respect to the log-mass. In the case that

s is reduced to lnλ given the parameterization in Eqn. (6.2) we have

π(z)lnλ = −
(
µm lnM0 + µz ln

1 + z

1 + z0

)
(6.14)

αlnλ = µm. (6.15)

Similarly, we model ⟨∆Σ|M, z⟩ as a log-linear function of mass with a different different set
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of coefficients π(z)∆Σ and α∆Σ. We model the correlated scatter between these observables

as normally distributed with a covariance matrix

C =

 σ2
lnλ|M,z

rσlnλ|M,zσln γ|M,z

rσlnλ|M,zσln γ|M,z σ2
ln γ|M,z

,

 , (6.16)

To obtain the correlation term to the observable scaling relation we expand the halo mass

function (e.g. Tinker et al. (2008)) to first order:

dnhmf(M, z)

d lnM
≈ A(z) exp [−β1(M, z) lnM ] . (6.17)

From Bayes theorem we can derive an observable-scaling relation ⟨∆Σ|λ, z⟩ by marginalizing

over n(lnM) (see Evrard et al. (2014); Zhang et al. (2024) for derivation) to arrive at the

expression

⟨∆Σ | λ, z⟩1 = ⟨∆Σ | λ, z⟩0 +
β1
αlnλ

× Cov(∆Σ, lnλ|M, z), (6.18)

with αlnλ = µm the partial slope the of the richness-mass relation with respect to log-mass.

Incidentally, the conditional richness scatter σ2
lnλ|M,z

is related to the conditional mass

scatter σ2
lnM |λ,1 by the expression σ2

lnM |λ,1 = (σlnλ|M/αlnλ)
2 which can be derived from

Bayes theorem when expanding the halo mass function to first order. We then have

σ2lnM |λ,1 = µ−2
m σ2lnλ|M (6.19)

= µ−2
m

(
σlnλ0 + σz log

(
1 + z

1 + z0

)
+ σm log10

(
m

m0

))2

where we made use of (6.3) for the expression for σ2
lnλ|M .
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6.4 Dataset and Observables

The Data Challenge 2 (DC2), is a vast simulated astronomical dataset covering 440 deg2, that

is designed to help develop and test the pipeline and analysis tools of DESC for interpreting

the LSST data (see full details in Abolfathi et al. (2021)).

The workflow of the production in the Data Challenge 2 goes from the cosmological N-

body simulations up to the processing of simulated images with the LSST Science pipelines.

The production of this dataset represented a major effort of the DESC collaboration. Here,

we will not enter into the details but simply give an overview of the main steps. The workflow

is separated into four main components.

The first step contains the run of a cosmological N-body simulation, the modeling of

the galaxy population and the generation of the cosmoDC2 extra-galactic catalog. The

OuterRim N-body (gravity-only) simulation (Heitmann et al., 2019) is used as a starting

point of the Data Challenge 2, where past light-cones have been created from simulation

snapshots. The dark matter halos have then been identified by a friend-of-friend (FoF) halo

finder with linking length b = 0.168. Each halo has been assigned with a massMFoF (the sum

of the individual dark matter particles associated between them) and a spherical overdensity

mass M200c, that are provided in the cosmoDC2 extension called Skysim5000 (covering 5000

deg2, with an improved ray-tracing resolution by a factor of two in angular scale) obtained

by fitting a NFW profile to each dark matter particle distribution. The correspondence

between MFoF and M200c for cosmoDC2 halos is explored in Kovacs et al. (2022). To

maintain a high degree of physical realism, the several key properties of the galaxies were

drawn from the Galacticus semi-analytic model of galaxy formation (Benson, 2012), and

were painted onto dark matter halos using GalSampler (Hearin et al., 2020). The derived

galaxy properties include stellar mass, morphology, spectral energy distributions, broadband

filter magnitudes and host halo information. The weak lensing shears and convergences at

each galaxy position were estimated by a ray-tracing algorithm applied to the past light-cone
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particles in the simulation.

We now present the different catalogs that will be used in this paper, that differ by

their level of complexity in accounting for observational effects or by taking the inventory

of truth galaxies that are simulated on top of the N-body simulation. All the galaxies in

these catalogs will serve as sources to estimate the lensing signal around lenses. Then we

will present the lens catalogs, i.e., catalogs of galaxy clusters that were detected by different

cluster finding algorithm.

6.4.1 Source galaxies: cosmoDC2 extra-galactic catalog

The cosmoDC2 extra-galactic catalog (detailed in Korytov et al. (2019), tested and validated

in Kovacs et al. (2022)) contains ∼ 2.26 billions galaxies and takes the inventory of ∼ 550

properties of the ”true” galaxies (i.e. true magnitudes in the six LSST bands, true redshift,

true shapes, etc.) as well as the ray-tracing quantities per galaxy (shear and convergence) up

to a magnitude depth of 28 in the r-band and to redshift z ∼ 3. In that sense, it represents an

ideal LSST dataset (there is no extinction from dust, stars, etc., only galaxies). A first level

of complexity is added by computing the photometric redshifts of cosmoDC2 galaxies, using

existing photoz codes. Two photometric redshift codes have been run and the corresponding

estimated galaxy redshifts are stored in two add-on catalogs. The first is FlexZBoost1 (Izbicki

& Lee, 2017). FlexZBoost is an empirical technique that uses machine learning and learns

the mapping between the galaxy’s observed colors and the true cosmoDC2 redshift by using

a training dataset (for real data, it is done by matching a spectroscopic reference sample

with the photometric dataset, the former redshifts being much more precise). In cosmoDC2,

FlexZBoost was trained with a complete subsample of galaxies that extended to i < 25. The

second is a template-based algorithm called BPZ2 (Bayesian Photometric Redshifts, Beńıtez

1. The code is available here https://github.com/rizbicki/FlexCoDE.

2. The code is available here https://www.stsci.edu/∼dcoe/BPZ/.
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(2011)). The BPZ method is a template-fitting technique that formulates a likelihood of the

galaxy’s observed colors from a set of Spectral Energy Distribution (SED) models.

6.4.2 Lenses: redMaPPer cluster catalog

Galaxy clusters are the observational counterpart of dark matter halos and can be identified

by running cluster finder algorithms on the DC2 catalogs. The redMaPPer cluster finder

(Rykoff et al., 2014), which identifies galaxy clusters through the presence of red-sequence

galaxies, has been run on cosmoDC2. It has already been widely used on SDSS (Abdullah

et al., 2020) and DES (Abbott et al., 2020) data and as such it is one of the best-studied

cluster finders. The resulting cluster catalog provides the cluster positions, redshifts and

richnesses (calculated as the sum of membership probabilities of galaxies around the cluster)

along with the list of potential member galaxies. In addition to redMaPPer, other detection

methods have been applied to find clusters of galaxies in the cosmoDC2 data (WaZP Aguena

et al. (2021), AMICO Bellagamba et al. (2018)). A third catalog was built by geometrically

matching the redMaPPer detected clusters to the cosmoDC2 dark matter halo catalog. Then,

each redMaPPer cluster with richness λk is assigned with a “true” spherical overdensity mass

Mk. To perform this match between the two catalogs, we used the DESC code ClEvaR3

(Aguena et al., in prep.) that provides a user-friendly software to perform this task. The

catalog was obtained considering M200c > 1013M⊙ for the dark matter halo catalog and

λ > 5 for the redMaPPer cluster catalog.

6.4.3 The cosmoDC2 ray-tracing resolution

This attenuation has already been observed in the galaxy-galaxy lensing in DC2 (Korytov

et al., 2019) and is associated to the limited resolution of the ray tracing to compute the

lensing shear and convergence at each galaxy positions, as a consequence, we chose to use

3. The code is publicly available here https://github.com/LSSTDESC/ClEvaR.
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only the R > 1 Mpc region for each stack in the analysis. This is a conservative choice that

appears valid over the full mass and redshift range. However, this also means we cannot use

the innermost region that has the largest SNR values. DC2 is an impressive achievement

for the collaboration but this intrinsic limitation will limit the cluster-related forecasts of

what could be achieved with the LSST data. As we neglect the inner part of the profile

(corresponding to R < 1 Mpc), we do not account for the effect of miscentering and non-

weak lensing corrections (Mandelbaum et al., 2006).

6.5 Methodology

For the work presented in this section, we have considered the redshift bin edges [0.2, 0.3,

0.4, 0.5, 0.6, 0.7, 0.8, 1] and the richness bin edges [20, 35, 70, 100, 200]. For each cluster

in the redMaPPer catalog, we extract the source catalog in a circular aperture of R = 10

using the cosmoDC2 extra-galactic catalog (version 1.1.4) f Mpc. We first apply a the cut

r < 28 and i < 25 so that the effective number density of galaxies ngal ≈ 25 arcmin−2 to

be comparable to that will be used in the context of LSST after 5 years of data (Chang

et al., 2013). when considering true source redshift, background source selection is made

by considering zz > zl + 0.1. When using photometric redshift, we use simultaneously two

cuts baed on the photometric PDF, namely ⟨z⟩s > zl + 1 and P (zs > zl) > 0.9. For each

stack of Nl clusters, we consider the 10 log-spaced radial bins from 0.5 Mpc to 10 Mpc, and

we estimate the stacked lensing profile in Eq. (6.9). Similarly, we measure the abundance

of redMaPPer clusters in each bins. We discuss in the new section how do we compute

the errors on the cluster lensing profiles and cluster counts. To infer the scaling relation

parameters from the cluster observables, we draw the posterior distribution given by the

Bayes theorem

P(θ|data) = L(data|θ)|π(θ)
L(data) (6.20)
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where we consider the joint likelihood

L(N̂ , ∆̂Σ) = LN(N̂ |θ⃗)LWL(∆̂Σ|θ⃗) (6.21)

For the cluster count likelihood LN, we consider the multivariate Gaussian probability dis-

tribution with mean corresponding to the predicted cluster number counts, and a count

covariance matrix. The covariance accounts for the standard Poisson shot noise, associated

to the intrinsic variance of a counting experiment but also the Super-Sample Covariance

(SSC), denoting the contribution from the fluctuation of the matter density within and be-

yond the survey volume (Hu & Kravtsov, 2003). The count covariance can be estimated via

resampling techniques directly on the data (see e.g. Escoffier et al. (2016)), that allows to

capture all the statistical features in the observable; However, since the DC2 cluster sample

is relatively small, the noise in the measurement of the cluster count matrix is too important,

especially due to the effects of super-sample covariance on cluster counts. We rather model

the cluster count covariance as

Σij = N + ⟨b⟩i⟨b⟩jNiNjSij (6.22)

where ⟨b⟩i is the average halo bias in the i-th redshift-richness bin, Ni is the predicted cluster

count, and Sij is the matrix of the amplitudes of matter fluctuation in the respective redshift

bins (Lacasa et al., 2018).

LWL(∆̂Σ|θ⃗) denotes the stacked lensing profiles likelihood (refereed as LWLp) as inspired

from Park et al. (2023); Murata et al. (2019) and more recently in Sunayama et al. (2023).

Generally, the cluster lensing likelihood is taken to be a multivariate Gaussian probability

distribution. The covariance of lensing profiles originate from a variety of phenomena (Wu

et al., 2019; Gruen et al., 2015; McClintock et al., 2019) such as the intrinsic scatter in

the shape of background galaxies as well as the limited sample of clusters and background
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galaxies as the main source of scatter in the measure of ∆Σ. The more clusters there are in

the stack, the more background galaxies are used, and the less the variance of the stacked

profile will be. All the other contributions introduce more variance and correlations between

two radial bins, that drop rapidly by approximately an order of magnitude for large-scale

separations and slower for small-scale separations (Wu et al., 2019). First, contribution

from the uncorrelated large-scale structures, i.e., random structures along the line-of-sight

(in addition to the detected cluster) introduce a scatter in the measured convergence (then

the shear) when it is measured in angular bins (see Hoekstra (2003)). Another contribution

quantifies the impact of the stochastic variation of correlated halos around a cluster, associ-

ated to the variation of the 2-halo term, and depends on both matter power spectrum and

halo bias. Another contribution is associated to the level of scattering of the lensing profile

due to the variation in intrinsic halo properties, i.e. the variation of concentration at fixed

mass, the halo ellipticity and orientation. It may also denote the scatter in individual masses

of richness-selected clusters within the stack. We will consider bootstrap resampling as used

in Simet et al. (2017) and we will keep only the diagonal terms since the off-diagonal terms

are too noisy due to the low count statistics in each bins.

On the other side, we will also use the stacked lensing mass likelihood (refereed as LWLm),

by using inferred stacked masses from the stacked lensing profiles in each richness-redshift

bins. Doing so, we can test the impact using a two-step procedure (i.e. masses then scal-

ing parameters) for the inference of the scaling relation compared to using lensing profiles

directly. This method was used in Abbott et al. (2020). For each stack, we will infer the

corresponding effective mass of a halo whose lensing profile matches the stacked lensing pro-

file in the redshift-richness bin. We will use a Gaussian likelihood with covariance obtained

from bootstrap resampling on stacked lensing profiles. Then, we consider the stacked lensing

masses and error-bars {log10MWL+σ(log10MWL)}i (the error-bars are the dispersion of the

mass posteriors) in each redshift-richness bin in a joint likelihood, with prediction log10M
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where M is given by

Mij =
1

Nij

∫ zi+1

zi

dz

∫ λj+1

λj

dλ

∫ +∞

mmin

dm×

d2N(m, z)

dzdm
c(m, z)P (λ|m, z)m.

(6.23)

Then, we combine the weak lensing likelihood (either LWLm or LWLp) with the count like-

lihood, to constrain the scaling relation parameters.

For the estimation of the stacked lensing profiles, we use the CLMM4 code that provides

various tools for the halo modeling with respect to the spherical overdensity mass definition.

We use the Core-Cosmology Library (CCL, Chisari et al. (2019)) for the prediction of the

halo mass function, the partial comoving volume and the halo bias (in this work, we consider

their implementation of the Tinker et al. (2010) halo bias). To draw the posterior, we

use the implementation of the Monte Carlo Markov chains in the emcee(Foreman-Mackey

et al., 2013). The combination of all these codes was performed in the DESC CLCosmoSim

repository5. Sij quantities are computed using the PySSC package (Lacasa et al., 2018;

Gouyou Beauchamps et al., 2022). The code is available at https://github.com/fabienl

acasa/PySSC.

6.6 Results

This section test the impact of the covariance between weak lensing observables ∆Σ and lnλ

on the mass-observable scaling relation and inferred cosmology. While Zhang et al. (2024)

observed a radially dependent covariance at small scales R < R200c due to cluster formation

physics, because of the attenuation of the cluster lensing signal at scales due to the ray tracing

resolution we focus on the impact of the covariance at radial scales of R > 0.5 Mpc/h.

4. The GitHub repository is available at https://github.com/LSSTDESC/CLMM

5. The GitHub repository is available at https://github.com/LSSTDESC/CLCosmo_Sim
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Figure 6.1: Measurements of covariance binned in redshifts and combined in mass bins. We
perform the covariance measurements using true source galaxy redshifts marked in magenta,
BPZ (Beńıtez, 2011) marked in yellow and FlexZBoost (Izbicki & Lee, 2017) marked in blue.

To effectively condition on the mass we apply a Kernel Local Linear Regression (KLLR)

(Farahi et al., 2022a) to find the best fit local mean with mass as the independent variable

and ∆Σ(R) and lnλ as the dependent variables. Specifically, the residuals of ∆Σ and lnλ

are taken around their their local mean quantities ⟨∆Σ | M, z,R⟩ and ⟨lnλ | M, z⟩

res∆Σ(M, z,R) = ∆Σ− ⟨∆Σ | M, z,R⟩, (6.24)

reslnλ(M, z) = lnλ− ⟨lnλ | M, z⟩ (6.25)

and the covariance is measured around the local residuals, i.e.

Cov∆Σ,lnλ(M, z,R) = Cov(res∆Σ(M, z,R), reslnλ(M, z)). (6.26)

It is important to note that as we remove the residual dependence of the mean mass on the

covariance, the size of the covariance itself can still nonetheless be a function of (M,z),
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i.e. the scatter and correlation are modeled as σlnλ|M,z(M, z) and σ∆Σ|M,z(M, z) and

rlnλ−∆Σ|M,z(M, z). For this reason we test the covariance on small enough (M,z) bins that

the scatter can be considered homoskedastic, or in order words approximated as a constant.

In our benchmark tests we choose to bin the covariance either in mass or redshift but not

by both so as to retain enough statistical constraint especially for high mass, low redshift

bins with a low cluster count. We plot the covariance merged by mass and binned in redshift

in Fig. 6.1. Visually we recognize a slight positive covariance in most bins. The same

trend (not shown) can be said of a benchmark test for the covariance binned by richness and

merged between z ∈ [0.2, 0.7) in which we discard the redshifts between z ∈ [0.7, 1.0) as it

can be shown that the covariances at these redshifts are null. To explicitly demonstrate the

mass and redshift dependence we model the covariance as a constant bias across radii which

we denote bCov(M, z). The covariance trend with respect to mass and redshift is plotted

in Fig. 6.2. We demonstrate that in lower richness and redshift bins a slightly positive

covariance between cluster observables at large radial smalls, consistent with expectations

from projection effects (Sunayama et al., 2020; Wu et al., 2022; Huang et al., 2022).

The impact that the covariance has on the posterior constraints on the scaling relations

can be seen in Fig. 6.3. The fiducial scaling relations in the absence of the covariance

term is given by Eq. (6.2) & (6.3) using the true M200c of halos. Adding different levels

of complexity, we first introduce the addition of the covariance term (Eq. (6.18)) using

the true source galaxy redshift, and then test the effects of including both the covariance

term and photometric redshift errors using the BPZ (Beńıtez, 2011) and FlexZBoost (Izbicki

& Lee, 2017) models. We then compare the impact that the covariance term has with

different concentration-mass relations that do not include the covariance term. These include

models from Diemer & Kravtsov (2014); Bhattacharya et al. (2013); Prada et al. (2012);

Duffy et al. (2008); Bocquet et al. (2016). We find that including the covariance can shift

the posterior constraints of scaling relation parameters by as much as ∼ 1σ which is at
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Figure 6.2: The covariance (Eq. (6.26)) modeled as a constant bias term bCov(M, z) across
radius when binned by richness or redshift. The positive covariance at large scales at lower
redshift and richness bins is consistent with expectations from projection effects.
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Figure 6.3: Impact of modeling choices on scaling relations. The vertical black dashed
lines represent the best-fit parameters using fiducial scaling relations in the absence of the
covariance term and using the true masses of halos, given given by Eq. (6.2) & (6.3).
Adding different levels of complexity, in the first column we first introduce the addition of the
covariance term (Eq. (6.18)) using the true source galaxy redshift, and then test the effects
of including both the covariance term and photometric redshift errors using the FlexZBoost
(Izbicki & Lee, 2017) and BPZ (Beńıtez, 2011) and models in respectively the second and
third columns. In the remaining columns we compare the impact that the covariance term has
with different concentration-mass relations that do not include the covariance term. These
include models from Diemer & Kravtsov (2014); Bhattacharya et al. (2013); Prada et al.
(2012); Duffy et al. (2008); Bocquet et al. (2016). We find that introducing the covariance
term can have a ∼ 1σ on posterior constraints, at the same level of different choices of
concentration-mass relations, and that the photometric redshift error for source galaxies
makes a minimal impact on the scaling relations.

the same level of different choices of concentration-mass relations. We also observe that

introducing photometric redshift uncertainty to the source galaxy redshift minimally impacts

the posterior constraints.
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CHAPTER 7

FINAL REMARKS

This thesis work touches on multiple aspects of cluster cosmology in the optical regime. We

quantified several important systematics and explained their physical origins. The results of

these work not only are useful in understanding the formation, properties and correlations

between properties of clusters but the templates provided has been or will be directly applied

to current and next generation cluster surveys to achieve a < 1% accuracy in cluster mass

estimates. We summarize the main results of this thesis as follows:

• We demonstrate that cluster triaxiality can both impact the cluster lensing and richness-

mass relation. This bias is propagated as a 1 − 5% mass bias in the stacked lensing

signal. We find that cluster triaxiality and projection effects resolve the tension be-

tween DES Y1 inferred weak lensing mass at richnesses of λ > 30 but does not resolve

the “lensing is low” problem for λ ∈ [20, 30).

• We measure the correlation between the strength of triaxiality bias and those of two

other major systematic biases — miscentering and projection effects. Using multiple

proxies to characterize the strength of these systematics we find a null correlation in

all cases. This result allows us to construct triaxiality as an independent systematic.

We offer explanations as to why there is no correlation.

• We quantify the intrinsic covariance between the cluster lensing signal and “true” rich-

ness and find a negative covariance at small radial scales. We show that from a negative

log-linear relation between the scale of the covariance and the cluster peak height that

the intrinsic covariance is related to the formation history of the cluster.

• We explicitly demonstrate the physical origin of the intrinsic covariance by modeling

∆Σ and Ngal as multi-linear relations with respect to secondary halo parameters re-
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lating to the cluster’s assembly history. Our model shows that the secondary halo

parameters fully account for the negative covariance at large scales.

• We model the total covariance of cluster optical observables in a LSST mock catalog

that includes systematics as projection effects. We find a slight positive covariance at

large radial scales consistent with expectations from projection effects. The results of

this work will be folded into the LSST DESC cluster cosmology pipeline.
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Sérsic J. L., 1963, Boletin de la Asociacion Argentina de Astronomia La Plata Argentina, 6,

41

Shapiro S. S., Wilk M. B., 1965, Biometrika, 52, 591

Sheldon E. S., et al., 2004, , 127, 2544

Sheth R. K., Tormen G., 2002, , 329, 61

182

http://dx.doi.org/10.1002/asna.201211900
https://ui.adsabs.harvard.edu/abs/2013AN....334..691R
http://dx.doi.org/10.1086/300499
http://dx.doi.org/10.1103/PhysRevD.100.103524
http://dx.doi.org/10.1088/0004-637X/708/1/645
https://ui.adsabs.harvard.edu/abs/2010ApJ...708..645R
http://dx.doi.org/10.1093/mnras/stt2160
https://ui.adsabs.harvard.edu/abs/2014MNRAS.438...62R
http://dx.doi.org/10.1086/158003
https://ui.adsabs.harvard.edu/abs/1980ApJ...238..471R
http://dx.doi.org/10.1088/0004-637X/746/2/178
http://adsabs.harvard.edu/abs/2012ApJ...746..178R
http://dx.doi.org/10.1088/0004-637x/785/2/104
http://dx.doi.org/10.3847/0067-0049/224/1/1
http://adsabs.harvard.edu/abs/2016ApJS..224....1R
http://dx.doi.org/10.1093/mnras/stz2963
https://ui.adsabs.harvard.edu/abs/2020MNRAS.491.3061S
http://dx.doi.org/10.1093/mnras/stv2141
http://adsabs.harvard.edu/abs/2015MNRAS.454.2305S
http://dx.doi.org/10.1093/mnras/stx2666
https://ui.adsabs.harvard.edu/abs/2018MNRAS.474.2635S
http://dx.doi.org/10.1093/mnras/stz3425
https://ui.adsabs.harvard.edu/abs/2020MNRAS.492.4528S
https://ui.adsabs.harvard.edu/abs/1963BAAA....6...41S
https://ui.adsabs.harvard.edu/abs/1963BAAA....6...41S
http://dx.doi.org/10.1093/biomet/52.3-4.591
http://dx.doi.org/10.1086/383293
http://dx.doi.org/10.1046/j.1365-8711.2002.04950.x
https://ui.adsabs.harvard.edu/abs/2002MNRAS.329...61S


Shin T., Diemer B., 2023, MNRAS, 521, 5570

Shin T.-h., Clampitt J., Jain B., Bernstein G., Neil A., Rozo E., Rykoff E., 2018, , 475, 2421

Shirasaki M., Takada M., 2018, , 478, 4277

Simet M., McClintock T., Mandelbaum R., Rozo E., Rykoff E., Sheldon E., Wechsler R. H.,

2017, , 466, 3103

Soares-Santos M., et al., 2011, , 727, 45

Somerville R. S., Primack J. R., Faber S. M., 2001, , 320, 504

Song J., et al., 2012, , 761, 22

Springel V., et al., 2005, , 435, 629

Stanek R., Rasia E., Evrard A. E., Pearce F., Gazzola L., 2010, , 715, 1508

Stark D. V., McGaugh S. S., Swaters R. A., 2009, , 138, 392

Stott J. P., et al., 2012, , 422, 2213

Sunayama T., 2023, MNRAS, 521, 5064

Sunayama T., et al., 2020, MNRAS, 496, 4468

Sunayama T., et al., 2023, arXiv e-prints, p. arXiv:2309.13025

Tinker J., Kravtsov A. V., Klypin A., Abazajian K., Warren M., Yepes G., Gottlöber S.,
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