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ABSTRACT

The Standard Model of particle physics and the ΛCDM cosmological paradigm have been

largely successful in describing the current state of the universe and how this came to be.

And yet, we know both descriptions to be incomplete, as there exist a great number of

open questions left unaddressed by both. This thesis presents several model building efforts

towards resolving these shortcomings in our current picture of particle cosmology. After

reviewing the current state of affairs and the puzzles that persist, we turn to the events

of the early universe. Focusing on two exceptionally promising probes — primordial black

holes and their accompanying gravitational waves — we show how constraints on both can

lead to inferences about inflation, the subsequent expansion history, and more. Next, we

turn to the cosmological phase transitions which may have occurred during this period, with

particular emphasis on strongly first-order phase transitions accompanied by gravitational

wave signatures. We address a major source of uncertainty in predictions of such phase

transitions and present novel theoretical bounds on a model which is in principle capable

of making the electroweak phase transition strongly first-order. Finally, we examine three

mysteries of late-time cosmology, informed by present day observations and data. First, in

the context of dark matter model building, we present a new scheme of asymmetric reheating

which can reconcile dark sectors with light degrees of freedom with precision observables.

Next, in light of recent observations of supermassive black holes at surprisingly high redshifts,

we explore the possibility of supermassive black holes of a primordial origin. Finally, we

present a novel mechanism for generating the primordial magnetic fields required to seed the

cosmological magnetic fields observed today.
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CHAPTER 1

INTRODUCTION

“The universe is the poor man’s accelerator”. As the words of Zel’dovich would suggest, there

exists a rich symbiosis between theoretical particle physics and cosmology. On the one hand,

fundamental particle physics has been extremely successful in describing certain aspects of

the early universe, such as predicting the abundances of the light elements and matching

the observed spectrum of the cosmic microwave background. At the same time, the early

universe presents a valuable testing ground for particle physics, allowing us to probe energies

far beyond those accessible in terrestrial experiments.

Both the Standard Model of particle physics and the standard ΛCDM cosmological

paradigm are incomplete. The former lacks particle content to account for the dark matter

and dark energy, an explanation for the matter-antimatter asymmetry of the universe, a

mechanism for generating neutrino masses, and much more, in addition to experiencing a

number of fine-tuning “problems”. Meanwhile, the latter suffers from various observational

anomalies and cosmological tensions. There is good reason to believe that studying these

models in parallel could lead to extensions that address shortcomings in both.

This thesis presents several efforts in this direction. After reviewing the current state of

the Standard Model and the ΛCDM cosmological paradigm in Chapter 2, we turn to the

early universe, about which much remains to be understood. In Chapter 3, we highlight

two particularly promising early universe probes: primordial black holes and gravitational

waves. Primordial black holes form from the collapse of large density perturbations in the first

fractions of a second following the Big Bang, and so constitute relics of our universe’s earliest

epoch. They are often accompanied by distinctive gravitational wave signatures from their

formation, Hawking radiation, and mergers, which travel effectively unimpeded through the

early universe, offering a remarkably clean probe to be compared against measured spectra.

Primordial black holes and gravitational waves could therefore play a vital role in shedding
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light on inflation and the subsequent epochs of cosmological expansion. We begin in Sec. 3.1

by reviewing in great detail primordial black hole formation and the enhancement of small

scale power from features in the inflationary potential. Then in Sec. 3.2, we turn to primordial

black hole evaporation and show how constraints on gravitational waves can allow us to make

inferences about the expansion history of the universe. Analogously, in Sec. 3.3 we show how

they may be used to put constraints on extra-dimensional scenarios.

In Chapter 4, we turn to the cosmological phase transitions which occurred as the uni-

verse expanded and cooled. In particular, we will be interested in strongly first-order phase

transitions proceeding through the nucleation of true vacuum bubbles, since these are accom-

panied by gravitational wave signatures. This includes the electroweak phase transition in

certain extensions of the Standard Model, as well as potential first-order phase transitions in

dark sectors. A strongly first-order electroweak phase transition is an especially interesting

possibility since it is a prerequisite for electroweak baryogenesis — one of the leading candi-

dates for establishing the matter-antimatter asymmetry of the universe. Further, upcoming

space-based interferometers are expected to be sensitive to the gravitational wave signal from

a first-order electroweak phase transition with frequency peaking in the mHz range.

We begin in Sec. 4.1 by presenting an in-depth review of first-order cosmological phase

transitions, including the thermodynamics of the transition, the hydrodynamic description

of true vacuum bubbles expanding in a thermal plasma, and the production of gravitational

waves. Predictions of thermal phase transition parameters and thereby of gravitational wave

signals are plagued by large theoretical uncertainties. In Sec. 4.2, we address one source of

uncertainties — the resummation of the finite temperature effective potential. We discuss the

accuracy of different resummation prescriptions and point out conceptual issues with certain

approximations made in the literature. Finally in Sec. 4.3, we look at 2 Higgs doublet models,

which provide the low energy effective description of many well-motivated Standard Model

extensions, and further, may lead to a strongly first-order electroweak phase transition and
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possibly even a successful baryogenesis.

In Chapter 5, we examine several open questions in cosmology persisting today. Despite

constituting roughly 26% of the universe’s energy budget, the identity of the dark matter

remains elusive. There exist a number of compelling particle dark matter candidates, though

model building in dark sectors with light new species is constrained by precision measure-

ments of cosmological parameters. In Sec. 5.1 we highlight a novel scheme of asymmetric

reheating that can reconcile models featuring light dark species with observation. Another

puzzle arises in light of recent observations of the high-redshift universe revealing a surprising

number of supermassive black holes. These findings have challenged the standard picture of

supermassive black hole growth from stellar-mass black hole seeds through accretion at the

Eddington-limited rate. In light of this, in Sec. 5.2 we explore the possibility of supermassive

black holes of a primordial origin. Finally, the origin of the tiny primordial magnetic fields

which seed the cosmological magnetic fields present within galaxies and galaxy clusters today

poses yet another outstanding mystery. Very few processes in the early universe could have

given rise to magnetic fields with sufficiently long correlation lengths to survive the diffusive

processes of the hot primordial plasma. In Sec. 5.3, we propose a novel mechanism which

makes use of a population of charged, spinning black holes in the early universe.

It should be noted that some of the material in this thesis has either previously appeared

in publication or is awaiting publication by this author. In Table 1.1, we summarize this

author’s previous works and the sections where pieces of them may appear.
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Publication Ref. Appears in

Supermassive Primordial Black Holes From Inflation [24] Sec. 3.1.1,
Sec. 5.2

Primordial Gravitational Waves from Black Hole
Evaporation in Standard and Nonstandard Cosmologies [25] Sec. 3.2

Gravitational Waves from Primordial Black Hole
Evaporation with Large Extra Dimensions [26] Sec. 3.3

Improved Thermal Resummation for Multi-Field
Potentials — Sec. 4.2

New Tools for Dissecting the General 2HDM [27] Sec. 4.3

Asymmetric Reheating via Inverse Symmetry Breaking [28] Sec. 5.1

Cosmological Magnetic Fields from Primordial
Kerr-Newman Black Holes [29] Sec. 5.3

TT Deformed YM2 on General Backgrounds from a
Integral Transformation [30] —

Table 1.1: A listing of this author’s publications and the sections in which material from
these publications appears.
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CHAPTER 2

ΛCDM AND THE STANDARD MODEL

This thesis presents several examples of model building efforts to address extant mysteries

in particle physics and cosmology. In order to motivate these models, we first need to review

the current state of the standard cosmological paradigm and the Standard Model of particle

physics, in particular highlighting the unresolved questions they fail to satisfactorily address.

This is the goal of this chapter. We begin in Sec. 2.1 by reviewing the ΛCDM cosmological

model, as well as the abundance of observational data which has informed it. In Sec. 2.2, we

provide the same treatment for the Standard Model of particle physics. Finally in Sec. 2.3,

we highlight the shortcomings of both and indicate directions for future model building.

2.1 The Standard Cosmology

It is now essentially universally accepted that the universe expanded from an initial state

of incredibly high temperature and density — the Big Bang singularity1. The hot Big

Bang model was first put forth in late 1920s by Georges Lemaître, who inferred that the

recession of nearby galaxies could be explained by an expanding universe — a proposal

which was confirmed shortly afterwards by Edwin Hubble. Extrapolating this expansion

backwards in time, he proposed that at some finite time in the distant past, all mass in

the universe must have been concentrated in a single “primeval atom” [34, 35]. Unlike the

prevailing steady-state model of the day, the Big Bang model predicted that we should see a

uniform background of radiation, a remnant of our universe’s high-temperature past. With

the serendipitous discovery of the cosmic microwave background (CMB) in 1964 [36], this

1. Technically there need not have been a literal physical singularity at the origin of cosmic time. The Big
Bang theory is predicated on the equations of classical general relativity, which break down in the extreme
conditions of the very early universe. A true theory of quantum gravity is needed to extrapolate farther
backwards, and is generally expected to resolve this apparent singular behavior. Alternatives to the Big
Bang singularity include emergent universe scenarios [31], bouncing universes [32], and cyclic cosmologies
[33].
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prediction was confirmed and the Big Bang model became the leading candidate for our

universe’s origins.

The following decades saw a slow trickle of observational data confirming that a hot Big

Bang predicts the correct light element abundances [37, 38, 39, 40], further substantiating

the theory. These years also saw a mounting body of evidence for dark matter, which had

been postulated by Fritz Zwicky while studying the Coma cluster of galaxies some years

prior in 1933 [41]. With measurements of spiral galaxy rotation curves by Vera Rubin and

Kent Ford in the 1970s [42] and the observation of gravitational lensing by galaxy clusters in

the 1980s, it eventually came to be accepted that a large component of the universe’s energy

density exists in the form of dark matter. In 1992 the Cosmic Background Explorer (COBE)

measured the first deviations from isotropy, or anisotropies, in the CMB [13], believed to

be the seeds of structure. Computer simulations of structure formation revealed that these

seeds could conceivably have produced the large scale structure observed today provided

the dark matter was slow-moving with a small free streaming length — so-called cold dark

matter.

A few years later in 1998, observations of Type 1a supernovae suggested that the expan-

sion of space is actually accelerating [43, 44]. Following corroboration from several other

independent lines of evidence, it has become generally accepted that we are living in a pe-

riod of accelerated expansion driven by some hitherto unknown component dominating the

universe’s energy budget — dark energy. Perhaps the simplest explanation for dark energy

is that it is an intrinsic energy of the spacetime vacuum itself. Mathematically, this corre-

sponds to a positive value for the cosmological constant Λ. Thus, we come to a picture of

the universe as consisting predominantly of dark energy and cold dark matter components,

in addition to a subdominant fraction of ordinary baryonic matter — the ΛCDM model of

Big Bang cosmology.

The technological advances of the past three decades have ushered cosmology into a
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golden age, rich with data and observations. While increasingly precise measurements have

slightly shifted the values of certain cosmological parameters, the ΛCDM model has re-

mained steadfast as the leading cosmological paradigm. Nevertheless, many questions re-

main, and cosmological tensions between values of parameters measured in different ways2

have challenged the assumption of a homogeneous FLRW-based cosmology. In the follow-

ing subsections, we first recap the major sources of data in observational cosmology which

have culminated in the ΛCDM model, before reviewing the ΛCDM model. We defer our

discussion of the open questions unaddressed by this model to Sec. 2.3.

2.1.1 The Data

Here we briefly review the main sources of cosmological data which have informed our cur-

rent ΛCDM paradigm, including: the light element abundances, the cosmic microwave back-

ground, and large scale structure. See e.g. [47] for further discussion.

The Light Element Abundances

The lightest3 “elements” — hydrogen, deuterium, helium, and lithium — are now understood

to have formed through nuclear fusion in the hot, dense conditions of the first seconds to

minutes after the Big Bang in a process called Big Bang Nucleosynthesis (BBN). This time

period corresponds to a temperature range of T ∼ 1−0.01MeV, which is sufficiently energetic

for the strong force to bind together free protons and neutrons but not so energetic that the

resultant nucleons are immediately broken apart by high-energy photons.

Predictions for the light element abundances are calculable from a knowledge of Standard

Model physics and depend on the neutron-to-proton ratio as well as the baryon-to-photon

ratio. These calculations were originally presented, albeit erroneously, in the famous 1948

2. Notably, the infamous Hubble tension and S8 tension. See Refs. [45, 46] for a comprehensive overview.

3. Forming heavier elements requires stellar fusion, and so did not take place until much later — approx-
imately 50-200 Myr after the Big Bang.
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“Alpha-Beta-Gamma” paper [48]. Corrected calculations had been worked out by the 1960s

[37, 49]. These predictions have since been compared to measurements of the light ele-

ment abundances, in particular measurements of the primordial deuterium-to-hydrogen ratio

(2H/H)p = (2.569 ± 0.27) × 10−5, the primordial helium mass fraction Yp = 0.245 ± 0.003,

and the primordial lithium-to-hydrogen ratio (Li/H)p = (1.6 ± 0.3) × 10−10 [50]. With the

exception of the lithium abundance4, these measurements agree precisely with the predicted

values, robustly evincing Big Bang theory over the steady state model that had persisted

until the 1950s.

These measurements of the light element abundances are invaluable probes of the early

universe, informing us about the universe’s energy density and expansion rate as early as a

second after the Big Bang. They also give us insight into the various events that took place

around this time-frame, including neutrino decoupling (t ∼ 1 s, T ∼ 1MeV), proton-neutron

freeze-out (t ∼ 1 s, T ∼ 1MeV), free neutron decay (t ∼ 15min, T ∼ 30 keV), and more.

The Cosmic Microwave Background

The cosmic microwave background is arguably our most significant source of information

about the primordial universe, which is somewhat surprising as its 1965 discovery by Arno

Penzias and Robert Wilson was completely accidental [51]. Intuitively, the CMB is a snap-

shot of the universe as it appeared just ∼ 380, 000 years after the Big Bang. By this point,

the universe had cooled sufficiently (T ∼ 0.3 eV) for electrons and nucleons to combine into

neutral atoms (an event confusingly referred to as recombination), allowing photons to de-

couple from the thermal plasma. They have been free streaming through the universe ever

since, and today these redshifted photons constitute a thermal background of microwave

radiation.

4. The measured abundance of 7Li is roughly 3 times less than the predicted value — the so-called
cosmological lithium problem. It is unclear whether this discrepancy is due to astrophysical uncertainties
(namely the depletion rate of lithium in stars) or physics beyond the Standard Model.
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The spectrum of the CMB is almost that of a perfect blackbody, indicating that the

photons were in kinetic equilibrium at the time of decoupling. The average temperature

of this near-blackbody today is ⟨T ⟩ ≡ T0 = 2.72548 ± 0.00057K [52]. This temperature is

not completely uniform throughout space, however; the CMB features small variations in

temperature as a function of the angle on the sky,

δT

T

(
θ, ϕ
)
=
T (θ, ϕ)− ⟨T ⟩

⟨T ⟩ . (2.1)

These CMB anisotropies were first detected by the Cosmic Background Explorer (COBE)

satellite in 1992, and in the following years, the root mean square of these fluctuations,〈
(δT/T )2

〉1/2 ≃ 1.1 × 10−5, has been measured5 with increasing precision [53]. This mag-

nitude is consistent with what would be expected given our understanding of the physical

processes giving rise to these anisotropies, principal among them the Sachs-Wolfe effect [54].

Because we understand the physical origin of the CMB anisotropies, it is possible to

extract information about the universe’s geometry, composition, and expansion from mea-

surements of their distribution. In practice, one begins by constructing the temperature

angular power spectrum. The 2-point correlation function for the temperature fluctuation

at two points on the sky separated by an angle θ is

C(θ) =
1

T 2

〈
δT (n̂) δT (n̂′)

〉
, (2.2)

where n̂ and n̂′ are unit vectors denoting two directions on the sky with scalar product

n̂ · n̂′ = cos θ and the brackets signify an average performed over all such pairs of directions

with angular separation θ. By expanding the temperature anisotropies in a series of spherical

5. Note that this is the value after subtracting off the uninteresting dipole anisotropy due to the Doppler
shift caused by the peculiar velocity of the Earth relative to the cosmic rest frame.
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harmonics Yℓm(θ, ϕ),

δT

T

(
θ, ϕ
)
=

∞∑
ℓ=0

ℓ∑
m=−ℓ

aℓmYℓm(θ, ϕ) , (2.3)

and making use of the completeness and orthogonality of the spherical harmonics on the

unit sphere to define Cℓ via

⟨aℓm aℓ′m′⟩ = δℓ,ℓ′δm,−m′Cℓ , (2.4)

one can show that

C(θ) =
∞∑
ℓ=0

(2ℓ+ 1)

4π
Cℓ Pℓ(cos θ) , (2.5)

where Pℓ(x) are the Legendre polynomials. All of the information about the distribution of

CMB anisotropies is thus encoded in the Cℓ’s. The top panel of Fig. 2.1 shows these Cℓ’s

(technically, it shows Dℓ = T 2ℓ(ℓ+1)Cℓ/2π) as a function of multipole ℓ — the temperature

angular power spectrum.

The temperature anisotropies are not the only piece of information contained in the

CMB, though; the distribution of photon polarizations also encodes vital information about

the state of the universe at recombination. One can perform a similar treatment to obtain the

polarization angular power spectrum, whose Cℓ’s are denoted6 CEEℓ . Analogously, the Cℓ’s

of the temperature angular power spectrum are denoted CTTℓ . Because the temperature

and E-mode polarization signals are correlated, vital information is also contained in the

mixed temperature-polarization angular power spectrum, whose Cℓ’s are denoted CTEℓ . The

measured spectra of the CTEℓ ’s and the CEEℓ ’s are shown in the left and right bottom panels,

respectively, of Fig. 2.1.

By precisely measuring the locations and amplitudes of the peaks, as well as ratios

between peaks, one can extract cosmological parameters from these power spectra. For ex-

6. The CMB’s polarization tensor can be decomposed into curl-free E-modes and divergence-free B-
modes. The CEE

ℓ ’s correspond to the former.
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Figure 2.1: Black data points: Baseline high-ℓ Planck TT (top), TE (bottom left),
and EE (bottom right) binned power spectra [1]. Note that we plot Dℓ = T 2ℓ(ℓ +
1)Cℓ/2π. Red line: Power spectra generated using Planck best fit cosmological parame-
ters (TT,TE,EE+lowE+lensing+BAO 68% limits) [2]. Plots generated using the Cosmic
Linear Anisotropy Solving System (CLASS) [3, 4].

ample, the location of the first peak in the temperature angular power spectrum is quite

sensitive to curvature and has allowed us to establish that the universe is to great approxi-

mation spatially flat, |Ωκ| ≃ 0. The locations and amplitudes of the first few peaks, as well

the ratios between odd and even peaks, has allowed us to establish the physical density of

baryons Ωbh2 and dark matter Ωch2 to high accuracy. See Table 2.1 for values of these and

other cosmological parameters from Planck 2018 [2].
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Parameter Description Planck 2018 Values

Ωbh
2 Physical baryon density parameter 0.02242± 0.00014

Ωch
2 Physical dark matter density parameter 0.11933± 0.00091

100 θMC Angular size of sound horizon at recombination 1.04101± 0.00029

τ Optical depth to reionization 0.0561± 0.0071

ns Scalar spectral index 0.9665± 0.0038

ln
(
1010As

)
Amplitude of curvature perturbations at kp 3.047± 0.014

Table 2.1: Base ΛCDM parameters fitted from Planck CMB TT,TE,EE+lowE power spectra
in combination with lensing reconstruction and baryon acoustic oscillation (BAO) measure-
ments [2]. Other cosmological parameters can be derived from this independent set.

Large Scale Structure

While the universe began in a remarkably homogeneous, isotropic state, it did not remain

that way. Today, the universe remains homogeneous only on very large scales ≳ 100Mpc,

with smaller scales characterized by matter clumped together in galaxy clusters, galaxies,

and compact objects. In particular, baryonic matter today is largely concentrated in galaxies

while dark matter resides in halos surrounding these objects. Structure formation originates

in the simple fact that gravity has a tendency to collapse overdense regions, but the specifics

involved in the distribution of large scale structure today reflects a much more intricate

interplay between gravity, pressure, the universe’s expansion and evolution through various

epochs, and the properties of dark matter. As such, studying the present day distribution

of large scale structure can allow us insight into the universe’s expansion history and the

nature of dark matter.

Due to the effects of pressure, gravitational collapse is only efficient on scales larger than

the Jeans length λJ , which can be expressed in terms of the Hubble rate H as

λJ =

√
8π2

3

cs
H
, (2.6)

where cs is the sound speed. During radiation domination, the large value of the sound
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speed (squared) c2s = 1/3 prevented the gravitational collapse of photons and baryons on

scales smaller than the Hubble radius 1/H. Even after the onset of matter domination (t ∼

51, 000 yr), baryonic structures were prevented from collapsing due to their tight coupling

with photons, which persisted until recombination and photon decoupling (t ∼ 380, 000 yr).

It was only afterwards that the formation of gravitationally collapsed baryonic structures

could really begin. Dark matter, in contrast, decoupled from the photon thermal bath (if

it was ever in equilibrium to begin with) much earlier. This allowed dark matter to form

smaller structures at earlier times, the precise size of which depend on the dark matter mass

and its temperature at decoupling. Consequently, dark matter acted as a kind of scaffolding

for the growth of later structures. Observations of large scale structure suggest that dark

matter is cold, with velocities much smaller than the speed of light. Cold dark matter

forms structure hierarchically, with structures forming on smaller scales first and large scale

structures formed by the continuous merger of such objects.

The large scale structure observed today was seeded by tiny primordial density perturba-

tions δ in the early universe. In the Newtonian approximation (valid on subhorizon scales),

the evolution of these density perturbations in an expanding universe is governed by

δ̈ + 2Hδ̇ +
4πρ̄

M2
Pl

[(
λJ
λp

)2

− 1

]
δ = 0 , (2.7)

where ρ̄ is the background energy density and λp is the proper wavelength of the perturbation

mode under consideration. Note the critical presence of the “Hubble friction” term 2Hδ̇,

which stems from the expansion of the universe. Without this term, which slows the growth

of perturbations, modes with λp ≫ λJ would experience unphysical exponential growth.

Meanwhile, modes with λp ≪ λJ exhibit oscillatory rather than growing behavior.

More generally for a universe consisting of multiple components, the evolution of a density
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perturbation of component i evolves as

δ̈i + 2Hδ̇i +
4πρ̄

M2
Pl

(
λJ,i
λp

)2

δi −
4πρ̄

M2
Pl

∑
j

ϵjδj = 0 , (2.8)

where ϵj is the fractional contribution of component j to the total energy density. We have

already argued that for baryonic matter during radiation domination, λJ is too large for

modes to grow on subhorizon scales. For dark matter perturbations δDM however, which do

not have to contend with this pressure, the solution during radiation domination is7

δDM ≃ A+B ln t , (2.9)

indicating that subhorizon perturbations grow logarithmically slowly during radiation dom-

ination. During matter domination, on the other hand,

δDM ≃ At2/3 +Bt−1 . (2.10)

The first term (the “growing mode”) scales as δDM ∝ t2/3, and so density perturbations

grow much more quickly during matter domination. In fact, over the duration of matter

domination, these perturbations can increase by a factor ∼ 103, leading to the large scale

structure observed today. As for superhorizon perturbations, solving for their evolution

requires a full general relativistic treatment, so here we simply cite the surprising result that

δsuperhorizon ∼


t radiation domination ,

t2/3 matter domination .
(2.11)

That is, even during radiation domination, superhorizon perturbations grow rapidly — much

more rapidly than the logarithmic growth of subhorizon modes during radiation domination,

7. Throughout this subsection we work in Newtonian gauge.
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and even faster than their ∼ t2/3 growth during matter domination.

Finally, we briefly comment on experimental data. Information about the statistical dis-

tribution of our universe’s matter is encoded in the matter power spectrum, which describes

the density contrast δ as a function of scale. From the matter power spectrum, one can

extract cosmological parameters as well as information about the geometry of spacetime,

dark matter, dark energy, and our universe’s expansion history. One way to measure the

matter power spectrum is through galaxy surveys, or more generally redshift surveys like the

Sloan Digital Sky Survey (SDSS) [55, 56]. The matter power spectrum can also be inferred

from observations of the CMB, since this encodes information about the distribution of the

density perturbations that seeded structure formation. The matter power spectrum follows

in a predictable way from the spectrum of primordial density perturbations, whose large

scale behavior can be constrained by CMB measurements. In particular, the primordial

power spectrum has been measured to be approximately scale invariant on large scales, a

fact which we will return to when we discuss inflation.

2.1.2 ΛCDM Cosmology

The ΛCDM model is the simplest mathematical model of Big Bang cosmology that can

account for the wealth of data described in the previous section — that is, the CMB, the

observed light element abundances, large scale structure, and the late-time accelerated ex-

pansion of the universe. It emerged in the late 1990s amongst a confusion about the energy

makeup of the universe as a concordance cosmology. ΛCDM posits a universe of 3 major

components: 1) dark energy, in the form of the cosmological constant Λ; 2) cold dark matter

(CDM); and 3) ordinary baryonic matter. These account for 69%, 26%, and 5%, respec-

tively, of the universe’s energy budget [2]. Like essentially any modern cosmological theory,

ΛCDM presumes8 the cosmological principle — the notion that on sufficiently large scales,

8. Recent discoveries of mega-structures like the Big Ring [57], the Giant Arc [58], and the Hercules-
Corona Borealis Great Wall [59] challenge the statistical expectations from the cosmological principle.
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the universe’s matter distribution is isotropic (looks the same in all directions) and homoge-

neous (looks the same from all locations). This is a powerful starting principle, allowing for

a significant simplification of the mathematical formulas describing the universe’s evolution.

ΛCDM also takes general relativity as a starting point, as well as the observational fact that

the universe is expanding. Before detailing the model further, we quickly review the Fried-

mann equations and the evolution of various energy density components in an expanding

universe.

The Friedmann Equations

The most general spacetime metric consistent with a homogeneous, isotropic, expanding (or

contracting) universe is given by the Friedmann-Lemaître-Robertson-Walker (FLRW) metric

gµν corresponding to the line element ds2 = gµνdx
µdxν , with9

ds2 = −dt2 + a(t)2
[

dr2

1− κr2
+ r2

(
dθ2 + sin2 θdϕ2

)]
. (2.12)

The scale factor a(t) describes how space expands or contracts with time and the coefficient

κ can take values +1, 0, or −1 depending on whether spatial slices have positive, vanishing,

or negative curvature, respectively. The time evolution of the scale factor can be obtained by

solving the Friedmann equations, which are derived from the Einstein field equations with

FLRW metric and isotropic stress-energy tensor. Explicitly, the Einstein equations read

Gµν + Λgµν =
8π

M2
Pl

Tµν , (2.13)

where Gµν = Rµν − 1
2Rgµν is the Einstein tensor, defined in terms of the Ricci tensor Rµν

and Ricci scalar R = gµνRµν , Λ is the cosmological constant, MPl = 1.22× 1019 GeV is the

Planck mass, and Tµν is the stress-energy tensor. Taking the metric gµν to have the FLRW

9. I work with metric signature (−,+,+,+).
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form of Eq. (2.12), it follows that the non-vanishing components of the Ricci tensor are

R00 = −3
ä

a
, Rii =

(
ä

a
+ 2

ȧ2

a2
+ 2

κ

a2

)
gii , (2.14)

while the Ricci scalar is

R = 6

(
ä

a
+
ȧ2

a2
+

κ

a2

)
, (2.15)

where the overhead dots denote derivatives with respect to time10, “0” is the temporal index,

and “i ” are spatial indices. Meanwhile, the assumptions of isotropy and homogeneity demand

that the stress-energy tensor take the perfect fluid form,

Tµν = (ρ+ p)uµuν + pgµν , (2.16)

where ρ and p are the energy density and pressure, respectively, of the fluid, and uµ is

the fluid 4-velocity, which in the local rest frame of a given spacetime point takes the form

uµ = (1, 0, 0, 0). This implies that the non-vanishing components of the covariant form of

the stress-energy tensor are

T00 = ρ , Tii = pgii . (2.17)

Combining Eqs. (2.14), (2.15), and (2.17), the “00” component of the Einstein equation yields

the first Friedmann equation

(
ȧ

a

)2

+
κ

a2
=

8πρ

3M2
Pl

+
Λ

3
. (2.18)

10. The time coordinate t is called cosmic time, and it has the property that at each moment in time, the
universe has the same density everywhere. It is the homogeneity property of the universe that makes the
definition of such preferred time coordinate possible.
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Meanwhile, the “ii ” component, combined with the equation above, yields the second Fried-

mann equation
ä

a
= − 4π

3M2
Pl

(ρ+ 3p) +
Λ

3
. (2.19)

Going forward, we will set κ = 0, in accordance with the observational fact that our universe

seems to have negligible curvature.

Finally, we remark that by placing the cosmological constant on the right-hand side of

these equations, we take the view that it should be regarded as a source term, with stress-

energy TΛ
µν = −M2

Pl
8π Λgµν . This corresponds to a perfect fluid with energy density

ρΛ =
M2

Pl

8π
Λ , (2.20)

and pressure

pΛ = −ρΛ . (2.21)

Going forward, we will include the contribution from the cosmological constant as part of

the total stress-energy tensor, Tµν = T
µν
matter + T

µν
Λ .

The Energy Content

Conservation of the stress-energy tensor in an expanding universe corresponds to

∇µT
µν = ∂µT

µν + Γ
µ
µαT

αν + ΓνµαT
µα = 0 , (2.22)

where the second expression is the definition of the action of the covariant derivative ∇µ and

Γ
µ
αβ = 1

2g
µν
(
∂βgαν + ∂αgβν − ∂νgαβ

)
are the Christoffel symbols. Looking at the ν = 0

component and using the fact that Γ0ii = ȧ
agii and Γi0i = ȧ

a , we arrive at the equation
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governing the evolution of the energy density

ρ̇+ 3
ȧ

a
(ρ+ p) = 0 . (2.23)

Eqs. (2.18), (2.19), and (2.23) describe the dynamics of an evolving FLRW universe. In

order to use this system of equations, though, we need to know about the energy density and

pressure of the universe’s various components. For a particle species with energy E, mass

m, and internal degrees of freedom g in kinetic equilibrium at temperature T and chemical

potential µ, the energy density is given by

ρ =
g

2π2

∫ ∞

m
dE

E2
√
E2 −m2

e(E−µ)/T ∓ 1
, (2.24)

where the − (+) in the phase space distribution function is for bosons (fermions). A similar

expression yields the pressure

p =
g

6π2

∫ ∞

m
dE

(E2 −m2)3/2

e(E−µ)/T ∓ 1
. (2.25)

For highly relativistic particles with T ≫ m,µ, which we will refer to as radiation, these

integrals can be evaluated explicitly as

ρrad =


π2

30gT
4 (boson) ,

7
8
π2

30gT
4 (fermion) ,

(2.26)

and

prad =


π2

90gT
4 (boson) ,

7
8
π2

90gT
4 (fermion) .

(2.27)

This tells us that the equation of state w ≡ p/ρ for radiation is wrad = 1/3. Returning to
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Eq. (2.23), it also tells us that the energy density of a relativistic species evolves as

ρ̇rad + 4
ȧ

a
ρrad = 0 . (2.28)

This in turns implies that the quantity ρrada4 is conserved in time

∂

∂t
(ρrada

4) = 4ρrada
3ȧ+ ρ̇rada

4 = 4ρrada
3ȧ− 4ρrada

3ȧ = 0 . (2.29)

The energy density of radiation thus dilutes as four powers of the scale factor,

ρrad ∝ a−4 . (2.30)

Three of these can be understood as originating from geometric dilution while the last comes

from cosmological redshift. In cosmological contexts, particularly in the hot, dense conditions

of the early universe, it is useful to consider an entire ensemble of relativistic particle species.

The energy density of such an ensemble is given by summing over those of the components

ρ =
∑
i ρi, or

ρ =
π2

30
g⋆(T )T

4 . (2.31)

The quantity g⋆(T ), the so-called number of relativistic degrees of freedom, is defined as

g⋆(T ) =
∑
B

gB

(
TB
T

)4

+
7

8

∑
F

gF

(
TF
T

)4

, (2.32)

with T the temperature of the photon bath, Ti the temperature of a given species, B =

bosons, and F = fermions. For a bath in kinetic equilibrium (Ti = T for all i), g⋆ is

simply the sum of all bosonic particle degrees of freedom and all fermionic particle degrees

of freedom weighted by 7/8. Species not in equilibrium with the rest of the bath have a

diminished contribution to g⋆. As the universe expanded and cooled and different Standard
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Model species became now relativistic, the number of relativistic degrees of freedom evolved

from an initial value of g⋆(T ≫ 100GeV) = 106.75 to a final value today of g⋆(T0) ≃ 3.36.

Now consider the opposite limit T ≪ m of a highly non-relativistic species (henceforth

referred to as matter). In this case, the integrals for energy density and pressure evaluate to

ρm = gm5/2
(
T

2π

)3/2

e−(m−µ)/T , (2.33)

and

pm = gT 5/2
(m
2π

)3/2
e−(m−µ)/T . (2.34)

These can be written in terms of the number density of the non-relativistic species nm as

ρm = nmm and pm = nmT . Note that since m ≫ T for such a species, ρm ≫ pm and so

pressure can usually be neglected11 p = 0. Thus matter is characterized by the equation of

state wm = 0. From Eq. (2.23), the energy density of a non-relativistic species then evolves

as

ρ̇m + 3
ȧ

a
ρm = 0 . (2.35)

This implies the comoving energy density ρma3 is conserved in time

∂

∂t
(ρma

3) = 3ρma
2ȧ+ ρ̇ma

3 = 3ρma
2ȧ− 3ρma

2ȧ = 0 . (2.36)

Thus the energy density of matter dilutes as three powers of the scale factor,

ρm ∝ a−3 . (2.37)

This can be understood as simply a geometric effect as the volume of the universe expands.

Finally before moving on, we note that the result of considering Eq. (2.23) for arbitrary

11. Pressureless matter is also often referred to as dust.
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equation of state w is the general scaling

ρ ∝ a−3(1+w) . (2.38)

In particular for the case of the cosmological constant with wΛ = −1, which follows from

Eq. (2.21), this yields

ρΛ = constant . (2.39)

The fact that ρΛ remains constant even as spacetime expands and other components dilute

is why the cosmological constant is often considered to be a kind of vacuum energy.

The Expansion History

It is customary to recast the first Friedmann equation Eq. (2.18) in terms of the Hubble rate

H ≡ ȧ/a,

H2 =
8πρ

3M2
Pl

, (2.40)

which can be understood as the rate at which the universe is expanding. Note that the total

energy density appearing on the right-hand side includes contributions from radiation, non-

relativistic matter, and the cosmological constant: ρ = ρrad+ρm+ρΛ. It is often convenient

to parameterize the contributions from the various components ρi in terms of their fractional

energy densities today Ωi,0 ≡ ρi,0/ρcrit,0, where here the subscript “0” denotes present day

quantities. These are normalized with respect to the critical density today ρcrit,0, defined as

the value required in order that the universe be flat (κ = 0),

ρcrit,0 =
3M2

Pl

8π
H2
0 . (2.41)

The Hubble rate today H0 is called the Hubble constant, and its value remains hotly

contested. Determinations relying on early-time probes like the CMB (and thereby tacitly
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the assumption of standard ΛCDM cosmology) consistently predict values for H0 which are

markedly lower than those determined from local measurements of distances and redshifts.

For example, the early-time prediction from Planck 2018 at 68% confidence level (CL) is

H0 = 67.4 ± 0.5 km s−1Mpc−1 [2]. In contrast, the most recent local measurement from

the SH0ES team (R20) finds H0 = 73.2 ± 1.3 km s−1Mpc−1 at 68% CL [60]. The 4σ to 6σ

disagreement between early- and late-time measurements of H0 is the famous Hubble tension

— one of the most pressing crises in cosmology today.

In terms of ρcrit,0 and Ωi,0, the total energy density at arbitrary time can be written

ρ = ρcrit,0
(
Ωm,0 a

−3 + Ωrad,0 a
−4 + ΩΛ,0

)
, (2.42)

where we have also taken the value of the scale factor today to be a0 = 1. The present day

values of the fractional abundances are Ωm,0 = 0.315, Ωrad,0 = 9.26×10−5, and ΩΛ,0 = 0.685

[2]. Clearly our universe is dark energy dominated today, but before that it was matter

dominated and even farther back it was radiation dominated. To obtain the times when

these transitions took place and thereby the expansion history of the universe, we can solve

the Friedmann equation Eq. (2.18) with energy density Eq. (2.42),

H = H0

√
Ωm,0 a−3 + Ωrad,0 a

−4 + ΩΛ,0 . (2.43)

First to build some intuition, consider a single component universe. In the case of a

radiation dominated universe, ρ ∝ a−4 by Eq. (2.30), and so solving the Friedmann equation

yields a(t) ∝ t1/2 and therefore H = 1
2t . For a matter dominated universe, ρ ∝ a−3 by

Eq. (2.37), and so a(t) ∝ t2/3 and H = 2
3t . Finally for a dark energy dominated universe,

ρ = constant by Eq. (2.39), leading to a(t) = eHt. These rough scalings are reflected in

Fig. 2.2, which was obtained by numerically solving Eq. (2.43) for a(t). The point t0 marks
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Figure 2.2: Evolution of scale factor a(t) obtained by solving the Friedmann equations with
Ωm,0 = 0.315, Ωrad,0 = 9.26× 10−5, ΩΛ,0 = 0.685, and H0 = 67.4 km s−1Mpc−1.

the present day age of the universe, which was found by integrating

t0 =

∫ 1

0

da

a
√

Ωm,0 a−3 + Ωrad,0 a
−4 + ΩΛ,0

≃ 13.8Gyr , (2.44)

where we have assumed the Planck value of H0 = 67.4 km s−1Mpc−1. By using the solution

for a(t) and equating the appropriate energy components, we can also determine that the

transition between radiation and matter domination occurred around 51, 000 years after the

Big Bang and that the transition between matter and dark energy domination occurred

much more recently, around 1.0×1010 years after the Big Bang. Note that at present we are

currently living in an era of dark energy domination, with the negative pressure associated

with the cosmological constant driving an accelerating expansion rate.
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Initial Conditions

The ΛCDM model describes a flat universe which is both homogeneous and isotropic on

large scales, in accordance with observational data. Although it is not clear how these seem-

ingly fine-tuned initial conditions were established, perhaps the most commonly accepted

explanation12 is that at some point in the first fractions of a second following the Big Bang,

the universe underwent a period of exponential expansion — inflation [61, 62].

In order to drive this exponential expansion, the universe must have been dominated by

some substance with approximately constant energy density, corresponding to an equation

of state w ≈ −1. Note that the comoving cosmological horizon RH = (aH)−1 generically

evolves as

RH ∝ a(1+3w)/2 . (2.45)

During such a period with w = −1, it would shrink as RH ∝ a−1, such that at sufficiently

early times the entire observable universe could have been in causal contact. This would

explain the homogeneity of the observable universe, providing an explanation for why regions

which naively appear to have been casually disconnected nevertheless look the same and

thereby resolving the horizon problem. It also resolves the flatness problem; even if the

universe initially had some degree of curvature, this would dilute as |Ωκ| ∝ a−2 during

inflation, leading to the apparent flatness observed today.

There remains the question of how to obtain such an equation of state. We cannot

simply posit a cosmological constant-like term at early times, since the universe needs to

transition to radiation and eventually matter domination at later times. Instead, we need a

transient source that will eventually decay to reheat the thermal Standard Model bath. A

12. Inflation also provides a resolution to the “magnetic monopole problem”, or more generically the “heavy
relics problem”. Many grand unified theories predict the copious production of heavy, stable particles or
topological defects like magnetic monopoles which are not observed in nature. This could be explained by
a period of exponential expansion following their production, which would serve to drastically lower the
density of such objects.
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dynamical mechanism to generate such a term is to invoke a slowly evolving scalar field —

the inflaton ϕ. As the inflaton slowly rolls down its nearly flat potential, its approximately

constant energy density behaves as an effective cosmological constant. More quantitatively,

the energy density and pressure of a canonical scalar field ϕ can be arranged to obtain the

equation of state

wϕ =
pϕ
ρϕ

=
1
2 ϕ̇

2 − V (ϕ)
1
2 ϕ̇

2 + V (ϕ)
. (2.46)

The limit in which the scalar field is dominated by its potential rather than kinetic term

V ≫ 1
2 ϕ̇

2 then corresponds to a de Sitter-like period of exponential expansion with wϕ ≃ 1.

Inflation ends when the inflaton gathers speed and rolls down its potential, entering into a

series of oscillations about the minimum of its potential. Eventually when its decay rate is

of order the Hubble rate Γϕ ≃ H, the inflaton decays to reheat13 the universe.

During inflation, tiny quantum fluctuations — either from the inflaton itself or from any

other light spectator fields present — are stretched to superhorizon scales to become the clas-

sical density perturbations needed to seed the structure observed today. Most viable theories

of inflation predict a spectrum of primordial density perturbations which is approximately

scale invariant, consistent with large scale observations e.g. of the CMB [64, 65, 66, 67]. It

is customary to parameterize the scalar power spectrum of primordial perturbations PR(k)

as

PR(k) = As

(
k

kp

)ns−1

, (2.47)

where kp is the CMB pivot scale, As is the amplitude measured at the pivot scale, and ns

is the scalar spectral index. In particular, ns = 1 corresponds to a scale invariant power

spectrum. Presuming ΛCDM and taking the pivot scale as kp = 0.05Mpc−1, the Planck

collaboration reports As = (2.10 ± 0.10) × 10−9 and ns = 0.965 ± 0.004 [2]. The latter

13. Reheating can also occur in a non-perturbative manner during a stage of parameteric resonance called
preheating [63]. Intuitively, quantum fluctuations of fields coupled to the coherently oscillating classical infla-
ton condensate can experience resonant amplification, leading to an exponential growth in their occupation
numbers.
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is consistent with the nearly14 scale invariant spectrum predicted by inflation, though it

features slightly more power on large scales.

Though it does face some criticisms and alternatives have been proposed, for the most

part the inflationary paradigm is now widely accepted. However, its precise particle physics

realization remains an open question, with many viable single- and multi-field models having

been proposed. The qualitative and quantitative nature of the inflaton potential will likely

not be resolved until we are able to resolve the small scale features of the primordial power

spectrum, a topic which will be discussed in more detail in Chapter 3.

2.1.3 Summary

Since its emergence in the late 1990s, the ΛCDM model has remained steadfast as the

standard cosmological paradigm. It is a model of Big Bang cosmology predicated on the cos-

mological principle and general relativity, and describes a universe which is approximately

homogeneous and isotropic on large scales, spatially flat, and expanding. Mathematically,

such a spacetime is described by the FLRW metric with κ = 0. The universe’s expansion

history is captured by the scale factor a(t), whose time evolution is governed by the Fried-

mann equations. These in turn depend on the energy content of the universe. ΛCDM posits

that the universe today is dominated by the following three components,

• dark energy (Λ) with Ω0
Λ ≃ 0.689,

• cold dark matter with Ω0
CDM ≃ 0.262,

• ordinary baryonic matter with Ω0
b ≃ 0.049,

in addition to a sub-dominant radiation component. These constituents have traded off

in their relative contributions to the universe’s energy budget as it expanded and evolved.

14. The evolution of the inflaton leads to a departure from a strictly scale invariant spectrum, tilting ns
towards values slightly less than 1.
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Following the Big Bang, potentially a period of inflation, and the subsequent reheating,

the universe progressed through eras of radiation domination, matter domination, and now

finally dark energy domination (in the form of the cosmological constant Λ) — see Fig. 2.2.

The rate of expansion throughout these eras is described by the Hubble rate H, whose

present day value H0 = (67− 73) km s−1Mpc−1 remains a subject of intense debate. Based

on this picture, the age of the universe is estimated to be t0 ≃ 13.8Gyr.

Remarkably, standard ΛCDM requires as input only six independent parameters which

must be measured in order to completely specify the model; all other parameters can readily

by derived from these six. One particularly convenient set15 is listed in Table 2.1 below.

With just this minimal input, ΛCDM is able to precisely account for the light element

abundances, the observed patterns of the CMB, large scale structure, and the late-time

accelerated expansion of the universe. In spite of these numerous successes, the standard

ΛCDM cosmological paradigm leaves a number of open questions. Since these questions

share considerable overlap with the outstanding puzzles in particle physics, we defer their

discussion to Sec. 2.3, after we review the structure and status of the Standard Model.

2.2 The Standard Model of Particle Physics

In contrast to cosmology, which remained a data-starved field until only very recently, particle

physics was already enjoying its golden age in the 1900s. The birth of modern particle physics

can be traced back to J.J. Thomson’s discovery of the electron e− in 1897 [68]. Almost two

decades later, Rutherford’s famous scattering experiments established evidence of the proton

[69]. These were organized into the first modern picture of the atom by Bohr, who was able

to use his model to correctly predict the emission spectrum of hydrogen [70, 71]. Finally

with Chadwick’s 1932 discovery of the neutron [72], all of the ingredients necessary for our

15. Other popular choices include swapping out the angular size of the sound horizon at recombination
θMC for either the dark energy density Ω0

Λ or the age of the universe t0.
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classical picture of ordinary matter were in place.

Against this backdrop of experimental triumphs, the modern theory of quantum mechan-

ics was being born. The first steps were laid in 1900 when Max Planck introduced quanta in

order to explain blackbody radiation [73], a feat for which he received the Nobel prize not

even two decades later. In 1905, Einstein took this a step further and argued that quan-

tization was a property of the electromagnetic field itself, a fact which he used to explain

the photoelectric effect [74] (another Nobel prize-worthy endeavor). Finally in 1923, Comp-

ton’s scattering experiments revealed that light behaved as a particle in addition to a wave

[75], and thus the photon, now understood to be the mediator of the electromagnetic force,

was discovered. About a decade later, the Japanese physicist Yukawa proposed the first

tenable theory of the strong force, responsible for binding nucleons. Because this force was

short-ranged, he reasoned that it would have to be mediated by a massive particle, which he

named the meson (meaning “middle-weight”) [76].

A few years later saw the first steps towards a relativistic quantum mechanics, with the

introduction of the Klein-Gordon equation in 1926 and the Dirac equation in 1928 [77].

Curiously, the latter admitted both positive and negative energy solutions, now understood

to correspond to particles and antiparticles, respectively. The positron e+, the antiparticle

of the electron, was discovered by Anderson just four years later in 1931 [78]. The next few

years also saw the prediction of Pauli’s neutrino and the Fermi theory of β decay, but for the

most part the leptonic sector (i.e. the sector of particles which do not interact via the strong

force) was mostly under control by the 1950s, barring some confusion about neutrinos.

The hadronic sector, consisting of particles interacting via the strong force, was an-

other story. Yukawa’s meson (the pion) turned out not to be the only meson; in 1947, the

neutral kaon was discovered, followed by a menagerie of other mesons and baryons (which

are fermions, in contrast to the bosonic mesons). This onslaught of new hadronic parti-

cles was precipitated by the introduction of modern particle accelerators, starting with the
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Brookhaven Cosmotron in 1952. By the 1960s, hadronic physics was in a state of great

confusion — a whole zoo of particles had been discovered with seemingly no organizational

principle. Soon, though, Murray Gell-Mann discovered a way to arrange the mesons and

baryons into geometric patterns (octets and decuplets) which bespoke a deeper structure: the

Eightfold Way [79]. From this organizational principle came the quark model [80], wherein it

was understood that hadrons are composed of more fundamental constituents called quarks.

In particular, mesons are composed of quark-antiquark pairs and baryons are composed of

triplets of quarks. The fact that these quarks always appeared confined in hadrons was first

deeply mysterious, but was eventually understood once it was realized that the strong force

is described mathematically by the non-Abelian gauge theory SU(3)c [81].

The next decade came with another surprise: at high energies (and therefore at high

temperatures in the early universe), the electromagnetic and weak forces are actually unified

in a single electroweak theory described by the gauge group SU(2)L × U(1)Y . Glashow,

Salam, and Weinberg (GSW) were awarded the 1979 Nobel prize for their efforts in this

direction [82, 83, 84]. The theory was validated in 1983 with the discovery of the weak

charged W± and neutral Z bosons [85, 86, 87, 88], whose masses matched the prediction of

GSW. The spontaneous breaking of electroweak symmetry SU(2)L×U(1)Y → U(1)EM and

the generation of masses for the weak gauge bosons proceeds through the Higgs mechanism,

independently postulated by three different groups in 1964: Higgs [89]; Brout & Englert [90];

and Guralnik, Hagen, & Kibble [91]. This mechanism required the introduction of a new

field — a scalar SU(2) doublet which develops a vacuum expectation value. Though the

experimental confirmation of the Higgs mechanism via the observation of the Higgs boson,

a byproduct of the spontaneous symmetry breaking process, at the Large Hadron Collider

did not come until 2012 [92], it is safe to say that all the ingredients for the Standard Model

in its modern incarnation were already in place by the end of the century.

In Fig. 2.3, we present an overview of the fields of the Standard Model and their classi-
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Figure 2.3: An overview of the particle content of the Standard Model. The spin-1/2 fermions
constitute the matter sector and come in three generations. They include the quarks, which
are charged under the strong force and exist confined in hadrons, and the leptons, which are
not charged under SU(3). The spin-1 vector bosons constitute the gauge sector and include
photons (the mediators of the electromagnetic force), 8 gluons (the mediators of the strong
force), and the neutral Z and charged W± bosons (the mediators of the weak force). Finally,
the Higgs sector consists of the spin-0 Higgs boson, which plays a vital role in electroweak
symmetry breaking.

fications. There are three main classes of particles: 1) the gauge sector, consisting of the

spin-1 vector bosons mediating the fundamental forces; 2) the matter sector, consisting of

the spin-1/2 fermions which constitute ordinary matter; and 3) the Higgs sector, contain-

ing the spin-0 Higgs boson which is the byproduct of spontaneous symmetry breaking. We

will elucidate each of the above in the coming subsections, after first reviewing the gauge

structure of the Standard Model.

2.2.1 Gauge Invariance

Underlying the seemingly random collection of particles in Fig. 2.3 is a deep mathemati-

cal structure at the heart of the Standard Model — gauge symmetry. More precisely, the
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Standard Model is a spontaneously broken, non-Abelian gauge theory based on the group

SU(3)× SU(2)× U(1) . (2.48)

Under these symmetries, the spin-1/2 fermions of the matter sector and the spin-0 Higgs

transform in the fundamental representation while the spin-1 gauge bosons transform in the

adjoint. To unpack what all this means, we will review the concept of gauge symmetry in the

context of the simplest example: the Abelian group U(1). See for example Refs. [93, 94, 95]

for further review.

U(1) Gauge Symmetry

Suppose we would like to write down the Lagrangian L for a theory of fermions ψ(x) which

is invariant under U(1), the unitary group of degree 1. In general, the unitary group of

degree N , U(N), is the group of all unitary N × N matrices (with matrix multiplication

as the group operation). Recall that an invertible, complex square matrix U is said to be

unitary if U†U = UU† = I, where the dagger denotes the conjugate transpose and I is the

identity matrix. The group U(1) is then simply the group of all complex numbers with norm

1 (under multiplication). It is convenient to parameterize these group elements as eiα, with

α ∈ [0, 2π) labeling the elements of the group. Geometrically this corresponds to the circle,

with multiplication among the group elements corresponding to rotation.

In physics contexts, there are two options with regard to the parameter α: When α is a

constant independent of the position in spacetime, the symmetry is said to be global. On the

other hand when α(x) depends on spacetime position xµ, then the symmetry is said to be a

gauge symmetry. Such symmetries are also called local symmetries, since the transformation

depends on one’s local position in spacetime. In a sense, they are not symmetries at all, but

rather redundancies in description, indicating that certain states should be identified.
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Returning to the task at hand, the statement that our theory should be invariant under

a gauge U(1) means that it should be invariant under transformations of the fermion fields

of the form

ψ(x) → eiα(x)ψ(x) . (2.49)

It is immediately clear that mass terms like mψ̄ψ have this property, since the complex

phases cancel between the original and conjugate fields

mψ̄ψ → mψ̄ψ . (2.50)

Terms containing derivatives like the kinetic term ψ̄iγµ∂µψ ≡ ψ̄i/∂ψ, however, pose a prob-

lem, since

ψ̄i/∂ψ → ψ̄i/∂ψ − ψ̄γµψ∂µα . (2.51)

In order to write down a fermion kinetic term which is invariant, it is necessary to construct

a generalization of the derivative called the covariant derivative Dµ. To cancel off the

unwanted additional term, this should take the form

Dµ = ∂µ + igAµ , (2.52)

where we have introduced a new vector field Aµ defined by its transformation property

Aµ → Aµ − 1

g
∂µα . (2.53)
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One can show that the new kinetic term ψ̄i /Dψ is now invariant under U(1),

ψ̄i /Dψ = ψ̄iγµ(∂µ + igAµ)ψ →ψ̄e−iα(x)iγµ(∂µ + igAµ − i∂µα)e
iα(x)ψ

= ψ̄iγµ(∂µψ + igAµψ + iψ∂µα− iψ∂µα)

= ψ̄iγµ(∂µ + igAµ)ψ .

(2.54)

Note that postulating the existence of a local symmetry has forced us to introduce the gauge

boson Aµ. This new vector boson is not gauge invariant in and of itself, but from it we can

construct the gauge invariant field strength tensor

Fµν = ∂µAν − ∂νAµ . (2.55)

One can check that Fµν can equivalently be defined from the commutator of covariant

derivatives as

[Dµ, Dν ] = igFµν , (2.56)

where [A,B] = AB − BA. Note that Aµ is sometimes referred to as the connection, in

analogy with general relativity where the connection Γαµν is used to construct the covariant

derivative ∇µ. Just as the Riemann curvature tensor is constructed as the commutator of

covariant derivatives [∇µ,∇ν ] = Rµν , the fact that Fµν can be constructed out of covariant

derivatives suggests that it can also be thought of as a kind of curvature.

Returning to our task of constructing a locally U(1) invariant Lagrangian, note that Aµ

is a dynamical16 field in its own right, and so requires a kinetic term. This can be formulated

in a gauge-invariant manner using the newly introduced field strength tensor as

Lkin,gauge = −1

4
FµνF

µν . (2.57)

16. Technically, the “0” component A0 is not dynamical, since the antisymmetric nature of Fµν means
there is no way of constructing a gauge invariant kinetic term for it.
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Finally, note that there is one more gauge invariant Lorentz scalar we can construct out

of Fµν ; by contracting with it with the completely antisymmetric tensor ϵαβµν , we can

write L ⊃ ϵαβµνFαβFµν . Note that this term is a total derivative and so will not affect

the classical equations of motion, though it can have consequences in the quantum theory.

Moreover, it violates both parity P and time reversal T symmetries, and so we can neglect

it if we postulate these symmetries. Doing so, we arrive at the most general U(1) invariant

Lagrangian for ψ and Aµ,

L = −1

4
FµνF

µν + ψ̄i /Dψ −mψ̄ψ . (2.58)

Expanding out the covariant derivative, this can equivalently be written

L = −1

4
FµνF

µν + ψ̄i/∂ψ −mψ̄ψ − gψ̄γµψAµ . (2.59)

This latter form makes it clear that the covariant derivative in the fermion kinetic term

actually induces an interaction between fermions ψ and the gauge boson Aµ. Finally, we

comment that in the case the U(1) under consideration is electromagnetism U(1)EM, the

charge g is e, Aµ is interpreted as the photon, and Fµν encodes the E and B fields. In

particular, one can show that the components are

FEM
µν =



0 Ex Ey Ez

−Ex 0 −Bz By

−Ey Bz 0 −Bx
−Ez −By Bx 0


. (2.60)
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Gauge Fixing

You should be skeptical of my claim that for U(1)EM, Aµ should be regarded as the photon

after quantization, given that the photon has 2 degrees of freedom (2 physical polarizations)

while Aµ appears to be a 4-component object with 4 degrees of freedom. To resolve this

appearant discrepancy, first note that A0 has no kinetic term, owing to the antisymmetric

nature of Fµν , and so is not dynamical. Further, its value is completely fixed by the equation

of motion ∇·E⃗ = 0, and so it is not an independent degree of freedom at all. This eliminates

one degree of freedom, leaving us with an apparent 3.

The next thing to realize is that gauge symmetry means that there is great freedom in

defining the vector potential. For each Aµ, we could equivalently define Aµ → Aµ+ ∂µλ for

any function λ and arrive at the same Fµν and hence E⃗ and B⃗, which are the true physical17

gauge invariant quantities. This suggests that Aµ and Aµ + ∂µλ should be regarded as the

same physical state. More generally, any two states related by a gauge symmetry should be

identified. This is precisely what was meant earlier by the comment that gauge symmetry

should be regarded not as a true symmetry, but rather a redundancy in description.

The picture then is that the phase space of classical electromagnetism is larger than

the space of physical states. One can think of this phase space as being foliated by “gauge

orbits” — the equivalence class of states related by a gauge transformation. It suffices then

to pick a representative from each gauge orbit, a procedure known as fixing the gauge. In a

sense, picking a gauge is like18 picking a coordinate system, and one is free to pick the gauge

which makes the problem at hand simplest. Gauge fixing is implemented by introducing a

17. Even though Aµ cannot be directly measured, there is still a sense in which it is “physical”. This is
apparent in certain quantum mechanical phenomena like the Aharonov-Bohm effect [96], wherein electrically
charged particles are affected by the presence of a non-zero electromagnetic potential Aµ despite being in a
region where both E and B fields are zero.

18. And there is a sense in which picking a coordinate system is fixing the gauge! The gauge symmetry of
general relativity is diffeomorphism invariance: invariance under differentiable coordinate transformations.
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constraint on Aµ. Two popular choices include Lorentz gauge,

∂µA
µ = 0 , (2.61)

and Coulomb gauge

∇ · A⃗ = 0 . (2.62)

Lorentz gauge is nice because it is Lorentz invariant. However, this choice does not completely

fix the gauge, since we still have the freedom to make further gauge transformations provided

□λ ≡ ∂µ∂
µλ = 0. This residual gauge freedom can be fixed by choosing Coulomb gauge.

Note that fixing the gauge eliminates one more degree of freedom, leaving Aµ with just 2

physical degrees of freedom. We should identify these as the 2 physical polarizations of the

photon. Finally having fixed the gauge, the theory is ready19 for quantization. We refer the

interested reader to e.g. [93, 97] for a review of quantization in quantum field theory.

SU(N) Gauge Symmetry

The U(1) example discussed previously was particularly simple in part because this group

is Abelian. A general group G is said to be Abelian if the group operation is commutative.

In the present context, the group operation is matrix multiplication, and so a group will be

Abelian if the commutator of any two group elements is vanishing [G,G′] = 0 for all G,G′ ∈ G.

The group U(1) was trivially Abelian since its elements are just complex numbers, which of

course commute.

More generally in physics, many of the groups we are interested in are non-Abelian — that

is, their elements do not all commute. Examples include the rotation group in 3-dimensions

SO(3), the group SU(2) (which describes quantum spin, among other things), and the group

19. Technically, it is not necessary to gauge fix before quantization, though this is the more convenient
option for most purposes.
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SU(3) (which describes the strong force). These groups are also all20 examples of Lie groups

— continuous groups whose elements are described by one or more smooth parameters,

meaning that the group has the structure of a smooth manifold. Lie groups are generated

by Lie algebras, which represent infinitesimal transformations. We will first review these

concepts generically for the group G = SU(N), the group of N × N unitary matrices of

determinant 1. We will then specialize to SU(2) for concreteness.

The Lie algebra g = su(N) consists of generators T a, with a = 1, 2, ...dim(G) = (N2−1),

satisfying

[T a, T b] = ifabcT c , (2.63)

where fabc are the fully antisymmetric structure constants, which depend on the specific

algebra under consideration. Elements G of the group are obtained by exponentiating the

algebra generators as

G = exp (iθaT a) . (2.64)

Note that for SU(N), whose elements are unitary matrices with determinant 1, the generators

should be Hermitian (T = T †) and traceless (Tr [T ] = 0). It is also customary to normalize

the generators; for the fundamental (minimal) representation, the normalization is

Tr[T aT b] =
1

2
δab . (2.65)

In the context of gauge theories, for each algebra generator T a we introduce a gauge field

Aaµ, often conveniently packaged in the Lie algebra-valued gauge potential

Aµ = AaµT
a , (2.66)

which, like the generators, are traceless N×N Hermitian matrices. Analogously to the U(1)

20. The Abelian U(1) example discussed earlier is also a Lie group.
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case, we should also introduce a (Lie algebra-valued) field strength tensor

Fµν = ∂µAν − ∂νAµ − ig[Aµ, Aν ] . (2.67)

Equivalently, we can pull out the generator and write Fµν = F aµνT
a, where

F aµν = ∂µA
a
ν − ∂νA

a
µ + gfabcAbµA

c
ν . (2.68)

For the purposes of coupling to matter fields, we can also introduce the covariant derivative

Dµ, which acts on matter in the fundamental21 representation ψ as

Dµψ = ∂µψ − igT aAaµψ . (2.69)

As in the Abelian case, one should interpret Fµν as the curvature and so can22 construct it

as the commutator of covariant derivatives

[Dµ, Dν ] = −igFµν . (2.70)

Finally, when building Lagrangians for SU(N) invariant gauge theories, the form of Eq. (2.57)

should be generalized to

Lkin,gauge = −1

2
Tr[FµνFµν ] = −1

4
F aµνF

µν
a , (2.71)

where the trace is over the group indices and we have made use of the normalization of

Eq. (2.65).

21. All of the fermionic matter fields in the Standard Model transform in the fundamental representation
of the groups under which they are charged (and the trivial representation of the groups under which they
are not). The gauge fields, on the other hand, transform in the adjoint.

22. This is technically the more fundamental definition of Fµν , from which the explicit form shown in
Eq. (2.67) was derived.
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To see how this works explicitly, consider now SU(2) — the group of 2 × 2 unitary

matrices with determinant 1. A generic complex 2 × 2 matrix has 8 degrees of freedom,

but the unitary condition eliminates 4 of these and the condition that the determinant be 1

eliminates 1 more, leaving just 3 degrees of freedom. The algebra su(2) then has 3 generators,

a convenient choice for which is the Pauli matrices

σ1 =

0 1

1 0

 , σ2 =

0 −i

i 0

 , σ3 =

1 0

0 −1

 . (2.72)

These are indeed traceless and Hermitian, as required for generators of a special unitary

group. Additionally, they are involutary σ2i = I, have determinant detσi = −1, have

eigenvalues ±1, satisfy commutation relations

[σi, σj ] = 2iϵijkσk , (2.73)

and satisfy anticommutation relations

{σi, σj} = 2δijI . (2.74)

In keeping with the normalization of Eq. (2.65), we should rescale these by a factor 1/2 in

order to obtain the generators for SU(2), which we will denote by Si

Si =
σi
2
, i = 1, 2, 3 . (2.75)

These then generate the su(2) Lie algebra

[Si, Sj ] = iϵijkSk , (2.76)

and so we identify the totally antisymmetric epsilon tensor ϵijk as the structure constant for
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su(2). The elements of SU(2) are obtained from these generators via the exponential map

of Eq. (2.64). Letting θ⃗ = θ n̂, where n̂ has unit norm, be a real vector,

G ≡ exp
(
iθ⃗ · S⃗

)
= exp

(
i
θ

2
(n̂ · σ⃗)

)
= I+ i(θ/2)(n̂ · σ⃗)− (θ/2)2

2
(n̂ · σ⃗)2 − i(θ/2)3

3!
(n̂ · σ⃗)3 + ...

= I
(
1− (θ/2)2

2
+

(θ/2)4

4!
− ...

)
+ i(n̂ · σ⃗)

(
(θ/2)− (θ/2)3

3!
+

(θ/2)5

5!
+ ...

)
= I cos

θ

2
+ i(n̂ · σ⃗) sin θ

2
,

(2.77)

where we have used the fact that (n̂ · σ⃗)2 = I. Since any element G of SU(2) can be written

in this form, we verify that the Si indeed generate SU(2).

2.2.2 The Gauge Sector

Now that we have reviewed gauge symmetries, we are ready to discuss the gauge sector of

the Standard Model; that is, the sector containing the gauge bosons which mediate three23

of the four fundamental forces: the electromagnetic force, the strong force, and the weak

force. See Fig. 2.2 for a comparison of the relative strengths of these forces at the nuclear

scale.

The Strong Force

The Standard Model is a quantum field theory based on the gauge group of Eq. (2.48), or

more precisely

SU(3)c × SU(2)L × U(1)Y . (2.78)

23. The Standard Model does not account for gravity.
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Force Strength Mediator Spin Mass (GeV)

Strong 1 Gluon g 1 0

Electromagnetism 10−3 Photon γ 1 0

Weak 10−8 W±, Z 1 80.4, 91.2

Gravity 10−37 Graviton G 2 0

Table 2.2: Fundamental forces and their properties after electroweak symmetry breaking.
Relative strengths are evaluated at typical nuclear scales (∼ 10−15 m). Note that gravity is
not described by the Standard Model, but we include it nevertheless for comparison purposes.

The first factor SU(3)c is the symmetry group of the strong force, the theory of which is

called quantum chromodynamics and the charge of which is called color charge (hence the “c ”

subscript on SU(3)c). SU(3) has 8 generators, typically taken to be the Gell-Mann matrices

λa (or more accurately, λa/2), with a = 1...8. Correspondingly, it has 8 gauge bosons Gaµ —

the gluons, so-called because they mediate the force responsible for binding quarks together

in hadrons. The gluons are massless spin-1 bosons that carry color charge24, which follows

from the fact that they lie in the adjoint representation of SU(3)c. From these gluons, we

construct the gluon field strength tensor

Gaµν = ∂µG
a
ν − ∂νG

a
µ + gfabcGbµG

c
ν . (2.79)

This enters into the gluon kinetic term in the usual way, i.e. LQCD ⊃ −1
4G

a
µνG

µν
a . Note that

this kinetic term generates 3- and 4-gluon vertices, meaning that gluons interact amongst

themselves, in contrast to Abelian gauge bosons like photons. Gluon fields also couple to

matter in the form of quark fields in the fundamental of SU(3) by means of the covariant

derivative

Dµ = ∂µ − igs
λa

2
Gaµ , (2.80)

24. Specifically, they carry a color-anticolor pair.
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where gs is the coupling of the strong force. Finally, one can also construct out of the field

strength tensor a θ term

LQCD ⊃ θ
g2s

64π2
ϵµναβGaµνG

a
αβ , (2.81)

which manifestly violates CP symmetry. This term appears in the QCD Lagrangian so in

principle CP -violating strong interactions could occur, yet none has ever been experimentally

observed. This implies that θ must be very small, which requires unnatural fine-tuning —

the strong CP “problem”.

The Electroweak Force

The remaining factor in Eq. (2.78), SU(2)L × U(1)Y , is the symmetry group of the elec-

troweak sector. The three generators corresponding to the SU(2)L factor go by the name of

weak isospin T i = σi/2, where i = 1, 2, 3 and σi are the Pauli matrices of Eq. (2.72). The

subscript “L” refers to the fact that this SU(2) only acts on left chiral fermions, a fact which

will be discussed further in Sec. 2.2.3. There are three corresponding weak isospin gauge

bosons, denoted wiµ, which are massless. These enter into the field strength tensors W i
µν as

W i
µν = ∂µw

i
ν − ∂νw

i
µ + gϵijkw

j
µw

k
ν , (2.82)

where g is the SU(2)L coupling strength. The U(1)Y factor is generated by weak hypercharge

Y , with corresponding massless gauge boson Bµ and field strength tensor

Bµν = ∂µBν − ∂νBµ . (2.83)

Finally, the gauge covariant derivative for the electroweak sector reads

Dµ = ∂µ − ig′Y Bµ − igT iwiµ , (2.84)
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where g′ is the U(1)Y coupling constant.

This spectrum is clearly not what we observe. This is because at low energies elec-

troweak symmetry is spontaneously broken to U(1)EM via the Higgs mechanism, such that

the symmetry group of the Standard Model becomes

SU(3)c × U(1)EM . (2.85)

Electroweak symmetry breaking was an event which occurred at some point in our universe’s

history, likely around 200GeV (t ∼ 10−11 s) presuming only the known particle content of

the Standard Model. Only above this temperature in the hot conditions of the early universe

is the unified electroweak description applicable. We will discuss electroweak symmetry

breaking in further detail when we discuss the Higgs mechanism in Sec. 2.2.4. For now, we

simply comment on the gauge structure and spectrum post-symmetry breaking.

After symmetry breaking, three linear combinations of the original electroweak gauge

bosons (corresponding to the broken generators) become massive. These mass eigenstates

include the charged W±
µ bosons,

W±
µ =

1√
2

(
w1
µ ∓ iw2

µ

)
, (2.86)

and the neutral Zµ,

Zµ =
1√

g2 + g′ 2

(
gw3

µ − g′Bµ
)
. (2.87)

These have masses

mW =
gv

2
, (2.88)

and

mZ =

√
g2 + g′ 2 v

2
, (2.89)
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respectively, where v is the Higgs vacuum expectation value. The linear combination orthog-

onal to Zµ,

Aµ =
1√

g2 + g′ 2

(
g′w3

µ + gBµ

)
, (2.90)

remains massless and is identified with the mediator of the electromagnetic force — the

photon! In terms of these mass eigenstates, the electroweak gauge covariant derivative of

Eq. (2.84) becomes

Dµ = ∂µ−i
g√
2

(
T+W+

µ + T−W−
µ

)
−i 1√

g2 + g′ 2
(g2T 3−g′2Y )Zµ−i

gg′√
g2 + g′ 2

(T 3+Y )Aµ ,

(2.91)

where we have defined T± = (T 1± iT 2). By defining the fundamental unit of electric charge

e as

e =
gg′√
g2 + g′ 2

, (2.92)

and the electric charge quantum number Q as

Q = T 3 + Y , (2.93)

the last term in Eq. (2.91) becomes −ieQAµ, just as one would expect for the coupling to

the electromagnetic field.

2.2.3 The Matter Sector

We now turn to the matter content of the Standard Model — the collection of fermionic fields

which transform under representations of the Standard Model’s gauge group Eq. (2.78).
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Chirality

The first thing to note is that the Standard Model is a chiral theory, with left- and right-

handed fields transforming differently under the electroweak SU(2)L × U(1)Y . A field is

said to have left-handed (right-handed) chirality25 if it transforms in the left-handed (right-

handed) representation of the Poincaré group, the symmetry group of special relativity con-

sisting of spacetime translations, rotations, and boosts. A chiral theory is one in which there

is an asymmetry in the transformations of left- and right-handed fields.

Consider a 4-component Dirac spinor ψ consisting of 2-component spinors ψL and ψR as

ψ =

ψL
ψR

 . (2.94)

One can project out the left- and right-handed components using the projection operators

PL,R, defined as

PL =
1

2

(
I− γ5

)
, where γ5 =

−I 0

0 I

 , (2.95)

as

ψR = PRψ , ψL = PLψ . (2.96)

Using such a decomposition, one can show that fermion mass terms like mψ̄ψ have the

structure

mψ̄ψ = m
(
ψ̄RψL + ψ̄LψR

)
, (2.97)

which mixes left- and right-handed fields. Such mass terms are thus forbidden in chiral

theories like the Standard Model, where left- and right-handed fields transform under dif-

ferent representations of the gauge group. We will return to the subject of writing down

25. For massive particles, chirality is distinct from helicity, the projection of the particle’s spin onto the
direction of its momentum. For massless particles, these notions coincide.
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gauge-invariant mass terms for the fermions in the coming Sec. 2.2.4.

Leptons

There are two major classes of fundamental fermions, or spin-1/2 particles, in the Standard

Model, differentiated by their charge under SU(3)c. We first consider the leptons, which are

singlets 1 under SU(3)c and so do not interact via the strong force. There are 6 different

varieties organized into 3 generations — electron, muon, and tau — with each generation

consisting of a charged lepton {e−, µ−, τ−} and a neutrino {νe, νµ, ντ}. The left-handed

fields of each generation live in the fundamental representation of SU(2), 2, and so are

packaged into SU(2)L doublets LL

LiL =

νiL
ℓiL

 , (2.98)

with i = 1, 2, 3 labeling the generation. Explicitly, these are

LL =


νe,L
e−L

 ,

νµ,L
µ−L

 ,

ντ,L
τ−L


 . (2.99)

The right-handed fields ℓiR are all singlets under SU(2)L, and we denote them as the set

ℓR = {e−R, µ
−
R, τ

−
R } . (2.100)

Note that we have not included any right-handed neutrinos, which transform trivially under

the entire gauge group of the Standard Model. Since they do not interact via electromag-

netism, the weak force, or the strong force, they have never been detected and so are not

included in the mathematical description of the Standard Model. As for the rest of the lep-

tons, their charges under U(1)Y and U(1)EM are listed in Tables 2.3 and 2.4, respectively.
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Quarks

In contrast, the quark fields transform in the fundamental representation 3 of SU(3)c. They

come in 6 different “flavors”; up u, down d, charm c, strange s, top t, and bottom b; again

organized into 3 generations. The left-handed quark fields transform in the fundamental

representation 2 of SU(2)L and so sit in the doublets

QL =


uL
dL

 ,

cL
sL

 ,

tL
bL


 , (2.101)

while the right-handed quark fields qR are SU(2)L singlets

qR = {uR, dR, cR, sR, tR, bR} . (2.102)

See Tables 2.3 and 2.4, respectively, for their charges under U(1)Y and U(1)EM.

Summary

In the following two tables, we summarize the fermionic fields constituting the matter sector

and their charges under the symmetries of the Standard Model. In particular, Table 2.3

shows their representations under the full symmetry group SU(3)c×SU(2)L×U(1)Y while

Table 2.4 shows their quantum numbers under the weak isospin generator T 3, the weak

hypercharge generator Y , and the resultant electric charge Q = T 3 + Y , corresponding to

the unbroken U(1)EM after electroweak symmetry breaking.

2.2.4 The Higgs Mechanism

So far we have described gauge and fermion sectors populated by massless fields, which

clearly is not the particle spectrum we observe. The missing ingredient is the Higgs field H,
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Field SU(3)c SU(2)L U(1)Y

LL 1 2 −1/2

e−R 1 1 −1

QL 3 2 +1/6

uR 3 1 +2/3

dR 3 1 −1/3

Table 2.3: The fermionic fields of the Standard Model and their representations under the
full symmetry group SU(3)c × SU(2)L × U(1)Y .

Field T 3 Y Q

LL
νL +1/2 −1/2 0

e−L −1/2 −1/2 −1

e−R 0 −1 −1

QL
uL +1/2 +1/6 +2/3

dL −1/2 +1/6 −1/3

uR 0 +2/3 +2/3

dR 0 −1/3 −1/3

Table 2.4: The fermionic fields of the Standard Model and their quantum numbers corre-
sponding to the weak isospin generator T 3, the weak hypercharge generator Y , and their
resultant electric charge Q = T 3 + Y .

a spin-0 SU(2)L doublet with a charge assignment

H : (1,2,+1/2) , (2.103)

under the Standard Model’s SU(3)c × SU(2)L × U(1)Y symmetry group. We will parame-

terize the doublet in terms of the complex charged Higgs H+ and neutral Higgs H0 as

H =
1√
2

H+

H0

 . (2.104)
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This is the field responsible for effecting electroweak symmetry breaking, and by extension

generating mass terms for the fermions and massive gauge bosons in a gauge invariant way.

The Lagrangian of the Higgs sector is

LHiggs = −(DµH)†(DµH)− V (H) , (2.105)

where the covariant derivative is26

Dµ = ∂µ − igT iwiµ − ig′Y Bµ , (2.106)

and the potential is

V (H) = −µ2H†H + λ
(
H†H

)2
. (2.107)

Before discussing the Higgs mechanism for the electroweak sector, we will review it in the

simpler context of an Abelian U(1).

The Abelian Higgs Mechanism

We consider a complex scalar field ϕ charged under a local U(1) with Lagrangian

L = −1

4
FµνF

µν − (Dµϕ)
∗(Dµϕ)− V (ϕ) , (2.108)

where Dµ = ∂µ − igAµ is the covariant derivative and the potential is

V (ϕ) = −µ2ϕ∗ϕ+
λ

2
(ϕ∗ϕ)2 . (2.109)

26. Note that the generators and gauge bosons of SU(3)c do not appear since H transforms trivially under
this group.
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Extremizing the potential with respect to ϕ and ϕ∗, we arrive at the minimization condition

⟨|ϕ|⟩ =
√
µ2

λ
. (2.110)

Since we are free to choose this vacuum expectation value (vev) to lie along any direction

related by the U(1), let us choose the real direction and write

⟨ϕ⟩ =
√
µ2

λ
≡ v , (2.111)

where we have defined the vev v. Now consider expanding the potential in small fluctuations

about this new vacuum,

ϕ→ ϕ′ = ⟨ϕ⟩+ ϕ = v +
1√
2
(ϕ1 + iϕ2) , (2.112)

where we have parameterized the complex fluctuation as ϕ = 1√
2
(ϕ1+ iϕ2). Upon expanding

the potential, we find

V = −µ
4

2λ
+ µ2ϕ21 +

√
µ2λ

2
ϕ1(ϕ

2
1 + ϕ22) +

λ

8
(ϕ21 + ϕ22)

2 . (2.113)

The main term of interest is the second, which tells us that we have generated a mass m1

for ϕ1

m1 =
√
2µ . (2.114)

This real massive remnant of spontaneous symmetry breaking will be the analog of the

Higgs boson when we turn to the non-Abelian electroweak case. The remaining ϕ2 does not

acquire a mass and is identified as the massless Goldstone boson, which can be thought of as

an excitation of the field in the direction of the broken symmetry generator. Finally, note

that we have also generated cubic and quartic interaction terms.
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We should also expand the kinetic term for ϕ in small fluctuations about the new vacuum.

Doing so, we find

−|Dµϕ|2 =− 1

2

(
∂µϕ1

)2 − 1

2

(
∂µϕ2

)2
+
√
2gvAµ∂

µϕ2 − g2v2AµA
µ

− g
(
ϕ1∂µϕ2 + ϕ2∂µϕ1

)
Aµ − g2

2

(
ϕ21 + ϕ22

)
AµA

µ −
√
2g2vϕ1AµA

µ .

(2.115)

The first line consists of kinetic terms for ϕ1 and ϕ2, a mixing between Aµ and ϕ2, and a

mass term for Aµ while the second consists of cubic and quartic interaction terms. Note

that we can eliminate the ϕ-Aµ mixing term by making the gauge transformation

Aµ → A′
µ = Aµ +

1√
2gv

∂µϕ2 . (2.116)

The expanded kinetic term then becomes

−|Dµϕ|2 = −1

2

(
∂µϕ1

)2 − g2v2AµA
µ + interactions . (2.117)

Notice that the massless Goldstone ϕ2 no longer has a kinetic term, and so is not a dynamical

degree of freedom! We can now identify the mass term for the photon as −1
2m

2
AAµA

µ =

−g2v2AµAµ, indicating that Aµ has acquired a mass

mA =
√
2gv . (2.118)

This gauge choice that we have used to eliminate27 the unphysical Goldstone mode is called

unitary gauge and it is convenient for degree of freedom counting. Prior to spontaneous

symmetry breaking, we had a massless photon (2 polarization degrees of freedom) and a

complex scalar ϕ (2 degrees of freedom) for a total of 4 degrees of freedom. After, our

spectrum consists of a massive photon (3 polarization degrees of freedom) and a real scalar

27. It is sometimes said that the unphysical Goldstone mode is eaten to give the gauge boson a mass.

52



ϕ1 (1 degree of freedom), again for a total of 4 degrees of freedom. This is summarized in

Table 2.5. Note that we start and end with the same number of degrees of freedom, just

organized in a different way.

Degrees of freedom before SSB Degrees of freedom after SSB

Massless photon: 2 dof Massive photon: 3 dof
Complex scalar: 2 dof Real scalar: 1 dof

Total: 4 dof Total: 4 dof

Table 2.5: Distribution of degrees of freedom (dof) amongst the particles of the spectrum
before and after spontaneous symmetry breaking (SSB) in the Abelian Higgs example.

Electroweak Symmetry Breaking

This mechanism wherein spontaneous symmetry breaking generates a mass for the gauge

boson in a gauge-invariant way can easily be generalized to the non-Abelian case. Specif-

ically, we are interested in the Higgs mechanism in the context of electroweak symmetry

breaking, wherein the electroweak group of the Standard Model SU(2)L × U(1)Y is broken

to electromagnetism U(1)EM,

SU(2)L × U(1)Y
Higgs−−−−−−−→

mechanism
U(1)EM . (2.119)

Now we consider an SU(2)L doublet Higgs field with charge assignment given in Eq. (2.103),

parameterization given in Eq. (2.104), Lagrangian given in Eq. (2.105), covariant derivative

given in Eq. (2.106), and potential given in Eq. (2.107). As in the Abelian example, for this

choice of potential with negative mass squared, the Higgs acquires a vev. We can use the

freedom of SU(2) rotations to choose this to lie in the direction

⟨H⟩ = 1√
2

0

v

 . (2.120)
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Expanding the potential V (H) in small fluctuations about this new vacuum,

H =
1√
2

 ϕ+1 + iϕ+2

v + h+ iϕ03

 , (2.121)

we find one real scalar field h with mass [98]

mh =
√
2µ = 125.25± 0.17GeV , (2.122)

and three massless Goldstone bosons ϕ+1 , ϕ+2 , ϕ03. The former is the titular Higgs boson,

discovered at the Large Hadron Collider in 2012 [92]. As before, the gauge boson masses

come from expanding the scalar kinetic term LH,kin = −(DµH)†(DµH). We again choose

unitary gauge in order to eliminate the unphysical Goldstones, which become the longitudinal

polarizations of the massive gauge bosons W±
µ and Zµ, whose linear combinations in terms of

the original electroweak generators were given in Eqs. (2.86) and (2.87), respectively. Their

masses are [98]

mW =
gv

2
= 80.377± 0.012GeV , (2.123)

and

mZ =

√
g2 + g′ 2 v

2
= 91.1876± 0.0021GeV . (2.124)

Note that though ⟨H⟩ breaks SU(2)L×U(1)Y , the fact that this vev is charge neutral means

that the generator Q = T 3+Y corresponding to U(1)EM remains unbroken. The correspond-

ing gauge boson Aµ, whose linear combination in terms of the electroweak generators was

given in Eq. (2.90), thus remains massless. We summarize in Table 2.6 the distribution of

degrees of freedom before and after electroweak symmetry breaking.
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Degrees of freedom before EWSB Degrees of freedom after EWSB

3 massless wiµ of SU(2)L: 6 dof 3 massive gauge bosons W±
µ , Z: 9 dof

1 massless Bµ of U(1)Y : 2 dof 1 massless photon Aµ: 2 dof
1 complex scalar doublet H: 4 dof 1 real scalar h: 1 dof

Total: 12 dof Total: 12 dof

Table 2.6: Distribution of degrees of freedom (dof) before and after electroweak symmetry
breaking (EWSB).

Fermion Mass Terms

Recall that the obstruction to writing down a fermion mass term like mψ̄ψ was that this

coupled left- and right-handed fields as m(ψ̄LψR+ ψ̄RψL), which transform differently under

SU(2)L × U(1)Y in the Standard Model. Fortunately, the Higgs mechanism also provides

a way to generate fermion mass terms in a gauge invariant manner. Consider the following

so-called Yukawa coupling between the left-handed lepton doublet, Higgs, and right-handed

electron

LYuk,e = −yeL̄LHeR + h.c. (2.125)

Note that since the Higgs hypercharge is YH = +1/2, the Dirac adjoint lepton doublet hy-

percharge is YLL
= +1/2, and the right-handed electron hypercharge is YeR = −1, this term

is a singlet under SU(2)L×U(1)Y , and so completely permissible to add to the Lagrangian.

Crucially, after electroweak symmetry breaking this Yukawa term becomes

LYuk,e → −yev√
2
(ēLeR + ēReL) = −me(ēLeR + ēReL) , (2.126)
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spontaneously generating a massme = yev/
√
2 for the electron. If there exists a right-handed

neutrino νR, one could in principle also write down a Dirac mass term of neutrino

LYuk,ν = −yνL̄LH̃νR + h.c.

→ −yνv√
2
(ν̄LνR + ν̄RνL)

= −mν(ν̄LνR + ν̄RνL) ,

(2.127)

where H̃ = iσ2H
∗ and mν = yνv/

√
2. Analogously for the up and down quark fields,

LYuk,q = −ydQ̄LHdR − yuQ̄LH̃uR + h.c.

→ −ydv√
2
(d̄LdR + d̄RdL)−

yuv√
2
(ūLuR + ūRuL)

= −md(d̄LdR + d̄RdL)−mu(ūLuR + ūRuL) ,

(2.128)

where md = ydv/
√
2 and mu = yuv/

√
2. Recall that each of these fields actually comes

in 3 generations, so writing the fields as vectors uiL = (uL, cL, tL), diL = (dL, sL, bL), eiL =

(eL, µL, τL), and analogous for the right-handed fields, we can write the Standard Model

Yukawa sector as

LYuk = −yeijL̄iLHe
j
R − ydijQ̄

i
LHd

j
R − yuijQ̄

i
LH̃u

j
R + h.c.

→ −Me
ij ē

i
Le
j
R −Md

ij d̄
i
Ld

j
R −Mu

ij ū
i
Lu

j
R + h.c.

(2.129)

The yij and Mij = yijv/
√
2 are now completely general complex-valued 3 × 3 matrices,

which need not be Hermitian or symmetric. Nevertheless, they can still be diagonalized by

means of a biunitary transformation. To do so for the quark sector, consider introducing

the unitary matrices V uL , V uR , V dL , and V dR. The diagonalized quark mass matrices are then

obtained as

Mu
diag = V uL y

uV
u †
R and Md

diag = V dLy
dV

d †
R , (2.130)
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where Mu
diag = diag(mu,mc,mt) and Md

diag = diag(md,ms,mb). These matrices V u/d
L/R

can

also be used to go between the mass and weak eigenstates. The combination V uLV
d †
L ≡ VCKM

defines the Cabibbo-Kobayashi-Maskawa (CKM) matrix, which enters into the charged cur-

rent interactions mediated by W±. This 3×3 unitary matrix is parameterized by three mix-

ing angles and a single CP violating phase, responsible for CP -violation in flavor-changing

processes in the Standard Model quark sector.

2.2.5 Summary

The Standard Model is a gauge theory based on the non-Abelian groups SU(3)c×SU(2)L×

U(1)Y . The first factor, SU(3) “color”, is the symmetry group of strong interactions, medi-

ated by the 8 massless spin-1 gluons. Under SU(3)c, the spin-1/2 quark fields (u, d, c, s, t, b)

transform in the fundamental representation 3 while the remainder of the Standard Model’s

matter content is uncharged.

The second factor, SU(2)L × U(1)Y , is the symmetry group of the electroweak sector.

At high energies when these symmetry is unbroken, it is mediated by the massless wi=1,2,3
µ

bosons (corresponding to the SU(2)L generators) and the massless Bµ boson (corresponding

to hypercharge U(1)Y ). Left-handed particles transform in the fundamental 2 of SU(2)L

while right-handed particles are singlets. The hypercharge assignments are collected in Ta-

ble 2.3.

At low energies, electroweak symmetry is spontaneously broken by means of the Higgs

mechanism to electromagnetism U(1)EM. Certain linear combinations of the original elec-

troweak bosons become the massive charged W±
µ and neutral Zµ bosons. The linear combi-

nation corresponding to the unbroken generator Q = T 3 + Y is identified as the photon Aµ,

the mediator of electromagnetism.

The fermionic fields and their representations under the various symmetry groups are

organized in Tables 2.3 and 2.4. They include the quarks, which interact via the strong force
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and exist confined in hadrons, and the leptons, consisting of the charged leptons (e−, µ−, τ−)

and neutrinos (νe, νµ, ντ ). Each of these fields also has an associated antiparticle.

Finally, the Higgs mechanism is responsible for breaking electroweak symmetry and be-

stowing masses unto the massive gauge bosons and fermions. The Higgs field H is a spin-0

SU(2)L doublet with hypercharge +1/2, and it acquires a vacuum expectation value v at low

energies. The Goldstone bosons become longitudinal polarizations for the massive W± and

Z bosons, and the Higgs boson h is the remaining real scalar physical degree of freedom. Its

2012 discovery by the ATLAS and CMS experiments at the Large Hadron Collider robustly

evinced the Higgs mechanism.

2.3 Open Questions

The Standard Model is extremely successful — frustratingly so. It has predicted the existence

and properties of theW± and Z bosons, Higgs boson h, top t and charm c quarks, and several

other particles years before their discoveries, and also allows us to compute quantities like the

fine-structure constant α with incredible precision [99]. With the 2012 discovery of the Higgs

boson [92], however, the particle spectrum predicted by the Standard Model is complete,

and the lack of new particles observed at colliders has left theorists without experimental

guidance. The Standard Model may be “complete”, but it cannot28 be the ultimate theory for

describing fundamental particles and their interactions, as the following list of open problems

makes clear.

Meanwhile, the ΛCDM model has been a relatively successful framework for explaining

and predicting the evolution and structure of the universe on large scales. It has faced

challenges in explaining observations on smaller length scales ≲ 1Mpc, however. Further,

ΛCDM is in some sense a phenomenological model; it describes and allows for predictions,

but it fails to actually explain the physics of dark matter and dark energy, which constitute

28. Not to mention the fact that it completely omits gravity.
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the vast majority of the universe’s energy budget.

The following subsections describe some of the most pressing problems in particle cos-

mology and astronomy today. This list is not meant to be exhaustive, but rather a sampling

of the puzzles left unaddressed by the current paradigms. Note also that not all of the

questions included in this list will be addressed at length in this thesis.

2.3.1 Problems in Particle Cosmology

We begin with a discussion of open questions at the intersection of particle physics and

cosmology. Problems of a strictly cosmological or astrophysical nature are deferred to

Sec. (2.3.2).

Identity of the Dark Matter

Clearly none of the Standard Model particles described in Sec. 2.2 can constitute the dark

matter, which is uncharged under the gauge group of the Standard Model and so interacts

with ordinary matter only gravitationally. The evidence for dark matter is irrefutable and

comes from many sources, including observations of the CMB, gravitational lensing, large

scale structure, galaxy cluster dynamics, galaxy rotation curves, and much more. From these

lines of evidence, we know that it constitutes roughly 26% of the universe’s energy density

today. The hierarchical formation of structure also suggests that it is cold, with a slow-

moving velocity and a small free streaming length. Popular classes of particle dark matter

candidates include weakly interacting massive particles (WIMPs), axions, sterile neutrinos,

and supersymmetric particles such as neutralinos [100]. Primordial black holes are a very

plausible non-particle dark matter candidate [101, 9].
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Nature of Dark Energy

Our universe has recently entered into a period of dark energy domination, with dark energy

constituting ∼ 68% of the current energy budget. The hallmark of this dark energy is that

it does not appreciably dilute as the universe expands, corresponding to an equation of state

w = −1 and leading to an accelerated expansion rate [43, 44]. But what is the physical

substance actually driving the observed accelerated late-time expansion? And moreover, is

this apparent29 acceleration genuine?

Presuming that it is, the simplest explanation is the presence of a small, positive cosmo-

logical constant Λ. In general relativity, Λ is a free parameter30; in quantum field theory,

however, it would be identified as the zero point energy of the vacuum. Estimating this

quantity in QFT, one finds

ΛQFT ∼ 8πM2
Pl ≃ 4× 1039 GeV2 . (2.131)

Meanwhile, the observed value of the cosmological constant is

Λobs =
8π

M2
Pl

ΩΛρcrit ≃ 4× 10−84 GeV2 , (2.132)

leading to the ratio
ΛQFT

Λobs
∼ 10123 . (2.133)

This discrepancy of roughly 123 orders of magnitude is the famous cosmological constant

problem, also known as the most embarrassing theoretical prediction in physics. This incon-

29. Some have proposed that the averaged effect of small scale inhomogeneities could alter observational
relations on large scales, resulting in the illusion of an accelerated expansion. See e.g. [102].

30. Interestingly, string theory does not seem to admit any stable de Sitter vacua [103]. If we are living
in a universe with a positive cosmological constant and if string theory does turn out to be the ultimate
description of nature, then for these facts to be compatible the cosmological “constant” would have to be
elevated to a dynamical field.
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gruous prediction may reflect the necessity of a true theory of quantum gravity. Alternatively,

the cosmological “constant” may not be a constant at all, but rather a dynamical field, as in

theories of so-called dynamical dark energy [104].

Origin of the Matter-Antimatter Asymmetry

It is readily apparent that matter far exceeds antimatter in the observable universe. This

asymmetry can be quantified by the baryon asymmetry parameter η, defined as the net

baryon number density nB = nb − nb̄ normalized to the number density of photons nγ ,

η ≡ nB
nγ

=
nb − nb̄
nγ

. (2.134)

Alternatively, the net baryon density may be normalized to the entropy density s to define

YB ≡ nB
s

=
45ζ(3)

π4g⋆,S
η . (2.135)

Measurements of both the light element abundances and the CMB reveal a value of YB ≃

8.8 × 10−11 [50]. The fact that these measurements coincide indicates that the asymme-

try was established prior to both events, within the first second of our universe’s history.

Baryogenesis is the name given to the process in the early universe which resulted in this

overabundance of baryons relative to antibaryons. While the mechanism of baryogenesis

remains unclear, it has been established that a successful baryogenesis requires the following

three conditions, the Sakharov conditions [105], to be satisfied: 1) Baryon number violation;

2) C and CP violation; and 3) Out-of-equilibrium conditions. One very popular prospect is

for baryogenesis to have occurred during the electroweak phase transition. While the particle

content of the Standard Model lacks the requisite amount of CP violation and also fails to

make the phase transition strongly first-order (as required to fulfill the out-of-equilibrium

condition), this can be accomplished in minimal extensions beyond the Standard Model. We
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return to this problem in Chapter 4.

Fine-Tuned Initial Conditions

The universe appears to have had very finely-tuned initial conditions. One manifestation of

this is the horizon problem — the mystery of why regions which were apparently never in

casual contact with one another nevertheless appear homogeneous. Another is the flatness

problem — the fact that the universe’s geometry appears to a very good approximation flat

(alternatively, that the energy density appears very close to critical), which is surprising

since curvature increases as the universe expands. In order to avoid having to introduce

very finely-tuned initial conditions to explain these observational facts of large scale flatness

and homogeneity, cosmologists typically invoke an early period of exponential expansion —

inflation [61, 62]. Since the comoving cosmological horizon shrinks as RH ∝ a−1 during such

a period, it is plausible that for an inflation lasting sufficiently long, the entire observable

universe could have once been in causal contact, explaining the observed homogeneity. Such

an exponential expansion would have also diluted any initial curvature as |Ωκ| ∝ a−2,

explaining the flatness observed today.

We have included this open question in the “particle cosmology” section as the most com-

monly proposed explanation — inflation — requires a particle physics realization. Whatever

is driving this initial period of accelerated expansion must eventually disappear, ruling out

vacuum energy, and further must lead to a reheated bath of Standard Model particles. A

slowly rolling scalar field ϕ (the inflaton) whose dynamics are dominated by its potential

rather than kinetic energy gives rise to an equation of state w = −1 and so can lead to infla-

tion. Moreover, the inflaton’s eventual decay can serve to populate the Standard Model bath.

Inflation can also explain the large scale structure observed today; tiny quantum fluctua-

tions generated during inflation are subsequently stretched to superhorizon scales, becoming

the classical density perturbations seeding structure formation. The nearly scale-invariant
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spectrum predicted by inflation matches large scale observations remarkably well. That be-

ing said, inflation does face some challenges and alternatives to inflation do exist. Further,

even if inflation is the resolution to this problem of fine-tuned initial conditions, its particle

physics realization remains an open question. We will return to inflation in Chapter 3 in the

context of primordial black hole formation.

Origin and Nature of Neutrino Masses

The Standard Model describes all particles transforming in nontrivial representations of the

symmetry group SU(3)c×SU(2)L×U(1)Y . As such, it does not include right-handed neutri-

nos, which are singlets under this symmetry group. More generally, the term sterile neutrino

is used to describe such Standard Model gauge singlets. The lack of right-handed neutrinos

prevents one from writing down a Yukawa term of the form LYuk,ν = −yνL̄LH̃νR + h.c.

and by extension a Dirac mass term. Neutrinos in the Standard Model are then massless.

Neutrinos in nature are not. The observation of neutrino oscillations — the quantum me-

chanical phenomenon whereby a neutrino created in one flavor eigenstate is later measured

after propagating through space in a different flavor eigenstate — has robustly demonstrated

that neutrinos do have mass.

There are two distinct gauge invariant ways to construct neutrino mass terms in ex-

tensions beyond the Standard Model. One can generate a Dirac mass term from Yukawa

interactions following electroweak symmetry breaking in the manner described in Sec. 2.2.4

LMD
= −yνijL̄iLH̃ν

j
s + h.c.→ −MD

ij ν̄
i
Lν

j
s + h.c. (2.136)

where νjs , j = 1...m is a vector of m sterile neutrinos and MD is a complex 3 ×m matrix.

Such a Dirac mass term conserves lepton number but may break lepton flavor number. The
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other option is to add a Majorana mass term of the form

LMM
= −1

2
MM
ij ν̄

i
sν
c j
s + h.c. , (2.137)

where MM is a symmetric m × m matrix and νcs is the charge conjugate sterile neutrino.

Note that since this term is a singlet under the Standard Model gauge group, and so can

be added to the Standard Model Lagrangian as a bare mass term. Note also that such a

term violates lepton number (by two units). The entire mass matrix for the neutrinos can

in principle include both terms

Lν,mass = −1

2

(
ν⃗cL , ν⃗s

) 0 MT
D

MD MM


ν⃗L
ν⃗cs

+ h.c. (2.138)

The physical mass eigenstates would then be obtained by diagonalizing this mass matrix.

If the mass eigenvalues in MM are much larger than those in MD, the result is three light

“active” neutrinos and m heavy neutrinos N . This mechanism of generating small masses

for the active neutrinos is referred to as the see-saw mechanism.

The question of whether neutrinos are Majorana or Dirac, their absolute mass scale and

mass hierarchy, the amount of CP violation in the neutrino sector, the number and properties

of any sterile neutrinos, and much more remains unknown about these mysterious particles.

A large impediment to progress thus far is the weakness of the active neutrinos’ interactions

with matter. Nevertheless, terrestrial experimental efforts like the upcoming Deep Under-

ground Neutrino Experiment (DUNE) at Fermilab [106] promise to made headway on such

questions. Cosmological observations also offer a complimentary way to probe the neutrino

sector [107]. Neutrinos occupy a unique role as the only known particle species which is

relativistic at early times (during the formation of the CMB) but non-relativistic later (by

structure formation). Measurements of the CMB and light element abundances have allowed
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us to put tight constraints on the number of relativistic neutrino species present in the early

universe Neff , while late time measurements of large scale structure allow us to bound the

sum of neutrino masses
∑
mν .

The Hierarchy Problem

The hierarchy problem is the question of why the Higgs mass mh ≃ 125GeV is so much

lighter than the Planck mass MPl = 1.22 × 1019 GeV. The Higgs mass recieves quantum

corrections from everything it couples to. For example, a new Dirac fermion f coupling to

H via the operator −λfHf̄f leads to a correction

∆m2
h = −

|λf |2
8π2

Λ2
UV + ... (2.139)

where ΛUV is an ultraviolet (UV) momentum cutoff used to regulate the loop integral and the

subleading terms are logarithmic and even slower growing in ΛUV. This quadratic sensitivity

to ΛUV is unique to scalars and makes them very sensitive to the presence of new physics.

ΛUV should be thought of as the smallest energy scale where this new physics enters to alter

the high-energy behavior of the theory. If the Standard Model is all there is then ΛUV ∼MPl

is of order the Planck scale, in which case these quantum corrections are significantly larger

than the Higgs bare mass. The fact that the observed Higgs is so light suggests a fine-tuned

cancellation of any new contributions, which seems unnatural. Such cancellations can be

made natural in theories like supersymmetry, where quantum corrections from new bosons

and fermions come with equal magnitude and opposite sign so as to precisely cancel and

thereby protect the tiny Higgs mass against quantum corrections. Other proposed solutions

to the hierarchy problem include extra-dimensional and brane world scenarios [108] as well

as a breakdown of effective field theory reasoning due to UV/IR mixing [109].
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The Strong CP Problem

Recall from Sec. 2.2.1 that the most general force for the QCD Lagrangian included a term

Lθ = θ
g2s

32π2
GaµνG̃

µν
a

= θ
g2s

64π2
ϵµναβGaµνG

a
αβ ,

(2.140)

where G̃
µν
a = 1

2ϵ
µναβGaαβ is the dual field strength tensor and ϵµναβ is the Levi-Civita

(pseudo)tensor. Crucially, this changes sign under parity ϵµναβ → −ϵµναβ , and so the QCD

θ term explicitly violates CP . Surprisingly however, CP violation has never been observed

in the strong interactions, implying that θ must be very small. From measurements of the

neutron electric dipole moment dn, which restrict [110]

|dn| ≃ 3.6× 10−16 |θ| e cm

< 3× 10−26 e cm ,

(2.141)

we have that |θ| ≲ 10−10. This degree of fine-tuning is not technically natural; one cannot

even introduce a new symmetry to enforce θ = 0 since θ receives contributions both from the

structure of QCD and the quark masses, and there is no good reason that these contributions

should precisely cancel. This is the famous strong CP problem. Perhaps the most famous

solution is the Peccei-Quinn mechanism [111], which introduces a new complex scalar field φ

as well as an anomalous global symmetry U(1)PQ under which φ is charged. The potential

is such that φ develops a vev at low energies, giving rise to a pseudo-Goldstone boson a

called the axion. Among other couplings, the axion enters into the Lagrangian with a color

anomaly term of the form

La = ξ
a

fa

g2s
32π2

GaµνG̃
µν
a , (2.142)
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where fa is the axion decay constant and ξ is related to the U(1)PQ charge assignments for

the quarks. The θ angle is then modified to an effective

θeff = θ + ξ
a

fa
, (2.143)

which in turn modifies the effective potential due to instanton effects. The result is that

in order to minimize the ground state energy, a assumes the vev ⟨a⟩ = −θfa/ξ, relaxing

θeff to zero and thereby resolving the strong CP problem. While the original PQ axion has

long been experimentally excluded, there exist modifications of this scenario that remain

potentially viable.

2.3.2 Astrophysical and Cosmological Puzzles

In addition to the above questions, which can be argued to fall within the domain of particle

cosmology, the following questions are of a more strictly cosmological or astrophysical nature.

Nevertheless, particle physics may play a role in their eventual resolution.

The Hubble Tension

There are two primary methods used to determine the Hubble constant H0, the present-day

rate at which the universe is expanding. One can either:

• Infer the value of H0 from early-time probes, in particular from CMB and BAO data

• Infer the value of H0 from local measurements of distances and redshifts, in particular

Type 1a supernovae

Note that the first method tacitly assumes standard ΛCDM cosmology. The problem is

that these measurements do not agree; the latter method based on local measurements

consistently predicts values considerably higher than the former based on early-time data.
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For example, the most recent local measurement from the SH0ES team (R20) determined

H0 = 73.2± 1.3 km s−1Mpc−1 at 68% CL [60] while the value from Planck 2018 at 68% CL

is H0 = 67.4± 0.5 km s−1Mpc−1 [2].

The Hubble tension refers to this 4σ to 6σ tension between early- and late-time mea-

surements of H0. At the root of this tension is really a tension in distance measurements:

different data sets do not agree about how far from us things are. As far as a resolution

to the Hubble tension goes, there are then two broad options. Either there is a source of

systematic error in one or both methods, leading the distance measurements to be incorrect,

or the cosmological model (i.e. ΛCDM) used to fit these data sets is incorrect. The majority

of cosmologists are of the opinion the latter is more plausible. Still, there have been many

proposed solutions to the Hubble tension, with none fully satisfactory. See Ref. [46] for an

exhaustive list.

Robustness of the Cosmological Principle

The cosmological principle is the statement that the universe is statistically homogeneous

and isotropic when viewed on large enough scales, where in practice “large enough” roughly

equates to ∼ (100 − 150)Mpc. The current ΛCDM cosmological paradigm is predicated

on the premise that the cosmological principle is true. Recent observations, however, have

brought this assumption into question.

In particular, the presumption of a homogeneous universe has been challenged by the

discovery of mega-structures like the Big Ring, with a diameter of ∼ 400Mpc [57]; the Giant

Arc, spanning ∼ 1000Mpc [58]; and the Hercules-Corona Borealis Great Wall, extending

∼ 3000Mpc in length [59]. These discoveries do not necessarily violate the cosmological

principle, but their statistical improbability does bring it into question.

Meanwhile, the presumption of an isotropic universe has been challenged by the presence

of large features in the CMB at scales ≳ 4000Mpc which appear to be aligned with the solar

68



system’s motion and orientation — the so-called “axis of evil” [112]. Admittedly the statistical

significance of this alignment remains a matter of debate, however. If these evidences do

signal a genuine breakdown of the cosmological principle, then clearly it is inappropriate to

model the universe with an FLRW metric at late times, and the ΛCDM model would require

serious revision.

Origin of Cosmological Magnetic Fields

The magnetic fields present within galaxies and galaxy clusters today stem from pre-existing

“seed” fields which have been amplified through the dynamo mechanism [113]. The origin of

these seed fields, which must have been in place by the onset of structure formation, remains

the subject of much speculation, however. Some possibilities for generating small primordial

magnetic fields include phase transitions in the early universe or during inflation [114]. Each

of these mechanisms comes with challenges, however, principle among these that the field’s

initial correlation length must be sufficiently large in order to have survived the effects of

early magnetic dissipation and diffusion. We will return to this question in Sec. 5.3, wherein

we propose a novel means of generating these primordial magnetic fields.

High-Redshift Supermassive Black Holes

The standard assumption is that supermassive black holes grow from relatively low mass

seeds (≲ 100M⊙) through accretion and mergers. At the Eddington limited rate, a seed of

mass MBH ∼ 100M⊙ would require ∼ 0.8Gyr to grow to a supermassive black hole of mass

MBH ∼ 1010M⊙. Given that a redshift of z = 6 − 7 corresponds to only ∼ 0.7 − 0.9Gyr

after the Big Bang, the recent observations of supermassive black holes at these and higher

redshifts is quite surprising. Some examples include the 7.8× 108M⊙ ULAS J1342+0928 at

z = 7.54 [115], the 2 × 109M⊙ QSO J0313-1806 at z = 7.642 [116], and most recently the

2× 106M⊙ GN-z11 observed by the James Webb Space Telescope at z = 10.6 [117].
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Explaining how these supermassive black holes came to be so large on such a short

timescale remains an open challenge. Some cosmologists have suggested an enhanced role

of mergers or super-Eddington accretion as possible explanations [118]. However sufficiently

frequent mergers would require very heavily clustered initial populations of seed black holes,

which is unlikely for population III star seeds. Further, mergers can disrupt supermassive

black hole growth by knocking them out of the material-rich centers of galaxies, resulting in

a net negative impact on their growth. Super-Eddington growth is possible and even likely

in high-redshift galaxies with large reservoirs of turbulent gas. However super-Eddington

growth is not sustainable and only occurs in transient spurts. In fact, feedback effects

from these super-Eddington periods can actually also have a net deterimental effect on

supermassive black hole growth [119].

Another possibility is that rather than being seeded by population III stars, which do

not form until z ∼ 30 − 20, these early supermassive black holes might instead be seeded

by primordial black holes formed from the collapse of primordial overdensities [120]. As

primordial black holes form much earlier, the timing problem would then be relaxed. We

return to this question in Sec. 5.2, wherein we consider an even more radical proposal —

supermassive black holes from the direct collapse of overdensities seeded by inflation.

70



CHAPTER 3

PROBING THE EARLY UNIVERSE

Much remains to be understood about the earliest moments of our universe’s evolution, with

the precise sequence of events spanning from the Big Bang up through the first second only

indirectly and weakly constrained. Progress thus far has been hindered by the fact that there

exist few direct probes prior to the synthesis of the light elements (∼ 1 s) and the formation

of the CMB (∼ 380, 000 yr) that could shed light on these dark ages.

This is situation is rapidly changing as we enter the age of multi-messenger cosmology

and gravitational wave astronomy. Already, observations of black hole binary mergers by

the LIGO/Virgo collaboration [121] and the recent detection of a signal consistent with the

stochastic gravitational wave background by the NANOGrav collaboration [122] and other

pulsar timing arrays [123, 124, 125] have inspired much excitement and optimism. With the

influx of data from the next generation of ground-based gravitational wave observatories,

space-based interferometers, increasingly precise CMB experiments, and a multitude of cos-

mic surveys, we are now in a better position than ever before to unravel the mysteries of

these earliest times.

In the coming subsections, we will examine two exceptionally promising probes of the

early universe: primordial black holes and their gravitational wave signatures. See [126, 127]

for recent reviews. After examining primordial black hole formation and how bounds on

present day abundances can be used to constrain the small scale primordial power spectrum

(and thereby inflation), we will turn to primordial black hole evaporation and see how their

evaporation products can be used to constrain non-standard expansion histories and even

scenarios with extra dimensions.
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3.1 Primordial Black Holes and Inflation

It is widely believed that within the first fractions of a second following the Big Bang,

the universe underwent a period of exponential expansion called inflation (see Sec. 2.1 for

a review). During this period, tiny quantum fluctuations were stretched to superhorizon

scales and became the density perturbations needed to seed the structure observed today.

Inflation sources a spectrum of fluctuations measured on large scales to be approximately

scale invariant with an amplitude ∼ 2.1× 10−9 on CMB scales, which is consistent with the

single-field slow-roll paradigm. On small scales, however, the primordial power spectrum

remains largely unconstrained, permitting a much richer landscape of inflationary models.

Amplified power on these small scales arises very generically in models which deviate

even briefly from slow-roll behavior, and can lead to primordial black hole formation. More

generally, primordial black holes form from the gravitational collapse of large overdensities

in the radiation dominated1 early universe. They may also be produced during cosmological

phase transitions [128] or in the collapse of topological defects like cosmic strings [129],

though we will not consider such mechanisms in this work.

The mass of a primordial black hole is upper bounded by the size of the cosmological

horizon at the time of its formation, and so can range from the Planck scale MPl all the way

up to ∼ 103M⊙ (or possibly even higher, as we will explore in Sec. 5.2). Because they form as

early as ∼ 10−42 s after the Big Bang, they constitute relics of our universe’s earliest epoch.

In addition to their evaporation products and other signatures that could be used to make

inferences about the early universe, large abundances of primordial black holes can have

a profound impact on cosmological evolution, as demonstrated in Fig. 3.1. For example,

primordial black holes can serve to seed supermassive black holes and thereby accelerate

early galaxy formation. This possibility is especially exciting in light of recent data from the

1. Primordial black hole formation can also occur during periods of early matter domination in non-
Standard cosmologies. In this case, the major impediment to formation is not the density threshold, but
rather deviations of the perturbation from a spherically symmetric profile.
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James Webb Space Telescope (JWST), which has reported a number of surprisingly luminous

high-redshift galaxy candidates [130, 131, 132, 133] whose existence poses a challenge to the

standard ΛCDM paradigm. These massive early galaxies could conceivably be explained if

primordial black holes accelerated galaxy formation in the early universe.

Figure 3.1: Potential effects of primordial black holes on cosmological evolution. The top
depicts the standard cosmological history, while the bottom depicts how this may be altered
given an initial abundance of primordial black holes. In addition to sourcing gravitational
waves and other evaporation products, these could seed supermassive black holes and accel-
erate early galaxy formation.

Given these motivations for considering primordial black holes, we now turn to review

their formation in Sec. 3.1.1 before discussing inflationary mechanisms to enhance the pri-

mordial curvature perturbation in Sec. 3.1.2.

3.1.1 Primordial Black Hole Formation

Consider a perturbation mode δk with comoving length scale k−1. Because primordial black

hole formation is ultimately a casual process, the length scale that this should be compared
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with is that of the comoving horizon RH ≡ (aH)−1, which evolves with scale factor as

RH ∝ a(1+3w)/2 , (3.1)

for generic equation of state w. See Fig. 3.2. During inflation (w = −1), the causal horizon

Figure 3.2: Evolution of the comoving horizon RH = (aH)−1 during inflation, radiation
domination, and matter domination. This is compared with sample comoving length scales
k−1
CMB (associated with the CMB) and k−1

PBH (associated with primordial black hole for-
mation). When kPBH = aH and the associated perturbation mode re-enters the horizon,
primordial black hole formation will occur provided the density contrast exceeds the thresh-
old value, δ > δth.

shrinks as RH ∝ a−1, while afterwards during radiation domination (w = 1/3) it begins

to grow again as RH ∝ a. Perturbation modes typically originate deep in the horizon,

where they are highly oscillatory. We say that such a mode with k > aH is subhorizon.

As the horizon shrinks during inflation, a mode will eventually exit the horizon to become

superhorizon (k < aH), with the horizon crossing condition set by k = aH. Superhorizon

modes freeze-out and become essentially classical. Later, once the universe has entered

radiation domination and the comoving horizon begins growing once more, these modes will
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re-enter and become subhorizon again. As can be seen in Fig. 3.2, smaller scale modes

(corresponding to larger k) exit later and re-enter earlier.

Horizon re-entry is significant because this is the time at which causal information can

first propagate across the scale k−1 in a Hubble time. If the density contrast δ associated

with k−1 is sufficiently large, this can then be communicated gravitationally such that the

entire overdense region can begin to collapse. In order to form a primordial black hole,

the density contrast must exceed a critical threshold value δth. Provided this condition is

satisfied at horizon re-entry, the entire cosmological horizon will collapse to form a primordial

black hole. See Fig. 3.3. The initial mass of the primordial black hole is then set by the

Figure 3.3: As the comoving horizon (blue) expands after inflation, superhorizon modes (red)
come to re-enter the horizon when k = aH. Provided the density contrast associated with
the mode exceeds the critical threshold δ > δth, primordial black hole formation will occur
upon horizon re-entry.

mass of the cosmological horizon at collapse,

MPBH = 108 g
( γ

0.2

)(106.75

g⋆(T )

)1/2(4× 1011 GeV
T

)2

, (3.2)

where γ is an efficiency factor which takes the value ≃ 0.2 during radiation domination and

g⋆(T ) is the number of effective degrees of freedom in the primordial plasma.

In addition to the mass, the other pertinent piece of information one might be interested
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in the is initial abundance,

β =
ρPBH
ρtot

, (3.3)

sometimes also called the mass fraction at formation. In the standard2 treatment based on

the Press-Schechter formalism [138], β is computed by integrating the probability distribution

function3 P [δ] for the coarse-grained density contrast,

δ =
δρ

ρ̄
, (3.4)

over all values greater than the critical threshold for collapse, δth

β ≃ 2

∫ ∞

δth

dδ P [δ] . (3.5)

The factor of 2 is customarily introduced4 to compensate for the undercounting that other-

wise arises [138]. This prescription has the benefit of having a simple implementation and

an intuitive interpretation — we are simply summing over the fraction of regions with a

sufficient overdensity to collapse to form a primordial black hole.

The resulting initial abundance will depend sensitively on the value for the collapse

threshold δth. Intuitively, we expect a perturbation to be able to collapse during radiation

domination if the size of the overdensity at maximum expansion exceeds the Jeans length,

or equivalently if it exceeds radiation pressure. This intuition led to Carr’s original estimate

of δth ≃ c2s = 1/3 [139], where cs is the sound speed of density perturbations. If one includes

2. One can also calculate the black hole abundance using peak theory [134, 135, 136, 137]. Unlike Press-
Schechter, where the overdensity must simply exceed the threshold, peak theory further demands that it be
a local maximum. This formalism has been demonstrated to be more appropriate when perturbations exist
on multiple scales. For sharply peaked spectra, the simpler Press-Schechter prescription suffices.

3. The probability distribution function P [δ], denoted with a non-script “P ”, should not be confused with
the power spectrum Pδ(k).

4. It is unclear whether this factor should still be included when considering asymmetric probability
distribution functions, as in the case of non-Gaussianities. We retain it nevertheless since this is an ultimately
inconsequential O(1) effect.
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general relativistic effects, the criterion is slightly modified too δth ≃ 0.4. A more careful

treatment that is applicable for arbitrary equation of state w finds [140]

δth =
3(1 + w)

5 + 3w
sin2

(
π
√
w

1 + 3w

)
, (3.6)

which yields δth ≃ 0.414 during radiation domination. It should be noted that there is

considerable uncertainty5 in the proper choice for the collapse threshold, since this should

in principle depend on the spatial profile of the overdensity. The value δth ≃ 0.414 seems

to reproduce the results of numerical simulations fairly well for strictly spherical collapses,

but an overdensity profile need not be spherical. This is especially the case in the presence

of non-Gaussianities, which generically arise in models that produce local amplifications of

small scale power. These can then also change the threshold for collapse [143, 144, 145].

While the coarse-grained density contrast is the proper object to consider when computing

the probability of primordial black hole formation, it is often convenient to work directly with

the curvature perturbation ζ, since its statistics are more easily computed from underlying

inflationary models. When large perturbations exist only on one scale, as is the case for the

sharply peaked power spectra, only a minimal amount of error is incurred by making this

approximation. On superhorizon scales, ζ is related to the density contrast field as [146]

δ = −2(1 + w)

5 + 3w

(
1

aH

)2

e−2ζ
(
∇2ζ +

1

2
(∂iζ)

2
)
. (3.7)

5. A more precise quantity which does away with this uncertainty is the compaction function C, defined
as twice the local mass excess over radius of the comoving area [141, 142]. The value of the compaction at
its peak is interpreted as the threshold.
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Working to linear6 order in radiation domination, this simplifies to the Fourier space relation

δk ≃ 4

9

(
k

aH

)2

ζk , (3.8)

which implies that their power spectra, defined for arbitrary Fourier variable fk via the

2-point function as ⟨fkfk′⟩ = 2π2

k3
Pf (k)δ(3)(k⃗ + k⃗′), are related as

Pδ(k) ≃
16

81

(
k

aH

)4

Pζ(k) . (3.9)

Note that at the time of horizon crossing k = aH when a perturbation can collapse to form

a black hole7, the density contrast and curvature perturbation are linearly related, δ ≃ 4
9ζ.

We can then assume that peaks in δ also correspond to peaks in ζ, and work directly with the

curvature perturbation. In terms of ζ, the initial abundance in the Press-Schechter formalism

reads

β ≃ 2

∫ ∞

ζth

dζ P [ζ] , (3.10)

where the collapse threshold ζth ≃ 9
4δth follows from σ2δ ≃ 16

81σ
2
ζ , since P ∼ σ2 for a sharply

peaked spectrum. More precisely, the variance of ζ smoothed on the scaleR ≃ (aH)−1 ≃ k−1

can be computed from the power spectrum as [148]

σ2ζ (R) ≡ ⟨ζ⟩2R =

∫ ∞

0

dk

k
W̃ 2(k,R)Pζ(k) , (3.11)

where W̃ (k,R) is the Fourier transform of the (real space) window function used to coarse-

grain δ. It is unclear what functional form for the window function most accurately repro-

6. A certain degree of non-Gaussianity inevitably arises in the density contrast field due to this nonlinear
relation. This implies that even if the statistics of ζ were perfectly Gaussian, those of δ would not be. See
Ref. [146] for discussion.

7. There is additional uncertainty in the calculation of primordial black hole abundances coming from
non-linear effects around the time of horizon crossing. See Ref. [147].
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duces the actual relation between the primordial black hole abundance and power spectrum,

but popular choices in the literature include the volume normalized Gaussian, as well as real

and k-space top hats. See [149, 150] for a discussion of the resultant uncertainties.

In principle, the probability distribution function will depend on the model under con-

sideration. For a long time the standard in the literature was to simply assume a Gaussian

form for the probability distribution,

PG[ζ] =
1√
2πσζ

exp

(
− ζ2

2σ2ζ

)
, (3.12)

in which case the mass fraction at formation evaluates explicitly to

β = erfc

(
ζth√
2σζ

)
≃
√

2

π

σζ
ζth

exp

(
− ζ2th
2σ2ζ

)
, (3.13)

where erfc is the complimentary error function and the second approximation holds for

ζth ≫ σζ , which is generically the true for all physical cases of interest. Since the threshold

is fixed, the initial abundance is determined solely by the variance of the power spectrum. In

order to have β = 10−20, we see we need σ2ζ ≃ 0.01. This corresponds to a peak in the power

spectrum of Pζ ∼ 0.01, which is seven orders of magnitude greater than the value measured

on CMB scales! Since the amplification of Pζ needed for PBH formation depends on β only

logarithmically, this degree of enhancement is a generic requirement for any non-vanishing

initial abundance.

Keep in mind however that this discussion has assumed a Gaussian form for the probabil-

ity distribution function P [ζ]. In Sec. 5.2, we will see how this story changes upon considering

non-Gaussian probability distributions. While we will find that the amplification required

can be reduced, it will turn out to be the case that one still needs a substantial amplifica-

tion of power over values on CMB scales. We discuss in the next subsection how such an

enhancement may be engineered in inflationary models. For further reading on primordial
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black hole formation, Refs [151, 152, 153] may prove useful.

3.1.2 Enhanced Curvature Perturbations from Inflation

For simplicity, we begin by considering single field inflation sourced by a minimally coupled

scalar field ϕ with canonical kinetic term and potential V (ϕ). The Friedmann equations in

combination with the scalar’s equation of motion form the following set of equations

H2 =
8π

3M2
Pl

(
1

2
ϕ̇2 + V (ϕ)

)
, (3.14a)

Ḣ = − 4π

M2
Pl

ϕ̇2 , (3.14b)

ϕ̈+ 3Hϕ̇+
∂V

∂ϕ
= 0 , (3.14c)

which govern the evolution of the background values of ϕ and a. From the solution to this

set of equations, we can compute the duration of inflation, usually quantified in terms of the

number of e-folds ∆N

∆N =

∫ af

ai

d ln a =

∫ tf

ti

dtH , (3.15)

where ai (af ) is the value of the scale factor at the beginning (end) of inflation and ti

(tf ) is the corresponding time. Recall that in order to resolve the horizon and flatness

problems, inflation needs to last sufficiently long: ∆N ≃ 50 − 60. Inflation can technically

last longer, but fluctuations generated earlier than ∼ 60 e-folds before the end of inflation

are unobservable.

As for what sort of potential is appropriate, recall that the equation of state in the

scalar-dominated universe is

w =
pϕ
ρϕ

=
1
2 ϕ̇

2 − V
1
2 ϕ̇

2 + V
. (3.16)

From this, we see that if we want a quasi-de Sitter phase with w ≃ −1, then the scalar’s
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potential energy needs to dominate and we should choose a potential which is sufficiently

flat. See Fig. 3.4 and ignore for now the small Gaussian bump. Note that the inflaton must

be allowed to eventually roll down to its minimum, such that inflation is not eternal and

reheating can occur.

Figure 3.4: Potential of Eq. (3.32), with KKLT base potential V0 in Eq. (3.33) and a small,
localized Gaussian bump of the form Eq. (3.34). Parameters: A = (8.4 × 10−11)M4

Pl,
M =MPl/2, δA = 1.17036× 10−3, ϕb = 2.188MPl, σb = 0.0159MPl.

During the slow-roll phase of inflation, the Hubble friction term dominates and the ϕ̈

term is very small. The inflaton’s equation of motion then approximately reduces to

3Hϕ̇ ≃ −∂V
∂ϕ

. (3.17)

It is useful to define the slow-roll parameters8 ϵ and η as [154]

ϵ ≡ − Ḣ

H2
=

4π

M2
Pl

ϕ̇2

H2
, (3.18)

and

η ≡ − ϕ̈

Hϕ̇
. (3.19)

8. These are not to be confused with the potential slow-roll parameters ϵV and ηV .
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The slow-roll regime is then defined by simultaneously satisfying the conditions

ϵ < 1 , |η| < 1 . (3.20)

Quantum fluctuations during inflation lead to the spectrum of primordial density per-

turbations observed today in the CMB. There are two gauge invariant fields excited during

inflation: the scalar R, which is called the comoving curvature perturbation, and the trans-

verse traceless tensor hij . Note that R is closely related to but not identical to ζ, which we

also called the “curvature perturbation” in the previous subsection. More precisely, ζ is the

curvature perturbation on uniform density hypersurfaces while R is the curvature perturba-

tion on comoving hypersurfaces. On superhorizon scales k ≪ aH and during the slow-roll

phase of inflation, they are equal [154].

The power spectrum of comoving curvature perturbations PR can be approximated dur-

ing the slow-roll phase as

PR ≃ 4π

M2
Pl

(
H

2π

)2 1

ϵ

∣∣∣∣
k=aH

, (3.21)

where the right-hand side should be evaluated at horizon crossing. Since we will be interested

in deviations from slow-roll, however, we must use the general expression for PR. To derive

this, it is first necessary to solve the Mukhanov-Sasaki equation [155, 156]

v′′k +
(
k2 − z′′

z

)
vk = 0 , (3.22)

where v = zR, z = aϕ̇/H, and primes denote derivatives with respect to conformal time.

To derive this equation, one starts with the action for the minimally coupled scalar

S =

∫
d4x

√−g
(
M2

Pl

16π
R− 1

2
(∂ϕ)2 − V (ϕ)

)
, (3.23)
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and fixes the gauge as

δϕ = 0 , gij = a2[(1− 2R)δij + hij ] , ∂ihij = hii = 0 . (3.24)

Then upon expanding this action to second order in R, one finds

S(2)[R] =
1

2

∫
d4x a3

ϕ̇2

H2

(
Ṙ2 − 1

a2
(∂iR)2

)
. (3.25)

Upon defining the Mukhanov-Sasaki variable

v = zR , with z = a
ϕ̇

H
, (3.26)

this takes the very simple form

S(2)[v] =
1

2

∫
d4x

(
(v′)2 + (∂iv)

2 +
z′′

z
v2
)
, (3.27)

where primes denote derivatives with respect to conformal time. The Fourier modes vk then

clearly obey the Mukhanov-Sasaki equation of Eq. (3.22). It is possible to express the “mass

term” z′′/z exactly in terms of a hierarchy of slow-roll parameters [157]

z′′

z
= a2H2

(
2− ϵ1 +

3

2
ϵ2 +

1

4
ϵ22 −

1

2
ϵ1ϵ2 +

1

2
ϵ2ϵ3

)
, (3.28)

where ϵ1 = ϵ = −Ḣ/H2 and

ϵn+1 = −d ln ϵ
dN

. (3.29)

Note that in spite of the appearance of slow-roll parameters, this expression is exact.

To solve the Mukhanov-Sasaki equation, we must supply boundary conditions for vk. It

is customary to take the vacuum at early times (τ → −∞) when the mode is deep in the
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horizon k ≫ aH to be the Bunch-Davies vacuum [158], corresponding to

lim
τ→−∞

vk =
e−ikτ√

2k
. (3.30)

At early times, the solution for vk is highly oscillatory, while at late times once the mode

becomes superhorizon k ≪ aH, |vk| approaches a constant value. The primordial power

spectrum for R is then given by substituting this solution for vk in

PR =
k3

2π2
|vk|2
z2

∣∣∣∣
k≪aH

, (3.31)

where the right-hand side is evaluated once the mode is superhorizon and frozen-out.

Now that this formalism is in place, we are ready to see how choosing a potential with

localized features which result in a brief deviation from slow-roll can lead to in amplified

power. We consider a general potential of the form

V (ϕ) = V0(ϕ)
(
1 + δV (ϕ)

)
, (3.32)

where the base potential V0 should be chosen to reproduce observations on CMB scales and

δV (ϕ) is a localized feature. For concreteness, let us consider as our base potential the

string-inspired KKLT potential with n = 2 [159]

V0(ϕ) = A

(
ϕ2

ϕ2 +M2

)
. (3.33)

The overall amplitude A must be chosen such that PR(kp) = 2.1× 10−9, with kp the CMB

pivot scale. As for the deviation, let us chose a Gaussian bump located at ϕb with amplitude

δA and variance σ2b .

δV (ϕ) = δA exp

(
−1

2

(ϕ− ϕb)
2

σ2b

)
. (3.34)

84



This potential, including the impact of the bump, is shown in Fig. 3.4. By numerically

solving the Mukhanov-Sasaki equation for vk and substituting in Eq. (3.31), we arrive at

the power spectrum of curvature perturbations shown in Fig. 3.5. We also show the power

spectrum obtained using the slow-roll approximation of Eq. (3.21) to demonstrate how this

miscalculates both the size and position of the peak.

Figure 3.5: Power spectrum of curvature perturbations PR obtained for the potential of
Eq. (3.32) with KKLT base Eq. (3.33) and a small Gaussian bump of the form Eq. (3.34).
Same parameters as in Fig. 3.4. The solid dots represent the exact solution obtained by
solving the Mukhanov-Sasaki equation for vk and using Eq. (3.31) while the blue line is the
approximate slow-roll expression of Eq. (3.21).

This growth can ultimately be traced back to the fact that the slow-roll condition is

violated due to the presence of the bump, as can be seen in Fig. 3.6. The first slow-roll

parameter remains small throughout, but the second slow-roll parameter |η| transiently

becomes larger than 1 both when the inflaton decelerates to climb the bump and when

the inflaton accelerates once more after surmounting it. As for why a violation of slow-

roll results in an enhancement in the power spectrum of curvature perturbations, it turns

out that the mode which is the decaying mode during slow-roll gets revived and begins to

grow. Since this is a generic result whenever one deviates from the slow-roll attractor, other

means of generating amplified power in the single-field case include localized features like
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Figure 3.6: Evolution of slow-roll parameters ϵ and |η| throughout inflation for the potential
Eq. (3.32) with V0 given by Eq. (3.33) and δV given by Eq. (3.34). Same parameters as in
Figs. 3.4 and 3.5. Slow-roll is transiently broken when |η| becomes larger than 1.

bumps, dips, steps, and kinks; transient periods of ultra-slow-roll; inflection points; and more

[160, 161, 162, 163, 164, 165]. Finally, we comment that given that PR|max ∼ 10−2 for the

sample case presented in this section, this model would be capable of generating a non-trivial

number of primordial black holes, even in the absence of non-Gaussianities.

3.2 Constraining Non-Standard Expansion Histories

In the previous section, we saw how deviations from slow-roll behavior during inflation can

give rise to amplified power on small scales, potentially resulting in primordial black hole

formation. Thus, constraints on primordial black hole abundances today allow us to make

inferences about the shape of the inflationary potential. In this section, we turn to primordial

black hole evaporation, and ask what constraints on these evaporation products allow us to

infer about the expansion history of the universe. Note that much of the material in this

section shares considerable overlap with [25], which was recently published by this author.

In particular, we will look at constraints on the expansion history coming from gravita-
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tional waves sourced by primordial black holes. Gravitons radiated off of light, evaporating

black holes contribute to the stochastic background of gravitational waves. The spectrum

of such emission depends on both the mass and the spin of the black holes, as well as on

the redshifting that occurs between the black hole formation and today. This, in turn, de-

pends on the expansion history of the universe. Here, we study the features of the stochastic

background of gravitational waves from black hole evaporation under a broad range of pos-

sible early cosmological histories. We will see that the resulting gravitational wave signals

typically peak at very high frequencies, offering opportunities for proposed ultra-high fre-

quency gravitational wave detectors. Lower-frequency peaks are also possible, albeit with a

suppressed intensity that is likely well below the threshold of detectability. We find that the

largest intensity peaks correspond to cosmologies dominated by fluids with “stiff” equations

of state. Such scenarios can be constrained on the basis of violation of ∆Neff bounds.

3.2.1 Overview

Black holes emit quasi-thermal radiation via the well-known process of Hawking evaporation

[166, 167], through which they evaporate at calculable rates into all physical degrees of

freedom with mass around or below the associated black hole temperature [167] — including

gravitons. As such, black hole evaporation directly produces gravitational radiation, as

pointed out long ago [168]. This possibility is especially intriguing for light primordial black

holes. In fact, this gravitational wave signal provides one of very few ways to probe light

primordial black holes with masses M ≲ 5 × 108 g, which evaporate prior to BBN and are

otherwise completely unconstrained.

Ref. [169] and [170] first studied the production of a stochastic gravitational wave back-

ground from light, evaporating primordial black holes, including the possibility of a phase

of early matter domination. We note, however, that both of these studies neglected the

black hole angular momentum and its evolution, as well as the corresponding large devia-
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tions from blackbody emission [168]. Ref. [171] studied gravitational wave production from

a number of mechanisms, including mergers and Hawking evaporation, but for the latter

case assumed both instantaneous black hole decay and a blackbody spectrum – assumptions

which, as we will demonstrate, are inadequate. Ref. [172] performed a precision study of

gravitational wave production from near-extremal Kerr black holes in a standard cosmolog-

ical setting. Refs. [173] and [174] investigated the contribution to the effective number of

neutrino species due to the thermal background of gravitons from evaporating Kerr PBH.

Finally, Refs. [175] and [176] studied generic redshift effects in particle production from Kerr

PBH, in particular exploring the effects of extended black hole spin and mass distributions.

As we discuss in detail below, the generic expectation for the stochastic gravitational wave

background produced by evaporating Schwarzschild black holes with a standard cosmological

history is two-fold:

1. The peak frequency for gravitational wave emission is (see Eq. (3.64) below) fpeak ≃

(1.8×1016 Hz)(M/105 g)1/2, and thus, even for very light black holes with masses close

to the Planck scale, the signal is at ultra-high frequencies.

2. The peak gravitational wave emission has an absolute maximum energy density ΩGWh2
∣∣
peak ≃

4.2× 10−7 (see Eq. (3.66) below). As such, the gravitational wave emission is possibly

large enough to be constrained by measurements of the number of relativistic degrees

of freedom (see e.g. the recent detailed study presented in Ref. [174]). However, the

signal itself likely remains out of reach of both currently operating gravitational wave

telescopes and planned high-frequency detectors (see [6] for a review).

Here, we examine how assumptions about the very early universe affect the expectations

summarized above. First, the peak gravitational wave frequency depends critically on how

the emitted gravitons redshift, especially at very early times. Secondly, both the peak

amplitude and location depend quite sensitively on the spin of the primordial black holes

(see e.g. [174]). Spinning black holes radiate gravitons both more abundantly and with
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energies peaking at lower frequencies [177]. Finally, the cosmological history drastically affect

the maximal gravitational wave intensity, to the level of enhancing it by several orders of

magnitude, making graviton emission a prime target for future high-frequency gravitational

wave searches.

Using state-of-the-art tools such as the BlackHawk package [174], we explore the features

of the stochastic background of gravitational waves stemming from Hawking evaporation

of light primordial black holes with non-standard, non-radiation-dominated cosmologies at

early times. An especially well-motivated scenario is the possibility of an early phase of

matter domination [169, 174]; more generically, prior to BBN, the universe’s energy density

could have been dominated by a species9 ϕ with a generic equation of state.

In Sec. 3.2.2, we first review primordial black hole evolution and evaporation for generic

spinning Kerr black holes. Sec. 3.2.2 examines, both numerically and analytically, the grav-

itational wave production from Hawking evaporation of gravitons, and elucidates the impact

of the blackbody and instant decay approximations. In Sec. 3.2.4, we turn to well-motivated

non-standard cosmological histories and examine their impact on gravitational waves from

the Hawking evporation of gravitons. Finally, Sec. 3.2.4 discusses observational prospects

and constraints.

3.2.2 Hawking Radiation and Black Hole Evolution

Kerr Black Holes

In the present analysis, we will be interested in Kerr black holes, which have non-vanishing

angular momentum J and therefore preferentially emit higher spin particles, like the spin-2

graviton. In Boyer-Lindquist coordinates, the geometry of a Kerr black hole is described by

9. The species ϕ is not to be confused with the inflaton of the previous section.
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the metric [178]

ds2 = −∆

ρ2
(dt− α sin2 θ dϕ)2 +

ρ2

∆
dr2 + ρ2dθ2 +

sin2 θ

ρ2

[
(r2 + α2)dϕ− αdt

]2
, (3.35)

where M is the black hole mass, α = J/M is the spin parameter, and we have defined

ρ2 = r2 + α2 cos2 θ , ∆ = r2 + α2 − 2Mr

M2
Pl

. (3.36)

It will also be convenient to define the dimensionless spin parameter α⋆ =
M2

Pl
M2 J , which can

take values α⋆ ∈ [0, 1], with α⋆ = 1 corresponding to the extremal case. Kerr black holes

have two horizons r±, with the outer horizon located at

r+ =
M

M2
Pl

(1 +

√
1− α2⋆) . (3.37)

The Hawking temperature associated with this horizon is

TBH =
M2

Pl

4πM

√
1− α2⋆

1 +
√

1− α2⋆
. (3.38)

Note that this reduces to the temperature of the Schwarzschild black hole T =
M2

Pl
8πM in the

limit of vanishing spin α⋆ → 0, and tends to 0 in the extremal limit α⋆ → 1. The Kerr black

hole is also characterized by an angular velocity ΩBH given by

ΩBH =
M2

Pl

2M

α⋆

1 +
√

1− α2⋆
. (3.39)
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Hawking Radiation

The flux spectrum for the emission of a single particle degree of freedom10 of a species i with

frequency ω and spin s is [179, 177, 180]

dNi(ω)

dt
=
∑
ℓ,m

σ
(s)
ℓm(ω)

e(ω−mΩ)/TBH − (−1)2s
d3k

(2π)3
, (3.40)

where the sum runs over the total ℓ and axial m angular momenta of the emitted mode11.

This spectrum is almost that of a perfect blackbody, with the deviation captured by the

“greybody factor" σ(s)ℓm(ω), which is related to the probability that a given mode will be able

to surmount the gravitational potential barrier and escape to spatial infinity.

Since the emission of particles with masses greater than the black hole temperature is

exponentially suppressed, it often suffices to include in the sum for the total flux only those

degrees of freedom lighter than the black hole. In this case we can evaluate the phase space

factor to obtain the simplified expression for the emission of a massless degree of freedom

per frequency interval

dNi
dtdω

=
1

2π

∑
ℓ,m

Γ
(s)
ℓm(ω)

e(ω−mΩ)/TBH − (−1)2s
, (3.41)

where Γ
(s)
ℓm = ω2

π σ
(s)
ℓm is the absorption probability12.

Each emitted particle carries off units of energy ω and of angular momentum m about the

black hole axis. Note that mΩ acts as an effective chemical potential, biasing the emission

of particles whose angular momentum is aligned with that of the black hole. In this manner,

10. In order to obtain the total flux per particle species i, one would sum over the polarization and charge
degrees of freedom.

11. We neglect here the effect of the charge of the particle on σ(s)
ℓm.

12. The absorption probability Γ
(s)
ℓm(ω) = ω2

π σ
(s)
ℓm is sometimes referred to in the literature as the “greybody

factor". We refrain from doing so here, as they are distinct.
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a black hole sheds both mass and angular momentum, and evolves toward a non-rotating

state. The power emitted in a given frequency interval per particle degree of freedom is

dEi
dtdω

=
1

2π

∑
ℓ,m

ωΓ
(s)
ℓm(ω)

e(ω−mΩ)/TBH − (−1)2s
. (3.42)

This enters into the rate at which the black hole loses mass as [177]

dM

dt
= −

∑
i

∫
dω

(
dEi
dtdω

)
, (3.43)

where the sum runs over all degrees of freedom i emitted by the black hole. Similarly, angular

momentum is lost at a rate

dJ

dt
= −

∑
i

∫
dω

(
m
dNi
dtdω

)
. (3.44)

In practice, it is sometimes convenient to track the evolution by introducing the dimensionless

“Page factors” f and g, defined implicitly via [180]

f(M,α⋆) = −M2dM

dt
, (3.45a)

g(M,α⋆) = −M
α⋆

dJ

dt
. (3.45b)

Given explicit forms for the greybody factors of all relevant particle species, the contributions

to f and g from each species can be numerically evaluated and the values tabulated. These

can then be interpolated for the functions f(M,α⋆) and g(M,α⋆), from which one can solve

Eq. (3.45) to obtain the black hole mass and angular momentum as a function of time.

Sample evolutions are shown Fig. 3.7.

Fig. 3.7 illustrates that the black hole mass remains roughly constant near its initial

value until the very end of its lifetime, at which point it falls off dramatically. Angular
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Figure 3.7: Top: Evolution of black hole mass as a function of time for the case of a
Schwarzschild black hole (solid red line) as compared with a near extremal (α⋆ = 0.999)
Kerr black hole (dashed line). The lifetime of a rapidly spinning black hole is reduced by a
factor ∼ 2. Mi = 104 g is taken as a benchmark, but the above behavior is generic. Bottom:
Evolution of dimensionless spin parameter α⋆ as a function of M/Mi.

momentum serves to reduce the black hole lifetime by an O(1) factor, with rapidly spinning

black holes evaporating more quickly than their Schwarzschild counterparts. Because angular

momentum decreases more rapidly than mass does, Kerr black holes finish shedding angular

momentum and transition to a Schwarzschild phase before evaporating completely, as can

be seen in Fig. 3.7. Once the black hole has spun down (seen in the lower panel to occur

around M/Mi ∼ 0.4), it evolves identically to the Schwarzschild case, as can be seen by the

identical slopes at low M/Mi ≲ 0.4 in the upper panel.
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Greybody Factors

While approximating the spectrum as a perfect blackbody usually suffices for estimating the

black hole lifetime, computing the gravitational wave signal will require a precise knowledge

of the greybody factors. In general, these depend on the frequency, angular momentum,

and spin of the emitted particle species, as well as the structure of spacetime about the

black hole. Computation of the greybody factors is quite non-trivial and involves solving the

relevant equation of motion for a given particle species on a curved black hole background

with appropriate boundary conditions — the Teukolsky equations [181, 182]. The absorption

probability for a given mode, and thereby the greybody factor, is then determined by taking

ratios of the amplitudes for incoming and outgoing waves at infinity.

The Teukolsky equations generically need to be solved numerically13, though analytic

approximations exist in the low frequency limit, Mω/M2
Pl ≪ 1. In particular for the s = 2

graviton, the greybody factor, summed over angles, in the low frequency limit reads [187, 177]

∑
ℓ,m

σ
(2)
ℓm

ω∼0−−−→ 16A

225

(
5
M2

Pl

M2
+

5

2
α2⋆ + α4⋆

)(
Mω

M2
Pl

)4

, (3.46)

where A = 4πr2+ is the black hole area. Note that this is highly suppressed, scaling with

the frequency as ω4. In contrast,
∑
σ
(0)
ℓm ∼ ω0 for scalars,

∑
σ
(1/2)
ℓm ∼ ω0 for fermions, and∑

σ
(1)
ℓm ∼ ω2 for vector bosons. The suppression at low frequencies in the graviton case can

be understood by recognizing that the dominant contribution to σ comes from the mode of

lowest ℓ, and since ℓ ≥ s this is ℓ = 2 for the graviton. Meanwhile in the high frequency limit

Mω/M2
Pl ≫ 1, the greybody factors for all particle species approach the geometric optics

limit, which is essentially the emitting area of the black hole.

13. Numerical solutions typically have issues with convergence at the black hole horizon and spatial infinity.
For this reason, BlackHawk employs the methods outlined in Ref. [183, 184, 185, 186] to transform the
Teukolsky equations into Schrödinger-like wave equations with appropriately chosen short-range potentials.
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3.2.3 Standard Cosmological Evolution

Analytical Estimates

We are interested here in the present-day energy density in the form of gravitational waves

from evaporating primordial black holes, as parameterized by the spectral density parameter

ΩGW, defined as

ΩGW =
1

ρcrit

dρGW

d ln f
, (3.47)

with ρcrit the critical energy density today. Before turning to numerics, we will demonstrate

how this can be computed starting from the instantaneous spectrum of graviton emission,
dEgrav
dtdω . For the sake of having analytic expressions, we will restrict ourselves to Schwarzschild

black holes (α⋆ = 0) in the blackbody approximation, for which the greybody factor is simply

the frequency-independent area of the black hole
∑
σ
(s)
ℓm = 4πr2s . We will also presume

instantaneous decay, taking the black hole mass and temperature to be constants up until the

moment of evaporation at τBH. These approximations will be all relaxed in the subsequent

sections where we present our numerical results.

Our starting point is the instantaneous energy flux expression of Eq. (3.42). Taking∑
σℓm = 4πr2s = 16π M

2

M4
Pl

and multiplying by gi = 2 for the two graviton polarizations, this

becomes
dEgrav

dtdω
≃ 16

π

M2

M4
Pl

ω3

eω/TBH − 1
. (3.48)

To obtain the rate of graviton emission for an entire population of evaporating primordial

black holes, we multiply by the number density nBH(t)

dρGW

dtdω
≃ nBH(t)

dEgrav

dtdω
. (3.49)

This should then be integrated over the black hole lifetime in order to determine the total

amount of energy density in the form of gravitational waves at the time of evaporation.
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Let ti be the time of black hole formation, when graviton emission commences, and let

t∗ = ti+ τBH ≃ τBH be the time of black hole evaporation, which, for a Schwarzschild black

hole, is approximately

τBH ≃ 10240π

g⋆,H

M3

M4
Pl

, (3.50)

where g⋆,H ≃ 108 the number of effective degrees of freedom, since we restrict ourselves to

light black holes evaporating before BBN, M ≲ 5 × 108 g. Since evaporation is occurring

in an expanding universe, the black hole number density and graviton energy density and

frequency are not fixed quantities, but rather experience cosmological redshift. In particular,

they evolve as nBH ∼ a−3, ρGW ∼ a−4, and ω ∼ a−1, respectively. For ease of integration,

we can isolate the time dependence by relating the graviton frequency and energy density

to their values at the time of evaporation, which we denote by a star

ρGW = ρ∗GW

(a∗
a

)4
, ω = ω∗

(a∗
a

)
. (3.51)

For the number density, it is more convenient to relate to the initial value

nBH = nBH,i

(ai
a

)3
, (3.52)

which, in turn, can be related to the initial black hole mass and mass fraction14 ΩBH,i =

ρBH,i/ρcrit,i, presuming formation via the collapse of density perturbations in the radiation

dominated early universe:

nBH,i =
3M6

Pl

32πM3
ΩBH,i . (3.53)

Finally converting from frequency interval to logarithmic frequency interval d
d lnω = ω d

dω ,

14. Note that this is the quantity we called “β” in the previous section.
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the energy density in the form of gravitational waves at the time of evaporation is

dρ∗GW

d lnω
≃

16nBH,iM
2ω4∗

πM4
Pl

∫ t∗

ti

dt
(ai/a)

3

eω∗a∗/aTBH − 1
. (3.54)

As for the time dependence of the scale factor15, initially during radiation domination

it scales as a ∼ t1/2. If the initial energy density in black holes is sufficiently large and the

black holes are sufficiently long lived, then they will eventually come to dominate the energy

density of the universe at a time

teq ≃
(
1− ΩBH,i

ΩBH,i

)2 M

M2
Pl

. (3.55)

The condition on the initial energy density and mass for this to occur is t∗ > teq, or

(
M

105 g

)2(ΩBH,i

10−11

)2

≥ 1 . (3.56)

When this is satisfied, the universe will undergo a brief period of early matter domination

from teq until t∗, during which the scale factor scales as a ∼ t2/3. Thus the scale factor

appearing in Eq. (3.54) is

a(t) =


ai

(
t
ti

)1/2
t ≲ teq

ai

(
teq
ti

)1/2 (
t
teq

)2/3
teq ≲ t ≲ t∗ .

(3.57)

One can also express a(t) in terms of a∗ by noting that

ai
a∗

=

(
ti
teq

)1/2(teq
t∗

)2/3

. (3.58)

15. When we turn to the numerical calculation, we will actually solve the Friedmann equations for the
precise background evolution.
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Finally to translate the gravitational wave spectrum from evaporation to today, we need

to account for the dilution of energy density and redshifting of frequency due to cosmological

expansion. The energy density in the form of gravitational waves today is related to that at

evaporation as
dρ0GW

d lnω0
=
dρ∗GW

d lnω∗

(
a∗
a0

)4

, (3.59)

where a0 = a(t0) is the scale factor today, which we take to be a0 = 1. Explicit factors of the

frequency appearing in this expression should be translated to their redshifted values today

as ω0 = ω∗a∗. Following black hole evaporation, the universe undergoes the usual epoch of

radiation domination, and it is convenient to express the ratio of scale factors in terms of the

plasma temperature and effective degrees of freedom in entropy, obtained via conservation

of entropy g⋆,sa3T 3 = constant as

a∗ =

(
g⋆,s(T0)

g⋆,s(TRH)

)1/3 T0
TRH

, (3.60)

where T0 = 0.235meV is the temperature of the CMB today and g⋆,s(T0) = 3.91. The

reheating temperature for the SM plasma TRH ≡ T (t∗) can be obtained by equating the

energy density in the form of primordial black holes immediately before decay with the energy

density in radiation immediately afterwards. Presuming black holes come to dominate prior

to decay, this is approximately

TRH = 450

(
g⋆(TRH)

106.75

)−1/4( M

105 g

)−3/2

GeV . (3.61)

Substituting the spectral energy density today in the definition of Eq. (3.47), we finally

arrive at the prediction for the spectral density parameter today

ΩGW ≃
ΩBH,i

H2
0M

ω40 I(ω0) , (3.62)
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where H0 = 100h km · s−1 ·Mpc−1 is the Hubble rate, with h ≃ 0.67− 0.73. The non-trivial

frequency dependence lies in the integral

I(ω0) =

∫ t∗

ti

dt
(ai/a)

3

eω0/aTBH − 1
, (3.63)

which generically needs to be evaluated numerically for each ω0. Sample spectra are shown

in Fig. 3.8.

Figure 3.8: Semi-analytic estimate (solid lines) for the spectral density parameter ΩGWh2

today, presuming a monochromatic spectrum of Schwarzschild black holes of initial mass M
and ΩBH,i sufficiently large that the PBH eventually dominate the universe energy density,
i.e. satisfying Eq. (3.56), such that the black holes come to dominate before decay. We work
in the blackbody approximation and presume instantaneous decay. This can be compared
with the exact numerical solution (dashed lines), for which these assumptions are relaxed.

The gravitational wave spectrum from graviton production off of Hawking evaporation

is almost thermal, but it features more power at low frequencies due to the redshifting of

higher frequency modes into lower frequencies. The peak is generically located at very high

frequencies — far out of the range of current and near-future gravitational wave detectors.

Decreasing the black hole mass shifts the peak frequency to lower values. This is because

smaller black holes correspond to earlier formation times and evaporate more promptly,
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leading to a much longer period of cosmological redshift which serves to shift the spectrum

to lower frequencies. Even saturating the mass bound by considering Planck scale black

holes, however, we remain outside of detector sensitivity.

By extremizing ΩGW with respect to ω0, one can show that the frequency today peaks

at ωpeak ≃ 2.8a∗TBH, or more explicitly

fpeak ≃ (1.8× 1016 Hz)
(

M

105 g

)1/2

, (3.64)

where we have converted to linear frequency f = ω/2π. This is consistent with the peak

positions in the sample spectra of Fig. 3.8. Evaluating I(f0) at the peak frequency, which

dominates the contribution to the integral, one can show that the following empirical relation

holds

I(fpeak) ≃ (2.3× 10−33 GeV−1)

(
M

105 g

)−1

Ω−1
BH,i . (3.65)

Combining this with Eq. (3.62) evaluated at fpeak, we find an estimate for the maximal value

of the spectral density parameter which is, somewhat surprisingly, independent of both the

initial black hole mass and fractional energy density, so long as these are sufficiently large

that the black holes come to dominate the energy density of the universe before decay

ΩGWh2
∣∣
peak ≃ 4.2× 10−7 . (3.66)

Note that we have extracted the reduced Hubble rate h to alleviate the associated uncertainty

in its value. This estimate is consistent with the peak amplitude shown in Fig. 3.8 as well

as with [171]. Comparing with current gravitational wave sensitivities (see e.g. Fig. A3 of

[5]), we see that the magnitude of this signal at its peak is within reach of several current

and proposed experiments; however this peak occurs as ultra-high frequencies far outside

the current regime of observability.
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In the coming sections, we will see how a prolonged phase of early matter domination

can actually give rise to extra cosmological redshift, which in turn serves to shift the peak

emission to lower frequencies. This additional redshift, however, also has the effect of diluting

the gravitational wave signal. In fact, since the energy density falls off as four powers of the

scale factor ρGW ∼ a−4 while the frequency scales with just one f ∼ a−1, the effect on

ΩGW is much more significant. Thus, to retain a detectable signal, one would need to

enhance graviton emission. Recall that this estimate considered Schwarzschild black holes,

for which only approximately 1% of energy is emitted as gravitons. In contrast, Kerr black

holes preferentially emit particles of higher spin, like the spin-2 graviton. For this reason,

we consider Kerr black holes in the remainder of this work.

Finally by comparing with the exact spectra, obtained via BlackHawk and shown also in

Fig. 3.8 as dashed lines, we see that the blackbody and instantaneous decay approximations

are not adequate, although the peak positions coincide almost perfectly (which makes sense

as the graviton peak frequency is largely fixed by the black hole temperature independently of

greybody factors). As for the peak height, however, we see that the semi-analytic calculation

overestimates the amplitude by several orders of magnitude due to the neglect of greybody

factors, which otherwise suppress higher angular moments. Interestingly, however, the peak

in the case of near-extremal Kerr black holes nearly matches the blackbody Schwarzschild

estimate. Finally, the exact spectral shape also differs from the semi-analytic estimate in

that it features an extended high frequency tail. As the black hole evaporates, it grows

smaller and hotter, and the resultant gravitons emitted towards the end of the black hole

lifetime have a higher initial frequency, leading to the formation of the high-frequency tail.

Beyond Blackbody & Instant Decay: Numerical Results

In order to obtain the exact instantaneous graviton spectrum, we use the publicly available

code BlackHawk [188, 189], which goes beyond both the blackbody and instantaneous decay
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approximations. BlackHawk uses tabulated and appropriately interpolated greybody factors

to precisely compute the emission rates of Eq. (3.41) for all primary particle species. These

are then used to solve for the black hole mass and angular momentum loss rates of Eqs. (3.43)

and (3.44) in order to obtain the overall black hole evolution. The result is time-dependent

spectra which incorporate both greybody factors and the evolution of black hole mass and

temperature. While BlackHawk does allow for the study of black hole populations with

extended mass and spin distributions, we presume monochromatic spectra for simplicity, as

our primary focus will be on the effect of modified cosmological expansion histories.

We denote by QGW(t, ω) ≡ dNgrav
dtdω the instantaneous graviton flux, which is an output

of BlackHawk. The corresponding instantaneous power is dEgrav
dtdω = ω

2πQGW(t, ω) and the

instantaneous energy density emitted in the form of gravitational waves from an evaporating

population of primordial black holes with number density nBH(t) is

dρGW

dtdω
= nBH(t)

ω

2π
QGW(t, ω) . (3.67)

In order to obtain the total energy emitted in the form of gravitational waves, we need

to integrate this quantity over the course of the black hole lifetime, from formation16 at

ti ≃ M
M2

Pl

to evaporation at t∗, which are also outputs of BlackHawk. The energy density per

logarithmic frequency interval at evaporation then looks like

dρ∗GW

d lnω∗
= nBH,i

(
ai
a∗

)3 ω2∗
2π

∫ t∗

ti

dt
a∗
a(t)

QGW
(
t, ω∗

a∗
a(t)

)
, (3.68)

where, once again, we denote quantities evaluated at evaporation with a “∗". The exact

time-dependence of the scale factor a(t) appearing in this expression can be obtained by

16. Black holes formed during radiation domination tend to have negligible spin, and so the formation of
near-extremal Kerr black holes will likely require the introduction of new physics. While it is possible to
spin up a population of PBH through accretion and mergers, the maximal spin parameter obtained in this
way is α⋆ ∼ 0.7. Black holes that form from the collapse of density perturbations during a period of early
matter domination, on the other hand, tend to have near-extremal spins [174].
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solving numerically the equations governing the background evolution

ȧ

a
=

√
8π

3M2
Pl

(ρBH + ρrad) ,

ρ̇BH + 3
ȧ

a
ρBH = ρBH

Ṁ

M
,

ρ̇rad + 4
ȧ

a
ρrad = −ρBH

Ṁ

M
,

(3.69)

where the overhead dot denotes a derivative with respect to coordinate time and the mass

loss rate, given schematically in Eq. (3.43), is a BlackHawk output. To go from the spectrum

at evaporation to that today, we redshift by four powers of the scale factor according to

Eq. (3.59), with a∗ again given by Eq. (3.60). Finally redshifting also the frequency to today

as ω0 = ω∗a∗ and dividing by the critical density, we arrive at the fractional energy density

in gravitational waves today

ΩGW =
4nBH,ia

3
i

3M2
PlH

2
0

ω20

∫ t∗

ti

dt

a(t)
QGW

(
t,
ω0
a(t)

)
. (3.70)

In Fig. 3.9 we show the spectral shape of the energy density in gravitational waves today

ΩGWh2 for a sampling of initial masses. In all cases we take the initial fractional energy in

black holes ΩBH,i sufficiently large that they come to dominate the energy density before

decay, in which case the precise value of ΩBH,i has no bearing on the spectrum. Solid lines

correspond to the Schwarzschild case (α⋆ = 0) while dotted lines correspond to Kerr black

holes with near-extremal spin, α⋆ = 0.999.

We see that the inclusion of spin has a significant impact on both the shape and am-

plitude of the gravitational wave spectrum today. First, note that for near-extremal black

holes the peak position shifts to lower frequencies by about an order of magnitude. This is

because rapidly spinning black holes have a reduced lifetime as compared with their non-

spinning counterparts, and so the gravitational wave spectrum experiences a longer period
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Figure 3.9: Spectral density parameter ΩGWh2 for a monochromatic spectrum of primordial
black holes of initial mass M and mass fraction ΩBH,i, taken to be sufficiently large that the
black holes come to dominate before decay. The peak amplitude is enhanced by several orders
of magnitude for near-extremal rotating black holes (α⋆ = 0.999, dashed line) as compared
with the non-rotating case (α⋆ = 0, solid line). Cosmological evolution is otherwise standard.

of cosmological redshift17. The amplitude of the peak is also enhanced by several orders of

magnitude due to the black hole spin, which acts as an effective chemical potential biasing

the emission of higher spin particles. As was the case for our analytic estimate, we see that

smaller mass black holes correspond to spectra that peak at lower frequencies. This is be-

cause they can be produced at earlier times and evaporate more quickly, leading to a longer

period of cosmological redshift.

We remark that the results of this section are in good agreement with [172], which

also considered the gravitational wave signal from evaporating Kerr black holes presuming

standard cosmological evolution. They too found that the typical peak frequencies were

17. Based on the semi-analytic estimate, one might naively conclude that this shift towards lower frequen-
cies is due to the fact that rapidly spinning black holes are considerably cooler than those of negligible spin,
as can be seen from Eq. (3.38). However for Kerr black holes, typical graviton energies are not of order
the temperature, but rather the combination TBH + mΩBH, with ΩBH the black hole angular momentum
given in Eq (3.39). The large value of ΩBH for rapidly spinning black holes compensates for the smaller
TBH, such that the typical energies are comparable or even larger than those of gravitons from the analogous
Schwarzschild black hole.
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much too high for detection in current and future gravitational wave experiments. In light

of this, we now go beyond this analysis to consider the kinds of gravitational signals possible

in non-standard cosmologies.

3.2.4 Non-Standard Cosmologies

Early Matter Domination

Gravitational waves from evaporating primordial black holes can constitute an appreciable

fraction of the energy density today. However, in most cases, the spectrum peaks at very

high frequencies, far outside the reach of current and near-future detectors. Even for the

best-case scenario of a population of Planck mass black holes which come to dominate the

energy density before decay, the peak frequency is only as low as ∼ 1011 Hz. One way to

effect a shift to lower frequencies would be to invoke a period of early matter domination

(EMD). Since the universe expands to a greater extent in a fixed amount of time during

matter domination than during radiation domination, this introduces extra cosmological

redshift which serves to translate the spectrum to lower frequencies.

To induce this period of EMD, we introduce a heavy auxiliary field ϕ and demand that

its initial energy density be greater than that in both black holes and radiation combined

ρϕ,i > ρBH,i + ρrad,i. The universe will then remain matter dominated through black hole

evaporation up until the time τϕ at which ϕ decays, replenishing the SM radiation bath and

reheating the universe. To distinguish this from the situation of the previous section, this

should occur after black hole evaporation has completed, τϕ > t∗. Note that while it is true

that the black holes themselves will generically serve to induce a transient period of EMD

(presuming they possess sufficient initial energy density and lifetime), this ends at the time

of evaporation. If instead EMD comes about as a result of a heavy auxiliary field, then it can

last much longer — potentially up until ∼ O(1) s, when radiation domination must begin

so as not to spoil the predictions of BBN.
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An added benefit to using the auxiliary field to establish EMD is that the black holes

can then form during the matter dominated epoch with appreciable spin. For the standard

cosmology case of the section prior, we were agnostic as to how the black hole population

acquired near-extremal spins. Given that black holes formed from the collapse of overden-

sities during radiation domination generally have negligible spin, one would have to rely on

accretion and mergers, which generally only result in a spin parameter of α⋆ ≲ 0.7. On the

other hand, black holes formed during matter domination typically have appreciable spin,

which is ideal in terms of maximizing the amplitude of the gravitational wave signal.

Recall that in the typical radiation dominated case, a density perturbation will collapse

to form a black hole upon re-entering the horizon if its amplitude is greater than some

threshold value δth. Naively applying the analytic formula for the threshold in the matter

dominated case, one finds that it vanishes δth → 0, which would seem to suggest that any

region of overdensity could collapse to a black hole. This is of course not the case, as it turns

out that non-spherical effects play a crucial role for collapse during matter domination. As

an overdensity begins to collapse, its angular momentum grows significantly and prevents

collapse in a majority of cases. Those horizons that do succeed in collapsing, however,

form black holes which are rapidly spinning with near-extremal values of α⋆ ∼ 1. See e.g.

[190, 191, 174] for further detail regarding the computation of the initial mass fraction ΩBH,i

in the matter dominated case.

In terms of the gravitational wave signal ΩGW, the derivation proceeds as in the case

of standard cosmological evolution, and the spectral density parameter today is still given

by Eq. (3.70) with nBH,i in Eq. (3.53). The difference18 lies in the input for the initial

conditions as well as the evolution of the scale factor a(t) itself. With the addition of the

18. Technically the introduction of a new species changes the particle emission rate from the black hole,
but the effect is completely negligible. We could also take ϕ to be sufficiently heavy such that its emission
from the black hole is statistically suppressed.
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auxiliary field ϕ, Eqs. (3.69) governing the background evolution become

ȧ

a
=

√
8π

3M2
Pl

(ρϕ + ρBH + ρrad) ,

ρ̇ϕ + 3Hρϕ = −Γϕρϕ ,

ρ̇BH + 3HρBH =
Ṁ

M
ρBH ,

ρ̇rad + 4Hρrad = Γϕρϕ −
Ṁ

M
ρBH ,

(3.71)

where the decay rate is approximately Γϕ ≃ m3
ϕ

M2
Pl

on dimensional grounds. The mass of

ϕ should be appropriately chosen to ensure the corresponding lifetime τϕ = Γ−1
ϕ is after

evaporation but before BBN.

Solving this system of equations and evaluating Eq. (3.70) for the spectrum today for

various choices of decay time tdec = ti+ τϕ yields the plots in Fig. 3.10. We see that a longer

period of EMD is associated with a more heavily redshifted spectrum, as expected. For the

best case scenario of a population of Planck mass black holes, letting EMD persist until ∼ 1

s can bring the peak frequency as low as ∼ 104 Hz. However, the associated signal strength

is vanishingly small at ΩGWh2 ∼ 10−36. Unfortunately, this is a generic side effect of the

energy density in gravitational waves falling off as ρGW ∼ a−4 while the frequency decreases

as f ∼ a−1.

Generalized Equation of State

Extra cosmological redshift coming from a period of early matter domination, or any period

with equation of state w < 1/3, will result in lower peak frequencies but also dramatically

smaller amplitudes, as previously noted. Given that the peak signal is barely on the cusp of

observability ΩGW ∼ 10−7.5 in the standard scenario, any period of slower expansion which

serves to dilute energy density will lower the signal to outside of sensitivity.
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Figure 3.10: Spectral density parameter ΩGWh2 presuming black hole formation and evap-
oration during a period of early matter domination induced by the presence of a heavy
auxiliary field ϕ which lasts until a time tdec.

In this section, we consider how the signal from graviton production changes upon varying

the equation of state w of a species that dominates the energy density of the universe at

early times. Note that Ref. [192, 193, 194, 195, 196], among others, explored the effect of

non-standard cosmologies on gravitational waves produced by large density perturbations in

the early universe – a complementary probe to the signal we discuss herein.

We first note that the gravitational wave signal is not the only potential observable asso-

ciated with graviton emission from PBHs. High energy gravitons emitted by a population of

light, evaporating PBH constitute a thermal background of dark radiation, which contributes
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to the effective number of neutrino species Neff , defined as the contribution to the radiation

energy density beyond that of photons

ρrad = ργ

(
1 +

7

8

(
4

11

)4/3

Neff

)
. (3.72)

It is useful to factor this as Neff = NSM
eff + ∆Neff , where NSM

eff = 3.046 accounts for the

contribution from SM neutrinos and ∆Neff parameterizes the departure from the SM pre-

diction. This is tightly constrained by both BBN and CMB measurements. In particular,

the one-tailed Planck TT, TE, EE+lowE+lensing+BAO constraint is ∆Neff < 0.30 at 95%

[2]. The contribution to ∆Neff from gravitational waves reads

∆Neff =
8

7

(
11

4

)4/3 ρGW

ργ
. (3.73)

The ∆Neff bound is an integral bound which applies to the total energy density in

gravitational waves integrated over all frequencies. It can thus be interpreted as a bound

on the maximum amplitude of the GW spectrum, Ωmax
GW . Then from ρGW ≃ Ωmax

GWρcrit and

ργ = π2

15T
4
0 , with T0 = 0.235meV, the CMB temperature today, we find

∆Neff ≃ 120

7π2

(
11

4

)4/3 ρcrit
T 4
0

Ωmax
GW . (3.74)

Demanding that ∆Neff ≲ 0.30 translates to a constraint on the spectral density parameter

Ωmax
GW ≲ 3.6× 10−6 . (3.75)

The possibility that the early universe might be dominated by a species whose energy

density redshifted differently from radiation would modify the thermal history of the universe

and affect both the spectrum of gravitons emitted by evaporating PBHs and the effective

109



number of relativistic degrees of freedom. We shall consider here cosmological models where

at early times the energy density is dominated by a species ϕ with a generalized equation

of state Pϕ = wϕρϕ and wϕ > 1/3, corresponding to a period of faster expansion relative to

the standard case. If black hole evaporation occurs before or during ϕ domination, then the

energy density in gravitational waves will experience less dilution, potentially giving rise to

a signal which saturates the ∆Neff bound, and which might even be detectable with future,

high-frequency gravitational wave searches, as discussed below.

The energy density in ϕ evolves with the scale factor a as

ρϕ ∼ a−(4+n) , (3.76)

where we follow the same notation as [197, 198] and parameterize the deviation from the

radiation scaling with n = 3wϕ − 1. Generically, for a canonically normalized scalar field

minimally coupled to gravity, the equation of state is wϕ = (K−V )/(K+V ), whereK = 1
2 ϕ̇

2

and V = V (ϕ) is the potential. Then wϕ → 1 for K ≫ V (a regime dubbed kination), and

wϕ → −1 for K ≪ V , yielding a range of −4 ≤ n ≤ 2. Models with n > 2 are also

possible19 for instance in the context of ekpyrotic scenario [201] or with periodic potentials

and a varying wϕ [202, 203].

The background evolution is described by the following equations

ȧ

a
=

√
8π

3M2
Pl

(ρϕ + ρBH + ρrad) ,

ρ̇ϕ + (4 + n)Hρϕ = 0 ,

ρ̇BH + 3HρBH =
Ṁ

M
ρBH ,

ρ̇rad + 4Hρrad = −Ṁ
M
ρBH ,

(3.77)

19. Notice that for n > 2 there is no causality violation, despite having pϕ > ρϕ, since the sound speed is
c2s = 1 [199, 200].
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with n > 0. We specify the initial fractional energy densities ΩBH,i, Ωϕ,i, and Ωrad,i =

1− ΩBH,i − Ωϕ,i at the time of black hole formation, where Ωx,i = ρx,i/ρi and

ρi =
3M2

Pl

2(4 + n)2π

1

t2i
. (3.78)

Note that ϕ will generically dominate at early times by virtue of the way its energy density

scales with redshift, Eq. (3.76), giving rise to an expansion with a ∼ t2/(4+n). We take

the PBH to form during this period at a time ti = 4
4+n

Mi

M2
Pl

. As the universe expands, the

energy density in ϕ quickly becomes subdominant, as demonstrated in Fig. 3.11, which shows

the evolution of the energy densities of the various components for different choices of initial

conditions. We denote by tϕ the time at which the energy density in ϕ becomes subdominant

to that in radiation and black holes, ρϕ(tϕ) = ρrad(tϕ) + ρBH(tϕ).

Figure 3.11: Sample evolution of ρBH, ρrad, and ρϕ as obtained by solving Eq. (3.77) for
a population of near extremal (α⋆ = 0.999) PBH with initial mass Mi = 104 g. We take
n = 2, such that the initial ϕ domination corresponds to kination. This continues until ρϕ
becomes subdominant to ρBH at a time tϕ = 10−20 s. Black hole domination then continues
until evaporation replenishes the radiation bath at t∗ ≃ 3× 10−15 s.

One might wonder about the efficiency of primordial black hole formation during a period

of equation of state greater than that of radiation, w > 1/3. The authors of [140] have argued
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that the threshold for overdensity collapse in general cosmologies with w ≥ 0 (n ≥ −1) is

given by the following analytic formula20

δth =

(
n+ 4

n+ 6

)
sin2

(
π√
3

√
n+ 1

(n+ 2)

)
, (3.79)

where the prefactor assumes comoving gauge. This is based on the Jeans criterion as the

determining factor for primordial black hole formation and is derived by demanding that

the free-fall timescale be shorter than the soundwave propagation timescale, such that grav-

itational collapse wins out over the pressure gradient. For radiation domination n = 0 it

gives δth ≃ 0.414 while for kination n = 2 we have δth ≃ 0.375. Thus forming primordial

black holes during an early period with n > 0 should be comparable if not marginally easier

when compared with the radiation dominated case. Ref. [204] analyzed primordial black

hole formation for w > 1/3, presenting specific results for kination, w = 1, and addition-

ally studying the induced gravitational waves from large scalar modes in a kination epoch.

Furthermore, Ref. [205] studied primordial black hole formation in a scenario with moduli

domination and reheating after inflation (see also the recent review in Refs. [196, 206] that

discusses the potential effects induced by quantum gravity corrections).

Ignoring for now more exotic scenarios with n > 2, the gravitational wave signal will be

greatest for the case of kination n = 2, during with the energy density redshifts as ρ ∼ a−6.

In such a scenario it is easy to violate the bound on ∆Neff , as shown in Fig. ??. The duration

of kination is fixed by the choice of initial conditions for the fractional energy density in each

sector, with a larger initial density corresponding to a longer period of kination (see Fig.

??). For our benchmark points, we choose Ωϕ which gives the desired tϕ and set 10% of the

remaining energy density to be in the form of PBH, ΩBH = 0.1(1 − Ωϕ). We see that even

20. This nominally vanishes for the matter dominated case n = −1, which would seem to suggest any
overdensity should collapse to a black hole. However the derivation of [140] posits spherical symmetry, and
as we have already argued, deviations from spherical symmetry and angular momentum play a large role in
the suppression of primordial black hole formation during matter domination.

112



Figure 3.12: Spectral density parameter ΩGWh2 as compared with the ∆Neff bound of
Eq. (3.75) (grey shaded region) presuming ϕ domination until tϕ. Longer periods of kination
stemming from larger initial energy density in ϕ result in an amplified gravitational wave
signal, potentially contributing inappropriately to ∆Neff .

an extremely transient period of kination, completing long before black hole evaporation

completes, can result in a largely boosted signal, which can be ruled out on the grounds of

violation of ∆Neff bounds.

Fig. 3.12 studies, for a mass M = 104 grams, and quasi-maximal Kerr (a∗ = 0.999),

the spectrum of gravitational waves emitted in kination domination, with differing times tϕ

at which the kination energy density equals the energy density of the other components,

tϕ = 10−30 s (red line), 10−25 s (blue line), and 10−20 s (black line). The density of

gravitational waves increases the longer the period of kination domination, with the peak

well inside the region excluded by ∆Neff . We also observe a steepening of the lower-frequency

tail (below the peak), while the high-frequency behavior does not depend on the tϕ.
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3.2.5 Observational Prospects

While the general upper bound on the gravitational wave spectrum from evaporating primor-

dial black holes discussed above prevents the possibility to detect a stochastic gravitational

wave signal in a standard cosmological scenario, this conclusion is affected by considering

generalized early universe cosmologies, as detailed in the previous section. In particular,

for wϕ ≥ 1 the gravitational wave amplitude can significantly exceed the ∆Neff bound, and

potentially be detectable with future high-frequency gravitational wave searches.

The detection of ultra-high-frequency (f ≫ 1 kHz) gravitational waves is an active area

of intense experimental investigation (see the recent reviews [6] and [207]). Several experi-

mental techniques have been proposed, ranging from table-top interferometers, holometers,

optically levitated sensors, devices based on the inverse Gertsenshtein effect (the conversion

of gravitational waves to photons [208]), on gravitational wave to electromagnetic wave con-

version in an electric or magnetic field, bulk acoustic-wave devices, superconducting rings,

and graviton-magnon resonance.

We consider the following broad classes of experimental techniques, in order of increasing

frequency sensitivity, and with a proposed dimensionless sensitivity figure.21

• Laser interferometers (1-10) kHz [9×10−26] [209]

• Optically levitated sensors (10-100) kHz [4×10−24] [6]

• Enhanced electro-magnetic conversion (∼10) GHz [10−30] [210, 211, 212]

• Inverse Gersenshtein effect (1014-1018) Hz [3×10−30] [213]

In particular, a promising technology repurposes axion-like particle conversion in a magnetic

field to look for graviton conversion [213]; here we highlight current constraints, and the

21. Note that we present our results in terms of the dimensionless characteristic strain hc, related to the
spectral density parameter as:

ΩGW =
4π2

3H2
0

f2h2c .
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associated relevant frequency range, for JURA (Joint Undertaking on the Research for Axion-

like particles) [214], OSQAR II [215], and CAST [216].

Figure 3.13: Characteristic strain hc of M = 1 g, quasi-extremal (α⋆ = 0.999) PBHs for
a sample of early universe cosmologies compared with the sensitivity of several proposed
high-frequency gravitational wave detector technologies, as well as the ∆Neff bound from
Planck [2] (grey, dashed).

Fig. 3.13 compares existing proposals for high-frequency gravity wave detectors with our

predictions for the gravitational wave emission from primordial black hole evaporation with

standard and non-standard early-universe cosmological histories. The latter are taken for the

benchmark case of M = 1 g, α⋆ = 0.999 primordial black holes and shown as colored lines:

The standard prediction, featuring evaporation at τBH ∼ 10−28 s, is shown in orange. The

early matter domination case is shown in red, and assumes that the “extra”, non-standard

species (in this case, a non-relativistic matter component) decays at tdec = 10−25 s. The

green line corresponds to a kination scenario where the species responsible for kination

becomes subdominant at tϕ = 10−25 s; the blue and purple lines corresponds to an even-

faster redshifting species with n = 4, 6, also becoming subdominant at the same time,
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tϕ = 10−25 s.

Our general findings are that for large n (i.e. for a “stiff” equation of state, wϕ ≥ 1), the

peak gravitational wave emission can be quite “bright”, exceeding limits from the number

of relativistic species (dashed grey line), and well into the frequency range of future high-

frequency gravitational wave detectors; we find that the very high and very low frequency

behavior of the gravitational wave spectrum is unchanged, but at frequency around and below

the peak frequency, the different redshifting in different early universe cosmologies produces

different spectral shapes. Finally, albeit for larger w, the spectrum shifts to higher frequency,

we find that the peak spectrum for n = 2, 4, 6 only mildly moves to higher frequencies.

In summary, we have considered the spectrum of gravitational waves produced by the

evaporation of light, primordial black holes in the early universe in the context of generic

cosmological histories. We first discussed the general features of the signal in a standard

cosmological setting where the primordial black holes form and evaporate in radiation dom-

ination, potentially with a brief period of black hole domination, and highlighted how there

is a general upper limit to the intensity of the ensuing gravitational wave stochastic back-

ground. We then studied the case of early matter domination by a species different from the

primordial black holes themselves, and concluded that the peak of the gravity wave spectrum

shifts to lower frequencies, but is also significantly suppressed in intensity, leading to bleak

detection prospects. Finally, we entertained scenarios where the early universe is dominated

by a species redshifting faster than radiation, such as kination of super-stiff fluids. In those

cases, while the peak gravitational wave emission is shifted to higher frequencies, the inten-

sity of the peak emission is also greatly enhanced, and possibly in conflict with constraints

from the number of relativistic degrees of freedom. On a more optimistic note, however, this

offers opportunities for discovery for future high-frequency gravitational wave detectors.
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3.3 Constraining Extra-Dimensional Scenarios

In the previous section, we saw how the gravitational waves from evaporating primordial

black holes could be used to put integral bounds on non-standard cosmologies. Even upon

considering expansion histories with extra periods of cosmological redshift, however, the

spectral peak remained out of reach of even the most optimistic projections for future de-

tectors. The spectrum of gravitational waves from black hole evaporation generically peaks

at frequencies of order the Hawking temperature, which is why this signal is ultra-high fre-

quency for the hot, tiny primordial black holes of the early universe. This fact motivates

us to consider small black holes in theories with large extra dimensions, for which the peak

frequency can be lowered substantially, since the true bulk Planck scale M∗ can be much

smaller than the effective MPl.

In this section, we study the emission of brane-localized gravitons during the Hawking

evaporation of ultra-light primordial black holes in the context of theories with large extra

dimensions, with the ultimate goal of computing the contribution to the stochastic gravita-

tional wave background. To accurately model black hole evolution, we compute greybody

factors for all particle species emitted on the brane and in the bulk, presuming the majority

of emission proceeds during the Schwarzschild phase. We then compute the power spec-

trum and present day spectral density parameter for brane-localized gravitons contributing

to a gravitational wave signal. We find that for an optimal choice of parameters, the peak

frequency plateaus in the sub-MHz regime, within range of planned high-frequency grav-

itational wave detectors, making this scenario a target for detection once their sensitivity

exceeds ∆Neff bounds. Note that the material in this section shares considerable overlap

with [26], which has recently been submitted for publication by this author.
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3.3.1 Overview

Theories with large extra dimensions (LED) have long been appreciated as a solution to the

hierarchy problem [217, 218, 219]. In such models, the conventional 4-dimensional Planck

scale MPl is merely an effective energy scale related to the true fundamental quantum gravity

scale M∗ via the relation

M2
Pl ∼ RnMn+2

∗ , (3.80)

where R is the characteristic size of one of the n spacelike, compact extra dimensions. Clearly

for large R ≫ ℓPl, M∗ can be lowered significantly, such that gravity’s apparent weakness

can be understood as simply an artifact of the presence of these n large extra dimensions.

In order that the other fundamental forces are not affected beyond phenomenological limits,

the particle content of the Standard Model must be confined to a 4-dimensional “brane”

embedded in this (n + 4)-dimensional “bulk”, in which only gravitons and possibly heavy

Kaluza-Klein scalar modes can propagate. See e.g. [220] for a review. Presuming a funda-

mental Planck scale M∗ ≃ 10 TeV, the extra dimensions must be excessively large for n = 1

, with R ∼ 1012cm — in conflict with precision tests of Newton’s law. Larger values of n are

subject to constraints from various cosmological and astrophysical sources as well as collider

searches, as we will review, but remain phenomenologically viable and interesting [23].

The dimensionality of spacetime generically affects solutions in general relativity, includ-

ing black hole solutions. Black holes in LED scenarios are centered on the brane but extend

along the extra dimensions. Because the fundamental Planck scale is lowered, black holes

can also be produced in energetic particle collisions in the hot thermal plasma of the early

universe, in addition to the usual formation mechanisms. Small black holes with horizon ra-

dius less than the characteristic scale of the extra dimensions rh ≪ R are (n+4)-dimensional

objects, while larger black holes with rh ≫ R behave as effectively 4-dimensional. In either

case, black hole properties — notably temperature and the spectrum of Hawking radiation

— are affected by the presence of these extra dimensions.
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In this paper, we investigate the gravitational wave signal from the evaporation of ultra-

light primordial black holes in the context of theories with LED. The spectrum of gravita-

tional waves from black hole evaporation peaks at a frequency which is an order one factor

times the Hawking temperature, ωpeak ∼ TH . In the 4-dimensional case then, ωpeak ∼

M2
Pl/M , which is generically quite high for primordial black holes with M ≲ 5 × 108 g, as

required for evaporation before BBN. It was shown in Ref. [25, 221] that even after redshift-

ing these signals to the present day, the peak frequencies tend to be outside of the range

of proposed ultra-high frequency gravitational wave detection technologies. This motivates

us to consider black holes in extra dimensional scenarios, which are often colder than their

4-dimensional counterparts of the same mass. As we will see, the peak frequency in this case

scales with black hole mass M as

ωpeak ∼
(
M∗
M

) 1
n+1

M∗ . (3.81)

Since the true quantum gravity scale M∗ can be much lower than the observed MPl, we

expect ωpeak to be much lower — perhaps even within reach of future gravitational wave

detectors.

This section is structured as follows: In Sec. 3.3.2, we briefly review black holes in the

LED setup we consider, as well as general constraints on LED scenarios; Sec. 3.3.3 reviews

formation mechanisms and mass evolution for extra-dimensional primordial black holes; the

following two subsections lay out a detailed calculation of greybody factors for both brane

(Sec. 3.3.4) and bulk (Sec. 3.3.5) degrees of freedom; finally, the results are used in Sec. 3.3.6

to produce predictions for the stochastic background of high-frequency gravitational waves

from brane-localized gravitons.
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3.3.2 Review of Large Extra Dimensions

Black Holes in Large Extra Dimensions

The nature of black holes in extra-dimensional scenarios depends fundamentally on their

size relative to the characteristic scale R of the extra dimensions. Black holes with horizon

radius rh > R are larger than the size of the extra dimensions, and so should be relatively

insensitive22 to them, behaving effectively as 4-dimensional objects. In contrast, black holes

with rh < R are fully (n+ 4)-dimensional objects.

While primordial black holes can form through a variety of mechanisms in the early

universe, we will primarily consider formation via energetic particle collisions in the hot

primordial plasma. This mechanism is unique to the extra-dimensional scenario we will

consider, since the lowering of the fundamental Planck scale implies that particle collisions

with ECM > M∗ can lead to black hole formation. It can be shown that though a black

hole formed in such a way generically has angular momentum; this angular momentum is

quickly shed and the black hole evolves towards the spherically symmetric Schwarzschild

configuration [222].

We will thus consider Schwarzschild black holes in (n+ 4) dimensions. The line element

describing this geometry is [223]

ds2n+4 = −h(r)dt2 + h(r)−1dr2 + r2dΩ2
2+n , (3.82)

where dΩ2
n+2 is the line element of the (n+ 2)-dimensional unit sphere and

h(r) = 1−
(rh
r

)n+1
. (3.83)

The horizon radius rh appearing in this expression can be written as a function of n, the

22. The presence of the extra dimensions still affects the evaporation spectrum of these black holes, as well
as other properties.
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black hole mass M , and M∗ as

rh =
1

M∗

(
M

M∗

) 1
n+1

(
8Γ
(
(n+ 3)/2

)
(n+ 2)π(n+1)/2

) 1
n+1

, (3.84)

and enters into the expression for the Hawking temperature associated with the black hole

via

TH =
n+ 1

4πrh
. (3.85)

In the LED scenarios under consideration, black holes radiate gravitons into the bulk23 and

Standard Model particles on the brane. In the black body approximation, the power emitted

in both forms scales as

P ∼ Tn+4
H rn+2

h ∼ T 2
H , (3.86)

regardless of the number of dimensions. The black hole mass then evolves as −dM
dt ∼ T 2

H ,

which can be solved for the lifetime

τBH ∼ 1

M∗

(
M

M∗

)n+3
n+1

. (3.87)

Comparing with the strictly 4-dimensional result, which scales as τ4-dim ∼ M3/M4
Pl, we

see that an extra-dimensional black hole will usually24 be longer-lived than a 4-dimensional

black hole of the same mass.

Constraints on Extra-Dimensional Scenarios

The constraints on the number of extra spatial dimensions and the bulk Planck scale M∗ are

coupled and broadly originate from astrophysical and cosmological observations, precision

23. The graviton zero mode is also confined to the brane.

24. This is only strictly true for black holes satisfying rh < R. When the radius becomes of order the size
of the extra dimensions, one needs to carry out the full calculation including the numerical prefactors, which
depend on n and can be quite large.
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tests of gravity at sub-mm distances, and collider searches. We summarize some of the

constraints in Table 3.1 and describe them below here. Note that scenarios with n = 1 are

ruled out and those with n = 2 are strongly constrained. However constraints are generally

much weaker for n > 2 [23].

n M∗ ≥ Source
2 4 TeV Tests of gravity

27 TeV SN1987A
1700 TeV NS heating

3 76 TeV NS heating
≥ 4 ∼ 5 TeV Colliders

Table 3.1: A sample of constraints on the (n + 4)-dimensional Planck scale M∗ for various
numbers of large extra spatial dimensions n. See [23] for a detailed review of the constraints.

For n = 2, precision tests of gravity (i.e. deviations from Newton’s law) limit the size of

extra dimensions for at the level of M∗ > 4.0 TeV [224]. Energy losses to Kaluza-Klein (KK)

modes in stars, including supernovae, provide very stringent constraints: Ref. [225] calculates

that energy losses to KK modes constrain M∗ > 27 TeV for n = 2 and M∗ > 2.4 TeV for

n = 3. Since, after a supernova explosion, KK gravitons are gravitationally trapped in the

remnant neutron star, heating from KK decays in the neutron stars constrains M∗ > 1700

TeV for n = 2 and M∗ > 76 TeV for n = 3 [225]. Note that decays to non-interacting “dark

sector” degrees of freedom can weaken this bound. Cosmological constraints stem chiefly

from the concern that particle production in the early universe (in particular, production of

relic KK gravitons) should not over-close the universe. This constrains, for instance, M∗ > 7

TeV for n = 2 [226]. Stronger bounds arise from distortion of the cosmic diffuse gamma

radiation, however such constraints depend on whether KK gravitons can decay into dark

sector states [227].

The most stringent collider constraints hinge on the production of KK graviton modes,

or other modes that eventually decay into KK gravitons, which escape collider detection

and manifest as missing transverse energy. While in the standard 4D case such processes
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are highly suppressed by the “standard” Planck scale, the reduced size of the true Planck

scale M∗ makes them, in principle, testable at colliders such as the LHC. The constraints are

increasingly weak with a larger number of extra spatial dimensions and result in an overall

bound on the bulk Planck scale M∗ ≳ 5 TeV for n ≥ 4 [23]. More specifically, the ATLAS

analysis with 139 fb−1 luminosity at a 13 TeV center-of-mass energy in [228] quotes a 95%

C.L. limit of M∗ > 11.2 TeV for n = 2 and of M∗ > 5.9 TeV for n = 6. For a similar analysis

with 137 fb−1 luminosity, CMS quotes a 95% C.L. limit of M∗ > 10.7 TeV for n = 2 and of

M∗ > 5.5 TeV for n = 6 [229].

3.3.3 LED Black Hole Formation and Evaporation

Formation in High-Energy Particle Collisions

Primordial black holes can be formed through a variety of mechanisms in the early universe,

including first-order cosmological phase transitions, the collapse of topological defects, and

the collapse of primordial overdensities seeded by inflation — which we have already discussed

at length in Sec. 3.1.1. Regardless of the precise mechanism, it is suspected to be easier to

produce black holes in extra-dimensional scenarios since r(n+4)
h > r

(4)
h means that matter

on the brane requires less compression to form a horizon [230]. In these extra-dimensional

scenarios, tiny black holes can also be produced in high-energy particle collisions in the hot

thermal plasma of the early universe, provided the center-of-mass energy of the colliding

particles exceeds the quantum gravity scale ECM ≳ M∗. For a plasma of temperature

T ≲ M∗, black holes produced in this way have typical masses not much larger than the

Planck scale M ≳ M∗, since the production of more massive black holes is Boltzmann

suppressed. It was therefore initially thought that the tiny black holes formed through

collisions would be too small and hot, evaporating essentially instantaneously and leaving

no observational signatures.

Refs. [231, 232] and others have since noted that this need not be the case since accretion
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plays a vital role in the presence of extra dimensions. Since the accretion rate is proportional

to the horizon area and since extra-dimensional black holes are generically larger than their

4-dimensional counterparts of the same mass, the effects of accretion cannot always be ne-

glected. When accretion initially dominates over evaporation, these black holes can quickly

grow to macroscopic size, asymptoting to a mass which is independent of the initial value.

This asymptotic mass Masymp depends on the nature of the bulk; for a bulk which is fully

populated with gravitational radiation in thermal equilibrium with the brane, the mass will

be that of a black hole with size of the extra dimensions [231]

Masymp =
(n+ 2)π(n+1)/2

8Γ[(n+ 3)/2]

(
MPl

M∗

)2(n+1)/n

M∗ . (3.88)

We will be more interested in the case that the bulk is not thermalized, in which case an

initially microscopic (rh < R) black hole will accrete matter at a rate [232]

dMacc

dt
= faccAh ρrad , (3.89)

where facc is an O(1) accretion efficiency, Ah = 4πr2h is the horizon area, and ρrad =

π2

30g⋆(T )T
4 is the radiation energy density, with g⋆ the number of relativistic degrees of

freedom on the brane. It is convenient to re-express this as

dMacc

dt
=
( π

120
(n+ 1)2faccg⋆

)( T

TH

)4

T 2
H ≡ χn

(
T

TH

)4

T 2
H . (3.90)

Meanwhile, black hole evaporation proceeds schematically at a rate

dMevap

dt
= −αnT 2

H , (3.91)

where αn encodes the greybody factors and depends only weakly on TH (see the following
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sections for details). The black hole mass evolves according to the sum of these terms

dM

dt
=

[
−αn + χn

(
T

TH

)4
]
T 2
H . (3.92)

For initial black hole masses above the threshold M thresh
M , given as

Mthresh =

(
n+ 1

4πan

(
αn
χn

)1/4 M∗
T

)n+1

M∗ , (3.93)

the latter term dominates the former, and the black hole preferentially accretes. In this case,

we can approximate the evolution as dM
dt ≃ χn

T 4

T 2
H

. During radiation domination

H =
1

2t
=

(
4π3

45
g⋆

)1/2
T 2

MPl
, (3.94)

and so time and temperature can be related as

dT

dt
= −

(
4π3

45
g⋆

)1/2
T 3

MPl
. (3.95)

Keeping in mind also that M appears in TH according to Eqs. (3.84) and (3.85), this differ-

ential equation can be solved for the asymptotic mass

Masymp =

[(
π3

20
g⋆

)1/2(
n− 1

n+ 1

)
facca

2
n

]n+1
n−1 (

MPlT
2

M3∗

)n+1
n−1

M∗ . (3.96)

While the initial fractional abundance25 ΩiBH in the gravitational collapse formation

scenario can essentially be treated as a free parameter, for collision-driven production it

depends on the thermal distribution of particles in the plasma. Approximating the relative

25. Note that in Sec. 3.1.1 we referred to this quantity as β.
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velocity between particles as relativistic, the black hole formation rate per unit mass is [231]

dnBH
dM

≃ a2ng⋆(T )
2

8π3
MT 2

(
M

M∗

)2(n+2)
n+1

[
M

T
K1

(
M

T

)
+ 2K2

(
M

T

)]
Θ(M −M∗) , (3.97)

where Kν(x) are modified Bessel functions of the second kind. Note that for low tem-

peratures T ≪ M∗ ≲ M , production becomes Boltzmann suppressed since Kν

(
M
T

)
≃√

T
M exp

(
−M
T

)
in this limit. Thus the dominant production will occur at high tempera-

tures, with the most efficient production at the reheating temperature Tre. Despite the fact

that this production would seem to give rise to an extended mass function, because rapid

accretion leads to the asymptotic mass of either Eq. (3.88) in the case of a thermalized bulk

or Eq. (3.96) otherwise, the result is a population of tiny primordial black holes with an es-

sentially monochromatic mass function set by n, M∗, and the reheat temperature Tre alone.

The initial fractional abundance ΩiBH = ρiBH/ρ
i
tot can be obtained from ρBH =MnBH, with

the number density obtained by integrating Eq. (3.97) over M .

Hawking Radiation in Large Extra Dimensions

While accretion may initially dominate over evaporation for small black holes with rh < R,

once the temperature of the ambient plasma has fallen sufficiently relative to the Hawking

temperature, evaporation will become the dominant process governing black hole evolution.

Just as in the 4-dimensional case discussed in the previous section, a black hole with tempera-

ture TH evaporates by emitting Hawking radiation with a thermal spectrum which is almost

that of a perfect blackbody. Explicitly for the Standard Model particles and zero-mode

gravitons emitted on the brane, the flux spectrum is [179]

dN (s)(ω)

dt
=
∑
ℓ

σ
(s)
ℓ (ω)

1

eω/TBH ∓ 1

d3k

(2π)3
, (3.98)
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where the spin statistics factor is ∓1 for bosons/fermions, respectively. Note that this

expression applies for a given particle degree of freedom with spin s and angular momentum

ℓ; to capture the contribution from an entire elementary particle, it is necessary to sum over

the contributions from all spin or polarization degrees of freedom. The expression for the

power spectrum, or energy emitted per unit time, is similarly

dE(s)(ω)

dt
=
∑
ℓ

σ
(s)
ℓ (ω)

ω

eω/TBH ∓ 1

d3k

(2π)3
. (3.99)

The degree to which this spectrum deviates from that of a perfect blackbody26 is parameter-

ized by the greybody factor σ(s)ℓ (ω). Again, this factor appears because a particle emitted

by the black hole needs to surmount the strong gravitational field about the black hole in

order to reach an observer at infinity. The presence of this gravitational barrier distorts the

shape of the spectrum from that of a blackbody distribution. It is conventional to relate the

greybody factor to the absorption coefficient27 A(s)
ℓ (ω) as

σ
(s)
ℓ (ω) =

π

ω2
Nℓ

∣∣A(s)
ℓ (ω)

∣∣2 , (3.100)

where Nℓ = 2ℓ+ 1 is the multiplicity of states for partial wave ℓ. The absorption coefficient

in turn can be defined in terms of incoming and outgoing energy fluxes at the horizon FH

and at infinity F∞, ∣∣A(s)
ℓ (ω)

∣∣2 = 1− F∞
out

F∞
in

=
FH
in

F∞
in

, (3.101)

and thus can be computed by solving the equations of motion for particles propagating in

this black hole background. This will be the task of the following sections.

Higher-dimensional black holes with horizons smaller than the characteristic scale of the

26. For a perfect blackbody, the greybody factor is simply the area of the emitting body.

27. The modulus square of the absorption coefficient |A(s)
ℓ (ω)|2 is equivalent to the absorption probability

Γ
(s)
ℓm(ω) of Sec. 3.2.
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extra dimensions rh < R also emit massive Kaluza-Klein scalar and graviton modes which

propagate in the (n+ 4)-dimensional bulk. Even though only the Hawking radiation on the

brane is visible, it is essential to account for emission in the bulk, as the energy lost to the

bulk determines the energy remaining for brane emission. The expressions for particle and

energy flux in this case are completely analogous

dN̂ (s)(ω)

dt
=
∑
ℓ

σ̂
(s)
ℓ (ω)

1

eω/TBH ∓ 1

dn+3k

(2π)n+3
, (3.102)

dÊ(s)(ω)

dt
=
∑
ℓ

σ̂
(s)
ℓ (ω)

ω

eω/TBH ∓ 1

dn+3k

(2π)n+3
, (3.103)

though note that we have introduced hats to signify bulk quantities. For bulk modes, the

greybody factor is related to the absorption coefficient Â(s)
ℓ (ω) as [233]

σ̂
(s)
ℓ (ω) =

2n+1π(n+1)/2Γ
(
n+3
2

)
ωn+2

N̂ℓ

∣∣Â(s)
ℓ (ω)

∣∣2 , (3.104)

where the combinatorial factor N̂ℓ =
(2ℓ+n+1)(ℓ+n)!

ℓ!(n+1)!
is the multiplicity of states for partial

wave ℓ in (n+4)-dimensions. The definition of the absorption coefficient in terms of incoming

and outgoing energy fluxes at the horizon and infinity is analogous to the 4-dimensional

expression ∣∣Â(s)
ℓ (ω)

∣∣2 = 1− F̂∞
out

F̂∞
in

=
F̂H
in

F̂∞
in

. (3.105)

Though we are ultimately interested in the power spectrum of the zero-mode gravitons on

the brane, which will give rise to the stochastic gravitational wave signal, the energy available

to these gravitons will depend on that expended in emitting other brane-localized species as

well as that lost to the bulk. Accurately modeling black hole evaporation thus requires a

knowledge of greybody factors for all species emitted. Determining these greybody factors

is the goal of the following sections; we first calculate greybody factors for brane-localized
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modes in Sec. 3.3.4 before turning to bulk modes in Sec. 3.3.5. The calculation is quite

involved, so we summarize the main results in Table 3.2.

3.3.4 Greybody Factors I: Brane Localized Modes

Brane-localized fields propagate in a gravitational background induced from the higher (n+

4)-dimensional black hole solution, Eq. (3.82). If we project this solution onto the brane

by fixing the angular coordinates θi = π/2 for the additional compact n dimensions, the

induced 4-dimensional line element takes the form

ds24 = −h(r)dt2 + h(r)−1dr2 + r2dΩ2
2 , (3.106)

with h(r) given in Eq. (3.83). Greybody factors are obtained by solving master equations

describing the motion of a particle of spin s on this background. These master equations

can be derived by making use of the Newman-Penrose formalism [234], which is reviewed in

Refs. [235, 236, 237].

We begin by factorizing the field as Ψs = e−iωtRs(r)Y sℓm(θ), where the angular eigenfunc-

tions Y sℓm(θ) = eimφSsℓm(θ) are spin-weighted spherical harmonics28. The radial equation

for Rs(r) reads [236]

∆−s d
dr

[
∆s+1dRs

dr

]
+

[
ω2r2

h
+ isωr

(
2− rh′

h

)
+ s(∆′′ − 2)− (2s− 1)(s− 1)rh′ − λsℓ

]
Rs = 0 ,

(3.107)

where we define ∆ = hr2 and λsℓ = ℓ(ℓ+ 1)− s(s+ 1) is a separation constant. This radial

equation is almost identical to the usual 4-dimensional Teukolsky equation [238], but differs

28. The spin-weighted spherical harmonics Y s
ℓm(θ) are generalizations of the usual spherical harmonics,

and reduce to them for s = 0.
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by the presence of the s(∆′′ − 2) term, which vanishes when n = 0.

We see that the radial equation and thereby also the greybody factors for brane-localized

modes retain a dependence on the number of extra dimensions, which follows from the

explicit appearance of n in the line element induced by the higher-dimensional theory. Note

also that this expression differs from the “master equation” quoted in Refs. [239, 237, 222] by

the presence of the (2s−1)(s−1)rh′Rs term. This vanishes for the spin-1/2 and spin-1 species

considered in these works, but is non-vanishing for gravitons. While we will ultimately be

interested in s = 2 gravitons in the context of gravitational waves, we will also need the

greybody factors for the other brane-localized species emitted by the black hole in order

to faithfully model its evolution and evaporation. Thus we will leave s arbitrary and solve

Eq. (3.107) in full generality.

This task will be easiest if we first make the change of variables Ps = ∆sRs to eliminate

the s∆′′ term, leading to the transformed radial equation

∆s d

dr

[
∆1−sdPs

dr

]
+

[
ω2r2

h
+ isωr

(
2− rh′

h

)
− (2s− 1)(s− 1)rh′ − Λsℓ

]
Ps = 0 , (3.108)

where for convenience we have also defined Λsℓ = λsℓ+2s = ℓ(ℓ+1)− s(s− 1). Despite this

simplification, an exact analytic29 solution is not possible for all r. It is possible, however,

to solve in the near-horizon r ≃ rh and far-field r ≫ rh regimes. This turns out to be

sufficient for computing the greybody factors, which are related to the ratio of amplitudes

for incoming and outgoing modes evaluated at either the horizon or infinity. The idea is

to approximate the full solution of the radial equation by first solving in these limits, then

stretching the solutions and matching in an intermediate regime.

More concretely, the asymptotic solution in the near-horizon limit r → rh will turn out

29. Numerical integration of the radial master equation is also a possibility, but it is not without its own
difficulties. In particular for higher spins, it becomes increasingly difficult to isolate the two asymptotic
coefficients which enter into the expression for the greybody factor. Exact numerical solutions for s = 0,
1/2, and 1 were derived in Ref. [222], however the numerical issues are such that no analysis has yet been
performed for s = 2.
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to take the form

PHs = AHine
−iωr∗ + AHout∆

seiωr∗ , (3.109)

where r∗ is a tortoise coordinate satisfying dr∗
dr = h−1. The condition that there be no

outgoing modes near the black hole horizon requires us to set AHout = 0. Meanwhile the

asymptotic solution in the limit r → ∞ will be of the form

P∞
s = A∞

in
e−iωr

(2ωr)1−2s
+ A∞

out
eiωr

2ωr
. (3.110)

In the following three subsections, we solve the radial equation in the near-horizon and far-

field regimes and then match the solutions in the intermediate region, which allows us to

identify the coefficients AHin , A∞
in , and A∞

out. Then we will use these coefficients to construct

the absorption probabilities and ultimately the greybody factors.

Near-Horizon Regime

To solve Eq. (3.108) in the near-horizon regime, we begin by making the change of variables

r → h, in terms of which the equation becomes

h(1− h)
d2Ps
dh2

+

[
(1− s)(1− h)− (n+ 2s)

n+ 1
h

]
dPs
dh

+[
ω2r2h

(n+ 1)2h(1− h)
+

2isωrh − Λsℓ
(n+ 1)2(1− h)

− isωrh
(n+ 1)h

− (2s− 1)(s− 1)

n+ 1

]
Ps = 0 .

(3.111)

The further change of variables Ps(h) = hα(1 − h)βFs(h) transforms this into a hypergeo-

metric equation of the generic form

h(1− h)
d2Fs
dh2

+ [c− (1 + a+ b)h]
dFs
dh

− abFs = 0 , (3.112)
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with hypergeometric indices

a = α + β +
1

2(n+ 1)
[s+ n− ns+

√
κns] , (3.113a)

b = α + β +
1

2(n+ 1)
[s+ n− ns−√

κns] , (3.113b)

c = 1− s+ 2α , (3.113c)

where κns = n2(s − 1)2 − 2n(5s − 2)(s − 1) − s(7s − 12) − 4. Substituting this Ansatz

into Eq. (3.108) and solving the resultant algebraic equations, one can identify the power

coefficients

α+ = s+
iωrh
n+ 1

, α− = − iωrh
n+ 1

, (3.114a)

β± =
1

2(n+ 1)

[
1− 2s±

√
(2ℓ+ 1)2 − 4ω2r2h − 8isωrh

]
. (3.114b)

The full solution in the near-field regime reads

P
(s)
NH = A−hα(1− h)βFs(a, b, c;h) + A+h

−α(1− h)βFs(a− c+ 1, b− c+ 1, 2− c;h) ,

(3.115)

with A± as-yet-undetermined constants. In the limit r → rh, or equivalently h → 0, this

takes the asymptotic form

lim
h→0

P
(s)
NH ≃ A−hα + A+h

−α . (3.116)

Evaluating on the positive root α+, this becomes

lim
h→0

P
(s)
NH

∣∣
α+

≃ A−hseiωr∗ + A+h
−se−iωr∗ , (3.117)

where we have employed the tortoise coordinate r∗ introduced in Eq. (3.109). This describes

outgoing and incoming waves with divergent amplitudes at the horizon and so should be
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discarded. Meanwhile evaluating on the negative root α− gives

lim
h→0

P
(s)
NH

∣∣
α−

≃ A−e−iωr
∗
+ A+e

iωr∗ , (3.118)

which is perfectly regular. Thus we choose α = α−. Recall that we must also enforce the

boundary condition that there be no outgoing modes at the horizon, instructing us to set

A+ = 0. Then comparing with the asymptotic form Eq. (3.109), we see we should identify

AHin ≡ A−. Finally, convergence of the hypergeometric function demands Re[c− a− b] > 0,

leading us to choose the negative root β = β−. In summary, the solution in the near-field

regime is

P
(s)
NH = AHinh

α(1− h)βFs(a, b, c;h) , (3.119)

with hypergeometric indices (a, b, c) as defined in Eq. (3.113) and power coefficients α = α−

and β = β− as defined in Eq. (3.114). The amplitude for the incoming mode at the horizon

AHin will be identified after matching the solutions in the intermediate regime, which requires

first solving in the far-field limit.

Far-Field Regime

Returning to Eq. (3.108) and now taking the far-field limit r ≫ rh, or equivalently h → 1,

the radial equation becomes

d2Ps
dr2

+
2(1− s)

r

dPs
dr

+

[
ω2 +

2isω

r
− Λsℓ

r2

]
Ps = 0 . (3.120)

Taking the Ansatz Ps = e−iωrrℓ+sP̃s and performing the change of variables ρ = 2iωr, the

equation adopts the confluent hypergeometric form

ρ
d2P̃s
dρ2

+ (v − ρ)
dP̃s
dρ

− uP̃s = 0 , (3.121)

133



with indices

u = ℓ− s+ 1 , v = 2(ℓ+ 1) . (3.122)

The general solution reads

P
(s)
FF = e−iωrrℓ+s

(
B+M(u, v; ρ) +B−U(u, v; ρ)

)
, (3.123)

where M and U are Kummer functions, and we must keep both solutions. In order to fix

the asymptotic normalization, consider taking the r → ∞ limit, which leads to

lim
r→∞P

(s)
FF ≃

[
e−iπ(ℓ−s+1)/2

(2ω)ℓ+s

(
B−+

B+e
iπ(ℓ−s+1)Γ[2ℓ+ 2]

Γ[ℓ+ s+ 1]

)]
e−iωr

(2ωr)1−2s

+

[
e−iπ(ℓ+s+1)/2

(2ω)ℓ+s
B+Γ[2ℓ+ 2]

Γ[ℓ− s+ 1]

]
eiωr

2ωr
,

(3.124)

where the first and second terms are incoming and outgoing waves at infinity, respectively.

Comparison with Eq. (3.110) leads us to identify the bracketed quantity in the first line with

A∞
in ,

A∞
in =

e−iπ(ℓ−s+1)/2

(2ω)ℓ+s

(
B− +

eiπ(ℓ−s+1)Γ[2ℓ+ 2]

Γ[ℓ+ s+ 1]
B+

)
, (3.125)

and that in the second line with A∞
out,

A∞
out =

e−iπ(ℓ+s+1)/2

(2ω)ℓ+s
Γ[2ℓ+ 2]

Γ[ℓ− s+ 1]
B+ . (3.126)

Note that the incoming mode is dominant and the outgoing mode is suppressed as 1/r since

this solution corresponds to the upper component30 of the emitted field, with +s.

30. The other radiative component with −s would have a suppressed incoming wave and dominant outgoing
wave.
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Intermediate Regime

Finally, a complete solution and identification of the integration constants A− and B±

requires us to match P
(s)
NH and P

(s)
FF in the intermediate region. Returning to the near

horizon solution of Eq. (3.119), we want to stretch this towards large values of r. This will

be easier if we first transform the argument of the hypergeometric function from h to 1− h

via the identity

F (a, b, c;h) =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
F (a, b, 1 + a+ b− c; 1− h)

+
Γ(c)Γ(a+ b− c)

Γ(a)Γ(b)
(1− h)c−a−bF (c− a, c− b, 1 + c− a− b; 1− h) .

(3.127)

Now taking the limit h→ 1 (r → ∞), the near-field solution becomes

lim
h→1

P
(s)
NH ≃ AHin

(
Γ[1− s+ 2α]Γ[1−2s

n+1 − 2β]

Γ[c− a]Γ[c− b]

)(rh
r

)(1−2s−
√
(2ℓ+1)2−4ω2r2h−8isωrh)/2

+ AHin

(
Γ[1− s+ 2α]Γ[2β − 1−2s

n+1 ]

Γ[a]Γ[b]

)(rh
r

)(1−2s+
√
(2ℓ+1)2−4ω2r2h−8isωrh)/2

.

(3.128)

As for the far-field solution of Eq. (3.123), stretching towards small values of r → rh yields

lim
r→rh

P
(s)
FF ≃ B+r

ℓ+s +
B−

rℓ−s+1

Γ[2ℓ+ 1]

(2iω)2ℓ+1Γ[ℓ− s+ 1]
. (3.129)

We would like to match this onto Eq. (3.128), however these two expressions have different

power law scalings in r. In order to eliminate the square root in the near-horizon solution,
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we must take the low energy limit ωrh ≪ 1,

lim
h→1

P
(s)
NH ≃ AHin

(
Γ[1− s+ 2α] Γ[1−2s

n+1 − 2β]

Γ[c− a] Γ[c− b]

)(
r

rh

)ℓ+s
+ AHin

(
Γ[1− s+ 2α] Γ[2β − 1−2s

n+1 ]

Γ[a] Γ[b]

)(rh
r

)ℓ−s+1
.

(3.130)

Note that this approximation is performed for the power law scalings only; no approximation

is made to the gamma functions, which increases the domain of validity. Note also that we

will ultimately be interested in the part of the spectrum ranging from the low frequency tail

through the peak, which is set by the Hawking temperature ωpeak ∼ TH . From the fact that

TH ∼ 1/rh, we have that ωpeakrh ∼ 1, and so this approximation should roughly hold for

our regime of interest.

Finally we can identify

B+ =

(
Γ[1− s+ 2α] Γ[1−2s

n+1 − 2β]

Γ[c− a] Γ[c− b]

)
AHin

rℓ+sh

, (3.131a)

B− =

(
Γ[1− s+ 2α] Γ[2β − 1−2s

n+1 ] Γ[ℓ− s+ 1]

Γ[a] Γ[b] Γ[2ℓ+ 1]

)
(2iωrh)

2ℓ+1 A
H
in

rℓ+sh

. (3.131b)

Then the relation between incoming amplitudes at the horizon and infinity reads explicitly

A∞
in =

AHin
(2ωrh)

ℓ+s

[
Γ(c) Γ

(
2β − 1−2s

n+1

)
Γ(a) Γ(b)

(ℓ− s)!

(2ℓ)!
(2iωrh)

2ℓ+1 e−iπ(ℓ−s+1)/2

+
Γ(c) Γ

(1−2s
n+1 − 2β

)
Γ(c− a) Γ(c− b)

(2ℓ+ 1)!

(ℓ+ s)!
eiπ(ℓ−s+1)/2

]
,

(3.132)

with the hypergeometric indices a, b, c defined in Eq. (3.113) and coefficients α, β in Eq. (3.114).
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Absorption Coefficients

Having identified AHin , A∞
in , and A∞

out, we are now ready to construct absorption coefficients

|A(s)
ℓ |2, which were defined in Eq. (3.101) in terms of ratios of energy fluxes of incoming and

outgoing modes at the horizon and infinity. In particular, we will use the second definition

involving the incoming fluxes F∞
in and FH

in . This is more convenient since, for the upper

field component we will consider, the outgoing mode at infinity is suppressed.

For scalars and fermions, the incoming energy flux at the horizon or infinity can be

computed by integrating the radial component of the conserved current Jµ over a 2-sphere

at this location [239]. For a complex scalar Ψ, this conserved current is

J
µ
(s=0)

= hr2(Ψ∂µΨ∗ −Ψ∗∂µΨ) , (3.133)

leading to a flux proportional to the absolute square of the radial solution

F(s=0) ∼
∣∣P0∣∣2 . (3.134)

Recall from Eq. (3.109) that the radial solution for an incoming mode at the horizon takes

the generic form31

PHs = AHinh
−iωrh/(n+1) , (3.135)

while from Eq. (3.110), the radial solution for an incoming mode at infinity is

P∞
s = A∞

in
e−iωr

(2ωr)1−2s
. (3.136)

31. This normalization is equivalent to that given in Eq. (3.109) upon solving for an explicit r∗ satisfying
dr∗/dr = h−1.
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The absorption coefficient for a scalar is then

∣∣A(0)
ℓ

∣∣2 = (2ωrh)
2

∣∣∣∣∣AHinA∞
in

∣∣∣∣∣
2

. (3.137)

For a fermion ΨA with conserved current

J
µ
(s=1/2)

=
√
2σ
µ
ABΨ

AΨ̄B , (3.138)

the flux is proportional to the difference of upper and lower field components

F(s=1/2) ∼
∣∣P1/2∣∣2 − ∣∣P−1/2

∣∣2 . (3.139)

Looking at Eq. (3.136), we see that for the lower field component, the incoming radial

solution at infinity is suppressed. Thus the dominant contribution to the flux comes from

the s = +1/2 helicity and the absorption coefficient is simply

∣∣A(1/2)
ℓ

∣∣2 =

∣∣∣∣∣AHinA∞
in

∣∣∣∣∣
2

. (3.140)

For s > 1/2, there are no conserved currents; however one can still infer the flow of energy

from the energy momentum tensor. For a gauge boson ΨAB , one can use the T rt component

of the energy momentum tensor

T
µν
(1)

= 2σ
µ
AA′σ

ν
BB′Ψ

ABΨ̄A
′B′

, (3.141)

to derive the flux

Fs=1 ∼ 1

2ωr2

(∣∣P1∣∣2 − ∣∣P−1

∣∣2) . (3.142)

Only the radial wavefunctions for s = ±1 appear because only the upper and lower field
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components are radiative. As with the s = 1/2 case, the incoming mode is suppressed

for the lower field component. Thus concentrating on the contribution from s = +1, the

absorption coefficient is ∣∣A(1)
ℓ

∣∣2 =
1

(2ωrh)
2

∣∣∣∣∣AHinA∞
in

∣∣∣∣∣
2

. (3.143)

For scalars, fermions, and gauge bosons, the absorption coefficient can be conveniently sum-

marized as ∣∣A(s)
ℓ

∣∣2 = (2ωrh)
2(1−2s)

∣∣∣∣∣AHinA∞
in

∣∣∣∣∣
2

, (3.144)

with the ratio AHin/A
∞
in given explicitly in Eq. (3.132). Repeating this procedure for gravitons

is complicated by the fact that there is generically no conserved energy-momentum tensor

for spin-2. As advocated for in [239], one option is to consider the Bel-Robinson tensor, from

which one can infer an energy-momentum conserved in all static black hole spacetimes. In

particular, the component T rttt can be used to construct the energy flux

1

4π

dE

dt
=

1

16ω2r6

(∣∣P2∣∣2 − ∣∣P−2

∣∣2) . (3.145)

Close to the horizon, we should replace the square of the frequency with ω2h = ω2+(2πTH)
2,

which comes from integrating with respect to proper distance along the worldline and is

necessary to properly account for gravitons close to the horizon [239]. Again the negative

helicity contribution is suppressed, so from the radial solution for s = +2, we have the

absorption coefficient ∣∣A(2)
ℓ

∣∣2 =
1

64ω4ω2hr
6
h

∣∣∣∣∣AHinA∞
in

∣∣∣∣∣
2

, (3.146)

with AHin/A
∞
in in Eq. (3.132). Substituting Eqs. (3.144) and (3.146) into Eq. (3.100) yields

the greybody factors for all brane localized modes, and is the main result of this section.

139



3.3.5 Greybody Factors II: Bulk Modes

Bulk Scalars

The calculation of greybody factors for bulk modes proceeds much in the same way as the

calculation for the brane-localized modes, though the starting point is the complete (n+4)-

dimensional metric of Eq. (3.82). Since the scalar case is particularly straightforward, we

will consider it first, following the treatment of [235]. Let Ψ̂ be a bulk scalar field, which

can be factorized as Ψ̂(t, r,Ω) = e−iωtR̂(0)
ωℓ (r)Ŷℓ(Ω), where Ω = (θi, φ) includes the angular

coordinates and Ŷℓ(Ω) are (n+3)-dimensional spherical harmonics. The radial wavefunction

satisfies the second-order differential equation

h

rn+2

d

dr

(
hrn+2dR̂

(0)

dr

)
+

(
ω2 − h

r2
ℓ(ℓ+ n+ 1)

)
R̂(0) = 0 , (3.147)

with h(r) defined in Eq. (3.83).

To solve in the near-horizon regime, we make the change of variables r → h, such that

the radial equation becomes

h(1−h)
d2R̂(0)

dh2
+(1−h)

dR̂(0)

dh
+

(
ω2r2

(n+ 1)2h(1− h)
− ℓ(ℓ+ n+ 1)

(n+ 1)2(1− h)

)
R̂(0) = 0 . (3.148)

Near the horizon we may set ω2r2 → ω2r2h; then by taking the Ansatz R̂(0) = hα̂(1−h)β̂F (h),

this takes the form of a hypergeometric equation

h(1− h)
d2F

dh2
+ [ĉ− (1 + â+ b̂)h]

dF

dh
− âb̂F = 0 , (3.149)

where F (â, b̂, ĉ;h) is a hypergeometric function with indices â = b̂ = α̂ + β̂ and ĉ = 1 + 2α̂,

and

α̂± = ± iωrh
n+ 1

, (3.150a)
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β̂± =
1

2
± 1

2(n+ 1)

√
(2ℓ+ n+ 1)2 − (2ωrh)

2 . (3.150b)

Demanding convergence instructs us to choose the solution β̂ = β̂− and as before we set

α̂ = α̂−. The complete solution in the near-horizon regime is

R̂
(0)
NH = Â−hα̂(1− h)β̂F (â, b̂, ĉ;h) + Â+h

−α̂(1− h)β̂F (â− ĉ+1, b̂− ĉ+1, 2− ĉ;h) , (3.151)

and in the near-horizon limit h→ 0 this becomes

lim
h→0

R̂
(0)
NH ≃

(rh
r

)(n+1)β̂ (
Â−e−iωr

n+2
h y + Â+e

iωrn+2
h y

)
, (3.152)

with y a tortoise coordinate satisfying dy
dr = 1

hrn+2 . The boundary condition that there be

no outgoing mode instructs us to set Â+ = 0.

Returning to Eq. (3.147), to solve in the far-field regime h ≃ 1 we make the change of

variables R̂(0) = f̂(r)/r(n+1)/2, in terms of which

(
d2

dr2
+

1

r

d

dr
+

(
ω2 − ℓ(ℓ+ n+ 1)

r2
− (n+ 1)2

4r2

))
f̂ = 0 . (3.153)

This is a Bessel equation whose solution includes Bessel functions of the first Jν(x) and

second Yν(x) kind,

R̂
(0)
FF =

B̂+

r(n+1)/2
Jℓ+(n+1)/2(ωr) +

B̂−
r(n+1)/2

Yℓ+(n+1)/2(ωr) . (3.154)

In the asymptotic regime ωr → ∞, this takes the form

lim
r→∞ R̂

(0)
FF ≃ B̂+ − iB̂−√

2πωrn+2
ei(ωr−(2ℓ+n+2)π/4) +

B̂+ + iB̂−√
2πωrn+2

e−i(ωr−(2ℓ+n+2)π/4) . (3.155)

As before, the near-horizon solution Eq. (3.151) needs to be stretched to r ≫ rh and the
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far-field solution Eq. (3.154) needs to be stretched to r ≪ ∞ such that the solutions can be

matched in the intermediate regime. Stretching the near-horizon solution can be achieved

by first transforming the argument from h to 1−h using the identity in Eq. (3.127) and then

taking h→ 1, leading to

lim
h→1

R̂
(0)
NH ≃ Â−

(
Γ(1 + 2α̂) Γ(1− 2β̂)

Γ(1 + α̂− β̂)2

)(
r

rh

)ℓ
+ Â−

(
Γ(1 + 2α̂) Γ(2β̂ − 1)

Γ(α̂ + β̂)2

)(rh
r

)ℓ+n+1
.

(3.156)

Stretching the far-field solution to smaller r and taking the low energy limit ωrh ≪ 1 again

to match the powers of r yields

lim
r→rh

R̂
(0)
FF ≃ B̂+

(
(ω/2)ℓ+(n+1)/2

Γ
(
ℓ+ n+3

2

) )
rℓ − B̂−

(
Γ
(
ℓ+ n+1

2

)
π(ω/2)ℓ+(n+1)/2

)
r−(ℓ+n+1) . (3.157)

Matching the solutions then allows us to identify B̂± in terms of Â−. For convenience we

define the ratio B̂ ≡ B̂+/B̂−, which is explicitly

B̂ = − 1

π

(
2

ωrh

)2ℓ+n+1

Γ
(
ℓ+

n+ 1

2

)
Γ
(
ℓ+

n+ 3

2

) Γ(α̂ + β̂)2

Γ(1 + α̂− β̂)2
Γ(1− 2β̂)

Γ(2β̂ − 1)
. (3.158)

We use the first expression32 of Eq. (3.101) for the absorption coefficient, which depends

on the ratio of incoming and outgoing fluxes at infinity

∣∣Â(0)
ℓ

∣∣2 = 1−
|R̂(0)

FF,out|2

|R̂(0)
FF,in|2

∣∣∣∣∞ . (3.159)

In terms of the asymptotic far-field solutions of Eq. (3.155), this is

∣∣Â(0)
ℓ

∣∣2 = 1−
∣∣∣∣B̂+ − iB̂−
B̂+ + iB̂−

∣∣∣∣2 =
4 Im[B̂]

|B̂|2 + 2 Im[B̂] + 1
. (3.160)

32. In the scalar case, both incoming and outgoing modes at infinity scale as r−(n+2)/2, as can be seen
from Eq.(3.155), and so neither is suppressed.
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Bulk Gravitons

The bulk graviton perturbations should be decomposed into three parts: a symmetric trace-

less tensor piece, a vector piece, and a scalar piece. The radial equation obeyed by each

type (R̂T , R̂V , R̂S) is slightly different but can be solved in a manner exactly analogous to

that used for the other perturbations we have considered so far. After making the change of

variables to h in order to solve in the near-horizon regime, the master equation [240] is

h(1− h)
d2R̂

dh2
+

(
1− (2n+ 3)

(n+ 1)
h

)
dR̂

dh
+

(
ω2r2h

(n+ 1)2h(1− h)
− ΛG

1− h
+ CG

)
R̂ = 0 , (3.161)

where

ΛG =


ℓ(ℓ+n+1)
(n+1)2

+
n(n+2)
4(n+1)2

for G = T, V

z
16(n+1)2m2 for G = S

, (3.162)

and

CG =


− (n+2)2

4(n+1)2
for G = T

3(n+2)2

4(n+1)2
for G = V

− q(1−h)2+p(1−h)+w
4(n+1)2[2m+(n+2)(n+3)(1−h)]2 for G = S

, (3.163)

where for the scalar perturbations we have definedm = ℓ(ℓ+n+1)−n−2, q = (n+2)4(n+3)2,

p = (n + 2)(n + 3)[4m(2n2 + 5n + 6) + n(n + 2)(n + 3)(n − 2)] − z(n+2)2(n+3)2

4m2 , w =

−12m(n+2)[m(n− 2)+n(n+2)(n+3)]− z(n+2)(n+3)
m , and z = 16m3+4m2(n+2)(n+4).

For all perturbations, the solution obeying the boundary condition of no outgoing waves at

the horizon is

R̂
T,V,S
NH = Â−hα̂(1− h)β̂F (â, b̂, ĉ;h) , (3.164)

where

α̂ = − iωrh
n+ 1

, β̂ =
1

2(n+ 1)

(
−1−

√
(2ℓ+ n+ 1)2 − 4ω2r2h

)
, (3.165)
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and the hypergeometric indices are

â = α̂ + β̂ +
n+ 2

2(n+ 1)
+ λG , b̂ = α̂ + β̂ +

n+ 2

2(n+ 1)
− λG , ĉ = 1 + 2α̂ , (3.166)

with

λG =


0 for G = T

(n+2)
(n+1)

for G = V

(n+2)
2(n+1)

√
1− q+p+w

[2m(n+2)+(n+2)2(n+3)]2
for G = S

. (3.167)

The far-field radial equation is much simpler, and for all perturbations takes the form

d2R̂T,V,S

dr2
+

(
ω2 −

(
ℓ(ℓ+ n+ 1) +

n(n+ 2)

4

)
1

r2

)
R̂T,V,S = 0 , (3.168)

with solution

R̂
T,V,S
FF = B̂+

√
rJℓ+(n+1)/2(ωr) + B̂−

√
rYℓ+(n+1)/2(ωr) . (3.169)

Stretching the solutions to the intermediate regime and matching allows for the identifications

B̂+

Â−
=

(
2

ωrh

)ℓ+(n+1)/2 Γ
(
ℓ+ n+3

2

)
Γ(ĉ)Γ(ĉ− â− b̂)

Γ(ĉ− â)Γ(ĉ− b̂)r
1/2
h

, (3.170)

and
B̂−
Â−

= −π
(ωrh

2

)ℓ+(n+1)/2 Γ(ĉ)Γ(â+ b̂− ĉ)

Γ
(
ℓ+ n+1

2

)
Γ(â)Γ(b̂)r

1/2
h

. (3.171)

Again, we define the ratio B̂ = B̂+/B̂−, so

B̂ = − 1

π

(
2

ωrh

)2ℓ+n+1 Γ
(
ℓ+ n+3

2

)
Γ
(
ℓ+ n+1

2

)
Γ(â)Γ(b̂)Γ(ĉ− â− b̂)

Γ(ĉ− â)Γ(ĉ− b̂)Γ(â+ b̂− ĉ)
. (3.172)
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Particle species Absorption coefficient
∣∣Aℓ∣∣2 Relevant equations

Scalar, s = 0 (2ωrh)
2
∣∣∣AHin/A∞

in

∣∣∣2
with

∣∣∣AHin/A∞
in

∣∣∣2 in Eq. (3.132)
Fermion, s = 1/2

∣∣∣AHin/A∞
in

∣∣∣2
Gauge boson, s = 1 1

(2ωrh)2

∣∣∣AHin/A∞
in

∣∣∣2
Zero-mode graviton, s = 2 1

64ω4ω2hr
6
h

∣∣∣AHin/A∞
in

∣∣∣2
Bulk scalar

4 Im[B̂]

|B̂|2+2 Im[B̂]+1

with B̂ in Eq. (3.158)

Graviton, scalar perturbation

with B̂ in Eq. (3.172)Graviton, vector perturbation

Graviton, tensor perturbation

Table 3.2: Summary of absorption coefficients for degrees of freedom on the brane and in
the bulk.

For the absorption coefficient, we expand the far-field solution in the asymptotic limit r → ∞

and use the definition in terms of incoming and outgoing fluxes at infinity. The solution is

the same as in the bulk scalar case,

∣∣ÂT,V,Sℓ

∣∣2 = 1−
∣∣∣∣B̂+ − iB̂−
B̂+ + iB̂−

∣∣∣∣2 =
4 Im[B̂]

|B̂|2 + 2 Im[B̂] + 1
, (3.173)

but now with B̂ given in Eq. (3.172).

3.3.6 Emission Rates and Gravitational Wave Spectra

Ultimately we would like to study the emission of brane-localized (zero-mode) gravitons

during the Hawking evaporation of primordial black holes in large extra dimensions. We

would like to compute the gravitational wave spectra from this source, but since the energy
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available to brane-localized gravitons depends on that expended in emitting all other species,

it is necessary to consider the emission rates for these as well.

Emission Rates

The emission of particles with mass greater than the Hawking temperature is exponentially

suppressed, so for convenience, we consider only the emission of species33 with m < TBH and

treat these as massless, |⃗k| = ω. This way, the phase space integrals in the flux and power

spectra of Eqs. (3.98)-(3.99) and Eqs. (3.102)-(3.103) can be evaluated explicitly. Using also

Eqs. (3.100) and (3.104) to re-express the greybody factors in terms of absorption coefficients,

the flux and power spectra simplify considerably to

dN (s)

dtdω
=

1

2π

∑
ℓ

(2ℓ+ 1)
∣∣A(s)

ℓ

∣∣2 1

eω/TBH ∓ 1
, (3.174a)

dE(s)

dtdω
=

1

2π

∑
ℓ

(2ℓ+ 1)
∣∣A(s)

ℓ

∣∣2 ω

eω/TBH ∓ 1
, (3.174b)

on the brane and

dN̂ (s)

dtdω
=

1

2π

∑
ℓ

(2ℓ+ n+ 1)(ℓ+ n)!

ℓ!(n+ 1)!

∣∣Â(s)
ℓ

∣∣2 1

eω/TBH ∓ 1
, (3.175a)

dÊ(s)

dtdω
=

1

2π

∑
ℓ

(2ℓ+ n+ 1)(ℓ+ n)!

ℓ!(n+ 1)!

∣∣Â(s)
ℓ

∣∣2 ω

eω/TBH ∓ 1
, (3.175b)

in the bulk. Fig. 3.14 below compares emission rates for the various species for two sample

benchmark points. We see that at higher frequencies, the differences in emission rate for

all brane localized species become smaller, as one would expect since in the high frequency

33. The mass of the lightest KK scalar is set by the size of the extra dimensions as mKK ≃ 1/R, which in
turn is set by our choice of M∗ and n since M2

Pl ∼ RnMn+2
∗ . In particular for M∗ = 103 TeV and n = 4, we

expect the lightest mode to have GeV-scale mass.
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Figure 3.14: Instantaneous flux dN
dtdω of species on the brane and in the bulk for a represen-

tative black hole of mass M = 10−10 g and n = 2 and n = 4 extra dimensions, respectively.
The same qualitative trends are observed for the power spectra dE

dtdω . The right-hand side
of the x-axis is truncated where the low frequency approximation breaks down, ωrh ∼ 1.

limit, the greybody factors for all species approach the geometric optics limit. Note that

we truncate the x-axis at the frequency at which the low frequency approximation used in

deriving the greybody factors breaks down. At low frequencies, the emission of particles

with higher spin is suppressed due to the larger barrier such particles have to surmount.

In general, the emission rate of species on the brane exceeds that of bulk species, and

this effect becomes more pronounced with increasing number of extra dimensions n. This

is perhaps surprising, since both black hole temperature and the multiplicity of states are

enhanced at higher n. However the absorption probability is suppressed with increasing

n, and ultimately it is this effect that dominates. Thus for all bulk degrees of freedom,

we observe a low energy emission rate which decreases with increasing n, consistent with

the findings of [240]. We also confirm these authors’ claim that among the gravitational

perturbations in the bulk, vector-type dominate.
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Gravitational Wave Signal

Now we turn to calculate the gravitational wave signal from this source, as parameterized

by the spectral density parameter ΩGW, defined as

ΩGW =
1

ρcrit

dρGW

d ln f
. (3.176)

Our starting point is the instantaneous power spectrum for a single degree of freedom for a

brane-localized graviton, dE
(2)

dtdω , the general expression for which is given in Eq. (3.174b) with

|A(2)
ℓ |2 = 1

64ω4ω2hr
6
h

|AHin/A∞
in |2 and |AHin/A∞

in |2 in Eq. (3.132). Multiplying by 2 to account

for the 2 graviton polarizations we define dEGW
dtdω = 2dE

(2)

dtdω . For an entire population of black

holes with number density nBH, the instantaneous energy density emitted in gravitational

waves is then
dρGW

dtdω
= nBH

dEGW

dtdω
. (3.177)

To obtain the total energy density in zero-mode gravitons emitted over the black hole lifetime,

we integrate this expression from black hole formation at ti to evaporation at t∗ = ti+ τBH,

where the black hole lifetime τBH can be obtained by numerically following the black hole

evolution
dM

dt
= −

∑
all d.o.f.

∫
dω

(
dE l

(s)

dtdω

)
, (3.178)

from M =Mi to ∼M∗. For practical purposes when integrating dρGW
dtdω , it is useful to make

the time dependence of certain quantities explicit. In particular recall that ρGW ∼ a−4,

ω ∼ a−1, and nBH ∼ a−3. The integrated energy density at evaporation is then

dρ∗GW

d lnω
= niBHω∗a

3
i

∫ t∗

ti

dt a(t)−3
(
dEGW

dtdω

)
, (3.179)
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Note that we have also converted the frequency interval to a logarithmic frequency interval.

We presume that black hole formation occurs during radiation domination and define ΩiBH

as the initial fractional energy density in black holes, in terms of which the initial number

density can be expressed

niBH =
3M2

PlΩ
i
BH

32πMit
2
i

. (3.180)

We also allow for the possibility that the black holes come to dominate at some time teq,

which is approximately

teq ≃
(
1− ΩiBH
ΩiBH

)2

ti . (3.181)

The scale factor appearing in this expression then scales with time as

a(t) =


ai

(
t
ti

)1/2
t < teq

ai

(
teq
ti

)1/2 (
t
teq

)2/3
t > teq .

(3.182)

Finally to obtain the gravitational wave spectrum today, we need to account for the redshift

in energy density and frequency due to the cosmological expansion between evaporation and

today
dρ0GW

d ln f
=
dρ∗GW

d lnω

(
a∗
a0

)4

. (3.183)

We take the scale factor today to be a0 = 1, which can be related to that at evaporation a∗

by invoking the conservation of entropy g⋆,sa3T 3 = constant,

a∗ =

(
g⋆,s(T0)

g⋆,s(T∗)

)1/3 T0
T∗

, (3.184)

where T0 = 0.235meV, g⋆,s(T0) = 3.91, and T∗ is the temperature when evaporation con-

cludes. In the event that black holes dominate, this can be estimated by equating the energy

density in black holes right before decay with that in radiation immediately afterwards,
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leading to

T∗ ≃
(

5M2
Pl

π3g⋆(T∗)t2∗

)1/4

. (3.185)

The energy density in gravitational waves today per logarithmic frequency interval is then

dρ0GW

d ln f
=
g⋆,s(T0)

g⋆,s(T∗)

(
T0
T∗

)3

ω0n
i
BHa

3
i

∫ t∗

ti

dt a(t)−3
(
dEGW

dtdω

)
, (3.186)

and the spectral density parameter is

ΩGW =
ΩiBHω

4
0

H2
0M

i
I(ω0) , (3.187)

where H0 = 100hkm · s−1 · Mpc−1 is the Hubble rate and we have pulled out the leading

frequency scaling, defining the integral

I(ω0) =
1

4t2i

g⋆,s(T0)

g⋆,s(T∗)

(
T0
T∗

)3 1

ω30

∫ t∗

ti

dt

(
ai
a(t)

)3(dEGW

dtdω

)
. (3.188)

Finally for the sake of comparing against projected sensitivities, we will sometimes present

our results in terms of the dimensionless characteristic stain hc, which is related to the

spectral density parameter as

ΩGW =
4π2

3H2
0

f2h2c . (3.189)

In Fig. 3.15, we plot predictions for the gravitational wave spectrum for a benchmark

point with bulk Planck scale M∗ = 103 TeV, formation time ti = 10−30 s, initial black hole

mass M = 1 g, reheating temperature Tre = 105 GeV, and various numbers of extra spatial

dimensions n. We indicate by the dashed horizontal line the integral bound on the total

energy density in gravitational waves. The observable ∆Neff parameterizes the additional

amount of radiation energy density beyond that of photons. In particular the contribution
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Figure 3.15: Gravitational wave spectra (in terms of the spectral density parameter ΩGWh2)
for various numbers of extra dimensions n = 2, 3, 4, 5 and a benchmark set of parameters:
M∗ = 103 TeV, ti = 10−30 s, M = 1 g, Tre = 105 GeV.

from gravitational waves reads

∆Neff =
8

7

(
11

4

)4/3 ρGW

ργ
, (3.190)

and so the Planck constraint of ∆Neff < 0.30 [2] can be used to bound the maximum ampli-

tude of the gravitational wave signal ΩGW < 3.6×10−6 [25]. Finally, we normalize the initial

energy density in black holes ΩiBH such that prior to decay, the black holes come to dominate

the energy density of the universe. Thus these plots should be interpreted as giving an upper

bound on the maximum possible signal. As the number of extra dimensions is increased, the

spectrum is qualitatively similar but increasingly suppressed at high frequencies.

In Fig. 3.16, we fix n = 2 and illustrate the effect of changing other parameters. In

the top left panel, we vary M ; in the top right, M∗; in the bottom left, Tre; and in the

bottom right, ti. A few comments are in order. First, decreasing the black hole mass moves

the spectrum towards lower frequencies, which makes sense as smaller black holes evaporate

more promptly, leading to a longer period of cosmological redshifting of the signal. This also

serves to suppress the maximum amplitude of the signal. Next, we see that decreasing the

151



Figure 3.16: Gravitational wave spectra (in terms of the spectral density parameter ΩGWh2)
for n = 2 and the base benchmark set of Fig. 3.15. In each panel we vary a single parameter.
Top left: varying M ; Top right: varying M∗; Bottom left: varying Tre; Bottom right:
varying ti. Note that in the bottom right panel, the blue line corresponding to ti = 10−30 s
is essentially coincident with the yellow ti = 10−20 s.

Planck scale M∗ enhances the overall signal while leaving the location of the peak frequency

unaffected. A similar effect is observed upon either increasing the reheating temperature Tre

or decreasing the formation time ti.

We want to identify the “optimal” scenario for experimental detection — i.e. the lowest

frequency signal with maximal amplitude consistent with ∆Neff constraints. Clearly there

are quite a few parameters that can be varied, so to determine the overall trends, in Figs. 3.17

and 3.18 we present contour plots of the peak frequency f and maximal spectral density

parameter ΩGWh2, respectively, for various slicings of parameter space. In Fig. 3.16 we

saw that changing the formation time and reheating temperature had minimal effect on the

value of the peak frequency, which instead was primarily set by the choice of the reduced

Planck scale M∗ and the black hole mass M . Thus in Fig. 3.17 we set ti = 10−30 s and

152



Tre = 105 GeV and explore how peak frequency varies in the (M∗,M)-plane for n = 2 (left)

and n = 4 (right). For both cases, the lowest values of the peak frequency correspond

to low values of both M∗ and M (bottom left corners). Increasing either34 leads to peak

gravitational wave emission at higher frequency.
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Figure 3.17: Contours of constant peak frequency in the plane defined by the reduced Planck
scale M∗ and the black hole mass M . Warmer colors indicate higher peak frequencies. Left
panel: n = 2; Right panel: n = 4. We set the other parameters to the benchmark values of
Fig. 3.15. The grey region is excluded on the basis that M < M∗.

Fig. 3.18 shows contour plots of the maximum gravitational wave amplitude in the

(M∗,M)- and (Tre, ti)-planes for n = 2 (top), n = 3 (middle), and n = 4 (bottom) ex-

tra dimensions. The dashed green line and the grey region above it correspond to pairs of

(M∗,M) that lead to evaporation at times larger than 1 s, violating BBN constraints. As in

Fig. 3.17, the cyan dashed line and the grey region below should be excluded on the basis

that M < M∗. The red dashed line corresponds to the ∆Neff bound, with larger amplitudes

34. It may appear surprising that increasing M leads to higher frequency, since from Eq. (3.85) we have
that the Hawking temperature peaks at TH ∼ (M∗/M)1/(n+1)M∗. This only sets the peak frequency at
emission, though, and after redshifting the signal to today, it turns out that the peak frequency roughly
scales as f0peak ∼ T0(M/MPl)

1/2, which is indeed increasing with increasing M . It is perhaps surprising that
M∗ does not appear in this expression, but this estimate was derived under many approximations (instant
decay, blackbody emission), and it is expected that M∗-dependence enters at subleading order. Looking at
the frequency plots, the M∗-dependence indeed appears quite weak, substantiating this reasoning.
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excluded. We note that this rules out a very significant portion of the otherwise permissible

parameter space, including nearly all ti for n = 2 and n = 3 at the benchmark M and M∗.

From these trends, we are able to identify the “best-case” scenario illustrated in Fig. 3.19.

The parameter values which yield the lowest peak frequency at the maximal amplitude still

consistent with the ∆Neff bound are

n = 2, β = 1, Tre = 16.5GeV, ti = 10−30 s, M∗ = 103 TeV, M = 10M∗ . (3.191)

Note that the large degeneracy in parameter space means this is only one of many possible

sets which could yield this result. While the tail of the signal extends down to hundreds

of Hz, well within the range where Advanced LIGO (aLIGO) and Einstein Telescope (ET)

are sensitive to a stochastic background [5], the amplitude is almost 10 orders of magnitude

too small for detection. We note, however, that the peak frequency plateaus in the sub-

MHz range accessible to planned high-frequency gravitational wave detectors, making this

scenario a target for detection once their sensitivity exceeds ∆Neff bounds.

Summary

Relic gravitational waves from the Hawking evaporation of tiny primordial black holes are

a generic prediction of many early universe scenarios beyond the standard cosmological

paradigm. For light primordial black holes evaporating before BBN, however, the resultant

gravitational wave spectra generically peak at ultra-high frequencies ∼M2
Pl/M . As discussed

in [25], these signals remain out of reach of even the most optimistic proposed high frequency

detectors, such that the only way to probe these scenarios is through integral bounds on

the energy density contained in gravitational waves. This is sufficient for putting broad

constraints on such scenarios, but does not provide any detailed information.

This motivated the consideration of black hole evaporation in the context of theories with
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large extra dimensions, in which the reduced value of the true bulk Planck scale M∗ ≪MPl

allows for lower peak frequencies ∼ (M∗/M)1/(n+1)M∗. Our goal was to make predictions

for gravitational wave spectra from the Hawking evaporation of ultra-light black holes in

LED scenarios. To faithfully model black hole evaporation and evolution, we computed in

detail the greybody factors for all particle species localized on the 4-dimensional “brane” as

well as those propagating in the bulk. The resultant absorption coefficients are summarized

in Table 3.2. We were then able to make predictions for the gravitational wave signal.

Figs. 3.15 and 3.16 show the effect of changing the number of extra dimensions n, the bulk

Planck scale M∗, the black hole mass M , the reheating temperature Tre, and the formation

time ti. Figs. 3.17 and 3.18 explore this parameter space in more detail and present contour

plots for the peak frequency and maximal amplitude. The trends established in these plots

allowed us to identify an “optimal” scenario for experimental detection, shown in Fig. 3.19.

We find that the lowest possible peak frequencies are obtained for models with very low

bulk Planck scale M∗ and very light black holes with mass only slightly above M∗. The

dependence on the number of extra dimensions is weaker, but increasing n weakly pushes

fpeak to slightly higher frequencies. Finally, the peak frequency is relatively insensitive

to formation time and reheating temperature, though these affect the amplitude of the

gravitational wave signal. We find that for the sample “optimal” parameter set of Eq. (3.191),

the peak frequency plateaus in the sub-MHz range. This should be accessible to planned

high-frequency gravitational wave detectors, once their sensitivities are improved to exceed

the ∆Neff bounds. The tail of this spectrum extends into the ∼ 100 Hz range, however

in order for this tail to have an amplitude within sensitivity, the peak would violate the

integral bound on the effective number of relativistic degrees of freedom ∆Neff . Should

high-frequency (f ≳ kHz) observatories dip below the ∆Neff constraints, observation of

evaporating extra dimensional black holes could be possible.
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Figure 3.18: Contours of constant gravitational wave energy density ΩGWh2 at peak fre-
quency in the (M∗,M)-plane (left panels) at fixed ti = 10−30 s and Tre = 105 GeV, and in
the (Tre, ti)-plane (right panels) at fixed M∗ = 103 TeV and M = 1 g. As in the previous
figure, warmer colors indicate larger amplitudes. The top panels have n = 2, the middle
panels n = 3, and the bottom panels n = 4 extra dimensions. Amplitudes corresponding to
the constraint on ∆Neff are shown with red dashed lines, with larger amplitudes excluded;
the green dashed lines indicate parameter space where evaporation occurs during BBN, with
larger amplitudes ruled out; finally, the cyan dashed lines indicate “quantum black holes”
(i.e. those with M =M∗), with the grey area below excluded.
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Figure 3.19: Gravitational wave prediction (in terms of the dimensionless characteristic
strain hc) for an “optimal” scenario for experimental detection — i.e. the lowest frequency
signal with maximal amplitude consistent with ∆Neff constraints (grey dashed line). The
corresponding parameter values are given in Eq. (3.191). Superposed are several current and
proposed gravitational wave detectors and their projected sensitivities to a stochastic grav-
itational wave background. These include the ground-based observatories Advanced LIGO
(aLIGO) and Einstein Telescope (ET) and the space-based Big Bang Observer (BBO) (sen-
sitivities taken from [5]), as well as several prospective high-frequency gravitational wave
detection technologies: laser interferometers, optically levitated sensors, and enhanced mag-
netic conversion (sensitivities taken from [6]).
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CHAPTER 4

COSMOLOGICAL PHASE TRANSITIONS

As we have already seen from our discussion of the Standard Model in Sec. 2.2, the forms

of the fundamental forces and the spectrum of fundamental particles looked very different

in the hot, dense conditions immediately following the Big Bang. As the universe expanded

and cooled, it proceeded through at least two cosmological phase transitions, whereby the

forces and matter came to take the forms now seen at low energies of today. In addition to

the QCD and electroweak phase transitions, there may also have been phase transitions in

dark sectors, potentially detectable through their gravitational wave signatures.

Cosmological phase transitions present yet another fertile breeding ground for the sym-

biosis between cosmology and particle physics. Indeed, much of what we know about the

QCD and electroweak phase transitions comes from laboratory experiments, collider data,

and lattice studies. While much remains to be determined about the exact details of these

transitions, here is what we do know:

Electroweak Phase Transition:

The electroweak phase transition occurred at the moment of electroweak symmetry break-

ing, which we already discussed at length in Sec. 2.2.4. Chronologically, this event is esti-

mated to have taken place ∼ 10−11 s after the Big Bang, at which point the universe had

cooled to ∼ 200GeV. Based on our current understanding of the Standard Model and the

Higgs sector, this is the temperature at which the minimum of the finite-temperature effec-

tive potential with non-vanishing Higgs vev ⟨H⟩ ≠ 0 became thermodynamically favored.

As a consequence, the Higgs developed a non-zero vev, the value of which today (at essen-

tially vanishing temperature T ≃ 0) has been measured as v ≃ 246GeV. This triggered the

breaking of electroweak symmetry SU(2)L×U(1)Y down to electromagnetism U(1)EM. The

gauge bosons of the broken weak nuclear force, W± and Z, acquired masses through this
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process, along with the fermions appearing in the Yukawa sector.

Presuming only the Standard Model particle content, the electroweak phase transition is

expected to be second order, with all parameters smoothly transitioning to their final values.

First-order phase transitions, on the other hand, proceed via the nucleation, growth, and

mergers of bubbles of true vacuum. First-order phase transitions are of particular interest

because they come with gravitational wave signals from bubble collisions, acoustic waves,

and turbulence. A first-order electroweak phase transition is of even further interest because

it is a prerequisite for electroweak baryogenesis, one of the leading candidates for establishing

the matter-antimatter asymmetry of the universe. While the electroweak phase transition

predicted in the Standard Model is not first-order, it may be made so with very minimal

extensions. See e.g. [241].

QCD Phase Transition:

The QCD phase transition is the event wherein quarks and gluons first became bound in

hadrons. This occurred due to the curious fact1 that the strong force becomes stronger at

lower energies (or equivalently, longer distances), as discussed in Sec. 2.2.2. Simluations on

the lattice have determined the QCD scale to be roughly ΛQCD ∼ 0.3GeV, though the exact

value can vary by study. For energies greater than ΛQCD, the strong force can be treated

perturbatively; for energies less than ΛQCD, we have the non-perturbative phenomenon of

color confinement, wherein the color-charged quarks become bound in color neutral combi-

nations of quark-antiquark pairs (mesons) or three quarks (baryons). The phase transition,

then, is estimated to have occurred when the universe had cooled to T ∼ 0.3GeV, corre-

sponding to ∼ 10−5 s after the Big Bang. The QCD phase transition is also a second order

smooth crossover.

1. This follows from the running of the QCD coupling gs, and can intuitively be understood as an “anti-
screening” effect from the gluons carrying color charge.
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In addition to these relatively established transitions, phase transitions may have also

occurred in dark sectors coupled to the Standard Model only through gravity or portal opera-

tors. We will discuss one such transition in Sec. 5.1. If strongly first-order, such a dark sector

transition could still be detectable through its gravitational wave signatures. The possibility

of a first-order electroweak phase transition has received much attention of late as upcoming

space-based gravitational wave interferometers like LISA [242] and DECIGO [243] will be

sensitive to the mHz range, where the frequency of gravitational waves from a T ∼ 200GeV

electroweak phase transition is expected to peak. Meanwhile, third generation ground-based

gravitational wave observatories like Einstein Telescope [244] promise increased sensitivity at

higher frequencies, which is relevant for signals from a high-temperature electroweak phase

transition.

In light of the coming influx of experimental data, much work is needed on the theoretical

front, as perturbative calculations of first-order phase transitions suffer from large theoretical

uncertainties which lead to predictions for gravitational wave spectra varying by orders of

magnitude. These include uncertainties in the determination of thermal phase transition

parameters — stemming from issues of renormalization group scale and gauge dependence,

choice of thermal resummation method, and more — as well as in the phase transition

dynamics, particularly the determination of the bubble wall velocity and details of nucleation.

See e.g. [245] for a comprehensive discussion.

In this chapter, we present some efforts in this direction. We begin in Sec. 4.1 by reviewing

first-order phase transitions and their gravitational wave signals. In Sec. 4.2, we address

the issue of how to correctly implement thermal resummation of the effective potential,

comparing the efficiency of different resummation schemes at 1- and 2-loop level and assessing

the error incurred by taking the high-temperature approximation. We advocate for the so-

called “partial dressing prescription” and extend this formalism to the case of mixing fields,

making it suitable for phenomenological studies of beyond the Standard Model extensions
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of the Higgs sector. Finally in Sec. 4.3, we look at some novel analytical bounds on 2

Higgs doublet models, which present among the simplest extensions of the Standard Model

potentially capable of generating a strongly first-order phase transition and possibly even a

successful electroweak baryogenesis.

4.1 First-Order Phase Transitions

In this section, we present a general overview of first-order phase transitions. We begin in

Sec. 4.1.1 by reviewing phase transition thermodynamics and the hydrodynamic description

of expanding bubbles in a hot thermal plasma. Then in Sec. 4.1.2, we review the sources and

production of gravitational waves in first-order cosmological phase transitions. For further

reading, see e.g. [246, 247].

4.1.1 Phase Transition Thermodynamics and Hydrodynamics

Free Energy

A first-order phase transition proceeding via bubble nucleation in the hot thermal plasma of

the early universe can be modeled by a scalar-fluid system. The central quantity governing

the thermodynamics of the phase transition is the free energy density F . Both the fluid

energy density ef and pressure pf are defined in terms of the fluid free energy density Ff as

ef = Ff − T
∂Ff
∂T

, pf = −Ff . (4.1)

The free energy of the fluid is simply the sum of the free energies of its thermalized particle

constituents,

Ff =
∑
B

nBFB +
∑
F

nFFF , (4.2)
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with nB/F the number of degrees of freedom per species. To compute this explicitly, recall

that the free energy density of a single bosonic degree of freedom with mass m is

FB = T

∫
d3k

(2π)3
ln
(
1− e−βωk

)
≡ T 4JB

(m
T

)
, (4.3)

where we have defined the bosonic thermal function JB . Similarly for a fermionic degree of

freedom,

FF = −T
∫

d3k

(2π)3
ln
(
1 + e−βωk

)
≡ T 4JF

(m
T

)
, (4.4)

with JF the fermionic thermal function. These admit the following high temperature expan-

sions

FB ≃ −π
2

90
T 4 +

1

24
m2T 2 − 1

12π
m3T − 1

32π2
m4
[
ln

(
meγE

4πT

)
− 3

4

]
, (4.5a)

FF ≃ −7

8

π2

90
T 4 +

1

48
m2T 2 − 1

32π2
m4
[
ln

(
meγE

πT

)
− 3

4

]
. (4.5b)

It is often useful to separate the field-independent term ∝ T 4. If we define the rest to be the

“thermal potential” VT , then the total free energy density of the fluid can be expressed

Ff = −π
2

90
g⋆T

4 + VT , (4.6)

where g⋆ =
∑
B nB + 7

8

∑
F nF is the effective number of degrees of freedom and

VT =
T 2

24

(∑
nBm

2
B +

1

2

∑
F

nFm
2
F

)
− T

12π

∑
nBm

3
B , (4.7)

neglecting higher order terms for simplicity. This quantity then defines the fluid pressure

pf =
π2

90
g⋆T

4 − VT . (4.8)
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Meanwhile, the free energy density for the scalar field is simply the tree level potential

Fϕ = V0 . (4.9)

The total free energy density for the scalar-fluid system is thus

F = −π
2

90
g⋆T

4 + Veff(ϕ, T ) , (4.10)

where we have defined the finite temperature effective potential Veff(ϕ, T ) = V0(ϕ)+VT (ϕ, T ).

Fluid Dynamics

The total energy momentum of the combined scalar-fluid system is given by the sum

Tµν = T
µν
f + T

µν
ϕ , (4.11)

where the energy momentum of the scalar field with tree-level potential V0(ϕ) is the usual

T
µν
ϕ = ∂µϕ∂νϕ− gµν

(
1

2
(∂ϕ)2 + V0

)
. (4.12)

When the thermal fluid is in local equilibrium, its energy momentum tensor takes the form

of a perfect fluid with energy density ef and pressure pf

T
µν
f = (ef + pf )u

µuν + pfg
µν , (4.13)

where uµ is the 4-velocity of the fluid. Of course during the phase transition near the wall,

we expect the system to be far from static however. Under such non-equilibrium conditions,

the perfect fluid description no longer holds, and more generically the energy momentum
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tensor for the fluid is given by

T
µν
f =

∫
d3k

(2π)3
kµkν

k0
f(k, x) , (4.14)

where f(k, x) is the distribution function of the relativistic fluid. In the event that f is

described by the equilibrium distribution, one can show that this more general definition

reproduces Eq. (4.13).

To understand the phase transition dynamics, we need to understand how the energy

momentum in either component of our scalar-fluid system evolves. Consider first the fluid

component; in the absence of external forces, we expect the conservation law ∂µT
µν
f = 0

to hold. We are not in this situation, however; the field-dependency of the effective masses

of the particles in the plasma generates an external force as the value of the scalar changes

across the wall interface.

To see this, note first that the particle masses appearing in the fluid free energy Ff of

Eqs. (4.6) and (4.7) are actually field dependent effective masses m2 = µ2 + cϕ2, with µ

the bare mass and c a function of dimensionless coupling constants. When the value of the

scalar field changes during the phase transition, so do the masses of the particle species in

the plasma. It is ultimately this field-dependency of the mass which should be interpreted

as sourcing the external force which drives the bubble wall.

Consider the action for a single free particle with field-dependent mass m(ϕ)

S = −
∫
dτ m

√
−gµν

dxµ

dτ

dxν

dτ
. (4.15)

Varying this action yields the equation of motion

d

dτ

(
m
dxµ

dτ

)
+ ∂µϕ

dm

dϕ
= 0 , (4.16)
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from which we can identify the force

Fµ = −∂µϕdm
dϕ

. (4.17)

Fµ enters into the relativistic Boltzmann equation describing the evolution of the particle

distribution function f(k, x) [248]

(
kµ∂µ +mFµ

∂

∂kµ

)
Θ(k0)δ(k2 +m2)f(k, x) = C[f ] , (4.18)

where the Heaviside function enforces positivity of energy and the delta function ensures

the on-shell condition is satisfied. The collision function C[f ] on the right-hand side of this

expression describes 2-body scattering and is generically a very complicated function. If

we assume that particle number and momentum are conserved in these 2-body scatterings,

though, C[f ] does have the nice property that

∫
d4k

(2π)4

(
a(x) + bµ(x)k

µ
)
C[f ] = 0 . (4.19)

The fact that a(x) and bµ(x)kµ are collision invariants will be useful in what follows.

We want to use the relativistic Boltzmann equation to determine the evolution of the

particle distribution function f(k, x) and thereby the fluid energy momentum tensor Tµνf .

Multiplying both sides of Eq. (4.18) by kν and integrating over 4-momentum should give
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zero. This allows us to write

0 =

∫
d4k

(2π)4
kνC[f ]

=

∫
d4k

(2π)4
kν
(
kµ∂µ +mFµ

∂

∂kµ

)
Θ(k0)δ(k2 +m2)f(k, x)

= ∂µ

∫
d4k

(2π)4
kµkνΘ(k0)δ(k2 +m2)f +mFµ

∫
d4k

(2π)4
kν

∂

∂kµ
Θ(k0)δ(k2 +m2)f

= ∂µ

∫
d3k

(2π)3
kµkν

2k0
f −mFµδνµ

∫
d4k

(2π)4
Θ(k0)δ(k2 +m2)f

=
1

2
∂µT

µν
f −mF ν

∫
d3k

(2π)3
1

2k0
f

∣∣∣∣
k0=Ek

,

(4.20)

where in the last line we have used Eq. (4.14). Finally using the explicit form for F ν in

Eq. (4.17) and generalizing from a fluid of a single species to the SM case by performing a

sum over fluid degrees of freedom i, we have

∂µT
µν
f = −∂νϕ

∑
i

ni
dm2

i

dϕ

∫
d3k

(2π)3
1

2k0
fi(k, x)

∣∣∣∣
k0=Ek

. (4.21)

Thus we see that the fluid stress tensor is not conserved, but rather sourced by the change

in mass across the wall interface. Note, however, that the total energy momentum of the

combined scalar-fluid system should be conserved,

∂µT
µν = 0 . (4.22)

Thus the energy momentum of the field should evolve as

∂µT
µν
ϕ = ∂νϕ

∑
i

ni
dm2

i

dϕ

∫
d3k

(2π)3
1

2k0
fi(k, x)

∣∣∣∣
k0=Ek

, (4.23)

and we should think of fluid contributions as changing the field’s energy and momentum. The

equation of motion for the scalar field can be obtained by inserting the explicit expression
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for Tµνϕ of Eq. (4.12) and evaluating

∂µT
µν
ϕ = ∂µ

[
∂µϕ∂νϕ− gµν

(
1

2
(∂ϕ)2 + V0

)]
= □ϕ∂νϕ+ (∂µϕ)∂µ∂

νϕ− 1

2
∂ν(∂ρϕ∂

ρϕ)− ∂νϕV ′
0

= (∂νϕ)

(
□ϕ− V ′

0

)
.

(4.24)

The equation of motion is then

□ϕ− V ′
0(ϕ) =

∑
i

ni
dm2

i

dϕ

∫
d3k

(2π)3
1

2Ek
fi(k, x) . (4.25)

Following [248], we consider a distribution which is close to the equilibrium distribution

and write

f(k, x) = feq(k, x) + δf(k, x) , (4.26)

where

feq(k, x) =
1

eEk/T ∓ 1
. (4.27)

Recall that the thermal contribution to the effective potential reads

VT =
π2

90
g⋆T

4 +
∑
i

±niT
∫

d3k

(2π)3
ln
(
1∓ e−Ek/T

)
, (4.28)

where Ek =
√
k⃗ 2 +m2

i and the top (bottom) sign is for bosons (fermions). Taking the
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derivative with respect to ϕ yields

V ′
T =

∑
i

±niT
∫

d3k

(2π)3
d

dϕ
ln
(
1∓ e−Ek/T

)
=
∑
i

ni

∫
d3k

(2π)3

(
1

eEk/T ∓ 1

)
d

dϕ

√
k⃗ 2 +m2

i

=
∑
i

ni
dm2

i

dϕ

∫
d3k

(2π)3
1

2Ek

(
1

eEk/T ∓ 1

)

=
∑
i

ni
dm2

i

dϕ

∫
d3k

(2π)3
1

2Ek
f
eq
i (k, x) .

(4.29)

Using this result and the decomposition f = feq + δf , Eq. (4.25) can be written as

□ϕ− V ′
eff(ϕ) =

∑
i

ni
dm2

i

dϕ

∫
d3k

(2π)3
1

2Ek
δfi(k, x) , (4.30)

where the effective potential is the sum of tree level and one-loop thermal terms, Veff =

V0 + VT . We see that the right-hand side is sourced by departures from the equilibrium

phase space distribution feq, which is in turn induced by gradients of the scalar field ∂µϕ.

This should be interpreted as a thermal “friction” term, since as we will see, without it the

bubble wall would propagate at the speed of light.

The Expanding Bubble

We are now ready to turn to a hydrodynamic description of the expanding bubble. First,

note that intuitively the condition for a bubble of true vacuum nucleated within the false

vacuum to expand is that the pressure inside by greater than the pressure outside

pin > pout , (4.31)
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where the pressure of the total scalar-fluid system is given by (see Eq. (4.10))

p =
π2

90
g⋆T

4 − Veff(ϕ, T ) . (4.32)

Thus taking ϕEW to be the value of the scalar field inside the bubble of true vacuum and 0

to be the value outside, bubble growth requires

Veff(ϕEW) < Veff(0) , (4.33)

which can only be satisfied below the critical temperature Tc. When this condition is fulfilled,

the bubble wall will move outward through the plasma at a speed which is governed by the

dynamics of the scalar field and its interactions with the plasma, as described by Eq. (4.30).

It is customary to parameterize the friction term appearing on the right-hand side of the

scalar equation as ∑
i

ni
dm2

i

dϕ

∫
d3k

(2π)3
1

2Ek
δfi(k, x) ≡ ηTu

µ∂µϕ , (4.34)

where ηT (ϕ, T, v) is some function of the scalar field, temperature, and possibly fluid velocity.

As for the motivation for this parameterization, the claim is that it makes it apparent

that conservation of the plasma entropy current is violated by the deviation of f from its

equilibrium distribution. To see this, we define the plasma entropy current as Sµ = suµ,

where s = ∂p
∂T is the entropy of the fluid and uµ = γ(1, v⃗ ) the fluid 4-velocity. By taking

Eq. (4.21) with the perfect fluid Ansatz of Eq. (4.13) and this parameterization of the out-

of-equilibrium term and multiplying by uν , one can then show that

∂µS
µ =

ηT
T

(uµ∂µϕ)
2 , (4.35)

where we have also made use of the fact that uν∂µuν = 0.
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Starting from our equation for the scalar-fluid dynamics,

□ϕ− V ′
eff = ηTu

µ∂µϕ , (4.36)

we would like to solve for the fluid profile around an expanding bubble. Let us presume

that the bubble is sufficiently large to approximate the wall as planar, and take it to move

in the z-direction with a wall speed vw which is constant in the rest frame of the universe,

establishing a steady-state flow. We work in the wall frame, where the fluid 4-velocity is uµ(z)

and the scalar field profile is ϕ(z). Assuming that the fluid speed changes only minimally

across the interface, the 4-velocity is approximately

uµ ≃ γw(1, 0, 0, vw) . (4.37)

For this particular setup, Eq. (4.36) becomes

∂2zϕ− V ′
eff = ηT γwvw∂zϕ . (4.38)

We can obtain an effective equation of motion for the bubble wall expansion by integrating

the scalar equation of motion across the bubble wall interface. Multiplying both sides by

∂zϕ and integrating over z, we find

∫
dz (∂zϕ)(∂

2
zϕ)−

∫
dz (∂zϕ)(∂ϕVeff) =

∫
dz ηT γwvw(∂zϕ)

2

⇒
∫
dz ∂z

[
1

2
(∂zϕ)

2 − Veff

]
= γwvw

∫
dz ηT (∂zϕ)

2

⇒ ∆Veff ≃ −γwvw
∫
dz ηT (∂zϕ)

2 ,

(4.39)

where in going from the first to second line we have used the facts that 1
2∂z(∂zϕ)

2 = ∂z∂
2
zϕ

and dϕ
dz

dVeff
dϕ = ∂zVeff , and in going to the last, we have assumed ∂zϕ

∣∣∞ ≃ ∂zϕ
∣∣−∞ and
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defined ∆Veff = Veff
∣∣∞ − Veff

∣∣−∞ as the pressure difference across the wall for the total

scalar-fluid system. In principle one can solve this equation for the wall velocity vw, though

in practice this is quite difficult.

Assuming the wall velocity is known and further assuming that the phase transition

completes sufficiently quickly that cosmological expansion can be neglected, one can express

the volume V of an expanding bubble nucleated at time t′ as

V(t, t′) = 4π

3
v3w(t− t′)3 . (4.40)

In order to track how the phase transition proceeds, we would like an expression for the

fractional volume of the universe in the metastable phase (i.e. the volume not occupied by

bubbles). We will denote this quantity h ≡ Vfalse
Vtot

= 1− Vtrue
Vtot

. To compute h, we will need to

know the rate at which bubbles nucleate, Γ(t), defined as the number of bubbles nucleated

per unit time per unit coordinate volume. In the simplified scenario where we ignore any

overlaps or collisions between bubbles, the true vacuum fraction is then simply the integrated

product of the nucleation rate and bubble volume, and the false vacuum fraction is 1 minus

this quantity,

h(t) = 1−
∫ t

tn
dt′ V(t, t′)Γ(t′) . (4.41)

Note that we have taken the lower limit of integration to be the time tn corresponding to the

nucleation temperature, though elsewhere in the literature it’s taken to be that corresponding

to the critical temperature, tc.

In reality, bubble collisions and overlap are non-negligible effects, especially as the phase

transition nears completion. To incorporate these effects, we follow the logic of Ref. [249] and

consider filling a space with randomly placed spheres, which are allowed to be overlapping

or nested. Let p(V1, V2) denote the probability that a given point is not contained within a
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sphere with volume between V1 and V2. The probability p(V1, V2+dV2) can be factorized as

p(V1, V2 + dV2) = p(V1, V2)p(V2, V2 + dV2) , (4.42)

where the probabilities on the right hand side are multiplied because we want the events (the

point not being contained in a sphere between V1 and V2, and the point not being contained

in a sphere between V2 and V2 + dV2) to occur simultaneously. Now let n(V )dV be the

fractional number density2 of spheres with volume between V and V +dV , such that we can

write

p(V2, V2 + dV2) = 1− n(V2)V2dV2 . (4.43)

That is, the probability of the point not being contained in a sphere between V2 and V2+dV2

is equal to 1 minus the fractional volume occupied by these spheres. Then

p(V1, V2 + dV2) = p(V1, V2)(1− n(V2)V2dV2) . (4.44)

The left hand side of this expression can also be expanded in a Taylor series as

p(V1, V2 + dV2) ≃ p(V1, V2) +
dp(V1, V2)

dV2
dV2 + ... (4.45)

Equating the right hand sides of the equations above, we arrive at the differential equation

dp(V1, V2)

p(V1, V2)
= −n(V2)V2dV2 , (4.46)

which is solved by3

p(V1, V2) = exp

[
−
∫ V2

V1

dV n(V )V

]
. (4.47)

2. The entire quantity n(V )dV has dimensionality L−3.

3. The symmetry under V1 ↔ V2 allows us to change the integration variable on the right hand side.
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In particular, the probability of a point not being in any sphere is obtained in the limit

V1 → 0, V2 → ∞, and is equivalent to the false vacuum fraction

h ≡ p(0,∞) = exp

[
−
∫ ∞

0
dV n(V )V

]
. (4.48)

Finally, the integral appearing in the exponential is the total fractional volume contained in

true vacuum bubbles, which can equivalently be expressed in terms of the nucleation rate

and volume of an expanding bubble

∫ ∞

0
dV n(V )V =

∫ t

tn
dt′ V(t, t′)Γ(t′) , (4.49)

where V(t, t′) is defined in Eq. (4.40). This leads to the following expression for the fractional

volume remaining in the metastable phase

h(t) = exp

[
−
∫ t

tn
dt′ V(t, t′)Γ(t′)

]
, (4.50)

which now incorporates the effect of overlaps. Since bubbles can only nucleate in the

metastable phase, knowledge of h now allows us to compute the number density of bub-

bles as a function of time

nbubble(t) =

∫ t

tn
dt′ Γ(t′)h(t′) . (4.51)

4.1.2 Gravitational Wave Production

Both the scalar field and fluid are a source of metric perturbations hij , and hence gravi-

tational waves. Recall that the entire energy momentum tensor can be decomposed into

contributions from the scalar field and fluid as Tµν = T
µν
ϕ + T

µν
f , with

T
µν
ϕ = ∂µϕ∂νϕ−

(
1

2
(∂ϕ)2 + V0

)
gµν , (4.52a)

173



T
µν
f = (ef + pf )u

µuν + pfg
µν , (4.52b)

where the fluid pressure is given by the finite temperature contribution to the effective

potential pf = −VT and we parameterize the 4-velocity uµ as γ(1, v⃗). In particular, the

shear stress Πij which sources the metric perturbations hij is given by projecting out the

transverse traceless part of the spatial energy momentum tensor T kl via Πij = Λij,klT
kl,

where Λij,kl = P̂ikP̂kl − 1
2 P̂ijP̂kl and P̂ij = δij − k̂ik̂j . Explicitly we find

Πij = γ2(ef + pf )vivj + ∂iϕ∂jϕ , (4.53)

where the first term is the fluid contribution and the second comes from the scalar field.

Gravitational wave production in a first-order cosmological phase transition can be de-

composed into three main stages:

• Bubble collisions: This initial stage of bubble collisions and mergers breaks spherical

symmetry, such that the gradient energy of the scalar field (idealized as being localized

on the bubble wall) can source gravitational waves. We denote this as the scalar

contribution Ωϕ and note that it tends to be subdominant unless the transition is very

strong.

• Acoustic stage: Each infinitesimal bubble wall is surrounded by a finite shell of

fluid kinetic energy. Even after the bubbles have merged, these shells can continue

to propagate as sound waves, and their collisions source gravitational waves. This

acoustic stage lasts much longer than the initial stage of bubble collisions and results

in a sound wave contribution Ωsw.

• Turbulent phase: During the final turbulent phase, non-linearities in the fluid equa-

tions become important as the plasma develops vorticity, turbulence, and potentially

shocks. The gravitational wave contribution from this source Ωturb is the most difficult
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to estimate and depends on the amount of energy remaining in the bulk fluid motion

at the conclusion of the acoustic stage.

In particular, the scalar shear stress Π
ϕ
ij = ∂iϕ∂jϕ acts as a source term for the scalar

contribution Ωϕ while the fluid shear stress Π
f
ij = γ2(ef + pf )vivj sources the acoustic and

turbulent contributions Ωsw and Ωturb. The total signal is the sum of these terms4

ΩGW = Ωϕ + Ωsw + Ωturb . (4.54)

The relative importance of each of these terms will depend on the details of the transition.

This is in turn largely determined by the following four quantities: the nucleation tempera-

ture Tn, the phase transition strength parameter αn, the phase transition inverse duration

β, and the bubble wall velocity vw. We comment on each of these in turn.

The Nucleation Temperature

The nucleation temperature Tn indicates the start of the transition. It is defined as the

temperature at which on average one bubble has nucleated in each Hubble volume,

N(Tn) = 1 , (4.55)

where the number of bubbles nucleated in a Hubble volume is given by

N(T ) =

∫ T

Tc
dT ′ Γ(T ′)h(T ′)

T ′H4(T ′)
. (4.56)

4. Determining the gravitational wave signals from each source is decidedly involved and requires numer-
ical treatment outside of the scope of this thesis. We recommend [247] for a comprehensive overview.
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In this expression, Tc is the critical temperature, h(T ) is the false vacuum fraction of

Eq. (4.50), and Γ is the nucleation rate

Γ(T ) ≃ T 4
(
S3
2πT

)3/2

e−S3/T , (4.57)

where S3 the 3-dimensional action of a critical bubble [250]. Note that Tn is slightly lower

than the critical temperature Tc, since significant nucleation requires some time to pass, and

it is slightly higher than the percolation temperature Tp, defined as the temperature at which

one first has an infinite cluster of mutually connected bubbles,

Tp < Tn < Tc . (4.58)

The Strength Parameter

There exist various definitions in the literature for the phase transition strength α, and

while some of these are equivalent, others can be related in nontrivial, model-dependent ways.

Refs. [251, 252, 246] and many others define the phase transition strength parameter in terms

of the enthalpy density w and the difference in the trace anomaly Θ = ηµνT
µν = 1

4(e− 3p)

between the symmetric and broken phases

αn =
4

3

Θ+(Tn)−Θ−(Tn)
w+(Tn)

. (4.59)

We5 include the subscript “n” to emphasize that all quantities are evaluated at the nucleation

temperature Tn. These authors argue that this is the most precise definition since the

potential energy of the scalar field is captured by the trace anomaly, which is proportional

to the trace of the energy momentum tensor. The trace anomaly difference can be expressed

5. Elsewhere in the literature, this definition is denoted αΘ.
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in terms of the effective potential Veff as

Θ+(T )−Θ−(T ) = ∆Veff − T

4

∂∆Veff
∂T

. (4.60)

Ref. [253] advocates for defining the strength analogously to Eq. (4.59) but with the trace

replaced by the so-called pseudotrace Θ̄ = e− p/c2s

ᾱn =
Θ̄+(Tn)− Θ̄−(Tn)

3w+(Tn)
. (4.61)

If we set c2s = 1/3, as for a relativistic plasma, this reduces to Eq. (4.59)

ᾱn
c2s=1/3−−−−−→ 4

3

Θ+(Tn)−Θ−(Tn)
w+(Tn)

= αn . (4.62)

Ref. [245] defines the phase transition strength parameter in terms of the radiation density

ρrad = π2

30g⋆T
4 and the difference in the trace anomaly

αp =
Θ+(Tp)−Θ−(Tp)

ρrad(Tp)
, (4.63)

with all quantities evaluated at the percolation temperature Tp. For a completely relativistic

plasma, the equation of state relates the pressure and energy density e = ρrad as p = 1
3e,

which in turn means the enthalpy is w = 4
3e. With this replacement,

αp
c2s=1/3−−−−−→ 4

3

Θ+(Tp)−Θ−(Tp)
w+(Tp)

, (4.64)

and the phase transition strength matches Eq. (4.59) save for the fact that the quantities

are evaluated at the percolation temperature Tp rather than the nucleation temperature Tn.

Finally, Ref. [254] and others define the strength in terms of the latent heat L(T ) released
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by the transition6,

αL =
L(Tn)
ρrad(Tn)

, (4.65)

with L(T ) defined as the difference between the enthalpies of the symmetric and broken

phases

L(T ) = w+(T )− w−(T ) . (4.66)

Note that this is not equivalent to the definition in terms of the trace anomaly. The latent

heat is proportional to the trace anomaly when evaluated at the critical temperature Tc,

Θ+(Tc)−Θ−(Tc) = L(Tc)/4. This occurs because ∆p = V +
eff − V −

eff = 0 at Tc by definition.

The strength parameter of Ref. [254] is evaluated at Tn, however, and so these definitions

are not equivalent, as they themselves acknowledge.

The Inverse Duration

The inverse duration of the phase transition, also known as the transition rate parameter β,

is defined as

β =
d

dt
ln

(
Γ(t)

V

) ∣∣∣∣
t=tf

, (4.67)

where tf is defined by the condition h(tf ) = 1/e and corresponds to the time at which ∼ 64%

of the universe has been converted to the true vacuum.

The Wall Velocity

The bubble wall velocity vw is probably the most difficult thermal parameter to determine,

though recent progress has been made in e.g. [256, 257]. Because of this, it is often either

arbitrarily fixed or left as a free parameter in studies of the gravitational wave signal from

6. The convention of defining α by latent heat seems to stem from this reference [255], which claimed
that the false vacuum energy density ϵ is 1/4 of the latent heat. However, they did not define latent heat
explicitly. Based on the bag equation of state used by this paper, the enthalpy density w = e+ p = 4

3aT
4 is

independent of ϵ, hence is clearly not related to the latent heat.

178



first-order phase transitions. A proper determination of the bubble wall velocity is however

crucial for accurate predictions, as it affects not just the energy budget for the transition but

also the type of transition itself. Depending on the wall velocity vw, the relative velocities

of the plasma inside v− and outside v+ the bubble wall, and the sound speed for the plasma

inside c−s and outside c+s , there are three classes of velocity profiles [251]:

• Detonations: This solution corresponds to a supersonic wall vw > c+s . Outside the

bubble, the fluid is at rest in the plasma frame v+ = 0 and equal to the wall velocity in

the wall frame v̄+ = vw. The fluid velocity is greater in front of the wall than behind

|v̄+| > |v̄−|. Note that the wall velocity must also be larger than the so-called Jouguet

velocity vJ . The phase transition front it followed be a rarefaction wave.

• Deflagrations: In this case, the plasma is at rest immediately behind the wall v− = 0,

such that in the wall frame v̄− = vw. The fluid velocity is then larger behind the wall

than in front, |v̄−| > |v̄+|. The phase transition front it preceded by a shock front.

• Hybrid: Hybrid profiles, also called supersonic deflagrations, are a superposition of

these two cases. As a result, the wall velocity is not identified with either v̄+ or v̄−,

and the phase transition front is both followed by a rarefaction wave and preceded by

a shockfront.

4.2 Thermal Resummation

The computation of the thermal phase transition parameters described in the previous section

suffers from theoretical uncertainties, many of which stem from the computation of the finite

temperature effective potential. The resummation of large thermal corrections to the effective

potential is mandatory for the accurate prediction of phase transitions. In this section, we

discuss the accuracy of different prescriptions to perform this resummation at the one- and

two-loop level and point out resulting conceptual issues if using a high-temperature expansion
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appearing at the two-loop level. Moreover, we show how the partial dressing prescription

consistently avoids these issues and work out a novel method to apply it to the case of mixing

fields. Our approach significantly extends the range of applicability of the partial dressing

prescription, making it suitable for phenomenological studies of beyond the Standard Model

extensions of the Higgs sector. Note that the material in this section shares considerable

overlap with material by this author soon to be submitted for publication.

4.2.1 Overview

After the discovery of the Higgs boson a little over ten years ago [258, 259], it is one of the

main goals of the Large Hadron Collider (LHC) as well as potential future colliders [260, 261,

262] to work towards understanding the dynamics of electroweak (EW) symmetry breaking.

Besides collider experiments, gravitational wave observatories [263, 264, 265, 266, 267, 268]

will start to probe the EW phase transition within the next decades. This research could

provide substantial insights into the thermal history of the Universe, which is modified in

many extensions of the Standard Model (SM) of particle physics. This, in particular, in-

cludes extensions of the SM Higgs sector, which may lead to a first-order electroweak phase

transition, which would enable the scenario of electroweak baryogenesis [269, 270, 271, 272]

or to phenomena like vacuum trapping, inverse symmetry breaking, or EW symmetry non-

restoration (EWSNR) [273, 7, 274, 275, 276, 277, 278, 279]. In addition to the electroweak

sector, phase transitions can also appear outside the electroweak sector in many BSM sce-

narios, including hidden sectors [280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290] and

high-scale models (e.g., grand-unified theories) [291, 292, 293, 294].

For all these different areas, precise theoretical predictions are crucial to fully exploit the

available experimental data. In the context of phase transition, this in particular means to

provide an accurate prediction for the effective potential at finite temperature using pertur-

bation theory.
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It is well known that for high temperatures large corrections occur which exacerbate the

behaviour of the perturbative expansion. To resum these large corrections, various resum-

mation schemes have been developed in the literature. These include schemes employing

a diagrammatic expansion — most notably the Parwani [295] and Arnold-Espinosa [296]

resummation schemes — as well as schemes which involve solving the gap equation — the

full dressing (FD) and partial dressing (PD) procedures [297, 298, 299]. Moreover, the large

thermal corrections can also be resummed in an effective field theory (EFT) framework re-

ducing the spacetime dimensions from four to three. This approach is called dimensional

reduction (DR) [300, 301, 302].

While the Parwani and Arnold-Espinosa schemes have the benefit of being easy to im-

plement — explaining their widespread application in the literature —, they on the other

hand suffer from several disadvantages. First, they only allow to resum the leading ther-

mal corrections. In many scenarios, the resummation of subleading thermal corrections is,

however, also important for an accurate prediction. Moreover, they intrinsically rely on the

high-temperature expansion for calculating the thermal masses and the thermal countert-

erms (see detailed discussion below). This implies that their accuracy is questionable in the

regime where the temperature is close to the order of the relevant masses, which is exactly

the interesting region for phase transitions (see [298] for a more detailed discussion).

Similar issues appear in the DR approach. While DR offers a conceptionally well-defined

and systematic way to resum large thermal corrections, it is technically challenging (for

recent steps towards automation of the required calculation, see [303]). Moreover, as an

EFT approach, it intrinsically relies on the separation of the scales. This means that it is

difficult to go beyond the high-temperature expansion and that each EFT is only applicable

to a pre-defined hierarchy of scales. This makes DR in particular unsuited for parameter

scans in BSM models for which many different hierarchies of the masses and the temperature

occur — requiring to work a different EFT for each hierarchy of scales.
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Partial dressing promises to resolve the issues of the FD and DR approaches. It includes

subleading thermal corrections and can be easily applied beyond the high-temperature ex-

pansion making it particularly suited for studying phase transitions. It has been applied to

the singlet-extended SM [298]. Its accuracy and perturbative convergence have been studied

recently in [299].

In the first part of the present work, we present a detailed comparison of partial dressing

with the Arnold-Espinosa and Parwani resummation schemes. Afterwards, we discuss the

application of PD to the phenomenon of EWSNR. EWSNR occurs if the thermal corrections

to a particle mass dominate over the tree-level mass turning the overall thermal mass squared

negative. Thus, thermal corrections are by definition large and large differences between

the FD schemes have been found in the literature [276, 277]. In this paper, we extend

this comparison to the two-loop level finding unphysical predictions originating from large

imaginary contributions to the effective potential. We demonstrate that these issues do not

occur if PD is used leading to a more reliable prediction.

In the last part of this paper, we discuss the case of mixing scalar fields. So far, the PD

approach is restricted to scenarios in which only one scalar takes a non-zero value effectively

forbidding the description of models with mixing scalars. This strongly limits the applica-

bility of PD for phenomenological studies. We demonstrate a new method to extend PD for

scenarios with more than one non-zero scalar field.

This section is structured as follows. In 4.2.2, we review the need for thermal resumma-

tion. Then, we discuss resummation in non-mixing one- and two-field models in 4.2.3. In

4.2.4, we compare the FD and PD models for a toy model for EWSNR. In 4.2.5, we demon-

strate the application of PD to models with mixing scalar fields. We provide conclusions in

4.2.6. Finally we present some supplementary material in 4.2.7.
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4.2.2 Perturbative Breakdown & Thermal Resummation

Bosonic field theories at finite temperature suffer from various issues in the infrared, princi-

pal among them is that the usual perturbation expansion breaks down. To demonstrate how

this breakdown comes about, consider a simple ϕ4 theory with quartic self-coupling λ. Work-

ing in the imaginary-time formalism [304], the 1-loop correction to the bosonic propagator

corresponds to the expression

=
λ

2
I[m] ≡ λ

2
T
∑
ωn

∫
d3k

(2π)3
1

K2 +m2
, (4.68)

where K = (ωn, k⃗) is the Euclidean four-momentum and ωn = 2πnT is the bosonic Matsub-

ara frequency. There are two useful ways to decompose this expression. One option would

be to split I into a zero-temperature piece I0[m] and a finite-temperature piece IT [m] [305],

I[m] =

∫
d4k

(2π)4
1

k2 +m2︸ ︷︷ ︸
I0[m]

+

∫
d3k

(2π)3
1

Ek

1

eEk/T − 1︸ ︷︷ ︸
IT [m]

, (4.69)

where E2
k = k⃗ 2 + m2. The zero-temperature I0[m] is UV-divergent, and we choose to

regularize it using dimensional regularization7 and the MS-scheme with renormalization scale

µR. Meanwhile the finite-temperature piece IT [m] is UV-finite, but sensitive to the IR. A

more convenient decomposition to reveal this would be to split the Matsubara sum appearing

in I[m] into a “soft” zero-mode piece with ωn = 0 and a “hard” non-zero mode piece with

ωn ̸= 0,

I[m] = T

∫
d3k

(2π)3
1

k⃗ 2 +m2︸ ︷︷ ︸
Isoft[m]

+T
∑
n ̸=0

∫
d3k

(2π)3
1

ω2n + k⃗ 2 +m2︸ ︷︷ ︸
Ihard[m]

. (4.70)

7. Note that for convenience we display all equations with ϵ→ 0, such that D = 4− 2ϵ→ 4.
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Figure 4.1: A daisy diagram featuring a zero-mode inner loop (dashed) surrounded by N
hard external loops (solid).

Working in the high-temperature limit m/T ∼ λ ≲ 1, the zero-mode contribution can be

evaluated explicitly as [305]

Isoft[m] = − 1

4π
mT , (4.71)

while the hard modes give a contribution

Ihard[m] =
T 2

12
− m2

16π2

(
1

ϵ
+ ln

(
µ2Re

2γE

16π2T 2

))
+

ζ(3)

128π4
m4

T 2
+O

(
m6

T 4

)
. (4.72)

Thus we see that the correction to the zero-mode mass scales like δm2
soft ∼ mT ∼ λT 2 while

the mass correction for the hard modes scale like δm2
hard ∼ T 2 in the high-T limit. Since

the latter is parametrically larger, excitations of non-zero modes in the thermal plasma will

act to screen the zero mode.

The IR problem manifests when considering higher loop “daisy diagrams", like that shown

in Fig. 4.1. This diagram features a zero-mode inner loop (dashed line) surrounded by N

hard outer loops (solid lines). Ignoring the overall symmetry factor, the contribution to the

effective potential coming from such a diagram is

V
daisy
N ∼

(
T

∫
d3k

(2π)3
1

(k⃗2 +m2)N

)λT ∑
n ̸=0

∫
d3k

(2π)3
1

ω2n + k⃗2 +m2

N , (4.73)

where the quantity in the first parenthesis comes from the N soft propagators in the inner
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loop and scales as m3−2NT while that in the second parenthesis comes from the N hard

external loops and scales as λNT 2N . The result is

V
daisy
N ∼

(
m3−2NT

)(
λNT 2N) = m3T

(
λT 2

m2

)N
. (4.74)

There are two potential issues here. First comparing with the contribution from an (N +1)-

loop daisy diagram, we see that each new hard thermal loop comes at a cost

α ≡
V

daisy
N+1

V
daisy
N

=
λT 2

m2
. (4.75)

The issue is that this expansion parameter α is not parametrically small at all times. In

particular when the system exhibits a phase transition, the expansion parameter becomes

O(1) at the critical temperature, since here m2 ∼ λT 2. This signals a breakdown of the

perturbative expansion; diagrams which formally appear to be higher order may actually

contribute with a magnitude equal to formally lower-order diagrams due to the contributions

from these hard thermal loops. Intuitively, this perturbative breakdown occurs because

at high temperatures, IR bosonic modes become highly occupied, leading to an enhanced

expansion parameter [306].

The second issue occurs for fields with vanishing mass, for which daisy diagrams with

N ≥ 2 are IR divergent. Clearly this divergence is not physical, as the thermodynamic

properties of a plasma of weakly interacting massless bosons (such as photons) are observed

to be finite, and so these divergent contributions must cancel amongst one another when

all terms in the expansion are summed. This is just another way to see that at finite

temperature, the fixed-order perturbative expansion fails.

A natural solution8, then, would be to reorganize the expansion using a new parameter

8. There are also alternative strategies to thermal resummation, such as dimensional reduction [307, 308],
which we will not review here. Another option would be to just treat the problem non-perturbatively, using
appropriate lattice techniques.

185



in terms of which the series is convergent — thermal resummation. Consider, for example,

how one would resum the daisy diagrams of Fig. 4.1. Computing the contribution from an

N -loop daisy diagram while more carefully keeping track of the combinatorial factors, we

would find

V
daisy
N = − T

12π

1

N !

(
λT 2

4

)N (
d

dm2

)N
m3 . (4.76)

One can check that this correctly reproduces the scaling of Eq. (4.74) by using the fact that

m3−2N =
4
√
π

3
(−1)N

(N−1)!
Γ(N)

Γ(N−3/2)

(
d

dm2

)N
m3. If we now sum over all such diagrams, we find

∞∑
N=0

V
daisy
N = − T

12π

∞∑
N=0

1

N !

(
λT 2

4

d

dm2

)N
m3

= − T

12π
exp

(
λT 2

4

d

dm2

)
m3 .

(4.77)

Finally letting x = m2 and noting that exp
(
c ddx

)
f(x) = f(x+ c), we find

∞∑
N=0

V
daisy
N = − T

12π

(
m2 +

λ

4
T 2
)3/2

. (4.78)

This is a rather significant result; after summing all contributions, we find an expression

where the limit m2 → 0 can meaningfully be taken without running into IR divergences. It

is also significant that when m2 → 0, this correction comes in at O(λ3/2) rather than O(λ2),

as would naively be expected.

The quantity appearing in parenthesis is the thermally corrected mass

M
2
(ϕ, T ) ≡ m2(ϕ) +

λ

4
T 2 , (4.79)

and to leading order, daisy resummation amounts to replacing instances of m2 in the effective

potential with the thermally corrected version M
2. Of course, daisy diagrams are not the

only problematic diagrams that appear in finite temperature field theory; there are also

186



so-called “super-daisy” diagrams as well as other sub-leading diagrams which demonstrate

IR-sensitivity and so should be resummed. Given the questions of which class of diagrams

to resum and how to re-order the expansion, there exist several different prescriptions for

implementing thermal resummation.

Historically, the most popular methods employing a diagrammatic approach to thermal

resummation are the Parwani [295] and Arnold Espinosa [296] schemes. The major con-

ceptual difference between these methods is that in the Parwani prescription, all modes

are resummed, while in the Arnold Espinosa prescription, only the problematic Matsubara

zero-modes are resummed. On a technical level, this is equivalent to whether the thermally

corrected mass M2 is substituted into all terms of the effective potential or only those non-

analytic in m2, which can be shown to correspond to zero-modes. Because the thermally

corrected mass is included in different terms, when working to fixed order in perturbation

theory these methods feature different higher-order terms, resulting in different degrees of

convergence.

In addition to these diagrammatic approaches to thermal resummation, which in com-

plicated theories quickly become impractical at higher-loop order, there is also a non-

diagrammatic method which we will refer to as gap resummation [309, 310, 311]. Rather

than computing the contributions from many higher loop diagrams, which quickly becomes

impractical in complicated theories, in gap resummation one need simply compute the one-

loop effective potential V (1)
eff and then solve the gap equation for the thermally corrected

mass. This gap equation includes the dominant contributions from many9 higher-order dia-

grams, in particular daisy diagrams to all orders in the effective potential. In a theory with

i = 1...n bosonic species {ϕi}, the gap equation for the thermal mass of species i reads

M2
i =

∂2

∂ϕ2i
V
(1)
eff (M2

j ) , (4.80)

9. Notably, contributions from superdaisy diagrams and other sub-leading diagrams like the bosonic sunset
are not automatically included.
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where masses appearing in the effective potential on the right-hand side are the thermally

corrected masses for all species in the plasma M2
j . Because the thermal mass appears on

both sides of this equation, it must generally be solved numerically. For convenience, it is

common to solve the truncated gap equation

M2
i

∣∣∣
trunc.

=
∂2

∂ϕ2i
V
(1)
eff (m2

j ) , (4.81)

where now the right hand side is evaluated on the field dependent effective masses m2
j . When

combined with the high temperature expansion, this truncated treatment only resums the

leading order hard thermal loops, and results in a solution of the form M2
i |trunc.

high-T
=

m2
i + cT 2 ≡M

2
i , with c some constant function of the couplings.

After solving the gap equation, one usually proceeds by replacing the background field

dependent masses m2
i (ϕj) with the thermally corrected versions M2

i (ϕj , T ) in the effective

potential V (1)
eff . This prescription is called full dressing (FD), or truncated full dressing

(TFD) if one uses the thermal mass obtained by solving the truncated gap equation, and

diagrammatically it corresponds to dressing both the propagator and vertex in 1-loop tadpole

diagrams.

Interestingly at the 1-loop level, the Arnold-Espinosa and Parwani prescriptions coincide

with special cases of truncated gap resummation. As we will soon see, the 1-loop potential

can be factorized into a zero-temperature Coleman-Weinberg (CW) piece VCW and a finite

temperature piece VT . In the Parwani prescription, we replace m2
i →M

2
i in both VCW and

VT while in the Arnold-Espinosa prescription we replace m2
i →M

2
i only in the non-analytic

term appearing in the thermal piece VT , corresponding to resumming only the Matsubara

zero-modes. The former then coincides with TFD at 1-loop while the latter corresponds to

a special case of TFD.

While the FD prescription has the obvious benefit of not needing to evaluate leading

order diagrams analytically, it also faces several difficulties. Beginning at 2-loop order,
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certain higher-order diagrams such as the sunset diagram are not automatically included

and need to be added by hand. More concerningly, the FD prescription has been shown to

miscount daisy and superdaisy diagrams starting at 2-loop order [312, 313]. An alternative

procedure which reliably resums the dominant contributions to higher order is the partial

dressing (PD) prescription, first introduced in [297] under the name of tadpole resummation.

Rather than substituting m2
i → M2

i directly in the effective potential, the PD prescription

instructs us to perform the replacement in the first derivative of the effective potential V ′
eff,

which can then be integrated to obtain Veff as

Veff =

∫
dϕ

∂Veff
∂ϕ

∣∣∣∣
m2→M2

. (4.82)

This scheme corresponds to dressing just the propagator and has been demonstrated by

explicit calculation to 4-loop order to give the right counting of daisy and superdaisy diagrams

[297]. A variant of PD resummation proposed in [298], optimized partial dressing, has been

shown to yield an even better degree of convergence.

Despite its promise as a resummation candidate, the PD prescription is not without its

challenges. PD omits a class of subleading diagrams starting at 2-loops. These are the

lollipop diagrams (obtained from the vacuum sunset diagram by attaching one external leg

to one of the vertices). Moreover, sunset-type tadpole diagrams are miscounted (obtained

from the vacuum sunset diagram by attaching one external leg to one of the propagators).

These issues can be resolved by adding the lollipop diagrams by hand and adjusting the gap

equation to fix the miscounting of the sunset diagrams (see [313, 298] as well as ??).

Another more pressing issue pointed out in [298] is that it is unclear how to implement PD

in multi-field scenarios where field excursions can occur along more than one direction. Given

that this is the case in a variety of beyond the Standard Model (BSM) extensions capable of

yielding a strongly first-order electroweak phase transition, it is crucial that the formalism

be extended to accommodate this situation. We propose a multi-field generalization of PD
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resummation which can be applied in scenarios where the Higgs mixes with BSM scalars

and then go on to compare the convergence of this scheme with that of other resummation

techniques.

4.2.3 Resummation in ϕ4 theory

Before getting into these technicalities, we will review the various resummation prescriptions

in the context of a simple ϕ4 theory. We begin by computing the effective potential at 1- and

2-loop order in the context of a single field ϕ4 theory, to later generalize to the multi-field

case (without mixing). Next, we resum the effective potential using the Parwani, Arnold-

Espinosa, full dressing, and partial dressing schemes, respectively. Finally, we compare for

a few benchmark points and comment on the differences.

Unresummed Veff(ϕ) at 1- and 2-loops

We consider a single-field ϕ4 theory with tree-level potential

V0 =
µ2

2
ϕ2 +

λ

4
ϕ4 . (4.83)

At 1-loop, the effective potential receives radiative and finite temperature corrections cap-

tured by the sum-integral [314]

V1-loop = J [m] ≡ 1

2

∑∫
K

ln
(
K2 +m2

)
, (4.84)

where K = (ωn, k⃗) are Euclidean 4-momenta, ωn = 2πnT are bosonic Matsubara modes,

and the symbol ∑∫ is shorthand for Euclidean integration

∑∫
K

≡ T
∑
ωn

∫
d3k

(2π)3
. (4.85)
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The mass entering into this 1-loop correction is the field-dependent effective mass

m2 =
∂2V0
∂ϕ2

= µ2 + 3λϕ2 , (4.86)

where ϕ here is understood to take its background field value. In many contexts, it is

convenient to decompose the bosonic J -function into a zero temperature Coleman-Weinberg

piece10

VCW =
m4

64π2

(
ln

(
m2

µ2R

)
− 3

2

)
, (4.87)

and a finite temperature piece

VT =
T 4

2π2
JB

(
m2

T 2

)
, with JB(y

2) =

∫ ∞

0
dx x2 ln

(
1− e−

√
x2+y2

)
, (4.88)

such that V1-loop = VCW + VT . In the high- and low-temperature limits, JB(y2) admits

expansions given in Eqs. (4.179) and (4.180) of Appendix A. We will often have cause to

work in the high-temperature regime, in which the full 1-loop correction reads:

V1-loop = J [m] ≃ 1

24
m2T 2 − 1

12π
m3T − LR

64π2
m4 +O

(
m6

T 2

)
, (4.89)

where LR = ln
(
µ2R/T

2
)
+2(γE− ln 4π) and we have ignored the field-independent constant.

Note that the logarithmic terms have cancelled between the Coleman-Weinberg and finite

temperature contributions, such that − 1
12πm

3T is the only term originating from the Mat-

subara zero-mode, as evidenced by the fact that it is non-analytic in m2. Combining with the

tree level piece, the effective potential at 1-loop V (1)
eff = V0+V1-loop in the high-temperature

10. We work in the MS scheme with renormalization scale µR. Note that this prescription at finite tem-
perature does not eliminate all factors of 4π and γE , as it does at zero temperature.
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Figure 4.2: 2-loop corrections to the effective potential in ϕ4 theory, including (A) the
figure-8 diagram, (B) the sunset diagram, (C) the 1-loop mass counterterm diagram, and
(D) the 1-loop vertex counterterm diagram. Solid circles denote 1-loop counterterms and x’s
indicate explicit field insertions. Diagram (E) should only be added to the effective potential
upon performing thermal resummation in the Parwani scheme and features a 1-loop thermal
“counterterm” (solid square).

expansion is

V
(1)
eff =

1

2
(µ2 + cϕT

2)ϕ2 +
λ

4
ϕ4 − 1

12π
m3T − LR

64π2
m4 +O

(
m6

T 2

)
, (4.90)

where we have defined cϕ = λ/4.

At 2-loops, the corrections to the effective potential are summarized diagramatically in

4.2. The figure-8 diagram (A) corresponds to the contribution

V A2-loop =
3λ

4
I[m]2 , (4.91)

where

I[m] ≡
∑∫
K

1

K2 +m2
. (4.92)

This sum-integral is related to the J of Eq. (4.84) as I = m−1 dJ
dm , and so admits the high-

temperature expansion given in Eq. (4.182) of Appendix A. Using this expansion, V A2-loop

explicitly evaluates to

V A2-loop = − λ

32π
mT 3 +

(3− LR)λ

64π2
m2T 2 +

3LRλ

128π3
m3T +

(ζ(3) + 3L2R)λ

1024π4
m4 . (4.93)
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The sunset diagram (B) corresponds to the contribution

V B2-loop = −3λ2ϕ2H[m,m,m] , (4.94)

where, for three arbitrary masses m1, m2, m3

H[m1,m2,m3] =
∑∫
P

∑∫
Q

1

(P 2 +m2
1)(Q

2 +m2
2)((P +Q)2 +m2

3)
. (4.95)

Using the high-temperature expansion of H in Eq. (4.190), the contribution V B2-loop is ex-

plicitly

V B2-loop = − 3λ2

32π2

(
ln

(
µ2R
m2

)
− 2 ln 3 + 1

)
T 2ϕ2

+
9λ2

64π3

(
ln

(
µ2R
m2

)
+ LR − 2 ln 2 + 2

)
mTϕ2

+
9λ2

256π4

(
L2R + LR − 2γ2E − 4γ1 +

π2

4
+

3

2

)
m2ϕ2 .

(4.96)

Next we have diagrams (C) and (D), which feature 1-loop mass and vertex counterterms11,

respectively. The former corresponds to an expression of the form

V C2-loop =
3λ

32π2
µ2I[m]

1

ϵ
. (4.97)

The leading order field-dependent contribution first comes in at O(λ5/2T 4), which is higher

than the order to which we work, and so can be neglected. The vertex counterterm diagram

(D) corresponds to

V D2-loop =
27λ2

32π2
ϕ2I[m]

1

ϵ
. (4.98)

11. Note that due to the O(ϵ) pieces in I[m], not only do these diagrams feature divergent O(1/ϵ) pieces
that cancel against the divergences in the 2-loop diagrams, but they can also give a finite contribution to
the effective potential.

193



The leading order finite contribution comes from the O(ϵ) piece of I[m] ⊃ ϵ
12LRT

2, leading

to

V D2-loop =
9LRλ

2

128π2
T 2ϕ2 . (4.99)

The 2-loop correction to the effective potential is the sum of Eqs. (4.93), (4.96), and (4.99),

V2-loop = − λ

32π
mT 3 +

(12− 3LR)λ

256π2
m2T 2 +

3LRλ

128π3
m3T +

(ζ(3) + 3L2R)λ

1024π4
m4

− 3λ2

128π2

(
4 ln

(
µ2R
m2

)
− 3LR − 8 ln 3 + 4

)
T 2ϕ2

+
9λ2

64π3

(
ln

(
µ2R
m2

)
+ LR − 2 ln 2 + 2

)
mTϕ2

+
9λ2

256π4

(
L2R + LR − 2γ2E − 4γ1 +

π2

4
+

3

2

)
m2ϕ2 .

(4.100)

Combining with the 1-loop correction of Eq. (4.89) and the tree-level potential of Eq. (4.83)

yields the 2-loop effective potential Veff in the high-temperature approximation.

Unresummed Veff(ϕ1, ϕ2) at 1- and 2-loops

Interesting finite-temperature effects can arise upon the addition of a second scalar field.

Consider the tree-level potential

V0 =
µ21
2
ϕ21 +

µ22
2
ϕ22 +

λ1
4
ϕ41 +

λ2
4
ϕ42 +

λ12
4
ϕ21ϕ

2
2 . (4.101)

For now, we will restrict to the case where only one of the fields develops a vacuum ex-

pectation value, such that we need not worry about mixing. In this case there will be no

off-diagonal terms in the field-dependent mass matrix, and the effective masses for ϕ1 and

ϕ2 are

m2
1 = µ21 + 3λ1ϕ

2
1 +

λ12
2
ϕ22 , (4.102a)
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m2
2 = µ22 + 3λ2ϕ

2
2 +

λ12
2
ϕ21 . (4.102b)

The 1-loop contribution to the effective potential is

V1-loop = J [m1] + J [m2] , (4.103)

with the bosonic J -function defined in Eq. (4.84). In the high-temperature approximation,

the effective potential at 1-loop is then

V
(1)
eff =

1

2
(µ21 + c1T

2)ϕ21 +
1

2
(µ22 + c2T

2)ϕ22 +
λ1
4
ϕ41 +

λ2
4
ϕ42 +

λ12
4
ϕ21ϕ

2
2

− 1

12π
(m3

1 +m3
2)T − LR

64π2
(m4

1 +m4
2) ,

(4.104)

where we have defined the thermal mass parameters

c1 =
1

24
(6λ1 + λ12) , c2 =

1

24
(6λ2 + λ12) . (4.105)

When the mixed quartic coupling is negative, λ12 < 0, one12 of these thermal mass parame-

ters ci can be negative. Then at high temperatures when the thermal contribution dominates

the bare mass, one of the thermal masses

M
2
i = m2

i + ciT
2 (4.106)

may become negative — indicative of spontaneous symmetry breaking. Occasionally in the

literature (see e.g. [7]), the thermal masses are modified by inserting an additional Boltzmann

factor,

M
2
Boltzmann,i = m2

i + ciT
2e−mi/T , (4.107)

12. The boundedness-from-below condition on λ1 and λ2 prevents both c1 and c2 from being negative.
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which allows for a better approximation of the full thermal loop function for low tempera-

tures.

The 2-loop contributions to the effective potential are summarized diagrammatically in

4.3. Now in addition to figure-8, sunset, and counterterm diagrams for each species, we

Figure 4.3: 2-loop corrections to the effective potential, including (A) figure-8 diagrams,
(B) the sunset diagrams, (C) 1-loop mass counterterm diagrams, and (D) 1-loop vertex
counterterm diagrams. Blue propagators correspond to ϕ1 while red correspond to ϕ2. Solid
circles indicate 1-loop counterterms and x’s indicate explicit field insertions. In particular, the
blue, red, and purple circles of row (D) are λ1, λ2, and λ12 vertex counterterms, respectively.
The 1-loop thermal “counterterm” (solid square) diagrams of row (E) should be included upon
performing thermal resummation in the Parwani scheme.

must also consider mixed diagrams. The first row of figure-8 diagrams corresponds to the

expressions

V A12-loop =
3λ1
4

I[m1]
2 , (4.108a)

V A22-loop =
3λ2
4

I[m2]
2 , (4.108b)

V A32-loop =
λ12
4

I[m1] I[m2] , (4.108c)
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which, using the high-temperature expansion of I in Eq. (4.182), may be written explicitly

in this limit as

V A12-loop =
λ1
32π

[
−m1T

3 +
(6− LR)

4π
m2

1T
2 +

3LR
4π2

m3
1T +

(ζ(3) + 3L2R)

32π3
m4

1

]
, (4.109a)

V A22-loop =
λ2
32π

[
−m2T

3 +
(6− LR)

4π
m2

2T
2 +

3LR
4π2

m3
2T +

(ζ(3) + 3L2R)

32π3
m4

2

]
, (4.109b)

V A32-loop =
λ12
64π2

[
− π

3
(m1 +m2)T

3 +m1m2T
2 − LR

12
(m2

1 +m2
2)T

2

+
LR
4π

(m1 +m2)m1m2T +
ζ(3)

96π2
(m4

1 +m4
2) +

L2R
16π2

m2
1m

2
2

]
.

(4.109c)

The second row of sunset diagrams corresponds to expressions

V B1
2-loop = −3λ21ϕ

2
1H[m1,m1,m1] , (4.110a)

V B2
2-loop = −3λ22ϕ

2
2H[m2,m2,m2] , (4.110b)

V B3
2-loop = −λ

2
12

4
ϕ22H[m1,m1,m2] , (4.110c)

V B4
2-loop = −λ

2
12

4
ϕ21H[m1,m2,m2] . (4.110d)

Note that since these expressions feature external ϕi insertions, they vanish unless ϕi has non-

zero vacuum expectation value. Suppose we take ϕ1 to be the field which develops a vacuum

expectation value; then V B2
2-loop = V B3

2-loop = 0. Using the high-temperature expansion of H
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in Eq. (4.190), the remaining V B1
2-loop and V B4

2-loop are explicitly

V B1
2-loop =− 3λ21

32π2

(
ln

(
µ2R
9m2

1

)
+ 1

)
ϕ21T

2

+
9λ21
64π3

(
ln

(
µ2R
m2

1

)
+ LR − 2 ln 2 + 2

)
m1ϕ

2
1T

+
9λ21
256π4

(
L2R + LR − 2γ2E − 4γ1 +

π2

4
+

3

2

)
m2

1ϕ
2
1 ,

(4.111a)

V B4
2-loop =− λ212

64π2

(
ln

(
µR

m1 + 2m2

)
+

1

2

)
ϕ21T

2

+
λ212

256π3

(
ln

(
µ2R
4m2

1

)
+ LR + 2

)
m1ϕ

2
1T

+
λ212

128π3

(
ln

(
µ2R
4m2

2

)
+ LR + 2

)
m2ϕ

2
1T

+
λ212

1024π4

(
L2R + LR − 2γ2E − 4γ1 +

π2

4
+

3

2

)
(m2

1 + 2m2
2)ϕ

2
1 .

(4.111b)

As in the single ϕ4 case, the leading order, field-dependent contribution from the diagrams

of row (C) are higher order than that to which we work, and so can be neglected. Of the

diagrams of row (D), corresponding to expressions

V D1
2-loop =

3

128π2
(36λ21 + λ212)ϕ

2
1 I[m1]

1

ϵ
, (4.112a)

V D2
2-loop =

3

128π2
(36λ22 + λ212)ϕ

2
2 I[m2]

1

ϵ
, (4.112b)

V D3
2-loop =

1

64π2

(
3(λ1 + λ2)λ12 + 2λ212

)
ϕ22 I[m1]

1

ϵ
, (4.112c)

V D4
2-loop =

1

64π2

(
3(λ1 + λ2)λ12 + 2λ212

)
ϕ21 I[m2]

1

ϵ
, (4.112d)

we need only consider V D1
2-loop and V D4

2-loop, since ϕ2’s vanishing background value means

V D2
2-loop = V D3

2-loop = 0. The explicit contributions from the non-vanishing diagrams in the
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high-temperature approximation are

V D1
2-loop =

LR
512π2

(36λ21 + λ212)ϕ
2
1T

2 , (4.113a)

V D4
2-loop =

LR
768π2

(3(λ1 + λ2)λ12 + 2λ212)ϕ
2
1T

2 . (4.113b)

Gathering all these terms, the 2-loop contribution to the effective potential is

V2-loop = V A12-loop + V A22-loop + V A32-loop + V B1
2-loop + V B4

2-loop + V D1
2-loop + V D4

2-loop , (4.114)

and the effective potential at 2-loop order is

V
(2)
eff = V

(1)
eff + V2-loop , (4.115)

with V (1)
eff in Eq. (4.104).

Parwani

The Parwani prescription [295] is a diagramatic approach to resummation in which all modes

are resummed. On a technical level, it simply amounts to replacing m2
i with the high-

temperature expanded thermal mass M2
i = m2

i + ciT
2 everywhere and adding to the 2-loop

effective potential the “thermal counterterm” diagrams shown in row E of 4.3. This has the

effect of resumming the dominant parts of ring diagrams.

To see why, consider for the moment a simpler single field ϕ4 theory with tree-level

potential V0 = µ2

2 ϕ
2 + λ

4ϕ
4. As discussed in Sec. 4.2.2, resumming daisy diagrams amounts

to replacing the m2 appearing in propagators with M2. In order to do this consistently, we

can add and subtract the thermal contribution to the mass cϕT 2 = λ
4T

2 in a clever way,
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such that the tree-level potential becomes

V0 =
1

2
(µ2 + cϕT

2)ϕ2 +
λ

4
ϕ4 −

cϕ
2
T 2ϕ2 . (4.116)

This is equivalent to the original potential, but now the idea is to treat the first two terms as

defining the unperturbed theory, and the last term as a perturbation — a “thermal countert-

erm”. Now order-by-order, the cϕT 2 pieces of quadratically divergent sub-loops will cancel

against new diagrams involving thermal counterterms, resulting in a new convergent loop

expansion parameter λT/M [296]. Returning to the full theory, we see that to implement

Parwani resummation we should:

1. Replace all field dependent effective masses m2
i with leading order thermal masses

M
2
i = m2

i + ciT
2, with ci given in Eq. (4.105).

2. Include thermal counterterm diagrams in calculating Veff.

These thermal counterm diagrams do not enter until 2-loop order, so at 1-loop the Parwani-

resummed effective potential is simply V (1)
eff,P = V

(1)
eff |m2

i→M2
i
, or explicitly

V
(1)
eff,P =

1

2
(µ21 + c1T

2)ϕ21 +
1

2
(µ22 + c2T

2)ϕ22 +
λ1
4
ϕ41 +

λ2
4
ϕ42 +

λ12
4
ϕ21ϕ

2
2

− 1

12π
(M

3
1 +M

3
2)T − LR

64π2
(M

4
1 +M

4
2) .

(4.117)

The 2-loop diagrams featuring “thermal counterterms” are shown in row E of Fig. 4.3 and

correspond to expressions

V E1
2-loop = −1

2
c1T

2I[M1] , (4.118a)

V E2
2-loop = −1

2
c2T

2I[M2] . (4.118b)
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Using the high-temperature expansion of I[m] in Eq. (4.182), these evaluate to

V E1
2-loop =

(
λ1
4

+
λ12
24

)[
1

8π
M1T

3 +
LR
32π2

M
2
1T

2 − ζ(3)

256π4
M

4
1

]
, (4.119a)

V E2
2-loop =

(
λ2
4

+
λ12
24

)[
1

8π
M2T

3 +
LR
32π2

M
2
2T

2 − ζ(3)

256π4
M

4
2

]
. (4.119b)

We see that these expressions have pieces which exactly cancel the IR sensitive pieces coming

from V A2-loop|m2
i→M2

i
,

V A2-loop|m2
i→M2

i
⊃ − λ1

32π
M1T

3 − λ2
32π

M2T
2 − λ12

192π
(M1 +M2)T

3 . (4.120)

Upon adding these contributions to V2-loop, as given in Eq. (4.114), and replacing m2
i →]M

2
i

everywhere in V2-loop, we arrive at the Parwani-resummed 2-loop effective potential

V
(2)
eff,P = V

(1)
eff,P + V2-loop(M

2
i ) + V E1

2-loop(M
2
i ) + V E2

2-loop(M
2
i ) . (4.121)

As demonstrated in the discussion above, Parwani resummation intrinsically depends on

the high-temperature expansion and also only resum the leading contributions in the high-

temperature limit.

Arnold-Espinosa

Alternatively because only the Matsubara zero mode ω0 demonstrates problematic behavior

in the IR, we could just resum these “soft” modes whilst leaving the hard non-zero modes

untouched. This is the basic premise behind the Arnold-Espinosa prescription [296], another

popular diagrammatic approach to resummation. Because it requires splitting calculations

into soft and hard modes, it is in principle a bit more cumbersome to implement. Consider

for example the J -function defined in Eq. (4.84). Previously we had taken the customary
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approach of separating this into a zero-temperature Coleman-Weinberg piece and a finite

temperature piece [311],

J [m] =
1

2

∫
d4k

(2π)4
ln
(
k2 +m2

)
︸ ︷︷ ︸

JCW[m]

−T

∫
d3k

(2π)3
ln
(
1∓ nB/F(Ek, T )

)
︸ ︷︷ ︸

JT [m]

, (4.122)

where nB/F(Ek, T ) = 1/
(
eEk/T ∓ 1

)
. A more useful decomposition for the purposes of

Arnold-Espinosa resummation would be to isolate the zero mode

J [m] =
T

2

∫
d3k

(2π)3
ln
(
k2 +m2

)
︸ ︷︷ ︸

Jsoft[m]

+
T

2

∑
n ̸=0

∫
d3k

(2π)3
ln
(
ω2n + k2 +m2

)
︸ ︷︷ ︸

Jhard[m]

, (4.123)

where ωn = 2πnT . Working in the high-temperature expansion, one can show that this first

zero-mode piece evaluates to

Jsoft[m] ≃ − 1

12π
m3T . (4.124)

Comparing against the full expression in Eq. (4.89), we note that the zero-mode contribution

is just the term non-analytic in m2. This is a more generic phenomenon; it will turn out to

be the case that all terms non-analytic in m2 contain zero-mode contributions. This makes

implementing Arnold-Espinosa resummation surprisingly simple in practice when working in

the high-temperature expansion, since the terms requiring resummation are readily identifi-

able. At 1-loop there is only one such term (per scalar field ϕi), and we resum it by replacing

m3
i →M

3
i . The 1-loop effective potential in the Arnold-Espinosa scheme then reads

V
(1)
eff,AE =

1

2
(µ21 + c1T

2)ϕ21 +
1

2
(µ22 + c2T

2)ϕ22 +
λ1
4
ϕ41 +

λ2
4
ϕ42 +

λ12
4
ϕ21ϕ

2
2

− 1

12π
(M

3
1 +M

3
2)T − LR

64π2
(m4

1 +m4
2) .

(4.125)
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This expression is similar to the Parwani-resummed V
(1)
eff,P but differs in the higher order

terms ∝ m4. Explicitly, the difference between the two is

V
(1)
eff,AE − V

(1)
eff,P =

LR
64π2

[
(c21 + c22)T

4 + 2(c1m
2
1 + c2m

2
2)T

2
]
. (4.126)

Before moving on to the 2-loop effective potential, we note that often in the literature one

speaks of resumming V (1)
eff by adding the daisy “ring improvement” term

Vdaisy = − 1

12π
(M

3 −m3)T . (4.127)

We see that the result is completely identical to that of the procedure described above.

At 2-loop order, there are many more terms with non-analytic m2 dependence. It will

be useful to define the Arnold-Espinosa resummed I-function, whose high-temperature ex-

pansion reads

IAE[m] ≃ 1

12
T 2 − 1

4π
MT − LR

16π2
m2 +

ζ(3)

128π4
m4

T 2
. (4.128)

Then from Eqs. (4.108), the contributions to the resummed V2-loop coming from the figure-8

diagrams are

V A12-loop,AE =
λ1
32π

[
−M1T

3 − LR
4π

m2
1T

2 +
3

2π
M

2
1T

2 +
3LR
4π2

m2
1M1T +

(ζ(3) + 3L2R)

32π3
m4

1

]
,

(4.129a)

V A22-loop,AE =
λ2
32π

[
−M2T

3 − LR
4π

m2
2T

2 +
3

2π
M

2
2T

2 +
3LR
4π2

m2
2M2T +

(ζ(3) + 3L2R)

32π3
m4

2

]
,

(4.129b)

V A32-loop,AE =
λ12
64π2

[
− π

3
(M1 +M2)T +M1M2T

2 − LR
12

(m2
1 +m2

2)T
2

+
LR
4π

(M1m
2
2 +M2m

2
1)T +

L2R
16π2

m2
1m

2
2 +

ζ(3)

96π2
(m4

1 +m4
2)

]
.

(4.129c)
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From Eq. (4.111), the contribution from the sunset diagrams are

V B1
2-loop,AE =− 3λ21

32π2

(
ln

(
µ2R

9M
2
1

)
+ 1

)
ϕ21T

2

+
9λ21
64π3

(
ln

(
µ2R

M
2
1

)
+ LR − 2 ln 2 + 2

)
M1ϕ

2
1T

+
9λ21
256π4

(
L2R + LR − 2γ2E − 4γ1 +

π2

4
+

3

2

)
m2

1ϕ
2
1 ,

(4.130a)

V B4
2-loop,AE =− λ212

64π2

(
ln

(
µR

M1 + 2M2

)
+

1

2

)
ϕ21T

2

+
λ212

256π3

(
ln

(
µ2R

4M
2
1

)
+ LR + 2

)
M1ϕ

2
1T

+
λ212

128π3

(
ln

(
µ2R

4M
2
2

)
+ LR + 2

)
M2ϕ

2
1T

+
λ212

1024π4

(
L2R + LR − 2γ2E − 4γ1 +

π2

4
+

3

2

)
(m2

1 + 2m2
2)ϕ

2
1 ,

(4.130b)

where again we are taking ϕ1 as the field which develops a vacuum expectation value. Finally

from Eq. (4.113), we see that the contributions from vertex counterterm diagrams are unaf-

fected by the resummation. The 2-loop effective potential resummed in the Arnold-Espinosa

scheme is then

V
(2)
eff,AE = V

(1)
eff,AE+V

A1
2-loop,AE+V

A2
2-loop,AE+V

A3
2-loop,AE+V

B1
2-loop,AE+V

B4
2-loop,AE+V

D1
2-loop+V

D4
2-loop .

(4.131)

As for Parwani resummation, the Arnold-Espinosa resummation scheme intrinsically depends

on the high-temperature expansion and resums only the leading contributions in the high-

temperature limit.
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Gap Resummation

Gap resummation offers an alternative to the diagrammatic approaches to resummation

described above, which quickly become cumbersome at higher loop order. Rather than

evaluating such diagrams analytically, in gap resummation one need merely compute V (1)
eff

and then solve the so-called “gap equation” for the thermal mass. This gap equation includes

the dominant contributions from many higher-order diagrams, though admittedly it does not

include contributions from certain sub-leading diagrams at each order (for example, parts

of the 2-loop sunset diagram). After solving the gap equation for the thermal mass, this

is substituted into either V (1)
eff in the full dressing (FD) prescription or into ∂ϕV

(1)
eff in the

partial dressing (PD) prescription. The latter is sometimes also called tadpole resummation,

and has been demonstrated to count daisy and superdaisy diagrams more faithfully to higher

order.

The first step in either procedure is solving the gap equation for the thermal mass,

M2
i =

∂2

∂ϕ2i
V
(1)
eff (M2

j ) . (4.132)

Note that the thermal mass M2 appears on both the left- and right-hand sides of this equa-

tion, which must be solved numerically. Considering for the moment single-field ϕ4 theory

in the high temperature expansion — the effective potential for which given in Eq. (4.90) —

this gap equation is explicitly

M2 high-T
= m2 +

λT 2

4
− 3λMT

4π
− 3λLRM

2

16π2
− 9λ2ϕ2T

4πM
− 9λ2LRϕ

2

8π2
. (4.133)

The set of gap equations in the 2-field case is even more complicated given their coupled
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nature

M2
1

high-T
= µ21 + 3λ1ϕ

2
1 +

λ12
2
ϕ22 + c1T

2 − 3λ1
4π

M1T − λ12
8π

M2T

− 3λ1
16π2

LRM
2
1 − λ12

32π2
LRM

2
2 − LR

32π2
(36λ21 + λ212)ϕ

2
1 ,

(4.134a)

M2
2

high-T
= µ22 + 3λ2ϕ

2
2 +

λ12
2
ϕ21 + c2T

2 − 3λ2
4π

M2T − λ12
8π

M1T

− 3λ2
16π2

LRM
2
2 − λ12

32π2
LRM

2
1 − LR

32π2
(36λ22 + λ212)ϕ

2
2 .

(4.134b)

Full Dressing

In the full dressing (FD) prescription, the thermal masses M2
i obtained by solving the gap

equations are substituted directly into the effective potential, V FD
eff = V

(1)
eff |m2

i→M2
i
, with the

result

V FD
eff =

1

2
(µ21 + c1T

2)ϕ21 +
1

2
(µ22 + c2T

2)ϕ22 +
λ1
4
ϕ41 +

λ2
4
ϕ42 +

λ12
4
ϕ21ϕ

2
2

− 1

12π
(M3

1 +M3
2 )T − LR

64π2
(M4

1 +M4
2 ) .

(4.135)

When one uses the high-temperature expanded truncated thermal masses, this is identical

to the 1-loop effective potential in the Parwani scheme V (1)
eff,P, given in Eq. (4.117). More

generally when using the full solutions of the gap equation, however, they differ.

Partial Dressing

One issue with the FD prescription is that it miscounts certain diagrams starting at 2-loop

order [313, 312]. This shortcoming led to the introduction of the partial dressing (PD)

prescription, in which one replaces m2 → M2 on the level of the first derivative of the
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effective potential ∂ϕVeff and then integrates to obtain the resummed effective potential

V PD
eff =

∫
dϕ

∂V (1)
eff (m2

i )

∂ϕ


m2

i→M2
i

, (4.136)

where the Mi’s are the full solution of the gap equations. The procedure can be understood

by thinking about Dyson resummation in zero-temperature field theory. There, self-energy

corrections are resummed into the propagator

i

p2 −m2
→ i

p2 −m2 + Σ(p2)
, (4.137)

where Σ(p2) is the self energy and p2 is the momentum. If Σ is not dependent on p2, all

corrections to the propagator can be absorbed into the mass via

m2 →M2 = m2 − Σ . (4.138)

This resummation can also be used to absorb thermal corrections since their leading part

does not depend on the momentum. Moreover, we can identify M2 as the solution of the gap

equation. To ensure proper resummation, it just needs to be ensured that this replacement

is done only for all propagators and not for vertices, which in the effective potential are,

however, expressed in terms of the mass. To avoid also dressing the vertex, the replacement

is done on the level of the tadpole for which the coupling is explicit (see below).

The PD procedure has been demonstrated to correctly count the most relevant diagrams

up to 4-loop order [297]. To compare the two and explicitly understand why FD leads to a

miscounting while PD does not, we will consider the 1-loop tadpole diagrams which compute

∂ϕV1-loop (in contrast to the vacuum diagrams which compute V1-loop). These tadpoles

can be formed from the corresponding vacuum diagrams by attaching a zero-momentum

truncated external leg to each part of the vacuum diagram. By shifting m2 → M2 at the
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level of vacuum diagrams, FD is equivalent to dressing both the propagator and 3-point

vertex c3 ≡ ∂ϕm
2 of the corresponding 1-loop tadpole diagrams. In contrast, by shifting

m2 →M2 at the tadpole level, PD dresses only the propagator.

To see explicitly that the former dressing of both vertex and propagator leads to a

miscounting, let us return for the moment to the single-field ϕ4 theory. Presuming the

hierarchy λT 2/m2 ≃ 1, λT/m < 1, and ϕ2/T 2 ≪ 1, the leading order gap equation is13

M2 high-T
= m2 +

λT 2

4
− 3λMT

4π
− 9λ2ϕ2T

4πM
. (4.139)

The solution gives the dressed propagator, and to O(λ3) reads

M
high-T≃ m+

λT 2

8m
− 3λT

8π
− λ2T 4

128m3
+

9λ2T 2

128π2m
+

λ3T 6

1024m5
− 9λ3T 4

1024π2m3
. (4.140)

Meanwhile, the dressed 3-point vertex C3 is obtained by differentiating the gap equation,

C3 = ∂ϕM
2. Working to the same order, the solution is

C3
high-T
= 6λϕ

(
1− 9λT

8πm
+

9λ2T 3

64πm3
− 27λ3T 5

1024πm5
+

81λ3T 3

1024π3m3

)
, (4.141)

In FD, both the propagator and vertex of the tadpole are improved, and so starting from

Eq. (4.89), the contribution to the derivative of the 1-loop effective potential reads

∂ϕV
FD
1-loop

high-T
=

T 2

24
(6λϕ)− MT

8π
C3 + ... (4.142)

where the first leading order term comes from the hard thermal loop, the second term comes

from the zero mode, and we suppress higher order terms. This is in contrast to PD, for

13. The last term proportional to ϕ2 is formally subleading in this equation for M2. It, however, becomes
important when taking the derivative with respect to ϕ for computing the 3-point vertex.
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which only the propagator is dressed, leading to

∂ϕV
PD
1-loop

high-T
=

T 2

24
(6λϕ)− MT

8π
c3 + ... (4.143)

where c3 = ∂ϕm
2 = 6λϕ is the undressed 3-point vertex. Explicitly using the forms of M

and C3 above, the zero-mode piece in either case reads

−MT

8π
C3

high-T
= (6λϕ)

(
− mT

8π
− λT 3

64πm
+

3λT 2

16π2
+

λ2T 5

1024πm3
− 63λ2T 3

1024π3m

− λ3T 7

8192πm5
+

63λ3T 5

8192π3m3

)
, (4.144)

−MT

8π
c3

high-T
= (6λϕ)

(
− mT

8π
− λT 3

64πm
+

3λT 2

64π2
+

λ2T 5

1024πm3
− 9λ2T 3

1024π3m

− λ3T 7

8192πm5
+

9λ3T 5

8192π3m3

)
. (4.145)

The difference between the fully dressed and partially dressed 1-loop tadpole, defined as

∆ ≡ ∂ϕV
FD
1-loop − ∂ϕV

PD
1-loop, is then

∆
high-T
= (6λϕ)

(
9λT 2

64π2
− 27λ2T 3

512π3m
+

27λ3T 5

4096π3m3

)
. (4.146)

By computing contributions from the relevant Feynman diagrams up to 4-loop order, Ref. [297]

finds an expression for ∂ϕV1-loop which precisely matches that of ∂ϕV PD
1-loop above, and so ∆

quantifies the extraneous contribution due to miscounting in the FD procedure. These extra

terms are not present for PD, which automatically includes subleading thermal corrections

of super-daisy order. This is reflected in Fig. 4.7, which compares the PD procedure with

FD, Parwani, and Arnold-Espinosa resummation schemes at 1- and 2-loop level.

One shortcoming of PD is that an ambiguity arises when field excursions can proceed

along multiple directions. Namely it is unclear which field to take the derivative of Veff with

respect to, since in general V PD,1
eff ̸= V

PD,2
eff , where V PD,i

eff =
∫
dϕi ∂iVeff

∣∣
M2 . Shortly, we
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Figure 4.4: Different approximations of the thermal masses (blue: high-temperature thermal
mass, M2, see Eq. (4.106); blue dot-dashed: high-temperature thermal mass with additional
Boltzmann factor, M2

Boltzmann, see Eq. (4.107); orange: tree-level mass plus full one-loop
correction, M2|trunc., see Eq. (4.81) normalized to the thermal mass obtained by solving the
gap equation M2 as a function of the temperature.

will propose a multi-field generalization which holds even in the case of mixing scalar fields,

making PD suitable for a wider range of applications, in particular BSM extensions of the

Higgs sector.

Numerical Comparison

Single-Field ϕ4 Theory

For our numerical discussion of the single-field ϕ4 theory, we focus on the benchmark point

λ = 1/3, µ = 1TeV . (4.147)

We set the renormalization scale equal to the temperature.
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We start our numerical discussion by comparing different approximations for the thermal

masses as a function of the temperature in Fig. 4.4. The thermal masses are normalized to

the full thermal mass computed by solving the gap equation.

As expected, the high-temperature expansion of the thermal mass M2 is close to the full

solution of the gap equation M2 for low temperatures since the overall thermal corrections

are negligible (see blue curve and 4.106)). The small ∼ 5% deviation for temperatures close

to zero is explained by loop corrections induced by the Coleman-Weinberg potential, which

are not taken into account in the high-temperature expansion. For temperatures above

1TeV, the ratio of the high-temperature thermal mass to the full thermal mass increases

quickly until the curve converges at ∼ 1.3 for T ≳ 10TeV and then stays constant for

higher temperatures. The constant off-shift is caused by temperature-dependent higher-loop

contributions which are generated by solving the gap equation but not taken into account

in the high-temperature thermal mass.14

If an additional Boltzmann factor is included in the equation for the high-temperature

mass (see Eq. (4.107), blue dot-dashed curve), the ratio stays close to one for a slightly larger

temperature range than without the Boltzmann factor. The overall agreement with the full

thermal mass is, however, not substantially improved.

If instead the full one-loop correction (without any high-temperature expansion) is used

to calculate the thermal mass, M2| trunc., (see orange curve and Eq. (4.81)), the low-

temperature behaviour of the full thermal mass is very well captured (since now also the

one-loop corrections from the Coleman-Weinberg potential are taken into account). At

T ≳ 4TeV, where temperature-dependent higher-loop order corrections start to become rel-

evant, however, also this approximation fails to capture the temperature dependence of the

full thermal mass.

The real parts of the effective potential are compared in Fig. 4.5. For low temperatures,

14. This can for example easily be seen by solving Eq. (4.139) for ϕ = 0 without expanding in λ (as done
for Eq. (4.140)).
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Figure 4.5: Left: Real part of the one-loop effective potential in the one-field ϕ4 model eval-
uated using different resummation methods. Right: Same as left, but two-loop corrections
are included for the full-dressing approaches.

the thermal corrections are small and, consequently, the different resummation methods yield

almost identical results. Only for higher temperatures of T ≳ 10TeV, differences between

the three methods become visible.

In the left panel of Fig. 4.5, showing the real part of the effective potential evaluated using

various resummation methods at the one-loop level, very small differences between Parwani

and Arnold-Espinosa resummation are visible originating from subleading thermal correc-

tions which are partially included for Parwani resummation but not for Arnold-Espinosa

resummation. This discrepancy is completely gone in the right panel of Fig. 4.5, for which

the effective potential is evaluated at the two-loop level for the Parwani and Arnold-Espinosa

curves. As a consequence of explicitly including the subleading thermal two-loop corrections,

whose leading contribution is ∝ λ2m2T 2, the curves using Parwani and Arnold-Espinosa re-

summation lie on top of each other. This seemingly signals a well-behaved perturbative

convergence of the subleading thermal corrections.

The result using partial dressing lies below the Parwani and Arnold-Espinoa results for

high temperatures. Interestingly, the difference is increased when comparing the partial-

dressing result to the two-loop full-dressing results in comparison to the one-loop full-dressing

212



results. While in principle a difference is expected since partial dressing correctly includes

subleading thermal corrections, one would naively expect this difference to shrink down once

these subleading thermal corrections are explicitly included at the two-loop order for the full-

dressing methods. To understand why this increases the difference between full and partial

dressing, it is instructive to understand the proportionalities of the formally leading terms

missed by the full dressing method. While the formally leading missed term is ∝ λ2m2T 2

if computing the effective potential at the one-loop level, it is ∝ λ3mT 3 if computing the

effective potential at the two-loop level. For high temperatures, this three-loop term is

larger than the respective two-loop term demonstrating that including the full two-loop

corrections in the full dressing approach can worsen the result. Also explicitly including

the term ∝ λ3mT 3 might not improve the result since for high temperatures the four-loop

term ∝ λ4T 5/m could be even larger. This demonstrates the necessity of correctly resuming

also subleading thermal corrections and is in direct correspondence to the behaviour of the

thermal masses at high temperatures (see Fig. 4.4).

Moreover, we show in the left panel of Fig. 4.5 the result using full dressing. As discussed

previously, this resummation scheme miscounts diagrams starting at the two-loop level. This

is clearly visible by the large difference to the other resummation methods for T = 10TeV.

Two-Field ϕ4 Theory

Next, we compare the different resummation methods in the two-field ϕ4 theory without

mixing. We focus on the benchmark point

λ1 = λ2 = 1/3, λ12 = 2, µ211 = −4TeV2, µ222 = −1TeV2 . (4.148)

The renormalisation scale is again set equal to the temperature.

Fig. 4.6 shows the thermal masses computed either by numerically solving the gap equa-
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Figure 4.6: Thermal masses of ϕ1 (blue) and ϕ2 (orange) in the two-field ϕ4 model. The
thermal masses are either evaluated by numerically solving the gap equations (solid) or in
the high-temperature expansion (dashed).

tion (solid lines) or by keeping only the leading term in the high-temperature expansion

(dashed lines). As expected, the full and high-temperature versions of the thermal masses

agree well for low temperatures since thermal effects are small in general. For very high

temperatures, small differences are visible originating from high-order corrections induced

by numerically solving the gap equations (see discussion of Fig. 4.4). We observe the largest

absolute differences for intermediary temperatures, for which the temperature is similar to

the tree-level masses. Here, thermal corrections are important but the high-temperature

expansion is not yet a good approximation.

The real part of the effective potential is shown in Fig. 4.7 as a function of ϕ1 setting

ϕ2 = 0, implying that there is no mixing between the fields. As for the one-field ϕ4 theory, the

Parwani, Arnold-Espinosa, and partial dressing approaches agree well for low temperatures.

For higher temperatures, larger differences are visible. In contrast to the single-field case (see

Fig. 4.5), the difference between the Arnold-Espinosa and Parwani resummation methods is
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Figure 4.7: Left: Real part of the one-loop effective potential in the two-field ϕ4 model
without mixing evaluated using different resummation methods. Right: Same as left, but
two-loop corrections are included for the full-dressing approaches.

increasing from the one- (left panel of Fig. 4.7) to the two-loop level (right panel of Fig. 4.7).

This signals that the dominant difference between the two approaches in the given scenario

is not of two-loop order but induced by higher-order effects. This is due to the comparably

large numerical values for the λ’s as well as the larger number of fields which enhance the

significance of higher-order corrections. This again shows the importance of resuming also

subleading effects as achieved in the partial dressing approach.

4.2.4 Toy Model for Symmetry Non-Restoration

Next, we discuss the phenomenon of electroweak symmetry non-restoration (EWSNR).

EWSNR refers to situations in which the EW symmetry is not only broken at low tem-

peratures but also not restored at high temperatures (or the restoration is delayed up to

very high energies). This is particularly interesting from the point of resuming thermal cor-

rections. In order for EWSNR to occur, the thermal corrections need to dominate over the

tree-level mass turning the squared thermal mass negative and thereby ensuring that the

EW symmetry is broken.

We base our discussion on a toy model for symmetry non-restoration which was presented
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in [7]. Its potential is given by

V (0)(ϕ, χ, S) =
1

2
µ2SS

2 +
1

2
µ2χ
∑
i

χ2i +
1

2
µ2ϕϕ

2

+
1

4
λϕϕ

4 +
1

4
λχ
∑
i

χ4i +
1

4
λSS

4 +
1

4
λϕχϕ

2
∑
i

χ2i +
1

4
λϕSϕ

2S2 ,

where S and χi are vectors of dimension NS and Nχi . The index i is a generation index

which runs from 1 to Ngen. We will only evaluate the potential at zero field values for S

and the χi. Therefore, all χi have the same mass mχ and we will drop the sum over i and

instead use Nχ = NχiNgen. The parameters are chosen such that only ϕ develops a non-zero

vacuum expectation value. Therefore, we are only interested in the ϕ direction and set χi

and S to zero for the evaluation of the effective potential.

In the high-temperature limit, the thermal masses are given

M
2
χ = m2

χ + T 2cχ = m2
χi + T 2

[
1

12
(Nχ + 2)λχ +

1

24
Nϕλϕχ

]
, (4.149a)

M
2
S,Boltzmann = m2

S + T 2cS = m2
S + T 2

[
1

12
(NS + 2)λSe

−mS/T +
1

24
NϕλϕS

]
, (4.149b)

M
2
ϕ,Boltzmann = m2

ϕ + T 2cϕ = m2
ϕ + T 2

[
1

12
(Nϕ + 2)λϕ

+
1

24
Nχλϕχ +

1

24
NSλϕSe

−mS/T
]
.

This also defines the coefficients {cχ, cS , cϕ}, which are used later. Since the parameters are

chosen such that mϕ ∼ mχ ≪ mS , the thermal contributions of S are multiplied by the

Boltzmann factor e−mS/T to better approximate the full thermal loop function for T ≲ mS

(see also Eq. (4.107).

To achieve symmetry non-restoration, λϕχ is chosen to be negative such that the thermal

mass of ϕ becomes negative. For T ∼ mS , the thermal contribution of S compensates for the

negative contribution of the χi resulting in the eventual symmetry restoration at T ≳ mS .
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Since the stability of the potential at the tree level requires

λϕχ > −2

√
λϕλχ

Ngen
, (4.150)

a large number of generations is required to ensure symmetry non-restoration,15 while still

satisfying perturbative unitarity bounds.

One-Loop Effective Potential

The one-loop effective potential is given by

V (1)(ϕ, χ, S) = J (mϕ) +NχJ (mχ) +NSJ (mS) . (4.151)

The counterterm contributions are

V (1,CT)(ϕ, χi = 0, S = 0) =
1

2
δ(1)µ2ϕϕ

2 +
1

4
δ(1)λϕϕ

4 . (4.152)

We choose to renormalize λϕ in the MS scheme. For the renormalization of µϕ, we include

a finite piece to the counterm

δ(1)µ2ϕ

∣∣∣
fin

= −1

2
ϕ2
[
∂2

∂ϕ2
V (1)

]O(µ2S)

ϕ=χi=S=0,T=0
=

1

64π2
NSλϕSϕ

2µ2S

(
1− ln

µ2S
µ2R

)
, (4.153)

where the superscript O(µ2S) denotes that only the leading contribution proportional to µ2S

is considered. This counterterm is chosen to absorb the very large zero-temperature loop

corrections to mϕ from S (due to µS ≫ |µϕ|) into the definition of µϕ.

15. In more realistic models, the negative BSM contributions to for instance the thermal mass of the Higgs
boson must also overcome the positive contributions of other SM particles.
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Two-Loop Effective Potential

The genuine two-loop corrections to the potential are given by

V (2,gen)(ϕ, χi = 0, S = 0) =
3

4

[
λϕI(mϕ)

2 +NSλSI(mS)
2 +NχI(mχi)

2
]

+
1

4

[
(N2

S −NS)λSI(mS)
2 +Nχ(Nχi − 1)λχI(mχ)

2

+NSλϕSI(mϕ)I(mS) +NχλϕχI(mϕ)I(mχ)

]
.

The counterterm contributions at the two-loop level are

V (2,CT)(ϕ, χi = 0, S = 0) =
1

2
δ(2)µ2ϕϕ

2 +
1

4
δ(2)λϕϕ

4

+
1

2
δ(1)µ2ϕI(mϕ) +

1

2
Nχδ

(1)µ2χI(mχ) +
1

2
NSδ

(1)µ2SI(mS)

+
3

2
δ(1)λϕϕ

2I(mϕ) +
1

4
δ(1)λϕSϕ

2I(mS)

+
1

4
δ(1)λϕχϕ

2I(mχ),

where here we already set χi = S = 0. The first line contains the needed two-loop coun-

terterm; the two last lines represent the subloop renormalization. We checked analytically

that all UV divergencies and ϵ1 pieces of the loop integrals (with ϵ being the UV regulator)

cancel.

The thermal mass counterterms, relevant for Parwani and Arnold-Espinosa approaches,

give additional two-loop contributions:

V (2,thermal-CT)(ϕ, χ, S) = −1

2
T 2
(
cϕI(m2

ϕ) +NχcχI(m2
χ) +NScSI(m2

S)
)
. (4.154)

We checked explicitly that, in the high-temperature expansion, all T 3 terms cancel. This

cross-check was performed separately for Parwani and Arnold/Espinosa resummation in the

limits mS ≪ T and mS ≫ T . The two-loop counterterm for µϕ is again chosen such that the

very large zero-temperature loop corrections to mϕ from S are absorbed into the definition
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Figure 4.8: Thermal masses of ϕ (blue) and χi (orange) in the symmetry non-restoration
toy model of [7]. The thermal masses are either evaluated by numerically solving the gap
equations (solid) or in the high-temperature expansion (dashed).

of µϕ.

Numerical Comparison

For our numerical comparison, we choose the benchmark point already used in [7]:

Ngen = 12, Nχi = 4, NS = 12,

µ2ϕ = −0.01TeV2, µ2χ = 0.01TeV2, µ2S = 400TeV2,

λϕ = 0.1TeV2, λχ = 0.5, λS = 1, λϕχ = −0.1, λϕS = 1 . (4.155)

This benchmark is chosen to realize symmetry non-restoration for T ≲ 10TeV. At higher

temperatures, the S field eventually ensures symmetry restoration.
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Thermal Masses

We start with a comparison of the thermal masses Mϕ and Mχ in Fig. 4.8. For the scalar ϕ,

the thermal mass calculated by solving the gap equation M2
ϕ is negative only for small tem-

peratures (T ≲ 7TeV). If instead the high-temperature expansion is used (see Eq. (4.149)),

the squared thermal mass stays negative until much higher masses (T ∼ 19TeV). This dif-

ference has two origins: 1) the thermal loop functions appearing in the gap equation is not

expanded in the high-temperature limit; 2) solving the gap equation numerically effectively

includes higher-order corrections. For the scalars χ, the differences between the thermal mass

obtained by solving the gap equation and the high-temperature expansion of Eq. (4.149) is

even more pronounced due to the relatively large number of fields Nχ = 48 coupled to each

other.

Effective Potential

Next, we study the effective potential itself. Fig. 4.9 shows the dependence of the effective

potential on the value of ϕ for various temperature values.

In the upper left panel, we show the real part of Veff calculated at the one-loop level using

Arnold-Espinosa and Parwani. For both Parwani resummation (solid lines) and Arnold-

Espinosa reummation (dashed lines), electroweak symmetry non-restoration is clearly visible

for T ≲ 6TeV. For higher temperatures, the thermal contribution of the S triggers the

eventual symmetry restoration. While for low temperatures both methods yield very similar

results, there is an increasing difference for higher temperatures. As discussed previously, this

difference arises from subleading super daisy-like contributions which are partially included

in the Parwani approach.

One natural way to reduce the difference between both methods and thereby the theoret-

ical uncertainty is to explicitly include the full two-loop corrections as outlined above. The

results are shown in the upper right panel of Fig. 4.9. Remarkably, the difference between
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Figure 4.9: Upper left: Real part of the one-loop effective potential for the symmetry non-
restoration model of [7] evaluated using Arnold-Espinosa and Parawni resummation. For
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using partial dressing.
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Parawani and Arnold/Espinosa resummation is not reduced if including the full two-loop

corrections but of similar size as at one-loop level. After including the full two-loop correc-

tions, the difference between the two resummation schemes is of three-loop order. The fact

that the difference is not decreased when going from the one- to the two-loop level signals

that also the three-loop difference is sizeable. This is a consequence of the large multiplic-

ity of fields and demonstrates that a resummation of subleading super-daisy corrections is

needed.

It is even more astonishing that some of the two-loop results feature unphysical kinks.

These kinks appear if one of the squared thermal masses crosses zero (see e.g. the scenario of

Fig. 4.8). For a negative mass squared, the loop functions develop an imaginary part. While

the imaginary parts of a negative tree-level mass squared cancel once large thermal effects are

resumed as shown in [315], an imaginary part remains if one of the squared thermal masses

becomes negative. We show this remaining imaginary part of the effective potential (without

normalizing the potential to zero a the origin) in the lower left panel of Fig. 4.8. We see

that imaginary parts already occur at the one-loop level. The size of the imaginary parts is,

however, enhanced at the two-loop level. This is due to a mismatch between the figure-eight

diagrams and the thermal counterterm contributions. While the full thermal loop functions

(without any high-temperature expansion) are considered for the former contribution, the

thermal counterterms appearing in the latter contribution are by definition derived in the

high-temperature expansion. This (unavoidably) different treatment of the two contributions

artificially enhances the imaginary part of the effective potential and also induces kinks in

the real part via products of two imaginary parts. In general, large imaginary parts also

question the validity of the perturbative calculation of the effective potential. As discussed

in [316], the imaginary part of the effective potential corresponds to a decay width of the

localised ground state into a non-localised ground state. Therefore, calculations based on a

perturbatively calculated effective potential should only be trusted if the imaginary part is
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small against the real part.

The problems with the perturbative convergence and large imaginary parts are completely

avoided if we use partial dressing. We show the corresponding result in the lower right panel

of Fig. 4.9. As discussed previously, partial dressing does not only resum daisy but also super-

daisy contributions. Since no high-temperature expansion is applied and all contributions

are treated on the same footing, no large imaginary parts appear. Consequently, no kinks

appear in the result and calculations based on the pertubatively calculated effective potential

are trustworthy.

4.2.5 Resummation in Multi-Field ϕ4 Theory with Mixing

After discussing resummation in multi-field theories without mixing, we now turn to the

case with mixing between the scalar fields. For simplicity, we focus on a simple toy model

consisting of two real scalar fields ϕ1 and ϕ2 with tree-level potential

V0 = −µ
2
1

2
ϕ21 −

µ22
2
ϕ22 +

λ1
4
ϕ41 +

λ2
4
ϕ42 +

λ12
4
ϕ21ϕ

2
2 . (4.156)

We allow both fields to potentially develop a zero-temperature vacuum expectation value.

While this significantly complicates several formal aspects of the resummation procedure,

it is nonetheless important that we allow them to mix in anticipation of concrete BSM

applications.

At the tree level, the scalar mass matrix is given by

M2(ϕ1, ϕ2) ≡

m2
11 m2

12

m2
12 m2

22

 =

−µ21 + 3λ1ϕ
2
1 +

λ12
2 ϕ22 λ12ϕ1ϕ2

λ12ϕ1ϕ2 −µ22 + 3λ2ϕ
2
2 +

λ12
2 ϕ21

 ,

(4.157)

where the fields ϕ1,2 take on their background values. This matrix can be diagonalized as
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R−1
θ M2Rθ = M2

diag ≡ diag(m2
+,m

2
−), with mass eigenvalues

m2
± =

1

2

(
m2

11 +m2
22 ±D

)
, with D =

√
(m2

11 −m2
22)

2 + 4m4
12 . (4.158)

It is convenient to parameterize S in terms of the tree level mixing angle θ

Rθ =

cos θ − sin θ

sin θ cos θ

 , sin 2θ =
2m2

12√
(m2

11 −m2
22)

2 + 4m4
12

, (4.159)

which can then be used to relate ϕ1,2 to the mass eigenstates ϕ±

ϕ1
ϕ2

 = Rθ

ϕ+
ϕ−

 . (4.160)

The background field-dependent mass eigenstates enter into the 1-loop contribution to

the effective potential as

V1-loop = J [m+] + J [m−] , (4.161)

where the J function is defined in 4.2.7.

High-Temperature Expansion and Truncated Full Dressing

To gain some intuition, we will first consider the high-temperature limit, in which the field-

dependent part of the one-loop effective potential reads

V1-loop ≃ T 2

24

(
m2

+ +m2
−
)
− T

12π

(
m3

+ +m3
−
)
− L

64π2

(
m4

+ +m4
−
)
, (4.162)

224



where L = log

(
µ2R
T 2

)
+ 2(γE − ln π) is field independent. Considering just the leading

contribution ∼ T 2, the one-loop corrected effective potential is

V
(1)
eff

highT−−−−→ 1

2

(
−µ21 + c1T

2
)
ϕ21+

λ1
4
ϕ41+

1

2

(
−µ22 + c2T

2
)
ϕ22+

λ2
4
ϕ42+

λ12
4
ϕ21ϕ

2
2 , (4.163)

where we have defined the coefficients

c1 =
1

24
(6λ1 + λ12) , c2 =

1

24
(6λ2 + λ12) . (4.164)

Letting M2
i (Φ, T ) = m2

i (Φ)+ δm
2
i (Φ, T ) be the thermally corrected mass, the truncated gap

equation is simply

M2
i =

∂2

∂ϕ2i
V
(1)
eff , (4.165)

which leads to the finite-temperature mass matrix

M2
T (ϕ1, ϕ2, T ) ≡

M2
11 M2

12

M2
12 M2

22


=

−µ21 + c1T
2 + 3λ1ϕ

2
1 +

λ12
2 ϕ22 λ12ϕ1ϕ2

λ12ϕ1ϕ2 −µ22 + c2T
2 + 3λ2ϕ

2
2 +

λ12
2 ϕ21

 .

(4.166)

Diagonalizing M2
T yields the finite-temperature mass eigenstates M2

±(Φ, T ),

M2
± =

1

2
(M2

11 +M2
22 ±D) , with D =

√
(M2

11 −M2
22)

2 + 4M2
12 , (4.167)

as well as the finite-temperature mixing angle Θ(ϕ1, ϕ2, T ),

sin 2Θ = 2M2
12/D . (4.168)
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With these preliminaries out of the way, we now turn to the resummation of the 1-loop

effective potential.

In the truncated full dressing (TFD) prescription, resummation amounts to simply re-

placing m2
i → M2

i |trunc. on the level of the effective potential: V TFD
eff = Veff

∣∣
M2

i |trunc.
, with

i = ± labeling the finite-temperature mass eigenstates. In the high-temperature expansion,

the resummed potential reduces to the one obtained with the Parwani prescription, namely

V
TFD,Parwani
eff = V0+

T 2

24

(
M

2
+ +M

2
−
)
− T

12π

(
M

3
+ +M

3
−
)
− L

64π2

(
M

4
+ +M

4
−
)
, (4.169)

or equivalently

V
TFD,Parwani
eff =

1

2

(
−µ21 + c1T

2
)
ϕ21 +

λ1
4
ϕ41 +

1

2

(
−µ22 + c2T

2
)
ϕ22 +

λ2
4
ϕ42 +

λ12
4
ϕ21ϕ

2
1

− T

12π

(
M

3
+ +M

3
−
)
− L

64π2

(
M

4
+ +M

4
−
)
.

Using the Arnold-Espinosa prescription, the thermal mass is only inserted in the TM3 terms.

Partial Dressing

As discussed previously, truncated dressing suffers from various issues. First, it does not re-

sum subleading super-daisy corrections. Second, it unavoidably relies on a high-temperature

expansion of the thermal masses, which often is not justified. Third, mismatches between the

treatment of various two-loop contributions lead to unphysical kinks in the effective poten-

tial. As we have discussed, partial dressing avoids these issues. One shortcoming, however,

is that prior to this work it was unknown how to apply the partial dressing prescription in

the case where multiple scalar fields acquire non-zero vacuum expectation values and mix.

Here, we will demonstrate how partial dressing can be applied to the case of mixing scalar

fields.

We start with the gap equations. If we go beyond the leading term in the high-temperature
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expansion, the gap equations are promoted to a matrix equation

M2
T =


 ∂2

∂ϕ21

∂2

∂ϕ1∂ϕ2

∂2

∂ϕ1∂ϕ2
∂2

∂ϕ22

Veff


(m±,s2θ)→(M±,s2Θ)

, (4.170)

where M± and s2Θ = sin 2Θ are determined by diagonalizing M2
T . The second derivatives

∂2

∂ϕi∂ϕj
Veff directly correspond to the ϕiϕj two-point functions at zero momentum. The

resulting mixing angle relates the original fields ϕ1,2 to the loop-corrected fields Φ±,

ϕ1
ϕ2

 = RΘ

Φ+

Φ−

 . (4.171)

These loop corrections include both zero-temperature as well as finite-temperature effects.

To solve Eq. (4.170) iteratively, it is important to express the right-hand side completely

in terms of the masses and the mixing angle. This can be done either by calculating the

second derivatives of the effective potential diagrammatically (i.e., in terms of self-energy

Feynman diagrams) or by expressing the first and second derivatives of the (field-dependent)

masses in terms of the masses and the mixing angle. For example,

∂m2
+

∂ϕ1
=
[
6λ1 sin

2 θ(ϕ1, ϕ2) + λ12 cos
2 θ(ϕ1, ϕ2)

]
ϕ1 + λ12 sin 2θ(ϕ1, ϕ2)ϕ2 . (4.172)

In the Feynman-diagrammatic approach, this angular dependence follows directly from the

Feynman rules. For example, the coupling of ϕ1 to two Φ−, which appears in the ϕ1 tadpole

corrections, is given by

c(ϕ1,Φ−,Φ−) =c2Θc(ϕ1, ϕ1, ϕ1)− 2cΘsΘc(ϕ1, ϕ1, ϕ2) + s2Θc(ϕ1, ϕ2, ϕ2) =

= ϕ1λ1c
2
Θ − 2ϕ2λ12cΘsΘ + ϕ1λ12s

2
Θ ,
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In the diagrammatic approach, it is furthermore straightforward to also add the dependence

on the external momentum. In this case, the matrix Rθ becomes non-unitary and can not

be parameterized by a single mixing angle. We leave this for future work.

After the determination of the thermal masses and the thermal mixing angle, we insert

them into the first derivatives of the effective potential ∂iVeff (tadpoles). While for the case of

vanishing mixing, we only need to consider one tadpole (the one for the non-vanishing field),

which is then integrated to obtain the effective potential, an ambiguity arises in the case of

non-vanishing mixing since in general V TPD,1
eff ̸= V

TPD,2
eff (with V TPD,i

eff =
∫
dϕi ∂iVeff

∣∣
M2

j
).16

A reasonable solution would be to replace the derivative with a gradient V ′
eff → ∇Veff

and the integral over ϕ with a line integral to the position in field space (ϕ∗1, ϕ
∗
2) where we

intend to evaluate the potential
∫
dϕ→

∫
C ds⃗. We therefore propose the following multi-field

generalization

V TPD
eff =

∫
C
ds⃗ · ∇V (1)

eff
∣∣
(m±,θ)→(M±,Θ) , (4.173)

where ∇Veff = ϕ̂1
∂Veff
∂ϕ1

+ ϕ̂2
∂Veff
∂ϕ2

and the curve C connects the origin to (ϕ∗1, ϕ
∗
2). As a

consequence of Green’s theorem and the fact that the curl of a gradient is zero, the exact

form of C does not matter. For simplicity, we choose C to be a straight line, which we

parameterize as s⃗(t) = (ϕ∗1t, ϕ
∗
2t) with t ∈ [0, 1]. The expression for the effective potential

becomes

V TPD
eff =

∫ 1

0
dt

ϕ∗1 ∂V (1)
eff

∂ϕ1

∣∣∣∣
(ϕ∗1 t, ϕ

∗
2 t)

+ ϕ∗2
∂V

(1)
eff

∂ϕ2

∣∣∣∣
(ϕ∗1 t, ϕ

∗
2 t)

∣∣∣∣∣
(M±,s2Θ)

, (4.174)

where the unresummed effective potential appearing on the right-hand side is V (1)
eff = V0 +

V1-loop, with V0 in Eq. (4.156) and V1-loop in Eq. (4.162).

16. V TPD,1
eff correctly captures the ϕ1-dependent part of the effective potential but not the ϕ2-dependent

part. In contrast, V TPD,2
eff correctly captures the ϕ2-dependent part of the effective potential but not the

ϕ1-dependent part.
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In the high-temperature expansion, the first derivative with respect to ϕ1 is

∂Veff
∂ϕ1

∣∣∣∣
high-T

= −µ21ϕ1 + λ1ϕ
3
1 +

λ12
2
ϕ1ϕ

2
2

+

(
T 2

24
− Tm+

8π
− Lm2

+

32π2

)
dm2

+

dϕ1
+

(
T 2

24
− Tm−

8π
− Lm2

−
32π2

)
dm2

−
dϕ1

,

(4.175)

where
dm2

±
dϕ1

=
[
6λ1 sin

2 θ + λ12 cos
2 θ
]
ϕ1 ± λ12 sin 2θϕ2 . (4.176)

A similar expression holds for ∂Veff/∂ϕ2 with 1 ↔ 2. Next we should replace any instances

of m2
± and θ with the thermal quantities M2

± and Θ. Finally, we evaluate at (ϕ∗1t, ϕ
∗
2t),

multiply by ϕ∗1,2 respectively, take the sum, and integrate over 0 ≤ t ≤ 1, in accordance with

Eq. (4.174).

Due to neglecting the momentum dependence of the self-energy insertions, partial dress-

ing fails to correctly reproduce two-loop sunset diagrams since it can not account for the

case of overlapping loop momenta. While for the non-mixing case, one can easily correct for

this by multiplying the I2-contribution to the gap equations by a factor 2/3, the correction

is more subtle in the case of mixing scalar fields. We discuss this in detail in ??. As already

known for the non-mixing case in the literature, we also find this correction to be numerically

of minor importance for the case of mixing scalars.

Numerical Comparison

For our numerical comparison, we choose the following parameter point:

λ1 = λ2 = 1/3, λ12 = 2, µ21 = −4TeV2, µ22 = −1TeV2 . (4.177)

These parameters are chosen such that both fields can develop a non-zero vacuum expectation

value.
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Figure 4.10: Thermal masses of ϕ1 and ϕ2 in the two-field ϕ2 theory as a function of the
temperature calculated by solving the gap equations (solid) and the high-temperature ex-
pansion (dashed).

Thermal Masses

We start by investigating the thermal masses as a function of the temperature (see Fig. (4.10)

for ϕ1 = ϕ2 = 1TeV. While for low temperatures, the solutions of the gap equation agree

well with the thermal masses in the high-temperature masses, a sizeable difference arises for

temperatures close to the zero-temperature masses (T ∼ 5TeV). For larger temperatures,

the differences shrink again even though a visible difference remains. This behaviour is very

similar to the results obtained in the EWSNR toy model (see 4.2.4).

Effective Potential

Next, we investigate the real part of the effective potential itself in Fig. (4.11. For low

temperatures (see upper left panel), partial dressing and Arnold-Espinosa/Parwani resum-

mation yield very similar results regardless of the values for ϕ1 and ϕ2. This is expected
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since for low temperatures, the difference in the thermal masses and also the thermal cor-

rections to the effective potential are small. For higher temperatures comparable to the

zero-temperature masses of ϕ1 and ϕ2, visible differences between Arnold-Espinosa/Parwani

resummation and partial dressing arise. In this regime, the high-temperature expansion for

the calculation of the thermal masses is not a good approximation (see discussion above).

Moreover, partial dressing includes the resummation of subleading thermal corrections, which

give a sizeable contribution at the considered parameter point. This is evident from the fact

that the two different Parwani and Arnold-Espinosa resummation show visible differences

indicating the importance of subleading thermal corrections. For even larger temperatures

(see bottom panel), the differences between the various resummation methods are further

increased. While the thermal masses are in slightly better agreement, the subleading thermal

corrections have a bigger impact resulting in an overall larger difference between the three

resummation methods.

We finally note again that partial dressing fails to correctly reproduce two-loop sunset

contributions. However, the numerical impact of this effect is significantly smaller than the

difference between partial dressing and Arnold-Espinosa/Parwani resummation.

4.2.6 Summary

Accurate predictions for phase transitions are very important for the investigation of a wide

range of physics phenomena. This necessitates a precise calculation of the effective potential

at finite temperatures implying the need to resum large thermal corrections. In this section,

we reviewed various resummation methods focusing on partial dressing and truncated full

dressing (Arnold-Espinosa/Parwani resummation). Using a scalar toy model, we discussed

at the one- and two-loop level that partial dressing is advantageous since it does not rely on

the high-temperature expansion and also resums subleading thermal corrections.

We then turned to a toy model for EWSNR, for which large thermal corrections are
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expected implying the need to include subleading corrections. While these are automatically

included if using partial dressing, higher-loop corrections have to be explicitly calculated if

using Arnold-Espinosa/Parwani resummation. We, moreover, demonstrated that the inclu-

sion of two-loop corrections in the Arnold-Espinosa/Parwani approaches leads to unphysical

kinks in the prediction for the effective potential. These kinks originate from the occurrence

of large imaginary contributions to the effective potential caused by negative mass squares.

While these contributions largely cancel in the partial dressing approach, the cancellation is

incomplete in the Arnold-Espinosa/Parwani resummation approaches due to the unavoidable

high-temperature expansion in parts of the calculation.

While the discussion of EWSNR concentrates on the case in which only one of the fields

takes a non-zero value (implying the absence of mixing between the scalar fields), we then

focused on the case of mixing fields. So far, it has not been known how to apply partial

dressing for mixing fields severely constraining its applicability. We presented a novel method

which lifts this restriction. Promoting the gap equation to a matrix equation and performing

a path integration in the multi-dimensional field space allowed us to consistently implement

partial dressing even for mixing fields. This novel approach will allow the application of

partial dressing for many BSM extensions of the SM Higgs sector resulting in more reliable

predictions for the effective potential.

4.2.7 Supplementary Materials: Loop Functions

In this Appendix, we collect the various thermal loop functions used in this paper. We start

with the bosonic thermal loop function appearing in the one-loop effective potential, which

is given by

JB(y
2) =

∫ ∞

0
dx x2 ln

(
1− e−

√
x2+y2

)
. (4.178)
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In the limits of small and large argument, this admits expansions

JB(y
2 ≪ 1) ≃ −π

4

45
+
π2

12
y2 − π

6
y3 − 1

32
y4 log

(
y2/aB

)
+O(y6) , (4.179)

JB(y
2 ≫ 1) ≃ −

∑
n=1

1

n2
y2K2(yn) , (4.180)

where aB = 16π2e3/2−2γE and K2 is the modified Bessel function of the second kind.

In addition to the J integral, we also need the one-loop vacuum integrals with up to three

vertices. The one-vertex integral is defined by

I[m] ≡ I1[m] ≡
∑∫
K

1

K2 +m2
. (4.181)

Its high-temperature expansion is given by

I[m] ≃ 1

12
T 2 − 1

4π
mT − LR

16π2
m2 +

ζ(3)

128π4
m4

T 2
. (4.182)

Note that we have included the O(T 2) constant as well as kept terms up to O(1/T 2), since

these lead to field-dependent contributions in V A2-loop ∼ I[m]2 of O(T 0). There are also terms

O(1/ϵ) and O(ϵ) in this expansion, which we omit for simplicity but which will nevertheless

give a finite contribution to V A2-loop ∼ I[m]2. See Ref. [296] for the complete expression.

The vacuum integral with two propagators is defined via

I2[m1,m2] ≡
∑∫
K

1

K2 +m2
1

1

K2 +m2
2

. (4.183)

If both masses are different, we can write I2 in terms of I integrals

I2[m1,m2] =
I[m2]− I[m1]

m2
1 −m2

2

. (4.184)
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The high-temperature expansion follows immediately,

I2[m1,m2] ≃
1

4π

T

m1 +m2
+ . . . . (4.185)

We define the three-propagator vacuum integral via

I3[m1,m2,m3] ≡
∑∫
K

1

K2 +m2
1

1

K2 +m2
2

1

K2 +m2
3

. (4.186)

If all masses (or a subset) are different, we can write it in terms of I and I2 functions

I3[m1,m2,m3] =
I[m1]

(m2
1 −m2

2)(m
2
1 −m2

3)
− I[m2]

(m2
1 −m2

2)(m
2
2 −m2

3)

+
I[m3]

(m2
1 −m2

3)(m
2
2 −m2

3)
, (4.187)

I3[m1,m1,m2] = − I[m1]

(m2
1 −m2

2)
2
+

I[m2]

(m2
1 −m2

2)
2
− I2[m1,m1]

m2
1 −m2

2

. (4.188)

In addition to the one-loop integrals, also the two-loop bosonic sunset diagram appears. For

three arbitrary masses — m1, m2, m3 —, it is defined by

H[m1,m2,m3] =
∑∫
P

∑∫
Q

1

(P 2 +m2
1)(Q

2 +m2
2)((P +Q)2 +m2

3)
. (4.189)

The high-temperature expansion of the bosonic sunset is rather involved and has been eval-
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uated in [317],

H[m1,m2,m3] ≃
T 2

16π2

[
ln

(
µR

m1 +m2 +m3

)
+

1

2

]

− T

64π3

 ∑
i=1,2,3

mi

(
ln

(
µ2R
4m2

i

)
+ LR + 2

)
− 1

256π4

 ∑
i=1,2,3

m2
i

(
L2R + LR − 2γ2E − 4γ1 +

π2

4
+

3

2

)+ . . . ,

(4.190)

with γ1 ≃ −0.0728 the first Stieltjes constant.

We also need the bosonic sunset integral with one additional propagator, which we denote

by H̃,

H̃[m1,m2,m3,m4] =
∑∫
P

∑∫
Q

1

(P 2 +m2
1)(P

2 +m2
2)(Q

2 +m2
3)((P +Q)2 +m2

4)
. (4.191)

If m1 ̸= m2, it can be related to the normal sunset integral via

H̃[m1,m2,m3,m4] =
1

m2
1 −m2

2

(H[m2,m3,m4]−H[m1,m3,m4]) (4.192)

For m1 = m2, it can be derived by a derivative of the normal sunset integral

H̃[m1,m1,m3,m4] = − ∂

∂m2
1

H[m1,m3,m4] (4.193)

The high-temperature expansion of H̃ is then given by

H̃[m1,m2,m3,m4] =
T 2

16π2
1

m2
1 −m2

2

ln

(
m1 +m3 +m4

m2 +m3 +m4

)
+ . . . , (4.194)

H̃[m1,m1,m3,m4] =
T 2

32π2
1

m1

1

m1 +m3 +m4
+ . . . . (4.195)
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4.3 Constraints on 2 Higgs Doublet Models

Two Higgs doublet models (2HDM) provide the low energy effective theory description in

many well motivated extensions of the Standard Model. Further, this extension may lead to

a strongly first-order electroweak phase transition and possibly even successful baryogenesis

[318, 319]. It is therefore relevant to study their properties, as well as the theoretical con-

straints on these models. In this article we concentrate on three relevant requirements for the

validity of the 2HDM framework, namely the perturbative unitarity bounds, the bounded

from below constraints, and the vacuum stability constraints. In this section, we concentrate

on the most general renormalizable version of the 2HDM — without imposing any parity

symmetry, which may be violated in many UV extensions. We derive novel analytical ex-

pressions that generalize those previously obtained in more restrictive scenarios to the most

general case. We also discuss the phenomenological implications of these bounds, focusing

on CP violation. Note that much of the material in this section was previously published

by this author in [27].

4.3.1 Overview

The Standard Model (SM) [320] relies on the introduction of a Higgs doublet, whose vac-

uum expectation value breaks the electroweak symmetry [321, 322, 323]. This mechanism

generates masses for the weak gauge bosons and charged fermions, as well as potentially

the neutrinos (although there may be other mass sources for the latter). The Standard

Model Higgs sector is the simplest way of implementing the Higgs mechanism for generating

the masses of the known elementary particles. However, it is not the only possibility, and

may be easily extended to the case of more than one Higgs doublet without violating any

of the important properties of the SM. Moreover, one of the simplest of these extensions

— two Higgs doublet models (2HDMs) [324] — appears as a low-energy effective theory of

many well motivated extensions of the Standard Model (e.g. those based on supersymme-
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try [325, 326, 327, 328, 329, 330, 331, 332, 333, 334] or little Higgs [335]).

Two Higgs doublet models may differ in the mechanism of generation of fermion masses.

If both Higgs doublets couple to fermions of a given charge, their couplings will be associated

to two different, complex sets of Yukawa couplings, which would form two different matrices

in flavor space. The fermion mass matrices would be the sum of these, each multiplied

by the corresponding Higgs vacuum expectation value. So diagonalization of the fermion

mass matrices does not lead to the diagonalization of the fermion Yukawa matrices. Such

theories are then associated with large flavor violating couplings of the Higgs bosons at low

energies — a situation which is experimentally strongly disfavored. Hence, it is usually

assumed that each charged fermion species couples only to one of the two Higgs doublets. In

most works related to 2HDM, this is accomplished by implementing a suitable Z2 symmetry.

The different possible charge assignments for this Z2 symmetry then fix the Higgs–fermion

coupling choices and define different types of 2HDMs.

This Z2 symmetry not only fixes the Higgs–fermion couplings but also forbids certain

terms in the Higgs potential that are far less problematic with respect to flavor violation. As

a starting point for an investigation of the phenomenological implications of these terms, we

will in this work discuss the theoretical bounds on the boson sector of the theory (without

any need to specify the nature of the Higgs-fermion couplings). We will concentrate on

the constraints that come from the perturbative unitarity of the theory, the stability of the

physical vacuum, and the requirement that the effective potential is bounded from below.

Existing works [336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 324, 348] focus either

on the Z2-symmetric case or only provide a numerical procedure to test these constraints in

the general 2HDM (see [349] for a recent work on analytic conditions for boundedness-from-

below). We will go beyond current studies by deriving analytic bounds that apply to the

most general, renormalizable realization of 2HDMs. Our conditions will be given in terms

of the mass parameters and dimensionless couplings of the 2HDM tree-level potential. At

238



the quantum level, however, these parameters are scale dependent; although we will refrain

from doing so here, one can apply these conditions at arbitrarily high energy scales by using

the renormalization group evolution of these parameters.

Our article is organized as follows. In Sec. 4.3.2 we introduce the scalar sector of the

most general 2HDM that defines the framework for most of the work presented in this article.

Sec. 4.3.3 reviews three theorems from linear algebra which will allow us to derive analytic

bounds in the coming sections. In Sec. 4.3.4, we concentrate on the requirement of perturba-

tive unitarity. Sec. 4.3.5 presents the bounds coming from the requirement that the tree-level

potential be bounded from below. In Sec. ??, we discuss the vacuum stability. Finally, we

reserve Sec. 4.3.7 for a brief analysis of the phenomenological implications (focusing on CP

violation) and Sec. 4.3.8 for our conclusions. A Table listing the most relevant findings of

our work may be found at the beginning of Sec. 4.3.8.

4.3.2 The General 2HDM

As emphasized above, we focus on the scalar sector of the theory. In general, gauge invariance

implies that the potential can only include bilinear and quartic terms. Each of the three

bilinear terms has a corresponding mass parameter, of which two (m2
11 and m2

22) are real

while the third, m2
12, is associated with a bilinear mixing of both Higgs doublets and may

be complex.

Regarding the quartic couplings in the scalar potential, the two associated with self

interactions of each of the Higgs fields, λ1 and λ2, must be real and, due to vacuum stability,

positive. There are two couplings associated with Hermitian combinations of the Higgs fields,

λ3 and λ4, which must be real, though not necessarily positive. The coupling λ5 is associated

with the square of the gauge invariant bilinear of both Higgs fields, and it may therefore be

complex. The couplings λ6 and λ7 are associated with the product of Hermitian bilinears

of each of the Higgs fields with the gauge invariant bilinear of the two Higgs fields, and, as
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with λ5, they may be complex. The most general scalar potential for a complex 2HDM is

therefore:

V = m2
11Φ

†
1Φ1 +m2

22Φ
†
2Φ2 − (m2

12Φ
†
1Φ2 + h.c.)

+
λ1
2
(Φ

†
1Φ1)

2 +
λ2
2
(Φ

†
2Φ2)

2 + λ3(Φ
†
1Φ1)(Φ

†
2Φ2) + λ4(Φ

†
1Φ2)(Φ

†
2Φ1)

+

[
λ5
2
(Φ

†
1Φ2)

2 + λ6(Φ
†
1Φ1)(Φ

†
1Φ2) + λ7(Φ

†
2Φ2)(Φ

†
1Φ2) + h.c.

]
,

(4.196)

with Φ1,2 = (Φ+
1,2,Φ

0
1,2)

T being complex SU(2) doublets with hypercharge +1.

One way to prevent Higgs-induced flavor violation in the fermion sector is to introduce

a Z2 parity symmetry under which each charged fermion species transforms as even or odd.

The Higgs doublets are assigned opposite parities and couple only to those charged fermions

that carry their own parity. In such a scenario, the terms accompanying the couplings λ6

and λ7 would violate parity symmetry and hence should vanish. The mass parameter m2
12

is also odd under the parity symmetry but induces only a soft breaking of this symmetry,

which does not affect the ultraviolet properties of the theory. Thus it is usually allowed.

There are alternative ways of suppressing flavor violating couplings of the Higgs to

fermions which do not rely on a simple parity symmetry and hence allow for the presence

of λ6 and λ7 terms. One example is the flavor-aligned 2HDM [350]. Alternatively, one can

impose a parity symmetry in the ultraviolet but allow the effective low energy field theory to

be affected by operators generated by the decoupling of a sector where this symmetry is bro-

ken softly by dimensionful couplings which do not respect the parity symmetry properties.

One example of such a theory is the NMSSM in the presence of heavy singlets, as discussed

in Ref. [351]. In this case, the presence of the couplings λ6 and λ7 is essential to allow for

the alignment of the light Higgs boson with a SM-like Higgs, leading to a good agreement

with precision Higgs physics even in the case of large Higgs self couplings.

So we see that it is not necessary to restrict to the Z2-symmetric 2HDM with vanishing
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λ6 and λ7 to avoid Higgs induced flavor violation in the fermion sector.17 Further, it is

phenomenologically interesting to study the 2HDM in full generality with these terms present.

One consequence would be the possibility of having charge-parity (CP ) violation in the

bosonic sector. Indeed, to keep good agreement with Higgs precision data [352, 353], one

is normally interested in studying 2HDM in (or close to) the exact alignment limit — the

limit in which one of the neutral scalars carries the full vacuum expectation value and has

SM-like tree-level couplings [354, 355, 356, 357, 358, 359]. If one imposes exact alignment

in the Z2-symmetric 2HDM, however, CP is necessarily conserved, as will be explained in

detail in Sec. 4.3.7. In the full 2HDM, on the other hand, one can have CP violation whilst

remaining in exact alignment thanks to the presence of λ6 and λ7 terms. This CP violation

could manifest in the neutral scalar mass eigenstates as well as bosonic couplings (see also

[360]), providing many potential experimental signatures. With this motivation in mind, we

keep λ6 and λ7 non-zero throughout this work.

4.3.3 Methods for Bounding Matrix Eigenvalues

In this work, much of the analysis of perturbative unitarity and vacuum stability involves

placing bounds on matrix eigenvalues. In the most general 2HDM, analytic expressions for

these constraints are either very complicated or simply can not be formulated. To obtain

some analytic insight, we derive conditions which are either necessary or sufficient. Their

derivation is based on three linear algebra theorems which we briefly review here.

Frobenius Norm

One may derive a bound on the magnitude of the eigenvalues of a matrix using the matrix

norm. The following definition and theorem are needed:

17. Note that non-vanishing λ6,7 induces flavor violation via Higgs mixing. This effect is, however, loop
suppressed.
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Theorem: The magnitude of the eigenvalues ei of a square matrix A are bounded from above

by the matrix norm: |ei| ≤ ||A||.

where a matrix norm is defined as:

Definition: Given two m×n matrices A and B, the matrix norm ||A|| satisfies the following

properties:

• ||A|| ≥ 0,

• ||A|| = 0 ⇔ A = 0m,n,

• ||αA|| = |α|||A||,

• ||A+B|| ≤ ||A||+ ||B||.

The above theorem holds for any choice of matrix norm, and thus one may employ the

Frobenius norm [361], ||A|| =
√

Tr(A†A), to find the following result:

|ei| ≤
√

Tr(A†A) (4.197)

This bound on the eigenvalues will be used to derive sufficient bounds in the following

sections.

Gershgorin Disk Theorem

We will use the Gershgorin disk theorem [362] in upcoming sections to derive sufficient con-

ditions for perturbative unitarity and vacuum stability of the 2HDM potential. The theorem

is typically used to constrain the spectra of complex square matrices. The basic idea is that
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one identifies each of the diagonal elements with a point in the complex plane and then con-

structs a disk around this central point, with the radius given by the sum of the magnitudes

of the other n− 1 entries of the corresponding row.18 The theorem says that all eigenvalues

must lie within the union of these disks. Formally, we have the following definition and

theorem:

Definition: Let A be a complex n× n matrix with entries aij, and let Ri be the sum of the

magnitudes of the non-diagonal entries of the ith row, Ri =
∑
j ̸=i |aij |. Then the Gershgorin

disk D(aii, Ri) is defined as the closed disk in the complex plane centered on aii with radius

Ri.

Theorem: Every eigenvalue of A lies within at least one such Gershgorin disk D(aii, Ri).

This theorem can be used to derive an upper bound on the magnitude of the eigenvalues of a

matrix. We will use this technique below when discussing perturbative unitarity and vacuum

stability. Since all the matrices we will consider in the subsequent sections on perturbative

unitarity and boundedness from below are Hermitian matrices, each eigenvalue will lie within

the intervals formed by the intersection of the Gershgorin disks with the real axis.

We shall proceed in the following manner: We will first construct the intervals containing

the eigenvalues of each matrix A. For each interval, the rightmost and leftmost endpoints

x±i will be given by the sum and difference, respectively, of the center and the radius,

x±i ≡ aii ±Ri , with Ri =
∑
j ̸=i

|aij | . (4.198)

We then identify which x±i extends furthest in the positive or negative direction. We know

18. One can also construct the radius by summing the magnitudes of the n− 1 column entries.
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that every eigenvalue ek must lie within the endpoints of the largest possible total interval,

min(x−i ) ≤ ek ≤ max(x+i ) . (4.199)

This may be rephrased into an upper bound on |ek| as:

|ek| ≤ maxi

∑
j

|aij |

 , (4.200)

where the left-hand side of Eq. (4.200) represents the absolute value of any given eigenvalue

ek and the right-hand side represents the maximum value of
∑
j |aij | over all rows i of the

matrix A. In fact, this condensed statement of Gershgorin circle theorem is an application

of the matrix norm theorem, employing the norm ||A|| = maxi(
∑
j |aij |).

Principal Minors

In order to derive necessary conditions, one may employ Sylvester’s criterion in a clever

way, as proposed in [363]. Sylvester’s criterion involves the principal minors Dk of a matrix,

where Dk is the determinant of the upper-left k×k sub-matrix. The statement of Sylvester’s

criterion is the following:

Theorem: Let M be a Hermitian n × n matrix. M is positive definite if and only if all of

the principal minors Dk(M) are positive.

We further need the following result about Hermitian matrices19:

Theorem: Let M be a Hermitian matrix. Then M is positive definite if and only if all of

19. This theorem is in fact used in the proof of Sylvester’s criterion
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its eigenvalues are positive.

One can apply this to derive an upper bound on the eigenvalues of a diagonalizable ma-

trix in the following way:

Theorem: Let M be an n × n diagonalizable, Hermitian (symmetric) matrix and let c be

a positive real number. The eigenvalues ei of M are bounded as |ei| < c if and only if all

principal minors Dk(cI−M) and Dk(cI+M) are positive for all k = 1...n.

To see this, consider applying a unitary transformation which diagonalizes M to the matrix

cI ± diag(M). Then for symmetric or Hermitian matrices, the statement that cI ± M is

positive definite becomes a statement on the relative values of ei and c. In this manner,

the application of Sylvester’s criterion to these specific matrices allows one to put an upper

bound on the magnitude of the eigenvalues without diagonalizing the matrix M . Note that

for the absolute value |ei| to be bounded by c, we require the use of both cI±M matrices.

On the other hand, if one has only an upper bound on ei, i.e. ei < c, as we will have in the

case of vacuum stability, then one only requires the principal minors of the matrix cI −M

to be positive.

We note that the use specifically of the upper-left sub-matrices in Sylvester’s criterion

is an arbitrary choice, and basis-dependent. One could instead consider the lower-right

sub-matrices, or any matrices along the diagonal. As such, it is possible to derive further

conditions using this criteria by further considering, for example, the upper-left, lower-right,

and central 2×2 sub-matrices of a 4×4 matrix. We will do so in later analyses to strengthen

the lower-k bounds.

This use of sub-determinants has been proposed in [363] as a method to increase the ef-

ficiency of parameter scans in models with large scattering matrices. For such theories (e.g.
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the model with N Higgs doublets, NHDM, considered in [363] for higher N), the numeri-

cal calculation of the scattering matrix eigenvalues is computationally expensive. We note

that the use of the Gershgorin disk theorem proposed in Eq. (4.3.3) provides an additional

complementary method to speed-up parameter scans.

4.3.4 Perturbative Unitarity

Tree-level constraints for perturbative unitarity in the most general 2HDM have already been

investigated in the literature [341, 364, 348]. However, for a non-zero λ6 and λ7, no exact

analytic conditions have been obtained yet. Here, we will first review the existing literature

and then derive analytic expressions for the case of non-vanishing λ6 and λ7.

Numerical Bound

Perturbative unitarity is usually imposed by demanding that the eigenvalues ei of the scalar

scattering matrix at high energy be less than the unitarity limit, |ei| < 8π. Thus to derive

the constraints on the quartic couplings, one must construct the scattering matrix for all

physical scalar states.

We are interested in all processes AB → CD, where the fields A...D represent any

combination of the physical20 scalars (H1, H2, H3, H
±,W±

L , ZL). The interactions and hence

S-matrix take a complicated form in terms of the physical states. However since we are only

interested in the eigenvalues of the S-matrix, we may choose any basis related to the physical

basis by a unitary transformation. The derivation is simplest in the basis of the original Higgs

20. Technically since we are working in the high energy limit, the equivalence theorem allows us to replace
W±

L and ZL by their corresponding Goldstone bosons.
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fields (w±
i , hi, zi), appearing as

Φi =

 w+
i

1√
2
(vi + hi + izi)

 , (4.201)

with v =
√∑

i v
2
i = 246 GeV.

Out of these fields, we can construct 14 neutral two-body states:
∣∣w+
i w

−
i

〉
, 1√

2
|zizi⟩, 1√

2
|hihi⟩,

|hizi⟩,
∣∣w+

1 w
−
2

〉
,
∣∣w+

2 w
−
1

〉
, |z1z2⟩, |h1h2⟩, |z1h2⟩, and |h1z2⟩. By constructing states which

are linear combinations with definite hypercharge and total weak isospin, denoted by (Y, I),

and grouping the ones with the same set of quantum numbers, the matrix of S-wave ampli-

tudes a0 takes a block diagonal form (for more details see [341, 364, 348]). For the neutral

scattering channels, this is:

a
(0)
0 =

1

16π



X(0,0)

X(0,1)

X(1,1)

X(1,1)


, (4.202)

where the subscript of each submatrix denotes the quantum numbers (Y, I) of the corre-

sponding states. The entries are:

X(0,0) =



3λ1 2λ3 + λ4 3λ6 3λ∗6

2λ3 + λ4 3λ2 3λ7 3λ∗7

3λ∗6 3λ∗7 λ3 + 2λ4 3λ∗5

3λ6 3λ7 3λ5 λ3 + 2λ4


, (4.203a)
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X(0,1) =



λ1 λ4 λ6 λ∗6

λ4 λ2 λ7 λ∗7

λ∗6 λ∗7 λ3 λ∗5

λ6 λ7 λ5 λ3


, (4.203b)

X(1,1) =


λ1 λ5

√
2λ6

λ∗5 λ2
√
2λ∗7

√
2λ∗6

√
2λ7 λ3 + λ4

 . (4.203c)

For the 8 singly-charged two-body states
∣∣w+
i zi
〉
,
∣∣w+
i hi

〉
,
∣∣w+

1 z2
〉
,
∣∣w+

1 h2
〉
,
∣∣w+

2 z1
〉
,
∣∣w+

2 h1
〉
,

the block diagonal 8×8 singly-charged S-matrix is given by:

a
(+)
0 =

1

16π


X(0,1)

X(1,0)

X(1,1)

 , (4.204)

where the new entry X(1,0) is just the one-dimensional eigenvalue:

X(1,0) = λ3 − λ4 . (4.205)

Finally, the 3×3 S-matrix for the three doubly-charged 2-body states
∣∣w+
i w

+
i

〉
,
∣∣w+

1 w
+
2

〉
is

given by:

a
(++)
0 =

1

16π
X(1,1) . (4.206)

We impose perturbative unitarity by demanding that the eigenvalues of the scattering matrix

are smaller than 8π implying that |a0| < 1
2 . Indeed, the eigenvalues of the submatricesX(0,0),

X(0,1), X(1,0), and X(1,1), which we denote as ei, must all satisfy

|ei| < 8π . (4.207)
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Figure 4.12: Plot showing the fraction of points that pass the unitarity bound |ei| < 8π for
different choices of λmax, in units of multiples of π. The values of the λi are each chosen
randomly such that |λi| < λmax. We test 20,000 random sets of λi for each λmax.

Obtaining analytic expressions for the eigenvalues requires solving cubic and quartic equa-

tions, and the result is complicated and not very useful. Given a choice of input parameters,

however, it is easy to check this condition numerically.

Assuming all λ1...7 to be equal, the strongest constraint arises from the 4×4 matrix X00.

If we set all λi ≡ λ and solve for the eigenvalues, we find the bound:

λ <
2π

3
. (4.208)

This value is an order of magnitude smaller than 8π, implying that if all quartic couplings are

sizable (i.e. of O(1)), perturbative unitarity may be lost even at values of the couplings much

smaller than 4π, which is a bound often encountered in the literature to ensure perturbativity.

We investigate the validity of such an upper bound further in Fig. 4.12. For this figure,

we randomly choose each λi within the range |λi| < λmax and then show the fraction of test

points which pass the numerical unitarity constraint, as a function of λmax. For λmax ≲ π

almost all points survive the perturbative unitarity constraint. For larger λmax values the
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survival rate quickly drops to almost zero for λmax ≳ 4π. This highlights again that the

simplified perturbativity bound of |λi| < 4π, which is often encountered in the literature, is

too loose. Based on the results in Fig. 4.12, a better choice of bound might be |λi| ≲ π or

|λi| ≲ 3π/2.

A Necessary Condition for Perturbative Unitarity

To gain some intuition for the perturbative unitarity constraint, we now turn to derive

some simplified analytic conditions which are either necessary or sufficient, though not both.

In this section we will focus on the former, which can be used to quickly rule out invalid

parameter sets which violate perturbative unitarity. One can derive necessary conditions

by invoking the method of principal minors, which we reviewed previously and can be used

to give an upper bound on the maximal value of the eigenvalues of a Hermitian matrix.

Since the scattering matrices are Hermitian, demanding the eigenvalues to be bounded as

|ei| < 8π, as required by perturbative unitarity, amounts to requiring

Dk(8πI+X) > 0 and Dk(8πI−X) > 0 , (4.209)

for k = 1, 2, 3, 4. Since satisfying both criteria for all k = 1, 2, 3, 4 is a necessary and sufficient

condition, any single k condition provides a necessary condition.

Since the eigenvalues of X(0,0) are generically the largest and therefore the most con-

straining, we will focus on bounds coming from this matrix. We begin with the upper left

2× 2 submatrices. Taking the determinant, we have

DL
2 (8πI+X(0,0)) > 0 ⇒ 64π2 + 24π(λ1 + λ2) + 9λ1λ2 − (2λ3 + λ4)

2 > 0 , (4.210a)

DL
2 (8πI−X(0,0)) > 0 ⇒ 64π2 − 24π(λ1 + λ2) + 9λ1λ2 − (2λ3 + λ4)

2 > 0 . (4.210b)
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Clearly the latter constraint coming from DL
2 (8πI − X) will be the stronger of the two,

since λ1, λ2 > 0 if boundedness from below is imposed. Thus the necessary k = 2 condition

reduces to Eq. (4.210b). We also examine the constraints that arise from using the lower-

right and center 2×2 sub-matrices, as proposed in Eq. (4.3.3). The analytic conditions from

the lower-right DR and center DC sub-matrices are, respectively,

DR
2 (8πI−X(0,0)) = 64π2 + (λ3 − 16π)λ3 + (4(λ3 + λ4)− 32π)λ4 − 9|λ5|2 > 0 , (4.211a)

DC
2 (8πI−X(0,0)) = 64π2 − 8π(λ3 + 3λ2 + 2λ4) + 3λ3λ2 + 6λ2λ4 − 9|λ7|2 > 0 . (4.211b)

The combination of these three expressions provides a stronger constraint than just the

upper-left minor constraint alone.

While it is immediately clear that DL
2 (8πI − X) is stronger than the addition-based

bound for the upper-left matrix, it is not clear for the center and lower-right matrices; in

fact, including these bounds provides a slightly more constraining result. We thus employ

the DC,R
2 (8πI+X) constraints in our analysis of the k = 2 bound as well:

DR
2 (8πI+X(0,0)) = 64π2 + (λ3 + 16π)λ3 + (4(λ3 + λ4) + 32π)λ4 − 9|λ5|2 > 0 , (4.212a)

DC
2 (8πI+X(0,0)) = 64π2 + 8π(λ3 + 3λ2 + 2λ4) + 3λ3λ2 + 6λ2λ4 − 9|λ7|2 > 0 . (4.212b)

Next, we look at the upper left 3× 3 submatrices. Unlike the k = 2 case, it is not clear

that one of these is generically more constraining than the other. To be consistent with the

k = 2 case, we will examine the 8πI−X(0,0) matrix. We additionally consider the lower-right

3× 3 sub-matrix. These give the following bounds:

DL
3 (8πI−X(0,0)) =(8π − λ3 − 2λ4)((8π − 3λ1)(8π − 3λ2)− (2λ3 + λ4)

2)

− 9(8π − 3λ2)|λ6|2 − 9(8π − 3λ1)|λ7|2

− 9(2λ3 + λ4)(λ6λ
∗
7 + λ∗6λ7) > 0 ,

(4.213a)
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DR
3 (8πI−X(0,0)) =(8π − λ3 − 2λ4)

2(8π − 3λ2)− 9|λ5|2(8π − 3λ2)

− 27(λ∗5λ
2
7 + λ5(λ

∗
7)

2)− 18(8π − λ3 − 2λ4)|λ7|2 > 0 .

(4.213b)

Meanwhile, considering 8πI+X(0,0) gives

DL
3 (8πI+X(0,0)) =(8π + λ3 + 2λ4)((8π + 3λ1)(8π + 3λ2)− (2λ3 + λ4)

2)

− 9(8π + 3λ2)|λ6|2 − 9(8π + 3λ1)|λ7|2

+ 9(2λ3 + λ4)(λ6λ
∗
7 + λ∗6λ7) > 0 ,

(4.214a)

DR
3 (8πI+X(0,0)) =(8π + λ3 + 2λ4)

2(8π + 3λ2)− 9|λ5|2(8π + 3λ2)

+ 27(λ∗5λ
2
7 + λ5(λ

∗
7)

2)− 18(8π + λ3 + 2λ4)|λ7|2 > 0 .

(4.214b)

While the D3(8πI − X(0,0)) provide the strongest constraints for values of |λi| ≲ 4π, the

inclusion of the D3(8πI + X(0,0)) and D2 bounds improves the performance of the k = 3

bounds at higher |λi|. We omit analytic expressions for the k = 4 case, since they cannot

be simplified to a useful form. Moreover, the k = 3 expressions already provide constraints

very close to the full numerical bound (see Fig. 4.13).

Sufficient Conditions for Perturbative Unitarity

Next, we turn to derive sufficient conditions for perturbative unitarity by applying the Ger-

shgorin disk theorem, which gives an upper bound on the maximal value of the eigenvalues.

By demanding that this upper bound is less than 8π, we obtain a sufficient condition for

perturbative unitarity.

We first construct the intervals x(Y,I)i containing the eigenvalues of each of the scattering

matrices, X(0,0), X(0,1), X(1,0), and X(1,1). We know that in order to uphold perturbative

unitarity, we must have |ei| < 8π. Thus we arrive at the sufficient condition:

max(x(Y,I)i ) < 8π . (4.215)

252



0 1 2 3 4 5 6 7 8
λmax (nπ)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

ti
on

of
un

it
ar

y
po

in
ts

0 ≤ λ1,2 ≤ λmax

Sufficient (disk)
Sufficient (norm)
Necessary (All D2 > 0)
Necessary (All D2,3 > 0)

Numerical

Figure 4.13: Plot comparing the number of points that pass the exact numerical bound |ei| <
8π (black), the sufficient bound from the Gershgorin disk theorem Eq. (4.220) (dark blue),
the sufficient bound from the Frobenius norm Eq. (4.221) (light blue), the necessary condition
D2(8πI±X(0,0)) > 0 (dark red), and the necessary condition D2,3(8πI±X(0,0)) > 0 (light
red). The λi values are randomly chosen from the range of values satisfying |λi| < λmax,
where λmax is given by the x-axis in units of multiples of π. The minimal bounded from
below condition λ1,2 ≥ 0 is enforced. The λ5,6,7 values are allowed to be complex. The total
number of points checked for each λmax is 10,000.
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For each of the X matrices, we can work out the x(Y,I)i explicitly. For X(0,0), we obtain:

x
(0,0)
1 = 3|λ1|+ (|2λ3 + λ4|+ 6|λ6|) , (4.216a)

x
(0,0)
2 = 3|λ2|+ (|2λ3 + λ4|+ 6|λ7|) , (4.216b)

x
(0,0)
3 = x

(0,0)
4 = |λ3 + 2λ4|+ 3(|λ5|+ |λ6|+ |λ7|) . (4.216c)

For X(0,1), they are:

x
(0,1)
1 = |λ1|+ (|λ4|+ 2|λ6|) , (4.217a)

x
(0,1)
2 = |λ2|+ (|λ4|+ 2|λ7|) , (4.217b)

x
(0,1)
3 = x

(0,1)
4 = |λ3|+ (|λ5|+ |λ6|+ |λ7|) . (4.217c)

For X(1,1), we have:

x
(1,1)
1 = |λ1|+ (|λ5|+

√
2|λ6|) , (4.218a)

x
(1,1)
2 = |λ2|+ (|λ5|+

√
2|λ7|) , (4.218b)

x
(1,1)
3 = |λ3 + λ4|+

√
2(|λ6|+ |λ7|) . (4.218c)

Finally, X(1,0), we have:

x
(1,0)
1 = |λ3 − λ4| . (4.219)

In examining these conditions, the leading coefficient of 3 in the first set suggests that the

x
(0,0)
i corresponding to X(0,0) will generically be larger than those corresponding to X(0,1),

X(1,0), and X(1,1); a numerical check confirms this intuition. Thus the sufficient condition

254



for perturbative unitarity simplifies slightly to

max
(
x
(0,0)
i

)
< 8π . (4.220)

One may alternatively employ the bound arising from the Frobenius norm. Taking the

dominant X(0,0) matrix, one finds the condition:

√
9(λ21 + λ22) + 10(λ23 + λ24) + 16λ3λ4 + 18(|λ5|2 + 2|λ6|2 + 2|λ7|2) ≤ 8π (4.221)

The dependence here on the signs of the λi is similar to the dependence seen in the Gershgorin

disk conditions: the bound is not sensitive to the signs of any λi except for the relative sign

between λ3 and λ4.

Numerical Comparison

In order to compare the various bounds derived in this section, in Fig. 4.13 we plot the

number of points which pass the exact, sufficient, and necessary conditions for different

values of λmax. For each λmax, we consider 10,000 randomly-drawn values for the λi within

the range |λi| < λmax. For the necessary conditions, the results are derived from the

combination of all possible 2×2 (3×3) sub-matrices along the diagonal for the D2(3) bound.

We enforce the minimal bounded from below condition λ1,2 > 0, which has been derived e.g.

in [324]. We find that the necessary D3(8πI−X(0,0)) condition lies very close to the exact

condition and is effective at ruling out parameter sets which fail perturbative unitarity, while

for λmax ≲ π all tested points satisfy perturbative unitarity.

4.3.5 Boundedness from Below

Next, we seek to determine the conditions on the parameters such that the potential of

Eq. (4.196) is bounded from below (BFB). For this, it is necessary to ensure that the quartic
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part of the potential does not acquire negative values. If negative values were present, one

could easily find indefinite negative values of the potential by rescaling all fields to infinity

in the same direction as the one in which the negative value was found. We remark that

analytic expressions have been formulated previously in [349], though for the case of explicit

CP conservation. We will make no such assumption. There are also previous analyses of

the BFB condition using the eigenvalues of a 4×4 matrix ([343]); however, these analyses do

not lead to analytical expressions, and we will follow an alternative approach.

We begin by reparameterizing the potential via Φ
†
1Φ1 = 1

2h
2
1, Φ

†
2Φ2 = 1

2h
2
2, Φ

†
1Φ2 =

1
2h1h2ρe

iη, with ρ ∈ [0, 1]. Moreover, we decompose the complex couplings λ5, λ6, λ7 into

real and imaginary parts as: λieiη +λ∗i e
−iη = 2Re[λi] cos η− 2Im[λi] sin η. The quartic part

of the potential then becomes:

Vquartic =
1

4

{
λ1
2
h41 +

λ2
2
h42 +

[
λ3 +

(
λ4 + Re[λ5] cos 2η − Im[λ5] sin 2η

)
ρ2
]
h21h

2
2

+ 2
(
Re[λ6] cos η − Im[λ6] sin η

)
ρ h31h2

+ 2
(
Re[λ7] cos η − Im[λ7] sin η

)
ρ h1h

3
2

}
.

(4.222)

We can then cast Vquartic into the form

Vquartic =
1

4
h42

[
a

(
h1
h2

)4

+ b

(
h1
h2

)3

+ c

(
h1
h2

)2

+ d

(
h1
h2

)
+ e

]
, (4.223)

with

a =
λ1
2
, e =

λ2
2
, (4.224a)

b = 2
(
Re[λ6] cos η − Im[λ6] sin η

)
ρ , (4.224b)

c =
[
λ3 +

(
λ4 + Re[λ5] cos 2η − Im[λ5] sin 2η

)
ρ2
]
, (4.224c)

d = 2
(
Re[λ7] cos η − Im[λ7] sin η

)
ρ . (4.224d)
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Clearly a > 0 and e > 0 has to be fulfilled as a minimum condition for BFB. We can then

divide out by e h42 and define the simplified polynomial:

f(x) = x4 + αx3 + βx2 + γx+ 1 , (4.225)

with x = a1/4

e1/4
h1
h2

and:

α = ba−3/4e−1/4, β = ca−1/2e−1/2, γ = da−1/4e−3/4 . (4.226)

We then define the following quantities:

∆ = 4[β2 − 3αγ + 12]3 − [72β + 9αβγ − 2β3 − 27α2 − 27γ2]2 , (4.227a)

χ1 = (α− γ)2 − 16(α + β + γ + 2) , (4.227b)

χ2 = (α− γ)2 − 4(β + 2)√
β − 2

(
α + γ + 4

√
β − 2

)
. (4.227c)

The positivity of Vquartic is ensured if and only if one of the following conditions holds [365]:

(1) β < −2 and ∆ ≤ 0 and α + γ > 0 ,

(2) − 2 ≤ β ≤ 6 and ∆ ≤ 0 and α + γ > 0 ,

(3) − 2 ≤ β ≤ 6 and ∆ ≥ 0 and χ1 ≤ 0 ,

(4) β > 6 and ∆ ≤ 0 and α + γ > 0 ,

(5) β > 6 and α > 0 and γ > 0 ,

(6) β > 6 and ∆ ≥ 0 and χ2 ≤ 0 .

(4.228)

If any of these conditions is true for a given set of input parameters λ1...7 and for all possible

values of ρ ∈ [0, 1], η ∈ [0, 2π), then the potential is BFB.

Note that under the transformation η → η + π, both α and γ are anti-symmetric (α →
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−α and γ → −γ). This in turn implies that conditions (1), (2), (4), and (5) are always

violated for some value of η, and therefore can never guarantee the positivity of Vquartic.

Consequently, we are left with only two conditions under which the potential is BFB:

The potential is BFB if and only if : ∆ ≥ 0 and


−2 ≤ β ≤ 6 and χ1 ≤ 0 , or

β > 6 and χ2 ≤ 0 .

(4.229)

Note that upon setting λ6 = λ7 = 0, and after extremizing with respect to η, Eq. (4.229)

becomes

β + 2 ≥ 0 ⇒ λ3 + ρ2(λ4 − |λ5|) ≥ −
√
λ1λ2 . (4.230)

This is a monotonic function of ρ, and hence the strongest constraints are derived for either

ρ = 1 or ρ = 0, namely

λ3 + λ4 − |λ5| ≥ −
√
λ1λ2 , and (4.231)

λ3 ≥ −
√
λ1λ2 , (4.232)

These conditions reproduce the well-known conditions for BFB in the Z2-symmetric 2HDM [324].

Let us also stress that, for ρ = 0, Eq. (4.229) leads to Eq. (4.232) independently of the value of

the other quartic couplings and hence this equation is a necessary condition for the potential

stability even in the generic 2HDM case.

Necessary Conditions for Boundedness from Below

The two options of Eq. (4.229) present a necessary and sufficient condition for BFB. In order

to implement this bound, one should scan over all possible values of ρ and η, which can be

computationally expensive for large parameter spaces. Thus we present here two simplified

258



necessary (though not sufficient) conditions which can be used to quickly rule out invalid

parameter sets and speed up scans.

We can first derive generalized versions of the existing literature bounds [324] by setting

x = 1 and taking ρ = 1 and η = nπ
4 , with n = {0, ..., 7}, in Eq. (4.222) and Eq. (4.225).

Applying this procedure to Eq. (4.222) leads to the following conditions

λ1 + λ2
2

+ λ3 + λ4 + λR5 − 2|λR6 + λR7 | > 0 , (4.233a)

λ1 + λ2
2

+ λ3 + λ4 − λR5 − 2|λI6 + λI7| > 0 , (4.233b)

λ1 + λ2
2

+ λ3 + λ4 + λI5 −
√
2
∣∣∣(λR6 + λR7 ) + (λI6 + λI7)

∣∣∣ > 0 , (4.233c)

λ1 + λ2
2

+ λ3 + λ4 − λI5 −
√
2
∣∣∣(λR6 + λR7 )− (λI6 + λI7)

∣∣∣ > 0 , (4.233d)

while applying the same procedure to Eq. (4.225) leads to the conditions

√
λ1λ2 + λ3 + λ4 + λR5 − 2

∣∣∣λ̃R6 + λ̃R7

∣∣∣ > 0 , (4.234a)√
λ1λ2 + λ3 + λ4 − λR5 − 2

∣∣∣λ̃I6 + λ̃I7

∣∣∣ > 0 , (4.234b)√
λ1λ2 + λ3 + λ4 + λI5 −

√
2
∣∣∣(λ̃R6 + λ̃R7 ) + (λ̃I6 + λ̃I7)

∣∣∣ > 0 , (4.234c)√
λ1λ2 + λ3 + λ4 − λI5 −

√
2
∣∣∣(λ̃R6 + λ̃R7 )− (λ̃I6 + λ̃I7)

∣∣∣ > 0 . (4.234d)

Note that we have combined the η, η + π conditions in each set to obtain four conditions

instead of eight.

Alternatively, we can collapse the two conditions of Eq. (4.229) into a single necessary

condition as follows. Consider the two different branches with χ1,2 < 0. Under the transfor-

mation η → η + π, χ1 ≤ 0 produces two conditions that must be satisfied simultaneously:

(α− γ)2− 16(α+ β + γ +2) ≤ 0 and (α− γ)2− 16(−α+ β − γ +2) ≤ 0. We can add these

together to obtain the simplified condition: (α−γ)2 ≤ 16(β+2). Similarly, demanding that

χ2 ≤ 0 for both η and η + π gives us the simplified condition (α − γ)2 ≤ 16(β + 2). So, we
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see that demanding χ1 ≤ 0 and χ2 ≤ 0 are equivalent, and both translate to the constraint:

χ1 ≤ 0 , χ2 ≤ 0 ⇒ (α− γ)2 ≤ 16(β + 2) . (4.235)

In this way, the condition for the potential to be BFB can be reduced to the form:

∆ ≥ 0 and β ≥ −2 and (α− γ)2 ≤ 16(β + 2) . (4.236)

Note that both β ≥ −2 and (α− γ)2 ≤ 16(β + 2) restrict β, but that the latter will always

be a stronger condition since (α − γ)2 ≥ 0. Then this necessary but not sufficient BFB

condition simplifies further to

∆ ≥ 0 and β ≥ 1

16
(α− γ)2 − 2 . (4.237)

This condition still depends on ρ and η. Without loss of generality, we set21 ρ = 1. As

for η, we need to find the value which extremizes the expression for each condition. Take for

instance the latter condition of Eq. (4.237) and define

f(η) ≡ β − 1

16
(α− γ)2 + 2 ≥ 0 . (4.238)

We can recast everything in terms of cos 2η and sin 2η such that f(η) only depends on these

quantities. We can then easily determine the extremal value of ηmin which gives the minimal

fmin. After some algebra, the positivity condition fmin ≥ 0 reads

2(λ1λ2 +
√
λ1λ2(λ3 + λ4))−

1

2

∣∣λ̃6 − λ̃7
∣∣2 − ∣∣2√λ1λ2 λ5 −

1

2
(λ̃6 − λ̃7)

2
∣∣ ≥ 0 , (4.239)

21. This gives us one necessary condition. We could obtain others by choosing ρ < 1, but these tend to be
less constraining in most cases.
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where we have defined the rescaled couplings

λ̃6 ≡
(
λ2
λ1

)1/4

λ6 , λ̃7 ≡
(
λ1
λ2

)1/4

λ7 . (4.240)

Eqs. (4.233), (4.234), and (4.239) present simplified necessary conditions for BFB and are

the main result of this section.

Sufficient Conditions for Boundedness from Below

It is also useful to have simplified sufficient conditions which allow one to quickly determine

if the potential is BFB for a given parameter set. Consider the top branch of Eq. (4.229) —

i.e. ∆ ≥ 0 and −2 ≤ β ≤ 6 and χ1 ≤ 0. One can show22 that a stronger condition (which

will lead to a sufficient condition) is β ≤ 6 and α + 1
2(β + 2) > 0 and γ + 1

2(β + 2) > 0. In

terms of the λ’s, this translates to the sufficient condition

3
√
λ1λ2 − (λ3 + |λ4|+ |λ5|) ≥ 0 ,

and
√
λ1λ2 + λ3 − (|λ4|+ |λ5|+ 4|λ̃6|) > 0 ,

and
√
λ1λ2 + λ3 − (|λ4|+ |λ5|+ 4|λ̃7|) > 0 .

(4.241)

Now consider the bottom branch of Eq. (4.229) — i.e. ∆ ≥ 0 and β > 6 and χ2 ≤ 0. To arrive

at an analytic sufficient condition, consider the stronger bound β > 6 and α+ 2
√
β − 2 > 0

22. Note that α = − 1
2 (β +2) and γ = − 1

2 (β +2) are the directions along which ∆ = 0. In order to satisfy
the χ1 ≤ 0 condition, relevant for β ≤ 6, we must have α + 1

2 (β + 2) ≥ 0 and γ + 1
2 (β + 2) ≥ 0. So long as

β ≥ −2, these conditions combined will always yield positive ∆. Then Eq. (4.241) is a sufficient condition
that follows from the top branch of Eq. (4.229).
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and γ + 2
√
β − 2 > 0. In terms of the potential parameters, this condition reads:

λ3 − (3
√
λ1λ2 + |λ4|+ |λ5|) ≥ 0 ,

and
√
λ3 − (

√
λ1λ2 + |λ4|+ |λ5|)−

√
2

(λ1λ2)
1/4

|λ̃6| > 0 ,

and
√
λ3 − (

√
λ1λ2 + |λ4|+ |λ5|)−

√
2

(λ1λ2)
1/4

|λ̃7| > 0 .

(4.242)

Eqs. (4.241) and (4.242) are the main result of this section.

Numerical Analysis

To compare the performance of our analytic conditions with the numerical BFB condition,

we perform a scan over 10,000 randomly chosen points in the 7-dimensional parameter space

of {λ1, ...λ7}. We take as allowed ranges λ1,2 ∈ [0, 2π] and |λ3,4,5,6,7| ≤ π
2 , with λ5,6,7

complex, as this choice yields about half of the points BFB. Fig. 4.14 shows the number of

points which pass the numerical condition Eq. (4.229) as well as the number which pass the

combination of our necessary conditions Eqs. (4.233), (4.234), and (4.239) and the number

which pass the combination of our sufficient conditions Eqs. (4.241) and (4.242). While we

display in the figure the result of combining all necessary conditions derived in Sec. 4.3.5,

we note that Eq. (4.234) provides the strongest necessary condition, with the combination

of all conditions improving the results by a few percent.

We see that our necessary conditions are very effective at eliminating points which are

not BFB, with only approximately 51% of points passing this condition, as compared with

the 45% of points which actually satisfy BFB. Meanwhile, our analytic sufficient conditions

guarantee approximately 11% of points are BFB. Of these points, essentially all are obtained

from Eq. (4.241), which was derived from the upper branch of Eq. (4.229). The second

condition Eq. (4.242), derived from the lower branch, is too strong and admits almost no

points, which also reflects the fact that most of the points sampled fall within the regime of
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Figure 4.14: The white circle represents 10,000 randomly chosen points in the 7-dimensional
parameter space of couplings {λ1, ...λ7}. We take as priors λ1,2 ∈ [0, 2π] and |λ3,4,5,6,7| ≤ π

2 ,
with λ5,6,7 allowed to be complex. The red circle encompasses the points which pass our
analytic necessary conditions of Eqs. (4.233), (4.234), and (4.239); the black circle contains
the points which pass the necessary and sufficient BFB condition of Eq. (4.229); and the
innermost blue circle contains the points which pass our sufficient condition of Eq. (4.241).

the first branch.

An examination of the analytical expressions indicates that the quantity
√
λ1λ2 may

play an important role in the determination of BFB. To examine whether the analytical

form of our bounds indeed captures the primary underlying behavior of BFB with respect

to the λi, we plot a histogram in
√
λ1λ2 of the fraction of tested points which pass the

numerical, necessary, and sufficient bounds of Eqs. (4.229), (4.233), (4.234), (4.239) and

(4.241), respectively. As in Fig. 4.14, we choose parameters in the range λ1,2 ∈ [0, 2π] and

|λ3,4,5,6,7| ≤ π/2 with λ5,6,7 allowed to be complex. The resulting figure is shown in Fig. 4.15.

As can be seen from the figure, more points pass the BFB condition for higher
√
λ1λ2, as

indicated by the forms of the necessary and sufficient conditions. We find that both the

necessary and sufficient bounds follow the same behavior as the exact numerical results,

indicating that the analytic bounds do indeed capture the relevant behavior in
√
λ1λ2.

Finally, we note that within the existing literature, some simplified analytic BFB con-

straints for the most general 2HDM (i.e. involving λ6,7 ̸= 0) do exist. For example, the
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Figure 4.15: Histogram of
√
λ1λ2 displaying the fraction of tested points per bin which pass

the necessary conditions Eqs. (4.239, 4.233, 4.234) (red), numerical test Eq. (4.229) (black),
and sufficient condition Eq. (4.241) (blue). As in Fig. 4.14, we take as priors λ1,2 ∈ [0, 2π]
and |λ3,4,5,6,7| ∈ [0, π2 ], with λ5,6,7 allowed to be complex.

authors of [324] find as a necessary condition

1

2
(λ1 + λ2) + λ3 + λ4 + λ5 − 2|λ6 + λ7| > 0 . (4.243)

This expression, that agrees with Eq. (4.233) in the appropriate limit, is derived by assuming

that the Higgs doublets are aligned in field space, and is limited to the case that all λi are

taken to be real. Restricting ourselves to this regime, we find that the literature expression

excludes approximately 17% of points while ours excludes approximately 49%, making our

condition the stronger of the two by a large margin.

4.3.6 Vacuum Stability

We can also place constraints on the allowed 2HDM potential parameters by demanding the

existence of a stable neutral vacuum. Strictly speaking, this not a necessary requirement:

it is only necessary that the vacuum is meta-stable, with a lifetime longer than the age of

the Universe. Here, we just derive the conditions for absolute stability, more precisely the
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absence of deeper minima at scales of the order of the TeV scale.

The discriminant D introduced in [366, 367] offers a prescription for distinguishing the

nature of a solution obtained by extremizing the potential. We summarize the method here,

beginning by writing the potential as:

V = −Mµr
µ +

1

2
Λµνr

µrν − 1

2
ζrµrµ , (4.244)

where Mµ encodes the mass terms:

Mµ =

(
−1

2(m
2
11 +m2

22), (m2
12)

R, −(m2
12)

I , −1
2(m

2
11 −m2

22)

)
, (4.245)

rµ is a vector of field bilinears:

rµ =

(
|Φ1|2 + |Φ2|2, 2Re[Φ†

1Φ2], 2Im[Φ
†
1Φ2], |Φ1|2 − |Φ2|2

)
, (4.246)

and Λµν encodes the quartic terms:

Λµν =
1

2



1
2(λ1 + λ2) + λ3 λR6 + λR7 −(λI6 + λI7)

1
2(λ1 − λ2)

(λR6 + λR7 ) (λ4 + λR5 ) −λI5 λR6 − λR7

−(λI6 + λI7) −λI5 λ4 − λR5 −(λI6 − λI7)

1
2(λ1 − λ2) λR6 − λR7 −(λI6 − λI7)

1
2(λ1 + λ2)− λ3


. (4.247)

The last term in Eq. (4.244) is a Lagrange multiplier we have introduced to enforce the

condition rµrµ = 0, which ensures we are in a charge-neutral minimum; we enforce this con-

dition since charge-breaking and normal minima cannot coexist in the 2HDM (see [366, 339]

for more details). In the above equations, indices are raised and lowered using a Minkowski

metric.

Provided the matrix Λµν , which contains the coefficients of the quartic terms in the
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potential, is positive definite, corresponding to a potential which is BFB, it can be brought

into a diagonal form by an SO(1, 3) transformation:

Λ
diag
µν =



Λ0 0 0 0

0 −Λ1 0 0

0 0 −Λ2 0

0 0 0 −Λ3


, (4.248)

with Λ0 the “timelike” eigenvalue and Λi “spacelike”. Let us define the “signature matrix” S

as S ≡ Λµν − ζgµν . In diagonal form, it looks like:

S =



Λ0 − ζ 0 0 0

0 ζ − Λ1 0 0

0 0 ζ − Λ2 0

0 0 0 ζ − Λ3


. (4.249)

The discriminant is generically given by the determinant of the signature matrix:

D = detS . (4.250)

By using the diagonal form above, we can write this as:

D = (Λ0 − ζ)(ζ − Λ1)(ζ − Λ2)(ζ − Λ3) . (4.251)

We finally come to the vacuum stability condition. Suppose we have already verified that

our potential is BFB and calculated the discriminant, time-like eigenvalue Λ0, and Lagrange
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multiplier ζ.

We are in a global minimum if and only if :


D > 0 , or

D < 0 and ζ > Λ0 .

(4.252)

For our purposes, it is more useful to work with the “Euclideanized" version of Λµν

obtained by lowering one of the indices with the Minkowski metric, ΛE ≡ Λ
µ
ν . Explicitly:

ΛE =
1

2



1
2(λ1 + λ2) + λ3 λR6 + λR7 −(λI6 + λI7)

1
2(λ1 − λ2)

−(λR6 + λR7 ) −(λ4 + λR5 ) λI5 −(λR6 − λR7 )

λI6 + λI7 λI5 −(λ4 − λR5 ) λI6 − λI7

−1
2(λ1 − λ2) −(λR6 − λR7 ) λI6 − λI7 −1

2(λ1 + λ2) + λ3


. (4.253)

In terms of ΛE , the discriminant is:

D = − det[ΛE − Iζ] . (4.254)

The other quantity necessary for formulating the discriminant is the Lagrange multiplier

ζ. This may be obtained by looking at any component of the minimization condition:

Λ
µ
νr
ν −Mµ = ζrµ . (4.255)

We parameterize the vacuum expectation values (vevs) of the doublets as:

⟨Φ1⟩ =
1√
2

 0

v1

 , ⟨Φ2⟩ =
1√
2

 0

v2e
iη

 . (4.256)
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Then the expectation value of field bilinears rµ ≡ ⟨rµ⟩ is:

rµ =

(
1
2(v

2
1 + v22), v1v2 cos η, v1v2 sin η,

1
2(v

2
1 − v22)

)
. (4.257)

The expression for ζ is particularly simple if we choose the “1” component. In particular if

we take η = 0, then:

ζ =
(m2

12)
R

v1v2
− 1

2

(
v1
v2
λR6 +

v2
v1
λR7 + (λ4 + λR5 )

)
. (4.258)

Note that this has the interpretation of the charged Higgs mass over the vev v squared,

ζ =
M2
H±

v2
, (4.259)

as first demonstrated in [343, 344].

If D > 0, then the physical minimum is the global one, implying absolute stability. If,

instead, D < 0, we need to compare the timelike eigenvalue Λ0 with ζ: we are in a global

minimum if ζ > Λ0; otherwise, the minimum is metastable. Provided we have already

verified that the potential is BFB, however, there is an even simpler way to assess the nature

of the extremum.

As an aside, working at the level of eigenvalues the two options of Eq. (4.252) for an

extremum to be the global minimum can actually be collapsed into one. Recall that when

the potential is BFB, Λµν is positive definite and Λ0 > Λ1,2,3. Then from Eq. (4.251), D > 0

necessarily implies that we have the ordering Λ0 > ζ > Λ1,2,3. Similarly D < 0 and ζ > Λ0

necessarily implies the ordering ζ > Λ0 > Λ1,2,3. So we see that the relative ordering of Λ0

and ζ does not actually matter−all that matters for a potential which has been verified to

be BFB is that ζ be larger than the spatial eigenvalues, ζ > Λ1,2,3.
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Sufficient Conditions for Stability

Gershgorin Bounds

We can bound the eigenvalues of ΛE using the Gershgorin disk theorem in order to derive a

sufficient condition for a given vacuum solution to be stable. We first construct the intervals

containing the eigenvalues of ΛE and define the endpoint of each interval as Γi ≡ aii + Ri,

with Ri =
∑
j ̸=i |aij |:

Γ1 =
1

4
(λ1 + λ2) +

λ3
2

+
1

2

(
|λR6 + λR7 |+ |λI6 + λI7|+

1

2
|λ1 − λ2|

)
, (4.260a)

Γ2 = −1

4
(λ1 + λ2) +

λ3
2

+
1

2

(
|λR6 − λR7 |+ |λI6 − λI7|+

1

2
|λ1 − λ2|

)
, (4.260b)

Γ3 = −1

2
(λ4 + λR5 ) +

1

2

(
|λI5|+ |λR6 + λR7 |+ |λR6 − λR7 |

)
, (4.260c)

Γ4 = −1

2
(λ4 − λR5 ) +

1

2

(
|λI5|+ |λI6 + λI7|+ |λI6 − λI7|

)
. (4.260d)

We know that all eigenvalues must be less than the endpoint of the interval extending the

furthest in the +x̂ direction,

max[Γi] ≥ Λ0,1,2,3 . (4.261)

Meanwhile, an extremum will be the global minimum if ζ > Λ1,2,3. Thus, it is sufficient to

demand:

ζ > max[Γi] . (4.262)

Frobenius Bounds

One may also bound the eigenvalues using the Frobenius norm to obtain a single-equation

condition. We require the maximum eigenvalue be less than ζ, which gives the constraint:

ζ >
1

2

√
λ21 + λ22 + 2(λ23 + λ24 + |λ5|2) + 4(|λ6|2 + |λ7|2) (4.263)
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Note that in this case, the Frobenius bound is insensitive to the signs of the λi, while

the Gershgorin condition is sensitive to the signs of λ3, λ4, and λR5 . We thus expect the

Gershgorin bound to be the stronger of the two.

Principal Minors

In the case of a non-symmetric matrix such as ΛE , Sylvester’s criterion no longer holds and

so cannot be applied in a straightforward manner. However, the following statement does

hold: if the symmetric part of a matrix M is positive-definite, then the real parts of the

eigenvalues of M are positive. This statement does not hold in the other direction, and

therefore cannot be used to derive necessary conditions. However, we can apply Sylvester’s

criterion to the symmetric part of ΛE to obtain a sufficient condition.

The symmetric part of ΛE is given by

ΛSE =
1

2
(ΛTE + ΛE)

=
1

2



1
2(λ1 + λ2) + λ3 0 0 0

0 −(λ4 + λR5 ) λI5 −(λR6 − λR7 )

0 λI5 −(λ4 − λR5 ) λI6 − λI7

0 −(λR6 − λR7 ) λI6 − λI7 −1
2(λ1 + λ2) + λ3


(4.264)

We require the matrix ζI − ΛSE to be positive-definite. Since the lower-right 3×3 matrix

decouples from the “11” element, we can analyze them separately when considering positive-

definiteness. We require the “11” element to be positive, and apply Sylvester’s criterion to

the lower-right 3×3 submatrix. This gives the following set of conditions:

ζ − 1

4
(λ1 + λ2)−

1

2
λ3 > 0 , (4.265a)

ζ +
1

2
λ4 +

1

2
λR5 > 0 , (4.265b)
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Figure 4.16: Comparison of the fraction of points that pass the exact stability conditions,
Eq. (4.252) (black dots), with respect to the fraction passing the three sufficient conditions for
vacuum stability: principal minors Eq. (4.265) (blue), Gershgorin disk theorem Eq. (4.262)
(light blue), and Frobenius norm Eq. (4.263) (purple). We plot the fraction of points that
pass each condition as a function of MH± . We take λ1,2 ∈ [0, 2π] and |λ3,4,5,6,7| ≤ π

2 , with
λ5,6,7 allowed to be complex, and restrict to examining points which are BFB.

(
ζ +

1

2
λ4
)2 − 1

4
|λ5|2 > 0 , (4.265c)

(4ζ + λ1 + λ2 − 2λ3)((2ζ + λ4)
2 − |λ5|2)

+ λ5(λ
∗
6 − λ∗7)

2 + λ∗5(λ6 − λ7)
2 − 2(2ζ + λ4)|λ6 − λ7|2 > 0 .

(4.265d)

Taken together, the Eqs. (4.265) provide a sufficient condition for vacuum stability.

Numerical Comparison

In Fig. 4.16 we plot the performance of the three sufficient conditions for vacuum stability,

Eqs. (4.262), (4.263), (4.265), as a function of the charged Higgs mass MH± . We compare

these results with the fraction that pass the exact stability condition, Eq. (4.252). As in

previous sections, we choose the λi randomly with λ1,2 ∈ [0, 2π] and |λ3,4,5,6,7| ≤ π
2 , with

λ5,6,7 allowed to be complex. The y-axis shows the fraction of tested points which pass
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the respective stability condition; we restrict to testing points which are BFB, to ensure

the validity of the stability conditions implemented in Fig. 4.16. We find that the set of

conditions arising from the application of Sylvester’s criterion capture the most stable points,

while all three bounds capture more stable points when the λi are small compared to the

ratio M2
H±/v

2.

Vacuum Stability in the Higgs Basis

It is particularly interesting to study vacuum stability in the Higgs basis, in which only one

of the doublets possesses a vev (see Sec. 4.3.9 for a review of the conversion to the Higgs basis

as well as our conventions). One advantage of this basis is that the potential parameters are

closely related to physical observables: for example, Z1 controls the trilinear coupling of three

SM-like Higgs bosons hhh, Z6 controls the trilinear coupling of two SM-like and one non-

SM-like CP -even Higgs bosons hhH, etc. (see e.g. [358] for an exhaustive list of couplings).

Since none of the bounds obtained in this article have relied on the choice of basis, they

can equally well be applied to Higgs basis parameters. Using the close relationship between

the Higgs basis parameters and physical quantities, we here aim at obtaining approximate

bounds on the physical observables of the model.

In our notation, the scalar which obtains a vev is denoted by ϕ01. The mass matrix for

the neutral scalars ϕ⃗ = (ϕ01, ϕ
0
2, a0)

T reads:

M2 = v2


Z1 ZR6 −ZI6
ZR6

M2
H±
v2

+ 1
2(Z4 + ZR5 ) −1

2Z
I
5

−ZI6 −1
2Z

I
5

M2
H±
v2

+ 1
2(Z4 − ZR5 )

 , (4.266)

where M2
H± is the charged Higgs mass:

M2
H± =M2

22 +
1

2
Z3v

2 . (4.267)
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We will restrict ourselves to the alignment limit, which is the limit in which ϕ01 is aligned

with the 125 GeV mass eigenstate. In this case, the 125 GeV Higgs couples to the electroweak

gauge bosons and all fermions with SM strength, and the alignment limit is therefore phe-

nomenologically well-motivated by precision Higgs results from the LHC [352, 353].

Examining the above matrix, it appears that there are two ways in which one may

obtain alignment. The first option, known as the decoupling limit, corresponds to taking

M2
H± + 1

2(Z4 ± ZR5 )v2 ≫ Z1v
2. Under this limit, the heavy mass eigenstates h2 and h3

and the heavy charged Higgs H± decouple from the light mass eigenstate, leaving h1 aligned

with ϕ01. More interesting from a phenomenological standpoint is the approximate alignment

without decoupling limit, as it leaves the non-standard Higgs states potentially within collider

reach. This corresponds to taking |Z6| ≪ 1, for which the mixing between ϕ01 and the other

neutral scalars vanishes, leading to the identification of ϕ01 with the mass eigenstate h1. For

the following discussion we will take |Z6| ≪ 1 and work in the alignment without decoupling

limit.

We define h1 ≡ h to be the SM-like Higgs boson, which has a mass given by

M2
h = Z1v

2 . (4.268)

To obtain a physical Higgs mass close to the experimental value of 125 GeV, it is required

that we fix Z1 ≈ 0.25. The remaining 2×2 mass matrix can be diagonalized to obtain the

masses of the remaining scalars h2 and h3:

M2
h3,h2

=M2
H± +

1

2
(Z4 ± |Z5|)v2 . (4.269)

There are two possibilities for the CP properties of these states. So long as ZI5 ̸= 0, h2 and

h3 have mixed CP properties. In the limit of ZI5 = 0, meanwhile, the non-standard Higgs

mass matrix becomes diagonal, and we obtain mass eigenstates H and A with definite CP
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character,

M2
H,A =M2

H± +
1

2
(Z4 ± ZR5 )v2 . (4.270)

The masses of the general mass eigenstates and the states of definite CP character can be

related by

M2
H = M2

h3,h2
+

1

2
(ZR5 ∓ |Z5|)v2

M2
A = M2

h3,h2
− 1

2
(ZR5 ± |Z5|)v2. (4.271)

In the following analysis we will make no assumptions about the CP character of the mass

eigenstates, and will work with the generic physical masses Mh3,h2 .

With the above definitions, we can rephrase our sufficient vacuum stability conditions into

constraints on physical quantities. We start with the Gershgorin condition of Eq. (4.262).

Expressing the Γ’s in terms of physical masses, a sufficient condition for vacuum stability

becomes:

M2
h2
>

1

2
(|ZI5 | − ZR5 − |Z5|)v2 +

1

2
|ZR7 |v2 and

M2
h3
>

1

2
(|ZI5 |+ ZR5 + |Z5|)v2 +

1

2
|ZI7 |v2 and

M2
H± >

1

2
max[M2

h , Z2v
2] +

1

2
(Z3 + |ZR7 |+ |ZI7 |)v2 .

(4.272)

Next, we can recast the Frobenius sufficient condition, Eq. (4.263), in terms of the physical

masses; doing so results in the following condition:

2M2
H±
(
M2
h2

+M2
h3

)
−
(
M4
H± +M4

h2
+M4

h3
+

1

4
M4
h

)
>

1

4
(Z2

2 + 2Z2
3 + 4|Z7|2)v4 . (4.273)

Finally, Sylvester’s criterion provides an additional set of sufficient conditions. A sample set
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of sufficient conditions for vacuum stability in the alignment limit based on Eq. (4.265) is:

4M2
H± −M2

h > (Z2 + 2Z3)v
2,

M2
h3
>

1

2
(|Z5| − ZR5 ),

M2
h2
M2
h3
> 0,

4M2
h2
M2
h3
(4M2

H± +M2
h + Z2v

2 − 2Z3v
2)− 2(M2

h2
+M2

h3
)|Z7|2 + Z5Z

∗
7
2 + Z∗

5Z
2
7 > 0 .

(4.274)

4.3.7 CP Violation in the General 2HDM

The bounds we have derived in this work have implications for the allowed values of physical

parameters in a given 2HDM. This can be seen in a straightforward way in the previous

section, where the conditions for vacuum stability were recast into expressions that restrict

the physical masses of the bosonic sector. One particularly interesting question to which our

bounds can be applied is that of the amount of CP violation permitted in the alignment

limit. This possibility has largely been neglected in the many previous studies which restrict

themselves to the Z2-symmetric 2HDM. This is understandable since exact alignment implies

CP conservation in the Z2-symmetric case. When working in the fully general 2HDM,

however, it is possible to have CP violation whilst still keeping the SM-like Higgs boson

fully aligned.

To justify this claim, recall that there are four complex parameters in the 2HDM:

{M2
12, Z5, Z6, Z7}. One of these is fixed by the minimization condition M2

12 = −1
2Z6v

2,

leaving just three independent parameters, which we take to be the couplings {Z5, Z6, Z7}.

These complex parameters enter into the three basic CP violating invariants of the 2HDM

scalar sector J1, J2, and J3, which can be thought of as analogous to the Jarlskog invariant

J of the SM quark sector. They are worked out explicitly in [368, 369]; the important fact

is that they scale as J1 ∼ Im[Z∗
5Z

2
6 ], J2 ∼ Im[Z∗

5Z
2
7 ], J3 ∼ Im[Z∗

6Z7]. It is then clear that
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the condition for the Higgs sector to be CP invariant is:

Im[Z∗
5Z

2
6 ] = Im[Z∗

5Z
2
7 ] = Im[Z∗

6Z7] = 0 . (4.275)

There are two ways in which this can be satisfied [370]: either ZI5 = ZR6 = ZR7 = 0 or

ZI5 = ZI6 = ZI7 = 0. Note that in the limit of exact alignment we have Z6 = 0, so this

reduces to demanding either ZI5 = ZR7 = 0 or ZI5 = ZI7 = 0.

Meanwhile in the 2HDM with a (softly broken) Z2 symmetry, the fact that λ6 = λ7 = 0

implies the following two relations between the parameters in the Higgs basis (see Eq. (4.283)

in Appendix A) [371, 372]

Z6 + Z7 =
1

2
tan 2β(Z2 − Z1), (4.276)

Z6 − Z∗
7 =

1

tan 2β
(Z1 + 2Z6 cot 2β − Z3 − Z4 − Z5). (4.277)

It immediately follows that:

ZI7 = −ZI6 , (4.278)

ZI5 = 2
1− tan2 2β

tan 2β
ZI6 . (4.279)

These conditions imply that in the exact alignment limit (i.e. Z6 = 0), it will necessarily

be the case that ZI5 = ZI7 = 0. Thus, exact alignment directly leads to CP conservation

in the Z2-symmetric or softly broken Z2-symmetric 2HDM. This need not be the case in

the fully general 2HDM, where the above relations no longer hold. If we allow for a small

misalignment (i.e. |Z6| ≳ 0), |ZI5 |, which controls the mixing between the H and A bosons,

can still be large for large tan β.

The physical consequences of the difference in the CP properties in the alignment limit

between the (softly broken) Z2-symmetric and the general 2HDMs are illustrated in Fig. 4.17,
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Figure 4.17: Upper left: Parameter scan of the 2HDM with a softly broken Z2 symmetry in
the (Mh3 −Mh2 , tan β) parameter plane with parameter range λ1,2 ∈ [0, 2π] and |λ3,4,5| ∈
[0, π]. The conditions | sin θ12| < 0.1 and | sin θ13| < 0.01 are imposed. The colour indicates
the minimal value of |θ23/π − 1/4| in each hexagonal patch. Upper right: Same as upper
left, but constraints from perturbative unitary, BFB, and vacuum stability are applied in
addition. Lower left: Same as upper left, but the scan is performed in the general 2HDM
without a (softly broken) Z2 symmetry (|λ6,7| ∈ [0, π]). Lower right: Same as lower left, but
constraints from perturbative unitary, BFB, and vacuum stability are applied in addition.
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in which we show the results of several parameter scans. Motivated by Higgs precision [352,

353] and electric dipole moment bounds (see e.g. [373, 374]), we demand a small mixing of

the h and the H states and an even smaller mixing of the h and the A states; we impose

these constraints on the mixing in an approximate manner by demanding | sin θ12| < 0.1 and

| sin θ13| < 0.01, where θ12 and θ13 are the respective mixing angles.23 The colour code in

the figure indicates the minimum value of |θ23/π−1/4| in each hexagonal patch, where θ23 is

the mixing angle between the H and A states. This variable is chosen such that the maximal

mixing case corresponds to a value of zero. Correspondingly, a dark blue color indicates that

a large CP -violating mixing between the H and A states can be realized; a bright yellow

color instead signals that no large mixing can be realized.

In the upper left panel of Fig. 4.17 we present a parameter scan of the 2HDM with a softly

broken Z2 symmetry in the (Mh3 −Mh2 , tan β) parameter plane. We observe that for large

tan β, a large mixing between the neutral BSM Higgs bosons can be realized if their mass

difference is below ∼ 70GeV. Larger mass differences originate from differences between the

diagonal terms of the Higgs mass matrix, suppressing possible mixing effects induced by the

off-diagonal 1
2Z

I
5v

2 term. For lower tan β, the condition | sin θ13| < 0.01 directly implies that

ZI5 is small, resulting in substantial mixing only when the mass difference is close to zero.

In the upper right panel of Fig. 4.17, we again consider a softy broken Z2 symmetry but

additionally impose perturbative unitarity, boundedness-from-below, and vacuum stability

constraints following the discussions in the previous Sections. Aside from lowering the max-

imal possible mass difference between h3 and h2, the region in which large mixing between

the BSM Higgs bosons can be realized is also reduced.

If we instead investigate the general 2HDM without a (softly broken) Z2 symmetry

(see lower panels of Fig. 4.17), large mixing between the H and A states can be realized

throughout the shown parameter plane. Applying the bounds derived in the previous sections

23. The stated bounds on θ12 and θ13 are just illustrative. We checked that our conclusions do not depend
strongly on the values inserted.
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Conditions Perturbative unitarity Bounded from below Vacuum stability
Exact Eq. (4.207) Eq. (4.229) Eq. (4.252)

Necessary Eqs. (4.210), (4.213) Eq. (4.234) —
Sufficient Eq. (4.221) Eq. (4.241) Eq. (4.265)

Table 4.1: Overview of the primary results of this paper; further constraints and their analysis
may be found in the main text.

only excludes the region with Mh3 −Mh2 ≳ 100GeV.

Finally, we want to remark that CP violation can become manifest not only in the neutral

mass matrix but also in the bosonic couplings. This occurs if either Z̃R7 ̸= 0 or Z̃I7 ̸= 0, since

these couplings enter into couplings like gh1h2h3 [370]. Exotic decays like h3 → h1h2 → 3h1

would then be indicative of CP violation in the bosonic sector (see e.g. [360]).

4.3.8 Summary

Two Higgs doublet models (2HDMs) present a natural extension of the Standard Model

description. In spite of the simplicity of this SM extension, many new parameters appear in

this theory, and it is very important to understand the constraints on these parameters which

will impact in a relevant way the 2HDM phenomenology. Most existing studies concentrate

on the case in which a Z2 symmetry is imposed on the 2HDM potential and Yukawa sector.

While this symmetry is an easy way to avoid flavor-changing neutral currents, it also forbids

certain terms in the Higgs potential which do not induce flavor-changing neutral currents at

tree level. In fact, in many scenarios in which the 2HDM is the low-energy effective field

theory of a more complete high-scale model, these couplings are predicted to be non-zero.

Based on this motivation, in this work we present a step towards a systematic explo-

ration of the non-Z2-symmetric 2HDM. We studied three of the most important theoretical

constraints on the scalar potential parameters: perturbative unitarity, boundedness from

below, and vacuum stability. In all three cases, we concentrated on the most general renor-

malizable potential (not restricted by any discrete symmetry) extending previous works by
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deriving analytic necessary and sufficient conditions for these constraints. For convenience,

our main results (i.e., those conditions which approximate the exact conditions the best) are

summarized in Table 4.1.

The derivation of our constraints makes use of several relevant mathematical properties,

of which many have not been exploited in the literature before. These properties are not

only applicable to the 2HDM but are also useful for the exploration of other models with

extended Higgs sectors. As a first phenomenological application of our bounds, we studied

how much CP -violating mixing between the BSM Higgs bosons can be realized in the general

2HDM in comparison to a 2HDM with a (softly broken) Z2 symmetry. While we found that

large CP -violating mixing can only be realized for large tan β in the 2HDM with a softly

broken Z2 symmetry, no such theoretical constraints exist for the general 2HDM. We leave a

comprehensive study of the phenomenological consequences of not imposing a Z2 symmetry

for future work.

4.3.9 Supplementary Material: Higgs Basis Conversion

The phenomenological properties of the Higgs sector are more easily analyzed in the Higgs

basis, in which only one of the doublets possesses a vev24. We parameterize the doublets as:

H1 =

 G+

1√
2
(v + ϕ01 + iG0)

 , H2 =

 H+

1√
2
(ϕ02 + ia0)

 , (4.280)

where G± and G0 are the Goldstones that become the longitudinal components of W± and

Z, H± is the physical singly charged scalar state, and (ϕ01, ϕ
0
2, a

0) are the neutral scalars.

24. This is technically not enough to uniquely define the Higgs basis. The U(1) diagonal subgroup of the
SU(2) symmetry in Higgs flavor space remains intact following SSB. This corresponds to transformations
Φ1 → eiχΦ1, Φ2 → e−iχΦ2. As a result, we have a one-dimensional family of Higgs bases parameterized by
χ: {e−iχH1, e

iχH2}.
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The potential in the Higgs basis reads:

V =M2
11H

†
1H1 +M2

22H
†
2H2 − (M2

12H
†
1H2 + h.c.)

+
1

2
Z1(H

†
1H1)

2 +
1

2
Z2(H

†
2H2)

2 + Z3(H
†
1H1)(H

†
2H2) + Z4(H

†
1H2)(H

†
2H1)

+

[
1

2
Z5(H

†
1H2)

2 + Z6(H
†
1H1)(H

†
1H2) + Z7(H

†
2H2)(H

†
1H2) + h.c.

]
.

(4.281)

The conversion between the potential parameters in the weak eigenstate basis and those

in the Higgs basis have been worked out in [369]; to be self-contained, we reproduce them

here. They are obtained by a rotation by an angle β in field space of the original two Higgs

doublets. The mass terms in the two bases are related as:

m2
11 =M2

11c
2
β +M2

22s
2
β + Re[M2

12e
iη]s2β , (4.282a)

m2
22 =M2

11s
2
β +M2

22c
2
β − Re[M2

12e
iη]s2β , (4.282b)

m2
12e

iη =
1

2
(M2

22 −M2
11)s2β + Re[M2

12e
iη]c2β + i Im[M2

12e
iη] , (4.282c)

where tan β = v2/v1 with range 0 ≤ β ≤ π
2 , and η is the phase accompanying v2 in the

general basis parameterization of the doublets in Eq. (4.256). The relations between the
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quartic couplings are:

λ1 = Z1c
4
β + Z2s

4
β +

1

2
Z345s

2
2β − 2s2β

(
Re[Z6eiη]c2β + Re[Z7eiη]s2β

)
, (4.283a)

λ2 = Z1s
4
β + Z2c

4
β +

1

2
Z345s

2
2β + 2s2β

(
Re[Z6eiη]s2β + Re[Z7eiη]c2β

)
, (4.283b)

λ3 =
1

4
(Z1 + Z2 − 2Z345) s

2
2β + Z3 + Re[(Z6 − Z7)e

iη]s2βc2β , (4.283c)

λ4 =
1

4
(Z1 + Z2 − 2Z345) s

2
2β + Z4 + Re[(Z6 − Z7)e

iη]s2βc2β , (4.283d)

λ5e
2iη =

1

4
(Z1 + Z2 − 2Z345)s

2
2β + Re[Z5e2iη] + i Im[Z5e

2iη]c2β (4.283e)

+ Re[(Z6 − Z7)e
iη]s2βc2β + i Im[(Z6 − Z7)e

iη]s2β ,

λ6e
iη =

1

2
(Z1c

2
β − Z2s

2
β − Z345c2β − i Im[Z5e

2iη])s2β (4.283f)

+ Re[Z6eiη]cβc3β + i Im[Z6e
iη]c2β + Re[Z7eiη]sβs3β + i Im[Z7e

iη]s2β ,

λ7e
iη =

1

2
(Z1s

2
β − Z2c

2
β + Z345c2β + i Im[Z5e

2iη])s2β (4.283g)

+ Re[Z6eiη]sβs3β + i Im[Z6e
iη]s2β + Re[Z7eiη]cβc3β + i Im[Z7e

iη]c2β ,

where we have defined Z345 ≡ (Z3 + Z4 + Re[Z5e2iη]). For the reverse conversion from

the Higgs basis to the general basis, one can perform the same series of identifications, but

substituting λi ↔ Zi and β ↔ −β.
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CHAPTER 5

MYSTERIES OF LATE-TIME COSMOLOGY

Much of this thesis has focused on model building in the early universe. In this chapter,

we now turn to several open questions of “late-time” cosmology. Note that this division is

somewhat superficial, as these questions may also find their solutions in the early universe.

By “late-time”, we simply mean that these are discrepancies informed by present day ob-

servations and data, as opposed to more speculative questions of what may have happened

in the early universe. Many of these open questions left unaddressed by ΛCDM and the

Standard Model were already discussed at length in Secs. 2.3.1 and 2.3.2. We present here

model building efforts to address three of them.

One of the most blatant of these questions is that of the identity of the dark matter con-

stituting ∼ 26% of the universe’s energy. Many compelling particle dark matter candidates

have been put forward, including several with light masses. Model building in light dark sec-

tors is complicated by constraints from precision measurements of cosmological parameters,

and generically requires some mechanism of asymmetric reheating in order to populate the

dark sector at a lower temperature. In Sec. 5.1, we highlight a novel scheme of asymmetric

reheating that can reconcile models of light dark species with observation. Next, we turn to

the question of the origin of the supermassive black holes observed at very high redshifts.

These challenge the standard picture of supermassive black hole growth from stellar-mass

seeds through Eddington-limited accretion. In order to alleviate this timing problem, we put

explore the possibility of supermassive black holes of a primordial origin in Sec. 5.2. Finally,

another long-standing mystery concerns the origins of the tiny primordial magnetic fields

needed to seed the galactic fields observed today. It is generically very difficult to produce

magnetic fields with sufficient correlation lengths to survive the diffusive processes of the

hot primordial plasma. We put forth a novel mechanism ulilitzing a population of charged,

rotating black holes in Sec. 5.3.
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5.1 Asymmetric Reheating in Light Dark Sectors

Asymmetric reheating is a generic requirement for models of dark sectors with light species,

but its implementation is usually in tension with unique phenomenologies otherwise possible

in compelling theories containing dark copies of the Standard Model. In this section, we

present a simple module to implement asymmetric reheating during a Z2-breaking phase

above some critical temperature. This reinvigorates the possibility of an exactly degenerate

mirror sector and the striking phenomenology of composite particles oscillating into their

mirror counterparts. Note that this section shares significant text overlap with this author’s

previous work [28], which was recently submitted for publication.

5.1.1 Overview

The phenomenology of extended dark sectors is powerfully constrained by early universe

data, particularly as dark sectors with light degrees of freedom may be probed through

purely gravitational effects. Precision measurements of cosmological parameters such as

Neff significantly circumscribe particle physics models and have led to the generic need for

some mechanism of ‘asymmetric reheating’, whereby the dark sector is populated at a lower

temperature [375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385].

Particularly affected are mirror models, which introduce a Z2-symmetric copy of the

Standard Model (SM) fields and gauge groups [386, 387, 388, 389, 390, 391, 392, 393, 394,

395, 396]. Known schemes for implementing asymmetric reheating in mirror models generally

require a broken Z2 in the late universe [397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407,

408]1, which limits perhaps their most interesting observational signature: The oscillations

of neutral SM particles into their mirror counterparts. This includes oscillations between SM

and mirror neutrinos [411, 412, 413, 414, 415, 416, 417, 418] and photons [419, 420, 421, 422,

1. See [409, 410] for recent, complementary work on asymmetric reheating with minimal symmetry break-
ing.
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423, 424, 425, 426, 427, 428, 429, 430, 431], as well as oscillations between entire composite

particles in the limit of an exact Z2 symmetry. Oscillations between neutrons and mirror

neutrons have seen much study in light of neutron lifetime anomalies [432, 433, 410, 434,

435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447]. More exotically, oscillation

of entire hydrogen atoms into their mirror forms has recently been shown to have interesting

effects in late-time cosmology [448, 449].

In the related Twin Higgs literature, the cosmological concerns are often dealt with

by simply abandoning the full Z2 symmetry at the level of the spectrum [450, 402, 451].

However, this explicit breaking dramatically restricts the phenomenology of these models,

and consequently mirror worlds have received less attention of late. With the aim of reviving

these interesting phenomenological possibilities, we seek to have a mirror sector which is

exactly degenerate with our own.

Our tool is the richness of phase structures allowed in finite temperature quantum field

theory, as first clearly demonstrated by Weinberg [273]. Counter-intuitively, it is possible to

have a mirror symmetry which is broken only above a critical temperature—a phenomenon

known as ‘inverse symmetry breaking’. Scalar fields receive corrections to their mass from

interactions with other particles in the thermal plasma, and negative cross-quartic interac-

tions with other scalars yield negative contributions to the finite temperature mass. A scalar

may then develop a vacuum expectation value (vev) at high temperature when the thermal

contribution to its mass dominates [452, 453, 454, 455]. Early concerns that such phenomena

might be artifacts of fixed-order perturbation theory have been alleviated by follow-up work

on the lattice, robustly evincing high-temperature symmetry-breaking phases [456, 457, 458].

We present here a minimal module to implement the asymmetric reheating of a degenerate

mirror sector via inverse symmetry breaking. The idea is to use the high-temperature Z2-

breaking phase to set up an initial asymmetry in the energy densities of the SM and mirror

sectors. The immediate model-building challenge is that we are asking for effects derived
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from thermal equilibrium to result in a far-out-of-equilibrium configuration. Further, this

asymmetry in abundances must persist at late times once symmetry is restored and the

sectors become exactly degenerate at low temperatures.

Our strategy will be to use a non-thermal production mechanism—freeze-in [459, 460,

461]—to populate the SM and mirror sectors. We introduce an auxiliary Z2-breaking sec-

tor which is feebly-coupled to heavy right-handed SM and mirror neutrinos N,N ′, where

primes denote mirror species. Annihilations of scalars yield asymmetric abundances due to

asymmetric couplings in the Z2-broken phase. The heavy, non-relativistic N and N ′ are long-

lived and act as reheatons, with the asymmetric number density leading to an asymmetry

in reheating temperatures TSM > Tmirror. See Fig. 5.1 for a schematic timeline.

We consider a theory of three sectors: the SM supplemented with heavy right-handed

neutrinos N , a mirror copy (whose species are denoted by primes), and a thermal sector of

two real scalar singlets: ϕ+ and ϕ−. Under the Z2 symmetry which exchanges the particles

of the SM and mirror sectors, ϕ− is odd while ϕ+ is even. After inflation, the scalar sector

is reheated to high temperatures and ϕ− develops a negative thermal mass, breaking the Z2

symmetry. During this broken phase, ϕ+ serves to populate the N and N ′.

We first review inverse symmetry breaking in a sector of just two scalars, but note that we

can have more freedom in realizing this scenario with more fields. We then demonstrate how

freeze-in production of heavy right-handed neutrinos during the broken phase can translate

to an asymmetry in reheating temperatures.
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Figure 5.1: A schematic overview of our cosmological timeline. At early times and high
temperatures, the scalar sector dominates and the Z2 is spontaneously broken. At a value of
the scale factor a∗ corresponding to a temperature T∗ ∼ MN , freeze-in occurs, resulting in
an asymmetric yield of heavy right-handed neutrinos ρN ≫ ρN ′ . These come to dominate
the universe’s energy budget before decaying to asymmetrically reheat the SM and mirror
sectors at a time adec corresponding to Tdec ∼ yν

√
MNMPl. The Z2 is restored and the ϕ’s

become non-relativistic at a time anr corresponding to T ∼ µ±, after which they remain a
component of the dark matter. See text for definitions and futher details.
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5.1.2 Inverse Symmetry Breaking

At tree-level, the potential for the scalar sector reads2

V0 =
µ2+
2
ϕ2+ +

µ2−
2
ϕ2− +

λ+
4
ϕ4+ +

λ−
4
ϕ4− +

λ±
4
ϕ2+ϕ

2
− . (5.1)

While the quartic self-couplings must be positive for the potential to be bounded from below,

λ± may be negative provided

λ± > −2
√
λ+λ− . (5.2)

At 1-loop level, the potential receives radiative corrections described by the zero-temperature

Coleman-Weinberg potential VCW and the 1-loop thermal potential V 1-loop
T ,

Veff(ϕi, T ) = V0(ϕi) + VCW(ϕi) + V
1-loop
T (ϕi, T ) , (5.3)

where i = ± and T denotes the temperature of the scalar sector. See e.g. [462, 298] for

a review. The thermal potential dominates for our high temperature regime of interest,

at least until new degrees of freedom come in at a scale Λ. Working to leading order in

the high-temperature expansion, the quadratic terms from which we find the leading order

contributions to the masses are

V
1-loop
T ≃ T 2

48
(6λ+ + λ±)ϕ2+ +

T 2

48
(6λ− + λ±)ϕ2− + ... (5.4)

Defining the coefficients

c+ =
1

24
(6λ+ + λ±) , c− =

1

24
(6λ− + λ±) , (5.5)

2. Note that for simplicity we have ignored the cubic couplings, since these do not qualitatively affect
the phase structure at high temperatures. Further, the assumption that they are negligibly small will be
consistent with the naturalness expectations in our freeze-in model.
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the masses for ϕ+ and ϕ− are

M2
+(T ) = µ2+ + c+T

2 , M2
−(T ) = µ2− + c−T 2 . (5.6)

Examining these, it is apparent how phenomena3 like inverse symmetry breaking can arise

from a negative cross-quartic coupling. If λ± < 0 and |λ±| > 6λ−, then c− becomes negative

and ϕ− develops a negative thermal mass M2
−(T ) < 0 for sufficiently high temperatures—the

hallmark of spontaneous symmetry breaking. Thus, at high temperatures the theory will be

in the Z2-broken phase, while at zero temperature the symmetry will be intact—an instance

of inverse symmetry breaking.

The zero-temperature vacuum located at (ϕ+, ϕ−) = (0, 0) is Z2-symmetric, but as the

temperature is increased there is a phase transition at the critical point

Tc =

√
µ2−
|c−|

. (5.7)

Above this temperature, the theory enters into the broken phase as ϕ− develops the temperature-

dependent vacuum expectation value ⟨ϕ−(T )⟩ ≡ v−(T ), given at leading order in the high

temperature expansion by

v−(T ) =

√
− 1

λ−
(µ2− + c−T 2) ≃

√
|c−|
λ−

T . (5.8)

Note that while the high temperature expansion suffices for our purposes, a more de-

tailed study of the phase transition and precise predictions for quantities like the critical

temperature would require going beyond the 1-loop approximation and performing thermal

resummation of the effective potential, as the perturbative expansion breaks down in the

3. There has recently been much interest in the related phenomenon of ‘symmetry non-restoration’—
where the zero-temperature mass is also negative—which may have applications for the electroweak phase
transition and baryogenesis [463, 7, 464, 465, 466, 467, 468, 276, 469, 470].

289



infrared [295, 471, 462, 298]. These technicalities will not concern us here, as our purpose is

not to study this sector in detail. See Sec. 4.2 for an in-depth discussion of resummation of

the finite temperature effective potential.

5.1.3 Freeze-In Production

We wish to take advantage of this high-temperature Z2-broken phase to establish an asym-

metry in the energy densities of the SM and mirror sectors. The freeze-in mechanism is a

natural candidate to accomplish this since it populates states which are never in equilibrium

with the thermal sector.

We will focus on the following two portal operators between the auxiliary scalar sector

and heavy right-handed neutrinos N and N ′ of mass MN

−LN = λϕ+ (NN +N ′N ′) +
C

Λ
ϕ+ ϕ− (NN −N ′N ′) , (5.9)

where the dimension-5 operator may be generated by integrating out heavier fields at the

scale Λ. In the high-temperature phase, it is convenient to define the effective couplings

λN (T ) ≡ λ

(
1 +

v−(T )
Λeff

)
, λN ′(T ) ≡ λ

(
1− v−(T )

Λeff

)
, (5.10)

with Λeff ≡ λ
CΛ, in terms of which

−LN = λN (T )ϕ+NN + λN ′(T )ϕ+N
′N ′ . (5.11)

Note that λ now controls the overall size of the freeze-in production while Λeff controls the

timing.

In order to prevent equilibration of the SM and mirror sectors with the thermal sector,

we require λN ≪ 1, which restricts λ as well as the maximum temperature at which this
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effective theory remains sensible. During the broken phase λN (T ) > λN ′(T ), such that ϕ

will couple preferentially to N .

Taking the initial abundance of N to be vanishing, the Boltzmann equation governing

the evolution of the number density nN is given by

ṅN + 3HnN ≃ (n
eq
+ )2 ⟨σv⟩ , (5.12)

where n
eq
+ = T

2π2
M2

+K2(
M+
T ) is the equilibrium number density for ϕ+ and ⟨σv⟩ is the

thermally-averaged annihilation cross section for the production of N . We presume the

neutrinos are very heavy M+ < 2MN and that their direct couplings to ϕ− are somewhat

smaller than those to ϕ+, such that the dominant process contributing to their production

will be the 2 → 2 annihilation ϕ+ϕ+ → NN . This occurs at tree level via t- and u-channel

diagrams with an amplitude |M++→NN |2 and cross section σ++→NN . The thermal average

appearing in Eq. (5.12) is then obtained by performing an integral over the squared center

of mass energy s, in the manner described in [472]. Crucially, the freeze-in rate will be

proportional to λN (T )4, enhancing the effect of the asymmetry in couplings.

To solve the Boltzmann equation, it is more convenient to work with the yield YN = nN
S

and reparameterize in terms of temperature via d
dt ≃ −HT d

dT , valid when the number of

relativistic degrees of freedom in the bath remains roughly constant. Then the left-hand side

becomes ṅN + 3HnN = −HTS dYNdT . Integrating, the yield as a function of temperature is

YN (T ) =
2

(4π)5

∫ Tmax

T
dT ′ 1

H(T ′)S(T ′)

×
∫ ∞

4M2
ϕ

ds

√
s− 4M2

N

√
s− 4M2

+

4
√
s

K1

(√
s

T ′

)
×
∫ 1

−1
d cos θ |M++→NN (s, T ′, θ)|2 ,

(5.13)
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where K1 is a modified Bessel function of the second kind, H =

√
4π3
45 g⋆

T 2

MPl
, S = 2π2

45 g⋆,ST
3,

and g⋆ ≃ g⋆,S ≃ 2 for our scalar sector. An analogous expression holds for the N ′ yield.

The crucial difference is that the coupling λN ′ becomes vanishingly small at a temperature

T⋆ ≡
√

λ−
|c−|

Λeff , (5.14)

presuming that production takes place at temperatures far greater than µ−. Thus if the

dominant freeze-in production takes place around T⋆, the result will be a much smaller

abundance of N ′.

Figure 5.2: Logarithmic differential yield of N (solid) and N ′ (dashed) as a function of
temperature. Parameters fixed as MN = 1014 GeV and λ = 4 × 10−5; changing either just
results in an overall vertical translation.

What should we expect for the yield curve as a function of temperature? If ϕ−’s vev

were temperature independent, this would be a 2 → 2 freeze-in through marginal operators,

and so infrared dominated. The production rate would be largest at T ∼ MN , after which

the process would become Boltzmann suppressed. This suggests MN ∼ T⋆ should generate

appreciably asymmetric abundances. Indeed, this is observed in Fig. 5.2.

However, T⋆ is also the temperature above which the couplings λ
N (′)(T ) become dom-
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inated by the term linear in the vev. This additional temperature-dependence results in a

yield which is sensitive to the high-temperature initial conditions, as in ultraviolet freeze-in.

In order for the symmetric production at high temperatures to not exceed the infrared con-

tribution4, spoiling our mechanism, we require the process shut off at some Tmax not much

larger than T⋆. Note that the consideration M+(T ) < 2MN also restricts Tmax to lie not

too far above MN , or more precisely Tmax ≲ 2
c+
MN . These requirements are reflected in

Figs. 5.3 and 5.4.

One possibility is for the scalar sector to have only begun at Tmax following inflationary

reheating. Alternatively, since our calculations must anyway have some Tmax ≲ Λ where the

EFT breaks down, it is possible that the degrees of freedom at Λ which have generated the

dimension-5 operator also contribute to the effective potential at this scale. The resultant

modification to the quartic couplings could cause c− to flip signs, such that at higher energies

we are once again in the Z2-symmetric phase. With zero vev, the freeze-in contribution from

higher temperatures becomes negligible. In any case, our analysis will stay agnostic to the

physics of Tmax.

5.1.4 Asymmetric Reheating

Reheating of the SM and mirror sectors occurs via the out-of-equilibrium decays of N and

N ′, respectively. As a prerequisite, we should first ensure that the massive neutrinos are

sufficiently long-lived that they come to dominate over the radiation energy density in the

thermal scalar bath before they decay (see Fig. 5.1). Let R = ρN/ρϕ be the ratio of

energy density in N to that in the scalar bath. The initial value R∗ is set by freeze-in and

quantitatively ranges from 10−8 to 10−12 for the parameter space in which we can have

a successful asymmetric reheating in our toy model. Since the heavy neutrinos are non-

4. Another potentially problematic symmetric contribution comes from the gravitational production of
N/N ′ during inflationary reheating. Graviton-mediated scattering leads to a freeze-in yield with a rate
R1/2 ∼ T 8/M4

Pl [473, 474], which is easily subdominant so long as Tmax is not too close to the Planck scale.
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relativistic, their energy density dilutes as ρN ∝ a−3 while that in the scalar bath falls as

ρϕ ∝ a−4, meaning R grows as a ∼ 1/T . By the time of N decay, Rdec = T∗R∗/Tdec ≃

MNR∗/Tdec. The temperature Tdec at which N decays is roughly set by ΓN ∼ y2νMN ≃

H(Tdec), allowing us to identify Tdec ∼ yν
√
MNMPl. For N to dominate at decay, we

require Rdec > 1, corresponding to the upper bound on the Yukawa coupling

yν <

√
MN

MPl
R∗ . (5.15)

Thus N can easily be made to dominate at decay by turning down the Yukawa coupling

yνH̃LN , which is technically natural.

To determine the parameter space corresponding to a successful reheating, we should

calculate the final ratio of temperatures xRH = Tmirror/TSM, which must be sufficiently

small, as well as the absolute scale of the SM reheating temperature, which should be at least

TRH ≳ 10MeV to ensure the predictions of big bang nucleosynthesis (BBN) are unaffected.

In the instantaneous decay approximation, we can estimate the SM reheating temperature

TRH as

TRH =

(
30

π2g⋆
ρN (tdec)

)1/4

, (5.16)

where g⋆ now counts the SM degrees of freedom at TRH, and ρN (tdec) is the energy density

in N at their decay.

We define the ratio of energy densities

xRH ≡
(
ρN ′(tdec)

ρN (tdec)

)1/4

≃
(
YN ′

YN

)1/4

, (5.17)

and note that xRH coincides with the final ratio of temperatures Tmirror/TSM at late times

once the only remaining light degrees of freedom in each sector are the photon and active

neutrinos, provided the asymmetry is not erased by processes which bring the SM and mirror

sectors into thermal equilibrium. We have verified that the rate for scalar mediated N -N ′
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scattering satisfies Γ = n⟨σv⟩ ≲ H and so is inefficient for all parameter space of interest.

In Fig. 5.3 we plot the values of xRH that can be realized in this toy model.

The light species of the mirror sector contribute to the excess radiation energy density,

as parameterized by the change in the effective number of neutrino species ∆Neff ,

∆Neff ≃ 29

7

(
11

4

)4/3

x4RH . (5.18)

Demanding ∆Neff ≲ 0.5, corresponding to the 2σ constraint from Planck [475], requires

xRH ≲ 0.42. Comparing with Fig. 5.3, we see that this is indeed achievable provided T∗ is

not too far from Tmax.

Figure 5.3: The ratio of energies injected into the mirror and SM sectors, as a function of
ratios of important scales. The overall energy scale is arbitrary so long as the scalar sector
is in the high-temperature regime.

To obtain the absolute scale of the reheating temperature, we must track the evolution

of the energy densities from freeze-in to decay. Since we choose values for the couplings such

that the sectors remain decoupled, the dominant effect governing the evolution is simply
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dilution due to cosmic expansion. For heavy neutrinos which decay not too long after

coming to dominate the universe, we have the following approximate expression for the SM

reheating temperature,

TRH ≃ 4

3

(
2

g⋆

)1
4

(1 + x4RH)
3
4YNMN . (5.19)

Note the product YNMN is insensitive to the overall scale of freeze-in, since the only other

scale in Eq. (5.13) is a factor MPl from Hubble. The very rough estimate TRH ∼ λ4MPl

works surprising well, as observed in Fig. 5.4. We require that the SM is reheated to at least

TRH ≳ 10 MeV to ensure BBN is not substantially affected. This limits the absolute scale

of the yield and prevents realizing Tmax ≪MN and freezing in solely during the Boltzmann

tail, despite this still producing a large asymmetry of yields.

Figure 5.4: Maximum reheating temperature of the SM sector, fixing T⋆ = MN . TRH may
be turned down by moving to T⋆ ≪MN or by further increasing the neutrino lifetime.
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Finally in order to ensure a consistent late-time cosmology, we turn to the fate of the

scalar sector. The leading decay channel for both ϕ’s is to active neutrinos and proceeds

through off-shell heavy neutrinos with a heavily suppressed rate Γϕ ∼ λ2y4νT
5/M4

N at early

times and Γϕ ∼ λ2y4ν(vh/MN )4µ± at late times once the scalars have become non-relativistic,

where vh is the Higgs vev. Crucially these rates go as y4ν , and given the tiny values of yν

required for the massive N ’s to dominate the energy density prior to decay, the corresponding

scalar lifetimes can easily be made significantly longer than the age of the universe. It will

thus generically be the case that the scalars are stable on cosmological time scales.

The scalars must be non-relativistic by BBN so as not to contribute to ∆Neff , which

restricts the bare masses µ± ≳ 10MeV. Being non-relativistic and stable at late times, the

scalars then constitute some component of the dark matter (DM), and are harmless as long

as their relic abundance is not too large.

To check this, we define the new ratio R̃ = ρSM/ρϕ, and demand R̃ ≳ 1 from the time

the heavy neutrinos decay up through shortly after matter-radiation equality, such that ρϕ

does not come to dominate appreciably over the SM radiation bath. The assumption of

instantaneous decay ρN ≃ ρSM leads to the initial condition R̃dec ≃ Rdec. Neglecting SM

entropy dumps, the ratio remains roughly fixed until the scalars become non-relativistic at

some time tnr corresponding to Tnr ∼ µ±, leading to R̃nr ≃ R̃dec. Afterwards, ρϕ will begin

to grow relative to the still-relativistic ρSM, leading R̃ to decrease as 1/a ∼ T . Demanding

that R̃ ≳ 1 through matter-radiation equality of the SM sector imposes the constraint

Rdec ≳ 107(µ±/10MeV), implying

yν ≲ 10−7R∗

√
MN

MPl

(
10MeV
µ±

)
. (5.20)

This is a stronger condition than Eq. (5.15), but can still be compatible with technically

natural values for yν . For example, a benchmark point for successful asymmetric reheating

with R∗ = 10−8 and MN = 1017 GeV would correspond to at maximum yν ∼ 10−16.
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5.1.5 Summary

In this section, we have constructed a model of asymmetric reheating using the finite tem-

perature phenomenon of inverse symmetry breaking. Our focus has been on constructing a

minimal realization of this mechanism, which has the benefit of providing a module which

may be annexed onto a variety of theories. This reinvigorates the well-motivated scenario

of degenerate mirror models and the rich phenomenology that accompanies them. A clear

direction for future work is to further integrate this into such models or other theories of

the early universe—perhaps exploring connections to leptogenesis or further developing the

connection to dark matter.

Finally, this mechanism does require a rough confluence of scales to produce an appre-

ciable temperature asymmetry. We emphasize that this is not an instance of fine-tuning —

to ask that the dimensionful scales in a new sector be of the same order of magnitude is

exactly what one expects in a natural theory where there is some underlying scale Λ and

the relevant physics is controlled by this scale and order-one couplings. Still, it would be

pleasing to study concrete models where, for example, T⋆ and Tmax arise from the same

additional degrees of freedom interacting with ϕ+ and ϕ−.

5.2 High-Redshift Supermassive Black Holes

There is controversy surrounding the origin and evolution of our universe’s largest super-

massive black holes (SMBHs). In this study, we consider the possibility that some of these

black holes formed from the direct collapse of primordial density perturbations. Since the

mass of a primordial black hole is limited by the size of the cosmological horizon at the time

of collapse, these SMBHs must form rather late, and are naively in conflict with constraints

from CMB spectral distortions. These limits can be avoided, however, if the distribution of

primordial curvature perturbations is highly non-Gaussian. After quantifying the departure

from Gaussianity needed to evade these bounds, we explore a model of multi-field inflation —
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a non-minimal, self-interacting curvaton model — which has all the necessary ingredients to

yield such dramatic non-Gaussianities. We leave the detailed model building and numerics

to a future study, however, as our goal is to highlight the challenges associated with forming

SMBHs from direct collapse and to identify features that a successful model would need

to have. This study is particularly timely in light of recent observations of high-redshift

massive galaxy candidates by the James Webb Space Telescope as well as evidence from

the NANOGrav experiment for a stochastic gravitational wave background consistent with

SMBH mergers. Note that much of the material in this section was previously published by

this author in [24].

5.2.1 Overview

Supermassive black holes (SMBHs) are ubiquitous in our universe, being present in the

centers of nearly all massive galaxies. Quasars,5 powered by black holes with with masses

M ∼ 108−10M⊙, are also found in large numbers in the high-redshift universe. At present,

over 170 quasars have been observed at z > 6, with the most distant at z = 7.54, and several

hundred others at z = 5− 6 [476, 477, 478, 479, 480, 481, 482, 483, 484]. Fig. 5.5 shows the

quasar abundance as a function of redshift over several ranges of black hole mass. While this

magnitude limited quasar catalog is believed to be nearly complete out to z ∼ 5, only a small

fraction of SMBHs are, in fact, quasars. A more complete census of SMBHs is possible in the

local universe where one finds ΩSMBH(z = 0) ∼ 10−6 [485]. This contrasts with the peak

quasar mass density of Ωquasar(z = 2) ∼ 10−8. While specific models for SMBH population

evolution have been proposed [486, 487, 488], the limited available data leaves a great deal

of uncertainty.

5. Quasars are the most luminous active galactic nuclei (AGN). In this paper, quasar refers to an AGN
that is sufficiently luminous to appear in a quasar catalog such as SDSS DR7 [8]. While this definition is
redshift-dependent, the most luminous quasars should be consistently present in the catalog up to the DR7
redshift limit of 5. In the text, the phrase “quasar mass” refers to the mass of the black hole that powers the
quasar.
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It is usually assumed that SMBHs grow over time from relatively low-mass seeds (possibly

the remnants of Population III stars [489]) through the process of accretion. The rate of

mass accretion is Eddington limited to

ṀEdd ≲
MBH

τS
, (5.21)

where

τS =
ε σT

4π Gmp
≈ 45 Myr

(
ε

0.1

)
(5.22)

is the Salpeter time [490], σT = 8π α2/(3m2
e) is the Thomson cross section, mp is the proton

mass, and ε is the radiative efficiency. At the Eddington-limited rate, a 102M⊙ black hole

seed would require ∼ 0.8Gyr to grow to M ∼ 1010M⊙. Since z ∼ 6− 7 corresponds to only

∼ 0.7 − 0.9Gyr after the Big Bang, such a scenario would require these large high-redshift

black holes to have grown at high accretion rates almost continuously throughout the first

Gyr of our universe’s history. Interestingly, there seems to be quite a significant population

of quasars at z ∼ 6 to 7 in this mass range [491, 478, 492, 493].

The continuous accretion required to explain this rapid growth contrasts with the in-

termittent accretion observed of SMBHs at lower redshifts. Further, from Fig. 5.5 we see

that the most massive MBH ≳ 1010M⊙ population has remained approximately constant

since at least z ∼ 5 [494]. This would require any growth in the number of SMBHs to

be balanced by a decrease in the fraction of SMBHs that are actively quasars. From this

perspective, it is surprising that so many highly-massive quasars have been observed at such

high redshifts [495, 496, 497, 498, 499]. These observations prompt two intriguing questions:

1. If these quasars grew from small black hole seeds, how did they come to be so massive

on such a short timescale?

2. Why did their growth rate dramatically slow down during the subsequent 13Gyr?

Various solutions to the first question have been put forth, including an enhanced role
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Figure 5.5: Estimates of the quasar black hole comoving mass density in units of the z = 0
critical density as a function of redshift, plotted for the four different mass classes indicated.
Black hole masses and redshifts are taken from the DR7 SDSS quasar survey [8], which
covers 20% of the sky and the redshift range 0 < z < 5. The results shown represent the
moving average of 100 quasars sorted by redshift.

of mergers as well as the possibility of super-Eddington accretion [118]. However frequent

mergers would require more heavily clustered populations in the early universe, and further

can have both positive and negative impacts on SMBH growth, since they can also kick

SMBHs out of the material-rich centers of galaxies. A certain degree of super-Eddington

growth is expected to occur in high-redshift galaxies containing large reservoirs of gas and

efficient angular momentum transport due to turbulence. However as increased accretion

produces powerful jets and outflows which drive material away, it is uncertain how long it

can be sustained. Feedback effects from transient periods of super-Eddington growth are

actually expected to impede SMBH growth within a few Myr [119].

Regarding the second question, it has been suggested that the suppressed growth of the

most massive black holes after the first Gyr could perhaps be attributed to galaxy-scale
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feedback. This, however, would require the M -σ relation6 to evolve with redshift and for

the quasar luminosity function to steepen at the highest values [500, 501]. Alternatively, it

has been proposed that there might be a maximum mass that black holes can reach through

accretion, resulting from the fragmentation of the accretion disks that could have otherwise

facilitated rapid black hole growth [502]. Despite these suggestions, there remain many open

questions concerning the origin and evolution of our universe’s most massive black holes.

In this study, we take these questions to motivate another possibility: that our universe’s

most massive black holes did not acquire most of their mass through accretion, but are

instead predominantly primordial in origin7. Unlike the small primordial black holes (PBH)

typically considered as dark matter candidates, these massive objects would have formed

at “late” times, as governed by the size of the cosmological horizon. During the radiation

dominated era, the horizon contains the following amount of energy

MH =
4π

3
ρR3

H ≈ 3× 109M⊙
(
10 keV

T

)2( 3.36

g⋆(T )

)1/2

, (5.23)

where RH = H−1 is the size of the horizon, ρ = π2g⋆(T )T
4/30 is the radiation density, and

g⋆ is the number of relativistic species at temperature T . When a sufficiently large density

fluctuation collapses to form a PBH,8 the mass of the resulting black hole is typically an order

one fraction of the horizon mass, MBH ≃ γ MH , where γ ∼ 0.2 quantifies the efficiency of

collapse [509]. From Eq. (5.23), we conclude that the PBHs in the mass range of interest here

6. The M -σ relation is the observed correlation between the velocity dispersion of a stellar bulge σ and
the mass of the SMBH at its center.

7. Primordial black holes (PBHs) have previously been considered as SMBH seeds [120]. Unlike population
III stars, which do not form until z ∼ 30 − 20, PBH seeds form much earlier, and so the timing problem
is allayed. Refs. [503, 504] have argued that establishing a population of PBHs with mass 102 − 106M⊙
by z ∼ 20 would be sufficient to seed even the most massive SMBHs. Here we consider the more exotic
possibility of SMBHs from direct collapse, with little growth through accretion required.

8. There exist other PBH formation mechanisms beyond the collapse of overdensities seeded by inflation.
For example, PBH could form during first-order cosmological phase transitions [505] or due to the collapse
of supercritical vacuum bubbles nucleated during inflation [506]. The prospect of primordial SMBHs from
these mechanisms is discussed in Ref. [507] and Ref. [508], respectively.
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form after the start of Big Bang nucleosynthesis (T ∼ MeV corresponds to MH ∼ 105M⊙)

but well before the onset of matter domination or recombination (T ∼ eV corresponds to

MH ∼ 3× 1017M⊙).

Many inflationary models enable PBHs to form efficiently [510], including those in which

the inflaton undergoes a period of ultra-slow-roll [511, 161, 162, 163], or whose potential

features localized bumps, dips, or steps on small scales [164, 165, 512]. More generically, a

local enhancement of the power spectrum Pζ requires a deviation from slow-roll evolution (see

for example, Refs. [513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 153, 526]).

Regardless of the mechanism, PBH formation requires a significant enhancement in the

amplitude of the primordial power spectrum. Assuming Gaussian statistics, this amplitude

must be Pζ(kBH) ∼ 10−2, seven orders of magnitude larger than observed on large scales,

Pζ(kCMB) ≃ 2.1 × 10−9 [2]. Such an amplification inevitably leads to large CMB spectral

distortions. In particular, for scales kBH ≲ 105Mpc−1, corresponding to black holes in the

mass range MBH ≳ 103M⊙, the predicted spectral distortions are in strong conflict with

COBE/FIRAS measurements [12, 13].

In principle, PBHs can form from smaller peaks in the power spectrum if the tail of

the ζ distribution is sufficiently non-Gaussian. Of course, observations on large scales and

measurements of the non-linearity parameters fNL and gNL seem to indicate that ζ is very

nearly Gaussian on CMB scales [527, 10]. However the scales on which PBHs are formed

can be disconnected from CMB scales, and so these bounds need not apply.

In this section, we quantify the degree of non-Gaussianity that would be required to vi-

ably produce primordial SMBHs and present a model of inflation that contains the necessary

features. We refer the reader to Secs. 3.1.1 and 3.1.2 for reviews of primordial black hole

formation and achieving enhanced small scale power in inflationary models, respectively. In

Sec. 5.2.2, we examine how measurements of spectral distortions constrain the primordial

power spectrum, and demonstrate that the appreciable formation of SMBHs from Gaussian
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density fluctuations is excluded on the basis of these constraints. Sec. 5.2.3 considers de-

partures from Gaussianity, and quantifies the heaviness of the distribution needed to evade

these bounds. In Sec. 5.2.4, we review the calculation of the curvature perturbation and its

statistics in the standard curvaton scenario, which has been shown to be capable of produc-

ing appreciable non-Gaussianity. This model, however, cannot viably produce a significant

abundance of primordial SMBHs, so in Sec. 5.2.5 we introduce self-interactions to augment

the non-Gaussianity and speculate on the maximum PBH abundance in this model. We

conclude in Sec. 5.2.6 with a discussion of our results and some comments on directions for

future investigations.

5.2.2 Spectral Distortions

The small scales relevant for primordial SMBH formation are well below the angular resolu-

tion probed by current CMB measurements. Nevertheless, inhomogeneities on these scales

will generate isotropic deviations from the usual blackbody spectrum [528, 529, 530, 531, 532].

These deviations are known as spectral distortions and in this context it is useful to distin-

guish between three characteristic redshift intervals:

• Thermalization era (z > 2×106): At high redshifts, Compton scattering γe→ γe,

double Compton scattering γe→ γγe, and Bremsstrahlung ep→ epγ maintain a black-

body spectrum for the photons, and spectral distortions are exponentially suppressed.

• µ-era (2 × 105 < z < 2 × 106): During this era, photon number changing pro-

cesses, double Compton scattering and Bremsstrahlung, become ineffective at main-

taining a blackbody spectrum. Compton scattering, however, continues to redistribute

photon energies to maintain a Bose-Einstein distribution, parameterized by both a

temperature, T , and a chemical potential, µ. A µ-distortion refers to a Bose-Einstein

distribution with µ ̸= 0.

304



• y-era (z < 2×105): Compton scattering becomes ineffective at redistributing photon

energies during this era, so there are no processes to maintain a Bose-Einstein distri-

bution. Spectral distortions that are generated at these redshifts are characterized by

a departure from an equilibrium distribution, and often yield so-called y-distortions.9

A spectrum with a (positive) y-distortion can be expressed as an average of blackbodies

with slightly different temperatures [534, 535, 536, 537]. An average of blackbodies with a

mean temperature T̄ and variance T̄ 2∆ will (for ∆ ≪ 1) be a y-distorted blackbody charac-

terized by the temperature T = T̄ (1 +∆2) and the parameter y = ∆2/2. y-type distortions

can be generated through a variety of mechanisms, including the Compton scattering of

CMB photons with a population of electrons with a different temperature. In this paper,

we will be interested in y-distortions that are generated through photon diffusion. Limits

on such spectral distortions allow us to constrain the amplitude of inhomogeneities on very

small scales [538].

µ- and y-type spectral distortions are traditionally quantified in terms of the parameters

µ and y, which are related to the fractional increase in energy per photon (relative to a

blackbody spectrum with the same number density of photons) [528, 532]:

µ ≃ 1.4
∆ργ
ργ

and y ≃ 0.25
∆ργ
ργ

. (5.24)

By introducing k-space window functions accounting for the effects of thermalization and

dissipation, µ and y can be approximately calculated from the spectrum of density pertur-

9. Technically, the division between the two types of spectral distortions is not entirely unambiguous, and
inhomogeneities dissipating around z ∼ 5 × 104 can give rise to distortions of an intermediate type, whose
shape is not simply the sum of µ- and y-type distortions [533].
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bations, Pζ [536, 532]:

µ ≃ 2.2

∫ ∞

kmin

dk

k
Pζ(k)

[
exp

(
− k

5400Mpc−1

)
− exp

(
−
[

k

31.6Mpc−1

]2)]
, (5.25)

y ≃ 0.4

∫ ∞

kmin

dk

k
Pζ(k) exp

(
−
[

k

31.6Mpc−1

]2)
, (5.26)

where kmin = 1Mpc−1.

The strongest existing constraints on spectral distortions come from the COBE/FIRAS

instrument, which restricts |µ| ≲ 9.0×10−5 and |y| ≲ 1.5×10−5 at the 95% C.L. [12, 13]. The

standard cosmological model predicts spectral distortions of µ ∼ 2×10−8 and y ∼ 10−6 [539],

consistent with current limits. The models of interest in this study have enhanced Pζ , and

thus enhanced µ and y, which can be constrained by CMB measurements.

For concreteness, consider the case of a power spectrum that is sharply peaked at a single

scale, kBH:

Pζ(k) = σ2ζ k δ(k − kBH). (5.27)

Using the delta-function to perform the integral, µ and y become functions of kBH and σ2ζ

alone. From the horizon crossing condition k = aH, and fact that H = 1.66
√
g⋆(T )T

2/MPl

during radiation domination, we can relate the wavenumber to the temperature,

kBH = 92Mpc−1
(

T

10 keV

) (
g⋆(T )

3.36

)1/2 ( 3.91

g⋆,S(T )

)1/3

, (5.28)

which can then be related to the horizon mass using Eq. (5.23) to estimate the mass of the

resulting black hole:

MBH ≃ 5× 108M⊙
(
92Mpc−1

kBH

)2 ( γ

0.2

)(g⋆(T )
3.36

)1/2( 3.91

g⋆,S(T )

)2/3

. (5.29)

For the sharply peaked spectrum of Eq. (5.27), adopting γ = 0.2, and for black holes in the
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mass range of interest, the µ- and y-parameters can be written as

µ ≃ 2.2σ2ζ

{
exp

[
−
(
1.5× 105M⊙

MBH

)1/2
]
− exp

[
−
(
4.5× 109M⊙

MBH

)]}
, (5.30)

y ≃ 0.4σ2ζ exp

[
−
(
4.5× 109M⊙

MBH

)]
. (5.31)

Note that these results should also hold, for example, in the case of a log-normal spectrum

of sufficiently narrow width.

Figure 5.6: Constraints on the primordial power spectrum Pζ [9] coming from CMB tempera-
ture anisotropies (dark blue) [10], Lyman-α forest (light blue) [11], CMB spectral distortions
(red) [12, 13], and pulsar timing arrays (green) [14]. The cusp in the COBE/FIRAS excluded
region signifies the wavenumber where constraints from µ- and y-type distortions are equally
restrictive. Overlaid are illustrative sharply peaked log-normal power spectra resulting in the
formation of PBHs with MBH = 1010, 106, 102, 10−2, and 10−6M⊙ and an initial abundance
of β = 10−20, assuming Gaussian statistics for ζ.

In Eqs. (5.30) and (5.31), we can identify the impact of the various eras described earlier

in this section. In particular, forMBH ≪ 1.5×105M⊙ (corresponding to kBH ≫ 5400/Mpc),

the black holes are formed during the thermalization era, and both µ- and y-type spectral
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distortions are suppressed. For 1.5× 105M⊙ ≪MBH ≪ 4.5× 109M⊙ (31.6/Mpc ≲ kBH ≲

5400/Mpc), the black holes are forming during the µ-era, leading primarily to µ-type spectral

distortions. Larger black holes form later, yielding primarily y-type spectral distortions.

We can use Eqs. (5.30) and (5.31) to quickly estimate whether a scenario featuring pri-

mordial SMBHs is consistent with spectral distortion constraints. Recall that, for the case

of Gaussian statistics, a value of σ2ζ ≳ 10−2 is required in order to obtain a non-negligible

abundance of PBHs. For such large values of σ2ζ , spectral distortions exclude all black holes

masses MBH ≳ few × 103M⊙. This conclusion is consistent with Fig. 5.6, where we com-

pare the bounds from COBE/FIRAS with the power spectra predicted for several values of

MBH. Therefore, the existence of a non-negligible abundance of primordial SMBHs requires

the presence of significant non-Gaussianities in the distribution of the primordial curvature

perturbations.

5.2.3 Departures from Gaussianity

For Gaussian density perturbations, constraints from spectral distortions severely limit the

abundance of primordial SMBHs that could have formed in the early universe. In this case,

the variance must be small in order to limit spectral distortions, while a large variance is

required to generate a non-negligible abundance of PBHs. This tension could be resolved,

however, if the distribution of curvature perturbations features a heavier tail than that of

a Gaussian. Such non-Gaussianities thus potentially allow primordial SMBHs to form10

without necessarily violating spectral distortion constraints.11

10. As noted in [540], large curvature perturbations in models with heavy-tailed distributions are often
type II. Such perturbations have been demonstrated to form PBHs [541], however collapse in the type II
case — in particular the mass of the resultant PBH — is not completely understood.

11. Ref. [542] proposes an alternative way to obtain the extreme statistics needed to form primordial
SMBHs compatible with spectral distortion bounds. Their multi-field model results in effectively two different
inflationary histories for the casually disconnected Hubble patches, with a subdominant fraction experiencing
more expansion. By the δN formalism this equates to large curvature perturbations, such that these patches
collapse to form PBH. Since this occurs only in a tiny fraction of patches, there is no observable generation
of spectral distortions.
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Fortunately, the distribution of primordial density perturbations is generically predicted

to be non-Gaussian. Firstly, there is intrinsic non-Gaussianity that arises from the non-

linear mapping between the curvature perturbation ζ and the density contrast δ, as can

be seen in Eq. (??). Thus, even if the probability distribution function for ζ were exactly

Gaussian, the distribution in δ would not be. Secondly, and more crucially, large departures

from Gaussianity are generically found in models which produce a local enhancement in the

primordial power spectrum [146].

To quantify the degree of non-Gaussianity that would be required to generate primordial

SMBHs without violating spectral distortion constraints, it is instructive to consider a class

of probability distribution functions of the form [542]

P
(n)
δ =

1

2
√
2σ0 Γ

(
1 + 1

n

) exp

[
−
( |δ|√

2σ0

)n ]
, (5.32)

where n parameterizes the heaviness of the distribution’s tail. The variance of the density

contrast is set by the second moment of the distribution:

σ2δ (σ0) ≡
∫ ∞

−∞
dδ δ2 P

(n)
δ =

σ20 Γ
(
1 + 3

n

)
3Γ
(
1 + 1

n

) . (5.33)

Note that for n = 2, this reduces to the Gaussian form of Eq. (??) with σ20 = σ2δ . For n = 1

the tail falls off exponentially, while for 0 < n < 1 it falls off even more slowly; we will refer

to this class of distributions with n < 1 as “heavy-tailed.”12

In Fig. 5.7, we show the shape of this class of probability distributions for various choices

of n. As expected, we see that smaller n gives rise to heavier tails. This raises the question

of how small n must be in order to efficiently form primordial SMBHs while keeping the

peak of the power spectrum within bounds of spectral distortions, Pζ ≲ 10−4. In Fig. 5.8,

12. Formally, the probability distribution Px of a random variable x is said to be “heavy” if its tail is not
exponentially bounded, limx→∞ eλxF̄ (x) = ∞∀λ > 0, where F̄ (x) =

∫∞
x
dx′ Px(x

′).
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Figure 5.7: Probability distribution functions Eq. 5.32 for various choices of n at fixed β
(left) and fixed variance σ2 (right). We see that smaller n corresponds to heavier-tailed
distributions.

we plot the maximum PBH mass fraction at formation βmax, for a variance that saturates

the spectral distortion constraints from COBE/FIRAS. Note that to generate a present day

abundance of ΩBH ≳ 10−20 with MBH ≲ 1011M⊙, we need a heavy tail with n ≲ 0.6.

We now turn to the question of what inflationary models could yield such dramatic

departures from Gaussianity. In the context of single-field inflation, Refs. [543, 544, 545, 546]

perturbatively studied the local non-Gaussianity that arises in models which deviate from

the slow-roll attractor, as in ultra-slow-roll inflation. Going beyond perturbation theory,

Refs. [517, 512] used the δN formalism [547, 65, 548, 549, 550, 551] to compute the non-

perturbative distribution of curvature perturbations.13 For inflaton potentials with a small

step or bump-like feature that induces a period of off-attractor behavior, these studies found

that the tail of the distribution can become exponential, without inducing any significant

non-Gaussianities in the perturbative regime [512]. This result highlights the fact that

perturbative measures of non-Gaussianity are not generally adequate to describe the large,

rare fluctuations that lead to PBH formation. Finally, many of the mechanisms for enhancing

13. Ref. [552] presents another non-perturbative method for calculating the PBH abundance in models
where ζ is related to a Gaussian reference variable ζG by a “generalized local transformation”.
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local curvature perturbations rely on a temporary reduction in the inflaton’s velocity. When

the slow-roll classical drift vanishes, the field dynamics can receive large corrections from

quantum diffusion, and the stochastic inflationary formalism [65, 553] may be necessary for

a proper description of the dynamics. Combining this with the δN formalism [554], a number

of studies [513, 515, 516, 555, 556, 557] have found that prominent exponential tails arise

generically from quantum diffusion.

While many single-field models have been found to yield exponential tails [558], there is

currently no known model which generates a heavier-tailed distribution.14 However, as shown

in Fig. 5.8, a heavy-tailed Pδ ∼ exp (−|δ|n) with n ≲ 0.6 is needed to yield a non-negligible

population of primordial SMBHs while satisfying bounds from CMB spectral distortions.

While it is unclear whether primordial SMBHs can appreciably form in any viable single-field

models, it is plausible that the necessary heavy tails can arise in certain multi-field scenarios.

In particular, curvaton models have long been known to generate density perturbations with

sizeable non-Gaussianities in the case that the curvaton remains subdominant at the time

of its decay [560]. While the standard curvaton with quadratic potential is incapable of

producing the dramatic non-Gaussianities needed for our scenario, there is good reason to

believe that these can be augmented for a self-interacting curvaton model. We explore these

possibilities in the following sections.

5.2.4 Standard Curvaton Scenario

Curvaton models introduce a second light, unstable spectator field that is present during

inflation and that is responsible for generating the dominant contribution to the primordial

curvature perturbations [561, 562, 563, 564]. The perturbations of the curvaton are initially

isocurvature, but become adiabatic upon curvaton decay sometime after inflation ends [565].

14. Ref. [559] interprets the NANOGrav signal as evidence of PBH mergers with MBH ∼ 1011 − 1012M⊙,
and claims that µ-distortion constraints can be overcome for sufficiently non-Gaussian single-field models.
However they make no reference to y-type distortions, which are more constraining for this mass range, and
which we have verified rule out this single-field scenario for any non-negligible abundance.

311



Figure 5.8: The maximum primordial black hole mass fraction at formation βmax as a
function of mass MBH for a value of the variance σ2ζ that saturates the spectral distortion
constraints from COBE/FIRAS, as estimated according to Eq. (5.30). We assume the dis-
tribution function given in Eq. (5.32) and consider Gaussian (n = 2, black), exponential
(n = 1, red), and power law (n = 0.6 blue, n = 0.25 green) behavior in the tail. Note that
the cusps which appear near MBH ∼ 3×109M⊙ correspond to the value of MBH at which µ-
and y-type spectral distortions are equally restrictive. Contours of constant ΩBH are shown
in dashed gray.

Due to the non-linearity inherent in this transfer, the full perturbation ζ can become quite

non-Gaussian. In particular, when the curvaton is still very subdominant at decay, the

inefficient conversion can yield a very heavy-tailed distribution for ζ.

Non-Gaussianity in the curvaton model was first investigated using the δN formalism in

Ref. [560], with implications for PBH formation analyzed in Refs. [566, 524, 540]. As we will

see, the standard curvaton model with only a quadratic potential cannot produce sufficient

non-Gaussianity to generate a non-negligible abundance of SMBHs without violating spectral

distortions constraints.
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Curvaton Cosmology

We begin by reviewing the calculation of the curvature perturbation ζ and its statistics in

the standard curvaton scenario [560], for which the total potential is

V (ϕ, χ) = Vϕ(ϕ) + Vχ(χ) , (5.34)

where Vϕ is the unspecified potential of the inflaton ϕ, and Vχ = m2
χχ

2/2 is the quadratic

potential of the curvaton χ. The curvaton mass is required to be light, satisfying mχ ≪ H

throughout inflation, such that quantum perturbations are the dominant influence on its

evolution. This also implies that the background field χ̄ will remain effectively fixed at some

initial value χ̄∗ during inflation, where a star denotes the value of quantities at horizon exit.

For the curvaton energy density to remain subdominant throughout inflation, we demand

χ̄∗ ≪
√
2Vϕ/m

2
χ. Just like the inflaton, the curvaton receives perturbations δχ∗ ≃ H∗/2π

set by the Hubble rate at horizon exit H∗. Since the curvaton is a weakly coupled field, we

expect the perturbations δχ∗ to be described by a Gaussian random field. Thus we can write

the curvaton at horizon exit as the sum of a background field and a linear perturbation, with

no higher order terms:

χ∗ = χ̄∗ + δχ∗ . (5.35)

The goal of this section will be to relate these initial Gaussian field perturbations to the total

curvature perturbation ζ via some mapping ζ = f(δχ∗). This will be the key to constructing

the probability distribution function for ζ, since the statistics of a non-Gaussian variable are

completely determined by the statistics of a Gaussian reference variable when the mapping

between them is specified.

When inflation ends and the inflaton decays, the universe enters into an era of radiation

domination, with ρR ∼ a−4. At this point, the curvaton energy density is subdominant and

its fluctuations are still isocurvature in nature. As the Hubble rate decreases, it eventually
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drops below mχ, causing the curvaton to start oscillating about the minimum of its potential.

We denote the field value at which this occurs by χ̄0. During this oscillating phase, the

curvaton redshifts like matter with ρχ ∝ a−3 and its energy density grows linearly relative

to radiation. Finally, when H ∼ τ−1, where τ is the χ lifetime, the curvaton decays to

radiation and its isocurvature perturbations become adiabatic perturbations, assuming the

decay products thermalize with the existing radiation.

The δN Formalism

To calculate the distribution of the curvature perturbations in this model, we employ the

δN formalism [547, 65, 548, 549, 550, 551, 567], which we review in Appendix A. This

technique identifies ζ on large scales (k ≪ aH) with the variation of inflationary e-folds across

Hubble patches and non-perturbatively captures its non-Gaussianities. The δN formalism

was first used to study non-Gaussianity in curvaton models in Refs. [568, 560]. On a general

hypersurface of uniform curvaton density, the conserved curvaton curvature perturbation ζχ

is [568, 550]

ζχ(t, x⃗) = δN(t, x⃗) +
1

3
ln

(
ρχ(t, x⃗)

ρ̄χ(t)

)
, (5.36)

where δN(t, x⃗) is the perturbed number of e-folds, ρχ(t, x⃗) is the χ energy density, and ρ̄χ(t)

is its background value. In spatially flat slicing, this becomes

ζχ(t, x⃗) =
1

3
ln

(
ρχ(t, x⃗)

ρ̄χ(t)

)
, (5.37)

and the curvaton energy density can be written as

ρχ(t, x⃗) = e3ζχ(t,x⃗) ρ̄χ(t) . (5.38)
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In uniform total density slicing, Eq. (5.36) becomes

ζχ(t, x⃗) = ζ +
1

3
ln

(
ρ
(u)
χ (t, x⃗)

ρ̄
(u)
χ (t)

)
, (5.39)

where ζ is the total curvature perturbation.15 Since ζ and ζχ are gauge invariant quantities,

Eq. (5.38) can be equated with Eq. (5.39) to yield

ρ
(u)
χ (t, x⃗) = e3(ζχ−ζ)ρ̄(u)χ (t) . (5.40)

A similar treatment for the radiation energy density in uniform total density slicing gives

ρ
(u)
R (t, x⃗) = e4(ζR−ζ)ρ̄(u)R (t) ≃ e−4ζ ρ̄

(u)
R (t) , (5.41)

where we have assumed for simplicity that the main contribution to the curvature per-

turbation comes from the curvaton. In order to derive analytic results, we work in the

instantaneous decay approximation such that the curvaton decays when H = τ−1, where

τ is the curvaton lifetime. On a uniform total density slice at t = τ , the energy densities

satisfy

ρ
(u)
R (τ, x⃗) + ρ

(u)
χ (τ, x⃗) = ρ̄(u)(τ) , (5.42)

where ρ̄(u) = ρ̄
(u)
R + ρ̄

(u)
χ is the total homogeneous energy density. Substituting Eqs. (5.40)

and (5.41), this becomes a 4th degree algebraic equation for ζ at τ :

e4ζ −
(
e3ζχ Ωχ,τ

)
eζ +

(
Ωχ,τ − 1

)
= 0 . (5.43)

15. Note that this generically has non-vanishing mean, ⟨ζ⟩ ≠ 0, and so when we later consider PBH
formation, we will have to define a physical ζphys ≡ ζ−⟨ζ⟩ [524]. The expectation value ⟨ζ⟩ can be computed
using the Gaussian Pδχ as ⟨ζ⟩ =

∫
dδχ ζ Pδχ , with ζ expressed as a function of δχ given in Eq. (5.46).
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Alternatively, it is customary to introduce the parameter rτ , defined as [561]:

rτ =
3Ωχ,τ

4− Ωχ,τ
=

3ρ̄
(u)
χ

3ρ̄
(u)
χ + 4ρ̄

(u)
R

∣∣∣∣
τ
, (5.44)

in terms of which the equation for ζ becomes:

e4ζ − 4rτ
3 + rτ

(
e3ζχ

)
eζ +

3rτ − 3

3 + rτ
= 0 . (5.45)

The general solution is

ζ = lnX , X =
B1/2 +

√
ArτB−1/2 −B

(3 + rτ )1/3
, (5.46)

where A = e3ζχ and we have defined

B =
1

2

[
C1/3 + (rτ − 1)(3 + rτ )

1/3C−1/3
]
, (5.47a)

C = (Arτ )
2 +

√
(Arτ )4 + (3 + rτ )(1− rτ )3 . (5.47b)

This gives the mapping ζ = ln[X(ζχ)] between ζ and ζχ.

Calculating the Probability Distribution

Finally, to obtain ζχ in terms of δχ∗, we return to Eq. (5.37), which gave the curvature per-

turbation in spatially flat slicing as a function of perturbed and background energy densities.

For the simple quadratic potential of this model, we have ρχ(t, x⃗) = m2
χχ

2/2. Expanding

χ(t, x⃗) = χ̄(t) + δχ(t, x⃗), we can write this as

ρχ(t, x⃗) =
1

2
m2
χχ̄

2
(
1 +

δχ

χ̄

)2

= ρ̄χ(t)(1 + δχ)
2 , (5.48)
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where δχ = δχ/χ̄ is the curvaton contrast in spatially flat slicing. Comparing with ρχ =

e3ζχ ρ̄χ, we see we should identify e3ζχ = (1 + δχ)
2. Finally in order to relate the contrast

δχ to its value at horizon exit, consider the equations of motion for χ and the perturbation

δχ:
d2χ̄

dt2
+ 3H

dχ̄

dt
+m2

χχ̄ = 0 , (5.49a)

d2

dt2
(δχ) + 3H

d

dt
(δχ) +

(
k2

a2
+m2

χ

)
δχ = 0 . (5.49b)

On superhorizon scales k ≪ aH is negligible and so these reduce to the same equation. This

implies δχ ∼ χ̄, such that δχ/χ̄ = δχ∗/χ̄∗ and

A = e3ζχ = (1 + δχ)
2 =

(
1 +

δχ∗
χ̄∗

)2

. (5.50)

Combining with Eq. (5.46), we obtain the desired mapping between ζ and the Gaussian

initial field perturbations δχ∗. We can now use probability conservation to write

Pζ [ζ] = Pδχ
[
δ+χ (ζ)

] ∣∣∣∣dδ+χdζ
∣∣∣∣+ Pδχ

[
δ−χ (ζ)

] ∣∣∣∣dδ−χdζ
∣∣∣∣ , (5.51)

where Pδχ is fully determined by the Gaussian variance σ20 and the roots δ±χ (ζ) satisfy

δ±χ = −1±
√(

3 + rτ
4rτ

)
e3ζ +

(
3rτ − 3

4rτ

)
e−ζ , (5.52)

which arise from solving Eq. (5.45) and substituting Eq. (5.50). In Fig. (5.9), we plot the

probability distribution for the curvature perturbation as given by Eq. (5.51) for a few choices

of rτ , which controls the heaviness of the tail.
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Figure 5.9: The probability distribution function for the curvature perturbation ζ as given
by Eq. (5.51) for various choices of rτ . The vertical dashed line corresponds to the threshold
value for collapse ζc, and the PBH mass fraction β is obtained by integrating beyond this
threshold. We see that a smaller rτ corresponds to a heavier-tailed distribution, leading to
a larger PBH abundance. Note that the reference value σ2ζ = 0.04 is chosen to illustrate the
heaviness of the tail as rτ is varied, but the minimal scenario presented in Sec. 5.2.4 cannot
realize such a large value without violating the observational limits on the power spectrum
shown in Fig. 5.6.

5.2.5 Heavy Tails and Primordial Black Holes

Viably forming an appreciable number of primordial SMBHs requires both amplified power

on small scales and a departure from Gaussianity. Thus we require the following two addi-

tional ingredients:

• Enhanced Power: One mechanism for enhancing the power spectrum is to introduce

a non-canonical kinetic term for the curvaton, which depends on the inflaton’s field

value [524]. In Sec. 5.2.5, we review this scenario and calculate the power spectrum

resulting from such a kinetic term.

• Large Non-Gaussianity: The non-Gaussianity in a curvaton model can be amplified

through self-interactions, which lead to non-linear growth of χ perturbations between

horizon exit and the onset of curvaton oscillations [569, 570, 571, 572, 573, 574, 575,

576, 577]. In Sec. 5.2.5, we review the evolution of the non-quadratic curvaton and
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calculate the resulting probability distribution function.

Non-Minimal Curvaton Scenario

The minimal curvaton model provides non-Gaussian statistics, but does not amplify Pζ .

This deficiency can be remedied with a non-canonical kinetic term16 for the curvaton [524]:

L ⊃ 1

2
f(ϕ)2(∂χ)2 . (5.53)

If f(ϕ) is chosen such that this kinetic term is suppressed at field values ϕ = ϕ∗, the

power spectrum will be enhanced on scales corresponding to the horizon size at ϕ∗. For

concreteness, consider the evolution of the inflaton and curvaton governed by the following

system of equations

ϕ̈+ 3Hϕ̇+ V ′(ϕ) = ff ′ ˙̄χ2 ≃ 0 , (5.54a)

¨̄χ+

(
3H +

2f ′

f
ϕ̇

)
˙̄χ+

m2
χ

f2
χ̄ = 0 , (5.54b)

where f ′ ≡ ∂ϕf and the source term of the first equation is negligible until the curvaton

begins to oscillate. Similarly, the curvaton perturbation evolves according to

d2

dt2
(δχ) +

(
3H +

2f ′

f
ϕ̇

)
d

dt
(δχ) +

(
k2

a2
+
m2
χ

f2

)
δχ ≃ 0 , (5.55)

which, to leading order, can be simplified inside the horizon, k ≫ aH, to yield

d2

dt2
(fδχ) +

k2

a2
(fδχ) ≃ 0 , (5.56)

16. Such a term naturally arises in many dilatonic and axionic models of inflation [578].
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whose solution can be written as

δχ ≃ 1√
2k af

exp

(
−ik

∫
dt

a

)
, (5.57)

which establishes the initial conditions in the adiabatic vacuum. As in Sec. ??, on super-

horizon scales, k ≪ aH, χ̄ and δχ evolve according to the same equation, so their solutions

have the same functional form for all t > t∗:

δχ

χ̄
=
δχ∗
χ̄∗

≃ H∗√
2k3f(ϕ∗)χ̄∗

, (5.58)

where k = a(t∗)H(t⋆). Using Eq. (5.58), the power spectrum for δχ becomes

Pδχ(k) =
k3

2π2

∣∣∣∣δχkχ̄
∣∣∣∣2 =

1

χ̄2∗

(
H∗

2πf(ϕ∗)

)2

, (5.59)

so, if f(ϕ) is chosen to have a dip at ϕ∗, corresponding to k∗ = kBH, Pδχ will exhibit a

peak at kBH. However, for modes far away from kBH, f(ϕ∗) ≈ 1, recovering the nearly

scale-invariant spectrum required for consistency with CMB observations on larger scales.

Assuming f(ϕ) has such a localized feature, combining Eqs. (5.51), (5.59), and (??), the

PBH abundance becomes

β = 2

∫ ∞

δ+χ,c
dδχ Pδχ [δχ] + 2

∫ δ−χ,c

−∞
dδχ Pδχ [δχ]

= erfc

(
δ+χ,c√
2σ0

)
+ erfc

(
|δ−χ,c|√
2σ0

)
,

(5.60)

where δ±χ,c = δ±χ (ζc) are the roots of Eq. (5.52) evaluated at the threshold.

Using Eq. (5.30), we obtain the maximum value of β consistent with spectral distortion

constraints. Note that the variance σ2ζ corresponds to the physical curvature perturbation,

σ2ζ = ⟨ζ2phys⟩ =
〈
ζ2
〉
− ⟨ζ⟩2, which can be computed from ζ(δχ) in Eq. (5.46) as σ2ζ =
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∫
dδχ ζ

2 Pδχ−
(∫

dδχ ζ Pδχ

)2
. The degree of non-Gaussianity in this scenario is governed by

Figure 5.10: The maximal PBH mass fraction at formation βmax in the standard curva-
ton scenario for σ2ζ subject to spectral distortion constraints for various choices of rτ from
Eq. (5.44).

rτ , as defined in Eq. (5.44). In the rτ → 1 limit, the curvaton dominates the energy density

prior to its decay, so the relation between ζ and ζχ from Eq. (5.45) is approximately linear.

Thus, in this regime, the non-Gaussianity comes entirely from the non-linear relationship

between ζχ and δχ; see Eq. (5.50). In the opposite regime17 that the curvaton is still very

subdominant when it decays (rτ ≪ 1), the relation between ζ and ζχ is highly non-linear,

and so the degree of non-Gaussianity is large. This is reflected in Figs. 5.9 and 5.10. Clearly

this scenario is incapable of producing primordial SMBHs while satisfying spectral distortion

17. It may seem counterintuitive that a very subdominant curvaton can still generate the curvature per-
turbation. The key is that because the curvaton is subdominant during inflation, its perturbations from
quantum fluctuations are large relative to the background field value. Ref. [579] finds that a subdominant
curvaton can still viably produce the curvature perturbation provided rτ ≳ 10−3.
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constraints.

Self-Interacting Curvaton Scenario

Introducing curvaton self-interactions allows for non-linear evolution of δχ between horizon

exit and the onset of oscillations, which can lead to even more dramatic departures from

Gaussianity. This scenario is also physically well-motivated since the curvaton needs to

decay for the isocurvature perturbations to be converted to adiabatic perturbations. The

effects of self-interactions in curvaton models were first investigated in Refs. [569, 570, 571,

572, 573, 574, 575, 576, 577]. However, these studies restricted themselves to computing the

non-linearity parameters fNL and gNL, which do not capture the non-perturbative statistics

in the tail of the distribution. Unfortunately following the curvaton’s evolution in the non-

quadratic regime and computing the exact resulting curvature distribution require extensive

numerics beyond the scope of this study. We offer here a schematic picture, but leave the

detailed model building to future studies.

We now allow the curvaton potential V (χ) to be an arbitrary well-defined function of χ.

The cosmological evolution of the curvaton proceeds similarly to the case of the quadratic

potential, but with a few crucial differences. At a time t = tint corresponding to V ′(χ∗) ∼ H,

χ begins rolling towards the minimum of its potential. We choose parameters such that this

occurs while the curvaton’s energy density is dominated by the interaction terms. At a later

time t = t0 > tint, these interaction terms become subdominant and the curvaton mass

term drives field evolution, resulting in matter-like scaling ρχ ∝ a−3. Note that with self-

interactions, the curvaton energy density generically falls off faster than in the quadratic

case, resulting in a smaller rτ at the time of decay.

Recall that in the case of the quadratic potential, the curvaton density contrast δχ re-

mained constant after horizon exit since the background field χ̄ and perturbation δχ obeyed

the same equation of motion, shown in Eq. (5.49). This led to δχ/χ̄ = δχ∗/χ̄∗, which al-
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lowed δχ to be used as a Gaussian reference variable. Upon introducing interactions this

is no longer the case, as δχ evolves non-trivially between tint and the onset of quadratic

oscillations at t0. In this regime, the equation of motion for the perturbation is:

d2

dt2
(δχ) + 3H

d

dt
(δχ) + V ′′

χ δχ = 0 , (5.61)

where it is understood that the second derivative of the potential should be evaluated at the

background field value.

A natural choice of Gaussian reference variable is the initial curvaton perturbation δχ∗,

which can be related to the ζχ by first solving Eq. (5.61) along with the equation for the

background field χ̄, computing the total and background energy densities at decay, and finally

applying Eq. (5.37). The resulting δχi∗ = gi(ζχ) can then be mapped onto the total curvature

perturbation ζ via Eq. (5.45), since the relationship between ζχ and ζ is unchanged in the

presence of χ self-interactions. Although an exact solution requires the use of numerical

techniques, an approximate relation can be derived in the limit of weak interactions.

We are interested in the relation between δχ∗ and ζχ at the time of curvaton decay. For

χ values sufficiently close to the minimum of its potential, the potential is approximately

quadratic, and the energy density is

ρχ ≃ 1

2
m2
χχ

2
0 , (5.62)

where χ0 is the amplitude at the onset of oscillations. Since non-linear evolution takes place

between horizon exit and oscillation, this initial amplitude is a function of initial field value

χ∗). In terms of background field values χ̄0 ≡ χ0(χ̄∗), this can be expanded as:

χ0 = χ̄0 +
∑
n=1

1

n!
χ̄
(n)
0 δχn∗ , χ̄

(n)
0 ≡ ∂nχ0

∂χn∗

∣∣∣
χ=χ̄∗

, (5.63)
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and the energy density can then be written as:

ρχ ≃ ρ̄χ

[
1 +

1

χ̄0

∑
n=1

1

n!
χ̄
(n)
0 δχn∗

]2
, (5.64)

where ρ̄χ = 1
2m

2
χχ̄

2
0. Comparing with Eq. (5.37), the bracketed quantity is identified with

e3ζχ . Then also expanding

ζχ = ζχ,1 +
∞∑
n=2

1

n!
ζχ,n , (5.65)

we can write to leading order:

ζχ(δχ∗) =
2

3

(
χ̄′0
χ̄0

)
δχ∗ +

1

3

(
χ̄0χ̄

′′
0

χ̄′ 20
− 1

)(
χ̄′0
χ̄0

)2

δχ2∗

+
1

9

(
χ̄20χ̄

′′′
0

χ̄′ 30
− 3

χ̄0χ̄
′′
0

χ̄′ 20
+ 2

)(
χ̄′0
χ̄0

)3

δχ3∗ ,

(5.66)

which can then be substituted into Eq. (5.46) to obtain ζ as a function of the Gaussian

reference variable δχ∗. Note that though we have written this expression to fixed order,

higher order terms can become significant in the presence of large non-Gaussianities. It is

also possible to invert this mapping to obtain the roots gi(ζ) = δχi∗(ζ). The probability

distribution is then:

Pζ [ζ] =
∑
j

∣∣∣∣gj(ζ)dζ

∣∣∣∣Pδχ∗ [gj(ζ)] , (5.67)

where the sum runs over all real roots.

In Fig. 5.11, we plot the maximal PBH abundance consistent with spectral distortion

constraints for a sample set of parameters. Comparison with βmax in the standard cur-

vaton scenario (see Fig. 5.10) reveals the dramatic amplification of non-Gaussianity that

self-interactions can afford. We leave the determination of a potential that could actually

yield these parameter values to future investigation.
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Figure 6. Maximal PBH mass fraction at formation �max as a function of PBH mass in the self-
interacting curvaton model, where �2

⇣ saturates spectral distortion bounds for differnt values of r⌧ .
We assume ⇣� the take the form of Eq. (5.41) with the potential chosen such that ⇣�,2 = 0.5⇣�,1 and
⇣�,3 = 0.1⇣�,1. Contours of constant ⌦BH today are shown in dashed gray.

Comparison with �max in the standard curvaton scenario (see Fig. 5) reveals the dra-
matic amplification of non-Gaussianity that even weak interactions can afford. Note that
while the non-linear growth of modes between horizon exit and the onset of oscillations sig-
nificantly boosts the potential amount of non-Gaussianity, the curvaton still needs to be very
subdominant at the time of its decay to produce a sufficiently heavy-tailed distribution —
i.e. we must have r⌧ ⌧ 1. It is actually even more natural to fulfill this condition here since
energy density in the curvaton field dilutes more quickly upon introducing interactions.

6 Conclusions

Much remains to be understood about the origin and evolution of our universe’s most mas-
sive supermassive black holes. The inferred number and population distribution of SMBH
in the high-redshift universe is perhaps surprising, and challenges the standard assumption
that they formed from initially low mass seeds which gradually grew through accretion and
possibly mergers. In this work we have instead motivated the possibility that some fraction of
this population may be primordial in origin, having formed from the collapse of overdensities
seeded by inflation. The main obstruction to this scenario comes from measurements of spec-
tral distortions of the CMB, which constrain the amplitude of the primordial power spectrum

those from CMB spectral distortions in our mass range of interest. In particular, Ref. [110] finds uses dark
matter substructure — specifically the observed number of dwarf spheroidal galaxies and stellar streams —
to constrain P⇣ . While the limits derived in this paper likely depend on the specific form of the bump in the
potential (and consequent form of the variance), as well as modeling of the evolution of the host halos and
subhalos, this could potentially rule out some fraction of the parameter space for SMBH.

– 20 –

Figure 5.11: Maximal PBH mass fraction at formation βmax as a function of PBH mass in
the self-interacting curvaton model from Sec. 5.2.5, where σ2ζ saturates spectral distortion
bounds for different values of rτ , as defined in Eq. (5.44). We take ζχ = c1 δχ∗+c2 δχ2∗+c3 δχ3∗
to take the form of Eq. (5.66), with sample parameters fixed as (c1, c2, c3) = (1, 0.5, 0.1).
Contours of constant ΩBH today are shown in dashed gray.

5.2.6 Discussion

Much remains to be understood about the origin and evolution of our universe’s most massive

black holes. The inferred population of supermassive black holes with MBH ∼ 106−1011M⊙

in the high-redshift universe is perhaps surprising, and challenges the standard assumption

that these objects formed from low mass seeds which grew through the processes of accretion

and mergers. In this study, we have taken this as motivation to consider the possibility that

some of our universe’s supermassive black holes may be primordial in origin, having formed

from the direct collapse of overdensities seeded by inflation.

Forming primordial SMBH from direct collapse requires an enhanced power spectrum on

small scales (k ∼ 10− 104Mpc−1), which results in dangerous CMB spectral distortions.
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Since the CMB exhibits a nearly perfect blackbody spectrum, such distortions exclude the

possibility that a population of primordial SMBH could have formed from Gaussian density

perturbations. However, if the distribution of primordial curvature perturbations were highly

non-Gaussian, it is possible that primordial black holes may have formed from smaller peaks

in the power spectrum. To evade limits from spectral distortions, the tail of the probability

distribution must be very heavy, falling off as Pζ ∼ exp (−|ζ|n) with n ≲ 0.6; we are not

aware of any single-field inflationary model that can realize this behavior.

In this section, we have explored the possibility of generating curvature perturbations

with heavy-tailed probability distributions in the event that a self-interacting curvaton field

is also present as a spectator during inflation. In the standard curvaton scenario, non-

Gaussianity arises from the inefficient conversion of isocurvature perturbations into adia-

batic perturbations when the curvaton decays. However, the degree of non-Gaussianity in

this minimal realization is insufficient to yield an appreciable primordial SMBH population.

Introducing curvaton self-interactions results in non-linear evolution of the curvaton con-

trast δχ between horizon exit and the onset of quadratic oscillations, potentially resulting in

a heavier-tailed distribution, as seen in Fig. 5.11. We leave the detailed model building and

determination of a potential that can realize this benchmark point to future investigation.

Provided such a potential can be found, the non-minimal self-interacting curvaton could

viably yield SMBHs from the direct collapse of primordial perturbations, without violating

spectral distortion constraints.

We note that beyond the bounds from CMB spectral distortions, there are two further

more speculative constraints that potentially need to be addressed in a full model. First, as

pointed out by Ref. [580], the small scale curvature perturbation impacts structure evolu-

tion as traced by dark matter halos. Presuming a bump in the small scale power spectrum,

they investigated host halo and subhalo evolution. By comparing the results of their sim-

ulations with the observed number of dwarf spheroidal galaxies and stellar streams, they
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were able to place bounds on Pζ to greater sensitivity than COBE/FIRAS for a region of

wavenumbers. The result would exclude some, but not all, of the SMBH mass range we

consider. These bounds are less robust than those coming from CMB spectral distortion and

are subject to modeling uncertainties, but nevertheless should be noted. Second, the large

non-Gaussianities described in this model would likely lead to heavy clustering of quasars.

Ref. [581] calculated the observed angular correlation function using the 92 quasars at z ∼ 6

reported by the Subaru High-z Exploration of Low-Luminosity Quasars project and com-

pared this with that predicted in a PBH model which used a light spectator field to source

non-Gaussian primordial perturbations. They found the amplitude of the angular correla-

tion function predicted by the model to be much larger than that observed, a result which

would seem to preclude PBHs as the sole progenitors of SMBHs in this redshift range. More

concretely, they were able to restrict the fraction of PBH originating SMBHs to ≲ 10−4.

These potential constraints notwithstanding, this work is especially timely in light of

two distinct recent observations. The James Webb Space Telescope (JWST) has reported a

number of surprisingly luminous high-redshift galaxy candidates [130, 131, 132, 133] whose

existence poses a challenge to the standard ΛCDM paradigm. These massive early galaxies

could conceivably be explained if primordial black holes accelerated galaxy formation in the

early universe [582]. Meanwhile, the NANOGrav collaboration and several other pulsar tim-

ing array experiments have just announced evidence of a signal consistent with the stochastic

gravitational wave background in the nHz frequency range [583, 123, 124, 125]. The lead-

ing astrophysical interpretation of this signal is that it consists of gravitational waves from

supermassive black hole binary mergers. However, some aspects of this data, such as the

frequency scaling of the spectral density parameter, are not particularly well-fit by this inter-

pretation [584, 585]. Given that the distribution of SMBH binaries would be different if these

objects were of a primordial origin, one avenue for future investigation would be to compute

the gravitational wave signal predicted in this scenario. While for homogenously distributed
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primordial SMBHs this possibility is in conflict with constraints on total abundance from

large scale structure and the UV galaxy luminosity function [586], a highly clustered pop-

ulation could still viably source the gravitational wave signal [587]. Given that a clustered

population can arise in the presence of non-Gaussianities, it would be interesting to see what

our model predicts in this context; see Refs. [588, 581] for closely related work. There are

also other signals, such as scalar-induced secondary gravitational waves, which could offer

complimentary evidence of this scenario and deserve further study; see Refs. [589, 590] for

a potential connection between scalar-induced gravitational waves and the PTA signal. Re-

gardless, these recent observations provide us with strong motivation to better understand

the cosmic origin of our universe’s supermassive black holes.

5.2.7 Supplementary Material: The δN Formalism

The δN formalism [547, 65, 548, 549, 550, 551, 567] is a technique for computing the non-

linear curvature perturbation ζ on large scales by identifying it with the perturbed logarith-

mic expansion from some initial state to a final state of fixed energy density. In a homogenous

background, the number of e-folds elapsed between two moments of times t1 and t2 is

N̄(t2, t1) =

∫ t2

t1

dtH . (5.68)

Meanwhile, the amount of expansion in a perturbed universe is [550]

N(t2, t1; x⃗) =

∫ t2

t1

dt (H + ψ̇) , (5.69)

where ψ is the curvature perturbation appearing in the decomposition of the spatial 3-metric

gij = a2(t)e2ψ(t,x⃗)δij .18 Note that this expression holds on superhorizon scales, where spatial

gradients can be neglected. We define δN ≡ N(t2, t1;x) − N̄(t2, t1) to be the difference

18. We ignore tensor perturbations.
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between the perturbed and unperturbed expansion, and see that it equates to the change in

the curvature perturbation from an initial hypersurface at t1 to a final hypersurface at t2

δN ≡ N(t2, t1; x⃗)− N̄(t2, t1) = ψ(t2, x⃗)− ψ(t1, x⃗) . (5.70)

Equivalently, the change in ψ going from one choice of slicing to another is the difference

between the actual number of e-folds N and the homogenous background value N̄ .

Since the curvature perturbation ψ is a gauge-dependent quantity, whose value depends

on the choice of slicing, it is convenient to combine this with the gauge-dependent density

perturbation δρ to form the gauge-invariant curvature perturbation [591]:

ζ(t, x⃗) = ψ(t, x⃗) +
1

3

∫ ρ(t,x⃗)

ρ̄(t)

dρ

(1 + w)ρ
, (5.71)

where w is the equation of state of the cosmological fluid, ρ(t, x⃗) is the inhomogenous local

energy density, and ρ̄(t) is the homogenous background energy density. It was demonstrated

in Ref. [550] that this quantity is conserved on superhorizon scales.

We would like to equate this gauge-invariant, conserved curvature perturbation ζ with

the perturbed logarithmic expansion δN . By choosing the initial hypersurface at t1 to be

spatially flat, such that ψ(t1, x⃗) = 0, from Eq. (5.70) we can equate δN(t2, t1; x⃗ = ψ(t2, x⃗).

By choosing the finial hypersurface at t2 to be uniform density, such that ρ(t2, x⃗) = ρ̄(t2),

from Eq. (5.71) we have ζ(t2, x⃗) = ψ(t2, x⃗). Combining these expressions gives the δN

formula

ζ(t2, x⃗) = δN(t2, t1; x⃗) , (5.72)

relating the curvature perturbation with the perturbed expansion between a spatially flat

and uniform energy density hypersurface.

It is also possible to implement the δN formalism numerically. Following inflaton decay,
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the exact system of equations describing the evolution of the curvaton and radiation bath is

χ̈+

(
3H +

1

τ

)
χ̇+ V ′

χ = 0 , ρ̇R + 4HρR =
χ̇2

τ
, H2 =

8π

3M2
Pl

(ρR + ρχ) . (5.73)

We set the initial conditions at the end of inflation by specifying χi = χ∗, χ̇i = 0, and

Hi = H∗, which in turn determines ρR,i =
3M2

Pl
8π H2

i − Vχ(χi). The system of equations

should be evolved until a final time tf satisfying Hf ≪ τ−1, such that the curvaton has

decayed completely. The number of e-folds elapsed is then computed as N = ln
(
af/ai

)
.

This procedure should then be repeated for the perturbed field value χ∗ + δχ∗, with the

fluctuation determined by the size of Hubble at horizon exit δχ∗ = H∗/2π. Evolving until

the same final hypersurface of fixed energy density, the curvature perturbation is computed

as:

ζ = N(χ∗ + δχ∗)−N(χ∗) . (5.74)

Repeating for many different δχ∗ gives a functional relation between ζ and the Gaussian

δχ∗. We leave an in-depth numerical study to future investigation.

5.3 Cosmological Magnetic Fields

The origin of our universe’s cosmological magnetic fields remains a mystery. In this section,

we consider whether these magnetic fields could have been generated in the early universe

by a population of charged, spinning primordial black holes. To this end, we calculate the

strength and correlation length of the magnetic fields generated by this population, and

describe their evolution up to the current epoch. We find that near-extremal black holes in

the mass range M ∼ 1028 − 1036 g could potentially generate magnetic fields with present

day values as large as B ∼ 10−20 − 10−15G; those with M ≳ 1038 g could have produced

even larger fields B ≳ 10−14G. To motivate this scenario, we briefly discuss how new

physics may have induced a chemical potential which could have briefly maintained the
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black holes in an electrically charged state in the early universe. Finally, we comment on

a correlation between the parameters of the cosmological magnetic field and the stochastic

gravitational wave background coming from the merger of primordial black hole binaries as

the primary observable signature of this scenario. Note that much of the text in this section

was previously published by this author in [29].

5.3.1 Overview

According to the standard paradigm19, the magnetic fields present within galaxies and galaxy

clusters were generated through the amplification of preexisting, but much weaker, magnetic

fields through the dynamo mechanism [594, 595, 596, 597, 598]. This process is effective,

however, only if a non-zero magnetic field is present for the dynamos to amplify. The origin of

these magnetic field “seeds," which were present at the onset of structure formation, remains

an open question and has generated a great deal of speculation [599, 600, 601, 597, 602,

603]. It has been proposed that primordial magnetic fields could arise within the context of

inflation [604, 605, 606, 607, 602, 608, 609] or during phase transitions that took place in

the early universe [610, 611, 612, 613, 614, 255, 615]. None of these scenarios is completely

satisfactory, though, and each faces its own challenges. In particular, it is difficult for these

mechanisms to produce fields of sufficiently large correlation length so as to survive until

today.

The origin of the primordial magnetic field is somewhat obscured by the complicated

plasma and magnetohydrodynamics processes that have taken place over cosmic time. One

can attempt, however, to constrain the properties of the seed field by studying the magnetic

fields found within the voids of the intergalactic medium, where primordial fields could exist

in a relatively pristine state. In such environments, the evolution of the magnetic field would

19. Certain inflationary mechanisms are capable of producing magnetic fields of sufficient strength (≳ 0.1
nG on Mpc scales) that they can be adiabatically compressed to explain the µG strength fields in galaxies
today without invoking the dynamo mechanism [592, 593].
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be largely driven by the expansion of the universe, leading to the dilution of the field strength

as B ∝ a−2 (corresponding to ρB ∝ a−4), and to the growth of the field’s correlation length

as ξ ∝ a.

In this section, we consider the possibility that primordial magnetic fields may have been

generated in the early universe by a subdominant population of primordial black holes. In

order to produce a non-zero magnetic field, these black holes must have been both spinning

and electrically charged, corresponding to the Kerr-Newman solution. In our scenario, this

population is temporarily charged in the early universe due to a nonzero chemical potential,

which eventually relaxes to zero, at which point the black holes discharge. Afterwards, the

magnetic fields evolve according to Hubble expansion and the (now neutral) black holes

constitute a present day dark matter abundance. While such a scenario is admittedly quite

speculative and involves some rather exotic elements, we find that astrophysically interesting

magnetic fields could have potentially been generated by such objects.

5.3.2 Kerr-Newman Black Holes

Generating a magnetic field requires both an electromagnetic current and a departure from

spherical symmetry. For this reason, we are interested here in black holes that are both

charged and rotating. Such Kerr-Newman black holes are entirely characterized by their

mass, M , angular momentum, J , and charge, Q. In Boyer-Lindquist coordinates, the geom-

etry associated with such an object is described by the following line element [178, 616, 617]:

ds2 = −∆

ρ2
(dt− α sin2 θ dϕ)2 +

ρ2

∆
dr2 + ρ2dθ2 +

sin2 θ

ρ2

[
(r2 + α2)dϕ− αdt

]2
,

where α = J/M , and we have defined

ρ2 = r2 + α2 cos2 θ, ∆ = r2 + α2 − 2Mr

M2
Pl

+
Q2

M2
Pl

, (5.75)

332



and MPl = 1.22 × 1019 GeV is the Planck mass. The charge and angular momentum of a

black hole are constrained to lie within the following domain:

α2M2
Pl +Q2 ≤ M2

M2
Pl

. (5.76)

From the metric, we see that the Kerr-Newman black hole has two horizons located at

r± =
1

M2
Pl

(
M ±

√
M2 − α2M4

Pl −Q2M2
Pl

)
. (5.77)

Integrating over the angular volume element evaluated on the r = r+ hypersurface yields

the area of the event horizon

A = 4π (r2+ + α2). (5.78)

From the Killing vector associated with the event horizon, the surface gravity can be written

as [617]

κ =
2π

A
(r+ − r−). (5.79)

These two quantities are related to a black hole’s temperature and entropy as follows [618]:

TBH =
κ

2π
=

r+ − r−
4π(r2+ + α2)

(5.80)

SBH =
A

4
= π(r2+ + α2). (5.81)

These expressions, in conjunction with the fact that the mass of a black hole can be identified

with energy, yields the first law of black hole thermodynamics:

dM =
M2

Pl

8π
κ dA+ Ω dJ + Φ dQ, (5.82)
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where Ω and Φ are the angular velocity and the electrostatic potential of the black hole.

Note that the quantities κ (and hence TBH), Ω, and Φ are constant over the horizon. In

order to obtain explicit forms for Ω and Φ in the context of a Kerr-Newman black hole, we

need to take the differential of the area given in Eq. (5.78). After some algebra, we can write

M2
Pl

8π
κ dA =

r2+dM

r2+ + α2
− r+QdQ

r2+ + α2
− Mαdα

r2+ + α2
. (5.83)

Substituting −αMdα = −αdJ + α2dM and inserting the explicit form for κ, we arrive at

the following expression:

dM =
M2

Pl

4
TBH dA+

αdJ

r2+ + α2
+
r+QdQ

r2+ + α2
. (5.84)

Comparing this to Eq. (5.82), we can determine the black hole’s angular velocity and elec-

trostatic potential:

Ω =
α

r2+ + α2
, Φ =

r+Q

r2+ + α2
. (5.85)

5.3.3 Generating Cosmological Magnetic Fields

We begin by considering an isolated black hole whose mass, angular momentum, and charge

are not appreciably evolving with time, hence neglecting the possible effects of Hawking

evaporation and accretion. This stationary geometry is described by the Kerr-Newman

metric given in Eq. (5.75). Technically this is just one half of the complete solution to the

coupled Einstein-Maxwell equations, which describe the interplay between the dynamical

metric and electromagnetic field. For a full solution, we must also specify the vector potential

Aµ [617]

Aµdx
µ = − Qr

r2 + α2 cos2 θ

(
dt− α sin2 θ dϕ

)
. (5.86)
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Using the field strength, Fµν = ∇µAν −∇νAµ, the E and B fields are given by

E⃗ =
Q(r2 − α2 cos2 θ)

ρ4
r̂ − 2Qα2 cos θ sin θ

ρ4
θ̂ , (5.87a)

B⃗ =
Qα

r

[
2(α2 + r2) cos θ

ρ4
r̂ +

(r2 − α2 cos2 θ) sin θ

ρ4
θ̂

]
. (5.87b)

Note that the Eϕ and Bϕ components are both vanishing, since we’ve taken the black hole

to be rotating in the ϕ̂ direction. Also note that in the r → ∞ limit, these fields have the

expected asymptotic forms

lim
r→∞ E⃗ =

Q

r2
r̂ +O

(
1

r3

)
, (5.88a)

lim
r→∞ B⃗ =

Qα

r3

(
2 cos θ r̂ + sin θ θ̂

)
+O

(
1

r4

)
.

In considering the case of an isotropic population of black holes,20 it will be useful to

have an expression for the magnetic field of a single black hole averaged over a sphere of

radius R > r+. We adopt the volume-averaged convention21

⟨B⃗⟩ = 1

V

∫
V
d3x B⃗ , (5.89)

where V = 4πR3/3 is the volume of the sphere over which we are averaging. Starting from

Eq. (5.87) and omitting the algebraic details, the volume-averaged magnetic field magnitude

can be written as

⟨B⟩ = 3Q

R2

[(
1 +

R2

α2

)
tan−1

(α
R

)
− R

α

]
. (5.90)

In the α ≪ R limit, the average magnetic field reduces to ⟨B⟩ ≈ 2Qα/R3. This limit will

20. A possible objection to this scenario is that the black holes might act as an ensemble of magnetic
dipoles which interact to form domains of some characteristic scale. This will not be applicable in this case,
however, as we will consider black hole number densities which are sufficiently small such that no more than
one black hole will be present in a given Hubble radius at early times.

21. We have confirmed numerically that our definition coincides with the RMS average value, B2
RMS =

1
V

∫
d3x B⃗2, up to an O(1) factor.
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be applicable throughout our entire parameter space of interest.

The primordial magnetic field is also characterized by a correlation length ξ, which gov-

erns the extent to which diffusion and damping will suppress any magnetic fields that are

generated by black holes in the early universe. On scales greater than the magnetic diffusion

length ℓdiff , diffusive effects can be neglected, so the comoving field is said to be “frozen in"

and ξ grows linearly with the scale factor of the universe.

Formally ξB is defined as the length scale after which correlations, as quantified by the

two-point correlation function, fall off exponentially. Intuitively we expect this to coincide

approximately with the average distance between neighboring primordial black holes, as it

is at this length scale that magnetic field lines will begin to interfere with and wash out one

another

ξ ∼
(

3

4πnBH

)1/3

=

(
45

2π3g⋆(T )

M

fBHT 4

)1/3

, (5.91)

where fBH =MnBH/ρR(T ) is the energy fraction in black holes relative to that in radiation

at the time of magnetogenesis and g⋆(T ) is the number of effective relativistic degrees of

freedom at temperature T .

Once a magnetic field is generated at some initial temperature, Ti, there are several

processes which can affect its evolution, including small scale damping, diffusion, and the

expansion of the universe [598, 600]. We will make the simplifying assumption that the initial

correlation length is sufficiently large that we do not need to account for the former effects

ξi > ℓdiff , and focus solely on the impact of Hubble expansion. We will later verify that this

assumption is self-consistent for all parameter space of interest. In an expanding universe,

the magnetic field redshifts as B ∝ a−2, while the correlation length grows as ξ ∝ a. These

scalings are manifest when writing B and ξ in terms of temperature

B(T ) = Bi

(
T

Ti

)2 [ g⋆,S(T )
g⋆,S(Ti)

]2/3
, (5.92a)
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ξ(T ) = ξi

(
Ti
T

)[
g⋆,S(Ti)

g⋆,S(T )

]1/3
, (5.92b)

where g⋆,S(T ) is the effective number of degrees-of-freedom in entropy, and the initial values

at magnetogenesis, Bi and ξi, can be related to black hole parameters using Eqs. (5.90)

and (5.91), with R = ξi. Defining the following dimensionless parameters

α⋆ ≡ α
M2

Pl

M
= J

M2
Pl

M2
, Q⋆ ≡ Q

MPl

M
, (5.93)

the magnetic field from Eq. (5.92a) can be written as

⟨B0⟩ =
4π3α⋆Q⋆fBH,ig⋆(Ti)T

2
i T

2
0M

45M3
Pl

[
g⋆,S(T0)

g⋆,S(Ti)

]2/3
, (5.94)

where present day values are denoted by a “0" subscript, T0 = 2.725 K is the CMB temper-

ature, and fBH,i is the black hole energy fraction at Ti. In order to express this in terms of

current observables, we apply the conservation of entropy

g⋆,S(T0)

g⋆,S(Ti)
=

(
aiTi
a0T0

)3

, (5.95)

where ai,0 is the scale factor at the corresponding epoch. Noting also that the initial black

hole energy density at magnetogenesis satisfies

ρBH(Ti) = fBH,i

(
π2g⋆(Ti)T

4
i

30

)
= ΩBHρc

(
a0
ai

)3

, (5.96)

where ΩBH ≡ ρBH/ρc is the present day energy density in black holes relative to the critical
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density ρc ≈ 4× 10−47 GeV4, we can rewrite Eq. (eq:B) as

⟨B0⟩ =
8πα⋆Q⋆ΩBHρcM

3M3
Pl

Ti
T0

[
g⋆,S(Ti)

g⋆,S(T0)

]1/3
≈ 6× 10−16G

(
Q⋆α⋆
0.5

)(
ΩBH

0.01

)
M

M⊙

(
Ti

GeV

)
,

(5.97)

where in the last line we have used g⋆ = g⋆,S = 73 at Ti = 1 GeV. Note that in terms of

α⋆ and Q⋆, the extremality condition is α2⋆ +Q2
⋆ ≤ 1, which implies α⋆Q⋆ ≤ 0.5. Similarly,

combining Eqs. (5.91) and (5.92b), the present day correlation length can be written as

ξ0 =
1

T0

45M

2π3g⋆(Ti) fBH,i Ti

1/3 [ g⋆,S(Ti)
g⋆,S(T0)

]1/3
. (5.98)

Using Eqs. (5.95) and (5.96), we obtain

ξ0 =

(
3M

4πΩBHρc

)1/3

≈ 0.6 kpc

(
0.01

ΩBH

)1/3( M

M⊙

)1/3

. (5.99)

Naively applying Eq. 5.97, it might appear that arbitrarily strong magnetic fields could be

generated by black holes at sufficiently high temperatures, Ti ≫ GeV. Black holes of a given

mass, however, can only be formed once M > MH , where MH is the mass contained within

the horizon

MH =
M2

Pl

2Hi
≈ 0.06M⊙

(
GeV

Ti

)2( 73

g⋆(Ti)

)1/2

. (5.100)

By evaluating Eq. (5.97) at MH , we find the following upper limit for the magnetic field

strength that could be generated by spinning, charged black holes

⟨B0⟩max ≈ 4× 10−17G

(
Q⋆α⋆
0.5

)(
ΩBH

0.01

)(
GeV

Ti

)
. (5.101)
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Alternatively, in terms of the horizon mass, this maximum magnetic field can be written as

⟨B0⟩max ≈ 1.5× 10−16G

(
Q⋆α⋆
0.5

)(
ΩBH

0.01

)(
MH

M⊙

)1/2

. (5.102)

5.3.4 Potentially Viable Parameter Space

Figure 5.12: The present day strength and correlation length of the magnetic fields generated
by primordial black holes, for the optimal case of Q⋆α⋆ = 0.5. Also shown are the constraints
on this parameter space from gravitational microlensing surveys [15, 16, 17, 18], gravitational
wave observations [19, 20, 21], and from the impact of accretion [22]. Astrophysically relevant
magnetic fields (B ≳ 10−20G) could be generated by primordial black holes in the mass range
of M ∼ 1028 − 1036 g without violating existing constraints. For non-extremal black holes,
the strength of the resulting magnetic fields would be smaller than those shown by a factor
of Q⋆α⋆/0.5.

In Fig. 5.12, we plot the strength and correlation length of the magnetic fields gen-

339



erated by primordial black holes, for the optimal case of Q⋆α⋆ = 0.5. Also shown in

this figure are the constraints on this parameter space from gravitational microlensing sur-

veys [15, 16, 17, 18], gravitational wave observations [19, 20, 21], and from the impact of

accretion on the CMB [22] (for reviews, see Refs. [619, 620]). From this figure, we see that

astrophysically relevant magnetic fields (B ≳ 10−20G) could potentially have been gener-

ated by primordial black holes with masses in the range of M ∼ 1028 − 1036 g, without

violating any existing constraints. The smallest mass in this range corresponds to the hori-

zon mass at ∼ 100 GeV, so this should be interpreted as an upper bound on the range of

viable production temperatures. A lower bound on Ti comes from the requirement that the

black holes discharge prior to BBN, Ti ≳ 10 MeV. Throughout this mass range, once the

black holes discharge, their Hawking radiation is negligible, so this population constitutes a

fraction of the dark matter today [621, 622].

In this region of parameter space, the correlation length of the present day magnetic field

falls in the range of ξ ∼ 10−6 − 10−1Mpc. Across this range of values, the magnetic fields

are predicted to have survived the effects of magnetic dissipation and diffusion [598, 623,

624, 599]. More explicitly, in order to avoid early magnetic dissipation the present day field

should satisfy [625]

ξ0 ≳ 10−7Mpc

( ⟨B0⟩
10−15G

)
. (5.103)

This condition is easily fulfilled for the relevant parameter space in Fig. 5.12. Thus, in this

regime we are justified in considering only Hubble expansion in translating the early universe

field to its present day value.

Though too heavy and subdominant to be of interest as dark matter candidates, and so

not included in figure, there is additional viable parameter space at small ΩBH/ΩDM ≲ 10−5

and to the right of the accretion bound, which truncates at M ∼ 5× 1037 g (see e.g. [620]).

The existence of this additional parameter space is important nevertheless in light of updated

lower bounds on the intergalactic magnetic field (IGMF) strength based on observations of
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electromagnetic cascades from blazars. The non-detection of GeV-scale gamma-ray emission

from electromagnetic cascades initiated from extragalatic TeV sources can be used to place

lower bounds on the IGMF, as first argued by [626], who claimed a lower bound of B ≥

3× 10−16G. This bound has since been improved upon by analysis of VERITAS [627] and

Fermi/LAT [628] data. Most recently, incorporating data from MAGIC [629] has improved

the bound to B ≳ 10−14G. This is much more robust than previous estimates as it does

away with the uncertainty in variability of the TeV band source flux. However, it still suffers

from some uncertainty in the fraction of power carried away by plasma instabilities which

develop from interactions between the generated particle stream and mimic the effect of the

IGMF in reducing the expected cascade flux.

5.3.5 Charged Black Holes and Chemical Potentials

Thus far, we have remained agnostic regarding the origin of the Kerr-Newman black holes.

We present here one concrete model capable of endowing an existing population of primordial

black holes with electric charge. Of course it’s very difficult to create black holes with

geometrically significant charge in the early universe. In a cosmological setting, any net

charge would be quickly neutralized by the surrounding plasma, which must22 have an

opposite compensating charge to maintain the charge neutrality of the universe. Even if one

were to consider a charged black hole in vacuum, its charge is expelled exponentially quickly

through Hawking radiation or Schwinger pair production [630]. A population of charged

black holes thus requires the introduction of new physics.

The Hawking radiation of electrically neutral black holes is symmetric with respect to

the production of particles and anti-particles. By contrast, charged black holes preferentially

radiate particles with the same sign charge as the black hole. To understand why, consider the

22. Black holes may violate global symmetries, but not gauge symmetries, and so any charge taken up by
the black hole must be lost by the plasma.
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flux spectrum for a Kerr-Newman black hole, which follows the thermal distribution [621, 631]

dN ∼ dω

exp [(ω −mΩ− qΦ)/TBH]∓ 1
, (5.104)

where ω and m are the energy and angular momentum of an emitted particle, Ω and Φ are

the angular velocity and electrostatic potential of the black hole, and ∓ refers to bosons and

fermions, respectively. We can identify µq ≡ qΦ with a chemical potential, biasing23 the

emission of particles whose charge is aligned with the black hole.

This chemical potential is actually sourced by the electromagnetic potential Aµ of the

Kerr-Newman black hole itself. A particle of charge q at the horizon couples to Aµ as

L ⊃ −qAµJµEM. Since the time-like component couples to the charge density J0EM, we can

identify the combination −qA0|r+ with a chemical potential, µq

L ⊃ −qA0J
0
EM ≡ µqJ

0
EM . (5.105)

Using Eqs. (5.85) and (5.86), one can verify that this combination µq = −qA0|r+ is identical

to µq = qΦ, and so we see this is self-consistent.

Just as the intrinsic chemical potential of the Kerr-Newman black hole allows it to shed

its charge, one can imagine charging up a black hole (or maintaining a black hole in a charged

state) by means of an external chemical potential. If such a chemical potential is greater

than that of the black hole itself, then the black hole will build up charge until it reaches an

extremal state.

One possible mechanism for realizing such a chemical potential involves a new scalar field

23. From this expression, we also see that mΩ acts in a similar manner, leading the black hole to prefer-
entially expel particles whose angular momentum is aligned with the black hole. Thus, the black hole will
shed both quantities as it evaporates, evolving towards a neutral, non-rotating state.
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ϕ derivatively coupled to the electromagnetic current via:

L ⊃ 1

Λ
∂µϕJ

µ
EM . (5.106)

Such an operator generically arises in the effective Lagrangian description as the most rele-

vant coupling to the Standard Model if ϕ has an approximate shift symmetry. In this case

Λ would be interpreted as the symmetry breaking scale. If ϕ is initially displaced from the

origin and begins rolling in the early universe, its time derivative will source an effective

chemical potential for charged particles, µϕ ≡ ϕ̇, leading the black hole to preferentially

absorb particles with charge of a particular sign. Magnetic field generation will occur during

the period in which the external chemical potential is active because the scalar field is rolling.

Once ϕ stops rolling at temperature Ti, the chemical potential will vanish and the black hole

will quickly expel its charge, thereby returning to a neutral state.

5.3.6 Summary

In this section, we have studied the possibility that cosmological magnetic fields may have

been generated in the early universe by a population of primordial Kerr-Newman black holes.

We find that black holes near extremality (α⋆Q⋆ ∼ 0.5) in the mass range of M ∼ 1028 −

1036 g would have been capable of producing present day magnetic fields that are as large

as B ∼ 10−15G. Black holes at larger masses M ≳ 1038 g and smaller fractional abundance

could have produced even larger fields B ≳ 10−14G. The corresponding correlation lengths

are sufficiently large that these fields would have survived the effects of early magnetic

dissipation and diffusion. Thus these fields could have seeded larger galactic and intergalactic

fields through the dynamo mechanism.

In order to generate a magnetic field, the black holes in this scenario must be both spin-

ning and electrically charged. Throughout most of our analysis, we have remained agnostic
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as to the origin of these Kerr-Newman black holes. While it is straightforward to create

spinning black holes through the mergers of an initial population of Schwarzschild black

holes [632], it is more challenging to explain how these black holes acquire an appreciable

net electric charge in the early universe. One possibility involves a rolling scalar field which

dynamically generates a chemical potential for charged particle species, thereby biasing the

charge distribution of Hawking radiation and the net flow of charge into the black holes. We

leave the model building that concretely realizes such a scenario for future work.

Our analysis has also largely omitted the complicated magnetohydrodynamics (MHD)

processes that govern the evolution of magnetic fields in a hot thermal plasma. While a

proper treatment depends on the spectral shape and is beyond the scope of this letter, we

note that large scale MHD decay will generically serve to increase the correlation length

and power on large scales [633]. This occurs because power on small scales dissipates more

efficiently and because there exists a weak inverse cascade which shifts energy away from

the dissipation scale, even in the case of non-helical freely decaying MHD turbulence [634].

Consequently, our estimates for the correlation length, which took into account only the

passive expansion of the universe, are conservative, and we can all the more safely neglect

the effects of diffusion and dissipation. Note though that there may still be phenomena such

as turbulence which could serve to tangle magnetic field lines and excite dissipative modes.

Turbulent decay will generically serve to reduce the total magnetic energy density [635],

such that the figures for the field strength in the previous section should be seen as an upper

estimate.

Another feature omitted from our treatment is the helicity of the magnetic field, H =∫
d3x A⃗ · B⃗. Magnetic helicity is conserved during evolution and can result in interesting

effects. One can see from the form of the vector potential in Eq. (5.86) and magnetic

field in Eq. (5.87) that there is no intrinsic magnetic helicity associated with the Kerr-

Newman solution. If the initial velocity field has a non-vanishing kinetic helicity, however,
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it is possible for the magnetic field on large scales to develop a corresponding helicity, with

an opposite helicity developing on small scales by conservation of helicity [636]. A more

thorough investigation of these effects, including numerical simulations, is left to future

investigation.

Finally, we note that this scenario predicts a nontrivial relationship between the primor-

dial magnetic field parameters and the merger rate for the progenitor black hole population.

This suggests that the primary observable signature of the model would be a correlation

between the parameters of the cosmological magnetic field and the stochastic gravitational

wave background coming from the merger of primordial black hole binaries. Presuming a

monochromatic mass function, the present day merger rate of binaries which formed in the

early universe can be roughly estimated as [637]

R3(t0) ∼ 80

(
ΩBH

10−3

)53/37(MBH

1034 g

)−32/37

Gpc−3yr−1 , (5.107)

where we have conservatively set the local density contrast at decoupling δdc, which quantifies

the effect of clustering, to ∼ 1. This can then be compared with the rate indicated by LIGO

observations, 12 − 213Gpc−3yr−1 [638]. A more thorough analysis depends sensitively on

the clustering dynamics and is left to future investigation.
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CHAPTER 6

CONCLUSIONS

The Standard Model and the ΛCDM cosmological paradigm are both tremendously successful

theories, and their combined power has allowed us to understand much of the current state

of our universe and how is came to be. However, as discussed in Sec. 2.3, there are a number

of open questions left unaddressed by either. This thesis has presented several examples of

model building efforts towards a more complete theory of particle cosmology.

We began in Chapter 2 by reviewing the current state of the Standard Model of particle

physics and the ΛCDM cosmological model, including both their successes and their failings.

We then turned to the early universe, about which much remains to be understood. In

Chapter 3, we saw that primordial black holes and gravitational waves show exceptional

promise as probes of the early universe. In particular, we saw how constraints on primordial

black hole abundances could inform us about the shape of the small scale primordial power

spectrum and thereby inflation. We also saw how gravitational waves from evaporating

primordial black holes allows us to put constraints on non-standard expansion histories and

extra-dimensional scenarios.

In Chapter 4, we studied another source of gravitational waves in the early universe —

strongly first-order cosmological phase transitions. After reviewing the thermodynamic and

hydrodynamic descriptions of these transitions and the ingredients that go into computing

the gravitational wave signal, we turned to one of the major sources of uncertainties in

calculations of first-order phase transitions — thermal resummation of the effective potential.

We compared the efficiency and accuracy of different resummation prescriptions, in addition

to commenting on the errors incurred by certain approximations in the literature. We then

turned to study 2 Higgs doublet models, which are well-motivated extensions of the Standard

Model in principle capable of making the electroweak phase transition strongly first-order.

Finally, Chapter 5 was dedicated to progress towards resolving three persistent cosmolog-

346



ical puzzles. In the context of dark matter model building, we introduced a new scheme of

asymmetric reheating capable of reconciling dark sectors with light degrees of freedom and

exact symmetries with precision constraints on cosmological observables. Next, we exam-

ined the questions raised by recent observations of supermassive black holes at high redshifts,

and posited that the timing problem could be mollified with supermassive black holes of a

primordial origin. Finally, we suggested a novel mechanism for producing the tiny primor-

dial magnetic fields required to seed the galactic fields observed today, another longstanding

mystery.

Of course, the model building efforts that have been presented here are ultimately just

small steps towards solutions for a tiny subset of problems. The bulk of the work lies before

us. Thankfully, we have much experimental data on the horizon to guide us. Now, at

the onset of the age of multi-messenger cosmology and gravitational wave astronomy, it is

perhaps the most exciting time to be a particle cosmologist. With the influx of coming data,

we are now in a better position than ever before to unravel the mysteries of the early universe

and their echoes today. And hopefully, we will prompt a few new questions as well.
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