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Abstract

This dissertation comprises four essays in financial economics. In the first essay, we conduct

inference on volatility with noisy high-frequency data. The second essay proposes a semi-

parametric approach to disentangling the autocovariance of equity returns at high frequency.

In the third essay, we consider the limit of arbitrage arising from learning difficulty when in-

vestors are facing a large number of investment opportunities. Finally, we investigate market

efficiency in the presence of many investors.
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Chapter 1

Introduction

Interplay of economic theory, rich data, and creative methodology can bring new insights

about the economy. This dissertation applies this idea to conduct investigation of different

aspects of the financial market.

The availability of intraday transaction-level price data provides chances to understand

asset volatility and microstructure noise with much more precision. In Chapter 2 and Chap-

ter 3, we push forward new methodologies along this direction. In Chapter 2, we conduct

inference on volatility using transaction-level data. We assume the observed transaction

price follows a continuous-time Itô-semimartingale, contaminated by a discrete-time moving-

average noise process associated with the arrival of trades. We estimate volatility, defined as

the quadratic variation of the semimartingale, by maximizing the likelihood of a misspecified

moving-average model, with its order selected based on an information criterion. Our infer-

ence is uniformly valid over a large class of noise processes whose magnitude and dependence

structure vary with sample size. We show that the convergence rate of our estimator dom-

inates n1/4 as noise vanishes, and is determined by the selected order of noise dependence

when noise is sufficiently small. Our implementation guarantees positive estimates in finite

samples. In Chapter 3, we further demonstrate the same modeling techniques also deepens

our understanding of microstructure noise. We establish the model-selection consistency,

provide a central limit theory on autocovariance parameters, and show their consistency
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uniformly over a large class of models that allow for an arbitrary noise magnitude and a

flexible dependence structure. We also provide a quadratic representation of the likelihood

estimator, which sheds light on its connection with nonparametric kernel estimators. Our

simulation evidence suggests that our estimator outperforms the nonparametric alternatives

particularly when noise magnitude is small. We apply this estimator to S&P 1500 index

constituents, and find that in recent years the microstructure friction has become smaller

but existed in 5-minute returns, particularly in small caps, and that the average duration of

autocorrelations for large caps has shrunk considerably to merely 10 seconds.

Richer data allows us to better learn the structure of the market, but limit of our statisti-

cal learning occurs as often. In Chapter 4, we investigate how statistical learning difficulties

can affect investor decisions. When alphas are weak and rare, arbitrageurs learning from

historical data encounter a notable gap between the achievable Sharpe ratio and the in-

feasible maximum with perfect knowledge of return-generating processes. This reflects a

statistical arbitrage limit, expanding equilibrium bounds of alphas beyond what is suggested

by arbitrage pricing theory. We derive the optimal feasible Sharpe ratio, demonstrating its

variation with the strength and sparsity of alphas. Additionally, we design an “all-weather”

strategy that achieves it under any alpha condition. Our empirical investigation using ma-

chine learning on equity returns highlights the practical impact of this statistical limit to

arbitrage.

The previous chapters have largely focused on utilizing price data to study the financial

market. In Chapter 5, we extend our arsenal by incorporating investor holding data. Typ-

ically, modern financial markets contain many investors. In this context, we study the role

of information in investor decision-making, and the informational efficiency and liquidity of

the market. An equilibrium is characterized in closed-form for a continuous-time economy

with many market participants and imperfect competition, in which investors receive pri-

vate information with varying quality, and are heterogeneous in their misperception of the

2



information quality. In equilibrium, investor heterogeneity in their misperception generates

return predictability by investors’ trading, and trading of different investors follows a simple

factor structure with weak factors. To conduct empirical analysis that builds on these equi-

librium implications, we develop a new big-data econometric method that utilizes the factor

structure to accommodate the high-dimensionality of these implications. The framework can

be applied to price and institution holding data to estimate return predictability of individual

institution’s trades, dynamic price impact, misperception of institutions on their information

quality, and institutions’ contributions to the informational efficiency of the market.

3



Chapter 2

When Moving-Average Models Meet High-

Frequency Data: Uniform Inference on Volatility1

2.1 Introduction

In this paper, we develop a simple estimator of volatility using high-frequency data in the

presence of serially correlated, heteroscedastic, and endogenous microstructure noise. More

importantly, we propose uniformly valid inference over a large class of noise processes that

allows for simultaneously infinite-order autocorrelation and arbitrarily shrinking magnitude.

Hansen and Lunde (2006) provide empirical evidence that microstructure noise is quite

small in Dow Jones Industrial Average stocks. To improve efficiency, one can consider a test

of whether noise is present (or rely on an informal volatility signature plot), then decide

whether to use a noise-robust estimator or the more efficient realized volatility estimator

(Andersen, Bollerslev, Diebold, and Labys (2003)), which assumes noise is absent. Standard

(pointwise) inference for this pre-testing approach, however, yields a misleading picture of

the actual finite-sample behavior. Moreover, assuming the noise exists, a follow-up issue

is to determine its dependence structure. An estimator robust to noise with long-range

temporal dependence could be inefficient if the actual noise is simply i.i.d.. To strike a

1. This Chapter is a joint work with Dacheng Xiu.
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more desirable trade-off between efficiency and robustness, one can consider modeling the

noise as a moving-average process and adopting information criteria to determine its order

of dependence. Nevertheless, model-selection mistakes are inevitable in finite samples, so

that pointwise inference is again unreliable. The lack of uniformity for pre-testing or post-

selection estimators has been widely noted in the classic time-series setting by Shibata (1986);

Pötscher (1991); Kabaila (1995); and Leeb and Pötscher (2005).

To remedy this issue, we develop uniformly valid inference in the spirit of Mikusheva

(2012); Andrews and Cheng (2012); Andrews, Cheng, and Guggenberger (2020); and Belloni,

Chernozhukov, and Hansen (2014) in different contexts, on volatility over a large class of

MA(∞) models that allow for an asymptotically vanishing noise with a flexible dependence

structure. Our inference is thereby more reliable than that of the realized volatility , which

simply ignores the impact of small noise when it is difficult to detect. Our inference also

allows for model-selection mistakes, which surely occur in the case of an MA(∞) data-

generating process, and is therefore robust to the dependence structure of noise.

The crux of our uniformity results is that the convergence rate of our estimator depends

on various sequences of noise DGPs. Similar to our estimator but in the case of white noise,

Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008) show that as the variance of the

noise vanishes, the convergence rate of the realized kernel estimator improves from n1/4 to

n1/2 with the optimal choice of bandwidth. Their inference, however, is not uniformly valid

because a gap remains between the small-noise regime they consider and the no-noise regime.

More specifically, they require the noise variance to be greater than n−1. This seemingly

small gap is not innocuous, because in a finite sample, the noise magnitude may fall into

this gap, resulting in a distortion in the prescribed asymptotic distribution. In contrast,

Jacod and Protter (2011) (Theorem 16.5.7) study the pre-averaging estimator as the noise

variance vanishes at the rate of n−η for η ≥ 0. They do not, however, provide a uniformly

valid inference procedure; Also, their inference requires knowledge of η, and the convergence

5



rate of their estimator cannot exceed n1/3.2

In the case of serially correlated noise, the unknown dependence structure may further

plague the efficiency. The pre-averaging estimator by Jacod, Li, and Zheng (2019) and

the flat-top realized kernel estimator by Varneskov (2016) converge at the rate of n1/4.

They do not consider alternative sequences of noise DGPs (particularly those in which noise

magnitude and dependence structure interact) that may influence the convergence rate and

validity of their inference. We investigate various noise DGPs with simultaneous infinite-

order autocorrelation and arbitrarily shrinking magnitude. We show that the convergence

rate of our estimator dominates n1/4 as noise vanishes, and is determined by the order of

noise dependence when noise is sufficiently small. While it is appealing to consider data-

driven order selection, such as information criteria, for efficiency gains, in light of the critique

by Leeb and Pötscher (2005), we adopt a slightly more conservative order selection procedure

than the Akaike information criterion (AIC). As such, our inference remains uniformly valid

with a slight efficiency loss only in the small-noise regime.

The literature on the estimation of quadratic variation using noisy high-frequency data is

enormous. Earlier works mainly tackle a white microstructure noise.3 In this paper, we target

serially correlated noise using a likelihood-based approach. Hansen, Large, and Lunde (2008)

first shed light on the asymptotic equivalence between the maximum likelihood estimator and

MA filters. They implement the MA(q) estimator and demonstrate its desirable performance

in extensive simulations with various noise models. Related work that discusses serially

2. Jacod and Protter (2011) impose an “essentially white” noise assumption, which requires that condi-
tionally on the latent process, the noise is centered and independent, although not necessarily identically
distributed. For the sake of presentation, we do not distinguish this type of noise from white noise, since it
is also serially uncorrelated, unlike the “colored” noise setting we consider.

3. Prominent estimators include, but are not limited to, two-scale or multi-scale estimators by Zhang,
Mykland, and Aït-Sahalia (2005) and Zhang (2006); the realized kernel estimator and its extensions by
Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008) and Barndorff-Nielsen, Hansen, Lunde, and Shep-
hard (2011); the pre-averaging estimator by Jacod, Li, Mykland, Podolskij, and Vetter (2009) and Jacod,
Podolskij, and Vetter (2010); the local method of moments estimator by Reiß (2011); and likelihood-based
estimators by Aït-Sahalia, Mykland, and Zhang (2005) and Xiu (2010).

6



dependent noise also include Kalnina and Linton (2008); Bandi and Russell (2008); Aït-

Sahalia, Mykland, and Zhang (2011); Hautsch and Podolskij (2013); Bibinger, Hautsch,

Malec, and Reiß (2019); and Li, Laeven, and Vellekoop (2020). Their assumptions on noise,

however, are more restrictive than in our setting.

Our paper is organized as follows. Section 2.2 sets up the model, Section 2.3 presents

the main results, Section 2.4 provides simulation evidence, and Section 2.5 concludes. The

appendix contains the proof of the main theorem, and the online supplemental appendix

provides the proofs of the corollary, proposition, and technical lemmas.

2.2 Model Setup

We start with notation. For any matrix A, A⊺ denotes its transpose. We denote by δi,j the

Kronecker delta. The imaginary unit and the indicator function are written as i and 1{·},

respectively. All vectors are column vectors. We write (a, b, c) in place of (a⊺, b⊺, c⊺)⊺ for

simplicity. d-dimensional vectors of 0s and 1s are written as 0d and 1d. We use ∥·∥ to denote

the L2 norm. We use B to denote the backward (lag) operator associated with discrete-time

time series. We use K as a generic positive constant that may vary from line to line but

not depend on n. All limits are taken as n → ∞. We use L−→ to denote convergence in

law. We write an ≲ bn if an ≤ Kbn for all n. We write an ∼ bn if an ≲ bn ≲ an. We use

a ∨ b and a ∧ b to denote max{a, b} and min{a, b}, respectively. We use a superscript (n)

to facilitate discussion of uniformity over different sequences of data-generating processes

(DGPs) indexed by n.

At each stage n ≥ 1, transaction prices X̃ are observed at time points 0 = t0 < t1 <

. . . < tnT ≤ T , where T is fixed. Throughout, we assume nT , the number of observations

within [0, T ], is an observed random variable, whereas n is a non-observable mathematical

abstraction. We let ∆n = T/nT . We assume X̃ti comprises two components:

X̃ti = Xti + Ui, 0 ≤ i ≤ nT ,

7



where Xti is (the logarithm of) the efficient equilibrium price and Ui is the microstructure

noise associated with the ith observation.

Specifically, with respect to the efficient price, we assume the following:

Assumption 1. The logarithm of the efficient price process Xt is an Itô-semimartingale

defined on some filtered probability space (Ω,F , (Ft),P) and satisfies

Xt = X0 +

∫ t

0
µsds+

∫ t

0
σsdWs + (δ1{|δ|≤1}) ⋆ (µ− ν)t + (δ1{|δ|>1}) ⋆ µt,

where µt and σt are adapted and locally bounded, W is a standard Brownian motion, and µ is

a Poisson random measure on R+×E, where E is a Polish space. The compensator ν satisfies

ν(dt, du) = dt⊗ λ(du) for some σ-finite measure λ on E. Moreover, |δ(ω, t, u)| ∧ 1 ≤ Γm(u)

for all (ω, t, u) with t ≤ τm(ω), where {τm} is a localizing sequence of stopping times and

{Γm} a sequence of deterministic functions satisfying
∫
Γrm(u)λ(du) <∞ for some r ∈ [0, 1).

In addition, the process Zt = (µt, σ
2
t ) is also an Itô-semimartingale on the space

(Ω,F , (Ft),P) with the form

Zt = Z0 +

∫ t

0
µ̃sds+

∫ t

0
σ̃sdW̃s + (δ̃1{|δ̃|≤1}) ⋆ (µ− ν)t + (δ̃1{|δ̃|>1}) ⋆ µt, (2.2.1)

where µ̃t and σ̃t are locally bounded adapted processes, W̃ is a multivariate Brownian motion,

potentially correlated with W , and δ̃ is a predictable function such that for some deterministic

function Γ̃m(u), ∥δ̃(ω, t, u)∥∧ 1 ≤ Γ̃m(u) for all ω ∈ Ω, t ≤ τm(ω), and
∫
Γ̃2m(u)λ(du) <∞.

Assumption 6 allows for the leverage effect and jumps in both the efficient price and its

volatility. It accommodates most models in asset pricing and is commonly used to derive

in-fill asymptotic results for high-frequency data—for example, Jacod and Protter (2011)

and Aït-Sahalia and Jacod (2014), with notable exclusions of long-memory volatility models

driven by fractional Brownian motions (Comte and Renault (1996, 1998)).

The parameter of interest is the quadratic variation ofX (scaled by T−1), which comprises
8



both continuous and discontinuous components:

CT =
1

T

∫ T

0
σ2t dt+

1

T

∑
0≤t≤T

(∆Xt)
2,

where ∆Xt = Xt −Xt−. Although estimating the integrated volatility or the jump compo-

nent of the quadratic variation is of tremendous interest, we do not pursue this agenda in

this paper, in which we aim for a practical volatility estimate that depends on as few tuning

parameters as possible.4

Next, we make an assumption on the arrival of trades:

Assumption 2. For each n ≥ 1, the sequence of observation times {ti : i ≥ 0} satisfies

t0 = 0 and ti = ti−1 +
T
n ξti−1χi, where the sequence {χi : i ≥ 1} is i.i.d., (0,∞)-valued,

defined on (Ω,F ,P), and independent of the σ-field F∞ =
∨

t>0Ft, with mj = E((χi)j) <∞

and m1 = 1, for all j > 0. In addition, the process ξ = (ξt)t≥0 is a nonnegative Itô-

semimartingale defined on (Ω,F , (Ft),P) in the form of (3.2.2), such that neither ξt nor ξt−

vanishes.

Assumption 7 allows the arrival rate of transactions to depend on their prices through ξt.

It also accommodates regular sampling, time-changed regular sampling, Poisson sampling,

modulated Poisson sampling, and predictably modulated random-walk sampling schemes, as

discussed in detail by Jacod, Li, and Zheng (2017).5 We introduce here and below several

stochastic processes, e.g., ξt and ηt, for which their driving Brownian motions (implicitly

4. To achieve robustness to serially correlated noise, prominent nonparametric estimators require three
tuning parameters (see two such estimators in our simulation study). Exploring the finer structure of the
quadratic variations would require at least one more—rendering these measures impractical to estimate, in
particular for illiquid stocks.

5. Our sampling scheme imposes that conditional on Fti−1
, ti is independent of Xt for t ≥ ti−1, which

we need to derive a desirable central limit theory. This assumption conforms with Assumption O(ii) of
Jacod, Li, and Zheng (2017), but is more restrictive than those adopted by Li, Mykland, Renault, Zhang,
and Zheng (2014) and Fukasawa (2010), both of which find an asymptotic bias in the CLT of the realized
volatility estimator associated with their general sampling scheme (in the absence of microstructure noise).
On a related note, Renault and Werker (2011) find that the instantaneous causality relations between price
volatility and durations of trades could lead to severely biased volatility estimates.
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defined) are different from W in Assumption 6, but possibly correlated. Note that finding a

single Poisson measure that drives the jumps of all processes involved is always possible.

Finally, we assume the noise is endogenous, heteroscedastic, and serially correlated.

Assumption 3. For each n ≥ 1, the noise sequence {Ui : i ≥ 0} consists of random variables

defined on the probability space (Ω,F ,P), which have the following MA(∞) representation:

Ui = ηtiι
(n)θ(n)(B)εi, with θ(n)(x) = 1 +

∞∑
j=1

θ
(n)
j xj ,

where εi
i.i.d.∼ (0, 1), defined on (Ω,F ,P), is independent of F∞ and {χi : i ≥ 1}, and

has finite moments of all orders; (ηt)t≥0 is an (Ft)-adapted nonnegative Itô-semimartingale

that satisfies the same form of (3.2.2); and ι(n) is a deterministic nonnegative number that

characterizes the noise magnitude and satisfies ι(n) ≤ K.6

Assumption 8 accommodates several empirical features of the microstructure noise. The

noise process depends on price X through η, since ηt is Ft-adapted, which may be driven

by a Brownian motion and a Poisson random measure that are correlated with X. Such

dependence is potentially driven by comovement between the price and bid-ask spread or

the discreteness of the observed price.7 That said, this assumption implies zero correlation

between any function of the path of X and Ui for each i—the key identifying assumption

that separates efficient returns from noise. A fully specified structural microstructure model

would be necessary, along with additional observables (e.g., bid-ask prices), if some non-

vanishing correlation between X and U were allowed for. In this paper, we avoid imposing

6. The probability space (Ω,F , (Ft),P) can be constructed more explicitly. Specifically, we define X, Z,
ξ, and η (which satisfy the relevant assumptions) on a space (Ω(0),F∞, (Ft),P(0)), and define {χi} and {εi}
on a different space (Ω(1),F(1),P(1)). We then set Ω = Ω(0) × Ω(1), F = F∞ ⊗ F(1), and P(dω(0), dω(1)) =
P(0)(dω(0))P(1)(dω(1)).

7. No one has yet built a perfect model that is meant to be a full describer of reality. Like Jacod, Li,
and Zheng (2017) and Jacod, Li, and Zheng (2019), the type of rounding errors our setting allows for is still
somewhat restrictive. In the simulation analysis, we investigate a particular form of rounding that appears
more realistic but violates Assumption 8, and we show that the rounding effect is negligible.

10



additional structural assumptions, and instead focus on the reduced-form model of X̃, while

being agnostic about the economic implications of reduced-form parameters; e.g., θ and ι2.

Many structural models yield specific reduced-form ARMA models of returns; for example,

Hasbrouck (2007), with differences only in how the reduced-form parameters relate to struc-

tural parameters. Estimating and interpreting structural parameters in a microstructure

model is interesting, but we leave this for future work.

The noise process features flexible serial correlations through its θ(n)(B)ε component,

as specified by an MA(∞) model. The next assumption spells out restrictions on its spec-

tral density function, g(λ; θ(n)) = |θ(n)(eiλ)|2, such that the sequence of MA processes is

uniformly invertible and their long-range serial dependence cannot be arbitrarily strong.

Assumption 4. For each n ≥ 1, the spectral density function of θ(n)(B)ε satisfies, for some

fixed α > 3,

inf
λ
g(λ; θ(n)) ≥ 1

K
and

∣∣∣ ∫ π

−π
g(λ; θ(n))eiλjdλ

∣∣∣ ≤ Kj−α, ∀j ≥ 0.

We next introduce our likelihood-based estimator.

2.3 Main Results

2.3.1 Likelihood-based Estimation

In contrast to existing nonparametric estimators, we construct a quasi-maximum likelihood

estimator (QMLE) in the spirit of White (1982) by imposing a misspecified parametric model,

for which the likelihood function is available:

dXt = σdWt; Ui = ιθ(B)εi, with θ(x) = 1 +

q∑
j=1

θjx
j , and εi ∼ N (0, 1).

In other words, we pretend the efficient price (in logarithm) is a Brownian motion with

constant volatility but no drift, and that the noise follows a Gaussian MA(q) model with
11



the order q to be determined. Under this model, the observed log-return vector Yn =

(Yn,1, Yn,2, . . . , Yn,nT )
⊺, which is defined as

Yn,i = Xti −Xti−1 + Ui − Ui−1, 1 ≤ i ≤ nT , (2.3.2)

follows a reduced-form Gaussian MA(q + 1) model. Its nT × nT covariance matrix Σn is

given by

Σn(σ
2, ι2, θ) = σ2∆nIn +

nT−1∑
h=0

(2γh − γh+1 − γh−1)Gh
n,

where (In)ij = δi,j , (Gh
n)ij = δh,|i−j|, and γh is the h-th order autocovariance of U :

γh =
ι2

2π

∫ π

−π
g(λ; θ)eiλhdλ, where g(λ; θ) =

∣∣θ(eiλ)∣∣2.
Because θ is a nuisance parameter for volatility estimation and is unidentified if ι = 0,

we reparameterize the likelihood function in terms of strongly identified parameters (σ2, γ):

Ln(σ
2, γ) = −1

2
log det(Σn(σ

2, γ))− 1

2
tr(Σn(σ

2, γ)−1YnY
⊺
n ),

where Σn(σ
2, γ) := Σn(σ

2, ι2, θ) and γ is the (q+1)-dimensional vector of noise autocovari-

ances.8 We define (σ̂2n(q), γ̂n(q)) as the maximizer of Ln(σ2, γ):

(σ̂2n(q), γ̂n(q)) = arg max
(σ2,γ)∈Πn(q)

Ln(σ
2, γ).

The parameter space of (σ2, γ), denoted by Πn(q), can be derived from the usual condition

that (σ2, ι2, θ) satisfy, i.e., infλ f(λ; γ) ≥ 0, where f(λ; γ) = ι2g(λ; θ). However, it is not

ideal for reasons we now explain.

8. Note that γ = (γ0, γ1, . . . , γq), which is different from how vectors are typically indexed. For conve-
nience, we often treat γ as an infinite dimensional vector, with 0s filled beyond the (q+1)th entry of γ when
no ambiguity exists.
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Aït-Sahalia and Xiu (2019) show that in the white-noise case, if the noise magnitude is

small, the noise variance estimator ι̂2n hits the boundary zero, so that the asymptotic distri-

bution of the volatility estimator, σ̂2n, becomes nonstandard. A similar yet more severe issue

occurs here: The estimate γ̂ hits the boundary infλ f(λ; γ̂) = 0 with nontrivial probability.

An easy solution in the white-noise case is to enlarge the parameter space of the nuisance

parameter, allowing for negative values of ι̂2n, so that the asymptotic distribution of σ̂2n is

not affected by confinement of the parameter space for ι2. We adopt a similar strategy to

enlarge the parameter space of (σ2, γ) to {(σ2, γ) ∈ Rq+2 : infλ f(λ;σ
2, γ,∆n) ≥ 0}, where

f(λ;σ2, γ,∆n) = σ2∆n+|1−eiλ|2f(λ; γ) is the spectral density of Yn under the quasi model.

In other words, the parameter space is enlarged such that only a reduced-form MA(q + 1)

model of observed returns is required to be well defined (see Section 3.3.2), and that a well-

defined decomposition of observed returns, as in (3.3.6), may not exist. On the other hand,

the parameter space must be sufficiently “local” to the true value to avoid spurious estimates

due to potential use of an overly flexible quasi-model (e.g., q is too large). For this purpose,

we define a set Πn(q) that imposes constraints on the lower bound of the spectral density

function and the decay of autocovariances:9

{
(σ2, γ) ∈ Rq+2 : inf

λ
f(λ;σ2, γ,∆n) ≥

∆n

K
, σ2 + |γ0|+

∑∞
j=1 j

2|γj |
infλ|σ2∆n + f(λ; γ)|

≤ K
}
.

(2.3.3)

This parameter space depends on the order of the MA model, q, which we next discuss how

to select.

2.3.2 Model Selection

To determine an appropriate order q, we use AIC, which in our setting can be written as

AICn(q) = 2q − 2 max
(σ2,γ)∈Πn(q)

Ln(σ
2, γ).

9. The constraint (3.3.11) is essential for proofs. We do not find it critical to impose in our implementation.
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Our choice of order q will be based on (but not necessarily identical to)

q̂n,AIC = arg min
q≤n

1/3
T

AICn(q). (2.3.4)

More generally, in Theorem 1 below, we spell out the conditions a desirable order q̂n must

satisfy in order to accommodate uniformly valid inference on volatility for a large class of

DGPs.

Similar to the case of AR(∞) in Shibata (1980), the upper bound on q precludes MA

models with too many parameters from estimation. Asymptotically, this upper bound is not

binding, because for all sequences of noise DGPs we consider, q̂n,AIC = oP(n
1/6)—a claim

we prove in the online supplemental appendix.

In a companion paper, Da and Xiu (2021a) prove model selection consistency (based on

BIC) and provide pointwise asymptotic inference on noise autocovariance parameters when

the noise follows an MA(q⋆) model with a finite q⋆. The pointwise asymptotic theory relies

on this fixed DGP, as well as this unrealistic result of perfect model selection; hence, it

provides a misleading picture of the actual finite-sample behavior of the inference. As shown

in the classic time-series setting of Leeb and Pötscher (2005), conducting uniformly valid

post-selection inference on parameters over a nontrivially large class of DGPs is generally

impossible. For volatility estimation in our setting, however, uniformly valid inference is

possible for a wide class of DGPs, which we turn to next.

2.3.3 Uniform Inference on Volatility

Obviously, the class of DGPs cannot be arbitrarily large, so we need restrictions on how the

magnitude of the noise and its autocorrelation structure vary with sample size. We denote by

κ(n) the ∞-dimensional vector of autocovariances of θ(n)(B)ε, whose components are given

14



by

κ
(n)
j =

1

2π

∫ π

−π
g(λ; θ(n))eiλjdλ, j ≥ 0.

The class of noise models we consider satisfies:

Assumption 5. For any 0 < k < K and any sequence αn → ∞, we have

q⋆n(k) = o(n1/3(ι(n) ∨ n−1/2)4/9), ψ2n

∞∑
j=q⋆n(k)

|κ(n)j | = o

(
q⋆n(k)

1/2 + αn

n1/2
+

√
ι(n)

n1/4

)
,

where

q⋆n(k) := min q, subject to nψ4n

2q∑
j=q+1−αn

|κ̃(n)j |2 ≤ kq,

ψn := (1 + n−1/2/ι(n))−1, and κ̃(n)j :=
∑∞

i=0(i+ 1)ψin(2κ
(n)
j+1+i − κ

(n)
j+i+2 − κ

(n)
j+i).

Intuitively, q⋆n(k) mimics the “oracle” order that AIC selects. Assumption 10 effectively

requires that this order cannot be too large (the first equation above) and that the ap-

proximation error induced by selection (the left-hand side of the second equation above) is

asymptotically dominated by the estimation error (the right-hand side). Next, we provide

two examples to demonstrate that the conditions in Assumption 10 are not restrictive from

a practical point of view.

Example 1: Suppose n1/2ι(n) → ∞ and θ(n)(B)ε follows an MA(∞) model with

|κ(n)j | ∼ j−α for some α > 3 ∨ 2
1+2 log ι(n)/ log n

. It is easy to show that Assumption 10

holds, because

q⋆n(k) ∼ n1/(2α) and ψ2n

∞∑
j=q⋆n(k)

|κ(n)j | ∼ n−1/2+1/(2α) = o
(
n−1/4(ι(n))1/2

)
.

Jacod, Li, and Zheng (2017) assume |κ(n)j | ∼ j−α with α > 3 and a fixed ι(n). Our condition
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further sheds light on a trade-off between ι(n) and α: As ι(n) shrinks, |κ(n)j | must decay

faster.

Example 2: Suppose θ(n)(B)ε follows an arbitrary ARMA(p, q) process with finite p

and q. Assumption 10 holds because in this case, as long as ι(n) ≲ 1 (it can shrink arbitrarily

fast),

q⋆n(k) ≲ log n and ψ2n

∞∑
j=q⋆n(k)

|κ(n)j | ≲ n−1/2(1 + o(q⋆n(k)
1/2)

)
.

Now we are ready to present the main theoretical result, based on which we build uni-

formly valid inference on volatility:

Theorem 1. Suppose we select an order q̂n = q̂n,AIC∨αn with αn = O(log n). Then, for all

sequences of DGPs satisfying Assumptions 6 - 10, and as q̂n ∨ (n1/2ι(n)) → ∞, we have10

σ̂2(q̂n)− CT√
AVAR(q̂n, n)T

L
−−→ N (0, 1),

where AVAR(q, n)T is given by

AVAR(q, n)T =
1

n

[
(4q + 6)E(4, ξ)T +∆

−1/2
n ζ(n)

(
5E(4, ξ)TC

−1/2
T + C

3/2
T B(ξ)T

)]
,

(2.3.5)

(ζ(n))2 is the “long-run variance” of the general noise process, given by

(ζ(n))2 = (ι(n))2g(0, θ(n))

∫ T
0 η2sξ

−1
s ds∫ T

0 ξ−1
s ds

,

10. To ensure q̂n ∨ (n1/2ι(n)) → ∞ holds without worrying about n1/2ι(n) and q̂n,AIC, we can select αn

such that αn → ∞, say, αn ∼ log n as in our implementation, although the statement of Theorem 1 does
not require this.
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E(4, ξ)T is a general “quarticity” in the presence of random sampling and jumps, given by

E(4, ξ)T =
1

T

∫ T

0
ξsσ

4
sds+

1

T

∑
s≤T

(∆Xs)
2(ξsσ

2
s + ξs−σ2s−), (2.3.6)

and

B(ξ)T =
2
∫ T
0 η2sσ

2
sds+

∑
s≤T (∆Xs)

2(η2s + η2s−)

CT ×
∫ T
0 η2sξ

−1
s ds

+
T
∫ T
0 η4sξ

−1
s ds( ∫ T

0 η2sξ
−1
s ds

)2 . (2.3.7)

Combining with asymptotic variance estimators in Section 2.3.4, we immediately obtain:

Corollary 1. Suppose the same assumptions as those in Theorem 1 hold. Let c1−α =

F−1(1 − α/2), where F (·) is the standard Gaussian cumulative distribution function. We

have

lim
n→∞

P (CT ∈ CIn(α)) = 1− α,

where, using ζ̂
2
n =

∑q̂n
j=−q̂n

γ̂n(q̂n)|j|, the uniformly valid confidence interval CIn(α) is con-

structed asσ̂2n(q̂n)± c1−α

n
1/2
T

√√√√(4q̂n + 6) Ên(4)T +
ζ̂
2
n

∆
1/2
n

(
5Ên(4)T σ̂

2
n(q̂n)

−1/2 + σ̂2n(q̂n)
3/2B̂n(q̂n)T

) .
To shed light on the asymptotic behavior of our estimator, we examine two special DGP

sequences:

i. Under n1/2ι(n)/(4q̂n + 6) → ∞,

AVAR(q̂n, n)T = n−1/2T−1/2ζ(n)
(
5E(4, ξ)TC

−1/2
T + C

3/2
T B(ξ)T

)
+ oP(n

−1/2ι(n)).

(2.3.8)
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ii. Under n1/2ι(n)/(4q̂n + 6) → 0,11

AVAR(q̂n, n)T =
1

n
(4q̂n + 6)E(4, ξ)T + oP

( q̂n + 1

n

)
. (2.3.9)

Case i describes the behavior of our estimator in the presence of “large” noise. The con-

vergence rate is (ι(n))−1/2n1/4, which varies within [n1/4, n1/2q̂
−1/2
n ]. This result echoes

and extends that of Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008) for the realized

kernel estimator whose rate varies within [n1/4, n1/2] in the case of i.i.d. noise. As to the

colored noise, our rate dominates n1/4—the convergence rate of flat-top realized kernel and

pre-averaging estimators by Varneskov (2016) and Jacod, Li, and Zheng (2019).

In the case of small noise (Case ii), the convergence rate is prescribed by n1/2q̂
−1/2
n .

When noise is absent, Case ii also shows that the efficiency loss compared with the realized

volatility estimator is given by a factor 2q̂n + 3, because realized volatility has knowledge

of the absence of noise. Moreover, the bias of the realized volatility estimator is of order

(ι(n))2n, which may not vanish in Case ii, because noise is not entirely negligible in this

regime.

We now explain our choice of q̂n. Recall that the noise-dependence structure follows

MA(∞). Intuitively, a smaller choice of q̂n leads to a more efficient estimator at the risk of

a larger bias due to model misspecification (q̂n < ∞). In contrast to the somewhat ad hoc

tuning parameters other approaches rely on, our estimate q̂n,AIC is informative about the

minimal order using which the model misspecification bias is negligible. The importance of

this guidance on q is manifested in Case ii, in which the convergence rate clearly improves

as q̂n decreases.

Nonetheless, instead of fully relying on q̂n,AIC, Theorem 1 requires the use of a certain

q̂n = q̂n,AIC ∨ αn that also approaches ∞ slowly if n1/2ι(n) is bounded, even when the true

11. In this case, Theorem 1 requires that q̂n approaches ∞, so that 4q̂n + 6 and q̂n are in fact of the same
order. That said, we prefer this small-sample adjustment that can be established in the case of a finite q̂n.
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model may be of a finite order (and hence q̂n,AIC is small). Indeed, if the true model is

a finite-order MA(q), we can show that QMLE based on q̂n,AIC can achieve a convergence

rate as fast as n1/2 in Case ii. However, the asymptotic distribution is highly nonstandard,

because the model-selection bias is of an order comparable to the estimation error. For this

reason, we intentionally inflate the order of the employed model, requiring q̂n → ∞, so that

a standard asymptotic normal distribution is available in Case ii. αn is the single tuning

parameter required by our procedure. One possible choice of αn is log nT , which (potentially)

inflates q̂n,AIC by log nT . The choice of q̂n does not affect the asymptotic variance in Case

i, since (2.3.8) in fact does not rely on q̂n, but it may hurt the efficiency of our estimator in

Case ii. As a result, our rate in Case ii is strictly smaller than n1/2 under the conditions in

Theorem 1. This efficiency cost is in fact unavoidable for the sake of uniformity, because of

the following “impossibility” result in the spirit of Leeb and Pötscher (2008).

To demonstrate this result, we consider a simple setting in which the noise process has no

autocorrelation beyond the first lag (so that we use AIC to select q from {0, 1}), and the noise

magnitude (ι(n))2 is dominated by n−1 (so that the optimal rate of the volatility estimator is

n1/2). The next proposition shows that even with constant volatility, no uniformly consistent

estimator exists for the cumulative distribution function Gn(x), where

Gn(x) = P
(
n1/2(σ̂2n(q̂n,AIC ∧ 1)− CT ) ≤ x

)
.

Proposition 1. For each x ∈ R, there exists a DGP sequence satisfying Assumptions 6 -

10 with σ2t = CT for some CT fixed and all t ∈ [0, T ], n(ι(n))2 ≤ K, and a single parameter

θ(n), such that

lim inf
n→∞

inf
Ĝn(x)

P
(
|Ĝn(x)−Gn(x)| >

1

K

)
> 0,

where the infimum extends over all estimators Ĝn(x) of Gn(x).

On a different note, Theorem 1 establishes that our asymptotic distribution is condition-
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ally Gaussian, which is typically the case for estimating quadratic variation in the presence of

noise. Nonetheless, in the absence of noise, the limiting distribution for the realized volatility

estimator is a mixture of Gaussian random variables with square root of uniform random

variables around the jump times instead of Gaussian, unless the volatility and price processes

do not jump together; see e.g., Theorem 5.4.2 of Jacod and Protter (2011). Because of this,

their inference procedure is sufficiently complicated that simulations are entailed in order to

achieve a sharp confidence interval; see page 349 of Aït-Sahalia and Jacod (2014). When

n1/2ι(n) ≤ K, our asymptotic distribution would run into the same issue if q̂n is finite. In-

terestingly, while the requirement on q̂n → ∞ is motivated from uniformity considerations,

we show that this condition also leads to a conditional Gaussian limiting distribution, which

facilitates our inference procedure.

Another related point is that the asymptotic distribution of our volatility estimator does

not depend on the true distribution of ε. This is not surprising in the case of large noise;

see, e.g., Xiu (2010). However, when noise is small, it is possible that certain moments of ε

might affect the asymptotic variance of volatility as the convergence rate improves. In this

regime, the reason our volatility estimator has the same asymptotic variance regardless of

the true distribution of ε is again due to q̂n → ∞.

2.3.4 Asymptotic Variance Estimators

In this section, we develop pre-averaging-based estimators of asymptotic variances. We need

two sequences of integers kn and k′n, satisfying kn ∼ n2/3, k′n ∼ n7/8, and a nonzero real-

valued function g : R → R, supported on [0, 1], which is continuous and piecewise C1 with a

piecewise Lipschitz derivative g′ and g(0) = g(1) = 0. We also adopt a truncation strategy

(Mancini (2001)) to handle jump-related quantities, for which we define:

vn = α(kn∆n)
ϖ, for some α > 0, ϖ ∈ (0, 1/2) .
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We construct the estimator of E(4, ξ)T in (2.3.6) as Ên(4)T = Ĉn(4)T + D̂n(4)T using

the pre-averaging approach:

Ĉn(4)T =
1

Tk2n∆n

(∫ 1
0 g(s)

2ds
)2 nT−2kn∑

m=1

(Ȳ (g)nmȲ (g)nm+kn
)21{|Ȳ (g)nm|≤vn,|Ȳ (g)nm+kn

|≤vn},

D̂n(4)T =
1

Tkn
∫ 1
0 g(s)

2ds

nT−kn−k′n∑
m=k′n+1

(Ȳ (g)nm)21{|Ȳ (g)nm|>vn}

(
c̃(g)nm + c̃(g)nm−k′n

)
,

where pre-averaged returns and spot volatilities are given by, respectively,

Ȳ (g)ni =

kn−1∑
j=1

g

(
j

kn

)
Yn,i+j , c̃(g)ni =

1

k′nkn∆n
∫ 1
0 g(s)

2ds

k′n∑
m=1

(Ȳ (g)ni+m)21{|Ȳ (g)ni+m|≤vn}.

(2.3.10)

These estimators are the same as those constructed by Aït-Sahalia and Xiu (2016) for i.i.d.

noise. Despite their low convergence rate, these estimators are also consistent in this more

general setting, because of the choice of a large local window size kn which averages out the

impact of the dependent noise. Because of the jump truncation, Assumption 6 imposes that

r < 1, which is necessary for consistency.

Finally, we provide the estimator of B(ξ)T in (2.3.7) using B̂n(q̂n)T defined as

∣∣∣∣∣ 1

σ̂2n(q̂n)

(
1

γ̂n(q̂n)0 − γ̂n(q̂n)1

)
(B̂′

n(1) + B̂′
n(2)) +

(
1

γ̂n(q̂n)0 − γ̂n(q̂n)1

)2

B̂′
n(3)

∣∣∣∣∣ ∧ log nT ,
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where, with Ȳ (g)nm and c̃(g)nm defined in (2.3.10),

B̂′
n(1) =

1

nT

nT−kn−k′n∑
m=1

(Yn,m)2c̃(g)nm,

B̂′
n(2) =

1

2Tkn
∫ 1
0 g(s)

2ds

nT−k′n∑
m=1

((Yn,m)2 + (Yn,m+k′n
)2)(Ȳ (g)nm)21{|Ȳ (g)nm|>vn},

B̂′
n(3) =

1

4nT

nT−k′n∑
m=1

(Yn,m)2(Yn,m+k′n
)2.

2.3.5 Implementation

We discuss the implementation of QMLE in this section. Apparently, directly calculating

the inverse of Σn(σ
2, γ) would be computationally expensive when evaluating the likelihood

function at each stage of an optimization routine. To avoid this problem, the classic time-

series literature adopts an approximation approach of Whittle (1951). Unfortunately, we

can show the Whittle estimator is inconsistent in our in-fill asymptotic setting, even if the

noise is i.i.d. Gaussian and the efficient price is a Brownian motion with constant volatility

(hence, our QMLE is in fact the MLE).

We instead implement exact likelihood through the state-space representation of an MA

model. To avoid the issue of weakly identified parameters, our implementation leverages an

auxiliary reduced-form MA(q + 1) model of the observed noisy returns:

Yn,i = ϕ(B)ϵi, with ϕ(x) = 1 +

q+1∑
j=1

ϕjx
j , 1 ≤ i ≤ n, ϵ ∼ N (0, χ2). (2.3.11)

Algorithm 1. Our algorithm starts as follows:

1. Select the optimal order, q̂n,AIC, of the MA process (3.3.13) for Yn using AIC, defined

by (2.3.4) but rewritten in terms of χ2 and ϕ.

2. Obtain exact quasi-likelihood estimates of χ̂2 and ϕ̂j for 1 ≤ j ≤ q̂n+1, using the state-
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space representation of (3.3.13) and Kalman filtering (see, e.g., Gardner, Harvey, and

Phillips (1980)), where q̂n = q̂n,AIC ∨ log nT .12

3. Construct volatility and noise autocovariance estimators using the above estimates:

σ̂2n(q̂n) =∆−1
n χ̂2

1 +

q̂n+1∑
j=1

ϕ̂j

2

,

γ̂n(q̂n)j =
1

2π

∫ π

−π

χ̂2eijλ

|1− eiλ|2


∣∣∣∣∣∣1 +

q̂n+1∑
l=1

ϕ̂le
ilλ

∣∣∣∣∣∣
2

−

1 +

q̂n+1∑
l=1

ϕ̂l

2
 dλ, 0 ≤ j ≤ q̂n,

which are obtained by comparing different parameterizations of the return autocovari-

ances.

Algorithm 2 is sufficient for estimating volatility and noise autocovariance. If we are fur-

ther interested in (ι2, θ), a unique solution (̂ι2n(q), θ̂n(q)) exists with probability approaching

one when noise is sufficiently large relative to sample size.13 When noise is small, however,

these parameters are weakly identified, and there may not be any solution such that ι̂2n(q)

is positive and θ̂n(q) is real.

2.4 Monte Carlo Simulations

In this section, we examine the finite-sample performance of our volatility estimator and

compare it with alternative nonparametric estimators in the literature. Throughout, we fix

T = 1 day and the average sampling frequency every 5 seconds. We conduct 1, 000 Monte

Carlo trials in total.

12. Packages of standard programming software (e.g., R and Matlab) are available that implement a
likelihood estimator for MA models, despite the fact that some packages rely on Whittle approximations.

13. Da and Xiu (2021a) suggest a Newton-Raphson algorithm based on Wilson (1969) to solve for q̂n + 1
model parameters (ι2, θ) of the MA(q̂n) noise process from up-to-q̂nth-order autocovariances γ̂n(q̂n)j , 0 ≤
j ≤ q̂n.
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We simulate Xt and σ2t according to the same log-volatility model as in Li and Xiu (2016):

 dXt = (0.05 + 0.5σ2t )dt+ σtdWt + JXdNt,

σ2t = Dt exp (−2.8 + 6Ft) , dFt = −4Ftdt+ 0.8dW̃t + JF dNt − 0.02λNdt,

where E[dWtdW̃t] = −0.8dt, JX ∼ N (0, 0.022), JF ∼ N (0.02, 0.022), Nt is a Poisson process

with intensity λN = 25, and Dt captures the diurnal effect:

Dt = 0.75 exp(−10t/T ) + 0.25 exp(−10(1− t/T )) + 0.8.

The arrival of trades follows an inhomogeneous Poisson process with rate nT−1ξ−1
t =

nT−1(1 + cos(2πt/T )/2), so that fewer trades arrive in the middle of the day.

With respect to noise, we simulate an MA(∞) model with heteroscedastic variance:

Ui = ιηti(1− 0.4B)−1(1 + 0.2B)εi.

We vary the magnitude of the noise, ι, which takes values from: 10−4 (small noise), 5×10−4

(median noise), and 2.5× 10−3 (large noise). These noise levels are common choices in the

literature and also relevant for empirical data. ηt captures the heteroscedasticity of the noise,

which follows

dηt = 10×
((

1 + 10−1 cos(2πt/T )
)
− ηt

)
dt+ 0.1dWt,

where Wt is the same Brownian motion that drives X. We round the observed prices to the

nearest cent: X̃ti = log
([
100× exp(Xti + Ui)

])
− log 100, where [·] means rounding to the

nearest integer.14

14. Although our theory does not allow for this type of rounding errors, we simulate this model to demon-
strate that the effect of rounding appears negligible in a finite sample.
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We first compare the performance of the central limit theory using (i) (2.3.8), (ii) (2.3.9),

and (iii) (2.3.5), given by Theorem 1. Recall that (i) works when noise is large and (ii) works

when noise is small, whereas only (iii) works uniformly. Figure 2.1 compares the histograms

of the standardized estimates of AIC⋆-QMLE that employ q̂n,AIC⋆ := q̂n,AIC ∨ log nT , using

the corresponding asymptotic variances of these different scenarios. The histograms that

correspond to (i) (resp. (ii)) on the top (resp. middle) panels do not match the standard

normal density when noise is small (resp. large). By contrast, histograms on the bottom

panel match the normal density uniformly well.

Figure 2.1: Histograms of Standardized Volatility Estimates

Note: This figure plots the histograms of standardized estimates of AIC⋆-QMLE using the central
limit results given by (i) (2.3.8, top), (ii) (2.3.9, middle), and (iii) (2.3.5, bottom) of Theorem 1.
Solid lines plot the density of the standard normal distribution. The noise magnitude parameter ι
takes three values: 10−4 (small), 5× 10−4 (median), and 2.5× 10−3 (large).

We then compare a variety of volatility estimators, including the usual realized volatility
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estimators using all returns and 5-minute returns; the MA(1)-based QMLE of Xiu (2010);

the recent pre-averaging estimator (PVG) proposed by Jacod, Li, and Zheng (2019); and

the flat-top realized kernel estimator (FRK) proposed by Varneskov (2016). The last two

estimators are consistent, even in the presence of colored noise. Other estimators that are

robust to i.i.d. noise, such as two-scales realized variance and realized kernels, have very

similar performance compared with the MA(1)-based QMLE, and hence are omitted.

Table 2.1: Simulation Results for Volatility Estimation

Small Noise Median Noise Large Noise
×10−2 BIAS RMSE BIAS RMSE BIAS RMSE
AIC⋆-QMLE -0.02 1.09 -0.03 1.28 0.03 2.35
AIC-QMLE 0.06 0.75 0.11 1.40 0.07 2.34
PVG -0.70 2.37 -0.24 2.34 2.08 3.50
FRK -0.01 1.02 0.45 1.18 0.09 2.30
RV (5 min) -0.02 1.68 1.62 2.58 42.24 43.44
MA(1) - QMLE 1.13 1.21 22.51 22.70 477.31 480.96
RV 3.11 3.12 47.99 48.02 1168.96 1169.42

Note: This table compares various volatility estimators in different simulation scenarios. “AIC⋆-
QMLE” and “AIC-QMLE” are MA(q)-likelihood estimators using q̂n,AIC⋆ = q̂n,AIC ∨ log nT and
q̂n,AIC as the selected orders, respectively. “PVG” refers to the pre-averaging estimator of Jacod,
Li, and Zheng (2019). We report only PVG estimates with the smallest RMSE of all 27 versions,
in which case hn = [n1/2], h′n = 2, and h′′n = 3 when noise is small; hn = [n1/2], h′n = 2, and h′′n = 9

in the case of a median noise level; and hn = [n1/2], h′n = 2, and h′′n = 3 when noise is large. “FRK”
refers to the flat-top realized kernel estimator of Varneskov (2016). We only report FRK estimates
with the smallest RMSE of all 27 versions, in which case Hn = 25, h̄n = [0.5×H−0.6

n ], and h̄′n = 0

when noise is small; Hn = 25, h̄n = [0.5×H−0.6
n ], and h̄′n = 10 in the case of a median noise level;

and Hn = 75, h̄n = [H−0.6
n ], and h̄′n = 10 when noise is large. “5-min RV” is the popular realized

volatility estimator based on the 5-minute subsample. “MA(1)-QMLE” uses the MA(1) likelihood.
“RV” is the realized volatility based on the full sample.

To construct the PVG, Jacod, Li, and Zheng (2019) propose the following:

σ̂
2,PVG
n =

(
T

hn∑
i=0

(gni )
2
)−1

( nT−hn∑
i=0

(Ỹ n
i )2 − nT

h′′n∑
j=−h′′n

γ̂JLZ
|j|

hn∑
i=0

ḡni ḡ
n
i−j

)
,
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where g is defined in Section 2.3.4, gni = g
( i
hn

)
, Ỹ n

i =
∑hn−1

j=1 gnj Yn,i+j , ḡ
n
i = gni+1 − gni , and

γ̂JLZj is the estimator of the jth autocovariance proposed by Jacod, Li, and Zheng (2017):

γ̂JLZ
j =

1

nT

nT+1−j−4h′n∑
i=0

(
X̃ti −

1

h′n

h′n−1∑
l=0

X̃ti+j+l+h′n

)(
X̃ti+j −

1

h′n

h′n−1∑
l=0

X̃ti+j+l+3h′n

)
.

The PVG estimator depends on three tuning parameters:

h′n ∼ 1

∆
η
n

with
1

2v + 1
< η <

1

2
, hn ∼ 1

∆
1/2
n

, h′′n ∼ 1

∆
1/8
n

,

where v is the ρ-mixing exponent of ε. h′n determines the local window size used to estimate

realization of the noise, hn is the usual local window size for averaging returns, and h′′n

determines the maximum number of lags of nonzero noise autocovariances. Jacod, Li, and

Zheng (2017) suggest h′n = 6 in simulations with 1-second data. According to their criterion,

when data are sampled at 5-second frequency, h′n must be an even smaller integer in a finite

sample, so we choose h′n from {2, 4, 6}. Jacod, Li, and Zheng (2019) suggest h′′n = 3 and

hn = [0.8 × n1/2] based on their simulation setting, so we choose h′′n from {3, 6, 9} and hn

from {[0.6×n1/2], [0.8×n1/2], [1.0×n1/2]} for robustness. In total, we consider 3×3×3 = 27

combinations of tuning parameters. To save space, we report only the best pre-averaging

volatility estimate in terms of root-mean-square error (RMSE), despite the fact that this is

not feasible beyond simulations and that the choice of tuning parameters matters quite a

bit.

Regarding the FRK, Varneskov (2016) proposes σ̂2,FRKn defined as:

1

T
γ0(Y

∗
n ) +

1

T

h̄n∑
h=1

(γh(Y
∗
n ) + γ−h(Y

∗
n )) +

1

T

nT−2h̄′n∑
h=h̄n+1

k

(
h− h̄n
Hn

)
(γh(Y

∗
n ) + γ−h(Y

∗
n )),
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where k(·) is the Parzen kernel, γh(·) is the hth-lag sample autocovariance function,

γh(Y
∗
n ) =

nT−h̄′n+(0∧h)∑
j=h̄′n+(0∨h)

Y ∗
n,jY

∗
n,j−h,

and Y ∗
n is a vector of returns after jittering,

Y ∗
n,j =



X̃th̄′n
− 1

h̄′n

h̄′n−1∑
k=0

X̃tk , j = h̄′n;

−X̃tnT−h̄′n−1
+

1

h̄′n

nT∑
k=nT−h̄′n

X̃tk , j = n− h̄′n;

Yn,j , Otherwise.

There are also three tuning parameters:

Hn ∼ 1

∆
1/2
n

, h̄n ∼ ∆
(η−1)/2
n with 0 < η <

1 + 2r̄

2 + 2r̄
, h̄′n = ∆−ϖ

n with
1

4
< ϖ <

1

2
,

where r̄ is the α-mixing exponent of ε. Hn is the usual bandwidth for kernel estimators, h̄n

controls the flatness of the kernel, and h̄′n controls jittering. We choose Hn from {25, 50, 75},

h̄n from {[0.5×H−0.6
n ], [1×H−0.6

n ], [1.5×H−0.6
n ]}, and h̄′n from {0, 5, 10}. We report only

the best estimate (in terms of the RMSE) of all 27 combinations.

Table 2.1 presents the comparison results.15 When noise is small, all estimators work

well, except that RV is a bit worse. This finding is not surprising, because all other estimators

are somewhat robust to noise, and noise is present despite its small magnitude. When noise

becomes larger and its dependence is thus more evident, the MA(1)-QMLE deteriorates,

because it is only robust, essentially, to the white noise. The 5-min RV is better, but still

has a substantial bias and a large RMSE, to the extent that using it is not reasonable in

practice. AIC⋆- and AIC-QMLEs, FRK, and PVG are all well behaved, of which the PVG

15. We thank Yingying Li, Xinghua Zheng, and Rasmus Varneskov for sharing their codes with us.
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is the worst. That said, of all the estimators we compare, only AIC⋆-QMLE is uniformly

valid. Our experiment also shows that FRK yields negative volatility estimates less often

than the PVG estimator, whereas all other estimators guarantee positivity.

2.5 Conclusion

We propose a simple volatility estimator based on the likelihood of an MA model, whose

order is selected based on AIC. We establish uniformly valid inference on volatility over a

large and flexible class of noise DGPs, featuring autocorrelations of an infinite order and an

arbitrarily vanishing noise magnitude. The convergence rate of our estimator is greater than

or equal to n1/4, which depends on the noise magnitude and its dependence structure. Our

estimator requires a single tuning parameter in order selection, and it always guarantees the

positivity of volatility estimates. For these reasons, it delivers more desirable finite-sample

performance than alternative nonparametric estimators.
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Chapter 3

Disentangling Autocorrelated Intraday Returns1

3.1 Introduction

Autocorrelations in stock returns are ubiquitous. The earlier literature regards such au-

tocorrelations as evidence against market efficiency. Nonetheless, as market efficiency has

improved over past decades, autocorrelations have remained a salient feature of intraday

stock returns sampled at sufficiently high frequencies. The modern view of such autocor-

relations is that they arise from market microstructure frictions, such as bid-ask bounces,

nonsynchronous trading, price discreteness, etc, which coalesce into efficient equilibrium

prices and lead to the convoluted dynamics of returns.

To disentangle the observed autocorrelations in intraday returns, we model the trans-

action price as a discretized continuous-time semimartingale process plus a discrete-time

moving-average process. The former represents the efficient price process that features re-

turn heteroscedasticity in the form of stochastic volatility and jumps, but does not contribute

to any autocovariance; the latter serves as a reduced-form description of the microstructure

friction that is the main driver behind the observed autocovariances.

To conduct inference on various model components and parameters, we construct a

tractable quasi-maximum likelihood estimator (QMLE), pretending that the transaction

1. This Chapter is a joint work with Dacheng Xiu.
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price arrives regularly and comprises a Brownian motion with constant volatility and an

MA(q) noise. We select q based on the Akaike/Bayesian information criteria (AIC/BIC).

While our estimator shares the same likelihood with that from an MA(q + 1) model, our

asymptotic design is in-fill, i.e., the number of observations increases within a fixed window–

say, a trading day–which renders our analysis rather different from the usual long-span

asymptotics in the classic time-series setting.

In a related paper, Da and Xiu (2021b) show how to conduct uniformly valid inference

on volatility over a large class of MA(∞) models that allow for an asymptotically vanishing

noise with a flexible dependence structure. In this paper, our main objective is to develop

asymptotic properties of the estimator for noise parameters. When the noise data-generating

process (DGP) follows a finite-order moving-average model, we show that our quasi-likelihood

estimator, combined with BIC, recovers the true model asymptotically, is consistent with

respect to the noise parameters, and achieves a pointwise central limit theory at the usual

rate of n1/2. Moreover, we develop uniform consistency results when noise follows an MA(∞)

process. As alternatives to our semiparametric approach, Jacod, Li, and Zheng (2017)

and Li and Linton (2021) provide nonparametric estimators of the serial correlations of the

microstructure noise based on local averaging and differencing strategies, respectively. They

focus on the case in which noise is large, whereas we also allow for vanishing noise. More

importantly, our likelihood-based approach provides a benchmark on the efficiency of noise

parameters.

We apply our estimator to analyze all intraday returns of S&P 1,500 index constituents

from 1996 to 2016. Several interesting findings emerge. The microstructure noise is present

in 5-minute returns, at least for small and mid caps, though it is an order of magnitude

smaller in recent years than at the beginning of the sample, thanks to the improvement

in market efficiency. For a sizable portion of stock-day pairs, it appears that the noise is

either absent or approximately follows an i.i.d. assumption. For the remaining stocks with
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autocorrelated noise, the duration of autocorrelations has been on the decline, from several

minutes in 1996 to merely 10 seconds on average for large caps and 100 seconds for small

caps in 2016.

Empirical evidence of autocorrelations in the returns of transaction prices goes back to

as early as Niederhoffer and Osborne (1966), Simmons (1971), and Garbade and Lieber

(1977). Among others, Hasbrouck and Ho (1987) document positive autocorrelations in

intraday stock returns, in returns of quote midpoints, and in the arrival of buy and sell

orders. They thus propose a model of the return-generating process, which is observationally

equivalent to an ARMA(2, 2) model. While classical time-series models such as ARMA are

convenient for dependent data, they are not appropriate for intraday returns because of the

heteroscedasticity in returns.

Why do higher-order autocorrelations of returns exist? There are many economic hy-

potheses, such as strategic order splitting (Garbade and Lieber (1977)); optimal control of

execution cost (Bertsimas and Lo (1998)); price impact and inventory control (Kyle (1985a),

Amihud and Mendelson (1980)); the crowd effect or herding (Tóth, Palit, Lillo, and Farmer

(2015)); and high-frequency trading Brogaard, Hendershott, and Riordan (2014). Our ob-

jective here is modest. We aim to estimate parameters in a general class of reduced-form

models, since many structural economic models yield specific reduced-form models–see, for

example, Hasbrouck (2007)–with differences only in how the reduced-form parameters relate

to structural parameters.

There is an enormous literature on the estimation of quadratic variation or its compo-

nents using noisy high-frequency data; e.g., the two-scale or multi-scale estimators by Zhang,

Mykland, and Aït-Sahalia (2005) and Zhang (2006); the realized kernel estimator and its ex-

tensions by Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008) and Barndorff-Nielsen,

Hansen, Lunde, and Shephard (2011); the pre-averaging estimator by Jacod, Li, Mykland,

Podolskij, and Vetter (2009) and Jacod, Podolskij, and Vetter (2010); the quasi-maximum
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likelihood estimator (QMLE) by Xiu (2010); and the local method of moments estimator

by Reiß (2011). An “essentially” white noise assumption is most common in this strand of

the literature, with the exception of Jacod, Li, and Zheng (2019), Varneskov (2016), and

Da and Xiu (2021b), who tackle general colored-noise processes for the purpose of volatility

estimation. Related work also include Aït-Sahalia, Mykland, and Zhang (2005), Aït-Sahalia,

Mykland, and Zhang (2011), Kalnina and Linton (2008), and Bibinger, Hautsch, Malec, and

Reiß (2019). Unlike the above papers, which treat noise as nuisance parameters in the esti-

mation of quadratic variation, our target here is mainly the temporal dependence of intraday

returns beyond the first-order autocorrelations. Chang, Delaigle, Hall, and Tang (2018) also

focus on analyzing the statistical properties of the noise process and propose an estimator

of noise density and noise moments in an i.i.d. noise setting.

The paper is organized as follows. Section 3.2 sets up the model. Section 3.3 introduces

the estimator and provides the main asymptotic results. Section 3.4 reports Monte Carlo

simulations. We analyze volatilities and noise for S&P Composite 1,500 index constituents

in Section 3.5, and Section 3.6 concludes. The online supplemental appendix contains all

mathematical proofs.

3.2 Model Assumptions

We assume that transaction prices X̃ are observed at ti, for i = 1, 2, . . . , nT , within a fixed

window [0, T ]. They comprise two components: X̃ti = Xti +Ui, where Xti is (the logarithm

of) the efficient equilibrium price and Ui is the microstructure noise associated with the ith

observation. Furthermore, the efficient price satisfies:

Assumption 6. The logarithm of the efficient price process Xt is an Itô-semimartingale

defined on some filtered probability space (Ω,F , (Ft),P) and satisfies

Xt = X0 +

∫ t

0
µsds+

∫ t

0
σsdWs + (δ1{|δ|≤1}) ⋆ (µ− ν)t + (δ1{|δ|>1}) ⋆ µt, (3.2.1)
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where µt and σt are adapted and locally bounded, W is a standard Brownian motion, and µ is

a Poisson random measure on R+×E, where E is a Polish space. The compensator ν satisfies

ν(dt, du) = dt⊗ λ(du) for some σ-finite measure λ on E. Moreover, |δ(ω, t, u)| ∧ 1 ≤ Γm(u)

for all (ω, t, u) with t ≤ τm(ω), where {τm} is a localizing sequence of stopping times and

{Γm} a sequence of deterministic functions satisfying
∫
Γ2m(u)λ(du) <∞.

In addition, the process Zt = (µt, σ
2
t ) is also an Itô semimartingale on the space

(Ω,F , (Ft),P) with the form

Zt = Z0 +

∫ t

0
µ̃sds+

∫ t

0
σ̃sdW̃s + (δ̃1{|δ̃|≤1}) ⋆ (µ− ν)t + (δ̃1{|δ̃|>1}) ⋆ µt, (3.2.2)

where µ̃t and σ̃t are locally bounded adapted processes, W̃ is a multivariate Brownian motion,

potentially correlated with W , and δ̃ is a predictable function such that for some deterministic

function Γ̃m(u), ∥δ̃(ω, t, u)∥∧ 1 ≤ Γ̃m(u) for all ω ∈ Ω, t ≤ τm(ω), and
∫
Γ̃2m(u)λ(du) <∞.

While the efficient prices are defined in continuous time, we only observe their noisy

versions at discrete time points. We now describe the assumption of the arrival times of

transactions:

Assumption 7. The sequence of observation times {ti : i ≥ 0} satisfies t0 = 0 and ti =

ti−1+
T
n ξti−1χi, where the sequence {χi : i ≥ 1} is i.i.d., (0,∞)-valued, defined on (Ω,F ,P),

and independent of the σ-field F∞ =
∨
t>0Ft, with mj = E((χi)j) <∞ and m1 = 1, for all

j > 0. In addition, the process ξ = (ξt)t≥0 is a nonnegative Itô-semimartingale defined on

(Ω,F , (Ft),P) in the form of (3.2.2), such that neither ξt nor ξt− vanishes.

The intervals between adjacent transactions are determined by a continuous-time process,

ξt, and a discrete-time process, χi, jointly. This assumption allows for dependence between

trading times and the underlying driving forces of efficient prices, and thereby accommodates

a large class of sampling schemes; see Jacod, Li, and Zheng (2017) for detailed discussions.
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Next, we impose a discrete-time moving-average process for the microstructure noise to

capture the potential temporal dependence in the transaction prices:2

Assumption 8. The noise sequence {Ui : i ≥ 0} consists of random variables defined on the

probability space (Ω,F ,P) such that {Ui : i ≥ 0} has an MA(∞) representation with mean

0:

Ui = ηtiι
(n)θ(n)(B)εi, with θ(n)(x) = 1 +

∞∑
j=1

θ
(n)
j xj , (3.2.3)

where B is the lag operator; εi
i.i.d.∼ (0, 1), defined on (Ω,F ,P), is independent of F∞ and

{χi : i ≥ 1}, and has finite moments of all orders; (ηt)t≥0 is an (Ft)-adapted nonnegative Itô-

semimartingale that satisfies the same form of (3.2.2); and ι(n) is a deterministic nonnegative

number that characterizes the noise magnitude and satisfies ι(n) ≤ K.

The noise again depends on a continuous-time process ηt and a discrete-time moving-

average process U . The former introduces dependence between noise and the underlying

efficient price, whereas the latter dictates the temporal dependence of the noise. Combining

the two allows for heteroscedastic, temporally dependent, and endogenous noise.

The parameters of interest in our study are autocovariances {γ(n)j : j ≥ 0} and autocor-

relations {ρ(n)j : j ≥ 1} of the noise process, defined as

γ
(n)
j = (ι(n))2

∫ T
0 η2sξ

−1
s ds∫ T

0 ξ−1
s ds

× κ
(n)
j , j ≥ 0, and ρ

(n)
j = κ

(n)
j /κ

(n)
0 , j ≥ 1, (3.2.4)

where κ(n)j is given by

κ
(n)
j =

1

2π

∫ π

−π
g(λ; θ(n))eiλjdλ, j ≥ 0, (3.2.5)

2. We use a superscript (n) on noise parameters to facilitate discussion of uniformity over different se-
quences of data-generating processes (DGPs) of noise indexed by n. n is a nonobservable mathematical
abstraction. All limits are taken as n → ∞. K is a generic n-independent positive constant that may vary
from line to line.
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and g(λ; θ(n)) = |θ(n)(eiλ)|2 is the spectral density of θ(n)(B)ε. While the autocovariances

depend on the underlying processes ηt and ξt that drive the sampling times and noise mag-

nitudes, respectively, the autocorrelations are entirely determined by the set of parameters

{θ(n)j : j = 1, 2, . . . ,∞} in the MA process.

Finally, we need some regularity assumption on the behavior of the spectral density of

the noise process so that it is uniformly invertible and its long range dependence cannot be

overly strong.

Assumption 9. For each n ≥ 1, the spectral density function of θ(n)(B)ε satisfies for some

fixed α > 3,

inf
λ
g(λ; θ(n)) ≥ 1

K
and

∣∣∣ ∫ π

−π
g(λ; θ(n))eiλjdλ

∣∣∣ ≤ Kj−α, ∀j ≥ 0.

3.3 Main Results

In what follows, we will discuss the constructed estimators and their asymptotic properties.

3.3.1 Quasi-likelihood Estimation

To estimate volatility, Da and Xiu (2021b) propose a quasi-likelihood approach based on

a misspecified model for observed returns. We adopt the same estimator here, but focus

on the noise parameters. Specifically, we pretend that the efficient price X (in logarithm)

is a Brownian motion with constant volatility but no drift, and that the noise U follows a

Gaussian MA(q) model with the order q to be determined:

dXt = σdWt; Ui = ιθ(B)εi, with θ(x) = 1 +

q∑
j=1

θjx
j , and εi ∼ N (0, 1).

Under this model, the observed log-return vector Yn = (Yn,1, Yn,2, . . . , Yn,nT )
⊺,

Yn,i = Xti −Xti−1 + Ui − Ui−1, 1 ≤ i ≤ nT . (3.3.6)
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follows a reduced-form Gaussian MA(q + 1) model, whose nT × nT covariance matrix Σn is

given by

Σn(σ
2, ι2, θ) = σ2∆nIn +

nT−1∑
h=0

(2γh − γh+1 − γh−1)Gh
n, (3.3.7)

where (In)ij = δi,j , (Gh
n)ij = δh,|i−j|, and γh is the h-th order autocovariance of U :

γh =
ι2

2π

∫ π

−π
g(λ; θ)eiλhdλ, where g(λ; θ) =

∣∣θ(eiλ)∣∣2. (3.3.8)

Since we are interested in the noise autocovariances, we reparameterize the likelihood

function in terms of (σ2, γ):

Ln(σ
2, γ) = −1

2
log det(Σn(σ

2, γ))− 1

2
tr(Σn(σ

2, γ)−1YnY
⊺
n ), (3.3.9)

where Σn(σ
2, γ) := Σn(σ

2, ι2, θ) and γ is the (q+1)-dimensional vector of the noise autoco-

variances.

We define (σ̂2n(q), γ̂n(q)) as the maximizer of Ln(σ2, γ):

(σ̂2n(q), γ̂n(q)) = arg max
(σ2,γ)∈Πn(q)

Ln(σ
2, γ), (3.3.10)

where, following Da and Xiu (2021b), the parameter space Πn(q) is defined as

{
(σ2, γ) ∈ Rq+2 : inf

λ
f(λ;σ2, γ,∆n) ≥

∆n

K
, σ2 + |γ0|+

∑∞
j=1 j

2|γj |
infλ|σ2∆n + f(λ; γ)|

≤ K
}
.

(3.3.11)

Here f(λ;σ2, γ,∆n) stands for the spectral density of Yn under the quasi-model:

f(λ;σ2, γ,∆n) = σ2∆n + (2− 2 cosλ)f(λ; γ), with f(λ; γ) =
∑∞

j=−∞ γ|j|e
ijλ.

To determine an appropriate order q, we use information criteria, such as BIC, which in
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our setting can be written as

BICn(q) = q log nT − 2 max
(σ2,γ)∈Πn(q)

Ln(σ
2, γ).

Our choice of order q will be based on

q̂n = arg min
q≤n

1/3
T

BICn(q). (3.3.12)

We can define a similar criterion based on AIC, by replacing q log nT above by 2q. Hannan

(1980) shows that using BIC results in consistent order selection for ARMA models. We

demonstrate that a similar result with BIC also holds in our setting. We will therefore focus

on BIC in the following discussion.

3.3.2 Implementation

We implement the exact likelihood via an auxiliary reduced-form MA(q + 1) model of the

observed noisy returns:

Yn,i = ϕ(B)ϵi, with ϕ(x) = 1 +

q+1∑
j=1

ϕjx
j , 1 ≤ i ≤ n, ϵ ∼ N (0, χ2). (3.3.13)

Algorithm 2. Our algorithm starts as follows:

1. Select the optimal order, q̂n, of the MA process (3.3.13) for Yn using BIC, defined by

(3.3.12) but rewritten equivalently in terms of χ2 and ϕ.

2. Obtain exact quasi-likelihood estimates of χ̂2 and ϕ̂j for 1 ≤ j ≤ q̂n + 1, using the

state-space representation of (3.3.13) and Kalman filtering,
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3. Construct volatility and noise autocovariance estimators using the above estimates:

γ̂n(q̂n)j =
1

2π

∫ π

−π

χ̂2eijλ

|1− eiλ|2


∣∣∣∣∣∣1 +

q̂n+1∑
l=1

ϕ̂le
ilλ

∣∣∣∣∣∣
2

−

1 +

q̂n+1∑
l=1

ϕ̂l

2
 dλ, 0 ≤ j ≤ q̂n,

σ̂2n(q̂n) =∆−1
n χ̂2

1 +

q̂n+1∑
j=1

ϕ̂j

2

,

which are obtained by comparing different parameterizations of the return autocovari-

ances.

4. Solve q̂n + 1 nonlinear equations for q̂n + 1 model parameters (̂ι2n(q̂n), θ̂n(q̂n)) from

γ̂n(q̂n) obtained in Step 3:

γ̂n(q̂n)j = ι̂2n(q̂n)

q̂n−j∑
l=0

θ̂n(q̂n)lθ̂n(q̂n)l+j , 0 ≤ j ≤ q̂n. (3.3.14)

A Newton-Raphson algorithm that converges quadratically is available from Wilson

(1969).

Effectively, Step 4 is to find q̂n + 1 model parameters of the MA(q̂n) noise process from

up-to-q̂nth-order autocovariances γ̂n(q̂n)j , 0 ≤ j ≤ q̂n. This practice is common in the

classic time-series analysis. For instance, Box, Jenkins, and Reinsel (2007) recommend using

this algorithm to find initial values based on autocovariances for the maximum likelihood

estimation of an MA model.

Step 3 is sufficient for volatility and noise autocovariance estimation, and it is rather

simple to implement. If one is further interested in (ι2, θ), a unique solution (̂ι2n(q), θ̂n(q))

exists from Step 4, with probability approaching 1 when noise is sufficiently large relative to

the sample size. When noise is small, however, these parameters are weakly identified, and

(3.3.14) may have no solution such that ι̂2n(q) is positive and θ̂n(q) is real.
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3.3.3 Model Selection Consistency

We now discuss the asymptotic properties of the proposed estimators. The asymptotic

analysis here is more involved than the classic time-series analysis, because the DGP of

observed returns is misspecified. Moreover, the asymptotic design is in-fill, so that not only

the dimensions, but also the entries of the covariance matrix Σn in the quasi-likelihood,

depend on the sample size nT ; see (3.3.7). Consequently, prior results from classic time-

series studies are not applicable. Even worse, the quasi-likelihood estimator does not have

an explicit form.

We start with a model selection consistency result based on BIC, which allows us to

conduct pointwise inference on autocovariance parameters. We thereby impose a finite-order

moving-average model for the DGP of noise. In an in-fill asymptotic experiment, imposing

a finite-order MA model for noise independent of the sampling frequency might appear

ambiguous, in that observations are filled in between adjacent ones and the dependence

structure changes as the sampling frequency approaches 0. However, as Jacod, Li, and

Zheng (2017) argue, the frequency of observations in practice is fixed by the available data

and does not really go to 0. Therefore, the interpretation of the asymptotic design is that

the frequency of our observations is “high enough” to consider that we are “almost” in the

asymptotic regime.

Theorem 2. Suppose Assumptions 6 - 9 hold. We further assume a non-vanishing noise

process with an exact MA(q⋆) structure, i.e., ι(n) ≥ K−1 and θ(n) ∈ Rq⋆ for all n ≥ 1 and
√
n(log n)−1|θ(n)q⋆ | → ∞, for some fixed q⋆ ≥ 0. Then it holds that

lim
n→∞

P(q̂n = q⋆) = 1.

As the sample size increases, the likelihood is asymptotically dominated by that of the

noise component. Therefore, the same intuition from the classic time-series result applies
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here. The likelihood estimator effectively minimizes the Kullback-Leibler divergence, but

only when the selected order is no smaller than the truth. Moreover, the BIC imposes a

penalty just large enough to rule out orders that are greater than the truth asymptotically.

The combination of these two results leads to the desired consistency in model selection.

3.3.4 Inference on Noise Autocovariances and Autocorrelations

Recall that in (3.3.10) and Step 3 of Algorithm 2, we defined and implemented estimators of

noise autocovariances. We now propose estimators of autocorrelations, denoted by ρ̂n(q̂n),

which are defined as follows.

If (3.3.14) has a solution such that ι̂2n(q̂n) is positive and θ̂n(q̂n) is real, we set3

ρ̂n(q̂n)j =
γ̂n(q̂n)j
γ̂n(q̂n)0

, j ≥ 1.

Otherwise, we set

ρ̂n(q̂n) = 0.

In light of their definitions, we can regard these estimators as “hard-thresholding” estimators,

in that higher-order autocovariance and autocorrelation estimates are truncated to zero

beyond the selected order q̂n.

Next, we prove the pointwise central limit theorem for estimators of noise autocovariances

in the finite-order moving average model. The corresponding result for autocorrelations

follows straightforwardly.

Theorem 3. Suppose Assumptions 6 - 9 hold. We further assume ι(n) ≥ K−1 and θ(n) ∈

Rq⋆ for all n ≥ 1 and some fixed q⋆ ≥ 0. Let γ(n) be the (q⋆ + 1)-dimensional vector of

up-to-q⋆th-order autocovariances of U , whose components are defined in equation (3.2.4).4

3. Estimates of autocovariances and autocorrelations are, of course, zero beyond the q̂n-th lag.

4. Recall that the vectors γ(n) and γ⋆ are indexed from 0. We refer to γ(n) here as a (q⋆+1)-dimensional
vector simply because γ

(n)
j = 0 for all j > q⋆, since θ(n) ∈ Rq⋆ . For this reason, in most of our discussions,

we do not distinguish it from an ∞-dimensional vector. The same applies to other ∞-dimensional vectors.
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Assume there exists a (q⋆ + 1)-dimensional vector γ⋆ such that γ(n) − γ⋆ = oP(1). Then it

holds that5

n1/2
(
γ̂n(q

⋆)− γ(n)
) Ls−F∞−→ MN

(
0q⋆+1,AVAR1

)
,

where

AVAR1 =
(
2W (γ⋆)−1 + γ⋆γ⋆⊺cum4(ε)

) T
∫ T
0 η4sξ

−1
s ds( ∫ T

0 η2sξ
−1
s ds

)2 ,
cum4(ε) denotes the fourth cumulant of ε,

W (γ) =
1

2π

∫ π

−π

(∂ log f(λ; γ)
∂γ

)⊺∂ log f(λ; γ)
∂γ

dλ.

This result shows that our estimator achieves the best convergence rate possible—n1/2.

In addition, the nonparametric estimation of volatility, which serves as a nuisance parameter

here, does not influence the asymptotic variance of noise parameters. In fact, the asymptotic

variance has the same form as in the classic time-series analysis–e.g., Brockwell and Davis

(1991)–barring η and ξ terms, which are irrelevant in discrete time settings, as if the observed

prices were purely made of noise. This further suggests that when ε indeed follows a Gaussian

distribution, our estimator achieves the optimal efficiency.

The next corollary presents the central limit result for autocorrelations:

Corollary 2. Suppose the same assumptions as those in Theorem 3 hold. Let ρ(n) be the q⋆

vector of up-to-q⋆th-order autocorrelations of U whose components are defined in equation

(3.2.4). Then it holds that

n1/2
(
ρ̂n(q

⋆)− ρ(n)
) Ls−F∞−→ MN

(
0q⋆ ,AVAR2

)
,

5. Here and throughout the appendix, Ls−F∞−→ stands for stable convergence in law with respect to F∞.
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where the ijth entry of the q⋆ × q⋆ matrix AVAR2 is given by

γ⋆i γ
⋆
j

γ4⋆0
(AVAR1)11 +

1

γ2⋆0
(AVAR1)i+1,j+1 −

γ⋆i
γ3⋆0

(AVAR1)1,j+1 −
γ⋆j

γ3⋆0
(AVAR1)1,i+1 .

Next, we construct an estimator of the asymptotic variance, AVAR1, in Theorem 3, which

naturally leads to an estimator for AVAR2 in Corollary 2.

Proposition 2. Suppose the same assumptions as those in Theorem 3 hold. Define

ÂVAR1 =
(
2W (γ̂n(q̂n))

−1 + γ̂n(q̂n)γ̂n(q̂n)
⊺ĉum4(ε)

)(
γ̂n(q̂n)0 − γ̂n(q̂n)1

)−2
B̂n,

where, with kn ∼ log n,

ĉum4(ε) = knB̂
−1
n B̂′

n − 2kn −
(
γ̂n(q̂n)0 − γ̂n(q̂n)1

)−2 1

π

∫ π

−π
f(λ; γ̂n(q̂n))

2(1− cosλ)2dλ,

B̂n =
1

4nT kn

nT−2kn∑
i=1

Y 2
n,i

2kn∑
j=kn+1

Y 2
n,i+j , and B̂′

n =
1

4nT kn

nT−kn∑
i=1+kn

Y 2
n,i

kn∑
j=−kn

Y 2
n,i+j .

Then, we have ∥∥∥ÂVAR1 − nTn
−1AVAR1

∥∥∥ = oP(1).

With this proposition in place, we can build confidence intervals for noise autocovariances

and autocorrelations using n−1
T ÂVAR1, which does not involve the unobservable scalar n in

the CLT.

3.3.5 Uniform Consistency of Noise Autocovariances and Autocorrelations

The asymptotic inference established here is pointwise, in the sense that it does not allow

for model-selection mistakes. As pointed out by Leeb and Pötscher (2005), model selection

errors matter in finite samples, to the extent that the prescribed asymptotic distribution

could be seriously distorted. Moreover, uniformly valid inference is generally not available.
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That said, we establish a uniform consistency result for γ̂n(q̂n) and ρ̂n(q̂n) with respect to

γ(n) and ρ(n) under L2-norm, where all vectors are regarded as ∞-dimensional. This result

sheds light on the asymptotic behavior of these estimators when noise DGPs are allowed to

vary within a larger class beyond MA(q), allowing for a vanishing magnitude and a more

flexible dependence structure. We characterize the class of noise DGPs we consider in the

next assumption.

Assumption 10. Define q⋆n(k) := min q, subject to nψ4n
∑2q

j=q |κ̃
(n)
j |2 ≤ kq log n, where

ψn := (1+n−1/2/ι(n))−1 and κ̃(n)j :=
∑∞

i=0(i+1)ψin(2κ
(n)
j+1+i−κ

(n)
j+i+2−κ

(n)
j+i). We assume

for any 0 < k < K,

q⋆n(k) = o(n1/3(ι(n) ∨ n−1/2)4/9), and nψ4n

∞∑
j=q⋆n(k)

|κ(n)j |2 = O
(
q⋆n(k) log n

)
.

Intuitively, q⋆n(k) mimics the “oracle” order that BIC selects. Effectively, Assumption 10

requires that this order cannot be too large and imposes an upper bound on the approxima-

tion error induced by a selected MA model. Nevertheless, these conditions in Assumption 10

are not restrictive. They accommodate common processes such as MA(∞), with |κ(n)j | ∼ j−α

for some α > 3∨ 3
2+4 log ι(n)/ log n

, as well as any finite order ARMA(p, q) with an arbitrarily

shrinking noise magnitude ι(n) ≲ 1.

We are now ready to present the uniform consistency result for autocovariances and

autocorrelations:

Theorem 4. For any sequence of DGPs that satisfies Assumptions 6 - 10, we have

∥∥γ̂(n)(q̂n)− γ(n)
∥∥2 = OP

(
n−1(ι(n))4(q̂n + 1)2 log n+ n−3(n1/2ι(n) + 1)(q̂n + 1)4 log n

)
.

If, in addition, we assume ι(n) ≥ Kn−2/3(log n)1/4, it holds that

∥∥ρ̂n(q̂n)− ρ(n)
∥∥2 = OP

(
(ι(n))−4

∥∥γ̂(n)(q̂n)− γ(n)
∥∥2).
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In general, the autocorrelation ρ(n) is weakly identified in the presence of small noise.

The last part of Theorem 4 rules out this scenario, restricting the class of DGPs such that

the noise variance cannot be too small.

Whereas consistent estimation of autocorrelations requires a more restrictive class of

DGPs, Theorem 4 allows for arbitrarily small and vanishing noise for autocovariances. The

case of small noise is highly relevant in practice, as shown from our empirical study below.

Our result is complementary to the asymptotic theory developed by Jacod, Li, and Zheng

(2017) and Li and Linton (2021), who focus on the case of non-vanishing noise.

3.3.6 Quadratic Representation

The QMLE estimator appears to have a rather different structure compared with alternative

nonparametric estimators in the literature, e.g., realized kernels, which can be regarded as

quadratic estimators. In this section, we propose an alternative but equivalent quadratic

form of the QMLE, which sheds light on its connection with and distinction from these

quadratic estimators. We do so for both volatility and noise autocovariance estimators.

Theorem 5. Suppose the same assumptions as those in Theorem 3 hold and that γ(n) = γ⋆.

The QMLE (σ̂2n(q
⋆), γ̂n(q

⋆)) satisfies that for 0 ≤ j ≤ q⋆,

σ̂2n(q
⋆) = Y

⊺
nWn(σ̂

2
n(q

⋆), γ̂n(q
⋆); 1)Yn, γ̂n(q

⋆)j = Y
⊺
nWn(σ̂

2
n(q

⋆), γ̂n(q
⋆); j + 2)Yn,

(3.3.15)

where the set of nT × nT weighting matrices Wn(σ
2, γ; l), l = 1, 2, . . . , q⋆ + 2, is defined by6

vec(Wn(σ
2, γ; l)) = Σ−1

n (σ2, γ)
∂Σn(σ

2, γ)

∂(σ2, γ)
Σ−1
n (σ2, γ)W̃−1

n (σ2, γ)(0l−1, 1, 0q⋆+2−l),

6. 0d is the d-dimensional vector of 0s. All vectors are column vectors. We write (a, b, c) in place of
(a⊺, b⊺, c⊺) for simplicity.
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with Σn(σ
2, γ) given by (3.3.7), and the (q⋆ + 2)× (q⋆ + 2) matrix W̃n(σ

2, γ) given by

W̃n(σ
2, γ)i,j = tr

(
Σ−1
n (σ2, γ)

∂Σn(σ
2, γ)

∂(σ2, γ)i
Σ−1
n (σ2, γ)

∂Σn(σ
2, γ)

∂(σ2, γ)j

)
.
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Note: This figure compares weighting matrices Ws in the quadratic representations of the
QMLE for σ2 and ι2 in the case of i.i.d. noise, as well as those matrices for σ2, γ0, γ1, and γ5
in the case of MA(5) noise. We scale the volatility weighting matrices by T . In both cases,
we fix σ⋆ = 0.3, ι⋆ = 0.005, ∆ = 5 minutes, T = 1 day. The moving-average parameters of
the MA(5) process are given by θ⋆ = (0.25, 0.2, 0.15, 0.1, 0.05).

Figure 3.1: Quadratic Representations of the Estimators

Theorem 5 shows that the QMLE can be written as an iterative quadratic estimator.

It also suggests an alternative algorithm for estimation. With some initial values given, we

can iteratively update parameters via equations given by (3.3.15) until convergence. Figure

3.1 plots these weighting matrices for both volatility and noise parameters, and compares
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them in the case of i.i.d. and MA(5) noises. The noise weighting matrices feature a “W”

shape along the diagonal, and the magnitude of weighting matrices for autocovariance decays

as their order increases. With respect to the volatility estimator, the bottom panel shows

notable “flatness” at the top of the volatility weighting matrix for the MA(5) model, which

helps cancel out the impact of dependent noise. This patten motivates us to investigate

the connection between the QMLE and the flat-top realized kernel introduced by Varneskov

(2016) to the high-frequency environment in the context of volatility estimation. We also

provide an equivalent kernel for autocovariances.

Theorem 6. Suppose the same assumptions as those in Theorem 3 hold. In addition, suppose

q ≥ 0 is fixed and (σ2, γ) ∈ Πn(q) such that K−1 ≤ infλ f(λ; γ) ≤ supλ f(λ; γ) ≤ K. Then

for all n1/2+α ≤ i, j ≤ n−n1/2+α with 0 < a < 1
2 , the weighting matrix Wn(σ

2, γ; l) satisfies

for l ≥ 1,

(i) Wn(σ
2, γ; 1)i,j =

k

T

( |i− j|
Hn

)
(1 + o(1)), Wn(σ

2, γ; l)i,j = λlk̃
( |i− j|
Hn

)
+O(1);

(ii) sup
|i−j|≤q+1

∣∣∣Wn(σ
2, γ; 1)i,j −Wn(σ

2, γ; 1)i,i

∣∣∣ = O(∆
3/2
n );

(iii) sup
|i−j|≤q+1

∣∣∣Wn(σ
2, γ; l)i,j + 1{l≤|i−j|+1}

|i− j|+ 2− l

2nT

∣∣∣ = O(∆
3/2
n ),

where the implied equivalent kernels are k(x) = (1 + x)e−x and k̃(x) = xe−x, the implied

bandwidth is Hn = ζσ−1∆
−1/2
n +O(1) with ζ2 =

∑
|j|≤q γ|j|, and

λl = (2σζ3∆
1/2
n nT )

−1∑q+1
r=1(2− δr,1)W (γ)−1

r,l−1, with W (γ) defined in Theorem 3.

Theorem 6 suggests that the bulk of the QMLE weighting matrices can be approximately

written as that of a nonparametric kernel estimator with an implicit bandwidth. Despite this

equivalence, it is more convenient to implement the QMLE using Algorithm 2 in Section 3.3.2,

which does not require tuning parameters barring order selection, or any special adjustment

to the border effect. Also note that this equivalence result is only established under the
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assumption that the spectral density of the noise (and hence its magnitude) is bounded from

below, which rules out the case of small noise.

3.4 Monte Carlo Simulations

We examine the finite-sample performance of the estimators in a variety of simulation set-

tings. Throughout we fix T = 1 day and the average sampling frequency every 5 seconds.

We have 1, 000 Monte Carlo trials in total.

3.4.1 Verification of the Asymptotic Results

We simulate Xt and σ2t according to the same log-volatility model as in Li and Xiu (2016):

 dXt = (0.05 + 0.5σ2t )dt+ σtdWt + JXdNt,

σ2t = Dt exp (−2.8 + 6Ft) , dFt = −4Ftdt+ 0.8dW̃t + JF dNt − 0.02λNdt,

(3.4.16)

where E[dWtdW̃t] = −0.8dt, JX ∼ N (0, 0.022), JF ∼ N (0.02, 0.022), Nt is a Poisson process

with intensity λN = 25, and Dt captures the diurnal effect:

Dt = 0.75 exp(−10t/T ) + 0.25 exp(−10(1− t/T )) + 0.8.

The arrival of trades follows an inhomogeneous Poisson process with rate nT−1ξ−1
t =

nT−1(1 + cos(2πt/T )/2), so that fewer trades arrive in the middle of the day.

With respect to the noise, we start with an MA(5) model of U with

θ⋆ = (0.25, 0.2, 0.15, 0.1, 0.05), innovation εi being Student’s t-distribution with 7 degrees of

freedom, ι = 2.5× 10−3, and ηt following

dηt = 10×
((

1 + 10−1 cos(2πt/T )
)
− ηt

)
dt+ 0.1dWt,

where Wt is the same Brownian motion that drives X. We also round the observed prices
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to the nearest cent: X̃t = log ([100× exp(Xt)]) − log 100, where [·] means rounding to the

nearest integer.7

We first assume that the correct order, namely 5, is known, so that we can verify the

CLTs for noise autocovariances given in Section 3.3.4 without worrying about model selection

mistakes. Figure 3.2 provides the histograms of the standardized estimates for γ̂k(q), k =

0, 2, . . . , 5, using estimated asymptotic variances. All histograms match the standard normal

density.
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Figure 3.2: Histograms of the Standardized Parameter Estimates

Note: This figure plots the histograms of the standardized estimates for γ̂k(q), k = 0, 1, . . . , 5, along
with the density of the standard normal distribution. The noise is simulated from an MA(5) model
with θ⋆ = (0.25, 0.2, 0.15, 0.1, 0.05) and ι⋆ = 2.5× 10−3. The order of the MA model is known prior
to estimation.

7. Our theory does not allow for this type of rounding errors. We simulate this model to demonstrate
that the rounding effect appears negligible.

49



3.4.2 Comparison with Alternative Estimators

We then compare our estimators of noise autocorrelations against alternative nonparametric

estimators by Jacod, Li, and Zheng (2017) (JLZ) and Li and Linton (2021) (ReMeDI) in a

more challenging MA(∞) setting in which θ(B) = (1− 0.4B)−1(1 + 0.2B). To demonstrate

the effect of small noise, we consider three different scenarios for the magnitude of the noise,

ι, which takes values from 10−4 (small noise) to 5×10−4 (median noise) and 2.5×10−3 (large

noise). Our estimator uses either AIC or BIC for model selection, whereas nonparametric

estimators involve a tuning parameter.

Jacod, Li, and Zheng (2017) propose to estimate autocovariances, γ, by approximating

efficient prices using their local averages:

γ̂JLZ
j =

1

nT

nT+1−j−4hn∑
i=0

X̃ti −
1

hn

hn−1∑
l=0

X̃ti+j+l+hn

X̃ti+j −
1

hn

hn−1∑
l=0

X̃ti+j+l+3hn

 .

Here hn is a sequence of integers satisfying hn ∼ n−η with 1
2v+1 < η < 1

2 , where v is the

ρ-mixing exponent of ε. It determines the local window size used to estimate realization of

the noise. Their paper selects hn = 6 in simulations with 1-second data. According to their

criterion, when data are sampled at 5-second frequency, hn must be an even smaller integer

in a finite sample, so we report the autocorrelation estimates for hn = 2, 4, and 6.

Li and Linton (2021) suggest an alternative construction that takes the differences of log

prices over longer horizons to dampen the impact of efficient prices:

γ̂ReMeDI
j = − 1

nT

nT−2kn−j∑
i=1

(X̃i+kn − X̃i)(X̃i+j+2kn − X̃i+j+kn),

where kn is a tuning parameter that satisfies: kn → ∞, knn−η → 0, for 1
2v < η < 1

3 . We

select kn = k′n log n, where k′n = 0.5, 1, and 2 in simulations.

With autocovariances given, the autocorrelations can thereby be estimated accordingly:
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ρ̂JLZj = γ̂JLZj /γ̂JLZ0 and ρ̂ReMeDI
j = γ̂ReMeDI

j /γ̂ReMeDI
0 . We prefer autocorrelations (to auto-

covariances) because their scale is interpretable. However, we find it necessary to winsorize

the estimated autocorrelations for AIC-based QMLE and both nonparametric estimators,

when the noise magnitude is small, to ensure that their estimates are within the natural

bound [−1, 1].8

Table 3.1 provides comparison results for autocorrelations among QMLE, JLZ, and

ReMeDI estimators across various noise magnitudes. Several points are worth making. For

large noise, all estimators work reasonably well, but QMLEs generally outperform nonpara-

metric estimators in terms of RMSE because they are more efficient. AIC slightly outper-

forms BIC, and ReMeDI appears to outperform JLZ. The latter suffers from a large finite

sample bias. In the small noise regime, nonetheless, the biases and RMSEs for both nonpara-

metric estimators deteriorate substantially. For estimation of noise autocovariances, “signal’

is the microstructure friction, whereas “noise” is the efficient price. When the signal-to-noise

ratio is too low, the error due to estimation is too large to justify doing so. In contrast, the

QMLEs either conclude that noise is absent (i.e., θ and ι2 are not available), in which case

all autocorrelations are zeros, or select an MA model with a certain q̂n, so that any auto-

correlation beyond the q̂n-th order is zero. Because of the rapid decay in autocorrelations

and small noise magnitude, 0 is often a better estimate in terms of RMSE than nonpara-

metric estimates, and in particular for larger lags. Comparing AIC with BIC, the latter is

more conservative, as it essentially yields 0 autocorrelation estimates for almost all Monte

Carlo replications, whereas the former produces many nontrivial estimates. However, doing

so seems to increase AIC’s RMSE, and AIC does require winsorization for about 5.3% of

sample paths, compared with 20.9% for ReMeDi and 4.0% for JLZ. BIC needs no adjustment.

8. If a correlation estimate exceeds 1 (resp. -1), we reset it to be 1 (resp. -1).
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Table 3.1: Simulation Results for Noise Autocorrelation Estimation

QMLE QMLE JLZ JLZ JLZ ReMeDI ReMeDI ReMeDI
BIC AIC hn = 2 hn = 4 hn = 6 k′n = 0.5 k′n = 1 k′n = 2

Panel A: Small Noise
ρ1 BIAS -0.309 -0.195 0.586 0.639 0.657 -0.082 0.224 0.387

RMSE 0.310 0.432 0.587 0.639 0.657 0.577 0.603 0.617
ρ3 BIAS -0.163 -0.101 0.716 0.775 0.795 0.008 0.315 0.477

RMSE 0.163 0.327 0.718 0.775 0.795 0.600 0.691 0.723
ρ5 BIAS -0.044 -0.027 0.821 0.885 0.906 0.048 0.369 0.536

RMSE 0.044 0.242 0.824 0.886 0.906 0.633 0.757 0.801
Panel B: Median Noise

ρ1 BIAS -0.093 -0.017 0.153 0.300 0.379 -0.006 -0.016 -0.035
RMSE 0.150 0.075 0.185 0.312 0.386 0.098 0.150 0.251

ρ3 BIAS -0.063 -0.010 0.188 0.364 0.459 0.000 -0.012 -0.034
RMSE 0.094 0.054 0.227 0.379 0.468 0.111 0.170 0.280

ρ5 BIAS -0.029 -0.004 0.217 0.416 0.524 0.003 -0.002 -0.033
RMSE 0.039 0.036 0.262 0.434 0.535 0.115 0.186 0.300

Panel C: Large Noise
ρ1 BIAS -0.009 -0.001 -0.055 0.010 0.045 0.000 -0.003 -0.001

RMSE 0.040 0.020 0.073 0.063 0.083 0.036 0.039 0.043
ρ3 BIAS -0.008 0.000 -0.066 0.012 0.055 0.001 -0.002 -0.001

RMSE 0.029 0.019 0.088 0.075 0.100 0.042 0.043 0.048
ρ5 BIAS -0.011 0.000 -0.075 0.014 0.062 0.001 0.002 0.000

RMSE 0.028 0.018 0.101 0.086 0.114 0.044 0.046 0.051

Note: This table compares estimators of 1st-, 3rd-, and 5th-order autocorrelations (ρ1, ρ3, ρ5) in
three scenarios of noise magnitude. “QMLE” is an MA(q̂n)-likelihood estimators using either BIC or
AIC for order selection. “JLZ” refers to the nonparametric estimator of Jacod, Li, and Zheng (2017).
“ReMeDI” refers to the nonparametric estimator of Li and Linton (2021). We report three choices
of hn and k′n for comparison. The AIC-QMLE, JLZ, and ReMeDI estimates of autocorrelations
are winsorized so that their magnitude stays within [−1, 1]. The true 1st, 3rd-, and 5th-order
autocorrelations are 0.308, 0.163, and 0.04, respectively.

3.5 Empirical Analysis of U.S. Equity

To demonstrate the empirical relevance of the proposed approach, we conduct a large-scale

study of noise autocovariances for S&P 1500 index constituents from January 1, 1996, to

December 31, 2016. There are approximately 1,500 tickers every day, and about 3,500 tickers
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in total due to changes in index constituents. To illustrate, we summarize cross-sectional

findings here though all estimates are available upon request. We use BIC-QMLE for noise-

related parameters because of the model selection consistency result discussed earlier. We

also report volatility estimation results, but with AIC⋆-QMLE, as suggested by Da and Xiu

(2021b).

We download the trades and quotes of all equities at their highest frequency available (up

to a millisecond after January 1, 2007, and a microsecond from July 27, 2015) from the TAQ

database.9 Next, we remove trades and quotes with special condition codes or suffix codes,

as well as those that occur outside regular trading hours.10 We then construct national best

bid and offer (NBBO) data using quotes from all exchanges at a 1-second frequency.11 We

then match trades with NBBOs by their recorded time points and remove those trades that

are outside the range of the corresponding NBBOs.12 Our approach is less aggressive than

that of Barndorff-Nielsen, Hansen, Lunde, and Shephard (2009), in that we maintain trades

and quotes from all exchanges, whereas they retain only entries originating from a single

exchange. Next, we remove redundant trades, retaining only nonzero returns.13 This step

helps alleviate model misspecification due, for example, to the effect of rounding, latency or

delay across exchanges, and so on. Finally, we remove any stock days that have fewer than

9. Because companies change their tickers from time to time for mergers, acquisitions, or other reasons,
the same ticker in the TAQ database may correspond to different stocks. We therefore keep track of these
changes and use CRSP PERMINOs to index all stocks that do not change over time.

10. We remove trades and quotes with condition codes Z, B, U, T, L, G, W, K, J and corresponding odd-lot
trades, which have an additional letter I, as well as those with non-empty suffix codes (preferred shares).
We identify opening trades as those with condition codes O, Q, OI, or QI; closing trades with 6, M, 6I, or
MI; and remove all trades beyond the window of opening and closing time points. We only keep trades with
correction indicator 00 or 01.

11. We construct NBBOs from the millisecond dataset by adapting the SAS codes from https://wrds
-web.wharton.upenn.edu/wrds/research/applications/microstructure/NBBO%20derivation/.
Although this database has more precise timestamps, we do not construct NBBOs at any frequency higher
than every second.

12. For trades that are observed at millisecond or microsecond intervals, we match them with the NBBOs
of the previous second. Our SAS codes for cleaning the data are available upon request.

13. This step is called “tick-time sampling” by Griffin and Oomen (2008).
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12 observations after cleaning.

We start by examining the time-series behavior of volatility and microstructure noise.

The upper panel of Figure 3.3 presents the time series of volatility estimates for constituents

of each of the three indices, respectively. The lower panel provides the time series of noise-

variance estimates among those constituents whose estimates are available. We use lines to

represent the median and shaded areas to represent the lower and upper quartiles in the

cross-section. We also smooth these time series using equal weights over a monthly moving

window. Although considerable cross-sectional variation is present, the median volatility

estimates among constituents of all three indices share a pattern similar to what we usually

find from the volatility of the S&P 500 index. That said, the small caps are on average more

volatile than the large caps, with the mid caps in between. As to the noise, there is a clear

declining pattern in its order of magnitude over time across the entire universe, which is

likely because of the improvement in market efficiency. Not surprisingly, the small caps have

the largest noise, followed by the mid cap and then the large cap.

Next, we focus on the dependence structure of the noise. As the left panels of Figure

3.4 show, around 30%-60% of stocks have noise that is too small to be estimated. This

percentage is higher for large caps than for small caps. For a large percentage of stock-day

pairs, the selected orders based on the BIC are 0, so that i.i.d. noise assumption is reasonable

for them. That said, about 10%-30% of stock-day pairs remain for which BIC prefers a few

more lags. For BIC to select more than 6 lags is rare. We also find more stock-days in 2016

with selected orders greater than or equal to 1, compared with earlier years, particularly for

large caps. This finding is due to the availability of data sampled at a frequency even higher

than every second, for which we expect to see more autocorrelated lags.

To shed further light on this point, we provide in the right panels of Figure 3.4 histograms

of the durations of autocorrelations for those tickers with selected lags greater than or equal

to 1. Duration is defined in terms of seconds as the product of the selected order and the
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Figure 3.3: Time Series of Volatility and Noise-innovation Variance

Note: The upper panel compares the cross-sectional median (lines), lower, and upper quartiles
(shaded areas) of the annualized volatility estimates for S&P Composite 1500 Index constituents
(using Algorithm 2.3), and the lower panel presents the variance estimates of noise innovation (using
Algorithm 2.4) for those constituents that have large-enough noise. The time series are smoothed
with equal weights over a moving window of 21 days. The y-axis of the lower panel is transformed
to the logarithm scale for the sake of presentation.

average trading frequency for each stock-day pair. We find that estimated durations are

much shorter for large-cap stocks than for smaller caps. Moreover, the average duration

of autocorrelations has been decreasing in the past two decades. For instance, the average

duration of large caps has decreased from 102 ∼ 103 to merely 10 seconds.

Finally, we discuss the importance of modeling the microstructure noise through the lens

of volatility inference. While there exist informal volatility signature plot or more formal

tests of microstructure noise (Aït-Sahalia and Xiu (2019)), such pre-testing-based approaches

do not deliver correct volatility inference due to uniformity concerns when noise exists but
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is too small to be detected. We compare the biases and RMSEs of the popular realized

volatility estimator and the QMLE, to indirectly shed light on the influence of noise. The

former estimator, based on data sampled at a prespecified frequency—say, every 5 or 15

minutes—is most commonly adopted in practice.

The left panels of Figure 3.5 compare the cross-sectional medians of realized volatility

estimates based on 5-minute and 15-minute subsamples, respectively, with the corresponding

medians of the QMLEs. Remarkably, on average, a large upward bias associated with the

former estimates is present, potentially due to the presence of noise at the 5-minute frequency.

The biases are substantial–over 160% for small caps–compared with noise-robust QMLEs in

earlier years. The biases have been decreasing over the past two decades, with a slight

increase post-2008. Biases of the small caps are more evident than those of the large caps.

On average, the large caps are traded more frequently than every 5 minutes, so their biases

in the cross-sectional medians are almost indistinguishable from zero post-2002. This finding

does not imply that every 5 minutes is a safe frequency for each individual constituent of the

S&P 500 index. At a 15-minute frequency, the biases are clearly smaller–though they have

not completely vanished, even in 2016–for these median estimates. The right panels of Figure

3.5 compare the ratios of standard errors between the 5-minute (resp. 15-minute) realized

volatility estimator and the QMLE using the entire sample. The larger the ratio, the greater

the efficiency loss for the realized volatility. We only report results for 2016, because the

quality of the realized volatility estimator is best. We find that when the sampling frequency

reaches every 15 minutes, most of the ratios are greater than 1, with some being as large as

10–in particular, for S&P 500 constituents–which suggests substantial efficiency losses.

To sum up, without accounting for noise, the realized volatility estimator faces a bias

and variance dilemma. Estimates using 5-minute data are subject to severe biases, whereas

15-minute estimates suffer from considerable efficiency losses. Additionally, the standard

errors could still be understated because the noise might not be sufficiently small to the
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extent that it can be safely ignored.

3.6 Conclusion

We propose a semiparametric approach to disentangling autocovariances and autocorrela-

tions due to the microstructure frictions associated with observed prices. Our approach

resembles a threshold estimator, which gives zero autocovariance estimates beyond the lag

selected by the information criteria. This feature delivers superior performance in the finite

sample, particularly when noise is relatively small, compared with alternative nonparametric

estimators. Our empirical study of S&P 1500 stocks finds that the microstructure noise has

shrunk by several orders of magnitude and that its autocovariances have faded more rapidly

in recent years than earlier. These findings indicate that market efficiency has improved

substantially, potentially due to the popularity of electronic and algorithmic trading. In

a cross-sectional comparison, the autocovariances of small-cap stocks tend to persist for a

longer period than the large caps, perhaps due to limits to arbitrage or for liquidity reasons.
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Figure 3.4: Selected Orders and Durations of Autocorrelations

Note: Left panels provide the frequencies of selected orders using BIC for each stock-day pair in
1996, 2006, and 2016, respectively. “-1” represents the case of small noise, i.e., the stock-day pair for
which no reliable estimate of noise variance exists. “0” represents the case of i.i.d. noise, whereas
other values are the selected orders of MA processes. Panels on the right provide the corresponding
(fitted) histograms of the durations of autocorrelations in the case of dependent noise. Duration in
terms of seconds is defined as the product of the selected order and the average trading frequency
for each stock-day pair. The x-axis is transformed to a logarithmic scale for the sake of presentation.
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Figure 3.5: Relative Biases and Standard Errors of the Realized Volatility against QMLE

Note: The right panels plot percentage biases in the cross-sectional medians of 5-minute and 15-
minute realized volatility estimates, respectively, relative to their corresponding QMLEs using the
entire sample. Time series are smoothed with equal weights over a moving window of 21 days. The
right panels provide the histograms of the ratios of standard errors between the 5-minute (resp.
15-minute) realized volatility estimator and the QMLE, for each stock-day pair in 2016. The x-axes
on the right panels are transformed to the a logarithmic scale for the sake of presentation.
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Chapter 4

The Statistical Limit of Arbitrage1

4.1 Introduction

It is a fundamental underlying principle of most asset pricing theories, including the Arbi-

trage Pricing Theory (APT), that investment opportunities with extremely high ratios of

reward to risk do not exist in financial markets. Implicitly, these theories rest on the premise

that such near-arbitrage opportunities would attract arbitrageurs who exploit and thereby

eliminate these opportunities. An important assumption in these theories is that parame-

ters in the data-generating process (DGP) of returns are known to arbitrageurs. Therefore,

near-arbitrage opportunities in the DGP of returns are ruled out.

In practice, however, sophisticated investors searching for near-arbitrage opportunities do

not know the true parameters. Instead, they commonly conduct statistical analyses to learn

about the existence of such opportunities from historical returns data. As a consequence,

they face statistical uncertainty. In some settings, such as in some derivatives pricing ap-

plications, for instance, the statistical uncertainty may be sufficiently small that it is not a

significant impediment to arbitrageur activity. But in noisy, high-dimensional settings such

as the cross-section of stock returns, statistical uncertainty can be substantial and it can

constitute a statistical limit to arbitrage.

1. This Chapter is a joint work with Stefan Nagel and Dacheng Xiu.

60



To analyze the effects of arbitrageur learning, we consider a setting in which returns follow

a statistical linear factor model. Near-arbitrage opportunities are characterized by high

Sharpe ratios achieved by factor-neural trading strategies. To exploit such opportunities,

arbitrageurs need knowledge of factor model alphas, but they must learn about these from

historical realizations of returns. We derive the optimal Sharpe ratio achievable by any

feasible arbitrage trading strategies, which is strictly dominated by the infeasible optimal

Sharpe ratio that arbitrageurs could achieve if they were endowed with perfect knowledge of

alphas. This, in turn, provides a new no-near-feasible-arbitrage bound on the Sharpe ratio

that accounts for the statistical limit to arbitrage.

The difficulty of the learning problem hinges on the DGP of alpha signals. While our

theory generally does not rely on specific cross-sectional distributions of alpha signals, we use

simple special cases to demonstrate how the optimal Sharpe ratio varies with the strength and

sparsity of alphas. When alphas are strong and not too rare relative to the dimensionality

of the cross-section and the sample size, arbitrageurs can learn the distribution of alpha

perfectly in the limit. But when alpha is weaker and more rare, its inference becomes more

challenging and a gap arises between the optimal feasible Sharpe ratio and the infeasible

Sharpe ratio that requires perfect knowledge of alphas. For instance, the infeasible Sharpe

ratio may explode asymptotically, while the feasible Sharpe ratio stays bounded.

The existence of this statistical limit to arbitrage implies a widening of the bounds in

which mispricing can survive in equilibrium compared with a situation in which arbitrageurs

know the DGP and its parameters. Some mispricing may survive because it is clouded by too

much statistical uncertainty. Empirically therefore, the feasible, not the infeasible, Sharpe

ratio tells us about the minimum reward-to-risk compensation that arbitrageurs require.

We further demonstrate how arbitrageurs can construct a feasible trading strategy that

achieves the theoretically optimal feasible Sharpe ratio, uniformly over DGPs of alphas,

regardless of the strength and sparsity of alphas. This means that the feasible Sharpe ratio

61



bound is in fact sharp. A uniformly valid trading strategy is desirable because in reality

arbitrageurs do not know which DGP is a correct description of the observed data. The

optimal strategy estimates the empirical distribution of alpha signals and assigns weights

based on the relative magnitudes and associated uncertainty of the alpha estimates. Assets

with high alpha t-statistics get portfolio weights proportional to their signal strength. Weaker

alphas are more difficult to exploit, yet simply ignoring them would lead to a suboptimal

trading strategy. The optimal strategy constructs portfolio weights for weak signals by locally

smoothing alpha signals cross-sectionally.

To empirically contrast feasible and infeasible Sharpe ratios, we also propose an estimator

of the infeasible Sharpe ratio that a hypothetical arbitrageur endowed with perfect knowledge

of DGP parameters would perceive. While this Sharpe ratio can be estimated consistently,

it cannot be realized by any feasible portfolio with weights constructed using historical

data. The infeasible Sharpe ratio often serves as the building block for tests of APT, see,

e.g., Gibbons, Ross, and Shanken (1989), Gagliardini, Ossola, and Scaillet (2016), Fan,

Liao, and Yao (2015), and Pesaran and Yamagata (2017). While such tests are powerful

and may lead to discoveries of alpha signals, they are not relevant for arbitrageurs who

are confined to feasible trading strategies. Our effort in constructing the optimal feasible

arbitrage portfolio and evaluating its economic performance directly responds to Shanken’s

call (Shanken (1992)): “... practical content is given to the notion of ‘approximate arbitrage,’

by characterizing the investment opportunities that are available as a consequence of the

observed expected return deviation ... Far more will be learned, I believe, by examining the

extent to which we can approximate an arbitrage with existing assets.”

While the optimal strategy outlined in our paper may not be adopted by investors,

exploring alternative strategies that are commonly employed by practitioners is both relevant

and insightful. Specifically, we investigate the potential of alternative strategies that leverage

techniques such as multiple testing, shrinkage, and selection to construct arbitrage portfolios,
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assessing their ability to achieve the optimal feasible Sharpe ratio. With alphas estimated

from cross-sectional regressions, one strategy adopts a multiple-testing (BH) procedure as

in Benjamini and Hochberg (1995) on the individual p-values of t-statistics for alpha, in

order to guard against potential false discoveries among significant alphas, before building

the optimal portfolio weights using selected alphas. Other strategies use either LASSO or

Ridge penalties to regularize portfolio weights based on alpha estimates. Such strategies

amount to imposing a prior distribution on the alphas. We illustrate with a simple example

that these strategies can achieve optimal Sharpe ratio under distinct alpha assumptions. In

particular, BH procedure achieves optimal performance only when few true alpha signals are

substantially strong. Its failure to achieve optimality is precisely due to its conservativeness

nature against the less potent alphas. In contrast, the ridge-based portfolio is equivalent to

that constructed by alpha estimates from plain cross-sectional regressions. This approach

can achieve optimality when almost all true alphas are either uniformly strong or uniformly

weak. The LASSO approach attempts to strike a balance between the aforementioned two

methods, with a small gap to achieving the theoretically optimal Sharpe ratio, provided an

optimal tuning parameter.

Finally, we demonstrate the empirical implications of the statistical limits of arbitrage

by examining 56 years of monthly individual equity returns in US stock market from 1965 to

2020. The average number of stocks over this period exceeds 4000. We construct residuals

via cross-sectional regressions from a multi-factor model that directly uses observed charac-

teristics as risk exposures. These characteristics include market beta (Fama and MacBeth

(1973)), size (Banz (1981)), operating profits/book equity (Fama and French (2006)), book

equity/market equity (Fama and French (2006)), asset growth (Cooper, Gulen, and Schill

(2008)), momentum (Jegadeesh and Titman (1993)), short-term reversal (Jegadeesh (1990)),

industry momentum (Moskowitz and Grinblatt (1999)), illiquidity (Amihud (2002)), leverage

(Bhandari (1988)), return seasonality (Heston and Sadka (2008)), sales growth (Lakonishok,
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Shleifer, and Vishny (1994)), accruals (Sloan (1996)), dividend yield (Litzenberger and Ra-

maswamy (1979)), tangibility (Hahn and Lee (2009)), and idiosyncratic risk (Ang, Hodrick,

Xing, and Zhang (2006)), as well as 11 Global industry Classification Standard (GICS) sec-

tors. These characteristics and industry dummies capture similar equity factors in the MSCI

Barra model widely-used among practitioners.

Our paper builds on a large literature on the arbitrage pricing theory (APT) developed

by Ross (1976) and later refined by Huberman (1982), Chamberlain and Rothschild (1983),

and Ingersoll (1984). As in these papers, we rely on asymptotic arguments that do not rely

on assumptions about investor preferences, but these results should be seen as an asymp-

totic approximation for a more realistic setting with a finite number of assets in which weak

preference restrictions rule out Sharpe ratios far above the Sharpe ratios of diversified factor

portfolios. The statistical limit to arbitrage that we highlight in this paper relax this Sharpe

ratio bound compared with an economy in which arbitrageurs are endowed with perfect

knowledge of DGP parameters. In this regard, our paper is also related to another large

strand of literature on the limit of arbitrage, see Gromb and Vayanos (2010) for a compre-

hensive review. Complementary to the existing literature, the arbitrage limit in our setting

stems from statistical uncertainty, instead of being induced from risk, costs, frictions, and

other constraints rational expectation investors are facing.

Kozak, Nagel, and Santosh (2018a) argue that the absence of near-arbitrage opportunities

enforces the expected returns to approximately line up linearly with common factor covari-

ances, even in a world in which belief distortions affect asset prices. Our study focuses on the

deviations of expected returns from this approximate linear relation and how statistical limits

to arbitrage allow bigger deviations. A closely related paper to ours is Kim, Korajczyk, and

Neuhierl (2020), which proposes a characteristics-based factor model to construct feasible ar-

bitrage portfolios. Their asymptotic theory does not preclude arbitrage opportunities with a

theoretically infinite Sharpe ratio, which implies a rather strong signal-to-noise ratio in their
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alpha signals. Relatedly, Uppal and Zaffaroni (2018) propose a methodology to construct

robust portfolios that can be decomposed into alpha (arbitrage) portfolios and beta (factor)

portfolios. Our setting is considerably different from both papers in that the premise of our

framework rules out infinite feasible Sharpe ratios, which enforces weak and rare signals. In

our setting, alphas cannot possibly be recovered with certainty even when the sample size is

large. On the empirical side, Guijarro-Ordonez, Pelger, and Zanotti (2022) propose a deep

learning approach to statistical arbitrage that achieves a sizable out-of-sample Sharpe ratio.

The profits of their trading strategy stem from generalized return reversals at daily to weekly

frequencies, potentially due to liquidity provision and other microstructure channels. Our

empirical analysis is not targeted towards characterizing the reward-to-risk ratios for high

frequency traders, nor for traders that turnover a large portion of their portfolios daily.

Our paper also contributes to the evolving literature on applications of statistical and

machine learning in asset pricing, and in particular on the topic of testing the APT, e.g.,

Gibbons, Ross, and Shanken (1989), Gagliardini, Ossola, and Scaillet (2016), and Fan, Liao,

and Yao (2015), as well as on testing for alphas, e.g., Barras, Scaillet, and Wermers (2010),

Harvey and Liu (2020), and Giglio, Liao, and Xiu (2021). The first literature focus on testing

a null that all alphas are equal to zero. This is certainly an interesting null hypothesis, but

as we emphasize in this paper, the APT does allow for alphas as long as they do not induce

an explosive feasible Sharpe ratio. The second literature focuses on detecting strong alphas,

in which widely used multiple testing methods, such as the BH method by Benjamini and

Hochberg (1995), or its extensions can be applied to control the false discovery rate (FDR).

In contrast, we allow for rare and weak alpha signals such that any procedure aiming to

control the FDR is too conservative with too few or no discoveries.2 Our objective here

is not on model testing or signal detection. Rather, we strive for the optimal economic

performance of arbitrage portfolios. We show that even if signals were so weak that they are

2. Donoho and Jin (2004) adopt the so-called higher criticism approach, dating back to Tukey (1976), to
detect rare and weak signals in a stylized multiple testing problem.
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undetectable by multiple testing methods, they may lead to a portfolio with a considerable

Sharpe ratio.

There has been a long-standing critique of rational expectation models in macroeconomics

and finance in which economic agents are not confronted with statistical uncertainty over

structure parameters, see Hansen (2007). Bayesian learning is one way to expose model

agents to statistical uncertainty. Pastor and Veronesi (2009) survey the literature on learning

in financial markets. In many settings, e.g., Collin-Dufresne, Johannes, and Lochstoer (2016),

learning can be sufficiently slow such that its effects persist in empirically realistic sample

sizes, even though convergence to rational expectations takes place in the long-run. An

exception is Martin and Nagel (2021) where learning effects persist because investors face a

high-dimensional inference problem about the process generating firm cash flows. Similarly,

arbitrageurs in our model attempt to make inference on a high-dimensional parameter vector

with a potentially insufficient sample size, but they learn about returns, not firms’ underlying

cash flows. We examine different sequences of DGPs and in most scenarios, our learning

system does not converge to a rational expectations limit.3

Our paper is also related to Chen, Hansen, and Hansen (2021b) and Chen, Hansen, and

Hansen (2021a) in that they also account for the distinction between beliefs of economic

agents and the DGP revealed by empirical evidence. They model belief distortions as a

change of measure in moment conditions, use statistical measures of divergence relative to

rational expectation to bound the set of subjective probabilities, and seek robust inference

with this form of misspecification. In the spirit of Hansen (2014), we develop an optimal

feasible Sharpe ratio for arbitrageurs inside the economic model, which is in contrast with the

(infeasible) one from an outside econometrician’s point of view. In our setting, the deviation

from rational expectations stems naturally from the statistical obstacles economic agents

3. Our analysis is related to a large literature in econometrics and statistics that discuss uniform validity
of asymptotic approximations, see, e.g., Staiger and Stock (1997), Imbens and Manski (2004), Leeb and
Pötscher (2005), Andrews, Cheng, and Guggenberger (2020).
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are facing. A subtle and important point we strive to make here is that economic agents

embracing machine learning methods in a high dimensional environment could achieve a

distinct outcome as opposed to what rational expectation agents could asymptotically.

From a methodological perspective, the optimal portfolio weights are proportional to the

posterior mean of alpha, which resembles the classical normal mean problem in empirical

Bayes, dating back to Robbins (1956), where the unknown parameters, alpha, are regarded

as random draws from some common distribution, and only a noisy version of alpha (in the

form of ex-factor returns) is observed. Our nonparametric approach thereby shares the same

spirit of nonparametric empirical Bayes, see, e.g., Johns (1957), Zhang (1997), and Brown

and Greenshtein (2009). Yet unlike the classical empirical Bayes inference, our analysis

allows for weak and rare alphas as motivated from economic restrictions, and digs further

into the Sharpe ratios above and beyond the posterior mean of alphas.

Our paper proceeds as follows. Section 4.2 develops our main result on statistical limit to

arbitrage. Specifically, Section 4.2.1 sets up the model, Section 4.2.2 motivates and then de-

fines the feasibility constraint facing arbitrageurs, Sections 4.2.3 - 4.2.4 specify arbitrageurs’

decision problem, derive the optimal strategy, illustrate the Bayes correction for alpha, and

demonstrate the gap between feasible and infeasible Sharpe ratios, Section 4.2.5 constructs

a feasible trading strategy that achieves the bound, Section 4.2.6 proposes an estimator of

the infeasible Sharpe ratio, and finally Section 4.2.7 analyzes alternative strategies. Section

4.3 provides simulation evidence, followed by an empirical analysis in Section 4.4. Section

4.5 concludes. The appendix provides technical details.

4.2 Main Theoretical Results

We start by revisiting the arbitrage pricing theory framework developed by Ross (1976).

This theory is primarily based on a reduced-form statistical model for asset returns, which,

despite its stylized nature, offers significant theoretical insights and remains relevant for

guiding empirical investment decisions.
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4.2.1 Factor Model Setup

To be more concrete, the factor economy has N assets in the investment universe. The N×1

vector of excess returns rt follows a reduced-form linear factor model:

rt = α + βγ + βvt + ut, (4.2.1)

where β is an N ×K matrix of factor exposures (with the first column being a vector of 1s),

α is an N × 1 vector of pricing errors, vt is a K × 1 vector of zero-mean factor innovations

with covariance matrix Σv, γ is a K × 1 vector of risk premia (first entry corresponding to

the column of 1s is the zero beta rate), and ut is a vector of zero-mean idiosyncratic returns,

independent of vt, with a diagonal covariance matrix Σu.4

We assume at any given time t, arbitrageurs examine a sample of size T , derived from

Equation (4.2.1), spanning from t − T + 1 to t. Throughout we will consider asymptotic

limits as N and T increase while K and t are fixed.5 To facilitate our asymptotic analysis

along the cross-sectional dimension, N , we regard high dimensional objects such as α, β,

and Σu as random variables drawn from some cross-sectional distributions, whereas γ and

Σv are regarded as deterministic parameters. This distinction is made because γ and Σv

serve as nuisance parameters in our analysis and their dimensions remain fixed. We assume

that α has mean zero, and is cross-sectionally independent of β, and that β has full column

rank and is pervasive. These conditions are essential for identification of γ in a model that

4. While approximate factor models become more prevalent following Chamberlain and Rothschild (1983),
allowing for off-diagonal entries in the covariance matrix Σu would introduce additional statistical obstacles
due to the estimation of large covariance matrix for inference on alpha and for building optimal portfolios.
For simplicity, we illustrate the economic insight of limits to arbitrage using a strict factor model, leaving
discussions on violations of model assumptions later.

5. This framework presents a slight deviation from the conventional scenario in which arbitrageurs observe
a sample spanning t = 1, . . . , T and make their investment decision at time T +1. Essentially, our approach
highlights the continuous process of making investment decisions, rather than conceiving these decisions as
occurring at a single, distant future point, T . That said, this conceptual difference does not result in any
tangible difference in our theoretical and empirical results.
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allows for pricing errors. We formalize these conditions below.

To allow for a more general DGP, we may consider a conditional version of (4.2.1):

rt = αt−1 + βt−1γt−1 + βt−1vt + ut, (4.2.2)

where βt is a vector of time-varying factor loadings and γt is a vector of time-varying risk

premia.6 Despite the conditional model’s capacity to encapsulate a broader DGP, it does

not provide additional economic insights, particularly concerning the theoretical limits of

arbitrage, compared to the unconditional model. While our primary theoretical findings,

such as those provided in Theorems 7 and 8, remain applicable when β is substituted with

βt, we concentrate on the more stylized model (4.2.1) to illustrate our theory for clarity.

There are at least three variations of the factor model, depending on what econometricians

assume to be observable. The most common setup in academic finance literature imposes

that factors are observable as in e.g., Fama and French (1993).7 The second setting, which

has gained more popularity recently since its debut in Connor and Korajczyk (1986), assumes

that factors are latent. The third setting, arguably most prevalent among practitioners, is

the MSCI Barra model originally proposed by Rosenberg (1974), where factor exposures

(e.g., characteristics) are assumed observable. One notable advantage of this model is its

avoidance of the cumbersome task of estimating a large number of potentially time-varying

stock-level factor exposures. Such estimation processes can prove both statistically inefficient

and computationally demanding. By explicitly specifying risk exposures as linear functions of

readily observable characteristics, the MSCI Barra model simplifies the estimation procedure

6. This model is overly parametrized that parameters are not identifiable without additional restrictions.
Some examples of parsimonious conditional factor models include Connor, Hagmann, and Linton (2012),
Gagliardini, Ossola, and Scaillet (2016), and Kelly, Pruitt, and Su (2019a).

7. This is different from saying factor innovations, vt, are observable. The setting of observable factors
typically involves another equation that ft = µ + vt, where µ are the population means of the observed
factors ft, which are not necessarily identical to the factor risk premia, γ. Since µ is an unknown parameter,
vt is still not observable.
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and significantly reduces computational complexity.

The three approaches are intrinsically linked: if we assume that (4.2.2) holds with

αt = ctα and βt = ctβ for certain characteristics ct, then projecting returns onto lagged

characteristics results in:

(c
⊺
t−1ct−1)

−1c
⊺
t−1rt = α + β(γt−1 + vt) + (c

⊺
t−1ct−1)

−1c
⊺
t−1ut. (4.2.3)

This transformation converts a conditional model for individual stocks, rt, into an uncondi-

tional latent factor model for managed portfolios, (c⊺t−1ct−1)
−1c

⊺
t−1rt.

In our empirical work, we prefer to use the third model for its practicality in analyzing

individual stock returns, adhering to (4.2.2) but with a constant alpha.8 This approach is

particularly pertinent for practitioners. We extend our examination to include portfolios

as test assets, employing a static factor model, (4.2.1), with latent factors. In light of our

discussion about (4.2.3), this approach effectively accommodates for individual stocks’ alpha

that may vary over time.

4.2.2 Feasible Near-Arbitrage Opportunities

Building upon the insight of Ross (1976), Huberman (1982) and Ingersoll (1984) established

the concept of near-arbitrage, which can be formalized in a more general setting as below:

Definition 1: A portfolio strategy w at time t is said to generate a near-arbitrage

under a sequence of data-generating processes, such as (4.2.1), defined in a filtered probability

space (Ω,F , {Fs}s≤t,P), if it satisfies w ∈ Ft, and along some diverging subsequence,9 with

8. Empirically, we use a moving window method for alpha estimation, that effectively addresses alphas
that vary slowly over time. Given that accurately inferring alpha typically demands a large sample size, opting
for a constant alpha model serves as a reasonable compromise. This assumption sidesteps the theoretical
complexities associated with alpha’s temporal variability without losing empirical relevance. Meanwhile, our
analysis based on managed portfolios incorporates time-varying alphas effectively.

9. We adopt the same subsequence definition as that used in Ingersoll (1984). The subsequence typically
depends on the count of investment opportunities, i.e., N , though we do not need make this explicit in this
definition. For simplicity of notation and without ambiguity, we omit the dependence of w on N and t.
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probability approaching one,

Var(w⊺rt+1|Ft) → 0, E(w⊺rt+1|Ft) ≥ δ > 0.

Intuitively, no near-arbitrage means there exists no sequence of portfolios that earn pos-

itive expected returns with vanishing risks. Ingersoll (1984) established that a sufficient and

necessary condition for the absence of near-arbitrage is that10

S⋆ =

√
α⊺Σ−1

u α ≲P 1. (4.2.4)

Here, S⋆ is the theoretically optimal Sharpe ratio arbitrageurs can achieve in this economy

using a portfolio strategy that has zero exposure to factor risks, namely, a “statistical arbi-

trage” strategy in the jargon of practitioners. This result suggests that moderate mispricing

in the form of nonzero alphas is permitted in an economy without near-arbitrage oppor-

tunities, but there cannot be too many alphas that are too large, to the extent that S⋆

explodes.11

To achieve this optimal Sharpe ratio, arbitrageurs should hold a portfolio with weights

given by w⋆ ∝ Σ−1
u α, according to Ingersoll (1984).12 Under the rational expectation as-

sumption, arbitrageurs (agents in this model) know the true (population) parameters: α and

Σu. In reality, however, the true parameters are blind to arbitrageurs as they can only learn

these parameters from a finite sample of data. This learning effect is sometimes harmless

10. We use the notation a ≲ b to denote a ≤ Cb for some constant C > 0, a ≲P b to denote a = OP(b),
a ≂ b if a ≲ b and b ≲ a, and use a ≂P b accordingly.

11. Assuming αi is i.i.d. and λmax(Σu) ≲P 1, by equation (4.2.4), we have α⊺α ≲P α⊺λmin(Σ
−1
u )α ≲P

α⊺Σ−1
u α ≲P 1, so that E(α2

i ) = o(1) by the law of large numbers.

12. In Ingersoll (1984), α is defined to be the cross-sectional projection of the expected returns onto β
in the population model such that α⊺Σ−1

u β = 0. Contrary to this, our paper sets forth a predetermined
DGP as shown in (4.2.1), where we introduce α as a random variable with the property E(α⊺β) = 0.
Consequently, the optimal strategy, w⋆, as derived in Theorem 7 and illustrated by (4.2.10), differs from the
formula presented by Ingersoll (1984). That said, we can show that our w⋆ achieves the same Sharpe ratio
S⋆ (asymptotically as N increases).
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since it can be expected that when the sample size is large enough, the true parameters

are (asymptotically) revealed, and hence the predictions under rational expectation hold

approximately. Fundamentally, this phenomenon is due to the assumption that the learning

problem in the limiting experiment becomes increasingly simpler as the sample size increases.

In the current context, the difficulty of the learning problem also hinges on the number

of investment opportunities, N . As N increases, it becomes increasingly difficult for arbi-

trageurs to determine which among all assets truly have nonzero alphas for a given sample

size, T . If the learning problem remains difficult as N and T increase, the learning effect

persists, which could lead to distinct limiting implications as opposed to the rational expec-

tation case. It turns out that the rational expectation limit S⋆ is only relevant for rather

restrictive scenarios. In more realistic settings, e.g., N is much larger than T , the optimal

Sharpe ratio arbitrageurs can achieve without factor exposures is far smaller than S⋆ be-

cause of their inability to make error-free inference. Therefore, the condition (4.2.4) could

be excessively restrictive in such scenarios.

To illustrate this intuition, we consider a simple and specific example.

Example 3: Suppose the cross-section of alphas is drawn from the following distribu-

tion:

αi
i.i.d.∼


µ with prob. ρ/2

−µ with prob. ρ/2

0 with prob. 1− ρ

, 1 ≤ i ≤ N, (4.2.5)

where µ ≥ 0 and 0 ≤ ρ ≤ 1, and they potentially vary with N and T . In addition, we

also assume β = 0, Σu = σ2IN , for some σ > 0. Consequently, Equation (4.2.1) becomes

rt = α + ut.

In this example, µ dictates the strength of alphas, ρ describes how rare alphas are,

whereas σ is a nuisance parameter. By modeling parameters µ and ρ as functions of the

sample size and dimensions of the investment set, we introduce greater flexibility in depicting
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the challenges arbitrageurs encounter in finite sample situations.13 To emphasize the role of

signal strength and count, we impose in this example that all assets share the same alpha

distribution and the same idiosyncratic variance.

Now suppose, more specifically, that the magnitude of (µ, ρ) satisfies

µ ≂ T−1/2 and ρ ≂ N−1/2. (4.2.6)

This condition (4.2.6) implies that the signal strength µ vanishes as the sample size increases

(T → ∞) and the signal percentage count ρ decays as the investment universe expands

(N → ∞). This setup is used to approximate a reality with only a small portion of assets

having a nonzero yet small alpha. On the other hand, σ is assumed a fixed constant, since in

reality idiosyncratic risks never vanish, whereas alphas can be small driven by competition

among arbitrageurs. This model rests on an uncommon territory in the existing literature

of asset pricing: weak and rare alphas. In fact, the classical no near-arbitrage condition

(4.2.4) imposes, implicitly, weakness or rareness on alphas; otherwise, if alphas are strong

and dense, α⊺α would explode rather rapidly. Even in the current setting, in light of the fact

that E(α⊺α) = ρµ2N , we still have α⊺α P−→ ∞ as long as N1/2/T → ∞. In other words, a

near-arbitrage opportunity arises according to (4.2.4), with a strategy w = σ−2α.

However, the statistical obstacle prevents arbitrageurs from having this “free lunch.” In

general, it is only possible to recover any element of alpha up to some estimation error of

magnitude T−1/2.14 Since by design the true alpha is of the same order of magnitude as its

13. Adopting a drifting sequence for parameters is a common trick in econometrics to provide more accurate
finite sample approximations. As Bekker (1994) put, “in evaluating the results, it is important to keep in mind
that the parameter sequence is designed to make the asymptotic distribution fit the finite sample distribution
better. It is completely irrelevant whether or not further sampling will lead to samples conforming to this
sequence or not.”

14. Giglio, Liao, and Xiu (2021) develop the asymptotic normality result for alpha estimates via a Fama-
MacBeth procedure in various scenarios, in which factors are (partially) observable or latent whereas β is
unknown. The CLTs in these scenarios share the same form: for any 1 ≤ i ≤ N ,

√
T (α̂i − αi)

d−→ N (0, σ2
i (1 + γ⊺(Σv)

−1γ)), (4.2.7)
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level of statistical uncertainty, i.e., µ ≂ T−1/2, it is impossible for arbitrageurs to determine

precisely which assets among all have nonzero alpha.

For illustration purpose, suppose that arbitrageurs adopt the strategy ŵ = σ−2α̂,15

replacing α in w with α̂ = r̄ = α+ ū.16 Out of sample, this portfolio’s conditional expected

return and conditional variance can be written as:

E
(
σ−2 (α + ū)⊺ (α + ut+1)|Ft

)
= σ−2(α⊺α + ū⊺α),

Var
(
σ−2 (α + ū)⊺ (α + ut+1)|Ft

)
= σ−2(α⊺α + 2α⊺ū+ ū⊺ū),

where ut+1 denotes a future de-meaned return at t + 1, that shares the same distribution

as {us}s≤t, but is independent of ū which belongs to the information set up to t, Ft. The

resulting squared conditional Sharpe ratio is given by:

S2 =
σ−4(α⊺α + ū⊺α)2

σ−2(α⊺α + 2α⊺ū+ ū⊺ū)
≲P T

−1 → 0, (4.2.8)

where we use the fact that ū⊺ū ≂P N/T when ut is i.i.d.. In other words, this portfolio

achieves a Sharpe ratio equal to zero asymptotically.

Is there a superior trading strategy capable of maintaining a non-vanishing Sharpe ra-

tio? The straightforward answer is no. Our discussion below will elucidate that, within this

context, namely, (4.2.6) holds true, the highest achievable Sharpe ratio for all feasible trad-

ing strategies employed by arbitrageurs, represented as SOPT, vanishes asymptotically as

N, T → ∞. Conversely, the infeasible optimal Sharpe ratio, denoted S⋆, diverges under the

where σ2
i is the ith entry of Σu. In the case that β is observable (but factors are not), we can show that the

CLT has a similar form except that the scalar (1 + γ⊺(Σv)
−1γ) disappears.

15. The knowledge of σ is ultimately inconsequential for our purposes, as we will demonstrate subsequently
for a more general setting. Despite σ being known, this strategy fails to yield any positive Sharpe ratio.

16. For any time series of random vector at, we use ā to denote its sample average. As we will point out
later in the paper, this strategy ŵ, which we will denote by ŵCSR, fails to achieve the optimal Sharpe ratio
in all scenarios. We will discuss the optimal strategy in Section 4.2.5.
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condition that N1/2/T → ∞. There is a vast disparity, as shown by this example, between

SOPT and S⋆.

The difference between feasible and infeasible strategies is primarily driven by the infor-

mation set accessible to arbitrageurs when they implement their trading strategies. In this

example, the infeasible strategy assumes that arbitrageurs have access to a comprehensive

information set, Ft, that encompasses the knowledge of α. This knowledge proves to be

extremely valuable when α is both rare and weak, thereby establishing a significant gap

between this strategy and others lacking access to such information.

To clarify, we formalize the definitions as follows:

Definition 2: A strategy is deemed feasible when it relies solely on observable data,

in stark contrast to an infeasible strategy that presupposes complete knowledge of the DGP,

encapsulated by the full information set, Ft.

Recognizing the distinction between feasible and infeasible strategies, we proceed to in-

vestigate the maximum Sharpe ratio attainable by feasible strategies. This exploration

necessitates defining the decision-making problem faced by arbitrageurs, which we turn to

next.

4.2.3 Arbitrageurs’ Decision Problem and Feasible Sharpe Ratio Bound

In the broader context of the DGP, given by equation (4.2.1), the information set Ft not only

includes α but also other variables such as Σu, β, and vt, alongside unknown parameters like

Σv and γ. For a strategy to be considered feasible, it must refrain from leveraging these un-

known variables and parameters. This constraint introduces complexity to the arbitrageurs’

decision-making process by intertwining optimization with statistical techniques, resulting

in solutions that are not uniquely defined.

To navigate this complexity, we introduce a wider set of trading strategies that specifically

exclude reliance on information about α, recognizing that the Sharpe ratio wedge between
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feasible and feasible strategies mainly stems from the process of learning about α. Given

this constraint, we derive an achievable upper bound for the Sharpe ratio that applies to

all such strategies, and by extension, to all feasible strategies, since they similarly eschew

information on α. Yet, this upper bound is not sharp, because the restriction does not prevent

strategies that may leverage information on other variables, like Σu. In Section 4.2.5, we

further show that it is possible to attain this upper bound with a well-crafted feasible trading

strategy. Therefore, even lacking knowledge of other variables and parameters, arbitrageurs

can effectively use statistical inference to estimate these unknowns, with the statistical error

on such estimates becoming negligible asymptotically. This highlights that the main hurdle

for arbitrageurs is not in learning about factors, volatilities, or risk premia, but in acquiring

knowledge about α.

We are now ready to characterize the decision problem arbitrageurs confront. Operating

under an information set, G, a subset of Ft, arbitrageurs are tasked with solving a mean-

variance optimization problem expressed as:

w̃ = arg max
w∈G:w⊺β=0

U(w), where U(w) = E
(
w⊺rt+1

∣∣G)− κ

2
Var

(
w⊺rt+1

∣∣G) ,
and κ measures the degree of risk aversion. Our objective is to identify the optimal strategy

subject to the measurability constraint: w ∈ G. Given the necessity for statistical arbitrage

to be factor-neutral, the strategy w must be orthogonal to β, with β being predetermined,

i.e., β ∈ G.

To streamline the portfolio formation process, we exclude transaction cost considerations,

transforming it into a static, single-period optimization problem. Thus, we omit the subscript

t wherever possible. This approach aligns with the APT framework introduced by Ross

(1976), where the arbitrageurs’ chosen strategy aims to eliminate exposure to systematic

factors, concentrating instead on capitalizing on alphas and balancing idiosyncratic risks.

Their utility is modeled as a Bayesian posterior expected loss, a concept discussed in Berger
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(1985). The next theorem presents a solution with minimal conditions on G.

Theorem 7. Suppose that rt follows (4.2.1) and that β is G-measurable. It holds that

w̃ =
1

κ
Σ̃
−1/2
u M

Σ̃
−1/2
u β

Σ̃
−1/2
u α̃, (4.2.9)

where α̃ := E(α|G) and Σ̃u := E(Σu|G) + Var(α|G).17

This result associates the optimal strategy with the posterior summary statistics of α

and Σu. Essentially, the choice of the optimal G-measurable strategy is determined by ar-

bitrageurs’ best parameter estimates based on their information set, rather than the true

values of the unknown parameters. In the special scenario where G = Ft, meaning arbi-

trageurs possess complete information up to time t, we have α̃ = α, and Σ̃u = Σu. Under

these conditions, the optimal infeasible strategy, denoted by w⋆, is given by

w⋆ =
1

κ
Σ
−1/2
u M

Σ
−1/2
u β

Σ
−1/2
u α. (4.2.10)

Moving forward, our attention is directed towards a specific choice of G as generated by

{(rs, β, vs,Σu) : t − T + 1 ≤ s ≤ t}.18 Accordingly, w̃ is assumed associated with this

particular choice by default hereafter.

Next, we examine the investment performance of arbitrageurs’ optimal strategy, w̃. It

is important to note that in evaluating a strategy, the conditional Sharpe ratio is calcu-

lated based on the comprehensive information set, Ft, rather than the arbitrageurs’ specific

information set, G. For any given strategy w, its conditional Sharpe ratio is defined as:

S(w) := E(w⊺rt+1|Ft)/Var(w
⊺rt+1|Ft)

1/2.

17. MA = I−A(A⊺A)−1A⊺ for any matrix A.

18. The nuisance parameters γ and Σv are deterministic constants and, as such, are encompassed within
any information set. Although they are part of G, their presence does not influence the optimal strategy of
arbitrageurs.
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To describe the asymptotic behavior of a strategy, we need impose assumptions on the return

generating process:

Assumption 11. For each N ≥ 1, the following conditions hold:

(a) (αi, ui) is i.i.d. across i, and satisfies E(αi|(Σu)i,i) = 0 and E∥α∥2MAX = o(1). More-

over, it holds that 1 ≲P λmin(Σu) ≤ λmax(Σu) ≲P 1.19

(b) The pricing errors α, factors vt, factor loadings β, and idiosyncratic errors ut are,

conditionally on Σu, mutually independent.

Condition (a) suggests that the alphas in our model are inherently weak; as the number

of assets, N , increases, their magnitudes diminish.20 Moreover, this condition ensures that

volatilities remain within upper and lower bounds. These two conditions imply that learning

about alpha is a more arduous task than learning about volatilities. Also, condition (b) is

imperative for the model’s identification. For instance, assuming independence between α

and β is key to identify the risk premia, γ, see, e.g., Giglio, Kellly, and Xiu (2022).

Given this assumption, the subsequent theorem illustrates that the optimal strategy w̃

yields a Sharpe ratio that is nearly at its maximum.

Theorem 8. Suppose that rt follows (4.2.1) and that Assumption 11 holds. Let G represent

the information set generated by {(rs, β, vs,Σu) : t − T + 1 ≤ s ≤ t}. For any strategy w

that is both G-measurable and factor-neutral, if follows that as N → ∞,

S(w) ≤ S(G) + oP(1 + S(G)), (4.2.11)

19. For a matrix A, we use ∥A∥ and ∥A∥MAX = maxi,j |aij | to denote the operator norm (or ℓ2 norm) and
the ℓ∞ norm of A on the vector space. We use λmin(A) and λmax(A) to denote the minimum and maximum
eigenvalues of A.

20. By Assumption 13(a), Var(αi) = E(α2
i ) = o(1). Referencing our earlier discussion (footnote 11), a

diminishing variance in α is essential for precluding near-arbitrage opportunities within Ross’ APT frame-
work.
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where S(G)2 = α̃⊺Σ−1
u α̃, and the equality in (4.2.11) holds if w = w̃. Moreover, the optimal

strategy for arbitrageurs, w̃, is approximately equal to

∥∥∥∥w̃ − 1

κ
MβΣ

−1
u α̃

∥∥∥∥ = oP(1 + S(G)). (4.2.12)

Accordingly, their optimal utility satisfies
√

2κU(w̃) = S(G) + oP(1 + S(G)).

Theorem 8 derives an upper bound, denoted as S(G), on the Sharpe ratio that any G-

measurable strategy can attain. This upper bound also connects with arbitrageurs’ optimal

utility. By the definition of S(G), this upper bound satisfies that

E
(
S(G)2

)
≤ E

(
α⊺Σ−1

u α
)
, (4.2.13)

with the equality holds only when α̃ = α almost surely, where the right-hand side corresponds

to the infeasible scenario in which arbitrageurs have perfect knowledge of α, which echoes

(4.2.4), the result given by Huberman (1982).

Furthermore, the result demonstrates that the optimal strategy, as articulated in Theorem

7, can reach this upper bound with a negligible approximation error. In scenarios where S(G)

is finite, that is OP(1), the error term oP(1+S(G)) reduces to oP(1) and vanishes in the limit.

The theorem additionally addresses situations where S(G) may diverge, in which instance

the approximation error is reduced to oP(S(G)), remaining inconsequentially small relative

to S(G) itself.

Also, Equation (4.2.12) offers a more straightforward and intuitive formula for approx-

imating the optimal feasible strategy, w̃. Additionally, as a byproduct of Theorem 8, the

optimal infeasible strategy in Equation (4.2.10) can also be approximated in a simpler form:

∥∥∥∥w⋆ − 1

κ
MβΣ

−1
u α

∥∥∥∥ = oP(1 + S⋆), (4.2.14)

79



which represents a special case of Equation (4.2.12) where G is set as Ft. At its core, it is α̃,

the posterior estimate of the pricing errors that dictates the optimal Sharpe ratio achievable

by arbitrageurs, rather than α themselves. Intuitively, part of the construction in (4.2.12),

Σ−1
u α̃, is the optimal allocation to the ex-factor returns, α + ut = rt − β(γ + vt), based on

a simple mean-variance analysis, except for the use of α̃, that addresses the problem that

arbitragers do not observe true alphas in the DGP. Multiplying by Mβ to Σ−1
u α̃ simply

eliminates its factor exposures, because (MβΣ
−1
u α̃)⊺β = 0.

Theorems 7 and 8 are concerned with factor-neutral strategies, as our main results focus

on the limits of arbitrage. Our appendix broadens this scope to encompass any strategy,

revealing that any G-measurable strategy, w, adheres to a similar upper limit:

S(w) ≤
(
S(G)2 + γ⊺Σ−1

v γ
)1/2

+ oP(1 + S(G)), (4.2.15)

where γ⊺Σ−1
v γ is the squared optimal Sharpe ratio earned from factor portfolios or SDF.

This result provides a solution to a long standing problem in optimal portfolio allocation

amidst parameter uncertainty. Historically, the mean-variance portfolio, derived from sample

means and covariance matrices, is noted for its suboptimal performance. When assuming

normally distributed returns, Kan and Zhou (2007) studied the expected performance of

the plug-in mean-variance portfolio and found its Sharpe ratio is smaller than that of the

infeasible Sharpe ratio, S⋆. Nevertheless, they did not provide an upper bound of the feasible

optimal Sharpe ratio under parameter uncertainty. Our results fill this gap, identifying an

upper bound of the feasible optimal Sharpe ratio under the same factor model framework as

in APT.

The result in Theorem 8 appears to require that arbitrageurs rely on the information

set G, which embodies perfect knowledge of factors, vt, and their exposures, β, in addition

to past asset returns, rt. Moreover, arbitrageurs appear to have perfect knowledge of the

covariance matrix of idiosyncratic errors, Σu. In fact, the upper bound in (4.2.15) still holds
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if arbitrageurs are endowed with less information, because for any information sets G′ and G

such that G′ ⊆ G, we have E(S(G′)2) ≤ E(S(G)2). Since all feasible strategies are measurable

with respect to G, S(G) establishes an upper bound for the Sharpe ratio applicable to this

set of strategies, although it may not be sharp. In light of this and Definitions 1 and 2,

we immediately obtain a sufficient condition of the absence of near-arbitrage with feasible

strategies:

Corollary 3. Suppose the same assumptions as in Theorem 8 hold. For any given return-

generating process satisfying (4.2.1), there exists no feasible strategy that leads to a near-

arbitrage, if

S(G) ≲P 1, as N → ∞. (4.2.16)

4.2.4 Bayes Correction for Selection Bias

While the previous discussion underscored the role of the posterior mean of α, denoted as

α̃ = E(α|G), on the optimal G-measurable portfolio, this expression remains implicit and not

directly actionable. Our focus now shifts to reducing the information set G to its sufficient

statistics for α. This step is crucial for understanding why α̃ leads to enhanced portfolio

performance. To facilitate this analysis, we introduce further assumptions:

Assumption 12. For each N ≥ 1, the following conditions hold:

(a) ui,t = σiεi,t, where εi,t follows a standard normal distribution, and is i.i.d. across (i, t)

and independent of Σu.

(b) si := αi/σi is independent of σi.

Based on the DGP described in Equation (4.2.1) and given the information set G, As-

sumptions 11 and 12(a) together ensure that the key summary statistics for αi are the volatil-

ity σi and the sample average of the ex-factor returns, expressed as α̌i = r̄i − βi(γ + v̄) =

αi+ ūi. In other words, E(αi|G) = E(αi|α̌i, σi). Consequently, this assumption simplifies the
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conditional information set G in the posterior distribution of α to merely a two-dimensional

vector comprising these conditioning variables. To evaluate this conditional expectation, it

becomes necessary to assume a specific form of dependence between αi and σi.

In light of this, we introduce Assumption 12(b), which allows us to further express

E(αi|α̌i, σi) = σiE(si|α̌i, σi) = σiE(si|α̌i/σi).21 This leads to that s̃i := E(si|G) = E(si|ši),

where ši := α̌i/σi. Consequently, in terms of the scaled version of α, namely, s, the con-

ditional information set is now further simplified to a single scalar variable, significantly

simplifying the estimation problem later. Further, in light of Theorem 8, α̃, w̃, and S(G)2

can all be represented in relation to s̃:22

α̃ = Σ
−1/2
u s̃, w̃ ∝ MβΣ

−1/2
u s̃, S(G)2 = s̃⊺s̃. (4.2.17)

Finally, note that

ši = si + ε̄i ∼ N (si, T
−1), conditional on si.

This formulation casts the original posterior inference problem into the framework of the

classical Gaussian sequence model for recovering a high-dimensional mean vector, s, from

noisy observations š, which has been extensively studied in the statistics literature, see,

e.g., Robbins (1956), Efron (2011), and Efron (2019). Although the assumption that εi

follows a Gaussian distribution may seem restrictive, this framework is sufficiently versatile

to incorporate a wide range of distributions for si.

Arbitrageurs face the challenge of identifying the true underlying signal, s, from an

observed noisy signal š. This task is complicated by what Efron (2011) described as selection

bias or “the winner’s curse.” This phenomenon suggests that a high observed signal, ši, may

21. This equality relies on the result that conditional on α̂i/σi, αi/σi is independent of σi. We impose this
condition primarily for clarity of exposition and simplicity of Algorithm 3 below.

22. Given that risk aversion does not impact the out-of-sample Sharpe ratio, we will use ∝ to substitute
for κ−1 in our subsequent discussions on the portfolio strategy.
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be reflective of the high si, or it could be the result of “lucky” noise, ε̄i, being unusually large.

Consequently, arbitrageurs must carefully adjust their investment strategies to mitigate this

potential bias. The correction involves relying on s̃ that accounts for this bias. To see this,

we present an explicit formula for s̃:

Theorem 9. Suppose that rt follows (4.2.1) and Assumptions 11 and 12 hold. We introduce

a function ψ(a) = E (si|ši = a), with which we have α̃i = σis̃i, where s̃i = ψ(ši). Moreover,

it holds that

ψ(a) = a+
1

T

d

da
log p(a), (4.2.18)

where p(a) = E
(
ϕ1/T (a− si)

)
is the probability distribution function of ši.23

The preceding discussion directly leads to the first assertion of the theorem. Equation

(4.2.18) is rooted in Tweedie’s formula (Robbins (1956)), which establishes a connection

between the posterior mean of s, given š = a, denoted ψ(a), and the posterior probability

distribution of š. The formula’s second component, T−1d log p(a)/da, plays a crucial role in

adjusting for the selection bias in the observed signal, ši, which introduces several intriguing

properties. An example of these properties, as shown by Andrews, Arnold, and Krutchkoff

(1972) is that ψ(a) is a nondecreasing function of a. This property ensures that the relative

magnitude of various signals is preserved post-correction. Moreover, under mild assumptions

about the prior distribution of si, such as being symmetric and unimodal, the posterior mean

s̃ induces a shrinkage effect towards the prior mean, which, in our context, is zero.

The posterior shrinkage on α, or equivalently on s, consequently induces a “shrinkage”

effect on the optimal Sharpe ratio achievable by arbitrageurs, as demonstrated by the inequal-

ity (4.2.13). Based on the results of Theorem 9, and under a technical condition concerning

the tail behavior of si, we can obtain a more explicit formula for S(G):

23. ϕx(a) is the distribution function for N (0, x).
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Corollary 4. Under the same assumptions outlined in Theorem 9, and with the additional

condition that E(s2i1{|si|≥cN}) = o(N−1), we arrive at the conclusion that:

S(G) = SOPT + oP(1), with SOPT =

(
N

∫
ψ(a)2p(a)da

)1/2

.

This result enables us to compute SOPT in various examples. For instance, by utilizing

this result, we can compare SOPT with S⋆ from Huberman (1982) in Example 3. This

comparison illuminates the feasibility of attaining non-vanishing Sharpe ratios , highlighting

how different DGP conditions influence their achievability.

Corollary 5. Suppose that the same assumptions as in Corollary 4 hold. In addition, we

assume alpha follows (4.2.5) as in Example 3. Then we have S⋆ = σ−1µ(ρN)1/2 + oP(1).

Further, assuming that σ−1µ(ρN)1/2 does not vanish, then it holds that SOPT ≤ (1 −

ϵ)σ−1µ(ρN)1/2 for some ϵ > 0, if and only if

T 1/2µ/σ −
√

−2 log ρ ≲ 1. (4.2.19)

Corollary 5 suggests that when T 1/2µ/σ is large that the constraint (4.2.19) is violated,

S⋆ ≂P SOPT, that is, in the limit, learning does not play any role, so that arbitrageurs in

this scenario achieve the same optimal Sharpe ratio as in Huberman (1982). Furthermore,

the rareness parameter ρ does not make much difference if T 1/2µ/σ gets sufficiently large.

That said, if ρ approaches to zero so fast to the extent that
√
−2 log ρ dominates T 1/2µ/σ,

that is, alpha is extremely rare and sufficiently weak, the learning problem becomes rather

challenging and hence SOPT is dominated by S⋆ in the limit, resulting in a strictly smaller

Sharpe ratio than the infeasible Sharpe ratio in the classical case.

To give a concrete example of Corollary 5, consider an alternative DGP assumption as
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opposed to (4.2.6):24

µ ≂ N−η and ρ > 0 is fixed. (4.2.20)

In this scenario, (S⋆)2 ≂P N1−2η, which explodes unless η > 1/2. If further assuming that

N/T → ψ > 0, then the left-hand-side of condition (4.2.19) is of order N1/2−η ∨ 1, so that

(4.2.19) holds if and only if η ≥ 1/2. Therefore, η < 1/2 is not consistent with absence

of (feasible) near arbitrage in that S⋆ explodes, while in the mean time SOPT = S⋆ (by

Corollary 5) and hence explodes. If η > 1/2, S⋆ (and hence SOPT) vanishes, which does not

seem like an economically plausible case. If we think that arbitrageur activity is required to

prevent substantial mispricing, then a setting where mispricing disappears asymptotically

even if the frictions faced by arbitrageurs are very large is not plausible. This suggests

that under this DGP (4.2.20), the only economically plausible case with absence of near-

arbitrage is η = 1/2. That is, η can be thought as determined in equilibrium, in which there

are substantial asset demand distortions such that mispricing in the absence of arbitrageur

action would be non-negligible asymptotically, and arbitrageurs are aggressive enough so

that near-arbitrage opportunities do not exist asymptotically.

We now illustrate the behavior of SOPT numerically and verify the theoretical predictions

of Corollary 5 using the DGP specified in Example 3. Figure 4.1 reports the Sharpe ratio,

SOPT, of optimal feasible arbitrage portfolios for a range of µ/σ and ρ values in the case

of N = 1, 000 and T = 20 years. Recall that according to model (4.2.5), a ρ percentage of

assets have alphas with a Sharpe ratio µ/σ. That is, ρ characterizes the rareness of the alpha

signal, whereas µ/σ captures its strength. We intentionally choose a wide range of µ/σ (with

annualized Sharpe ratios from 0.11 to 10.95) and ρ (from 0.12% to 50%) to shed light on the

dependence landscape of Sharpe ratios on signal weakness and rareness, despite that some

of the resulting portfolio Sharpe ratios (the top left conner of Figure 4.1) are unrealistically

24. It is easy to show that the setup (4.2.20) satisfies all assumptions of Corollary 4 for all fixed η > 0.
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high. Note that when µ/σ ×
√
12 hits 0.44, its corresponding t-statistic based on a 20-year

sample exceeds 1.96, the typical t-hurdle for a standard student-t test.

The pattern of Sharpe ratios agrees with our intuition and theoretical predictions. For

any fixed ρ, as the alpha signal weakens (i.e., µ/σ decreases), the optimal Sharpe ratio drops.

The same is true if we decrease the signal count (i.e., ρ vanishes), for any fixed value of µ/σ.

The arbitrageur’s learning problem is the easiest when signal is strong and count is large (top

left conner), and the most challenging towards the right bottom corner, where the optimal

Sharpe ratios drop to near zero.
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Figure 4.1: Optimal Sharpe Ratios (SOPT) of Feasible Arbitrage Portfolios

Note: The figure reports optimal Sharpe ratios of feasible arbitrage portfolios in model (4.2.5), in which
a 100× ρ% of assets have alphas that correspond to an annualized Sharpe ratio µ/σ ×

√
12.

The reported Sharpe ratios on Figure 4.1 are only a fraction of the corresponding (infeasi-

ble) Sharpe ratios, S⋆ =
√
α⊺(Σu)−1α = µ/σ

√
ρN , as shown by Figure 4.2. The pattern we

see from Figure 4.2 agrees with theoretical predictions of Corollary 5. When the annualized

Sharpe ratio µ/σ ×
√
12 is larger than 2.74, regardless of the values of ρ, the signal-to-noise

ratio of the learning problem is sufficiently strong that the statistical limit to arbitrage does

not matter much, and hence SOPT/S⋆ is close to 1. Nonetheless, this regime is irrelevant
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in practice, since it is mostly associated with unrealistically high Sharpe ratios (see Figure

4.1). In contrast, as µ/σ diminishes, the gap between S⋆ and SOPT widens. In almost all

empirically relevant scenarios, S⋆ is largely exaggerated.
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Figure 4.2: Ratios between SOPT and S⋆

Note: The figure reports the ratios of optimal Sharpe ratios between feasible and infeasible arbitrage
portfolios. The simulation setting is based on model (4.2.5), in which a 100 × ρ% of assets have alphas
that correspond to an annualized Sharpe ratio µ/σ ×

√
12.

4.2.5 Constructing the Optimal Arbitrage Portfolio

In our prior discussion, Theorem 8 established that the optimal Sharpe ratio attainable by

any feasible strategy is capped by S(G), which, by Corollary 4, is approximately equal to

SOPT under additional conditions. Following this, Corollary 5 illustrates the dependence of

SOPT on the unknown DGP parameters. However, these findings presuppose access to the

information set G, which not only includes past returns, rt, but also potentially unknown

variables, such as β, vt, and Σu, alongside unknown parameters in the DGP, γ and Σv. As a

result, the strategy w̃ is infeasible, given its reliance on Σu and s̃, which in turn depends on

the ex-factor returns, r̄i−βi(γ+ v̄). Therefore, arbitrageurs encounter substantial challenges

in this context. They must conduct statistical inference concerning unknown variables and
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parameters to shape their investment strategies. Moreover, the devised optimal strategy

must be flexible and adapt to the nuances of different DGPs.

Despite the challenges, arbitrageurs can indeed construct a uniformly optimal strategy

that attains SOPT across a broad spectrum of DGPs, even without perfect knowledge of the

true DGP. In fact, this strategy leverages only observable data, making it entirely feasible.

Specifically, we formulate this strategy within a framework where factors remain latent, but

factor exposures are observable – a scenario that aligns with our empirical analysis.

We describe this portfolio strategy as “all weather,” signifying its adaptability to all

considered DGP scenarios. Moreover, the fact that this strategy achieves SOPT implies that

the feasible Sharpe ratio upper bound we derive is sharp. We outline the following algorithm

to construct this strategy:

Algorithm 3.

Inputs: rt, t ∈ T = {t− T + 1, . . . , t} and β.

S1. Construct cross-sectional regression estimates of alpha and idiosyncratic volatilities,

for each i = 1, 2, . . . , N :

α̂ = T−1
∑
s∈T

Mβrs, σ̂2i = T−1
∑
s∈T

(
(Mβrs)i − α̂i

)2
, and ŝi := α̂i/σ̂i.

S2. Construct a nonparametric estimate of the marginal density of ŝ using Gaussian kernel

function ϕ1/T (x) and bandwidth kN ∼ (logN)−1:

p̂(a) =
1

NkN

∑
i

ϕ1/T

( ŝi − a

kN

)
.
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S3. Estimate s̃ by Tweedie’s formula (4.2.18) and isotonic regression:

ψ̆(a) =a+
1 + k2N
T

d

da
log p̂(a).

ψ̂ =argminx∈RN ∥x− ψ̆∥2, s.t. xi ≤ xj if ŝi ≤ ŝj , for 1 ≤ i, j ≤ N,

where ψ̆i := ψ̆(ŝi).

S4. Construct the arbitrage portfolio weights as ŵOPT ∝ MβΣ̂
−1/2
u ψ̂.

Outputs: ŵOPT.

Step S1 of Algorithm 3 provides feasible estimates of α̂ and Σ̂u = Diag(σ̂2i ), which in

turn leads to the sufficient statistic, ŝ. The motivation behind Steps S2 and S3 stems from

Tweedie’s formula; here, we employ a nonparametric empirical Bayes method for estimating

the posterior mean function using kernel density estimation, as suggested by Brown and

Greenshtein (2009).25 The incorporation of the factor (1 + k2N ) serves to adjust for finite

sample biases introduced by estimation errors in p̂(a). To enhance the nonparametric es-

timator’s performance in finite samples, enforcing monotonicity on ψ(·) proves beneficial.

For this purpose, isotonic regression is utilized (see Robertson, Dykstra, and Wright (1988)),

yielding a monotonic piece-wise linear approximation of ψ(·). Step S4 constructs the optimal

portfolio weights, ŵOPT, following (4.2.17).

An essential step towards achieving optimality involves aggregating information from

assets with comparable ŝi, as done in Step S2. This strategy outperforms the alternatives,

some of which directly use estimated ŝ as if these estimates are not susceptible to estimation

errors even when they are rather weak, or simply ignore the contribution of all weaker signals.

Like any machine learning method, the proposed approach requires a tuning parameter kN ,

which can be selected in a validation sample.

25. Step S2 exploits symmetry in the prior distribution of s for the construction of the nonparametric
kernel density estimator. This enhances finite sample performance and streamlines the proof.

89



The following theorem demonstrates the optimality of ŵOPT:

Theorem 10. Let P denote the collection of all data-generating processes under which rt

follows (4.2.1), and Assumptions 11 and 12 hold. Moreover, we assume ∥β∥MAX ≲P 1,

λmin(β
⊺β) ≳P N , and that the distribution of si is symmetric. In addition, suppose that

Nd ≲ T ≲ Nd′ for fixed constants d > 1/2 and d′ < 1. We denote the Sharpe ratio

achieved by ŵOPT as ŜOPT := E(r
⊺
t+1ŵ

OPT|Ft)/Var(r
⊺
t+1ŵ

OPT|Ft)
1/2. Then it holds that

ŵOPT achieves, asymptotically, the upper bound SOPT, uniformly over all sequences of data-

generating processes. That is, for any ϵ > 0,

lim
N,T→∞

sup
P∈P

P
(∣∣ŜOPT − SOPT

∣∣ ≥ ϵSOPT + ϵ
)
= 0.

Theorem 10 imposes a mile assumption on λmin(β
⊺β) requires that all factors are per-

vasive.26 This condition is frequently utilized in factor model literature and is particularly

relevant here, given our assumption that the factors within our model are latent. A signifi-

cant difference between our results and the traditional empirical Bayes literature (e.g., Brown

and Greenshtein (2009)) is our lack of direct access to observable signals. To eliminate factor

exposure, cross-sectional regressions become essential, inevitably introducing estimation er-

rors into ŝi. The additional conditions imposed by Theorem 10 ensure that such estimation

errors become asymptotically negligible.

Theorem 10 concludes that in the context of a linear factor model, arbitrageurs can con-

struct this strategy, without any knowledge besides past returns and risk exposures (beta),

to achieve the maximal Sharpe ratio over all feasible trading strategies that have zero expo-

sure to factor risks. This Sharpe ratio precisely characterizes the limit of feasible arbitrages

in economic terms. The rationale behind this conclusion stems from the setting where the

idiosyncratic variances represented by Σu remain significant as N and T increase, in contrast

26. See, e.g., Assumption I.1 of Giglio and Xiu (2021a). While our theoretical results may extend to certain
weak factor settings, this is not our emphasis here.
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to alphas. This distinction is empirically grounded; alphas are expected to be small and rare

, a result of the competitive nature of arbitrage activities, as opposed to idiosyncratic risks

that persistently exist. Therefore, in the context of arbitrage limitations, the importance

of learning about Σu is minimal and becomes negligible. Moreover, acquiring knowledge

about vt and risk premia γ is considerably more straightforward given their low-dimensional

characteristics and the knowledge of β.

The term ϵSOPT + ϵ accommodates both small and large values of SOPT. If SOPT ≲ 1,

then ϵ dominates and the estimation error inside the probability is characterized by the

absolute difference between ŜOPT and SOPT. Otherwise, if SOPT → ∞, the estimation

error is described in percentage terms. This is necessary because we simultaneously consider

a large class of models.

With Theorem 10, we establish the necessity for the no near-arbitrage condition given

by (4.2.16).

Corollary 6. Suppose the same assumptions as in Theorem 10 hold. The portfolio weights

by ŵOPT yields a near-arbitrage strategy under any sequences of data-generating processes

for which condition (4.2.16) does not hold.

We have shown that arbitrageurs can construct an optimal strategy that realizes SOPT.

Now suppose that the equilibrium “cost” of implementing an arbitrage is C in an economy

with statistical limit of arbitrage. In equilibrium, SOPT = C, otherwise arbitrageurs can

trade until it is no longer profitable to do so. We can thereby interpret ŜOPT as an empirical

estimate of the arbitrage cost, which we will estimate empirically.

4.2.6 Estimating Optimal Infeasible Sharpe Ratio

We are also interested in estimating the optimal infeasible Sharpe ratio, S⋆, which can be

perceived as the optimal Sharpe ratio from an outside econometrician’s point of view, and yet

cannot be realized by a feasible portfolio. Existing literature on testing APT often construct

test statistics in the spirit of Gibbons, Ross, and Shanken (1989), which are effectively based
91



on S⋆, see, e.g., Pesaran and Yamagata (2017) and Fan, Liao, and Yao (2015). While such

tests are powerful and may lead to detection of alphas, their relevance to arbitrageurs might

be limited. The challenge for arbitrageurs lies in translating the statistical evidence into

a feasible portfolio strategy that enables profit realization from these discovered alphas, a

dilemma that our proposed SOPT addresses directly.

To provide a benchmark for ŜOPT, we propose an estimator for S⋆ inspired by its sample

analog:

S̃⋆ =
(
r̄⊺MβΣ̂

−1
u Mβ r̄

)1/2
. (4.2.21)

Unfortunately, this estimator has a non-vanishing asymptotic bias for certain DGPs we

consider, as we will show later. To fix this issue, we propose a new estimator that is uniformly

consistent:

Ŝ⋆ =
(
r̄⊺MβΣ̂

−1
u Mβ r̄ −N/T

)1/2
. (4.2.22)

The next proposition summarizes the asymptotic properties of both estimators.

Proposition 3. Suppose that rt follows (4.2.1) and that Assumption 11 holds. Assume that

E(α2i 1{|αi|≥cN}) ≤ cNN
−1, T ≲ N , T−1N1/2 logN ≤ cN , for some sequence cN → 0, and

that εi,t has finite eighth moment. Then we have

∣∣∣Ŝ⋆ − S⋆
∣∣∣/(1 + S⋆

)
= oP

(
T−1/2N1/4

√
logN

)
,∣∣∣S̃⋆ − ((S⋆)2 +NT−1

)1/2∣∣∣/(1 + S⋆
)

= oP

(
T−1N1/2 logN

)
.

Similar to Theorem 10, the estimation error is relative when S⋆ dominates 1.0 asymptot-

ically, and in absolute terms if S⋆ is dominated by 1.0.27 This accommodates a large class of

models, some of which have an exploding or a shrinking S⋆. While it is possible to estimate

S⋆, it is not possible to build a portfolio that realize it, unless the signal-to-noise ratio is

27. Obviously, the threshold 1.0 can be replaced by any fixed constant.
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sufficiently large such that S⋆ = SOPT. Empirically, the difference between Ŝ⋆ and ŜOPT

thereby informs us about the impact of learning from the data.

4.2.7 Alternative Strategies for Arbitrage Portfolios

Algorithm 3 introduces a nuanced approach enabling arbitrageurs to reach a state of feasible

optimality. However, it is unclear whether this strategy has been employed by arbitrageurs

in real-world settings. Consequently, this section delves into various alternative method-

ologies. While none of these alternatives guarantee uniform optimality across all DGPs we

consider, their relative simplicity and observed prevalence in practical applications warrant

examination. Our analysis helps illustrate their pros and cons in different DGP scenarios.

Cross-Sectional Regression

One of the most common strategies involves forming portfolios based directly on the cross-

sectional estimates of α, obtained in Step S1 of Algorithm 3. This method is referred to as

CSR, with its portfolio represented by ŵCSR:

ŵCSR ∝ MβΣ̂
−1
u α̂. (4.2.23)

The strategy described is effectively a sample analogue of the approximated infeasible strat-

egy given by (4.2.14).

We now exploit Example 3 to illustrate the pros and cons of the CSR strategy. Figure 4.3

illustrates the relationship between SCSR, the theoretical Sharpe ratio achieved by ŵCSR, and

SOPT across a spectrum of DGPs. According to our proposition in the online appendix, SCSR

tends to be overshadowed by SOPT in scenarios where alpha signals are sparse (
√
ρTµ/σ

is not excessively large) and simultaneously strong (
√
Tµ/σ is not exceedingly small). This

specific regime of dominance is clearly marked with black numerals within the heatmap in

Figure 4.3. As the ratio µ/σ ×
√
12 edges closer to 1.0—either moving towards this vertical

threshold from the right hand side or descending from the upper left corner—the gap between
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SCSR and SOPT enlarges increasingly.

The CSR approach takes all signal estimates directly, without differentiating the sig-

nificant ones from the insignificant ones. Consequently, even fake signals (pure noise) are

assigned non-zero weights, which, in turn, hurts the portfolio’s performance. On the other

hand, the CSR strategy can achieve optimality when the strong signals are abundant (so

that portfolio weights allocated to noise are inconsequential) or when all signals are weak

(so that they do not differ too much from fake ones). The latter case is interesting, as it also

suggests that simply ignoring weaker signals is not optimal. That said, Figure 4.1 shows

that the DGPs for which the cross-sectional regression approach is strongly dominated by

our optimal strategy are associated with realistic Sharpe ratios.
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Figure 4.3: Ratios between SCSR and SOPT

Note: The figure reports the ratios between the Sharpe ratios of the OLS based portfolio and the feasible
optimal arbitrage portfolio. The theoretical Sharpe ratio achieved by CSR is denoted as SCSR, given
explicitly by Proposition ??. The simulation setting is based on model (4.2.5), in which a 100 × ρ% of
assets have alphas that correspond to an annualized Sharpe ratio µ/σ ×

√
12.

The CSR approach is a simple benchmark as it does not rely on any advanced statistical

techniques to detect signals or distinguish their strength. The strategy we discuss next is

more advanced, in that it controls false discoveries among selected strong signals using the
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B-H procedure proposed by Benjamini and Hochberg (1995).

False Discovery Rate Control

To address the aforementioned selection bias in identifying profitable alpha signals, an al-

ternative methodology conceptualizes the search for alpha as a multiple testing problem. In

this case, assuming there are N assets each potentially associated with a nonzero αi, we can

establish for each asset i a null hypothesis Hi
0 : αi = 0. Rejection of this null hypothesis

leads to the discovery of a non-zero alpha. Rather than focusing on the significance level

of individual tests, a more appropriate strategy involves controlling the FDR, an approach

recommended by Barras, Scaillet, and Wermers (2010), Bajgrowicz and Scaillet (2012), and

Harvey, Liu, and Zhu (2016) in various asset pricing contexts. Giglio, Liao, and Xiu (2021)

have proved the validity of the B-H procedure for FDR control in a general factor model

setting for alpha detection. Below we describe the necessary steps to prepare alpha estimates

for constructing an arbitrage portfolio.

Begin with a series of p-values, pi, where each is the result of a t-test on the cross-sectional

regression estimate of αi,
√
T ŝi, for i = 1, 2, . . . , N . These p-values assess the significance of

each αi’s deviation from zero. Arrange these p-values in ascending order, from the smallest

to the largest, resulting in a sorted sequence p(1) ≤ . . . ≤ p(N). Identify a critical index,

k̂, defined as the maximum i such that p(i) ≤ τi/N where τ is a predetermined significance

level, commonly set at 5%.

The selection of k̂ is strategic, aiming to ensure that, on average, at least a fraction (1−τ)

of the alpha estimates identified as significant (i.e., those with p-values smaller than p
(k̂)

)

are truly non-zero. This B-H criterion proves effective irrespective of the overall proportion

of non-zero alphas present in the DGP. This method allows for a systematic and statistically

robust selection of alpha estimates, minimizing the risk of including false positives, and these

selected alpha estimates are then utilized as inputs for constructing an arbitrage portfolio,
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as illustrated by the following equation:

ŵBH(τ) ∝ MβΣ̂
−1
u α̂BH(τ), where α̂BHi (τ) = α̂i1{pi≤p

(k̂)
}. (4.2.24)

This strategy introduces a hard thresholding mechanism to the alpha estimates, effectively

nullifying the impact of alphas deemed insignificant.

Controlling the FDR on top of the CSR estimates is intuitively appealing, but doing

so incurs a potential loss of power, leading to less investment opportunities. Our focus is

on optimal portfolio construction instead of FDR control. Our proposition in the appendix

shows that in the context of Example 3, arbitrageurs who adopt the B-H based-trading

strategy cannot achieve optimal portfolio for a large class of DGP sequences.

As shown by the proposition in the appendix and illustrated numerically by Figure 4.4,

the discrepancy between the optimal Sharpe ratio and that achieved through the B-H method

is largely determined by the signal strength. The B-H procedure nears optimality when the

signal strength, quantified by
√
Tµ/σ, is substantial—exceeding the threshold of

√
−2 log ρ.

The instances where the B-H strategy reaches optimality are depicted by the white values

on Figure 4.4, with the boundary of this optimal region approximated by the line where

µ/σ
√
12 = 2.19. This demonstrates that the B-H method excels in identifying strong signals,

leading to near-optimal portfolios when signals are strong. Conversely, in the presence of

weak signals, the B-H procedure, which amounts to hard-thresholding, tends to underperform

compared to CSR.

This point is further elaborated in Figure 4.1, which underscores that even if individual

alphas are weak, their aggregated effect on a portfolio’s Sharpe ratio can be non-trivial.

The B-H approach takes a notably conservative stance towards signal selection, especially in

contexts where signals are weak. This cautious approach ensures the reliability of selected

alphas by focusing on those that are truly significant. However, this method might not fully

capitalize on the potential cumulative impact of weaker signals. In contrast, our optimal
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arbitrage portfolio leverages the full spectrum of alpha estimates, including false positives,

extending beyond the significant selections made through the B-H procedure.

At its core, this delineates a subtle yet critical divergence between two objectives: alpha

testing and portfolio construction. The former prioritizes the identification of statistically

significant alphas with FDR under control, whereas the latter focuses on the utilization of

all available information to optimize portfolio performance. These objectives do not always

align.
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Figure 4.4: Ratios between SBH and SOPT

Note: The figure reports the ratios between the Sharpe ratios of the multiple testing based portfolio (via
B-H procedure) and the feasible optimal arbitrage portfolio. The theoretical Sharpe ratio achieved by B-H
is denoted as SBH, given explicitly by Proposition ??. The simulation setting is based on model (4.2.5),
in which a 100× ρ% of assets have alphas that correspond to an annualized Sharpe ratio µ/σ ×

√
12.

The CSR and the B-H approaches represent two typical strategies in practice. The former

trades all signals without distinguishing their strength, whereas the latter only trades the

stronger signals. Neither approach always achieves optimality.
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Shrinkage Approaches

The analysis above suggests that we can construct the optimal portfolio out of the ex-factor

returns, while imposing regularization on portfolio weights, before rewriting the regularized

portfolio weights in terms of raw returns (i.e., multiplying the weights by Mβ). Regularizing

portfolio weights amounts to imposing priors directly on the alpha estimates. To see this,

we adopt a shrinkage approach, when constructing arbitrage portfolios on residual returns:

max
w

{w⊺α̂− 1

2
w⊺Σ̂uw − pλ(Σ̂

1/2
u w)},

where pλ(x) = λ∥x∥1 or λ∥x∥22, for some λ > 0. Since Σ̂u is diagonal, this optimization

problem has a closed-form solution: w̆q,i(λ) = σ̂−1
i ψq(ŝi, λ), for i = 1, 2, . . . , N , where q = 1

corresponds to the Lasso penalty and q = 2 the ridge, and ψq(s, λ) is

ψ1(s, λ) = sgn(s)(|s| − λ)+, ψ2(s, λ) = (1 + 2λ)−1s.

This leads to the optimal portfolio weight on rt:28

ŵq(λ) ∝ Mβw̆q(λ), q = 1, 2.

Depending on the magnitude of λ, the Lasso approach replaces all smaller signals (i.e., ŝi) by

zero and shrinks the larger ones by λ in absolute terms. In other words, the Lasso approach is

the soft-thresholding alternative to the B-H method. In contrast, the ridge penalty shrinks all

signals proportionally, which means ridge is equivalent to CSR! This “embedded” shrinkage

effect of CSR explains why it performs well in the case of small signals.

The online appendix, offers explicit formulae for the optimal feasible Sharpe ratios in the

28. An alternative strategy is to impose sparsity directly on the portfolio weights with respect to raw
returns. While this approach might be appealing from the transaction cost point of view, it does not
associate with an explicit prior on alpha, hence is more difficult to interpret.
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shrinkage case. Unlike Ridge, which remains unaffected by the tuning parameter regarding

its Sharpe ratio, Lasso’s performance is contingent on its tuning parameter. However, even

with the optimal choice of tuning parameter, it cannot achieve the optimal feasible Sharpe

ratio in all DGPs.

Figure 4.5 compares SLASSO
λ with SOPT, where SLASSO

λ denotes the theoretical Sharpe

ratio achieved by Lasso for a given tuning parameter choice λ. Given that the Lasso ap-

proach involves this tuning parameter, it necessitates a cross-validation procedure. We adopt

an infeasible and theoretically optimal tuning parameter that maximizes SLASSO
λ in Figure

4.5. Although theoretical results in the appendix suggest that Lasso is not uniformly opti-

mal, it performs remarkably well, achieving the optimal Sharpe ratio in almost all regimes.

Intuitively, when signals are very strong, Lasso behaves like a hard-thresholding selector,

as shrinkage has minimal effect. Conversely, when signals are weak, Lasso behaves akin to

Ridge (and hence CSR), since shrinking these signals does not alter the fact that they are

nearly indistinguishable from noise.

4.3 Simulation Evidence

This section demonstrates the empirical relevance of our theory via simulations and examines

the finite sample performance of the proposed portfolio strategies.

For simplicity and clarity, we simulate a one-factor (CAPM) model of returns given by

(4.2.1). We choose the factor risk premium as 5% per year and set the annualized volatility

at 25%. We model the cross-section of betas using a normal distribution with mean 1

and variance 1. Since we focus on the arbitrage portfolio, the parameters about the factor

component (including the number of factors) are inconsequential, because factors, if any, are

eliminated by Mβ in the first step when constructing these trading strategies. In addition,

we adopt model (4.2.5) in Example 3 for the cross-sectional distribution of alpha, and fix the

idiosyncratic volatilities of all assets at σ, since it is α/σ that determines the signal strength

and that there is no need of varying both α and σ in the cross section.
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Figure 4.5: Ratios between SLASSO
λ and SOPT

Note: The figure reports the ratios between the Sharpe ratios of the Lasso based portfolio and the feasible
optimal arbitrage portfolio. The theoretical Sharpe ratio achieved by Lasso is treated as the maximum of
SLASSO
λ over all λ, given explicitly in the appendix. The simulation setting is based on model (4.2.5), in

which a 100 × ρ% of assets have alphas that correspond to an annualized Sharpe ratio µ/σ ×
√
12. The

tuning parameter λ is selected to maximize SLASSO
λ .

We now compare the finite sample performance of our portfolio estimators over differ-

ent DGPs. For any given parameter value (µ/σ, ρ) in a DGP, we estimate the portfolio

weights, ŵOPT, using our Algorithm 3, and calculate the resulting (theoretical) Sharpe ra-

tio: ŵOPT⊺
µ/

√
ŵOPT⊺

Σ−1
u ŵOPT. We then calculate the average Sharpe ratio over all Monte

Carlo repetitions. Our approach requires a tuning parameter kn. For robustness, we report

results based on three parameter values (0.5kn, kn, 2kn) with kn = 0.25, covering a wide

range of tuning parameters. We repeat this exercise for the CSR, B-H, and Lasso methods

for comparison. For the Lasso method, we adopt its theoretically optimal yet impractical

tuning parameter. This optimal parameter is chosen to maximize SLASSO
λ , thus ensuring

the Lasso method is assessed under the most favorable conditions possible.
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In light of Theorem 10, a sensible choice of the estimation error can be written as:

ErrA(µ/σ, ρ) = |ŜA − SOPT|/(1 + SOPT),

where A denotes OPT, CSR, BH, or LASSO, and the dependence of ŜA and SOPT on µ/σ

and ρ is omitted. When SOPT is large (i.e., >> 1), this error is in percentages relative to

SOPT; when SOPT is small (i.e., oP(1)), the error is measured in terms of the absolute dif-

ference. The error is defined this way because SOPT itself can diverge or diminish depending

on different parameters in the simulated DGPs.

Table 4.1 reports the maximal error over all values of µ/σ and ρ. The results show that

OPT has a smaller error in almost all cases for all tuning parameters than CSR, BH, or

LASSO. As T increases from 10 years to 40 years, the maximum error drops from 0.377 to

0.263 in the case of N = 1, 000 for kn = 0.25, whereas CSR, BH and LASSO stay above

0.44. The maximal error for CSR is achieved at the lower left conner of Figure 4.1, where

signals are strong but rare; for BH, the worst performance occurs around the upper right

corner, where many weak signals exist; for LASSO, the worse is near the bottom but in the

middle, where signals are neither too strong nor too weak.

N = 1, 000, Monthly N = 3, 000, Monthly N = 1, 000, Daily
T = 10 T = 20 T = 40 T = 10 T = 20 T = 40 T = 10 T = 20 T = 40
0.385 0.332 0.289 0.442 0.367 0.320 0.449 0.440 0.408

OPT 0.377 0.309 0.263 0.437 0.333 0.282 0.411 0.382 0.356
0.381 0.282 0.233 0.446 0.318 0.247 0.370 0.334 0.303

CSR 0.540 0.489 0.441 0.618 0.570 0.515 0.537 0.485 0.427
BH 0.742 0.703 0.651 0.814 0.789 0.748 0.760 0.715 0.657
LASSO 0.537 0.488 0.440 0.615 0.568 0.512 0.536 0.483 0.426

Table 4.1: Sharpe Ratio Comparison in Simulations

Note: This table reports the maximum error, defined by supµ/σ,ρ Err
A(µ/σ, ρ), where A denotes either OPT,

or CSR, or BH, or LASSO, over all values of µ/σ and ρ in Figure 4.1, for several choices of N , T (in
years), and data frequencies. The first three rows correspond to the OPT approach with three different
values of tuning parameters, 0.5kn, kn, and 2kn, respectively, where kn = 0.25. The BH approach controls
false discovery rate at a level 5%. The Lasso approach uses the optimal (infeasible) tuning parameter that
optimizes SLASSO.
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Finally, Figure 4.6 reports the estimation error
∣∣Ŝ⋆ − S⋆

∣∣/(1 + S⋆
)

in simulations. The

result confirms the consistency result given by Proposition 3. The error is relative when

S⋆ is large or moderate (>> 1). We find the relative error is around 1% towards the left

top corner. For DGPs near the bottom right corner of Figure 4.6, S⋆ vanishes as shown by

Figures 4.1 and 4.2, the error becomes absolute (S⋆ << 1) and is moderately small given

the sample size and the cross-sectional dimension.
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Figure 4.6: Comparison between Ŝ⋆ and S⋆

Note: The figure reports the error between Ŝ⋆ and S⋆ defined as
∣∣Ŝ⋆ − S⋆

∣∣/(1 + S⋆
)
. The simulation

setting is based on model (4.2.5), in which a 100× ρ% of assets have αs that correspond to an annualized
Sharpe ratio µ/σ ×

√
12. In this experiment, N = 1, 000 and T = 20 years.

4.4 Empirical Analysis of US Equities

To demonstrate the empirical relevance of the statistical limit of arbitrage, we study US

monthly equity returns from January 1965 to December 2020.

4.4.1 Data Preprocessing

We adopt a multi-factor model with 16 characteristics and 11 GICS sectors, which are se-

lected to incorporate empirical insight from existing asset pricing literature and industry
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practice. The selected characteristics include market beta, size, operating profits/book eq-

uity, book equity/market equity, asset growth, momentum, short-term reversal, industry

momentum, illiquidity, leverage, return seasonality, sales growth, accruals, dividend yield,

tangibility, and idiosyncratic risk, which are downloaded directly from the website openas-

setpricing.com, see Chen and Zimmermann (2020) for construction details.

We download the monthly return data for individual equities from CRSP. We take a

number of steps to preprocess the data. First, we single out delisted stocks, and attach

delisting returns as their last returns (on the delisting months). Next, we merge the returns

data with the aforementioned characteristics database using permnos. The total number

of unique permnos on average per month is 6,536. We then apply the usual filters (share

codes 10 and 11 and exchange codes 1, 2, and 3) to the database, to eliminate (part of) the

sampling periods for stocks that fail to meet these criteria. The remaining average number

of stocks per month is 4,756. For stocks whose returns are missing for more than 3 months,

we eliminate the missing periods, otherwise we fill the missing returns by zeros.

We now deal with missing characteristics. We start by removing all characteristics data

for any stocks since their delisting months. We then fill missing GICS codes with the corre-

sponding stocks’ most recent records prior to their missing dates. Stocks without any GICS

codes over the entire sample period are eliminated. If the GICS codes become available

later in the sample for some stocks, their sample prior to the first dates when GICS become

available are eliminated, which mainly occurs prior to 1990. With GICS information, we

adopt a two-step procedure to fill in other missing characteristics. For any missing value

in a stock’s characteristic, we fill it with the sector-wise median of this characteristic each

month. If a characteristic’s values are not available for an entire sector in a certain month,

we fill them with this characteristic’s cross-sectional median over all stocks in this month.

After data preprocessing, the final average number of stocks per month is reduced to 4,067.

The resulting panel is not balanced, because we do not fill in missing data before a stock’s
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IPO or after its delisting. Our approach to filling missing data thereby avoids forward-looking

bias.

4.4.2 Model Performance

At the end of each month, we run cross-sectional regressions of next month returns onto

the 27 cross-sectional predictors (including the intercept). We do so using all stocks in the

current month’s cross sections. Following Gu, Kellly, and Xiu (2020), the 16 characteristics

are rank-normalized within each cross-section, alleviating the impact of extreme outliers in

characteristics, though this barely changes any follow-up results.

Figure 4.7 plots the time series of the cross-sectional regression R2s over time. The R2

has been on the decline since the beginning of the sample till 1990s. This coincides with

the period when the number of stocks in the US equity markets increases. The R2s are

moderately low, with an average of 8.25%. The low R2s suggest that a substantial portion

of cross-sectional variation of individual equity returns is idiosyncratic noise. Therefore,

learning alphas from residuals of the factor model is an incredibly difficult statistical task.
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Figure 4.7: Time-series of the Cross-sectional R2s
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4.4.3 Rare and Weak Alphas

We now study the statistical properties of alphas using the full sample data. For each stock,

we collect its regression residuals and take their average as an estimate for its alpha. We

impose that all residuals have at least 60 observations. This ensures enough sample size for

inference on alpha, although the distribution of alphas’ t-statistics turns out not sensitive

to this requirement. Figure 4.8 provides histograms of the t-statistics and Sharpe ratios for

alphas of all 12,415 stocks in our sample that meet this criterion. Because these stocks have

different sample sizes, the histograms of the Sharpe ratios are not simply the scaled version

of the histogram of the t-statistics.

Only 6.35% of the t-statistics exceed 2.0 in magnitude, and more than 0.63% exceed

3.0. This suggests that truly significant alphas are extremely rare. Moreover, the largest

Sharpe ratio of all individual stocks’ alphas is rather modest, about 1.699. Only 0.505% of

the alphas have a Sharpe ratio greater than 1.0. These summary statistics suggest that rare

and weak alpha is perhaps the most relevant scenario in practice.

4.4.4 Performance of Arbitrage Portfolios

Throughout we assume alphas do not vary over time. If alphas are driven by some observ-

able characteristics, then it is possible to construct a factor using these characteristics via

cross-sectional regressions, which turns “alpha” into risk premia. In this regard, alphas are

meaningless without reference to a specific factor model. Extracting more “factors” out of

alphas would lead to even smaller arbitrage profits.

We now compare arbitrage portfolios based on various strategies, including the optimal

strategy, the cross-sectional regression (CSR) approach, the multiple-testing based procedure

(BH), and LASSO approach. The ridge approach is omitted, since it is equivalent to the

CSR.

Specifically, at the end of each month, we build optimal portfolio weights using these

strategies. We only invest in stocks with a continuous record for at least 96 months. We
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Figure 4.8: Histograms of the t-Statistics and Sharpe Ratios of Estimated Alphas

Note: The figure provides the histograms of the t-statistics (left) and Sharpe ratios (right) of estimated
alphas for all tickers in our sample with at least 60 months of data. The total number of tickers available
is 12,482.

rebalance these portfolios at the end of each month, with weights recalculated using a 120-

month rolling window. Both Lasso and the optimal strategy require a tuning parameter.

Out of the 10-year rolling window, we leave the last 2 years as the validation sample for

tuning parameter selection. As expected, optimal tuning parameter is difficult to select,

which undermines the performance of both strategies.

All these strategies yield similar Sharpe ratios. BH and OPT tie for the top of the chart,

yielding 0.497 and 0.496, respectively, followed by CSR that scores 0.450. The LASSO

approach only obtains 0.384. The Sharpe ratios of different strategies are not influenced

by risk aversion, though the cumulative returns are. To compare cumulative returns, we

normalize all strategies to have the same (ex-post) volatility. The resulting time-series of

normalized cumulative returns are shown in Figure 4.9.

Closely examining these strategies reveals more insight. BH is highly conservative. Out

of 46 years of out-of sample trading months (1975/01 - 2020/12), 289 months have no trading
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activities. The largest number of stocks selected for trading in a month is 10, and the average

over all non-zero periods is 2.43. In contrast, CSR trade all stocks that meet our trading

criteria, with an average of 2,366 stocks per month. OPT almost does so, with an average of

2,359. The number of stocks traded by LASSO is rather volatile, varying between none and

all stocks from month to month, with an average of 757.6 per month. This is likely caused

by the noise in the tuning process.
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Figure 4.9: Normalized Cumulative Returns of Arbitrage Portfolios

Note: This figure compares the cumulative returns of OPT (red dotted), CSR (blue solid), BH (green
dot-dashed), and LASSO (orange dashed) strategies. We normalize all returns by their realized volatilities
calculated by the square root of the sum of the squared returns over the entire sample, only for comparison
purpose.

We also calculate the perceived Sharpe ratios using (4.2.21), and provide a time-series

plot of Ŝ⋆ in Figure 4.10. We also compare it with the biased estimates S̃⋆ using (4.2.22).

We observe a huge gap between the estimated perceived Sharpe ratios using these formulae.

As predicted by Proposition 3, S̃⋆ overestimates S⋆, though it guarantees positive values.

Our estimate S̃⋆ is averaged around 2.55 (we truncate negative estimates by 0), but can

sometimes exceed 7.5. These estimates are far greater than the feasible Sharpe ratios we

obtain for any of these strategies. That said, even the infeasible Sharpe ratios can be as
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low as 0 for certain periods of the sample. The feasible portfolio returns seem in agreement

with the prediction. For instance, OPT, LASSO, and BH’s cumulative returns are almost

flat post 2010, whereas CSR has negative returns.
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Figure 4.10: Time Series of Sharpe Ratios

Note: The figure compares naive estimates (orange dashed) and their bias-corrected estimates (blue solid)
of the infeasible Sharpe ratios based on a rolling window of 120 months.

4.5 Conclusion

Taking stock, our paper provides a new theoretical framework to understanding the impli-

cations of statistical learning in asset pricing. In the age of big data, rational expectations

assumption often fails to retain its relevance in practice, and hence understanding its limita-

tion and the role of statistical learning is vitally important. We introduce new econometric

tools in the spirit of nonparametric empirical Bayes, which could be adopted in other con-

texts.

The empirical message should be confined within the context of monthly rebalancing

strategies via linear factor models. The gap between feasible and infeasible Sharpe ratios

will further increase if arbitrageurs face additional statistical challenges, e.g., model misspeci-
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fication, omitted factors, weak factors, large non-sparse idiosyncratic covariance matrix, etc.

Consequently, the empirical gap should remain for any arbitrageurs, including those who

engage in higher frequency trading or use more complex nonlinear models.

More broadly, existing literature have documented impressive Sharpe ratios on various

machine learning based trading strategies. Such strategies often rely on ad-hoc model design

(e.g., a neural network with a specific architecture) and tuning parameters selection. In this

regard, the empirical analysis can at best provide a “lower bound” on the performance of

machine learning strategies in investment. Our paper provides a theoretical framework to

understand the “upper bound” on the performance of any strategy in the specific context of

arbitrage pricing theory, tying together this statistical limit with economic rationale.

On a side note, our theoretical and empirical analyses also have implications on the

econometric analysis in asset pricing. Examining the economic performance of asset pricing

models is as important as and complementary to statistical tests. The criteria of a good

statistical test are primarily statistical in nature, such as Type I and Type II errors, false

discovery rate, etc; whereas in practice, it is the economic performance that agents in the

economy fundamentally care about. There is often a wedge between these two objectives.

For instance, a statistical procedure that guards against false discovery rate may be overly

conservative for investment purpose; rejection by a powerful test statistic may not necessarily

lead to the practical irrelevance of an economic theory. While the asset pricing literature has

seen an explosion of statistical machine learning tools imported from other areas, we caution

against their use without guidance of economics.
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Chapter 5

Market Efficiency with Many Investors

5.1 Introduction

Tremendous success has been achieved in testing the semi-strong form of the market effi-

ciency hypothesis Fama (1970) by estimating expectations as functions of public information,

e.g., prices, firm characteristics, and macro variables. Yet, this common practice does not

directly allow for testing the strong version of the market efficiency hypothesis and investi-

gate the important function of financial markets of aggregating private information. Despite

the enormous theoretical achievements regarding the role of private information in financial

market since seminal Grossman and Stiglitz (1980) and Kyle (1985b), empirically investi-

gating the role of private information is not among the easiest tasks. Indeed, the model

of Kyle (1985b) powerfully reveal that, while her private information allows the informed

trader to constantly profit, the price process is still a martingale under public information set,

which means using data on public information alone can not possibly identify the presence

of information asymmetry.

Koijen and Yogo (2019) demonstrates that richer economic implications can be extracted

from the joint moments of prices and quantities under equilibrium frameworks. In the

context of Kyle (1985b) model, the trading of the informed (noise) trader would positively

(negatively) correlate with future price movements, suggesting the potential of joint moments
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of prices and quantities in studying the role of private information.

Modern financial markets contain many investors. High-dimensionality of a financial

market may have significant implications on both the behaviors of agents within the economy

(Martin and Nagel (2022)) and on how econometricians shall analyze the data generated by

the economy (Giglio, Kelly, and Xiu (2022)).

In this paper, we investigate, in the presence of many investors, the role of information in

affecting investor decision-making, and the efficiency and liquidity of the market, as revealed

by the joint moments of prices and investor trading. Building on the symmetric model of

Kyle, Obizhaeva, and Wang (2018), we model a continuous-time economy which consists of

many (but not a continuum of) investors with heterogeneous information and belief struc-

ture, trading a risk-free asset and a risky asset in a centralized market. The risky asset

generates a cash flow with unobservable growth rate. Investors receive private signal flows

of heterogeneous precision about the growth rate, potentially misperceive the precision of

their own signals to different extents, and infer the future price movements utilizing both the

private signals and the public information embedded in past price and cash flow. At each

moment, investors make optimal consumption-portfolio decisions based on their inference,

taking into account the the impact of their actions on prices. However, investors do not

observe the actions of each other.

To tractably characterize the equilibrium under heterogeneity, we deviate from the stan-

dard equilibrium definition, denoted by “asymptotic equilibrium”, by leveraging the presence

of many investors. Specifically, in an asymptotic equilibrium, given the price function and

others’ strategies, an agent is willing to take a suboptimal strategy, as long as the difference

in trading under the suboptimal strategy and an exactly optimal one, compared to the mag-

nitude of trading itself, vanishes as the total number of investors grows. In other words, we

only require investors to act optimally (under their subjective measures) to the leading order.

These leading-order optimal strategies are much simpler than the exactly optimal strategies
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in the current context, which then allows for a tractable characterization of an equilibrium.

Indeed, one crux of the tractability is that, with many investors, the total precision of public

and private information is almost the same across investors with different private information

quality and misperception, because the total precision mostly comes from the public part.

In this regard, the presence of many investors allows investors in the economy to take simple

trading strategies while still acting almost optimally.

In equilibrium, as in Kyle (1985b), investors’ trading rates, rather than positions, are

proportional to their subjective expectations of future price changes, to avoid incurring large

trading cost due to price impact. They also rebalance proportionally to their current position

to optimize the risk exposure. An investor’s expected price change, on the other hand, is

proportional to the difference between her private signal in the recent past and the average

of others’ private signals, which is reflected through price, multiplied by the misperception-

adjusted precision of her own signal. The price dependence of investors’ trading in turn

determines the equilibrium market liquidity and price impact that every investor takes into

account.

The equilibrium has empirical implications in three aspects. In the cross section, because

the willingness to trade, i.e., the private signal, is highly idiosyncratic, the trading across

investors follows a weak factor model, with the factor, up to a constant scalar, being minus

a weighted sum of the idiosyncratic shocks to private signals across investors and capturing

the minus pricing error. Unlike standard factor models, the idiosyncratic shocks and the

factor negatively correlate, necessary for the aggregate trading to be zero. The loading of an

investor’s trading on the factor depends on both her trading intensity and the information

quality, where the two are not one-to-one mapped because of her misperception. The more

intensively the investor trades, the more she contributes to the pricing error, whereas the

more informative she is, the more she is able to eliminate the pricing error. In the same

direction, the investor’s trading positively (negatively) predict future price changes when
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she trades relatively conservatively (aggressively) compared to others given her information

quality, which is in fact captured by whether her misperception is above or below the average

level. Finally, the equilibrium model indicates that the time-series property of an investor’s

trading is governed by the size of the rebalancing effect and the persistence of predictable

price changes.

The empirical implications leads to straightforward empirical strategies. The covariance

matrix of trading across investors provide information about the magnitude of investor trad-

ing and the distribution of misperception across investors. The regression of future price

changes on trading identifies the magnitude of the pricing error and how quickly the pre-

dictable price change decays. Using the autocorrelations of investor trading, econometricians

can estimate the rebalancing magnitude and compare the trading-implied predictability per-

sistence with the one from the predictive regression.

In the presence of many investors, however, the implications are of high dimension.

Directly using the sample covariance matrix of trading and running predictive regression

with trading of each institution would incur large estimation errors. Motivated by the factor

structure of trading, and given that the factor is weak, our estimation procedures are centered

around conducting dimension reduction with a modification of standard principal component

analysis (PCA) approach. Specifically, we replace all the diagonal elements of the sample

covariance matrix with zeros and conduct eigendecomposition afterwards. When private

information is the only trading motive, the eigendecomposition would generate two (one)

eigenvectors1 if there is (is not) misperception heterogeneity, due to the factor-idiosyncratic

shock correlation. There could be a few more eigenvectors when there are other motives

such as public information driving the trading pattern. Regardless, because the eigenvectors

span the pricing error factor, it would be sufficient to run predictive regression with the

linear combinations of all the investors’ trading using those small number of eigenvectors

1. Precisely, eigenvectors with nonzero eigenvalues.
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and achieve dimension reduction for this part as well. We further provide the procedure and

conditions to identify misperception.

The theory part of our paper extends the symmetric model of Kyle, Obizhaeva, and Wang

(2018) to allow for flexible heterogeneity in information quality and investor misperception

in a dynamic economy, and contribute to the broad literature of asset pricing models with

information asymmetry: Kyle (1989), Wang (1993), Wang (1994), He and Wang (1995),

Vayanos (1999), Vives (2011), and Du and Zhu (2017). The empirically relevant many-

investor setup indicates that investors take simple equilibrium strategies. It also indicates

that, although in equilibrium there could be sizable pricing errors, each investor can at best

profit out of a tiny portion of it. These results highlights the impact of high-dimensionality

on agent behaviors and in this regard the paper is also related to Martin and Nagel (2022).

The econometric procedures in the paper build on and contribute to the evolving litera-

ture on the applications of statistical and machine learning in asset pricing, in particular on

the topic of factor models and PCA approaches, e.g., Kelly and Pruitt (2013), Kozak, Nagel,

and Santosh (2018b), Kelly, Pruitt, and Su (2019b), Kozak, Nagel, and Santosh (2020),

Giglio and Xiu (2021b), and Giglio, Xiu, and Zhang (2021). Complementary to this litera-

ture, the factors in our paper are weak yet pervasive and we propose a modification of the

standard PCA accordingly. On the other hand, the way we conduct predictive regression

shares the same spirit of Da, Nagel, and Xiu (2022), which demonstrates that weak predic-

tors, if efficiently combined, can collectively generate significant predictive power. In our

paper, however, the relative predictive power of each institution’s trading is revealed by the

trading correlations across institutions, which directly guides how we combine the predictors.

Moreover, our paper relates to the enormous literature on mutual funds, e.g., Berk

and Green (2004), Fama and French (2010), Pástor and Stambaugh (2012), Kacperczyk,

Van Nieuwerburgh, and Veldkamp (2014, 2016), and Song (2020).2 We demonstrate that

2. See also Wermers (2000), Berk and Van Binsbergen (2015), Pástor, Stambaugh, and Taylor (2015),
Pástor, Stambaugh, and Taylor (2017), and Pástor, Stambaugh, and Taylor (2020).
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how much predictive power econometricians can extract from investors’ positions hinges on

the dispersion of their misperception and that investors’ portfolio returns and their contri-

butions to market efficiency are not one-to-one mapped. For instance, in the fully symmetric

case, even though investors are injecting their private information into the price, their trad-

ing has zero correlation with price movements and the alphas of their portfolios are all zero.

We further provide estimates of the contributions to price informativeness by each type of

institutions.

Finally, our paper is also connected to the literature that empirically estimates price

elasticities of demand in financial market under various scenarios that are orders of magnitude

smaller than what the standard models would imply,3 including Harris and Gurel (1986),

Shleifer (1986), Chang, Hong, and Liskovich (2015), Koijen and Yogo (2019), and Gabaix

and Koijen (2021).

Our paper proceeds as follows. Sections 5.2 – 5.4 characterize the equilibrium model

with many investors. Specifically, Section 5.2 sets up the economy, Section 5.3 characterizes

the equilibrium under symmetry , and Section 5.4 generalizes the characterization to the

scenario with heterogeneous information quality and misperception. Section 5.5 presents

the empirical implications of the equilibrium model and develops econometric procedures to

combine the implications with price and quantity data. Section 5.6 concludes. The appendix

provides technical details.

5.2 Setup of the Economy

5.2.1 Assets

There is a risky financial asset in the economy with zero total supply and its price at time t

is denoted by Pi,t. In addition there exists a zero-return risk-free asset with risk-free rate r.

3. See, e.g., Petajisto (2009).
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The risky asset generates cash flow at rate Dt +Do
t . It evolves according to

dDt = −ξDDtdt+Gtdt+ σDdZD
t , and dDo

t = −ξDDo
t dt+Go

tdt+ σDdZ
D,o
t (5.2.1)

Here ξD is the mean-reversion parameter, σD is the volatility parameter, and ZD
t and ZD,o

t

are mutually independent standard Brownian motions. The change rates of Dt and Do
t are

also affected by the dividend growth rates Gt and Go
t , which both follow mean-reversion

processes:

dGt = −ξGGtdt+ σGdZG
t and dGo

t = −ξoGo
tdt+ σodZo

t , (5.2.2)

where ZG
t and Zo

t are two other mutually independent standard Brownian motions, which

do not depend on ZD
t and ZD,o

t as well.

5.2.2 Preference

We index the many investors participating the economy by j ∈ J . Investor j trades both

risk-free and risky assets and we use xfj,t to stand for the value of her time-t holding of risk-

free asset, and denote by xj,t her time-t holding of the risky asset. Their time derivatives

are denoted by by ẋfj,t and ẋj,t. The objective of investor j is

max
{ẋj,s,cj,s}s≥t

Ej,t

∫ ∞

t
e−ρ(s−t)u(cj,s)ds, with u(cj,s) = −e−γcj,s , (5.2.3)

where the change of the risk-free asset value satisfies

ẋ
f
j,t = rx

f
j,t − cj,t + xj,t

(
Dt +Do

t

)
− ẋj,tPt (5.2.4)

We use Ej,t(·) to represent expectation under investor j’ subjective measure, conditional on

her time-t information set, which we will further discuss shortly. The trading rate ẋfj,t and

ẋj,t must also be measurable to the time-t information set. Market-clearing price Pt can

depend on the investor’s current and past trading, and the investor takes her price impact
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into account when making decisions.

5.2.3 Information and Belief

For the risky asset, we assume investors directly observe its price and cash flow components

Dt and Do
t . The cash-flow growth rate component Go

t is also observable to each investor.

However, investors misperceive how Go
t drives cash-flow growth. Concretely, under investor

j’s subjective measure, the cash-flow rate follows

dDo
t = −ξDDo

t dt+
(
Gt + (1 + ηj)G

o
t

)
dt+ σDdẐ

D,o
j,t , (5.2.5)

where investor j considers ẐD,o
j,t := Z

D,o
t − (σD)−1ηj

∫ tGo
sds a standard Brownian motion.

On the other hand, investors do not observe the growth rate component Gt. Investor j

instead receives a noisy signal flow Sj,t about Gt, which satisfies

dSj,t = Gtdt+ σSj dZ
S
j,t. (5.2.6)

Here ZS
j,t is a standard Brownian motion independent of (ZD

t , Z
G
t , and is also independent

across assets. The volatility parameter σSj controls the signal-to-noise ratio of Sj,t. The

investor, however, perceive the drift of her signal as ωjGt in constructing her subjective

expectation Ej,t(·):

dSj,t = ωjGtdt+ σSj dẐ
S
j,t.

where ẐS
j,t := ZS

j,t+(σSj )
−1(1−ωj)

∫ tGsds is considered by investor j as a standard Brownian

motion. In other words, she has an incorrect understanding of the informativeness of her

signals. This matches the econometric fact that it is hard to measure drift precisely without

long time span, whereas volatility is perfectly measurable in continuous time. We assume

that investors correctly perceive the dynamics of both asset fundamentals and others’ private

signals. Investors do not observe each other’s private signals or trading actions. Therefore,

117



investor j’s subjective expectation Ej,t(·) is only measurable to Fj,t, the information set

generated by {Sj,s, Ps, Ds, D
o
s , G

o
s}s≤t, i.e., her private signals, the price, the cash flow, and

the observable growth rate component, up to time t.

5.3 Equilibrium with Symmetric Information Structure

In this section, we conduct equilibrium analysis under the symmetric information structure.

5.3.1 Setup

For results in this section, we impose the following assumption:

Assumption 13. The cash flow component Do
t and the observable growth rate Go

t are both

zero. Moreover, signal noise parameter σSj and the misperception parameter ωj stay invariant

across all investor j ∈ J :

σSj = σS , and ωj = ω, ∀j ∈ J . (5.3.7)

Under Assumption 13, our setup matches that of Kyle, Obizhaeva, and Wang (2018),

where an equilibrium with linear flow-strategies is elegantly characterized. We conduct an

asymptotic exercise to understand the properties of the equilibrium of Kyle, Obizhaeva,

and Wang (2018) as the total number of investors gets large. This matches our empirical

goal as, for instance, in stock markets typical stocks are being traded by a large number of

investors. Moreover, in this case we are able to obtain provide closed-form expressions of

all the endogenous parameters, whereas in general numerical tools to required to solve key

endogenous parameters. Specifically, we consider the following drifting sequence of exogenous

parameters:

Assumption 14. As J , i.e., the size of J , increases,

(
σS
)2

= Jι,
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whereas ι and all the other exogenous parameters (ξD, ξG, σD, σG, ω, ρ, γ) stay unchanged.

The assumption is to prevent total precision of all investors’ signals from exploding,

which would lead to that asset price converges to the exact fundamental value and that price

impact vanishes. It is notable that we keep γ constant. Arguably, absolute risk aversion

changes with level of wealth. That the market consists of a lot of investors is connected

with that each investor is relatively small and potentially has large absolute risk aversion.

Fortunately, under the current setup, equilibria with different values of γ are isomorphic,

and characterizing an equilibrium with any value of γ would be sufficient.4

Given the information structure, investors form their expected returns, which could de-

pend on both their private signals and price history. On the other hand, however, price is

endogenous and is affected by how investors trade based on the subjective expected returns.

The equilibrium concept is formally defined as:

Definition 3: An equilibrium is a set of investor trading strategies {ẋfj,t(·), ẋj,t(·)}j∈J

and price function Pt
(
{ẋj,s(·), Ds, Sj,s, Ps′}s≤t,s′<t,j∈J

)
such that

(i) For each investor j ∈ J , given the price functions and the strategies of all the other

investors, the trading strategy
(
ẋ
f
j,t(·), ẋj,t(·)

)
solves the optimization problem spec-

ified by (5.2.3) and (5.2.4), subject to that ẋfj,t(·) and ẋj,t(·) are measurable to the

information set Fj,t;

(ii) The risky asset market clears: ∑
j∈J

xj,t = 0.

Notably, in Definition 3 trading strategies can depend on contemporaneous prices. In

other words, investors can trade in the form of submitting demand schedules, which allows

the market to clear in the absence of market makers.

4. If we double the risk aversion, then all the price variables would not change and all the quantity variable
would be halved. See Theorem 4 of Kyle, Obizhaeva, and Wang (2018).
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5.3.2 Equilibrium

We conjecture that in equilibrium all investors submit symmetric linear demand schedules

as follows:

ẋj,t = ψDGD
t + ψCDt + ψSGj,t − ψPPt − ψHxj,t, (5.3.8)

where processes GD
t and Gj,t are constructed as follows:

GD
t = (ξP − ξG)

∫ t

−∞
e−ξP (t−s)(dDs − ξGDsds), (5.3.9)

Gj,t = (ξP − ξG)

∫ t

−∞
e−ξP (t−s)dSj,s, (5.3.10)

with the parameter ξP defined by

ξP =
√

(ξG)2 + (σG)2
(
(σD)−2 + ι−1

)
. (5.3.11)

In other words, GD
t and Gj,t are constructed using cash flow and private signals up to t,

which both contain information about the growth rate Gt. The reason behind the specific

way of construction will be explained shortly.

Market clearing forces both aggregate position and aggregate trading to be zero, which

leads to

ẋj,t + ψHxj,t = −
∑

j∈J :j′ ̸=j

(ẋj′,t + ψHxj′,t). (5.3.12)

Then, suppose all investors j′ ∈ J with j′ ̸= j submit demand schedule (5.3.8), the supply

curve faced by investor j, which is a function of investor trading, would be

Pt
(
ẋj,t
)
=
(
ψP
)−1
(
ψDGD

t + ψCDt + ψS
1

J − 1

∑
j∈J :j′ ̸=j

Gj′,t +
1

J − 1

(
ẋj,t + ψHxj,t

))
.

(5.3.13)

Investor j’s problem is to solve her optimization problem specified by (5.2.3) and (5.2.4)
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under (5.3.13). The equilibrium would be established if her optimal strategy also satisfy the

conjecture (5.3.8).

The next proposition presents the implications of large J on the equilibrium characterized

by Kyle, Obizhaeva, and Wang (2018):

Proposition 4. Suppose Assumptions 13 and 14 hold. Then there exists an equilibrium

as in Definition 3 if J is sufficiently large, ξG > r, and ω > 2.5 The equilibrium has the

following properties:

(i) In equilibrium the price satisfies

Pt =
Dt

ξD + r
+

E(Gt|{Ds, S̄s}s≤t)

(ξD + r)(ξG + r)
+OP(J

−1), with S̄s =
1

J

∑
j∈J

Sj,s, (5.3.14)

where E(·) is the expectation under the objective measure. Moreover, it holds that

E(Gt|{Ds, S̄s}s≤t) =
(σD)−2GD

t + ι−1Ḡt

(σD)−2 + ι−1
, with Ḡt :=

1

J

∑
j∈J

Gj,t, (5.3.15)

(ii) The optimal trading strategy follows (5.3.8), with
(
(J − 1)ψP

)−1
= ζ + OP(J

−1) and

ψH = b+OP(J
−1), and the trading satisfies

ẋj,t = a
ξP + r

(ξD + r)(ξG + r)

ω(σS)−2

(σD)−2 + ι−1
(Gj,t − Ḡt)− bxj,t +OP(J

−3/2). (5.3.16)

Here the endogenous parameters a, b, and ζ are given by

a =
1

ζω(ξP + r)
, b =

1

2
(ω − 2)(ξP + r), ζ =

1

2

rγ(σP )2(
b+ 1

4r
)2

− 1
16r

2
, (5.3.17)

5. This shows that the existence condition conjectured by Kyle, Obizhaeva, and Wang (2018), at least
when the market is large, is correct.
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where σP = (ξD + r)−1
√(

σD
)2

+
(
σG
)2
(ξG + r)−2.

As revealed by property (i), when the market becomes large, the gap between the equi-

librium price and what best reflects the present value of future cash flows converges to zero.

In general, as demonstrated by Kyle, Obizhaeva, and Wang (2018), the equilibrium price is

Pt =
Dt

ξD + r
+

ϕ

(ξD + r)(ξG + r)

1

J

∑
j∈J

Ẽj,t
(
Gt
)
,

where ϕ is a endogenous parameter conjectured to be smaller than one, and Ẽj,t(·) is the

investor j’s expectation if she hypothetically observes everyone’s private signal up to t.

Therefore, the gap comes from two sources: the “price-dampening” parameter ϕ and that

Ẽj,t
(
Gt
)

differs from E(Gt|{Ds, S̄s}s≤t). The latter one naturally shrinks, because the dif-

ference between the two expectations only comes from investor j’s misperception of her own

signal, which plays a vanishing role in forming the expectations as J increases. The price

dampening effect originates from that investor j understand (correctly) that other investors

misperceive the precision of their signals in forming their growth rate estimates Ẽj,t
(
Gt
)
. If

ϕ = 1, the average expected return across investors would be negative (positive) when Gt is

positive (negative). So would the aggregate demand. As a result, ϕ < 1 is needed to clear

the market. Hence, when the market is large, ϕ is pushed towards one as Ẽj,t
(
Gt
)

converges

to E(Gt|{Ds, S̄s}s≤t).

Equation (5.3.15) is a direct result of standard Kalman-Bucy filtering. Gj,t is constructed

using investor j’s own signal, whereas GD
t is intended to capture the information about the

growth rate contained in the cash flow. The expectation of Gt is a weighted average of them,

with the weights determined by their relative informativeness. The parameter ξP determines

the relative weights on signals from recent and distant past. Indeed, when the information

on Gt contained in the cash flow or the signal is of high quality, ξP increases and Gj,t and

GD
t is mostly composed of very recent signals.
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The equilibrium trading is quite interpretable as well. The gap between average growth

rate estimate Ḡt to the true growth rate Gt mean-reverts to zero at rate ξP .6 With

Gt unobservable, investor j measure the gap using Gj,t − Ḡt and shrink it by the fac-

tor ω(σS)−2
/(

(σD)−2 + ι−1
)
, as she is aware of the noise of her own signal. The factor(

ξD + r
)−1(

ξG + r
)−1 reflects how price is connected to the average growth rate estimate.

Finally, the investor chooses parameters a and b to balance capturing expected returns and

alleviating trading costs, with the price impact
(
(J−1)ψP

)−1
= ζ+OP(J

−1) being endoge-

nously determined. The equilibrium trading resembles the one obtained by Gârleanu and

Pedersen (2013, 2016) in partial equilibrium models with exogenous trading cost function,

where investors directly derive utility from after-cost investment performance rather than

from consumption.

5.4 Equilibrium with Heterogeneous Information Structure

This section is devoted to the equilibrium analysis under general heterogeneous information

structure.

5.4.1 Setup

Motivated by the simplification of the equilibrium under large market demonstrated by

Section 5.3.2, we restrict our analysis to the large market scenario, in order to generate

a tractable characterization of the equilibrium in the presence of heterogeneity in belief

and information structure. To regulate the asymptotic behaviors of various parameters, we

impose the following assumption, which accommodates Assumption 14 as a special case.

Assumption 15. As J , i.e., the size of J , increases,

(
σSj
)2

= Jιj ,

6. Precisely speaking, when investor j makes her trading decisions, what matters should be the average
growth rate estimate among all the other investors, but the difference is of second order when the market is
large.
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whereas ιj and exogenous parameters (ξD, ξG, σD, σG, ωj , ρ, γ) stay unchanged. The belief

parameters ηj satisfies

ηj = η̄ + κj , with
∑
j∈J

κj = 0.

where η̄ can either stay constant or vary with J , and satisfies η̄ = O(1). On the other hand,

κj satisfies maxj∈J |κj | = O(J−1/2).

In contrast to Assumption 14, here we explicitly allow for incorrect beliefs on Go
t rep-

resented by ηj . The requirement that belief dispersion must not be larger than ∼ J−1/2

might sound restrictive, but it actually already allows the belief dispersion to generate almost

arbitrarily strong correlations between investors’ trading.

The main message from Proposition ?? is that, even though investors solve their opti-

mization problems exactly, as the market becomes large, the equilibrium price and investor

trading are dominated by leading-order terms of simple forms. Now we take one step further

and only require the investors to approximately solve their optimization problems, that is,

intuitively, as long as a strategy leads to trading that is sufficiently close to trading under

an exactly optimal one, they are willing to take it. To formalize this idea, we update the

equilibrium concept as follows:

Definition 4: An asymptotic equilibrium is a set of trading strategies

{ẋfj,t(·), ẋj,t(·)}j∈J and price functions Pt
(
{ẋj,s(·), Ds, D

o
s , G

o
s, Sj,s, Ps′}s≤t,s′<t,j∈J

)
such

that

(i) For each investor j ∈ J , given the price function and the strategies of all the other

investors,
(
ẋ
f
j,t(·), ẋj,t(·)

)
are measurable to the information set Fj,t and satisfy

Ej
(
|ẋj,t − ẋ∗j,t|

2) ≲ J−2 and Ej
(
|xj,t − x∗j,t|

2) ≲ J−2,

for some strategy
(
ẋ
f∗
j,t(·), ẋ

∗
j,t(·)

)
that solves the optimization problem specified by

(5.2.3) – (5.2.4), subject to that ẋf∗j,t(·) and ẋ∗j,t(·) are measurable to Fj,t;
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(ii) The risky asset market clears: ∑
j∈J

xj,t = 0.

We note that in Proposition 4 the magnitude of the leading terms for both trading rate ẋ∗j,t

and position x∗j,t are ≂ J−1/2, which turns out to be also true in the asymptotic equilibrium

studied in this section. The small magnitude comes from that investors’ signals are highly

noisy, under Assumptions 14 or 15. These leading terms, however, dominate the deviations

from exactly optimal trading and position allowed by requirement (i) in Definition 4.

5.4.2 Equilibrium

As in Section 5.3.2, we conjecture that in equilibrium all investors submit linear demand

schedules

ẋj,t = ψDj G
D
t + ψCj

(
Dt +Do

t

)
+ ψSj Gj,t + ψojG

o
t − ψPj Pt − ψHxj,t. (5.4.18)

All coefficients but ψH are j-dependent. The processes GD
t and Gj,t are also defined by

(5.3.9) and (5.3.10), where ξP is now defined by

ξP =
√

(ξG)2 + (σG)2
(
(σD)−2 + ι̃−1), (5.4.19)

with

ι̃ =
∑
j∈J

π2j (σ
S
j )

2 and πj = ωj(σ
S
j )

−2/
∑
j′∈J

ωj′(σ
S
j′)

−2.

Under symmetric information structure (Assumption 14), weight πj would reduce to equal

weight, ι̃ would be equal to ι, and ξP would be the same as the one in (5.3.11). We will

explain why the weight πj appears later.

Suppose all investors j′ ∈ J with j′ ̸= j submit demand schedule (5.4.18). Similar to the

symmetric case, the market clearing condition would lead to that the supply curve Pt
(
ẋj,t
)
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investor j faces is:

(
ψ̃
P
j

)−1
(
ψ̃
D
j G

D
t + ψ̃

C
j

(
Dt+D

o
t

)
+ ψ̃

o
jG

o
t +

1

J − 1

∑
j∈J :j′ ̸=j

ψSj′Gj′,t+
1

J − 1

(
ẋj,t+ψ

Hxj,t
))
,

(5.4.20)

where
(
ψ̃
P
j , ψ̃

D
j , ψ̃

C
j , ψ̃

o
j

)
= (J − 1)−1∑

j∈J :j′ ̸=j

(
ψPj′ , ψ

D
j′ , ψ

C
j′ , ψ

o
j′
)
. According to Definition

4, an asymptotic equilibrium exists if we find a set of parameters{
ψPj , ψ

D
j , ψ

C
j , ψ

o
j , ψ

P
j , ψ

H
}
j∈J such that, for each investor j ∈ J , (5.4.18) “almost” (as in

requirement (i) of Definition 4) solves the optimization problem (5.2.3) and (5.2.4), under

the supply curve (5.4.20). The following theorem presents the result.

Theorem 11. Suppose Assumption 15 holds. Then there exists an asymptotic equilibrium

as in Definition 4 if ξG > r and ω̃ > 2, where ω̃ =
∑

j∈J πjωj. The equilibrium has the

following properties:

(i) In equilibrium the price satisfies

Pt =
Dt +Do

t

ξD + r
+

E(Gt|{Ds, S̄s}s≤t)

(ξD + r)(ξG + r)
+

(1 + η̄)Go
t

(ξD + r)(ξo + r)
, with S̄s =

∑
j∈J

πjSj,s,

(5.4.21)

and E(·) is the expectation under the objective measure. Moreover, it holds that

E(Gt|{Ds, S̄s}s≤t) =
(σD)−2GD

t + ι̃−1Ḡt

(σD)−2 + ι̃−1
, with Ḡt =

∑
j∈J

πjGj,t. (5.4.22)

(ii) Investor j’s trading strategy follows (5.4.18) with ψPj = ζ−1πj and ψHj = b, and the

trading satisfies

ẋj,t = a
ξP + r

(ξD + r)(ξG + r)

ωj(σ
S
j )

−2

(σD)−2 + ι̃−1
(Gj,t − Ḡt) + ao

κj

ξD + r
Go
t − bxj,t. (5.4.23)
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Here the endogenous parameters a, ao, b, and ζ are given by

a =
1

ζω̃(ξP + r)
, ao =

1

2ζ

1

b+ ξo + r
, b =

ω̃ − 2

2
(ξP+r), ζ =

1

2

rγ(σP )2(
b+ 1

4r
)2

− 1
16r

2
,

(5.4.24)

where σP = (ξD+ r)−1
√

2(σD)2 + (σG)2
(
ξG + r

)−2
+ (1 + η̄)2(σo)2

(
ξo + r

)−2 is the

volatility of the equilibrium price.

The equilibrium properties resembles those in Proposition 4. The equilibrium price

(5.4.21) takes the same form of its counterpart (5.3.14), where S̄j,t is an average of Sj,t

weighted by πj . Parameter ι̃ appearing in (5.4.22) and (5.4.19) is the squared volatility of

S̄j,t, which reflects its noise level. The homogeneous misperception parameter ω that affects

trading and price impact in (5.3.17) is replaced with ω̃ as in (5.4.24), which is the average

of ωj weighted by πj as well. The weight πj reflects that investors with higher signal preci-

sion and larger upward bias in perceiving it would play more important roles in determining

equilibrium price and market liquidity. Its specific form originates from the ωj(σSj )
−2 factor

appearing in the trading (5.4.23). Comparing (5.4.23) with the equilibrium price (5.4.21)

and (5.4.22), we clearly see that the trading can be generated using a linear demand schedule

of form (5.4.18).

5.5 Econometric Analysis of the Equilibrium Model

This section studies the identification and estimation of the following parameters: price

mean-reversion coefficient ξP , price impact parameter ζ, misperception parameters
{
ωj
}
j∈J ,

and information quality parameters
{
σSj
}
j∈J . As we can not rule out other types of equi-

libria, we impose the following assumption:

Assumption 16. Equilibrium price and investor trading are the ones characterized in The-

orem 11.
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5.5.1 Empirical Content of the Equilibrium Model

The equilibrium has two major implications: how trading depends on private and public

information (5.4.23), and the relation of prices to private information (5.4.21). They connect

the parameters of interest to moments of holdings and prices. The equilibrium implication

on trading can be written more compactly as

ẋj,t + bxj,t = yj,t := ϕSπj(Gj,t − Ḡt) + ϕoκjG
o
t ,

where the definitions of constants ϕS and ϕo is clear from (5.4.23). Moreover, we introduce

notation

εj,t = ϕS(ξP − ξG)

∫ t

−∞
e−ξP (t−s)σSj dZ

S
j,s, ft = −

∑
j∈J

πjεj,t, and gt = ϕoGo
t .

Then the definition of yt can be further simplified into:

yj,t = πjft + κjgt + πjεj,t.

In other words, trading across investors follows a simple factor structure. Investor trades on

ft, which is the aggregation of the noise in each investor’s private signal entering the price.

Because observe ft is not observable to investors, to load more on the factor ft, an investor

will have to load more on the noise of her own signal as well, which more intensively moves

the price against herself. The factor gt originates from the observable growth rate component

Go
t , on which there is a belief dispersion. The next proposition provides statistical moments

regarding the above factor model.

Proposition 5. Suppose Assumptions 15 and 16 hold. Then we have, with some constant
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ϕ that only depends on (ϕS , ξP , ξG) and some constant ϕ̄ that only depends on (ϕo, ξo, σo),

E(f2t ) = ϕ̃ι, E(ε2j,t) = ϕ(σSj )
2, E(ftεj,t) = −ϕπj(σSj )

2, E(g2t ) = ϕ̄.

The covariance matrix of rebalancing-adjusted trading rate across investors is

Cov
(
yt
)
= ϕ̃ι ·

(
ββ⊺ − νν⊺ + diag

(
ν
))

+ ϕ̄ · κκ⊺. (5.5.25)

Here ν = (ν1, ν2, ..., νJ )
⊺ with νj = πjω̃

−1ωj and β = π − ν, whereas yt, π, and κ are

all J-dimensional column vectors whose entries are clear from the context. The average

misperception ω̃ is defined in Theorem 11.

Because weight πj is of order ∼ J−1, and the standard deviation of idiosyncratic shock

πjεj,t is of order ∼ J−1/2, factor f is a weak one. As mentioned earlier, even though

Assumption 15 impose a bound on the size of κj , it is not highly restrictive. Given the

magnitude of the idiosyncratic shocks, Assumption 15 allows gt to be a standard strong

factor and the dominant driver of trading correlation patterns. On the other hand, the

factors ft and gt in fact carry all the predictive power of trading on future price changes. To

be concrete, we introduce Πt = Pt+
∫ t(Ds+D

o
s− rPs)ds, the excess gain process of holding

one unit of the risky asset.

Proposition 6. Suppose Assumptions 15 and 16 hold and denote by F̃t the information set

generated by
{
xj,s, fs, gs

}
s≤t,j∈J . Then it holds that, for all τ ≥ 0,

E
(
dΠt+τ

∣∣F̃t
)/
dt = e−ξP τ(aω̃)−1 · ft − e−ξoτ (ao)−1 · η̄gt,

where a is introduced in (5.4.24).

Notably, even though gt could dominate ft in generating the cross-sectional comovement

of trading, it possesses similar or smaller predictive power compared to ft, depending on
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the size of average belief distortion η̄. The reason is that investors do not observe ft, which

appears in the conditioning information set F̃t, and they are unwilling to expeditiously

trade on it because of the low quality of their private signals. Econometricians, on the other

hand, can efficiently aggregate their private signals implied by their trading and obtain a

much more precise estimate of ft, as long as the misperception parameter ωj differs across

investors. Indeed, as a result of Proposition 6, whenever τ ≥ 0,

E
(
ytdΠt+τ

)
/dt = e−ξP τ(aω̃)−1 · ϕ̃ιβ − e−ξoτ (ao)−1 · ϕ̄η̄κ. (5.5.26)

If there is no heterogeneity in ωj , then β = 0 and every investor’s trading has zero correla-

tion with future price movements, making it impossible for econometricians to extract any

predictive power.

However, in reality econometricians do not observe yt. They only observe investor posi-

tions at discrete time ∆xt = xt − xt−1. The following proposition connects their statistical

moments.

Proposition 7. Suppose Assumptions 15 and 16 hold. Suppose ξP = ξo. Then we have,

for all τ ≥ 1,

Σ := Cov(∆xt) = λCov(yt), Rτ := E(∆xt∆Πt+τ ) = λ̄E(yt∆Πt+τ ), (5.5.27)

where ∆Πt = Πt − Πt−1, λ̄ = (ξP + b)−1(1− e−ξP ), and λ also only depends on ξP and b.

Moreover, it holds that, for all τ ≥ 1,

ρτ := Corr(xj,t, xj,t+τ ) =
ξP e−bτ − be−ξP τ

ξP − b
. (5.5.28)

Therefore, given ξP , by looking at the autocorrelation of position change ∆xj,t, the

econometrician can identify b, which allows her to impute the moments involving yt from
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those based on ∆xt.

Finally, in equilibrium a and ω̃ are connected to b, ξP , ζ, and r as in (5.4.24).

5.5.2 Identification and Estimation Procedure

Proposition 8. Suppose Assumptions 15 and 16 hold and ωj is not invariant across j.

Also suppose η̄ = 0 and ξP = ξo. If the econometrician has access to risk-free rate r, the

covariance matrix Σ, the expected return vector Rτ , and the trading autocorrelation ρτ , then

using (5.5.25), (5.5.26), (5.5.27), (5.5.28) and (5.4.24), she can identify, for all j ∈ J ,

ξP , πj , ωj , ζ, and ϕ̃ι.

Given πj and ωj , we can only obtain σSj up to a constant common across j. In other

words, only the relative magnitude of information quality is identified, because we do not

know parameters such as ξD and ξG that connect growth rate to price. The quantity ϕ̃ι

affects the amount of predictable return and is a combination of how much the average

estimate of growth rate deviate from the true value and how much the growth rate affects

price.

The identification is achieved through the following procedure:

Algorithm 4. Inputs: risk-free rate r, covariance matrix Σ, portfolio price change vector

Rτ , and trading autocorrelation ρτ .

S1. Given Σ, we can utilize (5.5.25) and (5.5.27) to obtain

ν̃ := (λϕ̃ι)ν and Σ̃ := λϕ̃ι
(
ββ⊺ − νν⊺

)
+ λϕ̄κκ⊺.

S2. Using ν̃ and Σ̃, we calculate λϕ̃ι using λϕ̃ι = −ν̃⊺Σ̃−1ν̃.7 We then obtain ν from ν̃

and λϕ̃ι.

7. Σ̃ is singular and Σ̃−1 stands for its pseudo inverse.
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S3. Further, using λϕ̃ι, Σ̃, and Rτ , we obtain, with any τ ≥ 1,

β =
Rτ√

λϕ̃ιR
⊺
τ Σ̃−1Rτ

.

S4. From how Rτ and ρτ change with τ specified by (5.5.26) and (5.5.28), we obtain ξP

and b, and thereby λ and λ̄.

S5. From β and ν, we obtain π and ω̃−1ω. From β, λϕ̃ι, λ, λ̄, and Rτ , we obtain ϕ̃ι

directly and obtain aω̃ using (5.5.26) and (5.5.27).

S6. Utilizing (5.4.24), we obtain ω̃ from b, ξP , and r. Then we obtain a from aω̃. Using

(5.4.24) again, we obtain ζ.

Outputs: ξP , πj, ωj, ζ, and ϕ̃ι.

The above procedure does not rely on that the econometrician observe all the market

participants.8 In the case where we do observe every investor’s trading, we do not need step

2 thanks to that
∑

j∈J νj = 1 by definition.

The natural implementation of Algorithm 4 is to construct empirical counterparts of the

population moments. Given the large dimension of Σ and Rτ , using the sample covariance

matrix and sample mean vector directly would incur large estimation erros. Motivated by

the factor structure of trading manifested by (5.5.25), we propose an estimation method

by modifying the standard principal component analysis (PCA) approach, which we call

truncated PCA. Indeed, as discussed after Proposition 5, the eigenvalue generated by factor

ft is at the same order of magnitude as that from the idiosyncratic component εj,t. To bypass

this issue, unlike the standard PCA that conducts eigendecomposition directly on covariance

or correlation matrices, we replace all the diagonal elements of the sample version of Σ with

8. The dimension of matrices and vectors involved in the procedure then apparently have dimensions being
the number of observed investors, and we of course only identify πj and ωj for those observed investors.
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zero and conduct eigendecomposition afterwards. The diagonal elements themselves can be

used to estimate ν̃ directly, which is needed in in step 2 of Algorithm 4, because λϕ̃ιν is the

dominating part of the diagonal elements of Σ.9 The eigendecomposition would generate

eigenvectors that span β, ν, and κ. As a result, as demonstrated by (5.5.26), the expected

return vector is also spanned by those eigenvectors. Therefore, we only need to estimate

the projection of Rτ on a small number of eigenvectors, which is therefore of low dimension.

The next Algorithm presents the details.

Algorithm 5. Inputs: position change ∆xt and gain change ∆Πt.

S1. Construct sample covariance matrix Σ̂ = Ĉov(∆xt). Then estimate ν̃ using

̂̃νj = Σ̂j,j .

S2. Replace diagonal elements of Σ̂ with zero. Conduct eigendecomposition and take d

eigenvectors with large eigenvalues in absolute value. The eigenvectors and eigenvalues

can be written as a J × d matrix Λ̂ and d × d diagonal matrix D̂,10 where Λ satisfies

Λ⊺Λ = Id. Estimate Σ̃ as ̂̃
Σ = Λ̂D̂Λ̂⊺.

S3. Estimate Rτ as R̂τ = Λ̂Ê
(
Λ̂⊺∆xt∆Πt+τ

)
.

Outputs: ̂̃ν, ̂̃Σ, R̂τ , Λ̂, and D̂.

5.6 Conclusion

Taking stock, our paper provides a new conceptual framework and appropriate econometric

procedures to understanding the role of private information in the financial market utilizing

9. The estimates would be biased if κ is big enough. But in this case gt becomes a strong factor and the
danger would be easily detected.

10. We reuse the letter D which appears in the equilibrium model to represent cash flow rate. The context
shall eliminate ambiguity.
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price and quantity data together. The presence of many investors allows for a tractable

equilibrium with heterogeneity in information and belief structure, and at the same time

requires for properly designed econometric methods. Examining the equilibrium implications

with the joint moments of price and institution holding data allows us to measure, among

others, the magnitude of market inefficiency and the contributions of various investors to

the price informativeness. More broadly, it would be interesting to investigate that to what

extent the current empirical strategies, that are directly generated by our equilibrium model,

can actually apply beyond under the current structural assumptions.
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