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To the innocent souls who suffered during the plague and wars of the past five years.



Remember my affliction and my wanderings,

the wormwood and the gall!

My soul continually remembers it

and is bowed down within me.

— Lamentations 3:19-20
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ABSTRACT

Change point analysis has emerged as a critical area of research in Statistics over the past

seven decades, with applications spanning various domains, including Physics, Epidemiology,

Finance, and more. This thesis aims to develop innovative, non-parametric methodologies

for change point analysis that can effectively operate without relying on stringent regularity

conditions for the data, which are often violated in real-world scenarios. We introduce a novel

framework for change point analysis that is liberated from strong regularity conditions for the

signal of the data following the potential change point and propose a pioneering framework

for statistical inference of change points in the presence of temporally dependent and non-

stationary noise processes. Furthermore, we extend these frameworks to a multivariate

setting, addressing the growing interest in detecting change points in multivariate or high-

dimensional data.

We derive theoretical results to validate our proposed methodologies and demonstrate

their efficacy through both synthetic data analysis and real data applications. While our pro-

posed methods exhibit robust performance in low-dimensional settings, they are susceptible

to the curse of dimensionality in high-dimensional scenarios. We encourage future research to

build upon these contributions to overcome the challenges associated with high-dimensional

change point analysis under these irregular conditions, paving the way for more reliable and

accurate detection of change points in complex, real-world data.

xiii



CHAPTER 1

INTRODUCTION

In 1955, Ewan Stafford Page, a British academic, published two seminal papers in Biometrika

that laid the foundation for the field of change point analysis in modern Statistics. The first

paper, Page [1955a], introduces a statistical test to detect a shift in the distribution parameter

of a sequence of independent observations at an unknown point. The second paper, Page

[1955b], presents the innovative concept of using warning lines in addition to action lines on

control charts, enabling the detection of process shifts based on a sequence of observations

rather than a single point. Although Page’s work primarily focuses on industrial quality

control applications, the concepts and methods introduced have had a profound impact on

the development of change point analysis as a broader statistical field.

Over the past seven decades, change point analysis has become an active and popular

research area in Statistics due to its important applications and close connections across

various research domains. Recent examples showcase the wide-ranging applications of change

point analysis. In Environmental Sciences, Dar and Asif [2017] apply change point analysis

techniques to investigate the long-run impact of financial development, energy consumption,

and economic growth on greenhouse gas emissions in India, revealing two regime shifts

and highlighting the importance of incorporating these methods in environmental economic

research. In the area of Experimental Psychology, Williams et al. [2022] introduce a simple

signal detection model that accurately captures how we detect changes in visual memory

tasks. In Finance and Economics Research, Abosedra et al. [2021] explore the dynamics of

financial deepening and business cycle volatility in the UAE, using cointegration tests with

change points to reveal asymmetrical responses in the business cycle to changes in financial

deepening. In the field of Computational Neuroscience, Liu and Li [2022] propose a multi-

sensory pathway network (MSPN) framework, inspired by the parallel processing mechanism

of human visual information, for change detection in multi-temporal images.
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A critical challenge in change point analysis is identifying shifts in signals. Extensive

studies have focused on the scenario where only a single change point is assumed to exist.

The initial step involves testing for the presence of any change point. Upon rejecting the null

hypothesis, which asserts the absence of a change point, the analysis proceeds to estimate

the precise location of the change point, as pioneered by Hawkins [1977]. This subsequent

task is non-trivial, even within the framework of the normal and homoskedastic model or

the simpler one-parameter exponential family, as discussed in seminal works by Sen and

Srivastava [1975], Hinkley [1970], Worsley [1986], Siegmund [1988].

Despite the impressive performance of these methodologies in their synthetic data anal-

ysis, their effectiveness cannot be assured when applied to real-world data, particularly in

domains such as financial market analysis or pandemic research. Data from these sources

are often characterized by highly volatile signals and noise that is not only strong but also

non-stationary and temporally dependent. The classical methods discussed above typically

rely on stringent regularity conditions for both the signal and the noise components, which

are often violated in these real-world scenarios. Consequently, the failure to meet these as-

sumptions leads to suboptimal performance and unreliable results when these methods are

employed in practice. The inherent complexity and unpredictability of real-world data pose

significant challenges for traditional change point analysis techniques, necessitating the de-

velopment of more robust and adaptive approaches that can effectively handle the intricacies

of such data without being constrained by rigid assumptions.

The primary objective of this thesis is to develop innovative frameworks for change point

analysis that can operate effectively without relying on stringent regularity conditions for

the data. The methodologies presented in this work are non-parametric, ensuring that their

strong theoretical foundations and empirical performance are not contingent upon specific

parametric model assumptions for the noise sequence. This approach stands in stark contrast

to classical change point analysis methods, such as CUSUM, which require the noise process

2



to adhere to an i.i.d. Gaussian distribution. In practice, particularly in the domains of our

interest, such rigid parametric assumptions are often untenable, underlining the superiority

of our novel methodologies in addressing real-world challenges.

Chapter 2 introduces a novel framework for change point analysis that is liberated from

the confines of strong regularity conditions for the signal of the data following the potential

change point. This allows for the data to exhibit highly erratic behavior after a potential

change point, a scenario frequently encountered in real-world applications. We present a

sophisticated locating algorithm designed to pinpoint the initial change point with precision,

capturing the critical moment when the data transitions from a state of equilibrium to one

of flux. Traditional methods, heavily reliant on the regularity condition of the signals, are

shown to produce significantly biased estimates when applied to this task, highlighting the

superiority of our approach.

In Chapter 4, we propose a pioneering framework for statistical inference of change

points in the presence of temporally dependent and non-stationary noise processes. Our

non-parametric approach sets us apart as one of the first to tackle this formidable challenge

head-on, recognizing that the non-stationary nature of the noise process can render signal

inference an exceptionally arduous task without resorting to parametric models. Further-

more, our framework accommodates temporally varying signals, a notable advancement over

classical methods that often assume the signal to be multi-level constant.

Recognizing the burgeoning interest in detecting change points in multivariate or high-

dimensional data, such as graph data or network data, across both academic and industrial

domains, Chapter 3 and Chapter 5 endeavor to extend the frameworks established in Chap-

ter 2 and Chapter 4 to a multivariate setting. This aspect of the work presents formidable

challenges, particularly in developing a valid testing procedure for data characterized by high

dimensionality, temporal and spatial dependence, and non-stationarity in the noise compo-

nent. The research presented in Chapter 5 represents a pioneering attempt to address this

3



complex problem. While our proposed method demonstrates robust performance in low-

dimensional settings (large sample size, small dimensionality), it is susceptible to the curse

of dimensionality when confronted with high-dimensional data (small sample size, large di-

mensionality). We remain optimistic that future generations of brilliant researchers in this

field will build upon our contributions and ultimately overcome this challenge.

4



CHAPTER 2

UNI-VARIATE CHANGE POINT ANALYSIS UNDER

IRREGULAR SIGNALS

2.1 Introduction

Recently, the detection of multiple change points has garnered significant attention, as ev-

idenced by studies such as Frick et al. [2014], Fryzlewicz [2014, 2018], Baranowski et al.

[2019]. Notably, the R package changepoint offers functions that maintain linear computa-

tional complexity as the number of observations and change points increases [Killick et al.,

2012, Killick and Eckley, 2014a], assuming a piecewise constant mean function under the al-

ternative hypothesis. However, for many applications, it is more realistic to assume that the

functions between change points vary smoothly and/or are subject to dependent errors. This

perspective is supported by various statistical methods and theories [Muller, 1992, Horváth

and Kokoszka, 2002, Mallik et al., 2011, 2013, Vogt and Dette, 2015, Dette et al., 2020,

Bücher et al., 2021].

In contrast to the existing literature, our research is motivated by scenarios where signals

become highly irregular following a change point, diverging significantly from the assump-

tions of constant mean or smooth variations posited under the alternative hypothesis. These

signals may exhibit abrupt and erratic variations. An exemplary case involves the analysis

of irregular signals found in data tracking Baidu searches for COVID-19 related symptoms,

such as fever, in Hubei Province from 1 October 2019 to 31 January 2020 (see Figure 2.1).

Determining the pandemic’s start date is a critical epidemiological challenge, compounded

by restricted data access, leading to diverse findings among researchers Worobey [2021],

Huang et al. [2020], and Centre for Disease Control and Prevention [2022]. This study aims

to address this crucial issue by analyzing indirect Baidu search data, specifically focusing on

identifying the pandemic’s emergence through changes in the Baidu search index, employing

5
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Figure 2.1: Daily Baidu search index values for COVID-related symptoms keywords from 1 Oc-
tober 2019 to 31 January 2020. Keywords “cough” and “fever” are depicted in the left and right
panels, respectively.

the change point paradigm, as presented in (2.2.3) and (2.2.4). Given the nature of the data,

it is reasonable to assume a constant mean before the change point, while post-change data,

characterized by significant variability and irregularity, defies the assumptions of constancy

or smooth trends. To the best of our knowledge, the existing change point literature does

not adequately accommodate such a scenario.

In this chapter, we focus on the testing and the estimation of the first change point,

where the null hypothesis assumes a constant mean and the signals under the alternative

hypothesis can be quite general. Our method is offline, meaning that we assume the data are

fully observed, which differs from online change point detection, where information accrues

over time and only data available before the current time are considered. Differently from

Cao and Wu [2015], where the focus is on multiple testing with clustered signals, we propose

novel test statistics and a two-step method for detecting the first irregular signals after the

change point. We employ a CUSUM-type statistic to test the global null hypothesis that

there is no change point. If this global null is rejected, we develop a two-step method to
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locate the change point. In the first step, we use the minimum of the batched means as a

rough estimation of the change point location. Intuitively, since data before the change point

have a constant mean, this minimum falls in the middle between the time origin and the true

change point. The batched mean effectively smooths the data and increases the signal-to-

noise ratio. Equipped with the preliminary estimation from the first step, we estimate the

constant mean before the change point and the minimum distance between signals and the

constant mean. This allows us to construct a new test statistic to obtain a refined estimation

of the change point in the second step. Under suitable conditions, we achieve an OP(1) rate

of convergence of the estimated change point to the true change point, which fundamentally

improves the results in Cao and Wu [2022], where multiple sequences are needed to estimate

the variance due to heteroscedasticity.

The chapter is structured as follows: Section 2.2 presents our primary methodology for the

global null hypothesis test and the two-step change point localization. Theoretical results are

developed in Section 2.3, where we demonstrate the type-one error control and power analysis

of the testing procedure and establish the desirableOP(1) rate of convergence of the estimated

change point to the true change point. The empirical efficacy of our method is evaluated

through simulations in Section 2.4 and applied to a real-world dataset, specifically the Baidu

search indices for COVID-19 symptoms in 2019-2020, in Section 2.5. Comprehensive proofs

are provided in Section 2.6.

7



2.2 Methodology

2.2.1 Model for the Data and the Problems Considered

Let us consider a data model characterized by the presence of noise, formally defined as

Xt = µt + Zt, t = 1, . . . , n, (2.2.1)

where µt represents the mean or signal at time t, and (Zt)t∈Z denotes a stationary stochastic

process with zero mean, an auto-covariance function γ(k) = Cov(Zt+k, Zt), and a finite long-

run variance specified by

0 < σ2∞ :=
∞∑

k=−∞
γ(k) <∞. (2.2.2)

We consider the following null hypothesis

H0 : µ1 = . . . = µn, (2.2.3)

indicating a constant signal across observations, and an alternative hypothesis

H1 : ∃ τ ∈ {2, . . . , n}, d > 0 : µ1 = . . . = µτ−1, µτ , . . . , µn ≥ µ1 + d, (2.2.4)

which represents an upward shift in the signal from a constant level, detectable after a certain

observation τ and exceeding a minimum difference d. This scenario, capturing shifts to a

higher and non-constant level is often encountered empirically; cf. Figure 2.1. Despite its

practical relevance, there appears to be a lacuna in the literature regarding methodologies

specifically designed for this scenario.

Moreover, this framework encompasses instances where the signal from the τth obser-

vation onwards may either remain constant or exhibit multiple changes, provided that it

remains at least d units above the initial level. Here, τ signifies the earliest point of change,
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illustrating the comprehensive nature of hypothesis (2.2.4) that extends beyond conventional

cases by not imposing any further structure on the signal post-change.

Given the observations X1, . . . , Xn, we aim to develop

• a hypothesis test to determine whether H0 or H1 holds, and

• a procedure that, under H1, will estimate the change point τ .

It is noteworthy that existing literature, such as Dette and Wu [2019], Heinrichs and Dette

[2021], Vogt and Dette [2015], Bücher et al. [2021], has explored the detection of changes

in sequences of means, typically relying on smoothness conditions for the applicability of

their methods. In contrast, our proposed methodology distinctively does not necessitate

such smoothness conditions.

2.2.2 Testing Procedure

We propose a test to distinguish between H0 and H1, defined in (2.2.3) and (2.2.4), respec-

tively, given observations X1, . . . , Xn that follow (2.2.1). Consider the test statistic

T̂ := min
j=1,2,...,n

1√
nσ̂∞

j∑
i=1

(Xi − X̄n), where X̄n :=
1

n

n∑
i=1

Xi, (2.2.5)

and σ̂2∞ is a consistent estimator of the long-run variance σ2∞, defined in (2.2.2). Section 2.2.3

proposes an estimator for σ2∞ that is consistent under both H0 and H1. Section 2.3.2 shows

that, under H0, the distribution of T̂ is asymptotically close to the distribution of the

minimum of a standard Brownian bridge, whose quantiles can be obtained via simulation or

asymptotic approximation. Furthermore, under H1, T̂
P−→ −∞ as n → ∞. Therefore, we

reject H0 if T̂ < c, where c is the α-quantile of the minimum of a standard Brownian bridge;

cf. Section 2.3.2.
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2.2.3 A Two-Step Locating Algorithm

Data Blocking

To reduce noise and focus on the signal, we split the data into m := ⌊n/k⌋ blocks of size k,

where k →∞ and k/n→ 0. The block sample means are

Rj :=
1

k

jk∑
i=(j−1)k+1

Xi, j = 1, 2, . . . ,m. (2.2.6)

Section 2.3.3 provides guidance on choosing k. Define

L̂ := argmin
i=1,...,m

Ri, ℓ̂ := kL̂, (2.2.7)

where L̂ indicates a block likely to have all observations prior to the change point and ℓ̂ is

the last observation in the L̂th block.

Estimating the Long-Run Variance

After blocking the data, the index ℓ̂ satisfies ℓ̂ < τ with high probability. We estimate the

long-run variance by

σ̂2 :=
k

ℓ̂

ℓ̂∑
s=k

(
Rs/k − µ̂0

)2
, Rs/k :=

1

k

s∑
i=s−k+1

Xi, µ̂0 :=
1

ℓ̂

ℓ̂∑
i=1

Xi, (2.2.8)

where Rs/k extends (2.2.6) to overlapping blocks and µ̂0 is a preliminary estimate of µ1.

Overlapping blocks reduce asymptotic mean squared error Lahiri [1999]. The estimator (2.2.8)

is motivated by E[(
√
k(Rs/k−ERs/k))

2]→ σ2∞ for s = 1, . . . , τ−1, together with τ > ℓ̂→∞

with high probability (Lemma 2.6.1) and the consistency of µ̂0 for µ1 (Lemma 2.6.3). Sim-

ilar estimates were considered by Mies and Steland [2023], Zhou [2013], and Peligrad and
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Shao [1995]. The key novelty is the data-dependent segment selection via ℓ̂, ensuring con-

sistency under H0 and H1 but presenting technical challenges. Proving consistency requires

a maximal inequality for quadratic forms.

Locating Algorithm: Step 1

Step 1 aims to improve the estimate of µ1 and provide an estimate of d. With the block

averages Rj , index L̂ indicating a pre-change block, index ℓ̂ pointing to the last observation

in the L̂th block, and the preliminary estimate µ̂0 for µ1 from (2.2.8), compute the ‘test

statistics’ D̂j and ‘test decisions’ Îj :

D̂j :=

√
k(Rj − µ̂0)

σ̂∞
, Îj =


1 if D̂j ≥ z1−1/m,

0 otherwise,
(2.2.9)

where σ̂2∞ is a consistent long-run variance estimate (e.g., σ̂2 from (2.2.8)), zα is the α-

quantile of the standard normal distribution, and m := ⌊n/k⌋. Then compute

η̂ := argmin
t=1,...,m−1

m∑
j=1

(
Îj − 1[t+1,m](j)

)2
= argmin

t=1,...,m−1

 t∑
j=1

Îj +
m∑

j=t+1

(
1− Îj

) . (2.2.10)

Finally, obtain preliminary estimates for µ1 and d:

µ̂1 :=
1

kη̂

kη̂∑
i=1

Xi, d̂ := min
i=k(η̂+1)+1,
...,n−k+1

1

k

i+k−1∑
j=i

(Xj − µ̂1). (2.2.11)

Let η := ⌊τ/k⌋ be the index of the last block before the change, so ηk+1 ≤ τ ≤ (η+1)k.

Then ERj = µ1 for j = 1, . . . , η and ERj > µ1 for j = η + 1, . . . ,m. Since R1, . . . , Rη

fluctuate around µ1 but Rη+1, . . . , Rm have means strictly larger than µ1, L̂ is approximately

uniform on {1, . . . , η}. Thus, µ̂0 averages about kη/2 pre-change observations, yielding a
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Î j

0

1

1 5 10 15 20 25
j
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Figure 2.2: Test decisions Îj for the cough (left) and fever data (right) analysis described in
Section 2.5.1. Fitted step function j 7→ 1[η̂+1,m](j) is indicated by solid black line.

√
n-consistent estimate of µ1 if τ diverges at the same rate as n.

The estimate µ̂1 improves upon µ̂0 by using η̂ instead of L̂, as η̂ is expected to be closer

to η than L̂. The test decisions Îj indicate whether a block is from before (ERj = µ1) or

after (ERj > µ1) the change. The sequence Î1, . . . , Îm empirically approximates the step

function I1, . . . , Im with Ij := 0 for j ≤ η and Ij := 1 for j > η. The estimate η̂ fits a step

function to Î1, . . . , Îm that jumps from 0 to 1 at the block including the change, providing

a smoothed estimate. Figure 2.2 illustrates this smoothing for the example in Section 2.5.1.

The threshold zα in (2.2.9) uses α = 1− 1/m→ 1 to avoid false rejections in blocks prior to

the change.

Locating Algorithm: Step 2

We propose a novel estimate for the change point τ in (2.2.4):

τ̂ := arg min
j=2,...,n

j−1∑
t=1

(Xt − µ̂1 − ρd̂), (2.2.12)

where ρ ∈ (0, 1) is a tuning parameter. Section 2.3.3 provides theory for τ̂ and guidance on

choosing ρ. Under weak conditions, ρ := 1/2 yields a consistent estimate, similar to Chen

et al. [2022].

In Section 2.5.1, we employ τ̂ to infer the beginning of the COVID-19 pandemic from

Baidu search indices, revealing a plausible date where traditional methods fail.
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2.3 Theory

2.3.1 Assumptions on the Noise Process

To derive meaningful results regarding the statistical properties of our proposed methods,

we impose the following assumptions on the noise process (Zt)t∈Z in model (2.2.1).

We employ the framework of functional dependence measures introduced by Wu [2005].

In this framework, we view the causal stationary process (Zt)t∈Z as outputs from a physical

system:

Zt = G(. . . , εt−1, εt), (2.3.13)

where (εt)t∈Z are i.i.d. with mean zero and variance one, representing the input information,

and G is an R-valued measurable function that can be thought of as a filter or mechanism

of the system. This representation encompasses a wide range of linear and nonlinear time

series models, including ARCH, threshold autoregressive, random coefficient autoregressive,

and bilinear autoregressive processes; see, for example, Tong [1990], Priestley [1988], Wu

[2011]. The functional dependence measure quantifies the dependence of the output Zt on

the input ε0 by assessing the change in the output when ε0 is replaced by an independent

copy ε′0.

Assuming E|Zi|θ <∞ for some θ ≥ 1, the functional dependence measure is defined as

δi,θ = (E|Zi − Zi,0|θ)1/θ, where Zi,0 = G(. . . , ε−1, ε
′
0, ε1, . . . , εi). (2.3.14)

Here, Zi,0 represents the coupled version of Zi, obtained by replacing the input ε0 with

an independent copy ε′0. The functional dependence measure δi,θ captures the θ-th moment

difference between Zi and its coupled version Zi,0, providing a quantitative assessment of

the dependence of Zi on the input ε0.

To characterize the cumulative dependence of the future observations (Zi)i≥n on the
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input ε0, we define the cumulative dependence measure as

Θn,θ =
∑
i≥n

δi,θ, n ≥ 0. (2.3.15)

The cumulative dependence measure Θn,θ aggregates the functional dependence measures

δi,θ over all future time points i ≥ n, providing a comprehensive assessment of the overall

dependence of the future observations on the input ε0. The rate at which Θn,θ decays as n

increases characterizes the strength and persistence of the dependence in the noise process.

2.3.2 Testing Procedure

We now state results on the test described in Section 2.2.2. The first result provides the

asymptotic distribution under the null hypothesis, while the second asserts asymptotic con-

sistency under H1, where τ = τn and d = dn are allowed to depend on n.

Theorem 2.3.1. Assume the short-range dependence condition

Θ0,2 =
∑
i≥0

δi,2 <∞. (2.3.16)

(i) Under H0, as n→∞,

sup
x≤0
|P(T̂ ≤ x)− e−2x

2
| → 0. (2.3.17)

(ii) Under H1, if (τn/n)(1− τn/n)dn
√
n→∞, then T̂ → −∞ in probability as n→∞.

The proof is deferred to Section 2.6.1. Theorem 2.3.1(i) suggests using the α-quantile

of the limit, −(−0.5 logα)1/2, as the cutoff to test H0 at level α ∈ (0, 1). Let B denote a

standard Brownian motion and B1(u) = B(u)−uB(1) be the Brownian bridge. For all x ≤ 0,

P
(

inf
u∈[0,1]

B1(u) ≤ x
)
= e−2x

2
; (2.3.18)
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cf. equation (9.41) in Billingsley [1999]. For small n, a refined approximation of P(T̂ ≤ x)

is P(T ◦ ≤ x), where T ◦ = minj∈{1,2,...,n} B1(j/n), with distribution obtained by simulation.

The test based on the latter can have more accurate performance. Theorem 2.3.1(ii) implies

that, for any q ∈ R, P(T̂ ≤ q)→ 1.

2.3.3 Locating Algorithm

To establish a convergence theory for the estimated change points, we require the following

assumption on temporal dependence.

Condition 2.3.1. (Zi)i∈Z satisfies Hθ := (E|Zi|θ)1/θ <∞ for some θ > 2, and any one of

the following holds:

• θ > 4 and Θn,θ = O
(
n−γθ(log n)−A

)
as n → ∞, for A > 2 (1/θ + 1 + γθ) /3, where

γθ = (θ2 − 4 + (θ − 2)
√
θ2 + 20θ + 4)/(8θ);

• θ = 4 and Θn,θ = O
(
n−1(log n)−A

)
as n→∞, with A > 3/2;

• 2 < θ < 4 and Θn,θ = O
(
n−1(log n)−1/θ

)
as n→∞.

Condition 2.3.1 holds, for example, under the geometric moment contraction δn,θ =

O(ρn) for some ρ ∈ (0, 1), which is satisfied for many nonlinear time series models; see, for

example, Shao and Wu [2007] or Wu [2011]. It can be weaker, allowing polynomially decaying

dependence measures. By Corollary 2.1 in Berkes et al. [2014], Condition 2.3.1 implies the

following optimal Komlós–Major–Tusnády result: on a possibly richer probability space

(Ωc,Ac,Pc), there exists (Zc
i )i∈Z

D
= (Zi)i∈Z, and a standard Brownian motion Bc(·) such

that
n∑

i=1

Zc
i = σ∞Bc(n) + oa.s.(n

1/θ). (2.3.19)

The next result asserts the consistency of σ̂2, defined in (2.2.8), for estimating σ2∞. We

write an ≪ bn or bn ≫ an to mean an = o(bn) as n→∞. The quantities d = dn and τ = τn
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from (2.2.4) are allowed to depend on n without making this explicit in the notation, and

k is the user-chosen block size; cf. Section 2.2.3. Further, m := ⌊n/k⌋ and η := ⌊τ/k⌋, as

before.

Theorem 2.3.2. Assume Condition 2.3.1 with θ > 4, d≫ n−1/θ, and n2/θ log(n)≪ k ≪ τ .

Then,

σ̂2 = σ2∞ +OP
(1
k
+

1

η

)
, as n→∞.

The proof is deferred to Section 2.6.2.

Remark 1. (i) Theorem 2.3.2 limits the block size k from below by n2/θ log(n) for noise

reduction (with a smaller lower bound for lighter tails) and from above by τ (implying η →

∞). In practice, with unknown noise moment θ, the nonadaptive choice k = ⌈n1/3⌉ is simple

yet effective, satisfying the condition if θ > 6 Bühlmann and Künsch [1999].

(ii) The gap d can vanish asymptotically if slower than n−1/θ. The conditions on d and

k must be satisfied for the same θ, so if d decays slowly and Condition 2.3.1 holds for large

θ, then k can be chosen smaller.

Our main result bounds the error of estimating τ by τ̂ in terms of the minimum gap to

the signal averaged over sliding blocks. More precisely, defining

d∗ := min
i=k(η+1)+1,
...,n−k+1

1

k

i+k−1∑
j=i

(µj − µ1), (2.3.20)

we have the following:

Theorem 2.3.3. Assume Condition 2.3.1, d ≫ n−1/θ, n2/θ log(n) ≪ k ≪ τ , n − τ ≥ 2k,

and that there exists a constant K > ρ with d > Kd∗, where ρ is the tuning parameter

from the definition of τ̂ . Let the estimator σ̂2∞, used in (2.2.9), be consistent for σ2∞; i.e.,

σ̂2∞ = σ2∞ + oP(1). Then,

τ̂ = τ +OP
(
d
−θ/(θ−1)
∗

)
,
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as n→∞.

The proof is deferred to Section 2.6.3.

Corollary 2.3.1. Under the conditions of Theorem 2.3.3, we have:

(i) If d is bounded away from zero (i.e., if there exists a constant M with 0 < M < d), then

τ̂n = τ +OP(1), as n→∞.

(ii) If d is unbounded (i.e., d→∞, as n→∞), then P(τ̂n = τ)→ 1, as n→∞.

Remark 2. (i) Under the general alternative (2.2.4), we do not impose regularity beyond

the one-sidedness of the change. The gap d ≤ mint=τ,...,n(µt − µ1) could be determined

by a single noisy observation, insufficient for consistent estimation of d itself. We show

(Lemma 2.6.5) that d̂ consistently estimates d∗, which provides an upper bound for d. The

regularity condition d > Kd∗ for a constant K > ρ requires d∗ to also facilitate a lower

bound, sufficient for estimating τ by τ̂ .

(ii) The following example illustrates a situation where d > Kd∗ is satisfied, for a constant

K > ρ: Say µj−µ1 = m
(
(j− τ)/(n− τ)

)
for a function m : [0, 1]→ (0,∞) of bounded total

variation ∥m∥TV < ∞ and let K := 1/
(
1 + ∥m∥TV/

(
k infx∈[0,1]m(x)

))
. Note that K > ρ

if k > ρ∥m∥TV/
(
(1− ρ) infx∈[0,1]m(x)

)
and

d∗ ≤ inf
x∈[0,1]

m(x) +
1

k
∥m∥TV = K−1

(
inf

x∈[0,1]
m(x)

)
≤ K−1 min

t∈τ,...,n
m
( j − τ

n− τ

)
=: K−1d.

As an example, take a continuously differentiable function f and add a finite number of jump

discontinuities at distinct x1, . . . , xb: i. e., m(x) := f(x) +
∑b

i=1 δiI{x ≤ xi}. Then m is of

bounded variation: ∥m∥TV =
∫ 1
0 |f

′(t)|dt+
∑b

i=1 |δi|.

(iii) If the true d were known, we could use the following estimate for τ :

τ̃ := arg min
j=2,...,n

j−1∑
t=1

(Xt − µ̂1 − ρd). (2.3.21)
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Following the proof of Theorem 2.3.3, it can be shown that τ̃ = τ + OP
(
d−θ/(θ−1)

)
for all

ρ ∈ (0, 1), without an assumption on d∗. Note that τ̃ is only available if d is known.

(iv) The conditions on τ allow for ‘early’ and ‘late’ changes, not requiring τ ≍ n. The

requirement k ≪ τ ensures an increasing number of blocks before the change, while n−τ ≥ 2k

(slightly weaker) ensures at least one complete block after the change, needed to estimate d∗

(see Lemma 2.6.5).
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2.4 Monte Carlo Studies

2.4.1 Models Considered

We assess the finite sample performance of both the testing procedure (Section 2.2.2) and

the two-stage locating algorithm (Section 2.2.3). Our experiments employ data crafted via

the signal plus noise model delineated in (2.2.1).

For the noise component, we utilize a threshold AR model Tong [1990]:

Z ′i = θ
(
|Z ′i−1|+ |Z

′
i−2|

)
+ εi, (2.4.22)

where θ governs temporal dependence, and the i.i.d. innovations εi follow N (0, 0.52). A

higher absolute value of θ indicates stronger temporal dependence. The process remains

stationary provided |θ| < 0.5. The noise process (Zi) is obtained by centering Zi as Zi :=

Z ′i −E(Z ′i). Table 2.1 provides three-digit approximations to the values used. For θ < 0, we

use that the expectation of the process for θ and −θ have the same long-run variance and

the expectation differs only in sign. Further, for εi ∼ N (0, ξ2), we obtain expectation and

long-run variances by multiplying the ones from Table 2.1 by ξ and ξ2, respectively. For

example, for θ = −0.2 and εi ∼ N (0, 0.52), we use EZ ′i = −0.343 ·0.5 and σ2∞ = 1.332 ·0.52.

Regarding the signal µt, we examine two scenarios: (i) Under H0, as defined in (2.2.3),

the signal remains constant at µ1 = 0. (ii) Under H1, as defined in (2.2.4), the signal
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Table 2.1: Simulated expectation EZ ′
i and long-run variance σ2

∞ of (Z ′
i), defined in (2.4.22), for

εi ∼ N (0, 1).

θ EZ ′i σ2∞

0.2 0.343 1.332
0.3 0.577 2.104
0.4 0.988 5.782

generation model is:

µt =



µ1 := 0 for t = 1, . . . , τ − 1

µ1 + s
(
2t−3τ+τ ′

τ ′−τ

)
for t = τ, . . . , τ ′

µ1 + s
(
2 + exp

(
2(t−τ ′)
τ ′′−τ ′

))
for t = τ ′ + 1, . . . , τ ′′

µ1 + s
(
2 + exp(2) · 2n−τ

′′−t
2n−2τ ′′

)
for t = τ ′′ + 1, . . . , n,

(2.4.23)

In this model, s defines the magnitude of deviation from the baseline mean state (µ1 = 0)

for t < τ to the varied mean state for t ≥ τ . This model reflects trends similar to those

observed in the search engine index data depicted in Figure 2.1.

Figure ??tFig:data_tstrates an example of the data (X_i) and its corresponding signal

(µ_i). The figure clearly demonstrates the increase in signal strength following the initial

change point at τ = 320, where it surpasses the stable level of µ_1 = 0 by at least s = 0.5.

Subsequent to τ , a second significant change manifests at τ ′′ = 640, where the signal further

escalates, attaining a minimum of 8s = 4 above the initial µ_1 = 0 level. The dependence

parameter for the noise process is set to θ = 0.4. It is evident from the plot that obtaining a

precise estimate for τ through visual inspection is exceedingly challenging due to the presence

of noise. This pattern is consistent with our observations in real-world data.
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Figure 2.3: Illustration of (Xt) with n = 800, τ = 320, τ ′ = 500, τ ′′ = 640, s = 0.5, and θ = 0.4.

2.4.2 Synthetic Data under the Null Hypothesis

In this section, we illustrate that the testing procedure described in Section 2.2.2 has the cor-

rect size, asymptotically. We employ data structured as detailed in Section 2.4.1, operating

under a constant signal (i.e., H0).

We modulate the sample size, selecting n from 50, 100, 300, 500, 2000, and adjust the

dependence parameter θ from −0.4, −0.2, 0 (independence), 0.2, 0.4. The significance level

remains fixed at α = 0.05. We use the true long-run variance σ2∞ instead of σ̂2∞ in (2.2.5);

cf. Table 2.1. The empirical sizes, derived from 100,000 replications, are summarized in

Table 2.2.

Analyzing Table 2.2, it is evident that the rejection ratios—serving as proxies for type-

one error—gravitate closer to the target significance level of α = 0.05 as the sample size n

expands and temporal dependence diminishes (absolute value of θ shrinks). This observation

aligns seamlessly with our theoretical framework presented in Section 2.3.2. On juxtaposing

the two methodologies, the finite-sample Gaussian approximation-based testing procedure
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Table 2.2: Rejection ratios for change point testing procedure under the null hypothesis; cf. (2.2.3).

Approximation θ

Method n -0.4 -0.2 0 0.2 0.4

Asymptotic 50 0.0141 0.0270 0.0328 0.0318 0.0163
100 0.0226 0.0340 0.0374 0.0369 0.0241
300 0.0323 0.0392 0.0421 0.0408 0.0339
500 0.0350 0.0417 0.0438 0.0430 0.0356
2000 0.0418 0.0454 0.0454 0.0465 0.0423

Finite-sample 50 0.0210 0.0408 0.0500 0.0479 0.0244
100 0.0296 0.0454 0.0500 0.0490 0.0314
300 0.0380 0.0471 0.0497 0.0486 0.0392
500 0.0398 0.0469 0.0501 0.0492 0.0404
2000 0.0441 0.0485 0.0482 0.0495 0.0447

emerges superior in smaller datasets (n = 50, 100, 300, 500), compared to its asymptotic

counterpart. However, the latter’s performance converges with the finite-sample approach

as the sample size surges to n = 2000. This implies that, for shorter datasets, the finite-

sample Gaussian approximation can be advantageous. Conversely, for longer datasets, the

more computationally economical asymptotic approach becomes viable.

2.4.3 Synthetic Data under Alternative Hypotheses

This section provides an in-depth analysis of our testing procedure’s power and evaluates

the efficacy of the algorithm used for locating the first change point, employing synthetic

data. We adopt the data structure described in Section 2.4.1, with the signal defined as

per (2.4.23) (i.e., H1).

Our experimental setup is as follows: We vary the sample size, choosing n from the values

50, 100, 300, 500, 2000. We select the dependence parameter θ from the values −0.4, −0.2,

0 (representing independence), 0.2, and 0.4. The gap parameter s ranges from 0 to 0.045,

increasing in steps of 0.0006. It is important to note that the standard deviation of the

innovation in the dependent process is fixed at 0.5, and we keep µ1 = 0. We standardize the

ratios τ/n = 0.4, τ ′/n = 0.6, τ ′′/n = 0.8, maintaining µ1 = 0. For our testing methods, we
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consistently set the significance level at α = 0.05. Once the parameters for an experiment are

established, we generate the trend (µi) using the aforementioned methodology. Subsequently,

the additive noise process is simulated repeatedly, and this data is input into our testing

and locating algorithms. For testing we use the true long-run variance σ2∞ instead of σ̂2∞

in (2.2.5); cf. Table 2.1. For the locating algorithm we use the long-run variance estimator

defined in Section 2.2.3; i.e., σ̂2∞ := σ̂2; cf. (2.2.8) and (2.2.9). The results are derived from

100,000 independent simulations.

It is crucial to observe that testing for a change point remains challenging, even in sce-

narios with the largest gap parameter s = 0.045. This difficulty arises because, as indicated

in Table 2.1, the gap s = 0.045 is considerably smaller than the noise levels, complicating

the detection of the change point’s presence significantly.

Initial observations indicate variations in the rejection ratio, an estimate of the true

power, in relation to the gap parameter s. These variations are evident across different

combinations of the dependence parameter θ and sample size n, as depicted in Figure 2.4. In

each experiment, the rejection ratio progresses from the nominal level (α = 0.05) to nearly

1 as s increases from 0 to 0.045. This trend suggests that as the task of detecting change

points becomes less challenging, the power of our test approaches unity.

The graphical data highlight a marked increase in the rejection ratio with sample sizes

expanding from 50 to 2000. This trend is in alignment with the theoretical insights presented

in Theorem 2.3.1(ii). Additionally, it is noteworthy that despite a diminished test power

under conditions of strong temporal dependence (with |θ| = 0.4), the power can still approach

unity given a sufficient sample size. This observation implies the efficacy of our testing

procedure even under the influence of temporal dependent noise in the data.

Next, we showcase the absolute errors normalized by sample size E|τ̂ − τ |/n of our two-

step locating algorithm across experiments with diverse parameters in Figure 2.5.

When the temporal dependence is moderate, error rates are smaller. As the disparity
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Figure 2.4: Rejection ratios for the testing procedure under the alternative hypothesis: µi = µ1

for i = 1, 2, . . . , τ − 1; µi > µ1 + s for i = τ, τ + 1, τ + 2, . . . , n. The noise process is shaped by the
dependence parameter θ. We adjust the gap parameter s over the set {0, 0.0006, 0.0012, . . . , 0.045},
n over {50, 300, 500, 2000}, and θ over {−0.4,−0.2, 0, 0.2, 0.4}. Each data point represents 100,000
replications.

between the signal and non-signal segments grows from 0.8 to 2.5, the error rate progres-

sively diminishes. As the sample size n expands from 50 to 2000 normalized error decreases.

These findings resonate with Theorem 2.3.3, discussed in Section 2.3.3. For scenarios char-

acterized by heightened dependence and minimal gap, error rates can be larger. Yet, in

more favorable conditions, the error remains relatively stable or increases only marginally.

This fact underscores the robustness of our methodology. We expanded our analysis to

compare the performance of our locating algorithm with three established change point

estimation techniques: a CUSUM-type method, a Maximum Likelihood Estimation-based

24



method, and an approach that employs binary segmentation. More precisely, we obtain

argminj=2,3,...,n+1
∑j−1

i=1 (Xi − X̄n) and refer to it as CUSUM. This is related to our test

statistic T̂ , defined in (2.2.5). Secondly, we apply the functions cpt.mean, with method =

"AMOC", and cpts from the R package changepoint Killick and Eckley [2014b], Killick et al.

[2022] and refer to the obtained value as AMOC (at most one change). Thirdly, we apply the

functions sbs and changepoints from the R package wbs Baranowski and Fryzlewicz [2019]

and refer to the minimum of the obtained values as 1SBS (first time of change obtained with

standard binary segmentation). We add +1 to AMOC and 1SBS to account for the fact that

in our notation the change occurs from τ −1 to τ while there it occurs from τ to τ +1. Note

that, while the first two methods estimate a single change point, the binary segmentation

method estimates multiple change points of which we select the earliest. The outcome of this

comparative study is detailed in Figure 2.5. It reveals that the errors associated with the

three alternative methods are somewhat unstable and, depending on the scenario, can per-

form poorly. We also note that keeping the gap parameter s and the dependence parameter

θ constant while increasing the sample size n from 50 to 2000 results in the mean absolute

error (MAE) normalized by n for our method approach zero. This observation confirms our

theory and previous numerical analysis that our method’s error remains relatively constant

with larger sample sizes. In contrast, for the other three classical methods, we see less stable

behavior of the MAE /n, which either remains relatively unchanged as n increases, indicating

that their errors grow with the sample size or behave reasonably under independence, but

struggle in the presence of serial dependence. Furthermore, when θ and n are fixed and s is

varied, our method shows a steady decline in error as s increases. This pattern of reducing

error is not observed in the other methods. In fact, with these methods, increasing the gap

parameter may lead to higher errors, questioning their stability and reliability in our ex-

perimental context. Overall, these results highlight the shortcomings of traditional methods

in handling non-standard or complex data configurations, emphasizing the superiority and
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versatility of our proposed method.
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Figure 2.5: Expected absolute errors normalized by sample size across four change point detection
methods. The red, green, blue and purple bars show E|τ̂−τ |/n of our proposed method τ̂ , CUSUM,
likelihood-based method (AMOC), and earliest change point from standard binary segmentation
(1SBS) method, respectively. The parameters varied in this study include the gap parameter s, the
sample size n, and the parameter θ of the threshold autoregression noise process. Each bar in the
graph represents the average result from 100, 000 replications.
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2.5 Real Data analysis

2.5.1 Baidu Search Index for COVID-19 Related Symptoms

Numerous studies have endeavored to pinpoint the initial emergence of the SARS-CoV-2

virus among humans. The initial cases were likely linked to the Huanan Seafood Wholesale

Market in late December 2019. However, this cluster is not believed to signify the pandemic’s

inception. To deduce the possible duration SARS-CoV-2 circulated in China before detection,

we analyzed Baidu’s search index (China’s leading search engine) for COVID-19 symptom-

related keywords between 1 October 2019 and 31 January 2020 in Hubei Province, China.

We focused on the terms “fever” and “cough”, aggregating searches from both desktop and

mobile platforms. As depicted in Figure 2.6, the counts exhibit regular fluctuations until

the series’ end. Given the rapid transmission capability of COVID-19, the consistent mean

assumption post-change point in conventional methods is inapplicable. Applying the test

proposed in Section 2.2.2 for the null hypothesis H0 of constant mean, defined in (2.2.3),

against the alternative hypothesis H1 of a one-sided upwards change, defined in (2.2.4),

yields test statistics T̂ < −10 and T̂ < −26, for Baidu search indices “cough” and “fever”,

respectively. The p-values implied by Theorem 2.3.1(i) are essentially zero such that we

reject the null hypothesis in both cases.

We continue the analysis by employing the two-stage locating method (Section 2.2.3).

For the keyword “cough” (comprising n = 123 data points), the initial stage estimates the

equilibrium data state’s mean, µ1, and the state gap parameter d, guiding the subsequent

stage. We defined k = ⌈n1/3⌉ = 5 for the batched mean length and computed

Rj =
1

k

jk∑
i=(j−1)k+1

Xj , j = 1, . . . ,m,

as defined in (2.2.6). We obtain L̂ := argmin1≤j≤mRj = 4 and ℓ̂ := kL̂ = 20, as defined
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in (2.2.7). We find a pre-change sample mean of µ̂0 = 341.45 obtained from the initial ℓ̂

data. The test statistics D̂j =
√
k(Rj − µ̂0)/σ̂∞ use σ̂∞ ≈ 51.4 which is the square root

of the estimated long-term variance from the initial ℓ̂ observations; cf. (2.2.8). Then, we

obtain the test decisions Îj , defined in (2.2.9), as

Îj =


1 if D̂j ≥ z1−1/m,

0 otherwise,

where z1−1/m is the 1− 1/m quantile of the standard normal distribution. We obtain

η̂ := argmin
t

m∑
j=1

{Ij − 1[t+1,m](j)}
2 = 14,

as defined in (2.2.10). A graphical representation of the test decisions and smoothing can be

seen in Figure 2.2. The first-stage estimates thus are

µ̂1 :=
1

kη̂

kη̂∑
i=1

Xi ≈ 353.06, d̂ := min
i=k(η̂+1)+1,
...,n−k+1

1

k

i+k−1∑
j=i

(Xj − µ̂1) ≈ 21.9.

Setting ρ = 0.5, our refined change point estimate in the second phase is:

τ̂ := arg min
j=2,...,n

j−1∑
t=1

(Xt − µ̂1 − ρd̂) = 69,

as defined in (2.2.12), which translates to 8 December 2019.

For comparative analysis, we evaluated the CUSUM, AMOC, and 1SBS estimates as

discussed in Section 2.4.3. The CUSUM method identified 15 December 2019 as the change

point, while the AMOC approach pinpointed 21 January 2020. Conversely, the Binary

Segmentation method indicated 14 December 2019 as the initial outbreak date, slightly

earlier than the other two methods but still later compared to our findings.
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Remarkably, our analysis of the Baidu “fever” search index aligns with our results by

also marking 8 December 2019 as the change point, consistent with the “cough” dataset. In

contrast, the CUSUM, AMOC, and 1SBS methods suggested change points on 22 December

2019, 20 January 2020, and 3 December 2019, respectively. A graphical representation of

these results is shown in Figure 2.6.

Reports, such as Worobey [2021], mention early COVID-19 cases, including a 41-year-old

male showing symptoms on 16 December 2019 and a female seafood vendor with symptoms

on 10 December 2019, aware of potential cases near Huanan Market from 11 December 2019.

The CDC and other studies have highlighted early December 2019 as a critical period. These

findings support the plausibility of our change point detection.

Notably, the Chinese government officially announced the outbreak on 20 January 2020,

marking a significant tipping point. However, our focus is on identifying the initial outbreak,

which our analysis suggests occurred before 1 January 2020. Classical methods may not be

well-suited for detecting such early changes, possibly due to their reliance on sample means

that can be influenced by later data points, leading to inaccuracies.
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Figure 2.6: BAIDU search index for “fever” and “cough” from 1 October 2019 to 31 January 2020.
The red solid vertical line indicates the change point detected by our method τ̂ ; the orange, brown,
and purple dashed lines represent the change points detected by CUSUM, likelihood-based (AMOC),
and earliest change detected by standard binary segmentation (1SBS) methods, respectively.
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2.6 Proofs

2.6.1 Proof of Theorem 2.3.1

Let

Tn := min
j=1,2,...,n

1√
nσ∞

j∑
i=1

(Xi − X̄n).

By σ̂2 = σ2∞ + oP(1) and Slutsky’s lemma, it suffices to prove the result with T̂ replaced by

Tn. Note that

n−1/2
j∑

i=1

(Xi − X̄n) = n−1/2Mn(j) + n−1/2
(
Sj −

j

n
Sn

)
, Sn =

n∑
i=1

Zi, (2.6.24)

where Mn(j) :=
∑j

i=1(µi − µ̄n), µ̄n := n−1
∑n

i=1 µi. By Theorem 3 in Wu [2005], under

condition (2.3.16),

n−1/2{S⌊nu⌋, 0 ≤ u ≤ 1} ⇒ {σ∞B(u), 0 ≤ u ≤ 1}.

Then n−1/2{S⌊nu⌋ − n−1⌊nu⌋Sn, 0 ≤ u ≤ 1} ⇒ {σ∞B1(u), 0 ≤ u ≤ 1}, and case (i) follows

from the continuous mapping theorem and (2.3.18), as under H0, Mn(j) = 0.

For (ii), under H1, for j, τ ∈ {1, . . . , n},

Mn(j) :=

j∑
i=1

(µi − µ̄n) =

j∑
i=1

(µi − µ1)−
j

n

n∑
i=τ

(µi − µ1). (2.6.25)

The representation in (2.6.25) has interesting consequences: (a) Since (µi − µ1) = 0 for

i = 1, . . . , τ − 1, the first term is non-negative, vanishing for j < τ , and the second term

decreases as j increases, implying argminj Mn(j) ≥ τ −1. (b) We have minj=1,...,nMn(j) ≤
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Mn(τ − 1) ≤ d(1−τn )(n− τ + 1). Thus,

n−1/2 min
j=1,...,n

Mn(j)→ −∞, as n−3/2τ(n− τ)d→∞.

Therefore, (ii) follows from (2.6.24).

2.6.2 Proof of Theorem 2.3.2

We introduce some notation and technical results. During the proofs, we refer to the following

conditions, satisfied under the theorem’s conditions: let the quantities n, d, τ , m, η (cf.

comment before Theorem 2.3.2), and θ, as in Condition 2.3.1, satisfy, as n→∞,

(C0) η →∞,

(C1) n1/θ
√
log(η)/k = O(1),

(C2) (kd+
√

k log(η))/n1/θ →∞,

(C3) log(m)≪ kd2,

(C4) m1/θ/k ≪ k−1/2, as n→∞.

(C5) Let σ̂2∞ satisfy P
(
|σ̂2∞ − σ2∞| > λσ2∞

)
→ 0, for some λ ∈ (0, 1).

By τ ≤ (η + 1)k, k ≪ τ implies (C0). Further, k ≫ n2/θ log(n) and d ≫ n−1/θ imply

(C1)–(C4), and σ̂2∞ = σ2∞ + oP(1) implies (C5). If σ̂2∞ is our long-run variance estimate σ̂2

defined in (2.2.8) and Condition 2.3.1 is satisfied with θ > 4, then (C5) holds.

Throughout Sections 2.6.2–2.6.4, we apply Theorem 2 from Wu and Wu [2016] providing

a Nagaev-type inequality. The required condition is that the dependence adjusted norm,

defined as

Ξθ,α := sup
i≥0

(i+ 1)αΘi,θ, (2.6.26)
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is finite, where the cumulative dependence measure Θi,θ is as in (2.3.15).

More precisely, we require:

Condition 2.6.1. (Zi)i∈Z satisfies Hθ := (E|Zi|θ)1/θ <∞ for some θ > 2, and there exists

α ≥ 0 such that Ξθ,α <∞.

Clearly, Condition 2.3.1 implies Condition 2.6.1 with α = 1.

Lemma 2.6.1 asserts that, with probability tending to 1, L̂ diverges and does not take

values larger than η − o(η).

Lemma 2.6.1. Grant Conditions 2.3.1, (C1), (C2), and (C3). Then, for any sequence

tn ∈ N with tn →∞ and tn = o(η),

P(tn ≤ L̂ ≤ η − tn)→ 1, as n→∞. (2.6.27)

The proof is deferred to Section 2.6.4.

Lemma 2.6.2. Let δi,2 be defined as in (2.3.14). Then

∞∑
k=−∞

|γ(k)| ≤ 2
( ∞∑
i=0

δi,2

)2
,

∞∑
k=−∞

|k||γ(k)| ≤ 2
( ∞∑
i=0

δi,2

)( ∞∑
k=0

kδk,2

)
. (2.6.28)

In particular, Condition 2.3.1 with θ > 2 implies
∑∞

k=−∞ |γ(k)| <∞ and with θ > 4 implies∑∞
k=−∞ |k||γ(k)| <∞.

The proof is deferred to Section 2.6.4.

Lemma 2.6.3 concerns the consistency and rate of the estimate µ̂0 used in the definition

of the test statistic Dj .

Lemma 2.6.3. Grant Conditions 2.3.1, (C1), (C2), and (C3). Then

|µ̂0 − µ1| = OP
( 1√

ηk

)
, as n→∞. (2.6.29)
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The proof is deferred to Section 2.6.4.

Now we prove Theorem 2.3.2. The following decomposition holds:

σ̂2 − σ2∞

= σ̂2 − 1

L̂

kL̂∑
s=k

(
Rs/k − µ1

)2
(2.6.30)

+
k

kL̂

kL̂∑
s=k

(
Rs/k − µ1

)2
− k

kL̂

kL̂∑
s=k

(
Rs/k − ERs/k

)2
(2.6.31)

+
k

kL̂

kL̂∑
s=k

(
Rs/k − ERs/k

)2
− kE

(
R1 − ER1

)2
(2.6.32)

+ kE
(
R1 − ER1

)2
− σ2∞ (2.6.33)

We will show that (2.6.30) = OP(1/η), (2.6.31) = OP
(
(ηk)−1/2

)
, (2.6.32) = OP

(
(ηk)−1/2

)
,

and (2.6.33) = O(1/k).

To show (2.6.30) = OP(1/η), it suffices to show that (2.6.30) = OP(an/η) for any an →

∞. Let tn := η/an, then tn = o(η). For (2.6.30), note that

∣∣∣σ̂2 − 1

L̂

kL̂∑
s=k

(
Rs/k − µ1

)2∣∣∣ = ∣∣∣ 1
L̂

kL̂∑
s=k

(
Rs/k − µ̂0

)2
− 1

L̂

kL̂∑
s=k

(
Rs/k − µ1

)2∣∣∣
=
∣∣∣ 2
L̂

kL̂∑
s=k

(Rs/k − ERs/k)(µ1 − µ̂0) +
1

L̂

kL̂∑
s=k

(
(2ERs/k)(µ1 − µ̂0) + µ̂20 − µ21

)∣∣∣
=
∣∣∣ 2
L̂

kL̂∑
s=k

(Rs/k − ERs/k)(µ1 − µ̂0) +
1

L̂

kL̂∑
s=k

(
(µ̂0 − µ1)

2 + 2(µ1 − ERs/k)(µ̂0 − µ1)
)∣∣∣

≤ 2k|µ1 − µ̂0|

(∣∣∣ 1
kL̂

kL̂∑
s=k

(Rs/k − ERs/k)
∣∣∣+ 1

2
|µ̂0 − µ1|+

1

kL̂

kL̂∑
s=k

|µ1 − ERs/k|

)

= OP

(
k

1

(ηk)1/2

( η/tn

(ηk)1/2
+

1

(ηk)1/2
+

1

(ηk)1/2

))
= OP

(an
η

)
,
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where we have used |µ̂0 − µ1| = OP
(
(ηk)−1/2

)
by Lemma 2.6.3, and which we will prove

below:
1

kL̂

kL̂∑
s=k

(Rs/k − ERs/k) = OP
((ηk)1/2

ktn

)
, ∀tn = o(η), (2.6.34)

and
1

kL̂

kL̂∑
s=k

|µ1 − ERs/k| = OP
(
(ηk)−1/2

)
. (2.6.35)

For (2.6.34), first note that

max
tn≤L≤η

∣∣∣1
k

kL∑
s=k

s∑
i=s−k+1

Zi

∣∣∣ = max
tn≤L≤η

∣∣∣1
k

k∑
u=1

k(L−1)+u∑
i=u

Zi

∣∣∣
≤ max

tn≤L≤η
max

u=1,...,k

∣∣∣ k(L−1)+u∑
i=u

Zi

∣∣∣ = max
tn≤L≤η

max
u=1,...,k

∣∣∣ k(L−1)+u∑
i=1

Zi −
u−1∑
i=1

Zi

∣∣∣
≤ 2 max

n=1,...,kη

∣∣∣ n∑
i=1

Zi

∣∣∣.
Thus, letting rn := 2(ηk)1/2/(ktn),

P
(∣∣∣ 1

kL̂

kL̂∑
s=k

(Rs/k − ERs/k)
∣∣∣ > Mrn

)
≤ P

(
max

tn≤L≤η

∣∣∣ 1
kL

kL∑
s=k

1

k

s∑
i=s−k+1

Zi

∣∣∣ > Mrn

)
+ o(1)

≤ P
(

max
1≤n≤ηk

∣∣∣ n∑
j=1

Zj

∣∣∣ > Mktnrn/2
)
+ o(1)

≤ C1

ηkΞθ
θ,1

(Mktnrn/2)θ
+ C2 exp

(
− C3

Ξ2
2,1

(Mktnrn/2)
2

ηk

)
+ o(1)

= C1Ξ
θ
θ,1

1

Mθ(ηk)(θ−2)/2
+ C2 exp

(
− C3

Ξ2
2,1

M2

)
+ o(1),

which will be arbitrarily small for M large enough. For the o(1) after the first inequality, we

used Lemma 2.6.1. For the third inequality, note that Condition 2.6.1 holds. Therefore, we

can apply Theorem 2 in Wu and Wu [2016], and hence, there exist positive constants C1, C2
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and C3, such that the third inequality holds.

For (2.6.35), we prove the following, more general statement: let W1, . . . ,Wn be any

random variables such that Wk = . . . = Wkη = 0 a.s., and wn > 0 an arbitrary sequence

signifying a rate. Then,
kL̂∑
i=k

Wi = oP(wn). (2.6.36)

To see this, note that for ε > 0

P
(∣∣∣ kL̂∑

i=k

Wi

∣∣∣ > εwn

)
≤ P

({∣∣∣ kL̂∑
i=k

Wi

∣∣∣ > εwn

}
∩
{
L̂ ≤ η

})
+ P(L̂ > η)

≤ P
(

sup
L=1,...,η

∣∣∣ kL∑
i=k

Wi

∣∣∣ > εwn

)
+ o(1)→ 0,

due to supL=1,...,η
∑kL

i=k Wi = 0 a.s., and o(1) follows from Lemma 2.6.1. Thus, (2.6.35)

follows from (2.6.36) with Wi = |µ1 − ERi/k|/(kL̂) and wn = (ηk)−1/2. We conclude

(2.6.30) = OP(1/η).

For (2.6.31), note that

k

kL̂

kL̂∑
s=k

(
Rs/k − µ1

)2
− k

kL̂

kL̂∑
s=k

(
Rs/k − ERs/k

)2

=
kL̂∑
s=k

1

L̂

(
2Rs/k(ERs/k − µ1) + µ21 − (ERs/k)

2
)
= OP

(
(ηk)−1/2

)
,

with the rate following from (2.6.36).

For (2.6.33), note that

σ2∞ − kE
(
R1 − ER1

)2
=

∞∑
u=−∞

γ(u)−
∑
|u|<k

(1− |u|/k)γ(u)

=
∑
|u|≥k

γ(u) + k−1
∑
|u|<k

|u|γ(u) = O(1/k),
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where the O(1/k) rate follows from
∑∞

u=−∞ |uγ(u)| < ∞, which is satisfied due to Condi-

tion 2.3.1 with θ > 4; cf. Lemma 2.6.2.

Finally, for (2.6.32), denote

Q̃(u) :=
u∑

t=k

1

k

( t∑
s=t−k+1

G(εs, εs−1, . . .)
)2

=
u∑

t=k

1

k

( t∑
s=t−k+1

Zs

)2
=

u∑
t=k

k
(
Rt/k − ERt/k

)2
.

(2.6.37)

Now, to show (2.6.32) = OP
(
(ηk)−1/2

)
, for any tn = η/an = o(η), and for M > 0, letting

the rate rn := (kη)1/2/
(
k(tn − 1) + 1

)
= O

(
an/(kη)

1/2
)
, we have that

P
(∣∣∣ k

k(L̂− 1) + 1

kL̂∑
s=k

(
Rs/k − ERs/k

)2
− kE

(
R1 − ER1

)2∣∣∣ > Mrn

)

≤ P

(
max

tn≤L≤η

∣∣∣∣∣
kL∑
s=k

(
k
(
Rs/k − ERs/k

)2
− kE

(
R1 − ER1

)2)∣∣∣∣∣ > M(kη)1/2

)
+ o(1)

≤ P

(
max

k≤u≤kη

∣∣∣Q̃(u)− EQ̃(u)
∣∣∣ > M(kη)1/2

)
+ o(1)

≤
CkηΘ2

0,2

(M(kη)1/2)2
+ o(1) = C

(Θ0,2

M

)2
+ o(1),

(2.6.38)

where the o(1) after the first inequality is due to an application of Lemma 2.6.1 and, for the

last inequality, we have used equation (A.16) from the proof of Theorem 5.1 in the supplement

of Mies and Steland [2023]. Note that the condition (G.1) in Mies and Steland [2023] follow

from Condition 2.3.1 and condition (G.2) is satisfied under stationarity. The right-hand side

of the bound is arbitrarily small for all n > N with N,M chosen large enough. Note that

the above rate holds for all an →∞. Combining this with
(
k(L̂− 1) + 1

)
/(kL̂) = 1 + oP(1)

and Slutzkly’s lemma, we have thus shown (2.6.32) = OP
(
(ηk)−1/2

)
, which concludes the
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proof of the theorem.

2.6.3 Proof of Theorem 2.3.3

Our proof relies on the statistical properties of the estimates η̂ defined in (2.2.10), µ̂1 defined

in (2.2.11), and d̂ defined in (2.2.11), summarized in Theorem 2.6.1 and Lemmas 2.6.4

and 2.6.5 below.

Theorem 2.6.1. Assume Conditions 2.3.1 and (C0)–(C5). Then,

P(η̂ = η)→ 1, n→∞.

The proof of Theorem 2.6.1 is deferred to Section 2.6.4. For the proof of Theorem 2.3.3,

we further employ the following lemmas:

Lemma 2.6.4. Under the condition of Theorem 2.6.1, we have

|µ̂1 − µ1| = OP
(
(kη)−1/2

)
. (2.6.39)

The proof of Lemma 2.6.4 is deferred to Section 2.6.4.

Lemma 2.6.5. Under the condition of Theorem 2.6.1 and n− τ ≥ 2k, we have

|d̂− d∗| = OP

(( log(m− η + 1)

k

)1/2)
. (2.6.40)

The proof of Lemma 2.6.5 is deferred to Section 2.6.4.

Now, to prove |τ̂n− τ | = OP
(
d
−θ/(θ−1)
∗

)
, as n→∞, we need to show that for any ε > 0,

there exists M̃ε ∈ N and Nε ∈ N such that

P
(
|τ̂n − τ | ≥ M̃εd

−θ/(θ−1)
∗

)
< ε, ∀n > Nε.
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We now derive a bound for P (|τ̂n − τ | ≥Mε), where Mε := ⌊M̃εd
−θ/(θ−1)
∗ ⌋. Note that

from (2.2.12) we have that

Ω =


τ−1∑
t=1

(Xt − µ̂1 − ρd̂) ≥
τ̂n−1∑
t=1

(Xt − µ̂1 − ρd̂)


=


τ−1∑
t=τ̂n

(Xt − µ̂1 − ρd̂) ≥ 0

 ∩ {τ̂n < τ}


∪


τ̂n−1∑
t=τ

(Xt − µ̂1 − ρd̂) ≤ 0

 ∩ {τ̂n > τ}

 ∪ {τ̂n = τ} .

Then for n > Nε ≫Mε > 0,

P (|τ̂n − τ | ≥Mε) = P

 τ−2⋃
ℓ=Mε

{τ̂n = τ − ℓ} ∩ Ω

+ P

 n−τ⋃
ℓ=Mε

{τ̂n = τ + ℓ} ∩ Ω


= P

 τ−2⋃
ℓ=Mε


τ−1∑

t=τ−ℓ

(
Xt − µ̂1 − ρd̂

)
≥ 0




+ P

 n−τ⋃
ℓ=Mε


τ+ℓ−1∑
t=τ

(
Xt − µ̂1 − ρd̂

)
≤ 0




≤ P

max
ℓ≥Mε

τ−1∑
t=τ−ℓ

(
Zt + µt − µ̂1 − ρd̂

)
≥ 0

 (2.6.41)

+ P

max
ℓ≥Mε

τ+ℓ−1∑
t=τ

(
µ̂1 + ρd̂− Zt − µt

)
≥ 0

 . (2.6.42)

We treat (2.6.41) and (2.6.42) separately.

For (2.6.41), note that µt = µ1 for t < τ . Then, for any ε with 0 < ε < ρd∗/(1 + ρ), we
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argue as follows:

(2.6.41) = P

max
ℓ≥Mε

τ−1∑
t=τ−ℓ

Zt + ℓ
(
µ1 − µ̂1 − ρd̂

)
≥ 0


≤ P

max
ℓ≥Mε

τ−1∑
t=τ−ℓ

Zt + ℓ
(
(1 + ρ)ε− ρd∗

)
≥ 0

+ P
(
|d̂− d∗| > ε

)
+ P

(
|µ̂1 − µ1| > ε

)
.

Further, for the first term, we have

P

max
ℓ≥Mε

τ−1∑
t=τ−ℓ

Zt + ℓ
(
(1 + ρ)ε− ρd∗

)
≥ 0


≤
∞∑
k=1

P

 max
2k−1Mε≤ℓ≤2kMε

τ−1∑
t=τ−ℓ

Zt + ℓ
(
(1 + ρ)ε− ρd∗

)
≥ 0


≤
∞∑
k=1

P

 max
1≤ℓ≤2kMε

τ−1∑
t=τ−ℓ

Zt ≥ 2k−1Mε

(
ρd∗ − (1 + ρ)ε

)
≤
∞∑
k=1

C1

2kMεΞ
θ
θ,1(

2k−1Mεr1

)θ +
∞∑
k=1

C2 exp
(
−

C3

(
2k−1Mεr1

)2
2kMεΞ2

2,1

)

=
C1Ξ

θ
θ,1(

Mεr
θ/(θ−1)
1

)θ−1 ∞∑
k=1

2k

2θ(k−1)
+
∞∑
k=1

C2 exp
(
−

C32
k−2Mεr

2
1

Ξ2
2,1

)
,

where r1 = r1(d∗, ε) := ρd∗ − (1 + ρ)ε. For the third inequality, note that Condition 2.6.1

holds. Therefore, we can apply Theorem 2 in Wu and Wu [2016], and hence, there exist

positive constants C1, C2 and C3, such that the third inequality holds.

Recall the upper bound condition on d∗, by which we have that there exists K > ρ with

min
t≥τ

(µt − µ1) ≥ d > Kd∗.
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Thus, for ε > 0 small enough such that (1 + ρ)ε− (K − ρ)d∗ < 0,

(2.6.42) = P

max
ℓ≥Mε

τ+ℓ−1∑
t=τ

(−Zt) + ℓ(µ̂1 − µ1 + ρd̂)−
τ+ℓ−1∑
t=τ

(µt − µ1) ≥ 0


≤ P

max
ℓ≥Mε

τ+ℓ−1∑
t=τ

(−Zt) + ℓ(1 + ρ)ε−
τ+ℓ−1∑
t=τ

(
(µt − µ1)− ρd∗

)
≥ 0


+ P

(
|d̂− d∗| > ε

)
+ P

(
|µ̂1 − µ1| > ε

)
.

Further, for the first term in the previous bound,

P

max
ℓ≥Mε

τ+ℓ−1∑
t=τ

(−Zt) + ℓ(1 + ρ)ε−
τ+ℓ−1∑
t=τ

(
(µt − µ1)− ρd∗

)
≥ 0


≤
∞∑
k=1

P

 max
2k−1Mε≤ℓ≤2kMε

τ+ℓ−1∑
t=τ

(−Zt) + ℓ(1 + ρ)ε−
τ+ℓ−1∑
t=τ

(
(µt − µ1)− ρd∗

)
≥ 0


≤
∞∑
k=1

P

 max
1≤ℓ≤2kMε

τ+ℓ−1∑
t=τ

(−Zt) ≥ 2k−1Mε

(
(K − ρ)d∗ − (1 + ρ)ε

)
≤

C1Ξ
θ
θ,1(

Mεr
θ/(θ−1)
2

)θ−1 ∞∑
k=1

2k

2θ(k−1)
+
∞∑
k=1

C2 exp
(
−

C32
k−2Mεr

2
2

Ξ2
2,1

)
,

where r2 = r2(d∗, ε) := (K − ρ)d∗ − (1 + ρ)ε and we have applied Theorem 2 from Wu and

Wu [2016] again to obtain the third inequality. For c with 0 < c < min{ρ,K − ρ}/(1 + ρ)

choose ε = cd∗. Then, let C := min{ρ,K−ρ}/(1+ρ)− c > 0 and Mε = M̃εd
−θ/(θ−1)
∗ . This

yields

P
(
|τ̂n − τ | ≥ M̃εd

−θ/(θ−1)
∗

)
≤ 2

C1Ξ
θ
θ,1(

M̃εCθ/(θ−1)
)θ−1 ∞∑

k=1

2k

2θ(k−1)
+ 2

∞∑
k=1

C2 exp
(
− C32

k−2M̃εC
2

Ξ2
2,1

)
+ o(1),

(2.6.43)

where the o(1) follows from Lemmas 2.6.4 and 2.6.5 and the fact that (log(m)/k)1/2 = o(d∗)
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and (kη)−1/2 = o(d∗), which can be seen from

0 ≤ 1

kηd2∗
≤ log(m)

kd2∗
≤ log(m)

kd2
= o(1),

where the first inequality holds for log(m)η ≥ 1, the second inequality is due to d∗ ≥ d and

the o(1) is condition (C3). Noting that the bound in (2.6.43) will be arbitrarily small for all

n large enough, if M̃ε is chosen large enough, which yields the bound of the theorem.

2.6.4 Proof of the Lemmas in Sections 2.6.2–2.6.3

Proof of Lemma 2.6.1

For any x ∈ R and s = 1, . . . ,m− 1, by definition of L̂ in (2.2.7),

{
min

j≥s+1
Rj ≥ x

}
∩
{
min
j≤s

Rj < x
}
⊂ {L̂ ≤ s}

and, for s = 2, . . . ,m,

{
min

j≤s−1
Rj ≥ x

}
∩
{
min
j≥s

Rj < x
}
⊂ {L̂ ≥ s}.

Employing A∩B ⊂ C ⇔ Cc ⊂ Ac∪Bc for events A,B,C with complements Ac, Bc, Cc,

this implies that for any xn, x
′
n ∈ R

P(tn ≤ L̂ ≤ η − tn)

= 1− P({tn > L̂} ∪ {L̂ > η − tn})

≥ 1− P
(

min
j≤tn−1

√
k(Rj − µ1)

σ∞
< xn

)
− P

(
min
j≥tn

√
k(Rj − µ1)

σ∞
≥ xn

)
− P

(
min

j≥η−tn+1

√
k(Rj − µ1)

σ∞
< x′n

)
− P

(
min

j≤η−tn

√
k(Rj − µ1)

σ∞
≥ x′n

)
.
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Next, denote R̃j :=
√
k(Rj − ERj)/σ∞ and observe that Rj − µ1 = Rj − ERj for j ≤ η,

Rj −µ1 ≥ Rj −ERj for j > η, and Rj −µ1 ≥ Rj −ERj + d for j > η+1. Thus, for n large

enough such that tn < η,

P(tn ≤ L̂ ≤ η − tn) ≥ 1− P
(

min
j=1,...,tn

R̃j < xn

)
− P

(
min

j=tn,...,η
R̃j ≥ xn

)
− P

(
min

η−tn+1≤j≤η+1
R̃j < x′n

)
− P

(
min

j=1,...,η−tn
R̃j ≥ x′n

)
− P

(
min

j=η+2,...,m
R̃j +

√
kd/σ∞ < x′n

)
I{η + 1 < m},

(2.6.44)

where we have also employed that for sets A ⊂ B, minj∈B R̃j ≤ minj∈A R̃j . Next, let

(Zc
i )i∈Z and Bc(·) be as in (2.3.19). Denote, for i ∈ N,

Wi = k−1/2(Bc(ik)− Bc
(
(i− 1)k

)
, and

Mi = k−1/2
ik∑

j=(i−1)k+1

(
Zc
j/σ∞ − (Bc(j)− Bc(j − 1))

)
.

Further, denoting Rc
i := k−1

∑ik
j=(i−1)k+1(Z

c
j + µj), we have (jointly for all i)

R̃i
D
= R̃c

i :=
√
k
Rc
i − ERc

i

σ∞
= Wi +Mi.

Note that Wi are i.i.d. standard normally distributed and that by Corollary 2.1 in Berkes

et al. [2014], under Condition 2.3.1,

M (m) := max
i=1,...m

|Mi| = oa.s.(n1/θk−1/2). (2.6.45)

With the above notation,

(min
j∈J

Wi)−M (m) ≤ min
j∈J

(Wi +Mi) ≤ (min
j∈J

Wi) +M (m), for any J ⊂ {1, . . . ,m}.
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Denote the cdf of the Gumbel distribution by G(x) := exp(− exp(−x)) and the scaling

factor

γt = (2 log t− log log t− log(4π))1/2 = (2 log t)1/2 − log(4π log(t))

2(2 log t)1/2
+ o
(
(log t)−1/2

)
,

as t→∞. From the Fisher–Tippett–Gnedenko theorem, for any sequence N →∞,

sup
x

∣∣∣P(γN( max
j=1,...,N

Wj − γN

)
≤ x

)
−G(x)

∣∣∣ = o(1). (2.6.46)

Thus, for xn = −(γtn + γη−tn+1)/2,

P
(

min
j=1,...,tn

R̃j < xn

)
≤ P

(
min

j=1,...,tn
Wj < xn +M (m)

)
= P

(
γtn

((
max

j=1,...,tn
−Wj

)
− γtn

)
> γtn((−γtn + γη−tn+1)/2−M (m))

)
≤ P

({
γtn

((
max

j=1,...,tn
−Wj

)
− γtn

)
> γtn(γη−tn+1 − γtn)(1/2−M (m)/(γη−tn+1 − γtn))

}
∩
{
M (m)/(γη−tn+1 − γtn) ≤ 1/4

})
+ P

(
M (m)/(γη−tn+1 − γtn) > 1/4

)
≤ 1−G

(
γtn(γη−tn+1 − γtn)/4

)
+ o(1)→ 0.

The o(1) in the last line relates to two convergences: for the first probability, decrease the

lower bound for the scaled maximum to γtn(γη−tn+1 − γtn)/4 and then use (2.6.46); for the

second probability to vanish, note that 1/(γη−tn+1− γtn) = o
(
(log η)1/2

)
, as n→∞, which

together with (2.6.45) and (C1) implies M (m)/(γη−tn+1 − γtn) = oa. s.(1). For the final

convergence we used γtn(γη−tn+1− γtn)→∞. For the second probability in the right-hand
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side of (2.6.44),

P
(

min
j=tn,...,η

R̃j ≥ xn

)
≤ P

(
min

j=tn,...,η
Wj ≥ xn −M (m)

)
= P

(
γη−tn+1

((
max

j=tn,...,η
−Wj

)
− γη−tn+1

)
≤ −γη−tn+1((γη−tn+1 − γtn)/2−M (m))

)
≤ G

(
− γη−tn+1(γη−tn+1 − γtn)/4

)
+ o(1)→ 0,

where −γη−tn+1(γη−tn+1 − γtn)/4→ −∞ due to condition (C1).

The probabilities P
(
minη−tn+1≤j≤η+1 R̃j < x′n

)
and P

(
minj=1,...,η−tn R̃j ≥ x′n

)
are

treated analogously, with x′n = −(γtn + γη−tn)/2. It remains to bound the fifth one:

P
(

min
j=η+2,...,m

R̃j +
√
kd/σ∞ < x′n

)
≤ (m− η − 1)P

(
|

k∑
i=1

Zi| > kd+ σ∞|x′n|
√
k
)

≤ (m− η − 1)
C1Ξ

θ
θ,1k

(kd+ σ∞|x′n|
√
k)θ

+ C2(m− η − 1) exp

(
−C3(kd+ σ∞|x′n|

√
k)2

kΞ2
2,1

)
,

(2.6.47)

where we used sub-additivity of P and the fact that −x′n = |x′n| for the first inequality and

applied Theorem 2 in Wu and Wu [2016] for the second inequality. Now, we see that the

first term in the right-hand side of (2.6.47) is o(1) by employing the fact that m− (η+1) ≤

(n− τ)/k and
n− τ

(kd+ σ∞|x′n|
√
k)θ

= O
( n

(kd+ (k log η)1/2)θ

)
,

due to |x′n| ≍ (log η)1/2. So the first term vanishes due to condition (C2). For the second

term in the right-hand side of (2.6.47), note that 0 ≤ log(m− η− 1) ≤ log(m)≪ kd2 →∞,

due to condition (C3).
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Proof of Lemma 2.6.2

Denote ξt := σ(εi : i ≤ t), Pt(Z) := E(Z|ξt)− E(Z|ξt−1), Z ∈ Lθ. Then, for k ∈ N0,

|γ(k)| = |γ(−k)| = |E(ZkZ0)| =
∣∣∣E((∑

i≤0
PiZk

)(∑
i≤0
PiZ0

))∣∣∣
=

∣∣∣∣∣∑
i≤0

E

((
PiZk

)(
PiZ0

))∣∣∣∣∣ ≤∑
i≤0
∥PiZk∥2∥PiZ0∥2 ≤

∑
i≥0

δi+k,2δi,2

This implies
∑∞

k=−∞ |γ(k)| ≤ 2Θ2
0,θ and

∞∑
k=−∞

|kγ(k)| ≤ 2
∞∑
k=1

k
∑
i≤0

δi+k,2δi,2

= 2
∞∑
i=0

δi,2

∞∑
k=1

kδi+k,2 ≤ 2
( ∞∑
i=0

δi,2

)( ∞∑
k=1

kδk,2

)

It remains to show that the right-hand side is finite under Condition 2.3.1. To this end, note

that δi = Θi,2 −Θi−1,2 and by Condition 2.3.1, if 2 < θ ≤ 4, then there exist C,A > 0 and

γ := 1, such that |Θn,2| ≤ Cn−γ(log n)−A. If θ > 4, then there exist C > 0, A ≥ 1, γ > 1

such that |Θn,2| ≤ Cn−γ(log n)−A. In any of these cases,

|δn,2| ≤ C
(
n−γ(log n)−A − (n+ 1)−γ(log(n+ 1))−A

)
≤ C(A+ γ)n−(γ+1)(log n)−A.

Hence, |δn,2| is summable since γ > 0 and |nδn,2| is summable since γ > 1 for θ > 4.

Proof of Lemma 2.6.3

To show (2.6.29) holds, we prove an equivalent proposition:

|µ̂0 − µ1| = OP
( an√

ηk

)
(2.6.48)
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for any {an}, an →∞. Choose rn = a−1n , then

P
(
|µ̂0 − µ1| ≥

an√
ηk

M
)

≤ P(L̂ < ηrn) + P

(
η ≥ L̂ ≥ ηrn,

|
∑L̂k

i=1(Xi − µ1)|
L̂k

≥ an√
ηk

M

)
+ P(L̂ > η)

≤ 1− P
(
⌈ηrn⌉ ≤ L̂ ≤ η − ⌈ηrn⌉

)
+ P

 max
j≥ηrnk

∣∣∣1
j

j∑
i=1

Zi

∣∣∣ ≥ an√
ηk

M

 = o(1),

which implies (2.6.48). For the o(1) in the above, apply Lemma 2.6.1 with tn := ⌈ηrn⌉ = o(η)

to the first probability and Lemma 2.6.6, below, with g
−1/2
n = (ηkrn)

−1/2 = a
1/2
n (ηk)−1/2,

to the second probability.

Lemma 2.6.6. Grant condition 2.6.1 with α = 1. Then, for any sequence gn ∈ N, gn →∞,

max
j≥gn

∣∣∣∣∣∣1j
j∑

i=1

Zi

∣∣∣∣∣∣ = OP
( 1
√
gn

)
. (2.6.49)

Proof. For any G > 0, note that by Bonferroni’s inequality,

P

max
j≥gn

∣∣∣∣∣∣1j
j∑

i=1

Zi

∣∣∣∣∣∣ ≥ G
√
gn

 ≤ ∞∑
k=1

P

 max
2k−1gn≤j≤2kgn

∣∣∣∣∣∣1j
j∑

i=1

Zi

∣∣∣∣∣∣ ≥ G
√
gn


≤
∞∑
k=1

P

 max
2k−1≤j≤2kgn

∣∣∣∣∣∣ 1

2k−1gn

j∑
i=1

Zi

∣∣∣∣∣∣ ≥ G
√
gn


≤
∞∑
k=1

P

 max
1≤j≤2kgn

∣∣∣∣∣∣
j∑

i=1

Zi

∣∣∣∣∣∣ ≥ 2k−1G
√
gn

 .

As argued before, Condition 2.6.1 holds. Therefore, we can apply the Nagaev-type in-

equality under dependence from Theorem 2 in Wu and Wu [2016], and hence, there exist
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positive constants C1, C2 and C3, such that

P

 max
1≤j≤2kgn

∣∣∣∣∣∣
j∑

i=1

Zi

∣∣∣∣∣∣ ≥ 2kG
√
gn/2


≤

C1Ξ
θ
θ,1(2

kgn)(
2kG
√
gn/2

)θ + C2 exp

(
−C32

2kG2gn/4

2kgnΞ2
2,1

)

= C1Ξ
θ
θ,1

1

2k(θ−1)
1

g
θ/2−1
n (G/2)θ

+ C2 exp

(
− C3

Ξ2
2,1

2k(G/2)2

)
.

Thus, employing k ≤ 2k,

P

max
j≥gn

∣∣∣∣∣∣1j
j∑

i=1

Zi

∣∣∣∣∣∣ ≥ G/
√
gn

 ≤ C1Ξ
θ
θ,1

2θ−1

1− 2θ−1
1

g
θ/2−1
n (G/2)θ

+
C2

exp( C3

4Ξ2
2,1

G2)− 1
,

which is arbitrarily small for G large enough. The result follows.

Proof of Theorem 2.6.1

We use approximations to D̂j and Rj defined by

D̃j :=
√
k(R̃j − µ1)/σ∞, R̃j := E(Rj |ε(j−1)k+1, . . . , εjk), j = 1, 2, . . . . (2.6.50)

Note that R̃1, . . . , R̃m are independent, as the εt are independent, and hence the D̃j are

independent. We use the following result that asserts a rate for the approximation of Rj by

the independent R̃j .

Lemma 2.6.7. Assume Condition 2.3.1 holds. Then,

max
j=1,...,m

∣∣Rj − R̃j

∣∣ = OP
(m1/θ

k

)
, n→∞. (2.6.51)

The proof of Lemma 2.6.7 is deferred to Section 2.6.4. Based on D̃j , we also define
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approximations Ĩj to the test decisions Ij . Again, Ĩj will be independent and we apply the

following result, interesting in itself.

Lemma 2.6.8. Let I1, I2, . . . be a sequence of independent Bernoulli-distributed random

variables with P(Ii = 1) = pi = 1− P(Ii = 0). Then,

P
(
max
j≥1

j∑
i=1

(2Ii − 1) ≥ 0
)
=
∞∑
k=1

∑
(i1,...,i2k)∈Ak

2k∏
ℓ=1

P(2Iℓ − 1 = iℓ),

where

Ak =
{
(i1, . . . , i2k) ∈ {−1, 1}2k :

2k∑
ℓ=1

iℓ = 0 and
j∑

ℓ=1

iℓ ≤ 0,∀j = 1, . . . , 2k
}
.

The proof of Lemma 2.6.8 is deferred to Section 2.6.4.

Now we proceed with the proof of Theorem 2.6.1. Due to the assumed conditions

(C1), (C2) and (C3), we can apply Lemma 2.6.3. Due to Condition 2.6.1, we can apply

Lemma 2.6.7. Our aim is to prove

P (|η̂ − η| ≥ 1)→ 0, as n→∞. (2.6.52)

Note that

Ω =


η∑

j=η̂+1

(
2Îj − 1

)
≥ 0

 ∩ {η̂ < η}


∪


η̂∑

j=η+1

(
2Îj − 1

)
≤ 0

 ∩ {η̂ > η}

 ∪ {η̂ = η} .
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Thus,

P (|η̂ − η| ≥ 1) = P

 max
ℓ=1,...,η−1

η∑
j=η−ℓ+1

(
2Îj − 1

)
≥ 0


+ P

 max
ℓ=1,...,m−η−1

η+ℓ∑
j=η+1

(
1− 2Îj

)
≥ 0

 .

Fix c1, c2 > 0 and λ ∈ (0, 1) as in (C5); recall the notation defined in (3.6.67), then

P

 max
ℓ=1,...,η−1

η∑
j=η−ℓ+1

(2Îj − 1) ≥ 0

 ≤ P
(

max
ℓ=1,...,η−1

η∑
j=η−ℓ+1

(2Îj − 1) ≥ 0,

|µ̂0 − µ1| <
c1√
k
,∀j > 1, |Rj − R̃j | <

c2√
k
, (1− λ)1/2 ≤ σ̂∞

σ∞
≤ (1 + λ)1/2

)
+ P

(
|µ̂0 − µ1| >

c1√
k

)
+ P

(
max

j=1,...,m
|Rj − R̃j | >

c2√
k

)
+ P

(
|σ̂2∞ − σ2∞| > λσ2∞

)
=: An +Bn + Cn +Dn.

By Lemma 2.6.3 and the fact that (ηk)−1/2 ≪ k−1/2, by condition (C0), Bn → 0. By

Lemma 2.6.7 and condition (C4), Cn → 0. By condition (C5), Dn → 0, as n → ∞. Now

define

Ĩj = 1
{
D̃j ≥

z1−1/m

(1− λ)1/2
− c1 + c2

σ∞

}
, j = 1, 2, . . . .

Note that Ĩ1, Ĩ2, . . . , Ĩη are i.i.d. Bernoulli-distributed with P(Ĩ1 = 1) =: p→ 0, as n→∞,

due to m → ∞ and D̃1 = OP(1). Let Ĩη+1, . . . , Ĩη+2, . . . be independent and distributed

as Ĩ1. Then, Lemma 2.6.8 entails that

P
(
max
j≥1

j∑
i=1

(2Ĩi − 1) ≥ 0
)
=
∞∑
k=1

|Ak|
(
p(1− p)

)k ≤ min
{ 4p

1− 4p
, 1
}
≤ 8p,
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where we have used |Ak| ≤ 22k and p(1− p) ≤ p. On

{|µ̂0 − µ1| < c1/
√
k} ∩ {|Rj − R̃j | < c2/

√
k} ∩

{
(1− λ)1/2 ≤ σ̂∞

σ∞
≤ (1 + λ)1/2

}
,

we have Ĩj ≥ Îj . Thus,

An ≤ P

 max
ℓ=1,...,η−1

η∑
j=η−ℓ+1

(2Ĩj − 1) ≥ 0

 ≤ P
(
max
j≥1

j∑
i=1

(2Ĩi − 1) ≥ 0
)
→ 0.

Similarly, using the notation Ĵj = 1− Îj and

J̃j := 1
{
D̃j <

z1−1/m

(1 + λ)1/2
+

c1 + c2
σ∞

}
, j = η + 1, . . . ,m

and adding independent J̃1, . . . , J̃η and J̃m+1, J̃m+2, . . . that have distribution as Jm+1,

p̄ := sup
j≥1

j ̸=η+1

P(J̃j = 1) ≤ P
(
D̃j − ED̃j ≤

z1−1/m

(1 + λ)1/2
− (
√
kd+ c1 + c2)/σ∞

)
→ 0,

as n→∞, because D̃j − ED̃j are i.i.d. and

z1−1/m

(1 + λ)1/2
− ED̃j ≤

z1−1/m

(1 + λ)1/2
−
√
kd→ −∞,

for j ̸= η + 1. The right hand side diverges, as z1−1/m ≍ (2 log(m))1/2 ≪
√
kd, where the

≪ is condition (C3). Noting that 1− Îj ≤ J̃j ,

P

 max
ℓ=1,...,m−η−1

η+ℓ∑
j=η+1

(
1− 2Ij

)
≥ 0

 ≤ P
(
max
j≥1

j∑
i=1

(2J̃i − 1) ≥ 0
)

≤ min
{ ⌊η/2⌋∑

k=1

(4p̄)k +
∞∑

k=⌊η/2⌋+1

4kp̄k−1, 1
}
→ 0.
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This concludes the proof of Theorem 2.6.1.

Proof of Lemma 2.6.7

By the sub-additivity of P and the stationarity of Rj − R̃j , we have for u > 0, that

P
(

max
j=1,...,m

∣∣∣Rj − R̃j

∣∣∣ > u
)
≤ m · P

(
|R1 − R̃1| > u

)
.

Let ∆j := E(R1|εk, . . . , εj)− E(R1|εk, . . . , εj−1), then it follows that

R̃1 −R1 =
1∑

j=−∞
∆j .

Applying Markov’s inequality, we have

P
(∣∣∣ 1∑

j=−∞
∆j

∣∣∣ > u
)
≤

E|
∑1

j=−∞∆j |θ

uθ
=

1

uθ

∥∥∥ 1∑
j=−∞

∆j

∥∥∥θ
θ
.

Since {∆j} is a martingale difference sequence, we may apply the Burkholder-Davis-

Gundy inequality to obtain a bound for the right-hand side of the previous inequality

∥∥∥ 1∑
j=−∞

∆j

∥∥∥2
θ
≤ cθ

1∑
j=−∞

∥∆j∥2θ.

Recall that R1 = 1
k

∑k
i=1Xi. Therefore, by the triangle inequality and Jensen’s inequal-

ity, we have

∥∆j∥θ ≤
1

k

k∑
i=1

(
∥E(Zi|εi, . . . , εj)− E(Zi|εi, . . . , εj−1)∥θ

)
≤ 1

k

k∑
i=1

δ(i−j+1),θ ≤
1

k
Θ2−j,θ.
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Combining the results above, it follows that

P
(

max
j=1,...,m

|Rj − R̃j | > u
)
≤ m

(uk)θ

(
cθ

∞∑
j=0

Θ2
j,θ

)θ/2

,

where
∑∞

j=0Θ
2
j,θ <∞ due to Condition 2.3.1. In other words:

P
(

max
j=1,...,m

|Rj − R̃j | > M
m1/θ

k

)
= O(M−θ),

will be arbitrarily small for M large enough. This concludes the proof of Lemma 2.6.7.

Proof of Lemma 2.6.8

Note that Sn =
∑n

i=1(2Ii− 1) =:
∑n

i=1Ei is a random walk that starts at S0 = 0. The first

time n > 0 that yields Sn = 0 again is t0 := inf{n > 0 : Sn = 0} and

P
(
max
j≥1

j∑
i=1

(2Ii − 1) > 0
)
=
∞∑
k=1

P(t0 = 2k).

For k > 0,

P(t0 = 2k) =
∑

(i1,...,i2k)∈Ak

P(E1 = i1, . . . , E2k = i2k).

The assertion follows from the assumed independence of I1, I2, . . ..
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Proof of Lemma 2.6.4

For the proof of (2.6.39), note that

P
(
|µ̂1 − µ1| > ε

)
≤ P

(∣∣∣ 1
kη̂

kη̂∑
i=1

(Xi − µ1)
∣∣∣ > ε, η̂ = η

)
+ P

(
η̂ ̸= η

)

≤ P
(∣∣∣ kη∑

i=1

Zi

∣∣∣ > εkη
)
+ o(1)

≤ C1

kηΞθ
θ,1

(εkη)θ
+ C2 exp

(
− C3(εkη)

2

kηΞ2
2,1

)
+ o(1)

= C1Ξ
θ
θ,1

( 1

ε(kη)(θ−1)/θ

)θ
+ C2 exp

(
− C3

Ξ2
2,1

(
ε(kη)1/2

)2)
+ o(1),

which implies (2.6.39), since (kη)(θ−1)/θ = (kη)1/2(kη)(θ−2)/(2θ) with (θ − 2)/(2θ) > 0.

Proof of Lemma 2.6.5

For the proof of (2.6.40), recall

d̂ := min
i=k(η̂+1)+1,
...,n−k+1

1

k

i+k−1∑
j=i

(Xj − µ̂1)

and d∗ defined in (2.3.20) as

d∗ := min
i=k(η+1)+1,
...,n−k+1

1

k

i+k−1∑
j=i

(µj − µ1).
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Due to |mini xi −mini yi| ≤ maxi |xi − yi| (in the 2nd inequality),

P
(
|d̂− d∗| > ε

)
≤ P

(
|d̂− d∗| > ε, η̂ = η

)
+ P

(
η̂ ̸= η

)
≤ P

(
min

i=k(η+1)+1,
...,n−k+1

∣∣∣1
k

i+k−1∑
j=i

(Xj − µj + µ1 − µ̂1)
∣∣∣ > ε

)
+ o(1)

≤ P
(

min
i=k(η+1)+1,
...,n−k+1

∣∣∣1
k

i+k−1∑
j=i

Zj

∣∣∣ > ε/2, |µ̂1 − µ1| ≤ ε/2
)
+ P

(
|µ̂1 − µ1| > ε/2

)
+ o(1)

≤ (m− η + 1)P
(

max
i=1,...,2k

∣∣∣ i∑
j=1

Zj

∣∣∣ > kε/4
)
+ P

(
|µ̂1 − µ1| > ε/2

)
+ o(1)

≤ (m− η + 1)C1

2kΞθ
θ,1

(kε/4)θ
+ (m− η + 1)C2 exp

(
− C3(kε/4)

2

2kΞ2
2,1

)
+ P

(
|µ̂1 − µ1| > ε/2

)
+ o(1)

≤ C1

2Ξθ
θ,1

(((m− η + 1)k1−θ)−1/θε/4)θ
+ C2 exp

(
log(m− η + 1)− kε2

C3

32Ξ2
2,1

)
+ P

(
|µ̂1 − µ1| > ε/2

)
+ o(1).

Choose εM := M max{((m − η + 1)k1−θ)1/θ, C̃(log(m − η + 1)/k)1/2}, for some C̃ ≥(
64Ξ2

2,1/C3
)1/2. By assumption, n− τ ≥ 2k such that m− η + 1 ≥ 2. Thus,

P
(
|d̂− d∗| > εM

)
≤ C1

2Ξθ
θ,1

(M/4)θ
+ C2 exp

(
−M2 log(2)

)
+ P

(
|µ̂1 − µ1| > MC̃(kη)−1/2/2

)
+ o(1),

where in the second line we used (kη)−1/2 ≤ (log(m− η+1)/k)1/2. Recalling Lemma 2.6.4,

we can thus choose M large enough for the bound to be arbitrarily small. Therefore, we

have proved

d̂ = d∗ +OP(max{(log(m− η + 1)/k)1/2, (mk1−θ)1/θ}).
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Finally, by condition (C1),

m1/θk(1−θ)/θ =
(mk)1/θ

k1/2k1/2
≤ 1

k1/2
n1/θ√

k
=

1

k1/2
O(1),

which finishes the proof.
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CHAPTER 3

MULTIVARIATE CHANGE POINT ANALYSIS UNDER

IRREGULAR SIGNALS

3.1 Introduction

In this chapter, we aim to extend our uni-variate change point analysis framework under

irregular signals, introduced in Chapter 2, to a multivariate change point analysis framework.

This extension is motivated by the application to COVID-19 data analysis discussed in

Section 2.5.1.

In Section 2.5.1, we separately detected and located the first change point in search index

time series for each COVID-19 related symptom. Interestingly, for both "fever" and "cough"

keywords, we identified the first change point as being on the same date, December 08, 2019.

This outcome leads us to consider whether aggregating these uni-variate time series into a

single multivariate time series and conducting change point analysis might yield the same

date, thus providing further evidence for an early outbreak of COVID-19. To explore this

possibility, it becomes necessary to adapt our framework for change point analysis under

irregular signals to a multivariate setting.

A substantial body of literature has been dedicated to the development of methodologies

for multivariate change point analysis. Vert and Bleakley [2010] reformulated the multivari-

ate change point analysis problem into the group lasso form and considered it within the

framework of variable selection. Cho and Fryzlewicz [2015] proposed Sparse Binary Segmen-

tation, employing a hard thresholding of the CUSUM matrix followed by an l1 aggregation

to mitigate the impact of irrelevant noise from high-dimensional problems. Lavielle and

Teyssière [2006] introduced a procedure based on penalized Gaussian log-likelihood as a

cost function, with the estimator computed via dynamic programming. Enikeeva and Har-

chaoui [2019] presented a test based on a linear statistic that considers all coordinates and
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a scan statistic that uses l2 aggregation on the CUSUM for all coordinates under sparsity

assumptions.

In contrast to the existing literature, our objective is to conduct change point analysis

on data for which the multivariate signals post-change point can be highly irregular, po-

tentially leading to tipping points (as illustrated in Figure 3.2). Such scenarios can render

CUSUM-based methods ineffective. To address these challenges, we propose a framework

for multivariate change point analysis that works under these conditions. Our change point

locating algorithm adopts a two-step estimation procedure similar to that in Chapter 2,

where we conducted uni-variate change point locating under irregular signals. However, un-

like Chapter 2, which only considers a one-sided case (signal is stronger after the change

point), the multivariate signals exhibit a potentially more complex structure after the first

change point. Consequently, for the initial estimation, we have more quantities to estimate.

The extension of our uni-variate framework to the multivariate setting enables a more

comprehensive analysis of complex, high-dimensional data from various domains, including

public health surveillance, financial market analysis, and climate change monitoring, where

the identification of first change points is crucial for informed decision-making and timely

interventions.

The chapter is structured as follows: Section 3.2 presents our methodology for hypothesis

testing for the existence of change points and the two-step change point localization. Theo-

retical results are developed in Section 3.3, where we demonstrate the type-one error control

and power analysis of the testing procedure and the convergence rate of the estimated change

point to the true change point. The empirical efficacy of our method is evaluated through

simulations in Section 3.4. In Section 3.5, we apply our methodology to the aggregated

Baidu search indices for COVID-19 symptoms in 2019-2020 and compare the located first

pandemic outbreak date with our result in Section 2.5.1. Comprehensive proofs are provided

in Section 3.6.
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3.2 Methodology

3.2.1 Model for the Data and the Problems Considered

Consider a p-dimensional sequential noisy model given by

Xt = µt + Zt, t = 1, 2, . . . , n, (3.2.1)

where µt ∈ Rp denotes the signal vector at time t, and the sequence (Zt)t represents p-

dimensional stationary noise with a long-run covariance matrix defined as

Σ :=
∞∑

k=−∞
Cov(Zt,Zt+k) ∈ Rp×p. (3.2.2)

Let (Qt)t=1,2,...,n denote the sequence of squared Euclidean norms of the noise vectors

(Zt)t=1,2,...,n:

Qt = Z⊤t Zt, t = 1, 2, . . . , n. (3.2.3)

Define γ := E(Qt) as the mean of this sequence and ω2 as its long-run variance:

ω2 :=
∞∑

k=−∞
Cov(Qt, Qt+k) <∞ (3.2.4)

The null hypothesis is formulated as follows:

H0 : µ1 = µ2 = · · · = µn, (3.2.5)

which posits that the signal remains constant over time. In contrast, the alternative hypoth-

esis is given by:
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H1 : µ1 = . . . = µτ−1 = µ0, ∥µτ − µ1∥2, . . . , ∥µn − µ1∥2 ≥ d, d > 0, (3.2.6)

which suggests a shift in the signal level after a specific observation τ , with the change

exceeding a minimum Euclidean distance
√
d. This model generalizes the uni-variate case

discussed in Chapter 2 to a multivariate setting, enabling a more comprehensive analysis of

changes across multiple dimensions.

Our goal is to develop a methodology for estimating the change point τ under the alter-

native hypothesis H1. This approach is motivated by the analysis of the dataset introduced

in Section 2.5.1, where instead of estimating change points for each time series corresponding

to symptom-related keywords individually, we aim to aggregate these time series into a sin-

gular multivariate series to ascertain the collective change point, enhancing the robustness

and interpretability of our findings.

3.2.2 Testing Procedure

We introduce a statistical test aimed at distinguishing between the null hypothesis H0 and the

alternative hypothesis H1, as formally defined in equations (3.2.5) and (3.2.6), respectively.

This test is developed in the context of observations X1, . . . ,Xn adhering to the distribution

specified in (3.2.1). The proposed test statistic is given by:

T̂ := min
j=1,2,...,n

1√
nω̂

 j∑
i=1

∥Xi − µ̂0∥2 −
j

n

n∑
i=1

∥Xi − µ̂0∥2
 , (3.2.7)

where µ̂0, and ω̂2 are estimators of the non-signal mean µ0, and the long-run variance ω2,

as described in (3.2.3). Section 3.2.3 introduces estimators for both ω2 and µ0 that are

consistent under the assumptions of both H0 and H1.
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In Section 3.3.2, we demonstrate that under the null hypothesis H0, the distribution of

the test statistic Tn converges, in a distributional sense, to that of the minimum of a standard

Brownian bridge. This convergence allows for the derivation of critical values through either

simulation techniques or asymptotic approximations. Under the alternative hypothesis H1,

it is shown that Tn converges in probability to −∞ as n → ∞. Consequently, the critical

region is defined by {Tn < c}, where c is determined as the α-quantile of the minimum of a

standard Brownian bridge distribution, as further elaborated in Section 3.3.2.

3.2.3 A Two-Step Locating Algorithm

Data Blocking

To reduce noise and emphasize the signal, we partition the data set into ⌊n/k⌋ blocks of size

k. An initial estimate for µ0 is obtained using the sample mean of the first block:

µ̄0 :=
1

k

k∑
i=1

Xi. (3.2.8)

We then define the following quantities that measure the average squared Euclidean

distance between our samples and the estimated pre-change mean:

Rj,k :=
1

k

jk∑
i=(j−1)k+1

∥Xi − µ̄0∥2, j = 1, 2, . . . , ⌊n/k⌋. (3.2.9)

The minimizer of these quantities is defined as L̂:

L̂ := argmin
j∈{2,...,⌊n/k⌋}

Rj,k, ℓ̂ := kL̂, (3.2.10)

where L̂ indicates a block likely to contain only pre-change observations and ℓ̂ is the index

of the last observation in the L̂th block.
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Preliminary Estimates for Several Quantities

Using the first L̂ blocks, we obtain refined estimates for µ0 and γ:

µ̂0 :=
1

L̂k

L̂k∑
i=1

Xi (3.2.11)

and

γ̃ :=
1

L̂k

L̂k∑
i=1

∥Xi − µ̂0∥2. (3.2.12)

We further estimate the long-run variance ω2 of (Qt) by

ω̂2 :=
k

ℓ̂

ℓ̂∑
s=k

(
Rs/k − γ̃

)2
, Rs/k :=

1

k

s∑
i=s−k+1

∥Xi − µ̂0∥2, (3.2.13)

where Rs/k extends (3.2.9) to overlapping blocks. The motivation for this estimate is pro-

vided in Section 2.2.3.

Locating Algorithm: Step 1

Step 1 aims to refine the estimates of µ1 and γ and provide an estimate of the change

magnitude d. Using the block averages Rj,k, the preliminary estimates µ̂0, γ̃, and ω̂2

from (3.2.11), (3.2.12), and (3.2.13), respectively, we compute the standardized ‘test statis-

tics’ D̂j and corresponding ‘test decisions’ Îj :

D̂j :=
1√
k
·

∑jk
i=(j−1)k+1

(
∥Xi − µ̂0∥2 − γ̃

)
ω̂

, Îj =


1 if D̂j ≥ z1−1/⌊n/k⌋,

0 otherwise,
(3.2.14)

where zα is the α-quantile of the standard normal distribution, and m := ⌊n/k⌋. We then

estimate the index η of the last block before the change:
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η̂ := argmin
t=1,...,⌊n/k⌋−1

⌊n/k⌋∑
j=1

(
Îj − 1[t+1,⌊n/k⌋](j)

)2
. (3.2.15)

Finally, we obtain further refined estimates for µ1 and γ, as well as a preliminary estimate

for the change magnitude d:

µ̂1 :=
1

kη̂

kη̂∑
i=1

Xi, (3.2.16)

and

γ̂ :=
1

η̂k

η̂k∑
i=1

∥Xi − µ̂1∥2, (3.2.17)

and

d̂ := min
i≥kη̂+k+1

1

k

i+k−1∑
j=i

(∥∥Xj − µ̂1

∥∥2 − γ̂
)
. (3.2.18)

Let η := ⌊τ/k⌋ be the index of the last block before the change point τ , ensuring ηk +

1 ≤ τ ≤ (η + 1)k. For j = 1, . . . , η, ERj = γ, while for j = η + 1, . . . ,m, ERj > γ.

Thus, R1, . . . , Rη are close to γ, but Rη+1, . . . , Rm exceed γ, making L̂ nearly uniform

over {1, . . . , η}. Consequently, µ̂0 averages about kη/2 pre-change observations, providing

a
√
n-consistent estimate for µ0 if τ scales with n.

To improve accuracy, µ̂1 uses η̂ instead of L̂, which is closer to the true η. The test

decisions Îj differentiate between pre-change (ERj = γ) and post-change (ERj > γ) blocks.

The sequence Î1, . . . , Îm resembles a step function with Ij = 0 for j ≤ η and Ij = 1 for

j > η. η̂ refines the estimate of η by fitting a step function that shifts from 0 to 1 at the

change point.
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Locating Algorithm: Step 2

The refined estimate for the change point τ as delineated in (3.2.6) is given by:

τ̃ := arg min
j=1,...,n

 j∑
t=1

(
∥Xt − µ̂1∥2 − γ̂ − ĉ

)
+ 1

 , (3.2.19)

where ĉ = ρd̂, with ρ ∈ (0, 1) serving as a tuning parameter. Theorem 3.3.2 provides

theoretical support for the estimator τ̃ .
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3.3 Theory

3.3.1 Assumptions on the Multivariate Stationary Noise Process

To derive meaningful insights into the statistical properties of our proposed methods, we

make certain assumptions regarding the multivariate noise process (Zt)t∈Z in model (3.2.1).

We adopt a framework of functional dependence measure inspired by Wu [2005]. Within

this framework, the multivariate causal stationary process (Zt)t∈Z is conceptualized as the

output from a physical system, described by

Zt := G(. . . , εt−1, εt), (3.3.20)

where (εt)t∈Z represents the system’s input information, assumed to be i.i.d. with mean zero

and variance one. The function G is a measurable mapping acting as a filter or mechanism

of the system. To assess the system’s dependence, we examine the variation in outputs upon

substituting the input at time t = 0 with an i.i.d. copy ε′0. The functional dependence

measure for the p-dimensional process (Zt)t∈Z is defined as:

δq(i) := max
j=1,...,p

(
E
∣∣∣Zi,j − Z′i,j

∣∣∣q)1/q , where Z′i = G
(
. . . , ε′0, ε1, . . . , εi

)
. (3.3.21)

This measure quantifies the maximum difference in the q-th moment between the original

process and its coupled version, across all dimensions j = 1, . . . , p, when the input at time 0

is replaced by an independent copy. It captures the sensitivity of the process to changes in

the input information at a specific time point.

To fully characterize the temporal dependence of the time series, we introduce the cu-

mulative dependence measure of (Zi)i≥t on ε0, defined as:
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Θt,q =
∑
i≥t

δq(i), t ≥ 0. (3.3.22)

This measure accumulates the functional dependence across all time points i ≥ t, pro-

viding a comprehensive assessment of the process’s dependence on the input at time 0. It

takes into account the long-range dependence structure of the process.

Building upon this, we introduce the dependence adjusted norm (DAN), as discussed in

Wu and Wu [2016] and Han and Tsay [2020]:

Ξq,α = sup
i≥0

(i+ 1)αΘi,q, (3.3.23)

which incorporates a weight function (i + 1)α to adjust for the decay of dependence over

time. It provides a unified measure of the process’s dependence, taking into account both

the temporal decay and the cumulative effect of the functional dependence. The parameter

α controls the rate at which the weights decrease with increasing time lag.

In some cases, due to the presence of strong dependence, Ξq,α might be infinite while the

q-th moment of the process remains finite:

Hq := max
j=1,2,...,p

(
E
[
|Zi,j |q

])1/q
<∞. (3.3.24)

This is not surprising, as the following inequality holds by stationarity:

Hq ≤ max
j=1,2,...,p

∞∑
l=0

∥∥E (Z0,j | F−l
)
− E

(
Z0,j | Fl−1

)∥∥
q

= max
j=1,2,...,p

∞∑
l=0

∥∥∥E(Zl,j − Z′l,j | F0
)∥∥∥

q

≤ max
j=1,2,...,p

∞∑
l=0

∥∥∥Zl,j − Z′l,j

∥∥∥
q
= Ξq,0,

(3.3.25)
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where Fl = σ(. . . , εl−1, εl) denotes the σ-algebra generated by the input information up to

time l. This inequality establishes a connection between the q-th moment of the process and

the DAN.

In the special case where Zi, for i ∈ Z, are i.i.d., the DAN Ξq,α and the q-th moment Hq

are equivalent, satisfying the following bounds:

Hq ≤ Ξq,α ≤ 2Hq. (3.3.26)

This equivalence highlights the fact that, in the absence of dependence, the DAN reduces to

the q-th moment of the process.

These assumptions and definitions provide a solid foundation for analyzing the statistical

properties of our proposed methods in the context of multivariate time series with noise

processes that exhibit temporal dependence. By carefully characterizing the dependence

structure, we can derive theoretical properties of our estimators under mild conditions.

3.3.2 Testing Procedure

We now state results on the test described in Section 3.2.2. The first result provides the

asymptotic distribution under the null hypothesis, and the second one asserts asymptotic

consistency under H1, where we will let τ and d depend on n.

Theorem 3.3.1. Consider a sequence {Zi} where each element follows the framework speci-

fied in (3.3.20). It is assumed that the sequence maintains a finite second moment (H2 <∞)

for each dimension and adheres to a short-range dependence criterion expressed as:

Θ0,4 =
∑
i≥0

δi,4 <∞. (3.3.27)

(i) Under H0, as n→∞, the convergence of the distribution of the test statistic is given

by
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sup
x≤0
|P(T̂n ≤ x)− e−2x

2
| → 0, (3.3.28)

indicative of the test statistic’s asymptotic distribution aligning with a specific exponential

decay function.

(ii) Under H1, with the condition (τn/
√
n)(1− τn/n)dn →∞, it is demonstrated that as

n→∞,

T̂n → −∞ in probability,

highlighting the test statistic’s tendency to diverge under the alternative hypothesis.

The short-range dependence criterion, stated in (3.3.27), guarantees that the dependence

between the elements of the sequence decays rapidly as the distance between them increases.

This condition is crucial for establishing the asymptotic distribution of the test statistic

under the null hypothesis.

Theorem 3.3.1(i) proves that, under the null hypothesis, the test statistic T̂n converges

in distribution to a random variable with a known distribution function, which can be used

to determine the critical values for the test. Furthermore, Theorem 3.3.1(i) suggests using

the α-quantile of the asymptotic limit, −(−0.5 logα)1/2, as the critical value for testing H0,

given any significance level α ∈ (0, 1). This critical value is derived from the asymptotic

distribution of the test statistic under the null hypothesis, which is given by the exponential

decay function e−2x
2
. By employing this critical value, the test will have an asymptotic size

equal to the desired significance level α.

The condition in Theorem 3.3.1(ii) ensures that the change point is not too close to the

boundaries of the observed sequence and that the magnitude of the change, dn, is sufficiently

large relative to the sample size n. Under these conditions, the test statistic T̂n diverges to

negative infinity in probability, implying that the test will reject the null hypothesis with
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high probability when the alternative hypothesis is true.

3.3.3 Locating Algorithm

To establish a convergence theory for the estimated change points, we require the following

assumption on temporal dependence.

Condition 3.3.1. Consider a sequence {Zi}, where each Zi is as defined in (3.3.20). We as-

sume that for every dimension, the sequence Zi satisfies the condition that its q-th moment Hq

is finite, for q > 2, and that Θm,2q = O
(
m−β2q(logm)−A

)
, where A >

(
1/q + 2 + 2β2q

)
/3,

and

βx =
x2 − 4 + (x− 2)

√
x2 + 20x+ 4

8x
.

Additionally, any one of the following conditions must be satisfied:

• q > 4, and it holds that Θm,q = O
(
m−βq(logm)−A

)
, where A > 2

(
1/q + 1 + βq

)
/3;

• q = 4, and it holds that Θm,q = O
(
m−1(logm)−A

)
with A > 3

2 ;

• 2 < q < 4, and it holds that Θm,q = O
(
m−1(logm)−1/q

)
.

Condition 3.3.1 imposes moment and dependence restrictions on the sequence {Zi}. The

finiteness of the q-th moment, Hq, for q > 2, ensures that the sequence has well-behaved

tail properties. The conditions on Θm,2q and Θm,q control the rate at which the dependence

measure decays as the lag m increases. These conditions are crucial for establishing the

convergence rates of the estimated change points. The parameter βx is a function of the

moment order x and appears in the conditions on Θm,2q and Θm,q. It determines the rate of

decay required for the dependence measure, with larger values of βx corresponding to faster

decay rates.

Our main result bounds the error of estimating τ by τ̃ in terms of the minimum gap d

to the signal. We have:
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Theorem 3.3.2. Assume Condition 3.3.1 holds. Then, depending on a regime for the gap

parameter d, we have:

(i) If d is fixed, then we have |τ̃n − τn| = OP(1).

(ii) If dn →∞, as n→∞, and c = d/2, in the estimator, then we have P(τ̃n = τn)→ 1.

(iii) If 0 < dn → 0, as n→∞, then we have |τ̃n − τn| = OP(d
−2
n ).

Theorem 3.3.2 provides convergence rates for the estimated change point τ̃n under dif-

ferent regimes for the gap parameter d. When d is fixed, the estimation error is bounded in

probability by a constant. When dn tends to infinity, the estimated change point is consis-

tent, i.e., it converges in probability to the true change point. When dn tends to zero, the

estimation error is bounded in probability by the inverse square of dn. These results demon-

strate the robustness of the proposed locating algorithm under various signal strengths. The

proof is deferred to Section 3.6.2. Our second result of this section asserts that we may

expect the statistical properties of the estimate η̂n, defined in (3.2.15), to be very good as

well, which legitimises τ̃n, in (3.2.19), as our final estimate.

Theorem 3.3.3. Assume Condition 3.3.1 holds, and log(ηn)n
1/qk−1 → 0. Then,

P (η̂n = ηn)→ 1, n→∞. (3.3.29)

Theorem 3.3.3 establishes the consistency of the estimated index η̂n, which is used to

construct the final estimate τ̃n. The condition log(ηn)n
1/qk−1 → 0 imposes a restriction on

the growth rate of the block size k relative to the sample size n and the moment order q.

This condition ensures that the bias introduced by the block-wise estimation is asymptot-

ically negligible. The proof is deferred to Section 3.6.3. If kn = o(n), then the condition

log(ηn)n
1/qk−1 → 0, from Theorem 3.3.3, is equivalent to k−1n = o

(
log(n)−1n−1/q

)
. This

can be seen from the definitions of τ and η, by which we have τn = ηnkn+O (kn) = cn+o(n).

Generally, in practice, the moment of the noise q is unknown, we suggest to use kn = ⌊
√
n⌋,
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which is sufficient if q > 4.
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3.4 Monte Carlo Studies

3.4.1 Models Considered

We evaluate the finite sample efficacy of both the testing procedure (Section 3.2.2) and the

two-stage locating algorithm (Section 3.2.3) through simulation experiments. These experi-

ments involve data simulated according to the signal plus noise model outlined in (3.2.1).

For the noise component, a multivariate threshold autoregressive (AR) model is employed:

Z′i,j = θ
(
|Z′i−1,j |+ |Z

′
i−2,j |

)
+ εi,j , j = 1, 2, . . . , p, (3.4.30)

where θ is the coefficient determining temporal dependence and the i.i.d. innovations εi,j

are distributed as N (0, 0.52). The strength of the temporal dependence increases with the

absolute value of θ, and the process remains stationary for |θ| < 0.5. The noise process (Zi)

is derived by centering Zi as Zi := Z′i − E(Z′i).

Regarding the signal µt, two scenarios are considered:

(i) Under H0, as defined in (3.2.5), the signal is constant, with µ1 = 0.

(ii) Under H1, as defined in (3.2.6), the signal evolves according to:

µt =



µ1 := 0 for t = 1, . . . , τ − 1

µ1 + s
(
2t−3τ+τ ′

τ ′−τ

)
· ζt/∥ζt∥ for t = τ, . . . , τ ′

µ1 + s
(
2 + exp

(
2(t−τ ′)
τ ′′−τ ′

))
· ζt/∥ζt∥ for t = τ ′ + 1, . . . , τ ′′

µ1 + s
(
2 + exp(2) · 2n−τ

′′−t
2n−2τ ′′

)
· ζt/∥ζt∥ for t = τ ′′ + 1, . . . , n,

(3.4.31)

where s indicates the scale of deviation from the baseline mean state (µ1 = 0) for t < τ to

a variable mean state for t ≥ τ . The random vectors ζt are i.i.d. and follow a standard p-

dimensional Gaussian distributionN (0, Ip). This model effectively captures trends similar to
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Figure 3.1: Daily Baidu search indices for COVID-related symptom keywords from October 1,
2019, to January 31, 2020. The indices for the keywords "cough" and "fever" are aggregated and
displayed in a two-dimensional time series plot.

those observed in multivariate time series data, such as the search engine index data depicted

in Figure 3.1, where indexes from various keywords are aggregated into a multivariate time

series.

Figure 3.2 presents an example of the three-dimensional data series (Xi), illustrating the

dynamics of signal strength ∥µt∥. Initially, the signal remains at a baseline level µ1 = 0. At

τ = 120, there’s a discernible increase in signal strength by at least s = 0.5. Subsequently,

at τ ′ = 180, the signal experiences a further elevation, surpassing 8s = 4 above the original

baseline. This depiction mirrors patterns observed within real-world datasets, demonstrating

significant changes at specified points.
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Figure 3.2: Visualization of (Xt) for n = 300, p = 3, marking significant shifts at τ = 120,
τ ′ = 180, and τ ′′ = 240, with an initial signal increase factor of s = 0.5.

3.4.2 Synthetic Data under the Null Hypothesis

In this section, we demonstrate that the testing procedure described in Section 3.2.2 has

the correct size, asymptotically. We employ data structured as detailed in Section 3.4.1,

operating under a constant signal.

We vary the sample size n, selecting values from the set {50, 100, 300, 500, 2000}, and

choose the dimensionality p from {2, 3, 5}. Additionally, we adjust the dependence param-

eter θ across a range including 0 (indicating independence), 0.2, and 0.4. Throughout, we

maintain a constant significance level of α = 0.05. The empirical sizes, computed from

100,000 simulations, are concisely presented in Table 3.1.
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Table 3.1: Rejection ratios for multivariate change point testing procedure under the null hypoth-
esis; cf. (3.2.5).

n p θ

0.0 0.2 0.4

50 2 0.077 0.078 0.076
3 0.076 0.073 0.075
5 0.073 0.073 0.076

100 2 0.065 0.072 0.074
3 0.061 0.062 0.066
5 0.059 0.063 0.060

500 2 0.055 0.061 0.062
3 0.057 0.059 0.063
5 0.056 0.060 0.060

2000 2 0.053 0.059 0.061
3 0.055 0.058 0.063
5 0.052 0.058 0.063

5000 2 0.049 0.056 0.061
3 0.051 0.055 0.059
5 0.050 0.570 0.062

Upon reviewing the data in Table 3.1, we observe that the rejection ratios, which serve

as indicators for the type-one error rate, progressively align more closely with the predeter-

mined significance level (α = 0.05) as the sample size n increases and the degree of temporal

dependence θ decreases. These findings are in harmony with the theoretical results laid out

in Section 3.3.2. Furthermore, the type-one error demonstrates negligible variance within

our finite-dimensional framework (p = 2, 3, 5), reinforcing the suitability of this testing ap-

proach for the analysis of multivariate time series data, as depicted in scenarios described in

Section 3.5.1.

3.4.3 Synthetic Data under Alternative Hypotheses

This section delves into the effectiveness of the algorithm for identifying the initial change

point using synthetic data. We utilize the data framework outlined in Section 3.4.1, where

the signal is specified according to (3.4.31) (that is, H1).

76



The experimental design is as follows: The sample size, n, is varied among 50, 100, 300, 500, 2000.

The dimension, p, is selected from 2, 3, 5. The dependence parameter, θ, includes 0 (indi-

cating independence), 0.2, and 0.4. The gap parameter, s, encompasses {0.8, 1.2, 1.5, 2, 2.5}.

It’s important to note that the standard deviation of innovation in the dependent process

is consistently 0.5. We fix the ratios τ/n = 0.4, τ ′/n = 0.6, τ ′′/n = 0.8, with µ1 = 0.

Following the establishment of experimental parameters, we generate the trend (µi) using

the described methodology. The additive noise process is then simulated multiple times,

and this data is processed by our location algorithms. Outcomes are compiled from 100,000

independent simulations.

We now present the Normalized Root Mean Squared Errors (RMSE) for τ̂ , derived from

our two-step location algorithm, expressed as
√

E(τ̂ − τ)2/n, across various experimental

settings as depicted in Figure 3.3.

Error rates generally decrease with moderate temporal dependence. Specifically, extend-

ing the gap between signal and non-signal segments from 0.8 to 2.5 results in a consistent

reduction in error rates. Additionally, increasing the sample size from 50 to 2000 leads to

lower normalized errors, whereas an increase in dimension from 2 to 5 induces a slightly

higher normalized errors. These findings are consistent with the theoretical expectations of

Theorem 3.3.2 discussed in Section 3.3.3 and its proof in Section 3.6.2.

In scenarios characterized by significant dependence and a narrow gap, error rates may

increase. However, under more favorable conditions, the error rates remain largely stable

or show only minor increases, underscoring the robustness and effectiveness of our proposed

approach.

77



n = 50 n = 100 n = 300 n = 500 n = 2000

θ
=

0
θ

=
0.2

θ
=

0.4

0.8 1.2 1.5 2 2.5 0.8 1.2 1.5 2 2.5 0.8 1.2 1.5 2 2.5 0.8 1.2 1.5 2 2.5 0.8 1.2 1.5 2 2.5

0.000

0.025

0.050

0.075

0.100

0.125

0.000

0.025

0.050

0.075

0.100

0.125

0.000

0.025

0.050

0.075

0.100

0.125

R
M

S
E

 / 
n

p p = 2 p = 3 p = 5

Figure 3.3: Normalized Root Mean Squared Errors (RMSE) for the proposed method τ̂ , calculated
as
√

E(τ̂ − τ)2/n. This analysis covers variations in parameters like the gap parameter s, sample
size n, dimensionality p, and the θ parameter of the threshold autoregression noise model. Each bar
graph represents the average outcome from 100, 000 replications.
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3.5 Real Data Analysis

3.5.1 Baidu Search Index Analysis for COVID-19 Related Symptoms

In this analysis, we aggregate Baidu search index data for the keywords "fever" and "cough"

from 1 October 2019 to 31 January 2020 in Hubei Province, China. Hence, this dataset is

converted into a two-dimensional time series, which acts as the input for our multivariate

change point analysis pipeline.

Employing the testing methodology described in Section 3.2.2, we evaluate the null hy-

pothesis H0 that the mean remains constant as detailed in Equation (3.2.5), against the al-

ternative hypothesis H1 which posits a variable mean following a change point, as depicted in

Equation (3.2.6). The analysis yields test statistics T̂ < −287.3842 for the combined Baidu

search indices of "cough" and "fever". With p-values from Theorem 3.3.1(i) approaching

zero, we decisively reject the null hypothesis.

Further examination is carried out through a two-stage locating procedure (Section 3.2.3),

focusing on the aggregated dataset for "fever" and "cough", which includes n = 123 data

points. The initial phase calculates the mean of the equilibrium data state µ1, the sum

of the noise vector variances γ, and the state gap parameter d. This calculation aids the

subsequent phase. The batch mean length is determined as k = ⌈n1/3⌉ = 5, leading to

Rj :=
1

k

jk∑
i=(j−1)k+1

∥Xi − µ̄0∥2, for j = 1, 2, . . . , ⌊n/k⌋,

as specified in Equation (3.2.9). This yields L̂ := argmin1≤j≤mRj = 9 and ℓ̂ := kL̂ = 45,

aligning with Equation (3.2.10). The pre-change sample mean µ̂0 is approximated as

(235.31, 354.29)⊤ from the initial ℓ̂ data points. Subsequently, the test statistics D̂j , us-

ing ω̂∞ ≈ 2544.61 (the square root of the estimated long-run variance from the initial ℓ̂

observations), are computed as per Equation (3.2.13), leading to the test decisions Îj out-
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lined in Equation (3.2.14), with

Îj =


1 if D̂j ≥ z1−1/m

0 otherwise.

We identify η̂ as per Equation (3.2.15), resulting in first-stage estimates of

µ̂1 :=
1

kη̂

kη̂∑
i=1

Xi ≈ (237.32, 351.20)⊤, γ̂ :=
1

η̂k

η̂k∑
i=1

∥Xi − µ̂1∥2 ≈ 1706.53,

and

d̂ := min
i≥kη̂+k+1

1

k

i+k−1∑
j=i

(∥∥Xj − µ̂1

∥∥2 − γ̂
)
≈ 6951.74.

Setting ρ = 0.5, the refined second-phase change point estimate is obtained as follows:

τ̃ := arg min
j=1,...,n

 j∑
t=1

(
∥Xt − µ̂1∥2 − γ̂ − ĉ

)
+ 1

 = 69,

as per Equation (3.2.19). This result identifies December 8, 2019, as the first change point

date. In Figure 3.4, the observations before our estimated first change point date are colored

in blue, while the observations after this date are colored in red. It is evident that detecting

this first change point by visual inspection alone is almost impossible.

Remarkably, this date aligns with the findings presented in Section 2.5.1, further rein-

forcing the validity of our analytical approach.
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Figure 3.4: Baidu search index for “fever” and “cough” from October 1, 2019, to January 31, 2020.
The blue points denote the observations before December 8, 2019, which is our estimated change
point, while the red points denote the observations afterwards.
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3.6 Proofs

This section outlines the formal proofs for the theorems introduced earlier in the chapter.

3.6.1 Proof of Theorem 3.3.1

We begin by defining the test statistic Tn as follows:

Tn := min
j=1,2,...,n

1√
nω

 j∑
i=1

∥Xi − µ0∥2 −
j

n

n∑
i=1

∥Xi − µ0∥2
 , (3.6.32)

where ω̂2 = ω2+oP(1) and ∥µ0−µ̂0∥ = oP(1). By applying Slutsky’s lemma, we can replace

T̂ with Tn for the purpose of proving the theorem. To aid in our analysis, we delineate several

auxiliary variables:

Mn(j) :=

j∑
i=1

∥µi − µ0∥2 −
j

n

n∑
i=1

∥µi − µ0∥2, (3.6.33)

complemented by

Nn(j) :=

j∑
i=1

∥Zi∥2 −
j

n

n∑
i=1

∥Zi∥2, (3.6.34)

and further,

Cn(j) :=

j∑
i=1

(µi − µ0)
⊤Zi −

j

n

n∑
i=1

(µi − µ0)
⊤Zi. (3.6.35)

This allows us to express the difference as:

n−1/2

 j∑
i=1

∥Xi − µ0∥2 −
j

n

n∑
i=1

∥Xi − µ0∥2
 = n−1/2Mn(j)+2n−1/2Cn(j)+n−1/2Nn(j).

(3.6.36)
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We further introduce Si, the cumulative sum of centered squared norms of noise vectors,

defined as:

Si :=
i∑

j=1

(
∥Zj∥2 − E(∥Zj∥2)

)
. (3.6.37)

Next, we define the delta measure δ̃q(i), which quantifies the maximum expected difference

in Z2
i and its counterpart Z′2i , across all dimensions j = 1, . . . , p:

δ̃q(i) := max
j=1,...,p

(
E
∣∣∣Z2

i,j − Z′2i,j

∣∣∣q)1/q , where Z′i = G
(
· · · , ε′0, ε1, . . . , εi

)
. (3.6.38)

Finally, we define the cumulative dependence measure Θ̃t,q as the sum of δ̃q(i) for all i ≥ t:

Θ̃t,q =
∑
i≥t

δ̃q(i), t ≥ 0. (3.6.39)

The subsequent analysis utilizes these definitions to rigorously prove the theorem. Before

proceeding to prove our main theorem, it’s crucial to introduce the following lemma:

Lemma 3.6.1. For a sequence {Zi}, where each Zi is defined as in (3.3.20) and assuming

each dimension of the sequence {Zi} has a finite qth moment Hq, then it can be shown that:

Θ̃t,q ≲ Θt,2q. (3.6.40)

The proof of Lemma 3.6.1 is detailed in Section 3.6.4. This lemma implies that, under

the condition (3.3.27), we can establish that:

Θ̃t,2 <∞. (3.6.41)

Consequently, applying Theorem 3 from Wu [2005] under the stipulated condition (3.6.41),

we find:

n−1/2{S⌊nu⌋, 0 ≤ u ≤ 1} ⇒ {σ∞B(u), 0 ≤ u ≤ 1},
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leading to the conclusion that n−1/2{S⌊nu⌋ − n−1⌊nu⌋Sn, 0 ≤ u ≤ 1} ⇒ {σ∞B1(u), 0 ≤

u ≤ 1}. This follows from the continuous mapping theorem and (??), as under the null

hypothesis H0, both Mn(j) and Cn(j) are zero.

For part (ii), under the alternative hypothesis H1, considering j, τ ∈ {1, . . . , n}, the

expression detailed in (3.6.33) reveals that since (µi − µ0) = 0 for i = 1, . . . , τ − 1, the

first component of Mn(j) is non-negative and reduces to zero for i < τ . Simultaneously,

the second component decreases as i increments, suggesting that argminj Mn(j) ≥ τ − 1.

Hence, it follows that minj=1,...,nMn(j) ≤ Mn(τ − 1) ≤ d · (1−τn )(n − τ + 1). As a result,

we observe that

n−1/2 min
j=1,...,n

Mn(j)→ −∞, as n−3/2τ(n− τ) · d→∞.

Accordingly, (ii) is concluded based on the premise outlined in (3.6.36).

3.6.2 Proof of Theorem 3.3.2 (i)–(iii)

Proof of Theorem 3.3.2 (i)

Fixing d, our objective is to establish that |τ̃n− τn| = OP(1) as n→∞. Specifically, we aim

to demonstrate that for any ε > 0, there exist Mε ∈ N and Nε ∈ N such that

P (|τ̃n − τn| ≥Mε) < ε, ∀n > Nε.
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From (3.2.19), we derive that

Ω =


τn−1∑
t=1

(
∥Xt − µ̂0∥2 − γ̂ − d̂/2

)
≥

τ̃n−1∑
t=1

(
∥Xt − µ̂0∥2 − γ̂ − d̂/2

)
=


τn−1∑
t=τ̃n

(
∥Xt − µ̂0∥2 − γ̂ − d̂/2

)
≥ 0

 ∩ {τ̃n < τn}


∪


τ̃n−1∑
j=τn

(
∥Xt − µ̂0∥2 − γ̂ − d̂/2

)
≤ 0

 ∩ {τ̃n > τn}

 ∪ {τ̃n = τn}

For n > Nε ≫Mε > 0, with ĉ = d̂/2 and c = d/2, we obtain the following bound:

P (|τ̃n − τn| ≥Mε)

= P

 τn−1⋃
ℓ=Mε

{τ̃n = τn − ℓ} ∩ Ω

+ P

n−τn⋃
ℓ=Mε

{τ̃n = τn + ℓ} ∩ Ω


= P

 τn−1⋃
ℓ=Mε


τn−1∑

j=τn−ℓ

(
∥Xj − µ̂0∥2 − γ̂ − ĉ

)
≥ 0




+ P

n−τn⋃
ℓ=Mε


τn+ℓ∑
j=τn

(
∥Xj − µ̂0∥2 − γ̂ − ĉ

)
≤ 0




= P

max
ℓ≥Mε

τn−1∑
j=τn−ℓ

(
∥Xj − µ̂0∥2 − γ̂ − ĉ

)
≥ 0


+ P

max
ℓ≥Mε

τn+ℓ∑
j=τn

(
γ̂ + ĉ− ∥Xj − µ̂0∥2

)
≥ 0


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Applying the Bonferroni inequality and Slutsky’s lemma, we obtain

P
(
max
ℓ≥Mε

τn−1∑
j=τn−ℓ

(
∥Xj − µ̂0∥2 − γ̂ − ĉ

)
≥ 0
)

+ P
(
max
ℓ≥Mε

τn+ℓ∑
j=τn

(
γ̂ + ĉ− ∥Xj − µ̂0∥2

)
≥ 0
)

≲
∞∑
k=1

P
(

max
2k−1Mε≤ℓ≤2kMε

τn−1∑
j=τn−ℓ

( p∑
u=1

Z2
j,u − γ − c

)
≥ 0
)

+
∞∑
k=1

P

(
max

2k−1Mε≤ℓ≤2kMε

τn+ℓ∑
j=τn

(
γ + c− ∥µj − µ0∥2

− 2

p∑
u=1

(µj,u − µ0,u)Zj,u −
p∑

u=1

Z2
j,u

)
≥ 0

)

≤
∞∑
k=1

P
(

max
1≤ℓ≤2kMε

τn−1∑
j=τn−ℓ

( p∑
u=1

Z2
j,u − γ

)
≥ 2k−1Mεc

)

+
∞∑
k=1

P

(
max

1≤ℓ≤2kMε

τn+ℓ∑
j=τn

(
− 2

p∑
u=1

(µj,u − µ0,u)Zj,u

+ γ −
p∑

u=1

Z2
j,u

)
≥ 2k−1Mε(d− c)

)

= (I) + (II)

Now we apply the Bonferroni inequality to bound (I) and (II).

(I) ≤
∞∑
k=1

p∑
u=1

P

 max
1≤ℓ≤2kMε

τn−1∑
j=τn−ℓ

(Z2
j,u − EZ2

j,u) ≥ 2k−1Mεc/p


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and

(II) ≤ 2
∞∑
k=1

p∑
u=1

P

 max
1≤ℓ≤2kMε

τn+ℓ∑
j=τn

(
−(µj,u − µ0,u)Zj,u

)
≥ 2k−1Mε(d− c)/(3p)


+
∞∑
k=1

p∑
u=1

P

 max
1≤ℓ≤2kMε

τn+ℓ∑
j=τn

(
−(Z2

j,u − EZ2
j,u)
)
≥ 2k−1Mε(d− c)/(3p)

 .

To further refine bounds for (I) and (II), we introduce the following lemma:

Lemma 3.6.2. Assuming Condition 3.3.1 holds, then

Ξ̃q,α := sup
t≥0

(t+ 1)α
∑
i≥t

max
j=1,...,p

(
E
∣∣∣Z2

i,j − Z′2i,j

∣∣∣q)1/q <∞, (3.6.42)

is also satisfied with α = 1.

The proof of Lemma 3.6.2 is deferred to Section 3.6.4.

Given Lemma 3.6.2, consequently, to further bound (I) and (II), we apply Theorem 2

from Wu and Wu [2016].

This entails the existence of positive constants C1, C2, and C3, such that

P

 max
1≤ℓ≤2kMε

τn−1∑
j=τn−ℓ

(Z2
j,u − EZ2

j,u) ≥ 2k−1Mεc/p

 ≤ C12
kMεΞ

2q
2q,1

(2k−1Mεc/p)2q

+ C2 exp

(
−C3(2

k−1Mεc/p)
2

2kMεΞ2
2,1

)
,

(3.6.43)

yielding that

(I) ≤
C1p

2q+1Ξ
2q
2q,1

M
2q−1
ε c2q

∞∑
k=1

1

2k(2q−1)−2q
+ C2p

∞∑
k=1

exp

(
−C32

k−2Mε(c/p)
2

Ξ2
2,1

)
. (3.6.44)

As Mε grows, (I) approach zero, confirming the asymptotic bounds under the prescribed
87



conditions.

To bound (II), define

wu,k =

√√√√ 2kMε + 1∑τn+2kMε−1
j=τn

(µj,u − µ0,u)
2
, (3.6.45)

and construct

au,k = (au,k,τn , · · · , au,k,τn+2kMε
), (3.6.46)

where au,k,j := −(µj,u − µ0,u) · wu,k.

There exist positive constants C4, C5, and C6 such that

P

 max
1≤ℓ≤2kMε

τn+ℓ∑
j=τn

(
−(µj,u − µ0,u)Zj,u

)
≥ 2k−1Mε(d− c)/(3p)


= P

 max
1≤ℓ≤2kMε

τn+ℓ∑
j=τn

au,k,jZj,u ≥ 2k−1Mεwu,k(d− c)/(3p)


≤ C4

∥au,k∥
q
qΞ

q
q,1(

2k−1Mεwu,k(d− c)/(3p)
)q + C5 exp

−C6

(
2k−1Mεwu,k(d− c)/(3p)

)2
2kMεΞ2

2,1


(3.6.47)

Additionally, positive constants C7, C8, and C9 exist such that

P

 max
1≤ℓ≤2kMε

τn+ℓ∑
j=τn

(
−(Z2

j,u − EZ2
j,u)
)
≥ 2k−1Mε(d− c)/(3p)


≤

C72
kMεΞ

2q
2q,1

(2k−1Mε(d− c)/(3p))2q
+ C8 exp

(
−C9(2

k−1Mε(d− c)/(3p))2

2kMεΞ2
2,1

)
,

(3.6.48)
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It follows that

(II) ≲
C4Ξ

q
q,1p

q+1

M
q−1
ε ((d− c)/3)q

∞∑
k=1

1

2k(q−1)−q
+ C5

∞∑
k=1

exp

(
−
C62

k−2Mεw
2
u,k ((d− c)/(3p))2

Ξ2
2,1

)

+
C7Ξ

2q
2q,1p

2q+1

M
2q−1
ε ((d− c)/3)2q

∞∑
k=1

1

2k(2q−1)−2q
+ C8p

∞∑
k=1

exp

(
−C92

k−2Mε((d− c)/(3p))2

Ξ2
2,1

)

→ 0, as Mε →∞.

(3.6.49)

This concludes the proof of Theorem 3.3.2 (i).

Proof of Theorem 3.3.2 (ii)

Applying Slutsky’s lemma to bound the probability

P (|τ̃n − τn| ≥ 1)

= P

τn−1⋃
ℓ=1

{τ̃n = τn − ℓ} ∩ Ω

+ P

(
n−τn⋃
ℓ=1

{τ̃n = τn + ℓ} ∩ Ω

)

≲ P

max
ℓ≥1

τn−1∑
j=τn−ℓ

( p∑
u=1

Z2
j,u − γ − c

)
≥ 0


+ P

 max
1≤ℓ≤n−τn

τn+ℓ∑
j=τn

(
γ + c− ∥µj − µ0∥2 − 2

p∑
u=1

(µj,u − µ0,u)Zj,u −
p∑

u=1

Z2
j,u

)
≥ 0

 ,

(3.6.50)
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we can further bound it using the Bonferroni inequality:

P (|τ̃n − τn| ≥ 1)

= P

τn−1⋃
ℓ=1

{τ̃n = τn − ℓ} ∩ Ω

+ P

(
n−τn⋃
ℓ=1

{τ̃n = τn + ℓ} ∩ Ω

)

≤
p∑

u=1

P

max
ℓ≥1

τn−1∑
j=τn−ℓ

(
Z2
j,u − EZ2

j,u

)
≥ c/p


+ 2

p∑
u=1

P

 max
1≤ℓ≤n−τn

τn+ℓ∑
j=τn

(
−(µj,u − µ0,u)Zj,u

)
≥ (d− c)/(3p)


+

p∑
u=1

P

 max
1≤ℓ≤n−τn

τn+ℓ∑
j=τn

(
−(Z2

j,u − EZ2
j,u)
)
≥ (d− c)/(3p)

 .

(3.6.51)

We begin by noting the equivalence c ≍ d. Leveraging the established Condition 3.3.1,

as delineated in prior discussions, enables the application of Theorem 2 from Wu and Wu

[2016]. Consequently, there exist positive constants C1, C2, and C3, ensuring that

P

max
ℓ≥1

τn−1∑
j=τn−ℓ

(
Z2
j,u − EZ2

j,u

)
≥ c

p

 ≤ C1τnΞ
2q
2q,1(

c
p

)2q + C2 exp

−C3

(
c
p

)2
τnΞ2

2,1

→ 0, (3.6.52)

as d→∞.

Define the weight for adjustment as

wu,k =

√
n− τn + 1∑n

j=τn
(µj,u − µ0,u)

2
, (3.6.53)

and introduce the vector

au,k = (au,k,τn , . . . , au,k,n), (3.6.54)

where each component is given by au,k,j := −(µj,u − µ0,u) · wu,k.
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Meanwhile, there exist positive constants C4, C5, and C6, such that

P

 max
1≤ℓ≤n−τn

τn+ℓ∑
j=τn

(
−(µj,u − µ0,u)Zj,u

)
≥ d− c

3p


= P

 max
1≤ℓ≤n−τn

τn+ℓ∑
j=τn

au,k,jZj,u ≥
wu,k(d− c)

3p


≤ C4

∥au,k∥
q
qΞ

q
q,1(

wu,k(d−c)
3p

)q + C5 exp

−C6

(
wu,k(d−c)

3p

)2
(n− τn)Ξ2

2,1

→ 0,

(3.6.55)

as d→∞.

Moreover, additional positive constants C7, C8, and C9 exist such that

P

 max
1≤ℓ≤n−τn

τn+ℓ∑
j=τn

(
−(Z2

j,u − EZ2
j,u)
)
≥ d− c

3p


≤

C1(n− τn)Ξ
2q
2q,1(

d−c
3p

)2q + C2 exp

− C3

(
d−c
3p

)2
(n− τn)Ξ2

2,1

→ 0,

(3.6.56)

as d→∞.

This concludes the proof of Theorem 3.3.2 (ii).

Proof of Theorem 3.3.2 (iii)

Let Ln = d−2n . To establish that for any ε > 0, there exist Mε, Nε ∈ N such that

P (|τ̃n − τn| ≥MεLn) < ε, ∀n > Nε,
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we consider Mε > 0 and n > Nε. The probability of interest is decomposed as follows:

P (|τ̃n − τn| ≥MεLn) =

P

 τn−1⋃
ℓ=MεLn

{τ̃n = τn − ℓ} ∩ Ω

+ P

 n−τn⋃
ℓ=MεLn

{τ̃n = τn + ℓ} ∩ Ω


= P

 max
ℓ≥MεLn

τn−1∑
j=τn−ℓ

(
∥Xj − µ̂0∥2 − γ̂ − ĉn

)
≥ 0


+ P

 max
ℓ≥MεLn

τn+ℓ∑
j=τn

(
γ̂ + ĉn − ∥Xj − µ̂0∥2

)
≥ 0

 .

Applying Bonferroni inequality and Slutsky’s lemma, we have

P

 max
ℓ≥MεLn

τn−1∑
j=τn−ℓ

(
∥Xj − µ̂0∥2 − γ̂ − ĉn

)
≥ 0


+ P

 max
ℓ≥MεLn

τn+ℓ∑
j=τn

(
γ̂ + ĉn − ∥Xj − µ̂0∥2

)
≥ 0


≤
∞∑
k=1

P

 max
2k−1MεLn≤ℓ≤2kMεLn

τn−1∑
j=τn−ℓ

(
∥Xj − µ̂0∥2 − γ̂ − ĉn

)
≥ 0


+
∞∑
k=1

P

 max
2k−1MεLn≤ℓ≤2kMεLn

τn+ℓ∑
j=τn

(
γ̂ + ĉn − ∥Xj − µ̂0∥2

)
≥ 0


≲
∞∑
k=1

P

 max
2k−1MεLn≤ℓ≤2kMεLn

τn−1∑
j=τn−ℓ

( p∑
u=1

Z2
j,u − γ − cn

)
≥ 0


+
∞∑
k=1

P

(
max

2k−1MεLn≤ℓ≤2kMεLn

τn+ℓ∑
j=τn

(
γ + cn − ∥µj − µ0∥2

− 2

p∑
u=1

(µj,u − µ0,u)Zj,u −
p∑

u=1

Z2
j,u

)
≥ 0

)
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which can be further bounded as follows, using Bonferroni inequality:

∞∑
k=1

P

 max
2k−1MεLn≤ℓ≤2kMεLn

τn−1∑
j=τn−ℓ

( p∑
u=1

Z2
j,u − γ − cn

)
≥ 0


+
∞∑
k=1

P

(
max

2k−1MεLn≤ℓ≤2kMεLn

τn+ℓ∑
j=τn

(
γ + cn − ∥µj − µ0∥2

− 2

p∑
u=1

(µj,u − µ0,u)Zj,u −
p∑

u=1

Z2
j,u

)
≥ 0

)

≤
∞∑
k=1

p∑
u=1

P

 max
1≤ℓ≤2kMεLn

τn−1∑
j=τn−ℓ

(Z2
j,u − EZ2

j,u) ≥ 2k−1MεLncn/p


+ 2

∞∑
k=1

p∑
u=1

P

(
max

1≤ℓ≤2kMεLn

τn+ℓ∑
j=τn

(
− (µj,u − µ0,u)Zj,u

)

≥ 2k−1MεLn(dn − cn)/(3p)

)

+
∞∑
k=1

p∑
u=1

P

(
max

1≤ℓ≤2kMεLn

τn+ℓ∑
j=τn

(
− (Z2

j,u − EZ2
j,u)
)

≥ 2k−1MεLn(dn − cn)/(3p)

)

Given the equivalence cn ≍ dn and leveraging Lemma 3.6.2, we apply Theorem 2 from Wu

and Wu [2016]. Consequently, there exist positive constants C1, C2, and C3 ensuring the

following bound:

P

 max
1≤ℓ≤2kMεLn

τn−1∑
j=τn−ℓ

(Z2
j,u − EZ2

j,u) ≥ 2k−1MεLncn/p


≤

C12
kMεLnΞ

2q
2q,1

(2k−1MεLncn/p)2q
+ C2 exp

(
−C3(2

k−1MεLncn/p)
2

2kMεLnΞ2
2,1

)

=
C1Ξ

2q
2q,1p

2q

2k(2q−1)−2qM2q−1
ε d

2−2q
n

+ C2 exp

(
−C32

k−2Mε

Ξ2
2,1p

2dn

)
,

(3.6.57)
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which implies

∞∑
k=1

p∑
u=1

P

 max
1≤ℓ≤2kMεLn

τn−1∑
j=τn−ℓ

(Z2
j,u − EZ2

j,u) ≥ 2k−1MεLncn/p

→ 0, (3.6.58)

as Mε →∞.

Defining wu,k and au,k as

wu,k =

√√√√ 2kMεLn + 1∑τn+2kMεLn−1
j=τn

(µj,u − µ0,u)
2
, (3.6.59)

au,k = (au,k,τn , . . . , au,k,τn+2kMεLn
), (3.6.60)

with au,k,j := −(µj,u − µ0,u) · wu,k, leads to the existence of constants C4, C5, C6 that

satisfy

P

 max
1≤ℓ≤2kMεLn

τn+ℓ∑
j=τn

(
−(µj,u − µ0,u)Zj,u

)
≥ 2k−1MεLn(dn − cn)/(3p)


≲ C4

Ξ
q
q,1p

q

2qk−q−kMq−1
ε d

2−q
n

+ C5 exp

(
−
C62

k−2Mεwu,k/9

Ξ2
2,1dnp

2

) (3.6.61)

demonstrating that

∞∑
k=1

p∑
u=1

P

 max
1≤ℓ≤2kMεLn

τn+ℓ∑
j=τn

(
−(µj,u − µ0,u)Zj,u

)
≥ 2k−1MεLn(dn − cn)/(3p)

→ 0,

(3.6.62)

as Mε →∞.
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Furthermore, positive constants C7, C8, C9 exist such that

P

 max
1≤ℓ≤2kMεLn

τn+ℓ∑
j=τn

(
−(Z2

j,u − EZ2
j,u)
)
≥ 2k−1MεLn(dn − cn)/(3p)


≲

C7Ξ
2q
2q,1p

2q

22qk−2q−kM2q−1
ε d

2−2q
n

+ C8 exp

(
−C92

k−2Mε/9

Ξ2
2,1dnp

2

)
,

(3.6.63)

leading to

∞∑
k=1

p∑
u=1

P

 max
1≤ℓ≤2kMεLn

τn+ℓ∑
j=τn

(
−(Z2

j,u − EZ2
j,u)
)
≥ 2k−1MεLn(dn − cn)/(3p)

→ 0,

(3.6.64)

as Mε →∞.

This concludes the proof of Theorem 3.3.2 (iii).

3.6.3 Proof of Theorem 3.3.3

We initiate the proof by delineating some preliminary notation and pivotal technical lemmas

essential for our analysis. A key lemma pertains to the consistency and convergence rate of

the estimator γ̃, which plays a crucial role in formulating the “test statistic” D̂j .

Lemma 3.6.3. Under Condition 3.3.1, and provided that log(tn)n1/qk−1 → 0 as n → ∞,

it holds that

|γ̃n − γn| = OP

(
1√
n

)
. (3.6.65)

Define

Uj,k :=
1

k

jk∑
i=(j−1)k+1

∥Xi − µ0∥2. (3.6.66)

For the purpose of approximating D̂j , we introduce

D̃j :=
√
k(Ũj,k − γn)/σ∞, Ũj,k := E(Uj,k|ε(j−1)k+1, . . . , εjk), j = 1, 2, . . . . (3.6.67)
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It is crucial to note that Ũ1,k, . . . , Ũ⌊n/k⌋,k are independent due to the independence of the

εt, making the D̃j likewise independent. The forthcoming lemma underscores the fidelity of

approximating Uj,k with Ũj,k under the framework of Theorem 3.3.3.

Lemma 3.6.4. Let s = ⌊n/k⌋ and assume Condition 3.3.1 is met. Then,

P
(
max
j≤s

∣∣∣Uj,k − Ũj,k

∣∣∣ > u

)
→ 0, as s→∞. (3.6.68)

In addition to D̃j , we define Ĩj to approximate the test decisions Ij . Since Ĩj are inde-

pendent, we leverage the following lemma, which offers valuable insights on its own.

Lemma 3.6.5. Consider a sequence Ĩ1, Ĩ2, . . . of independent Bernoulli-distributed random

variables with P(Ĩi = 1) = pi = 1− P(Ĩi = 0). Then,

P

max
j≥1

j∑
i=1

(2Ĩi − 1) ≥ 0

 =
∞∑
k=1

∑
(i1,...,i2k)∈Ak

2k∏
ℓ=1

P(2Ĩℓ − 1 = iℓ),

where

Ak = {(i1, . . . , i2k) ∈ {−1, 1}2k :
2k∑
ℓ=1

iℓ = 0 and
j∑

ℓ=1

iℓ ≤ 0,∀j = 1, . . . , 2k}.

Now we proceed with the proof of Theorem 3.3.3. Our goal is to demonstrate that

P (|η̂n − ηn| ≥ 1)→ 0, as n→∞. (3.6.69)
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Consider the event Ω defined as

Ω =


ηn∑
j=1

I2j +

⌊n/k⌋∑
j=ηn+1

(
Ij − 1

)2 ≥ η̂n∑
j=1

I2j +

⌊n/k⌋∑
j=η̂n+1

(
Ij − 1

)2
=


ηn∑

j=η̂n+1

Ij −
ηn∑

j=η̂n+1

(
1− Ij

)
≥ 0

 ∩ {η̂n < ηn}


∪


η̂n∑

j=ηn+1

Ij −
η̂n∑

j=ηn+1

(
1− Ij

)
≤ 0

 ∩ {η̂n > ηn}

 ∪ {η̂n = ηn}

=


ηn∑

j=η̂n+1

(
2Ij − 1

)
≥ 0

 ∩ {η̂n < ηn}


∪


η̂n∑

j=ηn+1

(
2Ij − 1

)
≤ 0

 ∩ {η̂n > ηn}

 ∪ {η̂n = ηn} .

Accordingly, the bound is given by

P (|η̂n − ηn| ≥ 1)

= P

( ∞⋃
ℓ=1

{η̂n = ηn − ℓ} ∩ Ω

)
+ P

( ∞⋃
ℓ=1

{η̂n = ηn + ℓ} ∩ Ω

)

= P

 ηn⋃
ℓ=1


ηn∑

j=ηn−ℓ+1

(
2Ij − 1

)
≥ 0


+ P

⌊n/k⌋−ηn⋃
ℓ=1


ηn+ℓ∑

j=ηn+1

(
2Ij − 1

)
≤ 0




= P

 max
ℓ=1,...,ηn

ηn∑
j=ηn−ℓ+1

(
2Ij − 1

)
≥ 0

+ P

 max
ℓ=1,...,⌊n/k⌋−ηn

ηn+ℓ∑
j=ηn+1

(
1− 2Ij

)
≥ 0

 .
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Fix c1, c2 > 0 and recall the notation from (3.6.67). We analyze the probability as follows:

P

 max
ℓ=1,...,ηn

ηn∑
j=ηn−ℓ+1

(2Ij − 1) ≥ 0


≤ P

 max
ℓ=1,...,ηn

ηn∑
j=ηn−ℓ+1

(2Ij − 1) ≥ 0, |γ̃n − γn| <
c1√
k
, ∀j > 1, |Uj,k − Ũj,k| <

c2√
k


+ P

(
|γ̃n − γn| >

c1√
k

)
+ P

(
max

j=2,...,⌊n/k⌋
|Uj,k − Ũj,k| >

c2√
k

)
=: An +Bn + Cn.

Invoking Lemma 3.6.3 and Lemma 3.6.4, it follows that Bn → 0 and Cn → 0 as n→∞.

Define

Ĩj = 1

{
D̃j > z1−1/⌊n/k⌋ −

c1 + c2
σ∞

}
, j = 1, 2, . . . ,

where Ĩ1, Ĩ2, . . . , Ĩηn are i.i.d. Bernoulli-distributed with P(Ĩ1 = 1) := κ → 0 as n → ∞.

Extending Ĩηn+1, Ĩηn+2, . . . to be independent and distributed as Ĩ1, Lemma 3.6.5 yields

P

max
j≥1

j∑
i=1

(2Ĩi − 1) ≥ 0

 =
∞∑
k=1

|Ak| (κ(1− κ))k ≤ min

{
4κ

1− 4κ
, 1

}
≤ 8κ,

where |Ak| ≤ 22k and κ(1− κ) ≤ κ.

On the event {|γ̃n − γn| < c1/
√
k} ∩ {|Uj,k − Ũj,k| < c2/

√
k}, we have Ĩj ≥ Ij . Conse-

quently,

An ≤ P

 max
ℓ=1,...,ηn

ηn∑
j=ηn−ℓ+1

(2Ĩj − 1) ≥ 0

 ≤ P

max
j≥1

j∑
i=1

(2Ĩi − 1) ≥ 0

→ 0.

Similarly, employing the notation J̃j = 1 − Ĩj for j = ηn + 1, . . . , ⌊n/k⌋ and intro-

ducing independent J̃1, . . . , J̃ηn and J̃⌊n/k⌋+1, J̃⌊n/k⌋+2, . . ., distributed as Jηn+1, yields

supj≥1 P(Ĩj = 1) := κ̄ → 0, as n → ∞. This follows because D̃j − ED̃j are i.i.d. and
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z1−1/⌊n/k⌋ − ED̃j ≤ z1−1/⌊n/k⌋ −
√
kd→ −∞ for j ≥ ηn + 1. Thus,

κ̄ := sup
j≥1

P(J̃j = 1) ≤ P

(
D̃j − ED̃j ≤ z1−1/⌊n/k⌋ −

√
kd+ c1 + c2

σ∞

)
→ 0.

Utilizing similar reasoning as before to approximate Ij with Ĩj , we deduce that

P

 max
ℓ=1,...,⌊n/k⌋−ηn

ηn+ℓ∑
j=ηn+1

(
1− 2Ij

)
≥ 0

 = P
(
max
j≥1

j∑
i=1

(2J̃i − 1) ≥ 0
)
+ o(1)

≤ min
{ ∞∑
k=1

(4κ̄)k, 1
}
+ o(1) ≤ 8κ̄+ o(1)→ 0.

This concludes the proof of Theorem 3.3.3.

3.6.4 Proof of Lemma 3.6.1–3.6.5

Proof of Lemma 3.6.1

Utilizing the Cauchy-Schwarz inequality to establish a bound for (3.6.38), for each j =

1, . . . , p, we derive

(
E
∣∣∣Z2

i,j − Z′2i,j

∣∣∣q)1
q
=
(
E
(
|Zi,j − Z′i,j |

q · |Zi,j + Z′i,j |
q
))1

q

≤
(
E(Zi,j − Z′i,j)

2q
) 1

2q ·
(
E(Zi,j + Z′i,j)

2q
) 1

2q

≤ 2H2q ·
(
E(Zi,j − Z′i,j)

2q
) 1

2q
.

(3.6.70)

Given H2q ≤ Hq < ∞, the inequality (3.6.70) indicates that δ̃q(i) ≲ δ2q(i) for all

i = 1, . . . , n, thereby implying Θ̃t,q ≲ Θt,2q.
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Proof of Lemma 3.6.2

Under Condition 3.3.1, it is established that Ξq,α <∞ for α = 1. The goal is to show that,

under the same condition, Ξ̃q,α <∞ is also true for α = 1.

By Lemma 3.6.1, we have that Θ̃t,q ≲ Θt,2q. Consequently, Condition 3.3.1 implies

Θ̃m,2q = O
(
m−β2q(logm)−A

)
, for A >

(
1/q + 2 + 2β2q

)
/3, (3.6.71)

thereby affirming that Ξ̃q,α <∞ for α = 1.

Proof of Lemma 3.6.3

To demonstrate that (3.6.65) is satisfied, we establish an equivalent condition:

|γ̃n − γn| = OP

(
an√
n

)
(3.6.72)

for any sequence {an} where an →∞. Setting rn = a
−1/2
n yields

P
(
|γ̃n − γn| ≥

an√
n

)

≲ P

L̂ ≤ ηrn,

∣∣∣∑L̂k
i=1

(
∥Xi − µ0∥2 − γn

)∣∣∣
L̂k

≥ an√
n


+ P

L̂ > ηrn,

∣∣∣∑L̂k
i=1

(
∥Xi − µ0∥2 − γn

)∣∣∣
L̂k

≥ an√
n


≤ P(L̂ ≤ ηrn)

+ P

 max
j>ηrnk

∣∣∣∑j
i=1

(
∥Xi − µ0∥2 − γn

)∣∣∣
j

≥ an√
n

→ 0,

validating (3.6.72). To confirm this convergence to zero, we need to establish two key points:
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First, for any sequence tn = o(ηn), it is shown that

P(L̂ ≥ tn)→ 1, as n→∞. (3.6.73)

Second, for any sequence gn, we demonstrate that

max
j≥gn

∣∣∣∣∣
∑j

i=1

(
∥Xi − µ0∥2 − γn

)
j

∣∣∣∣∣ = OP

(
1
√
gn

)
. (3.6.74)

These findings collectively culminate in the proof of Lemma 3.6.3 by establishing (3.6.73)

and (3.6.74).

We commence with establishing (3.6.73). Initially, observe that

P(L̂ ≥ tn) = P
(

max
1≤i≤ηn

k1/2ω−1∞ (Ri,k − γn) ≥ max
1≤i≤tn

k1/2ω−1∞ (Ri,k − γn)

)
.

Define θt = (2 log t− log log t− log(4π))1/2. We aim to demonstrate that

P
(

max
1≤i≤ηn

k1/2ω−1∞ (Ri,k − γn) ≥
θηn + θtn

2

)
→ 1,

P
(

max
1≤i≤tn

k1/2ω−1∞ (Ri,k − γn) ≤
θηn + θtn

2

)
→ 1,

(3.6.75)

as n→∞, which implies (3.6.73).

For a sequence tn satisfying log(tn)n
1/qk−1 → 0, as n→∞, it follows that

√
2 log(tn)

{
max

1≤i≤tn
k1/2ω−1∞ (Ri,k − γn)− θtn

}
⇒ V, (3.6.76)

where V follows the extreme value distribution P(V ≤ x) = exp {− exp(−x)}.

Given Condition 3.3.1 and (3.6.71), and applying Corollary 2.1 in Berkes et al. [2014],

we find Zc
i
D
= ∥Zi∥2 − γn, and a standard Brownian motion Bc(·) on a space (Ωc,Ac,Pc),
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satisfying
j∑

i=1

Zc
i = ω∞Bc(j) + oa.s.(j

1/(2q)).

Let Wi,k = k−1/2 (Bc(ik)− Bc((i− 1)k)) for i = 1, 2, . . . , tn, which are i.i.d. standard

normally distributed, and Mi,k =
∑ik

j=(i−1)k+1

(
Zc
j − (Bc(j)− Bc(j − 1))

)
, then

Ri,k − γn
D
= ω∞k−1/2Wi,k + k−1ω∞Mi,k,

with maxi≤tn Mi,k = oa.s.(n
1/(2q)). This setup leads to

k1/2ω−1∞ (Ri,k − γn)
D
= Wi,k + oa.s.

{
n1/(2q)k−1/2

}
= Wi,k + oa.s. {1/θtn} .

This equation, alongside the basic property that

√
2 log(tn)

{
max

1≤i≤tn
(Bc(i)− Bc(i− 1))− θtn

}
⇒ V,

as n→∞, facilitates the proof of (3.6.73).

We now establish (3.6.74), where S̃i denotes
∑i

j=1

(
∥Xj − µ0∥2 − γn

)
. For any G > 0

and setting ugn = G/
√
gn, the application of Bonferroni’s inequality yields

P

(
max
j≥gn

∣∣∣∣∣ S̃jj
∣∣∣∣∣ ≥ ugn

)

≤
∞∑
k=1

p∑
v=1

P

 max
2k−1gn≤i≤2kgn

∣∣∣∣∣∣
∑i

j=1

(
Z2
j,v − EZ2

j,v

)
i

∣∣∣∣∣∣ ≥ ugn
p


≤
∞∑
k=1

p∑
v=1

P

 max
1≤i≤2kgn

∣∣∣∣∣∣
i∑

j=1

(
Z2
j,v − EZ2

j,v

)∣∣∣∣∣∣ ≥ 2k−1ugngn/p

 .

(3.6.77)

By applying a Nagaev-type inequality under dependence (as per Theorem 2 in Wu and
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Wu [2016]) given Lemma 3.6.2, there exist positive constants C1, C2, and C3 such that

P

 max
1≤i≤2kgn

∣∣∣∣∣∣
i∑

j=1

(
Z2
j,v − EZ2

j,v

)∣∣∣∣∣∣ ≥ 2k−1ugngn/p


≤ C1

Ξ
2q
2q,1p

q

2k(q−1)−quqgng
q−1
n

+ C2 exp

(
−
C32

k−2u2gngn
p2Ξ2

2,1

)
.

(3.6.78)

Considering

max

 Ξ
2q
2q,1

u
q
gng

q−1
n

,
Ξ2
2,1

u2gngn

→ 0, as gn →∞,

it follows that

∞∑
k=1

p∑
v=1

P

 max
1≤i≤2kgn

∣∣∣∣∣∣
i∑

j=1

(
Z2
j,v − EZ2

j,v

)∣∣∣∣∣∣ ≥ 2k−1ugngn/p

→ 0, as gn →∞,

thereby concluding our result.

Proof of Lemma 3.6.4

Utilizing the Bonferroni inequality, we obtain

P
(
max
j≤s

∣∣∣Uj,k − Ũj,k

∣∣∣ > u

)
≤ s · P

(
|U1,k − Ũ1,k| > u

)
. (3.6.79)

Define ∆j := E(U1,k|εk, . . . , εj)− E(U1,k|εk, . . . , εj−1). It follows that

Ũ1,k − U1,k =
1∑

j=−∞
∆j .
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By applying the Markov inequality, we have

P

∣∣∣∣∣∣
1∑

j=−∞
∆j

∣∣∣∣∣∣ > u

 ≤ E
∣∣∣∑1

j=−∞∆j

∣∣∣q
uq

.

Given {∆j} as a martingale difference sequence, the Burkholder-Davis-Gundy inequality

allows us to bound E
∣∣∣∑1

j=−∞∆j

∣∣∣q, yielding

E

∣∣∣∣∣∣
1∑

j=−∞
∆j

∣∣∣∣∣∣
q2/q

≤ cq

1∑
j=−∞

(
E
∣∣∆j

∣∣q)2/q .
Considering U1,k = 1

k

∑k
i=1 ∥Xi−µ0∥2, the triangle and Jensen’s inequalities, alongside

Lemma 3.6.1, lead to

(
E
∣∣∆j

∣∣q)1/q ≤ 1

k

k∑
i=1

(
E
∣∣∣E(∥Zi∥2|εi, . . . , εj

)
− E

(
∥Zi∥2|εi, . . . , εj−1

)∣∣∣q)1/q
≤ p

k

k∑
i=1

δ̃(i−j+1),θ ≤
p

k
Θ̃2−j,q ≤

p

k
Θ2−j,2q.

(3.6.80)

Under Condition 3.3.1 and combining the aforementioned results, it follows that

P
(
max
j≤s

∣∣∣Uj,k − Ũj,k

∣∣∣ > u

)
≲ spq(ku)−q, (3.6.81)

where the constant in ≲ depends only on q.

This completes the proof of Lemma 3.6.4.
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Proof of Lemma 3.6.5

Consider Sn =
∑n

i=1(2Ĩi − 1) =:
∑n

i=1Xi, a random walk beginning at S0 = 0. Define

t0 := inf{n > 0 : Sn = 0} as the first instance n > 0 for which Sn returns to zero, yielding

P
(
max
j≥1

j∑
i=1

(2Ĩi − 1) > 0
)
=
∞∑
k=1

P(t0 = 2k).

For k > 0, we find

P(t0 = 2k) =
∑

(i1,...,i2k)∈Ak

P(X1 = i1, . . . , X2k = i2k),

where the sum is taken over the set Ak of all sequences of 2k terms from {−1, 1} that return

to zero exactly at 2k. This formulation directly results from the independence of Ĩ1, Ĩ2, . . .,

completing the proof.
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CHAPTER 4

NON-PARAMETRIC INFERENCE FOR CHANGE POINT

UNDER NON-STATIONARY NOISE

4.1 Introduction

Chapter 2 and Chapter 3 focused on change point analysis under irregular signals. Although

the discussed methods do not assume any parametric model and allow for temporal depen-

dence in the noise sequence, they still require the stationarity of the noise process. However,

in practice, the stationarity condition for the noise process may not be satisfied for data

from financial market analysis or pandemic research. One approach is to apply methodolo-

gies that assume stationarity to analyze such datasets. However, as indicated by Mercurio

and Spokoiny [2004], treating non-stationary data as though they are from a stationary

process in data analysis is highly risky. Therefore, the next question we aim to address is

whether we can extend our change point analysis to non-stationary scenarios and what the

associated trade-offs are for this extension. The goal of this chapter is to develop a novel

framework for non-parametric statistical inference of change points under non-stationary

noise.

To the best of our knowledge, most of the current relevant literature adopts a parametric

approach for statistical inference of change points under non-stationary noise. Davis et al.

[2006] explore modeling non-stationary time series using piece-wise auto-regressive processes

with unknown segment numbers, locations, and orders, employing the minimum description

length principle and a genetic algorithm to optimize the model structure. Chowdhury et al.

[2012] introduces a Bayesian online inference for spectral change point detection (BOSCPD)

technique applied to online automatic speech recognition (ASR), significantly enhancing

change point detection in non-stationary noise environments. Korkas and Pryzlewicz [2017]

propose a technique utilizing Wild Binary Segmentation (WBS) combined with CUSUM
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statistics from wavelet periodograms for consistent estimation of change-point numbers and

locations in non-stationary time series. Safikhani and Shojaie [2022] introduce a three-stage

procedure for detecting change points and estimating parameters in high-dimensional piece-

wise vector auto-regressive (VAR) models under non-stationary conditions, using penalized

least squares with total variation penalty to handle the change point detection as a variable

selection problem. Ma et al. [2020] present a method for identifying change points in non-

stationary time series by modeling each segment as an auto-regressive process with distinct

parameters, using a likelihood ratio scan for detection and spectral discrimination tests for

validation. Ching et al. [2014] address the detection of multiple structural breaks in non-

stationary economic time series using the Minimum Description Length (MDL) and Genetic

Algorithm (GA) for model optimization.

The aforementioned studies provide valuable insights into change point detection under

non-stationary conditions. However, they primarily rely on parametric models, which may

not always be suitable for capturing the complex dynamics of time series with non-stationary

noise. In this chapter, we aim to bridge this gap by developing a non-parametric framework

for statistical inference of change points in non-stationary settings. We propose a novel

test statistic based on local linear fit, which effectively captures change points in the signal

even in the presence of strong noise distraction. Additionally, we introduce a new bootstrap

procedure to approximate the distribution of this test statistic under the null hypothesis,

enabling the calculation of p-values for the test. This innovative bootstrap algorithm ensures

a robust distributional approximation even in the presence of complex temporal dependence

and non-stationarity.

To relax the stationarity condition assumed in Chapters 2 and 3, a trade-off is neces-

sary. Unlike these chapters, which allow for highly irregular signals after the change point,

we impose a slightly stronger restriction on the signal part, requiring continuity after the

change point to accommodate the non-stationarity of the noise. Despite this restriction, our
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methodology relies on very weak conditions, as we do not assume piece-wise constant signals

or i.i.d. Gaussian noise, which are common assumptions in many other works.

Under the introduced settings, we investigate the theoretical properties of our proposed

methodology and explore its performance through extensive synthetic data analysis. This

non-parametric framework contributes to the growing body of literature on change point

analysis by providing a novel perspective on handling non-stationarity, expanding the toolkit

available for researchers and practitioners dealing with complex, non-stationary time series

data.

The rest of this chapter is organized as follows: Section 4.2 introduces our methodology

for testing for change points in signals with non-stationary noise processes. In Section 4.3,

we develop the theoretical foundations of our approach, demonstrating the type-one error

control by showing that the distribution of our test statistic is well approximated via the

introduced bootstrap mechanism under the null hypothesis. The empirical efficacy of our

method is rigorously evaluated through extensive simulations in Section 4.4. Detailed proofs

of the theoretical results are provided in Section 4.5.
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4.2 Methodology

4.2.1 Data Model and Problem Formulation

Consider a data model infused with noise, formally articulated as:

Xt = µ(t/n) + Zt, ∀t = 1, . . . , n, (4.2.1)

where µ(·) is the mean function, and (Zt)t∈Z denotes a non-stationary process with a mean

of zero.

We consider the following hypotheses:

• Null Hypothesis (H0):

H0 : µ(·) is continuous on [0, 1], (4.2.2)

• Alternative Hypothesis (H1):

H1 : There exists t0 ∈ [0, 1] such that µ(·) is discontinuous at t0. (4.2.3)

Given the observations X1, . . . , Xn, our objective is to develop a testing procedure to

distinguish between H0 and H1.

Our test statistic innovates upon the traditional change point detection scheme, known

as MOSUM (cf. Eichinger and Kirch [2018]), by adapting it to the specifics of our model.

Classical MOSUM computes the absolute differences between mean values of data across

windows bifurcating at each timepoint t, selecting the maximum difference as the test statistic

T . The rejection criterion under MOSUM is defined by {T > c}, where c denotes a critical

threshold ascertainable through simulation or bootstrap techniques.

In deviation from the classic MOSUM framework, our method involves the application
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of a local linear model on the data segments partitioned by the time point t on both sides.

We compute the absolute disparity in predictions from these twin models at t, defining our

test statistic as the apex of these disparities. The algorithmic embodiment of this procedure

is documented in Algorithm 2. For p-value calculation, we advocate a bootstrap strategy

as elaborated in Algorithm 1, aiming to simulate the distribution of our test statistic under

the null hypothesis (4.2.2). Theorem 4.3.1 validates that the distribution of our test statistic

is aptly approximated via the introduced bootstrap mechanism, showcasing its efficacy in

scenarios characterized by non-stationarity and temporal dependency in the noise process.

4.2.2 Bootstrap for Non-stationary Processes

The bootstrap is a powerful resampling technique that allows for statistical inference in

complex settings where analytical results may be difficult to obtain. In the context of non-

stationary processes, the bootstrap can be particularly useful for estimating the sampling

distribution of statistics of interest. Algorithm 1 outlines a novel bootstrap procedure specif-

ically designed for non-stationary time series data.

The key idea behind this new bootstrap is to divide the observed time series into con-

tiguous blocks of size m and then use data within these blocks to preserve the local structure

of dependence and variance of the original data.

To achieve this, Algorithm 1 first computes the block sums Bj =
∑jm

t=(j−1)m+1
Xt for

each block j = 1, 2, . . . , ⌊n/m⌋. These block sums serve as a measure of the local level of

the time series within each block. Next, for each time point i = 1, 2, . . . , n, the algorithm

computes the cumulative sum of squared block sums B2
j and the product of adjacent block

sums BjBj+1, up to the current block η = ⌊i/m⌋, plus an additional term R for the remaining

observations within the current block. Here, B2
j captures the time-varying variance structure,

and BjBj+1 captures the local dependence structure. These cumulative sums, denoted by

Ti, capture the global non-stationarity of the time series.
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The bootstrap samples are then constructed by first sorting and ranking the Ti values

and then using these ranks to generate Gaussian processes with increments that match the

increments of the original Ti process. Specifically, the algorithm generates b independent

standard normal variables Z1, Z2, . . . , Zn and then constructs the bootstrap samples Ys =

(Ys,1, Ys,2, . . . , Ys,n) for s = 1, 2, . . . , b by setting Ys,1 = Ss,r1 and Ys,t = Ss,rt − Ss,rt−1 for

t = 2, . . . , n, where Ss,t is a cumulative sum process constructed from the Zt variables and

the increments of the sorted Ti process. Depending on whether the minimum value of the

sorted Ti process, H1, is negative or non-negative, the construction of the Ss,t process differs

slightly to ensure that it remains non-negative.

The resulting bootstrap samples Y1,Y2, . . . ,Yb can then be used to estimate the sam-

pling distribution of any statistic of interest, such as the mean, variance, or autocorrelation

function of the time series. By resampling blocks of the original data in a way that preserves

both the local dependence structure and the global non-stationarity, this new bootstrap pro-

cedure provides a flexible and robust approach to inference for non-stationary time series.
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Algorithm 1 Bootstrap for non-stationary process
Input: Observed data {Xi}ni=1; b, the size of Bootstrap; m, the block size.

for all j = 1, 2, · · · , ⌊n/m⌋ do

2: Bj ←
∑jm

t=(j−1)m+1
Xt

end for

4: for all i = 1, 2, · · · , n do

Update η ← ⌊i/m⌋
6: Update R←

∑i
t=ηm+1Xt; R← 0 if i = ηm

Update (C1, · · · , Cη, Cη+1)← (B1, · · · , Bη, R)

8: Store Ti ←
∑η+1

t=1 C2
t + 2

∑η
t=1CtCt+1

end for

10: Store (H1, · · · , Hn)← sort (T1, · · · , Tn)
Store (r1, · · · , rn)← rank (T1, · · · , Tn)

12: if H1 < 0 then

Store w ← max{t : Ht < 0}.
14: for all s = 1, 2, · · · , b do

Generate Z1, Z2, · · · , Zn i.i.d. standard normal.
16: Update Ss,w ←

√
−HwZw, Ss,t ← Ss,t+1 +

√
Ht+1 −HtZt, t = 1, · · · , w − 1.

Update Ss,w+1 ←
√

Hw+1Zw+1, Ss,t ← Ss,t−1+
√

Ht −Ht−1Zt, t = w+2, · · · , n.

18: Update Ys,1 ← Ss,r1 , Ys,t ← Ss,rt − Ss,rt−1 , t = 2, · · · , n.
Store Ys ← (Ys,1, Ys,2, · · · , Ys,n)

20: end for

else

22: for all s = 1, 2, · · · , b do

Generate Z1, Z2, · · · , Zn i.i.d. standard normal.
24: Update Ss,1 ←

√
H1Z1, Ss,t ← Ss,t−1 +

√
Ht −Ht−1Zt, t = 2, · · · , n.

Update Ys,1 ← Ss,r1 , Ys,t ← Ss,rt − Ss,rt−1 , t = 2, · · · , n.
26: Store Ys ← (Ys,1, Ys,2, · · · , Ys,n)

end for

28: end if

Output: Output the data frame (Y1,Y2, · · · ,Yb) .
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4.2.3 Testing Based on Local Linear Fit

We propose a novel testing procedure for detecting break points in the mean of a non-

stationary time series, as outlined in Algorithm 2. This procedure is based on fitting local

linear models to the data within a sliding window, and comparing the fitted values at the

center of the window on either side of each potential change point.

Specifically, for each time point j ∈ {k+1, . . . , n− k}, where k is the window size and n

is the total number of observations, we fit two linear models to the data within the windows

{(j − i,Xi) : i = j − k+1, . . . , j} and {(i− j,Xi) : i = j, . . . , j + k− 1}, respectively. These

models take the form Xi = β0 + β1(j − i) for the left window and Xi = β0 + β1(i − j) for

the right window, where β0 and β1 are the intercept and slope parameters to be estimated.

We denote the fitted intercepts from these models by β̂j,l and β̂j,r, respectively.

The test statistic Sj is then defined as the absolute difference between these fitted inter-

cepts, i.e., Sj = |β̂j,l − β̂j,r|. Intuitively, if there is a break point in the mean of the time

series at time j, we would expect the fitted intercepts from the left and right windows to

differ significantly, resulting in a large value of Sj .

To assess the significance of the observed test statistic, we employ a bootstrap procedure

to approximate its distribution under the null hypothesis of no change point. This procedure,

detailed in Algorithm 1, involves first estimating the residuals r̂i = Xi−µ̂i from the observed

data, where µ̂i are the fitted signals. These residuals are then resampled using our introduced

bootstrap approach to generate b bootstrap samples Ws = (Ws,1,Ws,2, . . . ,Ws,n), s =

1, 2, . . . , b.

For each bootstrap sample, we apply the same local linear fitting procedure as described

above to compute the test statistic Tj at each time point j. The maximum value of Tj across

all time points is then recorded as Ds for the s-th bootstrap sample. Finally, the p-value

for the observed test statistic is estimated as p̂ = 1
b+1(1 +

∑b
s=1 1{maxj Sj > Ds}), which

represents the proportion of bootstrap samples for which the maximum test statistic exceeds
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the observed maximum test statistic.

This testing procedure based on local linear fits is particularly well-suited for detecting

break points in the mean of a time series, as it is able to capture local trends in the data

while being robust to non-stationarity and temporal dependence in the noise process. The

use of a bootstrap procedure to estimate the p-value further enhances the flexibility and

applicability of this approach in a wide range of settings.
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Algorithm 2 Testing for the change point of means.
Input: Sequential data (Xi)

n
i=1; Window size k; Size of Bootstrap sample b; Block size in

Bootstrap, m.
1: for j ∈ {k + 1, · · · , n− k} do

2: With data
{(

(j − i), Xi
)
: i = j − k + 1, · · · , j

}
as input, we fit a linear model:

Xi = β0 + β1(j − i).
3: β̂j,l ← β̂0.
4: With data

{(
(i − j), Xi

)
: i = j, · · · , j + k − 1

}
as input, we fit a linear model:

Xi = β0 + β1(i− j).
5: β̂j,r ← β̂0.
6: Sj ← |β̂j,l − β̂j,r|.
7: end for

8: Let {µ̂i}ni=1 be the fitted signals from the observed data.
9: for all i = 1, 2, · · · , n do

10: r̂i ← Xi − µ̂i

11: end for

12: for s ∈ {1, 2, · · · , b} do

13: Apply Algorithm 1 with {r̂i} and m as input to generate Bootstrap sample Ws =

(Ws,1,Ws,2, · · · ,Ws,n).
14: With data

{(
(j − i),Ws,i

)
: i = j − k + 1, · · · , j

}
as input, we fit a linear model:

Ws,i = γ0 + γ1(j − i).
15: γ̂j,l ← γ̂0.
16: With data

{(
(i − j),Ws,i

)
: i = j, · · · , j + k − 1

}
as input, we fit a linear model:

Ws,i = γ0 + γ1(i− j).
17: γ̂j,r ← γ̂0.
18: Tj ← |γ̂j,l − γ̂j,r|.
19: Ds ← maxk+1≤j≤n−k Tj
20: end for

21: p̂← 1
b+1(1 +

∑b
s=1 1{maxj Sj > Ds})

Output: Estimated p value p̂.
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4.3 Theory

4.3.1 Assumptions on the Non-stationary Noise Processes

In this section, we introduce a framework for modeling non-stationary noise processes and

establish the necessary assumptions for our change point analysis methodology. We consider

the non-stationary process (Zt)t∈Z as the output of a physical system, represented by the

following equation:

Zt = gt (· · · , εt−1, εt) (4.3.4)

where (εt)t∈Z are i.i.d. inputs to the system and (gt)t∈Z is a set of R-valued measurable

functions. This representation allows for a flexible and general description of non-stationary

processes, where the dependence structure and the functional form of the process can vary

over time.

To quantify the dependence structure of the non-stationary process, we introduce the

uniform functional dependence measure. Given a time lag k ∈ Z, this measure assesses

the sensitivity of the system’s output Zi to changes in the input information at time i− k.

Specifically, we define:

δp(k) := sup
i

(
E
∣∣Zi − Zi,i−k

∣∣p)1/p , where Zi,i−k = gi
(
· · · , εi−k−1, ε′i−k, εi−k+1, · · · , εi

)
(4.3.5)

where Zi,i−k is a coupled version of Zi, obtained by replacing the input εi−k with an i.i.d.

copy ε′i−k. The term
(
E
∣∣Zi − Zi,i−k

∣∣p)1/p captures the dependence of Zi on εi−k. Since Zi is

a non-stationary process, the physical mechanism gi is allowed to vary over time. Therefore,

we define the functional dependence measure uniformly by taking the supremum over all i.

To express our dependence condition, we introduce the quantity:

Θi,p =
∞∑
k=i

δp(k), i ≥ 0. (4.3.6)
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This quantity summarizes the cumulative dependence of the non-stationary process on

its past inputs, starting from a given time lag i. The rate at which Θi,p decays as i increases

will play a crucial role in determining the theoretical properties of our change point analysis

methodology.

By modeling non-stationary noise processes through the lens of a physical system with

time-varying functional mechanisms and quantifying the dependence structure using the

uniform functional dependence measure, we establish a flexible and comprehensive framework

for analyzing change points in the presence of non-stationarity. The assumptions outlined

in this section provide the foundation for the theoretical developments presented in the

subsequent sections of this chapter.

4.3.2 Main Theorem

Before presenting the main theorem, we introduce two essential conditions that are necessary

for the theorem to hold. These conditions ensure that the dependence structure and moment

properties of the underlying non-stationary noise sequence {Zi} are well-behaved.

Condition 4.3.1. Consider a sequence {Zi} where each Zi is expressed as in (4.3.4). As-

sume that the p-norm of Zi, denoted as ∥Zi∥p, is uniformly bounded by a finite value for all

i within 1 ≤ i ≤ n and for some p > 2. Further, suppose there exist constants A > 1 and

C > 0 such that for all i ≥ 0, the following inequality holds:

Θi,p =
∞∑
k=i

δp(k) ≤ C(i+ 1)−A. (4.3.7)

This condition ensures that the dependence between the elements of the sequence {Zi}

decays sufficiently fast as the distance between the indices increases. The parameter A

controls the rate of decay, with larger values of A implying weaker dependence.

Condition 4.3.2. Consider the series (|Zi|p). It is required to satisfy the truncated uniform
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integrability condition, which can be stated as follows: For any fixed a > 0, the supremum of

the expected value of |Zi|p conditioned on |Zi|p ≥ an, across all 1 ≤ i ≤ n, tends to zero as

n→∞. Formally,

sup
1≤i≤n

E
(
|Zi|p 1{|Zi|p≥an}

)
→ 0 as n→∞. (4.3.8)

This condition ensures that the moments of the noise sequence {Zi} are well-behaved

and do not exhibit any extreme behavior. It is a form of uniform integrability condition that

is commonly used in the study of dependent sequences.

Now we can introduce our main theorem. Let Yn,kn(i) := β̂i,l − β̂i,r, as in Algorithm 2.

Define the function αn,kn(i, j) as follows:

αn,kn(i, j) :=



(∑kn−1
h=1 h2

)
−
(∑kn−1

h=1 h
)
·(j−i)

kn

(∑kn−1
h=1 h2

)
−
(∑kn−1

h=1 h
)2 for j ∈ (i, i+ kn − 1],

0 for j ∈ {i} ∪ (0, i− kn + 1) ∪ (i+ kn − 1, n],(∑kn−1
h=1 h

)
·(i−j)−

(∑kn−1
h=1 h2

)
kn

(∑kn−1
h=1 h2

)
−
(∑kn−1

h=1 h
)2 for j ∈ [i− kn + 1, i).

(4.3.9)

We also introduce the following notations:
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Ba :=
am∧n∑

i=(a−1)m+1

Zi, (4.3.10)

(4.3.11)

Tj :=

⌊j/m⌋∑
a=1

B2
a + 2

⌊j/m⌋−1∑
a=1

BaBa+1, (4.3.12)

(4.3.13)

Rj := I{j/m /∈ N} ·
j∑

i=⌊j/m⌋m+1

Zi. (4.3.14)

Using these notations, we have Sj =
∑j

i=1 Zi =
∑⌊j/m⌋

a=1 Ba +Rj , and we define

Tj := T⌊j/m⌋ +R2
j + 2B⌊j/m⌋Rj . (4.3.15)

Further, let

Ŷn,kn(i) :=
n∑

j=1

αn,kn(i, j)
{
B(Tj)− B(Tj−1)

}
, (4.3.16)

where B(·) is standard Brownian motion.

Theorem 4.3.1. Consider the mean function µ(·) as specified in (4.2.1), where µ ∈ L[0, 1].

Assume that for the sequence (Zt)t≥1, Condition 4.3.1 holds with

A > A0 = A0(p) := max

{
p2 − p− 2 + (p− 2)

√
p2 + 10p+ 1

4p
, 1

}
. (4.3.17)

Also, assume Condition 4.3.2. After taking kn = n(1+r1)/3(log n)1/6, we then have

max
i≤n
|Yn,kn(i)− Ŷn,kn(i)| = OP

(
n

2r1−1
3 (log n)1/3

)
, (4.3.18)
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where r1 = max
{

1+A
2(1+2A)

,
1+4A/p
2(1+2A)

}
.

The rate of convergence in this theorem is given by n
2r1−1

3 (log n)1/3, which depends on

the parameters A and p through r1. The condition on A ensures that the dependence in the

noise sequence {Zi} is not too strong.

Theorem 4.3.1 establishes the asymptotic equivalence between the difference of the local

linear estimates Yn,kn(i) := β̂i,l − β̂i,r and its Bootstrap approximation Ŷn,kn(i) under the

null hypothesis (4.2.2). This equivalence is crucial as maxi |Yn,kn(i)|, the maximum absolute

difference, serves as the test statistic in Algorithm 2. Consequently, the theorem validates

the Bootstrap procedure employed in Algorithm 2 for approximating the distribution of the

test statistic under the null hypothesis.

The detailed proof of this theorem is provided in Section 4.5.1.
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4.4 Monte Carlo Studies

4.4.1 Models Considered

We examine the finite sample performance of the testing procedure discussed in Section 4.2.3.

The data for our experiments are generated based on the signal plus noise model as defined

in (4.2.1). This model allows us to assess the effectiveness of the proposed testing procedure

in detecting changes in the trend of a non-stationary time series.

For the noise component, we consider a causal non-stationary process as follows:

Let wt = sin
(
4πt
n

)
, and let Zt = θtZt−1 + εt where θt = θwt and Z0 = 0. In this

causal process, the non-stationarity is evident as the variance of (Zt) varies with respect to

time t. The time-varying coefficient θt introduces a periodic structure in the dependence

of the noise process, which is a common feature in many real-world applications, such as

seasonal or cyclical patterns in economic or environmental data. The parameter θ deter-

mines the strength of the temporal dependence, with larger values of |θ| indicating stronger

dependence. The innovations εt are assumed to be independent and identically distributed

random variables with zero mean and finite variance.

For the signal component µt, we consider two scenarios:

(i) Under the null hypothesis H0, as defined in (4.2.2), the signal function is continuous

and is given by

µt = sin(
2πt

n
) for t = 1, 2, . . . , n. (4.4.19)

(ii) Under the alternative hypothesis H1, as defined in (4.2.3), the signal is generated

according to
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µt =


sin(2πtn ) + s for t = 1, 2, . . . , τ − 1

sin(2πtn )− s for t = τ, τ + 1, . . . , n,

(4.4.20)

where the parameter s governs the magnitude of the discontinuity in the signal function.

The choice of the signal function under the null hypothesis, as given in (4.4.19), represents

a smooth, non-linear trend in the time series. The sinusoidal form captures a periodic pattern

with a single cycle over the entire time range. The scaling factor 2π
n ensures that the period

of the signal is equal to the sample size n.

Under the alternative hypothesis, the signal function in (4.4.20) introduces a change point

at time τ , where the trend of the time series experiences an abrupt shift. The magnitude

of the shift is determined by the parameter s, with larger values of s corresponding to more

pronounced changes in the trend. The sinusoidal components on either side of the change

point have the same frequency as the null hypothesis, with a period of n.

Figure 4.1 showcases an example of the data series (Xi) with sample size n = 500 under

the alternative hypothesis H1, featuring a distinct discontinuity at τ = 250. The signal

function µt transitions abruptly, causing a shift in magnitude of 2s = 1.0, where s = 0.5.

The noise process is rendered non-stationary and temporally dependent by setting θ = 0.5.

It is important to note that the signal is generated only once and this identical signal is

utilized across all replications. This approach ensures that the performance of the testing

procedure is evaluated under a fixed signal structure, eliminating any variability that may

arise from generating different signals for each replication. However, each replication involves

adding a distinct realization of the noise process to the signal. This allows us to assess the

robustness of the testing procedure to different noise scenarios and to obtain a reliable

estimate of its performance metrics, such as size and power, under the specified signal plus

noise model.

By considering these specific models for the noise and signal components, we aim to
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Figure 4.1: Visualization of (Xt) for n = 500, marking a change point at τ = 250, with a signal
decrease of magnitude 2s = 1.0, and dependence parameter θ = 0.5.

provide a comprehensive evaluation of the proposed testing procedure in detecting changes

in the trend of a non-stationary time series. The causal noise process with time-varying

coefficients and the sinusoidal signal functions offer a challenging and realistic setting to

assess the effectiveness of the procedure in practical applications.
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4.4.2 Synthetic Data under the Null Hypothesis

In this section, we investigate the finite-sample behavior of the testing procedure described in

Section 4.2.3 under the null hypothesis. To assess the size of the test, we generate synthetic

data according to the model detailed in Section 4.4.1, assuming a continuous signal function

as defined in (4.4.19).

We conduct a series of experiments by varying the sample size n and the dependence

parameter θ. The sample size n is selected from the set 50, 100, 300, 500, 2000, covering

a wide range of scenarios from small to large sample sizes. This allows us to examine the

convergence of the empirical size to the nominal significance level as the sample size increases.

The dependence parameter θ is varied across a range of values, including −0.8, −0.4, 0

(indicating independence), 0.4, and 0.8. By considering both negative and positive values of

θ, we can assess the performance of the testing procedure under different levels of temporal

dependence in the noise process.

Throughout the experiments, we maintain a constant significance level of α = 0.05,

which is a commonly used value in hypothesis testing. The empirical sizes, defined as the

proportion of simulations in which the null hypothesis is rejected, are computed based on

100,000 simulations for each combination of sample size and dependence parameter. This

large number of simulations ensures that the empirical sizes are estimated with a high level

of precision.

The results of the experiments are summarized in Table 4.1. The table presents the rejec-

tion ratios, which are the empirical sizes expressed as decimal values, for each combination

of sample size n and dependence parameter θ.

Analyzing the results in Table 4.1, we observe several important patterns. Firstly, for a

fixed value of θ, the rejection ratios tend to approach the nominal significance level of 0.05

as the sample size n increases. This convergence is evident across all values of θ, indicating

that the testing procedure maintains the correct size asymptotically, regardless of the level
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Table 4.1: Rejection ratios for change point testing procedure under the null hypothesis; cf. (4.2.2).

n θ = −0.8 θ = −0.4 θ = 0 θ = 0.4 θ = 0.8

50 0.0182 0.0349 0.0424 0.0399 0.0214
100 0.0261 0.0397 0.0437 0.0430 0.0278
300 0.0352 0.0432 0.0459 0.0447 0.0366
500 0.0374 0.0443 0.0470 0.0461 0.0380
2000 0.0436 0.0473 0.0488 0.0479 0.0445

of temporal dependence in the noise process.

Secondly, for a given sample size n, the rejection ratios are generally closer to the nominal

level when the dependence parameter θ is closer to zero. This observation suggests that the

testing procedure performs better in terms of size control when the temporal dependence

is weaker. However, it is important to note that even for strong levels of dependence (e.g.,

θ = −0.8 or 0.8), the rejection ratios still converge to the nominal level as the sample size

increases.

In conclusion, the simulation results presented in Table 4.1 provide strong evidence that

the proposed testing procedure achieves the correct size asymptotically under the null hy-

pothesis, even in the presence of temporal dependence in the noise process. The convergence

of the empirical sizes to the nominal significance level as the sample size increases supports

the theoretical properties of the procedure. However, the finite-sample performance may be

influenced by the level of temporal dependence, emphasizing the importance of considering

the dependence structure when applying the procedure in practice. Overall, these findings

contribute to the validation of the proposed testing procedure and its robustness to different

data generating scenarios under the null hypothesis.

4.4.3 Synthetic Data under Alternative Hypotheses

This section provides an analysis of our testing procedure’s power using synthetic data. We

adopt the data structure described in Section 4.4.1, with the signal defined as per (4.4.20)

(i.e., H1).
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Our experimental setup is as follows: We vary the sample size n, choosing from the values

50, 100, 300, 500, 2000. This range allows us to examine the power of the test under different

sample sizes, from small to large. The dependence parameter θ is selected from the values

−0.8, −0.4, 0 (representing independence), 0.4, and 0.8. These values cover a wide range of

dependence structures, from independence to strong dependence. The shift parameter s is

selected from {0, 0.004, 0.01, 0.04, 0.06}, representing different magnitudes of the change in

the signal.

It is important to note that the standard deviation of the innovation in the dependent

process is fixed at 1.0. We standardize the ratios τ/n = 0.5, which means that the change

point occurs at the midpoint of the sample. For our testing methods, we consistently set the

significance level at α = 0.05. Once the parameters for an experiment are established, we

generate the trend (µi) using the aforementioned methodology. Subsequently, the additive

noise process is simulated repeatedly, and this data is input into our testing algorithm.

The results are derived from 100,000 independent simulations, ensuring the reliability and

robustness of our findings.

Figure 4.2 presents the rejection ratios (power) of our testing procedure under various

combinations of sample size n, dependence parameter θ, and shift parameter s. Each subplot

corresponds to a specific sample size n, and within each subplot, the rejection ratios are

plotted against the shift parameter s for different values of θ.

Analyzing the power plot, we can make several important observations. Firstly, the rejec-

tion ratios increase as the shift parameter s increases, indicating that our testing procedure

is more powerful in detecting larger changes in the signal. This behavior is consistent across

all sample sizes and dependence structures. Secondly, for a fixed shift parameter s, the re-

jection ratios are generally higher for larger sample sizes n. This observation suggests that

our testing procedure benefits from increased sample size, as it gains more power to detect

changes in the signal.
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Furthermore, the impact of the dependence parameter θ on the power of the test varies

depending on the sample size and the magnitude of the shift. For smaller sample sizes (e.g.,

n = 50, 100), the power tends to be lower for strongly dependent cases (θ = −0.8, 0.8)

compared to the independent case (θ = 0). However, as the sample size increases (e.g.,

n = 300, 500, 2000), the power becomes more robust to the dependence structure, and the

differences between the rejection ratios for different values of θ diminish.

Lastly, for large sample sizes (e.g., n = 2000) and moderate to large shift parameters

(s ≥ 0.04), the rejection ratios approach 1, indicating that our testing procedure has excellent

power in detecting changes in the signal under these conditions.

In conclusion, the power analysis conducted using synthetic data under the alternative

hypothesis demonstrates the effectiveness of our testing procedure in detecting changes in

the signal. The power of the test increases with the magnitude of the shift and the sample

size, while being robust to different dependence structures, especially for larger sample sizes.

These findings provide strong evidence for the practical applicability of our testing procedure

in real-world scenarios, where the goal is to identify significant changes in the trend of time

series data with non-stationary noises.
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Figure 4.2: Rejection ratios for change point testing procedure under the alternative hypoth-
esis; cf. (4.2.3). The noise process is shaped by the dependence parameter θ. We adjust the
gap parameter s over the set {0, 0.004, 0.01, 0.04, 0.06}, n over {50, 100, 300, 500, 2000}, and θ over
{−0.8,−0.4, 0, 0.4, 0.8}. Each data point represents 100,000 replications.
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4.5 Proofs

4.5.1 Proof for Theorem 4.3.1

With a chosen window size kn in Algorithm 2, the following equations are derived:

β̂i,r =
1

kn

(∑kn−1
h=1 h2

)
−
(∑kn−1

h=1 h
)2 i+kn−1∑

j=i

kn−1∑
h=1

h2 − (j − i)

kn−1∑
h=1

h

Xj , (4.5.21)

β̂i,l =
1

kn

(∑kn−1
h=1 h2

)
−
(∑kn−1

h=1 h
)2 i∑

j=i−kn+1

kn−1∑
h=1

h2 − (i− j)

kn−1∑
h=1

h

Xj . (4.5.22)

These equations represent the fitted intercepts from the local linear models on the right

and left sides of time point i, respectively. The coefficients in these equations are determined

by the window size kn and the position of the observations within the window.

Then, it follows that

Yn,kn(i) = |β̂i,l − β̂i,r| =
n∑

j=1

αn,kn(i, j)(µj + Zj) =
n∑

j=1

αn,kn(i, j)µj +
n∑

j=1

αn,kn(i, j)Zj ,

(4.5.23)

which expresses the test statistic Yn,kn(i) as a weighted sum of the true signal µj and the

noise terms Zj , where the weights are determined by the function αn,kn(i, j).

Define

Ln,kn(i) := |αn,kn(i, 1)|+
n∑

j=2

|αn,kn(i, j)− αn,kn(i, j − 1)|, (4.5.24)

which represents the total variation of the weight function αn,kn(i, j) with respect to j for

a fixed time point i. It measures the smoothness of the weight function and plays a crucial
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role in controlling the approximation error.

By substituting the expression for αn,kn(i, j) and taking the maximum over i, we obtain

Ln,kn := max
i⩽n

Ln,kn(i) = M max
i

|αn,kn(i, 1)|+
n∑

j=2

|αn,kn(i, j)− αn,kn(i, j − 1)|


(4.5.25)

≤M
2kn

∑kn−1
h=1 h+ 2

∑kn−1
h=1 h2

kn

(∑kn−1
h=1 h2

)
−
(∑kn−1

h=1 h
)2 = O

(
1

kn

)
. (4.5.26)

This inequality provides an upper bound for the maximum total variation of the weight

function αn,kn(i, j) over all time points i. The bound is of the order O
(

1
kn

)
, which suggests

that the smoothness of the weight function improves as the window size kn increases.

Applying Corollary 3.1. in Bonnerjee et al. [2024] under Conditions 4.3.1 and 4.3.2, we

get

max
i⩽n

∣∣∣∣∣∣
i∑

j=1

Zj − B(Ti)

∣∣∣∣∣∣ = OP
(
nr1
√

log n
)
, (4.5.27)

where

r1 = max

{
1 + A

2(1 + 2A)
,
1 + 4A/p

2(1 + 2A)

}
. (4.5.28)

This result establishes the approximation of the partial sum process of the noise terms

Zj by a Brownian motion B(Ti) evaluated at the time points Ti. The rate of approximation

is given by nr1
√
log n, where r1 depends on the parameters A and p from Conditions 4.3.1

and 4.3.2.

Then, using the triangle inequality, we have
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|Yn,kn(i)− Ŷn,kn(i)| ≤

∣∣∣∣∣∣
n∑

j=1

αn,kn(i, j)µj

∣∣∣∣∣∣+
∣∣∣∣∣∣
n∑

j=1

αn,kn(i, j)
(
Zj −

{
B(Tj)− B(Tj−1)

})∣∣∣∣∣∣
≤ (I) + (II)

(4.5.29)

where

(I) =

∣∣∣∣∣∣
n∑

j=1

αn,kn(i, j)µj

∣∣∣∣∣∣ ≤ O

(
k2n
n

)
(4.5.30)

uniformly over i = kn, kn + 1, · · · , n− kn, because µ ∈ L[0, 1], and

(II) =

∣∣∣∣∣∣
n∑

j=1

αn,kn(i, j)
(
Zj −

{
B(Tj)− B(Tj−1)

})∣∣∣∣∣∣

≤ Ln,kn(i)max
i≤n

∣∣∣∣∣∣
i∑

j=1

Zj − B(Ti)

∣∣∣∣∣∣ = OP

(
nr1
√
log n

kn

)
.

(4.5.31)

The terms (I) and (II) represent the approximation errors due to the signal and noise

components, respectively. The term (I) is uniformly bounded by O
(
k2n
n

)
because the signal

µ is assumed to be in the function space L[0, 1]. The term (II) is controlled by the product

of the total variation of the weight function Ln,kn(i) and the maximum approximation error

between the partial sum process of the noise terms and the Brownian motion. The rate of

convergence for (II) is OP
(
nr1
√
log n

kn

)
.

To balance (I) and (II), we take kn = n(1+r1)/3(log n)1/6. It follows that
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max
1≤i≤n

|Yn,kn(i)− Ŷn,kn(i)| = OP

(
n

2r1−1
3 (log n)1/3

)
. (4.5.32)

This choice of the window size kn ensures that the approximation errors from the signal

and noise components are of the same order, leading to the optimal rate of convergence

n
2r1−1

3 (log n)1/3 for the maximum difference between the test statistic Yn,kn(i) and its Boot-

strap approximation Ŷn,kn(i).
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CHAPTER 5

MULTIVARIATE CHANGE POINT ANALYSIS UNDER

NON-STATIONARY NOISE

5.1 Introduction

In Chapter 4, we introduced a non-parametric framework for testing change points in the

mean function of time series with temporally dependent and non-stationary noise. This

chapter aims to extend this framework to inference for change points in signals from data

with multivariate non-stationary noise. The motivation for this extension stems from the in-

creasing prevalence of applications dealing with multivariate or high-dimensional time series

with non-stationary noise. Recent works have addressed change point detection for such data

in various areas. Heo and Manuel [2022] develop the Greedy Copula Segmentation (GCS)

algorithm for processing multivariate non-stationary climate data, demonstrating its poten-

tial for climate change adaptation and disaster risk reduction. Banerjee and Guhathakurta

[2020] utilize sequential change-point detection in dynamic networks to analyze multivari-

ate and non-stationary data from 13 global stock markets, detecting pre-crash changes and

showcasing the method’s potential as an early warning system for critical financial market

regimes. Kirch et al. [2015] apply change point detection techniques to identify complex

brain processes in multivariate non-stationary electroencephalograms during cognitive mo-

tor tasks. Schröder and Ombao [2018] focus on analyzing multivariate and non-stationary

electroencephalogram data, identifying early disruptions and the progression of epileptic

seizures across different brain regions.

As mentioned in Section 4.1, there is an extensive body of literature focusing on analyzing

non-stationary time series data under parametric settings. However, literature addressing

multivariate non-stationary time series data from a non-parametric perspective is relatively

sparse. This scarcity is due to the complex nature of such data, with multivariate non-
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stationary noise making the development of non-parametric statistical inference methods

with valid theoretical foundations and good empirical performance extremely challenging.

Sundararajan and Pourahmadi [2018] develop a non-parametric method for detecting multi-

ple change points in multivariate non-stationary processes using a test statistic that measures

differences in spectral density matrices. Park et al. [2023] introduce a two-step procedure

that detects and estimates structural changes in multivariate non-stationary time series by

initially assessing mean changes via a cumulative sum statistic and, if absent, examining

second-order changes using a multivariate locally stationary wavelet process. Aue et al. [2009]

introduce a non-parametric asymptotic test procedure for assessing the stability of volatil-

ities and cross-volatilities in multivariate non-stationary time series models. Preuss et al.

[2015] introduce MuBreD, a non-parametric method for detecting and estimating multiple

structural breaks in the auto-covariance function of multivariate non-stationary processes.

Similar to our framework for uni-variate inference of change points in signals with non-

stationary noise in Chapter 4, the multivariate inference methodology in this chapter allows

for a time-varying signal after the change point, unlike the aforementioned literature that

usually assumes a constant level after the change point. This setting significantly increases

the complexity of our task, as the volatility of the data can originate from both the signal

and multivariate noise components. Consequently, developing a reliable testing procedure

becomes highly challenging, as it is difficult to obtain a good approximation for the distri-

bution of the test statistic under the null hypothesis. We endeavor to tackle this issue by

employing a bootstrap procedure proposed by Mies and Steland [2023]. However, as demon-

strated in our Monte Carlo studies in Section 5.4.2, although our testing procedure exhibits

good type-one error control when the sample size is sufficiently large (≥ 2000) and the di-

mensionality is relatively low (≤ 5), we encounter over-liberal issues when the sample size is

small and the dimensionality is high. This can be attributed to the suboptimal finite-sample

performance of the bootstrap procedure utilized in our algorithm.
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Given that this work constitutes the initial endeavor to address this problem, we antici-

pate that future research efforts may yield further enhancements, potentially improving the

performance of the testing procedure for small sample cases. One promising direction is the

development of a bootstrap procedure that more effectively captures the intricate temporal

dependence and non-stationarity in a multivariate setting. For instance, Bonnerjee et al.

[2024] achieved a significant breakthrough in the uni-variate setting, and we posit that this

work can be extended to a multivariate or even high-dimensional context, potentially leading

to substantial improvements in the performance of our testing procedure for smaller sample

sizes and higher dimensions.

The remainder of this chapter is structured as follows: Section 5.2 presents our method-

ology for testing change points in signals with multivariate non-stationary noise processes.

In Section 5.3, we establish the theoretical foundations of our approach, demonstrating that

the distribution of our test statistic can be approximated via the introduced bootstrap mech-

anism under the null hypothesis. The empirical efficacy of our method is assessed through

simulations in Section 5.4. Comprehensive proofs of the theoretical results are provided in

Section 5.5.
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5.2 Methodology

5.2.1 Data Model and Problem Formulation

We consider a d-dimensional sequential noisy model given by

Xt = ν(t/n) + Zt, t = 1, 2, . . . , n, (5.2.1)

where ν(·) denotes the mean function defined on Rd, and the sequence (Zt)t represents

a d-dimensional non-stationary process with a mean of 0. This model provides a flexible

framework for analyzing multivariate time series data with potential non-stationarity in

both the mean function and the noise component.

The primary objective is to develop a testing procedure to discern between the following

hypotheses:

• Null Hypothesis (H0):

H0 : ν(·) is continuous across [0, 1], (5.2.2)

• Alternative Hypothesis (H1):

H1 : There exists t0 ∈ [0, 1] at which ν(·) is discontinuous. (5.2.3)

The null hypothesis H0 assumes that the mean function ν(·) is continuous throughout

the interval [0, 1], while the alternative hypothesis H1 posits the existence of a change point

t0 at which ν(·) exhibits a discontinuity.
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The test statistic we employ to distinguish between these hypotheses is:

Sn,k(X1, . . . ,Xn) = max
i=k,...,n−k

∥∥∥∥∥∥
i∑

j=i−k+1

Xj −
i+k∑

j=i+1

Xj

∥∥∥∥∥∥ , (5.2.4)

where k is a window size parameter. This test statistic compares the sum of observations

within two adjacent windows of size k and takes the maximum distance across all possible

window locations. The intuition behind this test statistic is that if there exists a change

point in the mean function, the distance between the sum of observations in the two adjacent

windows will be large in the vicinity of the change point. By considering all possible window

locations and taking the maximum distance, the test statistic aims to capture the most

significant change in the mean function.

The choice of the window size k is crucial for the performance of the test statistic. A

smaller window size allows for the detection of more localized changes but may be more

sensitive to noise, while a larger window size provides a more stable estimate of the mean

function but may miss smaller or more abrupt changes. In practice, the window size can

be chosen based on prior knowledge about the expected scale of the changes or through the

theoretical results provided in Theorem 5.3.1.

The null hypothesis H0 is rejected for large values of Sn,k, indicating the presence of a

significant break in the mean function. To calculate the p-values for the test, we need to

approximate the distribution of Sn,k(X1, . . . ,Xn) under the null hypothesis H0.

Unlike Chapter 3, where stationarity is assumed for the multivariate noise process, we

are unable to derive an asymptotic distribution for Sn,k(X1, . . . ,Xn), such as what we did

in Section 3.3.2, due to the non-parametric and non-stationary setting for the noise process.

To address this challenge, in Section 5.2.2, we introduce Algorithm 3, a bootstrap procedure

that works for multivariate temporally dependent non-stationary sequences. This procedure

enables us to approximate the distribution of Sn,k(X1, . . . ,Xn) under H0.
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Building upon Algorithm 3, we propose our complete testing procedure for change points,

as outlined in Algorithm 4 in Section 5.2.3. This procedure combines the multivariate non-

stationary bootstrap with the maximum-type test statistic Sn,k to detect change points in

the mean function of a multivariate time series with non-stationary noise.

5.2.2 Bootstrap for Multivariate Non-Stationary Processes

Algorithm 3 introduces a novel bootstrap procedure specifically designed for multivariate

non-stationary time series data.

In the multivariate setting, this new bootstrap aims to capture not only the local de-

pendence within each block and the global non-stationarity across the entire time series

but also the cross-sectional dependence between the different dimensions. This is achieved

by introducing a novel resampling scheme that accounts for the covariance structure of the

multivariate time series.

Unlike Algorithm 1, which is designed for uni-variate non-stationary time series, Algo-

rithm 3 operates on the multivariate time series {Xi}ni=1. It first computes the block sums

Bt =
∑t

i=t−m+1Xi for each block ending at time point t = m,m + 1, . . . , n. These block

sums capture the local level of the multivariate time series within each block.

Next, the algorithm computes the outer product of each block sum with itself, scaled

by the block size m, to obtain the matrices Ĉt = BtB
⊤
t /m. These matrices represent the

local covariance structure of the multivariate time series within each block. The Cholesky

decomposition of each Ĉt matrix is then computed to obtain the matrices D̂t = (Ĉt)
1/2.

These matrices capture the cross-sectional dependence between the different dimensions of

the time series within each block.

The bootstrap samples are constructed by generating b independent standard multivariate

normal random vectors Z1,Z2, . . . ,Zn, and then setting Ys,t = D̂tZt for t = m,m+1, . . . , n.

This construction ensures that the bootstrap samples have the same covariance structure as
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the original multivariate time series within each block.

The resulting bootstrap samples Y1,Y2, . . . ,Yb can be used to estimate the sampling

distribution of various statistics of interest in the multivariate setting, such as the mean

vector, covariance matrix, or test statistics for change point detection. By resampling blocks

of the original data in a way that preserves the local temporal dependence structure and

cross-sectional dependence, Algorithm 3 provides a robust and flexible approach to inference

in settings where the data exhibits complex non-stationarity structures across space and

time.

Algorithm 3 Bootstrap for multivariate Non-Stationary Process
Input: Observed data {Xi}ni=1; b, the number of Bootstrap samples; m, the block size.
1: for all t = m,m+ 1, . . . , n do

2: Compute Bt ←
∑t

i=t−m+1Xi

3: end for

4: for all t = m,m+ 1, . . . , n do

5: Compute Ĉt ← 1
mBtB

⊤
t

6: Compute D̂t ← (Ĉt)
1/2, where (·)1/2 denotes the Cholesky decomposition.

7: end for

8: for all s = 1, 2, . . . , b do

9: Generate Z1,Z2, . . . ,Zn i.i.d. N(0, Id).
10: Compute Ys,t ← D̂tZt, for t = m,m+ 1, . . . , n.
11: Store Ys ← (Ys,m,Ys,m+1, . . . ,Ys,n).
12: end for

Output: Output the tensor (Y1,Y2, . . . ,Yb).

5.2.3 Testing for Change Point of Mean Function for multivariate Data with

Non-Stationary Noise

In this section, we present a comprehensive testing procedure for detecting a change point

in the mean function of a multivariate time series with non-stationary noise. The proposed

methodology, outlined in Algorithm 4, combines the multivariate non-stationary bootstrap
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introduced in Section 5.2.2 with the maximum-type test statistic Sn,k defined in Section 5.2.1.

The testing procedure takes as input the sequential data (Xi)
n
i=1, the window size k, the

number of bootstrap samples b, and the block size m used in the bootstrap procedure. The

first step is to compute the test statistic T = Sn,k(X1, . . . ,Xn) using the observed data.

This test statistic captures the maximum distance between the sum of observations in two

adjacent windows of size k across all possible window locations, as discussed in Section 5.2.1.

To approximate the distribution of the test statistic under the null hypothesis H0, we

employ a residual-based bootstrap approach. First, we estimate the mean function {ν̂i}ni=1

from the observed data using an appropriate non-parametric regression technique, such as

local polynomial regression or spline regression. Then, we compute the residuals r̂i = Xi−ν̂i

for i = 1, 2, . . . , n, which represent the estimated noise component of the time series.

Next, we apply the multivariate bootstrap procedure (Algorithm 3) to the residuals

{r̂i}ni=1 to generate b bootstrap samples Ws = (Ws,1,Ws,2, . . . ,Ws,n) for s = 1, 2, . . . , b.

This procedure takes into account the complex dependence structure and non-stationarity

present in the noise process, as discussed in Section 5.2.2.

For each bootstrap sample Ws, we compute the corresponding test statistic Ds =

Sn,k(Ws,1,Ws,2, . . . ,Ws,n). This step provides an approximation of the distribution of

the test statistic under the null hypothesis, as the bootstrap samples are generated under

the assumption of no change point in the mean function.

Finally, we estimate the p-value of the test as p̂ = 1
b+1(1 +

∑b
s=1 1{T>Ds}), which

represents the proportion of bootstrap test statistics that exceed the observed test statistic.

The null hypothesis H0 is rejected if p̂ < α, where α is the desired significance level.

The choice of the window size k in the test statistic Sn,k and the block size m used in

the bootstrap procedure is crucial for the performance of the test. Theorem 5.3.1 provides

theoretical guidance on the optimal choice of k and m to ensure the validity of the test.
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Algorithm 4 Testing for Change Point of Covariance
Input: Sequential data (Xi)

n
i=1; Window size k; Number of Bootstrap samples b; Block size

in Bootstrap m.
1: Compute test statistic T ← Sn,k(X1, . . . ,Xn).
2: Compute {ν̂i}ni=1, the fitted signals from the observed data (Xi)

n
i=1.

3: for all i = 1, 2, . . . , n do

4: Compute residuals r̂i ← Xi − ν̂i

5: end for

6: for s = 1, 2, . . . , b do

7: Apply Algorithm 3 with inputs {r̂i}ni=1 and m to generate the Bootstrap sample
Ws = (Ws,1,Ws,2, . . . ,Ws,n).

8: Compute Ds ← Sn,k(Ws,1,Ws,2, . . . ,Ws,n)

9: end for

10: Calculate p̂← 1
b+1(1 +

∑b
s=1 1{T > Ds})

Output: Output estimated p-value p̂. Make a decision to reject H0 if p̂ < α.
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5.3 Theory

5.3.1 Assumptions on the Multivariate Non-stationary Noise Processes

In this section, we extend the framework for modeling non-stationary noise processes intro-

duced in Section 4.3.1 to the multivariate setting. We establish the necessary assumptions

for our change point analysis methodology in the context of multivariate non-stationary

processes. While the overall approach is similar to the one-dimensional case, there are key

differences that arise due to the increased complexity and interdependence of multivariate

data.

We consider the d-dimensional non-stationary process (Zt)t∈Z as the output of a physical

system described by:

Zt := Gt(· · · , εt−1, εt), (5.3.5)

where Gt, t = 1, 2, · · · , n, are measurable mappings in Rd. This representation extends

the one-dimensional model in (4.3.4) to the multivariate setting, allowing for a flexible and

general description of non-stationary processes, where the functional form of the process can

vary over time and across dimensions.

To quantify the dependence structure of the multivariate non-stationary process, we

introduce a functional dependence measure that takes into account the interdependence

among the dimensions. Given a time lag k ∈ Z and a norm parameter r, we define:

δp,r(i, k) :=
(
E∥Zi − Zi,{i−k}∥

p
r

)1/p
, where Zi,{i−k} = Gi(· · · , εi−k−1, ε′i−k, εi−k+1, · · · , εi)

(5.3.6)

This measure extends the uniform functional dependence measure in (4.3.5) to the mul-

tivariate setting by considering the Lr norm of the difference between the process and its

coupled version. The parameters p and r control the moment and norm used in the defini-
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tion, respectively. This additional flexibility allows for a more comprehensive assessment of

the dependence structure in multivariate processes.

To express our dependence condition, we introduce the cumulative dependence measure:

Θj,p,r =
∞∑
k=j

sup
i

δp,r(i, j), j ≥ 0, (5.3.7)

which aggregates the functional dependence measures across all time points and dimensions,

providing a comprehensive assessment of the overall dependence structure of the multivariate

non-stationary process. The rate at which Θj,p,r decays as j increases will play a crucial

role in determining the theoretical properties of our change point analysis methodology in

the multivariate setting.

A key difference between the multivariate and one-dimensional settings is the presence

of cross-sectional dependence among the dimensions. To capture this dependence, we in-

troduce the concept of local long-run covariance matrices (Σt)t∈Z for the d-dimensional

non-stationary process (Zt)t∈Z:

Σt :=
∞∑

h=−∞
Cov (Gt(· · · , ε−1, ε0),Gt(· · · , εh−1, εh)) (5.3.8)

These local long-run covariance matrices extend the concept of long-run covariance from

stationary processes to non-stationary processes, capturing the covariance structure of the

multivariate process at each time point t. The existence and well-definedness of these ma-

trices rely on the short-range dependence condition:

Θ0,p,2 <∞. (5.3.9)

This condition ensures that the cumulative dependence measure decays sufficiently fast,

allowing for the convergence of the series in (5.3.8).

By modeling multivariate non-stationary noise processes through the lens of a physi-
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cal system with time-varying functional mechanisms, quantifying the dependence structure

using the functional dependence measure, and introducing the concept of local long-run co-

variance matrices, we establish a comprehensive framework for analyzing change points in

the presence of multivariate non-stationarity. The assumptions outlined in this section pro-

vide the foundation for the theoretical developments presented in the subsequent sections of

this chapter.

5.3.2 Main Theorem

Before presenting the main theorem, we introduce two essential conditions that are necessary

for the theorem to hold.

Condition 5.3.1. Consider a d-dimensional non-stationary process (Zt)t∈Z where each Zi

is expressed as in (5.3.5). Assume that the p-norm of ∥Zi∥2, (E∥Zi∥
p
2)

1/p, is uniformly

bounded by a finite value ηn for all i within 1 ≤ i ≤ n and for some p > 2. Further, suppose

there exist constants A > 2 such that for all 1 ≤ i ≤ n, the following inequality holds:

δp,2(i, j) ≤ ηn · (j ∨ 1)−A, j ≥ 0. (5.3.10)

This condition imposes a moment bound on the non-stationary process (Zt)t∈Z and

requires the functional dependence measure δp,2(i, j) to decay at a polynomial rate with

respect to the time lag j. The parameter A controls the rate of decay, with larger values of

A indicating weaker dependence. The uniform bound ηn allows for the dependence structure

to vary with the sample size n.

To perform asymptotic inference in our non-stationary setting, we further need to impose

the following regularity condition on our physical system (Gt(·)):

Condition 5.3.2. Assume for some Dn ≥ 1,
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n∑
t=2

(
E ∥Gt (· · · , ε−1, ε0)−Gt−1 (· · · , ε−1, ε0)∥22

)1
2 ≤ ηn ·Dn. (5.3.11)

This condition requires the physical system (Gt(·)) to exhibit a certain level of stability

over time. It controls the cumulative differences between consecutive mappings Gt and

Gt−1, ensuring that the non-stationarity in the process is not too drastic. The parameter Dn

quantifies the degree of non-stationarity, with larger values of Dn indicating more pronounced

variations in the physical system over time.

Now let me present our main theorem. Recall the test statistic

Sn,k(X1, . . . ,Xn) = max
i=k,...,n−k

∥∥∥∥∥∥
i∑

j=i−k+1

Xj −
i+k∑

j=i+1

Xj

∥∥∥∥∥∥
from Section 5.2.1, where (Xi)

n
i=1 is the input data in Algorithm 4. Define

Un,kn(i) :=
1

kn

i∑
j=i−kn+1

Xj −
1

kn

i+kn∑
j=i+1

Xj , (5.3.12)

which represents the difference between the average of observations in two adjacent windows

of size kn. Then, we have Sn,kn(X1, . . . ,Xn) = knmaxi=kn,...,n−kn ∥Un,kn(i)∥.

Similarly, let

Ûn,kn(i) :=
1

kn

i∑
j=i−kn+1

Wj −
1

kn

i+kn∑
j=i+1

Wj , (5.3.13)

where (W1, · · · ,Wn) is a bootstrap sample generated by Algorithm 3 in the testing proce-

dure described in Algorithm 4.

Now we present our main theorem:

Theorem 5.3.1. Let (Xi)
n
i=1 be the input data of Algorithm 4, following the form given

in (5.2.1). We assume that the signal component ν(·) belongs to the function space L[0, 1].

For the noise component (Zt)
n
t=1, we assume that Conditions 5.3.1 and 5.3.2 hold for some
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p > 2, with parameters ηn > 0, A > 2, and Dn ≥ 1. Let the window size kn in Algorithm 4

be chosen as

kn = n
1
2 (log n)

1
2ηn

(
D

A−2
2(A−1)
n

(
d

n

)λ(p,A)

+D
1
4
nn

1
4m

1
8
n + n

3
8d

1
8m

1
8
n

+ n
1
2m
−1

4
n + n

1
2m

1
2−

A
4

n + 1

)
,

(5.3.14)

where mn ≍ nζ , ζ ∈ (0, 1) is the block size chosen in Algorithm 3, and

λ(p,A) =



p−2
6p−4 , A ≥ 3,

(A−2)(p−2)
(4A−6)p−4 ,

3p+2
p+2 < A < 3,

1
2 −

1
A , 2 < A ≤ 3p+2

p+2

(5.3.15)

Then, the following asymptotic equivalence holds:

max
i≤n
∥Un,kn(i)− Ûn,kn(i)∥ = OP

(
n−

1
2 (log n)

1
2ηn

(
D

A−2
2(A−1)
n

(
d

n

)λ(p,A)

+D
1
4
nn

1
4m

1
8
n + n

3
8d

1
8m

1
8
n + n

1
2m
−1

4
n + n

1
2m

1
2−

A
4

n + 1

))
.

(5.3.16)

This theorem establishes the asymptotic equivalence between the difference of averages

Un,kn(i) and its bootstrap counterpart Ûn,kn(i) under the null hypothesis H0. By the

relation Sn,kn(X1, . . . ,Xn) = knmaxi=kn,...,n−kn ∥Un,kn(i)∥, this asymptotic equivalence

result justifies the validity of the bootstrap procedure in Algorithm 4 for approximating the

distribution of the test statistic Sn,kn(X1, . . . ,Xn) under H0.

The rate of convergence in (5.3.16) depends on several factors, including the sample size

n, the dimension d, the moment order p, the dependence parameter A, the non-stationarity

parameter Dn, and the block size mn. The choice of the window size kn is crucial for
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achieving the optimal rate of convergence, and the theorem provides a specific choice of kn

that balances the various terms in the convergence rate.

The block size mn is chosen to be of the order nζ , where ζ ∈ (0, 1). The choice of ζ

affects the convergence rate through the terms involving mn. In practice, ζ can be chosen

based on the trade-off between capturing the dependence structure and the computational

complexity of the bootstrap procedure in Algorithm 3.

This theorem provides theoretical justification for the validity of the bootstrap-based

testing procedure in Algorithm 4 for detecting change points in the mean function of multi-

variate non-stationary time series. It also offers guidance on the choice of the window size

kn and the block size mn to achieve the optimal convergence rate.

The proof of this theorem is deferred to Section 5.5.1.
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5.4 Monte Carlo Studies

5.4.1 Models Considered

To comprehensively examine the finite sample performance of the testing procedure intro-

duced in Section 5.2.3, we conduct an extensive set of Monte Carlo experiments. The data

for these experiments are generated based on the signal plus noise model described in (5.2.1).

This model provides a flexible framework for assessing the capability of the proposed testing

procedure in detecting changes in the trend of a multivariate time series with non-stationary

noise components.

The noise component is modeled as a multivariate causal non-stationary process, con-

structed as follows:

Define w1,t = 0.5 × (−1)⌊2t/n⌋, t = 1, . . . , n, and let Zt = θtZt−1 + εt, with θt =

θw1,t and Z0 = 0. The innovations εt are drawn independently from a d-dimensional Gaus-

sian distribution with mean 0 and a covariance matrix with diagonal elements equal to 1

and off-diagonal elements equal to 0.5.

The sequence w1,t imposes a periodic structure on the temporal dependence of the noise

process, oscillating between 0.5 and -0.5 for each half of the time series. The strength of

the temporal dependence is controlled by the parameter θ, with higher absolute values of

θ signifying stronger dependence. The innovations εt are assumed to be independent and

identically distributed random vectors following a d-dimensional Gaussian distribution with

a specific covariance structure. The diagonal elements of the covariance matrix are set to 1,

indicating unit variance for each dimension, while the off-diagonal elements are set to 0.5,

introducing a moderate level of spatial correlation among the dimensions.

For the multivariate signal component νt, we consider two distinct scenarios:

The first scenario corresponds to the null hypothesis H0, as stated in (5.2.2). Under this
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hypothesis, the signal function is continuous and defined as:

νt,j = sin

(
2(−1)jπt

n

)
for t = 1, 2, . . . , n, j = 1, · · · , d (5.4.17)

This specification of the signal function represents a smooth, non-linear trend in each di-

mension of the time series. The sinusoidal form captures a periodic pattern with a single

cycle spanning the entire time range. The scaling factor 2π
n ensures that the signal’s period

matches the sample size n. The (−1)j term introduces alternating phases for odd and even

dimensions, generating a more diverse and realistic multivariate signal.

The second scenario corresponds to the alternative hypothesis H1, as described in (5.2.3).

Under this hypothesis, the signal is generated according to:

νt,j =


sin

(
2(−1)jπt

n

)
+ s for t = 1, 2, . . . , τ − 1, j = 1, · · · , d,

sin

(
2(−1)jπt

n

)
− s for t = τ, τ + 1, . . . , n, , j = 1, · · · , d.

(5.4.18)

Here, the parameter s determines the magnitude of the discontinuity in the signal function.

This formulation introduces a change point at time τ , where the trend of the time series

undergoes a sudden shift. The severity of the shift is governed by the parameter s, with

larger values of s indicating more substantial changes in the trend. The change point occurs

simultaneously across all dimensions, reflecting a global structural change in the multivariate

signal.

Figure 5.1 presents an illustrative example of a three-dimensional data series (Xi) with

sample size n = 1000 under the alternative hypothesis H1, exhibiting a prominent disconti-

nuity at τ = 500. The signal function νt undergoes an abrupt transition at the change point,

with a magnitude of s = 0.25. The noise process is characterized by non-stationarity and

temporal dependence, with the dependence parameter set to θ = 0.4. Due to the presence of

the multivariate non-stationary temporally dependent noise, visually detecting the change

149



Figure 5.1: Visualization of (Xt) for n = 1000, marking a change point at τ = 500, with a signal
gap magnitude s = 0.25, and dependence parameter θ = 0.4.

point becomes impossible for mortals.

By considering these specific models for the noise and signal components, we aim to

provide a thorough evaluation of the proposed testing procedure’s ability to detect changes in

the trend of a multivariate non-stationary time series. The multivariate causal noise process

with time-varying coefficients and the sinusoidal signal functions create a challenging and

realistic setting to assess the procedure’s effectiveness in practical applications. The Monte

Carlo simulations presented in the subsequent sections will shed light on the finite sample
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performance of the testing procedure under various parameter configurations and sample

sizes, offering valuable insights into its robustness and reliability in real-world scenarios.

5.4.2 Synthetic Data under the Null Hypothesis

In this section, we investigate the finite-sample behavior of the testing procedure described in

Section 5.2.3 under the null hypothesis. Synthetic data are generated according to the model

detailed in Section 5.4.1, with the assumption of a continuous signal function as defined in

(5.4.17).

A series of experiments are conducted by varying the sample size n, the dimension-

ality d, and the dependence parameter θ. The sample size n is selected from the set

{50, 100, 300, 500, 2000}, spanning a comprehensive range from small to large datasets. The

dimensionality d is chosen from {3, 5, 10}, exploring the performance of the test across low

to moderate dimensional settings. The dependence parameter θ ranges from −0.8, −0.4, 0

(indicating independence), to 0.4, and 0.8, enabling an evaluation of the influence of varying

degrees of temporal dependence in the noise process.

Throughout these experiments, a constant significance level of α = 0.05 is maintained,

aligning with common standards in hypothesis testing. The empirical sizes, defined as the

proportion of simulations where the null hypothesis is incorrectly rejected, are computed

based on 100,000 simulations for each configuration of sample size, dimensionality, and de-

pendence parameter. This extensive number of simulations guarantees that the empirical

sizes are estimated with high precision.

The results of the experiments are summarized in Table 5.1. The table presents the rejec-

tion ratios, which are the empirical sizes expressed as decimal values, for each combination

of sample size n, dimensionality d, and dependence parameter θ.

Analyzing the results in Table 5.1, we observe several important patterns. Firstly, for a

fixed value of d and θ, the rejection ratios tend to decrease as the sample size n increases. This
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Table 5.1: Rejection ratios for multivariate change point testing procedure under the null hypoth-
esis; cf. (5.4.17).

n d θ

-0.8 -0.4 0.0 0.4 0.8

50 3 0.1186 0.1136 0.1097 0.1157 0.1250
5 0.1241 0.1195 0.1170 0.1195 0.1241
10 0.1310 0.1217 0.1203 0.1263 0.1301

100 3 0.1138 0.1099 0.1034 0.1124 0.1157
5 0.1202 0.1131 0.1094 0.1146 0.1163
10 0.1255 0.1181 0.1157 0.1172 0.1265

300 3 0.1062 0.1002 0.0955 0.0980 0.1038
5 0.1084 0.1052 0.1023 0.1040 0.1113
10 0.1140 0.1104 0.1059 0.1110 0.1144

500 3 0.0954 0.0890 0.0739 0.0905 0.0933
5 0.0991 0.0917 0.0794 0.0950 0.1011
10 0.1078 0.0989 0.0882 0.1029 0.1028

2000 3 0.0595 0.0556 0.0501 0.0541 0.0555
5 0.0611 0.0529 0.0590 0.0572 0.0598
10 0.0617 0.0580 0.0603 0.0599 0.0617

observation suggests that the testing procedure becomes more conservative as the sample

size grows, with the empirical size approaching the nominal significance level of 0.05 from

above. The convergence to the nominal level is slower for higher dimensional settings and

stronger levels of temporal dependence.

Secondly, for a given sample size n and dependence parameter θ, the rejection ratios

generally increase as the dimensionality d increases. This pattern indicates that the testing

procedure tends to reject the null hypothesis more frequently in higher dimensional settings,

suggesting that the test may be more sensitive to the increased complexity of the data.

Thirdly, for a fixed sample size n and dimensionality d, the rejection ratios exhibit a

U-shaped pattern with respect to the dependence parameter θ. The rejection ratios are

generally higher for extreme values of θ (i.e., −0.8 and 0.8) compared to moderate values

(i.e., −0.4, 0, and 0.4). This observation suggests that the testing procedure is more sensitive

to strong levels of temporal dependence, both positive and negative, in the noise process.

In conclusion, the simulation results presented in Table 5.1 provide valuable insights
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into the finite-sample behavior of the proposed testing procedure under the null hypothesis.

The empirical sizes tend to be higher than the nominal significance level, especially for small

sample sizes, high dimensional settings, and strong levels of temporal dependence. This over-

liberal behavior may be related to the non-stationarity of the noise process, which introduces

additional challenges in accurately assessing the significance of the test statistic. As the

sample size increases, the empirical sizes gradually approach the nominal level, indicating

that the testing procedure achieves the correct size asymptotically. However, the convergence

rate appears to be slower compared to the case of stationary noise, highlighting the impact

of non-stationarity on the finite-sample performance of the test.

The results emphasize the importance of considering the sample size, dimensionality,

dependence structure, and the presence of non-stationarity when applying the testing pro-

cedure in practice. Researchers should be cautious when interpreting the results for small

sample sizes and high dimensional settings, and may consider using more conservative critical

values or adjusting the significance level to account for the finite-sample behavior of the test

in the presence of non-stationary noise. Additionally, further research on developing refined

testing procedures that are more robust to non-stationarity could be valuable in enhancing

the reliability and applicability of change point detection methods in complex real-world

scenarios.

5.4.3 Synthetic Data under Alternative Hypotheses

In this section, we conduct a comprehensive analysis of our testing procedure’s power using

synthetic data. We generate data according to the framework outlined in Section 5.4.1, with

the signal specified as per (5.4.18), representing the alternative hypothesis H1.

The experimental design encompasses a wide range of parameter settings to assess the per-

formance of our testing procedure under various conditions. We vary the sample size n among

{50, 100, 300, 500, 2000} to examine the power of the test for different data sizes. The dimen-
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sionality d is selected from {3, 5, 10} to evaluate the impact of the number of dimensions on

the test’s performance. The dependence parameter θ is varied among {−0.8,−0.4, 0, 0.4, 0.8}

to assess the test’s sensitivity to different levels of temporal dependence in the noise process.

The gap parameter s, which governs the magnitude of the change in the signal, is chosen

from {0, 0.008, 0.015, 0.035, 0.050, 0.075} to investigate the test’s ability to detect changes of

varying sizes.

Throughout the experiments, we fix the ratio τ/n = 0.5, indicating that the change

point occurs at the midpoint of the observed time series. Our testing methodology employs

a significance level of α = 0.05 consistently across all settings. For each combination of

experimental parameters, we generate the trend (νi) according to the specified methodology.

We then simulate the additive noise process multiple times and input the resulting data into

our testing procedure. The outcomes are compiled from 100,000 independent simulations to

ensure the reliability and robustness of our findings.

Figure 5.2 presents the rejection ratios, which represent the empirical power of our test-

ing procedure, under various combinations of sample size n, dimensionality d, dependence

parameter θ, and gap parameter s. Each subplot corresponds to a specific combination of n

and d, and within each subplot, the rejection ratios are plotted against the gap parameter s

for different values of θ.

Analyzing the results in Figure 5.2, we observe that the rejection ratios consistently

increase as the gap parameter s increases, indicating that our testing procedure is more

powerful in detecting larger changes in the signal. This behavior is intuitive, as larger

changes are easier to distinguish from the null hypothesis of no change. Moreover, for a

fixed gap parameter s, the rejection ratios generally improve as the sample size n increases,

suggesting that our testing procedure benefits from larger sample sizes by gaining more power

to detect changes in the signal. The increased sample size provides more information about

the underlying process, enabling the test to make more accurate decisions.
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Figure 5.2: Rejection ratios for change point testing procedure under the alternative hypothesis;
cf. (5.2.3). The noise process is shaped by the dependence parameter θ. We vary the gap parameter
s over the set {0, 0.008, 0.015, 0.035, 0.050, 0.075}, the sample size n over {50, 100, 300, 500, 2000},
the dimensionality d over {3, 5, 10}, and the dependence parameter θ over {−0.8,−0.4, 0, 0.4, 0.8}.
Each data point represents 100,000 replications.

The impact of the dimensionality d on the power of the test exhibits a more complex pat-

tern. For smaller sample sizes (e.g., n = 50, 100), the rejection ratios tend to decrease as d in-

creases, indicating that the test may struggle to detect changes in higher-dimensional settings

when the sample size is limited. However, for larger sample sizes (e.g., n = 300, 500, 2000),

the effect of dimensionality on power gradually diminishes, suggesting that the test becomes

more robust to the curse of dimensionality as the sample size grows.

The dependence parameter θ also influences the power of the test, particularly for smaller

sample sizes and gap parameters. Generally, the rejection ratios are lower for strongly depen-
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dent cases (θ = −0.8, 0.8) compared to the independent case (θ = 0) when the sample size

and gap parameter are small. This observation indicates that strong temporal dependence

in the noise process can make it more challenging for the test to detect small changes in

the signal. However, as the sample size and gap parameter increase, the impact of depen-

dence on power diminishes, and the test becomes more robust to different levels of temporal

dependence.

Notably, for large sample sizes (e.g., n = 2000) and moderate to large gap parameters

(s ≥ 0.035), the rejection ratios approach 1 across all dimensionalities and dependence levels,

indicating that our testing procedure has excellent power in detecting changes in the signal

under these conditions.

In conclusion, our extensive simulation study demonstrates the effectiveness and robust-

ness of the proposed testing procedure in detecting changes in the mean of multivariate time

series with non-stationary noise. The power of the test increases with the magnitude of

the change and the sample size, while being sensitive to the dimensionality and temporal

dependence, particularly for smaller sample sizes and change magnitudes. As the sample

size grows, the test becomes more robust to the impact of dimensionality and dependence,

exhibiting excellent power in detecting changes across a wide range of settings.
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5.5 Proofs

5.5.1 Proof of Theorem 5.3.1

Let

αn,kn(i, j) :=


−1/kn for j ∈ (i, i+ kn],

1/kn for j ∈ [i− kn + 1, i],

0 for j ∈ (0, i− kn + 1) ∪ (i+ kn, n].

(5.5.19)

Denote νi = EXi. Therefore, we have

Un,kn(i) :=
n∑

j=1

αn,kn(i, j)Xj =
n∑

j=1

αn,kn(i, j)(νj + Zj) (5.5.20)

and

Ûn,kn(i) :=
n∑

j=1

αn,kn(i, j)Wj (5.5.21)

The function αn,kn(i, j) represents the weight assigned to the observation at time point j

when computing the difference of averages Un,kn(i) and its bootstrap counterpart Ûn,kn(i).

The weights are chosen such that observations within the two adjacent windows of size kn

are assigned equal and opposite weights, while observations outside the windows are assigned

zero weight.

The difference between Un,kn(i) and Ûn,kn(i) can be bounded as follows:

∥Un,kn(i)− Ûn,kn(i)∥ ≤

∥∥∥∥∥∥
n∑

j=1

αn,kn(i, j)νj

∥∥∥∥∥∥+
∥∥∥∥∥∥

n∑
j=1

αn,kn(i, j)(Wj − Zj)

∥∥∥∥∥∥
≤ (I) + (II)

(5.5.22)

The inequality above decomposes the difference into two terms: (I) represents the con-

tribution from the signal component νj , while (II) represents the contribution from the
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difference between the bootstrap samples Wj and the noise component Zj .

Since we assume ν(·) ∈ L[0, 1], it follows that (I) = O(kn/n) uniformly over i = kn, kn+

1, · · · , n− kn.

Let (Vj) be a sequence of independent, mean zero, Gaussian random vectors with

Vj ∼ N(0,Σj), where Σj are the local long-run covariance matrices defined in (5.3.8). By

Chebyshev’s inequality and Theorem 3.1. in Mies and Steland [2023], under Condition 5.3.1

and Condition 5.3.2, for any x > 0, we have

Pr

max
k≤n

∥∥∥∥∥∥
k∑

j=1

Vj −
k∑

j=1

Zj

∥∥∥∥∥∥ ≥ x

 ≤ Emaxk≤n
∥∥∥∑k

j=1Vj −
∑k

j=1 Zj

∥∥∥2
x2

≤
Cη2nD

A−2
A−1
n log(n)

(
d
n

)2λ(p,A)

x2

(5.5.23)

where

λ(p,A) =



p−2
6p−4 , A ≥ 3,

(A−2)(p−2)
(4A−6)p−4 ,

3p+2
p+2 < A < 3,

1
2 −

1
A , 2 < A ≤ 3p+2

p+2

(5.5.24)

This bound on the difference between the partial sum processes of the Gaussian random

vectors Vj and the noise component Zj depends on the moment parameter p, the dependence

parameter A, the non-stationarity parameter Dn, and the dimension d.

Consequently,

max
k≤n

∥∥∥∥∥∥
k∑

j=1

Vj −
k∑

j=1

Zj

∥∥∥∥∥∥ = OP

(
ηnD

A−2
2(A−1)
n

√
log(n)

(
d

n

)λ(p,A)
)

(5.5.25)

We define the cumulative process Qt :=
∑t

i=1Σi and estimate it with Q̂t :=
∑t

i=m Ĉt

in Algorithm 3. Let Q̃ be some cumulative covariance process, and consider independent
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Gaussian random vectors Ṽt ∼ N(0, Q̃t − Q̃t−1), which are coupled with (Vt) such that

E max
k=1,...,n

∥∥∥∥∥∥
k∑

t=1

Vt −
k∑

t=1

Ṽt

∥∥∥∥∥∥
2

≤ C log(n)[
√
nωnρn + ρn] = ∆n (5.5.26)

where

ωn := max
t=1,...,n

∥∥∥Q̃t −Qt

∥∥∥
tr
, ρn := max

t=1,...,n
∥Qt∥tr

by Proposition 5.2. in Mies and Steland [2023].

This coupling between the Gaussian random vectors Vt and Ṽt is constructed based on

an estimated cumulative covariance process Q̃. The term ∆n bounds the expected maximum

difference between the partial sum processes of Vt and Ṽt, and it depends on the estimation

error ωn and the trace norm of the true cumulative covariance process ρn.

By Chebyshev’s inequality,

Pr

 max
k=1,...,n

∥∥∥∥∥∥
k∑

j=1

(Vj − Ṽj)

∥∥∥∥∥∥ > x

 ≤ ∆n

x2
. (5.5.27)

Now, letting Q̃t = Q̂t and denoting the corresponding error (5.5.26) by ∆̂n, since Wi ∼

N(0, Q̂t − Q̂t−1), by Chebyshev’s inequality, we obtain

Pr

max
k≤n

∥∥∥∥∥∥
k∑

j=1

Wj −
k∑

j=1

Vj

∥∥∥∥∥∥ > x


≤ Pr

max
k≤n

∥∥∥∥∥∥
k∑

j=1

Wj −
k∑

j=1

Vj

∥∥∥∥∥∥ > x, ∆̂n < x

+ Pr
(
∆̂n ≥ x

)
≤ ∆̂n

x2
+ Pr

(
∆̂n ≥ x

)
≤ 1

x
+

E|∆̂n|
x

,

(5.5.28)

which bounds the difference between the partial sum processes of the bootstrap samples Wj
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and the Gaussian random vectors Vj by conditioning on the event that the estimation error

∆̂n is smaller than x and using Chebyshev’s inequality.

Note that by Theorem 5.1. in Mies and Steland [2023],

∆̂n = OP

(
log(n)η2n

(
D

1
2
nn

1
2m

1
4
n + n

3
4d

1
2m

1
4
n + nm

−1
2

n + nm
1−A

2
n + 1

))
(5.5.29)

Combining this result with (5.5.28) yields

max
k≤n

∥∥∥∥∥∥
k∑

j=1

Wj −
k∑

j=1

Vj

∥∥∥∥∥∥ = OP

(
log(n)η2n

(
D

1
2
nn

1
2m

1
4
n + n

3
4d

1
2m

1
4
n + nm

−1
2

n + nm
1−A

2
n + 1

))
(5.5.30)

Since

max
k≤n

∥∥∥∥∥∥
k∑

j=1

Wj −
k∑

j=1

Zj

∥∥∥∥∥∥ ≤ max
k≤n

∥∥∥∥∥∥
k∑

j=1

Wj −
k∑

j=1

Vj

∥∥∥∥∥∥+max
k≤n

∥∥∥∥∥∥
k∑

j=1

Vj −
k∑

j=1

Zj

∥∥∥∥∥∥ , (5.5.31)

it follows that

max
k≤n

∥∥∥∥∥∥
k∑

j=1

Wj −
k∑

j=1

Zj

∥∥∥∥∥∥ = OP

(
log(n)η2n

(
D

A−2
2(A−1)
n

(
d

n

)λ(p,A)

+D
1
2
nn

1
2m

1
4
n + n

3
4d

1
2m

1
4
n + nm

−1
2

n + nm
1−A

2
n + 1

))
,

(5.5.32)

which combines the previous bounds to obtain a bound on the difference between the partial

sum processes of the bootstrap samples Wj and the noise component Zj . The bound depends

on various parameters, including the sample size n, the dimension d, the moment parameter

p, the dependence parameter A, the non-stationarity parameter Dn, and the block size mn

used in the bootstrap procedure.

Define

Ln,kn(i) := |αn,kn(i, 1)|+
n∑

j=2

|αn,kn(i, j)− αn,kn(i, j − 1)|. (5.5.33)
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By substituting the expression for αn,kn(i, j) and taking the maximum over i, we obtain

Ln,kn := max
i⩽n

Ln,kn(i) = O
(

1

kn

)
. (5.5.34)

The term Ln,kn(i) represents the total variation of the weight function αn,kn(i, j) with

respect to j for a fixed time point i. It measures the smoothness of the weight function and

plays a crucial role in controlling the approximation error.

Using the smoothness of the weight function, as measured by Ln,kn(i), and the previously

derived bound on the difference between the partial sum processes of Wj and Zj , we can

bound the term (II) as follows:

(II) =

∥∥∥∥∥∥
n∑

j=1

αn,kn(i, j)(Wj − Zj)

∥∥∥∥∥∥
≤ Ln, kn(i)max

k≤n

∥∥∥∥∥∥
k∑

j=1

Wj −
∑

j = 1kZj

∥∥∥∥∥∥
= OP

(
log(n)η2n

kn

(
D

A−2
2(A−1)
n

(
d

n

)λ(p,A)

+D
1
2
nn

1
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1
4
n

+ n
3
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1
2m

1
4
n + nm

−1
2

n + nm
1−A

2
n + 1

))
.

(5.5.35)

To balance the contributions from the signal component (I) and the noise component

(II), we choose the window size kn as

kn = n
1
2 (log n)

1
2ηn

(
D

A−2
2(A−1)
n

(
d

n

)λ(p,A)

+D
1
4
nn

1
4m

1
8
n +n

3
8d

1
4m

1
8
n +n

1
2m
−1

4
n +n

1
2m

1
2−

A
4

n +1

)
.

(5.5.36)

This choice ensures that both terms are of the same order. The window size kn depends

on various parameters, including the sample size n, the dimension d, the moment parameter

p, the dependence parameter A, the non-stationarity parameter Dn, and the block size mn
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used in the bootstrap procedure.

With this choice of kn, we obtain the desired asymptotic equivalence between the differ-

ence of averages Un,kn(i) and its bootstrap counterpart Ûn,kn(i):

max
i≤n
∥Un,kn(i)− Ûn,kn(i)∥ = OP

(
n−

1
2 (log n)

1
2ηn

(
D

A−2
2(A−1)
n

(
d

n

)λ(p,A)

+D
1
4
nn

1
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1
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n + n

3
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1
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.

(5.5.37)
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