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ABSTRACT

This thesis consists of two chapters: The first and primary component is dedicated to the

Hitchin morphism for symmetric spaces, which is joint work with B. Morrissey. We introduce

and describe the “regular quotient” and explain some basic consequences for Higgs bundles.

We include an invariant theoretic approach to spectral covers in this setting for the space

GL2n /GLn×GLn. We also include some work towards an enhanced Grothendieck-Springer

style correspondence in for quasi-split pairs, which classifies certain parabolics of H rather

than Borels of G. We study the component groups of such covers, including their importance

in describing regular centralizers.

In the second chapter, we recount some joint work with B.C. Ngô on companion matrices

for clssical groups and G2. We use the companion matrix construction for GLn to build

canonical sections of the Chevalley map [g/G] → g//G for classical groups G as well as the

group G2. To do so, we construct canonical tensors on the associated spectral covers. As an

application, we make explicit lattice descriptions of affine Springer fibers and Hitchin fibers

for classical groups and G2.

v



CHAPTER 1

THE HITCHIN FIBRATION FOR SYMMETRIC SPACES

1.1 Introduction

Let G be a reductive group over an algebraically closed field k. Fix a smooth, projective

curve C over k and a line bundle D on C whose degree is greater than twice the genus. To

such data, one can associate the moduli stack of G Higgs bundles

MG = Maps(C, gD/G)

where gD = g ⊗ D is the twisted bundle of Lie algebras and gD/G is the stack quotient.

When D is the canonical bundle of C and k = C, this space was introduced by Corlette

and Simpson to classify reductive representations of the fundamental group π1(C) in G(C)

[9, 46]. In [20], Hitchin introduced a beautiful fibration

hG : MG → AG

where AG is an affine space of half the dimension of MG, which is a global analogue of the

characteristic polynomial map, and whose generic fiber is an abelian variety. Since its intro-

duction, the Hitchin fibration has found applications across a wide range of mathematics.

Among its remarkable properties: Over C, it is a Lagrangian torus fibration with a known

mirror dual (in the sense of SYZ mirror symmetry); it exhibits aesthetic duality phenomina

which relate to Geometric Langlands; and it provides a geometric framework for the theory

of endoscopy leading to Ngô’s proof of the Fundamental Lemma [35].

In this paper, we study a generalized Hitchin fibration associated to a symmetric pair.

In particular, we let

θ : G→ G
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be an algebraic involution of G, and let K = (Gθ)◦ be the connected component of the fixed

points of θ on G. Fix a smooth, closed subgroup H of G such that

K ⊂ H ⊂ NG(K).

The involution θ induces a Cartan decomposition

g = k⊕ p

where k and p are the (+1) and (−1) eigenspaces, respectively, of θ on g. To the G-variety

X = G/H we associate a moduli space of relative Higgs bundles

MX = Maps(C, pD/H)

For k = C and D the canonical bundle, Gracía-Prada, Gothen, and Riera introduced these

relative Higgs bundles to study reductive representations of π1(C) in real forms of G [15].

One still has a relative Hitchin fibration

hX : MX → AX

with AX = Maps(X, (p//H)D) the affine space classifying maps to the twisted GIT quotient

p//H := Spec k[p]H . The geometry of fibers of these Hitchin systems were studied extensively

using spectral covers in [41, 43, 42, 23] among others, and a theory of cameral covers was

initiated in [36, 16].

The generic fibers of the Hitchin fibration for symmetric spaces involve two novel geomet-

ric behaviors: First, there may be exceptional components. For example, in Schapostnik’s

thesis work [41] for the symmetric space X = GL2n /(GLn×GLn), fibers are generically

identified with a disjoint union of 2ℓ copies of the Picard stack classifying line bundles on a
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spectral curve for an explicit ℓ. Worse, the connected components may still fail to be abelian

varieties. For example, Hitchin and Schapostnik give a symmetric pair for which the fibers

of hX over a generic a are identified with the space of rank two vector bundles on a spectral

curve [23].

In this work, we describe in greater detail the geometry of the Hitchin fibration for

symmetric spaces, providing invariant theoretic explanations for the anomalous behavior of

the fibers and giving descriptions of the fibration hX in families. Our results will restrict to

the regular locus. That is, we let preg denote the set of x ∈ p whose centralizer in H is of

minimal dimension. We will restrict to the sub-locus Mreg
X of MX consisting of maps from

C valued in the open substack p
reg
D /H. We will make use of new tools provided by the work

[33].1 Following loc. cit., the basic structure theorem can be expressed as follows.

Theorem 1.1.1. There is a factorization of hX into

MX
h(−→ A(

X
ϕ−→ AX

such that, over a dense open locus A♢
X of AX , the map ϕ is étale and the space MX is

isomorphic to a space of torsors for a prescribed band over A(
X .

The above theorem is a reflection of some new constructions in invariant theory. Namely,

consider the Chevalley style morphism

χ : preg/H → p//H

from the stack quotient of H acting on p to the corresponding GIT quotient. This map

fails to be a gerbe; indeed, there may be multiple regular, nilpotent H orbits in p. In [16],

they suggest studying an intermediate quotient obtained by rigidifying the stack preg/H by

1. As [33] is not yet public, care will be taken to ensure this thesis is self-contained. The reader will note,
therefore, that Subsection 1.3.1 exposits work on which the author was not a collaborator.
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inertia. This intermediate quotient, which we will denote by preg( H and call the regular

quotient, is a coarse moduli space for regular H-orbits in p. The map χ factors

preg/H → preg(H → p//H

where the first map is a gerbe and the second is a non-separated cover. Motivted by the

study of generalized Hitchin systems, [33] gives a construction of such quotients in large

generality, but it should be noted that this construction in general returns a DM stack.

Our main result is a completely explicit description of the regular quotient.

Theorem 1.1.2. Let (G, θ,H) be a symmetric pair with G simple.

1. If (G, θ,H) is not the split form on G = SO4n, then there is a Zariski closed subset

Z ⊂ c such that

preg(H ≃ c
∐
Z

c

consists of two copies of c glued along Z. Moreover, this closed subset Z can be com-

puted explicitly via an inductive procedure.

2. The split form on G = SO4n can be explicitly described as well, but involves gluing

patterns for four sheets. See Example 1.3.48.

3. The case of general G can be reduced to the simple case via a compatibility with z-

extensions.

The gerbe

preg/H → preg(H

is banded by the group scheme Ireg → preg whose fiber over x ⊂ preg is the centralizer of x

in H

I
reg
x = {h ∈ H : Ad(h) · x = x}.
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Any question of the behaviour of the map h( must, therefore, be inextricably linked to the

question of describing the regular centralizer group scheme Ireg. For technical reasons, we

restrict our attention in this work to quasi-split symmetric pairs, which is to say, those for

which Ireg is abelian. For quasisplit symmetric pairs, Ireg descends to a smooth, commuta-

tive group scheme J over the GIT quotient, which we will denote by c := p//H.

Let a ⊂ p be a maximal abelian subalgebra. The abelian algebra a comes equipped with

a natural root system (the “restricted root system” of the symmetric space), and we denote

the corresponding Weyl group by Wa. Let C = CH(a). Following the perspective taken in

[10] and [35], we seek a flat cover

c̃ → c

with a group Wc̃ acting on c̃ and C over c such that J is an open subgroup scheme of the

Weil restriction

J1c̃ := Res̃cc(C × c̃)Wc̃

Attempts to describe J have been made in [16, 29] using the flat cover

a → c.

arising from the Chevalley style isomorphism p//H ≃ a//Wa. However, this is not sufficient

to describe regular centralizers in general: In particular, there are natural examples where

the action of Wa on the centralizer group scheme C = CH(a) is trivial while J is not. We

describe an enhanced cameral cover

ĉ → c

which is a reducible, ramified Wĉ cover. We do so in two steps. First, we build a map c̃ → c

using a generalized Grothendieck-Springer map as follows

Let M = CH(C◦) be the Levi subgroup of H determined by possibly non-maximal torus
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C. Fix parabolic Q with Levi factor M . We define p̃reg to be the reduced incidence variety

parametrizing pairs

(x, P ) ∈ preg ×H/Q

such that Ch(Ch(x)) ⊂ Lie(P ).

The following is verified with some explicit computations.

Theorem 1.1.3. Assume that (G, θ,H) is a quasisplit symmetric pair with no simple factors

giving the non-split, quasisplit form on E6. Then, there exists a cover c̃ → c fitting into a

Cartesian diagram

p̃reg //

��

c̃

��

preg // c

The space c̃ is reducible, with each irreducible component isomorphic to a cover c̃0 → c which

is a subcover of a → c.

The cover c̃ is sufficient for describing connected regular centralizers, but not those with

disconnected regular centralizers. For this we inflate the components by setting

ĉ = c̃×c̃0
a.

We summarize the main result.

Theorem 1.1.4. Let (G, θ,H) be a quasisplit symmetric pair with the quasisplit form on E6

not appearing as a simple factor. Let C = CH(a) be the centralizer subgroup of a maximal

abelian subalgebra a ∈ p. Then, there is a group homomorphism

J → Reŝcc(C × ĉ)Wĉ

which is an open embedding. Here, Wĉ acts diagonally.
6



If G is simply connected, then the map above is an isomorphism.

We remark that in the above, the restriction on E6 is likely not necessary. The argument

relies on some explicit computations, which are not feasible for the form E6 (see Lemma

1.3.65).

As a consequence, we can describe the morphism h( of Theorem 1.1.1.

Corollary 1.1.5. Let ÃX be the base change of the diagram

ÃX

��

// c̃D

��

AX
ev // cD

and Ã(
X , M̃X the respective base changes to ÃX . Then, there is an open dense subset Ã♢

X

such that over Ã♢
X , the map M̃X → Ã(

X is a torsor for the action of the abelian group

scheme BunC(Ã
(
X) where by BunC we mean the bundles for the constant group scheme C.

Finally, we make these results more concrete in the case of a particularly nice form

X = GL2n /(GLn×GLn). This was one of the original forms studied by Schapostnik [41],

and is the subject of some of our in-progress work on a version of relative Dolbeault Geometric

Langlands. The following is an invariant theoretic version of Schapostnik’s results on spectral

covers.

Theorem 1.1.6. Consider the symmetric pair on GL2n with involution

θ

A B

C D

 =

 A −B

−C D


and H = GLn×GLn embedded block diagonally. Then, there is a spectral cover

s → c

7



which is a degree n, irreducible cover such that

J ≃ Ressc(Gm)

Let C → C ×A(
X be the pullpack of the spectral cover s. With notation as in 1.1.1, we have

a (noncanonical) identification

Mreg
X ≃ Pic(C/A(

X).

In fact, in this example we can also be explicit about the cover A(
X → AX over a large

locus. Indeed, we have

Theorem 1.1.7. We remain in the case of the particular symmetric pair (GL2n,GLn×GLn)

above. Let Dns = D
∐

D× D denote the line bundle D with a doubled zero section, i.e. Dns is

a bundle on C with fiber an affine line with doubled origin. The map A(
X → AX is identified

with the map of sections

Γ(C,Dns) → Γ(C,D).

In particular, let A♢
X denote those sections which meet the zero section of D transversely.

Then, there is a decomposition into components

A(,♢
X =

n∐
i=0

A(
i

and there is a Cartesian diagram

A(
i

��

// (Ci \∆)/Si × (Cd−i \∆)/Sd−i

��

A♢
X

// (Cd \∆)/Sd

8



where ∆ denotes the pairwise diagonal and d = deg(D).

1.2 Background on Symmetric Pairs

In this section, we review the main results on symmetric pairs that will be used in the study

of Hitchin systems appearing in the rest of this paper.

1.2.1 Involutions and the Restricted Root System

Let G be a reductive group over an algebraically closed field k, and g its Lie algebra. We

assume throughout that p = char(k) is good for G. Namely, if we let ∆ be a basis for the root

system Φ of G and if we express the longest element of Φ relative to ∆ as α̌ =
∑

β∈∆mββ,

then p is good for G if and only if p > mβ for all β ∈ ∆.

Let θ : G → G be an algebraic involutive group automorphism. Let K = (Gθ)◦ de-

note the neutral component of the θ fixed points in G. The involution θ induces a Cartan

decomposition

g = k⊕ p,

where k and p denote the (+1) and (−1) eigenspaces of θ, respectively. In particular, k is

the Lie algebra of K.

A complicating fact in the theory of symmetric pairs is that, although all maximal tori

of G are conjugate, conjugation does not respect the action of the involution θ on a θ-stable

torus. It is essential, therefore, to specify the action of θ on a maximal torus of G when

studying root systems. We will mainly restrict our attention to θ-stable tori of G for which

the θ fixed subtorus is minimal. We introduce this notion now.

Definition 1.2.1. A θ-split torus A of G is a torus of G such that θ(a) = a−1 for all a ∈ A.

Let A be a fixed θ-split torus of G which is maximal among such tori. The Lie algbera

a = Lie(A) is a maximal abelian subalgebra of p. These subalgebras are important enough
9



to warrant their own name.

Definition 1.2.2. A θ-Cartan of p is a maximal, abelian subalgebra a in p.

We will frequently fix a maximal split torus A with Cartan a ⊂ p in the sequel. This

choice is justified by the following standard proposition.

Proposition 1.2.3. ([48], Lem 26.15) All maximal θ-split tori A are K conjugate. Likewise,

all θ-Cartans of p are K conjugate.

Definition 1.2.4. The rank rθ of an involution θ is the dimension

rθ = dim(a)

In general rθ is less than than the rank of G. When A is a maximal torus of G, we call

the involution θ split. Every group G has a unique split involution.

We will call a maximal torus T of G maximally split if T contains a maximal θ-split torus

A.

We now introduce a root system associated to the symmetric spaceG/K. Fix a maximally

split torus T containing a maximal θ-split torus A ⊂ T . Let Φ be the set of roots of G with

respect to T , viewed as functions on t = Lie(T ).

Definition 1.2.5. The set of restricted roots is

Φr := {α|a ∈ a∗ : α ∈ Φ, α|a ̸= 1}.

We denote by r : Φ → Φr ∪ {0} the restriction map taking α 7→ α|a.

It is shown in Lemma 26.16 of [48] that Φr forms a (possibly nonreduced) root system.

Let Wa, referred to as the little Weyl group, be the Weyl group associated to this root system.

We can alternatively describe Wa as a quotient.

10



Proposition 1.2.6. ([48], Prop. 26.19) There is an isomorphism Wa ≃ NG(a)/CG(a) ≃

NH(a)/CH(a). In particular, the latter acts as a reflection group on a.

We note that the Weyl group Wa associated to Φr is the same as the Weyl group of the

reduced root system Φred
r .

It is useful to note that that the root system Φred
r on a can be seen as the root system

associated to a reductive algebraic group. In fact, such a group is given by the Gaitsgory-

Nadler group, introduced for symmetric varieties in [34] and generalized in [14] and [25].

This dual group plays an important role in Langlands duality phenomena, for example as

in [40]. For convenience, we state the existence of this dual group below, as we will use its

existence in the sequel.

Proposition 1.2.7. ([40], Theorem 3.3.1 and [26], Thoerem 6.7) To any spherical variety,

there exists a subgroup G∨
X ⊂ G∨ called the dual group ofX with maximal torus the canonical

torus A∗
X , canonical up to conjugation by the canonical torus T∨ ⊂ G∨.

Fix a Killing form identifying g ≃ g∗. In the special case of a symmetric variety X =

H\G, we can take A∗
X such that the killing form identifies Lie(A∗

X) ⊂ g∗ with a ⊂ g.

1.2.2 Symmetric Pairs and the GIT Quotient

We now introduce the notion of symmetric pair, introducing the data of a subgroup H.

Definition 1.2.8. A symmetric pair is the data of a triple (G, θ,H) where

θ : G→ G

is an algebraic involutive group homomorphism on G and H is a smooth, closed subgroup

H ⊂ G such that

K ⊂ H ⊂ NG(K).

11



The adjoint action of G on g restricts to an action of H on the (−1) eigenspace p ⊂ g.

The following result helps characterize such subgroups H.

Proposition 1.2.9. Choose a maximal θ split torus A.

(a) The normalizer is given explicitly by

NG(K) = {g ∈ G : gθ(g−1) ∈ Z(G)}

(b) We have NG(K) = F ∗ ·K where F ∗ = {a ∈ A : a2 ∈ Z(G)}. Note that F ∗ depends on

the choice of A. Furthermore, (F ∗)◦ = Z− is the connected component of the subgroup

of Z(G) on which θ acts by inversion, i.e. θ(z) = z−1.

(c) There is a short exact sequence

1 → Gθ → NG(K)
τ−→ (F ∗)2 → 1

where τ(g) = gθ(g−1) and (F ∗)2 = {a2 : a ∈ F ∗}.

(d) The group Gθ/K = π0(G
θ) is a discrete group.

(e) For any symmetric pair (G, θ,H), the identity component H◦ is reductive.

Proof. Part (a) follows from the proof of Lemma 1.1 of [44]. Part (b) is Lemma 8.1 in [38].

Part (c) follows immediately from (b). Part (d) is clear as Gθ is finite type. Part (e) is

directly from Lemma 8.1 of [38].

We have a Chevalley-style result on the GIT quotient p//H := Spec k[p]H .

Theorem 1.2.10. ([31], Theorem 4.9 and Corollary 4.10) Fix a θ-Cartan a ⊂ p. The natu-

ral inclusion map a → p induces a isomorphisms a//Wa ≃ p//K ≃ p//NG(K). In particular,

for any closed K ⊂ H ⊂ NG(K), we have a//Wa ≃ p//H. Note that, by construction, that

this map is Gm-equivariant under the homothety actions on both a and p.
12



Corollary 1.2.11. Let G∨
X be the dual group of Proposition 1.2.7. There is a natural Gm-

equivariant identification of the GIT quotients p//K ≃ g∨X//G
∨
X .

Proof. The lefthand side is isomorphic to a//Wa by Theorem 1.2.10 while the righthand side

is isomorphic to a∗X//WGX
where a∗X ⊂ g∨X is a Cartan of GX . By Proposition 1.2.7, we can

choose a Killing form on g that identifies a∗X ⊂ g∨X ⊂ g∨ and a ⊂ g. Since GX by definition

has its root system the dual of Φred
r , there is a canonical isomorphism WGX

≃ Wa. The

identification above now follows.

The invariant theory of this GIT quotient is well studied. We will make use of the

following fact.

Lemma 1.2.12. ([31], Lemma 4.11) We can write k[a]Wa = k[f1, . . . , fr] for r = dim(a)

algebraically independent homogeneous polynomials f1, . . . , fr or degrees m1, . . . ,mr, respec-

tively, which we will call the exponents of the root system Φr. Moreover, the sum of these

exponents can be computed as ∑
i

mi = r +
#Φred

r

2
.

Proof. Follows from taking degree of the left hand and right hand side of the equality in [31],

Lemma 4.11, noting that the length of the longest element in Wa is given by the number of

positive roots in the reduced root system.

1.2.3 Regularity and the Quasi-Split Condition

In [35], the notion of regularity was leveraged to study properties of the Hitchin fibration.

In so doing, the regular centralizer group scheme was cemented as a central object in the

geometry of Hitchin type systems. In [16], this point of view was explored, and certain

cameral covers were introduced with the goal of understanding regular centralizers. In this

section, we review these constructions. We will improve on descriptions of regular centralizers

in Section 1.3.4.
13



Definition 1.2.13. We denote by I = IH ⊂ p×H the group scheme of centralizers over p,

i.e.

I = {(x, h) : h · x = x}.

An element x ∈ p is called regular if dim(Ix) is the minimal possible2. Let preg ⊂ p denote

the open subscheme of regular elements in p.

Remark 1.2.14. By Proposition 1.2.9, H an extension of K by a group FH · ZH where FH

is finite and ZH ⊂ Z is a subgroup of the center. Hence, the notion of regularity does not

depend on the choice of subgroup H–only on the involution θ.

Note that x ∈ preg is not in general regular with respect to the action of G on g. These

two notions of regularity agree with the symmetric pair is quasi-split, a condition we will

return to shortly. In spite of this, regularity for elements of p can still be detected by the

following dimension criteria with respect to its centralizer in G.

Proposition 1.2.15. ([31], Lemma 4.3) For any x ∈ p, x is regular if and only if dimCG(x) =

dim a+ dimCK(A).

We call an element x ∈ p semisimple if x is semisimple in g. That this definition is

correct is motivated in part by the following two results on Jordan decompositions in p.

Lemma 1.2.16. ([31], Lemma 2.1) Any x ∈ p admits a decomposition x = s+n for s, n ∈ p,

s semisimple, n nilpotent, and n ∈ ZG(s).

Proposition 1.2.17. Let x ∈ p have decomposition x = s+ n as in Lemma 1.2.16, and put

L = ZG(s)
0, l = Lie(L), and pL = l∩ p. Then L is θ-stable and x is regular in p if and only

if n is regular as an element of pL.

Proof. We follow an identical argument to the proof of Proposition 9.12 in [38]. We assume

without loss of generality that s ∈ a so that A ⊂ L. By Proposition 1.2.15, x is regular if

2. We note that this is not quite the same as the definition of [33]. However under the assumptions we
make on the characteristic of our field this is equivalent to the definition in loc cit.
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and only if dimZK(x) = dimZK(A) and n is regular in L if and only if dimZK∩L(n) =

dimZK∩L(A). We have ZK(x)0 = (ZK(s) ∩ ZK(n))0 = ZK∩L(n)
0, so that dimZK(x) =

dimZK∩L(n). Since x ∈ A, ZK(A) = ZK∩L(x), so the result follows.

As in the Lie algebra g, the regular, semisimple locus is dense and easy to understand.

Lemma 1.2.18. Let prs ⊂ p denote the subscheme of regular, semisimple elements in p.

(a) Let x ∈ p. Then, x is semisimple if and only if x is contained in a Cartan of p.

(b) The regular, semisimple locus prs is dense in p.

(c) If x ∈ a is regular, semisimple, then zg(x) = zg(a).

Proof. (a) and (b) follow immediately from [31], Corollary 2.10 and Theorem 2.11. (c) follows

from [31], Lemma 4.3.

Let Ireg = I|preg be the restriction of the centralizer group scheme to the regular locus

of p. In contrast with regular centralizers for the adjoint action of G, the group scheme

Ireg need not be commutative. A special role in the literature is played by those symmetric

pairs for which commutativity holds. This class coincides with the those whose notion of

regularity agrees with that of the group G acting on g. We make the following definition.

Definition 1.2.19. We say a symmetric pair (p, H) is quasi-split if preg ⊂ greg; that is, the

notion of regularity in p under the action of H and g under the action of G coincide.

Remark 1.2.20. The quasi-split condition does not depend on the choice of subgroup H, only

on the involution θ.

As the author found it difficult to locate a proof in the literature, we include here a proof

of several equivalent characterizations for the quasi-split condition.

Proposition 1.2.21. The following are equivalent:
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1. (p, H) is quasi-split;

2. ZG(A) = T is a maximal (maximally θ-split) torus;

3. Ireg is a commutative group scheme;

Proof. The centralizer ZG(A) includes a maximal θ split torus T ; it is abelian if and only if

ZG(A) = T . The pair (p, H) is quasi-split if and only if for all x ∈ areg, we have

dimZG(x) = r

where r is the rank of G, so that all inclusions in T ⊂ ZG(A) ⊂ ZG(x) are equalities. Hence,

(1) and (2) are equivalent.

Assume (1) and (2) hold now. Then if x ∈ preg, Iregx is contained in the regular centralizer

group scheme of x in G, which is abelian. Hence, (3) holds.

Conversely, if (3) holds, then by Lemma 1.2.18, there exists x ∈ preg such that zg(A) =

zg(x). Then dim zg(A) = dim zg(x) = r and by Lemma 4.2 of [31], we conclude that ZG(A)

is a maximal torus.

Proposition 1.2.22. ([29], Lemma 1.6) For θ quasi-split, the little Weyl group Wa is nat-

urally a subgroup Wa ⊂ W .

Let T be a maximal θ-split torus, Φ the root system of G with respect to T , and Φr the

restricted root system with restriction map

r : Φ → Φr ∪ {0}

Roots of G may, a priori, restrict to zero in a ⊂ t. For quasi-split forms, this does not

happen.

Lemma 1.2.23. For (G, θ) quasi-split, the set r−1(0) is empty; that is, no root in Φ restricts

to zero on a.
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Proof. Fix θ-stable Cartan t = t0⊕a where t0 ⊂ tK is the (+1) eigenspace of θ on t. Suppose

that α ∈ Φ restricts to zero on a. Let (x, y) ∈ k⊕p = g be an eigenvector with eigencharacter

α. Then, using the compatibility of the bracket on g with the Cartan decomposition, we

have, for all t ∈ t0 and a ∈ a,

α(t)(x, y) = α(t+ a)(x, y) =
(
ad(t)(x) + ad(a)(y), ad(a)(x) + ad(t)(y)

)
. (1.2.1)

In particular, ad(a)(y) is independent of a, so y ∈ cp(a). But since the form is quasi-split,

cp(a) = a ⊂ cp(t0). [c.f. Levy, Lemma 2.3] Hence, ad(t)(y) = 0 and equation 1.2.1 implies

that

ad(a)(x) = α(t)y

for all t ∈ t0 and a ∈ a. This can only be true if both sides of the expression are uniformly

zero, so α = 0 is not in Φ, a contradiction.

We record here an identity that will be important for dimension counts later.

Lemma 1.2.24. ([38], Lemmas 3.1 and 3.2) We have the identity

dim k− dim p = dimCK(a)− dim a.

In particular, if the form is quasi-split, then

dim k− dim p = r − 2rθ

where r is the rank of the group G and rθ = dim a is the rank of the involution.
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1.2.4 Examples

We state in this section some illustrative examples of symmetric pairs. We will test the main

results of this work against this list.

Example 1.2.25. The Diagonal Case. Let G1 be a reductive group, and consider G =

G1 ×G1 with the swapping involution

θ(g, h) = (h, g)

Put, H = K = G1 the diagonal copy of G1 in G1 ×G1. The Cartan decomposition is given

by

g = {(x, x) : x ∈ g1} ⊕ {(x,−x) : x ∈ g1}.

Then, the action of H = G1 on p ≃ g1 is simply the adjoint representation of G1, and the

restricted root system of (G1 ×G1, G1) is given by the root system for G1.

Example 1.2.26. The Case GLn×GLn ⊂ GL2n. Let G = GL2n and consider the involution

θ(x) = In,nxIn,n where In,n =

In 0

0 −In


Let H = K = Gθ = GLn×GLn ⊂ GL2n embedded block diagonally. The Cartan decom-

position is

g = k⊕ p =


A 0

0 B


⊕


 0 C

D 0


 .

A Cartan in p is rank n, given by

a =


0 δ

δ 0

 : δ is diagonal
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The restricted root system is the type Bn root system computed explicitly as

Φr = {±(δ∗j ± δ∗k)|j ̸= k and 1 ≤ j, k ≤ n} ∪ {±2δ∗j |1 ≤ j ≤ n}

where δ∗j denotes the dual basis element to the j-th coordinate of δ in a.

Example 1.2.27. The Case SOn× SOn ⊂ SO2n. Let G = SO2n with the involution

θ(x) = In,nxIn,n where In,n =

In 0

0 −In


(compare with Example 1.2.26). Let H = K = SOn× SOn ⊂ SO2n embedded block diago-

nally. Note that this is an index 2 subgroup in Gθ = S(On×On). The Cartan decomposition

is

g = k⊕ p =


A 0

0 B

 : A,B ∈ son

⊕


 0 C

−Ct 0




We fix a Cartan in p

a =


 0 δ

−δ 0

 : δ is diagonal


The restricted root system is the type Dn root system

Φr = {i(±δ∗j ± δ∗k) : 1 ≤ j < k ≤ n}

where δ∗j denotes the dual basis element to the j-th coordinate of δ in a and i is the imaginary

unit.

Example 1.2.28. The Case SOm× SO2n−m ⊂ SO2n, m < n. Fix m < n, and consider the
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case of G = SO2n with the involution

θ(x) = Im,2n−mxIm,2n−m where Im,2n−m =

Im 0

0 −I2n−m


Let H = K = SOm× SO2n−m ⊂ SO2n be embedded block diagonally. The Cartan decom-

position is

g = k⊕ p =


A 0

0 B

 :
A ∈ som,

B ∈ so2n−m

⊕


 0 C

−Ct 0

 :
C is a 2m× 2n−m

matrix

 .

We choose

a =





0m×n−m δ 0m×n−m

0n−m×m

−δ

0n−m×m


: δ is diagonal m×m


.

Note that this extends to a Cartan of SO2n given by

t =


 0 δ

−δ 0

 : δ is diagonal n× n

 ,

and that the root system for SO2n with respect to t is

Φ = {i(±δ∗j ± δ∗k) : 1 ≤ j < k ≤ n}

As m < n the restricted root system is the type Bm root system

Φr = {i(±δ∗j ± δ∗k) : 1 ≤ j < k ≤ m} ∪ {±iδ∗j : 1 ≤ j ≤ m}.
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Example 1.2.29. The Case SOm× SO2n−m+1 ⊂ SO2n+1, m ≤ n. Fix m ≤ n and consider

the case of G = SO2n+1 with the involution

θ(x) = Im,2n−m+1xIm,2n−m+1 where Im,2n−m+1 =

Im 0

0 −I2n−m+1


Then, H = K = SOm× SO2n−m+1 ⊂ SO2n+1 is embedded block diagonally, and the Cartan

decomposition is

g = k⊕ p =


A 0

0 B

 :
A ∈ som,

B ∈ so2n−m+1

⊕


 0 C

−Ct 0

 : C is 2m× (2n−m+ 1)


We choose

a =





0m×(n−m) δ 0m×(n−m+1)

0(n−m)×m

−δ

0(n−m+1)×m


: δ is diagonal m×m


which sits inside the Cartan of SO2n+1

t =




0 δ 0m×1

−δ 0

01×m

 : δ is diagonal n× n


The root system with respect to the Cartan t is

Φ = {i(±δ∗j ± δ∗k) : 1 ≤ j < k ≤ n} ∪ {±iδ∗j : 1 ≤ j ≤ n}
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In particular, we conclude that the restricted root system is the type Bm root system

Φr = {i(±δ∗j ± δ∗k) : 1 ≤ j < k ≤ m} ∪ {±iδ∗j : 1 ≤ j ≤ m}.

Example 1.2.30. The Case GLn ⊂ Sp2n. Let G = Sp2n with the involution

θ(x) = In,nxIn,n where In,n =

In 0

0 −In


We take

H = K =


g

g−t

 : g ∈ GLn

 ⊂ Sp2n

We fix a Cartan in p

a =


0 δ

δ 0

 : δ is diagonal


Note that a is also a Cartan of Sp2n, making this a “split” symmetric pair. The restricted

root system is thus equal to the root system of Sp2n, namely

Φr = {±δ∗j ± δ∗k : 1 ≤ j < k ≤ n} ∪ {±2δ∗j : 1 ≤ j ≤ n}

where δ∗j denotes the dual basis element to the j-th coordinate of δ in a.

1.2.5 Nilpotent Orbits

In sharp contrast to the case of G acting on greg, a symmetric pair may have several distinct

H orbits of regular, nilpotent elements. In fact, this will, to a large extend, govern the

geometry of the Hitchin fibration for symmetric pairs. In this section, we review results of

[27], [44], and [31] on regular nilpotent K-orbits.
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Recall that K acts on the nilpotent cone Np = N ∩ p of p. Kostant and Rallis in [27]

showed that in characteristic zero, although the nilpotent cone is not necessarily irreducible,

it has finite many comonents, each of which contains a unique open orbit for the action of

K. Levy extended this result to positive characteristic.

Theorem 1.2.31. ([31], Theorem 5.1) Each irreducible component of Np contains a unique

regular K-orbit as an open, dense subset. In particular, irreducible components of Np are in

1-1 correspondence with connected components of N reg
p .

Corollary 1.2.32. The space Np\N reg
p is of codimension ≥ 1 in Np.

The number of K-conjugacy classes of regular nilpotents was studied and classified by

Sekiguchi over C [44] and by Levy in positive characteristic [31]. To state the result, we

make the following definition.

Definition 1.2.33. An isogeny of symmetric pairs

(G′, θ′, H ′) → (G, θ,H)

is an isogeny G′ → G restricting to an isogeny H ′ → H such that the following diagram

commutes

G′ θ′ //

��

G′

��

G
θ // G

We say that two symmetric pairs (G, θ,H) and (G′, θ′, H ′) are isogeneous if there exists

an isogeny of symmetric pairs between them.

We will make frequent use of the following classification result in computations.

Proposition 1.2.34. ([31], Proposition 6.21) Let G be a simple group, and θ an involution

on G. The number of regular nilpotent K orbits (and hence the number of irreducible com-
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ponents of the nilpotent cone) is exactly two if and only if (G, θ,H = K) is isogenous to one

on the following list (listed as pairs (G,K) with involution implied):

(SL2n, SO2n);

(SL2n, S(GLn×GLn));

(SO2n+1, SO2m× SO2(n−m)+1), 2m < 2(n−m) + 1;

(Sp2n,GLn);

(SO2n, SO2m× SO2(n−m)), m ̸= n/2;

(SO4n,GL2n);

(SO4n+2, SO2n+1× SO2n+1);

(G, SL8), for G simple of type E7;

(G,G′ ×Ga), for G simple of type E7 and G′ simple of type E6;

In addition, the split form (SO4n, SO2n× SO2n) has exactly 4 regular nilpotent orbits.

All other symmetric pairs with G simple and H = K have irreducible nilpotent cone in p,

and hence a single regular nilpotent orbit.

Remark 1.2.35. Among the above involutions, only the following are quasi-split:

(SL2n, SO2n);

(SL2n, S(GLn×GLn));

(SO2n+1, SOn× SOn+1);

(G, SL8), for G simple of type E7;

(SO4n, SO2n× SO2n) (which has 4, not 2, nilpotent orbits)

Remark 1.2.36. Note that the center acts trivially on N reg
p . Hence, for any symmetric pair

(G, θ,H), by Proposition 1.2.9 the H-orbits on N reg
p are given by (N reg

p /K)/π0(H).

If one setsH = NG(K), then the classification of regular, nilpotent orbits becomes trivial.

Theorem 1.2.37. ([27], Proposition 4; [31], Theorem 5.16) The normalizer group NG(K)

acts transitively on the set of regular nilpotents.
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In particular, π0(NG(K)) acts transitively on N reg
p /K.

The above classifies nilpotent orbits for involutions on simple G. For our purposes later,

we will also need the classification of nilpotent orbits for the diagonal case, which is trivial.

Lemma 1.2.38. The diagonal case G1 ⊂ G1 ×G1 of Example 1.2.25 has a single nilpotent

K orbit on N reg
p .

Proof. There is an isomorphism of stacks p/K ≃ g1/G1 given by projecting onto the first

variable. In particular, this map preserves regularity and induces an isomorphism N reg
p /K ≃

N reg
1 /G1 where N1 is the nilpotent cone in g1. Since any algebraic group G1 has a unique

regular nilpotent G1 orbit in N1, the lemma follows.

1.2.6 Generalities on Kostant-Rallis Sections

In this subsection, we review the theory of Kostant-Rallis sections, as introduced in [27] and

generalized in [31]. We work in the generality of [31]; in particular, in this section, it is

essential that p = char(k) is good for G.

In positive characteristic, associated characters replace the sl2 triples used in [27]. As this

paper will only rely on the existence of sections, we leave the theory of associated characters

and their relationship to the more explicit sl2 triples to the Appendix in Section 1.6.

Lemma 1.2.39. ([31], Corollary 6.29) Let e ∈ N reg
p be a regular nilpotent. Then there

exists a slice e+ v ⊂ preg contained in the regular locus of p such that the map

e+ v → p//K

is an isomorphism whose fiber over 0 ∈ p//K is e.

Remark 1.2.40. In general, the space v ⊂ p is constructed by taking a normal associated

character λ to e (see Definition 1.6.6) and then constructing a certain θ stable Lie subalgebra
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g∗ ⊂ g with corresponding Cartan decomposition g∗ = k∗ ⊕ p∗. The slice is given by taking

v to be an Ad(λ) graded complement to [k∗, e] inside of p∗.

If we suppose that the characteristic of k is either zero or greater than the Coxeter number

of G, then the results of Appendix 1.6 gives a bijection between H-conjugacy classes of

associated characters andH-conjugacy classes of sl2 triples. In this case, we can complete e ∈

N reg
p to a normal sl2 triple (e, h, f) (see Definition 1.6.1) uniquely up to CK(e)◦ conjugacy,

and we can take e+ v = e+ cp(f) as in [27], Theorem 11.

Fix a Kostant-Rallis section S = e + v. For later applications to smoothness, we will

need a bit more on the differential of the action map

H × S → preg. (1.2.2)

We record here the following Lemma.

Lemma 1.2.41. The differential of the action map (1.2.2) at (1, e) is surjective.

Proof. The differential of the above map is identified with the map

h⊕ v → p, (x, y) 7→ [e, x] + y

Since e is regular, the codimension of [k, e] in p is equal to the dimension of a θ-Cartan,

which by Lemma 1.2.39 is exactly the dimension of v. Moreover, by the construction of v, it

is orthogonal to [h, e]. Hence by a dimension count, we have p = [h, e] + v, and we conclude

that the map above is surjective.

We will study the map p → a//Wa produced by Theorem 1.2.10 in some detail; it will

provide the underlying structure of the Hitchin fibration for symmetric pairs. In this spirit,

we now prove this map’s flatness.

Lemma 1.2.42. The map p → p//K ≃ a//Wa is flat, as is the map preg → p//K.
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Proof. This is a morphism between two smooth schemes. Hence, by miracle flatness, it

suffices to show that the fibers are equidimensional. Let U ⊂ a//Wa be the subset of x ∈

a//Wa whose fiber in p is dim(K)− rθ dimensional, with rθ = dim(a) the rank of the group.

Then U contains 0 ∈ a//Wa as Theorem 1.2.31 guarantees dim(Np) = dim(K) − rθ, and U

is stable under the action of Gm as the map is Gm equivariant. Moreover, U contains the

open complement of the image of the root hyperplanes ∪αHα ⊂ a.Hence, U = a//Wa and

the map is flat.

1.3 The regular quotient

1.3.1 Motivation and Generalities

Many facts about the (usual) Hitchin fibration can be abstracted to basic properties in

invariant theory. Principally among these is that the morphism

greg → g//G

is a gerbe banded by the regular centralizer group scheme. For example, this property is the

invariant theoretic shadow of why generic fibers of the Hitchin fibration are Picard stacks.

However, this is plainly not the case for symmetric pairs, as observed in [16]. We illustrate

with an example.

Example 1.3.1. Let G = SL2 with involution conjugating by the matrix diag(1,−1). Then,

H = S(Gm × Gm) ≃ Gm acts on p ≃ A2 by the hyperbolic action x · (a, b) = (xa, x−1b).

The regular locus is preg = A2 \ {0}, and we see that there are two regular orbits lying over

the closed orbit 0 ∈ p//H, see Figure 1.

To solve this problem, [16] proposed a rigidification preg( H of the stack preg/H such

that there is a factorization

preg/H → preg(H → p//H
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preg(H =

p//H =

Figure 1.1: (Left) The orbits of H = S(Gm × Gm) acting on preg ≃ A2 \ {0} for the symmetric space
X = SL2 /S(Gm×Gm). Note the two orbits, drawn in blue and red, whose closure includes the (non-regular)
closed orbit {0}. The regular quotient for this symmetric pair (pictured right) is the affine line with doubled
origin.

with the first map being a gerbe and the second a (nonseparated) cover. To illustrate, in

Example 1.3.1, p//H ≃ A1 is an affine line while preg(H is an affine line with doubled origin.

In unpublished work [33] of Ngô and Morrissey, such quotients are introduced in the far

greater generality of a reductive group G acting on an affine normal scheme M . Examples

of these generalized Hitchin systems include the multiplicative Hitchin system studied most

thoroughly in [49], Hitchin systems associated to spherical varieties, and Hitchin systems for

higher dimensional varieties in [7]. While it will turn out that preg( H will be a scheme,

the resulting quotients M reg( G are, in general, Deligne-Mumford stacks. For the sake

of completeness, we review the general construction of Morrissey and Ngô here. However,

the construction is not important for understanding the resulting geometry in our case of

interest, and the uninterested reader can safely skip to Section 1.3.2.

Let M be an affine variety acted on by a reductive algebraic group H. Let IM ⊂M ×H

be the group scheme over M of stabilizers of the H-action. Following [33] the regular locus is

the maximal open subscheme Mreg ⊂ M such that Lie(IMreg) → Mreg is a vector bundle.

Theorem 1.3.11 shows that under our assumptions on the characteristic, this definition agrees

with our definition of regularity.
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Definition 1.3.2 (The Regular Quotient [33]). We define the regular quotient M reg(H to

be the stack quotient of the groupoid in algebraic spaces

(Mreg ×H)/I
reg
M ⇒Mreg

where the two right arrows are the projection and action maps.

Assuming smoothness of IregM → M reg (see Theorem 1.3.11), loc. cit. proves that the

quotient above exists and the resulting quotient M reg(H is a Deligne-Mumford stack.

The following result is contained in [33].

Proposition 1.3.3 (Properties of Regular Quotient from [33]). The regular quotient has the

following properties:

• If IregM is abelian then it descends to a group scheme J →Mreg(H.

• I
reg
M descends to a band in the sense of Giraud [19] Jband →Mreg(H.

• The map Mreg/H →Mreg(H is a gerbe banded by Jband; when IregM is abelian it is a

J-gerbe.

• If there are compatible Gm actions on Ireg and preg, then there is a canonical Gm

action on preg(H and the morphism M reg/H →M reg(H is Gm equivariant.

The second property is in fact a defining property of the regular quotient:

Proposition 1.3.4 ([33]). Let V be a scheme such that each fiber of Mreg → V consists of

a single G-orbit. Then V =Mreg(G.

We will use this property to describe preg(H.
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1.3.2 The regular quotient and smoothness of stabilizer group schemes via

Kostant–Rallis Sections

In this section we describe the regular locus preg as the union of the H-orbits of potentially

multiple Kostant–Rallis sections. We use this to deduce smoothness of several of the group

schemes considered in the previous section in a way completely analogous to the case of

the adjoint action of G on g as considered in [18, 39]. We will deduce that the regular

quotient can be obtained by gluing together multiple copies of the GIT quotient together.

In particular, we show the regular quotient for the action of H on preg is a (nonseparated)

scheme. An explicit description of the gluing will be described in the Section 1.3.3. This is

a modification of an argument for the case of the Vinberg monoid found in Proposition 2.12

of [3] and Equation 2.7 and Lemma 2.2.8 of [8]. We will then give a direct argument that

Ireg descends to the regular quotient.

The key technical input is the following.

Lemma 1.3.5 (Analogue of Lemma 2.2.8 of [8], see also Proposition 2.12 of [3]). Let U ⊂

preg be stable under the H ×Gm-action. If U ∩Np = N reg
p then U = preg.

The following proof is identical to that of [8], we provide it here for completeness.

Proof. We let F := preg\U . By assumption this is a Gm × H subscheme of p. Let χ|F

denote the restriction of χ : p → a//Wa to F .

We let V ⊂ F be the inverse image under χ|F of the subset

{x ∈ a//Wa| dim(χ−1
F (x)) < dim(H)− dim(a)}.

This is an open subscheme of F by upper semicontinuity. Furthermore, it includes 0 ∈ p by

Lemma 1.2.32. As V is preserved by Gm and 0 is in the closure of every Gm-orbit of F we

have that V = F .
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By Lemma 1.2.42 we have that each fiber of χ is of dimension dim(p)− dim(a). Suppose

that X ∈ preg ∩ F , then as F is stable under H, the dimension of the orbit of X (which is

inside F ) is dim(p)−dim(a). This contradicts F being of codimension ≥ 1 in each fiber.

Remark 1.3.6. Note that Lemma 1.3.5 does note hold for general homogeneous spherical

varieties. In particular, for X = G/H, it relies on the equidimensionality of h⊥ → h⊥//H.

This will fail for general homogeneous spherical varieties X.

We now recall that, by Theorem 1.2.31, for each irreducible component S ∈ Irr(Np)

there is a unique regular K-orbit OS of p in S. Furthermore, by Lemma 1.2.39, there is a

(non-unique) Kostant–Rallis section κS : a//Wa → preg such that κS(0) ∈ OS .

Let I denote the set of H orbits on N reg
p . For each representative pick a Kostant-Rallis

section κi whose image at 0 is in the regular nilpotent H orbit i ∈ I. Let Si be the image

as used to define the Kostant-Rallis section in section 1.2.6. For i ∈ I, we then have a

morphism

(H × Si)/Ireg → preg,

which is quasifinite and an isomorphism over the regular semisimple locus prs. Hence it is

birational. As preg is normal, Zariski’s main theorem implies that this morphism is an open

embedding. Hence we can define pκi,H to be the open subscheme of preg which is the image

of this morphism.

Proposition 1.3.7.

preg =
⋃
i∈I

pκi,H .

Proof. This is an immediate consequence of Lemma 1.3.5 applied to U = ∪i∈Ip
κi,H .

Application to smoothness of Ireg

We start by proving a Lemma.
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Lemma 1.3.8. We keep notation as in the previous section. If H is smooth and i ∈ I, then

the morphism

H × Si → pκi,H (1.3.1)

is smooth and surjective.

Proof. The morphism (1.3.1) is surjective by definition of pκi,H and is evidentlyH-equivariant

and Gm-equivariant. Moreover, by Lemma 1.2.41, the differential of (1.3.1) at (1, κi(0)) is

surjective. The only such neighbourhood is H × Si, hence the morphism is smooth.

Proposition 1.3.9. For any i ∈ I, the composition χ|pκi,H : pκi,H ↪→ p → p//H is smooth

and surjective.

Proof. This is identical to the proof of Proposition 3.3.3 of [39], namely the composition

H × Si → pκi,H → p//H ∼= Si is identified with the projection to Si. Hence [2] Tag 02K5

implies χ|pκi,H is smooth and surjective.

We denote by ISi := I
reg
H ×preg Si the restriction of IregH to Si.

Proposition 1.3.10. The map ISi → Si is smooth.

Proof. This proof of Proposition 3.3.5 of [39] carries over to this setting. For completeness

we summarize: As schemes over Si we have isomorphisms

ISi
∼= Si ×p×Si (H × Si) ∼= Si ×p×p//HSi (H × Si) ∼= Si ×p (H × Si).

Hence as H × Si → preg ↪→ p is smooth we have that ISi → Si is smooth.

Theorem 1.3.11. If H is smooth then Ireg → preg is smooth.

Note that for (G, θ) quasisplit in characteristic 0 this is proved for Ireg
Gθ in [17]. In Theorem

4.7 of [29] this is generalized to the case where the characteristic is p > 2 and p is such that
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I
reg
G → greg (that is to say the regular centralizers for the adjoint action of G on g) is smooth

(see condition (C3) of [39] for such conditions).

Proof. By Proposition 1.3.7 it is sufficient to show that for each i ∈ I (recall this denoted the

represented the representatives of the π0(H)-orbits in Irr(Np)) the morphism Ireg|pκi,H →

pκi,H is smooth. The proof is now identical to Corollary 3.6 in [39], we provide it only for

completeness. The diagram
H × ISi Ireg|pκi,H

H × Si pκi,H

is Cartesian. Hence Lemma 1.3.8 implies that H × ISi → I
reg
H is smooth and surjective.

Furthermore the Lemma 1.3.8 and Proposition 1.3.10 tell us that the composition H×ISi →

pκi,H is smooth. Hence Ireg|pκi,H → pκi,H is smooth by Tag 0K25 of [2].

Application to the regular quotient

Let p̃//H be the union of I copies of p//H where we glue the copies labelled by i and j

on the subscheme U ⊂ a//Wa where the sections κi and κj are conjugate. This notation

conflicts with the use of tildes in Section 1.3.4, but as it will not appear outside these next

two subsections, we hope it will not cause any confusion. Note that a priori it is not clear

that the gluing is done in a fashion compatible with the Gm-action, and thus it is not clear

that p̃//H has a Gm-action coming from the Gm-actions on a//Wa.

Theorem 1.3.12. Assuming that H is smooth we have a Gm-equivariant isomorphism of

schemes

p̃//H
∼=−→ preg(H,

where the Gm-action comes on p̃//H comes from the Gm-action on each copy of p//H. Fur-

thermore this isomorphism commutes with the Gm-equivariant morphisms to p//H.
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Remark 1.3.13. Note that the left hand side is definable regardless of whether or not H is

smooth while the right hand side is only known to be definable when H is smooth.

Proof. This argument is essentially identical to a similar argument in the Vinberg monoid

case found in [33]. The non-equivariant version isomorphism follows immediately from Propo-

sition 1.3.4 and the fact that the map p → p//K ∼= a//Wa is Gm-equivariant.

These identifications commute with the morphism to p//H, because these are the unique

morphisms to p//H such that the diagrams

preg p preg p

preg(H p//H p̃//H p//H

commute.

We hence have a Gm-action on p̃//H via the identification with the regular quotient.

Because the morphism p̃//H → p//H is Gm-equivariant we hence must have that this Gm

action comes from the Gm-action on each copy of p//H.

The equivariant isomorphism now follows immediately.

Direct Proof of Gerbe Structure

We now prove some of the results of Proposition 1.3.3 without the use of results from [33].

We also note that the proofs of these results are identical to those of both the Lie algebra

case (e.g. [35]) and to those for regular quotients in [33] as such we only include these for

completeness.

Proposition 1.3.14. The maps

preg/H → p̃//H ∼= preg(H
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and

(preg/H)/Gm → (p̃//H)/Gm
∼= (preg(H)/Gm

are smooth gerbes.

Proof. It is enough to show this for the case of (preg/H)/Gm → (p̃//H)/Gm; the remaining

case will follow by pullback to ˜preg//H. Consider the pullback off this map along preg →

(p̃//H)/Gm. We have a section of the pullback given by the diagonal section

preg → preg ×
(p̃//H)/Gm

preg → preg ×
p̃//H/Gm

(preg/H).

This gives an identification of preg×
p̃//H/Gm

(preg/H) with BIreg, concluding the proof.

Proposition 1.3.15. If (p, H) is quasisplit then Ireg descends to a smooth group scheme

J → p̃//H ∼= preg(H,

and descends further to a smooth group scheme

J → (p̃//H)/Gm
∼= (preg(H)/Gm.

The proof used to define the group scheme of regular centralizers (this can be found in

e.g. [35]) for a Lie algebra generalizes immediately to this setting, and indeed to the general

setting of regular quotients with IregM abelian.

Proposition 1.3.16. If (G, θ,H) is a symmetric pair and H is smooth, then the map

preg/H → p̃//H ∼= preg(H
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is a J-gerbe. Similarly the map

(preg/H)/Gm → (p̃//H)/Gm
∼= (preg(H)/Gm

is a J-gerbe.

Proof. It has already been shown that these spaces are gerbes. We have identifications

χ∗J ∼= Ireg and χ∗J ∼= Ireg for the maps χ : preg → p̃//H, and χ : preg → (p̃//H)/Gm.

Therefore, we have that these are J and J gerbes, respectively.

Remark 1.3.17. It is important to note that generalizations and refinements of several of the

above results are expected. We point out a few of these now.

If p̃//H ∼= p//H (or equivalently there is only one regular nilpotent H-orbit), then we can

use a Kostant–Rallis section κ to pull back Ireg to get a group scheme κ∗Ireg on p̃//H. If

the symmeric pair is quasisplit, but we do not assume that H is smooth, we can still get

that p∗(κ∗IregH ) ∼= I
reg
H (for p : preg → p̃//H).

Secondly, under the same assumption that there is one regular nilpotent H-orbit, we

can consider κ∗Ireg when H is smooth, but the symmetric pair is not quasisplit. Note that

we can also use G[2]
m -equivariance (that is to say we consider the usual Gm-action, but we

precompose by the squaring map Gm → Gm) to get a group scheme on [(p̃//H)/G[2]
m ].

In this case p∗(κ∗Ireg) is Ireg. This in particular provides a group that [preg/H×G[2]
m ] →

[(p̃//H)/G[2]
m ] is a gerbe for.

As such it is an important question to see whether there are sections of preg → p̃//H

and [preg/G[2]
m ] → [p̃//H/G[2]

m ] which would allow generalization of these considerations to

arbitrary symmetric pairs (with H smooth).

Finally one could ask whether there are then descriptions of the group scheme κ∗Ireg via

Weil restriction. We note that the work of Hitchin–Schaposnik [23] and Branco [5] strongly

suggests that in certain examples, one can describe the Weil restriction of SL2 from a spectral
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cover.

In the sequel, we will drop the notation p̃//H and only write preg(H. In particular, as

the former is defined when H is not smooth while the latter is not, we will define preg( H

to be p̃//H when H is not smooth.

1.3.3 Explicit Description of the Regular Quotient

Overview

We now turn to an explicit description of the geometry of the regular quotient preg(H. We

ultimately provide two different descriptions.

The first appears in Theorem 1.3.20, where we describe the regular quotient in terms of

certain quotients of component groups. This perspective reduces to computing the differences

between certain regular centralizer groups schemes as the group varies.

The second is done by the following multistep procedure:

• Firstly, we reduce to the case of simply connected simple groups and the diagonal case

H = G1
∆
↪−→ G1 ×G1 of Example 1.2.25, using Theorem 1.3.24.

• Secondly, we reduce understanding the orbits above a point in a//Wa to the case of

nilpotent cones of certain Levis, that we call distinguished Levis, in Theorem 1.3.34

and Proposition 1.3.37. This is a Lie algebra version of taking “descendants” described

in Section 5.1.1 of [30].

• We use the immediately preceding point to describe the structure for simple, simply

connected groups (and the diagonal case, example 1.2.25). Except for the case of

SO(n) × SO(n) ↪→ SO(2n) (considered in Example 1.3.48) this is not complicated

due to the fact that there are at most 2 regular H-orbits in the nilpotent cone. The

resulting explicit description of the regular quotient is included as Theorem 1.3.38. For
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such cases, we get a description preg(H ∼= a//Wa
∐

U a//Wa for an explicitly described

open U ⊂ a//Wa.

In Section 1.3.3 we explicitly compute the regular quotient in several cases of interest.

Description of the Regular Quotient via Comparison of Regular Centralizers

In this section, we give a first description of the regular quotient using a comparison of

regular centralizer group schemes for H and for the full normalizer NG(K). Throughout this

section, we will use subscripts to indicate in which group centralizers are taken; for example,

I
reg
H will denote the centralizers in the group H.

Let A ⊂ G× prss be the family over prs whose fiber over x ∈ prs is the maximal θ-split

torus Ax such that Lie(Ax) = zg(x)∩ p. (Note, the existence and uniqueness of such a torus

A ⊂ G is given in [31], Lemma 0.1.)

Moreover, we let F∗ ⊂ A denote the family over prs whose fiber over x ∈ prs is the

subgroup

{a ∈ Ax : a
2 ∈ Z(G)} ⊂ Ax

Recall from part (a) of Proposition 1.2.9 that, for a given choice of A, we have NG(K) =

F ∗ · K where F ∗ is chosen with respect to A. We use this to determine the structure of

I
reg
NG(K)

/I
reg
H .

Lemma 1.3.18. Fix a choice of x ∈ prs determining A and F ∗ ⊂ A. Moreover, let Z−

denote the subgroup of the center Z(G) on which θ acts by inversion.

1. We have an isomorphism over prs

(
I
reg
NG(K)

/Z− · IregK

)∣∣∣
prs

≃
∐

a∈F ∗/Z−·(F ∗∩K)

prs (1.3.2)
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2. The isomorphism (1.3.2) extends to an isomorphism

I
reg
NG(K)

/Z− · IregK ≃
∐

a∈F ∗/Z−·(F ∗∩K)

Ua (1.3.3)

where Ua → preg is the inclusion map for an open set prs ⊂ Ua ⊂ preg.

Proof. The inclusion Ireg
NG(K)

⊂ NG(K)× preg defines a map

I
reg
NG(K)

/Z− · IregK →
(
NG(K)/Z− ·K

)
× preg (1.3.4)

with target a constant group scheme with discrete fiber. For any fixed y ∈ prs, let Ay be

the fiber of A at y and F ∗
y ⊂ Ay be the fiber of the group scheme F∗ over y. Then, it is

clear from Proposition 1.2.9 that Ireg
NG(K),y

= F ∗
y ·Z− · IregK,y. Therefore, the fiber of the map

(1.3.4) at y is identified with the identity map

F ∗
y /Z− · (F ∗

y ∩K) → F ∗
y /Z− · (F ∗

y ∩K)

In particular, (1.3.4) is an isomorphism over the regular, semisimple locus, proving part (1).

For (2), we claim that the map (1.3.4) remains an injection over preg. In particular, this

amounts to the following claim:

Claim: Let y ∈ preg. For any g1, g2 ∈ I
reg
NG(K),y

, if g1 = hg2 for h ∈ K, then in fact

h ∈ I
reg
K,y.

Proof of Claim. Since g1 and g2 centralize y, we have

y = ad(hg2) · y = ad(h)y

Hence, h ∈ IG,y ∩K = I
reg
K,y.

It follows that the map (1.3.4) describes the quotient Ireg
NG(K)

/Z− · IregK as the disjoint
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union of open subsets of preg extending the sheets
(
NG(K)/Z− ·K

)
× prs.

Lemma 1.3.19. The group NG(K) acts transitively on the fibers of the map preg → p//K.

Proof. Theorem 1.3.12 reduces this to the NG(K) action on the zero fiber N reg
p . Theorem

1.2.37 proves this case.

Theorem 1.3.20. Consider the natural action of the constant group scheme NG(K) :=

NG(K)× p//K on preg over p//K.

1. A choice of Kostant-Rallis section κ : p//K → preg gives an identification

preg ≃ NG(K)/κ∗Ireg
NG(K)

,

as schemes over p//K.

2. The regular quotient preg(H is identified with the quotient

preg(H ≃
NG(K)/H

κ∗(Ireg
NG(K)

/I
reg
H )

=
NG(K)/Z− ·H

κ∗(Ireg
NG(K)

/Z− · IregH )

Proof. By acting on the image of the Kostant–Rallis section κ we gain a surjective morphism

NG(K) → preg. This clearly factors through an isomorphism NG(K)/κ∗Ireg
NG(K)

→ preg.

Part (2) then follows by considering the transitive NG(K) action on the right hand side

of the description of preg(H given in Theorem 1.3.12.

Remark 1.3.21. Since IregH and I
reg
NG(K)

are affine over p//H, it is tempting to think that

Theorem 1.3.20 implies that the map preg( H → p//H is affine. However, this is not the

case: As the Example 1.3.45 illustrates, nonseparated behavior can occur in codimension

greater strictly than 1.
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Reduction to the Simple, Simply Connected Case

We begin by reducing to the case of G simple, simply connected. The author is thankful to

S. Leslie for his theory of θ-compatible z-extensions (see Section 5 of [30], which dramatically

simplifies the exposition.

We begin by recalling the definition and existence of θ-compatible z-extensions. Recall

that a z-extension is a surjective homomorphism α : G̃→ G such that

• G̃ is connected, reductive over k with derived group simply connected, and

• ker(α) is a central, split torus in G.

Proposition 1.3.22. ([30] Prop. 5.3) There exists a z-extension α : G̃ → G together with

an involution θ̃ : G̃→ G̃ such that

1. There is a commutative diagram

G̃
θ̃ //

α
��

G̃

α
��

G
θ // G

2. Let Z̃ = Z(G̃) and Z = Z(G). Let N denote the kernel of the surjection

Z̃ → Z

The restriction α : G̃θ̃ → Gθ is surjective and its restriction

α−1(K) → K

is a z-extension with kernel N θ̃.

3. For every symmetric pair (G, θ,H) on (G, θ), put H̃ := α−1(H). There is an exact

sequence

1 → NH → H̃ → H → 1
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for NH = H ∩N connected, and (G̃, θ̃, H̃) is a symmetric pair on G̃.

4. Let Gsc be the simply connected cover of G with maximal torus T sc ⊂ Gsc. Then, one

can take G̃ = T sc×Z(Gsc)Gsc in the above parts. Moreover, for this choice of G̃, there

is a decomposition

G̃ = Z̃ ×
s∏

i=1

Gi ×
t∏

j=1

(G′
j ×G′

j) (1.3.5)

where Z̃ = Z(G̃) = T sc is the (θ stable) center of G̃, each Gi and G′
j is simple, and

θ restricts to an involution on each of the Gi for 1 ≤ i ≤ s and acts by the swapping

involution θ(g1, g2) = (g2, g1) on each product G′
j ×G′

j for 1 ≤ j ≤ t.

Following [30], we refer to z-extensions satisfying the conditions above as “θ-compatible

z-extensions.”

Remark 1.3.23. Note that the statement in [30] works rationally, e.g. it is not assumed that

k is algebraically closed.

We now give an application of the above to the regular quotient.

Theorem 1.3.24. Let (G, θ,H) be a symmetric pair. Let G̃ be as in Equation 1.3.5. For

each 1 ≤ i ≤ s, let Hi = Gi ∩ α−1(H). We denote with subscript i the corresponding daata

for the symmetric pair (Gi, θi, Hi). Then there is a Gm-equivariant isomorphism

(preg(H) ∼= ((Lie(Z(G)0) ∩ p)//(α−1(H) ∩ Z(G)0)×
∏
i

p
reg
i (Hi ×

∏
j

g′j//Gj

Proof. Since the action of H̃ on p factors through H with finite quotient, the regular locus of

these two actions agree. Furthermore, the group scheme of centralizers Ĩ in H̃ decomposes

as a product of centralizers in the subgroups Hi, so preg = z(g)×
∏

i p
reg
i ×

∏
j(g

′
j)
reg. This

42



gives a decomposition of stacks

preg/H̃ ≃
(
z(g)/(H ∩ Z(G)0)×

∏
i

p
reg
i /Hi ×

∏
j

(g′j)
reg/Gj

)
/NH .

where NH acts trivially, and moreover,

preg/H ≃ z(g)/(H ∩ Z(G)0)×
∏
i

p
reg
i /Hi ×

∏
j

(g′j)
reg/Gj .

The result now follows as the regular quotient respects products and is invariant under trivial

actions.

Reduction to Levi Subgroups

From now on, we assume that G is simple, simply connected. We describe in this section the

process of Levi induction needed to compute the gluing loci for the regular quotient. The

Levi induction we use is closely related to the degeneration used by S. Leslie in Section 5.1.1

of [30] termed the “descendant” of an element X ∈ a. We will first recall this definition and

give a root theoretic description of the Lie algebra of this Levi subgroup. Then, we will prove

a reduction result, see Proposition 1.3.37, which will prove invaluable for computations.

Definition 1.3.25. Fix a θ-Cartan a ⊂ p. For an element X ∈ a, the descendant of X is

the tuple (G◦
X , θ|G◦

X
, H ∩G◦

X) where G◦
X is the connected component of the stabilizer of X

in G.

Proposition 1.3.26. For X ∈ a, the descendant at X is a symmetric pair.

Proof. First, note that G◦
X is a Levi of G and hence is reductive. Since the adjoint action

preserves the Cartan decomposition, G◦
X is stable by the action of θ. It is trivial that H∩G◦

X

contains the connected component of the fixed point scheme KG◦
X

:= [(G◦
X)θ]◦. Moreover,
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for any h ∈ H ∩G◦
X , Ad(h) by definition lies in NG(K) = NG(G

θ) and so preserves (G◦
X)θ.

Hence, H ∩G◦
X is contained in the normalizer NG◦

X
((G◦

X)θ) = NG◦
X
(KG◦

X
).

Finally, we note that G◦
X is smooth as it is a Levi of G and the characteristic is assumed

to be good for G. For HX , take a character λ whose Lie algebra is the span of X. The

subgroup HX is the fixed points of the image of λ, which is a subgroup of multiplicative

type. Hence, by Proposition R.1.1 of [13], HX is smooth, and therefore any union of its

components is smooth. In particular, so is H ∩G◦
X .

We now give a root theoretic description of the descendant construction. Fix a maximally

θ split torus T of G containing maximal θ-split torus A. For X ∈ a, we define the subset of

restricted roots S ⊂ Φr by

S = {ν ∈ Φr : ν(X) = 0}

Note that the subset S is constant with respect to the stratification on a defined by inclusion

in root hyperplanes of a.

Definition 1.3.27. Let L = LX be the connected Levi subgroup of G whose Lie algebra is

the sum

l = lX = t+
∑

β∈r−1(S)

gβ

where r is the restriction map r : Φ → Φr ∪ {0} as in definition 1.2.5. We refer to L as a

distinguished Levi.

Proposition 1.3.28. The Levi L defined above is equal to G◦
X .

Proof. The action of Ad(X) on the root space gβ for β ∈ Φ is given by the restricted root

r(β). In particular, the centralizer gX of X in g is the sum of the root spaces gβ for which

r(β) ∈ ker(X) = S.

We denote KL, pL, aL, AL, etc. for the corresponding objects in the Levi L = G◦
X , and

HL := H ∩ L. Note that T ⊂ L, so that AL = A and aL = a. Furthermore,we have
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Wa,L ⊂ Wa is generated by the reflections across roots in S, and Φr,L = S ⊂ Φr. We will

relate the structure of the stack p/H to the stack pL/HL.

Remark 1.3.29. Note that if one takesH = K, it is not true in general thatHL = KL. For ex-

ample, consider the symmetric pair corresponding to the diagonally embedded SL2× SL2 ⊂

SL4 (see example 1.2.26). Then, one choice of Levi L of the above form corresponds to the

Lie algebra

l =


A B

B A

 : Tr(A) = 0

 .

One computes

K ∩ L =


g

g

 : det(g) = ±1

 .

In particular, K∩L is disconnected. By definition, KL = (Lθ)◦ = (K∩L)◦ is the digaonally

embedded copy of SL2.

We relate the Weyl groups and GIT quotients as follows.

Proposition 1.3.30. The little Weyl group Wa,L of the Levi L is a subgroup of Wa. Let

DL ⊂ a be the union of hyperplanes hα in a such that α ̸∈ Φr,L and let π : a → a//Wa be the

projection map. The map of GIT quotients

φL : a//Wa,L → a//Wa

is étale away from π(DL) ⊂ a//Wa.

Proof. Recall that Wa is generated by reflections given by roots in the restricted root system

Φr, and similarly for Wa,L with the restricted roots system for the Levi, Φr,L. [See Richard-

son, Lemma 4.5.] We claim that Φr,L is a subroot system of Φr corresponding to roots in

L. Indeed, by construction aL = a, and the root system of L with respect to a maximally
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θ-split torus T is a subroot system of G with respect to T . Therefore, restricting to a gives

a subroot system Φa,L of Φa. It follow that Wa,L ⊂ Wa is a subgroup.

Now, consider the map φL as above. The projection π factors through φL, giving covers

π and πL as below.

a

πL
��

π

%%

a//Wa,L φL
// a//Wa

As both sides are quotients of a, the ramification locus of φL is exactly those images π(X) ∈

a//Wa such that X ∈ aw for some w ∈ Wa \ Wa,L. But for any w ∈ Wa with minimal

presentation w = s1 . . . sn for simple reflections sj , the fixed locus is aw =
⋂
hj where hj

is the hyperplane fixed by sj . In particular, from our earlier description of Wa,L, it follows

that φL is ramified exactly on those π(a) such that a ∈ hα for some α ∈ Φr \ Φr,L.

Definition 1.3.31. Let φL, π, πL, and DL be as above. Let UL ⊂ a be the complement of

DL in a, and let VL denote the image of UL in a//Wa,L.

Let iL : pL → p be the inclusion map and let

p : p → p//H and pL : pL → pL//HL

be the projection maps. For any scheme S over a//Wa, we denote S|UL
:= S ×a//Wa

UL.

Lemma 1.3.32. The map iL restricts to a HL equivariant map

iL : p
reg
L |UL

→ preg|UL

In particular, there is a morphism

χL : p
reg
L (HL|UL

→ preg(H|UL
.
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Proof. For any X ∈ p−1
L (UL), (IG)X = (IL)X and hence (IHL

)X = (IH)X ∩ (IL)X . Hence

the map iL sends regular elements of p−1
L (π(UL)) ⊂ pL to regular elements of p. The result

follows.

Lemma 1.3.33. We have a canonical isomorphism i∗LI
reg|UL

≃ I
reg
L |UL

. In particular,

χ∗LJ |VL ≃ JL|VL.

Proof. Now, there is a map JL|UL
→ χ∗LJ from the inclusion HL ⊂ H. To show this is an

isomorphism on UL, it suffices to check on fibers. Let y ∈ UL have preimage x ∈ p−1
L (π(UL)).

Then, we can identify (JL)y = (IHL
)x and (φ∗J)y = (IH)x, where the result now follows.

Theorem 1.3.34. The morphism χL induces an isomorphism

p
reg
L (HL

∣∣
UL

→ preg(H
∣∣
UL

Proof. This follows from the description of the regular quotient in Theorem 1.3.20 combined

with the isomorphism of regular centralizers over UL in Lemma 1.3.33.

Theorem 1.3.35. There is a canonical isomorphism of stacks

ψ : p
reg
L /HL|UL

→ preg/H|UL

Proof. Recall that preg/H is a gerbe over preg( H banded by J , and similarly, pregL /HL is

a gerbe over p
reg
L ( HL banded by JL. Hence, to conclude, it suffices to note that the map

ψ|VL is a map of JL ≃ φ∗J gerbes over p
reg
L (HL.

To conclude, we will reduce to computations of regular nilpotent orbits. To do this we

will use Proposition 1.3.37.

Lemma 1.3.36. Let (G, θ) be a semisimple group with involution θ. Then the intersection
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of all root hyperplanes of the restricted root system is

⋂
α∈Φr

Hα = 0 ∈ a.

Proof. For every root hyperplane Hα in a, let Sα denote the set of all hyperplanes of t which

restrict to Hα. Let S denote the set of all hyperplanes in t which contain a. Note that for

every root hyperplane H ⊂ t, H ∩ a is either a root hyperplane in a or is all of a. Hence, S

and Sα as α varies gives a partition of all root hyperplanes of t. We conclude that

⋂
α∈Φr

Hα = a ∩
⋂

α∈Φr

Hα ⊂

 ⋂
H∈S

H

 ∩
⋂
α

 ⋂
H∈Sα

H

 =
⋂

H⊂t : root hyperplane
H = {0}

Proposition 1.3.37. Let (p, H) be a symmetric pair associated with (G, θ) for G a reductive

group. Let Y = ∩αHα ⊂ a be the intersection of all root hyperplanes in a. There is then an

isomorphism of stacks over p(Y ):

p/H ×a//Wa
p(Y ) ∼= Np/H × p(Y )

Restricting to regular elements gives:

preg/H ×a//Wa
p(Y ) ∼= N reg

p /H × p(Y )

Proof. Let G̃ = T sc ×Zsc
Gsc be the θ-compatible z-extension as in part 3 of Proposition

1.3.22 with center Z̃ = Z(G̃) and symmetric pair structure (G̃, θ̃, H̃). We will denote by p̃

the (−1) eigenspace of θ̃ on g̃ = Lie(G̃). Likewise, we let (Gsc, θsc, Hsc) denote the induced

symmetric pair structure on Gsc with psc the corresponding (−1) eigenspace in gsc. Then,
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from the proof of Theorem 1.3.24, we have

p/H ≃ ((Lie(Z(G)0) ∩ p)//(α−1(H) ∩ Z(G)0)× psc/Hsc

Therefore, by Lemma 1.3.36, we have p(Y ) ≃ ((Lie(Z(G)0) ∩ p)//(α−1(H) ∩ Z(G)0) × {0}

and the result follows.

We conclude the description of the enhanced quotient preg(H for G simple. Recall from

Theorem 1.3.12 that it suffices to describe the gluing on p̃//H explicitly. To describe the

gluing on the intersection of some hyperplanes ∩iHi, we take the Levi L associated to the

Hi. Then, by Theorem 1.3.34 and Proposition 1.3.37 the number of sheets of p̃//H over ∩iHi

is determined by the regular K-orbits of the nilpotent cone for L. This is determined by

the list in Proposition 1.2.34. For all simple groups except SOn× SOn ⊂ SO2n, there are at

most 2 regular nilpotent orbits, so it suffices to describe only the number of sheets in fibers

of the map preg(H → preg//H. For the SOn× SOn ⊂ SO2n case, one also needs to compute

the gluing pattern of the 4 sheets at the origin as it degenerates. Some results on this case

are given in Example 1.3.48.

More formally:

Theorem 1.3.38. Let (p, H) be a symmetric pair corresponding to a simple group G,such

that (K,G) ̸= (SO(n) × SO(n) ⊂ SO(2n)). Let U = ∪LUL, where UL as in Definition

1.3.31 and L ranges over the subgroups L of the form in Definition 1.3.27, such that N reg
pL

has a single regular HL-orbit3. We then have that preg( H ∼= a//Wa
∐

U a//Wa, and this

identification is Gm-equivariant.

Remark 1.3.39. We note that if Np has one irreducible component by Proposition 1.2.34 we

can just directly state that preg(H ∼= a//Wa.

3. We note that this can be worked out using Proposition 1.2.34, together with, if necessary, computing
π0(HL) and its action on irreducible components of NpL

.
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Proof of Theorem 1.3.38. This follows immediately from Theorem 1.3.12.

We note that the remaining case of (K,G) = (G1, G1 × G1) there is no nonseparrated

structure as shown in Example 1.3.42. Finally the following proposition show that the regular

semisimple locus is always in the open set U of Theorem 1.3.38

Proposition 1.3.40. The map preg( H → preg//H ≃ a//Wa is an isomorphism on the

complement of the image of all root hyperplanes in a.

Proof. The complement of hyperplanes in a//Wa is the space of semisimple, regular elements

ars ⊂ a. Let x ∈ preg lie over the image of s ∈ ars in ars//Wa. Then by Lemma 1.2.16 we

have the Jordan decomposition x = s+n. Since s is regular and n is regular nilpotent in its

centralizer, by Proposition 1.2.17 we must have n = 0. Then, the result follows as there is a

unique (closed) orbit of semisimple elements in each fiber of the map preg → a//Wa.

Theorem 1.3.41. Let (p, H) be a symmetric pair corresponding to a simple group G,such

that (K,G) ̸= (SO(n)× SO(n), SO(2n)).

Then p(H ∼= a//Wa
∐

U a//Wa where U is the complement of a closed subvariety which

is the union of intersections of root hyperplanes.

Proof. This follows immediately from Theorem 1.3.38 and Proposition 1.3.40.

Examples

Example 1.3.42. Consider the diagonal case G1
∆
⊂ G1 × G1 from Example 1.2.25. In this

case, we have an isomorphism of stacks

p/G1 → g1/G1
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by projecting onto the first factor. The latter quotient is well studied over the regular locus.

In particular, it is shown in [10, 35] that the map

g
reg
1 /G1 → g

reg
1 //G1

is a gerbe for the descent of IregG1
to g

reg
1 //G1. The regular quotient greg1 (G1 is therefore just

the GIT quotient greg1 //G1. We verify below that this agrees with our inductive construction.

Fix a maximal torus T in G1 and recall that a Cartan in p is given by

a = {(X,−X) : X ∈ t},

while the restricted root system agrees with the root system on G1. The distinguished Levi

subgroup associated to the sub root system (αi,−αi) is of the form L ≃ L1 × L1 for L1 the

connected Levi of G1 with

l1 = t⊕
∑
i

(g1)αi

The involution θ acts on L1 × L1 by swapping factors. But by Lemma 1.2.38, there is a

single regular nilpotent HL orbit for this form. Hence, there is no non-separated structure

anywhere on preg(H.

Example 1.3.43. We revisit Example 1.2.26. Recall H = K = GLn×GLn ⊂ GL2n = G,

a =


0 δ

δ 0

 : δ is diagonal

 ⊂


 0 C

D 0


 = p

and

Φr = {±(δ∗j ± δ∗k)|j ̸= k and 1 ≤ j, k ≤ n} ∪ {±2δ∗j |1 ≤ j ≤ n}

is a simple root system of type Cn. The little Weyl group has the form Wa = {±1}n ⋉ Sn,

with Sn permuting the dual basis δ∗j and {±1}n acting by changing the sign of the coordinates
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δ∗j .

Note also that if 2δ∗j = 2δ∗k = 0, then also ±δ∗j ± δ∗k = 0. Hence, we need only deal with

distinguished Levis associated to subroot systems S ⊂ Φr satisfying:

(∗) For every distinct 1 ≤ j < k ≤ n, either {±2δ∗j ,±2δ∗k} ̸⊂ S or else {±2δ∗j ,±2δ∗k,±δ
∗
j±

δ∗k} ⊂ S.

Now we see that any simple subroot system of Φr satisfying condition (∗) is Wa conjugate

to one of the following:

1. The subroot system Φr = {±δ∗j ± δ∗k : 1 ≤ j, k ≤ n1} for some n1 ≤ n. In this case,

l =





∗ ∗

η′ δ′

∗ ∗

δ′ η′


: δ′ and η′ and diagonal (n− n1)× (n− n1) matrices


so that L ≃ GLn1 ×T ′ for a torus T ′ of rank 2(n− n1).

2. The subroot system Φr = {±(δ∗j − δ
∗
k) : 1 ≤ j < k ≤ n1} for some n1 ≤ n. In this case,

l =





A B

η′′ δ′′

B A

δ′′ η′′


: δ′′ and η′′ are diagonal (n− n1)× (n− n1) matrices


so that L ≃ (GLn1 ×GLn1)×T ′′ for T ′′ a torus and the involution acting on GL2×GL2

by swapping factors. There is a unique nilpotent orbit in this case.

For an arbitrary subroot system S ⊂ Φr satisfying condition (∗), S is a product S1 × · · · ×

Sa × S′1 × · · · × S′b where Sj is Wa conjugate to a root system of type (1) and S′j is Wa
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conjugate to a root system of type (2). However, we note that condition (∗) immediately

implies that a = 1. Hence, we reduce to distinguished Levis associated with S1×S′1×· · ·×S′b
For such a root system, we have

L ≃ GL2n1 ×(GLm1 ×GLm1)× · · · × (GLmb ×GLmb)× T ′

for T ′ a torus of rank 2(n−
∑

j nj −
∑

kmk). We can see easily that

HL = (GLn1 ×GLn1)×
b∏

k=1

GLmk ×(T ′)θ

where (T ′)θ is a (connected) torus of rank (n −
∑

j nj −
∑

kmk). In particular, we see

that |N reg
pL

/HL| = 2 by comparing with the list in Proposition 1.2.34 for the first factor of

(GLn1 ×GLn1) ⊂ GL2n1 .

We hence conclude with a description of the regular quotient preg(K in this case.

Proposition 1.3.44. For H, p, and K as in this example, let V ⊂ a be the subscheme that is

the complement of all root hyperplanes for roots of the form ±2δ∗i . Then, we have preg(K ∼=

a//Wa
∐

U a//Wa, where U := V //Wa ⊂ a//Wa.

Proof. Follows immediately from the above computations and Theorem 1.3.41.

Example 1.3.45. Consider the split form SOn ⊂ SLn. If n is odd, there is only one nilpotent

orbit and the regular quotient and GIT quotient agree. We will assume therefore that n is

even. We have a = t is the diagonal Cartan inside p = symn (symmetric n × n matrices).

The restricted root system agrees with the root system for SLn and so is type An−1. Any

distinguished Levi is W = Wa conjugate to a block diagonal Levi

L = S(GLn1 × · · · ×GLnl) ⊂ SLn
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where nj ≥ 1 and
∑

j nj = n. It is easy to see that

HL = S(On1 × · · · ×Onl)

Recall that the symmetric pair SOnj ⊂ GLnj has 2 regular nilpotent orbits in the case where

nj is even and 1 when nj is odd (see Proposition 1.2.34). Without loss of generality, suppose

that n1, . . . , na are even while na+1, . . . , nl are odd.

If l > a (i.e. some nj is odd), then the quotient map

L = S(GLn1 × · · · ×GLnl) → GLn1 × · · · ×GLna =: L1

is surjective and carries HL to the subgroup

H1 := On1 × · · · ×Ona

(L1, H1) is a symmetric pair, and one checks that π0(H1) acts freely on components of N reg
pL1

.

In particular, comparing with list of Proposition 1.2.34, we see that

#(N reg
pL

/HL) = #(N reg
pL1

/H1) = 2a/2a = 1.

If l = a (i.e. all indices are even), then π0(HL) acts freely on the components of N reg
pL

and comparing with the list in Proposition 1.2.34 gives

#(N reg
pL

/HL) = 2a/2a−1 = 2.

We conclude:

Proposition 1.3.46. Let n be even, and let ϵ1, . . . , ϵn be coordinates for diagonal matrices,

so that a = t is the locus
∑

j ϵj = 0. Let EvenParn denote the set of even partitions of
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{1, . . . , n}, i.e. the set of decompositions {1, . . . , n} = S1 ⊔ · · · ⊔Sk with each |Si| even. Put

Zj1,...,jl = {ϵj1 = ϵj2 = · · · = ϵjl} ⊂ a

and ZS = ∩mZSm for S ∈ EvenParn.

Define V to be the complement of

∪S∈EvenParnZS ⊂ a

and let U = V //Wa ⊂ a//Wa. Then in this example, we have preg(K ≃ a//Wa
∐

U a//Wa.

Proof. This follows by Theorem 1.3.41 and the computations above.

Remark 1.3.47. In the statement of Proposition 1.3.46, one can replace EvenParn with only

those partitions {1, . . . , n} = S1 ⊔ · · · ⊔ Sl for which #Sj = 2 for all j. The open set U in

the Proposition has complement of codimension n− (n/2). Hence this gives an example of

a symmetric pair for which the gluing does not occur along the complement of a divisor.

Example 1.3.48. Consider the split form SO2n× SO2n ⊂ SO4n of Example 1.2.27. Recall

that restricted roots are of the form

Φr = {i(±δ∗j ± δ∗k) : j ̸= k, 1 ≤ j, k ≤ 2n}

This gives the root system of type D2n, which is simple and simply-laced when n ≥ 2 and is

the product D2 = A1 × A1 when n = 1. Recall that for n ≥ 2 this is the unique family of

simple symmetric pairs up to isogeny for which there are 4 regular nilpotent orbits.

For inductive purposes, we will need to describe the case when n = 1: When n = 1, the

root system D2 is not simple, and the isogeny of Theorem 1.3.24 is the map

ξ : SL2× SL2 → SO4
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with θ lifting to the involution θ(g) = g−t on each copy of SL2, and

ξ−1(SO2× SO2) = SO2× SO2 ⊂ SL2× SL2 .

In particular, the regular quotient can be described as a product:

Proposition 1.3.49. The form SO2× SO2 ⊂ SO4 has regular quotient given by the product of

regular quotients

p(K = p1(K1 × p1(K1

where (G1, θ1, H1) = (SL2, g 7→ g−t, SO2).

Now, consider the case SO2n× SO2n ⊂ SO4n for n ≥ 2. In this case, the root system is

type D2n, is simple, and is simply laced. The little Weyl group is Wa = {±1}n−1⋉Sn, where

Sn acts on the coordinates δ∗j by permuting the indices j and {±1}n−1 acts by changing an

even number of signs on the δ∗j . Any simple root subsystem of Φr is Wa conjugate to one of

the following:

1. S = {i(±δ∗j ± δ∗k) : 1 ≤ j < k ≤ m1} for some m1 ≤ 2n. The Levi associated to this

root subsystem is

l =





A B

02n−m1
δ′

−Bt A

−δ′ 02n−m1


:
A ∈ som1 , and δ′ is a diagonal

(2n−m1)× (2n−m1) matrix


giving L = SO2m1

×T ′ for T ′ a split torus and θ acting on SO2m1
by conjugation by

diag(Im1 ,−Im1).

2. S = {±i(δ∗j − δ∗k) : 1 ≤ j < k ≤ m1} for some m1 ≤ 2n. The Levi associated to this S
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is

l =





A B

02n−m1
δ′

−B A

−δ′ 02n−m1


:

A ∈ som1 , B ∈ symm1
, and δ′

is a diagonal (2n−m1)× (2n−m1) matrix


giving L ≃ GLm1 ×T ′ for T ′ a split torus and θ acting on GLm1 by g 7→ g−t.

3. S = {±i(δ∗j + δ∗k) : 1 ≤ j < k ≤ m1} for some odd m1 < 2n. The Levi associated to

this root subsystem is

l =





A B

02n−m1
δ′

−B A

−δ′ 02n−m1


:

A ∈ som1 , B = B‡, and δ′ is

a diagonal (2n−m1)× (2n−m1) matrix


where B‡ =

(
(−1)ijbji

)
1≤i,j≤m1

. This again gives L ≃ GLm1 ×T ′.

Any arbitrary subroot system of Φr is a product S = S1×· · ·Sl where each Sj is conjugate

to one of the three above root subsystems. Of the above, types (2) [when m1 is even] and

(1) can contribute nontrivial regular nilpotent orbits. Suppose that

S =
a∏

j=1

S
(1)
j ×

b∏
j=1

S
(2)
j ×

c∏
j=1

S
(3)
j

where S(k)j has rank m(k)
j .

Let H(2)
L =

∏b
j=1Om

(2)
j

and H(3)
L =

∏b
j=1Om

(3)
j

. Then, we compute

HL =
(∏a

j=1Om
(1)
j

× S

(∏a
k=1Om

(1)
k

×H
(2)
L ×H

(3)
L

))
∩
(
S

(∏a
j=1Om

(1)
j

×H
(2)
L ×H

(3)
L

)
×
∏a

k=1Om
(1)
k

)
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with the intersection being taken inside

a∏
j=1

(O
m

(1)
j

×O
m

(1)
j

)×H
(2)
L ×H

(3)
L

We recall that SOmj ⊂ GLmj has 1 regular, nilpotent K orbit when mj is odd and 2 when

mj is even, and that SOmj × SOmj ⊂ SO2mj
has 2 regular nilpotent orbits when mj is odd

and 4 when mj is even. Define the following invariants:

Let Ne
1 be the number of Levis of type (1) with mj even and No

1 the number of Levis of

type (1) with mj odd. Let Ne
2 and No

2 be defined similarly for type (2) Levis, and N3 the

number of type (3) Levis. Let ϵ1 be zero if both No
1 = 0 and Ne

1 ̸= 0 and 1 otherwise, and

let ϵ2 be zero if
∑

jmj = 2n and No
2 = N3 = 0 and 1 otherwise. Then, we can count the

nilpotent orbits by studying the components of HL. We find:

#(N reg
pL

/HL) = 22N
e
1+No

1+Ne
2 /(2N

e
1+ϵ1−1 · 2N

e
1+No

1+Ne
2+ϵ2−1) = 22−ϵ1−ϵ2

For example, for SO4× SO4 ⊂ SO8, we have:

1. There are 4 sheets over the loci:

(i) Fix an ordering ij of {1, 2, 3, 4}. {δ∗i1 = δ∗i2 = 0, δ∗i3 = ±δ∗i4}, i.e. strata corre-

sponding to distinguished Levis HL ⊂ L that are W conjugate to (SO2× SO2)×

SO2 ⊂ SO4×GL2.

(ii) The origin {δ∗i = 0 for all i}, i.e. the strata corresponding to the distinguished

Levi SO8.

2. There are 2 sheets over the loci:

(i) Fix an ordering ij of {1, 2, 3, 4}, and fix signs ϵj ∈ {±1}. {δ∗ij = ϵjδ
∗
ij+1

: j =

1, 2, 3}, i.e. strata corresponding to distinguished Levis HL ⊂ L which are W -

conjugate to SO4 ⊂ GL4.
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(ii) Fix ij an ordering of {1, 2, 3, 4} and signs ϵ1, ϵ2 ∈ {±1}. {δ∗i1 = ϵ1δ
∗
i2
, δ∗i3 = ϵ2δ

∗
i4
},

i.e. strata corresponding to distinguished Levis HL ⊂ L which are W conjugate

to S(O2 ×O2) ⊂ GL2×GL2.

3. 1 sheet over all other strata.

Note that the above list allows us to reduce to only Levis conjugate to (SO2× SO2)×SO2 ⊂

SO4×GL2. Note that the regular quotient of this symmetric pair is given by the regular

quotient of SO2× SO2 ⊂ SO4, whose gluing pattern was studied above.

Example 1.3.50. Consider the more general case of SOm× SO2n−m ⊂ SO2n from Example

1.2.28. Note that this is split for m = n (see previous example for this case with m even)

and quasi-split for m = n− 1. Note furthermore that if m were odd, then there would be a

single regular, nilpotent orbit for this pair, and the regular quotient would be equal to the

GIT quotient. We will therefore consider only the case where m is even. The restricted root

system for this pair is given by

Φr = {i(±δ∗j ± δ∗k) : 1 ≤ j < k ≤ m} ∪ {±iδ∗j : 1 ≤ j ≤ m}.

This is a simple root system of type Bm, and the little Weyl group Wa = {±1}m ⋉ Sm

acts by permutations and sign changes on the δ∗j , 1 ≤ j ≤ m. Note that we again have a

condition on subroot systems of Φr that can arise as the set of roots vanishing a collection

of hyperplanes in a. Namely,

(∗) For every distinct 1 ≤ j < k ≤ m, either {±iδ∗j ,±iδ
∗
k} ̸⊂ S or else {±iδ∗j ,±iδ

∗
k, i(±δ

∗
j±

δ∗k)} ⊂ S.

A simple root subsystem S ⊂ Φr satisfying condition (∗) is Wa conjugate to one of the

following:

1. {i(±δ∗j ± δ∗k) : 1 ≤ j < k ≤ m1} ∪ {i(±δ∗j ) : 1 ≤ j ≤ m1} for some m1 ≤ m. This has

distinguished Levi given by L ≃ SO2(m1+n−m)×T ′ where T ′ is a (not split) torus, and
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θ acts on SO2(m1+n−m) by conjugation by diag(Im1,2n−2m−m1
).

2. {±i(δ∗j − δ∗k) : 1 ≤ j < k ≤ m1} for some m1 ≤ m. This has associated Levi given

by L = GLm1 ×T ′ where T ′ is a (nonsplit) torus and θ acts on GLm1 by the split

involution θ(g) = g−t.

An arbitrary subroot system satisfying (∗) is a product of at most one Levi of type (1) and

an arbitrary number of Levis of type (2). There are two sheets over the strata:

• Fix m1, . . . ,mr such that each mk is even and
∑

lml = 2n. The Wa orbit of {δ∗j =

0: 1 ≤ j ≤ m1} ∩
⋂r−1
l=2 {δ

∗
j = δ∗k : ml + 1 ≤ j < k ≤ ml+1}.

• Fixm1, . . . ,mr such that eachmk is even and
∑

lml = 2n. TheWa orbit of
⋂r−1

l=1 {δ
∗
j =

δ∗k : ml + 1 ≤ j < k ≤ ml+1}.

and map p(K → p//K is an isomorphism elsewhere.

Example 1.3.51. Consider the case of SOm× SO2n+1−m ⊂ SO2n+1, m ≤ n, of Example

1.2.29. Recall that the root system is the simple type Bm root system

Φr = {i(±δ∗j ± δ∗k) : 1 ≤ j < k ≤ m} ∪ {±iδ∗j : 1 ≤ j ≤ m}.

The little Weyl group Wa = {±1}m⋉Sm acts on Φr by permutation and sign change on the

δ∗j . Note that by Proposition 1.2.34, there is a unique regular, nilpotent K orbit in p when

m is odd and two when m is even. We therefore restrict to the case when m is even.

Note also that if iδ∗j = iδ∗k = 0, then also i(±δ∗j ± δ∗k) = 0. Hence, we need only deal with

distinguished Levis associated to subroot systems S ⊂ Φr satisfying:

(∗) For every distinct 1 ≤ j < k ≤ n, either {±iδ∗j ,±iδ
∗
k} ̸⊂ S or else {±iδ∗j ,±iδ

∗
k, i(±δ

∗
j±

δ∗k)} ⊂ S.

Any simple subroot system of Φr is Wa conjugate to one of the following:
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1. {i(±δ∗j ± δ∗k),±iδ
∗
j : 1 ≤ j < k ≤ m1} for some m1 ≤ m. The associated Levi

for this subroot system is L ≃ SO2(m1+n−m)+1×T ′ for T ′ a torus and θ acting on

SO2(m1+n−m)+1 by conjugation by the matrix

Im1,m1+2(n−m)+1 = diag(Im1 ,−Im1+2(n−m)+1).

2. {i(±δ∗j −δ
∗
k) : 1 ≤ j < k ≤ m1} for some m1 ≤ m. The associated Levi for this subroot

system is L ≃ GLm1 ×T ′ for T ′ a torus, and θ acting on GLm1 by θ(g) = g−t.

An arbitrary subroot system of Φr is a product of Levis of type (1) and (2) with at most

one type (1) Levi appearing. There are 2 sheets precisely over the following strata in a//Wa:

• Fix m1, . . . ,mr such that each mk is even and
∑

lml = 2n. The Wa orbit of {δ∗j =

0: 1 ≤ j ≤ m1} ∩
⋂r−1
l=2 {δ

∗
j = δ∗k : ml + 1 ≤ j < k ≤ ml+1}.

• Fixm1, . . . ,mr such that eachmk is even and
∑

lml = 2n. TheWa orbit of
⋂r−1

l=1 {δ
∗
j =

δ∗k : ml + 1 ≤ j < k ≤ ml+1}.

and the map p(K → p//K is an isomorphism elsewhere.

Example 1.3.52. Consider the split form GLn ⊂ Sp2n of example 1.2.30. The restricted root

system agrees with the usual root system, which is type Cn. We use the presentation

Φr = {±δ∗j ± δ∗k : 1 ≤ j < k ≤ n} ∪ {±2δ∗j : 1 ≤ j ≤ n}

for the root system, where the dual basis δ∗j is chosen with respect to the coordinate vectors

for the Cartan a in example 1.2.30. The little Weyl group Wa = W = {±1}n ⋉ Sn acts on

Φr by letting Sn act by permuting the δ∗j and {±1}n act by sign changes on the δ∗j .

Note also that if 2δ∗j = 2δ∗k = 0, then also ±δ∗j ± δ∗k = 0. Hence, we need only deal with

distinguished Levis associated to subroot systems S ⊂ Φr satisfying:
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(∗) For every distinct 1 ≤ j < k ≤ n, either {±2δ∗j ,±2δ∗k} ̸⊂ S or else {±2δ∗j ,±2δ∗k,±δ
∗
j±

δ∗k} ⊂ S.

Now we see that any simple subroot system S of Φr satisfying condition (∗) is Wa

conjugate to one of the following:

1. {±δ∗j ± δ∗k : 1 ≤ j < k ≤ n1} ∪ {±2δj : 1 ≤ j ≤ n1} for some n1 ≤ n. The associated

Levi has

l =





∗ ∗

0 δ′

∗ ∗

δ′ 0


: δ′ is a diagonal (n− n1)× (n− n1) matrix


giving L ≃ Sp2n1 ×T

′ for T ′ a split torus and θ acting on Sp2n1 by conjugation by

diag(In1 ,−In1).

2. {±(δ∗j − δ∗k) : 1 ≤ j < k ≤ n1} for some n1 ≤ n. The associated Levi has

l =





A B

0n−n1 δ′

B −At

δ′ 0n−n1


:

A ∈ son1 , B ∈ symn1 , and δ′ is

a diagonal (n− n1)× (n− n1) matrix


giving L ≃ GLn1 ×T ′ where T ′ is a split torus and θ acts on GLn1 by the split form

g 7→ g−t.

An arbitrary root subsystem of Φr satisfying (∗) is a product of the above types, with at

most one factor of type (1) appearing. In particular, the strata of a//Wa with two sheets are

the following:
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1. For any subset T ⊂ {1, . . . , n}, {δ∗j = 0: j ∈ T}. These are the strata corresponding

to Levis of type (1).

2. Fix the following data: Even integers nk such that
∑

k nk = n; an ordering ij of the

numbers {1, . . . , n}; signs ϵj ∈ {±1}. Then, consider the strata

⋂
k

δ∗ij = ϵjδ
∗
ij+1

:

 k∑
l=1

nl

+ 1 ≤ j ≤
k+1∑
l=1

nl

 .

This corresponds to Levis which are products of type (2) Levis L ≃
∏

k GLnk where

all the nk are even.

1.3.4 Galois Description of J for Quasi-split Symmetric Pairs

For the results of this section, we restrict to the case of quasisplit symmetric pairs. We will

denote c = p//H ≃ a//Wa. In particular, by Proposition 1.2.21, we assume that the regular

centralizer group scheme Ireg = I
reg
H → preg is abelian, and hence descends to a smooth,

commutative group scheme J → c. Our goal in this section is a Galois description of the

regular centralizer group scheme J for quasisplit symmetric pairs. More precisely, following

the skeleton of Section 2.4 in [35], we seek a flat cover

π : c̃ → c,

which is with group Wc̃ acting on the centralizer group scheme C = CH(a), such that

J embeds as an open subgroup scheme of the Weyl restriction Res̃cc(̃c × CH)Wc̃ . Such a

description was the objective of Section 5.1 of [16] and Section 4 of [29] using cameral covers

modeled on the flat cover a → c, which is generically Galois with group Wa. However, this

point of view is inadequate for general results on regular centralizers, as illustrated by the

following example.
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Example 1.3.53. Consider the symmetric pair on G = SL3 given by the involution θ conju-

gating by

1

−I2

 with H = S(Gm ×GL2) embedded block diagonally. We choose

a =




δ 0

δ

0

 : δ ∈ k

 ≃ A1,

so that its centralizer is

CH = CH(a) =




x

x

y

 : x2y = 1


One can verify that Wa ≃ {±1} acts trivially on C. Hence, Resac (C × a)Wa = C × c is the

constant group scheme. It is trivial to compute the fiber of π0(JH) at 0 is µ3 while the fiber

of Resac (C×a)Wa = C×c is connected everywhere. Hence, JH cannot be an open subscheme

of Resac (C × a)Wa .

To produce a more descriptive cover, we will work with a fundamentally different object:

Instead of modeling our cover off a Grothendieck-Springer resolution that classifies certain

Borels of the group G, we work with a “parabolic cover” classifying certain parabolics of the

subgroup H.

Relations Between Weyl groups

We begin by discussing some various Weyl groups that will emerge in later sections and the

relationships between them. Fix a fixed maximal θ-split torus T containing a maximally

θ-split torus A. We define C = CH(A). The connected component C◦ is a (not necessarily

maximal) torus of H. Let WC = NH(C◦)/ZH(C◦) be the Weyl group of C◦ in H.
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Lemma 1.3.54. (1) There are inclusions NH(A) ⊂ NH(C) and CH(A) ⊂ CH(C).

(2) There is a canonical map ξ : WA → WC .

Proof. Since the form is quasisplit, Proposition 1.2.21 implies that C◦ ⊂ CH(A) ⊂ T . In

particular, CH(C◦) is abelian and since C◦ ⊂ CH(A), we have

CH(A) ⊂ CH(CH(A)) ⊂ CH(C).

Moreover, it is elementary to see that NH(A) ⊂ NH(CH(A)◦). Since conjugation preserves

the identity component of CH(A), we conclude that NH(A) ⊂ NH(C).

The above implies that there is a well-defined map ξ : WA → WC .

Remark 1.3.55. We will denote the image of the morphism ξ above by Wim ⊂ WC . In all

classical cases, Wim = WC ; that is, ξ is surjective. The author conjectures that this is true

in general, though it has not been checked for exceptional types.

Definition 1.3.56. Let Wker ⊂ WA be the kernel of the map ξ : WA → WC constructed

above.

Lemma 1.3.57. The projection map π : a → c as well as its subcover a//Wker → c are finite

and flat.

Proof. By the assumption on the characteristic, the characteristic p of the field does not

divide |Wker| and so a//Wker is Cohen-Macaulay, see 6.4.6 of [6]. Since c is regular, both

claims follow by Miracle Flatness.

Definition and Geometry of Parabolic Covers

We begin with a preliminary lemma relating borels/parabolics of H to those of G.

65



Lemma 1.3.58. Any Borel B of H is the intersection BG ∩H for some θ-stable Borel BG

of G. Moreover, suppose we have a Levi M ⊂ H of H and suppose that there exists a Levi

MG ⊂ G such that MG ∩ H = M . Then, there exists parabolics Q ⊂ H with Levi M and

QG ⊂ G with Levi MG such that for any parabolic P of H conjugate to Q, there exists a

parabolic PG of G conjugate to QG such that P = PG ∩H.

Proof. We begin with the statement on Borels, first showing that the intersection any θ-stable

Borel of G with H is a Borel of H. Let BG be a θ-stable Borel of G and put B = BG ∩H.

It is clear that B is solvable; we must show that H/B is projective, or equivalently that

H/B ≃ H ·BG ⊂ G/BG is a closed embedding. We claim that, in fact, H ·BG = (G/BG)
θ.

Let B′
G be another θ-stable Borel of G, and let g ∈ G be such that g · BG = B′

G. Applying

θ gives θ(g) ·BG = B′
G, so that g−1θ(g) ∈ NG(BG) = BG and further

g−1θ(g) ∈ {b ∈ BG : θ(b) = b−1}.

Recall that the image of the morphism G→ G sending g 7→ g−1θ(g) is precisely those g in G

such that θ(g) = g−1. As BG is θ-stable, the image of the morphism BG → BG is therefore

the intersection

{g ∈ G : θ(g) = g−1} ∩BG = {b ∈ BG : θ(b) = b−1},

and so there exists b ∈ BG so that g−1θ(g) = b−1θ(b). We have gb−1 ·BG = B′
G while also

(gb−1)−1θ(gb−1) = b(g−1θ(g))θ(b)−1 = b(b−1θ(b))θ(b)−1 = 1.

We conclude that BG and B′
G are Gθ conjugate. Hence, Gθ · BG = (G/BG)

θ and since the

flag variety is invariant under central isogeny, also H ·BG = (G/BG)
θ. Now, since the fixed

locus of an algebraic involution is closed, we conclude that BG ∩H is Borel.
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Since all Borels of H are conjugate under K, and since K conjugacy preserves θ-stability,

we conclude that every Borel of H is the intersection of a Borel of G with H.

Now, suppose we have a Levi M ⊂ H of H and suppose that there exists a Levi MG ⊂ G

such that MG ∩ H = M . Choose any parabolic QG of G with Levi factor MG, and put

Q = QG ∩H. We must show first that Q is a parabolic with Levi M . Let BG ⊂ QG be a

Borel in QG and B = BG ∩H the corresponding Borel of H. Since we have a commutative

diagram

H/B //

��

H/Q

��

G/BG
// G/QG

with the horizontal arrows being surjective and the left vertical arrow being a closed immer-

sion, it follows that H/Q is a closed subvariety of G/QG. In particular, H/Q is projective,

and Q is a parabolic in H. That the Levi factor of Q is M follows from intersecting the

decomposition QG =MG · UG where UG is the unipotent radical of QG.

Now, for any parabolic P of H conjugate to Q by h ∈ H, we may take the corresponding

conjugate parabolic h ·QG of G. The result follows.

We now introduce the central object of study; the parabolic cameral cover.

Definition 1.3.59. Define the Levi subgroup M := CH(C◦)◦ of H and MG := ZG(C
◦)◦

denote the analoguous Levi of G.

Let Q and QG be parabolics of H and G, respectively, satisfying the conditions of Lemma

1.3.58 for the Levis M ⊂MG.

Remark 1.3.60. Note that M , MG are well defined up to conjugation by H. The parabolics

Q and QG may involve further choice as parabolics with fixed Levi type are not necessarily

conjugate.
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Definition 1.3.61. Fix the data of Definition 1.3.59. Then, let

p̃reg =

(X,P ) :
X ∈ preg, Lie(P ) ⊃ Ck(Ck(X)) and P is a

parabolic of H which is H conjugate to Q


and denote by πp : p̃reg → preg the projection map. We denote by p̃rs = p̃reg|prs .

Proposition 1.3.62. Let WH,M = NH(M)/M denote the relative Weyl group of M . There

is a map p̃rs → a//Wker ×Wa/Wker
WH,M = a×Wa

WH,M fitting into a Cartesian diagram

p̃rs a×Wa
WH,M

prs p//H a//Wa
∼=

Proof. Let ãreg = π−1
p (areg) be the closed subscheme of p̃reg over the subscheme areg ⊂ prs.

Then, we have a projection map ãreg → areg.

The relative Weyl group WH,M acts on the set of all parabolics of H with Levi M , and

the set of such parabolics conjugate to Q is a WH,M torsor under this action.

The map areg ×WH,M → ãreg sending (X,w) 7→ (X,w ·Q) is an isomorphism, and the

resulting diagram

ãreg areg ×WH,M a×Wa
WH,M

areg p//H a//Wa

∼=

∼=

with the top right arrow given by quotienting by the diagonal action of Wa, is commutative

and Cartesian.

Recall from Lemma 1.2.18 that H · areg = prs. The H-orbit H · (ãreg) → prs is therefore
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a surjective WH,M cover. Since there is an inclusion of WH,M covers

H · (ãreg) ↪→ p̃rss

we conclude that this map is an isomorphism. In particular, since the map ãreg → a ×Wa

WH,M is ZH(areg) equivariant, it extends to a map

prs : p̃rs → a×Wa
WH,M

by taking

prs(h · γ) = prs(γ).

This map is H invariant, and hence the diagram

p̃rs a×Wa
WH,M

prs p//H a//Wa
∼=

is a Cartesian square.

We now seek to extend Proposition 1.3.62 over the regular locus. For this, we will need

Lemma 1.3.65, which demonstrates the structure of the parabolic cover over the regular

nilpotent locus. We begin with some preliminary lemmas.

First, let us set some notation. Fix e ∈ N reg
p . We will be interested in the fiber of πp

over e. Let BG be the unique Borel in G such that e ∈ Lie(BG), and let TG ⊂ BG be the

unique maximal torus of BG. Note that BG is necessarily θ stable, and hence TG contains

a maximal torus TH of H. Choose a so that C = CH(a) ⊂ TH , and let SH denote the set

of simple roots of H with respect to TH and the Borel BG ∩H (which is Borel by the proof

of Lemma 1.3.58). Denote by V ⊂ SH the set of simple roots of H which are trivial on C.

69



We furthermore fix pinnings {egα}α∈Φ and {ekα} of the groups G and H with respect to

the choice of tori TG ⊃ TH , respectively.

Lemma 1.3.63. For all simple quasisplit forms except possibly the quasisplit form on E6,

we have:

1. The nilpotent

ẽ =
∑
α∈SG

e
g
α

lies in p.

2. Consider the nilpotent element

e′ :=
∑

α∈SH\V
ekα ∈ h

The nilpotents ẽ ∈ p and e′ ∈ h commute.

Proof. We proceed case-by-case through the classification of quasisplit simple symmetric

pairs and some explicit computations. As the definitions of e, e′ do not depend on isogeny

class or center, we further assume that all pairs are of the form (G, θ,K) for G simple

semisimple.

In the case of any split pair (G, θ,K), we have that C = Z(G) ∩ K, and so V = SK .

Hence, e′ = 0 and the result is trivial.

In the case of (G, θ,K) = (SL2n, θ, S(GLn×GLn)) from example 1.2.26, we have TK the

set of diagonal matrices, and

ẽ =

 0 In

Nn 0

 where Nn =



0

1 0

1 0

. . . . . .

1 0


is n× n
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On the other hand, V = ∅ and

e′ =

Nn

Nn


It is easy to check [ẽ, e′] = 0.

In the case of (G, θ,K) = (SL2n+1, θ, S(GLn×GLn+1)), we have TK is again the diagonal

matrices, and

ẽ =


0⃗ In

In

0⃗t

 where 0⃗ is the n× 1 zero vector.

Then, again V = ∅ and

e′ =

Nn

Nn+1


It is again an easy check that [ẽ, e′] = 0.

Now consider the case (G, θ,K) = (SO2n+2, θ, SOn × SOn+2) of example 1.2.28, with θ

given by

θ

 A B

−Bt D

 =

A −B

Bt D


In this case, we take

TG =





a1

−a1

a2

−a2
. . .

an+1

−an+1



: aj ∈ k×


When n is even, this gives TK = TG while when n is odd, TK is the n − 1 dimensional

subtorus given by a(n+1)/2 = 0. We divide into cases based on the parity of n: If n is even,
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we get:

ẽ =

 0 B

−Bt 0

 where B =



i 1 i −1

−1 i 1 i

i 1 i −1

−1 i 1 i

. . . . . .

i 1 i −1

−1 i 1 i

i 1 2i 0

−1 i 2 0



is n× (n+ 1)

Moreover, V consists of all but two roots of SOn+1, i.e.

e′ =



0n

0n−2

0 2

0 2i

0 0

−2 −2i



So that [ẽ, e′] = 0.

In the case of n odd, we instead get

ẽ =

 0 B

−Bt 0

 where B =



0 i 1 i −1

0 −1 i 1 i

i 1 i −1

−1 i 1 i

. . . . . .

i 1 i −1

−1 i 1 i

2i 2



is n× (n+ 1)
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Again, V consists of all but two roots of SOn+1, and we have

e′ =



0n

0n−2

0 2 1

0 2i i

0 0

−2 −2i

−1 −i



We can again verify the commuting property.

The only remaining simple, semisimple quasisplit involution is the quasisplit form on

E6.

Lemma 1.3.64. Let e′ =
∑

α∈SH\V e
k
α ∈ Np for SH a set of simple roots of H and V ⊂ SH .

Then one can choose an associated cocharacter λ′ (See Definition 1.6.3 and Lemma 1.6.5.)

such that CH(λ′) = CH(h′) for

h′ =
∑

α∈SH\V
α ∈ h

In each H conjugacy class of parabolics P of H, there is a unique parabolic P such that

Lie(P ) ⊃ Ch(e
′) and P has Levi factor CH(λ′).

Proof. First, we note that h′ satisfies the sl2 relation

[h′, e′] = 2e′

Similarly, it is elementary to check that the cocharacter λ′ =
∏

α∈SH\V α is associated to

e′, and that CH(λ′) = CH(h′).

A parabolic P in each conjugacy class of parabolics of H with Levi factor L = CH(λ′) is

determined by a choice of polarization of the root system generated by SH \V . In particular,

we note that for the choice of polarization agreeing with the polarization determining SH ⊂
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ΦH , we have Lie(P ) ⊃ Ch(e
′) and this P is unique with this property.

Lemma 1.3.65. We keep notation as in Definition 1.3.59. Let G satisfy condition (∗).

For any regular, nilpotent element e ∈ N reg
p , there exists a parabolic P of H so that P is

conjugate to Q and Lie(P ) ⊃ Ch(Ch(e)). Moreover, there are finitely many parabolics P

satisfying these properties.

Proof. We may assume that G is simple of type not E6. Moreover, as the fibers of πp are

invariant with respect to the H action, we may reduce to the case e = ẽ in the notation of

Lemma 1.3.63. For such elements, we have e′ ∈ Ch(ẽ), and so Ch(e
′) ⊃ Ch(Ch(ẽ)). Now, by

Lemma 1.3.64 applied for H, there is a unique parabolic P of H containing Ch(e
′) with the

Levi factor Ch(λ
′). But we can compute

Ch(λ
′) = Ch

 ∑
α∈SH\V

α

 = Ch(C
◦) =M.

So the existence is proved.

For the finiteness condition, we note that we can also apply the above argument to

show that there exist parabolics PG of G which are H conjugate to QG and which contain

Cg(Ch(e)). By Lemma 1.3.58, each parabolic P of H is obtained by intersecting one of these

PG with H. In particular, the number of parabolics P of H satisfying the conditions of the

Lemma is bounded by the number of parabolics PG of G satisfying the conditions of the

Lemma. Since e ∈ Lie(PG) for any such PG, it follows that each PG contains the unique

Borel BG whose Lie algebra contains e. As there are finitely many parabolics of fixed type

extending a Borel, finiteness follows.

Theorem 1.3.66. The map p̃reg → preg is quasifinite, and there is an action of H on p̃reg

such that the GIT quotient

c̃ := p̃reg//H
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fits into a Cartesian diagram

p̃reg

��

// c̃

��

preg // c

and the map c̃ → c is finite with the components of c̃ indexed by WH,M/WC , each isomorphic

to the finite flat cover a//Wker → c.

Proof. We first prove the map p̃reg → preg is quasifinite. Let x ∈ preg and consider the

Jordan decomposition x = s + n as in Lemma 1.2.16. Let L be the distinguished Levi G◦
s.

Then, there exists a minimal parabolic PL ⊂ L such that PL is conjugate to a fixed parabolic

QL ⊃ CHL
(C)◦ by Corollary 1.3.65. In particular, the Levi factor for PL has

Lie(ML) = ChL(ChL(n)) = ChL

(
Ch(s) ∩ Ch(n)

)
= ChL(Ch(x)) ⊂ Ch(Ch(x)) = Lie(M)

and since there exist finitely many parabolics P conjugate to Q extending the parabolic PL

we conclude the fiber over x is finite.

Observe also that p̃reg → preg factors through

p̃reg ⊂ preg ×H/Q→ preg

and so is projective. In particular, we also deduce that the map p̃reg → preg is finite. In

particular, we deduce a unique extension of the morphism

(areg ×Wa
WH,M )×a//Wa

prs → p̃rs

constructed in Proposition 1.3.62 to a surjective map

ξ : (a×Wa
WH,M )×a//Wa

preg → p̃reg
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By Zariski’s Main Theorem, this map induces isomorphisms on each irreducible component

(a×Wa
WC)×a//Wa

preg = (a//Wker)×a//Wa
preg ≃ p̃

reg
[w]

In particular, the map ξ constructed above is equivariant with respect the action of the group

H, and hence, the GIT quotient p̃reg//H is a cover of c. We will denote c̃ := p̃reg//H. The

resulting properties of the map

c̃ → c

are now immediate.

Galois Description of Regular Centralizers.

For the purposes of this section, we restrict to the setting of quasisplit symmetric pairs

with connected regular centralizers. Due to the reliance on Lemma 1.3.65, we exclude the

quasisplit form on E6, though we expect the results of this section should extend to this

case.

Let Par → p̃reg denote the universal parabolic over p̃reg whose fiber over a k-point (x, P )

of p̃reg is the parabolic P . For each parabolic P , we have a projection P → MP := P/UP

to its Levi quotient. Let M → p̃reg be the universal Levi and

π : Par → M

the projection map.

Lemma 1.3.67. Let Z(M) denote the subgroup scheme of M whose fiber over (x, P ) ∈ p̃reg

consists of the center of the corresponding Levi quotient Z(MP ). Then, Z(M) ≃ Z(M)×p̃reg

is a constant group scheme over p̃reg.

Proof. For any two parabolics P, P ′ which are H conjugate to Q, and any element h ∈ H
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conjugating P ′ = h · P , there is an induced map on the quotients

h : MP →MP ′

and hence also on the corresponding centers. The choice of such an h ∈ H conjugating P to

P ′ is unique only up to right multiplication by elements of P . However, for any g ∈ P , the

induced map

g : MP →MP

is multiplication by an element of MP and hence the induced map on Z(MP ) is the identity.

We conclude that the isomorphism h : Z(MP ) → Z(MP ′) is canonical, and the lemma

follows.

For every [w] ∈ WH,M/WC , let C[w] denote the embedding w · C ⊂ Z(M), where w · C

is the conjugation of C by any lift ẇ ∈ NH(M). Recall the decomposition of p̃reg into

components

p̃reg =
⋃

[w]∈WH,M/WC

p̃
reg
[w]
.

Proposition 1.3.68. There is a canonical WH,M equivariant map

ι : π∗pI
reg → Z(M)× p̃reg

which restricts to a map

ι[w] : π
∗
pI

reg|p̃reg
[w]

→ C[w] × p̃
reg
[w]

for every [w] ∈ WH,M/WC .

Proof. We describe the map ι first. For this, we need the following claim.

Claim. For every (x, P ) ∈ p̃reg, there is an inclusion π∗pI
reg
x ⊂ P .

Proof of Claim. This follows from the definition of p̃reg and the assumption that the form
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be quasi-split.

For h ∈ I
reg
x and (x, P ) ∈ p̃reg, we consider its image

h mod [Lie(P ),Lie(P )] ∈MP = M(x,P ).

This defines a map ι : π∗pI
reg → M. Note that when h is regular semisimple, its image

lies in the center Z(MP ) and moreover h ∈ ZMP
(h), where the latter is identified with

C[w] ⊂ Z(M). Hence, the image of ι lands in Z(M) ≃ Z(M) × p̃reg, while the image of its

restriction ι[w] lies in C[w] × p̃
reg
[w]

. The WH,M equivariance follows from the construction of

ι.

Let w,w′ ∈ WH,M/WC . We can lift identification p̃
reg
[w]

≃ p̃
reg
[w′] to an isomorphism of the

constant group schemes C[w]× p̃
reg
[w]

≃ C[w′]× p̃
reg
[w′] which is well defined up to action by WC .

Therefore, we can descend ι to a morphism

ιc : J → Res̃cc(C × c̃reg)WH,M (1.3.6)

To prove that ιc is an embedding, we will introduce a notion of Levi induction for the

parabolic cover. For x ∈ a, let L = G◦
x be the distinguished Levi introduced in section 1.3.3.

We use a subscript L to denote corresponding objects for the symmetric pair (L, θ,HL), e.g.

Wa,L,WC,L, etc. Note that since C = CH(a)◦ ⊂ L, we have C = CL and so it is immediate

that WC,L ⊂ WC . Moreover, since Wa,L ⊂ Wa, we get an inclusion of exact sequences

1 //Wker,L
//

� _

��

Wa,L
//

� _

��

WC,L� _

��

1 //Wker
//Wa //WC

Moreover, we have an inclusion of relative Weyl groups given as follows.
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Lemma 1.3.69. For L the distinguished Levi associated to x ∈ a as above, there is a

canonical inclusion WHL,ML
⊂ WH,M .

Proof. Let z = z(M), respectively zL be the Lie algebra of the center ofM . We have identities

WH,M = NH(Z(M))/CH(Z(M)) = NH(z)/CH(z)

and likewise for WHL,ML
= NHL

(zL)/CHL
(zL). Consider the action of Ad(x) on z. There

is an eigen-decomposition

z =
⊕
λ

zλ

where zλ is the λ weight space for the action of Ad(x) and z0 = zL. Suppose that h ∈ HL =

H ∩G◦
x normalizes zL. Then, for any λ and y ∈ zλ,

[x,Ad(h) · y] = [Ad(h) · x,Ad(h) · y] = Ad(h) · [x, y] = λh · y

where we used in the first equality that Ad(h) · x = x. Therefore, Ad(h) preserves z, and we

conclude that NHL
(zL) ⊂ NH(z). The desired inclusion now holds.

Let ĉ = c̃ ×a//Wker
a. The induced map ĉ → c is a reducible Wĉ := Wa ⋊WH,M cover.

Let N (̂c) be the normalization of ĉ. N (̂c) is a disjoint union

N (̂c) ≃
∐

[w]∈WH,M/WC

a

Then, for any choice of [w] ∈ WH,M/WC , we have a natural embedding N (̂cL) ↪→ N (̂c) from

Lemma 1.3.69. This map descends to embeddings

ξ̂[w] : ĉL → ĉ and ξ̃[w] : c̃L → c̃.
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Recall the notation φL : cL → c. We have a commutative diagram

N (̂cL)� _

��

// ĉL� _

��

// c̃L //

��

cL

��

N (̂c) // ĉ // c̃ // c

Let dL ⊂ cL and d ⊂ c denote the ramification divisor of φL : cL → c and its preimage.

(Recall that an explicit description of these divisors pulled back to a was given in Section

1.3.3.) Let UL ⊂ cL and U ⊂ c be the complement of dL and d, respectively, and let ÛL and

Û denote the preimages of UL and U in p̃
reg
L and p̃reg, respectively.

Proposition 1.3.70. The map ιc of Proposition 1.3.68 is an inclusion. Moreover, it induces

an isomorphism when G is simply connected.

Proof. Let L be a distinguished Levi of G associated to x ∈ a. Over UL ⊂ cL, the map ξ̂[w]

induces a commutative diagram

φ∗LReŝ
c
c(C × ĉ)Wĉ �

�
// Reŝ

cL
cL(C × ĉL)

WĉL

φ∗LJ

ι

OO

≃ // JL

ιL

OO

with the top arrow being an injection as the map ĉL → ĉ is a WĉL
equivariant embedding

which is an isomorphism onto a union oc components of ĉ and the bottom arrow being an

isomorphism by Lemma 1.3.33. Hence, ι is an injection on U ⊂ c if and only if ιL is an

injection on UL.

For the first claim, it suffices to check away from a codimension 2 locus. Hence, it suffices

to check for Levis L such that the associated symmetric pair (L, θ,HL) is of rank 1 in the

sense that

dim(a)− dim(Lie(ZG)
θ=−1) = 1.
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Such forms can be classified easily: in particular, the restricted roots systems must be rank

1, and there are only 3 isogeny classes of semisimple symmetric pairs. We may then do a

simple computation to verify ιL is an injection.

Now, note that if ιL is an isomorphism on UL, then ι must also be an isomorphism on U .

Therefore, to check the second statement, it suffices to check for simply connected symmetric

pairs of rank 1. This follows from the computations above.

It is important that the Galois comparison group scheme J1 = Reŝcc(C×ĉ)Wĉ is sufficiently

well behaved. For this, we prove the following.

Lemma 1.3.71. The map ĉ → c is Cohen-Macaulay over an open set of c whose complement

has codimension at least 2.

In particular, the space J1 is smooth on an open set whose complement has codimension

at least 2.

Proof. By Levi induction, it suffices to check for rank one Levis. If c̃ → c is irreducible, then

it agrees with the map a//Wker → c, which is flat by Lemma 1.3.57. That leaves only the

case (SL3, S(Gm ×GL2)). For this case, let S ⊂ preg denote the Kostant-Rallis section

S =

xa =


a 1

1

a

 : a ∈ k


Then, after identifying S ≃ A1 and H/B ≃ P1, we may write p̃reg → preg as

p̃reg ≃ {(a,±a) ∈ A1 ×P1} → A1

In particular, it is a complete intersection and so Cohen-Macaulay. We conclude that p̃reg →

p is flat in this case by Miracle Flatness.
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1.4 General Structure of the Hitchin Fibration

In this section, we introduce the Hitchin morphism and prove the basic structure Theorems

1.4.2 and 1.4.3. Our discussion here will be very limited. Describing the geometry in a more

comprehensive way similar to that of [35] and [49] is the subject of ongoing work.

Fix a smooth projective curve C of genus at least 2 and a line bundle D on C of degree

deg(D) ≥ 2g. Taking D = KC the canonical bundle will also suffice. Also fix a symmetric

pair (G, θ,H), and let M = Maps(C, pD/H) denote the stack of maps from the curve C to

the twisted stack quotient pD/H = p/H ⊗D. On k-points, M classifies pairs

M(k) = {(TH , σ) : TH is a H torsor and σ ∈ Γ(C, TH ∧Ad pD)}

We have a Hitchin base A = Maps(C, cD) classifying maps from C to the twisted GIT

quotient cD = (p//H)D. In particular, by Theorem 1.2.10, there is a Gm equivariant isomor-

phism c ≃ Ar where the Gm action on Ar is given by exponents (e1, . . . , er). This induces

an identification of affine spaces

A ≃ ⊕r
i=1H

0(C,D⊗ei)

There is a natural Hitchin morphism

h : M → A

induced by the Chevalley map p/H → c. We restrict our attention to the regular locus in M;

namely, we let Mreg = Maps(C, p
reg
D /H) be the substack of M classifying maps C → pD/H

which factor through the open substack p
reg
D /H ⊂ pD/H. We abuse notation to denote

h : Mreg → A.
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To study the geometry of h over the regular locus, we introduce the space

A( = Maps(C, (preg(H)D).

The factorization preg/H → preg(H → c induces a factorization

Mreg h(−→ A( ϕ−→ A.

Let D ⊂ c be the divisor defined by the function
∏

α∈Φr
dα ∈ k[a]. Following the notation

of [35], we will restrict to the following dense open subset of A.

Definition 1.4.1. Let A♢ ⊂ A denote the locus of maps C → cD whose image intersects

transversely with D.

We will denote by A(,♢ denote the base change A( ×A A♢. We prove the first part of

the structure theorem now.

Theorem 1.4.2. The map ϕ : A( → A is étale when restricted to A♢.

Proof. It suffices to prove the étale lifting property. Fix a henselian scheme D. Then, the

lifting property is equivalent to proving that, for any diagram

C

��

// (preg(H)D

��

C ×D // cD

there is exists a unique lift C × D → (preg( H)D. This lift can be constructed locally on

C: By the assumption that we work over A(, the intersection of the preimage of D under

C ×D → cD is a disjoint collection of maps D → cD. For each such map, there is a unique

lift lying in the sheet of (preg( H)D dictated by the map C → (preg( H)D. We conclude

that the map is étale.
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In addition, we have a general result on the structure of the map h(. Namely, for a : S ×

C → (preg( H)D, we put Ja := a∗J for J the band on preg( H of Lemma 1.3.3. We may

define a scheme over A( whose values over a A( scheme S ×X → (preg(H)D are given by

the space of Ja torsors on S × C,

P(S) = (Ja torsors on S × C).

Note that although Ja is in general a band and not a group scheme, the notion of a Ja torsor

is well defined as the space of torsors of is invariant under inner automorphisms. When

(G, θ,H) is quasisplit, P is a commutative group scheme over A.

Theorem 1.4.3. Given a section [ϵ] : A( → Mreg of h(, there is an identification

Mreg|A(,♢ ≃ P|A(,♢

Proof. The proof follows immediately form the fact that preg/H → preg(H is a gerbe banded

by J .

1.5 The Symmetric Pair (GL2n,GLn×GLn)

In this section, we provide a spectral description of J and the gerbe preg/K → preg(K for

the example of the symmetric pair (GL2n,GLn×GLn). This is very closely related to the

description of Hitchin fiber in [42].

1.5.1 The Spectral Cover

The map a//Wa → t//W (here t and W are for the group GL(2n)) is an embedding by Lemma

??. Over t//W , there is a natural spectral cover cGL(2n) → t//W given by cGL(2n) = t//S2n−1

for S2n−1 ⊂ S2n = W the index 2n subgroup which is the stabilizer of a fixed element in
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{1, 2, ..., 2n}. Explicitly, we have k[t//W ] = k[a1, . . . , a2n] where the ai are the degree i

elementary symmetric polynomials in k[t], and

k[cGL(2n)] = k[t//W ][x]/(x2n + a1x
2n−1 + · · ·+ a2n).

The map a//Wa → t//W corresponds to the map k[a1, ..., a2n] → k[a2, ..., a2n] which sends

a2i+1 7→ 0 for each 0 ≤ i < n.

Let c = cGL(2n)×t//W a//Wa be the restriction of this spectral cover to a//Wa. Explicitly,

we have

k[c] = k[a//Wa][x]/(x
2n + a2x

2n−2 + · · ·+ a2n−2x
2 + a2n)

The map k[a//Wa][x] → k[a//Wa][x]/(x
2n + a2x

2n−2 + · · · + a2n−2x
2 + a2n) gives a Gm-

equivariant embedding c ↪→ (a//Wa)× A1, where Gm acts with weight one on A1.

The involution θ on GL(2n) acts on t and also on the quotient t//Sn−1. Explicitly, this

action takes x 7→ −x and ai 7→ (−1)iai. The spectral cover c ⊂ t//S2n−1 is preserved by

this action, and so we have an involution i : c → c defined over a//Wa taking x 7→ −x. We

denote by

p : c/i→ a//Wa

the quotient of the cover c → a//Wa. We will refer to the map p as the (generic) spectral

cover of a//Wa. We note that p corresponds to the inclusion

k[a//Wa] ↪→ k[a//Wa][y]/(y
n + a2y

n−1 + ...+ an).

The map

k[a//Wa][y] → k[a//Wa][y]/(y
n + a2y

n−1 + ...+ an)

85



gives a Gm-equivariant embedding

c/i ↪→ c× A1,

where Gm acts on A1 with weight two.

Finally we want to note that there is a particularly nice description of the set U of

Proposition 1.3.44 via the spectral cover.

Proposition 1.5.1. The set U of proposition 1.3.44 is k[a//Wa][a
−1
2n ], that is to say it is the

complement of the vanishing locus of a2n.

The interpretation of this in terms of the spectral cover is that the vanishing locus of a2n

is precisely the image in a//Wa of the intersection ((a//Wa)× {0})×(a//Wa)×A1 c/i

Proof. This is immediate from the definition of U in proposition 1.3.44.

Recall that the regular centralizer group scheme IregK → preg descends to a smooth group

scheme J on the GIT quotient preg//(GLn×GLn) ≃ a//Wa since the form is quasi-split. We

give a description of J using the spectral cover above.

Proposition 1.5.2. There is a natural map J → Res
c/i
a//Wa

(Gm) where Res
c/i
a//Wa

(Gm) de-

notes the Weil restriction of Gm along the map p : c/i→ c. This map is an isomorphism.

Proof. Note that one has the description of regular centralizers of the adjoint action of G

on g as the Weil restriction of Gm along the spectral cover cGL(2n) → t//W . In particular,

restricting to a//Wa ⊂ t//W , it follows that there is an isomorphism

J
∼−→ Resca//Wa

(Gm)i

of J with the i-invariant locus in Resc
a//Wa

(Gm)i. Since

Resca//Wa
(Gm)i = Res

c/i
a//Wa

(
Rescc/i(Gm)

)i
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it therefore suffices to show that

Rescc/i(Gm)i ≃ Gm.

Note that we have a map

ξ : Gm → Rescc/i(Gm)i.

Namely, an S-point S → Gm × c/i has image givn by the base change

S // Gm × c/i

S ×c/i c

OO

// Gm × c

OO

We claim this map is an isomorphism. Let D ⊂ c/i be the ramification locus of the map

c → c/i, i.e. the image of the fixed point locus of i in c/i. For x ∈ (c/i) \ D, we have the

stalk

Rescc/i(Gm)x = Gm ×Gm

with i acting by swapping the two factors. As the preimage of such an x is two points,

it is easy to see that the map ξx : Gm → Gm × Gm is the diagonal map. Hence, ξ is an

isomorphism away from D. For x ∈ D, we have the fiber

Rescc/i(Gm)x = Gm ×Ga

with i acting by (y, z) 7→ (y,−z). The map ξx : Gm → Gm × Ga is the inclusion into the

first factor, and we conclude that the map ξ is an isomorphism.
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1.5.2 Applications to the Hitchin Fibration for (GL2n,GLn×GLn)

The regular quotient for the case of (GL2n,GLn×GLn) was computed in Example 1.3.43.

Now that we have constructed spectral covers, we give an alternate description. This recovers

the work of Schapostnik on spectral covers [41].

We will make use of the notation from Section 1.4; in particular, we fix a smooth projective

curve C of genus at least 2 and a line bundle D on C of degree at lest 2g. For any S point

S × C → cD, we define the spectral cover at a to be the base change

Ca

��

// (c/i)D

��

S × C // cD

In particular, we will set C to be the base change along the evaluation map A × C → cD.

We can realize Ca as a subvariety of the total space Tot(D) by considering the vanishing

locus of the characteristic polynomial equation.

It is immediate from the Weil restriciton description of Proposition 1.5.2 that we have

the following description of fibers.

Corollary 1.5.3. A section [ϵ] : A( → Mreg induces an isomorphism of schemes over A(,♢

Mreg|A(,♢ ≃ Pic(ϕ∗C/A(,♢).

We note that such a section [ϵ] is induced by the Kostant-Rallis sections of Section 1.2.6.

We denote by Dns ⊂ c the locus over which the map

preg(H → c

has 2 preimages. In general, we have shown that Dns is a Zariski closed subset, but for the
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example (GL2n,GLn×GLn), Dns is a divisor.

Corollary 1.5.4. For any point a ∈ A(S), the image of the map a : S × C → cD meets the

nonseparated divisor Dns exactly at the image of the zero section of Ca in Tot(D).

Proof. As the nonseparated locus was found to be given exactly by the coordinate axes

δ∗ = 0 in a, the claim is immediate.

We now derive the basic geometry of the map ϕ : A(,♢ → A♢. We do so in families,

generalizing the earlier work that focused on studying fibers.

Lemma 1.5.5. Let d = deg(D). The map ϕ : A(,♢ → A♢ is an étale map of degree d.

Proof. This follows from Theorem 1.4.2 and the fact that d is the self intersection number

of the zero divisor in Tot(D), see Proposition 9.16 of [11].

Let Si(C) = (Ci \∆)/Si where ∆ is the pairwise diagonal in Ci. Note that Si(C) is an

open subscheme of the i-th symmetric power of C. We have an evaluation map

A♢ → Sd(C)

sending a point a of A♢ to the preimage under a of the nonseperated divisor Dns.

Let Z1, Z2 be the two distinct sheets of preg(H over Dns. There is a decomposition

A(,♢ =
d∐

i=0

A(,♢
i

where the closed points of A(,♢
i classify maaps a : C → (preg( H)D for which Z1 has i

preimages. Then, we can define

A(,♢ → Si(C)× Sd−i(C)

by sending a point a of A(,♢ to the preimage under a of Z1 and Z2, respectively.
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Theorem 1.5.6. For every 0 ≤ i ≤ d, there is a Cartesian diagram

A(,♢
i

��

// Si(C)× Sd−i(C)

��

A♢ // Sd(C)

where both vertical arrows are étale
(d
i

)
covers.

Proof. It is immediate that the map A(,♢ → A♢ is an étale
(d
i

)
cover and the diagram

above commutes. As the right vertical arrow is also étale of degree
(d
i

)
, this implies that the

diagram is Cartesian.

1.6 Appendix to Chapter 1: Sections from sl2 Triples

In this appendix, we review the construction of [27] and note an extension of those results to

positive characteristic when p is greater than the Coxeter number of G based on the results

of [37], [31], [47], and [32]. In particular, we review the theory of normal sl2 triples, and

derive the Kostant-Rallis section from the construction of the Kostant section. We compare

this with the results of [31], reviewed in Section 1.2.6.

Definition 1.6.1. We say an sl2 triple (e, h, f) is normal if e, f ∈ p and h ∈ k. We say that

an sl2-triple is principal if e is regular as an element of p.

Remark 1.6.2. Note that a principal, normal sl2 triple in the sense of Definition 1.6.1 is a

principal sl2 triple of g in the usual sense only in the case of a quasi-split involution.

In the characteristic p case, we will need to pass to associated characters.

Definition 1.6.3. Fix a nilpotent e ∈ N . An associated character of e is a character

λ : Gm → G such that e ∈ g(2;λ) (where g(k;λ) is the k-th graded piece of g under the

grading induced by λ) and there is a Levi subgroup L ⊂ G such that λ(Gm) ⊂ Lder and e

is distinguished in Lie(L), i.e. ZLder(e)◦ is unipotent.
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Lemma 1.6.4. ([37], Prop. 4) Given an associated character λ to a nilpotent e, one can

extend e to a unique sl2 triple (e, h, f) with h ∈ Lie(image(λ)) and f ∈ g(−2;λ).

We recall the following facts about associated characters and sl2 of G up to conjugation.

Lemma 1.6.5. ([32], Prop 18 and [47], Theorem 1.1) Consider the projection

{(e, λ) : e ∈ N and λ is an associated character for e}/G→ N /G

where G acts by conjugation on each set.

1. This map is a bijection in good characteristic.

2. The bijection above factors through

{(e, λ) : e ∈ N and λ is an associated character for e}/G→ {sl2-triples}/G→ N /G

where the first map comes from Lemma 1.6.4. The map from G-orbits of sl2-triples

to N /G is a bijection if and only if the characteristic of the field is greater than the

Coxeter number.

Proof. Part (1) follows from Prop. 18, part 2, of [32]. Part 2 follows from Thoerem 1.1 of

[47].

We will demand, in addition, that associated characters be compatible with the involution

on G in the following sense.

Definition 1.6.6. We say that a character λ is a normal associated character with respect

to a nilpotent e ∈ Np of p if it is an associated character or e and Image(λ) ⊂ K.

Lemma 1.6.7. ([31], Cor. 5.4) For any e ∈ Np, there exists a normal associated character

λ for e. Moreover, such a character is unique up to conjugation by the connected component

of the centralizer ZK(e)◦.
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We now deduce the results on sl2 triples relevant to our paper.

Lemma 1.6.8. The map

{H-orbits of normal sl2 triples} → {H-orbits of nilpotents in p}

is surjective, i.e. for any e ∈ Np, there exists a normal sl2 triple (e, h, f) extending e.

Assuming that the characteristic of the field is greater than the Coxeter number, this map is

a bijection.

Proof. It suffices to prove this Lemma for H = K. In characteristic zero, this follows from

[27], Proposition 4.

In characteristic p > 0, surjectivity follows from Lemma 1.6.4 and Lemma 1.6.7. Now

assume the characteristic is greater than the Coxeter number. Then, we have a sequence of

maps

{
K-orbits of pairs (e,λ) for

λ associated to e, valued in K

}
ϕ
//

≃
22

{
K-orbits of normal

sl2-triples

}
// // {K-orbits of nilpotents in p}

Since the composite map is an isomorphism, the map ϕ is injective. We claim that it is

also surjective. Suppose that a normal sl2 triple (e, h, f) is not in the image of ϕ. Then,

by Lemma 1.6.7, there is a character λ valued in K associated to e. Moreover, by Lemma

1.6.5, any two associated characters of e are conjugate by an element of ZG(e)◦, and there

is a unique character λ′ associated to e for which (e, h, f) is the corresponding sl2 triple.

Let g ∈ ZG(e)
◦ conjugate λ′ and λ, so that g also conjugates (e, h, f) to a normal sl2 triple

(e, h′, f ′). Since this g preserves normality of the sl2 triple, Lie(image g · λ) ⊂ k. Since g · λ

is a one-parameter subgroup, it is connected and hence has image in K. We conclude that

g · λ is an associated character to e valued in K whose associated sl2 triple is (e, h, f).

Now let e ∈ N reg
p be a regular nilpotent. From a principal, normal sl2 triple (e, h, f),
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one produces a Kostant-Rallis section by considering the slice e+ cp(f).

Theorem 1.6.9. The map e+ cp(f) → a//Wa is an isomorphism. We will call its inverse a

Kostant-Rallis section associated to e.

Moreover, for a given regular nilpotent e in p, this section is unique up to conjugation by

ZK(e)◦. In particular, this gives a bijection

{K-orbits of Kostant-Rallis sections} → {K-orbits of regular nilpotents in p}.

Proof. In characteristic zero, this is the content of [27], Theorem 11.

In characteristic p > 0, by [31], Lemma 6.29, it suffices to check that e+cp(f) is an Ad(λ)-

graded complement of [k, e], where λ : k× → K is an associated character to e. Certainly

the slice is Ad(λ) graded as e and f are homogeneous with respect to the grading. To show

that the slice gives a complement, it suffices to show

p =
(
e+ cp(f)

)
⊕ [k, e]

By the proof of Lemma 3.1.3 of [39], we have that

g =
(
e+ cg(f)

)
⊕ [e, g].

Intersecting this with p and using the fact that e ∈ p gives this result.

Corollary 1.6.10. Let s = e + cp(f) be the Kostant-Rallis slice in p. Then, p = s + [e, p].

In particular, if

a : H × s → preg

is the action map. Then the differential of a at 0 ∈ s is surjective.

Proof. The first claim follows from the proof of Theorem 1.6.9. For the second, we note that
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the differential is identified with the map

h× s → h, (x, s) 7→ [x, e] + s.

By the first claim together with the observation that h = k, this is surjective.
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CHAPTER 2

COMPANION MATRIX CONSTRUCTIONS

In this chapter, the author covers some of the joint work with B.C. Ngô on Companion

Matrix Constructions. This work is independent of the previous chapter and is related only

in the broader heading of Hitchin systems.

2.1 Introduction

Let G be a reductive group over k, and denote by g its Lie algebra. The Chevalley map

χ : g → g//G,

where g//G := Spec(k[g]G) denotes the invariant theoretic quotient of g by the adjoint

action of G, is of fundamental importance in the construction of the Hitchin system [20]. In

particular, for g = gln, χ sends a matrix to its characteristic polynomial.

In [28], Kostant exhibited a section of the Chevalley map for a general reductive group G

under the assumption that the characteristic of k does not divide the order of the Weyl group.

Kostant’s section was generalized in [4] and [1], including the case of characteristics p > 2 for

classical groups and the group G2. As explained in [35], this section can be used to construct

sections of the Hitchin fibration and affine Springer fibers. However, Kostant’s construction

can be counter-intuitive for computations. To illustrate this latter point, consider the case

G = GL3(k), in which case g//G = A3 is the 3-dimensional affine space. The Kostant section

is the map sending

(a1, a2, a3) ∈ g//G 7→


a1
3

a21
6 + a2

2 −4a31
27 − a1a2

3 − a3

1 a1
3

a21
6 + a2

2

0 1 a1
3

 ∈ g

95



If you introduced this problem to an undergraduate student of linear algebra, of course, they

would not give you the answer above; they might instead suggest the map:

(a1, a2, a3) ∈ g//G 7→


0 0 −a3

1 0 −a2

0 1 −a1

 ∈ g

sending a characteristic polynomial to its companion matrix. The section to the Hitchin

map that Hitchin constructed in [20] is not strictly the same as the one of [35] in the sense

that he does not rely on the Kostant section but another section that feels more like a

generalization of the companion matrix. Instead of the companion matrix, a map g//G→ g,

we will construct a map g//G→ [g/G], where [g/G] is the quotient of g by the adjoint action

of G in the sense of algebraic stack. This section will be called the companion section, which

is free of any choice. The present note aims to explicitly construct the companion section for

classical groups, including the symplectic and orthogonal groups and G2. As an application

of the companion sections, we will give elementary descriptions of affine Springer fibers and

Hitchin fibers for classical groups similar to the description of the Hitchin fibers in the linear

case due to Beauville-Narasimhan-Ramanan.

The emphasis of this work is on providing case-by-case explicit formulas for the companion

section for classical groups. It is also possible to construct the companion section uniformly.

This will be the subject of our subsequent work.

2.2 Tensors defining classical groups

We will recall the standard definition of classical groups as the subgroup of the linear groups

fixing certain tensors. This is very well known for symplectic and orthogonal groups but a

bit less known for G2, which in a certain respect could qualify as a classical group as well.

Let V be a 2n-dimensional vector space over a base field k, V ∗ its dual vector space.
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The linear group GL(V ) acts on the space ∧2V ∗ of alternating bilinear forms on V with

an open orbit. An alternating bilinear form µ ∈ ∧2V ∗ is considered non-degenerate if it

lies in this open orbit. This is equivalent to requiring the induced map µ : V → V ∗ to

be an isomorphism. The stabilizer of such a non-degenerate alternating bilinear form is a

symplectic group G. We note that µ ∈ ∧2V ∗ is non-degenerate if ∧nµ ∈ ∧2nV ∗ is a non-

zero vector of the 1-dimensional vector space ∧2nV ∗ and as a result, G is contained in the

special linear group SL(V ). Then, a G-bundle over a k-scheme S consists of a locally free

OS-module V of rank 2n equipped with an alternating bilinear form ∧2
SV → OS which is

non-degenerate fiberwise. Although the embedding of G = Sp2n into GL2n may differ by

conjugation by an element of GL2n, as we are more concerned with G-bundles than G itself,

the specific choice of non-degenerate alternating form µ ∈ ∧2V ∗ is immaterial. We will write

G = Sp2n.

Let V be a n-dimensional vector space over a base field k, V ∗ its dual vector space. The

linear group GL(V ) acts on the space S2V ∗ of symmetric bilinear forms on V with an open

orbit. A symmetric bilinear form µ ∈ S2V ∗ is considered non-degenerate if it lies in this

open orbit. This is also equivalent to the induced map µ : V → V ∗ being an isomorphism,

which in turn is equivalent to the induced map ∧nµ : ∧nV → ∧nV ∗ being an isomorphism of

1-dimensional vector spaces. We note that ∧nV and ∧nV ∗ are dual as vector spaces so that

for every choice of a basis vector ω ∈ ∧nV , we have a dual basis vector ω∗ ∈ ∧nV ∗. A basis

vector ω ∈ ∧nV is said to be compatible with µ if the equation ∧nµ(ω) = ω∗ is satisfied. This

equation has exactly two non-zero solutions ω ∈ ∧nV , which differ by a sign. The stabilizer

of a non-degenerate symmetric bilinear form µ ∈ S2V ∗ is an orthogonal group O(µ). The

stabilizer of a pair (µ, ω) consisting of a non-degenerate symmetric bilinear form µ ∈ S2V ∗

and a compatible basis vector ω ∈ ∧nV is the special orthogonal group SO(µ, ω) which is

the neutral component of O(µ). We note that SO(µ, ω) = O(µ) ∩ SL(V ) so that the special

orthogonal group can also be defined as the stabilizer of a pair (µ, ω) as above but without
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requiring ω being compatible with µ. The stabilizer of any such pair is a special orthogonal

group G. A G-bundle over a k-scheme S consists then in a locally free OS-module V of

rank n equipped a symmetric bilinear form ∧2
SV → OS which is non-degenerate fiberwise.

The embedding of G = SOn into GLn depends on the form µ and is well defined only up

to conjugation by GLn. However, as we are more concerned with G-bundles than G itself,

choosing a specific non-degenerate symmetric form µ ∈ ∧2V ∗ is immaterial. We will write

G = SOn.

There is a simple tensor definition of G2 due to Engel [12]. Let V be a 7-dimensional

vector space. The linear group GL(V ) acts on the space ∧3V ∗ of non-degenerate trilinear

forms on V with an open orbit. We will follow Hitchin’s [21] in formulating the equation

defining this open orbit . We will denote the contraction ∧3V ∗ × V → ∧2V ∗ by µv for

µ ∈ ∧2V ∗ and v ∈ V . For v1, v2 ∈ V and µ ∈ ∧3V ∗, we then have

µv1 ∧ µv2 ∧ µ ∈ ∧7V ∗.

By choosing a non-zero vector ι of the determinant ∧7V , µ gives rise to a symmetric bilinear

form ν ∈ S2V ∗

ν(v1, v2) = ⟨ι, µv1 ∧ µv2 ∧ µ⟩ (2.2.1)

which is non-degenerate if and only if µ lies in the open orbit of ∧3V ∗. We will say that

µ is a non-degenerate 3-form on V . The stabilizer of a non-degenerate 3-form is a group

G2 ⋉ µ3(k) where µ3(k) is the group of 3rd roots of unity in k; We obtain the connected

component, a group of type G2, by taking the intersection with SL(V ). A G2-bundle over

a k-scheme S is thus a locally free OS-module V of rank 7 equipped with an alternating

trilinear form µ ∈ ∧3V∗ which is non-degenerate fiberwise together with a trivialization

of the determinant. Again, a different choice of nondegenerate 3-form µ may give a GL7

conjugate embedding of G2 into GL7. However, such a choice is immaterial for us.
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2.3 Spectral cover and the companion matrix

For all groups G discussed previously, including symplectic, special orthogonal, and G2, G

is defined as a subgroup of GLn fixing certain tensors. We call the inclusion G → GLn the

standard representation of G. We also have the induced inclusion of Lie algebras g → gln

compatible with the adjoint actions of G and GLn. We derive a morphism between invariant

theoretic quotients

c = g//G→ gln//GLn = cn

which is a closed embedding for symplectic groups, odd special orthogonal groups, and G2,

but not for even orthogonal groups. For GLn, we have a spectral cover sn → cn, defined in

Section 2.3.1, which is a finite flat morphism of degree n so that Osn is a locally free Ocn-

module of rank n given with a canonical endomorphism [x] which is the usual companion

matrix. The main result of this work can be formulated as follows:

Theorem 2.3.1. Let G be a symplectic group, odd special orthogonal group, or G2 group

and G → GLn its standard representation. Let c → cn be the induced map of Chevalley

quotients which is a closed embedding in these cases. Then the restriction Osn to c

V = Oc ⊗Ocn
Osn

as locally free Oc-module affords a canonical tensor defining a G-reduction and the companion

matrix for GLn defines a canonical map g//G→ [g/G] which is a section of the natural map

[g/G] → g//G. This statement remains valid for even orthogonal groups after replacing

c×cn sn by its normalization.

We prove the theorem by a case-by-case analysis. In particular, we will construct the

explicit tensors required in each case.
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2.3.1 Linear groups

We first recall how the companion matrix is connected to the universal spectral cover in the

case GLn. In this case, the Chevalley quotient g//G is the n-dimensional affine space An and

the map χ : g → g//G is given by the characteristic polynomial χ(γ) = (a1(γ), . . . , an(γ))

where γ ∈ g and ai(γ) = (−1)i tr(∧iγ). In this case we have cn = Spec(An) where An =

k[a1, . . . , an]. The spectral cover sn = Spec(Bn) where Bn is the An-algebra

Bn = An[x]/(x
n + a1x

n−1 + · · ·+ an)

which is a free An-module of rank n as the images of 1, x, . . . , xn−1 form an An-basis of Bn.

We also note that Bn is a regular k-algebra as it is isomorphic to the polynomial algebra

of variables a1, . . . , an−1, x. On the other hand, Bn is equipped with an An-linear operator

[x] : Bn → Bn given by b 7→ bx. To give a map cn → [gln/GLn] is equivalent to the data

of a rank n vector bundle E → cn together with a an Ocn-linear endomorphism of E ; that

is, at the level of modules, a free, rank n An module with an An linear endomorphism.

Hence, Bn with the operator [x] provides us with an An-point of [gln/GLn], and we have

thus constructed a map [x] : cn → [gln/GLn] which is a section of χ : [gln/GLn] → cn. In

term of matrices with respect to the An-basis of Bn given by 1, x, . . . , xn−1, [x] is given by

the usual companion matrix

x• =



0 · · · −an

1 0 · · · −an−1

· · · 0

0 1 −a1


∈ gln(A) (2.3.1)

The companion matrix thus gives us a map x• : c → g in the case G = GLn taking a point

a = (a1, . . . , an) of c to the matrix above. This construction is a section to the characteristic
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polynomial map. However, it is often more useful to think of [x] as a map [x] : c → [g/G] in

the case G = GLn.

Let g come equipped with the homothety action of Gm and c with the induced action

t · ai = tiai. There is an issue with using the companion matrix to construct a section to the

Hitchin map as the companion map x• : c → g is not Gm-equivariant. We note, however,

that the stack-valued map [x] : c → [g/G] is almost Gm-equivariant in the sense that after

a base change by the isogeny Gm → Gm given by t 7→ t2, it becomes equivariant because of

the identity

ad(diag(tn−1, tn−3, . . . , t1−n))(γ) = t−2



0 0 · · · −t2nan

1 0 · · · −t2n−2an−1

· · ·

0 1 −t2a1


. (2.3.2)

This explains why we have a section to the Hitchin map after choosing a square root of the

canonical bundle as in [20].

As we intend to use the companion matrix (2.3.1) to construct a canonical section to

the Chevalley map χ : [g/G] → c for classical groups, it is useful to further investigate the

linear algebraic structure of Bn as an An-module. We have a symmetric An-bilinear map

ξ : Bn ⊗An
Bn → An given by

ξ(b1 ⊗An
b2) = trBn/An

(b1b2)

thus an element ξ ∈ S2An
B∗
n. Because this element induces degenerate forms over the ramifi-

cation locus of Bn over An, we need a correction term to get a symmetric bilinear form that is

non-degenerate fiberwise. We will describe this correction and the associated nondegenerate

form in Lemma 2.3.2.

The pairing ξ defines an An-linear map µ : Bn → B∗
n where B∗

n = HomAn
(Bn, An)
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and µ(b1)(b2) = ξ(b1, b2). We note that the An-module B∗
n is naturally a Bn-module and

µ : Bn → B∗
n is Bn linear; thus, it is uniquely determined by the image of 1 ∈ Bn that we

will also denote by µ ∈ B∗
n. We will show that B∗

n is a free Bn-module of rank 1, construct

a generator of B∗
n and find an explicit formula for µ ∈ B∗

n as a multiple of this generator.

Lemma 2.3.2. Let us denote by v0, . . . , vn−1 the basis of Bn given by the images of 1, x, . . . ,

xn−1 in Bn and v∗0, . . . , v
∗
n−1 the dual basis of B∗

n. Then β∗ = v∗n−1 is a generator of B∗
n as

a Bn-module. Let us denote f ′ ∈ Bn = An[x]/(f) the image of the derivative

nxn−1 + (n− 1)a1x
n−2 + · · ·+ an−1 ∈ An[x]

of the universal polynomial f = xn + a1x
n−1 + · · ·+ an ∈ An[x]. Then we have µ = f ′β∗.

Proof. First, the discriminant d of the universal polynomial f , defined as the resultant

between f and its derivative, is a nonzero element of the polynomial ring An. Indeed, d

defines the ramification divisor of the finite flat covering s → c, which is generically étale for

there exist separable polynomials in k′[x] of degree n with coefficients in any infinite field

k′ containing k. We denote A′ = An[d
−1] the localization of An obtained by inverting d,

and B′ = Bn ⊗An
A′. By construction, f ′ is an invertible element of B′. The trace map

trB′/A′ : B′ → A′ of B′ as free A′-module of rank n is now given by the Euler formula (cf.

III.6, Lemma 2 in [45])

trB′/A′

(
xk

f ′

)
=


0 if k < n− 1

1 if k = n− 1

If v0, . . . , vn−1 denote the basis of B′ given by the images of 1, x, . . . , xn−1 in Bn and

v∗0, . . . , v
∗
n−1 the dual basis of (B′)∗, then we derive from the Euler formula that the identities

µ(vi) = f ′

v∗n−1−i +
∑
j<i

a′i,jv
∗
n−1−j

 (2.3.3)
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hold in B∗
n ⊗An

A′ for some a′i,j ∈ A′. In particular, we have µ(v0) = f ′v∗n−1. As the

localization map B∗
n → B∗

n⊗An
A′ is injective, this identity also holds in B∗

n. It follows that

µ = f ′v∗n−1 as desired.

As a consequence, we have a canonical nondegenerate bilinear form β∗ : Bn⊗An
Bn → An

which is symmetric with respect to which the An-linear operator [x] : Bn → Bn is anti-self-

adjoint; that is, for all v1, v2 ∈ Bn, we have

β∗(xv1, v2) + β∗(v1, xv2) = 0.

For G = SLn, the Lie algebra g = sln is the space of traceless matrices. We have

c = Spec(A) where A = k[a2, . . . , an]. We note that for a1 = 0, the companion matrix

(2.3.1) is traceless and thus gives rise to a A-point on sln. The companion map γ : c → g

induces a map [γ] : c → [g/G]. The latter lays over the point of BG with values in A

corresponding to the SLn-bundle corresponding to rank n vector bundle B equipped with

the trivialization of the determinant given by the basis 1, x, . . . , xn−1. The formula (2.3.2)

shows that the map [γ] : c → [g/G] is equivariant with respect to the isogeny Gm → Gm

given by t 7→ t2 for the diagonal matrix diag(tn−1, tn−3, . . . , t1−n) belonging to SLn.

2.3.2 Symplectic groups

In the case G = Sp2n, we have c = Spec(A) with A = k[a2, . . . , a2n]. The spectral cover

s = Spec(B) where

B = A[x]/(x2n + a2x
2n−2 + · · ·+ a2n)

is a free A-module of rank 2n, is equipped with an involution τ : B → B given τ(x) = −x.

The companion matrix (2.3.1) gives a A-linear endomorphism of B as a free A-module. For

the companion matrix to produce a section to the Chevalley map [g/G] → c in the symplectic

case, we need to construct a canonical nondegenerate symplectic form ω on the A-module B
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for which γ is anti-self-adjoint in the sense that

ω(γv1, v2) + ω(v1, γv2) = 0

for all v1, v2 ∈ B.

The standard representation Sp2n → GL2n induces a map on Chevalley bases c →

c2n = Spec(A2n) where A2n = k[a1, . . . , a2n] which identidies c with the closed subscheme

of c2n defined by the ideal generated by a1, a3, . . . , a2n−1. We have B = A ⊗A2n
B2n

where B2n is the finite free A2n-algebra defining the spectral covering of c2n. If we denote

B∗ = HomA(B,A) then we have B∗ = A ⊗A2n
B∗
2n where B∗

2n = HomA2n
(B2n, A2n). The

generator β∗2n of the free B2n-module B∗
2n defined in Lemma 2.3.2 then induces a generator

β∗ of B∗ as a free B-module of rank one which can also be viewed as the bilinear form

β∗ : B ⊗A B → A given by b1 ⊗A b2 = trB/A(f
′−1

b1b2) after localization.

The bilinear form ω : B ⊗A B → A

ω(b1, b2) = β∗(b1, τ(b2)) = trB/A(f
′−1

b1τ(b2))

with the second identity only making sense after localization of A making f ′ invertible, is a

non-degenerate symplectic form for which [x] is anti-self-adjoint. Indeed, we have

ω(b1, b2) = −ω(b2, b1)

because τ(f ′) = −f ′ for f ′ ∈ A[x] is an odd polynomial as f ∈ A[x] is an even polynomial.

The equation ω(xb1, b2) + ω(b1, xb2) = 0 can be derived from τ(x) = −x.

It follows that we have a morphism

[x] : c → [g/G]
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which deserves to be called the companion map for the symplectic group. To obtain a com-

panion matrix x• : c → g, it is enough to find a trivialization of the G-bundle associated with

the non-degenerate symplectic form ω : B ⊗A B → A. For most applications, particularly

the Hitchin fibration, we only need the section [x] : c → [g/G].

2.3.3 Odd special orthogonal groups

In the case G = SO2n+1, we have c = Spec(A) with A = k[a2, a4, . . . , a2n]. The spectral

cover is defined as s = Spec(B) where B = A[x]/(f) with f = xf0 and f0 = x2n+a2x
2n−2+

· · · + a2n. B is a free A-module of rank 2n + 1. As in the symplectic case, we will define a

symmetric non-degenerate bilinear form B ⊗A B → A for which the multiplication by x is

anti-self-adjoint.

The standard representation SO2n+1 → GL2n+1 gives rise to a map c → c2n+1 =

Spec(k[a1, . . . , a2n+1]) which is a closed embedding defined by the ideal generated by the

functions a1, a3, . . . , a2n+1. We have B = A ⊗A2n+1
B2n+1 where B2n+1 is the finite free

A2n+1-module of rank 2n+ 1 defining the spectral cover in the case GL2n+1. We also have

B∗ = A ⊗A2n+1
B∗
2n+1 where B∗ = HomA(B,A) and B∗

2n+1 = HomA2n+1
(B2n+1, A2n+1).

Following the discussion in the linear case B∗
2n+1 is a free B2n+1 generated by the element

β∗2n+1 = (f ′)−1µ where µ is the trace form µ(b1 ⊗A b2) = tr(b1b2). It induces a generator

β∗ of B∗ as a B-module. We define the bilinear form ω : B ⊗A B → A by

ω(b1, b2) = β∗(b1, τ(b2)) = tr(f ′−1
b1τ(b2)). (2.3.4)

The bilinear form ω is a nondegenerate bilinear form because β∗ is. It is symmetric because

τ(f ′) = f ′ as f ′ is an even polynomial. The equation ω(xb1, b2) + ω(b1, xb2) can be derived

from the fact τ(x) = −x.

By choosing a trivialization of the determinant, we obtain a companion map [x] : c →
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[g/G] for G = SO2n+1.

2.3.4 Even special orthogonal groups

The case G = SO2n is slightly more difficult for the map c → c2n induced by the standard

representation of SO2n is not a closed embedding. Indeed, we have c2n = Spec(A2n) where

A2n = k[a1, . . . , a2n] but c = Spec(A) where A = k[a2, . . . , a2n−2, pn] where pn is the Pfaffian

satisfying p2n = a2n does not lie in the image of A2n → A. If B2n is the spectral cover of

A2n and B = A⊗A2n
B2n then we have

B = A[x]/(x2n + a2x
2n−2 + · · ·+ a2n−2x

2 + p2n).

As indicated by Hitchin [20], the true spectral cover for even special orthogonal groups is

not B but its blowup B̃ along the singular locus defined by x. We have

B̃ = A[x, pn−1]/
(
xpn−1 − pn, x

2n−2 + a2x
2n−4 + · · ·+ a2n−2 + p2n−1

)
which is a free A-module of rank 2n and smooth as a k-algebra. We have an involution τ on

B and B̃ given by τ(x) = −x and τ(pn−1) = −pn−1.

The dualizing sheaf ω
B̃/A

is a free rank-one B̃-module, canonically isomorphic to B̃ away

from the ramification locus. As a B̃-submodule of Fr(B̃) it is generated by the inverse of the

different D
B̃/A

which is given by the formula

D
B̃/A

= det

−pn−1 f ′

−x 2pn−1


= (n− 1)x2(n−1) + (n− 2)a2x

2(n−2) + · · ·+ a2n−2x
2 + p2n−1.
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In other words, the bilinear form B̃ ⊗A B̃ → A given by

b1 ⊗A b2 7→ tr
B̃/A

(D−1

B̃/A
b1b2)

is non-degenerate. As in the symplectic and odd special orthogonal cases, we now consider

the symmetric bilinear form

ω(b1, b2) = tr
B̃/A

(D−1

B̃/A
b1τ(b2))

Then ω is a non-degenerate symmetric bilinear form because τ(D
B̃/A

) = D
B̃/A

, and it

satisfies

ω(xb1, b2) = −ω(b1, xb2).

After a choice of trivialization of the determinant of B̃ as a free A-module of rank n, the

multiplication by x gives rise to the companion section [x] : g//G→ [g/G] for the odd special

orthogonal group G = SO2n+1.

2.3.5 The group G2

In the case G2, the invariant quotient is A = k[e, q] with deg(e) = 2 and deg(q) = 6. The

spectral cover s = Spec(B) of c = Spec(A) given by

B = A[x]/ (xf0) for f0 = x6 − ex4 +
e2

4
x2 + q

is a reducible cover of A with two components corresponding to the quotient maps

B → B′ = A[x]/(f0) and B → A = A[x]/(x).
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The cover s′ = Spec(B′) of A is finite, flat of degree 6, and factors through two subcovers,

of degrees 2 and 3, corresponding to the sub-A-algebras

A ⊂ A[y]/

(
y3 − ey2 +

e2

4
y + q

)
⊂ B′ where y = x2

A ⊂ A[z]/
(
z2 + q

)
⊂ B′ where z = x

(
x2 − e

2

)
Let ϵ ∈ B[q−1]∗ := HomA[q−1](B[q−1], A[q−1]) be dual to f0; δi ∈ B[q−1]∗ be dual to xi;

and ηi ∈ B[q−1]∗ be dual to xiz for i = 1, 2, 3. Let trz denote the skew-symmetric bilinear

form on B given by

trz(g, h) = TrFrac(B)/Frac(A)

(
g(x)h(−x)z

f(x)

)

We will denote by ρ the 3-form on B[q−1] given by

ρ := δ1 ∧ δ2 ∧ η3 + δ1 ∧ η2 ∧ δ3 + η1 ∧ δ2 ∧ δ3 − q · η0 ∧ η1 ∧ η2 + ϵ ∧ trz (2.3.5)

A priori, the 3-form above is valued in A[q−1]. The next proposition tells us that it restricts

to an element of
∧3
AB

∗.

Proposition 2.3.3. Restricting the 3-form ρ to B → B[q−1] induces a 3-form ρ ∈
∧3

AB
∗.

In other words, ρ takes values in A when restricted to B.

Proof. Consider the A-basis of B given by

{1, xi, xiz : i = 1, 2, 3}.

This differs from the A[q−1]-basis

{f0, xi, xiz : i = 1, 2, 3}
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of B[q−1] only by scaling f0. As ρ is valued in A on the A-linear span of the latter basis, it

suffices to check the contraction ι1ρ of ρ along 1 ∈ B is valued in A. We compute

ι1ρ = η1 ∧ η2 −
e

2
η2 ∧ η3 +

1

q
(trz − δ1 ∧ δ2 +

e

2
δ2 ∧ δ3 − ix3ztrz ∧ ϵ+

e

2
ixztrz ∧ ϵ)

= η1 ∧ η2 −
e

2
η2 ∧ η3 +

[1
q
(trz − δ1 ∧ δ2 +

e

2
δ2 ∧ δ3)− ι1trz ∧ ϵ

]

Rewriting the latter in terms of a dual basis ξi, i = 0, . . . , 6 for the A-basis {xi : i = 0, . . . , 6}

of B, we see that the expression in square brackets above is

ι1ρ = ϵ3 ∧ ϵ6 + ϵ4 ∧ ϵ5 −
3e

2
ϵ5 ∧ ϵ6

whose image lies in A.

As the previous proposition illustrates, working with the form ρ requires significantly

more computational effort. As such, Propositions 2.3.4 and 2.3.5 will be checked primarily

with computer algebra packages. These computations were done in Macaulay2; explicit code

for each calculation is referred to in Appendix 2.7.

Proposition 2.3.4. Let ν be the bilinear form associated to ρ as in equation (2.2.1) and

let ω ∈ S2AB
∗ be the symmetric, nondegenerate form given by the formula (2.3.4). Then,

ν = −2432ω.

Proposition 2.3.5. The form ρ is compatible with the endomorphism [x], in the sense that

ρ(xb1, b2, b3) + ρ(b1, xb2, b3) + ρ(b1, b2, xb3) = 0.

As such, the form ρ together with a trivialization of the determinant gives a map [x] : c →

[g2/G2].
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2.4 Special components

In the previous section, we gave explicit formulas for the tensors defining the reduction of the

vector bundle Oc×cnsn to G so that the companion section for GLn induces the companion

section for classical group G. These explicit formulas may feel like miracles, especially in the

G2 case where a computer algebra system is needed. In this section, we will derive them from

the geometry of spectral covers, which makes the construction more conceptual, especially in

the G2 case. In subsequent work, we use this approach to construct the companion section

uniformly.

2.4.1 Special form and component associated with a subcover

Let A be a k-algebra, B a finite flat A-algebra of degree n generated by one element b ∈ B,

and A′ ⊂ B an A-subalgebra of B such that A′ is finite flat of degree m over A generated by

one element a′ ∈ A′ and B is a finite flat A′-algebra of degree d generated by b. Under these

assumptions, we have B ≃ A[x]/P (x) where P (x) is the characteristic polynomial of the

A-linear b : B → B defined as the multiplication by b. Similarly we have A′ ≃ A[x]/(P1(x))

where P1(x) is the the characteristic polynomial of the A-linear operator a′ : A′ → A′,

and B ≃ A′[x]/P2(x) where P2(x) is the characteristic polynomial of the A′-linear operator

b : B → B.

Assuming that the characteristic of k is greater than d, we want to construct an alter-

nating d-form

ωA′ : ∧d
AB → A

supported on a special component of Spec(SdAB) isomorphic to Spec(A′). We explain what

this means. As far as we know, the concept of non-degeneracy for d-forms is not yet defined

for d ≥ 3 and thus we can prove the it only for d = 1 or d = 2. However, we expect that the

form we construct is non-degenerate for a reasonable definition of this concept. As to the
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special component,
∧d
AB is a module over the ring of symmetric tensors (

⊗d
AB)Sd . We

will construct a surjective homomomorphism of A-algebras (
⊗d

AB)Sd → A′ which realizes

Spec(A′) as an irreducible component of Spec((
⊗d

AB)Sd) if B is generically étale over A

and A′ is a domain.

The homomorphism of A-algebras (
⊗d

AB)Sd → A′ is constructed as follows. Let

P2(x) = xd + a′1x
d−1 + · · · + a′d be the characteristic polynomial of the A′-linear map

b : B → B. Then we have

B = A′[x]/(xd + a′1x
d−1 + · · ·+ a′d).

We consider the polynomial ring R = k[x1, . . . , xd] and the subring S of invariant polynomials

under the symmetric group Sd. We have

S = k[x1, . . . , xd]
Sd = k[α1, . . . , αd]

with

αi = (−1)i
∑

1≤j1<···<ji≤d

αj1 . . . αjd .

Since R and S are regular, and R is a finite generated S-module, R is a finite flat S-algebra

of degree d!. We consider the homomorphism of algebras S → A′ given by αi 7→ a′i and

the base change A′ ⊗S R which is a finite flat A′-algebra of degree d! equipped with an

action of Sd. We have (A′ ⊗S R)
Sd = A′. Moreover, for every i ∈ {1, . . . , d} we have a

homomorphism of A′-algebras B → R ⊗S A
′ given by x 7→ xi which together give rise to a

surjective homomorphism of A′-algebras
⊗d

A′ B → A′ ⊗S R, which is Sd-equivariant. We

derive a Sd-equivariant surjective homomorphism of A-algebras

d⊗
A

B →
d⊗
A′

B → A′ ⊗S R. (2.4.1)
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By taking the Sd-invariant, we obtain the desired homomorphism of algebras

SdAB = (
d⊗
A

B)Sd → A′,

which is surjective because taking Sd-invariants is an exact functor under the characteristic

assumption.

We will now construct a special d-form on B

ωA′ :
d∧
A

B → A

supported on the special component. As above, we have a surjective homomorphism of

algebras Sd-equivariant surjective homomorphisms of A-algebras ⊗d
AB → ⊗d

A′B → A′⊗SR

which induces a surjective A-linear maps of the alternating parts
∧d
AB →

∧d
A′ B → A′ ⊗S

Rsgn where Rsgn is the direct factor of R as S-module in which Sd acts as the sign character.

It is known that Rsgn is a free S-module generated by
∏

1≤i<j≤d(xi− xj). We thus obtains

a surjective A-linear map
∧d
AB → A′. By composing it with the generator of HomA(A

′, A)

constructed in 2.3.2 we obtain the special d-form ωA′ :
∧d

AB → A which is supported by

the special by construction.

Let us discuss the non-degeneracy of the special d-form ωA′ :
∧d

AB → A. For d = 1, this

follows from Lemma 2.3.2. We can check that it is also non-degenerate everywhere for d = 2.

For d ≥ 3, we don’t know a general definition of non-degeneracy but it easy to see that the

special form ωA′ is everywhere non-zero. In dimension 6 and 7 where the definition of non-

degeneracy is available, we will check that the special d-form is everywhere non-degenerate

by direct calculation.
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2.4.2 Sp2n case

We recall in the case G = Sp2n, we have c = Spec(A) with A = k[a2, . . . , a2n]. The spectral

cover s = Spec(B) where

B = A[x]/(x2n + a2x
2n−2 + · · ·+ a2n)

is a free A-module of rank 2n, is equipped with an involution τ : B → B given τ(x) = −x.

We consider the subalgebra A′ of B consisting of elements fixed under τ

A′ = A[y]/(yn + a2y
n−1 + · · ·+ a2n).

We then have B = A′[x]/(x2 − y).

The construction of the special form and special component in 2.4.1 gives rise to an

alternating form

ωA′ : ∧2
AB → A

supported in the special component c′ = Spec(A′) of (s ×c s)//S2 where s = Spec(B)

and c = Spec(A). The homomorphism (2.4.1) Sym2
A(B) → A′ can be explicitly computed

elements of the form:

b⊗A 1 + 1⊗A b 7→ trB/A′(b).

In particular, x⊗A 1 + 1⊗A x be long to the kernel of Sym2
A(B) → A′, and in fact on can

verify that it is a generator of the kernel. Since x⊗A 1 + 1⊗A x annihilates ωA′ we have

ωA′(xb1, b2) + ωA′(b1, xb2) = 0

for every b1, b2 ∈ B. By Lemma 2.3.2, the 2-form ωA′ is everywhere non-degenerate. We can

also see by explicit calculation that the form ωA′ is the same as the 2-form we constructed
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in subsection 2.3.2 by means of the Euler formula.

2.4.3 G2 case

In the case G2, the invariant quotient is A = k[e, q] with deg(e) = 2 and deg(q) = 6. The

spectral cover s = Spec(B) with

B = A[x]/ (xf0) for f0 = x6 − ex4 +
e2

4
x2 + q

is a reducible cover of A with two components corresponding to the quotient maps

B → B′ = A[x]/(f0) and B → A

We will define a canonical 3-form on B out of a 3-form and a 2-form on B′ associated to

subalgebras

A ⊂ A′ = A[z]/
(
z2 + q

)
= k[e, y] ⊂ B′ = A′[x]/(x3 − e

2
x− z)

A ⊂ A′′ = A[y]/

(
y3 − ey2 +

e2

4
y + q

)
= k[e, z] ⊂ B′ = A′′[x]/(x2 − y).

Since both A′ and A′′ are regular algebras, they are finite flat A-modules of rank 2 and 3,

respectively, whereas B are finite flat A′-module and A′′-module of rank 3 and 2, respectively.

The construction of the special form associated with a subcover gives rise to

ωA′ : ∧3
AB

′ → A and ωA′′ : ∧2
AB

′ → A

supported on the special components c′ = Spec(A′) and c′′ = Spec(A′′) of s×
3
c //S3 and

s×
2
c //S2, respectively. By arguing as in the symplectic case, we see that ωA′ is annihilated

by x⊗A 1⊗A 1 + 1⊗A x⊗A 1 + 1⊗A 1⊗A x and ωA′ by x⊗A 1 + 1⊗A x. It follows that
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as alternating forms, they satisfy the relations:

ωA′(xb1, b2, b3) + ωA′(b1, xb2, b3) + ωA′(b1, b2, xb3) = 0

ωA′′(xb1, b2) + ωA′′(b1, xb2) = 0

for all b1, b2, b3 ∈ B.

The form ωA′ agrees with the restriction of the form ρ calculated by Macaulay 2 when

restricted to B′ → B, with the inclusion given by multiplication by x: Indeed, the restriction

of ρ takes value 1 on each of:

z ∧ x ∧ x2, x ∧ zx ∧ x2, 1 ∧ x ∧ zx2

and −q on z ∧ zx ∧ zx2. This exactly detects the coefficient of z when these wedges are

written in terms of the A′ basis 1∧ x∧ x2 for ∧3
A′B

′, which matches ωA′ since the generator

of HomA(A
′, A) as an A′′ module detects the coefficient of A′.

We now build a 3-form on B out of the 3-form ωA′ and 2-form ωA′′ on B′. Since

B = A[x]/(xf0), B′ = A[x]/(f0) we have exact sequences of free A-modules

0 → A→ B → B′ → 0 and 0 → B′ → B → A→ 0

where the map A→ B in the first sequence is given by 1 7→ f0 and the map B′ → B in the

second sequence is given by 1 7→ x. It follows an exact sequences

0 → A⊕B′ → B → Q→ 0 and 0 → B → A⊕B′ → Q→ 0

where Q = A/(q) = B′/(x). It follows an exact sequence

0 → ∧3
AB

∗ → ∧3
A(B

′)∗ ⊕ ∧2
A(B

′)∗ → ∧2(B′)∗/(q) → 0
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where the map ∧2
A(B

′)∗ → ∧2(B′)∗/(q) is the reduction modulo q, and the map ∧3
A(B

′)∗ →

∧2(B′)∗/(q) is obtained by the composition

∧3
A(B

′)∗ → ∧3
AB

∗ → ∧2
AB

∗ → ∧2
A(B

′)∗ → ∧2
A(B

′)∗/(q)

where the first map is induced by the projection B → B′, the second is given by contraction

with f0, the third map is induced by the inclusion B′ → B sending 1 7→ x, and the final

map is the quotient map. Since q ∧2 (B′)∗ ≃ ∧2(B′)∗ is a free, rank 1 module over the

special component of S2A(B
′), there is a unique generator as an A′′ module. The 3-form ωA′

and the 2-form ωA′′ do not have the same image in ∧2
A(B

′)∗/(q); however, the form zωA′′

is and it gives a generator for the A′′ submodule of 2-forms compatible with ωA′ . The pair

(ωA′ , zωA′′) comes from an element of ∧3
AB

∗ which agrees with the 3-form calculated by

Macaulay2.

2.5 Lattice description of affine Springer fibers of classical groups

Let us recall Kazhdan-Lusztig’s definition [24] of affine Springer fibers. Let G be a split

reductive group defined over a field k and g its Lie algebra. Let F = k((ϖ)) the field

of Laurent formal series and O = k[[ϖ]] its ring of integers. Let γ ∈ g(F ) be a regular

semisimple element. The affine Springer fiber associated with γ is an ind-scheme defined

over k whose set of k-points is

Mγ(k) = {g ∈ G(F )/G(O)|ad(g)−1γ ∈ g(O)}.

We note that Mγ is non-empty only if the image a ∈ c(F ) lies in c(O) where c = g//G is

the invariant theoretic quotient of g by the adjoint action of G. As argued in [35], using the

Kostant section, we can define an affine Springer fiber Ma depending only on a instead of

γ, which is isomorphic to Mγ .

116



For G = GLn, the affine Springer fiber Ma has a well-known lattice description. In this

case, c = An. If a = (a1, . . . , an) ∈ On, we form the finite flat O-algebra

Ba = O[x]/(fa)

where fa = xn + a1x
n−1 + · · · + an by the base change from the universal spectral cover.

As γ ∈ g(F ) is a regular semisimple element, Ba ⊗O F is finite and étale over F . We have

a well-known lattice description of the affine Springer fiber Ma in this case.

Theorem 2.5.1. For G = GLn and a ∈ crs(F ) ∩ c(O), the set Ma(k) consists of lattices V

in the n-dimensional vector space V = Ba ⊗ F which are also Ba-modules.

See for example, Section 2 of [50] for an exposition.

For computational purposes, it is desirable to have a lattice description of affine Springer

fibers similar to Theorem 2.5.1 for classical groups, which is as simple as in the linear case.

This is possible due to the construction of the companion matrix, and in fact, this was our

original motivation.

In the cases we have investigated in the paper, i.e., symplectic, special orthogonal, and

G2, we have constructed a finite, flat spectral cover s = Spec(B) of the invariant theoretic

quotient c = Spec(A) which is étale over the regular semisimple locus of c. The degree

d = deg(B/A) is the degree of the standard representation which is 2n for Sp2n, 2n + 1 for

SO2n+1, 2n for SO2n and 7 for G2. In the case SO(2n), we must consider the normalization

B̃ of B. In each of these cases, we constructed a form ω, which is

• a non-degenerate symplectic form ω : B×B → A satisfying ω(xb1, b2)+ω(b1, xb2) = 0

for Sp2n

• a non-degenerate symmetric form ω : B×B → A satisfying ω(xb1, b2)+ω(b1, xb2) = 0

for SO2n+1
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• a non-degenerate symmetric form ω : B̃× B̃ → A satisfying ω(xb1, b2)+ω(b1, xb2) = 0

for SO2n

• a non-degenerate alternating form ω : B ×B ×B → A satisfying

ω(xb1, b2, b3) + ω(b1, xb2, b3) + ω(b1, b2, xb3) = 0

for G2

We also constructed a trivialization of the determinant
∧d
AB = A in all these cases.

For every a ∈ c(O)∩ crs(F ), we construct a finite flat O-algebra Ba by base change from

the spectral cover s → c. Because a ∈ crs(F ), the generic fiber Va = Ba ⊗O F is a finite

étale F -algebra of degree d. By pulling back ω, we get a form ωa which is a non-degenerate

alternating F -bilinear form on Va in the symplectic case, a non-degenerate symmetric F -

bilinear form on Va in the orthogonal case, and a non-degenerate alternating F -trilinear form

on Va in the G2 case. Moreover, it extends to a non-degenerate form valued in O on Ba in

Sp2n, SO2n+1 and G2 cases and on B̃a in the SO2n-case.

Theorem 2.5.2. The set of k-points of the affine Springer fiber Ma is the set of O-lattices

V of Va, which are Ba-modules, such that the restriction of ωa has value in O and such that

deg(V : Ba) = 0 in Sp2n, SO2n+1, G2 cases and deg(V : B̃a) = 0 in the SO2n case.

The proof of this result follows immediately from the proof of Theorem 2.5.1, as lattices

preserved by the nondegenerate form ωa constructed above are exactly those for which there

is a reduction of structure to the classical group G.

2.6 Application to the Hitchin fibration

Let X be a smooth, projective curve over an algebraically closed field k and let G be a

reductive group over k with Lie algebra g. Fix a line bundle L on X such that either
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deg(L) > 2g− 2 or L = K is the canonical bundle. Denote by M the moduli stack of Higgs

bundles on X, whose k points are given by the set of Higgs bundles

M(k) = {(E, ϕ) : E → X is a G bundle, ϕ ∈ Γ(X, ad(E)⊗ L)}

More succinctly, M is the mapping stack M = Maps(X, [gL/G]) where gL = g∧Gm L is the

twisted bundle of Lie algebras on X.

Recall that under mild hypotheses on the characteristic of k (char(k) > 2 for G = SOn

and Sp2n and char(k) > 3 for G = G2), the Chevalley isomorphism shows

g//G ≃ t//W ≃ An

is an affine space with Gm action by weights d1, . . . , dn. Let

A = Maps(X, gL//G) ≃ ⊗n
i=1Γ(X,L

⊗di)

Hitchin, in [20], studied the space M, with appropriate stability conditions imposed, through

the fibration that now bears his name:

h : M → A, (E, ϕ) 7→ char(ϕ)

where char(ϕ) is given by composition with the quotient map [g/G] → g//G. Let Ma

denote the fiber of the map h over a point a ∈ A. In the case that G = GLn, di = i and

char(ϕ) =
∑

i aix
i is the characteristic polynomial of ϕ, whose coefficients are then sections

ai ∈ Γ(X,L⊗i).

The companion section [x] : g//G → [g/G] can be used to construct an explicit section

to the Hitchin map after extracting a square root of L. This section in many cases is almost

the same as the section constructed by Hitchin [20] and [22], but can be different from the
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section constructed in [35] which is based on the Kostant section. In every case, the Higgs

bundle constructed from the companion section will be built out of the structural sheaf of

the spectral curve. Note that the following assumes basic Gm equivariance properties of

the relevant forms. For example, in the case of G = Sp2n, we have constructed a canonical

alternating form ω : ∧2
A B → A which satisfies ω(λξ) = λ1−2nω(ξ) for any λ ∈ Gm and

ξ ∈ ∧2
AB.

In [35], it is shown that over a large open subset of A, there is a close connection,

depending on a choice of section, between Hitchin fibers and affine Springer fibers given by

the Product Formula. More precisely, let D =
⋃

α tsα//W be the divisor consisting of the

union of the image of each root hyperplane in t; in particular, the complement of D in c is

the regular, semisimple locus crs. Fix a ∈ A such that a(X) ̸⊂ D, and let U ⊂ X be the

preimage of crs in X. Given trivialization of the line bundle D on some neighborhood of

each point v ∈ X \ U , we have a map

∏
v∈X\U

Mx,a → Ma.

from the product of affine Springer fibers at the points x ∈ X \ U to the Hitchin fiber,

which consists of gluing with the companion section restricted to U . It it induces a universal

homeomorphism ∏
γ∈X\U

Mγ,a ∧
∏

γ Pγ(Ja) Pa → Ma.

The groups Pγ(Ja) and Pa are discussed in detail in [35]; we will not describe them here.

This is proved in [35] under the assumption that π0(Pa) is finite, and by Bouthier and

Cesnavicius in [4] under the only assumption that a(X) ̸⊂ D.

As Section 2.5 describes the affine springer fibers Mγ,a, the product formula above gives

an explicit description of Hitchin fibers in the case that a(X) ̸⊂ D. Namely, we have the

following descriptions for Hitchin fibers under this assumption.
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• for G = GLn, and a ∈ A we have a spectral cover pa : Ya → X embedded in the total

space |L| of L. We then associate with a the Higgs bundle Ea = pa∗OYa and the Higgs

fields ϕ : Ea → Ea ⊗ L given by the structure of OYa as an O|L|-module.

• for G = Sp2n, and a ∈ A, we have a spectral cover pa : Ya → X embedded in

the total space |L| of L. If Ea = pa∗OYa then we have a canonical symplectic form

∧2Ea → L⊗(1−2n). If L′ is a square root of L then E′
a = Ea⊗L′⊗1−2n will be equipped

with a canonical symplectic form with value in OX and also equipped with a Higgs

fields derived from the the structure of OYa as a O|L|-module.

• for G = SO2n+1, and a ∈ A, we have a spectral cover pa : Ya → X embedded in

the total space |L| of L. If Ea = pa∗OYa then we have a canonical non-degenerate

symmetric form S2Ea → L⊗(−2n) so that the vector bundle E′
a = Ea ⊗ L⊗n affords a

canonical no-degenerate symmetric form with value in OX , and also equipped with a

Higgs fields derived from the the structure of OYa as a O|L|-module. It also affords a

trivialization of the determinant depending on the choice of a square root of L.

• for G = SO2n, and a ∈ A, we have a spectral cover pa : Ya → X embedded in

the total space |L| of L. Using the normalization of the universal spectral cover, we

obtain a partial normalization Ỹa of Ya. If Ea = pa∗OỸa
then we have a canonical

non-degenerate symmetric form S2Ea → L⊗(2−2n) so that the vector bundle E′
a =

Ea ⊗ L⊗1−n affords a canonical non-degenerate symmetric form with values in OX ,

and also equipped with a Higgs fields derived from the the structure of OYa as a O|L|-

module. It also affords a canonical trivialization of the determinant depending on the

choice of a square root of L.

• for G = G2, and a ∈ A, we have a spectral cover pa : Ya → X embedded in the

total space |L| of L. If Ea = pa∗OỸa
then we have a canonical non-degenerate 3-form

∧3Ea → L−9 so that the vector bundle E′
a = Ea ⊗ L⊗3 affords a canonical non-
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degenerate 3-form with value in OX , and also equipped with a Higgs fields derived from

the the structure of OYa as a O|L|-module. It also affords a canonical trivialization of

the determinant depending on the choice of a square root of L.

2.7 Appendix to Chapter 3: Computer algebra code and G2

computations

In this appendix, we give the computer code used to compute the 3-form ρ in Section 2.3.5.

2.7.1 Construction of ρ

To construct ρ, we will use the connection between nondegenerate alternating 3-forms and

cross products. Let V be a vector space with a nondegenerate, symmetric bilinear form ν.

Definition 2.7.1. A cross product on (V, ν) is a bilinear map

c : V ⊗ V → V

satisfying the following three properties for all v1, v2 ∈ V :

1. (Skew symmetry) c(v1, v2) = −c(v2, v1);

2. (Orthogonality) ν(c(v1, v2), v1) = 0;

3. (Normalization) ν
(
c(v1, v2), c(v1, v2)

)
= det

ν(v1, v1) ν(v1, v2)

ν(v1, v2) ν(v2, v2)


The data of a cross product on (V, ν) is equivalent to the data of a nondegenerate 3-form

on V whose associated symmetric bilinear form (see equation (2.2.1)) is a scalar multiple of

ν. Indeed, to a cross product c, one associates the 3-form

ρ(v1, v2, v3) = ν
(
c(v1, v2), v3

)
(2.7.1)
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while for any non-degenerate 3-form ρ, there is a unique cross product c satisfying equation

(2.7.1).

Now, consider the free, rank 7 A-module B as in Section 2.3.5 equipped with the sym-

metric, nondegenerate form ω defined by the formula

ω(g1, g2) = trB/A

(
g1τ(g2)

f ′

)

as in the SO7 case. Here, τ(x) = −x is the natural involution on B, and the trace is taken

after inverting f ′ in A. To construct a 3-form on B which is nondegenerate over every k

point of A, it suffices to construct a cross product

c : B ⊗A B → B

for (B,ω). Moreover, the equation

ρ(xg1, g2, g3) + ρ(g1, xg2, g3) + ρ(g1, g2, xg3) = 0

is equivalent to the condition

c(xg1, g2) + c(g1, xg2) = xc(g1, g2). (2.7.2)

To simplify computations further, we note that any form c : B ⊗A B → B satisfying the

conditions of Definition 2.7.1 and equation (2.7.2) can be recovered from its trace:

tc : B ⊗A B → A, (g1, g2) 7→ trB/A

(
c(g1, g2)

)
Indeed, if we express

c(xi, xj) =
6∑

l=0

c
(l)
i,jx

l
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then c(6)i,j = tc(xi, xj) and

trB/A

(
xlc(xi, xj)

)
=

l∑
r=0

(
l

r

)
tc(xi+r, xj+l−r)

can be expressed in terms of c(m)
i,j for 6− l ≤ m ≤ 6. This allows us to recover the coefficients

c
(l)
i,j by downward induction on l.

This idea is implemented in the following Macaulay2 code. There is a one-dimensional

solution space, which is specialized at a particular point to give the form stated in equation

(2.3.5). Note that it is immediate from the computer calculation that the form ρ is valued

in B and satisfies the conclusion of Proposition 2.3.5.

S=QQ[e,q];

F=frac(S);

R=F[p_(0,0) .. p_(6,6)]; -- ring with p_(i,j)=tc(x^i,x^j),

0\leq i,j\leq 6

-- The following three commands define tc(x^i,x^j) for i or j between

7 and 12 using the relation x^7-e*x^5+e^4/4*x^3+q*x=0.

for l from 0 to 5 do [for k from 0 to 6 do p_(k,7+l)=e*p_(k,5+l)-

(1/4)*e^2*p_(k,3+l)-q*p_(k,1+l)];

for l from 0 to 5 do [for k from 0 to 6 do p_(7+l,k)=e*p_(5+l,k)-

(1/4)*e^2*p_(3+l,k)-q*p_(1+l,k)];

for l from 0 to 5 do [for k from 7 to 12 do p_(k,7+l)=e*p_(k,5+l)-

(1/4)*e^2*p_(k,3+l)-q*p_(k,1+l)];

-- I encodes orthogonality:

I = ideal(flatten for a from 0 to 6 list for k from 0 to 6 list
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sum(0..k,j->binomial(k,j)*p_(k+j,a+k-j)));

-- J encodes skew symmetry:

J = ideal( flatten for a from 0 to 6 list for b from 0 to 6 list

p_(a,b)+p_(b,a) );

-- The following encodes the normalization condition:

B=R[x]/(x^7-e*x^5+(1/4)*e^2*x^3+q*x);

-- determinant of norms of x^i,x^j:

f = (i,j) -> coefficient(x^6,(-1)^i*x^(2*i))*coefficient(x^6,(-1)^j*

x^(2*j))-coefficient(x^6,(-1)^j*x^(i+j))*coefficient(x^6,(-1)^j*

x^(i+j));

-- norm of c(x^i,x^j):

g = (i,j) -> coefficient(x^6, (p_(i,j)*(x^6-e*x^4+(1/4)*e^2*x^2+q)+

sum(0..1,l->binomial(1,l)*p_(i+l,j+1-l))*(x^5-e*x^3+(1/4)*e^2*x)+

sum(0..2,l->binomial(2,l)*p_(i+l,j+2-l))*(x^4-e*x^2+(1/4)*e^2)+

sum(0..3,l->binomial(3,l)*p_(i+l,j+3-l))*(x^3-e*x)+sum(0..4,l->

binomial(4,l)*p_(i+l,j+4-l))*(x^2-e)+sum(0..5,l->binomial(5,l)*

p_(i+l,j+5-l))*(x)+sum(0..6,l->binomial(6,l)*p_(i+l,j+6-l)))

*(p_(i,j)*((-x)^6-e*(-x)^4+(1/4)*e^2*(-x)^2+q)+sum(0..1,l->

binomial(1,l)*p_(i+l,j+1-l))*((-x)^5-e*(-x)^3+(1/4)*e^2*(-x))+

sum(0..2,l->binomial(2,l)*p_(i+l,j+2-l))*((-x)^4-e*(-x)^2+(1/4)*

e^2)+sum(0..3,l->binomial(3,l)*p_(i+l,j+3-l))*((-x)^3-e*(-x))+

sum(0..4,l->binomial(4,l)*p_(i+l,j+4-l))*((-x)^2-e)+sum(0..5,l->

binomial(5,l)*p_(i+l,j+5-l))*(-x)+sum(0..6,l->binomial(6,l)*

p_(i+l,j+6-l))) );
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-- K encodes the normalization condition:

K = ideal(flatten for i from 0 to 6 list for j from 0 to 6 list

f(i,j)-g(i,j));

Q=R/(I+J+K); -- imposing the relations on our ring of variables

Q2=Q/ideal(p_(6,3)-1,p_(6,4),p_(6,5)-5*e/2); -- specializes to our

particular form rho

-- Computation of c from tc:

P=Q2[x]/(x^7-e*x^5+e^2/4*x^3+q);

C=table(for k from 0 to 6 list k, for k from 0 to 6 list k, (i,j) ->

(p_(i,j)*(x^6-e*x^4+(1/4)*e^2*x^2+q)+sum(0..1,l->binomial(1,l)*

p_(i+l,j+1-l))*(x^5-e*x^3+(1/4)*e^2*x)+sum(0..2,l->binomial(2,l)*

p_(i+l,j+2-l))*(x^4-e*x^2+(1/4)*e^2)+sum(0..3,l->binomial(3,l)*

p_(i+l,j+3-l))*(x^3-e*x)+sum(0..4,l->binomial(4,l)*p_(i+l,j+4-l))*

(x^2-e)+sum(0..5,l->binomial(5,l)*p_(i+l,j+5-l))*(x)+sum(0..6,l->

binomial(6,l)*p_(i+l,j+6-l))));

-- This is the matrix for c with respect to the basis x^i, i=0,..,6

netList C -- displays C

2.7.2 Nondegeneracy of ρ

Let ρ be the form computed in the previous section, stated explicitly in equation (2.3.5).

Note that since we specialized to a particular form in the previous section, it is not yet

clear that this form is nondegenerate. For this, we produce the following code in Macaulay2

to explicitly compute the associated bilinear form is as in Proposition 2.3.4. The following

uses some basic operations on permutations from the package SpechtModule authored by
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Jonathan Niño in Macaulay2.

T=permutations {0,1,2,3,4,5,6};

n = (v,w) -> sum(0..7!-1, k-> permutationSign(T_k)*coefficient(x^6,

v*(C_((T_k)_0))_((T_k)_1))*coefficient(x^6,w*(C_((T_k)_2))_((T_k)_3))

*coefficient(x^6,(-x)^((T_k)_4)*(C_((T_k)_5))_((T_k)_6)) );

S=table(for k from 0 to 6 list k, for k from 0 to 6 list k, (i,j) ->

n((-x)^i,(-x)^j);

netList S
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