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ABSTRACT

This thesis studies the existence of smooth models for fibered partially hyperbolic systems.

Fibered partially hyperbolic systems are partially hyperbolic diffeomorphisms that have an

integrable center bundle, tangent to a continuous invariant fibration by invariant submani-

folds.

We prove that under certain restrictions on the fiber and/or bundle, any fibered partially

hyperbolic system over a nilmanifold is leaf conjugate to a smooth model that is isometric

on the fibers and descends to a hyperbolic nilmanifold automorphism on the base.
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CHAPTER 1

INTRODUCTION

Dynamics is the study of the behavior of maps f : M → M under iteration. Throughout

the 70s and 80s, hyperbolic behavior (and in particular Anosov diffeomorphisms) were an

extremely active area of study. A diffeomorphism f : M → M is said to be Anosov if the

tangent bundle admits a Df -invariant splitting TM = Es⊕Eu into a uniformly contracting

and a uniformly expanding subbundle.

Anosov diffeomorphisms are remarkable for the wide range of chaotic behaviors they

exhibit [13], as well as for their extraordinary degree of stability and rigidity. For example,

Anosov diffeomorphisms are structurally stable, and Franks and Manning classified Anosov

diffeomorphisms of tori and nilmanifolds by proving that any Anosov diffeomorphism of a

torus or nilmanifold is topologically conjugate to a linear model [28], [48].

On the other hand, the existence of an Anosov diffeomorphism on a manifold M im-

poses strong restrictions on the topology of M . Up to finite covers, all known Anosov

diffeomorphisms lie on nilmanifolds, which are manifolds of the form N/Γ, where N is a

simply-connected nilpotent Lie group and N < Γ is a uniform lattice. In fact, it conjectured

that (up to finite covers) only nilmanifolds can support Anosov diffeomorphisms1.

Despite the limitations on the settings in which Anosov diffeomorphisms can exist, the

properties of Anosov diffeomorphisms are extremely interesting. This raises the natural

questions of whether hyperbolicity can be weakened in a way that preserves many of these

properties while allowing for a much wider range of behaviors. This leads us to the notion

of partial hyperbolicity.

A diffeomorphism f : M → M of a closed Riemannian manifold is said to be partially

hyperbolic if there is a continuous Df -invariant splitting TM = Es ⊕ Ec ⊕ Eu, constants

1. Note that if true, this conjecture would imply that Franks and Manning’s classification result gives a
complete classification of Anosov diffeomorphisms.
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0 < λ < γ̂ < 1 < γ < µ, and constant C > 0 such that for all x ∈ M and all unit vectors

vs ∈ Es(x), vc ∈ Ec(x), and vu ∈ Eu(x), we have that for all n ∈ N,

‖dxfnvs‖ ≤ Cλn,
1

C
γ̂n ≤ ‖dxfnvc‖ ≤ Cγn,

1

C
µn ≤ ‖dxfnvs‖.

In other words, Df is uniformly contracting in the direction of the stable bundle Es, is

uniformly expanding in the direction of the unstable bundle Eu, and is less contracting

and/or expanding in the direction of the center bundle Ec than it is of the other two bundles.

When the constants λ, γ̂, γ, and µ are independent of the point x ∈ M , we say that f is

absolutely partially hyperbolic. When λ, γ̂, γ, and µ depend on x, we say that f is pointwise

partially hyperbolic.

Partially hyperbolic diffeomorphisms were first introduced by Brin and Pesin in their

study of frame flows [14] and by Hirsch, Pugh, and Shub in their study of normally hy-

perbolic foliations [42]. Partially hyperbolic diffeomorphisms are a generalization of Anosov

diffeomorphisms, and are important because they combine the chaotic behavior of Anosov

diffeomorphisms in the directions of the stable and unstable bundles Es and Eu, respectively,

with a more flexible range of behaviors in the direction of the center bundle Ec.

Though partially hyperbolic diffeomorphisms form a much larger and richer class than

Anosov diffeomorphisms, partial hyperbolicity, like hyperbolicity, still persists under C1

perturbations. Partially hyperbolic diffeomorphisms form a much richer class than Anosov

diffeomorphisms, but still exhibit many of the same remarkable properties that distinguish

Anosov diffeomorphisms (although sometimes under additional assumptions). For more

discussion, see Section 2.1.

This thesis focuses on a class of partially hyperbolic systems called fibered partially hy-

perbolic diffeomorphisms. These are partially hyperbolic diffeomorphisms that have an in-

tegrable center bundle Ec, tangent to a continuous invariant fibration by compact subman-
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ifolds2. The fibration here allows us to directly observe the interplay between the distinct

behavior in the stable/unstable directions and in the transverse center direction.

Fibered partially hyperbolic systems form a rich class of dynamical systems. Beyond

the relatively simple examples of skew products on trivial bundles, fibered systems appear

as automorphisms of nilmanifolds and play a role in the construction of exotic partially

hyperbolic systems (e.g. [31]) and in several rigidity contexts [3], [23], [54]. They also have

featured in the proofs of several classification results for partially hyperbolic diffeomorphisms.

A natural notion of equivalence for partially hyperbolic dynamical systems is leaf conju-

gacy. Two partially hyperbolic diffeomorphisms f : M → M and g : M ′ → M ′ are said to

be leaf conjugate if there exists a homeomorphism h : M → M ′, a f -invariant foliation W c
f

tangent to the center bundle of f , and a g-invariant foliation W c
g tangent to the center direc-

tion of g such that h maps center leaves of f to center leaves of g (i.e. h(W c
f (x)) = W c

g (h(x))

and h(f(W c
f (x))) = g(h(W c

f (x)))).

Classification of partially hyperbolic diffeomorphisms up to leaf-conjugacy is an important

problem in the study of partially hyperbolic dynamics because it allows us to understand

the behavior of more general partially hyperbolic diffeomorphisms using simpler, easier to

study models.

The classification of partially hyperbolic diffeomorphisms up to leaf conjugacy (and also

of fibered partially hyperbolic systems) is almost completely open in dimensions greater than

three. There are a number of results in dimension three. For example, Hammerlindl and

Potrie showed that any partially hyperbolic diffeomorphism on a three-dimensional nilmani-

fold or torus is leaf conjugate to the “linear" model in its homotopy class [34], [35]. They also

provided a partial classification up to leaf conjugacy of partially hyperbolic diffeomorphisms

on 3-manifolds whose fundamental group is solvable and has exponential growth [36]. All of

these results rely heavily on the topology of three-manifolds and tools from [15], [16], which

2. For a more precise definition, see Section 2.2.
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only apply in dimension three. As a result, the methods used in dimension three do not

generalize well (if at all) to higher dimension.

While there are a lot of results about classification of partially hyperbolic diffeomorphisms

in dimension three, almost nothing is known in higher dimension. The results that exist

typically require very strong assumptions. For example, Hammerlindl proved that a partially

hyperbolic diffeomorphism of the torus f : Td → Td (d > 3) is leaf conjugate to the linear

automorphism of Td in its homotopy class under the assumption that the center foliation

for f is one-dimensional and the stable and unstable foliations for f are quasi-isometric

[34]. Sandfeldt has shown that under similar assumptions of one-dimensional center and

quasi-isometry of stable and unstable foliations, a partially hyperbolic diffeomorphism of a

nilmanifold modeled on the (2n + 1)-dimensional Heisenberg group is leaf conjugate to a

nilmanifold automorphism [57].

Even though these results are about the more general class of partially hyperbolic dif-

feomorphism, fibered partially hyperbolic systems do play a role in their proofs– in con-

structing the leaf conjugacy, both results show that the original partially hyperbolic systems

are fibered. This shows one way in which classification results for fibered partially hyper-

bolic systems could be of use in understanding the more general class of partially hyperbolic

systems.

One thing that makes the study of fibered partially hyperbolic systems challenging is

that the fibration of such a system is typically only continuous, and its fibers are C1 in

general. While fibered partially hyperbolic systems are not generally smooth, when they

are, the induced map on the base of the fibration, which represents the stable and unstable

directions, is Anosov. This allows us to use tools and results about Anosov diffeomorphisms

to study smooth fibered partially hyperbolic systems. It also suggests a natural subclass of

fibered partially hyperbolic systems to consider.

As noted earlier, Anosov diffeomorphisms are classified on nilmanifolds, but a classifica-
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tion on arbitrary manifolds does not exist. While all known examples of Anosov diffeomor-

phisms exist on nilmanifolds, it is unknown if nilmanifolds are the only manifolds that can

support Anosov diffeomorphisms. In this thesis, we consider fibered partially hyperbolic sys-

tems over nilmanifolds. This allows for use and modification of existing results about Anosov

diffeomorphisms on nilmanifolds. It also allows us to construct examples of fibered partially

hyperbolic systems using existing examples of Anosov diffeomorphisms on nilmanifolds.

1.1 Statements of Main Results

The main result of this thesis establishes the existence of smooth models for certain fibered

partially hyperbolic systems. It shows that under certain conditions, every fibered partially

hyperbolic system over a nilmanifold is leaf conjugate to a smooth model that is isometric

on the fibers and descends to a hyperbolic nilmanifold automorphism on the base.

Theorem A ([25, Theorem A]). Let f : M → M be a fibered partially hyperbolic system

with quotient a nilmanifold B and C1 fibers F (where F is a closed manifold). Suppose that

the structure group of the F -bundle M is G ⊂ Diff1(F ) and that there exists a Riemannian

metric on F and a subgroup I of Isom(F )∩G such that the inclusion I ↪→ G is a homotopy

equivalence.

Then f is leaf conjugate to a C∞ fibered partially hyperbolic system g : M̂ → M̂ such

that

1. The projection of the leaf conjugacy to B is a map homotopic to the identity;

2. the F -bundles M and M̂ are isomorphic3;

3. the structure group of M̂ is Isom(F ); and

4. the projection of g to B is a hyperbolic nilmanifold automorphism.

3. This is implicit from the definition of leaf conjugacy, but we state it explicitly for clarity.
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Remark 1.1.1. • The base manifold B in Theorem A a priori might not have a smooth

structure. In our results, we assume B is a topological nilmanifold, meaning that B is

homeomorphic to a nilmanifold. This case can easily be reduced to the case where B is

a nilmanifold by replacing the projection map for the bundle with the projection map

composed with the homeomorphism. Thus, our results easily extend to a topological

nilmanifold B.

• 3. implies that there exists a smooth Riemannian metric on M̂ adapted to g such that

g is isometric on fibers. This will be clear from the construction of g in the proof of

Theorem A.

• The fibered partially hyperbolic system g : M̂ → M̂ may act differently on the fibers

than the original fibered partially hyperbolic system f : M →M ; that is, if h : M → M̂

is the leaf conjugacy from Theorem A, then h ◦ f and g ◦ h may not be homotopic.

The main assumption in Theorem A is that the structure group of the F -bundle contain

a homotopy equivalent subgroup of Isom(F ). We discuss the necessity of this assumption

to our proof in Remark 3.3.3. Finding circumstances where this assumption applies (and

thus we can apply Theorem A) comes down to studying the relationship between Diff1(F ),

Isom(F ), and their subgroups.4 Namely, for which manifolds F and which subgroups G

of Diff∞(F ) is there a subgroup H ⊂ Isom(F ) ∩ G such that the inclusion H ↪→ G is a

homotopy equivalence?

Note that even without the assumption that the structure group of the F -bundle contain

a homotopy equivalent subgroup of Isom(F ), our argument gives that the initial fibered

partially hyperbolic system f : M → M is leaf conjugate to an extension over a hyperbolic

nilmanifold automorphism. For further discussion and details, see Remark 3.3.3. Notably,

in the case where the F -bundle from the fibered partially hyperbolic system f : M → M

4. In the following discussion we often replace Diff1(F ) with Diff∞(F ), which we can do since Diff∞(F ) ↪→
Diff1(F ) is a homotopy equivalence (Proposition 2.3.7).
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is trivial (i.e. M = B × F ), we can construct this extension over a hyperbolic nilmanifold

automorphism to be partially hyperbolic.

Proposition B. Let f : M → M be a fibered partially hyperbolic system with quotient a

nilmanifold B and C1 fibers F (where F is a closed manifold). Suppose that the F -bundle

M is trivial (i.e. that the F -bundle M is isomorphic to B × F ).

Then f is leaf conjugate to a C∞ fibered partially hyperbolic system g : M̂ → M̂ such

that 1., 2, and 4. from Theorem A hold.

The proof of Proposition B is given at the end of Section 3.3.

The following two corollaries come from answering the above question about subgroups

H ⊂ Isom(F )∩G for specific F and G. They are by no means the only such corollaries. (For

example, the conclusion of Corollary D holds for any F such that Diff1
0(F ) is contractible.)

Corollary C. Let f : M → M be a fibered partially hyperbolic system with quotient a

nilmanifold B and C1 fibers F , where F is

1. a n-sphere Sn for n = 1, 2, 3, or

2. a hyperbolic 3-manifold

Then f is leaf conjugate to a C∞ fibered partially hyperbolic system g : M̂ → M̂ , which

induces a hyperbolic nilmanifold automorphism on the base.

Corollary D. Let f : M → M be a fibered partially hyperbolic system with quotient a

nilmanifold B and C1 fibers F and with structure group Diff1
0(F ). Suppose that F is

1. the two or three torus, T2, T3 ,

2. a hyperbolic surface, or

3. a Haken 3-manifold

7



Then f is leaf conjugate to a C∞ fibered partially hyperbolic system g : M̂ → M̂ , which

induces a hyperbolic nilmanifold automorphism on the base.

Remark 1.1.2. As noted before, these are by no means the only cases where Theorem A can be

applied to get results analogous to the results of Corollaries C and D. Notably, the conclusion

of Corollary C holds for any fiber F such that the inclusion Isom(F ) ↪→ Diff(F ) is a homotopy

equivalence. For the sake of conciseness, we haven’t listed in Corollary C more of the known

examples of closed manifolds F for which Isom(F ) ↪→ Diff(F ) is a homotopy equivalence.

Other examples include lens spaces, prism and quaternionic manifolds, tetrahedral manifolds,

octahedral manifolds, and icosahedral manifolds [4].

Theorem A builds on previous work by Hirsch-Pugh-Shub and by Hammerlindl and

Potrie. Hirsch, Pugh, and Shub [42] proved that perturbations of fibered partially hyper-

bolic systems are fibered partially hyperbolic systems, and that the perturbed system is leaf

conjugate to the original system. Hammerlindl [34] proved that a partially hyperbolic diffeo-

morphism of T3 is leaf conjugate to a linear automorphism of T3. Hammerlindl and Potrie

[35] proved an analogous result for partially hyperbolic diffeomorphisms of 3-dimensional

nilmanifolds.

Corollaries C and D give specific examples of cases where we can apply Theorem A in

dimensions 1, 2, and 3, and Proposition B gives an analogue of Theorem A in the case

of a trivial bundle. Note that Corollary C shows that the hypothesis of Theorem A holds

for all fibered partially hyperbolic systems with one dimensional fiber. Corollaries C and

D also show that the conclusion of Theorem A holds for surface bundles, although in the

cases of surfaces other than S2, an added assumption on the structure group of the bundle

is needed. The question remains of whether, and in what conditions for other types of fibers

in nontrivial bundles.

Remark 1.1.3. If for the fibered partially hyperbolic system f : M → M , dimEs = 1 (or

dimEu = 1), then the base space B will always be a nilmanifold [7]. This allows us to replace
8



the assumption that the quotient of the fibered partially hyperbolic system f : M → M is

a nilmanifold in Theorem A or in Proposition B with the assumption that dimEs = 1 (or

dimEu = 1).

One ingredient in the proof of Theorem A, which is of independent interest, is the follow-

ing generalization of the works of Franks-Manning and of Hiraide to Anosov homeomorphisms

of nilmanifolds.

Theorem E ([61, Theorem 2(1)]). An Anosov homeomorphism of a nilmanifold is topologi-

cally conjugate to a hyperbolic nilmanifold automorphism via a conjugacy that is homotopic

to the identity.

This theorem was originally proved by Sumi in [61]. A proof of Theorem E, which follows

the same structure as Sumi and Hiraide’s proofs in [61] and [41], is provided in Section 2.4

for the sake of completeness.

Anosov homeomorphisms are generalizations of Anosov diffeomorphisms. Many of the

important properties of Anosov diffeomorphisms come directly from the fact that Anosov

diffeomorphisms are expansive and have the shadowing property. A homeomorphism f :

X → X of a metric space is expansive if there exists a constant c > 0 such that for all

x, y ∈ X, if d(fn(x), fn(y)) < c for all n ∈ Z then x = y. Such a constant c is called an

expansive constant for f .

The shadowing property says that we can approximate pseudo-orbits by actual orbits.

More formally, a sequence of points {xi}i∈Z ⊂ X is called a δ-pseudo-orbit if d(f(xi), xi+1) <

δ for all i ∈ Z. A point z ∈ X is said to ε-shadow a sequence of points, {xi}i∈Z, if

d(f i(z), xi) < ε for all i ∈ Z. We say that f has the shadowing property if for any ε > 0,

there exists δ > 0 such that any δ-pseudo-orbit is ε-shadowed by a point in X. An expansive

homeomorphism with the shadowing property is known as an Anosov homeomorphism.

In contrast to some other weakenings of Anosov diffeomorphisms (e.g. hyperbolic home-

omorphisms [47, Section IV.9]), Anosov homeomorphisms are not assumed to have invariant
9



foliations.

In Section 2.4, we examine some of the similarities between Anosov homeomorphisms

and Anosov diffeomorphisms and give a proof Theorem E.

Theorem E is useful in the proof of our main theorem because given a fibered partially

hyperbolic diffeomorphism f : M →M with associated bundle π : M → B, the map induced

by f on B is an Anosov homeomorphism. (This follows from a result of Bohnet and Bonatti

[8], as we will explain in Section 3.3.)

After proving Theorem E in Section 2.4, we spend the rest of the paper proving Theorem

A.

1.2 Sketch of Proof of Theorem A

The proof of Theorem A is split into four parts. Due to the fact that much of the proof will

take place in the quotient leaf space B, we denote the partially hyperbolic diffeomorphism on

M by f̂ : M →M . We denote the homeomorphism that f̂ descends to on B by f : B → B.

The strategy of the proof is to first construct,

• a conjugacy h : B → B between f : B → B and a hyperbolic nilmanifold automor-

phism A : B → B, and

• a smooth F -bundle M̂ over B that is isomorphic to the original F -bundle M .

Then lift

• the conjugacy h : B → B to a homeomorphism ĥ : M̂ → M̂ , and

• the hyperbolic nilmanifold automorphism A : B → B to a partially hyperbolic diffeo-

morphism g : M̂ → M̂ .

The construction of the conjugacy h : B → B and the hyperbolic nilmanifold automor-

phism A : B → B relies almost entirely on Theorem E. The construction of the smooth
10



bundle M̂ relies on tools developed in Section 2.3. Lifting the conjugacy h : B → B to a

homomorphism ĥ : M̂ → M̂ takes place in Section 3.1, and finally lifting A to a partially

hyperbolic diffeomorphism g relies on tools developed in Section 3.2. The entire proof of

Theorem A is given in Section 3.3.
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CHAPTER 2

BACKGROUND AND PRELIMINARIES

2.1 History

As noted earlier, partial hyperbolicity was originally introduced in the 1970s in the work of

Brin an Pesin [14] and of Hirsch, Pugh, and Shub [42]. The definition of partial hyperbolicity

is a weakening of hyperbolicity and is in part motivated by the attempt to find a wider

class of diffeomorphisms that retain some of the chaotic and rigidity properties of Anosov

diffeomorphisms.

In the 1970s, Brin and Pesin studied the dynamics of frame flows over closed negatively

curved manifolds. They showed that the time t map of the frame flow of a closed, negatively

curved manifold was partially hyperbolic. In addition, they showed that for many closed,

negatively curved manifolds, the frame flow is ergodic (and mixing) [14].

Skew products are another important example (or really class of examples) of partially

hyperbolic diffeomorphisms. In their study of normally hyperbolic foliations, Hirsch, Pugh,

and Shub gave examples of non-Anosov, partially hyperbolic diffeomorphisms that are ro-

bustly transitive, and in fact are robustly mixing [26]. Transitivity is one of the chaotic

properties exhibited by Anosov diffeomorphisms, and so transitive (and especially robustly

transitive) partially hyperbolic diffeomorphisms are of great interest. Another important ex-

ample of robustly transitive partially hyperbolic diffeomorphisms are Derived from Anosov

(DA) diffeomorphisms, which were first exhibited by Mañé [9]. A third important category of

examples of partially hyperbolic diffeomorphism are time-1 maps of Anosov flows and their

perturbations. This category includes the first example of a stably ergodic, non-Anosov

partially hyperbolic diffeomorphism, which was given by Grayson, Pugh and Shub [33]. In

the 1990s, Bonatti and Díaz constructed the first example of a robustly transitive partially

hyperbolic diffeomorphism homotopic to the identity by perturbing the time one map of an

12



Anosov flow [9].

The study of robustly transitive partially hyperbolic diffeomorphisms also lead to a num-

ber of conjectures and breakthroughs about C1 generic dynamics. For example, Crovisier

proved the weak Palis conjecture1 by reducing to a classification of partially hyperbolic

dynamics with 1-dimensional center [21].

Additionally, the above examples have inspired a large number of conjectures and re-

sults. For example, they lead to Pugh and Shub to conjecture that set of stably ergodic

diffeomorphisms is open and dense in the set of C2 volume-preserving partially hyperbolic

diffeomorphisms [55]. For more discussion of this and related conjectures, see [17].

A number of the above examples are fibered partially hyperbolic systems. These examples

have also motivated a number of conjectures about the classification of partially hyperbolic

diffeomorphisms. In 2001, Pujals conjectured that (up to isotopy within partially hyperbolic

systems), transitive partially hyperbolic diffeomorphisms in dimension 3 could be divided

into three classes: time one maps of Anosov flows, fibered partially hyperbolic systems over

T2, and Anosov diffeomorphisms of T3 [12]. Rodriguez Hertz, Rodriguez Hertz, and Ures

also conjectured that this trichotomy also classified the behavior of dynamically coherent2

partially hyperbolic diffeomorphisms in dimension 3 up to leaf conjugacy[19].

While both of these conjectures have been proven false in the general setting [10], [11],

they have inspired a rich theory of partially hyperbolic diffeomorphisms in dimension three.

They have been shown to hold in a number of specific cases:

• On T3, any dynamically coherent, pointwise partially hyperbolic diffeomorphism f :

T3 → T3, leaf-conjugate to a partially hyperbolic toral automorphism (namely, f ’s

linearization) [35]. If pointwise partial hyperbolicity is replaced with absolute partial

1. The weak Palis conjecture says that any diffeomorphism can be C1 approximated by either a Morse-
Smale diffeomorphism or a diffeomorphism that has a transverse homoclinic intersection.

2. A partially hyperbolic diffeomorphism f : M → M is said to be dynamically coherent if it admits
f -invariant foliations F cu and F cs that are tangent to the bundles Ec ⊕ Eu and Es ⊕ Ec respectively.

13



hyperbolicity, the assumption that the diffeomorphism be dynamically coherent can be

removed [34].

• When M is a nilmanifold that is not T3, any pointwise partially hyperbolic diffeo-

morphism f : M → M is dynamically coherent and is leaf conjugate to a partially

hyperbolic nilmanifold automorphism (namely f ’s linearization) [35]. In both this case

and the case where M = T3, this shows that f : M → M is a fibered partially

hyperbolic system.

• When π1(M) is virtually solvable, but not virtually nilpotent, any dynamically coherent

pointwise partially hyperbolic diffeomorphism f : M → M is leaf conjugate to the

time-one map of a suspension Anosov flow [36].

• When M is a closed Seifert fibered 3-manifold, any pointwise partially hyperbolic

diffeomorphism f : M → M that is isotopic to the identity is dynamically coherent,

and a finite iterate of f is leaf-conjugate to the time-one map of an Anosov flow [5],

[6].

• Finally, when M is hyperbolic, if f : M → M is a dynamically coherent, pointwise

partially hyperbolic diffeomorphism, then a finite iterate of it is leaf-conjugate to the

time-one map of an Anosov flow [5], [6].

In this thesis, our study is not limited to dimension 3, however the first interesting

examples appear there, which we discuss in the next section.

14



2.2 Fibered Partially Hyperbolic Systems

We begin with an example. The three-dimensional Heisenberg group is given by

Heis :=

A(x,y,z) =


1 x z

0 1 y

0 0 1

 : x, y, z ∈ R


with matrix multiplication as the group operation. The group Heis is a nilpotent Lie group

whose center consists of the matrices A(0,0,z), with z ∈ R. Any automorphism of Heis must

preserve this center.

Nilmanifolds are quotients of nilpotent Lie groups by discrete subgroups. For the Heisen-

berg group, a compact quotient can be obtained as follows. Let

Γ = {(x, y, z) ∈ H : x, y, 2z ∈ Z} ,

where we use (x, y, z) to denote the matrix A(x,y,z). The quotient Heis /Γ is a compact

nilmanifold, an example of a Heisenberg nilmanifold. It is a fiber bundle over the 2-torus T2

with fiber the circle T, where the fibers lie in the “z-direction," tangent to the center of the

Lie algebra of Heis.

Any automorphism of Heis that preserves Γ descends to a diffeomorphism of Heis /Γ: since

the automorphism preserves the center of Heis, the quotient diffeomorphism preserves the

bundle structure. The interesting quotient diffeomorphisms are examples of fibered partially

hyperbolic diffeomorphisms. An example is the map f0 : Heis /Γ→ Heis /Γ given by

f0(x, y, z) =

(
2x+ y, x+ y, z + x2 +

y2

2
+ xy

)
.

Since f0 preserves the smooth fibration T ↪→ Heis /Γ � T2, it induces a diffeomorphism of
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the base T2, in this case the hyperbolic linear automorphism (x, y) 7→ (2x+ y, x+ y).

This example is partially hyperbolic, meaning that the tangent bundle TN to N =

Heis /Γ splits as a df0-invariant direct sum TN = Es⊕Ec⊕Eu such that for all x ∈ N and

all unit vectors vs ∈ Es(x), vc ∈ Ec(x), and vu ∈ Eu(x), we have that

‖dxf(vs)‖ < ‖dxf(vc)‖ < ‖dxf(vu)‖ and ‖dxf(vs)‖ < 1 < ‖dxf(vu)‖.

That is, the center direction is dominated by the stable and unstable directions.

Hammerlindl and Potrie proved that if f : N → N is partially hyperbolic and homotopic

to f0, then f is leaf conjugate to f0. In this example, f0 is a smooth model, and any partially

hyperbolic diffeomorphism homotopic to it is leaf conjugate to it.

In this paper, we consider the class of fibered partially hyperbolic diffeomorphisms. These

are partially hyperbolic diffeomorphisms, that, like f0 above, have an integrable center bundle

Ec, tangent to an invariant fibration by compact submanifolds. More precisely f : M →M ,

where M is a closed Riemannian manifold, is a fibered partially hyperbolic diffeomorphism3

with (Ck, k ≥ 1) fiber X if there exists an f -invariant continuous fiber bundle π : M → B

(for some manifold B) with Ck fibers modeled on X, which are tangent to Ec and such

that the k-jets along fibers are continuous in M .4 We say that a fibered partially hyperbolic

system (f, π,M) is Ck if the fiber bundle π : M → B is Ck. Note the distinction between

a Ck fibered partially hyperbolic system and a fibered partially hyperbolic system with Ck

fibers: in a Ck fibered partially hyperbolic system, we require that the bundle π : M → B is

Ck, whereas in a fibered partially hyperbolic system with Ck fibers, the bundle π : M → B

is merely required to be continuous.

3. This is also known as a fibered partially hyperbolic system with Ck fibers.

4. In other words, M is a continuous X-bundle with structure group Diffk(X).
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2.3 Preliminaries about Fiber Bundles

The goal of this section is to provide several results and definitions about fiber bundles that

are necessary for the proof of Theorem A. We begin with some basic definitions.

Definition 2.3.1. Let F and B be topological spaces. A (continuous) F -bundle over B

with structure group G is a space E and a continuous surjective map π : E → B that admits

an atlas of locally trivializing charts, i.e. such that B admits an open cover {Ui} such that

for each i, there exists a homeomorphism φi : π−1(Ui) → Ui × F such that the diagram in

Figure 2.1 commutes. The F -bundle π : E → B is said to be Ck if the map π : E → B is

Ck and the maps φi are Ck diffeomorphisms5. We say a F -bundle is smooth if it is C∞.

π−1(Ui) Ui × F

Ui

φi

π
proj1

Figure 2.1: φi : π−1(Ui) → Ui × F is a local trivialization of π if the diagram commutes.
The map proj1 : Ui × F → Ui is projection onto the first factor.

If G is a topological group that acts on F on the left by homomorphisms, we say that

the F -bundle π : E → B has structure group G if there are continuous functions {τij :

Ui∩Uj → G} such that for each i, j, we can write φi ◦φ−1
j : (Ui∩Uj)×F → (Ui∩Uj)×F as

(x, y) 7→ (x, τij(x) · y). These functions {τij} are called transition functions for the bundle.

If G acts on F by Ck diffeomorphisms, we say that a F -bundle with structure group G has

Ck fibers6.

A principal G-bundle is a G-bundle with structure group G, where the structure group

G acts on the fiber G by left multiplication.

The structure of a fiber bundle is given by its transition functions, which give how the

5. Clearly this requires the spaces F , B, and E to all be Ck manifolds.

6. Note that a Ck bundle must have at least Ck fibers.
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locally trivializing charts for the bundle are glued together. The fact that all the charts

must ‘agree’ on the overlaps is expressed via the cocyle condition. A set of functions {τij :

Ui∩Uj → G} satisfy the cocycle condition if τij(x)τjk(x) = τik(x) holds for all i, j, k and for

all x ∈ Ui∩Uj∩Uk. It’s immediate from the definition of the transition functions (Definition

2.3.1) that the transition functions of a bundle will satisfy the cocycle condition.

All the data of a fiber bundle is contained in the transition functions. More precisely,

Lemma 2.3.2 (Fiber bundle construction theorem). Let F,B be Ck manifolds (0 ≤ k ≤ ∞),

and let G be a topological group with the structure of a Ck manifold that has a Ck left action

on F . Given an open cover {Ui}i∈A of B and a set of Ck functions τij : Ui ∩ Uj → G such

that the cocycle condition, τij(x)τjk(x) = τik(x) holds for all x ∈ Ui ∩ Uj ∩ Uk. Then there

exists a Ck F -bundle π : E → B with transition functions τij.

Remark 2.3.3. Lemma 2.3.2 allows us to associate any F -bundle with structure group G

with a principal G-bundle that has the same transition functions as the original F -bundle

(and vice versa). This is extremely useful because there are many tools and theorems that

only apply to principal bundles. We use this trick repeatedly in the proof of Theorem

A. Essentially, we use Lemma 2.3.2 to ‘convert’ our F -bundle to a principal bundle, show

whatever we want about that principal bundle, and then use Lemma 2.3.2 to ‘convert’ our

result about the principal bundle to a result about our original F -bundle.

Lemma 2.3.2 is a standard result about fiber bundles, but we provide the proof here for

completeness.

Proof. Define the space E =
⊔
i∈A Ui×F/ ∼, where we define the equivalence relation ∼ on⊔

i∈A Ui × F = {(i, x, y); i ∈ A, x ∈ Ui, y ∈ F} by (j, x, y) ∼ (i, x, τij(x) · y) for x ∈ Ui ∩ Uj .

Note that the cocycle condition guarantees that ∼ is an equivalence relation. We also define

a continuous surjective map π : E → B by π([i, x, h]) = x.

First, we show that π : E → B is a continuous F -bundle with transition functions

τij . To do this, we give a set of locally trivializing charts for π : E → B. For each
18



i ∈ A, a homeomorphism φi : π−1(Ui) → Ui × F by φ−1
i (x, y) = [i, x, y] for x ∈ Ui, h ∈

G. These are locally trivializing charts since π = proj1 ◦φi : π−1(Ui) → Ui × F . The

transition functions corresponding to this set of local trivializations are {τij}, which we see

by computing φi ◦ φ−1
j (x, y) = φi([j, x, y]) = φi([i, x, τij(x) · y]) = (x, τij(x) · y).

We now just need to show that π : E → B is a Ck F -bundle. To do this, we need to

show that E is a Ck manifold and that the local trivializations φi : π−1(Ui) → Ui × F are

Ck diffeomorphisms. (Note this implies that π is Ck (and is, in fact, a submersion if k ≥ 1)

since π = proj1 ◦φi on xi.) To see that E is a Ck manifold, we define charts on E. By

composing φi with Ck charts for B and F , we get charts for E. Note that these charts are

Ck because the transition maps between different charts (ignoring composition with charts

for B and F ) are φi ◦ φ−1
j : (Ui ∩ Uj)× F → (Ui ∩ Uj)× F given by (x, y) 7→ (x, τij(x) · y)

which are Ck since τij : Ui ∩Uj → G and the action of G on F are both Ck. Our definition

of the Ck structure on E immediately implies that the φi are Ck diffeomorphisms.

This means that any set of functions {τij : Ui∩Uj → G} that satisfy the cocycle condition

(i.e. that τij(x)τjk(x) = τik(x) holds for all x ∈ Ui ∩ Uj ∩ Uk) are transition functions for a

fiber bundle. Additionally, the smoothness of a bundle is defined by the smoothness of the

transition functions.

Transition functions also classify fiber bundles up to isomorphism. Two F -bundles, π1 :

E1 → B and π2 : E2 → B are isomorphic as (continuous7) F -bundles over B if there is a

homeomorphism α : E1 → E2 such that π1 = π2 ◦ α.

Two fiber bundles are isomorphic if they have cohomologous transition functions. Two

sets of transition functions (i.e. two sets of functions that satisfy the cocycle condition)

{τij : Ui ∩ Uj → G} and {τ ′ij : Ui ∩ Uj → G} are said to be cohomologous if there exist

continuous functions ti : Ui → G such that τ ′ij(x) = ti(x)−1τij(x)tj(x) for all x ∈ Ui ∩ Uj .

7. If π1 : E1 → B and π2 : E2 → B are Ck bundles, and the map α : E1 → E2 is a Ck diffeomorphism,
then we say that E1 and E2 are isomorphic as Ck bundles. However, in this thesis, when we refer to two
bundles being isomorphic, we mean as continuous bundles unless otherwise stated.
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Corollary 2.3.4. Let F,B be topological spaces and G a topological group that has a con-

tinuous left action on F . Suppose π : E → B and π̃ : Ẽ → B are continuous F -bundles with

structure group G. Let {(Ui, φi : π−1(Ui)→ Ui × F )} and {(Ui, φ̃i : π̃−1(Ui)→ Ui × F )} be

locally trivializing charts for E and Ẽ respectively, and let {τij : Ui ∩ Uj → G} and {τ̃ij :

Ui∩Uj → G} be the associated transition functions for {(Ui, φi)} and {(Ui, φ̃i)} respectively.

Suppose there exist continuous functions ti : Ui → G such that τ̃ij(x) = ti(x)−1τij(x)tj(x)

for all x ∈ Ui ∩ Uj. Then, E and Ẽ are isomorphic as F -bundles with structure group G.

If, in addition, the left G action on F is faithful, then the converse holds.

For a proof of Corollary 2.3.4, see [44, Chapter 5.2].

In the proof of Theorem A, we change the structure group of the fiber bundles we are

working with. We now make the notion of changing structure group precise.

Given a continuous homomorphism α : H → G between two topological groups and a

principal H-bundle q : Q→ B, we can construct a principal G-bundle from Q and α in the

following way. Consider the space

Q×α,H G := Q×G/ ∼, where (x · h, g) ∼ (x, α(h)g), for h ∈ H

Note thatQ×α,HG has a free rightG-action given by [x, g]·g′ = [x, gg′]. This makesQ×α,HG

a principal G-bundle. Note that the projection map for this bundle Q×α,H G→ B is given

by [x, g] 7→ q(x).

We say that the principal H-bundle q : Q→ B induces the principal G-bundle p : P → B

if P ∼= Q ×α,H G. Additionally, we say that a principal G-bundle p : P → B admits a

reduction of structure group from G to H if there exists a principal H-bundle q : Q → B

that induces P .

Now, we note the relationship between the transition functions between a bundle and a

bundle it induces. Suppose that tij : Ui ∩ Uj → H are transition functions for the principal

H-bundle q : Q → B. The transition functions for the induced bundle Q×α,H G are given
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by α ◦ tij : Ui ∩ Uj → G.

Next, we give conditions under which a principal bundle admits a reduction of structure

group.

Lemma 2.3.5. Suppose that α : H → G is a homomorphism that is also a homotopy

equivalence. Then any principal G-bundle admits a reduction of structure group from G to

H.

For a proof of Lemma 2.3.5, see [44, Chapter 6]. The proof relies on the theory of

classifying spaces. Before defining classifying spaces, we recall the definition of the pullback

bundle induced by bundle and a map of the base.

Let π : E → B be a F -bundle, and let f : B′ → B be a continuous map. The pullback

bundle f∗π : f∗E → B′ is the F -bundle given by the space

f∗E = {(b′, z) ∈ B′ × E : f(b′) = π(z)} ⊂ B′ × E

and the projection f∗π = proj1 : f∗E → B given by projection onto the first component. If

τij : Ui ∩ Uj → G are transition functions for π : E → B, then the transition functions for

the pullback bundle f∗π : f∗E → B′ are given by τij ◦ f : f−1(Ui) ∩ f−1(Uj)→ G.

Now we can define classifying spaces. Let G be a topological group. A principal G-bundle

π : EG → BG is a universal principal G-bundle if for all CW-complexes X, the map from

the set of homotopy classes of maps X → BG to the set of isomorphism classes of principal

G-bundles over X, given by the map f 7→ f∗EG is a bijection. The base space of a universal

principal G-bundle is known as a classifying space for G.

Remark 2.3.6. Note that if H ⊂ G and the homomorphism α : H → G is inclusion, then the

reduction of structure group from G to H from Lemma 2.3.5 has transition functions that

are cohomologous to the transition functions of the original principal G bundle.

The following proposition combined with Lemma 2.3.5 shows that any principal Diff1(F )
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bundle admits a reduction of structure group from Diff1(F ) to Diff∞(F ).

Proposition 2.3.7. If M is a closed, smooth manifold then the inclusion Diff∞(M) ↪→

Diff1(M) is a homotopy equivalence.

Proof. For 0 ≤ k ≤ ∞, Diffk(M) is an infinite-dimensional separable Fréchet space [32,

Section I.4.3]. Since all infinite-dimensional separable Fréchet spaces are homeomorphic to

the Hilbert space `2 [1], we see that Diffk(M) is homeomorphic to the Hilbert space `2.

Since `2 has the homotopy type of a CW-complex [60], we get that Diffk(M) is homotopy

equivalent to a CW-complex [39]. Thus by Whitehead’s Theorem, to show that the inclusion

ι : Diff∞(M) ↪→ Diff1(M) is a homotopy equivalence, it is sufficient to show that the induced

map on homotopy groups ι∗ : π∗(Diff∞(M))→ π∗(Diff1(M)) is an isomorphism.

To do this, we first recall that for any map in ϕ ∈ C1(M,M), we can find a smooth

map that is arbitrarily close to and homotopic to ϕ and that the choice of this map de-

pends continuously on our original map ([46, Theorems 6.21 and 6.28]). This gives us a

continuous map Φ : Diff1(M) → C∞(M,M) such that for any ϕ ∈ Diff1(M), Φ(ϕ) ' ϕ

and d(ϕ,Φ(ϕ)) < ε. Since Diff∞(M) ⊂ C∞(M,M) is open (by the inverse function theo-

rem), by choosing ε small enough, we get that Φ(Diff1(M)) ⊂ Diff∞(M), so we can write

Φ : Diff1(M)→ Diff∞(M).

Now, we show that the map induced by ι : Diff∞(M)→ Diff1(M) on homotopy groups

is an isomorphism. The map ι∗ is surjective because any map φ : Sn → Diff1(M) is

homotopic to the map Φ ◦ φ : Sn → Diff∞(M). To see that ι∗ is injective, we take a map

φ : Sn → Diff1(M) that is null-homotopic. Let ht : Sn → Diff1(M) be a null-homotopy

for φ. Then the map Φ ◦ φ : Sn → Diff∞(M) is homotopic to φ in Diff1(M), and is

null-homotopic in πn(M) via the homotopy Φ ◦ ht : Sn → Diff∞(M).
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2.4 Anosov Homeomorphisms

The goal of this section is to provide a proof of Theorem E. This result was initially proved

by Sumi [61], and we provide a proof which follows the same structure as that of Sumi’s for

the sake of completeness. Theorem E extends the following result of Franks and Manning to

Anosov homeomorphisms of nilmanifolds.

Theorem 2.4.1 ([28],[49]). An Anosov diffeomorphism of a nilmanifold is topologically con-

jugate to a hyperbolic nilmanifold automorphism.

Theorem E generalizes the following result of Hiraide from tori to nilmanifolds.

Theorem 2.4.2 ([41]). An Anosov homeomorphism of a torus is topologically conjugate to

a hyperbolic toral automorphism.

The proof of Theorem E follows the same basic structure as Sumi’s proof, and also

the same structure as Hiraide’s proof with some modifications to account for being on a

nilmanifold instead of a torus.

2.4.1 Notation and Preliminaries for the Proof of Theorem E

This section recalls several properties of Anosov homeomorphisms that will be necessary to

the proof of Theorem E.

We assume in the following that M is a connected, closed n-dimensional Riemannian

manifold. Let d be the distance function on M induced by the Riemannian metric.

Generalized foliations for Anosov homeomorphisms

In this section, we describe an analogue of the stable manifold theorem for Anosov home-

omorphisms that is due to Hiraide [41]. Let f : M → M be a homeomorphism. For each
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x ∈M , we define the stable set (resp. unstable set) of f at x as

W s(x) :=
{
y ∈ X : d(fn(x), fn(y))

n→∞−→ 0
}

(
resp. Wu(x) :=

{
y ∈ X : d(f−n(x), f−n(y))

n→∞−→ 0
})

The collection of stable (resp. unstable) sets for f , which we’ll denote by F s
f (resp. Fu

f ),

gives a f -invariant decomposition of M . The stable manifold theorem states that when

f is an Anosov diffeomorphism, these collections form foliations. When f is an Anosov

homeomorphism, we get the following analogue.

Theorem 2.4.3 ([41, Proposition A]). If f : M →M is an Anosov homeomorphism of the

closed manifold M , then the collections

Fσ
f = {Wσ(x) : x ∈M}, σ ∈ {s, u}

are transverse generalized foliations of M .

Remark 2.4.4. When f is the projection of a fibered partially hyperbolic diffeomorphism

f̂ , the transverse generalized foliations W s and Wu are, in fact, foliations. They are the

projections of the foliations Ŵ s and Ŵu for f̂ .

Generalized foliations are a generalization of foliations given by weakening the condition

that the leaves be manifolds. More precisely, a collection F of subsets of M is a generalized

foliation of M if the following properties hold:

1. F is a partition of M .

2. Each L ∈ F (called a leaf ) is path-connected.

3. For each x ∈M , there exist

• nontrivial, connected subsets Dx, Kx ⊂M with Dx ∩Kx = {x},
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• a connected, open neighborhood Nx ⊂M of x,

• a homeomorphism φx : Dx ×Kx → Nx (called local coordinates around x)

such that

(a) φx(x, x) = x,

(b) φx(y, x) = y ∀y ∈ Dx and φx(x, z) = z ∀z ∈ Kx,

(c) For any L ∈ F , there is at most a countable set B ⊂ Kx such that Nx ∩ L =

φx(Dx ×B).

Two generalized foliations F and F ′ on M are transverse if, for each x ∈M , there exist

• nontrivial, connected subsets Dx, D′x ⊂M with Dx ∩D′x = {x},

• a connected, open neighborhood Nx of x (called a coordinate domain),

• a homeomorphism φx : Dx × D′x → Nx (called a canonical coordinate chart (around

x)),

such that

(a) φx(x, x) = x,

(b) φx(y, x) = y, ∀y ∈ Dx, and φx(x, z) = z ∀z ∈ D′x,

(c) for any L ∈ F , there is at most a countable set B′ ⊂ D′x such that Nx∩L = φx(Dx×B′),

(d) for any L′ ∈ F ′, there is at most a countable set B ⊂ Dx such thatNx∩L′ = φx(B×D′x).

Note that the sole difference between the definitions of a foliation and of a generalized

foliation is we don’t require the sets Dx and Kx to be manifolds in the definition of a

generalized foliation. (If Dx and Kx are manifolds for all x ∈M , then a generalized foliation

F is, in fact, a topological foliation of M .) While the sets Dx and Kx may fail to be
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manifolds, the fact that their product, Dx×Kx, is a manifold significantly restricts the ways

in which Dx and Kx can fail to be manifolds. In other words, Dx and Kx (and therefore

the leaves of F ), while not necessarily manifolds themselves, will behave like manifolds in

many ways. In fact, the leaves of a generalized foliation are homology manifolds (also known

as generalized manifolds). An homology manifold is a topological space that looks like a

manifold under homology. This is stated precisely in the following proposition.

Proposition 2.4.5 ([41, Lemma 4.2]). Let F be a generalized foliation on a connected

manifold without boundary. There exists 0 < p < dim(M) such that any leaf L ∈ F and

x ∈ L, the relative homology groups, H∗(L,L \ {x}), are given by

Hi(L,L \ {x}) =


Z, if i = p

0, if i 6= p

.

This proposition allows us to define a notion of dimension for generalized foliation. If F is

a generalized foliation ofM , then the integer p from Proposition 2.4.5 is called the dimension

of f . Proposition 2.4.5 also allows us to define orientability for generalized foliations. A p-

dimensional generalized foliation is said to be orientable if there is a ‘locally consistent’

choice of generators for the groups Hp(L,L \ {x}), L ∈ F and x ∈ L. For more details see

[41, Section 4].

Lifts of stable and unstable sets

Much of Franks’ and Manning’s proofs of Theorem 2.4.1 take place using maps lifted to

the universal cover. These arguments exploit the facts that Anosov diffeomorphisms lift to

Anosov diffeomorphisms whose stable and unstable sets are lifts of the original stable and

unstable manifolds. We’ll now give versions of these facts for Anosov homeomorphisms,

which will be used in our proof of Theorem E.
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We begin with the following set-up. Let M be a closed Riemannian manifold and let

p : M̃ → M be a smooth covering map for M . By lifting the Riemannian metric on M , we

see that M̃ is a complete Riemannian manifold.

We can now generalize the previous results about lifts of Anosov diffeomorphisms to

Anosov homeomorphisms. These generalizations are due to Hiraide. For details on them

and their proofs, see [41, Section 3]. Let f : M → M be an Anosov homeomorphism.

The map f lifts to a homeomorphism f̃ : M̃ → M̃ . Just as Anosov diffeomorphisms lift

to Anosov diffeomorphisms, we observe that an Anosov homeomorphism lifts to an Anosov

homeomorphism.

Next, we’ll discuss the relationship between the stable and unstable sets of f and f̃ . For

x̃ ∈ M̃ and ε > 0, we let W̃ s
ε (x̃) and W̃u

ε (x̃) be the local stable and unstable sets of f̃ at x̃.

W̃ s
ε (x̃) =

{
y ∈ M̃ : d

(
f̃n (x̃) , f̃n (y)

)
≤ ε, ∀n ≥ 0

}
,

W̃u
ε (x̃) =

{
y ∈ M̃ : d

(
f̃−n (x̃) , f̃−n (y)

)
≤ ε, ∀n ≥ 0

}
.

Just as for an Anosov diffeomorphism, the stable and unstable sets for f̃ project down to

the stable and unstable sets for f . In fact, locally this projection is an isometry. In addition,

the collection of stable (resp.) unstable sets of f̃ forms a generalized foliation, denoted F s
f̃

(resp. Fu
f̃
), and that the stable and unstable generalized foliations for f̃ are transverse.

Indices of fixed points

Let f : M →M be an Anosov diffeomorphism. The index of f at any fixed point x, denoted

Indx(f), will be either ±1 since dxf : TxM → TxM is hyperbolic. The sign of Indx(f) will

depend on the orientation of the stable and unstable subspaces, Esx and Eux , at x. Thus, if

the unstable bundle, Eu, of f is orientable (which implies that the unstable foliation for f is

orientable), we can make the fixed point index globally constant, i.e. for all x, x′ ∈ Fix(f),
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Indx(f) = Indx′(f). This along with the Lefschetz fixed point theorem tells us that the

absolute value of the Lefschetz number of f , denoted L(f), is equal to the number of fixed

points of f . This fact is relied upon in the proof of Theorem 2.4.1.

The purpose of this section is to give the following similar result about the fixed point

index of an Anosov homeomorphism, which will allow us to use the Lefschetz number to

count fixed points. Note that we can define the fixed point index for a fixed point of an

Anosov homeomorphism because all fixed points of an Anosov homeomorphism are isolated

by expansivity.

Proposition 2.4.6 ([41], Proposition B). Let f : M → M be an Anosov homeomorphism

of the closed manifold M . If the generalized unstable foliation Fu
f is orientable, then for

sufficiently large m, all the fixed points of fm have the same index, which is either 1 or −1.

Note that the assumption in this proposition (i.e. that the generalized unstable foliation

be orientable) is analogous to the assumption we made in the Anosov case. For the definition

of orientability for a generalized foliation, see [41]. The proof of Theorem 2.4.6 can be found

in [41, Section 5].

The spectral decomposition

The spectral decomposition is a useful tool for decomposing the non-wandering set of an

Anosov diffeomorphism into smaller invariant sets. Recall that given a homeomorphism,

f : M → M , a point x ∈ M is called nonwandering if for any neighborhood U of x,

∃n ≥ 1 such that fn(U) ∩ U 6= ∅. The nonwandering set of f , denoted Ω(f) is the set of

nonwandering points of f . The spectral decomposition admits the following generalization

to Anosov homeomorphisms.

Theorem 2.4.7 (Spectral Decomposition, [2]). Let f : M → M be an Anosov homeomor-

phism of a compact manifold M . Then, there exist closed, pairwise disjoint sets X1, ..., Xk

and a permutation σ ∈ Sk such that
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(a) Ω(f) =
⋂k
i=1Xi,

(b) f(Xi) = Xσ(i), and

(c) if for a > 0, σa(i) = i, then fa|Xi
is topologically mixing.

Recall that a continuous map f : M → M is topologically mixing if for any open sets

U, V ⊂M , there exists an integer N such that fn(U) ∩ V 6= ∅ for all n ≥ N .

2.4.2 Proof of Theorem E

The proof of Theorem E follows the same structure as the proofs of the main result of [41]

with a couple of modifications to account for being on a nilmanifold instead of a torus. Before

giving the details of the proof, we provide a brief synopsis of the proof and note where it

differs from Hiraide’s. The argument has three main parts.

• Constructing the hyperbolic nilmanifold automorphism A : M → M . This differs

from Hiraide’s argument [41] in the same ways that Manning’s argument [49] differs

from Franks’s [28]. The construction of the nilmanifold automorphism A : M → M

is the same as Manning’s construction in [49]. The proof that A is hyperbolic follows

Hiraide’s argument using the same technique that Manning uses in [48] and [49] to get

a formula for the Lefschitz number of A in terms of the eigenvalues of A.

• Constructing a semiconjugacy h : M → M between A and f . Since M is a K(π, 1),

this construction is the same as that on the torus.

• Proving that the semiconjugacy h : M → M is actually a conjugacy. This follows

the same argument given in Hiraide, with the main modification in Lemma 2.4.13 to

construct a homotopy between f̃ and Ã that doesn’t introduce fixed points outside a

compact set.
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Now, we give the details of the proof. Let f : M →M be an Anosov homeomorphism of

the nilmanifold M = N/Γ. We begin by finding a candidate for the hyperbolic nilmanifold

automorphism in Theorem E. We’ll do this following the same procedure as Franks [28],

Manning [49], and Hiraide [41]; we’ll find a ‘linear’ model of f , which we’ll then show is

hyperbolic. Our linear model of f will be a nilmanifold automorphism A that is homotopic

to f . The construction of this linear model is identical to that given in [49]. To construct

A, we’ll show that the induced action of f on π1(M, eΓ) can be lifted to an automorphism

of Γ. We’ll then extend this automorphism to all of N to get our linear model.

Let f∗ : π1(M, eΓ) → π1(M, f(eΓ)) be the homomorphism that f induces on the fun-

damental group of M . We can view π1(M, eΓ) and π1(M, f(eΓ)) as subgroups of N . To

do this, we first identify π1(M, e) with Γ (via the endpoints of the lifts of the loops in the

fundamental group). Recall that changing basepoint in the fundamental group is the same

as conjugating by some path inM . So in the universal cover ofM (i.e. N), the identification

that takes π1(M, eΓ) to Γ will take π1(M, f(eΓ)) to x−1Γx for some x ∈ N . By lifting to

N , we can view f∗ as a homomorphism Γ→ x−1Γx.

Since we want a homomorphism Γ → Γ, we compose f∗ with conjugation by x−1,

which gives us our automorphism of Γ. To summarize, we’ve shown that we can lift

f∗ : π1(M, eΓ) → π1(M, f(eΓ)) to an automorphism of Γ, which is defined up to an inner

automorphism of N . We can uniquely extend f∗ : Γ → Γ to an automorphism Ã : N → N

[56, Corollary 1 of Theorem 2.11]. Since Ã preserves Γ, it descends to a nilmanifold auto-

morphism, A : M → M . Note that f is homotopic to A since they induce conjugate maps

on π1(M) and M is a K(π, 1).

We now claim that the linearization A is hyperbolic, which follows immediately from the

following proposition.

Proposition 2.4.8. Let f : M → M be an Anosov homeomorphism of a nilmanifold M =

N/Γ. If A : M → M is a nilmanifold automorphism that is homotopic to f , then A is
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hyperbolic.

Proof. This proof is a combination of the techniques of Manning [49, Theorem A] and Hiraide

[41, Proposition 6.2]. By passing to a double cover ofM , it suffices to consider the case where

the unstable generalized foliation of f , Fu
f , is orientable. The goal of this proof is to show

that A is hyperbolic. More formally, we need to show thatDeA has no eigenvalues of absolute

value one. Let λ1, ..., λn be the eigenvalues of DeA (counted with multiplicity).

The first step in this proof is to relate the number ofm-periodic points of f , form ∈ N, to

the eigenvalues of DeA. We do this using the Lefschetz fixed point theorem. First, recall that

since fm and Am are homotopic, their Lefschetz numbers are the same, i.e. L(fm) = L(Am).

Since Fu
f is orientable, the Lefschitz fixed point theorem and Proposition 2.4.6 imply that the

number of fixed points of fm, denoted N(fm), is given by N(fm) = |L(fm)| for sufficiently

large m. Now, recall from [48] that we can also write L(fm) = L(Am) =
∏n
i=1(1 − λmi ).

We’ve therefore shown that, for sufficiently large m, the number of fixed points of fm is

given by

Pm(f) = N(fm) =
n∏
i=1

|1− λmi | . (2.1)

This equation cannot hold if A is not hyperbolic by arguments given in the proof of [41,

Proposition 6.2].

Recall that when we defined the ‘linearization’ A of an Anosov homeomorphism f : M →

M of a nilmanifold, we only were able to define A up to an inner automorphism of N because

we didn’t know whether f had any fixed points. We are now equipped to show that f does

indeed have fixed points.

Corollary 2.4.9. An Anosov homeomorphism of a nilmanifold has at least one fixed point.

Proof. This follows immediately from the Lefschetz fixed point theorem and Proposition

2.4.8.
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Note that by conjugating the Anosov homeomorphism f : M → M by a translation,

we can assume without loss of generality that f fixes the point eΓ ∈ M . We let A be the

hyperbolic ‘linearization’ of f described above.

The goal of the rest of the proof is to construct a conjugacy between A and f . To do

this we first construct a semiconjugacy, h : M →M , between A and f .

Proposition 2.4.10. Let M = N/Γ be a nilmanifold, and let f : M → M be a homeo-

morphism that fixes the point eΓ ∈ M . If f is freely homotopic to a hyperbolic nilmanifold

automorphism A : M → M , then there exists a continuous map h : M → M (freely) homo-

topic to the identity such that A ◦ h = h ◦ f and h(eΓ) = eΓ. Furthermore, the map h is the

unique map freely homotopic to the identity fixing eΓ.

Proof. Since f and A are freely homotopic, M is a K(π, 1), and A is hyperbolic, there exists

a homomorphism (h0)∗ : π1(M, eΓ)→ π1(M, eΓ), that is induced by a base point preserving

map h0 : M →M that is freely homotopic to the identity, such that A∗ ◦ (h0)∗ = (h0)∗ ◦ f∗.

Under these conditions, [29, Theorem 2.2] states that there exists a unique continuous base

point preserving map, h : M →M , that is homotopic to h0, such that A ◦ h = h ◦ f .

We complete the proof of Theorem E by proving that the semiconjugacy, h : M → M ,

from Proposition 2.4.10 is actually a conjugacy. To do this, we just need to show that h is

a homeomorphism.

Proposition 2.4.11. h : M →M is a homeomorphism.

Proof. The main step in this argument is to show that h is a local homeomorphism. This

combined with the fact that h is surjective (because h is homotopic to the identity and is

a proper map) will imply that h : (M, eΓ) → (M, eΓ) is a covering map. Then, since h is

homotopic to the identity, the covering spaces h : (M, eΓ) → (M, eΓ) and id : (M, eΓ) →

(M, eΓ) are isomorphic, i.e. that there is a homeomorphism g : M →M such that h = id◦g.
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This will complete the argument that h is a homeomorphism, and thus gives a conjugacy

between A and f .

Thus, all that remains is to show that h is a local homeomorphism. We do this by

showing that its lift h̃ : (N, e) → (N, e) 8 is a local homeomorphism. Recall that Brower’s

theorem on invariance of domain states that a locally injective continuous map between two

manifolds without boundary of the same dimension is a local homeomorphism. Thus, we’ll

be done if we can show that h̃ is locally injective. In fact, we’ll show that h̃ is injective.

First, we note that f lifts to an Anosov homeomorphism f̃ : (N, e) → (N, e). We recall

from Section 2.4.1 that the stable and unstable sets for f̃ , denoted F s
f̃
and Fu

f̃
, are transverse

generalized foliations on N . The first step in the argument that h̃ is injective is to show

that it suffices to prove injectivity of h̃ on stable and unstable leaves of f̃ . This follows from

the fact that the stable and unstable generalized foliations for f̃ establish a global product

structure for N , i.e.

Proposition 2.4.12. For any points x, y ∈ N the stable leaf through x and the unstable leaf

through y intersect at exactly one point, i.e. the set W̃ s(x) ∩ W̃u(y) contains exactly one

point.

Before going through the proof of Proposition 2.4.12, we show how this proposition implies

that injectivity of h̃ follows from injectivity on stable and unstable leaves. This argument

follows that in [41, p.387-388]. Take x, y ∈ N such that h̃(x) = h̃(y). By Proposition 2.4.12,

we can define a point z := W̃ s(x) ∩ W̃u(y) to be the intersection of the stable leaf through

x and the unstable leaf through y. If we show that h̃(x) = h̃(y) = h̃(z), then injectivity of h̃

will follow from injectivity of the stable and unstable leaves. Thus, it suffices to show that

h̃(y) = h̃(z).

To prove h̃(y) = h̃(z), recall that since Ã is a hyperbolic automorphism of N , for arbitrary

8. When we take this lift, we lift the point eΓ ∈ M to the point e ∈ N . In the rest of this section, we’ll
be lifting eΓ ∈M to e ∈ N unless otherwise noted.
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M1 > 0, the map Ã is expansive with expansive constant M1. Thus, to show that h̃(y) =

h̃(z), it suffices to show that there exists a constant M1 > 0 such that for all n ∈ Z,

d
(
Ãn ◦ h̃(z), Ãn ◦ h̃(y)

)
≤M1. (2.2)

To see this, first recall that since Ã ◦ h̃ = h̃ ◦ f̃ and h̃(x) = h̃(y), we have that for all n ∈ Z,

d
(
Ãn ◦ h̃(z), Ãn ◦ h̃(y)

)
= d

(
h̃ ◦ f̃n(z), h̃ ◦ f̃n(y)

)
= d

(
h̃ ◦ f̃n(z), h̃ ◦ f̃n(x)

)
.

In light of these two equations, to prove 2.2, it’s sufficient to prove that there exists a constant

M1 > 0 such that for all n ≥ 0, the following two inequalities hold.

d
(
h̃ ◦ f̃−n(z), h̃ ◦ f̃−n(y)

)
≤M1

d
(
h̃ ◦ f̃n(z), h̃ ◦ f̃n(x)

)
≤M1

These inequalities follow immediately from the following two observations,

• Since h is homotopic to the identity, the map h̃ is a bounded distance away from the

identity, i.e. there exists a constant M0 > 0 such that ∀w ∈ N , d
(
h̃(w), w

)
≤M0.

• The facts that z ∈ W̃ s(x) and z ∈ W̃u(y) imply that there exists a constant C > 0

such that for all n ≥ 0,

d
(
f̃n(x), f̃n(z)

)
≤ C and d

(
f̃−n(y), f̃−n(z)

)
≤ C

Now, all that remains is to prove that the stable and unstable generalized foliations give a

global product structure on N , i.e. Proposition 2.4.12. The proof of this follows the proof of
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[41, Lemma 6.8], with a single minor change to account for the fact that M is a nilmanifold

instead of a torus. We therefore give the general steps in Hiraide’s argument and note where

modifications need to be made. The argument proceeds in four steps/lemmas.

Lemma 2.4.13. Let f : M → M be an Anosov homeomorphism of the nilmanifold M =

N/Γ. Let f̃ : N → N be a lift of f to N , and let Ã : N → N be a hyperbolic automorphism

of N . If the C0-distance between Ã and f̃ is bounded, then f̃ has exactly one fixed point.

Proof. This proof is a slight modification of the proof of [41, Lemma 6.5]. The main ingre-

dients in this proof are the Lefschetz fixed point theorem and the homotopy invariance of

the Lefschetz number. Since we’re working in a space that isn’t compact, we need to be

careful when using Lefschetz numbers.9 Since Ã is a hyperbolic automorphism, its Lefschetz

number is L(Ã) = ±1. The Lefschetz number of f̃ is defined because f̃ is a bounded distance

away from Ã.

Now, we argue that f̃ has at least one fixed point. Since N is contractible, we can

construct a homotopy between f̃ and Ã that does not introduce fixed points outside of a

compact set. Thus, L(f̃) = L(Ã) = ±1, which implies that f̃ has at least one fixed point.

The fact that f̃ has at most one fixed point follows from arguments in [41, Lemma

6.7].

We now prove that the non-wandering set of f is the whole nilmanifold.

Lemma 2.4.14. The nonwandering set of an Anosov homeomorphism f : M → M of a

nilmanifold M = N/Γ is the entire nilmanifold, i.e. Ω(f) = M .

Proof. This follows from the same argument as [41, Proposition 6.6].

We begin to show that the stable and unstable generalized foliations of f̃ give a global

product structure on N .

9. Recall that the Lefschetz number of a map g : X → X is only defined if the set of fixed points Fix(g)
is compact. Two maps have the same Lefschetz number if they are homotopic via a map that does not
introduce fixed points out of a compact set. [24]
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Lemma 2.4.15. For x, y ∈ N , the stable manifold of f̃ at x, W̃ s(x), and the unstable

manifold of f̃ at y, W̃u(y), intersect at at most one point.

Proof. This follows from the previous two lemmas along with the spectral decomposition.

The details are exactly the same as those in [41, Lemma 6.7].

Now to complete the proof of Proposition 2.4.12 we just need to show that W̃ s(x) and

W̃u(y) actually intersect for each x, y ∈ N . This follows by gluing together local product

neighborhoods given by F s
f and Fu

f using the arguments in [28, Lemma 1.6].

Now, all that remains in the proof of Theorem E is to show that h̃ is injective on the

stable and unstable leaves of f̃ , which proceeds exactly as in [41].
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CHAPTER 3

SMOOTH MODELS

3.1 Lifting the conjugacy on the leaf space

Lemma 3.1.1. Let F,M, M̃,B be closed Riemannian manifolds, and let π : M → B and

π̃ : M̃ → B be continuous isomorphic F -bundles. Let h : B → B be a homeomorphism that

is homotopic to the identity. Then, h : B → B lifts to a homeomorphism h̃ : M → M̃ .

Proof. First, we note that M and h∗M are isomorphic bundles. This is because we by

assumption M and M̃ are isomorphic, and since h ∼ id, the bundle h∗M̃ is isomorphic to

the bundle id∗M̃ = M̃ . Let φ : M̃ → h∗M̃ be a bundle isomorphism, i.e. a homeomorphism

such that the diagram in Figure 3.1a commutes. From the definition of h∗M̃ , we have that

the commutative diagram in Figure 3.1b commutes.1 Combining these diagrams gives us

the commutative diagram from Figure 3.1c. So the continuous map

h̃ := proj2 ◦φ : M → M̃ (3.1)

is a lift of h. Since h̃ is a continuous injection, by invariance of domain, h̃ : M → M̃ is a

homeomorphism.

M h∗M̃

B

φ

π

h∗π̃

(a)

h∗M̃ M̃

B B

proj2

h∗π̃ π̃

h

(b)

M h∗M̃ M̃

B B

φ

π

proj2

h∗π̃ π̃

h

(c)

Figure 3.1

1. Note that proj2 : h∗M̃ → M̃ is the projection onto the second coordinate from the definition of the
pullback bundle h∗M̃ = {(b, x) ∈ B ×M : h(b) = π̃(x)}.
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3.2 Lifting the Anosov automorphism on the leaf space to a

partially hyperbolic system

Lemma 3.2.1. Let F,E0, E1, B be closed Riemannian manifolds. Assume that p0 : E0 → B

and p1 : E1 → B are Ck F -bundles with structure group H, where H is a finite-dimensional

Lie group with smooth universal bundle, and that the left action of H on F is Ck, and that

H acts on F by isometries. Suppose that θ : E0 → E1 is a (continuous) isomorphism of

E0 and E1 as F -bundles with structure group H over B. Then, there is a Ck isomorphism

α : E0 → E1 that is an isometry on fibers.

Proof. We begin by constructing principal H-bundles with the same transition data as E0

and E1 using Lemma 2.3.2. We’ll call these q0 : Q0 → B and q1 : Q1 → B. Let f0 : B → BH

and f1 : B → BH be classifying maps for Q0 and Q1. Note that since E0 and E1 (and

therefore Q0 and Q1) are Ck bundles, the maps f0 and f1 are Ck.

Since E0 and E1 are isomorphic as continuous bundles, we get that there is a homotopy f :

B× [0, 1]→ BH from f0 to f1. Since f |B×{0,1} is Ck, then by the Whitney Approximation

Theorem (See [46] Theorem 6.26), ft is homotopic to a Ck map f : B× [0, 1]→ BH relative

to B × {0, 1}. So, we have a Ck homotopy f : B × [0, 1]→ BH from f0 = f0 to f1 = f1. If

the classifying maps of two Ck principal bundles bundles are homotopic via a Ck homotopy,

then the bundles are isomorphic as Ck bundles [44, Chapter 4.9]2. Thus, we get that the

pullback bundles f∗0EH and f∗1EH are isomorphic as Ck principal H-bundles over B. Since

f0 and f1 are the classifying maps for Q0 and Q1 respectively, this means that Q0 and Q1

are isomorphic as Ck principal H-bundles over B. Since Q0 and Q1 have the same transition

functions as E0 and E1, we get that E0 and E1 are isomorphic as Ck bundles with structure

group H.

From the definition of a Ck isomorphism of F -bundles with structure group H, we see

2. The argument in [44, Chapter 4.9] is only given for continuous bundles, but works for Ck bundles
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that this means that there is a Ck isomorphism α : E0 → E1, such that, if (U0,i, φ0,i) and

{(U1,j , φ1,j)} are trivializing atlases for E0 and E1 respectively, then there exists functions

dij : U0,i∩V1,j → H such that for x ∈ U0,i∩U1,j and y ∈ F , we get that φ1,j ◦α◦φ−1
0,i (x, y) =

(x, dij(x) · y). Since H acts on F by isometries, we get that α is an isometry on fibers.

Corollary 3.2.2. Let F,M,B be closed Riemannian manifolds. Assume that π : M → B is

a smooth F -bundle with structure group H, where H is a finite-dimensional Lie group with

smooth universal bundle, and that the left action of H on F is smooth, and that H acts on

F by isometries. Suppose A : B → B is a smooth Anosov diffeomorphism, and suppose that

A lifts to a homeomorphism Â : M →M . Then A lifts to a C∞ diffeomorphism g : M →M

that is an isometry on fibers of π : M →M .

Proof. Since A lifts to a homeomorphism Â : M → M , we can construct a (continuous)

isomorphism θ : M → A∗M of M and A∗M as F -bundles with structure group H given

by θ(z) =
(
π(z), Â(z)

)
(See Figure 3.2a). By Lemma 3.2.1, there is a C∞ isomorphism

α : M → A∗M that is an isometry on fibers. We can then use α : M → A∗M to define

a C∞ diffeomorphism g : M → M by g(z) = proj2 ◦α(z) (See Figure 3.2b). Since α is an

isometry on fibers, we get that g is an isometry on fibers.

M

A∗M M

B B

Â

θ

π
proj2

A∗π π

A

(a)

M

A∗M M

B B

g

α

π
proj2

A∗π π

A

(b)

Figure 3.2

Proposition 3.2.3. Let F,M, and B be closed Riemannian manifolds. Assume that π :

M → B is a smooth F -bundle and that f : B → B is an Anosov diffeomorphism. If
39



g : M → M is a diffeomorphism that is a lift of f and such that g is an isometry on fibers

of π : M → B, then g : M →M is partially hyperbolic.

Proof. We begin by constructing a Riemannian metric on M , with respect to which g is

partially hyperbolic. This construction has three ingredients:

• A smooth family 〈·, ·〉Fx of Riemannian metrics on the fibers π−1(x) such that Dg :

Tπ−1(x)→ Tπ−1(f(x)) is an isometry for all x ∈ B. (Such a family exists because g

is an isometry on fibers of π : M → B.)

• A Riemannian metric 〈·, ·〉B on B that is adapted to the Anosov diffeomorphism f :

B → B.

• An Ehresmann connection H on M , i.e. H is a smooth subbundle of the tangent

bundle TM such that for all p ∈ M , TpM = Hp ⊕ ker(Dpπ). Note that from the

definition of an Ehresmann connection, we know that Dpπ|Hp
: Hp ⊂ TpM → Tπ(p)B

is an isomorphism and the map p 7→ Hp is smooth.

We define a Riemannian metric 〈·, ·〉 on M by letting for all p ∈M ,

• 〈v, v′〉 =
〈
Dpπ(v), Dpπ(v′)

〉B for v, v′ ∈ Hp,

• 〈v, v′〉 = 〈v, v′〉F
π(p)

for v, v′ ∈ ker(Dpπ), and

• Hp ⊥ ker(Dpπ).

Now, we need to show that g is partially hyperbolic with respect to the metric 〈·, ·〉. To

do this, we construct a dominated splitting TM = Es ⊕ Ec ⊕ Eu such that g is uniformly

contracting on Es and uniformly expanding on Eu. We begin by letting Ec = ker(Dπ).

Next, we construct the unstable bundle Eu using a graph transform argument. We

begin by lifting the unstable bundle Euf ⊂ TB for the Anosov diffeomorphism f : B → B

to the bundle Êu ⊂ TM given by Êup := Hp ∩ Dpπ−1(Euf (π(p))) for p ∈ M . Note that
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Dpπ
−1(Eup (π(p))) = Êup ⊕ ker(Dpπ), and that Dg preserves Êu ⊕Ec because Df preserves

Euf and g covers f (so Dπ(p)f ◦Dpπ = Dg(p)π ◦Dpg).

Let

Σ =
{
σ : Êu → Ec : σ is fiber preserving over id, and σp : Êu(p)→ Ec(p) is linear ∀p ∈M

}

We put the norm ‖ · ‖Σ on Σ given by

‖σ‖Σ = sup
p∈M

‖σp‖

where ‖σp‖ is the operator norm. Note that this norm makes Σ a Banach space.

Now, we want to define a map Γ : Σ → Σ, called the linear graph transform covering

g, so that Dpg(graph(σp)) = graph(Γ(σp)). We now give Γ : Σ → Σ explicitly. Since by

assumption, Dg preserves Ec = ker(Dπ) (and Dg preserves Êu⊕Ec), we can write for each

p ∈M ,

Dpg =

Ap 0

Cp Kp

 : Êu(p)⊕ Ec(p)→ Êu(g(p))⊕ Ec(g(p)),

where

Ap : Êu(p)→ Êu(g(p)), Cp : Êu(p)→ Ec(g(p)), Kp : Ec(p)→ Ec(g(p))

are all linear. Also note that since Dpg is invertible, both Ap and Kp are invertible.

Note that we can write a point in the graph of σp as (v, σpv) ∈ graph(σp) ⊂ Êu(p)⊕Ec(p).

Applying Dpg to this point gives us

Dpg(v, σpv) =

Ap 0

Cp Kp


 v

σpv

 =

 Apv

Cpv +Kpσpv
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So, we can write

Dpg(graph(σp)) =


 Apv

Cpv +Kpσpv

 : v ∈ Êu(p)


=


 w(

Cp +Kpσp
)
◦ A−1

p w

 : w ∈ Êu(g(p))


by reparametrizing. Thus, the requirement that Dpg(graph(σp)) = graph(Γ(σp)) is equiva-

lent to saying that  w(
Cp +Kpσp

)
◦ A−1

p w

 =

 w

Γσpw


for all w ∈ Êu(g(p)). This gives us an equation for Γ in terms of C, K, and A:

Γσp =
(
Cp +Kpσp

)
◦ A−1

p : Êu(g(p))→ Ec(g(p))

for all σ ∈ Σ, p ∈M , and v ∈ Êu(p). Omitting base points, we get that

Γσ = (C +Kσ) ◦ A−1

Now, our goal is to find an invariant section for Γ (the graph of which we will then show is

the unstable bundle Eu for g). To do this, it suffices to show that Γ : Σ→ Σ is a contraction.
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Take σ, σ′ ∈ Σ. For p ∈M , we have

‖Γσp − Γσ′p‖ =
∥∥∥(Cp +Kpσp

)
◦ A−1

p −
(
Cp +Kpσ

′
p

)
◦ A−1

p

∥∥∥
=
∥∥∥(Cp +Kpσp − Cp −Kpσ′p

)
◦ A−1

p

∥∥∥
=
∥∥∥(Kpσp −Kpσ′p) ◦ A−1

p

∥∥∥
=
∥∥∥Kp ◦ (σp − σ′p) ◦ A−1

p

∥∥∥
≤ ‖Kp‖‖σp − σ′p‖‖A−1

p ‖ (3.2)

We now bound ‖Kp‖ and ‖A−1
p ‖. Since g is an isometry on fibers of π : M → B and

Ec = ker(Dπ), we get have that Dpg|Ec(p) = Kp : Ec(p) → Ec(g(p)) is an isometry. Thus,

‖Kp‖ = 1. Now, we bound ‖A−1
p ‖ by relating the norm of A to the norm of Df on Euf .

Since Euf is the unstable bundle for the Anosov diffeomorphism f : B → B and the norm

‖ · ‖B is adapted to f , we know that there exists a constant λ > 1 such that for all w ∈ Euf ,

‖Df(w)‖B ≥ λ‖w‖B . Take v ∈ Êu(p). Since Dpπ(v) ∈ Euf (π(p)), we therefore have that

‖Dπ(p)f(Dpπ(v))‖B ≥ λ‖Dp(v)‖B .

Since g covers f , we see that Dπ(p)f(Dpπ(v)) = Dg(p)π(Dpg(v)) This along with the fact

that Ec = ker(Dπ) and Cp(v) ∈ Ec(g(p)) gives that

Dπ(p)f(Dpπ(v)) = Dg(p)π(Dpg(v)) = Dg(p)π(Ap(v) + Cp(v)) = Dg(p)π(Ap(v))

Thus,

λ‖Dp(v)‖B ≤ ‖Dπ(p)f(Dpπ(v))‖B = ‖Dg(p)π(Ap(v))‖B

Finally, note that since v,Ap(v) ∈ Êu(P ) ⊂ Hp, by our definition of the norm on M , we get
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that

‖Dpπ(v)‖B = ‖v‖ and ‖Dg(p)π(Ap(v))‖B = ‖Ap(v)‖.

We’ve therefore shown that λ‖v‖ ≤ ‖Ap(v)‖, which implies that ‖A−1
p ‖ ≤ λ−1.

Combining our estimates for the norms of ‖Kp‖ and ‖A−1
p ‖ with (3.2) gives that

‖Γσp − Γσ′p‖ ≤ λ−1‖σp − σ′p‖.

We have therefore shown that Γ is a contraction map. Then, by the contraction mapping

principle, we get a Γ-invariant section σu ∈ Σ. We now define a bundle Eu ⊂ TM by

letting Eu(p) := graph(σup ). Note that Eu is Dg invariant since σu is Γ invariant and

Dpg(graph(σp)) = graph(Γ(σp)) = graph(σg(p)).

The construction of the bundle Es is analogous.

We now have a Dg-invariant splitting, TM = Es⊕Ec⊕Eu. We now need to show that

this splitting is partially hyperbolic. To do this, we construct a new metric 〈·, ·〉′ on M by

letting for all p ∈M ,

• 〈v, v′〉′ = 〈Dpπ(v), Dpπ(v′)〉B for v, v′ ∈ Es,

• 〈v, v′〉′ = 〈Dpπ(v), Dpπ(v′)〉B for v, v′ ∈ Eu,

• 〈v, v′〉′ = 〈v, v′〉F
π(p)

for v, v′ ∈ Ec, and

• Es, Ec, and Eu be pairwise orthogonal.

From our construction of Es and Eu, we get that Dg is uniformly expanding on Eu and uni-

formly contracting on Ec with respect to this new metric. Finally, the splitting is dominated

because Dg restricted to Ec is an isometry.
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3.3 Proof of Theorem A

First, we recall our setup. Let f̂ : M → M be a fibered partially hyperbolic system with

quotient a nilmanifold B, C1 fibers F (where F is a closed manifold), and structure group

G ⊂ Diff1(F ). Suppose that there exists a Riemannian metric on F and a subgroup I ⊂

Isom(F ) ∩G such that the inclusion I ↪→ G is a homotopy equivalence.

The diffeomorphism f̂ : M → M descends to a homeomorphism f : B → B. Our

first step is to construct a conjugacy h : B → B between f and a hyperbolic nilmanifold

automorphism A : B → B. This will follow immediately from Theorem E if we can show

that f : B → B is an Anosov homeomorphism. To see why the homeomorphism f : B → B

is Anosov, we first observe that f̂ admits an invariant center foliation F c whose leaves are

the level sets of π and that leaves of F c are compact and have trivial holonomy. 3 Thus, by

the following result of Bohnet and Bonatti, f : B → B is an Anosov homeomorphism.

Lemma 3.3.1 ([8, Theorem 2, Proposition 4.20]). If f : M → M is a partially hyper-

bolic diffeomorphism with an invariant center foliation F c with compact leaves and without

holonomy, then the homeomorphism F : M/F c → M/F c induced by f on the quotient is

an Anosov homeomorphism.

Now, we can apply Theorem E to get that there exists a hyperbolic nilmanifold auto-

morphism A : B → B and a homeomorphism h : B → B that is homotopic to the identity

such that A ◦ h = h ◦ f̂ .

The next step in the proof is to construct a smooth F -bundle π̂ : M̂ → B that is

isomorphic to the original bundle π : M → B and such that the structure group of π̂ : M̂ → B

is Isom(F ). To do this, we first construct a principal G bundle p : P → B with the same

transition functions as π : M → B. Since the inclusion of I ↪→ G is a homotopy inclusion,

3. For the definition of holonomy, see [18, Chapter 2]. The fact that the leaves of F c have trivial
holonomy follows immediately from the definition of a fibered partially hyperbolic system and the definition
of holonomy.
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by Lemma 2.3.5 there exists a continuous principal I-bundle q′ : Q′ → B that has transition

functions cohomologous to those of p : P → B. Since I ⊂ Isom(F ), we can construct

(Lemma 2.3.2) a continuous principal Isom(F )-bundle q : Q → B with the same transition

data as q′ : Q′ → B.

Now, we find a smooth principal Isom(F ) bundle q̂ : Q̂ → B that is isomorphic to

q : Q → B. This follows immediately from the following lemma along with the fact that

Isom(F ) is a locally Euclidean Lie group [52].

Lemma 3.3.2 ([53]). Let K be a Lie group modeled on a locally convex space. Every principal

K bundle over a closed manifold is isomorphic to a smooth principal K bundle.

Now, we use the fiber bundle construction theorem (Lemma 2.3.2) to construct a smooth

F -bundle π̂ : M̂ → B with the same transition functions as q̂ : Q̂ → B. Since q̂ : Q̂ → B

has transition functions that are cohomologous to those of the original bundle π : M → B,

we get that the bundle π̂ : M̂ → B is isomorphic to the original bundle π : M → B.

Next, we lift the conjugacy h : B → B to a homeomorphism ĥ : M → M̂ . This follows

immediately from Lemma 3.1.1.

Finally, we lift the hyperbolic nilmanifold automorphism A : B → B to a partially

hyperbolic diffeomorphism g : M̂ → M̂ . This follows immediately from Corollary 3.2.2

and Proposition 3.2.3. To see why we can apply Corollary 3.2.2 here, we first note that

the structure group of π̂ : M̂ → B is Isom(F ), which is a finite dimensional compact Lie

group [52]. This implies that Isom(F ) has a smooth universal bundle [53, Lemma I.12]. This

completes the proof of Theorem A.

Remark 3.3.3. The fact that the F -bundle M̂ has structure group Isom(F ) is solely used to

guarantee that the lift g : M̂ → M̂ of A : B → B is partially hyperbolic. Without this fact,

the arguments given would allow us to lift A : B → B to a diffeomorphism, but we would

not be able to guarantee that the lift would be a partially hyperbolic diffeomorphism.

This is the only reason that the assumption that that there exists a Riemannian metric on
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F and a subgroup I ⊂ Isom(F )∩G such that the inclusion I ↪→ G is a homotopy equivalence

is necessary in the proof. Without this assumption, we would be able to get the conjugacy

h : B → B between f and A, and we would be able to construct a smooth F -bundle M̂

over B that is isomorphic to the original F -bundle M .4 However, the structure group of M̂

would only be Diff∞(F ), not Isom(F ).

If the structure group of M̂ was Diff∞(F ), we would still be able to lift h : B → B to a

homeomorphism ĥ : M → M̂ using Lemma 3.1.1. We would also be able to lift A : B → B

to a diffeomorphism g : M̂ → M̂ using analogous arguments to the ones we use in Lemma

3.2.1 5, Corollary 3.2.2, and the proof of Theorem A. However, since the lift g is not an

isometry on fibers, the arguments in Proposition 3.2.3 won’t apply to show that g partially

hyperbolic.

Finding a way to lift A : B → B to a partially hyperbolic diffeomorphism g : M̂ → M̂

without requiring that the structure group of M̂ be Isom(F ) or be trivial is a question for

further research.

Proposition B is an example of a case where we can overcome the difficulty lifting A :

B → B to a partially hyperbolic diffeomorphism that is discussed in the above remark.

Proof of Proposition B. The setup of Proposition B is that we are given a fibered partially

hyperbolic system f̂ : M → M with quotient a nilmanifold B and C1 fibers F . We assume

that the F -bundle M is trivial. Note that this means that the structure group of the bundle

π : M → B is the trivial group. We can then proceed with an analogous argument to

the one given in the proof of Theorem A to get the conjugacy h : B → B between the

Anosov homeomorphism f : B → B induced by f̂ : M → M and a hyperbolic nilmanifold

4. To construct M̂ , we would first use Lemma 2.3.5 and Proposition 2.3.7 to get a F -bundle with structure
group Diff∞(F ) that is isomorphic to M . We then would apply Lemma 3.3.2 with K = Diff∞(F ), which
would give us M̂ .

5. The arguments given in Lemma 3.2.1 apply when the structure group is Diff∞(F ) (rather than a finite
dimensional Lie group that acts on F by isometries) to get a C∞ isomorphism between two continuously
isomorphic smooth bundles (with structure group Diff∞(F )). This uses the fact that Diff∞(F ) has a smooth
universal bundle [45, Theorem 44.24].

47



automorphism A : B → B and to get a smooth bundle π̂ : M̂ → B with trivial structure

group that is isomorphic to the original bundle π : M → B. This means that identifying

the smooth F -bundle π̂ : M̂ → B with the smooth bundle proj1 : B × F → B (that is

projection onto the first coordinate), we can smoothly lift A : B → B to the fibered partially

hyperbolic diffeomorphism g : M̂ ∼= B × F → M̂ ∼= B × F given by g : (x, y) 7→ (Ax, y) for

(x, y) ∈ B × F .

3.4 Corollaries of the Theorem A

We now explain how Corollaries C and D follow from Theorem A.

To prove Corollary C, we apply Theorem A with G = Diff1(F ) and with I = Isom(F ).

To do this, we just need to show that the inclusion Isom(F ) ↪→ Diff1(F ) is a homotopy

equivalence when F = Sn for n = 1, 2, 3 and for F a hyperbolic 3-manifold. In fact showing

that the inclusion Isom(F ) ↪→ Diff1(F ) is a homotopy equivalence is equivalent to showing

that the inclusion Isom(F ) ↪→ Diff∞(F ) is a homotopy equivalence by Proposition 2.3.7.

1. When F = S1 it is a standard fact that Diff∞(S1) deformation-retracts to O(2) =

Isom(S1). When F = S2, Smale [58] proved that the inclusion Isom(S2) ↪→ Diff∞(S2)

is a homotopy equivalence. Hatcher [38] proved this for S3.

2. When F is a hyperbolic 3-manifold, Gabai [30] proved that the inclusion Isom(F ) ↪→

Diff∞(F ) is a homotopy equivalence.

Remark 3.4.1. When n ≥ 4, the inclusion Isom(Sn) ↪→ Diff(Sn) is not a homotopy equiv-

alence. This was proved for n = 4 in [63]. To see that Isom(Sn) ↪→ Diff(Sn) is not a

homotopy equivalence for n ≥ 5, first note that this statement is equivalent to the statement

that Diff(Dn rel ∂Dn) is contractible [38, Appendix].

One way to see that Diff(Dn rel ∂Dn) is not contractible for many n is to use the fact

that π0(Diff(Dn rel ∂Dn)) ∼= Θn+1 for n ≥ 5, where Θn+1 is the group of exotic (n + 1)-
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spheres [39] [59] [20]. For example, this along with the fact that there exist exotic 7-spheres

[50] implies that Isom(S6) ↪→ Diff(S6).

To prove that Diff(Dn rel ∂Dn) is not contractible for n = 5, we use the fact that the

map π1(Diff(Dn rel ∂Dn))→ π0(Diff(Dn+1 rel ∂Dn+1)) is surjective for n ≥ 5 [20]. Thus,

since π0(Diff(D6 rel ∂D6)) 6= 0, we get that π1(Diff(D5 rel ∂D5)) 6= 0, so Diff(D5 rel ∂D5)

is not contractible.

For n ≥ 7, the fact that Diff(Dn rel ∂Dn) is not contractible is proved in [22].

This means that we cannot apply Theorem A as above to get an analogous version of

Corollary C for Sn, n ≥ 4.

Now, we prove Corollary D. In Corollary D, the structure group of M is G = Diff1
0(F ).

We prove each case of Corollary D separately using the same strategy: we apply Theorem

A by finding a subgroup I ⊂ Isom(F ) ∩ Diff1
0(F ) such that the inclusion I ↪→ Diff1

0(F ) is a

homotopy equivalence.

1. When F = Tn for n = 2, 3, we choose I = Tn, where Tn acts on itself by Euclidean

isometry via translation. When F = T2, the inclusion T2 ↪→ Diff∞0 (T2) is a homo-

topy equivalence [51, Section 4.1.5]. When F = T3, T3 ↪→ Diff∞0 (T3) is a homotopy

equivalence [40] [62].

2. When F is a hyperbolic surface, then Diff+
0 (F ) is contractible [27, Thereom 1.14],

which means that the hypothesis of Theorem A holds for I the trivial subgroup.

3. When F is a Haken manifold we consider three cases:

• When F is not a Seifert manifold with coherently orientable fibers, then the

components of Diff(F ) are contractible [37], [40], [43, Section 1.3], which means

that the hypothesis of Theorem A holds when I is the trivial subgroup.

• When F is a Seifert manifold with coherently oriented fibers that is not T3,

we take I = S1, where S1 acts on F by rotating circle fibers of the Seifert fiber
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bundle structure. This satisfies the hypothesis of Theorem A because the inclusion

S1 ↪→ Diff0(F ) is a homotopy equivalence [37], [40], [43, Section 1.3].

• When F = T3, we dealt with this case in (1).
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