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ABSTRACT

Fix a prime number p > 2. Let r : Gal(Qp/Qp) → GL2(Fp) be an absolutely irreducible

residual representation. In this paper, we describe an algorithm to compute arbitrarily close

approximations to the non-framed fixed-determinant crystalline deformation ring Rk
r of r

whose Qp-points parametrize crystalline representations with Hodge–Tate weights (0, k− 1)

using the Taylor–Wiles–Kisin patching. We give an implementation of this algorithm in

Magma and Python (with Sagemath imported). Based on the data we have collected, we

formulate a conjecture on the Hilbert series of the special fiber of Rk
r when k = 2+ n(p− 1)

for some non-negative integer n. The conjectural formula implies that the Hilbert series goes

to (1− x)−3 as n tends to ∞. This aligns with the expectation that, as n grows, the special

fiber of Rk
r gradually “fills out" that of the universal fixed-determinant deformation ring of

r, which is a formal power series ring in three variables. We also formulate a conjecture on

when Rk
r is Gorenstein.
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CHAPTER 1

THESIS

1.1 Introduction

Throughout this paper, we fix a prime number p > 2 and a finite extension L of Qp with

its ring of integers O, a uniformizer λ, and the residue field F. Let r be a two dimensional

representation of the absolute Galois group GQp
of Qp over F that is Schur, i.e. End(r ⊗

Fp) = Fp.

In Kisin [2008], Kisin constructed a quotient Rk
r of the fixed-determinant universal de-

formation ring Runiv
r of r, that is called the non-framed fixed-determinant crystalline defor-

mation O-algebra of r. It is characterized by the property that its Qp-points parametrize

crystalline deformations of r with Hodge–Tate weights (0, k − 1) and a fixed determinant.

For example, consider the Galois representation

ρf : GQ → GL2(Qp)

of the absolute Galois group GQ of Q attached to a newform f of level N and weight k.

If p ∤ N , then the restriction of ρf to GQp
is a crystalline representation of Hodge–Tate

weights (0, k − 1). It gives rise to an aforementioned crystalline deformation of r if its

reduction modulo p is isomorphic to r.

Crystalline deformation rings play an important role in Kisin’s proof of the Fontaine–

Mazur conjecture Fontaine and Mazur [1995] in Kisin [2009a].

Theorem 1.1.0.1 (Kisin, Emerton, Pan). Fix p ≥ 5. An irreducible Galois representation

ρ : GQ → GL2(Qp) that is

• odd, i.e. det(ρ(c)) = −1 where c is the complex conjugation,

• almost everywhere unramified, and
1



• crystalline at p with distinct Hodge–Tate weights

comes from a modular form up to a twist.

Remark 1.1.0.2. Kisin first proved the conjecture assuming that p ≥ 3, ρ|GQ(ζp)
is absolutely

irreducible (known as the Taylor–Wiles condition) and that ρ|GQp
is not a twist of the exten-

sion of the trivial character by the mod-p cyclotomic character. Emerton gave another proof

in Emerton [2011] in many cases using completed cohomology and local-global compatibility

results. Lue Pan treated the other cases in Pan [2022].

Remark 1.1.0.3. The Fontaine–Mazur conjecture is stated for representations that are de

Rham, or equivalently, potentially semistable, at p. In this paper, we only focus on the

crystalline condition.

A crucial step in Kisin’s argument is apply patching to reduce the problem to proving

that the Hilbert–Samuel multiplicity of the special fiber of the crystalline deformation ring

Rk
r is equal to a certain automorphic multiplicity, which is closely related to the following

theorem.

Theorem 1.1.0.4 (Kisin, Paškūnas, Hu–Tan, Sander, Tung). The Hilbert–Samuel multi-

plicity of Rk
r ⊗ F is equal to the (weighted) sum of the multiplicities of the Serre weights in

the semisimplification of the GL2(Fp)-representation Symk−2F2.

Remark 1.1.0.5. The theorem is referred to as the Breuil–Mézard conjecture Breuil and

Mézard [2002] in the literature. Kisin first proved most cases in Kisin [2009a] by using

the Taylor–Wiles–Kisin patching and the p-adic local Langlands correspondence. Paškūnas

Paškūnas [2015] gave a purely local proof. The remaining cases were proved in Hu and Tan

[2013],Sander [2012],Tung [2021a] and Tung [2021b].

Denote by m the maximal ideal of Rk
r ⊗ F. Since Rk

r has relative of dimension one over

O Kisin [2008], the theorem is equivalent to saying that the limit

lim
n→∞

mn/mn+1

2



is equal to some number which can be explicitly understood by the representation theory of

GL2(Fp).

We are interested in some other limits of these dimensions. Assume that r has a crystalline

lift of Hodge–Tate weights (0, k0 − 1) for some integer k0 in the Fontaine–Laffaille range

[2, p]. For k ≥ 2, given that Rk
r is nonzero if and only if k ≡ k0 (mod p− 1), we consider the

family of special fibers of crystalline deformation rings {Rk
r ⊗F}k≡k0 mod p−1 and form the

following table of dimensions.

dimm0/m1 dimm1/m2 dimm2/m3 dimm3/m4 dimm4/m5 . . .

k0 1

k0 + p− 1 1

k0 + 2(p− 1) 1

k0 + 3(p− 1) 1
...

As previously mentioned, for a fixed k = k0 + i(p− 1), as n approaches ∞, the limit of the

numbers in the corresponding row is explicitly predicted by the Breuil–Mézard conjecture.

Question. For a fixed n, as i goes to ∞, do the limits of the numbers in the corresponding

column exist? If so, what are they?

The main difficulty of tackling this problem is that the presentation of Rk
r remains largely

unknown when k ≥ 2p. For 2 ≤ k ≤ p + 1, the Fontaine–Laffaille theory Fontaine and

Laffaille [1982] provides a of comprehensive understanding. Beyond the Fontaine–Laffaille

range, Kisin computed the explicit presentation of Rk
r [αp] for p + 2 ≤ k ≤ 2p − 1 when r

is absolutely irreducible, using Breuil–Kisin modules based on previous works Berger et al.

[2003], Berger and Breuil [2005]. While the Breuil–Kisin theory is applicable to general

weights k, a monodromy condition, which grows increasingly complicated as k increases,

hinders us from obtaining explicit presentations via this method.

3



In this paper, we present an explicit algorithm to compute arbitrarily close approxima-

tions to the non-framed fixed-determinant crystalline deformation ring Rk
r . Our approach is

to use the global method: the Taylor–Wiles–Kisin patching. Essentially, suppose that we can

choose a sufficiently nice global representation ρ whose restriction to GQp
is isomorphic to

r. The Taylor–Wiles–Kisin patching generates a patched Hecke algebra which is isomorphic

to a power series ring over the crystalline deformation ring Rk
r . Therefore, by computing the

local Hecke algebras, we get arbitrarily close approximations to the ring Rk
r .

Theorem 1.1.0.6 (Corollary 1.3.2.17). Suppose that r is unobstructed, which implies that

Rk
r is a quotient of OJx1, x2, x3K. If r can be globalized to a global Galois representation

ρ : GQ → GL2(F) satisfying Assumption 1.3.2.4, then the dimension of the cotangent space

of Rk
r ⊗ F is equal to three when k ≥ k0 + 2p2 + p− 3 and k ≡ k0 mod p− 1.

Remark 1.1.0.7.

1. Whether r is unobstructed can be checked by using Proposition 1.2.2.9. This condi-

tion is very mild and is satisfied by most residual representations r, whether they are

irreducible or not.

2. All conditions in Assumption 1.3.2.4 but the last one are standard for applying the

minimal level Taylor–Wiles–Kisin patching. The final condition is most restrictive. It

is imposed for optimal implementation of the algorithm.

3. Given that Rk
r is a quotient of OJx1, x2, x3K, we have FJx1, x2, x3K ↠ Rk

r ⊗ F. Thus

dimm/m2 is always bounded by three. Our theorem implies that this upper bound is

achieved as k tends to ∞ for k ≡ k0 mod p− 1.

We implement the algorithm in Magma Bosma et al. [1997] and Python (with Sagemath

The Sage Developers [2023] imported) and we have collected some data when p = 3 and

p = 5. Based on these, we are mostly interested in exploring a conjectural formula of the

4



Hilbert series Hk(x) of Rk
r ⊗ F defined below

Hk(x) :=
∞∑
i=0

dim(mi/mi+1)xi.

Conjecture 1.1.0.8. When k0 = 2 and r is absolutely irreducible, the Hilbert series of

Rk
r ⊗ F is

Hk(x) =
∑

2≤i≤k
p−1|i−2

Shi(x),

where the definition of the shift function Shi(x) is given in §1.5.

Corollary 1.1.0.9. Assume that the conjecture above is true. Then all of the following

statements hold.

1. The sequence {Hk(x)}k=2+n(p−1) is an increasing sequence in k, i.e.

Hk(x) ≥ Hk−(p−1)(x).

2. The limit of Hk(x) as k goes to ∞ is the Hilbert–Samuel function of Runiv
r ⊗ F

∼−→

FJx1, x2, x3K, i.e.

lim
k→∞

p−1|k−2

Hk(x) =
1

(1− x)3
=
∞∑
i=0

(
i+ 2

2

)
xi.

3. The speed of convergence: Let m be a positive number with its unique p-adic expansion∑∞
i=0(ai + 2bi)p

i such that 0 ≤ ai + 2bi < p with ai ∈ {0, 1} and bi a non-negative

integer. Set k to be the integer

k := 2 + (p2 − 1)(
∞∑
i=0

aip
2i +

∞∑
i=0

bip
2i+1).

5



Then k is the smallest integer such that the m-th coefficient of Hk(x) is equal to
(m+2

2

)
.

Remark 1.1.0.10.

1. Suppose that ρ : GQ → GL2(F) is a modular Galois representation whose restriction to

GQp
is isomorphic to the local representation r. Multiplication by the Hasse invariant

gives rise to a greater number of eigenforms of weight k whose associated p-adic Galois

representations reduce to ρ modulo p, compared to those of weight k−(p−1). This ob-

servation heuristically suggested that Spf(Rk
r ) has more O-points than Spf(R

k−(p−1)
r )

does. Part (1) of the corollary states that from the viewpoint of the Hilbert series, the

ring Rk
r does exhibit a greater degree of “complexity" in comparison to Rk−(p−1)

r .

2. The question of whether the crystalline locus Spf(Rk
r ) can “fill out" the universal

deformation space Spf(Runiv
r ) as k grows has been of particular interest. For the

generic fiber, Colmez Colmez [2008] and Kisin Kisin [2010] showed that the points of

Spec(Runiv
r [1/p]) corresponding to crystalline representations are dense in the Zariski

topology. Part (2) of the corollary serves as an analogy for this phenomenon in the

context of special fibers from the perspective of Hilbert functions.

We formulate another conjecture on when the crystalline deformation ring Rk
r is Goren-

stein. By the fact [Eisenbud, 2013, Corollary 21.20], for dimension reason, the ring Rk
r is a

complete intersection when it is Gorenstein.

Conjecture 1.1.0.11. When r|Ip ∼

ω2 0

0 ω
p
2

, the ring Rk
r is Gorenstein if and only if

k = k1 + (p2 − 1)
(
apN − 1

)

for some integers 2p ≤ k1 ≤ p2 − p+ 2 such that k1 ≡ 2 mod p− 1, N ≥ 0 and 1 ≤ a ≤ p

with the exception that k = 2 and k = p+ 1, in which cases the crystalline deformation ring

Rk
r is formally smooth over O.

6



In particular, the conjecture implies that there are infinitely many weights k for which

Rk
r is Gorenstein. Take p = 5 and k1 = 2p = 10 for an example. A list of weights k is

10, 34, 58, 82, 106, 226, 346, 466, 586, 1186, 1786, 2386, 2986, . . . .

Overview of the algorithm

Given the local Galois representation r, assume that we can choose a global Galois represen-

tation ρ : GQ → GL2(F) whose restriction to GQp
is isomorphic to r such that we can apply

the minimal level Taylor–Wiles–Kisin patching. This patching process generates a patched

module, denoted as Mk
∞, whose support is the patched Hecke algebra Tk

∞. The algebra is

isomorphic to a formal power series ring over Rk
r .

Specifically, the module Mk
∞ is approximated by the localized modules, denoted as

M ′(k,Q) (see Definition 1.2.3.8), which are certain submodules of H1(ΓQ, Sym
k−2O2) for

certain congruence subgroups ΓQ depending on a set Q of Taylor–Wiles primes. Denote

by T(k,Q) the support of M ′(k,Q). We use Serre’s conjecture to determine the conditions

defining the submodule M ′(k,Q) in §1.3.1. In §1.3.2, we utilize Jochnowitz’s theory to iden-

tify a finite set of Hecke operators, independent of k, whose images generate T(k,Q). We

then compute M ′(k,Q) and the relations among these generators using linear algebra over

O in §1.3.3. Finally, we approximate the Hecke algebra Tk
∞ with T(k,Q).

The primary challenge lies in the computation of M ′(k,Q), which involves the multipli-

cation of matrices of large size, which can be up to 100,000 by 100,000. When the set Q

of Taylor–Wiles primes remains fixed, our algorithm exhibits a computational complexity of

O(k4) without using parallelization. This computational demand becomes notably burden-

some as the value of k grows considerably. We discuss the parallel implementation of the

algorithm in §1.3.5.

7



Organization of the paper

In Section 2, we provide an overview of key inputs. We begin by reviewing fundamental

facts about the cohomology of congruence subgroups, which will be used in computing the

submodule M ′(k,Q). We then review some Galois deformation theory with a focus on the

tangent spaces, which will be used heavily in §1.3.2. Additionally, we review the setup and

construction of Taylor–Wiles–Kisin patching, a foundation for our algorithm. By leveraging

the Breuil-Mézard conjecture, we provide an exact formula for the rank of M ′(k,Q). Section

3 is dedicated to describing the algorithm and implementation in details. In Section 4,

we present our work as follows: §1.4.1 provides a summarized prototype for computing

an example. In §1.4.2, we present a detailed analysis of a specific example that we have

successfully computed. Additionally, in §1.4.3, we gather other interesting examples for

future exploration and research. Moving on to Section 5, we formulate conjectures based

on the data we have collected. We conclude the paper by discussing our plans for future

research in the final section.

Notation and Conventions

Throughout this paper, we make the assumption that the prime p is an odd integer, and the

initial weight k0 satisfies the condition 2 ≤ k0 ≤ p.

We denote the absolute Galois group of a field F by GF . When F is a global field, and S

is a finite set of places of F , we write GF,S for the Galois group of the maximal extension of

F that is unramified outside S over F. Its abelianization is denoted as Gab
F,S . For a place v

of F, let Fv be the local field at v and fix an embedding GFv
↪→ GF . The inertia subgroup

of GFv
is denoted by Iv.

We use the notation ω for the mod-p cyclotomic character and ω2 for the fundamental

character of level two. Additionally, we denote χcyc as the cyclotomic character of GQ.

We let vp be the normalized p-adic valuation such that vp(p) = 1.

8



In all the deformation problems we consider in this paper, we fix the determinant. We

also refer to ad0ρ as the trace 0 adjoint representation.
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1.2 Preliminaries

1.2.1 Cohomology of congruence subgroups

As mentioned in the introduction, computing a certain submodule M ′(k,Q) (see Definition

1.2.3.8) of the cohomology of some congruence subgroup of SL2(Z) is a crucial step in our

algorithm. This subsection is dedicated to review the group cohomology of such groups

and its equipped Hecke action and Galois action. We put an emphasis on explicit formulas

rather than conceptual definitions because our ultimate goal is to develop an algorithm. The

discussions presented are mostly based on results in Ash and Stevens [1986a], and we follow

their notation.
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If Γ is an arbitrary group and M is an O-module with a Γ-action. By taking the long

exact sequence on cohomology of the short exact sequence 0→ M
·λ−→ M → M ⊗O F→ 0,

we obtain the following.

Proposition 1.2.1.1. The λ-torsion of H1(Γ,M) is Im (H0(Γ,M ⊗ F)→ H1(Γ,M)).

Let Γ be a congruence subgroup of G of level N where G is either SL2 or PSL2. We list

some basic properties of the cohomology groups of Γ when it is torsion free.

Lemma 1.2.1.2 (Borel–Serre). If Γ is torsion free, then the cohomology groups Hi(Γ,M)

vanish for all Γ-modules M and integers i ≥ 2, i.e. the cohomological dimension of Γ is one.

Remark 1.2.1.3. This is a special case of [Borel and Serre, 1973, Corollary 11.4.3] where we

take the algebraic group G to be SL2 or PSL2 whose rank rQ(G) is one, and X to be the

upper half plane which has real dimension 2. Then the cohomological dimension of Γ is

2− 1 = 1.

Corollary 1.2.1.4.

1. If Γ ⊂ G is torsion free, then H1(Γ,M)⊗ F
∼−→ H1(Γ,M ⊗ F).

2. When G = SL2(Z) and the only torsion element of Γ is −I, then H1(Γ,M) ⊗ F
∼−→

H1(Γ,M ⊗ F).

Proof. The first assertion follows directly from taking the long exact sequence on cohomology

and applying the lemma above. By the inflation restriction sequence

0→ H1(PΓ,M)→ H1(Γ,M)→ H1(Z/2Z,M)→ . . . ,

where PΓ is the image of Γ in PSL2(Z), we have the isomorphism

H1(PΓ,M)
∼−→ H1(Γ,M),

10



whenever M is a Zp-module. Then we can apply (1) to H1(PΓ,M) and get

H1(Γ,M)⊗ F
∼−→ H1(PΓ,M)⊗ F

∼−→ H1(PΓ,M ⊗ F)
∼−→ H1(Γ,M ⊗ F).

Now let M be a finite free O-module on which Γ acts.

Proposition 1.2.1.5. If Γ is torsion free, then the O-module Z1(Γ,M) of cochains is finite

free and

Z1(Γ,M)⊗O F
∼−→ Z1(Γ,M ⊗O F).

Proof. Since Γ is torsion free, the quotient space C/Γ is a holomorphic punctured curve and

thus it has free fundamental group. On the other hand, it is a K(Γ, 1) space; so we have Γ is

free. Let {s1, . . . , sn} be a minimal set of generators of Γ and let {e1, . . . , em} be an O-basis

of M. Suppose that R is either O or F. Let fi,j : Γ→M ⊗R be a cochain such that

fi,j(sl) =


ej ⊗ 1 i = l

0 i ̸= l

for 1 ≤ l ≤ n.

It is not hard to verify that {fi,j}1≤i≤n,1≤j≤m is an R-basis of Z1(Γ,M ⊗ R). Using the

basis, it is straightforward to construct the isomorphism in the statement.

From now on we let G = SL2 and review the Hecke action on the group cohomology.

Denote by S the subsemigroup of GL2(Q) such that

1. Γ ⊆ S, and

2. Γ and g−1Γg are commensurable for every g ∈ S.

When M is an S-module, there is a Hecke action on Hi(Γ,M) for all integers i. For the sake

of this paper, we only discuss the definition for i = 0 and i = 1. Let g be an element of
11



S. Then the double coset ΓgΓ is a finite disjoint union ⊔Γgi for some gi ∈ S. Suppose that

g =

a b

c d

. We denote by gι the element

 d −b

−c a

 . Define the double coset operator

[ΓgΓ] to act on H0(Γ,M) by the formula

m[ΓgΓ] =
∑
i

gιim for m ∈ H0(Γ,M).

One can check the definition does not depend on the choice of the set of representatives {gi}.

We now explain the double coset action on H1(Γ,M). Let c be a cochain in Z1(G,M) that

defines a cohomology class [c]. With respect to a fixed choice of representatives {gi}, the

double coset operator [ΓgΓ] acts on Z1(Γ,M) by the following formula

(c [ΓgΓ]) (h) =
∑
i

gιic(gihg
−1
σh(i)

) for c ∈ Z1(Γ,M) and h ∈ Γ (1.2.1.6)

where σh is a permutation defined by Γgih = Γgσh(i). The formula induces an action of [ΓgΓ]

on H1(Γ,M) that is independent of the choice of representatives {gi}. One can check that

choosing another set of representatives {γigi} for some γi’s in Γ results in the difference by

a coboundary defined by
∑

i g
ι
ic(γ

−1
i ) ∈M.

Let H be a subgroup of (Z/NZ)× and let ΓH be the subgroup of Γ0(N) that consists of

matrices

a b

c d

 ∈ Γ0(N) where a, d ∈ H. Let q be a prime dividing N and consider the

double coset operator [ΓHgΓH ] where g =

1 0

0 q

. We denote [ΓHgΓH ] by Uq. Then

g−1ΓHg ∩ ΓH = ΓH ∩ Γ0(q).

Thus gi := g

1 i

0 1

 for i = 0, . . . , q − 1 form a set of representatives of this double coset

12



operator and we fix this choice when computing the action of Uq on Z1(ΓH , Sym
k−2O2).

We take M to be Symk−2O2, by which we mean the finite free O-module of polynomials in

O[u, v] of total degree k − 2, equipped with the action of the semigroup GL2(Q) ∩M2(Z)

given by 
a b

c d

P

 (u, v) = P (au+ cv, bu+ dv).

When O is replaced with a general ring R, the action of the semigroup on Symk−2R2 follows

a similar definition.

Proposition 1.2.1.7. If k > 2, the module Symk−2O2 has no nontrivial fixed points by ΓH ,

i.e. H0(ΓH , Sym
k−2O2) = 0.

Proof. Let P (u, v) be a homogeneous polynomial in Symk−2O2. Since

1 1

0 1

 ∈ ΓH , we

have P (u, v) = P (u, u+ v). Thus the polynomial P (u, v) equals uk−2 up to a scalar because

charO = 0. Note that

 1 0

N 1

 is also in ΓH . By the same reasoning, we deduce P (u, v) =

0.

Proposition 1.2.1.8. If q ∈ Z is an integer that is congruent to 1 modulo p, then the

eigenvalue of Uq on B1(ΓH , Sym
k−2O2)⊗ F is 1.

Proof. We point out that q ≡ 1 (mod λ) because q is λ-adically close to 1 if and only it is

p-adically close to 1.

Note that the map Symk−2O2 → B1(Γ, Symk−2O2) given by

P (u, v) 7→ (γ 7→ (γP )(u, v)− P (u, v))

defines an isomorphism. To see this, it suffices to show that the image of the basis

{uivk−2−i}i=0,...,k2

13



is still linearly independent, which then follows from Proposition 1.2.1.7.

Suppose that b is a coboundary such that b(γ) = (γP )(u, v)−P (u, v) for some P (u, v) ∈

Symk−2O2. With respect to our choice of representatives, we have

(bUq)(γ) =

q−1∑
i=0

gιib(giγg
−1
σγ(i)

) =

q−1∑
i=0

gιi

(
giγg

−1
σγ(i)

P (u, v)− P (u, v)
)

=

q−1∑
i=0

det(gi)γg
−1
σγ(i)

P (u, v)−
q−1∑
i=0

gιiP (u, v) =

q−1∑
i=0

γ det(g)g−1i P (u, v)−
q−1∑
i=0

gιiP (u, v)

= γ

q−1∑
i=0

gιiP (u, v)−
q−1∑
i=0

gιiP (u, v).

Since gιiP (u, v) =

1 −i

0 1


q 0

0 1

P (u, v) = P (qu, v − iqu), we have

q−1∑
i=0

gιiP (u, v) =

q−1∑
i=0

P (qu, v − iqu).

Define the Uq action on Symk−2O2 by

(PUq)(u, v) =

q−1∑
i=0

P (qu, v − iqu).

Then the aforementioned isomorphism is Uq-equivariant.

If bUq ≡ αb mod λB1(Γ, Symk−2O2) for some number α ∈ O, then

αP (u, v) ≡
q−1∑
i=0

P (qu, v − iqu) ≡
q−1∑
i=0

P (u, v − iu) mod λSymk−2O2

where the second congruence holds because q ≡ 1 (mod λ). Write P (u, v) = an(u)v
n+ . . .+

a1(u)v + a0(u) for some ai(u) ∈ O[u] with an(u) ̸≡ 0 (mod λ) and integer 0 ≤ n ≤ k − 2.

14



Compare the coefficients of vn on both sides and we conclude that αan(u) ≡ qan(u) (mod λ).

Thus α ≡ 1 (mod λ).

Remark 1.2.1.9. The O-module H1(ΓH , Sym
k−2O2) can have torsion even when ΓH is tor-

sion free. For example, when p = 5, k = 14 and ΓH = Γ1(11) ∩ Γ0(14), the ΓH -fixed points

of Symk−2F2 is spanned by y2x10 + 3y6x6 + y10x2. By Proposition 1.2.1.1, we have

H0(Γ, Symk−2O2)[λ]
∼−→ Im (H0(Γ, Symk−2F2)→ H1(Γ, Symk−2O2)).

Since ker(H0(Γ, Symk−2F2) → H1(Γ, Symk−2O2)) = H0(Γ, Symk−2O2) ⊗ F = 0 by the

long exact sequence on cohomology and Proposition 1.2.1.7, we conclude that

H1(Γ, Symk−2O2)[λ]
∼−→ H0(Γ, Symk−2F2) = F · (y2x10 + 3y6x6 + y10x2),

which is nontrivial.

To equip the group cohomology with a Galois action, we use the comparison theorem

between the group cohomology and étale cohomology. Let Γ ⊆ SL2(Z) be a p-torsion free

congruence subgroup and let M be a finite free O-module on which Γ acts continuously. Let

h be the upper half plane and let YΓ be the algebraic modular curve whose set of C-points

YΓ(C) is h/Γ. Then M ⊗O/λn (resp. M) defines a locally constant sheaf on YΓ, which we

denote by ˜M ⊗O/λn (resp. M̃). Given that Γ is p-torsion free, there is the isomorphism

Hi(YΓ(C), ˜M ⊗O/λn) ∼−→ Hi(Γ,M ⊗O/λn)

for every integer i ≥ 0 and n ≥ 1. (See for example [Ash and Stevens, 1986a, §1.4].) By

the comparison theorem between the torsion-coefficient singular cohomology and the étale
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cohomology, we have

Hi(YΓ(C), ˜M ⊗O/λn) ∼−→ Hi
ét(YΓ,Q,

˜M ⊗O/λn)

for every integer i ≥ 0 and n ≥ 1. These isomorphisms are Hecke equivariant where the

Hecke action on the cohomology of modular curve is defined via correspondence.

Proposition 1.2.1.10. Taking the inverse limit commutes with group cohomology, i.e.,

Hi(Γ,M)
∼−→ lim←−

n
Hi(Γ,M ⊗O/λn)

for all integers i ≥ 0.

Proof. When i = 0, it is straightforward to check that the isomorphism holds. When i ≥ 1,

by the corollary to [Tate, 1976, Proposition 2.2], it suffices to check the groups Hi−1(Γ,M ⊗

O/λn) are finite for each n and i ≥ 1, which is equivalent to showing that they are finitely

generated. This then follows from the fact that Γ is finitely presented.

Corollary 1.2.1.11. We have Hi
ét(YΓ,Q, M̃)

∼−→ Hi(Γ,M).

Proof. This is because

Hi
ét(YΓ,Q, M̃) = lim←−

n
Hi
ét(YΓ,Q,

˜M ⊗O/λn)

∼−→ lim←−
n
Hi(YΓ(C), ˜M ⊗O/λn) ∼−→ lim←−

n
Hi(Γ,M ⊗O/λn) ∼−→ Hi(Γ,M),

where the last step follows from the proposition above.

By doing so, we equip Hi(Γ,M) with a continuous Galois action of GQ, which commutes

with the Hecke action. It is not hard to check that all the homomorphisms above preserve

both actions. The Galois action on the group cohomology is rather simple in the following

case [Buzzard et al., 2010, Lemma 2.2(a)].
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Lemma 1.2.1.12 (Buzzard–Diamond–Jarvis). Let V be a finite dimensional vector space

equipped with a Γ-action. The Galois action on Hi(Γ, V ) is abelian for i ∈ {0, 2}.

Lemma 1.2.1.13. If Γ is a p-torsion free congruence subgroup and n is a non-Eisenstein

maximal ideal of the Hecke algebra, then the functor H1(Γ,−)n is an exact functor from the

category of finite representations of GL2(Fp) to the category of abelian groups.

Proof. Suppose that

0→ V1 → V2 → V3 → 0

is a short exact sequence of finite representations of GL2(Fp) over Fp. Then we have the

long exact sequence

· · · → H0(Γ∅, V3)n → H1(Γ∅, V1)n → H1(Γ∅, V2)n → H1(Γ∅, V3)n → H2(Γ∅, V1)n → · · · .

By Lemma 1.2.1.12, the Galois action on H0 and H2 are abelian. If we assume n is non-

Eisenstein, then the image of H0(Γ∅, V3)n in H1(Γ∅, V1)n is trivial and so is the image of

H1(Γ∅, V3)n in H2(Γ∅, V1).

1.2.2 Galois deformation theory

In this subsection, we review Galois deformation theory, which is essential for the discussion

on patching in the sequel.

We fix a continuous representation ρ : G → GL2(F) of some profinite group G and a

character χ : G → O× such that χ mod λ = det(ρ). Let CO be the category of complete

local Noetherian O-algebras with residue field F. By a lifting of ρ to a complete local

Noetherian O-algebra A, we mean a representation ρ : G→ GL2(A) such that ρ reduces to

ρ modulo the maximal ideal of A. Consider the functor D from CO to the category of sets

that sends A to an equivalence class of liftings ρ : G→ GL2(A) and det(ρ) = χ where ρ ∼ ρ′

if and only if ρ′ = gρg−1 for some g ∈ 1 +M2(A).
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Theorem 1.2.2.1 (Mazur). If ρ is Schur and G satisfies Mazur’s p-finiteness condition Φp,

then the functor D is represented by an O-algebra Runiv
ρ , which we refer to as the universal

deformation O-algebra of ρ.

Remark 1.2.2.2. Recall that G satisfies Φp if for every open subgroup H of G, there are only

finitely many continuous homomorphisms from H to Zp. For example, Mazur’s p-finiteness

condition is satisfied when G is the absolute Galois group of a local field or GF,S for some

global field F and set S of finitely many places of F.

The tangent space of D is defined to be the set D(F[ϵ]/(ϵ2)), which coincides with the no-

tion of the Zariski tangent space of Spec(Runiv
ρ ⊗F) and the group cohomology H1(G, ad0ρ).

Suppose that dimFH
1(G, ad0ρ) = d. Then Runiv

ρ is a quotient of the power series ring

OJx1, . . . , xdK by Nakayama’s lemma.

We list some theorems that we use to compute the Galois cohomology with coefficients

in ad0ρ.

Theorem 1.2.2.3 (Local Tate duality). Suppose that G = GQℓ
for a prime number ℓ. Then

there is a perfect pairing

Hi(G, ad0ρ)×H2−i(G, ad0ρ(1))→ Fp for i = 0, 1, 2

where ad0ρ(1) stands for the module ad0ρ on which the G-action is twisted by ω, the mod-p

cyclotomic character.

For a proof, see [Milne, 2006, Theorem 2.1].

Theorem 1.2.2.4 (Local Euler characteristic formula). Suppose that G = GQp
. Then

dimH1(G, ad0ρ) = dimH0(G, ad0ρ) + dimH2(G, ad0ρ) + 3.
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By the local Tate duality, this can be written into

dimH1(G, ad0ρ) = dimH0(G, ad0ρ) + dimH0(G, ad0ρ(1)) + 3.

For a proof, see [Milne, 2006, Theorem 2.8].

Theorem 1.2.2.5 (Global Euler characteristic formula). Suppose that G = GQ,S for some

finite set S of places of Q that contains p. Then

dimH1(G, ad0ρ) = dimH0(G, ad0ρ) + dimH2(G, ad0ρ) + 3− dimFH
0(GR, ad

0ρ).

For a proof, see [Milne, 2006, Theorem 5.1].

For a place v of Q, we let Iv be the inertia subgroup of GQv
when v is finite and let

Iv be the trivial group when v is infinite. Let L = {Lv} be a collection of subspaces Lv ⊆

H1(GQv
, ad0ρ) where v runs over all the places of Q such that Lv = H1(GQv

/Iv, (ad
0ρ)Iv)

for almost all v. Set L∗ = {L⊥v } where L⊥v is the annihilator of Lv under the Tate pairing,

satisfies that L⊥v = H1(GQv
/Iv, (ad

0ρ(1))Iv) for almost all v. We define the Selmer group

HL(GQ, ad
0ρ) to be the subgroup of H1(GQ, ad

0ρ) that is the preimage of
∏

v Lv under the

restriction map

H1(GQ, ad
0ρ)→

∏
v

H1(GQv
, ad0ρ).

For example, the cohomology group H1(GQ,S , ad
0ρ) equals H1

L(GQ,S , ad
0ρ) for L = {Lv}

where Lv = H1(GQv
/Iv, (ad

0ρ(1))Iv) if v /∈ S and Lv = H1(GQv
, ad0ρ) otherwise.

Theorem 1.2.2.6 (Greenberg–Wiles). We have the formula

dimH1
L(GQ, ad

0ρ)− dimH1
L∗(GQ, ad

0ρ(1)) = dim(ad0ρ)GQ − dim(ad0ρ(1))GQ

+
∑
v≤∞

(
dimLv − dim(ad0ρ)GQv

)
,
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and we say H1
L(GQ, ad

0ρ) and H1
L∗(GQ, ad

0ρ(1)) are dual Selmer groups to each other.

For a proof, see [Darmon et al., 1995, Theorem 2.18].

Remark 1.2.2.7. When v is a finite place of Q and Lv = H1(GQv
/Iv, (ad

0ρ)Iv), we have that

dimLv = dim(ad0ρ)GQv . Thus the sum in the theorem above is a finite sum.

The obstruction space of D is parametrized by H2(G, ad0ρ). When H2(G, ad0ρ) = 0,

we say this deformation problem is unobstructed. In this case, the deformation ring Runiv
ρ

is isomorphic to the formal power series ring OJx1, . . . , xdK.

Remark 1.2.2.8. If ρ is not Schur, we can consider the functor D2 from CO to the category

of sets that sends A to a lifting ρ : G→ GL2(A) with det(ρ) = χ. This functor is represented

by an O-algebra R2
ρ , which we refer to as the universal lifting ring. The Zariski tangent

space of Spec(R2
ρ ) is isomorphic to Z1(G, ad0ρ). The obstruction space is still parametrized

by H2(G, ad0ρ). We can discuss whether a deformation functor is unobstructed, regardless

of whether ρ is Schur.

Let r : GQp
→ GL2(F) be a local Galois representation. If r is irreducible, we assume

r ∼ Ind
GQp

GK
ωk0−12 up to some twist. If r is reducible, we assume r ∼

ωk0−1ψ−1χ bψ

0 ψ


for some unramified characters ψ and χ and b a cochain in Z1(GQp

, ωk0−1ψ−2χ).

Proposition 1.2.2.9. For the local Galois representation r as described, the deformation

problem of r is unobstructed in the following cases:

• if r is irreducible and either p ̸= 3 or k0 ̸= 3.

• if r is reducible and k0 ̸= p− 1.

Proof. By definition of an unobstructed deformation problem and the Tate local duality, it

suffices to compute when

dimH2(GQp
, ad0r) = dimH0(GQp

, ad0r(1)) = 0.
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If r is irreducible, it follows from a direct computation that

ad0r = η ⊕ Ind
GQp

GK
ω
(p−1)(k0−1)
2

where η is the unramified character η : GQp
→ Gal(K/Qp) ∼= {±1} ⊂ F×p . Since η(1) is

a nontrivial character, it has no nontrivial fixed points. If
(
Ind

GQp

GK
ω
(p−1)(k0−1)
2

)
(1) has

nontrivial fixed points by GQp
, it is reducible and thus

ω
(p−1)(k0−1)
2 = ω

−(p−1)(k0−1)
2 .

Given that ω2 is cyclic of order p2 − 1, the equality above is equivalent to

2(k0 − 1) ≡ 0 (mod p+ 1).

We deduce that k0 = (p+ 1)/2 + 1 because 2 ≤ k0 ≤ p. Therefore, we have

(
Ind

GQp

GK
ω
(p−1)(k0−1)
2

)
(1) =

(
Ind

GQp

GK
ω(p−1)/2

)
(1) = ω(p+1)/2 ⊕ ω(p+1)/2 ⊗ η.

Since ω(p+1)/2 ⊗ η has no fixed points, the only fixed points of the induced representation

are those of the character ω(p+1)/2. The condition ω(p+1)/2 = 1 is true only when p = 3,

which, in turn, implies that k0 = 3.

If r is reducible, we want to find when the following equation in x, y, z ∈ F only has

trivial solution.ωk0−1ψ−1χ bψ

0 ψ


x y

z −x

 =

x y

z −x


ωk0ψ−1χ bωψ

0 ωψ

 .
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The above equation of matrices is equivalent to the set of equations



ωk0−1ψ−1χx+ bψz = ωk0ψ−1χx

ωk0−1ψ−1χy − bψx = bωψx+ ωψy

ψz = ωk0ψ−1χz

−ψx = bωψz − ωψx

.

It follows from the third equation that (ωk0 −ψ2χ−1)z = 0. Since p− 1 ̸= k0 and ω is cyclic

of order p − 1, the character ωk0 is ramified. Hence, z = 0 because ψ2χ−1 is unramified.

Now we have x(ω − 1) = 0 by the first equation. Thus x is also 0. We conclude from the

second equation that (ωk0−2−ψ2χ−1)y = 0. But k0−2 < p−1 because k0 ≤ p. By a similar

reasoning as with the third equation, we deduce that y = 0 and the proof is complete.

For a finite extension E of Qp with ring of integers OE , an OE-point of Spec(Runiv
r )

corresponds to an equivalence class of representations rE : GQp
→ GL2(OE). After invert-

ing p, we can say whether the deformation represented by rE is crystalline of Hodge–Tate

weights (a, b) for some integers a and b. Kisin defined Rk
r to be the quotient of Runiv

r by

the intersection of the kernels of the OE-points Runiv
r → OE such that the corresponding

deformation rE is crystalline of Hodge–Tate weights (0, k− 1). Kisin proved the following in

[Kisin, 2008, (3.3.8)]

Proposition 1.2.2.10 (Kisin). The ring Rk
r is relative of dimension one over O. Its generic

fiber Rk
r [1/p] is formally smooth and equidimensional of dimension one.

Example 1.2.2.11. The presentation of Rk
r is known when r is Schur and 2 ≤ k ≤ p + 1

by Fontaine–Laffaille theory Fontaine and Laffaille [1982]:

Rk
r
∼−→ OJxK.
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When r is absolutely irreducible and p + 2 ≤ k ≤ 2p − 1, Kisin computed in Kisin [2007]

that

Rk
r
∼−→ OJx, yK/(xy − λ).

We now introduce notation for some global deformation rings. Let ρ : GQ → GL2(F) be

an odd Galois representation that has the minimal ramification among all of its twists and

satisfies the conditions outlined in Theorem 1.2.3.1. Denote by r and its restriction ρ|GQp

is r. Let S be the set {ℓ, p,∞}ℓ|N(ρ). For a finite set Q of primes of Q, we define RQ as

the global deformation O-algebra that parametrizes deformations of ρ that are unramified

outside S ∪ Q, of types (A), (B), and (C) (for a detailed definition, refer to [Wiles, 1995,

Chapter 1, Section 1]), at primes ℓ ∈ S, and with a fixed determinant. We denote by Rk
Q

the completed tensor product of Rk and RQ over Runiv
r .

We can still make sense of the tangent space for these deformation rings. For a ring

R = Rk
r , RQ or Rk

Q, we denote by Tan(R) the F[ϵ]/(ϵ2)-points of R, i.e., HomO(R,F[ϵ]/(ϵ2)).

We refer to Tan(R) the tangent space of R. The linear dual of Tan(R) is isomorphic to m/m2

where m is the maximal ideal of R⊗F. We call this the cotangent space of R and denote it by

Cot(R). As before, the ring R is generated by dimFTan(R) = dimFCot(R) many elements

as an algebra over O.

Proposition 1.2.2.12.

1. The tangent space Tan(RQ) is isomorphic to the Selmer group H1(GQ,{p,∞}∪Q, ad
0ρ).

2. The tangent space Tan(Rk
Q) is Tan(RQ)×Tan(Runiv

r )Tan(R
k). In particular, when Runiv

r

surjects onto RQ, i.e. Tan(RQ) ⊆ Tan(Runiv
r ), we have Tan(Rk

Q) = Tan(RQ) ∩

Tan(Rk).

Proof. Assertion (1) is proved by Wiles in [Wiles, 1995, (1.5)]. Assertion (2) follows from

a general fact from the category theory that the covariant Hom functor turns a pushout

diagram into a pullback diagram.
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1.2.3 Minimal level Taylor–Wiles–Kisin patching

In this subsection, we begin by outlining Theorem 1.2.3.1 which enables us to compute the

crystalline deformation ring Rk
r by a certain Hecke algebra. We then review the setup and

construction of the Taylor–Wiles–Kisin patching in the minimal level setting that will later

be used in the algorithm’s design.

Let ρ : GQ → GL2(F) be an odd absolutely irreducible Galois representation that has

least ramification among all of its twists. Suppose that r := ρ|GQp
is Schur and takes

the form we have described in the previous subsection. We further assume when r is the

extension of 1 by the cyclotomic character ω, the extension class is peu ramifié. By Serre’s

conjecture Serre [1987], Khare and Wintenberger [2009a,b], ρ is the reduction of the p-adic

Galois representation attached to some newform f0. Let N(ρ) be the conductor of ρ. The

newform f0 can be chosen so that it has level subgroup Γ :=
∏

ℓ̸=p Γℓ where

Γℓ =


Γ0(ℓ) if ℓ∥N(ρ) and det(ρ)|Iℓ = 1

Γ1(ℓ
r) if ℓr∥N(ρ) and r ≥ 2 or det(ρ)|Iℓ ̸= 1

,

and weight 2 ≤ k0 ≤ p. Then the Nebentypus character χ of f0 satisfies χ|Gℓ
= 1 if ℓ∥N(ρ)

and χ|Gℓ
≡ 1 (mod λ).

Theorem 1.2.3.1 (Taylor–Wiles–Kisin). Assume that r is Schur. If both of the following

conditions hold:

1. ρ|GQ(ζp)
is absolutely irreducible and

2. if ℓ ≡ −1 mod p divides N(ρ), then either ρ|GQℓ
is reducible over the algebraic closure

or ρ|Iℓ is absolutely irreducible,

then the Taylor–Wiles–Kisin patching generates some patched module Mk
∞, whose support

Tk
∞ is a formal power series ring over the crystalline deformation ring Rk

r .
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Remark 1.2.3.2. The theorem holds true without the assumption that r is Schur. In that

case, the crystalline deformation ring Rk
r is replaced with the framed crystalline deformation

ring R2,k
r , which is constructed by Kisin in a similar manner as explained in the previous

subsection with the universal deformation ring Runiv
r substituted with the universal lifting

ring R2
r (see Remark 1.2.2.8). However, the framed deformation ring has a larger tangent

space compared to the non-framed one. Currently we lack a way to identify the generators

of the framed rings, unlike the method outlined in §1.3.2.

Let us briefly explain the two conditions in the theorem. The first condition is referred to

as the Taylor–Wiles condition in the literature. It guarantees the adequacy of Taylor–Wiles

primes (see Lemma 1.2.3.6), which is crucial for the construction of patching in Theorem

1.2.3.11. The second condition ensures that all the local deformation rings at places away

from p are smooth. Without imposing condition (2), patching would yield a power series

ring over the completed tensor product of all non-smooth local framed deformation rings,

preventing us from obtaining a formal power series ring that is only over Rk
r .

In practice, there are criteria to check when the Taylor–Wiles conditions hold. When

the projective image of ρ contains PSL2(Fp) and p ≥ 5, then (1) in (1.2.3.1) holds. But if

the image happens to be small, there is a criterion [Calegari and Talebizadeh Sardari, 2021,

Lemma 2.1.2(2)] to determine when this holds.

Lemma 1.2.3.3 (Calegari-Sardari). Assume that the local representation r is isomorphic to

Ind
GQp

GK
ωk0−12 up to a twist. The representation ρ|GQ(ζp)

is absolutely irreducible if k0 − 1 is

not divisible by (p+ 1)/2.

For condition (2), if none of the prime divisors of N(ρ) are congruent to −1 module p,

then it automatically holds. There is also the following criterion from Wiles [1995]:

Lemma 1.2.3.4 (Wiles). If N is square-free, then (2) holds.

We now review the construction of patching in more details, which is important in de-

signing the algorithm. From now on we assume that r is Schur.
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Definition 1.2.3.5. Define the following two Selmer groups.

• Denote by H1
Σ(GQ, ad

0ρ) the subspace of H1(GQ, ad
0ρ) that consists of cohomology

classes that are unramified outside p and split at p.

• Denote by H1
ΣQ

(GQ, ad
0ρ) the subspace of H1(GQ, ad

0ρ) that consists of cohomology

classes that are unramified outside Q∪{p,∞} and split at p for a finite set Q of primes.

It is immediate from the definition that H1
Σ(GQ, ad

0ρ) ⊆ H1
ΣQ

(GQ, ad
0ρ).

A set of level n Taylor–Wiles primes is a finite set Qn of #Qn primes q such that all of

the following conditions hold:

1. if q ∈ Qn, then q does not divide Np;

2. the cardinality of Qn is #Qn = dimH1(GQ,{p,∞}, ad
0ρ(1));

3. for all q ∈ Qn, we have q ≡ 1 mod pn;

4. the element ρ(Frobq) has distinct eigenvalues αq and βq;

5. the Selmer groups H1
Σ(GQ, ad

0ρ) and H1
ΣQ

(GQ, ad
0ρ) have the same dimension, which

we denote as h.

It follows from Greenberg–Wiles formula that #Qn = h+ 1.

Lemma 1.2.3.6 (Kisin [2009b]). For each positive integer n, there is a set Qn as above if

condition (1) in Theorem 1.2.3.1 holds.

We now introduce the notation for the Hecke algebras and modules that patch to Tk
∞

and Mk
∞, respectively. Recall that ρ comes from a newform f0 of weight k0, level N(ρ)

and Nebentypus character χ. Let T̃univ be the polynomial ring O[Tℓ, ⟨ℓ⟩]ℓ∤N in the indicated

variables and let Tuniv be the sub-algebra of T̃univ generated by all the variables but Tp. For

a set Q of Taylor-Wiles primes, let NQ be the product of all the primes q in Q. If Q = ∅, we

26



set NQ = 1. Denote by ΓQ the intersection of the level group Γ of f0 with the congruence

subgroup Γ1(NQ). We have the maximal ideal m̃Q (resp. mQ) of T̃univ (resp. Tuniv) that

is generated by λ, Tℓ − aℓ(f), ⟨ℓ⟩ − χ(ℓ), Tq − αq, Tp for ℓ ∤ N(ρ)NQp and q ∈ Q (resp. by

λ, Tℓ − aℓ(f), ⟨ℓ⟩ − χ(ℓ), Tq − αq, for ℓ ∤ N(ρ)NQp and q ∈ Q), where Tq acts by Uq and αq

is a lift of αq that is an eigenvalue of ρ(Frobq). Since αq and βq are distinct, we may and do

assume that αq ̸= 1.

The choice of modules we patch can vary. The general idea is to patch modules on which

Hecke algebras act faithfully. We consider (at least) two types of modules: the space of clas-

sical modular forms Sk(ΓQ,Qp) and the space of group cohomology H1(ΓQ, Sym
k−2Qp

2
).

The Hecke algebra Z[Tℓ, ⟨ℓ⟩]ℓ prime acts on both modules by the double coset operators:

Tℓ :=

ΓQ
1 0

0 ℓ

ΓQ

 and ⟨ℓ⟩ :=

ΓQ
a b

c d

ΓQ



where

a b

c d

 ∈ Γ0(NNQ) and d ≡ ℓ (mod N). Let g ∈ GL2(Q) such that g−1Γg and Γ are

commensurable. Then ΓQgΓQ is the finite disjoint union ⊔iΓgi for some gi =

ai bi

ci di

 ∈
GL2(Q). The double coset operator [ΓQgΓQ] acts on Sk(Γ,Qp) by the following formula:

f [ΓQgΓQ] =
∑
i

f [gi] for f ∈ Sk(Γ,Qp) where (f [gi])(z) = det(gi)
k−1(ciz+di)

−kf(giz).

The Hecke action on H1(ΓQ, Sym
k−2Q2

p) has been discussed in §1.2.1. We fix a field iso-

morphism C ∼−→ Qp. Over C, the two modules are related by the following theorem.

Theorem 1.2.3.7 (Eichler-Shimura). Let Γ be a congruence subgroup of SL2(Z) and k ≥ 2
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an integer. The map

f 7→
(
γ 7→

∫ γz0

z0

f(z)(zu+ v)(k−2) dz
)

induces an isomorphism

Mk(Γ,C)⊕ Sk(Γ,C)
∼−→ H1(Γ, Symk−2C2)

that respects the Hecke action.

On both sides, the Hecke action is faithful. Thus in the process of patching, we can

either use the module Sk(ΓQ,O) of classical modular forms of weight k, level ΓQ with

coefficients in O or the module H1(ΓQ, Sym
k−2O2). The localizations of Sk(ΓQ,O) (resp.

H1(ΓQ, Sym
k−2O2)) at m̃Q and at mQ are the same when r is irreducible because Tp is

automatically nilpotent modulo λ. When r is reducible, the module Sk(ΓQ,O)mQ splits

into the direct sum Sk(ΓQ,O)m̃Q
⊕ Sk(ΓQ,O)m̃′

Q
where m̃′Q is the maximal ideal of T̃univ

generated by λ, Tℓ − aℓ(f), ⟨ℓ⟩ − χ(ℓ), Tq − αq for all ℓ ∤ N(ρ)NQ.

Definition 1.2.3.8. Let M(k,Q) be the localization Sk(ΓQ,O)mQ and let M ′(k,Q) be the

localization H1(ΓQ, Sym
k−2O2)mQ . Denote by T̃(k,Q) the image of T̃univ

m̃Q
in the endomor-

phism ring of M(k,Q) or M ′(k,Q) and by T(k,Q) the image of Tuniv
mQ

in the endomorphism

ring of M(k,Q) or M ′(k,Q).

Remark 1.2.3.9. Concretely, M(k,Q) is the direct summand of Sk(ΓQ,O) determined by the

condition that the action of T ∈ m̃Q is topologically nilpotent. A similar characterization

holds for M ′(k,Q) ⊆ H1(ΓQ, Sym
k−2O2).

Let us recall the construction of the map from a formal power series ring over the crys-

talline deformation ring to Hecke algebras:

Rk
r Jt1, . . . , thK ↠ T(k,Q).
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First of all, since h is the dimension of the Selmer group

H1
ΣQ

(GQ, ad
0ρ) = ker(H1(GQ,S∪Q, ad

0ρ)→ H1(GQp
, ad0ρ)) = ker(Tan(RQ)→ Tan(Runiv

r )),

there is a surjection

Runiv
r Jt1, . . . , thK ↠ RQ

and therefore a surjection

Rk
r Jt1, . . . , thK ↠ Rk

Q.

Note that h is independent of Q by the construction of Q.

It remains to construct the homomorphism φ : Rk
Q → T(k,Q). Since the algebra T(k,Q)

is finite free over O, given a minimal prime ideal p of T(k,Q), the quotient T(k,Q)/p is

embedded in the ring of integers of a finite extension of L. Such an embedding corresponds

to a system of Hecke eigenvalues, or equivalently, a Galois orbit of an eigenform f and

thus a Galois representation ρf by Deligne’s construction Deligne [1969]. Let S be the set

containing p,∞ and primes dividing N(ρ). There is the representation

ρ
k,mod
Q : GQ,S∪Q →

∏
p minimal

GL2(T(k,Q)/p),

with the trace of Frobℓ being Tℓ ∈ T(k,Q) where ℓ is a prime not in S ∪Q. It follows from

Chebotarev’s density theorem that the trace of ρk,mod
Q lands in T(k,Q). Since ρ is absolutely

irreducible, by Carayol’s lemma Carayol [1994], we may and do assume that ρk,mod
Q has its

image in GL2(T(k,Q)). We then obtain a homomorphism φ : Rk
Q → T(k,Q) by the universal

property of Rk
Q.

Lemma 1.2.3.10. The Hecke operator Uq is in Im (φ) for every prime q ∈ Q.

Proof. Let f be an eigenform in its Galois orbit corresponding to a minimal prime ideal

p of T(k,Q). Then by construction of T(k,Q), the eigenform f is either new at q ∈ Q
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of conductor 1 or an old form with trivial conductor because the level group at q ∈ Q is

Γ1(q). It follows from [LOEFFLER and WEINSTEIN, 2012, Table 1] that the q-component

automorphic representation πf,q of f is a principal series π(χf,1, ψf,q/χf,1) where χf,1 is

an unramified character of Q×q and ψf,q is the q-component of the Nebentypus character

of f . When f is new at q, χf,1 sends q to aq(f)q−(k−1)/2. When f is an old form, χf,1(q)

sends q to αqq−(k−1)/2 where αq is determined by Uqf = αqf . Again, by construction of

T(k,Q), the numbers aq(f) and αq are congruent to αq modulo λ, which is equivalent to

saying Uq is congruent to αq modulo mQ. By the classical local Langlands correspondence

and Grothendieck’s monodromy theorem, the Galois representation attached to f has trace

(χf,1 + ψf,q/χf,1)χ
(k−1)/2
cyc . Thus for a lift σ ∈ GQq

of Frobq, we have

Uq +
qk−1(ψf,q(σ))f

Uq
= A for some A ∈ Im (φ),

where we note that (ψf,q(σ))f is also in Im (φ) as it comes from the determinant of ρmod
Q .

Now we have a quadratic equation

X2 − AX + qk−1(ψf,q(σ))f = 0

with two distinct roots αq and βq after modulo mQ. By Hensel’s lemma, the equation has

a unique root in T(k,Q) which is Uq and a unique root in Im (φ) ⊆ T(k,Q). Therefor

Uq is in Im (φ). (Since Im (φ) is the image of Rk
ρ,Q, it is automatically a complete local

Noetherian ring with maximal ideal being the quotient of the maximal ideal m of Rk
ρ,Q.

On the other hand, the map φ comes from universal property, and thus it is a local map,

meaning that the preimage of mQ is m. Thus the subspace topology on Im (φ) coincided

with the quotient topology on Im (φ), so there is no ambiguity with applying Hensel’s lemma

to Im (φ) here.)

As a result of the lemma, the composition Rk
r Jt1, . . . , thK ↠ Rk

ρ,Q → T(k,Q) is surjective.
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There are no canonical maps between T(k,Q) and T(k,Q′) when Q and Q′ are two distinct

non-empty sets of Taylor–Wiles primes. However, patching gives identification on some finite

quotients of T(k,Q). Using the notation above, there is a reformulation of Theorem 1.2.3.1

as follows.

Theorem 1.2.3.11 (Reformulation of Theorem 1.2.3.1). Under the assumption of (1.2.3.1),

there exists a sequence {Qn} of sets of Taylor-Wiles primes such that

Mk
∞
∼−→ lim←−

n
M(k,Qn)⊗O/λn and M ′k∞

∼−→ lim←−
n
M ′(k,Qn)⊗O/λn

and both modules have support

Tk
∞
∼−→ lim←−

n
T(k,Qn)⊗O/λn

∼−→ Rk
r Jt1, . . . , thK

for some non-canonical surjective transition maps between the Hecke modules and Hecke

algebras.

The homomorphisms above all preserve the action of an Iwasawa algebra, which we now

describe. Let ∆q be the maximal p-power quotient of F×q and denote by ∆Q the product of

∆q for q in a setQ of Taylor–Wiles primes. There is a ring homomorphismO[∆Q]→ Rk
Q that

comes from the Taylor–Wiles deformation ring. Since ∆Q is a group of diamond operators

of p-power order, it embeds in the Hecke algebra T(k,Q). By [Gee, 2013, Proposition 5.8],

φ is an O[∆Q]-homomorphism. Let OJ∆∞K := OJd1, . . . , d#QK be the formal power series

ring over O in #Q variables. We have a commutative diagram

Rk
r Jt1, . . . , thK Tk

∞

OJ∆∞K RQ T(k,Q)

∼

(1.2.3.12)

The dotted map exists because OJ∆∞K is formally smooth. Denote by aQ the kernel of
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OJ∆∞K ↠ O[∆Q]. Then we have

Rk
Q
∼−→ Rk

r Jt1, . . . , thK/aQR
k
r Jt1, . . . , thK.

On the finite level, Kisin proved the following in Kisin [2009a].

Corollary 1.2.3.13 (R[1/p] = T[1/p], Taylor–Wiles–Kisin). The surjection RQ → T(k,Q)

induces an isomorphism RQ[1/p]
∼−→ T(k,Q)[1/p].

Remark 1.2.3.14. Let Q be a set of level n Taylor–Wiles primes. The images of λ, (1+d1)p
n−

1, . . . , (1+d#Q)
pn−1 in Rk

r Jt1, . . . , thK form a system of parameters of Rk
r Jt1, . . . , thK because

Rk
r Jt1, . . . , thK/(λ, (1 + d1)

pn − 1, . . . , (1 + d#Q)
pn − 1)

∼−→ Rk
Q ⊗ F

is Artinian. The ring Rk
r Jt1, . . . , thK is Cohen–Macaulay if and only if λ, (1+d1)p

n−1, . . . , (1+

d#Q)
pn − 1 is a regular sequence. The latter implies that

Rk
Q
∼−→ Rk

r Jt1, . . . , thK/((1 + d1)
pn − 1, . . . , (1 + d#Q)

pn − 1)

is λ-torsion free. We can then upgrade the R[1/p] = T[1/p] in the corollary above to an

R = T theorem. For instance, the R = T theorem holds in the situations described in

Example 1.2.2.11.

Proposition 1.2.3.15. Under assumptions in Theorem 1.2.3.1, the following are equivalent:

1. Rk
r is Cohen–Macaulay;

2. Rk
r Jt1, . . . , thK⊗ F is finite free over FJd1, . . . , d#QK.

The same statement holds true for Rk
r [αp].

Proof. If (2) holds, then (λ, d1, . . . , d#Q) is a regular sequence of Rk
r Jt1, . . . , thK and (1)

follows. Conversely, ifRk
r is Cohen–Macaulay, then the system of parameters (λ, d1, . . . , d#Q)
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is a regular sequence of the Cohen–Macaulay ring Rk
r Jt1, . . . , thK. Thus Rk

r Jt1, . . . , rhK⊗F is

Cohen–Macaulay with a regular sequence (d1, . . . , d#Q). As a result, Rk
r Jt1, . . . , rhK ⊗ F is

a Cohen–Macaulay module over FJd1, . . . , d#QK. Apply the Auslander–Buchsbaum formula

to Rk
r Jt1, . . . , rhK ⊗ F and we see that the projective dimension of Rk

r Jt1, . . . , rhK ⊗ F is

0. Thus Rk
r Jt1, . . . , rhK ⊗ F is projective as an FJd1, . . . , d#QK-module and therefore free

because FJd1, . . . , d#QK is local.

We can also patch T̃(k,Q) to get a power series ring over a ring slightly different from

the crystalline deformation ring Rk
r which we now explain. Recall that GQp

-crystalline

representations are classified by weakly adimissible filtered φ-modules. Let (Rk
r )

an be the

ring of rigid analytic functions on the generic fiber of the rigid analytic space associated to

Spf(Rk
r ). Over (Rk

r )
an, we may consider the universal filtered φ-module and the universal

Weil group representation (obtained by forgetting the filtration). The trace of φ determines

an element in Rk
r which we will denote by αp. The following theorem follows from Caraiani

et al. [2018]. All the homomorphisms here also respect the OJ∆∞K-action.

Theorem 1.2.3.16 (Caraiani–Emerton–Gee–Geraghty–Paškūnas–Shin). Under the assump-

tion of (1.2.3.1), there is a sequence {Qn} of sets of Taylor-Wiles primes such that

lim←−
n

T̃(k,Qn)⊗O/λn
∼−→ Rk

r [αp]Jt1, . . . , thK.

The element αp is mapped to Tp ∈ T̃(k,Qn) under this identification. The ring Rk
r [αp] is in

the normalization of Rk
r in Rk

r [1/p].

In particular, we have

Rk
r
∼−→ Rk

r [αp]

when r is absolutely irreducible and 2 ≤ k ≤ 2p− 1 because the crystalline deformation ring

Rk
r is normal by Example 1.2.2.11.
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The key idea of the algorithm is to apply the patching theorems to compute arbitrarily

close approximations of the rings Rk and Rk
r [αp] by computing T(k,Qn) and T̃(k,Qn).

1.2.4 The Breuil–Mézard conjecture and the rank of M(k,Q) and M ′(k,Q)

In this subsection, we study the rank of M(k,Q) and M ′(k,Q) using the geometric Breuil–

Mézard conjecture.

The Eichler–Shimura isomorphism 1.2.3.7 does not preserve the integral structure of both

sides. The space of classical modular forms Sk(ΓQ,O) is a finite free O-module and it follows

that M(k,Q) ⊆ Sk(ΓQ,O) is automatically finite free over O. But H1(ΓQ, Sym
k−2O2)

usually contains torsion, as we pointed out in Remark 1.2.1.9; so it is not clear whether

M ′(k,Q) is torsion-free.

Proposition 1.2.4.1.

1. If ΓQ is p-torsion free, then M ′(k,Q) is a free O-module;

2. 2 rankOM(k,Q) = rankOM
′(k,Q).

Proof. Recall from Remark 1.2.3.9 that M ′(k,Q) is a submodule of H1(ΓQ, Sym
k−2O2).

Thus by Proposition 1.2.1.1, we have

M ′(k,Q)[λ] ⊆ H1(ΓQ, Sym
k−2O2)[λ] = Im (H0(ΓQ, Sym

k−2F2)→ H1(ΓQ, Sym
k−2O2)).

The Galois action on H0(ΓQ, Sym
k−2F2) is abelian by Lemma 1.2.1.12 and therefore re-

ducible. However, the Galois action on M ′(k,Q) is absolutely irreducible because it is

obtained from localization at a non-Eisenstein maximal ideal mQ. Thus M ′(k,Q)[λ] = 0

and (1) is proved. Assertion (2) follows directly from the Eichler–Shimura isomorphism and

the assumption that mQ is non-Eisenstein.
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The rank of M(k,Q) or M ′(k,Q) can be described using the geometric Breuil–Mézard

conjecture studied by Emerton–Gee in Emerton and Gee [2014]. In the rest of the subsection,

we will work with r not necessarily Schur and we switch to the framed crystalline deformation

ring R2,k
r . Denote by Z(Spec(R2,k

r ⊗F)) the four-dimensional algebraic cycle of the special

fiber of R2,k
r . Suppose that the semisimplification of the GL2(Fp)-representation Symk−2F2

decomposes into the direct sum of irreducible representations

(
Symk−2F2

)ss ∼−→⊕
m,n

(detm ⊗ SymnF2)⊕bm,n

where 0 ≤ m ≤ p−2 and 0 ≤ n ≤ p−1 are integers and bm,n’s are multiplicities. Emerton and

Gee formulated the geometric Breuil-Mézard conjecture [Emerton and Gee, 2014, Conjecture

3.1.4] and proved it in many cases([Emerton and Gee, 2014, Theorem 3.1.6]):

Theorem 1.2.4.2 (Emerton-Gee). If r ̸∼

ωχ ∗

0 χ

 for any character χ, then for each

0 ≤ m ≤ p− 2 and 0 ≤ n ≤ p− 1, there is a cycle Cm,n depending only on m,n and r such

that

Z(Spec(R
k,2
r ⊗ F)) =

∑
m,n

am,nCm,n,

where am,n equals bm,n if detm⊗Symn−2F2 is a Serre weight of r and vanishes otherwise.

We now can describe the O-rank of the module M ′(Q, k).

Lemma 1.2.4.3. Assume that the torsion of the initial level group Γ∅ is a subgroup of {±I}.

Then

rankOM
′(Q, k) = #∆Q ·

∑
m,n

am,n dimFH
1(Γ∅, Sym

nF2)m∅[−m],

where m∅[−m] stands for the maximal ideal (λ, Tℓ − ℓ−maℓ(f), ⟨ℓ⟩ − χ(ℓ))ℓ∤Np of Tuniv.

Proof. Since M ′(Q, k) is finite free over O[∆Q] of rank equal to the O-rank of M ′(∅, k) , it
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suffices to show

rankOM
′(∅, k) =

∑
m,n

am,n dimFH
1(Γ∅, Sym

nF2)m∅[−m].

Since M ′(∅, k) is torsion free by Proposition 1.2.4.1 (1), we have

rankOM
′(∅, k) = dimFM

′(∅, k)⊗ F = dimFH
1(Γ∅, Sym

k−2O2)m∅ ⊗ F.

It follows from Corollary 1.2.1.4 that

H1(Γ∅, Sym
k−2O2)m∅ ⊗ F = H1(Γ∅, Sym

k−2F2)m∅ .

By Lemma 1.2.1.13, the dimensions satisfy

dimH1(Γ∅, Sym
k−2F2)m∅ =

∑
m,n

bm,n dimFH
1(Γ∅, det

m ⊗ SymnF2)m∅

Since dimFH
1(Γ, detm⊗SymnF2)mQ = 0 unless detm⊗SymnF2 is a Serre weight of ρ, the

quantity above is equal to

∑
m,n

am,n dimFH
1(Γ∅, det

m ⊗ SymnF2)m∅ =
∑
m,n

am,n dimFH
1(Γ∅, Sym

nF2)m∅[−m],

and we conclude the equality in the lemma.

Remark 1.2.4.4. In all the examples in the paper, the dimension ofH1(Γ∅, detm⊗SymnF2)m∅

is always 2 if detm⊗SymnF2 is a Serre weight of r.

Proposition 1.2.4.5. The multiplicity µ of the component of Spec(Rk
r ⊗ F) corresponding

to r is 3 when k = k0 + p2 − 1 and µ = 2 when k0 + p− 1 < k < k0 + p2 − 1.

Proof. For simplicity, we write Symi for SymiF2.
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Let n0 = p+1−k0. For any integer n ∈ [0, p−2], the Serre weights of Symk0−2+n(p+1) are

Sym[k0−2+2n] and det[k0−2+2n]⊗Symp−1−[k0−2+2n], where [x] ∈ {0, 1, . . . , p−2} represents

the residue class of x in Z/(p− 1). The factor detn ⊗ Symk0−2 appears as a Serre weight of

Symk0−2+n(p+1) only if 
n = [k0 − 2 + 2n]

n+ k0 − 2 = p− 1

.

It follows that this can only happen when n = n0.

Suppose that k0 ≥ 3. We first show that when 0 ≤ n ≤ n0−1, the factor Symk0−2⊗detn

appears with multiplicity 1 in the semisimplification of Symk0−2+n(p+1). This is clear when

n = 0 and then we proceed by induction on n. We have the recurrence relation

Symk0−2+n(p+1) ∼ det⊗Symk0−2+(n−1)(p+1) + Sym[k0−2+2n]

+ det[k0−2+(n−1)(p+1)] ⊗ Symp−1−[k0−2+(n−1)(p+1)].

Since Symk0−2⊗detn−1 appears with multiplicity 1 in Symk0−2+(n−1)(p+1) and Symk0−2⊗

detn is not a Serre weight of Symk0−2+n(p−1), the conclusion follows. It follows from a similar

argument that the factor Symk0−2⊗detn appears with multiplicity 2 in the semisimplification

of Symk0−2+n(p+1), when n0 ≤ n ≤ p − 2. And once again by the recurrence relation, the

factor Symk0−2 appears with multiplicity 3 in the semisimplification of Symk0−2+p2−1 and we

have proved the first half of the statement when 3 ≤ k0 ≤ p. For the second half, by a similar

argument, when 0 ≤ n ≤ p− k0 − 1, the factor detn+1⊗Symk0−2 appears in Symk0+n(p+1)

with multiplicity 0; when p − k0 ≤ n ≤ p − 3, the factor detn+1⊗Symk0−2 appears in

Symk0+n(p+1) with multiplicity 1; and the factor Symk0−2 appears in Symk0+(p−2)(p+1) =

Symk0−2+p(p−1) with multiplicity 2.

In the case where k0 = 2, the Serre weights are 1 and Symp−1F2. We show that for

1 ≤ i ≤ p− 2, i ∈ Z, the semisimplification of Sym(p+1)i−(p−1) does not contain the factors
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deti or deti⊗Symp−1. When i = 1, this is obvious. For 2 ≤ i ≤ p− 2, we have

Sym(p+1)i−(p−1) ∼ det⊗Sym(p+1)(i−1)−(p−1)+Sym[(p+1)i]+det[(p+1)i]⊗Sym(p−1)−[(p+1)i],

where [r] ∈ {0, 1, . . . , p− 2} is the representative of the image of r in Z/(p− 1)Z. Since 1 ≤

i ≤ p−2, we have i ̸= 0 and (p+1)i ̸≡ i (mod p−1). Hence deti ̸= 1 and deti ̸= det[(p+1)i] .

By induction on i, we are done. In the same way, we show that for 0 ≤ i ≤ p − 2, i ∈

Z, the semisimplification of Sym(p+1)i contains deti with multiplicity 1 and contains no

deti⊗Symp−1. Now

Symp(p−1) ∼ det⊗Sym(p+1)(p−2)−(p−1) + 1 + Symp−1

contains 1 and Symp−1 with multiplicity 1 and

Sym(p+1)(p−1) ∼ det⊗Sym(p+1)(p−2) + 1 + Symp−1

contains 1 with multiplicity 2 and Symp−1 with multiplicity 1.

1.3 The Algorithm

Let r : GQp
→ GL2(F) be a local residual representation as described in §1.2.2 that is

Schur and the deformation problem of r is unobstructed. Assume the extension class to be

peu ramifié if r is the extension of 1 by the cyclotomic character ω. Suppose that we can

choose an odd global representation ρ : GQ → GL2(F) such that r ∼−→ ρ|GQp
. Assume that

ρ has the least ramification among all of its twists and it satisfies the conditions in Theorem

1.2.3.1. The representation ρ comes from a newform f of level Γ, Nebentypus character χ

and weight 2 ≤ k0 ≤ p as described in §1.2.3. Given ρ as an input, we present an algorithm

to compute the presentations of local Hecke algebras T(k,Qn) and T̃(k,Qn) with arbitrary
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p-adic precision for every weight k and every set Qn of level n Taylor–Wiles primes. The

algorithm consists of three steps. First, we determine the local conditions that cut out

M(k,Q) from Sk(ΓQ, χ,O) or M ′(k,Q) from H1(ΓQ, Sym
k−2O2). Next, we determine a

set of generators for T(k,Qn) and T̃(k,Qn) as O-algebras using classical modular forms

M(k,Q). At last, we compute the relations among these generators using cohomological

modular forms M ′(k,Q). We require extra assumptions on ρ in the second step, but the

third step involves purely linear algebra and relies solely on the output of the first two steps.

1.3.1 Local conditions

This step is to determine the local conditions that cut out M(k,Q) from Sk(ΓQ, χ,O) or

M ′(k,Q) fromH1(ΓQ, Sym
k−2O2). It is equivalent to computing a finite set of the generators

of the image of the maximal ideal mQ in EndO(Sk(ΓQ, χ,O)). We start with assuming

Q = ∅. Denote by Tk the image of Tuniv in EndO(Sk(Γ∅, χ,O)).

Remark 1.3.1.1. The generators of m∅Tk can be different from the those of m∅T(k,∅). This

is because after localization, the number of generators usually goes down. A typical example

is the localization of the ring of integers of a number field. This ring is usually not a principal

ideal domain, but its localization at every maximal ideal is a discrete valuation ring.

Proposition 1.3.1.2. A set of generators of m∅Tk is determined by the generators of m∅Tk′

for some 2 ≤ k′ ≤ p2 − 1.

Proof. Note that the generators of m∅ depend only on ρ. By the weight part of Serre’s

conjecture, there are only finitely many residual representations that come from eigenforms

of Sk(Γ, χ,F) for all k. And they all appear when k ≤ p2 − 1. Now for these eigenforms of

weight k ≤ p2 − 1, there exists a constant integer C > 0 depending only on p such that the

first C Fourier coefficients determine an eigenform. Thus given ρ, we find 2 ≤ k′ ≤ p2 − 1

such that ρ comes from a form of weight k′. Then the first C Hecke operators together with

the Fourier coefficients determine the generators of m∅Tk.
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In general, the image of the maximal ideal mQ is generated by generators of m∅Tk and

Uq − αq for q ∈ Q. So there is a finite generating set of the image of the maximal ideal mQ.

1.3.2 Generators and the Zariski tangent spaces

In the subsection, we assume k to be a positive integer that is congruent to k0 unless otherwise

noted. Since r is Schur and unobstructed, the deformation ring Runiv
r is formally smooth

and it follows from the local Euler characteristic formula that dimFTan(Runiv
r ) = 3. Thus

Runiv
r

∼−→ OJx1, x2, x3K is a formal power series ring in three variables.

Recall from §1.2.3 that the Hecke algebras T(k,Q) is a quotient of

Rk
r Jt1, . . . , thK ∼−→ OJx1, x2, x3, t1, . . . , thK.

In order to minimize the number of generators of T(k,Q), we would like h = 0 in practice,

which is equivalent to Runiv
r ↠ R∅.

Proposition 1.3.2.1. If M(k0,∅) = Of0, then Runiv
r surjects onto R∅. In this case,

Tan(R∅) has dimension 2.

Proof. Extending the coefficient ring O if necessary, we assume that O ⊇ Zp[an(f0)]n≥0.

By Nakayama’s lemma, the ring homomorphism Runiv
r → R∅ is a surjection if and only if

the ring homomorphism induces a surjection on the cotangent spaces of their special fibers,

or equivalently, an injection on the tangent spaces Tan(R∅)→ Tan(Runiv
r ). Suppose for the

sake of contradiction that v is a nontrivial tangent vector in ker(Tan(R∅)→ Tan(Runiv
r )). By

Proposition 1.2.2.12, the vector (v, 0) ∈ Tan(R∅) ×Tan(Runiv
r ) Tan(R

k0
r ) defines a nontrivial

tangent vector in Tan(Rk0
∅ ) which is isomorphic to Tan(T(∅, k0)) by the R = T theorem

as remarked in Remark 1.2.3.14. But since M(k0,∅) = Of0, the Hecke algebra T(k0,∅) is

isomorphic to O, which has a trivial tangent space, a contradiction.

For the second assertion, by Proposition 1.2.2.12, the tangent space of R∅ is the co-
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homology group H1(GQ,{p,∞}, ad
0ρ). Since ρ is odd and absolutely irreducible, we deduce

from the global Euler characteristic formula

dimH1(GQ,{p,∞}, ad
0ρ) = dimH2(GQ,{p,∞}) + 2 ≥ 2.

On the other hand, as pointed out above, the vector space Tan(R∅) intersects with Tan(Rk0
r )

trivially in a three dimensional vector space Tan(Runiv
r ). Given that the tangent space

Tan(Rk0
r ) is one-dimensional because Rk0

r is isomorphic to OJxK by Example 1.2.2.11, we

have

dimTan(R∅) ≤ 2.

Combining the two inequalities, we obtain the desired statement.

Proposition 1.3.2.2. If h = dimH1
Σ(GQ, ad

0ρ) is zero, i.e. if Runiv
r surjects onto R∅,

then #Q = 1.

Proof. Recall from §1.2.3 that the size of Q is equal to the dimension of the Selmer group

H1(GQ,{p,∞}, ad
0ρ(1)), which has dual Selmer group H1

Σ(GQ, ad
0ρ) of dimension h. It

follows from the Greenberg–Wiles formula from §1.2.2 that

#Q− h = dimH1(GQ,{p,∞}, ad
0ρ(1))− dimH1

Σ(GQ, ad
0ρ)

= dim(ad0ρ(1))GQ − dim(ad0ρ)GQ + dimH1(GQp
, ad0ρ(1))− dim(ad0ρ(1))GQp

+ dimH1(GR, ad
0ρ(1))− dim(ad0ρ(1))GR .

Since ρ|GQ(ζp)
is Schur, we have dim(ad0ρ(1))GQ = dim(ad0ρ)GQ = 0. The local Euler

characteristics formula gives

dimH1(GQp
, ad0ρ(1))− dim(ad0ρ(1))GQp = dim(ad0ρ)GQp + 3 = 3,
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where the second equality follows from the assumption that r is Schur. The termH1(GR, ad
0ρ(1))

is trivial because the order of GR is 2, which is coprime to p > 2. Since ρ is modular, it is

an odd representation, meaning that the determinant of the complex conjugation is −1. Up

to change of basis, the action of complex conjugation τ on ad0ρ(1) is given by

τ

a b

c −a

 = −

1 0

0 −1


a b

c −a


1 0

0 −1

 .

The fixed points of τ are

0 b

c 0

 for b, c ∈ F, which form a two-dimensional vector space.

Combining the computation above, we conclude

#Q = h+ 3− 2 = 0 + 1 = 1.

Remark 1.3.2.3. In this case, Diagram 1.2.3.12 becomes

Rk
r Tk

∞

OJdK Rk
Q T(k,Q)

∼

.

For simplicity, we refer to the diamond operator as d though it is actually 1+d. When k = k0

is within the Fontaine–Laffaille range, by Example 1.2.2.11, the crystalline deformation ring

Rk0
r is isomorphic to a formal power series ring over O in one variable. Thus the dotted map

is an isomorphism and the cotangent space of Rk
r is spanned by the image of d.

From now on we make the following assumption unless otherwise specified.

Assumption 1.3.2.4. Suppose that ρ : GQ → GL2(F) is a modular Galois representation

such that
42



1. the restriction ρ|GQp
= r takes the form described in §1.2.2 and is Schur; and its

universal deformation problem is unobstructed;

2. when r is the extension of 1 by the cyclotomic character, the extension class is peu

ramifié;

3. the universal deformation problem of r is unobstructed;

4. the representation ρ|GQ(ζp)
is absolutely irreducible;

5. if ℓ ≡ −1 mod p divides N(ρ), then either ρ|GQℓ
is reducible over the algebraic closure

or ρ|Iℓ is absolutely irreducible.

6. the torsion of the level group Γ defined in §1.2.3 is a subset of {±I};

7. M(k0,∅) = Of0 for some eigenform f0 ∈ Sk(Γ1(N(ρ)), χ,O).

When the assumption holds, the Hecke algebra T(k,Q) is generated by at most three

elements over O as an O-algebra because it is a quotient of Runiv
r

∼−→ OJx1, x2, x3K by

Proposition 1.3.2.1. It follows that the set Q consists of only one Taylor–Wiles prime q by

Proposition 1.3.2.2. The Hecke algebra T̃(k,Q) = T(k,Q)[Tp] is then generated by at most

four elements as an O-algebra.

Remark 1.3.2.5. By Assumption 1.3.2.4 (1) and the weight part of Serre’s conjecture Edix-

hoven [1992], we have M(1,∅) = 0.

Remark 1.3.2.6. We have M(2,∅) ⊗ F
∼−→ M(p + 1,∅) ⊗ F by a theorem in Bao [2023a]

under Assumption 1.3.2.4 and so there is no form of filtration p+1. In fact, this is even true

without (7) in Assumption 1.3.2.4. By Lemma 1.2.4.3, we conclude that

dimM(k,∅)⊗ F = e(Rk
r ⊗ F) · dimM(k0,∅),
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where e(Rk
r ⊗ F) is the Hilbert–Samuel multiplicity of Rk

r ⊗ F. If we also assume (7), then

dimM(k,∅)⊗ F = e(Rk
r ⊗ F).

Proposition 1.3.2.7. Under Assumption 1.3.2.4 (6), for every integer k ≥ k0 that is con-

gruent to k0 modulo p− 1 and every set of Taylor-Wiles primes Q, the surjection

T̃(k,Q)⊗ F ↠ T̃(k0, Q)⊗ F

constructed in Bao [2023a] induces a surjection

T(k,Q)⊗ F ↠ T(k0, Q)⊗ F.

Proof. The assumption 1.3.2.4 (6) is used so that T̃(k,Q) is the linear dual of the space of

mod-p modular forms M(k,Q) ⊗ F, which is an essential step in the construction of the

surjection T̃(k,Q)⊗ F ↠ T̃(k0, Q)⊗ F. We have the composition of maps

T(k,Q)⊗ F→ T̃(k,Q)⊗ F ↠ T̃(k0, Q)⊗ F

and the image of T(k,Q)⊗F in T̃(k0, Q)⊗F equals the image of T(k0, Q)⊗F in T̃(k0, Q)⊗F.

Therefore, it suffices to show that

T(k0, Q)⊗ F→ T̃(k0, Q)⊗ F

is a surjection. Taking the linear dual, by [Jochnowitz, 1982b, Lemma 6.5], this is equivalent

to

M(k0, Q)⊗ F→M(k0, Q)⊗ F/(ImV )

being an injection, i.e., ImV = 0, where V is the operator on the space of mod-p modu-
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lar forms that sends
∑∞

n=1 anq
n to

∑∞
n=1 anq

np. The mod-p modular forms in ImV have

filtration at least p by [Jochnowitz, 1982a, Fact 1.7]. When 2 ≤ k0 ≤ p − 1, ImV is then

automatically trivial. It remains to prove ImV = 0 for k0 = p. Suppose that there is some

g ∈ S1(ΓQ,F) such that V g ∈M(p,Q)⊗F. Since V is Hecke equivariant, g is an eigenform

in the subspace M(1, Q)⊗F ⊆ S1(ΓQ,F), which means that 1 is a Serre weight of ρ. This is

not possible by the weight part of Serre’s conjecture [Edixhoven, 1992, Theorem 4.5] when

r is Schur.

Remark 1.3.2.8. When Assumption 1.3.2.4 holds and Q ̸= ∅, the Hecke algebra T(k0, Q) is

a quotient of OJdK that is not isomorphic to O and so Cot(T(k0, Q)) is generated by d. Since

the map in the proposition above sends the diamond operator d in T(k,Q) ⊗ F to that in

T(k0, Q)⊗ F, d spans a nontrivial one-dimensional subspace of Cot(T(k,Q)).

Proposition 1.3.2.9. Under Assumption 1.3.2.4, the tangent spaces of the Hecke algebras

satisfy

dimTan(T(k,Q)) ≥ dimTan(T(k,∅)) + 1

for all k ≡ k0 mod p− 1 and sets of Taylor-Wiles primes Q ̸= ∅.

Proof. When k = k0 is the initial weight, since M(k0,∅) = Of0, the Hecke algebra T(k0,∅)

is isomorphic to O. It follows that dimTan(T(k0,∅)) = 0. We have

rankOT(k0, Q) = rankOT̃ (k0, Q) = rankOM(k0, Q) = #∆QrankOM(k0,∅) = #∆Q > 1.

Thus Tan(T(k0, Q)) is at least one-dimensional and the statement holds for k0. For k con-

gruent to k0 modulo p− 1, by Proposition 1.3.2.7, we have

Tan(T(k0,∅)) ⊆ Tan(T(k,∅)) and Tan(T(k0, Q)) ⊆ Tan(T(k,Q)).

Since the Hecke algebras are the quotients of Galois deformation rings, the intersection
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Tan(T(k0, Q)) ∩ Tan(T(k,∅)) is contained in Tan(Rk0
Q ) ∩ Tan(R∅). We apply Proposition

1.2.2.12 to write the latter as

Tan(Rk0
Q ) ∩ Tan(R∅) =

(
Tan(Rk0

r ) ∩ Tan(RQ)
)
∩ Tan(R∅) = Tan(Rk0

r ) ∩ Tan(R∅)

= Tan(Rk0
∅ ) = Tan(T(k0,∅)) = 0,

where the second line follows from Remark 1.3.2.3. Hence, Tan(T(k0, Q))∩Tan(T(k,∅)) = 0

and we have

coker (Tan(T(k0,∅)) ↪→ Tan(T(k0, Q)) ↪→ coker (Tan(T(k,∅)) ↪→ Tan(T(k,Q)) .

It then follows from the case of k = k0 that

dimTan(T(k,Q))− dimTan(T(k,∅)) ≥ dimTan(T(k0, Q))− dimTan(T(k0,∅)) ≥ 1

and the proof is complete.

Theorem 1.3.2.10 (Jochnowitz). If T̃(k,∅) ⊗ F is not an exceptional component, i.e. if

k ̸≡ 2 (mod p− 1), then

dimTan(T(k,∅)) ≥ 2

when k ≥ k0 + 2p2 + p− 3 and

dimTan(T̃(k,∅)) ≥ 3

when k ≥ k0p
2.

Proof. For the original proof in the case N(ρ) = 1, see [Jochnowitz, 1982b, Theorem 8.1,

Theorem 8.1’] where the filtration w(f) automatically could not be 1, 2 or 3. By Remark

1.3.2.5, we still do not have any mod-p modular form f such that w(f) = 1. Jochnowitz’s
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proof still works for general level N(ρ) that is coprime to p when w(f) ̸= 2. Jochnowitz

did not include the lower bounds for k in her original statement, so we follow her proof and

make these explicit here. When k ≥ k0 + p2 − 1, we have θp−1f0 ∈ M(k,∅) ⊗ F, where

Ff0 =M(k0,∅)⊗ F.

If ap(f0) = 0 ∈ F, Jochnowitz constructed modular forms g, h ∈ kerUp ∩M(2(p2 − 1) +

k0,∅)⊗ F where

k0+2p2+p−3 = max{(k0+1)p+1+(p−2)(p+1), (p+4−k0)p+1+(p−1+k0−3)(p+1)}

It follows from [Jochnowitz, 1982b, Lemma ] that the image Ck of T(k,∅)⊗F in T̃(k,∅)⊗F

has tangent space of dimension at least two. In fact, the algebra Ck/(kerUp)
⊥ has tangent

space of dimension two from the proof of [Jochnowitz, 1982b, Lemma 8.2]. (We have kerUp∩

ImV = 0 thus kerUp ↪→ Sk with her notation.) When k ≥ k0 + 2(p2 − 1) ≥ p2, we have

V f0 ∈M(k,∅)⊗ F. Let T be an operator in Ck. Then

(T − λ(T ))V f0 = 0 and U2
pV f0 = Upf0 = 0.

Denote by m the maximal ideal of T̃(k,∅)⊗ F. If there exist ci ∈ F such that

c0Up +
n∑

i=1

ci(Ti − λ(Ti)) ∈ m2,

then

c0f0 =

(
c0Up +

n∑
i=1

ci(Ti − λ(Ti))

)
V f0 ∈ m2f0 = 0.

Hence, we have c0 = 0 and
n∑

i=1

ci(Ti − λ(Ti)) ∈ m2.

Now restrict this to kerUp and combine with the result that Ck/(kerUp)
⊥ has tangent space
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of dimension two, the proof is complete when ap(f0) = 0.

If ap(f0) ∈ F×, the first assertion holds when k is at least

k0+2(p2−1) = max{(k0+1)p+1+(p−2)(p+1), (p+2−k0)p+1+(p−1+k0−2)(p+1)}

The rest of the argument works the same except that we replace V f0 by V f0−ap(f0)V 2f0 ∈

kerU2
p which has filtration p2k0 ≤ p3.

Since k0 + 2p2 + p− 3 ≥ k0 + 2(p2 − 1) and k0p2 ≥ k0p, we obtain the lower bounds for

k as in the statement.

Proposition 1.3.2.11. If k ≡ 2 (mod p − 1), under Assumption 1.3.2.4, the conclusion

above holds true for T(k,∅) when k ≥ p2 + 2p− 1 and for T̃(k,∅) when k ≥ 2p2.

Proof. In this proof, by abuse of notation, when we say a Hecke operator, we mean its

image in EndF(M(k,∅) ⊗ F) for some weight k. The Tp operator in T̃(k,∅) acts as Up in

characteristic p. As pointed out in Remark 1.3.2.6, there are no forms of filtration p+1; thus

it suffices to prove the statement when f0 has filtration 2. We first analyze the filtration

given by multiplication by the Hasse invariant on the space M(p2 + 2p − 1,∅) ⊗ F and

M(2p2,∅)⊗ F. We have

Ff0 =M(2,∅)⊗ F
∼−→M(p+ 1,∅)⊗ F.

By Proposition 1.2.4.5 and Remark 1.3.2.6, it follows that

dimM(2p,∅)⊗ F = dimM(3p− 1,∅)⊗ F = . . . = dimM(p2 − p+ 2)⊗ F = 2

and

dimM(p2 + 1,∅)⊗ F = dimM(p2 + p,∅)⊗ F = 3.

The space M(2p,∅) ⊗ F is spanned by f0 and V f0 because w(V f0) = pw(f0) = 2p; and
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there is some g of filtration p2 + 1 such that Upg = V f0. Indeed, since

w(Upg) =
w(g)− 1

p
+ p = 2p

by [Jochnowitz, 1982b, Lemma 1.9], there exists a ∈ F and b ∈ F× such that Upg =

af0 + bV f0. Now

Up((g − aV f0)/b) = a/b · f0 + V f0 − a/b · UpV f0 = a/b · f0 + V f0 − a/b · f0 = V f0

and we may replace g by (g − af0)/b. It follows from Proposition 1.3.4.8 that

dimM(p2+2p−1,∅)⊗F = dimM(p2+3p−2,∅)⊗F = . . . = dimM(2p2−p+1∅)⊗F = 4

and

dimM(2p2,∅)⊗ F = 5.

Hence, there exists a modular form h of filtration p2 + 2p − 1 and {f0, V f0, g, h} is a basis

of M(p2 + 2p− 1,∅)⊗ F. It follows that {f0, V f0, g, h, V 2f0} is a basis of M(2p2,∅)⊗ F.

Note that

w(Uph) <
w(h)− 1

p
+ p = 2p+ 2− 2

p
< p2 + 1.

Thus

Uph = a1f0 + a2V f0

for some a1, a2 ∈ F. Denote by λ(T ) the eigenvalue of T ∈ T(2p2,∅)⊗F on M(2p2,∅)⊗F.
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With respect to this basis, the operator Up and T have matrices

Up =



ap(f0) 1 0 a1 0

0 0 1 a2 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


and T =



λ(T ) 0 b1(T ) b3(T ) 0

0 λ(T ) b2(T ) b4(T ) 0

0 0 λ(T ) b5(T ) 0

0 0 0 λ(T ) 0

0 0 0 0 λ(T )


for some bi(T ) ∈ F for i = 1, 2, . . . , 5. Since Up and T commute, we conclude that

b2(T ) = −ap(f0)b1(T ), b4(T ) = −ap(f0)b3(T ) and b5(T ) = 0.

If ap(f0) = 0 ∈ F, then T̃(2p2,∅)⊗F is the matrix subalgebra generated by the matrices

for Up and T as above. Note that ImV ∩M(p2 + 2p− 1,∅)⊗ F = FV f0. In M(p2 + 2p−

1,∅)⊗F, we obviously have h /∈ T(p2+2p−1,∅)g+FV f0 for filtration reason. Conversely,

if there is T ∈ T(p2 + 2p− 1,∅) such that

g = Th+ aV f0 = λ(T )h+ b3(T )f0 + aV f0

for some a ∈ F, then the filtration of the right hand side is either p2 + 2p − 1 or 2p or 2

while the filtration of the left hand side is p2 + 1, a contradiction. By [Jochnowitz, 1982b,

Lemma 8.2], the image of T(p2 + 2p − 1,∅) in T̃(p2 + 2p − 1,∅) ⊗ F has tangent space of

dimension at least two. For k = 2p2, we then let T1 and T2 be the two Hecke operators

in T(2p2,∅) such that they span a two dimensional vector space in the cotangent space of

Im (T(2p2,∅) → T̃(2p2,∅) ⊗ F). In particular, the matrices of T1 − λ(T1) and T2 − λ(T2)

acting on M(2p2,∅) are linearly independent. We now show T1 − λ(T1), T2 − λ(T2) and Up

span a three dimensional vector space in the cotangent space of T̃(2p2,∅)⊗F. Indeed, from
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the matrices of these operators as above, we directly calculate that

U3
p = Up(T − λ(T )) = (T − λ(T ))2 = (T − λ(T ))(T ′ − λ(T ′)) = 0

for all T, T ′ ∈ T(2p2,∅), which implies that the square of maximal ideal of T̃(2p2,∅) is just

FU2
p . If there are c1, c2, c3 ∈ F such that

c1(T1 − λ(T1)) + c2(T2 − λ(T2)) + c3Up ∈ FU2
p ,

then

c3V f0 = c1V
2(T1 − λ(T1))f0 + c2V

2(T2 − λ(T2))f0 + c3V f0 ∈ FU2
pV

2f0 = Ff0

because f0 is an eigenform in characteristic p. Compare the filtration on both sides and we

have c3 = 0. Hence,

c1(T1 − λ(T1)) + c2(T2 − λ(T2)) = aU2
p

for some a ∈ F. Again by using the matrices of T1, T2 and Up, we see that a = 0 and

c1 = c2 = 0 because of the linear independence assumption.

If ap(f0) ∈ F×, then T̃(2p2,∅) ⊗ F is the matrix subalgebra generated by the lower

diagonal block matrices for Up and T :

Up =



0 1 a2 1

0 0 0 0

0 0 0 0

0 0 0 0


and T =



λ(T ) −ap(f0)b1(T ) −ap(f0)b3(T ) 0

0 λ(T ) 0 0

0 0 λ(T ) 0

0 0 0 λ(T )


.

The rest of the proof works the same as in the case ap(f0) = 0 ∈ F except that in T̃(2p2,∅)⊗
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F, we check that

U2
p = Up(T − λ(T )) = (T − λ(T ))2 = (T − λ(T ))(T ′ − λ(T ′)) = 0

for all T, T ′ ∈ T(2p2,∅), which implies that the square of maximal ideal of T̃(2p2,∅) is 0.

If there are c1, c2, c3 ∈ F such that

c1(T1 − λ(T1)) + c2(T2 − λ(T2)) + c3Up = 0,

then c3 = 0 by comparing the entries on both sides. Then T1 − λ(T1) and T2 − λ(T2) are

linearly dependent, which contradicts our assumption on T1 and T2.

Corollary 1.3.2.12. Under Assumption 1.3.2.4, we have

dimTan(T(k,∅)) = 2

when k ≥ 2p2 + p+ k0 − 3 and

dimTan(T̃(k,∅)) = 3

when k ≥ k0p
2.

Proof. By Jochnowitz’s theorem and the proposition above, it suffices to give upper bounds

of the dimensions. Since R∅ ↠ T(k,∅), we have dimTan(T(k,∅)) ≤ dimTan(R∅) = 2

by Proposition 1.3.2.1. For the full Hecke algebra T̃(k,∅) = T(k,∅)[Tp], it follows that

dimTan(T̃(k,∅)) ≤ dimTan(T(k,∅)) + 1 ≤ 2 + 1 = 3.

Now we outline the algorithm for determining the generators of T(k,Q) under assumption

1.3.2.4. By the Sturm bound [Stein, 2007, Theorem 9.23], the Hecke algebra T̃(k,∅) is

generated by Tn for n ≤ r where r = km
12 −

m−1
N(ρ)

and m := [SL2(Z) : Γ]. It then follows
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from the corollary above that for some k1 ≥ k0p
2 there are Tℓ1 , Tℓ2 , Tℓ3 for some primes

ℓ1, ℓ2, ℓ3 ≤ r such that they form a minimal set of generators of the Hecke algebra T̃(k1, Q).

If none of the three primes equal p, then T(k1,∅) = T̃(k1,∅), which is a contradiction

because the dimensions of the tangent spaces are not the same. We assume that ℓ3 = p.

Proposition 1.3.2.13. Under assumption 1.3.2.4, the Hecke algebra T(k1,∅) is generated

by Tℓ1 and Tℓ2 .

Proof. Let T′ be the subalgebra of T̃(k1,∅) generated by Tℓ1 and Tℓ2 over O. Since {Tℓ1 , Tℓ2}

is a minimal set of generators for T′, the commutative diagram

T(k1,∅) T̃(k1,∅)

T′

induces a commutative diagram on the cotangent spaces

Cot(T(k1,∅)) FTℓ1 ⊕ FTℓ2 ⊕ FTp

FTℓ1 ⊕ FTℓ2

.

It is immediate that the vertical map is an injection as well. But by the corollary above,

we have dimCot(T(k1,∅) ⊗ F) = dimTan(T(k1,∅)) = 2. The vertical map is then also a

surjection. It follows from Nakayama’s lemma that the inclusion T′ ⊆ T(k1,∅) is actually a

surjection.

Proposition 1.3.2.14. Under assumption 1.3.2.4, the Hecke algebra T(k,∅) is generated

by Tℓ1 and Tℓ2 for all weights k ≡ k0 mod p− 1.

Proof. If ℓi does not divide N(ρ), then Tℓi = tr (ρ
k,mod
∅ (Frobℓi)). If ℓi divides N(ρ), then

there are three cases from the proof of a lemma in Bao [2023a] . The only case where

Tℓi = Uℓi is not a scalar is when the conductor at ℓi is one and the ℓi-component χℓi of the
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Nebentypus character is ramified at ℓi. In this case, we have made the choice of σ1 and σ2

which is independent of k. Thus we have the set of linear equations in Tℓi and T−1ℓi
tr (ρ

k,mod
∅ (σ1)) = Tℓi +

χℓ(σ1)ℓ
k−1

Tℓi

tr (ρ
k,mod
∅ (σ2)) = Tℓi +

χℓ(σ2)ℓ
k−1

Tℓi

.

Recall the construction of R∅ ↠ Rk1
∅ ↠ T(k1,∅) from §1.2.3. Then tr (ρ∅(Frobℓi))’s when

ℓi ∤ N(ρ) and tr (ρ∅(σ1)) and tr (ρ∅(σ2)) when ℓi|N(ρ) span a subspace in Cot(R∅) of

dimension at least dimCot(T(k1,∅)) = 2. Since dimCot(R∅) = 2, these elements generate

R∅. When k ̸= k1, the image of these trace elements under the map R∅ ↠ T(k,∅) are still

the linear combinations of the corresponding Hecke operators. Thus Tℓ1 and Tℓ2 generate

T(k,∅) for all k that are congruent to k0 modulo p− 1.

Lemma 1.3.2.15. Let r = k1m
12 −

m−1
N(ρ)

and m := [SL2(Z) : Γ]. Under assumption 1.3.2.4,

for every k ≡ k0 mod p − 1 and every set Q of Taylor–Wiles primes, the Hecke algebra

T(k,Q) is generated by Tℓ1, Tℓ2 and the diamond operator d for some primes ℓ1, ℓ2 ≤ r.

Proof. By Proposition 1.3.2.9, the dimension of Tan(T(k1, Q)) is at least 3. But since

Runiv
r ↠ RQ ↠ T(k1, Q), the dimension of Tan(T(k1, Q)) is at most 3. So dimCot(T(k1, Q)) =

dimTan(T(k1, Q)) = 3. The kernel of Cot(T(k1, Q)) → Cot(T(k1,∅)) is then one dimen-

sional and is spanned by the diamond operator d. To see this, note that d is in the kernel

and it spans a nontrivial direction in the cotangent space as explained in Remark 1.3.2.8.

The statement now follows from Proposition 1.3.2.14.

Using this lemma, the generators of T(k,Q) is the Hecke operators {Tℓ1 , Tℓ2 , d, Uq}q∈Q

where ℓ1 and ℓ2 are determined by the generators of the Hecke algebra T(k1,∅) by using

the Sturm bound r for some k1 ≥ k0p
2.

Remark 1.3.2.16. In fact, any k1 such that dimTanT̃(k1,∅) = 3 works. But having the
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bound k0p
2 improves the stability of implementation of the algorithm. Note that any com-

putation at the initial level is relatively light. So this is practical.

We can apply the patching functor discussed in §1.2.3 to the Hecke algebras and obtain

the following.

Corollary 1.3.2.17. Under assumption (1.3.2.4), we have the following.

1. For every integer k ≥ 2 that is congruent to k0 modulo p− 1, there is a surjection

Rk
r ↠ Rk0

r .

2. We have

lim
n→∞

k=k0+n(p−1)
dimTan(Rk

r ) = dimTan(Runiv
r ) = 3

and the limit is achieved when k ≥ k0 + 2p2 + p− 3.

3. We have

lim
n→∞

k=k0+n(p−1)
dimTan((Rk

r [αp])(λ,αp)) = 4.

Proof. Assertion (1) follows from Proposition 1.3.2.9 and Theorem 1.2.3.1. Assertion (2)

follows from Proposition 1.3.2.9, Corollary 1.3.2.12 and Theorem 1.2.3.1. To see (3), it

suffices to show that dimTan(T̃(k,Q)) = 4 and then we apply Theorem 1.2.3.16. Since we

have proved that dimTan(T(k,Q)) = 3 when k is large enough, we only need to establish

dimTan(T̃(k,Q)) = dimTan(T(k,Q))+1, which is proved in [Jochnowitz, 1982b, Reduction

to Theorem 8.1’].

Remark 1.3.2.18. We actually expect the limit in (2) to be achieved when k ≥ k0 + p2 − 1

as predicted by Corollary 1.5.0.1, which will be discussed in more details in §1.5. But this

result guarantees that the algorithm can determine the generators of the Hecke algebras

within finitely many steps.
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1.3.3 Relations

In this subsection, we describe an algorithm to compute the presentation of the Hecke algebra

T(k,Q) (resp. T̃(k,Q)) modulo arbitrary power of λ when Q is nonempty. The input is

assumed to be a finite set T of generators of m∅Tk (determined in §1.3.1) and generators

of T(k,Q) (resp. T̃(k,Q)). For example, when Assumption 1.3.2.4 is satisfied, the set of

generators of T(k,Q) is {δ, Tℓ1 , Tℓ2 , Uq} (resp. {δ, Tℓ1 , Tℓ2 , Uq, Tp} ) where ℓ1 and ℓ2 are

prime numbers determined in the previous subsection. Note that the set T is independent

of k or Q.

The algorithm involves three main steps. We first compute how the Hecke operators in T

act on cohomology group H1(ΓQ, Sym
k−2O2). Then we restrict the action to the O-module

M ′(k,Q) that consists of integral cohomology classes localized at the global residual Galois

representation ρ. At last, we compute the relations of the finite F-algebra T(k,Q)/λ (resp.

T̃(k,Q)/λ) from computing the relations among the matrices previously computed. We will

use some basic propositions and lemmas on linear algebra over O. We claim no originality

of the proofs but we include them for the sake of completeness.

Step 1: Hecke action on H1(ΓQ, Sym
k−2O2)

The action of Hecke operators on H1(ΓQ, Sym
k−2O2) can be computed by formula (1.2.1.6).

But as we point out in Remark 1.2.1.9, the O-module H1(ΓQ, Sym
k−2O2) can have non-

trivial torsion even though ΓQ ⊆ Γ1(NQ) is torsion free because NQ ≥ 7. Thus we cannot

simply pick a basis of H1(ΓQ, Sym
k−2O2) and compute the corresponding matrices of the

Hecke operators.

Instead, we work with cochains and coboundaries. Since ΓQ is torsion free, the O-module

of cochains Z1(ΓQ, Sym
k−2O2) is free and has a basis indexed by a set of free generators

of ΓQ by the proof of Proposition 1.2.1.5. Both magma Bosma et al. [1997] and SageMath

The Sage Developers [2023] can compute a set of free generators of PΓQ
∼−→ ΓQ. Thus we
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can compute the matrices of the Hecke operators with respect to the aforementioned basis of

Z1(ΓQ, Sym
k−2O2). On the other hand, the O-module of coboundaries B1(ΓQ, Sym

k−2O2)

is either trivial when k = 2 or a finite free O-module when k ≥ 3 by the proof of Proposition

1.2.1.8. We record B1(ΓQ, Sym
k−2O2) as a submodule of Z1(ΓQ, Sym

k−2O2). This way,

we keep track of the Hecke action on

H1(ΓQ, Sym
k−2O2) =

Z1(ΓQ, Sym
k−2O2)

B1(ΓQ, Sym
k−2O2)

using matrices with coefficients in O.

Step 2: Localization

We then need to compute the O-submodule M ′(k,Q) of H1(ΓQ, Sym
k−2O2) and restrict

the Hecke action to M ′(k,Q).

Definition 1.3.3.1. Suppose that M is a finitely generated O-module and let T be an

O-linear endomorphism of M. We say that T acts topologically nilpotently on an O[T ]-

submodule M1 if for every integer m > 0, there exists an integer Nm > 0 such that for all

n ≥ Nm, we have

TnM1 ⊆M1 ∩ λmM.

Remark 1.3.3.2. By Artin–Rees lemma, we can replace the subspace topology with the λ-adic

topology of M1 in the definition above.

Since M is a Noetherian O-module, there exists a maximal O[T ]-submodule MT of M

such that the T action on MT is topologically nilpotent. Recall that the module M ′(k,Q) is

exactly the intersection of all the maximal O[T ]-submodule of H1(ΓQ, Sym
k−2O2) on which

the T action is topologically nilpotent as T runs through all the Hecke operators in mQT(k).

Therefore, in the process of computing M ′(k,Q), we will repeatedly compute the maximal

sub-module MT where the T -action is topologically nilpotent for some suitable modules M
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as T runs through the finite set T of certain Hecke operators. In the rest of the subsection,

we will first explain how to find the submodule MT for a general finite free O-module M and

an O-endomorphism T of M. Then we will outline how to adapt the method to the case of

computing M ′(k,Q) because H1(ΓQ, Sym
k−2O2) is not always a free O-module as we point

out in the previous step.

Lemma 1.3.3.3. Suppose that M is a finite free O-module and T is an endomorphism of

M . Let µ1, . . . , µm ∈ Fp denote the nonzero eigenvalues of the operator T when it acts on

the reduction M ⊗ F and let γ be some integer such that µγi = 1 for all i. Then the limit

E := lim
i→∞

(T γ)p
i

exists and it acts as an idempotent on M. The submodule MT is the image of (1−E) on M.

Proof. Denote T γ by A. It is immediate that A has eigenvalues 0 and 1 when it acts on

M ⊗F. By considering its Jordan canonical form in characteristic p, we conclude that Api is

semisimple and therefore is an idempotent when it acts on M⊗F. Without loss of generality,

we may and do assume A itself is an idempotent in characteristic p. It follows that

Ap − A = O(λ)

in characteristic 0. Suppose that Api − Api−1
= O(λi). Then

Api+1
− Api =

(
Api
)p
−
(
Api−1

)p
=
(
Api−1

+O(λi)
)p
−
(
Api−1

)p
= pO(λi) = O(λi+1).

By induction on i, we see that {Api} forms a Cauchy sequence and thus it converges to some

limit that defines an O[T ]-linear operator E :M →M. To check E that E is an idempotent,

we suppose that

(Api)2 = Api +O(λi).
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Then

(
Api+1

)2
− Api+1

=
(
A2pi

)p
−
(
Api
)p

=
(
Api +O(λi)

)p
−
(
Api
)p

= pO(λi) = O(λi+1).

Again by induction on i, we conclude that E2 = E.

At last, we need to verify that (1− E)M =MT . The decomposition

M = EM ⊕ (1− E)M

respects the T -action because E and T commute. The operator T is invertible when it

restricts to EM because in characteristic p,

TEM = TAM

and A is the idempotent that singles out the generalized eigenspaces for all the nonzero

eigenvalues µ1, . . . ,mum of T in characteristic p. Suppose for the sake of contradiction that

v ∈ MT \ (1 − E)M. Then we write v = v1 + v2 for some v1 ∈ EM and v2 ∈ (1 − E)M.

Now v1 = v − v2 is also in MT . But the intersection of MT and EM is trivial. Thus

MT = (1− E)M.

We now describe how to compute M ′(k,Q). We first take M to be the finite free O-

module Z1(ΓQ, Sym
k−2O2) and we let the operator be Uq−αq for some Taylor–Wiles prime

q ∈ Q. By the lemma above, we can find the maximal submodule MUq−αq
. Now we consider

the O[Uq − αq]-module

W := B1(G, Symk−2O2) +MUq−αq
.

Though Hecke operators do not commute when they act on the space of cochains, we still
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have the following.

Proposition 1.3.3.4. Every operator T ′ ∈ T preserves W.

Proof. Since Uq − 1 acts topologically nilpotently on B1(ΓQ, Sym
k−2O2) by Proposition

1.2.1.8 and αq is not congruent to 1 modulo λ by our choice, the module MUq−αq
intersects

B1(ΓQ, Sym
k−2O2) trivially. Thus

W/B1(ΓQ, Sym
k−2O2)

∼−→MUq−αq

is the maximal submodule of H1(ΓQ, Sym
k−2O2) on which Uq−αq acts topologically nilpo-

tently. For every operator T ∈ T , the operator Uq − αq acts on T (W/B1(ΓQ, Sym
k−2O2))

topologically nilpotently because Uq and T commute when they act on the group cohomology

H1(ΓQ, Sym
k−2O2). Thus

T (W/B1(ΓQ, Sym
k−2O2)) ⊆ W/B1(ΓQ, Sym

k−2O2)

and therefore TW ⊆ W .

Thus we are able to compute the matrices representing the action of each T ∈ T when

restricted to the free module W and thus on W/B1(ΓQ, Sym
k−2O2), which is isomorphic to

another finite free module MUq−αq
. We now set M = W/B1(ΓQ, Sym

k−2O2) and choose

a Hecke operator T ∈ T other than Uq − αq. Again by Lemma 1.3.3.3, we find MT−a ⊆

H1(ΓQ, Sym
k−2O2) for some a ∈ O such that T − a ∈ mQ and we restrict the Hecke action

to MT−a. Given that T is a finite set, this iterative process concludes after a limited number

of steps. The resulting finite free O-module is M ′(k,Q) that we desire and we also obtain

the finite set S of matrices of Hecke operators in T when they act on M ′(k,Q).
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Step 3: Presentation of the Hecke algebras

We outline the algorithm to compute the presentation of the finite O-algebra T(k,Q) with

the input being the finite set S of matrices obtained from the last step. The process for

T̃(k,Q) is identical. The rough idea is to view T(k,Q) as a finite free O-module and write

products of matrices in S into linear combinations of products of lower degree terms.

Theoretically, the matrices S ∈ S are in Mr(O) where r is the rank of M ′(k,Q) as

predicted by (1.2.4.3). But the computer stores data only up to a certain precision. That is

to say, using a computer, we are actually computing

T(k,Q, l) := Im (T(k,Q)→Mr(O/λl))

for some finite precision l instead of T(k,Q). The following lemma justifies that to study

T(k,Q)⊗ F, it is enough to understand T(k,Q, l) as long as l is big enough.

Proposition 1.3.3.5. There is a positive integer prec such that

T(k,Q)⊗ F
∼−→ T(k,Q, l)⊗ F

for all l ≥ prec.

Proof. Since the transition maps among {T(k,Q, l)}l are surjective, the projective limit

commutes with mod λ-reduction:

lim←−
l

(T(k,Q, l)⊗ F) =

(
lim←−
l

T(k,Q, l)

)
⊗ F = T(k,Q)⊗ F.

Note that the right hand side is a finite dimensional F-vector space. There exists some l on

the left hand side so that dim(T(k,Q, l)/λ) = dim(T(k,Q)/λ). We can take prec to be the

smallest such l because the dimension of T(k,Q, l)/λ is monotone in l.
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As one can see, the proof of the proposition is not effective; it does not construct prec

explicitly. But we know that l is enough precision if and only if

dimF T(k,Q, l)⊗ F = dimF T(k,Q)⊗ F = r/2.

Since T(k,Q, l) is a finitely generated torsion module over O, it is isomorphic to

(O/λl)nl ⊕ (O/λl−1)nl−1 ⊕ . . .⊕ (O/λ)n1 ,

and we have

dimF T(k,Q, l)⊗ F =
l∑

i=1

ni.

Once we can determine the O-module structure of T(k,Q, l), we can tell whether l is a large

enough precision, and furthermore, we will be able to compute from the module structure

the presentation of the O-algebra T(k,Q, l). In order to do this, we first recall some basis

propositions on finite O-algebras.

Let M be a finitely generated O-module that is isomorphic to

(O/λl)nl ⊕ (O/λl−1)nl−1 ⊕ . . .⊕ (O/λ)n1

for some non-negative integers ni for 1 ≤ i ≤ l.

Proposition 1.3.3.6. Suppose that {v1, . . . , vs} where s = nl+. . .+n1 is a set of generators

of M that corresponds to the decomposition as above. Then there is an algorithm to write

every v ∈M as an explicit linear combination of vi’s.

Proof. Suppose that we have found explicit ai ∈ O such that v −
∑s

i=1 aivi ∈ M [λt0 ] for
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some integer 1 ≤ t0 ≤ l. Then

λt0−1
(
v −

s∑
i=1

aivi

)
∈M [λ].

Since M [λ] is a vector space with basis {λl−1v1, . . . , vs}, we can find bi ∈ O such that

λt0−1
(
v −

s∑
i=1

aivi

)
=

s∑
i=1

bi (ord(vi)/λ) vi =
∑

ord(vi)<λt0

bi (ord(vi)/λ) vi

+
∑

ord(vi)≥λt0
bi (ord(vi)/λ) vi.

Thus

v −
s∑

i=1

aivi −
∑

ord(vi)≥λt0
bi(ord(vi)/λ

t0)vi ∈M [λt0−1].

By induction on t0, we can eventually write v as an explicit linear combination of v1, . . . , vs.

Proposition 1.3.3.7. If for some integer 0 ≤ m ≤ l,

λmM
∼−→ (O/λl−m)nl ⊕ (O/λl−1−m)nl−1 ⊕ . . .⊕ (O/λ)nm+1

such that the corresponding generators are λmv1, . . . , λmvs where s =
∑l

i=m+1 ni. Then

s∑
i=1

Ovi
∼−→ (O/λl)nl ⊕ (O/λl−1)nl−1 ⊕ . . .⊕ (O/λm+1)nm+1 .

Proof. It is straightforward that if λmvi has order λn, then vi has order λn+m. We need to

justify that the sum on the left hand side is a direct sum. Suppose that

s′∑
i=1

aivi = 0

63



for some ai ∈ O/ord(vi) and some integer 1 ≤ s′ ≤ s such that as′ ̸= 0. Then

s′∑
i=1

ai(λ
mvi) = λm

s′∑
i=1

aivi = 0.

Thus ai = 0 ∈ O/ord(vi)λ−m for all 1 ≤ i ≤ s′ because
∑s

i=1Oλmvi =
⊕s

i=1Oλmvi by our

assumption. Since ord(vi) ≥ ord(vs′) for all 1 ≤ i ≤ s′, we have ai = 0 ∈ O/ord(vs′)λ−m

for all 1 ≤ i ≤ s′. Thus ord(vs′)λ
−m|ai for all 1 ≤ i ≤ s′. In particular, λ|ai. Now if m ≥ 1,

we have
s′∑
i=1

ai
λ
λmvi = λm−1

s∑
i=1

aivi = 0.

By the same argument, we conclude that ord(vs′)λ
−m+1|ai for all i. Repeat this argument

and we see that ord(vs′)|ai for every 1 ≤ i ≤ s′. Thus as′ = 0, which contradicts the choice

of s′. Hence, there is no such linear combination and the proof is complete.

From now on we assume M is also a finite O-algebra generated by m1, . . . ,mn. For every

non-negative integer d, denote by Md the O-submodule generated by the set

{md1
1 · · ·m

dn
n }∑i di≤d.

Suppose that {λt0v1, . . . , λt0vs′} is a set of O-module generators of λt0M for some 1 ≤

t0 ≤ l and s′ = nt0+1 + . . .+ nl such that

λt0M =
s′⊕
i=1

Ovi = λt0M
∼−→ (O/λl−t0)nl ⊕ (O/λl−1−t0)nl−1 ⊕ . . .⊕ (O/λ)nt0+1 . (1.3.3.8)

By Proposition 1.3.3.7, we have

M ′ :=
s′∑
i=1

Ovi
∼−→ (O/λl)nl ⊕ (O/λl−1)nl−1 ⊕ . . .⊕ (O/λt0+1)nt0+1 .
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In particular,

λt0−1M ′ =
s′∑
i=1

Oλt0−1vi
∼−→ (O/λl−t0+1)nl ⊕ (O/λl−t0)nl−1 ⊕ . . .⊕ (O/λ2)nt0+1 .

Consider the finite dimensional F-vector space (λt0−1M)[λ]. It has a subspace V with a basis

{λl−1v1, . . . , λt0vs′}.

Proposition 1.3.3.9. If we can extend the basis of V to a basis

{λl−1v1, . . . , λt0vs′ , λt0−1vs′+1, . . . , λ
t0−1vs′+nt0

}

of (λt0−1M)[λ], then

λt0−1M = λt0−1M ′ ⊕Oλt0−1vs′+1 . . .⊕Oλt0−1vs′+nt0
. (1.3.3.10)

Proof. Denote by W the F-vector space spanned by {λt0−1vs′+1, . . . , λ
t0−1vs′+nt0

}. For

every polynomial f in M, by our assumption, we have λt0f =
∑s′

i=1 aiλ
t0vi. Thus

λt0−1

f − s′∑
i=1

aivi

 ∈ (λt0−1M)[λ].

Therefore, λt0−1M = λt0−1M ′+(λt0−1M)[λ] = λt0−1M ′+Oλt0−1vs′+1 . . .+Oλt0−1vs′+nt0
.

It suffices to show that it is a direct sum. If

λt0−1m′ =

nt0∑
i=1

aiλ
t0−1vs′+i

for some m′ ∈M ′ and ai ∈ O, then λt0−1m′ ∈ λt0−1M ′ ∩W = V ∩W = 0 and the proof is

complete.

Definition 1.3.3.11. For a fixed choice of a family of compatible lifting maps {O/λt0 →
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O}t0≥1 such that 0 and 1 are lifted to 0 and 1 respectively and a choice of generators of

λt0M that correspond to a decomposition as in (1.3.3.8), we define a map Dt0−1 : M →

(λt0−1M)[λ] to be

D(f) = λt0−1(f −
s′∑
i=1

aivi)

for f ∈M if λt0f = λt0
∑s′

i=1 aivi. Here the ai is an element in O that is determined by the

family of lifting maps.

Remark 1.3.3.12. The map D is not linear because the lifting maps O/λn → O are not

linear, but it becomes linear after we compose it with the quotient map (λt0−1M)[λ] ↠

(λt0−1M)[λ]/V. To see this, let f and g be elements in M. Then there exist ai, bi and ci in

O such that

D(f) = λt0−1

f − s′∑
i=1

aivi

 , D(g) = λt0−1

g − s′∑
i=1

bivi

 ,

D(f + g) = λt0−1

f − s′∑
i=1

civi

 .

We have

D(f + g)−D(f)−D(g) = λt0−1
s′∑
i=1

(ai + bi − ci)vi ∈ λt0−1M ′ ∩ (λt0−1M)[λ] = V.

For every non-negative integer d, we denote by Kd the F-subspace spanned by

λt0−1

f − s′∑
i=1

aivi


for all f that are monomials in Md.

Proposition 1.3.3.13. Suppose that {v1, . . . , vs′} is contained in Md′ for some integer d′ ≥
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1.

1. Dt0−1(Md) ⊆ Kd + V.

2. If λt0−1f ∈ (λt0−1M)[λ], then Dt0−1(f) = λt0−1f.

3. If d ≥ d′, then Kd ⊆ λt0−1Md.

Proof.

1. Since Dt0−1 : M → (λt0−1M)[λ] is O-linear after we quotient out V , we have

Dt0−1(Md)/V = Kd and thus Dt0−1(Md) ⊆ Kd + V.

2. Let f ∈M be an element such that λt0−1f ∈ (λt0−1M)[λ]. Then λt0f = 0 and thus

Dt0−1(f) = λt0−1f − 0 = λt0−1f

because we fix the lifting maps so that 0 is always lifted to 0.

3. Let f be a monomial in Md such that λt0f =
∑s′

i=1 aiλ
t0vi. Then

Dt0−1(f) = λt0−1

f − s′∑
i=1

aivi

 ∈ λt0−1Md + λt0−1Md′ = λt0−1Md

since d ≥ d′.

Proposition 1.3.3.14. If for some d0 ≥ d′, the vector spaces Kd0 + V = Kd0+1 + V , then

(λt0−1M)[λ] = Kd0 + V.

Proof. By Proposition 1.3.3.13 (1), it is enough to establish Kd+V = Kd0+V for all d ≥ d0

and so it suffices to prove the case where d = d0 + 2. Let f be a monomial of degree d0 + 2.
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Without loss of generality, we may and do assume that f = m1f1 for some monomial f1 of

degree d0 + 1. Suppose that

Dt0−1(f) = λt0−1

f − s′∑
i=1

aivi

 and Dt0−1(f1) = λt0−1

f1 − s′∑
i=1

bivi

 .

Now we have

Dt0−1(f) = λt0−1

f − s′∑
i=1

aivi

 = λt0−1

m1f1 −
s′∑
i=1

aivi


= m1Dt0−1(f1) + λt0−1

s′∑
i=1

bim1vi − λt0−1
s′∑
i=1

aivi

∈ m1(Kd0+1 + V ) + λt0−1Md′+1 ⊆ m1(Kd0 + V ) + λt0−1Md0+1.

We have

Kd0 ⊆ λt0−1Md0

by Proposition 1.3.3.13 (3) and V is obviously a submodule of λt0−1Md′ ⊆ λt0−1Md0 . Thus

Dt0−1(f) ∈ m1(Kd0 + V ) + λt0−1Md0+1 ⊆ λt0−1m1Md0 + λt0−1Md0+1 = λt0−1Md0+1.

Let g be an element of Md0+1 such that Dt0−1(f) = λt0−1g. Then g is an element that

satisfies the condition in Proposition 1.3.3.13 (3) and thus Dt0−1(g) = λt0−1g. Now we have

Dt0−1(f) = λt0−1g = Dt0−1(g) ∈ Dt0−1(Md0+1) ⊆ Kd0+1 + V = Kd0 + V.

Proposition 1.3.3.15. There is an algorithm to find a set {v1, . . . , vs} of O-module gener-
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ators of M that corresponds to the decomposition

M
∼−→ (O/λl)nl ⊕ (O/λl−1)nl−1 ⊕ . . .⊕ (O/λ)n1

in terms of polynomials in m1, . . . ,mn. Here s = n1 + . . .+ nl.

Proof. Suppose that we have found a set {v1, . . . , vs′} such that a decomposition of λt0M

as in (1.3.3.8) holds for some 1 ≤ t0 ≤ l and s′ = nt0+1+ . . .+nl. By Proposition 1.3.3.9, it

suffices to extend the basis of V to a basis of (λt0−1M)[λ]. Note that the morphism Dt0−1

is computable by Proposition 1.3.3.6. We can then calculate the dimension of Kd + V for

d ≥ d′. Whenever the sequence stabilizes, we have extended the basis by Proposition 1.3.3.14.

By induction on t0 we are done.

Suppose that {v1, . . . , vs} is the set of O-module generators we have found from the

proposition above and the set is in Md0 for some positive integer d0. We denote by ϕi a

polynomial of degree at most d0 in O[x1, . . . , xn] such that ϕi(m1, . . . ,mn) = vi. For an

element f ∈M , we apply Proposition 1.3.3.6 to find ai(f) ∈ O such that

f =
s∑

i=1

ai(f)vi.

Lemma 1.3.3.16. The finite O-algebra M has presentation

M
∼−→ OJx1, . . . , xnK/I

where I is generated by

ord(vi)ϕi
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for i = 1, . . . s together with

ϕ(m1, . . . ,mn)−
s∑

i=1

ai(ϕ(m1, . . . ,mn))ϕi

for all monomials ϕ ∈ O[x1, . . . , xn] of degree at most d0 + 1.

Proof. Suppose that M ∼−→ OJx1, . . . , xnK/I. Denote by Id0+1 the ideal generated by

ϕ(m1, . . . ,mn)−
s∑

i=1

ai(ϕ(m1, . . . ,mn))ϕi

for all monomials ϕ ∈ O[x1, . . . , xn] of degree at most d0 + 1. We want to show I = Id0+1.

It is clear that Id0+1 ⊆ I. We now prove the other inclusion. Let ψ(x1, . . . , xn) ∈ I be

a polynomial of degree d ≥ d0 + 2. We write ψ = µ(x1, . . . , xn) + ψ1(x1, . . . , xn) where

µ(x1, . . . , xn) is the sum of the highest degree terms of ψ and ψ1 has degree at most d− 1 ≥

d0 + 1. By analyzing µ(x1, . . . , xn) term by term, we have µ(x1, . . . , xn) is congruent to a

polynomial of degree at most d0+1 modulo Id0+1. By induction on d, we can and do assume

that ψ has degree at most d0 + 1. Modulo Id0+1, we can replace every single term of ψ by a

linear combination of ϕi. Thus we can further assume that

ψ =
s∑

i=1

aiϕi

for some ai ∈ O. Since ψ ∈ I, we have

s∑
i=1

aiϕi(m1, . . . , xn) =
s∑

i=1

aivi = 0.

But because M ∼−→
⊕s

i=1Ovi, we have ord(vi)|ai for all i. Thus ord(vi)ϕi|aiϕi and ψ is in

Id0+1.
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1.3.4 Data processing

In this subsection, we record propositions that we use in analyzing the data we collect from

the algorithm.

We are interested in whether the crystalline deformation ring Rk
r is Cohen–Macaulay,

which by Proposition 1.2.3.15 and Remark 1.3.2.3 is equivalent to Rk
r ⊗F being a finite free

FJdK-algebra. This implies that T(k,Qn)⊗F is finite free over F[d]/dp
n
, which we can check

by the following proposition.

Proposition 1.3.4.1. A finitely generated F[d]/dp
n
-module M is free if and only if the

dp
n−1M has dimension (dimFM)/pn.

Proof. Let v1, . . . , vn be a basis of the image of dp
n−1M. Then there exists wi such that

vi = dp
n−1wi. Suppose that

∑
i,j ai,jd

jwi = 0 for some ai,j ∈ F. Then

0 = dp
n−1∑

i,j

ai,jd
jwi =

∑
i

ai,0d
pn−1wi =

∑
i

ai,0vi.

This implies that ai,0 = 0 for all i. By multiplying by lower powers of d, we can show that

ai,j = 0 for all i, j. Thus {djwi} is a linearly independent set of pn(dimFM)/pn = dimFM

elements. It is an F-basis of M and so {wi} is an F[d]-basis of M, showing that M is free

over F[d]/dp
n
.

If we assume that Rk
r is Cohen–Macaulay, it is natural to ask when it is Gorenstein or a

complete intersection. The two properties are in fact equivalent for Rk
r by [Hu and Paškūnas,

2019, Proposition 7.8].

Lemma 1.3.4.2 (Hu–Paškūnas). The crystalline deformation ring Rk
r is Gorenstein if and

only if it is a complete intersection.

Thus we have the following.
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Proposition 1.3.4.3. If (λ, d) is a regular sequence, Rk
r/(λ, d)

∼−→ T(k,∅)⊗F is a complete

intersection ring if and only if dimF (T(k,∅)⊗ F) [m∅] = 1.

Apart from the ring theoretic properties of the crystalline deformation ring Rk
r for a

fixed k, we are interested in the family {Rk
r ⊗F}k≡k0 (mod p−1) as we have mentioned in the

introduction. Since there is an injection induced by multiplication by the Hasse invariant

Mk−(p−1)(k,Q) ⊗ F ↪→ M(k,Q) ⊗ F for all weights k and sets Q of Taylor–Wiles primes,

heuristically, the Hecke algebra T(k,Q)⊗F is more “complicated" than T(k−(p−1), Q)⊗F.

After patching, we expect the same phenomenon for the crystalline deformation rings Rk
r .

One can ask whether there is a map Rk
r ⊗ F → R

k−(p−1)
r ⊗ F and moreover whether the

map is surjective. If such a surjection exists, it will induce a surjection on the Hecke algebras

T(k,Q)⊗F ↠ T(k− (p−1), Q)⊗F. We can check this by computing if the ideal of relations

of T(k,Q)⊗ F is contained in that of T(k − (p− 1), Q)⊗ F. Furthermore, we can measure

the “complexity" by using the Hilbert series Hk(x) of Rk
r ⊗F. Recall that the Hilbert series

H(x) of a Noetherian local ring (R,m) is defined to be the formal power series

H(x) :=
∞∑
i=0

dim(mi/mi+1)xi.

We can compute the Hilbert series of T(k,Q)⊗ F to approximate Hk(x).

The discussion above mostly applies to Rk
r [αp].

Proposition 1.3.4.4. Under assumption 1.3.2.4 (1)–(5), we have the following.

1. The ring Rk
r [αp] is Cohen–Macaulay.

2. The ring Rk
r [αp] can be Gorenstein but not a complete intersection.

3. There is a surjection Rk
r [αp]⊗ F ↠ R

k−(p−1)
r [αp]⊗ F for all weights k ≥ 2.

Proof. By construction, the ring Rk
r [αp]Jt1, . . . , thK⊗F is finite free over FJd1, . . . , d#QK The

first assertion then follows from Proposition 1.2.3.15. We provide an example to assertion
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(2). When p = 5, k = 106, the Hecke algebra T̃(106,∅)⊗ F is isomorphic to

F5Jx, y, zK/(z3 + 2yx3, zy + 4yx3, zx+ 2yx3, y2 + 4yx2 + 3yx+ x3 + 2x2, x4),

which is not a complete intersection ring. But it is Gorenstein because dim
(
T̃(106,∅)⊗ F

)
[m̃] =

1. Assertion (3) is a result from Bao [2023a].

We are also interested in the relation between Rk
r and Rk

r [αp]. Since Rk
r [αp] is in the

integral closure of Rk
r in Rk

r [1/p]. It is natural to ask whether Rk
r [αp] is the normalization.

Proposition 1.3.4.5. The ring Rk
r [αp] is the normalization of Rk

r in Rk
r [1/p] if and only if

Rk
r [αp] is normal.

Proof. The ring Rk
r [αp] is reduced because it is a subring of the reduced ring Rk

r [1/p]. A

reduced Noetherian ring R is normal if and only if it is integrally closed in its total ring of

fractions Frac(R). If Rk
r [αp] is normal, then it is integrally closed in

Rk
r [1/p] = Rk

r [αp][1/p] ⊆ Frac(Rk
r [αp]).

Hence it is the integral closure of Rk
r in Rk

r [1/p]. Conversely, suppose that Rk
r [αp] is the

integral closure of Rk
r in Rk

r [1/p]. In order to show it is normal, by Serre’s criterion, it

suffices to check R1 + S2. Since Rk
r [αp] is reduced and Cohen-Macaulay, Sk is true all all

positive integers k and R0 is true. It remains to show Rk
r [αp]p is a regular local ring for all

the prime ideals p of Rk
r [αp] that are of height one. There are two cases. If p /∈ p, then

Rk
r [αp]p = Rk

r [αp][1/p]p.

Kisin showed that Rk
r [αp][1/p] = Rk

r [1/p] is formally smooth, and thus its localizations are

regular local. So let’s assume p ∈ p. We note that Rk
r [αp]p has Krull dimensional one; it

is regular local if and only if it is normal, i.e. it is integrally closed in its total ring of
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fractions. Since localization preserves integral closure, we still have Rk
r [αp]p is integrally

closed in Rk
r [1/p]p = Rk

r [αp][1/p]p. Since p ∈ p and we are inverting p, the only prime ideals

of Rk
r [αp][1/p]p are the minimal prime ideals that are contained in p. Thus this ring is

Artinian and it is a product of its localizations at minimal prime ideals which are fields since

the ring is reduced) and this is exactly the total ring of fractions of Rk
r [αp]p (it is easy to

see that it is contained in the total ring of fractions; but then it is not hard to show we have

already inverted every non-zerodivisor in this ring.) The proof is complete.

From the proof we see that to check Rk
r [αp] is the normalization, it is enough to check

whether Rk
r [αp]p is regular local for every p that contains p. If p /∈ p2, then this is equivalent

to checking whether Rk
r [αp]p ⊗ F is regular.

Remark 1.3.4.6. If we assume a Breuil-Mézard conjecture for Rk
r [αp]⊗F, then the Hilbert–

Samuel multiplicity of Rk
r [αp]p ⊗ F is equal to the Jordan–Hölder multiplicity of one of

the Serre weights of ρ in the semisimplification of Symk−2, which is apparently not equal

to 1 when k is large. This leads to the discussion in §??. One can start to compute the

Hilbert–Samuel multiplicity of Rk
r [αp] ⊗ F by computing the Hilbert series of T̃(k,Q) ⊗ F

and compare this number with that of Rk
r ⊗ F.

Given that Rk
r [αp] has many nice properties that we expect Rk

r to have, we are interested

in how different the two rings are from each other. Therefore, we study the cokernel Ck :=

Rk
r [αp]/R

k
r which can be obtained by patching C(k,Q) := T̃(k,Q)/T(k,Q). Consider the

short exact sequence of finitely generated O-modules

0→ T(k,Q)→ T̃(k,Q)→ C(k,Q)→ 0.

Tensor the sequence with F and we get the exact sequence

0→ C(k,Q)[λ]→ T(k,Q)⊗ F→ T̃(k,Q)⊗ F→ C(k,Q)⊗ F→ 0.
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Apply the patching functor and we have

0→ Ck[λ]→ Rk
r Jt1, . . . , thK⊗ F→ Rk

r [αp]Jt1, . . . , thK⊗ F→ Ck ⊗ F→ 0.

We can prove that C(k,Q)⊗ F has the desired property and we can compute the rank.

Lemma 1.3.4.7. Under Assumption 1.3.2.4 (1)–(5), the module C(k,Qn)⊗F is finite free

over FJd1, . . . , d#Qn
K/(dp

n

1 , . . . , d
pn

Qn
) The kernel of the surjection

C(k,Q)⊗ F ↠ C(k − (p− 1), Q)⊗ F

has dimension equal to that of

W (j,Qn) :=M(j,Qn)⊗ F/M(j − (p− 1), Qn)⊗ F.

Proof. Consider the q-expansion map

Sk(Γ1(N), L)→ LJqK

that maps a modular form f over the fraction field F of O to its q-expansion at ∞. By the

q-expansion principal (see for example [Diamond and Im, 1995, Theorem 12.3.4]), this map

is injective and the preimage of OJqK ⊂ LJqK is Sk(Γ1(N),O). By [Ribet, 1983, (1.6) and

(2.2)], the following pairing is perfect:

T̃× Sk(Γ1(N),O)→ O

(T, f) 7→ a1(Tf),

where T̃ is the O-subalgebra of EndF (Sk(Γ1(N)), L) generated by all the Hecke operators.
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Now consider the anemic q-expansion map

Sk(Γ1(N),O)→
⊕
p∤n

Lqn

that maps a modular form f to its q-expansion away from p. This map is still injective by

[Diamond and Shurman, 2005, Theorem 5.7.1] and we have Sk(Γ1(N),O) is a submodule of

the preimage M̂ of
⊕

p∤nOqn. We have the pairing

T× M̂ → O

(T, f) 7→ a1(Tf),

where T is theO-subalgebra of EndF (Sk(Γ1(N)), L) generated by Hecke operators away from

p. Let f be a modular form such that a1(Tf) = 0 for all T ∈ T. Then an(f) = a1(Tnf) = 0

for all n such that gcd(n, p) = 1. Thus f = 0 and we have an injection

M̂ ↪→ HomO(T,O).

Therefore, M̂ is a finitely generated O-module and there is some integer A ≫ 0 such that

AM̂ ⊆ Sk(Γ1(N),O). Thus we have

rankO(M̂) = rankOSk(Γ1(N),O) = rankO(T̃) = rankO(T).

To show that M̂ ↪→ HomO(T,O) is an isomorphism, it suffices to prove that the cokernel

is torsion free. Let φ : T → O be a map such that nφ(T ) = a1(Tf) for some f ∈ M̂ and

integer n. Then f/n is in M̂ by the definition of M̂. Thus φ itself is in the image of M̂.

Hence, we have the isomorphism

M̂
∼−→ HomO(T,O).
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Conversely, we want to show the injection

T ↪→ HomO(M̂,O)

is also a surjection. It suffices to show

T⊗ F→ HomO(M̂,O)⊗ F = HomF(M̂ ⊗ F,F)

is an injection. If not, then there is a T ∈ T \ λT such that a1(T (f)) ∈ λO for all f ∈ M̂.

Then an(Tf) = a1(TTnf) is in λO. Thus Tf is in λM̂, which implies that T⊗ F does not

act faithfully on M̂ ⊗F. But M̂ ⊗F
∼−→ HomO(T,O)⊗F = Hom(T⊗F,F) on which T⊗F

acts faithfully, a contradiction. Therefore, T and M̂ are dual to each other. We have a short

exact sequence

0→M → M̂ → Q→ 0

where Qk is the cokernel M̂/M. Tensoring with F, we get

0→ Qk[λ]→M ⊗ F→ M̂ ⊗ F→ Q⊗ F→ 0.

Now taking the F-dual we get

0→ (Q⊗ F)∨ → T⊗ F→ T̃⊗ F→ (Qk[λ])
∨ → 0.

Thus we have the identification Ck⊗F = (Qk[λ])
∨. Note that Q[λ] is the kernel of M⊗F→

M̂ ⊗ F, we have

Qk[λ] = {f ∈M ⊗ F : q−expansion has only qpn terms} = ker θ = ImV.
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Let j be the largest integer such that V (Mj ⊗ F) ⊆Mk. Then

Mj ⊗ F
V−→ Qk[λ]

is an isomorphism. Since w(V f) = pw(f) for every mod-p modular form f, the map above

is an injection. Suppose that f is a mod-p cusp form such that V f ∈ Mk. Then pw(f) =

w(V f) ≤ k and so w(f) ≤ ⌊k/p⌋. If w(f) > j, then VMw(f) ⊆Mk, contradicting the choice

of j. This map then induces an isomorphism

Wj :=Mj/Mj−(p−1)
V−→ Qk[λ]/Qk−(p−1)[λ].

For filtration reason, we see that Qk[λ]/Qk−(p−1)[λ] is trivial unless k = jp.

Note that all of our discussions above are compatible with the Hecke action; hence, they

still hold true after we localize at a maximal ideal of the Hecke algebra. It follows that

(Q[λ])mQn
is finite free over FJd1, . . . , d#Qn

K/(dp
n

1 , . . . , d
pn

#Qn
) because M(j,Qn) is. Then

C(k,Qk)⊗F
∼−→ (Qk⊗F)∨ is an injective module. Since the group algebra of a finite group

is a Frobenius algebra, an injective module is also projective and therefore finite free over

FJd1, . . . , d#Qn
K/(dp

n

1 , . . . , d
pn

#Qn
).

Since Rk
r [αp]Jt1, . . . , thK⊗F is finite free over FJd1, . . . , d#QK, so is the image of Rk

r⊗F in

Rk
r [α]p⊗F. If we can show that Ck[λ] is finite free over FJdK, then we can conclude that Rk

r

is Cohen–Macaulay. Thus it is interesting to see if C(k,Qn)[λ] is finite free over FJdK/(dp
n
)

and if so, what rank it has.

Proposition 1.3.4.8. Under the assumption so that the minimal level patching works, we

always have dimWn
∼−→ dimWn−(p2−1) for all integers n ≥ p2 − 1. When k0 = 2, we have

dimWn = dimW2 ̸= 0 for all n ≡ 2, 2p mod p2 − 1 and 0 otherwise.
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Proof. By Lemma 1.2.4.3, it suffices to show the cycles satisfy

Z(Rn
r ⊗ F)− Z(Rn−(p−1)

r ⊗ F) = Z(R
n−(p2−1)
r ⊗ F)− Z(Rn−(p2−1)−(p−1)

r ⊗ F).

By the geometric Breuil–Mézard conjecture, this is equivalent to

[SymnF2]− [Symn−(p−1)F2] = [Symn−(p2−1)F2]− [Symn−(p2−1)−(p−1)F2],

where [V ] means taking the semisimplification of a GL2(Fp)-representation V. This follows

from the equation from [Reduzzi, 2015, §2.3]

[SymnF2]− [Symn−(p−1)F2] = [det]([Symn−(p+1)F2]− [Symn−(p−1)−(p+1)F2]).

Remark 1.3.4.9. The proof works in general. It is just when k0 = 2, we have worked out the

structure of Wn.

1.3.5 Implementation of matrix multiplication

The hard part of the implementation is to find an effective way to deal with large matrix

multiplication. The rank of Z1(ΓQ, Sym
k−2O2) is

#SQ · (k − 1),

where SQ is a minimal set of free generators of ΓQ. The cardinality of SQ can be estimated

by the Riemann–Roch theorem:

#SQ ∼
d

12
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where d is the degree of X(ΓQ) → X(1) and this is growing at the speed of
∏

q∈Qn
q and

q ≡ 1 (mod pn). So the size of the matrix is roughly

12(k − 1)
∏
q∈Qn

q.

On the other hand, we would like to see the behavior of T(k,Qn) when k is large, at least

p3. For example, if p = 5, n = 1, q = 11, then we are multiplying matrices of size 16, 000 by

16, 000.

We use NumPy to handle matrix multiplication. This library is fast with handling arrays,

including matrix multiplication.

A few (but not all) reasons why NumPy is fast:

1. Underlying parallelization (which is great since from a high performance cluster we

can ask for as many cores as we want)

2. Using machine-native datatype

I do not really understand this second bullet-point I put here. But one result of this is that

NumPy is only fast when the datatype is ≤ float64. The datatype float64 has 1 sign bit, 11

bits exponent, and 52 bits mantissas. So we can only store integers up to 252 using a float64;

otherwise, overflow happens. When we multiply two s by s matrices A and B, we need to

compute ci,j =
∑n

l=1 ai,lbl,j . For ci,j to be within 252, we need the size of ai,l and bl,j to be

bounded by √
252

s
=

226√
s
.

In practice, we have s = #SQ · (k − 1). But as k grows, we need higher p-adic precision to

compute T(k,Qn)⊗ F, which grows linearly dependent on k. This is to say

ai,l ∼ bl,j ∼ pk
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and we want this to be bounded by

226√
#Qn(k − 1)

.

First year calculus tells us that this is unlikely to happen as k grows larger.

We choose the integer n0 depending on k such that pn0 < 226√
#Qn(k−1)

. Then we write

A = A0 + A1p
n0 + . . . and B = B0 +B1p

n0 + . . . .

Now

A ·B = A0B0 + pn0(A1B0 + A0B1) + . . . .

This way we can do matrix multiplication without overflow. This method takes slightly more

time in decomposing A into its p-adic expansion. We can use parallelization to carry out

multiple matrix multiplication and assemble them in the end.

1.4 Examples

1.4.1 Prototype

This is a prototype of applying the algorithm in the previous section to specific examples.

We start with some Schur residual representation r : GQp
→ GL2(F) that takes the form

described in §1.2.2.

1. Find a newform f0 that has the minimal level and minimal weight up to twist such

that ρ attached to f0 is isomorphic to r.

2. Verify the two conditions in Theorem 1.2.3.1 by studying the global residual represen-

tation ρ attached to f0 using criteria from §1.2.3.

3. Find a finite set of Hecke operators that generate the local conditions in §1.3.1. We
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check, up to weight p2−1, that the residual representations are all determined by certain

Hecke operators by searching in LMFDB LMFDB Collaboration [2022]. It suffices

to look for all the eigenforms of the same level as f0 whose Nebentypus character

is congruent to that of f0. It is important to note that, when we are searching for

eigenforms in LMFDB LMFDB Collaboration [2022], only new cuspidal forms are

listed.We also need to consider oldforms as well as Eisenstein series.

4. Find a set of Hecke operators that span the tangent space. By §1.3.2, it suffices to find

in the initial level, the generators of the tangent space of T(k,∅) for some k ≥ k0p
2.

We are given the Sturm bound km
12 −

m−1
N(ρ)

where m := [SL2(Z) : Γ] so that it suffices

to compute the Hecke operators up to this number.

5. Compute the relations by the algorithm in §1.3.3.

After we obtain the presentations of Hecke algebras T(k,Q, l) and T̃(k,Q, l) for some

integer l ≥ prec as in Proposition 1.3.3.5, we can do the following verification.

1. Check whether the associated graded algebra of T(k,Qn) ⊗ F
∼−→ T(k,Qn, l) ⊗ F is

free over F[d]/dp
n

by Proposition 1.3.4.1.

2. Calculate dimF(T(k,∅)⊗ F)[m∅].

3. Check if there are surjections T(k,Q)⊗ F→ T(k − (p− 1), Q)⊗ F.

4. Calculate the Hilbert series of T(k,Q)⊗ F and T̃(k,Q)⊗ F.

1.4.2 Example p = 5 and k0 = 2

This is the example that we have collected most data of. Here TW1 and TW2 refer to the

two conditions in the theorem of Taylor–Wiles–Kisin patching 1.2.3.1.
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Modular form f0 14.2.a.a

Image Pρ PGL2(F5)
∼−→ S5

Field of Pρ Galois closure of 5.1.4802000.1

TW1 Lemma (1.2.3.3)

TW2 2, 7 ̸≡ −1 mod 5

Taylor Wiles prime q = 11

Localization Operators T3 + 2 and U11 − 2

Sturm bound m = 24, k = 50, and bound is 99

Generators of cotangent space T3 + 2, U11 − 2, ⟨−13⟩ − 1

Remark 1.4.2.1 (On the table above).

1. Note that the projective image of ρ|GQ5
is isomorphic to the dihedral group D8 of

8 elements. The element Pρ(Frob29) has order 3. Among all transitive subgroups of

PGL2(F5)
∼−→ S5, the only one that contains a subgroup isomorphic to D8 and an

element of order 3 has to be S5 itself.

2. We justify why q = 11 is a Taylor–Wiles prime. The characteristic polynomial of

Frob11 is

X2 + 1 = X2 − 4 = (X − 2)(X + 2)

has two distinct roots. We need to check the Selmer group

H1
ΣQ

(GQ, ad
0ρ) = ker(H1(GQ,{p,∞}∪Q, ad

0ρ)→ H1(Gp, ad
0ρ))

is trivial for Q = {11}. A nontrivial class [c] in the Selmer group gives rise to a

surjective ring homomorphism

φ : T(k0, Q)
∼−→ Rk0

Q ↠ F[x]/(x2)
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such that when we compose it with Runiv
r → Rk0

Q , the image of Runiv
r under

Runiv
r → Rk0

Q ↠ F[x]/(x2)

is F. Since Runiv
r → Rk0

Q factors through the crystalline deformation ring Rk0
r
∼−→ OJxK,

the variable x is mapped to 0. Note that this x can be taken to be the function αp

within the Fontaine-Laffaille range and the map Rk0
r → Rk0

Q
∼−→ T(k0, Q) maps αp to

Tp by [Caraiani et al., 2018, Proposition 2.9]. This implies that φ(Tp) = 0. However, by

a direct computation, we see that Tp spans the one-dimensional space Cot(T(k0, Q)),

a contradiction. Thus the Selmer group H1
ΣQ

(GQ, ad
0ρ) is trivial.

We have computed the presentations of T(k, {11}, prec) and T̃(k, {11}, prec) for 2 ≤ k ≤

122 and the presentations of T(k,∅, prec) and T̃(k,∅, prec) for 2 ≤ k ≤ 622 such that k ≡ 2

(mod p− 1) and prec determined from Proposition 1.3.3.5.

Fact 1.4.2.2. The following hold true for the data we have collected.

1. The associated graded algebra of T(k, {11})⊗ F is finite free over FpJdK/(d5).

2. The Hecke algebra T(k,∅)⊗ F is Gorenstein if and only if

k = 10, 14, 18, 22, 34, 38, 42, 46, 58, 62, 66, 70, 82, 86, 90, 94, 106, 110, 114, 118,

226, 230, 234, 238, 346, 350, 354, 358, 466, 470, 474, 478, 586, 590, 594, 598.

3. There is a surjection from T(k, {11})⊗ F to T(k − (p− 1), {11}) for 6 ≤ k ≤ 122 and

k ≡ 2 (mod 4).

Example 1.4.2.3. When 10 ≤ k ≤ 30, the Hecke algebra T̃(k, {11}, l) is isomorphic to

ZpJz, dK/Ĩ(k, l) where please email me to see; the formulas do not in this thesis template.

84



and

l =


5 10 ≤ k ≤ 22

6 k = 26

10 k = 30

.

Using the presentation of T̃(k, {11}, l) for 10 ≤ k ≤ 30 and the results from [Rozensztajn,

2020, Example 6.2.1], we can compute the presentation of Rk
r [αp].

Proposition 1.4.2.4. When p = 5, there are isomorphisms

Rk
r [αp]

∼−→


ZpJz, dK/(zd− p) k = 10, 14, 18, 22

ZpJz, dK/(z − p2d)(z2 + (u1(d)d+ c0)z + p2u0(d)) k = 26

ZpJz, dK/(z − p4d)(z2 + (v1(d)d+ d0)z + pv0(d)) k = 30

where ui(d) and vi(d) in ZpJdK are some units and c0 and d0 are some constants in pZp.

The variable z is mapped to αp.

Proof. By our computation, when 2 ≤ k ≤ 30, the ring Rk
r [αp] is a complete intersection.

When 10 ≤ k ≤ 30, we further have that the cotangent space of Rk
r [αp] is two dimensional,

generated by preimages of the diamond operator and T5. Thus it is a quotient of the algebra

Z5Jz, dK by one element Fk(z, d) such that z is mapped to αp and d is mapped to the diamond

operator. By the Weierstrass preparation theorem, we assume that

Fk(z, d) = (zn + An−1(d)z
n−1 + . . .+ A1(d)z + A0(d)) · uk(z, d)

where Ai(d) is in the maximal ideal of ZpJdK and uk(z, d) is a unit in ZpJz, dK. It is clear

that (Fk(z, d), p
l, (d + 1)p − 1) ⊆ Ĩ(k, l). The other inclusion does not need to be true. For
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example, when k = 30, this is obviously not correct. But we still have the inclusions

(F30(z, d), p
10, (d+ 1)5 − 1) ⊆ Ĩ(30, 10) ⊆ (F30(z, d), p

9, (d+ 1)5 − 1).

To see the second inclusion, we need to show

T̃(30, {11}, 10) ↠ ZpJz, dK/(F30(z, d), p9, (d+ 1)5 − 1).

Since

ZpJz, dK/(F30(z, d), p9, (d+ 1)5 − 1)
∼−→ R30

r [αp]/(p
9, (d+ 1)5 − 1)

∼−→ T̃(30, {11})/(p9) ∼−→ T̃(30, {11})⊗ Z/p9Z,

it suffices to show

T̃(30, {11}, 9) ↠ T̃(30, {11})⊗ Z/p9Z.

We have computed directly that

T̃(30, {11}, 9) ∼−→
(
Z/510

)⊕10
⊕ (Z/59)⊕5

as a Z-module. Thus the claim follows.

When k = 10, by the presentation of T̃(10, {11}, 5), we have uk(z, d) ≡ 1 mod (p5, (1 +

d)p − 1),

A1(d) ≡ 487d4 + 2614d3 + 1736d2 + 2697d+ 2730 mod (p5, (1 + d)p − 1)

and

A0(d) ≡ 5(319d4 + 201d3 + 604d2 + 156d+ 594) mod (p5, (1 + d)p − 1).
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When we specialize d to different values in Zp, F (d, z) defines a quadratic equation in z.

By [Berger et al., 2003, Theorem 1.1.1], we see that the solution should satisfy v(z) =

v(Tp) = v(αp) ≤ 2 because the reduction type of crystalline representations with v(z) >

2 is Ind
Qp

K ωk−12 rather than r = Ind
Qp

K ω2 up to an unramified twist. This implies that

v(A0(d)) ≤ 4. We write

A0(d) = a0(d) + 5a1(d) + 52a2(d) + . . . ,

where ai(d) ∈ ZpJdK and the nonzero coefficients in ai(d) are all in Z×p . By comparing the

coefficients of powers of d, we see that the lowest degree term of a0(d) degree n0 ≥ 5 if

a0(d) ̸= 0 and that a1(0) is always a unit. Now consider the power series in d

G(d) = a0(d) + 5a1(d) + 52a2(d) + 53a3(d) + 54a4(d).

Its Newton polygon has a segment of length n0 of slope −1/n0 if a0(d) ̸= 0. In particular,

this implies that G(d) has a root α in Zp. Then

A0(α) = G(α) + 55a5(α)

has valuation at least 5, a contradiction. Therefore, we conclude that a0(d) = 0 and thus

A0(d) = 5u0(d) = 5(4 + . . .) ∈ ZpJdK.

We let b(d) be the square root of u0(d) and let z′ = z/b(d). Then

Fk(d, z)/u0(d) = z′2 + (A1(d)/b(d)) · z′ + 5.
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Now let

w = −(z′ + A1(d)/b(d)).

Note that A1(d) is a linear transform of d; the change of variables that we have made are all

invertible. Thus

R10
r [αp]

∼−→ ZpJz′, wK/(z′w − 5).

Since v(z) = v(z′), we see that this is the annulus {z : 0 < v(z) < 1}. This argument gives

the same result for R14
r [αp], R

18
r [αp], R

22
r [αp].

When k = 26, by the presentation of T̃(26, {11}, 6), we have uk(z, d) ≡ 1 mod (p6, (1 +

d)p − 1),

A2(d) ≡ 11927d4 + 12064d3 + 12026d2 + 12867d+ 13065 mod (p6, (1 + d)p − 1),

A1(d) ≡ 25(334d4 + 61d3 + 549d2 + d+ 109) mod (p6, (1 + d)p − 1)

and

A0(d) ≡ 54(13d4 + 16d2 + 13d+ 10) mod (p6, (1 + d)p − 1).

By [Rozensztajn, 2020, Example 6.2.1], the power series F26(d, z) is reducible in ZpJz, dK[1/p]

and it factors into a linear factor and an irreducible quadratic factor. By Gauss’ lemma, this

factorization holds in ZpJz, dK. Thus we have

F26(z, d) = (z +B0(d))(z
2 + C1(d)z + C0(d))

for some B0(d), C1(d) and C0(d) in ZpJdK and the linear factor corresponds to the disk

{z : v(z) > 2} and the second factor corresponds to the annulus {z : 0 < v(z) < 2}. By
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coefficient comparison, we have

B0(d) ≡ −25(317d4 + 566d3 + 251d2 + 572d+ 140) mod (p6, (1 + d)p − 1),

C1(d) ≡ 4002d4 + 13539d3 + 5751d2 + 14192d+ 9565 mod (p6, (1 + d)p − 1)

and

C0(d) ≡ 25(83d4 + 32d3 + 240d2 + 106d+ 384) mod (p6, (1 + d)p − 1).

(I found a unique root −B0(d) modulo 5 and then I lifted the root by Hensel’s lemma.) We

write

B0(d) = b0(d) + 5b1(d) + 52b2(d) + . . . ,

where bi(d) ∈ ZpJdK and the nonzero coefficients in bi(d) are all in Z×p . If b0(d) ̸= 0, then

it has lowest degree term of degree n0 ≥ 5. Choose a p-adic number s ∈ Zp such that

0 < v(s)≪ 1/n0. Then

v(B0(s)) = v(b0(s)) = n0v(s)≪ 1,

which contradicts the fact that v(B0(d)) > 2. Thus b0(d) = 1. In the same way, we can show

that b1(d) = 0. Thus

B0(d) = −25(140 + 572d+ 251d2 + 566d3 + 317d4 + . . .).

By a similar argument as in the case where k = 10, we conclude that 25|C0(d). Now by a

suitable change of variable, we have

R26
r [αp]

∼−→ ZpJz′, d′K/((z′ − 25d′)(z′2 + (u1(d
′)d′ + c0)z

′ + 25u0(d
′))),

where v(z) = v(z′), ui(d′) ∈ ZpJd′K is a unit for i = 0, 1 and c0 is a constant in pZp.

When k = 30, by the presentation of T̃(30, {11}, 9), we have uk(z, d) ≡ 1 mod (p9, (1 +
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d)p − 1),

A2(d) ≡ 1420662d4 + 198114d3 + 330661d2 + 887347d+ 1342055 mod (p9, (1 + d)p − 1),

A1(d) ≡ 5(927714d4 + 1024406d3 + 1742774d2 + 808961d+ 805239) mod (p9, (1 + d)p − 1)

and

A0(d) ≡ 3125(2518d4 + 2590d3 + 451d2 + 2168d+ 800) mod (p9, (1 + d)p − 1).

By a similar reasoning as in the case where k = 26, we have

F30(d, z) = (z +B0(d))(z
2 + C1(d)z + C0(d))

for some B0(d), C1(d) and C0(d) in ZpJdK and the linear factor corresponds to the disk

{z : v(z) > 4} and the second factor corresponds to the annulus {z : 0 < v(z) < 1}. By

comparing the coefficients, we have

B0(d) ≡ −625(1818d4 + 2506d3 + 589d2 + 48d+ 925) mod (p9, (1 + d)p − 1),

C1(d) ≡ 603787d4 + 1764364d3 + 698786d2 + 917347d+ 1920180 mod (p9, (1 + d)p − 1)

and

C0(d) ≡ 5(344339d4 + 368906d3 + 122274d2 + 348961d+ 133364) mod (p9, (1 + d)p − 1).

By using a similar argument as in the case where k = 26, we can make a suitable change of
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variable so that

R30
r [αp]

∼−→ ZpJd′, z′K/(z′ − 625d′)(z′2 + (u1(d
′)d′ + c0)z

′ + 5u0(d
′))

where v(z) = v(z′), ui(d′) ∈ ZpJd′K is a unit for i = 0, 1 and c0 is a constant in pZp.

Proposition 1.4.2.5. The proposition above gives examples to the following statements.

1. The number of irreducible components of Spec(Rk
r ⊗ F) and Spec(Rk

r [αp]⊗ F) can be

different.

2. The ring Rk
r [αp] need not be the normalization of Rk

r in Rk
r [1/p].

Proof. For (1), we take the rings R10
r and R10

r [αp]. By the geometric Breuil–Mézard con-

jecture, the space Spec(R10
r ⊗ Fp) has only one component which is isomorphic to that of

Spec(R2
r ⊗ Fp) = Spec(FpJdK). But it is straightforward from the presentation of R10

r [αp]

that Spec(R10
r [αp]⊗Fp) has two distinct irreducible components. The topology is illustrated

in the following picture.

special-fiber.jpeg

For (2), we take the rings R26
r and R26

r [αp]. The ring R26
r [αp] is computed to be

Z5[[z, d]]/(z − 25d)(z2 + (u1(d)d+ c0)z + 25u0(d)).

Let p be image of the prime ideal (5, z) modulo (z − 25d)(z2 + (u1(d)d + c0)z + 25u0(d)).

Then

(R26
r [αp]⊗ Fp)p =

(
FpJz, dK/z2(z + u1(d)d+ c0)

)
(z)

∼−→
(
FpJz, dK/z2

)
(z)
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is not regular local. Note also

(5, z)2 + ((z − 25d)(z2 + (u1(d)d+ c0)z + 25u0(d))) = (25, 5z, z2).

Thus 5 ∈ p \ p2. It now follows from the discussion after Proposition 1.3.4.5 that R26
r [αp]p is

not regular and so R26
r [αp] is not the normalization of R26

r in its generic fiber.

Based on the data, we propose conjectures in §1.5.

1.4.3 Future examples

We list here the examples we would like to study in the future. In all these examples, the

residual representation r is absolutely irreducible and p = 3 or 5. We will look for reducible

r that are Schur in the future.

When r is absolutely irreducible, it suffices to consider 2 ≤ k0 ≤ (p+ 3)/2 because

Ind
GQp

GK
ωk0−12 = ωk0−2Ind

GQp

GK
ω
p+2−k0
2

Example p = 3 and k0 = 2

By (1.2.2.9), in order for the universal deformation problem of r to be unobstructed, the

initial weight k0 has to be 2.
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Modular form f0 20.2.e.a

Image Pρ D8

Field of Pρ 8.0.2916000000.2

TW1 Lemma 1.2.3.3

TW2 Im (ρ|GQ2
)
∼−→ Z/2 and Im (ρ|GQ5

)
∼−→ Z/4 are reducible

Taylor Wiles prime q = 19

Localization Operators T29 − i and U19 − i

Sturm bound m = 144, k = 26, and bound is 302

Generators of cotangent space T29 − i and U19 − i and a diamond operator

Remark 1.4.3.1 (For the table above).

1. The form f0 is CM, so the projective image is a dihedral subgroup of PGL2(F5)
∼−→ S5.

Since the order of the projective image of I3 is cyclic of order p+1
gcd(k0−1,p+1)

= 4 and

D8 is the only dihedral subgroup of S5 whose order is divisible by 4, the projective

image of ρ has to be D8.

2. As a semisimpleD8 representation, ad0ρ = χ1⊕χ□ where χ1 is the nontrivial character

of D8 that vanishes on Z/4 ⊴ D8 and χ□ is the unique two dimensional irreducible

character of D8. Note that the projective image of Gp is also D8. We have

ad0ρ|Gp
= η ⊕ Ind

GQp

GK
ω
p−1
2 ,

where K is the unique unramified quadratic extension of Qp and

η : GQp
↠ Gal(K/Qp)

∼−→ {±1} ⊆ F×

is the corresponding character. The induced representation is two dimensional irre-

ducible and thus it is χ□. The character η is trivial when restricted to C4 ≤ D8 and
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so it is χ1.

3. We need to check Q = {19} satisfies H1
ΣQ

(GQ, ad
0ρ) = 0. By the inflation-restriction

sequence, this Selmer group is identified with

HomD8
(Gab

F,Q/3, ad
0ρ),

where F is the number field cut out by the projective image of ρ. By class field theory,

the group Gab
F,{19}/3 is the Galois group of the maximal abelian 3-elementary extension

of F that is unramified away from 19. Since 3 and 19 are coprime, such an extension

is tamely ramified at 19 and unramified elsewhere; therefore, it has conductor 19 and

the group Gab
F,{19}/3 can be identified with the 3-elementary part of the ray class

group RCl(F, 19)/3. In RCl(F, q)/3 there is always one copy of Z/3 that is a trivial

representation of D8 and it corresponds to the pro-3 part of the cyclotomic extension

Q(ζq) of Q. The character χ1 corresponds to pro-3 part of the anti-cyclotomic extension

ramified at q. In order that there is not such an anti-cyclotomic extension, we want q to

be inert in FZ/4 = Q(i) by the class field theory of Q(i). Using Magma Bosma et al.

[1997], we see that the ray class group RCl(F, 19∞)/3 has dimension 2 and q = 19 is

inert in Q(i). Thus RCl(F, 19∞)/3 is isomorphic to 1⊕χi for i = 2 or 3. Indeed, denote

by χ2 and χ3 the other two nontrivial irreducible characters of D8. They correspond to

the non-cyclotomic pro-3 part of extensions of Fχ2 = Q(
√
15) and Fχ3 = Q(

√
−15),

respectively, that are only ramified above q. By checking in Magma Bosma et al. [1997],

we conclude that

RCl(F, 19∞)/3 = 1⊕ χ3.
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Example p = 5 and k0 = 3

There are two interesting examples but we only need to compute one. I am not sure which

is easier at this point.

Modular form 12.3.c.a

Field of Pρ 6.0.270000.1

TW1 Lemma 1.2.3.3

TW2 2, 3 ̸≡ −1 mod 5

Taylor–Wiles prime q = 11

Localization primes T7 − 2 and U11 + 1 And ⟨5⟩+ 1

Sturm bound m = 24, k = 51, and bound is 102

Generators of cotangent space T7 − 2, U11 + 1, ⟨d⟩ − 1 (T5 if for the full Hecke algebra)

Remark 1.4.3.2 (For the table above).

1. The form f0 is CM, so the projective image is a dihedral subgroup of PGL2(F5)
∼−→ S5.

Since the order of the projective image of I5 is cyclic of order p+1
gcd(k0−1,p+1)

= 3 and S3

is the only dihedral subgroup of S5 whose order is divisible by 3, the projective image

of ρ has to be S3.

2. The representation ad0ρ is sgn ⊕ χ∆ as an S3-representation, where sgn is the sign

character of S3 and χ∆ is the two-dimensional irreducible character of S3. Since the

residual representation ρ is exceptional, every element in the image is semi-simple.

Let ρ(g) be a matrix in the image. Suppose that ρ(g) has eigenvalues α and β. Then

ad0ρ(g) is also semisimple and has eigenvalues 1, α−1β and β−1α. Thus

Tr(ad0ρ(g)) = 1 + α−1β + β−1α.

Since Pρ(g) has order 1, 2 or 3, the eigenvalue α−1β = ±1 or ζ3. Hence, the trace
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of identity is 3, the trace of a two-cycle is −1 and trace of a 3-cycle is 0. From this

calculation and the character table of S3, we conclude that ad0ρ = sgn ⊕ χ∆.

3. To find the Taylor–Wiles prime, as in the example 20.2.e.a, we use

HomS3(RCl(F, q)/5, sgn ⊕ χ
∆)

to control H1
ΣQ

(GQ, ad
0ρ). There is always a trivial sub-representation of RCl(F, q)/5

that comes from the pro-5 part of Q(ζq)/Q. The character sgn corresponds to pro-5

part of the anti-cyclotomic extension ramified at q. In order that there is not such

an anti-cyclotomic extension, we want q to be inert in F sgn , which is the quadratic

imaginary field that f0 has CM by. Using Magma Bosma et al. [1997], we can directly

check that RCl(F, 11)/5 = 1 and 11 is a Taylor–Wiles prime.

Example p = 5 and k0 = 4

Modular form f0 One embedding of 13.4.c.b

Image Pρ A4

Field of Pρ 12.0.12745792515625.1

TW1 Pρ|GQ(ζ5)
has image A4

TW2 Lemma 1.2.3.4

Taylor Wiles prime q = 11

Localization Operators T2 − (3 + 2ζ3), U11 + ζ3

Sturm bound m = 14, k = 52, and bound is 59

Generators of cotangent space T2 − (3 + 2ζ3), U11 + ζ3 and ⟨79⟩ − 1

Remark 1.4.3.3 (For the table above).

1. For those left blank, I have not worked out but I will work out after application.
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2. The modular form 13.4.c.b has coefficients in Q[
√
−3,
√
17]. There are 4 eigenforms

that are conjugate to each other over Q. Let’s say they are f1, f2, f3 and f4. Over Q5,

the Galois orbit over Q splits into two over Q5: f1 and f2 are conjugate and f3 and

f4 are conjugate. By checking the a2-coefficient, we see that they are not congruent

to each other nor the two forms labeled 13.4.c.a. Without loss of generality, we pick

f0 = f1. We have a2(f3) is a root of x2 + x+ 2 in characteristic 5.

3. We verify TW1 by the following reasoning. Since r is absolutely irreducible, the global

representation ρ is, as well. The image of Pρ either contains PSL2(F5) or is exceptional.

If it contains PSL2(F5), then we are done. So we assume that ImPρ is exceptional, i.e.

dihedral, A4 or S4. (In this case, A5 is not an exceptional image because p = 5.) The

group Pρ(GQ(ζ5)
) contains the derived subgroup of Pρ(GQ) and it has index divisible

by 4 inside Pρ(GQ). If Pρ(GQ)
∼−→ A4, then Pρ(GQ(ζ5)

) is a subgroup that contains

V4 and has index divisible by 4, which forces Pρ(GQ(ζ5)
) = A4. Hence, TW1 holds in

this case. The same reasoning works for the case Pρ(GQ)
∼−→ S4. Therefore, the only

possible situation that ρ|GQ(ζ5)
is reducible is when ImPρ is dihedral D2r of order 2r.

Let ℓ ̸= 5, 13 be a prime number. Suppose that ρ(Frobℓ) has eigenvalues λ1 and λ2.

Since we assume ρ has exceptional image, ρ(Frobℓ) is semisimple and thus Pρ(Frobℓ)

is the ratio λ1λ−12 . By calculating the ratios of the eigenvalues of Frobenius elements

(up to primes ℓ ≤ 2000), which are roots of

x2 −
(
aℓ(f0)

2

χ(ℓ)ℓ3
− 2

)
x+ 1 = 0,

we see that the orders of the ratios are 1 or 2 or 3. So the dihedral group must be S3

assuming that 2000 is enough for Chebotarev’s density theorem. However, since the

projective image of GQ5
is D4, this is not possible. In conclusion, the TW1 condition

is satisfied.
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4. On the other hand, our computations strongly suggest that if ρ is exceptional, the

projective image of ρ is A4. Looking up in LMFDB LMFDB Collaboration [2022],

there is a unique number field 12.0.12745792515625.1 whose Galois group is A4 and

is tamely ramified at 5 and 13. By Serre [1986], the projective Galois representation

whose image is A4 can be lifted to an actual Galois representation without introducing

more ramification, and by Serre’s conjecture should come from a modular form f of

level 13. Since the image of GQp
is V4 ≤ A4, this implies the local representation

at 5 is induced and thus a5(f) = 0. Furthermore, the weight k of f is such that

ω
(p−1)(k−1)
2 has order 2 because IQp

has image Z/2 ≤ V4. This together with the

Fontaine–Laffaille bound on k forces k = 4. The image of GQ13
is Z/3 and 13 is totally

ramified. Thus the Nebentypus character of f has order divisible by 3. With all these

conditions combined, we deduce that this f is one embedding of 13.4.c.b. The question

is whether it is coming from the Galois orbit of f1 or f3. These two forms have the

same Nebentypus character (after choosing an embedding of ζ3 ∈ Q5.) By checking

their Fourier coefficients at prime number ℓ ≤ 2000, we conclude that f1 and f3 differ

by a twist of the Legendre symbol (·/5) = ω2 in characteristic p. Thus they give rise

to the same projective image which has to be A4.

5. Using a similar argument as in the example 12.3.c.a, we conclude that ad0ρ = χTetra,

where χTetra is the three dimensional irreducible representation of A4.

6. The prime q = 11 is a Taylor–Wiles prime. The element ρ(Frob11) has characteristic

polynomial

x2 + (ζ3 + 1)x+ ζ3,

which has distinct roots 1 and ζ3. Since ρ has exceptional image, using the inflation–
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restriction sequence, we need to verify that

HomA4
(RCl(F, 11)/5, ad0ρ) = 0.

Using Magma Bosma et al. [1997], we directly compute that RCl(F, 11)/5 is one-

dimensional. This is the trivial representation of A4, which corresponds to the pro-5

part of the cyclotomic extension Q(ζ11)/Q. Hence the Selmer group vanishes and

q = 11 is indeed a Taylor–Wiles prime.

1.5 Conjectures

We formulate conjectures when k0 = 2, based on the data we have collected from §1.4.2.

Let Shk(x) be the shift function that is a formal power series in the variable x:

Shk(x) := xµ(k)
∞∑
i=0

xi = xµ(k)(1− x)−1

where the function µ(k) depends on the p-adic expansion of k as follows. The weight k can

be uniquely written in the form k = 2+ a(p− 1) + b(p2− 1) where a and b are non-negative

integers with 0 ≤ a ≤ p. Let b =
∑∞

i=0 bip
i be the p-adic expansion of b with 0 ≤ bi ≤ p− 1.

We define the p-adic function ψ(b) in b to be

ψ(b) :=
∞∑
i=0

b2ip
i + 2

∞∑
i=0

b2i+1p
i,
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and we let µ(k) be the quantity

µ(k) =


ψ(b) a = 0

1 + ψ(b) a = 2

+∞ otherwise

.

When µ(k) = +∞, the series Shk(x) is understood to be 0.

Conjecture 1.5.0.1. If r|Ip ∼

ω2 0

0 ω
p
2

, then the Hilbert series of Rk ⊗ F is

Hk(x) =
∑

2≤i≤k
p−1|i−2

Shi(x).

Remark 1.5.0.2. Based on Fact 1.4.2.2(1), we assume that the associated graded algebra

Gr(Rk
r ⊗ F) of Rk

r ⊗ F is finite free over FJdK. Using the following proposition, it then

suffices to conjecture the Hilbert series of Rk
r ⊗ F/(d). The Artinian algebra is isomorphic

to T(k,∅)⊗ F by Remark 1.2.3.14.

Proposition 1.5.0.3. Let R be a graded algebra and a ∈ R a homogeneous element of degree

d which is not a zero divisor. Then

HR(x) =
HR/a(x)

1− xd
,

where HR(x) and HR/a(x) are the Hilbert series of R and R/a, respectively.

Corollary 1.5.0.4 (Bao [2023b]). Assume that Conjecture 1.5.0.1 is true. Then the follow-

ing holds.
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1. The sequence {Hk(x)}k=2+n(p−1) is an increasing sequence in k, i.e.

Hk(x) ≥ Hk−(p−1)(x).

2. The limit of Hk(x) as k goes to ∞ is the Hilbert–Samuel function of Runiv
r ⊗ Fp

∼−→

FpJx1, x2, x3K, i.e.

lim
k→∞

p−1|k−2

Hk(x) =
1

(1− x)3
=
∞∑
i=0

(
i+ 2

2

)
xi.

3. The effectiveness of the limit: Let n be a positive number with its unique p-adic expan-

sion
∑∞

i=0(ai+2bi)p
i such that 0 ≤ ai+2bi < p with ai ∈ {0, 1} and bi a non-negative

integer. Set k to be the integer

k := 2 + (p2 − 1)(
∞∑
i=0

aip
2i +

∞∑
i=0

bip
2i+1).

Then k is the smallest integer such that the n-th coefficient of Hk(x) is equal to
(n+2

2

)
.

Proof.

1. This follows from directly from the conjectural form of Hk(x).

2. Note that

lim
k→∞

p−1|k−2

HS(k) =
∑
i≥2

p−1|i−2

Sh(i) = (1− T )−1
∑
i≥2

p−1|i−2

Tµ(i).

To prove (1), it suffices to show

∑
i≥2

p−1|i−2

Tµ(i) =
1

(1− T )2
=
∑
j≥0

(j + 1)T j ,
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which is equivalent to

#{i : µ(i) = j, i ≥ 2, p− 1|i− 2} = j + 1.

By definition of µ(i), we see that the above is equivalent to

#{b ∈ Z : ψ(b) = j or j − 1, b ≥ 0} = j + 1,

Now if we set A =
∑

i≥0 b2ip
i, B =

∑
i≥0 b2i+1p

i, then by definition of ψ, we have

#{b ∈ Z : ψ(b) = j, b ≥ 0} = #{(A,B) ∈ Z× Z : A+ 2B = j, A,B ≥ 0} = ⌊j/2⌋+ 1.

Thus

#{b ∈ Z : ψ(b) = j, b ≥ 0}+#{b ∈ Z : ψ(b) = j − 1, b ≥ 0}

= ⌊j/2⌋+ 1 + ⌊(j − 1)/2⌋+ 1 = j − 1 + 2 = j + 1.

3. We have

µ(k) = ψ

( ∞∑
i=0

aip
2i +

∞∑
i=0

bip
2i+1

)
=
∞∑
i=0

(ai + 2bi)p
i = m.

For k′ > k, we will show that µ(k′) > µ(k). We first let

k′ = 2 + (p2 − 1)(
∞∑
i=0

a′ip
2i +

∞∑
i=0

b′ip
2i+1) = 2 + (p2 − 1)(

∞∑
i=0

(a′i + b′ip)p
2i)

for integers 0 ≤ a′i < p and 0 ≤ b′i < p. Since k and k′ are positive integers, the p-adic

expansions above all have finitely many terms. Since k′ > k, there exists a biggest

integer i0 such that a′i0 + b′i0p > ai0 + bi0p. Then either b′i0 > bi0 or b′i0 = bi0 and
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a′i0 > ai0 . Now we have

µ(k′)− µ(k) = ψ

( ∞∑
i=0

a′ip
2i +

∞∑
i=0

b′ip
2i+1

)
− ψ

( ∞∑
i=0

aip
2i +

∞∑
i=0

bip
2i+1

)

=

i0∑
i=0

(a′i + 2b′i)p
i −

i0∑
i=0

(ai + 2bi)p
i

= (a′i0 + 2b′i0 − ai0 − 2bi0)p
i0 +

i0−1∑
i=0

(a′i + 2b′i − ai − 2bi)p
i.

Since 0 ≤ ai ≤ 1 and 0 ≤ ai + 2bi < p, we have

a′i0 + 2b′i0 − ai0 − 2bi0 ≥ 1

and

a′i + 2b′i − ai − 2bi ≥ −(p− 1).

Thus

µ(k′)− µ(k) ≥ pi0 − (p− 1)

i0−1∑
i=0

pi = pi0 + (1− p)1− p
i0

1− p
= 1.

In the case when k′ ≡ 2p mod p2 − 1, by the proposition below, we have µ(k′) ≥

µ(k′ + p2 − 2p − 1). Thus HSk(x) is the smallest integer whose m-th coefficient that

is the largest among all weights. But since the limit of HSk(x) is (1− x)−3, the m-th

coefficient is equal to
(m+2

2

)
.

Proposition 1.5.0.5. If k ≡ 2p mod (p2 − 1), then µ(k) ≥ µ(k + p2 − 1− 2p).

Proof. We have

k = 2 + 2(p− 1) + b(p2 − 1)
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for some positive integer b. Then

k + p2 − 1− 2p = 2 + (b+ 1)(p2 − 1).

Suppose that

b = (p− 1)

n0−1∑
i=0

pi +
N∑

i=n0

bip
i

for some integer N and 0 ≤ bi ≤ p− 2. Then b+ 1 has p-adic expansion

b+ 1 = (bn0 + 1)pn0 +
N∑

i=n0+1

bip
i.

If n0 is odd, then

1 + ψ(b)− ψ(b+ 1) = 1 + (p− 1)

(n0−1)/2∑
i=0

pi + 2(p− 1)

(n0−3)/2∑
i=0

pi − p(n0−1)/2

= 1 + 3(p− 1)

(n0−3)/2∑
i=0

pi ≥ 1.

If n0 is even, then

1 + ψ(b)− ψ(b+ 1) = 1 + 3(p− 1)

(n0−2)/2∑
i=0

pi − pn0/2

= 1 + 3(pn0/2 − 1)− pn0/2 = 2(pn0/2 − 1) ≥ 0.

Based on Fact 1.4.2.2(1), we also make the following conjecture.
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Conjecture 1.5.0.6. When k0 = 2, the ring Rk is Gorenstein if and only if

k = k1 + (p2 − 1)
(
apN − 1

)

for some integers 2p ≤ k1 ≤ p2 − p+ 2 such that k1 ≡ k0 mod p− 1, N ≥ 0 and 1 ≤ a ≤ p

with the exception that k = 2 and k = p+ 1, in which case Rk
r is formally smooth over O.

1.6 Future plan

The following are things we are working on now and want to explore in the future.

1.6.1 Horizontal Breuil–Mézard conjecture

We are currently computing the k0 = 3 example in Python. We plan to compute all other

examples from §1.4.3 to validate and explore variations of conjectures 1.5.0.1 and 1.5.0.6 in

different cases. We will also look for examples where r is reducible and Schur and carry out

the computations.

We are eventually interested in interpreting the conjectural form of Hk(x) on the auto-

morphic side. We hope to find the corresponding invariant from the representation theory

of GL2(Qp).

1.6.2 Components of the crystalline deformation rings

Since we are able to compute the matrices of the Tp operator acting on M(k,Q) up to some p-

adic precision, we have access to analyzing the ap values of the crystalline representations that

come from modular forms on the crystalline deformation rings. Combined with Rozensztajn’s

work Rozensztajn [2020], we can analyze the distribution of the modular points on different

components of the crystalline deformation rings. There are many open questions on these

components. How many components are there? Are modular points evenly distributed on
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the components? Are there corresponding automorphic invariant that can be linked to the

number of components of Rk
r?

1.6.3 The cokernel Ck

We wonder if M̂ is finite free over the Iwasawa algebra as M is from Lemma 1.3.4.7. The

freeness of M comes from geometry while M̂ is something less straightforward to understand.

This is related to understanding how divisible ap is by p. One idea is to check out Conrad

[2007]. But this is all very vague.
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Yongquan Hu and Vytautas Paškūnas. On crystabelline deformation rings of
Gal(Qp/Qp)(with an appendix by Jack Shotton). Mathematische Annalen, 373:421–487,
2019.

Loo-keng Hua et al. On the least solution of pell’s equation. Bulletin of the American
Mathematical Society, 48(10):731–735, 1942.

Daniel Huybrechts. Lectures on K3 Surfaces. Cambridge Studies in Advanced Mathematics.
Cambridge University Press, 2016. doi:10.1017/CBO9781316594193.

111

https://doi.org/10.1215/S0012-7094-90-06119-8
https://doi.org/10.1215/S0012-7094-90-06119-8
https://doi.org/10.1215/S0012-7094-90-06119-8
https://doi.org/10.1007/BF01420494
https://api.semanticscholar.org/CorpusID:55643816
https://api.semanticscholar.org/CorpusID:55643816
https://doi.org/10.1017/CBO9781316594193


Naomi Jochnowitz. Congruences between systems of eigenvalues of modular forms. Transac-
tions of the American Mathematical Society, 270(1):269–285, 1982a. ISSN 00029947. URL
http://www.jstor.org/stable/1999772.

Naomi Jochnowitz. A study of the local components of the hecke algebra mod ℓ. Transactions
of the American Mathematical Society, 270(1):253–267, 1982b.

John W. Jones and David P. Roberts. A database of number fields. LMS Journal of Com-
putation and Mathematics, 17(1):595–618, 2014. doi:10.1112/S1461157014000424.

Nicholas M Katz. P-adic properties of modular schemes and modular forms. In Modular
functions of one variable III, pages 69–190. Springer, 1973.

Nicholas M Katz. A result on modular forms in characteristic p. In Modular functions of
one variable V, pages 53–61. Springer, 1977.

Nicholas M Katz and Barry Mazur. Arithmetic moduli of elliptic curves. Number 108.
Princeton University Press, 1985.

Chandrashekhar Khare and Jean-Pierre Wintenberger. Serre’s modularity conjecture (i).
Inventiones mathematicae, 178(3):485–504, 2009a.

Chandrashekhar Khare and Jean-Pierre Wintenberger. Serre’s modularity conjecture (ii).
Inventiones mathematicae, 178(3):505–586, 2009b.

Ian Kiming and Helena A. Verrill. On modular mod ℓ galois representations with ex-
ceptional images. Journal of Number Theory, 110(2):236–266, 2005. ISSN 0022-314X.
doi:https://doi.org/10.1016/j.jnt.2004.05.003. URL https://www.sciencedirect.com/
science/article/pii/S0022314X04000952.

Mark Kisin. Modularity for some geometric galois representations-with an appendix by ofer
gabber. L-functions and Galois representations, pages 438–470, 2007.

Mark Kisin. Potentially semi-stable deformation rings. Journal of the American Mathemat-
ical Society, 21(2):513–546, 2008. ISSN 08940347, 10886834. URL http://www.jstor.or
g/stable/20161376.

Mark Kisin. The Fontaine-Mazur conjecture for GL2. Journal of the American Mathematical
Society, 22(3):641–690, 2009a. ISSN 08940347, 10886834. URL http://www.jstor.org/
stable/40587246.

Mark Kisin. Moduli of finite flat group schemes, and modularity. Annals of Mathematics,
pages 1085–1180, 2009b.

Mark Kisin. Deformations of GQp
and GL2(Qp) representations. Asterisque-Societe Math-

ematique de France, 2010.

Serge Lang. Elliptic functions. In Elliptic Functions, pages 5–21. Springer, 1987.

112

http://www.jstor.org/stable/1999772
https://doi.org/10.1112/S1461157014000424
https://doi.org/https://doi.org/10.1016/j.jnt.2004.05.003
https://www.sciencedirect.com/science/article/pii/S0022314X04000952
https://www.sciencedirect.com/science/article/pii/S0022314X04000952
http://www.jstor.org/stable/20161376
http://www.jstor.org/stable/20161376
http://www.jstor.org/stable/40587246
http://www.jstor.org/stable/40587246


Serge Lang. Algebra. springer, 2002.

D. H. Lehmer. The vanishing of Ramanujan’s function τ(n). Duke Mathematical Journal,
14:429–433, 1947.

The LMFDB Collaboration. The L-functions and modular forms database. http://www.lm
fdb.org, 2022. [Online; accessed 15 September 2022].

DAVID LOEFFLER and JARED WEINSTEIN. On the computation of local components
of a newform. Mathematics of Computation, 81(278):1179–1200, 2012. ISSN 00255718,
10886842. URL http://www.jstor.org/stable/23267992.

Daniel Mamo. A newform theory for mod-p katz modular forms. The Ramanujan Journal,
60:861–884, 2023. doi:10.1007/s11139-022-00651-8. URL https://doi.org/10.1007/s1
1139-022-00651-8.

Barry Mazur. Deforming Galois Representations. In Y. Ihara, K. Ribet, and J-P. Serre,
editors, Galois Groups over Q, volume 16 of Mathematical Sciences Research Institute
Publications, pages 385–437. Springer, New York, NY, 1989. URL https://doi.org/10
.1007/978-1-4613-9649-9_7.

J.S. Milne. Arithmetic Duality Theorems. BookSurge, LLC, second edition, 2006. ISBN
1-4196-4274-X.

J.S. Milne. Class field theory (v4.03), 2020. Available at www.jmilne.org/math/.

Elias Milnor, John Milnor, Milnor John, and John N Mather. Introduction to algebraic
K-theory. Number 72. Princeton University Press, 1971.

Enno Nagel and Aftab Pande. Reductions of modular galois representations of slope (2, 3).
arXiv preprint arXiv:1801.08820, 2018.

Jürgen Neukirch. Algebraic Number Theory, volume 322 of Grundlehren der mathematischen
Wissenschaften. Springer-Verlag Berlin Heidelberg, 1999.

Frans Oort. Abelian varieties over finite fields. NATO SECURITY THROUGH SCIENCE
SERIES D-INFORMATION AND COMMUNICATION SECURITY, 16:123, 2008.

Lue Pan. The fontaine-mazur conjecture in the residually reducible case. Journal of the
American Mathematical Society, 35(4):1031–1169, 2022.

Mihran Papikian. Honda-tate theorem for elliptic curves. 2015.
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