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ABSTRACT

This dissertation presents work on the stochastic modeling and control of service systems,

within the broader fields of management science and operations management. Chapters 1

and 2 focus on the ridesharing industry. They contain the contents of the papers Alwan

and Ata [2020] and Alwan et al. [2024a], respectively. Chapter 3 studies an online content

moderation system. It contains the contents of the working paper Alwan et al. [2024b].

In the first chapter, we develop a closed queueing network model of a ride-hailing system,

where cars are conceptualized as jobs circulating through various nodes representing different

city regions. By incorporating travel times between these nodes, our model achieves a high

degree of generality, and allows for a detailed analysis of the dynamics and flow of cars within

the system. We rigorously prove a novel heavy traffic limit theorem for this queueing network,

providing an approximation for the original ride-hailing system that becomes increasingly

accurate as the system approaches heavy traffic.

In the second chapter, we study a stochastic control problem based on the model presented

in the first chapter, this time with a focus on a simplified structure featuring only a singular

travel time node. To be more specific, we study a system where a system manager makes

dynamic pricing and dispatch control decisions in a queueing network model motivated by

ride-hailing applications. As in the first chapter, a novel feature of the model is that it

incorporates travel times. The objective is to maximize the long-run average profit by making

dynamic pricing and dispatch control decisions. Since this problem appears analytically

intractable, we consider an approximating Brownian control problem in the heavy traffic

regime. Under the assumptions of complete resource pooling and common travel time and

routing distributions, we exploit an equivalence between the Brownian control problem and a

one-dimensional workload formulation. We then solve the workload formulation in closed

form by analyzing the corresponding Bellman equation. Using this solution, we propose a

policy for the original queueing system and illustrate its effectiveness in a simulation study.
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In the third chapter, we study the moderation of user-generated content by online

platforms, with a particular focus on social media companies. The increased popularity of

social media in recent years has led to an explosion of user-generated content. Although

a substantial portion of this content is harmless, social media companies bear the crucial

responsibility of protecting their users from harmful material. This has prompted the need

for robust content moderation systems capable of accurate content classification. We propose

a stochastic modeling framework for an online content moderation system that integrates

a machine learning classifier with human moderators. Our focus is on determining which

content should be reviewed by human moderators. On the one hand, manual review by

human moderators improves the classification accuracy of content and better trains the

machine learning classifier through supervised learning. On the other hand, sending content

for human review results in delayed posting and removal decisions, and leaves the human

reviewers at a higher risk for viewing disturbing content. Through a simulation study, we

aim to explore the trade-off between learning and system congestion that arises when the

platform sends multiple copies of a piece of content for human review. We also present a

related stochastic model for online content moderation via a Bayesian learning framework.

We study this model in an asymptotic regime where the volume of arriving content is high

and where the informativeness of each human-assigned label is low. In that regime, we derive

a diffusion approximation for a process that describes the platform’s belief on the underlying

violation status of the content in the system.
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CHAPTER 1

A DIFFUSION APPROXIMATION FRAMEWORK FOR

RIDE-HAILING WITH TRAVEL DELAYS

1.1 Introduction

This paper formulates and studies a closed queueing network motivated by ride-hailing

systems such as Uber, Lyft, and Didi Chuxing. In these systems, customers request rides via

a mobile application to travel from their current (pick-up) location to their final (drop-off)

destination. Simultaneously, drivers wait for the mobile application to match them with

the customer requests. Consequently, cars circulate through different regions of the city by

picking up customers and delivering them to their desired destinations.

We consider a city partitioned into a finite set of geographical regions. Each such region

constitutes a pick-up and a drop-off location. Crucially, our model incorporates the travel

times between different regions of the city. We also allow customer heterogeneity by allowing

customers in a region to have different destinations. Our model tracks the movements of cars

between the various city regions as they pick up arriving customers and deliver them to their

destinations. However, before a customer is dropped off, there is a time delay due to the

travel times between the pick-up and drop-off locations. This is an important feature of our

model. Figure 1.1 shows an illustrative example. Namely, it partitions the map of New York

City into nine geographical regions. For this example, our model tracks the movements of

cars between the nine regions.

To be specific, the queueing network model has single-server and infinite-server nodes.

The single-server nodes correspond to different regions of the city, whereas the infinite-server

nodes model the travel times between different regions. Cars move between different server

nodes according to a probabilistic routing structure; see Section 1.3 for details.

The ultimate goal of a ride-hailing system is to maximize its profit. As such, it is important
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Figure 1.1: A map of New York City partitioned into nine geographical regions.

for a ridesharing company to exert some control over the movement of cars on their platform.

However, to effectively exert control requires first understanding how cars on their platform

organically move throughout the city. This paper provides a first step in this important

direction. In particular, we develop a diffusion approximation framework for ride-hailing

systems with travel times. This approximation framework is justified via a weak convergence

result for the queue length processes corresponding to the cars in the network; see Theorem 1.

The rest of the paper is organized as follows. Section 1.2 reviews the relevant literature.

Section 1.3 formalizes our ridesharing model by introducing the model primitives and making

a sample-path construction of the queue-length processes describing our ridesharing network.

Section 1.4 puts forth our heavy traffic assumption and diffusion scaling regime, and states

the main result of the paper (Theorem 1). Section 1.5 outlines the main tools needed to

prove Theorem 1. Section 1.6 is devoted to a proof of Theorem 1, which involves proving

convergence of the fluid-scaled processes. Section 1.7 concludes and discusses future research.

Relevant notation and technical preliminaries are given in Appendix 1.8.1. Proofs of the

results in Section 1.5, as well as all auxiliary results and derivations, are given in Appendices

1.8.2, 1.8.3, 1.8.4, and 1.8.5.
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1.2 Literature Review

Our paper is related to two streams of literature. The first stream is on the modeling and

analysis of ride-hailing networks, while the second stream is on the heavy traffic analysis of

queueing network models.

The literature on ride-hailing has greatly expanded in recent years. A majority of the

operational work on ride-hailing is on how pricing, matching, and car repositioning can

impact system performance. The effect of pricing in ridesharing has been studied in Banerjee

et al. [2016], Banerjee et al. [2022], Cachon et al. [2017], Besbes et al. [2021], Bimpikis et al.

[2019], and Ata et al. [2020b], among others. Banerjee et al. [2016] studies dynamic pricing

for a single-region system. They show that system performance under any dynamic pricing

policy cannot exceed the performance under the optimal static pricing policy. Banerjee et al.

[2022] designs pricing policies through a general approximation framework and show that the

approximation ratio of the resulting pricing policy improves as the number of cars in each

region grows. Despite the negative publicity of surge pricing, Cachon et al. [2017] demonstrate

that surge pricing in a ridesharing platform can actually make both the platform and the

customers better off. Besbes et al. [2021] also studies the problem of pricing in ridesharing

systems with price sensitive customers and drivers.

Both Bimpikis et al. [2019] and Ata et al. [2020b] use spatial search models to study

spatial pricing in ride-hailing networks with strategic drivers. Predating these papers, Lagos

[2000] is one of the first papers to study spatial search frictions in the taxi industry. This

paper highlights how search frictions endogenously arise as a result of the strategic movement

of taxi drivers. Building on this paper, Bimpikis et al. [2019] studies spacial pricing of

ridesharing systems analytically. They show that when demand patterns in the network

are not “balanced,” spatial pricing can be very beneficial by increasing consumer surplus.

On the other hand, Ata et al. [2020b] take an empirical approach to study how spatial
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pricing and search frictions can impact the taxi market in New York City. To be specific,

they use a mean field model to represent the taxis in the system and show how origin and

origin-destination based pricing can reduce search frictions and increase consumer surplus.

They do so empirically by performing a counterfactual analysis using data of taxi trips in

New York City. Other related papers that study pricing in ridesharing include Chen and

Sheldon [2016], Castillo et al. [2018], Lu et al. [2018], Hu and Zhou [2020], Gokpinar and

Selcuk [2019], Garg and Nazerzadeh [2021], Hu et al. [2022], and Afèche et al. [2021].

Özkan and Ward [2020], Özkan [2020], and Banerjee et al. [2018] study matching (or

dispatch control) in ridesharing platforms. In particular, Özkan and Ward [2020] models

a ridesharing system as a non-stationary open queueing network where both drivers and

customers exogenously arrive to the system. They propose a matching policy based on the

solution to a continuous linear program and demonstrate that this policy is asymptotically

optimal (in the fluid scale) in a large market regime where the arrival rates of drivers and

customers are large. Özkan [2020] studies both the pricing and matching in ridesharing

systems. The author demonstrates that joint pricing and matching provides significant

performance increase over only optimizing over pricing or only over matching decisions.

Finally, Banerjee et al. [2018] studies dispatch control in ridesharing systems. They model

ridesharing systems as a closed queueing network model and proposes a family of state-

dependent dispatch policies called Scaled MaxWeight policies. Under a complete resource

pooling assumption, they show that the proportion of dropped demand under any Scaled

MaxWeight policy decays exponentially. Other related papers include Wang et al. [2017],

Lam and Liu [2017], Yan et al. [2020], Guda and Subramanian [2019b], Kanoria and Qian

[2019], and Bertsimas et al. [2019].

Other work considers repositioning control, including that of Braverman et al. [2019],

Afèche et al. [2023], and Ata et al. [2020a], among others. Braverman et al. [2019] models

a ridesharing system as a closed queueing network and study it under fluid scaling. They
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focus on “empty-car routing” where a car without a customer can be repositioned to another

region of the city. This paper proves that the solution to a suitable linear program serves

as an upper bound for the utility obtained under any state-dependent routing policy in the

finite-car system. From a modeling perspective, Braverman et al. [2019] is closely related

to ours because both explicitly model the travel times between city regions. However, an

important difference is that our work allows for stochastic variability, while Braverman et al.

[2019] studies a fluid-based model. On the other hand, Afèche et al. [2023] studies both

demand-side admission control of customers as well as supply-side repositioning control of

cars. In particular, they develop several insights on the interplay between centralized and

de-centralized admission and repositioning control on the effect they have on the system.

Contrary to the previous two papers, Ata et al. [2020a] considers a ride-hailing system with

both repositioning and matching control. In particular, they model a ridesharing system as a

stochastic processing network where the activities in the network correspond to repositioning

cars from one area to another and dynamically matching customers with cars. By employing

the general approach outlined in Harrison [2003], Ata et al. [2020a] proposes a solution to

the original stochastic control problem by studying a the related Brownian control problem,

which arises as a heavy traffic approximation to the original system. Other related papers

include He et al. [2020] and Hosseini et al. [2021].

On the other hand, from a methodological perspective our paper involves the analysis of

queueing network models, but more specifically on the asymptotic analysis of closed queueing

networks containing infinite-server nodes. Related work includes that of Krichagina and

Puhalskii [1997], Kogan and Lipster [1993], Kogan et al. [1986], and Smorodinskii [1986]. For

example, Krichagina and Puhalskii [1997] studies a closed queueing model containing one

single-server queue and one infinite-server queue (with a general service time distribution),

and derive heavy traffic limits. On the other hand, Kogan and Lipster [1993] study a closed

queueing network with many single-server queues and one infinite-server queue. In that
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paper, all the single-server queues except one are in a “light-usage regime,” while the other

single-server queue is studied in both a “moderate-usage regime” and a “heavy-usage regime.”

They prove a state-space collapse result for the single-server queues in the light-usage regime,

but prove diffusion approximation results for the single-server queue in the moderate-usage

and heavy-usage regimes. Limit results for the queue length processes in closed queueing

results are also established in the latter two papers Kogan et al. [1986] and Smorodinskii

[1986]. Other papers that employ a similar type of analysis to ours include Ata and Kumar

[2005], Ata and Lin [2008], Ata and Olsen [2009, 2013], and Reed and Ward [2008], among

others.

To the best of our knowledge, this is the first paper to develop a diffusion approximation

for a ride-hailing system while incorporating travel times between regions. Ata et al. [2020a]

also proposes a diffusion approximation for ride-sharing systems, but does not incorporate

travel times. Travel times are important from a practical perspective. However, with the

exception of Braverman et al. [2019], most of the ride-hailing literature appears to ignore

them effectively by assuming instantaneous pick-up and drop-off of customers. Our work

builds on but differs from Braverman et al. [2019]. Namely, we model the uncertainty through

the second moments of stochastic primitives, whereas Braverman et al. [2019] work with a

deterministic model.

1.3 Ridesharing Model

The model has three key components: (i) J city regions where customers are picked up from

and dropped off to, (ii) K travel times that correspond to the time that rides from one city

region to another take, and (iii) a probabilistic routing structure that governs movement of

cars. To be more specific, our model contains two levels of probabilistic routing. The first

level is from the city regions to travel time nodes, while the second level is from travel time

nodes to city regions. In the first level, a customer arriving to region j ∈ [J] requests a ride

6



requiring travel time k ∈ [K] with probability pjk. In the second level, a car taking travel

node k will, with probability qkj , deliver the customer to region j. It should be noted that

the arbitrary nature of the routing structure and the arbitrary number of travel nodes makes

our model almost completely general. In particular, our model subsumes the K = J2 case,

where an arriving customer to region j will get routed to region j′ ∈ [J] with probability

pjj′ . This occurs when the travel times between any two regions of the city are different.

The two-level probabilistic routing with K travel times not only allows for arbitrarily general

routing structures but also provides modeling flexibility. It also can help lower the dimension

of the state space.

Each city region is modeled by a single-server queue, where a service completion cor-

responds to a customer arrival to the region who is subsequently picked up by a car. On

the other hand, the K travel time nodes are modeled by infinite-server queues. A service

completion at an infinite-server queue corresponds to a car finishing its travel with a customer

from the pick-up location to the drop-off location.

In what follows, we consider a sequence of systems indexed by the total number of cars

n ∈ N ∶= {1, 2, . . .}. Each system is a closed queueing network with J single-server queues, K

infinite-server queues, and the probabilistic routing structure mentioned above. We study

this sequence of systems in the heavy traffic asymptotic regime as n→∞. A superscript of

n will be attached to various quantities of interest to indicate they correspond to the nth

system.

1.3.1 Model Primitives

The service rate at a single-server queue reflects the demand rate at the corresponding city

region. We consider a regime in which both the number of cars and the demand gets large.

7



Thus, the service rate µnj at the single-server queue j ∈ [J] in the nth system is given by

µnj ∶= nµj , n ∈ N, (1.1)

where µj > 0 is a fixed parameter for j ∈ [J]. The service rates at the infinite-server queues do

not vary with n. In particular, the service rate of infinite server k ∈ [K] is denoted by ηk > 0.

To facilitate the description of the system dynamics in Section 1.3.2, we define the following

Poisson processes (one for each queue): For j ∈ [J] and k ∈ [K] we let

Nj = {Nj(t) ∶ t ≥ 0} and Mk = {Mk(t) ∶ t ≥ 0} (1.2)

be independent rate-one Poisson processes.

To model the probabilistic routing of cars, we take as given the stochastic matrices

P = (pjk) ∈ RJ×K and Q = (qkj) ∈ RK×J (1.3)

representing routing from single-server queues to infinite-server queues and from infinite-server

queues to single-server queues, respectively. To be more specific, for j ∈ [J] and k ∈ [K] let

ϕj = {ϕj(l) ∶ l ≥ 1} and ψk = {ψk(l) ∶ l ≥ 1} (1.4)

denote independent sequences of i.i.d. random (routing) vectors. Their probability distribu-

tions are given by

pjk ∶= P (ϕj(1) = ek) and qkj ∶= P (ψk(1) = ej) , (j, k) ∈ [J] × [K], (1.5)

where ek and ej are the kth and jth standard unit basis vector in RK and RJ , respectively.

We assume that these random routing vectors are independent of all other stochastic model
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primitives. The associated cumulative routing processes Φjk = {Φjk(m) ∶ m ≥ 1} and

Ψkj = {Ψkj(m) ∶m ≥ 1} are defined by the following:

Φjk(m) ∶=
m

∑
l=1

ϕjk(l) and Ψkj(m) ∶=
m

∑
l=1

ψkj(l), m ∈ N, (1.6)

where ϕjk(l) and ψkj(l) are the kth and jth components of ϕj(l) and ψk(l), respectively. In

particular, Φjk(m) represents the total number of customers that are routed from single-server

queue j to infinite-server queue k among the first m customers arriving to region j. The

expression Ψkj(m) can be interpreted similarly.

1.3.2 State Dynamics

For j ∈ [J] we denote by Qn
j (t) the number of jobs in the jth single-server queue at time t

in the nth system. Similarly, for k ∈ [K] we denote by V n
k
(t) the number of jobs in the kth

infinite-server queue at time t in the nth system. Equations (1.8)–(1.9) below define these

processes Qn
j and V n

k
in the natural way. Also, we take as given random variables Qn

j (0) and

V n
k
(0) representing the initial number of cars in the network. We assume that the collection

of these random variables is independent of all other stochastic primitives and that

J

∑
j=1

Qn
j (0) +

K

∑
k=1

V n
k (0) = n, a.s., (1.7)

as required for any closed system.

By conservation of flow, we define the system dynamics via the following equations:

Qn
j (t) = Q

n
j (0) + A

n
j (t) − D

n
j (t), j ∈ [J], t ≥ 0, (1.8)

V n
k (t) = V

n
k (0) + E

n
k (t) − F

n
k (t), k ∈ [K], t ≥ 0, (1.9)

where An
j = {A

n
j (t) ∶ t ≥ 0} and Dn

j = {D
n
j (t) ∶ t ≥ 0} denote the arrival and departure
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processes for single-server queue j. Similarly, En
k
= {En

k
(t) ∶ t ≥ 0} and Fn

k
= {Fn

k
(t) ∶ t ≥ 0}

denote the arrival and departure processes for infinite-server queue k. That is, An
j tracks the

total number of cars that have arrived to region j, while Dn
j tracks the total number of cars

that have departed from region j with a customer. We interpret the processes En
k

and Fn
k

similarly. The following equations define these processes:

An
j (t) ∶=

K

∑
k=1

Ψkj(Fn
k (t)), t ≥ 0, (1.10)

En
k (t) ∶=

J

∑
j=1

Φjk(Dn
j (t)), t ≥ 0, (1.11)

Dn
j (t) ∶= Nj(nµjTn

j (t)), t ≥ 0, (1.12)

Fn
k (t) ∶= Mk(ηk

ˆ t

0
V n
k (s)ds), t ≥ 0, (1.13)

where Φjk and Ψkj are the cumulative routing processes defined in (1.6) and

Tn
j = {T

n
j (t) ∶ t ≥ 0} (1.14)

is the busy time process for the jth single-server queue. To be specific, Tn
j (t) is the cumulative

amount of time the server is busy over [0, t] at single-server queue j ∈ [J]. The corresponding

idleness process Inj = {I
n
j (t) ∶ t ≥ 0} at single-server queue j is defined by

Inj (t) ∶= t − T
n
j (t), t ≥ 0. (1.15)

By (1.7) and (1.10)–(1.13), it is straightforward to verify for t ≥ 0 that

J

∑
j=1

Qn
j (t) +

K

∑
k=1

V n
k (t) = n, a.s. (1.16)

10



Finally, we assume that the following hold for each j ∈ [J]:

Inj is continuous and nondecreasing with Inj (0) = 0, (1.17)ˆ ∞
0

1{Qn
j (s)>0}

dInj (s) = 0, (1.18)

Qn
j (t) ≥ 0 for all t ≥ 0, (1.19)

Inj (t) − I
n
j (s) ≤ t − s for all 0 ≤ s ≤ t. (1.20)

Clearly, we must have Qj(t) ≥ 0 for j ∈ [J]. Also, we restrict attention to work-conserving

policies. That is, the server idleness does not increase as long as the queue is not empty.

These are reflected in (1.18)–(1.19). Lastly, (1.17) and (1.20) are natural consequences of the

interpretation of Inj as server idleness.

1.4 Heavy Traffic Limit Theorem

As a preliminary to stating our main result, we first introduce the heavy traffic assumption.

Assumption 1 (Heavy Traffic Assumption). The following conditions hold. First,

K

∑
k=1

J

∑
i=1

µipikqkj = µj for j ∈ [J]. (1.21)

Second, letting mk ∶= η−1k ∑
J
j=1 µjpjk for k ∈ [K], we assume

K

∑
k=1

mk = 1. (1.22)

Roughly speaking, the first condition assumes that every single-server is fully utilized,

whereas the second condition corresponds to assuming almost all cars are in transit.1 To

1. These heavy traffic conditions can easily be generalized to limit conditions. To state it, suppose that
µj depends on n, for which we write µn

j , and that µn
j → µj ∈ R as n →∞ for each j ∈ [J]. Then (1.21) can
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elaborate on the first condition, note that nµipik is the rate of jobs from single-server queue

i to infinite-server queue k, i.e., the rate of customer arrivals into region i that require travel

time k. The sum ∑J
i=1 nµipik therefore represents the total rate of jobs leaving the city

regions that require travel time k. Then, the expression qkj∑J
i=1 nµipik represents the rate

of cars entering region j from travel node k, and thus the entire sum ∑K
k=1 qkj∑

J
i=1 nµipik

represents the total rate of cars entering region j from travel nodes. Because nµj is the

customer arrival rate to region j, the first condition stats the arrival rate of cars is balanced

out by the customer demand in each region of the city.

We expect the first condition to hold in large cities under optimal spatial pricing provided

the demand is elastic. To be more specific, if it was the case that for some region j that

∑K
k=1∑

J
i=1 µipikqkj ≫ µj , then the supply of cars in region j greatly exceeds customer demand.

By decreasing the price for rides requested from region j, more people in region j will switch

from their current form of transportation to ridesharing as their means for travel. This will

increase the customer arrival rate µj and would eventually balance out supply. It would also

increase the profit because demand is elastic. On the other hand, if it was the case that

for some region j that ∑K
k=1∑

J
i=1 µipikqkj ≪ µj , then customer demand greatly exceeds the

supply of cars in region j. In this case, the ridesharing platform could increase prices for rides

requested in region j, while maintaining the current prices in all other regions i ∈ [J] ∖ {j}.

To shed light on the second condition, note that the arrival rate to the kth infinite-server

queue is n∑J
j=1 µjpjk whereas its service rate is ηk. Based on intuition from the classical

M/M/∞ queue, we expect the steady-state average queue length at the kth infinite-server

to be n∑J
j=1 µjpjk/ηk. Thus, the expected fraction of jobs at the kth infinite-server is mk.

So the condition ∑K
k=1mk = 1 means (almost) all jobs are at the infinite-server queues, i.e.,

(almost) all cars are in transit. This is consistent with the first condition because of the

be replaced with the following condition:
√
n [∑K

k=1∑
J
i=1 µ

n
i pikqkj − µn

j ] → cj ∈ R for all j ∈ [J]. The main
convergence result (Theorem 1) remains unchanged, except that we have an additional drift term cj . A
similar limit condition can be used in place of (1.22).
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following: For each single-sever queue, the arrival and service rates are equal and of order

n. Thus, by the intuition from the central limit theorem, we expect the queue lengths to

be of order
√
n for each single-server queue. Consequently, the total number of jobs in the

single-server queues is of order
√
n, meaning (almost) all jobs are at the infinite-server queues

because this is a closed network.

To facilitate the analysis to follow, we next define the following diffusion and fluid-scaled

processes:

Diffusion Scaled Processes: For j ∈ [J] and k ∈ [K], we define the following processes:

Q̂n
j (t) ∶=

Qn
j (t)√
n
, t ≥ 0, (1.23)

V̂ n
k (t) ∶=

V n
k
(t) − nmk√

n
, t ≥ 0, (1.24)

Înj (t) ∶=
√
nInj (t), t ≥ 0, (1.25)

T̂n
j (t) ∶=

√
nTn

j (t), t ≥ 0, (1.26)

Φ̂n
jk (t) ∶=

Φjk (⌊nt⌋) − pjknt√
n

, t ≥ 0, (1.27)

Ψ̂n
kj (t) ∶=

Ψkj (⌊nt⌋) − qkjnt√
n

, t ≥ 0, (1.28)

N̂n
j (t) ∶=

Nj (nt) − nt√
n

, t ≥ 0, (1.29)

M̂n
k (t) ∶=

Mk (nt) − nt√
n

, t ≥ 0. (1.30)

Fluid Scaled Processes: For j ∈ [J] and k ∈ [K], we define the following processes:

Q̄n
j (t) ∶=

Q̂n
j (t)√
n
, t ≥ 0, (1.31)

V̄ n
k (t) ∶=

V̂ n
k
(t)
√
n
, t ≥ 0, (1.32)

¯̄V n
k (t) ∶=

V n
k
(t)
n

, t ≥ 0, (1.33)
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N̄n
j (t) ∶=

Nj(nt)
n

, t ≥ 0, (1.34)

M̄n
k (t) ∶=

Mk(nt)
n

, t ≥ 0. (1.35)

By applying the scaling in (1.23)–(1.35) and using the heavy traffic conditions, it is straight-

forward to show that the following diffusion-scaled system equations hold for t ≥ 0:

Q̂n
j (t) = Q̂

n
j (0) +

K

∑
k=1

Ψ̂n
kj (M̄

n
k (ηk

ˆ t

0

¯̄V n
k (s)ds)) − N̂

n
j (µjT

n
j (t))

+
K

∑
k=1

qkjM̂
n
k (ηk

ˆ t

0

¯̄V n
k (s)ds) +

K

∑
k=1

qkjηk

ˆ t

0
V̂ n
k (s)ds + µj Î

n
j (t), (1.36)

V̂ n
k (t) = V̂

n
k (0) +

J

∑
j=1

Φ̂n
jk (N̄

n
j (µjT

n
j (t))) − M̂

n
k (ηk

ˆ t

0

¯̄V n
k (s)ds)

+
J

∑
j=1

pjkN̂
n
j (µjT

n
j (t)) − ηk

ˆ t

0
V̂ n
k (s)ds −

J

∑
j=1

pjkµj Î
n
j (t). (1.37)

See Appendix 1.8.5 for a straightforward, albeit tedious, derivation of the diffusion-scaled

system equations (1.36) and (1.37). Defining

ξ̂nj (t) ∶= Q̂
n
j (0) +

K

∑
k=1

Ψ̂n
kj (M̄

n
k (ηk

ˆ t

0

¯̄V n
k (s)ds)) − N̂

n
j (µjT

n
j (t))

+
K

∑
k=1

qkjM̂
n
k (ηk

ˆ t

0

¯̄V n
k (s)ds) , t ≥ 0, (1.38)

ζ̂nk (t) ∶= V̂
n
k (0) +

J

∑
j=1

Φ̂n
jk (N̄

n
j (µjT

n
j (t))) − M̂

n
k (ηk

ˆ t

0

¯̄V n
k (s)ds)

+
J

∑
j=1

pjkN̂
n
j (µjT

n
j (t)) , t ≥ 0, (1.39)

we see that (1.36)–(1.37) can be rewritten as follows:

Q̂n
j (t) = ξ̂

n
j (t) +

K

∑
k=1

qkjηk

ˆ t

0
V̂ n
k (s)ds + µj Î

n
j (t), t ≥ 0, (1.40)
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V̂ n
k (t) = ζ̂

n
k (t) − ηk

ˆ t

0
V̂ n
k (s)ds −

J

∑
j=1

pjkµj Î
n
j (t), t ≥ 0. (1.41)

Furthermore, by applying the fluid scaling in (1.31)–(1.32) to (1.40)–(1.41), we obtain the

following fluid-scaled system equations:

Q̄n
j (t) = ξ̄

n
j (t) +

K

∑
k=1

qkjηk

ˆ t

0
V̄ n
k (s)ds + µjI

n
j (t), t ≥ 0, (1.42)

V̄ n
k (t) = ζ̄

n
k (t) − ηk

ˆ t

0
V̄ n
k (s)ds −

J

∑
j=1

pjkµjI
n
j (t), t ≥ 0, (1.43)

where

ξ̄nj (t) ∶= n
−1/2ξ̂nj (t), t ≥ 0, (1.44)

ζ̄nk (t) ∶= n
−1/2ζ̂nk (t), t ≥ 0. (1.45)

We make the following assumptions on the initial conditions:

Assumption 2 (Joint Convergence of the Initial Conditions). As n→∞,

(Q̂n
1(0), . . . , Q̂

n
J(0), V̂

n
1 (0), . . . , V̂

n
K(0))

⇒ (Q1(0), . . . , QJ(0), V1(0), . . . , VK(0)) ∈DJ+K . (1.46)

The result below establishes the joint convergence of the diffusion-scaled queue length

processes and the idleness processes at the single-server stations to a multidimensional diffusion

process. To facilitate the statement of the result, let (ξ∗, ζ∗) = (ξ∗1 , . . . , ξ
∗
J , ζ
∗
1 , . . . , ζ

∗
K) be a

(0,Σ) Brownian motion with initial state (ξ∗(0), ζ∗(0)) = (Q(0), V (0)), where (Q(0), V (0)) =

(Q1(0), . . . ,QJ(0), V1(0), . . . , VK(0)). By construction and (1.46), observe that ξ∗(0) ≥ 0
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and ∑J
j=1 ξ

∗
j (0) +∑

K
k=1 ζ

∗
k
(0) = 0. The covariance matrix Σ ∈ R(J+K)×(J+K) is given by

Σj,j =
K

∑
k=1

qkj(1 − qkj)ηkmk + µj +
K

∑
k=1

q2kjηkmk, j ∈ [J], (1.47)

ΣJ+k,J+k =
J

∑
j=1

pjk(1 − pjk)µj + ηkmk +
J

∑
j=1

p2jkµj , k ∈ [K], (1.48)

Σi,j =
K

∑
k=1

qkiqkjηkmk, i, j ∈ [J], i ≠ j, (1.49)

Σj,J+k = −pjkµj − qkjηkmk, j ∈ [J], k ∈ [K], (1.50)

ΣJ+l,J+k =
J

∑
j=1

pjlpjkµj , l, k ∈ [K], l ≠ k. (1.51)

Theorem 1 (Joint Convergence of Diffusion Scaled Processes). We have that as n→∞,

(Q̂n, În, V̂ n) ⇒ (Q∗, I∗, V ∗) in D2J+K , (1.52)

where Q∗, I∗, and V ∗ are multidimensional diffusion processes satisfying the following for

all j ∈ [J], k ∈ [K], and t ≥ 0:

Q∗j (t) = ξ
∗
j (t) +

K

∑
k=1

qkjηk

ˆ t

0
V ∗k (s)ds + µjI

∗
j (t) ≥ 0, (1.53)

V ∗k (t) = ζ
∗
k (t) − ηk

ˆ t

0
V ∗k (s)ds −

J

∑
j=1

pjkµjI
∗
j (t), (1.54)

ˆ ∞
0

1{Q∗j (t)>0}
dI∗j (t) = 0. (1.55)

1.5 Auxiliary Results

This section establishes the existence of suitably defined continuous functions that will aid in

the proof of Theorem 1 via a continuous mapping argument; see Appendix 1.8.2 for the proofs

of the results in this section. To that end, fix ξ = (ξ1, . . . , ξJ) ∈DJ and ζ = (ζ1, . . . , ζK) ∈DK
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such that

J

∑
j=1

ξj(t) +
K

∑
k=1

ζk(t) = 0, for all t ≥ 0, (1.56)

ξj(0) ≥ 0, for all j ∈ [J]. (1.57)

The following collection of equations corresponds to our closed ridesharing network with J

single-server stations and K infinite-server stations. That is, for j ∈ [J], k ∈ [K], and t ≥ 0

we consider the following set of equations:

xj(t) = ξj(t) +
K

∑
k=1

qkjηk

ˆ t

0
yk(s)ds + µjuj(t) ∈ [0,∞), (1.58)

yk(t) = ζk(t) − ηk
ˆ t

0
yk(s)ds −

J

∑
j=1

pjkµjuj(t), (1.59)

J

∑
j=1

xj(t) +
K

∑
k=1

yk(t) = 0, (1.60)

uj is nondecreasing with uj(0) = 0, (1.61)ˆ ∞
0

1{xj(t)>0} duj(t) = 0. (1.62)

The next result establishes the existence and uniqueness of solutions to these equations.

Proposition 1. For every (ξ, ζ) ∈ DJ+K satisfying (1.56)–(1.57), there exists a unique

(x,u, y) ∈D2J+K satisfying (1.58)–(1.62).

The following result is now immediate from Proposition 1.

Corollary 1. There exists a unique triple (f, g, h) ∶ DJ+K → D2J+K such that whenever

(ξ, ζ) ∈DJ+K satisfies (1.56)–(1.57), (f(ξ, ζ), g(ξ, ζ), h(ξ, ζ)) satisfies (1.58)–(1.62).

See Appendix 1.8.2 for a characterization of these functions f , g, and h. The final result

of this section establishes the continuity of the mappings defined in Corollary 1.
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Proposition 2. The mapping (f, g, h) ∶ DJ+K → D2J+K from Corollary 1 is continuous

when both the domain and range spaces are endowed with the Skorokhod J1 topology.

1.6 Proof of the Main Theorem

This section contains the main convergence results of this paper, culminating with a proof

of Theorem 1. To begin, Section 1.6.1 proves convergence of the fluid-scaled processes.

These results are necessary because several of the fluid-scaled processes serve as random

time changes in the diffusion-scaled equations. Then, in Section 1.6.2, convergence of the

process (ξ̂n, ζ̂n) given by (1.38)–(1.39) is proven. This, combined with a continuous mapping

argument, allows us to complete the proof of Theorem 1.

1.6.1 Convergence of Fluid Scaled Processes

We begin by establishing convergence of the fluid-scaled processes.

Lemma 1. As n→∞, (ξ̄n, ζ̄n) ⇒ 0 ∈DJ+K .

Proof. To prove that (ξ̄n, ζ̄n) ⇒ 0, it suffices to show [by, for example, Theorem 11.4.5 in

Whitt [2002]] that ξ̄nj ⇒ 0 and ξ̄n
k
⇒ 0 for all j ∈ [J] and k ∈ [K]. On the other hand, to

prove that ξ̄nj ⇒ 0 and ξ̄n
k
⇒ 0, it is sufficient to show that for all T > 0,

∥ξ̄nj ∥T ⇒ 0 and ∥ζ̄nk ∥T ⇒ 0 (1.63)

as random variables; see Lemma 5 in Appendix 1.8.4 for a proof of this claim. By (1.38)–(1.39),

the triangle inequality, and the facts that
´ t
0
¯̄V n
k
(s)ds ≤ t and Tn

j (t) ≤ t for all t ≥ 0, one

readily checks that for all T > 0,

∥ξ̂nj ∥T ≤ ∥Q̂
n
j (0)∥T +

K

∑
k=1
∥Ψ̂n

kj (M̄
n
k (ηk ⋅)) ∥T + ∥N̂

n
j (µj ⋅) ∥T +

K

∑
k=1
∥M̂n

k (ηk ⋅) ∥T , (1.64)
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∥ζ̂nk ∥T ≤ ∥V̂
n
k (0)∥T +

J

∑
j=1
∥Φ̂n

jk (N̄
n
j (µj ⋅)) ∥T + ∥M̂

n
k (ηk ⋅)∥T +

J

∑
j=1
∥N̂n

j (µj ⋅)∥T . (1.65)

Then an application of Donsker’s theorem, the functional central limit theorem for renewal

processes, the random time change theorem, and the continuous mapping theorem can be used

to show that the right-hand sides of (1.64) and (1.65) converge weakly to a nondegenerate

limit. By this and the fact that ξ̄nj = n
−1/2ξ̂nj and ζ̄n

k
= n−1/2ζ̂n

k
, we obtain (1.63). We refer

the reader to Appendix 1.8.4 for additional details.

Lemma 2. As n→∞, (Q̄n, In, V̄ n) ⇒ 0 ∈DJ+K

Proof. Recall from (1.42)–(1.43) that we have

Q̄n
j (t) = ξ̄

n
j (t) +

K

∑
k=1

qkjηk

ˆ t

0
V̄ n
k (s)ds + µjI

n
j (t), t ≥ 0, (1.66)

V̄ n
k (t) = ζ̄

n
k (t) − ηk

ˆ t

0
V̄ n
k (s)ds −

J

∑
j=1

pjkµjI
n
j (t), t ≥ 0. (1.67)

Note that the process (ξ̄n, ζ̄n) satisfies

ξnj (0) = Q̄
n
j (0) ≥ 0, a.s. for all j ∈ [J]. (1.68)

Recall by (1.17) that the process Inj is nondecreasing with Inj (0) = 0. Furthermore, by (1.18),

ˆ ∞
0
1{Q̄n

j (t)>0}
dInj (t) =

ˆ ∞
0
1{n−1Qn

j (t)>0}
dInj (t) =

ˆ ∞
0
1{Qn

j (t)>0}
dInj (t) = 0. (1.69)

By the uniqueness in Proposition 1 and (1.66)–(1.69), it follows that

(Q̄n, In, V̄ n) = (f(ξ̄n, ζ̄n), g(ξ̄n, ζ̄n), h(ξ̄n, ζ̄n)) . (1.70)
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Then, by Proposition 2, Lemma 1, the continuous mapping theorem, and (1.70), we have that

(Q̄n, In, V̄ n) = (f(ξ̄n, ζ̄n), g(ξ̄n, ζ̄n), h(ξ̄n, ζ̄n)) ⇒ (f(0), g(0), h(0)) . (1.71)

To complete the proof, we must show that f (0) = 0, g (0) = 0, and h (0) = 0. If we can show

that V̄ ∶= h (0) = 0, then by definition of Q̄ ∶= f (0) and I ∶= g (0), we would have

Q̄j = ϕ
⎛
⎝
πj ○ 0 +

K

∑
k=1

qkjηk

ˆ ⋅
0
V̄k(s)ds

⎞
⎠
= ϕ
⎛
⎝
0 +

K

∑
k=1

qkjηk

ˆ ⋅
0
0ds
⎞
⎠
= 0,

Ij = µ−1j ψ
⎛
⎝
πj ○ 0 +

K

∑
k=1

qkjηk

ˆ ⋅
0
V̄k(s)ds

⎞
⎠
= µ−1j ψ

⎛
⎝
0 +

K

∑
k=1

qkjηk

ˆ ⋅
0
0ds
⎞
⎠
= 0,

and the proof would be complete. By definition of V̄ ∶= h (0), we have

V̄k(t) = −ηk
ˆ t

0
V̄k(s)ds −

J

∑
j=1

pjk ψ
⎛
⎝

K

∑
l=1

qljηl

ˆ ⋅
0
V̄l(s)ds

⎞
⎠
(t), t ≥ 0, (1.72)

for all k = 1, . . . ,K. But, for a fixed T > 0 and any 0 ≤ t ≤ T , we have

∥V̄k∥t ≤ ηk ∥
ˆ ⋅
0
V̄k(s)ds∥

t
+

J

∑
j=1
∥ψ
⎛
⎝

K

∑
l=1

qljηl

ˆ ⋅
0
V̄l(s)ds

⎞
⎠
∥
t

≤ η
ˆ t

0
∥V̄k∥s ds +

J

∑
j=1

K

∑
l=1

ηl∥
ˆ ⋅
0
V̄l(s)ds∥

t

≤ η
ˆ t

0
max
1≤k≤K

∥V̄k∥s ds + ηJK
ˆ t

0
max
1≤k≤K

∥V̄k∥s ds

≤ 2ηJK

ˆ t

0
max
1≤k≤K

∥V̄k∥s ds, (1.73)

where η ∶=max1≤k≤K ηk. It then follows from (1.73) that

max
1≤k≤K

∥V̄k∥t ≤ 2ηJK

ˆ t

0
max
1≤k≤K

∥V̄k∥s ds, t ≥ 0. (1.74)

Therefore, by Gronwall’s inequality (see, e.g., Lemma 4.1 in Pang et al. [2007]) and (1.74), it
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follows that

max
1≤k≤K

∥V̄k∥T = 0. (1.75)

Since T was arbitrary, (1.75) implies that V̄ ≡ 0. The proof is complete.

Corollary 2. As n→∞, Tn⇒ e ∈DJ , where e(t) = (t, . . . , t) for all t ≥ 0.

Proof. By definition, Tn = e − In. The result then follows from Lemma 2 since In⇒ 0.

1.6.2 Convergence of Diffusion Scaled Processes

Lemma 3. As n → ∞, (ξ̂n, ζ̂n) ⇒ (ξ∗, ζ∗) ∈ DJ+K , where (ξ∗, ζ∗) is a (0,Σ) Brownian

motion with initial state (Q(0), V (0)) and covariance matrix Σ given by (1.47)–(1.51).

Proof. Let e ∶ [0,∞) → [0,∞) denote the one-dimensional identity map e(t) = t for t ≥ 0.

Furthermore, recall from (1.38)–(1.39) that we have

ξ̂nj (t) ∶= Q̂
n
j (0) +

K

∑
k=1

Ψ̂n
kj (M̄

n
k (ηk

ˆ t

0

¯̄V n
k (s)ds)) − N̂

n
j (µjT

n
j (t))

+
K

∑
k=1

qkjM̂
n
k (ηk

ˆ t

0

¯̄V n
k (s)ds) ,

ζ̂nk (t) ∶= V̂
n
k (0) +

J

∑
j=1

Φ̂n
jk (N̄

n
j (µjT

n
j (t))) − M̂

n
k (ηk

ˆ t

0

¯̄V n
k (s)ds) +

J

∑
j=1

pjkN̂
n
j (µjT

n
j (t)).

By Lemma 2, Corollary 2, and the derivations in Appendix 1.8.5, we have the following

convergence for the fluid-scaled processes:

M̄n
k (ηk ⋅) ⇒ ηke, N̄n

j (µj ⋅) ⇒ µje, Tn
j ⇒ e, and ¯̄V n

k ⇒mk.

We also have the following convergence for the diffusion-scaled processes:

Ψ̂n
kj ⇒

√
qkj(1 − qkj)Bkj , Φ̂n

kj ⇒
√
pjk(1 − pjk)Bjk,
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M̂n
k (ηk ⋅) ⇒ η

1/2
k
Bk, N̂n

j (µj ⋅) ⇒ µ
1/2
j Bj ,

where Bkj , Bjk, Bk, and Bj are independent standard Brownian motions. Moreover, the

function H ∶D →D defined by

H(x)(t) =
ˆ t

0
x(s)ds, t ≥ 0,

is continuous in the Skorokhod topology (see, e.g., page 229 in Pang et al. [2007]). Therefore,

it follows that

H( ¯̄V n
k ) ⇒ H(mk) = mke.

By the above convergence results and (1.46), Theorems 11.4.4 and 11.4.5 in Whitt [2002],

and independence of all stochastic primitives, it follows that the (joint) processes

(Q̂n
1(0), . . . , Q̂

n
J(0), V̂

n
1 (0), . . . , V̂

n
K(0), Ψ̂

n
11, . . . , Ψ̂

n
1J , . . . , Ψ̂

n
K1, . . . , Ψ̂

n
KJ ,

Φ̂n
11, . . . , Φ̂

n
1K , . . . , Φ̂

n
J1, . . . , Φ̂

n
JK , N̂

n
1 . . . , N̂

n
J , M̂

n
1 , . . . , M̂

n
K) (1.76)

and

(Tn
1 , . . . , T

n
J ,

¯̄V n
1 , . . . ,

¯̄V n
K , N̄

n
1 , . . . , N̄

n
J , M̄

n
1 , . . . , M̄

n
K) (1.77)

converge weakly to their appropriate limits. By the convergence of (1.76)–(1.77), the random

time change theorem, and the continuous mapping theorem, we get following convergence:

(ξ̂n1 , . . . , ξ̂
n
J , ζ̂

n
1 , . . . , ζ̂

n
K) ⇒ (ξ

∗
1 , . . . , ξ

∗
J , ζ
∗
1 , . . . , ζ

∗
K) . (1.78)

It is straightforward, albeit tedious, to derive the covariance matrix Σ, so we omit those

details here.
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Finally, we conclude with a proof of Theorem 1.

Proof of Theorem 1. It is straightforward to show that the process (ξ̂n, ζ̂n) satisfies

ξ̂nj (0) = Q̂
n
j (0) ≥ 0, a.s. for all j ∈ [J], (1.79)

J

∑
j=1

ξ̂nj (t) +
K

∑
k=1

ζ̂nk (t) = 0, a.s. for all t ≥ 0. (1.80)

Similar to the proof of Lemma 2, one can show that Înj is nondecreasing, Înj (0) = 0, and

ˆ ∞
0

1{Q̂n
j (t)>0}

dÎnj (t) = 0.

This, combined with the uniqueness in Proposition 1, implies that

(Q̂n, În, V̂ n) = (f(ξ̂n, ζ̂n), g(ξ̂n, ζ̂n), h(ξ̂n, ζ̂n)) . (1.81)

By Lemma 3, Proposition 2, and the continuous mapping theorem, we then have that

(Q̂n, În, V̂ n) = (f(ξ̂n, ζ̂n), g(ξ̂n, ζ̂n), h(ξ̂n, ζ̂n))

⇒ (f(ξ∗, ζ∗), g(ξ∗, ζ∗), h(ξ∗, ζ∗)) .

Since inequalities are preserved under weak convergence, (1.46) and (1.79) imply that

ξ∗j (0) = Qj(0) ≥ 0, a.s. for all j ∈ [J]. (1.82)

Furthermore, by Lemma 3 and (1.80) we have that

J

∑
j=1

ξ∗j (t) +
K

∑
k=1

ζ∗k (t) = 0, a.s. for all t ≥ 0. (1.83)
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Letting (Q∗, I∗, V ∗) ∶= (f (ξ∗, ζ∗) , g (ξ∗, ζ∗) , h (ξ∗, ζ∗)), the proof is complete by (1.82)–

(1.83) and Proposition 1. Finally, the distributional description of the Brownian motion

process (ξ∗, ζ∗) comes from Lemma 3.

1.7 Concluding Remarks

This paper proposes a closed queueing system to model the movement of cars in a ride-hailing

network. Under the assumption that the supply of cars and customer demand is perfectly

balanced, our results show that the distribution of cars in the network can be approximated

by a diffusion process. Crucially, this paper incorporates travel times into the ridesharing

model. Modeling travel times is important because, as is often the case in large cities, drivers

spend a non-trivial amount of time on the road delivering customers to their destinations.

Ignoring these travel times can lead to inaccuracies when tracking cars in a city.

The results in this paper effectively assume that the cars in the ride-hailing platform

are self-driving because we do not model strategic driver behavior. Therefore, a worthwhile

extension to this work would be to incorporate strategic behavior into the model because, in

many settings, drivers are autonomous and forward looking.

1.8 Appendix

1.8.1 Notation and Terminology

For a function f ∶ X → Y and a subset S ⊆ X, we denote by f ∣S ∶ S → Y the restriction of

f to S. The indicator function for a subset S ⊆ X is written as 1S . For n ∈ N, we use the

notation [n] ∶= {1,2, . . . , n}. For k ∈ [n], the kth unit basis vector in Rn is denoted by ek,

which has one in the kth component and zeros elsewhere. Moreover, for k ∈ [n], the kth

projection map πk ∶ Rn → R is given by πk(x) = xk, where xk is the kth component of x ∈ Rn.

For a, b ∈ R, we use the notation a ∨ b ∶=max{a, b} and a ∧ b ∶=min{a, b}, and let ⌊a⌋ denote
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the largest integer less than or equal to a. The abbreviation a.s. stands for “almost surely”

and the notation
p
→ means “converges in probability.” Finally, for two measures µ and ν on

the same measurable space, we write µ ≪ ν to mean that µ is absolutely continuous with

respect to ν.

For each n ∈ N, we denote by Dn ≡D ([0,∞),Rn) the set of all functions x ∶ [0,∞) → Rn

that are right continuous on [0,∞) and have left limits on (0,∞). We denote by 0 ∶

[0,∞) → Rn the function that is identically zero. For each k ∈ N and T > 0, we denote by

Dk
T ≡D ([0, T ],R

k) the set of all functions x ∶ [0, T ] → Rk that are right continuous on [0, T )

and have left limits on (0, T ]. When the space Dk
T is endowed with the norm

∥x∥T,k ∶= max
1≤l≤k

sup
0≤t≤T

∣xl(t)∣, (1.84)

it is a Banach space; see, e.g., Pestman [1995]. When k = 1, we write D1 = D, D1
T = DT ,

and ∥ ⋅ ∥T,1 = ∥ ⋅ ∥T . The one-sided reflection mapping on D is given by the pair of functions

(ψ,ϕ) ∶D →D2 defined as follows:

ψ(x)(t) ∶= sup
0≤s≤t

[−x(s)]+ , x ∈D, t ≥ 0, (1.85)

ϕ(x)(t) ∶= x(t) + ψ(x)(t), x ∈D, t ≥ 0. (1.86)

For x, y ∈D and T > 0 the following inequalities hold (see Lemma 13.5.1 in Whitt [2002]):

∥ψ(x) − ψ(y)∥T ≤ ∥x − y∥T , (1.87)

∥ϕ(x) − ϕ(y)∥T ≤ 2∥x − y∥T . (1.88)

We regard Dk as a topological space with usual Skorokhod J1 topology (see, e.g., Billingsley

[1999]). The precise definition of the underlying topology is not important for our purposes.

However, for proofs in this paper, the reader must know what it means for a sequence of
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functions to converge in Dk. To that end, a sequence {xn}∞n=1 in Dk converges to an element

x ∈Dk, written xn → x as n→∞, if for all continuity points T > 0 of x the following holds:

dkT (x
n∣[0,T ] , x∣[0,T ]) → 0 as n→∞, (1.89)

where dkT ∶D
k
T ×D

k
T → [0,∞) is given by

dkT (x, y) ∶= inf
λ∈ΛT

{∥x ○ λ − y∥T,k ∨ ∥λ − e∥T }, (1.90)

where e ∶ [0, T ] → R is the identity map, i.e., e(t) = t for all t ∈ [0, T ], and

ΛT ∶= {λ ∶ [0, T ] → [0, T ] ∣λ is an increasing homeomorphism}. (1.91)

Equivalently, (1.89) can be written with d̃ k
T in place of dkT (see, e.g., page 226 of Pang et al.

[2007] and Billingsley [1999]), where d̃ k
T ∶D

k
T ×D

k
T → [0,∞) is given by

d̃ k
T (x, y) ∶= inf

λ∈Λ̃T

{∥x ○ λ − y∥T,k ∨ ∥λ̇ − 1∥T } , (1.92)

where 1 ∶ [0, T ] → Rk is the function that takes one everywhere, λ̇ is the derivative of λ, and

Λ̃T ∶= {λ ∶ [0, T ] → [0, T ] ∣λ ∈ ΛT and λ≪ Lebesgue measure}. (1.93)

As before, when k = 1, we write d1T = dT and d̃ 1
T = d̃T .

All random variables in this paper are assumed to live on a common probability space

(Ω,F , P ). We denote by Mk the Borel σ-algebra on Dk induced by the Skorokhod J1

topology, so that (Dk,Mk) forms a measurable space. Each stochastic process in this

paper is assumed to be a measurable function from (Ω,F , P ) to (Dk,Mk), with appropriate

dimension k. For a sequence of stochastic processes {ξn}∞n=1 in Dk, where ξn = {ξn(t) ∶ t ≥ 0},
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we write ξn⇒ ξ as n→∞ to mean that the sequence of probability measures on (Dk,Mk)

induced by the ξn converge weakly to the probability measure on (Dk,Mk) induced by the

stochastic process ξ (see, e.g., Billingsley [1999] and Whitt [2002] for further details).

1.8.2 Proofs for Section 1.5

The following lemma is useful in the proof of Proposition 1 and is proven in Appendix 1.8.3.

To state it, given (ξ, ζ) ∈DJ+K , for k = 1, . . . ,K consider the following equation:

yk(t) = ζk(t) − ηk
ˆ t

0
yk(s)ds −

J

∑
j=1

pjk ψ (ξj +
K

∑
l=1

qljηl

ˆ ⋅
0
yl(s)ds)(t), t ≥ 0. (1.94)

Lemma 4. For each (ξ, ζ) ∈DJ+K , there exists a unique y ∈DK satisfying (1.94).

Below is a proof of Proposition 1.

Proof of Proposition 1. Fix (ξ, ζ) ∈DJ+K satisfying (1.56)–(1.57). We first prove existence.

By Lemma 4, there exists a y ∈DK satisfying (1.94). For j = 1, . . . , J , define

uj ∶= µ−1j ψ
⎛
⎝
ξj +

K

∑
l=1

qljηl

ˆ ⋅
0
yl(s)ds

⎞
⎠
, (1.95)

xj ∶= ϕ
⎛
⎝
ξj +

K

∑
l=1

qljηl

ˆ ⋅
0
yl(s)ds

⎞
⎠
. (1.96)

Since y ∈ DK , it follows that u ∈ DJ and x ∈ DJ , so that (x,u, y) ∈ D2J+K . It remains to

show that (x,u, y) satisfy (1.58)–(1.62). Equation (1.58) follows from the definitions of u and

x in (1.95) and (1.96), respectively, as well as definition of the one-sided reflection map (ψ,ϕ)

in (1.85)–(1.86). Equation (1.59) holds by the fact that y satisfies (1.94) and the definition of

u in (1.95). Equation (1.60) follows from (1.56), (1.58)–(1.59), and the fact that

K

∑
k=1

pjk = 1 for all j = 1, . . . , J,
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J

∑
j=1

qkj = 1 for all k = 1, . . . , K.

Equation (1.61) follows from the definition of u in (1.95), the definition of ψ in (1.85), and

(1.57). Finally, if we let

zj ∶= ξj +
K

∑
l=1

qljηl

ˆ ⋅
0
yl(s)ds, (1.97)

we see that uj = µ−1j ψ(zj) and xj = ϕ(zj). Therefore, (1.62) says that

ˆ ∞
0

1{ϕ(zj)>0} d(µ
−1
j ψ(zj))(t) = 0, (1.98)

which is equivalent to

ˆ ∞
0

1{ϕ(zj)>0} dψ(zj)(t) = 0. (1.99)

But (1.99) holds true by the definition of (ψ,ϕ) given by (1.85)–(1.86). Thus, (1.62) holds.

We now prove uniqueness. Let (x,u, y) ∈ D2J+K and (x̃, ũ, ỹ) ∈ D2J+K both satisfy

(1.58)–(1.62). Then, by (1.58), we have that

xj = zj + µjuj ≥ 0, (1.100)

x̃j = z̃j + µj ũj ≥ 0, (1.101)

where zj and z̃j are both given by (1.97), using yl and ỹl, respectively. Since (x,u) and (x̃, ũ)

satisfy (1.61)–(1.62), it follows that (x,µjuj) and (x̃, µj ũj) satisfy (1.61)–(1.62). By this and

(1.100)–(1.101), it follows that

µjuj = ψ(zj), (1.102)
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µj ũj = ψ (z̃j) . (1.103)

It then follows by (1.59), (1.97), (1.102)–(1.103), and Lemma 4 that yk = ỹk for all k = 1, . . . ,K.

By uniqueness of y, it then follows by (1.97) and (1.102)–(1.103) that uj = ũj for all j = 1, . . . , J .

Finally, by uniqueness of y and u, it follows by (1.97) and (1.100)–(1.101) that xj = x̃j for all

j = 1, . . . , J . This completes the proof.

Before a proof of Proposition 2, we provide a description of the mappings f , g, and h in

the statement of Corollary 1. First, by Lemma 4, we can indirectly write h ∶ DJ+K → DK

as the unique mapping sending (ξ, ζ) ∈ DJ+K to h(ξ, ζ) ∈ DK satisfying (1.94). For our

purposes, this indirect description of h will be enough. On the other hand, the proof of

Proposition 1 shows that the mappings f ∶ DJ+K → DJ and g ∶ DJ+K → DJ are uniquely

given by the following:

f ∶= (ξ, ζ) ↦
⎛
⎝
ϕ(πj ○ ξ +

K

∑
l=1

qljηl

ˆ ⋅
0
(πl ○ h(ξ, ζ)) (s)ds)

⎞
⎠
j=1,...,J
, (1.104)

g ∶= (ξ, ζ) ↦
⎛
⎝
µ−1j ψ(πj ○ ξ +

K

∑
l=1

qljηl

ˆ ⋅
0
(πl ○ h(ξ, ζ)) (s)ds)

⎞
⎠
j=1,...,J
. (1.105)

Proof of Proposition 2. We first prove continuity of f , g, and h separately. Then we use

these results to argue that the joint mapping (f, g, h) is continuous.

Continuity of h. Recall that for each (ξ, ζ) ∈DJ+K the element y = h(ξ, ζ) ∈DK satisfies

yk(t) = ζk(t) − ηk
ˆ t

0
yk(s)ds −

J

∑
j=1

pjkψ
⎛
⎝
ξj +

K

∑
l=1

qljηl

ˆ ⋅
0
yl(s)ds

⎞
⎠
(t), t ≥ 0, (1.106)

for all k = 1, . . . ,K. Suppose that (ξn, ζn) → (ξ, ζ) in DJ+K as n → ∞ and let T̃ > 0 be a
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continuity point of f (ξ, ζ). To complete the proof, we must show that

dK
T̃
(h(ξn, ζn) ∣ [0,T̃ ], h(ξ, ζ) ∣ [0,T̃ ]) → 0 as n → ∞, (1.107)

where dK
T̃

is given by (1.90). However, by Lemma 5.1 in Ethier and Kurtz [2005], since

(ξ, ζ) ∈DJ+K , it has at most countably many points of discontinuity. As a result, there exists

a point T > T̃ that is a continuity point of (ξ, ζ). By Lemma 1 on page 167 in Billingsley

[1999], it suffices to show that

dKT (h(ξ
n, ζn) ∣ [0,T ], h(ξ, ζ) ∣ [0,T ]) → 0 as n → ∞, (1.108)

for then (1.108) would imply (1.107). To avoid cumbersome notation, we write

dKT (h (ξ
n, ζn) , h(ξ, ζ)) → 0 as n → ∞ (1.109)

to mean (1.108). The remainder of the proof aims at proving (1.109). But, since the metrics

dKT and d̃ K
T are topologically equivalent, it suffices to prove (1.109) with d̃ K

T in place of dKT .

Since T > 0 is a continuity point of (ξ, ζ) and (ξn, ζn) → (ξ, ζ) in DJ+K , there exists a

sequence of homeomorphisms λn ∈ Λ̃T such that

∥(ξ, ζ) ○ λn − (ξn, ζn)∥
T,J+K ∨ ∥λ̇

n − 1∥
T
→ 0 as n → ∞. (1.110)

Letting y = h(ξ, ζ) and yn = h (ξn, ζn), for any 0 ≤ t ≤ T we have

max
1≤k≤K

∥yk ○ λn − ynk ∥t

= max
1≤k≤K

[∥ (ζk ○ λn − ηk
ˆ λn(⋅)

0
yk(s)ds −

J

∑
j=1

pjk ψ (ξj +
K

∑
l=1

qljηj

ˆ ⋅
0
yl(s)ds) ○ λn)
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− (ζnk − ηk
ˆ ⋅
0
ynk (s)ds −

J

∑
j=1

pjk ψ (ξnj +
K

∑
l=1

qljηl

ˆ ⋅
0
ynl (s)ds)) ∥t

]

≤ max
1≤k≤K

[∥ ζk ○ λn − ζnk ∥t + η ∥
ˆ λn(⋅)

0
yk(s)ds −

ˆ ⋅
0
ynk (s)ds ∥t

+
J

∑
j=1
∥ψ (ξj +

K

∑
l=1

qljηj

ˆ ⋅
0
yl(s)ds) ○ λn − ψ (ξnj +

K

∑
l=1

qljηl

ˆ ⋅
0
ynl (s)ds) ∥t

] , (1.111)

where η ∶=max1≤k≤K ηk. We now bound each of the terms in (1.111). To that end, let

MT ∶= max
1≤k≤K

∥yk∥T < ∞. (1.112)

Then by (1.112) and the chain rule we have that

∥
ˆ λn(⋅)

0
yk(s)ds −

ˆ ⋅
0
ynk (s)ds ∥t

= ∥
ˆ ⋅
0
yk(λn(s))λ̇n(s)ds −

ˆ ⋅
0
ynk (s)ds ∥t

≤ ∥
ˆ ⋅
0
yk(λn(s)) (λ̇n(s) − 1) ds ∥

t
+ ∥
ˆ ⋅
0
(yk(λn(s)) − ynk (s)) ds ∥

t

≤ TMT ∥λ̇ − 1∥
T
+
ˆ t

0
∥yk ○ λn − ynk ∥s ds. (1.113)

Similar to (1.113), we have

∥ψ (ξj +
K

∑
l=1

qljηj

ˆ ⋅
0
yl(s)ds) ○ λn − ψ (ξnj +

K

∑
l=1

qljηl

ˆ ⋅
0
ynl (s)ds) ∥t

≤ ∥ξj ○ λn − ξnj ∥T + η
K

∑
l=1
∥
ˆ λn(⋅)

0
yl(s)ds −

ˆ ⋅
0
ynl (s)ds ∥t

≤ ∥ξj ○ λn − ξnj ∥T + η
K

∑
l=1
∥
ˆ ⋅
0
yl (λn(s)) λ̇n(s)ds −

ˆ ⋅
0
ynl (s)ds ∥t

≤ ∥ξj ○ λn − ξnj ∥T + ηKTMT ∥λ̇n − 1∥
T
+ η

K

∑
l=1

ˆ t

0
∥yl ○ λn − ynl ∥s ds, (1.114)
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where the first inequality holds by (1.87) and the fact that (see Lemma 13.5.2 in Whitt [2002])

ψ (ξj +
K

∑
l=1

qljηj

ˆ ⋅
0
yl(s)ds) ○ λn = ψ (ξj ○ λn +

K

∑
l=1

qljηj

ˆ λn(⋅)

0
yl(s)ds). (1.115)

By (1.111) and (1.113)–(1.114), it follows that for all 0 ≤ t ≤ T ,

max
1≤k≤K

∥yk ○ λn − ynk ∥t

≤ max
1≤k≤K

[∥ζk ○ λn − ζnk ∥T + ηTMT ∥λ̇ − 1∥
T
+ η
ˆ t

0
∥yk ○ λn − ynk ∥s ds

+
J

∑
j=1
(∥ξj ○ λn − ξnj ∥T + ηKTMT ∥λ̇n − 1∥

T
+ η

K

∑
l=1

ˆ t

0
∥yl ○ λn − ynl ∥s ds)]

≤ max
1≤k≤K

∥ζk ○ λn − ζnk ∥T + ηTMT ∥λ̇ − 1∥T + η
ˆ t

0
max
1≤k≤K

∥yk ○ λn − ynk ∥s ds

+ J max
1≤j≤J

∥ξj ○ λn − ξnj ∥T + ηJKTMT ∥λ̇n − 1∥
T

+ ηJK
ˆ t

0
max
1≤k≤K

∥yk ○ λn − ynk ∥s ds

≤ 2J ∥ (ξ, ζ) ○ λn − (ξn, ζn)∥
DJ+K

T
+ (JK + 1) ηTMT ∥λ̇n − 1∥T

+ 2ηJK

ˆ t

0
max
1≤k≤K

∥yk ○ λn − ynk ∥s ds. (1.116)

For ϵ > 0 fixed, let n0 be large enough such that for all n ≥ n0 we have

max{2J ∥ (ξ, ζ) ○ λn − (ξn, ζn)∥
T,J+K , (JK + 1)ηTMT ∥λ̇n − 1∥

T
} < ϵ

2e2ηJKT
. (1.117)

Then by (1.116)–(1.117), it follows for all n ≥ n0 and 0 ≤ t ≤ T that

max
1≤k≤K

∥yk ○ λn − ynk ∥t ≤
ϵ

e2ηJKT
+ 2ηJK

ˆ t

0
max
1≤k≤K

∥yk ○ λn − ynk ∥s. (1.118)
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By Gronwall’s inequality (see, e.g., Lemma 4.1 in Pang et al. [2007]) and (1.118),

max
1≤k≤K

∥yk ○ λn − ynk ∥t ≤
ϵ

e2ηJKT
e2ηJKt for all 0 ≤ t ≤ T. (1.119)

In particular, using (1.119) with t = T , it follows that

∥y ○ λn − yn∥
T,K
= max
1≤k≤K

∥yk ○ λn − ynk ∥T ≤ ϵ. (1.120)

Finally, by (1.110) let n1 be large enough such that for all n ≥ n1 we have

∥λ̇n − 1∥
T
≤ ϵ. (1.121)

Therefore, by (1.120)–(1.121), for all n ≥max{n0, n1} we have

∥y ○ λn − yn∥
T,K
∨ ∥λ̇n − 1∥

T
≤ ϵ, (1.122)

completing the proof.

Continuity of g. The continuity proof for g (see (1.105) for its expression) proceeds in the

some way as in the continuity proof for f . Suppose (ξn, ζn) → (ξ, ζ) in DJ+K as n→∞ and

let T > 0 be a continuity point of (ξ, ζ). Then there exists a sequence of homeomorphisms

λn ∈ Λ̃T such that (1.110) holds. Letting u = g(ξ, ζ), un = g(ξn, ζn), y = h(ξ, ζ)) and

yn = h (ξn, ζn), we have:

max
1≤j≤J

∥uj ○ λn − unj ∥T

= max
1≤j≤J

∥µ−1j ψ (ξj +
K

∑
l=1

qljηl

ˆ ⋅
0
yl(s)ds) ○ λn − µ−1j ψ (ξnj +

K

∑
l=1

qljηl

ˆ ⋅
0
ynl (s)ds)∥T

≤ µ−1 max
1≤j≤J

∥ψ (ξj ○ λn +
K

∑
l=1

qljηl

ˆ λn(⋅)

0
yl(s)ds) − ψ (ξnj +

K

∑
l=1

qljηl

ˆ ⋅
0
ynl (s)ds)∥T
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≤ µ−1 max
1≤j≤J

∥ξj ○ λn − ξnj ∥T + µ
−1ηKTMT ∥λ̇n − 1∥

T

+ µ−1ηKT max
1≤k≤K

∥yk ○ λn − ynk ∥T

≤ µ−1 ∥(ξ, ζ) ○ λn − (ξn, ζn)∥
T,J+K + µ

−1ηKTMT ∥λ̇n − 1∥
T

+ µ−1ηKT max
1≤k≤K

∥yk ○ λn − ynk ∥T , (1.123)

where µ ∶=min1≤j≤J µj and where the second inequality follows from (1.87). Since (ξn, ζn) →

(ξ, ζ) in DJ+K , for ϵ > 0 fixed there exists an n0 such that for all n ≥ n0,

µ−1∥(ξ, ζ) ○ λn − (ξn, ζn)∥
T,J+K ∨ µ

−1ηKTMT ∥λ̇n − 1∥T ≤
ϵ

3
. (1.124)

Furthermore, by (1.120), there exists an n1 such that for all n ≥ n1,

µ−1ηKT max
1≤k≤K

∥yk ○ λn − ynk ∥T ≤
ϵ

3
. (1.125)

Finally, let n2 be large enough such that (1.121) holds for all n ≥ n2. Then by (1.123)–(1.125),

it follows that for all n ≥max{n0, n1, n2},

∥u ○ λn − un∥
T,J
∨ ∥λ̇n − 1∥

T
≤ ϵ, (1.126)

which is the desired result.

Continuity of f . The continuity proof for f is nearly identical to the continuity proof for g

(see (1.104) for its expression). Suppose (ξn, ζn) → (ξ, ζ) in DJ+K as n →∞ and let T > 0

be a continuity point of (ξ, ζ). Then there exists a sequence of homeomorphisms λn ∈ Λ̃T

such that (1.110) holds. Letting x = f(ξ, ζ), xn = f(ξn, ζn), y = h(ξ, ζ)) and yn = h (ξn, ζn),
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we have:

max
1≤j≤J

∥xj ○ λn − xnj ∥T

= max
1≤j≤J

∥ϕ (ξj ○ λn +
K

∑
l=1

qljηl

ˆ λn(⋅)

0
yl(s)ds) − ϕ (ξnj +

K

∑
l=1

qljηl

ˆ ⋅
0
ynl (s)ds) ∥T

≤ 2 max
1≤j≤J

∥ξj ○ λn − ξnj ∥T + 2η
K

∑
l=1
∥
ˆ ⋅
0
yl (λn(s)) λ̇n(s)ds −

ˆ ⋅
0
ynl (s)ds ∥T

≤ 2 ∥(ξ, ζ) ○ λn − (ξn, ζn)∥
T,J+K + 2ηKTMT ∥λ̇n − 1∥

T

+ 2ηKT max
1≤k≤K

∥yk ○ λn − ynk ∥T , (1.127)

where the first inequality follows from (1.88). We see that the right-hand side (1.127) is

the same as the right-hand side (1.123), except with µ−1 replaced by 2. Thus, the same

arguments used in showing the continuity of g can be used to show the continuity of h.

Continuity of (f, g, h). We regard (f, g, h) as a function from DJ+K →D2J+K defined by

(ξ, ζ) ↦ (f(ξ, ζ), g(ξ, ζ), h(ξ, ζ)). Suppose that (ξn, ζn) → (ξ, ζ) in DJ+K and let T > 0 be a

continuity point of (ξ, ζ). Therefore, there exists a sequence of homeomorphisms λn ∈ Λ̃T

such that (1.110) holds. For notational purposes, let Fn = (f(ξn, ζn), g(ξn, ζn), h(ξn, ζn)),

F = (f(ξ, ζ), g(ξ, ζ), h(ξ, ζ)), xn = f(ξn, ζn), x = f(ξ, ζ), un = g(ξn, ζn), u = g(ξ, ζ), yn =

h(ξn, ζn), and y = h(ξ, ζ). Using this notation, to prove continuity of (f, g, h) we it suffices

to show that

∥F ○ λn − Fn∥
T,2J+K ∨ ∥λ̇

n − 1∥ → 0 as n → ∞. (1.128)

But note that

∥F ○ λn − Fn∥
T,2J+K

≡ max
1≤j≤J

∥xj ○ λn − xnj ∥T ∨ max
1≤j≤J

∥uj ○ λn − unj ∥T ∨ max
1≤k≤K

∥yk ○ λn − ynk ∥T . (1.129)
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Since each of the three terms on the right-hand side of (1.129) converge to zero (by continuity

of f , g, and h separately), (1.128) will follow. The proof is complete.

1.8.3 Proof of Lemma 4

The general proof technique we use parallels that of Lemma 1 in Reed and Ward [2004]. We

prove that for each T > 0, there exists a unique y ∈DK
T satisfying (1.94), then extend this to

DK in the obvious way. To improve the readability of this proof, we break it up into a few

separate steps.

Existence of an Element in DT
K Satisfying (1.94)

We prove existence via the method of successive approximations. In particular, we show that

the sequence formed by this method is Cauchy in DT
K , and then argue that the limit of the

sequence (by completeness of DT
K) satisfies (1.94). To that end, let y0

k
≡ 0 ∈D and let yn

k
∈D,

n ≥ 1, be defined by

ynk ∶= ξk − ηk
ˆ ⋅
0
yn−1k (s)ds −

J

∑
j=1

pjk ψ (ξj +
K

∑
l=1

qljηl

ˆ ⋅
0
yn−1l ds), (1.130)

for each k = 1, . . . ,K. We claim that the sequence {(yn1 ∣[0,T ], . . . , y
n
K ∣[0,T ]) ∶ n = 0,1, . . .}

defined by (1.130) is Cauchy in DK
T ; see Claim 1 at the end of Appendix 1.8.3 for a proof of

this claim. By completeness of (DK
T , ∥ ⋅ ∥T,K), it follows that

(yn1 ∣[0,T ], . . . , y
n
K ∣[0,T ]) → (y

∞
1,T , . . . , y

∞
K,T ) ∈D

K
T as n → ∞. (1.131)

To show that (y∞1,T , . . . , y
∞
K,T ) satisfies (1.94), define the mapping L ∶DK

T →DK
T by

(y1, . . . , yK) ↦ (ζk − ηk
ˆ ⋅
0
yk(s)ds −

J

∑
j=1

pjk ψ (ξj +
K

∑
l=1

qljηl

ˆ ⋅
0
yl(s)ds))

k=1,...,K
. (1.132)
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Then for y, ỹ ∈DK
T we have:

∥L(y) − L(ỹ)∥T,K

= max
1≤k≤K

∥ ηk
ˆ ⋅
0
(yk(s) − ỹk(s)) ds

+
J

∑
j=1

pjk [ψ (ξj +
K

∑
l=1

qljηl

ˆ ⋅
0
yl(s)ds) − ψ (ξj +

K

∑
l=1

qljηl

ˆ ⋅
0
ỹl(s)ds)] ∥

T

≤ max
1≤k≤K

{ηT ∥yk − ỹk∥T +
J

∑
j=1

K

∑
l=1

ηT ∥yl − ỹl∥T}

≤ ηT ∥y − ỹ∥T,K + ηTJK ∥y − ỹ∥T,K

≤ ηTJK ∥y − ỹ∥T,K . (1.133)

Equation (1.133) shows that L is Lipschitz continuous, so by (1.130)–(1.131) we have

(y∞1,T , . . . , y
∞
K,T ) ← (y

n+1
1 ∣[0,T ], . . . , yn+1K ∣[0,T ])

= L (yn1 ∣[0,T ], . . . , y
n
K ∣[0,T ]) → L (y∞1,T , . . . , y

∞
K,T ) as n → ∞.

(1.134)

By uniqueness of limits in metric spaces, it follows that

L (y∞1,T , . . . , y
∞
K,T ) = (y

∞
1,T , . . . , y

∞
K,T ) , (1.135)

implying that (y∞1,T , . . . , y
∞
K,T ) satisfies (1.94).

Uniqueness of the Element in DT
K Satisfying (1.94)

We show that (y∞1,T , . . . , y
∞
K,T ) is the unique element in DK

T satisfying (1.94). To that end,

suppose that (y1, . . . , yK), (ỹ1, . . . , ỹK) ∈DK
T both satisfy (1.94). Define

m ∶= inf {n ≥ 1 ∶ n
2
(2JKη)−1 > T} . (1.136)
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Then for t1 = 1
2 (2JKη)

−1 we have

max
1≤k≤K

∥yk − ỹk∥t

= max
1≤k≤K

∥ ηk
ˆ ⋅
0
(yk(s) − ỹ(s)) ds

+
J

∑
j=1

pjk [ψ(ξj +
K

∑
l=1

qljηl

ˆ ⋅
0
yl(s)ds) − ψ (ξj +

K

∑
l=1

qljηl

ˆ ⋅
0
ỹl(s)ds)] ∥

t1

≤ max
1≤k≤K

η

ˆ t1

0
∥yk − ỹk∥t1 ds +

J

∑
j=1

K

∑
l=1

η

ˆ t1

0
∥yl − ỹl∥t1 ds

≤ 2JKη t1 max
1≤k≤K

∥yk − ỹk∥t1 . (1.137)

Since 2JKηt1 = 1
2 < 1, (1.137) implies that max1≤k≤K ∥yk − ỹk∥t1 = 0, so that

y = ỹ on [0, t1] . (1.138)

Now for t2 = (2JKη)−1 we have

max
1≤k≤K

∥yk − ỹk∥t2 ≤ η ∥
ˆ ⋅
0
∣ yk(s) − ỹk(s)∣ds∥

t2
+

J

∑
j=1

K

∑
l=1

η ∥
ˆ ⋅
0
∣ yl(s) − ỹl(s)∣ds∥

t2

= max
1≤k≤K

η ∥
ˆ t1

0
∣ yk(s) − ỹk(s)∣ds +

ˆ ⋅
t1

∣ yk(s) − ỹk(s)∣ds ∥
t2

+ ηJ
K

∑
l=1
∥
ˆ t1

0
∣ yl(s) − ỹl(s)∣ds +

ˆ ⋅
t1

∣ yl(s) − ỹl(s)∣ds ∥
t2

≤ ηt1 max
1≤k≤K

∥yk − ỹk∥t1 + (t2 − t1) max
1≤k≤K

∥yk − ỹk ∥t2

+ ηJ
K

∑
l=1
[t1∥yl − ỹl∥t1 + (t2 − t1) ∥yl − ỹl∥t2]

≤ 2ηJK(t2 − t1) max
1≤k≤K

∥yk − ỹk∥t2 , (1.139)
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where in the last inequality we use the fact that (1.138) holds. Since 2ηJK(t2 − t1) = 1
2 < 1,

(1.139) implies that ∥yk − ỹk∥t2 = 0, so that

y = ỹ on [0, t2] .

We can continue in this iterative manner to show that for each n = 1, . . . ,m − 1,

y = ỹ on [0, tn], (1.140)

where tn = n
2 (2JKη)−1 for all n = 1, . . . ,m − 1. If tm−1 = T , then we are done by (1.140). On

the other hand, if tm−1 < T then we can take tm = T and show using the same argument that

y = ỹ on [0, tm], which would then complete the proof.

Extension to a Unique Element in DK Satisfying (1.94)

We use the constructed unique solution in DK
T to define a (y∞1 , . . . , y

∞
K
) that is the unique

element in DK satisfying (1.94). To that end, define (y∞1 , . . . , y
∞
K
) ∈DK by

(y∞1 , . . . , y
∞
K ) (t) ∶= (y

∞
1,T , . . . , y

∞
K,T ) (t) for t ∈ [0, T ]. (1.141)

To complete the proof, we must show that (y∞1 , . . . , y
∞
K
) is well-defined and is the unique

element in DK satisfying (1.94). To prove that (y∞1 , . . . , y
∞
K
) is well-defined, we must show

that whenever t ∈ [0, T1] ∩ [0, T2] that

(y∞1,T1 , . . . , y
∞
K,T1
)(t) = (y∞1,T2 , . . . , y

∞
K,T2
)(t). (1.142)
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Without loss of generality, suppose that T1 ≤ T2. Then (y∞1,T2 , . . . , y
∞
K,T2
)∣[0,T1] ∈D

K
T1

satisfies

(1.94) for all t ≤ T1. By uniqueness,

(y∞1,T1 , . . . , y
∞
K,T1
) = (y∞1,T2 , . . . , y

∞
K,T2
) ∣ [0,T1],

so we have that

(y∞1,T1 , . . . , y
∞
K,T1
)(t) = (y∞1,T2 , . . . , y

∞
K,T2
) ∣ [0,T1](t) = (y

∞
1,T2

, . . . , y∞K,T2
)(t),

proving (1.142) holds. Next we show that (y∞1 , . . . , y
∞
K ) satisfies (1.94). Indeed, for any

t ∈ [0,∞), there exists a T > 0 such that (1.141) holds. But since the right-hand side of

(1.141) satisfies (1.94) at t, so does (y∞1 , . . . , y
∞
K ), which gives the desired result. Finally, we

show that (y∞1 , . . . , y
∞
K ) is unique. To that end, let (y1, . . . , yK) ∈DK also satisfy (1.94) and

fix t ∈ [0,∞). Let T > 0 be such that t ∈ [0, T ]. Then (y1, . . . , yK)∣[0,T ] ∈DK
T satisfies (1.94)

for all t ∈ [0, T ]. Since (y∞1 , . . . , y
∞
K )∣[0,T ] also satisfies (1.94) for all t ∈ [0, T ], uniqueness

implies that

(y∞1 , . . . , y
∞
K )(t) = (y

∞
1 , . . . , y

∞
K ) ∣ [0,T ](t) = (y1, . . . , yK) ∣ [0,T ](t) = (y1, . . . , yK)(t).

Therefore, (y∞1 , . . . , y
∞
K ) = (y1, . . . , yK), as desired. This completes the proof.

We conclude Appendix 1.8.3 with a proof showing that the sequence defined by (1.130) is

a Cauchy sequence.

Claim 1. For each T > 0, the sequence {(yn1 ∣[0,T ], . . . , y
n
K ∣[0,T ]) ∶ n = 0,1, . . .} defined by

(1.130) is Cauchy in DT
K (with respect to the norm ∥ ⋅ ∥T,K).

Proof. For any t ∈ [0, T ] note that

∥y1k − y
0
k∥t = ∥ζk −

J

∑
j=1

pjkψ (ξj) ∥t ≤ ∥ζk∥t +
J

∑
j=1
∥ψ(ξj)∥t
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≤ max
1≤k≤K

∥ζk∥T +
J

∑
j=1
∥ψ(ξj)∥T =∶ CT . (1.143)

Let η ∶=max1≤k≤K ηk and fix δ ∈ (0, T ) such that

2δηJK < 1. (1.144)

Then for n ≥ 2 we have

∥ynk − y
n−1
k ∥δ

= ∥ ηk
ˆ ⋅
0
(yn−2k (s) − yn−1k (s)) ds

+
J

∑
j=1

pjk [ψ (ξj +
K

∑
l=1

qljηl

ˆ ⋅
0
yn−2l ds) − ψ (ξj +

K

∑
l=1

qljηl

ˆ ⋅
0
yn−1l ds)] ∥

δ

≤ ηkδ ∥yn−1k − yn−2k ∥
δ
+

J

∑
j=1

pjk ∥
K

∑
l=1

qljηl

ˆ ⋅
0
(yn−1l (s) − yn−2l (s)) ds ∥

δ

≤ ηkδ ∥yn−1k − yn−2k ∥
δ
+

J

∑
j=1

pjk

K

∑
l=1

qljηlδ ∥yn−1l − yn−2l ∥
δ

≤ δη (∥yn−1k − yn−2k ∥δ + J
K

∑
l=1
∥yn−1l − yn−2l ∥

δ
)

≤ 2δηJ
K

∑
l=1
∥yn−1l − yn−2l ∥

δ
, (1.145)

where the first inequality follows from (1.87). Doing another iteration of (1.145) gives

∥ynk − y
n−1
k ∥

δ
≤ 2δηJ

K

∑
l=1
∥yn−1l − yn−2l ∥

δ
≤ (2δηJ)2K

K

∑
l=1
∥yn−2l − yn−3l ∥

δ
. (1.146)

Continuing in the way and using (1.143), we find that

∥ynk − y
n−1
k ∥

δ
≤ (2δηJK)n−1CT for all n ≥ 1. (1.147)
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For each k = 1, . . . ,K, we now prove that for all m ≥ 1 and n ≥ 1 that

∥ynk − y
n−1
k ∥mδ ≤ mnm (2δηJK)

n−1CT . (1.148)

We proceed by (strong) induction on m. The base case follows by (1.147) since for any n ≥ 1,

∥ynk − y
n−1
k ∥

1 ⋅ δ ≤ (2δηJK)
n−1CT ≤ 1 ⋅ n1 (2δηJK)n−1CT , (1.149)

which is the m = 1 case. For the inductive step, assume that for all n ≥ 2 we have

∥ynk − y
n−1
k ∥

rδ
≤ rnr (2δηJK)n−1CT for all r = 1, . . . ,m. (1.150)

By (1.150), for n ≥ 2 we have

∥ynk − y
n−1
k ∥(m+1)δ = ∥ηk

ˆ ⋅
0
(yn−2k (s) − yn−1k (s)) ds

+
J

∑
j=1

pjk

⎡⎢⎢⎢⎢⎣
ψ
⎛
⎝
ξj +

K

∑
l=1

qljηl

ˆ ⋅
0
yn−2l ds

⎞
⎠

− ψ
⎛
⎝
ξj +

K

∑
l=1

qljηl

ˆ ⋅
0
yn−1l ds

⎞
⎠

⎤⎥⎥⎥⎥⎦
∥
(m+1)δ

≤ ηk
m+1
∑
r=1

ˆ rδ

(r−1)δ
∥yn−1k − yn−2k ∥rδ ds

+
J

∑
j=1

pjk∥
K

∑
l=1

qljηl

ˆ ⋅
0
∣yn−1l (s) − yn−2l (s)∣ds∥

(m+1)δ

≤ δη
m+1
∑
r=1
∥yn−1k − yn−2k ∥ + η

J

∑
j=1

K

∑
l=1

m+1
∑
r=1

ˆ rδ

(r−1)δ
∥yn−1l − yn−2l ∥rδ ds

= δη
⎡⎢⎢⎢⎣

m+1
∑
r=1
∥yn−1k − yn−2k ∥ + J

K

∑
l=1

m+1
∑
r=1
∥yn−1l − yn−2l ∥rδ

⎤⎥⎥⎥⎦

≤ 2δηJ
K

∑
l=1

m+1
∑
r=1
∥yn−1l − yn−2l ∥rδ
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= 2δηJ
K

∑
l=1

m

∑
r=1
∥yn−1l − yn−2l ∥rδ + 2δηJ

K

∑
l=1
∥yn−1l − yn−2l ∥(m+1)δ

≤ 2δηJ
K

∑
l=1

m

∑
r=1

r(n − 1)r (2δηJK)n−2CT + 2δηJ
K

∑
l=1
∥yn−1l − yn−2l ∥(m+1)δ

= (2δηJK)n−1CT

m

∑
r=1

r(n − 1)r + 2δηJ
K

∑
l=1
∥yn−1l − yn−2l ∥(m+1)δ

≤ (2δηJK)n−1CTmn
m + 2δηJ

K

∑
l=1
∥yn−1l − yn−2l ∥(m+1)δ. (1.151)

By (1.143) and (1.151), for n = 2 we have

∥y2k − y
1
k∥(m+1)δ ≤ (2δηJK)CTm2m + 2δηJ

K

∑
l=1
∥y1l − y

0
l ∥(m+1)δ

≤ (2δηJK)CTm2m + 2δηJKCT

= (2δηJK)CT (m2m + 1) . (1.152)

Similarly, by (1.151)–(1.152), for n = 3 we have

∥y3k − y
2
k∥(m+1)δ ≤ (2δηJK)

2CTm3m + 2δηJ
K

∑
l=1
∥y2l − y

1
l ∥(m+1)δ

≤ (2δηJK)2CTm3m + 2δηJ
K

∑
l=1
(2δηJK)CT (m2m + 1)

= (2δηJK)2CT (m3m +m2m + 1) . (1.153)

Continuing in this iterative fashion, we find that for n ≥ 2,

∥ynk − y
n−1
k ∥(m+1)δ ≤ (2δηJK)

n−1CT (m
n

∑
i=2

im + 1)

≤ (2δηJK)n−1CT (mnm+1 + 1)

≤ (2δηJK)n−1CT (m + 1)nm+1. (1.154)
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Because (1.148) also holds for all m ≥ 1 when n = 1 [by (1.143)], this completes the inductive

step. Thus, (1.148) holds for all m ≥ 1 and n ≥ 1.

By (1.148), for all n ≥ 1 and k = 1, . . . ,K we have

∥ynk − y
n−1
k ∥

T
≤ ∥ynk − y

n−1
k ∥⌈δ−1T ⌉δ ≤ ⌈δ

−1T ⌉n⌈δ
−1T ⌉ (2δJK)n−1CT ,

implying that

max
1≤k≤K

∥ynk − y
n−1
k ∥

T
≤ ⌈δ−1T ⌉n⌈δ

−1T ⌉ (2δJK)n−1CT .

Since by (1.144) we have

lim sup
n→∞

RRRRRRRRRRR

⌈δ−1T ⌉(n + 1)⌈δ−1T ⌉ (2δJK)nCT

⌈δ−1T ⌉n⌈δ−1T ⌉ (2δJK)n−1CT

RRRRRRRRRRR
= lim sup

n→∞

⎡⎢⎢⎢⎢⎣

(n + 1)⌈δ−1T ⌉

n⌈δ−1T ⌉
⋅ 2δJK

⎤⎥⎥⎥⎥⎦
= 2δJK < 1,

the ratio test implies that

∞
∑
n=1
⌈δ−1T ⌉n⌈δ

−1T ⌉ (2δJK)n−1CT < ∞,

implying that the sequence {(yn1 ∣[0,T ], . . . , y
n
K ∣[0,T ]) ∶ n = 0,1, . . .} is Cauchy in DK

T .

1.8.4 Miscellaneous Proofs

Below is the proof of a result used in the proof of Lemma 1 in Section 1.6.

Lemma 5. Let {Xn}∞n=1 be a random sequence in D such that ∥Xn∥T ⇒ 0 for all T > 0.

Then Xn⇒ 0 in D.

Proof. Note that ∥Xn∥T ⇒ 0 for all T > 0 is equivalent to ∥Xn∥T
p
→ 0 for all T > 0. We claim
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that Xn p
→ 0 in D. This amounts to showing that for all 0 < ϵ < 1,

P (
ˆ ∞
0

e−t [dt (Xn,0) ∧ 1]dt > ϵ) → 0 as n → ∞; (1.155)

see, e.g., Chapter 3, Section 3 of Whitt [2002]. More explicitly, we must show that

P (
ˆ ∞
0

e−t [ inf
λ∈Λt

{∥Xn ○ λ∥t ∨ ∥λ − e∥t} ∧ 1]dt > ϵ) → 0 as n → ∞. (1.156)

However, for all T > 0, we have the following inequalities:

P (
ˆ ∞
0

e−t [ inf
λ∈Λt

{∥Xn ○ λ∥t ∨ ∥λ − e∥t} ∧ 1]dt > ϵ)

≤ P (
ˆ ∞
0

e−t [∥Xn∥t ∧ 1]dt > ϵ)

≤ P (
ˆ T

0
e−t ∥Xn∥t dt +

ˆ ∞
T

e−t dt > ϵ) . (1.157)

Let T > 0 be such that
´∞
T e−t dt = ϵ/2. Then continuing from (1.157) yields

P (
ˆ T

0
e−t ∥Xn∥t dt +

ˆ ∞
T

e−t dt > ϵ) = P (
ˆ T

0
e−t ∥Xn∥t dt >

ϵ

2
)

≤ P (∥Xn∥T (1 −
ϵ

2
) > ϵ

2
)

= P (∥Xn∥T >
ϵ

2
(1 − ϵ

2
)) . (1.158)

Since ∥Xn∥T
p
→ 0, it follows from (1.158) that Xn p

→ 0 in D. Since convergence in probability

implies convergence in distribution, we conclude that Xn⇒ 0 in D.

Omitted Details in the Proof of Lemma 1

We show that the right-hand sides of (1.64) and (1.65) converge weakly to a nondegenerate

limit and conclude that ∥ξ̄nj ∥T ⇒ 0 and ∥ζ̄n
k
∥T ⇒ 0 for each T > 0. We show this only for
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(1.64); the proof for (1.65) is identical. For the remainder of this argument, we fix T > 0. By

(1.46) and the continuous mapping theorem we have ∥Q̂n
j (0)∥T ⇒ ∥Qj(0)∥T , so that

n−1/2 ∥Q̂n
j (0)∥T ⇒ 0 ⋅ ∥Qj(0)∥T = 0. (1.159)

Define M̃k(t) ∶=Mk(ηkt) for t ≥ 0, so that M̃k is a Poisson process with rate ηk. Therefore,

by the functional central limit theorem for renewal processes (see, e.g., Theorem 14.6 in

Billingsley [1999]), it follows that

̂̃Mn
k ⇒ η

1/2
k
Bk, (1.160)

where Bk is a standard Brownian motion and

̂̃Mn
k (t) ∶=

M̃k(nt) − nηkt√
n

= Mk(nηkt) − nηkt√
n

= M̂n
k (ηkt), t ≥ 0. (1.161)

By (1.160)–(1.161) and the continuous mapping theorem, note that

n−1/2 ∥M̂n
k (ηk ⋅)∥T ⇒ 0 ⋅ ∥η1/2Bk∥T = 0. (1.162)

Furthermore, observe by (1.35) and (1.161) that

M̄n
k (ηkt) =

M̂n
k
(ηkt)√
n

+ ηkt, t ≥ 0. (1.163)

Therefore, by (1.160) and (1.163) we have that

M̄n
k (ηk ⋅) =

M̂k(ηk ⋅)√
n

+ ηke ⇒ 0 ⋅ η1/2
k
Bk + ηke = ηke, (1.164)
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where e ∶ [0,∞) → [0,∞) is the identity map, i.e., e(t) = t for t ≥ 0. By (1.28) and Donsker’s

theorem (see, e.g., Theorem 4 in Glynn [1990]), it follows that

Φ̂n
kj ⇒

√
qkj (1 − qkj)Bkj , (1.165)

where Bkj is a standard Brownian motion. Since (t ↦ M̄n
k
(ηt)) ∶ [0,∞) → [0,∞) is non-

decreasing function, the random time change theorem (see, e.g., Proposition 5 in Glynn

[1990]) and (1.164)–(1.165) yields

Ψ̂n
kj (M̄

n
k (ηk ⋅)) ⇒

√
qkj (1 − qkj)Bkj(ηk ⋅). (1.166)

By (1.166) and the continuous mapping theorem, we have that

n−1/2∥Ψ̂n
kj (M̄

n
k (ηk ⋅))∥T → 0 ⋅ ∥

√
qkj (1 − qkj)Bkj(ηk ⋅)∥

T
= 0. (1.167)

Similar to (1.160), we have that

N̂n
j (µj ⋅) ⇒ µ

1/2
j Bj , (1.168)

where Bj is standard Brownian motion. Another application of the continuous mapping

theorem along with (1.168) gives

n−1/2 ∥N̂n
j (µj ⋅)∥T ⇒ 0 ⋅ ∥µ1/2j Bj∥T = 0. (1.169)

Finally, by (1.64), (1.159), (1.162), (1.167), and (1.169), it follows that

∥ξ̄nj ∥T ≤ n
−1/2∥Q̂n

j (0)∥T +
K

∑
k=1

n−1/2 ∥Ψ̂n
kj (M̄

n
k (ηk ⋅))∥T + n

−1/2∥N̂n
j (µj ⋅) ∥T
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+
K

∑
k=1

n−1/2∥M̂n
k (ηk ⋅)∥T ⇒ 0.

1.8.5 Miscellaneous Derivations

Derivation of (1.40)–(1.41)

We begin by deriving (1.40), the diffusion-scaled system equation for the single-server stations.

By (1.8), (1.10), and (1.12)–(1.13), we have

Qn
j (t) = Q

n
j (0) + A

n
j (t) − D

n
j (t)

= Qn
j (0) +

K

∑
k=1

Ψkj(Mk(ηk
ˆ t

0
V n
k (s)ds)) − Nj (nµjTn

j (t)) . (1.170)

Elementary algebraic manipulations and the appropriate scaling in (1.23)–(1.35) applied to

(1.170) yields

Q̂n
j (t) = n

−1/2Qn
j (0) +

K

∑
k=1

n−1/2Ψkj(Mk(ηk
ˆ t

0
V n
k (s)ds)) − n

−1/2Nj (nµjTn
j (t))

= Q̂n
j (0) +

K

∑
k=1

n−1/2[Ψkj(Mk(ηk
ˆ t

0
V n
k (s)ds)) − qkjMk(ηk

ˆ t

0
V n
k (s)ds)]

+
K

∑
k=1

qkj n
−1/2Mk(ηk

ˆ t

0
V n
k (s)ds) − n

−1/2 [Nj (nµjTn
j (t)) − nµjT

n
j (t)]

− n−1/2nµjTn
j (t)

= Q̂n
j (0) +

K

∑
k=1

n−1/2 [Ψkj(nn−1Mk(nηk
ˆ t

0
n−1V n

k (s)ds))

− qkjnn−1Mk(nηk
ˆ t

0
n−1V n

k (s)ds)]

+
K

∑
k=1

qkjn
−1/2[Mk(nηk

ˆ t

0
n−1V n

k (s)ds) − nηk
ˆ t

0
n−1V n

k (s)ds]

+
K

∑
k=1

qkjn
−1/2ηk

ˆ t

0
V n
k (s)ds
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− n−1/2 [Nj (nµjTn
j (t)) − nµjT

n
j (t)] −

√
nµj (t − Inj (t))

= Q̂n
j (0) +

K

∑
k=1

n−1/2[Ψkj(nM̄n
k (ηk

ˆ t

0

¯̄V n
k (s)ds)) − nqkjM̄

n
k (ηk

ˆ t

0

¯̄V n
k (s)ds)]

+
K

∑
k=1

qkjn
−1/2[Mk(nηk

ˆ t

0

¯̄V n
k (s)ds) − nηk

ˆ t

0

¯̄V n
k (s)ds]

+
K

∑
k=1

qkjn
−1/2ηk

ˆ t

0
[
√
n V̂ n

k (s) + nmk] ds

− n−1/2 [Nj (nµjTn
j (t)) − nµjT

n
j (t)] −

√
nµjt −

√
nµjI

n
j (t)

= Q̂n
j (0) +

K

∑
k=1

Ψ̂n
kj(M̄

n
k (ηk

ˆ t

0

¯̄V n
k (s)ds)) +

K

∑
k=1

qkjM̂
n
k (ηk

ˆ t

0

¯̄V n
k (s)ds)

− N̂n
j (µjT

n
j (t)) +

K

∑
k=1

qkjηk

ˆ t

0
V̂ n
k (s)ds − µj Î

n
j (t) + t

√
n [

K

∑
k=1

qkjηkmk − µj]

= ξ̂nj (t) +
K

∑
k=1

qkjηk

ˆ t

0
V̂ n
k (s)ds − µj Î

n
j (t),

which is (1.40). Note that the final equality in the above calculation follows from (2.51), the

definition of mk (given in Section 1.4), and the heavy traffic condition in (1.21).

Next we derive (1.41), the diffusion-scaled system equation for the infinite-server stations.

By (1.9) and (1.11)–(1.13), we have

V n
k (t) = V

n
k (0) + E

n
k (t) − F

n
k (t)

= V n
k (0) +

J

∑
j=1

Φjk(Nj(nµjTn
j (t))) − Mk(ηk

ˆ t

0
V n
k (s)ds). (1.171)

As before, elementary algebraic manipulations and the appropriate scaling in (1.23)–(1.35)

applied to (1.171) yields

V̂ n
k (t) = n

−1/2V n
k (0) +

J

∑
j=1

n−1/2Φjk(Nj(nµjTn
j (t))) − n

−1/2Mk(ηk
ˆ t

0
V n
k (s)ds)

= V̂ n
k (0) +

J

∑
j=1

n−1/2 [Φjk(Nj(nµjTn
j (t))) − pjkNj(nµjTn

j (t))]
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+
J

∑
j=1

n−1/2pjkNj(nµjTn
j (t)) − n

−1/2 [Mk(ηk
ˆ t

0
V n
k (s)ds) − ηk

ˆ t

0
V n
k (s)ds]

− n−1/2ηk
ˆ t

0
V n
k (s)ds

= V̂ n
k (0) +

J

∑
j=1

n−1/2[Φjk(nn−1Nj(nµjTn
j (t))) − pjknn

−1Nj(nµjTn
j (t))]

+
J

∑
j=1

n−1/2pjk[Nj(nµjTn
j (t)) − nµjT

n
j (t)] +

J

∑
j=1

n−1/2pjknµjT
n
j (t)

− n−1/2[Mk(nηk
ˆ t

0
n−1V n

k (s)ds) − nηk
ˆ t

0
n−1V n

k (s)ds]

− n−1/2ηk
ˆ t

0
[
√
nV̂ n

k (s) + nmk] ds

= V̂ n
k (0) +

J

∑
j=1

n−1/2 [Φjk(nN̄n
j (µjT

n
j (t))) − pjknN̄j(µjTn

j (t))]

+
J

∑
j=1

pjkN̂
n
j (µjT

n
j (t)) +

J

∑
j=1

√
npjkµj (t − Inj (t))

− n−1/2[Mk(nηk
ˆ t

0

¯̄V n
k (s)ds) − nηk

ˆ t

0

¯̄V n
k (s)ds]

− ηk
ˆ t

0
V̂ n
k (s)ds − t

√
nηkmk

= V̂ n
k (0) +

J

∑
j=1

Φ̂n
jk(N̄

n
j (µjT

n
j (t))) +

J

∑
j=1

pjkN̂
n
j (µjT

n
j (t)) − M̂

n
k (ηk

ˆ t

0

¯̄V n
k (s)ds)

− ηk
ˆ t

0
V̂ n
k (s)ds −

J

∑
j=1

pjkµj Î
n
j (t) + t

√
n [

J

∑
j=1

pjkµj − ηkmk]

= ζ̂nk (t) − ηk
ˆ t

0
V̂ n
k (s)ds −

J

∑
j=1

pjkµj Î
n
j (t),

which is (1.41). Note that the final equality in the above calculation follows from (1.39) and

the definition of mk.
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CHAPTER 2

A QUEUEING MODEL OF DYNAMIC PRICING AND

DISPATCH CONTROL FOR RIDE-HAILING SYSTEMS

INCORPORATING TRAVEL TIMES

2.1 Introduction

This paper studies a dynamic control problem for a queueing model motivated by taxi and

ride hailing systems. In those systems, customers and drivers can be matched centrally by a

platform using web or mobile applications. In addition, the platform can adjust the prices

dynamically over time. We consider a city partitioned into a set of geographical regions.

Each such region should be thought of as a pick-up or drop-off location. Simultaneously,

cars reside in these regions waiting to pick up customers. We use a queueing model to study

this problem, following a growing number of papers in the operations research literature.

However, much of the relevant literature assumes away the travel times between the pick-up

and drop-off locations; see, for example, Ata et al. [2020a] and the references therein. A key

novelty of our model is that it incorporates travel times, but this leads to a significantly more

challenging analysis.

We assume that the platform, also referred to as the system manager hereafter, has two

levers: pricing and dispatch controls. She seeks an effective policy that makes both dynamic

pricing and dynamic dispatch control decisions in order to maximize the long-run average

profit. We allow the prices to depend on time and the customer location. Dynamically

adjusting prices elicits two competing effects. On the one hand, increasing prices increase the

per-ride revenue for the platform. On the other hand, customers are price sensitive, so higher

prices result in lower customer demand. Dispatching refers to the process of matching a car

with a customer requesting a ride and constitutes an important operational decision for the

platform.
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We model a ride-hailing or taxi system as a closed queueing network with a fixed number

of jobs, denoted by n. There are I buffers, I single-server nodes, and an infinite-server node

in the SPN. The terms “server” and “resource” will be used interchangeably to refer to a

single-server node. Similarly, the terms “buffer” and “class” will be used interchangeably.

As such, jobs in buffer i will be referred to as class i jobs, for i = 1, . . . , I. In addition

to choosing prices dynamically, the system manager can engage in J possible (dispatch)

activities, where each activity corresponds to a server serving jobs in a buffer. Following

service at a single-server node, jobs are routed to the infinite-server node. Jobs then continue

their service at the infinite-server node, after which they are probabilistically routed back

to the buffers. The infinite-server node models the travel times. This process continues

indefinitely.

In the context of our motivating application, jobs correspond to cars that circulate in the

system perpetually. The I buffers correspond to I city regions where cars wait to get matched

with a customer. In addition, the service rates at a single-server node can be thought of as the

customer arrival rate to the corresponding region, which depends on the price. As a result,

customer demand dynamically changes over time as the platform varies the prices of rides.

An activity corresponds to dispatching a car from one region to serving an arriving customer

possibly in another region. Thus, a service completion at a single-server node corresponds to

a car getting matched with a customer. After getting matched with a customer, the car must

travel to pick up the customer and bring him to his destination. We assume that all customer

requests that are not met immediately are lost. In the queueing model, this corresponds

to jobs getting routed to and served at the infinite-server node. That is, the infinite-server

node models the travel time of a car from its initial dispatch time to the drop off time of

the customer. Upon completing service at the infinite server node, the job is routed to

the buffer that is associated with the customer’s destination. This is modeled through a

probabilistic routing structure as is usually done in the queueing literature. Although the
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SPN we study is motivated by the ride-hailing and taxi systems, in what follows we use the

queueing terminology that is standard in the literature. However, we will occasionally make

reference to our motivating applications when intuition or interpretation are needed.

As mentioned above, incorporating travel times makes the problem significantly more

challenging. To ease the analysis, we assume there is a single travel node. This assumption has

two implications: First, the travel times between any two regions have the same distribution.

Second, upon completing service at the infinite-server node all job classes share the same

probabilistic routing structure. Admittedly, this is a restrictive assumption, but it simplifies

the analysis and allows us to incorporate the travel times into the model. We view our model

as an important first step in the analysis of ride-sharing network models that incorporate

travel times.

However, even under the single travel node assumption, the problem is not amenable

to exact analysis. As such, we consider a diffusion approximation to it in the heavy traffic

asymptotic regime. In that regime, under the so called complete resource pooling condition,

see Harrison and López [1999], we solve the problem analytically and derive a closed-form

solution for the optimal dynamic prices.

Notwithstanding these restrictive assumptions, the paper makes two contributions. First,

it incorporates the travel times in the model and solves the resulting dynamic pricing

and dispatch control problem analytically in the heavy traffic regime. Second, it makes a

methodological contribution by solving a drift-rate control problem on an unbounded domain,

which could be of interest in its own right.

The rest of the paper is structured as follows. Section 2.2 reviews the literature. Section

2.3 presents the control problem for the ride-hailing platform, and the associated Brownian

control problem is derived formally in Section 2.4. The equivalent workload formulation is

formulated in Section 2.5 and it is solved in Sections 2.6 and 2.7 by studying a related Bellman

equation. Section 2.8 interprets the solution of the equivalent workload formulation in the
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context of the original control problem and proposes a pricing and dispatch policy. Section

2.9 conducts a simulation study to illustrate the effectiveness of the proposed policy. Section

2.10 concludes the paper. There are two appendices: Appendix 2.11.1 provides a formal

derivation of the Brownian control problem, and Appendix 2.11.2 contains all miscellaneous

proofs.

2.2 Literature Review

Our paper is related to two streams of literature: the modeling and analysis of ride-hailing

and taxi systems and the dynamic control of queueing networks.

In recent years several authors have modeled ride-hailing and taxi systems using queueing

networks. A majority of this literature has focused on how pricing, dispatch (matching),

and relocation decisions can improve system performance. From a modeling perspective,

Ata et al. [2020a] and Braverman et al. [2019] are most closely related to ours. Ata et al.

[2020a] model a ride-hailing system closed stochastic processing network with dispatch and

relocation control. Under heavy traffic conditions, they approximate the original control

problem by a Brownian control problem (BCP). After reducing the BCP to an equivalent

workload formulation, they propose an algorithm to solve it numerically. However, their

model does not include travel times, whereas ours does. Incorporating travel times leads

to a significantly more challenging problem in the heavy traffic limit under the diffusion

scaling. On the other hand, Braverman et al. [2019] model a ride-hailing system as a closed

queueing networks with travel times and relocation control. By solving a suitable linear

program, they propose a static routing policy and prove that it is asymptotically optimal

in a large market asymptotic regime under fluid scaling. Hosseini et al. [2021] extends the

analysis of Braverman et al. [2019] by designing a dynamic relocation that outperforms the

asymptotically optimal static policy in realistic problem instances. In a related study, Zhang

and Pavone [2016] uses a combination of single-server and infinite-server queueing model
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to study the control of autonomous vehicles. The authors derive an open loop policy by

solving a linear program. Building on this solution, they also propose an effective dynamic

rebalancing policy.

Several other papers are at the intersection of ride-hailing and queueing, but differ more

in their modeling choices and analysis. Banerjee et al. [2016] study pricing on a single-region

model with a single travel time node and show that an optimal static pricing policy performs

well. Banerjee et al. [2022] develop an approximation framework to study vehicle sharing

systems under pricing, matching, and repositioning policies for several objective functions

and under various system constraints. In particular, they develop algorithms and show that

the approximation ratio of the resulting policy improves as the number of cars in each region

grows. Banerjee et al. [2020] study matching for a general closed queueing network that can

be used to model ride-hailing systems. They propose a family of state-dependent matching

policies that do not use any demand arrival rate information. Under a complete resource

pooling assumption, they show that the proportion of dropped demand under any such policy

decays exponentially as the number of supply units in the network grows. Afèche et al.

[2023] develop a game-theoretic fluid model to study admission control and repositioning

in a ride-hailing system with strategic drivers. Their analysis provides insights into spatial

demand imbalances and how demand admission control can impact the strategic behavior of

drivers in the network. Afèche et al. [2023] studies the optimal dynamic pricing and dispatch

control under demand shocks. Özkan and Ward [2020] model a ride-hailing system as an

open queueing network model with impatient customers. They propose a matching policy

and prove asymptotically optimality in the fluid scale in a large market regime. Özkan [2020]

studies a fluid model with strategic drivers that incorporates both pricing and matching

decisions, highlighting the importance of looking at multiple controls simultaneously. Besbes

et al. [2022] study the effect of pick up and travel times on capacity planning for a ride-hailing

system by modeling it as a spatial multi-server queue. Chen et al. [2020] proposes static
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and dynamic policies that are asymptotically optimal. Varma et al. [2022] studies an open

network model and proposes an asymptotically optimal policy. Examples of other papers

that use spatial models for pricing include Yang et al. [2018], Jacob and Roet-Green [2021],

and Hu et al. [2022].

Several other researchers focused on different aspects of the ride-hailing and taxi systems

without using queueing theoretic models. These include Wang et al. [2017], Ata et al. [2020b],

Bertsimas et al. [2019], Besbes et al. [2021], Bimpikis et al. [2019], Cachon et al. [2017],

Castillo et al. [2018], Chen and Sheldon [2016], Garg and Nazerzadeh [2021], Gokpinar and

Selcuk [2019], Guda and Subramanian [2019b], He et al. [2020], Hu et al. [2022], Hu and

Zhou [2021], Yan et al. [2020], and Lu et al. [2018].

This paper also contributes to the broader literature on dynamic control of queueing

systems. Two prominent approaches in that literature are: (i) Markov decision process (MDP)

formulations, and (ii) heavy traffic approximations. Intuitively, the workload problem studied

in Sections 2.5–2.7 relates to the service rate and admission control problems studied using

MDP formulations, see for example Jr. and Weber [1989] and references therein. The most

closely related papers are George and Harrison [2001] and Ata [2005]. These papers study

the service rate control problems for an M/M/1 queue and provide closed-form solutions;

also see Ata and Shneorson [2006], Ata and Zachariadis [2007], Adusumilli and Hasenbein

[2010], and Kumar et al. [2013].

The second approach is pioneered by Harrison [1988], also see Harrison [2000, 2003].

In particular, a number of papers studied drift rate control problems for one-dimensional

diffusions arising under heavy traffic approximations, see Ata et al. [2005], Ata [2006], Ghosh

and Weerasinghe [2007, 2010], Rubino and Ata [2009], Kim and Ward [2013], and Ata and

Tongarlak [2013]. More recently, Ata and Barjesteh [2023] and Ata et al. [2024] studied

drift-rate control problems arising in different contexts such as volunteer capacity management

and make-to-stock manufacturing. The analysis of the drift-rate control problem solved in
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this paper differs significantly from the analysis in those papers because it involves a quadratic

cost of drift rate, unbounded set of feasible drift rates, and an unbounded state space. The

combination of these features lead to a more challenging analysis. Our paper also makes a

modeling contribution by formulating the dynamic dispatch and pricing control problem that

incorporates travel times. Furthermore, it proposes an analytically tractable approximation

in the heavy traffic limit and solves that in closed form.

Lastly, our paper draws on the literature of the asymptotic analysis of closed queueing

networks with infinite-server queues, see for example Kogan et al. [1986], Smorodinskii [1986],

Kogan and Lipster [1993], and Krichagina and Puhalskii [1997].

2.3 Ridesharing Model

Motivated by the taxi and ride-hailing application described in the introduction, we consider

a closed queueing network with n jobs, I buffers, I single-server nodes, and one infinite-server

node. Figure 2.1 displays an illustrative network with I = 4 and J = 10, also see Section 2.9

for the motivation behind this example.

As mentioned earlier, in addition to dynamic pricing decisions, the system manager

also makes dispatch decisions dynamically. There are J dispatch activities she can choose

from. Each dispatch activity involves a unique buffer and a unique server–we use the terms

single-server node and server interchangeably. Let s(j) and b(j) denote the server and the

buffer, respectively, associated with activity j for j = 1, . . . , J . In other words, activity j is

undertaken by server s(j) and it servers jobs in buffer b(j). We describe the association

between activities and resources by the capacity consumption matrix A and the association

between activities and buffers by the constituency matrix C. That is, A is the I × J matrix
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Figure 2.1: A network with four regions and ten dispatch activities. The open rectangles are
the buffers, the circles are the single servers, and the oval is an infinite-server node. The ten
activities are represented by the arrows between the buffers and servers. The numbers on
the arrows indicate their index. Activities 1, 2, 3, and 4 are local dispatch activities while
activities 5 through 10 are non-local dispatch activities. The arrows from the infinite-server
to the buffers represent probabilistic rerouting of jobs in the network.

given by

Aij ∶=
⎧⎪⎪⎨⎪⎪⎩

1, if s(j) = i,

0, otherwise,
(2.1)

and C is the I × J matrix given by

Cij ∶=
⎧⎪⎪⎨⎪⎪⎩

1, if b(j) = i,

0, otherwise.
(2.2)

Let Ai denote the set of activities server i undertakes. Similarly, let Ci denote the set of
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activities that serve buffer i. In other words, we have that

Ai ∶= {j ∶ Aij = 1} , (2.3)

Ci ∶= {j ∶ Cij = 1} . (2.4)

For each activity j = 1, . . . , J , we associate a unit rate Poisson processNj . We also associate

a unit rate Poisson process N0 with the infinite-server node. The processes N0,N1, . . . ,NJ

are mutually independent. The service rate at the infinite-server node is denoted by η > 0.

We denote the service rate for activity j at time t by µj(t) for t ≥ 0 and j = 1, . . . , J . The

system manager chooses prices p(t) = (pi(t)) dynamically over time, where pi(t) denotes the

price charged to customers who seek rides from region i at time t. As the reader will see

below, these prices ultimately determine activity service rates µj(t) for j = 1, . . . , J and t ≥ 0.

We assume pi(t) ∈ [pi, pi] for t ≥ 0, where 0 ≤ p
i
< pi < ∞. The price sensitivity of demand is

captured by a nonnegative demand function Λ ∶ P → RI
+, where P = ∏I

i=1[pi, pi]. Namely, the

demand rate vector at time t, denoted by λ(t), is given by1

λ(t) = Λ (p(t)) = (Λ1(p1(t)), . . . , ΛI(pI(t)))
′
, t ≥ 0. (2.5)

We make the following monotonicity assumption to simplify the analysis:

Assumption 3. The demand rate function is strictly decreasing in price, i.e., Λi(pi) is

strictly decreasing in pi for i = 1, . . . , I.

From this monotonicity assumption, it follows that Λi(⋅) has an inverse function, denoted

by Λ−1i (⋅). Moreover, the pricing decisions can be replaced with choosing the demand rate

vector λ(t) dynamically over time. This is convenient for our analysis. In order to proceed

1. The customer demand rate in region i, λi(t), depends only on the price pi(t).
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with that approach, we define the set of admissible demand rate vectors L ⊆ RI
+ as follows:

L ∶=
I

∏
i=1
Li, (2.6)

where Li ∶= [Λi(pi),Λi(pi)] for i = 1, . . . , I. Denoting Λ−1(x) = (Λ−11 (x1), . . . ,Λ
−1
I (xI))

′ for

x ∈ L, it is easy to see that Λ−1 is the inverse function of Λ. Viewing the demand rates as the

platform’s pricing control, we define the revenue rate function π ∶ L → R as follows:

π(x) ∶=
I

∑
i=1

xiΛ
−1
i (xi), x ∈ L. (2.7)

We also make the following regularity assumptions for the revenue rate function:

Assumption 4. The revenue rate function π is: (a) three-times continuously differentiable

and strictly concave on L, and (b) has a maximizer in the interior of L.

Upon completing service at a single-server node, each job goes next to the infinite-server

node. Once its service there is complete, the job next joins buffer i with probability qi > 0

for i = 1, . . . , I where ∑I
i=1 qi = 1. The routing probability vector q = (qi) does not depend

on the single-server node the job departed from prior to joining the infinite-server node. In

other words, customers’ destination distribution is identical across different origins. This is a

restrictive assumption, but it simplifies the analysis significantly and enables us to incorporate

travel times into the model. As discussed in the Introduction, we view this as an important

first step in the analysis of ride-sharing network models that incorporate travel times. In order

to model this probabilistic routing structure mathematically, we let ψ = {ψ(l), l ≥ 1} denote a

sequence of I-dimensional i.i.d. random vectors with P (ψ(1) = ei) = qi for i = 1, . . . , I, where

ei is an I-dimensional vector with one in the ith component and zeros elsewhere. Then letting

Ψ(m) ∶=
m

∑
l=1

ψ(l), m ≥ 1, (2.8)
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we note that the ith component of Ψ(m), denoted by Ψi(m), represents the total number of

jobs routed to buffer i among the first m jobs that have finished service at the infinite-server

node.

As discussed earlier, there are two types of control decisions that the system manager

must make. First, she must choose an I-dimensional demand rate process λ = {λ(t), t ≥ 0}.

This is equivalent to making dynamic pricing decisions. Recall that the customer arrival

process at single-server node i corresponds to its service process. Because these customers

can be transported by cars in regions corresponding to activities j ∈ Ai, we let

µj(t) ∶= λi(t) for j ∈ Ai, i = 1, . . . , I, and t ≥ 0. (2.9)

This defines the J-dimensional service rate process µ = {µ(t), t ≥ 0}, where µ(t) = (µj(t)).

Second, she must decide on how servers allocate their time to various (dispatch) activities. This

decision takes the form of cumulative allocation processes Tj = {Tj(t), t ≥ 0} for j = 1, . . . , J .

In particular, Tj(t) represents the cumulative amount of time server s(j) devotes to activity

j (serving class i(j) jobs) during [0, t].

Next, we introduce the system dynamics equations that govern the movement of jobs

in the network. To that end, we let Q0(t) and Qi(t) denote the number of jobs in the

infinite-server node and in buffer i at time t, respectively, for i = 1, . . . , I. We also let A0(t)

and Ai(t) be the total number of jobs that have arrived to the infinite-server node and to

buffer i by time t, respectively, for i = 1, . . . , I. Then we have that

A0(t) ∶=
J

∑
j=1

Nj (
ˆ t

0
µj(s)dTj(s)) , t ≥ 0, (2.10)

Ai(t) ∶= Ψi (N0(η
ˆ t

0
Q0(s)ds)) , t ≥ 0. (2.11)

Moreover, letting D0(t) and Di(t) denote the total number of jobs that have left the infinite-
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server node and buffer i by time t, respectively, for i = 1, . . . , I, we have that

D0(t) ∶= N0 (η
ˆ t

0
Q0(s)ds) , t ≥ 0, (2.12)

Di(t) ∶= ∑
j∈Ci

Nj (
ˆ t

0
µj(s)dTj(s)) , t ≥ 0. (2.13)

We refer to the (I +1)-dimensional process Q = (Q0,Q1, . . . ,QI)′ as the queue length process,

whose dynamics is given next:

Qi(t) = Qi(0) + Ai(t) − Di(t), i = 0, 1, . . . , I and t ≥ 0, (2.14)

where Q(0) is the vector of initial queue lengths such that ∑I
i=0Qi(0) = n. Letting Ii(t)

denote the cumulative amount of time that server i is idle during the interval [0, t] for

i = 1, . . . , I, we have that

Ii(t) ∶= t − ∑
j∈Ai

Tj(t), t ≥ 0, (2.15)

or in matrix notation, I(t) = et −AT (t) for t ≥ 0. Note that (2.10)–(2.14) imply that

I

∑
i=0

Qi(t) =
I

∑
i=0

Qi(0) = n, t ≥ 0,

expressing the fact that the total number of jobs in the system remains fixed in a closed

network.

In order to state the platform’s objective and its control problem formally, we introduce

two vectors of cost parameters h = (h0, h1, . . . , hI)′ ∈ RI+1
+ and c = (c1, . . . , cI)′ ∈ RI

+. In the

context of the ride-hailing system, the platform incurs a fuel cost at a rate of h0 per traveling

car. Moreover, for i = 1, . . . , I, there is a holding cost at a rate of hi for each car waiting for a

ride in region i, reflecting the fact that no driver likes sitting idle. We assume that hi > h0
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for all i = 1, . . . , I. Finally, for i = 1, . . . , I, there is an idleness cost at the rate of ci per unit

of time server i is idle. This represents the lost revenue from picking up customers arriving

to region i and goodwill loss.2 A control policy is denoted by (T,λ) and must satisfy the

following conditions:

T , λ are nonanticipating with respect to Q, (2.16)

T , I are nondecreasing and continuous with T (0) = I(0) = 0, (2.17)

λ(t) ∈ L for all t ≥ 0, (2.18)

Qi(t) ≥ 0 for all t ≥ 0 and i = 0,1, . . . , I. (2.19)

Equation (2.16) expresses the fact that the policy can only depend on observable quantities.

Equation (2.17) is natural given the interpretations of the processes T and I. Equation (2.18)

requires that λ come from the set of achievable demand rates. Equation (2.19) expresses the

fact that queue lengths are nonnegative. The arriving customer demand is allocated to cars

waiting in various buffers through the dispatch activities j = 1, . . . , J (see, for example, (2.10)

and (2.13)). Given a control policy (T,λ), we define the cumulative profit collected up to

time t as

V (t) ∶=
ˆ t

0
[π (λ(s)) − h′Q(s)] ds − c′I(t), t ≥ 0. (2.20)

The platform’s control problem is to choose a policy (T,λ) so as to

maximize lim inf
t→∞

1

t
E [V (t)] (2.21)

subject to (2.10)–(2.20). (2.22)

Because control problem (2.21)–(2.22) in its original form is not amenable to exact analysis,

2. One can assume ci ≥ p∗i = Λ−1i (λ∗i ) naturally, where λ∗ is defined in (2.23) below.
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the next section considers a related control problem in an asymptotic regime where the

number of cars gets large and derives the approximating Brownian control problem. The

Brownian control problem is an approximation to the original problem, yet it is far more

tractable.

2.4 Brownian Control Problem

Following an approach that is similar to the one taken in Harrison [1988], this section develops

a Brownian approximation to the control problem presented in Section 2.3. Many authors

have proved heavy traffic limit theorems to rigorously justify such Brownian approximations—

see for example Harrison [1998], Williams [1998], Kumar [2000], Bramson and Dai [2001],

Stolyar [2004], Bell and Williams [2001, 2005], Ata and Kumar [2005], Ata and Olsen [2009,

2013] and references therein. We do not attempt to prove a rigorous convergence theorem

in this paper, but refer the reader to Harrison [1988, 2000, 2003] for elaborate and intuitive

justifications of the approximation procedure we follow.

The approximation procedure starts by solving the following static pricing problem

(existence of the optimal solution is guaranteed by Assumption 4), which helps us articulate

the heavy traffic assumption that underlies the mathematical development to follow. We set

λ∗ ∶= argmax
λ∈L

π(λ). (2.23)

Recall from Assumption 4 that we assume λ∗ is in the interior of L, i.e., λ∗ ∈ int(L). The

vector λ∗ represents the average demand rates that would result in the largest revenue rate

ignoring variability in the system. Note that the corresponding nominal service rates for the
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various activities are given by3

µ∗j ∶= λ
∗
i for j ∈ Ai. (2.24)

Using these nominal service rates, we define an I × J input-output matrix R as follows:

Rij ∶= µ∗jCij , i = 1, . . . , I, j = 1, . . . , J. (2.25)

Following Harrison [1988, 2000], we interpret Rij as the long-run average rate of class i

material consumed per unit of activity j under the nominal service rates µ∗j for j = 1, . . . , J .

We also define the I-dimensional input vector ν as

νi ∶= qiη, i = 1, . . . , I. (2.26)

We interpret νi as the long-run average rate of input into buffer i from the infinite-server

node. As a preliminary to stating the heavy traffic assumption, we introduce the notion of

local activities. In the context of the motivating application, it corresponds to a customer in

a region being picked up by a car in the same region. Using the terminology that is standard

in queueing theory, it corresponds to a server processing its own buffer. Without loss of

generality, we assume that the first I activities are local. That is,

s(j) = b(j) = j for j = 1, . . . , I.

This is equivalent to assuming that the first I columns of matrices A and C constitute the

I × I dimensional identity matrix. The following is the heavy traffic assumption:

3. In particular, for all j, µ∗j = ∑
I
i=1 λ

∗
iAij . This is true because there exists only one i such that Aij ≠ 0

for each j = 1, . . . , J . That is, an activity only uses one server. In matrix notation, µ∗ = A′λ∗, where A′ is the
transpose of A.
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Assumption 5. There exists a unique x∗ ∈ RJ such that

x∗j = min{1,
νj

λ∗j
}, j = 1, . . . , I, (2.27)

Rx∗ = ν, (2.28)

Ax∗ = e, (2.29)

x∗ ≥ 0. (2.30)

The vector x∗ is referred to as the nominal processing plan and the component x∗j can

be interpreted as the long-run average rate at which activity j is undertaken. Equation

(2.30) says that all nominal activity levels must be non-negative. Equation (2.29) means

that under the nominal processing plan, servers are fully utilized. Equation (2.28) is a flow

balance condition which says that the rate of jobs leaving the buffers equals the rate of jobs

entering the buffers under the nominal processing plan. Note that by (2.25)–(2.28) we have

∑j∈Ci µ
∗
jxj = qiη for each i, which then implies that (µ∗)′x∗ = η by summing over i. We

interpret (µ∗)′x∗ as the rate of jobs entering the infinite-server node under the nominal

processing plan, and Assumption 5 ensures that this equals the service rate at the infinite-

server node.4 Equation (2.27) ensures that local activities are used at maximal rates. In the

context of the motivating application, this means customer demand is met by cars in the

same region as much as possible.

Following Harrison [2000], we call activity j basic if x∗j > 0, whereas it is called nonbasic

if x∗j = 0. We let b denote the number basic activities. After possibly relabeling, we assume

without loss of generality that activities 1, . . . , b are basic and that activities b + 1, . . . , J are

nonbasic. Recall that the first I of them are the local activities. As done in Harrison [2000],

4. Based on intuition from the classical M/M/∞ queue, this condition implies that the steady-state
fraction of jobs in the infinite-server node under the nominal processing plan is equal to one as the number of
jobs in the system grows, i.e. as n→∞.
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we partition the matrices R and A as follows:

R = [H K] and A = [B N] , (2.31)

where H,B ∈ RI×b and K,N ∈ RI×(J−b). The submatrices H and B correspond to the basic

activities of R and A, respectively, while the submatrices K and N correspond to the nonbasic

activities.

In order to derive the approximating Brownian control problem, we consider a sequence

of closely related systems indexed by the total number of jobs n. The formal limit of this

sequence as n→∞ is the approximating Brownian control problem. We attach a superscript

of n to quantities associated with the nth system in the sequence. To be specific, we define

the scaled demand rate function Λn ∶ P → RI
+ by

Λn(x) ∶= nΛ(x), x ∈ P. (2.32)

Then we define the set of admissible scaled demand rate vectors Ln as the following:

Ln ∶= {λn ∈ RI
+ ∶ λn = Λn(p) for some p ∈ P}. (2.33)

We note from (2.5)–(2.6) and (2.32)–(2.33) that Ln = nL, and that Λn has the inverse function

(Λn)−1(x) = ((Λn
1)−1(x1), . . . , (Λ

n
I )
−1(xI))

′ for x ∈ Ln. We define the scaled revenue rate

function πn as follows:

πn(x) ∶=
I

∑
i=1

xi(Λn
i )
−1(xi), x ∈ Ln. (2.34)
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Observing that nx ∈ Ln if and only if x ∈ L, it can equivalently be shown that5

πn(nx) = nπ(x) = n
I

∑
i=1

xiΛ
−1
i (xi), x ∈ L. (2.35)

Therefore, in the nth system, the revenue rate process is simply scaled by n. We also scale

the holding cost rates hn and the idleness cost rates cn as follows:

hni ∶=
hi√
n
, i = 0, 1, . . . , I, (2.36)

cni ∶=
√
nci, i = 1, . . . , I. (2.37)

Lastly, we allow the mean travel time to vary with n as follows:

ηn ∶= η + η̂√
n
, (2.38)

where η̂ ∈ R. As observed in Kogan and Lipster [1993] and Ata et al. [2024], under our heavy

traffic assumption we expect that the queue lengths at the buffers to be of order
√
n and

that the number of jobs in the infinite-server node be of order n. Therefore, we define the

centered and scaled queue length processes as follows:

Zn
0 (t) ∶=

1√
n
(Qn

0(t) − n) and Zn
i (t) ∶=

1√
n
Qn
i (t), i = 1, . . . , I, t ≥ 0. (2.39)

Observe that since ∑I
i=0Q

n
i (t) = n for all t ≥ 0, it follows that ∑I

i=0Z
n
i (t) = 0 for all t ≥ 0.

As argued in Harrison [1988] (see also Harrison [2000, 2003]), any policy worthy of

consideration satisfies Tn(t) ≈ x∗t, for all t ≥ 0 and large n. That is, the nominal allocation

rate x∗ given in Assumption 5 should give a first-order approximation to the allocation rates

of the various activities under policy Tn. However, the system manager can choose the

5. The first equality in (2.35) is proved by applying (2.34) and noting that (Λn)−1 (nx) = Λ−1(x) for x ∈ L.
The second equality in (2.35) then follows by (2.7).
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second-order, i.e., order 1/
√
n, deviations from that. In order to capture such deviations from

the nominal rates, we define the centered and scaled processes as follows:

Y n
j (t) ∶=

√
n (x∗j t − T

n
j (t)) , j = 1, . . . , J, t ≥ 0, (2.40)

Similarly, in the heavy traffic regime, we expect the servers to be always busy to a first-order

approximation, but they may incur idleness on the second order, i.e., order 1/
√
n. As such,

we define the scaled idleness processes as follows:

Un
i (t) ∶=

√
nIni (t), i = 1, . . . , I, t ≥ 0. (2.41)

Then, it follows from (2.15) and (2.29) that

Un
i (t) = ∑

j∈Ai

Y n
j (t), i = 1, . . . , I, t ≥ 0. (2.42)

In addition, we define the centered and scaled demand and service rate processes, respectively,

as follows:

ζni (t) ∶=
1√
n
(λni (t) − nλ

∗
i ) , i = 1, . . . , I, t ≥ 0, (2.43)

κnj (t) ∶=
1√
n
(µnj (t) − nµ

∗
j ) , j = 1, . . . , J, t ≥ 0. (2.44)

Note that by (2.9) we have κnj (⋅) = ζ
n
i (⋅) for each j ∈ Ai. Finally, we define the centered

cumulative profit function. To do so, we first introduce the auxiliary function Ṽ n that will

serve as the centering function. To be specific, we define

Ṽ n(t) ∶= n [π (λ∗) − hn0 ] t = nπ (λ
∗) t −

√
nh0t, t ≥ 0, (2.45)

where the second equality follows from the definition of hn0 from (2.36). Note that Ṽ n(t) does
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not depend on the system manager’s control. Therefore, instead of maximizing the average

profit, she can focus on minimizing the average cost, where the cumulative cost up to time t,

denoted by V̂ n(t), is defined as follows:

V̂ n(t) ∶= Ṽ n(t) − V n(t), t ≥ 0. (2.46)

We then proceed with replacing the processes Zn, Y n, Un, ζn, κn, and V̂ n with their formal

limits Z, Y , U , ζ, κ, and ξ, respectively, as n→∞. In particular, the cost process ξ in the

Brownian approximation is given by

ξ(t) =
ˆ t

0

⎛
⎝

I

∑
i=1

αiζ
2
i (s) +

I

∑
i=0

hiZi(s)
⎞
⎠

ds + c′U(t), t ≥ 0, (2.47)

where αi ∶= − (Λ−1i )
′ (λ∗i ) − (λ

∗
i /2) × (Λ

−1
i )
′′ (λ∗i ) > 0 for i = 1, . . . , I. The steps outlining the

formal derivation of the Brownian control problem and (2.47) are given in Appendix 2.11.1.

The Brownian control problem (BCP) is given as follows: Choose processes Y = (Yj) and

ζ = (ζi) that are nonanticipating with respect to B so as to

minimize lim sup
t→∞

1

t
E [ξ(t)] (2.48)

subject to

Zi(t) = Bi(t) − qiη
ˆ t

0

I

∑
i=1

Zi(s)ds − ∑
j∈Ci

ˆ t

0
x∗jκj(s)ds (2.49)

+ ∑
j∈Ci

µ∗jYj(t), i = 1, . . . , I, t ≥ 0, (2.50)

Z0(t) = −
I

∑
i=1

Zi(t), t ≥ 0, (2.51)

U(t) = AY (t), t ≥ 0, (2.52)

κj(t) = ζi(t) for all j ∈ Ai, i = 1, . . . , I, and t ≥ 0, (2.53)
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Zi(t) ≥ 0 for all i = 1, . . . , I and t ≥ 0, (2.54)

U is nondecreasing with U(0) = 0, (2.55)

where B = {B(t), t ≥ 0} is an I-dimensional Brownian motion with starting state B(0) ≥ 0

that has drift rate vector γ = (γi) where γi ∶= η̂qi and covariance matrix Σ given by

Σii ∶= qiη + ∑
j∈Ci

µ∗jx
∗
j and Σii′ ∶= qiqi′η for i, i′ = 1, . . . , I, i ≠ i′. (2.56)

Although the BCP (2.50)–(2.53) is simpler than the original control problem that it approx-

imates, it is not easy to solve because it is a multidimensional stochastic control problem.

Thus, we further simplify it in Section 2.5 and derive an equivalent workload fomulation that

is one-dimensional under the complete resource pooling condition which we solve analytically

in Section 2.6.

2.5 Equivalent Workload Formulation

As a preliminary to the derivation of the workload problem, letting Z = (Z1, . . . , ZI)′ and

using (2.25), we first rewrite (2.50) in vector form as follows:

Z(t) = B(t) − ηq
ˆ t

0
e′Z(s)ds − C diag(x∗)

ˆ t

0
κ(s)ds + RY (t), t ≥ 0, (2.57)

where e is an I-dimensional vector of ones and diag(x∗) is the J × J diagonal matrix whose

(j, j)th element is x∗j .

Motivated by the development in Harrison and Mieghem [1997] and Harrison [2000], we

define the space of reversible displacements as follows:

N ∶= {HyB ∶ ByB = 0, yB ∈ Rb} , (2.58)
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where yB ∈ Rb is the vector consisting of the components of y indexed by the basic activities

j = 1, . . . , b. We let M = N⊥ be the orthogonal complement of the space N and call

d = dim(M) the workload dimension. Any d × I matrix M whose rows form a basis forM is

called a workload matrix. Lemma 6 provides a canonical choice of the workload matrix M

based on the notion of communicating buffers, which is defined next, see Ata et al. [2020a].

Also see Harrison and López [1999] for a related definition of communicating servers.

Definition 2. Buffers i and i′ are said to communicate directly if there exist basic activities

j and j′ such that i = b(j), i′ = b(j′), and s(j) = s(j′). That is, buffers i and i′ are served

by a common server using basic activities. Buffers i and i′ are said to communicate if there

exist buffers i1, . . . , il such that i1 = i, il = i′, and buffer is communicates directly with buffer

is+1 for s = 1, . . . , l − 1.

Buffer communication is an equivalence relation. Thus, the set of buffers can be partitioned

into L disjoint subsets where all buffers in the same subset communicate with each other. We

call each subset a buffer pool and denote the lth buffer pool by Pl for l = 1, . . . , L. Associated

with each buffer pool is a server pool. The lth server pool Sl is defined as follows:

Sl ∶= {k ∶ ∃j ∈ {1, . . . , b} s.t. s(j) = k and b(j) ∈ Pl}, l = 1, . . . , L. (2.59)

In words, server pool l consists of all servers that can serve a buffer in buffer pool l using a

basic activity. Note that since the buffer pools partition the buffers, it follows from (2.59)

that the server pools partition the servers. Thus, the buffer pools and the server pools are in a

one-to-one correspondence. As a result, there is an equivalent notion of server communication,

but we stick with the definition of buffer communication for mathematical convenience. The

following lemma characterizes the workload dimension and the workload matrix.

Lemma 6. The workload dimension equals the number of buffer pools, i.e., d = L. Further-
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more, the L × I matrix M given by

Mli ∶=
⎧⎪⎪⎨⎪⎪⎩

1, if i ∈ Pl,

0, otherwise,
(2.60)

for l = 1, . . . , L and i = 1, . . . , I constitutes a canonical workload matrix.

To facilitate the derivation of the workload state dynamics, we define the L × I matrix G

as follows:

Glk ∶= λ∗k 1{k ∈Sl}, l = 1, . . . , L, k = 1, . . . , I. (2.61)

That is, the lth row of G, (Gl1, . . . ,GlI) contains the nominal service rates for those servers

in server pool l and zeros for the rest of the servers. The next lemma provides a useful result

that helps us derive the workload problem. It is proved in Appendix 2.11.2.

Lemma 7. We have that MR = GA.

We define the L-dimensional workload process W = {W (t), t ≥ 0} as

W (t) ∶= MZ(t), t ≥ 0, (2.62)

whose lth component represents the total number of jobs for the lth server pool at time t for

l = 1, . . . , L. By (2.62) and Lemma 7, we arrive at the following equation which describes the

evolution of the workload process:

W (t) = χ(t) − Mηq

ˆ t

0
e′Z(s)ds − MCdiag(x∗)

ˆ t

0
κ(s)ds + GU(t), t ≥ 0, (2.63)

where χ(t) ∶= MB(t), so that χ = {χ(t), t ≥ 0} is a L-dimensional Brownian motion with

drift vector Mγ, covariance matrix MΣM ′, and starting state χ(0) =MB(0) ≥ 0.
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Next, we introduce a closely related control problem referred to as the reduced Brownian

control problem (RBCP). Its state descriptor is the workload process W . To be more specific,

the RBCP is the following: Choose a policy (Z,U, ζ) that is nonanticipating with respect to

χ so as to

minimize lim sup
t→∞

1

t
E
⎡⎢⎢⎢⎣

ˆ t

0
(

I

∑
i=1

αiζ
2
i (s) +

I

∑
i=1
(hi − h0)Zi(s))ds + c′U(t)

⎤⎥⎥⎥⎦
(2.64)

subject to

W (t) = MZ(t), t ≥ 0, (2.65)

W (t) = χ(t) − Mηq

ˆ t

0
e′Z(s)ds − MCdiag(x∗)

ˆ t

0
κ(s)ds + GU(t), t ≥ 0, (2.66)

Z(t) ≥ 0 for t ≥ 0, (2.67)

U is nondecreasing with U(0) = 0, (2.68)

κ(t) = A′ζ(t) for t ≥ 0. (2.69)

The BCP (2.48)–(2.53) and the RBCP (2.64)–(2.69) are equivalent for the purposes of optimal

control, as shown by the next proposition.

Proposition 3. Every admissible policy (Y, ζ) for the BCP (2.48)–(2.53) yields an admissible

policy (Z,U, ζ) for the RBCP (2.64)–(2.69) and these two policies have the same cost. On

the other hand, for every admissible policy (Z,U, ζ) of the RBCP, there exists an admissible

policy (Y, ζ) for the BCP whose cost is equal to that of the policy (Z,U, ζ) for the RBCP.

Hereafter, we make the complete resource pooling assumption that corresponds to having

a single resource pool in our context, see Assumption 6 below. Harrison and López [1999]

observes that the complete resource pooling assumption leads to a one-dimensional workload

formulation, also see Ata and Kumar [2005]. Similarly, Assumption 6 allows us to formulate

a one-dimensional workload formulation that is equivalent to the RBCP (2.64)–(2.69).

Assumption 6. All buffers communicate under the nominal processing plan, i.e., L = 1.
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This assumption says that servers have sufficiently overlapping capabilities under the

nominal processing plan; see Harrison and López [1999] for further details. The following

lemma allows us to simplify the RBCP under Assumption 6.

Lemma 8. Under Assumption 6, we have M = e′ and G = (λ∗)′. Moreover, we have that

Mηq = η and MCdiag(x∗)A′ = e′. (2.70)

Using Lemma 8, the RBCP can be equivalently written as follows: Choose a policy

(Z,U, ζ) that is nonanticipating with respect to χ so as to

minimize lim sup
t→∞

1

t
E
⎡⎢⎢⎢⎣

ˆ t

0
(

I

∑
i=1

αiζ
2
i (s) +

I

∑
i=1
(hi − h0)Zi(s))ds + c′U(t)

⎤⎥⎥⎥⎦
(2.71)

subject to

W (t) =
I

∑
i=1

Zi(t), t ≥ 0, (2.72)

W (t) = χ(t) − η
ˆ t

0
W (s)ds −

ˆ t

0

I

∑
i=1

ζi(s)ds +
I

∑
i=1

λ∗i Ui(t), t ≥ 0, (2.73)

Z(t) ≥ 0 for t ≥ 0, (2.74)

U is nondecreasing with U(0) = 0, (2.75)

where χ is a one-dimensional Brownian motion with drift rate parameter a ∶= e′γ and variance

parameter σ2 ∶= e′Σe and starting state χ(0) = ∑I
i=1Bi(0) ≥ 0.

To further simplify the RBCP, we define the cost function c ∶ R→ R by

c(x) ∶= min

⎧⎪⎪⎨⎪⎪⎩

I

∑
i=1

αiζ
2
i ∶ e

′ζ = x, ζ ∈ RI
⎫⎪⎪⎬⎪⎪⎭
, x ∈ R, (2.76)
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and the optimal (state-dependent) drift rate function ζ∗ ∶ R→ R by

ζ∗(x) ∶= argmin
⎧⎪⎪⎨⎪⎪⎩

I

∑
i=1

αiζ
2
i ∶ e

′ζ = x, ζ ∈ RI
⎫⎪⎪⎬⎪⎪⎭
, x ∈ R. (2.77)

Defining α̂ ∶= ∑I
i=1 1/αi, the following lemma characterizes these functions—similar results

are found in Çelik and Maglaras [2008] and Ata and Barjesteh [2023].

Lemma 9. We have that c(x) = 1
α̂x

2 and ζ∗i (x) =
1

αiα̂
x for i = 1, . . . , I and x ∈ R.

In the workload formulation, it is optimal to keep all workload in the buffer with the

lowest holding cost, i.e., buffer i∗ given by

i∗ ∶= argmin
i=1,...,I

hi, (2.78)

with corresponding effecitve holding cost h ∶= hi∗ − h0 > 0. Moreover, the system manager

will only idle the server that is cheapest to idle, i.e., server k∗ given by

k∗ ∶= argmin
i=1,...,I

ci
λ∗i
, (2.79)

with corresponding effective idling cost r ∶= ck∗/λ∗k∗ .

The workload formulation can now be stated as follows: Choose a policy θ ∶ [0,∞) → R

that is nonanticipating with respect to χ so as to

minimize lim sup
t→∞

1

t
E [
ˆ t

0
[c (θ(s)) + hW (s)]ds + rL(t)] (2.80)

subject to

W (t) = χ(t) − η
ˆ t

0
W (s)ds −

ˆ t

0
θ(s)ds + L(t), t ≥ 0, (2.81)

W (t) ≥ 0 for t ≥ 0, (2.82)

L is nondecreasing with L(0) = 0, (2.83)

76



The RBCP (2.64)–(2.69) and the EWF (2.80)–(2.83) are equivalent for the purposes of

optimal control, as shown by the next proposition.

Proposition 4. Every admissible policy θ for the EWF (2.80)–(2.83) yields an admissible

policy (Z,U, ζ) for the RBCP (2.71)–(2.75) and these two policies have the same cost. On

the other hand, for every admissible policy (Z,U, ζ) of the RBCP, there exists an admissible

policy θ for the EWF whose cost is less than or equal to that of the policy (Z,U, ζ) for the

RBCP.

In what follows, we add two additional constraints to the equivalent workload formulation.

First, we require that

ˆ ∞
0

1{W (t)>0} dL(t) = 0, (2.84)

which requires that the process L can increase only when W = 0. That is, the control policy

must be work conserving. We include this restriction because its optimality is intuitive from

the cost structure, i.e., there are both holding and idleness costs, and that the workload

process is one dimensional. Second, we impose the following regularity condition:

lim
t→∞

E [W (t)]
t

= 0.

To repeat, we further require a policy θ to satisfy these conditions to be admissible.

2.6 Solution to the Equivalent Workload Formulation

This section solves the EWF (2.80)–(2.83). In order to minimize technical complexity, we

restrict attention to stationary Markov policies. That is, the drift chosen at time t will be

a function of the current workload only, and so we write it as θ (W (t)). To facilitate the

analysis, we next consider the Bellman equation for the workload formulation which is the
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following second-order nonlinear differential equation: Find a function f ∈ C2[0,∞) and a

constant β ∈ R satisfying

β = min
x∈R
{1
2
σ2f ′′(w) − ηwf ′(w) − xf ′(w) + af ′(w) + c(x) + hw}

=min
x∈R
{ 1
α̂
x2 − xf ′(w)} + 1

2
σ2f ′′(w) − ηwf ′(w) + af ′(w) + hw, w ≥ 0, (2.85)

subject to the boundary conditions

f ′(0) = −r and f ′ is increasing with lim
w→∞ f

′(w) = h
η
. (2.86)

The optimization problem on the right-hand side of (2.85) is convex. Therefore, its solution

is easily seen to be

x∗(w) ∶= α̂
2
f ′(w), w ≥ 0. (2.87)

The Bellman equation can then be simplified as follows: Find a function f ∈ C2[0,∞) and a

constant β ∈ R satisfying

β = − α̂
4
[f ′(y)]2 + 1

2
σ2f ′′(y) − ηyf ′(y) + af ′(y) + hy, y ≥ 0, (2.88)

subject to the boundary conditions

f ′(0) = −r and f ′ is increasing with lim
w→∞ f

′(w) = h
η
. (2.89)

Setting v = f ′, the Bellman equation can be written as follows: find a function v ∈ C1[0,∞)

and a constant β ∈ R satisfying

β = − α̂
4
v2(y) + 1

2
σ2v′(y) − ηyv(y) + av(y) + hy, y ≥ 0, (2.90)
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subject to the boundary conditions

v(0) = −r and v is increasing with lim
y→∞ v(y) =

h

η
. (2.91)

This expresses the Bellman equation as a first-order differential equation. The following

theorem guarantees the existence of a solution to the Bellman equation.

Theorem 3. The Bellman equation (2.90)–(2.91) has a solution (β∗, v) with β∗ > 0.

With β∗ > 0 and v given by Theorem 3, we define

f(y) ∶=
ˆ y

0
v(x)dx, y ≥ 0.

The next result is immediate from Theorem 3 and provides a solution to the original Bellman

equation:

Corollary 3. The pair (β∗, f) solves the Bellman equation (2.85)–(2.86).

Define the following candidate policy θ∗ ∶ [0,∞) → R by

θ∗(w) ∶= α̂
2
v(w), w ≥ 0. (2.92)

The following proposition facilitates the proof of our main result.

Proposition 5. The candidate policy θ∗ is admissible for the equivalent workload formulation.

That is, letting W∗ = {W∗(t), t ≥ 0} denote the workload process under the candidate policy

θ∗, we have

lim
t→∞

E [W∗(t)]
t

= 0.

The following result establishes that the candidate policy is optimal:

Theorem 4. The candidate policy θ∗ is optimal for the equivalent workload formulation

(2.80)–(2.83), and its long-run average cost is β∗.
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Next, we state an auxiliary lemma used in the proof of Theorem 4.

Lemma 10. Let W be the workload process defined by (2.81)–(2.83) under an arbitrary

admissible policy. Then the following hold:

(i) E

ˆ t

0
f ′(W (s))d(χ(s) − as) = 0, t ≥ 0,

(ii) lim sup
t→∞

E [f (W (t))]
t

= 0.

Proof. Since the stochastic process t↦ χ(t)−at is standard Brownian motion, by Proposition

4.7 in Harrison [2013], to prove part (i) it suffices to show that

E

ˆ t

0
[f ′ (W (s))]2 ds < ∞ for each t ≥ 0.

Since f ′(w) ∈ [−r, h/η] for all w ≥ 0 by (2.86) and W (t) ≥ 0 for all t ≥ 0 by (2.82), we have

E

ˆ t

0
[f ′ (W (s))]2 ds ≤ t(r + h

η
)
2

< ∞, t ≥ 0,

proving part (i). In order to prove part (ii), that it suffices to show that

lim sup
t→∞

∣E [f (W (t))] ∣
t

= 0.

To this end, observe that

∣E [f (W (t))] ∣ ≤ E ∣f (W (t))∣ = E
RRRRRRRRRRR

ˆ W (t)

0
f ′(s)ds

RRRRRRRRRRR
≤ E
ˆ W (t)

0
∣f ′(s)∣ ds

≤ (r + h
η
)E [W (t)] .

Thus, by definition of an admissible policy, it follows that

lim sup
t→∞

∣E [f (W (t))] ∣
t

≤ (r + h
η
) lim sup

t→∞

E [W (t)]
t

= 0,
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proving part (ii).

We conclude this section with a proof of Theorem 4.

Proof of Theorem 4. By (2.81), note that for an admissible policy θ,

dW (s) = dχ(s) − ηW (s)ds − θ(W (s))ds + dL(s). (2.93)

Furthermore, since L(s) is nondecreasing in s, the processes is a VF function almost surely;

see Section B.2 in Harrison (2013). Therefore,

[dW (s)]2 = [dχ(s)]2 + 2dχ(s) [−ηW (s)ds − θ(W (s))ds + dL(s)]

+ [−ηW (s)ds − θ(W (s))ds + dL(s)]2 (2.94)

= σ2 ds.

Note that the last two terms on the right-hand side of (2.94) are zero; see Chapter 4 in

Harrison (2013). Then, for f ∈ C2[0,∞), Itô’s Lemma gives

df(W (s)) = f ′(W (s))dW (s) + 1

2
f ′′(W (s)) [dW (s)]2 . (2.95)

Define the differential operator Γθ ∶ C2[0,∞) → C[0,∞) by

(Γθf) (w) =
1

2
σ2f ′′(w) − [ηw + θ(w) − a] f ′(w), w ≥ 0. (2.96)

Then, combining (2.93)–(2.96) gives

df(W (s)) = f ′(W (s))d(χ(s) − as) + Γθf(W (s))ds + f ′(W (s))dL(s). (2.97)
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Integrating both sides of (2.97) over [0, t] gives

f(W (t)) = f(W (0)) +
ˆ t

0
f ′(W (s))d(χ(s) − as) +

ˆ t

0
Γθf(W (s))ds +

ˆ t

0
f ′(W (s))dL(s).

(2.98)

Recall that by (2.84) the process L increases only when W = 0. Thus, for f ∈ C2[0,∞])

satisfying f ′(0) = −r we have

ˆ t

0
f ′(W (s))dL(s) = f ′(0)L(t) = −rL(t). (2.99)

Moreover, for the solution (β∗, f) of the Bellman equation (2.85)–(2.86) it follows that

β∗ − c (θ(w)) − hw ≤ 1

2
σ2f ′′(w) − [ηw + θ(w) − a]f ′(w), w ≥ 0, (2.100)

with equality holding when θ = θ∗. Therefore by (2.96), (2.100), Lemma 10, and taking

expectations, it follows that

E[f(W (t))] − [f(W (0))] + E[rL(t)] = E
ˆ t

0
Γθf(W (s))ds

≥ E
ˆ t

0
[β∗ − c (θ(W (s))) − hW (s)]ds, (2.101)

with equality holding when θ = θ∗. Rearranging terms in (2.101) and dividing by t gives

1

t
E [
ˆ t

0
[c (θ(s)) + hW (s)] ds + rL(t)] ≥ β∗ − 1

t
Ef(W (t)) + 1

t
Ef(W (0)), (2.102)

with equality holding when θ = θ∗. Finally, taking limits on both sides of (2.102) and applying

Lemma 10 gives

lim sup
t→∞

1

t
E [
ˆ t

0
[c (θ(s)) + hW (s)]ds + rL(t)] ≥ β∗,
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with equality holding when θ = θ∗. Therefore, the policy θ∗ is optimal for the equivalent

workload formulation and its long-run average cost is β∗.

2.7 Solution to the Bellman Equation

In this section we prove Theorem 3 by considering an initial value problem that is closely

related to the Bellman equation. Namely, for each fixed β ≥ 0 consider the following initial

value problem, denoted by IVP(β): Find a function v ∈ C1[0,∞) such that

σ2

2
v′(y) = β + α̂

4
v2(y) + ηy (v(y) − h

η
) − av(y), y ≥ 0, (2.103)

v(0) = −r. (2.104)

The following result is standard and is proven in Appendix 2.11.2.

Lemma 11. For β ≥ 0, there exists a unique solution vβ ∈ C1[0,∞) to (2.103)–(2.104).

For the remainder of this section, we analyze the (unique) solution to (2.103)–(2.104),

focusing on how the behavior of the solution varies with the parameter β. Using this approach,

we ultimately find a β∗ > 0, with corresponding solution vβ∗ , such that the pair (β∗, vβ∗)

solves the original Bellman equation. Namely, we look for β∗ such that vβ∗ satisfies the

second condition in (2.89) that vβ∗ is increasing with limy→∞ vβ∗(y) = h/η.

For much of our analysis, we consider parameters that satisfy one of two cases, given in

Assumption 7 below. To state the assumption, let

β
1
= 0 and β

2
= −ar − α̂r

2

4
.

Assumption 7. One of the following holds:

(a) Case 1: a > − α̂4 r and β ≥ β
1
.
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(b) Case 2: a ≤ − α̂4 r and β > β
2
.

Remark. Note that under Assumption 7(b), we have that β
2
≥ 0.

Lemmas 12–14 below facilitate the analysis to follow.

Lemma 12. If y > 0 is a local maximizer of vβ(y), then vβ(y) ≤ h/y.

Proof. Because y is a local maximizer, we have that v′
β
(y) = 0, and v′′

β
(y) ≤ 0. Differentiating

both sides of (2.103) and using v′
β
(y) = 0, we write

σ2

2
v′′β(y) = η (vβ(y) −

h

η
) ≤ 0,

from which it follows that vβ(y) ≤ h/y.

Lemma 13. Under Assumption 7, vβ increases to its supremum.

Proof. First, note that v′
β
(0) = 2β

σ2
+ α̂

2σ2
r2 + 2ar

σ2
> 0 in either case of Assumption 7. Aiming

for a contradiction, suppose vβ does not increase to its maximum. Then we must have

0 ≤ x1 < x2 < x3 such that

vβ(x1) = vβ(x2) = vβ(x3) = v,

v′β(x1) > 0, v′β(x2) < 0, v′β(x3) > 0.

In particular, we have the following equations:

v′β(x1) =
2β

σ2
+ α̂

2σ2
v2 + 2η

σ2
x1 (v −

h

η
) − 2av

σ2
> 0, (2.105)

v′β(x2) =
2β

σ2
+ α̂

2σ2
v2 + 2η

σ2
x2 (v −

h

η
) − 2av

σ2
< 0, (2.106)

v′β(x3) =
2β

σ2
+ α̂

2σ2
v2 + 2η

σ2
x3 (v −

h

η
) − 2av

σ2
> 0. (2.107)
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On the one hand, subtracting (2.106) from (2.105) yields

2η

σ2
(x1 − x2) (v −

h

η
) > 0. (2.108)

Because x1 − x2 < 0, we conclude from (2.108) that

v − h
η
< 0 (2.109)

On the other hand, subtracting (2.106) from (2.107) gives

2η

σ2
(x3 − x2) (v −

h

η
) > 0. (2.110)

But, we deduce from (2.109) and from x3−x2 > 0 that the left-hand side of (2.110) is negative,

which is a contradiction. This completes the proof.

Lemma 14. Let 0 ≤ x1 < x2. Under Assumption 7, the following condition is necessary for

vβ(x) to be constant on (x1, x2):

β = a h
η
− α̂

4
(h
η
)
2

. (2.111)

Moreover, if vβ is constant on (x1, x2), then vβ(x) = h/η for x ∈ (x1, x2), and letting

x̂ ∶= inf{x ≥ 0 ∶ vβ(x) = h/η}, it follows that vβ is nondecreasing on [0, x̂] and stays constant

at value h/η thereafter.

On the other hand, if (2.111) does not hold, then there is no interval on which vβ is

constant, i.e., the set {y ≥ 0 ∶ v′
β
(y) = 0} has Lebesgue measure zero.

Proof. Suppose the condition in (2.111) is violated, which implies

β + α̂
4
(h
η
)
2

− a h
η
/= 0 (2.112)
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Aiming for a contraction, suppose there exist an interval (x1, x2) such that vβ(y) = v on it.

This implies v′
β
(y) = v′′

β
(y) = 0 on (x1, x2). Differentiating both sides of (2.103) and using

v′
β
(y) = 0 on (x1, x2) gives

σ2

2
v′′β(y) = η (vβ(y) −

h

η
) , y ∈ (x1, x2).

Thus, vβ(y) = h/η on (x1, x2). Substituting this into (2.103) yields

σ2

2
v′β(y) = β +

α̂

4
(h
η
)
2

− a h
η
/= 0, y ∈ (x1, x2),

which follows from (2.112) and contradicts that v′
β
(y) = 0 on (x1, x2). Therefore, if (2.111)

does not hold, then there is no interval on which vβ is constant.

Now, we turn to the first part of the lemma. If vβ is constant on (x1, x2), then v′
β
(x) =

v′′
β
(x) = 0 on (x1, x2). As argued above, these imply vβ(x) = h/η on (x1, x2). In addition, it

follows from (2.103) and v′
β
(x) = −h/η on (x1, x2) that

β + α̂
4
(h
η
)
2

− a h
η
= 0,

proving the necessary condition (2.112). Building on these, because at any local maximum

vβ(x) ≤ h/η by Lemma 12 and x̂ is the first time vβ reaches to its maximum by Lemma 13, we

conclude that vβ is nondecreasing on [0, x̂]. To conclude the proof, consider an auxiliary IVP

involving (2.103) on [x̂,∞) with the initial condition v(x̂) = h/η. Then setting v(x) = h/η

solves it. Moreover, combining that with vβ on [0, x̂) constitutes a solution to the IVP

(2.103)–(2.104). By Lemma 11, this is the unique solution.

To facilitate the analysis below, we define the following four sets. First, consider Case 1
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of Assumption 7, and let

I1 ∶= {β ≥ 0 ∶ vβ is nondecreasing on (0,∞)},

D1 ∶= {β ≥ 0 ∶ ∃xβ ≥ 0 s.t. vβ is nondecreasing on (0, xβ) and decreasing on (xβ ,∞)}.

Similarly, for Case 2 of Assumption 7, we define

I2 ∶= {β > β2 ∶ vβ is nondecreasing on (0,∞)},

D2 ∶= {β > β2 ∶ ∃xβ ≥ 0 s.t. vβ is nondecreasing on (0, xβ) and decreasing on (xβ ,∞)}.

Lemma 15. We have the following:

(i) Under Assumption 7(a), β ∈ D1 if and only if ∃x0 ∈ (0,∞) such that v′
β
(x0) < 0.

(ii) Under Assumption 7(b), β ∈ D2 if and only if ∃x0 ∈ (0,∞) such that v′
β
(x0) < 0.

Proof. First, note from Lemma 14 that it is necessary that vβ increases to h/η and stay

constant thereafter for it to be constant on any interval. In that case, we would have β ∈ Ii

(i = 1 under Assumption 7(a) and i = 2 under Assumption 7(b)). Thus, for the remainder of

the proof, we assume there is no interval on which vβ is constant.

We prove Cases (i) and (ii) simultaneously because their proofs are identical. For i = 1,2,

let β ∈ Di. Aiming for a contradiction, assume there does not exist x0 > 0 such that v′
β
(x0) < 0.

Then, v′
β
(x) ≥ 0 for all x ≥ 0, i.e., vβ is nondecreasing on (0,∞). Thus, β ∈ Ii, a contradiction.

Therefore, there exists x0 > 0 such that v′
β
(x0) < 0.

For the other direction, suppose there exists x0 > 0 such that v′
β
(x0) < 0. Because vβ

increases to its maximum (Lemma 13), it is not constant on any interval (by the argument

given in the opening paragraph of this proof) and v′
β
(x0) < 0, it achieves its maximum at
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some x∗ < x0. Thus, by Lemma 12, we have that

vβ(x) ≤ vβ(x∗) ≤
h

η
, x ≥ 0. (2.113)

Aiming for a contradiction, suppose that β /∈ Di. Then vβ cannot be decreasing over [x∗,∞).

Thus, there exist x1 and x2 such that

x∗ < x1 < x2,

v = vβ(x1) = vβ(x2) ≤
h

η
,

v′β(x1) < 0 < v′β(x2).

In particular, the following holds:

v′β(x1) =
2β

σ2
+ α̂

2σ2
v2 + 2η

σ2
x1 (v −

h

η
) − av < 0, (2.114)

v′β(x2) =
2β

σ2
+ α̂

2σ2
v2 + 2η

σ2
x2 (v −

h

η
) − av > 0. (2.115)

Subtracting (2.114) from (2.115) gives

0 < v′β(x2) − v
′
β(x1) = η (x2 − x1) (v −

h

η
) ≤ 0,

where the last inequality follows because x2 − x1 > 0 and v ≤ h
η by (2.113), leading to a

contradiction. We conclude that β ∈ Di.

Corollary 4. Under Assumption 7, we have the following:

(i) In Case 1 of Assumption 7, the sets I1 and D1 partition [0,∞).

(ii) In Case 2 of Assumption 7, the sets I2 and D2 partition (β
2
,∞).

Proof. Consider Case 1 of Assumption 7. Then for β ≥ 0, if v′
β
(x) < 0 for some x > 0, it
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follows that β ∈ D1 by Lemma 15. Otherwise, v′
β
(x) ≥ 0 for all x > 0, in which case β ∈ I1 by

definition. This proves (i). Proof of (ii) follows similarly.

Corollary 5. For i = 1,2, under Case i of Assumption 7, we have that vβ achieves its

maximum whenever β ∈ Di, and

sup
x≥0

vβ(x) <
h

η
.

Proof. For i = 1,2, by definition of Di, ∃x∗ ≥ 0 such that vβ is nondecreasing on (0, x∗) and

it is decreasing on (x∗,∞). First, note that if x∗ = 0, then vβ(x) is decreasing everywhere

and vβ(0) = −r and the result follows. Thus, we assume x∗ > 0. Note that vβ achieves

its maximum at x∗. Also, we conclude from Lemma 12 that vβ(x∗) ≤ h/η. Aiming for a

contradiction, suppose vβ(x∗) = h/η. Note that v′
β
(x∗) = 0 because x∗ is the maximizer.

From these, by differentiating both sides of (2.103), we conclude that v′′
β
(x∗) = 0. Then

we can argue as in the proof of Lemma 14 that vβ(x) = h/η for x ≥ x∗, implying β /∈ Di, a

contradiction. Thus, vβ(x∗) /= h/η, completing the proof.

Lemma 16. For i = 1,2, under Case i of Assumption 7, we have that lim
x→∞ vβ(x) = −∞

whenever β ∈ Di.

Proof. It follows from Corollary 5 that vβ has a maximizer x∗ such that

vβ(x) ≤ vβ(x∗) <
h

η
, x ≥ 0. (2.116)

Also define the constant

ϵ ∶= h
η
− vβ(x∗) > 0. (2.117)

To prove lim
x→∞ vβ(x) = −∞, we argue by contradiction. To that end, suppose there exists a
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K1 > 0 such that vβ(x) ≥ −K1 for x ≥ 0. Then we have that

∣vβ(x)∣ ≤ K2 ∶= max{K1,
h

η
} . (2.118)

Recalling IVP(β), we bound v′
β
(⋅) using (2.116)–(2.118) as follows:

σ2

2
v′β(y) ≤ β +

α̂

4
K2
2 + ηy (vβ(x

∗) − h
η
) + ∣a∣K2

= [β + α̂
4
K2
2 + ∣a∣K2] − ϵηy, y ≥ 0. (2.119)

Integrating both sides of (2.119) over [0, y] and using the initial condition vβ(0) = −r gives

σ2

2
v′β(y) ≤ −

σ2

2
r + [β + α̂

4
K2
2 + ∣a∣K2] y −

ηϵ

2
y2, y ≥ 0. (2.120)

Since ηϵ/2 > 0, the right-hand side of (2.120) tends to −∞ as y →∞, implying that v(y) → −∞

as y →∞, a contradiction.

Lemma 17. For i = 1,2, under Case i of Assumption 7, the following are equivalent:

(i) β ∈ Di,

(ii) ∃x > 0 such that v′
β
(x) < 0,

(iii) ∃x > 0 such that vβ(x) < −r,

(iv) lim
x→∞ vβ(x) = −∞.

Proof. Parts (i) and (ii) are equivalent by Lemma 15. Part (i) implies (iv) by Lemma 16.

Clearly, (iv) implies (iii). Therefore, it suffices to prove that (iii) implies (ii). To that end, let

x0 > 0 be such that vβ(x0) < −r. Since vβ(0) = −r, it follows from the mean value theorem

that there exists a x̂0 ∈ (0, x0) such that

v′β(x̂0) =
vβ(x0) − vβ(0)

x0 − 0
< 0,
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proving part (ii).

Lemma 18. Under Assumption 7, we have that limx→∞ vβ(x) = ∞ if and only if there exists

an x0 > 0 such that vβ(x0) ≥ h
η .

Proof. First, if limx→∞ vβ(x) = ∞, then clearly, there exists an x0 > 0 such that vβ(x0) > h
η .

To prove the other direction, suppose there exists x0 > 0 such that vβ(x0) > h
η , and define

x1 ∶= inf {x > 0 ∶ vβ(x) ≥
h

η
} ,

Because vβ(0) = −r < h
η < vβ(x0), by the intermediate value theorem, vβ(x1) = h

η . Next, we

argue that vβ(x) > h
η for all x > x1. If not, then there exists an x2 > x1 such that vβ(x2) ≤ h

η .

Then let

x3 ∶= inf {x > x1 ∶ vβ(x) ≤
h

η
} .

Note that vβ(x3) = h
η by continuity of vβ . Moreover, note that x3 > x1 since vβ(x1) = h

η and

v′β(x1) =
2β

σ2
+ α̂

2σ2
(h
η
)
2

− a h
η
> 0, (2.121)

where the inequality holds because (i) v′
β
(x1) ≥ 0 (by definition of x1), (ii) x1 < x0, vβ(x0) > h

η ,

and vβ increases to its maximum, and (iii) v′
β
(x1) /= 0 by Lemma 14 (because vβ(x0) > h

η ).

Thus, (2.121) follows. Consequently, we have that

vβ(x) >
h

η
for x ∈ (x1, x3). (2.122)

By continuity, vβ(x) achieves a local maximum at some x̂ ∈ (x1, x3) and vβ(x̂) > h
η , but this
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contradicts Lemma 12. Therefore, we conclude that

vβ(x) >
h

η
for x ≥ x1, (2.123)

implying that β /∈ Di. Therefore, β ∈ Ii and vβ is nondecreasing by Corollary 4, and so

vβ(x) ≥ vβ(x0) >
h

η
for x > x0. (2.124)

To conclude the proof, we consider two cases: a ≤ 0 and a > 0. When a ≤ 0, we note from

(2.103) that

σ2

2
v′β(y) ≥ β +

α̂

4
(h
η
)
2

, y ≥ x0. (2.125)

Integrating both sides of (2.125) over [x0, y] gives

vβ(y) ≥
h

η
+ 2

σ2
[β + α̂

4
(h
η
)
2

] (y − x1), y ≥ x0, (2.126)

where the right-hand side tends to ∞, completing the proof when a ≤ 0.

When a > 0, we note from (2.103) that

v′β(y) +
2a

σ2
vβ(y) =

2β

σ2
+ α̂

2σ2
v2β(y) + ηy (vβ(y) −

h

η
) , y ≥ x0. (2.127)

We let ϵ = vβ(x0) − h/η > 0 and write from (2.127) that

v′β(y) +
2a

σ2
vβ(y) =

2β

σ2
+ α̂

2σ2
(h
η
) + ϵηy. (2.128)
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Multiplying both sides of (2.128) with the integrating factor exp{2a
σ2
y} yields:

(vβ(y) exp{
2a

σ2
y})
′
≥ C exp{2a

σ2
y} + ϵηy exp{2a

σ2
y} ,

where C = 2β
σ2
+ α̂

σ2
(h/η)2 > 0. Integrating both sides of this on [x0, y] yields

vβ(y) ≥ vβ(x0) + C (1 − exp{−2a
σ2
(y − x0)}) + ϵη

σ4

4a2
(2a
σ2
y − 1) ,

where the right-hand side tends to ∞ as y →∞, completing the proof when a > 0.

Lemma 19. For 0 ≤ β1 < β2, we have that vβ1(x) < vβ2(x) for all x > 0. That is, vβ(x) is

an increasing function of β for each x > 0.

Proof. Let β2 > β1 ≥ 0. We argue by contradiction. Suppose vβ1(x) ≥ vβ2(x) for some x > 0,

and let

x̂ ∶= inf {x > 0 ∶ vβ1(x) ≥ vβ2(x)} .

Then there exists a sequence {xn} that decreases to x̂, i.e., xn ↘ x̂ as n → ∞, such that

vβ1(xn) ≥ vβ2(xn) for all n. Recall that vβ1(0) = vβ2(0) = −r and v′
β2
(0) > v′

β1
(0). Hence,

vβ2 > vβ1 in a neighborhood around zero. This and continuity of vβ1 and vβ2 imply that

vβ1(x̂) = vβ2(x̂). (2.129)

Consequently, we can write

vβ1(xn) − vβ1(x̂)
xn − x̂

≥
vβ2(xn) − vβ2(x̂)

xn − x̂
, n ≥ 1.
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Passing to the limit as n→∞, we conclude that

v′β1(x̂) ≥ v
′
β2
(x̂). (2.130)

However, note that from IVP(β) for β = β1, β2 we have

σ2

2
v′β1 (x̂) = β1 +

α̂

4
v2β1
(x̂) + ηx̂(vβ1(x̂) −

h

η
) − avβ1(x̂), (2.131)

σ2

2
v′β2 (x̂) = β2 +

α̂

4
v2β2
(x̂) + ηx̂(vβ2(x̂) −

h

η
) − avβ1(x̂). (2.132)

Subtracting (2.131) from (2.132) and using (2.129) yield

σ2

2
[v′β2(x̂) − v

′
β1
(x̂)] = β2 − β1 > 0,

which contradicts (2.130). Thus, we conclude that vβ2(x) > vβ1(x) for x > 0.

Lemma 20. For x > 0, we have that vβ(x) is continuous in β on [0,∞). That is, for

x > 0, given β ≥ 0 and ϵ > 0, there exists a δ > 0 such that ∣vβ(x) − vβ̃(x)∣ < ϵ for all

β̃ ∈ (β − δ, β + δ) ∩ [0,∞).

Proof. Let x > 0 and β2 > β1 ≥ 0. Integrating IVP(β) over [0, x] for β = β1, β2, we arrive at

the following two equations:

σ2

2
vβ1(x) = −

σ2

2
r + β1x +

α̂

4

ˆ x

0
v2β1
(y)dy + η

ˆ x

0
y (vβ1(y) −

h

η
) dy −

ˆ x

0
avβ1(y)dy,

(2.133)

σ2

2
vβ2(x) = −

σ2

2
r + β2x +

α̂

4

ˆ x

0
v2β2
(y)dy + η

ˆ x

0
y (vβ2(y) −

h

η
) dy −

ˆ x

0
avβ2(y)dy.

(2.134)
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Subtracting (2.133) from (2.134) gives the following:

σ2

2
[vβ2(x) − vβ1(x)] = (β2 − β1)x +

α̂

4

ˆ x

0
[v2β2(y) − v

2
β1
(y)] dy

+ η
ˆ x

0
y [vβ2(x) − vβ1(x)] dy − a

ˆ x

0
[vβ1(y) − vβ2(y)] dy. (2.135)

In order to facilitate the bound, let β̄ > β2 > β1 ≥ 0 and note from Lemma 19 that

v0(y) ≤ vβ1(y) ≤ vβ2(y) ≤ vβ̄(y), y ≥ 0.

Hence for y ≥ 0 we have that

2v0(y) ≤ vβ1(y) + vβ2(y) ≤ 2vβ̄(y),

from which we conclude that

∣vβ1(y) + vβ2(y)∣ ≤ 2max (∣v0(y)∣ + ∣vβ̄(y)∣) .

Thus, letting

K (β̄) ∶= 2 sup
0≤y≤x

{max (∣v0(y)∣ + ∣vβ̄(y)∣)} ,

we arrive at the following for y ∈ [0, x]:

∣v2β2(y) − v
2
β1
(y)∣ = ∣vβ2(y) + vβ1(y)∣ ⋅ ∣vβ2(y) − vβ1(y)∣ ≤ K(β̄) ∣vβ2(y) − vβ1(y)∣.

Combining this with (2.135) and letting

h(y) ∶= ∣vβ2(y) − vβ1(y)∣, y ∈ [0, x],
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yields the following inequality:

h(x) ≤ 2x

σ2
∣β2 − β1∣ + [

α̂

2σ2
K(β̄) + ηx + ∣a∣]

ˆ x

0
h(y)dy.

By Gronwall’s inequality (see, e.g., page 498 of Ethier and Kurtz [2005]) we conclude that

h(x) ≤ 2x

σ2
∣β2 − β1∣ exp{−(ηx +

α̂

2σ2
K (β̄) + ∣a∣)x} .

Thus, given ϵ > 0, we can let

δ ∶= ϵσ
2

2x
exp{−(ηx + α̂

2σ2
K (β̄) + ∣a∣)x} ,

so that ∣β2 − β1∣ < δ implies that h(x) = ∣vβ2(x) − vβ1(x)∣ < ϵ. This completes the proof.

Lemma 21. Under Assumption 7, we have the following:

(i) In Case 1 of Assumption 7, for 0 ≤ β1 < β2, if β2 ∈ D1, then β1 ∈ D1. That is,

[0, β2] ⊆ D1 whenever β2 ∈ D1.

(ii) In Case 2 of Assumption 7, for β
2
< β1 < β2, if β2 ∈ D2, then β1 ∈ D2. That is,

(β
2
, β2] ⊆ D2 whenever β2 ∈ D2.

Proof. Consider part (i), and let β2 > β1 ≥ 0. Then by Lemma 17, there exists x0 > 0 such

that vβ2(x0) < −r. In turn, by Lemma 19, we have that

vβ1(x0) < vβ2(x0) < −r,

Thus, β1 ∈ D1 by Lemma 17. Proof of part (ii) follows similarly.

Lemma 22. Under Assumption 7, we have the following:

(i) In Case 1 of Assumption 7, D1 /= ∅. In particular, 0 ∈ D1 and there exists a β̃1 > 0 such

that [0, β̃] ⊆ D1.
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(ii) In Case 2 of Assumption 7, D2 /= ∅. In particular, there exists β̃2 > β2 such that

(β
2
, β̃2] ⊆ D2.

Proof. Consider part (i). We first show 0 ∈ D1. Aiming for a contradiction, suppose 0 /∈ D1 so

that 0 ∈ I1 by Corollary 4. We consider the following two cases:

● Case A: v0(y) ≤ 0 for all y > 0.

● Case B: v0(y) > 0 for some y > 0.

We first consider Case A. Because 0 ∈ I1, v′0(y) ≥ 0 for all y ≥ 0. Then, we have that

−r ≤ v0(y) ≤ 0 for all y ≥ 0. Substituting this into IVP(β) for β = 0, we consider the following

two subcases of Case A: a ≥ 0 and a ∈ (−αr4 , 0).

For a ≥ 0, we conclude that

0 ≤ σ
2

2
v′0(y) ≤

α̂

4
r2 − hy + ar,

where the right-hand side tends to −∞. Thus, there exists y > 0 such that v′0(y) < 0,

contradicting 0 ∈ I1.

For a ∈ (−αr4 ,0), we conclude that

0 ≤ σ
2

2
v′0(y) ≤

α̂

4
r2 − hy,

where the right-hand side tends to −∞. Once again, there exists y > 0 such that v′0(y) < 0,

contradicting 0 ∈ I1.

We now consider Case B. In this case, we let y0 = inf {y > 0 ∶ v0(y) > 0}. By continuity of

v0 and v0(0) = −r < 0, we have that v0(y0) = 0 and y0 > 0. Substituting this into IVP(β) for

β = 0 at y = y0 gives

σ2

2
v′0(y0) = −hy0 < 0.
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Thus, 0 ∈ D1 by Lemma 17, a contradiction. Combining Cases A and B, we conclude that

0 ∈ D1. Then it follow from Lemma 17 that v0(y) → −∞ as y → ∞. Thus, there exists a

x0 > 0 such that v0(x0) < −2r. Then, by continuity of vβ(x0) in β (see Lemma 20), there

exists a β̃1 > 0 such that v
β̃
(x0) < −r. By Lemma 17, we conclude β̃1 ∈ D1. Then we conclude

by Lemma 21 that [0, β̃1] ⊆ D1.

Consider part (ii). Recall that in Case 2 of Assumption 7, a ≤ −α̂r/4 and β
2
= −ar−α̂r2/4 ≥

0. Consider vβ2 and note that vβ2(0) = −r. It follows from (2.103) that v′
β2
(0) = 0. Moreover,

differentiating both sides of (2.103) and using v′
β2
(0) = 0, we conclude that

v′′β
2
(0) = −2η

σ2
(r + h

η
) < 0.

Thus, vβ
2

is decreasing and below −r in a neighborhood of zero. Next, we argue that

vβ
2
(x) ≤ −r for all x > 0.

Suppose not, and let x1 = inf{x > 0 ∶ vβ
2
(x)−r}. By continuity of vβ , we have vβ

2
(x1) = −r.

We also have by its definition that v′
β
2
(x1) ≥ 0 and x1 > 0. Then by combining these with

(2.103), we write

0 ≤ v′β
2
(x1) = −ar −

α̂

4
r2 + α̂

4
r2 − ηx1 (r +

h

η
) + ar

= −ηx1 (r +
h

η
) < 0,

a contradiction. Thus, vβ
2
(x) ≤ −r for all x ≥ 0.

Next, we argue that limx→∞ vβ
2
(x) = −∞. Suppose not (Note that we can rule out

oscillatory behavior following the same technique in the proof of Lemma 13). Then, there

exists k > r such that

vβ
2
(x) ≥ −k, x ≥ 0.
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But using (2.103), we conclude that

σ2

2
v′β

2
(x) ≤ β2 +

α̂

4
K2 − ηx(r + h

η
) − ar.

Integrating both sides from 0 to y yields

σ2

2
vβ

2
(y) ≤ −r σ

2

2
+ [β

2
− ar + α̂

4
] y − η

2
(r + h

η
) y

2

2
,

where the right-hand side tends to −∞ as y →∞. Thus, vβ
2
(x) → −∞ as x→∞ and there

exists x2 such that vβ
2
(x2) < −2r. Then, by Lemma 19, there exists β̃2 > β2 such that

v
β̃2
(x2) < −r. In particular, β̃2 ∈ D2 by Lemma 17. Then, by Lemma 21, we conclude that

(β
2
, β̃2] ⊂ D2.

Lemma 23. Under Assumption 7, we have Ii /= ∅ for i = 1,2. In particular,

(σ
2h

2η
+ 2σ (r + h

η
)
√
η

π
exp{−σ

2a2

4η
} ,∞) ⊆ Ii, i = 1,2.

Proof. We establish the result by showing that vβ(x) → ∞ as x → ∞ for sufficiently large

β > 0. The result then follows from Corollary 4 and Lemmas 17 and 19. To that end, we

rewrite IVP(β) as follows:

v′β(y) −
2η

σ2
yvβ(y) + avβ(y) =

2β

σ2
+ α̂

2σ2
v2β(y) −

2h

σ2
y, y ≥ 0.

Multiplying both sides with the integrating factor exp{− η
σ2
y2 + ay} yields the following

bound:

[exp{− η
σ2

y2 + ay} vβ(y)]
′
≥ 2β

σ2
exp{− η

σ2
y2 + ay} − 2h

σ2
y exp{− η

σ2
y2 + ay} .
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Integrating both sides of the above inequality over [0, x] and using vβ(0) = −r gives:

exp{− η
σ2

x2 + ax} vβ(x) ≥ −r +
2β

σ2
I1 −

2h

σ2
I2, (2.136)

where

I1 ∶=
ˆ x

0
exp{− η

σ2
y2 + ay} dy and I2 ∶=

ˆ x

0
y exp{− η

σ2
y2 + ay} dy.

First, we consider I1 and write

I1 = exp{
σ2

4η
a2}
ˆ x

0
exp

⎧⎪⎪⎨⎪⎪⎩
− η
σ2
(y − aσ

2

2η
)
2⎫⎪⎪⎬⎪⎪⎭

dy.

Applying the change of variable u =
√
2η
σ (y −

σ2

2η ) yields

I1 =
√

π

η
σ exp{σ

2

4η
a2}
ˆ √

2η
σ (x−

σ2

2η )

− σ
√

2η

1√
2π

exp{−u
2

2
} du

=
√

π

η
σ exp{σ

2

4η
a2}[Φ(

√
2η

σ
(x − σ

2

2η
)) −Φ(− σ√

2η
)] , (2.137)

where Φ is the CDF for the standard normal distribution. Next, we turn to I2 and facilitate

its derivative by first deriving

I3 =
ˆ x

0
(y − σ

2a

2η
) exp{− η

σ2
y2 + ay} dy.

Note that I3 = I2 − σ2a
2η I1. Using the change of variable u = − η

σ2
y2 + ay, we write

I3 =
ˆ − η

σ2
x2+ax

0
−σ

2

2u
eudu = σ

2

2η
[1 − exp{− η

σ2
x2 + ax}] .
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Then, using I2 = I3 + aσ2

2η I1, we arrive at

I2 =
σ2

2η
− σ

2

2η
exp{− η

σ2
x2 + ax} + σ

2a2

2η
exp{a

2σ2

4η
}
√

π

η
σ [Φ(

√
2η

σ
x − σ√

2η
) −Φ(− σ√

2η
)] .

(2.138)

Substituting (2.137)–(2.138) into (2.136) then gives

exp{− η
σ2
x2 + ax} vβ(x) ≥ −r −

h

η
+ h
η
exp{− η

σ2
x2 + ax}

+ 2β

σ2

√
π

η
exp{σ

2

4η
a2}[Φ(

√
2η

σ
x − σ√

2η
) −Φ(− σ√

2η
)]

− σh
η
exp{a

2σ2

4η
}
√

π

η
[Φ(
√
2η

σ
x − σ√

2η
) −Φ(− σ√

2η
)] . (2.139)

Note that there exists x0 > 0 large enough so that

Φ(
√
2η

σ
x − σ√

2η
) − Φ(− σ√

2η
) ≥ 1

4
. (2.140)

Then for x ≥ x0 and β > σ2h
2η , combining (2.139) and (2.140), we write,

exp{− η
σ2
x2 + ax} vβ(x) ≥ −r + (

2β

σ
− σh
η
) exp{σ

2a2

4η
}
√

π

η

1

η
− h
η
+ h
η
exp{− η

σ2
x2 + ax} .

Thus, we have the following lower bound on vβ(⋅):

vβ(x) ≥ [
1

4
(2β
σ
− σh
η
) exp{σ

2a2

4η
}
√

π

η
− (r + h

η
)] exp{ η

σ2
x2 + ax} + h

η
, x > x0. (2.141)

In particular, we note that for β > σ2h
2η + 2σ (r +

h
η )
√

η
π exp{−σ

2a2

4η }, the right-hand side of

(2.141) tends to ∞ as x → ∞. Thus, β ∈ Ii for i = 1,2 whenever it is above σ2h
2η + 2σ(r +

h
η )
√

η
π exp{−σ

2a2

4η }, completing the proof.
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To facilitate the analysis, under Case i of Assumption 7, we define β∗i = inf Ii for i = 1,2.

The remaining results will prove that this β∗i along with its corresponding vβ∗i , solve the

Bellman equation in Case i for i = 1,2.

Lemma 24. For i = 1,2, under Case i of Assumption 7, we have that β∗i > 0.

Proof. Recall from Lemma 22 that there exists a β̃i > 0 such that β̃i ∈ Di for i = 1, 2. Clearly,

we must have β ≥ β̃i for β ∈ Ii and i = 1,2. Thus, we conclude that β∗i = inf Ii ≥ β̃i > 0 for

i = 1,2.

Lemma 25. For i = 1,2, under Case i of Assumption 7, we have that β∗i ∈ Ii and vβ∗i
is

bounded.

Proof. Consider Case i of Assumption 7, for i = 1,2. We argue by contradiction. Suppose

β∗i /∈ Ii. Then, by Corollary 4, β∗i ∈ Di. In particular, by Lemma 17, there exists a x0 > 0

such that vβ∗i (x) < −r. Because vβ(x0) is continuous in β (see Lemma 20), there exists a

δ > 0 such that

vβ(x0) < −r for β ∈ (β∗i − δ, β
∗
i + δ) . (2.142)

However, by definition of β∗i , there exists a β̂i ∈ (β∗i , β
∗
i + δ) such that β̂i ∈ Ii. Applying

Lemma 17 again, it follows that v
β̂i
(x) ≥ −r for all x ≥ 0, contradicting (2.142). Thus, β∗i ∈ Ii.

We now prove that vβ∗i is bounded. Aiming for a contradiction, suppose it is not bounded.

Then there exists a x0 > 0 such that vβ∗i (x0) > 2h/η. Then, because vβ(x0) is continuous in

β (by Lemma 20) and β∗i > 0 (by Lemma 24), there exists an ϵ > 0 such that vβ∗i −ϵ(x0) ≥ h/η.

It follows that vβ∗i −ϵ is unbounded by Lemma 18, which in turn implies that β∗i − ϵ ∈ Ii by

Corollary 4 and Lemma 16. That β∗i − ϵ ∈ Ii, however, contradicts the definition of β∗i .

Lemma 26. Under Assumption 7, the following hold:

(i) D1 = [0, β∗1 ) and I1 = [β∗1 ,∞),
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(ii) D2 = (β2, β
∗
2 ) and I2 = [β∗2 ,∞).

Proof. Consider Case i of Assumption 7, for i = 1, 2. Suppose that there exists a β > β∗i such

that β ∈ Di. Then by Lemma 21 it follows that β∗i ∈ Di, contradicting Lemma 25. Hence,

no such β exists. Combining this with Lemma 25 and the definition of β∗i completes the

proof.

Lemma 27. For i = 1,2, under Case i of Assumption 7, we have that vβ∗i is nondecreasing

with lim
x→∞ vβ∗i

(x) = h/η.

Proof. Consider Case i of Assumption 7, for i = 1,2. Because β∗i ∈ Ii by Lemma 25, vβ∗i is

nondecreasing. Also, by Lemma 25 we have that vβ∗i is bounded. Consequently, by Lemma

18, we have that

vβ∗i
(x) ≤ h

η
for x ≥ 0.

Moreover, because vβ∗i is nondecreasing, its limit is well-defined and satisfies

lim
x→∞ vβ∗i

(x) ≤ h
η
.

Now let v = lim
x→∞ vβ∗i

(x) and suppose that v < h
η . Consider IVP(β∗i ), i.e.,

σ2

2
v′β∗i
(y) = β∗i +

α̂

4
v2β∗(y) + ηy (vβ∗i (y) −

h

η
) − avβ∗i (y), y ≥ 0.

Passing to the limit on both sides and noting that v < h
η gives the following:

σ2

2
lim
y→∞ v

′
β∗i
(y) = β∗i +

α̂

4
v2 − av + lim

y→∞ ηy (vβ∗i (y) −
h

η
) = −∞.

Thus, there exists a x0 > 0 such that v′
β∗i
(x0) < 0. We conclude by Lemma 17 that β∗i ∈ Di, a

contradiction. Therefore, v = lim
x→∞ vβ∗i

(x) = h/η.
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We conclude this section with a proof of Theorem 3.

Proof of Theorem 3. First, consider a > − α̂4 r, for which Case 1 of Assumption 7 applies. In

this case, (β∗1 , vβ∗1 ) solves (2.103)–(2.104) and this solution in unique by Lemma 11. Moreover,

by Lemma 27, we have that lim
x→∞ vβ∗1

(x) = h/η. Finally, by Lemma 24, we have that β∗1 > 0.

Therefore, (β∗1 , vβ∗1 ) solves the Bellman equation (2.90)–(2.91). When a ≤ − α̂4 r, Case 2 of

Assumption 7 applies, and the proof follows from the same steps as in the first case.

2.8 Proposed Policy

In this section we propose a dynamic pricing and dispatch policy for the problem introduced

in Section 2.3 by interpreting the solution of the equivalent workload formulation (2.80)–(2.84)

in the context of the original control problem. To describe the policy, recall that we considered

a sequence of systems indexed by the number of jobs n, whose formal limit was the Brownian

control problem (2.48)–(2.53) under diffusion scaling. To articulate the proposed policy,

we fix the system parameter n and use it to unscale processes of interest. We define the

(unscaled) workload process Wn = {Wn(t), t ≥ 0} as follows:

Wn(t) ∶=
I

∑
i=1

Qn
i (t), t ≥ 0.

Proposed Pricing Policy: Given the workload process Wn, we choose the demand rates

λni (t) ∶= nλ
∗
i +
√
n

2αi
v (W

n(t)√
n
) , i = 1, . . . , I, t ≥ 0,

where v is the solution to the Bellman equation (2.90)–(2.91). This follows from (2.43), (2.92),

Lemma 9, and Theorem 4. The corresponding proposed pricing policy is given by

pni (t) ∶= Λ−1i (λ
∗
i ) +

(Λ−1i )
′ (λ∗i )

2αi
√
n

v (W
n(t)√
n
) , i = 1, . . . , I, t ≥ 0, (2.143)
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where Λ−1i is the inverse of the demand rate function for region i. Equation (2.143) is derived

in Appendix 2.11.1.

Proposed Dispatch Policy: We propose two dispatch policies and refer to them as Dispatch

Policy 1 (DP1) and Dispatch Policy 2 (DP2). Dispatch Policy 1 (DP1) is motivated by

the following observation. In the Brownian control problem under the complete resource

pooling assumption, we set all but one of the inventory levels to zero. (The buffer with

nonzero inventory corresponds to the one with lowest holding cost.) However, as articulated

in Harrison [1996], zero inventory in the Brownian control problem corresponds to small

positive inventory levels in the original system. Thus, we put small safety stocks in the

various buffers and only serve them when inventory levels are at or above the threshold. To

that end, denote by si the safety stock for buffer i.

To be more specific, letting Āi ∶= Ai∩{1, . . . , b} denote the set of basic activities undertaken

by server i and letting C̄i ∶= Ci ∩ {1, . . . , b} denote the set of basic activities that serve buffer i,

our proposed dispatch policy is as follows: If server i becomes idle at time t, it serves a job

from the buffer in {b(j) ∶ j ∈ Āi, Qn
b(j)(t) ≥ sb(j)} with largest holding cost hb(j). In words,

when server i becomes idle, it looks at all buffers it servers by means of basic activities and

serves the buffer with largest holding cost that is above its safety stock. To complete the

policy description, suppose that at time t the inventory in buffer i increases from si − 1 to

si, i.e., reaches the safety stock. The system manager serves buffer i by an idle server in

{s(j) ∶ j ∈ C̄i} with largest effective idling cost cs(j)/λ∗s(j) (see (2.79)). In words, when buffer

i reaches the safety stock, i.e., that buffer becomes eligible for service, the system manager

selects an idle server with largest effective idling cost than can serve the buffer by means of a

basic activity.

Dispatch Policy 2 (DP2) is motivated by the maximum pressure policy, see for example

Stolyar [2004], Dai and Lin [2005], Dai and Lin [2008], and Ata and Lin [2008]. Under this

policy, each server prioritizes his own (local) buffer. If his own buffer is empty, then he checks
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the other buffers that he can serve using basic activities. If there are multiple such buffers,

the server works on the buffer with the largest queue length. If the server’s own (local) buffer

is empty and he cannot serve any other buffers using basic activities, then he considers all

remaining buffers he can serve (using nonbasic activities) and works next on the buffer with

the largest queue length.

2.9 Simulation Study

This section presents a simulation study to illustrate the effectiveness of the proposed policy.

The simulation setting and its parameters are motivated, albeit loosely, by the taxi market in

Manhattan, see Ata et al. [2020b] and the references therein. We set the number of cars, i.e.,

the system parameter, as n = 10,000. As done in Ata et al. [2020b], we divide Manhattan

into I = 4 regions, see Figure 2.2.

Figure 2.2: Manhattan area that is partitioned into four regions.

We assume cars can pick up customers in their own regions as well as from the neighboring
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regions. This gives rise to the following capacity consumption matrix:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 1 0 0 0 0 0

0 1 0 0 0 1 1 0 0 0

0 0 1 0 0 0 0 1 1 0

0 0 0 1 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Using the same dataset in Ata et al. [2020b], we set the demand rate (per hour) vector as

follows:6

λn = (λn1 , λ
n
2 , λ

n
3 , λ

n
4)
′ = (3678,10723,6792,345)′.

The corresponding limiting rate vector λ∗ is then computed as λ∗ = λn/n, which yields

λ∗ = (λ∗1 , λ
∗
2 , λ
∗
3 , λ
∗
4)
′ = (0.367,1.072,0.679,0.0345)′. (2.144)

Using this and (2.25), we derive the input-output matrix R as follows:

R =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ∗1 0 0 0 0 λ∗2 0 0 0 0

0 λ∗2 0 0 λ∗1 0 0 λ∗3 0 0

0 0 λ∗3 0 0 0 λ∗2 0 0 λ∗4

0 0 0 λ∗4 0 0 0 0 λ∗3 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Ata et al. [2020b] reports the mean travel time as 13.2 minutes. To account for the pick

up time and for other inefficiences that are not incorporated in our model, we inflate this

by a factor of two, and set the mean trip time to 26.4 minutes. Thus ηn = 2.2727 per hour.

Moreover, because we study the system under the heavy traffic assumption (Assumption 5),

we set η = e′λ∗ = 2.1539. Therefore, we have that η̂ =
√
n(ηn − η) = 11.88.

6. For simplicity, we use the preliminary results from Ata et al. [2020b] to estimate λn and q (based on
a four-year dataset from January 2010 to December 2013). In doing so, we focus on the day shift of the
non-holiday weekdays.
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We estimate the routing probability vector q from the data as

q = (q1, q2, q3, q4)′ = (0.1647,0.5408,0.2724,0.0221)′,

which yields the limiting arrival rate vector ν to various buffers as follows:

ν = ηq = (0.3529,0.1159,0.5837,0.0474)′.

Thus using the data A,R, and γ, one can compute the unique nominal processing plan x∗,

referred to in Assumption 5. It is displayed in Figure 2.3. Having characterized x∗, we next

1 2 3 4

1 2 3 4

x∗1 = 0.965 x∗2 = 1 x∗3 = 0.865 x∗4 = 1

x∗5 = 0.035x∗6 = 0 x∗7 = 0x∗8 = 0.118 x∗9 = 0.017x∗10 = 0

Figure 2.3: Unique solution x∗ ∈ R10 to the static problem from (2.28)–(2.30). We see that
Activities 6, 7, and 10 are nonbasic while the rest are basic.

compute the drift parameter a and the variance parameter σ2 of the Brownian motion χ(⋅)

(see (2.73)). To this end, first note that the drift vector γ and the covariance matrix Σ of the

Brownian motion B(⋅) (see (2.50), (2.56), and (2.57)) are given as follows:

γ = η̂′q = (1.9566,6.4247,3.2361,0.2625)′,
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Σ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.7097 0.1918 0.0966 0.0078

0.1918 2.3302 0.3173 0.0257

0.0966 0.3173 1.1742 0.0130

0.0078 0.0257 0.0130 0.0937

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Thus, we have that a = e′γ = 11.88 and σ2 = e′Σe = 5.6125.

Next, we describe the economic primitives of our example: the demand function, and its

associated profit function, the holding cost rates and the cost of idleness. We assume that

the demand function is linear. That is,

Λi(pi) = ai − bipi, pi ∈ [0, ai/bi] and i = 1, . . . ,4,

where ai, bi > 0 are constants. Also, its inverse is given by

Λ−1i (λi) =
ai − λi
bi

, λi ∈ [0, ai] and i = 1, . . . ,4.

The profit function then follows from (2.7) as follows:

π(λ) =
4

∑
i=1

λi
bi
(ai − λi) , λi ∈ [0, ai] and i = 1, . . . ,4.

We set the optimal static price as p∗i = 10 for all region i, which is about the average price of

a ride in the data, see Ata et al. [2020b]. Also, recall that the limiting demand rate vector

λ∗ = (λ∗1 , . . . , λ
∗
4) is given by (2.144). We crucially assume that these are the optimal demand

rate and the prices. This is equivalent to assuming ai = 2λ∗i and b∗ = λ∗i /pi for i = 1, . . . ,4.

Namely, we set

a = 2λ∗ = (0.7356,2.1446,1.3584,0.0691)′,

b = λ∗/p∗ = (0.0367,0.1072,0.0679,0.0035)′.
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Given these we compute the parameter αi as αi = −(Λ−1i )
′(λ∗i ) − (λ

∗
i /2)(Λ

−1
i )
′′(λ∗i ) = 1/bi

for i = 1, . . . ,4. Thus, we obtain α = (27.18,9.32,14.72,289.55) and α̂ = ∑4
i=1 1/αi = 0.2154.

Ata et al. [2020b] suggest that the holding cost when taxis are traveling is hn0 = 1 dollars

per hour (which can be derived from their fuel cost estimates). To estimate the holding cost

rates for other buffers, we consider the driver’s opportunity cost. A driver can complete about

two trips per hour, resulting in approximately 2 × 10 = 20 dollars per hour. Thus, we set

hni = 20 for i = 1, . . . ,4. Thus, we have hn =mini=1,...,4 hni − h
n
0 = 19. Upon scaling, we derive

the limiting holding cost rate h for the equivalent workload formulation as h =
√
nhn = 1900.

The idleness costs parameters are set to equal the lost revenue. That is, cni = p
∗
i = 10 for

i = 1, . . . , 4. Upon rescaling, the limiting idleness cost is ci = cni /
√
n = 0.1. Thus, the cheapest

server to idle as k∗ = argmini=1,...,4 ci/λ∗i = 2 with the idling cost r = ck∗/λ∗k∗ = 0.0933.

Having computed the parameters a, σ2, h, r, η, and α̂, we solve the Bellman equation

numerically for the example. Using this solution, we next describe our proposed policy.

Pricing Policy. It follows from (2.143) that

pni (t) = 10 − 1

200
v (W

n(t)
100

) , i = 1, . . . ,4 and t ≥ 0.

This corresponds to the following demand rates:

λni = 10000λ∗i +
50

αi
v (W

n(t)
100

) , i = 1, . . . ,4 and t ≥ 0.

Dispatch Policy. As discussed in Section 2.8, we propose two dispatch policies. Under

the first proposed policy (Dispatch Policy 1), servers 2 and 4 work only on their own buffer

throughout. Servers 1 and 3 prioritize their own buffers, but server 1 serves buffer 2 if buffer

1 is empty and buffer 2 exceeds threshold s. Similarly, server 3 serves buffers 2 or 4 only if

buffer 3 is empty and buffer 2 or 4 exceeds threshold s. If both queues exceeds s, then server

3 serves the longest one. We determine the threshold s by a brute-force search. In particular,
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we set s = 1.

Under Dispatch Policy 2, each server prioritizes his own (local) buffer. If his own buffer

is empty, then he checks the other buffers that he can serve using basic activities. If there

are multiple such buffers, the server works on the buffer with the largest queue length. If

the server’s own (local) buffer is empty and he cannot serve any other buffers using basic

activities, then he considers all remaining buffers he can serve (using nonbasic activities) and

works next on the buffer with the largest queue length.

In order to compare the performance of our policy, we calculate the total revenue by

adding up the prices charged to each served customer. This also incorporates the cost of

idleness. Also, we keep track of the holding costs incurred. Lastly, using (2.45), we set

Ṽ n(t) = (nπ(λ∗) −
√
nh0) t = (n

4

∑
i=1

λ∗i
bi
(ai − λ∗i ) −

√
nh0) t, t ≥ 0

to compute the normalized cost V̂ n(t), see (2.46).

We compare our policy against the following benchmark policies that combine alternative

pricing and dispatch policies. For pricing, in addition to our dynamic pricing policy, we also

consider the static pricing policy which sets pni (t) = p
∗
i = 10 for all i = 1, . . . ,4 and t ≥ 0. For

dispatch, in addition to our two proposed policies, we consider (i) a static dispatch policy,

and (ii) the closest driver policy as described next.

Static Dispatch Policy. Servers 2 and 4 always serve their own buffers. If both buffers 1

and 2 are nonempty, then server 1 works on buffer 1 with probability x∗1/(x
∗
1 + x

∗
5) = 0.965

and it works on buffer 2 with probability x∗5/(x
∗
1 + x

∗
5) = 0.035. If only one of the buffers 1

and 2 is nonempty, then server 1 works on that buffer. Server 3 splits its effort among buffers

2, 3, and 4 similarly, i.e., proportional to x∗3 , x
∗
8 , and x∗9 , respectively.

Closest Driver Policy. We let D be the distance matrix, i.e., Dij corresponds to the

distance (in miles) between regions i and j when i /= j and Dii = 0. Using the data from Ata
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et al. [2020b], we have

D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 2.6414 4.8132 8.2689

2.6414 0 1.9993 6.1969

4.8132 1.9993 0 3.9073

8.2689 6.1969 3.9073 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Server i engages in activity argminj∈Ai
Di, b(j)(t) at time t. In other words, under the closest

driver policy each server prioritizes the buffer that is closest to him.

The result of the numerical study are given in Table 2.1. The simulated results are

obtained based on a run-length of 1000 hours and the estimated average cost is computed

by excluding the statistics from the first 200 hours warm-up period. The corresponding

confidence intervals are calculated based on 10 macro-replications. We observe that the

proposed dispatch policies (DP1, DP2) offer significant improvement (9.74%–55.01%) over the

benchmark policies. More importantly, we observe that dynamic pricing can lead to significant

improvement (30.96%–61.73%) for every dispatch policy considered. Among the policies

considered, the dynamic pricing with Dispatch Policy 2 (DP2) has the best performance.

Table 2.1: Estimated average cost along with the 95% confidence interval based on 10 macro-
replications.

Dispatch policy Static pricing policy Dynamic pricing policy

DP1 10075.23 ± 201.59 4302.59 ± 94.09
DP2 10607.19 ± 103.18 4059.35 ± 73.73

Static policy 13066.83 ± 457.31 9021.89 ± 204.19
Closest driver policy 12100.53 ± 193.57 4766.96 ± 122.19

Unfortunately, we do not have any data to directly estimate the holding costs and the cost

of idleness. For the former, the actual holding cost may be lower because the opportunity

cost we estimate is likely an upper bound. On the other hand, the latter does not account

for the loss of goodwill currently. Therefore, we conduct a sensitivity analysis that considers
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lower holding cost rates (Figure 2.4) and another one that considers higher cost of idleness

that incorporate the loss of goodwill7 (Figure 2.5). These collectively show that the insights

from Table 2.1 are robust to changes in holding and idleness cost parameters.
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Figure 2.4: Average cost with respect to varying holding cost. The shaded area along each
line shows the 95% confidence interval based on 10 macro-replications.
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Figure 2.5: Average cost with respect to varying idleness cost. The shaded area along each
line shows the 95% confidence interval based on 10 macro-replications.

7. The estimated performance and the corresponding confidence interval for the sensitivity analysis is
based on 10 macro-replications where each replication has a run-length of 1000 hours (and the statistics of
the first 200 hours are discarded as a warm-up period).
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2.10 Concluding Remarks

We study a dynamic pricing and dispatch control problem motivated by ride-hailing systems.

The novelty of our formulation is that it incorporates travel times. We solve this problem

analytically in the heavy traffic regime under the complete resource pooling condition. Using

this solution, we propose a closed form dynamic pricing policy as well as a dispatch policy.

We compare the proposed policy against benchmarks in a simulation study and show that it

is effective.

Our formulation has some limitations too. Namely, we assume there is only one travel

node and that the complete resource pooling condition holds. Interesting future research

directions include relaxing these assumptions.

2.11 Appendix

2.11.1 Formal Derivations

Formal Derivation of the Brownian Control Problem

This section provides a formal derivation of the approximating Brownian control problem

introduced in Section 2.4. We do not provide a rigorous weak convergence limit theorem.

However, the arguments given in support of the approximation can be viewed as a broad

outline for such a proof; see Harrison [1988, 2000, 2003] for similar derivations.

We consider a sequence of systems indexed by the system parameter n under the heavy

traffic assumption. Then we center the various processes by their mean, scale them appropri-

ately by the system parameter n, and finally pass to the limit as n →∞ formally. To that

end, we first define the following (diffusion) scaled processes:

Ψ̂n
i (t) ∶=

1√
n
(Ψi (⌊nt⌋) − qint) , t ≥ 0, i = 1, . . . , I, (2.145)
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N̂n
j (t) ∶=

1√
n
(Nj(nt) − nt) , t ≥ 0, j = 0,1, . . . , J, (2.146)

where ⌊x⌋ is the greatest integer less than or equal to x. We also define the following (fluid)

scaled processes:

N̄n
0 (t) ∶=

1

n
N0(nt), t ≥ 0, (2.147)

Q̄n
0(t) ∶=

1

n
Qn
0(t), t ≥ 0, (2.148)

µ̄nj (t) ∶=
1

n
µnj (t), j = 1, . . . , J, t ≥ 0. (2.149)

By Donsker’s theorem, the functional central limit theorem for renewal processes, and

independence of the stochastic primitives, the processes Ψ̂n
i and N̂n

j converge weakly to

independent standard Brownian motions, see Billingsley [1999].

As observed in Kogan and Lipster [1993], under the heavy traffic assumption, we expect

that the number of jobs in the infinite-server node will be n to a first-order approximation.

That is, we expect that Q̄n
0(t) ≈ 1 for t ≥ 0 as n gets large. Similarly, we expect the queue

lengths at buffers 1, . . . , I to be of order
√
n. As such, we expect the prices, or equivalently,

the demand rates, to deviate from their nominal values only in the second order. That is,

we expect λni − λ
∗
i n = O (

√
n). Because the demand rates determine the service rates (in

particular, recall (2.9)), we expect that µ̄nj (t) ≈ µ
∗
j for t ≥ 0 as n gets large.

By combining (2.145)–(2.149) with (2.38)–(2.44), it is straightforward to derive the

following scaled system dynamics equations for i = 1, . . . , I:

Zn
i (t) = B

n
i (t) + qiη

n
ˆ t

0
Zn
0 (s)ds − ∑

j∈Ci

ˆ t

0
κnj (s)dT

n
j (s) + ∑

j∈Ci
µ∗jY

n
j (t)

+ t
√
n [qiη − ∑

j∈Ci
µ∗jx
∗
j ]

= Bn
i (t) + qiη

n
ˆ t

0
Zn
0 (s)ds − ∑

j∈Ci

ˆ t

0
κnj (s)dT

n
j (s) + ∑

j∈Ci
µ∗jY

n
j (t),
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where the second equality holds by Assumption 5 and where the process Bn
i is given by

Bn
i (t) = Z

n
i (0) + qiη̂t + qiN̂

n
0 (η

n
ˆ t

0
Q̄n
0(s)ds) + Ψ̂n

i (N̄
n
0 (η

n
ˆ t

0
Q̄n
0(s)ds))

− ∑
j∈Ci

N̂n
j (
ˆ t

0
µ̄nj (s)dT

n
j (s)) .

Assuming that Zn
i (0) ≈ Zi(0) for large n, it is also straightforward to argue that Bn

i can be

approximated by a Brownian motion Bi with starting state Zi(0) that has drift parameter

γi = η̂qi and variance parameter

σ2i ∶= [q
2
i + qi (1 − qi)] η + ∑

j∈Ci
µ∗jx
∗
j = qiη + ∑

j∈Ci
µ∗jx
∗
j .

Furthermore, the covariance between the limiting Brownian motion processes is given by

Cov (Bi,Bi′) = qiqi′η for i ≠ i′.

Therefore, replacing Zn, Y n, and κn, by their formal limits Z, Y , and κ, we arrive at the

following system dynamics equations in the approximating Brownian control problem for

i = 1, . . . , I:

Zi(t) = Bi(t) + qiη
ˆ t

0
Z0(s)ds − ∑

j∈Ci

ˆ t

0
x∗jκj(s)ds + ∑

j∈Ci
µ∗jYj(t), t ≥ 0.

Equations (2.19) and (2.39) of the system state also imply that Zn
0 (t) = −∑

I
i=1Z

n
i (t) and

that Zn
i (t) ≥ 0 for i = 1, . . . , I and t ≥ 0. Thus, in the approximating BCP, the following

relationships hold for t ≥ 0:

Z0(t) = −
I

∑
i=1

Zi(t) and Zi(t) ≥ 0 for i = 1 . . . , I.
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Similarly, it is clear that (2.9) and (2.43)–(2.44) give rise to (2.53) in the BCP; (2.17) and

(2.41) give rise to (2.55); and (2.42) gives rise to (2.52).

To complete the formal derivation of the Brownian control problem, we argue that V̂ n ≈ ξ

for large n, where V̂ n and ξ are given by (2.46) and (2.47), respectively. First, observe that

by Taylor’s theorem we have

π(λ∗ + 1√
n
ζn(s)) = π (λ∗) + ∇π (λ∗)′ 1√

n
ζn(s) + 1

2n
ζn(s)′∇2π (λ∗) ζn(s)

+ Rλ∗,3(
1√
n
ζn(s)),

where Rλ∗,3( 1√
n
ζn(s)) = O(n−3/2) is a third-order remainder term.8 Moreover, note that the

term ∇π (λ∗)′ ζn(s)/
√
n vanishes because λ∗ is a maximizer of π (λ) and is in the interior of

the feasible region L (see Assumption 4), implying that ∇π (λ∗) = 0. Therefore, we have that

π(λ∗ + 1√
n
ζn(s)) = π (λ∗) − 1

n
ζn(s)′Hζn(s) + O(n−3/2),

where H ∶= −12∇2π (λ∗). Using this and (2.35) and (2.43), it follows that

πn(λn(s)) = nπ (λ∗) − ζn(s)′Hζn(s) + O(n−1/2). (2.150)

Finally, using (2.39), (2.41)–(2.46), and (2.150), it is straightforward to derive the following:

V̂ n(t) = n (π (λ∗) − hn0) t −
⎡⎢⎢⎢⎣

ˆ t

0
πn (λn(s)) ds −

ˆ t

0

I

∑
i=0

hni Q
n
i (s)ds − (c

n)′ In(t)
⎤⎥⎥⎥⎦

=
ˆ t

0
[ζn(s)′Hζn(s) + O (n−1/2)] ds +

ˆ t

0

I

∑
i=0

hiZ
n
i (s)ds + c

′Un(t).

8. In particular, the remainder term is given by

Rλ∗,3(
1√
n
ζn(s)) = ∑

α1,...,αI∈{0,1,2,3}
s.t. α1+⋯+αI=3

∂3π(λ∗ + C√
n
ζn(s))

∂xα1

1 ∂xα2

2 ⋯∂x
αI

I

I

∏
i=1

( 1√
n
ζni (s))

αi

αi!
for some C ∈ (0,1).
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Therefore, replacing V̂ n, Zn, ζn, and Un by their formal limits ξ, Z, ζ, and U , we arrive at

the following cost process of the approximating Brownian control problem:

ξ(t) =
ˆ t

0
ζ(s)′Hζ(s)ds +

ˆ t

0

I

∑
i=0

hiZi(s)ds + c′U(t), t ≥ 0.

Furthermore, note that H is a diagonal matrix, i.e., H = diag(α1, . . . , αI) where

αi ∶= − (Λ−1i ) (λ
∗
i ) −

λ∗i
2
(Λ−1i )

′′ (λ∗i ), i = 1, . . . , I.

Using this we further simplify the limiting cost process ξ(t) as follows:

ξ(t) =
ˆ t

0
[

I

∑
i=1

αiζ
2
i (s) +

I

∑
i=0

hiZi(s)]ds + c′U(t), t ≥ 0.

Formal Derivation of (2.143)

Recall that the proposed chosen demand rates are

λni = nλ
∗
i +
√
nq(t), i = 1, . . . , I, t ≥ 0,

where q(t) ∶= 1
2αi

v (W
n(t)√
n
) for t ≥ 0. Therefore, the proposed pricing policy for region i is

given as follows:

pni (t) = (Λ
n
i )
−1 (λni (t)) = (Λ

n
i )
−1 (nλ∗i +

√
nq(t)) = Λ−1i (λ

∗
i +

q(t)√
n
) ,

where the third equality follows from the fact that (Λn
i )
−1 (nx) = Λ−1i (x) for x ∈ L. Then, by

Taylor’s theorem, there exists a c ∈ (0,1) such that

pni (t) = Λ−1i (λ
∗
i ) + (Λ

−1
i )
′ (λ∗i )

q(t)√
n
+ 1

2
(Λ−1i )

′′ (λ∗i +
c q(t)√
n
)(q(t)√

n
)
2

,
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which implies that

pni (t) = Λ−1i (λ
∗
i ) + (Λ

−1
i )
′ (λ∗i )

q(t)√
n
+ O ( 1

n
)

= Λ−1i (λ
∗
i ) +

(Λ−1i )
′ (λ∗i )

2αi
√
n

v(W
n(t)√
n
) + O ( 1

n
) .

As an aside, observe that by rearranging terms we have

√
n (pni (t) − Λ−1i (λ

∗
i )) =

(Λ−1i )
′ (λ∗i )

2αi
v(W

n(t)√
n
) + O ( 1√

n
) .

This implies that our proposed dynamic pricing policy coincides with the static prices to a

first-order approximation, but deviates from the static prices on the second order, i.e., order

1/
√
n.

2.11.2 Miscellaneous Proofs

Proof of Lemma 6. This proof follows in an almost identical fashion to Lemma 2 in Ata

et al. [2020a], but we include it for completeness. It consists of four steps. We let en denote

the nth unit basis vector in a Euclidean space of appropriate dimension. That is, the nth

component of en is one, whereas its other components are zero. Moreover, recall from the

discuss following Assumption 5 that for a vector y ∈ RJ , we write y = (yB , yN ) where yB ∈ Rb

and yN ∈ RJ−b.

Step 1: Consider the set of basic activity rates that do not cause any server idleness, i.e.,

{y ∈ RJ ∶ ByB = 0, yN = 0}. First, we show that this set is the span of ¯̄C, defined next:

¯̄C ∶= {ej − ej
′

∶ (j, j′) ∈ C̄ and ej, ej
′

are unit basis vectors in RJ} , (2.151)

where C̄ ∶= { (j, j′) ∶ j, j′ ∈ {1, . . . , b} such that s(j) = s(j′)}. That is, C̄ is the set of all

pairs of basic activities undertaken by the same server. Note that the difference ej − ej′ in
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(2.151) captures the trade-off server s(j) makes by increasing the rate at which activity j is

undertaken (from its nominal value x∗j ) at the expense of decreasing the rate of activity j′.

By making such adjustments to the nominal basic activity rates x∗B , the system manager

can redistribute the workload between buffers b(j) and b(j′) without incurring any idleness.

As such, we intuitively expect that taking linear combinations of such activity rates in

¯̄C should yield the set of activity rates that do not result in any idleness, i.e., the set

{y ∈ RJ ∶ ByB = 0, yN = 0}. In summary, in Step 1 we prove that

span ( ¯̄C) = {y ∈ RJ ∶ ByB = 0, yN = 0} .

To prove this, we show inclusions of both sets. First, let y ∈ {y ∈ RJ ∶ ByB = 0, yN = 0}.

To prove that y ∈ span ( ¯̄C), we show that there exist constants ajj′ , (j, j′) ∈ C̄, such that

y = ∑(j,j′)∈C̄ ajj′ (ej − ej
′) . To find these constants, it will be convenient to define the sets

Āi ∶= Ai ∩ {1, . . . , b} ,

where Ai is the set of activities undertaken by server i (see (2.3)). To be more specific, Āi

consists of all basic activities undertaken by server i. After possibly relabeling, suppose that

the basic activities are ordered so that

Āi = {bi−1 + 1, . . . , bi} for i = 1, . . . , I,

where 0 = b0 < b1 < b2 < ⋯ < bI = b. We define constants ajj′ for (j, j′) ∈ C̄ as follows:

ajj′ ∶=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

k

∑
l=bi−1+1

yl, if (j, j′) = (k, k + 1) for k = bi−1 + 1, . . . , bi − 1 and i = 1, . . . , I,

0, otherwise.
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Therefore, we have that

∑
(j,j′)∈C̄

ajj′ (ej − ej
′

) =
I

∑
i=1

bi−1
∑

k=bi−1+1
ak, k+1 (ek − ek+1)

=
I

∑
i=1

bi−1
∑

k=bi−1+1

⎡⎢⎢⎢⎢⎣

⎛
⎝

k

∑
l=bi−1+1

yl
⎞
⎠
(ek − ek+1)

⎤⎥⎥⎥⎥⎦

=
I

∑
i=1
[ybi−1+1 (e

bi−1+1 − ebi−1+2) + (ybi−1+1 + ybi−1+2) (e
bi−1+2 − ebi−1+3)

+⋯ +
⎛
⎝

bi−2
∑

l=bi−1+1
yl
⎞
⎠
(ebi−2 − ebi−1) +

⎛
⎝

bi−1
∑

l=bi−1+1
yl
⎞
⎠
(ebi−1 − ebi) ]

=
I

∑
i=1
[ybi−1+1e

bi−1+1 + (ybi−1+2 + ybi−1+1 − ybi−1+1) e
bi−1+2

+⋯ +
⎛
⎝

bi−1
∑

l=bi−1+1
yl −

bi−2
∑

l=bi−1+1
yl
⎞
⎠
ebi−1 −

⎛
⎝

bi−1
∑

l=bi−1+1
yl
⎞
⎠
ebi]

=
I

∑
i=1

⎡⎢⎢⎢⎢⎣
ybi−1+1e

bi−1+1 + ybi−1+2e
bi−1+2 +⋯ + ybi−1e

bi−1 −
⎛
⎝

bi−1
∑

l=bi−1+1
yl
⎞
⎠
ebi
⎤⎥⎥⎥⎥⎦

=
I

∑
i=1
[ybi−1+1e

bi−1+1 + ybi−1+2e
bi−1+2 +⋯ + ybi−1e

bi−1 − (−ybi) e
bi]

=
I

∑
i=1

bi
∑

k=bi−1+1
yke

k

=
J

∑
j=1

yje
j ,

the first two equalities following from the definition of the ajj′ , the fourth equality from

algebraic rearrangements, and the fifth equality from canceling terms. To derive the sixth

equality note that y satisfies ByB = 0, which implies

bi
∑

l=bi−1+1
yl = 0 for i = 1, . . . , I.
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Equivalently, we have that

bi−1
∑

l=bi−1+1
yl = −ybi for i = 1, . . . , I.

Substituting this for the last term of the fifth equality yields the sixth equality. Finally, the

eighth equality from the facts that yN = 0 and that the sets Āi, i = 1, . . . , I, partition the

basic activities. Since y = ∑J
j=1 yje

j , we conclude that y ∈ span ( ¯̄C).

Conversely, let y ∈ span ( ¯̄C). Then there are constants ajj′ , (j, j′) ∈ C̄, such that

y = ∑
(j,j′)∈C̄

ajj′ (ej − ej
′

) .

Since C̄ consists only of pairs of basic activities, it follows that yN = 0. Furthermore, for

(j, j′) ∈ C̄ and i ∈ {1, . . . , I}, we have

[A (ej − ej
′

)]
i
=

b

∑
l=1

Ail (e
j
l
− ej

′

l
) =

b

∑
l=1

1{s(l)=i} (e
j
l
− ej

′

l
) = 1{s(j)=i} − 1{s(j′)=i} = 0,

the second equality holding by (2.1) and the fourth equality holding since s(j) = s(j′).

Therefore, A (ej − ej′) = 0 for all (j, j′) ∈ C̄, implying that Ay = 0 by linearity. So, y ∈

{y ∈ RJ ∶ Ay = 0, yN = 0}.

Step 2: In this step, we show that N = span (C̃), where C̃ = {Ry ∶ y ∈ ¯̄C} . To see this, recall

that N = {HyB ∶ ByB = 0, yB ∈ Rb} = {Ry ∶ Ay = 0, yN = 0} . Thus, it follows from Step 1 and

the definition of C̃ that N = span (C̃).

Step 3: In this step, we show that C̃ = {µ∗j (e
b(j) − eb(j′)) ∶ (j, j′) ∈ C̄, eb(i), eb(j′) ∈ RI}. To

see this, note that for (j, j′) ∈ C̄ and i ∈ {1, . . . , I}, we have that

[R (ej − ej
′

)]
i
=

J

∑
l=1

Ril (e
j
l
− ej

′

l
) =

J

∑
l=1

µ∗l 1{b(l)=i} (e
j
l
− ej

′

l
) = µ∗j1{b(j)=i} − µ

∗
j′1{b(j′)=i}
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= µ∗j (1{b(j)=i} − 1{b(j′)=i}) = µ
∗
j (e

b(j)
i − eb(j

′)
i ) ,

the second equality following from (2.2) and (2.25) and the fourth equality following from

the fact that s(j) = s(j′) (since (j, j′) ∈ C̄) and (2.24). That is,

R (ej − ej
′

) = µ∗j (e
b(j) − eb(j

′)) for (j, j′) ∈ C̄. (2.152)

Then using the definition of ¯̄C, we write

C̃ = {Ry ∶ y ∈ ¯̄C}

= {Ry ∶ y = ej − ej
′

such that (j, j′) ∈ C̄, ej , ej
′

are unit basis vectors}

= {R (ej − ej
′

) ∶ (j, j′) ∈ C̄, ej , ej
′

are unit basis vectors}

= {µ∗j (e
b(j) − eb(j

′)) ∶ (j, j′) ∈ C̄, ej , ej
′

are unit basis vectors} ,

where the last equality follows from (2.152). Hence, the result holds. In particular, by the

definition of buffer communication, note that

C̃ = {µ∗j (e
i − ei

′

) ∶ buffers i and i′ communicate directly, ei, ei
′

∈ RI} .

Step 4: We consider the matrix M defined in Lemma 6 (see (2.60)) and show that its rows

form a basis forM. To that end, let M l, l = 1, . . . , L, be the rows of the matrix M given in

(2.60). Since the buffer pools partition the servers, the rows of M are linearly independent.

Thus, to complete the proof, it suffices to show that M = span (M1, . . . ,ML). Recalling

that M = N⊥ and N = span (C̃), it follows that a ∈ M if and only if a ⋅ z = 0 for all z ∈ C̃.

Moreover, since µ∗j > 0 for all j ∈ {1, . . . , b}, it follows from Step 3 that

N = span ({ei − ei
′

∶ buffers i and i′ communicate directly, ei, ei
′

∈ RI}) .
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Therefore, a ∈ M if and only if ai = ai′ for all buffers i and i′ that communicate directly.

To prove thatM= span (M1, . . . ,ML) we show inclusions of both sets. On the one hand,

let a ∈ M. Then ai = ai′ for all buffers i and i′ that communicate directly. By definition

of buffer communication, it immediately follows that ai = ai′ for all buffers i and i′ that

communicate. That is, ai = ai′ for all buffers i and i′ that are in the same buffer pool. Thus,

a ∈ span (M1, . . . ,ML), implying thatM⊆ span (M1, . . . ,ML). On the other hand, to show

that span (M1, . . . ,ML) ⊆M, it suffices to show that M l ∈ M for each l = 1, . . . , L. To that

end, it is enough to show that M l
i =M

l
i′

for all buffers i and i′ that communicate directly.

However, this trivially holds by (2.60), since buffers i and i′ that communicate directly are in

the same buffer pool. Thus, span (M1, . . . ,ML) ⊆M.

Proof of Lemma 7. It is enough to show that (MR)lj = (GA)lj for all l = 1, . . . , L and

j = 1, . . . , J , where G is given by (2.61). Indeed, by (2.2), (2.25), and (2.60),

(MR)lj =
I

∑
i=1

MliRij =
I

∑
i=1

1{i∈Pl}µ
∗
j1{b(j)=i} = µ

∗
j1{b(j)∈Pl}. (2.153)

On the other hand, by (2.1) and (2.61),

(GA)lj =
I

∑
i=1

GliAij =
I

∑
i=1

λ∗i 1{i∈Sl}1{s(j)=i} = λ
∗
s(j)1{s(j)∈Sl}. (2.154)

Note that by (2.24) we have µ∗j = λ
∗
s(j) and by (2.59) we have that b(j) ∈ Pl if and only if

s(j) ∈ Sl. Thus, the desired result immediately follows by (2.153)–(2.154).

Proof of Lemma 8. When L = 1, all buffers are in a single buffer pool. Thus, it follows

immediately from (2.60) that M = e′. Furthermore, by definition of buffer communication

and (2.59), there is a single server pool. It then follows from (2.61) that G = (λ∗)′.
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To prove the first relationship in (2.70), note that

Mηq = ηMq = ηe′q = η
I

∑
i=1

qi = η,

where the second equality follows from M = e′ and where the fourth equality follows from the

fact that q is a probability vector. To prove the second relationship in (2.70), first note that

MC = e′ ∈ RJ . This follows from M = e′ ∈ RI , the definition of C in (2.2), and the fact that

C has one nonzero element per column. Therefore,

MCdiag(x∗)A′ = e′diag(x∗)A′ = (x∗)′A′ = (Ax∗)′ = e′ ∈ RI ,

the fourth equality following from the heavy traffic assumption (see (2.29)).

Proof of Lemma 9. This is a straightforward convex optimization problem. Forming the

Lagrangian

L(ζ, ν) ∶=
I

∑
i=1

αiζ
2
i − ν

I

∑
i=1

ζi + νx,

where ν is the Lagrange multiplier, the necessary first-order conditions then give

ζ∗i =
γ

2αi
, i = 1, . . . , I.

Substituting this into the constant e′ζ = x yields ν = 2x/α̂ and

ζ∗i =
x

αiα̂
, i = 1, . . . , I. (2.155)

The optimality of this solution follows from the convexity of the objective. Substituting

(2.155) in the objective function yields c(x) = x2/α̂ as desired.

Proof of Proposition 3. Let (Y, ζ) be an admissible control for (2.48)–(2.55) with the corre-

sponding state process Z and idleness process U . Letting W (t) = MZ(t) for t ≥ 0, (2.48)
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implies that (2.66) holds, and (2.65) holds by definition. Similarly, (2.67)–(2.68) follow from

(2.54)–(2.55) whereas (2.69) follows from (2.53). Thus, (Z,U, ζ) of the BCP formulation

(2.48)–(2.55) is an admissible policy for the RBCP (2.64)–(2.69). Because the two formulations

have the same process Z,U, ζ, they have the same cost.

The converse follows exactly as in (the second part of) the proof of Theorem 1 in Harrison

and Mieghem [1997] (see pages 753–754 of that paper) with the only substantive difference

being (aside from the obvious notational differences) the process X on their equation (36) on

page 755 is replaced with

B(t) − ηq
ˆ t

0
e′Z(s)ds − Cdiag(x∗)

ˆ t

0
κ(s)ds

in our setting. Then following the same steps in their proof shows that the analogy of the

process Y (in our setting) defined as in their equation (35) and ζ is admissible for our BCP

(2.48)–(2.55). Moreover, because (Y, ζ) results in the same queue length process Z. Its cost

is the same as that of the policy (Z,U, ζ) for RBCP (2.64)–(2.69).

Proof of Proposition 4. Given an admissible policy θ for EWF and the corresponding pro-

cesses W and L, we set Zi∗ = W and Zi ≡ 0 for i /= i∗, as well as Uk∗ = L and Uk ≡ 0 for

k /= k∗. Moveover, we set ζi(s) = θ(s)/(αiα̂i) for i = 1, . . . , I and s ≥ 0, which results in

∑I
i=1αiζ

2
i (s) = c(θ(s)) for s ≥ 0 by Lemma 9. Then it follows from (2.78)–(2.79) that (Z,U, ζ)

has the same cost in the RBCP as θ does in the EWF.

To prove the converse, let (Z,U, ζ) be an admissible policy for RBCP, and let

θ(s) = e′ζ(s), W (s) = e′Z(s), and L(s) = (λ∗)′U(s), s ≥ 0.

It is easy to verify that θ is admissible for EWF. Moreover, c(θ(s)) ≤ ∑I
i=1αiζ

2
i (s) for all s ≥ 0

by Lemma 9, and, furthermore, we have hW (s) ≤ ∑I
i=1(hi − h0)Zi(s) and rL(s) ≤ c′U(s) for

s ≥ 0. Thus, the cost of θ for the EWF is less than or equal to the cost of the policy (Z,U, ζ)
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for the RBCP.

Proof of Proposition 5. Consider the auxiliary stationary reflected diffusion on [0,∞), de-

noted by {W̃ (t), t ≥ 0}, associated with the drift rate function −(ηy − a + θ∗(y)) and variance

parameter σ2. As noted on pages 470–471 of Browne and Whitt [1995] (also see Mandl [1968]

and Karlin and Taylor [1981]) its probability density function φ is given as follows:

φ (x) =
exp{−

ˆ x

0

2

σ2
(ηy − a + θ∗(y))dy}

ˆ ∞
0

exp{−
ˆ y

0

2

σ2
(ηs − a + θ∗(s))ds} dy

, x ∈ [0,∞) (2.156)

provided all integrals are finite, which we verify next. To this end, let k = inf {y ≥ 0 ∶ v(y) ≥ 0}

where (v, β∗) solve the Bellman equation (2.90)–(2.91), and note from (2.91) that −r ≤ v(y) ≤ 0

for y ≤ k and 0 ≤ v(y) ≤ h/η for y ≥ k. In order to verify the integrals above are finite, using

(2.92) note that

exp{−
ˆ y

0

2

σ2
(ηs − a + θ∗(s)) ds} = exp{−

ˆ y

0

2

σ2
(ηs − a + α̂

2
v(s)) ds}

= exp{−ηy
2 − ay
σ2

} exp{− α̂
σ2
[
ˆ k

0
v(s)ds +

ˆ y

k
v(s)dy]}

≤ exp{−ηy
2 − ay
σ2

} exp{ α̂
σ2
rk} , (2.157)

from which we also deduce that the integral in the denominator of the right-hand side of

(2.156) is finite. Moreover, it follows from (2.157) that the stationary diffusion W̃ has finite

moments. In particular,

E [W̃ (0)] = E [W̃ (t)] < ∞, t < ∞. (2.158)
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Next, we define another auxiliary stationary diffusion W̃∗ as follows:

W̃∗(t) ∶= W∗(0) + W̃ (t), t ≥ 0.

Noting W∗(0) < W̃∗(0) almost surely, we define the stopping time τ as follows:

τ ∶= inf {t ≥ 0 ∶ W∗(t) ≥ W̃∗(t)}

and introduce the following process:

Ŵ∗(t) ∶=
⎧⎪⎪⎨⎪⎪⎩

W∗(t), t < τ,

W̃∗(t), t > τ.

By the strong Markov property of diffusions, Ŵ∗ has the same distribution as W∗. Moreover,

Ŵ∗(t) ≤ W̃∗(t) for all t ≥ 0. Therefore, we conclude that

E [W∗(t)] = E [Ŵ∗(t)] ≤ E [W̃∗(t)] = W∗(0) + E [W̃ (t)]

= W∗(0) + E [W̃ (0)] < ∞, (2.159)

where the second equality follows from the definition of W̃∗, the third equality from the

stationarity of W̃ , and the last equality from (2.158). Thus, we conclude from W∗(t) ≥ 0 for

t ≥ 0 and (2.159) that

lim
t→∞

E [W∗(t)]
t

≤ lim
t→∞

W∗(0) +E [W̃ (0)]
t

= 0,

which completes the proof.

The next lemma aids in the proof of Lemma 11. To state the result, it will be convenient
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to rewrite (2.103)–(2.104) as follows:

v′(x) = q2v2(x) + q1(x)v(x) + q0(x), x ≥ 0, (2.160)

v(0) = −r, (2.161)

where q0(x) = 2
σ2
(β − hx), q1(x) = 2

σ2
(ηx − a), and q2 = σ̂

2σ2
> 0 for x ≥ 0.

Lemma 28. For each v ∈ C1[0,∞) satisfying (2.160)–(2.161), y(x) ∶= exp{−q2
´ x
0 v(t)dt}

for x ≥ 0 satisfies

y′′(x) − q1(x)y′(x) + q2q0(x)y(x) = 0, x ≥ 0, (2.162)

y(0) = 1, y′(0) = rq2. (2.163)

Conversely, for each y ∈ C2[0,∞) satisfying (2.162)–(2.163), v(x) ∶= −y′(x)/(q2y(x)) for

x ≥ 0 satisfies (2.160)–(2.161).

Proof of Lemma 28. Suppose that v ∈ C1[0,∞) satisfies (2.160)–(2.161) and let y(x) =

exp{−q2
´ x
0 v(t)dt} for x ≥ 0. Then it follows that

y′′(x) − q1(x)y′(x) + q2q0(x)y(x)

= [exp{−q2
ˆ x

0
v(t)dt} ⋅ (−q2v(x))]

′
− q1(x) [exp{−q2

ˆ x

0
v(t)dt} ⋅ (−q2v(x))]

+ q2q0(x) exp{−q2
ˆ x

0
v(t)dt}

= [exp{−q2
ˆ x

0
v(t)dt} ⋅ (−q2v(x))2 + exp{−q2

ˆ x

0
v(t)dt} ⋅ (−q2v′(x))]

+ q2q1(x)v(x) exp{−q2
ˆ x

0
v(t)dt} + q2q0(x) exp{−q2

ˆ x

0
v(t)dt}

= q2 exp{−q2
ˆ x

0
v(t)dt} [q2v2(x) − v′(x) + q1(x)v(x) + q0(x)] = 0.

Moreover, y(0) = exp{−q2 ⋅ 0} = 1 and y′(0) = −q2 exp{−q2 ⋅ 0} v(0) = rq2.
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On the other hand, suppose y ∈ C2[0,∞) satisfies (2.162)–(2.163) and let v(x) =

−y′(x)/(q2y(x)) for x ≥ 0. Then it follows that

v′(x) = [− y
′(x)

q2y(x)
]
′
= − 1

q2

⎡⎢⎢⎢⎢⎣

y′′(x)
y(x)

− (y
′(x)
y(x)

)
2⎤⎥⎥⎥⎥⎦
= − y

′′(x)
q2y(x)

+ q2v2(x)

= −q1(x)y
′(x)

q2y(x)
+ q0(x) + q2v2(x) = q2v2(x) + q1(x)v(x) + q0(x).

Moreover, v(0) = −y′(0)/ (q2y(0)) = −(rq2) / (q2 ⋅ 1) = −r. This completes the proof.

Proof of Lemma 11. It is known that (2.162)–(2.163) can be transformed into a degenerate

hypergeometric equation known as a Kummer’s equation; see Polyanin and Zaitsev [2003].

Such equations are known to have confluent hypergeometric function solutions; see Bateman

and Erdélyi [1953] and Abramowitz and Stegun [2003]. It then follows from Lemma 28 that

(2.160)–(2.161) have a solution v. To complete the proof, we must show that the solution v

to (2.160)–(2.161) is unique. To this end, define the function f by

f(x, v) = q2v2 + q1(x)v + q0(x), (x, v) ∈ [0,∞) × (−∞,∞).

We show that f is locally Lipschitz in v, i.e., that f is Lipschitz in v when restricted to the

compact domain [0,N] × [−M,M] where N,M > 0. More specifically, local Lipschitzness will

demonstrate uniqueness on each compact interval, which can then be easily extended to the

positive real line. To this end, for x ∈ [0,N] and v1, v2 ∈ [−M,M] we have that

∣f(x, v1) − f(x, v2)∣ = ∣q2v21 + q1(x)v1 − q2v
2
2 − q1(x)v2∣ ≤ q2 ∣v

2
1 − v

2
2 ∣ + ∣q1(x)∣ ⋅ ∣v1 − v2∣

= [q2 ∣v1 + v2∣ +
2

σ2
(ηx + ∣a∣)] ⋅ ∣v1 − v2∣

≤ [2Mq2 +
2

σ2
(ηN + ∣a∣)] ∣v1 − v2∣ .

Therefore, f is locally Lipschitz in v, which completes the proof.
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CHAPTER 3

A STOCHASTIC MODELING FRAMEWORK FOR ONLINE

CONTENT MODERATION: MANAGING CONTENT VIA

MACHINE LEARNING AND HUMAN LABELING

3.1 Introduction

Over the last decade, the use of online platforms, particularly social media, has continued

to expand rapidly. Recent surveys by the Pew Research Center reveal that a significant

portion of American adults and teenagers use social media; see Auxier and Anderson [2021]

and Vogels et al. [2022]. The surge in the use of online platforms has consequently led to a

dramatic increase in user-generated content (UGC), which includes text, images, videos, and

audio. (Throughout the chapter, we use “content” and “UGC” interchangeably.) While the

proliferation of UGC has enhanced our capability to share and exchange information, it has

also introduced significant challenges in content moderation.

Online content moderation refers to the process of analyzing UGC to detect and remove

content that violates platform policies. This task is particularly crucial for social media

platforms such as Facebook and Instagram, where harmful content such as hate speech,

misinformation, and explicit material poses risks to its users. The emergence of such content

has compelled social media companies to deploy robust content moderation systems. One

of the major challenges faced in online content moderation is the sheer volume of uploaded

content that must be managed. For instance, as noted in Makhijani et al. [2021], large

social media platforms like Facebook handle billions of posts per day, presenting significant

operational challenges.

To address these challenges, many online platforms employ a combination of artificial

intelligence (AI) and human moderators to moderate content. AI-enabled systems leverage

machine learning and natural language processing algorithms to distinguish between harmful
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and benign content. These systems excel at quickly processing large amounts of data, allowing

for rapid pre-moderation of content before it goes live on the platform. However, they often

struggle with nuanced and context-dependent decisions, particularly when interpreting the

complexities of human language and cultural references. This can lead to false positives and

false negatives in content classification.

Conversely, human moderators provide expertise and contextual insight, allowing for more

accurate decision-making for content that challenges AI systems. For example, as noted by

Makhijani et al. [2021], “Facebook still relies on human reviewers for moderating ‘ambiguous

content’ that is harder for computers to classify reliably.” Nonetheless, human moderation

has its limitations—it is inherently slower than AI moderation and can introduce human

biases or inconsistencies. Additionally, human moderators risk exposure to disturbing or

graphic content. Indeed, there is a growing body of evidence that human content moderators

are at a considerable risk for significant psychological damage; see Chen [2017, 2014] and

Ruberts [2017].

This paper introduces a stochastic modeling framework for online content moderation

that integrates AI and human moderators to effectively manage UGC. Initially, content

is pre-moderated by the AI system, which can then be sent to human review if necessary.

The platform may choose to send multiple copies of the same piece of content to different

reviewers, serving the following dual purposes. First, it reduces the expected misclassification

cost associated with that content. Second, it produces more human-generated labels to

enhance the AI system’s accuracy over time. Indeed, according to Nguyen et al. [2020],

human labeling errors can be mitigated by multiple reviews, albeit at a cost of increased

system time. Through a simulation study, we aim to explore the operational implications

that arise from sending multiple copies of content to human reviewers. To the best of our

knowledge, these issues have not yet been addressed in the existing literature.
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3.2 Literature Review

The first stream of literature related to our work focuses on online content moderation. TTwo

notable papers from Facebook’s Core Data Science team, Makhijani et al. [2021] and Nguyen

et al. [2020], address various challenges encountered in analyzing large-scale online content

moderation systems. First, Makhijani et al. [2021] describes QUEST (Queue Simulation for

Content Moderation at Scale), which is a simulation tool employed at Facebook to address

operational challenges in large-scale human content moderation systems. It is particularly

valuable for testing the impact of potential decisions, like increasing staff or enhancing their

skills. The paper details how the simulator supports decision-making in areas such as capacity

planning and queue prioritization. Second, Nguyen et al. [2020] presents CLARA (Confidence

of Labels and Raters), which is a statistical framework developed and deployed at Facebook

that aggregates decisions from content reviewers and quantifies their uncertainty, recognizing

the variability and potential biases of human judgment. A final relevant paper on online

content moderation is Cen et al. [2023], which provides a framework for regulating and

auditing a social media platform according to a “baseline feed” that represents content a

user would see without algorithmic manipulation. The paper proposes a method to ensure

that algorithmically curated feeds do not deviate significantly from these baselines, thereby

enhancing user agency and regulatory compliance. Further discussions on the role of AI in

content moderation are explored in the works of Cambridge Consultants [2019], Gillespie

[2020], and Udupa et al. [2021]. These papers investigate the evolving capabilities of AI

technologies in effectively moderating online content, highlighting both current applications

and future prospects for AI-driven moderation systems.

The second stream of literature relevant to our work focuses on queueing with redundancy,

as our model incorporates the sending of multiple copies of content for human review.

Nageswaran and Scheller-Wolf [2022] examine the dynamics within service systems where
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“redundant” customers join multiple queues to enhance their chances of receiving service,

unlike others who join a single queue. The study discusses the implications of this system

on fairness, particularly in the context of organ transplantation. Their findings highlight

situations where redundancy improves system efficiency without compromising fairness, as

well as conditions under which it may disadvantage single-queue customers. Similarly, Gardner

et al. [2017] tackles server-side variability in queueing systems by implementing redundancy.

In these systems, jobs replicate themselves and distribute these copies across multiple servers,

with the completion of any single copy marking the end of the process. This approach

strategically uses scheduling to balance low response times with fairness among job classes.

Queueing with redundancy is also studied in various other papers, including Anton et al.

[2022, 2024], Gardner [2022], and Guo and Hassin [2015].

A third stream of literature related to our work pertains to multiple listings in organ

transplantation. Specifically, as waiting lists for organ transplants have grown, innovative

strategies have been explored to expedite access to transplants. A notable approach is

multiple listings, where patients can register at more than one transplant center to improve

their chances of receiving an organ. This practice has been discussed and examined in studies

such as those by Merion et al. [2004], Ashlagi and Roth [2012], Ardekani and Orlowski [2010],

and Vagefi et al. [2014]. One particularly relevant paper from the operations management

literature is Ata et al. [2017]. This paper addresses the stark disparities in waiting times

for kidney transplants across different US regions. They propose an innovative solution

using an affordable jet service called OrganJet, enabling them to register across multiple,

geographically distant donation service areas. They model the decision-making process of

patients as a selfish routing game where each patient aims to minimize their congestion costs.

Their findings demonstrate that multiple listings facilitated by OrganJet could significantly

enhance geographic equity in organ transplantation access.

Finally, our work is related to research on the interplay between learning and system
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congestion, highlighted by two key papers: Alizamir et al. [2013] and Massoulié and Xu

[2018]. Alizamir et al. [2013] explores the trade-offs between diagnostic accuracy and system

congestion. This paper examines the impact of conducting additional diagnostic tests, which

while improving diagnostic accuracy, also increase waiting times for other customers. They

formulate this problem of balancing diagnostic accuracy against delays as a partially observed

Markov decision process and characterize the optimal decision rule that maximizes long-

term value by weighing correct diagnoses against the costs of misidentification and delays.

Meanwhile, Massoulié and Xu [2018] considers modern processing systems designed for the

purpose of learning and information extraction. In these systems, a group of experts (e.g.,

human agents) are used to perform inspections of a large number of jobs for the purpose

of uncovering hidden features associated with each job up to a level of desirable accuracy.

However, these experts possess a finite amount of service capacity. As such, this paper studies

the minimum number of experts needed in order to maintain stability and learn a sufficient

amount of information about every job in a stream of arrivals.

3.3 Stochastic Model for Online Content Moderation

This section introduces a stochastic model for an online content moderation system, as

illustrated in Figure 3.1. The process begins with an ML classifier assessing UGC, assigning

it a binary score that categorizes the content as either harmful or benign. Subsequently, the

platform determines whether the content warrants further review by human moderators. If

the decision is to bypass human review, the content’s fate—posting or removal—is determined

partially based on the score assigned by the ML classifier. Conversely, if the content is flagged

for human review, multiple copies of the content may be sent to various human reviewers for

further assessment. These human moderators then generate labels that serve dual purposes:

they inform the final decision on the content’s fate and enhance the ML classifier’s accuracy

over time through feedback. The mathematical details of this model are discussed further in
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the subsequent sections.

Figure 3.1: A process flow diagram of an online content moderation system featuring a
machine learning classifier and human moderators. The dashed line symbolizes the feedback
mechanism where human-generated labels refine the machine learning classifier’s accuracy
over time via supervised learning.

3.3.1 User-Generated Content

Each piece of user-generated content is characterized by an associated class x ∈ X and a

virality level y ∈ Y. The components are critical to the model and are further elaborated

below:

● Content Class: The class of a piece of content encompasses tangible characteristics,

including text, images, videos, and metadata, that can in principle be harmful. A

content’s class is a key determiner of its underlying violation status. The set of all

content classes is denoted by X .

● Content Virality: Virality quantifies the anticipated reach of content, essentially

predicting the number of users likely to be exposed. Although virality itself does not

determine the content’s compliance with platform standards, incorrectly assessing highly

viral content can result in greater consequences for the platform and its user base. The

set of virality levels is denoted by Y .
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Next, we discuss the probabilistic elements of our model, and we assume throughout

that all random quantities are defined on a fixed probability space (Ω,F ,P). The inherent

randomness of a piece of content arises from two primary sources: its arrival time and its

underlying violation status. We discuss both sources below.

Content is continuously generated by users over time. We model this process by a renewal

process, where for each pair (x, y) ∈ X × Y, the arrivals of class x content with virality y

follow a homogeneous Poisson process M(x, y) = (Mt(x, y) ∶ t ≥ 0) with a rate of Λ(x, y) > 0

per unit time. Therefore, the arrival time of the kth piece of class x content with virality y is

defined as

τk(x, y) ∶= inf {t ≥ 0 ∶ Mt(x, y) = k}, k = 1, 2, . . . . (3.1)

The violation status of a piece of content is influenced by its class and specific idiosyncratic

features that differentiate it from other members of its class. The platform does now have

direct knowledge of a content’s true violation status; such knowledge would enable flawless

decision-making regarding content posting or removal. However, we assume that the platform

has access the distribution of content within each class that violates the posting standards.

To formalize this, for each x ∈ X , we introduce independent sequences of i.i.d. Bernoulli

random variables {θk(x), k ≥ 1} and {ϵk(x), k ≥ 1} with parameters

θ̄(x) ∶= P(θ1(x) = 1) and ϵ̄(x) ∶= P(ϵ1(x) = 1), (3.2)

respectively. Here, θk(x) signifies the class-level violation status for class x content, with

θk(x) = 1 indicating compliance with the posting standards, and θk(x) = 0 indicating

noncompliance. Similarly, ϵk(x) signifies the violation status of the idiosyncratic features for

class x content. Content is considered compliant with the platform’s posting standards only

if both its class-level violation status and idiosyncratic features meet these standards. Hence,
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the overall violation status of the kth piece of class x content is captured by the following

Bernoulli random variable:

θk(x, ϵ) ∶= θk(x) ϵk(x), k = 1, 2, . . . . (3.3)

In the proceeding discussion, we will often just refer to an individual piece of content. Thus,

for ease of discussion and notational simplicity, we will often write θ(x, ϵ), θ(x) and ϵ(x)

instead of θk(x, ϵ), θk(x) and ϵk(x), respectively.

3.3.2 Content Classifiers

As previously mentioned, social media companies utilize both ML classifiers and human

moderators to manage UGC. Each component in the moderation system evaluates content,

assigning scores to determine if it is harmful or benign. The functioning of these classifiers is

discussed in further detail below.

Machine Learning Classifier

Upon arrival at time t, class x content is evaluated by the ML classifier, which assigns a

binary score θML
t (x) ∈ {0,1}, where θML

t (x) = 1 signifies the classifier’s assessment of the

content as benign, and θML
t (x) = 0 otherwise. For each class x ∈ X , the accuracy of the ML

classifier at time t is represented by a time-dependent confusion matrix as follows:

mML
ii (x, t) ∶= P(θML

t (x) = i ∣ θ(x) = i, Ft−), i = 0, 1, (3.4)

where Ft− denotes the information available to the platform up to time t. As the platform

collects human-generated labels (see Section 3.3.2), the accuracy of the ML classifier improves

over time. This motivates the following assumption.
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Assumption 8. For x ∈ X , there exist constants α(x) ∈ [0,1] and β(x) ∈ (0,∞) such that

mML
ii (x, t) = 1 − α(x) exp{−β(x)Nt−(x)}, i = 0, 1, (3.5)

where Nt−(x) ∈ Z≥0 the count of human-assigned labels for class x content up to time t.

This assumption implies that the accumulation of labels improves the accuracy of the ML

classifier, i.e., mML
ii (x, t) → 1 as Nt−(x) → ∞ for i = 0,1. The assumption of nondecreasing

accuracy, captured by (3.5), is a deliberate modeling simplification that implicitly assumes

that all labels are informative. While the actual classifier accuracy may exhibit variability due

to the stochasticity of noisy labels (see, e.g., Frénay and Verleysen [2014]), this simplification

streamlines the analysis without compromising the fundamental relationship between classifier

accuracy and the number of labels. Furthermore, the analysis presented below is robust to

the precise functional form of mML
ii (x, t).

Although the ML classifier’s ability to predict class-level violation statuses improves

incrementally with each label, the classifier’s true accuracy is limited by the presence of the

idiosyncratic features. The following lemma makes this statement precise.

Lemma 29. For each x ∈ X , we have that

P(θML
t (x) = θ(x, ϵ) ∣Ft−) ≤ 1 − θ̄(x) (1 − ϵ̄(x)), t ≥ 0.

Proof. By the law of total probability, we have that P(θML
t (x) = θ(x, ϵ) ∣Ft−) = P(θ

ML
t (x) =

θ(x, ϵ) = 1 ∣ Ft−) + P(θML
t (x) = θ(x, ϵ) = 0 ∣ Ft−) for each t ≥ 0. The result then follows by

applying Bayes’ rule to each term and using the independence of ϵ(x).
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Human Moderation System

Content not immediately posted or removed undergoes human moderation. This subsystem

consists of a single queue where content (jobs) await review and a pool of N homogeneous

agents who manually review content. The service times are modeled as i.i.d. random variables

{νk, k ≥ 1} with E[ν1] ∈ (0,∞), and are assumed to be independent of all other stochastic

primitives. We restrict to non-idling, first-come-first-serve (FCFS) service disciplines.

Upon evaluation, a human moderator assigns a binary label θH(x) ∈ {0,1} to class x

content, with the same interpretation as before. Unlike the ML classifier, human moderators

are presumed capable of discerning both the class-level and specific idiosyncratic attributes of

the content. To that end, for each x ∈ X , the accuracy of human-assigned labels is represented

by a confusion matrix as follows:

mH
ij(x) ∶= P(θH(x) = 1 ∣ θ(x) = i, ϵ = j), i, j = 0, 1. (3.6)

We introduce an assumption that says the human-generated labels are informative.

Assumption 9. For each x ∈ X , it holds that mH
11(x) > 0.5 and mH

ij(x) < 0.5 for all

(i, j) ≠ (1,1).

The platform has the option to send multiple copies of a single piece of content to different

human reviewers. However, given the sheer volume of content that requires moderation, it is

impractical for human reviewers to examine every piece of content. As such, the platform

must prioritize the use of its human reviewers, balancing the expected misclassification costs

associated with different types of content against potential delays incurred as content awaits

a posting decision. This operational challenge motivates the following definition.

Definition 5. A labeling policy π = (n(x, y) ∶ (x, y) ∈ X × Y) is a non-anticipating stochastic

process, where for each pair (x, y) ∈ X ×Y , the process n(x, y) = {nt(x, y), t ≥ 0} is such that

nt(x, y) ∈ Z≥0 for all t ≥ 0.
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A labeling policy thus determines the number of human reviews for class x content with

virality y at any given time t, including the option nt(x, y) = 0, in which case the content’s fate

is solely based on the ML classifier’s assessment. The labeling policy impacts the queue length

within the human moderation system. When service times are exponentially distributed, it is

straightforward to analytically describe this process due to the memoryless property. In this

case, given a labeling policy π, the queue length process Qπ = {Qπ(t), t ≥ 0} for the human

moderation system is defined recursively as follows:

Qπ(t) = ∑
x∈X
∑
y∈Y

ˆ t

0
ns(x, y)dMs(x, y) − N(µ

ˆ t

0
min{N, Qπ(s)}ds), t ≥ 0, (3.7)

where N = {N(t), t ≥ 0} is a unit-rate Poisson process and µ ∶= (E[v1])−1. However, the

analytical expression of the queue length process becomes significantly more complex with

generally distributed (i.e., non-exponential) service times due to the necessity of dynamically

tracking service start times, departure times, and server assignments over time.

Posting and Removal Decisions

The decision to post or remove content inevitably leads to misclassification errors. Type I

errors, or false positives, occur when when the system incorrectly removes benign content.

Type II errors, or false negatives, occur when the system erroneously posts harmful content.

For each content class x and virality y, we denote the costs associated with type I and type

II errors by cI(x, y) ≥ 0 and cII(x, y) ≥ 0, respectively. The expected cost of these errors,

conditional on a labeling decision θ ∈ {0,1} at time t, is denoted by Ct(x, y, nt(x, y), θ). We

next discuss the formal definition of this cost function and how the platform makes the final

posting and removal decisions.

Consider class x content with virality y that arrives at time t. When the platform does not

send the content for human review, i.e., nt(x, y) = 0, the ML classifier immediately decides
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on posting or removal. This decision is based on the classifier’s current accuracy, the type

I and type II error costs, and the score assigned to the content. Specifically, if θML
t (x) = 0,

then the system’s accuracy is contingent on θ(x, ϵ) = 0, with inaccuracies arising if θ(x, ϵ) = 1.

Thus, adhering to the classifier’s suggestion to remove the content leads to a type I error

with probability P(θ(x, ϵ) = 1 ∣ θML
t (x) = 0). Conversely, choosing to post the content against

the classifier’s advice results in a type II error with probability P(θ(x, ϵ) = 0 ∣ θML
t (x) = 0).

A similar reasoning applies for θML
t (x) = 1. That is, assuming θML

t (x) = 1, then the system

is inaccurate if θ(x, ϵ) = 0. Thus, adhering to the classifier’s suggestion to post the content

leads to the type II error with probability P(θ(x, ϵ) = 0 ∣ θML
t (x) = 1). On the other hand,

choosing to remove the content against the classifier’s advice leads to a type I error with

probability P(θ(x, ϵ) = 1 ∣ θML
t (x) = 1). Assuming that the platform makes the posting or

removal decision that results in the lowest expected cost, it follows that

Ct(x, y,0, θML
t (x)) ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

min{m̄ML
10 (x, t) cI(x, y) , m̄ML

00 (x, t) cII(x, y)}, θML
t (x) = 0,

min{m̄ML
11 (x, t) cI(x, y) , m̄ML

01 (x, t) cII(x, y)}, θML
t (x) = 1,

(3.8)

where m̄ML
ij (x, t) ∶= P(θ(x, ϵ) = i ∣ θ

ML
t (x) = j) for i, j = 0,1.

When the platform decides to send the content for human review, a crucial decision is to

determine the number of copies nt(x, y) > 0 to distribute among the reviewers. This step is

important because the aggregated score derived from these reviews significantly impacts the

final decision on whether to post or remove the content. (In particular, this choice involves a

trade-off between enhancing the ML classifier’s accuracy through additional labels and the

posting delays that occur due to the queue of content waiting to be reviewed.) Specifically,

we denote by θH(x,n) ∈ {0, 1} the aggregate score assigned to class x content when reviewed

by n human moderators. The confusion matrix associated with this aggregate score is given

by mH
ij(x,n) ∶= P(θ

H(x,n) = 1 ∣ θ(x) = i, ϵ(x) = j), where i, j = 0,1. As before, assuming that

the platform makes the posting or removal decision that results in the lowest expected cost,
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it follows that

Ct(x, y, nt(x, y), θH(x, nt(x, y)))

∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

min{m̄H
10(x,nt(x, y)) cI(x, y) , m̄H

00(x,nt(x, y)) cII(x, y)}, θH(x,nt(x, y)) = 0,

min{m̄H
11(x,nt(x, y)) cI(x, y) , m̄H

01(x,nt(x, y)) cII(x, y)}, θH(x,nt(x, y)) = 1,
(3.9)

where m̄H
ij(x,nt(x, y)) ∶= P(θ(x, ϵ) = i ∣ θH(x,nt(x, y)) = j) for i, j = 0,1. Aggregating human-

assigned labels into a singular decision is an important question. For example, Nguyen et al.

[2020] proposes a more sophisticated method called CLARA to aggregate human reviewer

decisions, but there are other known methods within the crowdsourcing literature. However,

our primary focus lies in understanding the operational effects of various labeling policies.

Therefore, for simplicity and to maintain our focus on the operational issues, we assume label

aggregation via majority vote. Specifically, majority voting is given by letting

θH(x,n) = 1{n−1
n

∑
k=1

θH
k (x) ≥

1

2
}, (x,n) ∈ X × {0,1,2, . . .}, (3.10)

with the aggregated confusion matrix being calculated as follows:

mH
ij(x,n) = P (θH(x,n) = 1 ∣ θ(x) = i, ϵ(x) = j)

= P (n−1
n

∑
k=1

θH
k (x) ≥

1

2
∣ θ(x) = i, ϵ(x) = j)

=
n

∑
k=⌈n/2⌉

(n
k
)(mH

ij(x))
k(1 −mH

ij(x))
n−k
. (3.11)

Observe that the third equality in (3.11) follows from the fact that the human-generated label

θH
k
(x) follows a Bernoulli distribution under the probability measure P( ⋅ ∣ θ(x) = i, ϵ(x) = j)

for each x ∈ X and k = 1,2, . . . .
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3.4 Simulation Study

In this section, we conduct a simulation study on the stochastic model presented in the

previous section, specifically examining the operational impact of implementing different

labeling policies. Our primary goal is to compare dynamic labeling policies against static

ones. The following two questions guide our analysis:

1. Do dynamic labeling policies offer better performance than static labeling policies, or

are static policies sufficient?

2. How do static and dynamic labeling policies affect learning speed and system congestion?

Before addressing these questions, let us define what we mean by a static labeling policy

and describe the specific dynamic labeling policy under consideration. Static labeling policies

consistently send a predetermined number of copies of a particular type of content, regardless

of the state of the system such as the ML accuracy and the queue length at the human

moderation system. Specifically, a labeling policy π is said to be a static if

nt(x, y) = c(x, y), x ∈ X , y ∈ Y, t ≥ 0, (3.12)

where c(x, y) ∈ {0,1,2, . . .} are fixed integers for all (x, y) ∈ X × Y. If c(x, y) = 0, the policy

does not send any copies of class x content of virality y; if c(x, y) > 0 it sends c(x, y) copies

to the human moderation system.

We next outline a dynamic labeling policy designed to minimize expected misclassification

costs while considering the current accuracy of the ML classifier. Specifically, given the choice

of sending n copies of class x content with virality y at time t, the expected type I and type
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II error cost is given as follows:

C̄t(x, y, n) ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

P(θML
t (x) = 0 ∣ Ft)Ct(x, y,0,0) + P(θML

t (x) = 1 ∣ Ft)Ct(x, y,0,1), n = 0,

P(θH(x,n) = 0)Ct(x, y, n,0) + P(θH(x,n) = 1)Ct(x, y, n,1), n ≥ 1.

(3.13)

This cost function, which is non-convex with respect to the number of labels, highlights the

complexity of the decision-making process. The following equation, for j = 0,1, explicitly

characterizes the terms in the confusion matrix that reflect the ML classifier’s accuracy:

m̄ML
1j (x, t) =

θ̄(x) ϵ̄(x) mML
11 (x, t)j (1 −mML

11 (x, t))
1−j

θ̄(x) mML
11 (x, t)j (1 −mML

11 (x, t))
1−j + (1 − θ̄(x))mML

00 (x, t)1−j (1 −mML
00 (x, t))

j
.

The following equation, for j = 0, 1, explicitly characterizes the terms in the confusion matrix

that reflect the accuracy of the human moderators:

m̄H
1j(x,n) =

θ̄(x) ϵ̄(x) mH
11(x,n)j (1 −mH

11(x,n))
1−j

1{j=0} + (−1)1−j ∑1
k=0∑

1
i=0m

H
ik
(x,n) θ̄(x)i (1 − θ̄(x))1−i ϵ̄(x)k (1 − ϵ̄(x))1−k

.

By the law of total probability, for j = 0,1, the complementary probabilities for the ML

classifier and human moderators are:

m̄ML
0j (x, t) = 1 − m̄ML

1j (x, t) and m̄H
0j(x,n) = 1 − m̄H

1j(x,n).

Consider the following deterministic optimization problem at each time t:

minimize
{nt(x,y) ∶ x∈X, y∈Y}

∑
x∈X
∑
y∈Y

Λ(x, y) C̄t(x, y, nt(x, y)) (3.14)

subject to: ∑
x∈X
∑
y∈Y

Λ(x, y)nt(x, y) ≤ δNµ (3.15)

n(x, y) ≥ 0, x ∈ X , y ∈ Y, (3.16)
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where δ ∈ [0,1] is a scaling parameter that adjusts the amount of human capacity available

to the dynamic decision maker. The solution to this optimization problem (3.14)–(3.16)

yields a dynamic labeling policy, which we refer to as the dynamic fluid policy. The objective

function represents the expected type I and type II error costs based on the incoming content

flow. The first constraint ensures the stability of the content queue for human review, and

the second constraint is a natural physical restriction requiring that the number of labels

collected be nonnegative.

We conducted a simulation study to compare the efficacy of static labeling policies against

dynamic fluid policies, using Python in a Google Colaboratory notebook. The core of our

simulation is the “ContentModerationSystemSimulation” class, which models an online

content moderation system based on the stochastic framework outlined in Section 3.3. This

class includes various functions that accommodate content arrivals, service completions, and

labels generated by both the ML classifier and human moderators. We ensure the accuracy

of our simulation by validating the average number of jobs in waiting and in service against

the theoretical average derived from the Erlang C formula, under exponential service times

and under a static labeling policy. Our simulation is designed to flexibly handle various

configurations, including an arbitrary number of content classes, arbitrary number of virality

levels, arbitrary number of human moderators, arbitrary class and idiosyncratic distribution

parameters, arbitrary ML classifier and human moderator confusion matrix parameters,

arbitrary cost parameters, arbitrary service time distributions, and an arbitrary time horizon.

For δ ∈ [0,1], we consider two distinct polices: (1) “Fluid δ” policy, which is the dynamic

fluid policy using δ as the scaling parameter, and (2) “Static 10 × δ” policies, which are static

policies such that ∑x∈X ∑y∈Y n(x, y)Λ(x, y) = δNµ. In particular, the Fluid δ policy makes

available (10×δ)% of the human moderation capacity, mirroring the Static 10×δ policies which

utilize on average (10×δ)% of the capacity. Therefore, the Fluid δ policy and the Static 10×δ

policies are directly comparable. In subsequent figures, we will illustrate the comparative
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performance of these policies in terms of learning improvement and system congestion.

“Learning improvement” under each policy is quantified as the total accuracy improvement of

the ML system throughout the simulation, calculated as ∑x∈X [mML
11 (x,T ) − 1 + α(x)], over

the time horizon [0, T ]. “System congestion” under a policy is quantified as the time average

queue length of the human moderation system over the course of the simulation.

We test our policies within a simulated system characterized by three content classes and

two virality levels: nonviral and viral. Our simulation is based on several assumptions and

simplifications. First, we assume that labels for an individual piece of content are aggregated

via majority vote in the human moderation system. Second, we assume that the service

times are distributed as i.i.d. Gamma random variables. Third, to manage computational

complexity, our simulation is designed to process thousands of content arrivals within a set

time horizon. In future research, we aim to refine the simulation to handle billions of content

arrivals—akin to those on large-scale social media platforms—while maintaining a reasonable

runtime. Figure 3.2 presents a base case scenario where the learning improvement rate is

set at β(x) = 0.001 for all x ∈ X , and where the static policies only send content from one

content class. All other model parameters remain constant throughout the discussion.

Figure 3.2: A graph illustrating the relationship between learning improvement and system
congestion in a system with three content classes and two virality levels, utilizing static
policies that label content exclusively from one class.
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We observe from the figure that dynamic fluid policies lead to significantly shorter queue

lengths compared to the corresponding static policies. Additionally, over time, dynamic

fluid policies surpass static policies in terms of learning improvement. These advantages

are consistent across all scenarios involving one-class static policies. Figure 3.3 presents a

scenario identical to the base case, with the exception that the learning improvement rate

has been increased to β(x) = 0.01 for all content classes x ∈ X , up from 0.001.

Figure 3.3: A graph illustrating the relationship between learning improvement and system
congestion in a system with three content classes and two virality levels, but with a faster
learning improvement rate.

Similar to observations in the system with the slower learning improvement rate, this

figure demonstrates that dynamic fluid policies continue to outperform static policies in terms

of system congestion and learning improvement. Notably, there is a dramatic increase in

learning improvement as we transition from the Fluid 0.7 policy to the Fluid 0.9 policy. This

is attributable to the increased capacity at when δ = 0.9, which allows for labeling content

from a second class—unlike at δ = 0.7, where capacity limitations restrict labeling to only

one high-cost class. The faster learning improvement rate makes this effect more pronounced

within the same simulation time horizon, suggesting a “bang-bang” structure for the dynamic

fluid policy. Finally, Figure 3.4 examines a system with the same parameters as in the base

case, except that the static policies now label content from two different content classes.
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Figure 3.4: A graph illustrating the relationship between learning improvement and system
congestion in a system with three content classes and two virality levels, utilizing static
policies that label content exclusively from two classes.

Observations from this figure align with behaviors noted in the previous two figures.

These results continue to hold true across various two-class static policies and are also upheld

when considering three-class labeling policies. The simulation study demonstrates that

dynamic fluid policies consistently outperform static policies in terms of system congestion

and eventually surpass them in learning improvement. These findings underscore the value of

adopting dynamic labeling policies over static ones in online content moderation systems.

3.5 A Related Model via a Bayesian Learning Framework

In this section, we propose a related stochastic modeling framework for online content

moderation via Bayesian learning. Notably, the model we present does not incorporate the

idiosyncratic features that were present in the previous model. Ultimately, we provide a weak

convergence result reflecting the learning dynamics of the platform. This result paves the

way for studying a suitable diffusion control problem. We leave this as a direction for future

research.
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3.5.1 User-Generated Content and Content Scores

As before, we consider an online platform that dynamically moderates user-generated content.

We again let X denote set of content classes and Y denote the set of virality levels. We assume

that X and Y are countably infinite metric space with corresponding Borel σ-algebras B(X)

and B(Y), respectively. Because content with higher virality generates higher misclassification

costs, we require Y to be a totally ordered and bounded set, with larger values corresponding

to high levels of virality.

Notably, the underlying metric on the space of content classes X captures how similar

two pieces of content are in terms of their class attributes, and we assume that content

with similar attributes are also similar with respect to how harmful they are.1 However,

developing a reliable and robust metric to capture the differences between content remains

an ongoing challenge. This is because the nature of online content is constantly evolving,

and new forms of harmful content can emerge at any time. Additionally, the platform’s

community standards may change over time in response to societal and cultural shifts, adding

further complexity to the problem. Therefore, it is important for researchers to continue

exploring new approaches and techniques for measuring and categorizing online content, in

order to improve the accuracy and effectiveness of content moderation systems. In this model,

however, we focus on moderating content under a fixed metric and we leave these other

important questions open for future research.

The platform assigns a score to each piece of content based on a predefined (finite) set

of rules that reflect their community standards. These scores measure various aspects of

the content, such as the presence of sexually explicit material or hate speech. It is essential

for the platform to clearly communicate its community standards to ensure that the rules

consistently enforce these standards. The set of rules is given by S ∶= {1, . . . , S}, and the

1. The metric space structure of X offers the potential for modeling transfer learning. However, at present,
we have not incorporated this aspect into this model. Exploring the integration of transfer learning is a
potential avenue for future research.
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violation status of content x is encoded by a vector of scores:

v(x) = (v1(x), . . . , vS(x)) ∈ {0,1}S , x ∈ X , (3.17)

where vs(x) = 1 if class x content meets the posting standards imposed by rule s, and

vs(x) = 0 otherwise. The platform does not know the true vector of scores v(x) but learns

it over time based on the review decisions of the human moderators. The platform uses a

Bayesian learning framework to learn the true violation status of the content. The prior

belief that class x content satisfies the posting standards imposed by rule s is given by:

v̄s(x) ∶= P (vs(x) = 1) ∈ (0, 1), x ∈ X , s ∈ S. (3.18)

That is, vs(x) to be a Bernoulli random variable with parameter v̄s(x). We assume that the

underlying scores are independent across all content classes x and rules s. Therefore, the

prior belief that class x content satisfies the posting standards of the platform is given by2

θ̄(x) ∶= P (v1(x) = v2(x) = ⋯ = vS(x) = 1) = ∏
s∈S

v̄s(x), x ∈ X . (3.19)

3.5.2 Content Arrival Process

The content moderation system receives content from three primary sources: (1) newly

uploaded user content, (2) previously posted content that has been flagged by users as

harmful, and (3) user appeals from previously removed content. Although this model will

not differentiate between these sources of content, they are implicitly incorporated into the

2. The precise probabilistic framework is as follows. We assume that all random elements are defined on a
probability space (Ω, F , P). For each pair (x, s) ∈ X × S, we define the probability measures

Px
s0( ⋅ ) ∶= P ( ⋅ ∣ vs(x) = 0) , Px

s1( ⋅ ) ∶= P ( ⋅ ∣ vs(x) = 1) .

Then, for each δ ∈ [0, 1], we define the probability measure Px
sδ( ⋅ ) ∶= (1 − δ)Px

s0( ⋅ ) + δ Px
s1( ⋅ ), and we denote

by Ex
sδ[ ⋅ ] the corresponding expectation operator (cf. pages 334–336 of Peskir and Shiryaev [2006]).
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model primitives that follow.

Users on the platform continuously generate new pieces of content over time, and we

model this content generation process as a Poisson process M = (Mt ∶ t ≥ 0) with a rate of

Λ > 0 pieces of content per unit of time. Therefore, the arrival epoch of the kth piece of

content to the system is defined as:

τk ∶= inf {t ≥ 0 ∶ Mt = k}, k = 1, 2, . . . .

For content arriving at time t, we denote by Xt the content’s class and Yt the content’s

virality score. We assume that the random variables Xt and Yt arriving at time t are drawn

independently across time according to a probability distribution Qt ∶ B(X) ⊗ B(Y) → [0,1].

Thus, the probability that content arriving in the system at time t is of class x with virality

level y is given as follows:

qt(x, y) ∶= Qt({x} × {y}) = P (Xt = x, Yt = y). (3.20)

We note that the dynamic nature of the content generation distributions captures the

phenomenon of concept drift that is present in temporally changing environments.

3.5.3 Automated Content Moderation

The role of the ML classifier in this Bayesian learning model of an online content moderation

system is to automatically report a vector of scores that reflect the platform’s perceived

violation status of content over time. To that end, for x ∈ X and s ∈ S, we define

rst(x) ∶= P (rs(x) = 1 ∣ Ft), t ≥ 0, (3.21)
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where Ft is the platform’s information available at time t. In words, rst(x) represents the

conditional probability that class x content satisfies the posting standards imposed by rule s

given the platform’s information available at time t.

We define the belief process for class x content to be the S-dimensional stochastic process

r(x) = (rt(x), t ≥ 0), where rt(x) = (rst(x), s ∈ S) is given by (3.21). Thus, the belief process

captures the platform’s evolving understanding of the violation status of the content as new

information becomes available to the platform. Since the vector of scores r(x) given by

(3.17) is independent across its components, the platform’s estimated probability that class x

content simultaneously satisfies all the posting guidelines at time t is given as follows:

θt(x) ∶= P (r1t(x) = r2t(x) = ⋯ = rSt(x) = 1) = ∏
s∈S

rst(x) ∈ [0,1], x ∈ X . (3.22)

A higher value of θt(x) indicates a stronger belief that the content satisfies the guidelines,

while a lower value implies a lower confidence level. This probability-based measure assists in

assessing the compliance of the content with the platform’s standards. For simplicity, we also

refer to the process θ(x) = (θt(x), t ≥ 0) as the belief process for class x content.

3.5.4 Human-Based Content Moderation

As in the previous model, the human content moderation system comprises human reviewers

(agents) who manually review content (jobs) sent from the ML system. Each piece of content

that is evaluated by a human reviewer receives a label indicating whether or not it should

be posted on the platform. As before, we assume that the human reviewers are inherently

noisy decision-makers and are susceptible to error. Furthermore, we assume that the human

reviewers vary in their ability to evaluate content of different types and the various rules

enforced by the platform. To account for this heterogeneity, we assume that there is a finite

set J ∶= {1, . . . , J} of pools of human reviewers, where humans in the same pool have the
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same skill set in evaluating content. More specifically, when a piece of class x content is

evaluated by a human reviewer in pool j, it is assigned a label yjs(x) ∈ {0,1} for each rule s.

Agents in server in pool j label content x according to the following confusion matrix:

p
j
si(x) ∶= P(yjs(x) = i ∣ r̄s(x) = i), s ∈ S, i ∈ {0,1}, (3.23)

where 0.5 < pjsi(x) < 1. The confusion matrix captures the classification accuracy of the

agents in the various server pools. It is important to note that the entries of the confusion

matrix depend not only on the content type and the rule being evaluated, but also on the

underlying true label of the content. For instance, if the rule pertains to hate speech, the

probability of observing a removal decision may be higher if the content contains more explicit

or aggressive language. Conversely, if the rule relates to nudity, the likelihood of observing

a removal decision may be greater if the content includes more explicit or graphic images.

We assume that the labels produced by a human reviewer are independent across rules and

across time, as well as across the reviewers themselves.

As mentioned above, the platform employs a Bayesian learning framework to update its

beliefs about the true violation status of content over time. Specifically, it utilizes Bayes’ rule

to calculate the posterior probability of content satisfying the platform’s posting standards,

given the observed labels from human moderators. This approach helps the system learn the

true labels and reduce content misclassification errors while simultaneously improving the

accuracy of the ML-classifier over time. To further reduce misclassification errors, we assume

that the platform can send multiple copies of the same piece of content to multiple human

reviewers. As discussed in the initial model, enabling the platform to send multiple copies

of the same piece of content to different reviewers provides control over the rate at which

the true labels of various content types are learned over time, which is a crucial aspect of

the human moderation system’s operations. To formalize these concepts, we introduce the

following definition:
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Definition 6. A labeling policy for class x content is a J-dimensional stochastic process

n(x) = ((nt(x, j) ∶ j ∈ J ), t ≥ 0), x ∈ X , (3.24)

where nt(x, j) ∈ {0, 1, 2, . . .} represents the number of copies of class x content arriving at

time t that are assigned to human reviewers in pool j.

It is worth noting that when nt(x, j) = 0 for all j ∈ J , the content is automatically posted

or removed after being evaluated by the ML classifier. On the other hand, if nt(x, j) > 0

for some j ∈ J , then the content is sent for human review. Different labeling policies can

have a significant impact on the performance of the overall moderation system. For example,

assigning too few copies of content to human reviewers may result in delayed learning of the

true label, while sending too many copies may lead to redundant and unnecessary evaluations,

wasting the platform’s resources. The goal is to strike a balance between the speed of learning

the true labels and the efficient utilization of resources.

We model the human moderation system as a queueing system with J server pools, where

each server pool j ∈ J consists of Nj servers, an infinite-capacity buffer, and an exponential

service rate of µj > 0 at each of its servers. The service rate µj reflects the speed at which

the human moderators in pool j can review content, and is assumed to be the same across

content types. We denote by Qj(t) the amount of content (jobs) in pool j that are either

waiting or being reviewed at time t. Under a labeling policy π = (n(x) ∶ x ∈ X), the dynamics

of the process Qj = {Qj(t), t ≥ 0} are given as follows:

Qj(T ) = Qj(0) +
ˆ T

0
nt(Xt, j)dMt − Dj (Njµj

ˆ T

0
min{Nj ,Qj(t)}dt ), (3.25)

where Qj(0) ∈ {0, 1, 2 . . .} is the initial number of pool j jobs and Dj = {Dj(t), t ≥ 0} is a

unit-rate Poisson process independent of all other stochastic primitives. The second (resp.,

third) term in (3.25) corresponds to the total amount of content that has arrived to (resp.,
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departed from) pool j by time T .

Embedded in the process dynamics (3.25) is the implicit assumption of a first-come-first-

serve (FIFO) and non-idling service discipline within each server pool. On the one hand, the

FIFO assumption is without loss of optimality because we will assume a fixed holding cost

structure across content types.3 On the other hand, the non-idling assumption is innocuous

because the platform can induce idling by simply adjusting its labeling policy to restrict

the flow of content to the human reviewers. This can be beneficial for the system in certain

circumstances, such as when the system experiences a surge in incoming content, especially

content that it does not know much about. Furthermore, once the platform has enough

information to make accurate predictions, it may make sense to restrict the flow of content

to the human reviewers to avoid unnecessary costs associated with manual moderation.

3.5.5 The Stochastic Control Problem

When the system posts and removes content, misclassification errors can occur. Type I errors

occur when when the system removes innocent content, while type II errors occur when the

system posts harmful content. Let f I(x, y, θ) denote the expected type I error cost incurred

for removing class x content with virality y given the current belief θ. Similarly, let f II(x, y, θ)

denote the expected type II error cost incurred for posting class x content with virality y

given the current belief θ.

Observe that the type I and type II cost functions depend on the virality of a piece of

content. This because misclassifying high virality content can result in greater consequences

than misclassifying non-viral context. To be more specific, if a piece of viral content that

violates platform standards is mistakenly classified as safe, the number of users exposed to

the harmful content increases. Conversely, if viral benign content is incorrectly classified as

3. When holding costs vary across content types, the chosen service discipline (or scheduling protocol) at
each of the server pools is left as a matter for dynamic decision-making. This is left as an important direction
for future research.
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unsafe, the platform may suffer greater reputational damage.

Assumption 10. The type I and type II error cost functions f I, f II ∶ X × Y × [0, 1] → [0,∞)

satisfy the following conditions:

(1) f I(x, y,0) = f II(x, y,1) = 0 for all x ∈ X and y ∈ Y ,

(2) f I(x, y, ⋅) is continuously increasing on [0,1] for all x ∈ X and y ∈ Y ,

(3) f II(x, y, ⋅) is continuously decreasing on [0,1] for all x ∈ X and y ∈ Y .

(4) f I(x, y1, ⋅) ≤ f I(x, y2, ⋅) and f II(x, y1, ⋅) ≤ f II(x, y2, ⋅) for all x ∈ X and y1, y2 ∈ Y such

that y1 ≤ y2.

Conditions (1)–(3) in Assumption 10 reflect that the expected type I cost for removing

class x content increases as the platform’s confidence in the content’s compliance with posting

guidelines increases. They also reflect that the expected type II cost for posting content x

increases as the platform’s confidence in the content’s violation of posting rules increases.

Condition (4) in Assumption 10 reflects the fact that misclassifying content with higher

virality is more costly.4 The minimum expected misclassification cost associated to posting

or removing content x with current belief θ is given by

f(x, y, θ) ∶= min{f I(x, y, θ), f II(x, y, θ)}. (3.26)

We next formulate a stochastic control problem where the platform’s control is the labeling

policy π. To that end, the expected infinite-horizon discounted cost under a labeling policy π

is given as follows:

Jπ ∶= E [
ˆ ∞
0

e−rt
J

∑
j=1

hjQj(t)dt +
ˆ ∞
0

e−rtf(Xt, Yt, θt(Xt))dMt], (3.27)

4. For example, f I(x, y, θ) = cI(x, y) ⋅ θ and f II(x, y, θ) = cII(x, y) ⋅ (1 − θ) satisfy the conditions of
Assumption 10, where cI(x, y) and cII(x, y) are positive constants for x ∈ X that are increasing in y.
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where r > 0 is a discount factor and hj > 0 is a holding cost rate for j ∈ J . The first term in

(3.27) captures the operational costs of sending content to the human moderators,5 while the

second term accounts for misclassification costs of posting and removing content. Therefore,

the platform’s problem is the following:

minimize
π

ˆ ∞
0

e−rt
J

∑
j=1

hj EQj(t)dt +
ˆ ∞
0

Λe−rt ∑
x∈X
∑
y∈Y

qt(x, y)E[f(x, y, θt(x))]dt (3.28)

subject to (3.21)–(3.22) and (3.25). (3.29)

3.5.6 Weak Convergence of the Belief Process

Before presenting the weak convergence result and the the appropriate asymptotic regime,

we express the dynamics of the belief processes more explicitly using Bayes’ rule. To that

end, denote by n(x) = {n1(x), n2(x), . . .} the labeling policy for class x content at each of

its arrival epochs, where

nk(x) = (nk(x, j) ∶ j ∈ J ), k = 1, 2, . . . , (3.30)

that is, nk(x, j) corresponds to the number of labels assigned by pool j reviewers to the kth

content x arrival. Given a labeling policy n(x), we denote by y(x) = {y1(x), y2(x), . . .} the

sequence of (random) labels collected for class x content, where

yk(x) = (ysk(x, l) ∈ {0,1} ∶ s ∈ S, l ∈ [nk(x, j)], j ∈ J ), k = 1, 2, . . . , (3.31)

that is, ysk(x, l) is the (random) label assigned regarding the violation status of rule s to

the lth copy of the kth class x content arrival sent to reviewers in pool j. We define the

5. Sending content to the human moderators increases their workload and potentially exposes them to
harmful content that can result in psychological distress. But sending content to the human moderators
enables the platform to collect more information on the true violation status of the content. Thus, we can
interpret the holding cost as a cost of learning.
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likelihood ratios for a server in pool j to be

Ls0(x, j) ∶=
p
j
s0(x)

1 − pjs1(x)
, Ls1(x, j) ∶=

1 − pjs0(x)

p
j
s1(x)

, (x, s) ∈ X × S. (3.32)

We next define the (random) likelihood ratios associated to the labeling policy n(x) as follows:

Ls(y(x), x, n(x)) =
J

∏
j=1

nj(x)
∏
k=1
(Ls0(x, j))

1−ysk(x,j) (Ls1(x, j))
ysk(x,j)
, s ∈ S. (3.33)

We will use the shorthand notation Ls(x) for Ls(y(x), x, n(x)). Also, let us denote by Ls(x)

the range of possible values for Ls(x) and by Qs(L, rs) ∶= P(Ls(x) = L ∣ rs(x)) the conditional

probability distribution of Ls(x) given a vector of beliefs rs(x). We also define the vector

L(x) = (Ls(x) ∶ s ∈ S) and denote by L (x) = (Ls(x) ∶ s ∈ S) its range and by Q(L, r) its

conditional probability distribution given r.

Lemma 30. Let Mt(x) denote the Poisson process with intensity Λ(x) counting the arrivals

of content x that are labeled. Then the belief process rst(x) for x ∈ X and s ∈ S evolves

according to the following stochastic differential equation:

drst(x) = ηs(rst−(x),Lst(x))dNt(x), t ≥ 0, (3.34)

where Lst(x) = Ls(yt(x), x, n(x)) and yt(x) denotes the random labels of a piece of content

x that arrives at time t.

Proof. By Bayes’ rule, the belief process can be rewritten as

rst(x) =
rst−(x)

rst−(x) + (1 − rst−(x))Ls(x)
= rst−(x) + η(rst−(x),Ls(x)),

where η(r,L) ∶= [r (1 − r) (1 − L)] / [r + (1 − r)L]. Therefore, to complete the proof, we can

proceed exactly as in the proofs of Lemmas 1 and 2 in Araman and Caldentey [2022].
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In what follows, we simplify the notation by dropping the dependence on x. To establish

weak convergence of rt to a diffusion process, it suffices to establish the convergence of its

instantaneous drift vector and volatility matrix. To this end, the following lemma will prove

useful. To state it, we first define

Q(L, r) ∶= ∏
s∈S

Qs(Ls, rs) = ∏
s∈S
[rsQs(Ls,1) + (1 − rs)Qs(Ls,0)].

Lemma 31. For all s ∈ S and rs ∈ [0,1], we have that

∑
Ls∈Ls

η(rs,Ls)Qs(Ls, rs) = 0.

Proof. From the definition of the likelihood ratio Ls we have

Ls(y(x), x, n(x)) =
J

∏
j=1

nj(x)
∏
k=1
(Ls0(x, j))

1−ysk(x,j) (Ls1(x, j))
ysk(x,j)

=
J

∏
j=1

nj(x)
∏
k=1
( ps0(x, j)
1 − ps1(x, j)

)
1−ysk(x,j)

(1 − ps0(x, j)
ps1(x, j)

)
ysk(x,j)

=
∏J

j=1∏
nj(x)
k=1 (ps0(x, j))

1−ysk(x,j) (1 − ps0(x, j))
ysk(x,j)

∏J
j=1∏

nj(x)
k=1 (1 − ps1(x, j))

1−ysk(x,j) (ps1(x, j))
ysk(x,j)

= Qs(Ls,0)
Qs(Ls,1)

.

From this and the definition of η(r,L) it follows that

∑
Ls∈Ls

η(rs,Ls)Qs(Ls, rs)

= ∑
Ls∈Ls

rs (1 − rs) (1 − Ls)
rs + (1 − rs)Ls

[rsQs(Ls,1) + (1 − rs)Qs(Ls,0)]

= ∑
Ls∈Ls

rs (1 − rs) (Qs(Ls,1) −Qs(Ls,0))
rsQs(Ls,1) + (1 − rs)Qs(Ls,0)

[rsQs(Ls,1) + (1 − rs)Qs(Ls,0)]
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= rs (1 − rs) ∑
Ls∈Ls

(Qs(Ls,1) −Qs(Ls,0)) = 0,

which completes the proof.

We next consider an asymptotic regime where the amount of content arriving to the human

moderation system is large and where the information that the platform received per unit

of labeled content is low. This is analogous to the “high frequency vs. low informativeness”

regime formalized in Araman and Caldentey [2022] in the content of learning via sequential

experimentation.

Assumption 11. We consider a sequence of problem instances indexed by n in which the

arrival rate Λn and the probabilities Qn
s (Ls,0) and Qn

s (Ls,1) satisfy the following:

(a) Λn = nΛ.

(b) limn→∞
√
n [Qn

s (Ls,1) −Qn
s (Ls,0)] = α(Ls) for i = 0,1.

The next proposition provides a weak convergence result for the belief process to a

diffusion. Prior to stating it, we first note that the S-dimensional process rt(x) evolves as a

pure-jump Markov process whose infinitesimal generator is given by

Af(r) ∶=
ˆ
w
[f(r +w) − f(r)]K(r,dw), r ∈ [0,1],

where the transition kernel K(r,w) satisfies

ˆ
w
f(w)K(r,dw) = Λ ∑

L∈L
f(η(r,L))Q(L, r).

Proposition 6. Under Assumption 11 and under a static labeling policy π, we have that

rπ,n(x) ⇒ r̃π(x) as n→∞, where r̃s(x) = (r̃st(x), t ≥ 0) is a diffusion process that satisfies
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the following stochastic differential equation:

dr̃πst(x) =
√
2Λ r̃πst(x) (1 − r̃

π
st(x))σs dWst(x),

where Ws(x) = (Wst(x), t ≥ 0) is a standard Brownian motion, independent across rules and

content classes.

Proof. Fix a static labeling policy π and a content class x. It suffices to establish the

convergence of its instantaneous drift vector and volatility matrix. On the one hand, by

Lemma 31, it follows that the instantaneous drift b(r) of the process rt(x) satisfies

b(r) =
ˆ
w
wK(r,dw) = Λ ∑

L∈L
η(r,L)Q(L, r) = 0.

On the other hand, the instantaneous volatility matrix c(r) = [css′(r) ∶ s, s′ ∈ S] satisfies

css′(r) =
ˆ
w
wsws′K(r,dw) = Λ ∑

L∈L
η(rs,Ls) η(rs′ ,Ls′)Q(L, r)

= Λ ∑
Ls∈Ls

∑
Ls′∈Ls′

η(rs,Ls) η(rs′ ,Ls′)Qs(Ls, rs)Qs′(Ls′ , rs′), s, s′ ∈ S.

If s ≠ s′, then Lemma 31 implies that

css′(r) = Λ
⎛
⎝ ∑Ls∈Ls

η(rs,Ls)Qs(Ls, rs)
⎞
⎠

⎛
⎜
⎝
∑

Ls′∈Ls′

η(rs′ ,Ls′)Qs′(Ls′ , rs′)
⎞
⎟
⎠
= 0.

If, however, s = s′ then we have that

css(r) = Λ ∑
Ls∈Ls

η2(rs,Ls)Qs(Ls, rs)

= Λ r2s (1 − rs)2 ∑
Ls∈Ls

(Qs(Ls,1) −Qs(Ls,0))2
rsQs(Ls,1) + (1 − rs)Qs(Ls,0)

.
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Thus, c(r) is a diagonal matrix. Next, observe that Assumption 11 implies that

∑
Ls∈Ls

α(Ls) = 0 and lim
k→∞

Qn
s (Ls, i) =

1

2
, i = 0,1,

and define σ2s ∶= ∑Ls∈Ls
α2(Ls) for s ∈ S. Therefore, the instantaneous volatility cnss(r) for

s ∈ S converges asymptotically to

lim
n→∞ c

n
ss(r) = lim

n→∞Λn r2s (1 − rs)2 ∑
Ls∈Ls

(Qn
s (Ls,1) −Qn

s (Ls,0))2
rsQn

s (Ls,1) + (1 − rs)Qn
s (Ls,0)

= 2Λ r2s (1 − rs)2σ2s .

Finally, by invoking Theorem 4.21 in Chapter IX in Jacod and Shiryaev [2003] on the

convergence of pure-jump Markov processes to diffusion processes, we conclude that r̃st(x)

satisfies the following stochastic differential equation:

dr̃πst(x) =
√
2Λ r̃πst(x) (1 − r̃

π
st(x))σs(x)dWst(x), s ∈ S,

where Ws(x) is a Weiner process, such that Ws(x) and Ws′(x) are independent for s ≠ s′.

3.6 Concluding Remarks

This chapter proposed a stochastic model for online content moderation that integrates both

machine learning classifiers and human moderators. Our model accommodates multiple

content classes, various levels of content virality, and unique idiosyncratic features specific to

individual pieces of content. Current research efforts are focused on conducting a simulation

study to examine the operational impacts of various labeling policies. Future directions

to this study will include exploring a broader array of labeling policies, such as various

state-dependent policies, and conducting sensitivity analyses to determine the effects of
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different model parameters.

Another future direction includes analytically studying the corresponding optimal control

problem. One approach within this context involves considering the system as it approaches

heavy traffic conditions, where the number of content arrivals and the number of human

moderators increase grow without bound. For instance, in Section 3.5, we demonstrated how

to approximate the platform’s “belief process” using a diffusion process within a suitable

asymptotic regime. However, the study of the optimal control problem remains a formidable

challenge due to the inherent multidimensionality of this problem.
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