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ABSTRACT

In this thesis, we develop a scattering theory for the asymmetric transport observed at inter-

faces separating two-dimensional topological insulators. Starting from the spectral decom-

position of an unperturbed confining Hamiltonian, we present a limiting absorption principle

and construct a generalized eigenfunction expansion for perturbed systems. We then relate

the interface conductivity, a current observable quantifying the transport asymmetry, to the

scattering matrix associated to the generalized eigenfunctions. In particular, we show that

the interface conductivity is concretely expressed as a difference of transmission coefficients

and is stable against perturbations. We apply the theory to systems of perturbed Dirac

equations with asymptotically linear domain wall.

In the presence of random perturbations in the Hamiltonians, the limiting behavior of the

scattering matrix entries as the thickness L of the random medium increases gives rise to a

second order diffusion operator by the diffusion approximation theory. We call such diffusion

operator a mixed type generalized Kimura diffusion operator. We model the operator and

provide the degenerate Hölder space-type estimates for model operators. With the analysis

of perturbation term we establish the existence of solutions. We also give proofs of the

existence and regularity of the global heat kernel.

We also concern the long-time asymptotics of this degenerate diffusion operators with

mixed linear and quadratic degeneracies. In one space dimension, we characterize all possible

invariant measures for such a class of operators and in all cases show exponential convergence

of the Green’s kernel to such invariant measures. We generalize the results to a class of two-

dimensional operators including those used in the analysis of topological insulators. Several

numerical simulations illustrate our theoretical findings.
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CHAPTER 1

INTRODUCTION

1.1 Background and motivation

A characteristic feature of two-dimensional topological insulators is the topologically pro-

tected asymmetric transport observed at one-dimensional interfaces separating two insulat-

ing bulks. If H is a Hamiltonian describing transport in the two-dimensional system, the

asymmetry along the edge is modeled by the following edge conductivity

σI [H] = Tr i[H,P ]φ′(H) (1.1)

where P = P (x) ∈ S[0, 1] and φ(E) ∈ S[0, 1, E−, E+] are smooth switch functions. Here,

S[a, b, c, d] is the set of bounded (measurable) functions on R equal to a for x < c and equal

to b for x > d while S[a, b] is their union over (finite) c < d.

In such a setting, an interface current is flowing in the direction of the x−axis while wave-

fields are concentrated in the vicinity of y = 0. We have 2πσI ∈ Z an integer describing

excitations primarily moving e.g. from left to right when 2πσI > 0.

When H = H0 is an unperturbed operator invariant with respect to spatial translations

in x, then plane waves may be identified as generalized eigenfunctions of H0. In

We consider H = H0 + Q with H0 an operator with a well-known spectral decompo-

sition and Q be a short-range perturbation, which for us will be an operator of point-wise

multiplication by Q(x, y), a function that decays sufficiently rapidly to 0 as |x| → ∞. The

topological protection of the asymmetric transport states that σI [H0] = σI [H0 + Q] for a

large class of perturbations Q.

The main objective is to devise a scattering theory for H. More precisely, for an energy

E ∈ R within the bulk band gap, we wish to show the existence of generalized plane waves

solution of Hψm = Eψm and construct a scattering matrix S from such functions ψm. Our
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final objective is then to show 2πσI ∈ Z is directly related to the coefficients of the scattering

matrix S.

Dirac operator with domain walls We consider the Dirac operator

H = H0 +Q, H0 = Dxσ1 +Dyσ2 +m(y)σ3 (1.2)

where Dx = −i∂x and Dy = −i∂y, where σ1,2,3 are the standard Pauli matrices, and where

m(y) is a domain wall that we will take the form m(y) − y equal to a bounded function to

simplify the presentation. Here, Q is the operator of multiplication by Q(x, y), which takes

values in 2× 2 Hermitian matrices. With such perturbation, we proved that H satisfies the

following hypothesis.

Hypothesis 1.1.1 ([H1]). (o) We assume that H0 is a self-adjoint (elliptic) differential

operator with domain Hp ⊗ Cq and resolvent operator R0(i) = (H0 − i)−1 bounded from H

to Hp ⊗ Cq.

(i) For each ξ ∈ R, Ĥ0(ξ) has a compact resolvent and hence purely discrete spectrum. We

assume the existence of generalized eigenfunctions in H
p
−s for s > 1

2 , solutions

ψj(x, y; ξ) =
1√
2π
eiξxϕj(y; ξ), (1.3)

of the eigenvalue problem (H0−Ej(ξ))ψj = 0 with (ϕj)j an orthonormal basis of L2(Ry)⊗Cq,

i.e., (ϕj , ϕk)L2(Ry)⊗Cq = δjk. Here, j ∈ J with J ≃ N.

(ii) We assume that the branches of absolutely continuous spectrum j → Ej(ξ) are smooth

and satisfy |Ej(ξ)| → ∞ as |ξ| → ∞ with ξ → (1 + |Ej(ξ)|2)−1 integrable for j ∈ J . We

assume that for any interval [a, b], only a finite number of branches ξ → Ej(ξ) cross [a, b].

For H0 an elliptic operator of order p, which is the framework we are interested in,

standard ellipticity results show that ψj(x, y; ξ) defined in (2.3) is an element in H
p
−s for
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s > 1
2 . We have by assumption the spectral decomposition

H0 =
∑
j

∫
R
Ej(ξ)Πj(ξ)dξ, Πj(ξ) = ψj(·; ξ)⊗ ψj(·; ξ), (1.4)

where Πj(ξ) are rank-one projectors. Associated to the above decomposition is the follow-

ing resolution of identity. Let Ξ = (j, ξ) ∈ J × R. We define for f ∈ L2(R2) ⊗ Cq the

(unperturbed) Fourier transform:

f̂(Ξ) = (Ff)(Ξ) :=
∫
R2
ψj(x, y, ξ) · f(x, y)dxdy = (f, ψj(·, ξ)), (1.5)

where (f, g) =
∫
R2 f(x, y) · ḡ(x, y)dxdy is the inner product on H, with inverse Fourier

transform:

f(x, y) = (F−1f̂)(x, y) :=
∑
j

∫
R
f̂(Ξ)ψj(x, y, ξ)dξ. (1.6)

The Fourier transform is an isometry from H = L2(R2, dxdy)⊗Cq to L2(J×R, dΞ;C), with

dΞ the Cartesian product of the counting measure on J and the Lebesgue measure on R.

(iii) The spectral elements Ej(ξ) and Πj(ξ) are assumed to be smooth in ξ with a finite

number of critical values. Define

Z =
{
E ∈ R; E = Ej(ξ) for some (j, ξ) ∈ J × R and ∂ξEj(ξ) = 0

}
. (1.7)

We assume the set Z of critical values to be finite in each bounded interval [E−, E+].

(iv) To set up a scattering theory, we finally assume the following completeness property:

for any E ∈ R\Z, then any solution ψ ∈ H
p
−s of (H0 − E)ψ = 0 is a linear combination

of the generalized eigenfunctions ψj(x, y; ξ) for values of ξ such that Ej(ξ) = E. We label

ψm(x, y) = ψj(x, y; ξm) for 1 ≤ m ≤ M(E) the corresponding solutions at E fixed. Up to
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(obvious) relabeling, we thus have

ψm(x, y;E) =
1√
2π
eiξm(E)xϕm(y; ξm(E)), 1 ≤ m ≤ M(E). (1.8)

We then show that for each Ξ = (j, ξ), there exist modified generalized eigenfunctions

ψ
Q
j ∈ H

p
−s solution of HψQj = Ej(ξ)ψ

Q
j . For a fixed R ∋ E ̸∈ Z, we still denote by

ψ
Q
m the solution of the problem (H − E)ψ

Q
m = 0 with ψ

Q
m = ψ

Q
j (·, ξm) with Ej(ξm) = E

and 1 ≤ m ≤ M(E). Moreover, we will justify the following assumption on the spectral

decomposition

[H2] H =
∑
n

λnΠn +
∑
j

∫
R
Ej(ξ)Π

Q
j (ξ)dξ, Π

Q
j (ξ) = ψ

Q
j (·; ξ)⊗ ψ

Q
j (·; ξ). (1.9)

Here, the sum over n corresponds to discrete (locally finite) spectrum with eigenvalues λn and

(rank-one) projectors Πn = ψn ⊗ ψn for eigenfunctions ψn ∈ H. The above decomposition

thus imposes that the branches of absolutely continuous spectrum for H and H0 be the same.

This is consistent with the standard result that two operators H1 and H2 = H1+ V with V

a trace-class perturbation have unitarily equivalent absolutely continuous spectrum

A final assumption on the generalized eigenfunctions is that for |x| large, then ψ
Q
m is

approximately given by a linear combination of the unperturbed solutions ψn for 1 ≤ n ≤

M(E). More precisely, define the currents

Jm = Jm(E) = ∂ξEm(ξm) ̸= 0 (1.10)

which do not vanish for E ̸∈ Z not being a critical value of the branches of absolutely

continuous spectrum. We then assume that for 1 ≤ m ≤ M(E),

[H3] ψ
Q
m(x, y) ≈

∑
1≤n≤M(E)

α±mnψn(x, y) =
∑

1≤n≤M(E)

α±mn
1√
2π
eiξnxϕn(y), (1.11)
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where a ≈ b means that the difference a − b converges to 0 uniformly (in x as a square-

integrable function in y ∈ R) as x → ±∞ and where α± are the corresponding coefficients

in these two limits.

With H satisfying the hypothesis above, we let S be the (n++n−)×(n++n−) scattering

matrix

S =

T+ R−

R+ T−

 .

We deduce from the spectral theorem and the spectral decomposition that

Proposition 1.1.1. Let E ∈ R\Z and ψ
Q
m the associated perturbed generalized eigenfunc-

tions. Then: ∑
m

∣∣∣∂ξm
∂E

∣∣∣(ψQm, 2πi[H,P ]ψQm) = n+ − n−. (1.12)

As a corollary of the preceding proposition, we obtain the final main result of this section:

Theorem 1.1.2. The conductivity may be recast as

2πσI = tr T ∗
+T+ − tr T ∗

−T− = n+ − n−.

Scattering theory and diffusion approximation For a given energy level E, a finite

number of the edge modes are propagating while the rest are evanescent. In the presence

of random fluctuations Ṽ coupling the propagating modes (see Hypothesis 4.1 in section

4), the amplitudes of said modes satisfy a closed system of equations (in the y variable).

Edge transport is then characterized by a scattering matrix composed of reflection and

transmission coefficients. Conductance in such systems is then physically proportional to the

trace of the transmission matrix. In the topologically trivial setting, Anderson localization

shows that such a conductance decays exponentially as the thickness of the slab of random

perturbations increases.

In
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Example 1.1.1 (. The diffusion approximation of the 3 × 3 system gives rise to a second

order diffusion operator on the triangle T = {(x, y) : 0 ≤ x, y, x+ y ≤ 1}:

L = γ12

[
xy(∂x − ∂y)

2 + (y − x)(∂x − ∂y)
]

+γ23

[
y(x∂x + (y − 1)∂y)

2 + (y − 1)(x∂x + (y − 1)∂y)
]

+γ13

[
x((x− 1)∂x + y∂y)

2 + (x− 1)((x− 1)∂x + y∂y)
]
.

Let L be a mixed type generalized Kimura diffusion operator, defined on P , a two-

dimensional compact manifold with corners, which means that L is a second-order locally

elliptic operator in the interior P ◦ with appropriate degeneracy conditions at boundary

points. Specifically, in the vicinity of a boundary component, the coefficients of the normal

part of the second-order term vanish to order either one or two.

Theorem 1.1.3. For 0 < γ < 1, if the data f ∈ Ck,2+γ(P ), g ∈ Ck,γ(P × [0, T ]), then the

inhomogeneous problem

(∂t − L)w = g in P × [0, T ] with w(0, x, y) = f

has a unique solution w ∈ Ck,2+γ(P × [0, T ]).

Based on series expansion of fundamental solutions of model operators and the above

result on the heat equation, our second main result is the existence and regularity results of

a heat kernel for L. We let P reg denote the union of P̊ and regular edge points and regular

corner points (see Definition 3.1.1).

Theorem 1.1.4. The global heat kernel Ht(d1, d2, l1, l2) ∈ C∞(P reg × P̊ × (0,∞)) of the

full operator L exists and for f ∈ C0(P ), then

vf :=

∫
P
Ht(d1, d2, l1, l2)f(l1, l2)dl1dl2

6



is the solution of (∂t − L)vf = 0 with vf (0, ·, ·) = f .

Associated to the operator L is a C0 semigroup Qt = etL solution operator of the Cauchy

problem

∂tu = Lu

with initial conditions u(x, 0) = f(x) at t = 0. Our second objective is to analyze the long

time behavior of etL, and in particular convergence to appropriately defined invariant mea-

sures. It turns out that the number of possible invariant measures and their type (absolutely

continuous with respect to one-dimensional or two-dimensional Lebesgue measures or not)

strongly depend on the structure of the coefficients at the boundary. We thus distinguish

the boundary into two types: tangent or transverse. For one dimensional case, we have the

following results in different boundary types.

Theorem 1.1.5. If there is only one tangent endpoint p, then for any non-quadratic point

x, the transition probability pt(x, ·) converges exponentially to δ(p) in Wasserstein distance.

If there are two tangent endpoints, then there exists S0, satisfying S0(0) = 0, S0(1) =

1 and LS0 = 0, such that for any probability measure v, Q∗
t v converges exponentially to

δ(0)
∫ 1
0 v(1− S0) + δ(1)

∫ 1
0 vS0 in Wasserstein distance.

Theorem 1.1.6. The invariant measure µ in (4.53) satisfies a Poincaré inequality. For

f ∈ L2(µ),

||Qtf −
∫
fµ||L2(µ) ≤ e

− t
2CLP ||f −

∫
fµ||L2(µ). (1.13)

For any probability measure v = hµ with h ∈ L2(µ),

||Q∗
t v − µ||TV ≤ e

− t
2CLP ||h− 1||L2(µ).

For L on a 2 dimensional compact manifold with corners P with only one tangent edge
7



H, we proved that the Wasserstein distance between the transition probability pt(p, ·) and

the invariant measure supported on the tangent edge converges exponentially.

Theorem 1.1.7. Fix a point p that is not on any quadratic transverse edge. Then the

Wasserstein distance between the transition probability pt(p, ·) and the invariant measure

supported on the tangent edge converges exponentially:

W (pt(p, ·), µ0(x)δ0(y)) ≤Me−
a
2 t, t > 0. (1.14)
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CHAPTER 2

SCATTERING THEORY OF TOPOLOGICALLY PROTECTED

EDGE TRANSPORT

2.1 Introduction

A characteristic feature of two-dimensional topological insulators is the topologically pro-

tected asymmetric transport observed at one-dimensional interfaces separating two insulating

bulks. Applications may be found in many areas in condensed matter physics, photonics,

and geophysical sciences

If H is a Hamiltonian describing transport in the two-dimensional system, the asymmetry

along the edge is modeled by the following edge conductivity

σI [H] = Tr i[H,P ]φ′(H) (2.1)

where P = P (x) ∈ S[0, 1] and φ(E) ∈ S[0, 1, E−, E+] are smooth switch functions. Here,

S[a, b, c, d] is the set of bounded (measurable) functions on R equal to a for x < c and equal

to b for x > d while S[a, b] is their union over (finite) c < d. The operator i[H,P ] may be

interpreted as a current operator while 0 ≤ φ′(E) is a density of states. Thus σI models

the expected value of the current operator for excitations in the system with density φ′(E)

supported in an energy interval [E−, E+] where propagation into the bulk is suppressed. In

this paper, we consider the setting where no energy E ∈ R is allowed to propagate in the

bulk, so that [E−, E+] is an arbitrary (bounded) interval in R. The interface conductivity

has been used in a variety of contexts

In such a setting, an interface current is flowing in the direction of the x−axis while wave-

fields are concentrated in the vicinity of y = 0. We have 2πσI ∈ Z an integer describing

excitations primarily moving e.g. from left to right when 2πσI > 0. We may then envision

the following scattering experiment. When H = H0 is an unperturbed operator invariant
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with respect to spatial translations in x, then plane waves may be identified as generalized

eigenfunctions of H0. We will show how σI may be expressed in terms of such eigenfunctions

following

Section 2.2 presents our main framework. Under the assumption that generalized eigen-

functions associated to the problem Hψ = Eψ exist and satisfy a priori constraints, we show

that a unitary scattering matrix may be defined and that the edge conductivity (2.1) can

indeed be computed from the scattering coefficients. This justifies computations performed

in

The rest of the chapter is devoted to providing sufficient conditions for the theory of

section 2.2 to apply. This is done in section 2.3 by appealing to the spectral theorem

to obtain an appropriate decomposition of H, and in particular to a limiting absorption

principle to obtain a detailed description of the absolutely continuous spectrum and point

spectrum (and lack of singular continuous spectrum) of H. The construction of generalized

eigenfunctions for the perturbed system is given in section 2.4. Finally, section 2.5 verifies

all required hypotheses for slight generalizations of the systems of Dirac operators analyzed

numerically in

References on scattering theory, the limiting absorption principle, and generalized eigen-

function expansions that are relevant to the current work include

2.2 Current conservation and edge conductivity

This section proposes a framework to relate the asymmetric transport modeled by the edge

conductivity to spectral information on the Hamiltonian describing the system. Section 2.2.1

summarizes our main assumptions while section 2.2.2 introduces a current correlation and

defines a notion of current conservation and section 2.2.3 finally relates the edge conductivity

to a scattering matrix associated to the Hamiltonian.

10



2.2.1 Assumptions on spectral decomposition of Hamiltonian

Let H = L2(R2) ⊗ Cq the space of vector-valued functions with square-integrable entries

defined on the Euclidean plane with coordinates (x, y). We define the following functional

spaces.

Definition 2.2.1. For s ∈ R, we define L2s the weighted Hilbert space of all complex valued

functions u(x, y) defined in R2 such that ⟨x⟩su(x, y) ∈ L2(R2) with the norm

∥u∥L2
s
=
(∫

R2
⟨x⟩2s|u(x, y)|2dxdy

)1
2
.

Let β ≥ 0. For p ∈ N∗ and s ∈ R, Hp
s denote the Hilbert space of L2s functions with

distribution derivatives in L2s up to p-th order, with norm given by

∥u∥Hp
s
=
(∫

R2

[
⟨x⟩2s⟨y⟩2β |u|2 + ⟨x⟩2s

∑
|α|=p

|Dαu|2
]
dxdy

)1
2
. (2.2)

Above, ⟨x⟩ :=
√
1 + x2. We denote Hp = H

p
0 . We also denote by H

p
s (L2s) the space

of vector-valued functions Hp
s ⊗ Cq (L2s ⊗ Cq). The value of β will be equal to p in our

applications.

We start with a self-adjoint operator H0 from D(H0) = Hp to H that is invariant with

respect to translations in x. We then have H0 = F−1
ξ→xĤ0(ξ)Fx→ξ with Fx→ξ Fourier

transform in the first variable x and R ∋ ξ 7→ Ĥ0(ξ) a family of self-adjoint operators on

L2(R)⊗ Cq.

Hypothesis 2.2.1 ([H1]). (o) We assume that H0 is a self-adjoint (elliptic) differential

operator with domain Hp ⊗ Cq and resolvent operator R0(i) = (H0 − i)−1 bounded from H

to Hp ⊗ Cq.

(i) For each ξ ∈ R, Ĥ0(ξ) has a compact resolvent and hence purely discrete spectrum. We

11



assume the existence of generalized eigenfunctions in H
p
−s for s > 1

2 , solutions

ψj(x, y; ξ) =
1√
2π
eiξxϕj(y; ξ), (2.3)

of the eigenvalue problem (H0−Ej(ξ))ψj = 0 with (ϕj)j an orthonormal basis of L2(Ry)⊗Cq,

i.e., (ϕj , ϕk)L2(Ry)⊗Cq = δjk. Here, j ∈ J with J ≃ N.

(ii) We assume that the branches of absolutely continuous spectrum j → Ej(ξ) are smooth

and satisfy |Ej(ξ)| → ∞ as |ξ| → ∞ with ξ → (1 + |Ej(ξ)|2)−1 integrable for j ∈ J . We

assume that for any interval [a, b], only a finite number of branches ξ → Ej(ξ) cross [a, b].

For H0 an elliptic operator of order p, which is the framework we are interested in,

standard ellipticity results show that ψj(x, y; ξ) defined in (2.3) is an element in H
p
−s for

s > 1
2 . We have by assumption the spectral decomposition

H0 =
∑
j

∫
R
Ej(ξ)Πj(ξ)dξ, Πj(ξ) = ψj(·; ξ)⊗ ψj(·; ξ), (2.4)

where Πj(ξ) are rank-one projectors. Associated to the above decomposition is the follow-

ing resolution of identity. Let Ξ = (j, ξ) ∈ J × R. We define for f ∈ L2(R2) ⊗ Cq the

(unperturbed) Fourier transform:

f̂(Ξ) = (Ff)(Ξ) :=
∫
R2
ψj(x, y, ξ) · f(x, y)dxdy = (f, ψj(·, ξ)), (2.5)

where (f, g) =
∫
R2 f(x, y) · ḡ(x, y)dxdy is the inner product on H, with inverse Fourier

transform:

f(x, y) = (F−1f̂)(x, y) :=
∑
j

∫
R
f̂(Ξ)ψj(x, y, ξ)dξ. (2.6)

The Fourier transform is an isometry from H = L2(R2, dxdy)⊗Cq to L2(J×R, dΞ;C), with

dΞ the Cartesian product of the counting measure on J and the Lebesgue measure on R.

(iii) The spectral elements Ej(ξ) and Πj(ξ) are assumed to be smooth in ξ with a finite
12



number of critical values. Define

Z =
{
E ∈ R; E = Ej(ξ) for some (j, ξ) ∈ J × R and ∂ξEj(ξ) = 0

}
. (2.7)

We assume the set Z of critical values to be finite in each bounded interval [E−, E+].

(iv) To set up a scattering theory, we finally assume the following completeness property:

for any E ∈ R\Z, then any solution ψ ∈ H
p
−s of (H0 − E)ψ = 0 is a linear combination

of the generalized eigenfunctions ψj(x, y; ξ) for values of ξ such that Ej(ξ) = E. We label

ψm(x, y) = ψj(x, y; ξm) for 1 ≤ m ≤ M(E) the corresponding solutions at E fixed. Up to

(obvious) relabeling, we thus have

ψm(x, y;E) =
1√
2π
eiξm(E)xϕm(y; ξm(E)), 1 ≤ m ≤ M(E). (2.8)

The main unperturbed operator of interest in this paper is the massive Dirac Hamiltonian

H0 = Dxσ1 +Dyσ2 +m(y)σ3, Ĥ0(ξ) = ξσ1 +Dyσ2 +m(y)σ3, (2.9)

with σ1,2,3 standard Pauli matrices and Da = −i∂a for a ∈ {x, y} and m(y) a domain wall,

which for concreteness, equals y up to a bounded perturbation. Then, p = β = 1 and q = 2.

That the spectral decomposition (2.4) and all assumptions in Hypothesis [H1] applies to H0

will be revisited in section ??; see also

A second natural application of the theory developed here is for the Klein-Gordon oper-

ator

H0 = D2
x + a∗a, a = ∂y +m(y), a∗ = −∂y +m(y) (2.10)

with then p = β = 2 and q = 1. This operator is topologically trivial in the sense that

σI [H0 +Q] = 0 for Q short range

The quantization of the interface conductivity σI for Dirac, Klein Gordon, and more
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general elliptic operators with unbounded domain walls is carried out in

The main objective of this paper is to analyze transport properties for a perturbed

operator H = H0 + Q where Q is a short-range operator. We consider the case where

Q is an operator of multiplication by Q(x, y) with the q × q-valued (measurable) function

Q(x, y) such that ⟨x⟩1+ε|Q| ≤ C for some ε > 0. Here, ⟨x⟩ =
√
1 + x2. We thus assume Q

sufficiently rapidly decaying (only) in the x variable.

We then show that for each Ξ = (j, ξ), there exist modified generalized eigenfunctions

ψ
Q
j ∈ H

p
−s solution of HψQj = Ej(ξ)ψ

Q
j . For a fixed R ∋ E ̸∈ Z, we still denote by

ψ
Q
m the solution of the problem (H − E)ψ

Q
m = 0 with ψ

Q
m = ψ

Q
j (·, ξm) with Ej(ξm) = E

and 1 ≤ m ≤ M(E). Moreover, we will justify the following assumption on the spectral

decomposition

[H2] H =
∑
n

λnΠn +
∑
j

∫
R
Ej(ξ)Π

Q
j (ξ)dξ, Π

Q
j (ξ) = ψ

Q
j (·; ξ)⊗ ψ

Q
j (·; ξ). (2.11)

Here, the sum over n corresponds to discrete (locally finite) spectrum with eigenvalues λn and

(rank-one) projectors Πn = ψn ⊗ ψn for eigenfunctions ψn ∈ H. The above decomposition

thus imposes that the branches of absolutely continuous spectrum for H and H0 be the same.

This is consistent with the standard result that two operators H1 and H2 = H1+ V with V

a trace-class perturbation have unitarily equivalent absolutely continuous spectrum

A final assumption on the generalized eigenfunctions is that for |x| large, then ψ
Q
m is

approximately given by a linear combination of the unperturbed solutions ψn for 1 ≤ n ≤

M(E). More precisely, define the currents

Jm = Jm(E) = ∂ξEm(ξm) ̸= 0 (2.12)

which do not vanish for E ̸∈ Z not being a critical value of the branches of absolutely
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continuous spectrum. We then assume that for 1 ≤ m ≤ M(E),

[H3] ψ
Q
m(x, y) ≈

∑
1≤n≤M(E)

α±mnψn(x, y) =
∑

1≤n≤M(E)

α±mn
1√
2π
eiξnxϕn(y), (2.13)

where a ≈ b means that the difference a − b converges to 0 uniformly (in x as a square-

integrable function in y ∈ R) as x → ±∞ and where α± are the corresponding coefficients

in these two limits.

2.2.2 Current correlations

Let H be a differential self-adjoint operator of order p as described in the preceding section

and so that [H2] and [H3] hold, which we assume for the rest of section 2.2. Let ψm and ψn

two generalized eigenfunctions in Hp
−s for s > 1

2 , solutions of

Hψm = Emψm, Hψn = Enψn

with En and Em in R. Define the current correlation

Jmn(x0) = (ψn, 2πi[H,P (· − x0)]ψm) (2.14)

Here, (·, ·) denotes the inner product on H. While ψn ̸∈ H, the above integral is well-defined

since [H,P (· − x0)] is a differential operator with coefficients that vanish for x− x0 outside

of a compact set and hence mapping Hp
−s to L2t for any t ∈ R. We recall that P is a switch

function in S[0, 1]. On that compact set in the x−variable, both Hψm and ψn are square

integrable.

Lemma 2.2.1. When Em = En, we have the current conservation

J ′mn(x0) = 0 for all x0 ∈ R.

15



Proof. Using that P ′(· − x0) (unlike P (· − x0)) is compactly supported, we obtain that

− J ′mn(x0) = (ψn, 2πi[H,P
′(· − x0)]ψm) = (ψn, 2πi(HP

′(· − x0)− P ′(· − x0)H)ψm)

= (Hψn, 2πiP
′(· − x0)ψm)− (ψn, 2πiP

′(· − x0)Hψm) = (En − Em)(ψn, 2πiP
′(· − x0)ψm),

which vanishes.

Consider H = H0 +Q with Q rapidly decaying at infinity as described in the preceding

section. For a fixed energy E ∈ R, the unperturbed solutions of (H0 − E)ψ = 0 in Hp
−s are

given by ψm(x, y) for 1 ≤ m ≤ M(E) in (2.8) while the corresponding perturbed solutions

are given by ψQm(x, y). The number of propagating modes M(E) equals n+ + n− where n±

corresponds to the number of currents ±Jm > 0 associated to each unperturbed plane wave

and defined in (2.12). From assumption (2.13), we deduce that

(ψ
Q
m, 2πi[H,P (· − x0)]ψ

Q
n ) ≈

∑
1≤p,q≤M(E)

α±mpᾱ
±
nq(e

iξpxϕp, i[H,P (· − x0)]e
iξqxϕq) (2.15)

where ≈ here is the same sense as above but now as x0 → ±∞. All we need in the sequel

is in fact that (2.15) holds rather than the more constraining (2.13). All terms in (2.15) are

again clearly defined since [H,P (·−x0)] is compactly supported in the x−vicinity of x0. We

wish to estimate the above right-hand side.

Lemma 2.2.2. Let P be a switch function in S(0, 1). Then we have

(eiξmxϕm, i[H,P ]e
iξnxϕn) = δmn∂ξEn(ξn) = δmnJn. (2.16)

Proof. For an operator A, we denote by A(x, x′) its Schwartz kernel. Let us first assume

16



ξm ̸= ξn. Then

(i[H,P ]eiξmxϕm, e
iξnxϕn) =

∫
e−iξnxϕ∗n(y)(i[H0, P ])(x, x

′, y, y′)eiξmx
′
ϕm(y′)dxdydx′dy′

=

∫
e−iξnzϕ∗n(y)iH0(z, y, y

′)
(
(P (x′)− P (x′ + z))ei(ξm−ξn)x′)ϕm(y′)dzdx′dydy′

=P̂ (ξn − ξm)

∫
ϕ∗n(y)(e

−iξnz − e−iξmz)iH0(z, y, y
′)ϕm(y′)dzdydy′

=P̂ (ξn − ξm)

∫
ϕ∗n(y)(Ĥ0(ξn, y, y

′)− Ĥ0(ξm, y, y
′))ϕm(y′)dydy′

=P̂ (ξn − ξm)(En(ξn)− Em(ξm))(ϕn, ϕm) = 0

since E = En(ξn) = Em(ξm) while P̂ , the Fourier transform of P − 1
2 , is bounded for

ξn ̸= ξm (decomposing P as a Heaviside function plus an integrable function while P̂ would

equal (ξm − ξn)
−1 for P the Heaviside function). Note that we may not have (and do not

have in practice) (ϕn, ϕm) = 0 for n ̸= m since ξn ̸= ξm for a fixed value of E while the

eigenfunctions ϕn are orthogonal for different values of Em at a fixed value of ξ.

When ξn = ξm, we find instead

(i[H,P ]eiξmxϕm, e
iξmxϕn) =

∫
e−iξmxϕ∗n(y)(i[H0, P ])(x, x

′, y, y′)eiξmx
′
ϕm(y′)dxdydx′dy′

=

∫
e−iξmzϕ∗n(y)iH0(z, y, y

′)
(
P (x′)− P (x′ + z)

)
ϕm(y′)dzdx′dydy′

=

∫
ϕ∗n(y)e

−iξmz(−z)iH0(z, y, y
′)ϕm(y′)dzdydy′

=

∫
ϕ∗n(y)∂ξĤ0(ξm, y, y

′)ϕm(y′)dydy′ = (ϕn, ∂ξĤ0(ξm)ϕm).

The modes ϕm(ξ) satisfy

Ĥ0(ξ)ϕm(ξ) = Em(ξ)ϕm(ξ).

Since the spectral branches ξ → Em(ξ) are assumed sufficiently smooth, this yields

∂ξĤ0ϕm + Ĥ0∂ξϕm = ∂ξEmϕm + Em∂ξϕm
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from which we deduce

(ϕn, ∂ξĤ0ϕm) = ∂ξEm(ϕn, ϕm)

for any ϕn such that (Ĥ0 − Em)ϕn = 0. If n ̸= m while Em(ξm) = En(ξm), then we may

choose the eigenvectors ϕn and ϕm as orthogonal so that (ϕn, ∂ξĤ0ϕm) = 0 then (we have

that ∂ξEm ̸= 0 since E ̸∈ Z is not at a critical value of the energy branches).

As a result, when ξn = ξm we have

(eiξmxϕn, i[H,P ]e
iξmxϕm) = δmn(ϕm, ∂ξĤ0(ξm)ϕm) = δmn∂ξEm.

We used the normalization ∥ϕm∥2 = 1. This concludes the derivation.

We thus conclude from (2.13) and the above lemma that in the limits x0 → ±∞,

(ψ
Q
m, 2πi[H,P (· − x0)]ψ

Q
n ) ≈

∑
p

Jpα
±
mpᾱ

±
np. (2.17)

2.2.3 Scattering matrix and edge conductivity

We next define the refection and transmission coefficients R±
mn and T±

mn as

α+mn =

√
|Jm|
|Jn|

T+
mn when Jm > 0 and Jn > 0 (2.18)

α−mn =

√
|Jm|
|Jn|

T−
mn when Jm < 0 and Jn < 0 (2.19)

α+mn =

√
|Jm|
|Jn|

R−
mn when Jm < 0 and Jn > 0 (2.20)

α−mn =

√
|Jm|
|Jn|

R+
mn when Jm > 0 and Jn < 0, (2.21)

while we also have α−mm = 1 when Jm > 0 and α+mm = 1 when Jm < 0. All other coefficients

α±ij then vanish. We then have the following result:
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Lemma 2.2.3. The (n+ + n−)× (n+ + n−) scattering matrix

S =

T+ R−

R+ T−


is unitary. Here T+ is the n+ × n+ matrix with coefficients T+

mn, etc.

Proof. From (2.17) evaluated at x0 → ±∞ and the current conservation in Lemma 2.2.1

stating that both limits are equal, we deduce that when Jm > 0 and Jn > 0, then

∑
Jp>0

T̄+
mpT

+
np = δmn −

∑
Jp<0

R̄+
mpR

+
np.

This shows the orthonormality of the first n+ columns of S. Considering the other cases

±Jm > 0 and ±Jn > 0 provides the other orthonormality constraints and concludes the

proof.

Lemma 2.2.4. Let S be the above scattering matrix. Then

tr T ∗
+T+ − tr T ∗

−T− = n+ − n−. (2.22)

Proof. From unitarity of the scattering matrix, we get

S∗S =

T ∗
+T+ +R∗

+R+ T ∗
+R− +R∗

+T−

R∗
−T+ + T ∗

−R+ R∗
−R− + T ∗

−T−


= SS∗ =

T+T ∗
+ +R−R∗

− T+R
∗
+ +R−T ∗

−

R+T
∗
+ + T−R∗

− R+R
∗
+ + T−T ∗

−−

 = I.

Looking at the diagonal terms, we obtain

tr T ∗
+T++R∗

+R+ = tr T+T
∗
++R−R∗

− = n+, tr R∗
−R−+T ∗

−T− = tr R+R
∗
++T−T ∗

− = n−.
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By cyclicity of the trace or explicit computation of the norm, we deduce that trR∗
+R+ =

trR−R∗
− = trR∗

−R− so that trT ∗
+T+ − trT ∗

−T− = n+ − n−. This may be written using

only one-sided measurements as n+ − n− = tr (T ∗
+T+ + R∗

−R−) − n− = n+ − tr (T ∗
−T− +

R∗
+R+).

We deduce from the spectral theorem and the decomposition (2.11) the following result.

Proposition 2.2.1. Let E ∈ R\Z and ψ
Q
m the associated perturbed generalized eigenfunc-

tions. Then: ∑
m

∣∣∣∂ξm
∂E

∣∣∣(ψQm, 2πi[H,P ]ψQm) = n+ − n−. (2.23)

Proof. We have from the above calculations and sending x0 → +∞

∑
m

∣∣∣∂ξm
∂E

∣∣∣(ψQm, 2πi[H,P ]ψQm) =
∑
m

∣∣∣∂ξm
∂E

∣∣∣∑
n

|α+mn|2Jn

=
∑
Jm>0

1

|Jm|
∑
Jn>0

|T+
mn|2|Jm|+

∑
Jm<0

1

|Jm|

(
Jm +

∑
Jn>0

|R+
mn|2|Jm|

)
=

∑
Jm>0,Jn>0

|T+
mn|2 − n− +

∑
Jm<0,Jn>0

|R−
mn|2 = n+ − n−.

We use here that there are n+ modes with Jm > 0 and n− modes with Jm < 0.

As a corollary of the preceding proposition, we obtain the final main result of this section:

Theorem 2.2.2. The conductivity may be recast as

2πσI = tr T ∗
+T+ − tr T ∗

−T− = n+ − n−.

Proof. From (2.11), we have

φ′(H) =
∑
n

φ′(λn)Πn +
∑
j

∫
R
φ′(Ej(ξ))Π

Q
j (ξ)dξ
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The operators i[H,P ]Πn are trace-class with vanishing trace since

Tr[H,P ]Πn = (ϕn, [H,P ]ϕn) = (ϕn, HPϕn)−(ϕn, PHϕn) = λn(ϕn, Pϕn)−λn(ϕn, Pϕn) = 0.

Since the sum over n is finite, it does not contribute to σI [H]. Thus, from the definition of

the rank-one projectors Π
Q
j , and identifying ψQj (ξ) with ψQm(E) when Ej(ξm) = E, we find

2πσI [H] =
∑
j

∫
R
φ′(Ej(ξ))(ψ

Q
j (ξ), 2πi[H,P ]ψ

Q
j (ξ))dξ

=
∑
m

∫
R

∣∣∣∂ξm
∂E

∣∣∣φ′(E)(ψQm(E), 2πi[H,P ]ψ
Q
m(E))dE

=

∫
R
φ′(E)(n+ − n−)dE = n+ − n− = tr T ∗

+T+ − tr T ∗
−T−.

We used φ ∈ S[0, 1] and Lemma 2.2.4 to conclude.

2.3 Spectral analysis and limiting absorption principle

This section analyzes spectral properties of H0 and H = H0+Q for operators satisfying the

following estimates. We assume that H0 is a self-adjoint differential operator as described

in [H1](o)-(iv) above. The resolvent operator R0(z) = (H0 − z)−1 then displays different

behaviors as z approaches the real-axis with positive or negative imaginary part.

Definition 2.3.1. For a < b, we define

J+(a, b) = {λ ∈ C | a < Reλ < b, 0 < Imλ < 1},

J−(a, b) = {λ ∈ C | a < Reλ < b, −1 < Imλ < 0},

J(a, b) = J+(a, b) ∪ J−(a, b).

Our objective is to prove results on the spectrum of H that will allow us to verify

hypothesis [H2] in section 2.4. We recall that the spaces L2s and H
p
s are introduced in

Definition 2.2.1 and that Z is the set of critical values of branches of spectrum of H0 defined
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in (2.7).

Remark 2.3.1. For s > 0, the injection H
p
s ↪−→ L2 is compact

We make the following assumptions on the short-range perturbation Q and assume the

following a priori estimates.

Hypothesis 2.3.1. We assume that Q(x, y) is a q × q Hermitian matrix valued function.

Moreover, |Q(x, y)| is bounded (measurable) and for some h > 1 and C = C(h) > 0,

|Q(x, y)| ≤ C⟨x⟩−h, (x, y) ∈ R2. (2.24)

We recall that ⟨x⟩ =
√
1 + x2.

Hypothesis 2.3.2. Let R ∋ a < b ∈ R. We assume the following a priori estimates.

1. Let s > 1
2 . There is a constant C = C(s, a, b) > 0 such that

∥u∥Hp
−s

≤ C∥(H0 − λ)u∥L2
s
, (2.25)

for all complex numbers λ ∈ J(a, b) and u ∈ H
p
s .

2. Let s > 0, ϵ > 0, and (a, b) ∩ Z = ∅. There is a constant C = C(s, a, b) > 0 such that

∥u|∥Hp
s−1−ϵ

≤ C∥(H0 − λ)u∥L2
s
, (2.26)

for all real numbers λ ∈ (a, b) and u ∈ Hp.

3. Let [a, b] ∩ Z = ∅ and [a, b] not containing any eigenvalue of H. Then for h > s > 1
2 ,

there exists a constant C = C(s, a, b) such that

∥u∥Hp
−s

≤ C∥(H − λ)u∥L2
s
, (2.27)

for all u ∈ H
p
s and λ ∈ J(a, b).
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The above hypotheses provide sufficient a priori estimates on H = H0+Q to characterize

some of its spectral properties. We start by showing that with the above hypotheses, then H

has at most discrete point spectrum.

Proposition 2.3.1. The point spectrum of H is discrete. (In particular, every eigenvalue

has finite multiplicity.) The only possible limiting points of families of eigenvalues are in

Z ∪ {±∞}.

Proof. We will show that if u ∈ Hp is an eigen-function corresponding to λ, i.e., Hu =

λu, a < λ < b, where a, b satisfies condition 2 in Hypothesis 2.3.2, then u ∈ H
p
s for some

s > 0 and

∥u∥Hp
s
≤ C∥u∥L2 . (2.28)

with some constant C independent of λ.

The proposition is a direct corollary. Indeed, suppose {un} is a set of eigenfunctions

with norm 1 in H
p
s . By (2.28), ∥un∥L2 is bounded below by a positive constant. Also by

Remark 2.3.1, the injection map from H
p
s into L2 is compact. As {un} is orthogonal and

bounded both below and above in L2, it must be in a finite set. This implies that H has

finite eigenvalues in [a, b] and the multiplicity of each eigenvalue is also finite.

To prove (2.28), we first show that it holds true for s = 0. Indeed, since Hu = λu,

(H0 − i)u = (λ− i)u+ g ∈ L2, g = −Qu = (H0 − λ)u.

Thus u = R0(i)[(λ − i)u + g] with R0(i) mapping from H to Hp by ellipticity assumption

[H1(o)] and with Q bounded implies that (2.28) holds with s = 0. Now, the operator of

multiplication by Q(x, y) is a continuous operator from L2 (and hence Hp) into L2h(R
2) by
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hypothesis 2.3.1. This implies

∥g∥L2
h
≤ C1∥u∥Hp ≤ C2∥u∥L2 ,

with some constant C1, C2 independent of λ on a compact interval. For g ∈ L2h, we apply

condition 2 in Hypothesis 2.3.2, to deduce that u ∈ H
p
h−1−ϵ for any ϵ > 0. Choosing

0 < ϵ < h− 1, we proved (2.28).

The estimates we obtained in the preceding section naturally yield the following corollary,

one of the main results of this section.

Theorem 2.3.3 (Principle of limiting absorption). Let a, b ∈ R such that [a, b]∩Z = ∅ and

[a, b] does not contain any eigenvalue of H. For 1
2 < s < h, f ∈ L2s and Im z ̸= 0, define

uz(f) = (H − z)−1f.

Then for λ ∈ (a, b), there exists u±(λ, f) such that

uz(f) → u±(λ, f) in H
p
−s

as z → λ± 0i, respectively. Moreover, u±(λ, f) are solutions of the equation

(H − λ)u(x) = f(x)

and they are continuous functions of λ in the topology of Hp
−s.

Proof. We modify standard arguments developed in

From condition 3 in Hypothesis 2.3.2, uzn(f) is bounded in H
p
−s. We can then select

(using the same method as described in the proof of Theorem 2.5.2 below) a subsequence

{uz′n} from {uzn} which converges locally in H
p
0 (|x| ≤ R) for any R > 0 to some function

u0 in Hp
−s and u0 satisfies that (H − λ)u0 = 0.

24



Next we wish to show that

uzn → u0 in Hp
−s.

Assuming the contrary, we select a subsequence {uz′′n} such that

∥uz′′n − u0∥Hp
−s

≥ δ > 0. (2.29)

We then choose (by the method described in the proof of Theorem 2.5.2 below) a subse-

quence of {uz′′n} which we still denote by {uz′′n} such that uz′′n → u1 for some function u1 in

H
p
−s. Defining

vn = uz′n − uz′′n , v0 = u0 − u1,

then vn → u0− u1 in Hp
−s, and (H −λ)v0 = 0. As in Theorem 2.5.2, we show that v0 ∈ L2,

which implies that v0 = 0 since v0 ∈ L2. This contradicts (2.29).

We now show that the limit u0 is independent of the choice of the {zn} converging to

λ+0i. Take another sequence vn → λ+0i. Then there exists u2 ∈ H
p
−s such that uvn → u2

in Hp
−s. We shall show u0 = u2. To prove this, define

wn = uzn − uvn , w0 = u0 − u2.

Then wn → w0 in H
p
−s and (H − λ)w0 = 0 which implies w0 = 0. Thus, u+(λ, f) = u0 is

well defined.

Finally we show that u+(λ, f) is continuous in λ. In view of the fact that the resolvent

uz(f) is a continuous function of z ∈ J+(a, b), it suffices to show that uλ+iη converges to

uλ(f) in Hp
−s uniformly respect to λ ∈ J+(a, b). If we assumed the contrary, there would be
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a δ1 > 0 and a sequence of ηn → 0+ such that

∥uλn+iηn(f)− uλn(f)∥Hp
−s

≥ δ1 > 0.

On the other hand, for each n we could also select η′n such that η′n → 0+ and

∥uλn+iη′n(f)− uλn(f)∥Hp
−s

≤ δ1
2
> 0.

This implies that

∥uλn+iηn(f)− uλn+iη′n(f)∥Hp
−s

≥ δ1
2
> 0. (2.30)

Because [a, b] is compact, we can select a convergent subsequence {λ′n} of {λn} such that

λ′n → λ0. This contradicts (2.30) because both uλn+iηn , uλn+iη′n would converge to uλ0(f).

We thus proved that u+(λ, f) is continuous in λ.

Our final result is the following:

Theorem 2.3.4. H does not have singular continuous spectrum.

Proof. Let E(λ) be the right-continuous resolution of the identity associated with the self-

adjoint operator H. It suffices to show that (E(λ)f, f) for f ∈ L2s is continuous when λ ∈ R

is not an eigenvalue.

First we assume that

kn < α < β < kn+1

for some n ∈ Z, and [α, β] does not contain any eigenvalue, where {kn} label elements in the

union of Z defined in (2.7) and the discrete spectrum of H.

For arbitrary a, b with α < a < b < β, we have the following relation using, e.g.,
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2.4 Generalized eigenfunction expansion

In this section, we justify the expansion (2.11) and the corresponding hypothesis [H2] of

section 2.2. We thus need to construct generalized eigenfunctions ψQj (·; ξ) for Ξ = (j, ξ) ∈

J × R.

We know that the point spectrum (λn)n of H is discrete. Define ZH = Z ∪{(λn)n}. Let

E ∈ (a, b) with (a, b) ∩ ZH = ∅. We know from Theorem 2.3.3 in the preceding section that

R(z) = (H− z)−1 is well defined on H and bounded uniformly for z ∈ J(a, b). We may thus

define the bounded operators:

R±(λ) = (H − (λ± i0))−1.

For Ξ = (j, ξ) ∈ J × R as defined in section 2.2, we defined ψj(x, y; ξ) in (2.3). For

z ∈ J(a, b), it is convenient to introduce the function AΞ(x, y; z) defined as

AΞ(z) = (I −R(z)Q)ψj(ξ). (2.31)

Associated is the following linear form defined for f ∈ L2s with s > 1
2 :

A∗
Ξf(z) = (f, AΞ(z)) :=

∫
R2
f(x, y) · ĀΞ(x, y; z)dxdy. (2.32)

We now define the perturbed generalized eigenfunctions

ψ±j (ξ) = AΞ(Ej(ξ)± i0) = (I −R(Ej(ξ)± i0)Q)ψj(ξ). (2.33)

For concreteness, we define ψQj (x, y; ξ) = ψ+j (x, y; ξ), the outgoing generalized eigenfunctions,

while ψ−j (x, y; ξ) corresponds to incoming generalized eigenfunctions.

Thanks to Theorem 2.3.3, we observe that ψ±j (ξ) ∈ H
p
−s(R2). For each E ∈ (a, b), there

is a finite number of wavenumbers ξm such that E = Em(ξm). We denote by ψ±m(E) the
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corresponding generalized eigenfunctions parametrized by (m,E) rather than (j, ξ).

Let f ∈ L2s and j ∈ J with ξ ∈ Ξj so that Ej(ξ) ∈ (E−, E+)\ZH . We define the

generalized Fourier transform(s) by

f̃±(Ξ) = A∗
Ξ(Ej(ξ)± 0i)f, (2.34)

and for any λn ∈ (E−, E+) an eigenvalue of Hϕn = λnϕn,

f̃n = (f, ϕn). (2.35)

We then obtain the following results justifying the expansion [H2] in (2.11) in section 2.2.

We first verify the following estimate on the generalized Fourier transform.

Lemma 2.4.1. For h
2 > s > 1

2 , there exists a constant C = C(s, a, b) such that

|A∗
Ξ(z)f | ≤ C∥f∥L2

s
(2.36)

for all Ξ ∈ J × R, z ∈ J(a, b) and f ∈ L2s.

Proof. By construction, we have

A∗
Ξ(z)f = (f, AΞ(z))L2 = (f, (I −R(z)Q)ψj(ξ))L2 . (2.37)

The multiplication operator Q is a continuous map from L2−s to L2h−s and by use of Hy-

pothesis 2.27, we get

|(f, (I −R(z)Q)ψj(ξ))L2| ≤ ∥f∥L2
s
· ∥(I −R(z)Q)ψj(ξ))∥L2

−s

≤ C∥f∥L2
s
· ∥ψj(ξ)∥L2

−s
≤ C

(∫
R
(1 + |x|)−2sdx

)1
2

∥f∥L2
s

and hence the result.
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We next state the following properties of the resolvent operator:

Proposition 2.4.1. For s > 1
2 , Im z ̸= 0 and f ∈ L2s, we have

(H − z)AΞ(z) = (Ej(ξ)− z)ψj(ξ), (2.38)

R̂(z)f(Ξ) =
A∗
Ξ(z̄)f

Ej(ξ)− z̄
, (2.39)

where f̂(Ξ) = (f, ψj(ξ)) is the unperturbed Fourier transform defined in (2.5).

Proof. We have by construction

AΞ(z) = (I −R(z)Q)ψj(ξ)

so that

(H − z)AΞ(z) = (H0 − z)ψΞ = (Ej(ξ)− z)ψj(ξ).

This is (2.38). Thus, from the definition of the (unperturbed) Fourier transform (2.5),

(
f,

(H − z)AΞ(z)

Ej(ξ)− z

)
= f̂(Ξ).

From this, we deduce

R̂(z)f(Ξ) =
(
R(z̄)f,

(H − z)AΞ(z)

Ej(ξ)− z

)
=
(
f,

AΞ(z)

Ej(ξ)− z

)
=

A∗
Ξ(z)f

Ej(ξ)− z̄
.

We now prove the following eigenfunction expansion result. By proposition 2.3.1, we

know that H has discrete point spectrum and each eigenvalue has a finite multiplicity. Let

{φn} be the countable set of orthonormalized eigenfunctions of H.

Theorem 2.4.1 (Eigenfunction Expansion Theorem). For f ∈ L2s ⊂ H, we define f̃ as

either one of the generalized Fourier transforms f̃± in (2.34). Then we have the following
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Parseval relation:

∥f∥L2 =
∞∑
n=0

|(f, φn)|2 +
∫
R

∑
j∈J

|f̃(Ξ)|2dξ. (2.40)

Proof. For fixed ξ, let

J(α,β)(ξ) = {j ∈ J | Ej(ξ) ∈ (α, β)}.

Let [α, β] contain no eigenvalue of H. We wish to show that

((E(β)− E(α))f, f) =

∫
R

∑
j∈J(α,β)(ξ)

|f̃(Ξ)|2dξ, (2.41)

and for an eigenvalue λ, that

((E(λ)− E(λ−))f, f) =
k∑
i=1

|(f, φλ,i)|2, (2.42)

where {φλ,i} are the orthonormalized eigenfunctions of H associated with the eigenvalue λ.

The second assertion (2.42) reduces to the well-known Parseval equality of Fourier series.

To prove the first assertion, we first assume that

kn < α < β < kn+1

for some n ∈ Z where {kn} label elements in ZH , the union of Z defined in (2.7) with the

collection of eigenvalues of H. We make use of

((E(β)− E(α))f, f) =
1

2πi
lim
η↓0

∫ β

α
(R(µ+ iη)f −R(µ− iη)f, f)dµ.

Since (E(λ)f, f) is absolutely continuous with respect to λ, we have using the resolvent
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equation R(z1)−R(z2) = (z1 − z2)R(z1)R(z2) and (2.39), that

((E(β)− E(α))f, f) =
1

2πi
lim
η↓0

∫ β

α
2iη(R(µ− iη)R(µ+ iη)f, f)dµ

=
1

π
lim
η↓0

∫ β

α
η∥R(µ+ iη)f∥2dµ =

1

π
lim
η↓0

∫ β

α
η∥ ̂R(µ+ iη)f∥2dµ

=
1

π
lim
η↓0

∫ β

α

∫
R

∑
j

η

∣∣∣∣ A∗
Ξ(µ− iη)

Ej(ξ)− µ+ iη
f

∣∣∣∣2 dξdµ,
(2.43)

using the Parseval identity for F in (2.5) (i.e., F is an isometry) and (2.39) for the last line.

To analyze the above integral, we recall the result (see

Lemma 2.4.1 implies that |A∗
Ξ(µ − iη)f |2 = |f̃(Ξ)|2 is continuous in Ξ and uniformly

bounded on [α, β]× [0, η0]. Proposition ?? then yields

lim
η→0

1

π

∫ β

α
η

∣∣∣∣ A∗
Ξ(µ− iη)

Ej(ξ)− µ− iη
f

∣∣∣∣2 dµ

= lim
η→0

1

π

∫ β

α

η

|Ej(ξ)− µ|2 + η2
|A∗

Ξ(µ− iη)f |2dµ =


|f̃(Ξ)|2, j ∈ J(α,β)(ξ)

1
2 |f̃(Ξ)|

2 Ej(ξ) = α or β

0, otherwise.

(2.44)

Moreover, this integral is uniformly bounded for Ξ ∈ R× J and (µ, η) ∈ (α, β)× (0, 1).

We split J into two parts:

J1 =
{
j ∈ J | d(Ej(ξ), [α, β]) ≥ 1, ∀ξ ∈ R

}
, J0 := J \ J1.

Here, d(x,X) is Euclidean distance between a point x ∈ R and an interval X ⊂ R. By

hypothesis 2.2.1, J0 is finite. Let j ∈ J0. Using (2.44) for ξ such that Ej(ξ) ∈ [α− 1, β +1],

and |Ej(ξ) − µ + iη|2 ≥ C(1 + |Ej(ξ)|2) otherwise, we deduce that there is a constant
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C = C(α, β) independent of ξ, µ, η such that

∑
j∈J0

∫ β

α
η

∣∣∣∣ A∗
Ξ(µ− iη)

Ej(ξ)− µ+ iη
f

∣∣∣∣2 dµ ≤
C∥f∥L2

s

1 + |Ej(ξ)|2
. (2.45)

For j ∈ J1, we have by construction that |Ej(ξ)− µ− iη| ≥ 1. Notice that

∑
j∈J

|A∗
Ξ(z)f |

2 =
∑
j∈J

|(f, AΞ(z))L2|2 =
∑
j∈J

|(f, (I −R(z)Q)ψj(ξ))L2|2

=
∑
m∈M

|((I −R(z̄)Q)f, ψj(ξ))L2|2 = ∥ ̂(I −R(z)Q)f (ξ, y)∥2
L2(y)

.

Since the operator f 7→ R(z)Qf from L2s to L2−(s+h)
is uniformly bounded for z ∈ J(α, β),

we deduce that ∑
j∈J1

∫ β

α
η
∣∣A∗

Ξ(µ− iη)f
∣∣2 dµ

is also uniformly bounded for ξ ∈ R and (µ, η) ∈ (α, β)× (0, 1). Thus we conclude that there

exists a constant C = C(α, β) independent of ξ, µ, η such that

∑
j∈J1

∫ β

α
η

∣∣∣∣ A∗
Ξ(µ− iη)

Ej(ξ)− µ+ iη
f

∣∣∣∣2 dµ ≤
C∥f∥L2

s

1 + |Ej(ξ)|2
. (2.46)

The estimates in (2.45) and (2.46) are integrable in ξ by Hypothesis 2.2.1. Thus, by the

dominated convergence theorem, we deduce from (2.43) and (2.44) that

((E(β)− E(α))f, f) =
1

π

∫
R
lim
η↓0

∫ β

α

∑
j∈J

η

∣∣∣∣ A∗
Ξ(µ− iη)

Ej(ξ)− µ− iη
f

∣∣∣∣2 dµdξ
=

∫
R

∑
j∈J(α,β)(ξ)

|f̃(Ξ)|2dξ.
(2.47)

This proves the first assertion (2.41) when

kn < α < β < kn+1
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for some n ∈ Z, where kn < kn+1 are successive numbers in the union of Z defined in (2.7)

with the collection of eigenvalues of H. By monotone convergence, we deduce that

((E(kn+1−)− E(kn+))f, f) =

∫
R

∑
j∈J(kn,kn+1)

(ξ)

|f̃(Ξ)|2dξ.

This handles the absolutely continuous part of the spectrum of H. It remains to address the

discrete set of points kn, which as in Theorem 2.3.4, carries only point spectrum. This is

taken care of by the first term on the right-hand side in (2.40) as in (2.42). This concludes

the proof of the theorem.

2.5 Application to Dirac operators with domain walls

The theory developed in section 2.2 requires that we prove the hypotheses [H1](o-iv), and

in particular the spectral decompositions in (2.4) and (2.11). While such a verification can

undoubtedly be performed for a large class of problems, some of the steps developed below

to analyze the spectrum of H are intricate computationally and hence restricted to systems

of Dirac operators similar to those considered in

We thus consider the Dirac operator

H = H0 +Q, H0 = Dxσ1 +Dyσ2 +m(y)σ3 (2.48)

where Dx = −i∂x and Dy = −i∂y, where σ1,2,3 are the standard Pauli matrices, and where

m(y) is a domain wall that we will take the form m(y) − y equal to a bounded function to

simplify the presentation. Here, Q is the operator of multiplication by Q(x, y), which takes

values in 2× 2 Hermitian matrices.

It is convenient to recast H as UHU∗ with U a unitary matrix so that UHU∗, still called
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H, takes the form H = H0 +Q, where

H0 = Dxσ3 −Dyσ2 +m(y)σ1 =

 −i∂x a

a∗ i∂x

 , a := ∂y +m(y). (2.49)

We recognize in a the annihilation operator of the quantum harmonic oscillator when m(y) =

y. We assume that the range of m is infinite, and for concreteness that:

Hypothesis 2.5.1. We assume m(y)− y is a bounded function.

Under this hypothesis, the operators H and H0 are unbounded elliptic self-adjoint opera-

tors on the Hilbert space L2(R2;C2) with domains of definition D(H) = D(H0) the subspace

of functions (ψ1, ψ2)
t ∈ L2(R2;C2) such that ∇ψj ∈ L2(R2;C2) and yψj ∈ L2(R2). This

was denoted by the space H1 with β = 1 and s = 0 in (2.2). We assume here that Q decays

sufficiently rapidly in x as described in Hypothesis 2.3.1 for the above result to hold

We first observe that since the range of m(y) is unbounded, standard results on Sturm

Liouville operators show that a∗a and aa∗ have a compact resolvent and hence discrete

spectrum with simple eigenvalues. It is also straightforward to observe that a admits a

kernel in L2(R) of dimension one. The positive eigenvalues of a∗a and aa∗ are the same and

we thus get the existence of simple eigenvalues ρ0 = 0 < ρn < ρn+1 for n ≥ 1 with ρn/n

converging to 2 as n→ ∞. Moreover, we have the existence of two L2(R; dy)−orthonormal

bases (νn)n≥0 and (µn)n≥1 such that

a∗aνn = ρnνn, n ≥ 0; aa∗µn = ρnµn, n ≥ 1. (2.50)

When m(y) = y, then νn and µn are both Hermite functions associated to the quantum

harmonic oscillator. We also verify that (for ∥ · ∥ the standard L2(R; dy) norm)

∥f∥+ ∥yf∥+ ∥Dyf∥ ≤ C∥a∗f∥, ∥yf∥+ ∥Dyf∥ ≤ C(∥af∥+ ∥f∥). (2.51)
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The asymmetry between the above two results stems from the fact that a∗ has trivial

L2−kernel while aν0 = 0.

Define Πνn = νn ⊗ νn for n ≥ 0 and Π
µ
n = µn ⊗ µn for n ≥ 1 (with Π

µ
0 = 0 to simplify

notation). Then we observe that we have the spectral decomposition:

H2
0 − λ2 = F−1

ξ→x

∑
n≥0

∫
R
dξ (ξ2 + ρn − λ2)

Πνn 0

0 Π
µ
n

 Fx→ξ. (2.52)

This provides the following explicit expression for the resolvent

R0(λ) = (H0 − λ)−1 = (H0 + λ)(H2
0 − λ2)−1 (2.53)

= (H0 + λ)F−1
ξ→x

∑
n≥0

∫
R
dξ (ξ2 + ρn − λ2)−1

Πνn 0

0 Π
µ
n

 Fx→ξ. (2.54)

Estimates on R0(λ) may thus be obtained by applying H0+λ to the resolvent of the operator

H2
0 . The above construction also shows that the eigenvalues of Ĥ2

0 (ξ) are given explicitly by

E2
n(ξ) = ξ2 + ρn for n ≥ 0. We now show that ±En(ξ) are indeed eigenvalues of Ĥ0(ξ). To

simplify notation, we introduce the set M of indices m = (±1, n) for n ≥ 1 and 0 ≡ (−1, 0)

for n = 0. We then define the eigenvectors ϕm(ξ) for m = (±, n) ∈M as

ϕm =

φm
ψm

 , Em = ±(ξ2 + ρn)
1
2

with ϕ0 = (ν0, 0)
t independent of ξ for m = 0 and for n ≥ 1,

ϕm(ξ) = cn

(Em(ξ) + ξ)νn

ρnµn

 , c−2
n = 2Em(ξ)(Em(ξ) + ξ) > 0. (2.55)

We verify that cm is indeed defined and independent of ± and hence labeled cn. Since the

functions νn and µn form an orthonormal basis, we easily deduce that the functions ϕm also
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form an orthonormal basis of L2(R;C2).

From this completeness result, we deduce the spectral decomposition

H0 = F−1
ξ→x

∑
m

∫
R
dξ Em(ξ)Π

ϕ
m(ξ) Fx→ξ, Π

ϕ
m(ξ) = ϕm(ξ)⊗ ϕm(ξ). (2.56)

This provides an explicit expression for (2.4) in hypothesis [H1] with ψm defined by (2.3).

We finally turn to the construction of the generalized eigenfunctions (2.8) at a fixed energy

level E ∈ R\ZD, where for the Dirac operator, we deduce from the explicit expression in

(2.55) that the set Z of critical values defined in (2.7) is given explicitly by

ZD =
{

±√
ρn; n ∈ N

}
. (2.57)

When m(y) = y is a linear domain wall, then we verify that ρn = 2n. By hypothesis 2.5.1,

we deduce from

We construct a basis of L2(R;C2) called ϕm(E) with a slight abuse of notation. The

objective is to construct a basis of solutions of (Ĥ0(ξm)−E)ϕm(E) = 0. The values ξm are

defined explicitly by

ξm = ϵm(E2 − ρn)
1
2 (2.58)

where m = (ϵm, n) and (−1)
1
2 = i. Thus ξm is real-valued for n sufficiently small and purely

imaginary when E2 − ρn < 0. Since E ̸∈ ZD, E2 − ρn ̸= 0. We then define

ϕm(E) = cn

 √
ρnµn

(E − ξm(E))νn

 , c−2
n = ρn + |E − ξm|2. (2.59)

The functions m → ϕm(y;E) form a basis of L2(R;C2) but no longer an orthonormal one.

However, the orthonormalization of this basis is a bounded operator with bounded inverse

as we now show.

When m = (n, ϵm) while q = (p, ϵq), we verify that (ϕm, ϕq) = 0 when n ̸= p. This is a
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direct consequence of the orthogonality of the families νn and µn. However, for q = m′ :=

(m,−ϵm), then we have

(ϕm, ϕm′) =
ρn + (E − ϵm)(E + ϵm)√

ρn + |E − ξm|2 ·
√
ρn + |E + ξm|2

=
1 + E+ξm

E+ξm

2 + 2
|E|2+|ξm|2
E2−ξ2m

.

As a consequence, |(ϕm, ϕm′)| < 1
2 as we verify. The functions (ϕm) are thus linearly

independent and form a basis of L2(R;C2) by completeness of the families νn and µn. The

procedure of orthonormalization of the (normalized) basis elements ϕm is therefore a operator

of norm bounded by 2.

2.5.1 Estimates for unperturbed operator

We now verify that the assumptions made in Hypothesis 2.3.2 hold for the unperturbed

Dirac operator.

Proposition 2.5.1. Estimate (1.) in Hypothesis 2.3.2 holds for the Dirac operator.

Proposition 2.5.2. Estimate (2.) in Hypothesis 2.3.2 holds for the Dirac operator.

The first proposition is useful for s > 1
2 close to 1

2 while the second estimate is useful for

s− 1− ε > 0.

Proposition 2.5.1. We introduce

u = (H0 + λ)v, v = (H2
0 − λ2)−1(H0 − λ)u.

We want to show that

∥v∥H2
−s

≤ C∥(H0 − λ)u∥L2
s
= ∥(H2

0 − λ2)v∥L2
s
. (2.60)
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Using (3.5.2), we find

H2
0 − λ2 =

D2
x + a∗a− λ2 0

0 D2
x + aa∗ − λ2

 .

Let {νn}, {µn} be the (orthonormal basis of) eigenfunctions of a∗a, aa∗,

a∗aνn = ρnνn, aa∗µn = ρnµn.

We also have aν0 = 0. Consider

(D2
x + a∗a− λ2)v1 = g1

with the expansion

v1 =
∑
n≥0

v1n(x)νn(y)

so that

(D2
x + ρn − λ2)v1n = g1n

with obvious notation.

We then use

We then sum over n using the orthonormality of the families νn and µn to get

∥D2
xv1∥L2

−s
+ ∥v1∥L2

−s
≤ C∥(H2

0 − λ2)v1∥L2
s
.

Now we use the relation

a∗av1 = (H2
0 − λ2)v1 + λ2v1 −D2

xv1

and the above inequality to deduce from (2.51) bounds for D2
yv1 as well y2v1 in weighted L2
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space. This implies that (2.60) holds for v1. We perform the same calculation for

v2 =
∑
n≥1

v2n(x)µn(y).

Thus, (2.60) holds. It remains to apply (H0 + λ) to v, count derivatives and powers of y,

and obtain

∥u∥H1
−s

≤ C∥(H0 − λ)u∥L2
s
. (2.61)

This concludes the derivation.

While the proof of Proposition 2.5.1 was based on the spectral decomposition of a∗a

leading to that of H2
0 − λ2, we now base the proof of Proposition 2.5.2 when λ ≡ E is

real-valued on the direct plane wave expansion of H0−λ using the eigen-elements ϕm(E) in

(2.59).

We first need the following result on the operator D:

Lemma 2.5.1. Let u ∈ H1(R), and s ≥ 0.

When λ ∈ iR and ϵ > 0, there is C = C(s, ϵ) such that

∥∥u∥∥H1
s−1−ϵ

≤ C(1 + |λ|)
∥∥∥( d
dx

− λ
)
u
∥∥∥
L2
s

. (2.62)

When λ ∈ R, there is C = C(s) such that

∥∥u∥∥L2
s
≤ C

|λ|(|λ| ∧ 1)s

∥∥∥( d
dx

− λ
)
u
∥∥∥
L2
s

,
∥∥∥du
dx

∥∥∥
L2
s

≤ C(1 + |λ|)
|λ|(|λ| ∧ 1)s

∥∥∥( d
dx

− λ
)
u
∥∥∥
L2
s

. (2.63)

Proof. We start with λ ∈ R. Since u ∈ H1, we have lim
|x|→∞

u(x) = 0 and u may be expressed

in two ways:

u(x) =

∫ x

−∞
f(t)eλ(x−t)dt =

∫ x

∞
f(t)eλ(x−t)dt, f(x) =

( d
dx

− λ
)
u(x).
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When x ≤ 0,

|u(x)|2 ≤
∫ x

−∞
|f(t)|2(1 + t2)sdt ·

∫ x

∞
(1 + t2)−sdt ≤ C∥f∥2

L2
s
· (1 + x2)1−2s.

A similar estimate holds for x ≥ 0. Multiplying with (1 + x2)s−1−ϵ with ϵ > 0, we have

u ∈ L2t and

∥u∥L2
t
≤ C∥f∥L2

s
, t = s− 1− ϵ.

Together with u′ = f + λu, we obtained the inequality (2.62).

Consider now the case λ ∈ R. Denote ∂x ≡ d
dx . The second inequality in (2.63) is

a consequence of the first one and the fact that ∂xu = (∂x − λ)u + λu. We may assume

λ ≥ 0 without loss of generality as the case λ < 0 then holds after x → −x. Let us define

f = (∂x − λ)u. Let ε > 0 and define wε(x) = ⟨εx⟩s. We find for s ≥ 0 that

∥∥∥w′
ε

wε

∥∥∥
∞

≤ Cε.

The result in L2 (with norm ∥ · ∥) for β = 0 holds. Indeed in the Fourier domain,

û(ξ) =
1

iξ − λ
f̂ , ∥u∥ ≤ 1

λ
∥f∥,

by the Parseval equality. For s > 0 we have

(∂x − λ)(wεu) = wεf − w′
ε

wε
wεu.

Thus

∥wεu∥ ≤ 1

λ
(∥wεf∥+ Cε∥wεu∥).
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Choosing ε so that Cε = 1
2(λ ∧ 1), we deduce that

∥wεu∥ ≤ C

λ
∥wεf∥.

When λ ≳ 1, we choose ε ∼ 1 so that wε ∼ ⟨x⟩s and the result is clear. When λ ≲ 1, we use

that

λs⟨x⟩s ∼ εs⟨x⟩s ≤ wε(x) ≤ ⟨x⟩s.

This shows that for λ ≲ 1, ∥⟨x⟩su∥ ≤ Cλ−1−s∥⟨xs⟩f∥.

Proposition 2.5.2. We use the basis ϕm(y;E) at a fixed a < λ = E < b to decompose any

smooth function (x, y) as

u(x, y) =
∑
m∈M

um(x)ϕm(y;E).

We showed that ϕm formed a basis equivalent to an orthonormal one in the sense that at

each fixed x,

∥u(x, y)∥2
L2
y
≈
∑
m

|um(x)|2. (2.64)

Here a ≈ b when for some constant C > 0 we have C−1a ≤ b ≤ Ca. We also know that

(Ĥ0(ξm)− λ)ϕm = 0.

Thus,

(H0 − λ)umϕm = (Dx − ξm)um(φm, 0)
t − (Dx + ξm)(0, ψm)t.

Hence using the above

∥(H0 − λ)u∥2
L2
s
≈
∑
m

∥(Dx − ξm)um∥2
L2
s
+ ∥(Dx + ξm)um∥2

L2
s
.

Recall that ξm = εm(λ2 − λn)
1
2 .
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When ξm ∈ R, we use (2.62) to deduce that for s− 1− ϵ ≥ 0,

∥um∥H1
s−1−ϵ

≤ C∥(Dx − ξm)um∥L2
s
.

When ξm ∈ iR, we use (2.62) to deduce that

∥um∥H1
s
≤ C(1 + |ξm|)

|ξm|(|ξm| ∧ 1)s
∥(Dx − ξm)∥L2

s
.

Since a < λ < b and (a, b) ∩ ZD = ∅, we deduce from the definition of ξm that |ξm(λ)|

is bounded below uniformly in that interval. Note, however, that |ξm(λ)| tends to 0 as λ

approaches ZD.

Summing these equalities over m and using (2.64), we deduce that

∥u∥2
L2
s−1−ϵ

+ ∥Dxu∥2L2
s−1−ϵ

≤ C∥(H0 − λ)u∥2
L2
s

for s ≥ 0. The system (H0 − λ)u = f may be recast as

a∗u2 = f1 − (Dx − λ)u1, au1 = f2 + (Dx + λ)u2

From the properties of a and a∗, this implies that

∥yuj∥L2
s−1−ϵ

+ ∥Dyuj∥L2
s−1−ϵ

≤ C∥f∥L2
s
+ ∥u∥L2

s−1−ϵ
≤ C∥f∥L2

s
.

This concludes the derivation of (2.26).

2.5.2 Perturbed Dirac operator

We now derive estimates for the resolvent of the perturbed Dirac operator H = H0 +Q.

Theorem 2.5.2. Condition (3.) in Hypothesis 2.3.2 holds for the perturbed Dirac operator
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when Q satisfies the assumptions in Hypothesis 2.3.1.

Before proving the theorem, we state the following intermediate result:

Lemma 2.5.2. For a < b, h > s > 1
2 and λ ∈ J(a, b), and for R > 0 sufficient large, there

exists a constant C = C(s, a, b, R) such that

∥u∥2
H1

−s
≤ C

(
∥(H − λ)u∥2

L2
s
+

∫
|x|≤R

|u(x)|2dx
)

(2.65)

for all u ∈ H1
s and λ ∈ J(a, b).

Proof. From Proposition 2.5.1 and (2.25), we have for s > 1
2 and C1 > 0 that

∥u∥H1
−s

≤ C1∥(H0 − λ)u∥L2
s
≤ C1(∥(H − λ)u∥L2

s
+ ∥Qu∥L2

s
). (2.66)

It remains to estimate ∥Qu∥L2
s
. Fix R > 0. We first estimate ∥Qu∥L2

s({|x|≤R}). Since

|Q(x, y)| is bounded,

∥Qu∥L2
s({|x|≤R}) ≤ C∥u∥L2({|x|≤R}).

We next estimate ∥Qu∥L2
s
({|x| ≥ R}). By (2.24),

∥Qu∥2
L2
s({|x|>R})

≤ (1 +R)2s−2h
∫∫

{|x|≤R}
|u|2|1 + x2|−sdxdy ≤ (1 +R)2s−2h∥u∥2

L2
−s
.

(2.67)

Choosing R large enough so that (1 +R)2s−2h < 1
2C1

, combined with (2.66) and (2.67), we

obtain

1

2
∥u∥2

H1
−s

≤ 2C1

(
∥(H − λ)u∥2

L2
s
+ C1(R)

∫
|x|≤R

|u(x, y)|2dxdy
)
.

This proves (2.65).
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We are now ready to prove the main theorem.

Theorem 2.5.2. By Lemma 2.5.2, it suffices to show that for a fixed R > 0,

∥u∥L2(|x|≤R) ≤ C∥(H − λ)u∥L2
s
, (2.68)

with some constant C. Assuming the contrary, there is a sequence {un} of H1
s and a sequence

{λn} of J+(a, b) such that

∫
|x|≤R

|un(x, y)|2dxdy = 1, (H − λn)un → 0 in L2s. (2.69)

Define fn = (H − λn)un and gn = fn − Qun. We may assume that λn → λ0 where

λ0 ∈ [a, b] is a non-eigenvalue real number. Indeed, Im λ0 > η0 > 0 would imply that for n

large enough, we would have ∥un∥L2 ≤ η−2
0 ∥(H−λn)un∥L2 , which contradicts (2.69). From

Lemma 2.5.2, there exists a constant C1 such that

∥un∥2H1
−s

≤ C1

(
∥(H − λn)un∥L2

s
+ ∥un∥L2(|x|≤R)

)
. (2.70)

Thus {un} is bounded in H1
−s. So by Rellich’s theorem we can select a subsequence of {un}

(which we still denote by {un}) which converges in L2{|x|≤R} for any R > 0. We denote this

limit as u0. Since Q is bounded, Qun also converges to Qu0 in L2{|x|≤R}. This implies that

Qun → Qu0 in L2s by (2.67) and the fact that {un} is bounded in H1
−s. Thus gn → g0 in

L2s, and

(H0 − λn)un = fn −Qun = gn. (2.71)

By standard ellipticity results for the Dirac operator H0, we have that

∥u∥H1(|x|≤R) ≤ C(R)
(
∥u∥L2(|x|≤R+1) + ∥H0u∥L2(|x|≤R+1)

)
. (2.72)
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Then by (2.71), (2.72) and gn → g0 in L2s, we have

un → u0 in H1(|x| ≤ R). (2.73)

Applying Lemma 2.5.2, we have un → u0 in H1
0 (|x| ≤ R) so that

∫
|x|≤R

|u0(x, y)|2dxdy = 1, (H − λ0)u0 = 0. (2.74)

If we can show u0 ∈ L2, then u0 = 0 since λ0 is not an eigenvalue. By (2.71),

(H0 − λ0)un = gn + (λn − λ0)un. (2.75)

As constructed in section ??, {ϕm(λ0)} which we abbreviate as ϕm below form a basis of

L2(R,C2). For u ∈ H1
s with (H0 − λ0)u = f , we use the decomposition

u =
∞∑

m∈M
um(x)ϕm(y).

We claim that

( d
dx

+ iξm

)
um(x) =


−i λξmfm(x) +

i(ξm′+λ)
ξm′

fm′ m ̸= 0

−ifm m = 0.

(2.76)

It is enough to prove the result for u ∈ C∞
c then pass to the limit since C∞

c is dense in H1
s .

By recalling (H0 + λ)(H0 − λ0) in (3.5.2) and that (Ĥ0(ξm)− λ0)ϕm = 0, it follows that

(H0 + λ)(H0 − λ)u =
∑
m

(−u′′m(x)− ξ2m)ϕm,

(H0 + λ)f = (−if ′m(x)− ξmfm(x))σ3ϕm.

45



A linear decomposition gives that,

σ3ϕm = − λ

ξm
ϕm +

ξm + λ

ξm
ϕm′ , m ̸= 0; σ3ϕm = −ϕm, m = 0 (2.77)

where {m,m′} = (±, n), so that ξm′ = −ξm. Since um, fm, fm′ all have limit 0 at ±∞, we

deduce (2.76).

Applying (2.76) to (2.75), for m = 0, gives

In,0 := (un,0, gn,0) = −ξ0∥un,0∥L2 − λn − λ0∥un,0∥L2 .

For m ̸= 0, we write, for m ̸= 0,

d

dx

( un,m

un,m′

)
=
( −iξm 0

0 iξm

)( un,m

un,m′

)
+ A

( gn,m

gn,m′

)
+ (λn − λ0)A

( un,m

un,m′

)

where A =

 − iλ0
ξm

i(−ξm+λ0)
−ξmi

i(ξm+λ0)
ξmi

iλ0
ξm

. Each entry of A is bounded because ξm is bounded

away from 0 and |ξm| is unbounded as n grows. Thus

In,m :=
(( un,m

un,m′

)
, σ3A

( gn,m

gn,m′

))

=
(( un,m

un,m′

)
,
d

dx
σ3

( un,m

un,m′

)
+
( iξm 0

0 iξm

)( un,m

un,m′

)
− (λn − λ0)σ3A

( un,m

un,m′

))

= iξm

(
∥un,m∥2

L2 + ∥un,m′∥2L2

)
− λn − λ0

(( un,m

un,m′

)
, σ3A

( un,m

un,m′

))
.

Since λn → λ0 and A is bounded as ξm is away from 0, so for n sufficiently large, there
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exists a positive constant U > 0 such that for all n,m,

Im In,m − Re In,m ≥ U
(
∥un,m∥2

L2 + ∥un,m′∥2L2

)
. (2.78)

Summing In,m over m,

∑
m∈M, ϵm>0

In,m
n→∞−−−−→

(
u0, g

twist
0

)
(2.79)

where
( gtwist

n,m

gtwist
n,m′

)
= σ3A

( gn,m

gn,m′

)
, since gtwist

n ∈ L2s and gtwist
n → gtwist

0 in L2s. Thus, by

(2.78), (2.79),

U∥un∥2L2 ≤ Im
∑

m∈M, ϵm>0

In,m − Re
∑

m∈M, ϵm>0

In,m
n→∞−−−−→ Im

(
u0, g

twist
0

)
− Re

(
u0, g

twist
0

)
.

(2.80)

We deduce that {un} is bounded in L2, which implies that u0 ∈ L2 and hence u0 = 0. This

concludes the proof of the theorem.

2.5.3 Scattering matrix and conductivity

The objective of this section is to prove [H3] for the Dirac operator. Fix an energy E ∈ R\ZH .

We decompose the generalized eigenfunction ψQm(x, y;E) in the basis of ϕm = ϕm(y; ξm(E))

as

ψ
Q
m(x, y;E) =

∑
q∈M

Aq(x)ϕq(y) =
∑
q∈M

Bq(x)e
iξqxϕq(y). (2.81)

The decomposition consists of finitely many propagating modes and countably many evanes-

cent modes. We wish to show that in the limit x → ±∞, ψQm is well approximated as a

linear combination of propagating modes.
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We define M(E) ⊂ M as the subset of propagating modes at a fixed energy E. The

cardinality of M(E) was denoted by M(E) in Hypothesis [H1](iv).

Proposition 2.5.3. The generalized eigenfunctions satisfy the following approximate de-

composition:

ψ
Q
m(x, y) ≈

∑
q∈M(E)

α±mqe
iξqxϕq(y), (2.82)

with respect to norm |||u||| = max
x∈R

∥u(x, ·)∥L2(·); see (2.86) below for a more precise state-

ment.

Proof. ψQm(x, y;E) satisfies that (H0 − E)ψ
Q
m = −QψQm. We decompose −QψQm in the basis

ϕm(y; ξm(E)) as

−QψQm =
∑
q∈M

aq(x)ϕq(y), aq(x) = (−QψQm, ϕq(y))y.

Since ψQm ∈ H1
−s for s > 1

2 and |Q(x, y)| = O(|x|−h) for some h > 1, then Qψ
Q
m ∈ L2t for

some t > 1
2 and hence aq(x) ∈ L2t .

Let p = (−ϵq, n) be the conjugate of q = (ϵq, n). Then it holds that

(H0 − E)
[
Aq(x)ϕq(y) + Ap(x)ϕp(y)

]
= aq(x)ϕq(y) + ap(x)ϕp(y). (2.83)

The proof is then based on a direct computation. From (2.83) and by use of (Ĥ0(ξm) −

E)ϕm(E) = 0 and (2.77), we have

[
−iA′

q(x)− ξqAq(x)
]
σ3ϕq +

[
−iA′

p(x)− ξpAp(x)
]
σ3ϕp = aq(x)ϕq(y) + ap(x)ϕp(y)

= aq(x)

[
E

ξq
σ3ϕq + (1− E

ξq
)σ3ϕp

]
+ ap(x)

[
(1 +

E

ξq
)σ3ϕq −

E

ξq
σ3ϕp

]
.
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Thus

−iA′
q(x)− ξqAq(x) =

E

ξq
aq(x) +

(
1 +

E

ξq

)
ap(x),

which implies that

B′
q(x) = ie−iξqx

[
E

ξq
aq(x) +

(
1 +

E

ξq

)
ap(x)

]
.

When ξq ∈ R, since aq, ap ∈ L2s for some s > 1
2 , then aq, ap ∈ L1, and hence Bq(x)

converges to two constants as x→ ±∞, i.e., lim
x→±∞

Bq(x) = α±mq. Moreover,

|Bq(x)− α±mq| = O(|x|
1
2−t) as x→ ±∞. (2.84)

When ξq ∈ iR, then by applying Lemma 2.5.1, it follows that there exists a constant

independent of q such that ∥Aq(x)∥H1
t

≤ C∥aq∥L2
t
+ C∥ap∥L2

t
so lim|x|→∞Aq(x) = 0.

Moreover, (1+ |x|)tAq(x) ∈ H1, and thus by Sobolev’s inequality, there exists a constant C1

such that

(1 + |x|)t|Aq(x)| ≤ C1∥aq∥L2
t
.

Together with the fact that ϕq has L2 norm 1 for all q, we derive that

∥∥∥ ∑
q∈M(E)

Aq(x)ϕq(y)
∥∥∥
L2
y

≤ C2

(1 + |x|)t
∑
ξq∈iR

∥aq∥L2
s
. (2.85)

Therefore, by (4.30) and (4.31), we have that as x→ ±∞,

∥∥∥ψQm(x, y)−
∑

m∈M(E)

α±mqϕq(y)
∥∥∥
L2
y

= O(|x|
1
2−t) as x→ ±∞. (2.86)

This concludes the proof of the proposition.
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This concludes our analysis of the edge conductivity for the Dirac operator. This estab-

lishes for this model the main result of this paper, namely Theorem 2.2.2, relating the two

natural notions associated to asymmetric transport: edge conductivity and the difference of

transmissions in a scattering experiment.
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CHAPTER 3

A MIXED TYPE GENERALIZED KIMURA OPERATOR

3.1 Introduction

Let L be a mixed type generalized Kimura diffusion operator, acting on functions defined on

a 2-dimensional manifolds of corner P .

A paracompact Hausdorff topological space P is a 2-dimensional manifold with corners

if for every p ∈ P , there is a neighborhood Up and a homeomorphism ψp from Up to a

neighborhood of 0 in Rl
+ × R2−l for some l ∈ {0, 1, 2}, with ψp(p) = 0 and the overlap maps

are diffeomorphisms. (Recall that a mapping between two relatively open sets in Rn×RN−n

is a diffeomorphism if it is the restriction of a diffeomorphism between two absolute open

sets in RN .) Specifically, if ψp : Up → Vp is the homeomorphism, then for p ̸= q:

ψp ◦ ψ−1
q : ψq

(
Uq ∩ Up

)
−→ ψp

(
Uq ∩ Up

)
is a diffeomorphism. If such a map ψp exists, we say that the point p is an interior point if

l = 0, an edge point if l = 1, a corner if l = 2. The codimension l is well defined after imposing

smoothness structures. It is due to the fact that the wedges {(r, θ) : r ≥ 0, 0 ≤ θ ≤ A} with

various angles (acute angle, π, obtuse angle, 2π) are different diffeomorphism classes. The

definition of manifold with corners excludes the wedge with obtuse angles, hence a non-convex

polyhedron appears as the simplest counterexample.

Definition 3.1.1. Let P be a two-dimensional compact manifold with corners. A second

order operator L defined on P is called a generalized Kimura diffusion operator of second

kind if it satisfies the following set of conditions:

1. L is elliptic in the interior of P .
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2. If q is an edge point, then there are local coordinates (x, y) so that in the neighborhood

U = {0 ≤ x < 1, |y| < 1}

the operator takes one of the following two forms:

L = ax∂2x + bx∂xy + c∂2y + d∂x + e∂y (2a)

L = ax2∂2x + bx∂xy + c∂2y + dx∂x + e∂y. (2b)

We assume that all coefficients a(x, y), b(x, y), c(x, y), d(x, y), e(x, y) lie in C∞(U). We

call q a regular edge point, infinity edge point, respectively.

3. If q is a corner, then there are local coordinates (x, y) so that in the neighborhood

U = {0 ≤ x < 1, 0 ≤ y < 1}

the operator takes one of the following three forms:

L = ax∂2x + bxy∂xy + cy∂2y + d∂x + e∂y (2c)

L = ax2∂2x + bxy∂xy + cy∂2y + dx∂x + e∂y (2d)

L = ax2∂2x + bxy∂xy + cy2∂2y + dx∂x + ey∂y. (2e)

We assume that all coefficients a(x, y), b(x, y), c(x, y), d(x, y), e(x, y) lie in C∞(U). We

call q a regular regular corner, mixed corner, infinity corner, respectively.

4. The vector field is inward pointing at edge points of type (2a) and corners of type (2c),

vertical at edge points of (2b), vertical up at corners of type (2d).

5. a(x, y), c(x, y) are strictly positive on P .

When the coefficients of the normal part of the second order term vanish exactly to order
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one along all the boundary components, L is the generalized Kimura operators as introduced

by C. Epstein and R. Mazzeo in

Let E be a regular edge of P , i.e., so that all the points on E are of type 2a. We say L

is tangent to E if at any point p on E, the vector field perpendicular to the edge vanishes

at p, i.e., d(p) = 0, and L is transverse to E if there exists a cE > 0 such that d(p) > cE .

The results in this chapter are derived under the following assumption:

Assumption 3.1.1. L is either tangent or transverse to any regular edge.

In this case we say p is a tangent point if it lies on one tangent edge, otherwise we say it

is a transverse point.

As in

Based on series expansion of fundamental solutions of model operators and the above

result on the heat equation, our second main result is the existence and regularity results of

a heat kernel for L. We let P reg denote the union of P̊ and regular edge points and regular

corner points (see Definition 3.1.1).

Theorem 3.1.1. The global heat kernel Ht(d1, d2, l1, l2) ∈ C∞(P reg × P̊ × (0,∞)) of the

full operator L exists and for f ∈ C0(P ), then

vf :=

∫
P
Ht(d1, d2, l1, l2)f(l1, l2)dl1dl2

is the solution of (∂t − L)vf = 0 with vf (0, ·, ·) = f .

This heat kernel is smooth in (d1, d2) when (d1, d2) ∈ P reg. In other words, this includes

source contributions at (d1, d2) any point on the regular part of bP . When (d1, d2) is on the

infinity edge, we may prove that Ht(d1, d2, l1, l2) is the product of a delta function on the

infinity edge and a one-dimensional heat kernel along that edge; we do not present the details

here. The diffusion coefficients vanishing to second order in the normal direction essentially

imply that the infinity edge as the name indicates is indeed at infinity in the following sense:
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any diffusion starting from P̊ would never reach the infinity edge, while a diffusion starting

from infinity edge would never enter P̊ .

Comparison with previous research. There is a rich literature addressing the funda-

mental solution of the Kimura operator. In

In

Outline of this paper. The plan of this chapter is as follows. In section ?? we introduce

the degenerate Hölder space associated with L. The operator L is modeled at different

boundary points by the model operator LM acting on the model spaces. In section 3.3 we

derive the explicit fundamental solutions of model operators and make a careful analysis of

the solution operator in the degenerate Hölder spaces. After this, in section 3.4 we prove

the existence of solutions of the equation

(∂t − L)u = g in P × (0, T ], u(0, p) = f(p)

with data f, g in the degenerate Hölder spaces. In section 3.5 we establish the existence and

regularity results of the heat kernel of L.

Notation 1. In the following we denote

• P : a compact two-dimensional manifold with corners

• Ereg: the union of regular edge points

• E∞: the union of infinity edge points

• Creg: the set of regular corners

• Cmix: the set of mixed corners

• C∞: the set of infinity corners

• P reg: P̊ ∪ Ereg ∪ Creg
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3.2 Hölder Weighted Space

In

Definition 3.2.1. We define the metric spaces

1. Sc_reg: (R2
+, d) equipped with the norm

d((x1, x2), (x
′
1, x

′
2)) = 2|√x1 −

√
x′1|+ 2|√x2 −

√
x′2|.

2. Sc_mix: (R2
+, d) equipped with the norm

d((x, y), (x′, y′)) = 2|
√
x−

√
x′|+ |lny − lny′|.

3. Sc_∞: (R2
+, d) equipped with the norm

d((y1, y2), (y
′
1, y

′
2)) = |lny1 − lny′1|+ |lny2 − lny′2|.

4. Se_reg: (R+ × R, d) equipped with the norm

d((x, y), (x′, y′)) = 2|
√
x−

√
x′|+ |y − y′|.

5. Se_∞: (R× R+, d) equipped with the norm

d((y1, y2), (y
′
1, y

′
2)) = |y1 − y′1|+ |lny2 − lny′2|.

We use the (x, y) notation above: L is Kimura in the direction of x, and is elliptic or

quadratic in the direction of y. To unify the notation, we make the following convention of
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first tangential derivative of y:

Dyu =


∂yu L is elliptic in y, i.e.3

y∂yu L is quadratic in y, i.e.1, 2, 4
.

Definition 3.2.2. Let S represents one of the metric spaces above. We denote

1. Ċk(S): the closure in Ck(S) of compactly supported smooth functions

2. Ċk,2(S): the closure in Ck(S) of compactly supported smooth functions with respect to

the norm:

||f ||k,2 := ||f ||Ck−1 + sup
|α|+|β|=k

||(∂x)α(Dy)
βf ||2,

||f ||2 := ||f ||∞ + ||(∂xf,Dyf)||∞ +
∑

|α|+|β|=2

||(
√
x∂x)

α(Dy)
βf ||∞.

For 0 < γ < 1, set the norm

[f ]γ := sup
x ̸=x′

|f(x)− f(x′)|
d(x,x′)γ

,

[f ]2+γ := [f ]γ + [(∂xf,Dyf)]γ +
∑

|α|+|β|=2

[(
√
x∂x)

α(Dy)
βf ]γ .

The space Ck,γ(S), Ck,2+γ(S) are the subspace of Ċk(S), Ċk,2(S) consisting of functions f

for which the norm

||f ||k,γ := ||f ||Ck + sup
|α|+|β|=k

[∂αxD
β
yf ]γ ,

||f ||k,2+γ := ||f ||Ck + sup
|α|+|β|=k

[∂αxD
β
yf ]2+γ .

are finite, respectively.

Similarly we define the parabolic Hölder spaces.
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Definition 3.2.3. We denote

1. Ċk,
k
2 (S×[0, T ]): the closure in Ck,

k
2 (S×[0, T ]) of compactly supported smooth functions

2. Ċk+2,k2+1(S × [0, T ]): the closure in Ck,
k
2 (S × [0, T ]) of compactly supported smooth

functions with respect to the norm:

||f ||
k+2,k2+1

:= ||f ||
Ck,

k
2
+ sup

|α|+|β|+2|j|=k
||(∂x)α(Dy)

β∂
j
t f ||2,1,

||f ||2,1 := ||f ||∞ + ||(∂tf, ∂xf,Dyf)||∞ + sup
|α|+|β|=2

∥|(
√
x∂x)

α(Dy)
βf ||∞.

For 0 < γ < 1, set the norm

[f ]γ := sup
(t,x)̸=(s,x′)

|f(t,x)− f(s,x′)|(
d(x,x′) +

√
|t− s|

)γ ,
[f ]2+γ := [f ]γ + [(∂tf, ∂xf,Dyf)]γ +

∑
|α|+|β|=2

[(
√
x∂x)

α(Dy)
βf ]γ .

The space Ck,γ(S×[0, T ]), Ck,2+γ(S×[0, T ]) are the subspaces of Ċk,
k
2 (S×[0, T ]), Ċk+2,k2+1(S×

[0, T ]) consisting of functions f for which the norm

||f ||k,γ := ||f ||
Ck,

k
2
+ sup

|α|+|β|+2j=k
[∂αxD

β
y∂

j
t f ]γ ,

||f ||k,2+γ := ||f ||
Ck,

k
2
+ sup

|α|+|β|+2j=k
[∂αxD

β
y∂

j
t f ]2+γ

are finite, respectively.

3.3 Model Operator

3.3.1 Fundamental Solutions

1. Analysis of LM at Creg (
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2. Analysis of LM at Ereg If the boundary point q ∈ Ereg, then there is a neighborhood

Uq of q and smooth local coordinates (x, y) centered at q, in terms of which L takes the form

L = x∂2x + a(x, y)∂2y + b(x, y)∂xy + d(x, y)∂x + e(x, y)∂y (3.1)

where a(0, 0) = 1. We introduce the model operator in the space Se_reg:

LM = x∂2x + ∂2y + d∂x.

The solution kernel of LM is

Kt(x, y, x1, y1) = pdt (x, x1)k
e
t (y, y1)

where ket (y, y1) =
1√
4πt

e−
(y−y1)2

4t is the heat kernel.

3. Analysis of LM at Cmix If the boundary point q ∈ Cmix, then there is a neighborhood

Uq of q and smooth local coordinates (x, y) centered at q, in terms of which L takes the form

L = a(x, y)x∂2x + b(x, y)y2∂2y + c(x, y)xy∂xy + d(x, y)∂x + e(x, y)y∂y (3.2)

where a(0, 0) = 1. We introduce the model operator in the space Sc_mix:

LM = x∂2x + b∂2y + d∂x + by∂y

where b = b(0, 0). The solution kernel of LM is

Kt(x, y, x1, y1) = pdt (x, x1)k
e′
bt(y, y1)

where ke
′
bt(y, y1) =

1√
4πbt

e−
(lny−lny1)

2

4bt 1
y1

.
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4. Analysis of LM at E∞ If the boundary point q ∈ E∞, then there is a neighborhood

Uq of q and smooth local coordinates (x, y) centered at q, in terms of which L takes the form

L = a(y1, y2)∂
2
y1 + b(y1, y2)y

2
2∂

2
y2 + c(y1, y2)y1y2∂y1y2 + d(y1, y2)∂y1 + e(y1, y2)y2∂y2 (3.3)

where a(0, 0) = 1. We introduce the model operator in the space Se_∞:

LM = ∂2y1 + by22∂
2
y2 + by2∂y2

where b = b(0, 0). The solution kernel of LM is

Kt(y1, y2, y
′
1, y

′
2) = ket (y1, y

′
1)k

e′
bt(y2, y

′
2).

5. Analysis of LM at C∞ If the boundary point q is in C∞, then there is a neighborhood

Uq of q and smooth local coordinates (x, y) centered at q, in terms of which L takes the form

L = a(y1, y2)y
2
1∂

2
y1 + b(y1, y2)y

2
2∂

2
y2 + c(y1, y2)y1y2∂y1y2 + d(y1, y2)y1∂y1 + e(y1, y2)y2∂y2 .

(3.4)

We introduce the model operator in the space Sc_∞:

LM = ay21∂
2
y1 + by22∂

2
y2 + ay1∂y1 + by2∂y2

where a = a(0, 0), b = b(0, 0). The solution kernel of LM is

Kt(y1, y2, y
′
1, y

′
2) = ke

′
at(y1, y

′
1)k

e′
bt(y2, y

′
2).

Definition 3.3.1. The coordinates and forms of L introduced above are called local adapted

coordinates and local normal forms centered at q.

59



3.3.2 Hölder Estimates

Let S be one of the spaces in Creg, Cmix, C∞, Ereg, E∞.

Proposition 3.3.1. Let k ∈ N, R > 0, and 0 < γ < 1, assume that f ∈ Ck,γ(S) and f is

supported in B+
R(0). The solution v to

(∂t − LM )v(t, x, y) = 0, v(0, x, y) = f (3.5)

belongs to Ck,γ(S × [0, T ]), and there is a constant Ck,γ,R so that

||v||k,γ ≤ Ck,γ,R||f ||k,γ .

If f ∈ Ck,2+γ(S), then

||v||k,2+γ ≤ Ck,γ,R||f ||k,2+γ .

Proof. At Creg and Ereg, these are known results in

Let f ∈ Ck,γ(R+ × R), we first decompose f as

f = f1 + f2 = f1 + f(x,−∞)χ(y)

where χ ∈ C∞c ([−∞,∞)), χ(−∞) = 1 such that ||f2||′k,γ ≤ 2||f ||′k,γ . Then f1 ∈ Ck,γ(R+×

R) vanishes at infinity, for which we can apply

This leaves the Cauchy problem with initial data f2. We begin by writing

Ktf2(x, y) =

∫
S
Kt(x, y, x1, y1)f(x1, 0)χ(y1)dx1dy1

=

(∫ ∞

0
pdt (x, x1)f(x1, 0))dx1

)(∫ ∞

−∞
ket (y, y1)χ(y1)dy1

)
=: I1(t, x) · I2(t, y).

Since f(x, 0) ∈ Ck,γ(R+), χ(y) ∈ Ck,γ(R), then I1(t, x) ∈ Ck,γ(R+ × [0, T ]), I2(t, y) ∈
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Ck,γ(R × [0, T ]) are solutions to one-dimensional Cauchy problem respectively. Moreover,

since

lim
y→−∞

I2(t, y) = χ(−∞) = 1,

Ktf2 can be continuous extended to y = −∞ by Ktf2(x,−∞) = I1(t, x). Moreover for

α+β+2j = k, t > 0, ∂y(∂αx ∂
β
y ∂

j
t )Ktf2, ∂yy(∂

α
x ∂

β
y ∂

j
t )Ktf2 can also be continuously extended

to y = −∞ by 0.

So Ktf2 ∈ Ck,γ(R+×R× [0, T ]) is the solution to the Cauchy problem with initial data

f2 such that

||Ktf2||′k,γ ≤ C||f2||′k,γ ≤ 3C||f ||′k,γ .

In all, let v = v1 +Ktf2, then v satisfies (3.5) up to the quadratic boundary y = 0 and

||v||k,γ ≤ 6C||f ||k,γ .

Particularly along the edge y = 0, v(t, x, 0) = I1(t, x) and satisfies

(∂t − x∂2x − d∂x)v(t, x, 0) = 0 with v(0, x, 0) = f(x, 0).

If f ∈ Ck,2+γ(R+ × R), this shall be established similarly. For the remaining case when

S = Ereg, E∞, the proofs are essentially the same as above and we don’t give details here.

Proposition 3.3.2. Let k ∈ N, R > 0, and 0 < γ < 1. Assume that g ∈ Ck,γ(S × [0, T ])

and g is supported in B+
R(0)× [0, T ]. The solution u to

(∂t − LM )u(t, x, y) = g(t, x, y), u(0, x, y) = 0 (3.6)
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belongs to Ck,2+γ(S × [0, T ]), and there is a constant Ck,γ,R so that

||u||k,2+γ ≤ Ck,γ,R(1 + T )||g||k,γ .

The tangential first derivatives satisfy a stronger estimate: there is a constant C so that if

T ≤ 1, then

||Dyu||γ,T ≤ CT
γ
2 ||u||γ,T . (3.7)

Proof. At Creg and Ereg, these are known results in

Let g ∈ Ck,γ(S × [0, T ]). We first decompose g as

g = g1 + g2 = g1 + g(t, x, 0)χ(y)

where χ ∈ C∞c ([−∞,∞)), χ(−∞) = 1 such that ||g2||′k,γ ≤ 2||g||′k,γ . Then g1 ∈ Ck,γ(R+ ×

R× [0, T ]) vanishes at infinity, for which we can apply

This leaves the inhomogeneous problem with g2. We begin by writing

Atg2 =

∫ t

0

∫
S
Kt−s(x, y, x1, y1)g(s, x1, 0)χ(y1)dx1dy1ds

=

∫ t

0

(∫ ∞

0
pd(t− s, x, x1)g(s, x1, 0))dx1

)(∫ ∞

−∞
ket−s(y, y1)χ(y1)dy1

)
ds

=

∫ t

0
I1(t, s, x) · I2(t, s, y)ds.

If g(t, x, 0) ∈ Ck,γ(R+× [0, T ]), χ(y) ∈ Ck,γ(R× [0, T ]), then
∫ t
0 I1(t, s, x)ds ∈ Ck,2+γ(R+×

[0, T ]),
∫ t
0 I2(t, s, y)ds ∈ Ck,2+γ(R× [0, T ]) are solutions to one-dimensional inhomogeneous

problem respectively. So

(∂t − LM )Atg2 = g(t, x, 0)χ(y) +

∫ t

0
(∂t − LM )I1(t, s, x) · I2(t, s, y)ds = g(t, x, 0)χ(y).
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and

|∂yAtg2| ≤
√
T ||g2||∞. (3.8)

In the following we first assume that k = 0, Atg2, ∂xAtg2, x∂2xAtg2 can be continuously

extended to y = −∞ since lim
y→−∞

I2(t, s, y) = χ(−∞) = 1. Next we verify the hölder

continuity condition.

|x∂2xAtg2 − x′∂2xAtg2| ≤
∫ t

0
|x∂2xI1(t, s, x)− x′∂2xI1(t, s, x)| · I2(t, s, y)ds

≤
∫ t

0
|x∂2xI1(t, s, x)− x′∂2xI1(t, s, x)|ds ≤ C(1 + T )|

√
x−

√
x′|γ ||g(t, x, 0)||k,γ .

Similarly

|∂yAtg2 − ∂′yAtg2| ≤
∫ t

0
|∂yI2(t, s, y)− ∂′yI2(t, s, y)| · I1(t, s, y)ds (3.9)

≤
∫ t

0
|∂yI2(t, s, y)− ∂′yI2(t, s, y)|ds ≤ CT

γ
2 |y − y′|γ ||χ||k,γ . (3.10)

When k > 0, for α + β + 2j = k, using the formula

(∂αx ∂
β
y ∂

j
t )Atg2 =

∫ t

0

∫
R+×R

pd+αt−s (x, x1)k
e
s(y, y1)(∂

α
x1∂

β
y1L

j
d+α,M )g2(x1, y1)dx1dy1ds

+

j−1∑
r=0

∂
j−r−1
t ∂αx ∂

β
y L

r
d+α,Mg2,

so Atg2, ∂x(∂αx ∂
β
y ∂

j
t )Atg2, x∂

2
x(∂

α
x ∂

β
y ∂

j
t )Atg2 can be continuously extended to y = −∞ and

hölder continuity conditions hold.

Above all Atg2 ∈ Ck,2+γ(R+×R× [0, T ]) is the solution to the inhomogeneous problem

with g2 such that

||Atg2||′k,2+γ ≤ C(1 + T )||g2||′k,γ ≤ 3C(1 + T )||g||′k,γ .
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Let u = u1 +Atg2, then u solves the inhomogeneous problem ((3.6)) and ||u||2+γ ≤ 6C(1 +

T )||g||k,γ . (3.7) follows from (3.8), (3.9). Particularly along the edge y = 0, v(t, x, 0) =∫ t
0 I1(t, s, x)ds and satisfies

(∂t − x∂2x − d∂x)v(t, x, 0) = g(x, 0) with v(0, x, 0) = 0.

This concludes the proof for S = Cmix. Taken together, we obtain the conclusion. The

remaining case S = Ereg, E∞ shall be treated similarly.

3.4 Existence of Solution

We now return to our principal goal, namely the analysis of L defined on P . The estimates

proved in the previous sections allow us to prove existence of a unique solution to the

inhomogeneous problem

(∂t − L)w = g in P × [0, T ] (3.11)

with w(0, x, y) = f. (3.12)

Definition 3.4.1. Let M = {(Wj , ϕj) : j = 1, · · ·, K} be a cover of bP by normal coordinate

charts, W0 ⊂⊂ int P , covering P\ ∪Kj=1 Wj and let {φj : j = 0, · · ·, K} be a partition of

unity subordinate to this cover. A function f ∈ Ck,γ(P ) provided (φjf) ◦ ϕj ∈ Ck,γ(Wj) for

each j. We define a global norm on Ck,γ(P ) by setting

||f ||k,γ =
K∑
j=0

||(φjf) ◦ ϕj ||
Wj

k,γ .

Theorem 3.4.1. For 0 < γ < 1, if the data f ∈ Ck,2+γ(P ), g ∈ Ck,γ(P × [0, T ]), then

equation (3.11) has a unique solution w ∈ Ck,2+γ(P × [0, T ]).

Uniqueness of the solution can be obtained from the following maximum principle.
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Proposition 3.4.1. (Maximum Principle) Let u ∈ Ck,2+γ(P ) be a subsolution of ∂tu ≤ Lu

on P × [0, T ], then

max
P×[0,T ]

u(t, x, y) = max
P

u(0, x, y). (3.13)

Proof. We show that if u(0, x, y) ≤ 0, then u(t, x, y) ≤ 0 for 0 < t ≤ T . The standard

argument (see

For a point q on infinity edge E∞, by definition, there exist local coordinates (x, y)

centered at q and a neighborhood U = {0 ≤ x < 1, |y| < 1} such that L has the form

L = ax2∂2x + bx∂xy + c∂2y + V.

After a coordinate map z = −lnx, L transforms to a uniform elliptic operator L′ on D =

[0,∞)× [0, 1]. Let v(t, x, z) = u(t, x, e−z). Then (∂t − L′)v ≤ 0 on D. Because u ∈ C0(P ×

[0, T ]), v is bounded on [0,∞)× [0, 1], so there exists A, a > 0 such that v ≤ Aea(x
2+z2).

We use the fundamental solution of the parabolic equation constructed in

For ϵ1, ϵ2 > 0, set

vτ (t, x, z) = v(t, x, z)− ϵ1Uτ (t, x, z) + ϵ2
1

1 + t
,

then vτ is a strict subsolution of (∂t − L′)vτ < 0. We choose τ so that G
4τ > a. Let

DR = (0, τ ′]× (D ∩ bBR(0)),

BR(0) is the ball of radius of R around the origin in R2 and 0 < τ ′ < τ . Then with R

sufficiently large, vτ is negative on DR. Let ϵ1, ϵ2 → 0, we see v(t, x, z) ≤ 0 on the infinity,
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therefore u(t, q) ≤ 0 for 0 < t ≤ τ ′. Therefore we proved that

max
P×[0,T ]

u(t, x, y) ≤ max
P

u(0, x, y).

3.4.1 Parametrix construction

Let P denote the two-dimension compact manifold with corners, Cr = {Cr,i} the set of

regular corners, Cm = {Cm,i} the set of mix corners, C∞ = {C∞,i} the set of infinity

corners, Er = {Er,i} the set of regular edges, E∞ = {E∞,i} the infinity edges, then

bP = Cr
⋃

Cm
⋃

C∞
⋃

Er
⋃

E∞.

First we fix a function φU ∈ C∞(P ) that is equal to 1 in a neighborhood of bP . Let U be a

neighborhood of bP such that bU ∩ intP is a smooth hypersurface in P , and Ū ⊂⊂ φ−1
U (1).

The subset PU = P ∩ Uc is a smooth compact manifold with boundary and L |PU is a

non-degenerate elliptic operator.

P = U
⊔

PU , Ū ⊂⊂ φ−1
U (1)

We can double PU across its boundary to obtain P̃U , which is a compact manifold without

boundary. And the operator L can be extended to a classical elliptic operator L̃ on P̃U .

The classical theory of non-degenerate parabolic equations on compact manifolds without

boundary, applies to construct an exact solution operator

ui = Q̃t[(1− φU )g]
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to the inhomogeneous equation:

(∂t − L̃)ui = (1− φU )g in P̃U × [0, T ]

with ui(0, p) = 0, p ∈ P̃U .

This operator defines bounded maps from Ck,γ(P̃U × [0, T ]) → Ck,2+γ(P̃U × [0, T ]) for any

0 < γ < 1, k ∈ N. We set interior parametrix

Q̂ti = ψQ̃t[(1− φU )g] (3.14)

where we choose ψ ∈ C∞
c (PU ) so that ψ ≡ 1 on a neighborhood of the support of (1−φU ).

Figure 3.1: Covering in the proof

To build the boundary parametrix, we construct the ϵ-grid as follows. Let

U = {U0,i, U1,i, U2,i, U3,i, U4,i}
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be an NCC covering of bP , where U0,i, U1,i, U2,i are 5ϵ-neighborhoods of i-th regular corner,

i-th mix corner, i-th infinity corner, respectively. By shrinking the neighborhoods we can

assume that U0,i, U1,i, U2,i are disjoint.

All of the charts in U3,i, U4,i have coordinates lying in R+ × R. We let Zi,j ,Wi,j be the

points in U3,i, U4,i with coordinates

{Zi,j = (0, ϵj) : j ∈ Z}, {Wi,j = (0, ϵj) : j ∈ Z}

respectively. And we let U3,i,j , U4,i,j to be the 5ϵ-neighborhood of Zi,j ,Wi,j . To simplify

notation we do not keep track of the dependence on ϵ. We illustrate the covering in Fig 3.1.

Let (x, y) denote normal cubic coordinates in one of these neighborhoods, Un,i,j (if n =

0, 1, 2, assume j = 0). In these coordinates the operator L takes the normal form Li,j . We

let Ln,i,j,M be the corresponding model operator and let Atn,i,j denote the solution operator

for the model problem

(∂t − Ln,i,j,M )u = g, u(x, 0) = 0.

For n = 3, 4, let χn ≡ 1 in (0, 2)×(−2, 2) and vanishing outside (0, 3)×(−3, 3), ϕn ≡ 1 in

(0, 4)×(−4, 4) and vanishing outside (0, 5)×(−5, 5), and χn, ϕn ∈ C∞
c (R+×R), respectively.

We define

χ̃n,i,j(x, y) = χn(
x

ϵ2
,
y − ϵj

ϵ
), ϕn,i,j(x, y) = ϕi(

x

ϵ2
,
y − ϵj

ϵ
).

For n = 0, 1, 2, we let

χ̃n,i,j , ϕ̃n,i,j =


χn(

x1
ϵ2
, x2
ϵ2
), ϕn(

x1
ϵ2
, x2
ϵ2
) n = 0

χn(
x
ϵ ,

y
ϵ2
), ϕn(

x
ϵ ,

y
ϵ2
) n = 1

χn(
y1
ϵ ,

y2
ϵ ), ϕn(

y1
ϵ ,

y2
ϵ ) n = 2

where χn ≡ 1 in (0, 2) × (0, 2) vanish outside (0, 3) × (0, 3), ϕn ≡ 1 in (0, 4) × (0, 4) vanish
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outside (0, 5)× (0, 5), and χn, ϕn ∈ C∞
c (R2

+), respectively.

By abuse of notation, we still denote χ̃n,i,j , ϕn,i,j to indicate their pullback to P . It is

clear that there exists S > 0, independent of ϵ, such that for r ∈ P ,

χ(r) =
4∑
i=0

∑
i,j

χ̃n,i,j(r) ≤ S.

It is clear that χϵ(r) ≥ 1 for r ∈ bP . We can arrange to have φU = 1 on the set χϵ ≥ 1
2 and

Supp φU ⊂ χ−1
ϵ ([ 116 , S]). Based on that, U′ = {Un,i,j} together with PU is a partition of P .

To get a partition of unity of a neighborhood of bP subordinate to Ui,j , we replace the

functions {χ̃n,i,j} with

χn,i,j = φU ·

 χ̃n,i,j∑4
n=0

∑
i,j
χ̃n,i,j

 .

For each ϵ > 0, we define a boundary parametrix by setting

Q̂tb,ϵ =
4∑

n=0

∑
i,j

ϕn,i,jA
t
n,i,jχn,i,j . (3.15)

In total we set

Q̂tg = Q̂tb,ϵg + Q̂tig. (3.16)
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3.4.2 Perturbation Estimate

Next we are going to analyze the perturbation term,

(∂t − L)Q̂tb,ϵg = (∂t − L)

 4∑
n=0

∑
i,j

ϕn,i,jA
t
n,i,jχn,i,jg


=

 4∑
i=0

∑
i,j

χn,i,jg

+

 4∑
i=0

∑
i,j

ϕn,i,j(Ln,i,j,M − L)Atn,i,j [χn,i,jg]


+

 4∑
i=0

∑
i,j

[ϕn,i,j , L]A
t
n,i,j [χn,i,jg]


= φUg + E0

ϵ (g) + E1
ϵ (g)

where

φU =
4∑

n=0

∑
i,j

χn,i,j ,

E0
ϵ (g) =

4∑
n=0

∑
i,j

ϕn,i,j(Ln,i,j,M − L)Atn,i,j [χn,i,jg]

E1
ϵ (g) =

4∑
n=0

∑
i,j

[ϕn,i,j , L]A
t
n,i,j [χn,i,jg].

And

(∂t − L)Q̂tig = (1− φU )g + [ψ,L]Q̂ti[(1− φ)g] = (1− φU )g + E∞
i (g).

Taken together,

(∂t − L)Q̂tg = g + E0
ϵ (g) + E1

ϵ (g) + E∞
i (g). (3.17)

As ϕ ≡ 1 on the support χ, the norm of E1
ϵ is bounded and by Ce−

M
T as T → 0 for some

M > 0 by
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Then we estimate E0
ϵ .

n=0

In U0,i, under local adapted coordinates, the operator L takes the form

L = x∂xx + y∂yy + xyb(x, y)∂xy + d(x, y)∂x + e(x, y)∂y.

E0
0,ϵ = ϕϵ(LM − L)At[χϵg] = −ϕϵ(xyb(x, y)∂xy + b̃∂x + ẽ∂y)A

t[χg].

Since ϕϵ is supported in the set where x, y ≤ 5ϵ2, we have

||E0
0,ϵ||∞ ≤ Cϵ2||χϵg||0,γ ≤ Cϵ2−γ ||g||0,γ . (3.18)

We used

[fgh]γ ≤ ||fg||∞[h]γ + ||fh||∞[g]γ + ||gh||∞[f ]γ

and [ϕϵ]γ ≤ Cϵ−γ , so

[E0
0,ϵ]γ ≤ Cϵ2−γ ||χϵg||γ ≤ Cϵ2−2γ ||g||0,γ (3.19)

where the constant C is independent of ϵ. Combining (3.18) and (3.19), we conclude

||E0
0,ϵ||0,γ ≤ Cϵ2−2γ ||g||0,γ . (3.20)

n=3

In a neighborhood U1 of an infinity edge point, under local adapted coordinates, the operator

L takes the form

L = x∂xx + xyb(x, y)∂xy + c(x, y)y2∂yy + d(x, y)∂x + e(x, y)y∂y
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and the model operator:

LM = x∂xx + y2∂yy + d∂x + y∂y.

We split

L− LM = Lr + e(x, y)y∂y, (3.21)

Lr = xyb(x, y)∂xy + c̃(x, y)y2∂yy + d̃(x, y)∂x. (3.22)

There are two types of errors:

E
0,r
1,ϵ g = −ϕϵLrAt[χϵg], E0,t

1,ϵg = −ϕϵe(x, y)y∂yAt[χϵg].

Then by Proposition (3.3.2) and [χϵ]γ = O(ϵ−γ) and since

|χϵ(y)− χϵ(y
′)| ≤ Cϵ−γ |y − y′|γ ≤ Cϵ−γ |lny − lny′|γ ,

we have

[E
0,t
1,ϵ]γ ≤ Cϵ−γT

γ
2 ||χϵg||0,γ + CT

γ
2 ||χϵg||0,γ ≤ Cϵ−2γT

γ
2 ||g||0,γ ,

||E0,t
1,ϵ||∞ ≤ CT

γ
2 ||χϵg||∞ ≤ CT

γ
2 ϵ−γ ||g||∞.

Taken together

||E0,t
1,ϵ||0,γ ≤ Cϵ−2γT

γ
2 ||g||0,γ . (3.23)

Next we estimate the remaining term E
0,r
1,ϵ g. Since ϕϵ is supported on x ≤ 5ϵ2, y ≤ 5ϵ,
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the vanishing properties of the coefficients of Lr implies that the L∞-term is bounded by

||E0,r
1,ϵ (g)||∞ ≤ Cϵ||χϵg||0,γ ≤ Cϵ1−γ ||g||0,γ .

To estimate the Hölder semi-norm we need to consider terms

||ϕϵxyb(x, y)||∞
[
∂xyA

t[χϵg]
]
γ
, ||ϕϵc̃(x, y)||∞y2∂yy

[
At[χϵg]

]
γ
,

||ϕϵd̃(x, y)||∞∂x
[
At[χϵg]

]
γ

and

[ϕϵxyb(x, y)]γ ||∂xyA
t[χϵg]||∞, [ϕϵc̃(x, y)]γ ||y

2∂yyA
t[χϵg]||∞,[

ϕϵd̃(x, y)
]
γ
||∂xAt[χϵg]||∞.

The first three terms are bounded by

Cϵ||χϵg||0,γ ≤ Cϵ1−γ ||g||0,γ .

For any 0 < γ′ ≤ γ < 1, the second three terms are bounded by

Cϵ1−γ ||χϵg||0,γ′ ≤ Cϵ1−γ−γ
′
||g||0,γ .

We therefore fix a 0 < γ′ ≤ γ so that γ + γ′ < 1, then

||E0,r
1,ϵ g||0,γ ≤ Cϵ1−γ−γ

′
||g||0,γ . (3.24)
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n=1,2,4

These cases are estimated as above. We still split L − LM into two parts Lr and the first

tangential parts like (3.21). The vanishing properties of coefficients of Lr and the estimates

of first tangential parts give the same results as

||E0,t
1,ϵ||0,γ ≤ Cϵ−2γT

γ
2 ||g||0,γ ,

||E0,r
1,ϵ g||0,γ ≤ Cϵ1−γ−γ

′
||g||0,γ .

Proof of Theorem 3.4.1

Case when k=0. We first prove the case when k = 0. We write the solution w = u + v,

where v solves the homogeneous Cauchy problem with initial data v(0, x, y) = f(x, y) and u

solves the inhomogeneous problem with u(0, x, y) = 0.

Recall the perturbation term (3.17),

(∂t − L)Q̂tg = g + E0
ϵ (g) + E1

ϵ (g) + E∞
i (g).

The support of the kernel of E∞
i g has a positive distance from the diagonal and therefore

this is a compact operator in the metric topology of C0,γ(P × [0, T ]), tending to zero as

T → 0. Using the estimations in the previous subsections,

||E0
ϵ (g) + E1

ϵ (g)||0,γ,T ≤ C
[
ϵ2−2γ + ϵ−2γT

γ
2 + ϵ1−γ−γ

′]
· ||g||0,γ,T .

Fix a δ > 0, we choose ϵ so that ϵ2−2γ + ϵ1−γ−γ
′
= δ. If we choose T0 sufficiently small,

then the operator Et = E
0,t
ϵ + E

1,t
ϵ + E∞

i has norm strictly less than 1, and therefore the

operator Id+ Et is invertible as a map from Ck,γ(P × [0, T0]) to itself. Thus the operator

Qt = Q̂t
(
Id+ Et

)−1
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is the right inverse to (∂t − L) up to time T0 and is a bounded map

Qt : C0,γ(P × [0, T0]) → C0,2+γ(P × [0, T0]).

After constructing Q̂t, the solution operator for the inhomogeneous problem, we build a

similar boundary parametrix for the homogeneous Cauchy problem, which we then glue to

the exact solution operator for PU . For each n let Q̂tn,i,j be the solution operator for the

homogeneous Cauchy problem defined by the model operator in Ui,j . And let Q̂t00 be the

exact solution operator for the Cauchy problem (∂t−L)u = 0 on W0 with Dirichlet data on

bW0 × [0,∞). For each ϵ > 0, we define a parametrix by setting

Q̂t0 =
4∑
i=0

∑
i,j

ϕn,i,j,ϵQ̂
t
n,i,jχn,i,j,ϵ + ψQ̂t00(1− φU ). (3.25)

Then

(∂t − L)Q̂t0 = Etf : C0,2+γ(P ) → C0,γ(P × [0, T0])

is a bounded map and a slightly stronger statement is limt→0 ||Et|| = 0.

Finally we set Qt0f = Q̂t0f − Q̂tEtf , then

Qt0 : C0,2+γ(P ) → C0,2+γ(P × [0, T0])

is bounded and so is the solution operator of the Cauchy problem.

Higher order regularity. We want to establish the convergence of (Id + Et)−1 in the

operator norm defined by Ck,γ(P × [0, T0]). We follow the proof in

We have proved the existence of solutions to the inhomogeneous problem and Cauchy

problem in [0, T0], where T0 does not depend on the initial data. To show the solution exists

for all t > 0, we can apply this proof again with initial data f(0, ·) = v(T0, ·), g(t, ·) =
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g(t + T0, ·). This extends the solution to [0, 2T0]. We can repeat this process k times until

kT0 ≥ t.

3.5 The Heat Kernel

Now we are prepared to construct the heat kernel of the solution operator:

(∂t − L)vf = 0 with vf (0, ·, ·) = f. (3.26)

We want to show the following result:

Theorem 3.5.1. The global heat kernel Ht(d1, d2, l1, l2) ∈ C∞(P reg × P̊ × (0,∞)) of the

full operator L exists and for f ∈ C0(P ), then

∫
P
Ht(d1, d2, l1, l2)f(l1, l2)dl1dl2

is the solution of (∂t − L)vf = 0 with vf (0, ·, ·) = f .

When (d1, d2) ∈ P̊ , the existence of the heat kernel follows from a standard construction

for elliptic operators and the theory developed in the preceding sections. We may indeed

construct a heat kernel H̃t(d1, d2, l1, l2) for (l1, l2) in an open neighborhood of (d1, d2) and

obtain by standard elliptic regularity that Ht − H̃t solves (3.11) with a smooth right-hand

side. A nontrivial aspect of the above result is that we also construct a heat kernel when

(d1, d2) is on the regular part of bP , where elliptic regularity is not applied. Instead we

use fundamental solutions of model operators and use a series expansion to construct and

analyze the heat kernel.

3.5.1 Overview of main ideas

We continue working under the similar ϵ−grid covering constructed in Section 3.4.1. Instead

of requiring L having normal forms in each Un,i,j , we require L takes the form in (3.1.1) but
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without mixed second-order derivative term. This can be achieved by taking ϵ small enough

and through coordinate change.

To construct the global heat kernel of the full operator L, we first construct the local

heat kernel {qtn,i} in Un,i, which satisfies that for ∀q ∈ Ůn,i,

(∂t − L)qtn,i(·, q) = 0, lim
t→0

qtij(·, q) = δq(·). (3.27)

Then we patch them together to construct the global kernel parametrix.

Construction of Local heat kernel: Fix q in the interior of Un,i, we fix a smooth

compactly supported function h(x, y) ∈ C∞
c (Un,i) and h(x, y) ≡ 1 on Supp ϕn,i. Letting

L̃ = Lq,M + h(x, y)(L− Lq,M ) (3.28)

where Lq,M is the model operator we choose corresponding to q. Then L̃ equals to L on Supp

ϕi,j , so the problem transform to construct the Green function qt of the solution operator in

this neighborhood:

(∂t − L̃)qt(·, q) = 0 with lim
t→0+

qt(q, ·) = δ(q). (3.29)

The idea is to approximate qt(·, q) by the kernel of the model operator LM modeled at q and

control the perturbation term to be sufficiently smooth.

Let Kt be the fundamental solution of Lq,M , Kt be the solution operator of Lq,M ,

Bt = (L̃− Lq,M )Kt, an observation is that for N ≥ 1,

(∂t − L̃)

qt(·, q)−Kt(t, ·, q)−
N−1∑
i=1

Ki
tBδ

 = BN δ (3.30)

where Bδ = (L̃− LM )Kt.
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3.5.2 Existence of Local Heat Kernel

Case q ∈ U0.

We first consider the case when q is in a neighborhood U0 of a regular corner. Under the

local adapted coordinates (??), L takes the form

L = a(x1, x2)x1∂
2
x1 + b(x1, x2)x2∂

2
x2 + d(x1, x2)∂x1 + e(x1, x2)∂x2 .

Fix a point q = (x2, y2) in the interior of U0. We introduce the model operator Lq,M in

Sc_reg:

Lq,M = a(q)x1∂
2
x1 + b(q)x2∂

2
x2 + d(q)∂x1 + e(q)∂x2 . (3.31)

Then the kernel formulaKt(x, y, x1, y1) is the product of two one-dimensional kernel formula:

Kt(x, y, x2, y2) = p
d(q)/a(q)
a(q)t

(x, x2)p
e(q)/b(q)
b(q)t

(y, y2). (3.32)

Proposition 3.5.1. Denote d(t, x, y) = (
√
x−√

x2)
2

2a(q)t
+

(
√
y−√

y2)
2

2b(q)t
. Assume that for (x, y) ∈

R2
+, j ≤ 3

2

|g(t, x, y)| ≤ 1

tj
e−d(t,x,y)

and for some 0 < γ < 1,

|g(t, x, y)− g(t, x′, y)| ≤ 1

tj+
γ
2

|
√
x−

√
x′|γ

(
e−d(t,x,y) + e−d(t,x

′,y)
)

(3.33)

|g(t, x, y)− g(t, x, y′)| ≤ 1

tj+
γ
2

|√y −
√
y′|γ

(
e−d(t,x,y) + e−d(t,x

′,y)
)
. (3.34)
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Then there exists a constant C > 0 such that

|Bg(t, x, y)| ≤ C

√
t

tj
e−

d(t,x,y)
2

and

|Bg(t, x, y)−Bg(t, x′, y)| ≤ C

tj+
γ−1
2

|
√
x−

√
x′|γ

(
e−

d(t,x,y)
2 + e−

d(t,x′,y)
2

)
|Bg(t, x, y)−Bg(t, x, y′)| ≤ C

tj+
γ−1
2

|√y −
√
y′|γ

(
e−

d(t,x,y)
2 + e−

d(t,x′,y)
2

)
.

Proof. By replacing a(q)t, b(q)t with t in the kernel formula (3.32), we might as well assume

that a(q) = b(q) = 1. Through a Taylor expansion of the coefficient of L at q, we see

L− Lq,M = Θ((x− x2) + (y − y2))(Lx + Ly) (3.35)

where Lx = x∂2x + d(q)∂x, Ly = y∂2y + e(q)∂y. In the following proof we will use a number

of kernel estimates, which we present and prove in the Appendix.

First we assume that d(q) ≥ 1
2 or d(q) = 0, e(q) ≥ 1

2 or e(q) = 0. We use the estimate of

pdt (x, y) (5.1.1) to see

pdt−s(x, x1) ≤
C√
t− s

e
− (

√
x−√

x1)
2

2(t−s) 1
√
x1
,

so we deduce that:

|Ktg| ≤ Ce−
(
√
x−

√
x2)

2+(
√
y−√

y2)
2

2t .

Next we turn to estimate Bg. It suffices to consider Lx so that

L̃− LM = Θ((x− x2) + (y − y2))Lx. (3.36)

Since the t−regularity of (L̃− LM )Kt−s is (t− s)−2 which is not integrable in s, using the
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fact that ∫ ∞

0
x∂2xp

d
t (x, y)dy = 0,

we split Bg into two parts

Bg = (L̃− LM )

∫ t

t
2

∫
R2
+

Kt−s(x, y, x1, y1)(g(s, x1, y1)− g(s, x, y1))dx1dy1ds (3.37)

+(L̃− LM )

∫ t
2

0

∫
R2
+

Kt−s(x, y, x1, y1)g(s, x1, y1)dx1dy1ds. (3.38)

The first term is bounded by

(L̃− LM )

∫ t

t
2

∫
R2
+

Kt−s(x, y, x1, y1)
1

sj+
γ
2

|
√
x−√

x1|γ

·

(
e−

(
√
x1−

√
x2)

2

2s + e−
(
√
x−√

x2)
2

2s

)
e−

(
√
y1−

√
y2)

2

2s dx1dy1ds.

We use the estimates of derivatives (5.1.3), (5.28) to see

|∂xpdt−s(x, x1)|, |x∂2xpdt−s(x, x1)| ≤
C

(t− s)
3
2

e
−

(
√
x−√

x1)
2+(ys−ys1)

2

2(t−s) 1
√
x1
. (3.39)

By the integral

∫ ∞

−∞

1√
t− s

e−
(x−x1)2
t−s

1√
s
e−

(x1−x2)2
s dx1 =

1√
t
e−

(x−x2)2
t (3.40)

and the contribution of coefficients of L̃− LM :

|x− x′| · e−
(x−x′)2

t ≤ C
√
te−

(x−x′)2
2t , (3.41)

we can deduce that (3.37) is integrable and

|Bg| ≤ C
1√
t
e−

(
√
x−√

x2)
2+(

√
y−√

y2)
2

2t .
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Finally we turn to estimate [·]γ part of Bg. We consider two cases. In the first case when

|
√
x−

√
x′| ≥

√
t,

|Bg(t, x, y)− Bg(t, x′, y)| ≤ |Bg(t, x, y) + Bg(t, x′, y)| ·

(
|
√
x−

√
x′|

t

)γ
.

In the second case when |
√
x−

√
x′| ≤

√
t,

|
√
x−√

x2| ≤ |
√
x′ −√

x2|+
√
t,

so that multiplying this term with (e−
(
√
x−√

x2)
2

t + e−
(
√
x′−√

x2)
2

t ),

|
√
x−√

x2| · (e−
(
√
x−√

x2)
2

t + e−
(
√
x′−√

x2)
2

t ) ≤ C
√
t(e−

(
√
x−√

x2)
2

2t + e−
(
√
x′−√

x2)
2

2t ). (3.42)

1. If x′ < x
3 , it suffices to show that

|x∂2xKtg(t, x, y)| ≤ C
x
γ
2

tj+
γ
2

e−
d(x,y)
2t .

This is obtained similarly to Bg in (3.37): we replace the estimate (3.39) with

x∂2xp(t− s, x, x1)dx1 ≤ Cx
γ
2

(t− s)
3+γ
2

e
−

(
√
x−√

x1)
2+(ys−ys1)

2

2(t−s) dxs1.

Then

|(x− x2)x∂
2
xKtg(t, x, y)− (x′ − x2)x

′∂2xKtg(t, x
′, y)|

≤ |(x− x2)− (x′ − x2)|x∂2xKtg(t, x, y)

+|(x′ − x2)| · |x∂2xKtg(t, x, y)− x′∂2xKtg(t, x
′, y)|.
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The first term is bounded by C |
√
x−

√
x′|γ

tj+
γ−1
2

e−
d(x,y)
2t . The estimate below

|x∂2xKtg(t, x, y)− x′∂2xKtg(t, x
′, y)| ≤ C

x
γ
2

tj+
γ
2

(
e−

d(x,y)
2t + e−

d(x′,y)
2t

)
≤ C

|
√
x−

√
x′|γ

tj+
γ
2

(
e−

d(x,y)
2t + e−

d(x′,y)
2t

)

and (3.42) show that the second term is bounded by C |
√
x−

√
x′|γ

tj+
γ−1
2

e−
d(x,y)
2t .

2. We assume that x
3 < x′ < x,

Since we have established the Hölder continuity of the first derivative, it suffices to

establish the Hölder continuity when L̃ − LM = (x − x2)(x∂
2
x + d∂x). We split B2g

into two parts

Bg(t, x, y)− Bg(t, x′, y) = (3.43)

(L̃− LM )

∫ t

t
2

∫
R2
+

[
Kt−s(x, y, x1, y1)−Kt−s(x

′, y, x1, y1)
]
g(s, x1, y1)dx1dy1ds

(3.44)

+(L̃− LM )

∫ t
2

0

∫
R2
+

[
Kt−s(x, y, x1, y1)−Kt−s(x

′, y, x1, y1)
]
g(s, x1, y1)dx1dy1ds

(3.45)

= A+B. (3.46)
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With J = [α, β],
√
α =

3
√
x′−

√
x

2 ,
√
β =

3
√
x−

√
x′

2 , we have

A =

∫ t

t
2

[

∫
J
(L̃− LM )Kt−s(x, x1, y, y1)(g(s, x1, y1)− g(s, x, y1))dx1dy1− (3.47)∫

J
(L̃− LM )Kt−s(x

′, x1, y, y1)(g(s, x1, y1)− g(s, x′, y1))dx1dy1− (3.48)∫
Jc
(L̃− LM )Kt−s(x, x1, y, y1)(g(s, x, y1)− g(s, x′, y1))dx1dy1+ (3.49)∫

Jc
((L̃− LM )Kt−s(x, x1, y, y1) (3.50)

−(L̃− LM )Kt−s(x
′, x1, y, y1))(g(s, x1, y1)− g(s, x′, y1))dx1dy1]ds (3.51)

= I1 + I2 + I3 + I4. (3.52)

We first estimate I3. Based on the observation that for t > 0,

∂tpd(t, x, x1) = Ld,xpd(t, x, x1) = L∗d,x1pd(t, x, x1),

the operator Ltx = ∂x1(∂x1x1 − d), so we can perform x1-integral to obtain that

I3 ≤
∫ t

t
2

[(∂x1x1 − d)Kt−s(x, α, y, y1)− (∂x1x1 − d)Kt−s(x, β, y, y1)]

(g(s, x, y1)− g(s, x′, y1))dx1dy1ds.

We use the Hölder estimate of g (3.33) and

If 0 < d(q) ≤ 1
2 or 0 < e(q) ≤ 1

2 , all the arguments are essentially similar to those above

except that we need to replace the integral (3.40) with the estimate: for 0 < d < 1,

∫ ∞

−∞

1

(t− s)d
e−

(
√
x−√

x1)
2

t−s
1

x1−d1

1√
s
e−

(
√
x1−

√
x2)

2

s dx1 (3.53)

≤ Cp
1

(t− s)d
√
s

(√
(t− s)s

t

)2d

e−
(
√
x−√

x2)
2

t . (3.54)
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Notice that the degree of time t on the right hand side above is independent of d, so in total

the regularity of time t in this case is same as that when d > 1
2 .

Then we can show the existence of local heat kernel and analyze their behavior as t→ 0.

Proposition 3.5.2. There exists a local heat kernel satisfying (3.27) in U0. Moreover, for

any f ∈ Cc(U0),

(∂t − L)

∫
U0

qt(x, y, x1, y1)f(x1, y1)dx1dy1 = 0, (3.55)

and

1. If (0, 0) is a transverse point,

lim
t→0

∫
U0

qt(0, 0, x1, y1)f(x1, y1)dx1dy1 = f(0, 0). (3.56)

2. If (0, 0) is a tangent point,

lim
t→0

∫
U0

qt(0, 0, x1, y1)f(x1, y1)dx1dy1 = 0. (3.57)

Proof. First we show that Bδ = (L̃− LM )Kt satisfies the assumption in Proposition 3.5.1.

We begin by writing

Kt(x, y, x1, y1) = p
d(x1,y1)
t (x, x1)p

e(x1,y1)
t (y, y1).

1. If d(0, 0) > 0: by shrinking the neighborhood U0, we might as well assume that d(x, y) ∈

[d1, d2] for some 0 < d1 < d2. Then by the estimates in (5.1.1), (5.1.3), (5.28),

|∂xpd(x1,y1)(t, x, x1)|, |x∂
2
xpd(x1,y1)(t, x, x1)| ≤

C

t
3
2

e−
(
√
x−√

x1)
2

2t (xd1−1
1 +

1
√
x1

),

|pd(x1,y1)(t, x, x1)| ≤
C√
t
e−

(
√
x−√

x1)
2

2t (xd1−1
1 +

1
√
x1

).
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2. If d(0, 0) = 0: so d(0, y) = 0 by Assumption 3.1.1. Again by shrinking U0 we may

assume that d(x, y) ∈ [0, 12 ]. A more precise estimate is

pd(x,y)(t, x, y) ≤


1

td(x,y)
e−

x+y
t yd(x,y)−1ψd(x,y)(

xy
t2
) when xy

t2
< 1

1√
yt
e−

(
√
x−√

y)2

t when xy
t2
> 1

.

Using the expansion of ψd at 0, for 0 ≤ z ≤ 1,

ψd(z) = ψd(0) + ψ′d(c)z

for some c ∈ [0, 1]. ψ′d is uniform bounded on d ∈ (0, 12 ]× [0, 1]. Since ψd(0) = 1
Γ(d)

, 1
Γ(0)

= 0

and ∂
∂d

1
Γ(d)

is uniformly bounded on (0, 12 ], where Γ(·) is the usual Gamma function, we have

ψd(x,y)(
xy

t2
) ≤ 1

Γ(d(x, y))
+ C

xy

t2
≤ C(y +

xy

t2
).

In all

pd(x,y)(t, x, x1) ≤ C
1√
x1t

e−
(
√
x−√

x1)
2

2t .

Similarly we can show that the derivatives of pd(x,y)(x, x1) are bounded by

|∂xpd(x1,y1)(t, x, x1)|, |x∂
2
xpd(x1,y1)(t, x, x1)| ≤

C

t
3
2

e−
(
√
x−√

x1)
2

2t
1

√
x1
.

Above all, there exists d1, d2 > 0 such that

|∂xpd(x1,y1)(t, x, x1)|, |x∂
2
xpd(x1,y1)(t, x, x1)| ≤

C

t
3
2

e−
(
√
x−√

x1)
2

2t xd1−1
1 (3.58)

|pd(x1,y1)(t, x, x1)| ≤
C√
t
e−

(
√
x−√

x1)
2

2t xd1−1
1 , (3.59)
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and

|∂ype(x1,y1)(t, y, y1)|, |y∂
2
ype(x1,y1)(t, y, y1)| ≤

C

t
3
2

e−
(
√
y−√

y1)
2

2t yd2−1
1 (3.60)

|pe(x1,y1)(t, y, y1)| ≤
C√
t
e−

(
√
y−√

y1)
2

2t yd2−1
1 . (3.61)

Finally because

L− LM = Θ((x− x2) + (y − y2))(x∂
2
x + ∂x + y∂2y + ∂y),

combined with the estimates above, we conclude that

|(L− LM )Kt| ≤
C

t
3
2

e−
(
√
x−√

x1)
2+(

√
y−√

y1)
2

2t xd1−1
1 yd2−1

1 , (3.62)

so we can iterate Proposition 3.5.1 until B5δ ∈ C0,γ(U0 × [0, T ]), for which by the results in

Theorem 3.4.1, there exists the solution QtB5δ ∈ C0,2+γ(P × [0, T ]). Recall that

(∂t − L̃)

qt(·, q)−Kt(t, ·, q)−
N−1∑
i=1

KtBiδ

 = BN δ, (3.63)

hence there exists a local heat kernel qt(x, y, x2, y2) in U0, which has the expansion

qt(x, y, x2, y2) = Kt(x, y, x2, y2) +
4∑
i=1

KtBiδ +QtB5δ. (3.64)

Moreover, the derivatives of it

∂xqt(x, y, x1, y1), ∂yqt(x, y, x1, y1), x∂
2
xqt(x, y, x1, y1), y∂

2
yqt(x, y, x1, y1)

are also bounded by the right hand side of (3.62).

Therefore, on [t0, t1], the integral of these derivatives converges uniformly on t ∈ [t0, t1], (x, y) ∈
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U0. Hence we can exchange derivatives with integration to obtain that

(∂t − L)

∫
U0

qt(x, y, x1, y1)f(x1, y1)dx1dy1 =

∫
U0

(∂t − L)qt(x, y, x1, y1)f(x1, y1)dx1dy1 = 0.

(3.65)

Finally we turn to prove (3.5.2). Based on the expansion (3.64), it suffices to show that

(3.5.2) holds for the fundamental solution

Kt(0, 0, x, y) = p
d(x,y)
t (0, x) · pe(x,y)t (0, y). (3.66)

1. If (0, 0) is a transverse point, we assume that d(x, y), e(x, y) ∈ [d1, d2] for some

0 < d1 < d2. We denote by

K ′
t(0, 0, x, y) = p

d(0,0)
t (0, x) · pe(0,0)t (0, y). (3.67)

Since lim
t→0

K ′
t(0, 0, x, y) = δ(0, 0), it is suffices to show that

lim
t→0

(Kt(0, 0, x, y)−K ′
t(0, 0, x, y)) = 0. (3.68)

We have

|Kt(0, 0, x, y)−K ′
t(0, 0, x, y)|

≤ |(pd(x,y)t (0, x)− p
d(0,0)
t (0, x)||pe(x,y)t (0, y)|+ |(pe(x,y)t (0, y)− p

e(0,0)
t (0, y)||pd(0,0)t (0, x)|

=: I + II.

By the mean value theorem, there exists c ∈ [d, e] such that

|pd(t, 0, y)− pe(t, 0, y)| = | ∂
∂d
pc(t, 0, y)| · |d− e|.
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Since

| ∂
∂d
pc(t, 0, y)| =

1

y
e−

y
t

(y
t

)c
| 1

Γ(c)
ln
y

t
− Γ′(c)

Γ2(c)
| ≤ C

y
e−

y
t

(y
t

)c [
ln
y

t
+ 1
]

≤ C

y
e−

y
t (
(y
t

)d1
+
(y
t

)d2
)
[
ln
y

t
+ 1
]
,

hence

|pd2(x,y)(t, 0, y)− pd2(0,0)(t, 0, y)| ≤ C(x+ y)
1

y
e−

y
t (
(y
t

)d1
+
(y
t

)d2
)
[
ln
y

t
+ 1
]

by the Taylor expansion of d2 at (0,0). It is not hard to show that

lim
t→0

∫ ∞

0
xpd1(0,0)(t, 0, x)dx = 0

lim
t→0

∫ ∞

0
y
1

y
e−

y
t (
(y
t

)M
+
(y
t

)N
)
[
ln
y

t
+ 1
]
dy = 0.

Therefore we have

lim
t→0

∫
U0

II · f(x1, y1)dx1dy1 = 0.

Also we can obtain that

lim
t→0

∫
U0

I · f(x1, y1)dx1dy1 = 0,

which leads to (3.68).

2. If (0, 0) is a tangent point, we assume that e(0, 0) = 0. Then e(x, 0) = 0 by the

assumption (3.1.1). We also assume that e(x, y) ∈ [0,M ]. We have

p
e(x,y)
t (0, y) =

1

te(x,y)−1
ye(x,y)e−

y
t

1

Γ(e(x, y))
≤ C

1

te(x,y)−1
ye(x,y)+1e−

y
t

≤ Ct(p1t (0, y) + pM+1
t (0, y)).
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If d(0, 0) = 0, then it is also bounded by Ct(p1t (0, y) + pM+1
t (0, y)), so

lim
t→0

Kt(0, 0, x, y) = 0

in the sense of distribution. If d(0, 0) > 0, by the estimation in the previous case,

lim
t→0

(p
d(x,y)
t (0, x)− p

d(0,0)
t (0, x)) = 0,

combined with

lim
t→0

p
d(0,0)
t (0, x)p

e(x,y)
t (0, y) = 0,

we obtain that

lim
t→0

Kt(0, 0, x, y) = 0 (3.69)

in the sense of distribution.

Other cases

1. q in a neighborhood of a regular edge point p. When q = (x2, y2) ∈ U3 is in a

neighborhood of a regular edge point, under local adapted coordinates, L takes the form

L = a(x, y)x∂2x + b(x, y)∂yy + d(x, y)∂x + e(x, y)∂y.

Replacing d(t, x, y) in Proposition 3.5.1 with

d(t, x, y) =
(
√
x−√

x2)
2

2a(q)t
+

(y − y2)
2

4b(q)t
,
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we can similarly prove the existence of the local heat kernel through its series expansion

qt(x, y, x2, y2) = Kt(x, y, x2, y2) +
4∑
i=1

KtBiδ +QtB5δ

where Kt(x, y, x2, y2) = p
d(q)/a(q)
a(q)t

(x, x2)k
e
b(q)t

(y, y2). By comparing Kt(p, q) with fundamen-

tal solution of model operator with coefficients frozen at p, we can derive the result like in

3.68, 3.69. That being said, if p is a transverse point, then lim
t→0

qt(p, ·) = δ(p), if p is a

tangent point, then lim
t→0

qt(p, ·) = 0.

2. q in a neighborhood of a mixed corner/infinity edge point p. When q =

(x2, y2) ∈ U1 is in a neighborhood of a regular edge point, under local adapted coordinates

3.2, L takes the form

L = a(x, y)x∂2x + b(x, y)y2∂yy + d(x, y)∂x + e(x, y)y∂y.

We can similarly prove the existence of the local heat kernel through its series expansion

qt(x, y, x2, y2) = Kt(x, y, x2, y2) +
4∑
i=1

KtBiδ +QtB5δ.

where Kt(x, y, x2, y2) = p
d(q)/a(q)
a(q)t

(x, x2)
1√
4πt

exp

[
− (lny−lny2)2

4b(x2,y2)t

]
1
y2

. Particularly when y =

0,

qt(x, 0, x2, y2) = pt(x, x2)δ0(y2),

where pt(x, x2) is a 1-dimensional heat kernel of Kimura operator on y = 0. This implies

that the infinity edge is isolated from P̊ , the diffusion starting from the E∞ stay on it.
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3. when q in a neighborhood of an infinity corner p. When q = (x2, y2) ∈ U3 is in

a neighborhood of a regular edge point, under local adapted coordinates, L takes the form

L = a(x, y)x2∂2x + b(x, y)y2∂2y + d(x, y)x∂x + e(x, y)y∂y.

Again we can similarly prove the existence of the local heat kernel through its series expan-

sion. qt(x, y, x2, y2) takes the form

pt(x, y, x2, y2)exp

[
−(lnx− lnx2)2

4a(x2, y2)t
− (lny − lny2)2

4b(x2, y2)t

]
1

x2y2
,

where pt(x, y, x2, y2) is bounded for t > 0. When x = 0 or y = 0,

qt(0, y, x2, y2) = δ0(x2) · pt(y, y2)

qt(x, 0, x2, y2) = pt(x, x2) · δ0(y2)

where pt is the 1-dimensional heat kernel on y = 0. In particular

qt(0, 0, x2, y2) = δ(0,0)(x2, y2),

which means (0, 0) is an isolated point.

In all for q ∈ P̊ , if p ∈ P reg, the heat kernel qt(p, q) is well defined and continuous at

p. In other cases, qt(p, q) = 0. Specifically qt(p, ·) degenerates to a 1-dimensional along the

quadratic edge when p ∈ E∞ ∪ Cmix, and qt(p, ·) is the delta function at p when p ∈ C∞.

On the other hand for p ∈ P reg, we investigated the limit behavior of qt(p, ·) when t → 0.

It tends to δ(p) if p is a transverse point and tends to 0 in the sense distribution if p is a

tangent point. We summarize this in the following table:
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p p0

Creg transverse δp
tangent 0

Cmix 0
C∞ 0
Ereg transverse δp

tangent 0
E∞ 0

Table 3.1: Limit of qt(p, ·) as t→ 0

Proposition 3.5.3. Fix α > 0 and k, l ∈ N, there exists constants C, c > 0 depending on

α, k, l such that if |
√
x−√

x1| ≥ α > 0, |y − y1| ≥ α > 0 and 0 ≤ x, x1, y, y1 ≤ L, then

|(∂x)kpd(t, x, x1)| ≤ Ce−c/txd−1
1 , |(∂y)lket (y, y1)| ≤ Ce−c/t.

Proof. For the first estimate, let λ = x
t , w = x1

t . When k = 0,

pd(t, x, y)y
1−d =

1

td
e−(λ+w)ψd(λw).

1. If λw ≤ 1, then this term is bounded by

C

td
e−(λ+w) ≤ C

td
e−(

√
λ−

√
w)2 =

C

td
e−

(
√
x−√

x1)
2

t .

2. If λw ≥ 1, using the asymptotic expansion ψd(z) ∼ z
1
4−

d
2 e2

√
z

√
4π

,

1

td
e−(λ+w)ψd(λw) ∼

1√
4πtd

e−(
√
λ−

√
w)2(λw)

1
4−

d
2 .

The right hand side is bounded by 1√
4πtd

e−(
√
λ−

√
w)2 if d ≥ 1

2 , and bounded by
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L
1
2−d√
4πt

e−(
√
λ−

√
w)2 if 0 < d ≤ 1

2 . Overall,

pd(t, x, y) ≤
C

td+
1
2

e−
(
√
x−√

x1)
2

t
1

yd−1
.

The estimates for higher order derivatives are proved similarly.

The second estimate is not hard to get since we can repeatedly use that for ∀b ≥ 0,

1

tb
e−

(y−y1)2
4ct ≤ Cb

tb
tb

|y − y1|2b
≤ Cb,α.

3.5.3 Proof of Theorem 3.5.1

So far we have constructed the local heat kernel qtij(·, q) for ∀q ∈ P̊ . By the classical elliptic

theory, there exists the Dirichlet heat kernel qUt in PU . We patch them together by defining

the global kernel parametrix:

qt (d1, d2, l1, l2) =
4∑
i=0

∑
j

ϕi,j,ϵ (d1, d2) q
ij
t

(
(ψij,ϵ(d1), ψij,ϵ(d2), ψij,ϵ(l1), ψij,ϵ(l2)

)
(3.70)

·χij,ϵ (l1, l2) · |detψij(l1, l2)| (3.71)

+ψqUt (d1, d2, l1, l2)(1− φU ). (3.72)

Now set

et(d1, d2.l1, l2) = (∂t − L)qt (d1, d2, l1, l2) .
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Again

et(d1, d2, l1, l2) =

 3∑
i=0

∑
j

ϕi,j,ϵ(L̃ij − Lij)qti,jχi,j,ϵ

+

 3∑
i=0

∑
j

[ϕi,j,ϵ, L]q
t
i,jχi,j,ϵ


+[ψ,L]qUt (1− φU ).

By construction, et(d1, d2, l1, l2) is supported on PU×P× [0,∞). To be more precise, the

support of et(d1, d2, l1, l2) is in an off-diagonal region: d ((d1, d2), (l1, l2)) > α for some α,

hence for ∀T > 0, in [0, T ] it is bounded and by Ce−
Cα
t for some Cα > 0 using the estimate

in Proposition 3.5.3. We let Atet be the solution to the inhomogeneous problem

(∂t − L)Atet(·, l1, l2) = et(·, l1, l2) in P × [0, T ] with A0(·, l1, l2) = 0,

Thus the global heat kernel is given by

Ht (d1, d2, l1, l2) = qt (d1, d2, l1, l2)− Atet (d1, d2, l1, l2) .

Next we investigate the regularity of the heat kernel Ht. If L is Kimura operator, i.e., all

the edges of P are of Kimura type, as studied in

For ∀t0 ∈ (0, T ], fix q ∈ P̊ , the estimation in Proposition 3.5.1 shows that the local

heat kernel qt0(·, q) are in local C0,γ spaces, and the perturbation term Atet(·, q) is also in

C0,γ(P ). Thus Ht0(·, q) ∈ C0,γ(P ). We apply the regularity statement above to the Cauchy

problem with initial condition Ht0(·, q), giving that Ht(·, q) ∈ C∞(P × (t0, T ]). Letting

t0 → 0, T → ∞, then we have (·, t) 7→ Ht(·, q) ∈ C∞(P × (0,∞)) for ∀q ∈ P̊ in the Kimura

case.

When L has a mixed type of boundary conditions, fix q ∈ P̊ , we choose a neighborhood

UQ of all the quadratic edge with q /∈ UQ and χ ∈ C∞(UcQ) so that χ ≡ 1 away from

UQ, χ(q) = 1. Let K be a Kimura operator on P so that the transverse/tangent boundary
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conditions align with L. We define the new operator

L̃ = χL+ (1− χ)K,

such defined L̃ is a Kimura operator, L̃ = L away from UQ, particularly L̃(q) = L(q). Denote

the heat kernel of L̃ by H̃t, we have

(∂t − L)(Ht − H̃t)(·, q) = (L− L̃)H̃t(·, q) (3.73)

lim
t→0

(Ht − H̃t)(·, q) = 0. (3.74)

We have shown that H̃t ∈ C∞(P × (0,∞)). Since L = L̃ at q, the support of (L− L̃)H̃t(·, q)

is away from q, so (t, ·) 7→ (L − L̃)H̃t(·, q) is smooth and its high order derivatives are

bounded by e−
C
t for some C > 0. Moreover since q ∈ P̊ , when constructing the parametrix

3.70 of global heat kernel Ht(·, q), H̃t(·, q), we can choose the same Dirichlet heat kernel in

a vicinity of q. Then the two remaining perturbation terms Atet(·, q), Atẽt(·, q) are both in

Ck,γ(P × [0, T ]) for k ∈ N. This roughly shows that (Ht − H̃t)(·, q) ∈ Ck,γ(P × [0, T ]).

Therefore by Theorem 3.5.1 Ht − H̃t ∈ C∞(P × [0, T ]). The argument above works for

∀T > 0, so indeed we showed that (·, t) 7→ Ht(·, q) ∈ C∞(P × (0,∞)).

Finally for the regularity of the forward variable, for p ∈ P reg, Ht(p, ·) is a solution to

the Kolmogorov forward equation (∂t − L∗)Ht(p, ·) = 0. Therefore by standard hypoellicity

results for parabolic operators (
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CHAPTER 4

LONG-TIME BEHAVIOR OF A MIXED KIND OF KIMURA

DIFFUSION OPERATOR

4.1 Introduction

This chapter analyzes the long time behavior of diffusion processes with infinitesimal gen-

erator given by a mixed type Kimura operator L on one-dimensional and two-dimensional

manifolds with corners.

Let L be a degenerate second-order differential operator. For an edge point p, when

written in an adapted system of local coordinates on R+ × R, L takes the form:

L = a(x, y)xm∂xx + b(x, y)xm−1∂xy + c(x, y)∂yy + d(x, y)xm−1∂x + e(x, y)∂y, (4.1)

where we assume that a, b, c, d, e are smooth functions and that a(x, y) > 0 and c(x, y) > 0.

Also m ∈ {1, 2}. When m = 1, the edge x = 0 is of Kimura type in that the coefficients

vanish linearly towards it. Whenm = 2, the edge x = 0 is of quadratic type as the coefficients

now vanish quadratically.

For a corner p, as an intersection point of two edges, L has the following normal form:

L = a(x, y)xm∂xx + b(x, y)xm−1yn−1∂xy + c(x, y)yn∂yy + d(x, y)xm−1∂x + e(x, y)yn−1∂y, (4.2)

when written in an adapted system of local coordinates on R2
+, where a(x, y) > 0, c(x, y) > 0,

and m,n ∈ {1, 2}.

Associated to the operator L is a C0 semigroup Qt = etL solution operator of the Cauchy

problem

∂tu = Lu
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with initial conditions u(x, 0) = f(x) at t = 0. The operator etL and some of its properties

are presented in detail in

It turns out that the number of possible invariant measures and their type (absolutely

continuous with respect to one-dimensional or two-dimensional Lebesgue measures or not)

strongly depend on the structure of the coefficients (a, b, c, d, e). We thus distinguish the

different boundary types that influence the long time asymptotics of transition probabilities.

Definition 4.1.1. A Kimura edge E is called a tangent (Kimura) edge when d(0, y) = 0 and

a transverse (Kimura) edge when d(0, y) > 0.

A quadratic edge E is called a tangent (quadratic) edge when d(0,y)
a(0,y)

< 1, a transverse

(quadratic) edge when d(0,y)
a(0,y)

> 1, and a neutral (quadratic) edge when d(0,y)
a(0,y)

= 1.

We assume that:

Assumption 4.1.1. Every edge is either tangent, transverse, or neutral.

Note that we do not consider the setting with d(0, y) < 0 on a Kimura edge. In such a

situation, diffusive particles pushed by the drift term d(0, y) < 0 have a positive probability

of escaping the domain P . We would then need to augment the diffusion operator with

appropriate boundary conditions.

The long-time analysis in two-dimensions for a class of operators including a specific

example of interest in the field of topological insulators

To describe all invariant measure on the interval [0, 1] in one dimensional, consider

L = a(x)xm(0)(1− x)m(1) d
2

dx2
+ b(x)xm(0)−1(1− x)m(1)−1 d

dx
, (4.3)

with a(x), b(x) ∈ C∞([0, 1]).

For i = 0, 1, we say that x = i is of Kimura type when m(i) = 1 and of quadratic type

when m(i) = 2. When x = i is of Kimura type, we assume that the vector field b(x) ddx is
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inward pointing at x = i. For brevity, we use ã and b̃ to denote

ã(x) = a(x)xm(0)(1− x)m(1), b̃(x) = b(x)xm(0)−1(1− x)m(1)−1. (4.4)

Definition 4.1.2. When x = 0 (1 resp.) is a Kimura endpoint, we say it is a tangent point

if b(0) = 0 (b(1) = 0 resp.) and a transverse point if b(0) > 0 (b(1) < 0 resp.).

When x = 0 (1 resp.) is a quadratic endpoint, we say it is a tangent point if b(0)
a(0)

<

1 (
b(1)
a(1)

> −1 resp.), a transverse point if b(0)
a(0)

> 1 (
b(1)
a(1)

< −1 resp.), and a neutral point if
b(0)
a(0)

= 1 (
b(1)
a(1)

= −1 resp.).

The quadratic endpoint and the tangent Kimura endpoint are sticky boundary points in

the sense that the Dirac measure supported on them is an invariant measure. When both

endpoints are transverse, there is another invariant measure µ with full support on the whole

interval. By computing the index of L on an appropriate Hölder space, we characterize the

kernel space of L∗ composed of invariant measures for the diffusion L.

In both cases, starting from a point in P , the corresponding transition probability of the

diffusion converges to the invariant measure at an exponential rate. In cases with at least

one tangent boundary point, we consider a functional space of functions that vanish at the

tangent boundary points and show that L has a spectral gap on such a space. In the absence

of tangent boundary points, we prove that the invariant measure µ satisfies an appropriate

Poincaré inequality so that L also admits a spectral gap in L2(µ). Our main convergence

results for Qt = etL, whose properties are described in Theorem 4.2.1, are summarized in

Theorems 4.4.1 and 4.4.2 below.

In two space dimensions, we do not consider all possible invariant measures as a function

of the nature of the drift terms d and e in the vicinity of edges or corners. Instead, we restrict

ourselves to the following case:

Assumption 4.1.2. For L on a 2 dimensional compact manifold with corners P , there is

exactly one tangent edge H, and when restricted to H, L|H is transverse to both boundary
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points.

This case involves exactly one tangent edge with two transverse boundary points so that,

applying results from the one-dimensional case, we find that L has a unique invariant measure

µ fully supported on (the one-dimensional edge) H. Starting from any point p not on the

quadratic edge, we show in Theorem 4.5.2 that the transition probability converges to µ at

an exponential rate in the Wasserstein distance sense. The main tool used in the convergence

is the construction of a Lyapunov function in Theorem 4.5.1.

The setting of P a triangle with two transverse Kimura edges while the third edge is

quadratic with transverse endpoints as described in Assumption 4.1.2 finds applications in

the analysis of the asymmetric transport observed at an edge separating topological insulators

There is a large literature on the analysis of the long-time behavior of etL when L is non-

degenerate and when L is of Kimura type. In the latter case, L is the generalized Kimura

operator studied in

However, in the presence of quadratic edge/point, Lγ is not Fredholm. The reason is

that near such quadratic edges or points, the operator may be modeled by an elliptic (non-

degenerate) operator on an infinite domain (with thus continuous spectrum in the vicinity

of the origin). We thus need another approach that builds on the following previous works.

In

An outline of the rest of this paper is as follows. The semigroup etL is analyzed in

section 4.2 in the one-dimensional case. The space of invariant measures associated with a

one-dimensional diffusion L, which depends on the structure of the drift term at the two

boundary points, is constructed in section 4.3; see Table 4.1 for a summary. The exponential

convergence of the kernel of etL (the Green’s function) to an appropriate invariant measure

over long times is demonstrated in section 4.4.

The operator etL in the two-dimensional setting is analyzed in
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4.2 The C0 Semigroup in one-space dimension

Let L be the one-dimensional mixed-type Kimura operator on [0, 1] given in (4.3). Let

Qt = etL be the solution operator of the Cauchy problem for the generator L and denote by

qt(x, y) its kernel. Its main properties are summarized in the following result:

Theorem 4.2.1. The operator Qt defines a positivity preserving semigroup on C0([0, 1]).

For f ∈ C0([0, 1]), the function u(x, t) = Qtf(x) solves the Cauchy Problem for L with

initial condition f(x) in the sense that

lim
t→0+

||Qtf − f ||C0 = 0. (4.5)

Proof. If both endpoints are of Kimura type, L is the 1D Kimura operator. By

For the remaining case, we might as well assume that x = 0 is a Kimura endpoint and

x = 1 a quadratic endpoint. We intend to build the global solution out of local solution near

the boundary. Let ([0, 1 − η], ϕ0), ([η, 1], ϕ1) for some 0 < η < 1
4 small be the coordinate

charts so that pulling back L to these coordinate charts gives two local operators

L0 = x∂2x + b0∂x + xc(x)∂x, x ∈ [0, ϕ0(1− η)),

L1 = ∂2z + d(z)∂z, z ∈ (ϕ1(η),∞).

We extend these two local operators to the whole sample space

L̃0 = x∂2x + b0∂x + xc(x)φ0(x)∂x, L̃1 = ∂2z + d(z)φ1(z)∂z

where φ0(x) is a smooth cutoff function so that

φ0(x) =


1 for x ∈ [0, ϕ0(1− 2η)]

0 for x > ϕ0(1− η),

φ1(z) =


1 for z ∈ [ϕ1(2η),∞)

0 for z < ϕ1(η).
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Let Q̃0
t , Q̃

1
t be the solution operators of L̃0, L̃1 and denote their kernels by q̃0t , q̃

1
t respectively.

Define smooth cutoff functions 0 ≤ χ, ψ0, ψ1 ≤ 1 so that

suppψ0 ⊂ [0, 1− 2η], suppψ1 ⊂ [2η, 1], ψ0|suppχ ≡ 1, ψ1|supp(1−χ) ≡ 1. (4.6)

Given f ∈ C0([0, 1]) and g ∈ C0([0, 1]× [0, T ]), set the homogeneous and inhomogeneous

solution operator as

Q̃tf = ψ0Q̃
0
t [χf ] + ψ1Q̃

1
t [(1− χ)f ],

Atg =

∫ t

0
Q̃t−sg(s)ds.

Then

(∂t − L)Q̃tf = E0
t f := [ψ0, L]Q̃

0
t [χf ] + [ψ1, L]Q̃

1
t [(1− χ)f ],

(∂t − L)Atg = (Id− Et)g := g − [ψ0, L]A
0
t [χg]− [ψ1, L]A

1
t [(1− χ)g].

Our choice of χ, ψ0, ψ1 (4.6) ensures that dist(supp[ψ0, L], suppχ) > 0, dist(supp[ψ1, L], supp(1−

χ)) > 0, which ensures that E0
t , Et are bounded operators with operator norms bounded by

O(e−
c
t ) for some constant c > 0 as t → 0+. Hence for T > 0 small enough, there exists an

inverse (Id−Et)
−1, which can be expressed as a convergent Neumann series in the operator

norm topology of C0([0, 1]× [0, T ]). Finally we can express the solution operator by

Qtf = Q̃tf − At(Id− Et)
−1E0

t f.

Since both Q̃0
t , Q̃

1
t are strongly continuous, then so is Q̃t:

lim
t→0

||Q̃tf − f ||C0 = 0.
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As (Id− Et)
−1E0

t is a bounded map from C0([0, 1] to C0([0, 1]× [0, T ]), we have

||At(Id− Et)
−1E0

t ||C0([0,1])→(C0([0,1]),t) = o(t).

Therefore (4.5) holds. Let q̃t, ht be the heat kernels of Q̃t, (Id − Et)
−1E0

t . We express the

heat kernel of Qt as

qt(x, y) = q̃t(x, y)−
∫ t

0

∫ 1

0
q̃t−s(x, z)hs(z, y)dzds.

4.3 Invariant Measures in dimension one

In this section, we aim to find all invariant measures of L in spatial dimension one. For

convenience of computation, in this section we first choose a global coordinate ϕ so that

(W0, ϕ), (W1, ϕ) is a cover of [0, 1/3], [2/3, 1] under which L takes the following normal form:

1. In ([0, 1/3], ϕ), L0 has two possible forms:

L0 = x∂2x + b(x)∂x, if 0 is a Kimura endpoint

L0 = ∂2z + b(z)∂z, if 0 is a quadratic endpoint

2. In ([2/3, 1], ϕ), L1 has two possible forms:

L1 = (1− x)∂2x + b(x)∂x, if 1 is a Kimura endpoint

L1 = ∂2z + b(z)∂z, if 1 is a quadratic endpoint

where we use b to denote the first-order term in all cases.

Notation 2. We call the global coordinate ϕ on [0, 1] heat coordinates if L0, L1 have forms
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above under ϕ.

Let

b± = lim
x→1,0

b(x) or b± = lim
z→±∞

b(z). (4.7)

A straightforward derivation shows that, if in the original coordinate, L0 = x2∂2x + (b− +

1)x∂x, then after turning to heat coordinates x = ez, L0 takes the form ∂2z + b−∂z.

4.3.1 Functional settings and index associated to L

Our functional setting involves local Hölder spaces, which differ from the usual Hölder space

(with | · |k+γ to denote its norm) near the boundaries and are variations of those used in

f ∈ C1(U) belongs to C1+γ(U) if the functions ∂zf, f can be continuously extend to z = −∞

and local C1+γ norm is finite:

||f ||1+γ,U = |f |1+γ,U + ||∂zf ||γ,U ; (4.8)

f ∈ C2(U) belongs to C2+γ(U) if the functions ∂2zf, ∂zf, f extend continuously to z = −∞

and the local C2+γ norm is finite:

||f ||2+γ,U = |f |2+γ,U + ||∂2zf ||γ,U . (4.9)

For Kimura type boundaries, with U = (0, c],

1. f ∈ C0(U) belongs to Dγ(U) if the function xf can be continuously extend to x = 0, and the

local Cγ norm is finite:

||f ||γ,U = |xf |γ,U ; (4.10)
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2. f ∈ C0(U) ∩ C1(U) belongs to C1+γ(U) if the function x∂xf can be continuously extend to

x = 0 and vanish, and the local C1+γ norm is finite:

||f ||1+γ,U = |f |γ,U + |x∂xf |γ,U ; (4.11)

3. f ∈ C1(U) ∩ C2(U) belongs to C2+γ(U) if the function x∂2x can be continuously extend to

x = 0 and vanish, and the local C2+γ norm is finite:

||f ||2+γ,U = |f |γ,U + |∂xf |γ,U + |x∂2xf |γ,U . (4.12)

Remark 4.3.1. At neutral quadratic endpoint, interchanging the two integral signs, we have

∫ z2

z1

∫ z

−∞
f(s)sdsdz =

∫ z2

−∞
(z2 − s)f(s)ds,

so
∫ z2
−∞ sf(s)ds <∞.

We now build global norms on spaces of functions on [0, 1] out of the above local norms.

Definition 4.3.1. Let W2 ⊂⊂ (0, 1) covering [0, 1]\ (W0∪W1) and φ0, φ1, φ2 be a partition

of unity subordinate to this cover. A function f ∈ C2+γ([0, 1]) if (φif) ◦ ϕ ∈ C2+γ(Wi) for

each i and the global norm is

||f ||2+γ =
∑
i

||(φif) ◦ ϕ||2+γ,Wi
.

Motivated by (4.19) below, we define f ∈ C1+γ([0, 1]) if ϕ′i · (φif) ◦ ϕ ∈ C1+γ(Wi) for each

i and the global norm is

||f ||1+γ =
∑
i

||ϕ′i(φif) ◦ ϕ||1+γ,Wi
.
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Finally f ∈ Dγ([0, 1]) if (ϕ′i)
2 · (φif) ◦ ϕ ∈ Cγ(Wi) for each i and the global norm is

||f ||γ =
∑
i

||(ϕ′i)
2(φif) ◦ ϕ||γ,Wi

.

Different choices of coverings give rise to equivalent norms. Endowed with these norms,

we now show that the domains and target spaces of M are all Banach spaces.

Proposition 4.3.1. For 0 < γ < 1, all the spaces defined in Definition 4.3.1 are all Banach

spaces.

Proof. Take C2+γ([0, 1]) as an example. Let

i : C2+γ([0, 1]) → C2+γ(W0)× C2+γ(W1)× C2+γ(W2)

be the inclusion by mapping f to ((φ0f) ◦ ϕ, (φ1f) ◦ ϕ, (φ2f) ◦ ϕ). This inclusion is closed

since φ0, φ1, φ2 is a partition of unity. Thus we need to show that each local (0, γ) space

defined at the beginning of this subsection is Banach.

The cases when U = (0, c] are verified in

For C1+γ(U), C2+γ(U), the above proof applies to show that there exists a limit u ∈

C1+γ(U), C2+γ(U) respectively, and ∂zf, ∂zzf ∈ Dγ(U), so that these two spaces are also

Banach spaces.

Lγ : C2+γ([0, 1]) −→ α · Dγ([0, 1]), (4.13)

where α(x) = xm(0)(1 − x)m(1) with m(0) = 1 if x = 0 is Kimura and m(0) = 0 otherwise,

while m(1) is defined similarly. We first state the main theorem of this section and leave the

proof to Section 3.3.
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Theorem 4.3.1. Lγ is a Fredholm operator and its index is

ind (Lγ) = κ+ + κ−

where κ+, κ− are the number of positive b+ and negative b−, respectively, where b± is defined

in (4.7).

4.3.2 Null Space of L∗

Let L denote the C0([0, 1])-graph closure of L with domain C2+γ([0, 1]). Having obtained

the index of Lγ , we are now able to find the null space of the adjoint operator L∗. We first

use the maximum principle below to find the kernel space of Lγ .

Lemma 4.3.1 (Maximum Principle). Suppose that w ∈ C2+γ([0, 1]) is a subsolution of L,

Lw ≥ 0 in a neighborhood, U of a transverse boundary point p. If w attains a local maximum

at p, then w is a constant on U .

Proof. The case when L is of generalized Kimura type is studied in

By subtracting v(−∞) from v, we may assume that v(−∞) = 0. Integrating (∂2z + b∂z)v

we see that ∂zv + bv ≥ 0 in a neighborhood U of −∞. Thus ∂zv ≥ −bv ≥ 0 in U . As w is

not a constant, we can expand this neighbourhood until some z0 such that ∂zv > 0. Then

v(z0) =
∫ z0
−∞ ∂zvdz > 0, which contradicts the fact that −∞ is a local maximum.

Theorem 4.3.2. dim ker Lγ = 2 if and only if Lγ is tangent to both endpoints; otherwise

dim ker Lγ = 1.

Proof. The kernel of Lγ is in the linear space of {1, S(x)}, where S(x) is the scale function

of the process. For

L = ã(x)∂xx + b̃(x)∂x, (4.14)
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the scale function is defined as

S(x) = C

∫ x
exp

[
−
∫ η

1
2

b̃(ξ)

ã(ξ)
dξ

]
dη (4.15)

and has derivatives

S′(x) = exp

[
−
∫ x b̃(ξ)

ã(ξ)
dξ

]
, S′′(x) = −S′(x) b̃(x)

ã(x)
.

Denote b̃(x)
ã(x)

=
c(x)

x(1−x) and c0 = c(0), c1 = c(1). The integrand exp
[
−
∫ η
1
2

b̃(ξ)
ã(ξ)

dξ

]
∼

η−c0 , (1− η)c1 as η approaches 0+, 1− respectively, so S is integrable when c0 < 1, c1 > −1.

For Kimura point x = 0, if 0 < c0 < 1, then xS′′(x) ∼ x−c0 as x → 0, which is not

finite and thus not in Dγ . If c0 = 0, S′′ is smooth at x = 0. For a quadratic point x = 0,

if c0 < 1, turning into heat coordinates z = lnx, S(z) ∼ e(1−c0)z, it is in local C2+γ space.

We conclude that S is in C2+γ([0, 1]) if and only if L is tangent to both endpoints.

Definition 4.3.2. We define

bPter(L) = {quadratic endpoint, P}

if L is transverse to both endpoints, otherwise we define

bPter(L) = {quadratic endpoint, Kimura tangent endpoint}.

Here we use the notation bPter from

We first explain that to each element of bPter([0, 1]) there is an element of the nullspace

of L∗. For any quadratic endpoint or Kimura tangent endpoint p, p is a sticky boundary

point so δ(p) is in ker L∗. For w ∈ C2+γ([0, 1]), we have

⟨Lγw, δ(p)⟩ = 0,
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that is to say δ(p) ∈ Ker L∗γ . This equality still holds for w ∈ Dom(L), where L is the C0

graph closure of Lγ . Hence δ(p) ∈ Dom(L
∗
), and L

∗
δ(p) = 0. If L is transverse to both

endpoints, we can explicitly construct µ, which is supported on the whole interval, as follows:

Construction of µ We first reduce L to the standard form

Lz =
1

2
∂zz −∇U(z)∂z = −1

2
∂∗z∂z

with ∂∗z = ∂z + 2∇U(z) on a probability space (X,µ). It is known that Lz has an invariant

measure µ

µ(dz) =
e−2U(z)

Z
dz

where Z is a normalizing constant. We now check that µ is a probability measure in the

different boundary cases.

1. Two transverse quadratic boundary. For L = x2(1− x)2∂xx+ x(1− x)b(x)∂x, we

first do a coordinate change:

z =
1√
2
ln

x

1− x
, x =

e
√
2z

1 + e
√
2z
,

so that

Lz =
1

2
∂zz −∇U(z)∂z, z ∈ (−∞,∞)

with ∇U = − 1√
2
(b(x) + 2x− 1). Then

e−2U (z ) =


Θ(e

√
2(b(0)−1)z), z → −∞

Θ(e
√
2(b(1)+1)z), z → +∞

.
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Thus, Z < ∞ exactly when b(0) > 1, b(1) < −1, i.e. both quadratic endpoints are

transverse.

2. One transverse Kimura and one quadratic boundary. For L = x2(1− x)∂xx +

xb(x)∂x, we do a coordinate change by letting

∂z

∂x
=

1√
2x

√
1− x

so that

Lz =
1

2
∂zz −∇U(z)∂z, z ∈ (−∞, 0]

with ∇U = − 1√
2
(
3x−2+2b(x)

2
√
1−x ). Then

e−2U (z ) =


Θ(e

√
2(b(0)−1)z), z → −∞

Θ(z−1−2b(1)), z → 0

.

Thus, Z <∞ exactly when b(0) > 1, b(1) < 0, i.e. both endpoints are transverse.

3. Two transverse Kimura boundary. For L = x(1− x)∂xx + b(x)∂x, we do a coor-

dinate change

∂z

∂x
=

1√
2x(1− x)

so that

Lz =
1

2
∂zz −∇U(z)∂z, z ∈ [0,

π√
2
]
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with ∇U = −x−1/2+b(x)√
2x(1−x)

. Then

e−2U (z ) =


Θ(z2b(0)−1), z → 0

Θ(z−1−2b(1)), z → π√
2

. (4.16)

Again, Z <∞ exactly when b(0) > 0, b(1) < 0, i.e. both endpoints are transverse.

Proposition 4.3.2.

dim ker L∗ = |bPter(L)|.

Proof. We know that dim ker Lγ = 2 if L is tangent to both endpoints and otherwise

dim ker Lγ = 1. This is equivalent to:

dim ker Lγ = max{1, |tangent points|}.

By Theorem 4.3.1, ind(Lγ) = κ+ + κ− = |tangent quadratic endpoints|, so dim ker L∗γ =

|bPter(Lγ)|, where

bPter(Lγ) =


P L is transverse/neutral to both endpoints,

Kimura tangent endpoint otherwise.

Write

C0([0, 1])∗ = C0
0([0, 1])

∗ ⊕ A∗

where A∗ = {δ(p)| p quadratic}. A∗ ⊂ ker L∗. Since ã · Dγ([0, 1]) is dense in the subspace

C0
0([0, 1]), every µ ∈ ker Lγ∗ can be uniquely extended to a measure in ker L∗ ∩C0

0([0, 1])
∗,
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so there is an inclusion map

i : ker L∗ ∩ C0
0([0, 1])

∗ −→ ker L∗γ .

And codim(i) = 1 if there are one or more neutral point(s) and no tangent point, while

codim(i) = 0. This is equivalent to

codim(i) = |bPter(Lγ)| − |bPter(L)|+ |quadratic endpoint|.

In conclusion

dim ker L∗ = dim ker L∗γ − codim(i) + |quadratic point| = |bPter(L)|.

The following table summarizes the invariant measures found in the ten different cases

of interest:

K Trans K Tan Q Trans Q Tan **

Kimura Transverse (K Trans) µ* δ1 µ, δ1 δ1
Kimura Tangent (K Tan) δ0 δ0, δ1 δ0 δ0, δ1

Quadratic Transverse (Q Trans) µ, δ0 δ0, δ1 µ, δ0, δ1 δ0, δ1
Quadratic Tangent (Q Tan)** δ0 δ0, δ1 δ1 δ0, δ1

* µ refers to an invariant measure supported on (0,1)
** include neutral case

Table 4.1: Invariant measures for all cases of boundary types at x = 0 (rows) and at x = 1
(columns).

4.3.3 Proof of Theorem 4.3.1

For convenience of computation, we fix the spatial domain as the interval [0, 3] instead of

[0, 1] whenever convenient in this subsection.
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Outline of proof

It remains to characterize the range of Lγ . First, we turn the second-order operator Lγ to

a first-order system M in (4.18), with an index equal to the index of Lγ (see Lemma 4.3.2

below). Next we continuously deform M to another first-order system M̃ with constant

coefficients in the vicinity of the two endpoints. Such a deformation does not change the

index (see Proposition 4.3.3 below), so the original problem now is equivalent to the easier

linear system M̃ . These constructions are presented in subsection 3.3.2.

The problem M̃u = f =

 f1

f2

, given u(1) ∈ R2, has a uniquely defined solution u.

In order for u to belong to the domain space, we observe that αf1 has to vanish at tangent

Kimura endpoints and u(1), f have to be related by

E−u(1) = I1f, E+Λu(1) = −I2f ; (4.17)

see the definition of I1, I2, E±, and Λ in Section 3.4. Conversely if αf1 vanishes at tangent

Kimura endpoints and if we can find u(1) satisfying the relation (4.17), then the uniquely

defined u is the solution of M̃u = f (see Lemma 4.3.3, Lemma 4.3.4). Thus f in the range

of M̃ is equivalent to the existence of u(1) ∈ R2 satisfying (4.17). This construction is

presented in subsection 3.3.3.

We next show in Lemma 4.3.6 that the above constraint is equivalent to

ΛI1f + I2f ∈ ker(E+) + Λ · ker(E−).

We thus define the linear map

Φ : C1+γ([0, 3])×Dγ([0, 3]) −→ R2

ker(E+) + Λker(E−)
,

by assigning f to the coset [ΛI1f + I2f ]. Clearly the range of M̃ lies in the kernel of

112



Φ. A computation in Lemma 4.3.7 shows that Φ is surjective and dim ker(Φ)/R(M̃) =

|kimura tangent points|. We now have all the ingredients to compute the codimension of M̃ .

The final results and proofs are given in subsection 3.3.4.

Reduction to a first order system

To simplify notation, we consider Lγ defined on the interval [0, 3]. We rewrite the system

Lγu = f as a first-order system M :

M : C2+γ([0, 3])× C1+γ([0, 3]) −→ C1+γ([0, 3])×Dγ([0, 3]). (4.18)

associated to the expression

u0
u1

 7→

u′0
u′1

+ A(Lγ)

u0
u1

 =

 u′0 − u1

u′1 +
b
au1

 , A(Lγ) :=

 0 −1

0 b
a

 .

where a, b are the coefficients of second-order and first-order term of L under heat coordinate

ϕ, i.e. Lϕ = a(x)∂xx + b(x)∂x.

For a smooth coordinate change z = z(x), we let Lz be the operator corresponding to L

under coordinate change and define A(Lz) and Mz as above. If M

u0
u1

 =

f0
f1

, then

Mz

 u0[x(z)]

u1[x(z)]x
′(z)

 =

 f0[x(z)]x
′(z)

f1[x(z)](x
′(z))2

 . (4.19)

In the local charts ([0, 1], ϕ−1), ([2, 3], ϕ−1), A(t) =

 0 −1

0 b(z)

 when 0 is a quadratic

point with heat coordinate, while A(t) =

 0 −1

0
b(x)
x

 when 0 is a Kimura point.
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Lemma 4.3.2. Assume that M is Fredholm, then Lγ is also Fredholm and

ind(Lγ) = ind(M). (4.20)

Proof. There is an isomorphism between ker(M) −→ ker(Lγ) by mapping (u, u′) to u, so

the dimensions of the kernel spaces are the same.

If (f0, f1) ∈ R(M) and M

u0
u1

 =

f0
f1

, then Lγu0 = ãf ′0 + b̃f0 + ãf1. Based on this

observation we define the map

π : C1+γ([0, 3])×Dγ([0, 3]) −→ α · Dγ([0, 3])

(f0, f1) 7→ ãf ′0 + b̃f0 + ãf1.

We claim that

codim ran(π) = codim ran(Lγ)− codim ran(M). (4.21)

We first show that

f ∈ ran(M) ⇔ πf ∈ ran(Lγ). (4.22)

The inclusion part is straightforward. For the converse part, if π(f0, f1) = Lγu ∈ ran(Lγ),

we verify that M

 u

u′ − f0

 =

f0
f1

 ∈ ran(M). Next we show that

π(ran(M)) = ran(Lγ). (4.23)

Again the inclusion part is straightforward. For the converse part, if g = Lγu ∈ ran(Lγ),

then π(0, gã) = g ∈ ran(Lγ). Note that by (4.22), this implies that (0, gã) ∈ ran(M). (4.22)
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and (4.23) imply that the quotient map defined by

π′ : [C1+γ([0, 3])×Dγ([0, 3])]/ran(M) −→ α · Dγ([0, 3])/ran(Lγ)

is injective. So codim ran(π′) = codim ran(Lγ) − codim ran(M). At the same time,

π(ran(M)) = ran(Lγ) indicates codim ran(π′) = codim ran(π) so that (4.21) holds. Clearly,

π is surjective since π(0, hã ) = h. Combined with (4.21), this proves (4.20).

Index of the model operator M̃ Alongside M , we consider the operator M̃ associated

with a continuous function A(t) such that

A(t) = A− for t ≤ 1, A(t) = A+ for t ≥ 2

where A− =

 0 −1

0 b−

 if 0 is a quadratic point, A− =

 0 −1

0
b−
x

 if 0 is a kimura point,

and A+ is similarly defined. Since M and M̃ can be reduced to each other by a continuous

deformation in the class of Fredholm operators, we have

Proposition 4.3.3. The operator M is Fredholm if and only if the operator M̃ is Fredholm

and

ind(M) = ind(M̃). (4.24)

Proof. We need to show that M − M̃ is a compact map since then by

Given a bounded sequence uk in C2+γ([0, 3])×C1+γ([0, 3]), we need to show that there

exists a convergent subsequence vk of (M −M̃)uk. vk convergent in C1+γ([0, 3])×Dγ([0, 3])

is equivalent to vk|[0,1], vk|[1,2], vk|[2,3] convergent in the local spaces, respectively. Thus it

suffices to show that (M − M̃)|[0,1], (M − M̃)|[2,3] are compact.

To check both Kimura and quadratic cases, we assume that L0 is Kimura type and L1
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is of quadratic type.

At x = 0, given a bounded sequence (un, qn) in C2+γ([0, 1])× C1+γ([0, 1]) , we have

(M − M̃)(un, qn) = (0,
b(x)− b−

x
qn).

Since b(x)−b−
x is smooth and bounded, it remains to show by definition of Dγ([0, 1]) that xqn

has a convergent subsequence in Cγ([0, 1]).

Since {qn, xq′n} are bounded in Cγ([0, 1]), then {xqn} are uniformly bounded and uni-

formly equicontinuous. Therefore by the Arzela-Ascoli theorem, there exists a convergent

subsequence vn of xqn in C0([0, 1]). For the [·]γ part, notice that for gn(y) = vn(x) under

the coordinate change y = xγ ,

[vn]γ = O(||g′n||∞). (4.25)

Since g′n = 1
γ v

′
nx

1−γ and {v′n} are uniformly bounded in Cγ([0, 1]), {g′n} are uniformly

bounded and uniformly equicontinuous. Thus, there exists a subsequence of g′n convergent in

C0([0, 1]). By (4.25), the corresponding subsequence of vn converges in Cγ([0, 1]). Therefore

(M −M ′)|[0,1] is a compact operator.

At x = 3, we prove the result using heat coordinates in [−∞, 0]. Given a bounded

sequence (un, qn) in C2+γ((−∞, 0])× C1+γ((−∞, 0]), write

(M − M̃)(un, qn) = (0, (b(z)− b+)qn).

Since {q′n} is bounded in Cγ(T )for any compact set T , there exists a convergent subsequence

of {qn} in Cγ(T ). We choose a convergent subsequence {qk1}k≥1 on [−1, 0], and {qk2}k≥1 a

convergent subsequence of {qk1} on [−2, 0]. Iteratively, we choose {qkn}k≥1 to be a convergent

subsequence of {qkn−1} on [−n, 0].

We show below that the diagonal sequence {(b(z)− b+) q
k
k}k≥1 converges in Dγ((−∞, 0]).
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Since ||qkk ||γ is bounded and b(z)−b− tends to 0 as z tends to −∞, there exist N > 0, K > 0

such that

max
{
|(b(z)− b−)qkk |, [(b(z)− b−)qkk ]γ ,

sup
z1≤z2≤−N

∣∣∣∣∫ z2

z1

(b(z)− b−)qkkdz

∣∣∣∣ } ≤ ϵ/4, on (−∞,−N ]

{qkk}k≥K converge in Cγ([−N, 0]).

So we can pick N ′ such that ||(b(z)− b−)qmm − (b(z)− b−)qnn||γ,[−N,0] < ϵ
2 when m,n > N ′.

Combining the above, we have ||(b(z) − b−)qmm − (b(z) − b−)qnn||γ,(−∞,0] < ϵ when m,n >

N ′. We proved that the diagonal sequence {(b(z)− b+) q
k
k}k≥1 converged in Dγ((−∞, 0]).

Therefore (M −M ′)|[2,3] is a compact operator. It is not hard to show that (M −M ′)|[1,2]

is also a compact operator so that M − M̃ is compact.

Representation of solutions of the modeling operator

The results in the previous subsection show that ind(Lγ) = ind(M̃) if M̃ is Fredholm. Now

we turn to proving that M̃ is Fredholm and computing the index of M̃ . Recall that

M̃ : C2+γ([0, 3])× C1+γ([0, 3]) −→ C1+γ([0, 3])×Dγ([0, 3]) (4.26)

is associated to the expression

u0
u1

 7→

u′0
u′1

+ A(t)

u0
u1

 , A(t) = A− for t ≤ 1, A(t) = A+ for t ≥ 2.

Let f ∈ C1+γ([0, 3]) × Dγ([0, 3]) be given, and suppose u ∈ C2+γ([0, 3]) × C1+γ([0, 3])
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solves

du

dt
+ Au = f.

Let Y = Y (t) denote the fundamental matrix associated to M̃ , defined in different intervals

by

dY

dt
+ AY (t) = 0, Y (1) = I, on [0, 2)

dY

dt
+ AY (t) = 0, Y (2+) = I, on (2, 3].

Then Λ := Y (2−) is an invertible matrix and

u(2) = Λu(1) + Λ

∫ 2

1
Y (s)−1f(s)ds.

Given u(1), we can uniquely determine u(t) on [0, 3]:

u(t) = Y (t)u(1)−
∫ 1

t
Y (t)Y −1(s)f(s)ds, t ≤ 1 (4.27)

u(t) = Y (t)

(
Λu(1) + Λ

∫ 2

1
Y (s)−1f(s)ds

)
+

∫ t

2
Y (t)Y −1(s)f(s)ds, t ≥ 2. (4.28)

We analyze the above solutions for different boundary points. For quadratic endpoints, we

directly assume t is in heat coordinates.

1. Quadratic endpoints with b± ̸= 0, A± =

 0 −1

0 b±

 constant matrix. Then

Y (t) =

 e−(t−1)A− , t ∈ (−∞, 1]

e−(t−2)A+ , t ∈ [2,+∞).
(4.29)
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A± has two different eigenvalues 0, b±. We let E− be the spectral projector associated to

the set of all positive eigenvalues of A−, and E+ be the spectral projector associated to the

set of all negative eigenvalues of A+. Apply the operator E−, E+ on (4.27), (4.28), and let t

go to −∞,∞ to get:

E−u(1) =
∫ 1

−∞
e(s−1)A−E−f(s)ds, (4.30)

E+Λu(1) = −E+Λ

∫ 2

1
Y (s)−1f(s)ds−

∫ ∞

2
E+e

(s−2)A+f(s)ds. (4.31)

Using this relation, we recast u(t) for t < 1 as:

u(t) = e−(t−1)A−(I − E−)u(1)−
∫ 1

t
e−(t−s)A−(I − E−)f(s)ds+

∫ t

−∞
e−(t−s)A−E−f(s)ds

(4.32)

and for t > 2 as:

u(t) = e−(t−1)A+(I − E+)Λ

[
u(1) +

∫ 2

1
Y (s)−1f(s)ds

]
(4.33)

+

∫ t

2
e−(t−s)A+(I − E+)f(s)ds−

∫ ∞

t
e−(t−s)A+E+f(s)ds.

2. Kimura transverse point In this case

Y (t) =

 1 F (t−b−)− F (1)

0 t−b−

 , t ∈ [0, 1],

Y (t) =

 1 F (( t2)
−b+)− F (1)

0 ( t2)
−b+ .

 , t ∈ [2, 3],
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where F denotes the antiderivative. We let E± =

 0 0

0 1

. Multiplying by E−Y (t)−1

both sides of (4.27), (4.28), and letting t→ 0, t→ 3, respectively, we obtain

E−u(1) =
∫ 1

0
E−Y (s)−1f(s)ds, (4.34)

E+Λu(1) = −E+Λ

∫ 2

1
Y (s)−1f(s)d−

∫ 3

2
E+Y

−1(s)f(s)ds. (4.35)

Using this relation we recast u(t) for t < 1 as:

u(t) = Y (t)(I − E−)u(1) + Y (t)

∫ t

0
E−Y −1(s)f(s)ds− Y (t)

∫ 1

t
(I − E−)Y −1(s)f(s)ds

(4.36)

and for t > 2 as:

u(t) = Y (t)(I − E+)Λ

(
u(1) +

∫ 2

1
Y (s)−1f(s)ds

)
(4.37)

+

∫ t

2
Y (t)(I − E+)Y

−1(s)f(s)ds−
∫ 3

t
Y (t)E+Y

−1(s)f(s)ds.

3. Quadratic endpoints with b± = 0 In this case

Y (t) =

 1 t− 1

0 1

 , t ∈ [0, 1], Y (t) =

 1 t− 2

0 1.

 , t ∈ [2, 3].

We let E± =

 0 0

0 1

. Multiply by et on both sides of (4.27), (4.28) and let t→ ±∞. We

again obtain (4.34), (4.35) with the integral lower/upper points 0, 3 replaced by −∞,∞. So

we can re-express u(t) as (4.36), (4.37) again with integral lower/upper points 0, 3 replaced

with −∞,∞.
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4. Kimura tangent point In this case, A± =

 0 −1

0 0

. We observe that if f =

(f0, f1) = M̃(u0, u1) ∈ ran(M̃), then f1 = u′1, so that s(s − 3)f1(s) vanishes at Kimura

tangent endpoints by definition of C1+γ([0, 3]). We next let E± =

 0 0

0 0

. Obviously

(4.34), (4.35) are true then. So we can also recast u(t) as (4.36), (4.37).

Summarizing these boundary cases, we make the following definition.

Definition 4.3.3. We define

I1f =

∫ 1

l
E−Y (s)−1f(s)ds,

I2f = E+Λ

∫ 2

1
Y (s)−1f(s)ds+

∫ r

2
E+Y

−1(s)f(s)ds,

with l, r = −∞,∞ at a quadratic endpoint and l, r = 0, 3 at a Kimura endpoint.

In all cases, when f satisfying the corresponding boundary conditions is in the range of

M̃ , then I1f, I2f are related by

E−u(1) = I1f, E+Λu(1) = −I2f. (4.38)

For f satisfying the relation (4.38), we fix a constant u(1) as in (4.38), and then define

u(t) on the whole domain by (4.36) and (4.37) (or (4.32) and (4.33) for quadratic endpoints).

We now show that such a u is indeed the solution.

Lemma 4.3.3. For U = (−∞, c] or U = [c,∞), if f = (f0, f1) ∈ C1+γ(U)×Dγ(U) together

with some u(1) ∈ R2 satisfy (4.38), then u(t) defined by (4.32),(4.33) is in C2+γ(U) ×

C1+γ(U) and solves

du

dt
+ Au = f.
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Proof. When b± ̸= 0, A± can be diagonalized as

A± =

 1 −1

0 b±


 0 0

0 b±


 1 −1

0 b±


−1

= CB±C−1.

By changing a basis u 7→ C−1u, we may assume that A± has the diagonal form B± and

E± is the corresponding projector of A±. For convenience we only prove (4.32) as (4.33) is

obtained similarly.

For the solution u = (u0, u1), it is straightforward to see that u0 ∈ C2((−∞, c]),

lim
z→−∞

∂zu = lim
z→ −∞

∂2zu = 0 and satisfies ∂2zu + b−∂zu = f ′1 + f2 + bf1. Hence the clas-

sical result of elliptic operator in Hölder spaces gives that u0 ∈ C2+γ((−∞, c]). Then

u1 = u′0 − f1 ∈ C1+γ((−∞, c]).

When b± = 0, we explicitly express u(t) for t < 1 as follows:

u0(t) = u0(1)− u1(1) + tu1(t)−
∫ 1

t
[f0(s)− sf1(s)]ds, (4.39)

u1(t) = u1(1)−
∫ 1

t
f1(s)ds. (4.40)

Since f satisfies (4.30), by Remark 4.3.1, u0, u1 are integrable up to −∞. u′1(t) = f1(t) ∈

Cγ((−∞, c]) so u1 ∈ C1+γ((−∞, c]). And

u′0(t) = u1(1) + f0(t)−
∫ 0

t
f1(s)ds, u′′0(t) = f ′0(t) + f1(t).

u′′0 ∈ Cγ((−∞, c]) and u′0 is integrable up to −∞, so u′0 ∈ C1+γ((−∞, c]). Thus, u ∈

C2+γ((−∞, c])× C1+γ((−∞, c]) and solves du
dt + Au = f .

Lemma 4.3.4. For U = [0, 1] or U = [2, 3], if f = (f0, f1) ∈ C1+γ(U) × Dγ(U) together

with some u(1) ∈ R2satisfies (4.38) and s(s−3)f1(s) vanishes at Kimura tangent endpoints,
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then u(t) defined by (4.36),(4.37) is in C2+γ(U)× C1+γ(U) and solves

du

dt
+ Au = f.

Proof. At a transverse Kimura point, we write u(t) for t < 1 as

u(t) =

 1 0

0 0

u(1) +

∫ t

0

 0 sb−G(t)

0 t−b−sb−

 f(s)ds−
∫ 1

t

 1 sb−G(s)

0 0

 f(s)ds,

(4.41)

where G(t) = F (t−b−)− F (1). By direct computation we have

u′1(t) = f1(t)− at−(b−+1)
∫ t

0
sb−f1(s)ds,

u′0(t) = t−b−
∫ t

0
sb−f1(s)ds+ f0(t), u

′′
0(t) = f1(t)− b−t−(b−+1)

∫ t

0
sb−f1(s)ds+ f ′0(t).

Thus u′′0 , u
′
1 ∈ Dγ([0, 1]) and by definition u ∈ C2+γ(U)×C1+γ(U) and solves du

dt +Au = f .

At a tangent Kimura point, for t ∈ [0, 1], we write u(t) for t < 1 as:

u0(t) = u0(1) + (t− 1)u1(1)−
∫ 1

t
[f0(s) + (t− s)f1(s)]ds, (4.42)

u1(t) = u1(1)−
∫ 1

t
f1(s)ds. (4.43)

u1 is integrable up to t = 0 iff lim
s→0

sf1(s) = 0. In such a case, u′1(t) = f1(t) ∈ Dγ([0, 1]) and

so u1 ∈ C1+γ([0, 1]). Since

u′0(t) = u1(1) + f0(t)−
∫ 1

t
f1(s)ds, u

′′
0(t) = f ′0(t) + f1(t),

u ∈ C2+γ(U)× C1+γ(U) and solves du
dt +Au = f . For t ∈ [2, 3], the proof is essentially the

same.
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Proof of Theorem 4.3.1

Lemma 4.3.5. dim ker(M̃) = dim [ker(E−) ∩ Λ−1ker(E+)].

Proof. If M̃u = 0, then Λu(1) ∈ ker(E+) and similarly u(1) ∈ ker(E−). On the other hand,

we set u(1) ∈ ker(E−) ∩ Λ−1ker(E+), and define u at the quadratic boundary point by

for t ≤ 1 : u(t) = e−(t−1)A−u(1), for t ≥ 2 : u(t) = e−(t−2)A+Λu(1)

and at the Kimura endpoint by

for t ≤ 1 : u(t) = Φ(t)u(1), for t ≥ 2 : u(t) = Φ(t)Λu(1)

and u(t) is uniquely characterized on [1, 2] by u(1). Then, u ∈ C2+γ([0, 3] × C1+γ([0, 3])

and solves M̃u = 0. When such u exists, it is uniquely determined by u(1). We thus proved

that the map

N : ker(M̃) −→ ker(E−) ∩ Λ−1ker(E+)

by assigning u to u(1) is a bijection. Therefore dim ker(M̃) = dim [ker(E−)∩Λ−1ker(E+)].

Lemma 4.3.6. The condition (4.38) is equivalent to

ΛI1f + I2f ∈ ker(E+) + Λ · ker(E−). (4.44)

Proof. Suppose (4.38) is satisfied, then for some v1, v2 ∈ R2 we have

u(1) = I1f + (I − E−)v2, Λu(1) = −I2(f) + (I − E+)v1.

Multiplying the first equality by Λ and subtracting the second equality, we obtain (4.44).
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Conversely, suppose that (4.44) is true. Then, for some v1, v2 ∈ R2,

I2f + ΛI1f = −Λ(I − E−)v2 − (I − E+)v1.

Define u(1) = I1f + (I − E−)v2. Using that E2
± = E±, E±(I − E±) = 0, we verify that

(4.38) is satisfied.

We define the linear map

Φ : C1+γ([0, 3])×Dγ([0, 3]) −→ R2

ker(E+) + Λ · ker(E−)
.

by assigning f to the coset [ΛI1f + I2f ].

ran(M̃) ⊂ ker(Φ) is already known and moreover

ran(M̃) ⊂ ker(Φ) ∩ {(f1, f2) : s(s− 3)f2(s) vanishes at Kimura tangent points.}

Indeed we show below that they are equal and thus obtain

Lemma 4.3.7. We have

1. dim ker(Φ)/ran(M̃) = |Kimura tangent points|,

2. Φ is surjective.

Proof. We show that

ker(Φ) ∩ {(f1, f2) : s(s− 3)f2(s) vanishes at Kimura tangent points} = ran(M̃). (4.45)

First we assume that there is no Kimura tangent endpoint. Given f ∈ ker(Φ), then for

some u(1) ∈ R2, E+Λu(1) = −I1f, E−u(1) = I2f . Define u by (4.36), (4.37). Then by

Lemmas 4.3.3, 4.3.4, u ∈ C2+γ([0, 3]) × C1+γ([0, 3]) solves M̃u = f , so that f ∈ ran(M̃),

and hence ran(M̃) = ker(Φ).

125



If there is at least one Kimura tangent point, then ker(E+) + Λker(E−) = R2, so ker(Φ)

is the whole space C1+γ([0, 3])×Dγ([0, 3]). For f in the left hand space of (4.45), we define

u by (4.36), (4.37). Again by Lemmas 4.3.3, 4.3.4, such u is the solution of M̃u = f , and

hence we proved (4.45) in this case.

Next we prove that Φ is surjective. If there is at least one Kimura tangent endpoint, then

ker(E+) + Λker(E−) = R2, so the target space of Φ is {0} and Φ is surjective.

Now we assume that there is no Kimura tangent point. Pick x ∈ R2. We need to find

f ∈ C1+γ([0, 3])×Dγ([0, 3]) such that

ΛI1f + I2f − x ∈ ker(E+) + Λ · ker(E−).

Recall that

I1f = E+Λ

∫ 1

−1
Y (s)−1f(s)ds+

∫ ∞

1
e(s−1)A+E+f(s)ds,

I2f =

∫ −1

−∞
e(s+1)A−E−f(s)ds.

We first take

f(t) = 0 ∀ t < 1, f(t) = −gA+x ∀t > 1.

We could choose an appropriate function g ∈ L1([1,∞) ∩ C0b (R) so that

I1(f) + ΛI2f − x = −(I − E+)x

and therefore Φ(f) = [x]. However f would not be continuous. Thus modifying this idea we
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set

fk(t) = 0 for t ≤ 1,

fk(t) = k(1− t)gA+x for 1 ≤ t ≤ 1 +
1

k
,

fk(t) = −gA+x for t ≥ 1 +
1

k
.

We compute

I1(f) + ΛI2f − x = −(I − E+)x+ xk

where xk → 0 as k → ∞. Since the projection map is continuous we have Φ(fk) → [x] and

since the image of Φ is closed we conclude that [x] ∈ ran(Φ). We construct f similarly in all

other cases.

From Lemma 3.7 we have

codim ran(M̃) = dim ker(Φ)/ran(M̃) + dim ran Φ

= |kimura tangent endpoints|+ 2− dim(ker(E+) + Λker(E−)).

so that

ind(Lγ) =ind(M) = ind(M̃)

=dim[ker(E−) ∩ Λ−1ker(E+)]− [2− dim(ker(E+)

+ Λker(E−))]− |kimura tangent endpoints|

=dim ker(E+) + dim ker(E−)− 2− |Kimura tangent endpoints|.
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From the definitions of E± we conclude that

dim ker(E+) + dim ker(E−) = 1 + 1 + |tangent endpoints|,

and hence

ind(Lγ) = 1 + 1 + |tangent endpoints| − 2− |tangent kimura endpoints|

= |tangent quadratic endpoints| = κ+ + κ−.

4.4 Exponential convergence to invariant measures

In this section we study the convergence rate to the invariant measure in two different cases.

First, when there is at least one tangent boundary, then the invariant measure is Dirac

measure(s) at the tangent boundary(ies) and quadratic endpoints (if any). To estimate the

convergence rate we use Lyapunov functions constructed in Section 4.4.1. These Lyapunov

functions display different asymptotic behaviors at different boundary endpoints, and turn

out to lie in the function spaces C(α, β) (see Definition 4.4.1). We show that the growth

bound of the generator of Qt on C(α, β) is not larger than the Lyapunov function rate

(4.48), and thus negative. From this, we conclude that the transition probability converges

exponentially to the corresponding invariant measure in a Wasserstein distance. The main

results are summarized in Theorem 4.4.1.

In the second case where both boundary points are transverse, the invariant measures in-

clude a unique invariant measure µ supported on the whole domain [0, 1] and Dirac measures

at quadratic endpoints (if any). Motivated by underdamped Langevin dynamics, we wish

to prove and then apply a Poincaré inequality in L2(µ) to show exponential convergence.

Using tools developed in
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4.4.1 Case of one/two tangent boundary points

Function Space C(α, β)

When there is at least one tangent boundary point, we consider a function space isometrically

isomorphic to C0([0, 1]):

Definition 4.4.1. For α, β ∈ R, we define the function space

C(α, β) := xα(1− x)βC0([0, 1])

equipped with norm

||f ||α,β :=

∣∣∣∣∣∣∣∣ f

xα(1− x)β

∣∣∣∣∣∣∣∣
C0
.

We will specify α, β in different cases later (see Sec.4.4.1 for more detail) but list their

ranges as:

α, β =


∈ (0, 1) Kimura/quadratic tangent

0 Kimura transverse

< 0 quadratic transverse.

Remark 4.4.1. The solution operator Qt constructed in Theorem 4.2.1 is also the solution

operator of the Cauchy problem on C(α, β). To see this, the two local operators Q̃0
t , Q̃

1
t

naturally act on C(α, β) and so does the perturbation operator.

We let A be the generator of Qt on C(α, β). We use the notation f(x0) ∼ 0 in C(α, β)

if f
xα(1−x)β (x0) = 0 and f ≻ 0(⪰ 0) in C(α, β) if f

xα(1−x)β is strictly positive (nonnegative).

Lemma 4.4.1 (Positive Minimum Principle). For λ ∈ R, the operator B := A− λ satisfies
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the positive minimum principle on C(α, β), i.e.

for every 0 ⪯ f ∈ D(A) and x ∈ [0, 1], f(x) ∼ 0 implies (Bf)(x) ⪰ 0.

Proof. We say f ∈ C0([0, 1]) is in D2([0, 1]) if f is twice differentiable up to Kimura endpoint

and if at quadratic endpoint if any, say x = 0, then x∂xf, x2∂2xf has a continuous limit 0 at

x = 0. Consider the space

D([0, 1]) := xα
∗
(1− x)β

∗
g, g ∈ D2([0, 1]),

where α∗ = α, β∗ = β if x=0,1 is quadratic and 0 if Kimura.

Since C2([0, 1]) is dense in C0([0, 1], then D2([0, 1]) ⊃ C2([0, 1]) is also dense in C0([0, 1],

and hence D([0, 1]) is dense in Cα,β([0, 1]). And for t > 0, Qt(D([0, 1])) ⊂ D([0, 1]), so by

Assume f ∈ D([0, 1]) and f(x0) = 0. If x0 is an interior point, then ∂xf(x0) =

0, ∂2xf(x0) ≥ 0, so Bf(x0) ≥ 0. If x0 is Kimura tangent, since f is twice differentiable

at x0, Bf(x0) = 0. If x0 is Kimura transverse, in this case, ∂xf(x0) ≥ 0, x∂2xf(x0) = 0, and

so Bf(x0) ≥ 0.

If x0 is a quadratic endpoint, locally near 0, f = xαg for g ∈ D2([0, 1]). As a function

g(x) ≥ 0, g(0) = 0 where x∂xg, x2∂2xg have a continuous limit 0 at x = 0, so lim
x→0

Af
xα = 0.

Thus, (Bf)(x0) ∼ 0.

To analyze the semigroup Qt generated by A, we first recall the spectral bound s and

the growth bound w1 for A defined as

s(A) := sup{Re λ : λ ∈ σ(A)} (4.46)

w1 := inf
w∈R

{||Qtx|| ≤Mewt||x||D(A),∀x ∈ D(A), t ≥ 0 for suitable M} (4.47)
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and let

λ0 := inf
λ∈R

{Af ≤ λf, 0 ≺ f}. (4.48)

C(α, β) equipped the norm || · ||α,β makes it a Banach lattice as defined in

Given λ > λ0, by definition of λ0, there exists 0 < u ∈ C(α, β) such that Au ≤ λu. We

define a strict half norm Pu on C(α, β):

Pu(f) = sup
x∈[0,1]

f+(x)

u(x)
, f+ := max(f, 0).

Since u > 0, Pu is well defined on C(α, β). Pu gives rise to a norm

||f ||p := Pu(f) + Pu(−f)

which is equivalent to the norm on C(α, β).

Let B = L− λ, then Bu ≤ 0. We now show B is Pu-dissipative (

Fix f . If f ≤ 0, define ϕf := 0. If f is positive at least at one point, denote by x0 a

point such that Pu(f) =
f+(x0)
u(x0)

. Now consider ϕf ∈ C(α, β)′ such that

(g, ϕf ) =
g(x0)

u(x0)
.

Clearly such ϕf satisfies the second condition. Next we check the first condition. Let

f ∈ D(B), if Pu(f) = 0, then f ≤ 0, so (Bf, ϕf ) = (Bf, 0) = 0. If Pu(f) > 0, since

Pu(f) =
f(x0)
u(x0)

≥ f(x)
u(x)

, then

Pu(f) · u− f ≥ 0, (Pu(f) · u− f)(x0) = 0. (4.49)
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By the positive minimum principle Lemma 4.4.1,

Bf(x0) ≤ Pu(f)(Bu)(x0) ≤ 0

i.e. (Bf, ϕf ) ≤ 0.

Let Pt be the semigroup generated by B. We show that Pt is Pu-contraction, i.e.

Pu(Ptf) ≤ Pu(f),∀f ∈ D(B). Let f ∈ D(B), t > 0, then

Pu(f) = (f, ϕf ) = (f − tBf + tBf, ϕf ) ≤ (f − tBf, ϕf ) ≤ Pu(f − tBf).

Thus for λ > w1, f ∈ C(α, β), (λ − B)R(λ,B)f = f , so Pu(λR(λ,B)f) ≤ Pu(f), then by

the formula Ptf = lim
n→∞

(n
t ·R(

n
t , B)

)n
f , we have

Pu(Ptf) ≤ Pu(f).

Thus the closure B generates a Pu-contraction semigroup, hence the closure A = B + λ of

A generates a positive semigroup of type w1(Ā) ≤ λ. Hence we showed that λ0 ≥ w1(A) =

s(A).

Estimation of λ0 and rate of convergence

In this part, we show that λ0 < 0, which implies the exponential convergence to δ measures

at tangent boundaries. In order to do this, we construct u that satisfies Lu < λu for some

λ < 0. The strategy of construction is to first use the behavior of L in the vicinity of two

the boundary points to construct u near the boundaries and then find a connecting interior

function.
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Boundary Construction 1 . Quadratic endpoint . In the vicinity of quadratic point, L =

x2∂xx + (b(x) + 1)x∂x and recall b− = b(0). Let

u = Axc, A > 0.

Taking c = −b−
2 ,

Lu

u
= (c+ b(x))c,

is negative in a neighborhood of 0.

2 .Kimura endpoint . In the vicinity of a Kimura point, L = x∂xx+ b(x)∂x with b = b(0). Let

u =


Axc, 0 < c < 1 b = 0

A(1− x)c, c > 0 b > 0

.

In both cases

Lu

u
= (c− 1 + b(x))cx−1

Lu

u
= c(1− x)−2[(c− 1)x− b(x)(1− x)]

are negative in a neighborhood of 0.

Interior Construction Suppose we have constructed u in [0, x1] and [x2, 1]. We now need

to construct an interior function u that satisfies the boundary conditions. Inside [x1, x2],

suppose L has the form

L = ∂xx + b(x)∂x,
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where b(x) is smooth on [x1, x2]. Let

B(x) =

∫ x

x1

b(t)dt, (4.50)

then B is smooth on [x1, x2]. We want Lu strictly negative, that is

uxx + b(x)ux < 0.

It is equivalent to eB(x)ux being a decreasing function, i.e. there exists some positive function

f on [x1, x2], such that

(eB(x)ux)
′ = −f. (4.51)

Case I: one tangent, one transverse points Without loss of generality, we assume a

tangent boundary at x = 0. Now by construction of u at both boundaries, ux(x1) > 0,

ux(x2) > 0. We first modify the constant A in the construction near x = 1 such that

eB(x2)ux(x2) < eB(x1)ux(x1).

Next, by (4.51), f(x1) = −eB(x1)Lu(x1) > 0, f(x2) = −eB(x2)Lu(x2) > 0 are two positive

fixed constants. Then we can set f to be a positive function with f(x1), f(x2) fixed and

∫ x2

x1

f(t)dt = eB(x1)ux(x1)− eB(x2)ux(x2).

Such an f guarantees that eB(x)ux(x) > eB(x2)ux(x2) > 0 for x ∈ [x1, x2] which guarantees

positiveness of ux and hence positiveness of u.

Case II: two tangent boundaries By construction of u at both boundaries, ux(x1) >

0, ux(x2) < 0. We directly get eB(x2)ux(x2) < eB(x1)ux(x1).
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Denoting F (x) =
∫ x
x1
f(t)dt, then F (x) is a differentiable increasing function on [x1, x2]

with F (x1) = 0. Then by considering derivatives of u

ux(x) = e−B(x)
[
eB(x1)ux(x1)− F (x)

]

we know u is first increasing then decreasing on [x1, x2], which implies u is lower bounded

by min(u(x1), u(x2)). Hence we only need to assign a positive f such that

∫ x2

x1

f(t)dt = eB(x1)ux(x1)− eB(x2)ux(x2).

Theorem 4.4.1. If there is only one tangent endpoint p, then for any non-quadratic point

x, the transition probability pt(x, ·) converges exponentially to δ(p) in Wasserstein distance.

If there are two tangent endpoints, then there exists S0, satisfying S0(0) = 0, S0(1) =

1 and LS0 = 0, such that for any probability measure v, Q∗
t v converges exponentially to

δ(0)
∫ 1
0 v(1− S0) + δ(1)

∫ 1
0 vS0 in Wasserstein distance.

Proof. If there is only one tangent endpoint, say x = 0, then for any f ∈ C0([0, 1]) with

Lip(f) ≤ 1, f can be decomposed as

f = f0 + f(0), f0 ∈ C(α, β).

Then by Proposition ??,

||Qtf − f(0)||C(α,β) = ||Qtf0||C(α,β) ≤Meλ0t||f0||C(α,β)

with some constant M > 0 independent of f . Since f0(0) = 0,Lip(f0) ≤ 1 and 0 < α <

1, β ≤ 0, then ||f0||C(α,β) ≤ Cα,β for some constant Cα,β > 0 only dependent on α, β. Hence

|Qtf(x)− f(0)| ≤MCα,βe
λ0txα(1− x)β . (4.52)
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Notice that only when x = 1 is a quadratic endpoint do we have β < 0. Hence for any

non-quadratic point x, the transition probability qt(x, ·) converges to δ(0) in the sense of

Wasserstein distance at an exponential rate. This convergence is uniform on any compact

interval away from quadratic transverse point. If x = 1 is a quadratic point, then qt(x, ·) =

δ(1) for ∀t > 0.

If both endpoints are tangent, by Theorem 4.3.2, the kernel of L is in the linear space of

{1, S}. Then we can take S0 as a linear combination of 1 and S, such that S0(0) = 0 and

S0(1) = 1. For any f ∈ C0([0, 1]) with Lip(f) ≤ 1, we decompose this as

f = f0 + (1− S0)f(0) + S0f(1), f0 ∈ C(α, β).

Again, by Proposition ??,

||Qtf − (1− S0)f(0)− S0f(1)||C(α,β) = ||Qtf0||C(α,β) ≤Meλ0t||f0||C(α,β)

with M > 0 independent of f . Since 0 < α, β < 1, f0(0) = f0(1) = 0 and Lip(f0) ≤ 1, then

||Qtf − (1− S0)f(0)− S0f(1)||0 ≤Mα,β ||Qtf − (1− S0)f(0)− S0f(1)||C(α,β),

||f0||C(α,β) ≤ Cα,β

for some constant Mα,β , Cα,β > 0 only dependent on α, β. Hence,

||Qtf − (1− S0)f(0)− S0f(1)||0 ≤MCα,βMα,βe
λ0t,

so that the transition probability qt(x, ·) converges uniformly on [0, 1] to (1 − S0(x))δ(0) +

S0(x)δ(1) at an exponential rate in Wasserstein distance. Hence starting from any probability

measure v, Q∗
t v converges exponentially to δ(0)

∫
v(1 − S0) + δ(1)

∫
vS0 in Wasserstein

distance.
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Remark 4.4.2. Consider as a the first example the case with one tangent boundary point,

say x = 0, quadratic tangent while x = 1 is Kimura transverse. For instance,

L = x2(1− x)∂xx + bx(a− x)∂x on [0,1], ab < 1, b(a− 1) < 0.

Consider f = xc. If we choose 0 < c < 1− ab, then

Lf

f
=
Lxc

xc
= [(1− x)(c− 1) + b(a− x)] c ≤ max(c− 1 + ab, b(a− 1))c < 0.

So

λ0 ≤ min
0<c<1−ab

max(c− 1 + ab, b(a− 1))c < 0.

As a second example, consider two tangent boundary points , for instance

L = x2(1− x)∂xx on [0, 1].

In this case, we should expect p(t, x, ·) → (1− S0)δ0 + S0δ1, where S0 in this case is x. By

setting f = xc(1− x), 0 < c < 1, then

Lf = (c(c− 1)− c(c+ 1)x)xc(1− x) ≤ λf.

Here, λ = c(c− 1) < 0. So

λ0 ≤ min
0<c<1

c(c− 1) = −1

4
.

4.4.2 Case with two transverse boundaries

Recall that we have constructed the invariant measure µ when both endpoints are transverse

in Section 3.2. We first introduce a (W)-Lyapunov-Poincaré inequality that will be used to
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analyze the long time behavior of the transition probability.

(W)-Lyapunov-Poincaré inequality

Consider U(z) =
∫ z
0 b(s)ds with b(s) negative when s → −∞ and positive when s → ∞.

Then U grows linearly to +∞ near z = ±∞. L can be taken as

Lz =
1

2
∂zz −∇U(z)∂z = −1

2
∂∗z∂z

with ∂∗z = ∂z + 2∇U(z) on a probability space (X,µ), with µ the invariant measure

µ(dz) =
e−2U(z)

Z
dz (4.53)

where the normalizing constant Z <∞ due to the linear growth of U . The main advantage

of switching to L2(µ) is L is self adjoint on L2(µ). Indeed

∫
R
(∂zφ)ϕdµ =

∫
R
φ(−∂zϕ+ 2ϕ∇U(z))dµ =

∫
R
φ∂∗zϕdµ

so that

(φ,Lϕ)L2(µ) = (Lφ, ϕ)L2(µ).

For some function W ∈ D(L) with W ≥ 1, let IW (t) =
∫
Q2
t fWdµ. Then

Local Poincaré inequality In the transverse case, we can not find a global Lyapunov

function. We have to weaken the condition to define a local Lyapunov function V as

LV ≤ −αV + β1C , V ≥ 1 (4.54)

for some set C.
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Definition 4.4.2 (Local Poincaré inequality). Let Ω be a subset of the whole space X (we

will use C ⊂ Ω). We say that µ satisfies a local Poincaré inequality on Ω if there exists some

constant κΩ such that for all nice f with
∫
X fdµ = 0,

∫
Ω
f2dµ ≤ κU

∫
X
|∇f |2dµ+

1

µ(Ω)

(∫
Ω
fdµ

)2

. (4.55)

We now show the:

Proposition 4.4.1. Assume that there is some local Lyapunov function V ≥ 1 under some

set C such that (4.54) holds, and µ satisfies a local Poincaré inequality on Ω ⊃ C with

moreover

βµ(Ωc) < αµ(Ω). (4.56)

Then we can find λ ≥ 0 such that if W = V + λ, then µ satisfies a (W)-Lyapunov-Poincaré

inequality.

Proof. Multiply (4.54) by f2 and integrate to get

∫
X
f2LV dµ ≤ −α

∫
X
f2V dµ+ β

∫
C
f2dµ.

Let
∫
X fdµ = 0. The local Poincaré inequality implies

∫
Ω
f2dµ ≤ κΩ

∫
X
|∇f |2dµ+

1

µ(Ω)

(∫
Ω
fdµ

)2

≤ κΩ

∫
X
|∇f |2dµ+

1

µ(Ω)

(
−
∫
Ωc
fdµ

)2

≤ κΩ

∫
X
|∇f |2dµ+

µ(Ωc)

µ(Ω)

(∫
Ωc
f2dµ

)
,
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so that

∫
X
f2 (LV + αV ) dµ ≤ β

∫
C
f2dµ ≤ β

∫
Ω
f2dµ

≤ βκU

∫
X
|∇f |2dµ+

βµ(Ωc)

µ(Ω)

(∫
Ωc
f2V dµ

)
.

We re-organize the inequality as,

α

(
1− βµ(Ωc)

αµ(Ω)

)∫
X
f2V dµ ≤ βκΩ

∫
X
|∇f |2dµ−

∫
X
f2LV dµ

≤
∫
X
|∇f |2(V + λ)dµ−

∫
X
f2L(V + λ)dµ

=

∫
X
|∇f |2(V + λ)dµ−

∫
X
Lf2(V + λ)dµ.

Here we take λ = (βκU − 1)+ so that βκΩ ≤ V + λ. Since,

∫
X
f2(V + λ)dµ ≤ (1 + λ)

∫
X
f2V dµ,

then

α

(
1− βµ(Ωc)

αµ(Ω)

)
1

1 + λ

∫
X
f2(V + λ)dµ ≤

∫
X

(
|∇f |2(V + λ)− Lf2(V + λ)

)
dµ

and 1
CLP

= α
(
1− βµ(Ωc)

αµ(Ω)

)
/(1 + λ).

Long time behaviors

Let us come back to the operator L = 1
2∆−∇U · ∇ on (X,µ). We first construct the local

Lyapunov function V with C satisfying (4.54).

Lemma 4.4.2. There exists a local Lyapunov function.
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Proof. Let X = [xl, xr], −∞ ≤ xl < xr ≤ ∞ and

V =


eU xl = −∞

2− (x(z)− xl) xl > −∞.

We define V similarly in the vicinity of xr. We check that LV ≤ −αV, V > 1 for some

α > 0 in a neighborhood xl:

1. When xl = −∞, for V = eU ,

LV = V
(1
2
∆U − 1

2
|∇U |2

)
.

By the transverse condition, lim
z→−∞

∇U = −b− < 0, which implies lim
z→∞

∆U = 0. So

lim
z→−∞

(1
2
∆U − 1

2
|∇U |2

)
= −1

2
b2− < 0.

Since lim
z→−∞

U(z) = ∞, for 0 < α <
b2−
2 , we have LV ≤ −αV, V ≥ 1 in a neighborhood of

xl.

2. When xl > −∞, for V = 2− (x(z)− xl),

LV = Lx(2− x) = −b(x).

By the transverse condition, b− > 0, so LV (0) < 0 and since V (0) = 2 > 0, LV ≤ −αV, V ≥

1 for some α > 0 in a neighborhood of xl.

In all cases, LV ≤ −αV, V > 1 for some α > 0 in a neighborhood xl, xr.

After constructing V in a neighborhood of xl and xr, we extend it to a complement C of

these two neighborhoods as a twice differentiable function with V ≥ 1. Since C is compact,

LV, V are bounded on C, and we can find some β > 0 large enough that V is a Lyapunov
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function for C:

LV ≤ −αV + β1C .

Next we verify that µ satisfies a local Poincaré inequality (4.4.2). Indeed by

We now state our main result of the section:

Theorem 4.4.2. The invariant measure µ in (4.53) satisfies a Poincaré inequality. For

f ∈ L2(µ),

||Qtf −
∫
fµ||L2(µ) ≤ e

− t
2CLP ||f −

∫
fµ||L2(µ). (4.57)

For any probability measure v = hµ with h ∈ L2(µ),

||Q∗
t v − µ||TV ≤ e

− t
2CLP ||h− 1||L2(µ).

Proof. By construction, C is a compact set in the interior of X. We choose a larger set U

with C ⊂ U ⊂ int(X) such that βµ(Uc) < αµ(U). µ is bounded on U , so µ satisfies a local

Poincaré inequality on U . Applying Proposition 4.4.1, µ satisfies a (W)-Lyapunov-Poincaré

inequality. Thus by (??), for all f such that
∫
f2Wµ <∞ and

∫
fµ = 0,

∫
(Qtf)

2Wµ ≤ e
− t
CLP

∫
f2Wµ.

Since W ∈ L1(µ), by

For the second assertion, we use the symmetry property Q∗
t (hµ) = (Qth)µ and (4.57) to

derive that

||Q∗
t v − µ||TV = ||Qth− 1||L1(µ) ≤ ||Qth− 1||L2(µ) ≤ e

− t
2CLP ||h− 1||L2(µ).
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Remark 4.4.3. Regarding logarithmic Sobolev inequalities, which are stronger than Poincaré

inequalities, we may use a criterion on a ball of radius R (

4.5 Long time behaviour in two dimension

In this section we analyze the long time behavior of transition probability on a two-dimensional

manifold with corners. We refer to

Let P be a paracompact Hausdorff topological space. A chart of p ∈ P is a pair (Up, ψp)

where Up is a neighborhood of p and ψp is a homeomorphism with ψp(p) = 0 from Up to a

neighborhood of 0 in Rl+×R2−l for some l ∈ {0, 1, 2}. Two charts (Up, ψp), (Uq, ψq) are said

to be compatible if

ψp ◦ ψ−1
q : ψq(Up ∩ Uq) −→ ψp(Up ∩ Uq)

is a diffeomorphism. The codimension l is well defined for p ∈ P . We say that the point p

is an interior point if l = 0, an edge point if l = 1, a corner if l = 2. A two dimensional

manifold with corners is paracompact Hausdorff topological space equipped with a maximal

compatible atlas.

4.5.1 Lyapunov function

We make the following assumption:

Assumption 4.5.1. For L on a 2 dimensional compact manifold with corners P , there is

exactly one tangent edge H, and when restricted to H, L|H is transverse to both boundary

points.

We say that V is a Lyapunov function if V is strictly positive except on H, V |H ≡ 0 and
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for some λ0 < 0,

LV ≤ λ0V. (4.58)

We make the following assumption:

Assumption 4.5.2. There is a twice differentiable function ρ(p) such that

a. ρ > 0 except on H, ρ|H ≡ 0;

b. ∇ρ ̸= 0 nowhere vanishing;

c. For p in an edge E, if ∇Eρ(p) = 0, then ρ ≡ c in a relative neighborhood of p along E;

d. There is no local minimum point of ρ other than on H.

The third assumption ensures that ρ is constant or strictly monotonic along any edge E.

In the presence of such ρ, there exists a stratification of P so that:

1. P is covered by the layers:

P =
n⋃
i=0

P[ki,ki+1]
:=

n⋃
i=0

{p ∈ P : ρ(p) ∈ [ki, ki+1]}, (4.59)

0 = k0 < k1 < · · ·kn = max
P

ρ.

2. Each layer P[ki,ki+1]
is covered by a finite collection of closed sets Ui,pj , i.e.

P[ki,ki+1]
=
⋃
j

Ui,pj , (4.60)

where pj is a point in Ui,pj and the range of ρ in each Ui,pj is [ki, ki+1].

We leave the construction of the stratification to Lemma 5.3.2 in the Appendix. We then

have the following result:

Theorem 4.5.1. There exists a Lyapunov function V on P .
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Proof. We first analyze the local behavior of ρ, L. Note that for

L = A(x, y)∂xx +B(x, y)∂xy + C(x, y)∂yy +D(x, y)∂x + E(x, y)∂y,

under the new coordinates (η, ρ), the ordinary differential ρ-part Lρ is

Lρ = (Aρxx +Bρxy + Cρyy)∂ρρ + (Lρ)∂ρ. (4.61)

Given any point p ∈ P , we discuss the local property of L at point p subject to the following

cases.

1. p is an interior point There exists a closed set including p equipped with coordinates

(x, ρ) that is diffeomorhic to the rectangle R := [0, 1] × [ρ(p), ρ(p) + ϵ]. In this case, Lρ is

elliptic of the form

Lρ = a(x, ρ)[∂ρρ + b(x, ρ)∂ρ], (x, ρ) ∈ R, (4.62)

where a(x, ρ) > 0.

2. p is an edge point Under local adapted coordinates (x, y),

a. if ρ ≡ ρ(p) along the edge y = 0, then (x, ρ) are local adapted coordinates. There is a

neighborhood of p that is diffeomorphic to the rectangle

R := [0, 1]× [ρ(p)− ϵ, ρ(p)].

Lρ is degenerate at ρ(p) of the form: for (x, ρ) ∈ R,

Kimura : Lρ = a(x, ρ)
[
(ρ(p)− ρ)∂2ρ + c(x, ρ)∂ρ

]
(4.63)

quadratic : Lρ = a(x, ρ)
[
(ρ− ρ(p))2∂2ρ + d(x, ρ)(ρ(p)− ρ)∂ρ

]
(4.64)
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where a(x, ρ) > 0.

b. If the gradient of ρ along the edge ∇xρ(p) ̸= 0, then (y, ρ) are local adapted coordinates.

There is a neighborhood of p that is diffeomorphic to R := [0, 1] × [ρ(p), ρ(p) + ϵ] for some

ϵ > 0. In this case Lρ is elliptic of the same form with (4.62) in R.

3. p is a corner Under local adapted coordinates (x, y),

a. if along one (e.g. x) edge ∇xρ(p) = 0, then ρ ≡ ρ(p) in a relative open neighborhood of p on

the x-edge. Since ∇yρ(p) ̸= 0, then by rescaling x, (x, ρ) are also local adapted coordinates

at p; this case is then the same as in (4.63), (4.64). See the first picture in Figure 4.1.

b. If ∇xρ(p),∇yρ(p) ̸= 0, then (x, ρ) are not adapted coordinates. In this case, there exists a

neighborhood of p that is diffeomorphic to an irregular area inside a rectangle

T := {(x, ρ) : ρ ≥ ρ(x)|y=0} ⊂ [0, 1]× [ρ(p)− ϵ1, ρ(p) + ϵ2].

See the second and third pictures in Figure 4.1. Lρ is then degenerate when x = 0 and

elliptic when x ̸= 0.

If p is neither a local maximum nor minimum, T is made up of a rectangle and an irregular

area T1, we can extend the coefficients of Lρ to the rectangle supplemented by the dashed

lines. Then in these two rectangles, Lρ are both degenerate when x = 0 and elliptic when

x ̸= 0.

We now start the construction of V iteratively in each layer. Such V generally depends

only on the variable ρ, i.e., V (p) = V (ρ(p)), except near the corners.

146



Figure 4.1: Lρ at a corner

Case i = 0 P[0,k1] is covered by finite rectangles R := [0, 1] × [0, k1] where Lρ takes the

form

Kimura : Lρ = a(x, ρ)
(
ρ∂2ρ + b(x, ρ)∂ρ

)
(4.65)

quadratic : Lρ = a(x, ρ)(ρ2∂2ρ + c(x, ρ)ρ∂ρ) (4.66)

where a(x, ρ) > 0, b(x, ρ) < 1, c(x, ρ) < 1 since H is a tangent edge. We take V = ρν ,

where ν depends on the considered case. In case (4.65), we choose 0 < ν < min
(x,ρ)

(1− b(x, ρ))

so that Lρρν = aν(ν + b − 1)ρν−1 ≤ −λρν for some λ > 0. In case (4.66), we choose

0 < ν < min
(x,ρ)

(1− c(x, ρ)) so that Lρρν = aν(ν + c− 1)ρν ≤ −λρν for some λ > 0.

Case i ≥ 1 P[ki,ki+1]
is then covered by four kinds of disjoint collections of open set R as

we analyzed before, namely:

I. R does not contain any corner or local maximum point, Lρ is elliptic for ∀x of the form

(4.62);
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II. R contains an edge and ρ is constant along this edge, so Lρ takes the form (4.63), (4.64);

III. R contains a corner that is a strict local maximum point of ρ,

IV. R contains a corner that is neither a local maximum point nor local minimum point of ρ.

At this layer P[ki,ki+1]
, RII and RIII are both disconnected from the other three types. RI

may only be connected with RIV . There maybe more than one R of type II, but since Lρ

takes a uniform form in these RII , in our construction below we may regard these RII as a

uniform R and for convenience of notation we still let x ∈ [0, 1]. RIII will be treated in this

way as well. For RI , we can merge these RI as a uniform one as well. If there exists RIV ,

we construct V separately in RIV so that it may be patched with V in RI .

Thus, it suffices to construct V in these four cases separately. Since ki > 0 when i ≥ 1,

we assume that ρ(p) = 1.

Case I: Fix an arbitrary x0, we choose f(ρ) so that

f ′(ρ) < b(x0, ρ)− b(x, ρ).

Starting from ρ = 1, we let, Vρ = exp(f(ρ) −
∫ ρ b(x, z)dz), then LρVρ

Vρ
= [f ′ − b(x0, ρ) +

b(x, ρ)] < 0.

Case II: In the Kimura case (4.63), we fix x0 so that c(x0, 1) = max
x∈[0,1]

c(x, 1). We choose

f(ρ) so that

f ′(ρ) <
c+ c(x0, ρ)− c(x, ρ)

1− ρ
, c = −c(x0, 1) > 0

on [1− ϵ, 1]. Denote Hx(ρ) = exp
[∫ ρ c(x,z)

1−z dz
]
∼ (1− ρ)−c(x,1), and let

Vρ =
(1− ρ)cef(ρ)

Hx0(ρ)
.
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Then, LρVρVρ
= [(1− ρ)f ′ − c− c(x0, ρ) + c(x, ρ)] < 0.

In the quadratic case (4.64), we fix x0 so that d(x0, 1) = max
x∈[0,1]

d(x, 1). We choose f(ρ)

so that

(1− ρ)f ′ − (d− 1)− d(x0, ρ) + d(x, ρ) < 0, d− 1 = −d(x0, 1)− 1 > 0

on [1− ϵ, 1]. Denote Hx(ρ) = exp
[∫ ρ d(x,z)

1−z dz
]
∼ (1− ρ)−d(x,1), let

Vρ =
(1− ρ)d−1ef(ρ)

Hx0(ρ)
.

Then, LρVρVρ
= (1− ρ)[(1− ρ)f ′ − (d− 1)− d(x0, ρ) + d(x, ρ)] < 0.

Case III: If the corner p is a strict local maximum point, we can extend the coefficients

of Lρ to the rectangle which is supplemented by the dashed lines so that Lρ is has the same

degree of degeneracy at ρ = ρ(p).

Case IV: In this case, if L has the same degeneracy type towards two edges intersecting

at the corner p. Let U be a neighborhood of p inside T and introduce new coordinates (x, z)

so that z = ρ in T \U , zρ > 0 and p attains local maximum of z. So in the (x, z)-coordinate,

Lz has the same kind of degeneracy as Lρ in an irregular area T ′. We extend the coefficients

of Lz to a rectangle so that Lz takes the form (4.63), (4.64). Taking the solutions V to these

two forms which we already constructed, we see V is infinity at the corner of two quadratic

edges.

If L has different types of degeneracy towards the two edges, then it takes the form

L =
[
xa(x, ρ) + (ρ− 1)2

]
∂ρρ + xb(x, ρ)∂xx + c(x, ρ)∂ρ + d(x, y)∂x + x(ρ− 1)e(x, y)∂xρ

(4.67)

on [0, 1]× [0, 1], ρ ∈ [0, 1], where a, b, c, d > 0.
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When x = 0, L0ρ = (1− ρ)2∂ρρ + c(x, ρ)∂ρ. Clearly a decreasing linear function V would

satisfy L0ρV < 0. But such V has negative derivative, which is not desired. So our strategy

is to first construct f0(ρ), f1(ρ) at x = 0, 1 so that

L0ρf0, L
1
ρf1 < 0, f ′1(ρ) > 0.

We then patch them together with the desired boundary conditions. We choose two non-

negative functions χ0(x), χ1(x) so that

χ0(0) > 0, χ0 = 0 in [1− ϵ, 1],

χ1(0) = 0, χ1 = χ(1) in [1− ϵ, 1].

Suppose that max
(x,ρ)

− xbχ′′1+dχ
′
1

χ1
< M for some M > 0 and let cmin = min

[0,1]×[0,1]
c(x, ρ). We

choose another two non-negative functions h0(ρ), hϵ(ρ) so that

h0(0) = 0, h′0(0), h
′′
0(0) = 0, h0(ρ) =

cmin
2

−M(1− ρ) on [1− cmin
2M

, 1]

hϵ ∈ C2
c ([0, 1−

cmin
2M

+ ϵ]), hϵ(0) = 0, h′ϵ(0) = V ′(0), h′′ϵ (0) = V ′′(0),

Lρhϵ < 0 on [0, 1− cmin
2M

].

Then for ρ ∈ [1− cmin
2M , 1],

(Lρ + xe(ρ− 1)χ′1∂ρ)h0
h0

> −
xbχ′′1 + dχ′1

χ1
. (4.68)

Indeed we can rescale χ1 so that the coefficient of ∂ρ in Lρ + xe(ρ − 1)χ′1∂ρ is bigger than
cmin
2 , so the left hand side term is no less than M , hence (4.68) is true.
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We let

V (x, ρ) = c0f(x, ρ)h0(ρ) + hϵ(ρ)

where f(x, ρ) = χ0(x)f0(ρ) + χ1(x)f1(ρ), c0 > 0 is a constant.

We want to ensure that L(fh0) < 0 on ρ ∈ [1− cmin
2M , 1]. The coefficient of f1 in L(fh0) is

(xbχ′′1 + dχ′1)h0 + χ1(x)Lρh0 + xe(x, ρ)(ρ− 1)χ′1(x)h
′
0(ρ) (4.69)

through a direct computation in(4.70) below, which is positive by (4.68). So we can subtract

a positive constant from f1 so that L(fh0) < 0 when ρ ∈ [1− cmin
2M , 1]. We compute:

Lf =χ0(x)Lρf0 + χ1(x)Lρf1 + xb(x, ρ)
[
χ′′0f0 + χ′′1f1

]
(4.70)

+ d(x, y)
[
χ′0f0 + χ′1f1

]
+ x(ρ− 1)e(x, y)

[
χ′0f

′
0 + χ′1f

′
1

]
L(f(x, ρ)h0(ρ)) =(Lf) · h0 + f · Lρh0 + h′0(ρ)

[
xe(x, ρ)fx + 2(xa(x, ρ) + ρ2)fρ

]

Finally for c0 > 0 small enough, V is positive since hϵ > 0 and Lρhϵ < 0 for ρ ∈

[0, 1 − cmin
2M + ϵ]. We adjust hϵ so that max

ρ∈[1− cmin
2M ,1]

Lρhϵ < max
ρ∈[1− cmin

2M ,1]
− Lρ(c0fh0) and

LV < 0. Such V is finite by construction, so LV
V < 0. V satisfies the boundary conditions

at ρ = 0 and when x ∈ [1 − ϵ, 1], V only depends on ρ, so this V could be extended to a

global function in this layer.

By induction, we construct V layer by layer, and such V is positive on P \H while V is

∞ at corners which are the intersection of two quadratic edges and on the quadratic edges

where ρ is constant. We have finitely many layers and each layer is covered by finite closed

rectangles or irregular areas, and we showed that LV
V < 0 in each of this area, so V is a

Lyapunov function indeed satisfying LV ≤ λ0V for some λ0 < 0.

Remark 4.5.1. The Lyapunov function V we constructed above behaves like ρc where ρ is
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the distance to the tangent edge and c is some positive constant.

V gives rise to a norm || · ||PV :

||f ||PV := sup
P

f+

V
+ sup

P

f−

V
.

and we define the space CV (P ) :

CV (P ) := V · C0(P )

equipped with the norm || · ||PV . By saying f ≻ 0 if ||f ||PV > 0, let

λ0 := inf
λ∈R

{Af ≤ λf, 0 ≺ f}.

Clearly, λ0 < 0. A similar argument of Proposition ?? gives rise to the following result:

Proposition 4.5.1. There exists some M > 0 so that for f ∈ CV (P ), t > 0,

||Ptf ||PV ≤M ||f ||PV e
λ0t.

Fix a point p ∈ P neither on H nor any quadratic edge, we denote pt(p, ·) the transition

probability of the diffusion starting from p. A corollary is

Corollary 4.5.1. For f ∈ CV (P ), t > 0

|Ptf(p)| ≤ V (p)||Ptf ||PV ≤MV (p)||f ||PV e
λ0t. (4.71)

Remark 4.5.2. Consider the example in
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4.5.2 Exponential convergence to invariant measure

First, there exists a tubular neighborhood of H that is diffeomorphic to U = [0, 1] × [0, 1]

with H mapped to [0, 1] × {0}. We fix a non-negative function h ∈ Cc(U) satisfying h|H ≡

1, h|y=1 ≡ 0. Then we integrate the transition probability pt(p, x, y) with respect to h in U :

qh(t, x) :=

∫ 1

0
pt(p, x, y)h(y)dy. (4.72)

It can be interpreted as the marginal density with respect to coordinate along H (x) and

limited to some neighbourhood of H (specified by h).

We already know that there exists a unique invariant measure µ0 supported on H. The to-

tal variation distance between qh(t, x) and µ0(x) can be bounded by χ2-divergence or Kullback-

Leibler (KL) divergence. To show the exponential decay of the χ2-divergence or the Kullback-

Leibler(KL), convergence requires a Poincaré inequality or a logarithmic Sobolev inequality,

respectively, for µ0. It turns out that if L|H has a Kimura endpoint, then the χ2-divergence

is not finite. And if L|H has a quadratic endpoint, then µ0 does not satisfy the logarithmic

Sobolev inequality. So in the proof of the following theorem, we employ an interpolation

divergence as constructed in

For 1 < r ≤ 2, define

ψ(u) = 3 +

(
5

2
− 3

r − 1

)
(u− 3) +

9

r(r − 1)

[(u
3

)r
− 1
]
, u ≥ 0. (4.73)

Such ψ is convex, ψ(1) = 0 and ψ(u) ∼ 9
r(r−1)3r

ur at +∞.

Lemma 4.5.1. On I × [0, 1], L takes the form

L = a(x, y)∂xx + b(x, y)ym∂yy + c(x, y)y∂xy + d(x, y)∂x + e(x, y)m−1∂y, m ∈ {1, 2}.

(4.74)

The proofs for the cases H being a quadratic edge or Kimura edge are essentially the same.
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So in the following proof, we assume that m = 2. In addition, we will prove below that in an

appropriate set of variables, we may choose

c(x, 1) = 0. (4.75)

Regarding qh(t, x) as the marginal density limited to neighbourhood of H, its total measure

approaches 1 at an exponential rate of λ0. Indeed

∫
I
qh(t, x)dx =

∫
I

∫ 1

0
pt(p, x, y)h(y)dxdy = 1−

∫
I

∫ 1

0
pt(p, x, y)[1− h(y)]dxdy (4.76)

≥ 1−Meλ0t

for some M > 0. Moreover, it satisfies the backwards equation:

∂tq(t, x) =

∫ 1

0
L∗pt(p, x, y)h(y)dy = L∗t qh(t, x) + v(t, x) (4.77)

where by integrating by parts

L∗t q(t, x) =∂xx

∫ 1

0
a(x, y)pt(p, x, y)h(y)dy − ∂x

∫ 1

0
c(x, y)ypt(p, x, y)h

′(y)dy

− ∂x

∫ 1

0
d(x, y)pt(p, x, y)h(y)dy

=:∂xx(B(t, x)qh(t, x))− ∂x(A(t, x)qh(t, x))

v(t, x) =

∫ 1

0
b(x, y)y2pt(p, x, y)h

′′(y)dy +
∫ 1

0
e(x, y)ypt(p, x, y))h

′(y)dy. (4.78)

We make a few remarks on these terms. First, ||v(t, x)||1 and ||[A(t, x) − d(x, 0)]qh(t, x)||1

decay exponentially at the rate λ0. Second, c(x, 1) = 0 ensures that c(x,y)yh′(y)
h(y)

is bounded,
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so that by choosing U sufficient small we may assume that

∣∣∂x[B(t, x)− a(x, 0)]
∣∣+ ∣∣µ′0

µ0
(B(t, x)− a(x, 0))

∣∣+ ∣∣(A(t, x)− d(x, 0))
∣∣ ≤ ϵ. (4.79)

We are now ready to estimate ||qh(t, x) − µ0(x)||TV . Let f(t, x) =
qh(t,x)
µ0(x)

. Then by

Lemma ??,

||qh(t, x)− µ0(x)||TV ≤
Cψ
P (t)

√∫
ψ(f(t, x))µ+Me−λ0t, (4.80)

where P(t) = ||qh(t, x)||1. We differentiate the term

d

dt
(ψ(f(t, x)), µ0) =(ψ′(f), ∂tqh(t, x))

=(L0ψ
′(f), fµ0) + ((Lt − L0)ψ

′(f), fµ0) + (ψ′(f), v(t, x))

=:−
∫
I
ψ′′(f)(∂xf)2µ0 + II + III.

We will show below that

II ≤ 2ϵ

∫
I
ψ′′(f)(∂xf)2µ0 + ϵ

∫
I
ψ(f)µ0dx+Meλ0t (4.81)

III ≤ ϵ

∫
I
ψ(f)µ0dx+Me(1−ϵ)λ0t. (4.82)

Therefore, we have

d

dt
(ψ(f(t, x)), µ0) ≤ −(1− 3ϵ)

∫
I
ψ′′(f)(∂xf)2µ0 + 2ϵ

∫
I
ψ(f)µ0 +Meλ0t

≤ −

[
1− 3ϵ

Cψ
− 2ϵ

]∫
I
ψ(f)µ0 +Meλ0t.
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As a consequence,

∫
I
ψ(f(t, x))µ0 ≤Me−at (4.83)

where a = min(1−2ϵ
Cψ

− 2ϵ,−λ0). Finally combined with (4.80), we obtain that

||qh(t, x)− µ0(x)||TV ≤Me−
a
2 t,

for some constant M > 0. This only leaves the proof of (4.81), (4.82), and (4.75). We leave

the proof of (4.82) to Lemma 5.3.1 in the Appendix.

Proof of (4.81) To see (4.81), we integrate by parts to see

II = −(ψ′′(f)(∂xf)2, (B(t, x)− a(x, 0))µ0)− (C(t, x)∂xψ
′(f), fµ0) =: II1 + II2

where

C(t, x) = ∂x[B(t, x)− a(x, 0)] +
µ′0
µ0

(B(t, x)− a(x, 0))− (A(t, x)− d(x, 0)).

It is easy to see that

II1 ≤ ϵ

∫
I
ψ′′(f)(∂xf)2µ0 (4.84)

since by (4.79) |B(t, x) − a(x, 0)| ≤ ϵ. We use Hölder and Cauchy-Schwarz inequalities to

bound

|II2| ≤ (C(t, x)(ψ′′(f))2(∂xf)2|f |2−p, µ0) + (C(t, x)|f |p, µ0) =: II21 + II22.
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Since ψ′′(f)|f |2−p is bounded by some constant independent of ϵ, by rescaling ϵ′ = ϵ
F in

(4.79) we obtain

II21 ≤ ϵ

∫
I
ψ′′(f)(∂xf)2µ0. (4.85)

We split II22 into two parts

∫
f≤1

C(t, x)|f |pµ0 +
∫
f≥1

C(t, x)|f |pµ0.

The first term decreases exponentially as eλ0t using |f |p ≤ f and that (C(t, x), qh(t, x)) de-

creases exponentially. The second term is bounded by
∫
ψ(f)µ0 multiplied by some constant.

To see this, when 0 ≤ f ≤ 3, because of the convexity of ψ,

ψ(f)− ψ(1)− ψ′(1)(f − 1) ≥ 1

2
min

0≤f≤3
ψ′′(f)(f − 1)2,

and ψ(f) ∼ fp near ∞. Thus,

(f − 1)2 ≤ C(1 + f2−p)(ψ(f)− ψ(1)− ψ′(1)(f − 1)).

Hence

∫
I
ψ(f)µ0 ≥

∫
(f − 1)2

1 + f2−p
µ0 ≥

∫
f≥1

(f − 1)2

1 + f2−p
µ0 ≥M

∫
f≥1

ψ(f)µ0. (4.86)

Gathering the above estimates,

II ≤ II1 + II21 + II22 ≤ ϵ

∫
I
ψ′′(f)(∂xf)2µ0 + ϵ

∫
I
ψ(f)µ0 +Meλ0t. (4.87)
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Proof of (4.75) If we consider the new coordinate (t, y), then the coefficient of mixed

derivative ∂tx is

A(x, y) = cytx + 2by2ty

To make A(x, 1) = 0, we choose

tx(x, 1) = 1, and then ty(x, 1) = − c(x, 1)

2b(x, 1)
.

Let f(x, y) = ∂xyt = ∂yxt, we choose f(x, y) = f(x, 1)h(y) and

tx(x, y) =

∫ y

0
f(x, z)dz + g(x), ty(x, y) =

∫ x

0
f(z, y)dz + l(y). (4.88)

Plugging (4.88) into tx, ty, we find

∫ 1

0
f(x, y)dy + g(x) = 1,

∫ x

0
f(z, 1)dz + l(1) = − c(x, 1)

2b(x, 1)
,

and hence

f(x, 1) = − ∂

∂x

c(x, 1)

2b(x, 1)
, g(x) = 1− f(x, 1)

∫ 1

0
h(y)dy.

Now we only need to make tx everywhere positive. Then, the coordinate change (x, y) 7→ (t, y)

would be bijective on [0, 1]2. Now by (4.88),

tx(x, y) = f(x, 1)

∫ y

0
h(z)dz + 1− f(x, 1)

∫ 1

0
h(y)dy = 1− f(x, 1)

∫ 1

y
h(z)dz.

We can choose a smooth function h(z) so that |f(x, 1)|·|
∫ 1
y h(z)dz| < 1 for all (x, y) ∈ [0, 1]2.

Therefore t(x, y) exists since txy = tyx and A(x, 1) = 0.

As a consequence we have the following estimate in Wasserstein distance,

Theorem 4.5.2. Fix a point p that is not on any quadratic transverse edge. Then the

Wasserstein distance between the transition probability pt(p, ·) and the invariant measure
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supported on the tangent edge converges exponentially:

W (pt(p, ·), µ0(x)δ0(y)) ≤Me−
a
2 t, t > 0. (4.89)

Proof. For any f ∈ C0(P ) with Lip(f) ≤ 1,

∫
P
fpt −

∫
P
fµ(x)δ0(y) =

∫
P\U

fpt +

∫
U
fpt −

∫
U
fµ(x)δ0(y).

∫
P\U fpt is bounded by Me−λ0twith constant M independent of f . The second term is

∫
U
fpt(p, x, y)dxdy −

∫
U
fµ(x)δ0(y)

=

∫
I

∫ 1

0
pt(p, x, y)[f(x, y)− f(x, 0)h(y)]dxdy

+

[∫
I

∫ 1

0
pt(p, x, y)f(x, 0)h(y)dxdy −

∫
I
f(x, 0)µ(x)dx

]
.

It is bounded by ||qh(t, x) − µ(x)||TV . The first term also has exponential decay because

[f(x, y)−f(x, 0)h(y)] ∈ CV (P ) with bounded norm independent of f . Hence the Wasserstein

distance between between pt(p, ·) and µ(x)δ0(y) decays exponentially with the same rate

a
2 .
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CHAPTER 5

APPENDIX

5.1 Kimura kernel Estimates

We now provide several kernel estimates which are crucial in the construction of the local

heat kernel at boundary points. Recall that

pdt (x, y) =
(y
t

)d
e−

x+y
t ψd(

xy

t2
)
1

y
, d > 0,

p0t (x, y) = e−
x
t δ(y) +

(x
t

)
e−

x+y
t ψ2(

xy

t2
)
1

t
, d = 0.

Lemma 5.1.1. There exists a constant Cd > 0 uniformly bounded for d ∈ [0, B] depending

on d such that

pd(t, x, y) ≤
Cd√
yt
e−

(
√
x−√

y)2

2t , d ≥ 1

2
or d = 0, y ̸= 0, (5.1)

pd(t, x, y) ≤ Cdmax

(
1

td
e−

(
√
x−√

y)2

t yd−1,
1√
yt
e−

(
√
x−√

y)2

2t

)
, d <

1

2
. (5.2)

Proof. Using the kernel formula,

pdt (x, y)y =
(y
t

)d
e−

x+y
t ψd(

xy

t2
).

Let λ = x
t , w = y

t . First we treat the case when d ≥ 1
2 and want to show that

wd−
1
2 e−(λ+w)ψd(λw) ≤ Ce−

(
√
λ−

√
w)2

2 . (5.3)

1. If λw ≤ 1, then ψd(λw) ≤ Cd since ψd is smooth and e−(λ+w) ≤ e−(
√
λ−

√
w)2 , so it remains
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to show that

wd−
1
2 = O(e

(
√
λ−

√
w)2

2 ). (5.4)

If w ≤ 1, wd−
1
2 ≤ 1 ≤ e

(
√
λ−

√
w)2

2 . If w > 1, then w ≤ λ since λw ≤ 1, so

e
(
√
λ−

√
w)2

2 ≥ e

(√
1
w−

√
w

)2

2 = Ω(wd−
1
2 ).

2. If λw ≥ 1, using the asymptotic expansion ψd(z) ∼ z
1
4−

d
2 e2

√
z

√
4π

,

wd−
1
2 e−(λ+w)ψd(λw) = O

(
e−(

√
λ−

√
w)2(

w

λ
)
d
2−

1
4

)
.

It remains to show that

(
w

λ
)
d
2−

1
4 = O(e

(
√
λ−

√
w)2

2 ). (5.5)

Let k = w
λ , then λ

√
k ≥ 1,

e
(
√
λ−

√
w)2

2 = e
λ(

√
k−1)2

2 ≥ e

1√
k
(
√
k−1)2

2 = Ω(k
d
2−

1
4 ). (5.6)

In the remaining case when 0 < d ≤ 1
2 ,

1. If λw ≤ 1, pd(t, x, y)y1−dtd = e−(λ+w)ψd(λw) ≤ ψd(1)e
−(

√
λ−

√
w)2

2. If λw ≥ 1, again we need to show that (5.3), for which we can apply the same estimate (5.6).

In the last case when d = 0, for y ̸= 0,

√
ytp0(t, x, y) =

x
√
y

t
3
2

e−
x+y
t ψ2(

xy

t2
) = λ

√
we−(λ+w)ψ2(λw).
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1. If λw ≤ 1, then the term above is bounded by

C
√
λe−(λ+w) = O(e−

(
√
λ−

√
w)2

2 ).

2. If λw ≥ 1, then

λ
√
we−(λ+w)ψ2(λw) ∼

(
λ

w

)1
4

e−(
√
λ−

√
w)2 = O(e−

(
√
λ−

√
w)2

2 ).

Lemma 5.1.2. There exists a constant Cd > 0 uniformly bounded for d ∈ [0, B] such that

√
x∂xpd(t, x, y) ≤

Cd
t
√
y
e−

(
√
x−√

y)2

2t , d ≥ 1

2
or d = 0, y ̸= 0,

√
x∂xpd(t, x, y) ≤

Cd√
t
max

(
1

td
e−

(
√
x−√

y)2

t yd−1,
1√
yt
e−

(
√
x−√

y)2

2t

)
, d <

1

2
.

Proof. Let λ = x
t , w = y

t , then

√
xyt∂xpd(t, x, y) =

√
x

√
y
(
y

t
)de−

x+y
t

∣∣∣y
t
ψ′d(

xy

t2
)− ψd(

xy

t2
)
∣∣∣ = √

λ√
w
wde−(λ+w)|wψ′d(λw)− ψd(λw)|.

(5.7)

We want to show that

√
λ√
w
wde−(λ+w)|wψ′d(λw)− ψd(λw)| = O(e

(
√
λ−

√
w)2

2 ).

1. If λw ≤ 1, it suffices to show that

√
λ√
w
wd = O(e

(
√
λ−

√
w)2

2 ).
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Let k = λ
w , then w ≤ 1√

k
, fix k,

lnk + 2dlnw − (
√
k − 1)2w (5.8)

has maximal value at min( 1√
k
, 2d
(
√
k−1)2

). If 1√
k
≤ 2d

(
√
k−1)2

, then M ≤ k ≤ N for some

M,N > 0, so

lnk + 2dlnw − (
√
k − 1)2w ≤ (1− d)lnk − (

√
k − 1)2√
k

is bounded above. If 2d
(
√
k−1)2

≤ 1√
k
, then

lnk + 2dlnw − (
√
k − 1)2w ≤ lnk − 2dln(

√
k − 1)2 + (2dln2d− 2d).

The right-hand side tends to −∞ as k → 0, and tends to −∞ if d > 1
2 or a finite number if

d = 1
2 as k → ∞, so it is bounded above.

2. If λw ≥ 1, then

√
λ√
w
wde−(λ+w)|wψ′d(λw)− ψd(λw)| ∼ (

λ

w
)
1
4−

d
2 e−(

√
λ−

√
w)2(

√
w −

√
λ).

In general,

1. If λw ≤ 1, pd(t, x, y)y1−dtd+
1
2 =

√
λe−(λ+w)|wψ′d(λw)−ψd(λw)| = O(e−

(
√
λ−

√
w)2

2 ) by (5.4).

2. If λw ≥ 1, again we need to show that (5.3), for which we can apply the same estimate (5.6)

Lemma 5.1.3. There exists a constant Cd > 0 uniformly bounded for d ∈ [0, B] such that

x∂2xp
d
t (x, y) ≤

Cd
t
√
yt
e−

(
√
x−√

y)2

2t , d ≥ 1

2
or d = 0, y ̸= 0,

x∂2xp
d
t (x, y) ≤

Cd
t

max

(
1

td
e−

(
√
x−√

y)2

t yd−1,
1√
yt
e−

(
√
x−√

y)2

2t

)
, d <

1

2
.
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Proof. Let λ = x
t , w = y

t , then

√
yttx∂2xpd(t, x, y) = wd−

1
2 e−(λ+w)[(λ+ w)ψd(λw)− 2λwψ′d(λw)− dwψ′d(λw)]. (5.9)

For d > 1
2 , we want to show that

wd−
1
2 e−(λ+w)[(λ+ w)ψd(λw)− 2λwψ′d(λw)− dwψd(λw)] = O(e

(
√
λ−

√
w)2

2 ).

1. If λw ≤ 1, it suffices to show that

(λ+ w + 1)wd−
1
2 = O(e

(
√
λ−

√
w)2

2 ).

2. If λw ≥ 1, then

wd−
1
2 e−(λ+w)[(λ+ w)ψd(λw)− 2λwψ′d(w)− dwψd(λw)]

∼ (
λ

w
)
1
4−

d
2 e−(

√
λ−

√
w)2 [(

√
w −

√
λ)2 +O(

w + λ√
λw

+ 1)].

Next we treat the case when d < 1
2 .

1. If λw ≤ 1, pd(t, x, y)y1−dtd+
1
2 =

√
λe−(λ+w)|wψ′d(λw)−ψd(λw)| = O(e−

(
√
λ−

√
w)2

2 ) by (5.4).

2. If λw ≥ 1, again we need to show that (5.3), for which we can apply the same estimate (5.6).

For d = 0, we want to show that

2λe−(λ+w)
[
w

3
2ψ′2(λw)−

√
wψ2(λw)

]
+ λ2e−(λ+w)

[
w

5
2ψ′′2 (λw)− 2w

3
2ψ′2(λw) +

√
wψ2(λw)

]
= O(e

(
√
λ−

√
w)2

2 ).

When λw ≤ 1, the left hand side is O((
√
λ +

√
w + λ

3
2 )e−(λ+w)) = O(e

(
√
λ−

√
w)2

2 ). When
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λw > 1, the left hand side has asymptotic

e−(
√
λ+

√
w)2
[

1

(λw)
1
4

(
√
w −

√
λ) +

(
λ

w
(
√
λ−

√
w)2
)1

4

]
= O(e

(
√
λ−

√
w)2

2 ).

Lemma 5.1.4. There exists a constant Cd > 0 uniformly bounded for d ∈ [0, B] such that

∂xpd(t, x, y) ≤
Cd
t
√
yt
e−

(
√
x−√

y)2

2t , d ≥ 1

2
or d = 0, y ̸= 0, (5.10)

∂xpd(t, x, y) ≤ Cdmax

(
1

td+1
e−

(
√
x−√

y)2

t yd−1,
1

t
√
yt
e−

(
√
x−√

y)2

2t

)
, d <

1

2
. (5.11)

Proof. First compute

yt∂xpd(t, x, y) = (
y

t
)de−

x+y
t

∣∣∣y
t
ψ′d(

xy

t2
)− ψd(

xy

t2
)
∣∣∣ .

Let λ = x
t , w = y

t . For the case d ≥ 1
2 , we want to show that

wd−
1
2 e−(λ+w)

∣∣wψ′d(λw)− ψd(λw)
∣∣ ≤ Ce

(
√
λ−

√
w)2

2 . (5.12)

The proof is similar to the proof above, except that we now use the asymptotic expansion

ψd(z) ∼
z
1
4−

d
2 e2

√
z

√
4π

, ψ′d(z) ∼
z−

1
4−

d
2 e2

√
z

√
4π

and ψ′d is also continuous at 0. The case when 0 ≤ d ≤ 1
2 can be proved similarly.

Lemma 5.1.5. For k ∈ N, there exists a constant Cd > 0 depending on k uniformly bounded
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for d ∈ [0, B] such that

(y∂y)
kpd(t, x, y) ≤

Cd√
yt
e−

(
√
x−√

y)2

2t , d ≥ 1

2
or d = 0, y ̸= 0, (5.13)

(y∂y)
kpd(t, x, y) ≤ Cdmax

(
1

td
e−

(
√
x−√

y)2

t yd−1,
1√
yt
e−

(
√
x−√

y)2

2t

)
, d <

1

2
. (5.14)

Proof. Let λ = x
t , w = y

t , then (w ∂
∂w )

kp = (y ∂∂y )
kp,. We first consider the case when d ≥ 1

2 .

pdt (λ,w) =
1

t
wd−1e−(λ+w)ψd(λw) =: I0

w∂wp
d
t (λ,w) =

1

t
wde−(λ+w) [λψ′d(λw)− ψd(λw)

]
+ (d− 1)pdt (λ,w) =: I11 + (d− 1)I0

(w∂w)
2pdt (λ,w) =

1

t
wde−(λ+w)

[
λ2ψ′′d(λw)− 2λψ′d(λw)

+ψd(λw)) + (2d− 1)I1 − d(d− 1)I0

=: I21 + (2d− 1)I1 − d(d− 1)I0

By induction, for k ∈ N,

(w∂w)
kpdt (x, y) =

1

t
wde−(λ+w)

 k∑
i=0

(−1)k−i +

 k

i

λiψ
(i)
d (λw)

+
k−1∑
j=0

cj(w∂w)
jpdt (x, y)

(5.15)

so we are left to show that

I := wd−
1
2 e−(λ+w)

 k∑
i=0

(−1)k−i

 k

i

λiψ
(i)
d (λw)

 ≤ Ce−
(
√
λ−

√
w)2

2
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Use that

dk

dkz
ψd = (

√
z)1−d−kId−1+k(2

√
z) = ψd+k(z), (5.16)

ψd(z) ∼
z
1
4−

d
2 e2

√
z

√
4π

, z → ∞ (5.17)

1. If λw ≤ 1, then I ≤ Cwd−
1
2

(
1 + λ+ ...+ λk

)
e−(λ+w) = O(e−

(
√
λ−

√
w)2

2 ) since d ≥ 1
2 ;

2. If λw ≥ 1,

I ∼ 1√
4π
wd−

1
2 e−(

√
λ−

√
w)2

 k∑
i=0

(−1)k−i

 k

i

λi(λw)
1
4−

d+i
2


∼ 1√

4π

(
λ

w

)1
4−

d
2+

k
4 1

(λw)
k
4

e−(
√
λ−

√
w)2

so I ≤ 1√
4π

(
λ
w

)1
4−

d
2+

k
4
e−(

√
λ−

√
w)2 = O(e−

(
√
λ−

√
w)2

2 ) by (5.5).

The case when 0 ≤ d ≤ 1
2 can be proved similarly.

5.2 Heat kernel estimates

Next we give kernel estimates for the heat kernel ket (x, x1) =
1√
4πt

e−
(x−x1)2

4t .

Lemma 5.2.1. For c > 0, 0 < s < t, there exists a constant C > 0 such that

∫ ∞

−∞
|∂yket−s(y, y1)− ∂yk

e
t−s(y

′, y1)| · |y − y1|γ · e−
(y1−y2)2

4cs dy1 (5.18)

≤ C√
t− s

|y − y′|γ
(
e−

(y−y2)2
4ct + e−

(y′−y2)2
4ct

)
. (5.19)

For x1 < x2, denote αe = 3x1−x2
2 , βe =

3x2−x1
2 , let J = [αe, βe].
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Lemma 5.2.2. For 0 < γ < 1, there is a C such that

∫ t

0

∫
J
|∂2xket−s(y, y1)||y − y1|γe−

(y1−y2)2
4s dy1ds ≤ C|y − y′|γe−

(y−y2)2
4t , (5.20)∫ t

0

∫
J
|∂2xket−s(y′, y1)||y′ − y1|γe−

(y1−y2)2
4s dyds ≤ C|y − y′|γe−

(y′−y2)2
4t . (5.21)

Lemma 5.2.3. For c > 0, 0 < s < t, there exists a constant C > 0 such that

∫ t

0

∫
Jc

|∂2yket−s(y, y1)− ∂2y′k
e
t−s(y

′, y1)| · |y − y1|γ · e−
(y1−y2)2

4s dy1ds,

≤ C|y − y′|γ
(
e−

(y−y2)2
8t + e−

(y′−y2)2
8t

)
.

Proof. These are all corollaries of

5.3 Proof in Chapter 4

Lemma 5.3.1. Fix p ∈ P that is not on the quadratic edge or tangent Kimura edge. For

q ∈ H × [A, 1], the transition probability pt(p, q) has a pointwise upper bound:

pt(p, q) ≤ C · exp
[
− x2

4C2t
+ C0|x|+ C1t

]
, (5.22)

for some constant C,C0, C1, C2 > 0. Therefore

∣∣∣∣∫
I
ψ′(f)v(t, x)dx

∣∣∣∣ ≤ ϵ

∫
I
ψµ+

√
te(1−ϵ)λ0t. (5.23)

Proof. We can follow the proof of

Firstly, unlike the setting under the usual Rimmannian measure on P , our proof in-

troduces a weighted measure dµ on P . The principal symbol of L induces a Riemannian

metric dV on P . For each Kimura boundary surface Hi, 1 ≤ i ≤ η, define ρi(p) to be the
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Riemannian distance from the point p ∈ P to Hi. Then

Bi|Hi :=
1

4
Lρ2i |Hi

are coordinate-invariant quantities. We also let Bi denote a smooth extension from Hi to P

of the coefficients. Then we define the weighted measure dµ by

dµ(p) :=
η
Π
i=1

ρi(p)
2Bi−1dV.

In an adapted system of local coordinates of a corner p, L takes the form: m+ n = 2,

L =
m∑
i=1

xi∂xixi +

m,n∑
i,j=1

b(x, y)xiyj∂xiyj +
n∑
j=1

c(x, y)y2j∂yjyj (5.24)

+
m∑
i=1

d(x, y)∂xi +
n∑
j=1

e(x, y)yj∂yj .

The weighted measure dµ is a multiple by a smooth function of

dµ(x, y) =
m
Π
i=1

x
di(x,y)−1
i dxi

n
Π
j=1

1

yj
dyj .

For α ∈ R and ϕ ∈ C∞(P ) satisfying |∇ϕ| ≤ 1 under the Riemannian metric on P ,

define Hα,ϕ
t (P ) on L2(µ) by

H
α,ϕ
t f(x) = e−αϕ(x)Ht[e

αϕf ](x).

Instead of the estimates of ||Hα,ϕ
t ||2→2 in

Proof of (??) To see this, compute the derivative:

∂

∂t
||Hα,ϕ

t f ||22 = 2(H
α,ϕ
t f, e−αϕLeα,ϕHα,ϕ

t f)L2(µ).
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Taking g = H
α,ϕ
t f , to derive (??) it is sufficient to have

(e−αϕg, Leαϕg) ≤ [α2 + C0|α|+ C1](g, g). (5.25)

We associate a bilinear form Q(u, v) to −(Lu, v)µ by letting

Q(u, v) = (Lu, v)L2(µ),

which can be written as

Q(u, v) = Qsym + (Tu, v)L2(dµ)

where Qsym(u, v) is a symmetric bilinear form and T is a first order vector field on P . We

need to estimate it in two cases.

Case I: In a neighborhood that is away from any Kimura edge, then L is uniformly elliptic

under dµ and of the form

L = a∂2x + 2b∂xy + c∂2y + V,

where V is a vector field. Then

Qsym(u, v) = −
∫
[auxvx + cuyvy + b(uxvy + uyvx)]dµ.

T is a vector field with bounded smooth coefficients. Take u = eαϕg, v = e−αϕg. Then

Q(u, v) = Q(g, g) + α2
∫

(aϕ2x + 2bϕxϕy + cϕ2y)g
2dµ+ α(Tϕ, g2)L2(dµ).
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L is uniformly parabolic so we can bound ||Q(g, g)|| by C||g||2
L2(dµ)

for some constant C >

0. Using the fact that |∇ϕ| ≤ 1, the second term and the third term are bounded by

α2||g||2
L2(dµ)

, C|α| · ||g||2
L2(dµ)

for some constant C > 0, respectively. So we obtained (5.25).

Case II: In a neighborhood of the tangent Kimura edge, say suppose in a neighborhood

of a corner which is the intersection of two Kimura edges, L is degenerate. Under local

coordinates (5.24),

L = x∂xx + y∂yy + xyb(x, y)∂xy + d1(x, y)∂x + d2(x, y)∂y.

We refer to

Take u = eαϕg, v = e−αϕg. Then,

(Lu, v) = Q(g, g) + α2
∫
g2(xϕ2x + yϕ2y + axyϕxϕy)dµ+ α(Tϕ, g2)L2(dµ).

By

Proof of (5.22) Fix p ∈ P that is not on a quadratic edge or tangent Kimura edge,

q ∈ H × [A, 1], r1, r2 > 0 so that Br1(p), Br2(q) ⊂ P . Notice that if q is an edge point on a

Kimura edge, Br2(q) is taken to be the semi-ball that lies in P .

Let χ1, χ2 be the indicatrix functions of Br1(p), Br2(q). Instead of deriving the mean

value inequalities from local Sobolev inequality in

Proof of (5.23) Having obtained the pointwise upper bound of pt(p, q), we can estimate

v(t, x).We choose ϕ(q) = ϕ(p) − C2x with some constant C so that |∇ϕ| ≤ 1. Since

h|H×[0,A] ≡ 1, by definition of v(t, x) (4.78), we only need to integrate y in [A, 1]. We

use the pointwise upper bounded above to obtain the following estimate of v(t, x):

v(t, x) ≤ C · exp
[
− x2

4C2t
+ C0|x|+ C1t

]
, (5.26)
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for some constant C0, C1, C2 > 0. Next we estimate
∫
ψ′(f)v(t, x)dx. We use Hölder’s

inequality with 1
r +

1
s = 1 to obtain

∣∣∣∣∫ ψ′(f)v(t, x)dx

∣∣∣∣ ≤ ||ψ′(f)µ1−
1
p || p

p−1
· ||µ

1
p−1

v
1− 1

ps ||pr · ||v
1
ps ||ps. (5.27)

First it is easy to see

||v
1
ps ||ps = O(e

λ0
ps t) (5.28)

has exponential decay with rate λ0
ps . We next estimate the first term. Since ψ(x) ∼ xp as

x→ ∞ and taking into account that ψ is negative only on a finite interval, we have

||ψ′(f)µ1−
1
p ||

p
p−1
p
p−1

≤M1

∫
|ψ|µ ≤M1

∫
ψµ+M2. (5.29)

For the second term, notice that µ−1 has asymptotic behavior O(ea|x|) for a > 0, and

v(t, x) decays quadratically in |x| by (5.26). So the second term is intergable while it may

have exponential growth with respect to t. Indeed after a direct calculation

||µ
1
pv

1− 1
ps ||pr = O

√
t · exp

4(C0 +
a(p− 1)

p− 1
s

)2

(1− 1

ps
)


= O

(√
t · exp

[
4 (C0 + a)2 (1− 1

ps
)

])

since 1
s < 1, p < 2. Regarding (5.28), for 0 < ϵ < 1, we take 1

ps = 1− ϵ λ0
4(C0+a)2+λ0

so that

||µ
1
p−1

v
1− 1

ps ||pr · ||v
1
ps ||ps = O(e(1−ϵ)λ0)). (5.30)

Taken (5.27), (5.29), (5.30) and an interpolation of arithmetic-geometric mean inequality to-
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gether, we obtain

∣∣∣∣∫ ψ′(f)v(t, x)dx

∣∣∣∣ ≤ ϵ

∫
ψµ+

√
te(1−ϵ)λ0t. (5.31)

Lemma 5.3.2. There exists a stratification as described in (4.59).

Proof. We first take a finite covering ofH by coordinate neighborhoods of the formR based at

points of H. Let k1 be the minimum of the height (normal direction in the local coordinates)

of these rectangles. Then by taking the closure of these rectangles and shrinking the height,

P[k0,k1] is covered by closed rectangles that satisfy the condition 4.60. We can do the similar

job at each level of the corners. Specifically, for a corner p, the level Lρ(p) := ρ = ρ(p) is the

disjoint union

Lρ(p) = Lρ(p),max

⋃
Lρ(p),i

where Lρ(p),max are the collection of points that attain the local maximum. Lρ(p),max, Lρ(p),i

are both compact and a disjoint union of finite points and the edges out of condition 4.5.2.c.

We cover Lρ(p),max, Lρ(p),i by finite open sets of the form R or T . Again, by taking the closure

and shrinking the height of these open sets, there are ϵ1, ϵ2 ≥ 0 so that P[ρ(p)−ϵ1,ρ(p)+ϵ2] is

covered by the closed sets that satisfy the condition 4.60. Up to now, the remaining parts

of P we have not covered are a disjoint unions of level intervals. Suppose P[a,b] is one of

level interval, we first cover P[a,b] by finite open rectangles with two sides lie on two ρ-levels,

then we can cut these rectangles so that P[a,b] is covered by closed rectangles that satisfy

the condition 4.60. Thus we can cover these level intervals by the desired stratification.
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