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ABSTRACT

The structure of the Gal(Lur/L), the Galois group of the maximal unramified extension

of a number field L, has been an object of interest for more than a century now. This

thesis is partially motivated by the question of which finite groups can appear as quotients

of Gal(Lur/L). We prove, under a technical assumption, that any semi-direct product of a

p-group G with a group Φ of order prime to p can appear as the Galois group of a tower

of extensions M/L/K with the property that M is the maximal p-extension of L that is

unramified everywhere, and Gal(M/L) = G. A consequence of this result is that any local

ring admitting a surjection to Z5 or Z7 with finite kernel can occur as a universal everywhere

unramified deformation ring.
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CHAPTER 1

INTRODUCTION

Let p be a prime, let L be a number field, and let Lur be the maximal unramified extension of

L. The structure of Gal(Lur/L) has been studied extensively by numerous mathematicians

since the late 19th century. In 1964, Golod and Shafarevich [GS64] solved the long-standing

class field tower problem by proving that the group Gal(Lur/L) can be infinite. This thesis

is partially motivated by the question of which finite groups can occur as Gal(Lur/L). In

this direction, Manabu Ozaki proved in [Oza11] that any p-group can be written as the

Galois group of Lur,p/L, for some totally complex number field L. Here Lur,p is the maximal

unramified p-extension of L. A recent paper of Hajir, Maire and Ramakrishna [HMR24a]

provides two extensions to Ozaki’s result: the base field can have arbitrary signature, as long

as its class number is prime to p, and the degree of the new field over Q can be controlled.

In this thesis, we prove a different generalisation in the case of regular primes. This thesis

is based on the author’s preprint [Ior23].

Note that Ozaki’s Theorem does not yield any information on the structure of the number

field L. In particular, this number field need not be Galois over Q. As such, it is natural to

ask what p-groups G occur as Galois groups of maximal unramified p-extensions of number

fields L, as one varies over Φ-extensions L (number fields L that are Galois over Q with

Gal(L/Q) = Φ, for a fixed group Φ).

If we fix a Φ-extension L, we observe that Lur,p/Q has to be Galois. If, for example,

we consider odd primes p and Z/2Z-extensions L, then the Galois group of Lur,p/Q will

be a semidirect product. Therefore, one might ask the following question, which this thesis

addresses:

Question 1. Fix a group Φ of order prime to p and let G be a p-group with an action of

Φ. Let Γ = G o Φ. Does there exist an extension L/K such that Gal(Lur,p/K) = Γ and

Gal(Lur,p/L) = G?
1



There is another motivating question for this thesis, coming from the field of Galois de-

formations. The topic of deformations of Galois representations was introduced by Barry

Mazur in [Maz89] and represents an important tool in Wiles’s work on the modularity con-

jecture and Fermat’s Last Theorem. Let ρ : GK → GL2(Fp) be an absolutely irreducible

residual representation, where K is a number field. If we consider the unramified lifts of this

representation, a natural question that arises is the following:

Question 2. What possible rings R can occur as universal unramified deformation rings of

such ρ?

An unramified deformation ρ : GK → GL2(R) factors through some finite group, so we

can consider the fixed field of the kernel of this map; denote it by K(ρ). The extension

K(ρ)/K(ρ) is a finite p-extension that is unramified everywhere, so its Galois group is a

quotient of the Galois group of the maximal pro-p extension of K(ρ) unramified everywhere.

We observe that Ozaki’s Theorem provides help in answering a variant of Question 2 if we

allow ρ : GK → GL2(Fp) to be trivial and R to be a universal unramified pseudodeformation

ring. Therefore, in order to answer the actual question, we need an extension of Ozaki’s

Theorem that allows us to deal with absolutely irreducible residual representations. In

particular, for representations ρ with image of order prime to p, the natural step is to

consider an extension of Ozaki’s Theorem for semidirect products.

1.1 Main Results

In this section, we present the statements of the main results. As previously mentioned,

Ozaki’s Theorem ([Oza11, Theorem 1]) states that any p-group can be written as the Galois

group of Lur,p/L, for some totally complex number field L. In this thesis, we prove the

following:

2



Theorem 1. Let p be a prime. Let Φ be a group of order prime to p. Assume there exists

an extension of number fields F/E such that:

• F/E is Galois with Galois group Φ, and [E : Q] ≥ 2d(Φ), where d(Φ) is the number of

generators of the group Φ,

• F has class number prime to p,

• The prime p splits completely in F/E and F/E satisfies property P below,

• E contains µp, and is totally imaginary if p = 2.

Then, for any p-group G with an action of Φ, there exist extensions of number fields M/L/K

such that:

1. M/L is the maximal p-extension of L that is unramified everywhere,

2. Gal(M/L) = G,

3. Gal(M/K) = Γ, where Γ = Go Φ,

4. M/K satisfies property P below.

Definition 1.1.1. We say that an extension of number fields M/K has property P if for all

primes p of K, and P | p, either MP/Kp is unramified or MP/Kp is a cyclic tamely ramified

extension with ramification index e and e | (q − 1), where q is the cardinality of the residue

field of Kp.

At first, Property P might seem very strong. However, this is not the case. To illustrate

what this condition means, let M/K be an extension, let p be any prime of K and let P be

a prime of M lying above p. Consider the following examples:

• If M/K is a Z/2Z-extension that is only ramified at primes p lying above odd rational

primes, then M/K satisfies property P. Note that this holds for all tamely ramified

Z/2Z-extensions.
3



• If M/K is a Z/3Z-extension that is only ramified at primes p such that N(p) ≡ 1

(mod 3), then M/K satisfies property P. Note that this is true for all tamely ramified

Z/3Z-extensions.

• If M/K is an extension such that MP/Kp is either unramified or totally tamely ram-

ified, then M/K satisfies property P.

When Φ is trivial, we can recover Ozaki’s result from Theorem 1 in the case when p is a

prime such that Q(ζp) has a finite extension with class number prime to p (note that this in-

cludes all regular primes); a similar hypothesis is present in the first version (arXiv:0705.2293)

of Ozaki’s paper [Oza11].

A motivating example and a consequence of Theorem 1 is Theorem 2 below. Consider a

continuous absolutely irreducible residual Galois representation ρ : GK → GL2(Fp). One can

associate to ρ a number of deformation rings. Let A be a local Artinian ring and consider a

deformation ρ : GK → GL2(A) of ρ. This deformation factors through some finite group, and

the fixed field of the kernel is a finite extension; call it K(ρ). We say that ρ is unramified if

the extension K(ρ)/K(ρ) is unramified everywhere. The functor which sends local Artinian

rings A to unramified deformations D(A) is pro-representable by a universal deformation

ring. Therefore, it is natural to seek for an answer to Question 2.

Assume that the image of ρ has order prime to p, so its projective image is Φ =

A4, S4, A5 or a dihedral group by [Ser72, Proposition 16]. The Unramified Fontaine-Mazur

Conjecture ([FM95, Conjecture 5a]) predicts that all Qp-points will have finite image. More-

over, the tangent space to any Qp-point with finite image will be trivial by class field theory

(proof of [AC14, Proposition 10]), and thus conjecturally such a ring has a unique map to

Qp. The expectation is then that R is a ring admitting a map R� Zp with finite kernel I.

In this thesis, we prove the following:

4



Theorem 2. Let R be any local ring admitting a surjection to Z5 or to Z7 with finite kernel.

Then there exists an absolutely irreducible residual representation ρ such that R is isomorphic

to the universal unramified deformation ring of ρ.

1.2 Overview of the Argument

The proof is done by induction (with the assumption of Theorem 1 acting as the base case),

as follows: since G is a p-group with an action of Φ, the group Φ must preserve the p-torsion

of the centre of G, and thus any such G will fit into an exact sequence of p-groups

1→ V → G′ → G→ 1,

where V is a group of exponent p on which Φ acts by an irreducible representation. Thus,

our semidirect product Γ fits into an exact sequence

1→ V → Γ′ → Γ→ 1. (1.1)

We construct the desired extensions inductively, combining Kummer extensions with care-

fully chosen solutions to the embedding problem. The inductive step is divided into two

cases, depending on whether this short exact sequence splits or not. An outline of the proof

for the split case is presented below; when the sequence is not split, the proof requires an

extra step that involves constructing a wildly ramified solution to the embedding problem.

The proof is inspired by Ozaki’s methods and techniques [Oza11]. In order to make

certain intermediate extensions more explicit, we also build on some ideas present in an

earlier preprint of Ozaki. While some elements of Ozaki’s proof can be modified to work in

our situation, there are several key steps which do not work. There are multiple reasons why

these arguments cannot be replicated in our situation, including the following:

5



• The dimension of V can be greater than 1, which could potentially lead to having an

unramified, but not maximal, extension;

• Instead of working with p-groups alone, we are now working with p-groups with an

action of Φ.

The inductive step is represented by Theorem 3.0.2. This Theorem takes a Galois exten-

sion L/K with Galois group Φ such that Gal(Lur,p/K) ∼= Γ = Go Φ and Lur,p/K satisfies

certain properties, and constructs a new extension L′/K ′ such that Gal(L′/K ′) ∼= Φ and

Gal((L′)ur,p/K ′) ∼= Γ′ = G′ o Φ. When the above short exact sequence splits, the structure

of the argument is as follows:

1. Construct a very large number of carefully chosen primes λiOL. The number of primes

depends on p and n = dimFp V . In order to make sure that such a construction

is possible, the base field K needs to be large enough over Q (in other words, K

must have enough Minkowski units). This is not a priori true, but we can ensure

this by performing a series of base changes that increase the degree of K over Q,

but preserve all the other properties (and thus avoid the obstructions imposed by the

Golod-Shafarevich towers). This is done in Theorem 3.0.1, whose proof is presented in

Section 3.1. The proof relies on the theory of modular representations of Fp[Γ].

2. Consider the decomposition of the Fp[Φ]-module L×/L×p into a direct sum of isotypic

components. Construct two more primes αOL and βOL that satisfy certain congruence

conditions modulo λiOL and have specific forms in the different isotypic components

of L×/L×p.

3. Use Kummer Theory to construct two extensions of L that are Galois over K with

Galois groups isomorphic to V o Φ satisfying certain ramification conditions at the

primes αOL, βOL, λiOL. Now, consider the compositum of these two extensions with

6



the field Lur,p; call this M̃ . The extension M̃/Lur,p satisfies certain maximality prop-

erties, so we can use a homological argument (Lemma 3.1.1) to prove that M̃ has class

number prime to p.

4. Once again, use Kummer Theory to construct a subextension L′ of M̃/L that absorbs

all the ramification. By construction, Gal(M̃/L′) ∼= G′ and (L′)ur,p = M̃ . Using

the Schur-Zassenhaus Theorem, we are able to view Φ = Gal(L/K) as a subgroup of

Gal(L′/K) = V o Φ, so we construct K ′ = L′Φ, which finishes the proof when (1.1)

splits.

5. As previously mentioned, when (1.1) does not split, the proof requires an extra step:

the construction of a wildly ramified solution to the embedding problem. We now

combine this solution with a split solution with certain properties to get the desired

extension.

Theorem 2 can be reduced to Theorem 1 as follows. Recall that R is a local ring that

surjects onto Zp with finite kernel (note that we do not need p = 5 or p = 7 for now).

Suppose we can find an absolutely irreducible representation ρ : GK → GL2(Fp) with image

Φ of order prime to p. This lifts to a representation Φ ⊂ GL2(Zp); let Γ be the inverse

image of Φ inside GL2(R). There is a natural representation Γ→ GL2(Fp). A ring theoretic

argument shows that R is the universal deformation ring of this representation. Moreover, if

the lift to GL2(R) is unramified, then R is the universal unramified deformation ring. Note

that Γ will fit into an exact sequence of the form

1→ G→ Γ→ Φ→ 1,

where G is a p-group. Finding ρ with image Φ that has an unramified lift to GL2(R) requires

using Theorem 1. The proof does not rely on p until now, where we need to find extensions

F/E satisfying the assumptions of Theorem 1. For p = 5 and p = 7, we find explicit
7



extensions using Pari. For p > 7, the difficulty comes from the fact that computational tools

like Pari and MAGMA have limitations when computing class numbers of high degree fields.

As mentioned in Chapter 4, we believe that Conjecture 1 holds, making this result true for

all p ≥ 5.

1.3 Conditionality and Further Work

As previously mentioned, the assumptions of Theorem 1 act as a base case for the induc-

tive procedure. The ramification assumption (F/E satisfies property P) ensures that the

embedding problem is solvable (for more details, see Section 2.2). In practice, this does not

add any difficulty to the construction. There is no hope of removing the first two conditions,

as the theorem statement without these conditions would resemble a variant of the Inverse

Galois Problem.

There is hope to remove the roots of unity assumption. This work is inspired by [HMR24a]

and [HMR24b]. As previously noted, the proof of Theorem 1 presented in this thesis con-

structs certain Galois extensions using Kummer Theory. This is possible, since the base

field contains p-th roots of unity. When removing the roots of unity assumption, the strat-

egy is to construct these extensions using Galois cohomology and a modified version of the

Gras-Munnier Theorem [GM99, Théorème 1.1].

As most of the proof of Theorem 2 does not depend on the precise value of p, establishing

Theorem 1 true with the roots of unity assumption removed would lead to proving Theorem 2

for all primes p ≥ 5.

1.4 Outline of the Thesis

In Chapter 2, we introduce some results which will be used in our arguments: some facts

on modular representations (Section 2.1), on the embedding problem (Section 2.2), some

8



useful lemmas (Section 2.3), and a brief introduction to the theory of deformations of Galois

representations (Section 2.4). Most of the results in this chapter are already known or can

be deduced from known results. We collect them here to make later arguments easier to

follow.

Chapter 3 presents the proof of Theorem 1. This is the most involved part of this thesis.

The chapter starts by introducing two key results, Theorem 3.0.1 and Theorem 3.0.2, and

showing how these two results combine to prove Theorem 1. The rest of the chapter presents

the proof of these two results. Theorem 3.0.1 allows us to perform Z/pZ-base changes that

increase the degree of the base field over Q, but preserve all the other properties. The proof

of this result relies on the theory of modular representations. In particular, it uses the key

facts that Fp[Φ] is semisimple and that the indecomposable projective Fp[Γ]-modules are

in a one-to-one correspondence with the simple Fp[Φ]-modules. Section 3.2 presents the

proof of Theorem 3.0.2. The first part of this section is done under the assumption that

(1.1) splits. After dropping this assumption, we construct a wildly ramified solution to the

embedding problem (Proposition 3.2.2) and combine this solution with a split extension to

get the desired extension.

Chapter 4 deals with the proof of Theorem 2. In the first section of the chapter, we start

with a local ring admitting a surjection onto Zp with finite kernel. Then we prove that if we

have an absolutely irreducible residual representation with certain properties, the universal

unramified deformation ring of that representation is isomorphic to the ring we started with.

This proof does not depend on the prime p. In Section 4.2, we explain how the existence of

such a representation reduces to having the assumptions of Theorem 1 satisfied. We then

proceed to use GP/Pari to find extensions satisfying Theorem 1 for p = 5 and p = 7. Finally,

in Section 4.3, we explain how Theorem 2 can be seen as an example of “Murphy’s Law” for

Galois deformation rings.

9



CHAPTER 2

BACKGROUND

2.1 Background on Modular Representations

In this section, we collect some results on modular representations that will be used later in

the proof. Everything in this section is known and can be found in [Web16]. Throughout

this section, let p be a prime, let Φ be a group of order prime to p, and let G be a p-group

with an action of Φ. Let Γ = Go Φ be the semidirect product between G and Φ.

Firstly, we note that Fp[Γ] is a symmetric Frobenious algebra, so finitely generated pro-

jective Fp[Γ]-modules are the same as finitely generated injective Fp[Γ]-modules by [Web16,

Corollary 8.5.3]. We have the following result:

Lemma 2.1.1. The set of simple Fp[Φ]-modules are in a one-to-one correspondence with

the set of indecomposable projective Fp[Γ]-modules.

Proof. Let S be a simple Fp[Φ]-module. By [Web16, Proposition 8.3.2(c)], we know that S

can be viewed as a simple Fp[Γ]-module via the quotient Γ → Φ. Construct the projective

cover PS of S. According to [Web16, Proposition 7.3.8], this is an indecomposable projective

Fp[Γ]-module and PS/Rad(PS) ∼= S, as Fp[Γ]-modules. Here Rad(PS) is the radical of PS .

Thus, the simple Fp[Φ]-modules are in a one-to-one correspondence with the indecomposable

projective Fp[Γ]-modules.

Now, we say that a finitely generated moduleM over a ring R is stably free if there exists

some integer m ≥ 0 such that M ⊕ Rm is a free R-module. Such a module is projective.

Moreover, if m = 0, then M is a free module. We note that if R = Fp[Γ], then any stably

free Fp[Γ]-module is actually free. This follows from the fact that Fp[Γ] is a semilocal ring

and [Lam06, Example I.4.7(3)].

10



For the remainder of this section, let M , N and P be Fp[Γ]-modules. We say that a

monomorphism f : M → N of Fp[Γ]-modules is essential if whenever g : N → P is a map

such that g◦f is a monomorphism, then g is also a monomorphism. Following the notation in

[Web16], we define the injective hull of an Fp[Γ]-moduleM to be an essential monomorphism

M → I, where I is an injective module. By [Web16, Section 8.5], we know that injective

hulls always exist and are unique. Since I is an injective Fp[Γ]-module, it is also a projective

Fp[Γ]-module, so it can be written as a direct sum of indecomposable projective modules.

For an Fp[Γ]-module M , we define the socle of M , denoted by Soc(M), to be the largest

semisimple submodule of M . Of course, Soc(M) ⊂M . We have the following result:

Lemma 2.1.2. Let M be an Fp[Γ]-module.

(i) If N is the injective hull of M , then Soc(M) ∼= Soc(N).

(ii) If P is a submodule of M , then Soc(P ) = P ∩ Soc(M).

Proof. (i) Firstly, if S is a simple submodule of M , then S is also a simple submodule of

N , so Soc(M) ⊂ Soc(N). Conversely, if S is a nonzero simple submodule of N , then

S ∩M = 0 or S ∩M = S. If S ∩M = 0, then the map M → N → N/S is injective,

so by the fact that the map M → N is an essential monomorphism, we obtain that

the map N → N/S must be injective. But this is true if and only if S = 0, which is

a contradiction. It follows that S = S ∩M ⊂ M , so Soc(N) ⊂ Soc(M). We conclude

that Soc(M) ∼= Soc(N).

(ii) On the one hand, if S is a simple submodule of P , then S is also a simple submodule

of M , so Soc(P ) ⊂ P ∩ Soc(M). On the other hand, if S is a simple submodule of

M such that S ∈ P ∩ Soc(M), then S is a submodule of P ; thus, since S is simple,

S ∈ Soc(P ). We conclude that Soc(P ) = P ∩ Soc(M).

11



2.2 Embedding Problem

In this section we introduce some results on the embedding problem, which will be instru-

mental in proving Theorem 3.0.2. A detailed exposition of this can be found in [Neu73].

Following the presentation of these already known results, we proceed to explain how they

apply in our specific scenario.

Let F be a number field and let GF be the absolute Galois group of F . Let K/F be a

finite Galois extension with Galois group G. For an extension of finite groups (ε) : 1→ A→

E → G→ 1, the embedding problem (GF , ε) is defined by the diagram

GF

1 A E G 1,

ϕ

π

where ϕ is the canonical surjection. A continuous homomorphism ψ : GF → E is called a

solution of (GF , ε) if it satisfies the condition π ◦ ψ = ϕ. A solution ψ is called a proper

solution if it is surjective. If (ε) is a nonsplit extension, then every solution of the embedding

problem is a proper solution ([Hoe68, Satz 2.3]). In this thesis, we will only construct

solutions to the embedding problem when the extension is nonsplit, so we can assume that

if an embedding problem has a solution, then that solution is proper. This translates to

finding an extension M/F containing K/F such that Gal(M/F ) ∼= E compatibly with

Gal(K/F ) = G. When such a solution exists, we say that (GF , ε) is solvable.

For each prime p of F , we denote by Fp (respectively Kp) the completion of F at p

(respectively of K at a prime above p). Let GFp be the absolute Galois group of Fp, Gp =

ϕ(GFp) ⊂ G (which is isomorphic to the decomposition subgroup of p in Gal(K/F )) and

Ep = π−1(Gp) ⊂ E. Then the local embedding problem (GFp , εp) is defined by

GFp

1 A Ep Gp 1.

ϕp
πp

12



We have the following results from [Neu73] (Satz 2.2, Satz 4.7, Satz 5.1).

Theorem 2.2.1 (Neukirch). Let (GF , ε) be an embedding problem with abelian kernel A. If

the map

H2(GF , A)→
∏
p∈P

H2(GFp , A)

is injective, then the embedding problem (GF , ε) has a solution if and only if the local em-

bedding problems (GFp , εp) have solutions, for all p ∈ P . Here P is the set of primes of

F .

Theorem 2.2.2 (Neukirch). If A is a trivial finite G-module (i.e. A = Z/nZ) or A is the

dual of one (i.e. A = µn), then all maps

Hq(F,A)→
∏
p

Hq(Fp, A), q ≥ 0,

are injective. Here we have Hq(F,A) = Hq(GF , A).

Theorem 2.2.3 (Neukirch). If Kp/Fp is a cyclic extension of local fields, then the following

conditions are equivalent:

(i) Every embedding problem corresponding to the extension Kp/Fp with an arbitrary (not

necessarily abelian) kernel A of exponent n is solvable.

(ii) Every n-th root of unity in Fp is the norm of an element of Kp.

This is always true if Kp/Fp is unramified.

If Kp/Fp is tamely ramified with ramification index e, then (i) and (ii) are true if and

only if n′e | (q − 1), where n′ =
∏
p|e

pvp(n) and q is the number of elements of the residue

field of Fp.

13



We now return to our setting. Let p be a prime, let Φ be a group of order prime to

p, and let G be a p-group with an action of Φ. Assume that there exists an extension of

number fields L/K with Galois group Φ such that Gal(Lur,p/K) ∼= GoΦ and L/K satisfies

Property P. We claim that Lur,p/K also satisfies Property P:

Lemma 2.2.4. Let L/K be a Galois extension with Galois group Φ as above and assume

that L/K satisfies property P. Then Lur,p/K also satisfies property P.

Proof. Let p be a prime of K, and let q and r, respectively, be primes of L and Lur,p,

respectively, lying over p. Let Kp, Lq, and (Lur,p)r be the corresponding completions. Let

e be the ramification index of p in Lur,p/K. Note that, since Lur,p/L is unramified, e is

also equal to the ramification index of p in L/K. Since L/K satisfies property P, it follows

that either Lq/Kp is unramified or Lq/Kp is tamely ramified with e | (q− 1), where q is the

cardinality of the residue field of Kp. This immediately implies that (Lur,p)r/Kp is either

unramified or is tamely ramified with e | (q − 1).

It remains to show that (Lur,p)r/Kp is cyclic. If (Lur,p)r/Kp is unramified, there is

nothing to prove, so assume that it is tamely ramified. Let f1 be the inertia index of p in

L/K, and let f2 be the inertia index of q in Lur,p/L. Then f = f1f2 is equal to the inertia

index of p in Lur,p/K. Consider the extension (Lur,p)r/Kp. By construction, we have the

following short exact sequence

1→ Gal((Lur,p)r/Lq)→ Gal((Lur,p)r/Kp)→ Gal(Lq/Kp)→ 1,

where Gal((Lur,p)r/Lq) ∼= Z/f2Z, Gal(Lq/Kp) ∼= Z/(ef1)Z, and Gal((Lur,p)r/Kp) ∼= Z/f2Zo

Z/(ef1)Z. The first equality follows from the fact that (Lur,p)r/Lq is unramified, the second

from the fact that Lq/Kp is cyclic, and the third from the Schur-Zassenhaus Theorem (since

ef1 and f2 are coprime).

Now, let L1 be the fixed field of inertia inside (Lur,p)r/Kp. Note that the extension L1/Kp

14



is cyclic of degree f = f1f2. Since (f1, f2) = 1, it follows that there exists a subextension K1

of L1/Kp such that we have the following tower:

(Lur,p)r

L1

K1

Kp

Z/eZ

Z/f1Z

Z/f2Z

Consider the compositum of K1 with Lq. Naturally, K1.Lq ⊂ (Lur,p)r, so [K1.Lq : Kp] ≤

[(Lur,p)r : Kp]. Since K1/Kp is a p-extension and Lq/Kp is an extension of order prime to

p, we must have that K1 ∩ Lq = Kp. Thus, [K1.Lq : Kp] = [K1 : Kp][Lq : Kp] = f2 · ef1 =

[(Lur,p)r : Kp]; so K1.Lq = (Lur,p)r. It follows that Gal((Lur,p)r/K1) ∼= Gal(Lq/Kp) =

Z/(ef1)Z is a normal subgroup of Gal((Lur,p)r/Kp), so the group Gal((Lur,p)r/Kp), which

is a semidirect product, is actually a direct product:

Gal((Lur,p)r/Kp) = Z/f2Z× Z/(ef1)Z ∼= Z/(ef1f2)Z.

Here, the last equality follows from (ef1, f2) = 1. This proves that (Lur,p)r/Kp is cyclic,

which is what we wanted.

Now, consider the following embedding problem:

GK

1 V Γ′ Γ 1,

where V is a group of exponent p on which Φ acts by an irreducible representation and

Γ′ = G′ o Φ, for a p-group G′ with an action of Φ. Since Lur,p/K satisfies property P, by

15



Theorem 2.2.3 we know that all the local embedding problems have solutions. Now, in order

to use Theorem 2.2.1, we need to prove that the map

H2(GK , V )→
∏
p∈P

H2(GKp
, V )

is injective. Note that V is not a trivial Fp[Γ]-module, so we can’t apply Theorem 2.2.2

directly. Consider the following commutative diagram:

H2(GK , V )
∏
p

H2(GKp
, V )

H2(GL, V )
∏
p

H2(GLp
, V )

res res

Using spectral sequences, we observe that H2(GL, V )Φ ∼= H2(GK , V ), so the restriction map

on the left is injective. Similarly, it can be proved that the map on the right is injective.

Note that GK acts on V by Φ. Since Gal(L/K) = Φ, it follows that GL acts trivially on V ,

so

H2(GL, V ) ∼= H2(GL,Fnp ) and H2(GLp
, V ) ∼= H2(GLp

,Fnp ),

where n = dimFp V . So by Theorem 2.2.2, the map on the bottom is injective. It thus

follows that the top map is injective, and so by Theorem 2.2.1, the embedding problem we

started with has a solution.

On the one hand, if the group extension is split, then a solution to the embedding problem

will be given by M = Lur,p( p
√
a1, . . . , p

√
an)/K, with a1, . . . , an ∈ L, and Gal(M/K) ∼= Γ′ ∼=

V oΓ. On the other hand, any two solutions to the embedding problem will differ by a split

extension. To summarize:

Proposition 2.2.5. Let L/K be an extension with Galois group Φ that satisfies property P.
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Consider the extension Lur,p/K with Galois group Γ. The embedding problem

1→ V → Γ′ → Γ→ 1

always has a solution. Furthermore, if Lur,p( p
√
α1, . . . , p

√
αn)/K is a solution, with αi ∈

(Lur,p)×/(Lur,p)×p, then all the other solutions are given by Lur,p( p
√
α1a1, . . . , p

√
αnan)/K,

where ai ∈ L×/L×p, αiai 6= 0 in (Lur,p)×/(Lur,p)×p, and Gal(L( p
√
a1, . . . , p

√
an)/K) ∼=

V o Φ.

2.3 Some technical lemmas

In this section, we present some facts that will be used in the proof of our main result. Some

of these results can either be found in [Oza11] or are generalisations of results from [Oza11].

We will follow Ozaki’s notation.

Let F be a number field and let p be a prime of OF lying above a rational prime p. Let

Fp be the completion of F at p, and denote by Up(F ) the pro-p part of the local unit group

of Fp. Let U(F ) = ⊕p|pUp(F ). Consider the localisation of OF at p and embed it diagonally

into U(F ). Let U ′p(F ) be the submodule of U(F ) consisting of all the elements u such that

Fp( p
√
u)/Fp is unramified and let U ′(F ) = ⊕p|pU

′
p(F ). Since U(F )p ⊂ U ′(F ) ⊂ U(F ), we

can define R(F ) = U(F )/U(F )p and R′(F ) = U(F )/U ′(F ).

Going back to our situation, let p be a prime, let Φ be a group of order p and let G be a

p-group with an action of Φ. Let L/K be a Galois extension with Galois group Φ such that

Gal(Lur,p/K) ∼= GoΦ. Let Γ = GoΦ. Assume moreover that every prime of K lying over

p splits completely in Lur,p/K. With this notation, we can prove the following:

Lemma 2.3.1. If L/K is a Galois extension with Galois group Φ as above, then

1. R(L) ∼= Fp[Φ][K : Q]+s and R′(L) ∼= Fp[Φ][K : Q],

2. R(Lur,p) ∼= Fp[Γ][K : Q]+s and R′(Lur,p) ∼= Fp[Γ][K : Q],
17



where s is the number of primes of K lying over p.

Proof. By definition, U(K) = ⊕p|pUp(K) = ⊕p|pO
×
Kp
⊗Zp Zp. Tensoring with Fp, we obtain

that
(
O×Kp

⊗Zp Zp
)/(

O×Kp
⊗Zp Zp

)p ∼= Fdp+1
p , where dp = [Kp : Qp]. Note that

∑
p|p dp =

[K : Q]. It follows that R(K) ∼= F[K : Q]+s
p . Similarly, R′(K) ∼= F[K : Q]

p .

Because every prime of K lying over p splits completely in L/K, we have a natural

isomorphism of Φ-modules U(L) ∼= Zp[Φ] ⊗Zp U(K) and U ′(L) ∼= Zp[Φ] ⊗Zp U
′(K), which

shows that R(L) ∼= Fp[Φ][K : Q]+s and R′(L) ∼= Fp[Φ][K : Q].

Similarly, since every prime of K lying over p splits completely in Lur,p/K, we obtain

that R(Lur,p) ∼= Fp[Γ][K : Q]+s and R′(Lur,p) ∼= Fp[Γ][K : Q].

The following result is a generalisation of [Oza11, Lemma 9]. Note that Ozaki’s Lemma

only applies to M = Lur,p, while our modification works for both M = Lur,p and M =

L. This lemma is a key tool used in the proof of Theorem 1. The following proof uses

the Chebotarev density theorem to construct a number of primes in OM satisfying certain

properties in R(M).

Lemma 2.3.2. Let Lur,p/K be an extension as above. Let M = L or Lur,p, and let M̃/M

be any finite abelian extension linearly disjoint from the maximal abelian extension of M

unramified outside p. Then for any u ∈ R(M) and any τ ∈ Gal(M̃/M), there exist infinitely

many prime ideals ΛOM of OM such that ΛOM is prime to p, (Λ mod U(M)p) = u in

R(M), and (ΛOM , M̃/M) = τ .

Proof. Let T be the maximal elementary abelian p-extension of M which is unramified out-

side p, and letH be the maximal elementary abelian p-extension ofM unramified everywhere.

Then we have the following exact sequence

O×M ⊗ Fp → R(M)
ρ−→ Gal(T/M)

f−→ Gal(H/M)→ 1,

where the map ρ : R(M)→ Gal(T/M) is the map induced by class field theory, and the third
18



map is the natural surjection f : Gal(T/M)→ Gal(H/M). Let σ = ρ(u) ∈ Gal(T/M). Let

N be the maximal unramified abelian extension ofM . Note that T andN are linearly disjoint

over H, and let T̃ be their compositum. Observe that T̃ and M̃ are linearly disjoint over M .

Let σ̃ ∈ Gal(T̃ /M) be an element with the properties that res(σ̃) |T= σ−1 and res(σ̃) |N= 1.

Such an element exists because T and N are linearly disjoint over H, and the restrictions

σ−1 ∈ Gal(T/M) and 1 ∈ Gal(H/M) agree on H/M , since res(σ−1) |H= res(1) |H if and

only if σ−1 ∈ ker(f) = Im(ρ), which is true by construction.

By the Chebotarev density theorem, there are infinitely many degree one primes α of

OM not lying over p such that (α, T̃ /M) = σ̃ and (α, M̃/M) = τ . Here, for a prime p and

an extension F/E, the symbol (p, F/E) represents the Artin symbol. The first condition

implies that (α, T/M) = σ−1 and (α,N/M) = 1. But (α,N/M) = 1 implies that α is a

principal ideal in OM , so there exists Λ0 ∈ M such that α = Λ0OM . Combining this with

(α, T/M) = σ−1, we obtain that Λ0 = Λε, for some ε ∈ O×M and some Λ ∈M . The element

Λ has the properties (Λ mod U(M)p) = u in R(M) and (ΛOM , M̃/M) = τ , which is what

we wanted.

We finish this section by noting that constructing unramified extensions in general is

not a very difficult task: having a ramified extension, one may perform a series of base

changes that kill off the ramification. However, in this thesis we are interested in finding

maximal unramified extensions, so we need to have control over the class group of our newly

constructed extensions. The following lemma due to Ozaki [Oza11] is a great tool in this

direction.

Lemma 2.3.3 (Ozaki). Let p be any prime number, F a number field with F ur,p = F and S

a finite set of primes of F . We denote by FS/F the maximal elementary abelian p-extension

of F unramified outside S. For any prime v of F , denote by Dv the decomposition subgroup
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of Gal(FS/F ) at the prime v. We assume that the map

⊕
v

H2(Dv,Z)→ H2(Gal(FS/F ),Z)

induced by the natural inclusion Dv ⊂ Gal(FS/F ) is surjective. Then (FS)ur,p = FS.

Proof. See [Oza11, Lemma 7].

Corollary 2.3.4 (Ozaki). Let S and FS be as in Lemma 2.3.3. If FS/F is a cyclic extension,

then (FS)ur,p = FS.

2.4 Background on universal unramified deformations

In this section, we introduce some definitions and results on deformations of Galois repre-

sentations. Everything in this section is already known; a more detailed exposition of this

can be found in [Maz89].

Throughout this section, let p be a prime number, let K be a number field and let GK

be the absolute Galois group of K. Let C denote the category of complete Noetherian local

rings with residue field Fp.

Consider a continuous Galois representation ρ : GK → GL2(Fp). We will call this a

residual representation. If A is a ring in C, we can consider the lifts of ρ to GL2(A). Let

π : A → Fp be the projection map. We say that two such lifts ρ1, ρ2 are strictly equivalent

if there exists M ∈ ker(GL2(A)→ GL2(Fp)) such that ρ1 = M−1ρ2M . Deformations of the

residual representation ρ, as introduced by Mazur in [Maz89], are strict equivalence classes

of continuous lifts:

Definition 2.4.1. Let ρ : GK → GL2(Fp) be a residual representation and let A be a local

ring in C. A deformation of ρ to A is a strict equivalent class of continuous homomorphisms

ρ : GK → GL2(A) such that the following diagram commutes:
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GK GL2(Fp)

GL2(A)

ρ

ρ π

We can therefore define a functor D : C  Sets with D(A) = {deformations of ρ to A}.

We would like to understand when this functor is representable by a universal deformation

ring. By a universal deformation ring we mean a complete Noetherian local ring R ∈ C

with residue field Fp, together with a deformation ρ : GK → GL2(R), such that if ψ : GK →

GL2(A) is another deformation of ρ, there is a unique morphism φ : R → A such that

ψ = φ ◦ ρ. Mazur proved in [Maz89, Proposition 1] that if ρ is absolutely irreducible, then

a universal deformation ring exists.

Note that we can impose certain ramification conditions on these lifts. In this thesis, we

are interested in lifts that are everywhere unramified. Let ρ : GK → GL2(A) be a deformation

of ρ for some ring A ∈ C. This lift factors through some finite group, and the fixed field of

the kernel is a finite extension. Call it K(ρ). Denote the corresponding extension of ρ by

K(ρ). We say that the deformation ρ is unramified if the extension K(ρ)/K(ρ) is unramified

everywhere. The functor on C which sends A to the unramified deformations D(A) is pro-

representable by a universal deformation ring. We are interested in the following question:

Question 3. What possible rings R can occur as universal unramified deformation rings of

such ρ?

This question can be split into several cases:

• The representation ρ is absolutely irreducible and has image with order prime to p.

• The representation ρ is absolutely irreducible and has image with order divisible by p.

• The representation ρ is reducible. In this case, the universal (unramified) deformation

ring need not exist, so one could consider an alternative question: what possible rings

R occur as universal unramified pseudodeformation rings?
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This thesis provides an answer to the first case via Theorem 2 and Conjecture 1. The

author is also interested in the other two cases. However, certain techniques used in this

thesis only apply to the first case, so approaching the other two cases would require different

tools. Dealing with the second case (where the representation is absolutely irreducible and

has image of order divisible by p) would require a modified version of Theorem 1 applicable

to groups that have a more general form than just semidirect products between p-groups

with groups of order prime to p. On the other hand, the last case (that of a reducible

representation) would require a completely different version of Theorem 2 that would be

suitable for pseudodeformations.
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CHAPTER 3

CONSTRUCTING MAXIMAL UNRAMIFIED EXTENSIONS

In this chapter, we prove Theorem 1. Before outlining the proof, let us introduce two results

that are crucial to the argument. Throughout this chapter, let p be a prime, let Φ be a group

of order prime to p, and let G be a p-group with an action of Φ.

The following result allows us to perform base changes that extend the degree of the base

field over Q, but preserve all the other properties.

Theorem 3.0.1. With the above notation, let L/K be a Galois extension of number fields

with Galois group Φ satisfying:

• The extension Lur,p/K is Galois and has Galois group isomorphic to Γ = Go Φ,

• The field K contains the group µp, and is totally imaginary if p = 2,

• Every prime of K lying over p splits completely in Lur,p,

• The extension K/Q satisfies [K : Q] ≥ 2 (2d(G) + r(G) + d(Φ)), where d(G̃) and r(G̃),

respectively, are the minimal number of generators and relations of a group G̃.

Then there exists a cyclic extension K ′/K of degree p such that if L′ = K ′.L, then:

1. K ′ ∩ Lur,p = K,

2. (L′)ur,p = K ′.Lur,p,

3. Gal((L′)ur,p/K ′) ∼= Γ,

4. If the initial extension L/K satisfies property P, then the new extension L′/K ′ also

satisfies property P. Moreover, under this assumption, the extension (L′)ur,p/K ′ also

satisfies property P.
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Recall that any p-group G with an action of Φ fits into an exact sequence of the form

1→ V → G′ → G→ 1,

where V,G′ are p-groups with an action of Φ. Moreover, V is a group of exponent p and Φ

acts on V by an irreducible representation. Let Γ = G o Φ and Γ′ = G′ o Φ. We have the

following result:

Theorem 3.0.2. Let L/K be a Galois extension of number fields satisfying the four condi-

tions of Theorem 3.0.1 and property P. Assume that Φ acts irreducibly on the p-group V .

Then for any exact sequence of groups

1→ V → Γ′ → Γ→ 1,

there exists a finite extension of fields L′/K ′ such that:

1. K ⊂ K ′ and L ⊂ L′,

2. The extension L′/K ′ is Galois and has Galois group isomorphic to Φ,

3. The extension (L′)ur,p/K ′ is Galois and has Galois group isomorphic to Γ′,

4. Every prime of K ′ lying over p splits completely in (L′)ur,p,

5. The extension (L′)ur,p/K ′ satisfies property P.

The proof of Theorem 1 follows from Theorems 3.0.1 and 3.0.2 by induction. Recall that

for a p-group G with a Φ-action, we have an exact sequence of p-groups

G = Gn → Gn−1 → · · · → G0 = 1,
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where each map is surjective and the kernel at each step is isomorphic to V . If Γi = GioΦ,

then we have a sequence of surjections

Γ = Γn → Γn−1 → · · · → Γ0 = Φ,

with ker(Γi → Γi−1) ∼= V , for 1 ≤ i ≤ n. The assumption of Theorem 1 is the base

case of our inductive proof. At step i, we can assume that we have a Galois extension

Li/Ki satisfying the conditions of Theorem 3.0.1 for Gi and Γi. Using Theorem 3.0.1

repeatedly, we can construct a finite extension K ′i of Ki such that if L′i = K ′i.Li, then

K ′i∩ (Li)
ur,p = Ki, (L′i)

ur,p = K ′i.(Li)
ur,p, and Gal((L′i)

ur,p/K ′i)
∼= Γi. Moreover, repeatedly

constructing extensions using Theorem 3.0.1, we increase the degree [K ′i : Q], while keep-

ing 2(2d(Gi+1) + r(Gi+1) + d(Φ)) unchanged. Thus, we can also assume that [K ′i : Q] ≥

2(2d(Gi+1) + r(Gi+1) + d(Φ)). Since this extension L′i/K
′
i satisfies the conditions of The-

orem 3.0.2, there exists a finite extension Li+1/Ki+1 such that K ′i ⊂ Ki+1, L′i ⊂ Li+1,

Gal(Li+1/Ki+1) ∼= Φ, Gal((Li+1)ur,p/Ki+1) ∼= Γi+1, every prime of Ki+1 lying over p

splits completely in (Li+1)ur,p and (Li+1)ur,p/Ki+1 satisfies property P. Therefore, we have

obtained fields K = Kn, L = Ln and M = (Ln)ur,p with the desired properties.

3.1 Proof of Theorem 3.0.1

In this section, we provide a proof for Theorem 3.0.1, which is our version of Proposition

1 in the first version of [Oza11]. Given a finite extension L/K satisfying the conditions

of Theorem 1, Theorem 3.0.1 allows us to perform a base change that preserves all the

properties of the initial extension, but increases the degree of the base field K over Q. This

base change will be a useful tool in the proof of Theorem 3.0.2.

Our proof is inspired Ozaki’s proof of Proposition 1 in the first version of [Oza11], but

uses techniques applicable to our situation. More explicitly, in his proof, Ozaki uses the
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theory of Fp-representations of p-groups G, while we have to use the more complex theory

of Fp-representations of groups of the form G o Φ, where Φ is a group of order prime to p

and G is a p-group with an action of Φ. Throughout this section, assume that the conditions

of Theorem 3.0.1 hold. More explicitly, let Φ and G be as above. Assume we have a Galois

extension L/K with Galois group Φ satisfying:

• The extension Lur,p/K is Galois and Gal(Lur,p/K) ∼= Γ = Go Φ.

• The field K contains µp, and is totally imaginary if p = 2.

• Every prime of K lying over p splits completely in Lur,p.

• The extension K/Q satisfies [K : Q] ≥ 2(2d(G) + r(G) + d(Φ)).

We claim that proving Theorem 3.0.1 reduces to finding an element Λ of Lur,p with the

following properties:

(1) The ideal ΛOLur,p is a prime ideal of degree 1, not lying over p.

(2) If S denotes the set of primes of Lur,p dividing η = NLur,p/K(Λ), then Lur,p( p
√
η) is

the maximal elementary abelian p-extension of Lur,p unramified outside S.

Lemma 3.1.1. Assume such an element Λ of Lur,p exists. Let K ′ = K( p
√
η), with η as

above. Then K ′/K is an extension that makes Theorem 3.0.1 true.

Proof. Since ηOK is a prime ideal of OK , it follows that p
√
η 6∈ K, so K ′ is a degree p

extension of K. Let L′ = L.K ′. The fields L and K ′ are linearly disjoint over K, so L′/L is

a degree p extension. We want to prove that K ′ ∩ Lur,p = K, (L′)ur,p = K ′.Lur,p, and that

the extension (L′)ur,p/K ′ is Galois with Galois group isomorphic to Γ.

Consider K ′ ∩ Lur,p. This is equal to K ′ if K ′ ⊂ Lur,p; otherwise, it is equal to K.

Assume K ′ ⊂ Lur,p. By construction, this implies that L′ ⊂ Lur,p. But Lur,p is the

maximal unramified p-extension of L, and L′ is a ramified p-extension of L, so they must
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be linearly disjoint over L, and L′ 6⊂ Lur,p. It follows that our assumption was false, and so

K ′ ∩ Lur,p = K, which proves the first part.

Using the previous part, we observe thatK ′.Lur,p = Lur,p( p
√
η) and L′.Lur,p = Lur,p( p

√
η).

By construction, Lur,p( p
√
η) is the maximal elementary abelian p-extension of Lur,p unram-

ified outside S, so Corollary 2.3.4 tells us that (Lur,p( p
√
η))ur,p = Lur,p( p

√
η). On the one

hand, since K ′ ⊂ K ′.Lur,p, we must have (L′)ur,p ⊂ Lp(K
′.Lur,p) = K ′.Lur,p. On the other

hand, L′.Lur,p is an unramified p-extension of L′, so L′.Lur,p ⊂ (L′)ur,p. Combining these

remarks, we obtain that (L′)ur,p = L′.Lur,p = K ′.Lur,p, proving the second part.

To prove that the new extension has the right Galois group, consider the following dia-

gram
(L′)ur,p = K ′.Lur,p

Lur,p K ′

K

Since the extension Lur,p/K is Galois and has Galois group isomorphic to Γ, it follows

that (L′)ur,p/K ′ is Galois and Gal((L′)ur,p/K ′) = Gal(K ′.Lur,p/K ′) ∼= Gal(Lur,p/K) ∼= Γ,

which is what we wanted.

To conclude the proof, we need to check that if the initial extension has property P,

then the new extensions also have property P. To this end, assume that L/K has property

P. Firstly, let us prove that L′/K ′ satisfies property P. Let p be a prime of K, and take

primes q, p′, and q′, respectively, of L, K ′, and L′, respectively, lying above it. Let Kp, K ′p′ ,

Lq, and L′q′ be the corresponding completions. Let e and e′ be the ramification indices of

p in L/K and of p′ in L′/K ′, respectively. Let q and q′ be the number of elements of the

residue fields of Kp and K ′p′ , respectively. Since the order of Φ is prime to p, we must have

that e = e′, and q′ = q or q′ = qp. Since L/K has property P, then either e = 1 or Lq/Kp

is tamely ramified with e | (q − 1). It follows that either e′ = e = 1 or L′q′/K
′
p′ is tamely
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ramified with e′ | (q − 1) | (q′ − 1). Finally, if Lq/Kp is cyclic of order prime to p, then

by construction, L′q′/K
′
p′ is also cyclic of order prime to p, so the new extension L′/K ′ has

property P. Finally, we need to show that if L/K satisfies property P, then (L′)ur,p/K ′ also

satisfies property P, but this follows from Lemma 2.2.4.

Now, we would like to find an element Λ satisfying (1) and (2). To this end, assume that

we already have an element Λ satisfying only the first property. Let S be the set of primes

of Lur,p dividing η. If Lur,p( p
√
α)/Lur,p is unramified outside S, for some α ∈ Lur,p, then

α mod (Lur,p)×p ≡ (ε mod (Lur,p)×p) +
∑
σ∈Γ

aσ(σΛ mod (Lur,p)×p),

for some aσ ∈ Fp, ε ∈ O×Lur,p . Since Lur,p( p
√
α)/Lur,p is unramified at the primes above p, it

must be true that

(ε mod U ′(Lur,p)) +
∑
σ∈Γ

aσ(σΛ mod U ′(Lur,p)) ≡ 0.

If this equation only holds when ε ∈ (O×Lur,p)
p and aσ = a, ∀σ ∈ Γ, for some a ∈ Fp, then

α mod U(Lur,p)p ≡ a
∑
σ∈Γ

σ(Λ mod U(Lur,p)p) = a(η mod U(Lur,p)p).

Thus, p
√
α ∈ Lur,p( p

√
η), so condition (2) also holds.

Let E = E(Lur,p) be the image of the map O×Lur,p ⊗ Fp → R′(Lur,p). If ε is an element

in O×Lur,p \ (O×Lur,p)
p, then the field extension Lur,p( p

√
ε)/Lur,p must be ramified at some

prime lying over p. Thus, the map O×Lur,p ⊗ Fp → R′(Lur,p) must be injective, and so

E ∼= O×Lur,p ⊗ Fp. It follows that the map O×Lur,p ⊗ Fp → R(Lur,p) is also injective, and by

abuse of notation we denote its image by E.

The following result represents a key step in the proof of Theorem 3.0.1. It is a variation

of Lemma 8 in [Oza11] and it is inspired by Lemma 2 in the first version of the same
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paper. The main difference between Ozaki’s proof and our proof comes from the fact that in

[Oza11], Fp[G] is a projective indecomposable Fp[G]-module, and this doesn’t remain true if

we replace G by Γ = G o Φ (for G a p-group and Φ a group of order prime to p). To deal

with this, we turn to the theory of modular representations for groups of the form G o Φ.

For a more detailed treatment of this, see [Web16]. We will also make use of some of the

ideas appearing in Section 6 of [HM17].

Proposition 3.1.2. Let N be the kernel of the projection R(Lur,p) → R′(Lur,p). Then N

is a free Fp[Γ]-module. Moreover, there exist free Fp[Γ]-modules M and Q of R(Lur,p) such

that:

• R(Lur,p) = M ⊕N ⊕Q and R′(Lur,p) ∼= M ⊕Q.

• E ⊂M .

• rankFp[Γ]Q ≥ 1
2 [K : Q]− d(G)− r(G).

Proof. Note that Fp[Γ] is a Frobenius algebra, so injective Fp[Γ]-modules are the same as

projective Fp[Γ]-modules. In particular, any free Fp[Γ]-module is injective.

By Lemma 2.1.1, the indecomposable projective Fp[Γ]-modules PS are in a one-to-one

correspondence with the simple Fp[Φ]-modules S. It follows that Fp[Γ] can be decomposed

as a sum of indecomposable projective modules

Fp[Γ] =
⊕

S simple
PnsS ,

where ns = dimD(S), D = EndFp[Φ] S. Here, the sum is over the simple Fp[Φ]-modules S.

From Section 2.1, we know that any Fp[Γ]-module has a unique injective hull (for more

details of this, see [Web16, Section 8.5]). Let M̃ = ⊕PαSS be the injective hull of the
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Fp[Γ]-module E. Consider the following diagram:

E M̃

R(Lur,p)

f

i g

The Fp[Γ]-module R(Lur,p) is free by Lemma 2.3.1, so it is injective. The map i is the usual

inclusion map from E to R(Lur,p). The map f is the essential monomorphism E → M̃ .

Since R(Lur,p) is an injective Fp[Γ]-module, there exists a map g : M̃ → R(Lur,p) such that

g ◦ f = i. Moreover, since f is an essential monomorphism, the map g is injective. Let

M1 = Im(g) ⊂ R(Lur,p); the module E can be seen as a submodule of M1.

By definition of N , we have a short exact sequence of Fp[Γ]-modules:

1→ N → R(Lur,p)→ R′(Lur,p)→ 1.

Since R′(Lur,p) is a free module (Lemma 2.3.1), this sequence splits. It follows that N is a

stably free Fp[Γ]-module, which implies that N is a free Fp[Γ]-module of rank s.

Consider the intersection M1 ∩ N ⊂ M1. Let Soc(M1 ∩ N) be the socle of M1 ∩ N .

For details about this notion, see Section 2.1 and [Web16, Section 6.3]. Since Fp[Γ] is an

Artinian ring, every nonzero module has a simple submodule. It follows that if M1 ∩ N is

nonzero, then Soc(M1 ∩N) must be nonzero. Using Lemma 2.1.2, we obtain

Soc(M1 ∩N) = (M1 ∩N) ∩ SocM1

= N ∩ SocM1

∼= N ∩ SocE

⊂ N ∩ E

= 0.
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Here, the first and the third equalities follow from Lemma 2.1.2; the last equality follows

from the fact that E and N are disjoint. It follows that M1 ∩N = 0, so M1 +N is a direct

sum in R(Lur,p). Since M1 ⊕ N is a projective Fp[Γ]-module, it must also be injective, so

the following exact sequence splits:

1→M1 ⊕N → R(Lur,p)→ R(Lur,p)/(M1 ⊕N)→ 1.

Let Q1 = R(Lur,p)/(M1 ⊕ N). This is a projective Fp[Γ]-module, so it can be written as

Q1 = ⊕PβSS with the property that αS + βS = [K : Q] · nS .

We would like to estimate βS . Let r = rankFp[Φ]E
G = rankFp[Φ](E

G)∗ = rankFp[Φ](E
∗)G.

Thus, Fp[Φ]r � (E∗)G. By Nakayama’s Lemma, Fp[Γ]r � E∗. Taking duals and using the

fact that Fp[Γ] is self-dual, we obtain that E ∼= E∗∗ ↪→ Fp[Γ]r. Since M̃ is the injective

hull of E and Fp[Γ] is an injective module, we obtain that M̃ ↪→ Fp[Γ]r, which implies that

αS ≤ nS · r, so it is enough to estimate r. To compute this rank r, we follow the idea in

Section 6 of [HM17].

On the one hand, from the exact sequence

0→ O×Lur,p/µp
p−→ O×Lur,p → O×Lur,p/p→ 0,

we derive the sequence:

(O×Lur,p/µp)
G → (O×Lur,p)

G → (O×Lur,p/p)
G → H1(G,O×Lur,p/µp).

We observe that

• (O×Lur,p/p)
G = EG,

• (O×Lur,p)
G
/

(O×Lur,p/µp)
G ∼= (O×L )/(O×L /µp) ∼= O

×
L /O

×p
L ,
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so the sequence becomes:

O×L /O
×p
L → EG → H1(G,O×Lur,p/µp). (3.1)

On the other hand, from the exact sequence

0→ µp → O×Lur,p → O×Lur,p/µp → 0,

we get the exact sequence:

H1(G,O×Lur,p)→ H1(G,O×Lur,p/µp)→ H2(G, µp). (3.2)

The p-group G acts trivially on µp, so for i = 1, 2, the groups Hi(G, µp) describe the

generators and relations of G.

Before we continue the proof, let us introduce some notation. For a p-group H, let dpH

be the p-rank of H, d(H) be the number of generators of H, and r(H) be the number of

relations of H.

Consider the inclusion L ↪→ Lur,p. It induces a map on class groups ClL → ClLur,p whose

kernel is isomorphic to H1(G,O×Lur,p) (see 2 in [Iwa56]). On the other hand, this kernel is also

isomorphic to the p-primary part of ClL. By class field theory, we know that the p-primary

part of ClL is isomorphic to the abelianisation of Gal(Lur,p/L) = G, soH1(G,O×Lur,p) ∼= Gab.

It follows that

dpH
1(G,O×Lur,p) = d(Gab) ≤ d(G),

From the semisimple version of Dirichlet’s unit theorem ([HM17, Theorem 6.1]; for a proof,

see [Gra98, Theorem 6.1]) and the fact that K is totally imaginary, we obtain that

rankFp[Φ](O
×
L /O

×p
L ) ≤ 1

2
[K : Q]. (3.3)
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From (3.1), (3.2) and (3.3) it follows that

r = rankFp[Φ]

(
EG
)
≤ rankFp[Φ](O

×
L /O

×p
L ) + dpH

1(G,O×Lur,p/µp)

≤ rankFp[Φ](O
×
L /O

×p
L ) + dpH

1(G,O×Lur,p) + dpH
2(G, µp)

≤ 1

2
[K : Q] + d(G) + r(G),

Therefore:

βS = [K : Q] · nS − αS

≥ [K : Q] · nS − nS · r

≥ [K : Q] · nS − nS ·
(

1

2
[K : Q] + d(G) + r(G)

)
≥ nS

(
1

2
[K : Q]− d(G)− r(G)

)
.

We can thus choose t ≥ (1
2 [K : Q] − d(G) − r(G)) such that Q := ⊕PnS ·tS is isomorphic to

a submodule of Q1. This new module Q is a free Fp[Γ]-module of rank t. Moreover, it is

injective, so P = Q1/Q is a projective Fp[Γ]-module with Q1 = Q ⊕ P . Let M = M1 ⊕ P .

Then

R(Lur,p) = M1 ⊕N ⊕Q1
∼= M1 ⊕N ⊕Q⊕ P ∼= M ⊕N ⊕Q,

with E ⊂M and rankFp[Γ]Q ≥ 1
2 [K : Q]− d(G)− r(G).

Since M is a stably free Fp[Γ]-module, we can conclude that it is a free Fp[Γ]-module, so

the proof is complete.

The only thing left to show is the existence of an element Λ of Lur,p with properties (1)

and (2). The proof is similar to the proof of Proposition 1 in the first version of [Oza11]. Let

M and Q =
⊕t

i=1 Fp[Γ]qi be the Fp[Γ]-submodules of R(Lur,p) given by Proposition 3.1.2.
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Then, by assumption of Theorem 3.0.1,

t ≥ 1

2
[K : Q]− d(G)− r(G) ≥ d(G) + d(Φ) ≥ d(Γ).

Let {σ1, . . . , σd} be a system of minimal generators for Γ, d = d(Γ). Let u =
∑d
i=1(σi−1)qi ∈

Q ⊂ R(Lur,p). By Lemma 2.3.2 applied toM = Lur,p, there exists ΛOLur,p a prime of degree

1, not lying over p, such that u = (Λ mod U(Lur,p)p). Assume that there exist ε ∈ O×Lur,p

and aσ ∈ Fp such that (ε mod U ′(Lur,p)) +
∑
σ∈Γ

aσ(σΛ mod U ′(Lur,p)) = 0. Observe that:

• ε mod U(Lur,p)p +
∑
σ∈Γ

aσ(σΛ mod U(Lur,p)p) ∈ N ;

•
∑
σ∈Γ

aσ(σΛ mod U(Lur,p)p) =
∑
σ∈Γ

aσ(σu) ∈ Q;

• ε mod U(Lur,p)p ∈ E ⊂M .

By Proposition 3.1.2, it follows that ε mod U(Lur,p)p =
∑
σ∈Γ aσ(σΛ mod U(Lur,p)p) =

0. On the one hand, since U(Lur,p)p ∩ O×Lur,p = O×pLur,p , it follows that ε ∈ O×pLur,p . On

the other hand,
∑
σ∈Γ aσ(σΛ mod U(Lur,p)p) = 0 implies

∑
σ∈Γ aσσ[

∑d
i=1(σi − 1)qi] =∑

σ∈Γ aσ(σu) = 0. This implies
∑
σ∈Γ aσσ(σi − 1) = 0, for all 1 ≤ i ≤ d, so

∑
σ∈Γ aσσ(τ −

1) = 0, for all τ ∈ Γ, meaning that aσ must be constant for all σ ∈ Γ, i.e. aσ = a ∈ Fp,

for some a ∈ Fp. We have thus shown that Λ has properties (1) and (2), so the proof is

complete.

3.2 Proof of Theorem 3.0.2

In this section, we will provide a proof for Theorem 3.0.2. This theorem represents the

inductive step in the proof of Theorem 1. The proof can be split into two cases: when the

following sequence splits or when it doesn’t split:

1→ V → Γ′ → Γ→ 1.
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The case when the extension does not split will use the embedding problem combined with

the case when the extension splits, and will be treated at the end of this section. Assume

first that the sequence splits. In this case, Γ′ ∼= V o Γ, and we can work over L.

Let n = dimFp V and let m = |Φ|. Let g1, . . . , gn be generators of the action of Φ on

V . Let T =
(p2n−1)(p2n−p)
(p2−1)(p2−p) . We can assume that [K : Q] ≥ 2d(T + 2), where d = d(Φ)

is the number of generators of Φ, by replacing K with some finite extension of K given

by Theorem 3.0.1. Recall that Theorem 3.0.1 constructs a new extension that satisfies

property P if the initial extension satisfies this property. Note that R(Lur,p)G ∼= R(L) and

R′(Lur,p)G ∼= R′(L) as Fp[Φ]-modules, NG ∼= ker(R(L)→ R′(L)), and (O×L ⊗Fp)∩QG = 0,

where Q is the Fp[Γ]-module obtained in Proposition 3.1.2. Let {σ1, . . . , σd} be a generator

system of Φ. The free Fp[Φ]-module QG can be written as QG =
⊕t

i=1 Fp[Φ]qi, with

t ≥ d(T + 2).

Using Lemma 2.3.2 applied to M = L, we obtain primes λiOL that are completely split

in Lur,p/L, and satisfy N(λi) ≡ 1 (mod p) and

λi mod U(L)p =
d∑
j=1

(1 + σj)q(i−1)d+j

in R(L), for 1 ≤ i ≤ T . Moreover, we can also assume that the primes of K below λi split

completely in L/K.

Since Φ has order prime to p, the Fp[Φ]-module R(L) can be decomposed as a direct sum

of isotypic components:

R(L) =
⊕
W

WnW ,

where each W is a simple Fp[Φ]-representation. Each a ∈ R(L) may therefore be written as

a =
∑
aW , where aW ∈ WnW . The isotypic projection PW of R(L) onto WnW is given by
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the formula

PW =
dimW

| Φ | · dimFp EndW

∑
g∈Φ

χW (g−1)g,

where χW is the character ofW . This is a modified version of [Ser77, Theorem 8] that applies

to (not necessarily algebraically closed) finite fields. Note that PW (PU (a)) = aW if U ∼= W

and PW (PU (a)) = 0 if U 6∼= W . To ease notation, we will write ng,W =
dimW ·χW (g−1)
|Φ|·dimFp EndW

.

We can then write PW (a) =
∑
g∈Φ

ng,W g(a). Note that since V is an absolutely irreducible

Fp[Φ]-representation, ng,V is well-defined and nonzero in Fp.

Consider the group (Z/pZ)2n. Let (a1, . . . , an, b1, . . . , bn) and (x1, . . . , xn, y1, . . . , yn) be

two nonzero elements of (Z/pZ)2n that are not multiples of each other. This pair generates

a (Z/pZ)2-subgroup of (Z/pZ)2n. There are (p2n−p)(p2n−1)
(p2−p)(p2−1)

subspaces spanned by such a

pair, i.e. (Z/pZ)2-subgroups; label them from 1 to (p2n−p)(p2n−1)
(p2−p)(p2−1)

. For each such subgroup,

choose a prime λ` from the ones constructed above (we can do this since T =
(p2n−p)(p2n−1)
(p2−p)(p2−1)

)

and define ν1 and ν2 to be products of conjugates of λ`, with 1 ≤ ` ≤ T , with the properties

that the exponents of g−1
1 (λ`), g

−1
2 (λ`), . . . g

−1
n (λ`) in ν1 are a1, . . . , an, and the exponents

of g−1
1 (λ`), g

−1
2 (λ`), . . . g

−1
n (λ`) in ν2 are b1, . . . , bn, respectively. Write ai,` = ai, bi,` = bi,

xi,` = xi, and yi,` = yi. Let ν1 =
T∏
i=1

∏
g∈Φ

g(λi)
sg,i and ν2 =

T∏
i=1

∏
g∈Φ

g(λi)
tg,i . Write

gi(ν1) = λ
ai,`
` ωi,` and gi(ν2) = λ

bi,`
` ξi,`, for all 1 ≤ i ≤ n, with ωi,` and ξi,` not divisible by

λ`. For each `, let r` be a non p-power modulo λ`OL. Lift this r` to a principal ideal r`OL

in OL. We distinguish two cases, each containing two subcases:

1. If ai,` 6= 0, for some i, let

cj,` =

 xj,`ai,` − xi,`aj,`, if j 6= i,

0, if j = i.

dj,` = yj,`ai,` − xi,`bj,`, for all j.
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Since (a1,`, . . . , an,`, b1,`, . . . , bn,`) and (x1,`, . . . , xn,`, y1,`, . . . , yn,`) are not multiples

of each other, at least one of cj,` and dj,` is nonzero.

(a) If cj,` 6= 0, for some j 6= i, let

Ak,` =


ω−1
k,` if k = i,

r` · ω−1
k,` if k = j,

r
ck,`c

−1
j,`

` · ω−1
k,` otherwise.

Bk,` = r
dk,`c

−1
j,`

` · ξ−1
k,` , for all k.

(b) If dj,` 6= 0, for some j (possibly j = i), let

Ak,` =


ω−1
k,` if k = i,

r
ck,`d

−1
j,`

` · ω−1
k,` otherwise.

Bk,` =


r` · ξ−1

k,` if k = j,

r
dk,`d

−1
j,`

` · ξ−1
k,` otherwise.

2. If bi,` 6= 0, for some i, let

cj,` = xj,`bi,` − yi,`aj,`, for all j.

dj,` =

 yj,`bi,` − yi,`bj,`, for j 6= i,

0, if j = i.

Since (a1,`, . . . , an,`, b1,`, . . . , bn,`) and (x1,`, . . . , xn,`, y1,`, . . . , yn,`) are not multiples

of each other, at least one of cj,` and dj,` is nonzero.
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(a) If dj,` 6= 0, for some j 6= i, let

Ak,` = r
ck,`d

−1
j,`

` · ω−1
k,` , for all k.

Bk,` =


ξ−1
k,` if k = i,

r` · ξ−1
k,` if k = j,

r
dk,`d

−1
j,`

` · ξ−1
k,` otherwise.

(b) If cj,` 6= 0, for some j (possibly j = i), let

Ak,` =


r` · ω−1

k,` if k = j,

r
ck,`c

−1
j,`

` · ω−1
k,` otherwise.

Bk,` =


ξ−1
k,` if k = i,

r
dk,`c

−1
j,`

` · ξ−1
k,` otherwise.

Let R =
∏
i,`

g−1
i (λ`). We would like to construct a prime αOL of OL with α ≡ g−1

i (Ai,`)

(mod g−1
i (λ`)), for all i and `. Since the ideals g

−1
i (λ`)OL are pairwise coprime, the Chinese

remainder theorem tells us that constructing such an element α is equivalent to constructing

an element that satisfies a specific congruence moduloROL, say α ≡ r1 (mod R), compatible

with α ≡ g−1
i (Ai,`) (mod g−1

i (λ`)). Similarly, to construct a prime βOL of OL with β ≡

g−1
i (Bi,`) (mod g−1

i (λ`)), it is enough to construct a prime βOL with a specific compatible

congruence modulo ROL, say β ≡ r2 (mod R). Use the existence theorem of class field

theory to construct an abelian extension whose Galois group is in a natural correspondence

with the ray classes modulo ROL. Use Lemma 2.3.2 with M = L again to find two primes
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αOL and βOL of OL that split completely in Lur,p/L, are prime to p, and satisfy:

α mod U(L)p = −PV (ν1) +
∑
W 6=V

PW

 d∑
j=1

(1 + σj)qTd+j


and

β mod U(L)p = −PV (ν2) +
∑
W 6=V

PW

 d∑
j=1

(1 + σj)q(T+1)d+j


in R(L), and

α ≡ r1 (mod R),

β ≡ r2 (mod R).

Observe that while taking projections PV (ν1) and PV (ν2) modifies the exponents of the

primes g(λ`) in ν1 and ν2, those exponents still appear as the exponents of some other primes.

In other words, if (a1, . . . , an, b1, . . . , bn) generates a Z/pZ subgroup of (Z/pZ)2n, then there

is a prime gi(λ`) such that the the exponents of g−1
1 (gi(λ`)), g

−1
2 (gi(λ`)), . . . , g

−1
n (gi(λ`))

in ν1 are a1, . . . , an and the exponents of g−1
1 (gi(λ`)), g

−1
2 (gi(λ`)), . . . , g

−1
n (gi(λ`)) in ν2 are

b1, . . . , bn.

Note that L×/L×p is an Fp[Φ]-module, so we can consider the projections of ν1α and ν2β

to the V -eigenspace. Construct L1 to be the Galois closure of L( p
√
PV (ν1α)) over K, and L2

to be the Galois closure of L( p
√
PV (ν2β)) over K. Then Gal(L1/K) ∼= Gal(L2/K) ∼= V oΦ.

Moreover, since PV (ν1α) = 0 in R(L), every prime lying over p in L splits completely in

L1/L. The same holds true for L2/L. Consider their compositum L̃ = L1.L2 and let

M̃ = L̃.Lur,p. We claim that:

(i) The extension M̃/Lur,p is unramified at p.

(ii) Recall that g(α), g(β), g(λi) split completely in Lur,p/L by construction, for all g ∈ Φ
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and 1 ≤ i ≤ T . Let S̃ be the set of primes of Lur,p lying above these primes. Then

M̃/Lur,p is the maximal elementary abelian p-extension of Lur,p which is unramified

outside S̃.

(iii) All the (Z/pZ)2-subgroups of Gal(M̃/Lur,p) appear as decomposition groups of some

prime in Lur,p lying over g(λi), for g ∈ Φ and 1 ≤ i ≤ T .

Consider PV (ν1α) in R(L). By construction, PV (ν1α) = 0 in R(L), so it must remain

trivial in R′(L). Similarly, PV (ν2β) = 0 in R′(L). It implies that L1/L and L2/L are

unramified at p, and thus L̃/L is unramified at p. Combine this with the fact that Lur,p/L is

unramified everywhere to conclude that M̃ = L̃.Lur,p/Lur,p is unramified at p, proving (i).

Now, let S = {g(α), g(β), g(λi) | g ∈ Φ, 1 ≤ i ≤ T}. We claim that in order to prove

(ii), it is enough to prove that L̃/L is the maximal elementary abelian p-extension of L

unramified outside S. To this end, assume that L̃/L is such an extension. By construction,

it follows that M̃/Lur,p is an elementary abelian p-extension unramified outside the primes

of Lur,p that lie above S, i.e. M̃/Lur,p is unramified outside S̃. Moreover, since all the

primes of S split completely in Lur,p/L and L̃/L is maximal, the extension M̃/Lur,p must

also be maximal.

We claim that L̃/L is the maximal elementary abelian p-extension of L that is unramified

outside S. To this end, consider an elementary abelian p-extension of L unramified outside

S, L( p
√
γ)/L, for some γ ∈ L×/L×p. We would like to prove that L( p

√
γ) ⊂ L̃. By definition

of L( p
√
γ), it follows that:

γ ≡ η ·
T∏
i=1

∏
g∈Φ

g(λi)
cg,i
∏
g∈Φ

g(α)ag
∏
g∈Φ

g(β)bg mod L×p,

for some η ∈ O×L and ag, bg, cg,i ∈ Fp, for 1 ≤ i ≤ T and g ∈ Φ. Since L( p
√
γ)/L is unramified

at p, it follows that γ = 0 in R′(L), so γ ∈ NG. Thus PW (γ) = 0 ∈ R(L), for all W , which

in turn means that PW (γ) = 0 ∈ R′(L). From construction, g(λi), g(α), g(β) ∈ QG ⊂ R′(L).
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Moreover, since η ∈ O×L ⊗ Fp, and O×L ⊗ Fp intersects QG and NG trivially, it follows that

η = 0 in R′(L), so η ∈ O×pL , since η is a global unit.

On the one hand, consider PW (γ) in R(L), for W 6= V (note the switch from multiplica-

tive notation to additive notation) :

0 = PW (γ) =
T∑
i=1

∑
g∈Φ

∑
h∈Φ

cgh−1,i · nh,W g(λi)


+
∑
g∈Φ

∑
h∈Φ

agh−1 · nh,W g(α)


+
∑
g∈Φ

∑
h∈Φ

bgh−1 · nh,W g(β)


By construction, λi, α, β and their conjugates are all linearly independent in QG, so it

follows that their coefficients have to be 0:

∑
h∈Φ

nh,W · cgh−1,i = 0,

∑
h∈Φ

nh,W · agh−1 = 0,

∑
h∈Φ

nh,W · bgh−1 = 0,

for all 1 ≤ i ≤ T and g ∈ Φ.

On the other hand, recall that PV (ν1α) = 0 and PV (ν2β) = 0 in R(L). Moreover, recall

that

ν1 =
T∏
i=1

∏
g∈Φ

g(λi)
sg,i and ν2 =

T∏
i=1

∏
g∈Φ

g(λi)
tg,i .
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Consider PV (γ) in R(L):

0 = PV (γ) =
T∑
i=1

∑
g∈Φ

cg,iPV (g(λi)) +
∑
g∈Φ

agPV (g(α)) +
∑
g∈Φ

bgPV (g(β))

=
T∑
i=1

∑
g∈Φ

cg,iPV (g(λi))−
∑
g∈Φ

agPV (g(ν1))−
∑
g∈Φ

bgPV (g(ν2))

=
T∑
i=1

∑
g∈Φ

∑
h∈Φ

nh,V

cgh−1,i −∑
τ∈Φ

(bgτ−1th−1τ,i + agτ−1sh−1τ,i)

 g(λi).

Using the same argument as above, we must have that:

∑
h∈Φ

nh,V (cgh−1,i −
∑
τ∈Φ

(bgτ−1th−1τ,i + agτ−1sh−1τ,i)) = 0,

for all 1 ≤ i ≤ T and all g ∈ Φ.

Finally, putting these things together, we obtain that:

γ ≡
∏
g∈Φ

g(PV (ν1α))ag
∏
g∈Φ

g(PV (ν2β))bg mod L×p,

meaning that L( p
√
γ) ⊂ L̃, which proves the maximality of L̃, and concludes the proof of (ii).

Finally, in order to prove (iii) for M̃/Lur,p, we observe that it is enough to prove it for

L̃/L. This is true since all the elements g(λi) split completely in Lur,p/L, for all g ∈ Φ

and 1 ≤ i ≤ T , and Gal(M̃/Lur,p) ∼= Gal(L̃/L). The following short lemma proves this

statement for L̃/L.

Lemma 3.2.1. All the (Z/pZ)2-subgroups of Gal(L̃/L) appear as decomposition subgroups

of some gi(λ`), for 1 ≤ ` ≤ T and i = i(`).

Proof. Take a (Z/pZ)2-subgroup H of Gal(L̃/L) ∼= (Z/pZ)2n; note that there are T =

(p2n−1)(p2n−p)
(p2−1)(p2−p) of them. Choose generators (a1, . . . , an, b1, . . . , bn) and (x1, . . . , xn, y1, . . . , yn)
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of H with (a1, . . . , an, b1, . . . , bn) 6= 0, (x1, . . . , xn, y1, . . . , yn) 6= 0, and (a1, . . . , an, b1, . . . , bn)

and (x1, . . . , xn, y1, . . . , yn) are not multiples of each other. Moreover, from the above dis-

cussion, we can choose these generators in such a way that there exists a prime λ = gi(λ`)

(for some gi ∈ Φ and 1 ≤ ` ≤ T ) such that the exponents of g−1
1 (λ), g−1

2 (λ), . . . , g−1
n (λ) are

a1, . . . , an in ν1, and b1, . . . , bn in ν2, respectively.

Let Lλ be the completion of L at the prime λ. Consider any prime of L̃ above λ and

take the completion of L̃ at that prime. By abuse of notation, denote this completion by

L̃λ. Let π be a uniformizer of Lλ. After relabelling, if necessary, we can assume that L̃λ =

Lλ( p
√
πa1ω1g1(α), . . . , p

√
πanωngn(α), p

√
πb1ξ1g1(β), . . . , p

√
πbnξngn(β)), where ωi and ξi are

defined above. We know that the inertia subgroup is generated by (a1, . . . , an, b1, . . . , bn).

Consider the fixed field of inertia. If ai 6= 0 for some i, then p

√
ω
ai
j gj(α)ai

ω
aj
i gi(α)

aj
is an element

inside the fixed field of inertia, for all j 6= i. If, on the other hand, bi 6= 0 for some i, then

p

√
ξ
bi
j gj(β)bi

ξ
bj
i gi(β)

bj
is an element inside the fixed field of inertia, for all j 6= i. Let cj , dj , and Ak,

Bk be the quantities constructed earlier in this section. Using this construction and the fact

that that the prime λ satisfies

α ≡ g−1
j (Aj) (mod g−1

j (λ)),

β ≡ g−1
j (Bj) (mod g−1

j (λ)),

for all 1 ≤ j ≤ n, we observe that at least one of the quantities
ω
ai
j gj(α)ai

ω
aj
i gi(α)

aj
and

ξ
bi
j gj(β)bi

ξ
bj
i gi(β)

bj
is

not a p-power modulo λOL (by construction of the element r = r`). It follows that the fixed

field of inertia is nontrivial.

Now, consider the fixed field of H. Again, using the definitions of the primes λ, α, β, the

fixed field of this will be trivial.

Since the fixed field of (a1, . . . , an, b1, . . . , bn) ⊂ H is nontrivial and the fixed field of H

is trivial, it follows that H is isomorphic to the decomposition subgroup of λ. Since H was
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chosen arbitrarily, the conclusion follows.

We claim that the extension M̃/Lur,p satisfies the conditions of Lemma 2.3.3, with S̃

instead of S. We know that (Lur,p)ur,p = Lur,p and we have just proved that M̃ is the

maximal elementary abelian p-extension of Lur,p unramified outside S̃, so the only thing left

to prove is that the following map is surjective:

⊕
v

H2(Dv,Z)→ H2(Gal(M̃/Lur,p),Z),

where the sum is over all the primes of Lur,p. The key fact used here is that if G is a

finite abelian group, then the homology group H2(G,Z) is isomorphic to the second exterior

power of G,
2∧

(G) ([Raz77, Lemma 5]). Recall that Gal(M̃/Lur,p) ∼= Gal(L̃/L) ∼= (Z/pZ)2n;

assume that Gal(M̃/Lur,p) is generated by {τ1, τ2, . . . , τ2n}. Consider the (Z/pZ)2-subgroups

of Gal(M̃/Lur,p) generated by pairs of two elements in {τ1, . . . , τ2n}. There are n(2n− 1) of

them; call them A1, A2, . . . , An(2n−1). In particular, Ak+j = 〈τi, τi+j〉, where i ranges from

1 to 2n− 1, k = 2n(i− 1)− (i−1)i
2 , and 1 ≤ j ≤ 2n− i.

Note that T =
(p2n−1)(p2n−p)
(p2−1)(p2−p) ≥ n(2n − 1), for all primes p. From the fact that the

decomposition subgroups Dv exhaust the (Z/pZ)2-subgroups of Gal(M̃/Lur,p), as v ranges

over all the primes in S̃, it follows that there are primes vi ∈ S̃ such that Dvi ∼= Ai, for all

1 ≤ i ≤ n(2n − 1). Note that these primes are primes above g(λj). Consider the following

intersections:

B1 = Dv1 ∩Dv2 ∩ · · · ∩Dv2n−1 ∼= 〈τ1〉 ∼= Z/pZ

B2 = Dv1 ∩Dv2n ∩ · · · ∩Dv4n−3 ∼= 〈τ2〉 ∼= Z/pZ

. . .

B2n = Dv2n−1 ∩Dv4n−3 ∩ · · · ∩Dvn(2n−1) ∼= 〈τ2n〉 ∼= Z/pZ.
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The groups Bi span the group Gal(M̃/Lur,p), so there exists a basis {x1, . . . x2n} of

Gal(M̃/Lur,p) such that xi ∈ Bi. Now,

x1, x2 ∈ Dv1 ⇒ x1 ∧ x2 ∈
2∧
Dv1

x1, x3 ∈ Dv2 ⇒ x1 ∧ x3 ∈
2∧
Dv2

. . .

x2n−1, x2n ∈ Dvn(2n−1) ⇒ x2n−1 ∧ x2n ∈
2∧
Dvn(2n−1) ,

which implies that 〈xi ∧ xj | i < j〉 ⊂
⊕ 2∧

Dvi , where the sum is over all vi with Dvi ∼= Ai,

for 1 ≤ i ≤ n(2n − 1). On the other hand, 〈xi ∧ xj | i < j〉 spans
2∧

Gal(M̃/Lur,p), which

implies that
2∧

Gal(M̃/Lur,p) ⊂
⊕ 2∧

Dvi ⊂
⊕ 2∧

Dv, so we must have equality. Thus,

the map in Lemma 2.3.3 is surjective, proving that (M̃)ur,p = M̃ .

Recall that L1 is the Galois closure of L( p
√
PV (ν1α)) over K and L2 is the Galois closure

of L( p
√
PV (ν2β)) over K. Let M1 = L1.L

ur,p and M2 = L2.L
ur,p. Then M̃ = M1.M2. Note

that Gal(M1/K) ∼= Gal(M2/K) ∼= V oΓ ∼= Γ′, by the discussion preceding Proposition 2.2.5.

Let L′ be the Galois closure of L( p
√
PV (ν1α)PV (ν2β)−1) over K. We would like to show

the existence of an extension K ′/K satisfying Theorem 3.0.2. Since Gal(L′/L) ∼= V and

Gal(L′/K) ∼= V o Φ by construction, we have the following exact sequence:

1→ Gal(L′/L)→ Gal(L′/K)→ Gal(L/K)→ 1.

Recall that V is a p-group and Φ is a group of order prime to p, so by the Schur-Zassenhaus

Theorem this sequence splits, and we can view Gal(L/K) = Φ as a subgroup of Gal(L′/K).

Let K ′ = L′Φ. The extension L′/K ′ is Galois and has Galois group Φ. Moreover, L ⊂ L′ and

K ⊂ K ′. By construction, K ′/K andM1/K are linearly disjoint, andM1.K
′ = M1.L

′ = M̃ ,
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so Gal(M̃/K ′) ∼= Gal(M1/K) ∼= Γ′. We claim that (L′)ur,p = M̃ . Since M̃ is an un-

ramified p-extension of Lur,p.L′ and Lur,p.L′ is an unramified p-extension of L′, it follows

that M̃ ⊂ (L′)ur,p. Combining this with the fact that (M̃)ur,p = M̃ , we conclude that

M̃ = (L′)ur,p. Moreover, every prime of K ′ lying over p splits completely in M̃ . To finish

the proof in the case of a split extension, we have to prove that (L′)ur,p/K ′ satisfies property

P. Firstly, we claim that L′/K ′ satisfies property P. Since Gal(L′/K ′) ∼= Gal(L/K) ∼= Φ has

order prime to p, and K ′/K is a p-extension, this argument follows in the same manner as

the one at the end of the proof of Lemma 3.1.1, and will be omitted. Now, from Lemma 2.2.4,

it follows that (L′)ur,p/K ′ satisfies property P, finishing the proof.

If the extension

1→ V → Γ′ → Γ→ 1

is not split, we cannot work over L anymore. However, the proof is similar. We begin by

proving the following lemma, which is a variation of Lemma 6 in [Oza11]. In fact, we can

recover Ozaki’s Lemma for regular primes from the following result by taking Φ = 1 and

V = Z/pZ. While the proof is similar to the proof of Lemma 4 in the first version of [Oza11],

our proof requires several extra steps. The difficulty of the proof in our case comes from the

Fp-dimension of V (which in Ozaki’s case is taken to be 1) and the action of Φ on V (which

in Ozaki’s case is trivial). This result allows us to construct a wildly ramified solution to

the embedding problem. We will then use this solution, combined with a split extension,

to construct an unramified solution to the embedding problem. Let Φ, G,G′,Γ,Γ′, V be the

groups defined in Theorem 3.0.2.

Proposition 3.2.2. Let L/K be a Galois extension with Galois group Φ. Assume that the

Galois group Gal(Lur,p/K) ∼= Γ = Go Φ. Then, for any group extension

1→ V → Γ′ → Γ→ 1,
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there exists a finite extension K ′/K such that if L′ = L.K ′, then

1. (L′)ur,p = Lur,p.L′ and (L′)ur,p = Lur,p.K ′; hence Gal((L′)ur,p/K ′) ∼= Gal(Lur,p/K)

and every prime of K ′ lying over p splits completely in (L′)ur,p.

2. There exist global units ε1, ε2, . . . , εn ∈ O×(L′)ur,p (n = dimFp V ) such that the field

extension (L′)ur,p( p
√
ε1, . . . , p

√
εn)/K ′ is Galois with Galois group isomorphic to Γ′.

Proof. By Proposition 2.2.5, there exists a Galois extensionM/K containing Lur,p such that

Gal(M/K) ∼= Γ′. Note that this extension M is just a solution to the embedding problem;

in particular, it is not an unramified extension. Let α1, . . . , αn be the Kummer generators

of M/Lur,p, so M = Lur,p( p
√
α1, . . . , p

√
αn). Since L ⊂ Lur,p ⊂ M and L/K is Galois,

the extension M/L must be Galois, so (αi mod (Lur,p)×p) ∈ ((Lur,p)×/(Lur,p)×p)G, where

G = Gal(Lur,p/L). It follows that there are ideals Ai of OLur,p and ai of OL such that

αiOLur,p = A
p
i ai. Let h be the class number of Lur,p and note that (h, p) = 1. Let Ai be an

element of Lur,p such that Ahi = AiOLur,p . Then αhi OLur,p = A
ph
i ahi = A

p
i a
h
i . Let a′i = ahi

and α′i = αhi A
−p
i . Then a′i = α′iOLur,p is an ideal of OL, and M = Lur,p( p

√
α1, . . . , p

√
αn) =

Lur,p( p
√
α′1, . . . ,

p
√
α′n).

Let pei be the exact power of p dividing the order of the ideal class [α′i]L. Then [α′i]
pei
L

has order prime to p. Let e = max ei, and note that [α′i]
pe

L has order prime to p. By using

Theorem 3.0.1 repeatedly we obtain an extension K ′/K of degree pe such that if L′ = L.K ′,

then:

• L′ ∩ Lur,p = L and K ′ ∩ Lur,p = K,

• (L′)ur,p = Lur,p.L′ and (L′)ur,p = Lur,p.K ′,

• Gal((L′)ur,p/K ′) ∼= Γ.

Consider the inclusion L ⊂ L′. Denote by j : ClL → ClL′ the map induced on class

groups, and by N : ClL′ → ClL the norm map. Note that, by construction, we have an
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isomorphism Gal((L′)ur,p/L′)ab ∼= Gab. It follows that the order of the kernel of the norm

map is prime to p. Observe that N ◦ j([a′i]L) = [a′i]
pe

L . Combining these two facts, we

conclude that the order of j([a′i]L) is prime to p in ClL′ . Let mi be the order of j([a′i]L) in

ClL′ , and let m = lcm(mi); so m is prime to p. Let a′mi = a′iOL′ , for some a′i ∈ L
′×. Then

a′iOL′ = α′mi O(L′)ur,p . Thus, there exists εi ∈ O×(L′)ur,p such that α′mi = a′iεi. Note that

(L′)ur,p( p
√
α′1, . . . ,

p
√
α′n) = (L′)ur,p( p

√
α′m1 , . . . , p

√
α′mn ), so we can replace α′i by α

′m
i .

Recall that 〈α′i mod ((L′)ur,p)×p〉 ⊂ (((L′)ur,p)×/((L′)ur,p)×p)G, as a subgroup. Since

the extension (L′)ur,p( p
√
α′1, . . . ,

p
√
α′n)/K ′ has Galois group Γ′, it follows that the group

Γ acts on 〈α′i mod ((L′)ur,p)×p〉. Then, as an Fp[Γ]-representation, 〈α′i mod ((L′)ur,p)×p〉

is isomorphic to a copy of the projective cover of V . Let Ṽ be the projective cover of

V . Hence, the Galois group Gal((L′)ur,p( p
√
α′1, . . . ,

p
√
α′n)/K ′) is isomorphic to the Galois

group Gal
(

(L′)ur,p
(
p
√
P
Ṽ

(α′1), . . . , p
√
P
Ṽ

(α′n)
)
/K ′

)
, so we can replace α′i by P

Ṽ
(α′i) =

P
Ṽ

(aiεi) = P
Ṽ

(ai) · PṼ (εi). Note that P
Ṽ

(a′i) = PV (a′i)
|G|, since a′i ∈ L

′×. Since 〈PV (a′i)〉

is isomorphic to a subrepresentation of V in L′×/L′×p, and V is an irreducible Fp[Φ]-

representation, either 〈PV (a′i)〉 ∼= V or 〈PV (a′i)〉 = 1. The latter implies that PV (a′i) = 1,

for all i, which in turn implies that P
Ṽ

(α′i) = P
Ṽ

(εi), which finishes the proof: the extension

(L′)ur,p( p
√
PV (α′1), . . . ,

p
√
PV (α′n))/K ′ is the desired one. On the other hand, the former

implies that 〈PV (a′i)〉 ∼= V , so Gal(L′( p
√
PV (a′1), . . .

p
√
PV (a′n))/K ′) ∼= V o Φ. Then, by

Proposition 2.2.5, the Galois group of (L′)ur,p( p
√
PV (a′1), . . .

p
√
PV (a′n))/K ′ is isomorphic to

V o Γ, which means that Gal((L′)ur,p( p
√
PV (ε1), . . .

p
√
PV (εn))/K ′) ∼= Γ′, which is what we

wanted.

We are finally ready to prove Theorem 3.0.2 in the case when the group extension 1 →

V → Γ′ → Γ→ 1 is not split. Assume that L/K is an extension with the usual properties.

Use Proposition 3.2.2 to construct a wildly ramified solution (L′)ur,p( p
√
ε1, . . . , p

√
εn)/K ′ to

the embedding problem. Note that from construction, it follows that 〈ε1, . . . , εn〉 ∼= 〈σ(ε1) |

σ ∈ Γ〉, as representations. Moreover, the new extension (L′)ur,p( p
√
ε1, . . . , p

√
εn)/K ′ satisfies
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property P except possibly at the primes above p.

Just as before, construct T primes λiOL′ in L′, where T =
(pn−1)(pn−p)
(p2−1)(p2−p) , satisfying:

• λiOL′ splits completely in (L′)ur,p/L′,

• N(λi) ≡ 1 (mod p),

• the primes of K ′ below λi split completely in L′/K ′,

• λi mod U(L′)p =
d∑
j=1

(1 + σj)q(i−1)d+j in R(L′).

Construct the quantities ν1, ν2, and the elements Ak,` and Bk,` (and r1, r2) in the same

manner as above (here 1 ≤ k ≤ n and 1 ≤ ` ≤ T ). Let R =
∏
i,`

g−1
i (λ`) as above. Construct

two new primes αOL′ and βOL′ that split completely in (L′)ur,p/L′, are prime to p and

satisfy:

• α ≡ r1 (mod R) and β ≡ r2 (mod R),

• α mod U(L′)p = −ε1 − PV (ν1) +
∑
W 6=V

PW

 d∑
j=1

(1 + σj)qTd+j

 in R(L′),

• β mod U(L′)p = −ε1 − PV (ν2) +
∑
W 6=V

PW

 d∑
j=1

(1 + σj)q(T+1)d+j

 in R(L′).

Let L1 be the Galois closure of L′( p
√
PV (ν1α)) over K ′. Then Gal(L1/K

′) = V oΦ. De-

fine the field M1 = (L′)ur,p( p
√
ε1PV (ν1α), . . . , p

√
εngn(PV (ν1α))), and use Proposition 2.2.5

and Proposition 3.2.2 to observe that the Galois group of M1/K
′ is Γ′. Construct L2 and

M2 in a similar manner. Let L̃ be the Galois closure of L′( p
√
PV (ν1α)PV (ν2β)−1) over K ′

and let M̃ = M1.M2. Note that, by an argument identical to the one above, the extension

M̃ is the maximal unramified p-extension of L̃. Just as in the previous case, we are in the

following situation:

1→ Gal(L̃/L′)→ Gal(L̃/K ′)→ Gal(L′/K ′)→ 1.
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Using the Schur-Zassenhaus Theorem again, we can construct a field K̃ = L̃Φ. Then, by

construction, this new extension M̃/K̃ has Galois group Γ′, M̃ = (L̃)ur,p, Gal(M̃/L̃) = G′.

Moreover, property P is also satisfied, since there is no ramification at the prime p. This

concludes the proof of Theorem 3.0.2.
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CHAPTER 4

UNIVERSAL UNRAMIFIED DEFORMATION RINGS

In this chapter, we present an application of Theorem 1 in the field of deformation theory.

This application provides a partial answer to Question 2.

Throughout this chapter, let p be a prime, E a number field and ρ : GE → GL2(Fp) a

continuous absolutely irreducible Galois representation. Moreover, assume that the image

of this representation has order prime to p. If we consider the unramified lifts of such a

representation, it is natural to ask:

Question 4. What possible rings R can occur as universal unramified deformation rings of

an absolutely irreducible representation with image of order prime to p?

Using Boston’s Strengthening [Bos99] of the Unramified Fontaine-Mazur Conjecture

[FM95], together with the proof of [AC14, Proposition 10], we observe that the expecta-

tion is that the universal unramified deformation ring is a ring R admitting a map R� Zp

with finite kernel I. We expect that there are no other restrictions on R and therefore have

the following conjecture:

Conjecture 1. Let R be any local ring admitting a surjection to Zp with finite kernel, for

p ≥ 5. Then there exist a number field E and an absolutely irreducible residual representation

ρ : GE → GL2(Fp) such that R is isomorphic to the universal unramified deformation ring

of ρ.

In what follows, we will prove that a ring R admitting a surjection to Zp with finite kernel

is isomorphic to the universal unramified deformation ring of a certain absolutely irreducible

representation (if such a representation exists). Then, we will construct absolutely irreducible

representations of this specific form for p = 5 and p = 7.
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4.1 Finding the Universal Unramified Deformation Ring

Let R be a local ring admitting a surjection to Zp with finite kernel IR. Assume that there

exist a number field E and an absolutely irreducible residual representation

ψ : GE → GL2(Fp),

whose image is Φ̃, a group of order prime to p. Note that the projective image Φ of ψ can

be A4, S4, S5 or a dihedral group [Ser72, Proposition 16]. Since Φ̃ has order prime to p, we

can view it as a subgroup of Zp, so ψ lifts to GL2(Zp). Let Γ̃ denote the inverse image of Φ̃

inside GL2(R); it lives inside a split exact sequence:

1→ 1 +M2(IR)→ Γ̃→ Φ̃→ 1.

Now, the group Γ̃ admits a natural residual representation via ψ, call it ρ : GE → Γ̃ →

GL2(Fp). This representation is absolutely irreducible, so a universal deformation ring Rρ

exists (for more details, see Section 2.4). The aim of this section is to show that Rρ ∼= R.

Note that Γ̃ admits a deformation to GL2(R) by construction, so Rρ � R. It follows

that there exists an ideal J ⊂ Rρ such that Rρ/J ∼= R. Note that, by replacing Rρ by

Rρ/JmRρ , we can assume that J is finite. Here mRρ is the maximal ideal of Rρ. It follows

that the ring Rρ admits a surjection onto Zp with finite kernel. Therefore, to prove that R

is universal, it is enough to prove that for every local ring S with the following properties:

• The ring S surjects onto Zp with finite kernel IS ,

• S � R,

• There is a lift Γ̃→ GL2(S),

there exists a map R→ S that makes the following diagram commute:
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Γ̃ GL2(S)

GL2(R)

Throughout this section, let S be a local ring satisfying the three properties above. Since

S � R and the ideals IS and IR are finite, it follows that there exists a finite ideal J ⊂ S

such that S/J ∼= R.

Before proving the existence of a section R→ S, let us introduce some notation. If A is

a local ring and I ⊂ A is an ideal, then:

• Let mA denote the maximal ideal of A.

• Let ΓI = 1 + M2(I).

• If the ideal I = IA is the kernel of a surjective homomorphism A � Zp, then let

ΓA = ΓIA = 1 +M2(IA).

We observe that ΓJ is not contained in the Frattini subgroup [ΓS ,ΓS ]Γ
p
S of ΓS :

Lemma 4.1.1. Let S and R be two rings as above. The group ΓJ is not a subgroup of

[ΓS ,ΓS ]Γ
p
S.

Proof. Assume that ΓJ ⊂ [ΓS ,ΓS ]Γ
p
S . Recall that there exists a lift Γ̃→ GL2(S), and note

that ΓR is a normal, pro-p subgroup of Γ̃, by construction. It follows that, under the map

Γ̃→ GL2(S), the group ΓR maps to ΓS . Thus, we have the following diagram:

ΓS

ΓR F (ΓS)

ΓR

α

'

where F (ΓS) = ΓS/[ΓS ,ΓS ]Γ
p
S is the Frattini quotient of ΓS .
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Since ΓJ ⊂ [ΓS ,ΓS ]Γ
p
S = kerα, it follows that α has to factor through ΓR, which implies

that ΓR
∼= ΓR → F (ΓS) must be surjective, so ΓR → ΓS → F (ΓS) must be surjective.

Since F (ΓS) is the Frattini quotient of ΓS , we obtain that ΓR → ΓS must be surjective, but

this is impossible, since ΓR has fewer elements than ΓS . Thus, ΓJ is not contained in the

Frattini subgroup [ΓS ,ΓS ]Γ
p
S of ΓS .

The existence of a section R→ S will be proved by induction on the length of the ideal

IS . Note that the kernel J is not necessarily an Fp-vector space of dimension n. However,

when it is an Fp-vector space, we claim that S ∼= R[x1, . . . , xn]/(xixj , pxi), for some xi ∈ S.

Before proving this claim, let us introduce a technical lemma: when the Fp-dimension of the

kernel J is 1, then if the kernel on the level of cotangent spaces is nontrivial, there exists a

section R→ S.

Lemma 4.1.2. Let S and R be two local rings as above. Suppose that dimFp J = 1 and

suppose that there exists some 0 6= x ∈ J such that x is sent to 0 under the map of cotangent

spaces mS/(m2
S , p)→ mR/(m

2
R, p). Then there exists a subring S′ ⊂ S such that S′ ∼= R.

Proof. Take generators x1, . . . , xd of mR/(m2
R, p) and lift these generators to mS/(m2

S , p) and

then to S. Denote the lifts to S by x1, . . . , xd. Consider the subring S′ of S generated by

these lifts.

Let x ∈ J be a nonzero element that is sent to 0 under the map on cotangent spaces.

We claim that x /∈ S′. Suppose otherwise, so x = a0 + a1x1 + . . . adxd + α, where α ∈ m2
S ,

ai ∈ Zp. Since x, xi, α ∈ mS , it follows that a0 ∈ mS ∩Zp = (p). Recall that under the map

mS/(m
2
S , p)→ mR/(m

2
R, p),

x = a0 +
∑
aixi + α =

∑
aixi (in mS/(m

2
S , p)) is sent to 0. Since xi generate mR/(m

2
R, p),

this is true if and only if ai = 0 ∈ mR/(m
2
R, p), for all i, which is true if and only if

ai ∈ Zp ∩ (m2
R, p) = (p). Thus, x ∈ (m2

S , p), which is a contradiction. So x 6∈ S′, which
54



implies that S′ ↪→ R.

The inclusion S′ ↪→ R induces an isomorphism on cotangent spaces. In particular, the

map on cotangent spaces is surjective, which implies that the original map must be surjective

[Sch68, Lemma 1.1]. Thus, the map from S′ to R must be an isomorphism.

We can now prove the statement in the case when the kernel J is an Fp-vector space.

Lemma 4.1.3. Let R and S be two local rings as above. Assume, moreover, that J is an Fp-

vector space of dimension n. Then there exist xi ∈ S such that S ∼= R[x1, . . . , xn]/(xixj , pxi).

Proof. This will be proved by induction on n = dimFp J .

Base case: n = 1. By Lemma 4.1.1, the group ΓJ is not a subgroup of [ΓS ,ΓS ]Γ
p
S .

Combining this with the fact that [ΓS ,ΓS ]Γ
p
S = Γ(I2S ,pIS), we observe that J is not a subset

of (I2
S , pIS). So, there exists x ∈ J such that x 6∈ (I2

S , pIS). Moreover, x 6∈ (m2
S , p). Thus,

under the map

mS/(m
2
S , p)→ mR/(m

2
R, p),

the nonzero element x is sent to 0. From Lemma 4.1.2, we know that there exists a subring

S′ ⊂ S such that S′ ∼= R and x 6∈ S′. Consider the map S′[x] → S: it is a surjection and

px, x2 are elements of the kernel. Thus S ∼= S′[x]/(x2, px) ∼= R[x]/(x2, px), which concludes

the base case.

Inductive step: suppose that the result is true for m < n and consider the case n =

dimFp J . Suppose J = (x1, . . . , xn), for some xi ∈ S. Let S1 = S/(x1). Apply the base case

to S, S1 and (x1) instead of S, R and J to obtain that S ∼= S1[x1]/(x
2
1 , px1). By construction,

S1 still surjects onto R with kernel J1 = J/(x1). Note that dimFp J1 < n = dimFp J . By

induction, we know that S1
∼= R[x2, . . . xn]/(xixj , pxi), for some x2, . . . , xn ∈ S. Putting

these two things together, we obtain that S ∼= R[x1, . . . xn]/(xixj , pxi).

We can finally prove that for two rings R, S as above, there exists a map R → S that

makes the following diagram commute:
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Γ̃ GL2(S)

GL2(R)

Proposition 4.1.4. Let R and S be two local rings as above. Then there exists a splitting

R→ S that makes the diagram above commute.

Proof. As previously mentioned, we will prove this result by induction on `(S), where we

define `(S) = `(IS) to be the length of the ideal IS .

Base case: `(S) = `(R) + 1. Replacing S by S/mSJ , if necessary, we can assume that J

is an Fp-vector space. We can do this, because to find a lift to S, it is enough to find a lift

to S/mSJ . Then the condition `(S) = `(R) + 1 translates to dimFp J = 1, and this follows

from the base case in Lemma 4.1.3.

Inductive step: suppose that the statement is true for `(S) < N ; we would like to prove

that for `(S) = N there exists a splitting R → S that makes the diagram commute. If

S � R has kernel J , then consider

S
π−→ S/mSJ � S/J = R.

Let S′ = S/mSJ . Then S′ is a local Zp-algebra with maximal ideal mS′ = mS/mSJ .

Moreover, there is a surjection from S′ to R with kernel J ′ = J/mSJ . This new local

Zp-algebra has the following properties:

• S′/J ′ = R;

• mS′J = 0;

• J ′ is a S/mS = Fp-vector space.

Thus, by Lemma 4.1.3, it follows that S′ ∼= R[x1, . . . , xn]/(xixj , pxi), for some elements

xi ∈ S′. So, there is a splitting R ↪→ S′ that makes the following diagram commute:
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Γ̃ GL2(S′)

GL2(R)

We are in the following situation:

S S′ R

R

π

Let S′′ = π−1(R) ⊂ S. Then `(S′′) < `(S), so by induction there is a lift R→ S′′. Then we

can conclude that there is a lift

R→ S′′ → S,

where the first map comes from the inductive step and the second map comes from the

definition of S′′. Moreover, this lift makes our diagram commute, which concludes the

proof.

By taking S = Rρ, we conclude that there is a splitting R → Rρ corresponding to the

surjection Rρ � R. It follows that R ∼= Rρ.

4.2 Existence of Residual Representations

We can now prove Theorem 2. Recall that at the beginning of the previous section, we as-

sumed the existence of an absolutely irreducible residual representation ψ : GE → GL2(Fp),

whose image is Φ̃, a group of order prime to p. From this, we obtained a short exact sequence

1→ G→ Γ̃→ Φ̃→ 1,

and a residual representation ρ : Γ̃→ GL2(Fp). We have already proved that R is the univer-

sal deformation ring of ρ. In order to prove that R is the universal unramified deformation
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ring of ρ, we need to consider the unramified lifts of this representation. Note that the

existence of an absolutely irreducible residual representation with image with order prime

to p whose universal unramified deformation ring is isomorphic to R reduces to finding field

extensions M/L/K satisfying Gal(M/K) = Γ̃ and M is the maximal unramified p-extension

of L. We observe that the existence of such extensions is given by Theorem 1, under the as-

sumption that there exists a Φ̃-extension of Q(ζp) with class number prime to p that satisfies

property P.

We claim that instead of working with a Φ̃-extension with the desired properties, we can

work with a Φ-extension, where Φ is the projective image of Φ̃. To this end, consider the

following exact sequence

1→ G→ Γ̃→ Φ̃→ 1

and its projective image

1→ G→ Γ→ Φ→ 1.

Note that if we have a lift GE → Γ, we are in the following situation:

Γ̃ Φ̃

Γ Φ

GF
?

To prove that there exists a lift GF → Γ̃, take two compatible set theoretic lifts. The centres

Z(Γ̃) and Z(Φ̃) are equal, so the 2-cocycles will be the same. Since any set theoretic lift to

Φ̃ is a homomorphism, it follows that the lift to Γ̃ must be a homomorphism, and we are

done. Therefore, it is enough to construct Φ-extensions.

Recall that by [Ser72], we know that Φ is dihedral, A4, S4 or S5. Let Φ = A4 and

consider the Schur covering group Φ̃ = SL2(F3) of A4. Note that for p ≥ 5, we have
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inclusions Φ ↪→ PGL2(Fp) and Φ̃ ↪→ GL2(Fp).

To finish the proof of Theorem 2, we constructed extensions with the desired properties

for p = 5 and p = 7 (see the two examples below) using GP/Pari and the Database of

Number Fields https://hobbes.la.asu.edu/NFDB/ ([JR14]).

Example. Let p = 5. Let Φ = A4 ↪→ PGL2(F5) and Φ̃ = Ã4 = SL2(F3) ↪→ GL2(F5). Let E

be the compositum of Q(ζ5) with the field defined by

x4 − x3 + 2x2 + 4x+ 3

and let F̃1 be the Galois closure of the field defined by the following polynomial over Q:

x8 − 2x7 − 28x6 + 25x5 + 226x4 + 70x3 − 307x2 − 121x+ 1.

This field has an intermediate field F1, which is the Galois closure of the field defined by

x4 − x3 − 22x2 + 8x+ 24.

Let F̃ = E.F̃1 and F = E.F1. Then F is a subfield of F̃ and Gal(F̃ /E) = SL2(F3)� A4 =

Gal(F/E). We used GP/Pari to show that both F/E and F̃ /E satisfy the conditions of

Theorem 1. This concludes the proof for p = 5.

Example. Let p = 7. Let Φ = A4 ↪→ PGL2(F7) and Φ̃ = Ã4 = SL2(F3) ↪→ GL2(F7). Let E

be the compositum of Q(ζ7) with the field defined by

x3 − 3x− 1
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and let F̃1 be the Galois closure of the field defined by the following polynomial over Q:

x8 − 3x7 − 3x6 − x5 − 34x4 + 480x3 + 451x2 − 463x+ 2686.

This field has an intermediate field F1, which is the Galois closure of the field defined by

x4 − x3 − 16x2 + 17x+ 38.

Let F̃ = E.F̃1 and F = E.F1. Then F is a subfield of F̃ and Gal(F̃ /E) = SL2(F3)� A4 =

Gal(F/E). We used GP/Pari to show that both F/E and F̃ /E satisfy the conditions of

Theorem 1. This concludes the proof for p = 7.

This concludes the proof of Theorem 2. Note that this proof does not rely on p until

this last step, which is a purely computational one. For p > 7, the difficulty comes from the

fact that computational tools like Pari and MAGMA have limitations when computing class

numbers of high degree fields. As previously mentioned, we believe that Conjecture 1 holds,

making this result true for all p ≥ 5.

4.3 Murphy’s Law for Galois Deformation Rings

Theorem 2 can be viewed through the lens of “Murphy’s Law for moduli spaces”, an idea in-

troduced by Ravi Vakil in [Vak06]: all possible singularities occur inside deformation spaces.

When considering Galois deformation rings, the analogue of this is to say that all possible

local rings (that satisfy certain obvious conditions) occur as deformation rings. When consid-

ering unramified deformation rings, the expectation is that another class of rings appearing

as unramified deformation rings is represented by finite artinian local rings. To prove this

result for all such rings, one would have to also consider representations whose images have

order divisible by p, requiring a modification of Theorems 1 and 2.
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