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ABSTRACT

This dissertation delves into statistical inverse problems with a focus on Bayesian approaches

for parameter estimation and uncertainty quantification under sparsity, nonconvexity, and

geometric constraints. The dissertation covers innovative methodologies for addressing these

challenges across various contexts, including compressed sensing, dynamical systems learn-

ing, and parameter estimation of differential equations on Euclidean space and manifolds.

The work encompasses various methodologies based on mean-field variational inference, en-

semble Kalman methods, Bayesian optimization, and graph Gaussian process to obtain point

estimates for the quantity of interest as well as comprehensive uncertainty quantification

associated with it. The dissertation effectively showcases how the introduced methods im-

prove computational efficiency and accuracy in parameter estimation and uncertainty anal-

ysis across complex models. This is achieved through a blend of theoretical insights and

numerical studies, inspired by a wide array of practical scenarios.
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CHAPTER 1

INTRODUCTION

1.1 Statistical Inverse Problems

Inverse problems are ubiquitous in the realm of scientific discovery and technological inno-

vation, presenting a set of computational and methodological challenges that stem from the

need to infer quantities of interest from indirect observations. In short, the goal of inverse

problems is to uncover underlying parameters of interest from observed outcomes, often in the

presence of noise and uncertainty. The field of statistical inverse problems [O’Sullivan, 1986,

Evans and Stark, 2002, Kaipo and Somersalo, 2006] focuses on the application of statistical

principles and computational methods to these challenges, offering a structured approach to

quantify uncertainty, incorporate prior knowledge, and derive meaningful inferences about

the latent processes governing observed data. The significance of statistical inverse problems

extends across a wide range of fields, from geophysical exploration, where they are used to

understand the subsurface properties of the Earth, to biomedical engineering, for enhanc-

ing image reconstruction techniques in medical imaging [Somersalo et al., 1992, Kaipo and

Somersalo, 2006, Stuart, 2010, Iglesias et al., 2016]. Each application not only underscores

the pervasiveness of statistical inverse problems but also highlights the critical role of statis-

tical and computational tools in advancing our understanding and capabilities within these

domains.

In this thesis, we adopt the Bayesian framework to solve statistical inverse problems

[Kaipo and Somersalo, 2006, Stuart, 2010, Dashti and Stuart, 2017]. This framework is

rooted in Bayes’ theorem, which updates prior beliefs about unknown parameters based on

observations, thereby yielding a posterior distribution that encapsulates both the uncertain-

ties in the measurements and the prior information. This approach is particularly powerful

for dealing with complex systems where direct measurements of the parameters of interest
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are not possible, and where uncertainty plays a critical role in the modeling process.

Throughout this thesis, we assume the following data-generating mechanism.

y = G(u) + η, u ∈ U , y ∈ Y ,

where u is the parameter of interest, U is the parameter space, y is the observed data, Y

is the data space, G is the forward map between the parameter space and the data space,

and η is random measurement error. Based on the data-generating mechanism given above,

Bayes’ theorem can be succinctly expressed as

π(u|y) ∝ L(y − G(u))π(u),

where L is the data-likelihood induced by the probabilistic assumption on the measurement

errors, and π(u), π(u|y) are respectively the prior/posterior distribution of u. The Bayesian

approach to inverse problems is then characterized by providing a pointwise estimate for

the parameter of interest that reflects observed data and its comprehensive quantification

of uncertainty through the posterior distribution. Each of the following chapters in this

thesis will deal with various assumptions on the parameter u, the forward map G, and the

parameter space U . We will provide novel statistical and computational tools that exploit

imposed assumptions to facilitate statistical inversion.

1.2 Sparsity

In many scientific and engineering applications, the underlying physical phenomena can be

represented as sparse signals meaning that their significant information can be captured

with a relatively small number of non-zero coefficients (or parameters) in a suitable basis or

representation. Leveraging such sparse structures in data, fields like compressed sensing, and

high-dimensional statistics, have revolutionized the ability to recover or reconstruct these
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sparse signals from a limited number of observations [Candès and Wakin, 2008, Foucart

et al., 2013, Bühlmann and Van De Geer, 2011, Hastie et al., 2015]. This principle has found

widespread applications, ranging from medical imaging, where it enables high-resolution

reconstructions from fewer measurements, thereby reducing exposure to harmful radiation,

to genetics and genomics by enabling the identification of relevant genetic markers associated

with various traits or diseases while simultaneously handling the high-dimensional nature

of genomic data. Exploiting sparse structures not only enhances computational efficiency

and accuracy but also notably mitigates challenges coming from ill-posedness and noise in

estimating parameters (or coefficients), marking a notable advancement in the field of inverse

problems.

In the Bayesian framework, numerous priors that leverage sparse structures in data have

been introduced [Carvalho et al., 2010, Brown and Griffin, 2010, Ročková and George, 2018,

Ročková, 2018, Calvetti et al., 2019b]. Of particular interest is the hierarchical Bayesian

model introduced in [Brown and Griffin, 2010, Calvetti et al., 2019b]. Reflecting the sparse

structures in the parameter of a linear model, they impose a zero-centered Gaussian prior

with gamma hyperpriors on the variance parameter. Through zero-mean Gaussian prior,

one is implicitly reflecting the underlying sparse structure in the parameter and the variance

parameter effectively controls the level of sparsity.

To be more specific, consider the following model,

y = Au+ η,

where u is the parameter of interest, y is the observations, and η is a Gaussian noise with

zero mean and covariance Γ. [Brown and Griffin, 2010, Calvetti et al., 2019b] assume that

u follows a zero-centered Gaussian prior with gamma hyperpriors on its variance parameter
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θ. Then one can show that

p(u, θ|y) ∝ exp
(
−J(u, θ)

)
,

where

J(u, θ) :=
1

2
∥y − Au∥2Γ +

1

2
∥u∥2Dθ

+
d∑

i=1

[
θi
α

−
(
β − 3

2

)
log

θi
α

]
. (1.1)

Here α, β are parameters for the gamma hyperpriors. Although the posterior distribution is

intractable, thanks to the form of the Gibbs energy function J given in (1.1), [Calvetti et al.,

2019b] introduced a coordinate-wise optimization strategy known an Iterative Alternating

Scheme (IAS) to obtain a point estimate, the maximum a posteriori (MAP) estimate of

the parameter u. They have shown that as the parameter β tends to 3
2 , the optimum of

(1.1) converges to the optimum of ℓ1-regularized least squares solution, justifying a Bayesian

framework that subsumes Laplace prior set up, which corresponds to the famous Least

Absolute Shrinkage and Selection Operator (LASSO) [Tibshirani, 1996] algorithm in the

frequentist setup.

In the meantime, [Calvetti et al., 2019b] did not provide a full Bayesian solution, in the

sense that the uncertainty associated with their MAP estimate was not quantified. To acquire

a full Bayesian solution to parameter u, instead of utilizing Markov Chain Monte Carlo

(MCMC) algorithms like in [Brown and Griffin, 2010], in Chapter 2, we utilize techniques

from variational inference [Blei et al., 2017] to approximate target posterior distribution of

u with a tractable probability distribution that belongs to the mean-field family. Such an

approach scales better in the dimension of the parameter u and allows one to acquire both

MAP estimate and credible interval for the target parameter.

Furthermore, in Chapter 3, we extend the aforementioned hierarchical model framework

to the nonlinear forward map setting through methodologies based on ensemble Kalman filter

algorithms. Viewing variants of ensemble Kalman filter methods as particle-based stochastic
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nonlinear optimization techniques, we iteratively optimize

J(u, θ) :=
1

2
∥y − G(u)∥2Γ +

1

2
∥u∥2Dθ

+
d∑

i=1

[
θi
α

−
(
β − 3

2

)
log

θi
α

]
, (1.2)

with respect to u and θ, like in the IAS procedure. In the setting where the forward map

is nonlinear with sparsity assumption on the parameter u, the introduced algorithms will

quantify uncertainties of the output through particles propagated according to some iterative

update rules.

1.3 Nonconvexity

In statistical inverse problems, the objective functions optimized to obtain point estimates

are often nonconvex. Nonconvexity has become increasingly common due to the surge in

the complexity of models and data in various science and engineering disciplines. This

rise is primarily driven by the need to capture the intricate relationships between variables

in real-world data, which often necessitate models with nonconvex objective functions to

accurately represent the underlying phenomena. As the ambition to solve more sophisticated

problems grows, so does the reliance on models that introduce nonconvex landscapes and

lack closed-form mathematical expressions, presenting both a challenge and an opportunity

for innovation in optimization techniques. The shift towards embracing these complicated

models is fueled by their potential to provide deeper insights, more accurate predictions, and

solutions to previously intractable problems, pushing the boundaries of what can be achieved

across scientific and engineering disciplines. Consequently, the development and refinement

of algorithms capable of effectively navigating nonconvex landscapes have become a crucial

area of research, aiming to unlock the full capabilities of these advanced models.

In numerous Bayesian inverse problems, the forward map G often involves a solution

of differential equations with various types of incomplete observations. To acquire a point
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estimate, i.e., maximum a posteriori estimate, one naturally needs to seek an optimum of an

objective function with nonconvex landscapes [Cleary et al., 2021, Lan et al., 2023, Schneider

et al., 2022]. To give a concrete example, consider the following Rossler dynamical system

given by

dx

dt
= −y − z,

dy

dt
= x+ 0.2y,

dz

dt
= 0.2 + z(x− u),

with an initial condition x(0) = 1, y(0) = 0, and z(0) = 1. One can attempt to estimate the

parameter u from the observed data. Following the setup in [Cleary et al., 2021, Schneider

et al., 2022], if the available data is partial information about the solution trajectory of

the Rossler dynamical system, for instance, the first and second moments of the solution

trajectory over a time window [30, 50], the landscape of objective functions for the parameter

can be non-convex as one can see from Figure 1.1. Furthermore, there is no closed-form

expression for the objective function, due to the lack of an analytic solution of the Rossler

dynamical system. The objective function can only be numerically evaluated based on

numerical differential equation solvers, which could be expensive.

Figure 1.1: Objective function: 1
2∥y − G(u)∥2

Γ̂
, Γ̂: estimated noise covariance (more

details in [Cleary et al., 2021, Schneider et al., 2022]), Left: with no regularization,
Right: with ℓ2 regularization
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To address this challenge, one can leverage popular black-box global optimization tech-

niques, generically labeled as Bayesian optimization methods [Jones et al., 1998, Shahriari

et al., 2015, Frazier, 2018]. Loosely speaking, for some pre-specified number of iterations T ,

the Bayesian optimization methodologies based on Gaussian process [Stein, 2012, Williams

and Rasmussen, 2006] can be summarized as follows: into the following procedures [Frazier,

2018]:

• Place a Gaussian process prior to the target objective function f .

• For t = 1, . . . , T :

1. Derive Gaussian process posterior using all available query locations Xt−1 :=

{x1, . . . , xt−1}, and function evaluations Ft−1 := {f(x1), . . . , f(xt−1)}.

2. Obtain the next query location xt as the maximizer of the acquisition function αt

which depends on the Gaussian process posterior.

3. Observe yt = f(xt) or yt = f(xt) + ϵt, where ϵt is a random observation noise.

4. Set Xt = Xt−1 ∪ {xt} and Ft = Ft−1 ∪ {f(xt)}

5. Go back to Step 2 and repeat.

From the step-by-step description provided above, unlike many existing optimization algo-

rithms that rely on first-order or second-order information about the objective function,

Bayesian optimization algorithms do not necessarily require derivative information or for-

mulaic expressions of the objective function. The method only requires evaluative functions

and is thus a natural optimization tool for solving statistical inverse problems with com-

plex forward maps. Furthermore, even for a non-convex function, there have been numerous

asymptotic convergence results obtained for Bayesian optimization algorithms depending on

the choice of kernel function for the Gaussian process, the acquisition function, and the

assumptions placed on the objective functions [Bull, 2011, Srinivas et al., 2010, Chowdhury

and Gopalan, 2017, Vakili et al., 2021, Russo and Van Roy, 2014].
7



Typically, the convergence of the algorithm is established by showing a sublinear growth

rate of the quantify known as the cumulative regret bound, given by RT =
∑T

t=1 f(x
∗) −

f(xt), where x∗ is the maximizer of f and xt is the t-th query location chosen by the

Bayesian optimization algorithm. As the simple regret rt = f(x∗) − maxt=1,··· ,T f(xt) is

bounded above by RT
T = 1

T

∑T
t=1 rt, a sublinear growth rate of the Bayesian optimization

algorithm naturally translates to the convergence to the global maximum value. Most of

the aforementioned works established regret bounds through the quantity known as the

maximum information gain, which can only be defined in the setting where the function

evaluation is corrupted by some random noise. Therefore, there has been a natural gap

between theory and optimization practice. In Chapter 4 of this thesis, we introduce two

novel Bayesian optimization methodologies that nearly achieve the optimal simple regret

bound shown in [Bull, 2011].

1.4 Geometric constraints

Many real-world systems exhibit complex behavior that cannot be adequately captured by

traditional mathematical models defined on Euclidean spaces. Instead, these systems often

evolve over manifolds—geometric spaces with intrinsic curvature and structure. Mathemat-

ical models defined on manifolds offer a powerful framework for describing such systems,

enabling a more succinct representation of their underlying dynamics. Understanding these

models is essential for tackling challenges in fields such as brain imaging [Mémoli et al.,

2004], biomembranes [Elliott and Stinner, 2010], robotics [Jaquier et al., 2020, 2022], and

liquid crystals [Virga, 2018], where systems are inherently constrained by the geometry of

their environment. Incorporating such geometric constraints on the input of the mathemati-

cal models and parameter space, researchers can develop tailored mathematical models that

account for the manifold’s geometric properties, yielding deeper insights into the behavior

of complex systems.
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For partial differential equations defined on manifolds, several works have studied how

to estimate parameters of the differential equation in Bayesian fashion [Harlim et al., 2020,

Garcia Trillos and Sanz-Alonso, 2018]. To build probabilistic tools to facilitate Bayesian

inference, a central object described in Chapther 5 and 6 is the graph Laplacian, which

encodes the underlying geometric information through a point cloud of manifold data. Given

a set of points {x1, · · · , xN} lying on underlying manifold M, the (unnormalized) graph

Laplacian can be constructed through N×N similarity matrix W , which measures closeness

between elements in point cloud under suitable notion of distance. The (unnormalized)

graph Laplacian ∆N is then D − W , where D is a diagonal matrix whose elements are

simply the row sum of W [Von Luxburg, 2007]. Thanks to spectral convergence results of

the graph Laplacian to the Laplace-Beltrami operator on the manifold M [Burago et al.,

2015, Garcia Trillos et al., 2020a], the eigenvectors of the graph Laplacian provide a natural

basis to represent functions on a manifold.

Utilizing the graph Laplacian, [Harlim et al., 2020, Garcia Trillos and Sanz-Alonso, 2018]

imposed a graph Laplacian-based Gaussian process prior to the parameter of interest and

leveraged graph-based discretized forward map to facilitate Bayesian inference. The strength

of these approaches is that they do not require explicit geometric information of the manifold

such as chart, tangent space, Riemannian gradient, and retraction maps. Just through the

point cloud, they implicitly learn the underlying manifold to express mathematical objects

defined on it.

Borrowing the ideas in previous works, in Chapter 5, we introduce a novel Bayesian

optimization method for objective functions defined on an unknown manifold when the only

source of available information about it is given through the point cloud. Based on the

graph Gaussian process [Sanz-Alonso and Yang, 2022a, Borovitskiy et al., 2020, 2021], we

lift the Bayesian optimization strategy described in Chapter 4 to the unknown manifold set

up and establish a cumulative regret bound of the algorithm. The algorithm is especially
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useful when the objective function is expensive to evaluate, complementing the weakness of

the graph-based MCMC algorithms in previous works. We demonstrate its effectiveness in

estimating the parameter of a heat equation defined on the sphere and finding an optimum

of a function defined on a cow-shaped manifold.

Lastly, in Chapter 6, we extend the existing graph-based MCMC methodologies to the

boundary-existing manifold setup. As the differential equation models are accompanied by

boundary conditions of the solution, we introduce a novel graph-based Gaussian process

that reflects the impact of boundary conditions. We demonstrate its effectiveness in param-

eter estimation problems for elliptic and parabolic partial differential equations defined on

manifolds with boundaries. We supplement the point estimate with an MCMC-based pos-

terior credible interval, which serves as the full Bayesian inference framework for differential

equation models defined on manifolds with boundaries.

1.5 Outline and Main Contributions

We provide an outline of the upcoming chapters and summarize their main contributions.

• Chapter 2 is based on [Agrawal et al., 2022]. We first introduce the Laplace approxima-

tion approach to build credible intervals for IAS output. Next, utilizing results from the

mean-field variational inference, we propose a variational iterative alternating scheme

(VIAS), which serves as an iterative algorithm to find a probability distribution closest

to the target posterior distribution under Kullback-Leibler divergence. The effective-

ness of the VIAS algorithm over LASSO and Laplace approximation is demonstrated

in sparse regression problems, deconvolution tasks, and Lorenz 63 dynamical systems

learning.

• Chapter 3 is based on [Kim et al., 2023]. We provide an optimization perspective of

ensemble Kalman methods and utilize it within the hierarchical Bayesian framework
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introduced in Chapter 2. Through particles generated from ensemble Kalman methods,

one can build approximate credible intervals of the point estimate for the parameter

of interest, in a nonlinear forward map setup. We demonstrate its effectiveness in

a compressed sensing problem, a PDE parameter estimation with a known explicit

forward map, and an elliptic inverse problem with a numerical forward map.

• Chapter 4 is based on [Kim and Sanz-Alonso, 2024]. In this work, we explore Bayesian

optimization with noise-free observations, presenting novel algorithms that leverage

results from scattered data approximation. These algorithms incorporate a random

exploration step, ensuring a near-optimal reduction in the fill distance between query

points. The algorithms maintain the simplicity of existing Bayesian optimization meth-

ods and achieve cumulative regret bounds close to those proposed in [Vakili, 2022].

Moreover, the proposed methodologies demonstrate superior performance over other

Bayesian optimization techniques across various tasks, including optimization of bench-

mark non-convex functions, machine learning model hyperparameter tuning, and en-

gineering design challenges for garden sprinkler systems.

• Chapter 5 is based on [Kim et al., 2024]. We introduce a novel Bayesian optimization

algorithm for objective functions defined on an unknown manifold. Utilizing graph

Gaussian process [Sanz-Alonso and Yang, 2022a, Borovitskiy et al., 2021], we build a

surrogate of the objective function along the point cloud and seek the optimum of the

objective function over the same point cloud. We show that as the iteration number

and the size of the point cloud grow to infinity, the algorithm successfully converges to

the global optimum of the objective function defined on the underlying true manifold.

We demonstrate the effectiveness of the proposed algorithm on benchmark functions

defined on one-dimensional manifolds, an objective function defined on a cow manifold,

and parameter estimation of the heat equation defined on a sphere.
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• Chapter 6 is based on [Harlim et al., 2022]. We provide a graph-based Bayesian ap-

proach to proceed with statistical inversion for parameters of the partial differential

equation models defined on manifolds with boundaries. Unlike the existing method-

ology [Harlim et al., 2020], where authors assumed the underlying closed manifold is

boundary-free, we relax such assumption and augment the graph based Mateŕn type

Gaussian field [Sanz-Alonso and Yang, 2022a, Harlim et al., 2020] with boundary com-

ponents to reflect partial differential equations’ boundary conditions. With the help

of the Ghost point diffusion map algorithm [Jiang and Harlim, 2023], we demonstrate

the effectiveness of the proposed methodology for estimating parameters of elliptic and

parabolic partial differential equations defined on a manifold with boundaries.
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CHAPTER 2

A VARIATIONAL INFERENCE APPROACH TO INVERSE

PROBLEMS WITH GAMMA HYPERPRIORS

2.1 Introduction

This chapter introduces a variational inference approach that enables uncertainty quantifi-

cation for hierarchical Bayesian inverse problems with gamma hyperpriors. The hierarchical

model that we consider, along with an iterative alternating scheme (IAS) to compute the

maximum a posteriori (MAP) estimate, were introduced and analyzed in [Calvetti et al.,

2020b, 2019b, 2020a, 2019a, 2015]. These papers provide strong evidence of the flexibility of

the hierarchical model and show that the IAS algorithm is easy to implement and globally

convergent. However, despite the Bayesian motivation for the hierarchical model, previous

work has only considered MAP estimation and the potential to perform uncertainty quan-

tification has not yet been realized. Using the general framework of variational inference, we

introduce a variational iterative alternating scheme (VIAS) that shares the flexibility and

ease of implementation of IAS, while enabling uncertainty quantification and model selection.

The hierarchical Bayesian model that we consider gives a posterior density p(u, θ | y) for

the unknown quantity of interest u ∈ Rd and parameters θ ∈ Rd given observed data y ∈ Rn.

The goal of IAS is to find the MAP estimator, that is, the pair (u∗, θ∗) that maximizes the

posterior density. This leads to an optimization problem, which IAS solves by producing

iterates (uk, θk), k ≥ 1, satisfying

uk+1 = argmax
u

p(u, θk | y),

θk+1 = argmax
θ

p(uk+1, θ | y).
(2.1)

In contrast, the goal of our proposed VIAS method is to find the density q∗(u, θ) that is
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closest to the posterior p(u, θ | y) in Kullback-Leibler divergence, within the mean-field family

of distributions of the form q(u, θ) = q(u) q(θ). This leads to an optimization problem over

densities, which VIAS solves by producing iterates qk(u, θ) = qk(u) qk(θ), k ≥ 1, satisfying

qk+1(θ) = argmin
q(θ)

dKL

(
qk(u) q(θ) ∥ p(u, θ | y)

)
,

qk+1(u) = argmin
q(u)

dKL

(
q(u) qk+1(θ) ∥ p(u, θ | y)

)
,

(2.2)

where dKL denotes the Kullback-Leibler divergence. Approximate Bayesian inference can then

be performed using the variational distribution q∗(u, θ), which will be shown to be tractable,

rather than the posterior p(u, θ | y). Due to the tractability of q∗(u, θ), point estimates and

credible intervals can be efficiently computed with the variational distribution, while doing

so with the true posterior would be computationally challenging.

Central to the implementation of IAS is the fact that the maximizers uk+1 and θk+1 in

(2.1) can be obtained in closed form, by exploiting the structure of the hierarchical model

with gamma hyperpriors. A similar property is satisfied by VIAS. Indeed, our choice of

mean-field admissible densities ensures that the minimizers qk+1(u) and qk+1(θ) in (2.2)

are, respectively, Gaussian and generalized inverse Gaussian densities. We will derive closed

formulas for the iterative updating of the parameters of these distributions.

Despite their shared structure, there are some fundamental differences between IAS and

VIAS. While IAS only gives a point estimate i.e the MAP, VIAS gives a variational distribu-

tion that approximates the posterior. This variational distribution can be used to understand

the covariance structure and find credible intervals for the estimates. However, it is worth

emphasizing that VIAS only provides an approximation to the posterior, and therefore point

estimates or credible intervals constructed with VIAS will only give approximate posterior

inference. In contrast, IAS converges to the true MAP estimate. The primary advantage of

VIAS is its potential to provide meaningful uncertainty quantification. We will also show
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that the variational perspective lends itself naturally to model selection for the choice of

hyperparameters. An advantage of IAS is that it converges globally to the MAP estimate

due to the convexity of the log-posterior density, while VIAS is, in general, only guaranteed

to converge to a local maximizer of the optimization problem (2.2). We will demonstrate the

potential emergence of spurious local maxima in the VIAS objective function for extreme

data realizations and hyperparameter values, and describe how convergence to the global

maximizer can be achieved in practice by suitable initialization of the variational algorithm.

2.1.1 Related Work

This chapter, among others, introduces variational inference techniques [Bishop, 2006, Jor-

dan et al., 1999, Wainwright and Jordan, 2008, Blei et al., 2017] to Bayesian inverse problems

[Tarantola, 2015, Kaipo and Somersalo, 2006, Calvetti and Somersalo, 2007, Stuart, 2010,

Sanz-Alonso et al., 2023], where computational approaches are often based on MAP estima-

tion [Kaipo and Somersalo, 2006], Monte Carlo and measure transport sampling [Liu, 2008,

Agapiou et al., 2017, Marzouk et al., 2016], or iterative Kalman methods [Chada et al., 2021].

Some recent works that have investigated the use of variational inference for inverse problems

include [Maestrini et al., 2021, Tonolini et al., 2020]. Variational inference has a comparable

computational cost to MAP estimation, but has two main advantages: (i) it can provide

uncertainty quantification, and (ii) it lends itself naturally to conduct model selection. In

addition, the variational distribution can be used as a proposal mechanism for Monte Carlo

sampling algorithms. A simple but popular alternate way to probe the posterior is to find

its Laplace approximation, namely the Gaussian centered at the MAP whose covariance is

given by the inverse Hessian of the negative log-posterior density. The Kullback-Leibler

accuracy of Laplace approximations was investigated in [Dehaene, 2017] and the Hellinger

accuracy in inverse problems with small noise was established in [Schillings et al., 2020].

However, Laplace approximations can be ineffective in large-noise or small-data regimes,
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where the posterior may not be well approximated by a Gaussian measure. In addition,

computing the inverse Hessian can be prohibitively expensive in high dimensional nonlin-

ear inverse problems. Monte Carlo methods can provide accurate posterior inference while

variational inference is based on an approximation to the posterior; however, Monte Carlo

methods often require a large number of samples and hence a large number of forward model

evaluations, which can be costly. In addition, tuning Monte Carlo methods and assessing

their convergence can be challenging. For hierarchical Bayesian models, the Gibbs sampler

alleviates the need of tuning [Damlen et al., 1999], but the chain may still converge slowly

for highly anisotropic target densities [Agapiou et al., 2014, Roberts and Sahu, 1997].

As mentioned above, we will consider a hierarchical Bayesian model with gamma hyper-

priors introduced and analyzed in [Calvetti et al., 2020b, 2019b, 2020a, 2019a, 2015]. The

paper [Calvetti et al., 2020b] investigates generalized gamma hyperpriors and [Calvetti et al.,

2020a] discusses hybrid solvers for MAP estimation that can improve on IAS. The hierarchi-

cal model and IAS algorithm have been shown to be successful in realistic inverse problems

including brain activity mapping from MEG [Calvetti et al., 2015, 2019a]. These papers

also emphasize the flexibility of the model and its ability to provide useful regularization

for sparse signals [Calvetti et al., 2019b, 2020b,a]. As described in [Calvetti et al., 2019b],

the IAS algorithm is inspired by classical iterative reweighted least squares [Green, 1984]

and related work [Gorodnitsky and Rao, 1997, Daubechies et al., 2010] on signal processing

with emphasis on sparsity. Sparsity-promoting algorithms and models are key in statistics

applications [Tibshirani, 1996, Carvalho et al., 2009]. Our hierarchical approach is closely

related to empirical Bayes statistical methods [Robbins, 1992] and to bilevel and data-driven

methods for inverse problems [Bard, 2013, Arridge et al., 2019].

In a similar spirit as IAS, there is a vast literature on sparsity-promoting priors. These

priors typically yield log-posterior densities containing Lp-regularization terms with p ∈ (0, 1]

[Park and Casella, 2008, Polson et al., 2014]. A variational approximation to the posterior
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under such sparsity-promoting priors is given in [Armagan, 2009]. Alternatively, [Carvalho

et al., 2010] proposed a standard half-Cauchy prior on positive reals for standard deviations

of u, which were assumed to follow a conditional Gaussian prior centered at zero. A recent

work that utilizes a variational inference technique under the same conditional Gaussian

prior but with scale-mixtures of generalized inverse Gaussians can be found in [Law and

Zankin, 2022]. Also popular are spike and slab priors, defined by a mixture distribution with

a Dirac mass at zero and a continuous distribution, see e.g. [Ročková and George, 2018].

2.1.2 Outline and Main Contributions

• Section 2.2 formalizes the problem of interest and reviews the hierarchical model with

gamma hyperpriors.

• Section 2.3 describes the IAS algorithm. Building on previous work on IAS [Calvetti

et al., 2019b], we derive and show the convergence of an iterative Laplace approximation

to the posterior, used in Section 2.5 for numerical comparisons with our proposed VIAS.

• Section 2.4 introduces the novel VIAS and discusses its convergence. We will give all

necessary background on variational inference.

• Section 2.5 demonstrates the accuracy of VIAS and its ability to provide meaningful

uncertainty quantification in four computed examples. These examples include a de-

convolution problem from [Calvetti et al., 2020b] and a new application of IAS and

VIAS for data-driven sparse identification of dynamical systems [Brunton et al., 2016]

from time series data. We also introduce and show the effectiveness of a model selec-

tion approach for the choice of hyperparameters. The Python code to reproduce our

numerical results can be found at https://github.com/Hwanwoo-Kim/VIAS.

• We close in Section 2.6 with some research directions that stem from this work.
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Notation For matrix P, we write P ≻ 0 if P is positive definite. For P ≻ 0, we denote

by ∥ · ∥2P := |P−1/2 · |2 the squared Mahalanobis norm induced by the matrix P, where | · |

denotes the Euclidean norm.

2.2 Hierarchical Bayesian Model

In this section, we formalize the inverse problem of interest and the hierarchical model with

gamma hyperpriors. We consider the following linear discrete inverse problem of recovering

an unknown u from data y related by

y = Au+ η, (2.3)

where A ∈ Rn×d is a given, possibly ill-conditioned, matrix and typically d ≥ n. We assume

that the noise term η is Gaussian distributed η ∼ (0,Γ) with given Γ ≻ 0. Following [Calvetti

et al., 2020b, 2019b, 2020a, 2019a, 2015], we adopt the following hierarchical Bayesian model,

where the prior on u is conditionally Gaussian given a prior variance vector θ ∈ Rd:

y |u ∼ (Au,Γ),

u | θ ∼ (0, Dθ), Dθ = diag(θ),

θi ∼ Gamma(αi, β), 1 ≤ i ≤ d.

(2.4)

Here αi and β denote the shape and rate parameters, respectively. Our aim is to estimate z :=

(u, θ) given the observed data y. In the Bayesian approach to inverse problems [Kaipo and

Somersalo, 2006, Stuart, 2010, Sanz-Alonso et al., 2023], inference is based on the posterior

distribution which, for the hierarchical model (2.4), takes the form

p(u , θ | y) = p(y |u, θ)p(u | θ)p(θ)
p(y)

∝ exp
(
−J(u, θ)

)
, (2.5)
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where

J(u, θ) :=

(a)︷ ︸︸ ︷
1

2
∥y − Au∥2Γ +

1

2
∥u∥2Dθ

+
∑d

i=1

[
θi
αi

−
(
β − 3

2

)
log θi

αi

]
.

︸ ︷︷ ︸
(b)

(2.6)

Here (a) and (b) identify the two objectives that will be minimized iteratively by IAS. The

αi’s act as scale parameters that control the expected size of θi, and, as a result, u2i [Calvetti

et al., 2020b]. They can be chosen automatically using the signal to noise ratio and expected

cardinality of the support [Calvetti et al., 2019b]. Previous work [Calvetti et al., 2020b]

has analyzed a whitening of the problem, setting all αi = 1, which simply amounts to a

change of coordinates. In contrast, in our variational algorithm we will not perform such

whitening, and the αi’s will determine the degree of shrinkage towards zero off the support

of the unknown. For simplicity, we assume αi = α for all i = 1, . . . , d, indicating a uniform

shrinkage effect towards zero. The hyperparameter β controls how sharply J(u, θ) penalizes

non-sparse inputs for small but non-zero values off the support. In the limit as β converges

to 3/2, the MAP estimator given by the minimizer of J(u, θ) converges to the solution to an

L1 penalized problem [Calvetti et al., 2019b]. We refer to [Calvetti et al., 2015] for further

background and motivation on the use of hierarchical gamma hyperpriors in Bayesian inverse

problems which, contrary to common practice in statistics, do not lead to a conjugate model.

2.3 MAP Estimation and Laplace Approximation

This section is organized as follows. Subsection 2.3.1 overviews the IAS algorithm for MAP

estimation and introduces an iterative Laplace approximation method. Subsection 2.3.2

reviews a convergence result for the IAS algorithm, from which we deduce convergence of

the iterative Laplace approximation method.

19



2.3.1 The Iterative Alternating Scheme and Laplace Approximation

The MAP estimate of z = (u, θ) is, by definition, the maximizer of the posterior p(z | y) or,

equivalently, the minimizer of J(z). The papers [Calvetti et al., 2020b, 2019b, 2020a, 2019a,

2015] proposed, analyzed, and implemented an Iterative Alternating Scheme (IAS) for MAP

estimation in a variety of inverse problems. The IAS consists of two separate minimization

steps:

1. Initialize θ0, k = 0.

2. Iterate until convergence:

(i) Update uk+1 = argminu J(u, θ
k).

(ii) Update θk+1 = argminθ J(u
k+1, θ).

(iii) k → k + 1.

Let zk := (uk, θk). Clearly J(zk) is monotonically decreasing in k.Under suitable assumptions

on the hyperparameters, to be made precise in Proposition 2.3.2 below, J is convex and IAS

converges to the global minimizer of J. In other words, zk convereges to the MAP estimator.

In addition to this convergence guarantee, the IAS algorithm is simple to implement because

of the structure of the energy functional J. Indeed, in step (i) only the u-dependent part (a)

in (2.6) needs to be considered, and in step (ii) only the θ-dependent part (b) is needed. This

results in straightforward implementation of both steps, as we describe next.
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Updating u

The update of the u component boils down to solving a standard linear least-squares problem,

which admits a closed form solution

argmin
u

J(u, θ) = argmin
u

1

2
∥y − Au∥2Γ +

1

2
∥u∥2Dθ

(2.7)

= (A⊤Γ−1A+D−1
θ )−1A⊤Γ−1y.

In practice, when the dimension d of the unknown is much larger than the dimension n of

the data, this linear least-squares problem can be effectively solved using conjugate gradient

together with an early stopping based on Morozov’s discrepancy principle. This approach

has been applied in [Calvetti et al., 2020b, 2019b, 2020a, 2019a, 2015], and further analyzed

in [Calvetti et al., 2018]. In such underdetermined problems, inverting in d-dimensional

space can also be avoided using the Sherman-Morrison-Woodbury lemma, which gives the

following equivalent Kalman-type update

argmin
u

J(u, θ) = Gy, G := DθA
⊤(ADθA

⊤ + Γ)−1, (2.8)

where the matrix G is called the Kalman gain.

Note that (2.7) can be rewritten as

argmin
u

J(u, θ) = argmin
u

1

2
∥y − Au∥2Γ +

1

2

d∑
i=1

u2i
θi
,

which shows that Dθ controls the sparsity of the solution u, with smaller θi leading to

more shrinkage of ui towards zero. Therefore, in the hierarchical Bayesian model setup, the

variance parameter θ not only determines the variation of the parameter u but also the level

of sparsity of u.
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Algorithm 2.3.1 Iterative Alternating Scheme (IAS)
1: Input: Data y, matrix A. Prior hyperparameters: α, β.
2: Initialize θ0, k = 0.
3: For k = 0, 1, . . . until convergence do:

(i) Set Dθ = diag(θk) and update

uk+1 = (A⊤Γ−1A+D−1
θ )−1A⊤Γ−1y.

(ii) Update

θk+1
i = α

(
β̃

2
+

√
β̃2

4
+

(uk+1
i )2

2α

)
, β̃ = β − 3/2.

4: end for
5: Output: Approximation to the MAP estimator (uk+1, θk+1) ≈

argmax p(z | y).

Updating θ

As shown in [Calvetti et al., 2019b], the update of the θ-component part (b) in (2.6) can be

obtained by direct computation of a critical point of J(z) as follows

argmin
θ

J(u, θ) = α

(
β̃

2
+

√
β̃2

4
+
u2i
2α

)
, β̃ = β − 3/2.

A pseudo-code for the IAS algorithm is given in Algorithm 2.3.1.

Remark 2.3.1. A variety of stopping rules have been considered. For instance, the relative

change in u (or u and θ) being below some threshold. As an alternative, the decrease in the

two terms (a) and (b) in (2.6) can be monitored to direct stopping. We note again that the

u update in step (i) can be implemented using conjugate gradient together with a stopping

criteria given by Morozov’s discrepancy principle.
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IAS Laplace Approximation

Here we show that the IAS iterates can be used to obtain a Laplace approximation to the

posterior. Recall that the Laplace approximation qLP(z) = (zLP, CLP) to the posterior p(z | y)

is the Gaussian distribution whose mean zLP is the MAP estimator and whose precision C−1
LP

is the Hessian of the objective J(z) evaluated at zLP, that is,

zLP = argmin
z

J(z), C−1
LP = ∇∇J(zLP). (2.9)

Thus, the sequence zk = (uk, θk) can be used to approximate qLP(z) by the Gaussian qkLP(z) =

(zkLP, C
k
LP), where

zkLP = (uk, θk), Ck
LP =

(
∇∇J(zkLP)

)−1
. (2.10)

Partitioning the Hessian H(z) = ∇∇J(z) into four blocks of size d× d gives

H(z) =

Huu(z) Huθ(z)

Hθu(z) Hθθ(z)

 ,
with

Huu(z) = A⊤Γ−1A+ diag(1/θ),

Huθ(z) = −diag(u/θ2),

Hθθ(z) = diag(u2/θ3 + β̃/θ2),

where multiplication and division operations are defined in element-wise. This explicit char-

acterization of the Hessian, together with Algorithm 2.3.1 and (2.10) yield an iterative

Laplace approximation method.
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2.3.2 Convergence of IAS and Laplace Approximation

The following result was proved in [Calvetti et al., 2015].

Proposition 2.3.2. For β > 3/2 and αi = α > 0 for all 1 ≤ i ≤ d, the energy functional

(2.6) defined over Rd×Rd
+ is strictly convex, thus has a unique global minimizer z∗ = (u∗, θ∗).

The IAS algorithm produces a sequence zk = (uk, θk) that converges to the global minimizer.

The convergence analysis of IAS was further developed in [Calvetti et al., 2019b], where

rates of convergence were established. As a consequence of Proposition 2.3.2 we have the

following corollary:

Corollary 2.3.3. For β > 3/2 the IAS Laplace approximation qkLP(z) = (zkLP, C
k
LP) given by

(2.10) converges weakly to the Laplace approximation qLP(z) = (zLP, CLP) given by (2.9).

Proof. Weak convergence of Gaussians is equivalent to convergence of their means and co-

variances [Bogachev, 1998]. The result follows from Proposition 2.3.2 and continuity of the

Hessian.

2.4 Variational Inference

In this section, we introduce our variational approach for posterior approximation. We

provide the necessary background on variational inference in Subsection 2.4.1. The main

algorithm is described in Subsection 2.4.2, and convergence guarantees are discussed in

Subsection 2.4.3. Our presentation is parallel to that of the previous section.

2.4.1 Background and Mean-field Assumption

Variational inference is a popular technique [Bishop, 2006, Jordan et al., 1999, Wainwright

and Jordan, 2008, Blei et al., 2017, Garcia Trillos and Sanz-Alonso, 2020] for approximat-

ing the posterior distribution p(z | y) of some unknown parameter z given data y. We will
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be concerned with approximating the posterior p(z | y) given by (2.5) with z = (u, θ). The

goal of variational inference is to find an approximating distribution q∗(z) which is close to

the posterior, but tractable. Then, approximate Bayesian inference can be performed using

q∗(z) rather than p(z | y). The approximating distribution q∗(z) is defined as the (numer-

ical) solution to an optimization problem. Precisely, one specifies a family D of tractable

distributions and sets

q∗(z) := argmin
q∈D

dKL

(
q(z)∥p(z | y)

)
. (2.11)

The above minimization can be reformulated as maximizing the evidence lower-bound (ELBO)

given by:

elbo(q) := Eq [log p(z, y)]− Eq [log q(z)] (2.12)

= log p(y)− dKL

(
q(z)∥p(z | y)

)
(2.13)

= Eq [log p(y | z)]− dKL

(
q(z)∥p(z)

)
. (2.14)

Note from Equation (2.12) that elbo(q) can be evaluated without computing the evidence

p(y), which is often intractable. Since the Kullback-Leibler divergence is non-negative, Equa-

tion (2.13) shows that elbo(q) indeed provides a lower-bound on the log-evidence. This

property can be used for model selection, since larger ELBO indicates a higher probability

of the data being generated by a particular model. Finally, Equation (2.14) shows that

the optimal q∗(z) finds a compromise between maximizing the expected log-likelihood and

minimizing the Kullback-Leibler divergence to the prior p(z).

For reasons discussed below, we will choose the variational family to be

D :=
{
q(z) : q(u, θ) = q(u)q(θ), q(θ) =

d∏
i=1

q(θi)
}
. (2.15)

This mean-field family is a popular choice in variational inference because it enables effi-
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cient numerical optimization of the ELBO using the coordinate ascent variational inference

(CAVI) algorithm [Bishop, 2006]. Note, however, that under the mean-field approximation

the variational distribution is unable to capture the dependence structure between u and

θ. This is not an assumption on the data model, but rather is implied by the choice of the

variational family D. More flexible variational families and methods may be considered,

including structured variational inference [Saul and Jordan, 1995, Barber and Wiegerinck,

1998]. However, the resulting optimization problems do not admit the closed form updates

of our proposed approach, and the loss in computational efficiency may not be justified in

view of the successful reconstructions achieved in Section 2.5. Another potential weakness

of variational inference is that it may underestimate the marginal posterior variance. In

fact, our results in Section 2.5 indicate a slight underestimation, which may be potentially

alleviated using the ideas in [Giordano et al., 2015]. In the next subsection, we derive a

CAVI algorithm for the hierarchical Bayesian model (2.4). We shall see that this variational

algorithm shares the ease of implementation of the IAS algorithm.

2.4.2 The Variational Iterative Alternating Scheme (VIAS)

The variational distribution q∗(z) is, by definition, the closest distribution in D to the pos-

terior p(z | y), where closeness is quantified using the Kullback-Leibler divergence. Equiva-

lently, q∗(z) is the distribution that maximizes the ELBO in D. Here we propose and analyze

a variational iterative alternating scheme (VIAS) to maximize the ELBO, consisting of the

following two separate maximization steps:

1. Initialize q0(u), k = 0.

2. Iterate until convergence:

(i) Update qk+1(θ) = argmaxq(θ) elbo
(
qk(u)q(θ)

)
.

(ii) Update qk+1(u) = argmaxq(u) elbo
(
q(u)qk+1(θ)

)
.
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(iii) k → k + 1.

Note that the structure of VIAS is identical to that of IAS, replacing the energy J(z) over

unknown u and parameters θ with the energy elbo(q(z)) over their joint distribution. Let

qk(z) := qk(u)qk(θ). By construction, elbo(qk(z)) is monotonically increasing with k. In

other words, the Kullback-Leibler divergence between qk(z) and the posterior decreases

monotonically.

VIAS also shares with IAS its ease of implementation. The following well-known result

[Bishop, 2006] gives a characterization for the maximizing distributions in steps (i) and (ii).

Proposition 2.4.1 (Optimization of ELBO in Mean-field Variational Inference). It holds

that

argmax
q(u)

elbo
(
q(u)q(θ)

)
∝ exp

(
Eq(θ) [log p(y, z)]

)
, (2.16)

argmax
q(θ)

elbo
(
q(u)q(θ)

)
∝ exp

(
Eq(u) [log p(y, z)]

)
. (2.17)

We next describe how these characterizations, which are a consequence of the mean-field

assumption, imply that the maximizing distributions q(u) and q(θ) in steps (i) and (ii) belong

to certain parametric families. Precisely, we shall see in Subsection 2.4.2 that (2.16) implies

that q(u) = N (m,C) and in Subsection 2.4.2 that (2.17) implies that q(θi) = GIG(b, ri, s),

where GIG denotes the generalized inverse Gaussian distribution. These considerations will

reduce the implementation of steps (i) and (ii) to an explicit recursion in the variational

parameters.

Before delving into the derivations, we recall for convenience, and later reference, that a

random variable θi ∼ GIG(b, ri, s) has probability density function

q(θi | b, ri, s) =
(b/ri)

s/2

2Ks(
√
ribi)

θs−1
i e−(bθi+ri/θi)/2, (2.18)
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where Ks denotes the modified Bessel function of the second kind. Moreover, the following

identities hold

Eq(θ) [θi] =
Ks+1(

√
rib)

Ks(
√
rib)

·
√
ri/b ,

Vq(θ)[θi] =
Ks+2(

√
rib)

Ks(
√
rib)

· (ri/b)− (Eq(θ) [θi])
2,

Eq(θ) [1/θi] =
Ks−1(

√
rib)

Ks(
√
rib)

·
√
b/ri ,

(2.19)

where V denotes the variance. The first and second identities can be used to compute credible

intervals with the variational distribution, while the third identity will be used to derive the

update for q(θ). For further properties of the generalized inverse Gaussian distribution, we

refer to [Lemonte and Cordeiro, 2011].

Updating q(u)

To derive the update for q(u), we use (2.16). Note that

log q(u) ∝ Eq(θ) [log p(y, u, θ)]

∝ Eq(θ) [log p(y |u) + log p(u | θ) + log p(θ)]

∝ Eq(θ)

[
−1

2
∥Au− y∥2Γ − 1

2

∑
i

u2i
θi

]

∝ −1

2
∥Au− y∥2Γ − 1

2
u⊤Lu,

where L = diag
(
Eq(θ) [1/θ]

)
. This implies that q(u) is Gaussian with meanm and covariance

C given by

m = (A⊤Γ−1A+ L)−1A⊤Γ−1y,

C = (A⊤Γ−1A+ L)−1.
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The expectations Eq(θ) [1/θi] in the diagonal of L can be obtained analytically using the fact

(derived in the next subsection) that q(θi) = GIG(b, ri, s), together with the third identity

in (2.19). Similar to IAS, the sparsity of the VIAS estimate of the parameter u is controlled

by the regularization coefficient matrix L. The larger the diagonal component of L is, the

smaller the corresponding component of m will be.

Updating q(θ)

To update q(θ) =
∏d

i=1 q(θi), we use independence and (2.17) to obtain updates for each

q(θi). Note that

log q(θi) ∝ Eq(u) [log p(y |u) + log p(u | θ) + log p(θ)]

∝ log p(θi) + Eq(u)

[
− log

√
θi −

u2i
2θi

]

∝
(
α− 3

2

)
log θi − βθi −

1

2θi

(
m2

i + Cii

)
,

where ∝ denotes equality up to an additive constant which does not depend on θi. In the

last displayed line, we used that Eq(u)

[
u2i
]
= m2

i + Cii for q(u) = (m,C). Recalling (2.18),

this implies that q(θi) = GIG(b, ri, s) where b = 2β, s = α− 0.5 and ri = m2
i + Cii.

Together, the update rule for q(u) given q(θ), and q(θ) given q(u), specify the VIAS. A

pseudo-code for VIAS is given in Algorithm 2.4.1.

Remark 2.4.2. Using the Woodbury matrix identity, the Kalman-type expression in (2.8)

can also be used to obtain VIAS updates for m and C without computing high dimensional

matrix inversions

mk+1 = Gy, G := L−1A⊤(AL−1A⊤ + Γ)−1,

Ck+1 = (I −GA)L−1.
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Algorithm 2.4.1 Variational Iterative Alternating Scheme (VIAS)
1: Input: Data y, matrix A. Prior hyperparameters: α, β.
2: Initialize: m0, C0, k = 0. Set b = 2β, s = α− 0.5.
3: For k = 0, 1, . . . until convergence do:

(i) Update rk+1
i = (mk

i )
2 + Ck

ii for each i = 1, . . . , d.

(ii) Set

L = diag(ℓ), ℓi =

Ks−1

(√
rk+1
i b

)
Ks

(√
rk+1
i b

) ·
√

b

rk+1
i

, (2.20)

and update

mk+1 = (A⊤Γ−1A+ L)−1A⊤Γ−1y,

Ck+1 = (A⊤Γ−1A+ L)−1.

4: end for
5: Output: Variational approximation p(z | y) ≈ qk+1(z) = qk+1(u)qk+1(θ),

where
qk+1(u) = (mk+1, Ck+1), qk+1(θi) = GIG(b, rk+1

i , s).
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The update for m could also be implemented using conjugate gradient for least squares and

an early stopping condition.

Remark 2.4.3. The ELBO can be computed at each iteration, and the relative change in

the ELBO can be used as a stopping criteria, since this algorithm maximizes the ELBO. The

relative change in the variational parameters along VIAS iterates could also be monitored

to determine stopping.

Variational Parameters and VIAS

On deriving the CAVI updates, we obtain that q(u) = (m,C) and q(θi) = GIG(b, ri, s), for

i = 1, . . . , d. The parameters m,C, b, {ri}di=1, and s are known as the variational parameters.

The parameters m and C are of the greatest interest to us, since they will determine the

prediction of the unknown quantity of interest u. While m gives the approximate posterior

mean, C will allow us to obtain credible intervals on the prediction, and to understand the

correlation between different components of u.

In the distribution of θ, the values of the parameters b and s are directly related to the

hyperparameters describing the prior gamma distribution: b = 2β, s = α − 0.5. Thus, the

choice of hyperparameters directly affects the variational posterior. Note that each diagonal

component of the matrix L in (2.20) will be large if b or β are large. On the other hand,

each diagonal element is a decreasing function in s ∈ (−0.5, 0.5) and therefore in α ∈ (0, 1).

As a consequence, if one expects sparse structure in the true parameter u, choosing a small

α value with a moderately large β value would lead to adequate shrinkage. Each diagonal

component of the matrix L diverges to infinity as β increases. So, to avoid shrinking each

component of the parameter estimate too close to zero, one should not use extremely large

β value. The mean of the prior α/β should be chosen to be close to the expected size of

the unknown θ, if prior information on this size is available. In addition to these heuris-

tics, we will illustrate in Section 2.5 how the hyperparameters can be learned by a simple
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model selection procedure. Our numerical experiments show that the reconstructions are

not sensitive to perturbation of the model hyperparameters, but that obtaining appropriate

ballpark values for the hyperparameters through model selection can substantially improve

the reconstruction.

All the information about the variational distribution is stored in the five parameters;

two of them are fixed, and the other three are interdependent. The CAVI algorithm updates

these three parameters iteratively as follows:

• Keeping m and C constant, update each ri with the formula:

ri = m2
i + Cii.

• Keeping r constant, update m and C:

C = (A⊤Γ−1A+ L)−1 with Lii = E
[ 1
θi

]
,

m = (A⊤Γ−1A+ L)−1A⊤Γ−1y.

2.4.3 Convergence and Initialization of VIAS

The elbo in (2.16) and (2.17) can now be written as a function of the variational parameters

rather than the variational distribution, i.e., elbo
(
q(u)q(θ)

)
= elbo(m,C, r). Then, the

CAVI updates can be rewritten

argmax
q(θ)

elbo
(
q(u)q(θ)

)
= argmax

r
elbo

(
m,C, r

)
,

argmax
q(u)

elbo
(
q(u)q(θ)

)
= argmax

m,C
elbo

(
m,C, r

)
.

As the parameters updated through VIAS are m,C and r, we will ignore terms in the ELBO

that do not depend on them. We will still denote the remaining expression as elbo(m,C, r).
32



A straightforward calculation shows that

elbo(m,C, r) = −1

2

(
tr(Γ−

1
2AC(Γ−

1
2A)⊤) + ∥Am− y∥2Γ − log detC

)
+

d∑
i=1

(
log 2Ks

(√
rib
)
− s

2
log

b

ri

)
.

The following result, which follows from Theorem 2.2 of [Bezdek et al., 1987], shows local

convergence of VIAS.

Proposition 2.4.4. Suppose that elbo(m,C, r) has a local maximum at (m∗, C∗, r∗) and

that the Hessian of elbo(m,C, r) is negative definite at (m∗, C∗, r∗). Then there is a neigh-

borhood U of (m∗, C∗, r∗) such that, for any initialization (m0, C0, r0) ∈ U , VIAS converges

to (m∗, C∗, r∗).

Unfortunately, the convergence to the global maximum of elbo(m,C, r) is not guar-

anteed. This is because the function elbo(m,C, r) can have multiple local maxima. We

illustrate this phenomenon in the univariate case u ∈ R, where y = Au + η, η ∼ (0, In).

Denoting C = c ∈ (0,∞) and setting b = 1, we then have

elbo(m, c, r) = −A
⊤A
2

(m2 + c) +m⊤A⊤y +
1

2
log c+

s

2
log r + log

(
2Ks(

√
r)
)
. (2.21)

VIAS maximizes (2.21) along the manifold M given by

M = {(m, c, r)| m = cA⊤y, r = (A⊤y)2c2 + c}.

Denoting yA := A⊤y, the expression (2.21) on this manifold becomes

−A
⊤A
2

(c+ y2Ac
2) + y2Ac+

1

2
log c+

s

2
log
(
y2Ac

2 + c
)
+ log

(
2Ks

(√
y2Ac

2 + c

))
. (2.22)
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Figure 2.1: Top row: plots of (2.22) near zero. Bottom row: plots of (2.22) for [0,1].

To gain a better understanding of the elbo(m, c, r) on the manifold M, we provide plots

of (2.22) with n = 50 for the following three cases: 1) A⊤A = 1, yA = 3, s = −0.49; 2)

A⊤A = 2, yA = 4, s = −0.499; and 3) A⊤A = 5, yA = 10, s = −0.499. Figure 2.1 shows that

there are multiple local maxima, which suggests that the initialization of VIAS can have

an effect on the final point of convergence. The plots in Figure 2.1 indicate that, in each

case, the global maximizer is the local maximizer farthest away from zero. For this reason,

we recommend initializing VIAS with a covariance C0 ≻ λId, with λ > 0 far away from

zero. In addition, we expect |yA| to be large when the noise level is high. In such a case the

global maximum of (2.22) will be far from the origin, as seen in Figure 2.2, which further

justifies the suggested initialization. From the perspective of quantifying uncertainties in u,

initializing at a large covariance ensures convergence of the VIAS iterates Ck to a matrix C

that gives conservative credible intervals for the reconstruction.

In Section 2.5, we introduce hyperparameter tuning based on the ELBO values. Typ-

ically, the calibrated s values were near -0.5. Accordingly, we have characterized a region
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Figure 2.2: Plots of (2.22) for yA = 2, 3, 4 with A⊤A = 1, s = −0.49.

of (|yA|, A⊤A) values where the ELBO has more than one local maximum for s = −0.499.

We used a grid-search to find a local maximum with a mesh step size of 10−7 ranging from

zero to one. Multiple local maxima occurred in the beige-colored region in Figure 2.3. In

the case where multiple local maxima exist, we observed that the global maximum is the

farthest away from zero. For smaller s values, i.e., closer to -0.5, which would promote sparse

structure in the VIAS estimate, we observed a similar pattern to the one in the left plot of

Figure 2.3.

To assess if data realizations that give multiple local maxima are likely to occur, we ran

an empirical study to estimate P(|yA| ≥ k) for k ∈ {0, . . . , 10}. To do so, we first sampled θ

from the gamma distribution with shape parameter 0.001 and rate parameter 1. In addition,

each component of the vector A satisfying the prespecified A⊤A value was obtained from

a uniform distribution. Next we generated a scalar u from the Gaussian distribution with

mean zero and variance θ. Then we randomly sampled y = Au+ η, where η ∼ N(0, In) for

104 times and obtained the proportion of times when the event {|yA| ≥ k} occurs. From

Figure 2.3, we can observe that such an event can occur with a zero probability.

In all our experiments, the global maximum of the ELBO was the local maximum farthest

away from zero. Based on such experiments and on the computed examples in the next

section, we believe VIAS is very likely to converge to the global maximum of the ELBO in

most practical applications, as long as it is initialized as suggested above.
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Figure 2.3: Common parameter: s = −0.499. Left: heat map of the number of local
maxima of the ELBO (black: one maximum, beige: more than one maxima). Right:
heat map of the approximated P(|yA| ≥ k). Together, the two plots show that it is
unlikely to observe data that gives an ELBO with more than two local maxima.

2.5 Computed Examples

In this section, we report the performance of VIAS in four computed examples, assessing its

accuracy and its ability to provide meaningful uncertainty quantification. We also explore

how to exploit the variational inference framework to guide the choice of model hyperpa-

rameters.

2.5.1 Truth and Data from Hierarchical Model

We first apply VIAS to data generated from the hierarchical model (2.4). This serves to

illustrate the role of the hyperparameters in the hierarchical model, and also the application

of our proposed variational inference technique. We compare the accuracy of point estimates

constructed with VIAS and IAS, as well as the uncertainty quantification given by VIAS

and the iterative Laplace approximation in Section 2.3. Finally, we show how the ELBO can

be used to select the model hyperparameters, and we demonstrate that the accuracy of the

reconstruction obtained with this model selection approach is comparable to the accuracy

achieved using the true hyperparameters.

36



Figure 2.4: First row: synthetic truth and data (Subsection 2.5.1). Second row:
computed results with VIAS and IAS. The VIAS 95% credible intervals are shorter
while providing suitable coverage.

Setting

We sample θi values from a gamma distribution with α = 0.005 , β = 0.05 (mean 0.1 and

variance 2). Conditional on these θi values, we generate the synthetic truth u ∈ Rd by

sampling independently ui ∼ (0, θi). The data y ∈ Rn is generated by y = Au + η, where

A ∈ Rn×d is randomly generated with each entry being uniformly distributed between 0 and

1. We choose d = 200 and n = 50 so that the problem is severely underdetermined. The

error term η is sampled from a normal distribution (0, γ2I50), where γ is chosen to be 5%

of the max-norm of Au. Figure 2.4 shows the generated synthetic truth u and data y. The

generated u ∈ R200 is very sparse with only 4 distinctly large components of varying sizes.
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Numerical Results with True Hyperparameters

Here we report numerical results for VIAS and IAS. For VIAS, we set hyperparameters α and

β to be exactly those used to generate the data, namely α = 0.005 , β = 0.05. This determines

the choice of variational parameters s = −0.495 and b = 0.1. For IAS, as we expect sparse

structure in the parameter of interest on a unit scale, we set the parameter α = 1 with

β̃ = 0.00001. Figure 2.4 displays the results for VIAS and IAS. For the initializations, we

set both θ0, m0 ∈ R200 to be the all-ones vector, and C0 ∈ R200×200 to be the identity

matrix. Both algorithms yielded successful reconstruction of u. The credible intervals for

the VIAS estimates are significantly shorter than the intervals from the IAS using Laplace

approximation. The implication is that IAS may not give sufficient shrinkage off the support,

while VIAS may underestimate the uncertainty in the reconstruction. Reducing the total

number of VIAS iterations alleviates the underestimation of uncertainty but leads to less

accurate reconstructions. To quantify the accuracy of these credible intervals, we conduct

repeated simulations fixing the matrix A and synthetic truth u, while resampling the error

term η to generate different y values. On conducting 1000 such simulations and generating

200 credible intervals for each component of u, we observe that the 95% credible interval

for the components of u covers the true values 96.06% of the time for VIAS with the true

hyperparameters, and 98.67% for IAS. Thus, VIAS maintains similar accuracy to IAS with

much narrower credible intervals.

The left and the middle plots in Figure 2.5 show the convergence of VIAS using the true

hyperparameters. The ELBO value stabilizes after 100-200 iterations. We also illustrate

the decay of the relative change in max-norm of the variational parameters along the VIAS

iterations, which can be seen in the middle plot. The number of iterations that IAS needs

to stabilize is significantly lower, of the order of 10.
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Numerical Results with Model Selection

In this subsection, we investigate the learning of the hyperparameters α, β. For this purpose,

we use the ELBO as a model selection tool, choosing the hyperparameters which maximize

the ELBO. Since the ELBO is a lower bound for the marginal probability of the data, larger

ELBO values suggest a better fit to the data. In practice, we obtained ELBO values after 300

iterations of VIAS for each choice of (α, β) values in a two-dimensional grid. The choice of

(α, β) value which led to the maximal ELBO value was used as our hyperparameter values.

One would expect the hyperparameters which maximize the ELBO to be close to the

true model hyperparameters. However, on conducting the model selection, we find that

this is not the case. The hyperparameters found using model selection are α = 0.001 and

β = 1623, whose corresponding ELBO value after 1000 iterations was roughly around 3899,

a significantly larger value than the ELBO with the true hyperparameters, which is 3243,

which can be seen in Figure 2.5. Despite this large difference in the hyperparameters and the

ELBO, the resulting reconstructions are similar, as displayed in Figure 2.4. Relative to the

results obtained with the true parameters, the ELBO-selected model slightly underestimates

the signal due to overshrinkage induced by using large β value, see Figure 2.4. On conducting

repeated simulations in the manner mentioned previously, the 95% credible intervals for

this ELBO-selected model contain the true values around 91-92% of the time. The model

selected by maximizing the ELBO provides credible intervals with good accuracy. If no prior

knowledge on hyperparemeters α and β is available, we propose calibrating hyperparameters

based on the ELBO as a way to suitably balance between shrinkage and estimation of

parameters.

2.5.2 Fixed Sparse Truth

In this second example, we consider a fixed truth which is less sparse than the one in the

previous example. Moreover, the truth is chosen rather than sampled generatively. The
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Figure 2.5: Convergence of the ELBO and the variational parameters along VIAS
iterates, with truth and data generated from the hierarchical model (Subsection 2.5.1).

model hyperparameters α and β are chosen according to the model selection procedure to

maximize the ELBO, which gave α = 0.0001 and β = 33.59.

Setting

We generate a random matrix A ∈ R50×100 with each entry drawn uniformly between 0

and 1. The to-be-reconstructed parameter u ∈ R100 is chosen so that only 10 components

are non-zero, see Figure 2.6. The data y is generated by multiplying A with u and adding

a randomly sampled Gaussian with standard deviation taken as 2% of the max-norm of

Au. As in the previous example, we set both θ0, m0 ∈ R100 to be the all-ones vector, and

C0 ∈ R100×100 to be the identity matrix.

Numerical Results

Figure 2.6 shows the VIAS results and a comparison to other techniques. The VIAS predic-

tions are close to the true values and even when the prediction was not accurate, credible

intervals successfully captured true values. Compared to IAS, VIAS point estimates are much

closer to the true values. The IAS reconstruction is less sparse than the VIAS reconstruction

and typically underestimates the non-zero components of the signal. We have also obtained

LASSO estimates with tuning parameter calibration based on cross validation (CV), Akaike
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Figure 2.6: Fixed sparse truth (Subsection 2.5.2). VIAS reconstruction and credible
intervals (left). Comparison with IAS and LASSO with cross validation (right).

information criterion, and Bayesian information criterion using Python’s LassoLarsIC and

LassoLarsCV functions. We only report in Figure 2.6 the result based on CV, which was

the most accurate. From Figure 2.6, we can observe that the VIAS estimate was superior

to IAS and LASSO in terms of estimating zero components of the parameter, while also

maintaining a good accuracy in non-zero components.

2.5.3 Deconvolution

In this example, we consider the 1D deconvolution problem in [Calvetti et al., 2020b], where

the goal is to reconstruct a piecewise constant signal convolved with an Airy kernel. We com-

pare the results obtained with IAS and VIAS. We demonstrate the high accuracy achieved by

VIAS with ELBO-selected model hyperparameters and show that the VIAS signal covariance

provides meaningful uncertainty quantification on the reconstruction.

Setting

Let f : [0, 1] → R be a piecewise constant function with f(0) = 0. The data y is generated

by the following convolution:

yj =

∫ 1

0
A(sj − t)f(t)dt+ ηj , 1 ≤ j ≤ n, A(t) =

(
J1(κ|t|)
κ|t|

)2

,
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Figure 2.7: Deconvolution problem (Subsection 2.5.3). First row: truth, data, and
sparse representation. Second row: VIAS reconstruction of the signal and its sparse
representation with user-chosen model hyperparameters α = 0.12 and β = 50. Third
row: same as second row, but with ELBO-selected model.
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where J1 is the Bessel function of the first kind, κ is a scalar controlling the width of the

kernel that we set to κ = 40, and sj = (4 + j)/100. The above integral can be discretized,

leading to the linear equation

y = Av + η , Ajk = wkA(sj − tk) , η ∼ (0, γ2In) , (2.23)

where v ∈ Rd has components vk = f(tk) with tk = (k − 1)/(n − 1), and the wk are

quadrature weights for discretization of the integral. The standard deviation γ is set to be

1% of the max-norm of the noiseless signal.

The unknown parameter v is not a sparse vector, but can be written in sparse form in a

suitable basis. To that end, define uj = vj−vj−1 with u0 = 0. Since v is piecewise constant,

u is sparse. Note that we can write u = B−1v, where

B−1 =



1 0 . . . 0

−1 1 . . . 0

. . .

0 . . . −1 1


∈ Rd×d.

Thus, we can rewrite (2.23) in terms of this sparse unknown vector u as follows:

y = ABu+ η, η ∼ (0, γ2In). (2.24)

Our inverse problem is to estimate the vector u, assumed to be sparse, from the data

vector y. Figure 2.7 shows the piecewise constant function v to be reconstructed, its sparse

transformation u, and the data y. We take d = 500 and n = 91 so that the problem is

underdetermined.
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Reconstruction Accuracy and Model Selection

The results of applying VIAS to this problem are displayed in Figure 2.7. As in the previous

example, we set m0 ∈ R500 to be the all-ones vector, and C0 ∈ R500×500 to be the identity

matrix. We consider two implementations of VIAS. In the first (Figure 2.7, middle row),

we use hyperparameter values α = 0.12 and β = 50. In the second (Figure 2.7, bottom

row), we adopt the ELBO approach for model selection, which gives hyperparameter values

α = 0.0001 and β ≈ 7742. Both VIAS implementations produce sparse solutions and the

true signal lies within the obtained credible intervals. The signal reconstructed with VIAS

has sharp jumps whereas the IAS reconstruction has much smoother jumps. For instance, the

first two jumps are treated as a smooth transition by IAS, while VIAS successfully detects

them as separate jumps. While VIAS with hyperparameters α = 0.12 and β = 50 detects the

presence of five distinct jumps, uncertainty remains in the location of the jumps. Moreover,

the reconstruction exhibits oscillatory artifacts in the constant regions, where IAS remains

accurate. The VIAS reconstruction with model selection is significantly more accurate; it

detects the five jump locations and it does not show oscillatory artifacts.

Uncertainty Quantification and Covariance Structure

The credible intervals obtained with both VIAS implementations provide additional insight

into the nature of uncertainty quantification in this problem. VIAS detects that the main

source of uncertainty is the location of the jumps. We observe in Figure 2.7 that the uncer-

tainty in the reconstruction spikes near the jumps, while it remains relatively small around

the constant regions. Moreover, the enhanced accuracy of VIAS with model selection is

accompanied by narrower confidence intervals. Notice that we have imposed the condition

v0 = 0, hence we are certain that the value at 0 is 0, and uncertainty is expected to in-

crease from left to right. This overall trend is also successfully identified by both VIAS

implementations.

44



Figure 2.8: Principal component
analysis of VIAS uncertainty with
hyperparameters α = 0.12, β = 50.

Figure 2.9: Principal component
analysis of VIAS uncertainty with
ELBO-selected hyperparameters.

An additional benefit of VIAS is that it not only gives an approximation to the component-

wise variances on the signal reconstruction, but also an approximate covariance matrix. This

matrix contains information on the dependencies in the reconstruction of various components

of the signal. To illustrate this point, Figures 2.8 and 2.9 show a principal component anal-

ysis of the covariance matrix C obtained with the two VIAS implementations considered

above. For VIAS with user-chosen hyperparameters α = 0.12 and β = 50, the first five

principal components each explain 15-20% of the variance, and this drops to less than 0.1%

after the 5th component. In contrast, the three principal components already explain most

of the variance for VIAS with model selection. In both VIAS implementations, each princi-

pal component is localized around a jump in the signal. With model selection, the principal

components are fully localized at the jumps, reflecting that no uncertainty remains in the lo-

cation of the jumps. On the other hand, with the first VIAS implementation the localization

of principal components at the jumps is not perfect, reflecting that there is non-negligible

uncertainty in both the location and magnitude of the jumps. Each principal component

also contains components of its nearby jumps, which suggests that nearby jumps may be

correlated. For instance, this is noticeable in the first VIAS implementation PC3 and PC5

—corresponding to the first and second jumps— likely because the first two jumps are very

close to each other and it is harder to distinguish the two. Overall, the principal components
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obtained with VIAS successfully identify that most of the variance in the signal reconstruc-

tion lies around the jumps, that nearby jumps are correlated, and that uncertainty in the

problem propagates from left to right. Finally, this example demonstrates the effect of the

hyperparameters in the reconstruction. Poor choice of the hyperparameters gives a less

accurate, more uncertain reconstruction.

2.5.4 Learning Dynamics of Lorenz-63 System

In this section, we illustrate the use of IAS and VIAS for sparse identification of dynamical

systems. Our problem setting is motivated by [Brunton et al., 2016].

Setting

Consider the Lorenz-63 system [Lorenz, 1963]

dx

dt
= σ(y − x),

dy

dt
= x(ρ− z)− y,

dz

dt
= xy − ζz,

(2.25)

with the classical parameter values σ = 10, ρ = 28, ζ = 8/3. Our goal is to recover the right-

hand side of (2.25) from time series data. We assume to have observations of a trajectory

and its derivative along 2000 equidistant time points in the time-interval [0, 40]; thus the

time between observations is ∆t = 0.02. Note that in this example y denotes the second

component of the dynamics rather than the observed data.

Following [Brunton et al., 2016], we adopt a dictionary-learning strategy and construct,
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from the given trajectory data, a matrix of the form:

A =


| | | | | | | | | |

x y z x2 y2 z2 xy xz yz . . . x5 . . .

| | | | | | | | | |

 ∈ R2000×55.

We then obtain, as in [Brunton et al., 2016], synthetic data on the derivatives by setting

ẋ = AΦ1 + η1, Φ1 = [−10, 10, 0, 0, 0, 0, 0, . . . , 0]⊤,

ẏ = AΦ2 + η2, Φ2 = [28,−1, 0, 0,−1, 0, 0, . . . , 0]⊤,

ż = AΦ3 + η3, Φ3 = [0, 0,−8/3, 0, 0, 0, 1, . . . , 0]⊤,

where ηi ∼ N (0, 0.3I2000) are independent. Our goal is to recover Φ1,Φ2,Φ3 based on

A, ẋ, ẏ, ż. Note that Φ1,Φ2,Φ3 are sparse. More generally, the data-driven learning of

dynamical systems in [Brunton et al., 2016] relies on the underlying assumption that only a

few terms of a given dictionary (in our example made of polynomials of degree five) govern

the dynamics; sparsity-promoting VIAS is hence a natural algorithm for identification of

dynamical systems.

Numerical Results

The recovery of the Lorenz-63 model via VIAS is shown in Figure 2.10. Since we expect sparse

structure in the parameter of interest, same as in our first example, we use s = −0.495 and

b = 0.1 for the variational parameters. For the initializations, we set θ0,m0 ∈ R55 to be the

all-ones vector, and C0 ∈ R55×55 to be the identity matrix. We observe that VIAS accurately

recovers the true parameter values. As VIAS can quantify uncertainties of our estimates, we

provide the true dynamics in the blue line in Figure 2.11 with the shaded regions determined

by dynamics obtained from 2.5 and 97.5 percentile credible levels of the true parameters. We
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point out that despite the chaotic behavior of the Lorenz-63 system, the uncertainty in the

dynamics remains moderate due to the high accuracy of the recovered coefficients. Moreover,

we note that the relative larger error in the coefficients of the y-trajectory in Figure 2.10

translates into wider credible intervals for the reconstructed trajectories of y in Figure 2.11.

Therefore, VIAS correctly identifies that there is more uncertainty in the reconstruction of

the y-component.

Compared to VIAS, IAS showed inferior performance in estimating parameters of the

Lorenz-63 model as one can see in Figure 2.10. Furthermore, we provide plots of true

dynamics with shaded regions determined by dynamics recovered from 95 percent credible

intervals obtained from a Laplace approximation to the posterior. As shown in Section

2.5.1, credible intervals based on Laplace approximation tend to be larger than the ones

obtained from VIAS. In the context of the Lorenz-63 model, the uncertainty in the dynamics

is amplified by the mismatch between the estimated coefficients and the true coefficients.

From Figure 2.11, we can see that quantifying uncertainty of dynamics based on Laplace

approximation gives little information as the constructed shaded regions are often too wide,

which highlights the strength of VIAS in uncertainty quantification tasks.

2.6 Conclusion and Future Directions

This chapter introduced VIAS, a variational inference computational framework for linear

inverse problems with gamma hyperpriors. The proposed VIAS shares the flexibility and

ease of implementation of IAS for MAP estimation. We have shown the accuracy of VIAS

in several computed examples, and we have explored its potential to provide meaningful

uncertainty quantification and perform model selection. There are several research directions

that stem from this work:

• We have established a local convergence result for VIAS, but we have not provided an

analysis of convergence rates. Moreover, it would be interesting to study the approxi-
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Figure 2.10: Recovery of dictionary coefficients for x-trajectory (first column), y-
trajectory (second column), and z-trajectory (third column) using IAS and VIAS. Top:
two iterations. Bottom: five iterations.

Figure 2.11: True Lorenz-63 trajectory and VIAS estimation. Top: two VIAS itera-
tions. Bottom: five VIAS iterations. Blue line is the true dynamics. Shaded regions
are constructed from 2.5 and 97.5 credible levels of coefficients.
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Figure 2.12: True Lorenz-63 trajectory and IAS estimation. Top: two IAS itera-
tions. Bottom: five IAS iterations. Blue line is the true dynamics. Shaded regions are
constructed from 2.5 and 97.5 credible levels of coefficients based on Laplace approxi-
mation.
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mation error between the variational distribution and the true posterior.

• Combining VIAS with iterative ensemble Kalman methods [Chada et al., 2021] may

allow us to extend the current variational framework to nonlinear inverse problems, and

to enhance the scalability to high dimensional linear and nonlinear inverse problems.

In addition, we also envision that VIAS may provide a natural way to promote sparsity

in iterative ensemble Kalman methods that are based on L2 penalties.

• We have explored the potential of VIAS to perform approximate Bayesian inference

and provide meaningful uncertainty quantification. In future work, our variational

approach will be combined with Markov chain Monte Carlo [de Freitas et al., 2001]

and sequential Monte Carlo [Naesseth et al., 2018] for fully-Bayesian inference.

• More general hyperpriors could be considered within our variational framework. In this

direction, the work [Calvetti et al., 2020b] has investigated more flexible generalized

gamma hyperpriors in the context of MAP estimation.

• A consequence of the mean-field restriction on the variational family is underestimation

of the variance of the components of the unknown. An interesting and practically useful

direction for future research is to alleviate such variance underestimation phenomenon

following the ideas in [Giordano et al., 2015].
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CHAPTER 3

HIERARCHICAL ENSEMBLE KALMAN METHODS WITH

SPARSITY-PROMOTING GENERALIZED GAMMA

HYPERPRIORS

3.1 Introduction

Ensemble Kalman methods are a family of derivative-free, black-box optimization algorithms

that rely on Kalman-based formulas to propagate an ensemble of interacting particles. Prop-

agating an ensemble, rather than a single estimate, is advantageous when solving high-

dimensional inverse problems with complex forward maps: the ensemble provides precondi-

tioners and surrogate forward map derivatives to accelerate the optimization. This chapter

sets forth a new computational framework to leverage ensemble Kalman methods for the

numerical solution of nonlinear inverse problems with flexible regularizers beyond standard

ℓ2-penalties. In order to minimize objective functions that cannot be expressed in the usual

nonlinear least-squares form, our approach introduces auxiliary variables which enable the

use of ensemble Kalman methods within a reweighted least-squares procedure. In so doing,

our framework generalizes the iterative alternating scheme (IAS), a MAP estimation strategy

for sparse linear inverse problems, to nonlinear inverse problems. We show the effectiveness

of our framework in illustrative examples, including compressed sensing and subsurface flow

inverse problems.

We will adopt a Bayesian viewpoint to derive our methodology. Specifically, the mini-

mizer approximated by our main algorithm corresponds to the maximum a posteriori (MAP)

estimate of a hierarchical Bayesian model with conditionally Gaussian prior and generalized

gamma hyperpriors. We propose an iterative algorithm for MAP estimation, which alter-

nates between updating the unknown with an ensemble Kalman method and updating the

hyperparameters in the regularization. The resulting method imposes sparsity while pre-
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serving the computational benefits of ensemble Kalman methods. In particular, for linear

settings and under suitable conditions on the prior hyperparameters, our iterative scheme is

globally convergent. Furthermore, our algorithm can provide uncertainty quantification in

linear or mildly nonlinear settings. Moreover, our approach retains convexity of the objective

for certain nonlinear forward maps. Most importantly, numerical experiments demonstrate

the usefulness of prior hyperparameters that result in non-convex objectives but strongly

promote sparsity.

3.1.1 Related Work

Ensemble Kalman methods, overviewed in [Evensen, 2009, Chada et al., 2021], were first

developed as scalable filtering schemes for high-dimensional state estimation in numerical

weather forecasting [Evans, 1995, Evans and Leeuwen, 1996]. Since then, they have become

popular algorithms in data assimilation, inverse problems, and machine learning. The papers

[Gu and Oliver, 2007, Li and Reynolds, 2007, Reynolds et al., 2006] pioneered the develop-

ment of ensemble Kalman methods for inverse problems in petroleum engineering and the

geophysical sciences. Similar algorithms were introduced in [Iglesias et al., 2014, Iglesias,

2016] inspired by classical regularization schemes [Hanke, 1997]. Ensemble Kalman methods

have grown into a rich family of computational tools for the numerical solution of inverse

problems; our computational framework can incorporate sparsity-promoting regularization

into any of the numerous existing variants [Chada et al., 2021]. In this chapter, we consider

two implementations based on the iterative ensemble Kalman filter (IEKF) and the iterative

ensemble Kalman filter with statistical linearization (IEKF-SL). All necessary methodologi-

cal background will be provided in Section 3.3 below. Recent theoretical work on ensemble

Kalman methods has established continuous-time and mean-field limits, as well as various

convergence results, e.g. [Schillings and Stuart, 2017, Blömker et al., 2019, Blömker et al.,

2018, Chada and Tong, 2022, Herty and Visconti, 2019, Ding and Li, 2021, Kovachki and
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Stuart, 2019, Huang et al., 2022, Al-Ghattas and Sanz-Alonso, 2024].

Despite the effectiveness of ensemble Kalman methods in high-dimensional nonlinear

inverse problems, efforts to broaden their scope by accommodating a wider range of regu-

larization techniques are only starting to emerge. The paper [Chada et al., 2020] introduced

Tikhonov ℓ2-regularization and [Lee, 2021] generalized this idea using a transformation to

turn ℓ2-penalties into ℓp-penalties. This latter work highlights the key importance of suitably

regularizing the inverse problem to achieve sparse reconstructions with ensemble Kalman

methods. Both approaches in [Chada et al., 2020, Lee, 2021] operate in an augmented space

of dimension (k + d) where k is the dimension of the data and d is the dimension of the pa-

rameter space. Our method, in contrast, operates in d-dimensional space. Furthermore, the

transformation in [Lee, 2021] involves a term that is exponential in 2
p , which causes overflow

for small p and limits the choice of penalties that can be implemented; this issue prevents, in

particular, accurate approximation of ℓ0-regulatization, which is important in applications

[Pan et al., 2014, Louizos et al., 2017, Natarajan, 1995]. Our method is composed of bi-level

iterations where the first level is given by standard ensemble Kalman iterations, while the

second level modifies the covariance matrix of the particles to induce a regularization effect.

In a similar spirit, [Armbruster et al., 2022] proposed stabilizing ensemble Kalman methods

by modifying the ensemble covariance matrix to induce regularization and achieve a faster

convergence rate. Another approach for imposing sparsity-promoting regularization through

thresholding was introduced in [Schneider et al., 2022]. Cross-entropy loss [Kovachki and

Stuart, 2019] and logistic loss [Pidstrigach and Reich, 2022] have also been recently consid-

ered.

The hierarchical prior model used to derive our methodology, along with an iterative

alternating scheme (IAS) for MAP estimation, were introduced in [Calvetti et al., 2020b]

for sparse linear inverse problems. In fact, our computational framework builds on a series

of articles [Calvetti et al., 2019b, 2020a, 2019a, 2015] that considered (generalized) gamma
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hyperpriors for sparse solution of linear inverse problems. This line of work also developed

the IAS algorithm to compute the MAP estimate, which alternates between updating the

unknown using conjugate gradient with early stopping and updating the regularization using

closed formulas. Extensions to tackle both parameter estimation and uncertainty quantifica-

tion tasks were introduced in [Agrawal et al., 2022, Law and Zankin, 2022] using variational

inference. The IAS algorithm has been successfully implemented in applied linear inverse

problems, including brain activity mapping from magnetoencephalography and identifica-

tion of dynamics from time series data [Calvetti et al., 2015, 2019a, Agrawal et al., 2022].

These hierarchical Bayesian techniques [Congdon, 2010, Wikle and Berliner, 2007, Gelman

et al., 1995] are rooted in a broader literature on signal processing with emphasis on spar-

sity [Gorodnitsky and Rao, 1997, Daubechies et al., 2010] and are inspired by the classical

reweighted least-squares algorithm [Green, 1984]. Our framework is reminiscent of the cen-

tered hierarchical method for ensemble Kalman inversion in [Chada et al., 2018], but with

an additional layer of (generalized) gamma hyperprior. Sparsity-promoting algorithms and

models are also essential in statistical science [Tibshirani, 1996, Carvalho et al., 2009]; our

hierarchical approach has connections with empirical Bayes statistical methods [Robbins,

1992] and with bi-level and data-driven methods for inverse problems [Bard, 2013, Arridge

et al., 2019].

3.1.2 Main Contributions

The main contributions of this chapter can be summarized as follows:

• We introduce a flexible computational framework to incorporate regularization tech-

niques in ensemble Kalman methods, including sparsity-promoting ℓp-penalties with

p ∈ (0, 1).

• Our framework generalizes the IAS algorithm [Calvetti et al., 2018, 2019b, 2020b,a] to

nonlinear inverse problems.
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• For linear or mildly nonlinear inverse problems, our framework provides uncertainty

quantification; therefore, our methodology complements and generalizes variational

inference techniques [Agrawal et al., 2022] that are only applicable for linear inverse

problems with gamma hyperpriors.

• Our presentation gives a Bayesian interpretation to statistical methods that rely on ℓp-

penalties, such as least absolute shrinkage and selection operator (LASSO) and adaptive

LASSO [Tibshirani, 1996, Zou, 2006].

• We demonstrate the effectiveness of our methods in three computed examples: com-

pressed sensing, a PDE-constrained inverse problem with convex forward map, and an

elliptic inverse problem in subsurface flow. We present two implementations of our

framework based on IEKF and IEKF-SL ensemble Kalman methods. The code used

to reproduce our results can be found in https://github.com/hwkim12/Lp-regularized-

IEKF.

3.1.3 Outline

Section 3.2 overviews the hierarchical model used to derive our computational framework.

Section 3.3 introduces our methodology and discusses its theoretical underpinnings. Section

3.4 contains numerical results. Section 3.5 closes with a summary of our work.

Notation For matrix P, we write P ≻ 0 if P is symmetric positive definite. For P ≻ 0,

we denote by ∥ · ∥2P := |P−1/2 · |2 the squared Mahalanobis norm induced by the matrix P,

where | · | denotes the Euclidean norm.
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3.2 Hierarchical Bayesian Model

Consider the inverse problem of reconstructing an unknown u ∈ Rd from noisy data y ∈ Rk,

related by

y = G(u) + ε, ε ∼ N (0,Γ). (3.1)

Here G : Rd → Rk is a given forward map and ε represents a Gaussian measurement

error with a given covariance Γ ≻ 0. In particular, we are interested in the case when k is

substantially smaller than d. Such problem setting arises in numerous applications in data

assimilation, inverse problems, machine learning, and statistics —see, for instance, [Sanz-

Alonso et al., 2023, Chada et al., 2021, Stuart, 2010] and references therein.

To encode the prior belief that u is sparse, we adopt the hierarchical model introduced

in [Calvetti et al., 2020b]. First, let the components of u be independent random variables

ui ∼ N (0, θi), θi > 0, 1 ≤ i ≤ d, (3.2)

with unknown variances θi. Then, small θi yields shrinkage in the estimation of the corre-

sponding unknown component ui. Equation (3.2) defines a conditional Gaussian prior

π(u | θ) ∝ 1∏d
i=1

√
θi

exp

(
−1

2
∥u∥2Dθ

)
, Dθ := diag(θ1, . . . , θd). (3.3)

To modulate the level of sparsity, we set a hyperprior on θ from the generalized gamma

distribution [Korolev and Zeifman, 2019] given by

πhyper(θ) :=
d∏

i=1

|r|
Γ(β)ϑ

β
i

θ
rβ−1
i exp

(
−
θri
ϑi

)
=

|r|d

Γ(β)d

d∏
i=1

(
θ
rβ−1
i

ϑ
β
i

)
exp

(
−
θri
ϑi

)
, (3.4)

where β ∈ R>0, {ϑi}di=1 ⊂ R>0, r ∈ R \ {0}, and Γ(·) is the Gamma function. Notice that

if r = 1, the hyperprior becomes a product of gamma distributions with a common shape
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parameter β and an individual scale parameter ϑi. Similarly, if r = −1, the hyperprior

becomes a product of inverse gamma distributions with a common shape parameter β and

an individual scale parameter 1
ϑi

. We refer to r as the regularization parameter. In Section

3.3 we will demonstrate that the value of r determines the level of regularization in the

reconstruction of u.

Bayes’s formula combines the likelihood function implied by the data model (3.1)

π(y |u, θ) = π(y |u) ∝ exp
(
−1

2
∥y − G(u)∥2Γ

)
, (3.5)

together with the hierarchical prior πprior(u, θ) := π(u | θ)πhyper(θ) defined by (3.3)–(3.4), to

give the posterior distribution

π(u, θ | y) ∝ π(y |u, θ)πprior(u, θ)

= π(y |u, θ)π(u | θ)πhyper(θ) ∝ exp
(
−J(u, θ)

)
,

where

J(u, θ) :=

(a)︷ ︸︸ ︷
1

2
∥y − G(u)∥2Γ +

1

2
∥u∥2Dθ

−
(
rβ − 3

2

) d∑
i=1

log θi
ϑi

+
d∑

i=1

θri
ϑi
.︸ ︷︷ ︸

(b)

(3.6)

The MAP estimate is the maximizer of the posterior density or, equivalently, the minimizer

of the objective (3.6). The computational framework developed in the next section will

minimize J(u, θ) iteratively, alternating between minimizing the term (a) with ensemble

Kalman methods and minimizing the term (b) using closed formulas for suitable choices of

hyperparameters.

In the following section we 1) propose a generic optimization method for the objective

function in (3.6) and build a connection with IAS [Calvetti et al., 2015, 2019b], which is only

applicable when the forward map G is linear; 2) characterize a region of hyperparameter

values (r, β) for which the objective function is convex under suitable assumptions on G; and
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3) elucidate the relationship between the parameters (r, β) and the regularization imposed

on the reconstruction of u.

3.3 Iterative Alternating Ensemble Kalman Filters

In this section we propose an iterative optimization method to compute the MAP estimate.

Our approach attempts to minimize the objective (3.6) in a block coordinate-wise fashion.

The first term (a) can be minimized over u using ensemble Kalman methods and the second

term (b) can be easily minimized over θ for suitable choices of hyperparameters. Motivated

by these observations, we initialize θ0 and compute iteratively the following updates:

uℓ+1 = argmin
u

J(u, θℓ) = argmin
u

1

2
∥y − G(u)∥2Γ +

1

2
∥u∥2D

θℓ
,

θℓ+1 = argmin
θ

J(uℓ+1, θ) = argmin
θ

1

2
∥uℓ+1∥2Dθ

−
(
rβ − 3

2

) d∑
i=1

log
θi
ϑi

+
d∑

i=1

θri
ϑi

,
(3.7)

until a stopping criterion is satisfied. We will demonstrate that, for suitable choices of

(r, β, {ϑi}di=1), the above iterative procedure agrees with minimizing the ℓp-penalized objec-

tive

Jp(u) :=
1

2
∥y − G(u)∥2Γ +

1

2

d∑
i=1

wi|ui|p,

where the regularization level p is determined by r, and the weight wi is determined by p

and the scale parameter ϑi. In other words, we will show that the minimizer u found by the

iterative procedure (3.7) solves an ℓp-regularized nonlinear optimization problem, provided

appropriate hyperparameters (r, β, {ϑi}di=1). The following two subsections describe the

numerical implementation of each update rule and the choice of hyperparameters. Subsection

3.3.3 contains the main algorithms, and Subsection 3.3.4 provides sufficient conditions on

the forward map and hyperarameters that ensure convexity of the objective (3.6).
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3.3.1 Updating u

For a generic forward map G, updating u in (3.7) requires solving a nonlinear least-squares

optimization problem. To this end, we will use ensemble Kalman methods designed to

minimize Tikhonov-Phillips (TP) objectives of the form

JTP(u) =
1

2
∥y − G(u)∥2Γ +

1

2
∥u−m∥2P , (3.8)

where Γ, P ≻ 0, and m are given. We remark, for later reference, that minimizing (3.8) can

be interpreted as maximizing the posterior density with Gaussian likelihood and prior given

by

π(y|u) = N
(
G(u),Γ

)
, (3.9)

π(u) = N (m,P ). (3.10)

Since we are interested in the update (3.7), we will take m = 0 throughout; P = Dθℓ will be

iteratively updated in subsequent developments.

Starting from an initial ensemble {u(n)0 }Nn=1, ensemble Kalman methods update the en-

semble in an artificial discrete-time index t

{u(n)t }Nn=1 7→ {u(n)t+1}
N
n=1

using Kalman formulas that promote fitness of the ensemble with data and with the prior

distribution (3.10) implied by the Tikhonov-Phillips regularization. The goals of fitting data

and fitting the prior are balanced using an ensemble-based Kalman gain matrix, as well

as certain additional random perturbation terms that control the long-time distribution of

the ensemble in the large N limit. We view the iteration subscript t as a discrete-time

index because the evolution of the ensemble may arise from the discretization of a system
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of stochastic differential equations, coupled by the ensemble-based Kalman gain. Once the

ensemble reaches statistical equilibrium, we report the ensemble mean as an approximate

solution of the optimization problem of interest. In this subsection we introduce two types of

ensemble Kalman methods, IEKF and IEKF-SL, which we employ in the update of u. These

two algorithms differ in how they construct the Kalman gain and in how they introduce

random perturbations in the ensemble update. To formulate these algorithms we need some

notation. Given the ensemble {u(n)t }Nn=1 at time t, we denote ensemble empirical means by

mt =
1

N

N∑
n=1

u
(n)
t , gt =

1

N

N∑
n=1

G
(
u
(n)
t

)
,

and we denote empirical covariances and cross-covariances by

Puu
t =

1

N

N∑
n=1

(u
(n)
t −mt)(u

(n)
t −mt)

⊤,

P
uy
t =

1

N

N∑
n=1

(
u
(n)
t −mt

)(
G(u(n)t )− gt

)⊤
,

P
yy
t =

1

N

N∑
n=1

(
G(u(n)t )− gt

)(
G(u(n)t )− gt

)⊤
.

We will use repeatedly the principle of statistical linearization —see [Ungarala, 2012, Chada

et al., 2021]— which we recall briefly. Notice that if G is linear, i.e., G(u) = Gu, we have

P
uy
t = Puu

t G⊤.

The principle of statistical linearization is to approximate the Jacobian of a generic nonlinear

map G at time t using the above identity, namely

G′(u(n)t ) ≈ (P
uy
t )⊤(Puu

t )−1 =: GN
t , n = 1, . . . , N.
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Here and henceforth, (Puu
t )−1 denotes the pseudoinverse of Puu

t . We next present IEKF,

IEKF-SL, and a unified framework providing more insights on these algorithms.

Iterative Ensemble Kalman Filter (IEKF)

Here we present the IEKF method introduced in [Chada et al., 2021]. The pseudocode

is given in Algorithm 3.3.1. We refer to [Ungarala, 2012, Reynolds et al., 2006] for other

variants of IEKF.

Algorithm 3.3.1 Iterative Ensemble Kalman Filter (IEKF)
1: Input: Number T of iterations, step-size α, covariance P ≻ 0.

2: Initialization: Draw initial ensemble u(n)0
i.i.d.∼ N (0, P ), 1 ≤ n ≤ N.

3: For t = 0, 1, . . . T do:

1. Set GN
t = (P

uy
t )⊤(Puu

t )−1.

2. Update the Kalman gain KN
t,0 = Puu

0 (GN
t )⊤

(
GN
t P

uu
0 (GN

t )⊤ + Γ
)−1

.

3. For 1 ≤ n ≤ N, draw y
(n)
t

i.i.d.∼ N (y, α−1Γ).

4. For 1 ≤ n ≤ N, update

u
(n)
t+1 = u

(n)
t + α

{
KN
t,0

(
y
(n)
t − G(u(n)t )

)
+ (I −KN

t,0G
N
t )
(
u
(n)
0 − u

(n)
t

)}
.

4: Output: Final ensemble mean mT .

The Kalman gain KN
t,0 is defined using the empirical covariance Puu

0 of the initial en-

semble, the approximated Jacobian GN
t of the forward map, and the covariance Γ of the

measurement error. In the update of ensemble members, random perturbations are intro-

duced only to the term which measures the discrepancy between data and the image of

current ensemble members under the nonlinear map G. Furthermore, the measure of fit-

ness of ensemble members to the prior distribution is assessed by comparing each ensemble

member with the corresponding initial ensemble member, drawn from the prior.

Employing Puu
0 in the construction of the Kalman gain KN

t,0 and u
(n)
0 in the update of
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u
(n)
t implicitly regularizes the ensemble by forcing all its members to remain in the linear

span of the initial ensemble. This initial subspace property holds for several ensemble Kalman

methods [Iglesias et al., 2014, Chada et al., 2020, 2021]. In addition, [Chada et al., 2021]

has shown that, in a linear forward map setting with step-size α = 1, the ensemble mean

computed by the IEKF algorithm converges (as N → ∞) in a single step (T = 1) to the

posterior mean with likelihood and prior given by (3.9)–(3.10). The next three remarks

discuss the choice of prior covariance, stopping criteria, and step-size with pointers to the

literature.

Remark 3.3.1. In ensemble Kalman methods, the prior covariance P typically incorporates

application-specific knowledge. For instance, the initial ensemble may be drawn from a

uniform or log-normal distribution whose support reflects prior information [Iglesias and

Yang, 2021, Schneider et al., 2017]. Instead of sampling the initial ensemble, one can specify it

deterministically using the first principal components of a suitable covariance model [Iglesias

et al., 2014]. These considerations may be used to determine a suitable initialization P = Dθ0

for our main algorithms in Subsection 3.3.3.

Remark 3.3.2. Instead of providing a total number T of iterations, a stopping rule can be

used. For instance, one could use Morozov’s discrepancy principle [Morozov, 1966, Groetsch,

1993]; continue the iteration until the discrepancy between the data and the forward mapping

of mt falls below the noise level, i.e.,

|y − G(mt)| ≤
√

tr(Γ).

Remark 3.3.3. For simplicity we will consider a constant and fixed step-size α. The step-

size can be chosen on-line with a line search method based on Wolfe’s condition or ad hoc

procedures introducing additional hyperparameters [Gu and Oliver, 2007]. Non-constant

and adaptive step-sizes have been employed in [Chada et al., 2020, Chada and Tong, 2022,
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Iglesias and Yang, 2021].

Iterative Ensemble Kalman Filter with Statistical Linearization (IEKF-SL)

Here we present the IEKF-SL introduced in [Chada et al., 2021]. The pseudocode is provided

in Algorithm 3.3.2.

Algorithm 3.3.2 IEKF with Statistical Linearization (IEKF-SL)
1: Input: Number T of iterations, step-size α, covariance P ≻ 0.

2: Initialization: Draw initial ensemble u(n)0
i.i.d.∼ N (0, P ), 1 ≤ n ≤ N.

3: For t = 0, 1, . . . T do:

1. Set GN
t = (P

uy
t )⊤(Puu

t )−1.

2. Update the Kalman gain KN
t = P (GN

t )⊤
(
GN
t P (G

N
t )⊤ + Γ

)−1
.

3. For 1 ≤ n ≤ N, draw y
(n)
t

i.i.d.∼ N (y, 2α−1Γ), m(n)
t

i.i.d.∼ N (0, 2α−1P ).

4. For 1 ≤ n ≤ N, set

u
(n)
t+1 = u

(n)
t + α

{
KN
t

(
y
(n)
t − G(u(n)t )

)
+ (I −KN

t G
N
t )
(
m

(n)
t − u

(n)
t

)}
.

4: Output: Final ensemble mean mT .

Unlike IEKF, IEKF-SL constructs the Kalman gain KN
t using the prior covariance P , the

approximated Jacobian GN
t of the forward map, and the covariance Γ of the measurement

error. Furthermore, in the update of ensemble members, it introduces random perturbations

to both the data and prior terms. The measure of fitness of ensemble members to the prior

distribution is assessed by comparing each member with a perturbed prior mean.

Although IEKF-SL does not have the initial subspace property, it has been shown to

achieve superior performance in a variety of inverse problems [Chada et al., 2021]. In contrast

to IEKF, the ensemble empirical mean and covariance of IEKF-SL converge, as α → 0 and

N, T → ∞, to the true posterior mean and covariance under the likelihood and prior model

(3.9)–(3.10) when the forward map is linear. Therefore, for mildly nonlinear problems, IEKF-
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SL can be used to build approximate credible intervals for the reconstruction, allowing us to

quantify uncertainties.

Unified Framework through Stochastic Differential Equations

Both IEKF and IEKF-SL can be viewed as ensemble-based stochastic approximations of the

deterministic extended Kalman filter. The extended Kalman filter finds the minimum of the

objective function given in (3.8) by sequentially updating the initial guess u0 according to

the following rule:

ut+1 = ut + α
(
Kt
(
y − G(ut)

)
+ (I −KtGt)

(
m− ut

))
,

where α > 0 is a step-size, Gt = G′(ut) is the Jacobian of G, and Kt = PG⊤
t (GtPG

⊤
t +

Γ)−1 is the Kalman gain matrix [Chada et al., 2021]. Setting Ct = (I − KtGt)P , we get

from Woodbury’s matrix inversion lemma that Kt = CtG
⊤
t Γ

−1. Hence we can rewrite the

preceding update rule as

ut+1 = ut + αCt

(
G⊤
t Γ

−1(y − G(ut)
)
+ P−1(m− ut

))
, (3.11)

which agrees with a Gauss-Newton iteration applied on the Tikhonov-Phillips objective (3.8),

see [Bell and Cathey, 1993]. For small step-size α, one can view (3.11) as a discretization

of the following differential equation, which describes the continuum version of the discrete

trajectories of the iterates from the extended Kalman filter:

dus
ds

= Cs

(
G′(us)⊤Γ−1(y − G(us)

)
+ P−1(m− us)

)
,
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where Cs acts as a preconditioner. Using the identities Ct = (I − KtGt)P and Kt =

CtG
⊤
t Γ

−1, one can show that

C−1
t = G⊤

t Γ
−1Gt + P−1, (3.12)

which leads, in the continuum limit, to

Cs =
(
G′(us)⊤Γ−1G′(us) + P−1)−1

. (3.13)

To give rise to an ensemble of random particles that roughly follow the continuous tra-

jectory we defined, we employ the above deterministic differential equation as our drift term

and introduce two different diffusion terms to obtain, for 1 ≤ n ≤ N,

du
(n)
s = Cs

(
G′(us)⊤Γ−1(y − G(us)

)
+ P−1(m− us)

)
ds+ CsG′(us)⊤Γ−

1
2dW

(n)
s ,

du
(n)
s = Cs

(
G′(us)⊤Γ−1(y − G(us)

)
+ P−1(m− us)

)
ds+

√
2CsdW

(n)
s ,

where the first and second stochastic differential equation will respectively correspond to

IEKF and IEKF-SL. More specifically, discretization of the above stochastic differential

equations, together with ensemble-based approximation of the Jacobian of G, gives IEKF

and IEKF-SL. First, applying Euler-Maruyama we get, for 1 ≤ n ≤ N,

u
(n)
t+1 = u

(n)
t + αCt

(
G⊤
t Γ

−1(y − G(u(n)t )
)
+ P−1(m− u

(n)
t )
)
+
√
αCtG

⊤
t Γ

−1
2Zt,

u
(n)
t+1 = u

(n)
t + αCt

(
G⊤
t Γ

−1(y − G(u(n)t )
)
+ P−1(m− u

(n)
t )
)
+
√
α
√
2CtZt,

where Zt ∼ N (0, I). From the form of preconditioner in (3.12), one can show that

√
α
√
2CtZt

d
=

√
2αCtG

⊤
t Γ

−1
2Z

y
t +

√
2αCtP

−1
2Zm

t ,
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Figure 3.1: Leftmost: Newton iteration. Middle-left: continuum Newton trajectory.
Middle-right: ensemble Kalman iteration. Rightmost: continuum ensemble trajectory.

where Zy
t , Z

m
t ∼i.i.d.∼ N (0, I). By introducing randomness to y through Z

y
i and m through

Zm
i , we get the following update rules, for 1 ≤ n ≤ N,

u
(n)
t+1 = u

(n)
t + αCt

(
G⊤
t Γ

−1(y(n)t − G(u(n)t )
)
+ P−1(m− u

(n)
t )
)
, (3.14)

with y(n)t ∼ N (y, α−1Γ),

u
(n)
t+1 = u

(n)
t + αCt

(
G⊤
t Γ

−1(y(n)t − G(u(n)t )
)
+ P−1(m

(n)
t − u

(n)
t )
)
, (3.15)

with y(n)t ∼ N (y, 2α−1Γ),m
(n)
t ∼ N (y, 2α−1P ).

With random ensemble updates of the form (3.14) and (3.15), one can avoid computing

the Jacobian of G by using statistical linearization, which leads to a coupling of the stochastic

dynamics. Doing so, we will derive IEKF and IEKF-SL.

We first consider (3.14). If we approximate m by u
(n)
0 , P by Puu

0 and use statistical

linearization GN
t in place of the Jacobian Gt in (3.14) we have, for 1 ≤ n ≤ N,

u
(n)
t+1 = u

(n)
t + αCt,0

(
(GN

t )⊤Γ−1(y(n)t − G(u(n)t )
)
+ (Puu

0 )−1(u
(n)
0 − u

(n)
t )
)
,

where

Ct,0 =
(
(GN

t )⊤Γ−1GN
t + (Puu

0 )−1
)−1

,

which leads to the IEKF scheme in Algorithm 3.3.1.
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For IEKF-SL, we consider (3.15) and get, for 1 ≤ n ≤ N,

u
(n)
t+1 = u

(n)
t + αCN

t

(
(GN

t )⊤Γ−1(y(n)t − G(u(n)t )
)
+ P−1(m

(n)
t − u

(n)
t )
)
,

where

CN
t =

(
(GN

t )⊤Γ−1(GN
t ) + P−1

)−1
,

which leads to the IEKF-SL scheme in Algorithm 3.3.2.

3.3.2 Updating θ: Generalized Gamma and ℓp-Regularization

Once we solve the optimization problem for uℓ+1, the proposed coordinate-wise minimization

strategy updates θ by setting

θℓ+1 = argmin
θ

1

2
∥uℓ+1∥2Dθ

+
(
rβ − 3

2

) d∑
i=1

log
θi
ϑi

+
d∑

i=1

θri
ϑi
. (3.16)

In this subsection we demonstrate an update rule for θ based on a particular choice of

hyperparameter values in the hyperprior πhyper(θ) in (3.4). Specifically, we focus on r, β

satisfying rβ = 3
2 . This choice will suffice to illustrate how the prior directly relates to the

level of regularization one imposes. Then, the general form of the objective function for θ in

(3.16) becomes

1

2
∥u∥2Dθ

+
d∑

i=1

θri
ϑi
. (3.17)

In order to minimize this function with respect to θi, we can restrict our attention to mini-

mizing
u2i
2θi

+
θri
ϑi
. (3.18)
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For r > 0, one can observe that

lim
θi→0

(
u2i
2θi

+
θri
ϑi

)
= ∞ and lim

θi→∞

(
u2i
2θi

+
θri
ϑi

)
= ∞.

Therefore, the update for θi amounts to solving for the first order optimality condition

−1

2

u2i
θ2i

+
r

ϑi
θr−1
i = 0,

which leads to the following update rule

θi =

(
ϑiu

2
i

2r

) 1
r+1

. (3.19)

For r = 1 the update precisely agrees with the update rule for IAS [Calvetti et al., 2019b]

with the sparsity parameter η = 0 and ith scale parameter θ∗i = 1
ϑi

in their notation.

Plugging the update rule (3.19) back to the objective (3.17), we get

d∑
i=1

(
u2i
2θi

+
θri
ϑri

)
=(r + 1)

d∑
i=1

ϑ
− 1

r+1
i

(
u2i
2r

) r
r+1

.

By setting p := 2r
r+1 ∈ (0, 2), the objective function given in (3.6) becomes

Jp(u) :=
1

2
∥y − G(u)∥2Γ + Cr

d∑
i=1

wi,r|ui|p, Cr =
r + 1

(2r)
r

r+1
, wi,r = ϑ

− 1
r+1

i , (3.20)

which can be viewed as an ℓp-regularized problem for any p ∈ (0, 2). By adjusting r, one can

impose different types of regularization. In particular, for r = 1, we have an ℓ1-regularized

problem, whose natural Bayesian interpretation sets the gamma distribution with shape pa-

rameter β = 3
2 and scale parameter ϑi as the prior for θi. Furthermore, prior knowledge on

the units/scales of each ui is captured by the wi,r terms, determined by the hyperparameters
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ϑi and the regularization parameter r. Such hyperprior-based component reweighting resem-

bles the well-known adaptive LASSO [Zou, 2006], which includes component-wise weights

when solving ℓ1-minimization LASSO problems to remove the bias induced from the ℓ1-

regularization term. In contrast to adaptive LASSO, our reweighting is motivated as a step

towards finding the MAP estimate of a hierarchical Bayesian model.

3.3.3 Main Algorithms

Our proposed iterative methodology combines the algorithmic ideas introduced in Subsec-

tions 3.3.1 and 3.3.2 to compute the u and θ updates in (3.7). The procedure is summarized

in Algorithm 3.3.3.

Algorithm 3.3.3 ℓp-IEKF and ℓp-IEKF-SL

1: Input: Initial θ0, hyperparameters r and {ϑi}di=1, step-size α, number T of inner itera-
tions.

2: Iterate (outer iteration) until convergence:

1. Update uℓ+1 := mT running IEKF/IEKF-SL (inner iteration) with a step size α
and an initial covariance P := Dθℓ .

2. Update θℓ+1
i :=

(
ϑi
2r

) 1
r+1 |uℓ+1

i |p, where p := 2
r+1 .

3. ℓ→ ℓ+ 1.

3: Output: Final ensemble mean mT .

The two coordinate-wise optimization steps serve two distinct purposes. When optimiz-

ing for u, the reconstruction of the unknown is updated with a given regularization; when

optimizing for θ, the regularization is updated. The algorithm involves two nested iterations.

First, each u update runs IEKF/IEKF-SL for T iterations. Second, u and θ are iteratively

updated, in alternating fashion, until convergence. We call the first type of iteration inner

iteration and the latter type outer iteration. As outer iterations update θ, we will also refer

to them as outer regularization iterations.
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The proposed method utilizes an ensemble to minimize

J(u, θ) =
1

2
∥y − G(u)∥2Γ +

1

2
∥u∥2Dθ

+
d∑

i=1

θri
ϑi

(3.21)

in a coordinate-wise fashion to obtain the minimum of the lower-dimensional objective

Jp(u) =
1

2
∥y − G(u)∥2Γ + Cr

d∑
i=1

wi,r|ui|p. (3.22)

One can show that J(u, θ) agrees with Jp(u) along the manifold

(u, θ) : θi =
ϑ

1
r+1
i

(2r)
1

r+1

|ui|
2

r+1

 .

Hence by element-wise optimizing J(u, θ), we can recover the minimizer of Jp(u).

Algorithm 3.3.3 contains the pseudocode for ℓp-IEKF and ℓp-IEKF-SL. For r ∈ [1, 2)

under a linear forward map setting, the objective function in (3.21) is globally convex,

guaranteeing the existence and uniqueness of a global minimizer of (3.22). For r ∈ (0, 1),

the objective function in (3.21) may not be convex thus may admit multiple local minimizers,

even for linear forward maps. Sufficient conditions for convexity are stated and proved in

Subsection 3.3.4. The practical efficiency of ℓp-IEKF and ℓp-IEKF-SL for r ∈ (0, 1) is

demonstrated in Section 3.4.

Remark 3.3.4. In building the Kalman gain matrix, the IEKF and IEKF-SL Algorithms

3.3.1 and 3.3.2 require the inversion of a k× k matrix, where k is the dimension of the data

y. In contrast, the implementation in [Lee, 2021] requires inversion of a (k + d) × (k + d)

matrix, where d is the dimension of the unknown u (see Remark 3.3. in [Lee, 2021] for further

details). However, the Algorithm 3.3.3 contains additional outer iterations when compared

to [Lee, 2021], which partly offset the computational gain of working with smaller matrices.
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Remark 3.3.5. In contrast to IEKF, ℓp-IEKF partially preserves the initial subspace prop-

erty: the output of ℓp-IEKF lies in the span of the initial ensemble of the last u update step,

rather than the span of the initial ensemble of the first u update step. Outer regularization

iterations can be viewed as a way to adaptively modify the prior covariance for the u update

to reflect the sparse structure of the true parameter. As each outer iteration modifies the

prior covariance, the initial subspace for each u update step will change accordingly.

Remark 3.3.6. For the u update step, one may use other ensemble Kalman methods such

as Ensemble Kalman Inversion (EKI) [Iglesias et al., 2014] or Tikhonov Ensemble Kalman

Inversion (TEKI) [Chada et al., 2020]. In contrast to IEKF and IEKF-SL, for linear forward

maps the ensemble obtained using EKI and TEKI collapse to a single point in the long

time limit [Chada et al., 2021]. Consequently, EKI and TEKI do not provide uncertainty

quantification, even in linear or mildly nonlinear settings, unless suitably stopped. The

algorithm IEKF-SL was designed so that in linear settings the empirical covariance of the

ensemble approximates the true posterior covariance in the long time asymptotic. We point

out that the method in [Lee, 2021] inherits the ensemble collapse from EKI and TEKI, as it

leverages a bijective mapping of each particle.

Remark 3.3.7. To determine when to terminate the outer iteration for ℓp-IEKF and ℓp-

IEKF-SL, one may monitor the relative change of iterates. For instance, one may set a small

tolerance τ > 0 and terminate if

∥uℓ+1 − uℓ∥∞
∥uℓ∥∞

< τ.

Remark 3.3.8. Although we have focused on a particular choice of hyperparameter values,

namely rβ = 3
2 , the general framework extends beyond this choice to rβ > 3

2+δ for arbitrary

δ, and to alternative r. In those cases, the update function which maximizes θ given u is

expressed implicitly as the solution to an initial value problem which can be easily solved

72



to update θ [Calvetti et al., 2020b]. One can also consider r = −1, which produces effective

penalty terms corresponding to prior distributions whose tails decay as power laws in u. For

r = −1 —which corresponds to imposing an inverse gamma prior— the objective function

for the θi update is given by

θi =
1

β + 3
2

(
u2i
2

+
1

ϑi

)
.

Assuming ϑi = 1 for all i = 1, . . . , d with κ = β + 3
2 , the prior component for u is given by

π(u) ∝ exp

−
d∑

i=1

log(u2i + 2)κ

 =
d∏

i=1

1

(u2i + 2)κ
.

In the limit as β → 0, i.e. κ→ 3
2 , the prior distribution for each component ui approaches the

Student distribution with two degrees of freedom, a heavy-tailed distribution which favors

outliers.

3.3.4 Convexity

Proposition 3.3.9 below gives conditions on the forward map G and the parameters (r, β)

that ensure convexity of the objective function in (3.6). A concrete numerical example where

the assumptions in the following proposition hold is given in Subsection 3.4.2. For convex

objectives, our methodology can be viewed as an ensemble approximation of a coordinate

descent scheme that is globally convergent under mild assumptions [Tseng, 2001].

Proposition 3.3.9. Let β, r > 0. Then the following holds:

1. If r ≥ 1 or r ≤ 0, η = rβ − 3
2 ≥ 0 and

∑n
i=1 Gi(u)∇2Gi(u) ≽ 0, then the objective

function J(u, θ) in (3.6) is convex everywhere.

2. If 0 < r < 1, η = rβ − 3
2 ≥ 0 and

∑n
i=1 Gi(u)∇2Gi(u) ≽ 0, then the objective function
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J(u, θ) in (3.6) is convex provided that, for all i ∈ {1, . . . , d},

θi
ϑi

≤
(

η

r(1− r)

)1
r

. (3.23)

Proof. The Hessian of J(u, θ) is given by

H = ∇2J(u, θ) =

∇u∇uJ(u, θ) ∇θ∇uJ(u, θ)

∇u∇θJ(u, θ) ∇θ∇θJ(u, θ)

 ,
where

∇u∇uJ(u, θ) = ∇G∇G⊤ +
n∑

i=1

Gi(u)∇2Gi(u) +D−1
θ ,

∇u∇θJ(u, θ) = ∇θ∇uJ(u, θ) = diag

(
−ui
θ2i

)
,

∇θ∇θJ(u, θ) = diag

(
u2i
θ3i

+
r(r − 1)

ϑ2i

(
θi
ϑi

)r−2

+
η

θ2i

)
.

For any vector q =

v
w

, we have

q⊤Hq = ∥∇G⊤v∥2 +
n∑

i=1

Gi(u)(v⊤∇2Gi(u)v)

+
d∑

i=1

v2i
θi

+
d∑

i=1

(
u2i
θ3i

+
r(r − 1)

ϑ2i

(
θi
ϑi

)r−2

+
η

θ2i

)
w2
i − 2

d∑
i=1

ui
θ2i
viwi

= ∥∇G⊤v∥2 +
n∑

i=1

Gi(u)(v⊤∇2Gi(u)v)

+
d∑

i=1

1

θi

(
vi −

uiwi

θi

)2

+
d∑

i=1

(
r(r − 1)

ϑ2i

(
θi
ϑi

)r−2

+
η

θ2i

)
w2
i .
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From the assumption, the first three terms are always non-negative and the remaining term

is non-negative if, for all i ∈ {1, . . . , d},

r(r − 1)

ϑ2i

(
θi
ϑi

)r−2

+
η

θ2i
≥ 0,

which implies the conditions of the two different cases.

3.4 Numerical Experiments

In this section we demonstrate the effectiveness of the proposed methodology in three ex-

amples: 1) underdetermined linear inverse problem; 2) nonlinear inverse problem with an

explicit forward map that gives a convex objective for certain hyperparameter values; and

3) nonlinear elliptic inverse problem. For all three examples we assumed that only a few

components of the unknown u are nonzero and compared ℓ0.5/ℓ1-IEKF/IEKF-SL with the

vanilla IEKF/IEKF-SL. Throughout, the step-size of ensemble Kalman methods is set to

be α = 0.5 and the scale parameters are set to be ϑi = 1 for all 1 ≤ i ≤ d. These choices

suffice to illustrate the successful regularization achieved by our method when compared to

vanilla ensemble Kalman methods with ℓ2-regularization. In order to clearly compare differ-

ent algorithms and regularization techniques, we report the evolution of the corresponding

ensembles instead of using a stopping criterion.

3.4.1 Linear Inverse Problem

Our first example explores the performance of our methods in two tasks: point estimation

and uncertainty quantification. For the point estimation task, we provide comparisons with

the iterative alternating scheme (IAS) [Calvetti et al., 2019b], least absolute shrinkage and

selection operator (LASSO) [Tibshirani, 1996], and Tikhonov ensemble Kalman inversion

(TEKI) [Chada et al., 2020]. For the uncertainty quantification task, we compare credible
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intervals constructed using the empirical distribution of the ensembles produced by our algo-

rithm with credible intervals constructed using the variational iterative alternating scheme

(VIAS) [Agrawal et al., 2022].

Setting

Consider the linear inverse problem

y = Gu+ ε, ε ∼ N (0, 0.01I30),

where each component of G ∈ R30×300 is independently sampled from the standard Gaussian

distribution. We assume that the true parameter u ∈ R300 has four nonzero components.

Our goal is to recover u from y ∈ R30.

Figure 3.2: Parameter estimation and uncertainty quantification in linear example with
ℓ0.5-regularizations on IEKF and IEKF-SL. Top row: parameter estimation. Bottom
row: uncertainty quantification via approximate credible intervals.
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Numerical Results

For point estimation, we compare results obtained with ℓ0.5-IEKF, ℓ0.5-IEKF-SL, IAS, and

LASSO. For both ℓ0.5-IEKF and ℓ0.5-IEKF-SL, a total of N = 300 ensemble members were

used with T = 30 inner iterations and 10 outer iterations. The particles u(n)0 of the initial

ensemble were independently sampled from a centered Gaussian with covariance 0.1I300.

The sparsity parameter of IAS, denoted by η in [Calvetti et al., 2019b], was set to be zero.

For LASSO, the regularization coefficient was chosen based on 10-fold cross-validation (CV).

In addition to obtaining a point estimate for the parameter of interest, one can build

approximate credible intervals based on the ensemble members employed in IEKF/IEKF-

SL. Like in Markov chain Monte Carlo, after enough iterations ensemble members serve as

good proxies for samples from the true posterior distribution in linear or mildly nonlinear

settings. From these ensemble members one can obtain 2.5/97.5th sample percentiles to con-

struct approximate 95 percentile credible intervals for each component of the parameter. We

provide such approximate credible intervals for ℓ0.5-IEKF/IEKF-SL with N = 300 ensemble

members. A total of eight outer iterations and T = 30 inner IEKF/IEKF-SL iterations were

run. In order to demonstrate the effectiveness of these approximate credible intervals, we

also present approximate credible intervals based on VIAS [Agrawal et al., 2022] in Figure

3.2. The parameters of VIAS, were set to be b = 0.1 and s = −0.495, with a total of 40

iterations.

From Figure 3.2, we can observe the effectiveness of our regularized methods in estimat-

ing the true parameter. The proposed ℓ0.5-IEKF/IEKF-SL clearly outperforms the vanilla

IEKF/IEKF-SL in the estimation task. It is shown to be competitive with LASSO and IAS,

which are only applicable in linear settings. Although the convexity of (3.6) is not guaran-

teed for p = 0.5, the numerical result in Figure 3.2 demonstrates successful regularization.

In terms of uncertainty quantification, ℓ0.5-IEKF/IEKF-SL showed comparable performance

in constructing approximate credible intervals to the recently proposed VIAS. These results
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clearly show that ℓ0.5-IEKF/IEKF-SL can preserve desirable properties of ensemble-based

derivative-free optimization methods and IAS. To further investigate the convergence and

the regularization effect of the parameter r, we also conducted extensive simulations using

a less severely underdetermined system with y ∈ R100 to avoid possible instabilities caused

by a small number of observations. To evaluate the regularization effect, we varied r values

ranging from 0.1 to 2 and computed the ℓ2-norm of the ℓ1-IEKF/IEKF-SL estimates whose

indices correspond to entries off the support of the true signal.

Figure 3.3: Left: ℓ2-convergence comparison. Right: regularization effect of r.

The left plot in Figure 3.3 shows the ℓ2 norm of the error |uℓ − u∗| between the true

parameter u∗ and the estimates obtained by ℓ1-IEKF/IEKF-SL over 30 outer iterations.

From the plot, ℓ1-IEKF-SL is more accurate than ℓ1-IEKF. The right plot in Figure 3.3

clearly demonstrates stronger regularization at small r values, as expected.

3.4.2 Nonlinear Inverse Problem with Explicit Forward Map

Here we study a nonlinear inverse problem introduced in [Kabanikhin, 2008], which has

a closed-form forward map that satisfies the condition in Proposition 3.3.9. Our results

demonstrate that strongly sparsity-promoting regularization techniques, for which convexity

of the objective is lost, provide more accurate reconstruction.
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Setting

Consider the following first-order partial differential equation (PDE)

∂x1v − ∂x2v − u(x1)v = 0, (x1, x2) ∈ (0, 1)× (0, 1),

v(x1, 0) = φ(x1), x1 ∈ [0, 1].

(3.24)

If u is continuous and φ is continuously differentiable, then (3.24) admits the solution

v(x1, x2) = φ(x1 + x2) exp
(∫ x1

x1+x2

u(z)dz

)
, (x1, x2) ∈ [0, 1]× [0, 1].

For a given φ, the data y is sampled according to

y(x1, x2) = v(x1, x2) + ε, ε ∼ N (0, 0.12), (x1, x2) ∈ [0, 1]× [0, 1].

The domain of interest, [0, 1] × [0, 1], was discretized with a 21 × 21 uniform grid. The

solution of the PDE was observed on the grid. Our goal is to recover the function u given

the data y ∈ R21×21. We further assume that u admits a representation

u(x) =
30∑
j=1

uj sin(jπx) +
30∑
j=1

ũj cos(jπx), x ∈ [0, 1],

which reduces the function recovery problem to a parameter estimation problem. Therefore,

for each (x1, x2) ∈ [0, 1]× [0, 1], the forward map is given by

G : (uj , ũj)
30
j=1 ∈ R60 7→ v ∈ R441,

which is convex/concave if the function φ is positive/negative. Hence, from the proposition

(3.3.9), the objective function given in (3.6) is convex for r ≥ 1. The following simulations

illustrate the effectiveness of the proposed methodology for r = 1
3 —which amounts to

79



imposing an ℓ0.5-regularization— despite the possible loss of convexity for r ∈ (0, 1). For

the numerical simulation, we set φ(x) = cos(x) and assumed that only three components of

each uj and ũj are nonzero. Specifically, we set

u(x) = 1.2
(
sin(πx) + sin(3πx)− sin(6πx)− cos(3πx)

)
− 0.6

(
cos(πx)− cos(6πx)

)
.

Numerical Results

We compared the performance of IEKF, IEKF-SL, ℓ0.5-IEKF, ℓ0.5-IEKF-SL, ℓ1-IEKF, and

ℓ1-IEKF-SL in terms of their accuracy. For all of our methods, we used N = 100 ensemble

members with three outer regularization iterations and T = 20 inner iterations of ensemble

Kalman methods. The initial ensemble members u(n)0 were sampled from a centered Gaussian

with covariance matrix 0.04I60. We compare the reconstructions to the true target function

u.

In both Figures 3.4 and 3.5, the top and bottom rows correspond to ℓ1 and ℓ0.5-regularization,

respectively. The blue curves represent our function recovery based on the corresponding

ensemble Kalman method. The shaded regions represent elementwise 2.5/97.5 percentile val-

ues of the recovery results. The recovery improves with additional outer iterations. As in the

linear example, ℓ0.5-regularization worked as effectively as, or better than, ℓ1-regularization.

In particular, ℓ0.5-IEKF-SL recovered the true function almost perfectly after three outer

iterations.

80



# of outer iteration

Method 0th 1st 3rd

ℓ1-IEKF 0.238 0.168 0.094

ℓ0.5-IEKF 0.238 0.148 0.057

ℓ1-IEKF-SL 0.205 0.141 0.067

ℓ0.5-IEKF-SL 0.205 0.132 0.037

Table 3.4.1: ℓ2-error between parameter
estimate and true value.

# of outer iteration

Method 0th 1st 3rd

ℓ1-IEKF 3.678 5.371 4.228

ℓ0.5-IEKF 3.678 4.945 2.959

ℓ1-IEKF-SL 4.660 3.649 2.898

ℓ0.5-IEKF-SL 4.660 3.060 2.400

Table 3.4.2: Average width of credible
intervals for recovery.

Table 3.4.1 shows the ℓ2-norm error between the parameter estimate and the truth.

The results demonstrate the effectiveness of sparsity-promoting regularization. In all four

methods, the ℓ2-error decreased with additional outer iterations. In both IEKF and IEKF-

SL, ℓ0.5-regularization produced more accurate (ℓ2) recovery than ℓ1-regularization.

Table 3.4.2 contains the average widths of the credible intervals along the number of outer

iterations. The widths of the credible intervals tend to decrease as more outer iterations are

performed. This is expected since, as regularization effects accumulate, ensembles are more

likely to center about their mean and credible bands around the target function become

narrower. We can also see the stronger regularizing effect by comparing the width of the

credible intervals corresponding to ℓ0.5-regularization and that of ℓ1-regularization.

3.4.3 2D-Elliptic Inverse Problem

Finally, following [Lee, 2021] we consider a two-dimensional elliptic inverse problem under

a sparsity assumption. We show that our methodology can achieve accurate reconstruc-

tions with ℓp-regularization with p = 0.5, while the approach in [Lee, 2021] could not be

implemented with p < 0.7.
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Figure 3.4: Example in Subsection 3.4.2. Red: target function to recover. Blue: ℓp-
IEKF recovery. Top row: ℓ1-IEKF. Bottom row: ℓ0.5-IEKF. Left column: vanilla IEKF.
Middle column: ℓp-IEKF after one outer iteration. Right column: ℓp-IEKF after three
outer iterations. Shaded: 2.5/97.5 percentile of the recovery.

Figure 3.5: Example in Subsection 3.4.2. Red: target function to recover. Blue: ℓp-
IEKF-SL recovery. Top row: ℓ1-IEKF-SL. Bottom row: ℓ0.5-IEKF-SL. Left column:
vanilla IEKF-SL. Middle column: ℓp-IEKF-SL after one outer iteration. Right column:
ℓp-IEKF-SL after three outer iterations. Shaded: 2.5/97.5 percentile of the recovery.
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Setting

Consider the elliptic PDE

−div
(
eu(x)∇v(x)

)
= f(x), x = (x1, x2) ∈ [0, 1]× [0, 1]

with boundary conditions

v(x1, 0) = 100,
∂v

∂x1
(1, x2) = 0, − eu(x)

∂v

∂x1
(0, x2) = 500,

∂v

∂x2
(x1, 1) = 0,

and source term

f(x) = f(x1, x2) =


0 0 ≤ x2 ≤ 4

6 ,

137 4
6 < x2 ≤ 5

6 ,

274 5
6 < x2 ≤ 1.

Following [Lee, 2021], the equation is discretized in a uniform 15 × 15 grid in [0, 1] × [0, 1].

We assumed that the log diffusion coefficient can be expressed as

u(x1, x2) =
19∑
i=0

19∑
j=0

uijφij(x1, x2),

where φij(x1, x2) = cos(iπx1) cos(jπx2). Using the first boundary condition, the forward

map is given by

G : {ui,j}19i,j=0 ∈ R400 7→ v ∈ R14×15,

which we implemented using the five-point stencil finite-difference method. To ensure spar-

sity, only six of the 400 components of {ui,j}19i,j=0 were chosen to be nonzero. We aim to

recover {ui,j}19i,j=0 ∈ R400 from the data

y(x1, x2) = G
(
u(x1, x2)

)
+ ε = v(x1, x2) + ε, ε ∼ N (0, 0.12).
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Numerical Results

We compare the performance of IEKF, IEKF-SL, ℓ0.5-IEKF, ℓ0.5-IEKF-SL, ℓ1-IEKF, and

ℓ1-IEKF-SL in terms of their parameter estimation accuracy. For all our methods, we used

N = 400 ensemble members with six outer regularization iterations and T = 30 inner

iterations. The initial ensemble u(n)0 was sampled from a centered Gaussian with covariance

matrix 0.1I400. We present comparisons to the true parameters {ui,j}19i,j=0.

In Figures 3.6 and 3.7, the top and bottom rows respectively correspond to ℓ1 and ℓ0.5-

regularization. We also provide approximate credible intervals, constructed from elementwise

2.5/97.5 percentile values of the empirical distribution of the ensemble. In both figures, we

observe that estimates improve with more outer iterations. In addition, ℓ0.5-regularization

acted more strongly off the support than ℓ1-regularization. Within three outer regularization

iterations, both ℓ0.5-IEKF/IEKF-SL yielded parameter estimates very close to the true value.

As in the previous numerical example, Table 3.4.3 provides the ℓ2-norm errors. In all

cases, errors decreased with the additional outer iterations. Note that ℓ0.5-regularization is

an order of magnitude more accurate than ℓ1-regularization whether using IEKF or IEKF-SL.

Table 3.4.4 shows that the length of approximate credible intervals decreased with the number

of outer iterations. After only six iterations, credible intervals produced by ℓ0.5-regularization

are an order of magnitude or more smaller than those produced by ℓ1-regularization.
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Figure 3.6: Parameter recovery for 2D-elliptic inverse problem based on ℓ1/ℓ0.5-IEKF.
Red: Truth. Blue: ℓp-IEKF estimate. Left column: vanilla (non-regularized) IEKF.
Middle column: ℓp-IEKF after three outer iterations. Right column: ℓp-IEKF after six
outer iterations. Shaded: elementwise 2.5/97.5 percentile for parameter estimate.

# of outer iteration

Method 0th 3rd 6th

ℓ1-IEKF 0.030 0.014 0.012

ℓ0.5-IEKF 0.030 0.004 0.002

ℓ1-IEKF-SL 0.030 0.020 0.014

ℓ0.5-IEKF-SL 0.030 0.008 0.007

Table 3.4.3: ℓ2-error between parameter
estimate and true value.

# of outer iteration

Method 0th 3rd 6th

ℓ1-IEKF 1.211 0.198 0.211

ℓ0.5-IEKF 1.211 0.055 0.017

ℓ1-IEKF-SL 1.399 0.259 0.169

ℓ0.5-IEKF-SL 1.399 0.041 0.007

Table 3.4.4: Average width of credible
intervals for recovery.
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Figure 3.7: Parameter recovery for 2D-elliptic inverse problem based on ℓ1/ℓ0.5-IEKF-
SL. Red: Truth. Blue: ℓp-IEKF-SL estimate. Left column: vanilla (non-regularized)
IEKF-SL. Middle column: ℓp-IEKF-SL after three outer iterations. Right column:
ℓp-IEKF-SL after six outer iterations. Shaded: elementwise 2.5/97.5 percentile for
parameter estimate.
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3.5 Conclusion

This chapter introduced a flexible and computationally efficient framework to incorporate a

wide range of regularization techniques in ensemble Kalman methods. We have adopted a hi-

erarchical Bayesian perspective to derive our methodology and shown that suitable choices of

hyperparameters yield sparsity-promoting regularization. The effectiveness of our procedure

was demonstrated in three numerical examples. While we have focused on sparsity-promoting

ℓp-penalties, our framework extends beyond sparse models. In particular, heavy-tailed Stu-

dent prior regularization and relaxed ℓp-penalties with rβ > 3/2 could be considered for

applications in nonlinear regression and in learning dynamical systems from time-averaged

data [Schneider et al., 2022]. Finally, this chapter focused on ensemble Kalman methods

for inverse problems; future work will investigate regularization of ensemble Kalman filters

[Sanz-Alonso et al., 2023, Chen et al., 2022] in data assimilation.
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CHAPTER 4

BAYESIAN OPTIMIZATION WITH NOISE-FREE

OBSERVATIONS: IMPROVED REGRET BOUNDS VIA

RANDOM EXPLORATION

4.1 Introduction

Bayesian optimization [Jones et al., 1998, Mockus, 1998, Frazier, 2018] is an attractive strat-

egy for global optimization of black-box objective functions. Bayesian optimization algo-

rithms sequentially acquire information on the objective by observing its value at carefully

selected query points. In some applications, these observations are noisy, but in many oth-

ers the objective can be noiselessly observed; examples include hyperparameter tuning for

machine learning algorithms [Burges and Schölkopf, 1996], parameter estimation for com-

puter models [Clark Jr et al., 2016, Pourmohamad, 2020], goal-driven dynamics learning

[Bansal et al., 2017], and alignment of density maps in Wasserstein distance [Singer and

Yang, 2023]. While most Bayesian optimization algorithms can be implemented with either

noisy or noise-free observations, few methods and theoretical analyses are tailored to the

noise-free setting.

This paper introduces two new algorithms rooted in scattered data approximation for

Bayesian optimization with noise-free observations. The first algorithm, which we call GP-

UCB+, supplements query points obtained via the classical GP-UCB algorithm [Srinivas

et al., 2010] with randomly sampled query points. The second algorithm, which we call

EXPLOIT+, supplements query points obtained by maximizing the posterior mean of a

Gaussian process surrogate model with randomly sampled query points. Both algorithms

retain the simplicity and ease of implementation of the GP-UCB algorithm, but introduce

an additional random exploration step to ensure that the fill-distance of query points decays

at a near-optimal rate, thus enhancing the accuracy of surrogate models for the objective
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function. The new random exploration step has a profound impact on both theoretical

guarantees and empirical performance. On the one hand, the convergence rate of GP-

UCB+ and EXPLOIT+ improve upon existing and refined rates for the GP-UCB algorithm.

Indeed, the new algorithms nearly achieve the optimal convergence rate in [Bull, 2011] and

the decaying rate of simple regret implied by the conjectured cumulative regret bounds in

[Vakili, 2022]. On the other hand, GP-UCB+ and EXPLOIT+ explore the state space faster,

which leads to an improvement in numerical performance across a range of benchmark and

real-world examples.

4.1.1 Main Contributions

• We introduce two new algorithms, GP-UCB+ and EXPLOIT+, whose simple regret

convergence rate nearly matches with the optimal minimax convergence rate in [Bull,

2011]. The proposed algorithms far improve existing and refined rates for the classical

GP-UCB algorithm. En route to comparing the cumulative regret bounds for our new

algorithms with those for GP-UCB, we establish in Theorem 4.3.1 a regret bound for

GP-UCB with squared exponential kernels that refines the one in [Lyu et al., 2019].

• We numerically demonstrate that GP-UCB+ and EXPLOIT+ outperform GP-UCB

and other popular Bayesian optimization algorithms across many examples, including

optimization of several 10-dimensional benchmark objective functions, hyperparameter

tuning for random forests, and optimal parameter estimation of a garden sprinkler

computer model.

• We showcase that both GP-UCB+ and EXPLOIT+ share the simplicity and ease of

implementation of the GP-UCB algorithm. In addition, EXPLOIT+ requires fewer

input parameters than GP-UCB or GP-UCB+, and achieves competitive empirical

performance without any tuning.
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4.1.2 Outline

Section 4.2 formalizes the problem of interest and provides necessary background. We review

related work in Section 4.3. Our new algorithms are introduced in Section 4.4, where we

establish regret bounds under a deterministic assumption on the objective function. Section

4.5 contains numerical examples, and we close in Section 4.6. Proofs and additional numerical

experiments are deferred to an appendix.

4.2 Preliminaries

4.2.1 Problem Statement

We want to find the global maximizer of an objective function f : X → R by leveraging the

observed values of f at carefully chosen query points. We are interested in the setting where

the observations of the objective are noise-free, i.e. for query points Xt = {x1, . . . , xt} we

can access observations Ft = [f(x1), . . . , f(xt)]
⊤. The functional form of f is not assumed to

be known. For simplicity, we assume throughout that X ⊂ Rd is a d-dimensional hypercube.

We assume that f ∈ Hk(X ) belongs to the Reproducing Kernel Hilbert Space (RKHS)

associated with a kernel k : X × X → R.

4.2.2 Gaussian Processes and Bayesian Optimization

Many Bayesian optimization algorithms, including the ones introduced in this paper, rely

on a Gaussian process surrogate model of the objective function to guide the choice of query

points. Here, we review the main ideas. Denote generic query locations by Xt = {x1, . . . , xt}

and the corresponding noise-free observations by Ft = [f(x1), . . . , f(xt)]
⊤. Gaussian process

interpolation with a prior GP(0, k) yields the following posterior predictive mean and vari-
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ance:

µt,0(x) = kt(x)
⊤K−1

tt Ft,

σ2t,0(x) = k(x, x)− kt(x)
⊤K−1

tt kt(x),

where kt(x) = [k(x, x1), . . . , k(x, xt)]
⊤ and Ktt is a t × t matrix with entries (Ktt)i,j =

k(xi, xj).

Our interest lies in Bayesian optimization with noise-free observations. However, we

recall for later reference that if the observations are noisy and take the form yi = f(xi)+ ηi,

1 ≤ i ≤ t, where ηi
i.i.d.∼ N(0, λ), then the posterior predictive mean and variance are given

by

µt,λ(x) = kt(x)
⊤ (Ktt + λI)−1 Yt,

σ2t,λ(x) = k(x, x)− kt(x)
⊤(Ktt + λI)−1kt(x),

where Yt = [y1, . . . , yt]
⊤.

To perform Bayesian optimization, one can sequentially select query points by optimizing

a Gaussian Process Upper Confidence Bound (GP-UCB) acquisition function. Let Xt−1 =

{x1, . . . , xt−1} denote the query points at the (t− 1)-th iteration of the algorithm. Then, at

the t-th iteration, the classical GP-UCB algorithm [Srinivas et al., 2010] sets

xt = argmax
x∈X

µt−1,λ(x) + β
1
2
t σt−1,λ(x), (4.1)

where βt is a user-chosen positive parameter. The posterior predictive mean provides a

surrogate model for the objective; hence, one expects the maximum of f to be achieved

at a point x ∈ X where µt−1,λ(x) is large. However, the surrogate model µt−1,λ(x) may

not be accurate at points x ∈ X where σ2t−1,λ(x) is large, and selecting query points with
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large predictive variance helps improve the accuracy of the surrogate model. The GP-UCB

algorithm finds a compromise between exploitation (maximizing the mean) and exploration

(maximizing the variance). The weight parameter βt balances this exploitation-exploration

trade-off. For later discussion, Algorithm 4.2.1 below summarizes the approach with noise-

free observations Ft and λ = 0.

Algorithm 4.2.1 GP-UCB with noise-free observations.
1: Input: Kernel k; Total number of iterations T ; Initial design points X0; Initial noise-free

observations F0. Weights {βt}Tt=1.
2: Construct µ0,0(x) and σ0,0(x) using X0 and F0.
3: For t = 1, . . . , T do:

1. Set
xt = argmax

x∈X
µt−1,0(x) + β

1
2
t σt−1,0(x).

2. Set Xt = Xt−1 ∪ {xt} and Ft = Ft−1 ∪ {f(xt)}.
3. Update µt,0(x) and σt,0(x) using Xt and Ft.

4: Output: optimization iterates {x1, x2, . . . , xT }.

4.2.3 Performance Metric

The performance of Bayesian optimization algorithms is often analyzed through bounds on

their simple regret, ST , given by

ST = f∗ − max
t=1,...,T

f(xt)

or their cumulative regret, RT , given by

RT =
T∑
t=1

rt, rt = f∗ − f(xt),

where f∗ is the maximum of the objective f, xt is the t-th iterate of the optimization

algorithm, and rt is called the instantaneous regret. Notice that from the definition, we

observe ST ≤ RT
T and ST ≤ rT . Naturally an upper bound on RT

T or rT serves as an upper
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bound for ST and the convergence of algorithm is implied by showing ST → 0 as T → ∞.

Several convergence results have been established directly through bounding the simple

regret or the instantaneous regret [Bull, 2011, De Freitas et al., 2012]. On the other hand,

the goal of theoretical analyses of optimization algorithms based on the cumulative regret

RT is to show sublinear growth rate of RT to ensure convergence to the global maximum. A

bound on the rate of convergence (with respect to simple regret) is then given by the decaying

rate of RT /T . In this context, RT serves as a useful intermediate quantity to establish

convergence rates for popular Bayesian optimization strategies including algorithms based

on upper confidence bounds [Srinivas et al., 2010, Chowdhury and Gopalan, 2017, Bogunovic

and Krause, 2021] and Thompson sampling [Chowdhury and Gopalan, 2017]. As noted in

[Bull, 2011], a caveat of using RT to analyze Bayesian optimization algorithms is that the

fastest rate of convergence one can obtain is T−1. In addition, RT accounts for costs that are

not incurred by the optimization algorithm. For these reasons, we analyze our new algorithms

using simple and instantaneous regret, and additionally compare our simple regret bounds

with those implied by existing bounds on RT .

4.2.4 Choice of Kernel

We will consider the well-specified setting where Gaussian process interpolation for surro-

gate modeling is implemented using the same kernel k which specifies the deterministic or

probabilistic assumptions on f, namely f ∈ Hk or f ∼ GP(0, k). The impact of kernel

misspecification on Bayesian optimization algorithms is studied in [Bogunovic and Krause,

2021, Kim et al., 2024].

For concreteness, we focus on Matérn kernels with smoothness parameter ν and length-

scale parameter ℓ, given by

k(x, x′) =
1

Γ(ν)2ν−1

(
∥x− x′∥

ℓ

)ν

Bν

(
∥x− x′∥

ℓ

)
,
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where Bν is a modified Bessel function of the second kind, and on squared exponential kernels

with lengthscale parameter ℓ, given by

k(x, x′) = exp

(
−∥x− x′∥2

2ℓ2

)
.

We recall that the Matérn kernel converges to the squared exponential kernel in the large ν

asymptotic. Both types of kernel are widely used in practice, and we refer to [Williams and

Rasmussen, 2006, Wendland, 2004, Stein, 2012] for further background.

4.3 Related Work

4.3.1 Existing Regret Bounds: Noisy Observations

Numerous works have established cumulative regret bounds for Bayesian optimization with

noisy observations under both deterministic assumption on the objective function [Srinivas

et al., 2010, Chowdhury and Gopalan, 2017, Vakili et al., 2021, Bogunovic and Krause,

2021, Russo and Van Roy, 2014, Kandasamy et al., 2018]. These bounds involve a quantity

known as the maximum information gain, which under a Gaussian noise assumption is given

by γt = 1
2 log |I + λ−1Ktt|, where λ > 0 represents the noise level. In particular, under

a deterministic objective function assumption, [Chowdhury and Gopalan, 2017] showed a

cumulative regret bound for GP-UCB of the form O
(
γT

√
T
)
, which improves the one

obtained in [Srinivas et al., 2010] by a factor of O
(
log3/2(T )

)
. By tightening existing upper

bounds on the maximum information gain, [Vakili et al., 2021] established a cumulative

regret bound for GP-UCB of the form

RT =


O
(
T

2ν+3d
4ν+2d log

2ν
2ν+d T

)
,

O
(
T

1
2 logd+1 T

)
,
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for Matérn and squared exponential kernels.

4.3.2 Existing Regret Bounds: Noise-Free Observations

In contrast to the noisy setting, few works have obtained regret bounds with noise-free ob-

servations. With an expected improvement acquisition function and Matérn kernel, [Bull,

2011] provided a simple regret bound of the form Õ
(
T−min{ν,1}/d

)
, where Õ suppresses

logarithmic factors, under deterministic objective function assumption. On the other hand,

[De Freitas et al., 2012] introduced a branch and bound algorithm that achieves an expo-

nential rate of convergence for the instantaneous regret, under the probabilistic assumption

on the objective function. However, unlike the standard GP-UCB algorithm, the algorithm

in [De Freitas et al., 2012] requires many observations in each iteration to reduce the search

space, and it further requires solving a constrained optimization problem in the reduced

search space.

To the best of our knowledge, [Lyu et al., 2019] presents the only cumulative regret bound

available for GP-UCB with noise-free observations under a deterministic assumption on the

objective. Specifically, they consider Algorithm 4.2.1, and, noticing that σt,0(x) ≤ σt,λ(x)

for any λ ≥ 0, they deduce that existing cumulative regret bounds for Bayesian optimization

with noisy observations remain valid with noise-free observations. Furthermore, in the noise-

free setting, the cumulative regret bound is improved by a factor of √γT , which comes from

using a constant weight parameter βt := ∥f∥2Hk(X )
given by the squared RKHS norm of the

objective. This leads to a cumulative regret bound with rate O(
√
γTT ), which gives

RT =


O
(
T

ν+d
2ν+d log

ν
2ν+d T

)
,

O
(
T

1
2 log

d+1
2 T

)
,

(4.2)

for Matérn and squared exponential kernels.
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4.3.3 Tighter Cumulative Regret Bound for Squared Exponential Kernels

[Vakili, 2022] sets as an open problem whether one can improve the cumulative regret bounds

in (4.2) for the GP-UCB algorithm with noise-free observations. For squared exponential

kernels, we claim that one can further improve the cumulative regret bound in (4.2) by a

factor of
√
log T .

Theorem 4.3.1. Let f ∈ Hk(X ), where k is a squared exponential kernel. GP-UCB with

noise-free observations and βt := ∥f∥2Hk
satisfies the cumulative regret bound

RT = O
(
T

1
2 log

d
2 T
)
,

which yields the convergence rate of

ST = O
(
T−1

2 log
d
2 T
)
.

Remark 4.3.2. Our improvement in the bound comes from a constant term 1
log(1+λ−1)

,

which was ignored in existing analyses with noisy observations. By letting λ → 0, the

constant offsets a
√
log T growth in the cumulative regret bound.

Remark 4.3.3. For Matérn kernels, a similar approach to improve the rate is not feasible. A

state-of-the-art, near-optimal upper bound on the maximum information gain with Matérn

kernels obtained in [Vakili et al., 2021] introduces a polynomial growth factor as the noise

variance λ decreases to zero. Minimizing the rate of an upper bound in [Vakili et al., 2021]

one can match the rate obtained in [Lyu et al., 2019].

Remark 4.3.4. Unlike cumulative regret bounds with noisy observations, Theorem 4.3.1

and the results in [Lyu et al., 2019] are deterministic.
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4.3.4 Optimal Simple Regret Bounds

Under the deterministic objective function assumption, Theorem 4.3.1 refines the rate bound

in (4.2) for GP-UCB with noise-free observations using squared exponential kernels. In the

rest of the paper, we will design new algorithms that achieve drastically faster convergence

rates. In particular, for Matérn kernels, our algorithms nearly achieve the optimal con-

vergence rate in [Bull, 2011] of the form ST = Θ
(
T−ν

d

)
. Furthermore, our algorithms’

convergence rate is competitive to algorithms that satisfy the conjectured cumulative regret

bound in [Vakili, 2022] of the form

RT =


O(T

d−ν
d ), for d > ν

O(log T ), for d = ν

O(1), for d < ν

which translates to the convergence rate of

ST =


O
(
T−ν

d

)
, for d > ν

O
(
T−1 log T

)
, for d = ν

O
(
T−1

)
, for d < ν.

Our new algorithms nearly achieve the optimal convergence rate while preserving the ease of

implementation of GP-UCB algorithms. The recent preprint [Salgia et al., 2023] proposes an

alternative batch-based approach, which combines random sampling with domain shrinking

to attain the conjectured cumulative regret bounds for d ≥ ν with a high probability.
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4.4 Exploitation with Accelerated Exploration

4.4.1 How Well Does GP-UCB Explore?

The GP-UCB algorithm selects query points by optimizing an acquisition function which

incorporates the posterior mean to promote exploitation and the posterior standard devi-

ation to promote exploration. Our new algorithms are inspired by the desire to improve

the exploration of GP-UCB. Before introducing the algorithms in the next subsection, we

heuristically explain why such an improvement may be possible.

A natural way to quantify how well data Xt = {x1, . . . , xt} cover the search space X is

via the fill-distance, given by

h(X , Xt) := sup
x∈X

inf
xi∈Xt

∥x− xi∥.

The fill-distance appears in error bounds for Gaussian process interpolation and regression

[Wendland, 2004, Teckentrup, 2020, Stuart and Teckentrup, 2018, Tuo and Wang, 2020]. For

quasi-uniform points, it holds that h(X , Xt) = Θ
(
t−

1
d

)
, which is the fastest possible decay

rate for any sequence of design points. The fill-distance of the query points selected by our

new Bayesian optimization algorithms will (nearly) decay at this rate.

[Wenzel et al., 2021] introduced a stabilized greedy algorithm to obtain query points by

maximizing the posterior predictive standard deviation at each iteration. Their algorithm

sequentially generates a set of query points whose fill-distance decays at a rate Θ
(
t−

1
d

)
by sequentially solving constrained optimization problems, which can be computationally

demanding. Since GP-UCB simply promotes exploration through the posterior predictive

standard deviation term in the UCB acquisition function, one may heuristically expect the

fill-distance of query points selected by the standard GP-UCB algorithm to decay at a slower

rate. On the other hand, a straightforward online approach to obtain a set of query points

whose fill-distance nearly decays at a rate Θ
(
t−

1
d

)
is to sample randomly from a probability
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Figure 4.1: Average fill-distance of a set of query points obtained using four different al-
gorithms over 100 independent experiments. The results are based on a 10-dimensional
Rastrigin function. The discrete subset XD consists of 100 Latin hypercube samples.

measure P with a strictly positive Lebesgue density on X . Specifically, [Oates et al., 2019]

shows that, in expectation, the fill-distance of independent samples from such a measure

decays at a near-optimal rate: for any ϵ > 0, EP
[
h(X , Xt)

]
= O(t−

1
d+ϵ).

Figure 4.1 compares the decay of the fill-distance for query points selected using four

strategies. For a 10-dimensional Rastrigin function, we consider: (i) GP-UCB; (ii) EXPLOIT

(i.e., maximizing the posterior mean at each iteration); (iii) EXPLORE (i.e., maximizing the

posterior variance); and (iv) UNIFORM (i.e. independent uniform random samples on X ).

The results were averaged over 100 independent experiments. The fill-distance for GP-

UCB lies in between those for EXPLORE and EXPLOIT; whether it lies closer to one or

the other depends on the choice of weight parameter, which here we choose based on a

numerical approximation of the max-norm of the objective, β
1
2
t = maxx∈XD

|f(x)| where

XD is a discretization of the search space X . Note that UNIFORM yields a drastically

smaller fill-distance even when compared with EXPLORE. Our new algorithms will leverage

random sampling to enhance exploration in Bayesian optimization and achieve improved

regret bounds.

99



4.4.2 Improved Exploration via Random Sampling

In this subsection, we introduce two Bayesian optimization algorithms that leverage random

sampling as a tool to facilitate efficient exploration of the search space and enhance the ac-

curacy of surrogate models of the objective function with which to acquire new optimization

iterates. While the GP-UCB algorithm selects a single query point xt per iteration, our

algorithms select two query points {xt, x̃t} to produce a single optimization iterate xt.

The first algorithm we introduce, which we call GP-UCB+, selects a query point xt

using the GP-UCB acquisition function and another query point x̃t by random sampling.

We outline the pseudocode in Algorithm 4.4.1. The second algorithm we introduce, which we

call EXPLOIT+, decouples the exploitation and exploration goals, selecting one query point

xt by maximizing the posterior mean to promote exploitation, and another query point x̃t

by random sampling to promote exploration. We outline the pseudocode in Algorithm 4.4.2.

As noted above, both GP-UCB+ and EXPLOIT+ produce a single optimization iterate xt;

the role of the additional query point x̃t is to enhance the surrogate model of the objective

with which xt is acquired. Since our new algorithms require two query points per iteration,

in our numerical experiments in Section 4.5 we ensure a fair comparison by running them

for has as many iterations as used for algorithms that require one query point per iteration.

For the convergence rate analysis in Subsection 4.4.3, the fact that our algorithms require

twice as many iterations is inconsequential, since halving the number of iterations does not

affect the convergence rate.

Notably, EXPLOIT+ does not require input weight parameters {βt}Tt=1. As mentioned

in Section 4.3, many regret bounds for GP-UCB algorithms rely on choosing the weight

parameters as the squared RKHS norm of the objective or in terms of a bound on it. The

performance of GP-UCB and GP-UCB+ can be sensitive to this choice, which in practice

is often based on empirical tuning or heuristic arguments rather than guided by the theory.

In contrast, EXPLOIT+ achieves the same regret bounds as GP-UCB+ and drastically
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Algorithm 4.4.1 GP-UCB+.

1: Input: Kernel k; Total number of iterations T ; Initial design points X full
0 ; Initial noise-

free observations F full
0 ; Probability distribution P on X . Weights {βt}Tt=1.

2: Construct posterior mean µfull
0,0 (x) and standard deviation σfull

0,0 (x) using X full
0 and F full

0 .

3: For t = 1, . . . , T do:
1. Exploitation + Exploration: Set

xt = argmax
x∈X

µfull
t−1,0(x) + β

1
2
t σ

full
t−1,0(x).

2. Exploration: Sample x̃t ∼ P.

3. Set
X full
t = X full

t−1 ∪ {xt, x̃t},
F full
t = F full

t−1 ∪ {f(xt), f(x̃t)}.

4. Update µfull
t,0 (x) and σfull

t,0 (x) using X full
t and F full

t .

4: Output: optimization iterates {x1, x2, . . . , xT }.

Algorithm 4.4.2 EXPLOIT+.

1: Input: Kernel k; Total number of iterations T ; Initial design points X full
0 ; Initial noise-

free observations F full
0 ; Probability distribution P on X .

2: Construct posterior mean µfull
0,0 (x) and standard deviation σfull

0,0 (x) using X full
0 and F full

0 .

3: For t = 1, . . . , T do:
1. Exploitation: Set xt = argmaxx∈X µfull

t−1,0(x).

2. Exploration: Sample x̃t ∼ P.

3. Set
X full
t = X full

t−1 ∪ {xt, x̃t},
F full
t = F full

t−1 ∪ {f(xt), f(x̃t)}.

4. Update µfull
t,0 (x) using X full

t and F full
t .

4: Output: optimization iterates {x1, x2, . . . , xT }.
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faster rates than GP-UCB without requiring the practitioner to specify weight parameters.

Additionally, EXPLORE+ shows competitive empirical performance.

Remark 4.4.1. In the exploration step, one can acquire a batch of points to further enhance

the exploration of GP-UCB+ and EXPLOIT+. As long as the number of points sampled at

each iteration does not grow with respect to the iteration index t, the regret bounds stated

in Theorem 4.4.4 below remain valid.

Remark 4.4.2. A common heuristic strategy to expedite the performance of Bayesian op-

timization algorithms is to acquire a moderate number of initial design points by uniformly

sampling the search space. Since the order of the exploration and exploitation steps can

be swapped in our algorithms, such heuristic strategy can be interpreted as an initial batch

exploration step.

Remark 4.4.3. A natural choice for P is the uniform distribution on the search space X .

Our theory, which utilizes bounds on the fill-distance of randomly sampled query points from

[Oates et al., 2019], holds as long as P has a strictly positive Lebesgue density on X . In what

follows, we assume throughout that P satisfies this condition.

4.4.3 Regret Bounds

We now obtain regret bounds under the deterministic assumption that f belongs to the

RKHS of a kernel k. Our algorithms are random due to sampling from P, and we show

cumulative regret bounds in expectation with respect to such randomness.

Theorem 4.4.4. Let f ∈ Hk(X ). Suppose t ∈ N is large enough. GP-UCB+ with βt :=

∥f∥2Hk(X )
and EXPLOIT+ attain the following instantaneous regret bounds. For Matérn

kernels with parameter ν > 0,

EP [rt] = O
(
t−

ν
d+ε
)
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where ε > 0 can be arbitrarily small. For squared exponential kernels,

EP [rt] = O
(
exp

(
−Ct

1
d−ε
))

,

for some constant C > 0 with an arbitrarily small ε > 0.

Remark 4.4.5. In particular, these results imply that

EP [ST ] =


O
(
T−ν

d+ε
)
, for Matérn kernel

O
(
exp

(
−CT

1
d−ε
))

, for square exponential kernel

Remark 4.4.6. For Matérn kernels, in expectation, the proposed algorithms nearly attain

the optimal convergence rate established by [Bull, 2011] and the convergence rate implied by

the cumulative regret bound conjectured in [Vakili, 2022]. Moreover, one can further obtain

the exact optimal convergence rate by replacing the random sampling step in GP-UCB+

and EXPLOIT+ with a more computationally expensive quasi-uniform sampling scheme.

Remark 4.4.7. Compared with the GP-UCB algorithm with noise-free observations, the

proposed algorithms attain improved convergence rates in expectation for both Matérn and

squared exponential kernels. For the Matérn kernel, the new convergence rate has a faster

polynomial decaying factor with a removal of the logarithmic growth factor. For the squared

exponential kernel, the proposed algorithms have an exponential convergence rate, whereas

the improved bound for the GP-UCB algorithm in Theorem 4.3.1 has a convergence rate of

O(T−1
2 log

d
2 (T )).

Remark 4.4.8. For Matérn kernels, compared with the recent preprint [Salgia et al., 2023],

which attains O(T−1 log
3
2 T ) convergence rate when d < ν, our algorithms attains exponen-

tial convergence rate. When d ≥ ν, [Salgia et al., 2023] attains the convergence rate implied

by the conjecture in [Vakili, 2022] up to a logarithmic factor, while we attain the implied
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convergence rate up to a factor of O(T ε), for arbitrarily small ε > 0. Compared to existing

works, we additionally establish exponential convergence rates with the squared exponential

kernel.

Figure 4.2: Simple regret vs number of noise-free observations.

4.5 Numerical Experiments

This section explores the empirical performance of our methods on three benchmark objec-

tive functions, on hyperparameter tuning for a machine learning model, and on optimizing

a black-box objective function designed to guide engineering decisions. We compare the

new algorithms (GP-UCB+, EXPLOIT+) with GP-UCB and two other popular Bayesian

optimization strategies: Expected Improvement (EI) and Probability of Improvement (PI).

We also compare with the EXPLOIT approach outlined in Subsection 4.4.1, but not with

EXPLORE as this method did not achieve competitive performance. Throughout, we choose

the distribution P which governs random exploration in the new algorithms to be uniform

on X . For the weight parameter of UCB acquisition functions, we considered a well-tuned

constant value β
1/2
t = 2 that achieves good performance in our examples, and the ap-

proach in [Chowdhury and Gopalan, 2019], which sets β1/2t = maxx∈XD
|f(x)| where XD

is a discretization of the search space. All the hyperparameters of the kernel function were

iteratively updated through maximum likelihood estimation. Since the new algorithms need

two noise-free observations per iteration but the methods we compare with only need one,

we run the new algorithms for half as many iterations to ensure a fair comparison.
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4.5.1 Benchmark Objective Functions

We consider three 10-dimensional benchmark objective functions: Ackley, Rastrigin, and

Levy. Each of them has a unique global maximizer but many local optima, posing a challenge

to standard first and second-order convex optimization algorithms. Following the virtual li-

brary of simulation experiments: https://www.sfu.ca/ ssurjano/, we respectively set the

search space to be [−32.768, 32.768]10, [−5.12, 5.12]10, and [−10, 10]10. We used a Matérn

kernel with the default initial smoothness parameter ν = 2.5 and initial length scale parame-

ter ℓ = 1. For each method and objective, we obtain 400 noise-free observations and average

the results over 20 independent experiments. For GP-UCB and GP-UCB+, we set β1/2t = 2.

Figure 4.2 shows the average simple regrets, given by f∗ −maxt=1,...,T f(xt). We report the

regret as a function of the number of observations rather than the number of iterations to

ensure a fair comparison. For all three benchmark functions, GP-UCB+ and EXPLOIT+

outperform the other methods. To further demonstrate the strength of the proposed algo-

rithms, Table 4.5.1 shows the average simple regret at the last iteration, normalized so that

for each benchmark objective the worst-performing algorithm has unit simple regret. Table

4.7.1 in Appendix 4.7.3 shows results for the standard deviation, indicating that the new

methods are not only more accurate, but also more precise.

To illustrate the sensitivity of UCB algorithms to the choice of weight parameters, we in-

clude numerical results with β1/2t = maxx∈XD
|f(x)| in Appendix 4.7.3. In particular, since

GP-UCB+ has an additional exploration step through random sampling, using a smaller

weight parameter for GP-UCB+ than for GP-UCB tends to work more effectively. Remark-

ably, the parameter-free EXPLOIT+ algorithm achieves competitive performance compared

with UCB algorithms with well-tuned weight parameters.
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Table 4.5.1: Normalized average simple regret with 400 function evaluations for bench-
mark objectives in dimension d = 10.

Method Ackley Rastrigin Levy

GP-UCB+ 0.222 0.576 0.146
GP-UCB 0.583 0.930 0.768
EXPLOIT+ 0.342 0.505 0.126
EXPLOIT 1.000 1.000 1.000
EI 0.832 0.644 0.142
PI 0.891 0.698 0.507

4.5.2 Random Forest Hyperparameter Tuning

Here we use Bayesian optimization to tune four hyperparameters of a random forest re-

gression model for the California housing dataset [Pace and Barry, 1997]. The parameters

of interest are (i) three integer-valued quantities: the number of trees in the forest, the

maximum depth of the tree, and the minimum number of samples required to split the inter-

nal node; and (ii) a real-valued quantity between zero and one: the transformed maximum

number of features to consider when looking for the best split. For the discrete quantities,

instead of optimizing over a discrete search space, we performed the optimization over a con-

tinuous domain and truncated the decimal values when evaluating the objective function.

We split the dataset into training (80%) and testing (20%) sets. To define a deterministic

objective function, we fixed the random state parameter for the RandomForestRegressor

function from the Python scikit-learn package and built the model using the training set.

We then defined our objective function to be the negative mean-squared test error of the

built model. We used a Matérn kernel with initial smoothness parameter ν = 2.5 and

initial lengthscale parameter ℓ = 1. For the GP-UCB and GP-UCB+ algorithms, we set

β
1/2
t = maxx∈XD

|f(x)| where XD consists of 40 Latin hypercube samples. We conducted 20

independent experiments with 80 noise-free observations. From Table 4.5.2 and Figure 4.3,

we see that both GP-UCB+ and EXPLOIT+ algorithms led to smaller cumulative test er-
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rors. An instantaneous test error plot with implementation details can be found in Appendix

4.7.3.

Table 4.5.2: Cumulative test error averaged over 20 experiments.

Method Mean ± SD

GP-UCB+ 28.552± 1.971
GP-UCB 35.226± 1.467
EXPLOIT+ 26.346± 1.404
EXPLOIT 35.026± 1.092
EI 34.294± 0.987
PI 33.438± 1.085

Figure 4.3: Cumulative test error vs number of noise-free observations.

4.5.3 Garden Sprinkler Computer Model

The Garden Sprinkler computer model simulates the range of a garden sprinkler that sprays

water. The model contains eight physical parameters that represent vertical nozzle angle,

tangential nozzle angle, nozzle profile, diameter of the sprinkler head, dynamic friction mo-

ment, static friction moment, entrance pressure, and diameter flow line. First introduced in

[Siebertz et al., 2010] and later formulated into a deterministic black-box model by [Pour-
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mohamad, 2020], the goal is to maximize the accessible range of a garden sprinkler over the

domain of the eight-dimensional parameter space. In this problem, the observations of the

objective are noise-free. Following [Pourmohamad and Lee, 2021], for GP-UCB and GP-

UCB+ we set β1/2t = 2 and used a squared exponential kernel with an initial lengthscale

parameter ℓ2 = 50. We ran 30 independent experiments, each with 100 noise-free obser-

vations. The results in Table 4.5.3 and Figure 4.4 demonstrate that the new algorithms

achieve competitive performance. In particular, EXPLOIT+ attains on average the largest

maximum value, while also retaining a moderate standard deviation across experiments.

Table 4.5.3: Maximum attained value of the garden sprinkler objective function aver-
aged over 30 experiments.

Method Mean ± SD

GP-UCB+ 17.511 ± 1.603
GP-UCB 18.038 ± 2.026
EXPLOIT+ 18.427± 1.825
EXPLOIT 17.352 ± 2.537
EI 18.061 ± 1.657
PI 17.105 ± 2.329

Figure 4.4: Maximum attained value of the garden sprinkler objective function vs
number of noise-free observations.

108



4.6 Conclusion

This chapter has introduced two Bayesian optimization algorithms, GP-UCB+ and EX-

PLOIT+, that supplement query points obtained via UCB or posterior mean maximization

with query points obtained via random sampling. The additional sampling step in our al-

gorithms promotes search space exploration and ensures that the fill-distance of the query

points decays at a nearly optimal rate. From a theoretical viewpoint, we have shown that

GP-UCB+ and EXPLOIT+ satisfy near-optimal convergence rate that improve upon ex-

isting and refined rates for the classical GP-UCB algorithm with noise-free observations.

Indeed, at the price of a higher computational cost, one can obtain the optimal convergence

rate from [Bull, 2011] as well as the convergence rate implied by the conjectured cumulative

regret bound in [Vakili, 2022] by replacing the random sampling step in GP-UCB+ and

EXPLOIT+ with a quasi-uniform sampling scheme. From an implementation viewpoint,

both GP-UCB+ and EXPLOIT+ retain the appealing simplicity of the GP-UCB algorithm;

moreover, EXPLOIT+ does not require specifying input weight parameters. From an em-

pirical viewpoint, we have demonstrated that the new algorithms outperform existing ones

in a wide range of examples.
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4.7 Appendix

4.7.1 Proof of Theorem 4.3.1

Let f∗ = f(x∗) = maxx∈X f(x) and let rt = f∗ − f(xt) be the instantaneous regret. Then,

rt = f∗ − µt−1,0(x
∗) + µt−1,0(x

∗)− µt−1,0(xt) + µt−1,0(xt)− f(xt)

(i)
≤ ∥f∥Hk(X )σt−1,0(x

∗) + µt−1,0(x
∗)− µt−1,0(xt) + ∥f∥Hk(X )σt−1,0(xt)

(ii)
≤ ∥f∥Hk(X )σt−1,0(xt) + µt−1,0(xt)− µt−1,0(xt) + ∥f∥Hk(X )σt−1,0(xt)

= 2∥f∥Hk(X )σt−1,0(xt),

(4.3)

where for (i) we use twice that, for any x ∈ X , it holds that |f(x)−µt−1,0(x)| ≤ ∥f∥Hk(X )σt−1,0(x)

—see for instance Corollary 3.11 in [Kanagawa et al., 2018]— and for (ii) we use the definition

of xt in the GP-UCB algorithm. Thus, for any λ > 0,

R2
T

(i)
≤ T

T∑
t=1

r2t
(ii)
≤ 4T∥f∥2Hk(X )

T∑
t=1

σ2t−1,0(xt)
(iii)
≤ 4T∥f∥2Hk(X )

T∑
t=1

σ2t−1,λ(xt),

where (i) follows by the Cauchy-Schwarz inequality, (ii) from the bound on rt, and (iii) from

the fact that σt−1,0(xt) ≤ σt−1,λ(xt) for any λ > 0. Since the function x
log(1+x)

is strictly

increasing in x and for the squared exponential kernel it holds that λ−1σ2t−1,λ(xt) ≤ λ−1,

we have that λ−1σ2t−1,λ(xt) ≤
λ−1

log(1+λ−1)
log
(
1 + λ−1σ2t−1,λ(xt)

)
. Therefore,

R2
T ≤

8T∥f∥2Hk(X )

log(1 + λ−1)

1

2

T∑
t=1

log
(
1 + λ−1σ2t−1,λ(xt)

) ≤
8T∥f∥2Hk(X )

log(1 + λ−1)
γT,λ, (4.4)
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where the last inequality follows from Lemma 5.3 in [Srinivas et al., 2010]. Since (4.4) holds

for any λ > 0, by plugging λ = T−α, for some α > 0, we conclude that

R2
T ≤

8T∥f∥2Hk(X )

log(1 + Tα)
γT,T−α . (4.5)

For squared exponential kernels, Corollary 1 in [Vakili et al., 2021] implies that

γT,T−α ≤
((

2(1 + α) log T + C̃(d)
)d

+ 1

)
log
(
1 + T 1+α

)
≲ logd(T ) log

(
1 + T 1+α

)
,

where C̃(d) = O(d log d) is independent of T and λ. Hence, using that log(1+Tα+1)
log(1+Tα)

≤ α+1
α

for α > 0, T ≥ 1, we obtain

R2
T ≲ T logd(T )

log(1 + T 1+α)

log(1 + Tα)
≲ T logd(T ),

concluding the proof.

4.7.2 Proof of Theorem 4.4.4

We first prove the cumulative regret bound for GP-UCB+. As in (4.3), one can show that

rt ≤ 2∥f∥Hk(X )σ
full
t−1,0(xT ) ≤ 2∥f∥Hk(X ) sup

x∈X
σfull
t−1,0(x).

For Matérn kernels, for large t ∈ N, [Wu and Schaback, 1993] shows that supx∈X σfull
t−1,0(x) ≤

h(X , X full
t )ν —see also Lemma 2 in [Wang et al., 2020]. Moreover, we have the trivial bound

h(X , X full
t ) ≤ ht(X ) := sup

x∈X
inf

x̃i∈{x̃1,...,x̃t}
∥x− x̃i∥.
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Hence, for any ϵ > 0,

EP [rt] ≲ EP

[
sup
x∈X

σfull
t−1,0(x)

]
≲ EP

[
ht(X )ν

] (⋆)

≲ t−
ν
d+ε,

where (⋆) follows from Proposition 4 in [Helin et al., 2023] —see also Lemma 2 in [Oates

et al., 2019].

For squared exponential kernels, Theorem 11.22 in [Wendland, 2004] shows that, for some

C > 0, supx∈X σfull
t−1,0(x) ≤ exp

(
−C/h(X , X full

t )
)
. Hence, for any ϵ ≤ 1

2d ,

EP [rt] ≲ EP

[
sup
x∈X

σfull
t−1,0(x)

]
≲ EP

[
exp
(
−C/ht(X )

)] (⋆)

≲ exp
(
−Ct

1
d−ε
)
,

where (⋆) follows from Proposition 4 in [Helin et al., 2023] —see also Lemma 2 in [Oates

et al., 2019].

For the EXPLOIT+ algorithm, we have that

rt = f∗ − f(xt)

= f∗ − µfull
t−1,0(x

∗) + µfull
t−1,0(x

∗)− µfull
t−1,0(xt) + µfull

t−1,0(xt)− f(xt)

(i)
≤ ∥f∥Hk

σfull
t−1,0(x

∗) + µfull
t−1,0(x

∗)− µfull
t−1,0(xt) + ∥f∥Hk

σfull
t−1,0(xt)

(ii)
≤ ∥f∥Hk(X )σ

full
t−1,0(x

∗) + ∥f∥Hk(X )σ
full
t−1,0(xt)

≤ 2∥f∥Hk(X ) sup
x∈X

σfull
t−1,0(x),

where for (i) we use twice that, for any x ∈ X , |f(x) − µt−1,0(x)| ≤ ∥f∥Hk(X )σt−1,0(x)

holds, and for (ii) we use the definition of xt in the EXPLOIT+ algorithm. The rest of the

proof proceeds exactly as the one for GP-UCB+, and we hence omit the details.
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4.7.3 Additional Experiments and Implementation Details

Benchmark Functions

This appendix provides detailed descriptions of the numerical experiments conducted in

Section 4.5.1. The functional forms of the three objective functions we considered and their

respective search space are provided below. For all three benchmark functions we denote

x = (x1, . . . , xd) and set d = 10.

• Ackley function: for x ∈ [−32.768, 32.768]d,

f(x) = −20 exp

−1

5

√√√√1

d

d∑
i=1

(xi)2

− exp

1

d

d∑
i=1

cos(2πxi)

+ 20 + exp(1).

• Rastrigin function: for x ∈ [−5.12, 5.12]d,

f(x) = 10d+
d∑

i=1

[(xi)2 − 10 cos(2πxi)].

• Levy function: With ωi = 1 + xi−1
4 , for all i ∈ {1, . . . , d}, for x ∈ [−10, 10]d,

f(x) = sin2(πω1) +
d−1∑
i=1

(ωi − 1)2[1 + 10 sin2(πωi + 1)] + (ωd − 1)2[1 + sin2(2πωd)].

Recall that Figure 4.2 portrayed the average simple regret of the six Bayesian optimization

strategies we consider: GP-UCB+ (proposed algorithm), GP-UCB ([Srinivas et al., 2010])

(both with the choice of βt = 2), EXPLOIT+ (proposed algorithm), EXPLOIT (GP-UCB

with βt = 0), EI (Expected Improvement), and PI (Probability of Improvement). The

simple regret values at the last iteration were displayed in Table 4.5.1. Furthermore, Table

4.7.1 shows the standard deviations of the last simple regret values over 20 independent

experiments. From Figure 4.2 and Table 4.7.1, one can see that not only were the proposed
113



Table 4.7.1: Normalized average standard deviation of simple regret with 400 function
evaluations for different benchmark objectives in dimension d = 10.

Method Ackley Rastrigin Levy

GP-UCB+ 0.075 0.797 0.131
GP-UCB 1.000 1.000 0.719
EXPLOIT+ 0.306 0.577 0.127
EXPLOIT 0.733 0.976 1.000
EI 0.466 0.609 0.160
PI 0.329 0.360 0.312

methods (GP-UCB+ and EXPLOIT+) able to yield superior simple regret performance, but

also their standard deviations were substantially smaller than those of the other methods,

indicating superior stability.

Additionally, Figure 4.5 shows the cumulative regret for GP-UCB+ and GP-UCB with

different choices of βt. All results were averaged over 20 independent experiments. We

considered β
1/2
t = 2 and β

1/2
t = maxx∈XD

|f(x)| where XD is a set of 100 Latin hypercube

samples. In all experiments, maxx∈XD
|f(x)| was significantly larger than 2. Figure 4.5

demonstrates that the choice of βt can significantly influence the cumulative regret. In

particular, we have observed that the GP-UCB+ algorithm tends to work better with smaller

βt values, as the algorithm contains additional exploration steps through random sampling;

this behavior can also be seen in Figure 4.5. In all three benchmark functions, GP-UCB

exhibits sensitivity to the choice of parameter βt; in contrast, our EXPLOIT+ algorithm does

not require specifying weight parameters and consistently achieves competitive or improved

performance across all our experiments.

Hyperparameter Tuning

To train the random forest regression model for California housing dataset [Pace and Barry,

1997], we first divided the dataset into test and train datasets. 80 percent of (feature vector,
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Figure 4.5: Simple regret plots for benchmark functions with β
1/2
t = 2 (TWO) and

β
1/2
t = maxx∈XD

|f(x)| (SUP).

response) pairs were assigned to be the training set, while the remaining 20 percent were

treated as a test set. In constructing the deterministic objective function, we defined it

to be a mapping from the vector of four hyperparameters to a negative test error of the

model built based on the input and training set. As the model construction may involve

randomness coming from the bootstrapped samples, we fixed the random state parameter

to remove any such randomness in the definition of the objective. We tuned the following

four hyperparameters:

• Number of trees in the forest ∈ [10, 200].

• Maximum depth of the tree ∈ [1, 20].

• Minimum number of samples requires to split the internal node ∈ [2, 10].

• Maximum proportion of the number of features to consider when looking for the best

split ∈ [0.1, 0.999].

For the first three parameters we conducted the optimization task in the continuous domain

and rounded down to the nearest integers. Figure 4.6 shows that the proposed algorithms

attained smaller cumulative and instantaneous test errors.
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Figure 4.6: Test errors vs number of noise-free observations.

Garden Sprinkler Computer Model

For the Garden Sprinkler computer model, the eight-dimensional search space we considered

was given by:

• Vertical nozzle angle ∈ [0, 90].

• Tangential nozzle angle ∈ [0, 90].

• Nozzle profile ∈ [2× 10−6, 4× 10−6].

• Diameter of the sprinkler head ∈ [0.1, 0.2].

• Dynamic friction moment ∈ [0.01, 0.02].

• Static friction moment ∈ [0.01, 0.02].

• Entrance pressure ∈ [1, 2].

• Diameter flow line ∈ [5, 10].
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CHAPTER 5

OPTIMIZATION ON MANIFOLDS VIA GRAPH GAUSSIAN

PROCESSES

5.1 Introduction

Optimization problems on manifolds are ubiquitous in science and engineering. For in-

stance, low-rank matrix completion and rotational alignment of 3D bodies can be formu-

lated as optimization problems over spaces of matrices that are naturally endowed with

manifold structures. These matrix manifolds belong to agreeable families [Ye et al., 2022]

for which Riemannian gradients, geodesics, and other geometric quantities have closed-form

expressions that facilitate the use of Riemannian optimization algorithms [Edelman et al.,

1998, Absil et al., 2009, Boumal, 2020]. In contrast, this chapter is motivated by optimiza-

tion problems where the search space is a manifold that the practitioner can only access

through a discrete point cloud representation, preventing direct use of Riemannian opti-

mization algorithms. Moreover, the hidden manifold may not belong to an agreeable family,

further hindering the use of classical methods. Illustrative examples where manifolds are

represented by point cloud data include computer vision, robotics, and shape analysis of

geometric morphometrics [Hein and Audibert, 2005, Gao et al., 2019, Garcia Trillos et al.,

2019]. Additionally, across many applications in data science, high-dimensional point cloud

data contains low-dimensional structure that can be modeled as a manifold for algorithmic

design and theoretical analysis [Coifman and Lafon, 2006, Belkin et al., 2006, Garcia Trillos

et al., 2020b]. Motivated by these problems, this chapter introduces a Bayesian optimiza-

tion method with convergence guarantees to optimize an expensive-to-evaluate function on

a point cloud of manifold samples.
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To formalize our setting, consider the optimization problem

maximize f(x), x ∈ MN , (5.1)

where MN = {xi}Ni=1 is a collection of samples from a compact manifold M ⊂ Rd. We

assume that the manifold M is unknown to the practitioner, but that they have access

to the samples MN . The objective function f in (5.1) is defined on the hidden manifold

M; however, since M is unknown, we restrict the search domain to the given point cloud

MN . Motivating examples include locating the portion of busiest traffic along a highway

(idealized as a one-dimensional manifold), or finding the point of highest temperature on an

artificial surface for material design. In these and other applications, the search domains are

manifolds for which only a discrete representation may be available. As a result, Riemannian

optimization methods [Edelman et al., 1998, Absil et al., 2009, Boumal, 2020, Hu et al., 2020,

Ye et al., 2022] that require Riemannian gradients or geodesics are not directly applicable.

While being discrete, the optimization problem (5.1) is challenging when the objective

function f is expensive to evaluate due to computational, monetary, or opportunity costs.

For instance, querying f may involve numerically solving a system of partial differential

equations, placing a sensor at a new location, or time-consuming human labor. In such cases,

solving (5.1) by exhaustive search over MN is unfeasible for large N, and it is important

to design optimization algorithms that provably require fewer evaluations of the objective

than the size N of the point cloud. Solving (5.1) is also challenging in applications where

the objective function does not satisfy structural assumptions (e.g. concavity or linearity)

other than a sufficient degree of smoothness, and in applications where f is a black-box in

that one has only access to noisy output from f rather than to an analytic expression of this

function. We refer to [Frazier, 2018] for a survey of problems where these conditions arise.

Motivated by these geometric and computational challenges, we introduce an approach

to solve (5.1) that works directly on the point cloud MN and necessitates few evaluations of
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the objective. In particular, we show that in the large N limit and under suitable smoothness

assumptions, our method provably requires far fewer evaluations of the objective than the size

N of the point cloud. Our algorithm falls in the general framework of Bayesian optimization

and is specifically designed to achieve such a convergence guarantee. The main focus will

be on the mathematical analysis of the proposed approach, but we also present simulation

studies to illustrate and complement our theory.

5.1.1 Overview of our Approach

We adopt a Bayesian optimization (BO) approach to solve (5.1) because the problem fea-

tures that gradients are not available and evaluation of the objective is expensive. BO is

an iterative procedure that relies on solving a sequence of surrogate optimization problems

to sidestep the need of gradient information on f. At each iteration, the surrogate problem

is to optimize an acquisition function defined using a probabilistic model of the objective

function conditioned to previous iterates. The acquisition function should be inexpensive

to evaluate and optimize, and at the same time provide useful information about where

the optimizer of f is most likely to lie. The probabilistic model should be sufficiently rich

to adequately represent the objective function. Many choices of acquisition function have

been proposed in the literature, including expected improvement, entropy search, and knowl-

edge gradient (see [Frazier, 2018] for a review). Popular probabilistic models for f include

Gaussian processes [Williams and Rasmussen, 2006, Gramacy, 2020] and Bayesian additive

regression trees [Chipman et al., 2010]. Adequately choosing the acquisition function and

the probabilistic model is essential to the success of BO algorithms.

The BO method that we propose and analyze has the distinctive feature that both the

probabilistic model and the acquisition function are carefully chosen to ensure convergence

of the returned solution to a global maximizer of f under suitable smoothness assumptions.

A natural way to characterize the smoothness of f is to assume it is a sample path from
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a Gaussian process (GP) defined on M. Under this smoothness assumption, we adopt a

graph GP model [Sanz-Alonso and Yang, 2022a, Borovitskiy et al., 2021] for f |MN
, the

restriction of f to the point cloud. The graph GP is designed to be a discretely indexed

GP that approximates a Matérn or squared exponential GP on the hidden manifold M as

the size of the point cloud grows to infinity. Applications of graph GPs in Bayesian inverse

problems, spatial statistics, and semi-supervised learning are discussed in [Sanz-Alonso and

Yang, 2022a, Garcia Trillos et al., 2022, Harlim et al., 2020, 2022]. In this chapter, we extend

the convergence analysis for Matérn graph GP models in [Sanz-Alonso and Yang, 2022a,b,

Garcia Trillos et al., 2020b, Garcia Trillos and Sanz-Alonso, 2018] to also cover squared

exponential kernels, see Proposition 5.2.3.

Such error analysis is important since it allows us to quantify the misspecification error

when modeling f |MN
with a graph GP. In particular, the model that we use for computation

does not necessarily match the true distribution of f |MN
due to the missing information

about M; to obtain convergence guarantees, this geometric misspecification needs to be

corrected by suitably choosing the acquisition function. We accomplish this goal by applying

the framework developed in [Bogunovic and Krause, 2021]. In so doing, we adapt their

formulation to cover our problem setting, where f is a sample path from a GP instead of an

element of a reproducing kernel Hilbert space.

5.1.2 Contributions and Related Work

Our careful choice of probabilistic model and acquisition function allows us to establish a

bound on the simple regret (see (5.4) for its definition) that converges to zero as the number

L of evaluations of the objective and the size N of the point cloud converge to infinity while

keeping the relation L≪ N (see Theorem 5.2.5, Remark 5.2.6, and Corollary 5.2.7). In other

words, our algorithm can provably find a global maximizer of f as we acquire more samples

from the compact manifold M while still keeping the number of evaluations of the objective
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much smaller than the size of the point cloud. We are not aware of an existing algorithm

to solve (5.1) that enjoys a similar convergence guarantee. Synthetic computed examples

will complement the theory, illustrate the applicability of our method, and showcase the

importance of incorporating geometric information in the probabilistic model.

As noted in [Frazier, 2018], BO algorithms have been most popular in continuous Eu-

clidean domains. Methods that are tailored to manifold settings [Jaquier et al., 2020, 2022]

and discrete spaces [Baptista and Poloczek, 2018, Luong et al., 2019, Swersky et al., 2020,

Deshwal et al., 2021] have received less attention. On the one hand, the search domain in

our setting (5.1) is a discrete subset of a manifold, but naive application of discrete BO (e.g.

using a standard Euclidean GP on the ambient space Rd) would fail to adequately exploit

the geometric information contained in the point cloud; in particular, it would fail to suitably

encode smoothness of the probabilistic model for f along the hidden manifold M. The em-

pirical advantage of our graph GPs over Euclidean kernels will be illustrated in our numerical

experiments (see Subsection 5.4.2). On the other hand, the manifold in our setting is only

available as a point cloud, which precludes the use of manifold BO approaches [Jaquier et al.,

2020, 2022] that require access to geodesic distances and eigenpairs of the Laplace-Beltrami

operator on M for modeling f , and to Riemannian gradients for optimizing the acquisi-

tion function. Therefore, our algorithm solves a practical problem for which limited tools

with theoretical guarantees are available. In the context of Riemannian optimization, our

algorithm is still applicable when the differential geometric quantities necessary for gradient-

based methods are not readily available. A closely related work in this direction is [Shustin

et al., 2022], which also assumes a point cloud representation of the manifold but instead

reconstructs from it tangent spaces, gradients, and retractions, followed by an approximate

Riemannian gradient descent. This chapter differs from [Shustin et al., 2022] in that our

algorithm is based on Bayesian optimization and no gradient approximation is carried out,

as a result of which we do not need to assume the point cloud to be quasi-uniform. Going
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beyond manifold constraints, optimization of functions with low effective dimensionality has

been addressed in [Wang et al., 2016, Kirschner et al., 2019, Cartis et al., 2023a,b] employing

subspace methods (see also the references therein).

5.1.3 Outline

• Section 5.2 introduces the graph Gaussian process upper confidence bound (GGP-UCB)

algorithm and describes the choice of surrogate model and acquisition function. Our

main result, Theorem 5.2.5, establishes convergence rates.

• Section 5.3 discusses important practical considerations such as estimating the param-

eters of the surrogate model and tuning the acquisition function.

• Section 5.4 contains numerical examples that illustrate and complement the theory.

• Section 5.5 closes with a summary of this chapter and directions for further research.

• The proofs of our main results can be found in the appendices.

5.1.4 Notation

For a, b two real numbers, we denote a ∧ b = min{a, b} and a ∨ b = max{a, b}. The symbol

≲ will denote less than or equal to up to a universal constant. For two real sequences {ai}

and {bi}, we denote (i) ai ≪ bi if limi(ai/bi) = 0; (ii) ai = O(bi) if lim supi(ai/bi) ≤ C for

some positive constant C; and (iii) ai ≍ bi if c1 ≤ lim infi(ai/bi) ≤ lim supi(ai/bi) ≤ c2 for

some positive constants c1, c2.

5.2 The GGP-UCB Algorithm

In this section we introduce our algorithm and establish convergence guarantees. We start

in Subsection 5.2.1 by formalizing the problem setting. Subsection 5.2.2 describes the main
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GGP-UCB algorithm. The choice of surrogate model and acquisition function are discussed

in Subsections 5.2.3 and 5.2.4, respectively. Finally, Subsection 5.2.5 presents our main

theoretical result, Theorem 5.2.5.

5.2.1 Problem Formulation

Let f be a function defined over a compact Riemannian submanifold M ⊂ Rd of dimension

m. Suppose that a full representation of M is not available and we are only given the

dimension m and a point cloud of manifold samples {xi}Ni=1 =: MN ⊂ M. We are interested

in solving the optimization problem

max
x∈MN

f(x) (5.2)

in applications where the objective f is expensive to evaluate and we may only collect L≪ N

noisy measurements yℓ of the form

yℓ = f(zℓ) + ηℓ, ηℓ
i.i.d.∼ N (0, σ2), 1 ≤ ℓ ≤ L, (5.3)

where {zℓ}Lℓ=1 are query points and σ is a given noise level. The goal is then to solve (5.2)

with L≪ N queries of f .

Let ZL := {zℓ}Lℓ=1 ⊂ MN denote the query points sequentially found by our algorithm,

introduced in Subsection 5.2.2 below. We shall quantify the performance of our approach

using the simple regret, defined as

rN,L := f(z∗MN
)− f(z∗L), z∗MN

= argmax
z∈MN

f(z), z∗L = argmax
z∈ZL

f(z). (5.4)

Note that the simple regret depends both on the number L of queries and on the size N of

the point cloud, since z∗MN
and z∗L both depend implicitly on N . One should interpret N as
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a large fixed number and L as the running index. The dependence on N of the query points

zℓ’s will be omitted for notational simplicity.

Remark 5.2.1. The optimizer z∗MN
over the point cloud MN is not necessarily the global

optimizer of f over M. Since we only have access to MN , finding the maximizer over MN

is the best we can hope for without reconstructing or estimating the hidden manifold M.

Nevertheless, we will show in Corollary 5.2.7 that the continuum regret, defined as

rcontN,L := f(z∗M)− f(z∗L), z∗M = argmax
z∈M

f(z), z∗L = argmax
z∈ZL

f(z), (5.5)

also converges to zero as both N and L approach infinity while keeping L ≪ N if the xi’s

satisfy Assumption 5.2.2. In other words, the maximizer z∗L returned by our algorithm is an

approximate global maximizer of f over M despite the fact that z∗L ∈ MN . □

5.2.2 Main Algorithm

The Bayesian approach to optimization starts by constructing a GP model for the function

to be optimized. We recall that a GP with mean µ(·) and covariance c(·, ·) is a stochastic

process where the joint distribution over any finite set of indices s1, . . . , sn is a multivariate

Gaussian with mean vector [µ(si)]
n
i=1 and covariance matrix [c(si, sj)]

n
i,j=1 [Williams and

Rasmussen, 2006]. The mean and covariance functions together encode information about

the values of the function, their correlation, and their uncertainty.

In our setting, we need to construct a GP surrogate prior model πN for fN , where πN

would simply be an N -dimensional multivariate Gaussian. A natural requirement is that, for

uN ∼ πN , uN (xi) and uN (xj) should be highly correlated iff xi and xj are close along the

manifold, that is, if the geodesic distance dM(xi, xj) is small. We shall discuss in Subsection

5.2.3 prior models πN that fulfill this requirement. Defining the covariance matrix of πN by

using a standard covariance function in the Euclidean space Rd would in general fail to meet
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this requirement, since two points may be close in Euclidean space but far apart in terms of

the geodesic distance dM in M.

Once a choice of surrogate prior model is made, the next step is to sequentially find query

points by maximizing an acquisition function [Srinivas et al., 2010]. Suppose we have picked

query points z1, . . . , zℓ−1 in the first ℓ− 1 iterations and obtained noisy measurements

yk = f(zk) + ηk, ηk
i.i.d.∼ N (0, σ2), 1 ≤ k ≤ ℓ− 1. (5.6)

At the ℓ-th iteration, we will pick the next query point zℓ by maximizing an upper confidence

bound acquisition function [Srinivas et al., 2010, Bogunovic and Krause, 2021] of the form

AN,ℓ(z) = µN,ℓ−1(z) +BN,ℓσN,ℓ−1(z), z ∈ MN , (5.7)

where BN,ℓ is a user-chosen parameter, and µN,ℓ−1, σN,ℓ−1 are the mean and standard

deviation of the posterior distribution πN (· | y1, . . . , yℓ−1).Denoting by cN (·, ·) the covariance

function of the surrogate prior πN , i.e., cN (xi, xj) is the covariance between uN (xi) and

uN (xj) for uN ∼ πN , we have the expressions

µN,ℓ−1(z) = cN,ℓ−1(z)
⊤(CN,ℓ−1 + σ2I)−1Yℓ−1,

σ2N,ℓ−1(z) = cN (z, z)− cN,ℓ−1(z)
⊤(CN,ℓ−1 + σ2I)−1cN,ℓ−1(z),

z ∈ MN , (5.8)

where Yℓ−1 = (y1, . . . , yℓ−1)
⊤ ∈ Rℓ−1, cN,ℓ−1(z) ∈ Rℓ−1 is a vector whose i-th entry is

cN (z, zi), and CN,ℓ−1 ∈ Rℓ−1×ℓ−1 is a matrix with entries (CN,ℓ−1)ij = cN (zi, zj).

The GGP-UCB method is summarized in Algorithm 5.2.1. The intuition is that maximiz-

ing the acquisition function (5.7) represents a compromise between choosing points where

the mean of the surrogate is large (exploitation) and where the variance is large (explo-

ration). The parameter BN,ℓ balances these two competing goals and its choice is crucial to

the performance of the algorithm. In particular, we will discuss in Subsection 5.2.4 a choice
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Algorithm 5.2.1 The GGP-UCB Algorithm
Require: Point cloud MN ; prior πN ; initialization z0; total iterations L; parameters
{BN,ℓ}Lℓ=1.
for ℓ = 1, . . . , L do

Observe yℓ−1 = f(zℓ−1) + ηℓ−1, with ηℓ−1
i.i.d.∼ N (0, σ2).

Compute µN,ℓ−1 and σN,ℓ−1 based on {(zk, yk)}ℓ−1
k=0.

Choose zℓ = argmax
z∈MN

{
µN,ℓ−1(z) +BN,ℓσN,ℓ−1(z)

}
.

end for
Ensure: z1, . . . , zL.

of BN,ℓ that helps correct for misspecification arising from the point cloud representation of

M, and we will discuss in Subsection 5.3.3 a practical approach for tuning BN,ℓ empirically.

Finally, we point out that in practice one may choose to return as output of the algorithm

the candidate zℓ that leads to the largest observation yℓ when the noise is small, or, other-

wise, the zℓ that maximizes the posterior mean at the L-th iteration, i.e., the mean µN,L of

πN (· | y1, . . . , yL).

5.2.3 Choice of Prior: Graph Gaussian Processes (GGPs)

In this subsection we review the construction of GGP models for fN , the restriction of f to

the xi’s. We first give a brief overview of manifold GPs before describing GGPs. Manifold

GPs will be used in our theoretical analysis, but are not implementable in our setting since

the manifold M is unknown to the practitioner. The presentation in this subsection follows

[Sanz-Alonso and Yang, 2022a, Borovitskiy et al., 2020] and readers familiar with manifold

GPs and GGPs can skip to Proposition 5.2.3.

Manifold GP Models

Since f is a function over M, it will be useful to start by recalling the construction of GPs

over M. A naive approach would be to simply use geodesic distances instead of Euclidean
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ones in covariance functions such as the Matérn and squared exponential (SE)

cMa
ν,κ(x, x̃) =

21−ν

Γ(ν)
(κ|x− x̃|)ν Kν (κ|x− x̃|) , cSE

τ (x, x̃) = exp

(
−|x− x̃|2

4τ

)
, (5.9)

where | · | denotes the Euclidean distance, Γ is the gamma function, and Kν is the modified

Bessel function of the second kind. The parameters ν and κ in the Matérn covariance control

the smoothness of sample paths and the inverse length scale of the field, while the parameter

τ in the squared exponential covariance controls the length scale. (Note that we are not

including the variance parameter that usually appears as a multiplicative constant in the

covariances.) Unfortunately, the naive idea of plugging in geodesic distances often leads to

failure of positive definiteness of the resulting covariance matrix [Gneiting, 2013, Feragen

et al., 2015].

To circumvent this challenge, the seminal paper [Lindgren et al., 2011] exploits the

stochastic partial differential equation (SPDE) representation of Euclidean GPs with the

Matérn covariance function. More precisely, it is shown in [Whittle, 1963] that the GP with

covariance function cMa
ν,κ over a Euclidean space Rm is the unique stationary solution to the

following equation (up to a multiplicative constant independent of κ)

(κ2 −∆)
ν
2+

m
4 u(x) = κνW(x), x ∈ Rm, (5.10)

where ∆ is the usual Laplacian on Rm and W is a spatial white noise with unit variance.

The equation (5.10) can then be lifted to the manifold case to construct Matérn GPs over

manifolds [Lindgren et al., 2011]. Based on this idea, the papers [Sanz-Alonso and Yang,

2022a, Borovitskiy et al., 2020] study the following series definition of GPs over compact

manifolds:

(Matérn manifold-GP) uMa = κs−
m
2

∞∑
i=1

(κ2 + λi)
− s

2 ξiψi, ξi
i.i.d.∼ N (0, 1), (5.11)
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where (λi, ψi)’s are eigenvalue-eigenfunction pairs of the negative Laplace-Beltrami operator

−∆M on M. Compactness of M ensures that ∆M admits a countable eigenbasis so that

the solution to the analog equation of (5.10) over M can be represented as the series (5.11).

The parameters s, κ > 0 in (5.11) control the smoothness and the inverse length scale as in

the Euclidean case: s = ν+m/2 controls the spectrum decay, while κ acts as a cutoff on the

essential frequencies. The scaling factor κs−
m
2 ensures that samples from different κ’s have

L2-norms on the same order (see. e.g. [Sanz-Alonso and Yang, 2022a, Remark 2.1]), which

is essential in applications where κ needs to be inferred.

As the smoothness parameter ν → ∞, it can be shown that the Matérn covariance

converges (after a suitable normalization) to the SE covariance (see e.g. [Williams and Ras-

mussen, 2006, Section 4.2]). Accordingly, there is a similar SPDE to (5.10) that characterizes

the SE GP on a Euclidean space Rm [Borovitskiy et al., 2020]:

e−
τ∆
2 u(x) = τ

m
4 W(x), x ∈ Rm,

which motivates its manifold analog as the series expansion

(SE manifold-GP) uSE = τ
m
4

∞∑
i=1

e−
λiτ
2 ξiψi, ξi

i.i.d.∼ N (0, 1), (5.12)

where (λi, ψi)’s are eigenvalue-eigenfunction pairs of −∆M. Here the factor τ
m
4 is again

interpreted as balancing the magnitude of samples from different τ ’s (see Lemma 5.6.4).

Furthermore, the induced covariance function has the form

cSE(x, x̃) = τ
m
2

∞∑
i=1

e−λiτψi(x)ψi(x̃). (5.13)

Notice that this is also known as the heat kernel (up to the scaling factor τm/2), which is a

natural generalization of the SE kernel over the manifold. A similar expression holds for the
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induced covariance function of uMa:

cMa(x, x̃) = κ2s−m
∞∑
i=1

(κ2 + λi)
−sψi(x)ψi(x̃). (5.14)

Besides the connection with their Euclidean counterparts, notice that the random fields

(5.11) and (5.12) are series expansions of the eigenfunctions of the Laplace-Beltrami operator,

which form an orthonormal basis for L2(M) and carry rich information about the geometry

of M; therefore, (5.11) and (5.12) are natural GP models for functions over M. However,

computing the pairwise covariances (5.13) and (5.14) between any two points would require

knowledge of the Laplace-Beltrami eigenvalues and eigenfunctions, which are only known

analytically for a few manifolds such as the sphere and the torus, and can otherwise be

expensive to approximate. More importantly, in applications where only a point cloud

representation of M is available we need an empirical way to approximate the manifold GPs

(5.11) and (5.12). To that end, we will adopt a manifold learning approach using graph

Laplacians.

GGP Models

The construction in this subsection follows [Sanz-Alonso and Yang, 2022a]. Given a point

cloud MN = {x1, . . . , xN} ⊂ M, recall that our goal is to build a GP model for fN , the

restriction of f to the xi’s. It then suffices to construct an N -dimensional Gaussian that

approximates the manifold GPs (5.11) and (5.12); in particular, we need to construct a

suitable covariance matrix.

To start with, observe that the manifold Matérn GP (5.11) can be seen as the Karhunen-

Loève expansion of the Gaussian measure [Bogachev, 1998] (the infinite-dimensional analog
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of multivariate Gaussian) N (0, C), where C is the covariance operator

C = κ2s−m(κ2I −∆M)−s,

with I denoting the identity operator. Therefore a natural candidate for an N -dimensional

approximation is to consider the multivariate Gaussian N (0, CN ), where

CN = κ2s−m(κ2IN +∆N )−s (5.15)

for some ∆N ∈ RN×N constructed with the xi’s that approximates −∆M with IN denoting

the N -dimensional identity matrix. We shall set ∆N to be a suitable graph Laplacian, as we

describe next.

Let MN = {xi}Ni=1 be a collection of points on M. One can construct a weighted graph

over the xi’s by introducing a weight matrix W ∈ RN×N whose entry Wij represents the

similarity between points xi and xj . The unnormalized graph Laplacian is then defined as

∆N = D −W , where D is a diagonal matrix whose entries are Dii =
∑N

j=1Wij . One can

immediately check that ∆N is symmetric and positive semi-definite using the relation

v⊤∆Nv =
1

2

N∑
i=1

N∑
j=1

Wij |vi − vj |2, v ∈ RN ,

implying that ∆N admits a spectral decomposition with nonnegative eigenvalues {λN,i}Ni=1

(ordered increasingly) and the associated eigenvectors {ψN,i}Ni=1 form an orthonormal basis

for RN . Several normalizations of ∆N have also been considered, including the random walk

graph Laplacian ∆rw
N = D−1∆N and symmetric graph Laplacian ∆

sym
N = D−1/2∆ND

−1/2,

see [Von Luxburg, 2007]. We focus on the unnormalized version due to its symmetry, which

makes it a valid choice in the covariance matrix (5.15), and its convergence properties that

we will describe now.
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As its name suggests, ∆N approximates the Laplace-Beltrami operator in a suitable

sense. Indeed, if we set the pairwise similarity to be

Wij =
2(m+ 2)

Nνmh
m+2
N

1{|xi − xj | < hN}, (5.16)

where | · | denotes the Euclidean distance, νm is the volume of the m−dimensional unit ball

and hN is a graph connectivity parameter, then for suitable choices of hN it can be shown

(see e.g. [Garcia Trillos et al., 2020a] or Proposition 5.6.2) that the eigenpair (λN,i, ψN,i)

of ∆N approximates the corresponding eigenpair (λi, ψi) of −vol(M)−1∆M. Based on this

fact, we shall now define two GGPs as follows

(Matérn GGP) uMa
N = κs−

m
2

kN∑
i=1

(κ2 + λN,i)
− s

2 ξiψN,i, ξi
i.i.d.∼ N (0, 1), (5.17)

(SE GGP) uSE
N = τ

m
4

kN∑
i=1

e−
λN,iτ

2 ξiψN,i, ξi
i.i.d.∼ N (0, 1), (5.18)

where kN ≤ N is a truncation level to be determined. Notice that Matérn and SE GGPs can

be interpreted as discretely indexed GPs over the graph (MN ,W ), hence the name GGP.

Similar objects have also been studied by [Sanz-Alonso and Yang, 2022a, Borovitskiy et al.,

2021, Dunson et al., 2022]. When kN = N , we see that (5.17) is nothing but the multi-

variate Gaussian N
(
0, κ2s−m(κ2IN + ∆N )−s

)
, matching our goal (5.15) at the beginning.

The motivation for introducing the truncation is that the spectral approximation accuracy

degrades quickly when we go to higher modes (see e.g. Proposition 5.6.2), where the error

bounds are only meaningful when hN
√
λi ≪ 1. Therefore (5.17) can be seen as a low rank

approximation of (5.15) that keeps only the low and accurate frequencies. By Weyl’s law (see

e.g. [Canzani, 2013, Theorem 72]), λi ≍ i2/m and in particular λi → ∞, which suggests a

necessary condition kN ≪ h−m
N . In Subsection 5.3.2 we discuss an empirical way of choosing
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kN . The induced covariance functions take the form

cMa
N (x, x̃) = κ2s−m

kN∑
i=1

(κ2 + λN,i)
−sψN,i(x)ψN,i(x̃),

cSE
N (x, x̃) = τ

m
2

kN∑
i=1

e−λN,iτψN,i(x)ψN,i(x̃),

x, x̃ ∈ MN . (5.19)

Notice that the definitions (5.17) and (5.18) are completely parallel with (5.11) and

(5.12); hence the spectral convergence of ∆N leads to convergence of GGPs to their manifold

counterparts. We will rely on the following assumption:

Assumption 5.2.2. M is a smooth, compact and connected submanifold of dimension

m ≥ 2 in Rd that has no boundary and bounded sectional curvature, normalized so that

vol(M) = 1. Assume the xi’s are i.i.d. samples from the uniform distribution on M.

The following result provides a simplified statement of the convergence analysis for

Matérn GGPs in [Sanz-Alonso and Yang, 2022a,b] and in addition covers SE GGPs. The

proof can be found in the Appendix 5.6.1.

Proposition 5.2.3. Let 0 < ι < 1 be arbitrary. Define αm = (m + 4 + ι) ∨ (2m) and

βm,s =
2s−3m+1
6m+6 ∧ 1. Let pm = 3

4 when m = 2 and pm = 1
m otherwise. For s > 3

2m− 1
2 , set

(Matérn GGP) hN ≍ N− 1
αm (logN)

pm
2 , kN ≍ N

mβm,s
(2s−3m+1)αm (logN)

− mpmβm,s
(4s−6m+2) ,

(SE GGP) hN ≍ N− 1
αm (logN)

pm
2 , (logN)

m
2 ≪ kN ≪ N

m
(3m+3)αm (logN)−

mpm
6m+6 .

Under Assumption 5.2.2, with probability 1 − O(N−c) for some c > 0, there exists TN :

M → {x1, . . . , xN} satisfying TN (xi) = xi such that

E∥uMa
N ◦ TN − uMa∥∞ ≲ N−βm,s

2αm (logN)
βm,spm

4

E∥uSE
N ◦ TN − uSE∥∞ ≲ N− 1

2αm (logN)
pm
4

 =: ϵN . (5.20)
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The fact that we can study L∞-norms of these random fields follows from their almost

sure continuity established in [Sanz-Alonso and Yang, 2022b, Lemma 3] and Lemma 5.6.4.

Proposition 5.2.3 will be a key ingredient in establishing regret bounds for GGP-UCB.

5.2.4 Choice of Acquisition Function

When the GGP prior πN matches the truth fN , i.e., when fN is a sample from πN , [Srinivas

et al., 2010] gives a choice of BN,L for the acquisition function (5.7) that ensures vanishing

regret. However, this is not necessarily true in our case since fN is the restriction of a

function f over M whereas the GGP πN is only constructed with MN . A mismatch is

possible and below we address this issue following ideas in [Bogunovic and Krause, 2021].

Suppose that the function f to be optimized is a sample from the manifold GP (5.11)

(or (5.12)) and we adopt the corresponding GGP prior πN given by (5.17) (resp. (5.18)) for

fN . Proposition 5.2.3 then imples that if uN ∼ πN , we have with probability 1− δ

∥uN − fN∥∞ ≤ δ−1ϵN , (5.21)

where here ∥ · ∥∞ denotes the entry-wise maximum and ϵN is a placeholder for the ap-

proximation error defined in (5.20). In other words, there is potentially a misspecification

error coming from the fact that we are using an approximate GP to model fN . With the

understanding of such error obtained in Proposition 5.2.3, we can follow the approach in

[Bogunovic and Krause, 2021] and set

BN,ℓ =

√
2 log

(
π2ℓ2N

6δ

)
+
ϵN

√
ℓ− 1

δσ
, (5.22)

where we recall that σ is the noise standard deviation. Notice that this differs from the plain

GP-UCB in [Srinivas et al., 2010] by the additional term ϵN
√
ℓ− 1/δσ that aims to correct

for the misspecification. Intuitively, such correction leads to an increase of the weight on
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the posterior standard deviation, which accounts for the increased uncertainty due to the

approximate modeling. Therefore at the ℓ-th iteration, we shall pick the candidate zℓ as

zℓ = argmax
z∈MN

{
µN,ℓ−1(z) +

[√
2 log

(
π2ℓ2N

6δ

)
+
ϵN

√
ℓ− 1

δσ

]
σN,ℓ−1(z)

}
, (5.23)

where µN,ℓ−1 and σN,ℓ−1 are defined as in (5.8) but with cN (·, ·) being the graph covariance

functions (5.19).

Remark 5.2.4. In our setting we do not have access to the underlying manifold M and

hence continuous optimization is not applicable. As a result, (5.23) is optimized over the

discrete set MN and would require evaluation of the acquisition function over the entire point

cloud. If N is large and evaluating the acquisition function over the full point cloud is costly,

then one can, for practical purposes, approximately optimize (5.23) using a subsample of the

point cloud MN . Optimizing the acquisition function approximately is common practice in

BO. It is important to emphasize, however, that in the applications that motivate our work

the objective function f is much more expensive to evaluate than the acquisition function.

□

5.2.5 Main Result: Regret Bounds

Now we are ready to state our main result. Its proof can be found in Appendix 5.6.2.

Theorem 5.2.5. Suppose f is a sample from the Matérn manifold-GP (5.11) with parame-

ters κ, s (resp. SE manifold-GP (5.12) with parameter τ). Let πN be the Matérn (resp. SE)

GGP constructed as in Proposition 5.2.3 with the same parameters. Apply Algorithm 5.2.1

with πN and with BN,ℓ given by (5.22). Under Assumption 5.2.2, for N large enough, we
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have with probability 1− 2δ −O(N−c) that

rN,L ≤ C

[√
2 log(π2L2N/6δ)√

L
+
ϵN
δσ

]√
kN logL , ∀ L ≥ 1,

where c, C > 0 are universal constants. Here we recall that σ is the observation noise standard

deviation, kN is the truncation parameter in Proposition 5.2.3, and ϵN is the approximation

error as in (5.20).

Remark 5.2.6. By plugging the scaling in Proposition 5.2.3, we get

rN,L = Õ
(
(L−

1
2 + ϵN )

√
kN

)
= Õ


L−

1
2N

mβm,s
(4s−6m+2)αm +N

− (2s−4m+1)βm,s
(4s−6m+2)αm (Matérn)

L−
1
2 +N− 1

2αm (SE)
.

(5.24)

Here the notation Õ(·) means that we have dropped all dependence on logarithmic factors.

The regret goes to zero as both N and L approach infinity in both cases (when s > 7
4m+ 1

2

for the Matérn case), although we recall that N should be treated as a fixed large number

and L is the running index. The two terms in the above upper bound can be understood

as the error incurred by Bayesian optimization and by misspecification, respectively. For a

fixed N , the regret will decrease as L → ∞ to a threshold imposed by the misspecification

error, which itself will go to zero with more data points from M as N → ∞. Notice that

the two terms are balanced at L ≍ Nβm,s/αm for the Matérn case and L ≍ N1/αm for the

SE case. Since βm,s ≤ 1, for a fixed large enough N , number of queries of the order L≪ N

would be sufficient in both cases because otherwise the error coming from misspecification

will dominate. We shall demonstrate by simulations in Section 5.4 that the algorithm is able

to find the optimizer (or an almost optimizer) after a number L of queries that is significantly

smaller than the size N of the point cloud. □

We end this section with a bound on the continuum regret rcontN,L (see its definition in
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(5.5)).

Corollary 5.2.7. Under the same assumptions as in Theorem 5.2.5, rcontN,L follows the same

bound as (5.24).

Therefore we can recover a global maximizer of f over M as both N and L tend to

infinity while keeping L≪ N .

5.3 Estimation and Tuning of GGP-UCB Parameters

This section discusses important considerations for the practical implementation of the GGP-

UCB algorithm. Subsections 5.3.1, 5.3.2 and 5.3.3 describe respectively the estimation of

prior GGP parameters, the choice of graph connectivity hN and truncation level kN , and

the empirical tuning of the acquisition function.

5.3.1 Parameter Estimation

Theorem 5.2.5 holds under the assumption that the GGP model uses the same parameters

κ, s, τ as those for the truth. However, these parameters are typically unavailable in practice

and need to be estimated. In this subsection we give a possible empirical solution.

Recall that at the ℓ-th iteration we pick the next query point zℓ based on (5.23) and

observe a noisy function value

yℓ = f(zℓ) + ηℓ,

where f is assumed to be a sample from the manifold GP (5.11) or (5.12) with parameter θ

(θ = (κ, s) for the Matérn case and θ = τ for the SE case). We shall obtain an estimate θℓ of
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θ in each iteration of the above procedure using a maximum likelihood estimation approach:

θℓ = argmax
θ

P(Yℓ | θ), (5.25)

where Yℓ = (y1, . . . , yℓ)
⊤. Exact maximization of (5.25) would require knowing the covari-

ance structure of the underlying manifold GP, in particular the eigenpairs of the Laplace-

Beltrami operator, the lack of which is precisely the reason why we introduced our graph-

based approach. However, since the GGPs (5.17) and (5.18) are what we actually use for

modeling f , a natural idea is then to seek for parameters of these surrogate models that

can best fit the data. Therefore we shall consider the following “surrogate” data model by

pretending that the yℓ’s are generated from the GGPs:

yk = uN (zk) + ηk, ηk
i.i.d.∼ N (0, σ2), k = 1, . . . , ℓ,

uN ∼ N (0, CθN ),

where CθN is the covariance matrix associated with (5.19). It follows that

Yℓ ∼ N (0,Σθ
N ), Σθ

N = ACθNA
⊤ + σ2Iℓ, (5.26)

where A ∈ Rℓ×N is a matrix of 0’s and 1’s whose entries indicate the indices of the zℓ’s

among MN = {xi}Ni=1. Maximization of the likelihood of Yℓ under (5.26) gives the estimate

θℓ.

5.3.2 Determining the Truncation Level kN and the Graph Connectivity hN

As mentioned in Subsection 5.2.3, the truncation level kN is crucial in that the higher

frequencies obtained from the graph Laplacian give poor approximations to their manifold

counterparts and can have a negative impact on approximating manifold GPs. Proposition
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5.2.3 gives a scaling for kN that is based on the asymptotic behavior of the graph Laplacian.

Empirically, one can simply choose kN by plotting the spectrum of ∆N .

Figure 5.1: Spectrum of ∆N versus spectrum of −∆M for the unit circle (left) and the
unit sphere (right).

Proposition 5.6.2 in the appendix gives an upper bound on the eigenvalue approximation,

where the error is small only when hN
√
λi ≪ 1. In practice, what we usually observe is

not only such poor spectral approximation for large i’s, but also a “saturation” of the graph

Laplacian eigenvalues after certain threshold. Figure 5.1 shows the first several eigenvalues

of the Laplace-Beltrami operator −∆M and the graph Laplacian ∆N constructed with (a)

N = 500 points from the unit circle; and (b) N = 3000 points from the unit sphere. We

can see from both plots that for small index i, the eigenvalues λN,i of ∆N approximate

well the eigenvalues λi of −∆M; however, the spectrum of ∆N is essentially flat for large

i. Therefore one can choose kN to be around the point of saturation in the spectrum

of ∆N . Such saturation phenomenon, noted for instance in [Garcia Trillos et al., 2020b,

Garcia Trillos and Sanz-Alonso, 2018, Garcia Trillos et al., 2019], also helps to explain the

need for truncation. Indeed, the eigenvalues λN,i determine the decay of the coefficients

in the series (5.17) and (5.18) defining our GGPs. Without a truncation, too much weight

would be given to the high frequencies, which would lead to overly rough sample paths.

Another key parameter in the construction of our GGPs is the graph connectivity hN

in the definition of the weights (5.16). A common choice [Garcia Trillos et al., 2020a, Sanz-

Alonso and Yang, 2022b] is hN ∝ √
ρN , where ρN defined in (5.36) can be interpreted as the
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maximum distance between any two nearby xi’s or the “resolution” of MN . In particular,

the choice hN ∝ √
ρN ensures that the neighborhood of each xi in the graph is local but

rich enough to capture the local geometry. Moreover, this choice balances the two terms

in the error bound ρN/hN + hN
√
λi in Proposition 5.6.2. The scaling of ρN is shown in

[Garcia Trillos et al., 2020a, Theorem 2] and recorded in Proposition 5.6.1, which leads to

the choice hN = CN−1/2m (the logarithmic factor can be absorbed into the proportion

constant). The proportion constant can be determined again by plotting the corresponding

spectrum of ∆N . Starting with a large C, one can keep decreasing the value of C while

observing the point of saturation becoming larger, until one hits a point where the spectrum

is no longer meaningful. This latter case will happen when hN is too small so that the graph

is disconnected and the graph Laplacian has repeated zero eigenvalues.

5.3.3 Empirical Tuning of the Acquisition Function

Recall that the selection rule (5.23) incorporates information on the level of misspecification

ϵN incurred by the GGPs. Proposition 5.2.3 gives such a bound on ϵN , which goes to zero

as N → ∞. However, for practical considerations, the upper bound may not be small for

certain ranges of δ and N , especially since there is a possibly non-sharp proportion constant

in ϵN . Therefore this could cause the term ϵN
√
ℓ− 1/δσ in BN,ℓ to be overly large, so

that the acquisition function puts too much weight on the posterior standard deviation, as

a result of which exploration overwhelms exploitation. For this reason, we shall consider

instead setting BN,ℓ as

BN,ℓ = a

√
2 log

(
π2ℓ2N

6δ

)
, (5.27)

with a tuning parameter a > 0. As noticed in the simulation studies in [Srinivas et al.,

2010], setting a = 1/5 in practice leads to the best performance in well-specified cases, i.e.,
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when ϵN = 0 (although their theoretical results are proved for a = 1). Motivated by this

observation, we shall set a = 1/2 throughout for our simulation studies in Section 5.4 to

account for the case ϵN ̸= 0. The idea is that the original correction term ϵN
√
ℓ− 1/δσ for

misspecification is now absorbed as the increment (1/2− 1/5)
√

2 log(π2ℓ2N/6δ).

Finally, the selection rule (5.23) searches for the query points over the entire MN at each

iteration, which could return points that have already been picked and get stuck at local

optima in practice. We shall modify (5.23) slightly by maximizing it over MN\{z1, . . . , zℓ−1}

at the ℓ-th iteration, i.e., by asking the algorithm to output a query point that has not been

chosen in previous iterations.

5.4 Numerical Examples

This section contains preliminary numerical experiments that complement the theory. The

main focus will be to illustrate the performance of our method within the scope of Bayesian

optimization rather than conduct an exhaustive comparison with existing discrete optimiza-

tion algorithms.

In Subsection 5.4.1 we give a detailed investigation of our approach over the unit cir-

cle, where eigenvalues and eigenfunctions of the Laplace-Beltrami operator are analytically

known and manifold GPs are computable. The goal of this example is to show that our

discrete GGP-UCB algorithm, which only requires point cloud data from the unit circle,

achieves comparable performance to a UCB algorithm with manifold GPs. We also illus-

trate the parameter estimation technique discussed in Subsection 5.3.1. In Subsection 5.4.2

we consider an artificial manifold for which the spectrum of its Laplace-Beltrami operator is

not available, showcasing a typical application of our framework when the manifold is only

accessed through a point cloud. The goal of this example is to show the empirical advantage

of using our geometry-informed GGPs over Euclidean GPs. Finally, in Subsection 5.4.3 we

apply Algorithm 5.2.1 to solve an inverse problem —heat source detection over the sphere,
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which is only represented as a point cloud. Here the objective function is defined in terms

of a partial differential equation that needs to be numerically solved. The goal of this ex-

ample is to illustrate the applicability of our algorithm with expensive-to-evaluate objective

functions that need to be approximated using graph-based techniques.

Throughout all the examples in Subsections 5.4.1 and 5.4.2, we set σ = 0.05 ·∥fN∥2/
√
N ,

which corresponds to a noise level of roughly 5%. We adopt the selection rule (5.27) and set

δ = 0.1 in the choice of BN,ℓ.

5.4.1 The Unit Circle

Let M be the unit circle in R2 and MN = {xi}N=500
i=1 be i.i.d. samples from the uniform dis-

tribution over M. The fact that the eigenvalues and eigenfunctions of the Laplace-Beltrami

operator are available in closed form allows us to carry out —for comparison purposes— com-

putation on the continuum level. In particular, we can compute the manifold GP covariance

functions defined in (5.13) and (5.14).

To start with, suppose first that f is a sample from the manifold Matérn GP (5.11) with

parameters τ∗ and s∗, which can be generated from (5.11) with a sufficiently high truncation.

We shall compare the performance of Algorithm 5.2.1 with three different choices of the prior:

(i) (5.11) with true parameters, (ii) (5.17) with true parameters, and (iii) (5.17) with inferred

parameters, i.e.,

(MGP-UCB) uM = κ
s∗−m

2∗

K∑
i=1

(κ2∗ + λi)
− s∗

2 ξiψi, ξi
i.i.d.∼ N (0, 1), (5.28)

(GGP-UCB) uMN = κ
s∗−m

2∗

kN∑
i=1

(κ2∗ + λN,i)
− s∗

2 ξiψN,i,ξi
i.i.d.∼ N (0, 1), (5.29)

(GGP-UCB-ML) uMLE = κ
sℓ−m

2
ℓ

kN∑
i=1

(κ2ℓ + λN,i)
− sℓ

2 ξiψN,i, ξi
i.i.d.∼ N (0, 1), (5.30)
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whereK = 100 is a truncation for computing uM, and κℓ and sℓ are the estimated parameters

as discussed in Subsection 5.3.1. Specifically, we shall view MGP-UCB as an oracle algorithm

whose performance serves as a benchmark, since for the graph-based algorithms we assume

to be only given the point cloud {xi}N=500
i=1 and to have no access to the λi’s and ψi’s. We

set kN = 20 and hN = 4×N−1/2 in the construction of ∆N .

(a) κ2
∗ = 5, s∗ = 2. (b) κ2

∗ = 10, s∗ = 2. (c) κ2
∗ = 15, s∗ = 2.

Figure 5.2: Comparisons of the simple regrets obtained from MGP-UCB (prior with
(5.28)), GGP-UCB (prior with (5.29)), and GGP-UCB-ML (prior with (5.30)) when f
is a Matérn GP (5.11). The curves represent the average regrets over 50 trials and the
shaded regions represent the 10% ∼ 90% percentiles.

Figure 5.2 shows the comparison for three sets of parameters (κ∗, s∗), representing in-

creasingly oscillatory true objective f . In all cases, the oracle MGP-UCB approach achieves

the smallest regret, which is expected since it assumes complete knowledge of the unit circle.

Meanwhile, the other two approaches show competitive performance and find the maximizer

in less than L = 50 iterations, which is much smaller than the size N = 500 of the point

cloud. In particular, incorporating maximum likelihood estimation of the parameters gives

similar performance compared to the case when the parameters are assumed to be known.

In a parallel setting, we also perform a similar comparison when the truth is a SE GP (5.12),

where the graph SE GP (5.18) is used for modeling. Figure 5.3 shows the comparison, which

is qualitatively similar to the Matérn case except that the approach incorporating maximum

likelihood gives a slightly worse performance. Nevertheless, it is still able to find a near

optimizer within 50 iterations.
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(a) τ∗ = 0.15. (b) τ∗ = 0.1. (c) τ∗ = 0.05.

Figure 5.3: Comparisons of the simple regrets obtained from MGP-UCB (prior with
(5.28)), GGP-UCB (prior with (5.29)), and GGP-UCB-ML (prior with (5.30)) when
f is a SE GP (5.12). The curves represent the average regrets over 50 trials and the
shaded regions represent the 10% ∼ 90% percentiles.

Next, we investigate the effect of the number N of point cloud samples on the algorith-

mic performance. We generate the truth from (5.28) as before and apply our graph-based

algorithms with N=100, 300, 500 uniform samples from the unit circle. Figure 5.4 shows the

results, suggesting improved performance as N increases, in agreement with the qualitative

behavior predicted by our regret bounds in (5.24).

(a) N = 100. (b) N = 300. (c) N = 500.

Figure 5.4: Comparisons of the simple regrets obtained from MGP-UCB (prior with
(5.28)), GGP-UCB (prior with (5.29)), and GGP-UCB-ML (prior with (5.30)) with
different size N of the point cloud when f is a Matérn GP (5.11) with parameters
κ2∗ = 15 and s∗ = 2. The curves represent the average regrets over 50 trials and the
shaded regions represent the 10% ∼ 90% percentiles.

Finally, to further investigate the performance of our GGP-UCB algorithm, we consider

optimizing three benchmark functions —the Levy, Ackley, and Rastrigin functions defined
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over the circle (with suitable rescaling):

fLevy(θ) =
(3θ
4

)2(
1 + sin2

(π(3θ + 3)

2

))
, θ ∈ [−π, π), (Levy)

fAckley(θ) = −20 exp(−0.1θ)− exp(cos(2πθ)) + 20 + exp(1), θ ∈ [−π, π), (Ackley)

fRastrigin(θ) = 2 + θ2 − 2 cos(2πθ), θ ∈ [−π, π), (Rastrigin)

where we identify points on the circle with their angle θ ∈ [−π, π). The top row of Figure 5.5

shows plots of the functions fLevy, fAckley, and fRastrigin, all of which admit many sharp local

minima. These benchmark functions will serve as examples where the truth to be optimized

is not generated from a GP. As before, we shall compare the performance of Algorithm

5.2.1 with three different choices of prior (5.28), (5.29), (5.30), by manually setting κ∗ = 15

and s∗ = 1 for the first two. The results are shown in the bottom row of Figure 5.5,

where all algorithms can find the global optimizer with very few iterations (much fewer than

the total number N = 500 of the point cloud), including GGP-UCB-ML which infers the

covariance parameters. This illustrates the applicability of our algorithm when the truth is

not necessarily a sample path from the same GP model that we use for the algorithm.

Remark 5.4.1. We end this example with a remark on inferring the GP parameters with

maximum likelihood. For the Matérn case, our experience suggests that joint estimation of

κℓ, sℓ for (5.30) turns out to be unstable, and hence in the simulations above we have fixed

κℓ to be 1 throughout and only estimated sℓ. Such an observation may be related to the fact

that not all parameters for the Matérn model but only a certain combination of them are

identifiable (see e.g. [Zhang, 2004, Bolin and Kirchner, 2020, Li et al., 2023]). This issue may

be exacerbated by the fact that the graph Matérn GP we adopt is only an approximation of

the Matérn model, and similarly for the squared exponential model. A detailed investigation

of maximum likelihood for GGPs is an interesting direction for future research. Our focus

on the remaining experiments will be however on illustrating other important aspects of our
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(a) Levy. (b) Ackley. (c) Rastrigin.

Figure 5.5: Top row: plots of the Levy, Ackley, and Rastrigin functions. Bottom
row: Comparisons of the simple regrets obtained from MGP-UCB (prior with (5.28)),
GGP-UCB (prior with (5.29)), and GGP-UCB-ML (prior with (5.30)) for optimizing
the three functions respectively. The curves represent the average regrets over 50 trials
and the shaded regions represent the 10% ∼ 90% percentiles.

GGP-UCB algorithm, and for this reason we henceforth assume the GP parameters to be

known or tune them empirically. □

5.4.2 Two-Dimensional Artificial Manifold

In this subsection we consider an artificial two-dimensional manifold, whose point cloud

representation—taken from Keenan Crane’s 3D repository [Crane]—is shown in Figure 5.6a.

This example is motivated by an application to locate the point of highest temperature

[Srinivas et al., 2010] on a surface where an explicit parameterization is not given. Unlike

the unit circle case in Subsection 5.4.1, the eigenvalues and eigenfunctions of the Laplace-

Beltrami operator over this new manifold are no longer known analytically, which prevents

us from computing manifold GP covariances. The goal of this example is to demonstrate
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the superior performance of GGPs over Euclidean GPs.

First, we shall generate our truth using a finer point cloud than the one given for opti-

mization. More precisely, the original dataset MN̄ provided by [Crane] consists of N̄ = 2930

points, but we only assume to be given a subsample of N = 2000 points as our MN . The

truth is then generated as a sample defined on the finer point cloud MN̄ :

fN̄ = κ
s∗−m

2∗

kN̄∑
i=1

(κ2∗ + λN̄ ,i)
− s∗

2 ξiψN̄ ,i, ξi
i.i.d.∼ N (0, 1), (5.31)

where λN̄ ,i and ψN̄ ,i’s are the eigenpairs of the graph Laplacian ∆N̄ constructed with all

N̄ points. Here the graph connectivity is taken to be hN̄ = 4× N̄−1/2 and kN̄ is set to be

50 based on the eigenvalue saturation of ∆N̄ . Figure 5.6b shows one realization of fN̄ with

parameters κ2∗ = 5 and s∗ = 2.5

Since the manifold GP is not available in this example, we shall compare the performance

of Algorithm 5.2.1 with prior taken as a GGP (cf.(5.29) with graph connectivity hN =

4 × N−1/2 and truncation kN = 50) or a Euclidean GP (EGP). As the truth (5.31) is

of Matérn type, it is natural to take the EGP as defined by the usual Matérn covariance

function (5.9) by viewing points in MN as elements of R3. As discussed in Remark 5.4.1,

we shall use the true parameters in GGP modeling, but point out that the true parameters

are not necessarily the ones that lead to the best performance since the truth is generated

based on ∆N̄ , whose eigenpairs are only close to but different from those of ∆N used for

computation. For EGP modeling, we tune the parameters empirically and report the one

that leads to the smallest regret. The results are presented in Figure 5.6c, suggesting that

GGP modeling outperforms EGP and can find the optimizer with far fewer queries than

the size N = 2000 of the given point cloud. In a parallel setup, Figure 5.7b compares the

performance of GGP-UCB with EGP-UCB when the truth and the associated prior models

are of squared exponential type (cf. (5.18) and (5.9)), where qualitatively similar behavior
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is observed.

(a) Point cloud. (b) Matérn GGP sample. (c) Simple regrets.

Figure 5.6: (a) Point cloud. (b) A random sample fN̄ defined as (5.31) with κ2∗ = 5, s∗ =
2.5; values of fN̄ vary smoothly along the point cloud. (c) Comparison of simple regrets
as a function of L between GGP-UCB and EGP-UCB. The curves represent the average
regrets over 50 trials and the shaded regions represent the 10% ∼ 90% percentiles.

(a) SE GGP sample. (b) Simple regrets.

Figure 5.7: (a) A random sample from (5.18) based on the graph Laplacian ∆N̄ with
τ∗ = 0.05. (b) Comparison of simple regrets as a function of L between GGP-UCB
and EGP-UCB. The curves represent the average regrets over 50 trials and the shaded
regions represent the 10% ∼ 90% percentiles.

5.4.3 Heat Source Detection on the Sphere

In this subsection we employ Algorithm 5.2.1 on a heat source detection problem on the two-

dimensional unit sphere S2, which is given only as a point cloud. The goal of this example

is to demonstrate the applicability of our BO framework in inverse problem settings, where
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the objective function to be optimized involves an expensive-to-evaluate forward map that

usually needs to be approximated.

Consider the heat equation


φt = ∆S2φ, (x, t) ∈ S2 × [0,∞),

φ(x, 0) = φ0(x), x ∈ S2,

(5.32)

where ∆S2 is the Laplace-Beltrami operator on S2 and φ0 is an initial heat configuration.

The solution of the heat equation for some time t > 0 is given by

φ(x, t) =
∞∑
i=1

⟨φ0, ψi⟩S2 · e−λitψi(x), x ∈ S2, (5.33)

where {(λi, ψi)}∞i=1 are the eigenpairs of −∆S2 and ⟨·, ·⟩S2 is the Riemannian inner product

associated to S2. The initial heat configuration is given by

φ0(x) = exp
(
ζz∗⊤x

)
, ζ > 0, x ∈ S2, (5.34)

which can be viewed as an unnormalized density of the von-Mises Fisher distribution [Fisher,

1953] on S2. A larger concentration parameter ζ leads to more probability mass centered

around its mean z∗.

Our goal is to recover the center z∗ of the initial heat configuration, assuming we are only

given a point cloud MN = {xi}N=3000
i=1 but not M directly, and noisy heat measurements

at some positive time t of the form

d = φ(x) + η, φ(x) =
(
φ(x1, t), . . . , φ(xN , t)

)⊤
,

where η ∼ N (0, 0.01IN ). To generate φ(x, t), we truncate (5.33) at i = 36, by keeping only

the terms with λi ≤ 30 (the sixth repeated eigenvalue of −∆S2). Figure 5.8 contains plots
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(a) t = 0. (b) t = 0.25. (c) t = 0.4.

Figure 5.8: (a) Initial heat over the point cloud. (b) Noisy evaluation of heat at
t = 0.25. (c) Noisy evaluation of heat at t = 0.4.

of an example of initial heat configuration with ζ = 2 and the corresponding noisy data for

times t = 0.25 and t = 0.4. Assuming that the center z∗ ∈ MN , we adopt an optimization

perspective to this inverse problem [Sanz-Alonso et al., 2023] and attempt to maximize the

objective function

f(z) = − log ∥d− G(z)∥∞, z ∈ MN ,

along the point cloud MN , where G(z) ∈ RN is the forward map given by

[G(z)]k =
∞∑
i=1

⟨φz0, ψi⟩S2 · e−λitψi(xk), xk ∈ MN , (5.35)

with φz0(x) = exp
(
ζz⊤x

)
for x ∈ S2. However, since M is only known through MN , the

eigenvalue and eigenfunctions should be also treated as unknown to us. Therefore, we shall

instead maximize the approximate objective function

fN (z) = − log ∥d− GN (z)∥∞, z ∈ MN ,

where

GN (z) =

kN∑
i=1

⟨φz0,N , ψN,i⟩ · e−λN,itψN,i, φz0,N =
(
exp
(
ζz⊤x1

)
, · · · , exp

(
ζz⊤xN

))⊤
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with the hope that the optimizer of fN agrees with, or at least is close to, that of f . Here,

as before, {(λN,i, ψN,i)}Ni=1 are eigenpairs of the unnormalized graph Laplacian and ⟨·, ·⟩ is

the standard Euclidean inner product. For the truncation level, we set kN = 70 to account

for the discrepancy —shown in Figure 5.1— between the spectrum of the graph Laplacian

and that of the negative Laplace-Beltrami operator.

To optimize fN , we apply Algorithm 5.2.1 with a graph Matérn prior (5.29) with param-

eters s = 4, κ = 1. There is no observation noise in this case since fN can be computed

exactly, so that µN,ℓ and σN,ℓ in the acquisition function will be computed using (5.8)

with σ = 0 and Yℓ = (fN (z1), · · · , fN (zℓ))
⊤. Since we are interested in the recovery of z∗,

we shall report the distance measure ∥z∗ − z∗L∥2, where z∗L is the query point returned by

GGP-UCB or random sampling that maximizes fN in the first L iterations. The results are

shown in Figure 5.9 for observations d collected at two different times t = 0.25 and t = 0.4.

Qualitatively similar performance as in previous examples is achieved. However, notice that

in Figure 5.9b the recovery is not exact, as the distance ∥z∗ − z∗L∥2 does not decrease to

zero. This is because we are searching for the maximizer of the approximate objective fN ,

which differs from the true heat source z∗ when t is large due to the approximation error of

GN to G. In other words, the attainable discrepancy, defined as the distance between z∗ and

the maximizer of fN , is nonzero in this case. Besides this effect caused by an error in the

approximation of the objective, the simulation results suggest that our GGP-UCB algorithm

correctly finds the maximizer of the approximate objective fN with a significantly smaller

number L of queries than the total number N of points in MN .

We remark that there are two intertwined aspects which make source detection difficult

for intermediate to large t values. The smoothing effect of the forward map G implies that a

larger observation time will lead to a more flattened (homogeneous) temperature configura-

tion, as shown in Figure 5.8. In other words, two rather different initial heat configurations

will yield almost identical heat configurations after a large time t > 0. Such ill-posedness
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(a) t = 0.25. (b) t = 0.4.

Figure 5.9: Recovery error ∥z∗ − z∗L∥2, where z∗ is the true source in (5.34) and z∗L
is the query point returned by GGP-UCB or random sampling that maximizes fN in
the first L iterations. Heat measurements are collected at times (a) t = 0.25 and (b)
t = 0.4. The curves represent the average regrets over 50 trials and the shaded regions
represent the 10% ∼ 90% percentiles.

hinders the recovery of the true heat source location for large t. In addition, the forward

map G and its approximation GN are defined in terms of an exponential transformation of

the eigenvalues of the Laplace-Beltrami operator and the graph Laplacian. Therefore, for

moderate t, any small inaccuracy in the eigenvalue estimation can lead to significantly dif-

ferent forward models G and GN , so that fN is a poor approximation to f . If one had access

to the true forward map, this issue would not be present.

5.5 Discussion

This chapter introduced GGP-UCB, a manifold learning technique to optimize an objective

function on a hidden compact manifold. Our regret bounds and numerical experiments

demonstrate the effectiveness of our method.

Curse of Dimensionality Similar to other Bayesian nonparametric techniques, we expect

GGP-UCB to be particularly effective when the dimension m of the manifold M ⊂ Rd is

small or moderate. In particular, our regret bounds in Theorem 5.2.5 suffer from the standard

curse of dimension with m, while they do not depend on the dimension d of the ambient
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space.

Estimating the Intrinsic Dimension For simplicity, we have assumed that the dimen-

sion m of M is known, that we have access to clean samples from M, and that M has no

boundary. If the dimension of M is unknown, classical manifold learning techniques can be

used to estimate it [Hein and Audibert, 2005, Harlim et al., 2020]. Similarly, if the given

point cloud is noisy in that it consists of random perturbations of points sampled from M, a

denoising method can be employed to uncover the underlying geometry [Garcia Trillos et al.,

2019]. Finally, if M has a boundary, our GGP-UCB method may be combined with a ghost

point diffusion map algorithm to remove boundary artifacts [Harlim et al., 2022, Peoples and

Harlim, 2021, Jiang and Harlim, 2023].

Other Acquisition Functions Our focus on UCB acquisition functions was motivated

by the desire to establish convergence guarantees under misspecification, as well as by their

simplicity and successful empirical performance. However, there is no algorithmic roadblock

to employ other acquisition functions such as expected improvement and Thompson sam-

pling. An interesting direction for future research is to investigate how to provably correct

for geometric misspecification when using these alternative acquisition functions.

Beyond the Manifold Setting We have focused on GGP surrogate models defined via

a specific choice of unnormalized graph-Laplacian; other graph constructions (e.g. based on

nearest neighbors or self-tuning kernels) and graph-Laplacian (e.g. symmetric and random

walk) could be considered [Von Luxburg, 2007]. Furthermore, the proposed BO framework

can be extended beyond the manifold setting. In particular, similar constructions of the

GGPs can be carried out over any point cloud (not necessarily embedded in a Euclidean

space) as long as a graph Laplacian encoding pairwise similarities of the point cloud can

be formed [Sanz-Alonso and Yang, 2022a, Borovitskiy et al., 2021]. Together with suit-
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able choices of acquisition functions, the resulting framework can be used to solve discrete

optimization problems by endowing the search space with a graph structure, which could

facilitate the search of optimizers. This is an interesting direction for future research.

5.6 Appendix

These appendices contain the proofs of Proposition 5.2.3, Theorem 5.2.5, and Corollary

5.2.7. The proofs build on the theory of spectral convergence of graph Laplacians and regret

analysis of Bayesian optimization algorithms. To make our presentation self-contained, we

will introduce necessary background and previous results whenever needed.

5.6.1 Proof of Proposition 5.2.3

Let MN be i.i.d. samples from a distribution µ supported on a smooth, connected, and

compact m-dimensional submanifold M ⊂ Rd without boundary. For simplicity, we shall

assume that µ is the uniform distribution on M. The first result [Garcia Trillos et al.,

2020a, Theorem 2] states that with high probability, the xi’s form a ρN -net over M and

characterizes ρN .

Proposition 5.6.1. For any c > 1, with probability 1−O(N−c), there exists a transportation

map TN : M → {x1, · · · , xN} so that

ρN := sup
x∈M

dM
(
x, TN (x)

)
≲

(logN)pm

N1/m
, (5.36)

where pm = 3/4 when m = 2 and pm = 1/m otherwise. We recall that dM is the geodesic

distance on M.

Proposition 5.6.1 implies that the point cloud MN is “well-structured” with high prob-

ability and is the building block for the spectral approximation results below [Sanz-Alonso
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and Yang, 2022b, Proposition 10 and Lemma 15]. Recall that the graph-Laplacian ∆N

constructed in Subsection 5.2.3 admits a spectral decomposition, in analogy to the Laplace-

Beltrami operator ∆M.

Proposition 5.6.2. Suppose there exists δ > 0 such that, for N sufficiently large,

hN ≳ N− 1
m+4+δ , kN ≲ N

1−δ
m , hNk

2
m
N ≲ 1. (5.37)

Then with probability 1−O(N−c) for some c > 0, there exists orthonormalized eigenfunctions

{ψN,i}Ni=1 for ∆N , {ψi}∞i=1 for ∆M, and TN : M → {x1, . . . , xN} satisfying TN (xi) = xi

so that, for i = 1, . . . , kN ,

|λN,i − λi| ≲ λi

(
ρN
hN

+ hN
√
λi

)
,

∥ψN,i ◦ TN − ψi∥∞ ≲ λm+1
i i

3
2

√
ρN
hN

+ hN
√
λi .

We also need a result on the growth of the L∞-norm of the Laplace-Beltrami eigen-

functions and their gradients from [Donnelly, 2006, Theorem 1.2] and [Xu, 2006, equation

(2.10)].

Proposition 5.6.3. Let ψ be an L2-normalized eigenfunction of −∆M associated with λ ̸=

0. Then ∥ψ∥∞ ≤ Cλ(m−1)/4 and ∥∇ψ∥∞ ≤ Cλ(m+1)/2 for a universal constant C.

Lemma 5.6.4. The random field uSE defined in (5.12) satisfies E∥uSE∥2
L2 ≍ 1 and has a

modification that is locally Hölder continuous of order α for all α < 1
2 . The random field

uMa defined in (5.11) has a modification that is locally Hölder continuous of order γ for all

γ < 2s−2m+1
m+3 ∧ 1

2 .
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Proof. By Weyl’s law that λi ≍ i
2
m (see e.g. [Canzani, 2013, Theorem 72]), we have

E

∥∥∥∥∥
∞∑
i=1

e−
λiτ
2 ξiψi

∥∥∥∥∥
2

L2

=
∞∑
i=1

e−λiτ ≍
∞∑
i=1

e−Ci2/mτ ≍
∫ ∞

0
e−Cx2/mτ dx.

By a change of variable, the last expression is equal to

m

2

∫ ∞

0
e−Cτxx

m
2 −1 dx =

m

2
·

Γ(m2 )

(Cτ)m/2
≍ τ−

m
2 .

For the second claim, by [Lang et al., 2016, Corollary 4.5] it suffices to show that

E|uSE(x)− uSE(y)|2 ≤ CdM(x, y)η (5.38)

for all η ∈ (0, 1), C > 0, and for all x, y satisfying dM(x, y) < 1. Notice that

E|uSE(x)− uSE(y)|2 = τ
m
2 E
∣∣∣ ∞∑
i=1

e−
λiτ
2 ξi(ψi(x)− ψi(y))

∣∣∣2
= τ

m
2

∞∑
i=1

e−λiτ |ψi(x)− ψi(y)|2

≤ τ
m
2

∞∑
i=1

e−λiτ∥∇ψi∥2∞dM(x, y)2

≤ Cτ
m
2

∞∑
i=1

e−λiτλm+1
i dM(x, y)2,

where we have used Proposition 5.6.3 in the last step. Now by Weyl’s law,

∞∑
i=1

e−λiτλm+1
i ≤ C

∞∑
i=1

e−cτi2/mi
2(m+1)

m ≤ C

∫ ∞

1
e−cτx2/mx

2(m+1)
m dx <∞.
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Therefore,

E|uSE(x)− uSE(y)|2 ≤ CdM(x, y)2 ≤ CdM(x, y)η

for any η ∈ (0, 1) when dM(x, y) < 1, thereby verifying (5.38).

To show local Hölder continuity of uMa, we need a more careful analysis. Similarly as

above, we have

E|uMa(x)− uMa(y)|2 = κ2s−mE
∣∣∣ ∞∑
i=1

(κ2 + λi)
− s

2 ξi(ψi(x)− ψi(y)
∣∣∣2

= κ2s−m
∞∑
i=1

(κ2 + λi)
−s|ψi(x)− ψi(y)|2.

Now by Proposition 5.6.3, we shall control |ψi(x) − ψ(y)| by the smaller quantity of the

following two bounds

|ψi(x)− ψi(y)| ≤ Cλ
m−1
4

i ,

|ψi(x)− ψi(y)| ≤ Cλ
m+1
2

i dM(x, y).

Precisely, we have

E|uMa(x)− uMa(y)|2 ≤ C
∞∑
i=1

(κ2 + λi)
−smin

{
λ

m−1
2

i , λm+1
i dM(x, y)2

}

≤ C
∞∑
i=1

i−
2s
m min

{
i
m−1
m , i

2m+2
m dM(x, y)2

}

≤ C

K∑
i=1

i−
2s
m i

2m+2
m dM(x, y)2 + C

∞∑
i=K+1

i−
2s
m i

m−1
m , (5.39)
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where K = dM(x, y)−
2m
m+3 . Therefore we have

(5.39) ≤ CdM(x, y)2
∫ K

1
z
−2s+2m+2

m dz + C

∫ ∞

K
z
−2s+m−1

m dz

≤ CdM(x, y)
4s−4m+2

m+3 ≤ CdM(x, y).

The result follows again by [Lang et al., 2016, Corollary 4.5].

Now we are ready to prove Proposition 5.2.3. The first statement on the approximation

error of uMa
N follows from [Sanz-Alonso and Yang, 2022b, Theorem 4.6]. To show the second,

recall that

uSE
N = τ

m
4

kN∑
i=1

e−
λN,iτ

2 ξiψN,i, ξi
i.i.d.∼ N (0, 1),

uSE = τ
m
4

∞∑
i=1

e−
λiτ
2 ξiψi, ξi

i.i.d.∼ N (0, 1),

and introduce two intermediate random processes

ũSE
N = τ

m
4

kN∑
i=1

e−
λiτ
2 ξiψN,i, ξi

i.i.d.∼ N (0, 1),

ûSE
N = τ

m
4

kN∑
i=1

e−
λiτ
2 ξiψi, ξi

i.i.d.∼ N (0, 1).

We then have

E∥uSE
N ◦ TN − uSE∥∞ ≤ E∥uSE

N ◦ TN − ũSE
N ◦ TN∥∞ + E∥ũSE

N ◦ TN − ûSE
N∥∞ + E∥ûSE

N − uSE∥∞
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and we shall proceed by bounding each of the three terms on the right. First, note that

E∥ûSE
N − uSE∥∞ = E

∥∥∥∥τ m
4

∞∑
i=kN+1

e−
λiτ
2 ξiψi

∥∥∥∥
∞

≲
∞∑

i=kN+1

e−
λiτ
2 E|ξi|∥ψi∥∞ ≲

∞∑
i=kN+1

e−
λiτ
2 λ

m−1
4

i , (5.40)

where we have used Proposition 5.6.3 in the last step. Now by Weyl’s law, λi ≍ i2/m so that

we can further bound

(5.40) ≲
∞∑

i=kN+1

e−c0τi
2/m

i
2
m

m−1
4 ≲

∫ ∞

kN

e−c0τx
2/m

x
m−1
2m dx

=

∫ ∞

k
2/m
N

e−c0τzz
3m−1

4 −1dz (5.41)

after a change of variable, where c0 is a universal constant. Notice that the rightmost term

(5.41) is equal up to a multiplicative constant to P(X ≥ k
2/m
N ) with X being a Gamma

random variable with shape parameter 3m−1
4 and scale parameter 1

c0τ
. Now by the tail

bound of sum-Gamma distributions (cf. [Zhang and Chen, 2020, Lemma 5.1]) applied to

X − EX ∈ subΓ
(
3m−1
4c20τ

2 ,
1
c0τ

)
, we have

E∥ûSE
N − uSE∥∞ ≲ (5.41) ≲ P(X − EX ≥ k

2/m
N − EX) ≲ e−Ck

2/m
N (5.42)

for some constant C when k2/mN ≫ EX = 3m−1
4c0τ

. Similarly, we have

E∥uSE
N ◦ TN − ũSE

N ◦ TN∥∞ ≲
kN∑
i=1

∣∣∣e−λN,iτ

2 − e−
λiτ
2

∣∣∣∥ψN,i ◦ TN∥∞. (5.43)

By the mean value theorem, we have that |e−x− e−y| = e−ζ |x− y| ≤ max{e−x, e−y}|x− y|
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for some ζ ∈
(
min(x, y),max(x, y)

)
where x, y > 0. Thus, we have

∣∣∣e−λN,iτ

2 − e−
λiτ
2

∣∣∣ ≤ max
{
e−

λN,iτ

2 , e−
λiτ
2

}τ
2
|λN,i − λi| ≤

τ

2
e−

λiτ
4 λi

(
ρN
hN

+ hN
√
λi

)
,

where in the last step we have used Proposition 5.6.2 which also implies λN,i ≥ λi/2 when

N is large. Moreover, Proposition 5.6.2 implies that, for i = 1, . . . , kN ,

∥ψN,i ◦ TN∥∞ ≤ ∥ψN,i ◦ TN − ψi∥∞ + ∥ψi∥∞

≲ λm+1
i i

3
2

√
ρN
hN

+ hN
√
λi + ∥ψi∥∞ ≲

(ρN
hN

+ hN

)
i
7m+5
2m + ∥ψi∥∞. (5.44)

Proposition 5.6.3 implies that ∥ψi∥∞ ≲ λ
m−1
4

i ≲ i
m−1
2m . Therefore we would like to set hN

and kN to satisfy

(ρN
hN

+ hN

)
k
7m+5
2m

N ≲ k
m−1
2m
N (5.45)

so that (5.44) grows like ∥ψi∥∞ for all i = 1, . . . , kN . We shall keep (5.45) in mind together

with those conditions in (5.37) and proceed by assuming that we have made such choices.

Now we can bound

(5.43) ≲
kN∑
i=1

τ

2
e−

λiτ
4 λ

m+3
4

i

(
ρN
hN

+ hN
√
λi

)

≲
τ

2

(
ρN
hN

+ hN

) kN∑
i=1

e−
λiτ
4 λ

m+5
4

i ≲
ρN
hN

+ hN , (5.46)

where we used the fact that

kN∑
i=1

e−
λiτ
4 λ

m+5
4

i ≲
kN∑
i=1

e−Ci2/mi
m+5
2m ≲

∫ ∞

1
e−Cx2/mx

m+5
2m dx <∞.
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Lastly, we have by Proposition 5.6.2

E∥ũSE
N ◦ TN − ûSE

N∥∞ ≲
kN∑
i=1

e−
λiτ
2 ∥ψN,i ◦ TN − ψi∥∞

≲
kN∑
i=1

e−
λiτ
2 λm+1

i i
3
2

√
ρN
hN

+ hN
√
λi ≲

√
ρN
hN

+ hN . (5.47)

Combining (5.42), (5.46),(5.47), we get

E∥uSE
N ◦ TN − uSE∥∞ ≲ e−Ck

2/m
N +

√
ρN
hN

+ hN .

Now it remains to set hN and kN and we remark that the approximation error will be

dominated by the second term
√
ρN/hN + hN when N is large. It can be checked that the

following scaling satisfies the conditions imposed by (5.37) and (5.45).

Case 1: m ≤ 4 Setting for some arbitrarily small δ > 0

hN ≍ N− 1
m+4+δ (logN)

pm
2 , (logN)

m
2 ≪ kN ≪ N

m
(m+4+δ)(3m+3) (logN)−

mpm
6m+6 ,

we obtain that, for large N,

E∥uSE
N ◦ TN − uSE∥∞ ≲ N

− 1
2(m+4+δ) (logN)

pm
4 .

Case 2: m ≥ 5 Setting

hN ≍ N− 1
2m (logN)−

pm
2 , (logN)

m
2 ≪ kN ≪ N

1
6m+6 (logN)−

mpm
6m+6 ,
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we obtain

E∥uSE
N ◦ TN − uSE∥∞ ≲ N− 1

4m (logN)
pm
4 .

5.6.2 Proof of Theorem 5.2.5

We start by introducing the key ingredients of the regret analysis of Bayesian optimization

algorithms, in particular the GGP-UCB algorithm. Most of the preliminary results in this

section can be found in [Srinivas et al., 2010, Bogunovic and Krause, 2021].

Recall that our goal is to bound the simple regret defined as in (5.4). But a typical

strategy in the BO literature is to look at the cumulative regret, defined as

RN,L =
L∑

ℓ=1

(
f(z∗)− f(zℓ)

)
, z∗ = argmax

z∈MN

f(z). (5.48)

Then using the fact that

f(z∗L) ≥
1

L

L∑
ℓ=1

f(zℓ), z∗L = argmax
z∈{zℓ}Lℓ=1

f(z),

one can bound the simple regret as

rN,L = f(z∗)− f(z∗L) ≤
1

L

L∑
ℓ=1

(
f(z∗)− f(zℓ)

)
=
RN,L

L
. (5.49)

The key to bounding the cumulative regret consists of two steps. The first is a concentration-

type result that constructs confidence bands which f lies in with high probability based on

the observed samples. More precisely, we have the following result.

Lemma 5.6.5. Let δ ∈ (0, 1) and set bN,ℓ =
√

2 log(π2ℓ2N/6δ). Then with probability 1−δ,
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we have

|uN (z)− µ̃N,ℓ−1(z)| ≤ bN,ℓσN,ℓ−1(z) ∀z ∈ MN , ∀ℓ ≥ 1,

where

µ̃N,ℓ(z) = cN,ℓ(z)
⊤(CN,ℓ + σ2I)−1ỸN,ℓ

and ỸN,ℓ ∈ Rℓ is vector with entry (ỸN,ℓ)i = uN (zi)+ ηi. See (5.8) for the definition of cN,ℓ

and CN,ℓ.

Proof. This is [Srinivas et al., 2010, Lemma 5.1] applied to the graph GP uN , with the

“surrogate” data ỸN,ℓ.

Here and below, we shall use cN (·, ·) as a placeholder for either the Matérn or SE graph-

based covariance function (5.19). Notice that the “surrogate” data ỸN,ℓ is introduced only

for the purpose of analysis and the algorithm only has access to the real data yℓ = f(zℓ)+ηℓ.

An important follow-up question is on the difference between the surrogate-data posterior

mean µ̃N,ℓ and the true posterior mean µN,ℓ = cN,ℓ(x)
⊤(CN,ℓ + σ2I)−1Yℓ that is actually

used in the algorithm, answered by the following result.

Lemma 5.6.6. In the event of (5.21), we have

|µN,ℓ(z)− µ̃N,ℓ(z)| ≤
ϵN

√
ℓ

δσ
σN,ℓ(z), ∀z ∈ MN ∀ℓ ≥ 1,

where we recall σ is the standard deviation of the noise ηℓ and σN,ℓ is defined in (5.8).

Proof. This follows by setting the misspecification error to be ϵN/δ in [Bogunovic and

Krause, 2021, Lemma 2].
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Now with these preparations, we are ready to start the proof of Theorem 5.2.5. In the

event of (5.21) that

max
z∈MN

|uN (z)− f(z)| ≤ δ−1ϵN ,

which holds with probability 1 − δ by Proposition 5.2.3 (with ϵN the corresponding error

bounds (5.20)), we can shift our focus to the following cumulative regret

R̃N,L =
L∑

ℓ=1

uN (z∗)− uN (zℓ), z∗ = argmax
z∈MN

f(z),

which differs from RN,L (5.48) at most by 2ϵNL/δ. Under the further event where Lemma

5.6.5 holds, we have by Lemma 5.6.6 that for all z ∈ MN ,

µN,ℓ−1(z)−
(
bN,ℓ +

ϵN
√
ℓ− 1

δσ

)
σN,ℓ−1(z) ≤ uN (z)

uN (z) ≤ µN,ℓ−1(z) +

(
bN,ℓ +

ϵN
√
ℓ− 1

δσ

)
σN,ℓ−1(z).

Therefore

R̃N,L ≤
L∑

ℓ=1

(
µN,ℓ−1(z

∗) +
(
bN,ℓ +

ϵN
√
ℓ− 1

δσ

)
σN,ℓ−1(z

∗)

−
[
µN,ℓ−1(zℓ)−

(
bN,ℓ +

ϵN
√
ℓ− 1

δσ

)
σN,ℓ−1(zℓ)

])

≤ 2
L∑

ℓ=1

(
bN,ℓ +

ϵN
√
ℓ− 1

δσ

)
σN,ℓ−1(zℓ)

≤ 2

(
bN,L +

ϵN
√
L− 1

δσ

) L∑
ℓ=1

σN,ℓ−1(zℓ),

where in the second step we have used our definition of zℓ in (5.23) that for all z ∈ MN
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including z∗

µN,ℓ−1(zℓ) +

(
bN,ℓ +

ϵN
√
ℓ− 1

δσ

)
σN,ℓ−1(zℓ) ≥ µN,ℓ−1(z) +

(
bN,ℓ +

ϵN
√
ℓ− 1

δσ

)
σN,ℓ−1(z).

Therefore we have arrived at the conclusion that

RN,L ≤ 2ϵNL

δ
+ 2

(
bN,L +

ϵN
√
L− 1

δσ

) L∑
ℓ=1

σN,ℓ−1(zℓ). (5.50)

Here comes the second key ingredient in the regret analysis, which is to relate the sum of

posterior standard deviations
∑L

ℓ=1 σN,ℓ−1(zℓ) to the so-called maximum information gain.

The following result is taken from [Srinivas et al., 2010, Lemma 5.3].

Lemma 5.6.7. Let I(y; v) denote the mutual information between two random vectors y and

v of the same size. We have

I
(
ỸN,L; {uN (zℓ)}Lℓ=1

)
=

1

2

L∑
ℓ=1

log
(
1 + σ−2σ2N,ℓ−1(zℓ)

)
,

where ỸN,L is the surrogate data defined in Lemma 5.6.5.

As a corollary, we have the following result.

Lemma 5.6.8. For N large, there exists a universal constant B such that cN (x, x̃) ≤ B.

Moreover,

L∑
ℓ=1

σN,ℓ−1(zℓ) ≤
√
2(σ2 +B2)LγL ,

where

γL = max
S⊂MN ,|S|=L

I
(
ỸN,S ;uN (S)

)
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is the maximum information gain. Here uN (S) denotes the vector {uN (s)}s∈S and ỸN,S is

the associated vector of observations as in Lemma 5.6.5.

Proof. The first statement can be proved in a similar fashion as Proposition 5.2.3 by bounding

the difference |cN (z1, z2) − c(z1, z2)| between the graph and manifold covariance functions,

and using the fact that the manifold covariance function c(·, ·) is uniformly upper bounded

(which follows by the control of growth of the Laplace-Beltrami eigenfunctions in Proposition

5.6.3).

For the second statement, notice that σN,ℓ−1(zℓ) ≤ cN (zℓ, zℓ) ≤ B. Using the fact that

(1 + σ−2B2) log(1 + x) ≥ x over [0, σ−2B2], we have

L∑
ℓ=1

σ2N,ℓ−1(zℓ) ≤ (σ2 +B2)
L∑

ℓ=1

log
(
1 + σ−2σ2N,ℓ−1(zℓ)

)
= 2(σ2 +B2)I({yℓ}Lℓ=1; {fN (zℓ)}Lℓ=1) ≤ 2(σ2 +B2)γL,

where the equality in the second step follows from Lemma 5.6.7. Finally, by Cauchy-Schwarz

inequality we have that
∑L

ℓ=1 σN,ℓ−1(zℓ) ≤
√
L
∑L

ℓ=1 σN,ℓ−1(zℓ)
2 and the result follows.

Applying Lemma 5.6.8 to (5.50), we get

RN,L ≤ C

(
bN,L

√
L+

ϵNL

δσ

)
√
γL, (5.51)

where C is a universal constant. Upper bounds on γL have been studied extensively in the

literature and by [Vakili et al., 2021, Theorem 3 or equation (7)] with D = kN and δD = 0

in our case (which holds because our graph kernel only has kN nonzero eigenvalues), we get

RN,L ≤ C

(
bN,L

√
L+

ϵNL

δσ

)√
kN logL.
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Finally, we return to bounding the simple regret using (5.49):

rN,L ≤
RN,L

L
≤ C

(
bN,L√
L

+
ϵN
δσ

)√
kN logL.

5.6.3 Proof of Corollary 5.2.7

Denote ẑ∗N = argminz∈MN
dM(z∗, z), i.e., the point in MN closest to z∗. Then by Propo-

sition 5.6.1 we necessarily have

dM(z∗, ẑ∗N ) ≤ dM(z∗, TN (z∗)) ≤ ρN .

Now notice that

f(z∗)− f(z∗N ) = [f(z∗)− f(ẑ∗N )] + [f(ẑ∗N )− f(z∗N )] ≤ f(z∗)− f(ẑ∗N )

since z∗N being the maximizer of f over MN implies f(ẑ∗N )− f(z∗N ) ≤ 0. By local α-Hölder

continuity of f at z∗, we conclude that

f(z∗)− f(ẑ∗N ) ≤ CfdM(z∗, ẑ∗N )α ≤ CραN .

By Lemma 5.6.4 and (5.36), we get

f(z∗)− f(z∗N ) = Õ


N

−
[
2s−2m+1
m(m+3)

∧ 1
2m

]
(Matérn)

N− 1
2m (SE)

, (5.52)
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where we have dropped all dependence on logarithmic factors in the notation Õ. The results

follows by the identity

f(z∗)− f(z∗L) = f(z∗)− f(z∗N ) + rN,L

and the observation that the error in (5.52) would be absorbed by that of rN,L as shown in

(5.24).
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CHAPTER 6

GRAPH-BASED PRIOR AND FORWARD MODELS FOR

INVERSE PROBLEMS ON MANIFOLDS WITH BOUNDARIES

6.1 Introduction

This chapter develops manifold learning techniques to address two tasks in the numerical so-

lution of PDE-constrained Bayesian inverse problems on manifolds with boundaries: (1) the

design and approximation of Gaussian field priors for spatially-distributed PDE parameters;

and (2) the approximation of forward maps from PDE parameters to PDE solutions. We

introduce graph-based approximations of prior and forward models and numerically show

their effectiveness in two test problems. The first one concerns the recovery of the diffusion

coefficient of an elliptic PDE from pointwise noisy measurements of the PDE solution; the

second one concerns the recovery of the initial condition of a heat equation from noisy mea-

surements of the PDE solution at some positive time. Both of these problems have been

widely used as test cases for Bayesian inversion on manifolds and Euclidean domains [Stuart,

2010, Franklin, 1970, Garcia Trillos and Sanz-Alonso, 2017, Harlim et al., 2020, Garcia Trillos

et al., 2020b, Chada et al., 2021, Bigoni et al., 2020], but previous work has largely ignored

the boundary effects that are the focus of this chapter. The applied significance of elliptic

and heat inverse problems is exemplified by [Zimmerman et al., 1998, Beck et al., 1985] and

references therein. PDEs on manifolds arise in many applications, including granular flow

[Rauter and Tuković, 2018], liquid crystals [Virga, 2018], biomembranes [Elliott and Stinner,

2010], computer graphics [Bertalmıo et al., 2001, Macdonald and Ruuth, 2010], and brain

imaging [Mémoli et al., 2004].

In the Bayesian approach to inverse problems [Tarantola, 2015, Kaipo and Somersalo,

2006, Stuart, 2010], overviewed in Section 6.2 below, inference on the PDE parameters

is performed using a posterior distribution obtained by conditioning a user-chosen prior
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distribution to observed data. When the parameter of interest is a function, employing an

adequate choice of prior is crucial: the prior determines the support of the posterior, and

hence the space of parameters that can be recovered given sufficient data. In this work, we

will focus on Matérn-type Gaussian field priors [Matérn, 2013, Stein, 2012] that have been

widely adopted in inverse problems, statistics and machine learning due to their flexibility

and computational efficiency, e.g. [Lindgren et al., 2011, Bolin and Kirchner, 2019, Bolin

et al., 2020, 2018, Roininen et al., 2019, Wiens et al., 2020, Bolin, 2014]. We consider

Matérn-type models on manifolds [Lindgren et al., 2011] and investigate their discretization

using graphs, as well ass their generalization to enhance flexibility near the boundaries. To

our knowledge, all previous work on graph-based Matérn models, e.g. [Bertozzi et al., 2018,

Sanz-Alonso and Yang, 2022a, Garcia Trillos et al., 2020b, Sanz-Alonso and Yang, 2022b],

disregarded boundary effects, despite their importance in the discretization of Gaussian

field priors in Euclidean settings [Khristenko et al., 2019, Daon and Stadler, 2018, Calvetti

et al., 2006]. Our numerical results will confirm that accounting for boundary conditions

is important in the design of priors and in their graph-based approximation. While our

emphasis is on PDE-constrained inverse problems, we expect that the boundary-aware graph-

based Matérn priors that we introduce will also find applications in graph-based machine

learning [Sanz-Alonso and Yang, 2022b].

Approximation of the forward map requires solving PDEs on manifolds with a range of

PDE parameters. There are numerous techniques to solve PDEs on manifolds, including the

finite element method [Dziuk and Elliott, 2013], the level set method [Bertalmıo et al., 2001],

closest point representation [Ruuth and Merriman, 2008], and the mesh-free radial basis

function method [Fuselier and Wright, 2013]. In contrast to all of these methods, the kernel

approach we will consider avoids the need to have some parameterization on the manifolds; we

refer to [Jiang and Harlim, 2023] for a detailed discussion of the advantages and disadvantages

of these PDE solvers. In this work, we introduce graph-based forward map approximations
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for elliptic and heat inversion on manifolds with boundaries. Our graph-based approach

leverages the ghost point diffusion map (GPDM) algorithm [Jiang and Harlim, 2023] to

approximate second-order elliptic operators with classical boundary conditions, which are

used to define elliptic and heat forward models, and also the Matérn prior covariance. The

main idea behind the GPDM algorithm is to extend the domain of the PDE through a set

of artificially constructed ghost points. By extending the underlying manifold where the

PDE was defined, one can treat the boundary of the original manifold as the interior of the

extended manifold. The implication is that the kernel-based approximations that underpin

the design of the GPDM method remain valid close to the boundary. The GPDM algorithm

has been generalized to solve time-dependent advection-diffusion equations on manifolds

[Yan et al., 2023].

We close this introduction with an outline of the chapter and a summary of our contri-

butions.

• In Section 6.2, we overview the Bayesian approach to inverse problems and provide a

high-level summary of the proposed procedure. We also review the Bayesian approach

in [Harlim et al., 2020] for elliptic inversion on a closed (i.e. boundary-free and compact)

manifold, and we lay out the forward map discretization for the heat inverse problem.

We present elliptic and heat inverse problems in a parallel way, emphasizing that both

can be treated in the same way under the proposed approach except for the necessary

distinction in the discretization of the forward map.

• In Section 6.3, we review the GPDM algorithm and introduce our boundary-aware

Matérn-type priors and forward map approximations for elliptic and heat inversion.

• In Section 6.4, we showcase implementations of the proposed methodology for elliptic

and heat inversion on one and two-dimensional manifolds with boundaries. In addition,

we demonstrate the enhanced flexibility of our proposed prior relative to existing graph-

based approaches that ignore boundary effects.
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• In Section 6.5, we provide conclusions and some open directions for future work.

6.2 Background

In this section, we first give the necessary background on the Bayesian formulation of inverse

problems [Tarantola, 2015, Kaipo and Somersalo, 2006, Sanz-Alonso et al., 2023] and the

function space perspective [Stuart, 2010, Dashti and Stuart, 2017]. Next, we formulate the

problem of interest, namely, PDE-constrained Bayesian inversion on manifolds. Lastly, we

review the graph-based approach in [Harlim et al., 2020] which is only applicable for closed

manifolds.

6.2.1 Bayesian Formulation of Inverse Problems

Suppose we have a parameter of interest θ ∈ Θ, observed data y ∈ RM and a forward model

G, satisfying

y = G(θ) + η, (6.1)

where η ∈ RM is an observation noise. Our goal is to study the inverse problem of recovering

θ from the observed data y. In the Bayesian framework, one endows probabilistic structure to

any unknown quantity. Here this involves specifying a prior distribution µ for the parameter

θ and a distribution ρ for the noise η. To facilitate our presentation, we assume throughout

that η ∼ ρ = N (0,Γ), where Γ ∈ RM×M is a given positive-definite covariance matrix.

We also assume that θ and η are independent random variables. The solution of the inverse

problem under the Bayesian framework is then the posterior distribution of θ given y, denoted

µy. The posterior distribution allows uncertainty quantification in the parameters in addition

to point estimates of the parameters. In practice, this often requires to resort to sampling

techniques such as Markov chain Monte Carlo (MCMC).

If the parameter space is finite-dimensional, i.e. Θ ⊆ RN , and the prior µ has Lebesgue
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density π, then the posterior µy has Lebesgue-density πy given by

πy(θ) =
1

Z
ρ
(
y − G(θ)

)
π(θ), Z :=

∫
ρ
(
y − G(θ)

)
π(θ) dθ, (6.2)

where ρ
(
y − G(u)

)
is the data likelihood. Under suitable assumptions [Stuart, 2010], the

characterization (6.2) of the posterior can be generalized to infinite dimensional parameter

space Θ by writing the posterior as a change of measure with respect to the prior:

dµy

dµ
(θ) =

1

Z
ρ
(
y − G(θ)

)
∝ exp

(
−Φ(θ; y)

)
, (6.3)

where we have defined Φ(θ; y) := 1
2∥y − G(θ)∥2Γ and we set ∥ · ∥Γ := ∥Γ−

1
2 · ∥.

6.2.2 General Setting and Approach

We are interested in the inverse problem of recovering a parameter function θ ∈ Θ of a PDE

defined on a manifold M ⊂ RD from noisy measurements of the PDE solution u ∈ U at

given locations {x̃m}Mm=1 ⊂ M. Here both Θ and U are suitable function spaces. The data

model (6.1) is therefore given by

ym = u(x̃m) + ηm, m = 1, . . . ,M, η = {ηm}Mm=1 ∼ N (0,Γ), (6.4)

with the forward model G : θ 7→
(
u(x̃1), . . . , u(x̃M )

)
defined as the composition of a forward

map F : θ 7→ u from PDE input to PDE solution with an observation map O : u 7→(
u(x̃1), . . . , u(x̃M )

)
from PDE solution to observed quantities. In this chapter, we solely

focus on pointwise observations and tacitly assume throughout that the solutions to the

PDEs we consider can be evaluated pointwise. However, our methodology can deal with

other types of observation map, e.g. defined by bounded linear functionals in L2 [Harlim

et al., 2020]. We will discretize the forward map using a point cloud in M, which is denoted by
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{xn}Nn=1 ⊇ {x̃m}Mm=1, where M ≤ N. Our approach for the computational implementation

of the inverse problem is then summarized in the following four steps:

(i) Prior Specification: Specify a prior distribution for the infinite dimensional param-

eter θ ∈ Θ.

(ii) Prior and Forward Model Discretization:

• Discretize using graph-based techniques the prior distribution µ to obtain µN , a

prior distribution over θN :=
(
θ(x1), · · · , θ(xN )

)
∈ RN . Note that µN is a prior

distribution over discrete functions θN defined on the point cloud {xn}Nn=1.

• Discretize using graph-based techniques the given forward map F : θ → u to ob-

tain FN : θN 7→ uN := FN (θN ) ∈ RN , where uN is an approximation to the so-

lution of the PDE evaluated along the point cloud, i.e., uN ≈
(
u(x1), . . . , u(xN )

)
.

Furthermore, we define GN (θN ) :=
(
uN (x̃1), . . . , uN (x̃M )

)
∈ RM where uN (x̃i)

denotes the component of the vector uN ∈ RN that corresponds to x̃i ∈ {xn}Nn=1.

(iii) Sampling: Use an MCMC algorithm to obtain samples from the posterior distribution

over θN , given by

dµ
y
N

dµN
(θN ) ∝ exp(−ΦN (θN ; y)), where ΦN (θN ; y) :=

1

2
∥y − GN (θN )∥2Γ. (6.5)

(iv) Interpolation: If desired, extend the samples to functions on M with an interpolation

map.

This four-step approach was introduced in [Garcia Trillos et al., 2020b, Garcia Trillos

and Sanz-Alonso, 2018] and previous works on the discretization process include [Harlim

et al., 2020]. The primary focus of this chapter is to contribute to the specification and

discretization steps for PDE-constrained inverse problems on manifolds with boundaries.
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We propose (1) priors that accommodate for prescribed boundary conditions, (2) graph-

based discretizations of such priors; and (3) graph-based discretizations of the forward PDEs

supplemented with boundary conditions. These procedures will be introduced in Section 6.3.

In the remainder of this section, we address the sampling and interpolation steps, which are

based on existing methodologies that are applicable in wide generality.

For the sampling step, we will use the graph pCN method [Bertozzi et al., 2018, Gar-

cia Trillos et al., 2020b], summarized in Algorithm 6.2.1.

Algorithm 6.2.1 Graph pCN

1: Input: initial value θ(0)N , number of samples J , parameter value ζ ∈ (0, 1).

2: For j = 1, . . . , J do:

1. Propose θ̃(j)N = (1− ζ2)
1
2 θ

(j)
N + ζ ξ

(j)
N , where ξ(j)N ∼ N (0, VN ).

2. Set

a(θ
(j)
N , θ̃

(j)
N ) := min

{
1, exp

(
ΦN (θ

(j)
N ; y)− ΦN (θ̃

(j)
N ; y)

)}
,

and let

θ
(j+1)
N =


θ̃
(j)
N with probability a(θ(j)N , θ̃

(j)
N ),

θ
(j)
N with probability 1− a(θ

(j)
N , θ̃

(j)
N ).

3: Output: Samples of discrete functions {θ(j)N }Jj=1.

The covariance matrix VN in the pCN proposal is tightly connected with the prior construc-

tion. In fact, this matrix will be precisely the covariance matrix of the discretized prior

distribution. The parameter ζ controls the size of the proposed moves of the chain. For a

large ζ value, we explore a wider region of the state space with higher number of rejections.

The motivation for using the graph pCN method is that it shows robustness with respect

to the level of discretization refinement determined by the value of N . We refer to [Beskos

174



et al., 2008, Cotter et al., 2010, Bertozzi et al., 2018, Garcia Trillos et al., 2020b] for the

theoretical and empirical justification of this robustness.

For the interpolation step, once we obtain finite-dimensional samples θN ∈ RN represent-

ing a parameter function evaluated on the point cloud {xn}Nn=1, we can extend the samples

into functions on M using the K-NN interpolation map defined by

θ(x) =
1

K

∑
xi∈NK(x)

θN (xi), x ∈ M, x /∈ {xn}Nn=1,

where NK(x) is the set of K-nearest points in the point cloud {xn}Nn=1 to the point x. To

find the K-nearest points, one can use the Euclidean distance in RD or the geodesic distance

on M ⊂ RD, if available. We refer to [Garcia Trillos et al., 2020b] for more details and we

note that other interpolation methods are possible.

6.2.3 Elliptic Inverse Problems and Heat Inversion on Closed Manifolds

In this section, we overview existing procedures for the prior specification and the discretiza-

tion of prior and forward models on closed (i.e. compact and boundary-free) manifolds. We

start by describing the two inverse problems used as running examples. Throughout this

section, M will denote a d-dimensional smooth closed manifold isometrically embedded in

RD.

Elliptic Inverse Problem Consider the elliptic PDE

Lu := −div(κ∇u) = f, x ∈ M, (6.6)

where the divergence and gradient operators are defined with respect to the Riemannian

metric inherited by M from RD. The goal of the elliptic inverse problem is to recover the

diffusion coefficient κ given the right-hand side f (assumed to be smooth) and noisy point-
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wise observation of the solution u at M spatial locations {x̃m}Mm=1 ⊂ M. The data are

therefore given by {ym}Mm=1 = {u(x̃m) + ηm}Mm=1. We cast this problem into the general

framework (6.1) defining the forward map F : θ 7→ u, where θ := log κ ∈ (−∞,∞). Pre-

vious kernel-based methods for elliptic inverse problems on manifolds [Harlim et al., 2020]

assumed M to be closed so that the elliptic PDE given in (6.6) is not supplemented with

a boundary condition. Bayesian elliptic inverse problems on Euclidean domains are one of

the standard model problems in uncertainty quantification [Stuart, 2010, Dashti and Stuart,

2017, Garcia Trillos and Sanz-Alonso, 2017]. We will refer to the operator L as the weighted

Laplacian operator.

Heat Inversion Consider the heat equation


ut = −∆Mu, (x, t) ∈ M× [0,∞),

u(x, 0) = θ(x), x ∈ M,

(6.7)

where ∆M := −div(∇·) is the Laplace-Beltrami operator on M, which reduces to the

negative of the conventional Laplace operator in Euclidean space. The goal of the inverse

heat problem is to recover the initial heat θ defined on M from noisy pointwise observation

of the heat at time t∗ > 0 along M spatial locations {x̃m}Mm=1 ⊂ M. The data are therefore

given by {ym}Mm=1 = {u(x̃m, t∗)+ηm}Mm=1 where u( · , t∗) is the solution of the heat equation

(6.7) at time t∗. The corresponding forward map is a heat equation solver, namely F : θ 7→ u,

where u(x) := u(x, t∗) and θ is the initial condition. The function space formulation of

Bayesian heat inversion was introduced in [Franklin, 1970] on Euclidean domains, and graph-

based formulations on closed manifolds were studied in [Garcia Trillos et al., 2020b]. Other

than its natural physical interpretation, this inverse problem can also be viewed as a standard

deconvolution problem arising in imaging applications.
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Prior Specification and Discretization

Here we describe the specification of Matérn Gaussian field priors for the log-diffusion co-

efficient and the initial heat on closed manifolds. We will also overview their graph-based

discretization. Recall that the Matérn model on a closed manifold M is defined [Lindgren

et al., 2011] as the Gaussian measure

µ = N (0, V ), V = c(τI +∆M)−s, (6.8)

where ∆M := −div(∇·) is the Laplace-Beltrami operator on M and τ > 0, s > d
2 are two

free parameters. The choice of normalizing constant

c =
1∑∞

i=1(τ + λi)−s ,

where (λi)
∞
i=1 are the increasingly ordered eigenvalues of ∆M, ensures that θ ∼ µ has unit

marginal variance. Samples can be represented using the Karhunen-Loève (KL) expansion

θ(x) =
√
c

∞∑
i=1

(τ + λi)
− s

2 ζiφi(x), x ∈ M, (6.9)

where (ζi)
∞
i=1 are i.i.d. standard normal random variables and (φi)

∞
i=1 are eigenfunctions

of ∆M with corresponding eigenvalues (λi)
∞
i=1. The parameter τ

1
2 represents the inverse

length-scale and allows to discern the significant terms in the KL expansion (6.9). The

parameter s characterizes the almost-sure regularity of the samples. The requirement s > d
2

is motivated by Weyl’s law, see [Canzani, 2013, Theorem 72] and [Colbois et al., 2015], which

asserts that λi ≍ i
2
d , i.e., the asymptotic behavior of λi is equivalent to that of i

2
d . Thus,

s > d
2 ensures that µ is a well-defined Gaussian measure in L2(M). Further increasing s

allows to ensure higher-order sample path differentiability and Sobolev regularity [Stuart,

2010, Sanz-Alonso and Yang, 2022c], and thereby the well-posedness of elliptic and heat
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inverse problems [Stuart, 2010, Harlim et al., 2020]. The flexibility of the Matérn model can

be enhanced by letting the inverse length-scale be a spatially varying function rather than a

scalar parameter [Lindgren et al., 2011, Sanz-Alonso and Yang, 2022a].

To define a prior distribution over discrete functions defined along the point cloud

{xn}Nn=1 ⊂ M, the paper [Harlim et al., 2020] proposed to replace the Laplace-Betrami

operator ∆M in (6.8) by a graph Laplacian ∆N constructed using the point cloud {xn}Nn=1.

To be more specific, the discretized prior distribution is given by

µN = N (0, VN ), VN = cN (τI +∆N )−s,

where ∆N ∈ RN×N is a graph Laplacian constructed using {xn}Nn=1 and τ > 0, s > d
2

are two free parameters. The role of the parameters τ and s is analogous to the infinite-

dimensional case and these can be manually tuned, or learned from data using a hierarchical

Bayesian approach [Harlim et al., 2020, Sanz-Alonso and Yang, 2022a]. In practice, among

different choices of graph Laplacian [Von Luxburg, 2007], the use of self-tuning graph Lapla-

cian [Zelnik-Manor and Perona, 2005] was recommended in [Harlim et al., 2020]. More

specifically, in our numerical experiments we use a symmetric graph Laplacian given by

∆N = IN − A−1
2SA−1

2 . (6.10)

Here S is a similarity matrix and A is a diagonal matrix whose entries are respectively given

by

Sij = exp

(
−
|xi − xj |2

2didj

)
, Aii =

N∑
j=1

Sij ,

where di is the distance between xi and its k-th closest neighbor. Same definition applies for

dj . Typically, the parameter k is tuned empirically. We refer to [Von Luxburg, 2007] for a

review of graph Laplacians and to [Sanz-Alonso and Yang, 2022a] for generalizations of this
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graph-based prior model and its connection to the Matérn family [Stein, 2012]. To obtain

samples whose variance per node is one, the normalizing constant cN can be set to be

cN =
N∑N

n=1(τ + λ
(N)
n )−s

,

where (λ(N)
n )Nn=1 are the increasingly ordered eigenvalues of ∆N . Samples θN from this prior

can be represented via the KL expansion

θN (xi) =
√
cN

N∑
n=1

(τ + λ
(N)
n )−

s
2 ζnφ

(N)
n (xi), 1 ≤ i ≤ N, (6.11)

where (ζn)
N
n=1 are i.i.d. standard normal random variables and (φ

(N)
n )Nn=1 are eigenvectors

of ∆N with corresponding eigenvalues (λ
(N)
n )Nn=1.

Forward Map Discretization

Elliptic Inverse Problem For the discretization of the elliptic forward map, one can

approximate the operator L in equation (6.6) by an integral operator [Harlim et al., 2020],

which can be subsequently approximated using a Monte Carlo sum. To be more specific, let

Gϵ
(
u(x)

)
:= ϵ−

d
2

∫
M
h

(
|x− y|2

4ϵ

)
u(y) dV(y),

where h(s) = 2−dπ−
d
2 exp(−s) and V denotes the volume form inherited by M from the

ambient space RD. For a smooth u, it was shown in [Coifman and Lafon, 2006] that

Gϵ
(
u(x)

)
= u(x) + ϵ

(
ωu(x)−∆Mu(x)

)
+O(ϵ2), x ∈ M, (6.12)

where ω is a function that depends only on the parametrization of the manifold M.
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Recall that ∆M := −div(∇·) and from (6.6),

Lu := −div(κ∇u) = κ∆Mu−∇u · ∇κ (6.13)

=
√
κ
(
∆M(u

√
κ)− u∆M(

√
κ)
)
. (6.14)

Use (6.12) on
√
κ and u

√
κ to obtain,

uGϵ
√
κ = u

√
κ+ ϵ

(
ωu

√
κ− u∆M

√
κ
)
+O(ϵ2),

Gϵ(u
√
κ) = u

√
κ+ ϵ

(
ωu

√
κ−∆M

(
u
√
κ
))

+O(ϵ2).

This yields

uGϵ
√
κ−Gϵ(u

√
κ) = ϵ

(
∆M(u

√
κ)− u∆M(

√
κ)
)
+O(ϵ2) =

ϵ√
κ
Lu+O(ϵ2).

Motivated from this equation, we define

Lϵu(x) :=

√
κ(x)

ϵ

(
u(x)Gϵ

(√
κ(x)

)
−Gϵ(u(x)

√
κ(x))

)
,

which can be rewritten as the following integral operator

Lϵu(x) :=
1

ϵ
d
2+1

∫
M
h

(
|x− y|2

4ϵ

)√
κ(x)κ(y)

(
u(x)− u(y)

)
dV(y) (6.15)

satisfying

Lϵu(x) = Lu(x) +O(ϵ), x ∈ M.

The kernel operator Lϵ can be approximated by Monte Carlo viewing the point cloud

{xn}Nn=1 as manifold samples. Using importance sampling with approximate density qϵ, we
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have an approximation of Lϵ given by, for i = 1, . . . , N ,

Lϵ,Nu(xi) :=
1

ϵ
d
2+1

 1

N

N∑
j=1

h

(
|xi − xj |2

4ϵ

)√
κ(xi)κ(xj) qϵ(xj)

−1(u(xi)− u(xj)
) ,

(6.16)

qϵ(xj) :=
1

2dπ
d
2Nϵ

d
2

N∑
k=1

exp

(
−
|xj − xk|2

4ϵ

)

is a kernel estimator of the density of the point cloud. One can write the discretized weighted

Laplacian operator in (6.16) in a matrix form. Specifically, define a kernel matrix H with

entries Hij := exp

(
− |xi−xj |2

4ϵ

)
and define a vector Q with entries Qi =

∑N
j=1Hij . Set the

matrix W with entries Wij =
√
κ(xi)κ(xj)HijQ

−1
j and the diagonal matrix D with diagonal

entries Dii =
∑N

j=1Wij . Then the discretized weighted Laplacian Lϵ,N can be written as

Lϵ,N =
1

ϵ
(D −W ). (6.17)

For practical implementation, the bandwith parameter ϵ can be empirically chosen so that

it lies in the region where

log
(
T (ϵ)

)
= log

N,K∑
i,j=1

exp

(
−
|xi − xj(i)|2

4ϵ

) (6.18)

is approximately linear [Harlim et al., 2020]. Here (xj(i))
K
j=1 are the K closest points to the

point xi. In practice, it was further observed that the maximum slope of log (T (ϵ)) often

coincided with d
2 , where d is the dimension of the underlying manifold M (see [Berry and

Harlim, 2016]).

Using the above discretization, one can obtain a discretized forward map, Fϵ,N , which

maps θN =
(
log(κ(x1)), . . . , log(κ(xN ))

)
to an N -dimensional vector uN , which represents

an approximate solution to (6.6) restricted to the point cloud. In other words, uN is the
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minimal norm least-squares solution of

Lϵ,NuN = fN ,

where fN =
(
f(x1), · · · , f(xN )

)
. Therefore, the discretized forward map is given by

Fϵ,N : θN 7→ uN = L−1
ϵ,NfN ,

where L−1
ϵ,N denotes the pseudo-inverse. This allows us to write the discretized posterior

distribution µyN as a change of measure with respect to the discretized prior distribution µN

in the following way:
dµ

y
N

dµN
(θN ) ∝ exp

(
−1

2
|y − Gϵ,N (θN )|2Γ

)
,

where Gϵ,N (θN ) =
(
uN (x̃1), . . . , uN (x̃M )

)
. The Lebesgue density of the posterior is given

by πyN (θN ) ∝ ρ
(
y−Gϵ,N (θN )

)
πN (θN ), where ρ and πN are Gaussian densities N (0,Γ) and

N (0, VN ) in RM and RN , respectively. The graph pCN algorithm can then be used to obtain

samples θN ∼ π
y
N that can be extended into the underlying manifold using a K-NN map.

Heat Inversion To discretize the heat forward map, we replace the Laplace-Beltrami

operator in (6.7) with the graph Laplacian ∆N in (6.10) and solve


∂
∂tuN = −∆NuN , t ∈ [0,∞),

uN (0) = θN ,

where θN ∈ RN represents the initial heat function restricted to the point cloud. Then the

solution uN := uN (t∗) at time t∗ can be expressed as

uN =
N∑
n=1

⟨θN , φ
(N)
n ⟩e−λ

(N)
n t∗φ

(N)
n ,
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where (λ
(N)
n , φ

(N)
n )Nn=1 are the ordered eigenpairs of the graph Laplacian ∆N . From this, we

naturally obtain a discretization of the forward map given by

FN : θN 7→ uN =
N∑
n=1

⟨θN , φ
(N)
n ⟩e−λ

(N)
n t∗φ

(N)
n .

We can then write the discretized posterior distribution µ
y
N as a change of measure with

respect to the prior distribution µN

dµ
y
N

dµN
(θN ) ∝ exp

(
−1

2
|y − GN (θN )|2Γ

)
,

where GN (θN ) =
(
uN (x̃1), . . . , uN (x̃M )

)
. The Lebesgue density of the posterior is given by

π
y
N (θN ) ∝ ρ

(
y − GN (θN )

)
πN (θN ), and sampling and interpolation can be performed with

the general methodology described previously.

6.3 Bayesian Inverse Problems on Manifolds with Boundaries

In this section, we propose a novel methodology for Bayesian inversion on manifolds with

boundaries, addressing the design of priors that can reflect the given boundary conditions,

the graph-based discretization of these priors, and the graph-based approximation of PDE-

constrained forward maps supplemented with boundary conditions. To be concrete, we

will focus on the following elliptic and heat inverse problems on one and two-dimensional

manifolds with Dirichlet boundary conditions. Throughout this section and the rest of this

chapter, M will denote a smooth compact d-dimensional manifold isometrically embedded

in RD with boundary ∂M. We denote Mo = M\ ∂M.
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Elliptic Inverse Problem Consider the following elliptic PDE with Dirichlet boundary

conditions, 
Lu := −div(κ∇u) = f, x ∈ Mo,

u(x) = h(x), x ∈ ∂M,

(6.19)

where the divergence and gradient operators are defined with respect to the Riemannian

metric inherited by the manifold M from RD. In our numerical examples, we will consider a

one-dimensional semi-ellipse where ∂M = {x0, xN} and a two-dimensional semi-torus where

∂M = B1 ∪ B2 and Bi, i = 1, 2 are circles. We will then denote by h1 and h2 the Dirichlet

boundary conditions at B1 and B2.

The goal of the elliptic inverse problem is to recover the diffusion coefficient κ given the

right-hand side f and noisy pointwise observation of the solution u at M spatial locations

{x̃m}Mm=1 ⊂ M. The data are given by {ym}Mm=1 = {u(x̃m) + ηm}Mm=1 with the forward

map F : θ 7→ u, where θ := log κ ∈ (−∞,∞). We refer to [Jiang and Harlim, 2023]

for sufficient conditions on M, κ, f and h to guarantee that the solution to (6.19) can be

evaluated pointwise.

Heat Inversion Consider the following heat equation with Dirichlet boundary conditions,


ut(x, t) = −∆Mu(x, t), x ∈ Mo, t > 0,

u(x, t) = h(x), x ∈ ∂M, t ≥ 0,

u(x, 0) = θ(x), x ∈ M,

(6.20)

Again the goal of the inverse heat problem is to recover the initial heat θ defined on

M from noisy pointwise observation of the heat at time t∗ > 0 along M spatial locations

{x̃m}Mm=1 ⊂ M. The data are therefore given by {ym}Mm=1 = {u(x̃m, t∗) + ηm}Mm=1. The

corresponding forward map is a heat equation solver, namely F : θ 7→ u, where u(x) ≡

u(x, t∗) denotes the solution of (6.20) at time t∗ and θ is the initial condition. For our
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numerical examples we will use a one-dimensional semi-ellipse and a two-dimensional semi-

torus, and we will adopt the same notations as in the elliptic inverse problem.

6.3.1 Ghost Point Diffusion Maps for Dirichlet Boundary Conditions

In this section, we give a short discussion on the construction of ghost points and the ghost

point diffusion map (GPDM) algorithm, which will be used in the discretizations of the prior

and forward models. In this chapter, we focus on a specific GPDM algorithm to approximate

the weighted Laplacian operator, L = −div(κ∇·) whose inputs are functions u : M → R

that satisfy the Dirichlet boundary condition, u(x) = h(x), for all x ∈ ∂M. The discussion

will focus on the algorithmic aspect that will be used in the forward map discretization.

For other types of (possibly non-symmetric) second-order diffusion operators and boundary

conditions, and the convergence analysis, we refer to [Jiang and Harlim, 2023, Yan et al.,

2023].

The key idea of the GPDM algorithm comes from the classical ghost point method [LeV-

eque, 2007] for solving PDEs with Neumann boundary condition using the finite-difference

method. Particularly, the ghost points are constructed to improve the convergence rate in

approximating the normal derivative at the boundary points. In the context of the GPDM

algorithm, the ghost points are employed to overcome the biases induced by the graph

Laplacian discretization near the boundary. Numerically, solving PDEs with the ghost point

method requires the following two steps: (1) specification of ghost points; and (2) specifi-

cation of function values at the ghost points. While these two steps are trivial when the

geometry is Euclidean or known, they require nontrivial numerical algorithms and theoret-

ical justification when the manifold is unknown in the sense that it can only be identified

with finitely sampled point cloud data.

The GPDM algorithm addresses step (1) above by augmenting the sampled point cloud

data on the manifold with a set of ghost points specified on the outer normal collar of the
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Figure 6.1: Construction of ghost points.

boundary. Theoretically, the GPDM algorithm extends the embedded manifold M ι
↪→ RD

with its collar neighbor ∆M of a sufficiently large radius, such that the extended manifold

M∪∆M ι̃
↪→ RD is isometrically embedded and does not change the geometry of M, i.e.,

ι̃|M = ι (see Lemma 3.5 in [Jiang and Harlim, 2023]). With this modification, the graph

Laplacian construction in (6.16) is a consistent pointwise estimator of L for all points in M,

even for the points that are very close to the boundary ∂M since they are sufficiently far

away from the boundary of the extended manifold, ∂(M ∪ ∆M), as illustrated in Figure

6.1. Since our goal is to construct a forward map on the manifold M, we need to specify

the additional unknowns (the function values at these ghost points as we noted in the step

(2)) by adding more equations. Specifically, we will impose a set of linear extrapolation

equations, whose solution specifies the function values on the ghost points through function

values on the point cloud.

While there are various ways to realize the two steps above, in the following we will

provide a simple numerical procedure for well-ordered data that is used in the numerical

examples in this chapter. For randomly sampled data or a higher convergence rate method,

we refer interested readers to [Jiang and Harlim, 2023]. We should also point out that the

presentation below uses much simpler notations compared to those in [Jiang and Harlim,

2023, Yan et al., 2023] since we are only interested in the algorithmic aspect of the GPDM
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method. Given a point cloud {xn}Nn=1 ⊂ M, the GPDM estimator for L is constructed as

follows:

1. Specification of the ghost points. At each boundary point, xb ∈ ∂M:

(a) Apply the secant line to approximate the normal vector at each boundary point.

Following the notation in the illustration in Figure 6.1, the unit normal vector is

estimated via

vb =
xb − xb,0

∥xb − xb,0∥
.

(b) We specify K ghost points along the normal vector at each boundary point, xb ∈

∂M∩ {xn}Nn=1,

xb,k := xb + δkvb, k = 1, . . . , K,

where δ = ∥xb − xb,0∥ and xb,0 is the closest point to xb in Mo ∩ {xn}Nn=1.

2. Specification of the function values at the ghost points. For each boundary point xb,

we impose the following extrapolation condition,

u(xb,1)− 2u(xb) + u(xb,0) = 0,

u(xb,2)− 2u(xb,1) + u(xb) = 0,

u(xb,k)− 2u(xb,k−1) + u(xb,k−2) = 0, k = 3, . . . , K.

(6.21)

These algebraic equations are discrete analogs of matching the first-order derivatives

along the estimated normal direction, vb.

3. Construction of the GPDM discrete estimator. Construct the graph Laplacian estima-

tor as in (6.16) for the extended points, {xn}Nn=1 ∪ {xb,k}
B,K
b,k=1. We point out that we

also use a set of algebraic equations identical to (6.21) to determine the function value

of κ at the ghost points {xb,k}
B,K
b,k=1. Let N̄ = N + BK and obtain the correspond-

ing weighted Laplacian matrix, Lϵ,N̄ , whose construction is analogous to (6.17). The
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weighted Laplacian matrix can be rewritten as

Lϵ,N̄ =

L(1)

ϵ,N̄
L(2)

ϵ,N̄

L(3)

ϵ,N̄
L(4)

ϵ,N̄

 ∈ RN̄×N̄ . (6.22)

We will construct the GPDM matrix based on the sub-matrices L(1)

ϵ,N̄
∈ RN×N ,

whose entries are constructed based on the affinity between pairs of the point cloud

points in {xn}Nn=1 ⊂ M, and L(2)

ϵ,N̄
∈ RN×BK , whose entries represent the affin-

ity between an element of {xn}Nn=1 and a ghost point in {xb,k}
B,K
b,k=1. Let uG =

(u(x1,1), . . . , u(xB,K)) ∈ RBK and uN = (u(x1), . . . , u(xb,0), . . . , u(xN )) ∈ RN . Then

we can write the solution of (6.21) in a compact form as uG = GuN such that

L(1)

ϵ,N̄
uN + L(2)

ϵ,N̄
uG = (L(1)

ϵ,N̄
+ L(2)

ϵ,N̄
G)uN . Based on this observation, we define the

GPDM estimator without boundary condition as

L̃ϵ,N := L(1)

ϵ,N̄
+ L(2)

ϵ,N̄
G ∈ RN×N . (6.23)

Denoting

L̃ϵ,N =

L̃ϵ,(N−B)×(N−B) L̃ϵ,(N−B)×B

L̃ϵ,B×(N−B) L̃ϵ,B×B ,

 (6.24)

and splitting uN := (uN−B , uB) into function values at the interior and boundary points,

respectively, the GPDM algorithm discretizes the Dirichlet problem in (6.19) as follows:

L̃ϵ,(N−B)×(N−B)uN−B + L̃ϵ,(N−B)×BuB = fN−B ,

uB = hB .

(6.25)

Here, the components of the vector fN−B ∈ RN−B are the function values at the interior

points, whereas the components of the vector hB ∈ RB are the function values at the
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boundary points.

6.3.2 Prior Specification and Discretization

In this section, we propose novel prior constructions to facilitate elliptic and heat Bayesian

inversion on manifolds with boundaries. The priors we propose contain two terms. The

first one is a Matérn-type Gaussian field with Dirichlet homogeneous boundary conditions,

whose primary role is to capture the uncertainty on the parameter of interest in the interior

of the manifold. The second term accounts for prior uncertainty along the boundary of the

manifold, and can be omitted if the boundary values of the parameter are known.

For a one-dimensional manifold M with boundary ∂M = {x1, xN}, i.e. a semi-ellipse in

our numerical experiments, we propose using a prior defined as the law of

θ =
1√∑∞

i=1(τ + λi)−s

∞∑
i=1

(τ + λi)
− s

2 ζiφi︸ ︷︷ ︸
Interior term

+ µ1ψ1 + µ2ψ2︸ ︷︷ ︸
Boundary term

. (6.26)

In the interior term, τ, s, and (ζi)
∞
i=1 play the same role as in (6.9), but now (λi, φi)

∞
i=1 are

the ordered eigenpairs of the Laplace-Beltrami operator ∆M equipped with homogeneous

Dirichlet boundary conditions, so that φi(x1) = φi(xN ) = 0 for all i. Nonhomogeneous

Dirichlet boundary conditions could also be considered. In the boundary term, µ1, µ2 ∼

N (0, 1) are independent of all other randomness and ψ1, ψ2 are harmonic functions defined

by


∆Mψ1 = 0,

ψ1(x1) = 1,

ψ1(xN ) = 0,

and


∆Mψ2 = 0,

ψ2(x1) = 0,

ψ2(xN ) = 1.

(6.27)

Thus the random coefficients µ1 and µ2 in (6.26) respectively represent the uncertainty on
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the parameter value of interest at the two boundary points x1 and xN . Overall, the prior

defined by (6.26) combines the flexibility of the Matérn model with homogeneous Dirichlet

boundary conditions for interior reconstruction with additional flexibility in the boundary

reconstruction. A simulation study that illustrates the increased flexibility afforded by the

boundary term and our prior construction is given in Section 6.4.

Following the same idea, for a two-dimensional manifold M with boundary ∂M = B1 ∪

B2, where B1 and B2 are disjoint regular closed curves, e.g. in our numerical examples B1

and B2 are boundary circles of a semi-torus, we define a prior as the law of

θ =
1√∑∞

i=1(τ + λi)−s

∞∑
i=1

(τ + λi)
− s

2 ζiφi︸ ︷︷ ︸
Interior term

+
L∑

ℓ=1

µ1,ℓψ1,ℓ +
L∑

ℓ=1

µ2,ℓψ2,ℓ︸ ︷︷ ︸
Boundary term

. (6.28)

The interior term is defined analogously as in the one-dimensional case, using the spectrum

of the Laplace-Beltrami operator with homogeneous Dirichlet boundary conditions. For the

boundary term, µ1,ℓ, µ2,ℓ ∼ N (0, 1) are independent of all other randomness, and {ψ1,ℓ}Lℓ=1

and {ψ2,ℓ}Lℓ=1 are harmonic functions on M defined by


∆Mψ1,ℓ = 0,

ψ1,ℓ(x) = ψ̃1,ℓ(x), x ∈ B1,

ψ1,ℓ(x) = 0, x ∈ B2,

and


∆Mψ1,ℓ = 0,

ψ2,ℓ(x) = 0, x ∈ B1,

ψ2,ℓ(x) = ψ̃2,ℓ(x), x ∈ B2,

for ℓ = 1, . . . , L,

(6.29)

where ψ̃1,ℓ(x) and ψ̃2,ℓ(x) are ordered eigenfunctions of the Laplace-Beltrami operator de-

fined on the closed curves B1 and B2, respectively. The number L of basis-type functions for

each boundary controls the flexibility of the prior along the boundary. Larger L allows to

recover more frequencies of the parameter of interest along the boundary, but at the expense

of introducing additional model parameters.
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To discretize the prior defined in (6.26), we simply replace the role of the Laplace-Betrami

operator ∆M with a graph Laplacian as we did in Subsection 6.2.3, but now taking care

of boundary conditions. Specifically, for one-dimensional inverse problems, our discretized

prior distribution would have samples of the form

θN ∼
√
N√∑N

n=1(τ + λ
(N)
n )−s

N∑
n=1

(τ + λ
(N)
n )−

s
2 ζnφ

(N)
n + µ1ψ

(N)
1 + µ2ψ

(N)
2 , (6.30)

where (λ
(N)
n , φ

(N)
n ) are ordered eigenpairs of ∆̃N defined as the N × N submatrix corre-

sponding to the point cloud portion of the graph Laplacian (6.10) constructed using both

the point cloud {xn}Nn=1 and ghost points {xb,k}
B,K
b,k=1. From now on, we will refer to ∆̃N as

a truncated graph Laplacian. More specifically, given the point cloud and ghost points, we

define ∆̃N as an N ×N submatrix of the N̄ × N̄ matrix ∆N̄ with N̄ := N +BK. Indices of

the submatrix ∆̃N correspond to that of the elements in the point cloud. We have observed

such a construction provided an effective approximation to the Laplace-Beltrami operator

on M with homogeneous Dirichlet boundary conditions in our numerical experiments. This

construction avoids any potential idiosyncratic boundary behavior of eigenvectors when us-

ing a graph Laplacian constructed solely with point cloud data. Indeed, in our numerical

experiments (see Figure 6.6 and the associated discussion in Section 6.4 below) we note that

the eigenvectors of the self-tuned graph Laplacian (6.10) have spikes and oscillations near

the boundary. Finally, ψ(N)
1 and ψ

(N)
2 are the solutions of (6.27) evaluated along the point

cloud. These solutions can be obtained by the GPDM algorithm as described in Section

6.3.1.

An alternative attempt to discretize the homogeneous Dirichlet boundary condition was

introduced in [Thiede et al., 2019] where they employed truncation on the original point

clouds without adding ghost points. In fact, the spectral convergence of the truncated graph

Laplacian to the Dirichlet Laplacian on manifold with boundaries has recently been reported
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[Peoples and Harlim, 2021]. We should also point out that there were two discretizations

of the Laplace-Beltrami operator introduced in this chapter: 1) self-tuned normalized sym-

metric graph Laplacian given in (6.10) and 2) ghost point diffusion map(GPDM) matrix

given in (6.23). The eigenvectors of the former are orthogonal as the matrix is symmetric,

whereas the eigensolutions of the latter are not the case since the GPDM matrix in (6.23) is

not symmetric. With this fact, we clarify that we only use GPDM to solve linear problems

(6.27) and do not use the eigenvectors of the corresponding GPDM matrix elsewhere.

For the two-dimensional graph-based prior discretization, we obtain a finite number of

discretized functions for each boundary, denoted by {ψ(N)
1,ℓ }Lℓ=1 and {ψ(N)

2,ℓ }Lℓ=1, by solving

(6.29) along the point cloud. One can again use the GPDM algorithm to obtain {ψ(N)
1,ℓ }Lℓ=1

and {ψ(N)
2,ℓ }Lℓ=1 where the boundary basis functions {ψ̃1,ℓ}Lℓ=1 and {ψ̃2,ℓ}Lℓ=1 are discretized

using a self-tuned graph Laplacian constructed with all the point cloud elements that lie on

the boundaries, which are two disjoint closed curves in our numerical examples. For instance,

to obtain {ψ̃1,ℓ}Lℓ=1 one can construct the self-tuned graph Laplacian solely using points in

B1 ∩ {xn}Nn=1, where {xn}Nn=1 ⊂ M is the point cloud of the manifold. Then {ψ̃1,ℓ}Lℓ=1 can

be chosen to be the first L eigenvectors of this self-tuned graph Laplacian. To summarize,

in the two-dimensional case, samples from the proposed graph-based prior are defined by

θN ∼
√
N√∑N

n=1(τ + λ
(N)
n )−s

N∑
n=1

(τ +λ
(N)
n )−

s
2 ζnφ

(N)
n +

L∑
ℓ=1

µ1,ℓψ
(N)
1,ℓ +

L∑
ℓ=1

µ2,ℓψ
(N)
2,ℓ , (6.31)

where (λ
(N)
n , φ

(N)
n )Nn=1 are ordered eigenpairs of a truncated graph Laplacian.

6.3.3 Forward Map Discretization

Using the tools introduced in previous sections, here we propose graph-based discretizations

of forward maps for elliptic and heat inverse problems on one and two-dimensional manifolds

with boundary.
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Elliptic Inverse Problem For the inversion problem involving the elliptic PDE in (6.19),

our goal is to learn the diffusion coefficient κ on M. Correspondingly, analogous to the

boundary-free setting, a forward map was given by F : θ 7→ u, where θ = log κ ∈ (−∞,∞)

and u solves (6.19). In this case, we can use the GPDM algorithm introduced in Section

6.3.1 to obtain the discretization of the forward map. Precisely, the discretized forward map

is given by

Fϵ,N : θN 7→ uN = (uN−B , uB) =
(
L̃−1
ϵ,(N−B)×(N−B)

(fN−B − L̃ϵ,(N−B)×BhB), hB

)
,

where θN =
(
log(κ(x1)), . . . , log(κ(xN ))

)
and L̃−1

ϵ,(N−B)×(N−B)
denotes the pseudo-inverse.

From this discretization process, we arrive at the relationship between the discretized pos-

terior distribution µyN and the discretized prior distribution µN , which is given by

dµ
y
N

dµN
(θN ) ∝ exp

(
−1

2
|y − Gϵ,N (θN )|2Γ

)
,

where Gϵ,N (θN ) =
(
uN (x̃1), . . . , uN (x̃M )

)
. For the sampling and interpolation steps, we

follow the general methodology in Section 6.2.2.

Heat Inversion Consider first the one-dimensional heat equation with Dirichlet boundary

conditions given by (6.20) with ∂M = {x1, xN}. Analogous to the prior construction, we

introduce two time-independent functions ψ1 and ψ2 defined on M satisfying


∆Mψ1 = 0,

ψ1(x1) = 1,

ψ1(xN ) = 0,

and


∆Mψ2 = 0,

ψ2(x1) = 0,

ψ2(xN ) = 1.
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Then we can obtain the solution of (6.20) by solving for w that satisfies,


wt(x, t) = −∆Mw(x, t), x ∈ Mo, t > 0,

w(x1, t) = 0, w(xN , t) = 0, t ≥ 0,

w(x, 0) = θ(x)− h(x1)ψ1(x)− h(xN )ψ2(x), x ∈ M.

(6.32)

To see this, notice that the function

u∗(x, t) := w(x, t) + h(x1)ψ1(x) + h(xN )ψ2(x) (6.33)

is the solution of (6.20).

For the two-dimensional heat equation, let ψ̃1,ℓ and ψ̃2,ℓ be ordered eigenfunctions of the

Laplace-Beltrami operator defined on B1 and B2, respectively. We can then write

h1(x) =
∞∑
ℓ=1

aℓψ̃1,ℓ(x), x ∈ B1, and h2(x) =
∞∑
ℓ=1

bℓψ̃2,ℓ(x), x ∈ B2,

for some real coefficients {aℓ}∞ℓ=1 and {bℓ}∞ℓ=1. The solution to (6.20) is then given by

u∗(x, t) := w(x, t) +
∞∑
ℓ=1

aℓψ1,ℓ(x) +
∞∑
ℓ=1

bℓψ2,ℓ(x), (6.34)

where w is the solution of

wt(x, t) = −∆Mw(x, t), x ∈ Mo, t > 0,

w(x, t) = 0, x ∈ B1, t ≥ 0,

w(x, t) = 0, x ∈ B2, t ≥ 0,

w(x, 0) = θ(x)−
∑∞

ℓ=1 aℓψ1,ℓ(x)−
∑∞

ℓ=1 bℓψ2,ℓ(x), x ∈ M.

(6.35)
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Here, ψ1,ℓ is the harmonic function with boundary condition ψ̃1,ℓ in B1 and 0 in B2, while

ψ2,ℓ is the harmonic function with boundary condition 0 in B1 and ψ̃2,ℓ in B2. We have hence

expressed the solution of the heat equation with non-homogeneous boundary conditions as

a linear superposition of basis-like functions and the solution of homogeneous heat equation.

Such a decomposition will play a key role in the discretization procedures.

Now suppose that in the one-dimensional case we are given an N -dimensional discrete

representation θN of the initial heat distribution of the form

θN = ψ
(N)
3 +µ1ψ

(N)
1 +µ2ψ

(N)
2 , where ψ(N)

3 =

√
N√∑N

n=1(τ + λ
(N)
n )−s

N∑
n=1

(τ+λ
(N)
n )−

s
2 ζnφ

(N)
n ,

which reflects our prior construction given in the previous section. To discretize the forward

map of the one-dimensional heat equation, we replace the Laplace-Beltrami operator ∆M

by ∆̃N and solve for w(N) = (w1, . . . , wN ) satisfying


∂
∂tw

(N) = −∆̃Nw
(N),

w(N)(0) = ψ
(N)
3 ,

(6.36)

This equation can be viewed as a discrete analog of (6.32) as the eigenvectors of ∆̃N ap-

proximate those of the Laplace-Beltrami operator with homogeneous Dirichlet boundary

condition. Given an initial condition ψ
(N)
3 = θN − µ1ψ

(N)
1 − µ2ψ

(N)
2 , the solution of the

above initial value problem can be expressed as a linear combination of the eigenvectors of

∆̃N . In other words, the solution at time t is given by

w(N)(t) =
N∑
n=1

⟨φ(N)
n , ψ

(N)
3 ⟩e−λ

(N)
n tφ

(N)
n .

From this, and the previous observations we made in (6.33), we naturally obtain the discrete
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approximation for the solution of (6.20) given by

uN = w(N) + µ1ψ
(N)
1 + µ2ψ

(N)
2 ,

which defines the discretized forward map FN : θN 7→ uN .

Using the same argument, we can discretize the forward map for the two-dimensional

heat equation. Suppose we are given an N -dimensional discrete representation of the initial

heat function for two-dimensional heat inverse problem, denoted by θN , of the form

θN = ψ
(N)
3 +

L∑
ℓ=1

µ1,ℓψ
(N)
1,ℓ +

L∑
ℓ=1

µ2,ℓψ
(N)
2,ℓ ,

where ψ(N)
3 =

√
N√∑N

n=1(τ + λ
(N)
n )−s

N∑
n=1

(τ + λ
(N)
n )−

s
2 ζnφ

(N)
n .

Similarly as in the one-dimensional case, with the observation (6.34), the discrete approxi-

mation for the solution of (6.20) in the two-dimensional case is given by

uN = w(N) +
L∑

ℓ=1

µ1,ℓψ
(N)
1,ℓ +

L∑
ℓ=1

µ2,ℓψ
(N)
2,ℓ ,

where w(N) denotes the solution of (6.36). Accordingly, the discretized forward map is given

by FN : θN 7→ uN . In both the one and two-dimensional cases the discretized posterior

distribution µyN and the discretized prior distribution µN satisfy the relationship

dµ
y
N

dµN
(θN ) ∝ exp

(
−1

2
|y − GN (θN )|2Γ

)
,

where GN (θN ) =
(
uN (x̃1), . . . , uN (x̃M )

)
. For the sampling and interpolation steps, we again

follow the general methodology described in Section 6.2.2.
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6.4 Numerical Results

In this section, we provide simulation results for the numerical solution of Bayesian in-

verse problems on manifolds with boundaries. We showcase our methodology for the elliptic

inverse problem in Section 6.4.1 and for the heat inverse problem in Section 6.4.2. For

each inverse problem, we consider one-dimensional and two-dimensional examples. In addi-

tion to validating our approach and providing implementation details, our numerical results

will demonstrate the enhanced flexibility of our proposed priors near the boundary when

compared with previous graph representations of Matérn priors. Specifically, we show the

improved reconstruction achieved by our prior in a one-dimensional elliptic inverse problem,

and we illustrate in a two-dimensional setting the emergence of artifacts near the boundary

for the eigenfunctions of the graph Laplacian (6.10) used to define graph Matérn priors on

closed manifolds in [Harlim et al., 2020].

Our one-dimensional examples are set on a semi-ellipse and the two-dimensional examples

are set on a semi-torus. For the semi-ellipse the embedding was given by

ι(α) =

 cosα

3 sinα

 , α ∈ [0, π], (6.37)

with Riemannian metric

g = sin2(α) + 9 cos2(α). (6.38)

The embedding for the semi-torus was given by

ι(α, β) =


(2 + cosα) cos β

(2 + cosα) sin β

sinα

 , α ∈ [0, 2π], β ∈ [0, π], (6.39)

where (α, β) are the intrinsic coordinates and the corresponding Riemannian metric is given
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by

g =

1 0

0 (2 + cosα)2

 . (6.40)

We use uniform grids to define point clouds over the given manifolds. For the one-

dimensional semi-ellipse we used N = 630 points and for the two-dimensional semi-torus

N = N1×N2 = 1296 points in a 36 by 36 grid. The boundary of the semi-ellipse corresponds

to α = 0 or α = π, which necessitates to model boundary values of the parameter on α = 0, π.

For the semi-torus the boundary corresponds to β = 0 or β = π, which implies the need to

model boundary values of the parameter along two boundary curves. In all of our numerical

experiments we choose N = M, that is, we assume to have observations along the entire

point cloud.

6.4.1 Elliptic Inverse Problem

For the one-dimensional elliptic inverse problem, we set the true PDE solution u† to be

u†(α) = sin(α),

and for the two-dimensional elliptic inverse problem, the true PDE solution was given by

u†(α, β) = 10 sin(2α) cos(β).

While the one-dimensional solution satisfies homogeneous Dirichlet boundary condition at

α = 0, π, the two-dimensional solution has non-trivial Dirichlet boundary condition at β = 0

and π. According to the above true solution, the observations were given by

yn = u†(αn) + ηn, αn = ι−1(xn), n = 1, . . . , N,
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where ηn
i.i.d.∼ N (0, 0.01). We consider several choices of true input parameter κ, and for

each choice we define the right-hand side of the PDE using the identity

f = −div(κ∇u) = − 1√
detg

∂i

(
κgij∂ju

√
detg

)
.

Note that here and henceforth we abuse notation by referring to u† ◦ ι as u†.

One-dimensional Manifold

For the one-dimensional elliptic inverse problem, we first augmented the given manifold

point cloud data, adding 10 ghost points at each boundary point. To model the interior

term from the proposed prior, we constructed a self-tuned graph Laplacian using both the

manifold point cloud and ghost points. After obtaining the graph Laplacian, we truncated it

to obtain a submatrix whose indices correspond to the manifold point cloud elements. Recall

that this matrix was referred to as a truncated graph Laplacian in Section 6.3.2. We used

two nearest neighbors to construct the self-tuned graph Laplacian. For the two boundary

terms, we used the GPDM algorithm to obtain two harmonic functions whose boundary

values were either one or zero. These harmonic functions will allow us to model boundary

values, i.e. values at α = 0, π, of the diffusion coefficient. When constructing the weighted

Laplacian matrix, we used 51 closest points in (6.18) and chose the value of ϵ which attained

the maximum slope of log
(
T (ϵ)

)
≈ 1

2 .

We set the smoothness prior parameter to be s = 4, and the inverse length-scale parame-

ter to be τ = 0.2, where the choice of these values is based on empirical experiments. Hierar-

chical Bayesian formulations to learn these parameters could be considered [Sanz-Alonso and

Yang, 2022a]. In practice, instead of using all eigenvectors of the truncated graph Laplacian,

one can use a sufficiently large subset of eigenvectors. In our simulation study, we used 20

eigenvectors of the truncated graph Laplacian to represent the interior term. Furthermore,
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to attain an acceptance rate between 40 and 60 percent, we used ζ = 0.01 for the graph

pCN algorithm. We computed a total of 10000 MCMC iterations with an initial 5000 burn-

in period. The results are shown in Figure 6.2, where three different choices of diffusion

coefficients are considered.

Observe from Figure 6.2 that the three true diffusion coefficients considered lie, for the

most part, inside of the 95 percent credible intervals. Moreover, the PDE solutions obtained

using the recovered coefficients were all very close to the PDE solution with the true coeffi-

cients. To showcase the flexibility of our prior compared to the one proposed in [Harlim et al.,

2020], additional numerical experiments were conducted. While using the same forward map

approximation given by the GPDM algorithm, we employed priors proposed in [Harlim et al.,

2020] where the graph Laplacian is constructed solely from the point cloud on the manifold.

We first present the recovery results for κ1(α) = 2 + cos(3α) and κ2(α) = 1 + cos2(α) with

the same semi-ellipse manifold as in Figure 6.2. All the parameter values for priors and pCN

algorithms were set to be identical as before. The results are shown in Figure 6.3.

Figures 6.3a and 6.3b show that the recovered diffusion coefficients using the priors in

[Harlim et al., 2020] have artificial spikes near the boundary. The prior in [Harlim et al.,

2020] is only effective when the underlying manifold is closed, in which case the graph

Laplacian used in [Harlim et al., 2020] approximates the Laplace-Beltrami operator on the

underlying manifold. However, when the underlying manifold has a boundary, the prior

in [Harlim et al., 2020] leads to the formation of spikes near the boundaries and it does

not allow for flexible modeling of boundary conditions. To illustrate this point further, we

performed the Bayesian inversion procedure for the one-dimensional elliptic equation on an

ellipse restricted to the first quadrant (i.e. α ∈
[
0, π2

]
) instead of the semi-ellipse. The true

diffusion coefficient was set to be κ = 2 + cos(3α). All the parameter values were again

the same as before. Figure 6.4 demonstrates the flexibility of our proposed prior, while the

reconstruction using the prior in [Harlim et al., 2020] exhibits artifacts near the boundary
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(a) Recovery of κ1(α) = 2 + cos(3α) (b) Recovery of κ2(α) = 1 + cos2(α) (c) Recovery of κ3 = 1 + α(α−π)
5

(d) Recovered uN of κ1 (e) Recovered uN of κ2 (f) Recovered uN of κ3

Figure 6.2: One-dimensional elliptic inverse problem on a semi-ellipse: Top row: recon-
struction of κ. Bottom row: solution of an elliptic PDE corresponding to the κ given
right above.

(a) Recovery of κ1(α) = 2 + cos(3α) (b) Recovery of κ2(α) = 1 + cos2(α)

Figure 6.3: Elliptic inverse problem on a semi-ellipse with Matérn-type prior in [Harlim
et al., 2020].
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and appears to incorrectly suggest a homogeneous Neumann boundary condition for κ. In

the next subsection we provide further understanding of these phenomena by illustrating the

different terms involved in the definition of our prior and the one in [Harlim et al., 2020] in

a two-dimensional setting.

Figure 6.4: Comparison of the performance of two priors in the reconstruction of
κ1(α) = 2 + cos(3α) with α ∈

[
0, π2

]
. Left: using the prior proposed in [Harlim et al.,

2020]. Middle: zoom-in of the left figure near the boundary. Right: using our proposed
prior.

Two-dimensional Manifold

Similarly, as in the one-dimensional elliptic PDE, we augmented the given point cloud with

216 ghost points for each boundary. To define the boundary part of our prior, for each

boundary (which is a circle in this example) we construct a self-tuned graph Laplacian

using only the observations on the boundary with two-nearest neighbors. Then we obtain

the 10 eigenvectors corresponding to the smallest 10 eigenvalues for each boundary. These

eigenvectors will serve the role of discretized basis functions for each boundary. Solving

20 different Laplace-type equations in (6.29) using the GPDM algorithm, one can obtain 10

basis-like functions for each boundary, which would correspond to {ψ(N)
1,ℓ }10ℓ=1 and {ψ(N)

2,ℓ }10ℓ=1

in (6.31). These basis-like functions allow flexible model of functions in the vicinity of each

boundary curve. In particular, in our example the true diffusion coefficient was set to

κ(α, β) = 10 + 8 sin(α) cos(β). Therefore, the values we would like to capture along each
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boundary would be κ(α, 0) = 10 + 8 sin(α) and κ(α, π) = 10− 8 sin(α). When constructing

the weighted Laplacian matrix, we used 128 closest points in (6.18) and chose the value of ϵ

which attained the maximum slope of log
(
T (ϵ)

)
≈ 1.

For the interior part of the proposed prior, analogously to the one-dimensional case,

we truncated a self-tuned graph Laplacian constructed using the augmented dataset and

obtained a submatrix whose indices correspond to the elements in the point cloud. Taking

eigenvalues and eigenvectors of this truncated graph Laplacian would give (λ
(N)
n , φ

(N)
n ) in

(6.31). We used four-nearest neighbors to construct the self-tuned graph Laplacian. We set

the smoothness prior parameter to be s = 4, and the inverse length-scale parameter to be

τ = 0.24, where the choice of these values is based on empirical experiments. To attain an

acceptance rate between 40 and 60 percent, we used ζ = 0.001 for the graph pCN algorithm.

A total of 150000 MCMC iterations with initial 75000 burn-in iterations were run to obtain

our results.

Starting from the top row of Figure 6.5, the panels in the first row represent the true

diffusion coefficient and the solution of the elliptic PDE based on the true diffusion coefficient.

The second row represents, from left to right, the posterior mean of the MCMC samples,

2.5 percentile of MCMC samples and 97.5 percentile of MCMC samples. In other words,

the second row portrays the credible interval for the true diffusion coefficient function. The

third row corresponds to the solution of the elliptic PDE equation based on the diffusion

coefficients given in the second row. The last two plots in the fourth row depict the difference

between the true diffusion coefficient and the posterior mean of the MCMC samples, and

the difference between the true solution with the one based on the posterior mean of the

MCMC samples.

For the two-dimensional elliptic inverse problem, there is a larger error in the recovery

of the true diffusion coefficient. This is unsurprising, since as one can see from the solutions

corresponding to the MCMC samples of the diffusion coefficients, one can find several differ-
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ent diffusion coefficients that lead to approximate solutions that are close to the solution of

the elliptic PDE, which is a manifestation of the ill-posedness of this elliptic inverse problem.

To illustrate the strength of the proposed prior relative to [Harlim et al., 2020], Figure 6.6

includes surface plots of (i) the first two eigenfunctions of graph Laplacian used to define the

prior in [Harlim et al., 2020]; (ii) the first two eigenfunctions, i.e., φN1 , φ
N
2 of the truncated

graph Laplacian used to define the interior term of our prior; and (iii) the boundary terms

ψN1,2, ψ
N
1,3 in (6.31). As one can see in the leftmost column in Figure 6.6 the graph Laplacian

used in the prior construction in [Harlim et al., 2020] is not appropriate for manifolds with

boundary. In particular, the spikes in the first eigenfunction can be explained by the use of

a symmetric graph Laplacian and the fact that the degree of nodes close to the boundary

is significantly different than the degree of nodes in the interior. However, the samples we

propose do not possess such undesirable behavior as the boundary values are solely modeled

by boundary components which are in the middle column of Figure 6.6. The interior term is

modeled by superposition of eigenfunctions of the homogeneous Dirichlet eigenvalue problem

(rightmost column in Figure 6.6) approximated using a truncated graph Laplacian.

6.4.2 Heat Inverse Problem

For the one-dimensional numerical simulations of heat inversion, given an initial heat function

u0, observations were obtained by

yn = ũ(αn, t
∗) + ηn, αn = ι−1(xn), n = 1, . . . , N,

where ηn
i.i.d.∼ N (0, 0.01) and ũ represents an approximate solution of the heat equation given

in (6.20). We assume that the boundary is given by {x1, xN}. For the one-dimensional semi-

ellipse, we used the following explicit formula to compute the approximate solution over the
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(a) True diffusion coefficient κ (b) True PDE solution u

(c) Posterior mean for κ (d) 2.5% post. percentile for κ (e) 97.5% post. percentile for κ

(f) uN with κ in Figure 6.5c (g) uN with κ in Figure 6.5d (h) uN with κ in Figure 6.5e

(i) Error in diffusion coefficient (j) Error in PDE solution

Figure 6.5: Elliptic inverse problem on a semi-torus for κ(α, β) = 10 + 8 sin(α) cos(β).
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(a) First eigenfunction (b) First boundary component (c) First interior component

(d) Second eigenfunction (e) Second boundary component (f) Second interior component

Figure 6.6: Representation of terms used to define prior draws on a semi-torus. Left
column: first two eigenfunctions of the covariance matrix for the prior proposed by
[Harlim et al., 2020]. Middle column: first two (excluding the constant one) boundary
components in our proposed prior. Right column: first two interior terms in our pro-
posed prior.
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point cloud at time t∗ > 0, denoted by ũN = (ũ(α1, t
∗), · · · , ũ(αN , t∗)),

ũN :=
N∑
n=1

⟨φ(N)
n , ψ

(N)
3 ⟩e−λ

(N)
n t∗φ

(N)
n + u0(α1)ψ

(N)
1 + u0(αN )ψ

(N)
2 ,

where (λ
(N)
n , φ

(N)
n )Nn=1 are eigenpairs of the truncated graph Laplacian constructed using

point cloud {xn}Nn=1 with two boundary points {x1, xN}. The definitions of ψ(N)
1 , ψ(N)

2 and

ψ
(N)
3 are given in Section 6.3.2. Recall that ψ(N)

1 , ψ(N)
2 are responsible for modelling values

of the parameter at {x1, xN} while ψ(N)
3 determines the interior values of the parameter.

Similarly, for the two-dimensional semi-torus, given an initial heat function u0, observa-

tions were obtained by

yn = ũ((αn1 , βn2), t
∗) + ηn, (αn1 , βn2) =: ι

−1(xn), n = 1, . . . , N,

where ηn
i.i.d.∼ N (0, 0.01) and ũ represents the approximate solution for (6.20). For the

two-dimensional setting, the approximate solution

ũN = (ũ(α1, β1, t
∗), · · · , ũ(αN1

, βN2
, t∗))

over the point cloud at time t∗ > 0, with N = N1 ×N2, is given by

ũN :=
N∑
n=1

⟨φ(N)
n , ψ

(N)
3 ⟩e−λ

(N)
n t∗φ

(N)
n +

L∑
ℓ=1

µ̃1,ℓψ
(N)
1,ℓ +

L∑
ℓ=1

µ̃2,ℓψ
(N)
2,ℓ ,

where the leftmost term in the right-hand side is defined similarly as in the one-dimensional

manifold setting. The remaining finite summation terms involving {φ(N)
n }Nn=1, {ψ

(N)
1,l }Ll=1

and {ψ(N)
2,l }Ll=1 are responsible for modelling parameter values along each boundary curve.

For the implementation, the true coefficients {µ̃1,ℓ}Ll=1 and {µ̃1,ℓ}Ll=1 were obtained by re-

gressing u
(N)
0 = (u0(x1), · · · , u0(xN )) on {φ(N)

n }Nn=1, {ψ
(N)
1,l }Ll=1 and {ψ(N)

2,l }Ll=1. In our
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numerical experiments, we constructed 10 basis-like functions for each boundary of the two-

dimensional semi-torus, i.e., L = 10, and used 20 eigenvectors of the truncated graph Lapla-

cian.

One-dimensional Manifold

The prior construction was exactly the same as in the one-dimensional elliptic problem. And

hence, the boundary values were only defined on two points i.e. values at α = 0, π. We set

the smoothness prior parameter to be s = 6, and the inverse length-scale parameter to be

τ = 0.3, where the choice of these values is based on empirical experiments. Furthermore,

to attain an MCMC acceptance rate of roughly 50 percent, we used ζ = 0.005 for the graph

pCN algorithm. A total of 20000 MCMC iterations with initial 10000 burn-in iterations were

run to obtain our results. For the heat equation, the degree of ill-posedness of the inverse

problem is closely related to the time t∗ > 0 at which we observe the data. The smaller the

time t∗ > 0 is, the easier the inversion.

We considered three different choices of initial heat functions. Starting from the left-most

column of Figure 6.7, plots in each column respectively represent initial heat function with

observed data, true initial function with the posterior mean/2.5th and 97.5th percentile of

MCMC samples, and the true solution with the solutions corresponding to the posterior

mean, 2.5th and 97.5 percentile of MCMC samples. Specifically, the leftmost column in

Figure 6.7 represents the initial heat function u0 with its corresponding noise-free observation

u and noisy observation y. The middle column represents the true initial function u†0 with the

posterior mean estimate ū0, 2.5th percentile u0.0250 , and 97.5th percentile u0.9750 of MCMC

samples. The rightmost column portrays the approximate solution based on the true initial

heat function at time t, denoted by u
†
t with approximate solutions based on the posterior

mean estimate, 2.5th percentile and 97.5th percentile, respectively denoted by ūt, u0.025t and

u0.975t .
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(a) u0 = 10 sin(α) + 2 (b) Recovery of u0 = 10 sin(α) + 2 (c) Solution u(t) at t = 10

(d) u0 = 10 sin(2α) + 2 (e) Recovery of u0 = 10 sin(2α)+2 (f) Solution u(t) at t = 3

(g) u0 = 10 cos(α) + 2 (h) Recovery of u0 = 10 cos(α) + 2 (i) Solution u(t) at t = 5

Figure 6.7: Heat inverse problem on a semi-ellipse.
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Figure 6.7 shows that all of the true initial heat functions were captured inside of the

95 percent credible intervals for all three cases. Moreover, the corresponding solutions were

very close to the true solution.

Two-dimensional Manifold

The practical implementation of the two-dimensional prior was analogous to that of the two-

dimensional elliptic inverse problem. We set the smoothness prior parameter to be s = 4,

and the inverse length-scale parameter to be τ = 0.3 or 0.012, where the choice of these

values is based on empirical experiments. Furthermore, to attain an MCMC acceptance rate

of roughly 50 percent, we used ζ = 0.006 for the graph pCN algorithm. A total of 100000

number of MCMC iterations with initial 50000 burn-in iterations were run to obtain these

results. We considered two initial heat functions: u0(α, β) = 10 sin(α) cos(2β) in Figure

6.8 and u0(α, β) = 2 + sin(α) cos(β) in Figure 6.9. For u0(α, β) = 10 sin(α) cos(2β), the

initial heat function values along each boundary curve we would like to recover is 10 sin(α).

Similarly for u0(α, β) = 2+ sin(α) cos(β), our goal is to recover an initial heat function with

values 2 + sin(α) or 2− sin(α) corresponding to each boundary.

Starting from the top row of Figures 6.8 and 6.9, the panels in the first row represent, from

left to right, the true initial heat function, approximate solution of the heat equation based

on the true heat initial function, noise-incorporated approximate solution, i.e. observation

data. The second row represents from left to right, posterior mean of the MCMC samples,

2.5 percentile of MCMC samples, and 97.5 percentile of MCMC samples. In other words,

the second row portrays the credible interval for the true initial heat function. The third

row corresponds to the approximate solution of the heat equation based on the initial heat

functions given in the second row. Finally, the last two plots in the fourth row depict the

difference between the true initial function and the posterior mean of the MCMC samples,

and the difference between the approximate solution based on the true initial function with
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the one based on the posterior mean of the MCMC samples. Figures 6.8 and Figure 6.9

show that our proposed methodology led to reasonably successful recovery of the parameter

of interest.

6.5 Conclusions and Open Directions

In this chapter, we developed graph-based Matérn priors for solving Bayesian inverse prob-

lems on manifolds with boundaries. Our idea is to extend the Matérn priors introduced

in [Harlim et al., 2020], developed for elliptic PDEs on closed manifolds, by representing

the boundary conditions via a set of functions obtained from solving Laplace equations on

manifolds with appropriate Dirichlet boundary conditions. To solve PDEs on manifolds

with boundaries, we employed the recently developed GPDM algorithm [Jiang and Harlim,

2023], which uses fictitious ghost points to remove the bias induced by integrating radial

type kernels near the boundaries.

We validated this approach on two test problems. The first problem is an inversion of

the diffusion coefficient of an elliptic PDE from the solution of the PDE corrupted by noise.

The second problem is an inversion of the initial condition of a heat equation from noisy

observation of the solution at a positive time. Based on our numerical simulations, we found

positive results given the ill-posedness of the inverse problems we considered.

While the proposed method produces encouraging results, there are many open questions.

First, we should point out that while the computational cost is independent of the ambient

dimension, it scales exponentially as a function of intrinsic dimension (see [Jiang and Harlim,

2023] for detailed convergence rates for the forward maps). Since Bayesian inversion often

requires to evaluate the forward map numerous times, it is of interest to improve on our

graph-based approximations of the forward map by using computationally cheaper surrogate

forward models and/or faster numerical solvers. Second, the method represents the hidden

variables by a vector whose components are the function values of the variable of interest
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(a) True initial heat u0 (b) PDE solution u(t∗) based on u0 (c) Observed data y

(d) Posterior mean for u0 (e) 2.5% post. percentile for u0 (f) 97.5% post. percentile for u0

(g) uN (t∗) with u0 in Figure 6.8d (h) uN (t∗) with u0 in Figure 6.8e (i) uN (t∗) with u0 in Figure 6.8f

(j) Error in initial condition (k) Error in PDE solution

Figure 6.8: Heat inverse problem on a semi-torus: u0(α, β) = 10 sin(α) cos(2β) with
τ = 0.3, t∗ = 5.
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(a) True initial heat u0 (b) PDE solution u(t∗) based on u0 (c) Observed data y

(d) Posterior mean for u0 (e) 2.5% post. percentile for u0 (f) 97.5% post. percentile for u0

(g) uN (t∗) with u0 in Figure 6.9d (h) uN (t∗) with u0 in Figure 6.9e (i) uN (t∗) with u0 in Figure 6.9f

(j) Error in initial condition (k) Error in PDE solution

Figure 6.9: Heat inverse problem on a semi-torus: u0(α, β) = 2 + sin(α) cos(β) with
τ = 0.012, t∗ = 5.
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(e.g., diffusion coefficients) on the given point clouds. How to extend this to other points on

the domain is of practical interest. Beyond these practical considerations, it is also of interest

to understand the theoretical aspect of such an approach, especially the effects of boundaries,

extending the theoretical convergence result for closed manifolds in [Harlim et al., 2020].
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