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ABSTRACT

Natural disasters are an enormous source of destruction in the United States, and the target

of many policy interventions. This dissertation research focuses on hurricane and flooding

disaster events, evaluating the implementation of complementary flood policies and address-

ing the various economic impacts of hurricane exposure.

The first chapter considers the interaction of two key flood policy instruments commonly

used in the US, levee infrastructure and flood insurance, and measures how much flood

insurance take-up changes in response to levee provision. Levees are critical infrastructure

that reduce expected flood damage in a protected area. When a levee is constructed, and

later accredited by the Federal Emergency Management Agency (FEMA), it alters inherent

flood risk, flood insurance prices, and mandatory insurance purchase requirements. Using

a novel panel dataset drawing from the National Levee Database, manually collected levee

accreditation documentation, and FEMA flood insurance data, we leverage variation in levee

construction and accreditation timing within a difference-in-differences design. Construction

timing allows us to examine insurance take-up as a result of decreased flood risk, while take-

up responses to accreditation reflect changes in insurance prices and mandatory purchase

requirements. This chapter has three main findings: first, we find that on net, households

substitute flood insurance for levee provision, decreasing insurance take-up by 16 percent.

When we further decompose this effect, we find that households initially respond to levee

construction with a large decrease in demand, which is then mitigated by price reductions

following levee accreditation. Third, we estimate that decreases in flood insurance take-up

due to levee provision crowds out aggregate household insurance spending by $183,325 per

levee-mile.

The second and third chapters consider the impacts of hurricane exposure on the business

and housing sectors. In the United States, hurricanes can cause billions of dollars of dam-
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ages through property and infrastructure damage, and the interruption of routine economic

activity. Previous research has studied macroeconomic indicators of economic progress fol-

lowing these devastating disasters, but there is limited evidence on how hurricanes impact

business survival and outcomes, and how hurricanes impact heterogeneous populations such

as renters within the housing market. Chapter 2 combines detailed spatial data on hurricane

trajectories with county-level characteristics on establishment volume to measure business

volume changes following a natural disaster. Using an event study design, I find that es-

tablishment volume increases by up to 4.7 percent following a hurricane event, and this

increase persists for the decade following the disaster. Through a size- and industry-based

heterogeneity analysis, I find that very small establishments displace bigger establishments

over time, while the share of large establishments remains constant over time. Regarding

industry, I find that the construction, service, and retail trade industries largely follow the

positive aggregate trend, though the positive impacts on the construction industry peak soon

after the hurricane exposure. Chapter 3 combines spatial data on hurricane trajectories with

median contract rent data from HUD within an event study design. We find that following

a hurricane, median rent persistently decreases, by up to $75 for three-bedroom properties,

or 6.2 percent of baseline rental rates.
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CHAPTER 1

LEVEES: INFRASTRUCTURE AND INSURANCE AS

ADAPTATION TO FLOOD RISK

1.1 Introduction

Floods are an extremely common natural disaster in the US. Ninety-nine percent of US

counties have experienced at least one flood event in the last 25 years, and damages from

flooding have accounted for over $300 billion in losses since 1960 [Center for Emergency

Management and Homeland Security, 2022]. Given that the severity of flooding is expected

to dramatically increase in the coming years due to climate change [Intergovernmental Panel

on Climate Change, 2022], optimal policy provisions for flood mitigation and adaptation is

a particularly salient issue. To that end, the US government has spent billions of dollars on

flood mitigation and damages, through a variety of policy instruments such as insurance,

disaster aid, infrastructure, and adaptation grants [Sarmiento and Miller, 2006] For instance,

the Congressional Budget Office estimated that the national flood insurance program cost

the government $1.4 billion, and that FEMA annually spends $12.5 billion on disaster relief

programs (CBO, 2017 and CBO, 2022). Despite these enormous outlays, very little is known

of the interactions between the various policy instruments at our disposal, and the extent to

which households’ exposure to multiple public flood mitigation policies crowds out private

investment in flood protection.

Flood policy instruments can be broadly categorized into three main groups: structural,

non-structural, and risk transferring policies [Kahn and Lall, 2021, National Research Coun-

cil, 2013]. Structural policies, such as levees, reduce the expected damages of flooding by

protecting against flood damage, up to a certain degree of flood severity. Non-structural

policies, such as land-use planning, may also impact the the inherent probability that flood-
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ing occurs. Lastly, risk transfer policies such as flood insurance allow households to smooth

consumption across different states of the world. This paper explores the relationship be-

tween two prominent structural and risk transfer policies: levees and flood insurance. Levees

are a common flood infrastructure project, often sponsored and maintained by local govern-

ment agencies or large private entities. They largely consist of earthen embankments along

rivers, lakes, and other flooding sources. Levees alter the fundamental flood risk of a region

by reducing the damages from low-intensity, high-probability flood events, but they do not

completely eliminate the flood risk of a region. Flood insurance is predominantly provided

through the National Flood Insurance Program (NFIP), which is run by the Federal Emer-

gency Management Association (FEMA). Since levees reduce expected damages, they may

serve as a substitute for flood insurance [Ehrlich and Becker, 1972]. However, levees also

may reduce prices and relax mandatory insurance purchase requirements. These mechanisms

may imply that levees could complement flood insurance, to some extent. Therefore, our

paper empirically estimates how levees interact with the insurance system, and which of

these opposing mechanisms prevails.

To understand the degree of complementarity between levees and flood insurance, we measure

the impact of levee provision on households’ flood insurance take-up. We combine several

sources of data on levees and flood insurance policies, constructing a unique panel dataset

of levee provision, including construction completion dates. Additionally, through manual

compilation of FEMA flood map revision documents, we construct an original dataset of

levee accreditation timing. These documents provide the exact timing when the levee is

accredited by FEMA, officially changing flood insurance zones and altering insurance price

and mandatory purchase requirements. To estimate the causal effect of levee provision on

insurance take-up, we leverage variation in timing of levee construction and accreditation

within a difference-in-differences design.
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We find that on net, levees reduce flood insurance take-up by 16 percent, indicating that

households consider levees as substitutes for flood insurance. However, when we decompose

the effect of levees, we find households initially substitute up to 60 percent of take-up for

levee provision upon the construction of the levee, and that amount is largely offset by

an increase in insurance demand following levee accreditation. This decomposition indicates

that accredited levees, through insurance price decreases and changes to mandatory purchase

requirements, do exhibit some complementarity with the flood insurance program. We also

perform a back-of-the-envelope calculation to estimate the aggregate change of insurance

spending following levee provision. We find that across both the extensive and intensive

margins, levee provision crowds out $183,325 of insurance spending per levee-mile.

Our paper provides three main contributions to the literature on the economics of flood

insurance. First, we provide the first empirical evidence of the causal impact of levee pro-

vision on flood insurance take-up, finding that household insurance take-up decreases by 20

percent following levee construction. Second, we compile the first known dataset of historic

and effective levee accreditation dates, since accreditation timing information is not directly

incorporated into the Army Corps’ of Engineers’ National Levee Database (NLD), which

is the predominant source of administrative and spatial data regarding levees. Using Na-

tional Flood Insurance Program rate maps and archived map revision documentation, we

use a combination of manual and spatial methods to match map revision documentation to

levees within the NLD database. Third, we provide the first empirical estimates of forgone

household insurance spending after levee provision, adding to recent literature examining

households’ demand for flood protection (Bradt and Aldy [2023]; Wagner [2022]). Our pa-

per quantifies the degree to which households substitute between demand for various flood

policy instruments, and we estimate that a mile of levee provision crowds out $0.18 million

of household insurance spending.
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The closest work on the complementarity of various flood policy instruments studies the

correlation between flood insurance take-up and other mitigation policies (e.g., land-use

planning). Zahran et al. [2009] find a significant, positive correlation, while Atreya and

Kunreuther [2016] find a non-significant, negative correlation. Kousky [2011], a study focus-

ing on the general determinants of flood insurance demand using data from St. Louis, finds

a negative correlation between flood insurance take-up and proximity to a levee, providing

initial evidence that the two policies are substitutes. We expand upon this finding through

both our data and empirical strategy, constructing a nationally representative dataset and

leveraging variation in the precise timing of levee provision to analyze levees’ impact on

insurance take-up. Our empirical results align with those in Kousky [2011], as we find that

flood insurance take-up decreases after levee provision.

Our paper also contributes to a broader literature of the mechanisms behind flood insur-

ance demand by estimating demand responses to levee provision and distinguishing between

demand changes due to levee construction and accreditation. Past work on this topic has

considered the behavioral elements that help explain low take-up rate of flood insurance,

relative to other types of insurance [e.g., Kunreuther, 1996]. Empirical work has shown that

exposure to flooding, either directly [Atreya and Kunreuther, 2016, Kousky, 2017] or through

media coverage [Gallagher, 2014], increases take-up, but only in the short-term. Qualitative

evidence suggests that homeowners systematically misunderstand the residual risk of levees

[Ludy and Kondolf, 2012]. Possibly due to these information frictions, the flood insurance

program is chronically under-subscribed, despite mandatory purchasing requirements and

increased awareness about local flood risk. For example, Bradt et al. [2021] estimates that

in 2019, only 48 percent of households in 100-year floodplains held a flood insurance pol-

icy. If policymakers wanting to maximize community flood protection do not account for

changes in insurance take-up following the provision of additional flood policies, they may

mis-estimate the net contribution towards flood protection of the additional policy imple-
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mentation. Hence, a deeper understanding of how insurance demand is affected by different

flood policy instruments is crucial.

Within the broader public finance literature, our study provides empirical estimates of crowd-

ing out of household-level risk transfer take-up by public infrastructure investments. Influ-

ential work in the crowd-out literature has focused on policy contexts in which public-sector

health insurance expands and crowds out private-sector health insurance [Cutler and Gruber,

1996a]. In the realm of natural disaster insurance, there has been some research studying

how other risk transfer policies, such as ex-post aid provision, may reasonably crowd out

household-level flood insurance take-up. Kousky et al. [2018c] finds that ex-post disaster aid

reduces flood insurance coverage in subsequent years. It is also possible that other risk trans-

fer mechanisms crowd out households’ take-up of flood insurance. For example, Liao and

Mulder [2021] study how home equity affects the demand for flood insurance, by leveraging

cycles in the housing market as identifying variation, they find that the option of defaulting

on a mortgage is a risk transfer mechanism that crowds out insurance take-up. Our find-

ings will have implications for other policy contexts with uncertainty, including policies to

mitigate damages from wildfires and other types of natural disasters.

The rest of the paper proceeds as follows: Section 1.2 describes the context and background

of each of the two policies. Section 1.3 describes the data. Section 1.4 introduces the

empirical strategy and Section 1.5 presents the estimates of the effect of levee provision on

flood insurance take-up. Section 1.6 outlines a back-the-envelope exercise to calculate the

aggregate crowd-out of insurance spending from levee provision. Section 1.7 concludes.

1.2 Background on Flood Risk and Mitigation

A levee is a “man-made structure, usually an earthen embankment, designed and constructed

in accordance with sound engineering practices to contain, control, or divert the flow of
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water so as to provide protection from temporary flooding” [CFR, 44, §59.1]. Levees are

an ancient technology that protect subsets of floodplains, known as “leveed areas,” from a

certain degree of flood damage by providing physical barriers to floodwaters. Construction of

a levee is a complex process, involving political capital and coordination, upfront monetary

investment, and a plan to maintain the levee once construction is complete. Public or private

actors fund and oversee the construction of a levee, and the ownership of the levee may be

transferred during or after construction. Local funding of levees may be accomplished using

debt mechanisms or tax revenue, including taxes collected through levee districts. Larger

levee projects often require cost-sharing with state and federal funding sources, with costs

ranging from millions to billions of dollars depending on the size and complexity of the levee

[Keegan et al., 2011]. The timeline of funding, designing, and constructing a levee can be

protracted, taking a few years or even decades.

Although levees do not completely eliminate flood risk, engineers design levees to protect

against certain degrees of flood risk. Figure 1.1 illustrates the varying protective capabilities

of levees against a 100-year flood.1 Levees may protect against losses for up to the degree

of flood risk for which they were built, but there is still residual flood risk possible in severe

circumstances. In other words, a levee does not completely erase local flood risk: leveed

areas are still susceptible to a certain amount of flood damage, if there is a flood that

exceeds the protective capabilities of the levee. For example, a 50-year levee is not designed

to protect against a 100-year flood, as depicted in Figure 1.1. In the event of “overtopping,”

when floodwaters breach the levee, it is possible for losses to match or even exceed the

counterfactual losses in the state of the world where the levee did not exist. Flood damages

in leveed areas are also possible if there is some failure of the levee either due to an error in its

construction, a lack of maintenance, or an unanticipated failure of one component of the levee

1. This terminology refers to a flood that has a 1 percent, or one-in-hundred chance of occurring each year.
This flood intensity is used as a benchmark for several flood insurance conditions. For example, accredited
levees are certified to protect at least against 100-year floods.
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system. Thus, levees lower, but do not eliminate expected flood losses for properties in leveed

areas. This residual risk necessitates consideration of additional flood mitigation policies such

as flood insurance [National Research Council, 2013]. Within the National Levee Database,

33 percent of levees have been screened to calculate the “annual exceedance probability"

(AEP), which denotes the probability-level event which will maximize the protective capacity

of the levee. For example, a levee with an AEP of 0.01 has a maximum level of protection

against a 100-year flood event. Lower AEP values denote a higher degree of safety: if a levee

is more protective, it will have the capacity to withstand a lower-probability, higher-intensity

flood event [U.S. Army Corps of Engineers, 2022b, Wobus et al., 2019].

Figure 1.1: Illustration of Levees

Note: This illustration is reproduced from National Research Council [2013]. It shows that a 50-year levee would not protect
against 100-year flood, while 100-year and 500-year levees would protect against higher-intensity, lower-probability events.
The percentage listed denotes the “annual exceedance probability" (AEP) of the levee.

Flood insurance allows individuals to smooth consumption across states of the world, given

that there is uncertainty of flood timing, frequency, severity, and damage. Unlike other

types of insurance, the government, rather than a private market, is the primary provider

of flood insurance [Kousky et al., 2018a]. Public flood insurance is available through the

National Flood Insurance Program (NFIP), which the National Flood Insurance Act of 1968

established to protect homeowners, reduce expenditure on federal disaster aid, and share

the risk more than was possible under a predominantly private insurance market [U.S.C.,

42, §4001]. Due to the nature of flood events, there may be a large number of claimants

concurrently filing for extensive damages, known as “correlated risk". Private insurance
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providers would not be able to maintain profitability in this context, whereas the NFIP does

not aim for profitability and theoretically faces the very large borrowing limits of the federal

government. In order to ensure the viability of the program, legislation requires that NFIP

imposes mandatory purchase requirements for most properties holding a mortgage, and offers

extensive subsidies. All of these features make the NFIP operate differently than private

insurance providers [National Research Council, 2013], but provides a valuable context to

study attributes of public insurance programs, such as insurance subsidies and mandatory

purchase requirements.

FEMA operates the NFIP and sets insurance prices using Flood Insurance Rate Maps

(FIRMs), which designate zones according to flood risk and property characteristics (e.g.,

structure age).2 Floodplains with at least a 100-year flood risk are considered Special Flood

Hazard Areas (SFHAs). The NFIP’s mandatory purchase requirement decrees that all prop-

erties with federally backed mortgages in SFHAs purchase flood insurance, although en-

forcement varies across lenders and there is significant non-compliance. Bradt et al. [2021]

estimates that less than half of properties in these high-risk SFHAs purchased flood insur-

ance.

Levee provision serves as a valuable context to study homeowners’ insurance take-up re-

sponses to public infrastructure investment. Notably, construction of a levee alone does not

necessarily or immediately change NFIP prices. In order for a levee to reduce insurance prices

or relax the mandatory purchasing requirement, the levee must undergo a process known

as accreditation [U.S.C., 42, §4012a]. However, many levees never undergo accreditation:

within the NLD, only 17 percent of levees are currently actively accredited (see Table 1.2).

2. Between 1968 and 1979, the Department of Housing and Urban Development (HUD) oversaw the NFIP
until FEMA was established and took over operations [National Research Council, 2013]. Starting in 2021,
FEMA implemented Risk Rating 2.0, changing the price structure to better account for residual risk and
property-specific risk factors [Horn, 2019], including proximity to levees. For the purposes of this analysis,
we will not consider these substantial changes to the pricing mechanisms of NFIP.
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Figure 1.2: Timeline of Levee Construction and Accreditation

This setting provides us with a unique opportunity to observe homeowners’ responses to the

infrastructure construction before their insurance prices or requirements change, providing

suggestive evidence of the initial household response to flood risk changes, and how their

behavior evolves following insurance market changes. Studying household insurance take-up

following levee accreditation provides suggestive evidence of additional household responses

to the price and mandatory purchasing requirements, which we will refer to as “insurance

market changes.”

1.2.1 The Process of Levee Provision

We consider levee provision as a bundled treatment, changing various factors in tandem.

Figure 1.2 depicts the timeline of levee provision, which includes levee construction and

the accreditation process. The physical construction of the levee results in a change in

inherent flood risk. Shortly thereafter, certain municipalities will undergo the process of

accreditation, during which rigorous engineering analyses of the levee are conducted and

reviewed by FEMA. The process of accreditation is initiated by municipalities and levee

owners, and requires the input of engineers to sign off that the levee meets a strict set of

criteria [Federal Emergency Management Agency, 2021]. After the levee is deemed to be

accredited by FEMA, they issue an updated map, or a “Letter of Map Revision" (LOMR)

that changes the flood zone in the region affected by the levee. Once this change takes effect,
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flood insurance prices are lowered and mandatory purchase requirements are relaxed. Figure

1.3 illustrates an example of these changes. On the left is the original flood map for a portion

of Fargo, North Dakota. The highlighted area of the map depicts the geographic region that

is considered a high-risk flood zone. On the right, the updated map in the LOMR illustrates

the region that is now considered protected by the levee (the striped area). We consider

levee provision to be a bundled treatment of these three separate effects, split across the

construction and accreditation processes:

1. Flood risk: First and foremost, the levee will protect a leveed area against a certain

degree of flooding, reducing flood risk for certain types of floods. Figure 1.1 illustrates

this point, depicting how a levee could protect against floods of a particular magnitude,

but not others. A levee will reduce overall flood risks, reducing insurance take-up.

2. Prices: After the levee is accredited, insurance prices will decrease, reflecting the

changes in expected damages from flooding. A levee will reduce insurance prices,

increasing insurance take-up.

3. Mandate: After the levee is accredited, insurance requirements within a leveed area

will be relaxed. This will lower the costs of not being insured for homeowners, since

they no longer have the threat of flouting the mandate if they decide not to purchase

insurance. A levee will reduce insurance mandate requirements, reducing insurance

take-up.

Due to these three competing effects, the direction in which levee provision will affect flood

insurance take-up is ambiguous. Through our analyses, we will first study the dynamics

of insurance take-up across the construction date using an event study regression, which

will estimate the effects of risk changes on insurance take-up rates. Next, a event study

regression using the accreditation date as an alternate definition of treatment will pick up
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Figure 1.3: Example Flood Map in Fargo, ND, Pre- and Post-Accreditation

(a) Pre Accreditation (b) Post Accreditation

Note: These two images depict a portion of Fargo, North Dakota before and after the levee accreditation process. On the left
is the original flood map from 1978. The blue area denotes the Special Flood Hazard Area (SFHA) of the region. On the right
is the updated flood map from 2015, following the accreditation of the levee (denoted by the black striped line towards the
right of the frame). The gray-and-tan striped area denotes the geographic region that is now considered reduced risk (Zone X)
due to the protective capabilities of the levee. This updated map was published as part of a “Letter of Map Revision"
(LOMR), following the accreditation process.

the net effects of price and mandate changes. We further elucidate the accreditation effect

with an additional specification that controls for the construction effect while estimating the

accreditation effect, which will help us estimate the specific effect of the price and mandate

changes, after controlling for trends caused by the preceding construction event.

1.3 Data

We collect and combine several data sources listed in Table 1.1 into a panel dataset that

includes information about levee location, construction and accreditation dates, insurance

policy counts, and housing and population characteristics. All levee information is drawn

from The National Levee Database (“NLD"). The US Army Corps of Engineers (USACE)

actively maintains and updates the NLD. [NLD; U.S. Army Corps of Engineers, 2022b];3 The

3. Our data extract was most recently updated in May 2023.
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NLD contains the end date of construction, current accreditation status, and information

on USACE oversight. Table 1.2 includes data availability and covariate averages for several

characteristics included in the NLD. Additionally, the NLD contains detailed spatial data

which characterize (1) the location of the levee system and (2) the boundaries of the leveed

area, as determined by a number of engineering analyses, and reviewed regularly by local

districts. Only 24 percent of levees in the NLD have a construction date listed. Since we

require information about the precise timing of construction for our empirical strategy, the

levee sub-sample used in our construction date analysis consists of 165 levees. Additionally,

17 percent of all levees are listed as currently being accredited, indicating that the process of

accreditation is relatively infrequent and not guaranteed for all levees following construction.

Additionally, the levees in our analyses tend to have a lower annual exceedance probability

(Table 1.2), meaning that they have higher protective abilities than the typical levee in

the general NLD. Thus, we expect that our estimated treatment effect would serve as an

upper bound of the effect of levees on insurance take-up, when compared to the larger levee

population. This direction of our bound rests on the assumption that households would

react more strongly to levees with higher protective capabilities.

The dates of levee accreditation are not included in the National Levee Database. We use

detailed documentation from the FEMA Map Service Center to identify and match areas

with levees that received a “Letter of Map Revision" (LOMR) from FEMA. These documents

include information about the date the revision went into effect, which we use to identify

the year of accreditation. In order to ensure that the map change is specifically due to the

levee, we use OCR software to identify every LOMR that includes verbiage about levees

and/or levee certification, and then map each LOMR to its corresponding levee in the NLD.

For LOMR documents that are still considered effective, we are able to use digital methods

to match the levee to the document, and thus the accreditation date. This is because the

National Levee Database includes identifying information linking levee systems to effective

12



Table 1.1: Summary of Data Sources

Data Source Relevant Variables

Levee characteristics National Levee Database Levee geography, protected leveed
area geography, year constructed

Accreditation information FEMA Map Service Cen-
ter - Letters of Map Re-
vision

Accreditation dates and geo-
graphic information about map
revisions

Insurance policies (’09-’22) OpenFEMA Data Portal Policy counts and average insur-
ance price data

Insurance policies (’80-’07) Gallagher [2014] Policy counts
Housing and population met-
rics

IPUMS; FRED; SEER Housing units, personal income,
Case-Shiller housing price indices,
population

Property-level spatial data CoreLogic Tax Data Property longitude and latitude in-
formation

NFIP Claims OpenFEMA Data Portal Adjusters’ estimates of building
and contents damages

flood map documentation, such as LOMR documents. However, for LOMR documents that

are considered “historical", and are no longer effective, we do not have systematic identifying

information linking them to particular levee systems. Therefore, we use manual methods

to link levee systems to the LOMR documents, using maps available at the end of every

LOMR document that show the precise location of the levee system, and matching them

up with the maps available in the National Levee Database. In order to cross-validate this

manual matching method, we manually matched some of the effective LOMR documents,

and compared the matches to our digital match results.

Figure 1.4 displays the location of the population of levees in the continental US, demon-

strating the broad geographic range of levees in the US. Our sub-sample of analysis includes

165 levees within the construction event study analysis, and 99 levees within the accredita-

tion event study analysis. Table 1.2 summarizes some of the available information on levees

and describes our sample of analysis. Relative to the full population of levees, our study

sub-samples contain more currently accredited levees, but similar sized levee systems. The
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leveed areas of the sub-samples are on average smaller than those of the full population.

Regarding accreditation, our data collection of accreditation dates helps contribute to bet-

ter understanding of the ever- versus currently-accredited population. For example, in the

sub-sample of levees used in the accreditation date analyses, the vast majority (87.9 to 94.9

percent) of those levees are still classified as accredited on the National Levee Database.

Although levees can lose their accreditation status if they are not properly maintained, we

see that the majority of the levees that we document as ever-accredited, are still currently-

accredited.

FEMA publishes the NFIP Policies dataset through OpenFEMA [OpenFEMA, 2022]. The

data contain information on the universe of flood insurance policies since 2009, with a selec-

tion of earlier observations going back to 1978. From these data, we can observe details of

policy prices. The data are at the policy level, although the only available geographic iden-

tifiers are at the Census tract or ZIP code level. Before 2009, the policy data only include

policies that were still in effect as of 2009 or later. Due to this constraint, we do not know

the full volume of insurance policies prior to 2009, and thus we limit our Census tract-level

analysis to 2009 to 2022. Since the average construction date of levees in the NLD is 1965,

it is helpful to be able to study levee construction by considering insurance policy take-up

earlier than 2009. Therefore, we supplement the OpenFEMA data with data from Gallagher

[2014] that include policy counts data for NFIP at a Census place/NFIP community level,

from 1980 to 2007. Since this dataset provides the longest possible time horizon of flood

insurance policy counts, we also aggregate the Census tract data to a Census place level and

append it to this dataset, forming a panel ranging from 1980 to 2022. Census tracts are

the smallest possible geographic unit, so a higher percentage of the unit is within the leveed

area. However, having a longer time horizon, as we do in the Census place-level data sample,

allows us to study levees built in the 1980s and 1990s, significantly expanding the breadth

of levees in the study sample. See Table 1.3 for a summary of these data sources.
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Table 1.2: Summary Statistics of Levees within Full Population and Study Sub-samples

Census Place Census Tract

All Levees Construction Accreditation Both Accreditation

Levee Count 6878 165 99 40 59

System Length (miles) 3.38 3.12 2.22 3.17 2.07
% Availability 98.65 96.97 92.93 97.5 93.22

Leveed Area (sq.miles) 9.21 4.7 1.93 3.42 2.01
% Availability 100 100 100 100 100

AEP 0.0258 0.0094 0.0024 0.0026 0.0018
% Availability 32.55 87.88 54.55 92.5 52.54

Construction Year 1965 1995 1997 1998 1995
% Availability 24.25 100 38.38 100 35.59

Accreditation Year 2009 2008 2007 2006 2015
% Availability 3.01 18.79 100 100 100

Current Accred. Status
% Accredited 17.24 48.48 87.88 90 94.92
% Not Accredited 75.62 36.36 8.08 0 1.69
% Other 4.57 12.73 4.04 10 3.39
% Unknown 2.57 2.42 0 0 0

Managed by USACE
% Yes 23.07 72.73 40.4 72.5 40.68
% No 76.93 27.27 59.6 27.5 59.32

Note: This table provides total counts and average characteristics for the levees in the full population of levees (”All Levees")
documented in the National Levee Database (NLD), as well as several study sub-samples. The sub-samples are divided into
two categories: sub-samples used in the main Census place-level specifications, and the sub-sample used in the Census
tract-level specification. The column header “Construction" refers to the event study and difference-in-differences regression
analysis using only construction end date as the definition of treatment (see Table 1.4), and the column header “Accreditation"
refers to the event study using accreditation date as the definition of treatment. The column header “Both" refers to the
additional specification in Table 1.5, where event time for both construction and accreditation is considered. The final column
refers to the levees used in the Census Tract-level accreditation analysis. Since the Census tract insurance policy data only
starts at 2009, this sub-sample includes more recently accredited levees. Levee Count provides the number of levee systems
included in the sample or sub-sample. System Length is the average length in miles of the levee system, which may comprise of
one of many segments. Leveed Area is the average square mile area that is protected by the levee. AEP refers to the ”annual
exceedance probability", or the annual chance that the levee will be breached by floodwaters. Current Accred. Status refers to
the current accreditation status of levees in the NLD. Managed by USACE refers to the levees that are regularly maintained
and overseen by the Army Corps of Engineers. Some of the variables have limited availability in the National Levee Database.
For those variables, we also present the percent of availability for that particular variable underneath the summary statistics.
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Figure 1.4: National Distribution of Levee Locations

Note: The gray points indicate the locations of all 6,878 levees documented in the National Levee Database (NLD). The red
triangular points represent the locations of the 165 levees utilized in the construction date analysis, and the blue triangular
points represent the location of the 128 levees used in the accreditation date analysis. Throughout each of the analyses, we
only consider levees within the contiguous US. All 48 contiguous US states and the District of Columbia are represented in the
NLD, and the construction and accreditation analysis sub-sample includes levees from 42 states.

Additionally, we obtain demographic information from the sources listed in Table 1.1. We use

county-level information on housing prices [Federal Reserve Economic Data, 2022], income

[Federal Reserve Economic Data, 2022], and population [Surveillance, Epidemiology, and
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Table 1.3: Matrix of Flood Insurance Policy Data Sources

Source Geographic
Unit

Years Available Variables

Gallagher [2014] Census Place 1980-2007 Policy counts
OpenFEMA Census Tract 2009-2022 Policy counts, purchased insurance

prices

Note: This table lists two separate sources of NFIP policy data used in the empirical analyses of this paper. Although the
OpenFEMA public-access dataset includes a rich number of characteristics including purchased insurance prices, coverage
amounts, and more, the data is only fully available from 2009 onwards. Due to the limited number of levees with known
construction dates past 2009, it is not possible to precisely estimate the effect of levee construction on insurance take-up using
just the OpenFEMA data. Therefore, we supplement our analysis with the replication data from Gallagher [2014], which
provides policy counts at a Census place (community) level. We aggregate the post-2009 OpenFEMA data to a Census place
level using geographic information on Census tracts that is available in the OpenFEMA database.

End Results Program, 2022] for summary statistics and falsification tests. We standardize

our metrics for policy volume by relying on estimates of the number of housing units from

IPUMS [Ruggles et al., 2022] and the Historical Housing Unit and Urbanization Database

[HHUUD; Markley et al., 2022]. This information is available once per decade and we linearly

interpolate between decennial Census years to obtain estimates for the interim years. This

allows us to construct a “policy take-up rate", by calculating the number of policies per

housing unit for a given geographic unit. We use this rate as our primary outcome of

interest.

We define treated geographic units as those that spatially overlap with leveed areas. Fig-

ure 1.5 demonstrates the procedure of defining treatment from three different levee systems

on geographic units. Since the treatment definition is broader than that of the geographic

units, our estimated treatment effect will include insurance take-up behavior of both di-

rectly protected households immediately within the protected “leveed area", and households

outside of the leveed area, for whom the protection benefits are uncertain.

Our main specification includes results from the Census Place population, since that con-

stitutes the longest possible panel data, spanning 42 years. Within that time frame, we

find that 195 Census places were treated by 165 constructed levees, and 114 Census places
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Figure 1.5: Examples of Geographic Unit Treatment Assignment

(a) Austin, MN (b) Stroudsburg, PA (c) East Stroudsburg, PA

Note: This figure shows the treatment definition used for geographic units in our sample. We demonstrate the method using
three sample Census tracts. In some specifications, we use Census places as well. Each spatial component is denoted by a
black outline and represents a Census tract. The levee system is demarcated by the red line, and the gray area indicates the
leveed area, as defined within the National Levee database. We define a geographic unit as treated if it overlaps at all with the
protected leveed area of a levee system.

were treated by 99 accredited levees. However, very little additional information about the

attributes of these insurance purchases is known at the Census place level. Therefore, we

supplement the analysis with a study of changes of purchased insurance prices before and

after levee accreditation at a Census tract level, which includes 148 tracts treated by 59 levee

systems. Table 1.6 shows the results of this analysis.

1.4 Empirical Design

1.4.1 Identification Strategy

The purpose of our empirical analysis is to identify the causal effect of levee provision on

household insurance take-up. A primary threat to the naive comparison of policy take-up

before and after levee provision is that levee provision may be correlated with a number of

characteristics that also affect insurance take-up. For example, if we simply measured the

correlation between levee provision and insurance take-up, we would likely find a positive

relationship, since both levee provision and insurance take-up are positively correlated with

the inherent flood risk of an area and local household income.

18



To avoid this threat to identification, we leverage variation in the exact timing of levee

construction and levee accreditation within a difference-in-differences regression design. The

identifying variation of this empirical strategy is that the precise timing of levee provision is

uncorrelated with characteristics that could affect insurance take-up decisions. We limit the

current analysis to only ever-treated geographies, since locations with and without levees may

differ substantially on a number of observable and unobservable characteristics. For example,

geographic units that have levees may have greater availability of resources to fund expensive

infrastructure projects, indicating different trends in population or household income than

geographic units without levees.

The specific methodology we use closely follows the “stacked difference-in-differences" method

used in Deshpande and Li [2019]. This approach avoids the issue of comparing geographic

units experiencing levee provision to those that have already experienced levee provision,

which is known as the “negative weights" issue (De Chaisemartin and d’Haultfoeuille [2020]).

This is done by comparing treated units to a sample of “not yet treated" geographic units,

which are places that eventually receive a levee but have not yet done so in the defined

period when the dynamic treatment effects are estimated. It is important to note that this

method makes the assumption that geographic units treated in different years by different

levees have homogeneous treatment effects.

First, we define a “levee cohort" of geographic units treated by a particular levee l. For

each cohort l, we define a set of “not-yet-treated" control units, which consists of other

geographic units that were treated four or more years after the cohort. This allows us to

compare treated units to a control group that was not treated until after the observed post-

trend. The treatment effect is estimated by calculating the difference in outcomes between

treated and control units, before and after the treated cohort was treated, and averaging the

estimated effect across all levee cohorts. We cluster our standard errors at a levee cohort

19



level l. We perform this analysis by estimating the following event study specification, for

geographic unit i, levee l and year t:

Yilt = ϕi + γt + δ0Treatedil +
∑
τ

αDτ
ilt +

∑
τ

(
δτTreatedil ×Dτ

ilt

)
(1.1)

Our primary outcome of interest is the flood insurance take-up rate, Yilt, which we calculate

by dividing the number of policies in i and year t by the estimated number of housing

units in the geographic unit ilt. Treatedil takes a value of 1 for the treated units for the

particular levee cohort l, and 0 for the not-yet-treated geographic units, which includes any

unit that did not receive a levee within 3 years of levee l’s construction or accreditation

date. The term Dτ
ilt is a binary indicator for whether a particular unit-year observation it

in levee cohort l is in event time τ . Event time is defined by the number of years between

the calendar year t and the year of levee provision for levee cohort l. For example, if levee l

was constructed in year 2004, then an observation in calendar time t = 2005 would take the

value Dτ=1
il,t=2005 = 1. Positive event time (i.e., positive values of τ) includes observations in

years after the levee has been constructed or accredited, and negative event time includes

observations in years before the levee has been constructed or accredited. Therefore, the

parameter of interest δτ estimates the difference in average insurance take-up rates between

treated and not-yet-treated geographic units at different event times τ . In the event study

regression centering around the construction timing, δτ measures the take-up response to the

flood risk reduction resulting from levee construction. In the event study regression centering

around the accreditation timing, δτ measures the take-up response to the price and mandate

changes.

For both specifications, we consider τ ∈ {−3, 3}, estimating changes to insurance take-up

three years before and after the levee construction or accreditation event. We also include a

top-coded and a bottom-coded element of τ to control for any event time years beyond the
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range of [−3, 3]. Importantly, we limit our data sample to levee cohorts that are balanced

on event time, only including cohorts for which we can observe three years before and after

the levee construction or accreditation. 4 Finally, our specification also includes geographic

unit- and year- fixed effects.

To capture the static treatment effect, aggregated over event time for three post-periods used

in the event study specification, we additionally estimate the following static difference-in-

differences regression, where the coefficient of interest, δ, denotes the average change in

household insurance take-up across the three years following levee provision. The point

estimate from the TWFE estimation is represented by the blue horizontal line on the event

study graph in Figure 1.6, and presented in Table 1.4.

Yilt = ϕi + γt + δ0Treatedil +
∑
τ

αDτ
ilt + δTreatedil × Postlt (1.2)

Our primary analyses focus on Census place as the level of geographic unit i, due to the

broad range of years with available insurance policy take-up information. We supplement our

accreditation date analysis with Census tract-level results, since the geographic granularity of

the Census tract allows for a larger range of levee accreditation events to be included. It also

allows us to study a greater variety of insurance-related characteristics, such as purchased

insurance prices. Table 1.3 provides a summary of the data availability for each sample,

and Table 1.2 documents the differences between the levees included in the Census place

construction, accreditation, and joint analyses, as well as between the Census place- and

Census tract-level accreditation analyses.

4. Appendix Figure A.1 presents the results from the event study specification when we estimate event
time coefficients for τ ∈ {−5, 5}.
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1.5 Results

Our primary set of results consists of the empirical estimates of the stacked difference-in-

differences regression methodology. We first present results from the dynamic event study

(Equation 1.1), first centering the timing of levee provision around the time of construction

and then around the timing of accreditation. Next, we estimate the static difference-in-

differences specification (Equation 1.2) for construction timing. We then present estimates

from a joint specification (Equation 1.3), that allows us to comment on the isolated impact of

accreditation timing on insurance take-up, after controlling for construction timing. Finally,

we comment further on the impact of accreditation timing on auxiliary outcomes such as

purchased insurance prices.

1.5.1 Construction Date Analysis

The first set of results estimates the specification in Equation 1.1, separately estimating the

impact of levee construction and of accreditation. In Figure 1.6, we present the estimates of

the δτ coefficients from Equation 1.1 for levee construction. These coefficients are estimated

on a subsample of Census places for which we viewed construction date, as well as event

time for both three years prior and following the construction event. This data stipulation

of balancing our sample on event time allows us to compare coefficients across event time,

since each coefficient was estimated on the same Census place sample.

We find that prior to construction, there is no significant difference in policy take-up trends

between treated- and not-yet-treated Census places. However, following construction, treated

Census places decrease their policy take-up compared to the not-yet-treated control group.

We interpret this estimate as evidence that levee construction causes policy take-up to de-

crease by 0.5 to 1.8 percentage points. This estimate is net of accreditation effects, since

we are not disaggregating or controlling for eventual accreditation. Therefore, this decrease
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represents households’ net response to changes in risk, prices, and mandates.

Since the construction event study results presented in Figure 1.6 provide sufficient evidence

of the parallel trends assumption being satisfied, due to the lack of substantial pre-trends

in insurance take-up in the years prior to levee construction, we further analyze levee con-

struction using a static difference-in-differences specification (Equation 1.2).5 In Table 1.4,

we present the aggregated treatment effect β from this specification. We find that in ag-

gregate, levee construction causes a decrease in insurance take-up of 1.6 percentage points.

On a baseline ex-ante take-up rate of 8 percentage points, this corresponds to a 20 percent

decrease in insurance take-up. The result from the static specification is similar to the range

of treatment effect we estimated from the event study specification. We demonstrate the

consistency of these estimates by demarcating the static estimate with a blue dashed line on

the event study coefficient plot in Figure 1.6.

Table 1.4: Static Estimates of the Effect of Construction on Flood Insurance Take-up

Dependent variable:

Policy Take-up Rate

Post Construction −0.016∗∗
(0.008)

Observations 8,190
Baseline Mean 0.08

Note: This table presents the coefficient estimates of δ from Equation 1.2. This specification is an static version of the
dynamic event study difference-in-differences specification from Equation 1.1. Instead of separately estimating the treatment
effect for each positive event time value, this specification pools the positive (post-event) event time into one δ coefficient. We
find results that are similar in magnitude to the results of the event study presented in Figure 1.6. Statistical significance is
represented by the following notation: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

1.5.2 Accreditation Date Analysis

We next separately estimate the effect of levee accreditation on our Census place popula-

tion. The results from the event study specification of accreditation dates are presented in

5. Further evidence of the parallel trends assumption being satisfied is presented in a series of falsification
tests in Section 1.5.5.
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Figure 1.6: Event Study Estimates of the Effect of Construction on Flood Insurance Take-up

Note: This figure plots the coefficient estimates on each Treated×Dτ variable from Equation 1.1, using construction year as
the source of variation. The x-axis plots event time, where ‘0’ denotes the year of construction ending, negative event-time
denotes the years prior to construction, and positive event-time denotes the years following construction. The single point
denotes the point estimate of the coefficient, and the vertical bar denotes the 95 percent confidence interval. All event study
specifications are estimated using a data sample that is balanced in event-time, so all geographic units have policy take-up
information for the full range of event time: [-3,3]. The red line depicts the coefficient estimate on the Treated×Post variable
from static difference-in-differences regression in Equation 1.2. The baseline insurance take-up rate for this specification is 8
percent, so our static estimate of 1.6 percentage points corresponds to a 20 percent decrease in baseline flood insurance
take-up.

Figure 1.7. Following levee accreditation, treated- and not-yet-treated Census places have

a difference in policy take-up ranging from 0.7 to 1.1 percentage points, which corresponds

to a 3.6 to 5.4 percent decrease in flood insurance take-up. Here, we see a statistically sig-

nificant pre-trend: even prior to accreditation, treated- and not-yet-treated Census places

have differing trends in policy take-up. This pre-trend is in line with our understanding

of the construction-accreditation timeline, as documented in Figure 1.8, which shows that

more than 65 percent of levees with known construction and accreditation dates are accred-

ited within 5 years of construction. Therefore, it is likely that the pre-trend observed in

the accreditation date event study is affected by the residual decrease in insurance take-up

following levee construction, and in this specification, we do not control for the construction

effect. However, we can qualitatively assess the potential impact of accreditation by observ-

ing the change in the trend of insurance take-up within the event study specification. What
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we see is that immediately following the levee accreditation, we observe a change in the slope

of the trend, indicating that the price and mandate changes precipitated by accreditation

alter the existing negative take-up trend caused by levee construction. In order to quanti-

tatively assess this accreditation effect, we conduct an additional analysis in Section 1.5.3

where we estimate the accreditation effect, after controlling for construction.

Figure 1.7: Event Study Estimates of the Effect of Accreditation on Flood Insurance Take-up

Note: Similar to Figure 1.6, this figure plots the coefficient estimates of Equation 1.1 on Treated×Dτ , now using the
accreditation date as the source of timing variation. We do not include a static estimation, since the pre-trend in the
accreditation event study indicates that it is likely that the parallel trends assumption of the difference-in-differences
identification strategy is not valid. We attribute the pre-trend to the impact of construction in the years preceding
accreditation, and we observe that the timing of accreditation coincides with a change in that negative trend of insurance
take-up. In order to test this assumption, we estimate a joint specification, presented in Table 1.5.

1.5.3 Joint Levee Provision Analysis

In this section, we provide quantitative evidence of the individual accreditation effect,

through an analysis of the staggered timing of construction and accreditation. Since we

have limited data on both construction and accreditation dates, the sample of levees used

this auxiliary accreditation analysis is different from the sample of levees in the prior analyses.

Here, we use a sub-sample of levees for which we have both a construction and accreditation

date.
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Figure 1.8: Histogram of Number of Years between Construction and Accreditation Events

Note: For the levee sub-sample for which we have both construction and accreditation dates, we plot the distribution of time
in years between the two dates. From this histogram, we see that more than 50 percent of the levees in the sub-sample were
accredited within 5 years of construction.

We use a modified difference-in-differences specification, similar to an analysis used in Desh-

pande et al. [2021]. This specification is similar to that of Equation 1.1, but includes controls

for both construction event time (
∑

τC
αcD

τC
ilt ) and accreditation event time (

∑
τA

αAD
τA
ilt ),

allowing us to estimate the isolated impact of each construction and accreditation, holding

constant the event time of the other event. Since there is variation in the amount of time

between construction and accreditation, we use this variation to estimate the effect of ac-

creditation timing on insurance take-up, after controlling for construction having occurred.

Figure 1.8 plots the distribution of the duration between construction and accreditation, for

the full sub-sample of levees for which we observe the construction and accreditation dates.

From this distribution, we see that more than 50 percent of the levees with known dates

have a gap of 5 years or less. Therefore, we expand our balanced data sample to include all

possible geographic units that (1) had both construction and accreditation dates available

and (2) had information on policy take-up rate for the event time range of [-5,5]. This ex-

pansion from the time range of [-3,3] in our previous difference-in-differences analyses allows
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us to observe longer post-trends after the construction and accreditation events, allowing for

a more precise estimate of each distinct effect.

Yilt = ϕi + γt + δ0Treatedil +
∑
τC

ατCD
τC
ilt +

∑
τA

ατAD
τA
ilt

+ βCTreatedil × PostConslt + βATreatedil × PostAcclt

(1.3)

Equation 1.3 shows the amended specification, modeling both construction and accredita-

tion. The treatment effects of interest are represented by the coefficients βC and βA. The

coefficient βC estimates the difference in outcomes between treated and not-yet-treated units,

before and after construction, controlling for accreditation. The coefficient βA estimates the

additional difference in outcomes between constructed/accredited and constructed/not-yet-

accredited units. Our specification combines all non-negative construction and accreditation

event time units into PostCons and PostAcc binary variables, respectively. We perform

this aggregation to increase the power of our construction and accreditation effects in this

specification, since the pool of levees for which we have both construction and accreditation

timing information is far smaller than the levee populations used in the separate construc-

tion and accreditation specifications (Equation 3.1). In Appendix Table A.1, we present

estimates from an alternate specification of Equation 1.3 where we estimate each distinct

event time coefficient. As we expected, the results are not statistically significant, but the

sign and magnitude closely align with the results of Equation 1.3.

The empirical estimates for βC and βA are presented in Table 1.5. The results are in line

with our findings from the estimation of Equation 1.1. We find that even after accounting

for accreditation timing, construction causes a decrease in insurance take-up, although this

decrease is larger in magnitude, amounting to a 60 percent decrease in take-up compared to

baseline. Consistent with the qualitative trend depicted in Figure 1.7, we find that accredi-

tation partially offsets the initial decrease in insurance take-up following from construction,
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and there is a positive take-up in insurance, of 40 percent of baseline. This is consistent with

the hypothesis that of the opposing price and mandate effects, the positive price effect on

insurance take-up prevails. If the removal of mandatory purchase requirement has zero effect

on insurance demand, then our estimate will accurately represent the effect from the isolated

price channel. If the removal of the mandatory purchase requirement actually decreases de-

mand, then our estimate serves as an lower bound for the effect on demand through purely

the price channel. Since baseline take-up of flood insurance remains low throughout the US,

with below 50 percent estimated take-up rates among high-risk flood zones, then it is possi-

ble that the mandatory purchase requirement is not strongly enforced, and subsequently, a

removal of the requirement would not have a strong impact on insurance demand.

Our net effect of construction and accreditation amounts to a 16 percent decrease in insurance

take-up from baseline, which is similar in magnitude to our estimate from the construction-

only static difference-in-differences specification in Section 1.5.1, which found a 20 percent

change in take-up following construction.

Table 1.5: Census Place-level Estimated Treatment Effect for Combined Specification

Dependent variable:

Policy Take-up Rate

Post Construction −0.032∗
(0.017)

Post Accreditation 0.024∗
(0.014)

Observations 1,680
Baseline Mean 0.051

Note: This table presents the coefficient estimates of δ from Equation 1.3. In this specification, we jointly model construction
and accreditation within the same specification, in order to estimate the effect of levee accreditation while holding constant
the effect of construction. This specification is a modification from the static version of the dynamic event study
difference-in-differences specification from Equation 1.2. Statistical significance is represented by the following notation:
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

28



1.5.4 Auxiliary Analysis

In order to further understand the price channel of the accreditation date effect, we conduct

an auxiliary analysis of levee accreditation using our Census tract sample. The broader

availability of insurance premium information within the Census tract sample, which is

sourced solely from the OpenFEMA database, allows us to measure whether prices are indeed

responding to accreditation. Estimating Equations 1.1 and 1.2 using purchased insurance

prices as the outcome of interest, and the accreditation date as the treatment of interest,

clarifies how accreditation affects the insurance prices. We find that in the years immediately

preceding levee accreditation, there is very little change in the averaged purchased prices.

This is in stark contrast with the event study estimates presented in Figure 1.7, where we

saw that policy take-up significantly varied in the years preceding levee accreditation. In

the one to three years following levee accreditation, we see that purchased insurance prices

decrease by $100.03, or 10 percent of the baseline insurance rates. We take this result to

indicate that accreditation is indeed the sole channel by which insurance prices change due

to a levee, consistent with the dynamics outlined in the conceptual framework from Figure

1.2. We account for this reduced spending within our aggregate spending calculation in

Section 1.6. Not only do households avert spending on the extensive margin by dropping

their flood insurance altogether, they also reduce spending on the intensive margin through

these lowered prices.

1.5.5 Falsification Tests

A concern to our causal identification strategy is that the precise timing of the levee provi-

sion may be correlated with other contemporaneously changing characteristics, such that it

is unclear whether the levee or the other changing characteristics are causing the perceived

change in insurance take-up. For Equation 1.2, in order for β to causally identify the average

treatment effect on the treated, we must assume that the parallel trends assumption holds.
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Figure 1.9: Census Tract-level Event Study Estimates of the Effect of Accreditation on
Purchased Insurance Prices

Note: We plot the Treated×Dτ coefficient estimates of Equation 1.1, with purchased insurance prices as our outcome of
interest. This specification is estimated using the Census tract-level panel data, which ranges from 2009 to 2022. All insurance
price data are inflation-adjusted to 2021 $. We plot the static difference-in-differences estimate with the blue dashed line,
showing that following accreditation, the average purchased insurance price decreases by $100. We do not consider the actual
year of accreditation as part of the post- treatment time period when measuring our static treatment effect. The levee
accreditation can occur at any point during the year, and the new, reduced prices would likely only be available in the year
following accreditation.

Table 1.6: Census Tract-level Estimates of the Effect of Accreditation on Insurance Prices
and Purchase Decisions: Difference-in-differences

Dependent variable:

Average Purchased Premium (2021 $)

Post Accreditation −100.035∗
(57.74)

Baseline Mean $1,096
Tract FE Yes
Year FE Yes

Note: This table presents the coefficient estimates of δ from Equation 1.2, where the outcome variable is average purchased
insurance premium in 2021 USD, and the treatment variable is whether the geographic unit has a levee that is accredited.
This analysis is conducted at a Census tract geographic level. Statistical significance is represented by the following notation:
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Specifically for our context, this means that in the absence of the levee’s provision, affected

geographic units would have had similar trends in flood insurance take-up or average insur-

ance price to those units that did not yet have a levee. In other words, the exact timing of

the levee provision is uncorrelated with unobserved, time-varying factors that could affect

flood insurance take-up. We provide two pieces of evidence to support this claim.

First, the estimates of δτ from Equation 1.1 are presented in a coefficient plot in Figure 1.6.

In these event study specifications, we include three time periods of “negative event time,"

denoting the time periods prior to the levee construction. We see in Figure 1.6 that these

pre-periods do not exhibit any statistically significant differences in policy take-up rates,

which serves as evidence that there were not pre-existing differences in already- and not-yet

treated geographic units prior to levee construction. Appendix Figure A.1 shows the results

from a similar event study plot for a specification with five, not three pre-periods. There, we

see a similar statistically insignificant pre-trend between already- and not-yet-treated units,

before construction.

Second, we would like to consider levee construction timing to be “as if random.” In order to

demonstrate this, we estimate the regression in Equation 1.4, where LeveeT imingi denotes

the year that Census place i had a levee constructed or accredited.

LeveeT imingi = αPopulationi + βPersonalIncomei + γHPIi + εi (1.4)

In this specification, we regress the specific timing of levee provision, both the construction

and the accreditation date, as a function of observable local economic factors: population,

aggregate personal income, and the Case-Shiller housing price index. The results are pre-

sented in columns (1) and (2) of Table 1.7. We find that these economic factors are not

predictive of the specific timing of levee provision. Therefore, we are confident that the

precise timing of levee provision is exogenous to trends in these observable characteristics,
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and we can interpret our estimated treatment effects as causal from levee provision.

Table 1.7: Coefficient Estimates of the Falsification Test from Equation 1.4

Dependent variable:

Construction Date Accreditation Date

(1) (2)

Total Population (1980) 0.00003 0.0001∗
(0.00003) (0.00004)

Total Personal Income (1980) −0.00002 −0.00001∗
(0.000003) (0.000003)

Case-Shiller HPI (1980) −0.07 0.01
(0.07) (0.07)

Constant 1,998.07∗∗∗ 2,006.22∗∗∗
(3.68) (3.63)

Observations 122 80
Note: This table presents the coefficient estimates α, β, and γ from Equation 1.4, where the outcome variable is year of
construction or the year of accreditation, and the independent variables are demographic characteristics as of 1980, such as
population, total personal income, and a housing price index. This analysis is conducted at a Census place geographic level.
Statistical significance is represented by the following notation: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

1.6 Quantifying the Impacts of Levee Provision

Our empirical analysis supports the hypothesis that, after accounting for responses to both

levee construction and accreditation, households view levee infrastructure as a substitute

for flood insurance. In this section, we use two distinct approaches to provide estimates of

households’ value for levee provision.
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1.6.1 Aggregate Changes in Insurance Spending

The first approach to quantifying household’s valuation of levees is to aggregate the amount

of household insurance spending that is displaced by levee provision, accounting for both

extensive- and intensive-margin changes in spending. We utilize the following equations to

estimate changes in insurance spending:

Extensive-Margin∆ = Household Count ×∆Policy Take-up Rate × Ex-Post Premium (1.5)

Intensive-Margin∆ = Household Count × Ex-Post Policy Take-up Rate ×∆Premium (1.6)

We only include housing units that were directly within the leveed area, using precise house-

hold longitude and latitude coordinates from CoreLogic tax assessment data to calculate the

exact number of housing units within the leveed area. This leaves us with 206,112 households

within the leveed area regions considered in this analysis, or 895 properties per levee-mile.

We estimate the number of directly affected housing units by calculating the proportion of

a Census place geography that overlaps with a “leveed area,” and multiplying it by the total

number of housing units in the Census place. The per-household extensive-margin change

in spending is estimated by multiplying the change in the policy take-up rate by the average

ex-ante change in insurance premium. We can include the intensive-margin take-up savings

by multiplying the ex-post number of insurance-purchasing households times the change in

insurance premium, since continuing insurance customers will save money on lower insurance

rates.

∆Total Spending = ∆Extensive-Margin Spending +∆Intensive-Margin Spending (1.7)

From this calculation, we estimate that levee provision causes aggregate household insurance

spending to reduce by $183,325 per levee-mile constructed.
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Table 1.8: Statistics for Calculation of Changes in Household-level Spending due to Levee

Statistic Estimate

Household Count 206,112
∆ Policy Take-up -0.20
Ex-Post Premium $998.50
Ex-Post Policy Take-up Rate 0.0496
∆ Premium -$100.04
Total Levee-Miles 230.10

Total Decrease in Insurance Spending, per Levee-Mile $183,324.70

1.6.2 Aggregate Changes in Flood Damages

In order to compare the amount of crowd-out in household insurance spending to other ap-

proaches to estimating levee benefits, we also calculate the average amount of flood damages

averted by the levee. For this alternate estimate, we use building and contents damage es-

timates from the National Flood Insurance Program Claims data. This dataset consists of

filed insurance claims from 1980 to 2022, and includes both the adjusters’ damage estimate

and the amount paid out to the policy holder. Since the paid amount is correlated with the

amount of insurance coverage purchased, we focus on the adjuster’s damage estimate as our

source of damage information. The claims data has additional information about the risk

zone where the claim was filed, which we sort into high-risk (Zone A) and low-risk (Zone

X) areas. This is analogous to the zone change occurring during the accreditation process,

where leveed regions are re-assigned from Zone A to Zone X. Due to data limitations, we do

not currently know the precise breakdown of damages as a function of flood intensity. This

is key to estimating the averted damages due to a levee, since a low-level, high-frequency

flood event would be plausibly averted by a levee, while a high-level, low-frequency flood

event would likely still continue to incur damages even in a “safer" leveed area. However, by

observing damage amounts over a long time horizon, which allows for the occurrence of a

broad range of flood intensities, we can back out the expected damages each of the two flood

zones, without knowing the exact distribution of flood damages as a function of intensity.
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Taking the difference of the expected damages from the two flood zones provides an estimate

of the decrease in expected damages due to the levee. To account for geographic variation

in the distribution of flood intensity and damages, we calculate average damages at a state

level, impute these estimated averted damages to levees within that state. The results for

in-sample levees is presented in Table 1.9. From this calculation, we find that the total de-

crease in annual expected flood damages totals $4.5 million per levee-mile. It is important to

note that our calculation is likely under-estimating the protective capabilities of many levees

in our sample. The low-risk flood zone we use as a proxy for post-levee regions are generally

200-year floodplains, or regions with a 0.5% chance of flooding each year. However, from

Table 1.2, we see that levees within our analyses have an annual exceedance probability of

0.0026, which is a much lower risk profile than 0.01.

Despite this under-estimation, this approach results in a much, much larger estimate than

the amount of averted insurance spending. The difference between the averted insurance

spending estimates and the averted damages estimates are likely due to households’ demand

preferences for flood insurance, information constraints regarding flood risk and levee ben-

efits, and the gap between actuarially fair insurance prices and the real, subsidized prices.

Table 1.9: Average Estimated Damages to Building and Contents

Statistic Estimate

Total Household Count 206,112
∆ Average Per-Household Decrease in Annual Expected Flood Damages $5,045.46

Total Levee-Miles 230.10

Total Decrease in Annual Expected Flood Damages, per Levee-Mile $4,519,469
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1.6.3 Comparing Levee Benefits to Costs

In the previous section, we provided two different estimates of “levee benefits": households’

averted insurance spending, and their averted damages. In order to contextualize these

figures, it is helpful to have a estimate of the construction costs of a levee. Bradt and Aldy

[2023] compile all possible known sources of levee construction costs and find that on average,

levees cost $60.8 million to construct per levee-mile. If we use our estimate of expected

averted damages as the sole benefit of the levee, amounting to $4.5 million per levee-mile

annually, we estimate that it will take 13.5 years for the levee to break even between our

estimated benefits and costs. Since the average levee in our sample is 28 years old, this is a

reasonable frame of reference for a break-even point. However, this is not accounting for a

discount rate, or the depreciation or maintenance costs of the levee.

However, if we instead consider the averted insurance spending as the main metric of levee

benefits to households, we then arrive at a much different answer, since forgone spending on

insurance due to the levee is markedly lower than the averted damages. This would lead to a

whopping 337 years for the levee to break even with the construction costs. Since insurance

take-up is so low, if we only use insurance spending to infer households’ willingness to pay for

lower flood damages from the levee, it will take many years for the levee investment to break

even with the measured benefits. Thus, much more research is required on the determinants

of flood insurance demand and households’ willingness to pay for safety from floods.

1.7 Conclusion

In this paper, we present novel empirical findings concerning the relationship between levee

construction and flood insurance take-up. We find a statistically and economically significant

decrease in insurance take-up immediately following levee construction. Following levee ac-

creditation, where prices and mandate requirements are decreased, the relationship between
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the policy instruments changes, and the negative effect of the levee construction is partially

mitigated. From a policy-maker’s perspective, these results underscore the importance of

considering the interaction of multiple policy instruments in mitigating households’ expo-

sure to flood risk. Households living near levees are still susceptible to flood risks, and our

findings suggest that levee provision has a net negative impact on insurance take-up, despite

accreditation provisions that presumably reduce insurance prices to more closely reflect the

decreased flood risk. Concurrent provision of flood adaptation policies will likely have to

be coupled with large-scale information programs to educate the public about the lingering

risks, despite the prevalence of protection programs in the area.

The final section of our paper conducts an auxiliary back-of-the-envelope calculation to cal-

culate the aggregate insurance spending that is crowded out by levee provision. We find that

each levee-mile constructed crowds out $0.18 million of household insurance spending. To

provide context to that magnitude, we calculate averted damages due to levee provision, and

estimate that each levee-mile prevents $4.5 million in building and contents damages, which

corresponds to a break-even point of 13 years. The large gap between these figures likely

reflects households’ low baseline demand for flood insurance, despite incentives like price

subsidies and mandatory purchase requirements. In other words, if policymakers measure

the benefit of the levee solely through the amount of spending crowded out by the levee,

they would likely largely under-estimate the societal benefit of levees.
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CHAPTER 2

NATURAL DISASTERS AND LOCAL BUSINESS TRENDS

2.1 Introduction

Heavy rainfall and strong winds from hurricanes, also known as cyclones and typhoons,

wreak havoc on coastal regions, causing widespread flooding and posing significant threats

to human lives, ecosystems, and global economies (NOAA). Over the past 45 years, nineteen

states in the contiguous United States have experienced expensive and consequential damages

caused by hurricanes: for instance, the National Oceanic and Atmospheric Administration

(“NOAA") estimates that Hurricane Katrina cost the US almost $170 billion, and more

recently, Hurricane Harvey cost almost $131 billion. Moreover, scientists have documented

that due to climate change, these storms have had increased in severity, emphasizing the

growing importance of understanding the human and economic costs associated with these

prolific disasters [GAO, 2020].

Despite extensive damages to capital, public infrastructure, private property, and business

operations inflicted by hurricanes, there is mixed evidence on how local economic conditions

are impacted by hurricanes. For example, the cross-country analysis in Hsiang and Jina

[2014] reveals that hurricanes cause a decrease to countries’ gross domestic product (GDP)

for up two decades after the storm. In the context of the United States, Strobl [2011]

examines the impact of hurricane exposure on local economic growth rates, discovering a

decrease of 0.45 percentage points, primarily attributed to the out-migration of higher-income

households. However, Tran et al. [2020] present contradictory findings that natural disasters,

including hurricanes, contribute to an increase in aggregate personal income, attributing this

phenomenon to a short-term employment boost and a long-term rise in wages.
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Given the varied evidence regarding the impacts of hurricanes on macroeconomic indica-

tors such as GDP and employment, studying micro-level outcomes of households and firms

could shed light on the complicated dynamics behind these varied results. While existing

knowledge about micro-level outcomes predominantly focuses on household characteristics

and insurance mechanisms (Gallagher and Hartley [2017]; Deryugina [2017]), very little is

known about how hurricane exposure specifically influences business survival and outcomes.

Businesses are subject to a different set of explicit and implicit insurance mechanisms than

households to protect them against large negative shocks. The existing literature within this

strand has been limited to case studies of specific storms, or examined the impact of disaster

loan programs on small business survival ([Davlasheridze and Geylani, 2017]). Due to this

granular focus in the literature, further research is imperative to (1) measure the extent to

which businesses are affected by hurricanes, and (2) discern the contributing factors to these

trends.

This paper will contribute to the first objective by providing empirical estimates of the

dynamics of business survival, by utilizing county-level Census data to gauge the impacts

of hurricane exposure on establishment volume. I leverage variation in hurricane exposure,

using detailed spatial data documenting the exact path of hurricane trajectories. I find that

establishment volume steadily increases in the decade following hurricane exposure, leading

to a five percent growth in establishment volume ten years after exposure. The persistence

of this positive trend aligns with particular US-based, macro-focused studies documenting

an increase in personal income and employment following hurricane exposure (Tran et al.

[2020]), and contradicts other studies documenting growth stagnation and losses following

hurricanes (Strobl [2011]). I also conduct a sub-analysis using size- and industry-based

heterogeneity, finding that the share of very small establishments increases over time, while

the share of mid-size establishments decreases over time, and that the construction, retail

trade, services, and financial industries exhibit similar establishment volume trends over
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time.

The rest of the paper proceeds as follows: Section 2.2 describes the hurricane and Cen-

sus business data used in the analysis. Section 2.3 introduces the empirical strategy and

Section 2.4 presents the estimates of the effect of hurricane exposure on establishment vol-

ume. Section 2.5 discusses the results of the size- and industry-based heterogeneity analyses.

Section 2.6 concludes.

2.2 Data

I combine two key sources to build a unique county-year panel dataset: spatial hurricane

data from NOAA, and the establishment volume data from the Census Bureau. NOAA

maintains the International Best Track Archive for Climate Stewardship (IBTrACS), which

contains detailed longitude and latitude information about hurricane trajectories, using data

from satellite observations. The IBTrACS data also includes information on maximum wind

speeds and the designation of the storm on the Saffir-Simpson hurricane index at regular

geographic intervals. To estimate my outcomes of interest, I utilize the County Business

Patterns data, available from 1986 to 2016, which contains county-year information about

establishment volume, and includes sub-totals for various establishment size and industry

groups. According to the Bureau of Labor Statistics, “an establishment is considered to be a

single physical location where one predominant activity occurs. A firm is an establishment

of a combination of establishments". Census data includes aggregated information about

establishments, but I cannot link establishments to their broader network of firms. Therefore,

this analysis is conducted at an county level, and studies establishment volume, rather than

firm volume.

In order to define treatment, or a county’s exposure to a hurricane event, I combine spatial

county boundary data with the hurricane trajectory spatial data. Since the average hurricane
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Figure 2.1: Example of Treatment Definition: Counties Exposed to Hurricane Katrina

Note: This map depicts the contiguous United States, and demonstrates how hurricane spatial trajectory data was used to
determine which counties were exposed, and therefore “treated" by a hurricane event. The bold blue line demarcates the path
of Hurricane Katrina as it made landfall with the contiguous United States. Since the trajectory only denotes the path of the
eye of the hurricane, I define a radius of 50 miles around the path to consider counties that were not directly hit by the eye of
the hurricane, but likely sustained intense rainfall and high wind speeds due to the storm. Thus, counties that were within 50
miles of the hurricane trajectory, and thus considered to be treated within my empirical strategy, are denoted in red.

has a 150-mile radius 1, I employ a conservative approach and use 50 miles as the radius

around the eye of the hurricane to define treatment. Thus, I identify a county as “treated" if

any portion of the county is located within a 50 mile radius of a storm, while it was classified

as a Category 1 hurricane or worse. Figure 2.1 shows an example of this treatment definition

with Hurricane Katrina, whose path is demarcated with the bold blue line. The counties

highlighted in red represent those “treated" by Hurricane Katrina: they were within 50 miles

of the eye of the storm, while it was considered a Category 1 or worse hurricane.

Overall, I limit my analysis to 30 hurricane events that occurred between 1996 and 2006, to

allow for a full ten-year pre- and post- period of study. There are 184 counties that have been

1. Statistic from Weather.gov
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Figure 2.2: Counts of Treated Counties, by Year of First Exposure in Study Period

Note: This bar chart depicts the distribution of first hurricane exposure for the 220 counties exposed to hurricanes in my
analysis. Counties are considered to be exposed to a hurricane if the 50 mile radius of the hurricane intersects with the county
boundaries, and the storm is categorized as a hurricane at some point during the intersection. I only consider counties once,
even if the county was exposed to several different hurricanes during the study period. A county is included in an annual total
if that is the first year that that county was affected by a hurricane during the study period. I only consider hurricane events
that happened in the study period of 1996-2006, because my event study analysis requires that I observe the establishment
volume of a county for ten years prior and following the hurricane event.

affected by these 30 hurricanes between 1996 and 2006. For the sake of cleanly measuring

changes in establishment volume in the decade prior to a hurricane event, I omit counties

that experienced another hurricane event in the decade prior to the studied hurricane. Ad-

ditionally, since it is possible that places were affected multiple times by hurricanes in the

study period, I use the first instance of a hurricane. Figure 2.2 depicts the distribution of the

184 US counties considered treated within my analysis, by the year of the studied hurricane

(i.e., the first hurricane exposure within the study period of 1996 to 2006). The geographic

distribution of these counties is shown in Figure 2.3, spanning 10 US states.

2.3 Empirical Strategy

2.3.1 Choice of Control Group

The purpose of my empirical design is to measure the causal effect of hurricane exposure

on local business volume. A naive comparison of local business volume before and after a
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Figure 2.3: Geographic Distribution of Treated and Hurricane State Control Counties

Note: This map depicts the treatment and control county groups within my event study design. The dark blue counties are
the treatment group: the 220 counties that were within 50 miles of at least one Category 1 or worse hurricane between 1996
and 2006. The light blue counties are control counties as per the “hurricane state" definition: the 312 counties that are within
the same state as a county that ever experienced a hurricane between 1980-2021, but were not themselves within 100 miles of
a hurricane. The counties in white are not utilized in the event study design, because they are either not credible
counterfactual for the treated counties, or they may have been partially treated by one of the studied hurricane storms (i.e.
within 100 miles of one of those hurricanes).
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hurricane may be subject to selection bias, since aggregate economic trends of a region may

play a role in changing levels of business volume over time. In that case, we may mistakenly

ascribe business growth as related to the hurricane, when it was actually the effect of an

underlying economic trend. To account for this selection bias issue, I consider a natural

experiment utilizing the precise trajectories of hurricane paths. The identifying assumption

is that the precise path of the hurricane is uncorrelated with characteristics such as economic

growth, and comparing the business volume of counties that were directly in the path of the

hurricane to that of counties that were not directly exposed would allow me to estimate the

causal impact of the hurricane itself on business volume.

This analysis requires the careful consideration of the “control" counties, or the counties that

were not directly exposed to the hurricane. Hurricanes have affected only nineteen out of

the 48 contiguous states, and the study sample includes 220 treated counties, while there

are 1,882 counties in the contiguous US that are considered “never-treated", i.e. did not

experience a hurricane event between 1986 and 2016. However, it is unlikely that every

single never-treated county is a viable counterfactual for the treated counties considered in

my analysis. For instance, counties on the West coast of the US, where hurricane exposure

is non-existent, may have different composition of industry or differential trends in economic

growth than Eastern hurricane-prone counties. Therefore, I employ a method similar to a

strategy used in Jerch, Kahn [2021] and Deryugina [2017], where the sample of never-treated

counties is reduced to counties that are located within hurricane states, or states that were

exposed to any hurricane event anytime between 1980 and present.

Within this control group of hurricane state counties, I may worry that some of these counties

were geographically close to one of the studied hurricanes, and therefore may be partially

affected by the storm. In order to circumvent that issue, I perform a further refinement of

the control group, where I remove any never-treated county that came within 100 miles of
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a storm trajectory while it was a Category 1 or worse hurricane. This helps to alleviate the

concern that there are counties acting as controls that may have been partially exposed to

a hurricane during the study period. I also eliminate any control county that experienced

a hurricane between 1980 and the beginning of the study period, to alleviate concerns that

those counties may have been exposed to a hurricane prior to the storm.

The final set of studied counties includes 220 “treated" counties, or counties that were within

50 miles of the eye of a Category 1 or worse storm, and 312 never-treated control counties

that are in hurricane states but did not experience any hurricane events after 1980. Table

2.1 presents summary statistics of these county groups for a variety of characteristics. I find

that the treated counties have more similar populations, employment levels, and aggregate

personal income to hurricane states than to the nationwide sample of never-treated coun-

ties, underscoring the importance of limiting the control county group to more comparable

counties. I quantitatively test this observation with a difference in means t-test between

the treated county group and each of the control county groups. Overall, I cannot reject

the null hypothesis that the average population, average employment, or average personal

income varies between the treated group and each of the control groups, but I do find smaller

p-values for the larger nationwide control county group.

2.3.2 Event Study Regression Analysis

I aggregate the treated and hurricane state control counties’ data into a county-year panel

dataset to run an event study regression, that leverages the plausible exogeneity of exact

hurricane trajectories. To estimate the treatment effect of the hurricane exposure, I primarily

utilize the specification in Equation 2.1. Here, Ycy is the log number of establishments in a

given county-year cy, t is event-time (ET ), which is the calendar year subtracted by the year

of the first hurricane experienced by county-year cy within the 1996 - 2006 study period.

EverHurrcy is a binary variable indicating whether an county ever experienced a hurricane
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Table 2.1: Summary Statistics for Treated and Control County Groups

Treated Hurricane State Never-Treated All Never-Treated

Number of Counties 220 312 1,882

Population 66,399.84 60,702.61 73,760.68
P-value - 0.58 0.45

Employment 19,927.61 19,917.61 25,052.57
P-value - 1.00 0.19

Personal Income. 894,679.9 873,130.0 1,128,797.2
P-value - 0.90 0.14

Note: This table presents averages of county characteristics for three different county groups, and the p-values from a
difference in means t-test between the treated group and the two different control groups. The first group is the treated
counties, which come within 50 miles of a hurricane between 1996 and 2006. The second group is the never treated counties
that will be used as controls in the event study regression analysis, selected because they are in states that had a hurricane at
least once after 1980, but did not come within 100 miles of a hurricane themselves. The final group is the full population of
never-treated counties, including both hurricane state and non-hurricane state counties. The first row presents the number of
counties in each sub-group. The second row presents the average pre-treatment population of the county sub-group, as of
1986. The third row presents the average employment volume of the county sub-group, as of 1986. The fourth row presents
the aggregate personal income, measured in billions of USD$, as of 1986. The population dataset is from NBER; the
employment dataset is from the Census County Business Patterns data, and the personal income dataset is from FRED.

within the study period. Finally, δy and ϕc are year- and county-fixed effects, respectively. I

limit the county-year panel dataset to be balanced on covariates and on event time, so that

I can observe the full time series of establishment counts for ten years prior, and ten years

following, the first hurricane event. In other words, I limit my pool of “treated" counties to

include those that experienced a hurricane event between 1996 and 2006.

Ycy = α +
10∑

t=−10\−1

[
βt1[ET = t]cy ∗ EverHurrcy

]
+

βl1[ET ≤ −11]cy ∗ EverHurrcy+

βu1[ET ≥ 11]cy ∗ EverHurrcy + δy + ϕc + εcy

(2.1)

The identifying assumption of the event study design is that “treated" county-years, would

have similar trends in establishment volume as untreated county-years, had they not been
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affected by a hurricane. Since hurricane trajectories are not easily predictable until very

close to the actual storm itself, it is possible that places that were closely hit by a hurricane

are on similar trajectories of observable and unobservable characteristics to places that were

missed. I test this assumption by observing the pre-hurricane trends in establishment volume,

and do not find any statistically significant variation in the decade prior to the hurricane.

This is encouraging evidence that treated- and never-treated counties had similar trends in

establishment volume for the decade prior to the hurricane exposure. Future iterations of this

paper will establish further tests of this assumption, including an analysis that determines

whether county-level characteristics can predict the timing of hurricane exposure.

2.4 Results

In Figure 2.4, I present the estimates of the β coefficients from the event study specification

in Equation 2.1. Since I estimate specific treatment effects at each individual event-time,

I am able to observe trends in log establishment volume over time. In the decade prior to

hurricane exposure, I do not find statistically significant differences in establishment volume.

However, immediately after hurricane exposure, I observe an increase in log establishment

volume, and this increases persists for the decade following hurricane exposure. Since I

model a log transformation of establishment volume, I can interpret this coefficient estimate

as an increase in establishment volume of up to 4.7 percent.

2.5 Heterogeneous Responses to Hurricane Exposure

In the previous section, I establish that establishment volume increases following a hurricane.

This result is consistent with a “build-back-better" narrative, where older capital and busi-

nesses affected by the hurricane are newly replaced by superior quality alternatives (Hsiang

and Jina [2014]). To further comment on the mechanisms behind these increases, I study
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Figure 2.4: Event Study Estimates: Establishment Volume

Note: This figure plots the βt coefficient estimates from Equation 2.1, using first year of hurricane exposure as the source of
variation. The regression is estimated on log establishment volume. The x-axis plots event time, where ‘0’ denotes the year of
exposure, negative event-time denotes the ten years prior to exposure, and positive event-time denotes the years following
exposure. The single point denotes the point estimate of the coefficient, and the vertical bar denotes the 95 percent confidence
interval. All event study specifications are estimated using a data sample that is balanced in event-time, so all county units
have establishment volume information for the full range of event time: [-10,10].
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heterogeneity in outcomes by business size and industry type.

2.5.1 Size-based Heterogeneity

When considering the “build back better" hypothesis in the context of establishment size

heterogeneity, I consider two competing mechanisms by which differential outcomes could

arise:

1. Selection mechanism: Larger, more well-resourced businesses enter or remain in the

market and smaller, less-resourced businesses exit or fail to enter the market following

a disaster

2. Sorting mechanism: Existing or new large businesses have a greater ability and pref-

erence to move into, or form within an unaffected area, and existing or new small

businesses are more likely to remain within, or form within an affected area

By disaggregating business outcomes by business size, I can disentangle which of these mech-

anisms is more salient. Figure 2.5 depicts the results of the estimation of Equation 2.1 on

subgroups of the County Business Patterns establishment volume data that have different

number of employees. I find that the share of very small establishments, with 1 to 4 em-

ployees, increases over time, while the share of slightly establishments, particularly those

with 5 to 9 and 10 to 14 employees, actually decreases over time. I do not find statistically

significant evidence of any change in the share of large establishments, such as those with

more than 50 employees. However, those establishments generally comprise a very small

fraction of the overall establishment distribution. These findings are suggestive that the

sorting mechanism may be more prevalent, as the very small establishments comprise of a

larger share of establishments within hurricane-affected areas, and slightly larger establish-

ments form at lower rates, or leave at higher rates, within hurricane-affected areas. Further

research on establishment movement, using more granular data on establishment survival
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and formation, is required to determine whether these trends are caused by the movement

of existing establishments, or the inception of new establishments.

Additionally, to be able to tell a more complete story about the role of business size on

post-hurricane outcomes, further research is required on the nature of firm-establishment

networks. Since this analysis is at an establishment level, it is difficult to tell which of

the establishments are part of a larger firm network, and may potentially benefit from the

safety-net of subscription to a larger system. For instance, it may be misleading to study the

outcomes of an establishment with a small number of employees, because it may be a part

of a larger firm and benefit from that subscription during a large shock such as a hurricane.

If establishments with 1 to 4 employees are more likely to be a part of a larger firm than

establishments with 5 to 9 employees, then that may partially explain the divergent results

between the two groups. In addition to the size of the firm-establishment network, it is likely

that the geographic distribution of the firm-establishment network will also play a role in

the long-term survival of the business. This is a rich area for further research.

2.5.2 Industry-based Heterogeneity

I also explore heterogeneity in the dimension of industry, to understand whether the positive

trends in establishment volume are consistent across various industries. If I consider a

hurricane exposure to be a bundled shock of capital destruction and an interruption to

operations, different industries would be affected differently, depending on which aspect of

this sudden exposure is more salient for that industry, i.e. more likely to lead to long-term

impacts. For example, if interrupted operations are easier to bounce back from following

disasters, businesses within labor-intensive industries are more likely to survive in the long

run. On the other hand, if capital destruction is easier to mitigate, then capital-intensive

industries would be more likely to bounce back in the long-run.
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Figure 2.5: Event Study Estimates for Share of Establishments, by Employee Count

Note: This figure plots the βt coefficient estimates from Equation 2.1, using first year of hurricane exposure as the source of
variation. The regression is estimated on the percentage of establishments with a certain range of employee counts. For
instance, the variable “1 to 4 Employees" indicates the share of total establishments in a county that have 1 to 4 employees.
The x-axis plots event time, where ‘0’ denotes the year of exposure, negative event-time denotes the ten years preceding
exposure, and positive event-time denotes the ten years following exposure. The single point denotes the point estimate of the
coefficient, and the blue shaded area denotes the 95 percent confidence interval of the point estimate. All event study
specifications are estimated using a data sample that is balanced in event-time, so all county units in have establishment
volume information for the full range of event time: [-10,10].
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I study heterogeneity in responses to hurricane exposure within industry sub-groups, as de-

fined by the broad NAICS/SIC (the North American Industry Classification System, and

the Standard Industry Classification) industry classification codes. These codes are used

within the Census County Business Patterns data. Figure 2.6 below presents the esti-

mation of Equation 2.1 on four industry groups: construction, retail trade, services, and

finance/insurance/real estate. Of these, I find that the sub-industry trends, with the ex-

ception of construction, largely follow the aggregate trend, but the magnitude of growth

varies by industry. For instance, the finance/insurance/real estate industry class exhibits a

3 percent growth in the decade following the hurricane, and the retail trade industry class

experiences up to a six percent growth in the following decade, while the services indus-

try class experiences up to seven percent growth. The construction industry deviates from

the aggregate establishment volume trend, exhibiting an immediate spike in growth of up

to 5 percent in the two years following the hurricane, and then stabilizing and eventually

decreasing in the following decade.

Taken together, these results further underscore the prevalence of the “build-back-better"

story, where the hurricane initiates an boost in business volume over time. The initial jump

in the construction industry class may be suggestive evidence of the increased demand for

construction immediately following the hurricane, and this demand perhaps helps to sustain

the steady long-term growth of some of the other industries. Overall, these results provide

encouraging suggestive evidence that the United States’ disaster response provisions are

successfully maintaining, and even helping to grow and expand business operations over

time.

Appendix Figure B.1 depicts the results of the event study specification for additional in-

dustry classes not depicted in Figure 2.6, although the standard difference-in-differences

assumptions are largely unsatisfied for those industries, since many of them exhibit substan-
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Figure 2.6: Event Study Estimates for Share of Establishments, by Industry

Note: This figure plots the βt coefficient estimates from Equation 2.1, using first year of hurricane exposure as the source of
variation. The regression is estimated on log establishment volume for four industry sub-classifications. The x-axis plots event
time, where ‘0’ denotes the year of exposure, negative event-time denotes the ten years preceding exposure, and positive
event-time denotes the ten years following exposure. The single point denotes the point estimate of the coefficient, and the
blue shaded area denotes the 95 percent confidence interval of the point estimate. All event study specifications are estimated
using a data sample that is balanced in event-time, so all county units in have establishment volume information for the full
range of event time: [-10,10].

tial difference in trends between the treated and control counties in the years prior to the

hurricane event. The lack of internal validity also means that we cannot speak to the plight

of capital-intensive industries such as transportation and manufacturing over time. I would

expect that those industries may behave differently than the labor-intensive industries doc-

umented in Figure 2.6, since hurricane-induced capital destruction may require a different

time frame for recovery.

2.6 Conclusion

I use publicly available Census data on county-level establishment volume, entry, and exit,

as well as detailed spatial hurricane data, within an event study regression framework, to

measure the causal effect of hurricane exposure on business dynamics. I find that establish-
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ment volume increases by 5 percent in the years following a hurricane, which is similar to

the results of increasing personal income from Roth Tran and Wilson (2022), but contrasts

with many of the macro-level results in the literature that find a decrease in growth and

employment in hurricane-affected areas. In a size-based heterogeneity analysis, I find that

the share of very small establishments increases over time, while the share of mid-size es-

tablishments decreases over time. I find no change in the share of very large establishments

over time. This is suggestive evidence that post-hurricane economic conditions or mitigation

measures incentivize the entry of small establishments in local economics. Finally, I also

explore heterogeneity among broad industry sub-classes and find results largely consistent

with the aggregate establishment volume trend, but with some differences - for instance, the

increase in construction establishment volume peaks a few years after the hurricane event,

while other industries such as services and retail trade increase for up to a decade following

the hurricane event. Overall, these trends are consistent with a “build back better" hy-

pothesis, where local economies are more amenable to growth after a large shock such as a

hurricane.
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CHAPTER 3

THE EFFECTS OF HURRICANE EXPOSURE ON RENTAL

MARKETS

3.1 Introduction

Hurricane winds and storm-related flooding are responsible for the majority of economic

losses from disasters in the United States (NOAA, 2021). A 2019 Congressional Budget

Office report states that expected annual losses from these disaster amounts to $54 billion.

The majority of these costs arise from losses for the residential sector: the annual costs of

home repair and temporary housing are estimated to total $34 billion (CBO, 2019). These

damages can have massive consequences on housing markets, leading to many short and

long-term impacts for households.

There have been numerous studies documenting the impact of natural disaster exposure on

housing sales markets. Hurricanes, flooding, and other large natural disasters have been

found to cause billions of dollars in property damage (Boustan et al. [2020a]). Beltrán et al.

[2019] studies property values in England, finding that home values decline significantly after

coastal flooding. Ortega and Tas.pınar [2018] find a price penalty for properties affected by

Hurricane Sandy, whether or not they were actually damaged. Comparatively, there is

little to no evidence about trends in rental markets following disasters. Renters make up

a significant portion of households in the United States: more households are renting than

ever in the last fifty years. As of the first quarter of 2020, a third of households were renters.

There are a number of mechanisms potentially at play as to how homeowners and renters

each weather natural disaster shocks, leading to heterogeneous impacts across housing tenure

status. To begin with, there are significant racial and socioeconomic disparities in who rents
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and who owns their housing in the United States. The median income for homeowners is

$52,000, versus only $34,000 for renters, and more than half of Black households rent, versus

only 27 percent of White, non-Hispanic households (Schuetz [2017]).

Moreover, the very nature of the relationship of each group with their housing arrangement

could significantly affect how each group is able to recover from natural disaster exposure.

For instance, homeownership is an important wealth-building strategy for Americans. Home

equity constitutes a large portion of total family assets for all but highest earners. There are

many incentives to homeownership, including tax subsidies, access to credit, and a “built-in"

savings structure. Additionally, there are informational constraints that make homeowners

more likely to be aware of natural disaster risk with making homeownership and migratory

decisions. Laws disclosing flood risk are oriented specifically towards informing homeown-

ers, as too are aid channels such as FEMA insurance and grants (Kellman et al. [2020]).

Therefore, homeowners may have more access than renters to ex-ante and ex-post mitiga-

tion mechanisms that allow them to adequately insurance themselves from natural disaster

shocks.

The dearth of research on renters and rental markets is presumably due to the lack of a

centralized database of rental transactions, unlike for home sales. This makes it very difficult

to conduct a nationwide analysis of renters and their outcomes.

This paper will focus specifically on rental price dynamics following hurricane exposure.

Rental markets and housing markets do not necessarily track each other closely–in fact, the

direction and magnitude of the “rent-to-price ratio” within property markets is uncertain and

has been debated in finance literature (Bracke [2015]; Zheng et al. [2018]), and deviations in

the housing price-to-rent ratio are even considered signs of housing bubbles (Gallin [2008]).

Additionally, renters and owners may face different price fluctuations after disasters: rent is

a monthly expense, while home value changes may only mater in certain context, such as

56



property tax appraisal, a property sale, or while refinancing. The extent to which a natural

disaster provides a housing wealth shock to a household will vary significantly by housing

tenure.

Tamara Sheldon and Zhan [2018] finds a decrease in homeownership following hurricane

exposure, which is indicative of a decrease in demand for homeownership following a natural

disaster. Additionally, Boustan et al. [2020a] finds that natural disasters cause a supply shock

through extensive and expensive damage to the housing shock. Together, these two results

allow us to hypothesize that the effect of hurricane exposure on rental prices will be positive,

since rental properties will increase in demand and decrease in supply following a disaster.

We will test this analysis by observing changes in median rent following hurricane exposure:

we expect to see the median rent estimate to increase following a disaster. However, to fully

support this hypothesis, we will need to also understand how housing supply changes, to

better understand why rental prices may vary following a disaster. To that end, we plan to

study housing units, and vacancy rates.

Our project combines public-access data on median rent from the Department of Housing

and Urban Development with spatial hurricane data within an event study design, leveraging

variation in the exact location of hurricane trajectories. Using this empirical strategy, we

estimate the causal effect of hurricane exposure on rental prices. We find that in the years

prior to hurricane exposure, median rent does not substantially vary, and following hurricane

exposure rental prices decrease significantly and persistently over time.

Section 3.2 will outline the data sources. Section 3.3 will discuss the empirical strategy.

Section 3.4 will provide results and discussion. Section 3.5 will discuss the intended next

steps for this project. Section 3.6 will conclude.

57



3.2 Data

To our knowledge, there is no publicly available, nationally representative rental price data

that is available at a housing unit-year level. Therefore, we use county-year level median

rental price data from the Department of Housing and Urban Development (HUD). The

rental price data from HUD covers 3,240 US counties in the contiguous United States from

years 2003 to 2021. We also adjust the mean rent for inflation and report all rental values

in 2021 dollars.

NOAA maintains the International Best Track Archive for Climate Stewardship (IBTrACS),

which contains detailed longitude and latitude information about hurricane trajectories,

using data from satellite observations. In order to define treatment, we combine spatial

county boundary data with the hurricane trajectory spatial data. We define a county as

“treated" if any part of the county is within 50 miles of the trajectory of a storm while it

is classified as a Category 1 or worse hurricane. Since the average hurricane has a 150-mile

radius, we employ a conservative approach and use 50 miles as the radius around the eye of

the hurricane to define treatment (hur).

3.3 Empirical Strategy

In order to design a credible counterfactual for hurricane-prone counties, we employ a method

used in Strobl [2011], where we limit the control group to never-treated coastal counties,

where coastal proximity and inclusion in a coastal watershed region is defined by NOAA

(National Oceanic and Atmospheric Administration (NOAA) [2012]). Specifically, coastal

boundaries are defined as “those that have at least 15 percent of their land in the coastal

watershed or that comprise at least 15 percent of a coastal cataloguing unit" (Strobl [2011]).

We select never-treated counties across the US that are considered to be coastal as a more

credible control group for the treated counties, with the assumption that coastal regions
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across the US would have similar trends in housing markets and local economic conditions

as the treated counties. Table 3.1 presents some summary statistics to test this assumption,

by comparing average population, personal income, and age distributions across the three

county sub-groups: treated counties, coastal control counties, and the full population of

never-treated counties. We hypothesize that this analysis will underscore that coastal control

counties have similar economic conditions to the treated counties, meaning that they are a

more suitable counterfactual than the control group consisting of the entire contiguous US.

However, we find that the coastal counties are actually quite different from the treated

counties, along these dimensions –future iterations of this project will explore this result

further, potentially utilizing a suite of controls in the regression specification to account for

the disparities. We also intend to compare the treated, coastal never-treated, and nationwide

never-treated populations over housing market characteristics such as housing price indices

or housing stock, to gain more understanding of whether coastal areas nationwide are similar

to hurricane-treated areas along the dimension of housing market dynamics.

In addition, we remove any potential control counties that came within 100 miles of a storm

while it was a Category 1 or worse hurricane. This helps to alleviate the concern that the

control counties may have been partially exposed to a hurricane during the study period,

and are not truly “never treated". We also eliminate any control county that experienced

a hurricane between 1980 and the beginning of the study period, to alleviate concerns that

those counties may have been treated prior to the study period.

We analyze the county-year panel dataset within an event study regression, leveraging the

plausible exogeneity of exact hurricane trajectories. The counties included in the analysis

includes a nationwide sample of never-treated counties, or counties that did not experience

a hurricane event during the study period, which serve as a counterfactual for the treated
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Table 3.1: Summary Statistics for Treated and Control County Groups

Treated Coastal Never-Treated All Never-Treated

Number of Counties 114 190 2,573

Population 112,079.41 395,413.98 86,509.18
P-value - 0.00 0.42

Personal Income 3,212,367 14,071,834 2,655,058
P-value - 0.00 0.61

Percent Age < 20 0.29 0.27 0.28
P-value - 0.00 0.00

Percent Age > 65 0.13 0.14 0.15
P-value - 0.00 0.00

Note: This table presents averages of county characteristics for three different county groups, and the p-values from a
difference in means t-test between the treated group and the two different control groups. The first group is the treated
counties, which come within 50 miles of a hurricane between 1996 and 2006. The second group is the never treated counties
that will be used as controls in the event study regression analysis, selected because they considered coastal counties, but did
not come within 100 miles of a hurricane themselves. The final group is the full population of never-treated counties,
including both coastal and non-coastal counties. The first row presents the number of counties in each group. The second row
presents the average pre-treatment population of the county group, as of 2003. The third row presents the aggregate personal
income, measured in billions of USD$, as of 2003. The fourth and fifth rows presents the average percentage of a county
population that is under the age of 20, and over the age of 65.
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Figure 3.1: Geographic Distribution of Treated and Coastal Control Counties

Note: This map depicts the treatment and control county groups within the event study design. The dark blue counties are
the treatment group: the 118 counties that were within 50 miles of at least one Category 1 or worse hurricane between 2007
and 2017. The light blue counties are control counties as per the “coastal county" definition: the 190 counties that are
considered to be coastal, but were not themselves within 100 miles of a hurricane. The counties in white are not utilized in the
event study design, because they are either not credible counterfactual for the treated counties, or they may have been
partially treated by one of the studied hurricane storms (i.e. within 100 miles of one of those hurricanes).
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counties. The primary specification is Equation 3.1.

Ycy = α +
15∑

t=−5\−1

[
βt1[ET = t]cy ∗ EverHurrcy

]
+ δy + ϕc + εcy (3.1)

In this specification, Ycy is the median rent in a given county-year cy, t is event-time (ET ),

which is the calendar year subtracted by the year of the first hurricane experienced by county-

year cy. EverHurrcy is a binary variable indicating whether an county ever experienced a

hurricane within the study period. Finally, δy and ϕc are year- and county-fixed effects,

respectively.

3.4 Results

The βt coefficient estimates of our event study specification from Equation 3.1 are presented

in Figure 3.2. We find that in the years prior to hurricane exposure, there is little statisti-

cally significant variation in median contract rent: in other words, the difference in median

contract rent between eventually-treated and never-treated counties remains constant in the

years prior to the hurricane exposure. For the five years following hurricane exposure, we

find that median rent persistently decreases, by up to $75 for three-bedroom properties. This

corresponds to a 6.2 percent decrease on a baseline of $1,204 for three-bedroom properties.

3.5 Discussion

Our initial findings of an decrease in rental prices following hurricane exposure is consistent

with housing sales dynamics documented in earlier literature. We document an equilibrium

effect of hurricanes on rental rates: elucidating the extent to which supply-side and demand-

side factors lead to this overall decline in rental prices is beyond the scope of this study. The

extent to which demand or supply shocks contribute to our result requires further analysis
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Figure 3.2: Event Study Estimates of Equation 3.1, for Median Contract Rent

Note: This figure plots the βt coefficient estimates from Equation 3.1, using first year of hurricane exposure as the source of
variation. The regression is estimated on median contract rent for 0-, 1-, 2-, and 3-bedroom units. The x-axis plots event
time, where ‘0’ denotes the year of exposure, negative event-time denotes the years prior to exposure, and positive event-time
denotes the years following exposure. The single point denotes the point estimate of the coefficient, and the shaded region
denotes the 95 percent confidence interval. All event study specifications are estimated using a data sample that is balanced
in event-time, so all county units have median contract rent data for the full range of event time: [-5,6].

of alternate attributes of the rental market. We can also study other metrics of housing

expenses, other than median rent. We plan to do this with restricted-access Census data,

which we have gained permission to access. We can study changes in the following attributes,

which would help us understand how rental supply varies with hurricane exposure, as well

as housing quality.

• Rental quality : Percent renters and owners in Census block-year (from the American

Community Survey). Home quality indicators such as prevalence of home improve-

ments, prevalence of mold on the property, number of buildings abandoned nearby,

etc. (from the American Housing Survey)

• Rental expenses : Rental price per month, property tax amounts, mortgage payment

amounts, rent subsidy amounts, maintenance expenses, monthly housing costs, monthly

utility amounts (from the American Community Survey and the American Housing

63



Survey)

We also hope to further develop understanding of the heterogeneity in post-disaster outcomes

between homeowners and renters by examining differences in adaptive responses such as

migration, and comparing ex-ante and ex-post disaster protection and aid policy provision

between groups. In other words: are renters and homeowners equally protected against

disaster risks, and how does it impact their adaptive responses?

3.6 Conclusion

This project seeks to study a pre-dominantly understudied population - renters - and how

natural disasters impact rental markets. We find that hurricane exposure substantially and

persistently decreases median rent for properties of various sizes. In future iterations of this

project, we hope to better understand the supply-side and demand-side factors behind this

rent increase, and document heterogeneity between homeowner and renter disaster protection

and adaptive responses. Understanding the impacts of natural disasters on renters and rental

markets is essential to fully understanding the distributional impacts of natural disasters.
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APPENDIX A

APPENDIX TO LEVEES: INFRASTRUCTURE AND

INSURANCE AS ADAPTATION TO FLOOD RISK

A.1 Alternate Specification of Joint Construction-Accreditation

Specification

In this section, we present an alternate specification of Equation 1.3, which models the con-

struction and accreditation effects jointly in order to measure the effect of accreditation after

controlling for the pre-trend caused by construction. In this specification, instead of esti-

mating static effects for post-construction and post-accreditation we dynamically estimate

the effects of construction and accreditation for up to five years following the events. The

results of the alternate specification (Equation A.1) is in Table A.1. The coefficients of in-

terest are βτC and βτA , which measure the causal effect of construction and accreditation on

insurance take-up, at various points in event time. τC denotes event time around the year of

construction, and τA denotes event time around the year of accreditation. Overall, we find

results where the sign and magnitude is consistent with what we observe in the estimation of

the static specification, but not statistically significant. Thus, the static specification where

we pool all post-construction coefficients, and post-accreditation coefficients is our preferred

specification.
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Table A.1: Event Study Estimates of Equation A.1

Dependent variable:

Policy Take-up Rate

Treated 0.011∗∗ (0.005)
DC(τ < −5) −0.003 (0.002)
DC(τ = −5) 0.001 (0.001)
DC(τ = −4) 0.001∗ (0.001)
DC(τ = −3) 0.001∗∗ (0.001)
DC(τ = −2) 0.001∗∗ (0.0004)
DC(τ = 0) −0.001∗∗ (0.0005)
DC(τ = 1) −0.002∗∗ (0.001)
DC(τ = 2) −0.002∗∗ (0.001)
DC(τ = 3) −0.003∗∗ (0.001)
DC(τ = 4) −0.002∗ (0.001)
DC(τ = 5) −0.003∗ (0.002)
DC(τ > 5) −0.003 (0.003)
DA(τ < −5) 0.033∗∗∗ (0.003)
DA(τ =)-5 0.013∗∗∗ (0.001)
DA(τ =)-4 0.008∗∗∗ (0.001)
DA(τ =)-3 0.006∗∗∗ (0.001)
DA(τ =)-2 0.0002 (0.0001)
DA(τ =)0 −0.007∗∗∗ (0.0005)
DA(τ =)1 −0.011∗∗∗ (0.001)
DA(τ =)2 −0.016∗∗∗ (0.002)
DA(τ =)3 −0.011∗∗∗ (0.001)
DA(τ =)4 −0.013∗∗∗ (0.002)
DA(τ =)5 −0.013∗∗∗ (0.002)
DA(τ =)6 −0.005∗∗∗ (0.002)
Treated ×DC(τ < −5) 0.032∗∗ (0.015)
Treated ×DC(τ = −5) 0.017∗ (0.010)
Treated ×DC(τ = −4) 0.013 (0.008)
Treated ×DC(τ = −3) 0.008 (0.006)
Treated ×DC(τ = −2) 0.006∗∗ (0.003)
Treated ×DC(τ = 0) −0.007 (0.004)
Treated ×DC(τ = 1) −0.008 (0.011)
Treated ×DC(τ = 2) −0.012 (0.014)
Treated ×DC(τ = 3) −0.017 (0.014)
Treated ×DC(τ = 4) −0.018 (0.015)
Treated ×DC(τ = 5) −0.020 (0.016)
Treated ×DC(τ > 5) −0.024 (0.017)
Treated ×DA(τ < −5) −0.036∗∗ (0.014)
Treated ×DA(τ = −5 −0.015∗ (0.009)
Treated ×DA(τ = −4) −0.008 (0.007)
Treated ×DA(τ = −3) −0.008 (0.007)
Treated ×DA(τ = −2) 0.0002 (0.003)
Treated ×DA(τ = 0) 0.002 (0.005)
Treated ×DA(τ = 1) 0.005 (0.007)
Treated ×DA(τ = 2) 0.011 (0.010)
Treated ×DA(τ = 3) 0.011 (0.010)
Treated ×DA(τ = 4) 0.013 (0.011)
Treated ×DA(τ = 5) 0.018 (0.013)
Treated ×DA(τ > 5) 0.010 (0.015)

Observations 20,080
R2 0.787
Adjusted R2 0.786
Residual Std. Error 0.039 (df = 19952)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

67



Figure A.1: Event Study Estimates of the Effect of Construction on Flood Insurance Take-
up, with +/- 5 Year Event Time

A.2 Event Study Specification with 5-year Pre- and Post-Periods

In this section, we present a robustness check of our primary event study specification of

the effect of levee construction on flood insurance take-up, using a wider range of event

time than our preferred specification. This robustness check estimates Equation 1.1, but

with an event time range of τ ∈ [−5, 5]. Overall, we find results that are largely consistent

in sign, magnitude, and statistical significance with our preferred specification, which uses

τ ∈ [−3, 3].
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APPENDIX B

APPENDIX TO NATURAL DISASTERS AND LOCAL

BUSINESS TRENDS

B.1 Event Study Results for Full Set of Industry Sub-Classes

Appendix Figure B.1 depicts the results of the event study specification for additional in-

dustry classes not depicted in Figure 2.6. However, the standard difference-in-differences

assumptions are largely unsatisfied for those industries, since many of them exhibit substan-

tial “pre-trends", or in other words, a statistically significant difference in trends between

the treated and control counties in the years prior to the hurricane event. Because of this

lack of internal validity, I cannot causally identify the effect of hurricane exposure on several

industries, particularly capital-intensive industries such as transportation and manufactur-

ing. This is a rich area for future research, to create more individualized control groups by

industry, or explore more granular industry-level data to gain a better sense of how these

industries are affected by hurricane exposure.
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Figure B.1: Event Study Estimates for Share of Establishments, by Industry
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