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ABSTRACT

Given a p-complete, animated ring S, we define a filtration on the Nygaard-complete, abso-

lute prismatic cohomology N≥i
r ∆̂S , which we call the r-Nygaard filtration. This is obtained

by suitably gluing r-copies of the usual Nygaard filtration and, in the case that S is a

perfectoid ring, it corresponds to the ξr-adic filtration on Ainf .

Using this, we study the motivic filtration of topological restriction homology TRr(S;Zp)

and of its S1-homotopy fixed points. We also explore connections with topological cyclic ho-

mology. Finally, we apply our results to the case of AΩ-cohomology, drawing comparisons to

the first results of Bhatt–Morrow–Scholze, which also marked the beginning of the prismatic

story.
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CHAPTER 1

INTRODUCTION

1.1 Main results of the Thesis

Prismatic cohomology is a recently introduced p-adic cohomology theory due to Bhatt–

Scholze, which is developed in their groundbreaking work [BS22] and relies on the notion of

a prism (A, I). Given a p-complete ring S over A := A/I, one is able to construct its relative

prismatic cohomology ∆S/A, via the prismatic site. These are the main objects of study

of [BS22]. Prismatic theory has already proved invaluable in tackling several mathematical

questions in various mathematical areas. This is a consequence of the fact that it is believed

to be the right p-adic cohomology theory, as it specializes to and refines all other previously

known ones: de Rham, Hodge–Tate, crystalline, étale, etc.

A first attempt to construct a good universal p-adic cohomology theory was made in

the work of Bhatt–Morrow–Scholze [BMS18]. The authors mainly used techniques from

perfectoid geometry to construct cohomological invariants over Fontaine’s period ring Ainf .

This was closely related to the theory of Breuil–Kisin–Fargues modules and, via Fargues’

theorem [SW20], to mixed characteristic shtukas with one leg over spa C♭. Thus, this falls

under the general scope of Scholze’s insight, who suggested that p-adic cohomology theories

are expected to have shtuka-like properties [Sch18].

Further algebro-geometric approaches are those of Drinfeld [Dri20] and Bhatt–Lurie

[BL22a; BL22b; Bha22], which use the language of stacks in an essential way, in order

to study prismatic invariants. Their viewpoint is based on a stacky reformulation of the

prismatic site of Bhatt–Scholze, shedding new light on geometric phenomena of absolute

prismatic cohomology and especially to structure associated with it, such as the Hodge–Tate

cohomology, the Nygaard filtration, and the categories of prismatic crystals/gauges.

An approach to absolute prismatic cohomology, which is of different flavour, is the second
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work of Bhatt–Morrow–Scholze [BMS19], as it uses tools from homotopy theory. Interestingly

enough, this story is opposite to the stacky one, as shown in the study of the filtered prisma-

tization stacks of [Dri20] and [Bha22]. In [BMS19], the authors constructed and studied

motivic filtrations of topological Hochschild homology THH and other associated invariants,

in the case of p-complete rings. In particular, the associated graded pieces of these motivic

filtrations can be expressed in terms of structure related to prismatic cohomology. The in-

spiration for this work came from the theory of motives, in which the algebraic K-theory of

a well-behaved scheme carries a motivic filtration, whose graded pieces are identified with

motivic cohomology. In fact one of the many applications of [BMS19], was the identifica-

tion of syntomic cohomology with p-adic étale motivic cohomology, as a consequence of the

approximation of algebraic K-theory using topological cyclic homology, via the trace map

[CMM21].

The classical approach to topological cyclic homology TC was paved via the use of another

invariant of THH, called topological restriction homology TR. This is a rich invariant which

has a deep connection to algebraic K-theory, but is also closely related to the Witt vector

functor. In particular, it is equipped with a Frobenius endomorphism F : TR → TR, which

gives rise to TC, via the following homotopy fibre:

TC = fib
(
1− F : TR −→ TR

)

In fact, there is more to say about the relation between TR and K-theory. On one hand, TR

can be recovered via the so-called curves in K-theory [McC21], while on the other hand, it

is related, via Goodwillie calculus, to another K-theoretic invariant, called cyclic K-theory

Kcyc [LM12; HS19; Nik20].

Attempting to see how these different approaches to prismatic cohomology and motivic

phenomena in the p-adic world relate to each other, one is led to several natural questions:

Ques 1. What is the role of the Witt vector functor in prismatic cohomology, given their
2



importance in the theory of δ-rings and the approach via prismatization?

Ques 2. What is the motivic filtration of TRr and in terms of what structure, related to

prismatic cohomology, can we interpret its graded pieces with?

Ques 3. How does the de Rham–Witt complex fit in the prismatic formalism?

Ques 4. If we wish to see the prismatic formalism as a variant of shtukas with one leg

over Spa C♭, under their correspondence with Breuil–Kisin–Fargues modules, then

is there any part of the prismatic formalism which captures the information of

shtukas with more than one leg?

These questions, among others, motivated the author throughout his studies. In this

work, we aim to tackle some of these. A general perspective, together with certain conjec-

tures, may be found in the last chapter of the thesis. Expanded versions of some of the results

we present here may be found in [And24a] and [And24b], which are currently in preparation.

In this thesis, using both algebraic and homotopy theoretic techniques, we study two

problems, which are interlinked to each other. On the one hand, we study the motivic

filtration of topological restriction homology TRr(S;Zp) and of its S1-homotopy fixed points

TRr(S;Zp)
hS1

.

On the other hand, we introduce a filtration N≥•
r ∆̂S , for every 1 ≤ r ≤ ∞, by suitably

gluing r copies of the Nygaard filtration N≥i∆̂S , and study some of its properties. It fol-

lows that we can express the graded pieces of the motivic filtrations of TRr(S;Zp)
hS1

and

TRr(S;Zp) through N≥•
r ∆̂S , as well as those of some related homotopy-theoretic invariants.

We also pursue connections with more classical cohomological invariants in the setting of

positive/mixed characteristic.

Note that it is possible to define the r-Nygaard filtration on the non-completed version

of prismatic cohomology N≥•
r ∆S . We provide a brief explanation on how this is related to a

3



relative de Rham–Witt comparison theorem, together with certain future possible directions

of research, in the last chapter.

We break our main theorem in two parts: first the algebraic data and then their relation

to the homotopy theoretic invariants.

Theorem 1.1.1 (The r-Nygaard filtration). Let S be a p-complete, animated ring. For

1 ≤ r ≤ ∞, via the following iterated product construction, we associate a certain filtration

to the Nygaard-complete prismatic cohomology ∆̂S, which we call the r-Nygaard filtration:

N≥i
r ∆̂S{i} := N≥i∆̂S{i} ×∆̂S{i}

· · · ×
∆̂S{i}

N≥i∆̂S{i} (1.1)

In this iterated product construction, the maps on the left are the canonical inclusion maps

ι : N≥i∆̂S{i} ↪→ ∆̂S{i}, while the maps on the right correspond to the divided Frobenius

φi : N≥i∆̂S → ∆̂S.

The r-th iteration of Frobenius takes the i-th filtered piece of the r-Nygaard filtration

N≥i
r ∆S to the i-th power Iir∆S of the generalized ideal Ir := I ⊗φ∗I ⊗ · · ·⊗ (φr−1)∗I, where

the tensor product is taken over the Frobenius endomorphism φ of ∆S. Therefore, we have

a canonical inclusion map and a divided r-Frobenius map:

ι : N≥i
r ∆S{i} ∆S{i} φr,i : N≥i

r ∆S{i} ∆S{i}

For 1 ≤ r < ∞, we denote by ∆HT,r
S the r-Hodge–Tate cohomology, which lies in the

following commutative square:

N≥i
r ∆̂S{i} ∆̂S{i}

N i
r ∆̂S{i} ∆HT,r

S {i}

φr,i

(1.2)

where N i
r∆S is the i-th graded piece of the r-Nygaard filtration and grφr,i is the graded

4



version of the r-divided Frobenius, mapping to the r-Hodge–Tate cohomology.

There exist natural Restriction, Frobenius, and Verschiebung maps for the filtered invari-

ants and, therefore, for the graded ones as well:

N≥i
r+1∆̂S{i} N≥i

r ∆̂S{i} N≥i
r ∆̂S{i} N≥i

r+1∆̂S{i}

N i
r+1∆̂S{i} N i

r ∆̂S{i} N i
r ∆̂S{i} N i

r+1∆̂S{i}

R , F V

R , F V

Taking the limit with respect to the Restriction maps N≥i
∞ ∆̂S{i} ≃ Rlim

R
N≥i
r ∆̂S{i}, we obtain

Frobenius endofunctors

N≥i
∞ ∆̂S{i} N≥i

∞ ∆̂S{i}

N i
∞∆̂S{i} N i

∞∆̂S{i}

F

F

By passing to the 0-th associated graded piece for the r-Nygaard filtration on ∆̂S, one is

able to obtain the r-truncated Witt vectors of S:

N 0
r ∆̂S{i} ≃ Wr(S) (1.3)

Notice that this equivalence respects the natural structure of Restriction, Frobenius, and

Verschiebung, which we explained above.

Finally, as a simple example, notice that in the case S is a perfectoid ring, the r-Nygaard

filtration on its prismatic cohomology is just the ξr-adic filtration on Ainf(S). The natu-

ral symmetries R, F, V interact well with the Fontaine-style maps ϑr, ϑ̃r, as explained in

[BMS18, Sec. 3].

The structure of the r-Nygaard filtration arises in the theory of topological Hochschild

homology, as expected from the work of Bhatt–Morrow–Scholze [BMS19]. In particular, one

5



can read the data of the graded/filtered pieces of the r-Nygaard filtration from studying the

motivic filtration of topological restriction homology and of its S1-fixed points, respectively.

The theorem reads as follows:

Theorem 1.1.2 (The motivic filtration of TRr). Let S be a p-complete, quasisyntomic ring.

The following hold:

1) For 1 ≤ r ≤ ∞, the invariants TRr(S;Zp)
hS1 → TRr(S;Zp) are equipped with complete,

exhaustive, descending, multiplicative, Z-indexed motivic filtrations:

Fil•MTRr(S;Zp)
hS1

−→ Fil•MTRr(S;Zp)

which are the quasisyntomic sheafifications of their respective double speed Postnikov fil-

trations, from the quasiregular - semiperfectoid case. Passing to their associated graded

pieces, these can be identified with:


griMTRr(S;Zp)

hS1 ≃ RΓsyn

(
S, τ[2i−1,2i]TR

r(−;Zp)
hS1
)

griMTRr(S;Zp) ≃ RΓsyn

(
S, τ[2i−1,2i]TR

r(−;Zp)
)

by applying quasisyntomic descent from the quasiregular - semiperfectoid case, in which

both are identified with two-term complexes.

2) Let us denote by gr
i,odd
M the corresponding quasisyntomic sheafification of odd homotopy

groups π2i−1 and by gr
i,even
M the corresponding quasisyntomic sheafification of even ho-

motopy groups π2i, of either TRr(S;Zp)
hS1

or TRr(S;Zp). Then gr
i,even
M is the 0th

cohomology group of the two-term complex, while gr
i,odd
M is the 1st cohomology group. For

these, the following identifications hold:

For 1 ≤ r < ∞, the even parts can be expressed in terms of the r-Nygaard filtration on

6



Nygaard-completed prismatic cohomology ∆̂S:


gr

i,even
M TRr(S;Zp)

hS1 ≃ N≥i
r ∆̂S{i}[2i]

gr
i,even
M TRr(S;Zp) ≃ N i

r ∆̂S{i}[2i]

On the other hand, the odd parts gr
i,odd
M TRr(S;Zp)

hS1
and gr

i,odd
M TRr(S;Zp), which

correspond to the odd homotopy groups, locally vanish for the quasisyntomic topology.

Hence, these invariants are, locally with respect to the quasisyntomic topology, even.

Taking the limit over Restriction maps, we pass to the case of r = ∞, for which we have

the following identifications:


gr

i,even
M TR(S;Zp)

hS1 ≃ lim
R

N≥i
r ∆̂S{i}[2i]

gr
i,even
M TR(S;Zp) ≃ lim

R
N i
r ∆̂S{i}[2i]

Locally in the quasisyntomic topology, we have that


griMTR(−;Zp)

hS1 ≃ N≥i
∞ ∆̂(−){i}[2i] := Rlim

R
N≥i
r ∆̂(−){i}[2i]

griMTR(−;Zp) ≃ N i
∞∆̂(−){i}[2i] := Rlim

R
N i
r ∆̂(−){i}[2i]

Thus, locally for the quasisyntomic topology, the odd parts correspond to the lim
R

1 terms.

For 1 ≤ r ≤ ∞, the canonical map

TRr(S;Zp)
hS1

−→ TRr(S;Zp) (1.4)

gives rise to the map from the i-th filtered to the i-th graded piece for the r-Nygaard

7



filtration:

N≥i
r ∆̂S{i}[2i] −→ N i

r ∆̂S{i}[2i]

Restricting to the case 1 ≤ r < ∞, the commutative diagram involving higher Frobenii

TRr(S;Zp)
hS1

TC−(S;Zp) TP(S;Zp)

TRr(S;Zp) THH(S;Zp)
hCpr−1 THH(S;Zp)

tCpr

φhS1

φ
hC

pr−1

(1.5)

gives rise to the commutative diagram on r-Nygaard filtered prismatic cohomology groups,

involving the r-divided Frobenius, together with its graded version:

N≥i
r ∆̂S{i}[2i] ∆̂S{i}[2i]

N i
r ∆̂S{i}[2i] ∆HT,r

S {i}[2i]

φr,i

Also, the symmetries of Restriction, Frobenius, and Verschiebung on TRr and of its S1-

homotopy fixed points, give rise to corresonding symmetries on the graded and filtered

pieces for the r-Nygaard filtered ∆̂S.

3) From the vanishing of odd homotopy groups, locally for the quasisyntomic topology, by

applying quasisyntomic descent, we obtain multiplicative spectral sequences, for 1 ≤ r ≤

∞: 
E
ij
2 = Hi−j

(
N≥−j
r ∆̂(−)

)
⇒ π−i−j TR

r((−);Zp)
hS1

E
ij
2 = Hi−j

(
N−j
r ∆̂(−)

)
⇒ π−i−j TR

r(−;Zp)

Thus, locally in the quasisyntomic topology, we can identify the r-Nygaard filtration on

N≥i
r ∆̂S{i}[2i] as the one coming from the degeneration of the S1-homotopy fixed points

spectral sequence.
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4) By left Kan extending, all statements can be extended to the case S is a p-complete

animated ring. One of the failures, as pointed out in [BL22a], is that the associated

motivic filtrations are not exhaustive.

Topological restriction homology was the invariant used in the first attempt to understand

topological cyclic homology, via the formula:

TC(−;Zp) ≃ fib
(
1− F : TR(−;Zp) −→ TR(−;Zp)

)
≃ lim

R
fib
(
R−F : TRr+1(−;Zp) −→ TRr(−;Zp)

)
=: lim

R
TCr(−;Zp)

However, TR is a cyclotomic spectrum (with Frobenius lifts) on its own, therefore it is nat-

ural to attempt to study TC
(
TR

)
, but also T̃C

(
TR

)
, where T̃C(−) := mapCycSpFr(S,−)

is a version of topological cyclic homology for cyclotomic spectra with Frobenius lifts. The

following theorem is concerned with these questions:

Theorem 1.1.3 (Topological cyclic homology of TR). Applying the previous results to the

setup of topological cyclic homology, the following are true:

1) Topological cyclic homology for cyclotomic spectra with Frobenius lifts of TR(−;Zp) is

equivalent to:

T̃C
(
TR(−;Zp)

)
≃

fib
(
1− FhS

1
: TR(−;Zp)

hS1
−→ TR(−;Zp)

hS1
)
≃ lim

R
T̃C

r
(
TR(−;Zp)

)

where we define the family of spectra T̃C
r
(
TR(−;Zp)

)
to be:

T̃C
r
(
TR(−;Zp)

)
:= fib

(
RhS1

−FhS
1
: TRr(−;Zp)

hS1
−→ TRr−1(−;Zp)

hS1
)

9



Mapping further to TP, one obtains the following family of spectra, defined as:

TCr
(
TR(−;Zp)

)
:= fib

(
can−φhS

1
: TRr(−;Zp)

hS1
−→ TC−(−;Zp) −→ TP(−;Zp)

)

which "interpolates" between TC
(
TR(−;Zp)

)
, for r = ∞, and TC(−;Zp), for r = 1:

TCr
(
TR(−;Zp)

)
≃

fib
(
RhS1

−FhS
1
: TRr(−;Zp)

hS1
−→ TRr−1(−;Zp)

hS1
−→ TP(−;Zp)

)
≃

fib
(
can−φhS

1
: TRr(−;Zp)

hS1
−→ TC−(−;Zp) −→ TP(−;Zp)

)

2) For 1 ≤ r ≤ ∞ and the input of a p-quasisyntomic ring S, topological cyclic homology

TCr(−;Zp), as well as the spectra of part (1) are equipped with exhaustive, decreasing,

multiplicative, Z-indexed motivic filtrations. Locally for the quasisyntomic topology, these

can be expressed as follows:



griMTCr(−;Zp) ≃ fib
(
R−F : N i

r+1∆̂(−){i}[2i] −→ N i
r ∆̂(−){i}[2i]

)
griM T̃C

r
(
TR(−;Zp)

)
≃ fib

(
RhS1 −FhS

1
: N≥i

r ∆̂(−){i}[2i] −→ N≥i
r−1∆̂(−){i}[2i]

)
griMTCr

(
TR(−;Zp)

)
≃ fib

(
can−φhS

1
: N≥i

r ∆̂(−){i}[2i] −→ ∆̂(−){i}[2i]
)

Locally for the quasisyntomic topology, these give rise to spectral sequences which degener-

ate. Of course, as in the main theorem, the statements above can also be suitably extended

to the case we work with a p-complete animated ring.

Let us, finally, specialize to the cases of mixed and positive characteristic. In the former,

we recover the relation to the objects W̃rΩS and AΩ ≃ limr W̃rΩS , which were introduced

and studied in [BMS18]. In particular, the authors explain that they were able to build
10



these complexes by studying TRr of perfectoid rings. This was indeed the precursor of the

prismatic theory.

Theorem 1.1.4 (Mixed characteristic). Let S be a p-completely smooth ring over a perfectoid

base R0. Then the r-Nygaard filtration can be expressed in terms of the décalage functor:

N≥i
r ∆̂S{i} ≃ Lη≥i

ξr
∆̂S{i}

In the setting of [BMS18], we recover a relation to the AΩ-cohomology: If R0 = OC , where

C is a perfectoid field containing all p-roots of unity, then N≥i
r ∆̂S ≃ Lη≥i

ξr
AΩS. Then, the

motivic filtration of TRr can be expressed as:

gr
i,even
M TRr(S;Zp) ≃ τ≤iW̃rΩS

Taking the limit with respect to the Frobenius maps, we recover AΩ-cohomology via the mo-

tivic filtration of topological Frobenius homology:

gr
i,even
M TF(S;Zp) ≃ τ≤iAΩS

Passing to the latter case of positive characteristic, we show that in the quasiregular -

semiperfect setting, TRr satisfies odd-vanishing. Therefore, things work as in the case of

[BMS19] and, ultimately, we obtain a relation with the de Rham–Witt complex over Fp.

Theorem 1.1.5 (Positive Characteristic case). Let S be a quasiregular - semiperfect Fp-

algebra. Then the odd homotopy groups of the following invariants vanish, for 1 ≤ r ≤ ∞:


πoddTR

r(S;Zp)
hS1 ≃ 0

πoddTR
r(S;Zp) ≃ 0

11



In particular, and in analogy with [BMS19], we can identify the r-Nygaard filtration on

∆̂S ≃ Âcrys(S) as the one coming from the S1-homotopy fixed points spectral sequence, for

TRr(S;Zp)
hS1

, which degenerates. This was also recently discussed in [DR23] and [DM23].

It follows that if we assume S to be a smooth algebra over Fp, then we have the identifi-

cation:

gr
i,even
M TRr(S;Zp) ≃ τ≤iWrΩS

1.2 Proof outline

The main motive of this work is, instead of directly dealing with TRr(−;Zp), to first study

its S1-homotopy fixed points TRr(−;Zp)
hS1

, for 1 ≤ r < ∞. This is where the r-Nygaard

filtration on completed prismatic cohomology arises from. Then, we use a trick of Nikolaus–

Scholze [AN21], where by taking quotient with the class generating π−2TR
r(−;Zp)

hS1
, we

are able to pass to TRr(−;Zp). Thus, this enables us to identify the relevant structure of

the latter with the graded pieces for the r-Nygaard filtration. This is a pattern systemati-

cally used in [BMS19], where TC−(−;Zp) gives rise to the Nygaard filtration on completed

prismatic cohomology, while passing to THH(−;Zp) gives rise to its associated graded pieces.

As in [BMS19], the first step is to try and make precise calculations in the perfectoid

case. This is, indeed, possible as for a perfectoid ring R0, the following identification holds:

π∗TRr(R0;Zp)
hS1

≃ Ainf(R0)[ur, vr]/(urvr − ξr)

deg(ur) = 2, deg(vr) = −2, deg(ξr) = 0

Remember that ϑ̃r : Ainf(R0) → Wr(R0) is the usual projection to the r-truncated Witt

vectors, while ϑr := ϑ̃r ◦φr : Ainf(R0) → Wr(R0) is twisted by the r-the iterated Frobenius.

The kernel of the latter is generated by the element ξr, while of the former by ξ̃r = φr(ξr).

Taking quotient with respect to vr ∈ π−2TR
r(R0;Zp)

hS1
takes us back to TRr(R0;Zp),

12



thus giving rise to the following equivalence:

π∗TRr(R0;Zp) ≃ Wr(R0)[ur]

Equivalently, we can reformulate these as:


π2iTR

r(R0;Zp)
hS1 ≃ ξir Ainf(R0){i}

π2iTR
r(R0;Zp) ≃ ξir/ξ

i+1
r Ainf(R0){i}

By taking the limit over Restriction maps, we have the following identification for the

two-term complexes:


τ[2i−1,2i]TR(R0;Zp)

hS1 ≃ Rlim
R

ξir Ainf(R0){i}

τ[2i−1,2i]TR(R0;Zp) ≃ Rlim
R

ξir/ξ
i+1
r Ainf(R0){i}

For this, we use the following iterated product formula of the S1-homotopy fixed points,

for 1 ≤ r ≤ ∞:

TRr(−;Zp)
hS1

≃ TC−(−;Zp)×TP(−;Zp) · · · ×TP(−;Zp) TC
−(−;Zp)

≃ fib

( ∏
1≤k≤r

TC−(−;Zp) →
∏

1≤k≤r−1

TP(−;Zp)

)

Following [BMS19], we then pass to the study of quasiregular - semiperfectoid rings,

which provide a basis for applying quasisyntomic descent. Suppose we have a quasirgular

- semiperfectoid ring over a fixed perfectoid base R0 → S. Using the presentation for

TRr(S;Zp)
hS1

, we have the following identification for the even homotopy groups, with the

13



r-Nygaard filtered complete prismatic cohomology:

π2iTR
r(S;Zp)

hS1
≃ N≥i

r ∆̂S{i}

The filtration N≥•
r ∆̂S is a decreasing, multiplicative, complete filtration on ∆̂S , with the

following iterated product description:

N≥i
r ∆̂S{i} := N≥i∆̂S{i} ×∆̂S{i}

· · · ×
∆̂S{i}

N≥i∆̂S{i}

Equivalently, we have the following more descriptive definition, in analogy with the classical

Nygaard filtration:

N≥i
r ∆̂S =

{
x ∈ ∆̂S

∣∣∣ φri(x) ∈ ξ̃ir∆̂S

}

Passing back to TRr(S;Zp) via the Nikolaus-Scholze trick, we are able to identify its

even homotopy groups with the associated graded pieces of the r-Nygaard filtration:

π2iTR(S;Zp) ≃ N i
r ∆̂S{i}

Between them, via the map φhS
1
: TRr(S;Zp)

hS1 → TC−(S;Zp) → TP(S;Zp), we have

a divided r-Frobenius:

φr,i : N≥i
r ∆̂S{i} → ∆̂S{i}

which is related to the r-th iterated Frobenius, via the formula: φr,i = φri/ξ̃ir

In order to move forward, as we already mentioned, we need to use the quasisyntomic

topology. Under this scope, using the vanishing result of [BS22], the odd homotopy groups

π2i−1TR
r(−;Zp)

hS1
, π2i−1TR

r(−;Zp)

vanish locally in the quasisyntomic topology. Notice that for quasiregular - semiperfect rings,
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this vanishing holds without requiring to pass to a suitable quasisyntomic cover.

It follows that, locally for the quasisyntomic topology, we can identify the graded pieces

for the motivic filtrations (which come from the double-speed Postnikov filtrations) as:



griMTRr(−;Zp)
hS1 ≃ N≥i

r ∆̂(−){i}[2i]

griMTRr(−;Zp) ≃ N i
r ∆̂(−){i}[2i]

griMTR(−;Zp)
hS1 ≃ Rlim

R
N≥i
r ∆̂(−){i}[2i] = N≥i

∞ ∆̂(−){i}[2i]

griMTR(−;Zp) ≃ Rlim
R

N i
r ∆̂(−){i}[2i] = N i

∞∆̂(−){i}[2i]

The remaining results regarding TR and its related invariants follow from these identifi-

cations.

1.3 Overview of the Thesis

The format of this thesis follows the natural succession that we just described.

In particular, in chapter 2, we recall the main definitions and properties regarding topo-

logical Hochschild homology, topological restriction homology, and related invariants. Addi-

tionally, we provide a quick review of the main results of the second work of Bhatt–Morrow–

Scholze [BMS19], together with the basic properties of the invariants associated to the plain

Hochschild homology and the identification of their respective motivic filtrations in terms of

the Hodge completed derived de Rham complex.

In chapter 3, we gather the calculations of TRr(R0;Zp)
hS1 → TRr(R0;Zp), in the case

R0 is a perfectoid ring. We provide explicit presentations for their motivic filtrations, which

for finite 1 ≤ r < ∞ coincide with the double-speed Postnikov filtration, as well as polynomial

presentations of their cohomology rings.

In chapter 4, which is the main one of this work, we first start with calculations in the case
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of quasi-regular semiperfectoid rings. As we already described, the even homotopy groups

carry the structure relevant to the r-Nygaard filtration. Next, we use quasisyntomic descent

to pass to the wider class of quasisyntomic rings (and left-Kan extending to go to the case

of any animated ring). We apply these results to the study of topological cyclic homology

of TR, providing an interpolating family of spectra between T̃C
(
TR

)
and TC

(
TR

)
.

In chapter 5, we explore applications towards mixed and positive characteristic. The main

ingredient here is the identification of the r-Nygaard filtration with the filtration associated

to the décalage functor Lηξr , for the element ξr ∈ Ainf .

Finally, in chapter 6 we discuss ongoing work in relating the r-Nygaard filtration with

the de Rham-Witt complex and pursuing a proof of Hesselholt’s conjectures over OC . In

addition, we explain some future research directions involving the theory of prismatization,

in an attempt to also view our results under the heuristics of Scholze’s ICM address [Sch18].

1.4 Conventions

Regarding the theory of ∞-categories and higher algebra, we follow standard conventions,

as they are presented in Lurie’s treatises [Lur09; Lur17]. Regarding the theory of cyclotomic

spectra, topological Hochschild homology and topological restriction homology, we treat

the p-typical case, following the works of Nikolaus–Scholze [NS18] and Antieau–Nikolaus

[AN21]. Finally, regarding the theory of perfectoid rings, prismatic cohomology and how

these relate to the theory of THH, we follow the recent works of Bhatt–Morrow–Scholze

[BMS18; BMS19], Bhatt–Scholze [BS22], and Bhatt–Lurie [BL22a]. In the next chapter, we

briefly recall some of that background.
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CHAPTER 2

PRELIMINARIES

In this chapter, we briefly gather some background regarding topological Hochschild homol-

ogy, topological restriction homology, and other related invariants. We mostly present the

p-typical aspects of the story, providing references of the integral aspects, for the interested

reader. We end with a brief discussion of the work of [BMS19] and other on the motivic

filtrations of THH and HH related invariants.

2.1 Cyclotomic spectra and topological Hochschild homology

The main advantage of the theory of topological Hochschild homology, as opposed to the

original story of Hochschild homology, is the existence of the higher Frobenius maps. In order

to study them, Nikolaus-Scholze [NS18] constructed the ∞-category of cyclotomic spectra;

here we remind the reader of the p-typical story, the version outlined by Antieau-Nikolaus

[AN21].

Definition 2.1.1 (p-typical cyclotomic spectra). We fix a prime number p. A p-typical

cyclotomic spectrum X is a spectrum equipped with an S1-action and an S1-equivariant

Frobenius map to its Cp-Tate fixed points φp : X → XtCp . These assemble into the pre-

sentable, stable ∞-category of p-typical cylotomic spectra CycSpp, which is defined to be the

lax equalizer of the higher Frobenius and identity maps in SpBS
1
.

Remark 2.1.2 (Comparison to the genuine theory). As shown in [NS18], this approach

to the theory of cyclotomic spectra is particularly well-behaved in the bounded-below case,

where it actually identifies with the more classical theory of genuine cyclotomic spectra.

Example 2.1.3 (Topological Hochschild homology). The main example of a p-typical cy-

clotomic spectrum, comes from the theory of topological Hochschild homology. Since we
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are interested in THH of classical/animated rings, we can restrict ourselves to the follow-

ing definition. Given a connective, E∞-ring spectrum A ∈ CAlg≥0, topological Hochschild

homology of A is defined to be:

THH(A) := A⊗A⊗Aop A

The S1-action on THH(A) can be seen via the presentation of the simplicial circle as a

push-out:

S1 ≃ ∗ ⨿∗⨿∗ ∗

A geometric approach to topological Hochschild homology can be achieved through the

theory of factorization homology.

We can associate more invariants to THH(A), by playing with the S1-action. Its S1-

homotopy fixed points constitute the negative topological cyclic homology TC−(A) and its

S1-Tate fixed points constitute the periodic topological cyclic homology TP(A). Between

those two, there exists the canonical map can : TC−(A) → TP(A) and the associated

Frobenius φhS
1
: TC−(A) → TP(A).

Construction 2.1.4 (Topological cyclic homology). Given a p-typical cyclotomic spectrum

X ∈ CycSpp, mapping out of the sphere spectrum S, which is also an element of CycSpp

with trivial S1-action and Frobenius, produces topological cyclic homology :

TC(X) := mapCycSpp(S, X)

Using the lax equalizer presentation of CycSpp, Nikolaus-Scholze produce a formula for

computing topological cyclic homology:

TC(X) ≃ eq
(
can, φhS

1
: XhS1

⇒ (XtCp)hS
1
)
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In particular, for Zp-coefficients due to the Tate orbit lemma, we are able to compute the

topological cyclic homology of A, using TC−(A) and TP(A):

TC(A;Zp) := TC(THH(A;Zp)) ≃
(
can, φhS

1
: TC−(A;Zp) ⇒ TP(A;Zp)

)

2.2 Topological restriction homology

The classical theory of cyclotomic spectra paves an approach to topological cyclic homology

through genuine fixed points, with respect to finite subgroups of S1. Since we restrict to the

bounded-below case, genuine fixed points identify with topological restriction homology, as

shown in [NS18].

Definition 2.2.1 (Topological restriction homology). Given a bounded-below X ∈ CycSpp,

we can construct its r-truncated topological restriction homology, which identifies with the

Cpr−1-genuine fixed points of X and is given by the following iterated product formula, for

r ≥ 1:

TRr(X) := XhCpr ×
(XtCp)hC

pr−1 X
hCpr−1 ×

(XtCp)
hC

pr−2 · · · ×XtCp X ≃ X
Cpr−1

where the maps on the right are φ
hC

pk , for 0 ≤ k ≤ r − 1, and the maps on the left are

the canonical ones. In the case X = THH(A), for some A ∈ CAlg≥0, we simply write

TRr(A) := TRr(THH(A)).

There is a deep analogy between topological restriction homology and the theory of

Witt vectors. In particular, there exist Restriction maps R : TRr+1(X) → TRr(X), for

r ≥ 1 by forgetting the leftmost factor in the iterated product presentation, Frobenius maps

F : TRr+1(X) → TRr(X), for r ≥ 1 by forgetting the rightmost factor together with part of

the homotopy fixed points information, and Verschiebung maps V : TRr(X) → TRr+1(X),

for r ≥ 1 by moving everything one place to the left, applying (·)hCp , and introducing a copy
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of X in the rightmost place.

Taking the limit with respect to the Restriction maps yields the topological restriction

homology of X:

TR(X) := lim
R

TRr(X) ≃ · · · ×
(XtCp)

hCpr
XhCpr ×

(XtCp)hC
pr−1 · · · ×XtCp X

In this case, Frobenius and Verschiebung become endofunctors of TR.

The relation between topological restriction homology and the Witt vectors becomes

explicit via the following theorem of Hesselholt-Madsen:

Theorem 2.2.1 (Hesselholt-Madsen [HM97]). Let A ∈ CAlg≥0 be a connective E∞-ring

spectrum. Then TRr(A) is also a connective E∞-ring spectrum. Applying the 0-th homotopy

group functor produces the following equivalence, which maps the structure associated to

topological restriction homology to the usual structure associated to the Witt vectors of π0A:

π0TR
r(A) ≃ Wr(π0A)

Remark 2.2.2. An equivalent way to present topological restriction homology is either as

an equalizer, for 1 ≤ r ≤ ∞:

TRr(X) ≃ eq

( ∏
0≤k≤r−1

X
hC

pi−1 ⇒
∏

1≤k≤r−1

(XtCp)
hC

pi−1

)

or, inductively, via the pullback square, for r ≥ 1:

TRr+1(X) TRr(X)

X
hCpr−1

XhCpr (XtCp)hCpr

R

φ
hC

pr−1

can
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For Zp-coefficients, observe that due to Tate orbit lemma [NS18], the Cpk -Tate fixed

points of TRr(A;Zp) reduce to the following, via the natural projection map to THH(A;Zp),

for 1 ≤ k ≤ ∞:

TRr(A;Zp)
tC

pk ≃ THH(A;Zp)
tC

pk

In fact, the iterated pullback formula simplifies to the following, for 1 ≤ r ≤ ∞:

TRr(A;Zp) ≃ THH(A;Zp)
hCpr ×

THH(A;Zp)
tC

pr−1 · · · ×THH(A;Zp)
tCp THH(A;Zp)

There are similar simplifications in ways of presenting TRr(A;Zp).

Finally, applying S1-homotopy fixed points to the last formula, we have the following

very important identification for TRr(A;Zp)
hS1

, for 1 ≤ r ≤ ∞:

TRr(A;Zp)
hS1

≃ TC−(A;Zp)×TP(A;Zp) · · · ×TP(A;Zp) TC
−(A;Zp)

where the maps on the left are the canonical ones can : TC−(A;Zp) → TP(A;Zp), while

the maps on the right φhS
1
: TC−(A;Zp) → TP(A;Zp) are the S1-homotopy fixed points of

Frobenius.

In particular, we highlight two maps who have TRr(A;Zp)
hS1

as their source. In par-

ticular, the first one corresponds to the Cpr -homotopy fixed points of the higher Frobenius.

It is obtained by mapping to TC−(A;Zp) on the left and, afterwards, to TP(A;Zp) via the

S1-homotopy fixed points of higher Frobenius:

φhS
1
: TRr(A;Zp)

hS1
TC−(A;Zp) TP(A;Zp)
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And, thus, it fits in the following commutative diagram:

TRr(A;Zp)
hS1

TC−(A;Zp) TP(A;Zp)

TRr(A;Zp) THH(A;Zp)
hCpr−1 THH(A;Zp)

tCpr

φhS1

φ
hC

pr−1

In addition to this, we also have a counterpart of the inclusion map, by mapping first to

TC−(A;Zp) on the right and then to TP(A;Zp) via the inclusion map:

can : TRr(A;Zp)
hS1

TC−(A;Zp) TP(A;Zp)

Note that the aforementioned description for the S1-homotopy fixed points of TR can be

also given in the form of an equalizer:

TRr(A;Zp)
hS1

≃ eq

( ∏
1≤k≤r−1

TC−(A;Zp) ⇒
∏

2≤k≤r−1

TP(A;Zp)

)

Of course, there exist such presentations in general, without the need to restrict to Zp

coefficients. However, in our study, we mostly restrict to the case of working over Zp.

2.3 Cyclotomic spectra with Frobenius lifts

If cyclotomic spectra provide a framework for studying the properties of higher Frobenius,

then there should be a good notion of Frobenius lift. Such a notion does, in fact, exist and

the prime example is given by TR(X), for X ∈ CycSpp; it happens that Frobenius factors

through the Cp-homotopy fixed points of TR(X).

Definition 2.3.1 (p-typical cyclotomic spectra with Frobenius lifts). A p-typical cyclotomic

spectrum with a Frobenius lift is a spectrum Y with an S1-action and a Frobenius lift map

to its Cp-homotopy fixed points Fp : Y → Y hCp . The assemble into the presentable, stable
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∞-category of p-typical cyclotomic spectra with Frobenius lifts CycSpFrp , which is defined to

be the lax equalizer of the Frobenius lift and identity maps in SpBS1
.

Remark 2.3.2. Any Y ∈ CycSpFrp is also in CycSpp, by considering the Frobenius map to

be the Frobenius lift, postcomposed with the canonical map to the Cp-Tate fixed points:

φp = can ◦Fp : Y Y hCp Y tCp
Fp can

Theorem 2.3.1 (TR is a p-typical cyclotomic spectrum with Frobenius lifts, [KN18]). The

forgetful functor provided by the previous remark admits a right adjoint, given by TR. There-

fore, the ∞-categories CycSpFrp and CycSpp fit into the following adjunction:

CycSpFrp ⊥ CycSpp

forg.

TR

In fact, there is more to the story, as also the Verschiebung map of TR(X), for X ∈

CycSpp, seems to factor through the Cp-homotopy orbits.

Definition 2.3.3 (p-typical topological Cartier modules, [AN21]). There exists a presentable,

stable ∞-category TCartp of p-typical topological Cartier modules, an element M of which, is

defined to be a spectrum equipped with and S1-action, whose Cp-norm has a factorization,

as follows:

MhCp
M MhCpV

Nm

F

Remark 2.3.4. There exists an obvious chain of forgetful functors:

TCartp CycSpFrp CycSpp
forg. forg.

Remark 2.3.5. Let us denote with (·)/V the cofiber of the Verschiebung map in TCartp.
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Given an M ∈ TCartp, consider the spectrum M/V. Then M/V is a cyclotomic spectrum.

Theorem 2.3.2 (Antieau-Nikolaus adjunction, [AN21]). The functor (·)/V provided by the

previous remark admits a right adjoint, given by TR. Therefore, the ∞-categories TCartp

and CycSpp fit into the following adjunction:

TCartp ⊥ CycSpp

(·)/V

TR

In fact, there exists a so-called cyclotomic t-structure on CycSpp, for which the functor TR

is t-exact. In addition, in the bounded-below case, it is also fully faithful, thus identifying

CycSpp with the V-complete p-typical topological Cartier modules T̂Cartp ⊂ TCartp.

2.4 Topological cyclic homology

As we already noted, topological restriction homology served as the initial tool for approach-

ing topological cyclic homology.

Construction 2.4.1 (TC via TR, [NS18]). Let X be a bounded below p-typical cyclotomic

spectrum. Then, we have the following equivalence, for r ≥ 1:

TCr(X) := fib
(
R−F : TRr+1(X) → TRr(X)

)
≃

fib
(
can−φ

hCpr+1 : X
hCpr+1 −→ (XtCp)hCpr

)

It follows that, over Zp-coefficients, the following holds:

TC(X) ≃ lim
R

TCr(X) ≃ fib
(
1− F : TR(X) −→ TR(X)

)

Therefore, understanding TR could possibly lead to a better understanding of TC. In
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addition, TR has the structure of a p-typical cyclotomic spectrum with a Frobenius lift, and

as a result via the forgetful functor, the structure of a p-typical cyclotomic spectrum. Thus,

trying to understand TC(TR) would also be an interesting goal, in its own sake.

Definition 2.4.2 (Topological cyclic homology T̃C for CycSpFrp ). Given a p-typical cyclo-

tomic spectrum with a Frobenius lift Y ∈ CycSpFrp , mapping out of the sphere spectrum

S, which is also an element of CycSpFrp with trivial S1-action and Frobenius lift, produces

topological cyclic homology for Frobenius lifts :

T̃C(Y ) := map
CycSpFrp

(S, Y )

Construction 2.4.3 (Computing T̃C for CycSpFrp ). In complete analogy with the standard

TC, we can use the lax equalizer approach to defining CycSpFrp , in order to have a formula

for computing topological cyclic homology for Frobenius lifts:

T̃C(Y ) ≃ eq
(
id,FhS

1
: Y hS1

⇒ Y hS1
)

Proof. The process is similar to the one in [NS18, Prop. II.1.9], for TC.

The natural question to ask is what happens in the case of the standard TC of p-typical

cyclotomic spectra with Frobenius lifts.

Construction 2.4.4 (Computing TC of TR(A;Zp)). Let A be a connective E∞-ring spec-

trum and consider TR(A;Zp). Then, the following equivalences hold, regarding topological

cyclic homology:

T̃C
(
TR(A;Zp)

)
≃ lim

R
T̃C

r
(A;Zp)
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for the spectra

T̃C
r
(A;Zp) := fib

(
RhS1

−FhS
1
: TRr(A;Zp)

hS1
→ TRr−1(A;Zp)

hS1
)

Mapping further to the Tate constructions, we get that:

TC
(
TR(A;Zp)

)
≃
(
1− FhS

1
: TR(A;Zp)

hS1
−→ TP(A;Zp)

)
≃ lim

R
TCr(A;Zp)

for the spectra:

TCr(A;Zp) := fib
(
RhS1

−FhS
1
: TRr(A;Zp)

hS1
−→ TRr−1(A;Zp)

hS1
−→ TP(A;Zp)

)
≃ fib

(
can−φhS

1
: TRr(A;Zp)

hS1
−→ TC−(A;Zp) −→ TP(A;Zp)

)

Note that TCr(A;Zp) interpolates between TC(A;Zp), for r = 1, and TC
(
TR(A;Zp)

)
, for

r = ∞.

Proof. These essentially follow from the commutativity of the diagrams, below. The dia-

grams on the left correspond to the action of the Restriction operators above/ Frobenius

operators below, for TRr(A;Zp). Applying S1-homotopy fixed points, we obtained the dia-

26



grams on the right.

TRr+1(A;Zp) TRr(A;Zp) TRr+1(A;Zp)
hS1

TRr(A;Zp)
hS1

THH(A;Zp)
hCpr THH(A;Zp)

tCpr TC−(A;Zp) TP(A;Zp)

TRr+1(A;Zp) TRr(A;Zp) TRr+1(A;Zp)
hS1

TRr(A;Zp)
hS1

THH(A;Zp)
hCpr THH(A;Zp)

tCpr TC−(A;Zp) TP(A;Zp)

THH(A;Zp)
tCpr+1

R RhS1

can can

F FhS1

φ
hCpr

φhS1

proj.

Taking homotopy fibres, it follows that:

TCr(A;Zp) := fib
(
RhS1

−FhS
1
: TRr(A;Zp)

hS1
−→ TRr−1(A;Zp)

hS1
−→ TP(A;Zp)

)
≃ fib

(
can−φhS

1
: TRr(A;Zp)

hS1
−→ TC−(A;Zp) −→ TP(A;Zp)

)

We have only presented the p-typical story, which is going to suffice for the majority of

this work. For the reader who wishes to view the integral statements, we direct them to

works such as [NS18], [KN18], [KMN23], [McC21].

Let us finally note that one of the reasons for the importance of the theory of topological

cyclic homology is its proximity to algebraic K-theory, as a result of the theory of traces and
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the story of curves in K-theory.

2.5 Motivic filtrations following [BMS19]

For the full approach to prismatic cohomology, via the theory of THH, as well as for the basics

of quasiregular - semiperfectoid rings and p-quasisyntomic descent, we direct the reader to

[BMS19]. A brief recount can also be found in [Ant+22]. Here, we provide a reminder on

the basics of quasisyntomic descent and focus on the main commutative square involving

invariants of THH, which gathers the substance of [BMS19] ideas.

Definition 2.5.1 (Quasisyntomic rings and quasisyntomic topology, [BMS19, Sect. 4]). 1)

We call a p-complete ring, S quasisyntomic, if it has bounded p∞ torsion and its cotangent

complex LS/Zp
has p-complete Tor amplitude concentrated in [−1, 0]. The category of p-

quasisyntomic rings is denoted by QSyn.

2) A map of p-complete rings is called a quasisyntomic map/quasisyntomic cover if B is

p-completely flat/faithfully flat over A and the cotangent complex LB/A has p-complete Tor

amplitude concentrated in [−1, 0].

3) The category QSynop obtains the structure of a site, when equipped with the quasisyn-

tomic covers. We call this the quasisyntomic site.

Let us recall some important, special cases of quasisyntomic rings, the first of which is

the class of perfectoid rings.

Definition 2.5.2 (Perfectoid rings [BMS18, Sec. 3]). A ring R0 is called perfectoid if and

only if it is π-adically complete for some element π ∈ R0, for which πp divides p, the Frobenius

map φ : R0/p → R0/p is surjective, and the kernel of Fontaine’s map ϑ : Ainf(R0) → R0 is

principal, where Ainf(R0) := W(R♭
0).

Certain quotients of perfectoid rings are also included in the category of quasisyntomic

rings:
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Definition 2.5.3 (Quasiregular - semiperfectoid rings, following [BMS19]). 1) We call a ring

R quasiregular - semiperfectoid if it is quasisyntomic, has a perfectoid base R0 → R and its

reduction S/p is semiperfect.

2) We denote by QRSPerfd the category of quasiregular - semiperfectoid rings. In particular,

QRSPerfdop becomes a site, when equipped with quasisyntomic covers.

The significance of quasiregular - semiperfectoid rings stems from the fact that on the one

hand are quite computable, while on the other, they provide a basis for the quasisyntomic

topology:

Proposition 2.5.1 (Quasisyntomic descent, following [BMS19]). The natural map:

u : QRSPerfdop −→ QSynop

identifies the class of quasiregular - semiperfectoid rings as a basis for the quasisyntomic

topology.

For further details, the interested reader is directed to [BMS19, Sect. 4].

Let S be a p-quasisyntomic ring, for which we consider the following commutative square

of [BMS19]:

TC−(S;Zp) TP(S;Zp)

THH(S;Zp) THH(S;Zp)
tCp

φhS1

φ

The invariants of this square are equipped with the complete, exhaustive, decreasing,

multiplicative, Z-indexed motivic filtrations, which induce associated motivic spectral se-

quences. In the case S is a quasiregular - semiperfectoid ring, the filtrations are nothing

but the double-speed Postnikov filtrations; in fact, the general case follows from this, via

quasisyntomic descent. Passing to i-th graded pieces for the motivic filtrations, we obtain
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the following commutative square:

N≥i∆̂S{i}[2i] ∆̂S{i}[2i]

N i∆̂S [2i] ∆S{i}[2i]

φi

divided Frobenius

In this THH-approach to prismatic cohomology, all invariants happen to be complete, with

respect to the Nygaard filtration. This is a filtration detected by TC−(S;Zp), as a result

of the S1-homotopy fixed points spectral sequence: On the upper row, we have the divided

Frobenius φi which takes the i-th Nygaard filtered piece N≥i∆̂S to ∆̂A. For example, if we

work over a perfectoid base R0 → A, then this is related to the prismatic Frobenius, which

maps ξi∆̂S to ξ̃i∆̂S , via the formula:

φ = ξ̃iφi

On the lower row, we have the graded counterpart of the aforementioned situation, where

the n-th graded piece of the Nygaard filtration N i∆̂S maps to the Hodge-Tate cohomology

∆S .

Again, working over a fixed perfectoid base R0 → S, we can equip the Hodge-Tate

cohomology with the conjugate filtration. This is an increasing filtration on ∆S , whose i-th

filtered piece can be identified with:

Fil
conj
i ∆S{i} ≃ N i∆̂S{i}

Taking homotopy fibres, one can have an explicit formula calculating the associated

graded pieces for the motivic filtration of topological cyclic homology:

griMTC(A;Zp) ≃ fib
(
can−φi : N≥i∆̂S{i} → ∆̂S{i}

)

The starting point for the calculations of [BMS19] is the case when R = R0 a perfectoid
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ring. Let us recall this, as this is essentially the basis for our discussions in the next chapter.

In particular, passing to even homotopy groups, the commutative square gives rise to:

Ainf(R0)[u, v]/(uv − ξ) Ainf(R0)[σ, σ
−1]

R0[u] R0[σ, σ
−1]

u7→σ, v 7→ξ̃σ−1

φ-linear (divided Frob.)
u 7→u, v 7→0ϑ-linear σ 7→σϑ̃-linear

u 7→σ

R0-linear

2.6 Hochschild homology and the HKR-filtration

As shown in the works of Antieau [Ant19], Bhatt-Morrow-Scholze [BMS19], Moulinos–

Robalo–Toën [MRT22], and Raksit [Rak20], the invariants that are associated to Hochschild

homology are equipped with integral motivic filtrations, whose graded pieces can be com-

puted in terms of the Hodge-completed derived de Rham complex.

Theorem 2.6.1 (HKR filtration). The following invariants associated to Hochschild ho-

mology are equipped with integral, complete, exhaustive, decreasing, multiplicative, Z-indexed

motivic filtrations, for an animated ring A. Passing to their associated graded pieces, these

can be expressed in terms of the Hodge-completed derived de Rham complex:

grnMHH(A) ≃ ∧nLA[2n]

grnMHC−(A) ≃ d̂R
≥n
A [2n]

grnMHP(A) ≃ d̂RA[2n]

grnMHC(A)[1] ≃ d̂RA/d̂R
≥n
A [2n− 1]
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CHAPTER 3

THE PERFECTOID CASE

In this chapter we begin by recalling some basic constructions regarding perfectoid rings,

mainly following [BMS18, Sec. 3]. We apply these in the study of the invariants TRr and

(TRr)hS
1
, in the case of perfectoid rings, building on ideas of [BMS19, Sec. 6] and [Mat21,

Sec. 7].

3.1 Perfectoid rings

Here we gather some background regarding perfectoid rings. In what follows, R0 always

denotes a perfectoid ring.

Construction 3.1.1 (Fontaine-style maps ϑr, ϑ̃r [BMS18, Lem. 3.2]). Let R0 be a perfec-

toid ring. Then the following equivalence holds:

Ainf(R0) ≃ lim
F

Wr(R0)

As a result of this, the Frobenius automorphism φ on Ainf(R0) is identified with the Witt

vector Frobenius F : Ainf(R0) → Ainf(R0), while its inverse φ−1 is identified with the

restriction map R : Ainf(R0) → Ainf(R0).

Under this identification, we can consider the projection maps to the r-truncated Witt

vectors of R0:

ϑ̃r : Ainf(R0) → Wr(R0)

as well as their twists by the r-th iteration of φ−1:

ϑr := ϑ̃r ◦ φr : Ainf(R0) → Wr(R0)
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In particular, for r = 1, we obtain the aforementioned Fontaine map ϑ1 = ϑ, whose kernel

is generated by the degree 1 distinguished element ξ ∈ kerϑ.

From this, one is able to also deduce that the kernel of the map ϑr is generated by the

element:

ξr := ξφ−1(ξ) . . . φ−(r−1)(ξ)

and the kernel of ϑ̃r is generated by

ξ̃r := φr(ξr) = φ(ξ)φ2(ξ) . . . φr(ξ)

Finally, taking the derived limit over the Restriction mas, we write ξ∞ := Rlim
R

ξr. It

follows that:

Ainf(R0)/ξ∞ ≃ Rlim
R

Ainf(R0)/ξr ≃ W(R0)

In particular, if R0 = OK , for a spherically complete perfectoid ring K, we get that ξ∞ =

lim
R
ξr = µ and Ainf(R0)/µ ≃ W(R0).

The interactions between the maps ϑr, ϑ̃r and the Restriction, Frobenius maps on the

Witt vectors are documented in the following lemma:

Lemma 3.1.1 (The action of R, F following [BMS18, Lem. 3.4]). Consider the Witt vector

Restriction and Frobenius maps. Under their action, the following diagrams are commutative

for ϑr:

Ainf(R0) Ainf(R0) Ainf(R0) Ainf(R0)

Wr+1(R0) Wr(R0) Wr+1(R0) Wr(R0)

ϑr+1

id

ϑr ϑr+1

φ

ϑr

R F
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Also, the following diagrams are commutative for ϑ̃r:

Ainf(R0) Ainf(R0) Ainf(R0) Ainf(R0)

Wr+1(R0) Wr(R0) Wr+1(R0) Wr(R0)

φ−1

ϑ̃r+1 ϑ̃r

id

ϑ̃r+1 ϑ̃r

R F

3.2 TR of perfectoid rings

Now we move on to study the invariants of TRr of perfectoid rings. Given a perfectoid

ring R0, an important property is that most invariants of THH are concentrated on even

degrees. This is also true for TRr(R0;Zp), whose properties are documented in the following

proposition.

Proposition 3.2.1 (The properties of TRr(R0;Zp), following [BMS19, Sec. 6], [Mat21, Sec.

7]). Consider the following maps, defined for each 1 ≤ r < ∞:

TRr(R0;Zp) THH(R0;Zp)
hCpr−1 THH(R0;Zp)

tCpr
φ
hC

pr−1

Then, these are equivalences on connective covers. In particular, the following hold for

TRr(R0;Zp):

1) The spectrum TRr(R0;Zp) is concentrated in even degrees, for 1 ≤ r < ∞.

2) The object π2TRr(R0;Zp) is an invertible module over π0TR
r(R0;Zp) ≃ Wr(R0), as a

result of which, the following multiplication map is an isomorphism for i ≥ 0:

Syniπ2TR
r(R0;Zp) −→ π2iTR

r(R0;Zp)

As we noted in the introduction, our investigations follow a somewhat indirect course.

In particular, the plan is to first look at the S1-homotopy fixed points TRr(R0;Zp)
hS1

and then pass to TRr(R0;Zp) itself, for 1 ≤ r < ∞. The following two propositions are
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devoted to these. In particular, we first identify the structure of the homotopy groups of

TRr(R0;Zp)
hS1

and then explain how to pass from the S1-homotopy fixed points to the

original spectrum TRr(R0;Zp).

We are now able to identify the structure of the spectra TRr(R0;Zp)
hS1 → TRr(R0;Zp),

the bulk of which is concentrated in the following theorem:

Proposition 3.2.2 (Understanding π∗TRr(R0;Zp)
hS1

). The spectrum TRr(R0;Zp)
hS1

,

1 ≤ r < ∞ is concentrated in even degrees. In particular, the S1-homotopy fixed points

spectral sequence degenerates, yielding the following identification for the even homotopy

groups:

π2iTR
r(R0;Zp)

hS1
≃


ξir Ainf(R0){i}, i ≥ 0

Ainf(R0){i}, i < 0

Proof. Since the spectrum TRr(R0;Zp) is concentrated in even degrees, the same hap-

pens for the spectra TRr(R0;Zp)
hS1 → TRr(R0;Zp)

tS1
, from say [BL22a, Rem. 6.1.7].

However, from the Tate orbit lemma of Nikolaus–Scholze [AN21, Lem. I.2.1] we know

that TRr(−;Zp)
tCp ≃ THH(−;Zp)

tCp , and therefore, TRr(−;Zp)
tS1 ≃ TP(−;Zp). From

[BMS19, Sec. 6], it follows that TP(R0;Zp) has the following identification for its even

homotopy groups:

π2iTP(R0;Zp) ≃ Ainf(R0){i}

Hence, forgetting the multiplicative structure of TRr(R0;Zp)
hS1

, the same is non-canonically

true for its even homotopy groups, as well:

π2iTR
r(R0;Zp)

hS1
≃ Ainf(R0){i}

Since the spectrum TRr(R0;Zp) is concentrated even degrees, the associated S1-homotopy

fixed points spectral sequence degenerates, thus endowing π2iTR
r(R0;Zp)

hS1
with a filtra-
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tion. Applying π0 to the map TRr(R0;Zp)
hS1 → TRr(R0;Zp), this is identified with the

map:

ϑr : Ainf(R0) → Wr(R0)

whose kernel is generated by the element ξr. This follows by the commutative square:

Ainf(R0) Ainf(R0)

Wr(R0) Wr(R0)

φr

ϑr ϑ̃r

which is obtained by applying π0 to the commutative square:

TRr(R0;Zp)
hS1

TC−(R0;Zp) TP(R0;Zp)

TRr(R0;Zp) THH(R0;Zp)
hCpr−1 THH(R0;Zp)

tCpr

φhS1

φ
hC

pr−1

This is true for r = 1, by [BMS19]. For general r ≥ 1, the claim follows by induction. One

needs to use the fact that the rightmost map TP(R0;Zp) → THH(R0;Zp)
tCpr always gives

rise to ϑ̃r : Ainf(R0) → Wr(R0), upon applying π0 [BMS19, Sec. 6].

It follows that the filtration on π0TR
r(R0;Zp)

hS1
coming from the S1-homotopy fixed

points spectral sequence is the ξr-adic filtration on Ainf(R0). It propagates to all even homo-

topy groups of TRr(R0;Zp)
hS1

, via its multiplicative structure. The canonical identification

follows:

π∗TRr(R0;Zp)
hS1

≃



ξir Ainf(R0){i}, ∗ = 2i ≥ 0

Ainf(R0){i}, ∗ = 2i < 0

0, otherwise
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This identification can also be shown via the iterated product description:

TRr(R0;Zp)
hS1

≃ TC−(R0;Zp)×TP(R0;Zp) · · · ×TP(R0;Zp) TC
−(R0;Zp)

which gives rise to the short exact sequences:

0 π2iTR
r(R0;Zp)

hS1 ∏
1≤k≤r

π2iTC
−(R0;Zp)

∏
1≤k≤r−1

π2iTP(R0;Zp) 0

A direct reformulation of this proposition, using the graded ring descriptions from [BMS19,

Sec. 6]:


π∗TC−(R0;Zp) ≃ Ainf(R0)[u, v]/(uv − ξ), deg(u) = 2, deg(v) = −2, deg(ξ) = 0

π∗TP(R0;Zp) ≃ Ainf(R0)[σ, σ
−1], deg(σ) = 2

is the following corollary, regarding the multiplicative structure of TRr(R0;Zp)
hS1

:

Corollary 3.2.3. The graded ring associated to TRr(R0;Zp)
hS1

has the following descrip-

tion, for generating elements with deg(ur) = 2, deg(vr) = −2, and deg(ξr) = 0:

π∗TRr(R0;Zp)
hS1

≃ Ainf(R0)[ur, vr]/(urvr − ξr)

The following proposition is the main trick that allows us to go from the S1-homotopy

fixed points TRr(−;Zp)
hS1

, back to the original spectrum TRr(−;Zp). It will be used

repeatedly throughout the work, as this is paves a way to go from fairly more accessible
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calculations via TRr(−;Zp)
hS1

, back to identifying the structure of TRr(−;Zp).

Proposition 3.2.4 (Back to TRr(−;Zp)). Let A be a connective E∞-R0-algebra. Then the

following natural map is an equivalence of E∞-ring spectra, for any 1 ≤ r < ∞:

TRr(A;Zp)
hS1

/vr ≃ TRr(A;Zp)
hS1 ⊗

TRr(R0;Zp)hS
1 TRr(R0;Zp) TRr(A;Zp)

≃

Proof. The proof is a direct analogue of the one provided in [BMS19, Prop 6.4], which is an

application of [AN21, Lem IV.4.12].

Now, we are able to state our main theorem in the case of perfectoid rings.

Theorem 3.2.5 (Main result in the perfectoid case). Given a fixed perfectoid ring R0, the

following are true for TRr(R0;Zp) and TRr(R0;Zp)
hS1

:

1) Consider the following commutative diagrams for the Restriction and Frobenius maps of

TRr(R0;Zp) and its S1-homotopy fixed points TRr(R0;Zp)
hS1

, for 1 ≤ r < ∞.

TRr+1(R0;Zp)
hS1

TRr(R0;Zp)
hS1

TRr+1(R0;Zp) TRr(R0;Zp)

TRr+1(R0;Zp)
hS1

TRr(R0;Zp)
hS1

TRr+1(R0;Zp) TRr(R0;Zp)

RhS1

R

FhS1

F
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Passing to homotopy groups, they give rise to the following:

Ainf(R0)[ur+1, vr+1]

(ur+1vr+1 − ξr+1)

Ainf(R0)[ur, vr]

(urvr − ξr)

Wr+1(R0)[ur+1] Wr(R0)[ur]

Ainf(R0)[ur+1, vr+1]

(ur+1vr+1 − ξr+1)

Ainf(R0)[ur, vr]

(urvr − ξr)

Wr+1(R0)[ur+1] Wr(R0)[ur]

ur+1 7→φ−r(ξ)ur, vr+1 7→vr

Ainf(R0)-linear

ur+1 7→ur+1, vr+1 7→0ϑr+1-linear ur 7→ur, vr 7→0ϑr−linear

ur+1 7→φ−r(ξ)ur

ur+1 7→ur, vr+1 7→φ(ξ)vr

φ-linear

ur+1 7→ur+1, vr+1 7→0ϑr+1-linear ur 7→ur, vr 7→0ϑr-linear

ur+1 7→ur

2) Mapping further to the Tate fixed points, we obtain the following commutative diagrams:

TRr+1(R0;Zp)
hS1

TC−(R0;Zp) TP(R0;Zp)

TRr+1(R0;Zp) THH(R0;Zp)
hCpr THH(R0;Zp)

tCpr

TRr+1(R0;Zp)
hS1

TC−(R0;Zp) TP(R0;Zp)

TRr+1(R0;Zp) THH(R0;Zp)
hCpr THH(R0;Zp)

tCpr+1

can

can

φhS1

φ
hCpr
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Passing to homotopy groups, they give rise to the following:

Ainf(R0)[ur+1,vr+1]
(ur+1vr+1−ξr+1)

Ainf(R0)[σ, σ
−1]

Wr+1(R0)[ur+1] Wr+1(R0)[σ, σ
−1]

Ainf(R0)[ur+1,vr+1]
(ur+1vr+1−ξr+1)

Ainf(R0)[σ, σ
−1]

Wr+1(R0)[ur+1] Wr+1(R0)[σ, σ
−1]

ur+1 7→ξr+1σ, v 7→σ−1

ur+1 7→ur+1, vr+1 7→0ϑr+1-linear σ 7→σϑ̃r+1-linear

ur+1 7→ξr+1σ

ur+1 7→σ, vr+1 7→ξ̃rσ
−1

ur+1 7→ur+1, vr+1 7→0ϑr+1-linear σ 7→σϑ̃r+1-linear

ur+1 7→σ

Proof. This essentially follows from iteration of the arguments presented in the proof of

Proposition 3.2.2, together with the results of Proposition 3.2.4. First of all, via applying

the latter, we pass from TRr(R0;Zp)
hS1

to TRr(R0;Zp), by mapping vr 7→ 0. It follows

that the graded ring of TRr(R0;Zp) is equivalent to:

π∗TRr(R0;Zp) ≃ Wr(R0)[ur]

The results follow after passage to homotopy groups and applying [BMS19, Sec. 6],

Proposition 3.2.1, as well as from the effect of the diagrams in 3.1.1, for the Fontaine style

maps ϑr, ϑ̃r.

In particular, on π0, the diagrams in (1) correspond to the following diagrams for ϑr and
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its relation to the Restriction and Frobenius maps:

Ainf(R0) Ainf(R0)

Wr(R0) Wr(R0)

id , φ

ϑr ϑr

R , F

On the other hand, passing to the Tate constructions, the diagrams we obtain on π0 corre-

spond to passing from ϑr to ϑ̃r:

Ainf(R0) Ainf(R0)

Wr(R0) Wr(R0)

φr

ϑr ϑ̃r

The following is a reformulation of our results, in the style of motivic filtrations:

Proposition 3.2.6 (Motivic filtrations in the perfectoid case). For a perfectoid ring R0, the

spectra TRr(R0;Zp)
hS1 → TRr(R0;Zp) are equipped with motivic filtrations, which in this

case are the double-speed Postnikov filtrations.

1) For 1 ≤ r < ∞, we define a multiplicative, decreasing, complete filtration on Ainf(R0),

which we call the r-Nygaard filtration. This is defined as:

N≥i
r Ainf(R0) :=


ξir Ainf(R0), i ≥ 0

Ainf(R0), i < 0

The even homotopy groups (graded pieces for the motivic filtrations) of topological restric-

tion homology and of its S1-homotopy fixed points can be interpreted as follows, using the
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r-Nygaard filtration on Ainf(R0):

π∗TRr(R0;Zp)
hS1

≃
⊕
i∈Z

N≥i
r Ainf(R0){i} =

⊕
i∈Z

ξir Ainf(R0){i}

π∗TRr(R0;Zp) =
⊕
i≥0

N i
r Ainf(R0){i} =

⊕
i≥0

ξir/ξ
i+1
r Ainf(R0){i}

The restriction and Frobenius maps

R,F : TRr+1(R0;Zp) −→ TRr(R0;Zp)
hS1

induce natural maps on π2i:

R,F : N≥i
r+1 Ainf(R0){i} −→ N≥i

r Ainf(R0){i}

In particular, Restriction induces the natural embedding:

R : N≥i
r+1 Ainf(R0){i} ↪→ N≥i

r Ainf(R0){i}

while Frobenius corresponds to the following map:

F : N≥n
r+1 Ainf(R0) 7−→

(
φ(ξr+1)

)i Ainf(R0){i} =(
φ(ξ)ξr

)i Ainf(R0){i} ↪→ N≥i
r Ainf(R0){i}

Passing to graded pieces, we also obtain graded versions of these:

R,F : N i
r+1 Ainf(R0){i} −→ N i

r Ainf(R0){i}
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2) Further mapping to TP(R0;Zp), the canonical and higher Frobenius maps

can, φhS
1
: TRr(R0;Zp) −→ TC−(R0;Zp) −→ TP(R0;Zp)

induce natural maps on π2i:

can, φr,i : N≥i
r Ainf(R0){i} −→ Ainf(R0){i}

The canonical map induces the natural embedding:

can : N≥i
r Ainf(R0){i} ↪→ Ainf(R0){i}

On the other hand, the higher Frobenius φhS
1

induces a divided r-Frobenius:

φr,i : N≥i
r Ainf(R0){i} −→ Ainf(R0){i}

This is defined away from ξr

φr,i : Ainf(R0){i}

[
1

ξr

]
−→ Ainf(R0){i}

[
1

ξ̃r

]

and is related to the r-th iterated Frobenius via the formula:

φr = ξirφr,i

The divided r-Frobenius naturally comes from the following commutative diagram, where
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the top row gives rise to filtered invariants, while the lower one gives rise to graded ones:

TRr(R0;Zp)
hS1

TC−(R0;Zp) TP(R0;Zp)

TRr(R0;Zp) THH(R0;Zp)
hCpr−1 THH(R0;Zp)

tCpr

φhS1

φ
hC

pr−1

3) Taking the limit over restriction maps yields equivalences:


τ[2i−1,2i]TR(R0;Zp)

hS1 ≃ Rlim
R

ξir Ainf(R0){i} =: N≥i
∞ Ainf(R0){i}

τ[2n−1,2n]TR(R0;Zp) ≃ Rlim
R

ξir/ξ
i+1
r Ainf(R0){i} =: N i

∞ Ainf(R0){i}

In particular, we can identify:



π2iTR(R0;Zp)
hS1 ≃ lim

R
N≥i
r Ainf(R0){i} ≃ lim

R
ξir Ainf(R0){i}

π2i−1TR(R0;Zp)
hS1 ≃ lim

R

1N i
r Ainf(R0){i} ≃ lim

R

1 ξnr Ainf(R0){i}

π2iTR(R0;Zp) ≃ lim
R

N i
r Ainf(R0){i}

π2i−1TR(R0;Zp) ≃ lim
R

1N i
r Ainf(R0){i}

Notice that the Rlim1 terms, and therefore the odd homotopy groups, vanish in the case

R0 = OK is the ring of integers of a spherically complete perfectoid field K, thus identi-

fying µ = lim
R

ξr.

The Frobenius maps

TR(R0;Zp)
hS1

TR(R0;Zp)
hS1

TR(R0;Zp) TR(R0;Zp)

FhS1

F
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induce natural Frobenius endofunctors:

N≥i
∞ Ainf(R0){i} N≥i

∞ Ainf(R0)

N i
∞ Ainf(R0){i} Ainf(R0){i}

F

F

Proof. The statements for finite 1 ≤ r < ∞ are a direct reformulation of Theorem 3.2.5. For

the case r = ∞, taking the limit over restriction maps, we get that the graded pieces for the

double-speed Postnikov filtrations give rise to the following two-term complexes for TR and

its S1-homotopy fixed points:

τ[2i−1,2i]TR(R0;Zp)
hS1

−→ τ[2i−1,2i]TR(R0;Zp)

Remember that the iterated pullback description of TR(R0;Zp)
hS1

is:

TR(R0;Zp)
hS1

≃ · · · ×TP(R0;Zp) TC
−(R0;Zp)×TP(R0;Zp) · · · ×TP(R0;Zp) TC

−(R0;Zp)

Passing to homotopy groups, we obtain the following exact sequences:

0 π2iTR(R0;Zp)
hS1 ∏

π2iTC
−(R0;Zp)

∏
π2iTP(R0;Zp) π2i−1TR(R0;Zp)

hS1
0

This is equivalent to:

0 π2iTR(R0;Zp)
hS1 ∏

N≥i Ainf(R0){i}

∏
π2i Ainf(R0){i} π2i−1TR(R0;Zp)

hS1
0
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which we identify with a lim1 sequence. In particular, we have the following equivalences:

τ[2i−1,2i]TR(R0;Zp)
hS1

≃ Rlim
R

N≥i
r Ainf(R0){i} =: N≥i

∞ Ainf(R0){i}
π2iTR(R0;Zp)

hS1 ≃ lim
R

N≥i
r Ainf(R0){i}

π2i−1TR(R0;Zp)
hS1 ≃ lim

R

1N≥i
r Ainf(R0){i}

Passing to TRr(R0;Zp) by taking quotient with vr and taking the limit with respect to the

Restriction maps, we also have that:

τ[2i−1,2i]TR(R0;Zp) ≃ Rlim
R

N i
r Ainf(R0){i} =: N i

∞ Ainf(R0){i}
π2iTR(R0;Zp) ≃ lim

R
N i
r Ainf(R0){i}

π2i−1TR(R0;Zp) ≃ lim
R

1N i
r Ainf(R0){i}

The remaining statements are a direct consequence of these identifications.
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CHAPTER 4

THE GENERAL CASE

In this chapter we focus on explaining the main theorem of this work. Based on the calcu-

lations for perfectoid rings and some general properties of TR, we understand the motivic

filtrations in the case of quasiregular - semperfectoid rings, which we later extend via qua-

sisyntomic descent.

4.1 Calculations for quasiregular - semiperfectoid rings

In what follows, we study the motivic filtrations of invariants associated to TR of quasiregular

- semiperfectoid rings. Let us fix a quasiregular - semiperfectoid ring S. Suppose we also

make a choice of a perfectoid base R0 → S, mostly for simplicity.

For what follows, given any R0-algebra A, we view:


π∗TRr(A;Zp)

hS1
as a graded algebra over π∗TRr(R0;Zp)

hS1 ≃ Ainf(R0)[ur, vr]

(urvr − ξr)

π∗TRr(A;Zp) as a graded algebra over π∗TRr(R0;Zp) ≃ Wr(R0)[ur]

Theorem 4.1.1 (Motivic filtration in the QRSPerfd case). Let S be a quasiregular - semiper-

fectoid ring over a fixed perfectoid base R0 → S. The following hold:

1) For 1 ≤ r < ∞, the spectra TRr(S;Zp)
hS1 → TRr(S;Zp) admit functorial, complete and

exhaustive, descending, multiplicative Z-indexed (resp. N-indexed) motivic filtrations,

with:


griMTRr(S;Zp)

hS1 ≃ τ[2i−1,2i]TR
r(S;Zp)

hS1

griMTRr(S;Zp) ≃ τ[2i−1,2i]TR
r(S;Zp)
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In particular, the associated spectral sequences calculating TRr(S;Zp)
hS1

and TRr(S;Zp)
tS1 ≃

TP(S;Zp) equip:

∆̂S ≃ π0TR
r(S;Zp)

hS1
≃ π0TR

r(S;Zp)
tS1

≃ π0TP(S;Zp)

with the same complete, descending N-indexed filtration N≥•
r ∆̂S, which we call the r-

Nygaard filtration.

2) Via the multiplicative structure of π∗TRr(R0;Zp)
hS1

, one can identify N≥i
r ∆̂S ⊂ ∆̂S =

π0TR
r(S;Zp)

hS1
, with π2iTR

r(S;Zp)
hS1

, via multiplication with vir ∈ π−2iTR
r(S;Zp)

hS1
.

In particular, we have the following descriptions of the even homotopy groups, setting

N≥i
r ∆̂S = ∆̂S, for i ≤ 0:

π2iTR
r(S;Zp)

hS1
≃ N≥i

r ∆̂S{i}

Taking quotient with vr ∈ π−2TR
r(S;Zp)

hS1
, we pass to TRr(S;Zp), thus obtaining the

following identification for its even homotopy groups:

π2iTR
r(S;Zp) ≃ N i

r ∆̂S{i}

where, in particular, we have that:

N 0
r ∆̂S ≃ Wr(S)
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3) The Restriction and Frobenius maps

TRr+1(S;Zp)
hS1

TRr(S;Zp)
hS1

TRr+1(S;Zp) TRr(S;Zp)

RhS1 , FhS1

R , F

induce natural maps on the filtered and graded pieces of the r-Nygaard filtered ∆̂S:

N≥i
r+1∆̂S{i} N≥i

r ∆̂S{i}

N i
r+1∆̂S{i} N i

r ∆̂S{i}

R , F

R , F

Mapping further to TP(S;Zp):

TRr(S;Zp)
hS1

TC−(S;Zp) TP(S;Zp)
can , φhS1

we obtain maps on even homotopy groups can, φr,i : π2iTR
r(S;Zp)

hS1 → TP(S;Zp),

which are equivalent to the canonical injection

can : N≥i
r ∆̂S{i} ↪→ ∆̂S{i}

and to the divided r-Frobenius:

φr,i : N≥i
r ∆̂S{i} −→ ∆̂S{i}

which relates to the r-th iteration of Frobenius, which maps the r-Nygaard filtration to
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the ξ̃r-adic filtration, via the formula:

φr = ξ̃irφr,i

Using the commutative diagram

TRr(S;Zp)
hS1

TC−(S;Zp) TP(S;Zp)

TRr(S;Zp) THH(S;Zp)
hCpr−1 THH(S;Zp)

tCpr

φhS1

φ
hC

pr−1

one can identify the effect of φ
hCpr−1 , as the graded version of φhS

1
. In particular,

passing to even homotopy groups, we obtain a graded Frobenius map from the associated

graded pieces of the r-Nygaard filtration to the r-Hodge–Tate cohomology ∆HT,r
S ≃ ∆̂S/ξ̃r,

obtained from THH(S;Zp)
tCpr :

grφr,i : N i
r ∆̂S{i} −→ ∆HT,r

S {i} = ∆̂S/ξ̃r{i}

4) Taking the limit over the Restriction maps yields the following identifications:


π2iTR(S;Zp)

hS1 ≃ lim
R

N≥i
r ∆̂S{i}

π2iTR(S;Zp) ≃ lim
R

N i
r ∆̂S{i}
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We have natural Frobenius maps:

TR(S;Zp)
hS1

TR(S;Zp)
hS1

TR(S;Zp) TR(S;Zp)

FhS1

F

Passing to even homotopy groups, induces Frobenius endofunctors on filtered and graded

pieces:

lim
R

N≥i
r ∆̂S{i} lim

R
N≥i
r ∆̂S{i}

lim
R

N i
r ∆̂S{i} lim

R
N i
r ∆̂S{i}

FhS1

F

Proof. The basics of all calculations follow from the iterated pullback descriptions:

TRr(S;Zp)
hS1

≃ TC−(S;Zp)×TP(S;Zp) · · · ×TP(S;Zp) TC
−(S;Zp)

and

TRr(S;Zp) ≃ THH(S;Zp)
hCpr−1 ×

THH(S;Zp)
tC

pr−1 · · · ×THH(S;Zp)
tCp THH(S;Zp)

These can be re-written as the fibers:

TRr(S;Zp)
hS1 ∏

1≤k≤r

TC−(S;Zp)
∏

1≤k≤r−1

TP(S;Zp)

and

TRr(S;Zp)
∏

1≤k≤r

THH(S;Zp)
hC

pk
∏

1≤k≤r−1

THH(S;Zp)
tC

pk
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In particular, the motivic filtrations come from the double-speed Postnikov filtrations,

whose graded pieces are the two term complexes:

τ[2i−1,2i]TR
r(S;Zp)

hS1
, τ[2i−1,2i]TR(S;Zp)

More specifically, the homotopy groups fit in exact sequences:

0 π2iTR
r(S;Zp)

hS1 ∏
1≤k≤r

π2iTC
−(S;Zp)

∏
1≤k≤r−1

π2iTP(S;Zp) π2i−1TR
r(S;Zp)

hS1
0

or, equivalently

0 π2iTR
r(S;Zp)

hS1 ∏
1≤k≤r

N≥i∆̂S{i}

∏
1≤k≤r−1

∆̂S{i} π2i−1TR
r(S;Zp)

hS1
0

and

0 π2iTR
r(S;Zp)

∏
1≤k≤r

π2iTHH(S;Zp)
hC

pk

∏
1≤k≤r−1

π2iTHH(S;Zp)
tC

pk π2i−1TR
r(S;Zp) 0

From the first of these exact sequences it follows that π2iTR
r(S;Zp)

hS1
is identified as

the i-th layer of the r-Nygaard filtration on ∆̂S{i}, which is defined via the following iterated
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pullback diagram:

N≥i
r ∆̂S{i} ≃ N≥i∆̂S{i} ×∆̂S{i}

· · · ×
∆̂S{i}

N≥i∆̂S

If, for simplicity, we assume that to be working over a fixed perfectoid R0 → S, it follows

that we have the equivalent description:

N≥i
r ∆̂S ≃

{
x ∈ ∆̂S

∣∣∣ φri(x) ∈ ξ̃ir∆̂S

}

To go back to TRr(S;Zp), we let vr 7→ 0. Through this, we obtain the identification:

π2iTR
r(S;Zp) ≃ N i

r ∆̂S{i}

Finally, the identification regarding ∆̂S/ξr is a direct corollary of Proposition ??, in

analogy with [BMS19].

The rest of the claims are a direct application of induction on 1 ≤ r < ∞, using the

iterated pullback descriptions for TRr(S;Zp)
hS1

and TRr(S;Zp), together with the base

cases on perfectoids:

griMTRr(R0;Zp)
hS1

≃ N≥i
r Ainf(R0){i}, griMTRr(R0;Zp) ≃ N i

r Ainf(R0){i}

4.2 Applying quasisyntomic descent

In the previous section we managed to provide an overview of the nature of the invariants

TRr(S;Zp)
hS1 → TRr(S;Zp), 1 ≤ r ≤ ∞, for a given quasiregular - semiperfectoid ring S.

Following the road paved by [BMS19], we can now extend to the quasisyntomic (and even
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animated) case. The main steps are provided in what follows.

Proof of Theorem 1.1.1. For simplicity, we work over a fixed perfectoid ring R0 → S. As

the category of quasiregular - semiperfectoid rings provide a basis for the quasisyntomic

topology, most of the claims follow in a completely analogous way to the main theorem of

[BMS19]. In particular, we apply quasisyntomic descent to the two term complexes:

τ[2i−1,2i]TR
r(S;Zp)

hS1
, τ[2i−1,2i]TR

r(S;Zp)

for S quasiregular - semiperfectoid and the associated results of the previous section.

Regarding the odd homotopy groups of our invariants, remember that for S quasiregular

- semiperfectoid, these fit in the exact sequence:

0 N≥i
r ∆̂S{i}

∏
1≤k≤r

N≥i∆̂S{i}

∏
1≤k≤r−1

∆̂S{i} π2i−1TR
r(S;Zp)

hS1
0

α

α

Pre-composing the map α, with the diagonal map:

diag : N≥i∆̂S{i} −→
∏

1≤k≤r

N≥i∆̂S{i}

we are able to use the vanishing theorem of Bhatt-Scholze [BS22, Sec. 14]. In particular, by

directly applying that result, there exists a suitable quasisyntomic cover S′ → S, for which

α ◦ diag is surjective. Hence, the same is true for α, as well, from which the local vanishing

of the cokernel follows.

Therefore, locally for the quasisyntomic topology, we have that:

griMTRr(−;Zp)
hS1

≃ N≥i
r ∆̂(−){i}[2i]
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Hence, by letting vr 7→ 0, we also have the analogous result for TRr, locally in the quasisyn-

tomic topology:

griMTRr(−;Zp) ≃ N i
r ∆̂(−){i}[2i]

Taking the limit over restriction maps, in analogy with the perfectoid case, we also obtain:


griMTR(−;Zp)

hS1 ≃ Rlim
R

N≥i
r ∆̂(−){i}[2i] =: N≥i

∞ ∆̂(−){i}[2i]

griMTR(−;Zp) ≃ Rlim
R

N i
r ∆̂(−){i}[2i] =: N i

∞∆̂(−){i}[2i]

As in [BL22a, Sec. 6], it is possible to left Kan extend the motivic filtrations, and thus

all associated prismatic invariants, from the quasisyntomic to the animated case. However,

the motivic filtrations need not be exhaustive in this case.

Following this, the proof of Theorem B is a direct consequence of the above:

Proof of Theorem 1.1.2. We consider the invariant

T̃C
r
(−;Zp) := fib

(
RhS1

−FhS
1
: TRr(−;Zp)

hS1
→ TRr−1(−;Zp)

hS1
)

Since, locally for the quasisyntomic topology we have that:

griMTRr(−;Zp)
hS1

≃ N≥i
r ∆̂(−){i}[2i]

it follows that by taking fibers, T̃C
r

is equipped with a motivic filtration, whose description,

locally for the quasisyntomic topology, is the following:

griM T̃C
r
(−;Zp) ≃

(
RhS1

−FhS
1
: N≥i

r ∆̂(−){i}[2i] → Nr−1∆̂(−){i}[2i]
)

We proceed similarly for TCr.
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CHAPTER 5

THE CASES OF MIXED/POSITIVE CHARACTERISTIC

We know restrict to the case of mixed and positive characteristic.

5.1 The mixed characteristic case

Proposition 5.1.1. Let S be a p-completely smooth ring over a fixed perfectoid base R0.

Then, the r-Nygaard filtration is identified with the filtration related to the décalage functor

Lηξr ∆̂S/R0
, for the element ξ ∈ Ainf(R0).

Proof. This is a direct application of the description of the Nygaard filtration over a perfec-

toid base. Gluing r-copies of the Nygaard filtered prismatic cohomology gives the result. A

related discussion is in [BMS19, Cor. 7.10].

The proof of 1.1.4 follows, as a direct application of the identification ∆̂S/R0
≃ AΩS , for

a p-completely smooth algebra over OC . In particular we have the following corollary, which

follows from the properties of the décalage functor/the Beilinson t-structure.

Corollary 5.1.2. Let S be a p-completely smooth algebra over OC . Then the commutative

diagram:

TRr(S;Zp)
hS1

TC−(S;Zp) TP(S;Zp)

TRr(S;Zp) THH(S;Zp)
hCpr−1 THH(S;Zp)

tCpr

φhS1

φ
hC

pr−1

gives rise to the following commutative square, by passing to the even parts of the motivic
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filtrations of the associated invariants:

Lη≥i
ξr

AΩS{i} AΩS{i}

W̃rΩ
≤i
S {i} W̃rΩS{i}

φr,i

where, in the lower row, we have the canonical injection of the i-th filtered piece of the

conjugate filtration of the complex W̃rΩS.

5.2 The positive characteristic case

Let us, finally, treat the case of Fp-algebras. Given a quasisyntomic Fp-algebra S, we know

from [BMS19] that its prismatic cohomology is identified with the Nygaard-completed de-

rived de Rham complex:

∆̂S ≃ L̂WΩS

In particular, if S is a quasiregular - semiperfect Fp-algebra, we have that ∆̂S ≃ Âcrys(S),

with the Nygaard filtration identified as:

N≥i Âcrys(S) =

{
x ∈ Âcrys(S)

∣∣∣ φi(x) ∈ pi Âcrys(S)

}

Using these, we can show the odd vanishing for the invariants of TR:

Proof of Theorem 1.1.5. Consider the exact sequence coming from the iterated pullback de-

scription of TRr(S;Zp)
hS1

for a quasiregular - semiperfect Fp-algebra S:

0 N≥i
r Âcrys(S){i}

∏
1≤k≤r

N≥i Âcrys(S){i}

∏
1≤k≤r−1

Âcrys(S){i} π2i−1TR
r(S;Zp)

hS1
0

α

α
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Following [BMS19, Sec. 8], we know that the map

α ◦ diag : N≥i Âcrys(S){i} →
∏

1≤k≤r

Âcrys(S){i}

is surjective. Therefore the same is also true for α itself. The vanishing of π2i−1TR
r(S;Zp)

hS1

follows. Letting vr 7→ 0, we can also see that π2i−1TR
r(S;Zp) is also even.

Taking the limit over restriction maps, since we are in the characteristic p > 0 case, notice

that the lim
R

1 term vanishes, therefore TR(S;Zp)
hS1

and TR(S;Zp) are also concentrated

on even degrees.

Hence, the discussion we had in the perfectoid case, also applies here. In particular,

because of the vanishing of odd homotopy groups, it follows that the S1-homotopy fixed

points spectral sequence degenerates and the r-Nygaard filtration on Âcrys(S) is indeed the

filtration coming from the spectral sequence.

The relation to the conjugate-filtered de Rham–Witt complex follows from Theorem 1.1.4.

In particular, this is also related, and essentially explains, the presence of the Hodge filtration

on TP of Fp-algebras, as discussed by Antieau–Nikolaus [AN21, Sec. 6.3].

Applying quasisyntomic descent, the following is a direct corollary of what we just dis-

cussed:

Corollary 5.2.1. Let S be a quasisyntomic algebra over Fp. Then the spectra TRr(S;Zp)
hS1

and TRr(S;Zp) are equipped with motivic filtrations, whose graded pieces can be identified

with:


griMTRr(S;Zp)

hS1 ≃ N≥i
r ∆̂S{i}[2i]

griMTRr(S;Zp) ≃ N i
r ∆̂S{i}[2i]

In an analogous manner, the graded pieces for the motivic filtrations of T̃C
r(

TR(S;Zp)
)
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and TCr
(
TR(S;Zp)

)
can be shown to be equivalent to:

griM T̃C
r
(
TR(S;Zp)

)
≃ fib

(
RhS1

−FhS
1
: N≥i

r ∆̂S{i}[2i] → N≥i
r−1∆̂S{i}[2i]

)
griMTCr

(
TR(S;Zp)

)
≃ fib

(
can−φhS

1
: N≥i

r ∆̂S{i}[2i] → ∆̂S{i}[2i]
)
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CHAPTER 6

ONGOING WORK AND FUTURE RESEARCH DIRECTIONS

Associated to the Nygaard filtration on (absolute) prismatic cohomology, one can consider

a number of related structure, such as the prismatization stacks Σ′, Σ′′, the Hodge–Tate

locus ΣHT, the diffracted complex and the absolute/relative de Rham–Witt comparisons,

etc. In analogy with this, we expect some relevant structure to arise in relation to the r-

Nygaard filtration on prismatic cohomology. In what follows, we describe some phenomena

which shall be explained in forthcoming works, which are essentially extended versions of

this thesis [And24a], [And24b], as well as work in progress.

6.1 A relative de Rham–Witt comparison

Let S be a p-complete animated ring. Following [BL22a], one has the divided Frobenius on

the Nygaard filtered absolute prismatic cohomology, which fits in the following square:

N≥i∆S{i} ∆S{i}

N i∆S ∆S{i}

φi

grφi

If we pass to the relative situation, where S lives over A for a bounded prism (A, I), then
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we can say more, as a relative Hodge–Tate comparison is easy to formulate:

N≥iφ∗∆S/A{i} ∆S/A{i}

N iφ∗∆S/A ∆S/A{i}

Fil
conj
i ∆S/A{i}

≃

as Hodge–Tate cohomology is equipped with the increasing conjugate filtration, whose i-th

filtered piece is identified with the i-th associated graded piece of the Nygaard filtration, as

shown in the factorization of the diagram. The relative Hodge–Tate comparison is formulated

as:

gr
conj
i ∆S/A{i} ≃ griHod dRS/A

where on the right hand side we have the i-th graded piece for the p-complete, Hodge-filtered,

relative derived de Rham complex. In fact, we can reformulate this as a de Rham comparison:

A⊗φ ∆S/A ≃ dRS/A

in which case the Nygaard filtration on the left maps to the Hodge filtration on the right.

It appears that a similar picture is possible for the r-Nygaard filtration. Using the iterated

product description:

N≥i
r ∆S{i} ≃ N≥i∆S{i} ×∆S{i} · · · ×∆S{i} N

≥i∆S{i}

it is possible to have a divided r-Frobenius by mapping to ∆S{i} from the left, via the divided
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Frobenius map:

φr,i : N≥i
r ∆S{i} N≥i∆S{i} ∆S{i}

φi

This happens to fit in the following commutative diagram, together with the r-Hodge–Tate

cohomology:

N≥i
r ∆S{i} ∆S{i}

N i
r∆S{i} ∆HT,r

S {i}

φr,i

grφr,i

Passing to the relative situation, where we suppose that S lives over A, for a bounded

prism (A, I), we obtain the following commutative diagram:

N≥i
r (φr)∗∆S/A{i} ∆S/A{i}

N i
r(φ

r)∗∆S/A{i} ∆HT,r
S/A

{i}

Fil
conj
i ∆HT,r

S/A
{i}

≃

where the lower row factors through the i-th filtered piece for the conjugate filtration on

the r-Hodge–Tate cohomology. Passing to the associated graded pieces, we obtain the i-th

associated graded piece for the p-complete, Hodge-filtered, animated relative de Rham–Witt

complex of Langer–Zink:

gr
conj
i ∆HT,r

S/A
≃ griHod LWrΩS/A
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In fact, it is possible to reformulate this as a relative de Rham–Witt comparison:

A/Ir ⊗φr ∆S/A ≃ LWrΩS/A

in which case, the r-Nygaard filtration on the left maps to the Hodge filtration on the right.

6.2 The absolute de Rham–Witt complex and higher Hodge–Tate

loci

The absolute counterpart, for the relative de Rham–Witt complex of Langer–Zink, is given by

the absolute de Rham–Witt complex of Hesselholt–Madsen [HM04; Hes05; HM03; Hes15].

The problem, when comparing the two, stands in the following asymmetry. Let S be a

smooth p-complete ring. We consider p-complete versions of the absolute/relative de Rham–

Witt complexes. Then WrΩS/Zp
is not isomorphic to WrΩS . We believe this asymmetry is

analogous to the incompatibility between the conjugate filtrations on absolute Hodge–Tate

cohomology versus relative Hodge–Tate cohomology and that therefore, one should have a

connection between r-Hodge–Tate cohomology and the absolute de Rham–Witt complex.

In order to explain how this should arise, we need to consider higher versions of the

Hodge–Tate locus on Σ. Consider the ideal sheaf Ir on Σ. In order to define this, it suffices

to do the construction in a compatible way on transversal prisms (A, I) 7→ Ir. We denote

by ΣHT,r the locus on which Ir vanishes. Then we have the following squares, the left of

which is Cartesian:

spf A/Ir ΣHT,r spf A/Ir ΣHT,r

spf A Σ spf A/Ir+k ΣHT,r+k

ρ
HT,r
A

ρA

63



In particular, for the prism (Zp[[p̃]], (p̃)), we obtain a morphism:

ηr : Zp[[p̃]]/(p̃)r −→ ΣHT,r

which gives rise to a diffracted p-complete Hodge–Witt complex WrΩ
/D
S . We expect these

constructions to give rise to a Sen operator Θ, which is something natural to expect, since

we are dealing with graded stacks for the Ir-adic filtration on ∆S . Given this, one should

have an absolute r-Hodge–Tate comparison:

N i
r∆S{n} Fil

conj
i WrΩ

/D
S Fil

conj
m−1WrΩ

/D
S

Θ+m

As in [BL22a], we expect these invariants to give rise to an absolute de Rham–Witt

comparison, in which the r-Nygaard filtered prismatic cohomology N≥i
r ∆S{i} maps to the

Hodge filtered, p-complete, animated, absolute de Rham–Witt complex FiliHod LWrΩS , and

thus to fit in the following diagram:

FiliHod LWrΩS N≥i
r ∆S{i} ∆S{i}

griHod LWrΩS N i
r∆S{i} ∆HT,r

S {i}

LWrΩ
i
S [−i] Fil

conj
i WrΩ

/D
S WrΩ

/D
S

φr,i

6.3 The big de Rham–Witt complex

A natural question to ask is whether it is possible to extend our results from the p-complete

to the integral case. Remember that with integral coefficients, TRr is related to the big de
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Rham–Witt complex WrΩ, as presented in [Hes15].

The idea is to build on the theory of global motivic complexes of Bhatt–Lurie [BL22a].

Let S be an animated ring. Then, we can associate to it its global prismatic complex ∆gl
S ,

which can be obtained via a gluing square over the different primes p and Q. This is equipped

with an integral version of a Nygaard filtration N≥•∆̂gl
S , whose graded pieces sit in a fibre

sequence which involves the integral diffracted Hodge complex, together with the action of

the Sen operator:

N i∆̂gl
S {n} Fil

conj
i Ω

/D
S Fil

conj
i−1 Ω

/D
S

Θ+i

In analogy, we glue the r-Nygaard filtration over different primes. Its associated graded

pieces should sit in a fibre sequence, with diffracted versions of the big de Rham–Witt

complex:

N i
r ∆̂gl

S {n} Fil
conj
i WrΩ

/D
S Fil

conj
i−1 WrΩ

/D
S

Θ+i

Going back to the homotopy theoretic picture, it is possible by gluing to obtain a relation

between the graded pieces for the global Nygaard filtration N i
r ∆̂gl

S , as obtained from the

motivic filtration of TRr(S), and the big de Rham–Witt complex WrΩS .

6.4 Hesselholt’s conjectures on the absolute de Rham–Witt

complex

In [Hes05], Hesselholt introduces the absolute de Rham–Witt complex and states a number

of conjectures on how its structure relates to étale Tate twists. In particular given a smooth

scheme X over OK , for K a p-adic field, one can associate to it the usual diagram describing
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the special/general fibres:

Y X U

Spec k SpecOK SpecK

f g

Starting from this diagram, one is able to look at topological restriction homology with

logarithmic poles TRr(X|U ;Zp). For a reminder of aspects of this theory, the interested

reader could look at [HS19], [Bin+23]. Hesselholt’s question is the following: when we

view TRr(X|U ;Zp) as an étale sheaf, we would like to endow it with a motivic filtration

Fil•MTRr(X|U ;Zp), whose graded pieces griM are complexes concentrated in degrees [0, i],

with the i-th part calculated by the log absolute de Rham–Witt complex WrΩ(X,MX) and

which should sit in a fiber sequence, as follows:

τ≤if
∗Rg∗µ⊗i

pv f∗ gri,evenM /pv f∗ gri,evenM /pv
1−F

This was the motivation in searching for the relationship between topological restriction

homology and the absolute de Rham–Witt complex. We briefly comment on how this is

resolved, as details may be found in [And24b]. We work over the perfectoid ring OC , since

in this case it is less technical to tackle the amplitude questions, regarding the complexes

coming from the motivic filtration of TR.

The idea is to construct motivic filtrations on TR with logarithmic poles and its S1-

homotopy fixed points, as in [Bin+23]. Then, we use the fibre sequences for TR, TC, and

algebraic K-theory, which are constructed in [HM03], in order to have an understanding of

the theory with logarithmic poles in terms of the non-logarithmic theory. This, together

with the fibre sequence, through which one constructs TC via TR, yield the desired results.
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6.5 On the prismatization stacks Σ′
r

As we already noted in the introduction, one of the main slogans of Scholze’s ICM address

[Sch18] was that p-adic cohomology theories should have certain similarities to shtukas. This

heuristic is, in general, backed by one of the main slogans of the Langlands program, whose

aim is to understand motivic phenomena through the lens of automorphic representations.

Evidence for such a claim lies in Fargues’ result on the equivalence between Breuil–Kisin–

Fargues modules and certain shtukas with one leg in p-adic geometry [SW20]. One way of

viewing prismatic theory is as an attempt to generalize and geometrize BKF modules. Hence,

in that regard we posed the question at the introduction on whether it is possible to also

capture the information of shtukas with any number of legs.

We believe that this information is captured by the r-Nygaard filtration in prismatic

cohomology. In particular, there exist prismatization stacks Σ′
r, which capture such infor-

mation. Notice that quasicoherent sheaves give rise to correspondences, which behave like

Hecke operators in the prismatic setting:

QCoh(Σ′
r)

QCoh(Σ) QCoh(Σ)

where the map on the left corresponds to the r-divided Frobenius φr,•, while the one on the

right corresponds to the canonical map. Taking the equalizer for the maps of ∞-categories

of quasi-coherent sheaves (coequalizer on the level of stacks) should produce prismatic coun-

terparts of shtukas with r-number of legs.

We hope to study the properties of these stacky constructions. Locally, they should

give rise to prismatic counterparts of the Witt vector affine Grassmannians [Zhu17; BS17;

SW20]. We believe that trying to formulate the playground for a geometric Satake, via

suitable categories of perverse sheaves, coming from a suitable perverse t-structure. We
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hope this provides an approach to studying motives from the realization perspective.

From the homotopy theoretic viewpoint, remember that the trace map comes from ana-

lyzing cyclic K-theory, whose Goodwillie tower is formed by TRr. The trace factors as:

K T̃C(Kcyc) T̃C(TR) TC

Notice that the THH-related invariants satisfy étale descent, so in this picture it does not

hurt that much if we try to replace algebraic K-theory by its étale sheafification (or by Selmer

K-theory). In particular, in lieu of the iterated product identification for the S1-homotopy

fixed points of TRr:

TRr(A;Zp)
hS1

≃ TC−(A;Zp)×TP(A;Zp) · · · ×TP(A;Zp) TC
−(A;Zp)

which reminds us of the Hecke correspondence that we observe in the stacky counterpart

(especially when we pass to modules over TRr(A;Zp)
hS1

) and thus, taking equalizers in

order to form versions of TC, produces shtuka like objects. To conclude, we would like to

think of the trace map as a Galois-to-automorphic (or motivic-to-automorphic) map, under

the auspices of the Langlands program. An interesting viewpoint on the Arin reciprocity

maps, which makes use of these gadgets, has been discussed in [Cla17].
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