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ABSTRACT

In this thesis, we study the differences between smooth and topological manifolds in the

equivariant setting. The central topic will be on smooth structures. Kirby–Siebenmann

[KS77] showed (using work of Kervaire–Milnor [KM63]) that every closed high dimensional

manifold has only finitely many smooth structures. In contrast, if G is a nontrivial finite

group, we construct G-manifolds with infinitely many equivariant smooth structures. Our

examples even include nonpositively curved manifolds on which G acts by isometries.
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CHAPTER 1

INTRODUCTION

A classical theorem in geometric topology is Milnor’s construction of exotic 7-spheres [Mil56].

Milnor showed that there are smooth manifolds Σ7 homeomorphic to, but not diffeomorphic

to, S7. Kervaire–Milnor [KM63] later showed that spheres of dimension at least 5 have only

finitely many smooth structures. Kirby–Siebenmann used this theorem to show that, if X is

a closed manifold of dimension at least 5, then X has only finitely many smooth structures.

In this thesis, we show that these results do not hold in the equivariant setting.

A smooth structure or a smoothing of a manifold X can be represented by a homeomor-

phism f : Y → X where Y is a smooth manifold. Smooth structures are typically considered

up to isotopy or concordance (we will give a more thorough treatment of this in Section 2.5).

Kirby–Siebenmann show that, in high dimensions, the two notions are equivalent. We de-

note isotopy classes of smooth structures on X by TOP/O(X)1. If fi : Yi → X, i = 0, 1,

determine isotopic smooth structures, then Y0 and Y1 are diffeomorphic. This follows from

the fact (also proven by Kirby–Siebenmann) that smooth structures on X × I are product

structures. The converse is not necessarily true; if Y0 and Y1 are diffeomorphic, the smooth

structures determined by fi need not be isotopic. Hence, the set of smooth manifolds home-

omorphic to X, up to diffeomorphism, is a quotient of TOP/O(X). We denote this by

TOP/O(X).

If G is a finite group and X is G-manifold, then one may similarly define isotopy classes of

G-smoothings TOP/OG(X). This is studied in [Las79] and [LR78]. One may also consider

the set of smooth G-manifolds equivariantly homeomorphic to X. In the equivariant setting,

it is no longer the case that G-smoothings of X × I are products (see [BH78, 262-267]).

Hence, it is not clear whether this set is a quotient of TOP/OG(X). Nevertheless, we denote

this set TOP/OG(X).

1. Classically, this set is denoted STOP/DIFF (X).
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This thesis addresses the following question.

Question 1. When is TOP/OG(X) infinite?

Some examples of G-manifolds X with TOP/OG(X) infinite have appeared in the lit-

erature. For infinitely many primes p, Schultz [Sch79] has shown that TOP/OZ/p(S
2n) is

infinite for certain Z/p-actions on S2n (here, n increases with p). In these examples, the

fixed point set of the action is S2 but the normal bundle of the fixed set varies as Z/p-vector

bundles. This construction relies on computations of Ewing [Ewi76] regarding arithmetic

properties of the coefficients appearing in the Atiyah–Singer G-signature theorem.

In [BH78], it was shown that TOP/OG(X × I) could be infinite. The construction of

these exotic G-manifolds do not change the normal bundle of the fixed set. The sphere

bundle of the fixed set yields a lens space bundle and the construction of [BH78] involves

using the Whitehead group of G to replace a neighborhood of the sphere bundle.

1.1 Exotic Normal Bundles

In Chapter 2, we generalize Schultz’s work to the case where the fixed set is not necessarily

S2. In this chapter, we focus on the case G = Z/p, where p is an odd prime. We prove the

following theorem.

Theorem 1.1.1. Suppose X is a closed, smooth Z/p-manifold where 2 has odd order in F×p .

Let M be a component of the fixed set such that the following hold.

• Each eigenbundle of the normal bundle of M is trivial as a complex vector bundle and

has complex rank at least dimM ,

• H2(M ;Q) ̸= 0.

Then, TOP/OG(X) is infinite.
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The condition on the prime p holds when p ≡ 7 modulo 8 but not when p ≡ 3, 5. The

conditions on the normal bundle of M in Theorem 1.1.1 can be significantly improved and we

discuss this further in Chapter 2. Even without these improvements, Theorem 1.1.1 provides

many new examples of G-manifolds with infintely many G-smoothings.

Example 1. If M is a closed parallelizable manifold with H2(M ;Q) ̸= 0 (e.g. M = T 2),

then TOP/OG(M
×p) is infinite for p as in Theorem 1.1.1.

Example 2. Let M be a closed manifold with H2(M ;Q) ̸= 0. Let p be as in Theorem 1.1.1

and let V = (R[Z/p]/R)dimM be dimM copies of the reduced regular representation. Let

SV denote the one point compactification of V . Then TOP/OG(M × SV ) is infinite.

1.2 Stably Trivial G-smoothings

The G-smoothings in Theorem 1.1.1 are detected by Chern classes of the normal bundle. In

particular, they remain distinct under stabilization maps

TOP/OG(X)→ TOP/OG(X × V )

where V is any representation. In Chapter 3, we construct infinitely many elements of

TOP/OG(X) which map to the same element under

TOP/OG(X)→ TOP/OG(X × R).

Moreover, we work in a more general setting than in Chapter 2; we consider semifree actions

of odd order cyclic groups of X.

We construct elements of TOP/OG(X) as follows. Let M be a component of the fixed set

and let Sν denote the sphere bundle of the normal bundle. Then Sν/G is a lens space bundle.

Let (W ;Sν/G, Sν/G) be an h-cobordism with both boundary components diffeomorphic to
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Sν/G and let XW denote the manifold obtained by removing an equivariant neighborhood

of Sν and replacing it with the G-cover of W . Distinct h-cobordisms W give rise to distinct

elements of TOP/OG(X). These constructions do not change the normal bundle of the fixed

set.

We use a swindling argument to define an equivariant homeomorphism when W is a

controlled h-cobordism in the sense of Quinn [Qui82]. These are the h-cobordisms in the

image of the assembly map

H1(M ;Wh(G))→Wh(G).

In order to detect elements W whose boundary components are both Sν/G, we study an

involution on these groups.

Our main theorem is the following.

Theorem 1.2.1. Let G be an odd order cyclic group of order at least 5 and let X be a closed,

smooth semifree G-manifold. Suppose M is a component of the fixed point set which is closed,

aspherical and whose fundamental group satisfies the K-theoretic Farrell–Jones conjecture.

Suppose either of the following hold.

1. M (and, hence X) is odd dimensional.

2. M is even dimensional, H2(M ;Q) ̸= 0 and there are distinct prime factors pi, pj of

|G| such that pi has odd order in (Z/pj)×.

Then there are infinitely many elements of TOP/OG(X) which vanish under the stabilization

map TOP/OG(X)→ TOP/OG(X × R).

Example 3. If G acts semifreely on X and XG has a component which is a hyperbolic

homology 3-sphere, then TOP/OG(X) is infinite by Theorem 3.1.1.
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1.3 Exotic Smooth G-homotopy equivalences

In Chapter 4, we investigate the difference between equivariant smooth homotopy equiva-

lences and equivariant topological homotopy equivalences. The Borel conjecture states that,

if X is aspherical, then the surgery theoretic topological structure set STOP (X) has only one

element. Explicitly, this means that every homotopy equivalence X ′ → X from a topological

manifold is homotopic to a homeomorphism. If the Borel conjecture holds for X, then there

are only finitely many smooth homotopy equivalences X ′ → X from a smooth manifold, up

to smooth homotopy [Wei90]. Our goal in Chapter 4 is to construct infinitely many smooth

aspherical G-manifolds Xα and smooth G-homotopy equivalences fα : Xα → X which are

not smoothly G-homotopic to each other.

The main results of Chapter 4 can be summarized in the following statement.

Theorem 1.3.1. There exist closed, equivariantly aspherical, smooth G-manifolds X which

admit infinitely many smooth G-homotopy equivalences {fα : Xα → X}α∈A such that the

following hold.

• The maps fα and fβ are not smoothly G-homotopic if α ̸= β,

• The maps fα and fβ are G-homotopic.

Unlike our constructions in Chapters 2 and 3, our construction of the manifolds Xα

appearing in Theorem 1.3.1 use the odd dimensional cohomology of the fixed set M . We

use elements of Hodd(M ;Q) to construct lens space PL-block bundles over M × I which are

trivial over M × S0. Then we replace a neighborhood of Sν with the G-cover of these block

bundles. We use the equivariant Novikov conjecture to distinguish these constructions from

each other. Finally, we emphasize that Theorem 1.3.1 is a statement about the maps fα

rather than a statement about the underlying G-manifolds Xα; there may be an equivariant

diffeomorphism Xα
∼= Xβ .
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CHAPTER 2

CHERN CLASSES AND EXOTIC NORMAL BUNDLES

2.1 Introduction

For a closed topological manifold X, a smoothing of X is defined to be a homeomorphism

Y → X where Y is a smooth manifold. In [KS77], the set TOP/O(X) of smoothings up

to isotopy is studied and it is shown that there is a bijection TOP/O(X) ∼= [X,TOP/O]

where TOP/O is an infinite loop space. In particular, this set is a cohomology group so

some computational methods are available.

The group Homeo(X) acts on TOP/O(X) and the quotient TOP/O(X) is the set of

smooth manifolds homeomorphic to X up to diffeomorphism. This set is more difficult

to compute. When n ≥ 5, the group [Sn, TOP/O] can be identified with the group of

homotopy spheres of [KM63] and is therefore finite. For n < 5, Kirby–Siebenmann show

that [Sn, TOP/O] is finite by other means. Consequently TOP/O(X) and TOP/O(X) are

finite sets. We may define analogous sets in an equivariant setting.

Definition 2.1.1. Let G be a finite group and letX be a G-manifold. A G-smoothing ofX is

an equivariant homeomorphism α : Y → X. Two G-smoothings α0 and α1 are isotopic if α0

is homotopic throughG-homeomorphisms to α′0 where α−11 ◦α
′
0 is aG-diffeomorphism. Define

TOP/OG(X) to be the set of isotopy classes of G-smoothings of X. Define TOP/OG(X) to

be the equivariant diffeomorphism classes of smooth G-manifolds Y which are equivariantly

homeomorphic to X.

Remark. If X is closed and TOP/OG(X) is infinite, then Kirby–Siebenmann’s result implies

there is a smooth structure onX such that there are infinitely many periodic diffeomorphisms

of X which are conjugate in Homeo(X) but not in Diff(X).

Schultz shows in [Sch79] that, for certain actions of Z/pZ on S2n with fixed point set S2,

the set TOP/OG(S
2n) is infinite contrary to the non-equivariant case. Our goal is to gen-
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eralize Schultz’s construction to smooth Z/pZ-actions on manifolds whose fixed point set is

not necessarily S2. Before explaining Schultz’s work we introduce some notions fundamental

to the study of smooth group actions.

For the remainder of the paper, let G = Z/pZ where p is an odd prime and let g0 be

a fixed generator. If M is a connected component of XG, then the normal bundle of M

inherits the structure of a real G-vector bundle with fiber a real G-representation V . We call

V the normal representation of M and we say that V is free if V G = {0}. All representations

obtained from normal bundles of fixed point sets are free. A bundle of G-representations is

said to be free if its fibers are free.

The nontrivial real irreducible G-representations are isomorphic to C where g0 acts via

multiplication by a primitive p-th root of unity. Moreover, the representation determined by

a primitive p-th root of unity ζ is isomorphic as a real representation to the one determined

by the complex conjugate ζ̄. So there are p−1
2 -many nontrivial irreducible free real G-

representations. If ν is the normal bundle of M as above, then ν decomposes as a sum

ν ∼=
⊕p−1

2
k=1 νk of eigenbundles for g0. If φ : Y → X is an equivariant diffeomorphism,

φ−1(M) ∼= M and the normal bundle of φ−1(M) is φ∗E.

2.1.1 Actions on Spheres

In [AS68], Atiyah and Singer define the G-signature signG(X) of a smooth G-manifold X.

This is an equivariant homotopy invariant of X valued in the real representation ring of G.

For computational purposes, it is convenient to identify a representation with its character.

The Atiyah–Singer G-signature theorem states

signG(X)(g) = ⟨A(g, V )L(Xg)M(g, ν), [Xg]⟩
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where A(g, V ) ∈ C, L(Xg) is the L-genus andM(g, ν) ∈ H∗(Xg;C) is a (non-homogeneous)

characteristic class of the normal bundle ν ofXg. The classM(g, ν) can be described in terms

of the Chern classes of ν. As suggested by the notation, the number A(g, V ) depends only on

the element g ∈ G and the representation V . We call A(g0, V )M(g0, ν) the Atiyah–Singer

class. In Lemma 2.4.7 we show that the representation is determined by the Atiyah–Singer

class.

Ewing [Ewi78] applies the Atiyah–Singer G-signature theorem to determine the possible

Chern classes of the normal bundle of the fixed point set of a smooth, semifree action of

a cyclic group. When X is a sphere, the G-signature always vanishes since spheres have

no middle-dimensional cohomology. Moreover, the fixed point set is a rational homology

2n-sphere by Smith theory so L(Xg0) = 1 and

M(g0, ν) = 1 +

p−1
2∑

k=1

Φn,kcn(νk)

where the Φn,k are elements of Q(ζ). Ewing shows that, unless n = 1 and 2 has odd order in

(Z/pZ)×, the elements Φn,k are Q-linearly independent as k varies. Since the Atiyah–Singer

class must vanish, this implies that, outside the special case, the Chern classes of the normal

bundle must vanish.

In the case p has odd order in (Z/pZ)×, Ewing shows that the set
{
Φ1,k

}p−1
2

k=1 is Q-linearly

dependent. If V is the normal representation of S2 then this implies that, provided V contains

enough nonzero eigenbundles, there are infinitely many G-vector bundles E over S2 with

fiber V whose Atiyah–Singer class vanishes. Schultz shows in [Sch79] that infinitely many

of these G-vector bundles can be realized as normal bundles of Z/pZ-actions on homotopy

2n-spheres.

The above results motivate the following questions.

Question 2. Suppose E is a free G-vector bundle over a CW-complex M . When does the

8



Atiyah–Singer class vanish?

Question 3. Given a free G-representation V , when are there infinitely many G-vector bun-

dles over M with fiber V and vanishing Atiyah–Singer class?

Question 4. Suppose G acts on X and let M be a component of XG with trivial normal

bundle M × V . If there are infinitely many G-vector bundles over M with fiber V and

vanishing Atiyah–Singer class, are there infinitely many G-smoothings of X realizing these

bundles as normal bundles?

2.1.2 Main Results

If E is a free G-vector bundle, we write E =
⊕p−1

2
k=1Ek for the decomposition into eigen-

bundles where g0 acts on the fiber of Ek via multiplication by ζk. In this case, we give a

complete answer to Question 2.

Theorem 2.1.2. Let E =
⊕p−1

2
k=1Ek be a free G-vector bundle over a space M . There is an

equality A(g0, V )M(g0, E) = 1 if and only if both of the following hold.

1.
∑p−1

2
k=1 c1(Ek)Φ1,k = 0 ∈ H2(M ;C);

2. For each k and n ≥ 1, cn(Ek) =
1
n!c1(Ek)

n.

When 2 has even order in (Z/pZ)×, Ewing shows that the first condition above implies

c1(Ek) = 0 for all k. Otherwise, the Q-span of
{
Φ1,k

}p−1
2

k=1 is a (p−1)(t−1)
2t -dimensional vector

space where t is the order of 2 in (Z/pZ)×. For simplicity, let u :=
(p−1)(t−1)

2t .

Definition 2.1.3. Let G = Z/pZ where p is such that 2 has odd order in (Z/pZ)×. Suppose

M is a space and V is a free G-representation. An element β ∈ H2(M ;Z) is sufficiently

nilpotent with respect to V if there is an N > 0 such that the following hold.

1. βN+1 = 0,
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2. V contains (u+ 1)-many irreducible real representations with multiplicity at least N .

Example 4. If V is contains one copy of each nontrivial irreducible real representation, then

every β satisfying β2 = 0 is sufficiently nilpotent with respect to V .

We can now state a partial answer to Question 3.

Theorem 2.1.4. Let G = Z/pZ and let V be a free G-representation. Suppose M is homo-

topy equivalent to a finite CW-complex.

1. If 2 has even order in (Z/pZ)× or if H2(M ;Q) = 0 then there are only finitely many

G-vector bundles over M with fiber V and vanishing Atiyah–Singer class.

2. If 2 has odd order in (Z/pZ)× and there is a nonzero β ∈ H2(M ;Q) sufficiently

nilpotent with respect to V , then there are infinitely many G-vector bundles over M

with fiber V and vanishing Atiyah–Singer class.

To more easily state our answer to Question 4 we introduce another auxiliary definition.

Definition 2.1.5. Suppose G acts smoothly on a manifold X and let M be a component

of the fixed point set. A G-vector bundle E over M is an exotic normal bundle of (X,M) if

G acts smoothly on a manifold Y and there is an equivariant homeomorphism f : Y → X

such that f−1(M) has normal bundle E.

Theorem 2.1.6. Suppose G = Z/pZ acts smoothly on a manifold X. Let M be a component

of XG whose normal bundle is M × V with V a free G-representation. Suppose M is

homotopy equivalent to a finite CW-complex and admits infinitely many G-vector bundles

with fiber V and vanishing Atiyah–Singer class. Then,

1. Infinitely many of these vector bundles may be realized as exotic normal bundles of

(X,M),
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2. The first Chern classes of these exotic normal bundles occupy infinitely many

GLdimQH2(M ;Q)(Z)-orbits of H2(M ;Q). In particular, TOP/OG(X) is infinite.

Remark. There are infinitely many primes p where 2 has odd order in (Z/pZ)×. Indeed, this

is true whenever p ≡ 7 modulo 8 and it occurs infinitely many times when p ≡ 1 modulo 8

(see [Ewi78]). Outside these cases, 2 always has even order in (Z/pZ)×.

Example 5. Suppose V is a 2n-dimensional real representation of G which contains at least

one copy of each nontrivial irreducible representation. Let DV denote the unit disk of V and

let SV denote the unit sphere. Then, S2n+2 = (S2×DV )∪S2×SV (D2×SV ) has a G-action

with fixed point set S2. The normal representation is V and the generator of H2(S2;Q) is

sufficiently nilpotent with respect to V so TOP/OG(S
2n) is infinite. This is the example of

Schultz.

Example 6. If M is smooth then the normal bundle of M diagonally embedded in M×p is

τ
⊕p−1
M where τM is the tangent bundle. If M×p is given a G-action via cyclically permuting

coordinates, then the normal bundle of M is τM ⊗R[G]/R. In particular, if M is also closed

and parallelizable such that H2(M ;Q) is nonzero and if p is a prime such that 2 has odd

order in (Z/pZ)× then Theorem 2.1.6 implies TOP/OG(M
×p) is infinite.

Let V be the reduced regular representation and let SV denote the one point compacti-

fication of V . If M is only stably parallelizable with H2(M ;Q) ̸= 0 and p is as above, then

TOP/OG(M
×p × SV ) is infinite.

Example 7. For a more complicated example, let M and V be as in Theorem 2.1.6. Suppose

M is closed. Then M ×SV is a closed manifold with a free G-action which nonequivariantly

bounds. By equivariant cobordism theory [CF64] a disjoint union of M × SV bounds a

smooth, compact manifold X ′ with free G-action. Define X to be the manifold obtained

by gluing copies of M × V to each boundary component of X ′. Then X will satisfy the

hypotheses of Theorem 2.1.6.

11



Modifying this construction also shows that there are infinitely many G-manifolds X for

which the hypotheses of 2.1.6 do not hold.

The hypotheses on the normal bundle of the fixed point set can be removed when we

stabilize as in [Las79]. Lashof defines a stable G-smoothing of a G-manifold X is a G-

smoothing of X × ρ for a finite dimensional G-representation ρ. Two stable G-smoothings

αi : Yi → X × ρi, i = 0, 1 are stably isotopic if there are representations σ0 and σ1 such

that αi × σi : Yi × σi → X × ρi × σi are isotopic. Let TOP/Ost
G(X) denote the set of stable

isotopy classes of stable G-smoothings of X.

Theorem 2.1.7. Let G = Z/pZ where p is such that 2 has odd order in (Z/pZ)×. Let X

be a smooth G-manifold. If H2(XG;Q) is nonzero for some component M of XG homotopy

equivalent to a finite CW-complex, then TOP/Ost
G(X) is infinite. In particular, if X is closed

and H2(XG;Q) ̸= 0 then TOP/Ost
G(X) is infinite.

2.1.3 Outline

The proof of Theorem 2.1.2 has a large computational component and will be the subject of

Section 2.2. In [Sch79], Schultz exploits the fact that homotopy classes of maps from spheres

into various classifying spaces have abelian group structures. We do not have this luxury at

our level of generality. It turns out that the maps we are concerned with will factor through

CPN for a sufficiently large N and self-maps of CPN serve as a replacement. We elaborate

on this and prove Theorem 2.1.4 in Section 2.3.

The idea of the proof of Theorem 2.1.6 is as follows: if M ⊆ XG has normal bundle

M × V , we remove M × V and glue in E where E is the total space of some free G-vector

bundle on M . To do this, we need M × SV to be equivariantly diffeomorphic to the unit

sphere bundle SE. We introduce block bundles in Section 2.4 and apply result of Cappell–

Weinberger to show that, if E has vanishing Atiyah–Singer class, then SE/G is almost

equivalent to M × SV/G as lens space block bundles over M . In Section 2.5, we show that
12



this equivalence can be taken to be a diffeomorphism and we prove Theorem 2.1.6. In Section

2.6 we give some remarks on the necessity of the trivial normal bundle hypothesis in our

theorems and we prove Theorem 2.6.2 which is a more general version of Theorem 2.1.6.

This theorem is used to prove Theorem 2.1.7.

2.2 Exponential Vector Bundles

In this section, we determine necessary and sufficient conditions for the vanishing of the

Atiyah–Singer class. The main result of this section is Theorem 2.1.2.

2.2.1 The Atiyah–Singer Classes

For the convenience of the reader and to establish notation, we review Hirzebruch’s theory

of multiplicative sequences and its application in the Atiyah–Singer G-signature formula.

Details can be found in [Hir66, Chapter 1] and [AS68, Section 6] Recall that, if E → X is

a complex rank n vector bundle, then the splitting principle asserts there is a space P (E)

with a map f : P (E) → X where f∗E splits into a sum of line bundles L1 ⊕ · · · ⊕ Ln and

f∗ : H∗(X)→ H∗(P (E)) is injective. So in H∗(P (E)), the total Chern class of E factors as

c∗(E) = 1 + c1(E) + · · ·+ cn(E) =
n∏

j=1

(1 + c1(Lj)).

This motivates the use of formal factorizations used below.

Fix a commutative ring R and let R[c1, c2, · · · ] be the graded commutative ring of poly-

nomials in cj where cj has grading 2j (we deviate slightly from the notation of [Hir66]

here). Similarly, we consider R[c1, · · · , cj ] as a graded commutative ring and, for conve-

nience, we set c0 = 1 ∈ R. A multiplicative sequence {Kj} is a sequence of polynomials

where Kj ∈ R[c1, · · · , cj ] is homogeneous of degree j, where K0 = 1 and such that, if there

13



is a formal factorization

1 + c1z + c2z
2 + · · · = (1 + c′1z + c′2z

2 + · · · )(1 + c′′1z + c′′2z
2 + · · · ),

then
∞∑
j=0

Kj(c1, · · · , cj)zj =
∞∑
j=0

Kj(c
′
1, · · · , c

′′
j )z

j
∞∑
k=0

Kk(c
′′
1 , · · · , c

′′
k)z

k.

Suppose Q(z) =
∑∞

j=0 bjz
j is a formal power series with coefficients in R. If b0 = 1,

then we can assign a multiplicative sequence {Kj} as follows. To determine Kj , let m ≥ j

and suppose there is a formal factorization

1 + b1z + · · ·+ bmz
m =

m∏
k=1

(1 + βkz)

where each βk is of degree 1. Suppose j1 ≥ j2 ≥ j3 ≥ · · · ≥ jr and that j1 + · · · + jr = j.

Then, the coefficient of cj1cj2 · · · cjr in Kj(c1, · · · , cj) is the sum of distinct Sj-translates of

βj1 · · · βjr . As an example, the coefficient of cj in Kj is βj1+β
j
2+ · · ·+β

j
m and the coefficient

of cj1 is the j-th elementary symmetric polynomial on β1, · · · , βm. So long as m ≥ j, these

coefficients are well-defined. We will let τ(j1, · · · , jr) denote the coefficient of cj1 · · · cjr .

Consider a free Z/pZ-vector bundle E over a manifold M . This breaks into a sum of

eigenbundles E =
⊕p−1

2
k=1Ek where a given generator g ∈ Z/pZ acts by a primitive p-th root

of unity ζk on Ek and such that ζk ̸= ζk
′
, ζ̄k

′
for k ̸= k′.

Let {Mζk
r (c1, · · · , cr)} be the multiplicative sequence determined by the power series

associated to (
ζk − 1

ζk + 1

)(
ζkez + 1

ζkez − 1

)
.

Define

Mζk(Ek) :=
∞∑
r=0

Mζk
r (c1(Ek), · · · , cr(Ek))

14



where c1(Ek), · · · , cr(Ek) ∈ H∗(M ;C) are Chern classes of the vector bundle Ek. The

complex number showing up in the Atiyah–Singer index theorem is

A(g, V ) =

p−1
2∏

k=1

(
ζk + 1

ζk − 1

)rankC(Ek)

and the classM(g, E) is

M(g, E) :=

p−1
2∏

k=1

Mζk(Ek).

Choose an integer m such that m > rankC(Ek) for all k and consider a formal factor-

ization
∏m

j=1(1 + βj,kz) of the first m terms of the power series
(
ζk−1
ζk+1

)(
ζkez+1
ζkez−1

)
. We may

writeMζk(Ek) as

Mζk(Ek) =
m∑
r=0

∑
j1≥···≥jℓ>0
j1+···+jℓ=r

τ(j1, · · · , jℓ)(ζk)cj1(Ek) · · · cjℓ(Ek).

Remark. The Φn,k in the introduction and in Theorem 2.1.2 are the numbers τ(n)(ζk).

We will rely on results from [Ewi78], summarized below, for our analysis of the Atiyah–

Singer class.

Lemma 2.2.1. If r > 1 then {τ(r)(ζ), τ(r)(ζ2), · · · , τ(r)(ζ
p−1
2 )} is a Q-linearly independent

set. If r = 1, then this set is Q-linearly independent if and only if 2 has even order in

(Z/pZ)×. Moreover, when 2 has odd order in (Z/pZ)×, the span of this set has dimension
(p−1)(t−1)

2t where t is the order of 2 in (Z/pZ)×.

The following observation will be important later.

Lemma 2.2.2. The numbers τ(j1, · · · , jℓ) are in Q(ζ). Moreover, if σ ∈ Gal(Q(ζ)/Q) then

σ(τ(j1, · · · , jℓ)(ζk)) = τ(j1, · · · , jℓ)(σ · ζk).
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Proof. Let σ be the field automorphism determined by ζ 7→ ζn. Suppose

(
ζk − 1

ζk + 1

)(
ζkez + 1

ζkez − 1

)
= 1 + b1,kz + b2,kz

2 + b3,kz
3 + · · ·

is a power series expansion. Each bj,k ∈ Q(ζ) and σ · bj,k = bj,nk, i.e. σ sends the power

series for
(
ζk−1
ζk+1

)(
ζkez+1
ζkez−1

)
to the power series for

(
ζnk−1
ζnk+1

)(
ζnkez+1
ζnkez−1

)
.

Let eℓ,k denote the ℓ-th elementary symmetric polynomial of the βj,k The factorization∏m
j=1(1 + βj,kz) of the first m terms implies that eℓ,k = bℓ,k for ℓ ≤ m so σ · eℓ,k = eℓ,nk.

Since τ(j1, · · · , jℓ)(ζk) is an algebraic combination of the eℓ,k, we see that it is indeed in

Q(ζ) and that

σ(τ(j1, · · · , jℓ)(ζk)) = τ(j1, · · · , jℓ)(ζnk)

as desired.

Theorem 2.1.2. Let E =
⊕p−1

2
k=1Ek be a free G-vector bundle over a space M . There is an

equality A(g0, V )M(g0, E) = 1 if and only if both of the following hold.

1.
∑p−1

2
k=1 c1(Ek)Φ1,k = 0 ∈ H2(M ;C);

2. For each k and n ≥ 1, cn(Ek) =
1
n!c1(Ek)

n.

Proof. Suppose
∏p−1

2
k=1M

ζk(Ek) = 1. It is clear that the first condition must hold since

the sum is the part of
∏p−1

2
k=1M

ζk(Ek) in cohomological degree 2. To prove that cn(Ek) =

1
n!c1(Ek)

n, we use induction. The case n = 1 is vacuous.

Suppose that n ≥ 2 and that cj(Ek) =
1
j!c1(Ek)

j for all k and all j ≤ n − 1. In degree

2n, the product
∏p−1

2
k=1M

ζk(Ek) can be expressed as


p−1
2∏

k=1

Mζk(Ek)


2n

=
∑

ℓ1,··· ,ℓp−1
2
≥0

ℓ1+···+ℓp−1
2

=n

p−1
2∏

k=1

∑
j1≥···≥jr>0
j1+···+jr=ℓk

τ(j1, · · · , jr)(ζk)cj1(Ek) · · · cjr(Ek)
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where the inner sum is taken to be 1 if ℓk = 0 and the subscript on the left hand side

indicates that we are restricting to the cohomological degree 2n part. It follows from the

definition of τ(1)(ζk) that

τ(1)(ζk)ℓkc1(Ek)
ℓk =

∑
j1,··· ,jn≥0

j1+···+jn=ℓk

ℓk!

j1! · · · jn!
β
j1
1,k · · · β

jn
n,kc1(Ek)

ℓk .

If ℓk < n, then the inductive hypothesis and the definition of τ(j1, · · · , jr) gives

τ(1)(ζk)ℓkc1(Ek)
ℓk =

∑
j1,··· ,jn≥0

j1+···+jn=ℓk

ℓk!β
j1
1,k · · · β

jn
n,kcj1(Ek) · · · cjn(Ek)

=
∑

j1≥···≥jr>0
j1+···+jr=ℓk

ℓk!τ(j1, · · · , jr)cj1(Ek) · · · cjr(Ek).

From this, we conclude

∑
j1≥···≥jr>0
j1+···+jr=ℓk

τ(j1, · · · , jr)cj1(Ek) · · · cjr(Ek) =
1

ℓk!
τ(1)(ζk)ℓkc1(Ek)

ℓ
k. (2.1)

Similarly, if ℓk = n, we get

τ(1)(ζk)nc1(Ek)
n = n!τ(n)(ζk)c1(Ek)

n +
∑

n>j1,··· ,jn≥0
j1+···+jn=n

n!β
j1
1,k · · · β

jn
n,kcj1(Ek) · · · cjn(Ek)

= n!τ(n)(ζk)c1(Ek)
n +

∑
n>j1≥···≥jr>0
j1+···+jr=n

n!τ(j1, · · · , jr)cj1(Ek) · · · cjr(Ek).
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This implies

∑
n≥j1≥···≥jr>0
j1+···+jr=n

τ(j1, · · · , jr)cj1(Ek) · · · cjr(Ek) =
1

n!
τ(1)(ζk)nc1(Ek)

n

− τ(n)(ζk)c1(Ek)
n + τ(n)(ζk)cn(Ek).

(2.2)

Using Equations (2.1) and (2.2) above, we may rewrite
(∏p−1

2
k=1M

ζk(Ek)

)
2n

as follows.


p−1
2∏

k=1

Mζk(Ek)


2n

=

p−1
2∑

k=1

(
τ(n)(ζk)cn(Ek)−

1

n!
τ(n)(ζk)c1(Ek)

n
)

(2.3)

+
∑

ℓ1,··· ,ℓn≥0
ℓ1+···+ℓp−1

2
=n

p−1
2∏

k=1

1

ℓk!
τ(1)(ζk)ℓkc1(Ek)

ℓk

Since
∑p−1

2
k=1 τ(1)(ζ

k)c1(Ek) = 0,

∑
k1,··· ,kn∈

{
1,··· ,p−1

2

}
n∏

m=1

τ(1)(ζkm)c1(Em) = 0. (2.4)

Suppose (k1, · · · , kn) ∈
{
1, · · · , p−12

}n
. Define a map (k1, · · · , kn) 7→ (ℓ1, · · · , ℓp−1

2
) where

ℓk is the amount of times k appears in (k1, · · · , kn). Clearly, ℓ1 + · · · + ℓp−1
2

= n for

(ℓ1, · · · , ℓp−1
2
) in the image and this assignment is invariant under the Sn action on the
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domain. Using this to re-index the sum above, we see that

∑
k1,··· ,kn∈

{
1,··· ,p−1

2

}
n∏

m=1

τ(1)(ζkm)c1(Em) =

∑
ℓ1,··· ,ℓn≥0

ℓ1+···+ℓp−1
2

=n

n!

ℓ1! · · · ℓp−1
2
!

p−1
2∏

k=1

τ(1)(ζk)ℓkc1(Ek)
ℓk .

Using Equations (2.3) and (2.4), we conclude


p−1
2∏

k=1

Mζk(Ek)


2n

=

p−1
2∑

k=1

(
τ(n)(ζk)cn(Ek)−

1

n!
τ(n)(ζk)c1(Ek)

n
)
.

Setting this to 0 and using Lemma 2.2.1 shows that cn(Ek) =
1
n!c1(Ek)

n.

For the converse, note that the computations above show the two conditions in the

proposition imply
∏p−1

2
k=1M

ζk(Ek) = 1.

The second condition of Theorem 2.1.2 can be written as c(Ek) = ec1(Ek). This motivates

the following definition.

Definition 2.2.3. A complex vector bundle E is exponential if its Chern classes satisfy

ck(E) =
1
k!c1(E)

k or, equivalently, if the total Chern class is ec1(E).

Example 8. Suppose E = L1 ⊕ · · · ⊕ Ld is a sum of line bundles such that c1(Lj)2 = 0

for each j = 1, · · · , d. It follows from the additivity of the total Chern class that cm(E)

is the m-th elementary symmetric polynomial on c1(L1), · · · , c1(Ld) when m ≤ d. The

hypothesis that c1(Lj)2 = 0 for each j implies that c1(E)m = m!cm(E). This example will

be generalized in Proposition 2.3.8 below.

We record the following observations.
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Proposition 2.2.4. Exponential vector bundles satisfy the following properties.

1. If E1 and E2 are exponential vector bundles then so is E1 ⊕ E2.

2. The pullback of an exponential vector bundle is an exponential vector bundle.

3. Exponential vector bundles have trivial Pontryagin classes.

Proof. 1. Since c1(E1 ⊕ E2) = c1(E1)⊕ c1(E2),

c(E1 ⊕ E2) = c(E1)c(E2) = ec1(E1)ec1(E2) = ec1(E1)+c1(E2) = ec1(E1⊕E2).

2. This follows from the naturality of Chern classes.

3. The total Pontryagin class is given by the formula

p(E) = 1+ p1(E) + p2(E) + · · · = (1+ c1(E) + c2(E) + · · · )(1− c1(E) + c2(E)− · · · ).

It follows that

pk(E) =
∑

i+j=k

(−1)jci(E)cj(E) =
∑

i+j=k

(−1)j 1

i!j!
c1(E)

k

=
1

k!

∑
i+j=k

(−1)j
(
k

j

)
c1(E)

k = 0.

Alternatively, we may write p(E) = ec1(E)e−c1(E) = e0 = 1.

We will only need the second and third property in Proposition 2.2.4.

Proposition 2.2.5. Suppose E is a free G-vector bundle over M with vanishing Atiyah–

Singer class. Then E has vanishing Euler class.
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Proof. Let d be the rank of E and let dk be the rank of each eigenbundle. By Theorem 2.1.2

the Euler class is scalar multiple of
∏p−1

2
k=1 c1(Ek)

dk and c1(Ek)
dk+1 = 0. Also,

0 =


p−1
2∑

k=1

τ(1)(ζk)c1(Ek)


d

=

p−1
2∏

k=1

τ(1)(ζk)dkc1(Ek)
dk

where the first equality follows from Theorem 2.1.2. Since τ(1)(ζk) ̸= 0, this implies∏p−1
2

k=1 c1(Ek)
dk = 0 as desired.

We conclude this section with a homotopical characterization of exponential vector bun-

dles. We will not use this result but it may be of independent interest.

Proposition 2.2.6. A complex vector bundle E over M is exponential if and only if its

Chern character is contained in H0(M ;Q)⊕H2(M ;Q).

Proof. Using the splitting principle, write c1(E) = x1 + · · · + xd where d is the rank of E.

Generally, cn(E) is the n-th elementary symmetric polynomial on x1, · · · , xd and the Chern

character is

ch(E) =
d∑

j=1

exj = d+
d∑

j=1

xj +
1

2

d∑
j=1

x2j + · · · .

To alleviate notation, let em denote them-th elementary symmetric polynomial on x1, · · · , xd

and let Pm :=
∑d

j=1 x
m
j . There are formal relations between elementary symmetric polyno-

mials and sums of powers.

Pn =
n∑

m=1

(−1)m−1emPn−m en =
1

n

n∑
m=1

(−1)m−1en−mPm

Suppose E is exponential. We must show that Pn = 0 for n ≥ 2. By hypothesis, we have

cn(E) =
1

n!
en1 = en.
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We proceed by induction on n. First, note that when n = 2, the above equation becomes

1
2P2+ e2 = e2 so this case follows immediately. Assume by induction that Pm = 0 whenever

2 ≤ m ≤ n. Then,

Pn+1 = (−1)nen−1P1 + (−1)n+1enP0 = (−1)n
en1

(n− 1)!
+ (−1)n+1n

en1
n!

= 0

as desired.

For the converse, suppose Pm = 0 for m ≥ 2. We must show en = 1
n!e

n
1 . We proceed by

induction with the case n = 1 being vacuous. Then,

en =
1

n
en−1P1 =

1

n
en−1e1 =

1

n!
en1

which completes the proof.

2.3 Construction of Vector Bundles

Our goal in this section is to construct exponential vector bundles with a prescribed first

Chern class β. If we require our exponential vector bundle to have rank N , then β must

satisfy βN+1 = 0. We show in Proposition 2.3.8 that, up to multiplying β by a nonzero

integer, this is the only requirement. Using these vector bundles and Theorem 2.1.2 we then

prove Theorem 2.1.4.

Obstruction theory will play an important role in promoting rational nullhomotopies to

integral nullhomotopies. We summarize the version of obstruction theory we need below.

We refer to [Bau77] for a obstruction theory when the target space is not necessarily simply

connected.

Theorem 2.3.1. Suppose E → B is a fibration with connected fiber F . Suppose (X,A)

is a relative CW-complex and f : X → B is a map. Let g : X(n) ∪ A → E be a lift
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of f on the relative n-skeleton of (X,A). If n ≥ 2, there is an obstruction class O(g) ∈

Hn+1(X,A; πnFρ) where πnFρ denotes a local coefficient system with stalk πnF . This class

vanishes if and only if g can be redefined over the relative n-skeleton leaving the relative

(n− 1)-skeleton fixed so that g extends as a lift to the relative (n+ 1)-skeleton.

Moreover, if h : (Y,C) → (X,A) is a cellular map then g ◦ h : Y (n) ∪ C → E is a lift

of f ◦ h : Y → B defined on the relative n-skeleton of (Y,C) and O(g ◦ h) = h∗O(g) ∈

Hn+1(Y,C;h∗πnFρ).

2.3.1 Obstruction Theory for CPN

Generally, it can be difficult to show that obstructions vanish when the relevant cohomol-

ogy group is nonzero. When a space has sufficiently nice self-maps, however, pulling back

cocycles allows us to find maps with vanishing obstruction cocycles. We record some useful

observations when the space X is CPN .

An element t ∈ H2(CPN ;Z) determines a map CPN → CP∞ where the induced map on

cohomology sends a generator of H2(CP∞;Z) to the element t. After pushing the map into a

2N -skeleton, we obtain a map λ : CPN → CPN . On H2k(CPN ;Z), λ induces multiplication

by tk. We say λ is a scaling map of CPN if the corresponding integer t is nonzero.

Lemma 2.3.2. Suppose E → B is a fibration with connected fiber F . Let f : CPN → B be

a map whose restriction to the 2-skeleton lifts to E. If, for n ≥ 2, each πnF consists only of

torsion elements then there is a scaling map λ : CPN → CPN such that f ◦ λ lifts to E.

Proof. Suppose there is a lift g : (CPN )(n) → E of f |
(CPN )(n)

. The obstruction to extending

this to a lift over (CPN )(n+1) is an element of Hn+1(CPN ; πnF ) (we use that CPN is simply

connected to justify constant coefficients and we use that CPN has only even dimensional

cells to ignore the subtlety of having to redefine g over the n-cells).

For a suitable scaling map λn of CPN , λ∗nO(g) = 0 so there is a lift of f ◦ λn over the

(n+1)-skeleton of CPN . Continuing this way shows that there is a lift of f ◦λ for a suitable
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scaling map λ.

Lemma 2.3.3. Suppose E → B is a fibration with connected fiber F . Let f : CPN → E be

a map such that the composite CPN → E → B is nullhomotopic. If, for n ≥ 2, each πnF

consists only of torsion elements, then there is a scaling map λ : CPN → CPN such that

f ◦ λ is nullhomotopic.

Proof. Let C(CPN ) denote the cone on CPN . The nullhomotopy in the hypothesis gives

the following diagram.

CPN E

C(CPN ) B

f

g

We would like to find a map C(CPN )→ E making the diagram commute.

Let Xn denote the relative n-skeleton of the pair (C(CPN ),CPN ). Note that X2 consists

of only CPN , the cone point, and an edge connecting the cone point to a CPN . By the

assumption that F is connected, the path in B determined by the edge lifts to a path in

E. Hence there is a map g2 : X2 → E lifting the map C(CPN ) → B. Let Σ denote the

suspension. Theorem 2.3.1 states that there is an obstruction

O(g2) ∈ H3(C(CPN ),CPN ; π2F ) ∼= H3(Σ(CPN );π2F ) ∼= H2(CPN ; π2F )

which vanishes if and only if g2 can be redefined over the relative 1-skeleton and extended to

the relative 3-skeleton. As in the proof of Lemma 2.3.2, we can consider a scaling map λ2 :

CPN → CPN such that the induced map onH2(CPN ; π2F ) eliminates the obstruction. Con-

ing λ2 gives a map of relative CW-complexes C(λ2) : (C(CPN ),CPN )→ (C(CPN ),CPN ).

Since λ2(g2) vanishes, we may redefine g2 ◦ C(λ2) : X2 → E over the relative 1-skeleton so

that there is a map g3 : X3 → E lifting g ◦ C(λ2) : C(CPN ) → B. Continuing this way
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shows that, after a suitable self-map λ of CPN , there is a lift in the diagram

CPN E

C(CPN ) B

f ◦ λ

g ◦ C(λ)
.

which proves the Lemma.

2.3.2 Characteristic Classes

Recall the isomorphism H∗(BU(N);Z) ∼= Z[c1, · · · , cN ] where each cm has degree 2m. Since

cm ∈ H2m(BU(N);Z), Brown representability identifies cm with a map cm : BU(N) →

K(Z, 2m) so the elements c1, · · · , cN together determine a map

c∗ : BU(N)→
N∏

m=1

K(Z, 2m).

By abuse of notation, we will use cm to denote both the element in H2m(BU(N);Z) and the

map above. Let xm ∈ H2m(K(Z, 2m);Z) be a generator of the cohomology group. Then,

c∗mxN = cm.

Rationally, there are isomorphisms

H∗(K(Z, 2m);Q) ∼= Q[xm]

and

H∗(
N∏

m=1

K(Z, 2m);Q) ∼=
N⊗

m=1

H∗(K(Z, 2m);Q) ∼= Q[x1, · · ·xN ].

The map (c∗)∗ sends xm to cm and so induces an isomorphism on rational cohomology

groups. Therefore, it induces an isomorphism on rational homotopy groups. In particular,
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we have

Lemma 2.3.4. The fiber of c∗ is connected with torsion homotopy groups.

One can perform a similar analysis with BSO(2N). Rationally, the cohomology ring is

H∗(BSO(2N);Q) ∼= Q[p1, · · · , pN−1, e] where pm ∈ H4m(BSO(2N);Q) are the Pontryagin

classes and e ∈ H2N (BSO(2N);Q) is the Euler class. These classes exist integrally and so

determine maps p∗ : BSO(2N) →
∏N−1

m=1K(Z, 4m) and e : BSO(2N) → K(Z, 2N). As in

the case of BU(N), the map

e× p∗ : BSO(2N)→ K(Z, 2N)×
N−1∏
m=1

K(Z, 4m)

induces an isomorphism of rational cohomology rings and, therefore, an isomorphism of

rational homotopy groups. This shows

Lemma 2.3.5. The fiber of e× p∗ is connected with torsion homotopy groups.

Suppose E is a complex vector bundle over M . By abuse of notation, identify E with a

map E : M → BU(N). If β ∈ H2m(M ;Z) is an element, then to say that cm(E) = β is to

say that the diagram
BU(N)

M K(2m,Z)

cmE

β

commutes. There is a similar interpretation of the Euler and Pontryagin classes.

2.3.3 Construction of Exponential Vector Bundles

We first study the special case of exponential vector bundles on CPN .
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Proposition 2.3.6. Let N ′ ≥ N be an integer and let α ∈ H2(CPN ;Z) be a generator.

There is an integer t > 0 and a rank N ′ exponential vector bundle E on CPN such that

c1(E) = tα.

Proof. First, define β := N !α, so that the classes βm

m! exist integrally. These classes define a

map

β∗ : CPN →
N ′∏
m=1

K(Z, 2m).

We would like to find a lift in diagram

BU(N ′)

CPN
∏N ′

m=1K(Z, 2m)

c∗

β∗

where c∗ denotes the map determined by the Chern classes. Such a lift need not exist but,

by Lemma 2.3.2, a lift of β∗ ◦ λ exists where λ is a scaling map of CPN . Let E denote

the vector bundle defined by this lift. Then, c1(E) = tβ for some nonzero integer t and

cm(E) = 1
m!c1(E)

m for m ≤ N ′. When m > N ′ then, by our assumption that N ′ ≥ N ,

cm(E) = 0 = 1
m!c1(E)

m.

Proposition 2.2.4 states that pullbacks of exponential vector bundles are exponential. We

obtain the following from taking further pullbacks along self-maps of CPN .

Proposition 2.3.7. Let N ′ ≥ N be an integer and let tα ∈ H2(CPN ;Z) denote the class

in Proposition 2.3.6. Then, any integer multiple of tα can be realized as c1(E) where E is a

rank N ′ exponential vector bundle.

The pullback property also allows us to construct exponential vector bundles over more

general spaces.
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Proposition 2.3.8. Let M be homotopy equivalent to a finite complex and let N ′ ≥ N .

Then for every β ∈ H2(M ;Z) satisfying βN+1 = 0, there is an integer t > 0 such that,

for all integers u, there is a rank N ′ exponential vector bundle E on M with c1(E) = utβ.

Moreover, the classifying maps M → BU(N ′) associated to these bundles factor through

CPN .

Proof. By Proposition 2.3.7 and the pullback property, it suffices to show that there is a

map f :M → CPN such that f∗α is some nonzero integer multiple of β.

We first reduce to the case that M is simply connected. Attach 2-cells to M in order to

obtain a simply connected finite complex M ′ such that M/M ′ ≃
∨
S2. Note that H2(M ′;Z)

surjects onto H2(M ;Z) and Hj(M ′;Z) ∼= Hj(M ;Z) for all j > 2. So, there is an element

β′ ∈ H2(M ′;Z) mapping to β and such that (β′)N+1 = 0. If the result holds for M ′, then

pulling the exponential vector bundle back along the inclusion M ⊆ M ′ shows the result

also holds for M .

Assuming M is simply connected, there is an element in the Sullivan algebra (ΛM , dM )

of M representing β. We will also use β to denote this element. The nilpotence hypothesis

on β implies there is a degree 2N + 1 element γ ∈ ΛM such that dMγ = (β)N+1. These

elements determine a map of differential graded algebras (ΛCPN , dCPN )→ (ΛM , dM ) which

yields a map of rationalizations

M(0) → CPN
(0).

We may assume M is a finite complex so that the map M → M(0) → CPN
(0)

has image in

a finite subcomplex of CPN
(0)

. The rationalization CPN
(0)

can be constructed as a homotopy

colimit of the diagram

CPN λ2−→ CPN λ3−→ CPN λ4−→ CPN → · · ·

where λt is the scaling map corresponding to the integer t. In particular, it is an infinite
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mapping telescope so the map M → CPN
(0)

factors through some finite mapping telescope

Tq = lim−→(CPN λ2−→ CPN λ3−→ · · · λq−→ CPN ).

There is a homotopy equivalence Tq → CPN so we have constructed a map M → CPN .

We now check that the pullback of α under this map is of the form tβ. Since M is simply

connected, H2(M ;Q) can be identified with Hom(π2(M);Q). Let β∗ denote the element in

π2(M) dual to β under this identification. Similarly, let α∗ ∈ π2(CPN ) denote the dual to

α and let α∗0 denote the image of α∗ in π2(CPN
(0)

). Under the identification CPN ≃ Tq, the

map CPN → CPN
(0)

sends α∗ to 1
q!α
∗
0. But the map M → CPN

(0)
sends β∗ to α∗0. It follows

that the map M → CPN sends β∗ to 1
q!α
∗. Hence, α pulls back to 1

q!β.

Theorem 2.1.4. Let G = Z/pZ and let V be a free G-representation. Suppose M is homo-

topy equivalent to a finite CW-complex.

1. If 2 has even order in (Z/pZ)× or if H2(M ;Q) = 0 then there are only finitely many

G-vector bundles over M with fiber V and vanishing Atiyah–Singer class.

2. If 2 has odd order in (Z/pZ)× and there is a nonzero β ∈ H2(M ;Q) sufficiently

nilpotent with respect to V , then there are infinitely many G-vector bundles over M

with fiber V and vanishing Atiyah–Singer class.

Proof of Theorem 2.1.4. Under the hypotheses of the first part, the Chern classes of each

eigenbundle vanish. Since the Chern classes determine a BU(N)→
∏N

m=1K(Z, 2m) whose

fiber has finite homotopy groups and M is homotopy equivalent to a finite complex, there

are only finitely many complex vector bundles of a fixed rank with prescribed Chern classes.

For the second part, suppose 2 has odd order in (Z/pZ)×. If β ∈ H2(M ;Z) is suf-

ficiently nilpotent with respect to V , we may apply Proposition 2.3.8 to take exponen-

tial vector bundles Ek such that c1(Ek) = uktβ where the uk realize the linear relation∑p−1
2

k=1 ukτ(1)(ζ
k) = 0. This proves the second part of Theorem 2.1.4.
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In order to address Question 4, we would like a converse to Theorem 2.1.4. The difficulty

in obtaining a converse is number theoretic; we know that any subset of {τ(1)(ζk)} of size

u+1 has a Q-linear relation but it is not clear whether there exist smaller subsets which are

Q-linearly dependent. However, we can say the following.

Proposition 2.3.9. Suppose M is homotopy equivalent to a finite complex and that there

are infinitely many G-vector bundles with vanishing Atiyah–Singer class. Then, infinitely

many of these G-vector bundles are pulled back from G-vector bundles over CPN .

Proof. We may assume that there is a vector bundle E with vanishing Atiyah–Singer class

and such that some of the c1(Ek) are nonzero rationally.

Let β ∈ H2(M ;Q) be one of the nonzero c1(Ek) where the N such that c1(Ek)
N+1 = 0

is minimal. By projecting the relation
∑p−1

2
k=1 τ(1)(ζ

k)c1(Ek) = 0 to the Q(ζ)-subspace of

H2(M ;Q(ζ)) spanned by β, we see that there is a linear relation
∑p−1

2
k=1 τ(1)(ζ

k)βk where

βk is a rational multiple of β and βk = 0 if c1(Ek) = 0. Moreover, our choice of β ensures

that the dimension of the eigenspace Vk is at least N when βk ̸= 0. By scaling the βk

simultaneously, we may use Proposition 2.3.8 to realize βk as the first Chern class of an

exponential bundle factoring through CPN . Adding these together gives a bundle over M

with vanishing Atiyah–Singer class which factors through CPN . Composing with self-maps

of CPN gives infinitely many such vector bundles.

2.4 Block Bundles

We recall some definitions and facts about block bundles. We refer to [Cas96] and [RS71]

for a more detailed treatment.

Definition 2.4.1. Let K be a finite simplicial complex and let Y be a polyhedron. Let π :

E → |K| be a continuous map. A block chart for a simplex σ ⊆ K is a PL-homeomorphism

hσ : π−1(σ)→ σ × Y
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such that, for each face τ ≤ σ, the restriction hσ|π−1(τ) is a PL-homeomorphism π−1(τ)→

τ × Y . We say that π : E → |K| is a block bundle with fiber Y if there is a block chart for

every simplex σ ⊆ K.

It is not true that, for a PL-block bundle, π−1(x) ∼= F for an arbitrary point x ∈ |K|;

this distinguishes block bundles from fiber bundles. One can define block bundles with other

structure groups. We will only be concerned with PL-block bundles. Our block bundles

will typically be over smooth manifolds in which case we give the manifold a PL-structure

compatible with the smoothing.

Definition 2.4.2. Let πi : Ei → |K| be PL-block bundles for i = 0, 1. An isomorphism of

PL-block bundles is a PL-homeomorphism H : E0 → E1 such that H(π−10 (σ)) = π−11 (σ)

for all simplices σ ⊆ K.

The block bundles π0 and π1 are equivalent if there is a subdivision K ′ of K such that

π0 and π1 determine isomorphic block bundles over K ′.

Casson shows in [Cas96] that equivalence of PL-block bundles is an equivalence relation.

Definition 2.4.3. Let Y be a polyhedron. Define P̃L(Y ) to be the simplicial group whose

d-simplices are the PL-homeomorphisms f : ∆d × Y → ∆d × Y such that, for each face

σ ⊆ ∆d,

f(π−1
∆d(σ)) ⊆ π−1

∆d(σ)

where π∆d : ∆d × Y → ∆d is the projection. If Y is an orientable PL-manifold, define

S̃PL(Y ) to be the simplicial group whose d-simplices are the orientation preserving PL-

homeomorphisms f : ∆d × Y → ∆d × Y satisfying the above property.

One can construct classifying spaces BP̃L(Y ) for PL-block bundles with fiber Y . The

following is [Cas96, Theorem 2].

Theorem 2.4.4. There is a bijection between equivalence classes of PL-block bundles over

K with fiber Y and homotopy classes of maps [K,BP̃L(Y )].
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Finally, we record a consequence of the fact that block bundles are controlled over the

base space. Let SOG(V ) denote the group of G-equivariant orientation preserving linear

transformations of V . Suppose E0 and E1 are two G-vector bundles such that the composites

M → BSOG(V ) → BS̃PL(SV/G) are homotopic. Let D0 and D1 be the respective unit

disk bundles and let SE0 and SE1 denote the respective unit sphere bundles. The homotopy

M × I → BS̃PL(SV/G) gives a concordance W of PL-block bundles SE1/G and SE2/G.

Let W̃ denote the G-cover. We may form the G-manifold E′ := W̃ ∪SE1
D1 which has

boundary SE0.

Proposition 2.4.5. In the situation above, suppose f : SE1/G→ SE0/G is an equivalence

of PL-block bundles over M . Let f̃ denote the map on covers. Then there is an equivariant

homeomorphism E′ → D0 restricting to f̃ on the boundary.

Proof. First, note that D0\M is equivariantly homeomorphic to SE0× [0,∞). We construct

an equivariant homeomorphism W ∪SE1
D1 \M → SE0 × [0,∞) such that the restriction

to the boundary is f̃ and we show that this homeomorphism extends to M .

By hypothesis, W , SE0/G and SE1/G have the same classifying map. So after taking a

subdivision ofM×I, there is an isomorphism of PL-block bundles F : W/G→ SE0/G×[0, 1]

which restricts to f on SE0/G×{0}. Let M0 denote the triangulation of M×{0} and let M1

denote the triangulation of M × {1}. Let f1 denote the isomorphism F |SE1/G
: SE1/G →

SE0/G.

Write Wj for the trivial PL-block bundle over M × [j, j + 1] where we equip M with a

triangulation subordinate to the barycentric subdivision of Mj . Subdivide Wj so that there

is an isomorphism of PL-block bundles Fj : Wj →M × [j, j + 1]× SE0/G restricting to fj

on the part over M × {j}. Define Mj+1 to be the triangulation on M × {j + 1} and define

fj+1 to be the restriction of Fj to the part over M × {j + 1}.
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Continuing this way, we obtain a homeomorphism

W/G ∪SE1/G
(SE1/G× [1,∞))→ SE0/G× [0,∞).

Lifting to the G-cover gives an equivariant homeomorphism

W ∪SE1
(SE1 × [1,∞))→ SE0 × [0,∞).

This extends continuously to M ; any sequence in W ∪SE1
(SE1×[1,∞)) approaching a point

m ∈M will get sent to a sequence on the right hand side approaching the same point.

2.4.1 The Rational Homotopy Type of BS̃PL(SV/G)

In [CW91], Cappell–Weinberger describe BS̃PL(SV/G) rationally. Let L̃sk(G) denote the

reduced simple L-space of G; this is a space satisfying πnL̃sk(G) = L̃sn+k(G) where the right

hand side denotes the reduced simple L-groups.

Theorem 2.4.6 (Cappell–Weinberger). There is a map

BS̃PL(SV/G)→ BS̃PL(SV )× L̃sdimR V (G)(0).

whose fiber is connected with torsion homotopy groups.

Remark. Cappell–Weinberger state that the map in Theorem 2.4.6 is a 1
2|G| -equivalence.

They do not show that BS̃PL(SV/G) is simply connected. Their proof shows that the fun-

damental group is a finite solvable group with a composition series having |G|-torsion abelian

subquotients. They also show that the map on higher homotopy groups is an equivalence

after inverting 2 |G|.

In Theorem 2.4.6, the map BS̃PL(SV/G) → BS̃PL(SV ) is given by pulling back a

homeomorphism of ∆d × SV/G to ∆d × SV . In particular, if an equivariant vector bundle
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is non-equivariantly trivial, then the composite

M → BSOG(V )→ BS̃PL(SV/G)→ BS̃PL(SV )

is nullhomotopic.

The other component of the map involves the Atiyah–Singer class and an argument with

the Conner-Floyd isomorphism (a more detailed treatment of an analogous argument may

be found in [MM79, Chapter 4]). First recall the rational equivalence L̃sdimR V (G)(0) ≃

BO(R̃O(G))(0) × Ω2BO(R̃O(G))(0) where BO(R̃O(G)) denotes Ω∞ of KO smashed with

Moore spectrum. To define a map BS̃PL(SV/G)→ BO(R̃O(G))(0) it suffices to define an

element of KO0(BS̃PL(SV/G); R̃O(G)(0)).

The universal coefficients theorem for KO gives an isomorphism

KO0(X; R̃O(G)(0))→ Hom(KO0(X), R̃O(G)(0))

for finite complexes X. An inverse limit argument shows that, for infinite X, there is a

surjection

KO0(X; R̃O(G)(0))→ lim←−Hom(KO0(X
(i)), R̃O(G)(0))

where the limit on the right is taken over skeleta.

The Conner-Floyd isomorphism states that ΩSO
4∗+i(X)⊗ΩSO∗ (∗) Z[

1
2 ]
∼= KOi(X;Z[12 ]). So

given an element of

Hom(ΩSO
4∗ (X)⊗ΩSO∗ (∗) Z[

1

2
], R̃O(G)(0))

we obtain an element of KO0(X; R̃O(G)(0)) and hence a map

X → BO(R̃O(G))(0).
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This map is unique up to homotopy if X is a finite complex.

We now define the homomorphism AS ∈ Hom(ΩSO
4∗ (X)⊗ΩSO∗ (∗) Z[

1
2 ], R̃O(G)(0)) giving

rise to the map BS̃PL(SV/G) → BO(R̃O(G))(0). Suppose f : M → BS̃PL(SV/G) rep-

resents an element of ΩSO(BS̃PL(SV/G)). Let SE/G → M be the corresponding block

bundle. Then SE/G has a G-cover SE which is a block bundle over M with fiber SV . Since

G acts freely on SE and because SE bounds non-equivariantly, there is an integer r > 0

such that r-many copies of SE bounds a manifold X on which G acts freely. Define

AS([f ]) :=
1

r
signG(X)− sign(E) · triv

where signG denotes the R̃O(G)-valued multisignature, sign(E) denotes the (non-equivariant)

signature of the block bundle obtained by coning the sphere bundle and triv denotes the triv-

ial representation.

So far, only “half” of the map BS̃PL(SV/G)→ LsdimR V (G)(0) has been defined; we still

need to define a map

BS̃PL(SV/G)→ Ω2BO(R̃O(G))(0).

This is equivalent to a map Σ2BS̃PL(SV/G)→ BO(R̃O(G))(0). As above, we obtain such

a map from a group homomorphism

Ω4∗(Σ
2BS̃PL(SV/G))⊗ΩSO∗ (∗) Z[

1

2
] ∼= Ω4∗+2(BS̃PL(SV/G))⊗ΩSO∗ (∗) Z[

1

2
]
AS−−→ R̃O(G)(0).

This homomorphism is defined using the Atiyah–Singer invariant in an identical manner.

Suppose the f : M → BS̃PL(SV/G) factors through BSOG(V ). Then we may regard

SE above as the sphere bundle of the corresponding G-vector bundle and, by [AS68, Section

7], AS([f ]) is the element of R̃O(G) with character

AS([f ])(g) = ⟨A(g, V )L(M)M(g, E), [M ]⟩ .
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The following lemma asserts that the character is determined by its value on a generator of

G.

Lemma 2.4.7. Suppose ξ =
⊕p−1

2
k=1 ξk and E =

⊕p−1
2

k=1Ek are two G-vector bundles with

fiber V and with eigenbundle decompositions associated to a generator g0 of G. If

p−1
2∏

k=1

Mζk(ξk) =

p−1
2∏

k=1

Mζk(Ek)

then AS(M, ξ) = AS(M,E).

Proof. For an arbitrary gn0 ∈ G, we have

AS(M,E)(gn0 ) =

〈
A(gn0 , V )L(M)

p−1
2∏

k=1

Mζnk(Ek), [M ]

〉
.

Let σ ∈ Gal(Q(ζ)/Q) be the automorphism defined by ζ 7→ ζn. By Lemma 2.2.2,

AS(M,E)(gn0 ) =

〈
A(gn0 , V )L(M)σ


p−1
2∏

k=1

Mζk(Ek)

 , [M ]

〉

=

〈
A(gn0 , V )L(M)σ


p−1
2∏

k=1

Mζk(ξk)

 , [M ]

〉

= AS(M, ξ)(gn0 ).

Proposition 2.4.8. Suppose M is homotopy equivalent to a finite complex and ν0, ν1 :

M → BSOG(V ) determine G-vector bundles with equal Atiyah–Singer classes. Then the

compositions

M → BSOG(V )→ BS̃PL(SV/G)→ L̃sdimR V (G)(0)
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is are homotopic.

Proof. Since M is homotopy equivalent to a finite complex, if the two induced maps

Hom(ΩSO
4∗ (BS̃PL(SV/G))⊗ΩSO∗ (∗) Z[

1

2
], R̃O(G))→

Hom(ΩSO
4∗ (M)⊗ΩSO∗ (∗) Z[

1

2
], R̃O(G))

send the map AS to the same element, they determine the same map M → BO(R̃O(G))(0).

For i = 0, 1, let ν̃i denote the composition

M
νi−→ BSOG(V )→ BS̃PL(SV/G).

Suppose h : M ′ → M represents an element of ΩSO
4∗ (M). Then ν0 ◦ h and ν1 ◦ h classify

G-vector bundles over M ′ with equal Atiyah–Singer classes. So the Atiyah–Singer invariants

of the two SV/G-block bundles over M ′ are equal. It follows that ν̃i ◦ h represent elements

of ΩSO
4∗ (BS̃PL(SV/G)) such that AS([ν̃0 ◦ h]) = AS([ν̃1 ◦ h]).

A similar argument shows that ν0 and ν1 determine the same map

M → Ω2BO(R̃O(G))(0).

Using Proposition 2.4.8 we can show that vector bundles with vanishing Atiyah–Singer

class can be taken to have lens space bundles which are trivial as PL-block bundles.

Proposition 2.4.9. Suppose M is homotopy equivalent to a finite complex. Suppose there

are infinitely many G-vector bundles over M with fiber V and vanishing Atiyah–Singer class.

Then, infinitely many of these G-vector bundles E satisfy the following properties.

1. The classifying map of E factors through CPN ,
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2. The corresponding lens space bundle SE/G is isomorphic as a PL-block bundle to the

trivial bundle M × SV/G.

Proof. As before, we begin with the case M = CPN . By hypothesis and Proposition 2.4.8,

the composite

CPN E−→ BSOG(V )→ BS̃PL(SV/G)→ L̃sdimR V (G)(0)

is nullhomotopic.

We show that the composite

CPN E−→ BSOG(V )→ BS̃PL(SV/G)→ BS̃PL(SV )

also vanishes. There is a commuting diagram

CPN BSOG(V ) BS̃PL(SV/G)

BSO(V ) BS̃PL(SV )

E

where the left vertical map is obtained by forgetting the action. So it suffices to show that

E is trivial as a (non-equivariant) real vector bundle. The Pontryagin classes of E vanish

by Proposition 2.2.4 and the Euler class vanishes by Proposition 2.2.5. We have shown that

the composition

CPN E−→ BSOG(V )→ BSO(V )
e×p∗−−−→ K(Z, dimR V )×

dimR V/2−1∏
m=1

K(Z, 4m)

is nullhomotopic. Applying Lemma 2.3.2 to the fibration BSO(2d)
e×p∗−−−→ K(Z, 2d) ×
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∏d−1
m=1K(Z, 4m) shows that, after composing with a scaling map λ of CPN , the composite

E ◦ λ : CPN → BSOG(V )→ BSO(2d) is nullhomotopic.

Replace E with the λ∗E so that it is trivial as a (non-equivariant) real vector bundle.

So far, we have constructed an E =
⊕p−1

2
k=1Ek such that some c1(Ek) is a nonzero and such

that the composite

CPN E−→ BSOG(V )→ BS̃PL(SV/G)→ BS̃PL(SV )× L̃s2d(G)(0)

is nullhomotopic. It remains to show that we can modify E so that the map is nullhomo-

topic integrally. We apply Lemma 2.3.3 to the fibration BS̃PL(SV/G) → BS̃PL(SV ) ×

L̃sdimR V (G)(0) to see that, for a scaling map λ : CPN → CPN ,

CPN λ−→ CPN E−→ BSOG(V )→ BS̃PL(SV/G)

is nullhomotopic.

For the general case, apply Proposition 2.3.9 to the result on CPN .

2.5 Smoothing PL-Concordances

In this section, we would like to take advantage of the fact that a closed manifold of dimension

at least 5 has only finitely many smooth structures in order to show that the vector bundles

constructed above, whose lens space bundles have homeomorphic total spaces, can be made

to have diffeomorphic total spaces.

Let us first recall some classical facts about smoothing. We refer the reader to [HM74]

for details.

Definition 2.5.1. Given a closed PL-manifold M , a smoothing of M (or a smooth structure

on M) is a smooth manifold M0 and a PL-homeomorphism f0 : M0 → M . Two smooth

39



structures fi : Mi → M , i = 0, 1, are concordant if there is a smooth structure on the

PL-manifold M × I and a PL-homeomorphism F :M × I →M × I such that the following

hold.

• F restricts to f0 on M × {0};

• F restricts to f1 ◦ ϕ on M × {1} for some diffeomorphism ϕ of M1.

Let PL/O(M) denote the concordance classes of smoothings of M . When dimM ≥ 5,

this set can be identified with concordance classes of linear structures on the stable tan-

gent PL-microbundle. Specifying an initial smooth structure η on M gives a bijection

PL/O(M) ∼= [M,PL/O] and PL/O has an H-space structure induced by Whitney sum. Let

PL/O(M, η) denote the set of concordance classes of smoothings with a specified smooth

structure η. Thus PL/O(M, η) is a homotopy functor from the category of smooth manifolds

and continuous maps to abelian groups.

2.5.1 Differentiable Vector Bundles

Suppose p : E → M is a vector bundle where M is smoothable and let U be an atlas on M

such that p is locally trivial over each U ∈ U . Given a smooth structure η on M , we may

assume that the transition maps Uα ∩ Uβ → GLk(R) are smooth for Uα and Uβ in some

subatlas U ′. The vector bundle equipped with a maximal subatlas satisfying this property is

called a differentiable vector bundle. By [HM74, p.89, Theorem 1.9], every vector bundle over

a smooth manifold admits the structure of a differentiable vector bundle and this structure

is unique.

The total space of a differentiable vector bundle has a unique smooth structure such that

the local trivializations p−1U → U×Rn are smooth. It turns out that this assignment yields

a well-defined bijection p! : PL/O(M)→ PL/O(E) [HM74, p. 93, Theorem 2.6]. If we wish

to consider these as pointed sets, then there is a well-defined bijection p! : PL/O(M, η) →
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PL/O(E, p!η). It is important to note that there are generally multiple ways of making

the total space E a vector bundle over M and different ways of doing so result in different

bijections.

Using the structure group SOG(V ), can define differentiable G-vector bundles over a

smooth manifold (with trivial G-action) similarly and the proof of [HM74, p.89, Theorem 1.9]

shows that every G-vector bundle admits a unique differentiable G-vector bundle structure.

When V is a free representation, this gives the corresponding lens space bundle a smooth

structure.

2.5.2 Functoriality

Suppose f : (M, η)→ (N,ω) is a continuous map between smooth manifolds. Hirsch-Mazur

[HM74, p. 111] give the following description of the induced map PL/O(f) : PL/O(N,ω)→

PL/O(M, η). Let φ : (N, β) → (N,ω) represent a smooth structure in PL/O(N,ω) which

we will denote [β]. Let ρ denote the standard smooth structure on R. For some sufficiently

large integer d, there is a smooth embedding

ψ : (M, η)→ (N × Rd, ω × ρd)

such that πN ◦ψ is homotopic to f . Then the normal bundle ν of ψ(M) ⊆ (N ×Rd, ω× ρd)

determines a vector bundle on the PL-submanifold ψ(M) ⊆ (N×Rd, β×ρd). The total space

E(ν) has a smooth structure ν!η coming from the smooth structure η on M and the vector

bundle structure. This space can also be identified with an open subset of (N ×Rd, β × ρd)

hence it inherits a smooth structure [β× ρd] ∈ SPL/O(E(ν), ν!η). Since ν! : PL/O(M, η)→

PL/O(E(ν), ν!η) is a bijection, there is a unique smooth structure [α] ∈ PL/O(M, η) such

that ν!([α]) = [β × ρd]. The smoothing α represents PL/O(f)([β]).

The next result essentially states that given a smooth map between manifolds, the smooth
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structure on a pullback PL-block bundle is the pullback smooth structure induced by maps

of total spaces.

Proposition 2.5.2. Suppose F,M and N are smooth manifolds. Let E0 and E1 be F -

bundles over N such that E0 and E1 are smooth and the projections to N are smooth. Let

φ : E1 → E0 be an isomorphism of PL-block bundles and let f : M → N be smooth. Let η

denote the given smooth structure on E0 and let f∗η denote the smooth structure on f∗E0

making it a smooth submanifold of M × E0 and let f∗ : PL/O(E0, η) → PL/O(f∗E0, f
∗η)

be the induced map on smooth structures. Then, f∗[φ] is represented by the induced map on

pullbacks f∗E1 → f∗E0.

Proof. Let ψ : M → Rd be a smooth embedding. This determines a smooth embedding

f∗E0 → E0 × Rd which sends x ∈ f∗E0 to (f(x), ψ ◦ πf∗E0
x) where πf∗E0

: f∗E0 → M is

the bundle projection. Let ν0 denote the normal bundle of this embedding. The total space

E(ν0) inherits a smooth structure as an open subset of E0 × Rd. Let us call this structure

γ. Also, there is the smooth structure ν!0f
∗η coming from the vector bundle structure. By

Hirsch-Mazur’s description of the induced map,

ν!0(PL/O(f)([SE/G])) = [γ]

in the set PL/O(E(ν0), ν!0f
∗η).

Let W denote a concordance of PL-block bundles between E0 and E1. Then, f∗W

is a concordance of PL-block bundles between f∗E0 and f∗E1. Moreover, there is an

isomorphism F : W → E1 × I of PL-block bundles over N × I. Let πM denote the

composite f∗W →M × I →M and consider the PL-embedding

(F × idRd) ◦ (f × (ψ ◦ πM )) : f∗W → W × Rd → E1 × I × Rd.

Over 0 ∈ I, this restricts to the embedding f∗E0 → E0 × Rd above and over 1 ∈ I, this
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restricts to a smooth embedding f∗E1 → E1 × Rd. Let ν1 denote the normal bundle of the

second embedding. By taking an open neighborhood of the image of F (f × (ψ ◦ πM )), we

see that the smooth structure [γ] above is the same as ν!1[f
∗φ]. So it suffices to show that

ν0 and ν1 are isomorphic as vector bundles.

Let ν denote the normal bundle of the smooth embedding f × ψ : M → N × Rd. The

pullback of ν to W restricts to ν0 over 0 ∈ I and ν1 over 1 ∈ I which shows that ν0 and ν1

are isomorphic vector bundles.

2.5.3 Smooth Trivialization of SE/G

We now show that the isomorphism SE/G → M × SV/G of lens space block bundles over

M can be made into a diffeomorphism of total spaces. As before, the main tool will be the

use of scaling maps of CPN .

Proposition 2.5.3. Suppose E is a G-vector bundle over CPN and let f : SE/G→ CPN ×

SV/G be an equivalence of PL-block bundles. Then, there is a scaling map λ : CPN → CPN

such that λ∗f : λ∗SE/G→ λ∗(CPN × SV/G) is PL-isotopic to a diffeomorphism.

Proof. Identify [CPN×SV/G, PL/O] with the smoothings of CPN×SV/G by specifying the

product smooth structure. The isomorphism of PL-block bundles f : SE/G→ CPN×SV/G

determines an element [f ] ∈ [CPN × SV/G, PL/O]. Since PL/O is an infinite loop space,

there is a generalized cohomology theory E∗ such that E0(X) = [X,PL/O]. Explicitly,

if PL/O = ΩnEn, then for n ≥ 0, En(X) = [X,En] and E−n(X) = [X,ΩnPL/O]. In

particular, there is an Atiyah-Hirzebruch-Serre spectral sequence

Hi(CPN ;Ej(SV/G))⇒ Ei+j(CPN × SV/G).

Let Xn denote π−1
CPN ((CPN )(n)), the preimage of the n-skeleton of CPN under the projec-
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tion. Convergence means that there is a filtration

· · ·Fn ⊆ Fn−1 ⊆ · · · ⊆ F0 = Ei+j(CPN × SV/G)

where, for n > 0, Fn is the kernel of the restriction

Ei+j(CPN × SV/G)→ Ei+j(Xn−1)

such that the E∞-terms of the spectral sequence are subquotients of the filtration. We will

only be interested in the case where i + j = 0 in which case En,−n
∞ = Fn/Fn+1. We may

assume that over a vertex x0 of CPN , f restricts to a diffeomorphism so [f ] vanishes under

the restriction

[CPN × SV/G, PL/O]
x∗0−→ [SV/G, PL/O].

In particular, [f ] ∈ F1.

Now, if λ : CPN → CPN is a scaling map, it induces a map of fiber bundles

λ : λ∗(CPN × SV/G) ∼= CPN × SV/G→ CPN × SV/G

and hence a morphism of spectral sequences. For n > 1, this induces multiplication by

tn on Hn(CPN ;E−n(SV/G)) for some integer t. Since the homotopy groups of PL/O are

finite, so are the groups [SV/G,ΩnPL/O] = E−n(SV/G). It follows that, by choosing an

appropriate λ, F1 is in the kernel of the induced map

λ∗ : E0(CPN × SV/G)→ E0(CPN × SV/G).

In particular, [f ] ∈ [CPN × SV/G, PL/O] vanishes after pulling back along λ. The result

now follows from Proposition 2.5.2.
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Using the case for CPN , we can give an analogous statement for bundles over M .

Proposition 2.5.4. Suppose a G-vector bundle over a smooth manifold M given by Propo-

sition 2.4.9 is classified by the composite

M
β−→ CPN E′

−→ BSOG(V ).

Then, there is a scaling map λ of CPN such that the G-vector bundle E classified by

M
β−→ CPN λ−→ CPN E′

−→ BSOG(V )

gives a lens space bundle SE/G which is equivalent as a PL-block bundle to M × SV/G.

Moreover this equivalence is PL-isotopic to a diffeomorphism.

Proof. Proposition 2.5.3 shows that there is a positive degree self-map λ of CPN such that

λ∗E′/G is equivalent as a PL-block bundle to CPN×SV/G and that this equivalence is PL-

isotopic to a diffeomorphism. Applying Proposition 2.5.2 to β∗ : [CPN × SV/G, PL/O] →

[M × SV/G, PL/O] gives the desired result.

2.5.4 Proof of Theorem 2.1.6

We can now prove

Theorem 2.1.6. Suppose G = Z/pZ acts smoothly on a manifold X. Let M be a component

of XG whose normal bundle is M × V with V a free G-representation. Suppose M is

homotopy equivalent to a finite CW-complex and admits infinitely many G-vector bundles

with fiber V and vanishing Atiyah–Singer class. Then,

1. Infinitely many of these vector bundles may be realized as exotic normal bundles of

(X,M),
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2. The first Chern classes of these exotic normal bundles occupy infinitely many

GLdimQH2(M ;Q)(Z)-orbits of H2(M ;Q). In particular, TOP/OG(X) is infinite.

Proof. Let X and M ⊆ XG be as in the theorem. Define X̄ to be the complement of an

equivariant tubular neighborhood ofM inX. Then X̄ has a G action and ∂X̄ is equivariantly

diffeomorphic to M × SV .

By Proposition 2.4.9 and Proposition 2.5.4, for infinitely many of these vector bundles E,

there are isomorphisms of PL-block bundles SE/G→M ×SV/G which are PL-concordant

to diffeomorphisms. Let f : SE/G → M × SV/G denote the diffeomorphism and let f̃

denote its lift on G-covers. Define the smooth G-manifold Y := X̄ ∪
f̃
E.

It remains to construct an equivariant homeomorphism g : Y → X. On X̄, we take g to be

the identity so we just need to construct an equivariant homeomorphism g : DE →M×DV

where D denotes the unit disk bundle and such that g restricts to f̃ on the boundary.

Since f is PL-concordant to an equivalence of PL-block bundles, there is a PL-isomorphism

F : SE/G×I →M×SV/G×I such that F |SE/G×{0} = f and F |SE/G×{1} is an equivalence

of PL-block bundles over M . Writing DE = SE × I ∪DE and defining g to be the lift of

F on SE × I, we may assume instead that f is an equivalence of PL-block bundles over M .

Proposition 2.4.5 shows that f̃ may be extended to an equivariant homeomorphism. This

proves the first part.

For the second part, just note that by taking scaling maps of CPN , the first Chern classes

are being multiplied by constants t with |t| > 1.

2.6 Nontrivial Normal Bundles

So far, we have concentrated on the case where the normal bundle of M is trivial as a G-

vector bundle. If this assumption is removed, the characteristic class computations become

much more difficult and there is not much we are able to say. Suppose ξ =
⊕p−1

2
k=1 ξk and

E =
⊕p−1

2
k=1Ek are G-vector bundles over M . In order for the Atiyah–Singer classes to be
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equal, one sees that, in cohomological degree 2,

∑
τ(1)(ζk)(c1(ξk)− c1(Ek)) = 0

so the classes c1(ξk)− c1(Ek) must realize the linear relation between the τ(1)(ζk). One can

also derive a condition for c2.

Proposition 2.6.1. If ξ and E have the same Atiyah–Singer class, then

c2(ξk)− c2(Ek) =
1

2
c1(ξk)

2 − 1

2
c1(Ek)

2.

Proof. In cohomological degree 4, we have

0 =


p−1
2∏

k=1

Mζk(ξk)


4

−


p−1
2∏

k=1

Mζk(Ek)


4

=

p−1
2∑

k=1

τ(2)(ζk)(c2(ξk)− c2(Ek)) +

p−1
2∑

k=1

τ(1, 1)(ζk)(c1(ξk)
2 − c1(Ek)

2)

+
∑

k1 ̸=k2

τ(1)(ζk1)τ(1)(ζk2)(c1(ξk1)c1(ξk2)− c1(Ek1)c1(Ek2)).

We use the conditions on the first Chern class to simplify the expression.

0 =


p−1
2∑

k=1

τ(1)(ζk)(c1(ξk)− c1(Ek))


2

=

p−1
2∑

k1,k2=1

τ(1)(ζk1)τ(1)(ζk2)(c1(ξk1)c1(ξk2)− c1(Ek1)c1(ξk2)

− c1(ξk1)c1(Ek2) + c1(Ek1)c1(Ek2))
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We can square

2

p−1
2∑

k=1

τ(1)(ζk)c1(ξk) =

p−1
2∑

k=1

τ(1)(ζk)(c1(ξk) + c1(Ek))

to obtain

4

p−1
2∑

k1,k2=1

τ(1)(ζk1)τ(1)(ζk2)c1(ξk1)c1(ξk2)

=

p−1
2∑

k1,k2=1

τ(1)(ζk1)τ(1)(ζk2)(c1(ξk1)c1(ξk2) + c1(ξk1)c1(Ek2)

+ c1(Ek1)c1(ξk2) + c1(Ek1)c1(Ek2)).

Now, subtracting 2
∑p−1

2
k1,k2=1 τ(1)(ζk1)τ(1)(ζk2)(c1(ξk1)c1(ξk2) + c1(Ek1)c1(Ek2)) from both

sides gives

2

p−1
2∑

k1,k2=1

τ(1)(ζk1)τ(1)(ζk2)(c1(ξk1)c1(ξk2)− c1(Ek1)c1(Ek2))

=

p−1
2∑

k1,k2

τ(1)(ζk1)τ(1)(ζk2)(−c1(ξk1)c1(ξk2) + c1(ξk1)c1(Ek2)

+ c1(Ek1)c1(ξk2)− c1(Ek1)c1(Ek2)).

Our previous computation shows that this is 0.

We use this to cancel out many of the classes showing up in the Atiyah–Singer formula.
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We obtain

0 =

p−1
2∑

k=1

τ(2)(ζk)(c2(ξk)− c2(E2))− τ(1)(ζk)2(c1(ξk)2 − c1(Ek)
2)

+ τ(1, 1)(ζk)(c1(ξk)
2 − c1(Ek)

2)

=

p−1
2∑

k=1

τ(2)(ζk)(c2(ξk)− c2(Ek))−
1

2
(c1(ξk)

2 − c1(Ek)
2).

By linear independence of {τ(2)(ζk)}, we obtain c2(ξk)−c2(Ek) =
1
2(c1(ξk)

2−c1(Ek)
2).

This condition on c2 shows that our analysis of the trivial bundle case does not naïvely

extend to the nontrivial case.

Example 9. Let M = CP2#CP2. The cohomology ring of M is

H∗(M ;Z) ∼= Z[a, b]/(a3 = b3 = 0, ab = 0, a2 = −b2).

Now, let ξ =
⊕p−1

2
k=1 ξk where each eigenbundle ξk is a line bundle with c1(ξk) = a. Suppose

E =
⊕p−1

2
k=1Ek has the same Atiyah–Singer class. Then each Ek must be a line bundle so

Proposition 2.6.1 gives

c1(Ek)
2 = c1(ξk)

2 = a2.

Writing c1(Ek) = xa+ yb, this equation becomes

(x2 − y2)a2 = a2.

Since x2 − y2 = 1 has only finitely many integer solutions, we conclude that there only

finitely many cohomology classes appear as c1(Ek). Finally, note that (a+ b)2 = 0 so there

is a nonzero element sufficiently nilpotent with respect to the representation.
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Proposition 2.6.1 suggests a condition such as

cm(ξk)− cm(Ek) =
1

m!
c1(ξk)

m − 1

m!
c1(Ek)

m

is the correct way of generalizing the exponential condition. However, we have not been

able to modify the proof of 2.1.2 to this more general case. In order to show that sums of

exponential vector bundles give rise to trivial lens space block bundles, we also had to show

that the Pontryagin classes and the Euler class vanish. It follows from Proposition 2.6.1 that

p1(ξk) = p1(Ek) when ξ and E have the same Atiyah–Singer class. In general, there is no

reason to expect the Pontryagin classes or the Euler class of ξ and E to be equal when ξ

and E have the same Atiyah–Singer class.

Our methods do give smoothings when the normal bundle has a large trivial summand.

By factoring a normal bundle M → BSOG(V ) through Y × CPN where Y is a product of

Grassmannians, we can prove the following.

Theorem 2.6.2. Let G = Z/pZ where p is such that 2 has odd order in (Z/pZ)×. Let X

be a smooth G-manifold and let M be a component of XG.

Suppose the normal bundle ν of M is of the form ν0 ⊕ εV1 where εV1 denotes the trivial

G-vector bundle for some representation V1. If there is a nonzero element β ∈ H2(M ;Q)

sufficiently nilpotent with respect to V1, then TOP/OG(X) is infinite.

Proof. Let E be a G-vector bundle over M with fiber V whose lens space bundle is trivial as

a PL-block bundle constructed as in Theorem 2.1.4. Since SOG(V0) is a product of unitary

groups, there is a product of Grassmannian manifolds Y such that the classifying map for
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ν ⊕ E factors as follows.

M Y × CPN BSOG(V0)×BSOG(V1) BSOG(V0 ⊕ V1)

BS̃PL(SV0/G)×BS̃PL(SV1/G) BS̃PL(S(V0 ⊕ V1)/G)

γ × E′

The map M → CPN is determined by a nonzero multiple of the cohomology class β. By

abuse of notation, we will denote this map by β. The map E′ : CPN → BSOG(V1) defines

a G-vector bundle whose lens space bundle is trivial as a PL-block bundle. We may assume

that the ζk-eigenbundle E′k of E′ (corresponding to the eigenbundle decomposition with

respect to some fixed generator g0 ∈ Z/pZ) has nonzero first Chern class.

We first consider the bundle γ × E′ over M = Y × CPN . Since the lens space bundle

of E′ gives a trivial PL-block bundle, we see that the lens space bundle of the G-vector

bundle γ × E′ is isomorphic as a PL-block bundle to γ × εV1 . This gives us an element of

PL/O(S(γ × εV1)/G, η) where η is the smooth structure on the lens space bundle given by

considering γ × εV1 as a differentiable G-vector bundle. Note that S(γ × εV1)/G is a bundle

over CPN with fiber the total space of S(γ × εV1|Y×{∗})/G. In particular, we may apply

the Atiyah-Hirzebruch-Serre spectral sequence

Hi(CPN ;E−i(S(γ × εV1|Y×{∗})/G))⇒ [S(γ × εV1)/G, PL/O]

and argue as in Proposition 2.5.3 to see that, for some scaling map λ of CPN , there is a

PL-block bundle isomorphism λ∗S(γ × E′)/G → S(γ × εV1)/G which is PL-isotopic to a

diffeomorphism. Moreover, λ∗(γ × E′) = γ × λ∗E′ so c1(λ∗(γ × E′)) = c1(γ) + tc1(E
′) for

some nonzero t. This equation also holds on eigenbundles so c1(λ∗(γ×E′)) ̸= c1((γ×εV1)k).

As a consequence, ν0⊕β∗λ∗E′ is aG-vector bundle overM such that c1((ν0⊕β∗λ∗E′)k)−
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c1((ν0⊕εV1)k) is a nonzero integer multiple of β. Also, there is an isomorphism of PL-block

bundles S(ν0⊕ β∗λ∗E′)/G→ S(ν0⊕ εV1)/G which is PL-isotopic to a PL-diffeomorphism.

Proceeding as in the proof of Theorem 2.1.6, we see that ν0 ⊕ β∗λ∗E′ is an exotic normal

bundle of (X,M). Finally, taking further compositions with scaling maps Y × CPN →

Y × CPN shows that there are infinitely many such bundles whose ζk-eigenbundles have

distinct first Chern classes.

2.6.1 Stable Smoothings

Definition 2.6.3. Let X be a G-manifold. A stable G-smoothing of X is a G-smoothing

α : Y → X×ρ where ρ is some G-representation. Two stable G-smoothings αi : Yi → X×ρi,

i = 0, 1 are stably isotopic if there are representations σi such that ρ0 ⊕ σ0 ∼= ρ1 ⊕ σ1 and

the smooth G-structures αi× idσi : Yi× σi → X × ρi× σi are G-isotopic. Let TOP/Ost
G(X)

denote the stable isotopy classes of stable G-smoothings.

Theorem 2.1.7. Let G = Z/pZ where p is such that 2 has odd order in (Z/pZ)×. Let X

be a smooth G-manifold. If H2(XG;Q) is nonzero for some component M of XG homotopy

equivalent to a finite CW-complex, then TOP/Ost
G(X) is infinite. In particular, if X is closed

and H2(XG;Q) ̸= 0 then TOP/Ost
G(X) is infinite.

Proof. By Theorem 2.6.2, after taking the product with a sufficiently large representation ρ,

the set TOP/OG(X × ρ) is infinite. For a smoothing α : Y → X × ρ, let (να−1M)k denote

the ζk-eigenbundle of the normal bundle of α−1(M). The construction of these smoothings

yields an infinite set
{
αj : Yj → X × ρ

}
such that c1((να−1

i M
)k) ̸= c1((να−1

j M
)k) for some

k and whenever i ̸= j. If σ is a G-representation,

c1((να−1
i M

)k) = c1((ν(αi×idσ)−1M )k)
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so we see that

c1((ν(αi×idσ)M )k) ̸= c1((ν(αj×idσ)M )k)

whenever i ̸= j. Therefore, the smoothings constructed in Theorem 2.6.2 are not stably

isotopic.
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CHAPTER 3

THE WHITEHEAD GROUP AND STABLY TRIVIAL

G-SMOOTHINGS

3.1 Introduction

A smooth structure, or a smoothing, of a manifold X can be represented by a homeo-

morphism f : Y → X where Y is smooth. Two such homeomorphisms f0, f1 determine

isotopic smooth structures if there is a smooth structure on Y × I and a homeomorphism

F : Y × I → X × I satisfying the following.

• F restricts to f0 over Y × {0},

• F restricts to f1 ◦ ϕ over Y × {1} where ϕ : Y1 → Y1 is a diffeomorphism,

• F restricts to a homeomorphism Y × {t} → X × {t}.

When we discuss smooth structures, we consider homeomorphisms as above under this equiv-

alence relation. If G is a finite group (or, more generally, a compact Lie group), one defines

isotopy classes of equivariant smooth structures for G-manifolds analogously.

Isotopy classes of equivariant smooth structures differ from the non-equivariant coun-

terpart in important ways. First, if fi : Yi → X are isotopic smooth structures of high

dimensional manifolds, then Y0 and Y1 are diffeomorphic. This is because every smooth

structure on the product Y0 × I is diffeomorphic to a product smooth structure. Equivari-

antly, this is not true [BH78].

Another important difference is the number of smooth structures. Kirby–Siebenmann

showed in [KS77] that a closed manifold of dimension at least 5 has only finitely many

smooth structures up to isotopy. If X is a closed G-manifold, there need not be finitely

many equivariant smoothings. In [Sch79], Schultz gives S2n the structure of a Z/p-manifold
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and shows that, when 2 has odd order in (Z/p)× and n is sufficiently large, the resulting Z/p-

manifold has infinitely many Z/p-smoothings. Schultz’s example is generalized in Chapter 2

where infinitely many exotic Z/p-smoothings are constructed using the second cohomology

of the fixed point set. The constructions in [Sch79] and Chapter 2 are done by changing

the normal bundle of the fixed point set in a way that does not change the underlying

equivariant topological structure. One differentiates between infinitely many Z/p-smoothings

by examining the Chern classes of these bundles. If Y1 → X and Y2 → X are distinct Z/p-

smoothings given by this construction, then Y1×ρ→ X×ρ and Y2×ρ→ X×ρ are distinct

for any Z/p-representation ρ.

A key theorem in smoothing theory, proven by Kirby–Siebenmann, is the product struc-

ture theorem. This states that smooth structures ofX are in bijection with smooth structures

of X×R. It is shown in Chapter 2 that an equivariant version of the stabilization map in the

product structure theorem is not generally surjective. Indeed, if M is a Z/p-manifold with

a trivial action, then it has only finitely many Z/p-smoothings. But, if H2(M ;Q) ̸= 0 and 2

has odd order in (Z/p)×, then M × ρ has infinitely many Z/p-smoothings for a sufficiently

large representation ρ (one may take ρ to be (R[Z/p]/R)dimM ).

In the present chapter, we construct infinitely many equivariant smoothings XW → X

of Z/m-manifolds X where W varies over certain elements of a Whitehead group. The XW

constructed will not be equivariantly diffeomorphic to each other but they will all be stably

trivial in the sense that XW ×R is equivariantly diffeomorphic to X×R. The constructions

come from h-cobordisms of the sphere bundle of the normal bundle of a component M of the

fixed set and will be done away from the normal bundle. Our main theorem is the following.

Theorem 3.1.1. Let G be an odd order cyclic group of order at least 5 and let X be a closed,

smooth semifree G-manifold. Suppose M is a component of the fixed point set which is closed,

aspherical and whose fundamental group satisfies the K-theoretic Farrell–Jones conjecture.

Suppose either of the following hold.
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1. M (and, hence X) is odd dimensional.

2. M is even dimensional, H2(M ;Q) ̸= 0 and there are distinct prime factors pi, pj of

|G| such that pi has odd order in (Z/pj)×.

Then there are infinitely many elements of TOP/OG(X) which vanish under the stabilization

map TOP/OG(X)→ TOP/OG(X × R).

The K-theoretic Farrell–Jones conjecture for M allows us to understand parts of the

Wh(π1M × G) by considering the homology of M with coefficients in the lower K-theory

of Z[G]. The G-smoothings in the first case of Theorem 3.1.1 come from H0(M ;Wh(G))

whereas the G-smoothings in the second case come from H2(M ;K−1(Z[G])).

Remark. In Theorem 3.1.1, we require X be closed so that there are only finitely many

components of the fixed set homeomorphic to M .

Remark. Both the smoothings constructed in Theorem 3.1.1 and those constructed in [Sch79]

and [Wan23] involve both the second cohomology of the fixed point set and the order of

elements in (Z/p)×. We believe this is coincidental though it would be very interesting if

there were some deeper number theoretic or homotopy theoretic reason.

3.1.1 Outline

In Section 3.2, we describe the construction giving rise to the G-smoothings in Theorem

3.1.1. In Section 3.3, we reduce the proof of Theorem 3.1.1 to an analysis of the involution

on K−1(Z[G]). In the appendix, we elaborate on Madsen–Rothenberg’s analysis of the

involution on K−1(Z[G]). The results of this section are qualitative in the sense that we

do not compute the dimension of the eigenspaces of the involution though we expect a

computation to be feasible.
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3.2 The Construction of Smoothings

3.2.1 Whitehead Torsion

Recall that, for a ring R, K1(R) := GL(R)ab and that, for a group G, the Whitehead group

is Wh(G) := K1(Z[G])/⟨±g⟩. There is an involution τ1 on K1(R[G]) defined by sending a

matrix M to the inverse of its conjugate transpose. This induces an involution on Wh(G)

which we also denote by τ1.

Remark. The involution τ1 is the negative of the involution considered in [Mil66]. We will

let τ1 be our “standard” involution as it behaves better with the involution on K0(R[G])

defined by dualization.

Let M0 be a closed, connected n-dimensional CAT-manifold where CAT is the category

TOP, PL or DIFF . A cobordism over M0 consists of a tuple (W ;M0, f0,M1, f1) where W

is an (n + 1)-manifold with ∂W = ∂0W
∐
∂1W and the maps f0 : M0 → ∂0W and f1 :

−M1 → ∂1W are CAT-isomorphisms. Here, −M1 denotes M1 with a reversed orientation.

An h-cobordism is a cobordism such that f0 and f1 are homotopy equivalences. We will

usually write (W ;M0,M1) instead and suppress the fi from the notation. Two h-cobordisms

(W ;M0,M1) and (W ′;M0,M2) over M0 are isomorphic if there is a CAT isomorphism

F : W0 → W1 of manifolds with boundary such that F ◦ f0 = f1. When n ≥ 5, there is a

bijection between isomorphism classes of h-cobordisms over M0 and the Whitehead group

given by Whitehead torsion (W ;M0,M1) 7→ τ(W,M0).

The following formula can be found in [Mil66, Section 10].

τ(W,M0) = (−1)n+1τ1 · τ(W,M1)

We will be interested in h-cobordisms where M0
∼= M1, which are called inertial. A slightly

more convenient class of h-cobordisms are the strongly inertial h-cobordisms. These are

57



the inertial h-cobordisms such that the map M0 → M1 is homotopic to a homeomorphism.

The set of strongly inertial cobordisms forms a subgroup and it is a homotopy invariant of

M . Neither of these are necessarily true for inertial cobordisms. It turns out that strongly

inertial cobordisms are a finite index subgroup of the invariant subgroup Wh(π1M)(−1)
n+1

.

This holds for any choice of CAT [JK18, Proposition 5.2]. We refer to [JK18] for more details

on inertial and strongly inertial h-cobordisms.

3.2.2 Controlled h-Cobordisms

We will be interested in h-cobordisms over lens space bundles over a manifold M . Hence our

notation here will differ from our notation above.

Definition 3.2.1. Let (M,d) be a metric space and let ε > 0. Suppose p : E → M and

p′ : E′ →M are functions.

1. A function f : E → E′ is ε-controlled if, for all x ∈ E, d(p(x), p′ ◦ f(x)) < ε.

2. A homotopy H : E × I → E′ is ε-controlled if, for all x ∈ E, the set p′ ◦H(x, I) has

diameter less than ε.

Definition 3.2.2. Let p : E → M be a (not necessarily continuous) function where M is a

compact metric ANR. Let (W ;E,E′) be an h-cobordism and let φ : W →M be a map. We

say that φ : (W ;E,E′) → M is a controlled h-cobordism with respect to p if, for all ε > 0,

there is a deformation retraction of W to E which is ε-controlled.

Two controlled h-cobordisms φi : (Wi;Ei, E
′
i) → M , i = 0, 1, are controlled isomorphic

if, for all ε > 0, there is an isomorphism of h-cobordisms Φ : W0 → W1 which is ε-controlled

over M .

Proposition 3.2.3. Suppose ξ →M is a G-vector bundle whose fibers are G-representations

whose only fixed point is the origin. Let Ẽ denote the sphere bundle of ξ and let p : E →
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M denote the lens space bundle obtained by quotienting. Let (W ;E,E) be a controlled h-

cobordism with respect to p and let W̃ denote the G-cover. Then there is an equivariant

homeomorphism W̃ ∪
Ẽ
Dξ → Dξ where Dξ denotes the disk bundle. If f : Ẽ → Ẽ is a

controlled equivariant homeomorphism, then the homeomorphism can be assume to restrict

to f on the boundary.

Proof. Let εn be a sequence such that
∑
εn < ∞. Write (W0;E0, E1) := (W ;E,E) and

let (W1;E1, E2) denote a controlled h-cobordism such that (W0 ∪W1;E0, E2) is controlled

isomorphic to (E × I;E,E). Let F1 : W0 ∪W1 → E × I be an ε1-controlled isomorphism

and let f1 denote the restriction of F1 on E2. Inductively, define

• (Wn;En, En+1) to be a controlled h-cobordism such that

(Wn−1 ∪fn−1
Wn;En−1, En+1) ∼= (E × I;E,E)

as controlled h-cobordisms,

• Fn : (Wn−1 ∪fn−1
Wn;En−1, En+1)→ (E × I;E,E) to be a an εn-controlled isomor-

phism and

• fn to be the restriction of Fn on En+1.

All En are of course diffeomorphic to E.

Define

Y := W0 ∪W1 ∪f1 W2 ∪f2 W3 ∪ · · · .

Clearly, Y is homotopy equivalent to E so we may take a G-cover Ỹ . Define pY : Y →M as

follows. For x ∈ Wn \ En+1, let pY (x) be the composition Wn → En
p−→ M where the first

map comes from an εn-deformation retraction. Note that pY is not, in general, continuous.

Topologize Ỹ ∪M by declaring that a sequence of points xn ∈ Wn converges to m ∈M if

pY (xn) converges to m. Let F : Y → E× [0,∞) be defined to be F2n+1 on W2n∪f2nW2n+1

59



and let G : Y → W ∪E E × [0,∞) be defined to be the identity W0 → W and F2n on

W2n−1 ∪f2n−1
W2n. Then F̃ and G̃ are equivariant homeomorphisms

W̃ ∪
Ẽ
Ẽ × [0,∞)

G̃←− Ỹ
F̃−→ Ẽ × [0,∞)

which extends to equivariant homeomorphisms

W̃ ∪
Ẽ
Dξ ← Ỹ ∪M → Dξ.

3.2.3 The Construction of XW

Suppose X is a smooth, semifree G-manifold and let M be a component of XG. Let ν denote

the normal bundle of M , let Sν denote the sphere bundle, let Dν denote the disk bundle

and let D̊ν denote the interior of Dν. Then Sν has a free G-action and E := Sν/G is a lens

space bundle over M . Define X ′ := X \ D̊ν.

Let (W ;E,E) be a smooth inertial h-cobordism controlled over M and let W̃ be the

G-cover. Define

XW := X ′ ∪ W̃ ∪Dν.

By Proposition 3.2.3, there is an equivariant homeomorphism XW → X. Moreover, if

(W ′;E,E) is another h-cobordism as above such that φτ(W ′, E) ̸= τ(W,E) for any auto-

morphism φ of Wh(π1E), then there is no equivariant diffeomorphism XW
∼= XW ′ sending

M to M . Indeed, if there were an equivariant diffeomorphism, then there would be a diffeo-

morphism W ∼= W ′ which is a contradiction.

Remark. An important detail used here is that equivariant diffeomorphisms respect the

normal bundle of M , unlike equivariant homeomorphisms.
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As a consequence of the above discussion, we have the following.

Proposition 3.2.4. Let X be a closed smooth G-manifold with E and M as above. Suppose

Wh(π1E) is finitely generated and that some nonzero free abelian subgroup can be represented

by inertial h-cobordisms over E controlled over M . Then the constructions XW above give

infinitely many smooth G-manifolds which are equivariantly homeomorphic but not equivari-

antly diffeomorphic.

We also record the following.

Proposition 3.2.5. There is are equivariant diffeomorphisms XW × S1 → X × S1 and

XW × R→ X × R where S1 and R are given trivial actions.

Proof. Let (W ;E0, E1) be an h-cobordism. Since the Euler characteristic of S1 vanishes,

there is an isomorphism

F : W × S1
∼=−→ E0 × I × S1.

Taking the Z-cover shows that W×R ∼= E0×I×R as h-cobordisms over E0. The proposition

follows from the construction of XW .

3.3 Control and Assembly

In this section, we use the assembly map and a result of Quinn to find inertial h-cobordisms

over E controlled over M .

3.3.1 Controlled h-Cobordisms and Homology

Let p : E → M be a bundle with connected fiber F and suppose M is connected. Denote

π := π1M . Following [FLS18], define a functor E : Or(π)→ Top by sending each orbit π/H

to the pullback bundle over the cover of M corresponding to H. Let E : Top → Sp be a
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functor from spaces to spectra. Define E(p) to be the composite E◦E. For a π-CW-complex

X, we may define the Davis–Lück equivariant homology groups Hπ
∗ (X;E(p)).

We are primarily interested in the case E is the Whitehead spectrum Wh. Recall that this

is defined as follows. For a space X, let A(X) denote the nonconnective A-theory spectrum

of X. Then Wh(X) is defined to be the cofiber of the assembly X+ ∧A(∗)→ A(X).

One may alternatively define a Whitehead spectrum using algebraic K-theory instead.

Let WhK(X) be the cofiber of the assembly Bπ1X+∧K(Z)→ K(Z[π1X]) where K denotes

the nonconnective algebraic K-theory spectrum. The linearization map A(X) → K(π1X)

is a map of spectra with involution [Vog85, Proposition 2.11] and it induces isomorphisms

of groups with involution

πnWh(X)→ πnWhK(X)

for n ≤ 1.

In [Qui82], Quinn defines homology with coefficients in a spectrum valued functor E :

Top → Sp. Let H(M ;E) denote this homology spectrum and let Hk(M ;E) denote the

homotopy groups. He shows that a particular homology group H1(M ;S(p)) is in bijection

with h-cobordisms (W ;E,E′) controlled over M where p : E → M . Farrell–Lück–Steimle

compare Quinn’s homology group with the Davis–Lück equivariant homology theory.

Proposition 3.3.1. Suppose M is an aspherical manifold and E is a closed manifold. Let

M̃ be the universal cover of M and let π = π1M . Let p : E →M be a bundle with connected

fiber F and let φ : (W ;E,E′) → M be a controlled h-cobordism. There is an invariant

q(φ, p) ∈ Hπ
1 (M̃ ;Wh(p)) such that the following hold.

1. Two controlled h-cobordisms are controlled isomorphic if and only if their invariants

are equal.

2. When dimE ≥ 5, all invariants in this group can be realized.

Proof. This follows from [Qui82, 1.2] and the identification of Quinn’s homology group with
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Hπ
1 (M̃ ;Wh(p)) in [FLS18, Lemma 4.9].

3.3.2 Assembly

Quinn also defined an assembly map H1(M ;S(p)) → Wh(π1E) which can be compared to

the Farrell–Jones assembly in the Davis–Lück formulation. Geometrically, Quinn’s assem-

bly sends a controlled h-cobordism (W ;E,E′) to the torsion τ(W,E) where we consider

(W ;E,E′) as an “uncontrolled” h-cobordism. Farrell–Lück–Steimle show that, when M is

aspherical, the Quinn assembly map has the same image as the Davis–Lück assembly map

[FLS18, Lemma 4.9.iii]. Finally, they show that the Davis–Lück assembly map

Hπ
1 (M̃ ;Wh(p))→ Hπ

1 (pt;Wh(p)) = π1(Wh(E))

is split injective provided M is aspherical, p : E → M is π1-surjective and π satisfies the

K-theoretic Farrell–Jones conjecture.

3.3.3 Some Additional Simplifications

Returning to our geometric situation, we have a closed aspherical n-manifold M whose

fundamental group π satisfies the K-theoretic Farrell–Jones conjecture. Moreover, the map

p : E →M is a lens space bundle with fiber F . The only orbits involved in the construction

of the Davis–L uck homology spectrum is the orbit G/pt. Since Wh(p)(G/pt) = Wh(F ),

there is an isomorphism Hπ
1 (M̃ ;Wh(p)) ∼= H1(M ;Wh(F )) where the right hand side should

be thought of as a generalized twisted homology group.

We may simplify this further. Let G denote π1F . Since M is aspherical, there is an

extension

G→ π1E → π.

Let Ẽ denote the G-cover of E. The covering map Ẽ → E exhibits G as a quotient π1E/π.
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Therefore, π1E ∼= G × π. In particular, the action of π on the fundamental group π1F is

trivial. Linearization gives an isomorphism

H1(M ;Wh(F ))→ H1(M ;WhK(F ))

of twisted generalized homology groups. But since the action of π on WhK(F ) is determined

entirely by its action on π1F , the homology group on the right hand side is untwisted.

The following proposition follows from Proposition 3.2.4, Proposition 3.3.1 and the above

discussion.

Proposition 3.3.2. If H1(M ;WhK(F ))(−1)
n+1τ1 has nonzero rank then there are infinitely

many distinct G-smoothings of X. Here, the homology group is untwisted.

3.3.4 Involutions on H1(M ;WhK(F ))

We now reduce the study of the involution τ1 on H1(M ;WhK(F )) to the study of the

involution on K−1(Z[G]).

Proposition 3.3.3. Suppose X is a CW complex. Then

H1(X;WhK(F ))(0)
∼= H0(X;Wh(G))(0) ⊕H2(X;K−1(Z[G]))(0).

Proof. Since we are only interested in the first homology group, the Atiyah-Hirzebruch spec-

tral sequence is easy to analyze. Its E2-page is

H0(X;Wh(G)) H1(X;Wh(G)) H2(X;Wh(G))

H0(X; K̃0(Z[G])) H1(X; K̃0(Z[G])) H2(X; K̃0(Z[G]))

H0(X;K−1(Z[G])) H1(X;K−1(Z[G])) H2(X;K−1(Z[G]))

64



but the left column splits off, K̃0(Z[G]) is finite and Carter’s vanishing theorem implies

that there are no lower rows. Therefore, E∞0,1 = E2
0,1
∼= Wh(G), E∞1,0 is a finite group and

E∞2,−1 = E2
2,−1

∼= H2(X;K−1(Z[G])).

We would like to endow the right hand side of the expression in Proposition 3.3.3 with an

involution such that the decomposition of H1(X;WhK(F ))(0) above respects the involution.

On H0(X;Wh(G)), the involution is just given by τ1 on Wh(G). The map H0(X;Wh(G))→

H1(X;WhK(F )) respects the involution since it is induced by the inclusion of a point.

We show there is an involution on H2(X;K−1(Z[G])) and a quotient map

H1(X;WhK(F ))→ H2(X;K−1(Z[G]))

respecting the involution. We do this by considering the filtration of the left hand side.

Recall that Atiyah–Hirzebruch spectral sequence is given by a filtration arising from skeleta

of X. If X(i) denotes the i-skeleton, then the filtration on H1(X;WhK(F )) is given by

F0 ⊆ F1 ⊆ F2 ⊆ F3 ⊆ · · · ⊆ H1(M ;WhK(F ))

where Fi = im(H1(X
(i);WhK(F )) → H1(X;WhK(F ))) and E∞i,1−i = Fi/Fi−1. In partic-

ular, Fi/Fi−1 = 0 for i ≥ 3. This implies F2 = F3 = · · · = H1(X;WhK(F )). So

H2(X;K−1(Z[G])) ∼= H1(X;WhK(F ))/H1(X
(1);WhK(F )). (3.1)

The following proposition becomes immediate.

Proposition 3.3.4. If X → Y is a map of CW complexes then there is a commuting diagram
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of abelian groups with involution

H0(X;Wh(G)) H1(X;WhK(F )) H2(X;K−1(Z[G]))

H0(Y ;Wh(G)) H1(Y ;WhK(F )) H2(Y ;K−1(Z[G]))

where the left horizontal maps are injective, the right horizontal maps are surjective, the

horizontal composites are trivial and the rows are exact after rationalizing.

Note that the involution on H0(X;Wh(G)) is given by its identification with the homol-

ogy group H1(π0X;WhK(F )). So, understanding the involution on this homology group

amounts to understanding the involution on the spectrum WhK(F ). The involution on the

group H2(X;K−1(Z[G])) is defined by the identification (3.1) above. To compute the invo-

lution, we reduce to the case where X is a surface by noting that every element of H2(X;Z)

is of the form f∗[Σg] where f : Σg → M is a map from a closed oriented surface. More-

over, every closed oriented surface admits a map to T 2 which is an isomorphism on H2. By

considering these maps, Proposition 3.3.4 gives the following result.

Proposition 3.3.5. Suppose H2(X;Z) is a finitely generated group of rank r. There is a

map of abelian groups with involution

H2(T
2;K−1(Z[G]))r → H2(X;K−1(Z[G]))

which is an isomorphism when restricted to the torsion free part.

Remark. In the statement of Proposition 3.3.5, we are implicitly using that K−1(Z[G]) is

finitely generated for a finite group G [Car80b].

We have now reduced the computation of the involution on H2(M ;K−1(Z[G])) to the

computation of the involution on H2(T
2;K−1(Z[G])) but this is just the involution on
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K−1(Z[G]).

We may now prove the following.

Theorem 3.3.6. Suppose G is a finite cyclic group of order at least 5. The involution on

H1(X;WhK(F ))(0) has a −1-eigenspace. It has a 1-eigenspace if and only if H2(X;Q) ̸= 0

and there are distinct prime factors pi and pj of |G| such that pi has odd order in (Z/pj)×.

Proof. By our assumption on the order of G, the Whitehead group is infinite. By [Bak77],

the involution on Wh(G) is multiplication by −1. So H0(X;Wh(G))(0) is nontrivial and the

involution is multiplication by −1.

The statement on 1-eigenspaces follows from Proposition 3.3.5 and Corollary 3.4.11.

3.4 The Involution on K−1(Z[G])

3.4.1 Involutions on Spectra

It is well-known that there are involutions on the K-theory spectra of group rings (and more

generally of rings with involution). Let K(R[G]) denote the connective K-theory spectrum of

the group ring R[G]. By regarding this as a space via Quillen’s +-construction, an involution

is defined the involution GL(R[G])→ GL(R[G]) defined by sending a matrix to the inverse

of its conjugate transpose. Alternatively, one can also consider K(R[G]) as the K-theory of

the symmetric monoidal category of finitely generated free R-modules. Then, an involution

is induced by the contravariant functor sending a module to its dual.

Remark. These define the same involution on connective K-theory but, on K1(R[G]), it is

the negative of the involution considered in [Mil66].

These involutions extend to involutions on non-connective K-theory spectra in the fol-

lowing sense. Let K(R[G]) denote the non-connective K-theory spectrum. Then there is an

involution on K(R[G]) such that K(R[G])→ K(R[G]) is a map of spectra with involution.
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To be more explicit, one may consider, for instance, the Pedersen–Weibel model for

K(R[G]) [PW85]. They consider additive categories CRn(R[G]) of finitely generated free

R[G]-modules locally finitely indexed by points in Rn. Then, K(R[G]) is defined to be

an Ω-spectrum with n-th space K(CRn(R[G])). One can define a contravariant functor on

CRn(R[G]) which dualizes each module and preserves the coordinate in Rn. This makes

K(R[G]) into a spectrum with involution in the sense that it is an Ω-spectrum whose spaces

have involution and whose structure maps respect the involution.

3.4.2 Dual Representations, K0 and K1

If x =
∑
aigi ∈ R[G], let x :=

∑
aig
−1
i .

Definition 3.4.1. Let P be a finitely generated projective R[G]-module. Define the dual to

be P ∗ := HomR[G](P,R[G]) where, for g ∈ G, x ∈ P and f ∈ P ∗,

(g · f)(x) = f(x) · g−1.

Define τ0 : K0(R[G])→ K0(R[G]) by [P ] 7→ [P ∗].

Let A = (aij) be a matrix with coefficients in R[G]. Define A∗ := (aji) and τ1 :

K1(R[G])→ K1(R[G]) by [A] 7→ −[A∗].

We note that P ∗ is isomorphic as an R[G]-module to HomR(P,R) with the action defined

by (g · φ)(x) = φ(g−1 · x) for φ ∈ HomR(P,R). Indeed, if f(x) =
∑

g∈G ag,xg, the map

ψ : P ∗ → HomR(P,R) sending f to ψ(f)(x) = a1,x defines an isomorphism.

Proposition 3.4.2. Let Φ : K0(R[G]) → K1(R[G× Z]) be the homomorphism sending [P ]

to [te+ (1− e)] where t is a generator of Z and e : R[G]n → R[G]n is an idempotent matrix
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corresponding to the projective module P . The following diagram is commutative.

K0(R[G]) K1(R[G× Z])

K0(R[G]) K1(R[G× Z])

Φ

τ0 τ1

Φ

Proof. The idempotent corresponding to P ∗ is e∗ so

Φ ◦ τ0([P ]) = Φ([P ∗]) = [te∗ + (1− e∗)].

On the other hand,

τ1 ◦ Φ([P ]) = −[t−1e∗ + (1− e∗)]

so Φ ◦ τ0([P ]) = τ1 ◦ Φ([P ]).

3.4.3 K−1 and Localization Sequences

In order to compute negative K-groups of group rings, localization sequences are very useful.

These sequences are obtained from a homotopy cartesian diagram of nonconnective K-theory

spectra (see, for instance, [Wei13, V.7]). In our case, the maps of spectra are induced by

maps of coefficient rings of group rings. So, the maps in the sequences below will respect

the involution.

Carter’s Sequence

Definition 3.4.3. Let S be a central multiplicative subset of a ring A. Define the category

HS(A) to be the S-torsion A modules M which have a finite length resolution of finitely

generated projective A-modules.
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Let S ⊆ Z be a multiplicative subset generated by a set of primes and let ⟨p⟩ denote the

multiplicative subset generated by p. There is an equivalence of categories

HS(Z[G]) ≃
∏
p∈S

H⟨p⟩(Zp[G])

when G is noetherian group. This equivalence is given by sending an S-torsion Z[G]-module

to its p-primary parts.

Recall that, for a ring A, K−1(A) is defined to be the cokernel ofK0(A[t])⊕K0(A[t
−1])→

K0(A[t, t
−1]). Moreover, the map K0(A[t, t

−1])→ K−1(A) naturally splits so we may regard

K−1(A) as a subgroup of K0(A[t, t
−1]). Carter [Car80a] provides a resolution of free abelian

groups computing K−1(Z[G]) when G is finite of order n.

0→ K0(Z)→ K0(Q[G])⊕
⊕
p|n

K0(Zp[G])→
⊕
p|n

K0(Qp[G])
∂−→ K−1(Z[G])→ 0

The map K0(Qp[G])→ K−1(Z[G]) is defined using a connecting homomorphism

∂ : K1(Qp[G× Z])→ K0(Z[G× Z]).

This connecting homomorphism ∂ is defined to be a composite

K1(Qp[G× Z])→ K0H⟨p⟩(Zp[G× Z])→ K0H⟨p⟩(Z[G× Z])→ K0(Z[G]).

Suppose A ∈ GLn(Qp[G×Z]) is a matrix representing an element of K1(Qp[G×Z]). There is

an r ≥ 0 such that prA has coefficients in Zp[G×Z]. The first map sends A to [coker(prA)]−

[coker(prIn)]. The second map sends a p-primary group regarded as a module over Zp[G×Z]

to the same group regarded as a module over Z[G × Z]. The third map sends an S-torsion

module with a finite length resolution to the Euler characteristic of the resolution.
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Note that

Zp[G× Z]n prA−−→ Zp[G× Z]n → coker(prA)

is a projective resolution of Zp[G × Z]-modules. The argument in the proof of [Car80a,

Lemma 2.3] shows there is a projective resolution of Z[G× Z]-modules

F → Z[G× Z]m → coker(prA).

One can similarly describe the coker(prIn) term and conclude that

∂[A] = [Z[G× Z]m]− [F ].

One can give K−1(Z[G]) and involution by restricting the involution on K0(Z[G × Z]).

The following result shows that the Carter sequence respects this involution.

Proposition 3.4.4. The following diagrams commute.

K1(Qp[G× Z]) K0(Z[G× Z])

K1(Qp[G× Z]) K0(Z[G× Z])

∂

τ1 τ0

∂

K0(Qp[G]) K−1(Z[G])

K0(Qp[G]) K−1(Z[G])

∂

τ0 τ−1

∂

Proof. The second diagram follows from the first and Proposition 3.4.2.

We show that the first diagram commutes. Let [A] ∈ K1(Qp[G × Z]) and define M :=

coker(prA) Let

0→ F → Z[G× Z]m →M → 0 (3.2)

be as above. It follows immediately that

τ0 ◦ ∂[A] = [Z[G× Z]m]− [F ∗].
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Instead of evaluating ∂ ◦ τ1[A], it will be slightly easier to evaluate ∂ ◦ (−τ1)[A]. There

is an exact sequence

0→ HomZp
(M,Zp)→ Zp[G× Z]n A∗

−−→ Zp[G× Z]n → Ext1Zp
(M,Zp)→ 0.

The term HomZp
(M,Zp) vanishes since M is torsion. So to compute ∂ ◦ (−τ1)[A] we need

a projective Z[G× Z]-resolution of Ext1Zp
(M,Zp).

Dualizing (3.2) above gives a projective Z[G× Z]-resolution

0→ Z[G× Z]m → F ∗ → Ext1Z(M,Z)→ 0

Since Ext1Zp
(M,Zp) ∼= Ext1Z(M,Zp) it suffices to show that Ext1Z(M,Zp) ∼= Ext1Z(M,Z).

This isomorphism follows by considering the injective resolutions

0→ Z→Q→ Q/Z→ 0

0→ Zp →Qp → Z[
1

p
]/Z→ 0

and recalling that M is p-primary.

The Madsen-Rothenberg Sequence

In [MR88], Madsen and Rothenberg regard the functor K(R[−]) as a Mackey functor. It

follows that Kn(R[G]) has an action of the Burnside ring A(G). Let q(G, 0) ⊆ A(G) denote

the ideal generated by the virtual finite G-sets whose G-fixed point set has order 0. IfM is

a Mackey functor, then localization at this ideal can be described as follows.

M(G/G)q(G,0) = ker(M(G/G)(0) →
⊕
(H)

M(G/H)(0)) (3.3)
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Here, the H on the right hand side varies over conjugacy classes of proper subgroups of G.

Heuristically, this localization is isolating the part ofM(G/G)(0) which does not come from

a proper subgroup.

Let G = Z/mZ be finite cyclic. For a subgroup H, the composite

M(G/H)(0) →M(G/G)(0) →M(G/H)(0)

is multiplication by the index so it is a vector space isomorphism.

Madsen–Rothenberg claim that localizing the Carter sequence at q(G, 0) gives the fol-

lowing short exact sequence.

0→ K0(Q(ζm))(0) →
⊕
p|m

K0(Qp ⊗Q Q(ζm))(0) → K−1(Z[G])q(0,2) → 0

Indeed, writing Q[G] as a product of cyclotomic fields, we see that only the summand

K0(Qp⊗Q(ζm))(0) is in the kernel above. Additionally, if we write m = prmp where p does

not divide mp then

K0(Zp[G]) ∼= K0(Zp[Z/prZ][Z/mpZ]) ∼= K0(Fp[Z/prZ][Z/mpZ])

∼= K0(Fp[x][Z/mpZ]/(xp
r
− 1)) ∼= K0(Fp[Z/mpZ]) ∼= K0(Zp[Z/mpZ]).

The second and last isomorphisms follow from the fact that (p) is a complete ideal in Zp.

The fourth isomorphism follows from the fact that the ideal (x− 1) is nilpotent. Therefore,

K0(Zp[G])q(G,0) = 0.

The action on the middle term is more complicated. We will need the following lemma.

Lemma 3.4.5. Suppose K/Q is a finite Galois extension. Then Qp ⊗Q K is a product of

isomorphic fields.

Proof. We may write K = Q[x]/f(x) and Qp ⊗Q K = Qp[x]/f(x) = Qp[x]/f1(x) · · · fs(x)
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where f(x) = f1(x) · · · fs(x) is a factorization into irreducible polynomials in Qp. So

Qp ⊗Q K ∼=
s∏

i=1

Qp[x]/fi(x)

where each Qp[x]/fi(x) is a field. The Galois group of K/Q acts transitively on the roots of

f so there is an automorphism σ sending a root of fa(x) to a root of fb(x). This induces a

ring automomorphism of Qp ⊗Q K.

Consider the composite

Qp[x]/fa(x)→
s∏

i=1

Qp[x]/fi(x)
σ−→

s∏
i=1

Qp[x]/fi(x)→ Qp[x]/fb(x).

The first map sends an element g(x) to the element which is g(x) in the coordinate indexed my

a and 0 elsewhere. This is a non-unital ring homomorphism. The composite is a nonzero field

homomorphism so it is injective. Similarly, σ−1 gives a nonzero field homomorphism going

the other way. Since these are finite dimensional Qp-vector spaces, we see that Qp[x]/fa(x) ∼=

Qp[x]/fb(x).

In our case, we are interested in K = Q(ζ).

Proposition 3.4.6. Let ζ be an m-th root of unity and let p be a prime divisor of m. Write

m = prmp where p does not divide mp. There is an isomorphism Qp⊗QQ(ζ) ∼=
∏s

i=1Qp(ζ)

where s is the index of p in (Z/mp)
×.

Proof. Let t denote the order of p in (Z/mp)
×. The degree of the extension Qp(ζ)/Qp is

t(p−1)pr−1 (see [Ser79, IV.4]) and the degree of the extension Q(ζ) is
∣∣(Z/mp)

×∣∣ (p−1)pr−1.
The result follows from Lemma 3.4.5.
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Involutions on K0(Qp[G])

An analysis of the involution on K0(Qp[G]) follows easily from [Ser77, 12.4]. Let K be a

field of characteristic 0 and G a finite group with order m. Define L := K(ζm) where ζm is

a primitive m-th root of unity then Gal(L/K) ⊆ (Z/mZ)×. Let ΓK denote the image of the

Galois group in (Z/mZ)×. Two elements s and s′ of G are ΓK conjugate if there is a t ∈ Γk

such that st and s′ are conjugate in G. The following is [Ser77, 12.4 Corollary 1].

Corollary 3.4.7. A class function f : G → K belongs to K ⊗Z RK(G) if and only if it is

constant on ΓK-classes of G.

Lemma 3.4.8. Let G be an odd order abelian group. Then Z[Z/2]-module RK(G)/⟨triv⟩

is either free or a free abelian group with a trivial involution. In the first case, the set of

nontrivial irreducible G-representations over K form a free Z/2-set.

Proof. If −1 ∈ ΓK then all characters χ satisfy χ(g) = χ(g−1). Suppose 1 /∈ ΓK . Since

we have assumed |G| is odd, there is no nontrivial g ∈ G such that g = g−1 so K ⊗Z

RK(G)/⟨triv⟩ is a free K[Z/2]-module. Also, RK(G) is a finitely generated Z[Z/2]-module

which is obtained by linearizing the Z/2-set of irreducible G-representations over K. It

follows that the set of nontrivial irreducible representations must be a free Z/2-set.

Let G = Z/m where m is odd and let ζ be a primitive m-th root of unity as before. In

this case, ΓQp
= Gal(Qp(ζ)/Qp) ≤ (Z/m)×. The following lemma records our knowledge of

the Galois group Gal(Qp(ζ)/Qp).

Lemma 3.4.9. Suppose p divides m. The Galois group Gal(Qp(ζ)/Qp) ≤ (Z/m)× contains

−1 if and only if, for each prime factor pj of m not equal to p, the group ⟨p⟩ ≤ (Z/pj)×

contains −1.

Proof. Factor m = pr11 p
r2
2 · · · p

rk
k . There is an injection of Galois groups

Gal(Qp(ζm)/Qp)→ Gal(Qp(ζpr11
)/Qp)× · · · ×Gal(Qp(ζp

rk
k
)/Qp)
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such that composition with each projection on the right hand side is a surjection. Under the

isomorphism

(Z/m)× ∼= (Z/pr11 )× × · · · × (Z/prkk )×

−1 is mapped to (−1,−1, · · · ,−1). For pj = p, Gal(Qp(ζpr)/Qp) ∼= (Z/pr)× so −1 is always

in the image of this component.

Assume pj ̸= p. To prove the lemma, it suffices to show that −1 is in Gal(Qp(ζ
p
rj
j

)/Qp) ≤

(Z/prjj )× if and only if ⟨p⟩ ≤ (Z/pj)× contains −1. This group Gal(Qp(ζ
p
rj
j

)/Qp) is cyclic

with order equal to the order of p in (Z/prjj )× [Ser79, IV.4]. It is straightforward to check

that p has even order in (Z/prjj )× if and only if it has even order in (Z/pj)×.

The abelian group K0(Qp⊗QQ(ζ)) inherits an involution from the involution [P ] 7→ [P ∗]

on K0(Qp[G]).

Corollary 3.4.10. The Z[Z/2]-module K0(Qp⊗QQ(ζ)) is free if and only if, for each prime

factor pj of m, p ̸= pj, the order of p in (Z/pj)× is odd. Otherwise the involution is trivial.

Corollary 3.4.11. The involution on K−1(Z[G])(0) has a −1-eigenspace if and only if there

are distinct prime factors pi, pj of |G| such that the order of pi in (Z/pj)× is odd. Otherwise

the involution is trivial.
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CHAPTER 4

EXOTIC SMOOTH G-HOMOTOPY EQUIVALENCES

4.1 Introduction

The Borel conjecture states that the surgery theoretic topological structure set is trivial for

a closed aspherical manifold. For an aspherical manifold satisfying the Borel conjecture,

the smooth structure set will be finite [Wei90]. In this chapter, we investigate the following

question.

Question 5. Suppose X is a closed, smooth, equivariantly aspherical G-manifold. Are there

infinitely many smooth G-homotopy equivalences X ′ → X up to smooth G-homotopy?

We use the equivariant Novikov conjecture of [RW90] to construct examples of equiv-

ariantly aspherical manifolds for which infinitely many such G-homotopy equivalences exist.

Before stating the main results, we establish some definitions.

Definition 4.1.1. Suppose X is a smooth G-manifold and suppose fi : Xi → X are smooth

G-maps where i = 0, 1. We say f0 and f1 are smoothly G-homotopic if there is a G-

smooth structure on X0 × I, a smooth map F : X0 × I → X and a G-diffeomorphism

ϕ : X1 → X0 × {1} such that F |X0×{0} = f0 and FX0×{1} ◦ ϕ = f1.

Definition 4.1.2. For a smooth G-manifold X, let SDIFF
G (X) denote the set of smooth

G-homotopy classes of G-homotopy equivalences X ′ → X.

Remark. When G is the trivial group and X has dimension at least 5, SDIFF
G (X) is just

the smooth structure set SDIFF (X) of X in the sense of surgery theory (see [Wal99]).

Our notation is chosen to suggest that the set SDIFF
G (X) is an equivariant analogue of

SDIFF (X). However, we have no reason to believe that this set belongs in a surgery exact

sequence.
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The topological analogue of SDIFF
G (X) has been studied in [CDK14] and [CDK15]. They

show that the topological equivariant structure set of manifolds with discrete fixed point sets

can be infinite. Specifically, they identify this set with a sum of UNil terms. This motivates

the following, more refined, question.

Question 6. Suppose X is a closed, smooth, equivariantly aspherical G-manifold. Are there

infinitely many elements of SDIFF
G (X) which are G-homotopic?

We now give a rigorous definition of equivariantly aspherical spaces. Given a G-space X,

one may construct a G-space Bπ(X) such that the following hold.

• For any subgroup H, the fixed set Bπ(X)H is aspherical,

• There is a natural G-map f : X → Bπ(X) such that the maps fH : XH → Bπ(X)H

induce bijections on π0 and isomorphisms on π1 of components.

For an explicit construction in the case G is a compact Lie group, see the appendix of [RW90].

We will only consider the case where G is finite.

Definition 4.1.3. A G-space X is equivariantly aspherical if the natural map X → Bπ(X)

is a G-homotopy equivalence. An equivariantly aspherical space X is good if, for all fiber

bundles X → X ′ → S1, the total space X ′ satisfies the equivariant Novikov conjecture.

We postpone a discussion of the equivariant Novikov conjecture to Section 4.2.

Example 10. If X is a complete, nonpositively curved manifold with G acting by isometries,

then Rosenberg–Weinberger [RW90] show that X is equivariantly aspherical and satisfies

the equivariant Novikov conjecture. They do not show that such X are good in the sense of

Definition 4.1.3 but we expect this additional condition to hold.

In the results below, we assume that X is a good, closed, equivariantly aspherical, smooth

G-manifold.
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Theorem 4.1.4. Suppose G = Z/p and suppose 2 has odd order in F×p . Suppose there is a

component M of XG such that the following hold.

• The eigenbundles of the normal bundle of M have rank at least 1,

• H1(M ;Q) ̸= 0.

Then there are infinitely many elements of SDIFF
G (X) which are G-homotopic.

Theorem 4.1.5. Suppose G is an odd order cyclic group and that G acts semifreely on X.

Suppose there is a component M of XG with normal bundle ν such that the following hold.

• There exists an eigenbundle νk of complex rank dk,

• H2m−1(M ;Q) ̸= 0 for some m > dk.

Then there are infinitely many elements of SDIFF
G (X) which are G-homotopic.

As a special case of Theorem 4.1.5, we have the following result.

Corollary 4.1.6. Suppose G is an odd order cyclic group acting semifreely on X and suppose

M is a unitypical component of XG (i.e. the normal bundle of M has only one nontrivial

eigenbundle). If M has odd dimensional rational cohomology then there are infintely many

elements of SDIFF
G (X) which are G-homotopic.

4.2 Higher G-signatures

The signature of a closed 4m-dimensional manifold X can be computed as ⟨L(X)4m, [X]⟩

where L(X) is the Hirzebruch L-class. This class is not homogeneous and L(X)4m de-

notes the degree 4m-part. One may instead consider the inhomogeneous homology class

⟨L(X), [X]⟩. The parts in positive degree are the higher signatures of X.
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In the equivariant setting, Atiyah–Singer show that there is the following formula for

G-signatures in terms of characteristic classes. The G-signature is a virtual representation

whose character is given, in our setting, by the formula

(signGX)(g) = ⟨A(g, ν)(L(M)M(g, ν))dimM , [X]⟩.

Here, A(g, ν) is a complex number, L(M) is the Hirzebruch L-class andM(g, ν) ∈ H∗(M ;C)

is some inhomogeneous class. We may similarly consider the evaluation of the entire inho-

mogeneous class of A(g, ν)L(M)M(g, ν) against [M ]. As a result, we obtain an element of

H∗(M ;C) which we call the higher G-signature.

Remark. The higher G-signature may also be defined as the index of an equivariant elliptic

operator (see [RW88] and [RW90]). With this definition, it is an element of the equivariant

K-homology group KG
∗ (X). This is not equivalent to our definition of the higher G-signature

as an element of the homology of the fixed point set. Our homological definition is obtained

from the K-homology definition by localization and taking a Chern character.

To distinguish between these two notions, call the index of the G-signature operator the

K-theoretic higher G-signature. We will denote this by [DX ] ∈ KG
∗ (X).

4.2.1 The Equivariant Novikov Conjecture

In analogy with the non-equivariant case, the G-signature is a G-homotopy invariant but the

higher G-signature is not. We will need an equivariant analogue of the Novikov conjecture

studied in [RW90].

Definition 4.2.1. A G-map f : X → X ′ is a G-pseudoequivalence if it is a non-equivariant

homotopy equivalence.

The equivariant Novikov conjecture as stated by [RW90] is as follows.
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Conjecture 4.2.2 (Equivariant Novikov conjecture). Let h : X → X ′ is an orientation

preserving G-pseudoequivalence of connected, closed, oriented G-manifolds. Consider the

following commutative diagram.

KG
∗ (X) KG

∗ (Bπ(X))

KG
∗ (X

′) KG
∗ (Bπ(X

′))

(fX)∗

h∗ h∗
(fX ′)∗

If KG
∗ (Bπ(X

′)) is finitely generated over R(G) then the K-theoretic higher G-signatures

agree. In other words,

h∗ ◦ (fX)∗([DX ]) = (fX ′)∗([DX ′ ]).

Rosenberg and Weinberger prove this conjecture in the caseX is a complete, nonpositively

curved manifold withG acting by isometries. WhenX is equivariantly aspherical and satisfies

the equivariant Novikov conjecture, we see that h∗[DX ] = [DX ′ ]. The following summarizes

this discussion.

Proposition 4.2.3. Suppose X ′ is an equivariantly aspherical smooth G-manifold such that

the equivariant Novikov conjecture holds. Let X be a smooth G-manifold and let f : X → X ′

be a G-pseudoequivalence. Then,

A(g, ν)L(M)M(g, ν) = f∗(A(g, ν′)L(M ′)M(g, ν′)) ∈ H∗(M ;C)

where M = XG, ν is the normal bundle of M and M ′, ν′ are similarly defined.

Remark. So far, our discussion of higher signatures has taken place in the smooth category

where these signatures may be described in terms of characteristic classes of normal bundles.

If G acts cellularly on a manifold X, then the symmetric signature of X gives an element of
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LdimX(C[Γ]) where Γ is the orbifold fundamental group. This maps to KG
0 (C∗r (π(X))) and

so we obtain an element in the K-theory homology of X. By the equivariant Kaminker–

Miller theorem [RW90, Theorem 3.6], this is the K-theoretic G-signature of X when X is

smooth. Therefore, the higher G-signature of X may be defined when X is a G-PL-manifold.

As with the smooth case, we will work with this higher G-signature as an element of the

singular cohomology of the fixed set.

4.3 Blocked Surgery

In this section, we summarize some results of what we call blocked surgery.

If Y is a connected n-manifold, the topological structure set may be defined as homotopy

groups of a semisimplicial set, which we also call STOP (Y ). The m-simplicies are simple

homotopy equivalences Y ′ → ∆m×Y which restricts to a homeomorphism ∂Y ′ = ∂(∆m×Y ).

These homeomorphisms must respect a decomposition of the boundary according to the

combinatorics of ∆m. This can be thoroughly written out in the language of n-ads (see

[Wal99]). If K is a simplicial complex then a map K → STOP (Y ) determines a TOP -block

bundle W over K with fiber Y and an equivalence of W with the K×Y as a block fibration.

There is a map of spaces Lsn+1(π1Y ) → STOP (Y ) and we will be interested in block

bundles in the image of the induced map

[K,Lsn+1(π1Y )]→ [K,STOP (Y )].

Instead of working explicitly with these spaces as semisimplicial sets, we give an interpreta-

tion of this map in terms of the action of surgery groups on structure sets.

The map (of groups) Lsn+1(π1Y ) → STOP (Y ) can be described as follows. An element

of Lsn+1(π1Y ) may be represented by a map Φ : (W ; ∂0W,∂1W )→ (Y ×I;Y ×{0}, Y ×{1})

where W is a manifold with boundary. The map F restricts to a homeomorphism Φ0 :

82



∂0W → Y × {0} and a simple homotopy equivalence Φ1 : ∂1W → Y × {1}. The restriction

Φ1 determines an element of STOP (Y ). The manifold W is obtained by taking M × I and

attaching a sequence of handles to M × {1}. When Y has boundary, a similar description

can be given.

Consider the projection π : K × Y → K where K and Y are smooth manifolds. We may

consider surgeries done as follows. Over each vertex ∆0 of K, we do surgery to obtain a map

W∆0 → ∆0 × Y × I. Inductively, over each d-simplex ∆d, we do surgery to obtain a map

W∆d → ∆d× Y × I in a way that agrees with the surgeries done over ∂∆d. Doing this over

each simplex yields determines a map K → Lsn+1(π1Y ).

Proposition 4.3.1. A map K → Lsn+1(π1Y ) determines a TOP -block bundle W → K with

fiber Y × I such that the following hold.

• W is a manifold with boundary ∂W = W0 ∪W1,

• There is an equivalence F : W → K × Y × I of TOP -block bundles,

• F |W0
is a homeomorphism,

• F |W1
: W1 → K × Y is a simple homotopy equivalence and a map of TOP -block

bundles.

4.3.1 The Case of Lens Spaces

We are particularly interested in the case where Y is a lens space SV/G which Cappell–

Weinberger [CW91] studied in the PL-setting. As in Chapter 2, the fiber Y will be the lens

space arising from the normal representation V at a component M of the fixed set. We will

henceforth write SV/G for this lens space and we let n denote its dimension. There is an

identification of SPL(SV/G) with the fiber of

BS̃PL(SV/G)→ BSF (SV/G)
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where F (SV/G) is the topological monoid of homotopy equivalences and the S denotes the

restriction to orientation preserving maps.

Cappell–Weinberger show that the following maps of spaces becomes a split fiber sequence

after rationalizing.

L̃sn+1(G)→ BS̃PL(SV/G)→ BS̃PL(SV )

Using that the first map factors through the PL-structure space SPL(SV/G) and the fact

that L̃sn+1(G)(0)
∼=
∏

j≥1K(R̃O(G), 2j)(0), we obtain the following.

Proposition 4.3.2. For each element in α ∈
⊕

j≥1H
2j(M ; R̃O(G))/Torsion, there is a

PL-block bundle Eα over M such that the following hold.

• There is an equivalence of block fibrations Eα →M × SV/G,

• If α ̸= β then Eα and Eβ are not equivalent as PL-block bundles.

We will be interested in lens space block bundles over M×I which are trivial over M×S0

and which do not arise from G-vector bundles. Namely, we are interested in elements in the

image of

ρM : [ΣM, L̃sn+1(G)]→ [ΣM,BS̃PL(SV/G)]

up to an ambiguity detected by

σM : [ΣM,BSOG(V )]→ [ΣM,BS̃PL(SV/G)].

Since ΣM is a wedge of spheres, these sets are groups. Define

U(M) := im(ρM )/(im(σM ) ∩ im(ρM )).

The maps above were studied in Chapter 2. If V =
⊕p−1

2
k=1 Vk is an eigenbundle decom-

position and dimC Vk = dk, then BSOG(V ) ∼=
∏p−1

2
k=1BU(dk). It follows form [CW91] that
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the composite map

Ψj : π2j(BSO
G(V ))(0) → π2j(BS̃PL(SV/G))(0) → π2j(L̃

s(G))(0)

can be identified with the map

(cj(E1), · · · , cj(Ek)) 7→

p−1
2∑

k=1

Φj,kcj(Ek)

where the Φj,k are the complex numbers of [Ewi76] and π2j(L̃
s(G))(0) is identified with

either the purely real or purely imaginary part of Q(ζ). Note that these are maps between

isomorphic vector spaces. In particular, when Ψj is not an isomorphism and H2j−1(M ;Q) ̸=

0, there are infinitely many elements in U(M). By the results of Ewing, we can conclude

the following.

Proposition 4.3.3. 1. Suppose j > 1. Then Ψj is an isomorphism if and only if dk ≥ j

for all k.

2. Suppose dk ≥ 1 for all k. Then Ψ1 is an isomorphism if and only if 2 has even order

in F×p .

3. If dk < 1 for some k then Ψ1 is not an isomorphism.

Proposition 4.3.3 implies that there are two reasons an element may be in U(ΣM). The

dimensions of the eigenspaces of V may not be large enough to get the required Atiyah–

Singer classes or the linear relations in the Φ1,k do not allow certain cohomology classes to be

Atiyah–Singer classes of G-vector bundles. We summarize this in the following proposition.

Proposition 4.3.4. Then there are infinitely many elements of U(M) in the following cases.

1. There is a j ≥ 1 such that H2j−1(M ;Q) ̸= 0 and dk < j for some k = 1, · · · , p−12 ,
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2. 2 has odd order in F×p and H1(M ;Q) ̸= 0.

Remark. Although our discussion of blocked surgery has taken place in the topological and

PL categories, the manifolds obtained by this procedure can be assumed to be smooth

provided M is smooth. Explicitly, if M is smooth, the lens space PL-block bundle corre-

sponding to an element of [ΣM, L̃sn+1(G)] may be represented by a smooth manifold E and

the equivalence of block fibrations E →M × I × SV/G can be assumed to be smooth.

4.3.2 Construction of Exotic G-Homotopy eEquivalences

We now use the machinery developed to describe G-manifolds Xα and smooth equivariant

homotopy equivalences Xα → X.

Suppose X is a smooth G-manifold and that a component M of the fixed set has a normal

bundle with each eigenbundle a trivial complex vector bundle. Let Wα denote a lens space

block bundle over M×I obtained from an element α ∈ [ΣM, L̃sn+1(G)]. In particular, Wα is

trivial over M×S0 and there is a smooth map Wα →M×I×SV/G which is an equivalence

of block fibrations. Let W̃α denote the G-cover of Wα and define

Xα := (X \ (Sν × I)) ∪Sν×S0 W̃α.

Since Wα is obtained by blocked surgery, there is a smooth equivariant homotopy equivalence

fα : Xα → X.

Remark. This construction is similar to the construction in Chapter 3 in that we are replacing

the neighborhood of a sphere bundle. The difference is that we obtain a smooth equivariant

homotopy equivalence here.
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4.4 Proof of Theorems

The proof of Theorem 4.1.4 and Theorem 4.1.5 will follow from Proposition 4.3.4 and the

following proposition.

Proposition 4.4.1. Suppose X is a good, closed, equivariantly aspherical, smooth, semifree

G-manifold. If U(M) is infinite for a component M of the fixed set, then there are infinitely

many elements of SDIFF
G (X) which are G-homotopic.

Proof. Let Wα and Wβ denote two lens space block bundles over M × I obtained through

blocked surgery from elements α, β ∈ [ΣM, L̃sn+1(G)] and suppose these elements map to

different elements in U(M). Suppose there exists a G-smoothing of Xα × I and a smooth

G-map F : Xα× I → X restricting to fα over Xα×{0} and to fβ ◦ϕ over Xα×{1}, where

ϕ : Xα → Xβ is some G-diffeomorphism.

Let X0 denote X \ ν. We will construct a smooth G-manifold with boundary Yα and

a smooth G-homotopy equivalence Yα → X0 × I by performing blocked surgery on the

boundary of X0 × I. The boundary is

∂(X0 × I) = (X0 × {0}) ∪ (Sν × I) ∪ (X0 × {1}).

Note that ∂X0 has a collared neighborhood of the form Sν× [0,∞). Perform blocked surgery

on Sν/G× [1, 2] ⊆ X0/G× {0} ⊆ ∂(X0/G× I) using α to obtain a smooth G-manifold Y ′α

which admits a smooth G-map to X0 × I. The boundary of this manifold is

∂Y ′α = (Xα \ ν) ∪ (Sν × I) ∪ (X0 × {1}).

Now, perform blocked surgery along Sν/G× I using α to obtain Yα. By construction, there
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is a smooth G-homotopy equivalence Fα : Yα → X0 × I and

∂Yα = (Xα \ ν) ∪ W̃α ∪X0.

Additionally,

Fα|Xα\ν = fα Fα|X0
= id

and Fα|W̃ becomes an equivalences of lens space block bundles after taking the quotient by

G. Similarly, construct a smooth G-manifold Yβ with boundary

∂Yβ = (Xβ \ ν) ∪ W̃β ∪X0

and with a smooth G-homotopy equivalence Fβ : Yβ → X0 × I.

Our assumption on the G-smoothing of Xα × I implies that there is a normal G-vector

bundle ξ on M × I restricting to ν over Xα × {0} and (ϕ−1)∗ν over Xα × {1}.

Define

X ′ := ((Xα × I) \ ξ) ∪Xα\ν Yα ∪X0
Yβ .

This has boundary ∂X ′ = (Xα \ ν) ∪ (Xβ \ ν). Define a smooth G-manifold X ′′ by identi-

fying the boundary components by the G-diffeomorphism ϕ There is a smooth G-homotopy

equivalence X ′ → X0 × I which induces a smooth G-homotopy equivalence

X ′′ → X(ϕ) \ νϕ

where X(ϕ) denotes the mapping torus of ϕ and νϕ is the neighborhood of the mapping

torus M(ϕ) of ϕ|M .

The boundary of X ′′ is the G-cover of a lens space PL-block bundle over M(ϕ).
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Figure 4.1: Construction of X ′′

Consider the diagram

[ΣM,BSOG(V )] [ΣM,BS̃PL(SV/G)] [ΣM,Lsn+1(G)(0)]

[M(ϕ), BSOG(V )] [M(ϕ), BS̃PL(SV/G)] [M(ϕ), Lsn+1(G)(0)]

σM

γ

σϕ δ

.

The right vertical map splits by the Serre spectral sequence. The left vertical map splits

after rationalizing by a similar argument. By construction, the lens space PL-block bundle

∂X ′′/G can be identified with γ(W +W ′) where W ′ is in the image of σM (since we are

considering ΣM , there is a group structure so addition makes sense). It follows from these
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observations and some diagram chasing that δ(∂X ′′/G) is not in the image of δ ◦ σϕ.

Now, let X be the G-manifold obtained by attaching an equivariant block neighborhood

to X ′′ along ∂X ′′. The higher G-signature of X restricted to the component M(ϕ) is δ(∂X ′′).

The equivariant Novikov conjecture (along with our assumption that X is good) implies that

this is δ(νϕ). By the previous paragraph, we have a contradiction.

To show that Xα → X is homotopic to a homeomorphism, use that Wα is trivial as

an PL-block bundle over M × I (where we do not require ends to be fixed) and apply a

swindling argument as in Chapters 2 and 3.
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