
THE UNIVERSITY OF CHICAGO

MODERN STATISTICAL INFERENCE: PARAMETER ESTIMATION IN ONLINE

SETTINGS AND GOODNESS-OF-FIT TESTING

A DISSERTATION SUBMITTED TO

THE FACULTY OF THE DIVISION OF THE PHYSICAL SCIENCES

IN CANDIDACY FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

DEPARTMENT OF STATISTICS

BY

WANRONG ZHU

CHICAGO, ILLINOIS

JUNE 2024

Copyright © 2024 by WANRONG ZHU

All Rights Reserved

To my family.

TABLE OF CONTENTS

LIST OF FIGURES . viii

LIST OF TABLES . x

ACKNOWLEDGMENTS . xi

ABSTRACT . xiii

1 INTRODUCTION . 1
1.1 Statistical inference using stochastic gradient descent. 1
1.2 Goodness-of-fit testing. 3
1.3 Notation . 4

2 ASYMPTOTIC NORMALITY FOR WEIGHTED AVERAGED STOCHASTIC GRA-
DIENT DESCENT . 6
2.1 Introduction . 6
2.2 Main results: asymptotic normality . 7
2.3 Examples . 10

2.3.1 Polynomial-decay averaging . 11
2.3.2 Suffix averaging . 12

2.4 Non-asymptotic mean squared error . 14
2.4.1 Linear model . 15
2.4.2 A new averaging scheme: adaptive weighted averaging 16

2.5 Numerical experiment . 18
2.5.1 Asymptotic normality for different averaging schemes 18
2.5.2 Non-asymptotic performance of different averaging schemes 20

2.6 Summary . 23

3 SHARP CONCENTRATION ANALYSIS FOR STOCHASTIC GRADIENT DE-
SCENT . 24
3.1 Introduction . 24
3.2 Upper bound . 28

3.2.1 Linear model setting . 28
3.2.2 Assumptions . 30
3.2.3 Nagaev type upper bound . 31
3.2.4 Technical overview and proof sketch for main results 33

3.3 Tightness of the upper bound . 36
3.3.1 Upper bound from Nagaev inequality 38
3.3.2 Exact deviation . 39
3.3.3 A numerical study . 40

3.4 Summary . 41

iv

4 ONLINE COVARIANCE MATRIX ESTIMATION IN STOCHASTIC GRADIENT
DESCENT . 42
4.1 Introduction . 42
4.2 Online approach . 45

4.2.1 Online covariance matrix estimator based on batch means 46
4.2.2 Statistical inference . 53

4.3 Theoretical results . 54
4.3.1 Preamble: mean estimation model . 54
4.3.2 Assumptions and existing convergence results 55
4.3.3 Convergence properties for the online estimator 57
4.3.4 Asymptotically accurate confidence intervals/regions 58

4.4 Simulation studies . 61
4.4.1 Empirical performance of the proposed online approach 61
4.4.2 Comparison with other methods . 63

4.5 Summary . 65

5 HIGH CONFIDENCE LEVEL INFERENCE IS ALMOST FREE USING PARAL-
LEL STOCHASTIC OPTIMIZATION . 68
5.1 Introduction . 68

5.1.1 Background: existing confidence interval construction 70
5.2 Inference with parallel runs of stochastic algorithms 74

5.2.1 Parallel computing . 74
5.2.2 Asymptotic t-distribution . 75

5.3 Theoretical guarantee . 78
5.3.1 Convergence characterization for ASGD 79
5.3.2 Main results . 82

5.4 Experiment . 84
5.4.1 Simulation . 84
5.4.2 Hand-written digit dataset . 90

5.5 Summary . 91

6 APPROXIMATE CO-SUFFICIENT SAMPLING WITH REGULARIZATION . . 92
6.1 Introduction . 92
6.2 Background: goodness-of-fit testing via CSS and aCSS 94

6.2.1 Co-sufficient sampling (CSS) . 95
6.2.2 Approximate co-sufficient sampling (aCSS) 96
6.2.3 Additional related work . 99

6.3 The aCSS method with linear constraints . 100
6.3.1 Examples of constraints . 103
6.3.2 Formally defining the method . 104

6.4 Theoretical results . 110
6.4.1 Main result: Type I error control . 110
6.4.2 Special case: sparse structure . 113
6.4.3 Special case: Gaussian linear model 117

v

6.5 Generalization of linear constraint: ℓ1 penalty 120
6.5.1 The conditional density in the penalized case 121
6.5.2 The aCSS method in the penalized case 123

6.6 Numerical experiments . 125
6.6.1 Necessary constraints: the Gaussian mixture model 125
6.6.2 High dimensional setting: structured Gaussian linear model 128

6.7 Summary . 137

REFERENCES . 138

A APPENDIX FOR CHAPTER 2 . 149
A.1 Technical Lemmas and Proofs . 149

A.1.1 Technical Overview and Proof Sketch of the Main Theorem 150
A.1.2 Proof of Theorem 2.2.4 . 151
A.1.3 Proof of Lemma A.1.2 . 154
A.1.4 Proof of Lemma A.1.3 . 156
A.1.5 Proof of Corollary 2.3.1 . 159
A.1.6 Proof of Corollary 2.3.2 . 162
A.1.7 Proof of Proposition 2.4.1 . 163
A.1.8 Proof of Corollary 2.4.2 . 168
A.1.9 Proof of Lemma A.1.4 . 171
A.1.10 Proof of Lemma A.1.6 . 173

B APPENDIX FOR CHAPTER 3 . 175
B.1 Proofs . 175

B.1.1 Some useful lemmas . 175
B.1.2 Proof of Lemma 3.2.8 . 176
B.1.3 Proof of Lemma 3.2.9 . 177
B.1.4 Proof of Theorems 3.2.4, 3.2.6 . 180
B.1.5 Proof of Proposition 3.3.1 . 180
B.1.6 Proof of Proposition 3.3.2 . 181

C APPENDIX FOR CHAPTER 4 . 183
C.1 Technical Lemmas . 183
C.2 The Linear Case . 186
C.3 Proof of Main Theorems . 207

C.3.1 Proof of Theorem 4.3.5 . 207
C.3.2 Proof of Theorem 4.3.8 . 212

C.4 Proof of Proposition 4.3.1 . 218
C.5 Simulation for stopping rule . 220

D APPENDIX FOR CHAPTER 5 . 222
D.1 Proof . 222

D.1.1 Proof of Theorem 5.3.4 . 222

vi

D.1.2 Proof of Theorem 5.3.8 . 225
D.2 Additional numerical results . 228

E APPENDIX FOR CHAPTER 6 . 232
E.1 Proofs of main results . 232

E.1.1 Proof of Theorems 6.4.3, 6.4.5: error control for constrained aCSS . . 232
E.1.2 Proof of Theorem 6.4.7: constrained aCSS for the Gaussian linear model242
E.1.3 Proof of Lemma 6.3.3: conditional density 244
E.1.4 Proof of Theorem 6.5.3: error control for aCSS with an ℓ1 penalty . . 250
E.1.5 Proof of Lemma 6.5.2: conditional density for aCSS with an ℓ1 penalty 251

E.2 Additional proofs . 256
E.2.1 Verifying that the plug-in version of pθ0(· | θ̂, ĝ) defines a density . . . 256
E.2.2 Proof of Lemma E.1.1 . 258
E.2.3 Proof of Lemma 6.4.4 . 259

E.3 Checking assumptions for examples . 260
E.3.1 Verifying assumptions for Examples 2 (isotonic regression) and 3 (sparse

regression) . 260
E.3.2 Verifying assumptions for Example 1 (Gaussian mixture model) . . . 262

E.4 Sampling details . 267
E.4.1 Implementation details for Example 1 (Gaussian mixture model . . . 268
E.4.2 Implementation details for Examples 2 (isotonic regression) and 3

(sparse regression) . 271

vii

LIST OF FIGURES

2.1 Realizations of online suffix averaging. Here am,m ≥ 0, is the index of the staring
point of the m-th block. 13

2.2 Density plot for the standardized error with and without prefactor w. The red
line denotes a standard normal distribution. 20

2.3 Left: log-log plots for MSE. Right: the curves stand for the ratio of MSE between
different averaging schemes and adaptive weighted averaging at each step. The
baseline (black line) is for the adaptive weighted averaging. 21

2.4 Comparison of different weights under expectile regression model with ρ = 0.8.
The oracle weights are numerically computed via Monte-Carlo simulation with
50000 repetitions. 22

3.1 Compare the two terms in sample complexity (3.2). Here X axis represents fail-
ure probability δ; the solid line denotes ϵ−1 log(1/δ), the dashed line denotes
(δ−2/qϵ−1)q/(2(q−1)). We choose ϵ = 0.01 and q = 2.5. 28

3.2 Ratio of approximated and true tail probability. Here X axis represents deviation
x. Red curves represent Gaussian approximation:

(
1− Φ(x/

√
µT,2)

)
/P(ST ≥

x); blue curves represent tail approximation: R(T, x)/P(ST ≥ x) ; black curves
represent their sum:

(
1− Φ(x/

√
µT,2) +R(T, x)

)
/P(ST ≥ x). 40

4.1 Linear regression: Log loss (operator norm) of the estimated covariance matrix
against the log of total number of steps. Here F denotes the full overlapping
version (4.3), NOL denotes the non-overlapping version (4.8), and C denotes the
constant in am =

⌊
Cm2/(1−α)

⌋
. 62

4.2 Relative efficiency (ratio of MSE) of the full overlapping version (4.3) and non-
overlapping version (4.8). We set d = 5 in linear regression. Here C denotes the
constant in am =

⌊
Cm2/(1−α)

⌋
. 63

4.3 Linear regression with d = 5: (a): Empirical coverage rate against the number of
steps. Red dashed line denotes the nominal coverage rate of 0.95. (b): Length
of confidence intervals. (c): Density plot for the standardized error. Red curve
denotes the standard normal density. 64

4.4 Comparison of online-BM and Plug-in estimators. First/Middle row: Empirical
coverage rate against the number of steps in linear/logistic model. Red dashed
line denotes the nominal coverage rate of 0.95. Third row: total computation
time for updating covariance estimate and confidence intervals in SGD. 66

5.1 Effect of K. Plot (a): relative error of coverage; plot (b): the length of confidence
interval. The nominal coverage probability is 0.99. The total sample size N is
60000 for linear models and 200000 for logistic models. 85

5.2 Linear Regression d = 20: Left: relative error of coverage; Middle: empirical
coverage; Right: length of confidence intervals. 87

viii

5.3 Logistic Regression d = 20: Left: relative error of coverage; Middle: empirical
coverage; Right: length of confidence intervals. 88

5.4 Computation time: d = 20 . 89
5.5 Mean image before and after denoising. (a) shows the original estimated mean

before denoising; (b) uses a uniform threshold t = 0; (c) uses a uniform threshold
t = −0.5; (d) applies an adaptive threshold based on the upper bound of the
confidence interval. 91

6.1 Power of the regularized (i.e., constrained) aCSS method, denoted as reg-aCSS in
the plot, as compared to the oracle method. The oracle method knows the true
parameter and samples (unconditionally) from the simple null. The constrained
aCSS method controls the Type I error at the nominal 5% level (red dotted line)
under the null. All tests are repeated for 500 independent trials. 129

6.2 Power of aCSS, regularized (i.e., constrained or penalized) aCSS (denoted as reg-
aCSS in the plot), and the oracle method, for isotonic regression (left) and sparse
regression (right), with different values of the parameter σ, over 5000 independent
trials. The dotted red line denotes the nominal 10% level (i.e., α = 0.1). For
both settings, β0 = 0 corresponds to the null hypothesis being true. 135

6.3 Type I error rate of aCSS, regularized (i.e., constrained or penalized) aCSS (de-
noted as reg-aCSS in the plot), and the oracle method, for isotonic regression
(left) and sparse regression (right), with different values of the parameter σ, over
5000 independent trials. The dotted red line denotes the nominal 10% level (i.e.,
α = 0.1). The shaded bands denote standard error for each method. 136

6.4 Histogram of p-values under the null, for aCSS and for regularized (i.e., con-
strained or penalized) aCSS, for isotonic regression (left) and sparse regression
(right), over 5000 independent trials. The parameter σ is chosen as σ = 7 for
both examples. 136

B.1 Left: Check the order of µT,2. The X axis represents log(t); the Y axis represents
log(µt,2). The slop of the log-log curve is about −1, which implies that µT,2 ≍
T−1. Right: Check the order of Vt. The X axis represents log(t); the Y axis
represents log(Vt). The slop of the log-log curve is much less than −1 when t is
large, which means Vt is summable and

∑T
i=1 Vi = O(1). 181

B.2 Check the uniform asymptotic negligibility of the variance of individual sum-
mands. The X axis represents t; the Y axis represents the ratio of the largest
individual variance and variance of individual summands. 182

D.1 Linear Regression d = 5: Left: relative error of coverage; Middle: empirical
coverage; Right: length of confidence intervals. 229

D.2 Logistic Regression d = 5: Left: relative error of coverage; Middle: empirical
coverage; Right: length of confidence intervals. 230

D.3 Computation time: d = 5 . 231

ix

LIST OF TABLES

4.1 Empirical coverage rates: the average coverage rate for the nominal coverage
probability 95%. Standard errors are reported in the brackets. 65

5.1 Comparison of methods for online statistical inference: This table compares var-
ious methods including Plug-In [Chen et al., 2020], Online BM [Zhu et al., 2023],
and Random Scale [Lee et al., 2022]. The symbol ‘✓’ indicates that the method
can achieve the goal, while ‘/’ signifies that it cannot. The rating symbols ‘⋆ ⋆ ⋆’,
‘⋆⋆’, and ‘⋆’ denote the best, moderate, and lowest advantage, respectively. . . . 73

C.1 Apply fixed-width sequential stopping rule with the tolerance 0.01 (discussed in
Section 4.3.4). We present termination iterations and coverage probabilities at
termination. Standard errors are reported in the brackets. 221

D.1 Asymptotic one-sided critical values for asymptotic pivotal statistic in the random
scaling method (5.4) via Monte Carlo simulation with 1,000,000 samples. 228

x

ACKNOWLEDGMENTS

First and foremost, I extend my heartfelt gratitude to my wonderful advisors, Profs. Rina

Foygel Barber and Wei Biao Wu, for their unwavering guidance and support throughout the

past years. My PhD journey would not have been as enriching without their presence. I am

deeply indebted to Wei Biao for introducing me to the realm of research. His encouragement

and sense of optimism have been pivotal in helping me navigate my PhD journey. I am also

incredibly fortunate to have Rina alongside me in this endeavor, serving as my role model.

Her dedication to research, meticulousness with students, and exemplary work ethic will

continue to inspire and guide me in my future endeavors.

I also want to thank my committee member, Prof. Chao Gao, for valuable feedback on my

thesis and for providing the best lectures, which have been instrumental in my research. I am

also grateful to Prof. Xi Chen for valuable instructions in our collaboration and for support

during my job search. My appreciation extends to all faculty and staff in the department.

I am immensely grateful for the intellectual stimulation provided by my fellow academic

peers, especially my talented academic siblings, Yu Gui, Yuefeng Han, Qijia Li, Ruiting

Liang, Yonghoon Lee, Yuetian Luo , Zhipeng Lou, Jake Soloff. Their insightful discussions

and support during my job search have been invaluable. I am equally thankful to my other

fellow doctoral students, particularly Hai Tran Bach, Pinhan Chen, Zihao Wang, Chih-Hsuan

Wu, Daniel Xiang, Zhishen Xiao (and his wife, Peijun Xiao), Qing Yan, for making my PhD

journey vibrant. I will always cherish the memories of our challenging hikes, late-night

board game sessions, and gym workouts. I also want to thank Rui Da, Haoyang Liu, Sen

Na, Yao Tong and Yuexi Wang for being most reliable friends, offering invaluable advice,

encouragement and a lot of joy during my difficult times. Additionally, I am grateful to

Dongyue for his companionship over the years, for exploring countless adventures together,

and for infusing everyday life with happiness.

Lastly, but certainly not least, I want to thank my family. To my mother Weijun Xu and

xi

father Huiliang Zhu, your unconditional support, trust and love make me who I am today. I

am also thankful to my grandparents and other big family members for fostering a nurturing

environment and reminding me of the profound love that surrounds me. I hope I can always

stay brave and keep thinking throughout the rest of my life, and I believe I can do so with

all of your love.

xii

ABSTRACT

Statistical inference plays a crucial role in realizing large-scale intelligent systems that can

learn safely and efficiently. This thesis presents two interesting yet challenging problems of

modern statistical inference.

In the first part, we consider statistical inference for estimation in online settings. Model

parameter estimation through optimization is a classical problem in statistics and machine

learning. Algorithms based on stochastic approximation, particularly stochastic gradient

descent (SGD) and its variants, have emerged as the workhorses for solving such problems

in modern statistical and machine learning. Despite SGD’s tremendous success in practical

applications, one cost of the SGD algorithm is the uncertainty of solutions. A crucial aspect

of this thesis is to understand the variability inherent in these solutions and perform practical

statistical inference. We will discuss both theoretical aspects of inference as well as methods

to conduct practical inference. From the theoretical perspective, topics include studying the

limiting distribution, where we extend the classic asymptotic normality results for averaged

SGD to a general case of weighted averaged SGD. Beyond asymptotic distribution, we also

study the concentration properties of SGD solutions under heavy-tailed noise settings. To

provide a practical methodology, we introduce an approach to estimate the limiting covari-

ance matrix of SGD estimates in an online fashion and construct confidence intervals as

a byproduct. When only confidence intervals are of interest, we further introduce a more

computationally efficient way to construct confidence intervals directly without estimating

the covariance matrix and enable testing related to high-level confidence.

In the second part, we consider the problem of goodness-of-fit (GoF) testing for paramet-

ric models. This testing problem involves a composite null hypothesis, due to the unknown

values of the model parameters. In some special cases, co-sufficient sampling (CSS) can

remove the influence of these unknown parameters via conditioning on a sufficient statis-

tic—often, the maximum likelihood estimator (MLE) of the unknown parameters. And the

xiii

recent approximate co-sufficient sampling (aCSS) framework replacing sufficiency with an

approximately sufficient statistic (namely, a noisy version of the MLE) to recovers power in

a range of settings where CSS leads to a powerless test, but can only be applied in settings

where the unconstrained MLE is well-defined and well-behaved, which implicitly assumes a

low-dimensional regime. We extend aCSS to the setting of constrained and penalized maxi-

mum likelihood estimation, so that more complex estimation problems can now be handled

within the aCSS framework, including those in high-dimensional settings.

xiv

CHAPTER 1

INTRODUCTION

In this thesis, we present two problems of modern statistical inference: statistical inference

in online settings using stochastic gradient descent and goodness-of-fit testing in a high-

dimensional setting.

1.1 Statistical inference using stochastic gradient descent.

In the first part, we consider statistical inference for estimation in online settings. Model

parameter estimation through optimization of an objective function is a fundamental problem

in statistics and machine learning. Here we consider the classic setting where the true model

parameter x∗ ∈ Rd can be characterized as the minimizer of a convex objective function

F : Rd → R, i.e.,

x∗ = argmin
x∈Rd

F (x). (1.1)

The objective function F (x) is defined as F (x) = Eξ∼Πf(x, ξ), where f(x, ξ) is a noisy

measurement of F (x) and ξ is a random variable following the distribution Π. For example,

in linear regression, the coefficient can be modeled as the minimizer of the expected squared

loss. In logistic regression, a linear classifier is derived by minimizing the expected log loss.

In recent years, huge data sets and streaming data arise frequently. Classic deterministic

optimization methods that require storing all the data are not appealing due to expensive

memory cost and computational inefficiency. To resolve these issues, one can apply the

Robbins-Monro algorithm [Robbins and Monro, 1951], also known as Stochastic Gradient

Descent (SGD), especially for online learning [Bottou, 1998, Mairal et al., 2010, Hoffman

et al., 2010]. Setting x0 as the initial point, the i-th iteration of the SGD algorithm takes

the following form

xi = xi−1 − ηi∇f(xi−1, ξi), i ≥ 1, (1.2)

1

where {ξi}i≥1 is a sequence of i.i.d samples from the distribution Π, ∇f is the gradient

of f(x, ξ) with respect to the first argument x, and ηi is the step size at the i-th step.

This recursive adaptive algorithm performs one update at a time and does not need to

remember outcomes in previous iterations. Therefore, it is computationally efficient, memory

friendly, and able to process data on the fly. Despite SGD’s tremendous success in practical

applications, one cost of the SGD algorithm is the uncertainty of solutions. A crucial aspect

of the research in this thesis is to understand the variability inherent in these solutions and

perform uncertainty quantification.

The first natural question pertains to characterizing the distribution of SGD solutions.

In Chapter 2, we establish the asymptotic normality of generalized weighted averaged SGD

solutions under a set of mild assumptions. This extends and refines the results in the seminal

work associated with Polyak-Ruppert averaging.1 In addition to asymptotic distributional

guarantees, practitioners often seek assurances regarding the performance stability of a single

trial of an algorithm. This underpins the research in Chapter 3, where we explore the

concentration properties of SGD solutions.2 Traditional concentration analyses often impose

restrictive conditions on the gradient noise, such as boundedness or sub-Gaussian traits.

We consider a broader class of noise where only finitely many moments are required, thus

accommodating heavy-tailed noise.

The next question is how to perform practical inference leveraging theoretical distribution

characteristics. In Chapter 4, we discuss the estimation of the asymptotic covariance.3 This

task is particularly challenging due to the dependencies between SGD iterates and the goal

of maintaining computational and memory efficiency in a fully online context. We introduce

a fully online estimator for the asymptotic covariance of the averaged SGD (ASGD), which

1. The paper corresponding to the work discussed in this chapter is available on arXiv:2307.06915

2. The paper corresponding to the work discussed in this chapter was published in Journal of Machine
Learning Research 23 (46), 1-22

3. The paper corresponding to the work discussed in this chapter was published in Journal of the American
Statistical Association 118 (541), 393-404

2

is also extendable to other SGD variants. This method possesses two key attributes. First,

it utilizes solely the SGD iterates without the need for additional information. Second, it

updates recursively with the arrival of new data, thereby aligning with the online nature of

SGD while maintaining desired computational and memory efficiencies. With the estimated

covariance matrix and asymptotic normality results, one can construct asymptotically ex-

act confidence intervals. In tasks where only a confidence interval is needed and not the

covariance matrix, we introduce a more computationally efficient method in Chapter 5.4

The approach involves dividing the original SGD path into K independent and identically

distributed runs. Based on the final estimates from these sequences, a t-statistic and t-based

confidence interval is constructed. This method is free from covariance matrix estimation,

requires minimal extra computation and memory beyond SGD updates, and provides valid

coverage at exceedingly high confidence levels.

1.2 Goodness-of-fit testing.

In the second part, we will study Goodness-of-fit (GoF) testing. GoF testing is an essential

statistical method, widely used in various fields such as biology, economics, engineering, and

finance, to assess whether the observed data follows a certain pattern or distribution that is

expected based on theoretical assumptions. Given data X belonging to some sample space

X , the fundamental problem addressed by GoF is the question of testing the null hypothesis

H0 : X ∼ Pθ for some θ ∈ Θ, (1.3)

where {Pθ : θ ∈ Θ ⊆ Rd} is a parametric family, versus a more complex (usually higher-

dimensional) model. For example, we may be interested in testing whether a logistic regres-

sion model is appropriate for our binary data X = (X1, . . . , Xn) (in the presence of some

4. The paper corresponding to the work discussed in this chapter is available on arXiv:2401.09346

3

covariates), or whether a more complex—perhaps even nonparametric—model is needed.

In Chapter 6, we will reduce the testing problem to a sampling problem How can

we generate copies X̃(1), ..., X̃(M) of the observed data X such that, if H0 is true, then

X, X̃(1), ..., X̃(M) are (approximately) exchangeable?5 The difficulty of the problem lies in

the composite null or unknown true parameter. We will provide an overview of related

sampling techniques including co-sufficient sampling (CSS) and approximate co-sufficient

sampling (aCSS). These methods avoid this issue by conditioning on a sufficient (or approx-

imately sufficient) statistic for the unknown θ, but are not suited for addressing challenges

such as high dimensionality. We will then introduce an extended version of aCSS that can

accommodate more complex problems where robust and accurate parameter estimation is

needed, particularly in high-dimensional settings.

1.3 Notation

Here we list notations that we will use throughout the thesis. For notations that will be

used only in a specific chapter, we will introduce them therein. For a vector v, ∥v∥0 denotes

the ℓ0 norm (the number of nonzero entries), and ∥v∥q denotes the usual ℓq norm for 1 ≤

q ≤ ∞. For a matrix A = (aij) ∈ Rd×d, ∥A∥F denotes its Frobenius norm ∥A∥F =(∑d
i=1

∑d
j=1 a

2
ij

)1/2
, ∥A∥2 denotes its operator norm ∥A∥2 = max∥x∥2≤1 ∥Ax∥2, tr(A)

denotes its trace, λmax(A) and λmin(A) denotes its largest and smallest eigenvalues. We

use Id to denote a d× d identity matrix, and 1d to denote the vector in Rd with all entries

1. We use 1{E} to denote the indicator variable for event E . For t ∈ R, ⌊t⌋ is the largest

integer less than or equal to t, and ⌈t⌉ is the smallest integer greater than or equal to t.

For positive sequences {an}n∈N and {bn}n∈N, an ≲ bn means there exists some constant

C such that an ≤ Cbn for all large n, and an ≍ bn if both an ≲ bn and bn ≲ an hold.

For notational simplicity, we use notation C for constants which can take different values

5. The paper corresponding to the work discussed in this chapter is available on arXiv:2309.08063

4

in different equations. For a sequence of i.i.d. sample {ξi}i≥1 from some distribution Π, we

define conditional expectation En(·) = E(·|Fn) and conditional probability Pn(·) = P(·|Fn).

, where Fn is σ-algebra generated by {ξi}i≤n. Moreover, we use ⇒ to denote convergence

in distribution. Lastly, we use O to denote the Big-O notation.

5

CHAPTER 2

ASYMPTOTIC NORMALITY FOR WEIGHTED AVERAGED

STOCHASTIC GRADIENT DESCENT

2.1 Introduction

The asymptotic convergence of SGD iterates has been studied extensively in the early years

[Blum, 1954, Dvoretzky, 1956, Sacks, 1958, Fabian, 1968, Robbins and Siegmund, 1971,

Ljung, 1977, Lai, 2003]. To further investigate the asymptotic distribution of SGD, Polyak

and Juditsky [1992] and Ruppert [1988] introduced the averaged SGD (ASGD), a simple

modification where iterates are averaged, and established the asymptotic normality of the

obtained estimate. It is known that ASGD estimates achieve the optimal central limit the-

orem rate O(1/
√
n) by running SGD for n iterations under certain regularity conditions.

However, it is not optimal from a non-asymptotic perspective [Moulines and Bach, 2011,

Needell et al., 2014]. Moreover, for non-smooth objective functions, neither the final iterate

nor ASGD can achieve the optimal convergence rate. To address these issues, various modi-

fied versions of ASGD have been proposed, such as suffix averaging [Rakhlin et al., 2012] and

polynomial-decay averaging [Shamir and Zhang, 2013] for non-smooth problems, exponential

weighted moving average (EWMA) for capturing time variation, elastic averaging in parallel

computing environments [Zhang et al., 2015] and a simple weight proportional to O(n) for

the projected stochastic subgradient method [Lacoste-Julien et al., 2012].

As mentioned earlier, employing a suitable averaging scheme in specific settings can help

accelerate convergence and necessitates only a straightforward modification to the original

SGD algorithm. In this chapter, we will delve deeper into the characteristics of averaging by

examining a comprehensive averaging scheme. Our main objectives include understanding

the variability and statistical efficiency of a general weighted averaged SGD. Under certain

mild assumptions, we establish the asymptotic normality of these general weighted averaged

6

SGD solutions. This result is applicable to a wide range of existing algorithms, including the

polynomial-decay and suffix averaged SGD. Beyond asymptotic normality, we also investigate

finite sample convergence. When considering finite sample MSE, it is challenging to identify

a single averaging scheme that is optimal for all objective functions. To gain insights, we

examine the linear model to derive adaptively weighted SGD iterates that minimize the finite

sample MSE. Our findings indicate that the optimal weight derived from the linear model

not only achieves the optimal statistical rate but also exhibits favorable non-asymptotic

convergence on other models.

2.2 Main results: asymptotic normality

Recall the problem in (1.1), i.e.,

x∗ = argmin
x∈Rd

F (x),

where F (x) is defined as F (x) = Eξ∼Πf(x, ξ), f(x, ξ) is a noisy measurement of F (x) and ξ is

a random variable following the distribution Π. The SGD sequence {xi}i≥1 is defined in (1.2).

Denote x̄n as the uniform average, i.e., x̄n = (1/n)
∑n
i=1 xi. Under certain assumptions and

conditions, Polyak and Juditsky [1992] shows that

√
n(x̄n − x∗)⇒ N (0, A−1SA−1), (2.1)

where A = ∇2F (x∗), S = E([∇f(x∗, ξ)][∇f(x∗, ξ)]T). In this chapter, one of our goals is to

establish the asymptotic normality for the general weighted average

x̃n =
n∑
i=1

wn,ixi,

7

where wn,i denotes the weight of xi after the n-th update, 1 ≤ i ≤ n. Define gradient noise

ϵi = ∇F (xi−1)−∇f(xi−1, ξi). We leverage the martingale CLT on
√
n
∑n
i=1wn,iA

−1ϵi to

obtain the conclusion: under certain assumptions, we have

√
n(x̃n − x∗)⇒ N (0, wA−1SA−T),

where w = limn→∞ n
∑n
i=1(wn,i)

2. This result holds for many existing averaging schemes,

as well as the adaptive averaging in Section 2.4.2.

We begin by introducing several assumptions.

Assumption 2.2.1. The objective function F (x) is continuously differentiable and strongly

convex with parameter µ > 0. That is, for any x1 and x2,

F (x2) ≥ F (x1) + ⟨∇F (x1), x2 − x1⟩+
µ

2
||x1 − x2||22.

Further assume that ∇2F (x∗) exists and ∇F (x) is Lipschitz continuous with parameter L,

i.e., for any x1 and x2 we have,

||∇F (x1)−∇F (x2)||2 ≤ L||x1 − x2||2.

Assumption 2.2.2. The function f(x, ξ) is continuous differentiable with respect to x for

any ξ and ||∇f(x, ξ)||2 is uniformly integrable for any x.

Assumption 2.2.1 requires strong convexity and Lipschitz continuity, which are needed

to derive the asymptotic normality of ASGD solutions. These properties are also important

for obtaining the desired error bounds on SGD iterates and the asymptotic properties of

weighted averaged SGD. Assumption 2.2.2 ensures that Leibniz’s integration rule holds.

Consequently, ϵn = ∇F (xn−1)−∇f(xn−1, ξn) is a martingale difference, i.e., En−1(ϵn) = 0.

8

Assumption 2.2.3. Recall the gradient noise ϵi = ∇F (xi−1) −∇f(xi−1, ξi). There exists

a constant C1 such that the fourth conditional moment of ϵn is bounded as:

En−1(∥ϵn∥42) ≤ C1(1 + ||δn−1||42),

where δn = xn − x∗ is the error sequence. In addition, the conditional covariance of ϵn

satisfies

||En−1(ϵnϵTn)− S||2 ≤ C2(||δn−1||2 + ||δn−1||22),

for some constant C2.

Assumption 2.2.3 is a mild condition concerning the boundedness of the loss function.

It holds when the (matrix norm of the) Hessian of f(x, ξ) is bounded by some random

function H(ξ) with a bounded fourth moment. Easily verified examples include linear and

logistic regression. Similar assumptions are proposed in Polyak and Juditsky [1992] for the

asymptotic normality of ASGD. We will also use these assumptions in later chapters.

With the aforementioned assumptions in place, we will now present our main results

regarding the asymptotic normality for a general weighted averaging scheme.

Theorem 2.2.4. Given SGD iterates in (1.2) with step size ηi = ηi−α for some η > 0 and

0.5 < α < 1, we consider a general averaging scheme:

x̃n =
n∑
i=1

wn,ixi, (2.2)

where the weight wn,i satisfies the following conditions:

1.
∑n
i=1wn,i = 1, |wn,i| ≤ Cn−1 for some constant C.

2. w = limn→∞ n
∑n
i=1(wn,i)

2 exists.

9

3. smoothness condition: for λ = min(λmin(A),
1

2η
),

lim
n→∞

n∑
i=1

n∑
k=i+1

|wn,k − wn,i|ηi exp(−λ
k∑

t=i+1

ηt) = 0.

Then under Assumptions 2.2.1-2.2.3, the weighted averaged SGD is asymptotically normal

√
n(x̃n − x∗)⇒ N (0, wA−1SA−1),

where A = ∇2F (x∗), and S = E([∇f(x∗, ξ)][∇f(x∗, ξ)]T).

The asymptotic covariance of the weighted average x̃n here is composed of a prefactor

w and the sandwich form A−1SA−1 (A−1SA−1 is the asymptotic covariance matrix of

ASGD). In the context of ASGD, where wn,i = 1/n, the prefactor w = 1, which aligns

with our results. The smoothness condition requires that the majority of weights should not

undergo drastic changes. A slightly stronger yet simpler condition is |wn,i+1−wn,i| ≤ C̃n−2

for some constant C̃ > 0, as shown in the appendix.

2.3 Examples

In this section, we apply our results to two specific examples of averaging schemes: polynomial-

decay averaging [Shamir and Zhang, 2013] and suffix averaging [Rakhlin et al., 2012]. We also

modify suffix averaging to an online fashion. While these schemes are known for achieving

O(1/n) convergence rates in non-smooth settings, we will show that they are not statistically

optimal, with a constant prefactor that is strictly greater than unity.

10

2.3.1 Polynomial-decay averaging

With a small number γ ≥ 1, the polynomial-decay averaging [Shamir and Zhang, 2013] is

defined as follows: given iterates {xi}∞i=1, define x̃1 = x1, and for any n ≥ 1,

x̃n = (1− γ + 1

γ + n
)x̃n−1 +

γ + 1

γ + n
xn. (2.3)

The recursion form in (2.3) can be rewritten as the weighted average x̃n =
∑n
i=1wn,ixi with

weight wn,i = θn,i and

θn,i =
γ + 1

γ + i

n∏
j=i+1

j − 1

j + γ
=
γ + 1

n

Γ(γ + i+ 1)Γ(n+ 1)

Γ(γ + n+ 1)Γ(i+ 1)
,

where Γ(x) =
∫∞
0 tx−1e−tdt, x > 0, is the Gamma function. The weight wn,i = θn,i satisfies

conditions in Theorem 2.2.4. Moreover,

lim
n→∞

n
n∑
i=1

(wn,i)
2 =

(γ + 1)2

2γ + 1
.

Therefore we have the following asymptotic normality:

Corollary 2.3.1. Consider SGD iterates in (1.2) with step size ηi = ηi−α for η > 0,

0.5 < α < 1, and polynomial-decay averaging x̃n defined in (2.3). Under Assumptions

2.2.1-2.2.3, we have

√
n(x̃n − x∗)⇒ N

(
0,

(γ + 1)2

2γ + 1
A−1SA−1

)
.

Since (γ + 1)2/(2γ + 1) > 1, the covariance of polynomial-decay averaged SGD is larger

than that of ASGD.

11

2.3.2 Suffix averaging

The κ-suffix averaging in Rakhlin et al. [2012] is defined as the average of the last ⌈κn⌉

iterates of {xi}∞i=1 for 0 < κ < 1,

x̃n =
1

⌈κn⌉

n∑
i=⌈(1−κ)n⌉

xi. (2.4)

For κ-suffix averaging, the weight wn,i = 1/⌈κn⌉ for i > (1 − κ)n otherwise 0. The weight

satisfies conditions in Theorem 2.2.4 with

lim
n→∞

n
n∑
i=1

(wn,i)
2 =

1

κ
.

Therefore the κ-suffix averaged SGD is also asymptotically normal.

Corollary 2.3.2. Consider SGD iterates in (1.2) with step size ηi = ηi−α for η > 0,

0.5 < α < 1, and x̃n defined in (2.4). Under Assumptions 2.2.1-2.2.3, we have

√
n(x̃n − x∗)⇒ N (0,

1

κ
A−1SA−1).

Since 1/κ > 1, the covariance of κ-suffix averaged SGD is larger than that of ASGD.

Remark 2.3.3 (Online algorithm for suffix averaging). Since (1−κ)n depends on n, the κ-

suffix averaging cannot be computed on-the-fly. To enable online update, we modify the suffix

averaging procedure to an online method. We employ the concept of online batch scheme:

divide the rounds into blocks and track iterations within the current block (or the most recent

blocks). The block sizes are pre-defined based on various objectives and training parameters.

For a pre-defined sequence (am)m≥0, we treat xam as the start of the m-th block. Let mt

denote the block index for the t-th iteration, satisfying amt ≤ t < amt+1.

In the online suffix averaging procedure, we partition the rounds into exponentially in-

12

Figure 2.1: Realizations of online suffix averaging. Here am,m ≥ 0, is the index of the
staring point of the m-th block.

creasing blocks, and maintain the average of the last two blocks; see Figure 2.1 for an

example of possible realizations. In particular, we set am = ⌊2m−1⌋ + 1,m ≥ 0. Then

B0 = {x1}, B1 = {x2}, B2 = {x3, x4}, B3 = {x5, x6, x7, x8}, ..., and the end index of

the m-th block is 2m. We have mt = ⌈log2 t⌉, i.e., ⌊2mt−1⌋ < t ≤ 2mt. Given the se-

quence of SGD iterates x1, x2..., the online suffix averaging procedure is defined as follows:

x̂1 = x1, x̂2 = (x1 + x2)/2, and for any t > 2

x̂t =
1

t− 2⌈log2 t⌉−2

 2⌈log2 t⌉−1∑
k=2⌈log2 t⌉−2+1

xk +
t∑

k=2⌈log2 t⌉−1+1

xk

 . (2.5)

Note that 1/2 < (t − 2⌈log2 t⌉−2)/t ≤ 3/4 for t ≥ 3. Therefore, the online suffix averaging

is a form of robust suffix averaging with 1/2 < κ ≤ 3/4, i.e., the average would always

correspond to a constant-portion suffix of all iterates. The online suffix average x̂t in (2.5)

can be updated recursively; see Algorithm 1.

13

Algorithm 1: Online suffix averaging

Input: step sizes {ηt}t≥1, initialization x0,m = 0, S0 = 0, S1 = 0;

for t = 1, 2, ..., do

xt = xt−1 − ηt∇f(xt−1, ξt);

if t > 2m then

m = m+ 1, S0 = S1, S1 = xt;

else

S1 = S1 + xt;

end

Output (if necessary): x̂t = (S0 + S1)/(t− ⌊2m−2⌋)

end

2.4 Non-asymptotic mean squared error

In addition to the asymptotic distribution and statistical convergence rates, it is also im-

portant to consider finite sample performance when dealing with finite data problems or

when early stopping is desired. In this section, we will examine the optimal weight for a

linear model in terms of finite sample mean squared error (MSE), building upon the concept

of best linear unbiased estimation (BLUE). Furthermore, we will introduce a novel adaptive

averaging scheme based on insights from the mean estimation model. This particular scheme

is both statistically efficient with optimal variance, and has a fast finite sample convergence

rate, outperforming existing averaging schemes in the mean estimation model.

Given an SGD estimate x̃n, we can evaluate its non-asymptotic performance through its

MSE, i.e.,

MSE(x̃n) = E∥x̃n − x∗∥22.

Consider the general weighted average x̃n =
∑n
i=1wn,ixi. To find the optimal weight with

14

respect to the finite sample MSE, we solve the following problem:

min
c=(c1, ··· , cn):cT1d=1

E∥
n∑
i=1

cixi − x∗∥22. (2.6)

Given the “covariance” matrix Σ of the SGD sequence with Σi,j = E((xi − x∗)T (xj − x∗)),

the solution to the above constrained optimization problem is

c =
Σ−11d

1TdΣ
−11d

. (2.7)

The solution depends on the correlation between SGD iterates and can vary across different

models. In this section, we examine the linear regression model, which provides insights into

the properties of an optimal weight in a generalized form.

2.4.1 Linear model

Consider the following linear regression model:

bi = aix
∗ + ϵi (2.8)

where x∗ denotes the unknown parameter of interest, ϵi across i = 1, 2, ... are i.i.d. from

standard normal distribution, and {ξi = (ai, bi)} denote the observed streaming data. To

solve the above linear regression problem, we consider the squared loss function

F (x) = E(f(x, ξi)) = E
1

2
(aix− bi)2,

and SGD sequence with step size ηi at the i-th iteration:

xi = xi−1 − ηiai(aixi−1 − bi). (2.9)

15

Proposition 2.4.1. Consider the linear model in (2.8) and SGD sequence xi defined in

(2.9) with step size η1 = a−21 and general ηi, i ≥ 1. The unique solution to the optimization

problem (2.6) is given by

c =
ΘTD−1Θ1d

1TdΘ
TD−1Θ1d

,

where D is a diagonal matrix with Di,i = (σ2a2i η
2
i) and

Θ =



1 0 · · · · · · 0

η2a
2
2 − 1 1 · · · 0 0

...

0 0 0 ηna
2
n − 1 1


.

More explicitly,

cn,i =
a2i+1 + η−1i − η

−1
i+1

Sn
, 1 ≤ i ≤ n− 1,

cn,n =
1

ηnSn
,

where Sn =
∑n
i=1 a

2
i . And

MSE(
n∑
i=1

cn,ixi) =
1

n
.

The weights in Proposition 2.4.1 are adjusted by learning rate ηi and data ai. However,

one characteristic of these weights is that the last weight is significantly larger than the

preceding ones.

2.4.2 A new averaging scheme: adaptive weighted averaging

In the special case of the mean estimation model, where ai = 1,∀i ≥ 1, and if we choose a

polynomially decaying step size ηi = i−α, then the weights are given by:

cn,i =
1 + iα − (i+ 1)α

n
, 1 ≤ i ≤ n− 1, cn,n = nα−1. (2.10)

16

The weighted averaged SGD x̃n with above optimal weights can also be easily computed

on-the-fly. When the number of iteration increases from n to n+ 1, we have

cn+1,i =
n

n+ 1
cn,i, 1 ≤ i ≤ n− 1.

Therefore we can obtain x̃n+1 through

x̃n+1 =
n

n+ 1
x̃n +

1− (n+ 1)α

n+ 1
xn + (n+ 1)α−1xn+1. (2.11)

The newly introduced averaging scheme, referred to as adaptive weighted averaging, effec-

tively decreases the weight of earlier iterates in comparison to the later ones.

From the definition of the optimal weight, the weight in (2.10) minimizes the finite sample

MSE among all possible weights for the mean estimation model. On the other hand, this

optimal weight (2.10) also satisfies the conditions in Theorem 2.2.4, except for the last weight

nα−1 which is much greater than O(1/n). However, we have xn − x∗ = O(n−α/2), so the

last weighted error term
√
ncn,n(xn − x∗) = O(n(α−1)/2) will vanish as n → ∞. As a

result, the corresponding weighted averaged SGD still exhibits ideal asymptotic normality,

with the asymptotic covariance matrix being the same as that of ASGD estimates; see the

following Corollary 2.4.2. Thus, the proposed adaptive weighted average achieves both fast

finite sample convergence rates and the optimal statistical rate.

Corollary 2.4.2. Under the settings in Theorem 2.2.4, let x̃n =
∑n
i=1 cn,ixi with cn,i defined

in (2.10). Then we have

√
n(x̃n − x∗)⇒ N (0, A−1SA−1),

where A = ∇2F (x∗), S = E([∇f(x∗, ξ)][∇f(x∗, ξ)]T).

Connection with uniform averaging. It is interesting to compare the adaptive weighted

17

average in (2.11) with uniform average (ASGD). The recursion of ASGD x̄n takes the fol-

lowing form

x̄n+1 =
n

n+ 1
x̄n +

1

n+ 1
xn+1. (2.12)

To build the connection between (2.11) and (2.12), we rewrite (2.11) as

x̃n+1 =
n

n+ 1
x̃n +

1

n+ 1
xn+1 +

(n+ 1)α − 1

n+ 1
(xn+1 − xn). (2.13)

Thus we can consider the proposed adaptive weighted average as a modified ASGD with

a correction term, where the correction term reduces the weight of earlier iterates and in-

creases the weight of the latest iteration. This modification bears a certain similarity with

other existing variance-reduced modifications on SGD where a correction term is applied on

stochastic gradients, such as SGD with momentum.

2.5 Numerical experiment

In this section, we check the asymptotic normality property of the general weighted aver-

aged SGD and investigate the non-asymptotic performance of various averaging schemes in

different settings.

2.5.1 Asymptotic normality for different averaging schemes

To verify the asymptotic normality and the limiting covariance matrix derived in Theorem

2.2.4, we consider three averaging schemes: polynomial-decay, suffix averaging (as described

in Section 2.3), and the adaptive averaging scheme proposed in (2.11).

We focus on two classes of loss functions: squared loss f(x, (a, b)) = (aTx− b)2/2 for the

linear regression model, and logit loss: f(x, (a, b)) = log(1 + exp(−baTx)) for the logistic

regression model. In both models, we assume that the data ξi = (ai, bi), i = 1, 2, ..., n, are

independent, where ai represents the explanatory variable generated from N (0, Id), and bi

18

represents the response variable generated from two different distributions correspondingly.

For linear regression, we assume bi ∼ N (aTi x
∗, 1), while for logistic regression, bi ∈ {1,−1}

is generated from a Bernoulli distribution, where P(bi|ai) = 1/(1 + exp(−biaTi x
∗)). Recall

the asymptotic normality we are going to verify in Theorem 2.2.4:

√
n(x̃n − x∗)⇒ N (0, wV)

where V = A−1SA−T is the sandwich form matrix. For squared loss, it is easy to derive

that A = S = Id and therefore V = Id. For logit loss, since the explicit forms for A and S

are difficult to obtain, we use Monte-Carlo simulation to numerically compute the sandwich

form matrix V .

In simulations, we set d = 5 and the true parameter x∗ = (1,−2, 0, 0, 4)T for both mod-

els. We generate SGD sequences with ηi = i−α, α = 0.505, and apply different averaging

schemes. The number of iterations n = 100000, and all the measurements are averaged over

450 independent runs. For the polynomial-decay averaging, we choose γ = 3 [Shamir and

Zhang, 2013], and for the suffix averaging we choose κ = 0.5 [Rakhlin et al., 2012]. Then

the prefactors w for polynomial-decay and suffix averaging schemes are 16/7 and 2. For

polynomial decay and suffix averaged SGD, we plot the density of the standardized error

with and without prefactor w, i.e., w−1V −1
√
n(x̃n−x∗) and V −1

√
n(x̃n−x∗). For adaptive

weighted SGD, the prefactor is 1 according to Theorem 2.4.2, so we only plot the density

of the standardized error V −1
√
n(x̃n − x∗). As shown in Figure 2.2, the standardized error

(scaled with the prefactor w) exhibits an approximate standard normal distribution for all

three averaging schemes. However, for the polynomial decay and suffix averaging schemes,

the standardized error without the prefactor w has a significantly different density compared

to the standard normal distribution. These findings support the conclusion stated in Theo-

rem 2.2.4, affirming the validity of the asymptotic normality of weighted SGD solutions and

the correctness of the limiting covariance matrix.

19

0.0

0.1

0.2

0.3

0.4

−2.5 0.0 2.5

0.5−suffix (with prefactor)

0.5−suffix (without prefactor)

Adaptive

Polynomial−Decay (with prefactor)

Polynomial−Decay (without prefactor)

Std Normal

(a) Squared Loss

0.0

0.1

0.2

0.3

0.4

−2.5 0.0 2.5

0.5−suffix (with prefactor)

0.5−suffix (without prefactor)

Adaptive

Polynomial−Decay (with prefactor)

Polynomial−Decay (without prefactor)

Std Normal

(b) Logit Loss

Figure 2.2: Density plot for the standardized error with and without prefactor w. The red
line denotes a standard normal distribution.

2.5.2 Non-asymptotic performance of different averaging schemes

In this section, we will show that the adaptive weighted averaging scheme in (2.11) has good

non-asymptotic performances in different cases.

Linear model: optimal MSE

We first validate the optimality in terms of finite sample MSE in the linear regression model,

which is a generalization of the mean estimation model. The linear regression model we

examine employs identical simulation settings as described in Section 2.5.1. Additionally, we

incorporate a specific scenario of the mean estimation model with ai = 1 and x∗ = 0.

We present coordinate-averaged MSE at certain steps in Figure 2.3. Here the step size

ηi = i−0.8, and all the measurements are averaged over 400 independent runs. We can

see that the adaptive weighted averaging outperforms other averaging schemes. When n

is large enough ASGD has a similar performance with adaptive weighted SGD. It is also

consistent with our conclusion that adaptive weighted SGD and ASGD have the same limiting

20

−4

−3

−2

−1

2.0 2.5 3.0 3.5 4.0

log(n)

lo
g

(M
S

E
)

0.5−suffix Adaptive ASGD last iterate Polynomial−Decay

1

2

3

4

5

0 2000 4000 6000 8000 10000

n

0.5−suffix Adaptive ASGD last iterate Polynomial−Decay

(a) Linear model

−3

−2

−1

0

0 1 2 3

log(n)

lo
g

(M
S

E
)

0.5−suffix Adaptive ASGD last iterate Polynomial−Decay

1.0

1.5

2.0

2.5

0 400 800 1200 1600

n

0.5−suffix Adaptive ASGD last iterate Polynomial−Decay

(b) Mean estimation model

Figure 2.3: Left: log-log plots for MSE. Right: the curves stand for the ratio of MSE
between different averaging schemes and adaptive weighted averaging at each step. The
baseline (black line) is for the adaptive weighted averaging.

covariance. For the linear regression model, MSE of the optimal weighted SGD is always

smaller than that of ASGD. It indicates that adaptive weighted SGD has the potential to

beat ASGD for not only the mean estimation model but also a more general optimization

problem.

21

0 10 20 30 40 50

−
0
.0

5
0
.0

0
0
.0

5
0
.1

0
0
.1

5
n

W
e
ig

h
ts

oracle

adaptive

ASGD

suffix

polynomial−decay

Figure 2.4: Comparison of different weights under expectile regression model with ρ =
0.8. The oracle weights are numerically computed via Monte-Carlo simulation with 50000
repetitions.

Expectile regression: trend of optimal weight

We next explore the example of Expectile regression, which has a non-smooth objective

function,

F (x) = Ey∼Π(|ρ− 1{y<x}|(y − x)
2), 0 < ρ < 1.

Expectiles have important applications in finance and risk management. They are closely

associated with two commonly adopted measures: Value at Risk (VaR) and Conditional

Expected Shortfall (CES). Expectile regression was proposed by Newey and Powell [1987],

and has been widely used and researched in statistical and economic literature [Efron, 1991,

Taylor, 2008]. For the expectile estimation problem, the optimal weights in Section 2.4 do

not have a closed-form solution. Therefore we use Monte-Carlo simulation to numerically

compute the inverse of the covariance matrix and obtain the oracle weights based on equation

(2.7). We then compare these oracle weights with all the weighting schemes that we studied

previously.

The weights for different averaging schemes are plotted in Figure 2.4 with the total

iteration n = 50 and step size η = i−0.505. The most remarkable feature of the oracle weight

is its highest weight assigned to the last iterate. The adaptive weight we proposed in Section

22

2.4.2 is able to capture this characteristic, while the other averaging schemes fail to recover

it. This observation shows that our adaptive weighted averaging scheme is also promising

for the non-smooth optimization problem as it aligns the closest with the trend of the oracle

weights.

2.6 Summary

In this paper, we present the asymptotic normality results for a broad range of weighted av-

eraged SGD solutions, demonstrating that the limiting covariance matrix adopts a sandwich

form—that of ASGD’s limiting covariance matrix with an additional prefactor. This marks

the first asymptotic distribution result for general weighted averaged SGD and holds signif-

icant importance for statistical inference. We note that although certain existing weighted

averaged SGD methods exhibit faster convergence than ASGD in non-asymptotic views or

specific settings without strong assumptions, they may also incur larger variance, indicating

a trade-off. Additionally, we explore the non-asymptotic MSE of weighted averaged SGD in

the linear regression model and propose a novel averaging scheme—adaptive averaged SGD.

This scheme exhibits asymptotic normality, achieves optimal limiting covariance, and offers

favorable finite sample MSE.

23

CHAPTER 3

SHARP CONCENTRATION ANALYSIS FOR STOCHASTIC

GRADIENT DESCENT

As mentioned in the previous chapter, there have been extensive studies on the theoretical

properties of SGD since 1951, from consistency to distributions/inference and from asymp-

totic to non-asymptotic investigations [Blum, 1954, Dvoretzky, 1956, Moulines and Bach,

2011, Rakhlin et al., 2012, Bach and Moulines, 2013, Toulis and Airoldi, 2017, Anastasiou

et al., 2019a]. However, there are still gaps between the theory of SGD and applications,

especially with heavy-tailed stochastic gradient noise which commonly arises in practice. In

this chapter, we will focus on the concentration property of the SGD estimates. We obtain

a nearly sharp high-probability error bound for SGD estimates with heavy-tailed noise in

the linear model. We show that the tail behaviors of SGD estimates are quite different in

heavy-tailed noise cases compared to those in sub-Gaussian noise cases.

For consistency with the notation used in the paper Lou et al. [2022], which is relevant

to this chapter, we will use θ to denote the parameter of interest instead of x, and X, Y

to represent data instead of ξ. To be more specific, we consider the convex optimization

problem minθ∈Rp F (θ), where F : Rp → R, and SGD updates the estimate of the minimum

θ⋆ based on the stochastic gradient ĝ(θ) at some θ, which is a noisy measurement of the

gradient/subgradient g(θ) = ∇F (θ). It is important to note that this change in notation is

specific to this chapter.

3.1 Introduction

Most of the literature on the quality of SGD estimates focuses on the expected error rate.

Polyak and Juditsky [1992] and Ruppert [1988] introduced the averaged SGD (ASGD), a

simple modification where iterates are averaged, and established the asymptotic normality of

24

the obtained estimate. It is known that ASGD estimates achieve the optimal rate O(1/
√
T)

due to the central limit theorem (CLT), after T steps of SGD, under certain regularity

conditions. Further analyses on the error rate show that the expected squared error of the

SGD estimate (with average if necessary) is O(1/T) for strongly convex objective functions,

and O(1/
√
T) for smooth convex and non-smooth Lipschitz objective functions [Nemirovski

et al., 2009, Rakhlin et al., 2012, Shamir and Zhang, 2013, Lacoste-Julien et al., 2012].

Besides the guarantees in expectation, practitioners usually want to ensure that the

output of a single trial of the algorithm is well behaved and may ask: how many iterations

are needed in a single trial of the algorithm to achieve the desired accuracy? In other words,

they would prefer high confidence guarantees, i.e., high-probability error bounds in the form

of

P(∥θ̂ − θ⋆∥22 ≥ ϵ) ≤ δ,

where ϵ > 0, δ ∈ (0, 1) can be arbitrarily small, and θ̂ is the estimate of θ⋆. These high-

probability guarantees are usually adopted in statistical learning theory [Valiant, 1984], where

a tight sample complexity bound is of great interest. Note that bounds in expectation are

generally too conservative to derive high-probability guarantees. Specifically, if one has

E∥θ̂T − θ⋆∥q2 = O(T−2/q) [Chung, 1954], by Markov’s inequality, one can only guarantee

with probability at least 1− δ,

∥θ̂T − θ⋆∥22 ≤ O(δ−2/qT−1).

Then, the resulting sample complexity

T (ϵ, δ) = O

(
δ−2/q

ϵ

)
(3.1)

can be very high for a small δ. Also, the confidence intervals obtained from the CLT only

hold asymptotically when the number of samples goes to infinity and cannot be used to

25

rigorously compute sample complexity when δ → 0. Thus, additional non-asymptotic tail

probability results are needed.

High-probability bounds on SGD are much less explored than the bounds in expectation.

Some known high-probability results under light-tailed noise assumptions include Rakhlin

et al. [2012], who showed that for the strongly convex setting and suffix averaging θ̂T , with

probability at least 1− δ,

∥θ̂T − θ⋆∥22 ≤ O (log(log(T)/δ)/T) .

Recently, Harvey et al. [2019a] improved the above bound to O (log(1/δ)/T). Other similar

results can be found in Hazan and Kale [2014], Cardot et al. [2017], Jain et al. [2019], Harvey

et al. [2019b], Feldman and Vondrak [2019], Mou et al. [2020]. These high-probability bounds

depend logarithmically on 1/δ, and the resulting sample complexity is

T (ϵ, δ) = O

(
log(1/δ)

ϵ

)
,

substantially improving T (ϵ, δ) = O(δ−2/qϵ−1) in (3.1) when δ is small. Such bounds with

a dependence on log(1/δ) are often called sub-Gaussian bounds or with sub-Gaussian per-

formance. Harvey et al. [2019a] also remark that a dependence on log(1/δ) is necessary,

which indicates that SGD can not achieve a better performance than this one under sub-

Gaussianity.

The aforementioned high-probability results all rely on the light-tailed assumption on

the gradient noise z = ĝ − g, such as boundedness or sub-Gaussianity. However, such

assumptions can be violated in practice. The heavy-tailed phenomenon is not uncommon in

applications [Simsekli et al., 2019]. It is also more likely to get a bad output in a single trail of

SGD due to the more frequent outliers with heavy-tailed stochastic gradients. Thus, a high-

probability guarantee is especially needed. Then a natural question is: Can SGD achieve the

26

sub-Gaussian performance with log(1/δ) tail behavior in the case of heavy-tailed stochastic

noise? This paper answers this question by delivering a nearly tight high-probability bound

in a linear model with heavy-tailed stochastic noise. In particular, with probability at least

1− δ, for any δ ∈ (0, 1),

∥θ̄T − θ⋆∥22 ≤ O

(
log(1/δ)

T
+

(1/δ)2/q

T 2−2/q

)
,

where θ⋆ is the true parameter and θ̄T is the ASGD estimate (q > 2 controls the tail of the

stochastic noise). As a result, the sample complexity bound, with tolerance error ϵ > 0 and

failure probability δ ∈ (0, 1), is

T (ϵ, δ) = O

 log(1/δ)

ϵ
+

(
δ−2/q

ϵ

)q/(2(q−1)) . (3.2)

It is better than the T (ϵ, δ) = O(δ−2/qϵ−1) in (3.1). Besides the advantage of the logarith-

mical term, the polynomial term O((δ−2/qϵ−1)q/(2(q−1))) is sharper than O(δ−2/qϵ−1) since

q > 2. We also compare the logarithmical term and the polynomial term in (3.2) numeri-

cally. Figure 3.1 shows that, when δ is big, the logarithmical dependence dominates, and

therefore the sample complexity is the same as that in the sub-Gaussian case. While when δ

is small, which is more of interest in most cases, the polynomial dependence term dominates,

showing that the polynomial dependence on δ is unavoidable. Thus, one cannot achieve the

sub-Gaussian performance when the gradient noise exhibits heavy-tailed distribution.

There has recently been renewed interest in obtaining robust guarantees for SGD without

the light-tailed assumption. Robust modifications of SGD (or GD), such as gradient clipping

and using the geometric median of stochastic gradients, are studied to accommodate heavy-

tailed noise [Nazin et al., 2019, Holland and Ikeda, 2019, Davis and Drusvyatskiy, 2020,

Gorbunov et al., 2020]. The question of whether these robust modifications are necessary

27

0.00 0.05 0.10 0.15 0.20

20
0

40
0

60
0

80
0

δ

T

Figure 3.1: Compare the two terms in sample complexity (3.2). Here X axis repre-
sents failure probability δ; the solid line denotes ϵ−1 log(1/δ), the dashed line denotes
(δ−2/qϵ−1)q/(2(q−1)). We choose ϵ = 0.01 and q = 2.5.

is vital since using SGD is a common heuristic in modern learning tasks and is easier to

implement and more widely used than its modified versions. Our lower bound answers this

question and indicates that such modifications are necessary when heavy-tailed noise exists.

3.2 Upper bound

3.2.1 Linear model setting

Assume that we observe data (Xi, yi) ∈ Rp × R, i ≥ 1, from the following linear regression

model:

yi = X⊤i θ
⋆ + ϵi, i ≥ 1,

where θ⋆ ∈ Rp is the unknown true parameter. The random draws (Xi, ϵi) across i =

1, 2, ... are i.i.d. from PX × Pϵ. Here we assume that PX is a distribution on Rp such that

E(XiXT
i) = Σ, while Pϵ is a distribution on R such that E(ϵi) = 0 and Var(ϵi) = σ2. Note

that, we consider a much richer class of gradient noise beyond sub-Gaussian, where only

finitely-many moments are required allowing heavy-tailed noise. More detailed assumptions

are included in Section 3.2.2.

28

To solve the above linear regression problem, we consider the optimization problem

min
θ∈Rp

F (θ) = EX,y
1

2
(y −X⊤θ)2.

We apply the mini-batch SGD, which is a popular parallelization technique reducing the

communication costs [Li et al., 2014, Reddi et al., 2016, Jain et al., 2017]. Mini-batching is

efficient in practice and brings convenience in later proofs. Initialized at θ0, the t-th iteration

with step size ηt is given by:

θt = θt−1 − ηtĝt(θt−1), t ≥ 1,

ĝt(θt−1) =
1

B

tB∑
i=(t−1)B+1

Xi

(
X⊤i θt−1 − yi

)
,

(3.3)

where B is the mini-batch size and step sizes ηt will be discussed in later analysis. In

this chapter, we are interested in the high-probability bound of the averaged iterate θ̄T =

T−1
∑T
t=1 θt with T iterations (n = TB samples) in total.

For (Xi, yi)i≥1 in above linear regression model, let

At =
1

B

tB∑
i=(t−1)B+1

XiX
⊤
i and bt =

1

B

tB∑
i=(t−1)B+1

Xiyi.

We can rewrite the t-th iteration from the mini-batch SGD as:

θt = θt−1 − ηt(Atθt−1 − bt), t ≥ 1.

Note that E(At) = E(XX⊤) = Σ, and b = E(bt) = Σθ⋆. We can see that solving the linear

regression problem through mini-batch SGD (3.3) is equivalent to solving the linear system

of the form:

Σθ⋆ = b,

29

through stochastic approximation [Mou et al., 2020].

3.2.2 Assumptions

Assumption 3.2.1. For distribution Pϵ, assume that for some constant q > 2,

µq = E|ϵ|q <∞.

Assumption 3.2.2. Assume that Mψ := max1≤ℓ≤p
(
E|Xiℓ|2ψ

)1/2ψ
< ∞, for some con-

stant ψ > max{4, q}. Let λmin(Σ) > 0, assume that the mini-batch size satisfy

B ≥ 16(ψ − 1)M4
ψp

2/λmin(Σ)
2.

Remark 3.2.3. In existing works, light-tailed assumptions of the gradient noise are required,

i.e., finite exponential moments (e.g. bounded, sub-Gaussian, sub-exponential). While in

our assumptions, the noise conditions are more general. We only require finite polynomial

moments in Assumption 3.2.1, in which case heavy-tailed noise is allowed. Assumption 3.2.2

is a fairly mild condition on PX and the mini-batch size B. It ensures that

(
E∥At − Σ∥ψ2

)1/ψ
≤ λmin(Σ)/2, (3.4)

which is shown in Lemma B.1.3 and is a useful condition for controlling the correlation

between SGD iterates in later proofs. On the other hand, if Xi is Gaussian, Corollary 2

in Koltchinskii and Lounici [2017] implies that a weaker assumption for (3.4) is, for come

constant Cψ,

B ≥ Cψr(Σ)K(Σ)2,

where r(Σ) = tr(Σ)/λmax(Σ) is the effective rank of Σ, and K(Σ) = λmax(Σ)/λmin(Σ) is

the condition number. It is worth mentioning that the linear system Σθ⋆ = b becomes more

30

unstable when the condition number of Σ grows. Therefore, it is reasonable to require a

larger mini-batch size B when the condition number is larger. For more discussion about

concentration inequality and expectation inequality of the operator norm ∥At−Σ∥2, we refer

to Vershynin [2010], Koltchinskii and Lounici [2017], Tropp [2012] and the references therein.

3.2.3 Nagaev type upper bound

The step size sequence (ηt)t≥1 controls the convergence of the SGD algorithm. In this section,

we focus on two commonly used step size regimes: polynomial decay step size ηt = η0t
−α

with α ∈ (0, 1) and constant step size with ηt = η0 for any t ≥ 1.

We analyze the tail probability of the error θ̄T − θ⋆, after T steps of SGD, in the linear

model setting. In what follows, we denote λ0 = λmin(Σ)/2, λ∗ = λmax(Σ),

Kq = sup
ν∈Sp−1

E|ν⊤Xt|q,

and

Υϖ,α =

∫ ∞
1

exp

(
−ϖ

∫ z

1
x−αdx

)
dz.

Theorem 3.2.4 (polynomial decay step size). Let Assumptions 3.2.1 and 3.2.2 hold. As-

sume that η0 ≤ 1/λ∗ and

ψ >
2q − 4α

2− α
.

Then, for any ω ∈ Sp−1 and x > 0, we have

P
(
|ω⊤(θ̄T − θ⋆)| > x

)
≤
C0∥θ0 − θ⋆∥

ψ
2

(Tx)ψ
+

C1Wq

T q−1xq
+ C exp

(
−C2Tx

2

W2

)
, (3.5)

31

where Wq = µqKqλ−q0 B1−q, W2 = σ2λ∗λ−20 B−1, C0 = (2Υλ0η0,α)
ψ, C, C1 and C2 are

constants depending only on q, ψ and α.

Remark 3.2.5. The first term on the RHS of (3.5) characterizes the effect of the initial

point θ0 on the tail probability of θ̄T − θ⋆. The influence of θ0 decays quickly, note that for

any x ≳ T−1/2, we have
C0∥θ0 − θ⋆∥

ψ
2

(Tx)ψ
≤

C1Wq

T q−1xq
,

as long as ∥θ0 − θ⋆∥ψ2 ≲ C1C
−1
0 WqT

1+(ψ−q)/2, which is a fairly mild condition on θ0 as

ψ > q. Consequently, in this case, Theorem 3.2.4 implies that

P
(
|ω⊤(θ̄T − θ⋆)| > x

)
≤

2C1Wq

T q−1xq
+ C exp

(
−C2Tx

2

W2

)
,

which, together with P(∥θ̄T − θ⋆∥2 > x) ≤
∑p
j=1 P(|θ̄T,j − θ

⋆
j | > x/

√
p), imply that

P
(
∥θ̄T − θ⋆∥2 > x

)
≤

2p1+q/2C1Wq

T q−1xq
+ pC exp

(
−C2Tx

2

pW2

)
. (3.6)

Theorem 3.2.6 (Constant step size). Let Assumptions 3.2.1 and 3.2.2 hold. Assume that

η0 ≤ 1/λ∗ and

η0 ≳
(log T)(3ψ−4)/(ψ−4)

T 2(ψ−q)/(ψ−4) .

Then, for any vector ω ∈ Sp−1 and x > 0, we have

P
(
|ω⊤(θ̄T − θ⋆)| > x

)
≤
C0∥θ0 − θ⋆∥

ψ
2

(Tx)ψ
+

C1Wq

T q−1xq
+ C exp

(
−C2Tx

2

W2

)
,

where Wq = µqKqλ−q0 B1−q , W2 = σ2λ∗λ−20 B−1,C0 = (2/λ0η0)
ψ, C, C1 and C2 are

constants depending only on q and ψ.

Remark 3.2.7. Both inequalities with different step size regimes imply two types of bounds:
32

Gaussian type tail and polynomial type tail. When x is small, i.e., for small deviations, the

Gaussian type tail is the dominating term for the tail of the estimation error. While for large

x, the polynomial type tail dominates. A combination of these two types of tail approximation

calibrates the tail behavior of SGD solutions more accurately in the case of heavy-tailed noise.

After elementary calculations, we can translate the tail probability results as following.

For any δ ∈ (0, 1), with probability at least 1− δ,

∥θ̄T − θ⋆∥2 ≤ O

(√
log(1/δ)

T
+

(1/δ)1/q

T 1−1/q

)
.

For large or moderate failure probability δ > δ∗,

∥θ̄T − θ⋆∥2 ≤ O

(√
log(1/δ)

T

)
,

where δ∗ is the solution of the equation
√
T−1 log(1/δ) = T−1+1/q(1/δ)1/q and has the

asymptotic form δ∗ ≍ T 1−q/2(log T)−q/2. This high probability error rate matches existing

results considering sub-Gaussian/bounded gradient noise [Mou et al., 2020]. While for small

failure probability δ < δ∗, which is more of interest in most applications, we have

∥θ̄T − θ⋆∥2 ≤ O

(
(1/δ)1/q

T 1−1/q

)
.

3.2.4 Technical overview and proof sketch for main results

Let ∆t = θt − θ⋆ and Et = B−1
∑tB
i=(t−1)B+1Xiϵi. At the t-th step, the gradient g and the

stochastic gradient ĝt can be written with Σ, At, Et,∆t notations as follows:

g(θt−1) = Σ∆t−1, ĝt(θt−1) = At∆t−1 − Et.

33

Let zt(θt−1) = ĝt(θt−1) − g(θt−1) denote the gradient noise. Note that it is a martingale

difference sequence since Et−1(zt(θt−1)) = 0. The recursion of ∆t is usually represented

using martingales as follows

∆t = (Ip − ηtΣ)∆t−1 − ηtzt(θt−1), t ≥ 1. (3.7)

Then, the classic analysis uses properties of martingales, such as Freedman and Azuma in-

equalities. The high-probability bounds obtained from those general martingale inequalities

are sharp only when finite exponential moments of the noise zt|Ft−1 exists. Therefore, ex-

isting studies require the gradient noise zt (or equivalently At and bt in linear stochastic

approximation) to be sub-Gaussian or to be bounded. In our work, we extend the noise

condition to a more general case, where heavy-tailed noise is allowed. To obtain sharp high-

probability bounds for heavy-tailed noise, we study the detailed structure of the martingale

differences and use inequalities which are nearly sharp under polynomial moment conditions.

We can see that the martingale difference zt at θt−1 can be decomposed as

zt(θt−1) = (At − Σ)∆t−1 − Et, t ≥ 1,

which is the sum of two parts, one related to the noise from At and the other part Et. Note

that the dependence between {zt(θt−1)}t≥1 comes from the dependence between (θt)t≥1,

and (Et)t≥1 are independent. Then leveraging the structure of zt, we study the recursion

with a different representation:

∆t = (Ip − ηtAt)∆t−1 + ηtEt, t ≥ 1. (3.8)

Compared with the form in (3.7), although more considerations are needed for the correlation

term (Ip− ηtAt) as variability is introduced (we now have (Ip− ηtAt) instead of (Ip− ηtΣ)),

34

the remaining independent structure makes it possible to obtain a tight tail bound under

heavy-tailed noise assumptions.

In the following, we sketch the proof of our main results under the step size regime

ηt = η0t
−α with α ∈ (0, 1). Proof for the constant step size regime shares the same spirit

with minor modifications. We defer the complete proof to Section B.1. From (3.8) we can

see that (∆t)t≥1 has a closed form expression

∆t =
t∏

ℓ=1

(Ip − ηℓAℓ)∆0 +
t∑

m=1

t∏
ℓ=m+1

(Ip − ηℓAℓ)ηmEm.

Let ST = T (θ̄T − θ) =
∑T
t=1∆t which is further decomposed as ST = S⋄T + S⋆T , where

S⋄T =
T∑
t=1

t∏
ℓ=1

(Ip − ηℓAℓ)∆0 and S⋆T =
T∑
t=1

t∑
m=1

t∏
ℓ=m+1

(Ip − ηℓAℓ)ηmEm.

To bound the target ω⊤ST /T for any ω ∈ Sp−1 in Section 3.2.3, we deal with S⋄T and S⋆T

separately.

Lemma 3.2.8. Under Assumption 3.2.2, for any vector ω ∈ Sp−1 and x > 0, we have

P
(
|ω⊤S⋄T | > x

)
≤
∥θ0 − θ⋆∥

ψ
2Υ

ψ
λ0η0,α

xψ
.

Next, we observe that for any ω ∈ Sp−1,

ω⊤S⋆T =
1

B

T∑
m=1

mB∑
i=(m−1)B+1

ηmω
⊤HmXiϵi, where Hm =

T∑
t=m

t∏
ℓ=m+1

(Ip − ηℓAℓ),

which means ω⊤S⋆T is a sum of independent zero-mean random variables conditional on

35

FX,n = σ{X1, X2, . . . , Xn}. Hence, for x > 0, by Lemma B.1.2 (Nagaev inequality),

P
(
|ω⊤S⋆T | > x|FX,n

)
≤
Cq,1DT,q
(Bx)q

+ 2 exp

(
−
Cq,2B

2x2

Dn,2

)
,

where Cq,1 and Cq,2 are constants depending only on q and

DT,q = µq

T∑
m=1

η
q
m

mB∑
i=(m−1)B+1

|ω⊤HmXi|q.

We bound the conditional variance DT,2 in Lemma B.1.4, which is a main technical step,

and obtain the following results for S⋆T .

Lemma 3.2.9. Under the conditions of Theorem 3.2.4, we have

P
(
|ω⊤S⋆T | > x

)
≤
C1WqT

xq
+ C exp

(
−C2x

2

TW2

)
,

Consequently, Theorem 3.2.4 directly follows from Lemma 3.2.8 and Lemma 3.2.9.

3.3 Tightness of the upper bound

This section shows that the Nagaev type upper bound obtained in the above section is tight

through the example of the mean estimation model. Therefore, the polynomial term in

the upper bounds in Section 3.2.3 is unavoidable, and the sub-Gaussian performance with

log(1/δ) tail behavior cannot be achieved through SGD with heavy-tailed gradient noise. In

particular, we consider the model

yi = θ⋆ + ϵi, i ≥ 1, (3.9)

where θ⋆ ∈ R is the mean we want to estimate and {ϵi}i≥1 are i.i.d. generated from a t-

distribution with degree of freedom ν > 2. For initial value θ0, the t-th iterate θt from SGD
36

algorithm, with mini-batch size B = 1, takes the following form:

θt = θt−1 + ηt(yt − θt−1), t ≥ 1, (3.10)

where ηt is the step size at the t-th iteration.

The gradient noise zt = ϵt is heavy-tailed. The mean estimation model (3.9) is a special

case of the linear regression model. Assumptions 3.2.1 and 3.2.2 can be easily verified since

At = 1 with no randomness here. Then we can apply theorems in Section 3.2.3 and get the

upper bounds for the estimation error θ̄T −θ⋆ when there are T iterations in total. We focus

on the polynomial decay step size regime, i.e., ηt = η0t
−α, with η0 = 0.1, α = 0.55 in the

rest of this section. We modify the upper bound (3.6) in Section 3.2.3 as follows.

Nagaev type upper bound: We have for all x > 0,

P
(
|θ̄T − θ⋆| > x

)
≤ C1

xqT q−1
+ exp

(
−C2Tx

2
)
, (3.11)

for some constant C1, C2. Then, with probability at least 1− δ,

|θ̄T − θ⋆| ≤ O

(
1

(δT q−1)1/q
+

√
log(1/δ)

T

)
.

Next, we will show that the Nagaev type upper bound for the estimation error θ̄T − θ⋆ is

tight by taking advantage of the simple structure of the mean estimation model. First, we

introduce the following notation

Vi =
i∏

k=1

(1− ηk), i ≥ 1, V0 = 1;

V
j
i =

Vj
Vi
, j ≥ i.

(3.12)

37

Then, θ̄T − θ⋆ has the closed form as follows:

θ̄T − θ⋆ =
1

T

T∑
i=1

Vi∆0 +
1

T

T∑
t=1

T∑
i=t

V it ηtϵt,

where ∆0 is the initialization error θ0 − θ⋆. Since {ϵt}t≥1 is a sequence of i.i.d. random

errors, the estimation error above (deducted by the initialization error) can be view as the

weighted sum of T i.i.d. random variables with mean 0. We can then further analyze the

estimation error based on existing studies about deviations and tail probabilities of linear

processes.

3.3.1 Upper bound from Nagaev inequality

The Nagaev inequality [Nagaev, 1979] for tail probability is a useful result in probability

theory. It is known that the performance bounds obtained from Nagaev inequality are

nearly sharp under polynomial moment conditions.

Proposition 3.3.1. Consider the mean estimation model in (3.9) and the SGD iterates

{θt}t=1,...,T defined in (3.10). For any x > 0 and 2 < q < ν, we have

P
(∣∣θ̄T − θ⋆∣∣ ≥ C|∆0|

T
+ x

)
≤ (1 + 2/q)qE|ϵ|q

xqT q−1
+ 2 exp

(
−cqx2T

)
, (3.13)

where cq = 2e−q(q + 1)−2/E|ϵ|2, and C =
∑∞
i=1 Vi, Vi is defined in (3.12).

While the Nagaev inequality gives more precise constants, the upper bound in (3.13) is

of the same order as that in (3.11). Thus, the tightness of Nagaev inequality implies that

our proposed Nagaev type upper bound is also tight.

38

3.3.2 Exact deviation

Furthermore, instead of an upper bound, we give the exact asymptotic tail probability of

the estimation error in the mean estimation model. Inspired by Peligrad et al. [2014], which

studied the exact moderate and large deviation of linear processes, we obtain Proposition

3.3.2.

Proposition 3.3.2. Consider the mean estimation model (3.9) and the SGD iterates {θt}t=1,...,T

defined in (3.10). Define

σ2T = E|ϵ|2
T∑
t=1

 T∑
i=t

V it ηt/T

2

.

For x ≥ σT ,

P
(∣∣∣∣θ̄T − θ⋆ − γT∆0

T

∣∣∣∣ ≥ x

)
= (2 + o(1)) (1− Φ(x/σT) +R(T, x)) , (3.14)

where γT =
∑T
i=1 Vi, Vi is defined in (3.12), and

R(T, x) =
T∑
t=1

P

ϵt ≥ Tx/
T∑
i=t

V it ηt

 .

The right-hand-side (RHS) of (3.14) comprises two parts: Gaussian approximation 1 −

Φ(x/σT) and tail approximation R(T, x). Note that σ2T ≍ 1/T as discussed in Section B.1.6

. Then the Gaussian approximation refines the term exp(−C2Tx
2) in (3.11). Also,

P (ϵt ≥ y) ∼ cν/y
ν , y →∞,

where cν = ν−3/2π−1/2Γ((ν + 1)/2)/Γ(ν/2) according to the property of tν distribution,

and
∑∞
i=t V

i
t ηt = O(1) as discussed in Section B.1.6. Then the tail approximation

R(T, x) ≍ 1/(xνT ν−1),

39

0.1 0.2 0.3 0.4 0.5 0.6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

x

R
at

io

Figure 3.2: Ratio of approximated and true tail probability. Here X axis represents deviation
x. Red curves represent Gaussian approximation:

(
1− Φ(x/

√
µT,2)

)
/P(ST ≥ x); blue

curves represent tail approximation: R(T, x)/P(ST ≥ x) ; black curves represent their sum:(
1− Φ(x/

√
µT,2) +R(T, x)

)
/P(ST ≥ x).

matching the polynomial term in our proposed Nagaev type upper bound (3.11). Therefore,

we can see that the tail probability polynomial dependence on 1/δ is necessary in the tail

bound of SGD and sub-Gaussian tails cannot be achieved under heavy-tailed assumptions.

3.3.3 A numerical study

We conduct a numerical study of the accuracy of the exact tail probability in (3.14) for

ν = 3. The true tail probability of the estimation error (LHS of (3.14)) can be calculated

through the inversion formula. Let

ST = θ̄T − θ∗ −
1

T

T∑
i=1

Vi∆0 =
T∑
t=1

 T∑
i=t

V it ηt/T

 ϵt.

40

Then the characteristic function of ST is

ϕST (x) =
T∏
t=1

ϕ

 T∑
i=t

V it ηt/T

x

 ,

where ϕ is the characteristic function of a t3-distribution. By the inversion formula,

P (ST ≤ x)− P (ST ≤ 0) =
1

2π

∫ ∞
−∞

e
√
−1yx − 1√
−1y

ϕST (y)dy.

Since ST is symmetric, P (ST ≤ 0) = 1
2 . In our numerical study, we use the above formula to

compute the probability P(ST ≥ x). In figure 3.2, we report the ratios R(T, x)/P(ST ≥ x)

,
(
1− Φ(x/

√
µT,2)

)
/P(ST ≥ x) and

(
1− Φ(x/

√
µT,2) +R(T, x)

)
/P(ST ≥ x). We can see

that the Gaussian approximation is good for small deviations, while the tail approximation

is better when the deviation is moderate or large. The numerical study confirms that the

polynomial term in the upper bound (3.11) is necessary in the case of heavy-tailed gradient

noise, especially for moderate and large deviations.

3.4 Summary

In this paper, we established nearly tight tail probabilities for SGD errors with heavy-tailed

noises in linear models. The resulting high probability error bounds and sample complex-

ity are quite different from those obtained in light-tailed noise cases. In particular, with

probability at least 1 − δ, we have ∥θ̄T − θ⋆∥22 ≤ O
(
T−1 log(1/δ) + (δT q−1)−2/q

)
, where

the polynomial dependence on the failure probability δ is generally unavoidable. For future

directions, it is interesting to extend our concentration analysis under heavy-tailed noise as-

sumptions to other examples of SA. Also, the robust modification of SGD can be a promising

topic to accommodate the heavy-tailed noise.

41

CHAPTER 4

ONLINE COVARIANCE MATRIX ESTIMATION IN

STOCHASTIC GRADIENT DESCENT

From this chapter, we consider the problem of practical inference in the online setting where

data can arrive sequentially. In this section, we focus on the estimation of the limiting co-

variance matrix, which appears in the asymptotic normality results discussed in the previous

chapter. In particular, we introduce a fully online approach to estimate the covariance ma-

trix using only the iterates from SGD. We can then construct confidence intervals for model

parameters based on the estimated covariance matrix and asymptotic normality results.

4.1 Introduction

Recall that applying vanilla SGD algorithm (1.2) to solve the problem (1.1), we obtain

iterates {xi}i≥1. In this chapter, we will use the ASGD iterate

x̄n = n−1
n∑
i=1

xi

as the final estimate for the model parameter at the n-th step, and set step size ηi =

ηi−α(i ≥ 1) with η > 0 and α ∈ (0.5, 1) as suggested by Polyak and Juditsky [1992]. Recall

the definition

A = ∇2F (x∗), S = E
(
[∇f(x∗, ξ)][∇f(x∗, ξ)]T

)
. (4.1)

From Polyak and Juditsky [1992], under suitable conditions, x̄n has the asymptotic normal-

ity:
√
n(x̄n − x∗)⇒ N(0,Σ), (4.2)

where Σ = A−1SA−1, which is known as the “sandwich” form of the covariance ma-

trix. To leverage the asymptotic normality result for inference, it is critical to estimate
42

the limiting covariance matrix Σ. Intuitively, one can estimate S with a simple sam-

ple average Ŝn = n−1
∑n
i=1[∇f(xi−1, ξi)][∇f(xi−1, ξi)]T , and similarly estimate A with

Ân = n−1
∑n
i=1∇2f(xi−1, ξi). Then the limiting covariance matrix Σ can be estimated by

the consistent plug-in estimator Â−1n ŜnÂ
−1
n (see Chen et al. [2020]). However, computation

of the Hessian matrix of the loss function is not always available, e.g., certain computations

are not available in many existing codebases that only adopt SGD for optimization and in

cases such as quantile regression, the Hessian matrix does not even exist. Also, the plug-in

estimator may be computationally costly when d is large since it involves matrix inversion

with O(d3) time complexity in general.

Our goal is to obtain an online estimate of the covariance matrix of
√
nx̄n, only through

the SGD iterates {x1, x2, ..., xn}. Our approach is attractive in situations where the com-

putation for A−1 and S are difficult, which is quite typical in practice. Also, the approach

is efficient in both computation and memory due to its recursive property, i.e., the estimate

at n-th step Σ̂n can be updated from Σ̂n−1 within O(d2) computation. With the estimate,

we can perform uncertainty quantification and statistical inference with desirable computa-

tion and memory efficiency. The approach is useful for online learning, where the data is

constantly arriving over time, such as streaming data.

For the time-homogeneous Markov chain, {xi}i∈Z is a stationary process. Under certain

short-range dependence conditions, we have

√
n (x̄n − Exi)⇒ N(0, σ2),

where

σ2 = lim
n→∞

Var(
√
nx̄n) =

∞∑
i=−∞

cov(x0, xi)

is the long-run variance, and it plays a fundamental role in the statistical inference of sta-

tionary processes. To estimate the long-run variance, one can apply the batch-means method

43

[Glynn and Whitt, 1991, Flegal and Jones, 2010, Politis et al., 1999, Lahiri, 2003, Kitamura

et al., 1997]. Given x1, ..., xn, let 1 ≤ ln ≤ n be the batch size. Based on batch-means∑i+ln
k=i xk/ln − x̄n for 1 ≤ i ≤ n− ln + 1, one can estimate σ2 by

σ2n =
ln

n− ln + 1

n−ln+1∑
i=1

i+ln−1∑
k=i

xk/ln − x̄n

2

.

As an alternative, one can use the non-overlapping batch-means
∑i+ln
k=i xk/ln − x̄n for i =

1, 1 + ln, 1 + 2ln, ..., to construct a similar estimate. Properties of overlapping and non-

overlapping batch-means estimators are discussed in Politis et al. [1999] and Lahiri [2003].

In our problem, estimation of Σ in (4.2) becomes more complicated since SGD iterates form

a non-stationary Markov Chain.

To apply to SGD, Chen et al. [2020] modified the classic non-overlapping batch-means

by allowing increasing batch sizes and showed that the modified batch-means estimator is

consistent. However, their approach is not in line along with the spirit of SGD, the fully

online fashion. Their construction of covariance estimator Σ̂n requires the information on the

total number of iterations n a priori. There is no simple algebraic relation between Σ̂n and

Σ̂n+1. In other words, when a new data point xn+1 arrives later, their algorithm needs to re-

compute their estimate from the beginning and cannot perform efficient sequential updating.

So the approach is computationally expensive for online learning, where the dynamic training

data is arriving over time, and the goal is to make sequential predictions; see Remark 4.2.1

for a detailed discussion of Chen et al. [2020].

To address the above problems, we develop a fully online approach for asymptotic covari-

ance matrix estimation, which we refer to as online batch means method. The construction

does not require prior knowledge of the total sample size. Immediate updates from Σ̂n to

Σ̂n+1 can be performed recursively as new data is coming in, which fits our online setting.

To achieve this goal, we design a novel construction of batches with time-varying size, which

44

substantially extends the one in Chen et al. [2020]. Similar to the recursive nature of SGD,

our algorithm is also recursive and it updates the covariance matrix estimate once at a time

only through the stochastic gradient within O(d2) computation. Note that since we are

learning a d × d covariance matrix, it requires at least O(d2) computation to update the

covariance matrix estimates. In the important special case of marginal inference of each

coordinate of the parameter vector, our online batch means estimator only needs to compute

and store diagonals of the covariance matrix estimate, which only require O(d) computation

and O(d) memory. The idea of online estimation is motivated by Wu [2009], who studied the

estimation of long-run variances of stationary and ergodic processes. As mentioned above,

the SGD iterates in (1.2) form a non-homogeneous (non-stationary) Markov Chain since the

step size ηk decays as k increases, for example ηk = ηk−α for α ∈ (1/2, 1) as suggested by

Polyak and Juditsky [1992]. Hence, the asymptotic behaviors of SGD and stationary pro-

cesses are fundamentally different. The construction, which is associated with batch sizes,

is novel and different for SGD iterates and stationary sequences. This non-stationarity also

brings substantial difficulties in technical analysis. The convergence of our estimator is far

from being trivial. We formally establish the consistency result and obtain the convergence

rate of our online estimator in Section 6.4.

4.2 Online approach

We first introduce a time varying batch scheme used in our online approach. Consider infinite

sequentially arriving SGD iterates {xi}i=1,2,... in (1.2). Let {am}m∈N be a strictly increasing

integer-valued sequence with a1 = 1. For the i-th iterate xi, we consider a data block Bi

including iterates from past iterations ti to i, i.e.,

Bi = {xti , ..., xi},

45

where ti is the index of iterate we trace back to at the i-th step. The value of ti is determined

by the sequence {am}m∈N through ti = am when i ∈ [am, am+1). For example, ti =
⌊√

i
⌋2

if am = m2. In this case we have:

B1 = {x1}, B2 = {x1, x2}, B3 = {x1, x2, x3},

B4 = {x4}, B5 = {x4, x5}, B6 = {x4, x5, x6}, B7 = {x4, x5, x6, x7}, B8 = {x4, x5, x6, x7, x8},

B9 = {x9}, B10 = {x9, x10}, B11 = {x9, x10, x11},

We can see that the batch sizes are time-varying. The blocks {Bi : am ≤ i < am+1} can also

be viewed as the so-called “forward scans” in block subsampling [McElroy et al., 2007, Nord-

man et al., 2013]. That is, given non-overlapping blocks {xam ,, xam+1−1}, the forward

scans are overlapping blocks of sequentially increasing length starting from xam .

4.2.1 Online covariance matrix estimator based on batch means

Based on blocks {Bi}i∈N, the covariance matrix estimator is defined as the sum of squared

block sums (centered) divided by the sum of block lengths, i.e., at the n-th step

Σ̂n =

∑n
i=1

(∑i
k=ti

xk − lix̄n
)(∑i

k=ti
xk − lix̄n

)T∑n
i=1 li

, (4.3)

where li = |Bi| = i − ti + 1 denotes the length of Bi. The novel idea of constructing data

block Bi, which only includes past iterates, is the key to make the algorithm fully online.

Next, we will show that the estimate Σ̂n can be computed recursively. Let Wi denote the

sum of the block Bi = {xti , ..., xi}, i.e.,

Wi =
i∑

k=ti

xk. (4.4)

46

When ti+1 = ti = am for some m, Bi+1 = Bi ∪ {xi+1} and

Wi+1 = Wi + xi+1, li+1 = li + 1.

When ti+1 = am+1 for some m, we start a new block Bi+1 = {xi+1} and

Wi+1 = xi+1, li+1 = 1.

We can see that both the batch sum Wi and the batch length li can be updated recursively.

With the notation of Wi, the estimator in (4.3) can be expressed as

Σ̂n =

∑n
i=1WiW

T
i +

∑n
i=1 l

2
i x̄nx̄

T
n − (

∑n
i=1 liWi) x̄

T
n − x̄n (

∑n
i=1 liWi)

T
n∑n

i=1 li
. (4.5)

To further simplify the form, we introduce

Vn =
n∑
i=1

WiW
T
i , Pn =

n∑
i=1

liWi.

vn =
n∑
i=1

li, and qn =
n∑
i=1

l2i .

(4.6)

They can be computed recursively since both Wi and li can be updated recursively. Now,

Σ̂n in (4.3) can be finally rewritten as

Σ̂n =
Vn + qnx̄nx̄

T
n − Pnx̄Tn − x̄nPTn
vn

. (4.7)

All five components in (4.7): Vn, qn, Pn, vn, x̄n can be updated recursively. Thus, Σ̂n can

be updated through results in the (n − 1)-th step and the new iterate xn within O(d2)

computation.

To summarize, we propose Algorithm 2. As shown in Algorithm 2, the five components

47

Algorithm 2: Update ASGD iterate and covariance matrix estimate recursively
Input: function f(·), parameter (α, η), step size ηi = ηi−α for i ≥ 1, pre-defined
sequence {am}m∈N .

Initialize: m0 = l0 = 0, v0 = P0 = q0 = V0 = W0 = x̄0 = 0, x0;
For n = 0, 1, 2, 3, ...

Receive: new data ξn+1
Do the following update:

1. xn+1 = xn − ηn+1∇f(xn, ξn+1);
2. x̄n+1 = (nx̄n + xn+1)/(n+ 1);
3. if n+ 1 = amn+1, then:
mn+1 = mn + 1; ln+1 = 1; Wn+1 = xn+1;

else:
mn+1 = mn; ln+1 = ln + 1; Wn+1 = Wn + xn+1;

4. qn+1 = qn + l2n+1;
5. vn+1 = vn + ln+1;
6. Vn+1 = Vn +Wn+1W

T
n+1;

7. Pn+1 = Pn + ln+1Wn+1;
8. S = Vn+1 + qn+1x̄n+1x̄

T
n+1 − Pn+1x̄

T
n+1 − x̄n+1P

T
n+1;

Output: ASGD estimator x̄n+1, estimated covariance Σ̂n+1 = S/vn+1

of Σ̂n+1 can be easily updated from their values in the n-th step. There is no need to store

all the outcomes in the previous steps. The memory complexity is O(d2), independent of the

sample size n. In the update step, the computational complexity is also O(d2). The total

computational cost scales linearly in n. The algorithm is much more efficient compared to

non-recursive methods and naturally fits online learning scenarios.

An alternative version

The estimate Σ̂n in (4.3) includes squared block sums from all n blocks {Bi}i=1,2,...,n. Block

Bi and Bj are overlapped when am ≤ i < j < am+1 for some m. So Σ̂n in (4.3) is a

full overlapping version of the online batch means estimator. We also introduce an alter-

native non-overlapping version with a slightly simpler form which has a comparable perfor-

mance. As data arriving sequentially, we follow the same batch scheme above to construct

{Bi}i=1,2,..., while only include a few squared block sums. At the n-th step, define set

48

Algorithm 3: Update ASGD estimator and covariance matrix estimate (non-
overlapping version) recursively
Input: function f(·), parameter (α, η), step size ηi = ηiα for i ≥ 1, pre-defined
sequence {am}m∈N.

Initialize: m0 = l0 = 0, v0 = P0 = q0 = V0 = W0 = x̄0 = 0, x0;
For n = 0, 1, 2, 3, ...

Receive: new data ξn+1
Do the following update:

1. xn+1 = xn − ηn+1∇f(xn, ξn+1);
2. x̄n+1 = (nx̄n + xn+1)/(n+ 1);
4. if n+ 1 = amn+1, then:
mn+1 = mn + 1; ln+1 = 1; Wn+1 = xn+1;
qn+1 = qn + l2n; Vn+1 = Vn +WnW

T
n ; Pn+1 = Pn + lnWn

else:
mn+1 = mn; ln+1 = ln + 1; Wn+1 = Wn + xn+1;
qn+1 = qn; Vn+1 = Vn; Pn+1 = Pn

5. S′ = Wn+1W
T
n+1 + l2n+1x̄n+1x̄

T
n+1 − ln+1Wn+1x̄

T
n+1 − ln+1x̄n+1W

T
n+1;

6. S = Vn+1 + qn+1x̄n+1x̄
T
n+1 − Pn+1x̄

T
n+1 − x̄n+1P

T
n+1 + S′;

Output: ASGD estimator x̄n+1, estimated covariance Σ̂n+1,NOL = S/(n+ 1)

Sn = {n}
⋃
{ai − 1 : i > 1, ai ≤ n}. Consider a set of non-overlapping blocks {Bi}i∈Sn , i.e.,

{{xa1 ,..., xa2−1}, ..., {xam−1 ,..., xam−1}, {xam ,..., xn}}.

Ba2−1 Bam−1 Bn.

The alternative non-overlapping estimate at the n-th step includes squared block sums of

{Bi}i∈Sn . It is then defined as

Σ̂n,NOL =
1

n

∑
i∈Sn

 i∑
k=ti

xk − lix̄n

 i∑
k=ti

xk − lix̄n

T . (4.8)

The non-overlapping version estimator is also recursive and can perform a real-time update.

The algorithm is almost the same as the overlapping one with same computational and

memory complexity. One can follow the derivation of Algorithm 2 to get Algorithm 3.

49

In the stationary process case, Lahiri [2003, 1999] showed that the mean squared error

of the classic (non-recursive) non-overlapping batch-means estimate is 33% larger than that

of its overlapping version, while the convergence rates are the same. The comparison be-

tween the full overlapping version and the non-overlapping version of our online estimators

is more complicated in the non-stationary case. In Section 4.3.3, we provide upper bounds

for estimation errors for both overlapping and non-overlapping estimators. The two upper

bounds are of the same order. The non-overlapping version is easier to analyze theoretically,

given its simpler structure. In the mean estimation model, we can obtain the precise order of

the mean squared error for the non-overlapping one; see Section 4.3.1. We also compare the

empirical performance of the two versions in Section 4.4.1. However, it is hard to tell which

one is more efficient based on the simulation results. We leave the rigorous comparison as a

future research problem by extending Lahiri [2003] to non-stationary processes.

Remark 4.2.1 (Comparison with the non-recursive batch-means covariance matrix estima-

tor). The non-overlapping version (4.8) appears similar to the batch-means estimator [Chen

et al., 2020]. However, the batch schemes of the two methods are fundamentally different.

Chen et al. [2020] split n iterates of SGD into M + 1 non-overlapping blocks, where M and

batch sizes bm,n (m = 0, ...,M) are chosen based on n for desired convergence. With em,n

denoting the ending index of the k-th block, the covariance matrix estimator at n-th iteration

in Chen et al. [2020] is defined as

Σ̂n,BM =
1

M

M∑
m=1

bm,n

 em,n∑
k=em−1,n+1

xk/bm,n − x̄n

 em,n∑
k=em−1,n+1

xk/bm,n − x̄n

T , (4.9)

where eM,n = n. The optimal batch size setting as suggested in Chen et al. [2020] is em,n =

((m+ 1)/(M + 1))1/(1−α) n with the number of batches M = n(1−α)/2. Since em,n must

depend on n to ensure the desired convergence rate at the n-th iteration, there is no simple

algebraic relation between Σ̂n,BM and Σ̂n+1,BM . So the batch-means estimator [Chen et al.,

50

2020] is only suitable for offline tasks requiring final prediction/inference given the pre-

specified total sample size n. In contrast, our fully online estimator can sequentially improve

over each iteration. Also, n does not need to be specified beforehand.

Remark 4.2.2 (Choice of batch-sizes when n is unknown). Chen et al. [2020] also propose

an approach based on a target error tolerance to apply the batch-means estimator when n is

unknown. In particular, given the pre-specified error ϵ, Chen et al. [2020] propose to set the

ending index of the k-th batch by ek =
(
(k + 1)Cϵ−2

)1/(1−α), where C is a constant. The

approach indeed enables an online updating, thus achieve the goal of recursive processing.

However, choosing the constant C can be difficult or arbitrary in online settings. Moreover,

there is a fundamental difference. The approach in Chen et al. [2020] only ensures that the

expected spectrum norm loss of the covariance matrix is smaller than ϵ (up to a constant)

for large n, rather than goes to 0. In other words, the covariance matrix estimator is not

necessarily consistent. While our online method constantly improves the covariance matrix

estimate as n→∞, and the estimation error goes to 0.

Choice of batch sizes

The remaining question is to specify the sequence {am}m∈N. This pre-defined sequence does

not depend on n. This ensures that we can construct batches even if the total number of data

is unknown (which is a typical situation), and the incoming data will not affect the recursive

estimation process. In Section 4.3.3, we show that am is required to take a polynomial form

so that the estimator is consistent. Next, we shall give some intuitive explanation and one

example of choice.

The formula in (4.3) bears a certain similarity to the sample covariance matrix Sn =

n−1
∑n
i=1(xi − x̄n)(xi − x̄n)

T . On the other hand, in contrast to the standard sample

covariance matrix where {xi}i≥1 are independent, our SGD iterates in (4.3) are highly cor-

related. In other words, we cannot ignore the covariance between data as in the construction

51

of the sample covariance matrix. According to (1.2), the correlation between xi and xj di-

minishes as the distance |j − i| becomes larger, while the correlation between xi and xi+1

becomes stronger as i goes to infinity. The idea of online estimation is to choose sequence

(am)m∈N and form non-overlapping blocks {Bam−1}m>1 as mentioned above such that the

correlation between xi and xj is sufficiently small when they are in different non-overlapping

blocks. So when considering the effect of xi, we trace back to the starting point of the

non-overlapping block xi belongs to, i.e., construct data block Bi = {xti , ..., xi}. Recall that

the i-th iterate xi through SGD takes the form

xi = xi−1 − ηi∇f(xi−1, ξi).

Let δi = xi − x∗ be the error sequence, where x∗ is the minimizer in (1.1). Then

δi = δi−1 − ηi∇F (xi−1) + ηiϵi, (4.10)

where ϵi = ∇F (xi−1) − ∇f(xi−1, ξi). Note that ∇F (x∗) = 0 since x∗ is the minimizer of

F (x). By Taylor’s expansion of ∇F (xi−1) around x∗, we have ∇F (xi−1) ≈ ∇Aδi−1, where

A = ∇2F (x∗). Thus, by modifying equation (4.10) with ∇F (xi−1) approximated by Aδi−1,

for large i

δi ≈ (Id − ηiA)δi−1 + ηiϵi. (4.11)

Then for the i-th iterate xi and the j-th iterate xj (assume j < i), the strength of correlation

between them is roughly

Πik=j+1 ∥Id − ηkA∥2 ≤ (1− ηλAi−α)i−j , (4.12)

when ηk = ηk−α and λA is the smallest eigenvalue of A. To make the correlation small,

52

one can choose i− j ≈ Ki(α+1)/2, where K is a constant. Then the correlation is less than

(1− ηλAi−α)Ki
αi(1−α)/2

, which goes to zero as i goes to infinity. Combining the correlation

between xi, xj and the form of i − j, a reasonable setting is that the sequence {am}m∈N

satisfies

am − am−1 = Ka
(α+1)/2
m . (4.13)

Let am increase polynomially, i.e., am = Cmβ for some constant C. We obtain β = 2/(1−α)

by solving equation (4.13). Thus a natural choice of am is

am =
⌊
Cm2/(1−α)

⌋
. (4.14)

This is also the best choice in the general setting, as discussed in Section 4.3.3. However,

the best choice of β may change considering specific objective functions.

4.2.2 Statistical inference

Now the limiting covariance matrix Σ can be approximated through the online estimation

proposed above. Let 0 < q < 1. Based on the asymptotic normality of ASGD in (4.2), the

(1− q)100% confidence interval for x∗i , the i-th coordinate of x∗, can be constructed as

[
x̄n,i − z1−q/2

√
σ̂ii/n, x̄n,i + z1−q/2

√
σ̂ii/n

]
, (4.15)

where x̄n,i is the i-th coordinate of x̄n, z1−q/2 is the (1− q/2)-th percentile of the standard

Gaussian distribution and σ̂ii is the i-th diagonal of the covariance matrix estimate. The

confidence interval is constructed in a fully online fashion since both x̄n,i and σ̂ii can be

computed recursively. Joint confidence regions and general form of confidence intervals are

discussed in Section 4.3.4.

53

Relation to empirical likelihood

As pointed out by a reviewer, the construction of the non-overlapping version estimator

shares a similar spirit with the blocking scheme and covariance estimator by Kim et al. [2013],

who developed a progressive block empirical likelihood (PBEL) method. They consider a

stationary, weakly dependent sequence (X1, ..., Xn) with mean µ such that the CLT
√
n(X̄n−

µ)⇒ N(0, σ2) holds. The variance estimator σ̂2n,NOL in Kim et al. [2013] matches our scheme

in Section 4.2.1 with am = (m− 1)m/2 + 1 (or the i-th block has length i) and is shown to

be a consistent variance estimator. The chi-squared limit of the log-likelihood ratio based

on PBEL is established following the consistency of σ̂2n,NOL. It would be interesting to see

if one can obtain similar results as the PBEL ratio and establish a limiting distribution that

can be used to calibrate confidence regions in the SGD case here.

4.3 Theoretical results

4.3.1 Preamble: mean estimation model

Before investigating the convergence property of the online batch means estimators in the

general setting, we shall look at the simple mean estimation example. Taking advantage

of the simpler structure of the non-overlapping version, we can obtain the exact order of

convergence. Consider the mean estimation model:

y = x∗ + e,

where x∗ ∈ R is the mean we want to estimate, e is the random error with mean 0. Let

{yi}i∈N be a sequence of i.i.d sample from the model. Consider the squared loss function at

x, F (x) = (y − x)2/2. The i-th SGD iterate takes the form

xi = xi−1 + ηi(yi − xi−1), i ≥ 1, (4.16)
54

where we choose the step size ηi = ηi−α, α ∈ (1/2, 1). Then the error δi = xi− x∗ takes the

form

δi = (1− ηi)δi−1 + ηiei.

In this case, one can have an explicit form of var(
√
nx̄n) and Σ̂n,NOL. Additionally, we can

have an explicit form for the order of magnitude of the mean squared error of Σ̂n,NOL. Let

the variance var(
√
nx̄n) = σ2n. We have the following proposition.

Proposition 4.3.1. For m ≥ 2, let am = ⌊cmβ⌋, where β > 1 and c > 0 are constants.

Given the SGD iterates defined in (4.16), we have

E(Σ̂n,NOL − σ2n)2 ≍ n−1/β + n2α+2/β−2. (4.17)

Choose β = 3/(2(1 − α)). In the mean estimation model, the above proposition asserts

that the convergence rate of the mean squared error of our recursive non-overlapping variance

estimate is n−2(1−α)/3. For α close to 1/2, the latter rate approaches n−1/3. This rate

is faster than that of the batch-means estimator in Chen et al. [2020], which approaches

n−1/4. So, besides the advantage of the recursive property, our estimator may improve the

convergence rate.

In the general setting, the analysis is much more complicated due to the nonlinearity.

Upper bounds for the convergence rates of online estimators for both overlapping and non-

overlapping versions are given in Section 4.3.3.

4.3.2 Assumptions and existing convergence results

In the work of Polyak and Juditsky [1992], assumptions on the objective function F (x) and

the gradient difference are proposed to prove the asymptotic normality of ASGD estimate.

Those assumptions are necessary for our problem since we adopt the ASGD as the point

estimator and require the asymptotic normality for statistical inference. Those assumptions,

55

as well as some error bounds, are also proposed in other literature. We impose similar

assumptions and review some existing results in this section.

Assumption 4.3.2. Assume that the objective function F (x) is continuously differentiable

and strongly convex with parameter µ > 0. That is, for any x1 and x2,

F (x2) ≥ F (x1) + ⟨∇F (x1), x2 − x1⟩+
µ

2
∥x1 − x2∥22.

Furthermore, assume that ∇2F (x∗) exists and ∇F (x) is Lipschitz continuous in the sense

that there exist L > 0 such that,

∥∇F (x1)−∇F (x2)∥2 ≤ L∥x1 − x2∥2.

Assumption 4.3.3. For the n-th iteration, define error δn = xn−x∗ and gradient difference

ϵn = ∇F (xn−1)−∇f(xn−1, ξn). Recall that En(·) = E(·|ξn, ξn−1, ...). The following hold:

1). The function f(x, ξ) is continuously differentiable with respect to x for any ξ and ∥∇f(x, ξ)∥2

is uniformly integrable for any x. So En−1 [∇f(xn−1, ξn)] = ∇F (xn−1), which implies

that En−1 (ϵn) = 0.

2). The conditional covariance of ϵn has an expansion around S which satisfies

∥∥∥En−1 (ϵnϵTn)− S∥∥∥
2
≤ C

(
∥δn−1∥2 + ∥δn−1∥22

)
, (4.18)

where C > 0 is some constant. Here S is defined in (4.1).

3). There exists a constant C > 0 such that the fourth conditional moment of ϵn is bounded

by

En−1
(
∥ϵn∥42

)
≤ C

(
1 + ∥δn−1∥42

)
.

56

Assumption 4.3.2 imposes strong convexity of the objective function F (x) and Lipschitz

continuity of its gradient. Assumption 4.3.3 asserts the regularity and the bound of the noisy

gradient. These assumptions are widely used in SGD literature [Ruppert, 1988, Polyak and

Juditsky, 1992, Moulines and Bach, 2011, Rakhlin et al., 2012]. With these assumptions, we

have the asymptotic normality for averaged SGD iterates by Polyak and Juditsky [1992] and

Ruppert [1988]. We also review the error bound for SGD iterates in Lemma 4.3.4.

Lemma 4.3.4. Under Assumptions 4.3.2 and 4.3.3, for some constant C > 0 and n0 ∈ N,

we have for any n > n0, the sequence of error δn = xn − x∗ satisfies

E(∥δn∥2) ≤ Cn−α/2(1 + ∥δ0∥2),

E(∥δn∥22) ≤ Cn−α(1 + ∥δ0∥22),

E(∥δn∥42) ≤ Cn−2α(1 + ∥δ0∥42),

when the step size is chosen to be ηn = ηn−α with 1/2 < α < 1.

4.3.3 Convergence properties for the online estimator

Theorem 4.3.5. Under Assumptions 4.3.2 and 4.3.3, let am =
⌊
Cmβ

⌋
, where C > 0 is a

constant, β > (1− α)−1. Set step size at the i-th iteration as ηi = ηi−α with 1/2 < α < 1.

Then for Σ̂n defined in (4.3)

E
∥∥∥Σ̂n − Σ

∥∥∥
2
≲ n−1/(2β) + n(α−1)/2+1/(2β). (4.19)

Theorem 4.3.5 shows that as n→∞, the estimator Σ̂n converges to the limiting covari-

ance matrix of the averaged SGD iterates in terms of operator norm loss. The convergence

rate is associated with the parameters α and β. We state the following Corollary 4.3.6 to

suggest the best choice of β.

57

Corollary 4.3.6. Under conditions in Theorem 4.3.5 and let β = 2/(1− α), we have

E
∥∥∥Σ̂n − Σ

∥∥∥
2
≲ n−(1−α)/4. (4.20)

Remark 4.3.7. This convergence rate is the same as that of the non-recursive batch-means

estimator in Chen et al. [2020]. According to Corollary 4.5 in Chen et al. [2020], the upper

bound of the batch means estimator is also O(n−(1−α)/4) with the prior knowledge of the

sample size n. So we make it possible that online estimation of covariance matrix achieves

the same efficiency as offline methods. The plug-in approach in Chen et al. [2020] achieves

the rate of O(n−α/2) when the i-th step size is chosen to be i−α. As a tradeoff, the online

estimator enjoys efficient computation without the necessity of accessing Hessian information

but pays the price in terms of the slower convergence rate.

Next, we will show in Theorem 4.3.8 that the alternative version Σ̂n,NOL shares the same

upper bound.

Theorem 4.3.8. Under conditions in Theorem 4.3.5, the alternative version Σ̂n,NOL defined

in (4.8) satisfies

E
∥∥∥Σ̂n,NOL − Σ

∥∥∥
2
≲ n−1/(2β) + n(α−1)/2+1/(2β). (4.21)

4.3.4 Asymptotically accurate confidence intervals/regions

The next corollary shows that the confidence interval/region based on the online estimator

achieves asymptotically correct coverage level 1− q for a pre-specified q with 0 < q < 1.

Corollary 4.3.9. Under conditions in Theorem 4.3.5, as n goes to infinity

P(x∗i ∈ CIq,n,i)→ 1− q, (4.22)

58

where

CIq,n,i =
[
x̄n,i − z1−q/2

√
σ̂ii/n, x̄n,i + z1−q/2

√
σ̂ii/n

]
and σ̂ii is the i-th diagonal of the online batch-means estimator Σ̂n (or Σ̂n,NOL). We can

also construct joint confidence regions as follows:

P
(
x∗ ∈ Cq,n

)
→ 1− q, (4.23)

where

Cq,n =
{
x ∈ Rd : n (x̄n − x)T Σ̂−1n (x̄n − x) ≤ χ2d,1−2/q

}
.

Corollary 4.3.9 constructs asymptotic valid confidence intervals for each coordinate of x∗

and joint confidence regions for x∗ ∈ Rd. More generally, for any unit length vector w ∈ Rd

(i.e., ∥w∥2 = 1), we have by Theorem 4.3.5 and Slutsky’s theorem,

√
nwT (x̄n − x∗)√

wT Σ̂nw
⇒ N(0, 1). (4.24)

Therefore, the (1− q)100% confidence interval for wTx∗ can be constructed as

[
wT x̄n − z1−q/2

√
wT Σ̂nw/n,w

T x̄n + z1−q/2

√
wT Σ̂nw/n

]
. (4.25)

Stopping rule

In principle, SGD constantly improves the quality of x̄n, and our method constantly improves

the covariance estimate Σ̂n as n grows. A natural questions is when can we stop updating x̄n

and Σ̂n? There are several heuristics of stopping rules widely used in machine learning. For

example, an online algorithm can stop when the neighboring estimates become sufficiently

close. Or a more widely used approach in stopping SGD is to evaluate the error on a separate

validation dataset and stops the SGD when the error becomes stable.

59

We can better answer this question and assess the SGD error based on the inference

results, inspired by stopping rules for Markov Chain Monte Carlo (MCMC) that rely on a

Markov chain central limit theorem. Especially, one can apply the fixed-width sequential

stopping rule in Jones et al. [2006], where the updating is terminated the first time when

the width of the confidence interval for each component is small enough. More formally,

for a desired tolerance of ϵi for the i-th coordinate, the rule terminates updating the first

time after the n-th iteration when the following condition is satisfied for all the coordinates

i = 1, . . . , d,

t∗
σ̂n,i√
n

+ n−1 ≤ ϵi,

where σ̂n,i is the i-th diagonal of the online estimator Σ̂n (or Σ̂n,NOL), and t∗ is an ap-

propriate t-distribution quantile. For the joint inference, one may consider simplifying the

relative standard deviation fixed-volume sequential stopping rule in Vats et al. [2019], where

updating is terminated the first time when the volume of the confidence region Cn (4.23) is

small enough. For a desired tolerance of ϵ, the rule terminates updating the first time after

the n-th iteration when

Vol(Cn)1/d + n−1 ≤ ϵ,

where Vol(Cn) = 2
(
πχ2∗/n

)d/2 |Σ̂n|1/2/(dΓ(d/2)), | · | denotes determinant, χ2∗ is an appro-

priate chi-square distribution quantile, and Σ̂n is our online estimator. We also include a

simple simulation study of the stopping rule in the last section of the Supplement.

Remark 4.3.10. The original stopping rule in Vats et al. [2019] avoids the practical issue of

choosing ϵ with the idea of effective sample size (ESS). They consider an F-invariant Harris

recurrent Markov chain and define a multivariate approach to ESS. The stopping rule in Vats

et al. [2019] terminates the MCMC simulation the first time the estimated ESS is larger than

a pre-specified lower bound. However, we need to re-define ESS in the non-stationary case,

which requires more careful considerations. We will leave it as a future research direction.

60

4.4 Simulation studies

In this section, we evaluate the empirical performance of the proposed online approach.

We focus on two classes of examples: linear regression and logistic regression. Let {ξi ≡

(ai, bi)}i=1,2,... denotes an i.i.d sequence of pairs, and x∗ denote the true parameter in the

models. In both linear regression and logistic regression cases, ai ∈ Rd is generated from

N(0, Id). In the former case, bi = aTi x
∗ + ϵi, where ϵi is independently generated from

N(0, 1). In the latter case, bi|ai ∼ Bernoulli((1 + exp(−aTi x
∗))−1). The loss function f(·)

is defined as the negative log likelihood function, so we have

f(x, ai, bi) =


1

2
(aTi x− bi)

2 linear regression

(1− bi)aTi x+ log(1 + exp(−aTi x)) logistic regression.

The true coefficient x∗ is a d-dimensional vector linearly spaced between 0 and 1. In the SGD

procedure, the step size ηj is set to be 0.5j−α and the parameter α is chosen to be 0.505.

The sequence {ak}k≥1 in our online approach is chosen in the form of am =
⌊
Cm2/(1−α)

⌋
,

for some constant C. All the measurements in the following discussions are averaged over

200 independent runs.

4.4.1 Empirical performance of the proposed online approach

Convergence of the recursive estimator. We focus on linear regression here since the

true limiting covariance matrix is easy to compute. In the linear regression model described

above,

A = E
[
∇2f(x∗)

]
= E

(
aaT

)
= Id,

S = E
(
[∇f(x∗, ξ)][∇f(x∗, ξ)]T

)
= E(ϵ2)E

(
aaT

)
= Id.

61

(a) d=1 (b) d=5

Figure 4.1: Linear regression: Log loss (operator norm) of the estimated covariance ma-
trix against the log of total number of steps. Here F denotes the full overlapping ver-
sion (4.3), NOL denotes the non-overlapping version (4.8), and C denotes the constant in
am =

⌊
Cm2/(1−α)

⌋
.

Then the limiting covariance matrix

Σ = A−1SA−1 = Id.

We check the convergence of our proposed online estimators, both the full overlapping and

the non-overlapping versions, by computing the operator norm loss of the covariance matrix

estimate, i.e., ∥Σ̂n − Σ∥2. Figure 4.1 shows that the log loss of the online estimators are

approximately linear with the log number of steps and the slopes are about −1/8 for the large

total number of steps. It suggests that both the full overlapping and the non-overlapping

versions converge to the limiting covariance matrix with the same convergence rate, about

O(n−1/8). We also compute the relative efficiency (MSE of the full overlapping version (4.3)

divided by MSE of the non-overlapping version (4.8)); see Figure 4.2. Their performances

are comparable. Also, the performance is relatively insensitive to the choice of C in am =⌊
Cm2/(1−α)

⌋
. Therefore, we will implement the non-overlapping version and set C = 1 in

the subsequent simulations without any specification.

62

Figure 4.2: Relative efficiency (ratio of MSE) of the full overlapping version (4.3) and non-
overlapping version (4.8). We set d = 5 in linear regression. Here C denotes the constant in
am =

⌊
Cm2/(1−α)

⌋
.

Asymptotic normality and CI coverage. With the covariance matrix estimates, we

construct 95% confidence intervals for the averaged coefficient µ = 1Td x
∗ according to (4.25),

i.e., [
1T x̄n − z1−q/2

√
1Td Σ̂n1d/n, 1

T x̄n + z1−q/2

√
1Td Σ̂n1d/n

]
.

We also compute the oracle 95% confidence intervals based on the true limiting covariance

matrix. Figure 4.3 shows that for both overlapping and non-overlapping versions, the em-

pirical coverage rate converges to 95%, and the standardized error
√
n1Td (x̂−x

∗)/
√
1Td Σ̂n1d

is approximately standard normal. Also, the estimated CI length converges to the oracle

length.

4.4.2 Comparison with other methods

In this section, we compare the performance of the proposed online estimator, which we

refer to as online-BM in the subsequent numerical experiments, with other estimators for

marginal inference of each individual regression coefficient. We consider both linear and

logistic regression examples. The nominal coverage probability is set to 95%.

We first compare the empirical coverage rates of the proposed estimator with the plug-in

63

(a) Empirical cover rate

(b) CI length (c) Normality

Figure 4.3: Linear regression with d = 5: (a): Empirical coverage rate against the number of
steps. Red dashed line denotes the nominal coverage rate of 0.95. (b): Length of confidence
intervals. (c): Density plot for the standardized error. Red curve denotes the standard
normal density.

estimator in Chen et al. [2020]. As we mentioned in the introduction, the plug-in estimator

requires the computation of the Hessian matrix (of the loss function) and its inverse. Figure

4.4 shows that our online estimator (online-BM) has a comparable performance as the plug-

in estimator when the number of iterations is large enough. Although the online-BM has a

64

Table 4.1: Empirical coverage rates: the average coverage rate for the nominal coverage
probability 95%. Standard errors are reported in the brackets.

linear model
(d = 5) n = 50000 n = 80000 n = 100000 n= 125000
online-BM 0.894 (0.02177) 0.901 (0.02114) 0.917 (0.01951) 0.935 (0.01746)
BM 0.894 (0.02177) 0.904 (0.02085) 0.910 (0.02022) 0.928 (0.01831)
(d = 20) n= 50000 n= 100000 n= 150000 n= 200000
online-BM 0.904 (0.02078) 0.907 (0.02050) 0.910 (0.02022) 0.914 (0.01986)
BM 0.878 (0.02312) 0.901 (0.02121) 0.908 (0.02043) 0.910 (0.02029)

logistic model
(d = 5) n = 100000 n = 200000 n = 300000 n = 400000
online-BM 0.828 (0.01011) 0.844 (0.00933) 0.875 (0.00770) 0.889 (0.00700)
BM 0.822 (0.01032) 0.847 (0.00919) 0.875 (0.00771) 0.885 (0.00721)
(d = 20) n = 100000 n = 300000 n = 500000 n = 700000
online-BM 0.791 (0.01167) 0.829 (0.01004) 0.845 (0.00926) 0.864 (0.00834)
BM 0.787 (0.01188) 0.827 (0.01011) 0.839 (0.00955) 0.859 (0.00856)

slower convergence rate, it has an advantage in computational efficiency since it only uses the

iterates from SGD. The online-BM is more desirable for practitioners when the computation

is limited or only stochastic gradient information is available.

Next, we compare the finite sample coverage rate of the proposed online-BM estimator

and the batch means covariance matrix estimator from Chen et al. [2020], which we refer

to as BM. Table 4.1 shows that the finite sample coverage rates of the two estimators are

close to each other in all cases, and the finite sample performance of our method slightly

outperforms Chen et al. [2020] when n is large. In fact, this is not a totally fair comparison

for us since we implement the method in Chen et al. [2020] based on the prior knowledge of

the exact sample size.

4.5 Summary

We propose a fully online approach to estimate the asymptotic covariance matrix of the

ASGD solution and conduct statistical inference. The fully online fashion allows efficient

sequentially updating. It is important for online learning, where data comes in a stream and

65

(a) d = 5 (b) d = 20

Figure 4.4: Comparison of online-BM and Plug-in estimators. First/Middle row: Empirical
coverage rate against the number of steps in linear/logistic model. Red dashed line denotes
the nominal coverage rate of 0.95. Third row: total computation time for updating covariance
estimate and confidence intervals in SGD.

66

real-time update of predictions is needed before seeing future data. Our method is efficient

in both computation and memory. In particular, the computational and memory complexity

at the update step is O(d2), and the total computational cost only scales linearly in n. In

terms of theoretical merits, the proposed estimator is the first fully online fashion estimator

with rigorous convergence property for asymptotic covariance of ASGD. We show that the

convergence rate of our online estimator is comparable to the offline counterparts.

67

CHAPTER 5

HIGH CONFIDENCE LEVEL INFERENCE IS ALMOST FREE

USING PARALLEL STOCHASTIC OPTIMIZATION

This chapter will continue with practical inference. As observed in the previous chapter, the

convergence of the covariance matrix estimator is slow, as is the coverage of the confidence

interval. Given the complexities inherent in estimating the covariance matrix, one may

wonder if, for certain tasks, we can bypass the need for the covariance matrix and focus

solely on the confidence interval to achieve better results. By “better”, we mean improved

coverage of the confidence interval and enhanced computational efficiency, without the need

for matrix updating at each iteration. This motivates our work in this chapter.

5.1 Introduction

We still consider the problem in (1.1). With streaming data {ξi}i≥1, and assuming we

obtain iterates/outputs of a stochastic approximation (SA) algorithm, the primary goal of

this chapter is to enhance statistical inference by constructing confidence intervals based on

these iterates in an online setting. Specifically, for a given vector υ ∈ Rd, we aim to construct

a valid (1− α)× 100% confidence interval ĈI for the linear functional υ⊤x∗, that is

P(υ⊤x∗ ∈ ĈI)− (1− α) = α− P(υ⊤x∗ ̸∈ ĈI) ≈ 0, (5.1)

where α ∈ (0, 1). To fit in an online setting, the proposed confidence interval can be updated

recursively as new data becomes available. It utilize only previous SA iterates, requiring

minimal extra computation for the inference purpose beyond the original computation, thus

allowing for easy integration into existing codebases.

We consider a high level of confidence, i.e., α ≈ 0, as uncertainty quantification is partic-

ularly important in applications involving high-stakes decisions, where a nearly 100% confi-
68

dence interval is required. Moreover, with datasets growing increasingly large, the demand

for higher-level confidence intervals becomes more prevalent. Additionally, in applications

involving multiple simultaneous tests, such as high-dimensional parameter analysis, correc-

tion techniques like the Bonferroni method are employed. This leads to each individual test

maintaining a sufficiently high confidence level (related to dimension). In such cases, the

guarantee in (5.1) may not be sufficient. In particular, we shall construct confidence intervals

ĈI such that the relative error

∆α :=

∣∣∣∣∣P(υ⊤x∗ ∈ ĈI)− (1− α)
α

∣∣∣∣∣ =
∣∣∣∣∣P(υ⊤x∗ ̸∈ ĈI)

α
− 1

∣∣∣∣∣ (5.2)

is small. Note that (5.2) offers a much more refined assessment than (5.1). For example,

if α = 10−4 and P(υ⊤x∗ ̸∈ ĈI) = 10−3, then (5.1) is not severely violated, while ∆α in

(5.2) is very different from 0. In this context, it is crucial to recognize that even a slight

undercoverage can be significant due to low tolerance for error. Conversely, an extremely wide

confidence interval that nearly always covers can become uninformative, underscoring the

importance of precision in interval construction. Hence, employing a method that provides

confidence intervals with rapid convergence to the desired coverage level is essential. We

derive the upper bound (with explicit rate) of the relative error of coverage for the constructed

confidence intervals and explicitly detail the dependence on α in the upper bound. The results

indicate that our method remains valid even when α is potentially very small or decreases

with the total sample size or the number of hypotheses.

69

5.1.1 Background: existing confidence interval construction

Practical inference methods are based on the limiting distribution of SA solutions. Recall

that the vanilla SGD iterates with the recursion form:

xi = xi−1 − ηi∇f(xi−1, ξi), i = 1, 2, . . . ,

where ∇f(x, ξ) is the gradient vector of f(x, ξ) with respect to the first variable x, and ηi is

the step size at the i-th step. Consider the average of all past iterations x̄n = n−1
∑n
i=1 xi. In

the celebrated work of Polyak and Juditsky [1992], it is shown that, under suitable conditions,

the averaged SGD (ASGD) exhibits asymptotic normality, that is,

√
n(x̄n − x∗)⇒ N (0,Σ), (5.3)

where Σ = A−1SA−1 is the sandwich form covariance matrix with A = ∇2F (x∗) and S =

E
(
[∇f(x∗, ξ)][∇f(x∗, ξ)]T

)
. Similar asymptotic normality results have been established for

other variants of SGD with adjusted asymptotic covariance matrices [Li et al., 2022a, Wei

et al., 2023, Na and Mahoney, 2022]. These asymptotic normality results form the foundation

of statistical inference in an online setting. As the limiting covariance matrix is unknown in

practice, to perform practical inference, there are three primary methods for constructing

confidence intervals.

• The first method relies on recursively estimating the asymptotic covariance matrix

Σ. Chen et al. [2020] proposes the plug-in method to estimate A and S separately

using sample averages and then applying them in the sandwich form. Zhu et al. [2023]

proposed the online batch-means method, which only utilizes SGD iterates and is

more computationally efficient. Both methods provide consistent estimators for the

asymptotic covariance matrix Σ of ASGD solutions. With a consistent covariance

70

estimate Σ̂n, one can construct confidence intervals for υ⊤x∗ as

ĈIn,cov =

υ⊤x̄n − z1−α/2
√
υ⊤Σ̂nυ
n

, υ⊤x̄n + z1−α/2

√
υ⊤Σ̂nυ
n

 ,
where z1−α/2 is the (1− α/2)× 100% percentile of the standard normal distribution.

• The second method takes advantage of statistical pivotal statistics. One example is

the random scaling method. Instead of consistently estimating the asymptotic covari-

ance matrix, Lee et al. [2022] leverages the asymptotic normality result by construct-

ing asymptotic pivotal statistics after self-normalization. Specifically, they studentize
√
n(x̄n − x∗) via the random scaling matrix

V̂rs,n =
1

n

n∑
s=1

{
1√
n

s∑
i=1

(xi − x̄n)

}{
1√
n

s∑
i=1

(xi − x̄n)

}T
.

The resulting statistic is asymptotically pivotal and the confidence interval for υ⊤x∗

is then constructed as

ĈIn,rs =

υ⊤x̄n − qrs,1−α/2
√
υ⊤V̂rs,nυ

n
, υ⊤x̄n + qrs,1−α/2

√
υ⊤V̂rs,nυ

n

 , (5.4)

where qrs,1−α/2 is the (1−α/2)×100% percentile forW1(1)/[
∫ 1
0 {W1(r)−rW1(1)}2dr]1/2

with W1(r) stands for a standard Brownian motion.

• An alternative method for inference is via bootstrap. One can apply bootstrap per-

turbations and modify the original SGD path. Then, the asymptotic distribution of

the online estimate as well as other quantities such as variance or quantiles can be

estimated using a large number of bootstrapped sequences [Fang et al., 2018, Li et al.,

2018, Su and Zhu, 2023].

71

Same ideas have also been applied for inference when using different algorithms or dealing

with online decision-making problems [Luo et al., 2022, Li et al., 2022b, Chen et al., 2021,

Ramprasad et al., 2022, Su and Zhu, 2023]. Note that all the three methods above have their

advantages and applicable use cases. The first and third methods can provide consistent

estimators of the limiting covariance matrix. However, the cost of using bootstrap (the

third method) involves heavy computation or complicated modification to existing code

base, and we will not consider this method. The online covariance matrix estimation (the

second method) is a difficult task in SGD settings. The plug-in estimator requires Hessian

information which is typically unavailable, and involves matrix computation that requires

an O(d3) computational cost, which is not desirable for large dimensions. The online batch-

means methods do not require extra information such as the Hessian and are computationally

efficient, but they come at the cost of slow convergence. The random scaling method does

not provide a consistent covariance matrix estimator, yet in terms of confidence interval

construction, it is computationally comparable to the online batch-means method while

offering better coverage. However, the critical values of the self-normalized statistics are not

easy to obtain for arbitrary α, we simulate the value via MCMC in Section 5.4.

In terms of theoretical guarantees, although all three methods demonstrate asymptoti-

cally valid coverage of confidence intervals, the convergence guarantee without a specific rate

and without explicit dependence on α is not sufficient, as demonstrated above and in Section

5.3. This limitation is not significant at moderate confidence levels but becomes substantial

at higher levels, leading to unstable coverage. This may result in either undercoverage (fail-

ing to meet the standard) or overcoverage (producing an excessively wide confidence interval,

thereby diminishing the interval’s meaningfulness). A detailed comparison and discussion of

these methods can be found in Lee et al. [2022]. We also make a brief summary in Table 5.1

comparing the above online inference methods.

We propose a new method that utilizes a small number of parallel runs to effectively

72

Method Plug-In Online BM Random Scale This paper
consistent covariance estimator? ✓ ✓ / /
to avoid Hessian? / ✓ ✓ ✓
CI coverage convergence rate? / / / ✓
empirical CI coverage ⋆ ⋆ ⋆ ⋆ ⋆⋆ ⋆ ⋆ ⋆
computation time ⋆ ⋆⋆ ⋆⋆ ⋆ ⋆ ⋆

Table 5.1: Comparison of methods for online statistical inference: This table compares
various methods including Plug-In [Chen et al., 2020], Online BM [Zhu et al., 2023], and
Random Scale [Lee et al., 2022]. The symbol ‘✓’ indicates that the method can achieve the
goal, while ‘/’ signifies that it cannot. The rating symbols ‘⋆ ⋆ ⋆’, ‘⋆⋆’, and ‘⋆’ denote the
best, moderate, and lowest advantage, respectively.

acquire information about the distribution, while maintaining a fully online status. We

demonstrate that the confidence intervals constructed via the parallel inference method pro-

vide asymptotically exact coverage with more rigorous theoretical guarantees than existing

methods, featuring an explicit convergence rate of the relative error of coverage. Additionally,

this method offers better coverage compared to other methods, as demonstrated in Section

5.4. It is also the most computationally efficient among all considered inference methods.

Our approach avoids the heavy cost of resampling. Unlike methods based on covariance ma-

trix estimation or the random scaling method, our method does not require updating a d×d

matrix at each iteration. Additional computation or memory for inference beyond running

SGD is required only when necessary at specific steps and is minimal, making the inference

almost free. Another advantage of our method is its suitability for settings where parallel

computing is needed, which can further accelerate computation. This is particularly relevant

in scenarios such as processing extremely large and high-frequency datasets, or in federated

learning scenarios where data are distributed across different clients [Zinkevich et al., 2010,

Dean et al., 2012, Li et al., 2020b, Karimireddy et al., 2020, McMahan et al., 2017, Ghosh

et al., 2020]. In our work, the requirement for parallel processing is seen not as a burden but

as a beneficial tool.

73

5.2 Inference with parallel runs of stochastic algorithms

In this section, we introduce the parallel run inference method for constructing confidence

intervals. The method involves K parallel runs of a predetermined stochastic algorithm,

calculating the sample variance of the linear functional of interest from K parallel runs, and

self-normalizing to obtain asymptotic pivotal t-statistics and the corresponding confidence

interval.

5.2.1 Parallel computing

Consider a general stochastic algorithm characterized by the update rule hi at the i-th step

and K parallel run sequences. For each of the k-th sequence where k = 1, . . . , K, we begin

with a random initialization x̂
(k)
0 . The estimate for the k-th machine at the i-th iterate is

denoted by x̂(k)i . The recursive update is given by

x̂
(k)
i = hi(ξ

(k)
i ,F (k)

i−1), i = 1, 2, . . . , (5.5)

where F (k)
i−1 = σ(ξ

(k)
i−1, ξ

(k)
i−2, . . .) encapsulates information from the previous step, such as

x̂
(k)
i−1 or other intermediate estimates according to the algorithm. For example, in the case

of ASGD, we have 
x
(k)
i = x

(k)
i−1 − ηi∇f(x

(k)
i−1, ξ

(k)
i),

x̂
(k)
i = {(i− 1)x̂

(k)
i−1 + x̂

(k)
i }/i,

(5.6)

where ∇f(x(k)i−1, ξ
(k)
i) is the derivative of the objective function f with respect to the first

variable, and step size is usually chosen as ηi = η×i−β for some β ∈ (0.5, 1]. If we seek output

for estimation or inference at the n-th step (with N = nK total samples), we can aggregate

the results from the K machines by averaging the estimates or predictions. Specifically, we

74

define the parallel average of the K sequences as

x̄K,n =
1

K

K∑
k=1

x̂
(k)
n . (5.7)

In a practical online setting, sequential data {ξi}i=1,2,... can be distributed across K

different machines, with ξ
(k)
i = ξk+K(i−1). Alternatively, in an offline setting, the dataset

can be randomly divided into K batches. Note that when the initialization x̂(k)0 is the same

for all k = 1, . . . , K, the output from K sequences x̂(k)i , k = 1, . . . , K, will be independent

and identically distributed (i.i.d.), given that the data components ξ(k)i are i.i.d..

Note that, unlike local/federated SGD as discussed in Yu et al. [2019], Li et al. [2022b],

Woodworth et al. [2020], we do not communicate local solutions/gradients to obtain a com-

mon averaged iterate for parallel runs at intermediate iterations. Our method is more akin

to model averaging, often referred to as one-shot averaging [Zinkevich et al., 2010]. On one

hand, model averaging without communication costs can still achieve good convergence when

K is small or moderate. On the other hand, it ensures the K sequences are i.i.d. and enables

us to construct a asymptotically pivotal t-statistic and demonstrate strong convergence in a

later section. Additionally, the straightforward parallel running and model averaging make

it easier to apply to different stochastic algorithms. In some cases, local updates with more

frequent periodic averaging would improve statistical efficiency of the algorithm and com-

munication costs may not be a problem. The inference procedure may still hold with refined

proof. However, discussing the difference between vanilla SGD, parallel SGD and local SGD

is beyond the scope of this thesis.

5.2.2 Asymptotic t-distribution

In this context, various stochastic approximation algorithms can be employed to run parallel

sequences. To derive a valid t-distribution, it is essential to consider cases where asymptotic

75

normality is applicable for the estimate x̂(k)n in each sequence. Specifically, for each k =

1, . . . , K,

√
n(x̂

(k)
n − x∗)⇒ N (0,Σ), as n→∞.

In the case of ASGD as denoted in (5.6), the celebrate work of Polyak and Juditsky Polyak

and Juditsky [1992] demonstrated the asymptotic normality with the sandwich form Σ as

mentioned before. Other algorithms, such as various versions of weighted-averaged SGD

[Wei et al., 2023], Root-SGD [Li et al., 2022a], and StoSQP [Na and Mahoney, 2022], have

also been shown to possess this asymptotic normality property, albeit with adjusted limiting

covariance matrices.

For any vector υ ∈ Rd, considering inference for the linear functional υ⊤x∗ at the n-th

iteration (with N = nK total samples), define the sample variance σ̂2υ as

σ̂2υ =
1

K − 1

K∑
k=1

(υ⊤x̂(k)n − υ⊤x̄K,n)2,

where x̄K,n is the sample average defined in (5.7). It is worth noting that σ̂2υ is not a

consistent estimator for the variance of υ⊤x∗. However, we can studentize
√
K(υ⊤x̄K,n −

υ⊤x∗) with σ̂υ to obtain a t-statistic which is asymptotically pivotal. Assuming the validity

of the asymptotic normality result, together with the i.i.d. property of {x̂(k)n }k=1,...,K , we

can infer a t-type distribution, that is,

t̂υ :=

√
K(υ⊤x̄K,n − υ⊤x∗)

σ̂υ
⇒ tK−1. (5.8)

Based on (5.8), we can construct a (1− α)× 100% confidence interval for υ⊤x∗ as follows,

ĈIυ =

[
υ⊤x̄K,n −

t1−α/2,K−1σ̂υ√
K

, υ⊤x̄K,n +
t1−α/2,K−1σ̂υ√

K

]
, (5.9)

76

where t1−α/2,K−1 is the (1−α/2)×100% percentile for the tK−1 distribution. The proposed

confidence interval in (5.9) is fairly easy and efficient to construct. In particular, when

K = 2, t̂υ is asymptotically distributed as the standard Cauchy distribution with upper

quantile t1−α/2,1 = tan((1− α)π/2). The entire procedure is summarized in Algorithm 4.

Remark 5.2.1 (Almost cost-free). We observe that the inference step in our method can be

performed whenever necessary with minimal calculation and memory requirements, without

needing any modifications to existing stochastic algorithms. This makes it almost cost-free

and can be easily integrated into existing codebases. In contrast, all other methods typically

demand considerable extra effort for inference. This may involve complex modifications, as

seen in Su and Zhu [2023], or entail storing and updating a matrix at each iteration, as

required by covariance-matrix-estimation-based methods or the random scaling method. In

these cases, the computing and memory costs for inference purposes usually far exceed those

involved in the SGD update itself.

Remark 5.2.2 (Choice of K). A larger K brings more stable and usually shorter (in ex-

pectation) confidence intervals, as indicated in (5.9). And a smaller K will decrease the

effect of sample splitting and lead to better convergence of the estimate in a single run. As

demonstrated in Section 5.4, the performance of inference is not that sensitive to the choice

of K when K is in a reasonable range, and K = 6 is a good choice in practice. Users can

opt for a smaller K when dealing with a moderate dataset to ensure sufficient sample size

and faster convergence in a single trial. If parallel computing resources are available and pre-

ferred, especially when dealing with very large datasets or high data acquisition rates, users

are encouraged to utilize more machines.

77

Algorithm 4: Online Parallel Inference
Input: stochastic algorithm h, number of parallel runs K

for i = 1, 2, . . . do

for k = 1, . . . , K do

Update x̂
(k)
i = hi(ξ

(k)
i ,F (k)

i−1) (ξ(k)i is data received);

end

Output if necessary:

x̄K,i ← 1
K

∑K
k=1 x̂k,i;

σ̂2υ ← 1
K−1

∑K
k=1

(
υ⊤x̂k,i − υ⊤x̄K,i

)2
;

ĈIυ ←
[
υ⊤x̄K,i − σ̂υt1−α/2,K−1/

√
K, υ⊤x̄K,i + σ̂υt1−α/2,K−1/

√
K
]

end

5.3 Theoretical guarantee

In this section, we provide a theoretical foundation for the confidence interval (5.9) con-

structed using the t-distribution. Recall that we consider a high level of confidence where

the noncoverage level α can be potentially very small or decrease with the total sample

size (or dimension). This level of validation requires a more stringent guarantee than just

showing that

P(υ⊤x∗ ∈ ĈI)− (1− α)→ 0, (5.10)

which can be derived from the convergence of relevant statistics in distribution as shown in

other works. Our focus is to establish the bound of the relative error of coverage

∆N := sup
α(N)≤α<1

∣∣∣∣∣P(υ⊤x∗ ∈ ĈI)− (1− α)
α

∣∣∣∣∣ ,

78

where α(N) goes to zero at an appropriate rate. Compared with (5.10), this bound offers

a more rigorous assessment. It is critical in cases where we require high precision in our

confidence assessments, ensuring that the constructed interval genuinely reflects the desired

confidence level. For example, suppose we use Bonferroni method to construct simultaneous

confidence intervals for m parameters at overall level 0.95 with large m, then the CI for each

individual parameter should be at level 1 − 0.05/m. In this case α = 0.05/m and a small

∆N is needed, while (5.10) is not sufficient. Also, it is important to make the dependence

on level α explicit since we may consider a decreasing α.

To derive the upper bound of the relative error, it is important to obtain the rate of

convergence of the t-statistic. In the rest of this section, we will first explore the application

of ASGD in each parallel run and then extend our results to a broader class of stochastic

algorithms that meet certain mild assumptions.

5.3.1 Convergence characterization for ASGD

Among various stochastic approximation algorithms, SGD is notably convenient and popular.

Its variant, ASGD, is also widely used and has been the subject of extensive study. Beyond

the well-known asymptotic normality results related to convergence in distribution, the rate

of convergence to normality is of growing interest and has been studied in the literature.

Notably, Anastasiou et al. [2019b] derived the non-asymptotic rate of convergence to normal

using non-asymptotic rates of the martingale Central Limit Theorem (CLT), and Shao and

Zhang [2022] established a Berry–Esseen type bound for the Kolmogorov distance between

the cumulative distribution functions of the ASGD estimator and its Gaussian analogue.

In this subsection, to better characterize the distributional approximation of the ASGD

estimator, we develop a new Gaussian approximation of which the asymptotic normality is

a direct consequence. Before presenting the main approximation result, we first introduce

some regularity assumptions on the objective function and basic definitions.

79

Assumption 5.3.1. There exist positive constants τ and L such that

(x− x′)⊤(∇F (x)−∇F (x′)) ≥ τ∥x− x′∥22,

∥∇F (x)−∇F (x′)∥2 ≤ L∥x− x′∥2.

Assumption 5.3.2. Denote ∆(x, ξ) = ∇F (x) − ∇f(x, ξ) for x ∈ Rd and ξ ∼ Π. Given

q > 4, we have Eξ∥∆(x∗, ξ)∥q2 < ∞ and there exists some positive constant γ such that for

any x, x′ ∈ Rd,

(
Eξ∥∆(x, ξ)−∆(x′, ξ)∥q2

)1/q ≤ γ∥x− x′∥2.

Assumption 5.3.3. There exists some positive constant L such that for x ∈ Rd,

∥∇F (x)−∇2F (x∗)(x− x∗)∥2 ≤ L∥x− x∗∥22.

Assumptions 5.3.1–5.3.3 are common and fairly mild in the context of convex optimization

based on the SGD algorithm and its variants [Chen et al., 2020, Zhu et al., 2023]. For n ≥ 1,

we define

Γn =
1

n

n∑
k=1

UkSU
⊤
k , where Uk =

n∑
i=k

Y ikηk (5.11)

with Y kk = Id, Y
i
k =

∏i
l=k+1(Id − ηl∇2F (x∗)), i > k. In the following theorem, we establish

a Gaussian approximation result for the ASGD estimator.

Theorem 5.3.4. Assume that {xi}ni=1 is a SGD sequence defined by:

xi = xi−1 − ηi∇f(xi−1, ξi), i = 1, 2, . . . ,

where ηi = η × i−β for some constant β ∈ (1/2, 1). Let x̄n = n−1
∑n
i=1 xi. Under As-

sumptions 5.3.1–5.3.3, on a sufficiently rich probability space, there exist a random vector
80

Wn
D
=
√
n(x̄n − x∗) and a centered Gaussian random vector Zn ∼ N (0,Γn), where Γn is

defined in (5.11), such that

E∥Wn − Zn∥22 ≲ max

(
n1−2β ,

log n

n1−2/q
,
∥x0 − x∗∥22

n

)
. (5.12)

Remark 5.3.5. Theorem 5.3.4 reveals that the ASGD estimator can be approximated by

a centered Gaussian random vector with approximately the same covariance matrix with-

out imposing additional structural and moment assumptions and the approximation error

is asymptotically negligible as long as β > 1/2 and ∥x0 − x∗∥2 ≪ n1/2. To the best of

our knowledge, this is the first Gaussian approximation result for online estimators based

on the SGD algorithm. It is worth noting the SGD iterates xi ∈ Rd, i = 1, 2, . . ., are nei-

ther independent nor stationary. Hence the existing strong invariance principle results for

the partial sums of independent random elements [Komlós et al., 1975, 1976, Csörgő and

Révész, 1975, Einmahl, 1987] or general stationary sequences [Wu, 2007, Liu and Lin, 2009,

Berkes et al., 2014] are not applicable here. To handle the nonstationary property of the

sequence {xi}i≥1, we shall invoke the recently established strong approximation result for

non-stationary time series [Mies and Steland, 2023]. The detailed proof of Theorem 5.3.4 is

given in the Appendix.

Remark 5.3.6. It is worth noting the covariance matrix Γn defined in (5.11) and hence

the distribution of the coupled Gaussian vector Zn do not depend on the initial estimate x0.

Therefore, our result in (5.12) can also be viewed as a quenched Gaussian approximation

in the sense that the impact of the initial point x0 diminishes, as asserted by the third

term ∥x0 − x∗∥22/n in the upper bound (5.12). As a direct consequence, the distribution

of the random vector
√
n(x̄n − x∗) can be approximated by that of N (0,Γn). Moreover, the

multivariate central limit theorem (5.3) can be easily derived as Γn converges to the sandwich

form covariance matrix Σ = A−1SA−1; see, for example Polyak and Juditsky [1992]. It is

81

important to mention that our procedure does not rely on the convergence of Γn to Σ, which

can be slow and introduce additional approximation error in practical implementations. Our

constructed t-statistic is asymptotically pivotal as long as (5.12) holds. Particularly, the

simulation studies in Section 5.4 demonstrate that our procedure has better finite-sample

performance than the oracle procedure based on the multivariate central limit theorem (5.3)

with the population covariance matrix Σ given.

The rate of convergence to normality plays a crucial role in assessing the approximation

of the t-distribution. As we will discuss in a later section through a general theorem, the con-

vergence of the t-statistic and the upper bound of the relative error relies on the convergence

rate (of a single parallel run sequence) to normality.

5.3.2 Main results

As discussed above, there are many variants of SGD exhibiting asymptotic normality results,

and the specific convergence rate to normality may vary across different algorithms. We will

not study those rates for other algorithms rigorously since they are beyond the scope of this

paper. To derive general results with the potential to be applied to different algorithms, we

propose the following assumption.

Assumption 5.3.7 (Convergence rate to normality). For a chosen stochastic algorithm and

number of parallel runs K, let x̂(k)n (k = 1, ..., K) denote the result at the n-th iteration of

the k-th parallel run used in calculating the parallel average x̄K,n in (5.7). There exists a

centered Gaussian random vector Zn ∼ N (0,Σn) (for some Σn ∈ Rd×d) such that

(
E∥
√
n(x̂

(k)
n − x∗)− Zn)∥22

)1/2
≲ δ(n),

where the approximation rate δ(n)→ 0.

Theorem 5.3.4 demonstrates that if we employ ASGD as defined in (5.6), Assumption
82

5.3.7 is satisfied with Σn = Γn defined in (5.11) and

δ(n) = max

(
n1/2−β ,

√
log n

n1/2−1/q

)

With this assumption, we are ready to show that the statistic in (5.8) is asymptotically

pivotal with a specific convergence rate.

Theorem 5.3.8. Suppose we run Algorithm 4 and Assumption 5.3.7 holds. For any υ and

t̂υ defined in (5.8) we have

sup
z∈R

∣∣P (t̂υ ≥ z
)
− P(TK−1 ≥ z)

∣∣ ≲ (δ(N/K))1/4,

where TK−1 is a random variable following t distribution with degree of freedom K− 1, N is

the total sample size and K is the number of parallel runs. Consequently, for any confidence

level α ∈ (0, 1),

∣∣∣∣∣∣
P
(
|t̂ν | ≥ t1−α/2,K−1

)
α

− 1

∣∣∣∣∣∣ ≲ α−1δ(N/K)1/4,

where t1−α/2,K−1 is the (1−α/2)×100% percentile for the tK−1 distribution and the constant

in ≲ does not depend on α. For α(N) goes to zero with δ(N/K)1/4 ≪ α(N), the relative

error of coverage goes to zero when α ≥ α(N), i.e.,

∆N = sup
α(N)≤α<1

∣∣∣∣∣P(υ⊤x∗ ∈ ĈI)− (1− α)
α

∣∣∣∣∣→ 0.

The results suggest that any stochastic algorithm demonstrating appropriate convergence

in certain scenarios can be selected, provided its single sequence exhibits convergence towards

normality. The convergence of the t-statistic, as well as the relative error in the coverage

of the confidence interval, can be bounded based on the rate of convergence to normality.

83

Furthermore, this study comprehensively examines the reliance on the value of α. The

uniform convergence of ∆N indicates that an extremely small α, or decreasing α, is feasible.

5.4 Experiment

5.4.1 Simulation

In this section, we investigate the empirical performance of our proposed parallel inference

under the linear regression model and logistic regression model. The true coefficient of

interest x∗ is a d-dimensional vector with x∗ = (0, 1/d, 2/d, ..., (d − 1)/d). We generate a

sequence of i.i.d. random samples {(ai, bi)}ni=1, where ai stands for the explanatory variable

generated from N (0, Id), and bi stands for the response variable. In the linear regression

model, we have

bi = aTi x
∗ + ϵi,

where ϵi follows N (0, 1) independently. The corresponding loss function is f(x, ξi) = (aTi x−

bi)
2/2. In the logistic regression model, bi ∈ {0, 1} is generated from a Bernoulli distribution,

where

P(bi = 1|ai) =
1

1 + exp(−aTi x∗)
,

and the loss function is logit loss as f(x, ξi) = (1− bi)aTi x+log(1+exp(−aTi x)). We employ

ASGD for our parallel method, with β = 0.505, and η = 0.5, consistent with the settings

used in Lee et al. [2022], Zhu et al. [2023]. We consider the case of marginal inference of

coordinates, that is the vector υ in linear functional is chosen as the canonical basis. To

analyze the empirical performance, we record the coverage of the constructed confidence

intervals, the relative error of coverage ∆α as defined in (5.2), the length of the confidence

intervals, and the running time. All reported results are the average of 10000 independent

trials.

84

(a) (b)

Figure 5.1: Effect of K. Plot (a): relative error of coverage; plot (b): the length of confidence
interval. The nominal coverage probability is 0.99. The total sample size N is 60000 for
linear models and 200000 for logistic models.

Choice of K. We first examine the effect of K. We construct 99% confidence intervals

(α = 0.01) with a total sample size of 60000 (N = nK = 60000) for linear regression,

and with a total sample size of 200000 (N = nK = 200000) for logistic regression. From

Figure 5.1, we observe that a small K may decrease the bias of coverage in some challenging

scenarios, such as logistic regression with d = 20. On the other side, it will result in longer

confidence intervals. However, when K falls within a reasonable range, say between 2 to

11, the results appear satisfactory and are not overly sensitive to the choice of K. In the

following simulation results, we will use K = 6.

Compare to another method. We compare the finite sample performance of our proposed

inference method, referred to as the parallel method, with that of the state-of-the-art method:

the random scaling method [Lee et al., 2022], which also leverages an asymptotic pivotal

statistic. The confidence interval constructed by the random scaling method is given in

(5.4), and we obtain critical values through Monte Carlo simulation as tabulated in Table

D.1. We did not include comparisons with other methods such as the Plug-in [Chen et al.,

2020] or Online Batch-means [Zhu et al., 2023], as the random scaling method has already

demonstrated comparable coverage to the Plug-in method, superior coverage compared to

85

Online Batch-means, and faster computing times. For both methods, we apply the ASGD

algorithm with β = 0.505 and η = 0.5. The number of parallel runs, K, is set to 6 for the

parallel method. We consider constructing confidence intervals every 600 samples. Overall,

the performance of the parallel method is satisfactory and better than that of the random

scaling method, with faster convergence, comparable confidence interval lengths, and less

computation.

In Figures 5.2 and 5.3, we present results for confidence intervals where the nominal

coverage probability is set at 0.95, 0.99, and 0.999, i.e., α = 0.05, 0.01, 0.001 for both linear

regression and logistic regression. We plot the relative error of coverage, the empirical

coverage rate, and the length of the confidence intervals. We also compare the running time

of a single trial in Figure 5.4. More results are summarized in Table ?? and Appendix. The

relative error of our parallel method converges to zero faster than that of the random scaling

method in all cases. The advantage becomes more obvious as confidence levels increase. Note

that in logistic regression with d = 20, both methods exhibit relatively large errors when

the sample size is small. In this case, the parallel method converges more slowly, which can

be attributed to the fact that data splitting in the parallel run exacerbates the issue of a

small sample size. However, as the sample size increases, the convergence rate of the parallel

method improves and eventually surpasses that of the random scaling method. The lengths

of the confidence intervals are comparable between the two methods, with those derived

from the parallel method being slightly larger. We also observe that our parallel method

has a distinct advantage in terms of computing time, as it does not necessitate additional

computations at each iteration, such as updating a d by d matrix, which is required by

the random scaling method. Apart from the SGD update, the only additional computation

needed for inference is calculating a sample covariance matrix or a sample variance (for

the linear functional). This computation is minimal, making the inference process almost

cost-free. The advantage in computing becomes even more significant when utilizing parallel

86

(a) α = 0.05

(b) α = 0.01

(c) α = 0.001

Figure 5.2: Linear Regression d = 20: Left: relative error of coverage; Middle: empirical
coverage; Right: length of confidence intervals.

87

(a) α = 0.05

(b) α = 0.01

(c) α = 0.001

Figure 5.3: Logistic Regression d = 20: Left: relative error of coverage; Middle: empirical
coverage; Right: length of confidence intervals.

88

(a) Linear regression (b) Logistic regression

Figure 5.4: Computation time: d = 20

computing across different cores.

Compare to oracle. We also compare our method to the oracle approach, which con-

structs confidence intervals using the true limiting covariance matrix Σ and the principles of

asymptotic normality. The oracle method is given by:

ĈIn,oracle =

υ⊤x̄n − z1−α/2
√
υ⊤Συ
n

, υ⊤x̄n + z1−α/2

√
υ⊤Συ
n

 .
In the linear regression model described above, the limiting covariance matrix Σ = Id. We

focus on linear regression here since the true limiting covariance matrix is straightforward

to compute. As illustrated in Figure 5.2 the coverage achieved by the parallel method

surpasses that of the oracle method. This could be attributed to a discrepancy between

the finite sample covariance matrix of ASGD and the limiting covariance Σ. Employing

an asymptotic pivotal statistic helps to mitigate the impact of this difference. For further

details and discussion on this topic, refer to Section 5.3.1.

89

5.4.2 Hand-written digit dataset

To further explore the application of confidence intervals, we consider the task of estimating

the mean image for each digit in the MNIST handwritten digit dataset.

The MNIST dataset comprises 60000 training images, each each measuring 28×28 pixels

in dimension and labeled with digits ranging from 0 and 9. For each label m = 0, 1, . . . , 9,

we hypothesize the existence of a mean image x∗,m ∈ Rd, d = 28× 28, and individual image

instances {ξ(m)
i } sampled from a normal distribution with mean x∗,m and an unknown

variance. Our goal is to estimate these mean images. The objective function is defined as

f(x, ξ) = 1
2∥ξ − x∥

2
2. We employ the online parallel algorithm (4) with K = 6 and ASGD

with a step size at the n-th iteration ηn = n−0.505. The parallel means computed from

this process serve as our final mean estimates. We construct coordinate-wise confidence

intervals based on Algorithm 4, choosing vectors υ = ej , j = 1, ..., 784. We visualize the

mean images in Figure 5.5 (a), noting that in the grayscale representation, 0 denotes gray,

−1 denotes black, and 1 denotes white. Our approach further includes denoising; that is,

truncating (or ‘shrinking’) values below a certain threshold to −1 to make the mean image

sharper. Traditionally, this threshold lacks formal guidance. We first try a one-size-fits-

all threshold. In Figure 5.5 (b) , the uniform threshold is set at 0. The results are not

satisfactory; significant portions of the digit 5 were missing, and it did not make sense to

shrink the upper part of 6. Changing the uniform threshold to a smaller number, −0.5, as

shown in Figure 5.5 (c), the denoising step has no effect. It remains unclear which threshold

is effective, and it is uncertain if a single, uniform threshold is appropriate. Then, we refined

the denoising step by leveraging confidence intervals constructed by the parallel method:

a mean value is set to 0 if its coordinate-wise upper confidence bound is below 0. Given

the desire to preserve sufficient pixel detail, we opt for a high confidence level, adjusted for

the number of parameters. Thus, we set our confidence level to 1 − α/d with α = 0.001,

effectively achieving a 99.9% confidence interval across all coordinates simultaneously. The

90

(a) Original mean (b) t = 0 (c) t = −0.5 (d) Adaptive

Figure 5.5: Mean image before and after denoising. (a) shows the original estimated mean
before denoising; (b) uses a uniform threshold t = 0; (c) uses a uniform threshold t = −0.5;
(d) applies an adaptive threshold based on the upper bound of the confidence interval.

results in Figure 5.5 (d) demonstrate that using confidence intervals yields more accurate

and visually coherent mean images.

5.5 Summary

In this chapter, we introduce a novel inference framework designed to construct confidence in-

tervals for model parameters by employing stochastic algorithms in an online environment.

This method stands out for its simplicity and ease of implementation, offering flexibility

across various algorithms. The construction of confidence intervals is the most computation-

ally efficient among all existing online methods and incurs almost no cost post-SGD update.

Furthermore, we bolster our approach with rigorous theoretical guarantees, demonstrating

its capability to facilitate inference at a high confidence level.

91

CHAPTER 6

APPROXIMATE CO-SUFFICIENT SAMPLING WITH

REGULARIZATION

In previous chapters, we discussed inference for parameter estimation in a model. In this

chapter, we turn to the second part of this thesis: goodness-of-fit (GoF) testing, which

assesses whether observed data follows a specific pattern or distribution. GoF testing is

an essential statistical method, widely used across various fields such as biology, economics,

engineering, and finance. Here, we will focus on scenarios where the null distribution is only

partially known—limited to a parameterized family of distributions—rather than known

exactly. We will approach this question through resampling and address challenges in a

high-dimensional setting.

6.1 Introduction

Consider the GoF testing

H0 : X ∼ Pθ for some θ ∈ Θ, (6.1)

where {Pθ : θ ∈ Θ ⊆ Rd} is a parametric family, versus a more complex (usually higher-

dimensional) model. As for any standard hypothesis testing problem, our approach to GoF

testing involves two core ingredients: finding a test statistic that captures the important

trends in the data (with the convention that large values of T = T (X) indicate evidence

against H0), and deriving the null distribution of this test statistic T (X) so that we can

appropriately calibrate our test to make sure we do not exceed the allowable Type I error

level. In many settings, this second component often poses the larger challenge; it is often

the case that the null distribution of T (X) cannot be computed exactly or even estimated

accurately. An alternative approach, common in many statistical problems, is to mimic this

null distribution with some form of resampling—e.g., methods based on permutations, on
92

bootstrapping, or on knockoffs [Barber and Candès, 2015, Barber et al., 2020, Beran, 1988,

Berrett et al., 2020, Candès et al., 2018, Davidson and MacKinnon, 2007, Efron, 1979, Ernst,

2004, Lehmann et al., 1986, Welch, 1990, Wu, 1986] all have this flavor. At a high level, we

can consider sampling copies of the observed data, X̃(1), ..., X̃(M), and using the empirical

distribution of the statistic, given by the corresponding values T (X̃(1)), ..., T (X̃(M)), as a

null distribution against which we compare the evidence T (X). More concretely, given these

sampled copies, we can define a p-value corresponding to the observed evidence T (X) as

pval = pvalT (X, X̃
(1), ..., X̃(M)) =

1

M + 1

1 +
M∑
m=1

1

{
T (X̃(m)) ≥ T (X)

} . (6.2)

If it holds that the real data and its copies X, X̃(1), ..., X̃(M) are exchangeable under the

null, then it follows immediately that this p-value is valid under the null, PH0
(pval ≤ α) ≤ α

(for any rejection threshold α). The core challenge for this type of approach is therefore

reduced to the following question:

How can we generate copies X̃(1), ..., X̃(M) of the observed data X such that, if

H0 is true, then X, X̃(1), ..., X̃(M) are (approximately) exchangeable?

Now we consider this question specifically for the GoF testing problem. Of course, in the

case that Θ = {θ0} is a singleton set, the problem is trivial—we can simply draw the

X̃(m)’s from the known null distribution Pθ0 , so that X, X̃(1), ..., X̃(M) are i.i.d. (and thus,

exchangeable). Beyond this trivial case, however, this simple strategy can no longer be

used. For example, drawing X̃(m)’s from P
θ̂

for a plug-in estimate θ̂, which is often called

the parametric bootstrap [Efron, 2012, Efron and Tibshirani, 1994, Hall and Maiti, 2006,

Singh, 1981], may work well in some settings but has the potential to substantially inflate

the Type I error rate [Barber and Janson, 2022, Section 1]. The co-sufficient sampling (CSS)

and approximate co-sufficient sampling (aCSS) approaches, which we will describe in detail

below, avoid this issue by conditioning on a sufficient (or approximately sufficient) statistic
93

for the unknown θ. aCSS in particular can be applied to a range of models, but is not suited

for addressing challenges such as high dimensionality.

In this chapter, our aim is to extend the aCSS approach to the setting where θ can-

not be estimated via unconstrained maximum likelihood estimation—for example, a high-

dimensional sparse linear regression problem, where unconstrained estimation is not consis-

tent but adding ℓ1 regularization restores consistency. We develop a form of aCSS that is

able to handle constrained maximum likelihood estimation (and will also extend to the penal-

ized case). Consequently, this new approach allows for aCSS to accommodate more robust

and accurate parameter estimation in complex problems, particularly in high-dimensional

settings.

Notation of the Chapter. For an integer n ≥ 1, [n] denotes the set {1, . . . , n}. We write

Eθ and Pθ to denote expectation or probability taken with respect to the distribution Pθ.

6.2 Background: goodness-of-fit testing via CSS and aCSS

First, we recall the general framework for GoF testing. Our goal is to test the null hypothesis

H0 (6.1) that the dataX is drawn from Pθ, for some (unknown) θ ∈ Θ. We begin by designing

a statistic T : X → R that tests this null, with the convention that a larger value T (X) will

indicate more evidence against this null. We then need to choose a rejection threshold: can

we find a value t∗ such that, under the null, T (X) > t∗ occurs with probability at most α,

while under the alternative, T (X) > t∗ is much more likely?

Since the null hypothesis H0 is composite (aside from the trivial case that Θ is a singleton

set), we cannot compute an exact null distribution for T (X), and thus instead we aim to

sample copies X̃(1), . . . , X̃(M) that are approximately exchangeable with the observed data

X under the null H0, so that we can then assess T (X) via the p-value defined in (6.2) above.

Of course, we can trivially achieve exchangeability by simply taking X̃(m) = X for each copy

m—but this would lead to zero power for testing any alternative, since the p-value defined

94

in (6.2) would be equal to 1 regardless of the choice of test statistic.

In the remainder of this section, we will give background on the CSS and aCSS methods

for producing these copies, the X̃(m)’s, along with some examples to illustrate the types of

settings where these methods may be applied. From this point on, we will write θ0 ∈ Θ to

denote the unknown true value of the parameter.

6.2.1 Co-sufficient sampling (CSS)

We cannot sample the copies X̃(m) from the distribution Pθ0 of the data X, because of its

dependence on the unknown θ0. To remove this dependence we can condition on a sufficient

statistic S(X). To be precise, S(X) is a sufficient statistic if the conditional distribution of

X no longer depends on θ—that is, we can construct a conditional distribution P (X | S)

such that, for any θ ∈ Θ,

If X ∼ Pθ, then X | S(X) has distribution P (· | S(X)).

Co-sufficient sampling (see, e.g., Agresti [1992], Engen and Lillegård [1997], Stephens [2012])

leverages this property to sample the copies:

CSS method: after observing X, sample X̃(1), . . . , X̃(M) i.i.d. from P (· | S(X)).

By construction, X, X̃(1), . . . , X̃(M) are exchangeable when X ∼ Pθ, for any θ—and thus,

the p-value constructed in (6.2) is valid under the null H0 (6.1).

As a concrete example, suppose that X = (X1, . . . , Xn) follows a Gaussian linear model,

X ∼ N (Zθ, ν2In),

for known covariates Z ∈ Rn×d (assumed to have full column rank), known variance ν2 > 0,

95

and unknown coefficients θ ∈ Θ = Rd. Then S(X) = Z⊤X is a sufficient statistic for this

parametric family, and we can calculate the conditional distribution

X | S(X) ∼ N (Z(Z⊤Z)−1S(X), ν2P⊥Z),

where P⊥Z ∈ Rd×d is the projection matrix for the subspace orthogonal to the column span

of Z. As long as d < n, then, the copies X̃(m) are distinct from X (and from each other), and

we may be able to achieve high power under a suitable alternative hypothesis. Additional

background and discussion of CSS can be found in [Barber and Janson, 2022, Section 1].

6.2.2 Approximate co-sufficient sampling (aCSS)

While the CSS method performs well for certain goodness-of-fit problems, there are many

settings where CSS leads to a degenerate method and consequently zero power. Barber and

Janson [2022] consider the example of logistic regression: suppose X = (X1, . . . , Xn) follows

a logistic regression model, where

Xi ∼ Bernoulli(1/(1 + e−Z
⊤
i θ))

independently for each i ∈ [n], where again Z1, . . . , Zn ∈ Rd are known covariate vectors,

while θ ∈ Θ = Rd is unknown. In this case, for generic values of the Zi’s (for instance,

if these covariates are drawn from some continuous distribution), the minimal sufficient

statistic S(X) = Z⊤X uniquely determines X (Z ∈ Rn×d is the matrix with rows Zi)—that

is, the conditional distribution of X | S(X) is simply a point mass. Consequently, applying

CSS to this problem would lead to zero power since we would have X = X̃(1) = · · · = X̃(M).

To address this type of degenerate scenario, Barber and Janson [2022] propose approxi-

mate co-sufficient sampling (aCSS). The idea of aCSS is to condition on less information (to

restore power), while ensuring that the sampled copies are approximately exchangeable (to

96

retain Type I error control). (We refer the reader to [Barber and Janson, 2022, Section 1]

for a more comprehensive discussion on the comparison between bootstrap, CSS, and aCSS

methods.)

Concretely, consider an approximate maximum likelihood estimator,

θ̂ = θ̂(X,W) = argminθ∈Θ
{
− log f(X; θ) +R(θ) + σW⊤θ

}
,

where f(·; θ) is the density for distribution Pθ (with respect to some base measure), R(θ) is an

optional twice-differentiable regularizer (e.g., a ridge penalty), W ∼ N (0, 1dId) is Gaussian

noise that adds a perturbation to the maximum likelihood estimation problem, and σ > 0

is a parameter that controls the magnitude of this perturbation. For each θ ∈ Θ, define

Pθ(· | θ̂) as the conditional distribution of X | θ̂, when X ∼ Pθ and θ̂ = θ̂(X,W) is defined

as above.

Now we return to the GoF problem, where X ∼ Pθ0 for an unknown θ0. Note that, even if

the unperturbed MLE were a sufficient statistic (as would be the case for a Gaussian linear

model, for example), the perturbed MLE θ̂ is no longer a sufficient statistic in the exact

sense, and so the conditional distribution Pθ0(· | θ̂) does depend on the unknown parameter

θ0. However, it turns out that θ̂ is approximately sufficient, meaning that Pθ0(· | θ̂) depends

only weakly on θ0. In particular, Barber and Janson [2022]’s method proposes replacing θ0

with θ̂ as a plug-in estimate:

aCSS method: after observing X, draw W ∼ N (0, 1dId), compute θ̂ = θ̂(X,W), then

sample X̃(1), . . . , X̃(M) i.i.d. from P
θ̂
(· | θ̂).

Of course, these copies are no longer exactly exchangeable with X under the null, since in

general we will have P
θ̂
(· | θ̂) ̸= Pθ0(· | θ̂). To quantify this issue, Barber and Janson [2022]

97

define the “distance to exchangeability”,

dexch(A1, . . . , Ak) = inf {dTV((A1, . . . , Ak), (B1, . . . , Bk)) : B1, . . . , Bk are exchangeable} ,

where dTV denotes the total variation distance. The p-value defined in (6.2) is then approx-

imately valid with

P(pvalT (X, X̃
(1), . . . , X̃(M)) ≤ α) ≤ α + dexch(X, X̃

(1), . . . , X̃(M)),

where dexch(X, X̃
(1), . . . , X̃(M)) can be bounded under certain conditions on the parametric

family {Pθ : θ ∈ Θ}.

While aCSS is able to handle a far broader range of models and problems than the CSS

framework, there are nonetheless limitations to this method that motivate our present work.

In particular, Barber and Janson [2022]’s work assumes a bound on ∥θ̂ − θ0∥2, i.e., consis-

tency of the perturbed MLE θ̂, which may not be possible to achieve in high dimensional

settings unless we regularize using constraints or non-smooth penalization. Moreover, com-

puting Pθ(· | θ̂), which is a key step in the aCSS procedure, relies heavily on the fact that

θ̂ is the solution to an unconstrained, differentiable optimization problem over a convex,

open parameter space Θ ⊆ Rd (as these assumptions allow for using first-order optimality

conditions on θ̂ to derive this conditional distribution), and consequently, aCSS is not able

to handle optimization under constraints or under a non-differentiable penalty.

The role of σ

Here we pause to discuss the role of the noise parameter σ in the aCSS method, and the

tradeoffs inherent in choosing the value of σ. The aCSS method requires choosing a parameter

σ > 0 that controls the amount by which the MLE is perturbed. As discussed by Barber and

Janson [2022], the choice of σ represents a tradeoff between Type I error control, and the

98

statistical and computational efficiency of the method. A smaller σ leads to a lower inflation

of the Type I error (that is, Barber and Janson [2022]’s bound on dexch(X, X̃
(1), . . . , X̃(M))

increases with σ). On the other hand, choosing σ to be too small can lead to low power—

if the perturbed MLE θ̂ reveals too much information about X, the copies X̃(m) may be

extremely similar to X and therefore, our power to reject the null is low. Moreover, a small

value of σ makes it more challenging to sample the X̃(m)’s from the conditional distribution

of X | θ̂, since this distribution becomes more concentrated as σ tends to zero.

As we will see later on, these considerations will play an important role in our constrained

version of aCSS, as well. We will return to a discussion of this parameter in Section 6.4.1

below, after defining our new methods and presenting theoretical results.

6.2.3 Additional related work

The literature on GoF testing is extensive, particularly in low-dimensional settings, and giv-

ing an overview of this broad field is beyond the scope of the present work. Here we discuss

some challenges faced in the high-dimensional regime. A crucial prerequisite for valid testing

is the reliable estimation of underlying parameters. In high-dimensional settings, achieving

consistent parameter estimation is impossible without additional structural assumptions.

Constraints serve as an effective tool for incorporating prior knowledge about the structure

into the estimation process. The most common illustration of this is the application of

LASSO [Tibshirani, 1996] and the Dantzig selector [Candès and Tao, 2007] under specific

sparsity assumptions. These techniques, linked with ℓ1-regularization, have been demon-

strated to be consistent [Bickel et al., 2009, Zhang and Huang, 2008, Zhao and Yu, 2006].

When applied to GoF testing, there has been much work on inference and testing in high

dimensional generalized linear models (GLM) considering lasso and sparse models (see, e.g.,

Janková et al. [2020], Van de Geer et al. [2014], Zhang and Zhang [2014]). For two-sample

test in high dimensions, Srivastava et al. [2016] focus on projecting the high-dimensional

99

data onto a lower-dimensional subspace and Li et al. [2020a] propose a test based on a ridge-

regularized Hotelling’s T 2. While much of the aforementioned work centers on simple null

settings, the methods used to manage high-dimensional data provide valuable insights for

our scenarios.

6.3 The aCSS method with linear constraints

Our constrained aCSS method will address the problem of goodness-of-fit testing for the

hypothesis

H0 : X ∼ Pθ for some θ ∈ Θ,

where as before, {Pθ : θ ∈ Θ} is a parametric family, indexed by a convex and open subset

Θ ⊆ Rd. For Barber and Janson [2022]’s aCSS method to provide approximate Type I error

control, we need consistency of the (perturbed) MLE, i.e., a bound on ∥θ̂ − θ0∥2. Many

important problems are therefore excluded from this framework. In particular, consistency

of the MLE cannot be assumed for problems where the unconstrained MLE is not well-

defined—for example, a mixture of two Gaussians with unknown means and variances, due

to the degenerate behavior of the likelihood as we take one component’s variance to zero.

In addition, consistency of the MLE will not hold for high-dimensional problems, such as

Gaussian linear regression with dimension d larger than the sample size n—even if we add a

ridge regularizer R(θ) so that the solution θ̂ is unique, in general θ̂ will not be a consistent

estimator of θ. In contrast to aCSS, however, where we need to be able to estimate the true

parameter θ0 accurately with the unconstrained MLE solution θ̂, here we are interested in

settings where θ0 can only be accurately estimated with a constrained optimization problem.

To this end, we now introduce constraints,

Aθ ≤ b,

100

for a fixed and known matrix A ∈ Rr×d and vector b ∈ Rr. The inequality should be

interpreted elementwise, i.e., we are requiring (Aθ)i ≤ bi for each i = 1, . . . , r. (Of course,

in the special case r = 0, this reduces to the earlier, unconstrained setting.) At a high level,

to run aCSS in this setting, we first need to compute a constrained MLE (with a random

perturbation),

θ̂ = θ̂(X,W) = argminθ∈Θ {(θ;X,W) : Aθ ≤ b} , (6.3)

where

(θ;X,W) = − log f(X; θ) +R(θ) + σW⊤θ.

As before, f(·; θ) is the density for distribution Pθ, R(θ) is an optional twice-differentiable

regularizer, W ∼ N (0, 1dId) is independent Gaussian noise, and σ > 0 is a parameter that

controls the magnitude of this perturbation. We then compute the conditional distribution

of X given θ̂, and sample the copies X̃(1), . . . , X̃(M) from this conditional distribution (or

rather, sample from an approximation, since θ0 is unknown). Defining

ĝ = ĝ(X,W) = ∇θ(θ̂(X,W);X,W), (6.4)

we can see that we would trivially have ĝ ≡ 0 in the unconstrained setting but may in general

have ĝ ̸= 0 now that constraints have been introduced. We will see that, in the constrained

optimization setting, while θ̂ on its own does not carry enough information to serve as an

approximately sufficient statistic, instead the pair (θ̂, ĝ) now plays this role.

For each θ ∈ Θ, we will define Pθ(· | θ̂, ĝ) as the conditional distribution of X | (θ̂, ĝ)

if we assume that X was drawn as X ∼ Pθ. Using θ̂ as a plug-in for the true parameter

θ0, we will use P
θ̂
(· | θ̂, ĝ) as the distribution from which the copies X̃(m) are drawn. The

constrained aCSS algorithm is then defined via the following steps:

Constrained aCSS algorithm (informal version):

101

1. Observe data X ∼ Pθ0 .

2. Draw noise W ∼ N (0, 1dId).

3. Solve for a constrained perturbed MLE θ̂ = θ̂(X,W) as in (6.3), and com-

pute the corresponding gradient ĝ = ĝ(X,W) as in (6.4).

4. Sample the copies X̃(1), . . . , X̃(M) from the approximate conditional distri-

bution P
θ̂
(· | θ̂, ĝ).

5. Compute the p-value defined in (6.2) for our choice of test statistic T .

As compared to (unconstrained) aCSS, the difference lies in the fact that θ̂ is computed via

a constrained optimization problem, and as a result, the conditional distribution Pθ(· | θ̂, ĝ)

is now more challenging to compute; we will return to this question shortly.

When running constrained aCSS, we note that we are not assuming explicitly that the true

parameter θ0 itself satisfies the constraints—that is, we do not assume Aθ0 ≤ b must hold.

However, in order for the method to retain approximate Type I error control, θ̂ = θ̂(X,W)

will need to be an accurate estimator of θ0; this implicitly requires that Aθ0 ≤ b must at

least approximately hold.

The choice of σ controls the amount of perturbation in the constrained MLE θ̂. This

choice represents a tradeoff between Type I error, which is better for small σ, versus statistical

power and computational efficiency, which tend to improve with larger σ—this tradeoff

occurs for unconstrained aCSS as well (see Section 6.2.2). For constrained aCSS, additional

challenges can arise since we may now be working in a high-dimensional setting—we will

discuss these questions more in Section 6.4 below, when presenting our theoretical results,

and will explore the role of σ empirically in our simulations in Section 6.6.

102

6.3.1 Examples of constraints

Before defining the method more formally, we present several key examples of constraints

Aθ ≤ b to motivate this method.

• Nonnegativity constraint: if we believe θ0 has only nonnegative entries, we can choose

A = −Id, b = 0d

to enforce θi ≥ 0 for all i.

• Bounding away from zero: if we believe the entries of θ0 cannot be too close to zero,

we can choose

A = −Id, b = −c · 1d,

for a small constant c > 0 (or we can take a submatrix of the identity, if we want

to place a lower bound on only certain entries of θ), to enforce θi ≥ c for all i (or

for certain entries). For example, for a Gaussian mixture model, we need to place a

positive lower bound on the variance of each component in order for the MLE to be

well-defined.

• Monotonicity constraint: if we believe θ0 has entries that appear in nondecreasing

order, i.e., (θ0)1 ≤ · · · ≤ (θ0)d, we can choose

A =



1 −1 0 . . . 0 0

0 1 −1 . . . 0 0

...
...

...
...

...

0 0 0 . . . 1 −1


, b = 0d,

to enforce the monoticity constraint θ1 ≤ · · · ≤ θd.

103

• ℓ∞ constraint: if we believe θ0 has bounded entries, we can choose

A =

 Id

−Id

 , b = C · 12d,

to enforce the constraint ∥θ∥∞ ≤ C.

• ℓ1 constraint: if we believe that θ0 is sparse or approximately sparse, such as in a

high-dimensional regression problem, we can choose

A ∈ {±1}2
d×d (with rows given by the set of sign vectors of length d), b = C · 12d

in order to enforce the constraint ∥θ∥1 ≤ C. (Note that, in high-dimensional statistics,

it is more common to use an ℓ1 penalty—i.e., the lasso—rather than an ℓ1 constraint,

when defining the regularized MLE. We will define a penalized version of our method

later on, in Section 6.5.)

• Fused ℓ1 norm constraint: if we believe θ0 is locally constant (or is smooth and there-

fore can be well approximated by a locally constant vector), we can choose to constrain

∥Dθ∥1 ≤ C, where D ∈ {−1, 0,+1}(d−1)×d is defined with first row (+1,−1, 0, . . . , 0),

second row (0,+1,−1, 0, . . . , 0), etc, so that ∥Dθ∥1 =
∑d−1
i=1 |θi − θi+1|. This corre-

sponds to choosing A ∈ R2d−1×d given by A = A′ ·D, where A′ ∈ {±1}2d−1×(d−1) has

rows given by all possible sign vectors of length d− 1, and b = C · 12d−1 .

6.3.2 Formally defining the method

We now turn to the details of the method and its implementation, including questions of opti-

mization and sampling, then combine all these ingredients to formally define the constrained

aCSS method.

104

The second-order stationary condition

First we consider the question of optimization. In certain settings, it may be the case that

we cannot reliably solve for the global minimizer of (θ;X,W), or, that this global minimizer

may not be well-defined or may not be unique—for example, the negative log-likelihood

might be nonconvex. Formally, we define

θ̂ : X × Rd → Θ

to be any measurable function, which represents the output of our solver when we input

the constrained optimization problem (6.3). For each subset I ⊆ [r] of constraints, define

a matrix UI that forms an orthonormal basis for subspace orthogonal to span{Ai : i ∈ I}

(where Ai ∈ Rd is the vector given by the ith row of A), that is,

UI ∈ Rd×(d−rank(span{Ai}i∈I)) satisfies UIU
⊤
I = P⊥span{Ai}i∈I , (6.5)

so that UIU⊤I projects to the subspace orthogonal to the span of constraints indexed by I.

Definition 6.3.1 (SSOSP). A parameter θ ∈ Θ is a strict second-order stationary point

(SSOSP) of the optimization problem (6.3) if it satisfies all of the following:

1. Feasibility:

Aθ ≤ b.

2. First-order necessary conditions, i.e., Karush–Kuhn–Tucker (KKT) conditions:

∇θ(θ;X,W) +
r∑
i=1

λiAi = 0,

where λi ≥ 0 for all i, and λi = 0 for all i ∈ [r]\I(θ), where I(θ) = {i ∈ [r] : A⊤i θ = bi}

is the set of active constraints.
105

3. Second-order sufficient condition:

U⊤I(θ)∇
2
θ(θ;X,W)UI(θ) ≻ 0,

that is, the Hessian ∇2
θ(θ;X,W) is strictly positive definite when restricted to the

subspace orthogonal to the active constraints.

As in the unconstrained aCSS algorithm [Barber and Janson, 2022], to allow for the

possibility that our solver might fail to find a valid solution, if θ̂(X,W) fails the SSOSP

condition then we will set X̃(1) = · · · = X̃(M) = X to trivially obtain a p-value of 1 (i.e., to

avoid the possibility of a rejection in this scenario where our estimate θ̂ of θ0 is unreliable).

The conditional distribution

With the SSOSP condition in place, we are now ready to define the conditional distribution

Pθ(· | θ̂, ĝ). We first need some regularity conditions.

Assumption 6.3.2. Assume the family {Pθ : θ ∈ Θ} and regularization function R(θ)

satisfy:

• Θ ⊆ Rd is a convex and open set;

• For each θ ∈ Θ, Pθ has density f(x; θ) > 0 with respect to a common base measure νX ;

• for each x ∈ X , the function θ → (θ;x) = − log f(x; θ) + R(θ) is continuously twice

differentiable.

This first assumption is the same as Assumption 1 of Barber and Janson [2022], for

the unconstrained aCSS setting. The following result, however, is a strict generalization of

[Barber and Janson, 2022, Lemma 1], computing the conditional density of X after solving

for θ̂ under linear constraints (with the unconstrained setting as a special case).

106

Lemma 6.3.3 (Conditional density). Suppose Assumption 6.3.2 holds. For A ∈ Rr×d,

b ∈ Rr, fix any θ0 ∈ Θ and let (X,W, θ̂, ĝ) be drawn from the joint model



X ∼ Pθ0 ,

W ∼ N (0, 1dId),

θ̂ = θ̂(X,W),

ĝ = ĝ(X,W) = ∇θ(θ̂;X,W).

(6.6)

Fix any I ⊆ [r], and assume that the event that θ̂(X,W) is a SSOSP of (6.3) with active

set I(θ̂(X,W)) = I has positive probability. Then, conditional on this event, the conditional

distribution of X|θ̂, ĝ has density

pθ0(· | θ̂, ĝ) ∝ f(x; θ0) · exp

{
−
∥ĝ −∇θ(θ̂;x)∥22

2σ2/d

}
· det

(
U⊤I ∇

2
θ(θ̂;x)UI

)
· 1x∈X

θ̂,ĝ
(6.7)

with respect to the base measure νX , where UI is defined in (6.5) and

Xθ,g =
{
x ∈ X : for some w ∈ Rd, θ = θ̂(x,w) is a SSOSP of (6.3), and g = ∇(θ;x,w)

}
.

The four terms of the conditional density reflect, respectively, the original distribution

of X in the first term; the Gaussian distribution of the noise W in the second term; the

determinant term, which captures a change-of-variables type calculation relating (X,W)

with (X, θ̂, ĝ); and the final indicator term, which accounts for possible failure to find a

SSOSP. In the case where I = ∅, i.e., no active constraints, we have ĝ ≡ 0 (by first-order

optimality) and the conditional density then coincides with the calculations in Barber and

Janson [2022] for the unconstrained case.

With this calculation in place, we can now specify the estimated conditional distribution

P
θ̂
(· | θ̂, ĝ), from which we would like to sample the copies X̃(1), . . . , X̃(M) for the constrained

aCSS algorithm: it is the distribution obtained by plugging in θ̂ in place of the unknown θ0,

107

in the conditional distribution computed in Lemma 6.3.3, namely,1

p
θ̂
(· | θ̂, ĝ) ∝ f(x; θ̂) · exp

{
−
∥ĝ −∇θ(θ̂;x)∥22

2σ2/d

}
· det

(
U⊤I(θ̂)∇

2
θ(θ̂;x)UI(θ̂)

)
· 1x∈X

θ̂,ĝ
. (6.8)

Sampling strategies

In the informal version of the algorithm defined above, we require that the copies X̃(m) are

drawn i.i.d. from the conditional density p
θ̂
(· | θ̂, ĝ), as calculated in (6.8). In other words,

conditional on X, θ̂, ĝ, the collection of copies is drawn from a product distribution,

(X̃(1), . . . , X̃(M)) | (X, θ̂, ĝ) ∼ p
θ̂
(· | θ̂, ĝ)× · · · × p

θ̂
(· | θ̂, ĝ). (6.9)

In some settings, this may be computationally very easy—we will see some examples of

this type below when the parametric family {Pθ} is Gaussian. In more complex settings,

however, sampling directly from p
θ̂
(· | θ̂, ĝ) may be infeasible, and we will instead turn to

approximations, such as MCMC-based strategies. Of course, without analyzing complex

conditions such as the mixing time of the Markov chain, we cannot ensure that theoretical

guarantees enjoyed by the algorithm would be preserved when sampling directly from p
θ̂
(· |

θ̂, ĝ) is replaced with an approximation—particularly as this approximation might induce

additional dependence among the copies.

In the unconstrained aCSS setting, Barber and Janson [2022] describe several exchange-

able MCMC strategies, based on the work of Besag and Clifford [1989], that avoid these dif-

ficulties. For completeness, we will describe these schemes in more detail in Appendix E.4.1.

In general, following Barber and Janson [2022], we can generalize the sampling strategy (6.9),

1. For this to result in a well defined density, we need to verify that the right-hand side integrates to a
positive and finite value; in fact, this holds almost surely on the event that θ̂ = θ̂(X,W) is a SSOSP, as we
will verify in Appendix E.2.1.

108

drawing the copies as

(X̃(1), . . . , X̃(M)) | (X, θ̂, ĝ) ∼ P̃M (·;X, θ̂, ĝ)

where the family of conditional distributions {P̃M (·;x, θ, g)} is required to satisfy the fol-

lowing condition:

If X ∼ pθ(· | θ, g) and (X̃(1), . . . , X̃(M)) | X ∼ P̃M (·;X, θ, g), then

the random vector (X, X̃(1), . . . , X̃(M)) is exchangeable.
(6.10)

In particular, we note that choosing

P̃M (·;x, θ, g) = pθ(· | θ, g)× · · · × pθ(· | θ, g),

i.e., sampling the copies i.i.d. from pθ(· | θ, g), will trivially always satisfy the exchangeability

condition (6.10). More generally, however, if sampling the copies directly from pθ(· | θ, g)

is computationally infeasible, the MCMC based strategy described in Appendix E.4.1 will

also satisfy (6.10) while allowing for more complex problems where direct sampling is not

achievable.

Combining everything

With all our formal calculations and definitions in place, we can now state the full version

of the constrained aCSS algorithm.

Constrained aCSS algorithm:

1. Observe data X ∼ Pθ0 .

2. Draw noise W ∼ N (0, 1dId).

109

3. Solve for a constrained perturbed MLE θ̂ = θ̂(X,W) as in (6.3), and com-

pute the corresponding gradient ĝ = ĝ(X,W) as in (6.4).

4. If θ̂ is not a SSOSP of (6.3), then set X̃(1) = · · · = X̃(M) = X. Otherwise,

sample copies (X̃(1), . . . , X̃(M)) | (X, θ̂, ĝ) ∼ P̃M (·;X, θ̂, ĝ), where P̃M is

chosen to satisfy property (6.10) relative to the conditional density p
θ̂
(· |

θ̂, ĝ) as computed in (6.8).

5. Compute the p-value defined in (6.2) for our choice of test statistic T .

This more general form of the constrained aCSS algorithm is more flexible than our orig-

inal informal definition: it allows us to handle settings where solving for the (perturbed,

constrained) MLE is more challenging (e.g., convergence may not be guaranteed), as well

as settings where sampling directly from the estimated conditional density (6.8) may be

computationally infeasible.

6.4 Theoretical results

In this section, we provide theoretical guarantees for the constrained aCSS procedures, es-

tablishing an upper bound on the Type I error level of the test. First, in Section 6.4.1, we

give a general result that holds for any problem where constrained aCSS can be applied. We

will then refine the result to provide a stronger bound for two special cases: Section 6.4.2

addresses the setting where θ̂ is sparse in some basis, and Section 6.4.3 considers the setting

of (potentially high-dimensional) Gaussian data.

6.4.1 Main result: Type I error control

In order to establish a bound on the Type I error level of the constrained aCSS procedure, we

first need several assumptions (in addition to the regularity conditions of Assumption 6.3.2).

The following assumption ensures that, with high probability, we successfully find a strict

110

second-order stationary point (SSOSP) θ̂ of the optimization problem (6.3), and this solution

θ̂ is a good approximation to the true parameter θ0.

Assumption 6.4.1. For any θ0 ∈ Θ in Assumption 6.3.2, the estimator θ̂ : X × Rd → Θ

satisfies

 θ̂(X,W) is a SSOSP of the constrained optimization problem (6.3),

∥θ̂(X,W)− θ0∥2 ≤ r(θ0),

with probability at least 1−δ(θ0), where the probability is taken with respect to the distribution

(X,W) ∼ Pθ0 ×N(0, 1dId).

Next, we need an assumption on the Hessian of the log-likelihood. Define H(θ;x) =

−∇2
θ log f(x; θ), and let H(θ) = Eθ0 [H(θ;x)].

Assumption 6.4.2. For any θ0 ∈ Θ, the expectation H(θ) exists for all θ ∈ B(θ0, r(θ0))∩Θ,

and furthermore

Eθ0

[
sup

θ∈B(θ0,r(θ0))∩Θ
r(θ0)

2 (λmax (H(θ)−H(θ;X)))+

]
≤ ϵ(θ0), (6.11)

logEθ0

[
exp

{
sup

θ∈B(θ0,r(θ0))∩Θ
r(θ0)

2 · (λmax(H(θ;X)−H(θ)))+

}]
≤ ϵ(θ0). (6.12)

Here r(θ0) is the same constant as that appears in Assumption 6.4.1.

These two assumptions are analogous to Assumptions 2 and 3 in Barber and Janson

[2022]’s theoretical results for unconstrained aCSS. However, in the present work θ̂ is defined

as the solution to the constrained, rather than unconstrained, perturbed maximum likelihood

estimation problem. Since constraints allow for more accurate estimation in many settings,

we can expect that the error ∥θ̂ − θ0∥2 might be substantially smaller in this constrained

setting, making these assumptions more realistic for a broader range of problems.

111

Theorem 6.4.3. Suppose Assumptions 6.3.2, 6.4.1, 6.4.2 hold, and the data is generated as

X ∼ Pθ0. Then the copies X̃(1), . . . , X̃(M) generated by the constrained aCSS procedure are

approximately exchangeable with X, satisfying

dexch(X, X̃
(1), . . . , X̃(M)) ≤ 3σr(θ0) + ϵ(θ0) + δ(θ0),

where r(θ0), ϵ(θ0), δ(θ0) are defined in Assumptions 6.4.1 and 6.4.2. In particular, this im-

plies that for any predefined test statistic T : X → R and rejection threshold α ∈ [0, 1], the

p-value defined in (6.2) satisfies

P
(
pvalT (X, X̃

(1), . . . , X̃(M)) ≤ α
)
≤ α + 3σr(θ0) + ϵ(θ0) + δ(θ0).

The above upper bound on the Type I error appears identical to the result of [Barber and

Janson, 2022, Theorem 1], but in fact this new result offers important contributions. Firstly,

this new result holds for the more complex setting of a constrained optimization problem,

which requires a more technical analysis. Moreover, as mentioned above, the estimation error

∥θ̂ − θ0∥2 may be much smaller for the constrained optimization problem, since constraints

can reduce the effective dimensionality of the statistical problem; consequently, the value of

r(θ0) can be much smaller in the constrained setting, leading to a tighter bound on Type

I error control. (We will see that our empirical results, shown in Section 6.6, support this

intuition.)

Revisiting the role of σ

As discussed earlier in Section 6.2.2, the choice of σ plays an important role in the perfor-

mance of the method, typically with better Type I error control when σ is smaller versus

better power when σ is larger. Now we return to this question in the context of constrained

aCSS. The upper bound on Type I error shown in Theorem 6.4.3 suggests that σ should not

112

be too large—in particular, for most statistical settings with sample size n, we can expect

r(θ0) ≍ n−1/2 at best, suggesting that we need to choose σ ≪ n1/2 to ensure a meaningful

bound on Type I error. On the other hand, recalling that the noise W in the perturbed

maximum likelihood estimation problem (6.3) is generated as W ∼ N (0, 1dId), in a high-

dimensional setting where d ≫ n the perturbation term σW⊤θ in (6.3) may therefore be

negligible. This might lead to extremely low power and/or to computational challenges in

sampling the copies X̃(m). This issue leads us to our next question: are there any settings

where we can improve the result of Theorem 6.4.3, and allow for a larger value of σ?

6.4.2 Special case: sparse structure

We next turn to the special case where, due to the constraints imposed on the estimate θ̂,

we can assume that the error θ̂ − θ0 is likely to be sparse, relative to some basis. We will

see that, in this setting, the upper bound on Type I error given in Theorem 6.4.3 can be

improved to account for the lower effective dimension of θ̂, and that we are therefore free to

use a substantially larger value of σ in the constrained aCSS procedure—leading downstream

to higher power and easier computation.

To formalize this idea, consider a fixed set of vectors v1, . . . , vp ∈ Rd. We are interested

in settings where the solution θ̂ to the perturbed constrained maximum likelihood estimation

problem (6.3) is likely to lie in the span of a small subset of vi’s. To motivate this setting,

we can revisit several examples that we considered in Section 6.3.1:

• Sparsity: in a setting where we believe θ0 is sparse, we might use an ℓ1 constraint for

the optimization problem, requiring ∥θ∥1 ≤ C, which is likely to lead to a solution θ̂

that is sparse as well. In this setting, we can take p = d and choose the set of vectors

to be the canonical basis, i.e., vi = ei for i ∈ [d], reflecting our belief that the error

θ̂ − θ0 will itself be sparse.

• Locally constant signal: if we believe θ0 is locally constant, we might choose the
113

constraint
∑d−1
i=1 |θi − θi+1| ≤ C. This constraint often leads to solutions θ̂ that are

piecewise constant, with θ̂i = θ̂i+1 for many indices i ∈ [d− 1], and therefore the error

θ̂ − θ0 will also be piecewise constant. Consequently, we can take p = d, and choose

vi = e1 + ...+ ei for i ∈ [d]. (This choice of vectors {vi} means that, for any w ∈ Rd,

if w has ℓ many changepoints—that is, wi ̸= wi+1 for ℓ many indices i—then w can

be written as a linear combination of at most ℓ+ 1 many vi’s.)

• Monotonicity: in a setting where we believe θ0 is monotone nondecreasing, we might

use the isotonic constraint, choosing A and b to constrain θ1 ≤ · · · ≤ θd. This constraint

often leads to solutions θ̂ that are piecewise constant, with θ̂i = θ̂i+1 for many indices

i ∈ [d− 1]. If the true parameter θ0 is also piecewise constant, we therefore again have

an error θ̂−θ0 that is likely to be piecewise constant, and we can then choose the same

vi’s as for the preceding example.

Notation and definitions

For a given choice of vectors {vi}i∈[p], we define

∥w∥v,0 =


min {|S| : S ⊆ [p], w ∈ span({vi}i∈S)} , w ∈ span({vi}i∈[p]),

+∞, otherwise.

for any w ∈ Rd. In other words, ∥w∥v,0 is the minimum number of vectors vi needed so that

w lies in their span. Note that, despite the notation, the function w 7→ ∥w∥v,0 is not a norm.

We choose this notation to agree with the commonly used “ℓ0 norm”, ∥w∥0, the number of

nonzero elements of the vector w; in particular, in the first example where vi = ei, i ∈ [d],

we have ∥w∥v,0 = ∥w∥0.

114

Next, for each k = 0, . . . , d, we define

hv(k) = EZ∼N (0,Id)

[
max

S⊆[p],|S|≤k
∥PvS (Z)∥

2
2

]
,

where PvS denotes projection to span({vi}i∈S). This quantity will play an important role

in our theory below. We can think of hv(k) as describing the “effective dimension” of vectors

that can be written as a k-sparse combination of the vectors v1, . . . , vp. In particular, we can

see that for any k, we have hv(k) ≤ EZ∼N (0,Id)
[∥Z∥22] = d. On the other hand, if k ≪ d,

the following result shows that hv(k) can be substantially smaller:

Lemma 6.4.4. For each k it holds that hv(k) ≤ min{4k log(4p/k), d}.

Theoretical result

For this setting, our main result given in Theorem 6.4.3 can be strengthened to the following

tighter bound.

Theorem 6.4.5. Under the notation and assumptions of Theorem 6.4.3, suppose it also

holds that

P{∥θ̂(X,W)− θ0∥v,0 ≤ k(θ0)} ≥ 1− δ̃(θ0),

for a fixed set of vectors v1, . . . , vp ∈ Rd. Then the copies X̃(1), ..., X̃(M) generated by the

constrained aCSS procedure are approximately exchangeable with X, satisfying

dexch(X, X̃
(1), ..., X̃(M)) ≤ 3σr(θ0) ·

√
hv(k(θ0))

d
+ ϵ(θ0) + δ(θ0) + δ̃(θ0).

In particular, this implies that for any predefined test statistic T : X → R and rejection

threshold α ∈ [0, 1], the p-value defined in (6.2) satisfies

P
(
pvalT (X, X̃

(1), ..., X̃(M)) ≤ α
)
≤ α + 3σr(θ0) ·

√
hv(k(θ0))

d
+ ϵ(θ0) + δ(θ0) + δ̃(θ0).

115

As discussed above, a small value of k(θ0) indicates that the error vector, θ̂−θ0, typically

lies in a region of Rd that is characterized by a lower effective dimension. As another

interpretation, we can think of k(θ0) as capturing the effective degrees of freedom in our

estimation problem.

The result of Theorem 6.4.5 is strictly stronger than that of Theorem 6.4.3. In particular,

Theorem 6.4.3 can be derived as a special case, by taking v1 = e1, . . . , vd = ed and k(θ0) ≡

d—then the additional condition of Theorem 6.4.5 holds trivially with δ̃(θ0) = 0, and so the

two theorems give the same bound (since hv(d) = d). On the other hand, if the constrained

estimation problem exhibits sparsity relative to the chosen set of vectors {vi}, we may be able

to choose a value k(θ0)≪ d that allows for a low value of δ̃(θ0); in this setting, hv(k(θ0))≪ d

by Lemma 6.4.4, and consequently, we see that we can afford to choose a much larger value

of the perturbation noise parameter σ while still retaining approximate Type I error control.

Of course, to have k(θ0)≪ d (or equivalently, hv(k(θ0))≪ d), we need to choose a suitable

set {vi} that corresponds well to the structure induced by the constraints Aθ ≤ b, as in the

examples given above.

Remark 6.4.6. As we will see in the proof, the result of Theorem 6.4.5 holds even if we

replace Assumption 6.4.2 with a weaker condition: defining

Θ0 = {θ ∈ Θ : ∥θ − θ0∥2 ≤ r(θ0), ∥θ − θ0∥v,0 ≤ k(θ0)},

and writing θt = (1− t)θ0 + tθ for any θ, it suffices to assume

Eθ0

[
sup

θ∈Θ0,t∈[0,1]

(
(θ − θ0)⊤ (H(θt)−H(θt;X)) (θ − θ0)

)
+

]
≤ ϵ(θ0),

and

logEθ0

[
exp

{
sup

θ∈Θ0,t∈[0,1]

(
(θ − θ0)⊤ (H(θt;X)−H(θt)) (θ − θ0)

)
+

}]
≤ ϵ(θ0).

116

in place of conditions (6.11) and (6.12), respectively. That is, we only need to establish

concentration of the error in the Hessian along directions θ − θ0 that have sparse structure

with respect to the chosen vectors {vi}, which may be a much more realistic condition in

high-dimensional settings.

6.4.3 Special case: Gaussian linear model

In this section, we turn to another setting where the scaling of our result has a much more

favorable dependence on dimension d, for the special case of a Gaussian linear model. Unlike

the result in Theorem 6.4.5 above, here we do not need to assume an underlying sparse

structure.

For this special case, we assume that the parametric family {Pθ} is given by

Pθ : X ∼ N (Zθ, ν2In) (6.13)

where both the covariate matrix Z ∈ Rn×d and the variance ν2 > 0 are fixed and known.

This model is parametrized by the coefficient vector, θ ∈ Θ = Rd. In this setting, as

described earlier in Section 6.2.1, co-sufficient sampling (CSS) can be directly applied to

sample copies X̃(m) that are exactly exchangeable with X. Concretely, we can consider the

sufficient statistic PZX, where PZ ∈ Rn×n denotes the projection matrix to the column

span of Z, and sample the copies as

X̃(m) | PZX
iid∼ N (PZX, ν2P⊥Z).

Then, under the null, (X, X̃(1), . . . , X̃(M)) is exchangeable, and so the p-value defined in (6.2)

is exactly valid for any test statistic T .

In a low-dimensional regime where n > d, the copies X̃(m) are distinct from X, and

the resulting test can have high power against the alternative for a suitably chosen statistic

117

T . However, in the high-dimensional setting with d ≥ n, we will have PZ = In, leading to

copies X̃(m) that are identical to X and, therefore, a powerless test. In the high-dimensional

setting, therefore, we turn to aCSS as a practical alternative that can offer nontrivial power,

while sacrificing some Type I error control.

The challenge for applying aCSS is that, as we are in a high-dimensional setting, the

estimator θ̂ may have low accuracy—but we need a tight bound r(θ0) on its error in order to

achieve approximate Type I error control. In many settings, the accuracy of the estimator

θ̂ will be greatly improved by adding constraints that reflect structure in the problem (e.g.,

an ℓ1 constraint if we believe θ0 is sparse), and so we would expect that constrained aCSS

can offer a strong advantage in this setting.

However, the power of the method will rely on being able to choose a sufficiently large

value of σ in the implementation. We are therefore motivated to develop a theoretical

guarantee that is stronger than the general result of Theorem 6.4.3, so that we can choose a

higher value of σ and, consequently, achieve higher power. We will now see that the Gaussian

case offers both computational and theoretical advantages.

First, we will assume that R is chosen to ensure that the loss has strongly positive definite

Hessian, i.e.,
1

ν2
Z⊤Z +∇2

θR(θ) ≻ cId for all θ ∈ Rd, for some c > 0. (6.14)

For example, if n ≥ d and Z has full rank d, then this holds withR(θ) ≡ 0. More generally, for

any d, n and any Z, a ridge penalty R(θ) = λridge
2 ∥θ∥

2
2 (for some positive penalty parameter

λridge > 0) will ensure that this condition holds.

Then θ̂ is defined by the optimization problem

θ̂ = θ̂(X,W) = argminθ∈Rd

{
1

2ν2
∥X − Zθ∥22 +R(θ) + σW⊤θ : Aθ ≤ b

}
,

118

and we compute the gradient as

ĝ =
1

ν2
Z⊤(Zθ̂ −X) +∇θR(θ̂) + σW.

Note that, by our assumptions onR, this optimization problem is guaranteed to have a unique

minimizer, and moreover, this minimizer is guaranteed to be a SSOSP. In other words, we

can assume that the event X ∈ X
θ̂,ĝ

holds almost surely. Then, applying Lemma 6.3.3, we

can compute the distribution p
θ̂
(· | θ̂, ĝ) as

N

(
Zθ̂ +

d

σ2

(
In +

d

σ2ν2
ZZ⊤

)−1
Z(∇θR(θ̂)− ĝ), ν2

(
In +

d

σ2ν2
ZZ⊤

)−1)
. (6.15)

This means that it is possible to draw the copies X̃(1), . . . , X̃(M) directly as i.i.d. draws from

p
θ̂
(· | θ̂, ĝ).

Next we turn to our theoretical guarantee, which shows an O(
√
d) improvement in the

excess Type I error for the Gaussian case.

Theorem 6.4.7. Consider the Gaussian linear model (6.13), and assume that R(θ) is chosen

so that condition (6.14) is satisfied. Assume also that P{∥θ̂(X,W) − θ0∥2 ≤ r(θ0)} ≥

1 − δ(θ0). Then the copies X̃(1), ..., X̃(M) generated by the constrained aCSS procedure are

approximately exchangeable with X, satisfying

dexch(X, X̃
(1), ..., X̃(M)) ≤ σ

2
√
d
r(θ0) + δ(θ0).

In particular, this implies that for any predefined test statistic T : X → R and rejection

threshold α ∈ [0, 1], the p-value defined in (6.2) satisfies

P
(
pvalT (X, X̃

(1), ..., X̃(M)) ≤ α
)
≤ α +

σ

2
√
d
r(θ0) + δ(θ0).

119

The Type I error inflation described above offers an improvement by a factor of O(
√
d) in

terms of dependence on σ, when compared to Theorem 6.4.3. In other words, we see that we

are free to choose a substantially larger σ in this Gaussian setting to increase power without

losing the guarantee of approximate Type I error control.

6.5 Generalization of linear constraint: ℓ1 penalty

Thus far, we have considered settings where the estimator θ̂ is obtained via a constrained

optimization problem. Section 6.4 shows that the constraints introduced can improve the

estimation of unknown parameters, thereby leading to a tighter bound on Type I error

control. One important example is placing a bound on ∥θ∥1 to encourage sparsity, a technique

that is popular in high-dimensional settings. However, in many statistical applications, it is

more common—and more effective—to use a ℓ1 penalty rather than a constraint. Therefore,

in this section, we will consider a ℓ1-penalized, rather than constrained, form of aCSS.

We consider replacing the constrained optimization problem

θ̂C = argminθ∈Θ{(θ;X,W) : ∥θ∥1 ≤ C}

with its penalized version,

θ̂λ = argminθ∈Θ{(θ;X,W) + λ∥θ∥1}, (6.16)

(i.e., the lasso [Tibshirani, 1996], but with an added perturbation term due toW). The penal-

ized and constrained forms of the optimization problem have a natural correspondence—for

ℓ1 regularization, each constrained solution θ̂C corresponds to some penalized solution θ̂λ

for some data-dependent λ, and vice versa. However, in a statistical analysis, these two

versions of the problem often behave very differently: for ℓ1 regularization, the fact that the

correspondence between C and λ is data-dependent means that theoretical results obtained

120

for θ̂λ at a fixed λ do not transfer over to a theoretical guarantee for θ̂C for a fixed C, and

vice versa. Therefore, proper modification is needed for the ℓ1-penalized aCSS.

Before state the modified method, we first define SSOSP for the penalized problem. For

θ ∈ Rd, we will write S(θ) = {j ∈ [d] : θj ̸= 0} to denote the support of θ.

Definition 6.5.1 (SSOSP for the ℓ1-penalized problem). A parameter θ ∈ Θ is a strict

second-order stationary point (SSOSP) of the optimization problem (6.16) if it satisfies all

of the following:

1. First-order necessary conditions, i.e., Karush–Kuhn–Tucker (KKT) conditions:

∇(θ;X,W) + λs = 0, where


sj = sign(θj), j ∈ S(θ),

sj ∈ [−1, 1], j ̸∈ S(θ).

2. Second-order sufficient condition:

∇2
θ(θ;X,W)S(θ) ≻ 0,

where for a matrix M ∈ Rd×d and a nonempty subset J ⊆ [d], MJ ∈ R|J |×|J | denotes

the submatrix of M restricted to row and column subsets J . That is, the Hessian

∇2
θ(θ;X,W) is strictly positive definite when restricted to the support of θ.

6.5.1 The conditional density in the penalized case

Next we compute the conditional density of X given (θ̂, ĝ). We will see that this calculation

looks quite similar to the constrained case (which was addressed in Lemma 6.3.3).

Lemma 6.5.2 (Conditional density for the ℓ1-penalized case). Suppose Assumption 6.3.2

121

holds. Fix any θ0 ∈ Θ and let (X,W, θ̂, ĝ) be drawn from the joint model



X ∼ Pθ0 ,

W ∼ N (0, 1dId),

θ̂ = θ̂(X,W)

ĝ = ĝ(X,W) = ∇θ(θ̂;X,W).

Let S ⊆ [d]. Assume that the event that θ̂(X,W) is a SSOSP of (6.16) with support

S(θ̂(X,W)) = S has positive probability. Then, conditional on this event, the conditional

distribution of X|θ̂, ĝ has density

pθ0(·|θ̂, ĝ) ∝ f(x; θ0) exp

{
−
∥ĝ −∇θ(θ̂;x)∥22

2σ2/d

}
det
(
∇2
θ(θ̂;x)S

)
1
x∈X̃

θ̂,ĝ
(6.17)

with respect to the base measure νX×Leb, and

X̃θ,g =
{
x ∈ X : for some w ∈ Rd, θ = θ̂(x,w) is a SSOSP of (6.16), and g = ∇(θ;x,w)

}
.

Comparing to the analogous result given in Lemma 6.3.3 for the constrained case, we

see that the only difference is in the det(·) term: the density involves the determinant of

a different matrix (namely, U⊤I ∇
2
θ(θ̂;x)UI in the constrained case, and ∇2

θ(θ̂;x)S in the

penalized case). This is not merely a difference in notation: the matrices will actually

have different dimension in the ℓ1-constrained and ℓ1-penalized settings, because under the

constrained setting, if we know the support is S, the solution θ̂ effectively has |S|−1 degrees

of freedom (due to the ℓ1 constraint which specifies the sum of the terms), in contrast to |S|

for the ℓ1-penalized setting.

122

6.5.2 The aCSS method in the penalized case

To implement an ℓ1-penalized version of aCSS, we can modify the constrained aCSS method

in a straightforward way: we simply replace the constrained optimization problem (6.3) with

the ℓ1-penalized optimization problem (6.16), and then proceed as before, using our new

calculation for the conditional density as given in Lemma 6.5.2. In particular, the copies

X̃(m) will be sampled as

(X̃(1), . . . , X̃(M)) | (X, θ̂, ĝ) ∼ P̃M (·;X, θ̂, ĝ)

where {P̃M (·;x, θ, g)} is required to satisfy (6.10), the same property as before, but now

relative to the conditional density p
θ̂
(· | θ̂, ĝ) calculated as

p
θ̂
(· | θ̂, ĝ) ∝ f(x; θ̂) · exp

{
−
∥ĝ −∇θ(θ̂;x)∥22

2σ2/d

}
· det

(
∇2
θ(θ̂;x)S(θ̂)

)
· 1x∈X

θ̂,ĝ
. (6.18)

As a special case, if computationally feasible, we can choose

P̃M (·;x, θ̂, ĝ) = p
θ̂
(· | θ̂, ĝ)× · · · × p

θ̂
(· | θ̂, ĝ),

i.e., sampling the copies i.i.d. from the conditional density p
θ̂
(· | θ̂, ĝ) defined in (6.18).

Formally, the algorithm is defined as follows. The bold text highlights the only modifi-

cations in the algorithm, relative to constrained aCSS.

ℓ1-penalized aCSS algorithm:

1. Observe data X ∼ Pθ0 .

2. Draw noise W ∼ N (0, 1dId).

3. Solve for an ℓ1-penalized perturbed MLE θ̂ = θ̂(X,W) as in (6.16).

Compute the corresponding gradient ĝ = ĝ(X,W) as in (6.4).

123

4. If θ̂ is not a SSOSP of (6.3), then set X̃(1) = · · · = X̃(M) = X. Otherwise,

sample copies (X̃(1), . . . , X̃(M)) | (X, θ̂, ĝ) ∼ P̃M (·;X, θ̂, ĝ), where P̃M is

chosen to satisfy property (6.10) relative to the conditional density

p
θ̂
(· | θ̂, ĝ) as computed in (6.18).

5. Compute the p-value defined in (6.2) for our choice of test statistic T .

In contrast to the typical challenges for translating results between the constrained and

penalized form of a regularized estimation problem, in the context of aCSS, both the con-

ditional density in Lemma 6.5.2 and our next result establish that the exact same results

can be obtained for the ℓ1-penalized case. This unusually favorable behavior is due to the

fact that aCSS operates conditionally on the solution θ̂—effectively, once we condition on θ̂,

we no longer face the challenge of the data-dependent correspondence between the penalty

parameter λ versus the constraint parameter C, since both values are revealed by θ̂ itself.

Theorem 6.5.3. The results of Theorems 6.4.3, 6.4.5, and 6.4.7 all hold for the ℓ1-penalized

form of aCSS in place of constrained aCSS.

In the context of utilizing the ℓ1 penalty, it is commonly the case that the parameter is

high-dimensional and sparse. This naturally directs our attention towards Theorem 6.4.5,

which offers the most relevant insights for this scenario. Specifically, we can select the set

of vectors {vi} as the canonical basis {ei}i=1,...,d. Then we have ∥w∥v,0 = ∥w∥0 (i.e., the

cardinality of the support of w). The result of Theorem 6.4.5 then gives a much stronger

bound on the excess Type I error rate, as long as we can assume that

∥θ̂ − θ0∥0 ≤ k(θ0)

holds with high probability. This is very favorable for the ℓ1 penalized setting: if θ0 itself is

sparse, then the sparsity of θ̂ (which is ensured by the ℓ1 penalty) means that the difference

θ̂ − θ0 will also be sparse.
124

6.6 Numerical experiments

In this section, we will study the performance of aCSS with regularization on three simulated

examples.2 The first, Example 1, is a Gaussian mixture model, which showcases a scenario

where constraints on the parameters being estimated are essential to ensure the existence of a

well-defined MLE. In the remaining examples, Example 2 (isotonic regression) and Example

3 (sparse regression), we shift our focus to a high-dimensional Gaussian linear model, where

the imposition of suitable constraints or penalties can allow for accurate estimation despite

high dimensionality.

6.6.1 Necessary constraints: the Gaussian mixture model

In this section, we will examine the Gaussian mixture model example, where constraints are

needed for ensuring the existence of a well-defined MLE.

Example 1 (Gaussian mixture model). Suppose we observe data from the Gaussian mixture

model with a known number of components J ,

X1, ..., Xn
i.i.d.∼

J∑
j=1

πjN (µj , σ
2
j),

where {πj}j∈[J] are the weights on the components, with πj > 0 and
∑
j πj = 1. The family

of distributions {Pθ}θ∈Θ is parameterized by θ = (π1, ..., πJ−1, µ1, σ1, ..., µJ , σJ) ∈ Θ where

Θ = {t ∈ RJ−1+ :
∑
i

ti < 1} × (R× R+)
J .

Consequently we have Θ ⊆ Rd with d = 3J − 1. The density of Pθ, the distribution on the

2. Code for reproducing all experiments is available at http://rinafb.github.io/code/reg_acss.zip.

125

http://rinafb.github.io/code/reg_acss.zip

data X = (X1, . . . , Xn), is thus given by

f(x; θ) =
n∏
i=1

J∑
j=1

πjϕ(xi;µj , σ
2
j), (6.19)

where ϕ(·;µ, σ2) is the density of the normal distribution with mean µ and variance σ2.

Why is constrained aCSS useful for this example? The Gaussian mixture model does

not possess straightforward, compact sufficient statistics due to the presence of unobserved

latent variables (i.e., identifying which of the J components corresponds to the draw of each

data point Xi). Any sufficient statistic would reveal essentially all the information about

the data X. However, if we attempt to apply aCSS (without constraints), we are faced with

a fundamental challenge: the MLE does not exist for this model, because the likelihood

approaches infinity if, for any component j, we take µj = Xi for some observation i ∈ [n]

and take σj → 0. To prevent this divergence of the likelihood, one can impose a lower

bound on the component variances, requiring σj ≥ c for each j ∈ [J], where c > 0 is some

small constant. Under this restriction, it can be shown that MLE is strongly consistent if

the true parameter lies within the restricted parameter space Tanaka and Takemura [2006].

Then the constrained aCSS framework is indeed suitable when generating sampling copies in

the context of this example. As we will show in Appendix E.3, for an appropriately-chosen

initial estimator this example satisfies Assumptions 6.3.2, 6.4.1, and 6.4.2 with r(θ0) =

O(
√

log n/n), δ(θ0) = O(n−1), and ϵ(θ0) = O(

√
log3 n
n), as long as we assume (µ1)0 ̸=

(µ2)0, i.e., the two components have distinct means under the true parameter θ0. Therefore,

Theorem 6.4.3 implies that constrained aCSS will have approximate Type I error control for

this example.

126

Simulation: setting

We next examine the empirical performance of constrained aCSS for the Gaussian mixture

model (Example 1). For this setting, we will compare the null hypothesis of a Gaussian mix-

ture model with J = 2 components, against an alternative where there are more (specifically,

3) components. The setup of the simulation is summarized as follows:

• To generate data, we take n = 200, and draw the data points X1, . . . , Xn from a

mixture of Gaussians

π0N (0, 0.01) +
1− π0

2
N (0.4, 0.01) +

1− π0
2
N (−0.4, 0.01).

• Our null hypothesis is a mixture of two Gaussians (i.e., a density of the form (6.19)

with J = 2). The data generating distribution above therefore corresponds to the null

hypothesis (6.19) with parameter

θ0 = (π1, µ1, σ1, µ2, σ2) = (0.5, 0.4, 0.1, −0.4, 0.1)

in the case that π0 = 0, while if π0 > 0 then the null hypothesis is not true.

• The test statistic T (used both for aCSS and for the oracle) is chosen as the decrease

in total within-cluster sum of squares of the k-means algorithm, when the number of

estimated clusters is increased from 2 to 3.

• We enforce r = 2 constraints, given by σj ≥ 0.098, j = 1, 2. (We choose the lower

bound to be only slightly smaller than the true value σj = 0.1, so that there will

be a reasonable proportion of constraints being active—this way, running our con-

strained aCSS procedure is meaningfully different than running unconstrained aCSS.)

Constrained aCSS is then run with perturbation noise level σ = 8, and with M = 300

127

copies X̃(m). The copies are sampled using an MCMC sampler (additional details are

provided in Appendix E.4.1).

• We compare constrained aCSS to the oracle method, which uses the same test statistic

T but is given full knowledge of the distribution of X under null hypothesis, i.e., Pθ0 =

0.5N (0.4, 0.01) + 0.5N (−0.4, 0.01), and can therefore sample the copies X̃(m) i.i.d.

from the known null distribution. (Note that, for this experiment, we cannot compare

to unconstrained aCSS, because the unconstrained MLE problem is degenerate, as

described above.)

Simulation: results

The results of the simulation are shown in Figure 6.1. We see that the constrained aCSS

method is empirically valid as a test of H0, since the rejection probability when π0 = 0

(i.e., when H0 is true) closely matches the nominal level α = 0.05. Of course, the power of

constrained aCSS is lower than that of the oracle method, as is expected since the oracle is

given knowledge of the true null parameter θ0; nonetheless, constrained aCSS shows a good

increase in power as the signal strength π0 grows.

6.6.2 High dimensional setting: structured Gaussian linear model

We will now turn to the high-dimensional setting, where the data is distributed according

to a Gaussian linear model with dimension d ≥ n,

X ∼ N (Zθ, ν2In), with Z ∈ Rn×d, ν2 > 0 known,

as in (6.13). The family of distributions {Pθ}θ∈Θ is parameterized by θ ∈ Θ = Rd and has

density

f(x; θ) =
1

(2πν2)n/2
e
−

∥x−Zθ∥22
2ν2 .

128

0.00

0.25

0.50

0.75

1.00

0.00 0.05 0.10 0.15 0.20
π0

po
w

er method

oracle
reg−aCSS

Figure 6.1: Power of the regularized (i.e., constrained) aCSS method, denoted as reg-aCSS
in the plot, as compared to the oracle method. The oracle method knows the true parameter
and samples (unconditionally) from the simple null. The constrained aCSS method controls
the Type I error at the nominal 5% level (red dotted line) under the null. All tests are
repeated for 500 independent trials.

In Section 6.4.3, we examined the limitations of CSS testing, which will be powerless for this

problem when d ≥ n, as the copies X̃(m) will be identically equal to X. We can instead

run the aCSS method; however, the results of Barber and Janson [2022] indicate that the

inflation in Type I error will scale with our estimation error ∥θ̂− θ0∥2, which will in general

be large when d ≥ n, since the estimator θ̂ is computed with an unregularized maximum

likelihood estimation problem. (More precisely, aCSS does allow for a smooth regularizer

R(θ), such as a ridge penalty; however, it is challenging to achieve accurate estimation in a

high-dimensional setting unless we use nonsmooth regularization, e.g., the ℓ1 norm).

In contrast, our proposed version of aCSS allows for constraints (or penalties) that allow

us to achieve an accurate estimator θ̂, and consequently low Type I error, in the high-

dimensional setting. We now consider two specific examples where the application of appro-

priate regularization assists in the estimation process.

Example 2 (Isotonic regression). In the isotonic regression model, we are given a noisy

129

observation X ∈ Rn of some monotone increasing signal θ0 ∈ Rn with

(θ0)1 ≤ · · · ≤ (θ0)n.

If the noise is Gaussian, with X ∼ N (θ0, ν
2In), then this model is a special case of the

Gaussian linear model with d = n and Z = In.

To run constrained aCSS, the perturbed isotonic (least squares) regression is given by

θ̂iso = arg min
θ∈Rn

{(θ;X,W) : θ1 ≤ · · · ≤ θn}

to estimate the underlying signal. Zhang [2002] demonstrated that the isotonic least squares

estimator (LSE), which is given by minimizing ∥θ − X∥2 subject to the constraints θ1 ≤

· · · ≤ θn, has an error rate scaling as ∥θ̂− θ0∥2 = O(n1/6) (and choosing a sufficiently small

σ means that the perturbation will not substantially inflate this rate). This rate matches

the minimax rate over the class of monotone and Lipschitz signals [Chatterjee et al., 2015].

Thus, adding the monotonicity constraint will substantially reduce the error ∥θ̂−θ0∥2, which

can help control the excess Type I error for our setting. In Appendix E.3, we will see that

this example satisfies Assumptions 6.3.2, 6.4.1, and 6.4.2 with r(θ0) = O
(
n1/6(log n)1/3

)
,

δ(θ0) = 1/n, and ϵ(θ0) = 0, if we choose σ = O(1). Therefore, Theorem 6.4.7 implies that

constrained aCSS will have approximate Type I error control for this example.

Next, we examine a high-dimensional setting with a sparse parameter.

Example 3 (Sparse regression). Let d > n, and let Z ∈ Rd×n be a fixed covariate matrix.

We assume the model

X ∼ N (Zθ, ν2In),

for a known noise level ν2. This model is unidentifiable without further assumptions, but

becomes identifiable once we assume θ0 is sparse—specifically, as long as Z satisfies some

130

standard conditions (e.g., a restricted eigenvalue assumption). We will assume that the

underlying parameter θ0 is sparse, with

∥θ0∥0 ≤ k

for some sparsity bound k.

To address the problem of estimating a sparse θ0 in a linear model, the Lasso estimator

[Tibshirani, 1996], which combines the least squares loss with an ℓ1 penalty, is frequently

employed. Under certain conditions, the error rate of the Lasso estimator can be on the

order of O(
√
k log(d)/n) [Bickel et al., 2009, Hastie et al., 2015]. Thus the perturbed Lasso

is a suitable candidate for the estimator in this context: for a given penalty level λ > 0, we

define

θ̂lasso = arg min
θ∈Rd
{(θ;X,W) + λ∥θ∥1}.

In Appendix E.3, we will see that this example satisfies Assumptions 6.3.2, 6.4.1, and 6.4.2

with r(θ0) = O(
√
k log d/n), δ(θ0) = 1/n, and ϵ(θ0) = 0, under suitable conditions. There-

fore, Theorem 6.5.3 implies that constrained aCSS will have approximate Type I error control

for this example.

Simulation: setting

In this section, we demonstrate the advantage of regularized aCSS in high-dimensional set-

tings. Specifically, we will compare against the (unconstrained) aCSS method of Barber and

Janson [2022], to see how adding regularization allows for better estimation—consequently,

we can allow a high value of σ without losing (approximate) Type I error control, which in

turn leads to higher power.

For the isotonic regression setting (Example 2), we will compare the null hypothesis that

X is given by an isotonic signal θ0 plus Gaussian noise, against the alternative where X

131

also has dependence on an additional random variable Y . (Equivalently, we can take our

covariate matrix Z to be the identity, Z = Id, with d = n.) The setup of the simulation for

isotonic regression is as follows:

• To generate data, we take n = 100, ν = 1, and set the signal θ0 as

θ0 = (0.1, . . . , 0.1, 0.2, . . . , 0.2, . . . , 1, . . . , 1),

with each value 0.1, 0.2, 0.3, . . . , 1 appearing 10 times. We then generateX ∼ N (θ0, ν
2In).

The additional random vector Y is then drawn as

Y | X ∼ N (β0X, In),

where β0 ∈ {0, 0.05, 0.1, . . . , 0.5}, with β0 = 0 corresponding to the null hypothesis.

Formally, our null hypothesis is given by assuming that X | Y ∼ N (θ, ν2In) for some

θ ∈ Θ = Rn, i.e., that the Gaussian model for X is true even after conditioning on Y .

If β0 ̸= 0, then this null hypothesis does not hold.

• For Barber and Janson [2022]’s aCSS method, θ̂ is computed via perturbed and un-

constrained maximum likelihood estimation,

θ̂ = θ̂OLS = argminθ∈Rn

{
1

2
∥X − θ∥22 + σW⊤θ

}
.

For our proposed constrained aCSS method, θ̂ is computed with the isotonic constraint,

θ̂ = θ̂iso = argminθ∈Rn

{
1

2
∥X − θ∥22 + σW⊤θ : θ1 ≤ · · · ≤ θn

}
.

For both methods, we sample the copies X̃(m) directly from the conditional distribution

(6.15) (additional details provided in Appendix E.4.2).

132

• For the oracle method, we assume oracle knowledge of the parameter θ0 that defines

the null distribution, and sample the copies X̃(m) i.i.d. from Pθ0 = N (θ0, In).

• For all methods, the test statistic T is given by the absolute value of the sample

correlation between X and Y .

For the sparse regression setting (Example 3), we will compare the null hypothesis that

X | Z follows a (sparse) Gaussian linear model, against the alternative where X also has

dependence on an additional random variable Y . The setup of the simulation for sparse

regression is as follows:

• To generate data, we set n = 50, d = 100, ν = 1, and θ0 = (5, 5, 5, 5, 5, 0, ..., 0). The

covariate matrix Z ∈ Rn×d is generated with i.i.d. N (0, 1/d) entries, and we draw

X | Z ∼ N (Zθ0, ν
2In). The random vector Y ∈ Rn is then generated with each entry

Yi drawn as

Yi | Xi, Zi ∼ N (β0Xi +
5∑
j=1

Zi,j , 1).

We consider β0 ∈ {0, 0.1, 0.2, ..., 1} with β0 corresponding to the setting where Y ⊥⊥

X | Z. Formally, our null hypothesis is given by assuming that X | Y, Z ∼ N (Zθ, ν2In)

for some θ ∈ Θ = Rd. If β0 ̸= 0, then this null does not hold.

• For Barber and Janson [2022]’s aCSS method, we will use a ridge regularizer, R(θ) =
λridge
2 ∥θ∥

2
2, for parameter estimation. We define

θ̂ = θ̂ridge = argminθ∈Rd

{
1

2
∥X − Zθ∥22 +

λridge
2
∥θ∥22 + σW⊤θ

}
.

Adding ridge regularization allows for a unique solution θ̂, achieving strict second-order

stationarity conditions, to avoid a trivial result where the method achieves zero power

(as would be the case if the SSOSP conditions are never satisfied). For our proposed

ℓ1-penalized aCSS method, in order to be more comparable to aCSS, we also add the
133

regularizer R(θ). This means that our estimator is given by the elastic net [Zou and

Hastie, 2005], incorporating both ℓ1 and ℓ2 penalization:

θ̂ = θ̂elastic-net = argminθ∈Rd

{
1

2
∥X − Zθ∥22 +

λridge
2
∥θ∥22 + λ∥θ∥1 + σW⊤θ

}
.

For both methods, we sample the copies X̃(m) directly from the conditional distribution

(6.15) (additional details provided in Appendix E.4.2).

• For the oracle method, we assume oracle knowledge of the parameter θ0 that defines

the null distribution, and sample the copies X̃(m) i.i.d. from Pθ0 = N (Zθ0, In).

• For all methods, the test statistic T is given by the absolute value of the estimate of

the coefficient on X, when Y is regressed on X,Z with elastic net for penalization on

the coefficients on Z—specifically, the fitted coefficient β̂X in the optimization problem

(β̂X , β̂) = argminβX ,β

{
1

2
∥Y −XβX − Zβ∥22 +

3

2
∥β∥22 + 7∥β∥1

}
.

Simulation: results

Next, we turn to the results of this simulation. In Figure 6.2, we show the power of the

methods for isotonic regression (left) and sparse regression (right). We see that aCSS (in its

original unconstrained form as proposed by Barber and Janson [2022]) quickly loses Type I

error control as σ increases—this is exactly as expected from the theory, since the excess Type

I error rate is characterized by a term scaling as σr(θ0), where r(θ0) bounds the estimation

error ∥θ̂ − θ0∥2 and therefore is high in the unconstrained setting. This means that, to

maintain (approximate) Type I error control with aCSS, we would need to use a small value

of σ, which in turn leads to low power under the alternative. On the other hand, for our

proposed methods—constrained aCSS in the isotonic example, and ℓ1-penalized aCSS in the

sparse example—we see that approximate Type I error control is well maintained even for
134

0.00

0.25

0.50

0.75

1.00

0.0 0.1 0.2 0.3 0.4 0.5
β0

po
w

er
method

aCSS
reg−aCSS
oracle

σ
1
4
7

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
β0

po
w

er

method

aCSS
reg−aCSS
oracle

σ
1
4
7

Figure 6.2: Power of aCSS, regularized (i.e., constrained or penalized) aCSS (denoted as reg-
aCSS in the plot), and the oracle method, for isotonic regression (left) and sparse regression
(right), with different values of the parameter σ, over 5000 independent trials. The dotted
red line denotes the nominal 10% level (i.e., α = 0.1). For both settings, β0 = 0 corresponds
to the null hypothesis being true.

larger values of σ, which allows for fairly high power without losing validity. Of course, in

each case, the power of the oracle method is higher, as the oracle is given access to the true

parameter θ0 for the null distribution.

To better understand the difference in performance in terms of Type I error rate, in

Figure 6.3 we show the Type I error as a function of the parameter σ. For both settings,

we see that aCSS suffers a rapid increase in Type I error rate, thus necessitating a very

small value of σ to maintain validity, while constrained or penalized aCSS maintains Type

I error control across a broad range of values of σ. Finally, Figure 6.4 illustrates the issue

of Type I error in more detail for the specific choice σ = 7 for both examples (chosen to be

large enough so that the methods can achieve substantial power). This figure shows a highly

nonuniform distribution of the p-values for aCSS, in contrast to the approximately uniform

distribution for constrained or penalized aCSS.

135

0.10

0.12

0.14

1 4 7
σ

Ty
pe

 I
E

rr
or method

aCSS
reg−aCSS
oracle

0.1

0.2

0.3

0.4

2 4 6
σ

Ty
pe

 I
E

rr
or method

aCSS
reg−aCSS
oracle

Figure 6.3: Type I error rate of aCSS, regularized (i.e., constrained or penalized) aCSS
(denoted as reg-aCSS in the plot), and the oracle method, for isotonic regression (left) and
sparse regression (right), with different values of the parameter σ, over 5000 independent
trials. The dotted red line denotes the nominal 10% level (i.e., α = 0.1). The shaded bands
denote standard error for each method.

0

200

400

600

0.00 0.25 0.50 0.75 1.00
Values

C
ou

nt method

aCSS
reg−aCSS

0

500

1000

1500

2000

0.00 0.25 0.50 0.75 1.00
Values

C
ou

nt method

aCSS
reg−aCSS

Figure 6.4: Histogram of p-values under the null, for aCSS and for regularized (i.e., con-
strained or penalized) aCSS, for isotonic regression (left) and sparse regression (right), over
5000 independent trials. The parameter σ is chosen as σ = 7 for both examples.

136

6.7 Summary

In this chapter, we discuss how to extend the aCSS algorithm to cases where linear con-

straints, such as an ℓ1 constraint or an isotonicity constraint, are applied to enable better

accuracy in the estimator θ̂. We also extend to the case of an ℓ1 penalty (e.g., the lasso).

This methodology addresses one of the primary open questions proposed in Barber and Jan-

son [2022], who pose the problem of “Relaxing regularity conditions and extending to high

dimensions". We demonstrate that this extension of the aCSS algorithm can accommodate

complex estimators θ̂, which may be more stable and accurate in high-dimensional settings.

Moreover, we show that the regularized aCSS testing has theoretical guarantees for high di-

mensions when the estimator exhibits a low-dimensional structure. A remaining challenge is

the problem of efficient sampling for aCSS: as for Barber and Janson [2022]’s earlier work in

the unconstrained setting, aside from special cases such as a Gaussian linear model, overcom-

ing computational challenges for sampling the copies X̃(m) will greatly increase the practical

utility of this methodology, and remains an important issue to address in future work.

137

REFERENCES

Alan Agresti. A survey of exact inference for contingency tables. Stat. Sci., 7(1):131–153,
1992.

Andreas Anastasiou, Krishnakumar Balasubramanian, and Murat A. Erdogdu. Normal
approximation for stochastic gradient descent via non-asymptotic rates of martingale clt.
In Conference on Learning Theory, 2019a.

Andreas Anastasiou, Krishnakumar Balasubramanian, and Murat A Erdogdu. Normal ap-
proximation for stochastic gradient descent via non-asymptotic rates of martingale clt. In
Conference on Learning Theory, 2019b.

Francis R. Bach and Eric Moulines. Non-strongly-convex smooth stochastic approximation
with convergence rate O(1/n). In Advances in Neural Information Processing Systems,
2013.

Sivaraman Balakrishnan, Martin J Wainwright, and Bin Yu. Statistical guarantees for the
em algorithm: From population to sample-based analysis. Ann. Statist., 45(1):77–120,
2017.

Rina Foygel Barber and Emmanuel J Candès. Controlling the false discovery rate via knock-
offs. Ann. Statist., 43:2055–2085, 2015.

Rina Foygel Barber and Lucas Janson. Testing goodness-of-fit and conditional independence
with approximate co-sufficient sampling. Ann. Statist., 50(5):2514–2544, 2022.

Rina Foygel Barber, Emmanuel J Candès, and Richard J Samworth. Robust inference with
knockoffs. Ann. Statist., 48(3):1409–1431, 2020.

Javad Behboodian. Information matrix for a mixture of two normal distributions. J. Stat.
Comput. Simul., 1(4):295–314, 1972.

Rudolf Beran. Prepivoting test statistics: a bootstrap view of asymptotic refinements. J.
Amer. Statist. Assoc., 83(403):687–697, 1988.

István Berkes, Weidong Liu, and Wei Biao Wu. Komlós–major–tusnády approximation under
dependence. The Annals of Probability, 42(2):794–817, 2014.

Thomas B Berrett, Yi Wang, Rina Foygel Barber, Richard J Samworth, et al. The conditional
permutation test for independence while controlling for confounders. J. R. Stat. Soc. Ser.
B, 82(1):175–197, 2020.

Julian Besag and Peter Clifford. Generalized Monte Carlo significance tests. Biometrika, 76
(4):633–642, 1989.

Peter J Bickel, Ya’acov Ritov, and Alexandre B Tsybakov. Simultaneous analysis of lasso
and dantzig selector. Ann. Statist., 37:1705–1732, 2009.

138

Julius R. Blum. Approximation methods which converge with probability one. Ann. Math.
Statist., 25(2):382–386, 1954.

Léon Bottou. Online learning and stochastic approximations. In On-line learning and
stochastic approximations, 1998.

Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentration inequalities: A
nonasymptotic theory of independence. Oxford university press, 2013.

Donald L Burkholder. Sharp inequalities for martingales and stochastic integrals. Astérisque,
157(158):75–94, 1988.

Emmanuel J Candès and Terence Tao. The dantzig selector: statistical estimation when p
is much larger than n. Ann. Statist., 35(6):2313–2351, 2007.

Emmanuel J Candès, Yingying Fan, Lucas Janson, and Jinchi Lv. Panning for gold: Model-
free knockoffs for high-dimensional controlled variable selection. J. R. Stat. Soc. Ser. B,
80(3):551–577, 2018.

Hervé Cardot, Peggy Cénac, Antoine Godichon-Baggioni, et al. Online estimation of the geo-
metric median in hilbert spaces: Nonasymptotic confidence balls. The Annals of Statistics,
45(2):591–614, 2017.

Sabyasachi Chatterjee, Adityanand Guntuboyina, and Bodhisattva Sen. On risk bounds in
isotonic and other shape restricted regression problems. Ann. Statist., 43(4):1774–1800,
2015.

Haoyu Chen, Wenbin Lu, and Rui Song. Statistical inference for online decision making
via stochastic gradient descent. Journal of the American Statistical Association, 116(534):
708–719, 2021.

Xi Chen, Jason D Lee, Xin T Tong, and Yichen Zhang. Statistical inference for model
parameters in stochastic gradient descent. Annals of Statistics, 48(1):251–273, 2020.

K. L. Chung. On a Stochastic Approximation Method. The Annals of Mathematical Statis-
tics, 25(3):463 – 483, 1954.

M Csörgő and Pal Révész. A new method to prove strassen type laws of invariance principle.
1. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 31(4):255–259, 1975.

Ashok Cutkosky and Francesco Orabona. Momentum-based variance reduction in non-
convex sgd. In Advances in Neural Information Processing Systems, 2019.

Russell Davidson and James G MacKinnon. Improving the reliability of bootstrap tests with
the fast double bootstrap. Comput. Stat. Data Anal., 51(7):3259–3281, 2007.

Damek Davis and Dmitriy Drusvyatskiy. High probability guarantees for stochastic convex
optimization. In Conference on Learning Theory, 2020.

139

Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao,
Marc’aurelio Ranzato, Andrew Senior, Paul Tucker, Ke Yang, et al. Large scale distributed
deep networks. Advances in Neural Information Processing Systems, 2012.

Aryeh Dvoretzky. On stochastic approximation. In Proceedings of the Third Berkeley Sym-
posium on Mathematical Statistics and Probability, 1956.

Bradley Efron. Bootstrap methods: Another look at the jackknife. Ann. Statist., 7(1):1–26,
1979.

Bradley Efron. Regression percentiles using asymmetric squared error loss. Statistica Sinica,
pages 93–125, 1991.

Bradley Efron. Bayesian inference and the parametric bootstrap. Ann. Appl. Stat., 6(4):
1971–1997, 2012.

Bradley Efron and Robert J Tibshirani. An introduction to the bootstrap. CRC press, 1994.

Uwe Einmahl. Strong invariance principles for partial sums of independent random vectors.
The Annals of Probability, 15(4):1419–1440, 1987.

Steinar Engen and Magnar Lillegård. Stochastic simulations conditioned on sufficient statis-
tics. Biometrika, 84(1):235–240, 1997.

Michael D Ernst. Permutation methods: a basis for exact inference. Stat. Sci., 19:676–685,
2004.

Vaclav Fabian. On asymptotic normality in stochastic approximation. Ann. Math. Statist.,
39(4):1327–1332, 1968.

Yixin Fang, Jinfeng Xu, and Lei Yang. Online bootstrap confidence intervals for the stochas-
tic gradient descent estimator. Journal of Machine Learning Research, 19(78):1–21, 2018.

Vitaly Feldman and Jan Vondrak. High probability generalization bounds for uniformly
stable algorithms with nearly optimal rate. In Conference on Learning Theory, 2019.

James M. Flegal and Galin L. Jones. Batch means and spectral variance estimators in
Markov chain Monte Carlo. Ann. Statist., 38(2):1034–1070, 2010.

Sébastien Gadat and Fabien Panloup. Optimal non-asymptotic analysis of the Ruppert-
Polyak averaging stochastic algorithm. Stochastic Processes and their Applications, 156:
312–348, 2023.

Avishek Ghosh, Jichan Chung, Dong Yin, and Kannan Ramchandran. An efficient framework
for clustered federated learning. Advances in Neural Information Processing Systems, 2020.

Peter W. Glynn and Ward Whitt. Estimating the asymptotic variance with batch means.
Oper. Res. Lett., 10(8):431–435, 1991.

140

Eduard Gorbunov, Marina Danilova, and Alexander Gasnikov. Stochastic optimization with
heavy-tailed noise via accelerated gradient clipping. In Advances in Neural Information
Processing Systems, 2020.

Peter Hall. Theoretical comparison of bootstrap confidence intervals. Ann. Statist., 16:
927–953, 1988.

Peter Hall and Christopher C Heyde. Martingale limit theory and its application. Academic
press, 2014.

Peter Hall and Tapabrata Maiti. On parametric bootstrap methods for small area prediction.
J. R. Stat. Soc. Ser. B, 68(2):221–238, 2006.

Moritz Hardt and Eric Price. Tight bounds for learning a mixture of two gaussians. In
Proceedings of the Forty-Seventh Annual ACM symposium on Theory of computing, pages
753–760, 2015.

Nicholas JA Harvey, Christopher Liaw, Yaniv Plan, and Sikander Randhawa. Tight analyses
for non-smooth stochastic gradient descent. In Conference on Learning Theory, 2019a.

Nicholas JA Harvey, Christopher Liaw, and Sikander Randhawa. Simple and optimal high-
probability bounds for strongly-convex stochastic gradient descent. Preprint. Available at
arXiv:1909.00843, 2019b.

Trevor Hastie, Robert Tibshirani, and Martin Wainwright. Statistical learning with sparsity:
the lasso and generalizations. CRC press, 2015.

Elad Hazan and Satyen Kale. Beyond the regret minimization barrier: Optimal algorithms
for stochastic strongly-convex optimization. The Journal of Machine Learning Research,
15(71):2489–2512, 2014.

Matthew Hoffman, Francis R. Bach, and David M. Blei. Online learning for latent dirichlet
allocation. In Advances in Neural Information Processing Systems, 2010.

Matthew Holland and Kazushi Ikeda. Better generalization with less data using robust
gradient descent. In International Conference on Machine Learning, 2019.

Dongming Huang and Lucas Janson. Relaxing the assumptions of knockoffs by conditioning.
Ann. Statist., 48(5):3021–3042, 2020.

Prateek Jain, Praneeth Netrapalli, Sham M Kakade, Rahul Kidambi, and Aaron Sidford.
Parallelizing stochastic gradient descent for least squares regression: mini-batching, av-
eraging, and model misspecification. The Journal of Machine Learning Research, 18(1):
8258–8299, 2017.

Prateek Jain, Dheeraj Nagaraj, and Praneeth Netrapalli. Making the last iterate of sgd
information theoretically optimal. In Conference on Learning Theory, 2019.

141

Jana Janková, Rajen D Shah, Peter Bühlmann, and Richard J Samworth. Goodness-of-
fit testing in high dimensional generalized linear models. J. R. Stat. Soc. Ser. B, 82(3):
773–795, 2020.

Galin L. Jones, Murali Haran, Brian S. Caffo, and Ronald Neath. Fixed-width output
analysis for markov chain monte carlo. J. Amer. Statist. Assoc., 101(476):1537–1547,
2006.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich,
and Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated
learning. In International conference on machine learning, 2020.

Young Min Kim, Soumendra N Lahiri, and Daniel J Nordman. A progressive block empirical
likelihood method for time series. J. Amer. Statist. Assoc., 108(504):1506–1516, 2013.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In
International Conference on Learning Representations, 2015.

Yuichi Kitamura et al. Empirical likelihood methods with weakly dependent processes. Ann.
Statist., 25(5):2084–2102, 1997.

Vladimir Koltchinskii and Karim Lounici. Concentration inequalities and moment bounds
for sample covariance operators. Bernoulli, 23(1):110–133, 2017.

János Komlós, Péter Major, and Gábor Tusnády. An approximation of partial sums of
independent rv’-s, and the sample df. i. Zeitschrift für Wahrscheinlichkeitstheorie und
verwandte Gebiete, 32:111–131, 1975.

János Komlós, Péter Major, and Gábor Tusnády. An approximation of partial sums of
independent rv’s, and the sample df. ii. Zeitschrift für Wahrscheinlichkeitstheorie und
verwandte Gebiete, 34:33–58, 1976.

Simon Lacoste-Julien, Mark Schmidt, and Francis Bach. A simpler approach to obtaining
an O(1/t) convergence rate for the projected stochastic subgradient method. Preprint.
Available at arXiv:1212.2002, 2012.

S. N. Lahiri. Theoretical comparisons of block bootstrap methods. Ann. Statist., 27(1):
386–404, 1999.

S. N. Lahiri. Resampling methods for dependent data. Springer Series in Statistics. Springer-
Verlag, New York, 2003.

Tze Leung Lai. Stochastic approximation. Ann. Statist., 31(2):391–406, 2003.

Lucien Le Cam. Sufficiency and approximate sufficiency. Ann. Math. Statist., 35:1419–1455,
1964.

142

Lucien Le Cam. On the information contained in additional observations. Ann. Statist., 2
(4):630–649, 1974.

Lucien Le Cam. Asymptotic methods in statistical decision theory. Springer Science &
Business Media, 2012.

Sokbae Lee, Yuan Liao, Myung Hwan Seo, and Youngki Shin. Fast and robust online
inference with stochastic gradient descent via random scaling. In Proceedings of the AAAI
Conference on Artificial Intelligence, 2022.

Erich Leo Lehmann, Joseph P Romano, and George Casella. Testing statistical hypotheses,
volume 3. Springer, 1986.

Chris Junchi Li, Wenlong Mou, Martin Wainwright, and Michael Jordan. Root-sgd: Sharp
nonasymptotics and asymptotic efficiency in a single algorithm. In Conference on Learning
Theory, 2022a.

Haoran Li, Alexander Aue, Debashis Paul, Jie Peng, and Pei Wang. An adaptable general-
ization of hotelling’s t2 test in high dimension. Ann. Statist., 48(3):1815–1847, 2020a.

Mu Li, Tong Zhang, Yuqiang Chen, and Alexander J Smola. Efficient mini-batch training for
stochastic optimization. In Proceedings of the 20th ACM SIGKDD international conference
on Knowledge discovery and data mining, 2014.

Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated learning:
Challenges, methods, and future directions. IEEE Signal Processing Magazine, 37(3):
50–60, 2020b.

Tianyang Li, Liu Liu, Anastasios Kyrillidis, and Constantine Caramanis. Statistical inference
using sgd. In Proceedings of the AAAI Conference on Artificial Intelligence, 2018.

Xiang Li, Jiadong Liang, Xiangyu Chang, and Zhihua Zhang. Statistical estimation and
online inference via local sgd. In Conference on Learning Theory, 2022b.

Weidong Liu and Zhengyan Lin. Strong approximation for a class of stationary processes.
Stochastic Processes and their Applications, 119(1):249–280, 2009.

Lennart Ljung. Analysis of recursive stochastic algorithms. IEEE. T. Automat. Contr., 22
(4):551–575, 1977.

Zhipeng Lou, Wanrong Zhu, and Wei Biao Wu. Beyond sub-gaussian noises: Sharp concen-
tration analysis for stochastic gradient descent. Journal of Machine Learning Research,
23:1–22, 2022.

Yiling Luo, Xiaoming Huo, and Yajun Mei. Covariance estimators for the root-sgd algorithm
in online learning. arXiv preprint arXiv:2212.01259, 2022.

143

Julien Mairal, Francis R. Bach, Jean Ponce, and Guillermo Sapiro. Online learning for
matrix factorization and sparse coding. J. Mach. Learn. Res., 11(1):19–60, 2010.

Tucker McElroy, Dimitris N Politis, et al. Computer-intensive rate estimation, diverging
statistics and scanning. Ann. Statist., 35(4):1827–1848, 2007.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Ar-
cas. Communication-efficient learning of deep networks from decentralized data. In Arti-
ficial Intelligence and Statistics, 2017.

Fabian Mies and Ansgar Steland. Sequential gaussian approximation for nonstationary time
series in high dimensions. Bernoulli, 29(4):3114–3140, 2023.

Wenlong Mou, Chris Junchi Li, Martin J Wainwright, Peter L Bartlett, and Michael I Jor-
dan. On linear stochastic approximation: Fine-grained polyak-ruppert and non-asymptotic
concentration. In Conference on Learning Theory, 2020.

Eric Moulines and Francis Bach. Non-asymptotic analysis of stochastic approximation al-
gorithms for machine learning. In Advances in Neural Information Processing Systems,
2011.

Sen Na and Michael W Mahoney. Statistical inference of constrained stochastic optimization
via sketched sequential quadratic programming. arXiv preprint arXiv:2205.13687, 2022.

S. V. Nagaev. Large deviations of sums of independent random variables. The Annals of
Probability, 7(5):745–789, 1979.

Alexander V Nazin, Arkadi S Nemirovsky, Alexandre B Tsybakov, and Anatoli B Juditsky.
Algorithms of robust stochastic optimization based on mirror descent method. Automation
and Remote Control, 80(9):1607–1627, 2019.

Deanna Needell, Rachel Ward, and Nati Srebro. Stochastic gradient descent, weighted sam-
pling, and the randomized kaczmarz algorithm. In Advances in Neural Information Pro-
cessing Systems, 2014.

Sahand N. Negahban, Pradeep Ravikumar, Martin J. Wainwright, and Bin Yu. A Unified
Framework for High-Dimensional Analysis of M -Estimators with Decomposable Regular-
izers. Statistical Science, 27(4):538 – 557, 2012.

Arkadi Nemirovski, Anatoli Juditsky, Guanghui Lan, and Alexander Shapiro. Robust
stochastic approximation approach to stochastic programming. SIAM Journal on opti-
mization, 19(4):1574–1609, 2009.

Yurii Nesterov. A method for solving the convex programming problem with convergence
rate o(1/k2). Proceedings of the USSR Academy of Sciences, 269:543–547, 1983.

Whitney K Newey and James L Powell. Asymmetric least squares estimation and testing.
Econometrica: Journal of the Econometric Society, pages 819–847, 1987.

144

Daniel J. Nordman, Helle Bunzel, and Soumendra N. Lahiri. A nonstandard empirical
likelihood for time series. Ann. Statist., 41(6):3050–3073, 12 2013.

Magda Peligrad, Hailin Sang, Yunda Zhong, and Wei Biao Wu. Exact moderate and large
deviations for linear processes. Statistica Sinica, 24:957–969, 2014.

Mark Semenovich Pinsker. The information content of observations, and asymptotically
sufficient statistics. Probl. Peredachi Inf., 8(1):45–61, 1972.

Dimitris N. Politis, Joseph P. Romano, and Michael Wolf. Subsampling. Springer Series in
Statistics. Springer-Verlag, New York, 1999.

Boris T. Polyak and Anatoli B. Juditsky. Acceleration of stochastic approximation by aver-
aging. SIAM J. Control Optim., 30(4):838–855, 1992.

Alexander Rakhlin, Ohad Shamir, and Karthik Sridharan. Making gradient descent opti-
mal for strongly convex stochastic optimization. In International Conference on Machine
Learning, 2012.

Pratik Ramprasad, Yuantong Li, Zhuoran Yang, Zhaoran Wang, Will Wei Sun, and Guang
Cheng. Online bootstrap inference for policy evaluation in reinforcement learning. Journal
of the American Statistical Association, 118(544):2901–2914, 2022.

Sashank J Reddi, Ahmed Hefny, Suvrit Sra, Barnabas Poczos, and Alex Smola. Stochastic
variance reduction for nonconvex optimization. In International Conference on Machine
Learning, 2016.

Richard A Redner and Homer F Walker. Mixture densities, maximum likelihood and the em
algorithm. SIAM Rev., 26(2):195–239, 1984.

Matthew Richardson, Ewa Dominowska, and Robert Ragno. Predicting clicks: estimating
the click-through rate for new ads. In Proceedings of the International Conference on
World Wide Web, 2007.

Emmanuel Rio. Moment inequalities for sums of dependent random variables under projec-
tive conditions. Journal of Theoretical Probability, 22(1):146–163, 2009.

Herbert Robbins and Sutton Monro. A stochastic approximation method. Ann. Math.
Statist., 22(3):400–407, 09 1951. doi:10.1214/aoms/1177729586. URL https://doi.org/
10.1214/aoms/1177729586.

Herbert Robbins and David Siegmund. A convergence theorem for non negative almost
supermartingales and some applications. In Optimizing Methods in Statistics. Academic
Press, 1971.

David Ruppert. Efficient estimations from a slowly convergent robbins-monro process. Tech-
nical report, Cornell University Operations Research and Industrial Engineering, 1988.

145

https://doi.org/10.1214/aoms/1177729586
https://doi.org/10.1214/aoms/1177729586
https://doi.org/10.1214/aoms/1177729586

Jerome Sacks. Asymptotic distribution of stochastic approximation procedures. Ann. Math.
Statist., 29(2):373–405, 06 1958.

Ohad Shamir and Tong Zhang. Stochastic gradient descent for non-smooth optimization:
Convergence results and optimal averaging schemes. In International Conference on Ma-
chine Learning, 2013.

Qi-Man Shao and Zhuo-Song Zhang. Berry–esseen bounds for multivariate nonlinear
statistics with applications to m-estimators and stochastic gradient descent algorithms.
Bernoulli, 28(3):1548–1576, 2022.

Umut Simsekli, Levent Sagun, and Mert Gurbuzbalaban. A tail-index analysis of stochastic
gradient noise in deep neural networks. In International Conference on Machine Learning,
2019.

Kesar Singh. On the asymptotic accuracy of efron’s bootstrap. Ann. Statist., 9:1187–1195,
1981.

Radhendushka Srivastava, Ping Li, and David Ruppert. Raptt: An exact two-sample test in
high dimensions using random projections. J. Comput. Graph. Stat., 25(3):954–970, 2016.

Michael A Stephens. Goodness-of-fit and sufficiency: Exact and approximate tests. Meth.
Comput. Appl. Probab., 14:785–791, 2012.

Weijie J Su and Yuancheng Zhu. Higrad: Uncertainty quantification for online learning and
stochastic approximation. Journal of Machine Learning Research, 24(124):1–53, 2023.

Kentaro Tanaka and Akimichi Takemura. Strong consistency of the maximum likelihood
estimator for finite mixtures of location-scale distributions when the scale parameters are
exponentially small. Bernoulli, 12(6):1003 – 1017, 2006.

James W Taylor. Estimating value at risk and expected shortfall using expectiles. Journal
of Financial Econometrics, 6(2):231–252, 2008.

Robert Tibshirani. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B,
58(1):267–288, 1996.

Panos Toulis and Edoardo M. Airoldi. Asymptotic and finite-sample properties of estimators
based on stochastic gradients. The Annals of Statistics, 45(4):1694–1727, 2017.

Joel A Tropp. User-friendly tail bounds for sums of random matrices. Foundations of
Computational Mathematics, 12(4):389–434, 2012.

Leslie G Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–1142,
1984.

Sara Van de Geer, Peter Bühlmann, Ya’acov Ritov, and Ruben Dezeure. On asymptotically
optimal confidence regions and tests for high-dimensional models. Ann. Statist., 42(3):
1166–1202, 2014.

146

Dootika Vats, James M Flegal, and Galin L Jones. Multivariate output analysis for markov
chain monte carlo. Biometrika, 106(2):321–337, 2019.

Roman Vershynin. Introduction to the non-asymptotic analysis of random matrices.
Preprint. Available at arXiv:1011.3027, 2010.

Ziyang Wei, Wanrong Zhu, and Wei Biao Wu. Weighted averaged stochastic gradient descent:
Asymptotic normality and optimality. arXiv preprint arXiv:2307.06915, 2023.

William J Welch. Construction of permutation tests. J. Amer. Statist. Assoc., 85(411):
693–698, 1990.

Blake Woodworth, Kumar Kshitij Patel, Sebastian Stich, Zhen Dai, Brian Bullins, Brendan
Mcmahan, Ohad Shamir, and Nathan Srebro. Is local sgd better than minibatch sgd? In
International Conference on Machine Learning, 2020.

Chien-Fu Jeff Wu. Jackknife, bootstrap and other resampling methods in regression analysis.
Ann. Statist., 14(4):1261–1295, 1986.

Wei Biao Wu. Strong invariance principles for dependent random variables. The Annals of
Probability, 35(6):2294–2320, 2007.

Wei Biao Wu. Recursive estimation of time-average variance constants. Ann. Appl. Probab.,
19(4):1529–1552, 2009.

Ji Xu, Daniel J Hsu, and Arian Maleki. Global analysis of expectation maximization for
mixtures of two gaussians. Advances in Neural Information Processing Systems, 29, 2016.

Lei Xu and Michael I Jordan. On convergence properties of the em algorithm for gaussian
mixtures. Neural Comput., 8(1):129–151, 1996.

Fan Yang and Rina Foygel Barber. Contraction and uniform convergence of isotonic regres-
sion. Electronic Journal of Statistics, 13(1):646 – 677, 2019.

Hao Yu, Sen Yang, and Shenghuo Zhu. Parallel restarted sgd with faster convergence and
less communication: Demystifying why model averaging works for deep learning. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence, 2019.

Cun-Hui Zhang. Risk bounds in isotonic regression. Ann. Statist., 30(2):528–555, 2002.

Cun-Hui Zhang and Jian Huang. The sparsity and bias of the lasso selection in high-
dimensional linear regression. Ann. Statist., 36(4):1567–1594, 2008.

Cun-Hui Zhang and Stephanie S Zhang. Confidence intervals for low dimensional parameters
in high dimensional linear models. J. R. Stat. Soc. Ser. B, 76:217–242, 2014.

Jin-Ting Zhang, Jia Guo, Bu Zhou, and Ming-Yen Cheng. A simple two-sample test in high
dimensions based on l2-norm. J. Amer. Statist. Assoc., 115(530):1011–1027, 2020.

147

Sixin Zhang, Anna E Choromanska, and Yann LeCun. Deep learning with elastic averaging
sgd. Advances in Neural Information Processing Systems, 2015.

Weinan Zhang, Tianxiong Zhou, Jun Wang, and Jian Xu. Bid-aware gradient descent for
unbiased learning with censored data in display advertising. In Proceedings of the ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016.

Peng Zhao and Bin Yu. On model selection consistency of lasso. J. Mach. Learn. Res., 7:
2541–2563, 2006.

Wanrong Zhu, Xi Chen, and Wei Biao Wu. Online covariance matrix estimation in stochastic
gradient descent. Journal of the American Statistical Association, 118(541):393–404, 2023.

Wanrong Zhu, Zhipeng Lou, Ziyang Wei, and Wei Biao Wu. High confidence level inference
is almost free using parallel stochastic optimization. arXiv preprint arXiv:2401.09346,
2024.

Martin Zinkevich, Markus Weimer, Lihong Li, and Alex Smola. Parallelized stochastic
gradient descent. Advances in Neural Information Processing Systems, 2010.

Hui Zou and Trevor Hastie. Regularization and variable selection via the elastic net. Journal
of the Royal Statistical Society Series B: Statistical Methodology, 67(2):301–320, 2005.

148

APPENDIX A

APPENDIX FOR CHAPTER 2

A.1 Technical Lemmas and Proofs

We will use Fn,i = Fi, 1 ≤ i < n to denote the nested σ-algebra generated by {ξ1, ..., ξi}.

Before we start, we also present a lemma in Polyak and Juditsky [1992] as follows:

Lemma A.1.1. Choose the step size as ηi = ηi−α with η > 0 and 0.5 < α < 1. For a real

symmetric positive definite matrix A, define a matrices sequence Y ki : Y ii = Id and for any

k > i:

Y ki =
k∏

j=i+1

(Id − ηjA).

We also define Ȳ ni and ϕni as follows,

Ȳ ni = ηi

n∑
k=i

Y ki , n ≥ i,

ϕni = A−1 − Ȳ ni .

Then ∃ 0 < K <∞ such that ∀ j and i ≥ j

||ϕni ||2 ≤ K,

lim
n→∞

1

n

n∑
i=1

||ϕni ||2 = 0.

Lemma A.1.1 is a simple reduction of Lemma 1 in Polyak and Juditsky [1992]. The term

Y ki appears frequently in the explicit form of weighted SGD solutions.

149

A.1.1 Technical Overview and Proof Sketch of the Main Theorem

The error sequence δi = xi − x∗ takes the following form

δi = δi−1 − ηi∇F (xi−1) + ηiϵi, i ≥ 1, (A.1)

where ϵi = ∇F (xi−1)−∇f(xi−1, ξi). Since ∇F (x∗) = 0, by Taylor’s expansion of F around

x∗ we have∇F (xn) ≈ Aδn, which inspires the idea to approximate the general SGD sequence

with a corresponding linear sequence.

Consider a linear sequence:

δ′i = (I − ηiA)δ′i−1 + ηiϵi, δ
′
0 = δ0. (A.2)

The following lemma shows the asymptotic normality for the weighted average of the linear

sequence δ′i.

Lemma A.1.2. Let δ′i be defined in (C.8). Then under the settings in Theorem 2.2.4, for

δ̃′n =
∑n
i=1wn,iδ

′
i we have

√
nδ̃′n ⇒ N (0, wA−1SA−1),

where w = limn→∞ n
∑n
i=1(wn,i)

2, A = ∇2F (x∗), and S = E([∇f(x∗, ξ)][∇f(x∗, ξ)]T).

Furthermore, we can weaken the constraints so that we do not require
∑n
i=1wn,i = 1 in this

lemma, and the conclusion still holds.

To prove Lemma A.1.2, we decompose
√
nδ̃′n into four terms:

√
nδ̃′n =

√
n

n∑
i=1

wn,iA
−1ϵi +

√
n

n∑
i=1

wn,iY
i
0δ0

+
√
n

n∑
i=1

wn,ia
n
i ϵi +

√
n

n∑
i=1

bni ϵi,

(A.3)

150

where ani =
∑n
k=i(Y

k
i ηi − A

−1), bni =
∑n
k=i+1(wn,k − wn,i)Y ki ηi and

Y ki =
k∏

j=i+1

(Id − ηjA), k > i, Y ii = Id.

The last three terms in (A.3) vanish as n goes to infinity. The first term
√
n
∑n
i=1wn,iA

−1ϵi

is a linear combination of martingale differences and the following lemma shows that it is

asymptotic normal.

Lemma A.1.3 (Martingale difference asymptotic normality). Under the settings in Theorem

2.2.4,
√
n

n∑
i=1

wn,iA
−1ϵi ⇒ N (0, wA−1SA−T).

Once Lemma A.1.2 is established, we can prove Theorem 2.2.4 using the well-known

linear approximation technique.

A.1.2 Proof of Theorem 2.2.4

Proof. Recall the error sequence of SGD iterates δn = xn − x∗. It also takes the form

δn = δn−1−ηn∇F (xn−1)+ηnϵn. The weighted averaged error sequence is δ̃n =
∑n
i=1wn,iδi.

Since
∑n
i=1wn,i = 1, we have δ̃n = x̃n − x∗. We have also defined the linear error sequence

δ′n = δ′n−1 − ηnAδ
′
n−1 + ηnϵn, δ

′
0 = x0 − x∗,

δ̃′n =
n∑
i=1

wn,iδ
′
i.

We claim that Lemma A.1.2 is true, i.e.,

√
nδ̃′n ⇒ N (0, wA−1SA−T),

151

then it suffices to prove that
√
nδ̃′n and

√
nδ̃n are asymptotically equally distributed. Let

sn be the difference between the nonlinear and linear sequence. It also takes the following

recursion form:

sn = δn − δ′n = δn−1 − ηn∇F (xn−1)− (I− ηnA)δ′n−1

= (I− ηnA)(δn−1 − δ′n−1)− ηn(∇F (xn−1)− Aδn−1)

= (I− ηnA)sn−1 − ηn(∇F (xn−1)− Aδn−1).

(A.4)

Recall the definition of Y ni :

Y ki =
k∏

j=i+1

(Id − ηjA), k > i, Y ii = Id.

We can use Y ni to rewrite sn as

sn =
n∑
i=1

Y ni ηi[Aδi−1 −∇F (xi−1)].

Define the weighted average difference between the nonlinear and linear sequence:

s̃n =
n∑
i=1

wn,isi =
n∑
i=1

wn,i

i∑
j=1

Y ij ηj [Aδj−1 −∇F (xj−1)].

Note that
√
nδ̃n =

√
ns̃n +

√
nδ̃′n and

√
nδ̃′n

D→ N (0, wA−1SA−T). To prove

√
nδ̃n =

√
n(x̃n − x∗)⇒ N (0, wA−1SA−T),

it is suffice to prove
√
ns̃n converges to 0 in probability.

152

||s̃n||2 ≤
n∑
i=1

wn,i

i∑
j=1

||Y ij ||2ηj ||Aδj−1 −∇F (xj−1)||2

≲
1

n

n∑
j=1

||Aδj−1 −∇F (xj−1)||2ηj
(n∑
i=j

||Y ij ||2
)

≲
1

n

n∑
j=1

||Aδj−1 −∇F (xj−1)||2j−α
(
1 + (j + 1)α

)
≲

1

n

n∑
j=1

||Aδj−1 −∇F (xj−1)||2

≲
1

n

n∑
j=1

||δj−1||22.

(A.5)

The second inequality is obtained by upper bounding wn,i and exchange the order of summa-

tions. The third inequality comes from Lemma A.2 in Zhu et al. [2023]. The last inequality

is from Taylor’s expansion around x∗. From Lemma 3.2 in Zhu et al. [2023] we know that

E||δj−1||22 ≲ (j − 1)−α.

So there exists a constant C > 0 such that

n∑
j=1

1√
j
E||δj−1||22 ≲

n∑
j=1

1√
j
(j − 1)−α ≲

n∑
j=1

j−0.5−α ≤ C.

By Kronecker’s lemma,
1√
n

n∑
j=1

E||δj−1||22 → 0.

As a result, for any fixed h > 0,

P(
√
n||s̃n||2 > h) ≤ P

(1√
n

n∑
j=1

||δj−1||22 > h
)
≤ 1√

nh
E

n∑
j=1

||δj−1||22 → 0.

Thus we proved that
√
ns̃n converges to 0 in probability, and the theorem is proved.

153

A.1.3 Proof of Lemma A.1.2

Proof. By definition of the linear error term, we have

δ′n =
n∏
i=1

(Id − ηiA)δ0 +
n∑
i=1

n∏
j=i+1

(Id − ηjA)ηiϵi,

where the matrix sequence Y ki , k ≥ i is defined as

Y ki =
k∏

j=i+1

(Id − ηjA), k > i, Y ii = Id.

Here we also use the convention that
∏n
j=n+1(Id − ηjA) = I. Then the weighted averaged

error sequence δ̃′n takes the form:

δ̃′n =
n∑
i=1

wn,i

i∏
j=1

(Id − ηjA)δ0 +
n∑
k=1

wn,k

k∑
i=1

k∏
j=i+1

(Id − ηjA)ηiϵi

=
n∑
i=1

wn,iY
i
0δ0 +

n∑
i=1

n∑
k=i

wn,kY
k
i ηiϵi

=
n∑
i=1

wn,iY
i
0δ0 +

n∑
i=1

wn,i

n∑
k=i

Y ki ηiϵi +
n∑
i=1

n∑
k=i+1

(wn,k − wn,i)Y ki ηiϵi

=
n∑
i=1

wn,iA
−1ϵi +

n∑
i=1

wn,iY
i
0δ0 +

n∑
i=1

wn,i(
n∑
k=i

Y ki ηi − A
−1)ϵi+

n∑
i=1

n∑
k=i+1

(wn,k − wn,i)Y ki ηiϵi

∆
= I + II + III + IV

(A.6)

154

By Lemma A.2 in Zhu et al. [2023],

n∑
k=i+1

||Y ki ||2 ≲ (i+ 1)α.

So we have,

lim
n→∞

||
√
n

n∑
i=1

wn,iY
i
0δ0||2 ≲ lim

n→∞
1

n
||
√
n

n∑
i=1

Y i0 ||2 ≲ lim
n→∞

1√
n
= 0.

Recall ϕni =
∑n
k=i Y

k
i ηi − A

−1. Then by Lemma A.1.1,

lim
n→∞

E||
√
n

n∑
i=1

wn,i(
n∑
k=i

Y ki ηi − A
−1)ϵi||22 = lim

n→∞
E||
√
n

n∑
i=1

wn,iϕ
n
i ϵi||

2
2

≲
1

n

n∑
i=1

||ϕni ||
2
2

≲
1

n

n∑
i=1

||ϕni ||2 = 0.

The last inequality is because ||ϕni ||2 ≤ K. The result shows that
√
nII and

√
nIII converge

to 0 in L2 norm. For
√
nIV , let ani =

∑n
k=i+1(wn,k − wn,i)Y ki ηi. By Lemma A.2 in Zhu

et al. [2023], we have

||Y ki ||2 ≤ exp(−λ
k∑

t=i+1

ηt),

and

||ani ||2 ≲
1

n

n∑
k=i+1

||Y ki ||2ηi ≲
1

n

Under the smoothness condition,

lim
n→∞

n∑
i=1

||ai||2 ≤ lim
n→∞

n∑
i=1

n∑
k=i+1

|wn,k − wn,i|ηi exp(−λ
k∑

t=i+1

ηt) = 0.

155

As a result,

E||
√
nIV ||22 = E||

√
n

n∑
i=1

ani ϵi||
2
2

≲
1

n

n∑
i=1

||nani ||
2
2

≲
1

n

n∑
i=1

||nani ||2 =
n∑
i=1

||ani ||2 → 0.

So we only need to show the asymptotic normality of the first term. By Lemma A.1.3 we

have
√
n

n∑
i=1

wn,iA
−1ϵi ⇒ N (0, wA−1SA−1).

Thus we have proved Lemma A.1.2.

A.1.4 Proof of Lemma A.1.3

Proof. Let Xni =
√
nwn,iA

−1ϵi (1 ≤ i ≤ n) denote a martingale difference array. Then we

need to prove
n∑
i=1

Xni ⇒ N (0, wA−1SA−1).

We first check the conditional Lindeberg condition: ∀r > 0

Ei−1[||Xni||21(||Xni|| > r)] ≤
√

Ei−1[||Xni||4]
√
Ei−1[1(||Xni|| > r)2]

≤
√
Cn2(wni)

4Ei−1||ϵi||4
√
Pi−1(||Xni|| > r)

≤
√
K1

n2
(1 + ||δi−1||4)

√
Pi−1(||ϵi||4 > K4

2n
2r4)

(A.7)

The first inequality is Cauchy-Schwarz. The third inequality is from Assumption 2.2.3. By

Markov’s inequality,

Pi−1(||ϵi||4 > K4
2n

2r4) ≤ K3(1 + ||δi−1||4)
n2

,

156

We get the following bound

Ei−1[||Xni||21(||Xni|| > r)] ≤ K4

n2
(1 + ||δi−1||4).

As a result
n∑
i=1

Ei−1[||Xni||21(||Xni|| > r)] ≤ K4

n
+
K4

n2

n∑
i=1

||δi−1||4. (A.8)

By Lemma 3.2 in Zhu et al. [2023], we have

lim
n→∞

E[
K4

n
+
K4

n2

n∑
i=1

||δi−1||4] = 0.

So both sides of equation (A.8) also L1 converges to 0, which implies the conditional Linde-

berg condition: ∀r > 0,

n∑
i=1

E[||Xni||21(||Xni|| > r)|Fn,i−1]
P→ 0.

The next step is to show that:

n∑
i=1

E[n(wn,i)2A−1ϵiϵTi A
−T |Fn,i−1]⇒ wA−1SA−T .

Since n limn→∞
∑n
i=1(wn,i)

2 = w,

wA−1SA−T = lim
n→∞

n∑
i=1

n(wn,i)
2A−1SA−T

We estimate the difference

∆ =
n∑
i=1

n(wn,i)
2A−1SA−T −

n∑
i=1

E[n(wn,i)2A−1ϵiϵTi A
−T |Fn,i−1]

157

using Assumption 2.2.3 :

||∆||F = ||
n∑
i=1

Ei−1[n(wn,i)2A−1ϵiϵTi A
−T]−

n∑
i=1

n(wn,i)
2A−1SA−T ||F

≤
n∑
i=1

n(wn,i)
2||A−1(Ei−1ϵiϵTi − S)A

−T ||F

≤
n∑
i=1

n(wn,i)
2||A−1||2F ||Ei−1ϵiϵ

T
i − S||2

≤ C

n

n∑
i=1

(||δi−1||2 + ||δi−1||22)

(A.9)

By Lemma 3.2 in Zhu et al. [2023], we have

lim
n→∞

E[
C

n

n∑
i=1

(||δi−1||2 + ||δi−1||22)] = 0.

So the Frobenius norm of ∆ also L1 converges to 0. With triangle inequality it implies that

||
n∑
i=1

Ei−1[n(wn,i)2A−1ϵiϵTi A
−T]− wA−1SA−T ||F

≤||∆||F + ||wA−1SA−T −
n∑
i=1

n(wn,i)
2A−1SA−T ||F .

And both terms on the right hand side L1 converge to 0. As a result,

lim
n→∞

E
∣∣∣|| n∑

i=1

Ei−1[n(wn,i)2A−1ϵiϵTi A
−T]− wA−1SA−T ||F

∣∣∣ = 0.

Since L1 convergence implies convergence in probability, we have

||
n∑
i=1

Ei−1[n(wn,i)2A−1ϵiϵTi A
−T]− wA−1SA−T ||F

P→ 0,

158

which implies
n∑
i=1

Ei−1[n(wn,i)2A−1ϵiϵTi A
−T] P→ wA−1SA−T

at every entries. Then all conditions of Corollary 3.1 in Hall and Heyde [2014] hold. By

Theorem 3.3 in Hall and Heyde [2014],

√
n

n∑
i=1

Xi
n =
√
n

n∑
i=1

wn,iA
−1ϵi ⇒ N (0, wA−1SA−1).

A.1.5 Proof of Corollary 2.3.1

Proof. Recall the definition of θn,i:

θn,i =
γ + 1

γ + i

n∏
j=i+1

j − 1

j + γ

=
γ + 1

n

Γ(γ + i+ 1)Γ(n+ 1)

Γ(γ + n+ 1)Γ(i+ 1)
.

Lemma A.1.4. The weight wn,i = θn,i satisfies
∑n
i=1wn,i = 1, wn,i ≤ (γ + 1)/n and

lim
n→∞

n
n∑
i=1

(wn,i)
2 =

(γ + 1)2

2γ + 1
.

Now we only have to verify the smoothness condition. We first show that there exists a

constant C̃ = γ(γ + 1) such that for all 1 ≤ i < n,

|wn,i+1 − wn,i| ≤ C̃n−2.

159

Notice for any n ∈ N+,

|θn+1,n+1 − θn,n| =
(γ + 1)(γ + n)− n(γ + 1)

(γ + n+ 1)(γ + n)
=

γ(γ + 1)

(γ + n+ 1)(γ + n)
≤ γ(γ + 1)

(n+ 1)2
,

and
|θn+1,n − θn+1,n−1| = (1− γ + 1

γ + n
)(θn,n − θn,n−1)

=
γ(γ + 1)

(γ + n)(γ + n− 1)

n

γ + n+ 1
.

(A.10)

Since n ≥ 1, we have |θn+1,n − θn+1,n−1| ≤ |θn+1,n+1 − θn,n|. Similarly we can prove

that |θn+1,i+1 − θn+1,i| ≤ |θn+1,n+1 − θn,n| for any 1 ≤ i ≤ n. So |θn+1,i+1 − θn+1,i| ≤

γ(γ+1)/(n+1)2 for any 1 ≤ i ≤ n, or equivalently, |wn,i+1−wn,i| ≤ C̃n−2 for all 1 ≤ i < n.

Then we claim the following lemma holds, and the conclusion follows.

Lemma A.1.5. If |wn,i+1−wn,i| ≤ C̃n−2 for some constant C̃ > 0 and all 1 ≤ i < n, then

the smoothness condition in Theorem 2.2.4 holds.

To prove the lemma, we need the following 3 steps:

Step 1: Define mi
i = 0 and for any k > 1,

mk
i =

k∑
t=i+1

ηt.

Then our goal is to prove
∑n
i=1

∑n
k=i+1 |wn,k − wn,i|ηi exp(−λmk

i) → 0. Recall that λ =

min(λmin(A), 1/(2η)). Let µ = ⌊1/λ⌋+ 1. Choose an N ∈ N+ such that ∀k > i ≥ N ,

mk
i ≥ µ log

k

i
.

Since mk
i ≥ η(k1−α − i1−α)/(1− α), we can always find such an N .

Step 2: Let bni =
∑n
k=i+1 |wn,k − wn,i|ηi exp(−λmk

i). We decompose
∑n
i=1 b

n
i into two

160

parts:

n∑
i=1

bni =
n∑
i=1

ηi

n∑
k=i+1

(wn,k − wn,i) exp(−λmk
i)

≤
N∑
i=1

ηi

n∑
k=i+1

|wn,k − wn,i| exp(−λmk
i) +

n∑
i=N+1

ηi

n∑
k=i+1

|wn,k − wn,i| exp(−λmk
i)

∆
= I1 + I2

(A.11)

Step 3: Show that each term goes to 0 when n→∞. For the first term we have

I1 ≤
N∑
i=1

ηi
2C

n

n∑
k=i+1

exp(−λmk
i) ≲

1

n

N∑
i=1

(i+ 1)αi−α ≲
1

n

The second inequality is due to Lemma A.1 and Lemma A.2 in Zhu et al. [2023]. Now there

exists a constant C̃ such that |wn,t+1 − wn,t| ≤ C̃/n2. So for the second term we have

I2 =
n∑

i=N+1

ηi

n∑
k=i+1

{
k−1∑
t=i

|wn,t+1 − wn,t|}e−λm
k
i

≲
n∑

i=N+1

ηi

n∑
k=i+1

k−1∑
t=i

1

n2
e−λm

k
i

≲ nα−2
n∑

i=N+1

ηi

n∑
k=i+1

k−1∑
t=i

1

tα
e−λm

k
i

≲ nα−2
n∑

i=N+1

ηi

n∑
k=i+1

mk
i e
−λmk

i

= nα−2
n∑

i=N+1

n∑
k=i+1

mk
i ηi
ηk

e−λm
k
i (mk

i −m
k−1
i)

(A.12)

161

The second inequality is because tα ≤ nα. Notice that ηi
ηk
≤ k

i ≤ e
mk
i
µ by step 2,

I2 ≲ nα−2
n∑

i=N+1

n∑
k=i+1

mk
i e

(1µ−λ)m
k
i (mk

i −m
k−1
i)

≲ nα−2
n∑

i=N+1

∫ +∞

0
me

(1µ−λ)mdm

≲ nα−1 → 0.

(A.13)

We have showed that
n∑
i=1

bni ≲ nα−1 → 0.

So Lemma A.1.5 and Corollary 2.3.1 is proved.

A.1.6 Proof of Corollary 2.3.2

We first propose a lemma which bounds some exponential series.

Lemma A.1.6. Let α ∈ (0.5, 1) and ν > 0. For all i < j < n,

j∑
i=1

i−α exp(ν(i+ 1)1−α) ≲ exp(νj1−α),

n∑
k=j

exp(−νk1−α) ≲ exp(−νj1−α)jα.

Proof. Let wn,i = 1/⌈κn⌉ for i > (1 − κ)n otherwise 0. It’s clear that
∑n
i=1wn,i = 1,

|wn,i| ≤ 1/κn, and limn→∞ n
∑n
i=1(wn,i)

2 = 1/κ. So we only need to verify the smoothness

condition. By Lemma A.1. in Zhu et al. [2023] we have

exp(−λ
k∑

t=i+1

ηt) ≤ exp

(
− λη

1− α
(
k1−α − (i+ 1)1−α

))
.

162

Therefore

n∑
i=1

ηi

n∑
k=i+1

|wn,k − wn,i| exp(−λ
k∑

t=i+1

ηt)

≤
⌊κn⌋∑
i=1

ηi

n∑
k=⌈κn⌉

1

κn
exp

(
− λη

1− α
(
k1−α − (i+ 1)1−α

))

≲
1

n

⌊κn⌋∑
i=1

i−α exp
(

λη

1− α
(i+ 1)1−α

) n∑
k=⌈κn⌉

exp

(
− λη

1− α
k1−α

)

≲
1

n
exp

(
λη

1− α
⌊κn⌋1−α

)
exp

(
− λη

1− α
⌈κn⌉1−α

)
⌈κn⌉α

≲
⌈κn⌉α

n

(A.14)

So the smoothness condition limn→∞
∑n
i=1 ηi

∑n
k=i+1 |wn,k −wn,i| exp(−λ

∑k
t=i+1 ηt) = 0

holds, and the Corollary is proved.

A.1.7 Proof of Proposition 2.4.1

Instead of requiring η0 = a−21 in Proposition 2.4.1, we first consider a general step size.

Recall that we have the squared loss function f(x, ξi = (ai, bi)) =
(aix− bi)2

2
, and SGD

iterates

xi = xi−1 − ηiai(aixi−1 − bi). (A.15)

Here ηi = η0i
−α with 0.5 < α < 1.

Proposition A.1.7. The unique solution to the optimization problem

min
c=(c0, ··· , cn):cT1=1

E∥
n∑
i=0

ci(xi − x∗)∥2

163

with xi defined in (A.15) is given by

c =
ΘTD−1Θ1d

1TdΘ
TD−1Θ1d

,

where

D =



(x0 − x∗)2 0 · · · · · · 0

0 σ2a21η
2
1 0 · · · 0

0 0 σ2a22η
2
2 · · · 0

...

0 0 0 · · · σ2a2nη
2
n


,

Θ =



1 0 · · · · · · 0

η1a
2
1 − 1 1 0 · · · 0

0 η2a
2
2 − 1 1 · · · 0

...

0 0 0 ηna
2
n − 1 1 .


More explicitly,

cn,0 =

(
σ

x0 − x∗
)2 + a21 − η

−1
1

Sn
,

cn,i =
η−1i + a2i+1 − η

−1
i+1

Sn
, 1 ≤ i ≤ n− 1,

cn,n =
1

ηnSn
,

where Sn = (
σ

x0 − x∗
)2 +

∑n
i=1 a

2
i .

Proof. The SGD error sequence xi − x∗ takes the recursion form

xi − x∗ = (1− ηia2i)(xi−1 − x
∗) + ηiai(bi − aix∗)

164

Let

Θ =



1 0 · · · · · · 0

η1a
2
1 − 1 1 0 · · · 0

0 η2a
2
2 − 1 1 · · · 0

...

0 0 0 ηna
2
n − 1 1 .


Then we have

Θ



x0 − x∗

x1 − x∗

x2 − x∗
...

xn − x∗


=



x0 − x∗

η1(b1 − a1x∗)a1

η2(b2 − a2x∗)a2
...

ηn(bn − anx∗)an


. (A.16)

We further treat ai as fixed and denote Θ as the matrix in the left hand side above.

Similar as the mean estimation model, here the optimal weights solution is also determined

by Σ = (E(xixj))i,j≥0, the “covariance” matrix of (x0, x1, x2, · · · , xn).

We further define

Φ =



x0 − x∗

η1(b1 − a1x∗)a1

η2(b2 − a2x∗)a2
...

ηn(bn − anx∗)an


, X =



x0 − x∗

x1 − x∗

x2 − x∗
...

xn − x∗


,

165

and

D =



(x0 − x∗)2 0 · · · · · · 0

0 σ2a21η
2
1 0 · · · 0

0 0 σ2a22η
2
2 · · · 0

...

0 0 0 · · · σ2a2nη
2
n


.

Then ΘX = Φ implies that EΘXXTΘT = ΘEXXTΘT = ΘΣΘT = EΦΦT . By the

fact that E(xi − x∗)(xj − x∗) = 0 for all i ̸= j, we have EΦΦT = D. Thus we have a

diagonalization of Σ as ΘΣΘT = D.

Using the Lagrangian multiplier method, we can obtain the closed-form solution as

Σ−11d
1TdΣ

−11d
,

and it remains to show that the solution

Σ−11d
1TdΣ

−11d
=

ΘTD−1Θ1d
1TdΘ

TD−1Θ1d

is the form of Proposition A.1.7. Here we give the closed form of the matrix ΘTD−1Θ,

ΘTD−1Θ =

1
(x0−x∗)2

+
(η1a

2
1−1)2

σ2a21η
2
1

η1a
2
1−1

σ2a21η
2
1

0 0 · · · 0

η1a
2
1−1

σ2a21η
2
1

1
σ2a21η

2
1
+

(η2a
2
2−1)2

σ2a22η
2
2

η2a
2
2−1

σ2a22η
2
2

0 · · · 0

0
η2a

2
2−1

σ2a22η
2
2

1
σ2a22η

2
2
+

(η3a
2
3−1)2

σ2a23η
2
3

. 0

... ηna
2
n−1

σ2a2nη
2
n

0 0 · · · 0
ηna

2
n−1

σ2a2nη
2
n

1
σ2a2nη

2
n


,

and the conclusion can be easily verified.

166

The optimal weight of the initialization term cn,0 in Proposition A.1.7 depends on σ2

and the initial error x0 − x∗, both of which can not be observed. To solve this problem, we

may consider the two-step estimation: first estimate σ and x∗ using ASGD or other averaged

schemes with a small batch of SGD iterates, then plug them in to obtain the optimal weights.

Another approach is to modify the structure of Θ and equation A.16. Choosing η1 = a−21 ,

we can exclude x0 − x∗ from (A.16) and reduce it to



1 0 · · · 0

η2a
2
2 − 1 1 · · · 0

.

0 0 ηna
2
n − 1 1





x1 − x∗

x2 − x∗
...

xn − x∗


=



η1(b1 − a1x∗)a1

η2(b2 − a2x∗)a2
...

ηn(bn − anx∗)an


.

In other words, if we plug η1 = a−21 in Proposition A.1.7, we have x1 = ηibiai and all SGD

iterates will be free of x0 − x∗.

Denote Θ̃ as this reduced matrix in the left hand side above, and we can perform a

diagonalization of Σ−0 = (Exixj)i,j≥1, the “covariance” matrix of SGD sequence without

x0, as follows

Θ̃Σ−0Θ̃
T = D−0 =



σ2a21η
2
1 0 · · · 0

0 σ2a22η
2
2 · · · 0

...

0 0 · · · σ2a2nη
2
n


.

Instead of the optimization problem in proposition 2.4.1, the decomposition of Σ−0 enables

us to solve a reduced problem excluding the weight on x0

min
c=(c1, ··· , cn):cT1d=1

E∥
n∑
i=1

ci(xi − x∗)∥2,

167

and get the minimizer in the form of

c =
Σ−1−01d

1TdΣ
−1
−01d

=
Θ̃TD−1−0Θ̃1

1Td Θ̃
TD−1−0Θ̃1d

.

The σ2 terms in D−0 cancel out. Finally, the weighting scheme with η1 = a−21 is

cn,i =
η−1i + a2i+1 − η

−1
i+1

Sn
, 1 ≤ i ≤ n− 1,

cn,n =
1

ηnSn
,

where Sn =
∑n
i=1 a

2
i .

A.1.8 Proof of Corollary 2.4.2

We start with a lemma describing the rate of the last error term of SGD, which can be found

in Lemma 3.2 in Chen et al. [2020].

Lemma A.1.8. Under the setting in Theorem 2.2.4, we have

n
α
2 (xn − x∗) = Op(1).

Proof. First of all, define x̃′n =
∑n−1
i=1 cn,ixi. Notice that

√
n(x̃n − x∗)−

√
n(x̃′n − (1− nα−1)x∗) = nα−

1
2 (xn − x∗).

By Lemma A.1.8,

nα−
1
2 (xn − x∗) = n

α
2−

1
2n

α
2 (xn − x∗) = op(1).

So
√
n(x̃n− x∗) and

√
n(x̃′n− (1−nα−1)x∗) =

√
n
∑n−1
i=1 (xi− x

∗) has the same asymptotic

168

distribution. Define the linear error term

δ′n = δ′n−1 − ηnAδ
′
n−1 + ηnϵn, δ

′
0 = x0 − x∗,

and δ̃′n =
∑n−1
i=1 cn,iδ

′
i. Previously we have showed that the weighted averaged linear error

term can well approximate the weighted averaged original error term (see Subsection A.1.2

for details). So it suffices to prove that

√
nδ̃′n ⇒ N (0, A−1SA−1).

Notice that cn,i ≤ O(1/n) holds for i = 1, ..., n− 1. By Lemma A.1.2, we only need to verify

the smoothness and limitation condition. For the smoothness condition, Define

τni = ηi

n−1∑
k=i+1

|cn,k − cn,i|e−λm
i
k = ηi

n−1∑
k=i+1

|kα − (k + 1)α − iα + (i+ 1)α|
n

e−λm
i
k ,

where mi
k =

∑k
t=i+1 ηt as we previously defined.

Since |iα − (i+ 1)α| ≍ iα−1, we have ||τni ||2 ≲ 1/n. Let N = ⌊
√
n⌋, then

n−1∑
i=1

τni =
N∑
i=1

τni +
n−1∑

i=N+1

τni .

We estimate the two terms respectively.

N∑
i=1

τni ≲
1

n

N∑
i=1

n−1∑
k=i+1

e−λm
i
kηi

≲
1

n

N∑
i=1

(i+ 1)αi−α

≲
N

n
≤ n−

1
2 .

(A.17)

169

The second inequality is due to Lemma A.1. and Lemma A.2. in Zhu et al. [2023].

n−1∑
i=N+1

τni ≲
n−1∑

i=N+1

n−1∑
k=i+1

kα−1 + iα−1

n
e−λm

i
kηi

≲
2
√
nα−1

n

n−1∑
i=N+1

(i+ 1)αi−α

≲ n
α−1
2 .

(A.18)

As a result,

lim
n→∞

n−1∑
i=1

τni = 0

and the smoothness condition holds. Then we compute the limitation. Notice that

(n− 1)
n−1∑
i=1

(c2n,i −
1

n2
) = (n− 1)

n−1∑
i=1

(cn,i −
1

n
)(cn,i +

1

n
)

= (n− 1)
n−1∑
i=1

[
(i+ 1)α − iα

n

][
(i+ 1)α − iα + 2

n

]

≲
n−1∑
i=1

(i+ 1)α − iα

n
≤ nα−1,

(A.19)

we have

lim
n→∞

(n− 1)
n−1∑
i=1

c2n,i = lim
n→∞

(n− 1)
n−1∑
i=1

1

n2
= 1.

By Lemma A.1.2,
√
n− 1δ̃′n ⇒ N (0, A−1SA−1).

Finally by Slutsky’s theorem,

√
nδ̃′n =

√
n

n− 1

√
n− 1δ̃′n ⇒ N (0, A−1SA−1).

170

A.1.9 Proof of Lemma A.1.4

Proof. Since Γ(γ + i+ 1)Γ(n+ 1) < Γ(γ + n+ 1)Γ(i+ 1), we have

|θn,i| ≤
γ + 1

n
.

From the recursive form of polynomial decay averaged SGD, it is easy to see
∑n
i=1 θn,i = 1.

The last step is to prove the limitation holds. Define

Γn(x) =

∫ n

0
tx−1(1− t

n
)ndt =

nxn!

z(z + 1)(z + 2) · · · (z + n)
,

where the last equality is from integration by parts. It’s well known that (1 − t
n)
n ≤

(1− t
n+1)

n+1 and limn→∞(1− t
n)
n = e−t for any t. So Γn(x) ≤ Γ(x). Meanwhile we have

an equivalent definition of Γ(x):

Γ(x) = lim
n→∞

nxn!

x(x+ 1)(x+ 2) · · · (x+ n)
= lim
n→∞

Γn(x).

So for any τ > 0, there exists an N > 0 such that for all n ≥ N ,

0 ≤ Γ(γ)− nγn!

γ(γ + 1)(γ + 2) · · · (γ + n)
≤ τ.

As a result, for n ≥ i ≥ N , we have 0 ≤ Γ(γ+i+1)
Γ(i+1)iγ

− 1 ≤ Γ(γ)τ and 0 ≤ Γ(γ+n+1)
Γ(n+1)iγ

− 1 ≤

Γ(γ)τ , which implies

∣∣∣∣Γ(γ + n+ 1)

Γ(n+ 1)iγ
− Γ(γ + i+ 1)

Γ(i+ 1)iγ

∣∣∣∣ ≤ 2Γ(γ)τ.

171

Furthermore we have∣∣∣∣ iγnγ − Γ(γ + i+ 1)Γ(n+ 1)

Γ(γ + n+ 1)Γ(i+ 1)

∣∣∣∣ = ∣∣∣∣ tγΓ(n+ 1)

Γ(γ + n+ 1)

∣∣∣∣∣∣∣∣Γ(γ + n+ 1)

Γ(n+ 1)iγ
− Γ(γ + i+ 1)

Γ(i+ 1)iγ

∣∣∣∣
≤ 2Γ(γ)τ

∣∣∣∣ nγΓ(n+ 1)

Γ(γ + n+ 1)

∣∣∣∣
≤ 2Γ(γ)τ.

(A.20)

Now we estimate the following summation

1

n

n∑
i=1

[(γ + 1)(
i

n
)γ − n(θn,i)]

≤ 1

n

N∑
i=1

|(γ + 1)(
i

n
)γ |+

N∑
i=1

|(θn,i)|+
γ + 1

n

n∑
i=N+1

∣∣∣∣(in)γ − Γ(γ + i+ 1)Γ(n+ 1)

Γ(γ + n+ 1)Γ(i+ 1)

∣∣∣∣
≤N(γ + 1)

n
+
N

n
θn,N +

n−N
n

τ(γ + 1)

≤(γ + 1)(
N

2n
+ τ).

(A.21)

Let τ → 0 and n→∞,

lim
n→∞

1

n

n∑
i=1

[(γ + 1)(
i

n
)γ − n(θn,i)] = 0. (A.22)

Since

[(γ + 1)2(
i

n
)2γ − n2(θn,i)2] = [(γ + 1)(

i

n
)γ − n(θn,i)][(γ + 1)(

i

n
)γ + n(θn,i)]

≤ 2(γ + 1)[(γ + 1)(
i

n
)γ − n(θn,i)],

(A.23)

we have

lim
n→∞

1

n

n∑
i=1

[(γ + 1)2(
i

n
)2γ − n2(θn,i)2] ≤ 2(γ + 1) lim

n→∞
1

n

n∑
i=1

[(γ + 1)(
i

n
)γ − n(θn,i)] = 0.

(A.24)

172

Finally, notice that

lim
n→∞

1

n

n∑
i=1

(γ + 1)2(
i

n
)2γ =

∫ 1

0
(γ + 1)2x2γdx =

(γ + 1)2

2γ + 1
,

We have proved the limitation in Theorem 2.2.4 holds with

lim
n→∞

n

n∑
i=1

θ2n,i =
(γ + 1)2

2γ + 1
.

A.1.10 Proof of Lemma A.1.6

Proof. First we have exp(ν(i+ 1)1−α) ≍ exp(νi1−α), so

j∑
i=1

i−α exp(ν(i+ 1)1−α) ≲
j∑
i=1

i−α exp(νi1−α).

Let ψ(x) = x−α exp(νx1−α). It’s an increasing function when x > (α/(1− α)ν)1/(1−α). So

we can further bound our target term as,

j∑
i=1

i−α exp(ν(i+ 1)1−α) ≲
j∑
i=1

i−α exp(νi1−α)

≲
∫ j+1

0
ψ(x)dx

=
1

ν(1− α)
exp(ν(j + 1)1−α)

≲ exp(νj1−α).

(A.25)

173

For the second inequality, similarly we have

n∑
k=j

exp(−νk1−α) ≲
∫ n

j−1
exp(−νx1−α))dx

=

∫ ∞
ν(j−1)1−α

s
α

1−α

ν(1− α)
e−sds

≲ (j − 1)α exp(−ν(j − 1)1−α)

≍ exp(−νj1−α)jα.

(A.26)

174

APPENDIX B

APPENDIX FOR CHAPTER 3

B.1 Proofs

We first introduce some notations. For a random variable X and q > 0, we write ∥X∥q =

(E|X|q)1/q if E|X|q <∞. Moreover, for any random matrix A, we write ∥A∥q = (E∥A∥q2)
1/q

by convention. From this point on, abusing notation, depending on context we may write

∥ · ∥2 to denote the matrix operator norm, or may also write ∥ · ∥2 to denote the random

matrix norm discussed here.

B.1.1 Some useful lemmas

In Lemma B.1.1, the case 1 < q ≤ 2 follows from Burkholder [1988] and the other case q > 2

is due to Rio [2009]. Lemma B.1.2 follows from Corollary 1.8 of Nagaev [1979].

Lemma B.1.1 (Burkholder). Let q > 1 and q′ = min{q, 2}. Let (Dt)t∈Z be martingale

differences with E|Dt|q <∞ for every t ∈ Z. Write Mn =
∑n
t=1Dt. Then

∥Mn∥q
′
q ≤ C

q′
q

n∑
t=1

∥Dt∥q
′
q , where Cq =

 (q − 1)−1, 1 < q ≤ 2,

√
q − 1, q > 2.

Lemma B.1.2 (Nagaev). Let (et)t∈Z be independent zero-mean random variables with

supt∈Z E|et|q < ∞ for some q > 2. Let Sn =
∑n
t=1 et and cq = 2e−q(q + 2)−2. Then,

for x > 0, we have

P(|Sn| ≥ x) ≤ (1 + 2/q)q
∑n
t=1 E|ei|q

xq
+ 2 exp

(
−

cqx
2∑n

t=1 E|ei|2

)
.

175

Lemma B.1.3 (Moment bounds for sample covariance operators). Under Assumption 3.2.2,

we have

(
E∥At − Σ∥ψ2

)1/ψ
≤ λ0.

Proof. For simplicity, write

∆B,jk =
B∑
i=1

(XijXik − Σjk)

for 1 ≤ j, k ≤ p. By Lemma B.1.1, it follows that

∥∆B,jk∥2ψ ≤ (ψ − 1)
B∑
i=1

∥XijXik − Σ∥2ψ ≤ 4B(ψ − 1)M4
ψ.

Consequently, under Assumption 3.2.2, we have

(
E∥At − Σ∥ψ2

)1/ψ
≤ 1

B

 p∑
j,k=1

∥∆B,jk∥2ψ

1/2

≤
2p(ψ − 1)1/2M2

ψ

B1/2
≤ λ0.

B.1.2 Proof of Lemma 3.2.8

By Lemma B.1.3, triangle inequality and the fact that η0 ≤ 1/∥Σ∥2, we have for each ℓ ≥ 1,

∥Ip − ηℓAℓ∥ψ ≤ ∥Ip − ηℓΣ∥ψ + ηℓ∥Aℓ − Σ∥ψ ≤ 1− 2λ0ηℓ + λ0ηℓ = 1− λ0ηℓ.

176

Consequently, by the triangle inequality, it follows that

∥ω⊤S⋄T ∥ψ ≤ ∥θ0 − θ
⋆∥2

T∑
t=1

t∏
ℓ=1

(1− λ0ηℓ) ≤ ∥θ0 − θ⋆∥2Υλ0η0,α. (B.1)

Then Lemma 3.2.8 is obtained through Markov’s inequality.

B.1.3 Proof of Lemma 3.2.9

We first introduce the following lemma, providing a concentration inequality for DT,2, where

DT,2 = Bσ2
T∑

m=1

η2mω
⊤HmAmH⊤mω =: Bσ2

T∑
m=1

η2mξm.

Lemma B.1.4 (Main Technical Lemma). Under Assumption 3.2.2, for z > 0, we have

P(|DT,2 − E(DT,2)| > z) ≤
Cψ,αTL

ψ/4−1∥Σ∥ψ/22

λ
ψ
0 (z/B)ψ/2

+ C exp

{
−
C ′ψ,α(z/B)2λ40

T∥Σ∥22

}
,

where Cψ,α and C ′ψ,α are positive constants depending only on ψ and α, and

L ≍ Tα

λ0η0
log

(
B∥Σ∥2T 1+α

λ20

)
. (B.2)

Proof. For any k ≥ 1, define FA,k = σ{A1, A2, . . . , Ak} and the projection operator

PA,k(·) = E(·|FA,k)− E(·|FA,k−1).

Denote Hm = H(Am+1, Am+2, . . . , AT). For any h ≥ 1, define

Hm,{m+h} = H(Am+1, Am+2, . . . , Am+h−1, A
⋆
m+h, Am+h+1, . . . , AT).

177

where (A⋆t)t∈Z are i.i.d. random matrix with A⋆t
D
= At. Note that

Hm −Hm,{m+h} =
T∑

k=m+h

k∏
ℓ=m+h+1

(Ip − ηℓAℓ)ηm+h(Am+h − A⋆m+h)
m+h−1∏
ℓ=m+1

(Ip − ηℓAℓ).

Hence, by Assumption 3.2.2, we have ∥Am+h − Σ∥ψ ≤ λ0 and consequently

∥Hm−Hm,{m+h}∥ψ ≲
T∑

k=m+h

ηm+h∥Am+h − Σ∥ψ
k∏

ℓ=m+1

(1− λ0ηℓ)

≤ λ0ηm+h

∫ ∞
m+h

exp

(
−λ0η0

∫ z

m+1
x−αdx

)
dz.

Therefore, together with the fact that ∥Am∥ψ ≤ ∥Am − Σ∥ψ + ∥Σ∥2 ≤ 2∥Σ∥2, we have

∥PA,m+h(ξm)∥ψ/2 ≤ 2∥Am∥ψ∥Hm −Hm,{m+h}∥ψ∥Hm∥ψ

≲ λ0∥Σ∥ηm+h∥Hm∥ψ
∫ ∞
m+h

exp

(
−λ0η0

∫ z

m+1
x−αdx

)
dz.

Define the L-approximation of DT,2 as

DT,2,L = Bσ2
T∑

m=1

η2mE(ξm|PA,m+L) = DT,2 −Bσ2
T∑

m=1

η2m

T−h∑
h=L+1

PA,m+h(ξm).

Note that E(DT,2) = E(DT,2,L). Hence, by Lemma B.1.1 and (B.2),

∥DT,2−DT,2,L∥ψ/2 ≤ CψBσ
2

T−1∑
h=L+1


T−h∑
m=1

η4m∥PA,m+h(ξm)∥2ψ/2


1/2

≤
Cψ,αBσ

2∥Σ∥T 1+α

λ20L
α

exp

(
−λ0η0L

2αTα

)
≤ Cψ,αT

−1/2.

Now we bound |DT,2,L − E(DT,2,L)|. By Lemma B.1.2 and a similar argument as that of

178

(B.3),

P(|DT,2,L − E(DT,2,L)| > z) ≤
Cψ,αTL

ψ/4−1∥Σ∥ψ/22

λ
ψ
0 (z/B)ψ/2

+ C exp

{
−
C ′ψ,α(z/B)2λ40

T∥Σ∥22

}
.

Consequently, Lemma B.1.4 follows in view of

P(|DT,2 − E(DT,2)| > z) ≤ P(|DT,2 −DT,2,L| > z/2) + P(|DT,2,L − E(DT,2,L)| > z/2).

Remaining proof: As discussed in Section 3.2.4, it suffices to bound DT,q and DT,2. By

Assumption 3.2.2 and a similar argument as (B.1),

∥Hm∥q ≤ 1 +

∫ ∞
m+1

exp

(
−λ0η0

∫ z

m+1
x−αdx

)
dz,

which leads to

E(DT,q) = Bµq

T∑
m=1

η
q
mE|ω⊤HmXi|q ≤ BµqKq

T∑
m=1

η
q
m∥Hm∥qq ≤

Cq,αnµqKq
λ
q
0

. (B.3)

Hence, by Lemma B.1.4, we have

P
(
DT,2 > E(DT,2) +

x2

log x

)
≤
Cψ,αTL

ψ/4−1∥Σ∥ψ/22 Bψ/2

λ
ψ
0 (x

2/ log x)ψ/2
+ C exp

{
−
C ′ψ,α(x

2/ log x)2λ40

T∥Σ∥22B2

}
.

As ψ > (2q − 4α)/(2− α), for any x ≳
√
T , we have

TLψ/4−1(log x)ψ/2

xψ
= o

(
T

xq

)
.

179

Consequently, as E(DT,2) ≤ Cq,αnW2, we have

P
(
|ω⊤S⋆T | > x

)
≤
C1TWq

xq
+ C exp

(
− C2x

2

TW2 + x2/ log x

)
≤
C1TWq

xq
+ C exp

(
−C2x

2

TW2

)
,

where C1 and C2 are positive constants depending only on q, α and ψ.

B.1.4 Proof of Theorems 3.2.4, 3.2.6

As discussed in Section 3.2.4, Theorem 3.2.4 directly follows from Lemma 3.2.8 and Lemma 3.2.9.

The proof of Theorem 3.2.6 is similar to that of Theorem 3.2.4 and thus omitted.

B.1.5 Proof of Proposition 3.3.1

Proof. Let

µT,q =
T∑
t=1

 T∑
i=t

V it ηt/T

q .
Note that

θ̄T − θ∗ −
1

T

T∑
i=1

Vi∆0 =
1

T

T∑
t=1

T∑
i=t

V it ηtϵt.

Since {ϵt}t≥1 are i.i.d. , according to Corollary 1.8 in Nagaev [1979] we have

P

∣∣∣∣∣∣θ̄T − θ∗ − 1

T

T∑
i=1

Vi∆0

∣∣∣∣∣∣ ≥ x

 ≤ (1 + 2/q)q
µT,qE|ϵ|q

xq
+ 2 exp

(
−

cqx
2

µT,2E|ϵ|2

)
.

Then all we need to show is that µT,q ≍ T 1−q for 2 ≤ q < ν, and
∑T
i=1 Vi = O(1). Since

there’s no randomness in µT,q and Vi, we can check the order through numerical computation;

see figure B.1. Also, according to Lemma A.2 in Zhu et al. [2023],
∑T
i=t V

i
t = O(tα) for

α ∈ (1/2, 1), which implies that µT,q = O(T 1−q).

180

6.9 7.0 7.1 7.2 7.3 7.4 7.5 7.6

−
6.

2
−

6.
0

−
5.

8
−

5.
6

log(t)

lo
g(

µ t
2)

0 2 4 6

−
6

−
5

−
4

−
3

−
2

−
1

0

log(t)

lo
g(

V
t)

Figure B.1: Left: Check the order of µT,2. The X axis represents log(t); the Y axis represents
log(µt,2). The slop of the log-log curve is about −1, which implies that µT,2 ≍ T−1. Right:
Check the order of Vt. The X axis represents log(t); the Y axis represents log(Vt). The slop
of the log-log curve is much less than −1 when t is large, which means Vt is summable and∑T
i=1 Vi = O(1).

B.1.6 Proof of Proposition 3.3.2

Proof. Let

ST = θ̄T − θ∗ −
1

T

T∑
i=1

Vi∆0 =
1

T

T∑
t=1

T∑
i=t

V it ηtϵt.

To apply Theorem 1 in Peligrad et al. [2014], we need to verify the basic assumption, the

uniform asymptotic negligibility of the variance of individual summands, that is

max
t

 T∑
i=t

V it ηt

2

/

T∑
t=1

 T∑
i=t

V it ηt

2

→ 0. (B.4)

Since Lemma A.2 in Zhu et al. [2023] shows
∑T
i=t V

i
t ≍ tα as T → ∞ and ηt = η0t

−α, the

above limit is of order T−1. (Note that σ2T = E|ϵ|2µT,2 ≍ T−1.) We can also verify (B.4)

from numerical computation; see Figure B.2. Then, according to Theorem 1 in Peligrad

181

0 500 1000 1500 2000
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

t

ra
tio

Figure B.2: Check the uniform asymptotic negligibility of the variance of individual sum-
mands. The X axis represents t; the Y axis represents the ratio of the largest individual
variance and variance of individual summands.

et al. [2014], we have

P (ST ≥ x) = (1 + o(1))

1− Φ(x/σT) +
T∑
t=1

P

 T∑
i=t

V it ηtϵt/T ≥ x

 ,

which naturally yields (3.14).

182

APPENDIX C

APPENDIX FOR CHAPTER 4

This chapter is organized as follows: In section C.1, we introduce some technical lemmas,

which are useful for our proofs later. In section C.2, we prove the convergence of our proposed

online estimator in the special case of linear processes, i.e., Lemma C.2.1. We break down

the proof of Lemma C.2.1 into several parts: C.2.2, C.2.3, C.2.4, and C.2.5 in the rest of this

section. Based on the results for the special case, we prove in section C.3 the convergence

in general cases, i.e., Theorems 4.3.5 and 4.3.8. We provide proof of Proposition 4.3.1 in

section C.4. We also include a simple simulation study applying the fixed-width sequential

stopping rule in Section C.5. We use I to denote a d× d identity matrix.

C.1 Technical Lemmas

Lemma C.1.1. Assume that A is a positive definite matrix. For any i ∈ N, define the

matrix sequence {Y ji } with Y ii = I and for any j > i

Y
j
i =

j∏
k=i+1

(I− ηkA),

where ηk is chosen to be ηk−α for α ∈ (1/2, 1). Then we have

∥Y ji ∥2 ≤ exp

−ηγ j∑
k=i+1

k−α

 ≤ exp

[
− γη

1− α

(
j1−α − (i+ 1)1−α

)]
,

where γ = min(λmin(A), 1/(2η)).

Proof. Since A is positive definite, there exists an orthonormal matrix Q and a diagonal

183

matrix Λ such that A = QΛQT . We have

∥Y ji ∥2 ≤
j∏

k=i+1

∥(I− ηkA)∥2 =

j∏
k=i+1

∥(I− ηkΛ)∥2 ≤
j∏

k=i+1

(
1− γηk−α

)
.

Note that 1− x ≤ exp(−x) for any x ∈ [0, 1]. So ∥Y ji ∥2 can be further bounded as

∥Y ji ∥2 ≤ exp

− j∑
k=i+1

γηk−α

 .

The lemma can be verified using the fact that

j∑
k=i+1

k−α ≥
∫ j+1

i+1
k−αdk =

1

1− α

(
(j + 1)1−α − (i+ 1)1−α

)
.

Lemma C.1.2. With Y ji defined in Lemma C.1.1, let Sji =
∑j
k=i+1 Y

k
i for any j > i and

Sii = 0. Then we have

∥Sji ∥2 ≲ (i+ 1)α.

Proof. Through triangle inequality and Lemma C.1.1,

∥Sji ∥2 ≤
j∑

k=i+1

∥Y ki ∥2 ≤
j∑

k=i+1

exp

[
− γη

1− α

(
k1−α − (i+ 1)1−α

)]
. (C.1)

Note that exp
(
− γη

1−αk
1−α

)
is decreasing with k, so

j∑
k=i+1

exp

(
− γη

1− α
k1−α

)
≤
∫ j

i+1
exp

(
− γη

1− α
k1−α

)
dk ≲

∫ k1−α

(i+1)1−α
exp

(
− γη

1− α
t

)
t

α
1−αdt.

184

For any 1 ≤ a ≤ b and any 1 < β, we have by elementary manipulation that

∫ b

a
e−xxβdx ≤

∫ ∞
a

e−xxβdx ≲ aβe−aCβ ,

where Cβ is a constant depending only on β. Then we have

j∑
k=i+1

exp

(
− γη

1− α
k1−α

)
≲ exp

(
− γη

1− α
(i+ 1)1−α

)
(i+ 1)α. (C.2)

Combining (C.1) and (C.2),

∥Sji ∥2 ≤ exp

(
γη

1− α
(i+ 1)1−α

) j∑
k=i+1

exp

(
− γη

1− α
k1−α

)
≲ (i+ 1)α.

Lemma C.1.3. With definition of Y ji in Lemma C.1.1, sequence Un can be rewritten as

Uk = (I− ηkA)Uk−1 + ηkϵk = Y ks Us +
k∑

p=s+1

Y kp ηpϵp.

According to Lemma B.3 in Chen et al. [2020], we have

E∥Uk∥22 ≲ k−α.

Lemma C.1.4. Let am =
⌊
Cmβ

⌋
,m ≥ 2 (a1 = 1), for some constant C > 0 and β >

1/(1−α). For aM ≤ n < aM+1, define nm = am+1−am, 1 ≤ m < M , and nM = n−aM+1.

We have

1.

lim
M→∞

∑n
i=1 li∑aM+1−1

i=1 li
= 1. (C.3)

185

2.
(aM+1 − aM)2∑M
m=1(am+1 − am)2

≲M−1, and
aαM
nM
→ 0. (C.4)

Proof. Since n ≥ aM , we have

n∑
i=1

li ≥
aM−1∑
i=1

li =
M−1∑
m=1

am+1−1∑
i=am

(i− am + 1) =
M−1∑
m=1

nm(nm + 1)

2
.

Also,
aM+1−1∑
i=1

li =
M∑
m=1

nm(nm + 1)

2
.

Then according to the choice of ak, we have

lim
M→∞

∑n
i=1 li∑aM+1−1

i=1 li
≥ 1− nM (nM + 1)∑M

m=1 nm(nm + 1)
= lim
M→∞

(1−M−1) = 1. (C.5)

Since
∑n
i=1 li ≤

∑aM+1−1
i=1 li, the limit is 1. Equation (C.4) is easy to verify by using the

form of ak.

C.2 The Linear Case

Recall that the error δn = xn − x∗ takes the form:

δn = δn−1 − ηn∇F (xn−1) + ηnϵn, (C.6)

where ϵn = ∇F (xn−1)−∇f(xn−1, ξn). The sequence {ϵn} is a martingale difference sequence

since

En−1ϵn = ∇F (xn−1)− En−1∇f(xn−1, ξn) = 0. (C.7)

Note that∇F (x∗) = 0 since x∗ is the minimizer of F (x). By Taylor’s expansion of∇F (xn−1)

around x∗, we have ∇F (xn−1) ≈ ∇Aδn−1, where A = ∇2F (x∗). Thus, modifying equation

186

(C.6) with ∇F (xn−1) approximated by Aδn−1, we have for large n

δn ≈ (I− ηnA)δn−1 + ηnϵn. (C.8)

Inspired by (C.8), we define the linear sequence (Un)n∈N as follows:

Un = (I− ηnA)Un−1 + ηnϵn, U0 = δ0. (C.9)

Now we define a new estimator Σ̃n based on Un:

Σ̃n =
1∑n
i=1 li

n∑
i=1

 i∑
k=ti

Uk − liŪn

 i∑
k=ti

Uk − liŪn

T . (C.10)

In certain cases when ∇F (xn−1) = ∇Aδn−1, such as mean estimation model and linear

regression model, error δn exactly takes the form of Un. Then we have Σ̂n = Σ̃n. In general

cases, we can use Un to approximate δn since the difference between them is small. In other

words, studying covariance matrix of Ūn can give us insight into the covariance matrix of

x̄n. Next lemma shows that the estimator Σ̃n is consistent. It can be viewed as a special

case of linear processes.

Lemma C.2.1. Let am =
⌊
Cmβ

⌋
, where C > 0 and β > 1/(1 − α). Set step size at the

i-th iteration ηi = ηi−α with 1
2 < α < 1. Then under Assumptions 4.3.2 and 4.3.3,

E
∥∥∥Σ̃n − Σ

∥∥∥
2
≲M−αβ/2 +M−1/2 +M ((α−1)β+1)/2, (C.11)

where M is the number of batches such that aM ≤ n < aM+1.

187

Proof. Recall that

Σ̃n =

(
n∑
i=1

li

)−1 n∑
i=1

 i∑
k=ti

Uk − liŪn

 i∑
k=ti

Uk − liŪn

T .
Using triangle inequality we have

E
∥∥∥Σ̃n − Σ

∥∥∥
2
≤ E

∥∥∥∥∥∥∥
(

n∑
i=1

li

)−1 n∑
i=1

 i∑
k=ti

Uk

 i∑
k=ti

Uk

T − Σ

∥∥∥∥∥∥∥
2

+ E

∥∥∥∥∥∥
(

n∑
i=1

li

)−1 n∑
i=1

l2i ŪnŪ
T
n

∥∥∥∥∥∥
2

+ 2E

∥∥∥∥∥∥
(

n∑
i=1

li

)−1 n∑
i=1

 i∑
k=ti

Uk

(liŪn)T
∥∥∥∥∥∥
2

.

(C.12)

By Lemmas C.2.3, C.2.4 and C.2.5 (proved in the rest of this section), all these three terms

in (C.12) are bounded, which implies Lemma C.2.1.

Let

Ŝn =

(
n∑
i=1

li

)−1 n∑
i=1

 i∑
k=ti

ϵk

 i∑
k=ti

ϵk

T .
In Lemma C.2.2, we show that Ŝn converges to S, the covariance matrix of ∇f(x∗, ξ). Using

this fact, we have Lemma C.2.3, which provides an upper bound for the first term in (C.12).

The other two terms in (C.12) are bounded by Lemma C.2.4 and C.2.5 respectively.

Lemma C.2.2. Let aM ≤ n < aM+1. Under conditions in Lemma C.2.1, we have

E
∥∥∥Ŝn − S∥∥∥

2
≲M−αβ/2 +M−1/2. (C.13)

Proof. Here we introduce sequence {ϵ∗n} as follows

ϵ∗n = ∇F (x∗)−∇f(x∗, ξn) = −∇f(x∗, ξn), n ≥ 1.

188

Note that {ϵ∗n} is a sequence of i.i.d variables with mean 0, and therefore {ϵn − ϵ∗n} is still

a martingale difference sequence. We further define

Ŝ∗n =

(
n∑
i=1

li

)−1 n∑
i=1

 i∑
k=ti

ϵ∗k

 i∑
k=ti

ϵ∗k

T .
Then we can bound E∥Ŝn − S∥2 through triangle inequality

E∥Ŝn − S∥2 ≤ E∥Ŝ∗n − S∥2 + E∥Ŝn − Ŝ∗n∥2. (C.14)

Step 1: Bound E∥Ŝ∗n − S∥2.

Since Ŝ∗n − S is symmetric,

E∥Ŝ∗n − S∥2 = E|λmax(Ŝ∗n − S)| = E
√
λmax(Ŝ∗n − S)2. (C.15)

Note that (Ŝ∗n − S)2 is positive semidefinite. For any positive semidefinite matrix C we

have λmax(C) ≤ tr(C) ≤ d∥C∥2. So λmax(Ŝ∗n − S)2 ≤ tr(Ŝ∗n − S)2. Further using Jensen’s

inequality, we have

E∥Ŝ∗n − S∥2 ≤ E
√

tr(Ŝ∗n − S)2 ≤
√

trE(Ŝ∗n − S)2 ≤
√
d∥E(Ŝ∗n − S)2∥2. (C.16)

Note that by definition of S,

E(Ŝ∗n) =

(
n∑
i=1

li

)−1 n∑
i=1

i∑
k=ti

Eϵ∗kϵ
∗T
k = S.

Then

∥E(Ŝ∗n − S)2∥2 = ∥EŜ∗2n − S2∥2.

189

Note that E(ϵ∗p1ϵ
∗T
p2 ϵ
∗
p3ϵ
∗T
p4) is nonzero if and only if for any r there exist r′ ̸= r such that

pr = pr′ , r, r′ ∈ {1, 2, 3, 4}. There are two cases we can consider. The first case is p1 = p3 ̸=

p2 = p4 or p1 = p4 ̸= p2 = p3. This requires i and j in the same block. The second case is

p1 = p2 and p3 = p4. We can expand EŜ∗2n and rewrite it into two parts,

EŜ∗2n =E

(
n∑
i=1

li

)−2 ∑
1≤i,j≤n

 i∑
k=ti

ϵ∗k

 i∑
k=ti

ϵ∗k

T  j∑
k=tj

ϵ∗k

 j∑
k=tj

ϵ∗k

T

=

(
n∑
i=1

li

)−2
I +

(
n∑
i=1

li

)−2
II,

(C.17)

where

I =E
M−1∑
m=1

am+1−1∑
i=am

2 i−1∑
j=am

∑
am≤p1 ̸=p2≤j

(
ϵ∗p1ϵ
∗T
p2 ϵ
∗
p1ϵ
∗T
p2 + ϵ∗p1ϵ

∗T
p2 ϵ
∗
p2ϵ
∗T
p1

)

+
∑

am≤p1 ̸=p2≤i

(
ϵ∗p1ϵ
∗T
p2 ϵ
∗
p1ϵ
∗T
p2 + ϵ∗p1ϵ

∗T
p2 ϵ
∗
p2ϵ
∗T
p1

)
+E

n∑
i=aM

2 i−1∑
j=aM

∑
aM≤p1 ̸=p2≤j

(
ϵ∗p1ϵ
∗T
p2 ϵ
∗
p1ϵ
∗T
p2 + ϵ∗p1ϵ

∗T
p2 ϵ
∗
p2ϵ
∗T
p1

)

+
∑

aM≤p1 ̸=p2≤i

(
ϵ∗p1ϵ
∗T
p2 ϵ
∗
p1ϵ
∗T
p2 + ϵ∗p1ϵ

∗T
p2 ϵ
∗
p2ϵ
∗T
p1

) ,
and

II =
n∑
i=1

n∑
j=1

i∑
p=ti

j∑
q=tj

E(ϵ∗pϵ∗Tp ϵ∗qϵ
∗T
q).

Let ∥E(ϵ∗p1ϵ
∗T
p2 ϵ
∗
p3ϵ
∗T
p4)∥2 be bounded by constant C for any pr,r ∈ {1, 2, 3, 4}. Then we can

190

bound I as follows,

∥I∥2 ≤
M∑
m=1

am+1−1∑
i=am

2 i−1∑
j=am

∑
am≤p1 ̸=p2≤j

(C + C) +
∑

am≤p1 ̸=p2≤i
(C + C)


≲

M∑
m=1

am+1−1∑
i=am

(1× 2 + 2× 3 + ...+ (li − 1)× li)

≲
M∑
m=1

am+1−1∑
i=am

l3i ≲
M∑
m=1

n4m.

(C.18)

Since
∑n
i=1 li ≍

∑M
m=1

∑am+1−1
i=am

li ≍
∑M
m=1 n

2
m and n2M/

∑M
m=1 n

2
m ≲M−1 , we have

(
n∑
i=1

li

)−2
∥I∥2 ≲

∑M
m=1 n

4
m

(
∑M
m=1 n

2
m)2

≲
max1≤m≤M n2m∑M

m=1 n
2
m

≲M−1. (C.19)

Next, note that
∑n
i=1

∑n
j=1

∑i
p=ti

∑j
q=tj

1 = (
∑n
i=1 li)

2. Then,

∥∥∥∥∥∥
(

n∑
i=1

li

)−2
II − S2

∥∥∥∥∥∥
2

≤

(
n∑
i=1

li

)−2 n∑
i=1

n∑
j=1

i∑
p=ti

j∑
q=tj

∥∥∥E(ϵ∗pϵ∗Tp ϵ∗qϵ
∗T
q)− S2

∥∥∥
2

≲

aM+1−1∑
i=1

li

−2 M∑
m=1

M∑
k=1

am+1−1∑
i=am

ak+1−1∑
j=ak

i∑
p=am

j∑
q=ak

∥∥∥E(ϵ∗pϵ∗Tp ϵ∗qϵ
∗T
q)− S2

∥∥∥
2
.

(C.20)

We consider two cases here. One is when p and q are in the same block. Let

III =
M∑
m=1

am+1−1∑
i=am

am+1−1∑
j=am

i∑
p=am

j∑
q=am

∥∥∥E(ϵ∗pϵ∗Tp ϵ∗qϵ
∗T
q)− S2

∥∥∥
2
.

191

Here ∥E(ϵ∗pϵ∗Tp ϵ∗qϵ
∗T
q)∥2 is still bounded by constant C. Then we have

aM+1−1∑
i=1

li

−2 III ≤
aM+1−1∑

i=1

li

−2 M∑
m=1

am+1−1∑
i=am

am+1−1∑
j=am

i∑
p=am

j∑
q=am

(
C +

∥∥∥S2∥∥∥
2

)

≲

aM+1−1∑
i=1

li

−2 M∑
m=1

am+1−1∑
i=am

li

2

≲

∑M
m=1 n

4
m

(
∑M
m=1 n

2
m)2

≲
max1≤m≤M n2m∑M

m=1 n
2
m

≲M−1.

(C.21)

The other case is when p and q are in different blocks. Let

IV =
∑
m ̸=k

ak+1−1∑
j=ak

am+1−1∑
i=am

j∑
q=ak

i∑
p=am

∥∥∥E(ϵ∗pϵ∗Tp ϵ∗qϵ
∗T
q)− S2

∥∥∥
2
.

Note that E(ϵ∗nϵ∗Tn) = S by definition of S and ϵ∗pϵ∗Tp is independent of ϵ∗qϵ∗Tq , ∀p > q. Then

for p > q, ∥∥∥E(ϵ∗pϵ∗Tp ϵ∗qϵ
∗T
q)− S2

∥∥∥
2
=
∥∥∥E(ϵ∗pϵ∗Tp)E(ϵ∗qϵ∗Tq)− S2

∥∥∥
2
= 0. (C.22)

Then we have aM+1−1∑
i=1

li

−2 IV = 0 (C.23)

Combining (C.20), (C.21) and (C.23), we have

∥∥∥∥∥∥
(

n∑
i=1

li

)−2
II − S2

∥∥∥∥∥∥
2

≲

aM+1−1∑
i=1

li

−2 III +
aM+1−1∑

i=1

li

−2 IV ≲M−1. (C.24)

192

Further combining (C.17), (C.19) and (C.24), we have

∥EŜ∗2n − S2∥ ≤

∥∥∥∥∥∥
(

n∑
i=1

li

)−2
II − S2

∥∥∥∥∥∥
2

+

(
n∑
i=1

li

)−2
∥I∥2 ≲M−1. (C.25)

Therefore

E∥Ŝ∗n − S∥2 ≤
√
d∥E(Ŝ∗n − S)2∥2 =

√
d∥EŜ∗2n − S2∥2 ≲M−1/2.

Step 2: Bound E∥Ŝn − Ŝ∗n∥2.

Let vk = ϵk − ϵ∗k, k ≥ 1. We can expand E∥Ŝn − Ŝ∗n∥2 as

E∥Ŝn − Ŝ∗n∥2 = E

∥∥∥∥∥∥∥
(

n∑
i=1

li

)−1 n∑
i=1


 i∑
k=ti

ϵk

 i∑
k=ti

ϵk

T −
 i∑
k=ti

ϵ∗k

 i∑
k=ti

ϵ∗k

T

∥∥∥∥∥∥∥

≤2E

∥∥∥∥∥∥∥
(

n∑
i=1

li

)−1 n∑
i=1

 i∑
k=ti

vk

 i∑
k=ti

ϵ∗k

T
∥∥∥∥∥∥∥
2

+ E

∥∥∥∥∥∥∥
(

n∑
i=1

li

)−1 n∑
i=1

 i∑
k=ti

vk

 i∑
k=ti

vk

T
∥∥∥∥∥∥∥
2

.

(C.26)

Apply Cauchy’s inequality

E

∥∥∥∥∥∥∥
(

n∑
i=1

li

)−1 n∑
i=1

 i∑
k=ti

vk

 i∑
k=ti

ϵ∗k

T
∥∥∥∥∥∥∥
2

≤
√

E∥Ŝ∗n∥2

√√√√√√E

∥∥∥∥∥∥∥
(

n∑
i=1

li

)−1 n∑
i=1

 i∑
k=ti

vk

 i∑
k=ti

vk

T
∥∥∥∥∥∥∥
2

.

(C.27)

Then we only need to bound E
∥∥∥∥(∑n

i=1 li)
−1∑n

i=1

(∑i
k=ti

vk

)(∑i
k=ti

vk

)T∥∥∥∥
2
. By triangle

193

inequality and the fact ∥C∥2 ≤ tr(C) for any positive semi-definite matrix C,

E

∥∥∥∥∥∥∥
(

n∑
i=1

li

)−1 n∑
i=1

 i∑
k=ti

vk

 i∑
k=ti

vk

T
∥∥∥∥∥∥∥
2

≤

(
n∑
i=1

li

)−1 n∑
i=1

Etr


 i∑
k=ti

vk

 i∑
k=ti

vk

T


=

(
n∑
i=1

li

)−1 n∑
i=1

E

∥∥∥∥∥∥
i∑

k=ti

vk

∥∥∥∥∥∥
2

2

.

(C.28)

Note that the sequence {vk} is still a martingale difference sequence since

Ek−1vk = Ek−1ϵk − Ek−1ϵ∗k = 0.

Then we have

E∥
i∑

k=ti

vk∥22 =
i∑

k=ti

E∥vk∥22.

We also have

E∥vk∥22 = E∥ϵk − ϵ∗k∥
2
2 = E∥∇F (xk−1)−∇F (x∗)− (∇f(xk−1, ξk)−∇f(x∗, ξk))∥22

≤ 2E∥∇F (xk−1)−∇F (x∗)∥22 + 2E∥∇f(xk−1, ξk)−∇f(x∗, ξk)∥22

≲ E∥xk−1 − x∗∥22 ≲ (k − 1)−α.

(C.29)

The second last inequality comes from Lipschitz continuity of objective function (here we also

assume f(x, ξ) is Lipschitz continuous with respect to the first argument x). Last inequality

194

comes from Lemma 4.3.4. Then we have

E

∥∥∥∥∥∥∥
(

n∑
i=1

li

)−1 n∑
i=1

 i∑
k=ti

vk

 i∑
k=ti

vk

T
∥∥∥∥∥∥∥
2

≤

(
n∑
i=1

li

)−1 n∑
i=1

E

∥∥∥∥∥∥
i∑

k=ti

vk

∥∥∥∥∥∥
2

2

≤

(
n∑
i=1

li

)−1 n∑
i=1

i∑
k=ti

E∥vk∥22 ≲

(
n∑
i=1

li

)−1 n∑
i=1

i∑
k=ti

(k − 1)−α

≤

(
n∑
i=1

li

)−1 M∑
m=1

am+1−1∑
i=am

li(am − 1)−α.

(C.30)

Since
n∑
i=1

li ≍
M∑
m=1

n2m,
M∑
m=1

am+1−1∑
i=am

li(am − 1)−α ≍
M∑
m=1

n2ma
−α
m ,

we have

E

∥∥∥∥∥∥∥
(

n∑
i=1

li

)−1 n∑
i=1

 i∑
k=ti

vk

 i∑
k=ti

vk

T
∥∥∥∥∥∥∥
2

≲M−αβ .

Then

E∥Ŝn − Ŝ∗n∥2 ≲M−αβ/2.

Finally, we reach the result

E∥Ŝn − S∥2 ≲ E∥Ŝ∗n − S∥2 + E∥Ŝn − Ŝ∗n∥2 ≲M−αβ/2 +M−1/2. (C.31)

Lemma C.2.3. Under conditions in Lemma C.2.1, we have

E

∥∥∥∥∥∥∥
(

n∑
i=1

li

)−1 n∑
i=1

 i∑
k=ti

Uk

 i∑
k=ti

Uk

T − Σ

∥∥∥∥∥∥∥
2

≤M−αβ/2 +M−1/2 +M ((α−1)β+1)/2,

(C.32)

where aM ≤ n < aM+1.
195

Proof. With the formula of Uk in Lemma C.1.3, for k ∈ [ti, i] we have

Uk = Y kti−1Uti−1 +
k∑

p=ti

Y kp ηpϵp.

With definition of Skj , we have

i∑
k=ti

Uk =
i∑

k=ti

Y kti−1Uti−1 + k∑
p=ti

Y kp ηpϵp

 = Siti−1Uti−1 +
i∑

p=ti

(I+ Sip)ηpϵp.

Then we have the following expansion:

(
n∑
i=1

li

)−1 n∑
i=1

 i∑
k=ti

Uk

 i∑
k=ti

Uk

T

=

(
n∑
i=1

li

)−1 n∑
i=1

Siti−1Uti−1 + i∑
p=ti

(I+ Sip)ηpϵp

Siti−1Uti−1 + i∑
p=ti

(I+ Sip)ηpϵp

T

=

(
n∑
i=1

li

)−1 n∑
i=1

A−1
 i∑
p=ti

ϵp

 i∑
p=ti

ϵp

T A−1 +BiA
T
i + AiB

T
i +BiB

T
i

 ,

(C.33)

196

where Ai =
∑i
p=ti

A−1ϵp and Bi = Siti−1Uti−1+
∑i
p=ti

(ηpS
i
p+ηpI−A−1)ϵp. We then have

E

∥∥∥∥∥∥∥
(

n∑
i=1

li

)−1 n∑
i=1

 i∑
k=ti

Uk

 i∑
k=ti

Uk

T − Σ

∥∥∥∥∥∥∥
2

≲E

∥∥∥∥∥∥∥
(

n∑
i=1

li

)−1 n∑
i=1

A−1
 i∑
p=ti

ϵp

 i∑
p=ti

ϵp

T A−1 − Σ


∥∥∥∥∥∥∥
2

+ E

∥∥∥∥∥∥
(

n∑
i=1

li

)−1 n∑
i=1

BiA
T
i

∥∥∥∥∥∥
2

+ E

∥∥∥∥∥∥
(

n∑
i=1

li

)−1 n∑
i=1

BiB
T
i

∥∥∥∥∥∥
2

=I + II + III.

(C.34)

It is suffices to show that all three parts above can be bounded. Recall that

Ŝn =

(
n∑
i=1

li

)−1 n∑
i=1

 i∑
k=ti

ϵk

 i∑
k=ti

ϵk

T ,
and Σ = A−1SA−1. We can bound I using Lemma C.2.2.

I ≤ ∥A−1∥22E∥Ŝn − S∥2 ≲M−αβ/2 +M−1/2. (C.35)

For the third part III, since BiBTi is positive semi-definite, we have

E∥BiBTi ∥2 ≤ Etr(BiBTi) = tr(E(BiBTi)) ≤ d∥E(BiBTi)∥2.

Since ϵp are martingale differences, we have E(Uam−1ϵ
T
p) = 0 for any p ≥ am and E(ϵp1ϵTp2) =

197

0 for any p1 ̸= p2. So,

∥∥∥E(BiBTi)∥∥∥2 =
∥∥∥Siam−1E(Uam−1Uam−1T)Siam−1T
+

i∑
p=am

(ηpS
i
p + ηpI− A−1)E(ϵpϵTp)(ηpSip + ηpI− A−1)T

∥∥∥∥∥
2

≤
∥∥∥Siam−1∥∥∥22 ∥∥∥E(Uam−1UTam−1)∥∥∥2 +

i∑
p=am

∥∥∥ηpSip + ηpI− A−1
∥∥∥2
2

∥∥∥E(ϵpϵTp)∥∥∥
2
.

(C.36)

From Lemmas C.1.2 and C.1.3, we can see that
∥∥∥Siam−1∥∥∥22 ≲ a2αm and

∥E(Uam−1U
T
am−1)∥2 ≲ trE(Uam−1U

T
am−1) ≲ Etr(Uam−1U

T
am−1) ≲ E∥Uam−1∥

2
2 ≲ (am − 1)−α.

So we have ∥∥∥Siam−1∥∥∥22 ∥∥∥E(Uam−1UTam−1)∥∥∥2 ≲ aαm.

For the remaining part in (C.36),
∥∥∥E(ϵpϵTp)∥∥∥

2
is bounded and

i∑
p=am

∥ηpSip + ηpI− A−1∥22 ≲
i∑

p=am

(
∥ηpSip − A−1∥22 + ∥ηpI∥

2
2

)
. (C.37)

Next, we need to bound ∥ηpSip − A−1∥22. When ηj = ηj−α and am ≤ p ≤ i < am+1,

based on Lemma D.2 (3) in Chen et al. [2020], we have

∥ηpSip − A−1∥22 ≲ p2α−2 + exp

−2γ i∑
j=p

ηj

 .

198

Also,

i∑
p=am

exp

−2γ i∑
j=p

ηj

 ≤ i∑
p=am

exp
(
−2γη(i− p)i−α

)
≤
∞∑
k=0

exp
(
−2γηi−αk

)
.

Note that
∫∞
0 e−axdx = a−1. Then we can use integration to bound the summation above

as
∞∑
k=0

exp
(
−2γηi−αk

)
≤
∫ ∞
0

exp
(
−2γηi−αk

)
≲ iα.

Furthermore, p2α−2 ≥ p−2α since α > 1/2. So

i∑
p=am

∥∥∥ηpSip + ηpI− A−1
∥∥∥2
2
≲ lia

2α−2
m + iα.

Recall the definition of Bi, when ti = am

∥E(BiBTi)∥2 ≲ iα + lia
2α−2
m . (C.38)

Now since
∑n
i=1 li ≍

∑M
m=1 n

2
m, we can bound III as follows:

III ≲

 M∑
m=1

n2m

−1 M∑
m=1

am+1−1∑
i=am

E
∥∥∥BiBTi ∥∥∥2

≤

 M∑
m=1

n2m

−1 M∑
m=1

am+1−1∑
i=am

(
iα + lia

2α−2
m

)

≲

 M∑
m=1

n2m

−1 M∑
m=1

(
n2ma

2α−2
m + nma

α
m

)
.

(C.39)

Recall that am ≍ mβ and nm ≍ mβ−1, we then have

III ≲ a2α−2M +
aαM
nM

≲M (α−1)β+1. (C.40)

199

For the second part, using Cauchy’s inequality we have

II ≤ 1

√∑n
i=1 E

∥∥AiATi ∥∥2∑n
i=1 li

∑n
i=1 E

∥∥BiBTi ∥∥2∑n
i=1 li

. (C.41)

We already have the bound for (
∑n
i=1 li)

−1∑n
i=1 E

∥∥∥BiBTi ∥∥∥2. To finish the proof, the

only term remained to bound is (
∑n
i=1 li)

−1∑n
i=1 E

∥∥∥AiATi ∥∥∥2. Recall the definition of Ai =∑i
p=am A

−1ϵp when am ≤ i < am+1. Since AiATi is positive semi-definite, we have

E∥AiATi ∥2 ≤ Etr(AiATi) = tr
(
E(AiATi)

)
= tr

(
A−1E

((
i∑

p=am

ϵp

)(
i∑

p=am

ϵTp

))
A−T

)
.

(C.42)

When q ̸= q, we have E(ϵpϵTq) = 0. Furthermore, Let En−1(ϵnϵTn)− S = Σ1(δn−1) . Then,

E∥AiATi ∥2 ≤ tr

(
A−1

(
i∑

p=am

S + EΣ1(δp−1)

)
A−T

)

= Etr

(
A−1

(
liS +

i∑
p=am

Σ1(δp−1)

)
A−T

)

≲ E

∥∥∥∥∥A−1
(
liS +

i∑
p=am

Σ1(δp−1)

)
A−T

∥∥∥∥∥
2

≲ li∥S∥2 +
i∑

p=am

E
∥∥Σ1(δp−1)

∥∥
2 .

(C.43)

In Assumption 4.3.3, we have ∥Σ1(δ)∥2 ≤ C(∥δ∥2+∥δ∥22) for any δ. Also Lemma 4.3.4 shows

that E∥δn∥2 ≤ n−α/2(1+∥δ0∥2) and E∥δn∥22 ≤ n−α(1+∥δ0∥22). Then we can further bound

1. Apply Cauchy’s inequality twice: E|
∑n

i=1 xiyi| ≤ E
√
(
∑n

i=1 x
2
i)(
∑n

i=1 y
2
i) ≤

√∑n
i=1 Ex2i

∑n
i=1 Ey2i .

200

E∥AiATi ∥2 as

E∥AiATi ∥2 ≲ li∥S∥2 +
i∑

p=am

(
E
∥∥δp−1∥∥2 + E

∥∥δp−1∥∥22)

≲ li +
i∑

p=am

(p− 1)−α/2

≲ li + li(am − 1)−α/2 ≲ li.

(C.44)

Then we can bound the remaining term as

(
n∑
i=1

li

)−1 n∑
i=1

E
∥∥∥AiATi ∥∥∥2 ≲ O(1). (C.45)

Combining (C.45) and the bound of III, we have II ≲M ((α−1)β+1)/2.

Now, all three parts I, II, III are bounded by M−αβ/2 +M−1/2 +M ((α−1)β+1)/2.

Lemma C.2.4. Under the same conditions in Lemma C.2.1, we have

E

∥∥∥∥∥∥
(

n∑
i=1

li

)−1 n∑
i=1

l2i ŪnŪ
T
n

∥∥∥∥∥∥
2

≲M−1, (C.46)

where aM ≤ n < aM+1.

Proof. Since ŪnŪTn is positive semi-definite, we have

E
∥∥∥ŪnŪTn ∥∥∥

2
≤ Etr

(
ŪnŪ

T
n

)
= n−2tr

E

(
n∑
i=1

Ui

)(
n∑
i=1

Ui

)T . (C.47)

Recall that Ui = Y i0U0 +
∑i
p=1 Y

i
pηpϵp, then

n∑
i=1

Ui =
n∑
i=1

Y i0U0 + i∑
p=1

Y ipηpϵp

 = Sn0U0 +
n∑
p=1

(
I+ Snp

)
ηpϵp.

201

Note that ϵp are martingale differences. We have the following inequality after plugging in

the expansion above:

E
∥∥∥ŪnŪTn ∥∥∥

2
≤ n−2tr

E


Sn0U0 + n∑

p=1

(
I+ Snp

)
ηpϵp

Sn0U0 + n∑
p=1

(
I+ Snp

)
ηpϵp

T



= n−2tr

Sn0E(U0UT0)Sn0 T +
n∑
p=1

(
I+ Snp

)
η2pE(ϵpϵTp)

(
I+ Snp

)T
= n−2

∥Sn0 ∥22E∥U0∥22 + n∑
p=1

∥∥(I+ Snp
)∥∥2

2
η2pE∥ϵp∥22

 .

(C.48)

In Lemma C.1.2 we show that ∥Sji ∥2 ≲ (i+ 1)α. So here we have ∥Sn0 ∥
2
2 = O(1) and

n∑
p=1

∥∥(I+ Snp
)∥∥2

2
η2p ≲ O(n).

Since E∥U0∥22 and E∥ϵp∥22 are bounded, we have

E
∥∥∥ŪnŪTn ∥∥∥

2
≲ O(n−1). (C.49)

Note that ∑n
i=1 l

2
i∑n

i=1 li
≤
∑n
i=1 limaxk≤M (ak+1 − ak)∑n

i=1 li
≤ nM . (C.50)

Since nM =Mβ−1 and n ≍M1/β , we have

E

∥∥∥∥∥∥
(

n∑
i=1

li

)−1 n∑
i=1

l2i ŪnŪ
T
n

∥∥∥∥∥∥
2

≤
∑n
i=1 l

2
i∑n

i=1 li
E
∥∥∥ŪnŪTn ∥∥∥

2
≲ nMn−1 ≍M−1.

202

Lemma C.2.5. Under conditions in Lemma C.2.1, for aM ≤ n < aM+1, we have

E

∥∥∥∥∥∥
(

n∑
i=1

li

)−1 n∑
i=1

 i∑
k=ti

Uk

(liŪn)T
∥∥∥∥∥∥
2

≲M−1/2. (C.51)

Proof. Apply Cauchy’s inequality twice we have

E

∥∥∥∥∥∥
(

n∑
i=1

li

)−1 n∑
i=1

 i∑
k=ti

Uk

(liŪn)T
∥∥∥∥∥∥
2

≤2

√√√√√E
∥∥∥∥∑n

i=1

(∑i
k=ti

Uk

)(∑i
k=ti

Uk

)T∥∥∥∥
2∑n

i=1 li

E
∥∥∑n

i=1 l
2
i ŪnŪ

T
n

∥∥
2∑n

i=1 li
.

(C.52)

In Lemma C.2.4, we already have E∥ (
∑n
i=1 li)

−1∑n
i=1 l

2
i ŪnŪ

T
n ∥2 ≲ M−1. Moreover, the

L2 norm of (
∑i
k=am

Uk)(
∑i
k=am

Uk)
T is less than or equal to its trace since it is positive

semi-definite. Then we have LHS of the above equation bounded by

O(M−
1
2)

√√√√√√
(

n∑
i=1

li

)−1 n∑
i=1

Etr


 i∑
k=ti

Uk

 i∑
k=ti

Uk

T
.

Let

I =

(
n∑
i=1

li

)−1 n∑
i=1

Etr


 i∑
k=ti

Uk

 i∑
k=ti

Uk

T
 .

To show Lemma C.2.5, it is suffices to show I ≲ O(1). Note that

lim
M→∞

n∑
i=1

li/

aM−1∑
i=1

li = 1

2. Apply Cauchy’s inequality twice: E|
∑n

i=1 xiyi| ≤ E
√
(
∑n

i=1 x
2
i)(
∑n

i=1 y
2
i) ≤

√∑n
i=1 Ex2i

∑n
i=1 Ey2i .

203

and tr((
∑i
k=ti

Uk)(
∑i
k=ti

Uk)
T) ≥ 0. Plug Uk = Y k0 U0 +

∑k
p=1 Y

k
p ηpϵp into I, we have

I ≲

aM+1−1∑
i=1

li

−1 M∑
m=1

am+1−1∑
i=am

tr


 i∑
k=am

Y k0

E(U0UT0)

 i∑
k=am

Y k0

T


+

aM+1−1∑
i=1

li

−1 M∑
m=1

am+1−1∑
i=am

i∑
p=1

tr


 i∑
k=(am∨p)

Y kp

E(ϵpϵTp)

 i∑
k=(am∨p)

Y kp

T
 η2p

=II + III,

(C.53)

where (am ∨ p) = max(am, p). Next we shall show that both II and III are bounded by

O(1). The first term

II =

aM+1−1∑
i=1

li

−1 M∑
m=1

am+1−1∑
i=am

tr


 i∑
k=am

Y k0

E(U0UT0)

 i∑
k=am

Y k0

T
 .

It can be bounded using tr(C) ≤ d∥C∥2 as follows

II ≲

aM+1−1∑
i=1

li

−1 M∑
m=1

am+1−1∑
i=am

∥∥∥∥∥∥
 i∑
k=am

Y k0

∥∥∥∥∥∥
2

2

∥∥∥E(U0UT0)
∥∥∥
2
. (C.54)

From Lemma C.1.2,

∥∥∥∥∥∥
 i∑
k=am

Y k0

∥∥∥∥∥∥
2

2

=
∥∥∥Si0 − Sam0 ∥∥∥2

2
≲
∥∥∥Si0∥∥∥22 + ∥∥Sam0 ∥∥2

2 ≲ O(1).

Also note that
∥∥∥E(U0UT0)

∥∥∥
2
≲ O(1). Then

II ≲

aM+1−1∑
i=1

li

−1 M∑
m=1

am+1−1∑
i=am

O(1) = O(1). (C.55)

204

The term III can be bounded as:

III =

aM+1−1∑
i=1

li

−1 M∑
m=1

am+1−1∑
i=am

i∑
p=1

tr


 i∑
k=(am∨p)

Y kp

E(ϵpϵTp)

 i∑
k=(am∨p)

Y kp

T
 η2p

≲

aM+1−1∑
i=1

li

−1 M∑
m=1

am+1−1∑
i=am

i∑
p=1

∥∥∥∥∥∥
i∑

k=(am∨p)
Y kp

∥∥∥∥∥∥
2

2

η2p

≤

aM+1−1∑
i=1

li

−1 M∑
m=1

am+1−1∑
i=am

i∑
p=1

 i∑
k=(am∨p)

∥Y kp ∥2

2

η2p.

(C.56)

Let IV =
∑i
p=1

(∑i
k=max(am,p)

∥Y kp ∥2
)2
η2p. From Lemma C.1.1,

∥Y ji ∥2 ≤ exp

[
− γη

1− α

(
j1−α − (i+ 1)1−α

)]
.

Then for am ≤ i < am+1, we have

IV ≤
i∑

p=1

 i∑
k=max(am,p)

exp

(
−ηγ k

1−α

1− α

)2

η2pe
2ηγ
1−αp

1−α
. (C.57)

205

Using the integration, we can further bound IV as

IV ≲
i∑

p=1

(∫ i

max(am,p)
exp

(
−ηγ k

1−α

1− α

)
dk

)2

p−2αe
2ηγ
1−αp

1−α

≲
i∑

p=1

(∫ i1−α

max(am,p)1−α
e−

ηγ
1−α tt

α
1−αdt

)2

p−2αe
2ηγ
1−αp

1−α

≲
i∑

p=1

e−
2ηγ
1−α max(am,p)

1−α
max(am, p)

2αp−2αe
2ηγ
1−αp

1−α

≲
am−1∑
p=1

e−
2ηγ
1−α (a

1−α
m −p1−α)

(
am
p

)2α

+ li.

(C.58)

Then III is bounded by

III ≲

aM+1−1∑
i=1

li

−1 M∑
m=1

am+1−1∑
i=am

am−1∑
p=1

e−
2ηγ
1−α (a

1−α
m −p1−α)

(
am
p

)2α

+ 1. (C.59)

To show III is also bounded by O(1), it is suffices to show that

M∑
m=1

am+1−1∑
i=am

am−1∑
p=1

e−
2ηγ
1−α (a

1−α
m −p1−α)

(
am
p

)2α

≲

aM+1−1∑
i=1

li. (C.60)

Using partial integration we have the following:

∫ am−1

1
e
2ηγ
1−αp

1−α
p−2αdp =

∫ 2ηγ
1−α (am−1)

1−α

2ηγ
1−α

euu−
α

1−αdu ≲ e
2ηγ
1−αa

1−α
m−1(am − 1)−α.

206

Then we have

M∑
m=1

am+1−1∑
i=am

am−1∑
p=1

e−
2ηγ
1−α (a

1−α
m −p1−α)

(
am
p

)2α

≲
M∑
m=1

am+1−1∑
i=am

e−
2ηγ
1−αa

1−α
m a2αm

∫ am−1

1
e
2ηγ
1−αp

1−α
p−2αdp

≲
M∑
m=1

nma
α
m.

(C.61)

Note that aαm ≲ nm since β > 1/(1− α), so we have the following

M∑
m=1

am+1−1∑
i=am

am−1∑
p=1

e−
2ηγ
1−α (a

1−α
m −p1−α)

(
am
p

)2α

≲
M∑
m=1

nma
α
m ≲

M∑
m=1

n2m ≍
aM+1−1∑
i=1

li.

(C.62)

C.3 Proof of Main Theorems

C.3.1 Proof of Theorem 4.3.5

Proof. In Lemma C.2.1, we demonstrate the convergence property of the estimator Σ̃, which

is constructed based on linear process {Un}n∈N. Let sn = δn−Un be the difference between

the error sequence δn and the linear sequence Un. It has the following recursion form:

sn = δn−1 − ηn∇F (xn−1)− (I− ηnA)Un−1

= (I− ηnA)(δn−1 − Un−1)− ηn(∇F (xn−1)− Aδn−1)

= (I− ηnA)sn−1 − ηn(∇F (xn−1)− Aδn−1).

(C.63)

207

When n is big enough, xn−1 is close to the minimizer x∗. Based on Taylor’s expansion

around x∗, ∇F (xn−1) ≈ Aδn−1 since ∇F (x∗) is zero. So

sn ≈ (I− ηnA)sn−1. (C.64)

It takes a similar linear form as Un and its value is small especially when δn is small. So the

difference between Un and δn, i.e., xn − x∗, decays quickly as n → ∞. We expect that the

covariance matrix estimator Σ̃ and the recursive estimator Σ̂ are asymptotically close.

To show Theorem 4.3.5, it is suffices to show that E∥Σ̃n − Σ̂n∥2 can be bounded with

the same order as E∥Σ̃n − Σ∥2. Note that δn = xn − x∗ and Σ̂n can be rewritten as

Σ̂n =

(
n∑
i=1

li

)−1 n∑
i=1

 i∑
k=ti

δk − liδ̄n

 i∑
k=ti

δk − liδ̄n

T .
Plug in the difference sn = δn − Un, we can expand E∥Σ̃n − Σ̂n∥2 as

E∥Σ̃n − Σ̂n∥2 ≤ 2E

∥∥∥∥∥∥∥
(

n∑
i=1

li

)−1 n∑
i=1

 i∑
k=ti

Uk − liŪn

 i∑
k=ti

sk − lis̄n

T
∥∥∥∥∥∥∥
2

+E

∥∥∥∥∥∥∥
(

n∑
i=1

li

)−1 n∑
i=1

 i∑
k=ti

sk − lis̄n

 i∑
k=ti

sk − lis̄n

T
∥∥∥∥∥∥∥
2

.

(C.65)

We further claim that

E

∥∥∥∥∥∥∥
(

n∑
i=1

li

)−1 n∑
i=1

 i∑
k=ti

sk − lis̄n

 i∑
k=ti

sk − lis̄n

T
∥∥∥∥∥∥∥
2

≲M−1. (C.66)

208

Apply Cauchy’s inequality twice, the first part in LHS of (C.65) can be bounded as following:

E

∥∥∥∥∥∥∥
(

n∑
i=1

li

)−1 n∑
i=1

 i∑
k=ti

Uk − liŪn

 i∑
k=ti

sk − lis̄n

T
∥∥∥∥∥∥∥
2

≤
√
E∥Σ̃n∥2

√√√√√√E

∥∥∥∥∥∥∥
(

n∑
i=1

li

)−1 n∑
i=1

 i∑
k=ti

sk − lis̄n

 i∑
k=ti

sk − lis̄n

T
∥∥∥∥∥∥∥
2

≲M−1/2,

(C.67)

since
√

E∥Σ̃n∥2 is bounded by some constant. Then E∥Σ̃n − Σ̂n∥2 ≲ M−1/2 and we have

Theorem 4.3.5. All we need to prove now is the claim in (C.66). By triangle inequality and

the fact ∥C∥2 ≤ tr(C) for any positive semi-definite matrix C,

E

∥∥∥∥∥∥∥
(

n∑
i=1

li

)−1 n∑
i=1

 i∑
k=ti

sk − lis̄n

 i∑
k=ti

sk − lis̄n

T
∥∥∥∥∥∥∥
2

≤

(
n∑
i=1

li

)−1 n∑
i=1

Etr


 i∑
k=ti

sk − lis̄n

 i∑
k=ti

sk − lis̄n

T


=

(
n∑
i=1

li

)−1 n∑
i=1

E

∥∥∥∥∥∥
i∑

k=ti

sk − lis̄n

∥∥∥∥∥∥
2

2

≲

(
n∑
i=1

li

)−1 n∑
i=1

E

∥∥∥∥∥∥
i∑

k=ti

sk

∥∥∥∥∥∥
2

2

+

(
n∑
i=1

li

)−1 n∑
i=1

l2iE ∥s̄n∥
2
2 .

(C.68)

Note that sn takes the form

sn = (I− ηnA)sn−1 − ηn(∇F (xn−1)− Aδn−1), δ0 = 0.

209

First, we shall prove that

(
n∑
i=1

li

)−1 n∑
i=1

l2iE ∥s̄n∥
2
2 = O(M−1).

Based on the definition of Y kp we have

sk =
k∑
p=1

Y kp ηp[Aδp−1 −∇F (xp−1)],

and

s̄n = n−1
n∑
k=1

k∑
p=1

Y kp ηp[Aδp−1 −∇F (xp−1)]

= n−1
n∑
p=1

(
I+ Snp

)
ηp[Aδp−1 −∇F (xp−1)].

By Cauchy’s inequality

E ∥s̄n∥22 = n−2E

∥∥∥∥∥∥
n∑
p=1

(
I+ Snp

)
ηp[Aδp−1 −∇F (xp−1)]

∥∥∥∥∥∥
2

2

≤ n−2E

 n∑
p=1

∥∥I+ Snp
∥∥
2
ηp
∥∥Aδp−1 −∇F (xp−1)∥∥2

2

≤ n−2

 n∑
p=1

∥∥I+ Snp
∥∥2
2
η2p

 n∑
p=1

E
∥∥Aδp−1 −∇F (xp−1)∥∥22

 .

(C.69)

From Lemma C.1.2, ∥Snp ∥2 ≲ (p + 1)α, and therefore
∑n
p=1

∥∥I+ Snp
∥∥2
2
η2p ≲ O(n). By

Taylor’s expansion around x∗,
∥∥Aδp −∇F (xp)∥∥2 = O(∥δp∥22). Then using Lemma 4.3.4

n∑
p=1

E
∥∥Aδp−1 −∇F (xp−1)∥∥22 ≍ n∑

p=1

E∥δp−1∥42 ≲
n∑
p=1

(p− 1)−2α. (C.70)

Since α > 1/2,
∑n
p=1(p− 1)−2α = O(1). Then E ∥s̄n∥22 ≲ n−1. Recall that nk = Ckβ−1and

210

n ≍M1/β . We then have,

(
n∑
i=1

li

)−1 n∑
i=1

l2iE ∥s̄n∥
2
2 ≲ n−1nM ≍M−1. (C.71)

Next we shall prove (
∑n
i=1 li)

−1∑n
i=1 E

∥∥∥∑i
k=ti

sk

∥∥∥2
2

is bounded by O(M−1). For ti ≤ k ≤

i, where ti is defined in Section 4.2, we have

sk =
k∏

p=ti

(
I− ηpA

)
sti−1 +

k∑
p=ti

k∏
i=p+1

(I− ηiA) ηp
(
Aδp−1 −∇F (xp−1)

)
= Y kti−1sti−1 +

k∑
p=ti

Y kp ηp
(
Aδp−1 −∇F (xp−1)

)
,

and
i∑

k=ti

sk = Skti−1sti−1 +
i∑

p=ti

(
I+ Sip

)
ηp
(
Aδp−1 −∇F (xp−1)

)
.

Using triangle inequality and Cauchy’s inequality ,

E

∥∥∥∥∥∥
i∑

k=ti

sk

∥∥∥∥∥∥
2

2

≲ E

∥∥∥Siti−1
sti−1

∥∥∥2
2
+

 i∑
p=ti

∥∥∥I+ Sip

∥∥∥
2
ηp
∥∥Aδp−1 −∇F (xp−1)∥∥2

2


≲
∥∥∥Siti−1

∥∥∥2
2
E
∥∥sti−1∥∥22 +

 i∑
p=ti

∥∥∥I+ Sip

∥∥∥2
2
η2p

 i∑
p=ti

E
∥∥Aδp−1 −∇F (xp−1)∥∥22

 .

(C.72)

From Lemma C.1.2 ∥Sip∥2 ≲ (p+ 1)α, therefore we have

i∑
p=ti

∥∥I+ Snp
∥∥2
2
η2p ≲ li.

According to Taylor’s expansion around x∗,
∥∥Aδp −∇F (xp)∥∥2 = O(∥δp∥22). Then using

211

Lemma 4.3.4 we have,

i∑
p=ti

E
∥∥Aδp−1 −∇F (xp−1)∥∥22 ≍ i∑

p=ti

E∥δp−1∥42 ≲ lit
−2α
i . (C.73)

Note that sk = δk − Uk. From Lemma 4.3.4 and C.1.3, E ∥δk∥2 ≍ E ∥Uk∥2 ≲ k−α. So,

E ∥sk∥22 ≤ 2E ∥δk∥22 + 2E ∥Uk∥22 ≲ k−2α.

Thus,

E

∥∥∥∥∥∥
i∑

k=ti

sk

∥∥∥∥∥∥
2

2

≲ t2αi t−2αi + l2i t
−2α
i = 1 + l2i t

−2α
i .

Since (
∑n
i=1 li)

−1 ≍
(∑M

m=1 n
2
m

)−1
and α > 1/2, we have

(
n∑
i=1

li

)−1 n∑
i=1

E

∥∥∥∥∥∥
i∑

k=ti

sk

∥∥∥∥∥∥
2

2

≲

 M∑
m=1

n2m

−1 M∑
m=1

am+1−1∑
i=am

(1 + l2i a
−2α
m)


≲ n−1M +

 M∑
m=1

n2m

−1 M∑
m=1

n3ma
−2α
m


≲M−1.

(C.74)

The claim is proved through (C.68), (C.71) and (C.74).

Finally, using the fact M = O(n1/β), we can obtain the upper bound in terms of n.

C.3.2 Proof of Theorem 4.3.8

The proof for the non-overlapping version is slightly simpler than but almost the same as

that for the overlapping version. Instead of writing down the similar long proof, we will

provide a high level clarification when changes are needed.

In the proof of Theorem 4.3.5, we break down the estimation error into several parts in

212

the following form:  M∑
m=1

am+1−1∑
i=am

|Bi|

−1 M∑
m=1

am+1−1∑
i=am

Ti, (C.75)

where Ti is the term associated with batch Bi, the explicit formula may vary from parts to

parts. In the proof for the non-overlapping version, we break down the estimation error into

similar parts as above but in the form:

 M∑
m=1

|Bam+1−1|

−1 M∑
m=1

Tam+1−1. (C.76)

So, in comparison with the proof for the overlapping version, fewer terms are needed to bound

in the non-overlapping version proof. As we can see from previous proof, for large m, Ti’s for

i ∈ [am, am+1 − 1] are usually bounded by the same order, in other words
∑am+1−1
i=am

Ti are

proportion to Tam+1−1. That means the upper bound for
∑M
m=1 Tam+1−1 can be easily gen-

erated from the upper bound for
∑M
m=1

∑am+1−1
i=am

Ti. Since am are polynomially increasing,

term in (C.76) and term in (C.75) are of the same order.

Next, we shall give an example to show how we can leverage pervious proofs. Define

Ŝn,NOL = n−1

M−1∑
m=1

am+1−1∑
k=am

ϵk

am+1−1∑
k=am

ϵk

T +

 n∑
k=aM

ϵk

 n∑
k=aM

ϵk

T
 . (C.77)

We shall follow the same proof of Lemma C.2.2 to show the corresponding result

E∥Ŝn,NOL − S∥2 ≤M−αβ/2 +M−1/2. (C.78)

Proof. We define

Ŝ∗n,NOL = n−1

M−1∑
m=1

am+1−1∑
k=am

ϵ∗k

am+1−1∑
k=am

ϵ∗k

T +

 n∑
k=aM

ϵ∗k

 n∑
k=aM

ϵ∗k

T
 .

213

Then we can bound E∥Ŝn,NOL − S∥2 through triangle inequality

E∥Ŝn,NOL − S∥2 ≤ E∥Ŝ∗n,NOL − S∥2 + E∥Ŝn,NOL − Ŝ∗n,NOL∥2. (C.79)

Step 1: Bound E∥Ŝ∗n,NOL − S∥2.

Same as in the proof of Lemma C.2.2, we have

E∥Ŝ∗n,NOL − S∥2 ≤
√
d∥E(Ŝ∗n,NOL − S)2∥2. (C.80)

Note that by definition of S,

E(Ŝ∗n,NOL) = n−1

M−1∑
m=1

am+1−1∑
k=am

E(ϵ∗kϵ
∗T
k) +

n∑
k=aM

E(ϵ∗kϵ
∗T
k)

 = S.

Then

∥E(Ŝ∗n,NOL − S)
2∥2 = ∥EŜ∗2n,NOL − S

2∥2.

Note that E(ϵp1ϵTp2ϵp3ϵ
T
p4) is nonzero if and only if for any r there exist r′ ̸= r such that

pr = pr′ , r, r′ ∈ {1, 2, 3, 4}. There are two cases we can consider. The first case is p1 = p3 ̸=

p2 = p4 or p1 = p4 ̸= p2 = p3. This requires i and j in the same block. The second case is

p1 = p2 and p3 = p4. So we can expand EŜ2n,NOL and rewrite it into two parts,

EŜ∗2n,NOL = n−2I + n−2II, (C.81)

where

I =E
M−1∑
m=1

∑
am≤p1 ̸=p2≤am+1−1

(
ϵ∗p1ϵ
∗T
p2 ϵ
∗
p1ϵ
∗T
p2 + ϵ∗p1ϵ

∗T
p2 ϵ
∗
p2ϵ
∗T
p1

)
+ E

∑
aM≤p1 ̸=p2≤n

(
ϵ∗p1ϵ
∗T
p2 ϵ
∗
p1ϵ
∗T
p2 + ϵ∗p1ϵ

∗T
p2 ϵ
∗
p2ϵ
∗T
p1

)
,

214

II =
∑

i∈SETn

∑
j∈SETn

i∑
p=ti

j∑
q=tj

E(ϵ∗pϵ∗Tp ϵ∗qϵ
∗T
q), (SETn = {a2 − 1, a3 − 1, ..., aM − 1} ∪ {n}).

Let ∥E(ϵ∗p1ϵ
∗T
p2 ϵ
∗
p3ϵ
∗T
p4)∥2 be bounded by constant C for any pr,r ∈ {1, 2, 3, 4}. Then we

can bound I as follows,

∥I∥2 ≤
M∑
m=1

 ∑
am≤p1 ̸=p2≤am+1−1

(C + C)

 ≲
M∑
m=1

n2m. (C.82)

Since n ≍Mβ , we have,

n−2∥I∥2 ≲

∑M
m=1 n

2
m

n2
≲M−1. (C.83)

Next, notice that
∑
i∈SETn

∑
j∈SETn

∑i
p=ti

∑j
q=tj

1 = n2. Then,

∥∥∥n−2II − S2∥∥∥
2
=n−2

∥∥∥∥∥∥
∑

i∈SETn

∑
j∈SETn

i∑
p=ti

j∑
q=tj

(E(ϵ∗pϵ∗Tp ϵ∗qϵ
∗T
q)− S2)

∥∥∥∥∥∥
2

≤n−2
M∑
m=1

M∑
k=1

am+1−1∑
p=am

ak+1−1∑
q=ak

∥∥∥E(ϵ∗pϵ∗Tp ϵ∗qϵ
∗T
q)− S2

∥∥∥
2

=n−2III + n−2IV.

(C.84)

We consider two cases here. One is when p and q are in the same block. Let

III =
M∑
m=1

am+1−1∑
p=am

am+1−1∑
q=am

∥∥∥E(ϵ∗pϵ∗Tp ϵ∗qϵ
∗T
q)− S2

∥∥∥
2
.

Here ∥E(ϵ∗pϵ∗Tp ϵ∗qϵ
∗T
q)∥2 is still bounded by constant C. Then we have

n−2III ≤n−2
M∑
m=1

am+1−1∑
p=am

am+1−1∑
q=am

(
C +

∥∥∥S2∥∥∥
2

)

≲n−2
M∑
m=1

n2m ≲M−1.

(C.85)

215

The other case is when p and q are in different blocks. Let

IV =
∑
m̸=k

ak+1−1∑
q=ak

am+1−1∑
p=am

∥∥∥E(ϵ∗pϵ∗Tp ϵ∗qϵ
∗T
q)− S2

∥∥∥
2
.

For p > q, we have

∥∥∥E(ϵ∗pϵ∗Tp ϵ∗qϵ
∗T
q)− S2

∥∥∥
2
=
∥∥∥E(ϵ∗pϵ∗Tp)E(ϵ∗qϵ∗Tq)− S2

∥∥∥
2
= 0. (C.86)

Therefore IV = 0. Combining above results, we have

∥∥∥n−2II − S2∥∥∥
2
≲ n−2III + n−2IV ≲M−1. (C.87)

Thus,

E∥Ŝ∗n,NOL − S∥2 ≤
√
dE∥Ŝ∗2n,NOL − S2∥2 ≲

√
n−2 ∥I∥2 +

∥∥n−2II − S2∥∥2 ≲M−1/2.

Step 2: Bound E∥Ŝn,NOL − Ŝ∗n,NOL∥2.

Let vk = ϵk − ϵ∗k, k ≥ 1. We can expand E∥Ŝn,NOL − Ŝ∗n,NOL∥2 as

E∥Ŝn,NOL − Ŝ∗n,NOL∥2

=E

∥∥∥∥∥∥∥n−1
∑

i∈SETn


 i∑
k=ti

ϵk

 i∑
k=ti

ϵk

T −
 i∑
k=ti

ϵ∗k

 i∑
k=ti

ϵ∗k

T

∥∥∥∥∥∥∥
2

≤2E

∥∥∥∥∥∥∥n−1
∑

i∈SETn

 i∑
k=ti

vk

 i∑
k=ti

ϵ∗k

T
∥∥∥∥∥∥∥
2

+ E

∥∥∥∥∥∥∥n−1
∑

i∈SETn

 i∑
k=ti

vk

 i∑
k=ti

vk

T
∥∥∥∥∥∥∥
2

.

(C.88)

216

Apply Cauchy’s inequality

E

∥∥∥∥∥∥∥n−1
∑

i∈SETn

 i∑
k=ti

vk

 i∑
k=ti

ϵ∗k

T
∥∥∥∥∥∥∥
2

≤
√

E∥Ŝ∗n,NOL∥2

√√√√√√E

∥∥∥∥∥∥∥n−1
∑

i∈SETn

 i∑
k=ti

vk

 i∑
k=ti

vk

T
∥∥∥∥∥∥∥
2

.

By triangle inequality and the fact ∥C∥2 ≤ tr(C) for any positive semi-definite matrix C,

E

∥∥∥∥∥∥∥n−1
∑

i∈SETn

 i∑
k=ti

vk

 i∑
k=ti

vk

T
∥∥∥∥∥∥∥
2

≤ n−1
∑

i∈SETn
Etr


 i∑
k=ti

vk

 i∑
k=ti

vk

T


=n−1
∑

i∈SETn
E

∥∥∥∥∥∥
i∑

k=ti

vk

∥∥∥∥∥∥
2

2

≤ n−1
M∑
m=1

am+1−1∑
k=am

E ∥vk∥22 ≲ n−1
M∑
m=1

nm(am − 1)−α.

(C.89)

The last inequality comes from the fact E∥vk∥22 ≲ (k − 1)−α. Since am ≍ mβ , nm ≍ mβ−1

and n ≍Mβ , we have

E

∥∥∥∥∥∥∥n−1
∑

i∈SETn

 i∑
k=ti

vk

 i∑
k=ti

vk

T
∥∥∥∥∥∥∥
2

≲M−αβ

Then

E∥Ŝn,NOL − Ŝ∗n,NOL∥2 ≲M−αβ/2.

Finally, we reach the result

E∥Ŝn,NOL − S∥2 ≲ E∥Ŝ∗n,NOL − S∥2 + E∥Ŝn,NOL − Ŝ∗n,NOL∥2 ≲M−αβ/2 +M−1/2.

(C.90)

217

C.4 Proof of Proposition 4.3.1

Without loss of generality, we assume x∗ = 0. Then in the mean estimation model, the SGD

ietrate xi takes the form

xi = (1− ηi)xi−1 + ηiei, (C.91)

where ηi = i−α, 1/2 < α < 1. And ei are i.i.d from N(0, 1). Let x0 = 0, then

xi =
i∑

p=1

i∏
k=p+1

(1− kα)p−αep. (C.92)

Let Wk =
∑ak+1−1
i=ak

xi, 1 ≤ k ≤M − 1, and WM =
∑n
i=aM

xi where M satisfies aM ≤ n <

aM+1. We can rewrite the covariance of
√
nx̄n as

Var(
√
nx̄n) =

E(W1 + ...+WM)2

n
. (C.93)

We can rewrite the estimator as

Σ̂n,NOL =
W 2

1 +W 2
2 + ...+W 2

M

n
. (C.94)

For simplicity, we ignore the x̄n term in the estimator since x̄n converge to 0 at rate of

O(n−1/2), which is much faster than the convergence rate of the variance estimator. Then

nBias(Σ̂n,NOL) = 2
∑

1≤f<g≤M
Cov(Wf ,Wg), (C.95)

and

n2Var(Σ̂n,NOL) =
M∑
f=1

Var(W 2
f) + 2

∑
1≤f<g≤M

Cov(W 2
f ,W

2
g). (C.96)

218

Next, we shall approximate Var(Wf) and Cov(Wf ,Wg), f < g.

Var(Wf) =

af+1−1∑
i=af

Var(xi) +
af+1−1∑
j=af+1

j−1∑
i=af

Cov(xi, xj)

∗≍
af+1−1∑
i=af

i−α +

af+1−1∑
j=af+1

j−α(1− j−α)
j−af−1∑
k=0

(1− j−α)k

=

af+1−1∑
i=af

i−α +

af+1−1∑
j=af+1

(1− j−α)

= af+1 − 1− af .

(C.97)

The second line ∗ in (C.97) follows from some simple calculations with Var(xi) ≍ i−α and

Cov(xi, xj) ≍ j−α(1− j−α)j−i for i < j. Then,

Cov(Wf ,Wg) =

af+1−1∑
i=af

ag+1−1∑
j=ag

Cov(xi, xj)

≍
af+1−1∑
i=af

a−αg

ag+1−1∑
j=ag

(1− a−αg)j−i

=

af+1−1∑
i=af

a−αg (1− a−αg)ag−i
ag+1−1−i∑

l=0

(1− a−αg)l

=

af+1−1∑
i=af

(1− a−αg)ag−i = (1− a−αg)ag−af+1+1/a−ag+1.

(C.98)

219

Since Wf is normal, we have Var(W 2
f) = 2Var(Wf)

2 and Cov(W 2
f ,W

2
g) = 2Cov(Wf ,Wg)

2.

Then,

nBias(Σ̂n,NOL) ≍
m∑
g=2

1− a−αg+1

a−αg+1

g−1∑
f=1

(1− a−αg+1)
ag−af+1

=
m∑
g=2

1− a−αg+1

a−αg+1

O(1) ≍
m∑
g=2

1− g−αβ

g−αβ
≍ mαβ+1 ≍ nα+1/β .

(C.99)

Also the variance

n2Var(Σ̂n,NOL) =
M∑
f=1

(af+1 − af − 1)2 + 2
∑

1≤f<g≤M
(1− a−αg)ag−af+1+1/a−ag+1

≍
n1/β∑
f=1

f2β−2 ≍ n2−1/β .

(C.100)

Then we have the mean squared error

MSE(Σ̂n,NOL) = Bias2(Σ̂n,NOL) + Var(Σ̂n,NOL) ≍ n−1/β + n2α+2/β−2. (C.101)

C.5 Simulation for stopping rule

In this section, we include a simple simulation study applying the fixed-width sequential

stopping rule. We set the tolerance ϵi = 0.01 for i = 1, ..., d. The rule is applied to

our online approach SGD inference procedure for both linear and logistic regressions with

same settings discussed in Section 4.4. We present termination iterations and coverage

probabilities at termination in Table C.1.

220

Table C.1: Apply fixed-width sequential stopping rule with the tolerance 0.01 (discussed in
Section 4.3.4). We present termination iterations and coverage probabilities at termination.
Standard errors are reported in the brackets.

Linear
d = 5 d = 20

Termination iteration 47,737 (13,594) 98,644 (52,424)
Coverage probabilities 0.881 (0.022) 0.906 (0.020)

Logistic
d = 5 d = 20

Termination iteration 249,962 (63,507) 446,016 (84,910)
Coverage probabilities 0.865 (0.024) 0.843 (0.025)

221

APPENDIX D

APPENDIX FOR CHAPTER 5

D.1 Proof

For notaton simplicity in this section, for any vector ν = (ν1, . . . , νm)⊤ ∈ Rm, we use

|ν| =
√∑m

ℓ=1 ν
2
ℓ to denote its Euclidean norm. For any random vector X ∈ Rm and

constant q > 0, we write ∥X∥q = (E|X|q)1/q if E|X|q <∞.

D.1.1 Proof of Theorem 5.3.4

Proof. Without loss of generality, we assume x∗ = 0. Observe that

xi = xi−1 − ηi∇F (xi−1) + ηi{∇F (xi−1)−∇f(xi−1, ξi)}

= xi−1 − ηi∇F (xi−1) + ηi∆(xi−1, ξi),

where {∆(xi−1, ξi)}i∈N is a sequence of martingale differences with respect to the filtration

Fi = σ(ξ1, . . . , ξi), i ≥ 1. Then, by Assumption 5.3.1, we have

∥xi∥2q ≤ ∥xi−1 − ηi∇F (xi−1)∥2q + (q − 1)η2i ∥∆(xi−1, ξi)∥2q

≤ (1− ηic1)∥xi−1∥2q + 2(q − 1)η2i (∥∆(0, ξi)∥2q + γ2∥xi−1∥2q)

≤ (1− ηic2)∥xi−1∥2q + 2(q − 1)η2i ∥∆(0, ξi)∥2q ,

where κ and κ̃ are positive constants depending only on γ, q and η. Consequently, it follows

that

∥xi∥2q ≤
i∏

k=1

(1− ηkc2)|x0|2 + 2(q − 1)∥∆(0, ξ)∥2q
i∑

k=1

η2k

i∏
l=k+1

(1− ηlc2).

222

Let y0 = 0 and

yi = yi−1 − ηi∇F (yi−1) + ηi∆(0, ξi), i = 1, 2,

Then, by Assumption 5.3.2,

∥xi − yi∥2q ≤ (1− ηic3)∥xi−1 − yi−1∥2q + (q − 1)η2i ∥∆(xi−1, ξi)−∆(0, ξi)∥2q

≤ (1− ηic3)∥xi−1 − yi−1∥2q + (q − 1)η2i γ
2∥xi−1∥2q .

Similar to Lemma 14 in Gadat and Panloup [2023], it is straightforward to derive that

∥x̄n − ȳn∥q ≲ max

(
|x0 − x∗|

n
,
1

nβ

)
, (D.1)

where ȳn = n−1
∑n
i=1 yi. Let w0 = 0 and

wi = wi−1 − ηi∇2F (0)wi−1 + ηi∆(0, ξi)

=: Aiwi−1 + ηi∆(0, ξi), i = 1, 2, . . . ,

where Ai = Id − ηi∇2F (0). Let λ0 = λmin{∇2F (0)} > 0 denote the minimal eigenvalue of

the Hessian matrix ∇2F (0). By Assumption 5.3.3, we have

∥yi − wi∥q/2 = ∥Ai(yi−1 − wi−1) + ηi{∇2F (0)yi−1 −∇F (yi−1)}∥q/2

≤ (1− ηiλ0)∥yi−1 − wi−1∥q/2 + ηi∥∇2F (0)yi−1 −∇F (yi−1)∥q/2

≤ (1− ηiλ0)∥yi−1 − wi−1∥q/2 + Lηi∥yi−1∥
2
q .

223

Let w̄n = n−1
∑n
i=1wi. Then, similar to (D.1), it follows that

∥ȳn − w̄n∥q/2 ≲ max

(
|x0 − x∗|

n
,
1

nβ

)
.

Now it remains to derive the strong Gaussian approximation for w̄n. Notice that

n∑
i=1

wi =
n∑
i=1

i∑
k=1

i∏
l=k+1

Alηk∆(0, ξk)

=
n∑
k=1

n∑
i=k

i∏
l=k+1

Alηk∆(0, ξk)

=:
n∑
k=1

Dk,

where D1, . . . , Dn are independent and for each k ∈ {1, . . . , n}, we have

∥Dk∥q ≤ ηk

n∑
i=k

i∏
l=k+1

(1− ηlκ◦)∥∆(0, ξk)∥q

≤ ηk

n∑
i=k

exp

−cκ◦ i∑
l=k+1

l−β

 ∥∆(0, ξ)∥q.

Elementary calculations imply that
∑n
k=1 ∥Dk∥2q ≲ n for any β ∈ (1/2, 1). Consequently,

by Theorem 2.1 in Mies and Steland [2023], on a sufficiently rich probability space, there

exist independent random vectors Wn
D
=
√
nw̄n and Zn ∼ N(0,Γn) such that

∥Wn − Zn∥2 ≲ n1/q−1/2
√

log n.

Putting all these pieces together, we obtain (5.12).

224

D.1.2 Proof of Theorem 5.3.8

Proof. Let n = N/K. Under Assumption 5.3.7, we have Zn,k, k = 1, ..., K, which are i.i.d

Gaussian N (0,Σn) such that

(E|
√
n(x̂

(k)
n − x∗)− Zn,k)|2)1/2 = O(δ(n)).

For notation simplicity we use Zk to denote Zn,k in the rest of the proof. Define

S =
1√
K

K∑
k=1

υ⊤Zk, and R =

√√√√ 1

K − 1

K∑
k=1

(υ⊤(Zk − Z̄K))2.

It can be shown that
S

R
∼ tK−1.

Further define

Ŝn =
1√
K

K∑
k=1

υ⊤
√
n(x̂

(k)
n − x∗), and R̂n =

√√√√ 1

K − 1

K∑
k=1

(υ⊤
√
n(x̂

(k)
n − x̄K,n))2.

Then t̂υ can be rewritten as t̂υ = Ŝn/R̂n. Now it is suffice to show

sup
t

∣∣∣∣∣P
(
Ŝn

R̂n
≥ t

)
− P

(
S

R
≥ t

)∣∣∣∣∣ ≲ c1(n)
1/4.

Step 1: Bound E(Ŝn−S)2 and E(R̂n−R)2. We first show that Ŝn−S and R̂n−R have

the same convergence rate in Assumption 5.3.7.

Using Cauchy–Schwarz inequality and Assumption 5.3.7, we have

E(Ŝn − S)2 ≤
K∑
k=1

E|
√
n(x̂

(k)
n − x∗)− Zk)|2 = δ2,

225

where δ = O(δ(n)), which converges to 0. Similarly, applying triangle inequality

(R̂n −R)2 ≤
1

K − 1

K∑
k=1

[
(υ⊤(

√
n(x̂

(k)
n − x∗)− Zk) +

1

K
(Sn − S))2

]

≤ 2

K − 1

K∑
k=1

[
|
√
n(x̂

(k)
n − x∗)− Zk)|2 +

1

K
(Sn − S)2

]
.

So for Rn we still have

E(R̂n −R)2 ≲ δ2.

Step 2: Bound P(|Ŝn/R̂n−S/R| ≥ ϵ). Our next step is to bound the tail of the difference

between Ŝn/R̂n and S/R. P(|Ŝn/R̂n − S/R| ≥ ϵ) can be decompose as

P

(∣∣∣∣∣ ŜnR̂n − S

R

∣∣∣∣∣ ≥ ϵ

)
≤ P

(∣∣∣∣∣ ŜnR̂n − Ŝn
R

∣∣∣∣∣ ≥ ϵ

)
+ P

(∣∣∣∣∣ ŜnR − S

R

∣∣∣∣∣ ≥ ϵ

)

To deal with the first term in the above inequality, we first look at
∣∣∣ 1
R̂n
− 1

R

∣∣∣. For any

a > 0, y > 0, z > 0,

P
(∣∣∣∣ 1

R̂n
− 1

R

∣∣∣∣ ≥ a

)
≤P
(∣∣∣∣ 1

R̂n
− 1

R

∣∣∣∣ ≥ a, |R| ≥ y,
∣∣∣R̂n −R∣∣∣ ≥ z

)
+ P(|R| < y) + P(|R̂n −R| > z)

≤P(|R̂n −R| ≥ ay(y − z)) + P(|R| < y) + P(|R̂n −R| > z)

≲
δ2

(ay(y − z))2
+ y +

δ2

z2

The last line is derived from Markov’s inequality and the probability density function (pdf)

of the chi-square distribution. By choosing y = (δ/a)2/5, z = y/2, when a ≤ δ−2/3 we have

δ2

(ay(y − z))2
+ y +

δ2

z2
=

4δ2

a2y4
+ y +

4δ2

y2
≲

(
δ

a

)2/5

.

226

Then we have

P

(∣∣∣∣∣ ŜnR̂n − Ŝn
R

∣∣∣∣∣ ≥ ϵ

)
≤P
(
|Ŝn|

∣∣∣∣ 1

R̂n
− 1

R

∣∣∣∣ ≥ ϵ,

∣∣∣∣ 1

R̂n
− 1

R

∣∣∣∣ ≥ a

)
+ P

(
|Ŝn|

∣∣∣∣ 1

R̂n
− 1

R

∣∣∣∣ ≥ ϵ,

∣∣∣∣ 1

R̂n
− 1

R

∣∣∣∣ ≤ a

)
≤P
(∣∣∣∣ 1

R̂n
− 1

R

∣∣∣∣ ≥ a

)
+ P

(
|Ŝn| ≥

ϵ

a

)
≲

(
δ

a

)2/5

+
(a
ϵ

)2
Similarly, for any b > 0,

P

(∣∣∣∣∣ ŜnR − S

R

∣∣∣∣∣ ≥ ϵ

)
≤P

(
|Ŝn − S|

R
≥ ϵ, R ≥ b

)
+ P

(
|Ŝn − S|

R
≥ ϵ, R ≤ b

)

≤P (|Ŝn − S| ≤ bϵ) + P (R ≤ b)

≲
δ2

b2ϵ2
+ b.

The last step is derived from Markov’s inequality and the probability density function (pdf)

of the chi-square distribution. Then combine everything we have

P

(∣∣∣∣∣ ŜnR̂n − S

R

∣∣∣∣∣ ≥ ϵ

)
≤ P

(∣∣∣∣∣ ŜnR̂n − Ŝn
R

∣∣∣∣∣ ≥ ϵ

)
+ P

(∣∣∣∣∣ ŜnR − S

R

∣∣∣∣∣ ≥ ϵ

)

≲

(
δ

a

)2/5

+
(a
ϵ

)2
+

δ2

b2ϵ2
+ b.

Step 3: Bound |P((Ŝn/R̂n) ≥ t)−P((S/R) ≥ t)|. Let ftK−1
denote the pdf of tK−1, then

for any t and 0 < ϵ < t,

P(tK−1 ≥ t− ϵ)− P(tK−1 ≥ t) ≤ ϵftK−1
(t− ϵ) ≲ ϵ.

227

Then we can bound |P((Ŝn/R̂n) ≥ t)− P((S/R) ≥ t)| as following

∣∣∣∣∣P
(
Ŝn

R̂n
≥ t

)
− P

(
S

R
≥ t

)∣∣∣∣∣ ≤ P(tK−1 ≥ t− ϵ)− P(tK−1 ≥ t) + P

(∣∣∣∣∣ ŜnR̂n − S

R

∣∣∣∣∣ ≥ ϵ

)

≲ ϵ+

(
δ

a

)2/5

+
(a
ϵ

)2
+

δ2

b2ϵ2
+ b

Choose a = (δϵ5)1/6, b = (δ/ϵ)2/3, ϵ ≍ δ1/4, we obtain

ϵ+

(
δ

a

)2/5

+
(a
ϵ

)2
+

δ2

b2ϵ2
+ b ≲

(
δ

ϵ

)1/3

+

(
δ

ϵ

)2/3

+ ϵ ≲ δ1/4.

We therefore have

sup
t

∣∣∣∣∣P
(
Ŝn

R̂n
≥ t

)
− P

(
S

R
≥ t

)∣∣∣∣∣ ≲ δ(n)1/4.

D.2 Additional numerical results

In Table D.1, we provide critical values used in the random scaling method. In Figure D.1,

D.2 and D.3, we provide results for linear regression and logistic regression when d = 5 with

same settings as described in Section 5.4.

Probability 97.5% 99.5% 99.95%
Critical Value 6.474 10.0544 14.76972

Table D.1: Asymptotic one-sided critical values for asymptotic pivotal statistic in the random
scaling method (5.4) via Monte Carlo simulation with 1,000,000 samples.

228

(a) α = 0.05

(b) α = 0.01

(c) α = 0.001

Figure D.1: Linear Regression d = 5: Left: relative error of coverage; Middle: empirical
coverage; Right: length of confidence intervals.

229

(a) α = 0.05

(b) α = 0.01

(c) α = 0.001

Figure D.2: Logistic Regression d = 5: Left: relative error of coverage; Middle: empirical
coverage; Right: length of confidence intervals.

230

(a) Linear, d = 5 (b) Logistic, d = 5

Figure D.3: Computation time: d = 5

231

APPENDIX E

APPENDIX FOR CHAPTER 6

E.1 Proofs of main results

In this section, we provide proofs for our main results: Theorems 6.4.3, 6.4.5, 6.4.7, 6.5.3

for establishing Type I error control, and Lemmas 6.3.3, 6.5.2 for computing the conditional

density. For simplicity, we will write ∥ · ∥ to denote the usual Euclidean norm on vectors,

and the operator norm on matrices.

E.1.1 Proof of Theorems 6.4.3, 6.4.5: error control for constrained aCSS

Proof. As mentioned in Section 6.4, Theorem 6.4.3 is a special case of Theorem 6.4.5,

achieved by taking k(θ0) = d and taking vi = ei for i = 1, . . . , d. Therefore, it is sufficient

to prove Theorem 6.4.5. Moreover, it is sufficient to bound the distance to exchangeability,

since as argued in Barber and Janson [2022] we have

P
(
pvalT (X, X̃

(1), ..., X̃(M)) ≤ α
)
≤ α + dexch(X, X̃

(1), ..., X̃(M)).

From this point on, then, we only need to establish the bound on dexch(X, X̃
(1), ..., X̃(M)).

Step 1: reduce to total variation distance

We first show that we can obtain the upper bound of the distance to exchangeability through

the total variation distance between Pθ0(· | θ̂, ĝ) and its plug-in version. This part of the

proof follows the same arguments as the analogous part of the proof of [Barber and Janson,

2022, Theorem 1] for unconstrained aCSS. Let

ΩSSOSP =
{
(x,w) ∈ X × Rd : θ̂(x,w) is a SSOSP of (6.3)

}
,

232

and P ∗θ0 be the distribution of (X,W) ∼ Pθ0 ×N (0, 1dId) conditional on the event (X,W) ∈

ΩSSOSP. Consider the joint distribution (a)

Distrib. (a)


(X,W) ∼ P ∗θ0 ,

θ̂ = θ̂(X,W), ĝ = ∇(θ̂;X,W) = ∇(θ̂;X) + σW

X̃(1), . . . , X̃(M) | X, ĝ, θ̂ ∼ P̃M (·;X, θ̂, ĝ),

which is equivalent to the aCSS procedure conditional on the event (X,W) ∈ ΩSSOSP.

On the other hand, if (X,W) /∈ ΩSSOSP, then X̃(1) = · · · = X̃(M) = X according to

definition and therefore (X, X̃(1), . . . , X̃(M)) is exchangeable. Thus, the exchangeability is

violated only on the event (X,W) ∈ ΩSSOSP. Combined with convex property of distance-

to-exchangeability, we have

dexch(X, X̃
(1), . . . , X̃(M)) ≤ dexch(Distribution of X, X̃(1), . . . , X̃(M) under Distrib. (a)),

Let Q∗θ0 be the joint distribution of (θ̂(X,W), ĝ(X,W)) under (X,W) ∼ P ∗θ0 . Define

distribution (b)

Distrib. (b)


(θ̂, ĝ) ∼ Q∗θ0 ,

X | θ̂, ĝ ∼ pθ0(· | θ̂, ĝ),

X̃(1), . . . , X̃(M) | X, θ̂, ĝ ∼ P̃M (·;X, θ̂, ĝ),

where pθ0(· | θ̂, ĝ) is defined in Lemma 6.3.3. By definition of pθ0(· | θ̂, ĝ), it is clear that

Distrib. (b) is equivalent to Distrib. (a), and then

dexch(X, X̃
(1), . . . , X̃(M)) ≤ dexch(Distribution of X, X̃(1), . . . , X̃(M) under Distrib. (b)),

233

Further let p
θ̂
(· | θ̂, ĝ) be the plug-in version of pθ0(· | θ̂, ĝ) and define

Distrib. (c)


(θ̂, ĝ) ∼ Q∗θ0 ,

X | θ̂, ĝ ∼ p
θ̂
(·|θ̂, ĝ),

X̃(1), . . . , X̃(M) | X, θ̂, ĝ ∼ P̃M (·;X, θ̂, ĝ).

From the definition of P̃M , (X, X̃(1), . . . , X̃(M)) is exchangeable under Distrib. (c). Then,

dexch(Distribution of X, X̃(1), . . . , X̃(M) under Distrib. (b)) ≤ dTV(Distrib. (b),Distrib. (c)).

Since the only difference between Distrib. (b) and Distrib. (c) lies in the conditional distri-

bution X|θ̂, ĝ,

dTV(Distrib. (b),Distrib. (c)) = EQ∗
θ0

[
dTV(pθ0(· | θ̂, ĝ), pθ̂(· | θ̂, ĝ))

]
.

Therefore we can bound the distance to exchangeability as

dexch(X, X̃
(1), . . . , X̃(M)) ≤ EQ∗

θ0

[
dTV(pθ0(· | θ̂, ĝ), pθ̂(· | θ̂, ĝ))

]
, (E.1)

i.e., the distance to exchangeability of X, X̃(1), . . . , X̃(M) from the constrained aCSS pro-

cedure is bounded by the expected total variation distance between the true conditional

distribution and the plug-in conditional distribution.

Step 2: bound the total variation distance

Our next step is to bound this expected total variation distance. Here our arguments will

need to address a more challenging setting than the corresponding part of the proof of [Barber

and Janson, 2022, Theorem 1], as we need to handle constrained rather than unconstrained

optimization, as well as the issue of the sparse structure reflected by k(θ0).

234

To begin, we calculate

dTV(pθ0(· | θ̂, ĝ), pθ̂(· | θ̂, ĝ)) = E
pθ0(·|θ̂,ĝ)

[(
1−

p
θ̂
(X | θ̂, ĝ)

pθ0(X | θ̂, ĝ)

)
+

]

= E
pθ0(·|θ̂,ĝ)


1−

f(X;θ̂)
f(X;θ0)

E
pθ0(·|θ̂,ĝ)

f(X ′;θ̂)
f(X ′;θ0)


+

 ,
(E.2)

where (x)+ = max{x, 0}. Here the first step holds by properties of the total variation

distance, while the second step holds by the density calculation in (6.7). To bound this

quantity, we first want to show that f(X;θ̂)
f(X;θ0)

is almost a constant over pθ0(· | θ̂, ĝ). For any

x, θ, we take a Taylor series for the function θ → log f(x; θ):

log f(x; θ0)− log f(x; θ) = (θ0− θ)⊤∇θ log f(x, θ)+
∫ 1

t=0
t(θ− θ0)⊤∇2

θ log f(x; θt)(θ− θ0) dt,

where we write θt = (1− t)θ0 + tθ. Therefore, we have

f(x; θ)

f(x; θ0)
= exp {log f(x; θ)− log f(x; θ0)}

= exp

{
−(θ0 − θ)⊤∇θ log f(x; θ)−

∫ 1

t=0
t(θ − θ0)⊤∇2

θ log f(x; θt)(θ − θ0) dt
}

= exp

{
(θ0 − θ)⊤(∇θ(x; θ)− g) +

∫ 1

t=0
t(θ − θ0)⊤ (H(θt;x)−H(θt)) (θ − θ0) dt

+ (θ0 − θ)⊤(g −∇θR(θ)) +
∫ 1

t=0
t(θ − θ0)⊤H(θt)(θ − θ0) dt

}
,

where the last step holds for any fixed value g ∈ Rd (which will be chosen later), using the

fact that −∇θ log f(x; θ) = ∇θ(x; θ)−∇θR(θ) by definition of .

Next let Θ0 = B(θ0, r(θ0)) ∩Θ ∩ {θ : ∥θ − θ0∥v,0 ≤ k(θ0)}. If θ ∈ Θ0, then by definition

of ∥θ − θ0∥v,0, there exists a subset S(θ, θ0) ⊆ [p] with |S(θ, θ0)| ≤ k(θ0), such that (θ −

θ0) ∈ span({vi}i∈S(θ,θ0)). Recall that for any set S ⊆ [p], PvS denotes the projection to

235

span({vi}i∈S). Then we have

∣∣∣(θ0 − θ)⊤(∇θ(x; θ)− g)∣∣∣ = ∣∣∣(θ0 − θ)⊤PvS(θ,θ0)(∇θ(x; θ)− g)∣∣∣
≤ ∥θ0 − θ∥ max

S:|S|≤k(θ0)
∥PvS (∇θ(θ;x)− g)∥ ≤ r(θ0) max

S:|S|≤k(θ0)
∥PvS (∇θ(θ;x)− g)∥.

We also calculate, for θ ∈ Θ0,

∫ 1

t=0
t(θ − θ0)⊤ (H(θt;x)−H(θt)) (θ − θ0) dt

≤
∫ 1

t=0
t∥θ − θ0∥2 · λmax(H(θt;x)−H(θt)) dt

≤ 1

2
sup
θ′∈Θ0

(
λmax(H(θ′;x)−H(θ′))

)
+ · ∥θ − θ0∥

2

≤ r(θ0)
2

2
sup
θ′∈Θ0

(
λmax(H(θ′;x)−H(θ′))

)
+,

and similarly,

∫ 1

t=0
t(θ − θ0)⊤ (H(θt;x)−H(θt)) (θ − θ0) dt ≥ −

r(θ0)
2

2
sup
θ′∈Θ0

(
λmax(H(θ′)−H(θ′;x))

)
+.

Combining all these calculations, for any θ ∈ Θ0 we have

f(x; θ)

f(x; θ0)
≤ exp

{
r(θ0) max

S:|S|≤k(θ0)
∥PvS (∇θ(θ;x)− g)∥

+
r(θ0)

2

2
sup
θ′∈Θ0

(
λmax(H(θ′;x)−H(θ′))

)
+

+ (θ0 − θ)⊤(g −∇θR(θ)) +
∫ 1

t=0
t(θ − θ0)⊤H(θt)(θ − θ0) dt

}
,

236

and similarly,

f(x; θ)

f(x; θ0)
≥ exp

{
− r(θ0) max

S:|S|≤k(θ0)
∥PvS (∇θ(θ;x)− g)∥

− r(θ0)
2

2
sup
θ′∈Θ0

(
λmax(H(θ′)−H(θ′;x))

)
+

+ (θ0 − θ)⊤(g −∇θR(θ)) +
∫ 1

t=0
t(θ − θ0)⊤H(θt)(θ − θ0) dt

}
,

Now let

∆1(θ, g;x) = r(θ0) max
S:|S|≤k(θ0)

∥PvS (∇θ(θ;x)−g)∥+
r(θ0)

2

2
sup
θ′∈Θ0

(
λmax

(
H(θ′;x)−H(θ′)

))
+ ,

and

∆′1(θ, g;x) = r(θ0) max
S:|S|≤k(θ0)

∥PvS (∇θ(θ;x)−g)∥+
r(θ0)

2

2
sup
θ′∈Θ0

(
λmax

(
H(θ′)−H(θ′;x)

))
+ .

Then in our work above, we have shown that

e−∆
′
1(θ,g;x) ≤ f(x; θ)

f(x; θ0)
· e−(θ0−θ)

⊤(g−∇θR(θ))−
∫ 1
t=0 t(θ−θ0)

⊤H(θt)(θ−θ0) dt ≤ e∆1(θ,g;x)

holds for all x, all g, and all θ ∈ Θ0. This means that, for all x, x′ ∈ X , all g, and all θ ∈ Θ0,

f(x′;θ)
f(x′;θ0)
f(x;θ)
f(x;θ0)

≤ e∆1(θ,g;x
′)

e−∆
′
1(θ,g;x)

.

In particular, on the event that θ̂ ∈ Θ0, plugging in g = ĝ, we have

f(x′;θ̂)
f(x′;θ0)

f(x;θ̂)
f(x;θ0)

≤ e∆1(θ̂,ĝ;x
′)

e−∆
′
1(θ̂,ĝ;x)

,

237

again for all x, x′ ∈ X . Taking an expected value with respect to X ′ ∼ pθ0(·; θ̂, ĝ), then,

E
pθ0(·|θ̂,ĝ)

[
f(X ′;θ̂)
f(X ′;θ0)

]
f(x;θ̂)
f(x;θ0)

= E
pθ0(·|θ̂,ĝ)

 f(X ′;θ̂)
f(X ′;θ0)

f(x;θ̂)
f(x;θ0)


≤ E

pθ0(·|θ̂,ĝ)

[
e∆1(θ̂,ĝ;X

′)

e−∆
′
1(θ̂,ĝ;x)

]
=

E
pθ0(·|θ̂,ĝ)

[
e∆1(θ̂,ĝ;X

′)
]

e−∆
′
1(θ̂,ĝ;x)

.

Therefore, on the event that θ̂ ∈ Θ0, we have shown that

1−
f(x;θ̂)
f(x;θ0)

E
pθ0(·|θ̂,ĝ)

[
f(X ′;θ̂)
f(X ′;θ0)

]


+

≤ 1− e−∆
′
1(θ̂,ĝ;x)

E
pθ0(·|θ̂,ĝ)

[
e∆1(θ̂,ĝ;X ′)

] .

(Note that the right-hand side is always nonnegative, since the functions ∆1,∆
′
1 both return

only nonnegative values.) In particular, on the event that θ̂ ∈ Θ0,

dTV(pθ0(· | θ̂, ĝ), pθ̂(· | θ̂, ĝ)) = E
pθ0(·|θ̂,ĝ)


1−

f(x;θ̂)
f(x;θ0)

E
pθ0(·|θ̂,ĝ)

[
f(X ′;θ̂)
f(X ′;θ0)

]


+


≤ E

pθ0(·|θ̂,ĝ)

1− e−∆
′
1(θ̂,ĝ;X)

E
pθ0(·|θ̂,ĝ)

[
e∆1(θ̂,ĝ;X ′)

]
 .

Combining both cases (i.e., θ̂ ∈ Θ0 and θ̂ ̸∈ Θ0), we see that

dTV(pθ0(· | θ̂, ĝ), pθ̂(· | θ̂, ĝ)) ≤ 1
θ̂ ̸∈Θ0

+ 1
θ̂∈Θ0

E
pθ0(·|θ̂,ĝ)

1− e−∆
′
1(θ̂,ĝ;X)

E
pθ0(·|θ̂,ĝ)

[
e∆1(θ̂,ĝ;X ′)

]
 .

238

Therefore,

EQ∗
θ0

[
dTV(pθ0(· | θ̂, ĝ), pθ̂(· | θ̂, ĝ))

]
≤ PQ∗

θ0
{θ̂ ̸∈ Θ0}+ EQ∗

θ0

Epθ0(·|θ̂,ĝ)
1− e−∆

′
1(θ̂,ĝ;x)

E
pθ0(·|θ̂,ĝ)

[
e∆1(θ̂,ĝ;X ′)

]



≤ PQ∗
θ0
{θ̂ ̸∈ Θ0}+ EQ∗

θ0

[
E
pθ0(·|θ̂,ĝ)

[
∆′1(θ̂, ĝ;X)

]]
+ 1− 1

EQ∗
θ0

[
E
pθ0(·|θ̂,ĝ)

[
e∆1(θ̂,ĝ;X)

]] ,

where the last step follows the same calculation as in the analogous part of the proof of

[Barber and Janson, 2022, Theorem 1]. Next, by definition, (θ̂, ĝ) ∼ Q∗θ0 andX | θ̂, ĝ ∼ pθ0(· |

θ̂, ĝ) is equivalent to the joint distribution of (X, θ̂(X,W), ĝ(X,W)) when (X,W) ∼ P ∗θ0 .

Therefore

EQ∗
θ0

[
dTV(pθ0(· | θ̂, ĝ), pθ̂(· | θ̂, ĝ))

]
≤ PP ∗

θ0
{θ̂ ̸∈ Θ0}+ EP ∗

θ0

[
∆′1(θ̂(X,W), ĝ(X,W);X)

]
+ 1− 1

EP ∗
θ0

[
e∆1(θ̂(X,W),ĝ(X,W);X)

] .
Now define

∆2(x,w) = r(θ0)σ max
S:|S|≤k(θ0)

∥PvSw∥+
r(θ0)

2

2
sup
θ′∈Θ0

(
λmax

(
H(θ′;x)−H(θ′)

))
+ ,

and

∆′2(x,w) = r(θ0)σ max
S:|S|≤k(θ0)

∥PvSw∥+
r(θ0)

2

2
sup
θ′∈Θ0

(
λmax

(
H(θ′)−H(θ′;x)

))
+ .

Observe that ĝ(X,W) = ∇(θ̂;X,W) = ∇(θ̂;X) + σW by definition, and so we must have

∆1(θ̂(X,W), ĝ(X,W);X) = ∆2(X,W), ∆′1(θ̂(X,W), ĝ(X,W);X) = ∆′2(X,W).

239

Consequently,

EQ∗
θ0

[
dTV(pθ0(· | θ̂, ĝ), pθ̂(· | θ̂, ĝ))

]
≤ PP ∗

θ0
{θ̂ ̸∈ Θ0}+ EP ∗

θ0

[
∆′2(X,W)

]
+

1− 1

EP ∗
θ0

[
e∆2(X,W)

]
 .

Next let ESSOSP be the event that (X,W) ∈ ΩSSOSP. Recall that P ∗θ0 is the distribution

of (X,W) ∼ Pθ0 ×N (0, 1dId) conditional on ESSOSP. Then, following the exact same steps

as the analogous part of the proof of [Barber and Janson, 2022, Theorem 1], it holds that

EQ∗
θ0

[
dTV(pθ0(· | θ̂, ĝ), pθ̂(· | θ̂, ĝ))

]
≤

P{{θ̂ ̸∈ Θ0} ∩ ESSOSP}+ E
[
∆′2(X,W)

]
+ logE

[
e∆2(X,W)

]
1− P{E∁SSOSP}

≤
δ(θ0) + δ̃(θ0)− P(E∁SSOSP) + E

[
∆′2(X,W)

]
+ logE

[
e∆2(X,W)

]
1− P{E∁SSOSP}

,

where now probability and expectation are taken with respect to (X,W) ∼ Pθ0×N (0, 1dId),

and where the last step holds by Assumption 6.4.1, together with the assumption in the

theorem.

Next, for a standard normal vector Z ∼ N (0, Id) and 1-Lipschitz function f , we have

logEeλf(Z) ≤ λ2

2 + λE[f(Z)] for all λ [Boucheron et al., 2013]. We can verify that f(z) =

max
S⊆[p]:|S|≤k(θ0)

∥PvSz∥ is a 1-Lipschitz function, and by definition of hv, we have E[f(Z)2] =

hv(k(θ0)). Then, since
√
dW is a standard normal random vector, we have

logE
[
e
2r(θ0)σmaxS:|S|≤k(θ0)

∥PvSW∥
]
= logE

[
e
2r(θ0)σ√

d
f(
√
dW)

]

≤ 2r(θ0)
2σ2

d
+ 2r(θ0)σ

√
hv(k(θ0))

d
.

240

Next, we can assume that 2σr(θ0) ≤ d

√
hv(k(θ0))

d . (To see why, observe that hv(k(θ0)) ≥

hv(1) ≥ 1. If this inequality fails, then 3σr(θ0)

√
hv(k(θ0)

d ≥ 3σr(θ0)√
d
≥ 1, and so the bound

in the theorem holds trivially since total variation distance can never exceed 1.) Then we

have

logE
[
e
2r(θ0)σmaxS:|S|≤k(θ0)

∥PvSW∥
]
≤ 3r(θ0)σ

√
hv(k(θ0))

d
.

Next, combining Cauchy–Schwarz and Assumption 6.4.2 we have

logE
[
e∆2(X,W)

]
≤ 1

2
logE

[
e
2r(θ0)σmaxS:|S|≤k(θ0)

∥PvSW∥
]
+

1

2
logE

[
e
r(θ0)

2 supθ′∈Θ0
(λmax(H(θ′;x)−H(θ′)))+

]
≤ 1.5r(θ0)σ

√
hv(k(θ0))

d
+
ϵ(θ0)

2
.

Similarly, by Jensen’s inequality, we have

E
[
∆′2(X,W)

]
= E

[
r(θ0)σ max

S:|S|≤k(θ0)
∥PvSW∥

]
+

1

2
E

[
r(θ0)

2 sup
θ′∈Θ0

(
λmax

(
H(θ′)−H(θ′;x)

))
+

]

≤ 1

2
logE

[
e
2r(θ0)σmaxS:|S|≤k(θ0)

∥PvSW∥
]
+

1

2
E

[
r(θ0)

2 sup
θ′∈Θ0

(
λmax

(
H(θ′)−H(θ′;x)

))
+

]

≤ 1.5r(θ0)σ

√
hv(k(θ0))

d
+
ϵ(θ0)

2
.

Therefore,

EQ∗
θ0

[
dTV(pθ0(· | θ̂, ĝ), pθ̂(· | θ̂, ĝ))

]
≤
δ(θ0) + δ̃(θ0)− P(E∁SSOSP) + 3σr(θ0)

√
hv(k(θ0))

d + ϵ(θ0)

1− P{E∁SSOSP}

≤ 3σr(θ0)

√
hv(k(θ0))

d
+ ϵ(θ0) + δ(θ0) + δ̃(θ0),

241

where to verify the last step, we can apply the fact that a−b
1−b ≤ a for any a ∈ [0, 1] and

b ∈ [0, 1) (note that we can assume that 3σr(θ0)

√
hv(k(θ0))

d + ϵ(θ0) + δ(θ0) + δ̃(θ0) ≤ 1, as

otherwise the bound holds trivially since total variation distance can never exceed 1). This

completes the proof.

E.1.2 Proof of Theorem 6.4.7: constrained aCSS for the Gaussian linear

model

Following the same reasoning as in the proof of Theorem 6.4.5, we only need to bound

EQ∗
θ0

[
dTV(pθ0(· | θ̂, ĝ), pθ̂(· | θ̂, ĝ))

]
,

where, as in that proof, Q∗θ0 is the joint distribution of (θ̂(X,W), ĝ(X,W)) under (X,W) ∼

P ∗θ0 , where P ∗θ0 is the distribution of (X,W) ∼ Pθ0 × N (0, 1dId) conditional on the event

(X,W) ∈ ΩSSOSP. For the Gaussian case, by our assumption (6.14) on R(θ), the event

(X,W) ∈ ΩSSOSP holds almost surely, and so Q∗θ0 is in fact the joint distribution of

(θ̂(X,W), ĝ(X,W)) under (X,W) ∼ N (Zθ0, ν
2In)×N (0, 1dId).

Next, applying Lemma 6.3.3, we calculate

pθ0(x | θ̂, ĝ) ∝ exp

{
− 1

2ν2
∥x− Zθ0∥2 −

1

2σ2/d

∥∥∥∥ĝ − (1

ν2
Z⊤(Zθ̂ − x) +∇θR(θ̂)

)∥∥∥∥2
}

and

p
θ̂
(x | θ̂, ĝ) ∝ exp

{
− 1

2ν2
∥x− Zθ̂∥2 − 1

2σ2/d

∥∥∥∥ĝ − (1

ν2
Z⊤(Zθ̂ − x) +∇θR(θ̂)

)∥∥∥∥2
}
,

which simplifies to the normal distributions

N

(
Zθ̂ +

(
In +

d

σ2ν2
ZZ⊤

)−1 [d
σ2
Z(∇θR(θ̂)− ĝ) + Z(θ0 − θ̂)

]
, ν2

(
In +

d

σ2ν2
ZZ⊤

)−1)
242

and

N

(
Zθ̂ +

(
In +

d

σ2ν2
ZZ⊤

)−1 [d
σ2
Z(∇θR(θ̂)− ĝ)

]
, ν2

(
In +

d

σ2ν2
ZZ⊤

)−1)
,

respectively. For any µ, µ′ ∈ Rn and any positive definite Σ ∈ Rn×n,

dTV
(
N (µ,Σ),N (µ′,Σ)

)
≤
√

1

2
dKL

(
N (µ,Σ)

∥∥N (µ′,Σ)
)

=

√
1

2
· 1
2
(µ− µ′)⊤Σ−1(µ− µ′) = 1

2
∥Σ−1/2(µ− µ′)∥,

where dKL is the Kullback–Leibler divergence, and the first step holds by Pinsker’s inequality.

Applying this calculation to the distributions pθ0(· | θ̂, ĝ) and p
θ̂
(· | θ̂, ĝ) computed above,

we have

dTV(pθ0(· | θ̂, ĝ), pθ̂(· | θ̂, ĝ)) ≤
1

2ν

∥∥∥∥∥
(
In +

d

σ2ν2
ZZ⊤

)1/2

·
(
In +

d

σ2ν2
ZZ⊤

)−1
Z(θ̂ − θ0)

∥∥∥∥∥
≤ 1

2ν

∥∥∥∥∥
(
In +

d

σ2ν2
ZZ⊤

)−1/2
Z

∥∥∥∥∥ · ∥θ̂ − θ0∥
=

σ

2
√
d

∥∥∥∥∥
(
σ2ν2

d
In + ZZ⊤

)−1/2
Z

∥∥∥∥∥ · ∥θ̂ − θ0∥ ≤ σ

2
√
d
· ∥θ̂ − θ0∥.

On the event that ∥θ̂ − θ0∥ ≤ r(θ0) we therefore have dTV(pθ0(· | θ̂, ĝ), pθ̂(· | θ̂, ĝ)) ≤
σ

2
√
d
r(θ0). Since total variation distance is always bounded by 1, and we therefore have

EQ∗
θ0

[
dTV(pθ0(· | θ̂, ĝ), pθ̂(· | θ̂, ĝ))

]
≤ σ

2
√
d
r(θ0) · PQ∗

θ0
{∥θ̂ − θ0∥ ≤ r(θ0)}+ PQ∗

θ0
{∥θ̂ − θ0∥ > r(θ0)}

≤ σ

2
√
d
r(θ0) + δ(θ0),

since ∥θ̂ − θ0∥ ≤ r(θ0) holds with probability at least 1− δ(θ0) by assumption.

243

E.1.3 Proof of Lemma 6.3.3: conditional density

We begin by introducing some notation for remaining proofs. For A ∈ Rr×d, b ∈ Rr, define

a subset of Θ with active set I ⊆ [r] as follows:

ΘA,b,I = {θ ∈ Θ : A⊤i θ = bi,∀i ∈ I;A⊤i θ < bi,∀i ∈ [r]\I},

where Ai is the ith row of A. We will write ΘI = ΘA,b,I when A, b are fixed. As before,

we define I(θ) = {i ∈ [r] : A⊤i θ = bi}, the active set for a given θ ∈ Θ, so that we have

θ ∈ ΘA,b,I(θ) by definition.

Before proving Lemma 6.3.3, we need a preliminary result, which we will prove below.

Lemma E.1.1. For index set I ∈ [r], define

ΩSSOSP,I =
{
(x,w) ∈ X × Rd : θ̂(x,w) is a SSOSP of (6.3), and I(θ̂(x,w)) = I

}
,

and

ΨSSOSP,I =

{
(x, θ, g) ∈ X ×ΘI × Rd : ∃w ∈ Rd such that

θ = θ̂(x,w) is a SSOSP of (6.3), and g = ĝ(x,w)

}
.

Define a map ψI from ΩSSOSP,I as

ψI : (x,w)→
(
x, θ̂(x,w), ĝ(x,w)

)
.

Then ψI is a bijection between ΩSSOSP,I and ΨSSOSP,I with inverse

ψ−1I : (x, θ, g)→
(
x,
g −∇θ(θ;x)

σ

)
.

244

To give intuition for this result, the bijection between ΩSSOSP,I and ΨSSOSP,I helps us see

why we need to condition on both θ̂ and ĝ, rather than on θ̂ alone as for the (unconditional)

aCSS of Barber and Janson [2022]. Intuitively, the estimator θ̂ itself cannot reflect enough

information for data (x,w) when constraints appear in the optimization step, because θ̂ may

have lower effective dimension (e.g., if one constraint is active, then the value of θ̂ has d− 1

degrees of freedom; this means that (x, θ̂) cannot contain sufficient information to recover

(x,w), since w is d-dimensional). In the unconstrained case, ĝ ≡ 0 due to the first-order

optimality conditions, so conditioning on (θ̂, ĝ) is equivalent to simply conditioning on θ̂, in

that case.

With this result in place, we are now ready to prove Lemma 6.3.3, which calculates the

conditional density.

Proof of Lemma 6.3.3. Consider the joint distribution (X,W) ∼ Pθ0 × N (0, 1dId). By as-

sumption in the lemma, the event (X,W) ∈ ΩSSOSP,I has positive probability. Then the

joint density of (X,W), conditioning on the event that θ̂(X,W) is a SSOSP of (6.3) with

active set I, i.e., (X,W) ∈ ΩSSOSP,I , is proportional to the function

hθ0(x,w) = f(x; θ0) exp

{
−d
2
∥w∥2

}
1(x,w)∈ΩSSOSP,I .

By Lemma E.1.1, ψI is a bijection between ΩSSOSP,I and ΨSSOSP,I . For any measurable

set II ⊆ ΨSSOSP,I , define

ψ−1I (II) = {(x,w) ∈ ΩSSOSP,I : ψI(x,w) ∈ II)}.

245

Then, we calculate

P
{
(X, θ̂(X,W), ĝ(X,W)) ∈ II | (X, θ̂(X,W), ĝ(X,W)) ∈ ΨSSOSP,I

}
= P

{
(X,W) ∈ ψ−1I (II) | (X,W) ∈ ΩSSOSP,I

}
by Lemma E.1.1

=

∫
ψ−1
I (II)

hθ0(x,w) dνX (x) dw∫
X×Rd hθ0(x

′, w′) dνX (x′) dw′

=

∫
ψ−1
I (II)

f(x; θ0) exp
{
−d2∥w∥

2
}
1(x,w)∈ΩSSOSP,I dνX (x) dw∫

X×Rd hθ0(x
′, w′) dνX (x′) dw′

by definition of hθ0(x,w)

=

∫
ψ−1
I (II)

f(x; θ0)e
− d

2σ2
∥ĝ(x,w)−∇θ(θ̂(x,w);x)∥2

1(x,w)∈ΩSSOSP,I dνX (x) dw∫
X×Rd hθ0(x

′, w′) dνX (x′) dw′

=

∫
X f(x; θ0)

∫
Rd e

− d
2σ2
∥ĝ(x,w)−∇θ(θ̂(x,w);x)∥2

1
(x,w)∈ψ−1

I (II)
dw dνX (x)∫

X×Rd hθ0(x
′, w′) dνX (x′) dw′

,

where the last step holds since ψ−1I (II) ⊆ ΩSSOSP,I .

Next, we need to reparameterize θ and g, since given the active set I, these variables must

lie in lower-dimensional subspaces of Θ and of Rd, respectively. Let k = rank(span(AI)⊥),

let UI ∈ Rd×k be an orthonormal basis for span(AI)⊥ as before, and let VI ∈ Rd×(d−k) be

an orthonormal basis for span(AI), so that (UI VI) ∈ Rd×d is an orthogonal matrix. Define

Θ′ = {U⊤I θ : θ ∈ ΘI} ⊆ Rk. Then θ′ = U⊤I θ and g′ = V ⊤I g are a reparametrization of (θ, g),

which now take values in Θ′ and Rd−k, respectively. To see why, let θ∗ ∈ Rd−k be the unique

value such that θ∗ = V ⊤I θ for all θ ∈ ΘI , i.e., θ∗ is determined by the active constraints

(specifically, if AI = MDV ⊤I is a singular value decomposition, then θ∗ = D−1M⊤bI).

Then θ = UIθ
′ + VIθ∗, and g = VIg

′, whenever (θ, g) corresponds to a SSOSP with active

set I (i.e., for any θ ∈ ΘI and g ∈ span(AI)).

Next, for θ ∈ ΘI and g ∈ span(AI), if (x, θ, g) ∈ ΨSSOSP,I then by the SSOSP conditions

we must have some w such that θ = θ̂(x,w) is a SSOSP of (6.3), and g = ĝ(x,w) =

246

∇θ(θ;x,w) = ∇θ(θ;x) + σw. Combining with the work above, we can write

w = ϕx(θ
′, g′) where ϕx(θ′, g′) =

VIg
′ −∇θ(UIθ′ + VIθ∗;x)

σ
,

and so

θ = θ̂(x,w) = θ̂
(
x, ϕx(θ

′, g′)
)
, g = ĝ(x,w) = ĝ

(
x, ϕx(θ

′, g′)
)
.

Therefore,

θ′ = U⊤I θ̂
(
x, ϕx(θ

′, g′)
)
, g′ = V ⊤I ĝ

(
x, ϕx(θ

′, g′)
)
.

We can also calculate

∇θ′ϕx(θ′, g′) = −σ−1U⊤I ∇
2
θ(UIθ

′ + VIθ∗;x)

and

∇g′ϕx(θ′, g′) = σ−1V ⊤I .

247

Therefore,

det
(
∇ϕx(θ′, g′)

)
= det


 ∇θ′ϕx(θ′, g′)
∇g′ϕx(θ′, g′)




= det


 ∇θ′ϕx(θ′, g′)
∇g′ϕx(θ′, g′)

 · (UI VI)


= det


 ∇θ′ϕx(θ′, g′)UI ∇θ′ϕx(θ′, g′)VI
∇g′ϕx(θ′, g′)UI ∇g′ϕx(θ′, g′)VI




= det


 −U⊤

I ∇
2
θ(UIθ

′+VIθ∗;x)UI
σ −U

⊤
I ∇

2
θ(UIθ

′+VIθ∗;x)VI
σ

σ−1V ⊤I UI σ−1V ⊤I VI




= det


 −U⊤

I ∇
2
θ(UIθ

′+VIθ∗;x)UI
σ −U

⊤
I ∇

2
θ(UIθ

′+VIθ∗;x)VI
σ

0 σ−1Id−k




= (−1)kσ−d · det
(
U⊤I ∇

2
θ(UIθ

′ + VIθ∗;x)UI
)
.

From this point on, following similar arguments as [Barber and Janson, 2022, Section B.4] to

verify the validity of applying the change-of-variables formula for integration, we calculate

∫
Rd
e
− d

2σ2
∥ĝ(x,w)−∇θ(θ̂(x,w);x)∥2

1
(x,w)∈ψ−1

I (II)
dw

= σ−d
∫
Θ′×Rd−k

e
− d

2σ2
∥VIg′−∇θ(UIθ

′+VIθ∗;x)∥2 · detI,θ′,x · 1(x,ϕx(θ′,g′))∈ψ−1
I (II)

dg′ dθ′,

where we write detI,θ′,x = det
(
U⊤I ∇

2
θ(UIθ

′ + VIθ∗;x)UI
)

(note that this determinant

must be positive, by the SSOSP conditions). We can also verify from our definitions that

248

1
(x,ϕx(θ′,g′))∈ψ−1

I (II)
= 1(x,UIθ′+VIθ∗,VIg′)∈II . With this calculation in place we then have

P
{
(X, θ̂(X,W), ĝ(X,W)) ∈ II | (X, θ̂(X,W), ĝ(X,W)) ∈ ΨSSOSP,I

}
=

(∫
X×Rd

hθ0(x
′, w′) dνX (x

′) dw′
)−1

· σ−d
∫
X
f(x; θ0)

∫
Θ′×Rd−k

e
− d

2σ2
∥VIg′−∇θ(UIθ

′+VIθ∗;x)∥2

· detI,θ′,x · 1(x,UIθ′+VIθ∗,VIg′)∈II dg′ dθ′ dνX (x),

In particular, this verifies that

σ−df(x; θ0) · e
− d

2σ2
∥VIg′−∇θ(UIθ

′+VIθ∗;x)∥2 · detI,θ′,x · 1(x,UIθ′+VIθ∗,VIg′)∈ΨSSOSP,I∫
X×Rd hθ0(x

′, w′) dνX (x′) dw′

is the joint density of (X,U⊤I θ̂, V
⊤
I ĝ) = (X,U⊤I θ̂(X,W), V ⊤I ĝ(X,W)), conditional on the

event (X, θ̂(X,W), ĝ(X,W)) ∈ ΨSSOSP,I . Therefore, the conditional density of

X | (U⊤I θ̂, V
⊤
I ĝ)

(again conditioning on this same event) can be written as

∝ f(x; θ0) · e
− d

2σ2
∥VIg′−∇θ(UIθ

′+VIθ∗;x)∥2 · detI,θ′,x · 1(x,UIθ′+VIθ∗,VIg′)∈ΨSSOSP,I .

Moreover, U⊤I θ̂ and V ⊤I ĝ uniquely determine θ̂ and ĝ on the event that I is the active set,

as described earlier, so we can equivalently condition on (θ̂, ĝ) and can rewrite this density

as

pθ0(· | θ̂, ĝ) ∝ f(x; θ0) · e
− d

2σ2
∥ĝ−∇θ(θ̂;x)∥2 · det

(
U⊤I ∇

2
θ(θ̂;x)UI

)
· 1

(x,θ̂,ĝ)∈ΨSSOSP,I
. (E.3)

249

Finally, by definition, (x, θ̂, ĝ) ∈ ΨSSOSP,I if and only if θ̂ ∈ ΘI and x ∈ X
θ̂,ĝ

, so

1
(x,θ̂,ĝ)∈ΨSSOSP,I

= 1x∈X
θ̂,ĝ

for θ̂ ∈ ΘI .

E.1.4 Proof of Theorem 6.5.3: error control for aCSS with an ℓ1 penalty

At a high level, the strategies underlying the proofs of Theorems 6.4.3, 6.4.5, and 6.4.7 are

fundamentally the same. In the constrained case, first Lemma 6.3.3 is applied to calculate

the conditional density of X given (θ̂, ĝ) as the expression pθ0(· | θ̂, ĝ) given in the lemma.

This then justifies the sampling distribution used for the copies X̃(m), i.e., p
θ̂
(· | θ̂, ĝ), and

the distance to exchangeability is then bounded by bounding dTV(pθ0(· | θ̂, ĝ), pθ̂(· | θ̂, ĝ)).

In examining the ℓ1-penalized case, the arguments are exactly identical. First, by ap-

plying Lemma 6.5.2 in place of Lemma 6.3.3, the reasoning of Section E.1.1 verifies that it

suffices to bound EQ∗
θ0

[
dTV(pθ0(· | θ̂, ĝ), pθ̂(· | θ̂, ĝ))

]
, where Q∗θ0 is now defined as the dis-

tribution of (θ̂(X,W), ĝ(X,W)) conditioning on the event that (X,W) ∈ Ω
pen
SSOSP,S where

Ω
pen
SSOSP =

{
(x,w) ∈ X × Rd : θ̂(x,w) is a SSOSP of (6.16)

}
,

i.e., we are conditioning on the event of finding a SSOSP for the ℓ1-penalized (rather than

constrained) optimization problem. The calculation of the bound on this expected total

variation distance is then identical to the constrained case.

250

E.1.5 Proof of Lemma 6.5.2: conditional density for aCSS with an ℓ1 penalty

Now we revisit the proof of Lemma 6.3.3 and revise it for the ℓ1-penalized case. Define a

subset of Θ with support S as

ΘS = {θ ∈ Θ : S(θ) = S}.

Further define

Ω
pen
SSOSP,S =

{
(x,w) ∈ X × Rd : θ̂(x,w) is a SSOSP of (6.16), and S(θ̂(x,w)) = S

}
.

By a result analogous to Lemma E.1.1, we have a bijection between Ω
pen
SSOSP,S and Ψ

pen
SSOSP,S ,

where

Ψ
pen
SSOSP,S =

{
(x, θ, g) ∈ X ×ΘS × Rd : ∃w ∈ Rd such that

θ = θ̂(x,w) is a SSOSP of (6.16), and g = ĝ(x,w)

}
,

which is defined by the map ψS : (x,w)→
(
x, θ̂(x,w), ĝ(x,w)

)
, with inverse ψ−1S : (x, θ, g)→(

x,
g−∇θ(θ;x)

σ

)
.

Consider the joint distribution (X,W) ∼ Pθ0 × N (0, 1dId). By assumption, the event

(X,W) ∈ Ω
pen
SSOSP,S has positive probability. Then the joint density of (X,W), conditioning

on the event that θ̂(X,W) is a SSOSP of (6.16) with support S, i.e., (X,W) ∈ Ω
pen
SSOSP,S , is

proportional to the function

hθ0(x,w) = f(x; θ0) exp

{
−d
2
∥w∥2

}
1(x,w)∈Ωpen

SSOSP,S
.

251

For any measurable set IS ⊆ Ψ
pen
SSOSP,S , define

ψ−1S (IS) = {(x,w) ∈ Ω
pen
SSOSP,S : ψS(x,w) ∈ IS)}.

Then, following the same calculation for

P
{
(X, θ̂(X,W), ĝ(X,W)) ∈ II | (X, θ̂(X,W), ĝ(X,W)) ∈ ΨSSOSP,I

}

as in the proof of Lemma 6.3.3 (with ΩSSOSP,I replaced by Ω
pen
SSOSP,S), we have

P
{
(X, θ̂(X,W), ĝ(X,W)) ∈ IS | (X, θ̂(X,W), ĝ(X,W)) ∈ Ψ

pen
SSOSP,S

}
=

∫
X f(x; θ0)

∫
Rd e

− d
2σ2
∥ĝ(x,w)−∇θ(θ̂(x,w);x)∥2

1
(x,w)∈ψ−1

S (IS)
dw dνX (x)∫

X×Rd hθ0(x
′, w′) dνX (x′) dw′

.

Next we need to reparametrize (θ̂, ĝ), since, as in the constrained case, these parameters,

which each have dimension d, actually contain only d degrees of freedom in total (i.e.,

since there is a bijection between (x,w) and (x, θ̂, ĝ), and w ∈ Rd). In fact, in the ℓ1-

penalized setting, this is simple: once we condition on the event that S(θ̂) = S, this implies

that θ̂
S∁ = 0d−|S|, and that ĝS = λsign(θ̂S). In other words, (θ̂S , ĝS∁) captures the full

information contained in (θ̂, ĝ)—which agrees with our calculation of degrees of freedom

since |S| + |S∁| = d. For convenience, we now define IS as the d-by-|S| matrix obtained by

taking the d-by-d identity and extracting columns corresponding to S, and I
S∁ similarly for

S∁. Then, for (x, θ, g) ∈ ΨSSOSP,S , we have calculated

θ = ISθS , g = IS · λsign(θS) + I
S∁ · gS∁ .

Next, if (x, θ, g) ∈ ΨSSOSP,S then by the SSOSP conditions we must have some w such

that θ = θ̂(x,w) is a SSOSP of (6.16), and g = ĝ(x,w) = ∇θ(θ;x,w) = ∇θ(θ;x) + σw.

252

Combining with the work above, we can write

w = ϕx(θS , gS∁) where ϕx(θS , gS∁) =
IS · λsign(θS) + I

S∁ · gS∁ −∇θ(ISθS ;x)
σ

,

and so

θ = θ̂(x,w) = θ̂
(
x, ϕx(θS , gS∁)

)
, g = ĝ(x,w) = ĝ

(
x, ϕx(θS , gS∁)

)
.

Therefore,

θS = I⊤S θ̂
(
x, ϕx(θS , gS∁)

)
, g

S∁ = I⊤
S∁ ĝ

(
x, ϕx(θS , gS∁)

)
.

We can also calculate

∇θSϕx(θS , gS∁) = −σ−1I⊤S∇
2
θ(ISθS ;x)

and

∇g
S∁
ϕx(θS , gS∁) = σ−1I⊤

S∁ .

253

Therefore,

det
(
∇ϕx(θS , gS∁)

)
= det


 ∇θSϕx(θS , gS∁)

∇g
S∁
ϕx(θS , gS∁)




= det


 ∇θSϕx(θS , gS∁)

∇g
S∁
ϕx(θS , gS∁)

 · (IS I
S∁)


= det


 ∇θSϕx(θS , gS∁)IS ∇θSϕx(θS , gS∁)IS∁

∇g
S∁
ϕx(θS , gS∁)IS ∇g

S∁
ϕx(θS , gS∁)IS∁




= det


 −σ−1I⊤S∇2

θ(ISθS ;x)IS −σ
−1I⊤S∇

2
θ(ISθS ;x)IS∁

σ−1I⊤
S∁IS σ−1I⊤

S∁IS∁




= det


 −σ−1I⊤S∇2

θ(ISθS ;x)IS −σ
−1I⊤S∇

2
θ(ISθS ;x)IS∁

0 σ−1Id−|S|




= (−1)|S|σ−d · det
(
I⊤S∇

2
θ(ISθS ;x)IS

)
= (−1)|S|σ−d · det

(
∇2
θ(ISθS ;x)S

)
.

From this point on, following similar arguments as [Barber and Janson, 2022, Section B.4] to

verify the validity of applying the change-of-variables formula for integration, we calculate

∫
Rd
e
− d

2σ2
∥ĝ(x,w)−∇θ(θ̂(x,w);x)∥2

1
(x,w)∈ψ−1

S (IS)
dw

= σ−d
∫
θS×Rd−k

e
− d

2σ2
∥IS ·λsign(θS)+I

S∁
g
S∁
−∇θ(ISθS ;x)∥2

· det
(
∇2
θ(ISθS ;x)S

)
· 1

(x,ϕx(θS ,gS∁
))∈ψ−1

S (IS)
dg
S∁ dθS ,

where we note that det
(
∇2
θ(ISθS ;x)S

)
must be positive, by the SSOSP conditions. We can

also verify from our definitions that 1
(x,ϕx(θS ,gS∁

))∈ψ−1
S (IS)

= 1(x,ISθS ,IS ·λsign(θS)+I
S∁
g
S∁

)∈IS .

254

With this calculation in place we then have

P
{
(X, θ̂(X,W), ĝ(X,W)) ∈ IS | (X, θ̂(X,W), ĝ(X,W)) ∈ ΨSSOSP,S

}
=

(
σd
∫
X×Rd

hθ0(x
′, w′) dνX (x

′) dw′
)−1

·
∫
X
f(x; θ0)

∫
θS×Rd−|S|

e
− d

2σ2
∥IS ·λsign(θS)+I

S∁
g
S∁
−∇θ(ISθS ;x)∥2

· det
(
∇2
θ(ISθS ;x)S

)
·1(x,ISθS ,IS ·λsign(θS)+I

S∁
g
S∁

)∈IS dg
S∁ dθS dνX (x).

In particular, this verifies that

f(x; θ0) · e
− d

2σ2 ∥IS ·λsign(θS)+I
S∁g

S∁−∇θ(ISθS ;x)∥2 · det
(
∇2

θ(ISθS ;x)S
)
· 1(x,ISθS ,IS ·λsign(θS)+I

S∁g
S∁)∈ΨSSOSP,S

σd
∫
X×Rd hθ0 (x

′, w′) dνX (x′) dw′

is the joint density of (X, θ̂S , ĝS∁) = (X, θ̂(X,W)S , ĝ(X,W)
S∁), conditional on the event

(X, θ̂(X,W), ĝ(X,W)) ∈ ΨSSOSP,S . Therefore, the conditional density of X | (θ̂S , ĝS∁)

(again conditioning on this same event) can be written as

∝ f(x; θ0) · e
− d

2σ2
∥IS ·λsign(θS)+I

S∁
g
S∁
−∇θ(ISθS ;x)∥2 · det

(
∇2
θ(ISθS ;x)S

)
· 1(x,ISθS ,IS ·λsign(θS)+I

S∁
g
S∁

)∈ΨSSOSP,S
.

Moreover, θ̂S and ĝ
S∁ uniquely determine θ̂ and ĝ on the event that S is the support, as

described earlier, so we can equivalently condition on (θ̂, ĝ) and can rewrite this density as

pθ0(· | θ̂, ĝ) ∝ f(x; θ0) · e
− d

2σ2
∥ĝ−∇θ(θ̂;x)∥2 · det

(
∇2
θ(θ̂;x)S

)
· 1

(x,θ̂,ĝ)∈ΨSSOSP,S
. (E.4)

Finally, by definition, (x, θ̂, ĝ) ∈ ΨSSOSP,S if and only if θ̂ ∈ ΘS and x ∈ X
θ̂,ĝ

, so

1
(x,θ̂,ĝ)∈ΨSSOSP,S

= 1x∈X
θ̂,ĝ

for θ̂ ∈ ΘS .

255

E.2 Additional proofs

E.2.1 Verifying that the plug-in version of pθ0(· | θ̂, ĝ) defines a density

To ensure that our procedure is well-defined in both constrained and ℓ1-penalized cases, we

need to verify that the plug-in version of the conditional density

p
θ̂
(· | θ̂, ĝ) ∝ pun

θ̂,ĝ
(x)

defines a valid density with respect to νX , where pun
θ,g(x) represents the unnormalized density,

namely,

pun
θ,g(x) = f(x; θ) · e−

d
2σ2
∥g−∇θ(θ;x)∥2 · det

(
U⊤I(θ)∇

2
θ(θ;x)UI(θ)

)
· 1(x,θ,g)∈ΨSSOSP,I(θ)

in the constrained case as in (6.8); and

pun
θ,g(x) = f(x; θ) · e−

d
2σ2
∥g−∇θ(θ;x)∥2 · det

(
∇2
θ(θ;x)S(θ)

)
· 1(x,θ,g)∈Ψpen

SSOSP,S(θ)

in the ℓ1-penalized case as in (6.18). To verify this we only need to check that this unnormal-

ized density integrates to a finite and positive value (the analogous result for aCSS appears

in [Barber and Janson, 2022, Section B.3]).

Lemma E.2.1. If Assumption 6.3.2 and 6.4.2 hold, then for θ ∈ Θ and g ∈ Rd, the

unnormalized density pun
θ,g(x) is nonnegative and integrable with respect to νX . Furthermore,

if the event θ̂ = θ̂(X,W) is a SSOSP has positive probability, then conditional on this event,∫
X p

un
θ̂,ĝ

(x)dνX (x) > 0 holds almost surely.

Proof. Constrained case: We first check nonnegativity. For any θ ∈ Θ and any x, we have

f(x; θ) > 0 by Assumption 6.3.2. Furthermore, if x ∈ Xθ,g then det
(
U⊤I(θ)∇

2
θ(θ;x)UI(θ)

)
>

0 by definition of Xθ,g and the SSOSP conditions. This verifies the nonnegativity for pun
θ,g(x)

256

for any (θ, g, x). Next we check integrability.

∫
X
pun
θ,g(x)dνX (x) ≤

∫
X
f(x; θ) · det

(
U⊤I(θ)∇

2
θ(θ;x)UI(θ)

)
· 1U⊤

I(θ)∇
2
θ(θ;x)UI(θ)≻0

dνX (x)

≤
∫
X
f(x; θ) ·

(
λmax

(
U⊤I(θ)∇

2
θ(θ;x)UI(θ)

))d
· 1U⊤

I(θ)∇
2
θ(θ;x)UI(θ)≻0

dνX (x)

≤
∫
X
f(x; θ) ·

(
λmax

(
∇2
θ(θ;x)

))d
+
dνX (x)

≤ d!

r(θ)2d

∫
X
f(x; θ)

· exp
{
r(θ)2(λmax (H(θ, x)−H(θ)))+ + r(θ)2(λmax

(
H(θ)−∇2

θR(θ)
)
)+

}
dνX (x)

=
d!

r(θ)2d
exp

{
r(θ)2(λmax

(
H(θ)−∇2

θR(θ)
)
)+

}
· EPθ

[
exp

{
r(θ)2(λmax (H(θ, x)−H(θ)))+

}]
≤ d!

r(θ)2d
eϵ(θ) exp

{
r(θ)2(λmax

(
H(θ)−∇2

θR(θ)
)
)+

}
,

where the third-to-last step holds since td ≤ d!ed for any t ≥ 0, and the last step holds by

applying Assumption 6.4.2. This verifies that
∫
X p

un
θ,g(x)dνX (x) is finite. Finally, we check∫

X p
un
θ̂,ĝ

(x)dνX (x) > 0 holds almost surely. For any x, we have f(x,θ0)

f(x,θ̂)
> 0 by Assumption

6.3.2. Combined with the fact that pun
θ̂,ĝ

(x) is nonnegative as proved above, it is therefore

equivalent to verify that
∫
X
f(x,θ0)

f(x,θ̂)
pun
θ̂,ĝ

(x)dνX (x) > 0. This last claim must hold since

pθ0(x | θ̂, ĝ) ∝
f(x,θ0)

f(x,θ̂)
pun
θ̂,ĝ

(x) is the conditional density of X | θ̂, ĝ.

ℓ1-penalized case: The proof for this case mirrors that for the constrained case. For any θ ∈

Θ and x, we have f(x; θ) > 0 by Assumption 6.3.2. Furthermore, if (x, θ, g) ∈ Ψ
pen
SSOSP,S(θ)

then det
(
∇2
θ(θ;x)S(θ)

)
> 0 by definition of Ψpen

SSOSP,S(θ) and the SSOSP conditions. This

257

verifies the nonnegativity of pun
θ,g(x) for any (θ, g, x). To check integrability, we have

∫
X
pun
θ,g(x)dνX (x) ≤

∫
X
f(x; θ) · det

(
∇2
θ(θ;x)S(θ)

)
· 1∇2

θ(θ;x)S(θ)≻0
dνX (x)

≤
∫
X
f(x; θ) ·

(
λmax

(
∇2
θ(θ;x)S(θ)

))d
· 1∇2

θ(θ;x)S(θ)≻0
dνX (x)

≤
∫
X
f(x; θ) ·

(
λmax

(
∇2
θ(θ;x)

))d
+
dνX (x)

≤ d!

r(θ)2d

∫
X
f(x; θ) exp

{
r(θ)2(λmax (H(θ, x)−H(θ)))+ + r(θ)2(λmax

(
H(θ)−∇2

θR(θ)
)
)+

}
≤ d!

r(θ)2d
eϵ(θ) exp

{
r(θ)2(λmax

(
H(θ)−∇2

θR(θ)
)
)+

}
.

Finally,
∫
X p

un
θ̂,ĝ

(x)dνX (x) > 0 holds almost surely for the same reason as in the constrained

case.

E.2.2 Proof of Lemma E.1.1

Proof. First we check that ψI is injective on ΩSSOSP,I . For any (x1, w2), (x2, w2) ∈ ΩSSOSP,I ,

if ψI(x1, w1) = ψI(x2, w2) = (x, θ, g), then by definition of ψI , we have x1 = x2 = x trivially.

By definition of ψI and ĝ,

∇θ(θ;x) + σw1 = ĝ(x1, w1) = g = ĝ(x2, w2) = ∇θ(θ;x) + σw2,

therefore w1 = w2 =
g−∇θ(θ;x)

σ . This establishes that ΨI is injective and that the inverse

function (on the image of ψI) is given as claimed above.

Then we verify that ΨSSOSP,I is the image of ψI . Suppose (x, θ, g) ∈ ψI(ΩSSOSP,I),

i.e, for some w such that (x,w) ∈ ΩSSOSP,I , we have θ = θ̂(x,w), which is a SSOSP with

active set I, and g = ∇θ(θ̂(x,w);x,w) = ĝ(x,w). Then for this w, θ = θ̂(x,w) ∈ ΘI , and

g = ĝ(x,w). Therefore, (x, θ, g) ∈ ΨSSOSP,I , and so we have shown that ψI(ΩSSOSP,I) ⊆

ΨSSOSP,I .

258

Conversely suppose that (x, θ, g) ∈ ΨSSOSP,I . By definition of ΨSSOSP,I , there exists w

such that θ = θ̂(x,w) is a SSOSP of (6.3) with active set I, and g = ĝ(x,w). Therefore,

for this w we have (x,w) ∈ ΩSSOSP,I . Then (x, θ, g) = (x, θ̂(x,w), ĝ(x,w)) = ψI(x,w) ∈

ψI(ΩSSOSP,I). This verifies that ΨSSOSP,I ⊆ ψI(ΩSSOSP,I), and thus completes the proof.

E.2.3 Proof of Lemma 6.4.4

Proof. Fix any λ ∈ (0, 1/2). We calculate

eλhv(k) = exp

{
λEZ∼N (0,Id)

[
max

S⊆[p],|S|≤k
∥PvS (Z)∥

2

]}

≤ EZ∼N (0,Id)

[
exp

{
λ max
S⊆[p],|S|≤k

∥PvS (Z)∥
2

}]
by Jensen’s inequality

= EZ∼N (0,Id)

[
max

S⊆[p],|S|≤k
exp

{
λ∥PvS (Z)∥

2
}]

≤ EZ∼N (0,Id)

 ∑
S⊆[p],|S|=k

exp
{
λ∥PvS (Z)∥

2
}

=
∑

S⊆[p],|S|=k
EZ∼N (0,Id)

[
exp

{
λ∥PvS (Z)∥

2
}]

.

Since ∥PvS (Z)∥2 ∼ χ2dim(span({vi}i∈S))
, we have

eλhv(k) ≤
∑

S⊆[p],|S|=k
(1− 2λ)−

1
2dim(span({vi}i∈S))

≤
∑

S⊆[p],|S|=k
(1− 2λ)−k/2 =

(
p

k

)
(1− 2λ)−k/2 ≤

(ep
k

)k
(1− 2λ)−k/2 .

Therefore,

hv(k) ≤ inf
λ∈(0,1/2)

{
λ−1 log

[(ep
k

)k
(1− 2λ)−k/2

]}
=
k

2
inf

λ∈(0,1/2)

{
2 log(ep/k)− log(1− 2λ)

λ

}
.

259

Taking λ = 1/4,

hv(k) ≤ 2k (2 log(ep/k)− log(1/2)) ≤ 4k log(4p/k).

Finally, we have maxS⊆[p],|S|≤k ∥PvS (Z)∥2 ≤ ∥Z∥2, and therefore,

hv(k) = EZ∼N (0,Id)

[
max

S⊆[p],|S|≤k
∥PvS (Z)∥

2

]
≤ EZ∼N (0,Id)

[
∥Z∥2

]
= d,

since ∥Z∥2 ∼ χ2d.

E.3 Checking assumptions for examples

In this section, we verify that Assumptions 6.3.2, 6.4.1, and 6.4.2 hold for the three examples

considered in Section 6.6: the Gaussian mixture model (Example 1), isotonic Gaussian linear

regression (Example 2), and sparse high-dimensional Gaussian linear regression (Example 3).

E.3.1 Verifying assumptions for Examples 2 (isotonic regression) and 3

(sparse regression)

We first verify the assumptions for the two examples in the Gaussian linear model set-

ting, since these are more straightforwards. First, Assumption 6.3.2 holds trivially by

construction—we have Θ = Rd, and twice-differentiability of (θ;x) holds both with and

without the ridge penalty.

Next we check Assumption 6.4.1. In both examples, the optimization problem that defines

θ̂(X,W) is strongly convex, meaning that we can define θ̂(X,W) as the unique minimizer,

and the SSOSP conditions then hold surely. Next we need to verify a high probability bound

on ∥θ̂(X,W) − θ0∥. First, for isotonic regression, we see that θ̂(X,W) can equivalently be

260

written as

θ̂(X,W) = arg min
θ∈Rd

{
1

2
∥θ − (X − σW)∥22 : θ1 ≤ · · · ≤ θn

}
,

i.e., the isotonic projection of X−σW . Since X−σW ∼ N (θ0, (ν
2+σ2/n)In), applying the

result of [Yang and Barber, 2019, Theorem 5 and Appendix A.1] we have a high-probability

bound on the error,

∥θ̂(X,W)− θ0∥ ≤ O
(
n1/6(log n)1/3(1 + σ2)2/3

)
with probability ≥ 1− 1/n.

If we choose σ = O(1), we can therefore take r(θ0) = O
(
n1/6(log n)1/3

)
and δ(θ0) = 1/n.

Next, for sparse regression, the calculation is a bit more complex. Our argument closely

follows the framework developed in [Negahban et al., 2012, Theorem 1]. Let ∆ = θ̂(X,W)−

θ0. Then by optimality of θ̂(X,W) we have

1

2ν2
∥X − Z(θ0 +∆)∥22 + σ(θ0 +∆)⊤W +

λridge
2
∥θ0 +∆∥22 + λ∥θ0 +∆∥1

≤ 1

2ν2
∥X − Zθ0∥22 + σθ⊤0 W +

λridge
2
∥θ0∥22 + λ∥θ0∥1.

Rearranging terms, and writing v = X − Zθ0 ∼ N (0, ν2In),

1

2
∆⊤

(
Z⊤Z
ν2

+ λridgeId

)
∆−∆⊤

(
Z⊤v
ν2
− σW − λridgeθ0

)
≤ λ (∥θ0∥1 − ∥θ0 +∆∥1)

≤ λ∥∆S(θ0)
∥1 − λ∥∆S(θ0)∁

∥1.

Then, if the penalty parameter satisfies λ ≥ 2
∥∥∥Z⊤v
ν2
− σW − λridgeθ0

∥∥∥
∞

, it holds that

1

2
∆⊤

(
Z⊤Z
ν2

+ λridgeId

)
∆ ≤ 1.5λ∥∆S(θ0)

∥1 − 0.5λ∥∆
S(θ0)∁

∥1.

Standard assumptions on Z (namely, a restricted eigenvalue type property [Negahban et al.,

261

2012]) will then ensure

∥∆∥ ≤ O

(√
|S(θ0)| log d

n

)

with probability ≥ 1− 1/n, when we take ν = O(1), ∥θ0∥∞ = O(1), λridge ≲
√
n log d, and

σ ≲
√
nd. Therefore, we can take r(θ0) = O

(√
|S(θ0)| log d

n

)
and δ(θ0) = 1/n.

Finally, we check Assumption 6.4.2. For isotonic regression, we have H(θ;x) = ν−2Id,

and for sparse regression, H(θ;x) = ν−2Z⊤Z + λridgeId. In both cases, H(θ;x) does not

depend on x, and therefore, Assumption 6.4.2 holds trivially with ϵ(θ0) = 0.

E.3.2 Verifying assumptions for Example 1 (Gaussian mixture model)

In this section, we verify that the assumptions of Theorem 6.4.3 hold for the Gaussian

mixture model setting, specifically in the case of J = 2 components as implemented in our

simulation. Assumption 6.3.2 holds trivially by construction. For Assumption 6.4.1, the

accuracy of θ̂(X,W) can be established with r(θ0) ≍
√

log n
n and δ(θ0) ≍ n−1 via known

results in the literature. For instance, [Hardt and Price, 2015, Corollary 1.4] show this

accuracy level obtained via the EM algorithm, and we can then use the EM solution as an

initialization for gradient descent within a O(r(θ0))-radius neighborhood, to find an FOSP;

since the expected Hessian is positive definite, with high probability this FOSP is also a

SSOSP. We omit the details.

Finally, we check Assumption 6.4.2, which will require some substantial calculations. To

verify Assumption 6.4.2, we will check the following stronger condition

Eθ0

[
exp

{
sup

θ∈B(θ0,r(θ0))∩Θ
r(θ0)

2 · ∥H(θ;X)−H(θ)∥

}]
≤ c′eϵ(θ0),

for any r(θ0) = o(n−1/4) and ϵ(θ0) ≳ r(θ0)
2n1/2+ r(θ0)

3n. We first calculate, for parameter

262

θ = (π1, µ1, σ1, µ2, σ2),

(θ;x) = −
n∑
i=1

log
(
π1ϕ(xi;µ1, σ

2
1) + (1− π1)ϕ(xi;µ2, σ22)

)
,

where ϕ(t;µ, σ2) = 1√
2πσ2

e−(t−µ)
2/2σ2 is the density of the normal distribution. After some

calculations, we can verify that the Hessian takes the form

H(θ;x) =
n∑
i=1

[
2∑

m=0

xmi ·
(
a1,m(θ)f1(xi; θ) + a2,m(θ)f2(xi; θ)

+ b1,m(θ)f1(xi; θ)
2 + b2,m(θ)f2(xi; θ)

2
)
+

4∑
m=0

xmi · cm(θ)f1(xi; θ)f2(xi; θ)

]
,

where we define

f1(t; θ) =
π1ϕ(t;µ1, σ

2
1)

π1ϕ(t;µ1, σ
2
1) + (1− π1)ϕ(t;µ2, σ22)

and

f2(t; θ) =
(1− π1)ϕ(t;µ2, σ22)

π1ϕ(t;µ1, σ
2
1) + (1− π1)ϕ(t;µ2, σ22)

,

and where a1,m, a2,m, b1,m, b2,m, cm : Θ → R5×5 are continuously differentiable functions

(whose details we omit for brevity). We can rewrite this as

H(θ;x) =
n∑
i=1

g0(xi; θ) + xig1(xi; θ) + x2i g2(xi; θ)

where

g0(t; θ) = a1,0(θ)f1(t; θ) + a2,0(θ)f2(t; θ) + b1,0(θ)f1(t; θ)
2 + b2,0(θ)f2(t; θ)

2

+
4∑

m=0

cm(θ)tmf1(t; θ)f2(t; θ)

263

and

gm(t; θ) = a1,m(θ)f1(t; θ) + a2,m(θ)f2(t; θ) + b1,m(θ)f1(t; θ)
2 + b2,m(θ)f2(t; θ)

2

for m = 1, 2. Some additional calculations prove that we can find finite Cm(θ0), C
′
m(θ0) such

that, as long as r(θ0) is bounded by some appropriately chosen constant,

sup
t∈R

sup
θ∈B(θ0,r(θ0))∩Θ

∥gm(t; θ)∥ ≤ Cm(θ0)

and

sup
t∈R

sup
θ∈B(θ0,r(θ0))∩Θ

∥∇θgm(t; θ)∥ ≤ C ′m(θ0).

(To give some intuition for this—for example, for the zeroth-order term, i.e., finding Cm(θ0),

it is trivial to see that supt∈R fℓ(t; θ) ≤ 1 for each ℓ = 1, 2; what is more subtle is the

observation that supt∈R tmf1(t; θ)f2(t; θ) is also finite, as long as µ1 ̸= µ2—and this condition

is ensured as long as we enforce (µ1)0 ̸= (µ2)0, i.e., the means are unequal in the true

parameter θ0, and r(θ0) is taken to be sufficiently small.)

We then calculate

∥H(θ;x)−H(θ)∥ ≤ ∥H(θ;x)−H(θ0;x)∥+ ∥H(θ0;x)−H(θ0)∥+ ∥H(θ)−H(θ0)∥ .

264

For the first term, for all θ ∈ B(θ0, r(θ0)) ∩Θ,

∥H(θ;x)−H(θ0;x)∥

=

∥∥∥∥∥
n∑
i=1

(g0(xi; θ)− g0(xi; θ0)) + xi (g1(xi; θ)− g1(xi; θ0)) + x2i (g2(xi; θ)− g2(xi; θ0))

∥∥∥∥∥
≤

n∑
i=1

∥g0(xi; θ)− g0(xi; θ0)∥+ |xi| ∥g1(xi; θ)− g1(xi; θ0)∥+ x2i ∥g2(xi; θ)− g2(xi; θ0)∥

≤
n∑
i=1

C ′0(θ0)r(θ0) + |xi|C
′
1(θ0)r(θ0) + x2iC

′
2(θ0)r(θ0)

≤ r(θ0)

[
n
(
C ′0(θ0) + 0.5C ′1(θ0)

)
+

n∑
i=1

x2i
(
C ′2(θ0) + 0.5C ′1(θ0)

)]
.

Similarly, for the third term,

∥H(θ)−H(θ0)∥ ≤ r(θ0)

[
n
(
C ′0(θ0) + 0.5C ′1(θ0)

)
+

n∑
i=1

Eθ0 [X
2
i]
(
C ′2(θ0) + 0.5C ′1(θ0)

)]
.

By Cauchy–Schwarz, then,

logEθ0

[
exp

{
sup

θ∈B(θ0,r(θ0))∩Θ
r(θ0)

2 · ∥H(θ;X)−H(θ)∥

}]

≤ 1

2
logEθ0

[
exp

{
2r(θ0)

2 · ∥H(θ0;X)−H(θ0)∥
}]

+
1

2
logEθ0

[
exp

{
2 sup
θ∈B(θ0,r(θ0))∩Θ

r(θ0)
2 · (∥H(θ;X)−H(θ0;X)∥+ ∥H(θ)−H(θ0)∥)

}]

≤ 1

2
logEθ0

[
exp

{
2r(θ0)

2 · ∥H(θ0;X)−H(θ0)∥
}]

+ c(θ0) · nr(θ)3,

for an appropriate function c(θ0), since the X2
i ’s are subexponential under Pθ0 .

Next we bound the remaining term. Since the Hessian is a 5 × 5 matrix, for any c > 0

265

we have

Eθ0 [exp {c · ∥H(θ0;X)−H(θ0)∥}]

≤ Eθ0 [exp {5c · ∥H(θ0;X)−H(θ0)∥∞}]

= Eθ0

[
exp

{
5c · max

j=1,...,5
max

k=1,...,5
max

{
H(θ0;X)jk −H(θ0)jk, H(θ0)jk −H(θ0;X)jk

}}]
≤

5∑
j=1

5∑
k=1

Eθ0
[
exp

{
5c
∣∣H(θ0;X)jk −H(θ0)jk

∣∣}]
≤

5∑
j=1

5∑
k=1

Eθ0
[
exp

{
5c(H(θ0;X)jk −H(θ0)jk)

}]
+

5∑
j=1

5∑
k=1

Eθ0
[
exp

{
5c(H(θ0)jk −H(θ0;X)jk)

}]
.

Now we handle each term individually. We have

Eθ0
[
exp

{
5c(H(θ0;X)jk −H(θ0)jk)

}]
= Eθ0

[
exp

{
5c

n∑
i=1

2∑
m=0

[
Xm
i gm(Xi; θ0)jk − Eθ0 [X

m
i gm(Xi; θ0)jk]

]}]

≤
2∏

m=0

Eθ0

[
exp

{
15c

n∑
i=1

[
Xm
i gm(Xi; θ0)jk − Eθ0 [X

m
i gm(Xi; θ0)jk]

]}]1/3
.

SinceXm
i is subexponential for eachm = 0, 1, 2 while gm(Xi; θ0)jk is bounded, and the prod-

uct of a bounded random variable and a subexponential random variable is subexponential,

we have

Eθ0

[
exp

{
15c

n∑
i=1

[
Xm
i gm(Xi; θ0)jk − Eθ0 [X

m
i gm(Xi; θ0)jk]

]}]
≤ e

c2nc′m,jk(θ0)

assuming c ≤ c′′m,jk(θ0), for some positive-valued functions c′m,jk, c
′′
m,jk. The same type of

calculation holds for the terms of the form Eθ0
[
exp

{
5c(H(θ0)jk −H(θ0;X)jk)

}]
, for some

266

positive-valued functions c̃′m,jk, c̃
′′
m,jk. Combining everything,

Eθ0 [exp {c · ∥H(θ0;X)−H(θ0)∥}] ≤
5∑
j=1

5∑
k=1

2∏
m=0

e
1
3c

2nc′m,jk(θ0)+
5∑
j=1

5∑
k=1

2∏
m=0

e
1
3c

2nc̃′m,jk(θ0),

for 0 < c < c′′(θ0) = minm,j,kmin{c′′m,jk(θ0), c̃
′′
m,jk(θ0)}. Letting

c′(θ0) = max
m,j,k

max{c′′m,jk(θ0), c̃
′′
m,jk(θ0)},

then,

Eθ0 [exp {c · ∥H(θ0;X)−H(θ0)∥}] ≤ 50ec
2nc′(θ0).

Choosing c > r(θ0)
2, then, by Jensen’s inequality,

Eθ0
[
exp

{
r(θ0)

2 · ∥H(θ0;X)−H(θ0)∥
}]
≤ Eθ0 [exp {c · ∥H(θ0;X)−H(θ0)∥}]r(θ0)

2/c

≤ (50ec
2nc′(θ0))r(θ0)

2/c = exp

{
r(θ0)

2

c
log 50 + r(θ0)

2cnc′(θ0)
}
.

Choosing c =
√

log 50
nc′(θ0)

, then, which (for sufficiently large n) satisfies c > r(θ0)
2 and c <

c′′(θ0),

Eθ0
[
exp

{
r(θ0)

2 · ∥H(θ0;X)−H(θ0)∥
}]
≤ exp

{
r(θ0)

2 · 2
√
nc′(θ0) log 50

}
.

Combining everything, the assumption holds with r(θ0) = o(n−1/4) and ϵ(θ0) ≳ r(θ0)
2n1/2+

r(θ0)
3n .

E.4 Sampling details

For Example 1, we use MCMC to generate the copies X̃(m); see details in Section E.4.1. For

Example 2 and 3, the conditional distribution is tractable, and we sample directly from the

267

conditional distribution; see details in Section E.4.2.

E.4.1 Implementation details for Example 1 (Gaussian mixture model

For the Gaussian mixture model, the copies X̃(m) are sampled via MCMC. Here we give the

details for this process.

When sampling directly from p
θ̂
(· | θ̂, ĝ) is infeasible, Barber and Janson [2022] discusses

two schemes for constructing copies with MCMC sampling: the Hub-and-spoke sampler and

the Permuted serial sampler. In our simulation for Example 1, aCSS (with and without

constraints) is run with the hub-and-spoke sampler. Given X and θ̂, ĝ, we sample the copies

as follows:

• Initialize at X, and run the Markov chain (specified below) for L steps to define the

“hub" X̃∗.

• Independently for m = 1, . . . ,M , initialize at X̃∗ and run the Markov chain (specified

below) for L steps to define the “spoke” X̃m.

Similar to Barber and Janson [2022], we can use use the Metropolis–Hastings (MH) to

construct an efficient sampling scheme. Given θ̂, the reversible MCMC is given by the

following:

• Starting at state x′, generate a proposal x according to a properly chosen proposal

distribution q
θ̂
(x | x′).

• With probability A
θ̂
(x | x′) = min

{
1,
q
θ̂
(x′|x)

q
θ̂
(x|x′)

p
θ̂
(x|θ̂,ĝ)

p
θ̂
(x′|θ̂,ĝ)

}
, set the next state to equal x.

Otherwise, the next state is set to equal x′.

Next, we will describe the proposal distribution and MH acceptance probability; we also

refer to [Barber and Janson, 2022, Appendix D.2] for more details.

268

Proposal distribution qθ̂(x | x
′)

In Example 1, the model Pθ is a product distribution with density

fθ(x) =
n∏
i=1

f iθ(xi).

We then use the same proposal distribution as [Barber and Janson, 2022, Examples 1,2,4].

For s ∈ [n], define q
θ̂
(x|x′) as follows:

• Draw a subset S ⊆ {1, . . . , n} of size s, uniformly at random.

• For each i = 1, . . . , n,

– Set xi = x′i, if i /∈ S,

– Draw xi ∼ f
(i)

θ̂
, if i ∈ S.

Here s controls the tradeoff between two goals: (1) the acceptance probabilityA
θ̂
(x|x′) should

not be too close to zero; (2) the proposed state should not be too similar to the previous state.

Note that we can tune this MCMC hyperparameter after looking at θ̂ without violating any

of our theoretical assumptions. We can then choose s based on the following simulation:

• Let θsim0 = θ̂.

• Draw Xsim ∼ Pθsim0
, W ∼ N (0, 1dId); calculate θ̂sim = θ̂

(
Xsim,W

)
, and ĝsim =

∇(θ̂sim;Xsim,W).

• For each candidate of s , run one step of Metropolis-Hasting initialized at Xsim to

generate Xnew.

• Repeat for 100 draws of Xsim, discarding any draws for which θ̂sim is not a SSOSP,

to get an average acceptance probability Ās . Among all values of s where Ās ≥ 0.05,

choose s that maximizes sĀs.

269

Note that this choice of s only depends on θ̂, and completing our θ-dependent definition of

the proposal distribution q
θ̂
(x | x′). Then we choose L = min{2000, 2n

sÂs
} to ensure that

most entries will be resampled within L steps.

MH acceptance probability

Given θ̂, ĝ, and a properly chosen proposal distribution q
θ̂
(x | x′), the MH acceptance prob-

ability A
θ̂
(x | x′) can be written as

A
θ̂
(x | x′) = min

{
1,
q
θ̂
(x′ | x)

q
θ̂
(x | x′)

p
θ̂
(x | θ̂, ĝ)

p
θ̂
(x′ | θ̂, ĝ)

}
,

where

p
θ̂
(x|θ̂, ĝ) ∝ f(x; θ̂) exp

{
−∥ĝ −∇(θ̂;x)∥

2

2σ2/d

}
det

(
U⊤I(θ̂)∇

2
θ(θ̂;x)UI(θ̂)

)
1x∈X

θ̂,ĝ

The ratio in the MH acceptance probability without the indicator variables are straightfor-

ward to calculate. The ratio with indicator variables 1x∈X
θ̂,ĝ
/1x′∈X

θ̂,ĝ
requires more careful

consideration. First, we will always have 1x′∈X
θ̂,ĝ

= 1 since x′ is sampled from (6.7) with

x′ ∈ X
θ̂,ĝ

. To check 1x∈X
θ̂,ĝ

, we have

1x∈X
θ̂,ĝ

= 1

{
∃w ∈ Rd s.t. θ̂ = θ̂(x,w) is a SSOSP of (6.3), and ĝ = ∇(θ̂;x,w)

}
= 1

{
θ̂

(
x,
ĝ −∇θ(θ̂;x)

σ

)
= θ̂, and U⊤I(θ̂)∇

2
θ(θ̂;x)UI(θ̂) ≻ 0

}
.

This means given proposed x, we only need to verify (1) U⊤
I(θ̂)
∇2
θ(θ̂;x)UI(θ̂) ≻ 0 and (2) the

algorithm θ̂

(
x,

ĝ−∇θ(θ̂;x)
σ

)
returns value θ̂.

270

E.4.2 Implementation details for Examples 2 (isotonic regression) and 3

(sparse regression)

In this section, we derive the sampling distribution for the copies X̃(m) for the two Gaussian

linear model examples.

Recall that the objective function (θ;x,w) is defined as

(θ;x,w) =
1

2ν2
∥x− Zθ∥2 +R(θ) + σw⊤θ,

and  θ̂ = θ̂(X,W),

ĝ = 1
ν2
Z⊤(Zθ̂ −X) +∇θR(θ̂) + σW,

where θ̂(X,W) is the minimizer of (θ;X,W) subject to arbitrary linear constraints or ℓ1

penalty. Note that the original aCSS is a special case of the constrained aCSS with no

constraints and ĝ = 0. When (θ;x,w) is strictly convex (like if we add ridge penalty),

a unique SSOSP exists (and is computationally efficient to find), and we can then define

θ̂(x,w) to be equal to this unique SSOSP. Based on the conditional density derived in (6.7),

we can efficiently compute the conditional distribution pθ0(· | θ̂, ĝ) as

N

(
Zθ̂ +

(
In +

d

σ2ν2
ZZ⊤

)−1
Z(θ0 − θ̂ +

d

σ2
(∇θR(θ̂)− ĝ)), ν2

(
In +

d

σ2ν2
ZZ⊤

)−1)
.

The plug-in conditional distribution X̃, i.e., p
θ̂
(· | θ̂, ĝ), is

X̃ ∼ N

(
Zθ̂ +

(
In +

d

σ2ν2
ZZ⊤

)−1
Z
d

σ2
(∇θR(θ̂)− ĝ), ν2

(
In +

d

σ2ν2
ZZ⊤

)−1)
.

In Example 2, we choose R(θ) = 0, Z = In and ν2 = 1. Details of sampling using the

aCSS method, with and without constraints, are as follows:

271

• For Barber and Janson [2022]’s aCSS method, θ̂ is computed via perturbed and un-

constrained maximum likelihood estimation,

θ̂ = θ̂OLS = argminθ∈Rn

{
1

2
∥X − θ∥2 + σW⊤θ

}
= X − σW,

and then the copies X̃(m) are sampled directly from p
θ̂
(· | θ̂) via the distribution

X̃(m) i.i.d.∼ N
(
θ̂,
(
1 +

n

σ2

)−1
In

)
.

• For our proposed constrained aCSS method, θ̂ is computed with the isotonic constraint,

θ̂ = θ̂iso = argmin θ∈Rn

θ1≤···≤θn

{
1

2
∥X − θ∥2 + σW⊤θ

}
,

the gradient is given by

ĝ = θ̂ −X + σW,

and then the copies X̃(m) are sampled directly from p
θ̂
(· | θ̂, ĝ) via the distribution

X̃(m) i.i.d.∼ N
(
θ̂ − n/σ2

1 + n/σ2
ĝ,
(
1 +

n

σ2

)−1
In

)
.

In Example 3, we choose R(θ) = λridge
2 ∥θ∥

2 as a ridge penalization with λridge = 0.01,

ν2 = 1. Details of sampling using the aCSS method, with and without an ℓ1 penalty, are as

follows:

• For Barber and Janson [2022]’s aCSS method, we will use a ridge regularizer. The

272

method is then defined by setting

θ̂ = θ̂ridge = argminθ∈Rd

{
1

2
∥X − Zθ∥2 +

λridge
2
∥θ∥2 + σW⊤θ

}
=
(
λridgeId + ZTZ

)−1
(ZTX − σW),

and then sampling the copies X̃(m) directly from p
θ̂
(· | θ̂) via the distribution

X̃(m) i.i.d.∼ N

(
Zθ̂ +

λridged

σ2

(
In +

d

σ2
ZZ⊤

)−1
Zθ̂,

(
In +

d

σ2
ZZ⊤

)−1)
.

• For our proposed penalized aCSS method, in order to be more comparable to aCSS,

we also add the regularizer R(θ). This means that our estimator is given by the elastic

net, incorporating both ℓ1 and ℓ2 penalization:

θ̂ = θ̂elastic-net = argminθ∈Rd

{
1

2
∥X − Zθ∥2 +

λridge
2
∥θ∥2 + λ∥θ∥1 + σW⊤θ

}
,

with λ = 2, and the gradient is then computed as

ĝ = ZT (Zθ̂ −X) + σW + λridgeθ̂.

We then sample the copies X̃(m) directly from p
θ̂
(· | θ̂, ĝ) via the distribution

X̃(m) i.i.d.∼ N

(
Zθ̂ +

d

σ2

(
In +

d

σ2
ZZ⊤

)−1
Z(λridgeθ̂ − ĝ),

(
In +

d

σ2
ZZ⊤

)−1)
.

273

	List of Figures
	List of Tables
	Acknowledgments
	Abstract
	1 Introduction
	1.1 Statistical inference using stochastic gradient descent.
	1.2 Goodness-of-fit testing.
	1.3 Notation

	2 Asymptotic Normality for Weighted Averaged Stochastic Gradient Descent
	2.1 Introduction
	2.2 Main results: asymptotic normality
	2.3 Examples
	2.3.1 Polynomial-decay averaging
	2.3.2 Suffix averaging

	2.4 Non-asymptotic mean squared error
	2.4.1 Linear model
	2.4.2 A new averaging scheme: adaptive weighted averaging

	2.5 Numerical experiment
	2.5.1 Asymptotic normality for different averaging schemes
	2.5.2 Non-asymptotic performance of different averaging schemes

	2.6 Summary

	3 Sharp Concentration Analysis for Stochastic Gradient Descent
	3.1 Introduction
	3.2 Upper bound
	3.2.1 Linear model setting
	3.2.2 Assumptions
	3.2.3 Nagaev type upper bound
	3.2.4 Technical overview and proof sketch for main results

	3.3 Tightness of the upper bound
	3.3.1 Upper bound from Nagaev inequality
	3.3.2 Exact deviation
	3.3.3 A numerical study

	3.4 Summary

	4 Online Covariance Matrix Estimation in Stochastic Gradient Descent
	4.1 Introduction
	4.2 Online approach
	4.2.1 Online covariance matrix estimator based on batch means
	4.2.2 Statistical inference

	4.3 Theoretical results
	4.3.1 Preamble: mean estimation model
	4.3.2 Assumptions and existing convergence results
	4.3.3 Convergence properties for the online estimator
	4.3.4 Asymptotically accurate confidence intervals/regions

	4.4 Simulation studies
	4.4.1 Empirical performance of the proposed online approach
	4.4.2 Comparison with other methods

	4.5 Summary

	5 High Confidence Level Inference is Almost Free using Parallel Stochastic Optimization
	5.1 Introduction
	5.1.1 Background: existing confidence interval construction

	5.2 Inference with parallel runs of stochastic algorithms
	5.2.1 Parallel computing
	5.2.2 Asymptotic t-distribution

	5.3 Theoretical guarantee
	5.3.1 Convergence characterization for ASGD
	5.3.2 Main results

	5.4 Experiment
	5.4.1 Simulation
	5.4.2 Hand-written digit dataset

	5.5 Summary

	6 Approximate co-sufficient sampling with regularization
	6.1 Introduction
	6.2 Background: goodness-of-fit testing via CSS and aCSS
	6.2.1 Co-sufficient sampling (CSS)
	6.2.2 Approximate co-sufficient sampling (aCSS)
	6.2.3 Additional related work

	6.3 The aCSS method with linear constraints
	6.3.1 Examples of constraints
	6.3.2 Formally defining the method

	6.4 Theoretical results
	6.4.1 Main result: Type I error control
	6.4.2 Special case: sparse structure
	6.4.3 Special case: Gaussian linear model

	6.5 Generalization of linear constraint: 1 penalty
	6.5.1 The conditional density in the penalized case
	6.5.2 The aCSS method in the penalized case

	6.6 Numerical experiments
	6.6.1 Necessary constraints: the Gaussian mixture model
	6.6.2 High dimensional setting: structured Gaussian linear model

	6.7 Summary

	References
	A Appendix for Chapter 2
	A.1 Technical Lemmas and Proofs
	A.1.1 Technical Overview and Proof Sketch of the Main Theorem
	A.1.2 Proof of Theorem 2.2.4
	A.1.3 Proof of Lemma A.1.2
	A.1.4 Proof of Lemma A.1.3
	A.1.5 Proof of Corollary 2.3.1
	A.1.6 Proof of Corollary 2.3.2
	A.1.7 Proof of Proposition 2.4.1
	A.1.8 Proof of Corollary 2.4.2
	A.1.9 Proof of Lemma A.1.4
	A.1.10 Proof of Lemma A.1.6

	B Appendix for Chapter 3
	B.1 Proofs
	B.1.1 Some useful lemmas
	B.1.2 Proof of Lemma 3.2.8
	B.1.3 Proof of Lemma 3.2.9
	B.1.4 Proof of Theorems 3.2.4, 3.2.6
	B.1.5 Proof of Proposition 3.3.1
	B.1.6 Proof of Proposition 3.3.2

	C Appendix for Chapter 4
	C.1 Technical Lemmas
	C.2 The Linear Case
	C.3 Proof of Main Theorems
	C.3.1 Proof of Theorem 4.3.5
	C.3.2 Proof of Theorem 4.3.8

	C.4 Proof of Proposition 4.3.1
	C.5 Simulation for stopping rule

	D Appendix for Chapter 5
	D.1 Proof
	D.1.1 Proof of Theorem 5.3.4
	D.1.2 Proof of Theorem 5.3.8

	D.2 Additional numerical results

	E Appendix for Chapter 6
	E.1 Proofs of main results
	E.1.1 Proof of Theorems 6.4.3, 6.4.5: error control for constrained aCSS
	E.1.2 Proof of Theorem 6.4.7: constrained aCSS for the Gaussian linear model
	E.1.3 Proof of Lemma 6.3.3: conditional density
	E.1.4 Proof of Theorem 6.5.3: error control for aCSS with an 1 penalty
	E.1.5 Proof of Lemma 6.5.2: conditional density for aCSS with an 1 penalty

	E.2 Additional proofs
	E.2.1 Verifying that the plug-in version of p0(,) defines a density
	E.2.2 Proof of Lemma E.1.1
	E.2.3 Proof of Lemma 6.4.4

	E.3 Checking assumptions for examples
	E.3.1 Verifying assumptions for Examples 2 (isotonic regression) and 3 (sparse regression)
	E.3.2 Verifying assumptions for Example 1 (Gaussian mixture model)

	E.4 Sampling details
	E.4.1 Implementation details for Example 1 (Gaussian mixture model
	E.4.2 Implementation details for Examples 2 (isotonic regression) and 3 (sparse regression)

