
THE UNIVERSITY OF CHICAGO

AN END-TO-END PROGRAMMING MODEL FOR AI ENGINE ARCHITECTURES

A DISSERTATION SUBMITTED TO

THE FACULTY OF THE DIVISION OF THE PHYSICAL SCIENCES

IN CANDIDACY FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

BY

MAKSIM LEVENTAL

CHICAGO, ILLINOIS

JUNE 2024

TABLE OF CONTENTS

LIST OF FIGURES . iv

LIST OF TABLES . vi

ABSTRACT . vii

1 INTRODUCTION . 1
1.1 Thesis Statement . 3
1.2 Contributions . 3
1.3 Thesis Organization . 6

2 MEMORY PLANNING FOR DEEP NEURAL NETWORKS 7
2.1 Background . 10

2.1.1 Representations of DNNs . 11
2.1.2 Caching Allocators and Lock Contention 13
2.1.3 Memory Planning . 15

2.2 Implementation . 20
2.2.1 Profiling . 20
2.2.2 Memory Planner . 25
2.2.3 Runtime . 27

2.3 Evaluation . 28
2.4 Discussion . 32
2.5 Related work . 34
2.6 Conclusion . 37

3 BRAGGHLS: HIGH-LEVEL SYNTHESIS FOR LOW-LATENCY DEEP NEURAL NET-
WORKS FOR EXPERIMENTAL SCIENCE . 40
3.1 Background . 43

3.1.1 Compilers: The path from high to low 44
3.1.2 High-level synthesis . 46
3.1.3 FPGA design . 49

3.2 The Compiler and HLS framework . 51
3.2.1 Symbolic interpretation for fun and profit 54
3.2.2 AST transformations and verification 55
3.2.3 Scheduling . 57

3.3 Evaluation . 60
3.3.1 DNN layers . 61
3.3.2 BraggNN case study . 62

3.4 Related work . 69
3.5 Conclusion . 69

4 NELLI: A LIGHTWEIGHT FRONTEND FOR MLIR 71

ii

4.1 Background . 75
4.1.1 MLIR . 75
4.1.2 eDSL construction in Python . 82

4.2 Design and implementation of nelli . 86
4.2.1 Upstream manicuring and operator overloading 87
4.2.2 Trivially rewriting the AST . 88
4.2.3 Trivially rewriting bytecode . 91
4.2.4 Extensibility . 93

4.3 Demonstration and evaluation . 94
4.3.1 End-to-end GPU . 94
4.3.2 End-to-end OpenMP . 96
4.3.3 Derivative-free optimization . 97

4.4 Related Work . 99
4.5 Conclusion . 100

5 AN E2E PROGRAMMING MODEL FOR AI ENGINE ARCHITECTURES . . . 102
5.1 Background . 104

5.1.1 Dataflow programs . 104
5.1.2 AI Engines . 107

5.2 Bottom-up Toolchain Design . 111
5.2.1 AIE dialect . 112
5.2.2 Language frontend . 120

5.3 Evaluation . 125
5.4 Related Work . 130
5.5 Conclusion . 135

6 CONCLUSION . 137

REFERENCES . 139

iii

LIST OF FIGURES

2.1 Total runtime (dashed line) and percent (solid line) of compute time spent in
malloc_mutex_lock_slow as a function of the number of concurrent threads. . 16

2.2 Maximum (dashed line) and total (solid line) lock wait times for the entire
jemalloc arena. 17

2.3 Distributions of intermediate allocations for various DNNs. Note that size is log
scaled. 18

2.4 A “ResBlock” in a ResNet DNN, where the final Conv and BatchNormalization
layers along both paths require allocations of the same size, but which can be
made in arbitrary order (figure created using Netron (Roeder, 2022)). 23

2.5 Problematic orderings of operators. If a given memory plan assumes the ordering
of operators in Figure 2.5a then a reordering such as that of Figure 2.5b leads
to the BatchNormalization operator in Group 2 performing an illegal memory
access (because its allocation should only “last” until time = 11). 23

2.6 Runtimes for memory management strategies across various DNNs (i.e., various
numbers of intermediate tensors). Note that mip and mincost_flow both time
out for large numbers of intermediates. 26

2.7 Evaluation on alexnet on platform 2. 30
2.8 Evaluation on densenet161 on platform 2. 31
2.9 Evaluation on dcgan on platform 1. 31
2.10 Evaluation on fcn_resnet50 on platform 1. 32
2.11 Evaluation on regnet_x_8gf on platform 1. 32
2.12 Distributions of intermediate allocations for DNNs for which PyTorch+MemoMalloc

underperforms PyTorch+jemalloc at input size = 128. 33
2.13 Comparing memory usage for googlenet by jemalloc versus MemoMalloc. Note

that the entire ∼3.5MB is kept allocated for the duration of the forward pass. . 35

3.1 BraggHLS framework overview. 52
3.2 3×3-kernel convolution (cf. Listing 9) full unrolling time vs. input (square)

image size, with store-load forwarding using MLIR’s -affine-scalrep pass.
The longest time is 577,419 s (≈160 h) for a loop nest with a trip count of
128×128×3×3=147,456. 54

3.3 Translation rules for mapping scf, arith, and memref dialects to Python. . . . 56
3.4 Vitis HLS vs. BraggHLS resource usage and latency vs. unroll factor for five DNN

modules, exhibiting the large runtime cost incurred in using Vitis HLS to search
the design space (of possible low-latency designs for each layer). The lines give
latencies (left axes); the bars give the % of the resource used (right axes). All
y-scales are log. 64

3.5 Vitis HLS vs. BraggHLS runtime vs. unroll factor, illustrating the large runtime
cost incurred in using Vitis HLS to search over possible low-latency BraggNN
designs. 65

iv

3.6 BraggNN Vitis HLS vs. BraggHLS resource usage and latency vs. unroll factor
(with both at half-precision) throughout the design space of possible low-latency
designs. 66

3.7 BraggHLS weights exponent distribution, illustrating the narrow distribution of
observed weight exponents thereby justifying reduced precision. 67

3.8 Congestion maps for BraggNN on a Xilinx Alveo U280. Magenta indicates areas
of high congestion. 68

4.1 Ladder of dialect abstraction in terms of dialect types and dialect operations
(reprinted with permission from (Lei Zhang, 2022)); with respect to types, a pro-
gressive lowering needs representations for tensors, buffers, vectors, and scalars,
while with respect to operations, it needs to support computation/payload (i.e.,
arithmetic) and control flow. 77

4.2 Nevergrad optimization for tiling and inner-loop unrolling of a 2D-NCHW con-
volution kernel. 97

5.1 Matrix multiplication dataflow strategies; note the relationship between the ac-
cumulation of partial sums and the loop ordering (the loop on k is typically called
a reduction). 107

5.2 AI Engine Array showing the three “flavors” of tiles: core tiles (along with Data
Memory blocks), memory tiles, and shim tiles (here referred to as “NoC” tiles).
The various arrows indicate the connectivity possible between the tiles. 108

5.3 AI Engine core tile, with all interfaces and functional blocks. 109
5.4 MLIR-AIE end-to-end programming model; lightly-shaded components indicate

higher level abstractions supported by and interoperating with MLIR-AIE (and
vice-versa for darkly-shaded). 113

5.5 4 × 4 row-major tiling of the buffer in Listing 25 on page 114. 116
5.6 Performance as a function of GEMM matrix characteristic dimension, i.e., AM×K ,

BK×N with M = K = N . CHARM indicates (Zhuang et al., 2023) while Outer-
product, Inner-product, and Row-product indicate which of the three dataflow
strategies discussed in Section 5.1.1 is being compared. Note, omitted observa-
tions are due to core tiles limited local memory failing to accommodate storage
requirements for the respective dataflow approaches. 128

5.7 Performance as a function of GEMM matrix characteristic dimension compared
with RyzenAI SDK distributed kernels (NB: M × K × n indicates the kernel is
best suited to perform a M × K-matrix-n-row-vector multiplication). 129

v

LIST OF TABLES

2.1 Resource requirements of representative DNN inference workloads implemented
on CPU. Reprinted with permission from (Park et al., 2018). 7

2.2 Statistics on captured intermediate allocations (total number and total memory),
by TS IR versus allocations captured by our profiling approach. 24

2.3 Test platform 1 characteristics. 29
2.4 Test platform 2 characteristics. 29
2.5 Design matrix for evaluation on test platform 1. 30
2.6 Design matrix for evaluation on test platform 2. 30

3.1 DNN layers used for evaluation of BraggHLS. 62

vi

ABSTRACT

The proliferation of deep learning in various domains has led to remarkable advancements

in artificial intelligence applications, such as large-language models for scientific use cases.

However, the concomitant exponential growth in computational demands, driven by the de-

velopment of ever-larger deep learning models, presents significant challenges in terms of

resource consumption and sustainability. This dissertation addresses these escalating com-

putational costs by investigating how the complexity of deep learning frameworks’ and their

abstractions can significantly impact resource usage. In order to mitigate these growing

costs, this dissertation presents novel insights into memory planning, high-level synthesis,

lightweight frontend development, and end-to-end programming models for accelerator ar-

chitectures. These insights culminate in the design and implementation of an embedded

domain-specific language (eDSL) tailored to deep learning development on a novel accelera-

tor, specifically the AMD AI Engine architecture. By prioritizing access to low-level APIs,

leveraging compiler technologies, and rigorous mathematical models, the eDSL demonstrates

the feasibility of achieving performant deep learning implementations while maintaining pro-

ductivity in the design and exploration of deep learning methods.

vii

CHAPTER 1

INTRODUCTION

The field of deep learning has seen an unparalleled expansion over the last decade, driv-

ing significant advancements in artificial intelligence applications ranging from natural lan-

guage processing (Otter et al., 2020) and image recognition (Li, 2022) to autonomous sys-

tems (Muhammad et al., 2020) and medical diagnostics (Bakator and Radosav, 2018). This

rapid progress, however, has been accompanied by an exponential increase in the compu-

tational resources required by state-of-the-art deep learning models (Sevilla et al., 2022).

The development of models with billions (and trillions) of parameters, capable of under-

standing and generating human-like text or accurately identifying objects in high-resolution

images, has led to requirements for vast computational resources such as memory, power,

and network bandwidth. Such requirements pose significant challenges, particularly in terms

of accessibility and energy consumption associated with training and deploying deep learn-

ing models (Strubell et al., 2019). Thus, as the demand for more powerful deep learning

methods, techniques, and models continues to grow, so grows the imperative need to find

solutions that can mitigate the escalating computational costs.

This thesis addresses the aforementioned computational costs by proposing a domain-

specific language that provides access to a wide range of abstractions and APIs and allows

developers to tailor their approach to the specific needs of their deep learning model, strik-

ing a balance between ease of development and the efficiency of the final implementation.

Specifically, we develop an “end-to-end” programming model for AMD’s AI Engine architec-

tures. AI Engine architectures are Coarse-Grained Reconfigurable Architectures (CGRAs)

and offer unparalleled flexibility by allowing developers to selectively activate or deactivate

components, resulting in superior performance per Watt across a broad range of applications

compared to traditional processors like multicore CPUs and GPUs (Podobas et al., 2020).

The programming models and languages for coarse-grained devices significantly reduce the
1

barrier to use. However, they do not eliminate the requirement that software developers be

familiar with and manipulate various hardware layers. Thus, while many domain-specific

languages exist for deep learning and CGRAs, we develop our language to span a wide range

of abstraction levels (from objects to registers) in a single unified environment. Our domain-

specific language, embedded in Python, is open source and closely integrated with the MLIR

compiler framework (Lattner et al., 2020b) (a staged, modular compiler (Rompf and Oder-

sky, 2010)), with portions of it having been upstreamed to the LLVM project (Lattner and

Adve, 2004).

Our thesis is derived from experience over the course of several projects, each of which

involved manipulating highly abstract APIs and struggling to achieve satisfactory runtime

performance (see Section 1.2). Throughout these works we faced challenges primarily due to

a need for access to lower-level APIs due to so-called abstractions. These failures of abstrac-

tion color our perspective on language design and implementation: the ideal programming

language does not abstract anything by default. However, it does enable building trans-

parent abstractions at every level (of abstraction). Transparent abstractions are accessible,

interpretable, and, most importantly, ductile. A ductile abstraction can easily be adjusted

and adapted to suit a fixed program with a narrow set of inputs rather than anticipating the

requirements of some generic, nebulous space of programs and inputs. In trading generality

for ductility, our operating hypothesis is that no lowest common denominator functionality

(i.e., maximal abstraction) can be optimal across the range of possible use cases. Since most

users solve a narrowly scoped set of problems, a language should empower them to optimize

for their particular use cases. The costs incurred by the abstractions are naturally brought

to the fore in such a language paradigm because no tradeoff (e.g., between space and time)

made is outside user’s purview (of the language).

2

1.1 Thesis Statement

The core thesis of this dissertation is that it is possible to design a language and programming

model for expert ML developers to represent deep learning models simultaneously at multi-

ple levels of abstraction, generate performant, target-specific, implementations and execute

those models on novel accelerator architectures. We claim that such an approach to domain-

specific language and programming model design, as it pertains to deep learning models,

yields performant implementations without sacrificing the productivity of higher-level frame-

works. Thus, if we show that it is possible, using our language and its programming model,

to implement deep learning models and optimize those models for application-specific accel-

erators, we validate the stated thesis.

1.2 Contributions

The primary contribution of this thesis is the design and implementation of an embedded

domain-specific language (eDSL) for representing, optimizing, and executing deep learning

models on a novel accelerator architecture. That eDSL is available at https://github.com

/Xilinx/mlir-aie and targets AMD AI Engine architectures. In addition, core, reusable,

infrastructure components of the eDSL have been accepted as contributions to MLIR it-

self. The language design principles propounded by this thesis, and which culminate in the

primary contribution, are the result of a sequence of projects, each of which constitutes a

contribution to deep learning optimization research and yields deep insight into the necessary

language design techniques:

• In Memory Planning for Deep Neural Networks, we studied memory allocation patterns

in DNNs during inference in large-scale systems. In the context of multi-threading, we

observed that such memory allocation patterns are subject to high latencies due to

mutex contention in the system memory allocator. We presented an implementation

3

https://github.com/Xilinx/mlir-aie
https://github.com/Xilinx/mlir-aie

of a “memoizing” allocator, MemoMalloc, within the PyTorch deep learning framework

and evaluated its memory consumption and execution performance on a wide range of

DNN architectures.

– Key technical contribution of this work: A novel allocation capture tech-

nique which uniquely associates all memory allocations with their high-level deep

learning operation; a static analysis component which constructs an optimal al-

location “plan” using ILP and CP-SAT formulations of the Dynamic Storage

Allocation problem (Buchsbaum et al., 2003).

– Key language design insight: High-level frameworks such as PyTorch, by

virtue of their abstractions, cannot capture and expose the implementation-specific

details necessary for specific crucial optimizations (even when those frameworks

expose lower-level intermediate representations).

• In BraggHLS: High-Level Synthesis for Low-latency Deep Neural Networks for Experi-

mental Science, we presented an open-source compiler framework, BraggHLS, based on

high-level synthesis techniques for translating high-level representations of deep neural

networks into lower-level representations, suitable for deployment to field-programmable

gate arrays (FPGAs).

– Key technical contribution of this work: A CP-SAT formulation of the

Shared Operator Scheduling (Kruppe et al., 2021); a lifting method for raising

MLIR to Python to enable domain-specific and user-extensible transformations on

low-level representations of DNNs; finally, an implementation of the BraggNN (Liu

et al., 2022b) network (for Bragg peak detection) which achieved a throughput

4.8µ s/sample, i.e., a 4× improvement over the previous state of the art.

– Key language design insight: Expensive compiler optimization passes (such as

loop-carried dependency analysis) must be exposed and manipulable by the user

4

so that they may avail themselves of domain-specific knowledge when optimizing

their implementations.

• In nelli: A Lightweight Frontend for MLIR, we developed nelli, a lightweight,

Python-embedded, domain-specific language for generating MLIR code. nelli en-

ables generating a fully functional embedded (in Python) domain-specific language

frontend for arbitrary dialects of MLIR.

– Key technical contribution of this work: Automatic, extremely high-fidelity

and generic Python bindings to MLIR dialects, including a novel approach to

mapping arbitrarily nested conditionals and loop primitives to corresponding IR

operations.

– Key language design insight: Compilers should not assume the existence of

high-level language frontends (such as PyTorch or TensorFlow) and instead expose

APIs and IRs such that the operations and transformations may be employed in

and of themselves.

• In An End-to-End Programming Model for AI Engine Architectures, we validate our

core thesis by leveraging and extending MLIR to provide an embedded domain-specific

language and code generation for a Coarse-Grained Reconfigurable Architecture, specif-

ically, AMD AI Engines. We apply our end-to-end programming model to the challenge

of designing a performant GEMM implementation.

– Key technical contribution of this work: A fully end-to-end programming

model for AMD AI Engines, including a language frontend, optimal stream routing

(using ILP and CP-SAT formulations of congestion-aware traffic assignment (Temel-

can et al., 2020)), runtime memory management, and packaging, distribution,

deployment to device; a novel stream broadcasting primitive for reducing the se-

mantic gap between array broadcasting and stream switch configuration; a novel
5

approach to metaprogramming MLIR in Python that enables using the same

language for both metaprogramming and programming; finally, performant im-

plementations of GEMM for the same architecture.

– Key language design insight: Integrated language and compiler design enables

building a programming model that developers can use to access all features

and device APIs necessary for achieving performant implementations of dataflow

programs.

1.3 Thesis Organization

The remainder of this dissertation reviews the aforementioned works; Chapter 2 discusses

Memory Planning for Deep Neural Networks, Chapter 3 discusses BraggHLS: High-Level Syn-

thesis for Low-latency Deep Neural Networks for Experimental Science, Chapter 4 discusses

nelli: A Lightweight Frontend for MLIR, Chapter 5 discusses An End-to-End Programming

Model for AI Engine Architectures, and finally Chapter 6 concludes with a summary.

6

CHAPTER 2

MEMORY PLANNING FOR DEEP NEURAL NETWORKS

Deep neural networks (DNNs) are ubiquitous as components of research and production

systems; they are employed to fulfill tasks across a broad range of domains, including image

classification (Affonso et al., 2017), object detection (Zhao et al., 2019), speech recogni-

tion (Amodei et al., 2016), and content recommendation (Da’u and Salim, 2020). Tradition-

ally, DNNs are deployed to multi-processor (or multi-core processor) server-class platforms,

such as those found in commercial data centers and scientific high-performance clusters.

This is because DNNs, generally, are resource-intensive, in terms of compute, memory, and

network usage; see Table 2.1 for representative DNN workloads at Facebook, Inc., a large

social media services company that employs DNNs in many of its products.

Indeed, as a result of latency constraints imposed by quality-of-service guarantees, data

center deployments usually target CPU architectures (and corresponding memory hierar-

chies), as opposed to GPGPU architectures (Park et al., 2018). This is a consequence of

the fact that CPUs are better suited for low latency applications, owing to their high clock

speeds and synchronous execution model, as opposed to GPUs, which typically have lower

clock speeds and an asynchronous execution model. Further, new DNN techniques, such as

Category Model Type Model Size
(# params)

Typical
Batch Size

Max # Live
Activations

Latency
(constraint)

Ranking Linear 1 - 10M 1 - 100 >10K ∼ 10 ms
Embedding >10 billion 1 - 100 >10K ∼ 10 ms

Vision ResNet50 25M 1 (image) 2M N/A
ResNeXt-101-
32x4

43 - 829M 1 (image) 2.4 - 29M N/A

FasterRCNN 6M 1 (image) 13.2M N/A
ResNeXt3D-101 21M 1 (movie clip) 58M N/A

Language Seq2seq 100M - 1B 1 - 8 tokens >100K ∼ 10 ms

Table 2.1: Resource requirements of representative DNN inference workloads implemented
on CPU. Reprinted with permission from (Park et al., 2018).

7

Transformers (Brown et al., 2020) and Mixture-of-Experts (Shazeer et al., 2017), lead to net-

works with billions, or even trillions (Fedus et al., 2021), of floating-point parameters (called

weights), thus indicating (current) upper bounds on potential memory consumption; for in-

stance, training BERT networks (a transformer) requires up to 16TB of memory (Shoeybi

et al., 2020). Applying such complex DNNs effectively in high traffic services necessitates

managing system resources carefully. To be specific, managing memory usage is important,

both for preventing failures (such as out-of-memory conditions), and, as we discuss in the

following, reducing latencies.

In this work, we focus on the implications of memory management for execution per-

formance in server-class deployments of DNNs. It is well-known that in multi-threaded

environments, with many non-uniform service requests, heap synchronization routines can

lead to blocking that inhibits scaling performance gains (Boreham, 2000). Specifically, we

refer to contention on locks (i.e., mutexes) held to enforce mutual exclusion on code that

modifies the heap data structure (i.e., malloc and free). The standard mitigation of such

issues is replacing system malloc with a caching allocator such as jemalloc (Evans, 2011),

tcmalloc (Ghemawat and Menage, 2009), or SuperMalloc (Kuszmaul, 2015a). Caching al-

locators such as these alleviate lock contention by maintaining many independent heaps,

each with its own mutexes, and distributing memory requests among them, thereby reducing

pressure on any single lock. These allocators can be effective for many workloads and mem-

ory allocation patterns, but they are not a panacea. In the case of diverse DNN workloads

on servers, where a process may exhibit 2 × 107 malloc requests per second, distributed

across 2,000 concurrent threads (Hazelwood et al., 2018), it is still possible for a program

to experience significantly reduced performance due to lock contention. For DNNs with

many allocation requests, spanning a wide range of sizes, this can readily be observed (see

Section 2.1.2).

It is important to note that DNNs allocate memory in addition to that needed for just

8

their weights; substantial temporary memory is associated with buffers (known as ten-

sors) that correspond to intermediate results created during the evaluation of layers of

the DNN. We observe that even with reasonable input sizes, the intermediate tensors of

resnext101_32x8d (Xie et al., 2017) comprise 27% of the total 13GB run-time memory,

57% (of 760MB) for squeezenet1_0 (Iandola et al., 2016a), and 66% (of 2473MB) for

mnasnet0_75 (Tan et al., 2019). Similar figures have been reported in prior work (Pis-

archyk and Lee, 2020). These intermediates are often short-lived (serving only to propagate

results between sequential operations) and overlap with only a small subset of the lifetimes

of other intermediates. Thus, the effective memory needed to materialize the entire col-

lection of intermediates is often much less than the sum total of the individual memories.

Given foreknowledge of all lifetimes and sizes of intermediate tensors, and a strategy for

computing corresponding offsets, memory can be allocated statically (or, at worst, just prior

to inference). More importantly, as it pertains to performance, this single batch allocation

effectively eliminates lock contention. Such an approach is called static memory planning,

or static allocation. Unfortunately, due to pointer aliasing and control flow, comprehensive

and robust lifetime and size data are difficult to derive statically (i.e., correctly, completely,

and prior to any execution).

Hence, to reduce allocations while satisfying peak memory usage constraints, we propose

a hybrid static-runtime memory management solution, called MemoMalloc, that makes use

of both the statically known structure of the neural network and a single profiling pass.

Specifically, our method uses a convenient representation of the neural network, along with

lightweight stack tracing and pointer tagging, to reconstruct the lifetimes, sizes, and alias-

ing relationships of all intermediate tensors completely and accurately. Our system then

constructs memory plans using one of several performant strategies. We present an imple-

mentation of the technique in the PyTorch (Paszke et al., 2019) deep learning framework

and evaluate our implementation on a large and representative set of DNNs. In terms of ex-

9

ecution performance (as measured by latency) our solution outperforms PyTorch+jemalloc

(i.e., PyTorch backed by the state-of-the-art caching allocator jemalloc). Specifically, across

almost all input sizes and threading configurations (in terms of the number of threads) we

observe, on average 20% lower inference latencies, and at best 40% lower latencies.

In summary, the principal contributions of this work are:

1. A study of the memory allocation patterns of a wide range of DNN architectures.

2. A study of several different exact and heuristic static allocation strategies, as they

pertain to DNNs.

3. An implementation and evaluation of MemoMalloc, a system for managing memory for

DNNs, which outperforms jemalloc.

The remainder of this chapter is organized as follows: Section 2.1 gives necessary back-

ground on representations of DNNs and memory allocators, along with a discussion of worst-

case results concerning caching allocators and DNNs. Section 2.2 discusses our implementa-

tion, with a particular focus on how we resolve aliases exactly and performantly. Section 2.3

presents a thorough evaluation of our implementation, across various representative DNN

architectures and workloads (in terms of input sizes and threading environment). Section 2.4

discusses the evaluation and the insights garnered thereof. Finally, Section 2.5 reviews prior

work in this area and Section 2.6 concludes and discusses future work, including dynamics,

training, GPUs, and applications to edge device deployments.

2.1 Background

We review the necessary background for our work. This includes a discussion of how DNNs

are represented in deep learning frameworks (i.e., PyTorch) as it pertains to our manip-

ulation of those representations. We then discuss the memory allocation issues addressed

by caching allocators (including an empirical study of worst-case performance). Finally, we
10

define memory planning formally and introduce the memory planning strategies that inform

the design of the static memory planning component of MemoMalloc.

2.1.1 Representations of DNNs

Deep neural networks are typically specified using high-level frameworks that can be com-

piled into low-level platform and hardware-specific code. For example, TVM (Chen et al.,

2018) generates highly optimized, hardware-specific code for various hardware backends by

efficiently exploring the space of possible DNN transformations (specifically, with respect

to kernel fusion). Such transformations are carried out on a representation of the DNN

(Relay (Roesch et al., 2018) of TVM, HLO of TensorFlow (Larsen and Shpeisman, 2019),

TorchScript (tsi) of PyTorch) that captures the data and control flow dependencies between

individual layers, as well as attributes of the data (i.e., tensors), such as type (e.g., float32,

int, or bfloat16), memory layout (e.g., contiguous, strided, or sparse), and shape. Note that

inputs to DNNs are characterized by their shape, i.e., the sizes of the dimensions of the input

tensors, represented as arrays; a common shape corresponding to an image input for com-

puter vision networks is (N, C, H, W), with corresponding size N ×C ×H ×W ×size(dtype),

where size(dtype) is the width of the data type (e.g., 4 bytes for float32). This represen-

tation is called an intermediate representation (IR) since it functions as an intermediary

between the high-level specification and the lower-level hardware characteristics.

TorchScript (TS) is a compiler infrastructure within the PyTorch deep learning frame-

work that produces a type-annotated, static single assignment (SSA) IR (called TS IR).

TorchScript is executed using an interpreter attached to a Just in Time (JIT) optimizer and

compiler. There are two ways to generate TS IR from a PyTorch specified DNN:

• torch.jit.trace , which executes a forward pass iteration of a DNN and records the

PyTorch operators (corresponding to the conceptual layers that comprise the DNN)

that are invoked, thus “freezing” the code path of the DNN and hence eliminating
11

Listing 1 Example neural network

class Net(torch.nn.Module):
def __init__(self):

super(Net, self).__init__()
self.linear = nn.Linear(4, 4)
self.relu = nn.ReLU()

def forward(self, x, h):
y = self.linear(x) + h
y = self.relu(y)
return y

control flow;

• torch.jit.script , which analyzes the Python abstract syntax tree representation

of the DNN and lowers it to TS IR.

In this work we exclusively make use of the torch.jit.trace path. Consider the example

neural network, specified as a PyTorch model, presented in Listing 1. Given an input tensor

with shape (3, 4), it is “traced” to the TS IR presented in Listing 2.

Within TS IR, identifiers on the left-hand sides of assignments are called values, and

identifiers on the right-hand sides are the operators invoked during execution. As prescribed

by SSA semantics, each value is assigned only once, and thus the TS IR representation

permits a one-to-one mapping with a directed, acyclic, control and data flow graph (hence,

the pairing of operator and output are considered a node in this graph). Note, as well, that all

values have type annotations of varying levels of specificity; for example (cf. Listing 2), the

concrete annotation Float(3, 4, strides=[4, 1]) uniquely determines the size of the

intermediate tensor %11 as 3 × 4 × size(Float) = 48 bytes (strides=[4, 1] indicates the

tensor is arranged contiguously in memory) while the abstract annotation Tensor indicates

value %12 ’s type cannot be determined until runtime. The TS compiler has facilities for

traversing and transforming these representations of DNNs. In particular one can implement

12

Listing 2 TS IR representation of neural network in Listing 1

graph(%x : Tensor, %h : Tensor):
%6: int = prim::Constant[value=1]()
%linear_weight: Float(4, 4, strides=[4, 1])

= prim::Constant[value=<Tensor>]()
%linear_bias: Float(4, strides=[1]) = prim::Constant[value=<Tensor>]()
%11: Float(3, 4, strides=[4, 1]) = aten::linear(

%x, %linear_weight, linear_bias
)
%12: Tensor = aten::add(%11, %h, %6)
%13: Tensor = aten::relu(%12)
return (%13)

graph rewrite passes that arbitrarily insert, remove, and rearrange nodes. We make use of

these facilities in our implementation to augment the IR with memory allocation nodes that

are then executed by the TS JIT and effectuate the memory plan (see Section 2.2).

2.1.2 Caching Allocators and Lock Contention

Caching allocators (Bonwick, 1994) address performance issues with memory allocation and

de-allocation, at runtime. Specifically total memory usage (i.e., reduction of internal and

external fragmentation of allocated memory), cache locality of sequences of allocations, and

overall latency in allocating memory for complex objects. They accomplish their goals by

caching recent allocations (typically for configurable lengths of time called decay times) in

order to reduce the number of expensive system calls (sbrk and mmap). An implicit concern

of allocators is the performance overhead of the use of the allocator itself. An allocator that

allocates optimally (either in terms of cache locality or total usage) but does so at the cost

of excessive blocking times per allocation is of questionable value for typical users.

In the context of multi-threaded applications running on multiprocessor systems, block-

ing occurs during synchronization to prevent race conditions on the cache data structures.

Caching allocators balance these costs (against those associated with fragmentation) by de-

13

ploying multiple, independently managed caches (called arenas) and distributing allocation

requests among them (thereby reducing request service and synchronization pressure on any

one cache). In principle, this solution is in direct contradiction with the stated aim of re-

ducing fragmentation: many caches managed by a single caching allocator degenerate to

the same fragmentation pattern as many independent non-caching allocators managing their

own subsets of system memory. Thus, care must be taken with respect to large allocations

(typical of DNNs) to prevent severe fragmentation (i.e., mixing of small and large allocations

in the same regions of memory).

“Per-thread” caching allocators, such as jemalloc, tcmalloc, and SuperMalloc, support

thread-specific caching, in addition to maintaining multiple caches (called, appropriately,

thread caches). That is to say, they maintain unique caches for each live thread executing

on a system. This enables those allocations that can be serviced by the thread cache to

happen without any synchronization and therefore very efficiently. This leads to very fast

allocation in the common case, but also increases memory usage and fragmentation since

a fixed number of objects can persist in each thread cache over the course of the entire

execution of the program (Kuszmaul, 2015b). Effectively, this is the same failure mode

(writ small) as that which betides conventional caching allocators operating many caches.

To account for such fragmentation, thread caches are usually configured to be quite small;

the default thread cache for jemalloc is 32KB in size. In addition, as in the case of DNN

workloads, it is common to instantiate a manually managed arena for “oversized” allocations

that has no thread cache at all; typical allocation size thresholds for this oversized arena are

1MB, 2MB, or 4MB.

To further illustrate the challenge posed by memory allocation patterns in the context of

DNN workloads, with respect to latency, we perform a worst-case analysis; we exercise some

common networks with jemalloc as the allocator with no thread cache and a single arena

for all allocations. To be precise, we execute ten iterations of a forward pass on inputs sized

14

(1, 3, 128, 128) ≈ 192KB and record (using perf) time spent in malloc_mutex_lock_slow

(a jemalloc utility function related to locking). See Figure 2.1. The result is that even

at moderate concurrency (16 threads on our 32-core test platform; see Section 2.3) most

iterations spend considerable time contending with locks. We can further investigate lock

contention by collecting statistics on blocking wait times for lock acquisition (as recorded by

mutexes.ctl.total_wait_time and mutexes.ctl.max_wait_time1). The results, shown

in Figure 2.2, can be understood given consideration of the sizes and frequencies of the

intermediate allocations made by these DNNs. We observe that the DNNs most affected

make many allocations, most below 1MB (see Figure 2.3), and incur high request rates on

jemalloc and locks related to those allocation sizes, evident from statistics on individual

arena bins (jemalloc partitions arenas into bins of size 2k, and distributes allocations re-

quests amongst those bins). We make use of this data to tune jemalloc during our evaluation

(see Section 2.3).

2.1.3 Memory Planning

In general, memory planning can be framed as an instance of the offline dynamic storage

allocation (DSA) problem. To be precise, given static knowledge of all intermediate tensor

sizes and lifetimes, we seek to determine the initial allocation size and the set of suitable off-

sets such that all intermediate tensors fit within the allocation. Therefore, the offsets can be

computed by solving the mixed-integer program (MIP) formulation of offline DSA (Sekiyama

et al., 2018):
min total_mem

s.t. offseti + memi ≤ total_mem
(2.1)

1. http://jemalloc.net/jemalloc.3.html#tuning

15

http://jemalloc.net/jemalloc.3.html#tuning

124 8 16 24 32 40 48 64

0

10

20

30

number of threads

p
er
ce
n
t
of

to
ta
l
co
m
p
u
te

mnasnet0 75 efficientnet b4 resnext101 32x8d
googlenet

124 8 16 24 32 40 48 64

104

105

ru
n
ti
m
e
(m

s)

Figure 2.1: Total runtime (dashed line) and percent (solid line) of compute time spent in
malloc_mutex_lock_slow as a function of the number of concurrent threads.

16

124 8 16 24 32 40 48 64

10−4

10−3

10−2

10−1

100

101

102

number of threads

to
ta
l
w
ai
t
ti
m
e
(m

s)

mnasnet0 75 efficientnet b4 resnext101 32x8d
googlenet

124 8 16 24 32 40 48 64

10−5

10−4

10−3

10−2

10−1

m
ax

w
ai
t
ti
m
e
(m

s)

Figure 2.2: Maximum (dashed line) and total (solid line) lock wait times for the entire
jemalloc arena.

17

27 29 211 213 215 217 219 221

100

101

102

103

104

size (bytes)

n
u
m
b
er

o
f
al
lo
ca
ti
on

s

mnasnet0 75 resnext101 32x8d efficientnet b4

Figure 2.3: Distributions of intermediate allocations for various DNNs. Note that size is log
scaled.

18

where tensors with overlapping lifetimes are constrained to be ordered in memory by

offseti + memi ≤ offsetj + zij ∗ total_mem

offsetj + memj ≤ offseti +
(
1 − zij

)
∗ total_mem

Here zij are decision variables, defined as

zij :=

0 if offseti + memi ≤ offsetj

1 if offsetj + memj ≤ offseti

that determine ordering (in address space) of allocations that overlap in lifetime.

While the offsets that comprise the solution to the MIP formulation are provably correct

and optimal, the MIP is, in general, computationally intractable (Li et al., 2004). The best-

known polynomial-time approximation is 2 + ε by Buchsbaum (Buchsbaum et al., 2003),

over the previously 3 + ε best by Gergov (Gergov, 1999). There also exist simpler heuristics

that generally perform well in terms of peak memory usage, fragmentation, and planning

time. In this work, we consider five distinct memory planning strategies:

• bump_allocation, the baseline allocation strategy that consists of iterating through

all allocations and maintaining a maximum offset, which is incremented (“bumped”)

for each new allocation;

• mip (Sekiyama et al., 2018), i.e., offsets computed by solving the MIP optimization

specified by Eqns. 2.1;

• gergov (Gergov, 1999), Gergov’s 3 + ε approximation, based on constructing an infea-

sible solution and then transforming to a feasible solution using the Best Fit heuristic

for interval graph coloring;

• greedy_by_size (Pisarchyk and Lee, 2020), that operates by sorting all intermediate
19

allocations by size and then proceeding to assign offsets for overlapping (in lifetime)

tensors according to a best fit criterion;

• mincost_flow (Lee et al., 2019), which frames the allocation problem as a minimum

cost flow problem (with edges in the flow network corresponding to memory reuse).

We evaluate these strategies for the purposes of designing the memory planning component

of MemoMalloc (see Section 2.2.2).

2.2 Implementation

Our implementation consists of three components:

• A hybrid static analysis and profiling component that captures sizes and lifetimes of

all memory allocations;

• A memory planner that constructs structured plans, consisting of an initial memory

allocation and offsets for allocations associated with each operator of the DNN;

• A runtime component that effectuates the memory plan by computing runtime offsets

and instantiating tensors, which are then consumed by operators.

We describe each component in turn.

2.2.1 Profiling

Recall the ultimate goal of our system: statically allocating all memory necessary for a

forward pass iteration of a DNN. In order to accomplish this goal, it is necessary to describe

accurately and uniquely all allocations made during a forward pass. Initial implementations

involved recovering sizes of intermediate tensors wholly from the TS IR representation of a

DNN. While practical and conceptually straightforward (involving propagating input shapes

20

on tensors and computing tensor sizes from outputs of operators) it suffers from a critical flaw:

since TS IR is a higher-level representation of the DNN than the kernel-level implementations,

it does not capture all allocations made during the execution of the DNN (see Table 2.2).

Primarily, this a product of operators that delegate to generic implementations; for example,

a max_pool2d operation could appear in the TS IR as

%input.177 : Float(1, 512, 15, 15, strides=[...])

= aten::max_pool2d(%input.151, %4, %3, %3, %3, %6)

and reflect only a single output tensor, but whose actual implementation (see Listing 3)

delegates to one of various specializations, and then, potentially, immediately frees parts

of the results. Such implementation-dependent allocations are not reflected at the IR level

and are fairly common. While it might be argued that such issues should be handled in

a principled manner (e.g., by refactoring max_pool2d_with_indices) such delegation is

necessary given the breadth of operators that PyTorch supports.

Another complication involved in using TS IR to reconstruct all tensor lifetimes is the

inherent aliasing of names; while TS is equipped with alias analysis infrastructure, it is, by

necessity, conservative. For example, TS does not attempt to analyze aliasing of tensors

that are inserted into containers (such as Dict, List, and Tuple). Nor is it able to precisely

infer aliasing relationships between tensors that are never materialized but are actually views

on tensors (e.g., slices of tensors). In fact, memory planning in the context of this type of

aliasing leads to “over-planning”, i.e., overestimation of memory needs due to planning for

tensors that do not correspond to unique allocations.

Note that the diametrically opposed alternative, namely a purely memorization-based

approach that depends solely on the order of allocations, would be brittle with respect to

relationships between operators and allocations. This is because such relationships are crit-

ical for adjusting memory plans post any optimization passes (such as those performed by

an optimizing JIT) that occur after constructing a memory plan. Consider a “ResBlock”
21

Listing 3 max_pool2d C++ implementation. Note, in the case of dele-
gating to at::max_pool2d_with_indices, an immediate free occurs when
std::get<0>(output_and_indices) is tail called.

Tensor max_pool2d(
const Tensor& self,
IntArrayRef kernel_size,
IntArrayRef stride,
IntArrayRef padding,
IntArrayRef dilation,
bool ceil_mode) {

if (self.is_quantized()) {
return at::quantized_max_pool2d(

self, kernel_size, stride, padding, dilation, ceil_mode
);

}
if (self.is_mkldnn()) {

return at::mkldnn_max_pool2d(
self, kernel_size, stride, padding, dilation, ceil_mode

);
}
auto output_and_indices = at::max_pool2d_with_indices(

self, kernel_size, stride, padding, dilation, ceil_mode
);
return std::get<0>(output_and_indices);

}

in a ResNet (see Figure 2.4) where control flow diverges after the MaxPool activation layer;

since there is no total order of operations on distinct paths, a JIT compiler is free to reorder

them. This has implications for the allocations performed by those operators. Consider

the Conv + BatchNormalization pairs of operators, which make intermediate allocations

of the same sizes but with differing lifetimes. If a given memory plan assigns memory ad-

dresses [offset1, offset1 + size) to the intermediate tensor in Group 1, computed under

the assumption that its lifetime covers (see Figure 2.5a) the lifetime of the intermediate

tensor in Group 2 (with assigned memory addresses [offset2, offset2 + size)), then a re-

ordering of those operations such that Group 1’s BatchNormalization operator executes

prior to Group 2’s (see Figure 2.5b) would lead to an illegal address access by Group 2’s

22

Figure 2.4: A “ResBlock” in a ResNet DNN, where the final Conv and BatchNormalization
layers along both paths require allocations of the same size, but which can be made in
arbitrary order (figure created using Netron (Roeder, 2022)).

BatchNormalization operator. This cannot be averted, since, at the time of allocation, a

purely order-based solution could only distinguish allocations according to lifetime starts

and tensor sizes. In the structured approach (i.e., one that unambiguously associates al-

locations with operators), offset1 and offset2 would be effectively reordered along with

their respective operators, thus avoiding any illegal memory accesses.

7 8 9 10 11 12

Group 2

Group 1

Conv

Conv BatchNormalization

BatchNormalization

time

(a) Group 1’s intermediate allocation covers
Group 2’s.

7 8 9 10 11 12

Group 2

Group 1

Conv

Conv

BatchNormalization

BatchNormalization

time

(b) Group 2’s intermediate allocation out-
lives Group 1’s.

Figure 2.5: Problematic orderings of operators. If a given memory plan assumes the order-
ing of operators in Figure 2.5a then a reordering such as that of Figure 2.5b leads to the
BatchNormalization operator in Group 2 performing an illegal memory access (because its
allocation should only “last” until time = 11).

As a result of all of these complexities, we refined our approach and designed a hybrid

solution: we use profiling to capture all allocation sizes and lifetimes and avail ourselves of

23

Table 2.2: Statistics on captured intermediate allocations (total number and total memory),
by TS IR versus allocations captured by our profiling approach.

Model TS IR # TS IR memory (MB) Profiling # Profiling memory
mnasnet0_75 98 11 12,931 44
wide_resnet50_2 121 41 662 71
efficientnet_b4 379 50 57,238 190
resnext101_32x8d 240 87 3370 194
googlenet 138 11 788 24

the TS IR representation of the DNN. We do so by instrumenting the allocator to record

pointer values associated with sizes. We capture this information in tandem with lightweight

stack tracing that establishes the provenance of an allocation (i.e., the operator and kernel

within whose scope that allocation was made). The stack tracing is “lightweight” in the

sense that it does not unwind the stack but maintains an auxiliary stack (which only records

calls to functions in the aten namespace of the PyTorch library).

One challenging aspect of this approach is in the capture of lifetime endpoints; since

calls to free only receive a void* pointer (and no other metadata about the use of the

memory pointed to), there is, in principle, no way to bracket the lifetime of a tensor (i.e.,

associate mallocs with corresponding frees). A naive solution could rely on pointer values

themselves (in combination with a lookup table that records the size corresponding to a

pointer) to make this identification, but this approach fails when the system allocator (that

has been instrumented) reuses an address (which one hopes it often does!).

Instead, we employ a tagged pointer (Nam et al., 2019) approach. Specifically, we make

use of the fact that, on x86_64 architectures, pointers only occupy the lower six bytes of an

8-byte word (on AArch64, this feature is called Top Byte Ignore (ARM)). Making full use of

the upper two bytes, we store a unique identifier, corresponding to each allocation (up to 216

unique allocations) made during the profiling pass. This identifier is then used to uniquely

identify frees with their corresponding mallocs. Note, x86_64 requires pointers to be in

“canonical form” before they are de-referenced (otherwise a “stack fault” is generated). We

24

resolve this issue by encapsulating the tagged pointers in a smart pointer that canonicalizes

(in a standards-compliant way) on dereference (see Listing 4). In addition to enabling us

to determine tensor lifetimes, tagged pointers enable us to completely resolve aliases (by

querying for this tag at operator and kernel boundaries). Using fully the resolved aliasing

relationships, we can reconstruct relationships between operators and the kernels to which

they delegate.

2.2.2 Memory Planner

After profiling to collect unambiguous tensor lifetimes and sizes, we statically plan memory

allocation for subsequent forward pass iterations. In designing this aspect of the system, we

considered the strategies discussed in Section 2.1. In order to evaluate the best planning

strategy, we compared execution times and errors (relative to the optimum produced by the

MIP). We observed that greedy_by_size generally achieves near-optimal results in terms of

memory usage. We also evaluated the fragmentation incurred by various memory planning

strategies and observed that greedy_by_size generally has acceptable fragmentation. In

addition to being efficient with respect to peak memory usage, greedy_by_size is perfor-

mant enough to be executed prior to every forward pass of a DNN (see Figure 2.6). Our

memory planner executes the greedy_by_size strategy by default but can be configured to

use any of the other aforementioned planning strategies.

Listing 4 Standards-compliant method of canonicalizing a tagged pointer. The first bitwise
AND (&) clears the upper 16 bits of the pointer. Then, if bit 47 is 1, the bitwise OR (|) sets
bits 47 through 63, but if bit 47 is 0, the bitwise OR is a no-op (since it is an OR with 0).

inline void* canonicalize(void* ptr) {
uintptr_t p2 = (((uintptr_t)ptr & ((1ull << 48) - 1)) |

~(((uintptr_t)ptr & (1ull << 47)) - 1));
return (void*)(p2);

}

25

0 0.2 0.4 0.6 0.8 1 1.2

·104

10−3

10−2

10−1

100

101

102

103

number of intermediates

ti
m
e
(s
)

bump mip gergov

greedy by size mincost flow

Figure 2.6: Runtimes for memory management strategies across various DNNs (i.e., various
numbers of intermediate tensors). Note that mip and mincost_flow both time out for large
numbers of intermediates.

26

2.2.3 Runtime

After performing memory planning, we use the TS IR to “scope” the allocations to each

operator, in order to preserve the structure of the allocations (i.e., groupings of allocations

made in the service of carrying out an operation). On subsequent inference passes, we lever-

age that structure to assign offsets to tensors requested by operators. As already discussed,

the alternative, simply assigning offsets on subsequent execution passes in some fixed order,

was deemed to be brittle because it prevents plans from being transformed by IR passes that

optimize the DNN, i.e., passes that potentially reorder operators and their concomitant allo-

cations (see the discussion in Section 2.2.1). Our extension of TS IR (and the corresponding

TS runtime) includes two new primitive operators:

• prim::AllocateSlab, borrowing terminology common in the allocator literature, is

an operator that allocates all the memory that will be necessary for the duration of

the inference pass of the DNN. It takes, as an attribute, the total_size and returns

a Storage value (called %memory) backed by this allocation.

• prim::AllocateTensor, which takes, as attributes, the size and offset for the

planned allocation that will be requested by the immediately subsequent operator and

takes as input the %memory value. Internally, it functions in one of two ways: it either

constructs a Tensor with manually set address (using pointer arithmetic to calculate

offset′ = offset + start(%memory)) if the subsequent operator can directly consume

the allocation (i.e., it is an out variant operator) or it queues allocations that will be

made implicitly by the operator (using, counterintuitively, a stack structure owned by

an instance of MemoMalloc).

See Listing 5 for a simple example. Note that tensors returned to the user (such as %5 in

Listing 5) are not managed since the solution aims to be orthogonal to other aspects of the

PyTorch runtime (i.e., MemoMalloc should not own tensors that “escape” the DNN).

27

Listing 5 Simple memory planning example.

graph(%w : Tensor, %x: Tensor, %h: Tensor):
%memory: Storage = prim::AllocateSlab[total_size=1344]()
%1: Tensor = prim::AllocateTensor[size=448, offset=0](%memory)
%2: Tensor = aten::mm(%w, %x, %1)
%3: Tensor = prim::AllocateTensor[size=448, offset=488](%memory)
%4: Tensor = aten::add(%2, %h, %3)
%5: Tensor = aten::relu(%4)
return (%5)

2.3 Evaluation

We evaluate our system (here denoted PyTorch+MemoMalloc) on several DNNs that are

designed for various computer vision tasks; DCGAN (Radford et al., 2016) is used for repre-

sentation learning; DeepLabv3 (Chen et al., 2017) and FCN (Shelhamer et al., 2016) are used

for semantic segmentation; GoogLeNet (Szegedy et al., 2014), WideResNet (Zagoruyko and

Komodakis, 2017), VGG16 (Simonyan and Zisserman, 2015), InceptionV3 (Szegedy et al.,

2015), RegNet (Radosavovic et al., 2020), and SqueezeNet (Iandola et al., 2016b) are used

for image classification. Due to shifting compute resources available, we made use of two test

platforms over the course of our analysis (see Tables 2.3, 2.4), with slightly differing design

matrices on each (see Tables 2.5, 2.6).

We evaluate our system against a baseline of PyTorch with memory managed by jemalloc

(a common pairing in deployments of PyTorch). For PyTorch+jemalloc, we set the oversize

arena (informed by our analysis in Section 2.1.2) threshold at 1MB, i.e., all allocations with

sizes below 1MB are managed by jemalloc in the default way, making full use of the thread

cache and n×4 arenas (where n is the number of processor cores, including hyper-threading,

on each test platform). For allocations greater than 1MB, the PyTorch+jemalloc config-

uration uses one arena with no thread cache and default decay rates. These configuration

parameters are comparable to those typical of PyTorch deployments on server-class plat-

forms (Hazelwood et al., 2018). For PyTorch+MemoMalloc, neither a caching allocator nor

28

Table 2.3: Test platform 1 characteristics.

Component Value
CPU AMD(R) Threadripper(R) 3975WX 32-Cores (64 threads)
RAM 128GB DDR4
Hard drive 1.9T Samsung MZVLB2T0HALB-000L7

Table 2.4: Test platform 2 characteristics.

Component Value
CPU Intel(R) Xeon(R) Platinum 8339HC 24-Core (48 threads)
RAM 376GB DDR4

an oversize arena is used (i.e., only the single static allocation in combination with a memory

plan).

We run each design configuration in a multi-threaded fashion (with the number of threads

being a design parameter). Each configuration performs num_iterations iterations of its

forward pass on inputs with dimensions ranging in batch size and characteristic height/width

(i.e., input images are square). Additionally, the configuration with jemalloc is run for a

warmup period of 10 iterations. We repeat each configuration num_repeats times and collect

the average execution time across all non-warmup iterations. We report the ratio of execution

time between PyTorch+jemalloc and PyTorch+MemoMalloc. See tables 2.5 and 2.6 for our

design matrices. Note that since batch_size and height_width completely determine input

size we group results by input sizes, i.e., input_size = 4×3×batch_size×height_width2

(since all tensors are float32 tensors, each element comprising 4 bytes, and all inputs have

3 channels). We report input size in terms kilobytes to reduce clutter on plots.

29

Table 2.5: Design matrix for evaluation on test platform 1.

Dimension Values
batch_size [1, 4, 8]
height_width [128, 256]
num_threads [1, 32, 64, 128]
num_iterations 10
num_repeats 10

Table 2.6: Design matrix for evaluation on test platform 2.

Dimension Values
batch_size [1, 4, 8]
height_width [64, 128, 256, 512]
num_threads [1, 2, 4, 8, 16, 32, 48, 64]
num_iterations 32
num_repeats 32

124 8 16 32 48 64

0

1,000

2,000

3,000

4,000

number of threads

ru
n
ti
m
e
(m

s)

input size
48
96
192
384
768
1536
3072
6144
12288
24576

(a) Actual runtimes.

124 8 16 32 48 64

1

1.1

1.2

1.3

1.4

number of threads

re
la
ti
ve

im
p
ro
ve
m
en
t
(%

)

input size
48
96
192
384
768
1536
3072
6144
12288
24576

(b) Relative runtimes.

Figure 2.7: Evaluation on alexnet on platform 2.

30

124 8 16 32 48 64

0

1

2

3

·104

number of threads

ru
n
ti
m
e
(m

s)

input size
48
96
192
384
768
1536
3072
6144
12288

(a) Actual runtimes.

124 8 16 32 48 64

1

1.2

1.4

1.6

1.8

number of threads

re
la
ti
ve

im
p
ro
ve
m
en
t
(%

)

input size
48
96
192
384
768
1536
3072
6144
12288

(b) Relative runtimes.

Figure 2.8: Evaluation on densenet161 on platform 2.

1 32 64 128

0

1,000

2,000

3,000

4,000

number of threads

ru
n
ti
m
e
(m

s)

input size
192
768
1536
3072
6144

(a) Actual runtimes.

1 32 64 128

0.8

0.9

1

1.1

1.2

number of threads

re
la
ti
ve

im
p
ro
ve
m
en
t
(%

)

input size
192
768
1536
3072
6144

(b) Relative runtimes.

Figure 2.9: Evaluation on dcgan on platform 1.

31

1 32 64 128

0

1

2

3
·104

number of threads

ru
n
ti
m
e
(m

s)

input size
192
768
1536
3072
6144

(a) Actual runtimes.

1 32 64 128

1.05

1.1

1.15

1.2

number of threads

re
la
ti
ve

im
p
ro
ve
m
en
t
(%

)

input size
192
768
1536
3072
6144

(b) Relative runtimes.

Figure 2.10: Evaluation on fcn_resnet50 on platform 1.

1 32 64 128

0

0.5

1

1.5

2

2.5

·104

number of threads

ru
n
ti
m
e
(m

s)

input size
192
768
1536
3072
6144

(a) Actual runtimes.

1 32 64 128

1

1.1

1.2

1.3

1.4

1.5

number of threads

re
la
ti
ve

im
p
ro
ve
m
en
t
(%

)

input size
192
768
1536
3072
6144

(b) Relative runtimes.

Figure 2.11: Evaluation on regnet_x_8gf on platform 1.

2.4 Discussion

See Figures 2.7, 2.8, 2.9, 2.10, and 2.11 for the resulting runtimes of our evaluation. We

observe that PyTorch+MemoMalloc robustly performs better than PyTorch+jemalloc, in

terms of latency, for almost all input sizes and thread counts. How large that performance
32

27 210 213 216 219 222

100

101

102

size (bytes)

n
u
m
b
er

o
f
al
lo
ca
ti
o
n
s

dcgan fcn resnet50 regnet x 8gf

Figure 2.12: Distributions of intermediate allocations for DNNs for which Py-
Torch+MemoMalloc underperforms PyTorch+jemalloc at input size = 128.

advantage is, varies amongst the networks, most likely as a function of the arithmetic in-

tensity of the kernels of those networks. In the instances that MemoMalloc performs worse,

it is the case that most allocations made by those networks fall below the 1MB oversize

threshold (see Figure 2.12) and thereby have allocations serviced primarily by jemalloc‘s

thread cache. That is to say, those allocations can be performed with low latency overheads

by jemalloc’s thread cache, and thus jemalloc does not incur any overhead relative to

MemoMalloc.

One notable feature of the performance trends is the reduction in relative performance

with increasing thread count. That is to say, MemoMalloc performs well at 32 threads on

33

platform 1 and 24 threads on platform 2, but then that relative performance slowly decays.

This is most likely because the processors on our test platforms in fact possess fewer physical

cores than reported to the operating system (due to hyper-threading). The limited number

of cores (relatively speaking) acts as a natural “speed bump” on the number of operations

a given thread can perform over the course of executing the DNN (thus constraining the

maximum amount of mutex contention in the PyTorch+jemalloc configuration). This is

evident from the overall increase in runtime experienced for all input sizes as a function of

thread count.

Finally, it is important to consider the tradeoffs made in deploying MemoMalloc over

jemalloc. MemoMalloc trades latency for, potentially, higher average memory usage; while

peak usage should be comparable (both allocators need to accommodate the maximum nec-

essary memory at any given time), average usage should be higher with MemoMalloc because

it does not perform any frees over the course of the forward pass. To investigate this trade-

off, we collect statistics on the total number of bytes in active extents actually mapped by

jemalloc (gathered using mallctl). Note that jemalloc always allocates aligned memory,

while MemoMalloc only sometimes allocates aligned memory (depending on adjacent allo-

cations), and thus the comparison is only approximate. Consider googlenet for input size

= 128 (see Figure 2.13). Indeed, we observe that peak usage by MemoMalloc is comparable

to that of jemalloc, average usage is higher. This internal fragmentation is acceptable in

environments that have ample memory, or in instances where DNN processes take prior-

ity, but could prevent the use of MemoMalloc in resource-constrained environments such as

embedded devices (see Section 2.6).

2.5 Related work

There is ample related work in this area. Sekiyama et al. (Sekiyama et al., 2018) propose a

profiling approach similar to ours. They formally define the offline DSA problem (we make

34

0 76 152 228 304 380 456 532 608 684
0

1

2

3

4

time

m
em

or
y
(M

B
)

mapped

(a) Total number of bytes in active extents actually mapped by jemalloc for googlenet for input
size = 128.

0 76 153 229 305 382 458 534 611 687
0

0.5

1

1.5

2

2.5

3

time

m
em

or
y
(M

B
)

(b) Heap map for MemoMalloc with greedy_by_size strategy for googlenet for input size = 128.

Figure 2.13: Comparing memory usage for googlenet by jemalloc versus MemoMalloc.
Note that the entire ∼3.5MB is kept allocated for the duration of the forward pass.

use of their formalization in Section 2.1.3) and then solve it using a “Best-Fit” heuristic

(from (Burke et al., 2004)) for a related problem (the orthogonal strip-packing problem).

They observe a moderate reduction in intermediate memory allocations across batch sizes

and a commensurate reduction in inference latency due to how their framework of choice

(Chainer (Tokui et al., 2019)) performs intermediate allocations. Their approach is distinct

from ours in that it does not attempt to recover the structure of the DNN.

Lee et al. (Lee et al., 2019) study memory management for DNNs in the context of

deployment to mobile devices. In this context, they aim to reduce peak memory usage

such that networks may satisfy the memory constraints of on-device accelerators on various

mobile phones. To this end, they describe two memory management algorithms: a greedy

memory management algorithm that allocates a pool of shared objects on an operator-by-

operator basis, and the mincost_flow strategy we described in Section 2.1.3. They report

satisfactory performance improvements but primarily due to successfully migrating from

CPU to the on-device accelerators. They do not attempt to capture allocations made by

35

kernel implementations of operators (which do occur in their framework of choice, TensorFlow

Lite).

Pisarchyk et al. (Pisarchyk and Lee, 2020) also study memory management in the context

of DNNs but with respect to peak usage rather than execution latency. They evaluate the

same set of memory planning strategies as us, in addition to a strategy called Greedy by

Breadth. Greedy by Breadth operates under the assumption that intermediate tensors of

large sizes typically cluster, on an operator-by-operator basis (i.e., large inputs to operators

produce large outputs). Thus, they sort (in decreasing order) operators by a measure they

define as breadth (the sum of sizes of input and output tensors) and assign offsets in this

order. Pisarchyk et al. evaluate their strategies on various DNNs tailored to deployment

on edge devices. While they observe that Greedy by Size achieves near optimal results (in

concordance with our evaluation) they do not make any use of the additional structure of

the DNN, nor do they attempt to perform alias analysis of tensors.

Nimble (Shen et al., 2021) does make use of the intermediate representation of the DNN

and similarly inserts primitive allocation operations into the IR, but, critically, Nimble does

not introspect into implementations of operators and therefore elides any implicit alloca-

tions. Notably, TVM (closely related to Nimble) began discussions regarding static memory

planning at approximately the same time as this project began.

One important body of work possessing high affinity with our own is the Multi-level In-

termediate Representation (MLIR) project (Lattner et al., 2020a). In the MLIR framework,

there exist many intermediate representations (called dialects), that enable the specification

of DNNs at various levels of abstraction. In particular, in the linalg dialect, sequences of

DNN operators are decomposed in terms of the corresponding linear algebra; consider the

representation of conv in Listing 6. The important feature of this representation to note

is that the allocation %3 = memref.alloc() for the output of the convolution is explicitly

represented, along with its shape memref<1x32x112x112xf32> (along with the shapes of all

36

Listing 6 Representation of conv in the linalg dialect of MLIR.

func @conv(%input: tensor<1x3x225x225xf32>, %filter: tensor<32x3x3x3xf32>,
%output: tensor<1x32x112x112xf32>)

-> tensor<1x32x112x112xf32> {
%0 = bufferization.to_memref %input : memref<1x3x225x225xf32>
%1 = bufferization.to_memref %filter : memref<32x3x3x3xf32>
%2 = bufferization.to_memref %output : memref<1x32x112x112xf32>
%3 = memref.alloc() : memref<1x32x112x112xf32>
linalg.copy(%2, %3) : memref<1x32x112x112xf32>,memref<1x32x112x112xf32>
linalg.conv_2d_nchw_fchw

{
dilations = dense<1> : tensor<2xi64>,
strides = dense<2> : tensor<2xi64>

}
ins(%0, %1: memref<1x3x225x225xf32>, memref<32x3x3x3xf32>)
outs(%3: memref<1x32x112x112xf32>)

%4 = bufferization.to_tensor %3 : memref<1x32x112x112xf32>
return %4 : tensor<1x32x112x112xf32>

}

other tensors). This straightforwardly enables the writing of a compiler pass that implements

static memory planning; indeed in MLIR this is called a “comprehensive bufferization” and

uses essentially the mincost_flow strategy.

2.6 Conclusion

We studied the memory allocation patterns of DNNs, with respect to latencies incurred

by synchronization mechanisms in conventional caching allocators. We then proposed and

implemented a memory planning system for reducing such latencies (during inference) for

DNNs. We evaluated our system and observed that it performs better than jemalloc for

typical DNN workloads. In the future, we intend to factor out MemoMalloc into an indepen-

dent module with a uniform API such that it can be plugged into any of the popular deep

learning frameworks.

Future work in this area includes several directions:

37

• Dynamics: All of our work here assumes that there is no control flow and that

all intermediate tensor sizes are fixed. In practice, this is only the case in certain

environments and it would be preferable to be able to perform memory planning in the

context of both control flow and dynamic intermediate tensor sizes. Our preliminary

work indicates that in fact, this is possible; for DNNs where intermediate tensor sizes

can be algebraically inferred from input shapes, it is possible to construct memory

plans ahead-of-time (and to cache them) for common input shapes. Such a regime is

called symbolic memory planning, owing to the employment of symbolic shape inference

in order to derive algebraic relationships between input shapes and intermediate tensor

sizes. The simplest example of this is symbolic memory planning in the context of a

dynamic batch size; in this context it can be analytically proven that the MIP solution

scales linearly with batch size, thus enabling amortized MIP memory planning.

• Training: Our work here has targeted primarily DNN inference, on the assumption

that latency matters most in this context. While it is the case that service-level agree-

ments and quality-of-service guarantees impose hard constraints on inference latencies,

it is also the case that during training of DNNs, lower latencies could proportionally

reduce costs (associated with the research process). The added complexities of training

are twofold: firstly, the graph corresponding to backpropagation of gradients must be

obtained (i.e., the backwards graph), and secondly, intermediate tensors must be kept

alive (or stored) in order to be available during gradient computation. Both of these

aspects present new challenges for static memory planning. Obtaining the backwards

graph in TS IR is currently not possible but alternative tracing mechanisms, such as

LazyTensor (Suhan et al., 2021), could be used. Under current assumptions for heuris-

tics memory planning strategies (such as greedy_by_size), intermediate tensors that

need to be persisted or stored undoubtedly lead to highly fragmented memory plans.

Thus, training necessitates a distinct set of heuristics for computing offsets.

38

• GPUs: Motivated by current deployment practices, we have only considered CPU

deployment. But it is the case that GPUs are in fact, slowly being adopted as de-

ployment targets for inference. GPUs introduce many novel complications, due to

exotic scheduling environments and complicated memory hierarchies; for example, on

NVIDIA devices, execution of a group of threads will block on data being absent from

shared memory. Despite such complications, there is reason to believe that static

memory planning could be feasible on GPUs as well; NVIDIA has recently released an

extension to the CUDA API called CUDA Graphs2 whose use entails “freezing” and

reusing fixed sets of memory addresses for multiple iterations of arbitrary sequences

of kernels. Preliminary exploration of this API has shown that it does in fact reduce

many of the latencies associated with allocation.

• Edge Devices: Recently edge platforms (mobile phones, wearables, IoT sensors) have

also become feasible deployment targets for DNNs, owing to advances in research on

DNN architectures that maintain accuracy while reducing resource consumption (such

as quantized (Wu et al., 2016) and sparse networks (Xu et al., 2018)). These ad-

vances notwithstanding, those platforms reproduce many of the phenomena of their

larger scale analogues (Suo et al., 2021). Namely, memory consumption of DNNs

on edge devices is of significant importance, due to proportionally scaled memories

(i.e., relatively small), limited memory bandwidth capacities (Wu et al., 2019), and

less powerful memory management units (Deligiannis and Kornaros, 2016). Simul-

taneously, limited threading capabilities impose constraints on the complexity (and

therefore sophistication) of possible memory management schemes, such as dynamic

allocators (Ramakrishna et al., 2008) and software virtual memory (Bai et al., 2009).

We are investigating deploying MemoMalloc on such platforms.

2. https://developer.nvidia.com/blog/cuda-graphs/

39

https://developer.nvidia.com/blog/cuda-graphs/

CHAPTER 3

BRAGGHLS: HIGH-LEVEL SYNTHESIS FOR LOW-LATENCY

DEEP NEURAL NETWORKS FOR EXPERIMENTAL

SCIENCE

High data rates are observed and, consequently, large datasets are generated, across a broad

range of science experiments in domains such as high-energy physics, materials science, and

cosmology. For example, in high-energy physics, the LHCb detector at the Large Hadron

Collider (LHC) is tasked with observing the trajectories of particles produced in proton-

proton collisions at 40 MHz (Gligorov, 2015). With a packet size of approximately 50 kB

(per collision), this implies a data rate of approximately 2 TB/s. Ultimately, in combination

with other detectors, the LHC processes approximately 100 EB of data per year. In materials

science, Bragg diffraction peak analysis, which provides non-destructive characterization of

single-crystal and polycrystalline structure and its evolution in a broad class of materials,

can have collection rates approaching 1 MHz (Hammer et al., 2021), with a corresponding

packet size of 80 kB. In cosmology, the Square Kilometer Array, a radio telescope projected

to be operational by 2027 (McMullin et al., 2022), will sustain data rates in excess of 10

TB/s (Grainge et al., 2017).

Storing and distributing such large quantities of data for further analysis is cost pro-

hibitive. Thus, data must be compressed or (as we consider here) filtered to preserve only

the most “interesting” elements at the time of collection, an approach that reduces storage

needs but imposes stringent latency constraints on the filtering mechanisms. Typically, fil-

tering mechanisms consist of either physics-based (Collaboration, 2020) or machine learning

models (Gligorov and Williams, 2013); in either case, maximally efficient and effective use of

the target hardware platform is important. Irrespective of the technique employed, almost

universally, for ultra-low (e.g., sub-microsecond) latency use cases the implementation is de-

40

ployed to either field-programmable gate arrays (FPGAs) or application-specific integrated

circuits (ASICs) (Duarte et al., 2018). Here we focus primarily on FPGAs.

Deep neural networks (DNNs), a particular type of machine learning model, have been

shown to be effective in many scientific and commercial domains due to their representational

capacity, i.e., their ability to represent (approximately) diverse sets of mappings (Alzubaidi

et al., 2021). DNNs “learn” to represent a mapping over the course of “training,” wherein

they are iteratively evaluated on sample data while a “learning rule” periodically updates

the weights that parameterize the DNN. In recent years, DNNs have been investigated for

near real-time scientific use cases (Liu et al., 2019, Patton et al., 2018, Liu et al., 2022a) but

their use for the lowest latency use cases has been limited (Duarte et al., 2018), for three

reasons:

1. Graphics Processing Units (GPUs), the conventional hardware target for DNNs, are

not sufficiently performant for these high data rate, low latency, use cases (due to their

low clock speeds and low peripheral bandwidth, until recently (Aaij et al., 2020));

2. DNNs, by virtue of their depth, require substantial memory (for weights) and compute

(floating-point arithmetic), thereby preventing their deployment to FPGAs, which, in

particular, have limited static RAM;

3. DNNs are (typically) defined, trained, and distributed by using high-level frameworks

(e.g., PyTorch (Paszke et al., 2017), TensorFlow (Abadi et al., 2016b), MXNet (Chen

et al., 2015)), which abstract all implementation details, thereby making portability

of model architectures to unsupported hardware platforms (e.g., FPGAs and ASICs)

close to non-existent (barring almost wholesale re-implementations of the frameworks).

These three barriers demand a solution that can translate a high-level DNN represen-

tation to a low-level representation, suitable for FPGA deployment, while simultaneously

optimizing resource usage and minimizing latency. In general, the task of lowering high-

41

level representations of programs to low-level representations is the domain of a compiler.

Similarly, the task of synthesizing a register-transfer level (RTL) design, rendered in a hard-

ware description language (HDL), from a program, is the domain of high-level synthesis

(HLS) (Nane et al., 2016) tools. Existing HLS tools (Canis et al., 2013, Zhang et al., 2008,

Ferrandi et al., 2021) struggle to perform needed optimizations in reasonable amounts of

time (see Section 3.1.2) despite, often, bundling robust optimizing compilers.

Recently, deep learning compilers (e.g., TVM (Chen et al., 2018), MLIR (Lattner et al.,

2020b), and Glow (Rotem et al., 2018)) have demonstrated the ability to reduce dramat-

ically inference latencies (Liu et al., 2018), training times (Zheng et al., 2022), and mem-

ory usage (Chen et al., 2016). These compilers function by extracting intermediate-level

representations (IRs) of the DNNs from the representations produced by the frameworks,

and performing various optimizations (e.g., kernel fusion (Ashari et al., 2015), vectoriza-

tion (Maleki et al., 2011), and memory planning (Chen et al., 2016)) on those IRs. The

highly optimized IR is then used to generate code for various target hardware platforms.

Given the successes of these compilers, it is natural to wonder whether they can be adapted

to the task of sufficiently optimizing a DNN such that it might be synthesized to RTL, for

deployment to FPGA.

In this work, we present BraggHLS, an open-source1, lightweight compiler and HLS frame-

work that can translate DNNs defined as PyTorch models to FPGA-compatible implemen-

tations. BraggHLS uses a combination of compiler and HLS techniques to compile the entire

DNN into fully scheduled RTL, thereby eliminating all synchronization overheads and achiev-

ing low latency. BraggHLS is general and supports a wide range of DNN layer types, and thus

a wide range of DNNs. To the best of our knowledge, BraggHLS is the first HLS framework

that enables the use of DNNs, free of a dependence on expensive and opaque proprietary HLS

tools, for science experiments that demand low-latency inference. In summary our specific

1. Available at https://github.com/makslevental/BraggHLS

42

https://github.com/makslevental/BraggHLS

contributions include:

1. We describe and implement a compiler framework, BraggHLS, that can efficiently trans-

form, without use of proprietary HLS tools, unoptimized, hardware-agnostic PyTorch

models into low-latency RTL suitable for deployment to FPGAs;

2. We show that BraggHLS generates lower latency designs than does a state-of-the-art

commercial HLS tool (Xilinx’s Vitis HLS) for many DNN layer types. In particular we

show that BraggHLS can produce synthesizable designs that meet placement, routing,

and timing constraints for BraggNN, a DNN designed for analyzing Bragg diffraction

peaks;

3. We discuss challenges faced even after successful synthesis of RTL from a high-level

representation of a DNN, namely during the place and route phases of implementation.

Note that while we focus here, for illustrative purposes, on optimizations relevant to a DNN

used for identifying Bragg diffraction peaks in materials science, BraggHLS supports a wide

range of DNNs, limited only by upstream support for DNN layers.

The rest of this chapter is as follows: Section 3.1 reviews key concepts from compilers,

high-level synthesis, and RTL design for FPGA. Section 3.2 describes the BraggHLS compiler

and HLS framework in detail. Section 3.3 evaluates BraggHLS‘s performance, scalability, and

competitiveness with designs generated by Vitis HLS, and describes a case study in which

BraggHLS is applied to BraggNN, a Bragg peak detection DNN with a target latency of 1

µs/sample. Section 3.4 discusses related work in this area. Finally, Section 3.5 concludes

and discusses future work.

3.1 Background

We briefly review relevant concepts from DNN frameworks and compilers, high-level syn-

thesis, and FPGA design. Each subsection corresponds to a phase in the translation from
43

high-level DNN to feasible FPGA implementation.

3.1.1 Compilers: The path from high to low

The path from a high-level, abstract, DNN representation to a register-transfer level rep-

resentation can be viewed as a sequence of progressive lowerings between adjacent levels

of abstraction. Each level of abstraction is rendered as a programming language, IR, or

HDL, and thus we describe each lowering in terms of the representations and tools used by

BraggHLS to manipulate those representations:

1. An imperative, define-by-run, Python representation, in PyTorch;

2. High-level data-flow graph representation, in TorchScript;

3. Low-level data and control flow graph representation, in Multi-Level Intermediate Rep-

resentation (MLIR).

PyTorch and TorchScript

Typically DNN models are represented in terms of high-level frameworks, themselves im-

plemented within general purpose programming languages. Such frameworks are popular

because of their ease of use and large library of example implementations of various DNN

model architectures. BraggHLS targets the PyTorch framework. DNNs developed within

PyTorch are defined-by-run: the author describes the DNN imperatively in terms of high-

level operations, using Python, which, when executed, materializes the (partial) high-level

data-flow graph (DFG) corresponding to the DNN (e.g., for the purposes of reverse-mode

automatic differentiation). From the perspective of the user, define-by-run enables fast iter-

ation at development time, possibly at the cost of some runtime performance.

Yet from the perspective of compilation, define-by-run precludes efficient extraction of the

high-level DFG; since the DFG is materialized only at runtime, it cannot easily be statically
44

inferred from the textual representation (i.e., the Python source) of the DNN. Furthermore, a

priori, the runtime-materialized DFG is only partially materialized (Paszke et al., 2017), and

only as an in-memory data structure. Thus, framework support is necessary for efficiently

extracting the full DFG. For this purpose, PyTorch supports a Single Static Assignment

(SSA) IR, called TorchScript (TS) IR and accompanying tracing mechanism (the TS JIT),

which generates TS IR from conventionally defined PyTorch models. Lowering from PyTorch

to TS IR enables various useful analyses and transformations on a DNN at the level of the

high-level DFG, but targeting FPGAs requires a broader collection of transformations. To

this end, we turn to a recent addition to the compiler ecosystem, MLIR.

MLIR

MLIR (Lattner et al., 2020b) presents a new approach to building reusable and extensible

compiler infrastructure. MLIR is composed of a set of dialect IRs, subsets of which are mu-

tually compatible, either directly or by way of translation/legalization. The various dialects

aim to capture and formalize the semantics of compute intensive programs at varying levels

of abstraction, as well as namespace-related sets of IR transformations. The entrypoint into

this compiler framework from PyTorch is the torch dialect (Silva and Elangovan, 2021),

a high-fidelity mapping from TS IR to MLIR native IR, which, in addition to performing

the translation to MLIR, fully refines all shapes of intermediate tensors in the DNN (i.e.,

computes concrete values for all dimensions of each tensor), a necessary step for downstream

optimizations and eliminating inconsistencies in the DNN (Hattori et al., 2022).

While necessary for lowering to MLIR and shape refinement, the torch dialect repre-

sents a DNN at the same level of abstraction as TS IR: it does not capture the precise data

and control flow needed for de novo implementations of DNN operations (e.g., for FPGA).

Fortunately, MLIR supports lower-level dialects, such as linalg, affine, and scf. The scf

(structured control flow) dialect describes standard control flow primitives, such as condi-

45

tionals and loops, and is mutually compatible with the arith (arithmetic operations) and

memref (memory buffers) dialects. The affine dialect, on the other hand, provides a formal-

ization of semantics that lend themselves to polyhedral compilation techniques (Bondhugula,

2020) that enable loop dependence analysis and loop transformations. Such loop transfor-

mations, particularly loop unrolling, are crucial for achieving lowest possible latencies (Ye

et al., 2022) because loop nests directly inform the concurrency and parallelism of the final

RTL design.

3.1.2 High-level synthesis

High-level synthesis tools produce RTL descriptions of designs from high-level representa-

tions, such as C or C++ (Canis et al., 2013, Ferrandi et al., 2021). In particular, Xilinx’s

Vitis HLS, based on the Autopilot project (Zhang et al., 2008), is a state-of-the-art HLS tool.

Given a high-level, procedural, representation, HLS carries out three fundamental tasks, in

order to produce a corresponding RTL design:

1. HLS schedules operations (such as mulf, addf, load, store) in order to determine

which operations should occur during each clock cycle; such a schedule depends on

three characteristics of the high-level representation: (a) the topological ordering of

the DFG of the procedural representation (i.e., the dependencies of operations on

results of other operations and resources); (b) the delay for each operation; and (c) the

user’s desired clock rate/frequency.

2. HLS associates (binds) floating point operations to RTL instantiations of intellectual

property (IP) for those operations; for example whether to associate an addition op-

eration followed by a multiply operation to IPs for each, or whether to associate them

both with a single IP, designed to perform a fused multiply-accumulate (MAC). In the

case of floating-point arithmetic operations, HLS also (with user guidance) determines

the precision of the floating-point representation.
46

3. HLS builds a finite-state machine (FSM) that implements the schedule of operations

as control logic, i.e., logic that initiates operations during the appropriate stages of the

schedule.

In addition to fulfilling these three fundamental tasks, HLS aims to optimize the program.

In particular, HLS attempts to maximize concurrency and parallelism (number of concurrent

operations scheduled during a clock cycle) in order maximize the throughput and minimize

the latency of the final implementation. Maximizing concurrency entails pipelining oper-

ations: operations are executed such that they overlap in time when possible, subject to

available resources. Maximizing parallelism entails partitioning the DNN into subsets of

operation that can be computed independently and simultaneously and whose results are

aggregated upon completion.

While HLS aims to optimize various characteristics of a design automatically, there are

challenges associated this automation. In particular, maximum concurrency and parallelism

necessitates data-flow analysis in order to identify data dependencies among operations, both

for scheduling and identifying potential data hazards. Such data-flow analysis is expensive

and grows (in runtime) as better performance is pursued. This can be understood in terms

of loop-nest representations of DNN operations.

For example, consider the convolution in Listing 7. A schedule that parallelizes (some

of) the arithmetic operations for this loop nest can be computed by first unrolling the loops

up to some “trip count” and then computing the topological sort of the operations. When

using this list scheduling algorithm, the degree to which the loops are unrolled determines

how many arithmetic operations can be scheduled in parallel. The issue is that the stores

and loads on the output array prevent reconstruction of explicit relationships between the

inputs and outputs of the arithmetic operations across loop iterations. The conventional

resolution to this loss of information is to perform store-load forwarding: pairs of store

and load operations on the same memory address are eliminated, with the operand of the

47

Listing 7 Python representation of a padding ⌊k/2⌋, stride 1, cout filter convolution with
k × k kernel applied to (b, cin, h, w)-dimensional input tensor; b is batch size, cin is number
of channels, and (h, w) are height and width, respectively.

def conv2d(
input: MemRef(b, cin, h, w),
output: MemRef(b, cout, h, w),
weight: MemRef(cout, cin, k, k)

):
for i1 in range(0, b):

for i2 in range(0, cout):
for i3 in range(0, h):

for i4 in range(0, w):
for i5 in range(0, cin):

for i6 in range(0, k):
for i7 in range(0, k):

_3 = i3 + i6
_4 = i4 + i7
_5 = input[i1, i5, _3, _4]
_6 = weight[i2, i5, i6, i7]
_7 = output[i1, i2, i3, i4]
_8 = _5 * _6
_9 = _7 + _8
output[i1, i2, i3, i4] = _9

48

store forwarded to the users of the load (see Listing 8). Ensuring correctness of this

transformation (i.e., that it preserves program semantics) requires verifying, for each pair

of candidate store and load operations, that there is no intervening memory operation

on the same memory address. These verifications are non-trivial since the iteration spaces

of the loops need not be regular; in general it might involve solving a small constraint

satisfaction program (Rajopadhye, 2002). Furthermore, the number of required verifications

grows polynomially in the convolution parameters, since the loop nest unrolls into b × cout ×

h × w × cin × k2 store-load pairs on the output array.

Finally, note, although greedy solutions to the scheduling problem solved by HLS are

possible, the scheduling problem, in principle, can be formulated as an integer linear program

(ILP), for which the corresponding decision problem is complete for NP. In summary, HLS

tools solve computationally intensive problems in order to produce an RTL description of

a high-level representation of a DNN. These phases of the HLS process incur “development

time” costs (i.e., runtime of the tools) and impose practical limitations on the amount of

design space exploration (for the purpose of achieving latency goals) which can be performed.

BraggHLS addresses these issues by enabling the user to employ heuristics during both the

parallelization and scheduling phases which, while not guaranteed to be correct (but can be

behaviorally verified) and have much lower runtimes (see Section 3.2.1).

3.1.3 FPGA design

Broadly, at the register-transfer level of abstraction, there remain two more steps prior to

being able to deploy a design to an FPGA: a final lowering, so-called logic synthesis, and

place and route (P&R). The entire process may be carried out by Xilinx’s Vivado tool.

Logic synthesis is the process of mapping RTL to actual hardware primitives on the FPGA

(so-called technology mapping), such as lookup tables (LUTs), block RAMs (BRAMs), flip-

flops (FFs), and digital signal processors (DSPs). Logic synthesis produces a network list

49

Listing 8 Store-load forwarding across successive iterations (e.g., i7 = 4 , 5) of the inner
loop in Listing 7, after unrolling. The forwarding opportunity is from the store on line 19 to
the load on line 25; both can be eliminated and _91 can replace uses of _72 , such as in the
computation of _92 (and potentially many others).

1 def conv2d(
2 input: MemRef(b, cin, h, w),
3 output: MemRef(b, cout, h, w),
4 weight: MemRef(cout, cin, k, k)
5):
6 for i1 in range(0, b):
7 for i2 in range(0, cout):
8 for i3 in range(0, h):
9 for i4 in range(0, w):

10 ...
11 # e.g., i5, i6, i7 = 2, 3, 4
12 _31 = i3 + i6
13 _41 = i4 + i7
14 _51 = input[i1, i5, _31, _41]
15 _61 = weight[i2, i5, i6, i7]
16 _71 = output[i1, i2, i3, i4]
17 _81 = _51 * _61
18 _91 = _71 + _81
19 output[i1, i2, i3, i4] = _91
20 # i5, i6, i7 = 2, 3, 5
21 _32 = i3 + i6
22 _42 = i4 + i7
23 _52 = input[i1, i5, _32, _42]
24 _62 = weight[i2, i5, i6, i7]
25 _72 = output[i1, i2, i3, i4]
26 _82 = _52 * _62
27 _92 = _72 + _82
28 output[i1, i2, i3, i4] = _92
29 ...

50

(netlist) describing the logical connectivity of various parts of the design. Logic synthesis,

for example, determines the implementation of floating-point operations in terms of DSPs;

depending on user parameters and other design features, DSP resource consumption for

floating-point multiplication and addition can differ greatly. Logic synthesis also determines

the number of LUTs and DSPs which a high-level representation of a DNN corresponds to,

which is relevant to both the performance and feasibility of that DNN when deployed to

FPGA.

After the netlist has been produced, the entire design undergoes P&R to determine which

configurable logic block within an FPGA should implement each of the units of logic required

by the digital design. P&R algorithms need to minimize distances between related units of

functionality (in order to minimize wire delay), balance wire density across the entire fabric

of the FPGA (in order to reduce route congestion), and maximize the clock speed of the

design (a function of both wire delay, logic complexity, and route congestion). The final,

routed design, can then be deployed to the FPGA by producing a proprietary bitstream,

which configures the FPGA.

3.2 The Compiler and HLS framework

BraggHLS is an open source compiler and HLS framework that employs MLIR for extracting

loop-nest representations of DNNs. Implemented in Python for ease of use and extensibility,

it handles the DNN transformations as well as scheduling, binding, and FSM extraction.

Importantly, there is no dependence on commercial HLS tools, a property that uniquely

enables its use for applications that require the flexibility of open source tool (e.g., the

ability to inspect and modify internals in order to adapt to special cases), such as low-latency

physical science experiments. Figure 3.1 shows its overall architecture. BraggHLS first lowers

DNNs from PyTorch to MLIR through TorchScript and the torch dialect (see Section 3.1.1)

and then from the torch dialect to the scf dialect (through the linalg dialect). Such a

51

representation lends itself to a straightforward translation to Python (compare Listing 7 to

Listing 9) and indeed BraggHLS performs this translation.

PyTorch

TorchScript

DNN Framework

Torch-MLIR

MLIR

TorchScript Affine SCF

Python

Transformations Symbolic execution Scheduling (CIRCT)

Verilog

BraggHLS

Figure 3.1: BraggHLS framework overview.

The benefits of translating scf dialect to Python are manifold: see Section 3.2.1. Ul-

timately, BraggHLS produces a representation of the DNN that is then fully scheduled by

using the scheduling infrastructure in CIRCT (Oppermann et al., 2022) (an MLIR adjacent

project). After scheduling, BraggHLS emits corresponding RTL (as Verilog).

BraggHLS delegates to the FloPoCo (de Dinechin, 2019) IP generator the task of gener-

ating pipelined implementations of the standard floating-point arithmetic operations (mulf,

divf, addf, subf, sqrtf) at various precisions. In addition, we implement a few generic

(parameterized by bit width) operators in order to support a broad range of DNN oper-

ations: two-operand maximum (max), unary negation (neg), and the rectified linear unit

(relu). Transcendental functions, such as exp, are implemented by using a Taylor series ex-

pansion to k-th order (where k is determined on a case-by-case basis). Note that FloPoCo’s
52

Listing 9 scf dialect loop representation of Listing 7.

@conv2d(
%input: memref<b × cin × h × w>,
%weight: memref<b × cout × h × w>,
%output: memref<cout × cin × k × k>

) {
scf.for %i1 = %c0 to b step %c1 {

scf.for %i2 = %c0 to cout step %c1 {
scf.for %i3 = %c0 to h step %c1 {

scf.for %i4 = %c0 to w step %c1 {
scf.for %i5 = %c0 to cin step %c1 {

scf.for %i6 = %c0 to k step %c1 {
scf.for %i7 = %c0 to k step %c1 {

%3 = arith.addi %i3, %i6
%4 = arith.addi %i4, %i7
%5 = memref.load %input[

%i1, %i5, %i3, %3, %4]
%6 = memref.load %weight[

%i2, %i5, %i6, %i7]
%7 = memref.load %output[

%i1, %i2, %i3, %i4]
%8 = arith.mulf %5, %6
%9 = arith.addf %7, %8
memref.store %9, %output[

%i1, %i2, %i3, %i4]
}}}}}}}

return %2
}

53

floating-point representation differs slightly from IEEE754, foregoing sub-normals and dif-

ferently encoding zeroes, infinities and NaNs (for the benefit of reduced complexity) and our

implementations max, neg, relu are adjusted appropriately.

We now discuss some aspects of BraggHLS in more detail.

3.2.1 Symbolic interpretation for fun and profit

8 16 32 64 128
Image size

0

1

2

3

4

5

6

Ti
m

e
(s

)

1e5

Figure 3.2: 3×3-kernel convolution (cf. Listing 9) full unrolling time vs. input (square)
image size, with store-load forwarding using MLIR’s -affine-scalrep pass. The longest
time is 577,419 s (≈160 h) for a loop nest with a trip count of 128×128×3×3=147,456.

As noted in Section 3.1.2, maximizing concurrency and parallelism for a design entails

unrolling loops and analyzing the data flow of their operations. As illustrated in Figure 3.2,

the formally correct approach to unrolling loop nests can be prohibitively expensive in terms

of runtime. In the case of BraggNN (see Listing 11), for example, the high cost of unrolling

precluded effective search of the design space for a RTL representation achieving the target

latency. Translating scf dialect to Python enables BraggHLS to overcome this barrier by

enabling us to use the Python interpreter as a symbolic interpreter. Interpreting the re-

sulting Python loop nests (i.e., running the Python program) while treating the arithmetic

54

and memory operations on SSA values as operations on symbols (i.e., Python classes with

overloaded methods) enables us to:

1. Partially evaluate functions of iteration variables to determine array index operands of

all stores and loads (for example,

memref.load %input[%i1,%i5,%i3,%3,%4]) and thereupon

perform memory dependence checks, thus transforming the problem of statically veri-

fying memory dependence into one of checking assertions at runtime;

2. Unroll loops by recording each floating-point arithmetic operation executed while en-

forcing SSA; e.g., for a loop whose body has repeated assignments to the same SSA

value (ostensibly violating SSA), we execute the loop and instantiate new, uniquely

identified, symbols for the result of each operation;

3. Reconstruct all data flow through arithmetic operations and memory operations by

interpreting memrefs as geometric symbol tables (i.e., symbol tables indexed by array

indices rather than identifiers/names) and stores and loads as reads and writes on

those symbol tables;

4. Swap evaluation rules in order to support various functional modes, e.g., evaluating

floating-point arithmetic operations by using (Python) bindings to FloPoCo’s C++

functional models, thereby enabling behavioral verification of our designs.

See Table 3.3 for the translation rules from MLIR dialects to Python.

3.2.2 AST transformations and verification

Prior to interpretation, BraggHLS performs some simple AST transformations on the Python

generated from scf dialect:

1. Hoist globals: Move fixed DNN tensors (i.e., weights) out of the body of the generated

Python function (BraggHLS translates the MLIR module corresponding to the DNN
55

JMLIRK Python
J%5K v5 = Val("%5")

Jmemref<b × cin × h × w>K MemRef(b, cin, h, w)

J%5 = memref.load %input[%i1, %i5, %3, %4]K J%5K = J%inputK.__getitem__((J%i1K, J%i5K, J%3K, J%4K))

J memref.store %9, %output[%i1, %i5, %3, %4]K J%outputK.__getitem__((J%i1K, J%i5K, J%3K, J%4K), J%9K)

J scf.for %i1 = %c0 to b step %c1K for J%i1K in range(J%c0K, b, J%c1K)

J%3 = arith.addi %i3, %i6K J%3K = J%i3K + J%i6K

J%8 = arith.mulf %5, %6K J%8K = J%5K.__mul__(J%6K)

J%9 = arith.addf %7, %8K J%9K = J%7K.__add__(J%8K)

J%63 = arith.cmpfugt %10, %c0K ∧ J%64 = arith.select %63, %10, %c0K

J%64K.relu(J%10K)

J%8 = arith.mulf %5, %6K ∧ J%9 = arith.addf %7, %8K

J%9K = fma(J%5K, J%6K, J%7K)

Figure 3.3: Translation rules for mapping scf, arith, and memref dialects to Python.

into a single Python function in order to simplify analysis and interpretation) and into

the parameter list, for the purpose of ultimately exposing them at the RTL module

interface.

2. Remove if expressions: DNN relu operations are lowered to the scf dialect as

a decomposition into arith.cmpfugt and arith.select; this transformation recom-

poses them into a relu.

3. Remove MACs: Schedule sequences of load-multiply-add-store (common in DNN

implementations) jointly, coalescing them into a single fmac operation.

4. Reduce fors: Implement the reduction tree structure for non-parallelizable loop nests

mentioned in Section 3.2.3.

These transformations on the Python AST are simple (implemented with procedural

pattern matching), extensible, and efficient (marginal runtime cost) because no effort is made

to verify their formal correctness. Thus, BraggHLS trades formal correctness for development

56

time performance. This tradeoff enables quick design space iteration, which for example,

enabled us to achieve low latency implementations for BraggNN (see Section 3.3.2).

BraggHLS supports behavioral rather than formal verification. Specifically, BraggHLS

can generate test-benches for all synthesized RTL. The test vectors for these test-benches

are generated by evaluating the generated Python representation of the DNN on randomly

generated inputs but with floating-point operations now evaluated using functional models

of the corresponding FloPoCo operators. The test-benches can then be run using any IEEE

1364 compliant simulator. We run a battery of such test-benches (corresponding to various

DNN operation types), using cocotb (Rosser, 2018) and iverilog (Williams), as a part of

our continuous integration (CI) process.

3.2.3 Scheduling

Recall that HLS must schedule operations during each clock cycle in a way that preserves

the DNN’s data-flow graph. That schedule then informs the construction of a corresponding

FSM. As already mentioned, scheduling an arbitrary DNN involves formulating and solving

an ILP. In the resource-unconstrained case, due to the precedence relations induced by

data flow, the constraint matrix of the associated ILP is a totally unimodular matrix and

the feasible region of the problem is an integral polyhedron. In such cases, the schedul-

ing problem can be solved optimally in polynomial time with a LP solver (Oppermann,

2019). In the resource-constrained case, resource constraints can also be transformed into

precedence constraints by picking a particular (possibly heuristic) linear ordering on the

resource-constrained operations. This transformation partitions resource-constrained opera-

tions into distinct clock cycles, thereby guaranteeing sufficient resources are available for all

operations scheduled within the same clock cycle (Dai et al., 2018).

BraggHLS uses the explicit parallelism of the scf.parallel loop-nest representation to

inform such a linear ordering on resource-constrained operations. By assumption, for loop

57

nests which can be represented as scf.parallel loop nests (see Listing 10), each instance

of a floating-point arithmetic operation in the body corresponding to unique values of the

iteration variables (e.g., %i1, %i2, %i3, %i4 for Listing 10) is independent of all other such

instances, although data flow within a loop body must still be respected. This exactly

determines total resource usage per loop nest; for example, the convolution in Listing 10

would bind to 2Ki DSPs (assuming mulf, addf bind to one DSP each), where:

Ki := |{%i1 = %c0 + %c1 × N ∧ %i1 < b}| ×

|{%i2 = %c0 + %c1 × N ∧ %i2 < cout}| ×

|{%i3 = %c0 + %c1 × N ∧ %i3 < h}| ×

|{%i4 = %c0 + %c1 × N ∧ %i4 < w}|

with %c1 × N representing all multiples of %c1. That is to say, Ki is the cardinality of the

cartesian product of the iteration spaces of the parallel iteration variables.

Defining K := maxi Ki across all scf.parallel loop nests, we can infer peak usage

of any resource. Then, after indexing available hardware resources j = 1, . . . , K, we can

bind the operations of any particular loop nest. This leads to a linear ordering on resource-

constrained operations such that operations bound to the same hardware resource index j

must be ordered according to their execution order during symbolic interpretation.2 Note

that this ordering coincides with the higher-level structure of the DNN, which determines

the ordering of scf.parallel loop nests (and thus interpretation order during execution of

the Python program).

For DNN operations that lower to sequential loop nests rather than scf.parallel loop

nests (e.g., sum, max, or prod), we fully unroll the loops and transform the resulting, sequen-

tial, operations into a reduction tree; we use As-Late-As-Possible scheduling (Baruch, 1996)

amongst the subtrees of such reduction trees.

2. BraggHLS only needs to construct a partial precedence ordering opa < opb for operations opa, opb

which CIRCT then combines with the delays of the operations to construct constraints such as start_opa +

58

Listing 10 Parallel loop representation of Listing 7, exhibiting explicitly the resource par-
titioning and ordering strategy we employ to construct a feasible schedule of operations.

@conv2d(
%input: memref<b × cin × h × w>,
%weight: memref<b × cout × h × w>,
%output: memref<cout × cin × k × k>

) {
scf.parallel (%i1, %i2, %i3, %i4) =

(%c0, %c0, %c0, %c0) to
(b, cout, h, w) step
(%c1, %c1, %c1, %c1) {

scf.for %i5 = %c0 to cin step %c1 {
scf.for %i6 = %c0 to k step %c1 {

scf.for %i7 = %c0 to k step %c1 {
%3 = arith.addi %i3, %i6
%4 = arith.addi %i4, %i7
%5 = memref.load %input[%i1, %i5, %i3, %3, %4]
%6 = memref.load %weight[%i2, %i5, %i6, %i7]
%7 = memref.load %output[%i1, %i2, %i3, %i4]
%8 = arith.mulf %5, %6
%9 = arith.addf %7, %8
memref.store %9, %output[%i1, %i2, %i3, %i4]

}}}}
return %2

}

59

3.3 Evaluation

We evaluate BraggHLS both on individual DNN layers, and end-to-end, on our use-case

BraggNN. We compare BraggHLS to Xilinx’s Vitis HLS by comparing the latencies and re-

source usages of the final designs generated by each. We also compare the runtimes of the

tools themselves. Both BraggHLS and Vitis HLS produce Verilog RTL, on which we run a

synthesis pass by using Xilinx’s Vivado. The particular FPGA target is Xilinx Alveo U280.

We measure LUT, DSP, BRAM, and FF usage. For the DNN layer evaluations, we use

FloPoCo (5,11)-floating point representations (5-bit exponent, 11-bit mantissa), correspond-

ing to Vitis HLS’s IEEE half-precision IPs. We synthesize all designs for a 10 ns target clock

period and report end-to-end latency as a product of the total schedule interval count of the

design and achieved clock period (10-WNS, where WNS is the worst negative slack reported).

In the case of Vitis HLS, which potentially explicitly pipelines the design and therefore imple-

ments with an initiation interval strictly less than the total schedule interval count, we report

in terms of the best possible interval count (LatencyBest from the Vitis HLS reports). All

other measurements are collected from Vivado synthesis reports. As Vitis HLS operates on

C++ representations, we generate such a representation for our test cases by first lowering

each DNN layer to the affine dialect and then applying the scalehls-translate tool of

the ScaleHLS project (Ye et al., 2022) to emit C++. Importantly, we do not make any use

of scalehls-opt optimization tool (of the same project).

Since our ultimate goal is low latency inference, and since the strategy that BraggHLS

employs in the pursuit of this goal is loop unrolling, in order to produce a like for like

comparison, we similarly unroll the representation that is passed to Vitis HLS. Thus, all Vitis

HLS measurements are reported in terms of unroll factor : an unroll factor of k corresponds

to a k-fold increase in the number of statements in the body of a loop and commensurate

k-fold decrease in the trip count of the loop. For loop nests, we unroll inside out: if k is

delaya ≤ start_opb.

60

greater than the trip count t of the innermost loop, we unroll the innermost loop completely

and then unroll the enclosing loop by a factor of k − t. We do not perform any store-

load forwarding during this preprocessing but we annotate all arrays with the directive

array_partition complete dim=1 in order that Vitis HLS can effectively pipeline. All

representations generated by BraggHLS correspond to full unrolling of the loop nests.

3.3.1 DNN layers

We evaluate BraggHLS vs. Xilinx’s Vitis HLS by comparing the latency of the final design on

five DNN layer types, chosen to cover a range of arithmetic operations (mulf, divf, addf,

subf, sqrtf) and data access patterns (iteration, accumulation, reduction):

• addmm(a, b, c) : Matrix multiply: a × b + c;

• batch_norm_2d(num_features) : Batch normalization over a 4D input (Ioffe and

Szegedy, 2015);

• conv_2d(cin, cout, k) : 2D convolution with bias, with k ×k kernel, over a b× cin ×

h × w input, producing b × cout × h′ × w′ output;

• max_pool_2d(k, stride) : 2D max pooling, with k × k kernel, and striding;

• soft_max : softmax (x) :=
 exp (xi)∑

j exp
(
xj

)

The parameter values and input dimensions used during evaluation are summarized in Ta-

ble 3.1.

Figure 3.4 shows Vitis HLS vs. BraggHLS resource usage and latency vs. unroll factor

and Figure 3.5 shows the runtimes of Vitis HLS as function of increasing unroll factor. We

observe that while Vitis HLS end-to-end latencies decrease with increased unroll factor, they

never match that achieved by BraggHLS. Even at an unroll factor of 1024 (which corresponds

to fully unrolled for all loop nests comprising these layer types), Vitis HLS is only within
61

Table 3.1: DNN layers used for evaluation of BraggHLS.

Layer Parameter values Input dimensions
addmm N/A a, b, c : (16, 16)
batch_norm_2d num_features = 2 input : (10, 2, 3, 3)

conv_2d cin = 1, cout = k = 3 input : (1, 1, 16, 16)

max_pool_2d k = 3, stride = 2 input : (1, 3, 16, 16)

soft_max N/A input : (1, 3, 16, 16)

10× of BraggHLS. We attribute this to Vitis HLS’s inability to pipeline effectively, due to

its inability to eliminate memory dependencies, either through store-load forwarding or

further array partitioning. Conversely, BraggHLS’s ability to effectively perform store-load

forwarding is evident in the complete lack of BRAM usage: all weights are kept on FFs

or LUTs. While infeasible for larger designs (which would be constrained by the number of

available FFs), this unconstrained usage of FFs is acceptable for our use case. The increasing

latency (as a function of unroll factor) in the max_pool_2d case is due to Vitis HLS’s failure

to meet timing, i.e., while the interval count decreases as a function of unroll factor, the

clock period increases.

3.3.2 BraggNN case study

High-energy diffraction microscopy enables non-destructive characterization for a broad class

of single-crystal and polycrystalline materials. A critical step in a typical HEDM experiment

is an analysis to determine precise Bragg diffraction peak characteristics. Peak characteristics

are typically computed by fitting the peaks to a probability distribution, e.g., Gaussian,

Lorentzian, Voigt, or Pseudo-Voigt. As noted, HEDM experiments can collect data at more

than 80 GB/s. These data rates, though more modest than at the LHC, merit exploring low

latency approaches in order to enable experiment modalities that depend on measurement-

based feedback (i.e., experiment steering).

62

Listing 11 BraggNN model architecture for scaling factors s=1,2.

BraggNN(s)(
(cnn_layers_1): Conv2d(s × 16, kernel=3, stride=1)
(nlb): NLB(

(theta_layer): Conv2d(s × 16, s × 8, kernel=1, stride=1)
(phi_layer): Conv2d(s × 16, s × 8, kernel=1, stride=1)
(g_layer): Conv2d(s × 16, s × 8, kernel=1, stride=1)
(out_cnn): Conv2d(s × 8, s × 16, kernel=1, stride=1)
(soft): Softmax()

)
(cnn_layers_2): Sequential(

(0): ReLU()
(1): Conv2d(s × 16, s × 8, kernel=3, stride=1)
(2): ReLU()
(3): Conv2d(s × 8, s × 2, kernel=3, stride=1)
(4): ReLU()

)
(dense_layers): Sequential(

(0): Linear(in_features=s × 50, out_features=s × 16)
(1): ReLU()
(2): Linear(in_features=s × 16, out_features=s × 8)
(3): ReLU()
(4): Linear(in_features=s × 8, out_features=s × 4)
(5): ReLU()
(6): Linear(in_features=s × 4, out_features=2)
(7): ReLU()

)
)

63

Br
ag
gH

LS

0.1

0.2

0.4
0.6
0.8

2

4
6
8

ba
se 4 8 12 16 20 24 28 32 36 40

10
24

Unroll factor

2

4

6

8
La

te
nc

y
(

s)
Latency

Vitis HLS
BraggHLS

Resources
DSP
BRAM
LUT
FF

(a) addmm module
Br
ag
gH

LS

0.1

10

0.2

0.4
0.6
0.8

2

4
6
8

20

Re
so

ur
ce

 u
til

iza
tio

n
(%

)

ba
se 4 8 12 16 20 24 28 32 36 40

10
24

Unroll factor

0.2

0.4

0.6

0.8
Latency

Vitis HLS

BraggHLS

Resources
DSP
LUT
FF

(b) batch_norm_2d module

Br
ag
gH

LS

0.1

10

0.2
0.4
0.6
0.8

2
4
6
8

20

ba
se 4 8 12 16 20 24 28 32 36 40

10
24

Unroll factor

10

6

8

20

La
te

nc
y

(
s)

Latency
Vitis HLS

BraggHLS

Resources
DSP
LUT
FF

(c) conv_2d module
Br
ag
gH

LS

1

0.2
0.4
0.60.8

2
4
68

Re
so

ur
ce

 u
til

iza
tio

n
(%

)

ba
se 4 8 12 16 20 24 28 32 36 40

10
24

Unroll factor

10

4

6

8

Latency
Vitis HLS

BraggHLS

Resources
LUT
FF

(d) max_pool_2d module

BraggH
LS

0.1

10

0.2
0.4
0.60.8

2
4
68

20
40

Re
so

ur
ce

 u
til

iza
tio

n
(%

)

ba
se 4 8 12 16 20 24 28 32 36 40

10
24

Unroll factor

10

20

40

La
te

nc
y

(
s)

Latency
Vitis HLS

BraggHLS

Resources
DSP
BRAM
LUT
FF

(e) soft_max module

Figure 3.4: Vitis HLS vs. BraggHLS resource usage and latency vs. unroll factor for five
DNN modules, exhibiting the large runtime cost incurred in using Vitis HLS to search the
design space (of possible low-latency designs for each layer). The lines give latencies (left
axes); the bars give the % of the resource used (right axes). All y-scales are log.

64

ba
se 4 8 12 16 20 24 28 32 36 40

10
24

Unroll factor

100

101

102

103

104

Ti
m

e
(s

)

addmm
batch_norm
braggnn
conv
max_pool_2d
soft_max

Br
ag
gH

LS
100

101

102

103

104

Figure 3.5: Vitis HLS vs. BraggHLS runtime vs. unroll factor, illustrating the large runtime
cost incurred in using Vitis HLS to search over possible low-latency BraggNN designs.

BraggNN (Liu et al., 2022b), a DNN aimed at efficiently characterizing Bragg diffrac-

tion peaks, achieves a throughput (via batch inference) of approximately 22 µs/sample on a

state-of-the-art GPU: a large speedup over classical pseudo-Voigt peak fitting methods, but

still far short of the 1 µs/sample needed to handle 1 MHz sampling rates. In addition, the

data-center class GPU such as a NVIDIA V100 (or even a workstation class GPU such as a

NVIDIA RTX 2080Ti) required to run the current BraggNN implementation cannot be de-

ployed at the edge, i.e., adjacent or proximal to the high energy microscopy equipment. With

the goal of reducing both per-sample time and deployment footprint, we applied BraggHLS

to the PyTorch representation of BraggNN(s =1) (see Listing 11) and achieved a RTL imple-

mentation which synthesizes to a 1238 interval count design that places, routes, and meets

timing closure for a clock period of 10 ns (for a Xilinx Alveo U280). The design consists of a

three stage pipeline with the longest stage measuring 480 intervals, for a throughput of 4.8

µs/sample. See Figure 3.6 for a comparison with designs generated by Vitis HLS (using the

same flow as in 3.3).

65

Br
ag
gH

LS

0.1

10

0.2
0.4
0.60.8
2
4
68
20
40
6080

Re
so

ur
ce

 u
til

iza
tio

n
(%

)

ba
se 4 8 12 16 20 24 28 32 36 40

10
24

Unroll factor

40

60
80

La
te

nc
y

(
s)

Latency
Vitis HLS

BraggHLS

Resources
DSP
BRAM
LUT
FF

Figure 3.6: BraggNN Vitis HLS vs. BraggHLS resource usage and latency vs. unroll factor
(with both at half-precision) throughout the design space of possible low-latency designs.

The most challenging aspect of implementing BraggNN was minimizing latency while sat-

isfying compute resource constraints (LUTs, DSPs, BRAMs) and achieving routing closure,

i.e., not exceeding available routing resources and avoiding congestion. We made two design

choices to reduce resource consumption. The first was to reduce the precision used for the

floating-point operations, from half precision to FloPoCo (5,4)-precision (5-bit exponent, 4-

bit mantissa), a choice justified by examination of the distribution of the weights of the fully

trained BraggNN (see Figure 3.7).

Reducing the precision enabled the second design choice, to eliminate BRAMs from the

design, since, at the lower precision, all weights can be represented as registered constants.

The reduced precision also drove the Vivado synthesizer to infer implementations of the

floating-point operations that make no use of DSPs, likely because the DSP48 hardware

block includes a 18-bit by 25-bit signed multiplier and a 48-bit adder (gui, 2021), neither of

which neatly divides the bit width of FloPoCo (5,4)-precision cores. (The actual width for

FloPoCo (5,4)-precision is 12 bits: 1 extra bit is needed for the sign and 2 for handling of

66

exceptional conditions.)

0 5 10 15 20 25

101

102

103

104

co
un

t

BraggNN Scales
1/2 scale
1/1 scale

Exponent (Magnitude)

C
ou

nt

Figure 3.7: BraggHLS weights exponent distribution, illustrating the narrow distribution of
observed weight exponents thereby justifying reduced precision.

Achieving routing closure was difficult due to the nature of the Xilinx’s UltraScale ar-

chitecture, of which the Alveo U280 is an instance. The UltraScale architecture achieves

its scale through Stacked Silicon Interconnect (SSI) technology (Leibson et al., 2013), which

implies multiple distinct FPGA dies, called Super Logic Regions (SLRs), on the same chip,

connected by interposers. Adjacent SLRs communicate with each other over a limited set of

Super Long Lines (SLLs), which determine the maximum bus width that spans two SLRs. On

the Alveo U280 there are exactly 23,040 SLLs available between adjacent SLRs and at (5,4)-

precision BraggNN(s=1) needs 23,328 SLLs between SLR2 and SLR1. [We route from SLR2

to SLR1 the outputs of cnn_layers_1 (1×16×9×9×12 wires) and soft(theta_layer×

phi_layer)×g_layer (1×8×9×9×12 wires).] Thus, we further reduced the precision to

(5,3). Finally, since multiple dies constitute independent clock domains, the SLLs that cross

SLRs are sensitive to hold time violations due to the higher multi-die variability (rap). This

multi-die variability leads to high congestion if not addressed. Thus, routing across SLRs
67

needs to be handled manually, using placement and routing constraints for logic in each

SLR and the addition of so-called “launch” and “latch” registers in each SLR. Figure 3.8

illustrates the effect of using launch and latch registers as well as placement and routing

constraints.

(a) BraggNN fails to achieve routing closure
without placement and routing constraints and
launch and latch registers.

(b) BraggNN achieves routing closure with use
of per SLR placement and routing constraints
(pblock_1, pblock_2, pblock_3) and launch
and latch registers (not highlighted).

Figure 3.8: Congestion maps for BraggNN on a Xilinx Alveo U280. Magenta indicates areas
of high congestion.

Thus, these design choices (in combination with compiler level optimizations performed

by BraggHLS) plus careful management of routing constraints enable us to lower, compile,

synthesize, place, and route BraggNN(s=1) to Xilinx’s Alveo U280 at a throughput of 4.8

µs/sample: ~5× higher latency than the target 1 µs/sample, but a ~4× improvement over

the PyTorch GPU implementation.
68

3.4 Related work

Several projects aim to support translation from high-level representations of DNNs to feasi-

ble FPGA designs. Typically, they rely on commercial HLS tools for the scheduling, binding,

and RTL emission phases of the translation, such as in the cases of DaCeML (Rausch et al.,

2022), hls4ml (Duarte et al., 2018), and ScaleHLS (Ye et al., 2022), which all rely on Xil-

inx’s Vitis HLS. Thus, they fail to efficiently (i.e., without incurring the aforementioned

runtime costs) produce feasible and low-latency designs. One notable recent work is the

SODA Synthesizer (Bohm Agostini et al., 2022), which does not rely on a commercial tool

but instead relies on the open-source PandA-Bambu HLS tool (Ferrandi et al., 2021); though

open-source and mature, we found in our own tests that PandA-Bambu also could not handle

fully unrolled designs efficiently.

Alternatively, some projects do not rely on HLS for scheduling, binding, and RTL emis-

sion, and also attempt to translate from high-level representations of DNNs to feasible FPGA

designs, such as DNN Weaver (Sharma et al., 2016) and NNGen (Takamaeda-Yamazaki,

2015). Both of the cited projects function as parameterized/templatized RTL generators

and thus lack sufficient generality for our needs; primarily they seek to produce implementa-

tions of kernels that emulate GPU architectures (i.e., optimizing for throughput rather than

latency). In our experiments they were unable to generate low-latency implementations,

either by achieving unacceptable latencies or by simply failing outright. (NNGen, due to the

nature of templates, supports only limited composition, and produced “recursion” errors.)

3.5 Conclusion

We have presented BraggHLS, an open-source MLIR-based HLS compilation framework that

supports translating DNN models to RTL without the use of commercial HLS tools. The

BraggHLS end-to-end compilation pipeline provides a PyTorch front-end and Verilog emission

69

back-end. An extensible Python intermediate layer supports use-case-specific optimizations

(e.g., store-load forwarding) that are not possible otherwise. Experimental results demon-

strate that BraggHLS outperforms, in terms of end-to-end latency, Vitis HLS on a range of

DNN layer types and on a real-world Bragg peak detection DNN.

Future work in this area includes several directions:

• Framework Integration: Better integration between the Python layer and MLIR:

it is preferable that the transformations on the Python representation could make use

of various MLIR facilities, such as affine analysis, for the purposes of exploring loop

transformations that improve latency;

• Scheduling: Expanding the set of scheduling algorithms available: for example, re-

source aware scheduling (Dai et al., 2018); Integration of scheduling-aware placement

and vice-versa (placement-aware scheduling): currently BraggHLS can be used to in-

form placement but does not explicitly emit placement constraints (see Section 3.3.2);

a more precise approach, such as in (Guo et al., 2021), would potentially enable better

pipelining and thus higher throughput.

70

CHAPTER 4

NELLI: A LIGHTWEIGHT FRONTEND FOR MLIR

MLIR is a modular and extensible compiler infrastructure (Lattner et al., 2020b) for progres-

sively transforming (lowering) programs from high-level (in terms of abstraction), architecture-

independent representations to low-level, architecture-specific representations. Such Inter-

mediate Representations (IRs) are termed dialects in the MLIR context in order to emphasize

their mutual compatibility and the unified interface that MLIR provides for transforming

between them, a process referred to as running passes.

MLIR has been applied to various problem domains and in its default distribution (other,

so-called “out-of-tree,” implementations exist) supports representing programs ranging in ab-

straction level from dataflow compute graphs, such as can be used to represent Deep Neural

Networks (DNNs), to architecture-specific vector instructions. Other less quotidian appli-

cations of MLIR include modeling gate-level primitives (Eldridge et al., 2021), quantum as-

sembly languages (McCaskey and Nguyen, 2021), and database query languages (Blockhaus

and Broneske, 2022, Jungmair et al., 2022). By virtue of its close connection to LLVM (Lat-

tner and Adve, 2004), MLIR supports code generation for CPUs, GPUs, and other compute

platforms, including abstract runtimes (as opposed to concrete hardware architectures) such

as OpenMP.

While the primary value of MLIR is its support for efficient (quick) construction of IRs

modeling novel domains, an undeniable secondary value is the ability to use existing dialects,

corresponding to established programming models, in combination with novel transforma-

tions tailored to problem-specific hardware configurations. For example, while there has

been much research on the use of MLIR to lower DNNs to high-performance CPU and GPU

platforms (Vasilache et al., 2022), such as data-center class devices and high-powered mobile

devices (e.g., expensive mobile phones), there is a dearth of work on efficiently targeting

low-power edge devices, such as micro-controllers and single-board computers. Yet those
71

latter edge devices, while relatively underpowered, can be an attractive DNN deployment

target in instances where power is a scarce commodity, such as IoT, AgTech, and urban in-

frastructure monitoring. Indeed, it is conceivable that, given sufficient directed design space

exploration (such as can be realized by using MLIR), these low-power edge devices could

effectively support edge inference of DNNs.

However, while MLIR provides the edge device software architect with a rich existing

repository of useful dialects and transformations, the effective use of those capabilities for

edge device programming is hindered by the lack of a point of ingress to MLIR capabilities

that is not encumbered by assumptions about the roles of the existing dialects and their

mutual relationships. Specifically, almost all extant ingress points take the form of high-level

DNN frameworks, such as PyTorch (Paszke et al., 2017), TensorFlow (Abadi et al., 2016b),

or ONNX (Jin et al., 2020)—but most optimization actually occurs on lower-level dialects,

such as the affine, structured control-flow, and vector dialects. Thus, in order to productively

investigate possible optimization opportunities one must distinguish artifacts of the lowering

process from the kernel representations themselves. For example, consider investigating the

optimization of a (32 × 32) linear layer (i.e., torch.nn.Linear(32, 32)). This ubiquitous

DNN operation lowers to the loop nests in Listing 16; note that the third loop nest is readily

identified as corresponding directly to a matrix-multiplication kernel, but the other three

are somewhat mysterious1. Thus, in longer programs (complete DNNs) it becomes difficult

to identify, isolate, and manipulate (e.g., to optimize) IR corresponding most closely to the

compute kernel itself, amongst IR that reflects certain assumptions/contracts. Conversely,

there currently exists no simple and efficient way to emit any of the lower-level dialects in

MLIR (such as scf , affine , memref , or vector) short of writing the IR “by hand.”

In order to address the problem of MLIR’s lower-level dialects being inaccessible, we

1. Case in point: the seemingly redundant initialization and subsequent copy into an intermediate buffer in
the lowering of torch.nn.Linear(32, 32) is the result of torch-mlir enforcing value semantics (Smith,
2002) on torch.tensor s, which, while important, obscures the actual compute kernel.

72

Listing 12 nelli mapping between Python’s if and MLIR’s scf dialect.

@mlir_func
def ifs(M: F64, N: F64):

one = 1.0
if M < N:

two = constant(2.0)
mem = MemRef.alloca([3, 3], F64)

else:
six = constant(6.0)
mem = MemRef.alloca([7, 7], F64)

return

func.func @ifs(%M: f64, %N: f64) {
%one = arith.constant 1.000000e+00 : f64
%cond = arith.cmpf olt, %arg0, %arg1 : f64
scf.if %cond {

%two = arith.constant 2.000000e+00 : f64
%mem = memref.alloca() : memref<3x3xf64>

} else {
%six = arith.constant 6.000000e+00 : f64
%mem = memref.alloca() : memref<7x7xf64>

}
return

}

Listing 13 nelli mapping between Python’s for and MLIR’s affine dialect.

M, N, K = 4, 16, 8

@mlir_func
def matmul(

A: MemRef[(M, N), F32],
B: MemRef[(N, K), F32],
C: MemRef[(M, K), F32]

):
for i in range(M):

for j in range(N):
for k in range(K):

a = A[i, j]
b = B[j, k]
c = C[i, k]
d = a * b
e = c + d
C[i, k] = e

func.func @matmul(
%A: memref<4x16xf32>,
%B: memref<16x8xf32>,
%C: memref<4x8xf32>

) {
affine.for %i = 0 to 4 {

affine.for %j = 0 to 16 {
affine.for %k = 0 to 8 {

%a = memref.load %A[%i, %j]
%b = memref.load %B[%j, %k]
%c = memref.load %C[%i, %k]
%d = arith.mulf %a, %b : f32
%e = arith.addf %c, %d : f32
memref.store %e, %C[%i, %k]

}
}

}
return

}

73

present nelli2, a lightweight frontend for MLIR. This Python embedded domain-specific

language (eDSL) builds on top of existing MLIR Python bindings to map Python primitives

(such as if s, for s, and class es) to various MLIR dialects. Our foremost goal in designing

nelli was to make MLIR more ergonomic and thereby more accessible. To this end, we make

nelli "Pythonic" while preserving MLIR semantics vis-a-vis the in-tree Python bindings. See

Listings 12 and 13 for some examples of nelli syntax. Notably, nelli captures program

control flow and produces fully typed IR with little static analysis on the Python source

(hence, lightweight). Additionally, since nelli is a Python eDSL, it fully interoperates with

existing Python tooling (IDEs, debuggers,etc.) and other elements of the Python ecosystem.

In the following, we discuss in greater detail nelli design goals, the eDSL implementa-

tion approaches that we investigated, and the implementation details of our chosen approach.

We also present three use cases: 1) a kernel tuner that uses a black-box, gradient-free, op-

timizer (Rapin and Teytaud, 2018), demonstrating the power and convenience of Python

interoperability; 2) a pipeline for lowering kernels to target GPUs and then evaluating per-

formance on a Raspberry Pi edge device, demonstrating ease of integration with LLVM,

downstream of MLIR; 3) and a pipeline for translating parallelizable kernels to OpenMP

programs. In summary, this work makes the following contributions:

1. A thorough discussion of several alternative eDSL implementation approaches (in

Python) and their relative merits and deficiencies.

2. A discussion of the design and implementation of an embedded domain-specific lan-

guage (nelli) with minimal static (ahead-of-time) analysis and complexity;

3. Implements several lowerings that demonstrate capabilities of nelli, with a focus on

deploying compute intensive kernels to diverse hardware platforms.

The remainder of the chapter is structured as follows: Section 4.1 reviews the relevant back-

2. https://github.com/makslevental/nelli

74

https://github.com/makslevental/nelli

ground on eDSLs and MLIR; Section 4.2 discusses the implementation of nelli; Section 4.3

demonstrates the capabilities of nelli; and, finally, Section 4.4 compares nelli to similar

tools.

4.1 Background

We quickly review the necessary background on MLIR, in particular with respect to DNN

deployment to edge devices, and eDSL construction in general.

4.1.1 MLIR

MLIR is an approach to building reusable and extensible compiler infrastructure. Practically

this means that MLIR constitutes a collection of utilities for

1. Defining mutually compatible IRs, known as dialects, that model programs in particular

domains, supporting operations (including attributes) and types (including traits);

• Using the Operation Definition Specification (ODS) language implemented against

LLVM’s TableGen3 utility;

2. Defining intra-dialect transformations, such as canonicalization, inlining, and dead-

code elimination;

• Using a subgraph matching4 and rewriting concept known as a RewritePattern ;

3. Defining inter-dialect transformations, known as conversions;

• Using ConversionPattern s and TypeConverter s.

In addition to a thriving ecosystem of dialects, tools, and down-stream projects, MLIR has

3. MLIR is an “in-tree” LLVM project and thus reuses and extends many of LLVM’s existing facilities.

4. Directed, acyclic, graph matching is strictly more powerful than tree matching (Ebner et al., 2008).

75

many “in-tree” dialects that model programs across the abstraction-level spectrum. It also

supports target-specific code generation and runtime execution through the various backends

provided by LLVM; this includes both x86_64 and aarch64/arm64 CPU instruction set

architectures (ISAs), NVPTX5 and SPIR-V6 GPU pseudo-ISAs, as well as minimal runtimes

for each. See Figure 4.1 for the “ladder of abstraction” (Hayakawa, 1948) in terms of MLIR

dialects. We briefly describe a few of the dialects (in-tree and out-of-tree) relevant for DNN

deployment to edge devices.

High-level dialects

At the highest level of abstraction, MLIR supports representing DNNs specified using high-

level frameworks such as TensorFlow and PyTorch7. The role of these dialects (tf , tfl ,

torch) is to faithfully represent the source model as specified in the chosen framework and

thus they function as points of ingress into MLIR. As mentioned in the introduction, this

effectively makes TensorFlow and PyTorch the only mature points of ingress into MLIR (see

Section 4.4). In addition, as evinced by Listing 14, the lowering/translation process incurs

a high cost with respect to legibility; naturally, lowering the level of abstraction necessitates

the inclusion of explicit specification of operations that are implicit (or, at least, taken for

granted) in the high-level representation. With Listings 14 in mind, note that in specifying

the operation torch.nn.Linear(32, 32) , one implicitly specifies:

1. The bias tensor %0 = torch.vtensor.literal needs to be initialized;

5. NVIDIA Parallel Thread Execution is a virtual machine instruction set architecture used by NVIDIA’s
GPUs as an interface layer between CUDA and SASS; SASS is the low-level assembly language that compiles
to binary microcode, which executes natively on NVIDIA GPU hardware (nvi, 2015).

6. Khronos Group’s binary intermediate language SPIR-V for representing graphics shaders and compute
kernels (Kessenich et al., 2018); both the Vulkan graphics API and the OpenCL compute API support SPIR-
V.

7. The tf (TensorFlow), tfl (TensorFlowLite), torch (PyTorch), and mhlo dialects are all “out-of-
tree” dialects.

76

Figure 4.1: Ladder of dialect abstraction in terms of dialect types and dialect operations
(reprinted with permission from (Lei Zhang, 2022)); with respect to types, a progressive
lowering needs representations for tensors, buffers, vectors, and scalars, while with respect
to operations, it needs to support computation/payload (i.e., arithmetic) and control flow.

77

Listing 14 Simple neural network with a torch.nn.Linear(32, 32) layer rendered in the
torch dialect.

class MyMatmul(nn.Module):
def __init__(self):

super().__init__()
self.matmul = nn.Linear(

32, 32
)

def forward(self, x):
return self.matmul(x)

module attributes {
func.func @forward(

%arg0: !torch.vtensor<[32,32],f32>
) -> !torch.vtensor<[32,32],f32> {

%int0 = torch.constant.int 0
%int1 = torch.constant.int 1
%float1.0e00 = torch.constant.float 1.0
%0 = torch.vtensor.literal(dense<1.0>)
%1 = torch.vtensor.literal(dense<1.0>)
%2 = torch.aten.transpose.int %1, %int0, %int1
%3 = torch.aten.mm %arg0, %2
%4 = torch.aten.add.Tensor %3, %0, %float1.0e00
return %4 : !torch.vtensor<[32,32],f32>

}
}

2. The weight tensor %1 = torch.vtensor.literal needs to be initialized;

3. A transpose %2 = torch.aten.transpose.int %1, %int0, %int1 on the weight

tensor needs to be performed (since, in PyTorch, weights are stored in column-order);

4. The bias needs to be added %4 = torch.aten.add.Tensor %3, %0, %float1.0e00

to the result of the matrix multiplication (%3 = torch.aten.mm %arg0, %2).

The ultimate effect of this translation process is that targeting the operation of inter-

est (e.g., torch.nn.Linear(32, 32)) for investigation and transformation is made more

difficult. It’s important to not underestimate the significance of the last point: subgraph

matching, as implemented in MLIR by the RewritePattern , “anchors” on a target opera-

tion. Thus, if an optimizing transformation (such as loop-unrolling, loop-fusion, loop-tiling)

is implemented targeting the loop nests generated from this high-level representation (see

Listing 16), then running that pass will incur high(er) runtime cost8 and much higher devel-

8. Imagine targeting the third loop-nest in Listing 16; you might develop a RewritePattern that matches
on scf.for but then there are 2 + 2 + 3 + 2 = 9 possible such matches. Thus, one needs to further

78

Listing 15 linalg.generic representation for torch.nn.Linear(32, 32) .

#map3 = affine_map<(d0, d1, d2) -> (d0, d2)>
#map4 = affine_map<(d0, d1, d2) -> (d2, d1)>
#map5 = affine_map<(d0, d1, d2) -> (d0, d1)>
%3 = linalg.generic {

indexing_maps = [#map3, #map4, #map5],
iterator_types = ["parallel", "parallel", "reduction"]

} ins(%arg0, %1 : tensor<32x32xf32>, tensor<32x32xf32>)
outs(%2 : tensor<32x32xf32>) {

^bb0(%in: f32, %in_2: f32, %out: f32):
%5 = arith.mulf %in, %in_2 : f32
%6 = arith.addf %out, %5 : f32
linalg.yield %6 : f32

} -> tensor<32x32xf32>

opment time. In MLIR, the partial resolution to this problem is called structured code gener-

ation (Vasilache et al., 2022), i.e., high-level operations such as torch.nn.Linear(32, 32)

are first lowered to a structured representation, such as linalg.generic (see Listing 15),

which is itself transformed and lowered to optimized loop-nests (see Listing 16). But, as can

be observed in Listing 15, these structured transformations are (currently) limited to kernels

implemented in terms of parallel and reduction iterators.

Intermediate-level dialects

An intermediate-level dialect is one that can be used to represent a kernel explicitly but is

abstract with respect to hardware implementation. Thus, the structured control flow dialect

(scf), which models loops (scf.for , scf.while , scf.parallel), and the memref di-

alect, which is intended to model creation and manipulation of objects with memory reference

semantics (i.e., buffers). See Listing 16 for the representation of torch.nn.Linear(32, 32)

purely in terms of these dialects.

filter the possible matches (e.g., by filtering on whether the body contains a sequence of arith.mulf and
arith.addf).

79

Listing 16 Loop-level representation for torch.nn.Linear(32, 32) through
torch-mlir , linalg , and scf . The blue shading highlights the matrix-multiplication
loop nest (lines 14-26) amidst artifacts of the lowering process.

1 %alloc = memref.alloc() {alignment = 64 : i64} : memref<32x32xf32>
2 scf.for %arg1 = %c0 to %c32 step %c1 {
3 scf.for %arg2 = %c0 to %c32 step %c1 {
4 memref.store %cst, %alloc[%arg1, %arg2] : memref<32x32xf32>
5 }
6 }
7 %alloc_0 = memref.alloc() {alignment = 64 : i64} : memref<32x32xf32>
8 scf.for %arg1 = %c0 to %c32 step %c1 {
9 scf.for %arg2 = %c0 to %c32 step %c1 {

10 %2 = memref.load %alloc[%arg1, %arg2] : memref<32x32xf32>
11 memref.store %2, %alloc_0[%arg1, %arg2] : memref<32x32xf32>
12 }
13 }
14 memref.dealloc %alloc : memref<32x32xf32>
15 scf.for %arg1 = %c0 to %c32 step %c1 {
16 scf.for %arg2 = %c0 to %c32 step %c1 {
17 scf.for %arg3 = %c0 to %c32 step %c1 {
18 %2 = memref.load %cast[%arg1, %arg3] : memref<32x32xf32>
19 %3 = memref.load %0[%arg3, %arg2] : memref<32x32xf32>
20 %4 = memref.load %alloc_0[%arg1, %arg2] : memref<32x32xf32>
21 %5 = arith.mulf %2, %3 : f32
22 %6 = arith.addf %4, %5 : f32
23 memref.store %6, %alloc_0[%arg1, %arg2] : memref<32x32xf32>
24 }
25 }
26 }
27 %alloc_1 = memref.alloc() {alignment = 64 : i64} : memref<32x32xf32>
28 scf.for %arg1 = %c0 to %c32 step %c1 {
29 scf.for %arg2 = %c0 to %c32 step %c1 {
30 %2 = memref.load %alloc_0[%arg1, %arg2] : memref<32x32xf32>
31 %3 = memref.load %1[%arg2] : memref<32xf32>
32 %4 = arith.addf %2, %3 : f32
33 memref.store %4, %alloc_1[%arg1, %arg2] : memref<32x32xf32>
34 }
35 }

80

The least abstract dialects at this level of abstraction are the arith dialect, which

models basic integer and floating point mathematical operations, and the vector dialect, a

generic, re-targetable, higher-order (i.e., multi-dimensional) vector that carries semantically

useful information for transformations that enable targeting vector ISAs on concrete targets

(e.g., AVX-512, ARM SVE, etc.).

The dialects at this level of abstraction, especially scf and vector , are where the real

optimization work occurs; transformations such as loop-unrolling, loop-fusion, loop-tiling

can have enormous impact on the runtime performance of any code (Zhao et al., 2018), but

are especially important for numerics intensive code, such as can be found to constitute

the majority of kernels in a DNN. Furthermore, explicit vectorization (rather than auto-

vectorization) is critical to achieving good performance of various compute-intensive kernels,

deployed to both CPUs and GPUs (Dickson et al., 2011). Hence, it’s important to be able

to efficiently and effectively manipulate representations of DNNs at this level of abstraction,

even more-so than what MLIR currently enables.

Low-level dialects (target-specific code generation)

At the lowest level of abstraction, MLIR contains implementations of dialects that can

interface with hardware specific runtimes and ISAs, such as nvvm , which models NVPTX

instructions, spirv , and llvm , which faithfully models LLVM IR and therefore enables

targeting all backends supported by LLVM (including x86_64 and aarch64/arm64 CPU

ISAs). The latter dialect includes support for managed runtimes on top of ISAs (such as

OpenMP, in combination with the omp dialect) and coroutines (in combination with the

async dialect). These target-specific, code-generation focused, dialects enable end-to-end

compilation of MLIR programs (e.g., DNNs) to a variety of execution environments, including

single-core CPU, multi-core (threaded) CPU, and GPU, including SoTA NVIDIA platforms

but also lesser known vendors that implement the SPIR-V standard (see Section 4.3 for

81

demonstrations of nelli‘s end-to-end compilation features).

4.1.2 eDSL construction in Python

Given a host language, there are (invariably) several ways to implement an embedded

domain-specific language; the set of avenues available is only circumscribed by the facili-

ties of the host language and the goals of the DSL designer. nelli is embedded in Python

and so we discuss two eDSL implementation approaches (including merits and deficiencies)

with Python as the host language. Indeed, each of these two approaches was validated

(i.e., implemented) over the course of developing nelli and discarded in favor of the chosen

approach (see Section 4.2).

Compiling

The most straightforward approach to implementing an eDSL in any host language (con-

ceptually) is to build a compiler using that language for (a subset of) that language. This

involves static (ahead-of-time) source analysis, including lexing, abstract syntax tree (AST)

construction, control-flow analysis, type inference, and code generation (for the target lan-

guage, MLIR or otherwise). Suffice it to say, this is a monumental undertaking. Nonetheless,

the undertaking has been undertaken, in the context of Python and, specifically, numerics in-

tensive programs, many times to varying degrees of success (Behnel et al., 2010, Kay Hayen,

2023, Shajii et al., 2023).

The scope of such an undertaking is slightly improved by the fact that Python provides,

in its standard library, source lexing (for Python source code), AST construction, and AST

traversal utilities (in the ast package). But, comparatively speaking, these aspects of the

undertaking are the least challenging9; the principal challenges are control-flow analysis and

9. Indeed, there exist many lexers and parsers for Python (Zimmerman, 2022, Parr and Quong, 1995)
implemented in other, more performant, languages, i.e., preferable alternatives to the ast package, if one’s
goal were to build a Python compiler.

82

type inference. With respect to the latter, Python’s highly permissive runtime and “duck

typing”10 paradigm requires a compiler to reckon with all mutations of an instantiated object;

any object instance can be made to quack like a duck at any point in the execution of a

Python program. More seriously (supposing property mutations were prevented), Python

does not have nested lexical scopes below the level of a function body: for example, in the

following

def leaky(a):

if a % 2 == 0:

b = 5

c = 3 * b

elif a == 5:

b = "5"

c = "3" + b

else:

pass

return c

the conditional actually “yields” two values (b in addition to c) and the same is true for

all such regions (i.e., for s and with s), i.e., they “leak” definitions and (possibly) grow the

use-def chains of identifiers in subsequent regions. In addition, irrelevant of lexical scoping,

the conditional actually yields union types (b, c: int | str | None) and hence the target

language needs to support such union types. Currently, MLIR does not support such union

10. Python is believed to be “dynamically typed”: this is a widely held miscon-
ception. In fact, every value manipulated by the Python runtime is a subclass of
<class object> : (1).__class__.__bases__ == (<class object>) . Thus, method res-

olution (which can be patched at runtime) determines the effective type of a value:
(1).__class__.__mro__ == (<class int>, <class object>) .

83

types11.

Tracing

An alternative to ahead-of-time (AOT) compilation of a program is just-in-time (JIT) com-

pilation, and in particular, compilation of only the ordered sequence of operations executed

during some execution the program; such a compiler is called a tracing JIT, alluding to the

“tracing” of the execution path of the program. Several such tracing JITs have been built

for general purpose Python (Bolz et al., 2009, Lam et al., 2015b, pys, 2023, Anthony Shaw,

2023). A tracing JIT approach obviates the need to perform control-flow analysis and type-

inference, because both are fully reified at runtime. However, a tracing JIT does not elimi-

nate the need to parse a source representation of the program, e.g., as in the case of Python,

the bytecode representation. Indeed, Numba (Lam et al., 2015b), Pyston (pys, 2023), and

Pyjion (Anthony Shaw, 2023) compile CPython virtual machine bytecode instructions (as

opposed to textual source) directly to (target) assembly language12. It’s important to em-

phasize that while, in principle, each of Numba, Pyston, and Pyjion can be used to compile

entire Python programs, they are frequently used as eDSLs for accelerated implementations

of the numerics intensive portions of Python code, through their partial-compilation APIs

(@njit and pyjion.enable() , for Numba and Pyjion respectively).

An alternative to JIT compiling Python at the bytecode level (i.e., handling all opcodes),

especially relevant for eDSL construction, is instrumenting (“hooking”) only a subset of

operations in the host language. For example, function calls and arithmetic operations.

The various Python DNN frameworks (PyTorch (Paszke et al., 2017), TensorFlow (Abadi

et al., 2016b), JAX (Frostig et al., 2018)) take this approach; by restricting user programs

11. Certainly MLIR supports modeling union types but recall that the broader goal is to translate Python
to existing MLIR dialects, rather than mapping Python to a novel dialect.

12. All three projects employ a more generic JIT (LLVM for the former two and the CoreCLR (Troelsen
et al., 2017) for the latter) for the “last mile” of code generation.

84

Listing 17 Sketch of operator overloading on a proxy Tensor object for purposes of per-
forming translation to the MLIR tensor dialect.

class Tensor:
def __add__(self, other: Tensor):

emit(f"tensor.add %{self}, %{other}")
...

def __mul__(self, other: Tensor):
emit(f"tensor.mult %{self} %{other}")
...

def __getitem__(self, item: tuple[int]):
indexed load
emit(f"tensor.extract ${self}[{*item}]")
...

def __setitem__(self, key: tuple[int], value):
indexed store
emit(f"tensor.insert ${value} into ${self}[{*item}]")
...

to make calls to functions in their own namespaces and by overloading various operators on

proxy objects (see Listing 17), the eDSL can wholly own the means of production13, and

thereby perform source-to-source translation. While simple and effective, hooking function

calls and operator overloading suffers from an aesthetically displeasing deficiency: in a host

language (such as Python) where control-flow primitives such as if s and for s cannot be

instrumented, they must be replaced (within the context of the eDSL) with explicit proxies

(e.g., tf.while_loop and jax.lax.cond). More critically, existing such eDSLs suffer from

a fundamental limitation of the tracing approach: if host-language conditionals are allowed

in any capacity, then the path less traveled by the program will be not captured by the

eDSL. For example, in the following

13. Recall, a production is a rewrite rule specifying a symbol substitution that can be recursively performed
to generate new symbol sequences. A finite set of productions P is the main component in the specification
of a formal grammar (such as that of a programming language).

85

def single_path(x: Tensor, a: int):

if a % 2 == 0:

y = 2 * x

else:

y = 3 * x

return y

Despite being able to effectively capture all arithmetic operations on a Tensor , no tracing

eDSL can capture both arms of the conditional. nelli addresses this limitation.

4.2 Design and implementation of nelli

The primary design goal of nelli is to be easy to use and simple to understand, while

remaining faithful to the semantics of MLIR. By semantics of MLIR, we mean that dialects

as rendered in nelli (i.e., names and uses of operations) should reflect as closely as possible

their rendering in MLIR IR. Note, we draw a subtle distinction between easy and simple:

easy to use implies that it should work (generate MLIR IR) with very little fanfare while

simple to understand means studying the implementation should reward a modicum of effort

(without requiring an inordinate investment). Addressing the former, much effort on our part

has been invested in packaging nelli for distribution (it can be directly pip installed

without compiling LLVM/MLIR). Further, in order to reduce the barrier to reuse of existing

code, nelli is also extensible (in and of itself) and exposes MLIR in an extensible way.

Addressing the latter precludes various metaprogramming techniques, such as wholesale

source rewriting and Python metaclass programming. Additionally, it precludes the use

of dynamic scoping (using contextvars) to implement patterns such as stacks of monadic

interpreters (Kiselyov, 2012, Amin and Rompf, 2017). nelli uses three techniques to accom-

plish the stated design goals: operator overloading, trivial source rewriting, and bytecode
86

Listing 18 Instantiating func.func with a scf.for using the upstream MLIR Python
bindings compared with specifying the same program using nelli.

with Context() as ctx:
with Location.unknown(context=ctx) as loc:

index_type = IndexType.get()
f = func.FuncOp("simple_for", ([], []))
with InsertionPoint(f.add_entry_block()):

lb = arith.ConstantOp.create_index(0)
ub = arith.ConstantOp.create_index(42)
step = arith.ConstantOp.create_index(2)
three = arith.ConstantOp.create_index(3)
loop = scf.ForOp(lb, ub, step, iter_args)
with InsertionPoint(loop.body):

three_i = arith.MulIOp(
three,
loop.induction_variable

)
scf.YieldOp([])

func.ReturnOp([])

@mlir_func
def simple_for():

for i in range(0, 42, 2):
two_i = 3 * i

rewriting. We discuss each in turn (effectively, in order of increasing complexity). We also

discuss how nelli addresses extensibility.

4.2.1 Upstream manicuring and operator overloading

MLIR, irrelevant of nelli, procedurally generates Python bindings for functionality re-

lated to emitting MLIR IR. This procedural generation is made possible by virtue of the fact

that almost all operations, in all MLIR dialects, are defined using ODS (see Section 4.1.1).

Nonetheless, convenient (and robust) as these existing bindings might be, they are quite

verbose, requiring specifying most attributes of operations explicitly; see Listing 18 for an

example. Thus, some of the work of nelli involves normalizing the upstream APIs; in par-

ticular we implement operator overloading for various arithmetic operations on values that

are results of arith operations (see Listing 20), as well indexing and slicing on results of

memref and tensor operations (see Listing 13). Additionally we overload Python param-

87

eter annotations to implement a minimal form of Hindley-Milner14, as well as instantiating

func s with typed parameters. Finally, we use Python class namespaces as models for

module s, including nested gpu.module s (see Listing 19).

4.2.2 Trivially rewriting the AST

It’s important to understand how the upstream MLIR Python bindings function (as a reflec-

tion of how MLIR functions). Consider the instantiation of scf.for in Listing 18; opera-

tions to be inserted into the body of the scf.for must have their InsertionPoint s set to

(somewhere in) the body of the scf.for . Thus, the Python bindings corresponding to those

operations (i.e., arith.MulIOp) must be executed within the context of InsertionPoint .

Eliminating the indentation due to the with (which indicates a nested scope where none

exists) is worthwhile. One trivial way to accomplish this is to explicitly __enter__ and

__exit__ the InsertionPoint(loop.body) context manager; see Listing 21. But requir-

ing the user to explicitly indicate the end of the for loop transforms Pythonic for loops

to Pascal-style for loops. Thus, nelli rewrites user functions (at the AST level) and au-

tomatically inserts such opening and closing calls for all for s and if s (see Listing 22) .

Note, since we rewrite the AST (not the source itself), we are able to patch line numbers for

all nodes to reflect original source locations and thus all Python IDE, error-reporting, and

debugging infrastructure is undeterred i.e., users are able to set breakpoints in functions and

inspect objects just the same as for any Python code15.

14. In reality, MLIR performs the type inference, nelli simply requires fully type-annotated function
parameters.

15. This is emphatically not the case for eDSLs like Numba and Pyjion which compile and execute Python
using, effectively, their own bytecode interpreters.

88

Listing 19 Overloading class es to support nested gpu.module s.

class MyClass1(GPUModule):
def kernel(

self,
A: MemRef[(M, N), F32],
B: MemRef[(N, K), F32],
C: MemRef[(M, K), F32],

):
x = block_id_x()
y = block_id_y()
a = A[x, y]
b = B[x, y]
C[x, y] = a * b
return

m = MyClass1(
func_attributes={

"spirv.entry_point_abi":
spirv.entry_point_abi(

workgroup_size=[1, 1, 1]
),

}
)

@mlir_func
def main(

A: MemRef[(M, N), F32],
B: MemRef[(N, K), F32],
C: MemRef[(M, K), F32],

):
m.kernel(A, B, C,

grid_size=[4, 4, 1],
block_size=[1, 1, 1]

)

module attributes {gpu.container_module}
{

gpu.module @MyClass1 {
gpu.func @kernel(

%A: memref<4x16xf32>,
%B: memref<16x8xf32>,
%C: memref<4x8xf32>)

kernel attributes {
spirv.entry_point_abi =

#spirv.entry_point_abi<
workgroup_size = [1, 1, 1]

>
} {

%x = gpu.block_id x
%y = gpu.block_id y
%a = memref.load %A[%x, %y] : ...
%b = memref.load %B[%X, %Y] : ...
%c = arith.mulf %a, %b : f32
memref.store %C, %C[%0, %1] : ...
gpu.return

}
}
func.func @main(

%A: memref<4x16xf32>,
%B: memref<16x8xf32>,
%C: memref<4x8xf32>) {
%c4 = arith.constant 4 : index
%c1 = arith.constant 1 : index
gpu.launch_func async

@MyClass1::@kernel
blocks in (%c4, %c4, %c1)
threads in (%c1, %c1, %c1)
args(

%A : memref<4x16xf32>,
%B : memref<16x8xf32>,
%C : memref<4x8xf32>

)
return

}
}

89

Listing 20 Operator overloading of results of arith operations.

one = arith.constant(1.0)
two = arith.constant(2.0)
three = one + two

⇒
%one = arith.constant 1.0e+00 : f32
%two = arith.constant 2.0e+00 : f32
%three = arith.addf %one, %two : f32

Listing 21 Trivially rewriting user functions in order to explicitly manage context man-
agers for MLIR operations with regions; the scf_range (in addition to instantiating the
scf.for) triggers __enter__ (on a thread-local handle to a context manager) and the
scf_range triggers __exit__ .

@mlir_func(rewrite_ast_=True)
def simple_for():

for i in range(0, 42, 2):
two_i = 3 * i

⇒
@mlir_func
def simple_for():

for i in scf_range(0, 42, 2):
two_i = 3 * i
scf_endfor()

Listing 22 AST rewriting of conditionals for manual (but implicit) management of context
managers for lowering to scf.if .

@mlir_func(rewrite_ast_=False)
def ifs(M: F64, N: F64):

one = constant(1.0)
if scf_if(M < N):

one = constant(1.0)
scf_endif_branch()

else:
scf_else()
two = constant(2.0)
scf_endif_branch()
scf_endif()

⇒

@mlir_func(rewrite_ast_=True)
def ifs(M: F64, N: F64):

one = constant(1.0)
if M < N:

one = constant(1.0)
else:

two = constant(2.0)

90

4.2.3 Trivially rewriting bytecode

Rewriting the source AST enables mapping Python control-flow primitives to various MLIR

control-flow operations except for one caveat: as mentioned in section 4.1.2, relying on

runtime execution of Python code (and hooks) to capture programs precludes faithful capture

of conditionals. For example, irrespective of arbitrary AST transformations, only one arm

of the conditional in Listing 22 can be traced. Although it’s debatable whether multi-arm

conditionals are crucial (scf.if does support an scf.else branch), it would be a strange

language that supported only single-arm conditionals.

The resolution to the conundrum of the multi-arm conditional lies in rewriting the pro-

gram on a deeper level than the AST; recall Python programs are compiled (by the CPython

implementation) to bytecode instructions. The CPython implementation of Python is a

stack-based virtual machine (Ike-Nwosu, 2015) that implements conditionals like many other

virtual machines: using jump instructions (see Listing 23). Thus, the solution is to simply

rewrite the bytecode of the user’s function and remove those jumps16, thereby forcing the

CPython interpreter to execute all instructions in all arms of the conditional. It’s impor-

tant to emphasize that this transformation is reasonable given the stated goals of nelli:

the eDSL program is not computing on data and has no intended side-effects other than to

emit MLIR IR. Thus program capture, rather than evaluation, permits (and encourages) us

to fundamentally alter the semantics of conditionals in this way; certainly, under different

circumstances, such a transformation would be wholly nonsensical.

16. In fact, the jump instruction is replaced by a NOP (no-op) instruction in order to prevent invalidating
stack size calculations.

91

Listing 23 CPython bytecode instructions corresponding to multi-arm if ; note the
POP_JUMP_IF_FALSE that executes a jump to the else branch (lines 14-16) if the condi-
tion (COMPARE_OP) evaluates to False (whereas, otherwise the true branch, lines 10-11, is
executed).

@mlir_func(rewrite_ast_=True)
def ifs(M: F64, N: F64):

one = constant(1.0)
if M < N:

one = constant(1.0)
else:

two = constant(2.0)

1 8 LOAD_GLOBAL (scf_if)
2 12 LOAD_FAST (M)
3 18 LOAD_FAST (N)
4 20 CALL_FUNCTION
5 22 COMPARE_OP (<)
6 24 CALL_FUNCTION
7 26 POP_JUMP_IF_FALSE (to 46)
8 ...
9

10 30 LOAD_CONST (2.0)
11 34 STORE_FAST (two)
12 ...
13

14 46 LOAD_GLOBAL (scf_else)
15 54 LOAD_CONST (6.0)
16 58 STORE_FAST (six)
17 ...
18 66 LOAD_GLOBAL (scf_endif)
19 ...
20 72 LOAD_CONST (None)
21 74 RETURN_VALUE

92

4.2.4 Extensibility

Currently MLIR is extensible to a limited extent17 nelli addresses extensibility in four

ways: the first and second being exercises of existing (but infrequently employed) MLIR

APIs, and with the remaining two being novel (relative to MLIR):

1. nelli uses the _site_initialize to register (in-tree) dialects at load-time;

2. nelli subclasses existing ir.OpView classes thereby extending their functionality

despite being out-of-tree;

3. nelli is built with exported symbols, thus enabling users to extend the various C++

utility classes that comprise the upstream bindings (without recompiling MLIR);

4. nelli implements AST walking functionality (akin to Python’s ast.NodeTransformer)

which, along with upstream improvements contributed by the authors, enables writing

simple IR rewrites wholly in Python.

Extension points (1) and (2) exercise existing MLIR Python bindings APIs in unconventional

ways to demonstrate (1) extending the set of registered (available at runtime) dialects and

(2) wrapping/polishing existing ir.OpView APIs (constructors, getters, setters) without

repackaging the bindings. Extension points (3) and (4) are more nuanced.

By default, MLIR Python bindings are built with “hidden” symbols18, making those

symbols unavailable for symbol resolution of subsequently loaded libraries. This has the

effect that none of the bindings’ utility classes can be extended without recompiling. nelli

exports these symbols, thus downstream projects can pip install nelli immediately

extend bindings for existing MLIR dialects, operations, types, and attributes. With respect

to the final extension point (writing simple IR rewrites wholly in Python), recall that the

17. The state of affairs is steadily improving; between starting and finishing this manuscript, the authors
contributed three substantive improvements.

18. This is actually a design choice made by pybind11 (Jakob et al., 2016) rather than MLIR.

93

conventional method for transforming/rewriting IR is by building a RewritePattern using

the C++ API. While the MLIR C++ API is robust and well-designed, like all such APIs,

it is rigid and demanding; that is to say, it is not suited for experimentation and quick

iteration. By contrast the Python AST utilities (under the standard library package ast)

present a lightweight API that enables building small (but effective) rewrites of the Python

AST. Taking this user experience as our inspiration, we implement similar functionality by

generating AST visitors procedurally from the upstream bindings; one DialectVisitor for

each registered MLIR dialect, including out-of-tree dialects. Using these DialectVisitor s,

along with the recently contributed replace_all_uses_with upstream API, we are able

to build small but non-trivial IR transformations on MLIR ir.Module s just as one does

using ast.NodeTransformer .

4.3 Demonstration and evaluation

We demonstrate the capabilities of nelli with three small exercises:

1. an end-to-end (including execution) GPU example of a batched, multi-channel, 2D

convolution that lowers to both NVIDIA devices and Vulkan supporting devices, such

as the VideoCore VI 3D found in the Raspberry Pi 4 Model B and the Apple Neural

Engine (found in the Apple M1 series of laptops);

2. an end-to-end that lowers the same kernel to the managed OpenMP runtime;

3. the previous two examples integrated with a black-box, gradient-free, optimizer (Rapin

and Teytaud, 2018) for searching the space of possible optimizing transformations.

4.3.1 End-to-end GPU

We implement a standard 2D-NCHW convolution and parallelize across output elements;

see Listing 24. Note, we set the default range to be mapped to scf.for but explicitly
94

Listing 24 Standard representation of a 2D-NCHW convolution parallelized across output
elements and corresponding pass pipeline. Note, we freely interleave scf.parallel and
scf.for (i.e., range). Note also that only lines 13, 14 of the pass pipeline are specific to
NVIDIA devices.

@mlir_func(range_ctor=scf_for)
def conv2d_nchw_fchw(

input: MemRef[(N, CI, HI, WI), F32],
kernel: MemRef[(CO, CI, K, K), F32],
output: MemRef[(N, CO, HO, WO), F32],

):
for n, co, ho, wo in parallel(

(0, 0, 0, 0), (N, CO, HO, WO)
):

for ci in range(0, CI):
for ki in range(0, K):

for kj in range(0, K):
ii = ho + ki
jj = wo + kj
inp = input[n, ci, ii, jj]
ker = kernel[co, ci, ki, kj]
output[n, co, ho, wo] +=

inp * ker

pipeline=Pipeline()
.FUNC()

.gpu_map_parallel_loops()
.CNUF()
.convert_parallel_loops_to_gpu()
.FUNC()

.lower_affine()

.convert_scf_to_cf()

.gpu_kernel_outlining()
.CNUF()
.GPU()

.strip_debuginfo()

.convert_gpu_to_nvvm()

.gpu_to_cubin(chip="sm_75")
.UPG()
.gpu_to_llvm()

95

map the outermost four loops to a scf.parallel thereby specifying that each output

element (n, co, ho, wo) should be computed in parallel. The pass pipeline (cf. List-

ing 24) that accompanies the kernel is specialized for NVIDIA devices but only in the fi-

nal (hardware-specific) passes. The higher-level passes effectively perform two functions:

gpu_map_parallel_loops assigns nested scf.parallel loops to the corresponding level

of the GPU workgroup hierarchy (grid, block, and thread) and gpu_kernel_outlining out-

lines GPU kernel code so that it can be separately compiled and serialized. Note that while

this basic example only has one scf.parallel and is thus mapped only to blocks, further

transformations (such as tiling) can introduce nested scf.parallel s, thereby inducing a

distribution across both blocks and threads.

The presented code lowers fully to both NVIDIA and Vulkan targets almost unaltered19

and therefore this kernel successfully executes on all three of the aforementioned hardware

platforms (NVIDIA 3080Ti, Apple Neural Engine, and VideoCore VI). In fact, since MLIR

provides utilities for mapping NumPy arrays to the various GPU runtime native buffers

(using a buffer descriptor called StridedMemRef), and utilities for interfacing with the

hardware runtimes (CUDA runtime and Vulkan runtime), all end-to-end experiments can

be executed without ever leaving the comfort of nelli.

4.3.2 End-to-end OpenMP

Since the aforementioned 2D-NCHW convolution kernel is implemented in terms of the

scf dialect, which, as the name suggests, models programs in terms of abstract but struc-

tured control-flow operations, the same 2D-NCHW convolution kernel can be lowered to the

OpenMP runtime with just the flip of a switch; using nelli’s Pipeline , it’s just a mat-

ter of substituting convert_scf_to_openmp for convert_parallel_loops_to_gpu . This

wraps the loop nest in a omp.parallel context and implements the scf.parallel loop

19. Vulkan does not support 4D buffers so in practice inputs have to be packed along the batch and channel

96

NVIDIA 3080Ti Broadcom VideoCore VI Apple Neural Engine

10 4

10 3

10 2

10 1

100

101

Ti
m

e
(s

)

2.
36

e-
03

1.
37

e-
03 5.

22
e-

03

1.
61

e-
03

1.
35

e-
03 4.

97
e-

03

3.
84

e-
01

2.
20

e-
02

6.
69

e-
03

2.
39

e-
03

8.
23

e-
05

1.
19

e-
04

6.
24

e-
05

1.
03

e-
03

6.
72

e-
03

OpenMP baseline
OpenMP

GPU baseline
GPU

PyTorch

Figure 4.2: Nevergrad optimization for tiling and inner-loop unrolling of a 2D-NCHW con-
volution kernel.

as a omp.wsloop , i.e., worksharing loop. Just as with the end-to-end GPU implementation,

thanks to LLVM’s support for OpenMP, all end-to-end experiments can be executed without

ever leaving the comfort of nelli.

4.3.3 Derivative-free optimization

Algorithmic correctness is a necessary but not sufficient condition for achieving high per-

formance implementations of numerically intensive kernels; due to the variety of hardware

platforms, fine-tuning of the implementation for each platform is critical (Li et al., 2009).

In many cases, where a formal cost model of the hardware platform is not available, a di-

rected search of the program transformation space cannot be realized. In such instances,

black-box (gradient-free) optimization techniques can be employed. To demonstrate the

value of having seamless interoperability with the Python ecosystem, we connect nelli to

Nevergrad (Rapin and Teytaud, 2018), a Python package for gradient-free optimization.

97

We experiment with applying two loop nest transformations: tiling and unrolling (Cardoso

et al., 2017), using the MLIR pass scf_parallel_loop_tiling and a loop-unrolling op-

eration (loop_ext.LoopUnrollOp). Both transformations are parameterized (by tile sizes

and unroll factor, respectively) and it is this parameter space that can be searched over to

find the optimal kernel for each hardware platform.

Thus, we set Nevergrad loose on our kernel on three different platforms: a workstation

with a NVIDIA 3080Ti GPU, an Apple M1 MacBook Pro with a Neural Engine GPU, and

a Raspberry Pi 4 Model B with Broadcom VideoCore VI GPU. On each platform we apply

the 2D-NCHW convolution on an input with shape (N, C, H, W) := (1, 1, 1280, 1280), using

a (Ci, Co, K) := (1, 3, 3) filter (where Ci, Co are channels-in, channels-out, respectively), and

search the space of possible tile sizes and loop-unroll factors. In addition, just for fun, we

apply loop-unrolling to the OpenMP implementation. As well, we compare it to the PyTorch

implementation of the same kernel. Figure 4.2 shows the results of the experiment. A few

noteworthy observations:

1. for this small kernel, OpenMP is fairly performant but loop-unrolling has almost no

effect on the implementation because the worksharing loop distribution already dis-

tributes work maximally across all available cores;

2. tiling and loop-unrolling is hugely important for achieving good performance on GPUs;

3. PyTorch has highly optimized implementations of kernels for common platforms (such

as NVIDIA) but otherwise can be outperformed by fine-tuning for a user’s specific

hardware configuration.

Indeed, each of these conclusions is well-known and understood and thus we observe that

enabling users to easily, and transparently, perform this kind of fine-tuning, through a rep-

resentation like MLIR and an interface like nelli, is valuable.

dimensions.

98

4.4 Related Work

There are several projects in the MLIR ecosystem that aim to support a Python frontend

for some MLIR dialect (or collection of dialects) but as far as we are aware (i.e., at the

time of writing) none that aim to expose all builtin dialects through a Python frontend.

Most famous amongst these are JAX (Bradbury et al., 2018), which provides a NumPy-

conformant interface to the hlo (sta, 2023) family of dialects, and TensorFlow. Each of

these effectively provides a very high-level, Python-embedded, DSL for machine learning

(specifically neural network) operations implemented against their respective dialects. Note,

while superficially the Torch-MLIR project (tor, 2023) resembles JAX and TensorFlow, in

that it transforms Python to an MLIR dialect (torch-mlir), the Python frontend is in

fact provided by PyTorch itself20, we do not count it amongst this group of projects. In this

category there is also the interesting numba-mlir project, a MLIR-based Numba backend,

where, Numba (Lam et al., 2015a) translates from NumPy-specific Python code to lower-

level representations (Numba IR and then LLVM IR) by analyzing the CPython bytecode

instructions21 the Python compiles to. numba-mlir lowers to several high-level (higher than

LLVM IR) domain-specific dialects (ntensor , plier) by recovering Regionalized Value

State Dependence Graphs (Reissmann et al., 2020) from the Numba IR. Finally, there is the

Pylir project, implemented on top of MLIR, which aims to be an optimizing, ahead-of-time,

compiler for all of Python. Thus, Pylir’s goal is not to be a frontend for MLIR in and of

itself but to compile Python code to native executables; it accomplishes this impressive feat

by parsing Python to its own dialects.

Alternatively, there exist projects that approach the problem orthogonally - they aim to

provide a Python interface to a MLIR-like framework but not MLIR itself. The projects in

20. Torch-MLIR operates an the intermediate representations exported by PyTorch rather than directly
on Python source.

21. CPython is a stack-based virtual machine with its own assembly/bytecode instructions (see https:
//docs.python.org/3/library/dis.html).

99

https://docs.python.org/3/library/dis.html
https://docs.python.org/3/library/dis.html

this category generally aim to be completely independent of upstream MLIR and thus parse

MLIR-native IR into proprietary ASTs and manipulate those ASTs in various ways (trans-

forming, serializing, etc.). For example, pyMLIR (Tal Ben-Nun, Kaushik Kulkarni, Mehdi

Amini, Berke Ates, 2023) implements a LALR(1) grammar (extracted from the upstream

MLIR documentation) and parser. pyMLIR’s parser generates an AST representation that

further implements Python’s ast.NodeTransformer interface, thus enabling various AST

transformations. The resulting ASTs can be once again serialized to conformant MLIR.

Note, nelli’s AST transformation functionality is inspired by pyMLIR’s, but instead of op-

erating on a proprietary AST representation, nelli’s operates on the canonical MLIR AST.

On the other hand, xDSL (Brown et al.) is a Python-native compiler framework influenced

by MLIR but not coupled directly to MLIR; xDSL emitted IR is validated against MLIR but

only as part of its continuous integration process. These projects are all very interesting and

impressive accomplishments but they are orthogonal to our goals, i.e., providing a Python

frontend to MLIR itself, rather than an arbitrary compiler framework (irrespective of how

feature-ful or MLIR-like that framework might be).

4.5 Conclusion

We described nelli, a lightweight, open source, Python frontend for the Multi-Level Inter-

mediate Representation compiler infrastructure. nelli aims to make MLIR more accessible

by providing a Pythonic syntax for the various MLIR dialects while remaining faithful to

MLIR’s semantics. nelli uses operator overloading, AST rewriting, and bytecode rewriting

to map Python control flow primitives, like conditionals and loops, to MLIR control flow

operations, amongst other design choices. nelli is designed to be simple to use and under-

stand. It performs minimal static analysis and thus incurs minimal complexity in perform

the translation to MLIR, compared to existing frontends. As a Python eDSL, it interoper-

ates with existing Python tooling is fully extensible, in terms of dialects, operations, types,

100

and attributes supported. Further, we demonstrated the utility of nelli by showing end-to-

end compilation of an example kernel for different hardware platforms, including integration

with a derivative-free optimization library to automatically optimize for those platforms. In

summary, nelli provides an easy way to interface with MLIR and manipulate intermediate

representations directly, avoiding the complexities and artifacts of lowering from high-level

frameworks. This enables more flexible program analysis and transformation compared to

those existing MLIR frontends.

Future work in this area will strongly focus on extending these techniques to domains

where there is currently a lack of readily available language frontends. For example, the

MLIR-AIE22 project currently implements a fully functional MLIR dialect but does not

effectively support any direct frontend language. It supports various upstream deep learning

frameworks (such as PyTorch and TensorFlow) but only through the IREE23 project. This

path is robust but imprecise, relying on various heuristic compiler passes to translate the

extremely high-level framework operations into extremely low-level AIE dialect operations.

In the future, we plan to design a frontend language that will enable developers to optimize

their AIE programs precisely and effectively.

22. https://github.com/Xilinx/mlir-aie

23. https://iree.dev

101

https://github.com/Xilinx/mlir-aie
https://iree.dev

CHAPTER 5

AN E2E PROGRAMMING MODEL FOR AI ENGINE

ARCHITECTURES

Coarse-Grained Reconfigurable Architectures (CGRAs) are architectures that can selectively

use or disuse various components, subsets of the architecture to gain much higher perfor-

mance per Watt over a more diverse set of applications than conventional processors such as

multi-core CPUs and GPUs (Choi and Kee, 2015). In particular, owing to the reconfigurabil-

ity of the device topology, CGRAs are well-suited for dataflow programs, i.e., specifications

for the connectivity of functional units that explicitly represent and correspond to the flow

of data in a program (Charitopoulos and Pnevmatikatos, 2020). Archetypical in this class

of programs are multi-layered Deep Neural Networks (DNNs), wherein individual layers po-

tentially map to discrete subsets of the CGRA and with data flowing between them in the

form of activations (Choi and Kee, 2015). Finally, recently, as the necessary fabrication tech-

niques have evolved to enable it, CGRAs have evolved to include processing elements (PEs)

with functionality as rich as that of more conventional, standalone processors; today, the PEs

found in CGRAs devices potentially have access to large local memories (data and program),

scalar and vector ALUs, independent DMA controllers, and high-bandwidth streaming con-

nections (both to other PEs and the host) (WP506, 2022). Note the distinction between a

CGRA and a GPU: while both provide access to an array of powerful PEs, only CGRAs (as

of this writing) allow explicit specification and manipulation of connectivity between those

PEs.

Conceptually, CGRAs have been around since the 1980s, but have failed to see wide

deployment (C. Penha et al., 2019). Primarily, there are two reasons for this: firstly, prior

to the “deep learning renaissance”, there was not such a surfeit of programs that could,

naturally, be represented as dataflow graphs (and, thus, the platform lacked a strong, com-

pelling use-case); secondly, prior to the availability of prefabricated CGRAs, deployment
102

required designing one “whole cloth”, either on FPGA or in ASIC. Besides being the veri-

table antithesis of “coarse-grained”, digital design at the RTL level is typically far outside

the comfort zone of most software developers. This lack of robust and familiar programming

models prevented software developers from productively utilizing CGRAs and potentially

still impedes their broader adoption. Recently, deep learning has taken over the world and

prefabricated CGRAs such as AMD’s AI Engine (AIE), Cerebras CS-1, SambaNova’s SN40L

have become commercially available1. The software “stacks” entailed by these coarse-grained

devices significantly reduce the barrier to use by raising the abstraction level of the program-

ming model from RTL. That notwithstanding, they do not eliminate the requirement that

software developers be familiar with and manipulate various hardware layers.

In this work, we develop an “end-to-end” programming model for AMD’s AI Engine such

that a developer can design a dataflow, program the individual PEs, configure the device,

launch the program, and manage host-device communications (vis-a-vis memory buffers) all

in one Python script (or Jupyter notebook). Our flow is open source and even available

as a pip install -able package. This work extends previous work, which introduced the

frontend language design techniques in a more target-agnostic context (Levental et al., 2023).

The work’s contributions can be summarized as follows:

1. A programming language frontend (Python embedded domain-specific language) which

can be used to represent/specify CGRA specific concepts such as data movement,

streaming connections, DMA access patterns, as well as PE-specific concepts (scalar

and vector arithmetic operations); in addition, our frontend supports metaprogram-

ming designed to enable easy extension/reuse by users;

2. An MLIR-based compiler with support for two stream router implementations (optimal

and approximate), buffer placement/allocation, and auto-vectorization;

1. Cause and effect?

103

3. Integrations with target codegen compilers, and various host-side runtime bindings

that enable seamless host-device-host data passing using familiar (NumPy) APIs;

4. An evaluation of our end-to-end programming model for GEMMs on the Ryzen AI

platform (an edge-device deployment of the AI Engine architecture).

To our knowledge, our flow is the first implementation of such an end-to-end programming

model for AIE devices.

The remainder of the chapter is organized as follows: Section 5.1 reviews the neces-

sary background on dataflow-style programming and AIE devices, Section 5.2 discusses our

“bottom-up” approach to compiler and language frontend design, Section 5.3 evaluates our

flow by presenting an implementation of a dataflow architecture for General Matrix Multiply

(GEMM), and finally Section 5.5 concludes by discussing related work.

5.1 Background

5.1.1 Dataflow programs

A dataflow-style program is a computing paradigm wherein computation is orchestrated

based on the availability of streams of data (rather than on streams of instructions), with

tasks being executed (possibly in parallel) as soon as their inputs become available. This

paradigm enables highly parallelized execution, facilitating efficient utilization of computa-

tional resources and often leading to substantial performance improvements, especially in

scenarios where tasks can be decomposed into independent units of work with explicit data

dependencies. A dataflow program is (abstractly) represented by a directed graph, called a

dataflow graph (DFG), wherein vertices represent tasks, and edges denote the flow of data

between these tasks. Unlike traditional control flow architectures, which rely on explicit

sequencing of instructions, dataflow programs are driven by the propagation of data through

the DFG, triggering the execution of tasks as data becomes available.
104

Mapping dataflows to CGRAs can present several challenges due to the inherent differ-

ences between the architectures and characteristics of dataflow graphs; we discuss some of

these challenges here to address them in Section 5.2. Firstly, dataflow graphs imply a sched-

ule for tasks but only implicitly, i.e., in terms of dependencies between the tasks. Translating

such schedules to communication patterns and actual dataflow routes that achieve low la-

tency and high throughput requires careful analysis. CGRAs have finite quantities of PEs,

memory, and interconnect bandwidth. Mapping complex dataflow graphs onto these ar-

chitectures while meeting resource constraints can be a non-trivial optimization problem.

Specifically, because CGRAs are likely coarser-grained than typical dataflow graphs, map-

ping fine-grained tasks or operations from a dataflow graph onto these architectures carelessly

might lead to inefficient resource utilization. Some CGRAs support dynamic reconfiguration,

allowing the hardware configuration to be modified at runtime. While this flexibility can

be advantageous for adapting to changing computational requirements throughout a single

task, managing the reconfiguration overhead and ensuring seamless transitions between dif-

ferent configurations adds complexity to the mapping process. Finally, mapping dataflow

graphs onto CGRAs often relies on specialized software tools and methodologies. However,

the availability and maturity of these tools can vary, and designing efficient mappings may

require significant expertise in the tool and manual intervention.

The space of all dataflow graphs that might be mapped to CGRAs is large, but in

this work, we focus on GEMM kernels as a specific but important subset. The reason to

focus on GEMM kernels is because they often dominate the computation for DNN models,

during training and inference (Jia, 2014, Georganas et al., 2020, Liu and Vinter, 2014).

Thus, Formally, given input matrices AM×K , BK×N with independent dimensions M, N

and common dimension K, matrix multiplication computes output matrix CM×N = A × B.

The possible dataflows for matrix multiplication broadly fall into three categories: inner-

product, outer-product, and row-wise (Li et al., 2023):

105

• Inner-product computes element C[m, n] of the result as A[m, :] · B[:, n], i.e., as the

inner-product of the corresponding row of A and column of B;

• Outer-product computes K outer products A[:, k] ⊗ B[k, :] and accumulates them2;

• Row-wise computes C[m, :] = ∑
k A[m, k] ·B[k, :], i.e., K partial sums of scalar-vector

products.

In light of the conventional triple-nested loop formulation of matrix multiplication, these

three dataflow schemes can be recognized as a permutation of the loop orders, specifically

the reduction loop, i.e., the k dimension (see Figure 5.1).

When on-chip memory capacities are not big enough for all of A, B, thus requiring

partitioning, each scheme also has different implications for data reuse; without loss of

generality, assume A dictates execution order and is partitioned either along the rows in

the inner-product scheme and row-wise scheme or along the columns in the outer-product

scheme. Given this assumption, in the inner-product scheme, C achieves full reuse since

partial sums for each result element are accumulated in place. However, each B partition

(each column) must be fetched multiple times, once for each row of A (resulting in poor

reuse of B’s columns). By contrast, in outer-product, each B row is fetched only once per

column of A, but partial sums of C, if too big for local memory, must be written out and

then read again for accumulation, incurring lots of traffic. Finally, as a compromise between

extremes, row-wise requires storing relatively small partial sums and achieves good result (C)

reuse. Note that in each of the three schemes, assuming very large operands A, B, further

partitioning is possible along the K dimension into K/K ′ sub-partial sums. In Section

5.2 we will append to this discussion by including broadcasting as a possible approach for

distributing A, B.

2. Using the matrix identity C = A × B =
p∑

k=1
A[:, k] ⊗ B[k, :].

106

Inner product
for m in range(M):

for n in range(N):
for k in range(K):

C[m,n]+=A[m,k]*B[k,n]

Outer product
for k in range(K):

for m in range(M):
for n in range(N):

C[m,n]+=A[m,k]*B[k,n]

Row-wise product
for m in range(M):

for k in range(K):
for n in range(N):

C[m,n]+=A[m,k]*B[k,n]

Figure 5.1: Matrix multiplication dataflow strategies; note the relationship between the
accumulation of partial sums and the loop ordering (the loop on k is typically called a
reduction).

5.1.2 AI Engines

AI Engine architectures comprise a two-dimensional array of processing elements, called tiles,

connected by an AXI4-Stream interface, routed through configurable stream switches (see

Figure 5.2). The tiles come in three “flavors”, each with differing functionality and purpose:

• Core tiles, which contain relatively small data memories (64KiB), program memories

(16KiB) and can perform integer and floating point arithmetic (see Figure 5.3);

• Shim tiles, located at the edge of the array, and which neither contain memory nor

compute resources but provide a host-device interface for the remainder of the array,

both for configuration and high-bandwidth dataflow;

• Memory tiles (or memtiles), located at the boundary between shim tiles and core

tiles. They (naturally) contain only large memories (512KiB) but support more stream-

ing connections (than core and shim tiles), thus functioning as an effective L2 cache
107

Figure 5.2: AI Engine Array showing the three “flavors” of tiles: core tiles (along with Data
Memory blocks), memory tiles, and shim tiles (here referred to as “NoC” tiles). The various
arrows indicate the connectivity possible between the tiles.

108

Figure 5.3: AI Engine core tile, with all interfaces and functional blocks.

109

layer for the entire array.

Each flavor of tile contains independent DMA engines which support multi-channel streaming-

to-memory and memory-to-streaming connections (2 for core and shim tiles, 6 for memtiles),

as well as counting semaphores to synchronize those DMAs with core accesses. Each DMA

engine supports N-dimensional tensor address generation (3D for core and shim, 4D for mem)

used for delinearizing array indexes to construct non-trivial traversal orders. Each category

of tile can also share data and semaphores with adjacent tiles directly (via memory-mapped

address ranges). Core tiles, the figurative stars of the show, include, in addition to memory

and connectivity functionality, a VLIW vector processor which supports 6-way instruction

issue, contains two 512b SIMD vector units (one fixed-point and one floating-point) and a

scalar ALU. These processors are programmed using a mixture of conventional programming

language primitives (loops, conditionals, etc.) and vector intrinsics.

The important thing to understand about AIE architectures is that the developer can

orchestrate almost all aspects of the data movement and compute. This includes configuring

all streaming interfaces, all DMAs, and all semaphores (and, of course, all core programs).

The benefit of this freedom is that AIE architectures are more flexible than comparable

spatial architectures (such as GPUs) with respect to what classes of workloads they can

effectively support. The cost of this freedom is that for an arbitrary workload, i.e., program,

several scheduling and resource allocation problems need to be solved by the programmer

(in concert with the compiler). In particular, we identify two such problems:

1. Programs that necessitate streaming data need to establish connections between tiles;

this requires solving an instance of the congestion-aware traffic assignment problem (Boyles

et al., 2023), with stream switches as endpoints/vertices and connections between them

as edges;

2. Orchestrating DMAs such that data is coherent across producers and consumers re-

quires scheduling transfers between DMAs on participating tiles, each synchronized
110

with its respective core.

In addition, we identify two problems of language ergonomics (desiderata) :

1. Users should be able to avail themselves of broadcast semantics both in specifying the

movement of data and in specifying operations on that data;

2. Users should be able to “metaprogram”, i.e., design and apply transformations to their

programs.

The former is critical for supporting well-known kernel techniques that have proven perfor-

mant in various other architectures (Tan et al., 2013), while the latter is critical for enabling

efficient design space exploration.

5.2 Bottom-up Toolchain Design

We call our approach to compiler and language frontend design “bottom-up” because parts

of the compiler preceded the language frontend, whereas typically, compiler implementa-

tions follow/succeed some pre-existing language. This inversion of precedence enabled us to

design the language specifically to suit the compiler’s needs (and thus, the architecture’s)

and accommodate minor compromises (between the compiler and the language). Our flow,

including the Python-embedded domain-specific language (eDSL), is a component of and

greatly extends MLIR-AIE, a toolchain based on the MLIR compiler framework (Lattner

et al., 2021). The toolchain’s explicit design goals address the problems/challenges we iden-

tified in Section 5.1.2.

Note that when we say compiler here, we specifically mean the compiler that optimizes

representations of CGRA-specific concepts such as data movement, streaming connections,

and DMA access patterns; the single core compilers (SCCs), which compile conventional

kernel code to the VLIW vector ISA, though well integrated in our toolchain, are beyond

scope for this work. In addition, though this work focuses on the end-to-end programming
111

model, we note that MLIR-AIE encompasses and supports other frontends, such as PyTorch

and TensorFlow (through IREE). see Figure 5.4 for a diagram of the programming model

(including alternative frontends). The remainder of this section discusses in the programming

model greater detail, starting with a review of the AIE dialect, some extensions contributed

over the course of this work (including optimal routing). Then, it proceeds to the language

frontend.

5.2.1 AIE dialect

The core abstraction layer of our compiler is the AIE dialect3 which models data move-

ment, streaming connections, DMA access patterns. For example, consider the program in

Listing 25; all AIE programs begin by specifying the tiles to be orchestrated (using column,

row indices). Most AIE programs include streaming connections between the tiles4; for this

the compiler allows specifying only the endpoints of the stream (i.e., stream switch ports

and channels) using flows, and performs routing automatically (see Section 5.2.1). Note

that when specifying a flow at the IR (dialect) level, both port type and channel index are

required – flow(%tile_0_1, DMA : 0, %tile_0_2, DMA : 0) specifies a flow between channel

0 of the DMA port on the stream switch associated with %tile_0_1 and channel 0 of the

DMA port on the stream switch associated with %tile_0_2 – while the language frontend

supports automatic assignment. Buffers are associated with tiles and are defined by stan-

dard MLIR types (memref on scalar types such as i32). Semaphores are associated are also

associated with tiles (using the semantically overloaded lock operation) and can be initial-

ized; such initializations are primarily useful for designing multi-producer/multi-consumer

communication protocols (between cores and their DMAs or adjacent tiles).

The AIE dialect is designed to enable users to represent complex (but statically sched-

3. See (Lattner et al., 2021) or (Levental et al., 2023) for a review of dialects and other MLIR-specific
concepts.

4. Host-device communications are always through a streaming interface.

112

Upstream frontends

Upstream MLIR

Dialects

MLIR-AIE

AIE frontend Dialects

TensorFlow

IREE

PyTorch

MLIR-AIR

TensorLinalg TOSA

Affine Memref SCF Vector

AIE-Python

via Python

AIEVecAIE AIEX

Target Compilers

 Runtime Execution

Figure 5.4: MLIR-AIE end-to-end programming model; lightly-shaded components indicate
higher level abstractions supported by and interoperating with MLIR-AIE (and vice-versa
for darkly-shaded).

113

Listing 25 The AIE dialect with some of the core operations highlighted; lines 2-4 specify the
tiles that make up the design, lines 5-6 specify the stream flows, lines 8-9 specify the buffers
and semaphores used by the tiles, lines 11-30 specify the memtile DMA configuration, lines
32-36 specify the core tile DMA configuration, and lines 37-42 specify the core program. Note
the linalg.add operation operates on memref<4x4xi32> buffers (instead of memref<256xi32>)
thanks to the tiling implemented by the memtile_dma(tile_0_1) .

1 device(ipu) {
2 %tile_0_0 = tile(0, 0)
3 %tile_0_1 = tile(0, 1)
4 %tile_0_2 = tile(0, 2)
5 flow(%tile_0_1, DMA : 0, %tile_0_2, DMA : 0)
6 flow(%tile_0_1, DMA : 1, %tile_0_0, DMA : 0)
7 flow(%tile_0_2, DMA : 0, %tile_0_1, DMA : 1)
8 %memtile_buffer = buffer(%tile_0_1) : memref<256xi32>
9 %memtile_sem = lock(%tile_0_1, init = 0)

10 %memtile_dma_0_1 = memtile_dma(%tile_0_1) {
11 dma_start(S2MM, 0, ^read_in, ^start_write_out)
12 ^read_in:
13 use_lock(%memtile_sem, AcquireEqual, 0)
14 dma_bd(%memtile_buffer : memref<256xi32>)
15 use_lock(%memtile_sem, Release, 1)
16 next_bd(^read_in)
17 ^start_write_out:
18 dma_start(MM2S, 0, ^write_out, ^end)
19 ^write_out:
20 use_lock(%memtile_sem, AcquireEqual, 1)
21 dma_bd(%memtile_buffer : memref<256xi32>, dims = [
22 <size=4, stride=64>, <size=4, stride=4>,
23 <size=4, stride=16>, <size=4, stride=1>
24], len = 16, iteration_step = 16)
25 use_lock(%memtile_sem, Release, -1)
26 next_bd(^write_out)
27 ^end:
28 aie_end()
29 }
30 %core_buffer = buffer(%tile_0_2) : memref<256xi32>
31 %core_sem = lock(%tile_0_2, init = 0)
32 %mem_0_2 = mem(%tile_0_2) {
33 dma_start(S2MM, 0, ^bb1, ^bb3)
34 ...
35 dma_start(MM2S, 0, ^bb4, ^bb6)
36 }
37 %core_0_2 = core(%tile_0_2) {
38 use_lock(%core_sem, AcquireGreaterEqual)
39 linalg.add ins(%core_buffer, %core_buffer)
40 outs(%core_buffer : memref<4x4xi32>)
41 use_lock(%core_sem, Release)
42 }
43 }

114

uled) DMA state machines, i.e., sequences of tasks performed by distinct buffer descriptors,

represented by dma_bd operations. One way the AIE dialect represents this functionality is

unstructured control flow (basic blocks and jumps). Consider the sequence of DMA opera-

tions performed by the %memtile_dma_0_1 in Listing 25 (lines 11-30). The DMA state machine

represented is a synchronized transmission of the memref<256xi32> buffer; upon acquiring

the %memtile_sem semaphore, the first buffer descriptor task reads data from the stream

(through the S2MM5 interface) into the %memtile_buffer , then increments the %memtile_sem

by 1, and loops around (jumps to the top of the ^read_in basic block) and waits to reac-

quire %memtile_sem . Concurrently, the MM2S interface, waits to acquire %memtile_sem until

its state equals 1. Once acquired, the buffer descriptor task reads from %memtile_buffer

using N-d tensor addressing. The sequence of <size=..., stride=...> attributes represents

a linearization6 of the implicit array indices and effectively produces a memref<4x4x4x4xi32> ,

which corresponds to a 4×4 row-major tiling of the buffer (see Figure 5.5). After writing out

the slice of the buffer to the stream, the second buffer descriptor decrements the %memtile_sem

by -1, loops around and waits to reacquire %memtile_sem . Decrementing %memtile_sem by -1

releases the first buffer descriptor task to read from the stream again, and so on.

Stream switch, DMA, and semaphore configuration code is separated from single core

code7 by the core operation. By being based on MLIR, the AIE dialect interoperates with

all the standard MLIR dialects, such as tosa , linalg , tensor , affine , and vector . This

enables users to represent core code using conventional primitives and to avail themselves of

all upstream passes for tiling, vectorization, and bufferization (including transform dialect).

5. Stream to Mapped Memory.

6. The easiest way to understand the sequence is as a set of nested for loops:

for i in range(sizes[0]):
for j in range(sizes[1]):

for k in range(size[2]):
buffer[i * strides[0] + j * strides[1] + k * strides[2]]

7. Compute kernel code that runs on the VLIW vector processor.

115

Figure 5.5: 4 × 4 row-major tiling of the buffer in Listing 25 on page 114.

The AIE dialect also interoperates with the AIEVec dialect, which models and targets the

AI Engine vector units. Core code is lowered to LLVM IR for export to SCCs, for target

codegen. In Section 5.2.2 we discuss how configuration and core code are bundled and loaded

onto the device at runtime.

It is important to note that unstructured control flow is merely the lowest-level abstrac-

tion available in the AIE dialect for scheduling DMA operations; it is generally used to

represent state machines more complex than simple loops. For loop-like state machines,

several structured control flow representations exist, such as the dma operation (see Listing

27) and the objectfifo operation. The objectfifo operation is a FIFO-style abstraction

which completely abstracts both the synchronization and task specification; see Listing 27

which demonstrates using a pair objectfifo s to schedule and synchronize DMA reads and

writes, including coordination with the core code.

116

Listing 26 More concise representation of the same memtile DMA schedule as in Listing
25 using the dma(...) operation (lines 4,9).

1 %memtile_dma_0_1 = memtile_dma(%tile_0_1) {
2 %memtile_buffer = buffer(%tile_0_1) : memref<128xi32>
3 %memtile_sem = lock(%tile_0_1, init = 0)
4 %0 = dma(S2MM, 0) [{
5 use_lock(%memtile_sem, AcquireGreaterEqual)
6 dma_bd(%memtile_buffer : memref<128xi32>)
7 use_lock(%memtile_sem, Release)
8 }]
9 %1 = dma(MM2S, 0) [{

10 use_lock(%memtile_sem, AcquireGreaterEqual)
11 dma_bd(%memtile_buffer : memref<128xi32>, dims = [...])
12 use_lock(%memtile_sem, Release)
13 }]
14 end
15 }

Listing 27 objectfifo operations for abstractly managing DMA schedules and synchro-
nization. Here the objectfifo s connect tile_0_0 and tile_0_2 (just as in Listing 25) but
include the definitions of the necessary buffers and semaphores (through an analysis pass
called --aie-objectFifo-stateful-transform).

1 %tile_0_0 = tile(0, 0)
2 %tile_0_2 = tile(0, 2)
3 objectfifo @in(%tile_0_0, {%tile_0_2}, 2)
4 : !objectfifo<memref<128xi32>>
5 objectfifo @out(%tile_0_2, {%tile_0_0}, 2)
6 : !objectfifo<memref<128xi32>>
7 %core_0_2 = core(%tile_0_2) {
8 scf.for %arg0 = %c0 to %c4294967295 step %c1 {
9 scf.for %arg1 = %c0_0 to %c4 step %c1_1 {

10 %0 = objectfifo.acquire @out(Produce, 1)
11 %1 = objectfifo.subview.access %0[0]
12 %2 = objectfifo.acquire @in(Consume, 1)
13 %3 = objectfifo.subview.access %2[0]
14 func.call @scale_int32(%3, %1)
15 objectfifo.release @in(Consume, 1)
16 objectfifo.release @out(Produce, 1)
17 }
18 }
19 aie.end
20 }

117

Listing 28 Stream switch manual configuration corresponding to the automatically routed
flow in 25.

1 %tile_0_0 = tile(0, 0)
2 %tile_0_1 = tile(0, 1)
3 %tile_0_2 = tile(0, 2)
4 %switchbox_0_0 = switchbox(%tile_0_0) {
5 connect<South : 3, North : 0>
6 connect<South : 7, North : 1>
7 connect<North : 0, South : 2>
8 }
9 %shim_mux_0_0 = shim_mux(%tile_0_0) {

10 connect<DMA : 0, North : 3>
11 connect<DMA : 1, North : 7>
12 connect<North : 2, DMA : 0>
13 }
14 %switchbox_0_1 = switchbox(%tile_0_1) {
15 connect<South : 0, DMA : 0>
16 connect<DMA : 0, North : 0>
17 connect<South : 1, DMA : 1>
18 connect<DMA : 1, North : 1>
19 connect<North : 0, DMA : 2>
20 connect<DMA : 2, South : 0>
21 }
22 %switchbox_0_2 = switchbox(%tile_0_2) {
23 connect<South : 0, DMA : 0>
24 connect<South : 1, DMA : 1>
25 connect<DMA : 0, South : 0>
26 }

Stream Routing

While configuring stream switches explicitly is supported (see Listing 28), most programs

will specify flows between endpoints (using flow operations) and rely on automatic routing

to configure intermediate switches. The MLIR-AIE compiler currently supports two routers:

a fast but approximate label-setting router (Dreyfus, 1969) (based on Dijkstra’s shortest

path algorithm) and an optimal (but more costly) router that solves the congestion-aware

traffic assignment problem. Briefly8, we define

• (i, j) ∈ A: connections between switches;

• hπ: all possible stream flows, indexed by possible paths π ∈ Π (r, s) from path-endpoint

8. See (Boyles et al., 2023) for a much more in-depth review.

118

(source) r to path-endpoint (target) s;

• drs: number of flows required to route the required streams from r to s;

• xij : magnitude of flow across a connection (i, j);

• tij
(
xij

)
: the link performance across connection (i, j);

• cij : capacity for connection (i, j).

where our link performance function is

tij
(
xij

)
:= 1 + α

(
xij

cij

)β

similar to the Bureau of Public Roads (BPR) link performance function (Gore et al., 2023).

Then, the congestion-aware traffic assignment optimization problem is

min
hπ, π∈Π(r,s)

∑
xij∈hπ

tij
(
xij

)
· xij (5.1)

s.t. xij =
∑

π∈Π
δπ
ijhπ (5.2)

drs =
∑

π∈Π(r,s)
hπ (5.3)

xij ∈
{
0, . . . , cij

}
(5.4)

where (5.1), the objective, models Total System Travel Time, i.e., distance times time ag-

gregated across all flows, (5.3) represents flow conservation constraints, (5.3) enforces the

requirement that all flows should be routed successfully, and (5.4) enforces capacity con-

straints on each flow (as determined by the number of available channels in each stream

switch). The compiler currently includes two solver implementations, an ILP problem using

119

Gurobi (Gurobi Optimization, LLC, 2023) and as a CP-SAT problem using OR-tools (Perron

et al., 2023), and supports extensions (“bring-your-own-solver”).

5.2.2 Language frontend

The language frontend for our toolchain is a Python eDSL, implemented on top of the Python

bindings infrastructure in MLIR (Levental et al., 2023). Using this MLIR functionality, we

are able to generate Python bindings to the various operations and attributes in the AIE

dialect “for free”, as well as bindings to upstream dialects that interoperate with the AIE

dialect. This enables users to fully specify AIE programs (including stream switch, DMA,

semaphore configuration code and single core code) in Python. In addition, we extend the

automatically generated bindings in various ways to provide the functionality discussed in

Section 5.1.2, namely broadcasting semantics for routing, DMA configuration.

Consider the program in Listing 29. This simple example demonstrates both the stream

broadcasting and metaprogramming features available in our language frontend. The pro-

gram represents a 4 × 4 design (4 columns of 4 rows of compute tiles) wherein the memtile

in each column broadcasts successive 4 × 4 tiles of a 4 × 16 “fat row” to the entire column

(i.e., the successive rows of 5.5 on page 116). to recognize the broadcast semantics, It is

important to understand that tiles , an instance of TileArray , obeys conventional slicing

semantics. So tiles[:, 1] is an “array” with shape (4, 1), while tiles[:, 2:] is an “array”

with shape (4, 4), and >> is a binary operator that supports broadcasting its operands.

Thus, tiles[:, 1] >> tiles[:, 2:] instantiates

flow(%tile_k_1, DMA : 0, %tile_k_j, DMA : 0)

operations for j ∈ {2, 3, 4, 5} for each k ∈ {0, 1, 2, 3}, i.e., from each memtile in each col-

umn (which occupy row 1) to all of the core tiles in the same column. Note that broadcast

implies one-to-many stream connections (e.g., one memtile to many core tiles) but not the

120

Listing 29 Python language frontend with broadcast semantics for stream routing and
metaprogramming features; lines 9-12 demonstrate broadcast routing semantics; lines 13,
29, and 35 demonstrate our mapping from Python function scopes to MLIR regions; lines
38, 39, and 41 demonstrate our metaprogramming facilities.

1 n_tiles, m, n = 4, 4, 4
2 K = n_tiles * m * n
3 channel = 0
4 @device(ipu)
5 def ipu():
6 tiles = TileArray(
7 cols=[0, 1, 2, 3],
8 rows=[0, 1, 2, 3, 4, 5]
9)

10 tiles[:, 0] >> tiles[:, 1]
11 tiles[:, 1] >> tiles[:, 2:]
12 tiles[:, 1] << tiles[:, 2:]
13 for t in tiles[:, 1]:
14 @memtile_dma(t.tile)
15 def dma():
16 mem_buffer = buffer(t.tile, (K,), T.i32())
17 mem_sem = lock(t.tile, init=0)
18 receive_bd(channel, mem_sem, mem_buffer,
19 acq_action=Acquire, acq_val=0,
20 dims=[(4, 4), (4, 16), (4, 1)],
21)
22 send_bd(channel, mem_sem, mem_buffer,
23 acq_action=Acquire, acq_val=1, rel_val=0,
24 repeat_count=n_tiles - 1, len=m * n,
25 iter=bd_dim_layout(size=n_tiles, stride=m * n),
26)
27 for t in tiles[:, 2:]:
28 core_sem = lock(t.tile, init=0)
29 core_buffer = buffer(t.tile, (m, n), T.i32())
30 @mem(t.tile)
31 def dma():
32 receive_bd(channel, core_sem, core_buffer,
33 acq_action=Acquire, acq_val=0,
34 dims=[(4, 4), (4, 1)],
35)
36 @core(t.tile)
37 def core():
38 x = memref.alloc(m, n, T.i32())
39 with hold_lock(core_sem):
40 for i in range(m):
41 for j in range_(i, n):
42 linalg.add(core_buffer, x, core_buffer)

121

Listing 30 Broadcast flow s corresponding to tiles[0, 1] >> tiles[0, 2:] and
tiles[0, 1] << tiles[0, 2:] . Note that in the former, all flows originate from channel 0
(and connect to channel 0), while in the latter all flows originate from channel 0 but con-
nect to unique channels.

flow(%tile_0_1, DMA : 0, %tile_0_2, DMA : 1)
flow(%tile_0_1, DMA : 0, %tile_0_3, DMA : 0)
flow(%tile_0_1, DMA : 0, %tile_0_4, DMA : 3)
flow(%tile_0_1, DMA : 0, %tile_0_5, DMA : 0)

tiles[0, 1] >> tiles[0, 2:]

flow(%tile_0_2, DMA : 0, %tile_0_1, DMA : 1)
flow(%tile_0_3, DMA : 2, %tile_0_1, DMA : 2)
flow(%tile_0_4, DMA : 0, %tile_0_1, DMA : 3)
flow(%tile_0_5, DMA : 1, %tile_0_1, DMA : 4)

tiles[0, 1] << tiles[0, 2:]

inverse (many-to-one). Therefore, the language frontend automatically assigns DMA chan-

nels correctly to implement true broadcast: left operand connections all originate from the

same source DMA channel. The same semantics apply to the << operator (operands are

broadcast), however in tiles[:, 1] << tiles[:, 2:] the left-hand operand corresponds

to the destination of the flow, and connections are made to unique DMA chan-

nels instead of the same channel. See Listing 30 for the actual flow operations that are

instantiated.

Listing 29 also demonstrates two more important language features. Firstly, notice the

decorators @memtile_dma , @mem , and @core take as inputs tile objects, i.e., handles to

%tile_i_j SSA values, and immediately instantiate9 the corresponding AIE dialect opera-

tions. Such decorators enable specifying all MLIR “region-bearing” operations10 and are

used extensively in our language frontend for the many such operations in the AIE dialect

9. These decorators, which use an upstream feature called region_op , immediately execute the function
they decorate. Thus, effectively, what you see is what you get, with respect to the MLIR that is generated.

10. Yes, even multi-region operations.

122

and other, upstream, dialects. Secondly, notice on lines 40 and 42 there are two subtly

different for loops. The for i in range(m) on line 40 is a conventional Python for loop; it

will execute its body m times, i.e., emit linalg.fill ins(%i) outs(%alloc : memref<4x4xi32>)

and execute the inner for loop. In contrast, the for i in range_(n) on line 42 is not a

Python for loop and will only execute its body once; it is in fact a constructor for the

scf.for operation (from the upstream scf dialect). Thus, line 42 will have the effect of

emitting

scf.for %j = %c0 to %c4 step %c1 {

linalg.add ins(%core_buffer, %x)

outs(%core_buffer : memref<4x4xi32>)

}

In combination, m linalg.fill s and scf.for s are emitted, i.e., a further partitioning of the

work in each core. It is important to note that the Python for interoperates with the MLIR

operation vis-a-vis its loop index (%i). See Listing 31 for the fully “unrolled” representation.

We believe this ability to mix metaprogramming and actual DSL primitives in one language

seamlessly enables complex programs to be written concisely while maintaining complete

transparency for the sophisticated user; all such “macros” are implemented purely in Python

and are thus easily investigated and extended.

It is important to note that much of the upstream functionality necessary

for building our downstream language frontend, such as automatically typed types11 and

attributes12, region_op 13, enum generation14, value builders15 and casters16, has been de-

11. https://reviews.llvm.org/D150927

12. https://reviews.llvm.org/D151840

13. https://github.com/llvm/llvm-project/pull/75673

14. https://reviews.llvm.org/D157934

15. https://github.com/llvm/llvm-project/pull/68308

16. https://github.com/llvm/llvm-project/pull/69644

123

https://reviews.llvm.org/D150927
https://reviews.llvm.org/D151840
https://github.com/llvm/llvm-project/pull/75673
https://reviews.llvm.org/D157934
https://github.com/llvm/llvm-project/pull/68308
https://github.com/llvm/llvm-project/pull/69644

Listing 31 Fully “unrolled” double loop corresponding to the core code in Listing 29.

%core_3_4 = core(%tile_3_4) {
%alloc = memref.alloc() : memref<4x4xi32>
use_lock(%core_sem, AcquireGreaterEqual)
scf.for %arg0 = %c0 to %c4 step %c1 {

linalg.add ins(%core_buffer, %alloc)
outs(%core_buffer : memref<4x4xi32>)

}
scf.for %arg0 = %c1 to %c4 step %c1 {

linalg.add ins(%core_buffer, %alloc)
outs(%core_buffer : memref<4x4xi32>)

}
scf.for %arg0 = %c2 to %c4 step %c1 {

linalg.add ins(%core_buffer, %alloc)
outs(%core_buffer : memref<4x4xi32>)

}
scf.for %arg0 = %c3 to %c4 step %c1 {

linalg.add ins(%core_buffer, %alloc)
outs(%core_buffer : memref<4x4xi32>)

}
use_lock(%core_sem, Release)

}

veloped and upstreamed by us over the course of this work. Thus, we have made available

the same techniques for other language frontends and compiler projects.

Runtime and Distribution

The runtime facilities of our language frontend enable specifying, compiling (using SCCs),

loading, and launching AIE programs from Python, including host-device data buffer com-

munication. We use the Python Buffer Protocol17, in concert with NumPy APIs, to provide

NumPy compatible views off host-side data. This enables easily generating input data for

tests and quick experimentation. In addition, through NumPy’s compatibility with PyTorch

and TensorFlow tensors (and vice-versa), we are able to quickly and efficiently load various

weights tensors from fully trained DNNs. See Listing 32 for an example runtime script. Fi-

nally, the compiler and language toolchain are readily packaged as pip install -able wheels.

17. https://peps.python.org/pep-0688/

124

https://peps.python.org/pep-0688/

Listing 32 Example runtime script for compiling, loading, and launching an AIE program
(represented by module). Line 7 maps device accessible host memory to buffers that support
the Python memory buffer protocol, line 11 then “casts” those buffers to np.ndarray s, lines
15-16 initializes the memory mapped buffers with data, lines 18-22 initiates host-device com-
munication. It then launches the kernel on the device (thereby executing the AIE program).

1 # module defined above...
2 compile(module)
3 buffer_args = [f"arg_{c}" for c in col]
4 xclbin_path = make_xclbin(module)
5 with FileLock("/tmp/ipu.lock"):
6 xclbin = XCLBin(xclbin_path)
7 buffers = xclbin.mmap_buffers(
8 [(K,)] * len(buffer_args), np.int32
9)

10

11 arrays = list(map(np.asarray, buffers))
12 for col in cols:
13 A = np.random.randint(0, 10, (K,), dtype=np.int32)
14 C = np.zeros((K,), dtype=np.int32)
15 np.copyto(arrays[2 * col], A)
16 np.copyto(arrays[2 * col + 1], C)
17

18 xclbin.sync_buffers_to_device()
19 xclbin.run()
20 print("Running kernel")
21 xclbin.wait(30)
22 xclbin.sync_buffers_from_device()
23

24 for i, w in enumerate(arrays):
25 print(buffer_args[i], w)

We note this makes them easily deployable and compatible with various use-cases, including

production systems and student and researcher environments i.e., the toolchain is usable

within a Jupyter notebook environment.

5.3 Evaluation

We evaluate our toolchain by implementing GEMM programs according to the three ap-

proaches in Section 5.1.1, namely inner-product, outer-product, and row-wise. We then

benchmark our programs on a Ryzen AI device and compare the performance, in terms

of throughput, against existing approaches to programming AI Engines. Specifically we

125

compare against CHARM (Zhuang et al., 2023), an open source framework for composing

GEMM programs on AI Engine architectures and the publically available RyzenAI SDK18.

Note, though the RyzenAI SDK is the only AMD supported programming model for Ryzen

AI edge devices, it does not enable full user programmability. That is to say, RyzenAI SDK

does not enable users to reprogram switches, DMAs, cores, or semaphores and only enables

users to adjust kernel dimensions for a fixed set of distributed (binary) kernel implementa-

tions.

Therefore, it’s important to note the caveats of our evaluation approach:

• CHARM supports only AIE1, the first generation of the AIE architecture, while we

develop for AIE2, the second generation of the AIE architecture;

• the kernels distributed with the RyzenAI SDK are primarily suited to attention kernels,

i.e., matrix-vector multiplication.

With respect to the limitation in comparing against CHARM, there are some notable differ-

ences in the resources available on each architecture generation. More importantly, CHARM

only deploys to Versal devices, which are data-center-class devices with much larger arrays

of tiles than the Ryzen AI edge device (~400 versus 20). In addition, AIE1 supports fp32

operations natively while AIE2 supports fp32 via emulation through the bfloat16 path; this

results in 3-9 bfloat16 MAC operations per fp3219.

For our single-core microkernel we implement a 16 × 32 × 16 vectorized matrix multi-

plication using the AIEVec dialect, i.e., a direct mapping to hardware intrinsics. Typically,

the AIEVec dialect is not written explicitly by the user but is emitted using a combination

of auto-vectorization (from the affine dialect) and conversion from vector dialect. De-

spite this, in keeping with our goal of enabling programming at all levels of abstraction, our

18. https://github.com/amd/RyzenAI-SW

19. Depending on the choice of AIE2_FP32_EMULATION_ACCURACY (AI Engine-ML Intrinsics User Guide,
2023); herein we use the default AIE2_FP32_EMULATION_ACCURACY_SAFE which require nine MAC opera-

126

https://github.com/amd/RyzenAI-SW

Listing 33 Core kernel for a 16 × 32 × 16 vectorized matrix multiplication.

1 @func.func
2 def matmul(A, B, C):
3 for j in range_(0, 16):
4 c_vec = upd(vec16float, C, [j, c0])
5 accum = ups(vec16accfloat, c_vec)
6 for k in range_(0, 32, 16):
7 a_vec = upd(vec16float, A, [j, k])
8 for i in range(0, 16):
9 broad_a = broadcast(vec16float, a_vec, idx=i)

10 b_vec = upd(vec16float, B, [k + i, c0])
11 accum = mac_elem(vec16accfloat, broad_a,
12 b_vec, accum)
13 shift_round_sat = srs(vec16float, accum, 0)
14 vector.transfer_write(shift_round_sat, C,
15 [j, c0], permutation_map=perm_map,
16)

language frontend supports writing AIEVec for users for whom it is important to extract

maximum possible performance. See Listing 33. We point out again that our approach to

metaprogramming allows users to perform transformations such as loop unrolling explicitly;

the loops on lines 3 and 6 are again scf.for constructors while the loop on line 8 is a con-

ventional Python loop that unrolls itself when the IR is emitted (thereby producing a loop

nest that can be effectively optimized by the single core compiler).

Figure 5.6 shows the results of our comparison against CHARM. We see that CHARM

outperforms by over 10x at almost all matrix dimensions but recall CHARM programs use

384 AIE1 core tiles while our programs use only 16 AIE2 core tiles. In addition, the AIE1

architecture supports 8 fp32 MACs per clock cycle while AIE2 supports 128/9 = 14 MACs

per clock cycle i.e., only a factor 1.75 more MACs. In addition, Versal devices with AIE1

architectures support higher bandwidth to core tiles than Ryzen AI devices. Given these

differences, the performance gap between the two frameworks can reasonably be said to be

the result of asymmetrical hardware resources.

On the contrary, our matrix multiplication implementations, which exploit our program-

tions to perform a ∗ b due to three bfloat16 splits each operand.

127

64 12
8

25
6

51
2

10
24

15
36

20
48

30
72

40
96

61
44

M*K*N

10 1

100

101

102

103

GF
LO

P/
s

Outer-product
Inner-product
Row-product
CHARM

Figure 5.6: Performance as a function of GEMM matrix characteristic dimension, i.e.,
AM×K , BK×N with M = K = N . CHARM indicates (Zhuang et al., 2023) while Outer-
product, Inner-product, and Row-product indicate which of the three dataflow strategies
discussed in Section 5.1.1 is being compared. Note, omitted observations are due to core
tiles limited local memory failing to accommodate storage requirements for the respective
dataflow approaches.

128

0 2 4 6 8
M*K*N 1e9

100

101

102

GF
LO

P/
s

Outer-product
Inner-product
Row-product
RyzenAI 2048x2048x4
RyzenAI 2048x2048x8
RyzenAI 4096x4096x8
RyzenAI 6144x2048x8

Figure 5.7: Performance as a function of GEMM matrix characteristic dimension compared
with RyzenAI SDK distributed kernels (NB: M × K × n indicates the kernel is best suited
to perform a M × K-matrix-n-row-vector multiplication).

ming model but are otherwise unoptimized, nearly achieve parity with RyzenAI SDK (see

Figure 5.7). It’s important to underline the significant differences between our programming

model and the RyzenAI SDK: the RyzenAI SDK lacks the capability for end-user reconfig-

urability of any aspect of the kernels, a feature that our model offers. The kernels distributed

by the SDK have fixed configurations for stream switches, DMAs, and singular (but param-

eterized) core programs. The core programs are also highly optimized microkernels but only

for specific input dimensions. It stands to reason that if we further optimized our single-core

microkernel (see Listing 33) by refining our vectorization strategy, we would meet and exceed

their performance metrics. Indeed, the converse is also true: if developers of the SDK were to

rearchitect their kernels for the input dimensions we tested, they might further extend their

lead. The key distinction is that our programming model empowers the user to optimize

and refine their kernels, while the SDK programming model relies entirely on the expertise

of the internal teams at AMD.

129

We make some observations about the relative performance of the three dataflow strate-

gies. Firstly, note that the outer-product approach is the most performant but is un-

able to support large input matrix sizes; recall in Section 5.1.1 we noted that the outer-

product approach achieves excellent data reuse but requires each compute element having

enough space for the (sub)result matrix; the formula for outer-product matrix multiplica-

tion, Ck = A[:, k] ⊗ B[k, :], allows for local accumulation of partial sums but each partial sum

A[:, k] ⊗ B[k, :] has dimensions equal to the (sub)result matrix. Since our implementation of

outer-product partitions the result matrix into 4 × 4 blocks (each block assigned to one core

tile), at 4 bytes per matrix element, each core tile can hold at most a A64×64×B64×64 matrix

multiplication: 3×(64 × 64)×4B = 48KiB < 64KiB. Secondly, the inner-product approach,

having the poorest operand reuse of the three approaches, performs most poorly; recall that

the inner-product requires each compute element having access to O (mk + kn) operands

(over the course of evaluating the complete matrix multiplication). However, core tiles have

limited local memory, operands must be reloaded, at worst, O (k) times. Finally, row-wise

product performs relatively well at small and medium matrix sizes due to its (relatively)

good reuse characteristics but fails to remain performant for larger sizes. We hypothesize

this is due to bank conflicts in the memtiles: each memtile has 512KiB of memory consisting

of 16 banks of 32KiB with each bank being single ported, i.e., allowing only 1 read or 1 write

every cycle. Thus, depending on operand sizes and initial data layout (when loaded from

the host) it is possible to incur significant concurrent accesses to the same bank by multiple

DMA channels.

5.4 Related Work

Though there is a dearth of related work targeting AIE architectures specifically, there has

been ample work on programming models for CGRAs in general. The majority of this

work either addresses CGRAs deployed as softcores to FPGAs (Verdoscia et al., 2016, Heid

130

et al., 2016) or includes the co-design of the architecture as well (Hsu et al., 2022, Rucker

et al., 2024, 2021). Such approaches allow for more unification between the programming

model because the design of the CGRA itself can be adjusted. Thus, our work distinguishes

itself by developing for an existing, fixed, CGRA architecture and still achieving a unified

programming model. Note, in addition to CHARM, we mention the recent work GEMM for

AIE1: MaxEVA (Taka et al., 2023). We did not compare to MaxEVA because the goals of

that work were obtaining high-performance GEMMs through optimal placement of kernels

on the array; since Ryzen AI devices have relatively fewer core tiles, they necessarily require

using all, thus preventing us from exploring placement strategies.

In addition, ample research and development has generally focused on building DSLs

(in various languages) that enable developers to target hardware primitives more effectively.

For example, AMD’s Composable Kernel (CK) library20 provides a framework for writing

machine learning workloads kernels that work across multiple architectures. The framework

takes a hierarchical C++ template approach, where templates are subclassed and partially

instantiated as a composition mechanism (see Listing 34). The primary disadvantage of this

approach is that while the C++ templating metalanguage is Turing Complete (Veldhuizen,

2003), it is a wholly distinct language (from C++) and unfamiliar to most users (even the

developers of CKL). This approach leads to unbounded template parameter lists because

of a lack of almost any inference in the signatures (see Listing 35). Additionally, errors in

using the templates become extremely difficult to debug (C++ compilers are well-known

to produce poor error messages for templating failures). A similar approach is taken by

Google’s XNNPACK library21 but substitutes the standard C++ templating language with

a bespoke, proprietary literal template language. That is to say, XNNPACK kernels are de-

signed by interspersing external language primitives and standard C/C++ (see Listing 36),

20. https://github.com/ROCm/composable_kernel

21. https://github.com/google/XNNPACK

131

https://github.com/ROCm/composable_kernel
https://github.com/google/XNNPACK

Listing 34 GEMM kernel template from AMD’s Composable Kernel Library. Note
DeviceGemmDl actually inherits from DeviceGemm .

template <
typename ADataType,
typename BDataType,
typename CDataType,
typename AccDataType,
typename ALayout,
typename BLayout,
typename CLayout,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CElementwiseOperation,
GemmSpecialization GemmSpec,
index_t BlockSize,
index_t MPerBlock,
index_t NPerBlock,
index_t K0PerBlock,
index_t K1,
index_t M1PerThread,
index_t N1PerThread,
index_t KPerThread,
typename M1N1ThreadClusterM1Xs,
typename M1N1ThreadClusterN1Xs,
typename ABlockTransferThreadSliceLengths_K0_M0_M1_K1,
typename ABlockTransferThreadClusterLengths_K0_M0_M1_K1,
typename ABlockTransferThreadClusterArrangeOrder,
typename ABlockTransferSrcAccessOrder,
typename ABlockTransferSrcVectorTensorLengths_K0_M0_M1_K1,
typename ABlockTransferSrcVectorTensorContiguousDimOrder,
typename ABlockTransferDstVectorTensorLengths_K0_M0_M1_K1,
typename BBlockTransferThreadSliceLengths_K0_N0_N1_K1,
typename BBlockTransferThreadClusterLengths_K0_N0_N1_K1,
typename BBlockTransferThreadClusterArrangeOrder,
typename BBlockTransferSrcAccessOrder,
typename BBlockTransferSrcVectorTensorLengths_K0_N0_N1_K1,
typename BBlockTransferSrcVectorTensorContiguousDimOrder,
typename BBlockTransferDstVectorTensorLengths_K0_N0_N1_K1,
typename CThreadTransferSrcDstAccessOrder,
index_t CThreadTransferSrcDstVectorDim,
index_t CThreadTransferDstScalarPerVector,
enable_if_t<

is_same_v<AElementwiseOperation, ck::tensor_operation::element_wise::PassThrough> &&
is_same_v<BElementwiseOperation, ck::tensor_operation::element_wise::PassThrough> &&
is_same_v<CElementwiseOperation, ck::tensor_operation::element_wise::PassThrough>,
bool> = false>

struct DeviceGemmDl : public DeviceGemm<ALayout, BLayout, CLayout, ADataType, BDataType,
CDataType, AElementwiseOperation,
BElementwiseOperation, CElementwiseOperation>

132

Listing 35 Instantiated CKL GEMM kernel using the DeviceGemmDl in Listing 34.

using DeviceGemmInstance = ck::tensor_operation::device::DeviceGemmDl<
ADataType, BDataType, CDataType, AccDataType, ALayout, BLayout, CLayout,
AElementOp, BElementOp, CElementOp, GemmDefault, 256, 128, 128, 16, 2, 4, 4,
1, S<8, 2>, S<8, 2>, S<2, 1, 4, 2>, S<8, 1, 32, 1>, S<0, 3, 1, 2>,
S<0, 3, 1, 2>, S<1, 1, 4, 1>, S<0, 3, 1, 2>, S<1, 1, 4, 2>, S<2, 1, 4, 2>,
S<8, 1, 32, 1>, S<0, 3, 1, 2>, S<0, 3, 1, 2>, S<1, 1, 4, 1>, S<0, 3, 1, 2>,
S<1, 1, 4, 2>, S<0, 1, 2, 3, 4, 5>, 5, 4>;

Listing 36 GEMM kernel template from Google’s XNNPack library. Note all $ escaped
syntax indicates a proprietary template language.

void xnn_bf16_gemm_minmax_ukernel_${MR} x${NR} c8__neonfma_zip(
size_t mr, size_t nc, size_t kc, const void *restrict a, size_t a_stride,
const void *restrict w_ptr, void *restrict c, size_t cm_stride,
size_t cn_stride,
const union xnn_bf16_minmax_params params[restrict XNN_MIN_ELEMENTS(1)]) {

assert(mr != 0);
assert(mr <= ${MR});
assert(nc != 0);
assert(kc != 0);
assert(kc % sizeof(uint16_t) == 0);
assert(a != NULL);
assert(w_ptr != NULL);
assert(c != NULL);

const uint16_t* a0 = (const uint16_t*) a;
uint16_t* c0 = (uint16_t*) c;
$for M in range(1, MR):

const uint16_t* a${M} = (const uint16_t*) ((uintptr_t) a${M-1} + a_stride);
uint16_t* c${M} = (uint16_t*) ((uintptr_t) c${M-1} + cm_stride);
$if M % 2 == 0:

if XNN_UNPREDICTABLE(mr <= ${M}) {
a${M} = a${M-1};
c${M} = c${M-1};

}
$elif M + 1 == MR:

if XNN_UNPREDICTABLE(mr != ${M+1}) {
a${M} = a${M-1};
c${M} = c${M-1};

}
$else:

if XNN_UNPREDICTABLE(mr < ${M+1}) {
a${M} = a${M-1};
c${M} = c${M-1};

}
...

}

133

Listing 37 GEMM kernel from Intel’s oneDNN library. Note this kernel operates on regis-
ters (const Ymm ®00, const Ymm ®01, const Ymm ®02, ...) and emits lit-
eral assembly at runtime (e.g., vaddps(reg00, reg00, reg12)).

void kernel(int unroll_m, int unroll_n, bool isLoad1Unmasked,
bool isLoad2Unmasked, bool isDirect, bool isCopy, bool useFma,
const Ymm ®00, const Ymm ®01, const Ymm ®02,
const Ymm ®03, const Ymm ®04, const Ymm ®05,
const Ymm ®06, const Ymm ®07, const Ymm ®08,
const Ymm ®09, const Ymm ®10, const Ymm ®11,
const Ymm ®12, const Ymm ®13, const Ymm ®14,
const Ymm ®15, const Ymm ®16, const Ymm ®17,
const Ymm ®18, const Ymm ®19, const Ymm ®20,
const Ymm ®21, const Ymm ®22, const Ymm ®23) {

...
align(16);

L(labels[5]);
if (unroll_m == 16) {

if (unroll_n <= 3) {
vaddps(reg00, reg00, reg12);
vaddps(reg01, reg01, reg13);
vaddps(reg02, reg02, reg14);
vaddps(reg06, reg06, reg18);
vaddps(reg07, reg07, reg19);
vaddps(reg08, reg08, reg20);

}
}

...

test(K, 1);
jle(labels[6], T_NEAR);
innerkernel1(unroll_m, unroll_n, isLoad1Unmasked, isLoad2Unmasked, isDirect,

isCopy, useFma, reg00, reg01, reg02, reg03, reg04, reg05, reg06,
reg07, reg08, reg09, reg10, reg11);

align(16);

...
}

134

and then the final C/C++ source is generated by passing the templatized source through a

preprocessor. The disadvantages of this approach are apparent: the non-standard template

language is even less understood than standard templates, and the preprocessor provides lim-

ited feedback about errors during the generation step (relying on the downstream compiler

to supply authoritative error messages). Finally, Intel’s oneDNN library22, which aims to

provide optimized kernels for various CPU architectures, takes a relatively novel approach:

core kernels in oneDNN are implemented by Just-in-Time (JIT) compiling an API-centric

DSL to vector instructions (not intrinsics) using the Xbyak JIT assembler23. This approach

is very similar to ours in spirit (our frontend, similarly JIT translates Python to MLIR) and

appealing from the perspective of a competent developer because it enables using the host

language (C++) while retaining access to the lowest level APIs of the hardware (assem-

bly). While MLIR currently supports directly emitting instructions for some architectures

(e.g., ARM-Neon24, ARM-SVE25 and ARM-SME26), MLIR-AIE does not currently support

directly emitting instructions for the vector VLIW processors.

5.5 Conclusion

We presented an “end-to-end” programming model for AMD’s AI Engine such that a de-

veloper can design a dataflow, program the individual PEs, configure the device, launch

the program, and manage host-device communications (vis-à-vis memory buffers) all in one

Python script (or Jupyter notebook). We then evaluated our programming model against

the current state-of-the-art by implementing three different dataflow approaches to matrix

multiplication and measuring their performance, in terms of GFLOP/s, on a Ryzen AI edge

22. https://github.com/oneapi-src/oneDNN

23. https://github.com/herumi/xbyak

24. https://mlir.llvm.org/docs/Dialects/ArmNeon

25. https://mlir.llvm.org/docs/Dialects/ArmSVE

26. https://mlir.llvm.org/docs/Dialects/ArmSME

135

https://github.com/oneapi-src/oneDNN
https://github.com/herumi/xbyak
https://mlir.llvm.org/docs/Dialects/ArmNeon
https://mlir.llvm.org/docs/Dialects/ArmSVE
https://mlir.llvm.org/docs/Dialects/ArmSME

device. After accounting for resource differences, we observe that our programming model

enables users to implement dataflow programs with performance comparable to the state of

the art while benefiting from all the features of a high-level language frontend and a unified

end-to-end workflow.

Future work in this area includes several directions:

• Single-core Compiler Integration: Currently, our end-to-end approach delegates

the code generation for the vector VLIW processor to external single-core compilers.

The reasons for this are not technical, and in the future, when some of these external

compilers become open source, we hope to integrate with them more closely, even

possibly enabling emitting the vector VLIW instructions directly (as mentioned in

Section 5.4).

• Framework Integration: We currently support upstream deep learning frameworks

(such as PyTorch and TensorFlow) but only through the IREE runtime. While this

approach is fully functional and robust, it incurs a great deal of incidental complexity

in the building and managing both the frameworks and IREE27 itself. In principle, it

should be straightforward to integrate directly with both PyTorch and TensorFlow as

they each now have MLIR dialects as egress IRs. We plan to explore these integration

paths in the near future.

27. https://iree.dev

136

https://iree.dev

CHAPTER 6

CONCLUSION

This dissertation has made significant contributions to deep learning optimization, compiler

design, and embedded domain-specific languages. The primary contribution lies in creating

and implementing an eDSL for representing, optimizing, and executing deep learning models

on a novel accelerator architecture, specifically AMD AI Engine architectures. This eDSL,

complemented by core, reusable infrastructure components that have been integrated into

MLIR, validates the core thesis of the dissertation: that it is possible to design a language

and programming model that enables representing deep learning models simultaneously at

multiple levels of abstraction, generating performant, target-specific, implementations, and

executing those models on novel accelerator architectures. The development towards this

primary contribution has proceeded through four distinct investigations into deep learning

language and compiler design, each offering valuable insights and technical innovations.

In Memory Planning for Deep Neural Networks, the investigation into memory planning

for deep neural networks shed light on the inefficiencies inherent in existing frameworks and

memory allocators, leading to the development of a novel allocation capture technique, ILP

and CP-SAT models of memory allocation, and a working implementation of an allocator

that significantly reduces thread contention and improves DNN performance. This work

emphasized the importance of exposing implementation-specific details for achieving crucial

optimizations, which traditional frameworks often obscure.

In BraggHLS: High-Level Synthesis for Low-latency Deep Neural Networks for Experi-

mental Science, the development of BraggHLS showcased the potential of high-level synthesis

techniques for translating deep neural network representations into FPGA-deployable code.

Notably, this project highlighted the necessity of empowering users with control over com-

piler optimization passes, enabling them to leverage domain-specific knowledge effectively.

This work produced an implementation of a Bragg peak detection DNN which achieved
137

a throughput improvement of 4× over the previous state of the art. This work also pro-

duced ILP and CP-SAT models for Shared Operator Scheduling (Kruppe et al., 2021) and a

novel lifting approach for enabling domain scientists to perform transformations on low-level

representations of DNNs.

In nelli: A Lightweight Frontend for MLIR, the creation of nelli, a lightweight fron-

tend for MLIR, introduced an innovative approach to generating Python-embedded domain-

specific languages directly from MLIR dialects. This initiative underscored the importance of

providing APIs and intermediate representations that enable direct access to compiler oper-

ations and transformations when developing DNNs, thus eliminating the need for high-level

frameworks such as PyTorch and TensorFlow during inference. One specifically valuable

technical contribution of this work is a novel approach to mapping arbitrarily nested condi-

tionals and loop primitives to various MLIR operations.

Finally, in An End-to-End Programming Model for AI Engine Architectures, the valida-

tion of the core thesis was demonstrated through the development of an end-to-end program-

ming model for AMD AI Engines, leveraging and extending MLIR to provide a comprehen-

sive language frontend, single-core code generation, runtime management, and optimization

capabilities. This endeavor emphasized the integration of language and compiler design

to furnish developers with the necessary tools for achieving performant implementations of

dataflow programs such as GEMM. This work also yielded ILP and CP-SAT formulations

of congestion-aware traffic assignment (Temelcan et al., 2020) for stream routing, a novel

stream broadcasting primitive for combining array broadcasting and stream switch configu-

ration and a novel approach to metaprogramming MLIR in Python.

We envision that our work will lead to engagement from expert developers, research

scientists and domain experts and produce highly optimized implementations of DNNs for

many unique use cases.

138

REFERENCES

Create placed and routed dcp to cross slr. https://www.rapidwright.io/docs/SLR_Cros
ser_DCP_Creator_Tutorial.html. Accessed: 2022-10-15.

Torchscript language reference. https://pytorch.org/docs/stable/jit_language_ref
erence_v2.html. Accessed: 2021-09-30.

Ptx and sass assembly debugging. https://docs.nvidia.com/gameworks/content/de
velopertools/desktop/ptx_sass_assembly_debugging.htm, 2015. [Online; accessed
26-March-2023].

Ultrascale architecture dsp slice. Technical report, XiLinx, 2021. URL https://docs.xil
inx.com/v/u/en-US/ug579-ultrascale-dsp.

Pyston. https://github.com/pyston/pyston, 2023. [Online; accessed 26-March-2023].

StableHLO: Backward compatible ml compute opset inspired by hlo/mhlo, 2023. URL
https://github.com/openxla/stablehlo.

Torch-MLIR: The torch-mlir project aims to provide first class support from the pytorch
ecosystem to the mlir ecosystem, 2023. URL https://github.com/llvm/torch-mlir.

Roel Aaij et al. Allen: A high-level trigger on gpus for lhcb. Computing and Software for
Big Science, 4(1):1–11, 2020.

Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. {TensorFlow}:
a system for {Large-Scale} machine learning. In 12th USENIX symposium on operating
systems design and implementation (OSDI 16), pages 265–283, 2016a.

Martín Abadi et al. Tensorflow: Large-scale machine learning on heterogeneous distributed
systems, 2016b. URL https://arxiv.org/abs/1603.04467.

H. Abelson, G.J. Sussman, and J. Sussman. Structure and Interpretation of Computer
Programs. Electrical engineering and computer science series. MIT Press, 1996. ISBN
9780262011532.

Carlos Affonso, André Luis Debiaso Rossi, Fábio Henrique Antunes Vieira, and An-
dré Carlos Ponce de Leon Ferreira de Carvalho. Deep learning for biological image
classification. Expert Systems with Applications, 85:114–122, 2017. ISSN 0957-4174.
doi:https://doi.org/10.1016/j.eswa.2017.05.039. URL https://www.sciencedirect.
com/science/article/pii/S0957417417303627.

AI Engine-ML Intrinsics User Guide. Considerations when using emulated FP32 Intrinsics,
2023. URL https://www.xilinx.com/htmldocs/xilinx2023_2/aiengine_ml_intrins
ics/intrinsics/group__intr__gpvectorop__mul.html.

139

https://www.rapidwright.io/docs/SLR_Crosser_DCP_Creator_Tutorial.html
https://www.rapidwright.io/docs/SLR_Crosser_DCP_Creator_Tutorial.html
https://pytorch.org/docs/stable/jit_language_reference_v2.html
https://pytorch.org/docs/stable/jit_language_reference_v2.html
https://docs.nvidia.com/gameworks/content/developertools/desktop/ptx_sass_assembly_debugging.htm
https://docs.nvidia.com/gameworks/content/developertools/desktop/ptx_sass_assembly_debugging.htm
https://docs.xilinx.com/v/u/en-US/ug579-ultrascale-dsp
https://docs.xilinx.com/v/u/en-US/ug579-ultrascale-dsp
https://github.com/pyston/pyston
https://github.com/openxla/stablehlo
https://github.com/llvm/torch-mlir
https://arxiv.org/abs/1603.04467
https://doi.org/https://doi.org/10.1016/j.eswa.2017.05.039
https://www.sciencedirect.com/science/article/pii/S0957417417303627
https://www.sciencedirect.com/science/article/pii/S0957417417303627
https://www.xilinx.com/htmldocs/xilinx2023_2/aiengine_ml_intrinsics/intrinsics/group__intr__gpvectorop__mul.html
https://www.xilinx.com/htmldocs/xilinx2023_2/aiengine_ml_intrinsics/intrinsics/group__intr__gpvectorop__mul.html

Laith Alzubaidi et al. Review of deep learning: Concepts, cnn architectures, challenges,
applications, future directions. Journal of Big Data, 8(1):1–74, 2021.

Nada Amin and Tiark Rompf. Collapsing towers of interpreters. 2(POPL), dec 2017.
doi:10.1145/3158140. URL https://doi.org/10.1145/3158140.

Dario Amodei, Sundaram Ananthanarayanan, Rishita Anubhai, Jingliang Bai, Eric Batten-
berg, Carl Case, Jared Casper, Bryan Catanzaro, Qiang Cheng, Guoliang Chen, et al.
Deep speech 2: End-to-end speech recognition in english and mandarin. In International
conference on machine learning, pages 173–182. PMLR, 2016.

Anthony Shaw. Nuitka the python compiler. https://pyjion.readthedocs.io/en/lates
t/, 2023. [Online; accessed 26-March-2023].

ARM. Arm cortex-a series programmer’s guide for armv8-a. https://developer.arm.co
m/documentation/den0024/a/ch12s05s01. Accessed: 2023-01-30.

Arash Ashari et al. On optimizing machine learning workloads via kernel fusion. 50(8):
173–182, 2015. ISSN 0362-1340. doi:10.1145/2858788.2688521. URL https://doi.org/
10.1145/2858788.2688521.

Lan Bai, Lei Yang, and Robert Dick. Memmu: Memory expansion for mmu-less embedded
systems. ACM Trans. Embedded Comput. Syst., 8, 04 2009. doi:10.1145/1509288.1509295.

Mihalj Bakator and Dragica Radosav. Deep learning and medical diagnosis: A review of
literature. Multimodal Technologies and Interaction, 2(3):47, 2018.

Zoltan Baruch. Scheduling algorithms for high-level synthesis. ACAM Scientific Journal, 5
(1-2):48–57, 1996.

Stefan Behnel, Robert Bradshaw, Craig Citro, Lisandro Dalcin, Dag Sverre Seljebotn, and
Kurt Smith. Cython: The best of both worlds. Computing in Science & Engineering, 13
(2):31–39, 2010.

Marianne Bellotti. Programming in Z3 by learning to think like a compiler. https://bell
mar.medium.com/programming-in-z3-by-learning-to-think-like-a-compiler-401
fd46828d5, 2021.

Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer: The long-document trans-
former, 2020.

Paul Blockhaus and Ing David Broneske. A Framework for Adaptive Reprogramming Using
a JIT-Compiled Domain Specific Language for Query Execution. PhD thesis, Master’s
thesis. Ottovon-Guericke University Magdeburg, 2022.

Nicolas Bohm Agostini et al. Bridging python to silicon: The soda toolchain. IEEE Micro,
2022. doi:10.1109/MM.2022.3178580.

140

https://doi.org/10.1145/3158140
https://doi.org/10.1145/3158140
https://pyjion.readthedocs.io/en/latest/
https://pyjion.readthedocs.io/en/latest/
https://developer.arm.com/documentation/den0024/a/ch12s05s01
https://developer.arm.com/documentation/den0024/a/ch12s05s01
https://doi.org/10.1145/2858788.2688521
https://doi.org/10.1145/2858788.2688521
https://doi.org/10.1145/2858788.2688521
https://doi.org/10.1145/1509288.1509295
https://bellmar.medium.com/programming-in-z3-by-learning-to-think-like-a-compiler-401fd46828d5
https://bellmar.medium.com/programming-in-z3-by-learning-to-think-like-a-compiler-401fd46828d5
https://bellmar.medium.com/programming-in-z3-by-learning-to-think-like-a-compiler-401fd46828d5
https://doi.org/10.1109/MM.2022.3178580

Carl Friedrich Bolz, Antonio Cuni, Maciej Fijalkowski, and Armin Rigo. Tracing the
meta-level: Pypy’s tracing jit compiler. In Proceedings of the 4th Workshop on the
Implementation, Compilation, Optimization of Object-Oriented Languages and Program-
ming Systems, ICOOOLPS ’09, pages 18–25, New York, NY, USA, 2009. Association
for Computing Machinery. ISBN 9781605585413. doi:10.1145/1565824.1565827. URL
https://doi.org/10.1145/1565824.1565827.

Uday Bondhugula. Polyhedral compilation opportunities in mlir. https://acohen.gitla
bpages.inria.fr/impact/impact2020/slides/IMPACT_2020_keynote.pdf, 2020.

Jeff Bonwick. The slab allocator: An object-caching kernel. In USENIX Technical Confer-
ence, Boston, MA, June 1994. USENIX Association. URL https://www.usenix.org/c
onference/usenix-summer-1994-technical-conference/slab-allocator-object-c
aching-kernel.

David Boreham. Malloc() performance in a multithreaded Linux environment. In USENIX
Annual Technical Conference, San Diego, CA, June 2000. USENIX Association. URL
https://www.usenix.org/conference/2000-usenix-annual-technical-conferenc
e/malloc-performance-multithreaded-linux.

Stephen D. Boyles, Nicholas E. Lownes, and Avinash Unnikrishnan. Transportation Network
Analysis, volume 1. 2023. edition 0.91.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and
Qiao Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL
http://github.com/google/jax.

Nick Brown, Tobias Grosser, Mathieu Fehr, Michel Steuwer, and Paul Kelly. xdsl: A common
compiler ecosystem for domain specific languages.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini
Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya
Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner,
Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are
few-shot learners, 2020. ArXiv 2005.14165.

Adam L. Buchsbaum, Howard Karloff, Claire Kenyon, Nick Reingold, and Mikkel Thorup.
Opt versus load in dynamic storage allocation. In 35th Annual ACM Symposium on
Theory of Computing, STOC ’03, pages 556–564, New York, NY, USA, 2003. Association
for Computing Machinery. ISBN 1581136749. doi:10.1145/780542.780624. URL https:
//doi.org/10.1145/780542.780624.

Edmund K Burke, Graham Kendall, and Glenn Whitwell. A new placement heuristic for
the orthogonal stock-cutting problem. Operations Research, 52(4):655–671, 2004.

141

https://doi.org/10.1145/1565824.1565827
https://doi.org/10.1145/1565824.1565827
https://acohen.gitlabpages.inria.fr/impact/impact2020/slides/IMPACT_2020_keynote.pdf
https://acohen.gitlabpages.inria.fr/impact/impact2020/slides/IMPACT_2020_keynote.pdf
https://www.usenix.org/conference/usenix-summer-1994-technical-conference/slab-allocator-object-caching-kernel
https://www.usenix.org/conference/usenix-summer-1994-technical-conference/slab-allocator-object-caching-kernel
https://www.usenix.org/conference/usenix-summer-1994-technical-conference/slab-allocator-object-caching-kernel
https://www.usenix.org/conference/2000-usenix-annual-technical-conference/malloc-performance-multithreaded-linux
https://www.usenix.org/conference/2000-usenix-annual-technical-conference/malloc-performance-multithreaded-linux
http://github.com/google/jax
https://doi.org/10.1145/780542.780624
https://doi.org/10.1145/780542.780624
https://doi.org/10.1145/780542.780624

Jeronimo C. Penha, Lucas B. Silva, Jansen M. Silva, Kristtopher K Coelho, Hector
P. Baranda, José Augusto M. Nacif, and Ricardo S. Ferreira. Add: Accelerator design
and deploy-a tool for fpga high-performance dataflow computing. Concurrency and Com-
putation: Practice and Experience, 31(18):e5096, 2019.

Andrew Canis et al. Legup: An open-source high-level synthesis tool for fpga-based proces-
sor/accelerator systems. ACM Trans. Embed. Comput. Syst., 13(2), 2013. ISSN 1539-9087.
doi:10.1145/2514740. URL https://doi.org/10.1145/2514740.

João M.P. Cardoso, José Gabriel F. Coutinho, and Pedro C. Diniz. Chapter 5 - source code
transformations and optimizations. In João M.P. Cardoso, José Gabriel F. Coutinho, and
Pedro C. Diniz, editors, Embedded Computing for High Performance, pages 137–183. Mor-
gan Kaufmann, Boston, 2017. ISBN 978-0-12-804189-5. doi:https://doi.org/10.1016/B978-
0-12-804189-5.00005-3. URL https://www.sciencedirect.com/science/article/pii/
B9780128041895000053.

George Charitopoulos and Dionisios N. Pnevmatikatos. A cgra definition framework for
dataflow applications. In Fernando Rincón, Jesús Barba, Hayden K. H. So, Pedro Diniz,
and Julián Caba, editors, Applied Reconfigurable Computing. Architectures, Tools, and
Applications, pages 271–287, Cham, 2020. Springer International Publishing. ISBN 978-
3-030-44534-8.

Junjie Chen, Yihua Liang, Qingchao Shen, Jiajun Jiang, and Shuochuan Li. Toward under-
standing deep learning framework bugs. ACM Transactions on Software Engineering and
Methodology, 32(6):1–31, 2023.

Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig Adam. Rethinking
atrous convolution for semantic image segmentation, 2017.

Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with
sublinear memory cost, 2016. URL https://arxiv.org/abs/1604.06174.

Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen Shen,
Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, et al. TVM: An automated end-
to-end optimizing compiler for deep learning. In 13th USENIX Symposium on Operating
Systems Design and Implementation, pages 578–594, 2018.

Tianqi Chen et al. Mxnet: A flexible and efficient machine learning library for heterogeneous
distributed systems, 2015. URL https://arxiv.org/abs/1512.01274.

Yishen Chen, Charith Mendis, Michael Carbin, and Saman Amarasinghe. Vegen: a vectorizer
generator for simd and beyond. In Proceedings of the 26th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems, pages 902–
914, 2021.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with
sparse transformers, 2019.

142

https://doi.org/10.1145/2514740
https://doi.org/10.1145/2514740
https://doi.org/https://doi.org/10.1016/B978-0-12-804189-5.00005-3
https://doi.org/https://doi.org/10.1016/B978-0-12-804189-5.00005-3
https://www.sciencedirect.com/science/article/pii/B9780128041895000053
https://www.sciencedirect.com/science/article/pii/B9780128041895000053
https://arxiv.org/abs/1604.06174
https://arxiv.org/abs/1512.01274

I. Stephen Choi and Yang-Suk Kee. Energy efficient scale-in clusters with in-storage pro-
cessing for big-data analytics. In Proceedings of the 2015 International Symposium on
Memory Systems, MEMSYS ’15, pages 265–273, New York, NY, USA, 2015. Association
for Computing Machinery. ISBN 9781450336048. doi:10.1145/2818950.2818983. URL
https://doi.org/10.1145/2818950.2818983.

Francois Chollet. Deep learning with Python. Simon and Schuster, 2021.

Timothy Colburn and Gary Shute. Abstraction in computer science. Minds and Machines,
17(2):169–184, 2007. doi:10.1007/s11023-007-9061-7. URL https://doi.org/10.1007/
s11023-007-9061-7.

LHCb Collaboration. Comparison of particle selection algorithms for the LHCb upgrade.
Technical report, 2020. URL https://cds.cern.ch/record/2746789.

Keith D. Cooper, L. Taylor Simpson, and Christopher A. Vick. Operator strength re-
duction. ACM Trans. Program. Lang. Syst., 23(5):603–625, sep 2001. ISSN 0164-0925.
doi:10.1145/504709.504710. URL https://doi.org/10.1145/504709.504710.

Steve Dai, Gai Liu, and Zhiru Zhang. A scalable approach to exact resource-constrained
scheduling based on a joint sdc and sat formulation. In ACM/SIGDA Intl Symposium on
Field-Programmable Gate Arrays, pages 137–146, 2018. ISBN 9781450356145.

Aminu Da’u and Naomie Salim. Recommendation system based on deep learning methods:
a systematic review and new directions. Artificial Intelligence Review, 53(4):2709–2748,
2020.

Florent de Dinechin. Reflections on 10 years of flopoco. In IEEE 26th Symposium on
Computer Arithmetic, pages 187–189, 2019.

Ioannis Deligiannis and George Kornaros. Adaptive memory management scheme for mmu-
less embedded systems. pages 1–8, 05 2016. doi:10.1109/SIES.2016.7509439.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding, 2019.

Neil G Dickson, Kamran Karimi, and Firas Hamze. Importance of explicit vectorization for
cpu and gpu software performance. Journal of Computational Physics, 230(13):5383–5398,
2011.

Stuart E. Dreyfus. An appraisal of some shortest-path algorithms. Oper. Res., 17(3):395–
412, jun 1969. ISSN 0030-364X. doi:10.1287/opre.17.3.395. URL https://doi.org/10.1
287/opre.17.3.395.

J. Duarte et al. Fast inference of deep neural networks in FPGAs for particle physics. Journal
of Instrumentation, 13(07):P07027–P07027, 2018.

143

https://doi.org/10.1145/2818950.2818983
https://doi.org/10.1145/2818950.2818983
https://doi.org/10.1007/s11023-007-9061-7
https://doi.org/10.1007/s11023-007-9061-7
https://doi.org/10.1007/s11023-007-9061-7
https://cds.cern.ch/record/2746789
https://doi.org/10.1145/504709.504710
https://doi.org/10.1145/504709.504710
https://doi.org/10.1109/SIES.2016.7509439
https://doi.org/10.1287/opre.17.3.395
https://doi.org/10.1287/opre.17.3.395
https://doi.org/10.1287/opre.17.3.395

Dietmar Ebner, Florian Brandner, Bernhard Scholz, Andreas Krall, Peter Wiedermann,
and Albrecht Kadlec. Generalized instruction selection using ssa-graphs. In Proceedings
of the 2008 ACM SIGPLAN-SIGBED conference on Languages, compilers, and tools for
embedded systems, pages 31–40, 2008.

Schuyler Eldridge, Prithayan Barua, Aliaksei Chapyzhenka, Adam Izraelevitz, Jack Koenig,
Chris Lattner, Andrew Lenharth, George Leontiev, Fabian Schuiki, Ram Sunder, et al.
Mlir as hardware compiler infrastructure. In Workshop on Open-Source EDA Technology
(WOSET), 2021.

Jason Evans. Scalable memory allocation using jemalloc. Notes Facebook Eng, 2011.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion
parameter models with simple and efficient sparsity, 2021. ArXiv 2101.03961.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion pa-
rameter models with simple and efficient sparsity. Journal of Machine Learning Research,
23(120):1–39, 2022.

Fabrizio Ferrandi et al. Bambu: an open-source research framework for the high-level syn-
thesis of complex applications. In 58th ACM/IEEE Design Automation Conference, pages
1327–1330. IEEE, 2021.

Roy Frostig, Matthew James Johnson, and Chris Leary. Compiling machine learning pro-
grams via high-level tracing. Systems for Machine Learning, 4(9), 2018.

Evangelos Georganas, Kunal Banerjee, Dhiraj Kalamkar, Sasikanth Avancha, Anand Venkat,
Michael Anderson, Greg Henry, Hans Pabst, and Alexander Heinecke. Harnessing deep
learning via a single building block. In 2020 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pages 222–233. IEEE, 2020.

Stefanos Georgiou, Maria Kechagia, Tushar Sharma, Federica Sarro, and Ying Zou. Green ai:
Do deep learning frameworks have different costs? In Proceedings of the 44th International
Conference on Software Engineering, pages 1082–1094, 2022.

Jordan Gergov. Algorithms for compile-time memory optimization. In 10th Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 907–908, 1999.

Sanjay Ghemawat and Paul Menage. TCMalloc: Thread-caching malloc, 2009. http:
//goog-perftools.sourceforge.net/doc/tcmalloc.html.

V V Gligorov and M Williams. Efficient, reliable and fast high-level triggering using a bonsai
boosted decision tree. J. Instrumentation, 8(02), 2013.

Vladimir Gligorov. Real-time data analysis at the LHC: present and future. In NIPS Work-
shop on High-energy Physics and Machine Learning, volume 42, pages 1–18, 2015.

144

http://goog-perftools.sourceforge.net/doc/tcmalloc.html
http://goog-perftools.sourceforge.net/doc/tcmalloc.html

Gert Goossens, Dirk Lanneer, Werner Geurts, and Johan Van Praet. Design of asips in
multi-processor socs using the chess/checkers retargetable tool suite. In 2006 International
Symposium on System-on-Chip, pages 1–4, 2006. doi:10.1109/ISSOC.2006.321968.

Ninad Gore, Shriniwas Arkatkar, Gaurang Joshi, and Constantinos Antoniou. Modified
bureau of public roads link function. Transportation Research Record, 2677(5):966–990,
2023. doi:10.1177/03611981221138511.

Keith Grainge et al. Square kilometre array: The radio telescope of the xxi century. Astron-
omy reports, 61(4):288–296, 2017.

Licheng Guo et al. Autobridge: Coupling coarse-grained floorplanning and pipelining for
high-frequency hls design on multi-die fpgas. In ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays, page 81–92, 2021. ISBN 9781450382182.

Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2023. URL https://ww
w.gurobi.com.

M. Hammer, K. Yoshii, and A. Miceli. Strategies for on-chip digital data compression
for x-ray pixel detectors. Journal of Instrumentation, 16(01):P01025–P01025, 2021.
doi:10.1088/1748-0221/16/01/p01025. URL https://doi.org/10.1088%2F1748-022
1%2F16%2F01%2Fp01025.

Momoko Hattori, Naoki Kobayashi, and Ryosuke Sato. Gradual tensor shape checking, 2022.
URL https://arxiv.org/abs/2203.08402.

SI Hayakawa. ’the art of plain talk’. American Speech, 23(2):138–141, 1948.

Kim Hazelwood, Sarah Bird, David Brooks, Soumith Chintala, Utku Diril, Dmytro Dzhul-
gakov, Mohamed Fawzy, Bill Jia, Yangqing Jia, Aditya Kalro, James Law, Kevin Lee,
Jason Lu, Pieter Noordhuis, Misha Smelyanskiy, Liang Xiong, and Xiaodong Wang. Ap-
plied machine learning at Facebook: A datacenter infrastructure perspective. In IEEE
International Symposium on High Performance Computer Architecture, pages 620–629,
2018. doi:10.1109/HPCA.2018.00059.

Kris Heid, Jan Weber, and Christian Hochberger. µstreams: a tool for automated streaming
pipeline generation on soft-core processors. In 2016 International Conference on FPGA
Reconfiguration for General-Purpose Computing (FPGA4GPC), pages 25–30. IEEE, 2016.

Olivia Hsu, Alexander Rucker, Tian Zhao, Kunle Olukotun, and Fredrik Kjolstad. Stardust:
Compiling sparse tensor algebra to a reconfigurable dataflow architecture, 2022.

Niall Hurley and Scott Rickard. Comparing measures of sparsity. In 2008
IEEE Workshop on Machine Learning for Signal Processing, pages 55–60, 2008.
doi:10.1109/MLSP.2008.4685455.

Forrest N. Iandola, Song Han, Matthew W. Moskewicz, Khalid Ashraf, William J. Dally,

145

https://doi.org/10.1109/ISSOC.2006.321968
https://doi.org/10.1177/03611981221138511
https://www.gurobi.com
https://www.gurobi.com
https://doi.org/10.1088/1748-0221/16/01/p01025
https://doi.org/10.1088%2F1748-0221%2F16%2F01%2Fp01025
https://doi.org/10.1088%2F1748-0221%2F16%2F01%2Fp01025
https://arxiv.org/abs/2203.08402
https://doi.org/10.1109/HPCA.2018.00059
https://doi.org/10.1109/MLSP.2008.4685455

and Kurt Keutzer. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and
<0.5MB model size, 2016a. ArXiv 1602.07360.

Forrest N. Iandola, Song Han, Matthew W. Moskewicz, Khalid Ashraf, William J. Dally,
and Kurt Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and
<0.5mb model size, 2016b.

Obi Ike-Nwosu. Inside the python virtual machine, 2015.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift, 2015. URL https://arxiv.org/abs/1502.03167.

Wenzel Jakob, Jason Rhinelander, and Dean Moldovan. pybind11 - seamless operability
between c++11 and python, 2016. https://github.com/pybind/pybind11.

Yangqing Jia. Learning semantic image representations at a large scale. University of Cali-
fornia, Berkeley, 2014.

Qingye Jiang, Young Choon Lee, and Albert Y Zomaya. The limit of horizontal scaling in
public clouds. ACM Transactions on Modeling and Performance Evaluation of Computing
Systems (TOMPECS), 5(1):1–22, 2020.

Tian Jin, Gheorghe-Teodor Bercea, Tung D. Le, Tong Chen, Gong Su, Haruki Imai, Yasushi
Negishi, Anh Leu, Kevin O’Brien, Kiyokuni Kawachiya, and Alexandre E. Eichenberger.
Compiling onnx neural network models using mlir, 2020. URL https://arxiv.org/abs/
2008.08272.

Michael Jungmair, André Kohn, and Jana Giceva. Designing an open framework for query
optimization and compilation. Proc. VLDB Endow., 15(11):2389–2401, jul 2022. ISSN
2150-8097. doi:10.14778/3551793.3551801. URL https://doi.org/10.14778/3551793
.3551801.

Kay Hayen. Nuitka the python compiler. https://nuitka.net/, 2023. [Online; accessed
26-March-2023].

John Kessenich, Boaz Ouriel, and Raun Krisch. Spir-v specification. Khronos Group, 3:17,
2018.

Oleg Kiselyov. Typed tagless final interpreters. Generic and indexed programming: Interna-
tional spring school, sSGIP 2010, oxford, uK, march 22-26, 2010, revised lectures, pages
130–174, 2012.

Donald E Knuth. Structured programming with go to statements. ACM Computing Surveys
(CSUR), 6(4):261–301, 1974.

Hanna Kruppe, Lukas Sommer, Lukas Weber, Julian Oppermann, Cristian Axenie, and
Andreas Koch. Efficient operator sharing modulo scheduling for sum-product network
inference on fpgas. In International Conference on Embedded Computer Systems, pages
242–258. Springer, 2021.

146

https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/2008.08272
https://arxiv.org/abs/2008.08272
https://doi.org/10.14778/3551793.3551801
https://doi.org/10.14778/3551793.3551801
https://doi.org/10.14778/3551793.3551801
https://nuitka.net/

Bradley C. Kuszmaul. SuperMalloc: A super fast multithreaded malloc for 64-bit
machines. In International Symposium on Memory Management, pages 41–55, New
York, NY, USA, 2015a. Association for Computing Machinery. ISBN 9781450335898.
doi:10.1145/2754169.2754178. URL https://doi.org/10.1145/2754169.2754178.

Bradley C. Kuszmaul. Supermalloc: A super fast multithreaded malloc for 64-bit machines.
SIGPLAN Not., 50(11):41–55, jun 2015b. ISSN 0362-1340. doi:10.1145/2887746.2754178.
URL https://doi.org/10.1145/2887746.2754178.

Hyoukjun Kwon, Prasanth Chatarasi, Michael Pellauer, Angshuman Parashar, Vivek
Sarkar, and Tushar Krishna. Understanding reuse, performance, and hardware cost
of dnn dataflow: A data-centric approach. In Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO ’52, pages 754–768,
New York, NY, USA, 2019. Association for Computing Machinery. ISBN 9781450369381.
doi:10.1145/3352460.3358252. URL https://doi.org/10.1145/3352460.3358252.

Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. Numba: A llvm-based python jit
compiler. In Proceedings of the Second Workshop on the LLVM Compiler Infrastructure
in HPC, LLVM ’15, New York, NY, USA, 2015a. Association for Computing Machinery.
ISBN 9781450340052. doi:10.1145/2833157.2833162. URL https://doi.org/10.1145/
2833157.2833162.

Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. Numba: A llvm-based python jit
compiler. In Proceedings of the Second Workshop on the LLVM Compiler Infrastructure
in HPC, pages 1–6, 2015b.

Rasmus Munk Larsen and Tatiana Shpeisman. Tensorflow graph optimizations, 2019.

Chris Lattner and Vikram Adve. Llvm: A compilation framework for lifelong program anal-
ysis & transformation. In International symposium on code generation and optimization,
2004. CGO 2004., pages 75–86. IEEE, 2004.

Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis, Jacques Pien-
aar, River Riddle, Tatiana Shpeisman, Nicolas Vasilache, and Oleksandr Zinenko. Mlir:
A compiler infrastructure for the end of moore’s law, 2020a.

Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis, Jacques Pien-
aar, River Riddle, Tatiana Shpeisman, Nicolas Vasilache, and Oleksandr Zinenko. Mlir:
Scaling compiler infrastructure for domain specific computation. In 2021 IEEE/ACM In-
ternational Symposium on Code Generation and Optimization (CGO), pages 2–14. IEEE,
2021.

Chris Lattner et al. Mlir: A compiler infrastructure for the end of moore’s law, 2020b. URL
https://arxiv.org/abs/2002.11054.

Marc Le Fur. Scanning parameterized polyhedron using fourier-motzkin
elimination. Concurrency: Practice and Experience, 8(6):445–460, 1996.

147

https://doi.org/10.1145/2754169.2754178
https://doi.org/10.1145/2754169.2754178
https://doi.org/10.1145/2887746.2754178
https://doi.org/10.1145/2887746.2754178
https://doi.org/10.1145/3352460.3358252
https://doi.org/10.1145/3352460.3358252
https://doi.org/10.1145/2833157.2833162
https://doi.org/10.1145/2833157.2833162
https://doi.org/10.1145/2833157.2833162
https://arxiv.org/abs/2002.11054

doi:https://doi.org/10.1002/(SICI)1096-9128(199607)8:6<445::AID-CPE253>3.0.CO;2-
G. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291096-912
8%28199607%298%3A6%3C445%3A%3AAID-CPE253%3E3.0.CO%3B2-G.

Juhyun Lee, Nikolay Chirkov, Ekaterina Ignasheva, Yury Pisarchyk, Mogan Shieh, Fabio
Riccardi, Raman Sarokin, Andrei Kulik, and Matthias Grundmann. On-device neural net
inference with mobile GPUs, 2019. ArXiv 1907.01989.

Lei Zhang. Mlir codegen dialects for machine learning compilers. https://www.lei.chat
/posts/mlir-codegen-dialects-for-machine-learning-compilers/, 2022. [Online;
accessed 26-March-2023].

Steve Leibson et al. Xilinx ultrascale: The next-generation architecture for your next-
generation architecture. Xilinx White Paper WP435, 143, 2013.

Maksim Levental, Alok Kamatar, Ryan Chard, Kyle Chard, and Ian Foster. nelli: a
lightweight frontend for mlir, 2023.

Shuai Cheng Li, Hon Wai Leong, and Steven K Quek. New approximation algorithms for
some dynamic storage allocation problems. In International Computing and Combinatorics
Conference, pages 339–348. Springer, 2004.

Yinan Li, Jack Dongarra, and Stanimire Tomov. A note on auto-tuning gemm for gpus.
In Computational Science–ICCS 2009: 9th International Conference Baton Rouge, LA,
USA, May 25-27, 2009 Proceedings, Part I 9, pages 884–892. Springer, 2009.

Yinglong Li. Research and application of deep learning in image recognition. In 2022 IEEE
2nd international conference on power, electronics and computer applications (ICPECA),
pages 994–999. IEEE, 2022.

Zhiyao Li, Jiaxiang Li, Taijie Chen, Dimin Niu, Hongzhong Zheng, Yuan Xie, and Mingyu
Gao. Spada: Accelerating sparse matrix multiplication with adaptive dataflow. In Pro-
ceedings of the 28th ACM International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, Volume 2, ASPLOS 2023, pages 747–761,
New York, NY, USA, 2023. Association for Computing Machinery. ISBN 9781450399166.
doi:10.1145/3575693.3575706. URL https://doi.org/10.1145/3575693.3575706.

Xiangru Lian, Binhang Yuan, Xuefeng Zhu, Yulong Wang, Yongjun He, Honghuan Wu, Lei
Sun, Haodong Lyu, Chengjun Liu, Xing Dong, et al. Persia: An open, hybrid system
scaling deep learning-based recommenders up to 100 trillion parameters. In Proceedings
of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pages
3288–3298, 2022.

Luís Gabriel Lima, Francisco Soares-Neto, Paulo Lieuthier, Fernando Castor, Gilberto Melfe,
and João Paulo Fernandes. Haskell in green land: Analyzing the energy behavior of
a purely functional language. In 2016 IEEE 23rd International Conference on Soft-
ware Analysis, Evolution, and Reengineering (SANER), volume 1, pages 517–528, 2016.
doi:10.1109/SANER.2016.85.

148

https://doi.org/https://doi.org/10.1002/(SICI)1096-9128(199607)8:6%3C445::AID-CPE253%3E3.0.CO;2-G
https://doi.org/https://doi.org/10.1002/(SICI)1096-9128(199607)8:6%3C445::AID-CPE253%3E3.0.CO;2-G
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291096-9128%28199607%298%3A6%3C445%3A%3AAID-CPE253%3E3.0.CO%3B2-G
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291096-9128%28199607%298%3A6%3C445%3A%3AAID-CPE253%3E3.0.CO%3B2-G
https://www.lei.chat/posts/mlir-codegen-dialects-for-machine-learning-compilers/
https://www.lei.chat/posts/mlir-codegen-dialects-for-machine-learning-compilers/
https://doi.org/10.1145/3575693.3575706
https://doi.org/10.1145/3575693.3575706
https://doi.org/10.1109/SANER.2016.85

Weifeng Liu and Brian Vinter. An efficient gpu general sparse matrix-matrix multiplication
for irregular data. In 2014 IEEE 28th International Parallel and Distributed Processing
Symposium, pages 370–381. IEEE, 2014.

Yizhi Liu et al. Optimizing cnn model inference on cpus. 2018.
doi:10.48550/ARXIV.1809.02697. URL https://arxiv.org/abs/1809.02697.

Yongtao Liu et al. Exploring physics of ferroelectric domain walls in real time: Deep learning
enabled scanning probe microscopy. Advanced Science, 2022a.

Zhengchun Liu et al. Deep learning accelerated light source experiments. In IEEE/ACM 3rd
Workshop on Deep Learning on Supercomputers, pages 20–28. IEEE, 2019.

Zhengchun Liu et al. BraggNN: fast X-ray Bragg peak analysis using deep learning. IUCrJ,
9(1):104–113, 2022b.

Saeed Maleki et al. An evaluation of vectorizing compilers. In International Conference on
Parallel Architectures and Compilation Techniques, pages 372–382. IEEE, 2011.

Karl Marx and Friedrich Engels. The communist manifesto. 1848. Trans. Samuel Moore.
London: Penguin, 15(10.1215):9780822392583–049, 1967.

Alexander McCaskey and Thien Nguyen. A mlir dialect for quantum assembly languages.
In 2021 IEEE International Conference on Quantum Computing and Engineering (QCE),
pages 255–264, 2021. doi:10.1109/QCE52317.2021.00043.

Kathryn S. McKinley, Steve Carr, and Chau-Wen Tseng. Improving data locality with loop
transformations. ACM Trans. Program. Lang. Syst., 18(4):424–453, jul 1996. ISSN 0164-
0925. doi:10.1145/233561.233564. URL https://doi.org/10.1145/233561.233564.

J McMullin et al. The square kilometre array project update. In Ground-based and Airborne
Telescopes IX, volume 12182, pages 263–271. SPIE, 2022.

Mohammad Motamedi, Philipp Gysel, Venkatesh Akella, and Soheil Ghiasi. Design space
exploration of fpga-based deep convolutional neural networks. In 2016 21st Asia and South
Pacific Design Automation Conference (ASP-DAC), pages 575–580. IEEE, 2016.

Khan Muhammad, Amin Ullah, Jaime Lloret, Javier Del Ser, and Victor Hugo C de Al-
buquerque. Deep learning for safe autonomous driving: Current challenges and future
directions. IEEE Transactions on Intelligent Transportation Systems, 22(7):4316–4336,
2020.

Myoung Jin Nam, Periklis Akritidis, and David J Greaves. Framer: A tagged-pointer ca-
pability system with memory safety applications. In 35th Annual Computer Security
Applications Conference, ACSAC ’19, pages 612–626, New York, NY, USA, 2019. Asso-
ciation for Computing Machinery. ISBN 9781450376280. doi:10.1145/3359789.3359799.
URL https://doi.org/10.1145/3359789.3359799.

149

https://doi.org/10.48550/ARXIV.1809.02697
https://arxiv.org/abs/1809.02697
https://doi.org/10.1109/QCE52317.2021.00043
https://doi.org/10.1145/233561.233564
https://doi.org/10.1145/233561.233564
https://doi.org/10.1145/3359789.3359799
https://doi.org/10.1145/3359789.3359799

Razvan Nane et al. A survey and evaluation of fpga high-level synthesis tools. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems, 35(10):1591–1604,
2016. doi:10.1109/TCAD.2015.2513673.

Julian Oppermann. Advances in ILP-based Modulo Scheduling for High-Level Synthesis. PhD
thesis, Technische Universität, Darmstadt, 2019. URL http://tuprints.ulb.tu-darms
tadt.de/9272/.

Julian Oppermann et al. How to make hardware with maths: An introduction to CIRCT’s
scheduling infrastructure. In European LLVM Developers’ Meeting, 2022.

Daniel W Otter, Julian R Medina, and Jugal K Kalita. A survey of the usages of deep learn-
ing for natural language processing. IEEE transactions on neural networks and learning
systems, 32(2):604–624, 2020.

Jongsoo Park, Maxim Naumov, Protonu Basu, Summer Deng, Aravind Kalaiah, Daya Khu-
dia, James Law, Parth Malani, Andrey Malevich, Satish Nadathur, Juan Pino, Martin
Schatz, Alexander Sidorov, Viswanath Sivakumar, Andrew Tulloch, Xiaodong Wang, Yim-
ing Wu, Hector Yuen, Utku Diril, Dmytro Dzhulgakov, Kim Hazelwood, Bill Jia, Yangqing
Jia, Lin Qiao, Vijay Rao, Nadav Rotem, Sungjoo Yoo, and Mikhail Smelyanskiy. Deep
learning inference in Facebook data centers: Characterization, performance optimizations
and hardware implications, 2018. ArXiv 1811.09886.

Terence J. Parr and Russell W. Quong. Antlr: A predicated-ll (k) parser generator. Software:
Practice and Experience, 25(7):789–810, 1995.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An im-
perative style, high-performance deep learning library. Advances in Neural Information
Processing Systems, 32:8026–8037, 2019.

Adam Paszke et al. Automatic differentiation in PyTorch. In 31st Conference on Neural
Information Processing Systems, 2017.

Robert M Patton et al. 167-Pflops deep learning for electron microscopy: From learning
physics to atomic manipulation. In SC’18, pages 638–648. IEEE, 2018.

Laurent Perron, Frédéric Didier, and Steven Gay. The cp-sat-lp solver. In Roland
H. C. Yap, editor, 29th International Conference on Principles and Practice of Con-
straint Programming (CP 2023), volume 280 of Leibniz International Proceedings in In-
formatics (LIPIcs), pages 3:1–3:2, Dagstuhl, Germany, 2023. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik. ISBN 978-3-95977-300-3. doi:10.4230/LIPIcs.CP.2023.3. URL
https://drops.dagstuhl.de/opus/volltexte/2023/19040.

Yury Pisarchyk and Juhyun Lee. Efficient memory management for deep neural net inference,
2020.

150

https://doi.org/10.1109/TCAD.2015.2513673
http://tuprints.ulb.tu-darmstadt.de/9272/
http://tuprints.ulb.tu-darmstadt.de/9272/
https://doi.org/10.4230/LIPIcs.CP.2023.3
https://drops.dagstuhl.de/opus/volltexte/2023/19040

Artur Podobas, Kentaro Sano, and Satoshi Matsuoka. A survey on coarse-grained recon-
figurable architectures from a performance perspective. IEEE Access, 8:146719–146743,
2020.

Massimiliano Poletto and Vivek Sarkar. Linear scan register allocation. ACM Trans. Pro-
gram. Lang. Syst., 21(5):895–913, sep 1999. ISSN 0164-0925. doi:10.1145/330249.330250.
URL https://doi.org/10.1145/330249.330250.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with
deep convolutional generative adversarial networks, 2016.

Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, and Piotr Dollár.
Designing network design spaces, 2020.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory opti-
mizations toward training trillion parameter models. In SC20: International Conference
for High Performance Computing, Networking, Storage and Analysis, pages 1–16. IEEE,
2020.

Sanjay V Rajopadhye. Dependence analysis and parallelizing transformations. In The Com-
piler Design Handbook. 2002.

M. Ramakrishna, Jisung Kim, Woohyong Lee, and Youngki Chung. Smart dynamic mem-
ory allocator for embedded systems. In 23rd International Symposium on Computer and
Information Sciences, pages 1–6, 2008. doi:10.1109/ISCIS.2008.4717922.

J. Rapin and O. Teytaud. Nevergrad - A gradient-free optimization platform. https:
//GitHub.com/FacebookResearch/Nevergrad, 2018.

Oliver Rausch et al. DaCeML: A data-centric optimization framework for machine learning.
In 36th ACM International Conference on Supercomputing, 2022.

Nico Reissmann, Jan Christian Meyer, Helge Bahmann, and Magnus Själander. Rvsdg: An
intermediate representation for optimizing compilers. ACM Trans. Embed. Comput. Syst.,
19(6), dec 2020. ISSN 1539-9087. doi:10.1145/3391902. URL https://doi.org/10.114
5/3391902.

Lutz Roeder. Netron, visualizer for neural network, deep learning, and machine learning
models, 01 2022. URL https://github.com/lutzroeder/netron.

Jared Roesch, Steven Lyubomirsky, Logan Weber, Josh Pollock, Marisa Kirisame, Tianqi
Chen, and Zachary Tatlock. Relay: a new ir for machine learning frameworks. Proceedings
of the 2nd ACM SIGPLAN International Workshop on Machine Learning and Program-
ming Languages, Jun 2018. doi:10.1145/3211346.3211348. URL http://dx.doi.org/10.
1145/3211346.3211348.

Tiark Rompf and Martin Odersky. Lightweight modular staging: a pragmatic approach

151

https://doi.org/10.1145/330249.330250
https://doi.org/10.1145/330249.330250
https://doi.org/10.1109/ISCIS.2008.4717922
https://GitHub.com/FacebookResearch/Nevergrad
https://GitHub.com/FacebookResearch/Nevergrad
https://doi.org/10.1145/3391902
https://doi.org/10.1145/3391902
https://doi.org/10.1145/3391902
https://github.com/lutzroeder/netron
https://doi.org/10.1145/3211346.3211348
http://dx.doi.org/10.1145/3211346.3211348
http://dx.doi.org/10.1145/3211346.3211348

to runtime code generation and compiled dsls. In Proceedings of the ninth international
conference on Generative programming and component engineering, pages 127–136, 2010.

Benjamin John Rosser. Cocotb: a python-based digital logic verification framework, 2018.
https://docs.cocotb.org.

Nadav Rotem et al. Glow: Graph lowering compiler techniques for neural networks, 2018.
URL https://arxiv.org/abs/1805.00907.

Alexander Rucker, Matthew Vilim, Tian Zhao, Yaqi Zhang, Raghu Prabhakar, and Kunle
Olukotun. Capstan: A vector rda for sparsity. In MICRO-54: 54th Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO ’21, pages 1022–1035, New
York, NY, USA, 2021. Association for Computing Machinery. ISBN 9781450385572.
doi:10.1145/3466752.3480047. URL https://doi.org/10.1145/3466752.3480047.

Alexander Rucker, Shiv Sundram, Coleman Smith, Matthew Vilim, Raghu Prabhakar,
Fredrik Kjolstad, and Kunle Olukotun. Revet: A language and compiler for dataflow
threads, 2024.

Bertrand Russell. Principles of Mathematics. Routledge, 1937.

Jean-Paul Sartre. Existentialism is a Humanism. Yale University Press, 2007.

Taro Sekiyama, Takashi Imamichi, Haruki Imai, and Rudy Raymond. Profile-guided memory
optimization for deep neural networks, 2018. ArXiv 1804.10001.

Jaime Sevilla, Lennart Heim, Anson Ho, Tamay Besiroglu, Marius Hobbhahn, and
Pablo Villalobos. Compute trends across three eras of machine learning. In
2022 International Joint Conference on Neural Networks (IJCNN), pages 1–8, 2022.
doi:10.1109/IJCNN55064.2022.9891914.

Ariya Shajii, Gabriel Ramirez, Haris Smajlović, Jessica Ray, Bonnie Berger, Saman Ama-
rasinghe, and Ibrahim Numanagić. Codon: A compiler for high-performance pythonic ap-
plications and dsls. In Proceedings of the 32nd ACM SIGPLAN International Conference
on Compiler Construction, CC 2023, pages 191–202, New York, NY, USA, 2023. Associa-
tion for Computing Machinery. ISBN 9798400700880. doi:10.1145/3578360.3580275. URL
https://doi.org/10.1145/3578360.3580275.

Hardik Sharma et al. From high-level deep neural models to fpgas. In 49th Annual
IEEE/ACM International Symposium on Microarchitecture, pages 1–12, 2016.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hin-
ton, and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-
experts layer, 2017. ArXiv 1701.06538.

Evan Shelhamer, Jonathan Long, and Trevor Darrell. Fully convolutional networks for se-
mantic segmentation, 2016.

152

https://docs.cocotb.org
https://arxiv.org/abs/1805.00907
https://doi.org/10.1145/3466752.3480047
https://doi.org/10.1145/3466752.3480047
https://doi.org/10.1109/IJCNN55064.2022.9891914
https://doi.org/10.1145/3578360.3580275
https://doi.org/10.1145/3578360.3580275

Haichen Shen, Jared Roesch, Zhi Chen, Wei Chen, Yong Wu, Mu Li, Vin Sharma, Zachary
Tatlock, and Yida Wang. Nimble: Efficiently compiling dynamic neural networks for
model inference, 2021.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and
Bryan Catanzaro. Megatron-lm: Training multi-billion parameter language models using
model parallelism, 2020.

Sean Silva and Anush Elangovan. Torch-MLIR. https://mlir.llvm.org/OpenMeetings
/2021-10-07-The-Torch-MLIR-project.pdf, 2021.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition, 2015.

Michael Sipser. Introduction to the Theory of Computation. Course Technology, Boston,
MA, third edition, 2013. ISBN 113318779X.

Steven S. Skiena. The Algorithm Design Manual. Springer Publishing Company, Incorpo-
rated, 2nd edition, 2008. ISBN 1848000693.

Graeme Smith. Introducing reference semantics via refinement. In Formal Methods and Soft-
ware Engineering: 4th International Conference on Formal Engineering Methods, ICFEM
2002 Shanghai, China, October 21–25, 2002 Proceedings 4, pages 588–599. Springer, 2002.

Volker Strassen et al. Gaussian elimination is not optimal. Numerische mathematik, 13(4):
354–356, 1969.

Bjarne Stroustrup. Foundations of c++. In Proceedings of the 21st European Conference
on Programming Languages and Systems, ESOP’12, pages 1–25, Berlin, Heidelberg, 2012.
Springer-Verlag. ISBN 9783642288685. doi:10.1007/978-3-642-28869-2_1. URL https:
//doi.org/10.1007/978-3-642-28869-2_1.

Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy considerations
for deep learning in nlp. arXiv preprint arXiv:1906.02243, 2019.

Alex Suhan, Davide Libenzi, Ailing Zhang, Parker Schuh, Brennan Saeta, Jie Young Sohn,
and Denys Shabalin. Lazytensor: combining eager execution with domain-specific compil-
ers, 2021.

Kun Suo, Yong Shi, Chih-Cheng Hung, and Patrick Bobbie. Quantifying context switch over-
head of artificial intelligence workloads on the cloud and edges. In 36th Annual ACM Sym-
posium on Applied Computing, SAC ’21, pages 1182–1189, New York, NY, USA, 2021. As-
sociation for Computing Machinery. ISBN 9781450381048. doi:10.1145/3412841.3441993.
URL https://doi.org/10.1145/3412841.3441993.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov,
Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convo-
lutions, 2014.

153

https://mlir.llvm.org/OpenMeetings/2021-10-07-The-Torch-MLIR-project.pdf
https://mlir.llvm.org/OpenMeetings/2021-10-07-The-Torch-MLIR-project.pdf
https://doi.org/10.1007/978-3-642-28869-2_1
https://doi.org/10.1007/978-3-642-28869-2_1
https://doi.org/10.1007/978-3-642-28869-2_1
https://doi.org/10.1145/3412841.3441993
https://doi.org/10.1145/3412841.3441993

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew Wojna.
Rethinking the inception architecture for computer vision, 2015.

Hamid Tabani, Ajay Balasubramaniam, Elahe Arani, and Bahram Zonooz. Challenges and
obstacles towards deploying deep learning models on mobile devices, 2021.

Endri Taka, Aman Arora, Kai-Chiang Wu, and Diana Marculescu. Maxeva: Maxi-
mizing the efficiency of matrix multiplication on versal ai engine. In 2023 Interna-
tional Conference on Field Programmable Technology (ICFPT), pages 96–105, 2023.
doi:10.1109/ICFPT59805.2023.00016.

Shinya Takamaeda-Yamazaki. Pyverilog: A python-based hardware design processing toolkit
for verilog hdl. In International Symposium on Applied Reconfigurable Computing, pages
451–460. Springer, 2015.

Tal Ben-Nun, Kaushik Kulkarni, Mehdi Amini, Berke Ates. pyMLIR: Python interface for
the multi-level intermediate representation, 2023. URL https://github.com/spcl/pyml
ir.

Li Tan, Longxiang Chen, Zizhong Chen, Ziliang Zong, Dong Li, and Rong Ge. Improving
performance and energy efficiency of matrix multiplication via pipeline broadcast. In
2013 IEEE International Conference on Cluster Computing (CLUSTER), pages 1–5, 2013.
doi:10.1109/CLUSTER.2013.6702672.

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew Howard,
and Quoc V. Le. MnasNet: Platform-aware neural architecture search for mobile, 2019.
Arxiv 1807.11626.

Gizem Temelcan, Hale Gonce Kocken, and Inci Albayrak. Solving the system optimum static
traffic assignment problem with single origin destination pair in fuzzy environment. In
International Online Conference on Intelligent Decision Science, pages 521–530. Springer,
2020.

Philippe Tillet, Hsiang-Tsung Kung, and David Cox. Triton: an intermediate language and
compiler for tiled neural network computations. In Proceedings of the 3rd ACM SIGPLAN
International Workshop on Machine Learning and Programming Languages, pages 10–19,
2019.

Seiya Tokui, Ryosuke Okuta, Takuya Akiba, Yusuke Niitani, Toru Ogawa, Shunta Saito,
Shuji Suzuki, Kota Uenishi, Brian Vogel, and Hiroyuki Yamazaki Vincent. Chainer: A
deep learning framework for accelerating the research cycle. In 25th ACM SIGKDD In-
ternational Conference on Knowledge Discovery & Data Mining, pages 2002–2011, 2019.

Andrew Troelsen, Philip Japikse, Andrew Troelsen, and Philip Japikse. The philosophy of.
net core. Pro C# 7: With. NET and. NET Core, pages 1245–1253, 2017.

Nicolas Vasilache, Oleksandr Zinenko, Aart J. C. Bik, Mahesh Ravishankar, Thomas Raoux,
154

https://doi.org/10.1109/ICFPT59805.2023.00016
https://github.com/spcl/pymlir
https://github.com/spcl/pymlir
https://doi.org/10.1109/CLUSTER.2013.6702672

Alexander Belyaev, Matthias Springer, Tobias Gysi, Diego Caballero, Stephan Herhut,
Stella Laurenzo, and Albert Cohen. Composable and modular code generation in mlir: A
structured and retargetable approach to tensor compiler construction, 2022. URL https:
//arxiv.org/abs/2202.03293.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2017.

Todd L Veldhuizen. C++ templates are turing complete. Available at citeseer. ist. psu.
edu/581150. html, 2003.

Lorenzo Verdoscia, Roberto Giorgi, et al. A data-flow soft-core processor for accelerating
scientific calculation on fpgas. Mathematical Problems in Engineering, 2016, 2016.

Stephen Williams. Icarus verilog, 1998–2020. http://iverilog.icarus.com.

Virginia Vassilevska Williams. Multiplying matrices faster than coppersmith-winograd. In
Proceedings of the forty-fourth annual ACM symposium on Theory of computing, pages
887–898, 2012.

D.H. Wolpert and W.G. Macready. No free lunch theorems for optimization. IEEE Trans-
actions on Evolutionary Computation, 1(1):67–82, 1997. doi:10.1109/4235.585893.

WP506. Ai engines and their applications. Technical report, Advanced Micro Devices, Inc.,
2022.

Carole-Jean Wu, David Brooks, Kevin Chen, Douglas Chen, Sy Choudhury, Marat Dukhan,
Kim Hazelwood, Eldad Isaac, Yangqing Jia, Bill Jia, Tommer Leyvand, Hao Lu, Yang Lu,
Lin Qiao, Brandon Reagen, Joe Spisak, Fei Sun, Andrew Tulloch, Peter Vajda, Xiaodong
Wang, Yanghan Wang, Bram Wasti, Yiming Wu, Ran Xian, Sungjoo Yoo, and Peizhao
Zhang. Machine learning at Facebook: Understanding inference at the edge. In IEEE
International Symposium on High Performance Computer Architecture, pages 331–344,
2019. doi:10.1109/HPCA.2019.00048.

Jiaxiang Wu, Cong Leng, Yuhang Wang, Qinghao Hu, and Jian Cheng. Quantized convolu-
tional neural networks for mobile devices, 2016.

Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual
transformations for deep neural networks, 2017. ArXiv 1611.05431.

Xiaofan Xu, Mi Sun Park, and Cormac Brick. Hybrid pruning: Thinner sparse networks for
fast inference on edge devices, 2018.

Hanchen Ye et al. Scalehls: A new scalable high-level synthesis framework on multi-level in-
termediate representation. In IEEE International Symposium on High-Performance Com-
puter Architecture, 2022.

155

https://arxiv.org/abs/2202.03293
https://arxiv.org/abs/2202.03293
http://iverilog.icarus.com
https://doi.org/10.1109/4235.585893
https://doi.org/10.1109/HPCA.2019.00048

Raphael Yuster and Uri Zwick. Fast sparse matrix multiplication. ACM Transactions On
Algorithms (TALG), 1(1):2–13, 2005.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks, 2017.

Guowei Zhang, Nithya Attaluri, Joel S. Emer, and Daniel Sanchez. Gamma: leveraging
gustavson’s algorithm to accelerate sparse matrix multiplication. In Proceedings of the 26th
ACM International Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’21, pages 687–701, New York, NY, USA, 2021. Association
for Computing Machinery. ISBN 9781450383172. doi:10.1145/3445814.3446702. URL
https://doi.org/10.1145/3445814.3446702.

Zhiru Zhang et al. Autopilot: A platform-based esl synthesis system. In High-Level Synthesis,
pages 99–112. Springer Netherlands, Dordrecht, 2008. ISBN 978-1-4020-8588-8.

Jie Zhao, Michael Kruse, and Albert Cohen. A polyhedral compilation framework for loops
with dynamic data-dependent bounds. In Proceedings of the 27th International Conference
on Compiler Construction, CC 2018, pages 14–24, New York, NY, USA, 2018. Association
for Computing Machinery. ISBN 9781450356442. doi:10.1145/3178372.3179509. URL
https://doi.org/10.1145/3178372.3179509.

Zhong-Qiu Zhao, Peng Zheng, Shou-Tao Xu, and Xindong Wu. Object detection with deep
learning: A review. IEEE Transactions on Neural Networks and Learning Systems, 30
(11):3212–3232, 2019. doi:10.1109/TNNLS.2018.2876865.

S. Zheng et al. Neoflow: A flexible framework for enabling efficient compilation for high
performance dnn training. IEEE Transactions on Parallel and Distributed Systems, 33
(11):3220–3232, 2022. ISSN 1558-2183.

Jinming Zhuang, Jason Lau, Hanchen Ye, Zhuoping Yang, Yubo Du, Jack Lo, Kristof Denolf,
Stephen Neuendorffer, Alex Jones, Jingtong Hu, Deming Chen, Jason Cong, and Peipei
Zhou. Charm: Composing heterogeneous accelerators for matrix multiply on versal acap
architecture. In Proceedings of the 2023 ACM/SIGDA International Symposium on Field
Programmable Gate Arrays, FPGA ’23, pages 153–164, New York, NY, USA, 2023. As-
sociation for Computing Machinery. ISBN 9781450394178. doi:10.1145/3543622.3573210.
URL https://doi.org/10.1145/3543622.3573210.

Joe Zimmerman. langcc: A next-generation compiler compiler, 2022.

156

https://doi.org/10.1145/3445814.3446702
https://doi.org/10.1145/3445814.3446702
https://doi.org/10.1145/3178372.3179509
https://doi.org/10.1145/3178372.3179509
https://doi.org/10.1109/TNNLS.2018.2876865
https://doi.org/10.1145/3543622.3573210
https://doi.org/10.1145/3543622.3573210

	List of Figures
	List of Tables
	Abstract
	1 Introduction
	1.1 Thesis Statement
	1.2 Contributions
	1.3 Thesis Organization

	2 Memory Planning for Deep Neural Networks
	2.1 Background
	2.1.1 Representations of DNNs
	2.1.2 Caching Allocators and Lock Contention
	2.1.3 Memory Planning

	2.2 Implementation
	2.2.1 Profiling
	2.2.2 Memory Planner
	2.2.3 Runtime

	2.3 Evaluation
	2.4 Discussion
	2.5 Related work
	2.6 Conclusion

	3 BraggHLS: High-Level Synthesis for Low-latency Deep Neural Networks for Experimental Science
	3.1 Background
	3.1.1 Compilers: The path from high to low
	3.1.2 High-level synthesis
	3.1.3 FPGA design

	3.2 The Compiler and HLS framework
	3.2.1 Symbolic interpretation for fun and profit
	3.2.2 AST transformations and verification
	3.2.3 Scheduling

	3.3 Evaluation
	3.3.1 DNN layers
	3.3.2 BraggNN case study

	3.4 Related work
	3.5 Conclusion

	4 nelli: A Lightweight Frontend for MLIR
	4.1 Background
	4.1.1 MLIR
	4.1.2 eDSL construction in Python

	4.2 Design and implementation of nelli
	4.2.1 Upstream manicuring and operator overloading
	4.2.2 Trivially rewriting the AST
	4.2.3 Trivially rewriting bytecode
	4.2.4 Extensibility

	4.3 Demonstration and evaluation
	4.3.1 End-to-end GPU
	4.3.2 End-to-end OpenMP
	4.3.3 Derivative-free optimization

	4.4 Related Work
	4.5 Conclusion

	5 An E2E Programming Model for AI Engine Architectures
	5.1 Background
	5.1.1 Dataflow programs
	5.1.2 AI Engines

	5.2 Bottom-up Toolchain Design
	5.2.1 AIE dialect
	5.2.2 Language frontend

	5.3 Evaluation
	5.4 Related Work
	5.5 Conclusion

	6 Conclusion
	References

