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ABSTRACT

Traditional network performance simulations and lab tests often miss the complexities of the

real world. Device manufacturers and network operators may omit implementing optional

features like Multiple User MIMO (MU-MIMO) or massive MIMO due to practical or eco-

nomic limitations. The resulting lack of clarity on deployed network performance highlights

the need for independent, academic measurement reports, free from commercial operators’

bias. To achieve this, a scalable and easy-to-use measurement methodology is essential to

enable comprehensive assessment of as many deployed networks as possible.

Our research explores the design, techniques, and challenges of leveraging consumer de-

vices as wireless measurement tools. We extract wireless data from devices using standard

device APIs and root-access capabilities: the prior is simpler to implement but provides

limited access, while the latter requires specific devices but yields more detailed information.

These two approaches complement each other: the non-root method enables large-scale data

collection with reduced complexity, while the root-based method focuses on in-depth analysis

at a smaller scale.

Our combined approach reveals key performance differences between 4G and 5G deploy-

ments in low-band (<1 GHz), mid-band (1-6 GHz), and high-band/mmWave (>24 GHz).

First, while we confirm the Gigabit-level downlink throughput advertised in 5G mmWave

networks, it is limited by range, poor indoor penetration, and device thermal limitations.

Next, we observe 5G mid-band outperforms 5G low-band and its 4G counterparts, which is

primarily driven by increased bandwidth rather than advanced features. We also uncover

adjacent and co-channel interference between 4G and 5G mid-band channels (i.e., CBRS,

C-Band spectrum), due to insufficient guard bands and mismatched TDD configurations.

These findings underscore the importance of additional spectrum in future 6G networks,

while it is also imperative to prioritize the implementation of new features, such as MU-

MIMO and higher modulation, for optimal performance.
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Beyond cellular networks, our methodology has proven valuable in evaluating the unli-

censed spectrum. First, we highlight the sensitivity threshold and hidden node problem that

occurs in the coexistence between Wi-Fi and LTE in the unlicensed 5 GHz. Next we focus on

the newly released unlicensed 6 GHz utilized by Wi-Fi 6E, particularly the low power indoor

(LPI) regime which was created to protect incumbent fixed links. While concerns persist

regarding LPI’s interference, our extensive measurement campaigns across two university

campuses revealed negligible interference due to significant building entry loss. However,

further research is necessary to determine appropriate signal levels for the proposed client-

to-client (C2C) mode in future Wi-Fi 7 specifications.

Our device-based methodology effectively characterizes both previous-generation (4G and

Wi-Fi 5/802.11ac) and current-generation (5G and Wi-Fi 6E) wireless networks. Our find-

ings have directly informed spectrum policies, including energy detection thresholds in the

unlicensed 5 GHz spectrum and C2C signal levels in the 6 GHz band. Importantly, our

API-based approach has proven scalable and is currently utilized by various US universities

within SpectrumX’s Broadband Map US project. Additionally, the extensive data we’ve col-

lected provides a valuable resource for machine learning applications, such as indoor-outdoor

classification.
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CHAPTER 1

THESIS STATEMENT

In quantifying the performance of a wireless network, it is important that the experiment

methodology reflects the actual condition and usage of the said network. While simulations

and controlled lab experiments are helpful to understand a wireless deployment, it may

not accurately replicate the actual condition of a deployed commercial network due to, for

instance, hidden parameters set by the commercial operators. Thus, there is a need of a

device-based measurement to observe a deployed network, independent from controlled tests

by commercial operators. However, we observed an insufficient number of such measure-

ment methodology in current literature. Therefore, we propose a measurement methodology

using currently available consumer devices (i.e., smartphones) as a viable alternative to sim-

ulation and lab-based methodology. Our device-based methodology aims to evaluate the

performance of cellular and unlicensed wireless networks, enabling us to gain deep insights

into network characteristics, identify current challenges and opportunities, and propose data-

driven improvements to shape the future of wireless networks.
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CHAPTER 2

INTRODUCTION

2.1 Next-Generation Wireless: Challenges and Opportunities

Cellular and Wi-Fi technologies have rapidly evolved, offering dramatic improvements in

network speed, capacity, and responsiveness. 5G, the latest generation of cellular networks

introduced in the 3GPP Specification Release-16 [2], brings a significant leap forward with

new spectrum and wider bandwidths (e.g., mmWave, C-Band), along with advanced tech-

niques like beamforming, massive MIMO (Multiple-Input Multiple-Output), and advanced

modulation and coding. Alongside 5G, Wi-Fi 6E [7] has similarly introduces beamforming

and massive MIMO techniques, with the addition of the newly opened 6 GHz spectrum.

These new features provides greater capacity, lower latency, and reduced interference for

demanding applications like virtual and augmented reality, high-definition video streaming,

vehicular networks, and large-scale IoT deployments. No doubt, global 5G subscription has

grown to 1.6 billion in 2023 [80], while 473 million Wi-Fi 6E devices are expected to be

shipped in 2023 [81].

Despite substantial progress, deploying advanced networks like 5G and Wi-Fi 6E poses

unique challenges. 5G introduces new spectrum bands, specifically the high-band/mmWave

(>24 GHz) and mid-band (1-6 GHz), offering increased bandwidth to complement existing

low-band (<1 GHz) deployments. Similarly, Wi-Fi 6E opens up 1200 MHz of unlicensed

spectrum in the 6 GHz band. This focus on expanding bandwidth underscores the push by

wireless stakeholders to support ever-increasing data demands. Consequently, policymakers

face a crucial question: Do operators genuinely require additional spectrum, or are existing

allocations underutilized? Cellular carriers tout the progress of their 5G networks [24, 36], po-

tentially introducing a bias in performance evaluations. Additionally, the Citizen Broadband

Radio Service (CBRS) band offers a valuable case study, as it pioneered shared-environment
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deployment of a 3GPP system. Understanding coexistence dynamics in CBRS is crucial

for optimizing future designs and spectrum sharing strategies. These factors underscore the

vital need for independent, unbiased research to assess real-world network performance and

guide effective spectrum policy.

2.2 Device-Based Methodology for Performance Measurement

We chose user device (i.e., smartphone) which possess a range of sensors and software ca-

pabilities that enable the extraction of granular network performance metrics. Additionally,

their ubiquity allows for large-scale, geographically distributed data collection, reflecting the

real-world experiences of users under diverse conditions. Passive background monitoring us-

ing devices can provide valuable insights into network performance variations across time and

location. Timestamping and GPS tagging of data can be used to map coverage and identify

location-based performance trends. This approach is arguably cost-effective, avoiding the

need for specialized equipment.

Network measurement tools in smartphones can be broadly categorized into two ap-

proaches based on their data source:

• Device APIs: This approach offers access to various wireless parameters, including

cell signal strength (RSSI, RSRP, RSRQ), unique network identifiers (PCI, BSSID),

channel frequency and bandwidth, and network configuration data. While easier to

implement, the data is limited to the parameters exposed by the device manufacturer’s

API.

• Root Access: This method enables direct interaction with the radio chipset, yielding

detailed information such as carrier aggregation details, beamforming information,

modulation and coding schemes, and more. However, it requires specific devices with

root access and relies on technical knowledge that may not be publicly available.
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These approaches present a trade-off: the non-root API method is simpler and supports

large-scale data collection, but with a limited set of parameters. The root-based approach

offers in-depth analysis at the cost of complexity and device restrictions. Combining these

approaches allows for flexible measurement strategies: the non-root method for wide-scale

data gathering, and the root-based method for focused, detailed studies. Both approaches

can be enriched by incorporating active measurements to gather metrics like throughput,

latency, and jitter.

Device-based measurement has compelling use cases. It enables crowd-sourced network

mapping to pinpoint coverage gaps or underperforming areas. Users can leverage it for per-

sonal connectivity troubleshooting. Operators benefit from user-generated data for network

planning and optimization. Lastly, researchers can use this approach to investigate network

performance trends, the impact of device heterogeneity, or the effectiveness of new wireless

technologies.

2.3 Thesis Outline and Contributions

Figure 2.1: Timeline depicting measurements campaigns and published works.

We start with providing the necessary background on our methodology in Chapter 3.

In particular, our API-based methodology has been utilized in the FCC’s pilot wireless

measurement program as a part of the Broadband DATA Act [46], and in the SpectrumX’s
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Broadband Map US project [59]. The remaining outline and major contributions of this

dissertation is discussed below in the given order.

(Chapter 4) LTE and Wi-Fi Coexistence in The 5 GHz Spectrum : With growing

demand, cellular networks are extending into unlicensed bands traditionally used by Wi-

Fi. Two key approaches are Licensed Assisted Access (LAA) and LTE-Unlicensed (LTE-U).

LAA utilizes listen-before-talk (LBT) with an energy detection threshold, while LTE-U relies

on duty cycling. Our research investigates the impact of these parameters on coexistence.

Simulations suggest a symmetrical threshold for LAA and a 0.5 duty cycle for LTE-U offer

optimal performance [93]. Focusing on LAA deployments in Chicago, we observed dense

coexistence with Wi-Fi, leading to potential hidden node issues due to asymmetrical thresh-

olds (LAA energy: -72 dBm, Wi-Fi preamble: -82 dBm, Wi-Fi energy: -62 dBm) [103]. Our

study is the first measurement study on LAA deployments at this scale. Further studies at

specific locations confirmed the hidden node issues which shows performance degradation

for Wi-Fi clients [108, 101]. Moreover, our findings have influenced European regulations to

standardize the energy detection threshold of -72 dBm for all technologies accessing the 6

GHz band [37].

(Chapter 5) Wi-Fi 6E (6 GHz) Deployment Studies: The release of the 6 GHz spec-

trum introduces two distinct approaches for mitigating interference with incumbent point-

to-point fixed links: standard power (SP) with higher transmit power but constrained by

an automatic frequency control (AFC) system, and low power indoor (LPI) with reduced

power and no AFC, but with more stringent requirements to prevent outdoor deployments

(no weatherizing or battery power). Since LPI deployments are the only one currently avail-

able, we focus on evaluating their potential interference [29, 30]. Our extensive measurement

campaigns across two university campuses are the first measurement studies at this scale,

and they indicate negligible interference from LPI access points (APs). Outdoor RSSI values
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ranged from -64 to -95 dBm (median -89 dBm), demonstrating substantial signal attenuation

caused by double-pane low-emission windows (12-16 dB loss) and solid brick walls (25-33

dB loss). Additionally, only 5% of indoor BSSIDs were detectable outdoors. These findings

have been submitted to the FCC [52] for spectrum policy considerations. Additionally, we

have submitted a comment to inform FCC on the appropriate signal levels for the proposed

client-to-client (C2C) mode in the 6 GHz spectrum [54].

(Chapter 6) Survey and Analysis of 5G Deployments: As the 5G specification

matures and deployments expand, we focus on measuring various aspects of newly deployed

5G networks across different frequency bands. Our analysis of a dense mmWave deployment

in Chicago, compared with a similar deployment in Miami, confirms the potential for Gigabit-

level downlink throughput but reveals severe range limitations [95, 96]. Furthermore, our

comparison of two operators’ mmWave deployments in the Chicago Loop area highlights the

impact of configuration parameters (e.g., beam management, signal propagation) on coverage

and performance [76]. Importantly, we also identified performance degradation in mmWave

networks due to thermal throttling and outdoor-to-indoor losses [99, 94]. As operators

begin deploying 5G mid-band, we investigated its performance compared to 4G mid-band

networks [97]. We observed higher throughput in 5G mid-band deployments compared to

the 4G mid-band counterparts, while both 4G and 5G mid-band outperformed low-band

networks. However, this improvement appears primarily driven by increased bandwidth

availability rather than the full implementation of new 5G features like massive MIMO and

1024-QAM. Our findings underscore that while bandwidth expansion is crucial for network

advancement, operators must also prioritize the implementation of new 5G features such as

massive MIMO, advanced modulation, and channel aggregation. These features are necessary

for realizing the full potential of 5G technology.

(Chapter 7) Cellular Coexistence in The 3 GHz Spectrum : The repurposing of
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the 3 GHz spectrum is crucial for 5G development in the US. This spectrum encompasses

AMBIT (3450-3550 MHz), CBRS (3550-3700 MHz), and C-Band (3700-3980 MHz), with

the Department of Defense’s 3100-3450 MHz band also under consideration [79]. Due to

the lack of guard bands and diverse implementation strategies within these segments (e.g.,

power limits, technologies, channelization), adjacent channel interference is a concern. Our

research reveals interference issues between adjacent CBRS and C-Band deployments, with

highest downlink throughput performance degradation due to the offending client transmit-

ting in uplink [98]. This interference problem are mitigated when the CBRS channel is

moved 20 MHz lower, introducing a guard band. The CBRS spectrum is particularly no-

table for pioneering shared-access model, using the General Authorized Access tier, enabling

flexible deployment by multiple service providers. However, this flexibility raises the chal-

lenge of secondary coexistence, where overlapping channels occur. Our work uncovers high

occurrences of overlapping channels between South Bend City’s private CBRS and Verizon’s

deployments, attributed to the Spectrum Access System (SAS) not taking coexistence into

account during channel allocation [120]. These overlaps degrade throughput performance

due to co-channel interference. We actively addressed this by coordinating non-overlapping

channels with South Bend’s provider. Understanding secondary and adjacent channel coex-

istence is crucial for optimizing future spectrum designs and policies. Our work underscores

the need for coordination mechanisms or refined SAS algorithms to prevent interference

in shared-spectrum environments, ensuring equitable access for all users while maximizing

spectrum efficiency.

(Chapter 8) Machine Learning in Wireless Networks: Our device-based methodol-

ogy captures a large wireless dataset with abundant parameters, thus they are challenging

to analyze manually, such that we focus only on specific set of parameters. On the other

hand, machine learning (ML) offers a powerful alternative to traditional heuristics, enabling

us to extract valuable insights for network performance improvement. One example in-
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volves applying machine learning to facilitate fair coexistence between LTE-U and Wi-Fi.

Our work utilizes machine learning to detect the number of Wi-Fi transmissions based on

received signal strength (RSSI), allowing for dynamic adjustment of the LTE-U duty cy-

cle [32]. This approach achieves a near-perfect detection rate with minimal delay. Another

of our work leverages machine learning on cellular and Wi-Fi data to determine whether a

device is indoor or outdoor based on captured wireless data [89]. This is particularly relevant

for LPI deployments, where APs are typically limited to indoor use due to restrictions on

weatherproofing and battery power. Our approach utilizes machine learning to predict the

indoor/outdoor environment for both APs and clients, potentially relaxing these limitations.

The model achieves a high accuracy of 99.1%, even when relying solely on Wi-Fi signals

(reducing accuracy to 98.8%), but may struggle in specific scenarios like storefronts with

large windows. This highlight the need of incorporating a wider range of data and labels

(e.g., ”indoor near window”), as the classification accuracy will further improve with more

data from diverse environments.

Lastly, Appendix A contains supplementary information including the detailed informa-

tion of signal parameters captured by one of our device-based measurement tool, SigCap.
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CHAPTER 3

OVERVIEW OF DEVICE-BASED METHODOLOGY

Wireless network measurements can be broadly categorized as active or passive. Active

measurements generate traffic to obtain performance metrics, while passive measurements

analyze existing network signals. While both approaches offer valuable insights, we prioritize

passive measurement techniques due to the limited availability of tools for this methodology.

Recognizing this gap, we developed SigCap, an Android application for passive extraction

and analysis of cellular and Wi-Fi signal information using standard APIs [92]. SigCap

provides an accessible solution for researchers, though API limitations restrict the types

of data it can collect. To overcome these limitations, we also explore root-based passive

measurement tools like Network Signal Guru, Accuver XCAL, and QualiPoc [87, 8, 100].

These tools offer access to detailed signal data, leveraging device root privileges. However,

their complex setup, expense, and difficulty in extracting data limit their widespread use.

Consequently, we adopt a combined methodology tailored to our research goals. SigCap

provides ease of use and accessibility for initial analysis. When deeper insights into specific

signal parameters are needed, we opt for root-based tools despite their challenges. This flex-

ible approach maximizes the advantages of both methods while addressing their limitations.

Table 3.1 summarized the general feature differences between SigCap and NSG, note that

“all channels” denotes primary, secondary, and neighboring channels.
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Table 3.1: Measurement Apps’ Features

Features SigCap Root-based Apps (NSG,
QualiPoc, XCAL)

LTE Cell Informa-
tion

All LTE channels: PCI,
EARFCN, Band, RSRP, RSRQ,
RSSI, Primary/Other CA Des-
ignation.
Primary LTE: Bandwidth

All LTE channels: PCI,
EARFCN, Band, Band-
width, RSRP, RSRQ, RSSI,
SINR, CQI, MIMO Mode,
MCS Index, Modulation,
RB Allocation, BLER, Pri-
mary/Secondary/Neighboring
CA Designation.

5G Cell Informa-
tion

All NR channels: PCI, NR-
ARFCN, Band, SS-RSRP, SS-
RSRQ, Primary/Other CA Des-
ignation.

All NR channels: PCI,
NR-ARFCN, Band, Band-
width, SSB/Beam ID, SS-
RSRP, SS-RSRQ, SINR, CQI,
CSI-RSRP, RI, CRI, MIMO
Mode, # of MIMO Layer,
MCS Index, Modulation,
RB Allocation, BLER, Pri-
mary/Secondary/Neighboring
CA Designation.

Wi-Fi Information Connected and neighbor-
ing APs: BSSID, SSID,
Primary Frequency, Center
Frequency, Bandwidth, RSSI,
Wi-Fi Amendment, Transmit
Power, # of Connected Clients,
Channel Occupancy Ratio.
Connected AP: TX & RX
Link Speed, Max. TX & RX
Link Speed.

(QualiPoc Only) Con-
nected and neighboring
APs: BSSID, SSID, Primary
Frequency, Center Frequency,
Bandwidth, RSSI.

Throughput-
related Metrics

Application layer throughput
and latency.

Application, RLC, MAC, and
PHY layer uplink/downlink
throughput.

Other Parameters GPS Coordinates and Accuracy,
Phone Model.

(QualiPoc and XCAL
Only): GPS Coordinates and
Accuracy, Phone Model.

Root access No Yes
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3.1 API-based Approach (Non-Root): SigCap

SigCap is an Android app we developed to extracts cellular and Wi-Fi signal values from

the Android Application Programming Interface (API) [14, 28]. These signal values are

associated with a timestamp and a GPS location [27]. Further on our research, we were also

interested in capturing sensor data, particularly CPU and skin temperature [13]. These API

values are directly extracted from the modem chipset, therefore we assume the values are

valid as it is also used by the chipset’s operations. However, there are some limitations on

some API calls which we further discuss on Appendix A, thus we limit our assumption and

analysis only to parameters that are confirmed to be accurate. We check for parameters’

accuracy by doing preliminary measurements and confirm the values with root-based apps.

Data Collection
Handler

WiFi Handler

Cellular Handler

Sensor Handler

Location Handler

Main Service

Android API
Read

Read

Local Filesystem

Read / Write

Export / 
Upload to

server

Figure 3.1: SigCap architecture.

Fig. 3.1 shows the application architecture of SigCap. Each of data collection handler calls

its respective API and updates the main service with the newest data. Table 3.2 shows the

list of parameters collected in each update interval. In summary, every data point contains

a timestamp, a GPS location data, a sensor data, along with multiple LTE, NR, and Wi-Fi

data. Each LTE, NR, and Wi-Fi data point represents the respective unique cellular base

station or Wi-Fi access point. As of recent, we added a suite of active measurement tools
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Table 3.2: SigCap Datapoint.

Parameter API Call /
Derived

Explanation

Version API Call SigCap version number.
Android Version API Call Android API version number.
UUID Derived Randomly generated string to identify a single de-

vice.
Device Name API Call Device model name as assigned by the system.
Operator Name API Call Describes current operator name, as shown in the

OS UI.
SIM Operator
Name

API Call Describes SIM operator name, may be different to
the operator name due to roaming.

Carrier Operator
Name

API Call Describes carrier operator name, may be different
to the operator name due to roaming.

Network Type Derived Describes cellular network type (e.g., LTE, NR).
Extended from API call by adding extra labels
(e.g., Wi-Fi, NR-SA, NR-NSA) derived from the
Wi-Fi and cellular information.

Phone Radio
Type

API Call Describes type of radio used in voice call (i.e.,
None, GSM, CDMA, SIP).

Timestamp API Call Timestamp at the data creation/update including
timezone.

Location Data Derived Location data as described in Table A.5.
Sensor Data Derived Sensor data as described in Table A.6.
LTE Data Derived Set of LTE channel data as described in Table A.2.
NR Data Derived Set of NR channel data as described in Table A.3.
Additional NR
Data

Derived Additional NR-NSA data as described in Ta-
ble A.4.

Wi-Fi Data Derived Set of Wi-Fi AP data as described in Table A.1.
iperf Data Derived Downlink/uplink throughput using TCP/UDP

protocol.
ping Data Derived Round trip latency using ICMP.
HTTP Data Derived Downlink throughput using HTTP protocol.

to SigCap: iperf [61] and a simple HTTP downloader to measure throughput, along with a

ping tool to measure round trip latency. Prior to that, we utilized FCC Speedtest (FCC

ST) [45] which similarly measures throughput and latency in a limited interval.

SigCap data collection is linked to GPS updates, limiting the sampling interval to the

minimum allowed by the Location API (SigCap can handle up to 1 second sampling interval,

but we set it to 5 seconds for battery efficiency). We store each data point as a JSON file on

the device’s filesystem, allowing for easy export (e.g., via email or messaging) or upload to a

cloud server. For further analysis, we process the JSON files in two ways: as CSVs for data

12



visualization, or as maps for spatial analysis. This methodology was used in the majority

of our works, as discussed in §4.3, §5.2, §6.2, §6.4, and §8.3. Furthermore, SigCap has been

utilized in the FCC’s pilot wireless measurement program as a part of the Broadband DATA

Act [46], and in the SpectrumX’s Broadband Map US project [59].

3.2 Root-Based Approaches

On Android devices, rooting grants administrative control, often referred to as ”superuser”

access. While Android’s operating system includes restrictive safeguards to protect users,

these limits can hinder comprehensive network analysis. Device APIs offer some access

to network data, but detailed cellular information is particularly restricted. Root-based

measurement apps bypass these restrictions by directly probing the cellular chipset. However,

since the techniques for this are not publicly available, existing root-based tools are often

expensive and complex. Therefore, we strategically employ root-based apps for focused

cellular studies where detailed data is essential.

We strategically employ various root-based tools for detailed cellular network analysis,

depending on their availability and features. All these tools capture extensive LTE and NR

parameters, along with timestamps and GPS coordinates, enabling spatial and temporal

studies. Our toolkit has evolved over time: Initially, we used Network Signal Guru

(NSG) [87], which requires manual rooting but doesn’t offer data extraction capabilities. We

transitioned to Accuver XCAL [8] for its data export feature, though it requires tethering

to a laptop and doesn’t involve manual rooting. Currently, we utilize QualiPoc [100], which

offers a streamlined experience with a bundled phone and tool, and allows data extraction

via an HTML interface. Table 3.3 shows some of detailed cellular parameters available only

in the root-based tools.
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Table 3.3: Detailed Cellular Data Available in Root-Based Tools.

Parameter Radio
Tech.

Explanation

SSB (Synchroniza-
tion Signal Block)
SSB

5G Identifier for a specific SSB (Synchronization Signal Block) within a
cell. SSBs are used for initial cell discovery and synchronization and
also denotes unique beam.

SCS (Subcarrier
Spacing)

5G The spacing between individual subcarriers within the transmission
bandwidth. Smaller SCS allows for higher potential data rates but
also increases complexity.

CSI-RSRP 5G Measured power of the received CSI (Channel State Information) sig-
nal. An indicator of overall channel quality.

RB (Resource Block) 4G, 5G A basic unit of resource allocation. Consists of multiple subcarriers
within a specific time slot.

Modulation 4G, 5G Specific technique used to represent digital data as a signal for trans-
mission (e.g., QPSK, 16QAM).

MCS (Modulation
and Coding Scheme)

4G, 5G Combination of modulation techniqueand error-correcting code used
for data transmission. MCS options offer trade-offs between data rate
and robustness.

BLER (Block Error
Rate)

4G, 5G The percentage of resource blocks that are received incorrectly. An
indicator of the quality of the received signal.

MIMO Mode 4G, 5G Configuration of the MIMO system, specifying the number of transmit
and receive antennas used (e.g.,, 2x2, 4x4).

MIMO Layer 5G The number of independent data streams transmitted or received si-
multaneously using MIMO techniques.

CQI (Channel Qual-
ity Indicator)

4G, 5G Feedback signal from the UE to the gNB indicating the perceived chan-
nel quality. Used for MCS decision.

RI (Rank Indicator) 4G, 5G Signal from the gNB to the UE indicating the preferred number of
downlink layers for transmission.
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CHAPTER 4

LTE AND WI-FI COEXISTENCE STUDIES

4.1 Overview and Related Works

The Licensed Assisted Access (LAA) is an extension to the 4G LTE specification for enabling

access in the unlicensed 5 GHz spectrum which was previously dominated by Wi-Fi. To en-

able fairness in the unlicensed spectrum, LAA implements a listen-before-talk (LBT) scheme

similar to Wi-Fi’s collision avoidance (CSMA-CA) scheme. However, LBT is implemented

with a -72 dBm energy detection threshold, while CSMA-CA uses -62 dBm energy threshold

for non-Wi-Fi nodes. This asymmetry of energy threshold leads to a hidden node problem

which then causes a lower throughput performance for Wi-Fi. In this works, we used both

controlled simulation and measurement using real devices to demonstrate such problems.

There are theoretical analyses [74, 119] and limited experiments [126, 75] that studied

the fairness of LTE and Wi-Fi coexistence. The ns-3 simulator has also been used to study

the coexistence fairness between LTE and Wi-Fi [57], but the analysis does not show in

detail what the impact on different threshold values is and how the channel gains access by

LAA once the medium is won. We explored in detail the important role of energy detection

threshold to improve coexistence. The main results obtained from our extensive simulation

study is that Wi-Fi, LAA and LTE-U all have improved throughput and latency performance

when the energy detection threshold used by Wi-Fi in the presence of LTE is lowered to -82

dBm, i.e., if Wi-Fi treats LTE-LAA and LTE-U as another coexisting Wi-Fi cell instead of

as an interfering noise source. Furthermore, we confirm this observation using device-based

measurements on LAA and Wi-Fi deployments.
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4.2 Impact of Energy Detection Threshold to the Coexistence

Between LTE and Wi-Fi in the Unlicensed Spectrum

To measure the coexistence between LTE and Wi-Fi, ns-3 simulator [93] is used due to the

early stage of LTE specification on unlicensed spectrum access. At the time, there are two

competing standards on unlicensed access: LAA and LTE-U. The former is developed by

the 3GPP alliance [1] and uses sensing scheme namely Listen Before Talk (LBT), while the

latter is developed by the LTE-U forum [71] and uses duty cycle (on-off cycle). The LTE

and Wi-Fi coexistence module is developed as an extension to the ns-3 simulator to bridge

between the Wi-Fi and LTE module, ensuring coexistence in the simulation [83].

D
2

D
1

D
3

Cell A
Cell B

(a) Experiment #1

Cell A

(b) Experiment #2 & #3

Figure 4.1: ns-3 experiment setup.

We assume a simulation system model where the cellular network (either LTE-LAA

or LTE-U) will be using the unlicensed spectrum for downlink only data transmissions,

which will be shared with a co-channel Wi-Fi Access Point (AP). The control information

and any uplink data is always transmitted using licensed spectrum. To access unlicensed

spectrum LAA Base Station (BS) and clients will use LBT scheme which is based on Wi-Fi’s

CSMA. On the other hand, LTE-U will follow the fixed duty cycle mechanism based on a

fair sharing scheme (i.e., 1
N , N is the total number of unlicensed AP/BS deployed nearby)

among operators. We assume there is no coordination between the different LTE BSs and

Wi-Fi APs. Hence, our approach is distributed in nature. The traffic is assumed to be
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Table 4.1: ns-3 simulation parameters.

Parameters Experiment # 1 Experiment # 2
EDL -62, -82 dBm -62, -72, -82 dBm
EDW -62, -82 dBm -62, -72, -82 dBm
D1 75 m 25, 50, 75, 100, 125, 150 m
D2 12.5, 25, 37.5, 50, 62.5 m 75 m
D3 50 m M/A

No. of users for each cell 1 20
BS transmit power 18 dBm 18 dBm
BS antenna gain 0 dB 5 dB

UE/STA transmit power 18 dBm 18 dBm
UE/STA antenna gain 0 dB 0 dB

Noise figure 5 dB 5 dB
RTS/CTS Not enabled -
A-MPDU Not enabled -

LTE & Wi-Fi antenna mode SISO SISO
Operating frequency 5.180 GHZ 5.180 GHZ
Wi-Fi rate control Ideal Wi-Fi manager Ideal Wi-Fi manager
LAA rate control Proportional Fair (PF) Proportional Fair (PF)

Traffic UDP UDP
Full buffer (saturation) Yes Yes

Simulation time 48 s 48 s

Poisson with parameter λ.

We define 3 experiment setups, as shown in Fig. 4.1, where Experiment #1 is is a “simple”

experiment with only one user in each cell, where we define D1 and D3 as fixed and vary

the D2. We set up the experiment in this fashion in order to to highlight the effect of the

hidden node problem on a single Wi-Fi user. Then, the position of both cells are switched

to observe the opposite effect (i.e., Cell A STA is in between Cell A and B BS, Cell B STA

is perpendicular to its BS). On the other hand, Experiment #2 more appropriately reflects

a real deployment by uniform-randomly deploying 20 clients on each cell. D1 is varied while

D2 is fixed. The ns-3 framework also enables varying parameters such as Wi-Fi and LAA

energy detection threshold (EDW and EDL, respectively) as shown in Table 4.1.

Using the various parameters, we also simulate two steps: Step 1 where Cell A and Cell
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Figure 4.2: Experiment #1, Step 1: Cell A uses Wi-Fi, Step 2: Cell A uses LAA.
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Figure 4.3: Experiment #2, Step 1: Cell A uses Wi-Fi, Step 2: Cell A uses LAA.

B both use Wi-Fi, and Step 2 where Cell A switches to LAA or LTE-U and Cell B continues

using Wi-Fi. On Experiment #1 and #2 (Wi-Fi and LAA) as shown on Fig. 4.2 and 4.3,

Cell B shows a performance decrease on the default energy detection threshold (Wi-Fi -62

dBm, LAA -72 dBm). Wi-Fi can only keep the same level of performance when both Wi-Fi

and LAA uses the same threshold of -82 dBm, i.e., Wi-Fi treats LAA as another coexisting

Wi-Fi cell instead of as an interfering noise source. Experiment #3 shown on Fig. 4.4 also

similarly shows a better performance when Wi-Fi uses a threshold of -82 dBm.

This methodology enables us to simulate LTE and Wi-Fi coexistence in a large scale
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Figure 4.4: Experiment #3, Mean throughput of Cell B, Step 1: Cell A uses Wi-Fi, Step 2:
Cell A uses LTE-U.

with dense deployments. However, the assumptions in our simulations may not accurately

reflect the actual deployment. Therefore, a direct measurement of an actual deployment

is required to further understand the performance impact of coexistence between LAA and

Wi-Fi, specifically, and wireless networks in general.
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4.3 Coexistence Studies of Wi-Fi and LAA in the unlicensed

spectrum at Chicago

Continuing from simulation of the Wi-Fi and LAA coexistence, we introduce our device-based

measurement to conduct coexistence studies in deployments around University of Chicago

(UChicago), Illinois Institute of Technology (ITT), and the Loop Area of Chicago [103].

As of March 2020, LAA has emerged as the dominant specification used by LTE for unli-

censed spectrum access, and there are rapid deployment of LAA Base Stations (BSs) from

the three major US operator (i.e., AT&T, T-Mobile, Verizon). In addition of a wide de-

ployment survey, we also conducted a focused experiments to study hidden node problem

at UChicago [101] over the months of April and June-August 2021, and at ITT [108] over

January 2020.

4.3.1 Survey of LAA and Wi-Fi Deployments

Experiment setup and deployment analysis. Using Google Pixel 3 phones equipped

with SIMs from the three major US operators (i.e., AT&T, T-Mobile, and Verizon), we

collected SigCap data by walking on sidewalk, driving car, and riding public transportation.

In this work, we defined a 10 second data interval to conserve power. As of March 2020,

we observed LAA deployments from the operators with 57 unique LAA PCIs and 10639

unique Wi-Fi BSSIDs in the vicinity of the observed LAA deployments (we only report Wi-

Fi measurements in locations where we also observe at least one LAA PCI). Furthermore,

AT&T and Verizon’s LAA cells are primarily deployed around the densely populated Loop

area (as shown on Fig. 4.5a and 4.5b), while the T-Mobile deployments are in the less dense

residential areas and on the IIT campus.

Statistics of overlapping LAA and Wi-Fi. Using frequency and RSSI data captured by
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(a) LAA on Channel 36 (b) LAA on Channel 149
(c) LAA and Wi-Fi on Channel
36

Figure 4.5: Deployment of LAA by AT&T, T-Mobile and Verizon LAA and coexisting Wi-Fi
on Channels 36 and 149.

SigCap, we compiled the number of overlapping LAA and Wi-Fi deployment and its RSSI

statistics, as shown on Table 4.2. We observe a huge number of Wi-Fi AP overlapped LAA

BS in terms of channel deployment. Moreover, a larger number of Wi-Fi APs deployed in

40 and 80 MHz bandwidth compared to 20 MHz, thus a single Wi-Fi AP may overlap with

multiple LAA BSs. Most of prior works only consider the coexistence scenario where Wi-

Fi and LAA uses 20 MHz bandwidth. Thus, we focused on the multi-channel coexistence

problem, where LAA that deployed in aggregate of three 20 MHz channels would create an

interesting coexistence scenario with 80 MHz Wi-Fi.

4.3.2 Impact of Hidden Node Problem in LAA and Wi-Fi Coexistence

As a supplement to the SigCap methodology, we employ root-based tools, namely Network

Signal Guru (NSG), to further extract signal information that are hidden to SigCap. These

information are (but not limited to) physical layer throughput, TXOP, signal-to-interference-

and-noise ratio (SINR), block error rate (BLER), and allocated resource blocks (RB) for each

channel. However, to analyze the data collected by NSG requires manual works of directly

transcribing the values from the UI. Thus, we only reserve this methodology for a focused

analysis that requires a deeper level of signal information.
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Table 4.2: LAA and Wi-Fi deployment and RSSI statistics.

Wi-Fi-equivalent LAA Deployment Overlapping
Channel Numbers AT&T T-Mobile Verizon Wi-Fi

Channel 36 4 49 209 3089

Channel 40 5 38 222 2750

Channel 44 4 38 205 3009

Channel 48 0 0 0 3189

Channel 149 104 0 2 2673

Channel 153 119 1 4 2569

Channel 157 131 1 22 2648

Channel 161 38 0 25 2601

Channel 165 27 0 20 105

(a) LAA and Wi-Fi deployment statistics

Wi-Fi
RSSI Metrics LAA 20 MHz 40 MHz 80 MHz

Mean (dBm) -84.49 -82.19 -82.87 -83.65
Variance 63.92 46.41 34.55 19.3

Range (dBm) [-105, -45] [-95, -47] [-95, -56] [-95, -51]

(b) LAA and Wi-Fi RSSI statistics

Using NSG, we set to answer two questions: (1) What is the effect of multi-channel

coexistence between 80 MHzWi-Fi and 3×20 MHz LAA? And, (2) what is the effect of TXOP

and traffic types on the coexistence? Table 4.3 shows access categories for different types

of traffic on LAA and Wi-Fi, which shows the same four categories on both specifications,

i.e., voice, video, best effort, and background. However, there is a difference in the values

of the channel sensing parameters (i.e., initial CCA/channel sensing, minimum/maximum

Contention Window, and TXOP). This may lead to unfairness in terms of time needed for

medium access and time spent to hold the medium.

Experiment setup. To answer the two research questions posed, we constructed a co-

existence experiment at two LAA deployments near two university campuses: T-Mobile at

IIT [108] and AT&T at UChicago [101]. At both locations, we deployed multiple Wi-Fi APs

and 5 smartphones as Wi-Fi and LAA clients, equipped with SigCap and NSG. There are two

coexistence scenarios: (1) Wi-Fi/Wi-Fi coexistence, with all phones as Wi-Fi clients, and (2)
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Table 4.3: Access categories in LAA and Wi-Fi.

Access Class # (DL) Initial CCA CWmin CWmax TXOP

1 (Voice) 25 µ s 30 µ s 70 µ s 2 ms
2 (Video) 25 µ s 70 µ s 150 µ s 3 ms
3 (Best Effort) 43 µ s 150 µ s 630 µ s 8 ms or 10 ms
4 (Background) 79 µ s 150 µ s 10.23 ms 8 ms or 10 ms

(a) Downlink LAA

Access Category AIFS (Initial CCA) CWmin CWmax TXOP

Voice (AC VO) 18 µ s 27 µ s 63 µ s 2.08 ms
Video (AC VI) 18 µ s 62 µ s 135 µ s 4.096 ms
Best Effort (AC BE) 27 µ s 135 µ s 9.207 ms 2.528 ms
Background (AC BK) 63 µ s 135 µ s 9.207 ms 2.528 ms

(b) Wi-Fi (802.11ac)

LAA/Wi-Fi coexistence, with 4 phones as Wi-Fi clients and 1 phone as an LAA client. We

also used laptops with Wireshark to capture Wi-Fi packets in monitor mode. Fig. 4.6 shows

the location of AP, BS, and clients on each site. For the brevity of the analysis, we only

present the analysis at UChicago site (Fig. 4.6a) for clients at the center location (distance

to LAA BS: 40.5 m, distance to Wi-Fi AP: 41.7 m).

At the UChicago site, there is an LAA BS on the Wi-Fi-equivalent channel number

149, 154, and 157, with each 20 MHz bandwidth (combined: 5.735-5.795 GHz). To overlap

this, we set three Wi-Fi APs to primary channel 149, 153, and 157 with 80 MHz bandwidth

(5.735-5.815 GHz), but for brevity we only include the analysis of one AP in primary channel

157. At the IIT site, the LAA BS is set to channel 36, 40, 44 (combined: 5.17-5.23 GHz),

while we set 5 Wi-Fi APs in varying bandwidths and primary channels, but for brevity we

only present the results for all Wi-Fi APs on primary channel 36 and 20 MHz bandwidth

(5.17-5.19 GHz).

To observe the impact of access categories to fairness, we generated multiple types of

traffic:

• Data (D): Downlink data traffic assumed as a full buffer, generated by downloading
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Figure 4.6: Experiment locations.

a large YUV dataset (>10 GB) using HTTP (TCP) protocol from Derf Test Media

Collection [26].

• Video (V): A Youtube video is downloaded, with a resolution of 1920×1080 and

bit-rate of 12 Mbps.

• Data + Video (D+V): Combination of data and video traffic as described above.

• Streaming (S): A live stream video on Youtube is loaded, with a resolution of

1280×720 and a bit rate of 7.5 Mbps.

• Data + Streaming (D+S): Combination of data and streaming traffic as described

above.

LAA: RB allocation, TXOP, and baseline throughput. At both locations, we all RB

are allocated to the phones indicating that our phones are the only one using the channel. We
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observed 8 ms TXOP for D, D+V, and D+S traffics, indicating that the data transmission

enables the maximum TXOP. Next, V traffic is transmitted using 3 ms TXOP, as shown

in Table 4.3a. Lastly, S traffic is transmitted only through licensed primary channel (with

the LAA channels disabled), indicating traffic prioritization for QoS. Table 4.4 represents

baseline LAA throughput at the UChicago site. We observe a similar baseline throughput

at IIT.

Table 4.4: Baseline throughput of LAA alone (no Wi-Fi) at UChicago site.

Channels D D+V S D+S V

Licensed 26.3 Mbps 32.7 Mbps 8.4 Mbps 12.2 Mbps 10.9 Mbps
LAA 149 53.5 Mbps 58.6 Mbps - 44.1 Mbps 8.1 Mbps
LAA 153 60.4 Mbps 67.1 Mbps - 52.9 Mbps 9.8 Mbps
LAA 157 61.5 Mbps 61.9 Mbps - 49.4 Mbps 8.3 Mbps

Table 4.5: Average LAA SINR at UChicago site under coexistence.

LAA Channel D D+V S D+S V

LAA 149 14 dB 12.6 dB - 9.7 dB 12.8 dB
LAA 153 10 dB 11.4 dB - 8.2 dB 14.2 dB
LAA 157 -2 dB -3.2 dB - -1.9 dB -2.9 dB

Impact of Wi-Fi interference to LAA. As Wi-Fi interference is introduced, we observed

lower SINR and downlink throughput on LAA transmission. Table 4.5 shows the average

SINR of LAA client under coexistence at the UChicago site. We observe lower SINR for

LAA channel 157, which is also the primary channel of the deployed AP at UChicago site.

This is reflected on the throughput of LAA client, Fig. 4.7a shows no downlink throughput

on LAA channel 157 compared to the baseline (Table 4.4. Similarly, Fig. 4.7b shows little

to no throughput on LAA channel 36, which is also the primary channel of the deployed AP

at IIT site. This results clearly shows the impact Wi-Fi primary channel selection to LAA

throughput.

Impact of LAA interference to Wi-Fi. Similarly, Wi-Fi clients’ throughput are also
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Figure 4.7: Average downlink throughput of LAA client on LAA/Wi-Fi coexistence at dif-
ferent sites.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

A B C D E

A
V

G
 T

h
ro

u
g

h
p

u
t 

(p
e

r 
W

i-
F

i 
C

lie
n

t)
 i
n

 K
b

p
s

Different Types of Users

D
D+V

S
D+S

V

(a) Wi-Fi/Wi-Fi Coexistence at
UChicago

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

A B C D

A
V

G
 T

h
ro

u
g

h
p

u
t 

(p
e

r 
W

i-
F

i 
C

lie
n

t)
 i
n

 K
b

p
s

Different Types of Users

D
D+V

S
D+S

V

(b) LAA/Wi-Fi Coexistence at
UChicago

 0

 2

 4

 6

 8

 10

D D+V S D+S V

A
v
e

ra
g

e
 W

i-
F

i 
T

h
ro

u
g

h
p

u
t 

(p
e

r 
A

P
) 

in
 M

b
p

s

Types of Traffics

Wi-Fi/Wi-Fi
LAA/Wi-Fi

(c) Wi-Fi/Wi-Fi and LAA/Wi-
Fi Coexistence at IIT
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Figure 4.9: Impact of LAA interference to Wi-Fi control packets.

impacted by LAA interference. Fig. 4.8a illustrates the average throughput of 5 Wi-Fi

clients (labelled A to E) on Wi-Fi/Wi-Fi coexistence, while Fig. 4.8b shows a similar values

on LAA/Wi-Fi coexistence (client E was used as LAA client). Both Fig. 4.8a and 4.8b shows

a throughput degradation for all Wi-Fi clients when interfered by LAA, with the exception of

S traffic due to the client exclusively using primary LTE licensed channel. Likewise, Fig. 4.8c

shows an average throughput degradation for all Wi-Fi clients (average over all clients) when

interfered by LAA, except on S traffic.

In addition to throughput degradation, we discover an increasing number of connection

failure when LAA is interfering Wi-Fi at the IIT site. Using a laptop with Wireshark to cap-

ture Wi-Fi packets, we observe a decrease in captured Wi-Fi beacon as shown in Fig. 4.9a,

and an increase of Wi-Fi connection failure (i.e., number of disassociation packets), on

LAA/Wi-Fi coexistence scenario. With the throughput degradation and increasing connec-

tion failure, we have demonstrated a higher impact on Wi-Fi when coexisting with LAA.

While the impact on LAA is lesser, and even lessened due to having a licensed spectrum as

a fail-over. Thus we concluded so far, a fair coexistence is not achieved in our coexistence

studies.
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4.4 Summary and List of Accomplishments

This chapter shows our first step in developing the device-based measurement. To validate

our simulation findings and gain insights into real-world network behavior, we developed a

device-based measurement methodology which aims to be quick and scalable. Our extensive

simulation studies revealed potential throughput and latency improvements in Wi-Fi and

LAA networks when Wi-Fi’s energy detection threshold in the presence of LTE is lowered

to -82 dBm. This approach allows Wi-Fi to treat LTE-LAA and LTE-U as coexisting Wi-Fi

cells rather than interfering noise sources. We validated this discovery through a device-

based measurement methodology applied to real-world LAA andWi-Fi deployments. Results

confirmed that the default asymmetrical energy detection threshold between LAA and Wi-Fi

leads to decreasedWi-Fi throughput and connectivity issues. These problems are particularly

noticeable when the Wi-Fi primary channel and LAA channel overlap.

The following papers has been published in the topic of LTE and Wi-Fi coexistence:

• Muhammad Iqbal Rochman et al. “Impact of changing energy detection thresholds

on fair coexistence of Wi-Fi and LTE in the unlicensed spectrum”. In: 2017 Wireless

Telecommunications Symposium (WTS). IEEE. 2017, pp. 1–9.

• Vanlin Sathya et al. “Measurement-based coexistence studies of LAA & Wi-Fi deploy-

ments in Chicago”. In: IEEE Wireless Communications (2020).

• Vanlin Sathya et al. “Hidden-nodes in coexisting LAA & Wi-Fi: a measurement study

of real deployments”. In: 2021 IEEE International Conference on Communications

Workshops (ICC Workshops). IEEE. 2021, pp. 1–7.

• Vanlin Sathya et al. “Impact of hidden node problem in association and data trans-

mission for LAA Wi-Fi coexistence”. In: Computer Communications 195. 2022, pp.

187–206.
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Additionally, we presented our findings to the wireless industry, namely to the 802.11 Co-

existence Steering Committee. We presented our findings on the energy detection threshold

in 2019 [53] and on the impact of hidden nodes problem in 2021 [102]. Our findings has been

used as a consideration by the European regulation body to set the same energy detection

threshold of -72 dBm for all radio technologies accessing the 6 GHz spectrum [37].
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CHAPTER 5

THE WI-FI 6E (6 GHZ) DEPLOYMENT STUDIES

5.1 Overview and Related Works

The 6 GHz band, currently utilized by Wi-Fi 6E, includes four U-NII bands (U-NII-5 to

U-NII-8) which are shared with incumbent users (see Table 5.1). To protect incumbents,

unlicensed devices operate under two power classes: Low Power Indoor (LPI) and Standard

Power (SP). LPI allows indoor access points (APs) to use the entire 6 GHz band without

Automatic Frequency Control (AFC). SP APs, while offering wider coverage, are currently

limited to U-NII-5 and U-NII-7 and require AFC (still under development) to avoid inter-

ference. Wi-Fi 6E devices gain 14 additional 80 MHz channels and 7 additional 160 MHz

channels across the 1200 MHz spectrum. We focus on LPI deployments due to the ongoing

development of AFC for SP deployments.

Table 5.1: Unlicensed Operation over 6 GHz.

Band Incumbents Use Cases Chann. No. Freq. (MHz)

U-NII-5 Fixed, Satellite Uplink LPI, SP 1-97 5925-6425
U-NII-6 Satellite uplink, BAS, CTRS LPI 101-117 6425-6525
U-NII-7 Fixed, Satellite uplink/downlink LPI, SP 121-185 6525-6875
U-NII-8 Fixed, Satellite, BAS LPI 189-233 6875-7125

Unlike the 5 GHz band regulations, Wi-Fi 6E APs operating under LPI rules in the 6 GHz

band must adhere to a maximum power spectral density (PSD) of 5 dBm/MHz, regardless

of the channel bandwidth [109]. This corresponds to maximum transmit (Tx) powers shown

in Table 5.2. While APs are limited to indoor use, client devices (STAs) can be anywhere,

including outdoors, and are therefore required to transmit 6 dB less power than the AP.

While the academic literature explores various coexistence scenarios in the 6 GHz band,

there’s a lack of research analyzing potential interference to incumbent systems. Current

studies focused on incumbent coexistence are primarily conducted by industry stakeholders,
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Table 5.2: Max. Tx Power for 6 GHz LPI.

Device Maximum TX Power
Type 20 MHz 40 MHz 80 MHz 160 MHz 320 MHz

STA 12 dBm 15 dBm 18 dBm 21 dBm 24 dBm
AP 18 dBm 21 dBm 24 dBm 27 dBm 30 dBm

particularly fixed-link operators and unlicensed proponents. These studies often analyze

contrived scenarios, such as intentionally placing Wi-Fi 6E APs near windows to directly

interfere with incumbent links [34, 35, 69, 38, 39]. Such setups may not accurately represent

real-world deployments. Hence our goal is to understand the statistics of interference based

on a dense real-world deployments at the University of Michigan and the University of Notre

Dame, instead of worst-case scenarios.

5.2 Indoor and Outdoor Measurement Studies of Wi-Fi 6E

Deployments

5.2.1 Measurement Tools

Client devices were used to capture signal information in various environments, using two

tools, SigCap and Wireshark, on smartphones and laptops respectively, to extract various

signal parameters as shown in Table 5.3.

Table 5.3: Measurement tools and devices.

Tool Wi-Fi Parameters Devices

SigCap Time-stamp, location, fre-
quency, RSSI, BSSID, SSID,
#STA, Channel Utilization

1 × Google Pixel 6,
1 × Samsung S21 Ultra,
3 × Samsung S22+

Wireshark Source/Destination, SSID,
BSSID, Frequency, RSSI, Tx
Power, beacon and data packets

Laptop: ThinkPad P16 Gen 1,
Wi-Fi Card: Intel(R) Wi-Fi 6E
AX211 160 MHz, OS: Ubuntu
22.04 LTS

Ookla (MC3
only)

Time-stamp, location, download
& upload speed

1 × Google Pixel 6, 3 × Sam-
sung S22+
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(a) Main campus area (MCA)
at UMich (MC1, MC2).

(b) Residential area (RA) at
UMich (MC2).
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Figure 5.1: RSSI heatmap for Outdoor Measurements at UMich and UND. Green pins:
buildings with Wi-Fi 6E APs. Red pins: Drone experiment locations.

SigCap is utilized to passively collects time and geo-stamped wireless signal parameters

(cellular and Wi-Fi) through APIs without root access. Wi-Fi parameters, such as RSSI,

channel, BSSID, etc. are collected from the beacon frames every 5 seconds. Optional beacon

elements with information on Tx signal power, number of stations connected to each BSSID

and channel utilization (percentage of time that the AP senses the channel to be busy)

are also collected: fortunately, all the Wi-Fi 6E APs deployed in UMich broadcast these

optional elements, thus facilitating our analysis. Wireshark is an open source tool that we

used for capturing both beacon and data frames using a Lenovo ThinkPad P16 Gen1 with

the Intel(R) Wi-Fi AX211 Wi-Fi adapter.

5.2.2 Methodology

The measurements were conducted in three campaigns, as described below.

Measurement Campaign 1 (MC1): MC1 took place on January 7-9, 2023, during which

measurements were conducted while driving and in a fixed location on the University of

Michigan (UMich) campus.

Driving Measurements were conducted in the Main Campus Area (MCA) of UMich as

shown in Fig. 5.1a between 9:50 pm and 00:50 am, at a speed of 20 miles per hour. Data
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was collected with SigCap running on the five smartphones listed in Table 5.3. Due to the

cold weather, walking measurements were not conducted in MC1.

Fixed Location 1 (FL1) measurements were taken inside and outside a building with an

open indoor area with high occupancy. Fig. 5.2a shows the position of the Wi-Fi 6E LPI AP

in the space. The AP is positioned 6 meters away from double pane low-E windows. The

indoor measurements were taken by placing the phones near the window while the outdoor

measurement location is 1.5 meters from the window. Wireshark and Sigcap were both used

for measurements, as shown in Fig. 5.2b. The AP transmit power was 15 dBm over a 160

MHz channel bandwidth, which is considerably lower than the regulatory limits specified in

Table 5.2. This reduction in transmit power is due to the dense deployment of LPI APs,

since many users need to be supported in this area.

(a) Indoor location and Wi-Fi 6E AP. (b) Outdoor locations.

Figure 5.2: Measurement and AP locations for FL1 (MC1).

Measurement Campaign 2 (MC2): MC2 was conducted on May 24-27, 2023 at UMich

with drone, driving, walking, and fixed location measurements. The deployment had been

changed from mostly 160 MHz channels observed in MC1 to mostly 80 MHz channels during

MC2. This was done by UMich Information and Technology Services (ITS) to serve more

users with a higher quality of service. However, since our analysis depends on measurements

of the 20 MHz beacon channel RSSI, this change did not affect our results or comparisons.
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(a) 6 GHz fixed links. (b) Drone measurement scenario.

Figure 5.3: 6 GHz fixed links and drone meas. scenario at UMich (MC2). Orange pins:
drone meas. locations, Blue: Tx locations, Red: Rx location.

Drone Measurements: There are five active, fixed links in the MCA, as shown by the

black lines in Fig. 5.3a. Three of these links have their transmitters (i.e., Tx1, Tx2 and

Tx3 in the figure) located within the MCA, while the transmitters of the other two links

(Tx4 and Tx5) are positioned at a significant distance away from the campus. Rx4 is the

only receiver (Rx) on campus but the link direction is away from the buildings with dense

deployments. Nine buildings, indicated by the orange pins in Fig. 5.3a, were chosen for

drone measurements due to their proximity to Links 1 and 2, operating at center frequencies

7037.5 MHz and 6212.065 MHz with bandwidths of 25 MHz and 56 MHz respectively [42,

41]. Table 5.4 provides information on the height of these buildings and the number of Wi-

Fi 6E LPI APs deployed in each. On average, we assume two BSSIDs per AP in 6 GHz as

determined by UMich ITS. The drone measurements were conducted during daylight hours

over a period of three days. As shown in Fig. 5.3b, a Samsung S22+ smartphone with SigCap

was tied to the drone for data collection. The drone moved vertically up and down, parallel

to the wall of a given building.

Driving Measurements: In order to validate the driving measurements conducted in MC1

(Fig. 5.1a), we replicated the same route as closely as possible. The measurements were

carried out between 10:00 pm to 12:00 am, mirroring the timeframe of MC1 using the same

5 phones with SigCap.
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Table 5.4: Building information for drone measurements.
Building Name Height (ft) No. of AP/BSSIDs

Building 1 (BLD1) 58 43/86
Building 2 (BLD2) 40 184/368
Building 3 (BLD3) 45 44/88
Building 4 (BLD4) 47-65 wrt. upper and lower levels 400/800
Building 5 (BLD5) 58 39/78
Building 6 (BLD6) 65-85 wrt. upper and lower levels 46/92
Building 7 (BLD7) 75 40/80
Building 8 (BLD8) 70 40/80
Building 9 (BLD9) 70 40/80

Walking Measurements: The center of the campus, where Wi-Fi 6E is densely deployed,

offers only pedestrian access. Hence RSSI measurements were collected in this area by

walking with hand-held phones running SigCap. The walking and driving measurements are

combined (also with MC1) to produce heatmap as shown in Fig. 5.1a. We similarly measured

the Residential Area (RA) of UMich, as shown in Fig. 5.1b, between 12:00 pm and 3:00 pm.

Fixed Location 2 (FL2): The measurement area is a conventional classroom on the first

floor of a building, shown in Fig. 5.4. The single AP in the room is center-mounted on the

ceiling, and the room has a north facing exterior wall. The outdoor measurement location

is 7 meters away from this wall due to trees obstructing closer access.

(a) Indoor locations and Wi-Fi 6E AP. (b) Outdoor locations.

Figure 5.4: Measurement and AP locations for FL2 (MC2).

Measurement Campaign 3 (MC3): MC3 was conducted on during June and July 2023

at the UND with walking and fixed location measurements around and inside the building
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(a) Frontside of the measure-
ment building: With a large
glass door.

(b) Sides of the measurement
building: With a glass door, no
windows.

(c) Backside of the measure-
ment building: No windows on
the first floor.

Figure 5.5: Measurement environment at the UND.

shown in Figs. 5.1c and 5.5. The number of deployed Wi-Fi 6E LPI APs is 70, with 15 dBm

Tx power and 80 MHz channel bandwidth. The number of unique BSSIDs is two for each

AP.

Walking Measurements: Walking measurements are conducted at the front, side, and

back of the building. As seen in Figs. 5.5a and 5.5b, the front of the building has a big glass

door and multiple wide windows, while the side walls have only a glass door and no window.

The back wall has no window in the first floor, while small windows are present in the upper

floors as shown in Fig. 5.5c. Data was collected with SigCap running on the 4 phones given

in Table 5.3 (omitting the use of S21 Ultra phone).

(a) FL3. (b) FL4.

Figure 5.6: Measurement and AP locations for FL3 and FL4 (MC3).

Fixed Location 3 (FL3): The measurement area of FL1 is a typical room with a single

AP on the first floor of the building, as shown in Fig. 5.6a. The AP is center-mounted on
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the ceiling, 3 m away from the exterior wall. The indoor measurement location is 2.5 m away

from the AP and the outdoor measurements were carried out right outside the exterior wall.

Fixed Location 4 (FL4): FL2 measurement area is a corridor on the same floor, shown

in Fig. 5.6b. The AP is on the wall, with antennas pointing downwards, at a distance of 9

m from the exterior wall. Indoor measurements were conducted in front of the exterior wall,

while outdoor measurements were performed outside the exterior wall.

5.2.3 Results and Discussions

We present statistical analyses of the measurements under different conditions. The discus-

sions are categorized into three main groups at the two measurement locations: (i) ground

level driving & walking measurements (and the resulting analysis on C2C enabling level),

(ii) aerial drone measurements (only at UMich), and (iii) indoor-outdoor building entry loss

(BEL) measurements.

Driving and Walking Measurements at UMich (MC1 & MC2): The minimum

and maximum RSSI values measured across the MCA are -94 dBm and -62 dBm for the

driving measurements, and -92 dBm and -55 dBm for the walking measurements, respectively.

Transmit power levels ranging from PTX = 15 dBm to PTX = 21 dBm were observed within

the MCA, with PTX = 16 dBm being the most frequently used. 73% and 95% of the RSSI

measurements were with PTX ≤ 18 dBm for the driving and walking measurements in the

MCA, respectively.

Statistical analyses of the measurements in the MCA and RA, using cumulative distribu-

tion function (CDF) plots of the measured RSSI at different transmit power levels, are shown

in Fig. 5.7. Fig. 5.7a shows the CDF of driving measurements within the MCA for MC1

(S1) and MC2 (S2). While PTX represents the transmit power for the AP, the maximum

power of the 20 MHz beacon frames is 18 dBm for PTX ≥ 18 dBm as shown in Table 5.2.

MC1 measurements showed a transmit power of 15 dBm: this changed when we returned
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Figure 5.7: CDF of outdoor RSSI at UMich. S1: MCA in Jan., S2: MCA in May, S3: RA
in May.

in May for MC2. The median outdoor RSSI level is -85 dBm for both S1 and S2 under

PTX = 15 dBm, while the highest median RSSI value is -81 dBm for S2 under PTX = 16

dBm due to being the most frequently used.

Fig. 5.7b shows the CDF of outdoor RSSI levels recorded during walking measurements

(only in MC2) in the MCA (S2) and the RA (S3). A single transmit power of PTX = 21

dBm was observed in the RA deployment, which is less dense than the MCA and hence

each AP can transmit at a higher power without interference. This is still 3 dB less than

the maximum allowed power of 24 dBm for 80 MHz channels. Due to the proximity of the

walking measurement locations to the buildings, an increase of 1-9 dBm is observed for the

median RSSI values in the walking measurements compared to the driving measurements in

the case of S2. Fig. 5.7c shows the results obtained for each of the 80 MHz channels with

Tx power of PTX = 16 dBm: all the channels exhibit similar behavior.

Channel utilization and number of unique BSSIDs observed outdoors help to understand

the potential interference impact of a dense deployment. A higher channel utilization and

larger number of unique BSSIDs on a particular frequency point to increased potential for

interference on that frequency. Fig. 5.8a shows the CDFs of primary channel utilization

at 5 GHz and 6 GHz for UMich SSIDs during walking measurements in the MCA. 6 GHz

38



0 0.2 0.4 0.6 0.8 1

Ch. Util.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
C

D
F

(a) Primary ch. util. for S2.

Center Freq. Index

N
o

. 
o

f 
U

n
iq

u
e

 B
S

S
ID

s

Walking Meas. on The Campus

Driving Meas. on The Campus

(b) # of unique BSSIDs at MCA.

Center Freq. Index

N
o

. 
o

f 
U

n
iq

u
e
 B

S
S

ID
s

Walking Meas. on the Residential Area

(c) # of unique BSSIDs at RA.

Figure 5.8: Channel utilization and # of unique BSSIDs the UMich.

usage is still sparse, and during our measurements, a maximum of 3 devices were seen

connected to a single BSSID at a particular time instant. However, we observe from our

5 GHz measurements that primary channel utilization is not very dependent on number of

connected devices since the main contributor to primary channel utilization is beacons and

other management frames.

Figs. 5.8b and 5.8c shows the number of unique BSSIDs in each 80 MHz channel observed

in the MCA and RA, demonstrating a similar pattern for the walking measurements in both

areas and, as expected, a reduced number in the driving measurements in the MCA. The key

takeaway from this result is that while there is a slightly higher number of unique BSSIDs

observed outdoors on channel 135 in both areas, overall, all channels are used relatively

uniformly, thus reducing the probability of interference to an outdoor fixed link that overlaps

with a particular 80 MHz channel.

Walking Measurement Campaign at UND (MC3): Fig. 5.1c shows the outdoor RSSI

range measured on 20 MHz beacon frames around the measurement building. RSSI mea-

surements were collected by walking with hand-held phones running SigCap. The measured

minimum and maximum RSSI around the building are -95 dBm and -64 dBm, respectively.

The glass door and dense windows on the front of the building create a small region with

high RSSI, so beacon frames were captured at a distance of 120 m from the building. On
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the back of the building, however, we observed lower RSSI levels compared to the front as

there are no windows on the first floor. The beacon frames were captured at a distance of

up to 50 m, potentially transmitted by Wi-Fi 6E LPI APs on upper floors with windows.

The distance reduces up to 32 m for the sidewalls of the building with glass doors, but no

windows.
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Figure 5.9: 6 GHz connection and downlink throughput outdoors at UND.

Fig. 5.9 shows the measured outdoor RSSI and DL throughput ranges when phones

outside were connected to indoors Wi-Fi 6E LPI APs. As shown in Fig. 5.9a, phones

were connected to 6 GHz mostly right outside the glass doors, existing on three sides of

the building. Due to sporadic connections between phones outside and LPI APs, we were

able to run the speed test only at the front of the building, i.e., less than a meter away as

illustrated in Fig. 5.9b. To provide a detailed analysis of 6 GHz connection outdoors, Fig.

5.10a shows the CDF plot of DL throughput, while Fig. 5.10b shows the relation between

the throughput and RSSI values. The observed range of DL throughput ranges from 8 Mbps

to 104 Mbps with a median level of 25 Mbps. Throughput levels greater than 60 Mbps were

observed at high RSSI levels, i.e., -80 dBm and above. However, we were not able to run the

speed test at RSSI levels less than -86 dBm. Thus, even though the phone may be connected

to a AP, if the RSSI is very low, speedtests do not complete.

Statistical analyses of the campaign are shown in Fig. 5.7 via CDF plots of the mea-
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Figure 5.10: Downlink throughput and RSSI in outdoors walking measurements at UND.

sured RSSI. We observed median outdoor RSSI level of -89 dBm during walking experiments

(labelled All 1). Specifically, 80 out of the 140 unique BSSIDs were observed during this

outdoor measurements. To further evaluate potential interference from the Wi-Fi 6E deploy-

ment to fixed microwave links, we compute average RSSI for each BSSID observed outdoors,

and assign the RSSI value of -94 dBm for the BSSIDs not detected outdoors (labelled All

2). Although median RSSI level remains similar, we observed a considerable decrease in the

90th percentile, indicating a greatly reduced potential for interference. The median RSSI

level increases to -79.5 dBm when the outside phones are connected to the indoor Wi-Fi 6E

APs.

Fig. 5.11 focuses on the analysis of the number of unique BSSIDs and 80 MHz channels

measured outdoors during walking measurements to provide insights into the potential in-

terference impact of a typical Wi-Fi 6E deployment. Fig. 5.11a shows the outdoor heatmap

of the number of unique BSSIDs during walking measurements. Although we observed 80

unique BSSIDs outdoors, a high number of BSSIDs were received only outside the front glass

door. Figs. 5.11b and 5.11c show the CDF plot of the number of unique BSSIDs and unique

80 MHz channels measured at a specific location. Median number of BSSIDs received out-

doors is 4 out of 140 deployed BSSIDs, while the number of unique channels ranges from 1

to 10 with a median value of 2. The lower number of unique BSSIDs and channels indicates
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Figure 5.11: CDF plots for walking measurements: Number of unique BSSIDs and channels
at UND.

a reduced potential for interference from Wi-Fi 6E LPI APs to existing incumbents.

C2C Enabling Level Based on Measurements at UMich and UND: In the proposed

C2C mode, clients that can receive an enabling signal from any Wi-Fi 6E AP can directly

communicate with each other, at STA LPI power levels, bypassing the need for data trans-

mission through the AP. Device sharing is an example application that benefits from the C2C

mode, reducing air time occupancy and latency. While the intended use of C2C is to improve

indoor performance, care must be taken to set an appropriate level for the enabling signal so

that client devices that are outdoors do not transmit to each other. The proposals submitted

to the FCC recommended using -86 dBm/20 MHz and -82 dBm/20 MHz as enabling signal

levels [60]. Based on our walking results at UMich, where the median outdoor RSSI level

varies between -75 dBm and -85 dBm, even a level of -82 dBm could trigger ¿ 50% of outdoor

devices to communicate with each other, which is not desirable. Furthermore, the walking

measurements at UND shows a median RSSI of -79.5 dBm. Hence, further measurements

and analyses should be performed to determine an appropriate enabling signal level for C2C

that minimizes the probability of interference.
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Drone Measurements at UMich (MC2): Driving and walking measurements obtained

at ground level alone do not offer a comprehensive understanding of the interference potential

in the 6 GHz band since most outdoor fixed links are deployed at higher altitudes. Hence,

the drone experiments provide insights into the RSSI levels as a function of altitude.

RSSI(dBm)

A
lt

it
u

d
e
(m

)

BLD1

BLD2

BLD3

BLD4

BLD5

BLD6

BLD7

BLD8

BLD9

Figure 5.12: RSSI vs. altitude for drone measurements.

Fig. 5.12 summarizes the RSSI measured at different altitudes near the nine buildings

listed in Table 5.4. The observed range of RSSI is between -93 dBm and -55 dBm. RSSI

values greater than -60 dBm were not observed above a height of 20m. Above a height of

30m, the RSSI values are less than -68 dBm.
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Figure 5.13: RSSI vs. altitude wrt. the number of BSSIDs at UMich.

In order to provide an in-depth analysis of the relationship between RSSI and factors

such as number of Wi-Fi 6E APs, construction material, and altitude, Fig. 5.13 shows RSSI
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vs. altitude for four representative buildings: BLD2, BLD4, BLD5 and BLD6 with 368,

800, 68 and 92 BSSIDs respectively, as shown in Table 5.4. BLD2 and BLD4 have many

more APs compared to the other two. From Fig. 5.13a and Fig. 5.13b we see that the drone

measurements near BLD2 and BLD4 provide a larger number of data samples up to 60m

compared to BLD5 and BLD6 which have fewer APs. However, there is an uniform decrease

in the number of samples and RSSI with increase in altitude for all 4 buildings. Despite

having fewer APs than BLD6, there are more data samples observed near BLD5 with higher

RSSI: this is because unlike most buildings on campus, BLD5 is a historical building with

single pane windows, resulting in lower loss.
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Figure 5.14: Number of unique BSSIDs vs. altitude at UMich.

Fig. 5.13b shows a high RSSI value of -45 dBm obtained at 10m near BLD4 which

we investigate further. Fig. 5.14a shows the relative location of this data sample and the

corresponding BSSID/AP inside the building. The AP is in a room on the first floor and

there is line-of-sight (LOS) through a corner window, resulting in the high outdoor RSSI

measured at the outdoor location. It is important to note, however, that not all APs will

contribute to significant signal emissions outdoors. In addition to the number of APs within

a given building, the likelihood of these APs to LOS conditions through nearby windows

plays a vital role in the resulting outdoor RSSI levels, and hence potential for interference.

Figs. 5.14b and 5.14c illustrate the number of unique BSSIDs vs. altitude for the the

nine buildings and for BLD4, respectively. Although the number of unique BSSIDs observed
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within the altitude range of 0−20 m and 20−40 m is fairly comparable, there is a noticeable

decrease in the number of unique BSSIDs as the altitude range extends to 40 − 60 m and

60−80 m, thus indicating reduced potential for interference at higher altitudes. Finally, Fig.

5.14d shows the CDF of RSSI for BLD4. While the median outdoor RSSI values remain

consistent across the three altitude intervals, there is a decrease in the maximum outdoor

RSSI level as the altitude increases.
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(b) Link 2: RSSI on Channel 55.

Figure 5.15: CDF of drone RSSI measurements on channels overlapping Links 1 and 2 at
UMich.

We evaluate the interference potential to Links 1 and 2 which overlap with Wi-Fi channels

215 and 55 respectively (Link 2 has < 1 MHz overlap with the edge of channel 39 which

we ignore since the Wi-Fi signal drops off at the band-edge). Fig. 5.15 shows the CDF

of the RSSI on these channels at different altitudes. As the altitude increases, RSSI level

decreases, thus reducing the interference potential to these links. To further evaluate the

interference level, we calculate approximately the ratio of interference to noise power (I/N)

for these links as I/N = 10 log10(BWi/20) + RSSIOutdoor +Grx −NF − PL, where BWi

is the link bandwidth, Grx is the Rx antenna gain, NF is the noise floor and PL is the free

space path loss. These are computed from the link parameters in [42, 41]. We assume worst

case conditions: highest outdoor RSSI measured of -68 dBm and -58 dBm for Links 1 and
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2 respectively, in the main Rx beam. I/N is calculated to be -72 dB for Link 1 and -66 dB

for Link 2, much lower than the harmful interference threshold of I/N = −6 dB. Although

Rx4 is located in the MCA, the link points away from the densely deployed region and thus

we did not calculate the interference level at Rx4.

Indoor-Outdoor BEL Measurements at UMich (MC1 & MC2): At UMich, we

collected indoor-outdoor BEL measurements at two locations as described below.
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Figure 5.16: BEL for fixed locations at UMich.

BEL near a double-pane low-E Window (FL1): Fig.5.16a shows the CDF of indoor and

outdoor RSSI values for the fixed location FL1 which is the open area shown in Fig. 5.2.

We only consider RSSI measurements where the client devices are connected to the BSSID

associated with the AP in the room, which is one of the few APs with three BSSIDs. A 12

dB BEL is observed for BSSID1 and BSSID2, while BSSID3 exhibits a higher entry loss of

16 dB.

BEL near a solid brick wall (FL2): Fig. 5.16b shows the results obtained for the FL2

shown in Fig. 5.4. Inside the measurements room, the devices were able to connect to

BSSID1 and BSSID2. However, these two BSSIDs were not detected outside due to the

solid brick wall. BSSID3 was observed outside since it is associated with the AP located
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in the adjacent room, which has a window pointing out towards the outdoor measurement

location. Moreover, 391 APs, corresponding to 782 BSSIDs, are deployed in the entire

building of which only 159 BSSIDs are observed within the measurement room, and only 8

of these i.e., 5%, are observed outside in this location, indicating a very high loss through

the brick wall.

Indoor-Outdoor BEL Measurements at UND (MC3): Fig. 5.17 illustrates the results

for BEL near a solid brick wall in two different environments. Figs. 5.17a and 5.17b show

the CDF of RSSI for two BSSIDs of the APs in FL1 and FL2, respectively. In FL1, we

observed BEL ranging from 30 dB to 35 dB, while the BEL in FL is around 25 dB. We

observed higher BEL in FL1 due to distance between indoor measurement location and the

exterior wall.
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(b) FL4: Solid brick wall.

Figure 5.17: BEL for fixed locations at UND.

5.3 Summary and List of Accomplishments

This chapter demonstrates a significant advancement in our device-based measurement ap-

proach, specifically focusing on the API-based tool, SigCap. By utilizing SigCap, we con-

ducted extensive measurement campaigns across two university campuses–the first studies
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of this scale. Our findings provide compelling evidence of negligible interference from LPI

APs. We observed outdoor RSSI values on driving and walking ranging from -64 to -95 dBm

(median -89 dBm), indicating substantial signal attenuation primarily due to double-pane

low-emission windows (12-16 dB loss) and solid brick walls (25-33 dB loss). Focusing on the

walking measurements, we observe a median of -82 dBm and -79.5 dBm at UMich and UND,

respectively. These median values are equal or higher than the two proposed C2C activation

threshold of -86 dBm and -82 dBm, which may result in a high number of undesired C2C

activation by outdoor Wi-Fi clients. The outdoor RSSI median is further increased to -78

dBm as we go higher where the fixed point-to-point links are located. But even with the

highest RSSI of -45 dBm (representing the worst case of interference), we calculated the

interference to noise ratio of -72 dB and -66 dB for two separate links, a value much lower

than the harmful interference threshold of -6 dB. Furthermore, the mere 5% detectability of

indoor BSSIDs outdoors underscores the negligible effect of LPI deployments to incumbents.

The following papers has been published in the topic of Wi-Fi 6E (6 GHz) deployments

studies:

• Seda Dogan-Tusha et al. “Evaluating The Interference Potential in 6 GHz: An Exten-

sive Measurement Campaign of A Dense Indoor Wi-Fi 6E Network”. In: 17th ACM

Workshop on Wireless Network Testbeds, Experimental evaluation & Characterization

(WiNTECH ’23). 2023, pp. 56–63.

• Seda Dogan-Tusha et al. “Indoor and Outdoor Measurement Campaign for Unlicensed

6 GHz Operation with Wi-Fi 6E”. In: 26th IEEE International Symposium on Wireless

Personal Multimedia Communications (WPMC). 2023, pp. 1-6.

We also published a comment to the FCC’s Ex Parte regarding our findings of the outdoor

signal level from the LPI APs [52], and a comment to FCC’s Further Notice of Proposed

Rulemaking (FNPRM) regarding the appropriate signal levels for C2C mode in the 6 GHz

spectrum [54].
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CHAPTER 6

SURVEY AND ANALYSIS OF 5G DEPLOYMENTS

6.1 Overview and Related Works

In 2019, cellular operators has begun to acquire new spectrum while rapidly deploying 5G

network all over the US. Among the three largest US operators, Verizon was notably acquired

and deployed 5G mmWave (>20 GHz) in a rapid pace, while AT&T followed behind. The

mmWave spectrum itself has been a subject of academic research for a number of years, most

existing literature discusses the feasibility [121], design [63], and deployment challenges [82].

There are a number of contributions that perform theoretical studies, modeling and simu-

lations on beam management [56, 9, 16] and beam selection algorithm [67, 123, 47]. On

the 5G mid-band, T-Mobile has rapidly acquired and deployed the n41 band (2.496–2.690

GHz) [25], while AT&T and Verizon deployed in the newly released C-Band spectrum (3.7–

4.2 GHz) [10, 111]. Simultaneously, VZW also uses the CBRS band (3.55–3.7 GHz) in its 4G

network, using both Tier 2 Priority Access License (PAL) and Tier 3 General Authorized

Access (GAA) modes [49]. Furthermore, ATT and VZW have further extended their 4G

networks to the unlicensed 5 GHz spectrum through LAA [104]. Prior real-world deploy-

ment studies of commercial 5G did not delve into the fundamental reasons for performance

enhancement or contrast the improvements to its 4G counterpart [18, 48, 77, 55]. Therefore,

we focused our work on analyzing and quantifying the performance of these 5G deployments,

while also comparing its improvements over the older 4G deployments.
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6.2 A Comparison Study of Cellular Deployments in Chicago

and Miami

In this work [95], we present detailed comparisons of the three major cellular operators (i.e.,

AT&T, T-Mobile, Verizon) in Hutchinson Field, an outdoor park area where there are dense

cellular deployments in all the major bands and technologies described above to service the

dense crowds that are common in the summer months when popular outdoor events are

hosted. We also present an in-depth study of 5G mmWave performance in Miami, focusing

on quantifying the performance of 5G mmWave as a function of body blockage, distance, and

the number of devices connected to the base station. Table 6.1 shows the various technologies

and frequency bands deployed: each operator has chosen a different mix of technologies and

spectrum to deliver enhanced broadband speeds.

Table 6.1: Operator Deployment in Hutchinson Field, Chicago, and Downtown Miami (TDD
bands in bold).

Operator Deployment 5G Freq. 5G Op.
Bands

4G Op. Bands
(LAA:46,CBRS:48)

Verizon 4G+LAA & CBRS, 5G Low, High n5, n260 2, 4, 5, 13, 46, 48, 66
T-Mobile 4G, 5G Low, Mid n41, n71 2, 4, 7, 12, 66
AT&T 4G+LAA Low n5 2, 4, 12, 14, 30, 46, 66
Verizon (Miami) 4G+LAA, 5G High n261 2, 4, 13, 46, 66

Table 6.2: Devices used for 4G and 5G Measurements

Location Mobile Device Network Support

Chicago
2 × Google Pixel 2 4G Licensed Only
2 × Google Pixel 3 4G Lic., LAA, CBRS
3 × Google Pixel 5 4G Lic., LAA, CBRS, 5G

Miami 2 × Google Pixel 5 4G Lic., LAA, CBRS, 5G
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(a) Experiment Loca-
tion

(b) 4G Licensed (c) 4G Lic., LAA and
CBRS

(d) 5G FR1 and FR2

Figure 6.1: Hutchinson Field Overview: Verizon, T-Mobile and AT&T 4G, 4G+LAA/CBRS,
and 5G Coverage

6.2.1 Data collection methodology

4G and 5G measurements were collected over several months from the morning to the evening

in 2020 and 2021 in various locations in Chicago and Miami, with the intent to (i) compare

the performance of the three major carriers with the greatest diversity of deployment op-

tions, and (ii) perform an in-depth study of mmWave performance. Thus, we present results

from one location, Hutchinson Field, in Chicago for the former and one location in down-

town Miami for the latter. In this work, we further improve our device-based measurement

methodology to gather detailed network information. Table 6.2 shows all devices that used

in the measurements. The devices are equipped with three Android applications, each of

which supply varying degrees of information: SigCap, FCC Speed Test, and Network Signal

Guru.

SigCap and its improvements. Similar to the previous methodology, SigCap is used

to passively collect 4G and 5G cellular data from the device every 10 seconds. A new 5G

cellular handler is implemented to collect 5G data from device’s Android API (as shown on

Table A.3). However, the state of the art smartphones at the time (e.g., Google Pixel 5,
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Samsung S21 Ultra) did not correctly implement the API, leading to missing signal strength

(e.g., RSRP, RSRQ) and cell identity (e.g., PCI, frequency) information. To solve this, we

also implement a workaround that captures partial signal information and additional NR

state information as shown on Table A.4. This allows us to at least decode SS-RSRP, SS-

RSRQ, and whether the 5G channel is mmWave or not, but without detailed cell identity

information. Using the above data, we generate heat maps of 4G and 5G RSRP as shown in

Fig. 6.1b, 6.1c, and 6.1d, by defining 10 m square grids and averaging the collected RSRP

of the deployment we are interested in (4G Licensed, LAA, CBRS, 5G FR1, and 5G FR2)

over the grid.

FCC Speedtest (FCC ST) [45] measures uplink/downlink throughput, and round trip

latency to the speed test server with the lowest latency. Our measurements went through

two servers in Chicago and one server in Miami. We confirmed that both servers in Chicago

exhibited similar performance. The throughput and latency numbers reported by the app

are end-to-end and include losses introduced by the back-haul.

While the FCC ST app does measure uplink throughput, we only focus on downlink

measurement. On each downlink and latency test, the app records signal conditions at

the beginning and the end of the test similar to SigCap (our testing confirms that the

collected signal data is similar to SigCap, since the same Android APIs are used by both).

However, the information captured are limited (e.g., only the primary 4G and 5G channel

are recorded). Furthermore, FCC ST cannot be run more frequently than once every minute

whereas SigCap can collect data every 10 secs and hence allows us to create maps with

greater temporal and spatial detail. However, the data collected by both apps can be easily

exported for analysis.

Network Signal Guru (NSG). Similar to the prior works, NSG is used in this work to

provide extensive information on 4G and 5G, such as frequency, bandwidth, numerology,
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duplex mode, throughput on several network layers, beam index, SINR, block error rate

(BLER), modulation, and the number of allocated RBs, but requires root access, unlike

SigCap and FCC ST. Also similarly, we use NSG to study a few cases in detail and use

SigCap and FCC ST for heatmaps and statistical analyses.

6.2.2 Measurements in Chicago

Methodology and Overview Hutchinson Field is part of a large urban park called Grant

Park in Chicago, which is often used in large outdoor events (e.g., live concert). The area,

spanning approximately 0.1 km2, is shown in Fig. 6.1a. There are dense deployments of

Verizon’s 4G Licensed, LAA, CBRS, and 5G as shown in Table 6.1, with fewer deployments

by T-Mobile and AT&T. As needed, each device is equipped with AT&T, T-Mobile, or

Verizon SIMs with unlimited data plans1. Data was collected by walking with the devices

in the four different regions, with different radii, as shown in Fig. 6.1a: Outer Region Round

1 (R1), Inner Region Round 2 (R2), Inner Region Round 3 (R3) and Inner Region Round 4

(R4).

We present only the latest data collected during May and June, 2021, during the after-

noon hours with few people (around 20) in the park. In total, we collected 8,353 SigCap

data points. Specifically, there are 44,683 4G, 22,620 LAA/CBRS, and 3,097 5G data points

in the measurement set. In addition, we collected 1,333 FCC ST measurements (708 4G, 386

5G and 239 mixed, where the technology changed during the test), with each containing up-

link/downlink throughput and latency results. Fig. 6.1b, 6.1c, and 6.1d shows coverage maps

of 4G, 4G+LAA/CBRS, and 5G in the park, respectively, from the SigCap measurements.

Summary of 4G and 5G deployment in the Hutchinson Field. Table 6.1 shows that

1. Our subscribed Verizon plan stated that there is a throttling after 50 GBytes for 4G data, and no
throttling for 5G data. For AT&T, there is a throttling after 100 GBytes to 4G and 5G data. For T-Mobile,
50 GBytes for 4G and 5G data. In our experiments, we used multiple SIMs to avoid data cap throttling.
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all of the operators that we studied have extensive deployments of 4G in low-band (Bands

5,12,13,14) and mid-band (Bands 2,3,4,7,30,46,48,66). We found no AT&T and T-Mobile BSs

deployed inside Hutchinson Field; their 4G bands are mostly deployed on macro-cells located

in the greater Grant Park area. Only Verizon has deployed 4G and 5G within Hutchinson

Field: three CBRS (Band 48) channels in 3.56, 3.58, and 3.6 GHz, using General Authorized

Access (GAA) [128]; and LAA (Band 46) channels on two sets of Wi-Fi-equivalent channels:

{36, 40, 44} in U-NII-1 and {157, 161, 165} in U-NII-3. AT&T has also deployed LAA on

two sets of channels: {149, 153, 157} and {157, 161, 165} in U-NII-3. Both LAA and CBRS

were mostly aggregated in groups of three 20 MHz channels with a total bandwidth of 60

MHz, excluding to the primary licensed carrier.

We identified six lampposts inside the field that are used as Verizon’s mmWave BSs

(blue triangles in Fig. 6.1a) using the Ericsson radio. There is no AT&T and T-Mobile

5G deployments inside the field; all 5G BSs are deployed outside the field. The average

distance between the Verizon mmWave BSs is 140 m (460 ft). Each mmWave antenna panel

has a separate PCI with multiple beam indices. Verizon and AT&T have deployed 5G in

NSA mode only, while T-Mobile uses both SA and NSA mode. We “forced” the SA mode

connection by using NSG to block all connections beside 5G.

As its 5G spectrum, T-Mobile and Verizon used the low-band n71 and n5, respectively,

with the maximum 20 MHz bandwidth, while AT&T’s 5G deployment used n5 but with

only 5 MHz. These bandwidths are lower than the possible 40 to 100 MHz in mid-band.

Additionally, due to the limitation of the Pixel 5 being able to aggregate only one 5G channel

in FR1, the low-band 5G performance is worse than the mid-band 4G at the present time,

since 4G has up to four CA.

On the other hand, T-Mobile and Verizon have deployed 5G on mid-band and mmWave,

respectively2. T-Mobile’s mid-band deployment is in Band n41 using 20 and 80 MHz band-

2. We measured AT&T 5G mmWave in other areas of downtown Chicago but not in Hutchinson Field as
of June 2021.
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widths. However, the Pixel 5’s limitation of only one secondary 5G carrier in FR1 still

applies, leading to a diminished performance compared to 4G at the present time. On the

other hand, Verizon has deployed mmWave 5G densely in n260 (39 GHz) using at most

four carriers, each 100 MHz wide. The higher bandwidths and number of channels being

aggregated leads to a vastly improved throughput compared to mid-band 5G. Using NSG,

we observed that Verizon aggregates mmWave channels only if they were transmitted from

the same mmWave panel, i.e., they have the same PCI.

Statistical Analysis of RSRP and RSRQ. We use RSRP and RSRQ values for all

primary and other channels from SigCap to create cumulative distribution function (CDF)

plots for each operator. Fig. 6.2a, 6.2c, 6.2e, and 6.2g show the CDF of primary channel

RSRP scaled by bandwidth, as an indicator of coverage and throughput performance. The

bandwidth scaling is calculated as RSRPdBm + 10 ∗ log10(BWMHz). We only present the

primary channel bandwidth since the API has no reliable information on the total aggregated

bandwidth.

Fig. 6.2a shows that the BW-scaled RSRP of T-Mobile and Verizon are comparable, while

AT&T’s is around 20 dB lower. Similarly, Fig. 6.2b shows a higher RSRQ for T-Mobile and

Verizon, with AT&T around 4 dB lower. These CDFs indicate that the 4G performance of

T-Mobile and Verizon is better than AT&T’s, which is borne out by throughput analysis

presented in the performance analysis section.

Sorted by Band (B) and EARFCN (E), we focus on the occurrence of the Bands on our

measurements: (1) AT&T uses 5 LTE Bands (2, 12, 14, 30, 66) as its primary channel,

with highest occurrence of B2 (E675, 57% of data) and B66 (E66686, 33% of data); (2)

T-Mobile uses two primary channel Bands (2, 66), with B66 (E66811, 92% of data) as

the majority, and; (3) Verizon uses four primary channel Bands (2, 5, 13, 66), with B66

(E66536, 93% of data) as the majority. Of all operators, the primary channel is selected by

optimizing RSRP and RSRQ, as shown on Fig. 6.2c-6.2h where the primary channel with
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Figure 6.2: AT&T, T-Mobile, and Verizon in Hutchinson Field: CDF of Primary Channel
RSRP, RSRQ, and Bandwidth

most occurrence (highlighted as a bold line) has the best BW-scaled RSRP and RSRQ.

However, we observed a slight exception on Verizon: B13 has a better BW-scaled RSRP

but worse RSRQ compared the most occurred B66, thus B66 is arguably the best choice of

primary channel in our measurements.

Fig. 6.2i shows the CDF of the primary channel bandwidth. Verizon has the highest

available bandwidth for its primary channel, followed by T-Mobile and AT&T. Note that the

primary channel bandwidth, RSRP, and RSRQ may not be a good indicator for throughput
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Figure 6.3: AT&T (A), T-Mobile (T), and Verizon (V) in Hutchinson Field: CDF of 4G and
5G RSRP, RSRQ

performance due to carrier aggregation, but does provide insight into the deployment quality:

the higher the primary bandwidth and RSRP, the more likely that the operator will have

good coverage and throughput. This is corroborated by the throughput analysis in the next

subsection.

Fig. 6.3a and 6.3b show the CDF of RSRP and RSRQ for all 4G Licensed carriers (i.e.,

primary, secondary, neighboring) in Hutchinson Field. Based on this, T-Mobile has the

best 4G licensed coverage, followed closely by Verizon and AT&T. The RSRQ CDF shows

Verizon has a better overall channel quality compared to T-Mobile. On the other hand,

AT&T’s RSRP and RSRQ values indicate inferior coverage, which is probably due to the

fact that the cells are mostly deployed outside Hutchinson Field.

Fig. 6.3c and 6.3d show the 5G-RSRP and 5G-RSRQ CDF of 5G when the device is

connected to 5G. We do not scale the 5G-RSRP with bandwidth since the app does not

provide this information for each data record. There are four observations we conclude from

comparing the CDF of 5G-RSRP and 5G-RSRP: (1) Overall, the 5G-RSRP of the FR1 bands

is higher than FR2 due to the difference in operating frequency and the resultant propagation.

(2) The 5G-RSRP of T-Mobile NSA FR1 deviates from the Gaussian distribution since

the values are combined from the low-band (n71) and mid-band (n41), (3) T-Mobile only

connects to the low-band n71 in SA mode, thus its 5G-RSRP is higher. (4) AT&T shows a

very low 5G-RSRP and 5G-RSRQ in FR1, indicating inferior 5G coverage.
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Figure 6.4: AT&T, T-Mobile, and Verizon in Hutchinson Field: RB Usage, Downlink
Throughput, and Latency

Verizon 5G FR1 occurs the least over all categories, with a lower 5G-RSRP and 5G-

RSRQ values. When the device was blocked from connecting to 5G mmWave (using NSG’s

root access), the device would connect more often to 4G+LAA/CBRS rather than mid-band

5G, perhaps because the former configuration provided higher throughput. While LAA and

CBRS information was collected, we do not include them in the comparisons since there is

a substantial difference in transmit power compared to the licensed channels: the U-NII-3

spectrum used by LAA only allows a maximum of 30 dBm transmit power, while CBRS

allows a maximum of 47 dBm in outdoor deployments.

From NSG, we show the average RB allocation per device as an indicator of network load

in Fig. 6.4a. There are slightly fewer RBs allocated on Verizon’s licensed carrier compared to

the other operators, indicating a higher load or higher resource allocations on the secondary

LAA/CBRS/5G carriers. However, the difference is insignificant, and we can conclude that

the network load is similar for all operators during the measurements.

Downlink Throughput and Latency Performance, using FCC ST. The data was

sorted based on the cellular technology reported by FCC ST and we removed data where

the technology switched between 4G and 5G during the test. Fig. 6.4b shows the downlink

throughput CDF of AT&T, T-Mobile, and Verizon in 4G and 5G. The average download

throughput recorded in the Hutchinson Field region for all operators are as follows: (i)
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AT&T: 20.7 Mbps and 27.1 Mbps in 4G and 5G-NSA, respectively; (ii) T-Mobile: 77.2

Mbps, 46.2 Mbps, and 101.3 Mbps in 4G, 5G-SA, and 5G-NSA, respectively and (iii) Verizon:

95.8 Mbps and 574.4 Mbps in 4G and 5G-NSA, respectively. Verizon achieved the best

throughput performance in 4G and 5G, due to its usage of CBRS/LAA and mmWave,

respectively. AT&T had the worst 4G and 5G throughput in Hutchinson Field due to low

coverage and low bandwidth (5 MHz) of Band n5. Both Verizon and T-Mobile achieved a

very similar performance in 4G, which correlates to the similarity of their 4G RSRP, RSRQ,

and primary bandwidth distribution. However, Verizon delivered a maximum 4G throughput

of 421 Mbps due to LAA/CBRS usage: better than the highest 5G throughput in FR1 of

219 Mbps, achieved by T-Mobile 5G-NSA. Due to device limitations, only a maximum of

one 5G FR1 carrier can be aggregated. Thus, there can be a diminished throughput increase

when the device is switched from 4G to 5G FR1. This is demonstrated clearly by the low

throughput values of T-Mobile 5G-SA which is limited by the single 5G channel usage.

Fig. 6.4c shows the CDF of the round trip idle latency of the three operators over 4G

and 5G. The median values are: 30.5 ms and 30.7 for AT&T 4G and 5G-NSA, respectively;

44.1 ms, 48.4 ms, and 74.8 ms for T-Mobile 4G, 5G-SA and 5G-NSA, respectively; 44.1 ms

and 54.4 ms for Verizon 4G and 5G-NSA, respectively. Generally, the latency performance

is poorer in 5G-NSA compared to 4G. This may be due to non-optimal deployment of 5G-

NSA [78, 125], causing additional overheads due to dual connectivity. It should be noted that

the latency measurement is end-to-end, however, since all the latency tests were conducted

via the same two servers, the effects of back-haul on the latency are the same for all the

operators. We did not notice any significant difference in throughput and latency between

tests conducted over the two servers.

It is clear that 5G mmWave provides a significantly improved throughput performance,

but the latency performance could be improved. In spite of the directional nature of mmWave

transmissions, the dense deployment of 6 BSs over 0.1 km2, with average distance of 140 m
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Figure 6.5: mmWave Deployment at Miami, Florida

between BSs provides very good 5G mmWave coverage in Hutchinson Field. However, the

directional nature also results in a higher variance of 5G mmWave throughput as seen in

Fig. 6.4b. Hence, in the next section, we focus on a single Verizon 5G mmWave BS to better

quantify mmWave performance as a function of distance, body loss, and number of clients.

6.2.3 Measurements in Miami

We utilized two Pixel 5 phones as summarized in Table 6.2. We measured the Verizon network

while walking in the park and city streets within the downtown area shown in Fig. 6.5a. The

measurements were done between January and June 2021. Verizon has a diverse deployment

in downtown Miami with a mix of 4G, 4G+LAA, and 5G mmWave, as was previously

summarized in Table 6.1. Unlike Hutchinson Field in Chicago where CBRS has been widely
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deployed, CBRS was not detected in Miami3. The Verizon mmWave operating band is

n261 (28 GHz) unlike Chicago where it was n260 (39 GHz) with a bandwidth of 400 MHz

(aggregated over four carries, each 100 MHz).

First, Fig. 6.5a shows the coverage map of 5G deployment in downtown Miami, we

focus on 7 locations labelled M1-7. 4G+LAA is also widely deployed in the same area.

Fig. 6.5b the throughput distribution of 5G compared to 4G+LAA on all locations. The 5G

throughput gain is in the range of 4× to 14×, compared to 4G. Also, we observe a similar

5G throughput distribution between Miami and Hutchinson Field. However, 4G throughput

at Miami is higher due to high occurrence of LAA aggregation. Second, Fig. 6.5c shows the

impact of distance on the 5G mmWave coverage. As shown, the maximum throughput is

achieved up to 250 feet before it dramatically drops down at 300 ft. Furthermore, having

trees (i.e., shadowing effect) reduces the coverage range down to 125 ft (i.e., 50% drop in

coverage). Third, Fig. 6.5d depicts the impact of human body blocking, in which 2 different

trials were conducted. One trial had the user’s body blocking the phone, while the other did

not. The trials were conducted at a fixed distance to the tower with no other obstructions,

both phones were connected to the same PCI 714, and the same beam number throughout

the trial. We observe a lower throughput and a higher variance on the blocked phone. The

average degradation due to human body blockage is about 20%.

Finally, Fig. 6.5e shows the impact of having two simultaneously served phones. In this

experiment, we use two Google Pixel 5 phones. The two phones were held within arms-

length of one another near a cell tower, and phone-2 starts four seconds after phone-1.

Fig. 6.5e depicts the throughput achieved by each of the two phones over time. As shown,

phone-1 starts with a high throughput, indicating that all RBs are allocated to phone-1.

Once phone-2 starts, the throughput of phone-1 drops given that the total resource blocks

are now shared between the two phones. Such an experiment was repeated multiple times,

3. According to the FCC database, Verizon has 30 MHz PAL license in the Miami-Dade county area.
However, we did not observe CBRS deployment at the time of measurements.
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and Fig. 6.5f shows the outcome of 6 such trials over different PCIs. In most cases, the

throughput values of both phones are comparable.

6.3 Analysis of 5G mmWave Deployments and Beam

Management in Chicago

In this work [76], we focus on another facet of a 5G mmWave deployment: beam manage-

ment in terms of coverage, selection, and propagation. Our analysis of beam management

in commercial deployments will answer research questions that most of the analysis and

theoretical modeling in the literature do not adequately answer: what should the practical

inter-distance between two mmWave BSs be, what role does path loss play in beam selection

mechanism, what is the trade-off between number of Tx and Rx beams, do more antennas

imply higher throughput, do more beams lead to more inter/intra-beam handover or latency?

As of the time of the measurement (June 2021), two 5G operators have densely deployed

mmWave-based 5G service (in non-standalone/NSA mode) in the area: OpX (Verizon) and

OpY (AT&T). We chose two regions in the Chicago Loop that represents Line-of-Sight (LoS)

and Non-Line-of-Sight (NLoS) deployments: (1) BP– the Upper Hutchinson Field Baseball

Park (near E Balbo Dr & S Columbus Dr) representing an open field space, and (2) DT–

DownTown Chicago (W Adams Blvd & S Lasalle St to W Jackson Blvd & S State St)

representing an urban canyon surrounded by tall buildings on both sides of the road with

high pedestrian and vehicular traffic.

6.3.1 Data collection methodology

To ensure that the end user’s smartphone device does not become a bottleneck in support-

ing such high bandwidth, we use 3× state-of-the-art Samsung Galaxy S21 Ultra 5G (S21)

smartphones as (SM-G998U1) the user equipment (UE). This model is equipped with the
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Table 6.3: Fields captured in the dataset.

Field Description

Latitude,
Longitude

UE’s geographic coordinates and estimated accuracy
from the Android API

PCell PCI Primary cell PCI for LTE/NR cell
SCell[x] PCI Secondary cell PCI for LTE/NR cell [x = 1 ∼ 7]
RSRP/RSRQ* Signal strength values for LTE and NR PCell/SCell
Pathloss Path Loss b/w Tx and Rx for NR PCell/SCell
UL, DL
NR-ARFCN

Absolute radio-frequency channel number used
in uplink and downlink for NR PCell/SCell

PDSCH/PUSCH
Throughput

UL/DL physical throughput for LTE and
NR PCell/SCell

Beam SSB Idx*
SSB (Secondary Synchronization Block) Tx/Rx
beam index for NR Cell

Best Beam Idx
Tx beam index of dominant beam (highest RSRP)
on serving cell

Best Beam State
Status of whether serving beam has the best RSRP
over all possible beams (serving + neighbor)

Beam Switch
Delay

Delay time when switching between beams on the
same or different PCI

* these fields are also captured for neighbor (non-serving) cells and per beam for mmWave
NR

Qualcomm Snapdragon 888 (SM8350) chipset with X60 modem [116] to handle 5G in the

low, mid, and mmWave bands. On the mmWave bands, it is capable of receiving up to 8

Tx beams using 2 Rx beams, utilizing up to 8 × 100 MHz wide channels.

Root-based tool: Accuver XCAL. Accessing lower-layer information requires access to

Qualcomm Diag (or the diagnostic interface), which needs special licenses and tools. We

therefore rely on a professional tool called Accuver XCAL [8] which has access to Qualcomm

Diag. Similar to NSG, this tool provides access to PHY, MAC, RRC layer messages by

accessing the control plane messages and chipset logs using root privilege, which in turn

provides insights on the beam management aspects. XCAL provides an easier data extraction

compared to NSG. However, the phones still need to be tethered to a laptop to enable the

tool, with up to 4 smartphones connected concurrently. Table 6.3 provides a summary of a
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subset of fields captured by XCAL which are relevant to our analysis.

Figure 6.6: Map of 5G mmWave BS deployments and walking route/trajectory.

Overview of measurement locations We focus our measurement campaign on two re-

gions. The first region is BP, a baseball park with large open fields spanning an area of

approximately 17,170m2. Fig. 6.6a depicts this park where OpX has deployed 3 mmWave

BSs. Each BS was equipped with 3 directional mmWave transceivers. In order to under-

stand the coverage of OpX within the baseball park area, we constructed two patterns of

walking trajectory (see Fig. 6.6a): (1) a rectangular spiral pattern and (2) a zig-zag pattern

which respectively took ∼27 mins (∼2.2km long) and ∼55 mins (∼4.6km) to complete a

single route. We repeatedly walked pattern (1) in a clockwise and anti-clockwise directions

for 3 times each, and pattern (2) in two opposing diagonals (i.e., NW↔SE and NE↔SW)

for 2 times each. The second region is DT, a section of downtown Chicago region that is

surrounded by tall buildings, restaurants, tourist hot-spots, etc., with high pedestrian as

well as vehicular traffic. Both OpX and OpY have fairly dense 5G mmWave deployments in

this area. We pick a 970m walking route in this region that passes through the coverage of

both operators. We completed 9 walking loops of the route in an anti-clockwise direction.

Fig. 6.6b depicts the walking route in DT as well as the location of the BSs. These two
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Table 6.4: Dataset statistics collected from real world deployments with mmWave 5G cov-
erage at Chicago Loop area.

Dataset Statistics

Cumulative distance 73.76 km+ (walk), 69.1 km (drive)

Cumulative time of traces 1260 minutes+

# of commercial operators 2

# of unique 5G PCIs OpX: 265, OpY: 105

Total area covered 2.3 km2

mmWave 5G-NR bands n260/39 GHz and n261/28 GHz

regions are particularly useful for this study from two perspectives. First, it allows us to

compare the two and understand the impact of the environment characteristics on beam

management and signal propagation. Second, the DT region allows us to compare the same

between the two operators who have different deployment parameters as described in the

next section.

In both regions, we use XCAL to passively collects all the lower-layer information, and

run two types of active experiments: (1) Ping – measures the round trip latency every second

with the target set to a Google DNS server (8.8.8.8), and (2) HTTP – download a large YUV

data blob over HTTPS [26] (and repeat if the download is complete). For understanding

beam management and coverage, the Ping-based measurements helped us ensure the 4G and

5G radios always remain in the RRC CONNECTED state, thus avoiding any fallback to 4G

due to data inactivity. HTTP-based measurement is used to understand the implications of

beam management and configuration over network performance (e.g., downlink throughput).

Table 6.4 provides a statistical summary of our collected dataset over the full campaign at

Chicago. In this work, we particularly only focused on data collected on foot.

6.3.2 Overview of mmWave deployment parameters

Table 6.5 summarizes several parameters observed in the data collected from our coverage

analysis of Chicago city for both OpX and OpY. The key differences between the two operators
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Table 6.5: mmWave Deployment Parameters (as of June’21).

Parameter OpX OpY

Radio Make Ericsson Samsung
Radio Model AIR 5121/6701 HT5H01-60A
# of Antenna Panels 2 to 3 per BS 2 per BS
PCI Assignment 1 per panel 1 per BS
Max. Ch. Agg. (CA) 4 or 8 channels 8 channels
Max. # of Tx Beams 13 per PCI 56 per PCI
5G Deployment Model NSA NSA
5G-NR Band n261, n260 n260
LTE Anchor Band Band 2, 5, 66 Band 2 & 66
Ch. Width 100 MHz 100 MHz
Sub-Carrier Spacing 120 kHz 120 kHz

include: (i) PCI assignment: OpX has a unique PCI for every directional panel (e.g., if

a single BS has 3 panels, we observe three unique PCIs) whereas OpY has one per BS;

(ii) number of Tx beam indices: OpX uses fewer beam indices (13 per PCI or 26 for a BS

with 2 panels) compared to OpY (56 per PCI/BS)4. This observation suggests OpX uses

wider beams than OpY; (iii) 5G-NR band: OpX uses both 28 GHz and 39 GHz in DT and

only 39 GHz in BP while OpY uses only 39 GHz in DT. All BSs of both operators in DT use

carrier aggregation (CA) to aggregate a maximum of 8 mmWave channels (1 primary and

up to 7 secondary channels), each 100 MHz wide. We also find that depending upon the

location (or radio model and/or band), OpX might either aggregate a maximum of 4 or 8

channels. OpY was observed to support up to 8 aggregated channels. With majority of our

HTTP-based experiments (that saturated the downlink capacity) focused in the DT and BP

regions, we observe that OpX aggregated up to 4 channels in 28 GHz and up to 8 channels

in 39 GHz. OpY was observed to support up to 8 aggregated channels.

Carrier aggregation (CA) in frequency can occur over a single beam or multiple beams.

As shown in Fig. 6.7, each Tx beam can transmit on up to eight 100 MHz wide channels. In

4. We observe a maximum beam index of 29 and 63, per PCI for OpX and OpY, respectively. While we
observe only a subset of the beam indices in our walking experiments, the unseen beam indices might either
be deactivated or can be observed at other regions (e.g., at higher altitude).
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Figure 6.7: Carrier Aggregation (CA) in mmWave.

the deployments we measured, a particular frequency was transmitted only on one Tx beam,

i.e., there were no simultaneous data transmissions on the same frequency from multiple

beams. On the Rx side, the phone has two beams, each of which can receive over all fre-

quency channels. Thus, this is not a pure implementation of Multiple-Input-Multiple-Output

(MIMO) where BS transmit the same signal over multiple frequencies, but an aggregation of

different signals over space-frequency with receive combining. OpX and OpY exhibit differ-

ences in how they combine CA with beams as shown in Fig. 6.8. When more than 2 channels

are aggregated, OpX uses a single beam most often in both 28 GHz and 39 GHz, whereas

OpY uses two beams. This could be due to our earlier observation where we found OpX uses

wider beams than OpY.

6.3.3 Beam coverage in LoS and NLoS environments

Line of Sight (LoS) Coverage. In an open field such as BP, mmWave beams have little

to no scope to reflect off surfaces to establish non-line of sight (NLoS) path to the UE. Not

surprisingly, OpX has densely deployed 3 mmWave BSs to cover the same geographic spot.

For instance, as shown in Fig. 6.6a, the central region at BP falls in the coverage footprint
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(a) LoS: Serving Beams of PCI 327,
OpX at BP.

(b) NLoS+LoS: Serving Beams of PCI
479, OpX at DT.

Figure 6.9: Coverage by different serving beams of a PCI (OpX).

of three different panels or PCIs (322, 327 and 333). We find that the UE typically gets

connected to a PCI with LoS. We therefore use this location to understand and quantify the

beam coverage. Fig. 6.9a shows OpX’s PCI 327’s beam coverage. This figure clearly shows

each unique serving beam’s demarcated geographical footprint under LoS conditions. Upon

further investigation, we find that each unique beam associated with PCI 327 at BP location

covers an area approximately between 1,800-4,000 m2.

NLoS Coverage. We conduct similar analysis in the DT area that is surrounded by tall

buildings. An urban canyon like this provides plenty of opportunity for the beams to reflect

and establish NLoS path to the UE. Fig. 6.9b shows the coverage of OpX’s PCI 479. Unlike

the clear footprints observed under LoS conditions in BP, in NLoS, we find each beam’s

coverage can be highly dynamic and sparse. No doubt, coverage with NLoS is largely dic-
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tated by two key factors: (i) the mmWave signal reflection characteristics provided by the

surrounding environment, and (ii) the UE’s contextual factors such as geolocation, moving

speed, direction, etc.

6.3.4 Propagation analysis

Propagation measurements in mmWave have been conducted in multiple environments by

a number of researchers, e.g. [51, 117, 91]. Most of these studies were carried out in a

precisely controlled manner using high-fidelity channel sounding equipment that enables

not only path loss measurements but also channel impulse responses when wideband chan-

nel sounding signals are used. These and many of similar measurements have formed the

cornerstone of mmWave system development, including 5G. However, there is a dearth of

measurement data on propagation in real-world environments using such as ones collected

using commercial off-the-shelf (COTS) hand-held smartphones. Factors such as body-loss,

hand obstructions on the receive antenna, foliage and building blockage have been consid-

ered in isolation but not in combination with real-world deployments and constraints. In

this analysis, we use RSRP values recorded from the S21 smartphones running simultaneous

Ping workload. Although the RSRP value may not be calibrated between the phones, they

all uses the same modem chipset. Thus, RSRP values recorded by the modem are assumed

correct within the smartphone model (i.e., the same value will lead to the same behavior for

all S21 smartphones).

Primarily imposed by the both the tool and the UE/smartphone, there are two main

limitations in the measurements available to us for analyzing propagation: (i) it is unclear

as to how the “path loss” measurement obtained from the tool is being computed, since

the transmit power could vary with the use of power control. We have observed that the

RSRP of the primary channel is always higher than the secondary channels, indicating a

higher transmit power. Furthermore, the combined RSRP from the two receive beams on
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the phone is used to compute the path loss, not the RSRP on each individual receive beam,

and (ii) we compute distances based on the GPS coordinates available from the phone, which

have an inherent inaccuracy exacerbated by tall buildings in the DT location. With these

constraints, it is impossible to “fit” the path-loss measurements to any of the well-known

path-loss models [90]. Instead, since the RSRP calculation is well-defined, we focus on the

RSRP measurements on a beam-pair level to perform relative comparisons of RSRP using

the approach in [91] where a floating intercept model is used:

RSRP [dB] = α + 10β log10(d) +Xσ (6.1)

where d is the distance in meters, α is the intercept in dB, β is the slope, and Xσ is a zero

mean Gaussian random variable with a standard deviation σ in dB. It should be noted here

that β should not be considered as the path-loss exponent (PLE) since the intercept α

is not the reference power at the reference distance of 1 m that is commonly assumed for

mmWave propagation. Instead, α includes all contributions due to frequency dependence,

Tx and Rx antenna gains, clutter, body loss, foliage, etc. However, β can be used to make

relative comparisons as will be described later. The RSRP analysis in this section is based

on observations made over the primary channel from the data collected using the Ping-based

measurements. We fit the linear model described above to the RSRP for every Tx-Rx pair,

where each Rx beam is considered separately.

RSRP vs. Distance for OpX in BP As shown in Fig. 6.6a OpX has deployed 3 BSs in the

BP location, with PCIs 322, 327 and 333 providing coverage footprint to the inside of the

baseball field. PCI 322 is partially obstructed by foliage (NLoS) while the other two PCIs

are less obstructed. Fig. 6.10a shows the RSRP vs distance performance of PCI 322 where

the scatter plot of all individual Tx-Rx beam pairs (not just the best beam pair) is shown,

along with the best linear fit. Fig. 6.10b shows the best-fit line computed similarly for all
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Figure 6.10: Line fitting of RSRP vs. distance.

three PCIs in that location. As mentioned above, we can use the relative difference in the

slopes, β, of these three PCIs in the same area to conclude that the obstructed PCI, PCI

322, has a higher PLE than the other two PCIs in the area.

RSRP vs. Distance for OpX and OpY in DT We combine the RSRPs for each Tx-Rx

pair through the entire DT area for OpX in 28 GHz and 39 GHz and OpY in 39 GHz over all

deployed PCIs. Fig. 6.10c shows the performance. OpX at 28 GHz has a lower slope (smaller

PLE) compared to 39 GHz, due to the frequency difference, while OpX at 39 GHz exhibits

a slightly higher slope (larger PLE) compared to OpY which could be due to the use of

wider Tx beams leading to less power received at the same distance. However, overall there

is not a significant difference at 39 GHz between the two operators since the deployment

environment is basically the same.

6.3.5 Beam selection analysis

To better understand the impact of environmental features (e.g., open-space vs. urban

canyon), Fig 6.11 compares the RSRP of the serving beam between BP (LoS) and DT

(NLoS+LoS). Overall, we find the RSRP at BP (which, except PCI 322, mainly propagates

via LoS to UE) is higher by 3 to 4 dBm when compared to DT which is a mix of LoS and

NLoS.
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Figure 6.11: CDF: LoS vs. NLoS

When selecting the serving beam especially under situations where multiple PCIs (or

beams) can cover the same geographic region or when the UE is on the move, operators

have to track the UE’s location and perform beam switching. To better understand the

beam selection strategy used by the operator, we select several metrics (e.g., RSRP, RSRQ,

CSI, etc.) of the serving beam and compare it against that of the neighboring beams (up

to 3, which can be from same or different PCI) as seen by the UE. We find that in general,

operators use RSRP to make beam selection. We therefore use RSRP for further analysis on

evaluating the beam selection strategies deployed by both the operators. We also compare

the Serving Beam’s RSRP with the Best Beam5 as reported in the Qualcomm chipset’s ML1

Searcher Measurement log messages.

As discussed earlier, BP represents an open field (with high density of people during

events) providing less opportunity for establishing NLoS paths between the BS and UE.

Not surprisingly, in BP we find OpX has deployed multiple PCIs with overlapping coverage

footprint and depending upon the UE’s moving direction, the UE gets connected to the PCI

with LoS. For instance, the patch illustrated in Fig. 6.12a falls under the footprint of all the

three PCIs. The bearing (or azimuth) angles which represents the direction of UE’s mobility

shows distinct density distributions when connected to PCI 327 versus PCI 333. In terms

5. Details on how Qualcomm decides which beam is the best is not fully known. Our correlation analysis
suggests this to be chosen from the beam with the highest instantaneous RSRP measured by the chipset.
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of how well an operator performs in selecting the best beam as the serving beam, Fig. 6.13a

shows that in BP (or under LoS conditions), the Best beam clearly match the Serving beam.

On an average, the selected beam is also 14.4 dBm higher than the Neighbor Top 1 beam.

This suggests, operators show the ability to in general select the best beam under LoS. Note,

selecting the best beam does not always result in better coverage especially in open space

settings with limited to no scope of signal reflection.

On the other hand, Fig. 6.13b (and Fig. 6.13c) show the RSRP at the DT (i.e., LoS +

NLoS environment), on an average there is a degradation of 3.6 dB of the Serving beam’s

RSRP when compared to that of the Best beam. Nonetheless, our study highlights and

quantifies the challenges faced by operators which could have several implications on network

and application performance. Clearly, differences in the environmental features has an impact

73



Table 6.6: Beam switching statistics at DT.

Operator
Intra-BS Beam Switch Inter-BS Beam Switch
Swtch.
interval

Delay (s) Swtch.
interval

Delay (s)
µ σ µ σ

OpX-28 GHz 6.99 s 0.16 0.09 43.39 s 4.72 2.35
OpX-39 GHz 70.18 s 0.35 1.66 N/A N/A N/A
OpY-39 GHz 1.29 s 0.2 1.12 85.03 s 24.03 73.14

of signal reflection and propagation. Such impact is known but challenging to quantify

especially in-the-wild. we believe our initial analysis on beam selection as well as the dataset

will establish a baseline for the research community as well as to track longitudinal insights.

Intra-BS and Inter-BS Beam Switching Statistics

We perform an analysis on OpX and OpY data collected at DT using the Http workload

that activates more beams. Table 6.6 shows the statistics of beam switching within different

beams in the same BS (intra-BS) and beam switching between different BSs (inter-BS) at

DT. The phones are side-by-side during the measurement walk, thus enabling comparison of

beam switching data from different phones.

OpY uses a larger number of narrower beams compared to OpX and hence we see that the

switching interval is smaller, i.e. beams are switching more often within the BS. Since DT is

a mix of NLoS and LoS, this is expected. The delay incurred by switching beams are varying

between all operators. However, given that OpY has less switching interval and considerably

low delay, it may demonstrated a more efficient beam management algorithm. For OpX in

39 GHz, we observe high beam switching interval and delay compared to 28 GHz, indicating

that the 39 GHz BS holds on to a beam more due to its high delay. Over all operators, the

39 GHz beams shows a higher intra-BS beam switching delay compared to 28 GHz.

The deployment map in Fig. 6.6b shows that OpX’s 28 GHz BSs are deployed closer

together than OpY’s, which results in a lower inter-BS switch interval for OpX compared to

OpY. Meanwhile, OpX’s 39 GHz BSs are deployed 340 m between each other, thus the UE
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Figure 6.14: Number and prob. of frequency channels aggregated.

never switch between them. It is interesting that the inter-BS switch delay for OpY is much

higher: it may due to a less optimized switching algorithm.

6.3.6 Performance analysis

Fig. 6.15a shows the throughput CDFs of OpX and OpY at 39 GHz and OpX at 28 GHz in

DT for all data and separated by d < 100m and d > 100m, with d as the distance between BS

and phone. There are a number of interesting observations we can draw from these results:

1) OpX’s maximum throughput over all data is lower than OpY’s in both bands.

This is due to 2 reasons: (i) Fig. 6.14 shows that OpX aggregated a maximum of 4 channels

at 28 GHz compared to 8 by both operators at 39 GHz, and (ii) we see from the deployment

map in Fig. 6.6b that OpX’s 39 GHz BSs are much farther apart than OpY’s. In fact, it is

rather curious that OpX has deployed their 28 GHz BSs closer together than the 39 GHz

BSs: given the theoretical difference in path loss at these 2 frequencies (corroborated in

Fig. 6.10c), it should have been the other way around.

2) OpX’s median throughput over all data at 39 GHz is higher than OpY’s. Fig. 6.14

show that this is due to OpX at 39 GHz aggregates 8 channels at 88% of the time compared

to OpY at 62%. Also, OpX’s median throughput is dominated by the data for d < 100m,

i.e., the increased carrier aggregation outweighs the reduced RSRP due to distance.

3) By comparing OpY’s throughput between d < 100m and d > 100m, we see that
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Figure 6.15: Throughput analysis at DT

the throughput distribution is relatively unaffected by distance. This is due to the average

distance between their BSs being less than OpX at 39 GHz.

4) Fig. 6.15b shows throughput from a 5 minutes section of the measurements, which

starts from LaSalle & Jackson and ends at State & Jackson. Clearly, the denser deployment

of OpY (3 BSs) leads to more uniform and higher throughput over that region, with the best

throughput achieved by OpY’s PCI 686 due to the LoS environment surrounding the BS.

These measurement study of real-world 5G NR mmWave beam management has revealed

the different deployment parameters used by the operators (i.e., differences in channel fre-

quency, beam width, number of beams), which in turn provide interesting insights on the

mmWave signal propagation, coverage, beam management, and network performance.

6.4 Outdoor-to-Indoor Performance Analysis of a 5G mmWave

Deployment

As the previous measurement campaigns were focused on outdoor measurements of 5G,

there is a lingering research question regarding the performance of 5G indoors while the

BSs are outdoors. To address this, we conducted indoor measurements at a University

76



of Chicago dormitory building which conveniently has a Verizon mmWave BS across the

street. We first present an indoor performance analysis of 5G NR among the three US

operators (i.e., AT&T, T-Mobile, Verizon). Then we present a focused analysis of Verizon’s

5G mmWave performance (in terms of downlink throughput, uplink throughput, and latency)

under varying window opening gap sizes.

6.4.1 Methodology and Deployment Overview

Fig. 6.16a shows the indoor measurements site: Woodlawn Residential Commons, a 7 storied

dormitory building at the University of Chicago. The building is located at 1156 E 61st St,

conveniently beside (∼25 m) a Verizon mmWave BS deployment. The building has completed

its construction in 2020, with an unknown type of glass used in the windows. However, we

believe that the windows are most likely Low-E glass given the very recent construction of

the building. We conducted indoor measurements in various rooms in July 2021, with special

permission from the university.

(a) BS and UE location.

(b) Line-of-Sight
(LoS) between BS
and UE.

Figure 6.16: Outdoor-to-indoor (OtI) measurement location.

For the UEs, we utilized up to three Google Pixel 5 phones, equipped with AT&T, T-
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Mobile, and Verizon SIMs with unlimited data plans. As with our prior works, we utilized

multiple SIMs to avoid data cap throttling. Each phones passively ran SigCap and NSG on

Google Pixel phones to collect detailed signal parameters. Conversely, the FCC ST app is

utilized to actively run download, upload, and latency test on every minute.

Table 6.7: Indoor Cellular Reception at UChicago Dormitory. SA: standalone, NSA: non-
standalone

Operator 5G NR
Mode

5G NR Band (Max.
Bandwidth)

4G LTE Band (Max. band-
width)

AT&T NSA n5, 850 MHz (5 MHz) 2 (15 MHz), 12 (10 MHz), 14 (10
MHz),
17 (10 MHz), 30 (10 MHz), 66 (10
MHz)

T-Mobile NSA n41, 2.5 GHz (100 MHz),
n71, 600 MHz (20 MHz)

2 (15 MHz), 66 (15 MHz)

Verizon NSA n5, 850 MHz (10 MHz),
n261, 28 GHz (400
MHz)

2 (5 MHz), 13 (10 MHz), 66 (20
MHz)

6.4.2 Comparison of 5G NR performance among different bands and

operators

We surveyed 2nd - 7th floors of the building (the accessible floors for measurement) by

placing three Pixel 5 phones on a cart. Each phone is equipped with AT&T, T-Mobile, and

Verizon SIMs. We then turn the passive and active measurements, and wheeled the cart

through corridors and rooms in the east side of the building which faces Verizon mmWave

BS. All windows were shut during this survey. Table 6.7 shows the summary of indoor

reception in the dormitory: there are a varying number of different 4G LTE and 5G NR

channels, in low-, and mid-bands. First, all 5G deployments are NSA, and we were not able

to “force” SA mode on T-Mobile by disabling LTE connection using NSG, possibly due to

lack of SA deployment nearby. We were able to receive low-band n5 deployments by AT&T

and Verizon indoors. On the other hand, T-Mobile has a more varying 5G deployment: a
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low-band n71 and and a mid-band n41 can be received indoors. For high-band/mmWave,

we observed Verizon 5G mmWave reception indoors in 28 GHz with a maximum bandwidth

of 400 MHz using 4-channel aggregation (CA). However, the reception was very limited and

with poor RSRP. The mmWave signals are not available at all on the 7th floor possibly due

to the downwards orientation of mmWave panels. While on the 2nd - 6th floors, there were

only a handful of rooms that were LoS to the BS that could receive 5G mmWave signals

when the window was open. This is likely due to the Low-E glass used in the windows. For

AT&T and T-Mobile channels, we are uncertain about the exact location of their outdoor

BSs. However, we confirmed from the PCIs that all indoor reception of Verizon’s NR and

LTE channels were being transmitted from the BS on the pole right outside the building.

This particular Verizon BS also shows an outdoor availability of Bands 46 (LAA) and 48

(CBRS). However, we also did not detect both bands indoors, most likely due to the lower

transmitted power allowed in these bands.

Since all 5G deployments are NSA, each 5G connection consists of LTE and NR channels.

For AT&T and T-Mobile, the choice of LTE and NR channels are predictable based on the

RSRP. However for Verizon, but there was a difference in the LTE primary channel used

depending on the NR band. When NR Band n5 (low-band, bandwidth 10 MHz) was used,

the LTE primary on the DL was always Band 66 with a bandwidth of 20 MHz, whereas

when NR Band n261 (mmWave) was being used, the LTE primary carrier on the DL was

either band 66 (20 MHz) or band 13 (10 MHz). This difference in choice of LTE primary

channel has an effect on overall DL and UL throughput as shown on the later analysis.

DL Throughput comparison: From Figs. 6.17a and 6.17d we see that NR clearly de-

livers significant DL throughput improvements over LTE, especially for T-Mobile and Veri-

zon. AT&T NR performance is limited due to the low-band only deployment using only 5

MHz of bandwidth, compared to T-Mobile’s 100 MHz at 2.5 GHz and Verizon’s 10 MHz.

Since Verizon 5G mmwave was not received during these tests, the DL throughput is solely
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Figure 6.17: Indoor survey of AT&T, T-Mobile, and Verizon in terms of throughput and
latency performance.

via aggregation of LTE and low-band NR. With no mmWave reception, T-Mobile NR DL

throughput is superior to Verizon’s, even though the Verizon BS is very close to the building.

Once again, this survey demonstrates the severe limitation of indoor 5G mmWave reception.

UL Throughput comparison: From Figs. 6.17b and 6.17e we see that here too NR

clearly delivers significant UL throughput improvements over LTE, for all operators. There

is a clear advantage of Verizon UL, most likely due to the aggregation with the 20 MHz band

66 LTE carrier and the proximity of the location to the BS enabling higher modulation-coding

settings. For example, the 80 Mbps throughput is due to 65 Mbps over band 66 and only 15

Mbps over NR band n5.

Latency comparison: From Figs. 6.17c and 6.17f we see that there is not an appreciable

reduction in latency with NR, though overall Verizon latency with NR is the lowest. However

previous results already noted that NR latency was lower in the low-band compared to

mmWave, and these results only include low-band NR. It should also be noted that since

most of these measurements were over the NSA mode of NR, the latency could be higher
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due to the dual connectivity, channel aggregation and the use of the 4G core network. As

SA with the new 5G core begins to be deployed, we anticipate that the latency results will

improve.

6.4.3 Performance of 5G mmWave as a function of window opening gap

size

We first did a preliminary measurement where we open the window of each room facing

Verizon 5G mmWave BS on all floors, and we observe the best 5G mmWave performance

in room E206 on the 2nd floor. Therefore, we utilized the room for additional experiments

to quantify performance as a function of the window opening gap size. The UE was placed

on top a desk with line-of-sight (LoS) to the mmWave BS as shown in Fig. 6.16b. We then

vary the width of the window opening as shown in Fig. 6.18, where Gap 1 is the widest gap

and Gap 4 is a fully closed window. For each gap scenario, passive and active measurements

were taken over 15 minutes.

Figure 6.18: Window opening gap diagram.

First, we present coverage performance on each gap scenario, in terms of RSRP and

RSRP as shown in Table 6.8. The phone was connected 5G mmWave for Gaps 1 and 2, then

it was handed-over to 5G low-band for Gaps 3 and 4. Thus, the overall lower RSRP values

in Gaps 1 and 2 are due to the shorter wavelength. While the average RSRQ stays constant
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Table 6.8: NR Reception on Different Gaps

Gap # NR Channels Avg. RSRP Avg. RSRQ
Gap 1 4 × n261 (400 MHz) -89.52 dBm -11 dB
Gap 2 4 × n261 (400 MHz) -98.98 dBm -11 dB
Gap 3 1 × n5 (10 MHz) -74.34 dBm -11 dB
Gap 4 1 × n5 (10 MHz) -75.60 dBm -11 dB

on all Gaps, we observe reduction of average RSRP from Gap 1 to Gap 2, and from Gap 3 to

Gap 4. The decrease of RSRP by 10 dB from Gap 1 to Gap 2 illustrates the vulnerability of

mmWave connections when encountering obstructions such as Low-e glass. While on Gaps

3 and 4, there is not much difference in the RSRP since Band n5 at 850 MHz propagates

very well indoors and is less dependent on the window gap size.
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Figure 6.19: Throughput and latency performance as a function of window opening size

Fig. 6.19 show the throughput and latency performance on the varying window gap

scenarios. For downlink throughput as shown by Fig. 6.19a, we observe a better performance

on Gaps 1 and 2. This can be explained due to the high bandwidth of the 5G mmWave

connection. Contrarily, Fig. 6.19b and 6.19c shows the best UL throughput and latency is

achieved by Gaps 3 and 4, possibly due to the LTE channel aggregation of the NSA mode.

These results shows that a true Gbps downlink throughput over 5G mmWave can only be

delivered indoors with unobstructed LoS. On the other hand, the mmWave connection has

worse uplink throughput and latency performance compared low-band NR.

While our work on the performance of OtI mmWave is comparable to a prior work by

[64], the methodologies employed are very different, leading to different and contradictory
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conclusions. First, the throughput results reported in [64] are based on predictions from

signal strength measurements using a specific channel sounder that utilizes a continuous-

wave tone at 28 GHz as the sounding signal, rotating horn antennas on the receiver and

omni-directional transmit antennas: very different from actual operating conditions of 5G

mmWave. On the other hand, we specifically conducted our measurements on deployed 5G

mmWave systems using consumer handsets which captures real-world conditions such as

beam-management using phased-arrays at both BS and UE, wide-bandwidth operation (400

MHz), and handset limitations. Additionally, our performance metrics are measurements

of throughput and latency over all of the network stack, thus it includes overheads due

to the MAC, transport, and network layers. Contrarily, we believe the prior work lack in

accounting the effects of the intermediate layers in their prediction. These major differences

in measurement methodologies and environment has lead to the contradictory results: the

prior works [64] shows a prediction of 500 Mbps in a building with high-loss glass (i.e., Low-e)

windows for 90% of users located up to 49 m away from the BS, while our results demonstrate

that in a building with Low-E glass windows located about 25m from a 5G mmWave BS,

there is no 5G mmWave connectivity at all through closed windows and limited connectivity

in a few locations with the window open. Further, the measurements over different bands and

operators demonstrate that the low and mid-band 5G NR can still provide DL throughput

of up to 400 Mbps even when 5G mmWave is unavailable in the building.

6.5 Impact of Device Thermal Throttling to 5G mmWave

Performance

During many of our 5G mmWave throughput measurements, we noticed a repeated pattern of

drastic throughput reduction after at least 1 minute of sustained downlink transmission. This

reduction is due to the UE releasing connection of the maximum 4 mmWave channels to 1

channel, and finally a handover to 4G LTE in some cases. This pattern of failing to sustain 5G
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mmWave throughput over an extended time is persistent over all of our smartphone models

(i.e., Pixel 5, S21 Ultra, S21+), but seemingly depends on time of the day, month of the year,

and location (Chicago vs. Miami). From all of the possible causes, we narrow it down to a

similarity of high ambient temperature at the time of measurement, which leads to higher

device temperature and thermal throttling. The relationship between device temperature

and sustained 5G mmWave throughput has not been explored in academic study and we aim

to demonstrate it in this study [99]. In particular, we seek to demonstrate that the drop in

throughput is indeed due to thermal. According to the 3GPP standard [6], a UE can provide

information to the BS about its thermal state via the the RRC CONNECTED message field.

Upon receiving such a message from the UE, the BS will respond by temporarily reducing

the number of aggregated data streams, in both component carriers and MIMO layers, for

both downlink and uplink transmissions until the thermal warning messages are no longer

received.

Thus, we present the following contributions: (1) We present results from detailed ex-

periments conducted with consumer 5G smartphones operating over deployed 5G mmWave

networks in multiple US cities to demonstrate that indeed this phenomenon occurs repeatedly

on high ambient temperatures. (2) We demonstrate that as the skin temperature measured

by the device increases, the number of aggregated mmWave channels drops from 4 to 1

followed by handover to 4G LTE, with the throughput dropping at each step. With exter-

nal cooling, e.g., using an ice-pack or low ambient temperature (e.g., on a winter day in

Chicago), high throughput can be sustained over several minutes. (3) We identify explicit

message exchanges in the Radio Resource Control (RRC) layer between the user equipment

(UE) and the base-station (BS) that confirm that the reason for handing over to 4G LTE is

thermal and not network congestion or other considerations. (4) Lastly, we used an infra-red

(IR) camera to further corroborate the effect of temperature rise at the mmWave antenna

locations on throughput.
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Table 6.9: Experiment Parameters

Parameter Value
Operator Verizon (Band n261/28 GHz)
# of experiment locations Chi.: 2, Mia.: 1, SF: 1
Device model Google Pixel 5
# of devices used Chi.: 2, Mia.: 1, SF: 1
Cumulative # of meas. runs 32
Distance between BS and UE ∼2 meter
Average RSRP over all meas. -92.63 dBm

(a) Chicago (b) Miami (c) San Francisco

Figure 6.20: Measurements locations in the three different cities (see Table 6.10).

6.5.1 Device methodology

In order to demonstrate the effect of device skin temperature on sustained throughput over

5G mmWave, the following requirements need to be met:

• A sustained download of a high-bandwidth data stream over ∼15 minutes while con-

nected to a 5G mmWave BS.

• A method of measuring temperature while the download is occurring, and

• Amethod of extracting RRC messaging between the UE and the BS while the download

is occurring.

Table 6.9 summarizes the parameters of the experiments conducted in two locations in
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Table 6.10: Experiment Locations

Location # Address GPS coor-
dinate

Traffic used # of
meas.
runs

Ambient
temp. at
meas. time

Chicago
1 61st St. &

Woodlawn
Ave.

41.7874024,
-87.5965241

BG DL+FCC
ST

16 Oct: ∼24◦ C,
Jan: ∼−10◦ C

2 61st St.
& Midway
Plai.

41.7844559,
-87.5962098

BG DL+FCC
ST

9

Miami 3 Bayfront
Park

25.7753436,
-80.1853549

BG DL 6 Sep: ∼31◦ C

San Francisco 4 Pine &
Stockton St.

37.7914117,
-122.407218

BG DL+FCC
ST

1 Sep: ∼15◦ C

Chicago, one location in Miami and one location in San Francisco. Data was collected in

all 3 cities over September - October 2021, and in Chicago in January 2022 for performance

comparison under cooler ambient temperatures. All experiments were conducted using the

same UE model and network: Google Pixel 5, running Android 11 on a Verizon network with

an unlimited data plan6. Fig. 6.20 shows the specific measurement locations in Chicago,

Miami and San Francisco, while Table 6.10 shows detailed information of each location. The

Verizon 5G mmWave network at each location utilizes band n261 at 28 GHz.

Downlink throughput saturation is achieved using a combination of two methods:

• Background Download (BG DL) using HTTP download of a 10 GB dataset

file [26].

• FCC Speed Test (FCC ST) app: the 5 sec downlink throughput test is run repeat-

edly to ensure that the link stays saturated continuously.

Thermal throttling was observed using either one of the above methods, but combining both

methods ensures that the link is fully saturated. The Miami measurements used only the

6. Subscribed Verizon plan indicates a throttling after 50 GBytes for 4G and 5G low/mid-band data, and
no throttling for 5G mmWave data.
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BG DL traffic, while BG DL + FCC ST was used in the Chicago and San Francisco mea-

surements. Due to this minor difference in methodology, there are two separate throughput

measurements: PHY level throughput collected by Network Signal Guru (NSG), and APP

level throughput collected by FCC ST. Using all the measurements reported in this paper, we

verified that, as expected, the APP throughput is always lower than the PHY throughput.

APP throughput values are easier to extract from FCC ST than PHY throughput from NSG

(requiring manual data input). Thus, these different types of throughput measurements are

carefully separated and only the same type of throughput values are compared whenever

needed in our analysis. To passively collect signal data on the smartphones, we utilized

SigCap and NSG.

SigCap’s temperature sensor implementation. SigCap is again utilized to primarily

collect time and signal parameters (e.g., 4G and 5G RSRP, RSRQ, RSSI, PCI, 4G frequency,

etc) using APIs. To measure device’s thermal, we implemented a new sensor handler that

queries hardware temperature data from the sensor API [13] which includes instantaneous

skin, CPU, and GPU temperature measurements. Details of collected parameters are de-

scribed in Table A.6.

Network Signal Guru (NSG) [87]. NSG is also similarly used to provide more detailed

information about the transmission such as operating frequency, number of carrier compo-

nents, bandwidth, PHY throughput, and RRC messaging. The data collected are manually

transcribed with 5 seconds interval and hence we use it only for certain analysis.

6.5.2 Impact of 5G mmWave on UE Temperature

5G mmWave throughput and UE temperature Vs. time. Using the tools and

methodologies described in the previous section, we performed a total of 32 measurement

runs over all locations, where each measurement run starts with a cool phone temperature.
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Figure 6.21: Representative results of throughput degradation.

Fig. 6.21 shows a representative measurement at Location 1 in Chicago (taken on Oct 9,

2021) using the combined BG DL + FCC ST method. Data collected by NSG (i.e., PHY

throughput, NR channel) and SigCap (i.e., temperatures) are synchronized using timestamps

from both apps, while the PHY throughput values are shown only when the FCC ST is

running (at ∼20 sec intervals) in order to display the saturated condition.

Fig. 6.21a shows that a PHY throughput of almost 2 Gbps was achieved soon after the

experiment was started at the 200 sec mark, which is the result of aggregating 4 mmWave

channels as shown in Fig. 6.21b. The throughput increase is accompanied by a rise on all

three temperature measurements: skin, CPU and GPU. At the 300 sec mark, the number

of aggregated mmWave channels reduces to 1 and the resultant throughput is reduced sig-

nificantly. At this point, the CPU and GPU temperatures are reduced slightly, but the skin

temperature does not reduce sufficiently to restore the throughput to the levels seen at the

beginning of the experiment. The download was completed at 800 sec.

Analysis of skin temperature effect on throughput. We observe two events: (1) when

the number of 5G mmWave channels is reduced from 4 to 1 (i.e., 300 sec on Fig. 6.21a),

and (2) when the device is handed over to the LTE network (500 sec). At both events, we

recorded a ”Secondary Cell Group Failure” signalling packet in the NSG log, which shows

88



C
u
m

u
la

tiv
e
 d

is
tr

ib
u
tio

n
 f
u
n
c
tio

n

Temperature (oC)

Skin - NR 4 Ch. to 1 Ch.
Skin - NR 1 Ch. to LTE
Skin - NR 4 Ch. only

CPU - NR 4 Ch. to 1 Ch.
CPU - NR 1 Ch. to LTE
CPU - NR 4 Ch. only

 0

 0.2

 0.4

 0.6

 0.8

 1

 20  30  40  50  60  70  80

(a) CDF of CPU and skin temperature at differ-
ent states.

S
k
in

 T
e
m

p
e
ra

tu
re

 (
°C

)

APP Throughput (Mbps)

NR Line fitting

 15

 20

 25

 30

 35

 40

 45

 0  200  400  600  800  1000  1200  1400  1600  1800

(b) Correlation between APP throughput and
Skin temperature.

Figure 6.22: CPU and skin temperature.

compliance to the 3GPP standard [6]. Moreover, the temperature API [13] shown the static

temperature threshold values: 96◦ C for CPU and GPU, and 43◦ C for Skin. Fig. 6.22a

shows the skin and CPU temperature distribution of all our data from all locations for the

following states: (i) the temperature when 4 mmWave channels are being aggregated, (ii)

the temperature just after the switch from 4 mmWave channels to 1 mmWave channel, and

(ii) the temperature just after the switch from 5G mmWave to LTE. The figure clearly shows

that throttling to 1 mmWave channel happens mostly at skin temperature of ∼43◦ C, while

throttling down to LTE happens mostly at skin temperature of ∼45◦ C. We omit GPU

temperature since we observe that the CPU and GPU temperatures are similar. Moreover,

the CPU temperature does not exhibit any correlation with the events since its threshold

is never crossed. Hence, we infer that the skin temperature is the trigger that causes the

throughput degradation. While it appears that there is some oscillation between states, on

a larger time scale, we can still observe an on-off pattern as shown by Fig. 6.21 between the

500 to 770 sec mark.

Fig. 6.22b displays all 5G mmWave measurements collected at Chicago and San Francisco,

using both BG DL and FCC ST to saturate the downlink transfer. Clearly, the higher skin

temperature correlates to lower 5G mmWave throughput, with lower throughput values
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Figure 6.23: Throughput over multiple experiments, time-normalized to the first data

recorded mostly in summer (Sep-Oct) and the higher values recorded in Chicago in winter

(Jan).

6.5.3 Thermal performance as a function of ambient conditions

Effect of ambient temperature over seasons and location. Fig. 6.23 shows the

mmWave throughput versus time, where the time axis has been normalized i.e., 0 sec is

the timestamp of the first data point. Fig. 6.23a shows the comparison of APP throughput

between summer (Sep-Oct) and winter (Jan) in Chicago. These measurements are from

Location 1 and 2, using of FCC ST + BG DL traffic. It is clear from the figure that in

the warmer months, when the ambient temperature was ∼24◦ C there is a degradation of

throughput after 200 sec, while no such degradation is observed in the winter months when

the ambient temperature was ∼−10◦ C.

Fig. 6.23b shows the comparison of measurements in Chicago, Miami, and San Francisco

collected in summer. Since the data in Miami was captured using BG DL traffic only, PHY

throughput from NSG is used in this analysis. The throughput in Miami data degrades

faster (at ∼60 sec) than Chicago and San Francisco, which can be explained by the climate

difference between these cities and the time of experiment. The Miami data was taken

with ambient temperature of ∼31◦ C, while Chicago and San Francico data was taken with
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Figure 6.25: Phone cover experiments in Miami.

ambient temperature of ∼24◦ C and ∼15◦ C, respectively.

Effect of external cooling and phone cover. To further confirm the correlation between

skin temperature and reduced 5G mmWave throughput, the following experiment was con-

ducted in Miami in summer. Measurements were taken with the phone either held in the

hand or placed on an ice-pack. Fig. 6.24 shows that a mmWave throughput above 1 Gbps

is sustained when the phone is placed on top of an ice-pack.

Second, we investigate the impact of using a phone protective case on extending the 5G

mmWave throughput. Using a standard commercially available case7 to cover the phone,

we compare throughput performance when the phone is with and without cover. Each

7. https://www.spigen.com/products/pixel-5-case-tough-armor
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experiment type is repeated 3 times and both types were ran in Miami. Fig. 6.25a shows the

achievable PHY throughput for all six runs. Without a phone cover, the phone can sustain

up to 60 sec of a higher ∼1 Gbps 5G mmWave throughput using 4 channels. With the cover,

the phone can only sustain the higher rate up to 30 sec.

The lower throughput performance of the covered phone can be explained by Fig. 6.25b,

which shows the corresponding skin temperature over all six runs. The covered phone

breached the 43◦ C threshold at 20 sec, compared to the uncovered phone at 40 sec. Hence,

the phone cover restricts heat dissipation and causes a higher skin temperature. While fur-

ther experiments with more variables (e.g., phone model, case type, climate) are needed,

this experiment has demonstrated that faster heat dissipation allows for longer utilization of

the 5G mmWave network at full capacity.

6.5.4 Thermal performance investigation using an IR camera

In addition to extracting the skin temperature from the API, we also performed IR camera

measurements in May 2022. We set a FLIR One Pro LT IR camera up to mount stably

∼17.5 cm above a case-less Samsung S21+ phone with the Qualipoc measurement tool

running8. The phone initiates BG DL traffic similar to prior experiments to capture PHY

layer data (e.g., per channel SS-RSRP, SS-RSRQ, and throughput) and HTTP/application

layer throughput. We captured 4 × 10 minutes runs, with the phone connected to the 5G

mmWave BS at Location 1 in Fig. 6.20a with a good signal condition (∼90 dBm RSRP).

The ambient temperature at the time of the experiment was 30◦ C.

We identified three spots on the phone with a high likelihood of heating up during the

mmWave experiment: CPU and modem area (CPU), upper mmWave antenna (UppAnt),

and lower mmWave antenna (LowAnt). x-y coordinates are defined for each spot, relative

to the phone frame to ensure that the data is comparable between different experiment

8. https://www.rohde-schwarz.com/us/products/test-and-measurement/
network-data-collection/qualipoc-android_63493-55430.html
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(a) IR thermal capture on O1 (BS is to the
right of phone).

(b) IR thermal capture on O2 (BS is to the
left of phone).

Figure 6.26: IR thermal captures in orientations O1 and O2.

runs. Note that none of these temperature spots directly translate to the CPU and skin

temperature value collected by the Android API since the temperature API is not directly

accessible on this phone.

Fig. 6.26a and Fig. 6.26b show representative thermal images9, with two orientations, O1

and O2, w.r.t. the mmWave BS. In O1, the BS is located to the right of the phone, and both

Fig. 6.26a and Fig. 6.27a shows a higher temperature on the UppAnt spot which indicates

higher activity on this antenna. Conversely, Fig. 6.26b shows the O2 orientation where the

BS is located to the left of the phone, and Fig. 6.27b shows higher LowAnt temperature

when the phone is connected to mmWave. In both orientations, the phone started with 4

mmWave channels then throttled to 1 channel at the 95 sec and 85 sec mark for O1 and O2,

9. Full video available at https://youtu.be/fm29QwdbVW8
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(b) Throughput and temperatures vs. time in
orientation O2.

Figure 6.27: Throughput and temperatures vs. time.

respectively. Subsequently, LTE handover occurred at the 154 sec and 174 sec mark for O1

and O2, respectively. We observed a better overall throughput performance on O2 compared

to O1 on all 4 runs. This is due to two reasons: location of each antenna w.r.t. the CPU

(O1 is closer), and which antenna is activated during the experiment.

While we could not correlate the skin temperature to the spot temperatures, it is highly

likely that the skin temperature sensor is located in the upper half of the phone, given that

average temperature of the lower half was ∼35◦ C on all runs. Additionally, we performed

UL traffic experiments using a similar setup and observed that the phone was connected to

1 mmWave channel during the entire 10-minute run, even as the temperature of the UppAnt

spot increased to a maximum of 42◦ C. This observation further supports our hypothesis

that fewer aggregated mmWave channels (and consequently, lower throughput) do not cause

a significant rise in skin temperature, even with the additional power consumption due to

transmitting, i.e.,transmitting over 1 mmWave channel caused less rise in skin temperature

compared to receiving over 4 mmWave channels.
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6.6 A Comprehensive Real-World Evaluation of 5G

Improvements over 4G in Low- and Mid-Bands

While prior 4G mobile networks mainly operated on the low (<1 GHz) and mid (1–6 GHz)

frequency bands (collectively referred to as frequency range 1, or FR1 [3]), initial 5G de-

ployments in the US focused on the mmWave bands (>24 GHz), also known as FR2. We

have shown that mmWave bands can provide a throughput performance of over 1 Gbps,

but performance is limited by propagation loss, body loss, foliage, and thermal effects. The

low-band, conversely, offers better coverage but with relatively lower bandwidth and hence

throughput. Therefore, the mid-band which strikes a balance between coverage and perfor-

mance has become a focal point for current 5G deployments. The novel features specified in

5G can theoretically improve throughput performance since network throughput is a function

of channel bandwidth, modulation, code rate, and number of MIMO layers [5]. However,

the reality is much more complex and presents numerous challenges. For example, receiver

and transmitter hardware may limit the adoption of those new technologies; the regulator

will constrain the transmission power in some locations; radio channels located at higher

frequencies will further suffer from radio interference and fading; and poor channel quality

will significantly reduce the efficiency of higher-order QAM due to increased transmission

error. Therefore, there is a need of a real-world evaluation of 5G deployments and we believe

that the following work is the first to comprehensively analyze the contribution of different

physical layer techniques on the throughput performance of 5G as compared to 4G.

6.6.1 Measurement Settings and Methodology

The data analyzed in this paper was collected over three measurement campaigns. We

conducted an initial campaign in Chicago during December 2022, followed by a campaign in

Minneapolis during April-May and November 2023, with both focusing on the downlink and
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uplink throughput performance of the three major US operators (ATT, TMO, and VZW).

Additionally, a latency-focused campaign specifically targeting the T-Mobile network was

conducted in Minneapolis in March 2024. To cover a large area, we conducted data collection

while driving. Fig. 6.28 shows the setup of 5G probes and the driving routes: in Chicago,

we measured in the downtown Loop area, Midway airport, and the interstate highway; while

in Minneapolis, we surveyed the Downtown, Dinkytown, and the beltway. The statistics of

the data collected are summarized in Table 6.11.

Interstate Beltway

Highway

Urban

Minneapolis Chicago
5G UEs

XCAL is logging 

5G network KPIs

Dinkytown

Midway Airport

Suburban

Figure 6.28: Setup of the 5G probes and driving routes of our measurements.

Table 6.11: Statistics of 4G/5G dataset.

Mobile Operators AT&T, T-Mobile, Verizon
Radio Technologies 4G, 5G

Measurement Venues Minneapolis, Chicago
Cumulative Data Traces 1200+km; Around 14 hours

XCAL Key Perf. Indicators PCI-Beam idx; Freq.; SCS; RSRP;
RSRQ; CQI; RI; BLER; MCS;
#RBs; #MIMO layers; MIMO
modes; PHY-layer throughput.

All the data were captured using Samsung Galaxy S22+ (Android 12), which can re-

ceive 5G signals in the low-band, mid-band, and mmWave channels. At the time, S22+ was
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the only phone capable of capturing the TMO network’s inter-band 5G Carrier Aggrega-

tion (CA). These state-of-the-art devices allowed us to measure the network’s best possible

performance. Three S22+ phones were used as user equipment (UE), each equipped with

ATT, TMO, and VZW SIMs. All SIMs have unlimited data plans with no throttling of data

rates. The S22+ phones were connected to a Lenovo ThinkPad X1 Carbon laptop running

Accuver XCAL [8]. The XCAL application collects various 4G and 5G signal parameters

by establishing a low-level interface to the modem chipset. To account for differences in

parameter sampling intervals, the application processes the data over one-second periods,

averaging numerical values and determining the most frequent (mode) for discrete values.

Table 6.11 also summarizes the parameters (key performance indicators) collected by XCAL

for our analysis. XCAL is also capable of actively creating traffic using iperf [61] tools: we

generate full-buffer downlink (iperf server to UE) and uplink (UE to iperf server) transmis-

sion to cloud servers in Chicago and Minneapolis, whichever is closest to the measurement

location.

6.6.2 Overview of the Observed 4G and 5G Deployments

Table 6.12 compares the 4G and 5G features we observed to the 3GPP specifications in

Release 16 and 17. We believe that most deployments today are at most Release 16. Up

to 256-QAM is observed in both LTE and NR networks, but not 1024-QAM. We also did

not observe improvements in the number of MIMO layers/streams for low- and mid-band

5G over the 4G counterparts, even though 3GPP Rel-16 supports up to 8 layers. On the

other hand, there are improvements in maximum channel bandwidth, as new spectrum has

been released. This is reflected in the reduced number of aggregated channels: as bandwidth

increases, there is less need to increase CA in 5G.

NR has two modes of network deployments: SA which only utilizes the 5G channels and

network stack, and NSA which utilizes a combination of 4G and 5G channels and stacks with
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Table 6.12: Highlight of features in 3GPP Rel-16 and Rel-17 compared to observed 4G and
5G in our dataset.

Parameters Observed 4G Observed 5G Rel-16 5G Rel-17 5G
Max. Modulation 256-QAM 256-QAM 256-QAM 1024-QAM
Max. MIMO Layer 4 4 8 8
Max. Channel BW
(excl. mmWave)

20 MHz 100 MHz 100* MHz 100* MHz

Max. #CA 6 4 16 16
*mmWave channels can be up to 400 MHz wide

4G used as the primary carrier. In all campaigns, ATT and VZW deployed only NSA where

NR and LTE channels are aggregated, but we did not observe two NR low- or mid-band

channels aggregated in their network. On the other hand, TMO deployed both SA and NSA

modes, with the SA mode aggregating up to 3 NR channels for a total bandwidth of 160 MHz.

Table 6.13 shows the summary of captured NR and LTE bands/channels in the campaign.

NR channels have the prefix ”n” and LTE channels have the prefix ”b” in the table. All

three operators have deployed NR in low- and mid-bands. Notably, ATT-n66 and TMO-n25

are the newest bands detected only in our April-May 2023 campaign and afterward. AT&T

and Verizon have also deployed NR mmWave bands (n260 and n261), but they are out of

scope for this analysis. Among the NR low- and mid-band channels, all FDD channels are

deployed with 15 kHz sub-carrier spacing (SCS) and lower bandwidth (i.e., ATT-n5, ATT-

n66, TMO-n25, TMO-n71, VZW-n5), while all TDD bands are deployed with 30 kHz SCS

and higher bandwidth (i.e., ATT-n77, TMO-n41, VZW-n77). These deployments suggest

that the NR FDD bands are positioned as the “support” bands since the lower bandwidth

and frequency result in lower throughput but greater coverage. It should be noted that

TMO’s mid-band deployment in 2.5 GHz has a 3.4 dB advantage over ATT and VZW in

3.7 GHz: this will be seen in performance results presented later. Most of the deployed LTE

channels are FDD, except for the newer b46 (LAA) and b48 (CBRS) which are TDD, and

b29 which is a supplementary downlink (SDL) band. The LTE bands are similarly used as

the “support” bands to the NR TDD bands when aggregated in the NSA deployments.
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Table 6.13: NR and LTE Bands Information

Operator-
Band

Duplex
Mode

DL Band Freq.
(MHz)

SCS (kHz) BW (MHz)

Representative Bands
ATT-n5 FDD 850 15 10
ATT-n77 TDD 3700 30 40
TMO-n41 TDD 2500 30 40,100
TMO-n71 FDD 600 15 20
VZW-n5 FDD 850 15 10
VZW-n77 TDD 3700 30 60
ATT-b2 FDD 1900 15 20
ATT-b12 FDD 700 15 10
ATT-b46 TDD 5200 15 20
TMO-b12 FDD 700 15 5
TMO-b41 FDD 2500 15 20
TMO-b66 FDD 2100 15 20
VZW-b13 FDD 700 15 10
VZW-b48 TDD 3500 15 10,20
VZW-b66 FDD 2100 15 20

Other Bands
ATT-n66 FDD 2100 15 5
TMO-n25 FDD 1900 15 20
ATT-b14 FDD 700 15 10
ATT-b29 SDL 700 15 5
ATT-b30 FDD 2300 15 5,10
ATT-b66 FDD 2100 15 5,10,15
TMO-b2 FDD 1900 15 10
TMO-b4 FDD 2100 15 20
TMO-b25 FDD 1900 15 10
TMO-b46 TDD 5200 15 20
TMO-b71 FDD 600 15 5
VZW-b2 FDD 1900 15 10
VZW-b4 FDD 2100 15 20
VZW-b5 FDD 850 15 10
VZW-b46 TDD 5200 15 20
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6.6.3 Comparison of Low- and Mid-band Deployment

Preliminary analysis revealed negligible differences between the datasets collected in Chicago

and Minneapolis. Consequently, we combined them for the analyses presented in this paper.

For brevity, we selected a representative low-band and mid-band channel for each operator

with substantial data points, regardless of their primary or secondary cell/channel desig-

nation. All mid-band channels are deployed with higher bandwidth compared to low-band

channels. Table 6.14 shows the number of data points and deployment parameters of the

selected representative bands. Due to PCI reuse, the number of unique Physical Cell Iden-

tifiers (PCIs) is calculated separately between Chicago and Minneapolis. For ATT NR, n77

(mid-band) and n5 (low-band) are selected. There are a larger number of data points and

unique PCIs on n5, indicating a denser deployment in the low-band: this is in contrast to

TMO and VZW which have a higher number of data points and unique PCIs in mid-bands

(n41 and n77, respectively) compared to low-bands (n71 and n5, respectively). Moreover,

TMO-n41 is very densely deployed with 464 unique PCIs compared to the NR channels

from ATT and VZW. As we shall see later, the density of the TMO NR deployment and the

lower NR mid-band frequency (2.5 GHz) significantly impact overall superior signal strength,

spectral efficiency and throughput compared to ATT and VZW.

Similar to the NR bands, we observe a higher number of data points and unique PCIs on

mid-band LTE channels compared to low-band. For ATT, b66 has the largest number of data

points for mid-band. However, we chose the second-largest b2 for its wider bandwidth. For

TMO, b12 is the only low-band channel beside b71, indicating the very sparse deployment

of low-band LTE in TMO: b12 and b71 channels account for 10% of the total LTE data.

The proportion of mid-band data in LTE and NR indicates that TMO and VZW have

been focusing on mid-band deployments. Lastly, we selected ATT-b46 and VZW-b48 as

representatives of the unlicensed/shared mid-band 4G channels. Additionally, TMO-b41 is

chosen for comparison with TMO-n41. These bands exhibited fewer data points and unique
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Table 6.14: Comparison of Rep. Bands’ Deployment

(Bands in bold are mid-bands.)

Operator-Band n data % data #SSB Inds. #unique PCI

ATT-n77 8380 34 1,6* 152
ATT-n5 14444 58 1 217
TMO-n41 56606 90 6 464
TMO-n71 1981 3 1 60
VZW-n77 13049 96 1 147
VZW-n5 541 3 1 28
ATT-b2 31480 28 N/A 378
ATT-b46 7090 6 N/A 77
ATT-b12 12690 11 N/A 262
TMO-b66 19334 39 N/A 330
TMO-b41 7400 15 N/A 54
TMO-b12 2645 5 N/A 83
VZW-b66 31742 36 N/A 379
VZW-b48 8762 8 N/A 141
VZW-b13 16906 19 N/A 255

*ATT-n77 has 6 SSB indices in Minneapolis, but only 1 in Chicago.

PCI compared to other channels. This suggests localized deployments using small cells: at

least b46 and b48 are limited in the transmit power.

Comparison of low- and mid-band NR beam deployment: Table 6.14 also shows

the number of SSB Indices which denotes the number of beams available for each NR chan-

nel. We observe only index 0 (i.e., single beam) per PCI for ATT channels in the Chicago

campaign. However, we observe 6 SSB indices for ATT-n77 in the later Minneapolis cam-

paign. Fig. 6.29a shows the coverage of the various SSB Indices for ATT-n77, PCI 290, in

Dinkytown. Similarly, Fig. 6.29b depicts SSB Indices from 0 to 5 for TMO-n41, PCI 59, in

downtown Minneapolis. All low-band NR channels, i.e., n5 and n71, only use one SSB index,

and the number of SSB indices did not change between the two campaigns. Unlike TMO and

ATT, VZW always uses a single SSB index per PCI for all of its NR channels in both cities.

Fig. 6.29c illustrates the coverage of one of VZW’s n77 channels in downtown Minneapolis.

Since more SSBs/PCI means more beams and hence beamforming gain, VZW with only one

beam/PCI suffers from lower signal strength overall and poorer spectral efficiency, as will be

shown later.
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Figure 6.29: PCI-SSB index maps of mid-band channels.

6.6.4 Comparison of Throughput Performance Between Low- and

Mid-Band Channels

Downlink throughput: Fig. 6.30a shows the comparison of downlink physical layer through-

put between low- and mid-band LTE and NR, as reported by XCAL during all of our driving

measurements. We observe a considerably higher downlink throughput on the mid-band NR

channels compared to the low-band counterparts. As discussed in a prior section, this can be

explained by the wider bandwidths. The highest median throughput of 218 Mbps is attained

by TMO-n41 with a combination of two NR channels of 40 and 100 MHz bandwidth. For the

LTE bands, we similarly observe higher throughputs on mid-band channels compared to the

low-bands. The highest median throughput of 31 Mbps is achieved by ATT-b2 with 20 MHz

bandwidth. Since the channels’ block error rate (BLER) is similar (omitted for brevity), we

conclude that the increase in median throughput in NR is due to the wider bandwidth.

For deeper analysis, we examine channel spectral efficiency. This involves normalizing

the throughput of each channel by its bandwidth and number of MIMO layers, allowing

us to directly compare how effectively each channel utilizes its allocated spectrum. We

define normalized throughput: Tputnorm = Tputbps/(NRB ∗ SCSHz ∗ 12)/Nlayer, where

Tputbps is the throughput in bits/second, NRB is the average number of resource blocks

(RBs) allocated to the UE over one second, SCSHz is the subcarrier spacing (SCS) in Hz,

and Nlayer is the number of MIMO layers used. To determine the instantaneous bandwidth

usage, we multiply NRB by SCSHz and 12, given that there are 12 subcarriers in each RB.
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Figure 6.30: DL throughput comparison of NR and LTE in low-bands (normal) and mid-
bands (bolded)

Since we use RB to normalize throughput, the difference between TDD configurations in the

mid-band channels should not make a difference. However, we observe that all operators in

the mid-band channels use the same TDD configuration of 7 slots for DL and 2 slots for UL,

with a slot length of 0.5 ms. Note that when normalizing LTE throughput, RI is used due to

the lack of the MIMO layer number KPI in LTE. This is viable since we observe a Pearson

correlation of 0.95 between the RI and MIMO layers in our NR data, which is expected since

RI is a part of Channel State Information (CSI) feedback to decide the number of MIMO

layers.

As computed above, Fig. 6.30b compares the normalized throughput (spectral efficiency)

of NR and LTE channels. VZW-n5 exhibits the lowest median throughput, while TMO-

n41 achieves the highest (3.14 bit/s/Hz/stream). Other channels fall between 1.9 and

2.3 bit/s/Hz/stream, analogous to the theoretical capacity of uncoded QPSK of 2 bit/s/Hz.

Since we previously observed a higher throughput from channels with higher bandwidth,

this strongly indicates that the increase in throughput from LTE to NR can be attributed

primarily to the wider bandwidth and number of MIMO layers. The exception being TMO-

n41, which has a much higher spectral efficiency due to its dense deployment (compared to
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both ATT and VZW) and larger number of beams (compared to VZW), both of which lead

to improved overall signal strength and hence spectral efficiency. Furthermore, the stark

contrast with TMO-b41, an LTE channel in the same frequency band, confirms that TMO-

n41’s superior performance stems from its denser deployment. Finally, we observe a lower

normalized throughput in ATT-b46 compared to VZW-b48, where both are shared frequen-

cies. In the next sections, we will further analyze the contribution of RSRP, modulation,

and number of MIMO layers to the normalized throughput.

ATT
n7

7

ATT
n5

TM
O

n4
1

TM
O

n7
1

VZW
n7

7

VZW
n5

ATT
b2

ATT
b1

2

TM
O

b6
6

TM
O

b1
2

VZW
b6

6

VZW
b1

3

0

20

40

60

80

100

Tp
ut

(M
bp

s)

NR
bands

LTE
bands

(a) Throughput

ATT
n7

7

ATT
n5

TM
O

n4
1

TM
O

n7
1

VZW
n7

7

VZW
n5

ATT
b2

ATT
b1

2

TM
O

b6
6

TM
O

b1
2

VZW
b6

6

VZW
b1

3

0

2

4

6

Tp
ut

(b
it

/s
/H

z/
st

re
am

) NR bands LTE
bands

(b) Normalized throughput

Figure 6.31: UL throughput comparison of NR and LTE in low-bands (normal) and mid-
bands (bolded)

Uplink throughput: We omit the complete uplink throughput analysis due to limited new

insights. Firstly, no uplink channel aggregation was observed within either LTE or NR de-

ployments, even though aggregation is possible between one LTE and one NR channel in the

NR-NSA deployment. Secondly, our data lacked information on the number of uplink MIMO

layers parameter, and the NR RI did not correlate with the number of NR layers. Assuming

LTE uses 1 stream (based on 97% of NR data using 1 stream), we see in Fig. 6.31a that

overall uplink throughputs are lower than their downlink counterparts for all representative

bands due to the fewer streams. All mid-band channels perform better than the low-band

counterparts due to higher bandwidth, while all NR channels show marginal improvements

over their LTE counterparts. We did not observe ATT-b46, TMO-b41, and VZW-b48 uti-
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lized for uplink transmissions. Fig. 6.31b shows the normalized uplink throughput with

mid-band channels perform better than the low-band counterparts. When combining all

representative LTE and NR channels, we observe a median normalized uplink throughput

of 3.4 bit/s/Hz/stream, which is higher compared to downlink. The lower number of uplink

layers likely improves stream robustness against fading and errors.

6.6.5 Normalized DL Throughput Impact Factor Analysis

Contribution of RSRP, MCS, and CQI to normalized DL throughput: Fig. 6.32a

shows a comparative analysis of the Synchronization Signal RSRP (SS-RSRP) on NR chan-

nels, and RSRP on LTE channels. Both ATT and VZW exhibit higher SS-RSRP values

on their low-bands in comparison to their mid-band counterparts: this is due to better

propagation characteristics of the low-bands. However, mid-band TMO-n41 displays higher

SS-RSRP (median of -79 dBm) compared to its low-band counterpart, n71, which indicates

a denser NR deployment to overcome the propagation loss at the mid-bands. Furthermore,

TMO consistently displays RSRP values ∼12 dB higher than other operators in all of our

NR data: this is due to a combination of dense deployment, multiple beams/PCI, and lower

frequency. In LTE, we observe the similarity of RSRP distribution between the channels.

The highest median RSRP of -83 dBm is achieved by ATT-b2, which is reflected in the

normalized throughput: the highest median downlink throughput of 2.18 bit/s/Hz/stream

over all LTE channels. On the other hand, ATT-b46 and VZW-b48 show lower RSRP due

to the limitations of transmit power. Between NR and LTE, TMO-n41 stands out due to its

denser deployment and higher number of beams.

Fig. 6.32b shows the distribution of allocated downlink MCS, which correlates well with

the distribution of normalized downlink throughput in LTE and NR. For instance, the best

and worst median MCS in NR are achieved by TMO-n41 and VZW-n5, respectively, which

correspond to the best and worst median normalized downlink throughput. This is expected
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Figure 6.32: Comparison of RSRP, MCS, and CQI of NR and LTE in low-bands (normal)
and mid-bands (bolded).

since higher MCS delivers higher spectral efficiency but can only be used in good signal

conditions. Further, we found RRC messages (“pdsch-Config > mcs-Table := qam256” in

NR and “cqi-ReportConfig > altCQI-Table-r12 := all subframes” in LTE) which indicate

that both LTE and NR used the MCS Table 2 as described in Table 5.1.3.1-2 of [4], making

comparison feasible. We observe a lower median of MCS in NR channels compared to LTE,

except for TMO-n41, again due to the excellent channel condition guaranteed by its denser

deployment.

We further compare the CQI, which indicates channel conditions from the UE’s per-

spective. Fig. 6.32c illustrates the comparison of CQI between the representative LTE and

NR channels. Since the BS uses CQI to decide the MCS selection, the distribution of CQI

aligns with its respective MCS values: the highest median CQI is attained by TMO-n41,

similar to its median MCS, and vice versa with VZW-n5. On LTE, we also observe a sim-

ilar distribution of LTE CQI with MCS. This further shows that normalized throughput is

mainly influenced by the overall channel condition reported by UE, rather than just RSRP.

However, since we cannot ascertain whether the CQI table used by NR and LTE networks

are the same, we cannot make a direct comparison between them.

Comparison of DL modulation modes: We extend our analysis to examine the propor-

tional utilization of each modulation mode, drawing a comparison with normalized through-

put. It’s worth noting that these modulation modes align with MCS indices, as each index
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Figure 6.33: Proportional usage of modulation modes of NR and LTE in low-bands (normal)
and mid-bands (bolded).

corresponds to a specific modulation mode. Fig. 6.33 shows the modulation modes used for

the 12 representative low- and mid-band channels as defined in a previous section. Only

modulation modes from QPSK to 256-QAM are observed in our campaign. TMO-n41 shows

higher usage of 64-QAM and 256-QAM modulation, corresponding to the channel’s high

normalized downlink throughput. It is worth noting that the normalized throughput of

TMO-n41 does not reach the theoretical capacity of 64-QAM due to MCS’s code rate. Con-

versely, the VZW-n5 channel uses a higher proportion of QPSK and 16-QAM modes, which

also explains the low normalized throughput of this channel. For LTE, ATT-b2 mainly uses

a combination of 64-QAM and 256-QAM modes, and this results in the highest normalized

downlink throughput performance among the LTE channels. Moreover, the resemblance

in modulation usage among the other LTE channels corresponds to the similarity in their

normalized throughput.

Comparing the modulation modes between the NR and LTE channels, we do not observe

a significant improvement, i.e., no indication that higher modulation is more available in

NR compared to LTE, except for the TMO NR channels n41 and n71, which use 256-QAM

more often than the other carriers. This is due to the fact that TMO exhibits better signal

conditions in general, which confirms that spectral efficiency improvements are only possible

if the overall signal strength improves, through a combination of dense deployments and
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usage of more beams.

6.6.6 Comparison of MIMO Performance in NR and LTE

Analysis of MIMO performance in terms of RI and MIMO modes: In both

LTE and NR, RI is the MIMO channel rank as calculated by the UE and transmitted back

to the BS for MIMO layer decision. Fig. 6.34 shows the comparison of RI for the three

operators on the representative low- and mid-band channels selected in a previous section.

The data for each channel is categorized by MIMO modes (i.e., 2x2, 4x4) as reported by

XCAL. First, we observe that the NR low-band channels on all operators do not utilize 4x4

MIMO modes, while the LTE counterparts do. Fig. 6.34a compares the RI value between

NR and LTE channels of ATT. We observe an RI value of 2 being the most common in all

channels, even when 4x4 MIMO mode is available. For instance, less than 20% of data on

ATT-n77 reported an RI of 4 even when the 4x4 mode is used, while RI 4 is not seen in the

corresponding b2 and b12 channels. Fig. 6.34b similarly shows an RI value of 2 being most

common for TMO, with the exception of n41 and n71 using 2x2 mode, where the majority

of the data had an RI of 1. Fig. 6.34c also demonstrates an RI value of 2 being most used

for VZW, except for n5 with 2x2 and b13 with both 2x2 and 4x4 modes.
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Figure 6.34: RI value for the operators, channels, and MIMO modes.

This result is very significant since it indicates that even though higher-order MIMO

modes may be implemented, the physical channel rank may not support all available MIMO

layers. This suggests that increasing MIMO order in future generations may not be the best
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way to improve throughput in the real-world. In fact, TMO-n41 has the best throughput

performance, but it achieves this with fewer MIMO layers on average compared to ATT-n77

and VZW-n77, which are all mid-band NR channels.

Analysis of MU-MIMO in NR: While operators claim to have implemented 5G MU-

MIMO in test settings [11, 114], its widespread deployment remains uncertain. To address

this question, we utilize the Precoding Matrix Indicator (PMI) which is a part of the CSI

feedback to the BS. Moreover, it conveys information about the precoding matrix that should

be used in the downlink transmission. Utilizing XCAL, we collected PMI values from all the

UEs and observed PMI with indices: i(1;1), i(1;2), i(1;3), and i(2). This indicates the usage

of Type 1-Single Panel codebook with 2–4 MIMO layers [4]. Further, we analyzed the RRC

messages captured in all of our UEs and found “mimo-Parameters > codebookParameters

> typeI > singlePanel > mode := mode1” message which further indicates the usage of the

above codebook. Type 1 codebooks are used for Single User-MIMO (SU-MIMO) and only

use a single beam to calculate CSI feedback [86]. Lastly, we did a stationary experiment in

Minneapolis in November 2023, where we initiated downlink traffic with up to 4 UEs on the

same operator, observing their exact RB allocation in the radio frame. Our hypothesis is

that when MU-MIMO is enabled, at least one RB will be allocated in the same slot to two

different UEs. We did not observe this in our data.

6.6.7 Comparison of Latency Performance in TMO Networks

We conducted a focused latency measurement in Minneapolis during March 2024, comparing

the LTE and NR performance. Specifically, we focus on TMO, which is the only operator

that has deployed NR in both SA and NSA modes. Similar to our throughput measurement

campaigns, we collected data while driving, using 6×S22+. Using XCAL, we collected signal

parameters and round-trip latency results using the included ping tool. We defined two ping

targets: Google’s cloud DNS server (8.8.8.8) and AWS Local Zone (server located in the
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same city as the end-user) [17]. Additionally, we utilized XCAL to limit the phones to the

following networks and bands: SA-n71, SA-n41, NSA-n71, NSA-n41, LTE-b14 and LTE-b41.

This resulted in 12 distinct data categories, each containing an average of 1,774 data points

(i.e., ∼30 minutes of data collection per category).
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Figure 6.35: Comparison of latency performance and RSRP in TMO low-bands (normal)
and mid-bands (bolded)

We observe higher latency to Google DNS compared to Local Zone, which is an expected

behavior. Hence, Fig. 6.35a shows the combined latency results (ping to Google and Local

Zone) across all bands for brevity. Among the network types, SA bands exhibit the best

latency performance, likely due to their simpler architecture. NSA bands, which combine

NR and LTE, achieve the next best results. Fig. 6.35b also combines the RSRP measured

for the Google and Local Zone measurements. Since both NSA-n71 and NSA-n41 utilize

either b2 or b66 as the anchor LTE band, we separate those categories with ”LTE” or ”NR”

suffixes to indicate if the RSRP is from the anchor LTE or the secondary NR channel. As

expected, we observe higher RSRP on lower-band channels. Interestingly, the LTE anchor

channels in NSA bands exhibit a wider spread of RSRP values (-110 to -80 dBm). This

lower and more variable RSRP in the LTE channels, combined with the overhead of using

both NR and LTE, likely contributes to the slightly higher latency of NSA compared to SA

bands. However, both SA and NSA offer significant latency improvements over traditional

LTE.
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6.7 Summary and List of Accomplishments

It is clear from all of the measurements and experiments conducted in multiple cities, we

can draw the following conclusions:

1. Operator’s choice of 4G primary channel is primarily determined by RSRP and RSRQ,

as per our measurements.

2. 4G with the LAA and CBRS bands aggregation can deliver aggregated throughput in

the mid-band that is comparable or even higher than mid-band 5G. However, there

will be coexistence issues in LAA and synchronization issues in TDD deployment of

CBRS, as both deployments continue to roll out.

3. We confirmed the dense deployments of 5G mmWave in downtown Chicago with signif-

icantly higher data rate compared to 4G+LAA/CBRS. We observed that higher chan-

nel aggregation and wider Tx beam contributed to an increase in median throughput.

However, the throughput gain is reduced at a distance compared to narrower Tx beam

which performs consistently at all distances.

4. While 5G mmWave offers the potential for higher performance, it is important to note

that this is not guaranteed everywhere. Limitations such as distance, body blockage,

thermal throttling, and obstructions like foliage and buildings can significantly degrade

mmWave’s performance.

5. We investigated beam selection mechanisms in 5G mmWave across open fields and

urban canyons environments. In open fields, operators can generally select the optimal

beam due to overlapping base station coverage. However, the complex signal environ-

ment in urban canyons often leads to the selection of sub-optimal beams, resulting in

an average signal strength reduction of 3.6 dBm. This highlights the challenges of beam
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selection in urban mmWave deployments and the associated potential for performance

limitations.

6. We performed a comparative analysis of throughput over the representative low- and

mid-band channels in NR and LTE. As expected, the 5G mid-band channels perform

exceedingly well in downlink and uplink compared to other 5G and 4G channels. How-

ever, we further normalize the throughput and demonstrate that the higher channel

bandwidth, dense deployments, and the use of more beams are a major factor in the

increased throughput, rather than new 5G features.

7. The contribution of various signal parameters such as RSRP, MCS, and CQI to the

normalized 4G and 5G throughputs are further analyzed. We demonstrated that these

parameters in 5G perform similarly to their 4G counterparts. We also note the absence

of 1024-QAM modulation, introduced in the latest 3GPP Release 17.

8. A comparative analysis of the RI value shows a marginal increase in 5G MIMO perfor-

mance compared to 4G in terms of the actual channel rank and number of layers that

the physical channel can support. We also note that Multi-User MIMO (MU-MIMO)

has not yet been deployed in the cities we studied.

9. Since T-Mobile is the only operator with widely deployed NR-SA, we compared the

latency performance of NR-SA, NR-NSA, and LTE. Mid-band NR-SA demonstrates

the best latency performance due to the combination of lower signaling overhead (com-

pared to NR-NSA) and denser mid-band deployments.
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CHAPTER 7

CELLULAR COEXISTENCE IN THE 3 GHZ SPECTRUM

7.1 Overview and Related Works

The increased demands on cellular traffic has led to increasing swathes of mid-band frequen-

cies being allocated for 5G services. In the US, the three most recent allocations in the

mid-band are the 3.7 - 3.98 GHz (C-Band) [65], the immediately adjacent 3.55 - 3.7 GHz

(Citizens Broadband Radio Services, or CBRS) [62] and the latest allocation of 3.45 - 3.55

GHz (AMBIT) for cellular services [40] as shown in Fig. 7.1.

Figure 7.1: Spectrum Chart from 3.1 to 3.9 GHz

Allocated between C-Band and AMBIT, the CBRS band prioritizes incumbent Navy

radars (Tier 1) with full spectrum access. Tier 2 consists of licensed users (PAL) with access

to specific 10 MHz channels (3.55-3.65 GHz). Finally, Tier 3 (GAA) allows unlicensed users

opportunistic access to any unused channels. To ensure coexistence, all users communicate

with the SAS for access permission. Additionally, Tier 2 and 3 users have limited transmit

power (30 dBm/10 MHz indoors, 47 dBm/10 MHz outdoors) to minimize interference with

incumbents. This is significantly lower than power levels allowed in adjacent C-Band and

AMBIT. This, combined with the absence of guard bands, creates the potential for adjacent

channel interference (ACI), especially with the deployment of TDD systems. Furthermore,

the CBRS spectrum is increasingly utilized for private 4G/5G networks in various public

settings, from manufacturing to smart homes and stadiums [84]. Additionally, major carriers
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like Verizon leverage CBRS to supplement their licensed spectrum via techniques like Carrier

Aggregation (CA) and Dual Connectivity (DC). This growth in CBRS adoption creates

scenarios where users within the same area, regardless of their provider or network type

(private or public), may experience co-channel interference (CCI).

The above interference scenarios in the 3 GHz spectrum of cellular deployments is not

one that has been studied comprehensively in the literature. A few papers discuss similar

problems and propose reducing adjacent channel interference by better filtering [113, 12].

We believe that the following results are the first to show the effect of ACI and CCI in a

real world environment.

7.2 Adjacent Channel Interference between CBRS and C-Band

7.2.1 Deployment Overview, Measurement Tools, and Methodology

We leverage an outdoor C-band BS deployed on top of a 10-storey building at the intersection

of 53rd and E Hyde Park Ave in Chicago. In order to study adjacent channel interference

between CBRS and this C-band deployment, we deployed a Celona CBSD (CBRS device,

or CBRS base station) indoors on the 9th floor of a UChicago building at 5235 S Harper

Court, where the C-band transmission can be received indoors with sufficient signal strength.

The set-up is shown in Figs. 7.2a and 7.2b. The CBSD is deployed in a cubicle facing the

window with LOS to C-Band. We did our experiments over August-September 2022 and

December 2022, with the additional 20 MHz guard band experiments over March 2023.

Table 7.1 summarizes the parameters of both systems. The two operators are labeled as:

VZW (Verizon), with the C-band deployment, and CLN, the private CBRS network with

its CBSD/BS connected to the University of Chicago backhaul.

Overview of Deployments : The VZW deployment is a 5G NR non-standalone (NSA) configu-

ration with a primary LTE Frequency Division Duplex (FDD) channel in band 66 (DL: 2.11 -
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(a) Map of C-band deployment and experiment location. (b) Experiment setup.

Figure 7.2: Experiment map and setup.

Figure 7.3: Comparison of TDD configuration.

2.13 GHz, UL: 1.71 - 1.73 GHz), and a secondary NR TDD channel in band n77/C-band (3.7

- 3.76 GHz) with 30 kHz sub-carrier spacing. In our throughput analysis, we only consider

data transmitted over the 60 MHz C-band and omit the LTE data. The TDD configuration

used by VZW in C-band is shown in Fig. 7.3: 7 slots for DL and 2 slots for UL, with a

slot length of 0.5 ms. Additionally, the ”Special” slot is defined to allow greater freedom

for resource allocation: 6 symbols are reserved for DL, 4 symbols for UL, and 4 symbols for

messaging. In total, there are 7.4 slots reserved for DL and 2.2 slots reserved for UL.

To evaluate potential adjacent channel interference, the CLN CBRS was deployed on the

immediately lower adjacent channel, 3.68 - 3.7 GHz using the General Availability Access

(GAA) tier of CBRS. As a comparison, we also deployed it on 3.66 - 3.68 GHz, essentially

adding a 20 MHz guard band between the CBRS and C-band channels. Since the CBSD

was under our control, we varied the TDD configuration of the CBSD between Sa1 and Sa2
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Table 7.1: Experiment parameters

Parameter Value

Operators VZW CLN
Operating band C-band CBRS GAA
Radio tech. 5G 4G
Center freq. 3.73 GHz 3.69 and 3.67 GHz
Bandwidth 60 MHz 20 MHz
TDD config. scenar-
ios

7.4 DL + 2.2 UL Sa1: 4 DL + 4 UL, Sa2:
6 DL + 2 UL

TDD periodicity 5 ms 10 ms
BS deployment Outdoor Indoor
Max. BS Power 79 dBma 23 dBm
UE Samsung S22+ Samsung S22+
Traffics scenarios DL, UL ping, ping + DL, ping +

UL
ping target N/A CLN edge server
DL/UL server iperf01.uchicago.edu CLN edge server
DL/UL parameters target bandwidth 2 Gbps, TCP buffer size 8196 bytes,

10 parallel conns., 500 packets burst
UE location scenar-
ios

VZW @ A, CLN @ A; VZW @ B, CLN @ B; VZW @ B,
CLN @ A, see Fig. 7.4

Exp. run time 10 minutes per combination of scenarios
Total exp. time 660 minutes
Time of exp. Between 1 am - 6 am

aWe assume the maximum TX power based on the 62 dBm/MHz limit.

where Sa1 uses 4 DL and 4 UL subframes, and Sa2 uses 6 DL and 2 UL subframes per radio

frame with a subframe length of 1 ms, as shown in Fig. 7.3. For both configurations, the

”Special” subframe contains 10 symbols reserved for DL, 2 for UL, and 2 for messaging. The

difference of DL/UL allocation between CLN (4G: per subframe) and VZW (5G: per slot)

may resulted in synchronization issues. Since the CBSD was 4G, the TDD configurations

could not be exactly matched to 5G in C-band.

Measurement Tools and Methodology: Two Samsung S22+ phones (running Android

12) are used as user equipment (UEs), one with a CLN SIM and the other with a VZW

SIM. Both SIMs have unlimited data plans with no throttling of data rates. We also use

a spectrum analyzer (R&S Spectrum Rider FPH) to measure power over the CBRS and
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Figure 7.4: Experiment set-up.

C-band channels. Fig. 7.4 is a schematic of the deployment scenario. The CBSD is placed

on top of a desk in the cubicle and UEs are deployed in two locations, A and B. Location

A is ∼1 m from the CBSD, while location B is on top of a desk in an office ∼3 m from

the CBSD. The spectrum analyzer is always at location A. Both locations are LOS to the

VZW BS. We define three measurement scenarios: (1) both UEs at A representing the best

condition for CLN UE (i.e., the closest to CBSD), (2) both UEs at B representing the best

condition for VZW UE (i.e., indoor location closest to VZW BS), and (3) CLN UE at A and

VZW UE at B representing the best condition for both UEs to their respective BSs.

Signal measurements are obtained from the Android phones using a commercial measure-

ment app called Qualipoc [100] which utilizes the UE’s root privilege to establish a low-level

interface with the Qualcomm Diag utility thus enabling extraction of detailed signal param-

eters such as primary and secondary channel’s RSRP, RSRQ, SINR, MCS, Resource Block

(RB) allocation, block error rate (BLER), TDD Config, and physical layer throughput. The

DL and UL throughput values mentioned in this paper are physical layer throughput values
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extracted from Qualipoc. Qualipoc is also capable of actively creating traffic using iperf [61]

and ping tools.

Experiments were run for 10 minutes per scenario, with a total experiment time of 660

minutes. The experiments were conducted between 1 am and 6 am to reduce the impact

on performance due to the presence of other VZW users. Two data transmission scenarios

were defined using iperf: DL and UL which generate full-buffer downlink (iperf server to

UE) and uplink (UE to iperf server) transmission, respectively, with parameters defined

in Table 7.1. Table 7.1 also defines different iperf target servers for each operator, since

there is a need to separate the backhaul used for each operator: the VZW UE uses the

UChicago iperf server (iperf01.uchicago.edu), while the CLN UE uses an edge server as its

target server. The edge server is connected directly to the CLN BS, so the CLN throughput

closely reflects the wireless link performance, while VZW throughput includes the wireless +

backhaul performance. Due to this difference, we do not compare the performance between

the operators, rather we compare the relative performance for each operator between the

two cases: (i) “single” case where one operator is active while the other is idle, and (ii)

“coexistence” case where both operators are active concurrently.

Additionally, we also measure the performance of CLN for latency-sensitive applications

using ping traffic (64 kbyte ping packets every 10 ms over 10 minutes per scenario) to a

separate edge server. The latency metric collected by the ping tool is defined as the round

trip time between UE and the ping target. To further emulate an intensive low-latency ap-

plication, we implemented MicroSlicing [20], a network slicing technology that allows precise

control over end-to-end resource and service allocation based on specific Quality of Service

(QoS) metrics for different applications and devices. Network administrators can use the

Celona Orchestrator or the developer APIs to customize network settings on a device or

application specific basis. The orchestrator offers control and adjustments for numerous

service types, including data throughput, quality, latency, reliability, and network access
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policies among others. This enables users to set aside guaranteed portions of the network

dedicated to the smooth functioning of the respective device and application. The platform

also records application-specific service level agreements (SLA) and key performance indica-

tors (KPI) across all devices, granting complete user visibility of device performance across

the spectrum. In this experiment, MicroSlicing based resource allocation policy is specified

to prioritize ping over DL and UL traffic.

7.2.2 Experimental Results
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Figure 7.5: Spectrum Analyzer measurements of mutual OOB leakage between CBRS and
C-band.

Out-of-band (OOB) interference quantified by spectrum analyzer measurements:

Fig. 7.5 shows the spectrum analyzer measurements of OOB interference due to transmissions

to and from the UEs. These spectrum measurements are done with all UEs and the spectrum

analyzer in close proximity to each other in location A. The spectrum analyzer measures

the power on the 3.68-3.7 GHz CBRS channel and the 3.7-3.76 GHz C-band channel in

the following scenarios: (i) both UEs are turned off, (ii) only the CLN UE transmits DL/

UL, and (iii) only the VZW UE transmits DL/ UL. We also vary CLN TDD configurations

between Sa1 and Sa2. Fig. 7.5a shows the OOB effect on C-band channel due to CLN
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transmission on the CBRS channel using both TDD configurations, i.e., there is clearly an

increase of power observed in the adjacent C-band channel compared to when both UEs

are turned off. Similarly, Fig. 7.5b shows the effect of VZW transmission in C-band on the

CBRS channel, again demonstrating a power increase. This initial power analysis clearly

demonstrates the potential of OOB interference on both operators. In the following sub-

sections, we demonstrate the impact of increased OOB interference to ping latency and DL

throughput performance at the UEs.
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Figure 7.6: Ping latency performance of CLN.

Latency performance of CLN: Latency performance of CBRS with and without adjacent

channel transmissions was evaluated only in location A, with CLN TDD configuration set

to Sa1. Fig. 7.6a shows the “single” case, i.e., no interference from the VZW UE, without

MicroSlicing and Fig. 7.6c shows the performance in the same scenario but with MicroSlicing.

Similarly, Fig. 7.6b shows the “coex” case, i.e., interference from the VZW UE, without

MicroSlicing and Fig. 7.6d shows the performance in the same scenario but with MicroSlicing.

In both cases, overall, we observe less difference in latency when ping traffic is transmitted

along with DL and UL when MicroSlicing is used compared to no MicroSlicing. In particular,

we observe increased latency on 20% of the data, when VZW is using DL traffic without

MicroSlicing while there is no impact of OOB interference to CLN’s latency performance

when it is using MicroSlicing (Fig. 7.6d). The reduction of the effect of the OOB interference

can be explained by the MicroSlicing policy, which assigns a higher priority to ping packets
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thus ensuring timely packet arrival, even under OOB interference.
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Figure 7.7: Coexistence performance in terms of CLN DL throughput under varying CLN
TDD configurations.

Impact of VZW’s OOB interference on CLN’s throughput: Fig. 7.7 shows the coexis-

tence performance of CLN in terms of physical layer DL throughput with varying CLN TDD

configurations. Due to page limitations, we omit the UL throughput results which did not

demonstrate any effect of adjacent channel interference. Only ping + DL traffic is analyzed

as there is no difference between the DL only and ping + DL, which is expected since the

flow of ping packets are also counted in the throughput metric. Figs. 7.7a and 7.7b show

the effect of OOB interference on CLN DL throughput, using Sa1 configuration, at location

A and B, respectively. Firstly, we observe no impact of coexistence when CLN UE is at A

and VZW UE is at B, i.e., the effect of OOB interference is only observed when the UEs are

close to each other. When CLN is using Sa1, we observe the highest throughput degradation

when CLN ping + DL @ A and VZW UL @ A coexist: 60 % reduction of CLN DL throughput

compared to the ”single” case. When the VZW UE is transmitting UL @ A, the proximity

to the CLN CBSD causes a large throughput reduction which can be explained by the TDD

configuration as shown on Fig. 7.3: in the worst case, CLN’s DL capability is reduced to

half due to the overlap with two of VZW’s UL slots. This effect is not observed at B due

to the greater distance to the CBSD. Only DL traffic from VZW at B affects CLN which is

also at B. Similarly when CLN is using Sa2, the DL throughput degradation is observed on

Figs. 7.7c and 7.7d. The greatest throughput degradation in this case is between CLN ping
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+ DL @ B and VZW DL @ B, which is 43% reduction from the single case. Additionally,

VZW UL @ B affects CLN DL throughput on Sa2 (an effect not observed on Sa1), which is

possibly due to the higher number of DL subframes in the Sa2 configuration which leads to

a higher probability of overlap with VZW UL slots.
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Figure 7.8: Representative comparison of DL RB, MCS, and BLER for CLN @ A, on CLN
Sa1.

To further demonstrate the effect of OOB interference, we correlate RB, MCS, and BLER

values when CLN is using ping + DL traffic as shown in Fig. 7.8. We could not correlate

OOB interference to the captured RSRP and RSRQ values: while the RSRP and RSRQ are

well-defined by 3GPP, we cannot confirm the correctness of its implementation inside the

modem. A representative coexistence case of CLN ping + DL @ A and VZW DL @ A on

CLN Sa1 is chosen for analysis, but the same conclusion is observed in other cases. First,

Fig. 7.8a shows the full RB allocation to the CLN UE in all cases, since the CLN UE is

the only one connected to the CBSD. On the other hand, Figs. 7.8b and 7.8c respectively

show a degradation of MCS allocation and increase in BLER under coexistence, leading

to a reduction in throughput. Combined with the spectrum analyzer power analysis and

the higher VZW BS transmit power, we are certain that CLN’s DL throughput reduction is

caused by OOB interference.

Impact of CLN’s OOB interference on VZW throughput: Similar to the previous

analysis, we only focus on analyzing the coexistence between VZW DL and CLN ping +

DL/UL (hereinafter shortened to CLN DL/UL). We omit the analysis on VZW UL due to
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Figure 7.9: Coexistence performance in terms of VZW DL throughput under varying CLN
TDD configurations.

no impact of OOB interference. Additionally, data containing CLN ping only traffic is also

omitted from our analysis due to no interference from ping traffic’s low network utilization.

Fig. 7.9 shows VZW DL throughput on varying locations and CLN TDD configuration. When

CLN is using Sa1 configuration, Fig. 7.9a shows a similar reduction of DL throughput when

coexisting with CLN DL and UL at location A, while Fig. 7.9b shows the largest throughput

reduction (in Sa1) of 17% when coexisting between VZW DL @ B and CLN UL @ B. We

also observe a DL throughput reduction for VZW in the location scenario CLN @ A and

VZW @ B, although this is lower compared to when both UEs are side-by-side. For Sa2, the

highest DL throughput reduction is observed in scenario VZW DL at A and CLN UL at A

as shown on Fig. 7.9c, i.e., 43% reduction compared to the single case. Fig. 7.9d shows the

counterpart at location B, with the highest reduction of 27% when coexisting with CLN UL

at B.
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Figure 7.10: Representative comparison of DL RB, MCS, and BLER for VZW @ A, on CLN
Sa2.
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Most of the scenarios described above do not seem to exhibit a drastic change in terms

of RB allocation, MCS, and BLER between the coexistence and single cases, except for

the scenario of VZW @ A & CLN @ A, CLN uses Sa2 configuration. Thus, we focus on

analyzing the said scenario as shown in Fig. 7.10. Fig. 7.10a, 7.10b, and 7.10c shows the

CDF comparison of RB allocation, MCS, and BLER, respectively. There is a slight decrease

of RB allocation, MCS, and BLER on coexistence cases compared to the single case. As

we see from Fig. 7.3, CLN UL using Sa2 should affects VZW DL less than Sa1 due to the

fewer number of uplink subframes that overlap with VZW’s downlink slots. However, our

experiment is not capable of capturing the exact frame timing to determine interference.

Thus, the effect of OOB interference is not directly apparent here: the VZW BS may have

possibly reacted to the interference by lowering RB allocation and MCS thus resulting in

better BLER performance but lower throughput.

Impact of OOB interference with a 20 MHz guard band: In this analysis, we mea-

sured the throughput performance of both operators when the CLN operating channel was

moved to 3.66 - 3.68 GHz, thus adding a 20 MHz guard band between the CBRS and C-band

channels. We refer to these scenarios as GAP, while the prior scenarios as non-GAP. We

omit showing the spectrum analysis in this scenario, since we observed no power leakage in

the C-band channel and the new CBRS channel (3.66 - 3.68 GHz) as expected.
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Figure 7.11: Coexistence performance in terms of CLN DL throughput with 20 MHz guard
band.
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Figure 7.12: Representative comparison of DL RB, MCS, and BLER for CLN @ A, on CLN
Sa2, with 20 MHz guard band.

Fig. 7.11 shows the DL throughput performance of CLN under GAP scenarios. When

CLN uses Sa1 configuration (Fig. 7.11a, 7.11b), we observe no throughput degradation due

to the low number of DL subframes utilized. When CLN is using Sa2, we observe the highest

degradation of 21% when coexisting with VZW UL @ A. This is an improvement from the

highest degradation 60% in the same scenario without the guard band. Further, Fig. 7.12

shows the DL RB, MCS, and BLER of the representative GAP results of CLN and VZW

@ A, when CLN is using Sa2. While the RB allocations stays at the maximum, we observe

higher MCS allocation and lower BLER compared to representative non-GAP results on

Fig. 7.8.
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Figure 7.13: Coexistence performance in terms of VZW DL throughput with 20 MHz guard
band.

Next, Fig. 7.13 shows the DL throughput performance of VZW under GAP scenarios.

We observe throughput degradation on various parameters, with the highest reduction of

30% when VZW is coexisting with CLN UL @ B using Sa1. However, these reductions can be
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Figure 7.14: Representative comparison of DL RB, MCS, and BLER for VZW @ A, on CLN
Sa1, with 20 MHz guard band.

explained by the higher MCS used on the single cases. As a representative result, Fig. 7.14

shows the DL RB, MCS, and BLER of GAP results of CLN and VZW @ B, when CLN is

using Sa1. We observe a higher MCS and correspondingly, a slightly higher BLER on the

single case. Additionally, we observed a median DL BLER of 0.1-0.12 on all cases. Therefore,

these throughput degradations are not caused by interference, but network variations.

7.3 Co-channel Interference between CBRS Channels

7.3.1 Deployments, Tools, and Methodology

Deployment overview: An extensive measurement campaign was conducted over a wide

area of approximately 12 km2 where the South Bend school district has deployed CBRS, as

shown in Fig. 7.15. Four BSs, i.e., James Whitcomb Riley High School (BS-1), Hayes Tower

(BS-2), West Tower (BS-3), and Navarre Middle School (BS-4) have been deployed on school

buildings and towers, allowing South Bend schools to launch its own private LTE network

to serve students and families. To sustain a high throughput and enhance system capacity,

each BS has multiple CBSDs, each operating on a separate sector at the maximum permitted

power of 47 dBm/10 MHz. Each CBSD is identified by its Physical Channel Identity (PCI)

and operates over a single 20 MHz wide channel. Table 7.2 provides the details about these

BSs including their height, PCI, and the center frequencies of the channel allocations. Since

there are only 7 non-overlapping 20 MHz channels in the CBRS band and the deployment
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Figure 7.15: CBRS deployment by the South Bend school district.

Table 7.2: Height, PCI, and the center frequencies of the channel allocations for BSs.

Region Height
Channel Allocations (Center freq.)

(m) 3560 MHz 3580 MHz 3600 MHz 3670 MHz 3690 MHz

BS-1 (6 PCIs) 45 N/A 189 195 6, 150 169, 194

BS-2 (6 PCIs) 55 N/A 1 N/A 10, 200, 165 78, 69

BS-3 (4 PCIs) 33 14, 88 96, 26 N/A N/A N/A

BS-4 (2 PCIs) 13 N/A 187 46 N/A N/A

has 18 PCIs, it is clear that CBSDs will reuse channels. Thus, channel reuse is introduced

at each BS via sectorization at the expense of potential CCI. It should be noted that the

Google SAS shows that all 15 channels (10 MHz each) are available for GAA use by this

deployment.

BS-1 is deployed on the roof of James Whitcomb Riley High School at a height of 40 m.

It uses four 20 MHz channels and six sectors with the PCIs as shown in Table 7.2.

BS-2 is mounted on a tower with a height of 55 m, and uses three channels across six

PCIs, three of which operate on the same frequency (3670 MHz). The distance between

BS-1 and BS-2 is about 1.3 km.

BS-3 is located on a tower at a lower height (33 m), compared to BS-1 and BS-2, and

two channels, i.e., 3560 MHz and 3580 MHz, are used to serve four sectors with PCIs as

shown in Table 7.2.

BS-4 is placed on the roof of Navarre Middle School at the lowest height (13 m), and uses

3580 MHz and 3600 MHz to serve PCIs 187 and 46, respectively. The sector with PCI 187
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is directed towards BS-3 with PCIs 96 and 26 operating on the same channel, representing

potential CCI.

Table 7.3: Measurement tools and devices.

App./Tool Features Devices

SigCap Operator,PCI, EARFCN, Band, Frequency, Alti-
tude, Longitude, Latitude, RSRP, RSRQ, RSSI

1 × Google P5,
1 × Google P6,
1 × Samsung S21

QualiPoc Operator, PCI, Band, Altitude, Longitude,
Latitude, RSRP, RSRQ, CQI, RSSI, DL/UL
Throughput, RB per subframe

2 × Samsung S22+

PRiSM PCI, EARFCN, Frequency, Altitude, Longitude,
Latitude, RSRP, RSRQ, RSSI

1 × Google P5

Measurement tools: Smartphones were used as user equipment (UEs) to capture detailed

signal information, using tools such as SigCap, QualiPoc, and PRiSM as shown in Table 7.3.

SigCap is an Android application which collects wireless signal parameters (cellular and

Wi-Fi) by using APIs without requiring root access. It allows extraction of detailed signal

parameters such as Received Signal Strength Indicator (RSSI), RSRP, RSRQ, channel band

and frequency for 4G, 5G, and Wi-Fi technologies every 5 seconds, along with location and

time-stamps from the GPS receiver on the device.

QualiPoc is a commercial measurement application developed by Rohde & Schwarz and

installed on Android phones [100]. In addition to signal parameters extracted by SigCap,

QualiPoc collects MCS, block error rate (BLER), time division duplexing (TDD) configu-

ration, channel quality indicator (CQI), and physical layer throughput. All DL throughput

results discussed in this work are extracted from QualiPoc, running an iperf utility.

PRiSM is a software-defined radio (SDR) based handheld network scanner for surveying

4G/5G networks and also operates as a spectrum analyzer from 70 MHz to 6 GHz [33]. It

easily connects to PCs, tablets, and smartphones to monitor the frequency of interest. Unlike

the above two tools, PRiSM does not require a SIM card to extract network information and
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uses the smartphone merely as a display and recording device to track channel occupancy.
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(a) Throughput performance. (b) Average RBs/subframe per PCI.

Figure 7.16: Throughput performance and average RBs/subframe for each BS.

Measurement campaigns: Driving and stationary measurements campaigns (MCs) were

conducted during the summer months of 2023, with dense foliage-covered trees. The UEs

connected to the CBRS network using SIM cards provided by the school district. Measure-

ments of the Verizon network used a 5G SIM with an unlimited data plan and no throttling.

We grouped our experiments into three separate campaigns.

MC-1: Driving measurements were conducted around all the CBSDs as shown in Fig. 7.16a,

at an average speed of 32 km/hour, over a time period of nearly 3 hours per CBSD. QualiPoc,

SigCap and PRiSM were used to collect data, running on the smartphones shown in Table 7.3.

DL throughput measurements were recorded on two Samsung S22+ phones with QualiPoc,

while the PRiSM was connected to a Google P5 and scanned all CBRS and C-Band channels

in order to identify other users using these bands.

MC-2: This campaign focused on BS-3 and BS-4, which are 1.6 km apart, to evaluate

potential CCI in the deployment due to reuse of 3580 MHz by CBSDs in these two BSs. After

identifying CCI, we worked with the network provider to change frequency assignments and

evaluated the improvement when CCI was removed.
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MC-3 To evaluate ACI due to C-band, we conducted focused, stationary, measurements

between PCI 194 deployed on 3690 MHz in BS-1 and a nearby Verizon BS operating in

3700 - 3760 MHz. Fig. 7.17a shows the measurement location for MC-3, and its distance

from BS-1 and the Verizon BS. The experiments were conducted in two phases to assess the

performance of PCI 194 on 3690 MHz under ACI caused by the usage of C-Band. CBRS

and C-Band users first conducted DL transmissions at different time instants, avoiding ACI.

Then, they performed simultaneous DL transmissions, leading to ACI on CBRS band. Fig.

7.17b shows the devices used during MC-3. PRiSM was used to continuously monitor CBRS

(Band 48) and C-band (n77/n78) usage.

(a) Distance from BS-1 and Verizon BS. (b) Measurement setup.

Figure 7.17: Measurement environment and setup for MC-3.

7.3.2 Performance Results and Discussions

In this section, we present statistical analyses of the measurements under different conditions.

The discussion is divided into four main categories: i) the performance of a real-world CBRS

deployment, ii) CCI amongst GAA users, iii) ACI from C-band to CBRS, and iv) utilization

of CBRS band by mobile operators and comparison with C-band.

Performance Evaluation: Fig. 7.16a illustrates the map of outdoor throughput obtained

via driving measurements and Fig. 7.16b shows the distribution of RBs per subframe across

all the PCIs in the deployment. The outdoor throughput observed is in the range of 20-

131



6 (3670 MHz), Mdn: 17 Mbps

150 (3670 MHz), Mdn: 24 Mbps

169 (3690 MHz), Mdn: 20 Mbps

189 (3580 MHz), Mdn: 21 Mbps

194 (3690 MHz), Mdn: 6 Mbps

195 (3600 MHz), Mdn: 40 Mbps

BS-1, PCI

(a)

6 (3670 MHz), Mdn: -113 dBm

150 (3670 MHz), Mdn: -110 dBm

169 (3690 MHz), Mdn: -110 dBm

189 (3580 MHz), Mdn: -115 dBm

194 (3690 MHz), Mdn: -119 dBm

195 (3600 MHz), Mdn: -106 dBm

BS-1, PCI

(b)

-30 -25 -20 -15 -10 -5
0

0.2

0.4

0.6

0.8

1

6 (3670 MHz), Mdn: -11 dB

150 (3670 MHz), Mdn: -10 dB

169 (3690 MHz), Mdn: -11 dB

189 (3580 MHz), Mdn: -12 dB

194 (3690 MHz), Mdn: -14 dB

195 (3600 MHz), Mdn:-10 dB

BS-1, PCI

(c)

6, Mdn: 13

150, Mdn: 17

169, Mdn: 15

189, Mdn: 14

194, Mdn: 9

195, Mdn: 19

BS-1, PCI

(d)

Figure 7.18: CDF plots of throughput, RSRP, RSRQ, and MCS for PCIs at BS-1.

40 Mbps on average. The highest and lowest throughput were observed around BS-2 and

BS-4 due to the height of these BSs at 55 m and 13 m, respectively. Throughput observed

around BS-2 is notably higher compared to other BSs, while the lowest tower height of BS-4

leads to only a small area with high throughput. BS-1 is at a comparable height to BS-2;

however, its coverage area is notably smaller than that of BS-2 due to dense tree coverage,

especially to the southeast. Since throughput is primarily a function of number of RBs

allocated and MCS, we verify that the differences in measured throughput are not primarily

due to RB allocation: Fig. 7.16b shows that the RB usage is approximately similar, with

some differences that will be addressed later. We further analyze the measured throughput,

RSRP, and RSRQ for each BS using cumulative distribution functions (CDFs).

Performance of BS-1: Fig. 7.18 presents the results for each PCI of BS-1. PCI 195

has the best throughput in Fig. 7.18a, almost double that of the other PCIs, as it is the
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only PCI from BS-1 or BS-2 operating on 3600 MHz, as seen from Table 7.2, and thus faces

no CCI from other PCIs on the same channel. Similarly, the RSRP and RSRQ for PCI

195 outperforms the other PCIs in BS-1 as given in Figs. 7.18b and 7.18c, respectively.

PCIs 6 and 150 operate on 3670 MHz, while PCIs 169 and 194 operate on 3690 MHz.

Although PCIs 6 and 150 showed similar median throughput performances at 17 Mbps and

24 Mbps, respectively, there is a substantial performance gap between PCI 169 and PCI 194,

achieving 20 Mbps and 6 Mbps respectively. PCI 194 also exhibited the worst RSRP, RSRQ

and MCS performance as compared to the best performing PCI 195 in BS-1 as seen from

7.18d, which explains the lower throughput. Based on our detailed analysis of signal strength

measurements in the vicinity of BS-1, the reason for this is that PCI-194 experiences ACI

due to the use of the immediately adjacent C-band, by a nearby Verizon BS, as shown in

Figs. 7.17a and 7.19. The performance of PCI 194 both with and without C-band usage,

will be discussed below.
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Figure 7.19: The usage of C-Band by Verizon in the region.

Performance of BS-2: Fig. 7.20 shows the performance of BS-2, operating at a height

similar to BS-1, but within an area where free-space propagation is more prevalent. Hence,

PCI 165 on 3670 MHz achieves the highest median throughput of the CBRS deployment,

reaching 66 Mbps as indicated in Fig. 7.20a. The median throughput of PCI 165 is nearly

double that observed on the other PCIs on 3670 MHz in BS-2 and BS-1, as PCI 165 is the
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Figure 7.20: CDF plots of throughput, RSRP, RSRQ, and MCS for PCIs at BS-2.

only one directed northwest, while the rest are oriented southeast, potentially leading to

CCI among them. PCI 200 has the lowest median throughput, 22 Mbps, amongst the PCIs

on 3670 MHz in BS-2 due to its orientation toward a residential area with dense trees. As

discussed for PCI 194 in BS-1, we observe that PCIs 69 and 78 on 3690 MHz have the worst

performance in BS-2: this can be explained by ACI resulting from the usage of 3730 MHz

in the vicinity of BS-2, as shown in Fig. 7.19. PCI 78 has the lowest median throughput

of 18 Mbps on BS-2, and 7 Mbps lower than PCI 69, since its coverage overlaps with PCI

169 on 3690 MHz coming from BS-1, as seen in Fig. 7.15. RSRP results in Fig. 7.20b

clearly exhibit the reduced impact of foliage on BS-2, where three PCIs (165, 1 and 10)

have a median greater than -105 dBm. Similarly, in Fig. 7.20c, the median RSRQ levels in

BS-2 ranged from -12 dB to -10 dB, and provided better performance than BS-1. As in the

throughput results, PCI 69 on 3690 MHz offered the lowest RSRQ performance due to the

ACI.

Performance of BS-3: Fig. 7.21 presents the results of BS-3, which is less likely to suffer

from interference since the distance of 3.2 km between BS-3 and BS-2 mitigates the presence

of CCI, while the utilization of the lower edge of the CBRS spectrum (3560 MHz and 3580

MHz) offers a sufficient guard band to avoid the effect of C-band ACI. Hence, all PCIs on BS-

3 exhibit similar throughput, RSRP and RSRQ behavior. The obtained throughput levels
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Figure 7.21: CDF plots of throughput, RSRP, RSRQ, and MCS for PCIs at BS-3.

at BS-3, including the peak throughput on PCI 88 (3560 MHz), is much lower compared to

BS-1 and BS-2 due to the lower tower height.

As shown in Fig. 7.15, BS-3’s PCI 96 faces west. Due to the short distance between BS-3

and BS-4, 1.6 km, and lower tower height of BS-3, this poses a potential CCI threat to PCI

187 in BS-4 operating on the same frequency.

Avoiding CCI by selecting an appropriate frequency: MC-2 on PCI 187 evaluated the

impact of CCI within the CBRS deployment itself and aims to improve system performance

via a suitable frequency allocation.

Performance of BS-4: PCI 187 from BS-4, operating on 3580 MHz (S1) shows the worst

throughput, RSRP and RSRQ due to CCI coming from PCI 96 of BS-3, as shown in Fig.

7.22, while PCI 46 from the same BS does not experience CCI and exhibits nearly the same

performance as the PCIs on BS-3 as it is the only PCI operating on 3600 MHz in the region

of BS-3 and BS-4.

To alleviate the effect of CCI on PCI 187, we proposed changing the frequency from 3580

MHz (S1) to 3650 MHz (S2) based on our study of frequency allocations and measurements

of signal strengths in the vicinity of the CBRS deployment. The frequency 3650 MHz was

not used by any of the BSs deployed by the school district, as seen from Table 7.2. As

illustrated in Fig. 7.23, Verizon has utilized the frequency 3650 MHz in the region of BSs,
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Figure 7.22: CDF plots of RSRP, RSRQ, and throughput for BS-4 i) Scenario 1 (S1): PCI
187 on 3580 MHz and PCI 46 on 3600 MHz, and ii) Scenario 2 (S2): PCI 187 on 3650 MHz.
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Figure 7.23: CBRS band usage by Verizon in the region.

but not in the direction of PCI 187.

Fig. 7.22a and Fig. 7.22b show that changing the frequency of PCI 187 to 3650 MHz

resulted in higher RSRP and RSRQ levels compared to the original frequency of 3580 MHz,

and a similar performance to PCI 46, which is free of CCI. It is important to highlight that

PCI 46 maintained the same performance after the frequency change on PCI 187, as they

do not operate on the same frequency.

As compared with S1, the peak throughput of S2 increased by around 20 Mbps, from 100

Mbps to 120 Mbps, while the median throughput remained the same as shown in Fig. 7.22c.

This can be explained as follows: throughput is determined by the MCS and number of

resource blocks (RBs) allocated per subframe, as shown in Fig. 7.24. In Fig. 7.24a, the
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Figure 7.24: MCS and RBs per subframe for PCIs at BS-4.

median value of MCS for S2 increased by 2 indicating that the frequency 3650 MHz is exposed

to less CCI compared to the frequency 3580 MHz, and the number of RBs also improved

slightly, but not enough to deliver a significant throughput increase. We see that PCI 46 for

example has a higher number of RBs/subframe leading to consistently higher throughput.

We speculate that the number of RBs/subframe allocated to PCI 187 were lower than PCI

46 due to proprietary network optimization algorithms, and hence, even though the signal

metrics, RSRP, RSRQ and MCS all improved with the change in frequency, the resulting

median throughput remained unchanged, though the maximum throughput did improve.

Impact of ACI from C-band on CBRS: MC-3 on PCI 194 evaluates the effect of ACI

caused by C-band on CBRS. We performed stationary measurements in the location shown

in Fig. 7.17a where the strongest RSRP was measured for PCI 194 on 3690 MHz.

Fig. 7.25 shows the DL throughput performance when connected to PCI 194 in BS-1, in

the absence and presence of a Verizon C-band UE. First, we measured DL throughput on

the UE connected to CBRS only, followed by simultaneous DL transmissions to two UEs,

one connected to CBRS and the other connected to C-band. We observed around 16%

throughput degradation on the CBRS UE due to ACI from C-band, when both devices were
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Figure 7.25: The impact of C-Band on PCI 194 (3690 MHz) at BS-1.

simultaneously connected. The CBRS UE achieved a peak throughput of approximately

80 Mbps when there was no transmission from the C-band user. However, its maximum

throughput was limited to around 60 Mbps in the presence of the C-band UE. The absence

of guard bands between CBRS and C-band, the transmit power difference and lower tower

height of BS-1 compared to the Verizon C-band, all contribute to the reduced throughput

performance on CBRS UE due to adjacent channel C-band usage.

S3: 194 (3690 MHz), Mdn:-14 dB

S4: 194 (3560 MHz), Mdn:-11 dB

BS-1, PCI

(a)

S3: 194 (3690 MHz), Mdn:9 Mbps

S4: 194 (3560 MHz), Mdn: 21 Mbps

BS-1, PCI

(b)

Figure 7.26: RSRQ and throughput for PCI 194 i) Scenario 3 (S3): 3690 MHz, and ii)
Scenario 4 (S4): 3560 MHz.

Fig. 7.26 assesses the performance improvement of PCI 194 after a frequency change from

3690 MHz (S3) to 3560 MHz (S4): this change was made in response to our measurements
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Table 7.4: Frequencies used by Verizon in the vicinity of the South Bend CBRS deployment.

Band Freq. (MHz) Band Freq. (MHz)

CBRS, Band 48 3560, 3570, 3580, 3590, 3600,
3610, 3610, 3620, 3630, 3640,
3650, 3660, 3670, 3680

C-band, Bands n77/n78 3730, 3809

that indicated significant adjacent channel interference from C-band deployments in the

vicinity. We performed a driving measurement campaign in the coverage area of PCI 194

after the frequency change to evaluate the influence of appropriate frequency allocations

on mitigating ACI from C-band in CBRS band. Fig. 7.26a shows that changing to S4

resulted in higher median RSRQ levels compared to the original frequency of 3690 MHz: an

increase from -14 dB to -11 dB. Moreover, S4 now exhibits comparable RSRQ performance

to the neighboring PCI 150 of BS1, which is free of ACI. As compared with S3, the median

throughput of S4 increased by around 12 Mbps, from 9 Mbps to 21 Mbps, while the peak

throughput remained the same as shown in Fig. 7.26b.

A similar scenario will arise between 3.45 GHz and CBRS once 5G deployments in the 3.45

- 3.55 GHz band increase, indicating further performance degradation on CBSDs operating

at the lower edge of the CBRS band. Hence CBRS deployments need to know whether 5G

is being deployed in upper and/or lower adjacent bands and not use the band-edge CBRS

channels which will be impacted the most by ACI. Since the SAS does not provide this

information, this intelligence needs to be available at the deployment site using measurements

tools such as the ones used in this study.

CBRS band use by Verizon using LTE-CA: During our experiments for MC-3, we

observed that the Verizon BS also transmits on the CBRS band using LTE with carrier

aggregation (LTE-CA), aggregating up to five 20 MHz CBRS channels with four channels

being aggregated most often (80%). Along with a 20 MHz primary LTE channel, this allows

up to 120 MHz of bandwidth for use when high capacity is required: this is significantly higher

than the C-band channel bandwidth of 60 MHz that Verizon has exclusive license to, but at
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(a) (b)

Figure 7.27: Verizon throughput with LTE-CA using CBRS.

Figure 7.28: Verizon LTE-CA and C-band throughput.

zero cost compared to the billions of dollars spent for exclusive licenses. Table 7.4 details

how the CBRS band (also called Band 48), is utilized by Verizon in the vicinity of the South

Bend CBRS deployment. We see that Verizon CBSDs are deployed on all available CBRS

frequencies, creating potential CCI for other CBRS deployments. Additionally, we observed

that when LTE-CA uses CBRS channels, the total throughput as well as the proportion

of throughput carried over CBRS are both very high, as shown in Fig. 7.27 and overall

throughput of 4G using LTE-CA was significantly higher than 5G using C-band at the same

location as shown in Fig. 7.28. Thus, even as operators roll out 5G using their new, licensed,

spectrum, CBRS remains extremely competitive when additional capacity is needed.
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7.4 Summary and List of Accomplishments

This chapter presents our first comprehensive, device-based measurement analysis of ACI

between adjacent CBRS and C-Band channels, along with CCI within CBRS channels. We

demonstrate that the lack of guard bands, significant power differences, and asynchronous

TDD operation severely limit the potential throughput for both CBRS and C-Band. In-

troducing a 20 MHz gap between the CBRS and C-Band channels significantly mitigates

throughput degradation (CBRS: 60% to 21%, C-band 43% to 30%), underscoring the im-

pact of OOB interference. Due to the 3.55-3.65 GHz PAL license restriction, PAL channels

face the lowest risk of ACI compared to GAA and Tier 1.

Our next extensive study on CBRS deployments in South Bend, highlights that secondary

coexistence between GAA CBSDs, even within the same network, can hinder optimal per-

formance. In the deployments, despite SAS clearance for all CBRS channels, concentrated

use of specific frequencies (3580 MHz, 3670 MHz, 3690 MHz), coupled with the unexpected

emergence of adjacent CBRS and C-band deployments, significantly impacted performance.

Collaborating with the CBRS provider, we successfully demonstrated improved signal qual-

ity by changing the frequency of a CBSD. However, SAS limitations delayed this change,

emphasizing the need for dynamic channel allocation based on real-world measurements–a

capability currently unavailable. Additionally, even with 4G, aggregating multiple CBRS

channels outperformed C-band 5G, demonstrating the value of CBRS for both large mobile

operators and smaller private network providers.

The following papers has been published in the topic of machine learning in wireless

networks:

• Muhammad Iqbal Rochman et al. “A Measurement Study of the Impact of Adjacent

Channel Interference between C-band and CBRS”. In: IEEE 34th Annual Interna-

tional Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC).

2023.
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• Armed Tusha et al. “A Comprehensive Analysis of Secondary Coexistence in a Real-

World CBRS Deployment”. In: IEEE Dynamic Spectrum Access Networks (DySPAN).

2024.
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CHAPTER 8

MACHINE LEARNING IN WIRELESS NETWORKS

8.1 Overview and Related Works

Machine Learning (ML) approaches has been used in wireless networks due to the ability

to learn useful information from input data to improve future network performance. ML

models enable us to replace heuristics with more robust and general alternatives. In [118, 22,

129], several state-of-the-art applications of ML in wireless communication and unresolved

problems have been described, i.e., resource management in the MAC layer, networking and

mobility management in the network layer, and localization in the application layer. In this

dissertation, we present two works on the ML-based approach to solve problems of spectrum

sharing in the coexistence between LTE-U and Wi-Fi [32], and to determine whether a

smartphone is located indoor or outdoor based on its signal data [89].

8.2 Machine learning-enabled spectrum sharing in dense

LTE-U/Wi-Fi coexistence scenarios

LTE-U was developed by the LTE-U forum [71] as an alternative to the LAA specification

for unlicensed spectrum access. While LAA uses a carrier sensing LBT mechanism, LTE-U

uses a simple duty-cycling technique where the LTE-U BS will periodically switch between

ON and OFF states in an interval set according to the number of Wi-Fi APs present in the

channel. In the ON state, the BS transmits data as a normal LTE transmission while in

the OFF state, the BS does not transmit any data but passively senses the channel for the

presence of Wi-Fi. The number of sensed Wi-Fi APs is then used to properly adjust the duty

cycle interval, and this process is known as Carrier Sense Adaptive Transmission (CSAT).

In this work, we present a method to accurately determine the number of coexisting Wi-Fi
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Table 8.1: Different Types of LTE-U CSAT.

CSAT Types Method Pros Cons
Header Decod-
ing (HD)

Decodes the Wi-Fi
MAC header at the
LTE-U BS

100% accurate Additional Com-
plexity [21], high
cost

Energy Detec-
tion (ED)

Based on the change
in the energy level of
the air medium

Low-cost, low-
complexity

Low-accuracy
[107]

Auto-correlation
(AC)

LTE-U BS performs
correlation on the
Wi-Fi L-STF symbol
in the preamble

Low-cost, low-
complexity

Medium ac-
curacy (more
accurate than
ED) [106]

Machine Learn-
ing (ML)

Train the model based
on energy values on
the channel

Much more ac-
curate than ED
and AC methods

Requires gath-
ering data and
training models

APs [32], which is important for optimum operation of the CSAT procedure.

Table 8.1 shows the various approaches to determine the number of Wi-Fi AP for CSAT,

which includes the advantages and disadvantages of each approaches. In this work, we

observe the Wi-Fi AP energy values during LTE-U OFF duration and using the data to

train different ML models [130]. We also apply the models in an online experiment to

detect the number of Wi-Fi APs. Finally, we demonstrate significant improvement in the

performance of the ML approach as compared to the ED and AC detectors.

8.2.1 Experiment setup

Our experimental set-up consists of one LTE-U BS and a maximum of five Wi-Fi APs. To

emulate the LTE-U BS, we use the National Instruments USRP 2953-R software defined

radio (SDR) which is equipped with the LTE-U radio framework. We assume the LTE-U BS

transmits only downlink packets on the unlicensed spectrum, while all uplink transmissions

are on the licensed spectrum. Control and data packets are transmitted using PDCCH and

PDSCH respectively. There are five Netgear Wi-Fi APs and five Wi-Fi clients deployed in a

static configuration. The Wi-Fi clients are combination of laptops and smartphones capable
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Figure 8.1: LTE Wi-Fi Co-existence Experimental Setup.

of Wi-Fi 802.11 ac connection. As soon as the client connects to the Wi-Fi AP, it starts a live

video streaming application to simulate a full-buffer transmission. The experimental setup is

shown in Fig. 8.1 and the complete experimental parameters are described in Table 8.2. Both

LTE-U BS and Wi-Fi APs operates at maximum transmit power using all possible resource

blocks and the highest modulation coding scheme (i.e., 64-QAM). CSMA/CA and duty-cycle

adaptation mechanism are used for channel access for Wi-Fi and LTE-U, respectively. Both

Wi-Fi and LTE-U follow their respective retransmission schemes. Finally, we assume that

the Wi-Fi APs support both active and passive scanning mode, i.e., both beacon and probe

response packets are transmitted by the AP during the association process. We separated

the APs and BS into six cells, with five cells (Cell A, C, D, E, and F) as Wi-Fi cells and one

cell (Cell B) as the LTE-U cell. Each Wi-Fi cell consists of one AP and one client, while the
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Table 8.2: Experimental Set-up Parameters

Parameter Value

Available Spectrum and Frequency 20 MHz and 5.825 GHz
Maximum Tx power for both LTE
and Wi-Fi

23 dBm

Wi-Fi sensing protocol CSMA/CA
Traffic Full Buffer (Saturation Case)
Wi-Fi Antenna Type MIMO
LTE-U Antenna Type SISO
LTE-U Modulation 64-QAM
LTE-U data and control channel PDSCH and PDCCH
Type of Wi-Fi Clients 2 Google Pixel, 1 Samsung, 1 Redmi,

and 1 Apple Laptop

LTE-U BS and UE are contained within the same USRP board. We also ensure that there

is no extra interference in the channel from other Wi-Fi APs.

Both BS and APs transmit full buffer data at maximum power. The BS operates at

a 50% duty cycle during the experiment, and listens to the configured unlicensed channel

during the OFF period for RF power and AC measurement. The RF power measurement

is configured in the LTE block control module of the NI LTE application framework, which

outputs energy value as defined in §8.2.2. The AC function is also configured in the LTE

block control module of the same framework and outputs the AC events as defined in §8.2.2.

The energy values observed from Algorithm 2 are given as input to the ML algorithm to

classify the number of Wi-Fi APs on the channel.

We measure the energy, AC value and ML (same energy value as input to ML) at the

LTE-U BS for the following scenarios:

• Scenario 0: No Wi-Fi APs are deployed and only one LTE-U cell (i.e., Cell B) is

deployed.

• Scenario 1: One Wi-Fi AP (i.e., Cell A) and one LTE-U (i.e., Cell B) is deployed.

• Scenario 2: Two Wi-Fi APs (i.e., Cell A & C) and one LTE-U (i.e., Cell B) are
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deployed.

• Scenario 3: Three Wi-Fi APs (i.e., Cell D, E, & F) and one LTE-U (i.e., Cell B) are

deployed.

• Scenario 4: Four Wi-Fi APs (i.e., Scenario 1: Cell A, Scenario 3: Cell D, E, & F)

and one LTE-U (i.e., Cell B) are deployed.

• Scenario 5: Five Wi-Fi APs (i.e., Cell A, C, D, E, & F) and LTE-U (i.e., Cell B) are

deployed.

In all scenarios, Cell B measures the energy and AC values during the LTE-U OFF period,

while the rest of the Wi-Fi cells are transmitting full buffer downlink transmission. We also

vary the distances and the LOS and NLOS environment of each cell. In NLOS setup, the wall

act as a obstruction between the LTE-U and Wi-Fi APs. We measure the received Wi-Fi

AP signals at the LTE-U BS for different 6 feet (For example in Scenario 5, where all the 5

Wi-Fi APs placed at 6 feet from the LTE-U BS), 10 feet and 15 feet distances. Our previous

work focused only on detecting Scenarios 1 and 2 (i.e., 1 and 2 Wi-Fi APs coexisting with

LTE-U) [107, 106]. Also, we demonstrated that Scenario 0 can be easily distinguished from

other scenarios [105].

8.2.2 LTE-U Duty Cycle Adaptation Algorithms

For quantitative comparison of our ML-based algorithm, we also propose header (HD), energy

(ED) and auto-correlation (AC) based detection algorithms. Fig. 8.2 explains how different

sensing algorithms work based on the known Wi-Fi packet structure.

Header-Decoding based LTE-U duty cycle adaptation algorithm We assume that

there is either a common preamble [88, 15] between the LTE-U and Wi-Fi systems or the

LTE-U BS has a full Wi-Fi decoder that will allow it to decode the Wi-Fi MAC header and
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Figure 8.2: LTE-U Duty Cycle Adaptation Algorithm.

hence obtain the BSSID. Doing so, one can accurately detect the number of Wi-Fi APs on

the channel better than energy, auto-correlation, and ML algorithms.

We define a simple algorithm shown in Algorithm 1, to classify the number of active

Wi-Fi APs at each time slot while carefully avoid misclassification. In brief, the algorithm

counts the number of beacon of each uniquely identifiable BSSID, for a defined time slot.

Since we can expect that an AP in a real deployment may hop between channels frequently,

it is important to collect beacons for a longer period of time rather than deciding based on

just one beacon. The length of the time slot determines the inference delay, hence one would

like this delay to be as small as possible. We initially set a time slot of 10 beacons (1.024 s)

but reduced it to 5 beacons (0.512 s) while setting a threshold to 4 beacons for an AP to be

considered active, i.e., a confidence rate is of 80%. This reduces the inference time to half

without compromising the detection accuracy.
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Algorithm 1 : Header-decoding based LTE-U Scale Back

Initialization: (i) Beaconi = 0

(ii) Count.detecti = 0, Count.falsealarmi = 0

(iii) LastT ime = 0, TimeSlot = 0.512 s, Threshold = 4

while true do

/* A Wi-Fi beacon with BSSID i is detected at time CurrentT ime */

Beaconi ++;

if CurrentT ime− LastT ime ≥ TimeSlot then

NumberOfAp = 0;

for i in Beacon do

if Beaconi ≥ Threshold then

NumberOfAp ++;

end

Beaconi = 0;

end

LastT ime = CurrentT ime;

for i = 1 to 5 do

if i Wi-Fi is ON then

if i == NumberOfAp then

Count.detecti ++;

else

Count.falsealarmi ++;

end

end

end

end

end
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Algorithm 2 Energy Based LTE-U Scale Back
Input: α1, α2, α3, α4, α5

Initialization: (i) α6 = ∞

(ii)Count.detecti = 0, Count.falsealarmi = 0

while true do

/* Received Avg(EnergyLevel) over one second */

for i = 1 to 5 do

if i Wi-Fi is ON then

if αi ≤ Avg(Energy Level) ≤ αi+1 then

Count.detecti ++;

else

Count.false.alarmi ++;

end

end

end

end

Energy based LTE-U duty cycle adaptation algorithm As shown in Fig. 8.1, we

measure the received energy at the LTE-U BS for different distances between the LTE-U BS

and Wi-fi APs and obtain histograms of the measured signal when one or more Wi-Fi APs are

transmitting at 6, 10 and 15 feet from the LTE-U BS. We then fit the measured histograms to

probability distribution functions as described in [107] to develop a classification algorithm.

In Algorithm 2, an energy-based detection listens to the energy level in the channel and

according to a set threshold [107], decides whether to scale back the duty cycle or not.

Since the measured energy threshold depends on the the number of detected Wi-Fi APs, the

choice of threshold is important to the algorithm. Finally, we implement the algorithm in
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the LTE-U BS NI hardware and validate it experimentally.

First, we modify the NI LTE application framework to measure RF power during the

LTE-U OFF period. The collected energy values are then averaged over one second time

duration and used for algorithm input. If the averaged energy value is greater than the

specified threshold α1, i.e., if energy value ≥ α1 then there is a possibility of Wi-Fi packets

(beacon, probe request, probe response, data, or ACK) transmitted in the channel. The BS

then can declare whether one, two, three, four, or five AP is present, based on the other

thresholds: α2, α3, α4, α5 (e.g., if α3 ≤ energy value ≤ α4 then there are 4 APs in the

channel). By keeping count of correct and incorrect decisions made by the algorithm, we

calculate the probability of correct detection and false positive on predicting the number of

Wi-Fi APs in the unlicensed spectrum. These probability values are used as a metric to

determine the performance of the threshold, such that we pick a set of threshold with high

probability of correct detection and low probability of false positive.
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Algorithm 3 : Auto-correlation Based LTE-U Scale Back

Input: thρ, R

Initialization: Count.detecti = 0, Count.falsealarmi = 0

while true do

/* Received T number of AC values over one second */

for i = 1 to 5 do

if i Wi-Fi is ON then

Signal = 0;

for t = 1 to T do

if ACt ≥ thρ then

Signal ++;

end

end

ratio = Signal
T ;

if ratio ≤ Ri then

Count.detecti ++;

else

Count.falsealarmi ++;

end

end

end

end

AC based LTE-U duty cycle adaptation algorithm In the same experiment setup as

shown in Fig. 8.1, we count the total number of AC events that are above a threshold for

every one second over the duration of 90 seconds. We measure the total number of events

above the AC threshold at the LTE-U BS for 6, 10 and 15 feet distances. Then, we observe
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the PDF distribution of the number of AC events above the threshold [106] for Scenario 0 to

5 described above. We make use of this key observation to develop a classification algorithm

(i.e., Algorithm 3) for both LOS and NLOS scenarios. The algorithm uses AC functions

and optimal thresholds to determine the number of Wi-Fi APs in the channel, therefore the

selection of threshold is also important and will be shown in this section. We implement

the algorithm in the LTE-U BS hardware and validate it experimentally. The AC function

is performed at LTE-U BS to sense the spectrum for Wi-Fi preamble signals (i.e., L-STF).

The output of the function is an AC value which determine the likelihood that the signal

is a Wi-Fi preamble. We observed on many experiments, that the threshold thρ of 0.25 is

sufficient to determine that the captured signal is a Wi-Fi signal (beacon, probe request,

probe response, data, or ACK). Using the threshold, we predicted the number of Wi-Fi

signals in every one second period. Next, we calculate the ratio [106] and then compared to

Ri which is a threshold determined during a preliminary experiment with i Wi-Fi AP and

no LTE-U on the channel. The Ri is determined such that the true positive rate is as high

as possible and false positive rate is as low as possible during the preliminary experiment.

Since it is not possible for the observed ratio to be higher than Ri, we set a correct prediction

that i Wi-Fi AP is present in the channel if the ratio is less than or equal to the threshold

Ri, and false prediction otherwise.

8.2.3 ML Algorithms for LTE-U Duty Cycle Adaption

We consider machine learning models that take time-series data of width w as input, giving

an example space of X ∈ Rw, where R denotes the real numbers. Our discrete label

space of k classes is represented as Y ∈ {0, 1}k. For example, k = 3 classes, enables us to

distinguish between 0, 1, and 2 Wi-Fi APs. Machine learning models represent parametrized

functions (by a weight vector θ) between the example and label spaces f(x; θ) : X 7→ Y .

The weight vector θ is iteratively updated during the training process until the convergence
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of the training accuracy or training loss (usually determined by very small changes to the

values despite further training), and then the final state of θ is used for testing and real-time

inference.

Data preparation The training and testing data is collected over an extended period of

time with a single scenario taking about 8 hours. For ease of exposition, we consider the case

with one and two Wi-Fi APs. We collect data for each Wi-Fi AP independently and store the

two datasets in separate files. Each file contains more than 2.5 million values and the total

raw data size in CSV format is of about 60 MB. Each file is treated as time-series data with

a sequence of values that are first divided into chunks. We overlap the time-series chunks

arbitrarily by three-fourths of their widths w. For example, for chunks width w = 128,

the first chunk starts at index 0, the second chunk is formed starting from index 32, the

third chunk starts at index 64, and so on. This is part of our data augmentation and a soft

guarantee that much fewer patterns are broken on the boundary of chunks. The width w of

the (time-series data) chunk acts as a parameter for our ML model. It denotes the number of

samples that have to be provided to the model to perform the classification. The longer the

time-series width w, the more data samples have to be collected during inference. The result

is higher latency of the system, however, the more samples are gathered, the more accurate

the predictions of the model. On the other hand, with smaller number of samples per chunk,

the time to collect the samples is shorter, the inference is faster but of lower accuracy.

The collection of chunks are shuffled randomly. We divide the input data into training

and test sets, each 50% of the overall data size. The aforementioned shuffling ensures that

we evenly distribute different types of patterns through the training and test sets so that the

classification accuracy of both sets is comparable. Each of the training and test sets contain

roughly the same number of chunks that represent one or two Wi-Fi APs. We enumerate

classes from 0. For the case of 2 classes (either one or two Wi-Fis), we denote by 0 the class

that represents a single Wi-Fi AP and by 1 the class that represents 2 Wi-Fi APs. Next,

154



we compute the mean µ and standard deviation σ only on the training set. We check for

outliers and replace the values that are larger than 4σ with the µ value (e.g., there are only

4 such values in class 1 ).

The data for the two classes have different ranges (from about -45.46 to -26.93 dBm for

class 0, and from about -52.02 to about -22.28 dBm for class 1 ). Thus, we normalize the

data D in the standard way: ND =
(D−µ)

σ , where ND is the normalized data output, µ

and σ are the mean and standard deviation computed on the training data. We attach the

appropriate label to each chunk of the data. The overall size of the data after the preparation

to detect one or two Wi-Fi APs is about 382 MB, where the Wi-Fi APs are on opposite sides

of the LTE-U BSS and placed at 6 feet distance from the LTE-U BSS). The final size of the

collected data is 3.4 GB.

For training, we do not insert values from different numbers of Wi-Fi APs into a single

chunk. The received signal in the LTE-U BSS has higher energy on average for more Wi-Fi

APs, thus there are differences in the mean values for each dataset. Our data preparation

script handles many possible numbers of Wi-Fi APs and generates the data in the format

that can be used for model training and inference (we follow the format for datasets from

the UCR archive).

Neural network models: FC, VGG and FCN Our data is treated as a univariate time-

series for each chunk. There are many different models proposed for the standard time-series

benchmark [23].

First, we test fully connected (FC) neural networks. For simple architectures with two

linear layers followed by the ReLU non-linearity the maximum accuracy achieved is about

90%. More linear layers, or using other non-linearities (e.g. sigmoid) and weight decays do

not help to increase the accuracy of the model significantly. Thus, next we extract more

patterns from the data using the convolutional layers.

Second, we adapt the VGG network [115] to the one dimensional classification task. We
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changed the number of weight layers to 6 (we also tested 7, 5, and 4 layers, but found that 6

gives the highest test accuracy of about 99.52%). However, the drawback is that with fewer

convolutional layers, the fully connected layers at the end of VGG net become bigger to the

point that it hurts the performance (for 4 weight layers it drops to about 95.75%). This

architecture gives us higher accuracy but is rather difficult to adjust to small data.1

Finally, one of the strongest and flexible models called FCN is based on convolutional

neural networks that find general patterns in time-series sequences [124]. The advantages

of the model are: simplicity (no data-specific hyper-parameters), no additional data pre-

processing required, no feature crafting required, and significant academic and industrial

effort into improving the accuracy of convolutional neural networks [31, 66].

The architecture of the FCN network contains three blocks, where each of them consists

of a convolutional layer, followed by batch normalization f(x) = x−µ√
σ2+ϵ

(where ϵ is a small

constant added for numerical stability) and ReLU activation function y(x) = max(0, x).

There are 128, 256, and 128 filter banks in each of the consecutive 3 layer blocks, where

the sizes of the filters are: 8, 5, and 3, respectively. We follow the standard convention for

Convolutional Neural Networks (CNNs) and refer to the discrete cross-correlation operation

as convolution. The input x to the first convolution is the time-series data chunk with a

single channel c. After its convolution with f filters, with filters denoted as y, the output

feature map o has f channels. For training, we insert s = 32 time-series data chunks into a

mini-batch. We have j ∈ f and the discrete convolution [122] that can be expressed as:

o = x ∗ y (8.1)

1. The dimensionality of the data is reduced slowly because of the small filter of size 3.
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and in the Einstein notation:

o(s,j) =
∑
i∈c

x(s,i) · y(j,i) (8.2)

ML models from scikit-learn To diversify the machine learning models used in our com-

parison, we select the most popular models from the scikit-learn (also denoted as sklearn)

library 2. The library exposes classical machine learning algorithms implemented in Python.

This is a common tool used for science and engineering. We run our experiments using

sklearn version 0.19.1 with Python 3.6. We analyze how the following models perform on

our WiFi data and report their test accuracy. The decision tree is a simple classifier that

learns decision rules inferred from the data features. The deeper the tree, the more complex

the decision rules and the fitter the model. The decision tree classifier achieves accuracy of

79.46% for the task of distinguishing between one or two Wi-Fi APs. The AdaBoost [58]

classifier is one of the best out-of-the-box models in the sklearn library that creates an en-

semble of classifiers. In our experiments, AdaBoost begins by fitting a decision tree classifier

on the original dataset and then fits additional decision tree classifiers on the same dataset

but where the weights of incorrectly classified instances are modified such that subsequent

classifiers focus more on difficult cases. It is tuned by adjusting the maximum number of

the decision tree classifiers used. AdaBoost achieves accuracy of 94.57%. Random Forest is

an averaging algorithm based on randomized decision trees. Its test accuracy is 79.87%. We

find that the best tested model from the sklearn library is AdaBoost. The highest test accu-

racy achieved for AdaBoost for the standard case with two Wi-Fi APs is worse by about 5%

when compared to the overall best FCN model (described in section 8.2.3), which achieves

accuracy of 99.38% for the same configuration (with 2 Wi-Fi APs, 512 chunk size, NLOS,

and 6 feet distance). For more than 5 classes, Random Forest model achieves higher accuracy

2. https://scikit-learn.org/stable/index.html
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than AdaBoost.

Time-series specific models BOSS in Vector Space (BOSS VS) model [112] is a time-series

classification algorithm, whose properties make it suitable for our task. This algorithm is

characterized by fast inference, tolerance to noise that enable us to achieve high test accuracy,

moderate training time, which allows for periodic model updates. Moreover, BOSS VS

achieves best test accuracy for repetitive and long time-series data. Within the time-series

specific models, we also compared to WEASEL [110], which yielded lower test accuracy

despite much longer training time.

We run the BOSS VS time-series specific model for the NLOS 6 feet case. Other time-

series models train much longer (in the order of days) on our large (a few GBs) time-series

data or do not fit even into 128 GB of RAM memory provided. We observe that from 2 to

up to 4 WiFi APs, the performance of the BOSS VS model is on-par with the performance

of FCN model. However, for the scenario where we have to distinguish between 0 to 5 WiFi

APs, the accuracy of the FCN model is higher by about 7%. One concern with the BOSS

VS model is that we have to use a machine with 128 GB of RAM to train the model and for

larger data sizes, the out of memory exception is thrown as well (the model is implemented in

Java). For the FCN, we are able to scale to arbitrary amount of data. Based on the thorough

experimental analysis, we see the FCN model and other neural network based models as the

most accurate and scalable models that can be used to predict the number of Wi-Fi APs.

Real-time inference We deploy the model in real-time, which is similar to the energy data

collection experiment setup, and is shown in Fig. 8.3. We prepare the model only for the

inference task in the following steps. Python scripts load and deploy the trained PyTorch

model. We set up the Wi-Fi devices and generate some network load for each device. The

LTE-U BS is connected to a computer with the hardware requirements of at least 8 GB

RAM (Installed Memory), 64-bit operating system, x64-based processor, Intel(R) Core i7,
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LTE-U BS

LabVIEW
FILE / PIPE

Input: signals from Wi-Fis

MODEL
Output:
2 Wi-Fis

Figure 8.3: The schema of the inference process, where the input received by the LTE-U BS
is signals from Wi-Fis and the output is the predicted number of Wi-Fis.

CPU clock 2.60GHz. The energy of the Wi-Fi transmission signal in a given moment in

time is capture using NI LabVIEW. From the program, we generate an output file or write

the data to a pipe. The ML model reads the new values from the file until it reaches the

time-series chunk length. Next, the chunk is normalized and passed through the model that

gives a categorical output that indicates the predicted number of Wi-Fis in the real-time

environment.

8.2.4 Performance comparison between HD, ED, AC and ML methods

We analyze and study the performance differences between HD, ED, AC and ML methods

for different configuration setups and discus the inference delay. In ML method, we validate

the performance on ML real-time inference data. For the final evaluation, we train a single

Machine Learning model that is based on the FCN network and used for all the following

experiments. The model is trained on the whole dataset of size 3.4 GB, where the train and

test sets are of the same size of about 1.7 GB.

Comparison between ML methods We present comparison between ML methods in

Fig. 8.4. The time-series specific neural network models, such as FCN as well as BOSS
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Figure 8.4: Comparison of test accuracy for different ML methods. Number of Wi-Fi APs
equals to 2 denotes the Case D configuration (NLOS, 6 feet). Thus, 2 on the x axis cor-
responds to distinguishing between 1 and 2 Wi-Fi APs, whereas 3 denotes distinguishing
between 0, 1, or 2 Wi-Fi APs. Similarly, the values on the x axis (4,5) denote distinguishing
from 0 to (x-1) WiFi APs.

VS, perform much better than the general purpose models from scikit-learn library. The

middle-ground between the two options is a simple two-layer convolutional network called

LeNet. The main benefit of using FCN (MEDIUM) or BOSS VS is greater model learning

capacity than LeNet or scikit-learn models. There is a negligible difference in terms of test

accuracy between the FCN and BOSS VS models. However, the FCN models can scale to

much bigger data sizes and we observe that the BOSS VS model often goes out of memory

for more than a few GBs of input data. Thus, we select FCN as our main Machine Learning

(ML) model for all the remaining experiments.

Successful Detection at Fixed Distance We compare the ML performance with HD3,

3. The successful Wi-Fi detection in HD for LOS and NLOS scenario is 100%. Hence we have not included
in the Fig. 8.1.
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Figure 8.5: Comparison of results for successful detection between ED, AC and ML methods.
ML results are presented for the test data (denoted as MLt:) and for the real time inference
(denoted as MLr:).

ED and AC approaches using the NI USRP platform as shown in Fig. 8.1. Similarly we

compare the performance of HD by analyzing the Wi-Fi BSSID through wireshark capture.

In the experiment, Wi-Fi APs are transmitting full buffer data, along with beacon and probe

response frames following the 802.11 CSMA specification. We performed different experi-

ments with 6ft, 10ft and 15ft for LOS and NLOS scenarios. Fig 8.5 shows the performance

of detection for LOS and NLOS scenarios. In ED and AC based approach the proposed

detection algorithm achieves the successful detection on average at 93% and 95% for LOS

scenario. Similarly, the algorithm achieves 80% and 90% for the NLOS scenario. In this

work, we show that ML approach can achieve close to 100% successful detection rate for

both LOS and NLOS, and different distance scenarios (6ft, 10ft & 15ft). We observe the ML

approach works close to the performance of HD.

Table 8.3 shows the performance of detection for fixed distance configuration setup. From,

this table the number of Wi-Fis columns represents the number of Wi-Fi APs deployed in

the coexistence setup. The number of Wi-Fi AP 2 corresponds to distinguishing between 1

and 2 Wi-Fi APs, whereas 3 denotes distinguishing between 0, 1, or 2 Wi-Fi APs and so on.
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Table 8.3: Performance of detection for fixed distance configuration setup.

Conf. Classes HD (%) ED (%) AC (%) ML (%)
Distance # of APs LOS NLOS LOS NLOS LOS NLOS LOS NLOS

6F

2 100 100 96 91 98 96 98.60 99.10
3 100 100 88 85 95 90 99.10 99.50
4 100 100 80 74 87 81 99.40 99.00
5 100 100 74 62 76 65 99.20 98.70
6 100 100 62 51 70 59 99.30 99.0

10F

2 100 100 94 89 97 94 99.80 99.98
3 100 100 86 82 91 88 99.80 99.98
4 100 100 78 72 85 79 99.80 99.90
5 100 100 72 60 75 63 99.50 99.85
6 100 100 64 54 68 57 99.80 99.84

15F

2 100 100 92 87 95 90 99.80 99.80
3 100 100 84 80 85 81 99.90 99.60
4 100 100 75 70 79 71 99.90 99.60
5 100 100 70 58 71 64 99.60 99.50
6 100 100 63 53 66 55 99.50 99.40

In all cases the performance of ML is close to 100%.

Additional Delay to Detect the Wi-Fi AP To study the additional delay to detect a

Wi-Fi AP, we consider a 5 Wi-Fi AP deployment scenario, where, Wi-Fi AP 1 and Wi-Fi AP

2 at 6 feet are ON, Wi-Fi AP 3 and Wi-Fi AP 4 at 10 feet are ON and Wi-Fi AP 5 at 15 feet

is ON. We observe a large number of Wi-Fi packets on the air and moreover the LTE-U ON

cycle interference impacts the delay in Wi-Fi transmissions. In HD, the total time for the

LTE-U BS to decode the BSSID is 1.4 seconds (i.e., Wi-Fi 1st BSSID beacon packet + LTE-

U detects K beacon + Additional layer complexity + NI USRP RIO hardware processing

time). In ED, the total time for the energy based CSAT algorithm to adopt or change the

duty cycle from 50% to 33% is 5.9 seconds (i.e., Wi-Fi 1st beacon transmission time + LTE-

U detects K beacon (or) data packets time + NI USRP RIO hardware processing time) as

shown in Table 8.4. In AC, the total time for the AC based CSAT algorithm to change the

duty cycle from 50% to 33% is 4.8 seconds (i.e., Wi-Fi 1st L-STF packet frame + LTE-U

detects L-STF frame time + NI USRP RIO hardware processing time). In ML, the total
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Table 8.4: Other additional delay to detect the Wi-Fi AP due to the NI hardware

CSAT Types NI HW Delay
Header Decoding (HD) 1.4 S
Energy Detection (ED) 5.9 S
Auto-correlation (AC) 4.8 S
Machine Learning (ML) 3.1 S

time for the CSAT algorithm to adopt the duty cycle from 50% to 33% is about 3.1 seconds.

This approach is dependent on the chunk size (in this case set to 512).

8.3 ML-based classification of device environment using Wi-Fi

and cellular signal measurements

The 6 GHz rules [44] create two different power regimes for unlicensed devices: “indoor”

devices that are subject to lower transmit powers (Low Power Indoors or LPI) but are not

required to access an Automatic Frequency Control (AFC) database to obtain permission

to use a channel, and “outdoor” devices, that can transmit at a higher power but need to

consult an AFC prior to using a channel to ensure that the device is not in the exclusion

zone for the desired channel, as shown in Fig. 8.6. Very Low Power (VLP) devices shown in

Fig. 8.6 have yet to be authorized in the US but are permitted in other regulatory regimes:

these devices can be anywhere, do not need to consult an AFC but will transmit at lower

power than LPI devices.

Since there are no reliable means for determining if a wireless device is indoors or out-

doors, other restrictions were mandated for LPI: indoor access points (APs) could not be

battery powered, have detachable antennas or a weatherized exterior, and mobile client de-

vices connected to an indoor AP were subject to a 6 dB lower transmit power constraint

(proposed by FCC) compared to the indoor AP since they could be outdoors and pose an

interference threat to incumbents if they were to transmit at the same power as an indoor

device. These constraints clearly lead to sub-optimal spectrum usage: for example, client
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Figure 8.6: Deployment scenario of indoor and outdoor devices in 6 GHz

devices even if they are indoors have to transmit at a lower power, client devices cannot

transmit directly to each other without connecting through an AP, and APs being unable

to be battery powered can lead to a less resilient network. Hence, the ability of a wireless

device to reliably detect its own environment allows device power allocations that do not

need to be constrained by external factors and can lead to improved spectrum utilization

and increased resilience.

The fundamental premise of our approach in this work [89] is simple: just as the indoor

visual environment is quite different from the outdoor visual environment, the same is true

for the radio frequency (RF) environment as well. RF transmissions permeate our surround-

ings: television (TV), radio (AM/FM), cellular and Wi-Fi being the most pervasive. The

most obvious difference between indoor and outdoor environments is the signal strength:

transmissions from outdoor sources such as Global Positioning System (GPS) satellites, TV

transmitters, cellular towers, and radio stations will be received at higher power outdoors

while predominantly indoor transmitters such as Wi-Fi will have higher signal strength in-

doors. There are other differences as well: the number of Wi-Fi APs and cellular base-stations
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Table 8.5: Summary of data collected

Location Indoor Outdoor Total

Chicago 9049 6850 15899
Colorado 605 20283 20888
New York 45742 130241 175983
Total 55396 157374 212770

(BSs) received by a device such as a smartphone will also depend on the environment. Today,

it is possible to extract detailed information on both signal strength and number of Wi-Fi

APs and cellular BSs received by a smartphone, over frequency bands from the unlicensed

2.4 GHz and 5 GHz bands to the low (< 1 GHz), mid (1 GHz - 6 GHz) and high (> 24 GHz)

cellular bands, directly, using apps. We posit that such a data-set, collected in labeled indoor

and outdoor environments, across a wide variety of frequency bands and signal types, can

be used to train Machine Learning (ML) models that can perform robust indoor/outdoor

classification, thus leading to improved spectrum usage, incumbent protection and resilience,

not only in 6 GHz, but also in future bands such as the 12 GHz satellite band where sharing

with indoor devices is being considered [43].

8.3.1 SigCap data collection and pre-processing

SigCap is used to passively collects GPS, Wi-Fi, 4G and 5G information using the Android

API, without requiring root access or running bandwidth-hungry speed tests. Table 3.2

shows the full parameters collected every 10 secs. Depending on the phone capabilities and

the cellular deployment, the app collects the listed data on all deployed 4G bands including

the unlicensed 5 GHz (Band 46) and Citizen Broadband Radio Service (CBRS, Band 48)

and on all 5G bands including mmWave.

Data collection methodology. Once the data has been collected and saved on the phone,

it can be exported as JavaScript Object Notation (JSON) files, which then converted to

Comma Separated Values (CSV) format and used as inputs to the ML models. For data
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Table 8.6: Features used in Statistical Analysis

Features Count Mean Min Max Std

Wi-Fi 2.4 GHz RSSI ✓ ✓ ✓ ✓ ✓
Wi-Fi 5 GHz RSSI ✓ ✓ ✓ ✓ ✓
LTE Low RSRP ✓ ✓ ✓ ✓ ✓
LTE Mid RSRP ✓ ✓ ✓ ✓ ✓
LTE Low RSRQ ✓ ✓ ✓ ✓ ✓
LTE Mid RSRQ ✓ ✓ ✓ ✓ ✓
NR FR1 RSRP ✓ ✓ × × ×
NR FR2 RSRP ✓ ✓ × × ×
NR FR1 RSRQ ✓ ✓ × × ×
NR FR2 RSRQ ✓ ✓ × × ×

label, a user-input category field is incorporated in the app prior to exporting the captured

data with the options of “indoor” and “outdoor”.

We used several Android phones in our data collection effort: Google Pixel 2, Google

Pixel 3, Google Pixel 5, Samsung Galaxy S9, Samsung Galaxy S20, Samsung Galaxy S21

and Motorola Edge+, each equipped with a Subscriber Identification Module (SIM) of a

different operator. The variety of devices and operators adds diversity to the collected

signal parameters (e.g., RSSI, RSRP, RSRQ), since each phone model has different modem

chip as well as receiving antennas and front-ends. Outdoor measurements were collected

while walking, biking, driving a car, and riding on trains in urban, suburban and rural

environments. Indoor measurements were made in single-family houses, apartment buildings,

offices, indoor malls and stores. Both indoor and outdoor measurements were collected in

the various places described in three different geographical locations: the number of data

records from each location is summarized in Table. 8.5. It should be noted here that the

number and diversity of outdoor environments captured was greater than indoor, since access

to most indoor places was restricted due to shut downs in the past year.

Data pre-processing. The data-set thus collected is quite large: 18 GB. Depending on the

measurement environment, a single data record can contain information on 100s of Wi-Fi
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APs and many 10s of LTE cells: this is common in dense urban areas. Thus, the raw data

cannot be used directly in a ML classifier since the number of inputs per data record would

vary with each record. We pre-process the data as follows:

Step 1: The data is cleaned by removing any record with an invalid entry in any field. Null

entries, NaN (Not a Number) entries and RSRP, RSRQ and RSSI values that do not fall in

the specified range4 for these parameters are examples of invalid entries. Invalid entries are

represented by a very large number, i.e., -200 so the ML algorithm will not be affected by

these data points.

Step 2: Since a single record has a varying number of Wi-Fi and LTE cells, we calculate

aggregate values as feature inputs to the ML model in order to have the same number of

features for each record. As shown in Table 8.6 we first classify the signals into bands:

Wi-Fi RSSI in 2.4 GHz and 5 GHz, LTE RSRP and RSRQ in low- and mid-band and

NR RSRP and RSRQ in FR1 and FR2. Then, all signal values detected in a band are

aggregated using 5 functions: mean, min, max, standard deviation, and count, thus removing

the variability between records. For NR FR1 and FR2 data, SigCap only report one RSRP

and RSRQ per entry, however this may change in future Android updates. Hence, we have

38 features in Table 8.6 combined with “GPS Accuracy” field in a set of 39 features for use

with classification algorithms.

8.3.2 ML algorithm evaluation

Before proceeding to ML classification, we performed univariate analysis on the various

features (as shown in Table 8.6) to evaluate the statistical differences between indoor and

outdoor data.

4. For 2.4 and 5 GHz Wi-Fi, RSSI varies in the range of -100 dbm to -20 dBm. In LTE, low-band RSRP
varies in the range of -150 dBm to -35 dBm and mid-band RSRP varies in the range of -130 dBm to -50
dBm. Similarly, in NR FR1 RSRP varies in the range of -120 dBm to -60 dBm and in NR FR2 RSRP varies
in the range of -120 dBm to -70 dBm. The RSRQ is in the range of -20 to -5
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Figure 8.7: Correlation Analysis: LTE (Low + Mid) RSSI and RSRP Features.

We observed high correlation between RSSI and RSRP, and between RSSI and RSRQ

in LTE low- and mid-bands, as shown in Fig. 8.7. This is expected since RSSI is a function

of RSRP and RSRQ, thus LTE RSSI can be omitted for further ML analysis. On the other

hand, Fig. 8.8 shows that LTE RSRP and RSRQ are not highly correlated. This is also

expected since: RSRP is a measure of the cell’s received power while RSRQ is a measure of

interference due to neighboring cells.

Figs. 8.9a, 8.9b, 8.10a, and 8.10b show the distribution of Wi-Fi 2.4 GHz & 5 GHz AP

count and mean RSSI5 indoors and outdoors. We observe clear differences between indoors

and outdoors in the Wi-Fi 2.4 GHz AP count and Wi-Fi 5 GHz RSSI mean. Similarly,

Figs. 8.9c, 8.9d, 8.10c, and 8.10d show the LTE Low and Mid band count and mean RSRP

distributions. Once again, we observe clear differences between the distributions of indoor

and outdoor data. Figs. 8.9e, 8.9f, 8.10e, and 8.10f, show the count and mean RSRP for 5G

NR deployment in FR1 and FR2. We have not observed any deployment of 5G NR in the

FR2 band indoors due to the penetration loss of mmWave signals from outdoors to indoors.

Similarly, we analyzed the GPS accuracy and we observe difference between the indoor and

5. We also analyzed the univariate performance in terms of min, max, and standard deviation of the RSSI
values. However, due to space limitation, we show only the count and mean.
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Figure 8.8: Correlation Analysis: LTE (Low + Mid) RSRQ and RSRP Features.

outdoors as shown in Fig. 8.11.

This preliminary statistical analysis indicates that these 39 features can be used in classi-

cal ML models to distinguish between indoor and outdoor environments reliably. We tested

various ML models in the standard way: the data collected is divided into a training set

containing 75% and test set containing 25% of the data. We use the ML models implemented

in Scikit Learn [85, 50] with default parameters value.

ML Algorithms. The indoor/outdoor classification problem can be addressed by a number

of well-know ML classifiers. We evaluated the following:

• Naive Bayes (NB/NBayes): A classification technique based on Bayes’ theorem [68]

with an assumption of independence between features.

• Linear Discriminant Analysis (LDA): LDA is a dimensionality reduction technique and

is mainly used as a pre-processing step in ML. LDA is also used for binary classification

problems

• AdaBoost: AdaBoost is one of the first boosting algorithms to be adapted. It helps to

combine multiple “weak classifiers” into a single “strong classifier”. It works by putting
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(f) NR FR2 Count & Mean RSRP

Figure 8.9: Univariate Analysis on Wi-Fi, LTE and NR Features
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(f) NR FR2 Count & Mean

Figure 8.10: Univariate Distribution Analysis on Wi-Fi, LTE and NR Features
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Figure 8.11: Univariate Analysis on GPS Accuracy

more weight on difficult to classify instances and less on those already classified.

• Decision Tree (DecTree): The data is split into two or more homogeneous sets, based

on the most significant features to make as distinct groups as possible.

• Extra Trees (ExTree): ExTree is an ensemble ML algorithm that uses the predictions

(majority voting) from many decision trees trained on the training dataset for classi-

fication.

• XGBoost: This algorithm is an extension of gradient boosted decision trees [127] and

is designed to improve speed and performance.

• Random Forest (RF/RForest): RF is an ensemble of decision trees. In order to classify

a new observation based on features, RF applies majority voting on the classification

given by each decision tree. The difference between RF and ExTree is in the way they

select the cut points to split the nodes in the decision trees. RF chooses the optimal

split, whereas ExTree chooses it randomly.

Performance Metrics [19] The following standard metrics were used to evaluate the

performance of the above algorithms:

• Accuracy: Percentage of correctly predicted records (Indoor and Outdoor Combined).
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Table 8.7: F1-score of different ML algorithms on test data for indoor/outdoor classification

Feature
Set

Naive
Bayes

LDA Ada-
Boost

Decision
Tree

XG-
Boost

ExTree Random
Forest

5G NR 9.3% 85.3% 85.2% 85.6% 85.6% 85.6% 85.6%
5G NR +
GPS Accu-
racy

11.5% 85.1% 87.3% 87.0% 89.6% 87.3% 87.9%

LTE 80.3% 90.2% 91.7% 94.9% 95.0% 96.3% 96.3%
LTE + GPS
Accuracy

80.6% 90.3% 92.9% 95.1% 96.3% 96.7% 97.1%

Wi-Fi 94.7% 93.0% 96.1% 98.3% 98.6% 98.8% 98.8%
Wi-Fi +
GPS Accu-
racy

94.7% 93.1% 96.1% 98.2% 98.8% 98.7% 98.8%

NR + LTE
+ Wi-Fi +
GPS Accu-
racy

37.9% 94.5% 96.6% 98.7% 99.3% 99.4% 99.4%

• True Positive Rate (TPR)/Recall: Percentage of correctly predicted outdoor records.

• True Negative Rate (TNR): Percentage of correctly predicted indoor records.

• Precision: Percentage of correctly identified records among the ones which are classified

as outdoor.

• F1-Score: Harmonic mean of precision and recall.

• Area under the curve (AUC): The AUC is the measure of the ability of a classifier to

distinguish between classes.

Performance of ML models. We evaluated the classification performance of various ML

algorithms, using different combinations of features on the collected data. Our results, using

several standard ML algorithms implemented using Scikit-learn, are shown in Table 8.7,

where the F1-score of different algorithms tested with different combinations of feature sets

is shown. It is clear that as more frequency bands are added to the feature set, the F1-score
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Figure 8.12: Performance of ML models using only the GPS Accuracy feature in terms of
Accuracy, TPR, TNR, Precision, F1-Score and AUC.
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Figure 8.13: Performance of ML models using all the 39 features in terms of Accuracy, TPR,
TNR, Precision, F1-Score and AUC.

increases, especially for the tree-based models such as AdaBoost, Decision Tree, XGBoost,

ExTree, and Random Forest. We also observed that only Wi-Fi and LTE features are

sufficient to get good classification accuracy for indoor as well as outdoor, but adding the

NR and GPS accuracy features lead to slight improvement in AdaBoost, XGBoost, and

ExTree.

Fig. 8.12 shows the GPS accuracy performance of different ML models on the test data.

The XGBoost and Random Forest algorithms guarantee 82.6% and 80.4% accuracy. From

the observation, it is clear that we cannot reliably detect indoor and outdoor environments

with only GPS accuracy feature. Fig. 8.13 shows the performance of different ML models

on the test data when all 39 features are used. The NB algorithm performs poorly i.e., 43%,

when all features are used. Since NB assumes that all the features are uncorrelated, the

prediction probability reduces significantly even if one of the features has a wrong likelihood

probability. XGBoost, ExTree, and Random Forest models consistently outperformed other

models for all the feature combinations (see Table 8.7). Especially when all features are
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Table 8.8: Random Forest 10-Fold Cross Validation

Metrics Mean Std. Dev.

Accuracy
Test 0.9925 0.0004
Train 0.9999 0

TPR
Test 0.9971 0.0002
Train 1 0

TNR
Test 0.9928 0.0007
Train 0.9999 0

F1-score
Test 0.9949 0.0003
Train 0.9999 0

Figure 8.14: Random Forest Explainability: Correct Outdoor Prediction.

used, XGBoost, ExTree, and Random Forest models have above 99% F1-score. This high

F1-score also indicates that the ensemble ML models are making accurate predictions for

indoor as well as outdoor records (despite the data imbalance between the two classes). We

also performed 10-fold cross-validation for the Random Forest model, and the corresponding

results are shown in Table 8.8. It shows that the Random Forest model consistently performs

above 99% accuracy and F1-score on all the folds. Since the accuracy and the F1-score from

the models are already high, hyper parameter tuning of these models is not needed. Hence,

a separate validation set is not used.

ML Explainability Study: In this section, we study the explainability of the best perform-

ing ML model, i.e., Random Forest, using the SHAP (SHapley Additive exPlanations [73,

72]) package in Python. The SHAP package helps visualize the importance of the input

features in classifying a given record as indoor or outdoor. Fig. 8.14 shows the SHAP values

for the features of a record which was correctly classified as outdoor by the RF model. The
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Figure 8.15: Random Forest Explainability: Correct Indoor Prediction.

red and blue arrows indicate the features that push the model towards predicting the record

as outdoor and indoor, respectively. The length of an arrow indicates the importance of

the feature in deciding the prediction. For example, in Fig. 8.14, the feature Wi-Fi 5GHz

RSSI mean (-84 dBm) is the most important feature to make the model classify the record

as outdoor. This behavior is consistent with what we observed from univariate analysis (see

Fig. 8.9b and Fig. 8.10b): a lower value for Wi-Fi 5GHz RSSI mean indicates that the record

is most likely from outdoor. Similarly, Fig. 8.15 shows the SHAP values for the features of

a record which was correctly classified as indoor by the RF model.

Fig. 8.16 shows the summary of the SHAP values for 100 test records. The points which

are to the left and right of the zero line indicates the importance of the features in making

indoor and outdoor prediction, respectively. The color of a point indicates the feature value

(red indicates high feature value and blue indicates low feature value). It is clear from

Fig. 8.16 that high value for Wi-Fi RSSI feature pushes the model towards making indoor

prediction and low value pushes the model towards making outdoor prediction. In contrast,

low value for LTE feature pushes the model towards making indoor prediction and high

value pushes towards outdoor prediction. Similarly, Fig. 8.17 shows the important feature

for prediction in LDA.

Deep Neural Network (DNN) Model We implemented a DNN model using the Scikit

Learn package to analyze the classification performance of Neural Networks. The DNN

consists of two hidden layers containing 64 neurons in each layer. We trained the DNN
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Figure 8.16: Random Forest: Feature Importance

model with the learning rate of 0.001, and the optimizer used is Adam with the number of

epochs as 100 and batch size as 200. The test accuracy of the DNN model is 98.7%, and test

F1-Score is 99.1%. DNN is performing on-par with other ML models. Since this is a simple

tabular classification problem, ensemble ML models are sufficient.

8.3.3 Test Scenarios

The previous section demonstrated that Random Forest performed extremely well in the

indoor/outdoor classification task when tested in the conventional way against a training

and test set where the test data set consisted of measurements from the same environments

that were included in the training data set. In this section, we are interested in testing the

ML model on data collected in environments that were not included in developing the ML
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Figure 8.17: LDA: Feature Importance

models. To do so, we studied two different test cases described below. The app was used to

collect data both indoors and outdoors in these environments.

• Location 1, TacoBell is a restaurant, with very large glass windows facing the street

as shown in Figs. 8.18a and 8.18b.

• Location 2, WholeFood is a grocery store, again with very large glass windows facing

the street as shown in Figs. 8.18c and 8.18d.

Table 8.9 summarizes the classification performance in these two environments, first

without including any of the data in building the trained model and then adding 20% of the

new data to retrain the ML model. The overall F1-scores using the ML model trained on the

original data were 67% and 61% in TacoBell and WholeFood respectively. These improved
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(a) TacoBell Outdoor (b) TacoBell Indoor

(c) WholeFood Outdoor (d) WholeFood Indoor

Figure 8.18: Test Cases: TacoBell and WholeFood

to 79% and 71% when 20% of the data was used to retrain the model. Interestingly, we

observe that the TPR (probability of classifying outdoors correctly) was 100% in all cases,

while the TNR (probability of classifying indoor correctly) was quite low. We believe that

this is due to two reasons: (i) in both locations, the large street-side windows caused the

indoor environment to appear more like an outdoor one in terms of the RF signal levels

perceived at the phone; and (ii) our data-set has more and diverse outdoor records than

indoor records. From an interference potential perspective, the ML algorithm performance

is actually desirable: an indoor device near a window or open door has the same interference

potential as an outdoor device as was noted in a recent filing to the FCC where devices near

windows or open doors had very high interference levels at incumbent receivers [70].

There are two ways to address the ML performance in such scenarios: (i) increase the

representation of diverse indoor environments in the data set. We see that including just 20%

of the data from the new environment in the training set improved classification accuracy,
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Table 8.9: Performance of Random Forest in classifying TacoBell and WholeFood

Location ML model Accu-
racy

F1-
Score

TPR TNR

TacoBell Original 53% 67% 100% 11%
TacoBell With 20% 75% 79% 100% 53%
WholeFood Original 54% 61% 100% 24%
WholeFood With 20% 69% 71% 100% 51%

even though this was a very small percentage (.04%) of the overall training set; or (ii)

create three classes: indoors, indoors near windows and outdoors. The second approach

would be the best to address the application we are interested in where we use device

environment to determine transmit power levels: a device near a window could be subject

to a transmit power requirement in between a fully indoor and fully outdoor device. Both

options require creating a more diverse data set, especially of indoor measurements since

indoor environments tend to be more diverse than outdoor ones. Just as image recognition

performance improved dramatically as image databases grew larger and incorporated diverse

images, we are confident that as these types of RF data-sets grow, RF based indoor/outdoor

classification will improve as well.

8.4 Summary and List of Accomplishments

We’ve conducted comprehensive studies exploring machine learning (ML) algorithms for two

crucial challenges in wireless resource management. First, we analyzed various ML algo-

rithms for real-time detection of active Wi-Fi access points based solely on energy values.

This novel approach outperforms conventional energy and auto-correlation detection meth-

ods, demonstrating its potential to improve LTE-U duty cycle adaptation and broader Wi-Fi

frequency management.

Secondly, we utilized SigCap, our API-based tool, to collect a wide range of RF pa-

rameters for ML-based indoor/outdoor classification. Thorough model evaluation revealed
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Random Forest’s superior performance. However, this approach has shortcomings when dif-

ferentiating diverse environments (e.g., stadiums, tall buildings), thus we plan to expand our

dataset by capturing complex signal dynamics with specialized indoor classes. We envision

that such ML-based methods, coupled with data collected by API-based tools, can play a

pivotal role in future rule-making. By enabling devices to accurately self-identify their in-

door/outdoor status, they can seamlessly adhere to appropriate 6 GHz power regimes and

optimize spectrum usage.

The following papers has been published in the topic of machine learning in wireless

networks:

• Adam Dziedzic et al. “Machine Learning enabled Spectrum Sharing in Dense LTE-

U/Wi-Fi Coexistence Scenarios”. In: IEEE Open Journal of Vehicular Technology 1

(2020), pp. 173–189

• Arun Ramamurthy et al. “ML-Based Classification of Device Environment Using Wi-

Fi and Cellular Signal Measurements”. In: IEEE Access 10 (2022), pp. 29461–29472.

181



CHAPTER 9

CONCLUSION AND FUTURE DIRECTIONS

In this chapter, we provide a summary of the contributions, discuss open issues and future

directions, and finally conclude.

9.1 Summary of Contributions

1. The Device-Based Measurement Methodology: We developed a framework for

a comprehensive analysis of deployed wireless networks (i.e., 4G, 5G, Wi-Fi) called

device-based measurement. This methodology framework provides the basis of all

of our measurement works. In particular, it consists of two approaches: API-based

and root-based. Our API-based tool, SigCap, provides an easy-to-use solution for

cellular and Wi-Fi signal information using standard Android APIs. For scenarios

requiring deeper signal analysis, we employ root-based tools like Network Signal Guru,

Accuver XCAL, and QualiPoc. These root-based tools offer detailed data access using

root privileges but face challenges in setup, cost, and data extraction. We flexibly

tailor our approach: SigCap for general analysis, while root-based tools for specialized

investigation. This allows us to maximize the benefits of each approach while mitigating

their limitations. Our API-based methodology has been utilized in the FCC’s pilot

wireless measurement program as a part of the Broadband DATA Act [46], and in the

SpectrumX’s Broadband Map US project [59].

2. LTE and Wi-Fi Coexistence Studies: We initially utilized our device-based mea-

surement methodology to rapidly validate simulation findings and explore real-world

network behavior. Simulations suggested potential Wi-Fi and LAA throughput and

latency gains when Wi-Fi lowers its LTE energy detection threshold to -82 dBm. This

treats LTE-LAA/LTE-U as coexisting Wi-Fi rather than noise. Our methodology,
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applied to actual LAA and Wi-Fi deployments, confirmed this finding. We observed

Wi-Fi throughput degradation and connectivity problems due to the default asym-

metrical energy detection threshold, especially when Wi-Fi primary channel and LAA

channel overlap.

3. The Wi-Fi 6E (6 GHz) Deployment Studies: We have significantly advanced our

device-based approach, focusing on the API-based tool, SigCap. Our first of their kind,

large-scale measurement campaigns across two university campuses (UMich and UND),

reveal negligible interference from LPI APs to the 6 GHz fixed point-to-point links.

Outdoor RSSI values range from -64 to -95 dBm (median -89 dBm), with significant at-

tenuation caused by double-pane low-emission windows (12-16 dB loss) and brick walls

(25-33 dB loss). Focusing on walking measurements, median RSSI values were -82 dBm

(UMich) and -79.5 dBm (UND). These values equal or exceed proposed C2C activation

thresholds, suggesting potential unintended outdoor activation. Even considering the

highest observed RSSI (-45 dBm), calculated interference-to-noise ratios remain well

below harmful levels for fixed point-to-point links. The low 5% detectability of indoor

BSSIDs outdoors further reinforces the minimal impact of LPI on incumbents.

4. Survey and Analysis of 5G Deployments: We thoroughly examined various as-

pects of 4G and 5G deployments across low-band, mid-band, and high-band/mmWave

using our device-based methodology. In downtown Chicago, we confirmed the dense 5G

mmWave deployments have delivered a significantly higher data rate than 4G+LAA/CBRS.

This throughput gain are linked to wider channels and beamwidth, but distance, body

blockage, thermal throttling, and obstructions remain to be limitations in mmWave

deployments. Next, 5G mmWave beam selection analysis revealed that open fields

generally enable optimal beam choices, while urban canyons lead to sub-optimal beams

and an average 3.6 dBm signal loss. This highlights beamforming challenges in com-

plex urban environments. In low- and mid-bands, 4G with LAA/CBRS aggregation
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can match or exceed 5G mid-band throughput, though coexistence (LAA) and TDD

synchronization (CBRS) challenges remain. When analyzed individually (i.e., ignor-

ing aggregation), 5G mid-band outperforms other bands in both downlink and uplink.

Higher bandwidth, deployment density, and beam count are major drivers of through-

put growth, with slight increase in MIMO performance. On the other hand, we observe

missing new 5G features such as MU-MIMO and 1024-QAM modulation. Lastly, T-

Mobile’s NR-SA demonstrates superior latency compared to NR-NSA and LTE due to

lower signaling overhead and denser mid-band deployments.

5. Cellular Coexistence in the 3 GHz Spectrum: Building on our 4G/5G analysis,

we identified potential adjacent channel interference (ACI) and co-channel interfer-

ence (CCI) within the 3 GHz spectrum. Our comprehensive device-based study on

CBRS and C-Band ACI revealed severe throughput degradation due to lack of guard

bands, power disparities, and asynchronous TDD. A 20 MHz gap significantly improved

throughput (CBRS: 60% to 21%, C-band: 43% to 30%), highlighting the impact of

out-of-band interference. Next, our South Bend CBRS study found that secondary co-

existence among GAA CBSDs, even within the same network, can limit performance.

Concentrated use of certain frequencies, coupled with adjacent CBRS and C-Band de-

ployments, caused issues. Collaborating with the CBRS provider, we demonstrated

that changing a CBSD’s frequency improved signal quality. However, SAS limitations

hindered rapid adjustments, revealing the need for dynamic, measurement-driven chan-

nel allocation. Importantly, aggregated 4G CBRS outperformed 5G C-band, under-

scoring the value of CBRS for both large and small providers.

6. Machine Learning in Wireless Networks: Our research focuses on using machine

learning (ML) for two key challenges in wireless resource management. Firstly, we

explored ML algorithms for real-time Wi-Fi access point detection using solely energy

values. This outperforms traditional methods, showing promise for LTE-U duty cycle

184



adaptation and broader Wi-Fi management. Secondly, we used our API-based tool,

SigCap, to collect diverse RF parameters for ML-based indoor/outdoor classification.

Random Forest performed best, but differentiating complex environments (e.g., stadi-

ums, tall buildings) remains a challenge. We’ll expand our dataset and specialize indoor

classes to improve model accuracy. We believe ML methods, supported by API-based

data collection, can revolutionize future spectrum rule-making. By enabling devices

to self-identify their indoor/outdoor status, they can optimize 6 GHz power usage for

improved spectrum efficiency.

9.2 Future Directions

• Scaling Up the Device-based Methodology for Nation-wide Survey of Wire-

less Network: 5G/NextG deployments continue to expand, with the US National

Telecommunications and Information Administration (NTIA) announcing the intent

to study the lower 3 GHz (3.1-3.45 GHz), the 7 GHz band, and other potential bands

for future wireless broadband uses. This underscores the needs of continuous moni-

toring of new spectrum and features deployments, quantifying their performance im-

provements to inform future standards development. To this end, infrastructures (i.e.,

servers) are required to scale-up and streamline our methodology, enabling a seamless,

large-scale wireless measurement. The large-scale dataset collected in this campaign

can be publicly released to advance research in areas like machine learning predic-

tions. For this, we collaborate with undergraduate students across multiple universi-

ties within the SpectrumX group, to conduct extensive surveys of cellular and Wi-Fi

deployments throughout the US. There are challenges in student onboarding, data col-

lection, and analysis processes. Currently, we address these challenges by distributing

pre-configured measurement phones, utilizing a centralized data repository, along with

scripts and tools like ArcGIS for analysis.
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• TDD Synchronization Problem: The lack of synchronization between radio access

technologies (RATs) using TDD channels creates the potential for overlapping and

adjacent channel interference. To address this, we aim to determine the precise timing

of DL and UL slots and subframes in a TDD system. We will use both Software

Defined Radio (SDR) to capture I/Q samples for detailed spectral analysis and Accuver

XCAL to pinpoint RB allocations in the frequency and time domains. With this

combined information, we can determine the exact timing of DL and UL transmissions,

allowing us to develop strategies to synchronize subframes and mitigate collision-based

interference.

• Prediction of Backhaul Throughput Performance using Wi-Fi Performance:

Current home broadband measurement techniques often require an Ethernet connec-

tion to avoid the potential bottleneck of Wi-Fi, adding a barrier of technical setup for

users. In some homes, particularly rental units, Wi-Fi may be the only connectivity op-

tion readily available. This raises the question: can we reliably predict whether a Wi-Fi

connection will likely be a bottleneck for broadband performance tests, using readily

accessible information from the Wi-Fi chipset itself? To investigate this, we plan to

collect data from South Bend homes using Raspberry Pi devices. These devices will

conduct hourly throughput tests over both Ethernet and Wi-Fi, while simultaneously

capturing Wi-Fi information such as version, transmission rates, number of MIMO

layers, RSSI, and the number of neighboring access points. We will then explore ma-

chine learning techniques to analyze this data with the goal of reliably predicting Wi-Fi

performance limitations.

• 6 GHz Client-to-Client Sensitivity Threshold6 GHz Client-to-Client Sensi-

tivity Threshold: The FCC is actively exploring techniques to safely increase uti-

lization of the 6 GHz spectrum while protecting fixed-link incumbents. One promising

approach is Client-to-Client (C2C) communication, which enables direct links between
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indoor client devices without relying on an access point (AP). To avoid interference

with incumbents, it’s crucial for devices to remain restricted to indoor environments.

Since C2C relies on an ”enabling signal” transmitted from the AP, clients need to

determine their eligibility for C2C based on the received signal strength (RSSI) of this

signal. Setting an appropriate RSSI threshold is critical for this process. A threshold

that is too high risks allowing outdoor clients to communicate at LPI levels, poten-

tially interfering with incumbents. Conversely, a threshold that’s too low could prevent

some eligible indoor clients from using C2C, reducing its effectiveness. We plan to con-

duct experiments in dense 6 GHz deployments to help the FCC determine the optimal

enabling signal level for C2C..

9.3 Concluding Remarks

We have introduced a device-based methodology to evaluate the performance of wireless

networks. We demonstrated that the methodology which includes SigCap and root-based

apps, is capable of actively and passively measure network performance of an actual operator

deployment at a user device. We also shown the flexibility of this methodology with the

measurements of multiple radio technologies (i.e., Wi-Fi, 4G, 5G) within different use cases

(i.e., network performance analysis, coexistence study, mmWave beam analysis, ML-based

classification).

This device-based approach holds significant promise for the future of wireless networks.

By capturing data directly from user devices operating within operational networks, we

gain valuable insights into real-world network behavior under dynamic conditions. While

powerful, our device-based methodology can be further enhanced by establishing connected

infrastructures that streamline data capture and analysis. The analysis extracted from our

device-based measurements can guide informed spectrum allocation decisions, facilitate the

development of robust coexistence strategies, optimize network configurations, and ulti-
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mately accelerate the design of future next-generation wireless systems that deliver enhanced

user experiences.
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[110] Patrick Schäfer and Ulf Leser. “Fast and Accurate Time Series Classification with
WEASEL”. In: Proc. of ACM on Conference on Information and Knowledge Manage-
ment. CIKM ’17. USA, 2017. isbn: 9781450349185. doi: 10.1145/3132847.3132980.
url: https://doi.org/10.1145/3132847.3132980.

[111] Karen Schulz. Verizon turbo charges its 5G network with the addition of more spec-
trum. Accessed: Nov. 2023. 2023. url: https://www.verizon.com/about/news/
verizon-5g-network-addition-more-spectrum.
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APPENDIX A

SIGCAP API HANDLERS AND LIST OF SIGCAP DATA

PARAMETERS.

There are four data collection handlers that collects data from each of the respective API:

Wi-Fi handler collects information from the Wi-Fi API [28]. The Android OS handles

various Wi-Fi operations in the background, i.e., scanning, authenticating, etc. On every

update, we force the OS to do a Wi-Fi scan using the API and read the results containing

list of scanned Wi-Fi AP. However, there is a scan throttling limitation built-in the OS to

reduce energy usage. When Wi-Fi scan is throttled, prior scan result is returned instead of

new data, thus there can be some stale identical data between update. The app still store the

stale data, but it can be ignored in the analysis by comparing the scan result’s timestamp.

Table A.1 shows the list of Wi-Fi parameters that the Wi-Fi handler collects.

Cellular handler collects 4G LTE and 5G NR data from the Telephony API [14]. On

each data update, the Main Service pulls information of multiple LTE channels as described

by Table A.2 and NR channels as described by Table A.3. Additionally, we found some

NR-NSA-related parameters by casting the “ServiceState” object as a string. The values

are described by Table A.4.

We observe a lot of limitations as follows, some of which depends on device model and

Android version. Over the duration of our research works, we tested Android version 11, 12,

and 13, installed in several phone models, namely, Google Pixel 5, Google Pixel 6, Google

Pixel 6 Pro, Samsung Galaxy S21 Ultra, Samsung Galaxy S21+, and Samsung Galaxy S22+.

Limitations on CA designation: Each captured LTE and NR channels are expected

to have CA designation that denotes whether the channel is the Primary, Secondary, or

Neighboring. The results of API call to of the parameter is either Primary or Other, which

does not differentiate between Secondary or Neighboring channels.
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Bandwidth limitation: On all versions and models of Android phones that we tested, we

observed a valid bandwidth value only for primary LTE channels (cross-checked with root-

based apps). Additionally, NR-related API which was implemented in Android 12, does not

include NR bandwidth.

NR-NSA limitation in Android 11: At the beginning of 5G deployment around 2019,

operators started to deploy mmWave network. At the time, we tested this network using

Pixel 5 phones with Android 11. We observe no 5G channels even when the Pixel 5 phone

received a downlink speed of 1 Gbps and above, which is typical for a mmWave network.

To fix this problem, we implemented a workaround by casting the Telephony API’s “Signal-

Strength” object [14] to read values related to NR signal strength. However, this method

does not contain cell identity information (e.g., PCI, frequency). But we assume that the

network is mmWave since it is the only deployed 5G network at the time. Additionally, we

kept cross-checking SigCap data with other root-based apps in our works. This problem is

resolved when Android 12 is released, but we kept the workaround for compatibility with

older devices.

Invalid values: There are parameters that always shows an invalid value even at the

latest Android version. We keep collecting this invalid parameters since it may be fixed in

the future and will be a good addition to our analysis. These parameters are: LTE CQI, NR

CSI-RSRP, NR CSI-RSRP, and NR CSI-SINR.

GPS handler collects GPS location data as shown by Table A.5 from the Location API [27].

The API defines horizontal and vertical accuracy parameters as the estimated accuracy in

meters, i.e., there is a 68% probability that the latitude, longitude, and altitude are accurate

within the accuracy radius. However, we observe that the GPS latitude and longitude values

are already accurate enough for our current work, thus we omit the values in our analysis.

In the future, it can be included to increase the precision of our analysis, or it can be utilized

a novel way, e.g., as a parameter to predict indoor-outdoor label from a SigCap datapoint.
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Sensor handler uses the “device manager” privilege to obtain information from the hard-

ware sensor API [13]. While the “device manager” privilege need to be turned on for the

data collection, it is available for all Android device and easier to enable compared to root

privilege. Table A.6 shows the list of sensor data collected by SigCap, there are four types

of temperature sensors (i.e., CPU, GPU, skin, and battery) with three types of values (i.e.,

temperature, throttling temperature, shutdown temperature), totalling to 12 parameters. In

our observation, “throttling temperature” indicates a threshold value where the device goes

to throttling mode (i.e., limiting processing power and cellular capabilities) if the respective

temperature value is breached. Similarly, “shutdown temperature” indicates a threshold

value where the device will be turned off.
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Parameter API Call /
Derived

Explanation

BSSID API Call String denoting AP BSSID, encoded using SHA-
256 for privacy.

Primary Fre-
quency

API Call Center frequency of primary channel in MHz.

Center Frequency API Call Center frequency of the whole channel in MHz.
2nd Center Fre-
quency

API Call Center frequency of a second set of channel in MHz,
if using a discontinuous channel pair (i.e., 80+80
MHz).

Bandwidth API Call Channel bandwidth in MHz.
Channel Number Derived Channel number as specified by the 802.11 speci-

fications, derived from center frequency and band-
width.

Primary Channel
Number

Derived Primary channel number as specified, derived from
primary frequency and bandwidth.

RSSI API Call Received Signal Strength Indicator in dBm.
Capabilities API Call Describes the authentication, key management,

and encryption schemes supported by the AP.
Standard Derived Describes which 802.11 amendments that the AP

supported (i.e., a/b/g/n/ac/ax). For Android 12
and above, this value can be directly collected from
API. If the API call is unavailable, it is determined
from the Capabilities, Channel Number, and Band-
width.

Connected API Call Whether the AP is connected to the device.
Link Speed API Call Connected AP’s link speed.
TX Link Speed API Call Connected AP’s transmit link speed.
RX Link Speed API Call Connected AP’s receive link speed.
Max Supported
TX Link Speed

API Call Connected AP’s maximum supported transmit link
speed.

Max Supported
RX Link Speed

API Call Connected AP’s maximum supported receive link
speed.

Table A.1: Wi-Fi parameters.
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Parameter API Call /
Derived

Explanation

PCI API Call Physical Cell ID as described by the specification.
CI API Call Cell Identity as described by the specification.
EARFCN API Call E-UTRA (LTE Spectrum) Absolute Frequency

Channel Number which describes the center fre-
quency of the downlink channel.

Band Derived LTE Band number derived from EARFCN.
Bandwidth API Call Channel bandwidth in kHz. In our observation,

only primary channel shows a valid bandwidth
value.

Frequency Derived Center frequency of the channel in MHz, derived
from EARFCN.

Wi-Fi-equivalent
Channel Number

Derived Only applies for LAA channels (band 46), derived
from EARFCN and assuming 20 MHz bandwidth.

Signal Strength API Call Signal strength in dBm. In our observation, this
value is always the same as the RSRP.

RSRP API Call Average power of multiple LTE Reference Signals
(in dBm) received in the channel.

RSRQ API Call Quality indicator derived from RSRP (in dB), as
described by the specification.

RSSI API Call Received Signals Strength Indicator over the the
channel in dBm.

RSSNR API Call Signal-to-noise ratio of the Reference Signal in dB.
CQI API Call Channel Quality Indicator as described by the

specification. In our observation, this value is al-
ways invalid.

Timing Advance API Call Timing Advance value as described by the specifi-
cation.

Registered API Call Whether the channel is registered as the primary
channel.

Cell Status Derived Describes whether the LTE channel is primary, sec-
ondary, or unknown. This value is taken from API
call. In the case that the API is unavailable, we try
to derive whether the channel is a primary based
on the observation of valid bandwidth and “regis-
tered” values.

Table A.2: LTE parameters.
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Parameter API Call /
Derived

Explanation

PCI API Call Physical Cell ID as described by the specification.
NCI API Call NR Cell Identity as described by the specification.
NRARFCN API Call NR spectrum Absolute Frequency Channel Num-

ber which describes the center frequency of the
downlink channel.

Band Derived NR Band number derived from NRARFCN.
Frequency Derived Center frequency of the channel in MHz, derived

from EARFCN.
SS-RSRP API Call Average power (in dBm) of multiple Reference Sig-

nals inside the Synchronization Signal (SS) block.
SS-RSRQ API Call Quality indicator (in dB) derived from SS-RSRP,

as described by the specification.
SS-SINR API Call Signal-to-interference-and-noise ratio (in dB) over

the the SS block.
CSI-RSRP API Call Average power (in dBm) of multiple Reference

Signals inside the Channel State Indicator (CSI)
block.

CSI-RSRQ API Call Quality indicator (in dB) derived from CSI-RSRP,
as described by the specification.

CSI-SINR API Call Signal-to-interference-and-noise ratio (in dB) over
the the CSI block.

IsSignalStrAPI Derived Describes whether the NR channel information is
taken from the Signal Strength API.

Cell Status API Call Describes whether the NR channel is primary, sec-
ondary, or unknown.

Table A.3: NR parameters.

Parameter API Call /
Derived

Explanation

NR Status API Call NR connection status (i.e., Connected, Not Re-
stricted, Restricted, None).

NR Available API Call Whether NR connection is available.
DC-NR Restricted API Call Whether Dual Connectivity between LTE and NR

is restricted.
EN-DC Available API Call Whether Dual Connectivity between LTE and NR

is available.
NR Frequency
Range

API Call Describes the frequency range of the primary NR
channel (i.e., low, mid, high/mmWave band).

Table A.4: Additional NR-NSA parameters.
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Parameter API Call /
Derived

Explanation

Latitude API Call GPS Latitude.
Longitude API Call GPS Longitude.
Altitude API Call Altitude in meters.
Horizontal Accu-
racy

API Call Estimated horizontal accuracy radius in meters of
this location at the 68th percentile confidence level.

Vertical Accuracy API Call Estimated altitude accuracy radius in meters of
this location at the 68th percentile confidence level.

Table A.5: GPS parameters.

Parameter API Call /
Derived

Explanation

CPU Temperature API Call Temperature of one or multiple CPU cores in Cel-
sius.

GPU Tempera-
ture

API Call Temperature of one or multiple GPU cores in Cel-
sius.

Skin Temperature API Call Temperature of one or more phone skin sensors in
Celsius.

Battery Tempera-
ture

API Call Temperature of one or more battery sensors in Cel-
sius.

CPU Throttling
Temperature

API Call Throttling threshold for CPU temperatures.

GPU Throttling
Temperature

API Call Throttling threshold for GPU temperatures.

Skin Throttling
Temperature

API Call Throttling threshold for skin temperatures.

Battery Throt-
tling Temperature

API Call Throttling threshold for battery temperatures.

CPU Shutdown
Temperature

API Call Shutdown threshold for CPU temperatures.

GPU Shutdown
Temperature

API Call Shutdown threshold for GPU temperatures.

Skin Shutdown
Temperature

API Call Shutdown threshold for skin temperatures.

Battery Shutdown
Temperature

API Call Shutdown threshold for battery temperatures.

Table A.6: Sensor parameters.
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