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ABSTRACT

Developments in machine learning and big data allow firms to fully personalize and target

their marketing mix. However, data and privacy regulations, such as those in the Euro-

pean Union (GDPR), incorporate a “right to explanation”, which is fulfilled when targeting

policies are comprehensible to customers. This paper provides a framework for firms to

navigate right-to-explanation laws. First, I introduce a new method called Policy DNN,

which combines policy learning and deep neural networks, to form a profit-maximizing black

box benchmark and provide theoretical guarantees on its performance. In contrast to prior

approaches that use a two-step method of estimating treatment effects before assigning indi-

viduals their treatment group, Policy DNN directly estimates treatment assignment, which

improves efficiency. Second, I construct a class of comprehensible targeting policies that is

represented by a sentence. Third, I show how to optimize over this class of policies to find

the profit-maximizing comprehensible policy. I demonstrate that it is optimal to estimate

the comprehensible policy directly from the data, rather than projecting down the black

box policy into a comprehensible policy. Finally, I apply my framework empirically in the

context of price promotions for a durable goods retailer using data from a field experiment. I

quantify the cost of explanation, which I define as the difference in expected profits between

the optimal black box and comprehensible targeting policies. The comprehensible targeting

policy reduces profits by 7% or 22 cents per customer when compared to the black box

benchmark.
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CHAPTER 1

INTRODUCTION

Black box algorithms dominate marketing decisions today [Katsov, 2017].1 These algorithms

are fast, personalized, and, most importantly, designed to be profit-maximizing for the firm.2

Modern algorithms apply profit-maximizing marketing decisions at the individual level. At

the extreme, customers can face their own marketing mix.

However, full personalization of the marketing mix may harm the firm. Consider the

following example in promotions management: two customers go to check out at the register

but only one of the two customers is given a 20%-off promotion. To justify the exclusion of

the other customer, the firm’s sales representative cannot simply say it was profit-maximizing

to do so. The representative instead needs to provide the customer a comprehensible ex-

planation for why she did not receive the promotion. If a suitable explanation cannot be

found or understood, then the excluded customers may feel slighted by the firm [Dietvorst

and Bartels, 2022].

More generally, customers may desire an explanation to either learn from the algorithmic

decision [van Osselaer and Alba, 2000] (if they unexpectedly got 20% off, then they want

to know how to get it again), or to understand the algorithm (in the case where they were

not given the promotion when another customer was) [Dietvorst et al., 2015]. Similarly,

firms need an explanation of the algorithm because it can provide long-term brand equity

by addressing customer needs, makes its algorithmic decisions easier to justify by its human

representatives, and allows them to self-diagnose their own algorithmic decision making.

This example underscores a need for comprehensible algorithms by both customers and

firms; such algorithms require more than just a simple explanation of the black box algo-

1. A black box algorithm is one that users can observe the outcomes, but the internal mechanisms remain
opaque.

2. Modern algorithms can automate all steps of the marketing decision process instead of just providing
decision support. The marketing decision support system (MDSS) proposed in Little [1979] has now expanded
to forming decisions directly instead of just supporting them.
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rithm.3 Comprehensible algorithms are both transparent and complete. They are transpar-

ent if the algorithm is explainable to customers. They are complete if that explanation is

identical to the policy being implemented. To give a concrete example of a comprehensible

targeting policy, the policy “target a customer with a promotion if she has not bought in the

last thirty days and lives in Chicago” is both transparent and complete.

Recent regulation in General Data Protection Regulation (GDPR) includes a “right to

explanation” [European Commission, 2016], which suggests that firms need to fully explain

their algorithmic decisions to their consumers. Firms violating GDPR face a hefty fine

of 4% of global revenues or 20 million Euros, whichever is higher. As the proposed AI

Act [European Commission, 2021] gains adoption in Europe and regulatory measures like

the California Consumer Privacy Act (CCPA) emerge in other jurisdictions, the scope of

regulatory oversight around right-to-explanation legislation is set to expand.

This paper provides a framework for firms to design and analyze optimal comprehensible

targeting policies. These policies are optimal in that they are profit-maximizing and are

comprehensible to customers, regulators, and the firm’s own representatives. My framework

allows firms to quantify the profit differences from implementing optimal comprehensible

policies as opposed to black box policies and to compare the two targeting policies. There

are three components in my framework: (1) forming the black box algorithm benchmark, (2)

constructing a class of comprehensible policies, and (3) finding the optimal comprehensible

policy.

First, I propose a new black box algorithm for marketing decisions that directly learns the

optimal decision from the data. This new algorithm provides a benchmark for what the firm

could implement as the black box targeting policy. Standard approaches in the literature first

run an RCT, then estimate the distribution of heterogeneous treatment effects, and finally

form the optimal targeting policy from the estimated effects [Hitsch et al., 2024, Simester

3. The literature is divided as to whether explanations of the black box algorithm are sufficient for
regulators [Edwards and Veale, 2017, Gillis and Spiess, 2019].
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et al., 2020]. The new approach obviates the second step and directly learns the optimal

policy from the data. The key insight is that learning the optimal decision for discrete

treatments is easier than learning the distribution of heterogeneous treatment effects. I use

deep neural networks (DNN) to represent the policy function and call the new method Policy

DNN. I provide inference around the expected profits generated from the black box algorithm.

I then show the new approach learns the optimal policy better in Monte Carlo simulations

and generates more profits in the empirical application than standard approaches.

Second, I construct a class of comprehensible targeting policies. These comprehensible

policies are targeting policies that consist of a sentence formed from conditional clauses joined

by logic operators (e.g., “Target a customer with a promotion if she has not bought in the

last thirty days and lives in Chicago”).4 The structure of the these comprehensible policies

is motivated from the explainable AI and philosophy literatures.5 These comprehensible

policies are subsets of decision trees as well as logic trees [Schwender and Ruczinski, 2010]. I

further show how I can feature engineer these clauses out from standard database marketing

datasets.

Third, I find the optimal comprehensible policy that maximizes firm profits. The com-

ponents of the comprehensible policy which I optimize over are the conditional clauses and

the logic operators that combine the clauses. I show how to solve the optimization problem

using brute force and greedy algorithms. Then, I demonstrate how to conduct inference

around the expected profits generated from the optimal comprehensible policy.

4. The prior example, “Target a customer with a promotion if she has not bought in the last thirty days
and lives in Chicago” is a comprehensible targeting policy with a length of two conditional clauses. The
conditional clauses directly formed from RFM data are “if she has not bought in the last thirty days” and
“if she lives in Chicago.” The logic operator joining the two conditional clauses is “and.” The sentence
is under five clauses, so it is conversational. This sentence embeds a contrastive causal framework as the
counterfactual state if she bought in the last thirty days or does not live in Chicago will lead to her not
being targeted.

5. The explainable AI literature suggests that sentences with more than five constitutive clauses are not
commonly understandable and are not conversational [Miller, 2019]. The philosophy literature notes that
understanding is based on contrastive causation and counterfactual inference [Lipton, 1990]. These two
concepts are built into the constructed class of comprehensible policies.

3



Using my proposed framework I perform a cost analysis as firms adopt comprehensible

targeting policies. I first compare whom the optimal black box and the optimal comprehen-

sible policies target. I then compute the profit difference between the two policies. Since the

comprehensible policy is less expressive and personalized than the black box policy, the com-

prehensible policy should be less profitable than the black box policy. I call this difference

in profits the cost of explanation that the firm faces if it adopts the comprehensible policy.

I implement this cost analysis with an empirical application in promotions management.

I use the dataset from Ni et al. [2012] as a case study of the framework. The dataset includes

a randomized control trial of a $10-off promotion randomly mailed to 176,961 households

for a durable goods retailer. The outcome of interest is sales during the promotional period

of December 2003. First, I document how Policy DNN produces a more profitable targeting

policy than other standard black box approaches. Second, I show how to generate and

engineer different comprehensible policies from this RFM dataset. Third, I find the optimal

comprehensible policy and compare it to the black box targeting policy. These three steps

let me document (1) how the comprehensible targeting policy differs in whom it targets

compared to the black box targeting policy and (2) the firm’s cost of explanation if it

implemented the optimal comprehensible policy instead of the black box policy.

In the empirical application, the optimal comprehensible policy with three clauses targets

those who spend a lot during the holiday period but not in the spring, or who spent less

than average in prior holiday period.6 Comparing the optimal comprehensible policy to the

best-performing black box policy, I find that the optimal comprehensible policy does not

systematically overtarget or undertarget; it appears to be limited in its ability to capture

customer heterogeneity due to the comprehensibility constraint. I further find that the cost

of explanation is 22 cents per person, which constitutes a 7% loss in profits compared to the

6. More specifically, the optimal comprehensible policy is “Target a customer if she spent in the top half
of spenders who spend during Christmas over the last two years and did not spend among the top half of
spenders in spring over the last two years or is among the bottom half of spenders during last year’s holiday
promotion.”
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optimal black box policy and a 38 cents per person (or 16%) gain in profits over a blanket

targeting policy.

These results are of substantive interest. I provide an exercise where I benchmark the

loss the firm faces if it moves away from the black box policy to comply with the right-to-

explanation legislation with the GDPR penalty. In the empirical application, if I assume a

basis of 10 million customers, the implied 22 cents cost of explanation per person leads to an

expected loss of $2.2 million per month. If the GDPR penalty is $20 million and is enforced

at a 10% rate, then the expected penalty is $2 million. The firm thus may decide to not

comply depending on how much it believes the 10% enforcement rate and its willingness to

break the law for monetary gain. From the regulator’s perspective, it may consider raising

the penalty or the enforcement rate to guarantee compliance.

Moving from the empirical application back to theory, I show that forming the optimal

comprehensible policy directly from the data is more profitable than forming it by ex post

projecting down the black box policy to a comprehensible policy. The latter procedure is

motivated by the explainable AI (XAI) literature. Methods in XAI often provide a locally

approximative model of the black box in order to shed light upon the black box’s decisions

[Biran and Cotton, 2017, Miller, 2019, Mothilal et al., 2019, Rai, 2020, Senoner et al., 2022]. I

show that the direct approach generates more profits than the ex post approach theoretically

and validate it using the empirical application. I also show how I can conduct inference on

the ex post comprehensible policy by recentering the empirical process results from Kitagawa

and Tetenov [2018]. As a result, firms should directly form the comprehensible policy from

the data instead of first finding the optimal black box and then projecting it down.

This paper builds on many different extant literatures. The implementation of algorithms

in decision making and their effects are well documented [Kleinberg et al., 2015, 2017]. In

marketing, algorithmic decisions are often made by forming optimal targeting policies in

various domains [Ascarza, 2018, Chintagunta et al., 2023, Ellickson et al., 2022, Hitsch et al.,

5



2024, Karlinsky-Shichor and Netzer, 2019, Rossi et al., 1996, Simester et al., 2020, Smith

et al., 2022, Yoganarasimhan et al., 2022, Zhang and Misra, 2022] and the literature is

reviewed in Rafieian and Yoganarasimhan [2022]. This paper’s methodological contribution,

Policy DNN, builds on results from the policy learning literature [Athey and Wager, 2021,

Kallus and Zhou, 2018, Kitagawa and Tetenov, 2018, Kitagawa et al., 2021, Mbakop and

Tabord-Meehan, 2021].7 Specifically, I combine results from using statistical surrogates for

policy learning [Zhao et al., 2012] with DNN [Farrell et al., 2021] and provide inference

around the expected profits generated from the optimal targeting policy by utilizing the

inference engine for DNN from [Farrell et al., 2020]. Methodologically, this paper introduces

and provides inference for a state-of-the-art methodology (DNN) used in policy learning with

discrete treatment variables.

The comprehensible policy class builds on the interpretable AI literature where expert

systems and logic rules are designed to be interpretable by human agents [Angelino et al.,

2018, Cawsey, 1991, 1992, 1993, Rudin, 2019, Weiner, 1980]. This paper deviates from that

literature in that the comprehensible policy is much simpler and is conversational—a firm’s

representative is able to fully state the targeting policy in a sentence. Edwards and Veale

[2017] and Kleinberg et al. [2018] document issues that regulators have in diagnosing and

understanding algorithms. My framework for finding and evaluating optimal comprehensible

policies provides a solution for firms to comply with regulatory demands while balancing

profitability.

The rest of the paper is organized as follows: Chapter 2 provides an overview of the

methodology and sets up the mathematical notation. Chapter 3 introduces Policy DNN.

Chapter 4 constructs a class of comprehensible targeting policies and Chapter 5 shows how

to find the optimal comprehensible policy. I show that generating a comprehensible policy

7. For multiperiod settings, policy learning has been explored in the marketing literature for solving
reinforcement learning problems [Ko et al., 2022, Liu, 2022]. The use of policy learning to find optimal
targeting policies directly from the data in static settings is not well explored in the marketing literature.

6



from projecting down a black box is less profitable than learning the policy directly from

the data in Chapter 6. I provide the empirical application in Chapter 7: in Section 7.1, I

document the differences in whom the black box and the optimal comprehensible targeting

policy target and in Section 7.2, I quantify the cost of explanation. I then discuss what

firms should consider when deciding to implement comprehensible policies in Chapter 8 and

provide an example of how the firm in the empirical application will be impacted by GDPR’s

right-to-explanation regulation in Section 8.1. I conclude in Chapter 9.

7



CHAPTER 2

FRAMEWORK

In this chapter, I provide an overview of the general methodology of forming and evaluating

comprehensible policies. Figure 10.1 summarizes the methodology, which I discuss in Section

2.1. I introduce the mathematical framework in Section 2.2. A key methodological theme

for both the black box and optimal comprehensible policies is policy learning, where the

optimal targeting policy is directly formed by maximizing profits.

2.1 Framework overview

Figure 10.1 illustrates the perceived tradeoff between comprehension and expected profits.

Comprehension can be considered as 1/(Model Complexity) and can be made mathemati-

cally rigorous by using the targeting policy’s Vapnik-Chervonenkis dimension or Rademacher

complexity as a proxy for model complexity.

As targeting policies become more comprehensible, they become less personalized and

cannot capture customer heterogeneity as well as incomprehensible black box methods. Each

dot on the figure represents a specific targeting policy. Targeting policies that are conversa-

tional, or are simple enough to be explained in a conversation, are the right of the dashed

line. To provide an example, a targeting policy that blanket targets everyone would be very

comprehensible but not profitable, and it would be represented by a point on the bottom

right side of the figure near the horizontal axis.

The proposed methodological framework evaluates and compares black box targeting

policies to comprehensible targeting policies. There are three components for the framework:

(1) forming the black box policy, (2) constructing a class of comprehensible policies, and (3)

finding the optimal profit-maximizing comprehensible policy. I now describe the three pieces

to form the framework while using Figure 10.1 as a guide.

8



I first focus on the class of black box policies. Specifically, I use the class of deep neural

networks (DNN). I denote this class of functions FDNN , and it is represented on the left side

of the figure with the blue curve. DNNs are used in many state-of-the-art machine learning

applications and possess a uniform approximation property that allows them to approximate

any function [Goodfellow et al., 2016]. As the blue curve moves from right to left it trades

off profitability for comprehensibility. For example, a DNN with only one hidden layer with

a handful of nodes would be a point on the right side of the blue curve while a DNN that is

both deep and wide would be on the left side of the curve. The curve trends down after a

certain point to represent overfitting when the DNN is too complex.

I show that I can find the optimal black box in Chapter 3 by combining policy learning

with DNN and that I can conduct inference around the profits from the optimal targeting

policy. The optimal black box policy function is represented as d∗DNN (x) in the figure and

generates expected profits of Π∗
DNN (x). The targeting policy itself is represented as the

point on the blue curve.

Second, I construct a class of comprehensible policies (FComp) in Chapter 4 and represent

it with the red curve on the right side of the figure. I show how to generate the clauses for

the comprehensible policies from marketing data and then form the policies. The number of

clauses represents model complexity in this function class. To trace out the red curve, the

example targeting policy “Target a customer if she has not bought in the last thirty days”

would be a point on the very right side of the red curve as it is very comprehensible and is

conversational but is limited in its profitability. The targeting policy “Target a customer if

she has not bought in the last thirty days and lives in Chicago” will also be on the curve

but is to the left of the former example. Since the sentence has two clauses, it will be

less comprehensible but more profitable. The red curve also trends down after a point to

represent overfitting; a targeting policy that contains twenty clauses can overfit and is not

conversational.
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Third, I show how to optimize over this class of comprehensible policies in Chapter 5 by

using brute force and greedy algorithms. I find the point on the red curve that generates

the highest profits and denote this targeting policy as d∗Comp(x) which generates expected

profits Π∗
Comp. I also show that finding the optimal comprehensible policy directly from the

data is more profitable than finding it by projecting down the black box in Chapter 6.

Using the empirical application, I then compare the two targeting policies from the

optimal black box d∗DNN (x) and the optimal comprehensible policy to examine the differ-

ences in the targeting policies in Section 7.1. I then document the cost of explanation, or

the difference in profits from the optimal black box to the optimal comprehensible policy

(∆Π = Π∗
DNN − Π∗

Comp), in Section 7.2. These comparisons enable me to conduct a cost

analysis documenting the lost expected profits from using a comprehensible policy instead

of the black box policy as well as the targeting differences between the two policies.

This framework allows me to substantively evaluate the firm’s economic losses in the

empirical application faces when it follows right-to-explanation laws for its targeting policy.

I compare the cost of explanation to the expected GDPR penalty. This measurement exercise

allows me to evaluate the penalty’s impact on the firm and is discussed in Section 8.1. I

discuss how these losses play a role for managerial decision making in Chapter 8

2.2 Mathematical framework

I define (X,W, Y ) as the data tuple of the covariates, the treatment, and the outcome variable

respectively. I observe this tuple for each individual i and assume the data is i.i.d. for n

observations. I consider a binary treatment W ∈ {0, 1} and the data X has dimension p. I

further define Y (1), Y (0) as the potential outcomes for the binary treatment with observed

outcome variable Y = WY (1) + (1−W )Y (0).

To provide a concrete example, I can think of Y as sales, W as a promotional mailing,

and X as consumer characteristics. The firm cares about maximizing expected profits from

10



its promotions management campaign where profits are a function of the sales.

Consider the standard inverse propensity weighted profit estimator for a given policy

function d : Rp → {0, 1} that maps the covariates to the targeting rule,

Π̂(d) =
n∑

i=1

Wi

e(xi)
πi(1)d(xi) +

1−Wi

1− e(xi)
πi(0)(1− d(xi)). (2.1)

This profit estimator is an unbiased estimator for the profits from the targeting policy

Π(d) =
n∑

i=1

πi(1)d(xi) + πi(0)(1− d(xi)) (2.2)

where πi(1) = mYi(1)−c, πi(0) = mYi(0) are the counterfactual profit values when individual

i is respectively targeted and not targeted and e(xi) = P (Wi | X = xi) is the propensity

score.1

From Equation (2.2), I see that the optimal policy function is

d∗ = 1{πi(1) > πi(0)} = 1{m(Yi(1)− Yi(0)) > c} (2.3)

in which individual i is targeted if and only if her counterfactual profits are higher under that

treatment assignment, and where 1{·} represents the indicator function and m, c respectively

represent the profit margins and the cost of issuing the treatment.

Since I do not observe Yi(1), Yi(0) because of the fundamental problem of causal inference,

I cannot form Yi(1)−Yi(0). Instead, I want to find a representation for the difference in the

potential outcomes. I make a few assumptions to do so. First, I have a structural assumption

1. The inverse propensity weighted profit estimator is also known as the Horvitz-Thompson profit estima-
tor [Imbens and Rubin, 2015], and E[Π̂] = Π under the standard assumptions of unconfoundedness, overlap,
and SUTVA [Hitsch et al., 2024].
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that customers have a utility function

ui = α(xi) + β(xi)Wi,

which maps to the outcome variable with function Yi = G(ui) + ϵi. In the example with

the promotional mailing, I assume a linear function for G(·), G(ui) = ui. The assumption

simplifies the problem to

Yi = α(xi) + β(xi)Wi + ϵi, (2.4)

where I can interpret α(xi) as the baseline sales if customer i was not given a treatment and

β(xi) as the incremental effect of issuing the treatment on sales for customer i. I allow the

intercept term α(xi) and the coefficients β(xi) to depend on the individual’s pretreatment

covariates, which provide both heterogeneity in the coefficients and the ability to forecast

α(xi), β(xi) for a customer with given xi.

I make three additional assumptions to ensure I can recover β(xi) as a causal effect of

the treatment Wi [Imbens and Rubin, 2015]. These assumptions are typical in experimen-

tal settings. The first two are the unconfoundedness and the overlap assumptions. These

two assumptions are provided under a properly run randomized control trial (RCT). I then

assume the stable unit treatment value assumption (SUTVA) holds. This assumption effec-

tively implies that there are no spillover effects from sharing the promotional mailing in the

running example. I formally state the assumptions below.

Assumption 1. (Unconfoundedness) The potential outcomes Yi(1), Yi(0) are statistically

independent of the treatment variable Wi which is represented formally as {Yi(1), Yi(0)} ⊥

Wi.

Assumption 2. (Overlap) The propensity score e(xi) = P (Wi | X = xi) is bounded between

zero and one which is represented formally as 0 < e(xi) < 1.

12



Assumption 3. (SUTVA) The potential outcomes for any individual do not vary with the

treatment assignments for other individuals. For each individual, and there are no different

forms of treatments that lead to different potential outcomes.

These three assumptions allow me to map the identify the conditional expectation of

potential outcomes and then map them to the observed data. I have that

α(xi) = E[Yi(0) | X = xi,W = 0] = E[Yi | X = xi,W = 0]

α(xi) + β(xi) = E[Yi(1) | X = xi,W = 1] = E[Yi | X = xi,W = 1]

β(xi) = E[Yi(1) | X = xi,W = 1]− E[Yi(0) | X = xi,W = 0]

= E[Yi | X = xi,W = 1]− E[Yi | X = xi,W = 0]

and β(xi) is the heterogeneous treatment effect (HTE) or the conditional average treatment

effect (CATE) for treatment Wi.

Circling back to the optimal policy in Equation (2.3), while I cannot learn the true

optimal policy d∗ because of the fundamental problem of causal inference, I can instead

learn the optimal policy function as a function of covariates xi,

d∗(xi) = d∗(β(xi)) = 1{m(E[Yi(1) | X = xi,W = 1]− E[Yi(0) | X = xi,W = 0]) > c}

(2.5)

= 1{β(xi) >
c

m
},

where I use the conditional expectation of the potential outcomes in place of the potential

outcomes.

Recent approaches to form the optimal policy take a three-step or two-step approach.2

2. See Hitsch et al. [2024] for an overview of different methods to form optimal targeting policies from con-
ditional average treatment effects and Künzel et al. [2019] for an overview of different three-step approaches
for estimating conditional average treatment effects.
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I first outline the three-step approach: it estimates the conditional expectation functions

E[Yi(1) | X,W = 1] and E[Yi(0) | X,W = 0] using regressions, then forms the treatments

effects β̂(x) = Ê[Yi(1) | X,W = 1]− Ê[Yi(0) | X,W = 0], and lastly constructs the optimal

policy d̂∗(xi) = 1{β̂(xi) > c
m} following the plug-in rule. The two-step approach first

directly estimates the heterogeneous treatment effect β̂(x) and then constructs the optimal

policy d̂∗(xi) = 1{β̂(xi) > c
m}.

I now make three remarks on the standard three-step or two-step approach to motivate my

proposed procedure of Policy DNN that combines policy learning and deep neural networks

(DNN).

Remark 1. I outline some inefficiencies for both three-step and two-step approaches. I first

note that to determine the optimal policy function d(xi) in Equation (2.5), I only need to

know whether β̂(x) is greater than the scaled cost of treatment c
m . This implies to form the

optimal policy only sign{β̂(x) > c
m} is required. Then α(x) and the exact value of β(x)

are then nuisance parameters. The three-step approach estimates α̂(xi) and β̂(xi) and the

two-step approach estimates β̂(xi).

Instead, I focus on estimating the optimal policy function, 1{β(x) > c
m}, directly. The

key idea is that just knowing 1{β(x) > c
m} (or equivalently the sign of β(x) − c

m) is both

necessary and sufficient for finding the optimal policy.

Remark 2. To build intuition around the prior remark, Figure 10.2 provides a visualization

of different distributions of β(x) that all produce the same targeting policy.3 The solid black

vertical line represents the cutoff c
m : all individuals to the right of the cutoff should be

targeted and all individuals to the left of the line should not be targeted. The dashed vertical

line represents an individual’s β(xi). I emphasize that the targeting rule d∗(xi) is the same

3. The top panel provides a density plot of β(x) ∼ N(c/m, 52). The optimal targeting policy is to target
those with β(x) > c

m and to not target those with β(x) < c
m . In the next two panels I provide a monotonic

transformation of the β(x) for those individual i above and below the cutoff for targeting. The optimal
targeting rule remains the same despite the transformation. Thus, many different densities of the CATEs,
β(x), can produce the same optimal targeting policy d∗(x).
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for individual i as long as her β(xi) is above the cutoff c
m .

Remark 3. The proposed approach allows for a more flexible representation function than

the direct policy estimator espoused in Kitagawa and Tetenov [2018] and in the policy tree

two-step approach introduced in Athey and Wager [2021]. In both papers, the authors derive

minimax rates for the welfare regret of policy functions to the true policy function. Both

papers restrict the complexity of the learned policy function, ensuring the square root of

the Vapnik-Chervonenkis (VC) dimension cannot grow faster than
√
n rate following the

fundamental theorem of statistical learning [Shalev-Shwartz and Ben-David, 2013, Vapnik,

2000], which in practice leads to the policy function represented by linear combinations of or

shallow trees of covariates.

Instead of looking at minimax rates, I focus on semiparametric inference for policy learn-

ing, which provides a guide for practical use but is less conservative than minimax rates

[Mou et al., 2022].4 Minimax rates provide guidance for the decision making under the

worst case scenario for the decision maker while semiparametric inference provides guidance

for a learned decision rule. The latter will be less conservative because it does not assume

the worst case scenario.

In the next chapter, I leverage the results from [Farrell et al., 2020, 2021] to learn a flexible

policy function that can be represented by a DNN. The proposed approach provides a more

pragmatic approach to learning the policy function. DNN inherently capture more complex

policy functions than shallow trees or linear threshold functions and are better suited for

algorithmic decision making in practice.

4. The literature has long discussed using maximin and minimax regret for statistical decision making
[Savage, 1951] with the former deemed too conservative [Manski, 2004].
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CHAPTER 3

POLICY LEARNING WITH DEEP NEURAL NETWORKS

In this chapter, I propose Policy DNN. The new black box technique leverages the idea that

it is easier to directly learn the optimal targeting policies than the standard approach of

learning the heterogeneous treatment effects first and then forming the optimal targeting

policy. I leverage surrogate functions with a deep neural network framework for the new

methodology in Section 3.1. I then show how to attain inference around the profits under the

optimal targeting policy with Policy DNN in Section 3.2. Monte Carlo results in Appendix

Section B suggest that Policy DNN learns the optimal policy function better than Causal

DNN of Farrell et al. [2021].

3.1 Defining the Policy DNN estimator

I espouse a more direct approach to learn the policy function d(xi) from the profit estimator

in Equation (2.1). However, the profit-maximizing estimator to the policy function d(xi) is

not a smooth function so it cannot be optimized over computationally. To remedy this, I

propose surrogate function and show that the policy function from the surrogate is consistent

to the optimal policy function. These results build on Bartlett et al. [2006] and Zhao et al.

[2012]. Bartlett et al. [2006] proposed excess risk bounds for convex surrogate functions

and Zhao et al. [2012] analyzed policy learning a surrogate loss function for support vector

machines and proposed a outcome weighted classifier approach for policy learning.

My approach combines the results from Zhao et al. [2012] and Farrell et al. [2020] by

using deep neural nets to directly learn d(xi) using a surrogate function. I leverage the

inference engine in Farrell et al. [2020] to conduct inference for expected profits under the

learned optimal policy function.

Specifically, I propose a surrogate for the optimal policy function d∗(xi) = 1{β(xi) > c
m}
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to be

d̃(xi) = d̃(mβ̃(xi)− c) = f(mβ̃(xi)− c), (3.1)

where f : R → [0, 1] is a monotonically increasing Lipschitz function that maps the rep-

resentation of β(xi), denoted as β̃(xi), to a relaxed version of the decision rule d̃(xi). For

example, I can consider f(z) =
tanh(z)+1

2 or a sigmoid function as possible functions for

d̃(xi).

I emphasize that d̃(xi) is the surrogate or relaxed version of the optimal targeting d∗(x) =

1{β(xi) > c
m}. To convert the surrogate to a targeting policy, I need to threshold it. To

give an example of a thresholded targeting rule, 1{d̃(xi) > 0.5} is a targeting policy that

targets customer i if d̃(xi) is greater than 0.5 and does not target otherwise.

I form the surrogate profit function by first plugging in d̃(xi) for d(xi) in Equation (2.1):

Π̂(d̃) =
n∑

i=1

Wi

e(xi)
πi(1)d̃(xi) +

1−Wi

1− e(xi)
πi(0)(1− d̃(xi)). (3.2)

Then I use a DNN to represent β̃(xi). I use the results from from Farrell et al. [2020] to

estimate β̃(xi) as the parameter of interest while using the negative of Equation (3.2) as the

loss function to be minimized.

Figure 10.3 provides a visualization of the architecture. In contrast, Causal DNN pro-

posed in Farrell et al. [2020] has the two structural parameters, α(x) and β(x), in an addi-

tional parameter layer. Here, I use the surrogate for the policy function d̃(x), which combines

with the treatment indicator W and the outcome variable Y to form the surrogate loss func-

tion (Equation 3.2). I establish my setup satisfies the general framework proposed by Farrell

et al. [2020].

Proposition 4. (Suitable loss) The negative profit loss

L = −
n∑

i=1

Wi

e(xi)
πi(1)d̃(xi) +

1−Wi

1− e(xi)
πi(0)(1− d̃(xi))
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to estimate β̃(xi) satisfies Assumption 1 in Farrell et al. [2020].

I verify the proposition holds with the proposed loss function in Appendix Section A.1

which establish Lipschitz and curvature and conditions for the loss function. I further choose

a DNN architecture for β̃(x) to satisfy Assumption 2 in Farrell et al. [2020].1 This setup

allows me to leverage the results from Theorem 1 in Farrell et al. [2020] to estimate β̃(x)

from the DNN. I then use the DNN estimates to produce a targeting policy and then conduct

inference around expected profits from following the targeting policy.

I show that the sign of 1{mβ̃(x)− c > 0} = 1{d̃(x) > 0.5} from the surrogate approach

will be consistent to the sign of 1{mβ(x) − c > 0} = d∗(x), which is the optimal policy

function, in the population.2 Because the final targeting policy depends only on the sign

of mβ(x) − c, individuals are targeted if and only if the sign is positive. The surrogate

approach will provide a consistent targeting policy to that of the two-step approach, which

first estimates β̂(x) and then forms the targeting policy. In essence, my procedure produces

a targeting policy that is consistent for the optimal policy function in the population.

Proposition 5. (Sign consistency of the surrogate) The surrogate policy function 1{d̃(x) >

0.5} produces the same targeting rule as the optimal policy function d∗(x) = 1{β(x) > c
m}.

In other words, the targeting policy from d̃(x) is sign consistent to that of d(x).

I provide the proof in Appendix Section A.1 and where I adapt the results from Zhao et al.

[2012] for my loss function. As a direct result of Proposition 5, the profits generated from

the surrogate policy function will be equivalent to the profits generated from the optimal

policy function. The proof is also provided in Appendix Section A.1.

1. Assumption 2 adds constraints on the smoothness of the approximating function class.

2. Sign consistency in this setting implies the proposed policy function’s targeting rule is consistent to
the optimal targeting rule. In the binary treatment case for the surrogate β̃(x), when mβ̃(x) − c > 0 ⇐⇒
mβ(x)−c > 0, the individual should be targeted (d∗(x) = 1). Further when mβ̃(x)−c < 0 ⇐⇒ mβ(x)−c <
0 , the individual should not be targeted (d∗(x) = 0).
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Corollary 6. Expected profits from the targeting policy generated from d̃(x) are consistent

for the expected profits generated from d∗(x) or E[Π(d∗(x))] = E[Π(1{d̃(β̃(x)) > 0.5})].

In summary, I have shown that I can use a surrogate for the policy function, use a

DNN to estimate parameters of the surrogate policy function (β̃(x)), and then generated the

optimal policy function from the surrogate function. The thresholded policy function from

the surrogate (1{d̃(x) > 0.5}) will be sign consistent to the optimal targeting policy (d∗(x) =

1{mβ(x) > c}) and the profits generated from the two policies will also be consistent in the

population. Appendix Section B contains a Monte Carlo simulation study comparing Policy

DNN and the Causal DNN from Farrell et al. [2021].

3.2 Inference for Policy DNN

I now shift my focus to inference around the profits generated from the Policy DNN targeting

policy. I provide an overview of the main theorem and leave the proof and the formal

statement to Appendix Section C.

Theorem 1. (Inference for Policy DNN). Under some mild conditions,

√
n
(
Π̂(d̃)− Π(d∗)

)
d→ N(0, V )

for finite V defined in Equation 5 in Appendix Section C.

The theorem is formally stated and proved in Appendix Theorem 3. I now provide a

sketch of the proof.
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Expanding the left hand side in Theorem 1, I obtain three terms

√
n
(
Π̂(d̃)− Π(d∗)

)
=
√
n
(
Π̂(d̃)− Π(d̃)

)
︸ ︷︷ ︸

(1)

+
√
n
(
Π(d̃)− Π(1{d̃ > 0.5})

)
︸ ︷︷ ︸

(2)

+
√
n
(
Π(1{d̃ > 0.5})− Π(d∗)

)
︸ ︷︷ ︸

(3)

.

The first term represents the difference between the sample surrogate profits and the

population surrogate profits. With my loss function (Equation 3.2) and Proposition 4, I use

results from Farrell et al. [2020] to show

√
n
(
Π̂(d̃)− Π(d̃)

)
d→ N(0, V )

for finite variance V (Equation 5 in Appendix Section C), which is the variance of the in-

fluence function. Because I learn the optimal targeting policy directly from the data, I can

conduct inference around the surrogate profits at the firm’s optimal targeting strategy. Fur-

ther, I use an envelope theorem argument to cancel out the correction term of the influence

function. In practice, this provides an efficiency gain visualized in the Monte Carlo simu-

lations (Appendix Section B); Policy DNN has smaller standard errors than Causal DNN

around their targeting policies’ accuracy rate to the ground truth.

The second term represents the difference between the surrogate profits and the profits

from a targeting policy formed by thresholding the surrogate targeting policy. I impose a

margin assumption (Assumption 5) dictating how apart d̃(xi) and 1{d̃(xi) > 0.5} can be

and use it to show
√
n
(
Π(d̃)− Π(1{d̃ > 0.5})

)
→ op(1).

I provide a concrete example of the margin assumption for the d̃(k, x) =
tanh(kβ(x)+1)

2

function with scale parameter k. Here, k ≍ ln(n) is needed for the margin assumption to
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hold.

The third term represents the difference between the profits from the thresholded surro-

gate policy to the profits from the optimal targeting policy. I use Corollary 6 to show

Π(1{d̃ > 0.5})− Π(d∗) = 0.

Combining these results, I have

√
n
(
Π̂(d̃)− Π(d∗)

)
d→ N(0, V ) + op(1) + 0 ≃ N(0, V ),

which supplies the main theorem. A discussion of the implications of the margin assumption

is provided before the formal statement of Assumption 5. Lastly, I provide two remarks

around the key technical contributions at the end of Appendix Section C.
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CHAPTER 4

FORMING A COMPREHENSIBLE CLASS OF POLICIES

This chapter constructs a class of comprehensible policies. I focus on targeting policies that

can be represented by a sentence such as

“Target customer if she lives in Chicago and she has not bought in the last thirty days.”

This sentence has two conditional clauses “if she lives in Chicago” and “[if] she has not

bought in the last thirty days” that are linked by the “and” logic operator. Thus the customer

will be targeted if both clauses are true and will be not targeted otherwise. This class of

comprehensible policies is denoted by FComp.

I describe what makes a targeting policy comprehensible in Section 4.1, construct the

comprehensible policies class in Section 4.2, and show how I can engineer the clauses from

standard recency, frequency, and monetary (RFM) marketing data in Section 4.3.

4.1 What is comprehensibility?

The sentence, “Target customer if she lives in Chicago and she has not bought in the last

thirty days” is comprehensible in the sense it is transparent and complete. For completeness,

the sentence is the targeting policy being implemented by the firm. There is a one-to-one

mapping between the explanation provided to the implemented policy. For transparency,

the firm can state the sentence to the customer or regulator, and the sentence is easy to

explain and parse. The number of clauses captures the complexity of the targeting policy

and a sentence with more unique clauses will necessarily be more complex.

To ensure these comprehensible policies remain understandable, I limit the number of

clauses that can be used in the sentence. Miller [2019] suggests that explanations with that

are too long are not understandable. While a sentence with more than five clauses may
22



be grammatically correct, it becomes difficult for a sales representative to explain it to the

customer. To capture this restriction, I focus on comprehensible targeting policies with at

most five clauses to ensure the comprehensible policy is conversational.

The comprehensible policies are constructed to embed contrastive explanations [Lipton,

1990]. The explainable AI literature uses the idea of contrastive explanations as a core

component of the explanation itself [Biran and Cotton, 2017, Halpern and Pearl, 2005a,b,

Miller, 2019, Mothilal et al., 2019].1 In the running example, a contrastive explanation means

that since customers are only targeted if they live in Chicago and have not bought in the

last thirty days, the negation of either conditional clause—“if they do not live in Chicago” or

“have bought in the last thirty days”—implies the customer would have not been targeted.

By providing the customer with the targeting rule and counterfactual states in which the

customer would not be targeted, the firm is able to explain the comprehensible targeting in

a manner that the customer can understand.

Fundamentally, the choice of this class of comprehensible policies is motivated by the em-

phasis on transparent, complete, and conversational targeting policies that embed contrastive

explanations. This class of policies deviates from those proposed in the interpretable AI lit-

erature, which suggests constructing long rule lists [Angelino et al., 2018, Rudin, 2019],

expansive decision trees [Weiner, 1980], or large flow charts [Cawsey, 1992].2 As a result, the

comprehensible policy class will be simpler than those used in interpretable AI: Large rule

lists and decisions trees may be transparent and complete, but they are not conversational.

1. In western philosophy, Spinoza holds the strongest position about explanation, namely that everything
is part of a causal chain of explanation. While some explanations are difficult to find, Spinoza equates denying
these explanations with seeking refuge in “the sanctuary of ignorance” [Spinoza, 1985]. This account refutes
contrastive explanation: each explanation is already determined by others. As a contemporary Spinoza
commentator writes, “our place in the world is simply the way in which we are explained by certain things
and can serve to make intelligible—i.e., explain—certain other things” [Della Rocca, 2008].

2. A separate strand of the interpretable AI literature used in the marketing literature incorporates
interpretable structures in black box models [Rai, 2020, Fong et al., 2021, Wang et al., 2022].
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4.2 Comprehensible policies

I consider the class of sentences that consistent of clauses linked by logic operators as the

proposed class of policies. I call this class of models comprehensible policies. In essence, I

want to capture targeting rules that can be represented as a coherent and grammatically

correct sentences which say,

“Target if customer i has this”

“Target if customer i has this and that” (4.1)

“Target if customer i has this or that and not this”

where “this” and “that” are two conditional clauses described by covariates and are linked

by the logic operators “and,” “or,” and “xor ”.3 The clauses can be negated so “this” can be

formed into “not this” by prefixing the clause with the “not” operator.4 In this setup, the

complexity of the explainable policy is defined as the number of conditional clauses used and

is denoted as ℓ.

While comprehensible policies are simple to state, optimizing over the sentences can be

combinatorially difficult. If there are k distinct possible clauses and three logic operators for

a sentence of length ℓ (that uses ℓ total clauses), then the total possible combinations for that

sentence is 3ℓ−1(2k)ℓ, which is exponential in the number of possible clauses.5 I provide an

example that enumerates the different combinations for a sentence with two clauses below.

Example 1. (Comprehensible policies with two clauses) Consider two clauses A and B. For

3. The operator “xor” represents the exclusive or which captures A or B but not A and B.

4. The running example “Target customer if she lives in Chicago and she has not bought in the last thirty
days” has two total conditional clauses and they are linked by the logic operator “and.” The conditional
clauses themselves are “she lives in Chicago” and “she has not bought in the last thirty days.”

5. For a two clause sentence, allowing for all permutations of the clauses (e.g., including sentences such
as, “Target A or not A”) leads to 3142 = 48 different combinations.
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a sentence with ℓ = 2 clauses, there are twelve combinations where A is in the first clause

spot and B is in the second clause spot.

A and B A and not B

A or B A or not B

A xor B A xor not B

not A and B not A and not B

not A or B not A or not B

not A xor B not A xor not B

The comprehensible policies can be expressed in the most general form in logic trees

[Schwender and Ruczinski, 2010].6 Logic trees take in binary covariates and generate a

sentence that uses the covariates as clauses and links them using logic operators. The

elements of the tree are the binary covariates and the logic operators are and, or, and not.

The logic trees can then be collapsed into a sentence of the form in Example 4.1. The

comprehensible policies are simpler versions of decisions trees and a comprehensible policy

with ℓ clauses can be represented by a decision tree of ℓ layers. The procedure to generate

decision trees from the comprehensible policies is described in Appendix Section D.

4.3 Generating clauses

Comprehensible policies require clauses with binary values, and I show how I can generate

these clauses from standard RFM marketing data in this section. The clauses depend on the

data available to the firm, and I assume the data takes on the standard tabular form where

each column of the data is understandable. In the RFM case, a data column that describes

sales in the past 12 months is understandable to mangers, customers, and regulators.

6. Logic trees can be directly mapped to decision trees as is shown in Lemma 12.
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Binary covariates in the data do not require further processing since they can be repre-

sented by clauses directly. For example, a binary covariate that is 1 if a customer is “a new

user” and 0 otherwise is represented by the clause “is a new user.”

Categorical covariates are expanded to binary covariates and then turned into the clauses.

For example, the type of mobile phone that a customer has can be converted into binary

variables (“has an iPhone,” “has an Android,” and “has a flip phone”) and these are converted

into clauses directly. The clauses from the categorical variables are more expressive, as a

clause like “does not have a flip phone” would capture the customer having either an “iPhone”

or an “Android”.

For continuous covariates, I discretize them into three bins that are each represented by

a binary indicator. I implement this discretization with RFM data in mind. To provide a

concrete example, Figure 10.4 shows the unconditional distribution for the past November

sales covariate from the empirical application in the upper panel and the conditional dis-

tribution for nonzero past November sales in the lower panel. I first note that 97% of the

observations are zero so I first construct the clause “has zero past November sales.”

I then look at the conditional distribution of past November sales for the customers that

spend during November in the lower panel. The median value is $129.99 so I classify all

customers above this value to be “high” and the customer below this value and above zero

to be “low.” Their respective clauses will be “has low past November sales among spenders”

and “has high past November sales among spenders.” I follow this procedure in the empirical

application for the RFM dataset. In other settings, researchers can construct three clauses of

low, medium, or high values by cutting up the continuous variable at the empirical quantiles.7

Naturally, data scientists can transform the data into different representations or em-

beddings, but I consider the transformed variables largely to be not interpretable. At an

7. An even more general approach can also discretize the continuous covariates into smaller bins based
on deciles or more precise quantiles but these will significantly expand the total number of clauses to search
over in the optimization step.
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extreme, a data scientist can estimate α̂(xi) and β̂(xi) using a black box method.8 Then

the comprehensible policy would naturally recover the optimal policy function (d∗(xi)) that

says, “Target customer if she has β̂(xi) > c/m.” Such a targeting policy would have the

structure of the targeting sentence but is not transparent since the process of attaining β̂(xi)

is opaque.

8. The terms α̂(xi) and β̂(xi) follow the notation in Section 3.1.
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CHAPTER 5

OPTIMAL COMPREHENSIBLE POLICY

I now find the optimal comprehensible policy among the class of comprehensible policies

that I constructed in Chapter 4. I denote this class of comprehensible policies as Fℓ
comp and

now make the dependence on the number of clauses ℓ explicit. Recall that ℓ represents the

complexity of the comprehensible policy since a sentence with more clauses can provide a finer

partition of the customer base. As an example, F2
comp represents this class of comprehensible

policies that are covered by sentences with ℓ = 2 clauses.

I now focus on optimizing over this class of policies for a given ℓ value using policy

learning. Specifically, I use the direct empirical welfare maximization framework [Kitagawa

and Tetenov, 2018] where I directly find the optimal comprehensible policy d∗comp(x) ∈ Fℓ
comp

that maximizes the sample profit estimator in Equation 2.1,

d∗comp(x) = argmax
d′∈Fℓ

comp

Π̂(d′). (5.1)

I propose two procedures that directly maximize profits over this class of comprehensible poli-

cies. The first is brute force optimization, which guarantees the globally optimal solution but

can be computationally intensive. The second is a greedy algorithm that is computationally

tractable but may result in a locally optimal solution. I then provide inference around the

optimal comprehensible policy by leveraging the results from Kitagawa and Tetenov [2018].

5.1 Brute force algorithm

I first propose the brute force optimization approach where I first enumerate over all possible

comprehensible policies and then choose the one that yields the highest expected profits. The

algorithm’s step are detailed in Algorithm 1.
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Algorithm 1 Brute force optimization
Setup: Number of clauses ℓ:

1. Discretize the p covariates into q pieces to get the clauses

2. Combinatorially iterate through all targeting policies combinations of the pq clauses
and logic operators

3. Choose the policy with ℓ clauses that maximizes profits

To outline the algorithm, consider the problem of finding a ℓ = 3 clause sentence that

has the structure:

Target if {A} <and/or/xor> {B} <and/or/xor> {C}

where {A}, {B}, {C} are the clauses in the sentence and <and/or/xor> are the logic opera-

tors. To find the optimal comprehensible policy with three clauses, the brute force approach

would first enumerate all possible clauses in {A}, all possible clauses in {B}, and all pos-

sible clauses in {C} (and those in {not A}, etc.) as well as the possible logic operators,

<and/or/xor>, between the clauses. This approach is computationally intensive because

the number of all possible combinations grows exponentially in the total number of clauses

ℓ. For p covariates discretized into q candidate clauses this leads to 3ℓ−1(2pq)ℓ different

combinations. To put that number into context, for thirty variables discretized into three

candidate clauses there are approximately 5.8 million different combinations to search over

for a three-clause sentence.

Practically, I can use the brute force algorithm to enumerate all possible targeting policies

when ℓ ≤ 2 and the dataset itself is not too large. I do so in the empirical application to

provide a comparison to the greedy algorithm’s solution.
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5.2 Greedy algorithm

Since the brute force algorithm is not computationally tractable in many scenarios, I propose

a greedy version of the algorithm. The algorithm is computationally feasible but may only

find a local optimal solution that generates lower profits than that of the globally optimal

solution.

Greedy algorithms are commonly used in the marketing literature [Lilien et al., 1992]

and also used in estimating decisions trees in the statistics literature [Breiman, 1984]. Since

the local optimal solution may be suboptimal to the global solution in generating profits,

the results form the greedy algorithm can be viewed as a lower bound of the profits from the

globally optimal comprehensible policy. Algorithm 2 details the algorithm’s steps.

Algorithm 2 Greedy algorithm
Setup: Number of clauses ℓ:

1. Discretize the p covariates into q pieces to get the clauses

2. Find the single best clause that maximizes profits

3. For l ∈ {2, . . . ℓ}:

(a) Iterate all clause and logic operator combinations while holding the l − 1 clauses
and logic operators fixed

(b) Choose the combination that maximizes the profits

To outline the greedy algorithm, consider the case of finding a ℓ = 3 clause sentence that

has the structure:

Target if {A}︸︷︷︸
(1)

<and/or/xor> {B}︸ ︷︷ ︸
(2)

<and/or/xor> {C}︸ ︷︷ ︸
(3)

where {A}, {B}, {C} are the clauses in the sentence and <and/or/xor> are the logic oper-

ators. The greedy algorithm breaks up the combinatorially difficult problem by solving it

piece by piece. In the example, the greedy algorithm would first find the best single clause
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sentence or optimize over the possible clauses {A} (the first piece). Then, it would hold the

one clause targeting rule (the solution to {A}) fixed and then find the best logic operator

and {B} combination (the second piece). Lastly, it would hold the two clause targeting rule

(the solution to {A} <and/or/xor> {B}) fixed and find the best logic operator and {C}

combination (the third piece).

The greedy algorithm evaluates a smaller set of combinations of comprehensible policies

since it does not enumerate over all possible combinations of clauses and logic operators.

As a result, it searches over 6(ℓ − 1)pqℓ combinations for a comprehensible policy with ℓ

clauses and p covariates discretized in q candidate clauses. For thirty variables discretized

into three candidate clauses, there are approximately 1.1 thousand combinations to search

over for a three-clause sentence, which is many orders of magnitude smaller than the brute

force approach’s 5.8 million combinations.

In the empirical application, I use the greedy algorithm to solve for the optimal com-

prehensible policy. Since the combinatorial space is dramatically reduced, searching for the

optimal comprehensible policy with the greedy algorithm for ℓ = 10 takes around a minute

while using the brute force algorithm for only ℓ = 3 has an estimated run time of over three

weeks. Both algorithms were implemented using the R package for torch as the backend

[Falbel and Luraschi, 2023].

5.3 Inference for optimal comprehensible policies

To conduct inference around the optimal comprehensible policy, whether it is found though

the brute force algorithm or the greedy algorithm, I can adopt results from Kitagawa and

Tetenov [2018].1 I am using the empirical welfare maximization framework, albeit with

a more specific function class Fℓ
comp with a fixed ℓ. I summarize how I implement their

1. To complete their setup, I would need to further assume the outcome variable (Y ) is bounded in
addition to the standard assumptions of Assumptions 1, 2, and 3.
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theoretical results in this framework and further theoretical details can be found in their

paper.

Kitagawa and Tetenov [2018] provide a minimax optimal rates for policy learning via

empirical welfare maximization. They study expected welfare regret of a candidate policy

function’s welfare to the optimal policy function’s welfare. Their minimax rates around

expected regret provide worst case guarantees for finding the optimal policy function and

the rates scale at K
√
V C(d)/n where V C(d) represents the Vapnik-Chervonenkis (VC)

dimension of the policy function, K is a constant, and n is the number of observations. The

VC dimension of the class of policy functions inherently needs to be finite. To adapt the

results, I define the class of policy functions to be the class of comprehensible policies Fℓ
comp

with ℓ fixed.2

In this setting, I only need rates for statistical inference that are a different objective

than minimax rates. Confidence intervals can be attained around the estimated policy

function using the empirical process bootstrap outlined in Algorithm B.1 in Appendix B of

Kitagawa and Tetenov [2018]. I follow this procedure to attain inference around the optimal

comprehensible policy in the empirical application.

2. The number of clauses ℓ need to be fixed and finite in order for the VC dimension of the comprehensible
policy to be finite (Lemma 13 in Appendix Section D).
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CHAPTER 6

PROJECTING DOWN THE BLACK BOX

In this chapter, I show how comprehensible policies can be formed by projecting down a black

box policy and demonstrate that doing so will yield less profitable comprehensible policies

than finding them directly from the data. I call this projection down procedure the ex post

approach and call the procedure for finding the policy directly from the data (Chapter 5)

the direct approach.

I provide an analytical justification for why the direct approach will generate more prof-

itable comprehensible policies than the ex post approach in Section 6.1. I then show how I

can attain inference around the projected down optimal comprehensible policy by recentering

the empirical process results from Kitagawa and Tetenov [2018] in Section 6.2.

The literature in explainable AI (XAI) studies a local approximation of a black box

algorithm where they project down the black box to a simpler, more explainable model

[Biran and Cotton, 2017, Miller, 2019]. However, I will show that using the projection

down procedure to form optimal comprehensible targeting policies leads to less profitable

comprehensible policies than those formed directly from the data (as in Chapter 5).

To project down the black box, I first consider a profit loss function from two candidate

targeting policies d(x), d′(x). I consider profits as the outcome of interest because they

are a direct measure of producer surplus while other metrics such as AUC or classification

accuracy to the black box method do not have a direct economic interpretation.

I choose the absolute profit difference as the loss between two policies d(x) and d′(x),
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expressed as

L(d, d′) = |Π̂(d)− Π̂(d′)|

=
n∑

i=1

1{d(xi) ̸= d′(xi)}︸ ︷︷ ︸
Classification loss

∣∣∣∣ Wi

e(xi)
πi(1)−

1−Wi

1− e(xi)
πi(0)

∣∣∣∣︸ ︷︷ ︸
Weight

. (6.1)

The first term, 1{d(xi) ̸= d′(xi)}, can be interpreted as the classification loss.1 The second

term, | Wi
e(xi)

πi(1)− 1−Wi
1−e(xi)

πi(0)|, can be interpreted as the classification weight for customer

i. This loss function is similar to the outcome weighted learning setup from Zhao et al.

[2012] and the weighted classifier setup in Zhang et al. [2012]. Intuitively, the loss is nonzero

for an individual if the two policies differ (the classification loss) and the difference is scaled

by the absolute profit difference from disagreeing for that individual. Further, the expected

weight for the observation is E
[
Wi
e πi(1)−

1−Wi
1−e πi(0)

]
= E[πi(1) − πi(0)] or the expected

individual level profit difference.

Using the absolute profit difference loss function in the XAI framework, I aim to find the

explainable policy ξ(x) that solves the equation

ξ(x) = argmin
d′

L(d, d′) + Ω(d′) (6.2)

where L(d, d′) is the difference in the profits of the two policy functions d, d′ as in Equation

6.1 and Ω(d′) represents the complexity of explainable policy d′. The generalized loss function

in Equation 6.2 trades off between minimizing the loss between d and d′ and minimizing the

complexity of d′.

Equation 6.2 captures the general framework used the XAI literature where an explain-

able, transparent box model d′ is used to approximate the black box model d [Biran and

Cotton, 2017, Miller, 2019]. Methods in this domain include LIME [Ribeiro et al., 2016] and

1. Appendix Section E provides the derivation of the loss function.
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SHAP [Lundberg and Lee, 2017], which both provide a local linear decomposition of the

black box to its covariates.

I take a step further and directly embed explainability as a constraint in the problem.

Instead of considering a trade-off between model complexity and the performance of the ex-

plainable policy, I choose a level of complexity and then find the best performing explainable

policy. Consider an explainable class of policies D(Ωl) that all have the same complexity

Ωl, which is indexed by some constant l. I now want to find the best performing explainable

policy d′ ∈ D(Ωl) and solve the equation

ξD′(x) = argmin
d′∈D(Ωl)

L(d, d′) (6.3)

where I embed the level explainability as a direct constraint in the optimization problem.

I let d be the estimated Policy DNN policy function d∗DNN (x) from Chapter 3. For the

explainable policy, I use the class of comprehensible policies constructed in Chapter 4 and

the complexity parameter l can just be the number of clauses ℓ in the sentence. To unify

the notation, I define Fℓ
comp = D(Ωl) as the class of comprehensible policies of length ℓ.

6.1 Projecting down the black box is not profit-maximizing

I now show that projecting down the black box policy to find the comprehensible policy fol-

lowing Equation 6.3 leads to a less profitable comprehensible policy than directly optimizing

the comprehensible policy by maximizing sample profits (Chapter 5). I first compare the

two objectives used in the two approaches,

min
d′∈Fcomp

∣∣∣∣ max
d∈FDNN

Π̂(d)− Π̂(d′)

∣∣∣∣ vs. max
d′∈Fcomp

Π̂(d′). (6.4)

The left-hand side represents the profit level from forming a projected down optimal com-

prehensible policy using Equation 6.3 and the right-hand side represents the profit level
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from forming the optimal comprehensible policy directly from the data. When finding the

optimal comprehensible policy directly, d∗comp (x) = argmaxd′∈Fcomp Π̂(d
′), the property of

the maximization operator says the direct approach will find the maximum profits for the

comprehensible policy class. Thus, the comprehensible policy from the ex post approach will

generate weakly less profits than the direct approach.

The intuition behind the result is lies in the structure of the loss functions for the two

approaches. Because the ex post approach minimizes the loss between the comprehensible

policy and the black box, when the black box does not classify customers well, the ex post

approach will also not do well. In contrast, the direct approach learns the policy straight

from the data as it does not depend on the black box policy’s results. In fact, if the black

box does better than the comprehensible policy in generating a more profitable policy for all

individuals in the data, then the two approaches will be the same.

I formalize the last statement to show that the two objectives in Equation 6.4 will be

equal if the black box policy outperforms the comprehensible policy for all customers. This is

formalized in the following assumption and I denote the individual-level profits from targeting

policy d(xi) as π(d(xi)).

Assumption 4. The profits generated from the policy DNN are weakly greater than that of

the comprehensible policy, so π(dDNN (xi)) ≥ π(d(xi)),∀d ∈ Fℓ
comp .

Under Assumption 4,

min
d′∈Fℓ

comp

∣∣∣∣ max
d∈FDNN

Π̂(d)− Π̂(d′)

∣∣∣∣ = min
d′∈Fℓ

comp

(
max

d∈FDNN

Π̂(d)− Π̂(d′)
)

= min
d′∈Fℓ

comp

−Π̂(d′)

= max
d′∈Fℓ

comp

Π̂(d′),

where I used the assumption in the first line to remove the absolute value as maxd∈FDNN
Π̂(d) =
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Π̂(d∗DNN (x)) ≥ Π̂(d′) for d′ ∈ Fℓ
comp and I used that d′ does not show up in the first term

to get to the second line.

I interpret these results as cautionary guidance for marketing managers on forming op-

timal comprehensible targeting strategies. The XAI approach of projecting down the black

box provides an approximative model to the black box. However, for finding the optimal

comprehensible policy to be implemented in practice, firms should use direct empirical wel-

fare maximization, or maximizing expected profits in the data directly, to find the optimal

comprehensible policy.

6.2 Inference for projected down optimal comprehensible policies

To conduct inference around the ex post approach, I recenter the empirical process results

from Kitagawa and Tetenov [2018] for the loss function in Equation 6.3. By showing their

results apply to my framework, I can conduct inference for the ex post comprehensible policy.

I first define the notation for the theorem and suppress the dependence of the comprehen-

sible policy targeting rule d on the length of the sentence ℓ for notational simplicity. These

results holds for a finite number of clauses ℓ, implying the comprehensible policy has finite

VC dimension from Appendix Lemma 13. I first define π(d) to be the individual-level profits

from targeting policy d, and then define

ď∗(x) = arg max
d∈Fcomp

EP
[∣∣π(d∗DNN )− π(d)

∣∣]
d̂ex(x) = arg min

d∈Fcomp
En

[∣∣π(d∗DNN )− π(d)
∣∣] ,

where the first line has the expectation taken over the population distribution P and the

second line has the expectation taken over the sample analog. The second line produces

the ex post optimal comprehensible policy d̂ex(x) and is equivalent to finding the optimal
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comprehensible policy by solving the sample analog of Equation 6.3.2

I impose sample splitting for estimating the d∗DNN (x) for the optimal black box pol-

icy in one data sample, for finding the optimal comprehensible policy d̂ex(x) in another

data sample, and conducting inference in the last data sample. I further define Γ(d) =

EP
[∣∣π(d∗DNN )− π(d)

∣∣] to be the profit loss for the targeting rule d evaluated in the pop-

ulation and Γn(d) = En [|π(dDNN )− π(d)|] to be the profit loss for targeting rule d in the

sample.

Theorem 2. (Uniform convergence rate of ex post comprehensible policies) Under Assump-

tions 1, 2, and 3 and the assumption that the outcome variable (Y ) is bounded, for a hy-

pothesis space of comprehensible policies with ℓ clauses (H = Fℓ
comp) that has bounded VC

dimension (V C(H) < V <∞),

sup
P
EP

[
Γ(ď∗)− Γ(d̂ex)

]
≤ C

√
V

n
= Op

(
1/
√
n
)
.

I provide the proof of Theorem 2 in Appendix Section A.2. The technical implication is

that the rate for the difference in the profit loss scales at
√
V C(dex)/n for ex post compre-

hensible policy dex.3 This is an upper bound and the lower bound results from Kitagawa

and Tetenov [2018] can be similarly recentered to provide minimax rates for the profit differ-

ences. Inference can be attained around this ex post approach by using the empirical process

bootstrap.

2. The formal definition of π(d) is in Equation 9 in Appendix Section E.

3. Since the rates are of OP (1/
√
n), they are not fast enough to avoid sample splitting with the data used

to estimate the Policy DNN; a op(1/
√
n) rate or faster is needed to avoid asymptotic bias when using the

influence function for inference [Fisher and Kennedy, 2021, Kennedy, 2022]. However, the same sample can
be used if the bias correction term for C

√
V/n from Theorem 2 is estimated fast enough and adjusted for

in the confidence interval.
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CHAPTER 7

EMPIRICAL APPLICATION

In this chapter, I provide an application to promotions management for a durable goods

retailer as a proof of concept of the methodological framework. I first show that Policy

DNN is the best performing black box to establish the optimal black box policy benchmark

d∗DNN(x). Then, I find the optimal comprehensible policy d∗comp(x) and compare the tar-

geting differences between the two targeting policies. I denote the profit difference of the

Policy DNN to the comprehensible policy as the cost of explanation of implementing the

comprehensible policy.1 I then show that finding the optimal comprehensible policy directly

produces a more profitable targeting policy than finding it by projecting down the black box

targeting policy.

I use the second IMSI Durable Goods dataset from Ni et al. [2012] that contains a price

promotion randomized control trial (RCT) for a durables goods store in 2003. The items

available are mainly electronics and they encompass a range of products from small ticket

to large ticket items.2 The price promotion is a $10-off coupon that is valid on the next

purchase in the store.

The RCT contains 176,961 customers, and the treated customers were sent a promotion

with probability 50%. The control group was not mailed any promotion. The dataset

contains approximately 150 recency, frequency, and monetary (RFM) covariates that describe

the customers’ past behavior with the firm. The outcome of interest is sales during December

2003 (the promotional period) and the price promotion was mailed to the customers before

December 2003.

To check for evidence of the covariate balance and the overlap assumption, I run a

1. This framework is more general than shown in this application. A similar analysis can be performed
for any black box policy class and any comprehensible policy class.

2. To provide a concrete example, a sample small ticket item is something like a drip coffee maker and a
sample large ticket item is something like a refrigerator.
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logistic regression to check if I can statistically predict the treatment variable of getting the

promotion with the RFM data. I find that only the intercept value is statistically significant

in the regression. Figure 10.5 shows the density of estimated propensity scores for the treated

and the not treated groups from the logistic regression. The two densities essentially fully

overlap which suggests that overlap and covariate balance hold in the data. Further checks

for covariate balance can be found in Ni et al. [2012].

These results suggest the RCT was run correctly so the unconfoundedness and overlap

assumptions should hold in the data. I further make the assumptions that customers used

the coupon on their next possible purchase, there’s no gaming of coupons, and there are

no spillover effects from the mailed promotions to satisfy the stable unit treatment value

assumption (SUTVA).

With the three standard assumptions satisfied, I can estimate the average treatment

effect (ATE) of the price promotion on December 2003 and find the ATE to be 2.68 with

a 95% confidence interval of (1.63, 3.73). This result suggests that there is a statistically

significant effect of the price promotion on December sales.

From the sales data, I also see that only 3.6% of all customers purchase during December.

Further, conditional on purchase, the median spend size is $149.99. There are a handful of

individuals in the data who spend over five thousand in the store. Since I did not collect the

data, I am not sure if these are outliers or errors in the data. In my subsequent analysis, I

drop those that spend more than $800 at the store (the top 0.29% of spenders) in the data.3

I impose profit margins m = 45% and cost of mailing c = 37¢ to complete the setup. The

latter is the price of mailing a letter at USPS during the time period. Alternative numbers

for the profit margin can be used in the framework and they can even be set to vary by

customer covariates.

3. I further motivate this data cleaning procedure by assuming that if a customer decides to spend a few
thousand at the store than they are less influenced by the $10-dollar off promotion to make the purchase
because it is effectively a smaller percentage off the base price.
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I first randomly split the data 80/20, estimate the models with 80% of the data, and

evaluate different black box methods’ targeting policies out of sample using 20% of the

data.4 I use the Policy DNN, Causal Forest, and Lasso black box methods. The Policy DNN

follows the setup from Chapter 3. I use a DNN architecture of three hidden layers each with

12 rectified linear units (ReLU) nodes, a ADAM optimizer with a learning rate of 0.005, an

early stopping criterion (following the training procedure described in Appendix Section B)

after 2000 epochs, and the surrogate policy function f(z) =
tanh(z+1)

2 . The Policy DNN

learns the optimal targeting policy directly from the data and I denote the Policy DNN

targeting rule as d∗DNN (x).

I use the Causal Forest and Lasso methods as proxies for the standard approach used in

the literature. The Causal Forest is commonly used as a state-of-the-art procedure in applied

economics and marketing literatures [Wager and Athey, 2018]. The Causal Forest bootstrap

aggregates the Causal Trees from Athey and Imbens [2016]. The Lasso is a popular machine

learning method when linearity of the baseline model and the heterogeneous treatment model

is assumed [Hastie et al., 2015, Taddy, 2019]. Both the Causal Forest and Lasso first estimate

β̂(x) which is then plugged in optimal targeting policy function. These two methods provide

benchmark black box models that are commonly used in the literature.

With the black box targeting policies I can evaluate the expected profits under the

targeting policy using Equation 2.1.5 Table 11.1 provides the out of sample individual

expected profits from these black box models as well as from the blanket targeting policy

where everyone is sent the promotion. I see that the Policy DNN ($3.02) does better than

both the Causal Forest ($2.74) and Lasso ($2.70) procedures in generating profits. All black

box methods perform better than the blanket mailing policy ($2.42).

4. I denote evaluating models in the 80% training data as in sample evaluation and in the 20% validation
data as out of sample evaluation.

5. The standard errors for Lasso and Causal Forest represent implementation uncertainty around the
profits generated from Lasso and Causal Forest targeting policies. The implementation uncertainty does not
account for the first-stage estimation uncertainty in the β(xi) parameters.
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I interpret the profit gap between the Policy DNN and the Causal Forest as the difference

from the policy learning approach where the optimal targeting policy is learned directly from

the data to the standard approach that first learns the heterogeneous treatment effects and

then plugs them into the optimal treatment rule. Less information is needed to learn the

optimal policy function directly than to learn the heterogeneous treatment effects from the

data. By focusing on only learning what I need for targeting policy, the procedure seems to

perform better in the dataset.

I then interpret the small profit gap between the Causal Forest and the Lasso as reflect-

ing that the heterogeneous treatment effects can be well approximated by a sparse linear

functional. Lastly, the gap between the Lasso and blanket mailing represents the difference

between doing any personalization using a black box algorithm and doing no personaliza-

tion. This profit gap is as large as the gap between the Policy DNN and the Causal Forest

methods.

I form the optimal comprehensible targeting policy following Chapter 4 and Chapter

5. I denote the optimal comprehensible policy as d∗comp (x), and the three-clause optimal

comprehensible policy using the greedy optimization algorithm is:

Target customer if she:
(

1. has bought high amount of items during Christmas over the last two years
and

2. did not have high spending during Spring over the last two years
)

or

3. has low spending during last years holiday mailer promotional period.

The sentence is read left to right and the parenthesis highlight the effect of the “and” logic

42



operator.6 The customers that are not described by the targeting policy are not targeted.

The construction of the clauses with low and high descriptors from the RFM dataset follow

the discussion in Section 4.3.

I interpret this targeting sentence as largely targeting two major segments of customers.

The first group is described by the first two clauses. These are customers who buy a lot

during Christmas but not a lot in the Spring, or people who focus their spending during the

holiday period. Since the outcome of interest is December sales, these are individuals who

spend a lot during the target period and may be more price sensitive.

The second group are those who are on the RFM customer list but have not spent a lot

during the promotional December period the prior year. I consider this group to be customers

who have spent at the store in years before but then either forgot about the store or went to

another store the previous year. Then, the optimal comprehensible policy is suggesting to

retarget these customers to incentivize them to come back to the store. Customers in either

of these two groups will be targeted by the optimal three-clause comprehensible policy.

7.1 Do the targeting policies differ?

I first compare the targeting differences between Policy DNN d∗DNN (x) and the optimal

comprehensible policy d∗comp(x), which I call the direct method in the figures and tables.7

Figure 10.6 shows the targeting percentage of the customers for ℓ ∈ {1, . . . 10} number of

6. The greedy algorithm finds the clauses left to right so the optimal one-clause comprehensible policy
is just the first clause in the three-clause optimal policy and the optimal two-clause policy is the first two
clauses in the three-clause optimal policy. The brute force algorithm is computationally tractable for the
optimal one-clause and two-clause policies and matches the greedy algorithm’s optimal policies. I use the
greedy optimization algorithm to form optimal comprehensible policies for the remainder of the paper. Since
the greedy algorithm can lead to a suboptimal, local solution, I can treat the profits from the optimal
comprehensible policy as a lower bound in profits to that of the globally optimal comprehensible policy.

7. I make the distinction between the direct and ex post method of finding the optimal comprehensible
policy in Chapter 6.
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clauses in sample.8 Policy DNN targets 18.7% of customers. I see that with one clause, the

optimal comprehensible policy targets more than Policy DNN. However, with three clauses,

it gets to the closest in targeting percentage to Policy DNN. Adding more clauses in this

setting appears to reduce the overall targeting percentage of the comprehensible policy.

I provide a visual demonstration of the targeting policy differences with a two-clause

optimal policy in Figure 10.7. The axes represent two RFM covariates in the dataset: spring

sales over the last 24 months and items bought during Christmas over the last 24 months.

The jittered grey circular points represent the customers in the raw dataset. The jittered

green triangular points are those customers that Policy DNN targets. Since Policy DNN

learns a higher order representation of the data, it is not clear what its targeting rule is

when visualized on these two dimensions. In contrast, the two-clause optimal comprehensi-

ble policy is represented by the pink rectangle, and everyone covered by the rectangle will

targeted by the comprehensible policy. The two-clause comprehensible policy is the just the

first two clauses of three clause targeting policy, “Target if customer has high amount of

items during Christmas over the last two years and did not have high Spring spending over

the last two years.”

I now consider the three-clause optimal comprehensible policy and provide the confusion

matrix in Table A.4 in sample. I see that the three-clause policy targets 18.1% of the

customer base and there is a 78% overlap between Policy DNN and the three-clause targeting

policy. More specifically, the two policies agree in targeting 6.5% of the customer and not

targeting 69.7% of the customers. The three-clause comprehensible policy targets 11.6%

of customers who are not targeted by Policy DNN and Policy DNN targets 12.2% of the

customers not targeted by the three-clause comprehensible policy. Since the overtargeting

and undertargeting differences are relatively balanced when comparing the comprehensible

policy to Policy DNN, it seems that the comprehensible policy is capturing similar variation

8. These percentages are similar out of sample since the data is independent to splitting rule since it is a
random 80/20 data split.
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as Policy DNN but cannot personalize as finely due to its comprehensibility constraint.

7.2 Cost of explanation

I now quantify the profit differences from Policy DNN and the optimal comprehensible policy

and denote this gap as the cost of explanation. In Figure 10.8, I visualize the expected indi-

vidual profits for the optimal comprehensible policy by the number of clauses ℓ ∈ {1, . . . , 10}.

I focus on the direct method for now and see that in sample as the number of clauses increases,

the comprehensible policy does better. This result captures the fact that with more clauses

the comprehensible policy can make more partitions of customers and better personalize the

targeting policy.

Out of sample, the profits increase with more clauses but decrease slightly after eight

clauses. These results suggests that with nine or ten clauses, the direct method can overfit

in the training data. I also see that out of sample, the gap between the optimal compre-

hensible policy and Policy DNN is smaller because Policy DNN is likely to be overfitting in

sample. After three clauses, the comprehensible policy’s expected profits is not statistically

significantly different from that of Policy DNN.

I evaluate the cost of explanation, or the profit difference of the two policies, for the

three-clause optimal comprehensible targeting policy in Table 11.3. Per person, the opti-

mal comprehensible policy generates $2.80 in expected profits and the out of sample cost of

explanation is 22 cents. This implies that implementing the three-clause optimal compre-

hensible policy policy instead of the Policy DNN black box policy will lead to a 22 cents

loss in expected profits per person. This is a 7% loss compared to the Policy DNN profits

and the comprehensible policy provides a 16% gain in profits compared to a blanket mailing

policy.

Further, the difference between Policy DNN and the blanket mailing is 60 cents so using

the optimal comprehensible policy provides a 38 cents gain over blanket targeting, or re-
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couping (60− 22)/(60) = 63% of the expected losses from implementing the blanket mailing

policy. Thus, the firm does notably better by implementing the three-clause comprehensible

policy than a blanket mailing policy.

Lastly, it is worth noting that the optimal comprehensible targeting policy ($2.80) per-

forms better than the standard Causal Forest ($2.74) and Lasso ($2.70) procedures (Table

11.1) in out of sample expected profits. While the profit differences are not statistically sig-

nificant, they reflect the advantage of policy learning over the standard two-step approach of

first estimating the heterogeneous treatment effects and then forming the optimal targeting

policy. In general, I anticipate the optimal comprehensible policy to do well if there is not

a lot of heterogeneity in the data and the true optimal policy is relatively simple. However,

if there is a lot of heterogeneity in customers’ reaction to the treatment or enough data to

learn from, then a more complicated black box model (i.e., a neural net or forest) using the

standard two-step approach should outperform the optimal comprehensible policy.

7.3 Projecting down the black box

I apply the ex post approach from Chapter 6 to project the black box model down to a

comprehensible policy. I use the same 80/20 data split to evaluate the methods but split the

80% training sample again: I use the DNN trained on 60% of the data, project down the

DNN and form the ex post comprehensible policy in 20% of the data, and conduct inference

in the last 20% of the data.

Figure 10.8 plots the individual expected profits for the direct and ex post methods. I see

that the direct method outperforms the ex post method both out of sample. In expectation,

the direct method generates $2.80 per person while the ex post procedure only generates

$2.70 per person. The ex post procedure’s targeting policy is,
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Target customer if she:
1. has high Christmas spending over the last two years
and

2.did not have high spending during Spring over the last two years
and

3. has high total spending over the last three years.

Comparing this targeting policy that of the direct approach, I see that their first clauses

are similar, but their second and third clauses as well as their logic operators are differ-

ent. The differences imply that the two approaches are capturing different partitions of the

customer base to target.

I further interpret the targeting policy from the ex post approach as targeting a differ-

ent group of customers than the targeting policy from the direct approach. The ex post

approach mainly targets one segment of customers. It targets customers who buy a lot dur-

ing Christmas, curb their spending during the Spring, and are heavy spenders at the store.

These are the customers who consistently exhibit significant spending patterns at the store,

particularly during the holiday season.

Table 11.3 shows the cost of explanation for the two methods with three clauses. I see

that the cost of explanation for the ex post procedure (32 cents) is higher than that of

the the direct procedure out of sample (22 cents). These results match the profit differences

visualized in Figure 10.8 and suggest the direct approach does better in generating profitable

comprehensible policies.

Overall, this application empirically verifies the analytical results from Section 6.1. Opti-

mal comprehensible policies should be found directly from the data (Chapter 5) rather than

found by projecting down from the black box policy (Chapter 6).
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CHAPTER 8

DISCUSSION

In this chapter, I study how firm managers can use the the proposed framework to analyze

their decision to stay with a black box algorithm or to move to a comprehensible policy when

forming targeting policies for their marketing mix. Circling back to the framework overview

in Figure 10.1, I revisit the trade-off between profits and comprehensibility. Managers com-

pare the complete producer surplus generated by the two policies, or

ΠDNN −RDNN +BDNN︸ ︷︷ ︸
Black Box

vs. Πcomp −Rcomp +Bcomp︸ ︷︷ ︸
Comprehensible Policy

,

to make the decision. I first highlight three components of the complete producer surplus to

study the manager’s problem of whether to stay with the black box or move to a compre-

hensible policy.

The first term (ΠDNN ,Πcomp) represents the short term profit loss from moving away

from the black box to the optimal comprehensible policy. The proposed framework constructs

the black box and optimal comprehensible policy, and the analysis in Chapter 7 quantifies

the short term profit loss, or the cost of explanation, in the empirical example.

The second term (RDNN , Rcomp) represents the regulatory penalty that the firm faces

while implementing its chosen targeting algorithm. If enforced, right-to-explanation laws

will penalize black boxes and but not comprehensible targeting policies. Thus, the expected

regulatory penalty will be higher for the black box policy (RDNN > Rcomp).

The third term (BDNN , Bcomp) represents the long-term effects of offering a compre-

hensible policy. Consumers can firms can benefit from comprehension as it can build better

brand equity for the firm and makes implementing the targeting policy easier by its represen-

tatives. If comprehension leads to long-term benefits or costs, then it should be considered

by firm managers when making the decision.
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In Section 8.1, I focus on the first two terms that balance profitability and with the

expected regulation penalty (ΠDNN −RDNN vs. Πcomp−Rcomp). I leverage the proposed

framework to study the effect of right-to-explanation law on firm’s profits as the firm moves

to an optimal comprehensible policy. This calibration exercise quantifies the economics

damages that right-to-explanation legislation imposes on firms if enforced.

In Section 8.2, I then discuss the possible long-term effects of comprehensible targeting

policies. Even though I do not have the data to study the benefits of offering a comprehensible

policy in my empirical application, I outline potential factors that firms should consider when

forming their decision.

8.1 Effect of GDPR’s “right to explanation” on firms

GDPR suggests customers have a “right to explanation”. This clause would require firms to

employ human representatives to provide both “an explanation” and “meaningful information

about the logic involved” behind any decision made by an algorithm [European Commission,

2016].1 If the right-to-explanation clause is enforced, the penalties for violating GDPR are

the larger of 4% of global revenues or 20 million Euros. Although how exactly the right-to-

explanation laws apply to firms is a subject of ongoing legal debate [Wachter et al., 2016],

it is prudent for forward-looking firms to consider their potential implications. With my

framework, I can evaluate their impact on profits as a firm transitions from a black box

targeting policy to an optimal comprehensible targeting policy to comply with the right-to-

explanation legislation.

From the empirical application, I showed the cost of explanation (ΠDNN − Πcomp) was

22 cents per person for the three-clause optimal comprehensible policy. For a customer basis

1. Specifically, the GDPR legislation states:
“[The data subject should have] the right to obtain human intervention, to express his or her point of view,
to obtain an explanation of the decision reached”
“[and given] access to meaningful information about the logic involved”

[European Commission, 2016]
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of 10 million, this implies 2.2 million dollars of lost profits due to moving away from the

black box targeting policy.

GDPR litigation and enforcement has been publicly focused on multinational technology

firms, but all firms under EU jurisdiction must abide by the law. To put the lost profits in

perspective, I provide the following stylized calibration exercise. I assume the firm in the

empirical application is small enough for the 20 million euros to be the penalty, a one-to-one

exchange rate of euros to dollars, and a perceived enforcement rate of 10%. With these

simplified assumptions, the expected penalty of noncompliance is 2 million dollars. In the

framework, I set RDNN as 2 million dollars and Rcomp to be zero. The firm now compares

the expected profit loss (ΠDNN − Πcomp = 2.2 million dollars) to the expected regulatory

penalty (RDNN −Rcomp = 2 million dollars).

From a regulatory perspective, the firm may or may not abide with the right-to-explanation

clause since the firm loses 2.2 million dollars from moving away from the black box targeting

policy but faces an expected penalty of 2 million dollars from GDPR. As such, the regulator

may consider increasing the lump sum penalty or increasing the perceived enforcement rate

to ensure full compliance by firms.

On a flip side, ensuring compliance with the right-to-explanation clause has a nontrivial

impact on the firm’s bottom line. The expected profit loss of 2.2 million dollars is for one

month of sales; scaled up annually, that is 26.4 million dollars in lost profits if the firm ran a

promotional strategy every month. As a result, the impact of right-to-explanation laws can

be quite substantial and regulators should consider these downstream impacts as they seek

to implement data and privacy laws in other jurisdictions.

This calibration exercise can be readily extended to capture more complex settings. The

regulatory penalty can depend on the complexity of the targeting policy as more complex

targeting rules can face higher enforcement rates.2 Then, RDNN can increase in the com-

2. Lambin and Raizonville [2023] study an incomplete information game between firms and regulators
where firms can offer explainable algorithms or black box algorithms and regulators can choose to audit the
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plexity of the black box. For comprehensible policies that are have more than five clauses

and are not conversational, Rcomp can be set to increase with the number of clauses in the

comprehensible targeting policy.3 Other extensions to this exercise can be added to tailor it

to different scenarios.

Lastly, I showed the cost of explanation the calibration study for one specific class of

comprehensible policies that I proposed in Chapter 4. This class of targeting sentences con-

servatively complies with the right-to-explanation clause. Naturally, other classes of compre-

hensible targeting policies can be considered in the general framework and the calibration

exercise can be repeated with different classes of comprehensible targeting policies and black

box targeting policies.

8.2 Long-term effects of comprehensibility

In many settings, offering a comprehensible policy can lead to downstream benefits for the

firm. Customers can learn from a comprehensible policy but cannot learn from a black box.

If the policy benefits customers, they can learn how to get the treatment again which can

build further brand equity with the firm. On the flip side, customers who were excluded

from the treatment can understand why they were left out and what they need to do in

order to get the treatment.

For the firm’s perspective, implementing a comprehensible policy is simpler than imple-

menting a black box policy. If the firm representatives need to implement the targeting

policy, then it is easier for them to train and follow a comprehensible policy. For exam-

ple, training salespeople to follow a comprehensible policy will be simpler than doing so for

a black box policy. It is also easier for these salespeople to explain these to customers.4

firm for compliance with right-to-explanation laws.

3. Non-conversational comprehensible policies can make it difficult for the firm’s human representative to
explain the policy to customers in order to comply with the “right to explanation” clause.

4. The human-computer interaction literature studies how human agents can interact with explanations

51



Comprehensible policies are also easier to diagnose by the firm, and the firm can audit the

targeting policy to ensure it does not use information from protected classes.

However, for some settings, comprehensibility of the targeting policy may not be beneficial

for customers and firms. Customers may even dislike a transparent explanation of the

algorithmic decision policy in certain settings. For example, in online dating, an explanation

of the matchmaking algorithm may draw ire from customers. For firms operating in a

competitive environment, offering comprehensible targeting policies can give competing firms

insight about the firm’s profitable customer base and its decision making. In equilibrium, it

may not be beneficial to the firm to reveal such information to its competitors.

As a result, managers need to consider the long-term benefits and costs of comprehen-

sibility for the black box policy (BDNN ) to that of the comprehensible policy (Bcomp). In

many cases, it seems that the benefits for comprehensibility are positive and are long-term

(Bcomp > BDNN ). Future research can explore the long-term effect of comprehensibility for

firms and customers.

from black box policies and is overviewed in Chen et al. [2022].
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CHAPTER 9

CONCLUSION

Data and privacy regulations like GDPR and CCPA are swiftly gaining traction worldwide.

With GDPR, regulators in Europe now ask for a “right to explanation” where a black box

algorithm’s decisions need to be explainable to customers by the firm’s human representa-

tives. They have increasingly cracked down on firms violating data and privacy laws, and

proposals to expand the regulation have only increased.1

This paper provides a framework for firms to navigate right-to-explanation laws. This

framework is composed of both a methodology for firms to optimally form comprehensible

marketing policies that comply with right-to-explanation regulation and a cost analysis to

quantify the cost of doing so. In service to the framework, I first propose a new black box

algorithm, Policy DNN, that combines policy learning and deep neural networks as a new

profit-maximizing black box benchmark. This methodological contribution leverages the fact

that learning the optimal policy for discrete treatments directly is more efficient than first

learning heterogeneous treatment effects and then plugging them into the optimal policy

function as done in the current literature.

I then propose a class of comprehensible policies that would satisfy the new regulatory

constraints and that takes on the form of sentences. These sentences are conditional clauses

linked by logic operators. I further show how to find the optimal, profit-maximizing, com-

prehensible policy for a sentence of given clause length.

With the established framework, I document how the two targeting policies differ and

then quantify the cost of explanation, or the profit loss from implementing the optimal

comprehensible policy to the black box policy. I provide an application for sending $10-off

1. Meta Platforms was fined 1.2 billion euros for not abiding by GDPR rules on May 22, 2023 [European
Data Protection Board, 2023]. Although the GDPR violation did not specifically pertain to the “right
to explanation" clause, it highlights increasing enforcement of GDPR regulations. Consequently, forward-
looking firms should factor these regulations into their decision making process.
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promotions for a durable goods retailer. I find that the proposed Policy DNN does better

than other standard black box methods and find the cost of explanation to be 22 cents

per person for a three-clause optimal comprehensible targeting policy, which is a 7% loss in

profits from the optimal black box policy.

I quantify the profit loss that the firm will face from complying with right-to-explanation

regulation. In the application, for a basis of 10 million customers, the cost of explana-

tion leads to a 2.2 million profit loss from the firm’s promotional strategy. These losses

represent the economic damages for the firm from abiding by data and privacy regulation.

While GDPR fines have been mainly levied on large multinational technology companies,

my framework provides a localized way for any company under its jurisdiction to quantify

and evaluate the regulation’s impact on its bottom line.

This framework can be extended to capture benefits along with costs. While I only

provide a cost analysis of how comprehension in marketing policies acts as a constraint on

the firm’s personalization and targeting strategies, there may be benefits from comprehension

for the firm’s customers. Customers appear to have a disdain for algorithmic decisions in

certain scenarios [Dietvorst et al., 2015, Dietvorst and Bartels, 2022, Yalcin et al., 2023],

and providing them a comprehensible explanation may lead them to foster future goodwill

toward the firm. I leave exploring the benefits of comprehension to future research.

More generally, my framework enables firms to assess the impact of practical marketing

constraints on their objectives of interest. In my setting, I use profits, or producer surplus,

as the objective and the constraint is the comprehensibility of the targeting policy. The cost

of explanation reflects how this constraint affects the firm’s profits. This framework has the

flexibility to explore alternative objectives like consumer surplus or total surplus and can

accommodate different constraints, such as privacy or fairness considerations.

My paper links the theoretical targeting and personalization literature to what is done

in practice by accounting for regulatory constraints. As black box algorithms gain more
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regulatory scrutiny with increasingly widespread use of generative artificial intelligence (AI)

models and with the proposed AI Act [European Commission, 2021], firms need to navigate

the regulatory environment if they decide to continue to leverage modern advances in AI for

their day-to-day operations. This paper assesses the cost of right-to-explanation legislation

for a firm’s targeting policies. Future research in evaluating the effects of rapidly expanding

data and privacy regulation on firms and customers is encouraged to further bridge theory

and practice.
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CHAPTER 10

FIGURES

Figure 10.1: Methodological overview
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Note: This figure provides an overview of this paper’s methodology and it is described in Chapter 2.
The axes demonstrate the tradeoff between profitability and comprehensibility. Comprehensibility
can be thought of 1/(Model Complexity). Chapter 3 proposes a new class of black box algorithms
FDNN for Policy DNN (the blue curve on the left) and finds the optimal targeting policy d∗DNN (x)
and its corresponding profits. Chapter 4 traces out a class of comprehensible policies (the red curve
on the right). Chapter 5 shows how to find the optimal comprehensible targeting policy d∗Comp(x)
among the set of comprehensible policies. In the empirical application, Section 7.1 documents the
differences in d∗DNN (x) and d∗Comp(x) which is denoted here as the differences in policies. Section
7.2 describes the profits differences of ∆Π = Π∗

DNN − Π∗
Comp which is denoted here as the cost of

explanation.
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Figure 10.2: Different β(x) distributions with the same optimal targeting policy d∗(x) =
1{β(x) > c/m}
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Note: These three CATE or β(x) distributions produce the same optimal targeting rule d∗(x). The
dashed line represents the β(x) for one individual. As long as the line does not cross the targeting
threshold (the solid vertical line), the decision rule for that individual does not change and that
individual should be targeted.
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Figure 10.3: Policy Deep Neural Net Architecture
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Note: This figure describes the architecture for the Policy DNN black box procedure.
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Figure 10.4: Distribution of past November sales
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Note: These two figures plot the distribution of past November sales variable from the
empirical application’s RFM dataset. The upper panel shows the unconditional distribution
in which 97% of the customers do not buy anything during November. The lower panel
shows the conditional distribution of customers with non-zero spend during November. The
median spend for the conditional distribution is $129.99 and is denoted by the vertical dashed
line.
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Figure 10.5: Propensity score density
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Note: This figure plots the density of the predicted propensity scores for the treated and
not treated groups. The propensity score model was estimated using a logistic regression of
the treatment indicator on the RFM covariates in the data set. The two densities essentially
fully overlap with one another. These results suggest the overlap assumption holds in the
data.
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Figure 10.6: Comprehensible policy targeting percentages by clauses
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Note: This figure plots the targeting percentage of the optimal comprehensible policies by
number of clauses in sample. The direct method learns the comprehensible policy from the
data and the ex post method learns the comprehensible policy from projecting down the
Policy DNN to a comprehensible policy. The Policy DNN is represented by the dashed
horizontal line and targets 18.7% of customers.
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Figure 10.7: Two clause comprehensible policy vs. Policy DNN policy
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Note: This figure contrasts the two-clause comprehensible targeting policy to the Policy
DNN targeting policy. The jittered grey circular points represents the data observations
in the raw data for the RFM covariates spring sales (24 months) and items bought during
Christmas (24 months). The jittered green triangular points represents which of customers
the Policy DNN targets. The points within the pink rectangle will be targeted by the two-
clause comprehensible policy, which is, “Target if customer has high amount of items during
Christmas over the last two years and did not have high Spring spending over the last
two years”. High amount of Christmas items over two years is buying two or more items.
High spending in spring over the last two years is spending at least $200. The optimal
comprehensible policy is formed using the direct method that learns the comprehensible
policy from the data.
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Figure 10.8: Individual expected profits by method
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(b) Out of sample expected profits

Note: These figures plots the expected profits by the number of clauses. The upper panel is
the in sample expected profits and the bottom panel is the out of sample expected profits.
In both panels, the direct method learns the comprehensible policy from the data and the
ex post method learns the comprehensible policy from projecting down the Policy DNN
to a comprehensible policy. The Policy DNN is represented by the dashed horizontal line
and there are no standard errors for the Policy DNN in sample. The bands represent one
standard error.
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CHAPTER 11

TABLES

Table 11.1: Individual expected profits (out of sample)

Method Individual Profits SE

Policy DNN 3.026 0.245

Causal Forest 2.743 0.227

Lasso 2.705 0.231

Blanket 2.419 -

Note: These are the out of sample, expected profits for an individual when using the optimal
targeting policy d∗(x) from the Policy DNN, Causal Forest, and Lasso black box policies.
The blanket targeting policy represents the expected profits if everyone was mailed the
promotion. The standard errors for the Policy DNN are computed following Section 3.2.
The standard errors for Causal Forest and Lasso represent the implementation uncertainty
for the optimal targeting policy.

Table 11.2: Targeting policy differences

Policy DNN

Comprehensible Policy Targeted Not targeted

Targeted 11,539 17,220 28,759

Not targeted 18,156 111,891 130,047

29,695 129,111 158,806

Note: This a confusion table for the targeting policy differences for the optimal three-clause
comprehensible policy and for the Policy DNN policy for the in-sample data. The Policy DNN
targets 18.7% of customers while the comprehensible policy targets 18.1% of the customers.
The two targeting policies overlap on 78% of customers. The optimal comprehensible policy
is formed using the direct method that learns the comprehensible policy from the data.
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Table 11.3: Cost of explanation for three-clause comprehensible policies

In sample Out of sample Comprehensible Targeting Policy

Profits CoE Profits CoE Target customer if:

Direct $2.76 98¢ $2.80 22¢

high XMAS items (2Y)

and not high Spring sales (2Y)

or low spend last year holiday promo

Ex post - - $2.70 32¢

high XMAS sales (2Y)

and not high Spring sales (2Y)

and high total sales (3Y)

Policy DNN $3.74 – $3.02 –

Note: This table provides the cost of explanation (CoE) of the three-clause optimal com-
prehensible policies and states their targeting policy. The direct method learns the compre-
hensible policy from the data and the ex post method learns the comprehensible policy from
projecting down the Policy DNN to a comprehensible policy.
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A Supporting proofs

A.1 Proofs for Section 3.1

I verify Propositions 4 and 5 and Corollary 6 from Section 3.1 in this section. Their state-

ments are restated for ease of exposition. For ease of notation, the variables without the

subscript to i represent their vector quantity (e.g., π(1) = (π1(1), . . . , πn(1))
′).

Proposition 7. (Suitable loss) The negative profit loss

L = −
n∑

i=1

Wi

e(xi)
πi(1)d̃(xi) +

1−Wi

1− e(xi)
πi(0)(1− d̃(xi))

to estimate β̃(xi) satisfies Assumption 1 in Farrell et al. [2020].

Proof. Assumption 1 Farrell et al. [2020] in requires both a Lipschitz and the curvature

condition for the loss function. I show two below and both derivations rely on using properties

of the Lipschitz function f(·). I assume the outcome variable Y is bounded and that constants

Cl, c1, c2 are both bounded and bounded away from zero. Recall that d̃ = f from the

definition of d̃(·).

I first verify the Lipschitz condition, |L (y, t, β0(x)) − L (y, t, β1(x))| ≤ Cl||β0(x) −

β1(x)||2, holds for the loss function.

∣∣∣∣( We(x)π(1)f(β1(x)) + 1−W

1− e(x)
π(0)(1− f(β1(x)))

)
−
( W
e(x)

π(1)f(β0(x))+
1−W

1− e(x)
π(0)(1− f(β0(x)))

)∣∣∣∣
=

∣∣∣∣( W

e(x)
π(1)− 1−W

1− e(x)
π(0)

)
(f(β1(x))− f(β0(x)))

∣∣∣∣
≤C ′

l |(f(β1(x))− f(β0(x)))|

≤Cl |β1(x)− β0(x)|
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where I chose C ′
l = maxi(

Wi
e(xi)

πi(1) − 1−Wi
1−ei(x)

πi(0)) and the last line follows because f is a

Lipschitz function.

I then verify the curvature condition

c1||β0(x)− β1(x)||22 ≤ E[L (y, t, β0(x))− L (y, t, β1(x))] ≤ c2||β0(x)− β1(x)||22

holds for the loss function. I show the result for the upper bound of the curvature condition.

E[L (y, t, β0(x))− L (y, t, β1(x))]

= E[π(1)
(
f(β1(x))− f(β0(x))

)
− π(0)

(
f(β1(x))− f(β0(x))

)
]

= E[
(
π(1)− π(0)

)(
f(β1(x))− f(β0(x))

)
]

≤ c′2E[f(β1(x))− f(β0(x))]

≤ c2E[β1(x)− β0(x)]

where I chose c′2 = max(πi(1) − πi(0)) and the last line follows because f is a Lipschitz

function. The lower bound for the curvature condition is shown similarly.

Proposition 8. (Sign consistency of the surrogate) The surrogate policy function 1{d̃(x) >

0.5} produces the same targeting rule as the optimal policy function d∗(x) = 1{β(x) > c
m}.

In other words, the targeting policy from d̃(x) is sign consistent to that of d(x).

Proof. I prove this statement by extending the proof of Proposition 3.1 from Zhao et al.

[2012]. I first note that for conditional expected profits E[Π(d)|X = x], the optimal policy

d∗(x) = 1{β(x) > c
m}. Now consider a decision function g(x) and its profits Π(g). Taking

the conditional expectation to x, I have
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E[Π(g) | X = x] = E[π(1) | X = x]g(x) + E[π(0) | X = x](1− g(x))

= E[π(1)− π(0) | X = x]g(x) + E[π(0) | X = x]

= (mE[Y (1) | X = x]− c−mE[Y (0)])g(x) +mE[Y (0) | X = x]

= (m(E[Y | X = x,W = 1]− E[Y | X = x,W = 0])− c)g(x)

+mE[Y | X = x,W = 0]

= (mβ(x)− c)g(x) +mE[Y | X = x,W = 0]

where I used the definitions of the counterfactual profits π(1), π(0), β(x) from Equation 2.4,

and the unconfoundedness assumption.

To maximize the expected profits, I see that g(x) must be positive when mβ(x)− c > 0

and g(x) is negative when mβ(x) − c < 0. I then choose g(x) = d̃(x) − 0.5. Then, when

d̃(x) > 0.5, I have g(x) > 0 which corresponds to mβ(x) − c > 0 and when d̃(x) < 0.5, I

have g(x) < 0 which corresponds to mβ(x)− c < 0. Thus, that targeting policy from d̃(x),

1{d̃(x) > 0.5}, is sign consistent to the optimal policy function d∗(x) = 1{β(x) > c
m} in the

population.

Corollary 9. Expected profits from the targeting policy generated from d̃(x) are consistent

for the expected profits generated from d∗(x) or E[Π(d∗(x))] = E[Π(1{d̃(β̃(x)) > 0.5})].

Proof. I need to show E[Π(d∗(x))] − E[Π(1{d̃(β̃(x)) > 0.5})] = 0 for the two targeting

policies d∗(x) and 1{d̃(β̃(x)) > 0.5}). Taking the expectation of the profit function (Equation

2.2), I attain for targeting policy d,

E[Π(d)] =
n∑

i=1

E[πi(1)d] + E[πi(0)(1− d)] = E[π(1)d] + E[π(0)(1− d)].

Taking the differences of the two targeting policies and suppressing the dependence on xi
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for notational simplicity, I attain

E[Π(d∗)]− E[Π(1{d̃ > 0.5})] = E[π(1)(d∗ − 1{d̃ > 0.5})] + E[π(0)(1{d̃ > 0.5} − d∗)].

From Proposition 5, I have 1{d̃ > 0.5} − d∗ = 0, so the right-hand side of the term is zero

and E[Π(d∗)]− E[Π(1{d̃ > 0.5})] = 0.

A.2 Proofs for Chapter 6

I provide the proof for Theorem 2 in Chapter 6. I restate the theorem for ease of exposition.

Theorem 1. (Uniform convergence rate of ex post comprehensible policies) Under Assump-

tions 1, 2, and 3 and the assumption that the outcome variable (Y ) is bounded, for a hy-

pothesis space of comprehensible policies with ℓ clauses (H = Fℓ
comp) that has bounded VC

dimension (V C(H) < V <∞),

sup
P
EP

[
Γ(ď∗)− Γ(d̂ex)

]
≤ C

√
V

n
= Op

(
1/
√
n
)
.

Proof. I extend the analogous proof of Theorem 2.1 in Kitagawa and Tetenov [2018] to

provide the upper bound. First, I see that

Γ(ď)− Γ(d̂PWL) = Γ(ď)− Γn(d̂ex) + Γn(d̂ex)− Γ(d̂PWL)

≤ Γ(ď)− Γn(d̂ex) + sup
d∈Fℓ

comp

|Γn(d)− Γ(d)| (1)

≤ Γ(ď)− Γn(ď) + sup
d∈Fℓ

comp

|Γn(d)− Γ(d)|

≤ 2 sup
d∈Fℓ

comp

|Γn(d)− Γ(d)|

where used that Γn(d̂ex) ≥ Γn(ď) from the optimality of d̂ex to get to the third line. Since
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the bound holds for all Γ(ď), it also holds for Γ(ď∗) so

Γ(ď∗)− Γ(d̂ex) ≤ 2 sup
d∈Fℓ

comp

|Γn(d)− Γ(d)| .

I now need to bound the empirical process term supd∈Fℓ
comp

|Γn(d)−Γ(d)| to complete the

proof. From the Assumptions 1, 2, and 3 and the bounded outcome variable (Y ) assumption,

the Γ(d) function is bounded with ||Γ(d)||∞ < Γ̄. Assumption 2 provides strict overlap (for

propensity score e(x), I have ϵ < e(x) < 1 − ϵ,∀x and for some ϵ). Lastly, the hypothesis

space of comprehensible policies with a fixed length l has a bounded VC dimension V C(H) <

V <∞ from Lemma 13.

I then use Lemma A.4 in the supplement of Kitagawa and Tetenov [2018] to bound the

the empirical process term. The lemma adapted to my notation provides

EP

 sup
d∈Fℓ

comp

|Γn(d)− Γ(d)|

 ≤ C1Γ̄

√
V

n

for some constant C1. Applying this result to Equation 1, I have that

Ep

[
Γ(ď)− Γ(d̂ex)

]
≤ C

√
V

n
.

Then taking the supremum over the possible probability distributions P that satisfy the

assumptions yields,

sup
P
Ep

[
Γ(ď)− Γ(d̂ex)

]
≤ C

√
V

n
= Op(1/

√
n)

as V and C do not depend on n.
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B Simulation study for Policy DNN

I provide a Monte Carlo simulation study for Policy DNN below and compare it to Causal

DNN [Farrell et al., 2021, 2020]. This section aims to demonstrate the differences between

Causal DNN to Policy DNN in learning the optimal treatment policy.

B.1 Monte Carlo simulations

I consider the following data generating process (DGP). I have P = 10 total covariates that

are individually denoted as xp, ∀p ∈ P , the treatment indicator is W , the outcome variable

is Y , and α(x), β(x) respectively are the heterogeneous intercept and treatment effect terms.

xp ∼


Unif(−1, 1) p is odd

Bernoulli(0.5) p is even
(2)

W ∼ Bernoulli(0.5)

α(x) = x2 +min{0, x3}

β(x) = −0.55 + max{0, x1}+max{x3, x4, x5}

y = α(x) + β(x)W + ϵ

where ϵ ∼ N(0, 1) and I let the number of observations n be 20, 000 for both the training set

and the test set. Following the running example from the introduction, I can consider W to

be a mailed catalog or marketing treatment and Y to be sales for the retailer in the weeks

following the treatment.

I first make two comments on the structure of the DGP. First, the covariate space is

mixture of continuous and discrete variables. These reflect practical settings where there are

binary indicators for variables such as race or gender and continuous variables to represent

79



variables such as age or purchase history. Second, the α(x), β(x) functions are highly non-

linear and use information from only the first five covariates. These two components of the

DGP make the optimal treatment policy a highly non-linear and non-smooth function.

I choose the profit margin to be m = 0.9 and the cost of treatment to be c = 0.3. Then

the profits attained from treatment are π(1) = mY (1)− c and the profits from no treatment

are π(0) = mY (1). The optimal treatment regime if I observe both potential outcomes would

be d∗ = 1{π(1) > π(0)} = 1{mβ(x) > c}.

I use the same architecture and the training process for the two DNN make the results

more comparable. Both DNN have three hidden layers with (3, 8, 3) ReLu nodes each. The

Adam optimizer is implemented with a weight decay value of 10−5 and a learning rate of

0.001. The learning rate has a scheduler and it goes down by a exponential factor of 0.9 after

500 training epochs. The training data is split and randomly shuffled before every epoch into

a training and validation set. The model trains for a minimum of 2, 000 epochs and training

stops when the 100 epoch moving average for the validation set’s loss is higher than the 100

epoch prior moving average validation loss. For Policy DNN, I use d̃(xi) =
tanh(mβ̃(xi)−c)+1

2

as the surrogate function.

The outcome of interest is the learned optimal treatment policy d̂(xi) from Causal DNN

and Policy DNN. Because I know the true DGP, I can compare the classification accuracy of

d̂(xi) to the true optimal treatment policy d∗. I find that across 1,000 Monte Carlo iterations,

the average classification accuracy of Policy DNN is 72.2% with standard deviation 4.0%. In

contrast, the average classification accuracy of Causal DNN is 65.8% with standard deviation

6.6%. A random targeting rule would have classification accuracy of 50%.

B.2 Sensitivity Analysis

I now consider the case where additional noise variables are injected into the data. This

procedure is done to study how robust Policy DNN and Causal DNN are to extraneous noise
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variables. This setting reflects many big data settings where the number of covariates is

large but the true DGP is relatively sparse.

I keep the same setup, architecture, and training procedure from Section B and only

increase the number of covariates from the original P = 10. I follow the same covariate

generation process in Equation 2 to generate the additional covariates and run the Monte

Carlo simulation 1, 000 times.

Table A.4 demonstrates the changes in classification accuracy as I increase the number of

extraneous covariates. The case with no extraneous covariates is equivalent to the scenario

in Section B. As I add extraneous covariates, the performance of both methods degrades.

Causal DNN appears to perform worse than Policy DNN. At 500 extraneous covariates

(P = 510), the two methods perform similarly. Further Policy DNN seems to have a smaller

standard deviation of its performance across simulations than Causal DNN.

These results suggest that Policy DNN is more robust to noise injections than Causal

DNN and may be more efficient at learning the true policy. Thus for many settings with

big data that contain a large set of continuous and discrete covariates along with a sparse

DGP, I expect Policy DNN to do better than Causal DNN in finding the optimal policy.

However, I caution that these results are from only one Monte Carlo example and additional

theoretical and empirical analysis should be done to delineate the performance of the two.

C Inference for Policy DNN

In this section, I provide an exposition around the proof to build intuition and then state

the general theorem. I then provide two remarks around the key technical implications.

To conduct inference around the optimal targeting policies, I want to show that the

difference in estimated profits from the surrogate approach (Π̂(d̃)) to profits from the optimal
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targeting policy Π(d∗) converges to a normal distribution. Mathematically, I want to show

√
n

(
Π̂(d̃)− Π(d∗)

)
d→ N(0, V )

for some finite variance V . Expanding the term on the left hand side, I attain three terms,

√
n
(
Π̂(d̃)− Π(d∗)

)
=
√
n
(
Π̂(d̃)− Π(d̃)

)
︸ ︷︷ ︸

(1)

+
√
n
(
Π(d̃)− Π(1{d̃ > 0.5})

)
︸ ︷︷ ︸

(2)

+
√
n
(
Π(1{d̃ > 0.5})− Π(d∗)

)
︸ ︷︷ ︸

(3)

.

I discuss how I control for each of the three terms below and suppress the dependence of the

functions on x for notational simplicity.

The first term, Π̂(d̃)−Π(d̃), represents the difference between the sample surrogate profits

to the population surrogate profits. As discussed in Section 3.1, I verify the surrogate profit

loss falls into the framework in Farrell et al. [2020] using Proposition 4 and by assuming

Assumption 2 in Farrell et al. [2020] holds. This yields

√
n

(
Π̂(d̃)− Π(d̃)

)
d→ N(0, V ) (3)

for a finite variance V . Specifically, I use their general framework and choose the parameter

of interest as surrogate profits, H(x, β̃(x)) = Π(d̃) = Π(d̃(β̃(x))). Here, the structural

parameter, β̃(x), is directly represented by the DNN. Further, from the policy learning

framework, the parameter of interest is itself the loss function when training the DNN in

Section 3.1. In the terminology of Farrell et al. [2020], I have µ0 = E[Π(d̃)] and µ̂ =

Π̂(d̃) which represent the population expectation and the sample analog of the parameter

of interest respectively. I use sample splitting to split the data into training and validation

datasets: I estimate the DNN on the training dataset and conduct inference in the validation
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dataset.

I form the uncentered influence function,

ψ(ω, β̃,Λ) = H(x, β̃(x))−H
β̃
Λ(x)−1L

β̃
(4)

where H
β̃

represents the gradient of the parameter of interest to the structural parameter

β̃, L
β̃

is the gradient of the loss function, and Λ(x) = E[L
β̃β̃

|X = x] is the conditional

expectation of the Hessian of the loss function, and ω represents the data tuple (X,W, Y ).

Crucially, I want to conduct inference around the optimal targeting policy implemented

by the firm. I leverage the fact that the loss in estimating the structural parameter β̃(x) is

the same as the parameter of interest, so for each individual with covariates xi, the general

envelope theorem [Milgrom and Segal, 2002] tells us

H
β̃

∣∣∣∣
β̃=β̃∗

=
∂Π

∂d̃

∂d̃

∂β̃

∣∣∣∣
β̃=β̃∗

= 0

as ∂d̃
∂β̃

∣∣∣∣
β̃=β̃∗

= 0 from the envelope theorem. Thus H
β̃

= 0 will hold pointwise for each

individual with covariates xi.

The uncentered influence function then becomes ψ(ω, β̃,Λ) = H(x, β̃(x)) = Π(d̃) and the

plug-in’s standard deviation will be the standard error around the profits,

√
n

(
Π̂(d̃)− Π(d̃)

)
=

√
n

(
µ̂− µ0

)
d→ N(0, V )

for variance term

V =
1

nv

nv∑
i=1

(ψi − µ̂i)
2 (5)

in which nv represents the data in the validation set.

The second term, Π(d̃)−Π(1{d̃ > 0.5}), represents how close the surrogate profits from
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the surrogate targeting policy d̃ are to the thresholded surrogate targeting policy 1{d̃ > 0.5}.

I want to show that
√
n

(
Π(d̃)− Π(1{d̃ > 0.5})

)
→ op(1). (6)

Ensuring the difference in profits decays at a rate fast enough will require an extra

assumption that is parallel to the margin assumption used in the literature [Zhao et al.,

2012, Kitagawa and Tetenov, 2018]. Essentially, this says if the distribution of heterogeneous

treatment effects is well separated enough around the optimal targeting policy’s cutoff value,

then surrogate profits will match that of the profits using the thresholded targeting rule from

the surrogate. I state the assumption more formally in Assumption 5.

Assumption 5. (Margin) There exists a scale parameter k ∈ R such that |d̃(k, x)−1{d̃(x) >

0.5}| → op(1/
√
n) as k → ∞.

I now make this assumption more concrete. Recall f is the Lipschitz function that maps

β̃(x) to the relaxed decision rule d̃(x). I further parameterize f by with scale parameter

k, such that f(k, x) → 1{f(k, x) > 0.5} as k → ∞. To give a concrete example, let

f(k, x) =
tanh(kx)+1

2 and as k → ∞, I will derive the rate for k such that that f(k, x) →

1{f(k, x) > 0.5} is satisfied.

The assumption requires |d̃(k, x) − 1{d̃(k, x) > 0.5}| ≤ 1/
√
n to ensure Equation 6

holds since the difference in profits Π(d̃) − Π(1{d̃ > 0.5}) = C(d̃(k, x) − 1{d̃(k, x) > 0.5})

from Equation 10 in Appendix Section E. The constant C will be bounded if the outcome

variable (Y ) is bounded and the overlap assumption holds (Assumption 2). Since k is a scale

parameter, it will not affect the threshold rule so 1{d̃(k, x) > 0.5} = 1{d̃(x) > 0.5}. Then,

I have that |d̃(k, x)− 1{d̃(x) > 0.5}| ≤ 1/
√
n.

Consider the case where d̃(k, x) = tanh(kβ̃(x))+1
2 . Without loss of generality, I assume

β̃(x) > 0. I first see that tanh(kβ̃(x))+1
2 > 0.5 under this regime so I have 1{d̃(x) > 0.5} = 1.

Then, I need to show
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|d̃(k, x)− 1| =

∣∣∣∣∣tanh(kβ̃(x)) + 1

2
− 1

∣∣∣∣∣ ≤ 1√
n∣∣∣∣ tanh(kβ̃(x))− 1

∣∣∣∣ ≤ 2√
n

− tanh(kβ̃(x)) + 1 ≤ 2√
n

tanh(kβ̃(x)) ≥ 1− 2√
n

where I used that tanh(kβ̃(x))) ≤ 1 to get from the second line to the third line.

I assume that β̃(x) has a small probability to reside in [0, ϵn] where ϵn = 1
Mn

and Mn is

some arbitrary slowly increasing large constant sequence. I then want to equivalently show

that

P

(
tanh(kβ̃(x)) ≥ 1− 2√

n

)
a.s.→ 1. (7)

To do so, I use the law of total probability to get

P

(
tanh(kβ̃(x)) ≥ 1− 2√

n

)
≥ P

(
β̃(x) ∈ [ϵn,∞) ∩ tanh(kβ̃(x)) ≥ 1− 2√

n

)
=

(
1− P (β̃(x) ∈ [0, ϵn))

)
P

(
tanh(kβ̃(x)) ≥ 1− 2√

n

∣∣β̃(x) ≥ ϵn

)
.

In the last line, the first term will tend to 1 by the assumption. For the second term, I use

that fact that since tanh(kβ̃(x)) is an increasing monotonic function in β̃(x), I have

P

(
tanh(kβ̃(x)) ≥ 1− 2√

n
)
∣∣β̃(x) ≥ ϵn

)
≥ P

(
tanh(kϵn) ≥ 1− 2√

n

)

since β̃(x) ≥ ϵn.
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Then to find the rate of k that satisfies Equation 7, I need

P

(
tanh(kϵn) ≥ 1− 2√

n

)
a.s.→ 1

⇔ kϵn ≥ tanh−1
(
1− 2√

n
)

)
=

1

2

(
ln(2− 2√

n
)− ln(

2√
n
)

)
≍ ln(

√
n) ≍ ln(n).

Thus, k ≍ 1
ϵn

ln(n) is required for Equation 6 to hold. To recap, Assumption 5 is satisfied

for d̃(k, x) = tanh(kβ̃(x))+1
2 when k ≍ ln(n).

The third term, Π(1{d̃ > 0.5})−Π(d∗), is relatively easy to control for. From Corollary

6, I have that Π(1{d̃ > 0.5}) is consistent to Π(d∗) in the population so

Π(1{d̃ > 0.5})− Π(d∗) = 0. (8)

Thus, combining my results for the three terms in Equations 3, 6, and 8, I show that
√
n
(
Π̂(d̃)− Π(d∗)

)
d→ N(0, V ) for variance term V defined in Equation 5. I now state the

general theorem.

Theorem 3. (Inference for Policy DNN). Under Assumptions 1, 2, 3, and 5 and the as-

sumption that the outcome variable Y is bounded,

√
n
(
Π̂(d̃)− Π(d∗)

)
d→ N(0, V )

for finite V defined in Equation 5.

To recap, I use the results from Farrell et al. [2020] to attain inference around the sur-

rogate profits and show the difference of the surrogate profits to the optimal profits is small
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enough. I provide two remarks around this procedure.

Remark 10. In the analysis of the first term, the envelope theorem eliminates the correction

term in the influence function which provides a gain in efficiency. The envelope theorem

argument holds because the loss function in the first stage and the parameter of interest are

the same, which are both the surrogate profits. In standard approaches (e.g., Causal DNN)

the loss function is the mean squared error of the model’s fit and is not profits directly. As

a result, the correction term will exist for the standard approach. This argument with the

envelope demonstrates the additional efficiency of using policy learning over the standard

approach in the Farrell et al. [2020] framework.

Remark 11. The use of surrogates to get rates of convergence is different from the approach

used in Zhao et al. [2012] which builds on the work by Bartlett et al. [2006] for convex

surrogates. In Zhao et al. [2012], they can get almost n-rate convergence with strong margin

assumptions for using a convex surrogate loss function for support vector machines.1 In

my setting, the bottleneck on the rates come from the use of Farrell et al. [2020] inference

framework and this allows my results to be more general. Any machine learning method

that satisfies the assumptions of Farrell et al. [2020] can be used for policy learning with

my framework, and this enables researchers to use a more general class of machine learning

procedures.

D Comprehensible policies and decision trees

In this section, I demonstrate that comprehensible policies are subsets of decision trees.

Recall that in Chapter 4, I constructed the comprehensible policy class to be targeting policies

that can be represented by a sentence. A decision tree of ℓ layers can be more complex than

a comprehensible policy of ℓ clauses. To show this, I visualize how to construct the decisions

1. Faster than
√
n-rate convergence under strong margin assumption for certain settings are also discussed

in Luedtke and Chambaz [2020].
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trees from comprehensible policies for one to three clauses and the provide an algorithm to

generally do so. I then leverage the link from comprehensible policies to decisions trees to

control the Vapnik–Chervonenkis (VC) dimension of comprehensible policies.

Lemma 12. A comprehensible policy of length ℓ can be represented by a full decision tree of

depth l.

Proof. I provide a proof by construction. The ℓ = 1 case is straightforward and I show the

representation explicitly for a comprehensible policy of ℓ = 2 clauses and ℓ = 3 clauses.

Then, I present algorithms to map a comprehensible policy of length ℓ to a decision tree of

depth ℓ.

A one clause comprehensible policy can be represented as a decision tree of depth one

which has one split. Figure A.1 and Figure A.2 provide the mapping between a comprehen-

sible policy of ℓ = 2 clauses and ℓ = 3 clauses to their respective decision trees. A key result

in these two examples is that a two clauses comprehensible policy can be represented by a

decision tree of depth two and a three clauses comprehensible policy can be represented by

a decision tree of depth three.

To complete the construction, Algorithm 3, 4, and 5 show how to grow the decision

tree when “and”, “or”, and “xor” operators and a clause are added a comprehensible policy.

Adding one additional clause the the comprehensible policy increases the decision tree by

an extra level of depth. Thus, a comprehensible policy of length ℓ can be represented by a

decision tree of depth l.

Lemma 13. A comprehensible policy of finite length ℓ ∈ N has a finite Vapnik–Chervonenkis

(VC) dimension for finite number of covariates p ∈ N.

Proof. Athey and Wager [2021] supply the asymptotic VC dimension for a decision tree

of l layers, p covariates, and observations n as V C(dDT ) = Õ(2ln log2(n)) where ln =

⌊κ log2(p)⌋, κ < 1/2. Here, f(n) = Õ(g(n)) implies there is a function that scales polyloga-

rithmically in its arguments for f(n) < h(g(n))g(n).
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Lemma 12 shows that a comprehensible policy of length ℓ can be represented by a decision

tree of depth ℓ. This result implies that the VC dimension of the full decision tree of depth

ℓ will be an upper bound for that of the comprehensible policy,

V C(dcomp) ≤ V C(dDT ) = Õ(2ln log2(p)).

However since the number of clauses (and depth of the decision tree) ℓ is finite in my

setting, I choose l′n = min{ln, ℓ} ≤ ℓ for the upper bound of the decision tree’s depth. This

choice of the model structure breaks the dependence of the VC dimension of the tree to n

as 2l log2(p) = C for finite p. Then, I see that V C(dcomp) ≤ V C(dDT ) ≤ C ′ where dcomp

has ℓ clauses and dDT has depth ℓ. Thus, the VC dimension for a comprehensible sentence

of finite length ℓ has a finite VC dimension.

E Profit loss function derivation

This section derives the profit loss function used in Chapter 6. The individual-level inverse

propensity weighted (IPWE) profit loss estimator for policy function d(xi) is

π(d(xi)) =
1−Wi

1− e(xi)
πi(0)(1− d(xi)) +

Wi

e(xi)
πi(1)d(xi). (9)

In this notation, the sample profits are then Π̂(d) =
∑n

i=1 π(d(xi)) with is an estimate for

average population profits Π(d) = E[π(d(xi))].

The individual-level IPWE of profit difference of two policies d(xi), d′(xi) is
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π(d(xi))− π(d′(xi)) =
1−Wi

1− e(xi)
πi(0)(1− d(xi)) +

Wi

e(xi)
πi(1)d(xi) (10)

− 1−Wi

1− e(xi)
πi(0)(1− d′(xi))−

Wi

e(xi)
πi(1)d

′(xi)

=
1−Wi

1− e(xi)
πi(0)(1− d(xi)− (1− d′(xi))) +

Wi

e(xi)
πi(1)(d(xi)− d′(xi))

=
1−Wi

1− e(xi)
πi(0)(d

′(xi)− d(xi)) +
Wi

e(xi)
πi(1)(d(xi)− d′(xi))

= (d(xi)− d′(xi))(
Wi

e
πi(1)−

1−Wi

1− e(xi)
πi(0))

To construct a loss function, I consider the absolute difference of the individual-level

IPWE profit differences,

|π(d(xi))− π(d′(xi))| =
∣∣∣∣(d(xi)− d′(xi))(

Wi

e(xi)
πi(1)−

1−Wi

1− e(xi)
πi(0))

∣∣∣∣
= 1{d(xi) ̸= d′(xi)}

∣∣∣∣ Wi

e(xi)
πi(1)−

1−Wi

1− e(xi)
πi(0)

∣∣∣∣
where I used the fact that d(xi) and d′(xi) are indicator functions to get to the second line.

I treat the sample-level difference as the loss function of interest for two policies d, d′

L(d, d′) = |Π̂(d)− Π̂(d′)|

=
n∑

i=1

|π(d(xi))− π(d′(xi))|

=
n∑

i=1

1{d(xi) ̸= d′(xi)}
∣∣∣∣ Wi

e(xi)
πi(1)−

1−Wi

1− e(xi)
πi(0)

∣∣∣∣ .
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Algorithms

Algorithm 3 Adding an “and” operator and a clause to a decision tree

Objective: Add “and D” to the comprehensible policy.
Setup: “and” is the logic operator and “D” is the new clause being added. Take the decision
tree representation of the comprehensible policy without the addition.

1. For all terminal nodes in the decision tree that have value 1, grow a split on clause D
and that have terminal node value 1 if clause D is true and 0 otherwise

Algorithm 4 Adding an ”or” operator and a clause to a decision tree

Objective: Add “or D” to the comprehensible policy.
Setup: “or” is the logic operator and “D” is the new clause being added. Take the decision
tree representation of the comprehensible policy without the addition.

1. For all terminal nodes in the decision tree that have value 0, grow a split on clause D
and that have terminal node value 1 if clause D is true and 0 otherwise

Algorithm 5 Adding a ”xor” operator and a clause to a decision tree

Objective: Add “xor D” to the comprehensible policy.
Setup: “xor” is the logic operator and “D” is the new clause being added. Take the decision
tree representation of the comprehensible policy without the addition.

1. For all terminal nodes in the decision tree that have value 0, grow a split on clause D
and that have terminal node value 1 if clause D is true and 0 otherwise

2. For all terminal nodes in the decision tree that have value 1, grow a split on clause D
and that have terminal node value 0 if clause D is true and 0 otherwise
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Figures

Figure A.1: Two clause comprehensible policies and decision trees (ℓ = 2)
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Note: This figure demonstrates the mapping between a comprehensible policy with two
clauses (A, B) to a decision tree of depth two. The comprehensible policy on the left states
target if “A and B” in which a customer is targeted if the clause A and clause B are both
true and not targeted otherwise. The corresponding decision tree first has a split whether
clause A is true (yes/no) and then conditional on clause A being true it has another split
on whether clause B is true. The terminal nodes of 1 indicate targeted and 0 indicated
not targeted. The comprehensible policy and its respective decision tree will target and not
target the same sets of customers. The other comprehensible policies and decision trees in
the figure are mapped similarly.
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Figure A.2: Three clause comprehensible policies and decision trees (ℓ = 3)
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Note: This figure shows the mapping between a comprehensible policy with three clauses
(A, B, C) to a decision tree of depth three. The comprehensible policy on the top left states
target if “A and B and C” in which a customer is targeted if the clause A, clause B, and
clause C are all true and not targeted otherwise. The corresponding decision tree first has
a split whether clause A is true (yes/no), then conditional on clause A being true it has
another split on whether clause B is true, and lastly conditional on A and B being true it
has a split on whether clause C is true. The terminal nodes of 1 indicate targeted and 0
indicated not targeted. The comprehensible policy and its respective decision tree will target
and not target the same sets of customers. The other comprehensible policies and decision
trees in the figure are mapped similarly. 93



Tables

Table A.4: Policy DNN vs. Causal DNN Classification Accuracy

Policy DNN Causal DNN

P Signal / Noise Mean SE Mean SE

10 50% 71.9% 3.9% 67.1% 6.3%

15 33% 70.9% 4.1% 66.9% 6.2%

20 25% 70.5% 4.1% 66.1% 6.4%

30 17% 69.8% 4.2% 64.5% 6.8%

60 8% 68.2% 4.4% 62.6% 7.6%

110 5% 65.3% 4.5% 59.7% 8.4%

260 2% 59.5% 4.5% 56.7% 8.0%

510 1% 56.2% 4.4% 57.0% 7.4%

Note: This table demonstrates the accuracy of Policy DNN’s and Causal DNN’s targeting
policies to the oracle targeting policy with 1,000 Monte Carlo iterations. The true data
generating process uses five covariates and P represents the number of covariates used in
the simulation. As P increases, the signal to noise ratio in the data gets smaller. I see
that Policy DNN is more accurate than Causal DNN and its standard error around the
classification accuracy is smaller.
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