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Abstract 

To date, over 170 types of modifications have been identified in RNA, in which around 

10 types are discovered in mRNA. RNA modifications play important roles in transcription, 

mRNA stability, decay, splicing, translation, regulate the expression of genes and affect 

metabolisms. Thus, it’s important to understand the abundance and distribution of RNA 

modifications in transcriptome, to better understand how these modifications affect the 

metabolisms and how these modifications are regulated to execute proper functions. Next 

generation sequencing methods provide a group of strategies to map the transcriptome wide 

distributions of RNA modifications and has resulted in meaningful biological discoveries. 

However, only DNA molecules could be directly run by NGS methods and thus all RNA 

modifications are detected by indirect approaches, depending on mutations, indels, reverse 

transcription stops, or immunoprecipitation enrichment brought about by the modified sites. In 

the past decade, the development of Nanopore sequencing enables the direct sequencing of RNA 

molecules, as well as RNA modifications. In this dissertation, I developed machine learning 

based pipelines NanoPsu and NanoSPA for mRNA modification identification from nanopore 

direct RNA sequencing data. NanoPsu identifies pseudouridine modifications from human 

transcriptome and the correlation of interferon induced gene expression and pseudouridylation is 

revealed. NanoSPA enables simultaneous mapping of mRNA m6A and pseudouridine in human 

transcriptome and reveals the anti-coordination of the two modifications. Both m6A and 

pseudouridine are discovered to have positive effect on translation and the effect of 

pseudouridine is stronger than m6A. Besides, I and others in the Pan Lab also attempted to 

develop a pipeline to predict pseudouridine based on single reads and revealed the stoichiometry 

of pseudouridine and the linkages between multiple modification sites. The study develops 



 xiv 

pipelines to facilitate the modification identification from nanopore direct RNA sequencing data 

and reveals the potential roles of the modifications in viral infection response and translation. 

The methods could be applied to other species and samples for more biological discoveries. The 

pipelines are designed for convenient usage of public users and could be easily expanded to more 

RNA modifications in the future. 
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Chapter 1. Introduction 

RNA modifications play important roles in transcription, mRNA stability, decay, 

splicing, translation, regulate the expression of genes and affect metabolisms. To learn the 

biological functions of RNA modification, the essential step is to know the transcriptome wide 

distribution of the modifications. Thus, high resolution, high coverage, high accuracy, low 

sample amount demand, low chemical toxicity, fast speed and easy execution transcriptome wide 

RNA sequencing methods become the goal of researchers. Here, I go through the previous effort 

on the RNA modification studies and talk about our progress in this field. 

 

1.1 RNA modifications 

Ribonucleic acids (RNA) are one of the key macromolecules in central dogma, which 

serve as a bridge connecting the stable inherited information and the diverse expression and 

differentiation. The information of the macromolecule is stored in four units, adenosine (A), 

cytosine (C), guanosine (G) and uridine (U), and the billions of ways to order the four 

nucleosides in a genome result in thousands of different proteins. Beyond that, RNA 

modifications add more diversity and regulation possibilities to the dynamics of expression. The 

first RNA modification was discovered in 1951 and was called “unknown constituents” at that 

time (Cohn & Volkin, 1951). Since then, over 170 types of RNA modifications have been 

discovered in the past several decades (Boccaletto et al., 2022). The first demethylase of RNA 

modifications was discovered in 2011, which was a milestone as it revealed the reversibility and 

thus dynamics of RNA modifications (Jia et al., 2011). Since then, the study of RNA 
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modifications, or “epitranscriptomics”, became a hot field and more resources were put into this 

field. 

RNA modification was widely distributed in tRNA, rRNA, mRNA and other non-coding 

RNA. RNA molecules have much more types of modifications than DNA, which owns around 

17 types of modifications (L. Y. Zhao, Song, Liu, Song, & Yi, 2020), reflecting the high 

dynamics of gene expression and regulation. tRNA has the greatest number of modifications and 

around 15% to 25% of all tRNA nucleotides are modified in eukaryotic species (El Yacoubi, 

Bailly, & de Crecy-Lagard, 2012). Each tRNA molecule has ~13 modified nucleotides on 

average (Pan, 2018). The modifications in human 80S rRNA has been thoroughly identified and 

quantified (Masato Taoka et al., 2018). In mRNA, there are around 10 types of modifications 

discovered, including pseudouridine (Ψ), N6-methyladenosine (m6A), N1-methyladenosine 

(m1A), N6,2′-O-dimethyladenosine (m6Am), 5-methylcytosine (m5C), 5-hydroxymethylcytosine 

(hm5C), N4-acetylcytidine (ac4C), N7-methylguanosine (m7G), inosine (I), 2′-O-methylation 

(Nm) (Roundtree, Evans, Pan, & He, 2017) (Fig. 1.1a). The majority of these modification is on 

the base of the nucleotide, except for Nm which is on the ribose. Chemically, the modifications 

could be classified as base methylation, base acetylation, base isomerization, backbone 

methylation and base editing. RNA modification level and distribution differ among species and 

cell types. 

The function of mRNA modifications in splicing, translation, mRNA stability and 

localization has been gradually revealed in the last decade (Delaunay & Frye, 2019; Sun, Li, Liu, 

& Yi, 2023; B. S. Zhao, Roundtree, & He, 2017), but there are still major unknowns about them. 

There are enzymes to synthesize, bind or remove RNA modifications and they are usually 

called “writers”, “readers” and “erasers”. Writers and erasers enable the change of RNA 
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modification level and distribution globally or locally and thus result in regulation effect. 

Readers bind to the modifications and convey the downstream effect brought about by the 

modifications. 

The thesis mainly focuses on pseudouridine and m6A in mRNA studies. Below I describe 

more about the details of these two modifications. 

 

 

1.1.1 Pseudouridine 

Pseudouridine (Ψ) is the most abundant RNA modification (Charette & Gray, 2000; Ge & 

Yu, 2013; X. Li, Ma, & Yi, 2016) and the second most abundant in mammalian mRNA, 

following m6A. It is also widely distributed in non-coding RNA (Schwartz et al., 2014). It was 

the first RNA modification discovered back in 1951 when researchers had not yet figured out 

how ribonucleotides were connected with each other to form RNA molecules (Cohn & Volkin, 

1951). It was later discovered again in yeast in 1957 and called the “fifth nucleotide” (F. F. Davis 

& Allen, 1957) and identified as 5-ribosyl uracil (C.-T. Yu & Allen, 1959). The modification was 

named as pseudouridine with the symbol Ψ by Dr. A. Michelson in the same year (Cohn, 1959). 

 
Figure 1.1 RNA modifications 
(a) Structure of mRNA modifications 
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Pseudouridine is an isomer of uridine, and the difference is that uridine base is connected 

to the ribose by N1 forming a C-N bond and pseudouridine base is connected to the ribose by C5 

which forms a C-C bond. Thus, the connection of pseudouridine base to the backbone is stronger 

than uridine base. The N1 provides an additional hydrogen and thus enables formation of non-

Watson-Crick pairs, making the chemical properties of pseudouridine different from its isomer 

(Ge & Yu, 2013). Uridine and pseudouridine share the same molecular weight but different mass 

spectrometric dissociation (Durairaj & Limbach, 2008). 

 

1.1.1.1 Distributions and functions of pseudouridine 

Pseudouridine is overall the most abundant RNA modification. It is discovered in human 

mRNA and most types of non-coding RNA like rRNA, tRNA and snRNA (Ge & Yu, 2013). The 

distribution of pseudouridine in human rRNA has been thoroughly studied and the stoichiometry 

of each pseudouridine site has been measured by mass spectrometry (Masato Taoka et al., 2018). 

There are many pseudouridine sites discovered in human cytoplasmic and mitochondrial tRNA. 

Pseudouridine levels vary among tissues and cell cycle stages (Brandmayr et al., 2012; Patil et 

al., 2012) and may have different functions in different conditions. 

Conserved pseudouridine sites were reported to stabilize RNA structures when it’s in 

tRNA (Arnez & Steitz, 1994). The pseudouridine at anticodon positions are reported to affect 

base pairing and thus affect translation efficiency and fidelity (D. R. Davis, Veltri, & Nielsen, 

1998; Harrington, Nazarenko, Dix, Thompson, & Uhlenbeck, 1993). It was reported to promote 

RNA stacking chemically (D. R. Davis, 1995). In U2 snRNA, pseudouridine is reported to be 

essential for spliceosome branch site recognition and base pairing (Newby & Greenbaum, 2001, 

2002). In ribosomal RNA, pseudouridine is reported to affect folding, due to existence of the 
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extra hydrogen bond (Decatur & Fournier, 2002). It could also affect ribosome subunit 

association (Sakakibara & Chow, 2012). When pseudouridine is present at specific positions in 

mRNA, it shows the ability to suppress stop codons in vivo and in vitro (Karijolich & Yu, 2011). 

To summarize, pseudouridine plays an important role in the non-coding RNA structurally and 

functionally. 

It is reported that serum starvation, heat shock and H2O2 stress could alter the mRNA 

pseudouridine modifications in human cell lines (Carlile et al., 2014; X. Li et al., 2015). 

Pseudouridine is reported to affect translation in vitro. It is reported to promote translation in 

rabbit reticulocyte system, while repress translation in the wheat germ system and E.coli system 

(Kariko et al., 2008). The pseudouridine derivative, N1-methyl-pseudouridine, was incorporated 

into mRNA vaccines to increase efficacy (Morais, Adachi, & Yu, 2021). The modifications 

benefit the RNA vaccine by stabilizing against enzyme degradation, enhance RNA lifespan and 

reduce toxic effect and immunogenicity (Ho, Schiess, Miranda, Weber, & Astakhova, 2024). 

However, it was also reported that N1-methyl-pseudouridine could cause ribosomal shifting in 

mRNA and produce unexpected proteins, which introduced doubt on the safety of mRNA 

vaccines (Mulroney et al., 2024). It was reported that pseudouridine incorporated by PUS1 into 

oncogenic mRNA could promote the translation of oncogenes and thus promote hepatocellular 

carcinoma (Y.-X. Hu et al.). However, to date, functions of individual mRNA pseudouridine sites 

are still challenging to determine, due to the limitation of high resolution and high accuracy 

pseudouridine mapping methods, or potential nature of group functioning of pseudouridine. 
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1.1.1.2 Enzymes 

There are thirteen reported pseudouridine synthase (PUS) in human cells (E. K. 

Borchardt, N. M. Martinez, & W. V. Gilbert, 2020), which makes the studies on pseudouridine 

complicated and difficult, due to the potential redundancy and overlap of enzyme functions and 

that each specific pseudouridine modification could be installed by multiple PUS enzymes (Dai 

et al., 2023). Knockdown or knockout of multiple PUS enzymes are likely to be lethal thus it is 

not possible to fully block pseudouridine generation in cells. The thirteen synthases could be 

divided into 6 classes, including TruA, TruB, TruD, RluA, RsuA and PUS10 families, mainly 

depending on the domains they have (E. K. Borchardt et al., 2020). Among the thirteen writers, 

only DKC1 could be guided by H/ACA small nucleolar ribonucleoproteins (snoRNP) for 

pseudouridylation and all the rest work independently for targets and are called stand-alone 

pseudouridine synthase (Garus & Autexier, 2021; Hamma & Ferré-D'Amaré, 2006; Hur, Stroud, 

& Finer-Moore, 2006; WATKINS et al., 1998). The pseudouridine synthases have their own 

preferred regions and substrates and some synthases are only responsible for specific 

pseudouridine sites, especially in tRNA and rRNA (Spenkuch, Motorin, & Helm, 2014). Among 

the thirteen enzymes, PUS1, PUS7, TRUB1 and TRUB2 are reported to generate pseudouridine 

modifications in human mRNA. PUS1, PUS7 and TRUB1 are primarily localized in nucleus, 

while TRUB1 and TRUB2 are localized in mitochondria. It was reported that TRUB1 is the 

dominant pseudouridine writer in human mRNA, followed by PUS7 (M. Safra, Nir, Farouq, 

Vainberg Slutskin, & Schwartz, 2017). The redundancy of mRNA pseudouridine writers make it 

challenging to study the exact functions of pseudouridine and also the enzymes.  

To date, the eraser of pseudouridine remains unknown, probably due to the stable C-C 

bond between the base and the ribose. How or whether pseudouridine could be reversed like m6A 
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dynamically remains unknown. This results in doubt whether pseudouridine is reversible and 

limits further studies for potential pseudouridine functions biologically. There are also no 

confirmed pseudouridine reader proteins and Prp5 RNA helicase is the only putative 

pseudouridine reader from yeast (Wu et al., 2016). Thus how the information from mRNA 

pseudouridine passes onto the downstream pathways remains poorly understood. Of course, it is 

possible that pseudouridine does not function in the same ways as other mRNA modifications 

like m6A, but new mechanism needs to be proposed by the future works. 

 

1.1.1.3 NGS based Ψ sequencing methods 

Next generation sequencing based strategies have been used to identify the distribution of 

RNA modifications like pseudouridine and m6A in mRNA in the past decade. Different from 

mass spectrometry which could only report the overall level of pseudouridine (Addepalli & 

Limbach, 2011; Taucher, Ganisl, & Breuker, 2011), sequencing based methods could provide the 

modification position information and probably stoichiometry information of each site. If the 

RNA molecules are reverse transcribed without any special treatment, then pseudouridine will be 

paired with A, and m6A will be paired with T, just the same as unmodified U and A bases. The 

modifications will not be identified in the cDNA. Thus, all NGS based modification sequencing 

methods require either chemical or enzyme treatments on the RNA molecules. The logic is 

straightforward. Any treatment that will make the modified and unmodified bases look different 

in the final sequencing reads could be considered as potential strategy to identify RNA 

modifications. There are two ways to induce the different signals between modified and 

unmodified nucleotides. One is to change the signal of the modified nucleotides, the other is to 

change the signal of the unmodified nucleotides. The signal change could be mutations, 
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deletions, RT stops or enrichment folds in pulldown samples. Tens of methods have been 

developed based on the criteria above in the past decade for several types of mRNA 

modifications. The various methods have various performance in resolution, transcriptome recall, 

sensitivity, accuracy and quantifiability. New methods all try to either solve some drawbacks or 

improve performance of some aspects of older methods. 

The first strategy to identify pseudouridine transcriptome wide was raised by three groups 

independently almost simultaneously, inspired by a primer extension strategy for pseudouridine 

mapping in 1993 (Bakin & Ofengand, 1993). In Pseudo-seq (Carlile, Rojas-Duran, & Gilbert, 

2015; Carlile et al., 2014), Ψ-seq (Schwartz et al., 2014), and PSI-seq (Lovejoy, Riordan, & 

Brown, 2014), a Ncyclohexyl-N′-(2-morpholinoethyl) carbodiimide methyl-p-toluenesulfonate 

(CMC) group is added to the pseudouridine bases which induces reverse transcription stop and 

thus truncated reads in RNA-seq. However, only high stoichiometry pseudouridine sites could 

generate strong enough RT stop signals and be detected. The strategy is improved in CeU-seq by 

adding an azide group to CMC followed by addition of biotin with click chemistry (X. Li et al., 

2015). Then the RNA molecules with biotin labeled pseudouridine bases could be enriched and 

the number of identified pseudouridine sites increases massively from 100-400 sites to more than 

2000 sites in human mRNA (X. Li, Ma, et al., 2016). However, the enrichment step makes it 

hard to quantify pseudouridine levels. The RT stop nature means the pseudouridine sites close to 

5’ end of the mRNA molecules is more difficult to be detected then the ones close to 3’ end, thus 

result in bias for transcriptome wide investigation. Also, the alkaline treatment step can result in 

severe RNA degradation and the required mRNA input is 5-10 µg, which further limit the 

application of these methods on biological samples. 
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Pseudouridine was reported to show deletion signal under bisulfite treatment by RBS-seq 

in 2019 (Khoddami et al., 2019), which shed on new single base resolution mapping strategies. 

The ribose ring of pseudouridine was opened to form two types of adduct products and result in a 

deletion in the reverse transcription product (Everett, 1980; Singhal, 1974). The condition for 

bisulfite treatment was optimized later in BID-seq to achieve better deletion rate and less 

background noise (Dai et al., 2023; L.-S. Zhang, C. Ye, et al., 2023). This method also enables 

quantification of single pseudouridine sites and required input mRNA at as low as ~10 ng. A 

method using a similar strategy, PRAISE, was also reported in the same year (M. Zhang et al., 

2023). PRAISE mixes sulfite with bisulfite at specific ratios to treat pseudouridine and results in 

higher deletion rate and less C-to-T conversion compared to standard bisulfite treatment. 

To note, the identification of pseudouridine transcriptome wide with high accuracy is still 

challenging to date and the consensus among all existing methods is poor and remains to be 

further studied in the future (M. Safra et al., 2017). It is also challenging to study the relationship 

of pseudouridine distributions and functions as it looks like pseudouridine does not function 

individually and there are no known pseudouridine reader proteins. 

 

1.1.2 N6-methyladenosine (m6A) 

N6-methyladenosine (m6A) is the most abundant mRNA modification in mammalian 

transcriptome, representing ~ 0.5% of all adenosines (D. Dominissini et al., 2012; K. D. Meyer et 

al., 2012; I. A. Roundtree et al., 2017). It was first discovered in rat hepatoma cells back in 1974 

(Desrosiers, Friderici, & Rottman, 1974), followed by the discovery of its derivative N6,2′-O-

dimethyladenosine in 1975 (Wei, Gershowitz, & Moss, 1975). m6A is discovered to have 
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preference for DRACH motif (Linder et al., 2015). It has a preference for 3’ UTR and regions 

near stop codon (K. D. Meyer et al., 2012). 

 

1.1.2.1 Enzymes for m6A 

Unlike pseudouridine which has 13 possible writers with no reader or eraser enzymes 

discovered as of March 2024, m6A has all three types of related proteins discovered. 

The main writer for human m6A methylation is the METTL3/METTL14 complex. 

METTL3 was identified in 1997 (Bokar, Shambaugh, Polayes, Matera, & Rottman, 1997) and 

was demonstrated to work together with METTL14 seventeen years later (J. Liu et al., 2014; 

Ping et al., 2014; Y. Wang et al., 2014). It was reported that METTL3 is the functioning catalytic 

component while METTL14 mainly contributes as the structural scaffold (Śledź & Jinek, 2016; 

P. Wang, Doxtader, & Nam, 2016; X. Wang et al., 2016). The methylation complex also contains 

a group of cofactors in mammals, including WTAP, FLACC, HAKAI, RBM15 and VIRMA 

(Balacco & Soller, 2018). The simplicity of writer enzyme composition makes it much easier to 

deplete m6A than pseudouridine in cells by knocking out or knocking down METTL3. This is a 

key factor when designing strategies and validation methods for transcriptome wide m6A 

mapping. 

The first human m6A demethylase (“eraser”) fat mass and obesity-associated (FTO) was 

discovered in 2011 (Jia et al., 2011), followed by the second one ALKBH5 discovered by the 

same team shortly after (Zheng et al., 2013). The discovery of m6A erasers marked the thrive of 

epitranscriptomics studies. 

For readers, three classes of m6A binding proteins have been discovered. The first class, 

YTH (YT521 homology) domain proteins, recognize specific m6A base containing RNA 
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structures directly. YTH domain family (YTHDF1-3) (Shi et al., 2017; X. Wang et al., 2014; X. 

Wang et al., 2015) and YTH domain containing (YTHDC1-2) (Hsu et al., 2017; Ian A Roundtree 

et al., 2017; W. Xiao et al., 2016) proteins belong to this class. The second class proteins require 

the presence of m6A to alter the local RNA structure, which include heterogeneous nuclear 

ribonucleoproteins (hnRNPs) (N. Liu et al., 2015; N. Liu et al., 2017). The third class, which 

includes Insulin-like growth factor-2 mRNA-binding proteins (IGFBP1-3), binds RNA with a 

folded RNA binding domain and then uses its flanking sequence to recognize m6A bases (K. I. 

Zhou & Pan, 2018). The proteins are important for m6A to be involved in gene expression 

regulation events and the functions are discussed in the next section. 

 

1.1.2.2 m6A functions 

m6A was reported to participate in many events in gene expression like splicing, nuclear 

export and translation (I. A. Roundtree et al., 2017). Most of the m6A functions involve the 

writer, reader and eraser proteins. It was reported that m6A at splice junctions could increase 

splicing kinetics and m6A placed in introns are related to slow and alternative splicing events 

(Louloupi, Ntini, Conrad, & Ørom, 2018). m6A was also reported to be related to mRNA stability 

and life span. Transcripts bound by m6A reader protein YTHDF2 are directed to mRNA decay 

site rather than to translatable pool (X. Wang et al., 2014). Another m6A reader protein YTHDC1 

was reported to regulate the nuclear export of mRNA in mammalian cells (Ian A Roundtree et al., 

2017). It was reported that human YTHDF1 bound to mRNA m6A could recruit translation 

initiation factors and promote translation (X. Wang et al., 2015). It was reported that m6A could 

form clusters, and transcripts with more m6A clusters had significant lower level of translation 

(C. Liu et al., 2023). 
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m6A levels was regulated in response to stress. In acutely stressed mice, m6A is altered by 

glucocorticoid administration (Engel et al., 2018). Depressive disorder could lower blood m6A 

levels in patients. METTL3/METTL14 complex recruited to UV damaged DNA could recruit 

DNA damage repair polymerase κ (Xiang et al., 2017). m6A could affect development and 

diseases (Jonkhout et al., 2017). mRNA was shown to maintain mESC at ground states and 

negatively correlated with gene expression in many developmental regulators (Y. Wang et al., 

2014). Knockout of one of the m6A erasers Alkbh5 in mice impaired their fertility (Zheng et al., 

2013). Knockout of m6A writer Mettl3 would block spermatogonial differentiation and initiation 

of meiosis in mouse germ cells (Xu et al., 2017). Inhibition of METTL3 could be beneficial to 

treatment of acute myeloid leukemia (AML) (Yankova et al., 2021). 

 

1.1.2.3 NGS based m6A sequencing methods 

Tens of methods based on different strategies have been developed to map m6A 

transcriptome wide in the past decade. Their performance differs in coverage, resolution, 

quantifiability and input RNA requirement. 

The earliest m6A transcriptome-wide mapping methods based on m6A specific antibodies. 

In m6A-seq (D. Dominissini et al., 2012) and MeRIP-seq (K. D. Meyer et al., 2012), m6A 

enriched RNA fragments are pulled down and sequenced and the resulting peaks contain m6A 

nucleotides. The width of the peaks determined the sequencing resolution and it’s usually 100-

200 bases. Later, miCLIP used UV to induce RNA-protein crosslink and following m6A flanking 

sites mutations during reverse transcription to increase resolution (Linder et al., 2015). m6A-

LAIC-seq switched the fragmentation and immunoprecipitation steps and enabled the detection 

of overall m6A levels in each transcript (Molinie et al., 2016). Identification of m6A by antibodies 
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results in relatively low-resolution results. Each peak may contain multiple m6A sites and it’s 

hard to coordinate the ~100nt wide features with other single base features in RNA. Also, the 

immunoprecipitation steps make it difficult to quantify the stoichiometry of single m6A sites. 

Thus, antibody-free methods are needed for further m6A transcriptome-wide studies. 

In 2019, MazF RNase cleavage based methods MAZTER-seq (Garcia-Campos et al., 

2019) and m6A -REF-seq (Z. Zhang et al., 2019) were developed, marked the progress on 

antibody-free m6A sequencing methods. MazF is an RNase that cleaves at the 5’ side of an ACA 

motif and the cleavage is blocked when the first A becomes m6A. Both methods use the strategy 

to identify m6A sites. To note, the reliability and accuracy of this strategy is based on the 100% 

cleavage of MazF on non-modified A sites in ACA, otherwise it will not work due to high 

fraction of false positive results. Although the motif preference of the MazF enzyme limit the 

detection of m6A sites to ACA motif only, which covers 16% to 25% of all m6A sites, these 

methods raised the resolution to single base and enabled quantification of the identified m6A 

sites. 

Besides MazF based methods, other chemical assisted m6A sequencing methods have 

also been published in the same period. m6A -SEAL (Y. Wang, Xiao, Dong, Yu, & Jia, 2020) 

utilize FTO and dithiothreitol (DTT) to add thiol groups to m6A so that the modification could be 

enriched by biotin. This method avoids the usage of antibodies but still need pulldown of reads 

thus could not provide stoichiometry information. DART-seq (K. D. Meyer, 2019) couples m6A 

reader domain YTH with APOBEC1 which induces C-to-U editing near the m6A sites, but the 

natural C-to-U editing events in cells could cause false positive results. In m6A -label-seq (Shu et 

al., 2020), allyl groups are added to m6A by SAM cofactor to induce mutations during reverse 

transcription. However, the labeling efficiency is not high so that the result could not well cover 



 14 

the whole transcriptome. Also, the N6-allyladenosine (a6A) modifications was added during cell 

culturing, which detected those positions that have the potential to have m6A but not really have 

m6A in the specific sample. If the reaction preference of a6A and m6A are different under the 

experimental condition, then the sequencing of a6A could not reflect the actual distribution of 

m6A. These methods are good attempts for antibody-free single base resolution m6A sequencing, 

while quantification remains a difficult problem. 

Recent methods start to seek strategies to quantify single m6A sites transcriptome wide. 

In m6A-SAC-seq, an allyl group is added to m6A. followed by I2 treatment and mutation signal in 

the reverse transcription by a specific reverse transcriptase (L. Hu et al., 2022). This base 

resolution labeling method yields ~100-fold preference for m6A over A and has no motif 

limitation. It is also able to quantify m6A stoichiometry with as low as 2ng mRNA input. This 

method changes the signals of the rare positive cases m6A and maintains the signals of the 

majority unmodified A, which is a good strategy to avoid false positive identifications. However, 

the main disadvantage of m6A-SAC-seq is that the reaction happens on m6A could also happen 

on unmodified A, with much less preference, which introduces false positive identifications. 

Another risk is that if the reaction efficiency is not 100% then some m6A sites will be missing 

and the recall will be lower, but such shortcomings is much acceptable compared with high false 

positive predictions. Thus, when I developed our nanopore data based m6A prediction models, I 

used the data from m6A-SAC-seq as the ground truth. The details will be described in chapter 3. 

Different from m6A-SAC-seq, the following two methods use a complementary labeling 

strategy. m6A-SAC-seq changes the signal of m6A sites to have mutations so that m6A could be 

distinguished from unmodified A sites. In GLORI, unmodified A sites could be deaminated to 

inosine (I) while the methyl group in m6A blocks the reaction (C. Liu et al., 2023). In NGS RNA 
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sequencing, inosine is read as a G and thus mutation is generated. eTAM-seq uses a similar 

strategy to deaminate A but not m6A and results in mutation signals (Y.-L. Xiao et al., 2023). The 

difference is that eTAM-seq relies on TadA enzyme, but GLORI uses chemicals. Both methods 

could quantify m6A fractions at single base resolution. However, mapping modifications by 

converting the unmapped bases requires very high conversion accuracy, otherwise false positive 

results will be dominant. For the modification like m6A occupying ~0.5% of all A bases, at least 

99.90% conversion rate for the unmodified bases could result in a false discovery rate (1 - 

precision) less than 16.67%. Both methods make good progress in finding a high conversion 

reaction with ~99% conversion rate and we could foresee future work to further raise the 

conversion rate, although it can be very challenging. 

To conclude, the mapping strategies start with antibody pulldown, which generates the 

very first insight of m6A distribution, but the resolution is low. Then methods tackling m6A with 

single base resolution by enzyme or chemical treatment appear, which have limitation in motifs 

and could not quantify single m6A levels. Recent methods quantify m6A transcriptome wide with 

two different strategies, either mutating m6A or unmodified A, and achieved m6A stoichiometry 

and relative high accuracy. 

 

1.1.3 Other mRNA modifications 

Beyond m6A and pseudouridine, there are several other types of modifications identified 

in mRNA in the past decade, and their transcriptome wide mapping strategies have been 

developed, like N1-methyladenosine (m1A), 5-methylcytosine (m5C), N4-acetylcytidine (ac4C), 

N7-methylguanosine (m7G), etc. The basic strategies are similar for all modifications, and we 

could also learn from the cases for other modifications. The modifications could be enriched by 
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modification specific antibodies. The samples could be treated by either chemicals or enzymes to 

induce difference between modified and unmodified bases. Here I discuss about some examples 

of these strategies. 

N1-methyladenosine was first discovered back in 1960s (Dunn, 1961; Hall, 1963) but its 

appearance in mRNA was determined around half a century later (Dan Dominissini et al., 2016). 

m1A contains a methyl group at the N1 position and is positively charged. The additional methyl 

group disrupts formation of Watson-Crick pairs. Transcriptome wide mapping of m1A was first 

revealed in 2016 by two studies. m1A-seq utilized m1A specific antibody to enrich RNA 

containing m1A and followed by chemical conversion of m1A to m6A (Dan Dominissini et al., 

2016). m1A-ID-seq applied both antibody enrichment and base pair disrupt during reverse 

transcription caused by the methyl group at position N1 (X. Li, Xiong, et al., 2016).  m1A was 

discovered to appear in ~20% of human transcripts and enriched in 5’ UTR and around the start 

codon. m1A was discovered to affect translation and could be demethylated by ALKBH3. Later 

the reverse transcriptase was engineered in m1A-quant-seq to generate more robust mutation 

signal during reverse transcription (H. Zhou et al., 2019). The method also enabled base 

resolution detection and quantification of m1A sites. 

5-methylcytosine modification is most widely spread and studied modification in DNA 

but it is not broadly studied in RNA molecules (Suzuki & Bird, 2008). Although known to be 

present in eukaryotic mRNA (Dubin & Taylor, 1975), it was better studied in tRNA than in 

mRNA, with the discovery of two writers Dnmt2 and Nsun2 (Brzezicha et al., 2006; Goll et al., 

2006). One strategy to study m5C is using modification specific antibodies like m5C-RIP-seq 

(Cui et al., 2017). The limitation for antibody-based methods are low resolution and lack of 

stoichiometry. Like the methods for DNA 5mC, the bisulfite sequencing method for RNA m5C 
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was developed in 2012 (Squires et al., 2012). Unmodified C bases are converted to U while m5C 

remains to be read as a C. It enabled identification of thousands of mRNA m5C sites and 

discovered the enrichment in untranslated regions, while possessing the same problems as the 

DNA bisulfite sequencing methods. m5C is not distinguishable from other cytosine modifications 

like hm5C and m3C during bisulfite treatment. Furthermore, bisulfite degrades both DNA and 

RNA, which makes it hard to achieve long reads and reduces throughput in NGS. For nanopore 

sequencing, this disadvantage is fatal. To note, this strategy is a negative conversion one, which 

shares the same high false positive rate problem as GLORI and eTAM-seq mentioned above for 

m6A. The experimental conditions for bisulfite sequencing for m5C was later optimized for better 

C-to-U conversion and quantification in 2019 (T. Huang, Chen, Liu, Gu, & Zhang, 2019). 

Ultrafast BS-seq (UBS-seq) was developed in 2024 to reduce RNA damage and improve C-to-U 

conversion performance by high bisulfite concentration and high reaction temperature (Dai et al., 

2024). The required mRNA input could be as low as 10ng, while maintaining the ability to 

quantify m5C fractions. 

Unlike methylation, acetylation of cytosine is not well studied in the past several decades. 

N4-acetylcytidine was first discovered in bacteria tRNA (Stern & LH, 1978) and then identified 

in eukaryotic tRNA and 18S rRNA (Boccaletto et al., 2022). It was reported that ac4C has 

stronger base pairing with G than unmodified C (Kumbhar, Kamble, & Sonawane, 2013). ac4C 

was reported to be present in mRNA by mass spectrometry and its transcriptome wide 

distribution was revealed by acRIP-seq with ac4C specific antibody (D. Arango et al., 2018). N-

acetyltransferase 10 (NAT10) was the only known writer of eukaryotic mRNA ac4C. ac4C was 

discovered to maintain mRNA stability and promote translation when acetylation happens at the 

wobble position. The sequencing resolution was raised to single base and the stoichiometry is 



 18 

achieved in ac4C-seq, with C-to-T mutation signal induced by chemical treatment (Sas-Chen et 

al., 2020; Thalalla Gamage, Sas-Chen, Schwartz, & Meier, 2021). It was reported that ac4C was 

absent in human and yeast mRNA but could be induced by overexpression of its enzyme 

complexes. A later paper using acRIP-seq reported the existence of ac4C and revealed that ac4C 

in 5’UTR affect translation initiation (Daniel Arango et al., 2022). The existence of ac4C in 

human RNA was supported by another method named FAM-seq in 2023, which incorporate 

modifications by CoA metabolite fluoroacetyl-CoA (Yan et al., 2023). The major doubt of FAM-

seq is similar as m6A-label-seq, that is the incorporation of an alternative chemical may not 

reflect the transcriptome distribution of the original target modification. Thus it’s hard to be used 

as evidence for existence of ac4C in human transcriptome. Also, as biotin enrichment is required 

in the following protocol, the method could not quantify ac4C fractions. It looks like the 

existence of ac4C in human transcriptome still remains to be determined by better methods in the 

future. 

N7-methylguanosine is widely known to be the 5’ cap of mRNA to protect the RNA 

molecule from degradation as well as affects RNA events like splicing and translation. However, 

the existence of internal m7G within mRNA was not demonstrated until 2019 by two sequencing 

methods developed in the same manuscript (L.-S. Zhang et al., 2019). m7G-MeRIP-Seq uses 

m7G specific antibody to enrich m7G for RNA-seq and thus is not single base resolution. Internal 

m7G was discovered to prefer GA enriched motifs. In m7G-seq, m7G was turned into an abasic 

site by chemical treatment and could be labeled by biotin, followed by enrichment and 

sequencing. The abasic site would result in mutation in reverse transcription. m7G /G ratio was 

discovered to be 0.02%-0.05% and METTL1 was discovered as the major m7G writer protein. 
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1.1.4 Mapping multiple modifications in the same sample 

To date, the majority of NGS based RNA modification identification methods focus on 

one specific type of modification. It is challenging to identify multiple modifications in the same 

sample at the same time, mainly because the pre-treatment steps for different modifications are 

not compatible with each other. Also, the signal of different modifications could be the same in 

RNA-seq and make it hard to tell them from each other. However, the demand of mapping 

multiple modifications in the same samples always exists. Mapping multiple modifications 

simultaneously helps to understand the potential coordination between modifications and reveal 

the potential regulation relationship between them. It also helps better understand how different 

modifications function together in the same pathway or the same spatial location. Studies of 

multi-omics are hot topics for disease biomarker discovery and diagnosis, but the range of omics 

usually doesn’t contain any modifications or at most DNA 5mC. Little attention has been paid to 

multiple modification omics and their potential contributions to biomedical research. Thus, the 

field to study multiple modifications remain to be developed. 

Although not prevalent, there are NGS based methods which could deal with multiple 

RNA modifications at the same time. RBS-seq was designed for mapping of pseudouridine, m5C 

and m1A at base resolution (Khoddami et al., 2019). After bisulfite treatment, m5C maintains its 

original read out as C but unmodified C will be converted to U. m1A is converted to m6A under 

bisulfite treatment and thus is read as A, while it results in misincorporation in RT without 

bisulfite and is read as a T. Pseudouridine is read as deletion signal after bisulfite treatment. 

DAMM-seq was designed to map m1A, N3-methylcytidine (m3C), N1-methylguanosine (m1G), 

and N2,N2-dimethylguanosine (m22G) simultaneously and quantitatively at base resolution in 
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mitochondrial RNA and tRNA (L.-S. Zhang, Ju, Jiang, & He, 2023). Its basic idea is to report the 

misincorporation rate at the modification sites. 

The basic logic for NGS based simultaneous detection of multiple modifications is that 

multiple modifications show different signal changes during the same treatment reactions. The 

difference could be read out when comparing the reference sequences, the treated reads and the 

untreated reads. The chemical nature of different RNA modifications limits the development of 

chemical or enzyme assisted multi-modification mapping methods. Thus, it is a good idea to 

involve nanopore sequencing and computation assisted strategies for such problems, and it will 

be discussed in chapter 3. 

 

1.1.5 tRNA and rRNA modifications 

tRNA and rRNA are important non-coding RNA in cells. Both are heavily modified by 

RNA modifications, which largely affect the structures and functions of tRNA and rRNA. The 

modification fraction in tRNA and rRNA are usually higher compared with mRNA, making it 

easier to quantify the presence and fraction of modifications by mass spectrometry (Masato 

Taoka et al., 2018).  

The major function of tRNA is to generate the peptide chain based on the information 

provided by mRNA. Based on the fundamental role of tRNA, recent years of studies have 

revealed its potential in disease treatment, for correcting the mismatches within mRNA and 

produce correct protein product (Hou et al., 2023). tRNA is heavily modified and each tRNA is 

reported to have 13 modified sites on average (Pan, 2018). Most types of identified modifications 

appear in tRNA. The modification could be addition of methyl, acetyl, amino acid side groups, or 

isomerization and deaminated nucleotides (Boccaletto et al., 2022). For example, beyond 
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pseudouridine, a group of pseudouridine derivatives also appear in tRNA, like 2’-O-methyl-Ψ 

(Ψm) and 1-methyl-Ψ (m1Ψ) (Boccaletto et al., 2022).  

tRNA modifications have many functions. Mutations in tRNA modification enzymes 

have been reported to be correlated to many diseases (Jonkhout et al., 2017; Torres, Batlle, & 

Ribas de Pouplana, 2014). tRNA modifications could be used as biomarkers to predict the 

severity of diseases like COVID(Katanski et al., 2022). Engineered pseudouridine could be used 

to raise the read through of premature termination codons (PTC) (Luo et al., 2024), while PTC is 

reported to be related to many diseases like cystic fibrosis (Cheng et al., 1990) and Hurler 

syndrome (Ballabio & Gieselmann, 2009). m5C in tRNA was reported to be related to stability 

and cleavage (Schaefer et al., 2010; Tuorto et al., 2012). 

rRNA is the fundamental component of the translation machine. Human rRNA is heavily 

modified by pseudouridine and 2’-O-methyl, including all Am, Cm, Gm and Um. 231 of these 

sites were quantified in the previous publications (M. Taoka et al., 2018). There is also a group of 

pseudouridine derivatives in rRNA, including 3-methyl-Ψ (m3Ψ), 3-(3-amino-3-carboxypropyl)-

Ψ (acap3Ψ) and m1acap3Ψ (Boccaletto et al., 2022; M. Taoka et al., 2018). ac4C, m7G, m6A, 

m62A are also discovered in human 18S rRNA at specific positions while m1A, m6A, m5C and 

m3U appear in 28S. 

The nature that rRNA is heavily modified and the modification sites are relatively 

conserved compared to mRNA is strength for generating known sites. In chapter 2, I used this 

strategy and got a list of pseudouridine sites from rRNA of multiple species for nanopore data 

supervised learning model training. It is also beneficial to have all human rRNA pseudouridine 

site fractions quantified in the previous studies. We used such information to train single read 

pseudouridine prediction model in chapter 5. 
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1.2 Nanopore direct RNA sequencing (DRS) 

Whole genome and transcriptome sequencing has become possible with the development 

of next generation sequencing technologies. However, NGS technologies have many limitations. 

For example, for Illumina sequencing, the difficulty in keeping the same pace for all synthesis 

event at the same spot results in messy fluorescence signals as the read gets longer and thus the 

read length is limited to hundreds of nucleotides. To avoid mixture of signals from multiple 

synthesis events, single molecule sequencing is a possible solution. Although single molecule 

sequencing doesn’t need to worry about messy signals, the major problem becomes how to detect 

the weak signal from only one molecule. Such technologies are called third generation 

sequencing technologies (TGS). Two major types of TGS techniques have been widely used in 

biology studies, PacBio SMRT-seq (Flusberg et al., 2010) and Oxford Nanopore Technologies 

(ONT) nanopore sequencing. Both methods are single molecule sequencing technologies with 

the ability to tell apart modification signals from unmodified bases directly. In this dissertation, 

we mainly focus on ONT nanopore sequencing. 

 

1.2.1 History 

Oxford Nanopore Technologies started on the idea of “strand sequencing” in 2009 and 

the ability of reporting de novo base calling of genome sequences became available in 2012 

(Brown & Clarke, 2016). The “pore” was first nanopore protein Mycobacterium smegmatis porin 

A (MspA) (Morton et al., 2015) and later an engineered version of Curlin sigma S-dependent 

growth protein CsgG from E. coli (R9.4 or R9.5) (Ayub & Bayley, 2016; Henley, Carson, & 

Wanunu, 2016; Ip et al., 2015). In the first several years, nanopore is only used to sequencing 
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DNA molecules. It was shown in 2013 that MspA could be used to identify DNA modifications 

(Laszlo et al., 2013; Schreiber et al., 2013). 5-methylcytosine, and 5-hydroxymethylcytosine 

could be distinguished from the unmodified cytosine in synthesized DNA. It was demonstrated 

that nanopore could be used to identify DNA modifications in human genome samples in 2017 

(Simpson et al., 2017). Based on the principle of nanopore sequencing, any macromolecules with 

appropriate diameter could be sequenced, with some customizations to the hardware and 

software. It was not until 2018 that nanopore direct RNA sequencing technology was reported by 

ONT (Garalde et al., 2018). Since then, nanopore has been used to sequence transcriptomes of all 

kinds of species and reveal different RNA events including RNA modifications. 

 

1.2.2 How nanopore sequencing works 

Nanopore sequencing uses engineered pore proteins as sensors to detect the molecules 

going through it (Banerjee et al., 2010). There are thousands of pores attached to a membrane. A 

voltage difference is applied to the two sides of the membrane so that constant current flow is 

formed in the pores. The diameter of the pores is compatible to the width of the macromolecules 

to be measured. Usually DNA and RNA molecules has overall negative charges, so they have a 

trend to move to the high electric potential side automatically. To maintain a stable speed of 

going through the pores, a helicase motor protein sits on top of each pore so that the pace is 

controlled. When the macromolecule goes through the pore, it will partly block the current flow. 

The narrowest region of the pore which is valid for reflecting the current blockage is called 

sensing region. Different nucleotides have diverse size, shape and charge state so that their 

abilities to block the current flow are different. The difference of blockage could be reflected as 

the change of the current signal over time. The current signal has two attributes, one is the 
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strength of the signal, the other is the length of the signal, which is also called dwell time. 

Usually the sensing region of the nanopore is longer than the length of one nucleotide, which 

means there are more than one nucleotide in the sensing region at a time, so each current signal 

recorded is the sum of the contribution of several (usually around 5-6) neighboring nucleotides 

(Wick, Judd, & Holt, 2019). To achieve the DNA/RNA sequences from the raw current signal, 

hidden Markov model (HMM) or neural network (NN) algorithms were developed to deduce the 

nucleotides information. RNA modifications differ from the four common nucleotides in size, 

shape and charge state, so theoretically modifications could be identified from the unmodified 

nucleotides, just like A, C, G, U could be identified from each other. 

For nanopore direct RNA sequencing (DRS), RNA molecules with poly A tail are 

collected with a poly T adaptor and the sample preparation kit also use magnetic beads to select 

RNA molecules longer that 200nt. Thus, nanopore DRS is designed for direct sequencing of 

mRNA samples. For other types of RNA without poly A tail, specific adaptors need to be 

designed for library preparation. 

 

1.2.3 Advantages 

Compared with next generation sequencing, nanopore sequencing has many advantages. 

These advantages enable specific applications of nanopore sequencing to add novel knowledge 

to current discoveries by NGS methods.  

Nanopore sequencing run RNA molecules directly, while next generation sequencing 

(NGS) handles RNA in an indirect manner. To sequence RNA samples by NGS, the RNA 

molecules need to be reverse transcribed into complementary DNA (cDNA) and then generate 

double-stranded DNA molecules followed by amplification and then the sequencer could run the 
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sample. RNA molecules themselves could not be directly run in the sequencer. However, there is 

no limitation for the type of macromolecule that goes through the nanopore, which means RNA 

molecules could be sequenced directly without the necessity of reverse transcribed into cDNA. 

The direct sequencing of RNA molecules enables the detection of any additional information in 

the RNA molecules, for example RNA modifications. For NGS based methods, all mRNA 

modification information is lost during reverse transcription (RT) without additional chemical or 

enzyme treatment, as all nucleotides in cDNA derived from mRNA are the four common bases. 

To identify RNA modifications by NGS, we have to rely on the footprint left by RNA 

modifications during reverse transcription, like RT stops, induced mutations, deletions etc. The 

limitation is obvious. RT stops truncate reads and all nucleotides after the stop are lost. Mutations 

and deletions could be introduced by factors other than RNA modifications. As a comparison, 

modification detection by nanopore direct RNA seq doesn’t have such limitations. The modified 

RNA nucleotides go through the pores as they originally are and the changes in signal are 

recorded directly. 

Nanopore sequencing doesn’t have a limitation on the length of reads. Theoretically, the 

length of the read depends on the length of the molecule itself. This means we could achieve full 

length mRNA, rRNA and long non-coding RNA (lncRNA) reads. Based on this, the alternative 

splicing events and splicing isoforms could be reported from the data, which expands the scopes 

of data analysis and biological discoveries. For DNA, linkage of distant SNPs and large 

structural variations could be reported. To note, in lab practice, it’s difficult to obtain 100% full 

length DNA or RNA molecules as the long chains are easily broken during library preparation, 

often by pipetting. Despite this, the average length of produced reads by nanopore sequencing is 
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still longer than NGS methods. For poly A RNA samples, the average could be more than 1000 

nucleotides. 

Nanopore sequencing doesn’t require PCR amplification for sample preparation. PCR 

amplification could result in bias in expression levels as different transcripts are not amplified 

the same times during the reactions. This could result in inaccuracy in sequencing results. Also, 

modification information could be removed during PCR amplification. Nanopore sequencing 

does not require PCR amplification during sample preparation and thus could reduce bias 

introduced from PCR process. 

In addition, poly A tail length could be directly estimated from nanopore direct RNA 

sequencing data without requirement of extra pre-treatment of the samples (Rachael E Workman 

et al., 2019). This is a novel application that could not be completed in the previous methods. 

The size of the nanopore sequencer “MinION” is very small and is portable so that it’s 

possible to do the sequencing in real time outside the lab, which has the potential to be applied in 

medical or field research settings. 

 

1.2.4 Limitations 

Although nanopore sequencing has many edges over NGS based RNA sequencing, as it is 

a new technology in development, there are also many limitations which needs to be paid 

attention to when applying the method to avoid mistakes. The problems are to be solved in the 

future development of the technology. 

One limitation often ignored by many researchers is that nanopore sequencing is not 

compatible with those library preparation protocols that could result in fragmented RNA 

molecules. Fragmentation is not only brought about by mechanical shearing during pipetting, but 
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also by other key factors in the experimental design. For example, in ribosome profiling (Ribo-

seq), the sample is treated by RNase and only the ribosome attached mRNA fragment is kept. 

This means that all mRNA reads are short fragments which is not suitable for nanopore 

sequencing. In another example, divalent metal cations have the potential to degrade RNA, 

which means if the pretreatment steps of the RNA sample require divalent metal cations, then the 

product RNA is not suitable for nanopore sequencing. In the protocol of m6A-SEAL (Y. Wang et 

al., 2020), the first step of FTO oxidation of m6A requires existence of Fe2+, which degrades 

mRNA. Thus this protocol is only suitable for NGS based methods but not nanopore sequencing. 

This drawback deserves attention from the researchers who would like to couple nanopore 

sequencing with a second protocol for RNA modification studies. 

The accuracy of base calling by nanopore sequencing is not as high as NGS. Usually 

NGS could call bases with >99.9% accuracy, while according to previous reports, the accuracy 

for nanopore direct RNA sequencing at the beginning of commercialization was only 86% (Jain, 

Abu-Shumays, Olsen, & Akeson, 2022). Another study reported the error rate for RNA 

molecules as 7-12% (Wick et al., 2019). Oxford Nanopore Technology (ONT) keeps working on 

raising the single base accuracy of nanopore sequencing. They updated the base calling software 

guppy base caller and the accuracy is reported to be more than 91% (Grünberger, Ferreira-Cerca, 

& Grohmann, 2022; Jain et al., 2022; Rousseau-Gueutin et al., 2020). Another strategy is to 

apply two tandem nanopores for each single molecule. The molecule goes through the first pore 

and then the second one so that the current signal of each molecule is recorded twice. In this way, 

the accuracy is reported to rise to 99% for nanopore DNA sequencing (Sereika et al., 2022); 

however, direct RNA sequencing technology is still waiting to be optimized in this way. The 
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increase of accuracy would benefit more reliable studies of transcriptomes by nanopore 

sequencing and we could foresee that the accuracy will be raised in the future. 

Another major limitation for nanopore direct RNA sequencing is high cost and low 

amount of production. The cost has two aspects. The first aspect is on the sample requirement. 

Back in 2020, each DRS run requires 500 ng polyA RNA as input. Usually only culturable cell 

lines could afford the demand and the door is closed for precious samples or clinical samples. 

According to the website of ONT and previous reports, the RNA input requirement decreased to 

50 ng polyA RNA later (Jain et al., 2022). The second aspect is about the cost. Each flow cell, 

which is not cheap, could only be used for one run and for one RNA sample, and there is no 

commercial barcoding system. The researchers need to run multiple flow cells in one project or 

they have to do barcoding on their own. However, barcoding for mRNA may not be a good idea, 

as each flow cell is supposed to produce only 1 million DRS reads. In our own research, the 

number of reads produced by each flow cell is not stable and have very high variance, ranges 

from 100K to over 3 million. This increases the challenge of achieving replicates of samples and 

getting results from each replicate with similar quality. Of course, as the technology becomes 

more developed in the future, it’s promising that the cost will decrease, and the yield will 

increase. 

Beyond, it was reported that nanopore direct RNA seq has bias based on the length of 

RNA molecules. In specific ranges, shorter reads are preferred over longer reads and thus it 

results in the missing of mRNA isoform information from specific genes (Jain et al., 2022). In 

our practice, we also noticed that samples with too many short RNA molecules (usually < 200nt) 

would largely decrease the number of read yields of a nanopore run. Thus, it is very challenging 

to use nanopore direct RNA seq on small RNA samples. 
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1.2.5 Nanopore sequencing strategies for RNA modifications 

As mentioned above, one of the major advantages of nanopore sequencing is that it could 

run RNA samples directly without the necessity of reverse transcription. As RNA modifications 

differ from unmodified bases in sizes, shapes and charging states, it is possible to identify RNA 

modifications directly from nanopore direct RNA sequencing data without any pre-treatment like 

bisulfite. As the data processing software provided by Oxford Nanopore Technologies have very 

limited functions in modification detection, researchers usually develop their own computation 

pipelines to identify RNA modifications directly from raw nanopore sequencing data. Those 

statistical methods and machine learning methods for nanopore data processing will be discussed 

in the section 1.3. The machine learning based pipelines for pseudouridine and m6A 

identification developed in this dissertation will be discussed in chapter 2 and 3. 

Although pre-treatment is not a necessity for nanopore RNA modification detection, we 

could still learn from NGS based modification identification strategies. The fundamental idea for 

RNA detection is to have different signals for modified and unmodified nucleotides. In NGS 

methods, the difference is from mutations, deletions, RT stops or immunoprecipitation 

enrichment fold. In nanopore sequencing, the current signals of modifications and unmodified 

bases are usually different. If the difference is too small to be notified by naked eyes, then we 

enhance the difference either by experimental methods or data processing methods. 

It is possible to use chemical or enzyme pre-treatment on the mRNA library to enhance 

the difference of modified nucleotides and unmodified ones. For example, by adding a big extra 

ring structure to m6A but not A, it is possible to generate a big different signal for m6A in 

nanopore raw data. However, as one of the major advantages is long read length, if the pre-
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treatment of adding a big ring to m6A will result in fragmented RNA molecules, then the pre-

treatment methods may not be appropriate, like the bisulfite treatment for m5C, CMC treatment 

for pseudouridine or the protocol of m6A-SEAL for m6A mentioned above. Also, the strategy like 

ribo-seq that protect specific mRNA regions and digest the rest is not suitable for nanopore 

sequencing, as the protected regions are usually very short. Instead, polysome profiling is 

currently the only method to study mRNA translation on the ribosome by nanopore sequencing. 

We used mRNA samples from polysome profiling to study effect of RNA modifications on 

translation in chapter 4. 

Immunoprecipitation with modification specific antibodies or chemicals is widely used 

for all kinds of RNA modifications in NGS methods. This strategy is beneficial when the 

modification is very rare in the transcriptome. It could also contribute in nanopore sequencing to 

raise the ratio of positive cases so that lowering the false discovery rate. However, in spite of its 

potential benefit, it’s challenging to apply immunoprecipitation-based methods in nanopore 

sequencing as the mRNA molecules are of full length. Better idea is needed for such strategy to 

be applied in nanopore sequencing. 

 

1.2.6 Other applications of nanopore direct RNA sequencing 

Beyond identification of RNA modifications, the advantages of nanopore sequencing also 

enable its application in many other fields. It has been used to determine the sequence of RNA 

viruses. It was used to identify the whole transcriptome of SARS-CoV-2, contributing to the fight 

against the pandemic in time (Kim et al., 2020). It has also been applied to other RNA viruses 

(Viehweger et al., 2019; Wongsurawat et al., 2019). 
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Poly A tail length was directly estimated by nanopore direct RNA sequencing data and its 

correlation with RNA expression levels was revealed (Rachael E Workman et al., 2019). 

Nanopore direct RNA sequencing could be used to determine RNA structures. In PORE-

cupine, single stranded RNA was labeled by 2-methylnicotinic acid imidazolide azide (NAI-N3) 

to reveal the secondary structures (Aw et al., 2021). In nanoSHAPE, the researchers used the 2′-

hydroxyl acylation analyzed by primer extension (SHAPE) strategy to detect RNA structure as 

well as 2’-methyl modifications, by labeling the 2’hydroxyl group of exposed RNA nucleotides 

with chemical labels (Stephenson et al., 2022). In SMS-seq, exposed RNA is labeled by Diethyl 

pyrocarbonate (DEPC) to depict secondary structures of RNA molecules (Bizuayehu et al., 

2022). DEPC could be used to report single stranded adenine sites. To conclude, these methods 

label exposed RNA with chemicals to deduce the secondary structure of RNA molecules. 

Recently the nanopore direct RNA sequencing processing protocol has been optimized to 

enable quantitative analysis of tRNA in Nano-tRNAseq (Lucas et al., 2024). It overcame the 

problem that the software discards short reads and raised the coverage of tRNA by over 10 folds. 

Nanopore sequencing has been reported to be combined with the library preparation 

protocol of single cell RNA seq. In SCAN-seq2, two groups of barcodes are added to 5’ and 3’ 

ends of each transcript as its cell identity (Liao et al., 2023). Over 5000 cells are sequenced in a 

pool. To note, the barcodes are added during reverse transcription and finally cDNA is sequenced 

so it’s not direct RNA sequencing. 
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1.2.7 Nanopore sequencing for other macromolecules 

1.2.7.1 DNA 

The nature that nanopore sequencing could produce long reads and read modification 

directly enables its many applications in DNA sequencing. Nanopore DNA sequencing could be 

used to identify DNA modifications, as the modification bases show different signals from 

unmodified bases. Hidden Markov models could be used to identify 5mC, 5hmC and 6mA (Rand 

et al., 2017; Simpson et al., 2017). Deep learning models like DeepSignal and DeepMod could 

identify 5mC and 6mA (Q. Liu et al., 2019; Ni et al., 2019). Nanopore DNA sequencing could 

also be used to detect complex structural variations (SV) (Sedlazeck et al., 2018). 

Nanopore DNA sequencing could product high quality long reads thus it is a very 

appropriate tool to study the complicated metagenome sequences (Sereika et al., 2022). It is also 

used for fast same-day diagnosis for diseases like brain tumors (Euskirchen et al., 2017), which 

shed light on practical clinical usage. 

The long read property enables more detailed mapping of the human genome, especially 

for regions with high copy number repeats like centromere and telomere. A reference of human 

GM12878 Utah/Ceph cell line was assembled with nanopore long reads (Jain et al., 2018). In 

2022, a series of papers were published for the complete human genome (Aganezov et al., 2022; 

Altemose et al., 2022; Gershman et al., 2022; Hoyt et al., 2022; Nurk et al., 2022; Vollger et al., 

2022). With the help of PacBio and Nanopore long read sequencing technologies, Telomere-to-

Telomere (T2T) Consortium managed to complete the last 8% of human genome left by the 

Human Genome Project. More detailed maps of genetic variations, epigenetics pattern and repeat 

elements are also revealed. This project reflects the edges of TGS technologies on highly 

repetitive regions in the genome. 
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1.2.7.2 Protein 

Besides DNA and RNA, other macromolecules like peptides could also go through 

engineered pores and thus have the potential to be sequenced by nanopore sequencing. Currently, 

the high throughput sequencing method for protein has not been developed yet but such 

technology is of high demand for better understanding of the omics of all expression products of 

a cell and the regulation and metabolisms of them. 

Recently, it was reported that an engineered MspA could be used to discriminate all 20 

proteinogenic amino acids and 4 amino acid modifications including Nω,N’ω-dimethyl-arginine 

(Me-R), O-phosphoserine (P-S), O-acetyl-threonine (Ac-T) and N4-(β-N-acetyl-D-glucosaminyl)-

asparagine (GlcNAc-N) (K. Wang et al., 2024). A quadratic SVM model was used to classify the 

signals from 5 features. Another group used α-hemolysin nanopores to achieve similar results 

(Yun Zhang et al., 2024). However, these methods could only identify the existence of specific 

types of amino acids in their free state within the samples but could not read out the sequence 

content as a series. Both teams tried to digest a peptide and then use nanopore to sense the free 

amino acid excised from the peptide, which were good proof-of-concept attempts but are still far 

from practical usage. 

The challenge for nanopore protein sequencing is obvious. There are only 4 types of 

common DNA or RNA nucleotides but there are 20 for proteins. It’s much harder to develop a 

method to distinguish 20 classes than 4 classes. Also, there is very little prior knowledge for 

peptide sequencing, which means researchers could not conveniently design experiments and 

train models based on previous data, like nanopore RNA models based on NGS data. The 

existence of post translational modifications of amino acids makes it even more challenging to 
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know the information of peptides. Secondary structures also place obstacles for sequencing 

library preparation. To conclude, nanopore sequencing is one of the most promising approaches 

for peptide sequencing but many challenges remain to be solved before the technology could be 

put into practical use. 

 

1.2.7.3 Glycan 

Recently, a modified MspA nanopore was used to identify different disaccharide isomers 

and was applied to detect the existence of sucrose in yogurt (S. Zhang et al., 2023). The working 

mode is similar to amino acid sequencing mentioned above. Here nanopore is more like a sensor 

to identify the existence of specific molecules in the samples, rather than read out the series of a 

sequence from a macromolecule. Although these are small molecules, but it shed on promise in 

detecting glycan side groups in macromolecules like RNA or protein. 

 

1.3 Machine learning for nanopore direct RNA sequencing data analysis 

The drastic development of ML/AI technology makes it possible to solve problems in 

biology field. ML models are good at dealing with large amount of data and extract useful 

information from them. RNA sequencing data usually contain the expression information of 

genes, as well as the distribution of RNA modifications. The size of raw data is usually huge and 

needs to be processed by high performance computers. Thus, it is a good idea to reveal the 

information of RNA modifications with the help of machine learning methods. 
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1.3.1 Machine learning strategies 

The machine learning strategies could be classified based on whether labeled ground 

truth is needed for model generation. Supervised learning, unsupervised learning and their 

combinations are widely used in natural science studies including biology (Greener, Kandathil, 

Moffat, & Jones, 2022; Mahesh, 2020; Tarca, Carey, Chen, Romero, & Drăghici, 2007). 

Supervised learning methods use data with labels to train models to complete tasks. The labels 

are the “ground truth” that you believe to be true to describe the records. Usually, the labels are 

from prior knowledge of the field. The input for the model training is the features, which 

describe all kinds of different aspects of each record. The process of model training is basically 

looking for a best map from the features to the labels. It’s something like a function, but the 

format of the model doesn’t necessarily look like a function. Supervised learning methods are 

usually used when we have the data to show the phenomenon and the consequences, and we 

want to build a model to describe how the phenomenon and the consequences are linked with 

each other. For example, if we have RNA expression data of healthy and cancer patients, we 

could build supervised learning models for the data. We could learn from the data about the 

features that are more important than others, or in the case, the genes that contribute more to the 

generation of tumors. Sometimes, these statistically significant features are also biologically 

important so that we could gain more insight into the specific problems. For example, find 

biomarkers for cancers. After we build the supervised learning models, we could also apply them 

to new records without labels and do prediction. This help to evaluate which category the record 

belongs to, or how much the output value would be. For example, the models connecting RNA 

expression and cancer diagnosis could be used to evaluate whether the new patients have tumors. 
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There are two major types of questions supervised learning models could solve, depending on 

the type of the labels. One is classification, where the labels are usually discrete categories. The 

other is regression, where the labels are continuous values describing the extent of some 

variables. Both types are widely used in biology questions. For example, we could build 

classification models to identify whether the RNA nucleotide is modified or not. We could also 

build regression models to predict the modification fractions of a site. The choice of model type 

relies on the type of questions to solve. 

Unsupervised learning methods do not rely on pre-defined labels. They usually gather the 

records which have similar patterns of features and form clusters. We usually want to find new 

patterns and subclasses from the clustering results of the whole group of data. 

Machine learning methods are widely used in identification of RNA modifications from 

nanopore direct RNA sequencing data. For the current methods, there are two strategies 

concerning the types of samples used to train the models (Zhong et al., 2023). For “single mode” 

methods, there is only one sample containing both modified and unmodified sites, and the 

ground truth is from previous studies, probably from NGS data. For “compare mode” methods, 

the signals from two samples, one with modifications and the other one without, are compared, 

and the difference between signals is used to determine whether the site is modified or not. 

 

1.3.2 Single mode methods 

There is a group of supervised learning methods for modification identification based on 

nanopore direct RNA sequencing data. Single mode methods are usually supervised learning 

methods, which require training materials from nanopore direct RNA sequencing data and 
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labeled ground truth from previous studies. The existing methods covered a large range of 

different supervised learning algorithms. 

 

1.3.2.1 Methods for m6A 

Nanom6A generated extreme gradient boosting (XGBoost) models to identify m6A in 

mRNA (Gao et al., 2021). It used mean, median, standard deviation and width of raw current 

signals from centered and flanking sites as features to build the models. The data were from 130 

m6A sites in synthesized RNA from RRACH motifs. It was applied to stem-differentiating xylem 

of Populus trichocarpa and revealed the correlation between poly A tail length and m6A 

modifications. 

EpiNano used the base calling errors of m6A and trained support vector machine (SVM) 

models to reveal m6A (H. Liu et al., 2019). Its features include both base calling errors like 

mismatches, indels, change in base quality scores, as well as the current signal intensity and 

standard deviation. Synthesized RNA molecules with 100% m6A or 100% unmodified A sites are 

used to generate the signals. These molecules are de Bruijn sequences for all possible 5mers. The 

final model was applied to yeast samples to detect m6A modification sites in vivo. 

MINES used a random forest (RF) model to identify m6A (D. A. Lorenz, S. Sathe, J. M. 

Einstein, & G. W. Yeo, 2020). It limited the range to 6 motifs, AGACT, GAACT, GGACA, 

GGACC, GGACT and TGACT, which covered over half of all m6A sites. This could raise the 

model accuracy for each model and facilitate the feature extraction of flanking sites. Its ground 

truth was from miCLIP data. It used raw current signals extracted by Tombo as features to train 

the models. Tombo is a package provided by ONT to extract current signal intensity and dwell 

time from raw sequencing data. Its problem is that Tombo could not deal with spliced reads. 
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Tombo itself also has commands for detection of DNA and RNA modifications like 5mC and 

m6A. It compares the signals of samples and reference sequences and call modification sites 

when the difference is big enough, which does not provide high accuracy in modification calling. 

DENA was a bidirectional RNN model with LSTM for m6A identification (Qin et al., 

2022). It didn’t limit the sequence context of m6A. It used data from the WT and m6A deplete 

Arabidopsis samples to train the m6A models to avoid problems of synthesized sequences. The 

ground truth of m6A sites was achieved by applying a software differr to compare the signal 

difference of WT and m6A deplete samples, which heavily relied on the performance of the 

software. It used feathers directly from the current signal, including mean, median, standard 

deviation, base quality score and dwell time. 

m6Anet was a multiple instance learning neural network model which considered the 

mixture of modified and unmodified reads when dealing with the training materials (Hendra et 

al., 2022). It used m6A ground truth from m6ACE-seq and view all m6A sites as partially 

modified. m6ACE-seq was an antibody-based photo-crosslinking method for m6A identification 

(Koh, Goh, & Goh, 2019), which might not be the best choice for ground truth resource but it 

could be due to limitation of better methods at that time. Instead of using average values from all 

reads covering a specific site, it generated high dimension presentations of the information 

collected from each read. Theoretically the method could be applied to any m6A motifs, but the 

authors limited it to DRACH motifs. It used current intensity, standard deviation and dwell time 

to generate features. 

 



 39 

1.3.2.2 Methods for pseudouridine 

NanoRMS was designed for pseudouridine identification and was applied to 

Saccharomyces cerevisiae (O. Begik et al., 2021). It tried both unsupervised (K-means) and 

supervised (K-nearest neighbors, KNN) learning methods for the quantification of pseudouridine 

sites. It used current signal intensity and trace as features and was trained on synthesized RNA 

“curlcake” with either modified or unmodified bases covering all possible 5mers. Mixtures of the 

reads were used to train quantification models. 

Penguin was a machine learning based pipeline for pseudouridine prediction from 

nanopore direct RNA sequencing data (Hassan, Acevedo, Daulatabad, Mir, & Janga, 2022). The 

authors tried RF, SVM and NN models. The ground truth of pseudouridine sites was from 

previous databases and literatures. It used k-mer sequence content, current signal mean, standard 

deviation and dwell time from raw sequencing data. Most of the features are reasonable, but it 

may not be proper to include k-mer sequence content as features. Under different biological 

treatment like WT and writer knock out samples, the same positions within the same sequence 

content in the two samples could differ largely in modification state, which means the 

modification state could not be predicted from sequence content. Sequence content information 

is derived from the reference file but not from the sequencing data during alignment, so it is not 

part of the attributes of the sequencing data. This method could be used in some conditions but 

will result in bias when comparing two different samples with the same reference. 

There is a group of supervised learning methods extracting features from sequence 

content solely and predict the most likely pseudouridine sites in the reference sequences (Bi, Jin, 

& Jia, 2020; Chen, Tang, Ye, Lin, & Chou, 2016; He et al., 2018; Khan, He, Wang, Chen, & Xu, 

2020; F. Li et al., 2021; Y. H. Li, Zhang, & Cui, 2015; K. Liu, Chen, & Lin, 2020; Lv, Zhang, 
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Ding, & Zou, 2020; Song, Chen, et al., 2020; Song, Tang, et al., 2020; Tahir, Tayara, & Chong, 

2019). These methods did not analyze raw RNA sequencing data and instead viewed the 

modifications as static. The basic idea is modification state could be determined by sequence 

content, regardless of the metabolic state of the samples. To train the models, a list of known 

pseudouridine sites is downloaded from previous results as true labels so that machine learning 

models could be trained to identify the cooccurrence probabilities of certain sequence and the 

modifications. When applying the models, the input are sequence content and output are whether 

there is likely to be pseudouridine modifications in the sequence. However, as we know, the 

same sequences could be either modified or unmodified based on the sample treatment 

conditions and metabolic states, which is not predictable from the sequence content solely. Such 

methods contribute modestly to solving real world biological questions, while are fair practices 

to apply machine learning approaches on biology materials and could provide new insights into 

aspects like feature types. 

 

1.3.2.3 Methods for other modifications 

In Dinopore method, a convolutional neural network (CNN) model was developed to 

identify inosine from nanopore direct RNA sequencing data (Nguyen et al., 2022). The method 

considered both current signal features and base calling error features like insertions and 

deletions from multiple sites around the modified sites and applied 43 features in the model. It 

also generated a regression model to evaluate the stoichiometry. 
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1.3.3 Compare mode methods 

“Compare mode” methods usually use clustering strategies to identify modifications. 

Gaussian mixture models (GMM) were used to evaluate the number of RNA modifications in the 

samples from the current signals (Ding, Bailey IV, Jain, Olsen, & Paten, 2020). 

Nanocompore used a 2 components Gaussian mixture model to identify RNA 

modifications (Leger et al., 2021). It compared the current signals from an experimental sample 

and a low-modification control sample which could either be IVT or writer knock out samples. It 

used logistic regression to test whether the reads in the GMM clusters significantly belong to two 

clusters. This method does not involve the process of model training on previous known 

modification data but require pairs of samples when performing modification prediction. In the 

paper the method was mainly applied to m6A, but the same method could also be applied to other 

modifications, as long as the low-modification sample is available. 

xPore made a Gaussian mixture model for modified and unmodified nucleotides and used 

z-test to quantify the significance of difference (Pratanwanich et al., 2021). The features are the 

current signals from 5mer events. It could be used to perform on single reads to calculate 

modification fractions. This method does not limit m6A within specific motifs and theoretically 

could be applied to any other RNA modifications. 

 

1.3.4 Factors to consider 

The choice of machine learning algorithms mostly relies on the type of input features. For 

series features like current signals of a group of neighboring sites, CNN or RNN could be 

considered. For other input consists of independent features, all kinds of machine learning 

methods were applied. For RNA modification identification from nanopore direct RNA 
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sequencing data, the choice of machine learning algorithm is not the bottleneck to the problem, 

as long as the overall direction is correct. The performances of different algorithms are mostly 

similar, with the same training datasets and features. 

One of the key factors is how much training data we have and the resources of the data. 

For supervised learning methods, the training sites are usually from previous studies, mainly 

based on the results from NGS methods. Currently, there are NGS methods for only around 10 

types of mRNA modifications and thus the studies of nanopore sequencing are also limited to 

these modifications. Usually, nanopore direct RNA sequencing utilizes poly T adaptors provided 

by ONT kits to process poly A RNA and all reads starts from the 3’ end and thus it has a bias for 

3’ end. The coverage of mRNA slowly decreases from 3’ to 5’ end. Meanwhile, the throughput of 

nanopore DRS is not high and could only reach 1-3 million reads which is hard to cover human 

transcriptome deeply. The coverage preference of nanopore and NGS data could be different and 

only the overlapped regions could be used for training, which means a large decrease in the sites 

that could be used for model training. For synthesized sequences, the coverage could be plenty, 

but the diversity of the sequence contents is usually not enough. In many cases, we could achieve 

hundreds to thousands of modification sites from different sequence contents for model training. 

If the training data is limited and the feature space is small, then it is suggested to use small 

models instead of neural networks. It is a misunderstanding that a bigger model trained for 

longer time and more epochs is always a better model. One possible way to generate more data is 

by data amplification. The reads could be shuffled and assigned to small groups to make more 

“artificial” sites for training. 

Another key factor is the quality of the ground truth or the true labels. The ground truth is 

usually from NGS methods. However, only very few modifications have single base resolution 
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NGS methods, and the antibody-based peak results could hardly be used as ground truth, as the 

nanopore models required the state of each individual sites. Also, the NGS methods could reveal 

false positive sites and it doesn’t necessarily mean finding more modification sites would be 

better. They could be false positive sites. Nanopore prediction models trained on low quality true 

labels could hardly be good models. Thus, the selection of high quality NGS true labels is also 

important for good model training. 

It is also to be considered whether the model is friendly to users. Usually, general users 

want to have easy-to-install packages, smaller storage requirement and faster speed. Thus, it is 

also a balance between fair performance and too much processing steps and running time. For 

example, in nanopore sequencing data, the extraction of current signal strength and dwell time is 

very time and space consuming step. It worth thinking whether there are strategies to make the 

steps faster and easier. 

 

1.3.5 Other methods for nanopore direct RNA sequencing modification identification 

Beyond machine learning methods, there are also other strategies for mRNA modification 

identification from nanopore direct RNA sequencing data. For non-machine-learning methods, 

“compare mode” strategies are widely used. 

RNA modifications show different current signals from unmodified bases. Thus, if we 

could sequence a pair of samples, one with the specific modifications and the other with 

modifications depleted, then we could compare the signals of the two samples and figure out the 

different part, which is likely to be modifications. Such comparison could be completed without 

machine learning models. The strategy was applied to Arabidopsis thaliana in 2020 (Parker et 

al., 2020). However, such strategy requires two copies of samples, as well as reliable knock out 
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method of a type of modification, which may be difficult when the sample type or species is not 

common. If the positive and the negative samples are from different genetic background, then 

there could be difference in the reference sequencing like SNPs so that it will result in more 

errors when calling modifications. Also, nanopore signals have much random noise, so that 

individual different signals between two samples don’t necessary means something biologically 

but could just be due to random noise. 

One way to avoid using of m6A writer knock out samples is to use in vitro transcribed 

RNA without any m6A modifications. It was applied to human samples and the m6A showed 

different signal from the unmodified A sites in the in vitro transcription (IVT) sample (Rachael E 

Workman et al., 2019). 

ELIGOS used a concept percent Error of Specific Bases (%ESB) and compare the errors 

like mismatches and indels between nanopore direct RNA seq data and either cDNA, IVT RNA 

or reference sequences (P. Jenjaroenpun et al., 2021). It used Fisher's exact test on the 

contingency table and thus evaluate whether a site is modified or not. It used information both 

from the centerer base and the flanking bases. The method was applied to many modifications 

like m6A, m1A, 5-methoxyuridine (5moU), pseudouridine, m7G, inosine, hm5C, f5C and m5C. 

The performance on most modifications were fair but did not perform well on m5C. Overall the 

AUC values were not very high as the method was not specifically designed for a specific 

modification and there is not training process of models. 

In a recent study, the U-to-C mutation error rates of natural RNA and IVT RNA were 

compared to quantitatively describe the pseudouridine levels (Tavakoli et al., 2023). Two types 

of pseudouridine hyper modifications were defined, which was a good attempt. 
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1.4 Overview of this thesis 

In this thesis, we are going to discuss about the development of two machine learning 

based pipeline for transcriptome wide mapping of pseudouridine and m6A modifications from 

nanopore direct RNA sequencing data. Chapter 2 will mainly talk about the development of 

pseudouridine prediction pipeline NanoPsu and its application on studying pseudouridine 

changer under interferon treatment. Chapter 3 will talk about the development of a new m6A 

prediction model based on nanopore direct RNA sequencing data and the simultaneous m6A and 

pseudouridine prediction pipeline NanoSPA. Chapter 4 will talk about applying NanoSPA to 

investigate coordination of m6A and pseudouridine in human transcriptome and their overall 

effect on translation efficiency. Chapter 5 will talk about the development of a single read 

pseudouridine prediction model and its application in evaluating stoichiometry and multi-site 

linkages. Chapter 6 will conclude chapter 2 to 5 and discuss about perspectives about potential 

future directions. 
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Chapter 2. Interferon inducible pseudouridine modification in human 

mRNA by quantitative nanopore profiling 
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2.1 Introduction 

Pseudouridine (Ψ) is the second most abundant mRNA modification in the mammalian 

transcriptome as measured by quantitative mass spectrometry (X. Li et al., 2015) and may exert 

many cellular functions. For example, Ψ incorporation in synthetic, transfected reporter mRNA 

increases translation (Kariko et al., 2008) through decreased activation of the RNA-dependent 
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protein kinase (PKR) (B. R. Anderson et al., 2010). The innate immune evading property of Ψ 

(and its methylated derivative N1-methyl-Ψ) in mRNA is essential to the remarkable 

immunogenicity of successful COVID-19 mRNA vaccines (Jackson et al., 2020). 

Functional exploration and mechanistic investigation of mRNA Ψ modification requires 

appropriate mapping methods. Illumina sequencing of Ψ in mRNA relies on chemical RNA 

treatments that induce stop, mutation or deletion signatures in cDNA synthesis (Carlile et al., 

2014; Khoddami et al., 2019; X. Li et al., 2015; Schwartz et al., 2014; K. I. Zhou et al., 2018). 

Many computational methods have been developed to map mRNA Ψ sites (Bi et al., 2020; Chen 

et al., 2016; Hassan et al., 2022; He et al., 2018; Khan et al., 2020; F. Li et al., 2021; Y. H. Li et 

al., 2015; K. Liu et al., 2020; Lv et al., 2020; Song, Chen, et al., 2020; Tahir et al., 2019). 

However, mRNA Ψ mapping is inconsistent among these studies, in part due to the high false 

positives and negatives generated by the chemical treatments. The read-length limitation of 

Illumina sequencing also narrows the possibility to examine Ψ usage in mRNA splice isoforms 

and the linkage of multiple Ψ sites in single molecules. 

The emergence of nanopore sequencing enables direct interrogation of RNA 

modifications (Garalde et al., 2018; Huanle Liu et al., 2019; Rachael E Workman et al., 2019) . 

Additionally, nanopore sequencing can extend to the full length of the mRNA (Drexler, Choquet, 

& Churchman, 2020), revealing all modified sites in single RNA isoforms (Daniel A Lorenz, 

Shashank Sathe, Jaclyn M Einstein, & Gene W Yeo, 2020).  Both signal strength and dwell time 

have been used to identify Ψ (Aaron M Fleming, Nicole J Mathewson, Shereen A Howpay 

Manage, & Cynthia J Burrows, 2021). Previously, a nanopore direct RNA sequencing method, 

nanoRMS was developed by Novoa and co-workers that employs characteristic base calling 

“error” features in the nanopore data for Ψ mapping (Oguzhan Begik et al., 2021). NanoRMS 



 48 

identified new Ψ sites in mitochondrial rRNA, small nuclear RNA, small nucleolar RNA, and 

mRNA under normal and stress conditions in yeast and further, predicted stoichiometry via 

supervised learning. Although nanoRMS prediction of Ψ site incorporation using a threshold for 

base mismatch frequency is straightforward, it is unclear whether this approach can be applied to 

the mammalian transcriptomes, which are much larger than yeast, can contain introns, and occur 

in multiple isoforms. For example, the standard Tombo software for nanopore data analysis is 

ineffective with spliced reads. In this chapter, we developed a new machine learning based 

pipeline for transcriptome wide pseudouridine identification from nanopore direct RNA 

sequencing data. We named the pipeline Nanopore investigation of Pseudouridine or 

“NanoPsu”. 

 

2.2 Results 

2.2.1 Nanopore Ψ prediction model 

The core component of the computation pipeline is the machine learning model for 

pseudouridine prediction. We aim at developing a “single mode” supervised learning model. 

Thus, training materials from known pseudouridine sites are required. Ribosome RNA is 

enriched of pseudouridine sites with high stoichiometry and is good material for training. To 

maximize our ability to obtain nanopore training data from as many distinct Ψ sites as possible, 

we generated a mixture of rRNAs from human, yeast, C. elegans, Drosophila, and from human 

fecal bacteria (Fig. 2.1a). We Illumina sequenced half of the mixture after fragmentation, using 

the bisulfite reaction (Khoddami et al., 2019) to map rRNA Ψ sites, providing a total of 2,142 Ψ 

sites (Table 2.1). In Illumina sequencing of the bisulfite method, Ψ sites are found by RT 

deletions which enables identification and quantitative assessment of closely spaced rRNA Ψ 
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sites; these sites are more difficult to assess using the more commonly used carbodiimide method 

that identifies Ψ sites by RT stops. To note, we do not achieve stoichiometry information from 

the Illumina sequencing results and the rRNA pseudouridine sites are not supposed to be all 

100% modified. Thus the quantification information is not available for nanopore model training 

and the nanopore model is a classification model rather than a regression model.  

 

 
Table 2.1 Number of  rRNA Ψ sites identified by Illumina sequencing 
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Sequencing the second half of the rRNA sample via nanopore direct RNA sequencing, we 

found that 640 of these Ψ sites passed our filter of 20 read coverage for further analysis (Table 

2.2). The lower number of Ψ sites in nanopore sequencing was in part derived from the 3’ bias of 

the nanopore sequencing library design where all reads start from the 3’ end of the rRNA. These 

 
Figure 2.1 Ψ prediction model training using model organisms and microbiome rRNA Ψ 
modification 
(a) Overview of the experiments to generate the Ψ prediction model by nanopore sequencing. 
(b) Features of a region in human 18S rRNA from Illumina sequencing and nanopore 
sequencing. (c) Features of a region in a microbial rRNA from Illumina sequencing and 
nanopore sequencing. (d) Box and Whisker plots with 1.5 times interquartile range of the 12 
feature candidates of U and Ψ sites derived from nanopore sequencing. Ins, insertion rate 
after the base. Ins_len, insertion length mean. Del, deletion rate after the base. Del_len, 
deletion length mean. Del_site, deleted site ratio (the site is in a deletion). Mis, overall 
mismatching ratio. Mis_A, mutation to A ratio. Mis_C, mutation to C ratio. Mis_G, mutation 
to G ratio. Base_qual_mean, average base quality score. Base_qual_STD, base quality score 
standard deviation. Base_qual_count_0, ratio of bases with a quality score 0 at a site. 
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640 sites were combined with 689 randomly chosen unmodified U sites as the training material 

(Table 2.3). The pseudouridine and unmodified U sites covered 236 of the 256 NN(Ψ/U)NN 

possible 5mer motifs. These sites are from multiple species and thus the trained model could also 

be applied to multiple species. 

 

High quality features are essential for model performance. NanoRMS (Oguzhan Begik et 

al., 2021) found that Ψ had negligible effect on nanopore current signals, which means it is hard 

to directly identify Ψ from the current squiggles like m6A (Piroon Jenjaroenpun et al., 2021; 

Daniel A Lorenz et al., 2020; Rachael E Workman et al., 2019). However, distinct features could 

be found for Ψ identification. For instance, like NanoRMS, we found that apparent mutation to C 

is a prominent signature for Ψ modification, with apparent deletion also significant for some Ψ 

sites (Fig. 2.1b, c). In total, we examined 12 features of base calling errors for the targeted sites, 

 
Table 2.2 Number of reads in the model organisms or in microbiome in nanopore 
sequencing 
 

 
Table 2.3 Number of U and Ψ sites used in the nanopore Ψ prediction model training 
determined by Illumina sequencing in the model organisms or in microbiome 
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including insertion, insertion length, deletion after the site, deletion length after the site, whether 

the site is deleted or not, total mismatch, mutation to A ratio, mutation to C ratio, mutation to G 

ratio, base quality score mean, base quality score standard deviation and count of reads with base 

quality score 0 at the site, and found that Ψ sites tend to have lower base quality mean values and 

standard deviation (Fig. 2.1d). All the 12 features are extracted from the sequencing data 

independent from sequence content or coverage. The information from flanking sites is not 

considered in this model, as pseudouridine is not highly enriched in any specific motifs like m6A 

in DRACH. The neighboring effects of different types of flanking bases on the targeted sites are 

mixed in a pool and averaged out with each other. The ternary plot of mutation signatures 

confirmed Ψ sites having a strong preference to be read as a C but not A or G (Fig. 2.2a). The 

significance of these features was shown in the correlation heatmap of all features and the 

modification states (Fig. 2.2b). We made extremely randomized trees (EXT) models to carry out 

Ψ probability prediction for each U site. To decide the combination of features included in the 

model, we added one feature at a time in the order of their correlation strength with the 

modification label. This revealed that the performance of Ψ calling maximized when all 12 

features were included (Fig. 2.2c). Using the optimized parameters of our EXT model, its 

performance was evaluated by the testing set with an area under curve (AUC) of 0.9383 (Fig. 

2.2d) and the predicted results highly overlap with the true labels (Fig. 2.2e). We choose to keep 

the predicted “pseudouridine probability” as a score to evaluate the likelihood of a site to be 

pseudouridine instead of calling either pseudouridine or unmodified U sites based on a threshold. 

In this way, less information is lost, and it is easier to do statistical analysis for the distributions 

of the scores. It could be imagined that a score of 0.01 and 0.48 definitely means something 

different but they will both be called unmodified and they will be viewed as the same in the 
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downstream analysis if we choose to set a threshold. To note, pseudouridine probability is a score 

and does not represent the modification fraction, although they are positively correlated with 

each other. 

 

 

 
Figure 2.2 Ψ prediction features and model training process 
(a) Mutation preference for the Ψ sites in all rRNAs in a ternary plot. Red, Ψ sites in model 
organisms. Blue, Ψ sites in the microbiome. (b) Correlation matrix of modification state (Ψ=1, 
U=0) and the 12 feature candidates. The value of correlation coefficient is indicated in each 
box. Same labels as panel d. Label type, modification state. (c) ROC (receiver operating 
characteristic) curves of EXT models with different numbers of features included. The number 
of features and AUC (aera under curve) values of each model are indicated by the legend. The 
features are added to the model in the order of their correlation with the modification state 
indicated in panel f. For example, 1 feature means “mis_C”, 2 features means “mis_C” 
and ”mis”, and so on. (d) ROC curve of the testing set predicted by the optimized EXT model. 
The AUC value is indicated in the graph. (e) Density plot of predicted Ψ modification 
probabilities of U and Ψ sites of bulk read prediction in the testing set. 
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2.2.2 Apply NanoPsu to study effect of interferon treatment 

Interferons (IFNs), cytokines produced by nearly all cell types during viral and other 

microbial infections, play crucial roles regulating immune response (Lee & Ashkar, 2018). 

mRNA vaccines incorporate Ψ or m1Ψ to evade host cell foreign RNA sensing and enhance 

mRNA translation. However, it is unclear whether endogenous mRNAs also use the same 

strategy through Ψ modification. IFNs can induce the expression of more than a thousand 

interferon stimulated gene (ISG) transcripts. ISGs includes protein kinase R (PKR) which 

phosphorylates eIF2α to reduce global translation. It is well established that Ψ-modified reporter 

mRNA activates PKR much less than the same unmodified mRNA, and is translated at much 

higher levels (Bart R Anderson et al., 2010). We therefore hypothesize that ISG transcripts may 

have elevated levels of Ψ modification to enhance translation in the presence of PKR. 

We tested this hypothesis by treating cells with either IFN-γ or IFN-β followed by 

nanopore direct RNA sequencing (Fig. 2.3a). IFN treatments worked well as determined by 

upregulation of surface MHC class I (Fig. 2.3b). The mRNA expression levels of the biological 

replicates were highly correlated (Fig. 2.3c). For improved coverage we combined the nanopore 

data from the biological replicates for downstream analysis (Table 2.4). We found strongly up-

regulated mRNA transcripts upon IFN treatment that belong to the ISG genes with the expected 

gene ontology of interferon signaling pathway and viral defense (Fig. 2.3d, e). These results 

indicate the feasibility of using nanopore sequencing to study the interferon response 

transcriptome. 
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Table 2.4 Read count of each run and read count of the combined samples before and 
after down sampling 
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We used NanoPsu to predict pseudouridine probabilities of all sites in the IFN treated and 

untreated samples. In total, ~2.6 million U sites were analyzed in each transcriptome (Fig. 2.4a). 

We found a “RAΨU” motif and the previous revealed (Modi Safra, Nir, Farouq, Slutskin, & 

Schwartz, 2017) “GUΨC” motif among top Ψ sites in the untreated sample (Fig. 2.4b). The Ψ 

sites belonging to “median” or higher groups in the previous study (Modi Safra et al., 2017) 

 
Figure 2.3 Interferon treatment experiment overview 
(a) Scheme of the experiment. HeLa cells were treated with either IFN β or IFN γ for 24h or 
not treated. RNA was extracted and used for nanopore sequencing.  (b) Flow cytometry 
results of the three samples showing the expression of class I MHC molecules upon interferon 
treatment. (c) Expression levels of biological replicates of each sample. Correlation 
coefficient for untreated, IFN β and IFN γ samples are 0.9832, 0.9840 and 0.9711 (Pearson’s 
r) respectively. (d) Log10 expression levels of genes in untreated sample and IFN β treated 
(left) or IFN γ treated (right) samples. Expression level is calculated as the peak height of the 
piled reads. Red, genes with an increase of > 2 fold in expression. Blue, genes with a decrease 
of > 2 fold in expression. (e) GO terms of genes with >10 fold increase in expression levels in 
IFN β (top) or IFN γ (bottom) sample compared with untreated sample.  
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showed significantly higher predicted Ψ probabilities than other U sites in the untreated sample 

(Fig. 2.4c), indicating that our method has consensus with the previous published method on 

pseudouridine prediction. For the 500 sites with the highest pseudouridine probability, the three 

samples shared some but also had distinct sites (Fig. 2.4d). However, IFN treated samples had a 

wider range of GO terms than the untreated sample (Fig. 2.4e), suggesting that Ψ modification 

becomes more widespread to transcripts belonging to more diverse cellular processes.  

 

Going beyond the top 500 probable Ψ sites, globally the upregulated gene transcripts had 

higher average pseudouridine probabilities for IFN treated samples over untreated samples (Fig. 

2.5a). A higher magnitude of increase in expression level has the preference for a higher level of 

pseudouridine probability increase (Fig. 2.5b, c). Increased average Ψ probability in a mRNA 

 
Figure 2.4 Ψ modification overview in samples 
(a) Venn diagram of U sites with over 20 read coverage in three samples used for Ψ analysis. 
(b) Sequence logo of dominant motifs of 10000 sites with highest Ψ modification 
probabilities (top panel) and sites within GUΨC motif (lower panel) in untreated sample.  (c) 
Cumulative distribution curves of Ψ probabilities of sites predicted as at least “median” level 
Ψ in Safra et al., 2017 (“Ψ”) and other U sites (“U”), p <2.2e-16.  (d) Venn diagram of the 
500 U sites with the highest Ψ modification probabilities in each sample. (e) Venn diagram of 
the GO terms of the genes containing the 500 U sites with the highest Ψ probabilities in each 
sample. 
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transcript could be attributed to increased number of Ψ sites and/or increased modification 

fraction of modified sites. The top 50 genes with highest increase in Ψ probability were related to 

the interferon pathway and anti-viral response (Fig. 2.5d), they included 88.5% of all genes 

with >10-fold increase and 60.9% of all genes with >5-fold increase in mRNA expression (Fig. 

2.5e). These results are consistent with increased Ψ modification in the transcriptome upon 

interferon treatment enhancing ISG function.  
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Figure 2.5 Interferon treatment elicits more Ψ modification in mRNA 
(a) Scatter plot showing the mean modification probability change versus log10 expression 
fold change of each gene between untreated and IFN β treated (left) or IFN γ treated (right) 
sample. Red, genes with an increase of > 2 fold in expression. Blue, genes with a decrease 
of > 2 fold in expression. (b) Mean Ψ modification probability of genes assigned to groups 
based on expression fold change between untreated and IFN β treated (left) or IFN γ treated 
(right) samples. ***, p<10-3, ****, p<10-4. (c) Difference of mean Ψ modification 
probabilities of genes between IFN β (left) or IFN γ (right) sample and untreated sample 
grouped by expression fold change.  (d) GO analysis of the 50 genes with highest mean Ψ 
probability change between untreated and IFN β treated (top) or IFN γ treated (bottom) 
samples. Blue vertical line indicates p=0.05. (e) Mean Ψ probability change of the highest 50 
genes between untreated and IFN β treated (left) or IFN γ treated (right) samples. Genes with 
a significant increase in expression levels are marked in red (>10 fold) or orange (5-10 fold). 
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2.2.3 Validation of increased Ψ by RT-qPCR 

To investigate if the results above predicted by NanoPsu is convincing, we use a RT-

qPCR method to validate the increased Ψ level in the ISG transcripts. Our method takes 

advantage of the standard Ψ detection method using N-cyclohexyl-N′-(2-morpholinoethyl) 

carbodiimide (CMC). The Ψ-CMC adduct introduces a RT stop in cDNA synthesis which 

reduces the amount of cDNA product compared to the control reaction without CMC. The 

differential amount of the cDNA product can then be precisely measured using real-time qPCR 

(Fig. 2.6a). We first showed that the actin mRNA did not change its abundance nor its Ψ level, 

making it an appropriate internal control for comparing the Ψ levels of the ISG transcripts (Fig. 

2.6b, c, left panels). Ψ level increase in the ISG15 mRNA upon interferon treatment was 

validated upon normalization of its expression level and to the actin mRNA within the same 

sample (Fig. 2.6b, c, right panels). The RT-qPCR results validate the NanoPsu predicted increase 

in average pseudouridine probabilities in ISG transcripts. 



 61 

 

 

2.3 Discussion 

In summary, we generated a supervised-learning-based protocol to predict Ψ modification 

in the human transcriptome and analyzed Ψ on single reads which allows for the evaluation of 

stoichiometry and linkage between distal Ψ sites in the same mRNA molecule. Human genome 

contains 13 confirmed and putative Ψ installation enzymes (Erin K Borchardt, Nicole M 

 
Figure 2.6 Validation of Ψ modification increase in ISG transcripts  
(a) Scheme of CMC-mediated RT-qPCR (CRP) validation of Ψ level in specific mRNA 
transcripts. Total RNA is first treated with and without CMC. Ψs in RNA form Ψ-CMC 
adducts which cause RT stops. cDNA synthesis uses T22VN primer targeting the 3’ polyA 
tail. Using –CMC RNA as RT template generates longer cDNA products than using +CMC 
treated RNA. The relative cDNA amount difference is quantified using qPCR with multiple 
sets of PCR primers targeting different regions of the cDNA. Cq or CT values are obtained 
for data analysis and comparative analysis of Ψ levels. (b) Relative Ψ level of mRNA 
transcript of ACTB (left panel, data from set 1 and set 2 primers) and ISG15 (right panel, data 
from set 1, set 2, and set 3 primers) in the untreated and interferon treated samples measured 
by RT-qPCR. * p < 0.05; ** p < 0.01. (c) The Cq values from the CRP validation experiment. 
Data points are from the biological replicate of the untreated and interferon treated samples. 
ActB transcript does not show a difference upon CMC treatment and in all samples; this 
transcript is used as the control for other mRNA transcripts in the same sample. ISG15 is an 
interferon stimulated gene transcript. “-1” refers to the specific qPCR primer set (see 
Methods). 
 



 62 

Martinez, & Wendy V Gilbert, 2020), suggesting that Ψ installation is a highly robust and 

dynamic process in human cells. How these enzymes coordinate or antagonize their activities 

remains to be determined. We found a biological response of Ψ modification change in 

endogenous mRNA upon IFN treatment which is consistent with Ψ playing a role in IFN 

signaling pathway and viral defense. 

There are also limitations of the Ψ model. First of all, although the performance is 

satisfying for model training, validation and testing, there is still room for improvement for more 

practical usage in biological samples. The model was trained on a balanced dataset, while in the 

real world samples, the ratio of Ψ is much smaller that unmodified U, which means good 

prediction with low false positive rate requires extremely high model accuracy. 

Second, the training material is not perfect. The reported Ψ sites in the previous NGS 

based papers didn’t overlap a lot, while supervised learning models rely heavily on high quality 

labeled date. Also, Ψ sites distribution may be different for different samples so the sites 

modified in the previous papers may not be modified in our own samples, even if they are from 

the same cell line. Instead, we use the same sample for known Ψ sites calling and nanopore 

model training, which make sure that the Ψ modification state of each site is the same for our 

Illumina data and nanopore data. However, this relies on the high accuracy of called Illumina 

pseudouridine sites by BID-seq, which could never reach 100%. Thus, the true labels of the 

training data are not 100% correct. This also reflect the complexity of machine learning on 

biological problems or natural science problems. Unlike tasks like distinguishing cat pictures 

from dog pictures where we can 100% correctly label all the training data, it’s hard for most 

biological questions to have 100% correct materials for training and thus the models may work 

well during training but not in practical use. 
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Third, the information from nanopore sequencing data is not fully used and understood. 

Ψ does not have a strong preference for any specific motif, probably due to the existence of 

thirteen synthases which may prefer different motif patterns. In this condition, although we know 

that the signals of flanking sites are also affected by the modification site, it’s hard to use the 

information from flanking sites, as they are from all possible types of base combinations. One 

possible solution is to train a model for each motif, but unlike m6A, pseudouridine is not 

enriched in any motif and its ratio in any single motif is very low. Also it’s hard to find enough 

known pseudouridine sites for each motif, if we divide all known sites by 256 for all possible 

5mer motifs. 

Using pseudouridine sited from rRNA makes it easy to achieve highly modified high 

density pseudouridine sites, which facilitate the model training. However, there is also risks 

using rRNA as training materials. First, rRNA is not only heavily modified by pseudouridine but 

also by other modifications like 2’-methyl. The signals of other modifications could interfere 

with the signals from pseudouridine and thus result in bias in the models. Also, the sequence 

content, modification density and average modification stoichiometry of rRNA is different from 

mRNA, which may result in systematic bias for mRNA applications. However, this problem is 

not for rRNA training materials solely and those models trained on synthesized RNA sequences 

will also have the same problem. Probably only making a “compare mode” model with WT and 

pseudouridine depleted cell samples will not have such problem but as there are too many 

pseudouridine synthases in cells it will be extremely difficult to generate pseudouridine depleted 

samples. 
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2.4 Methods 

2.4.1 Stool sample collection and total RNA extraction 

Stool specimens were self-collected by 1 female volunteer using a commercial “toilet 

hat” stool specimen collection kit (Fisherbrand Commode Specimen Collection System; Thermo 

Fisher Scientific, 02-544-208). Specimens were immediately transported to the laboratory (<1-

hr) and thoroughly homogenized. 100 mg stool was transferred into a cryovial using a sterile 

spatula and 700 µl RNAlater Stabilization solution was added. Specimens were stored at -80 °C 

until extraction. 

RNA later was first removed from stool sample by centrifugation at 17,200 rcf for 10 

minutes at 4 °C. Pelleted material was lysed in 400 μL of 0.3M NaOAc/HOAc,10mM EDTA, pH 

4.8 with an equal volume of acetate-saturated phenol:chloroform pH 4.5 (Invitrogen, AM9722). 

After addition of 1.0 mm glass lysing beads (Bio-Spec Products, 11079110) in a 1:1 ratio 

(bead:sample weight), samples were placed in a reciprocating bead beater (Mini-Beadbeater-16, 

Bio-Spec Products) for two 1-min intervals on maximum intensity. Samples were centrifuged at 

17,200 rcf for 15 minutes at 4 °C before re-extraction and isopropanol precipitation of total 

RNA. Pellets were washed with 75% ethanol before resuspension in an acid-buffered elution 

buffer (10mM NaOAc, 1mM EDTA, pH 4.8). 

 

2.4.2 rRNA mixture sample preparation 

A mixture of human HEK293T, yeast BY4741 strain, Drosophila S2 cells, and C. elegans 

whole animal and stool microbiome total RNA was made by mixing 1 µg RNA from each model 

organism sample and 8 µg total RNA from a stool microbiome sample. ZYMO RNA Clean & 

Concentrator-5 (R1013) kit was used on this mixture to remove all small RNAs <200nt. The 
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final sample was eluted with 20 µl RNase-Free H2O. The mixture was split into two halves. One 

half was used for Illumina sequencing (see below). For nanopore sequencing, the other half was 

polyadenylated by yeast Poly(A) Polymerase (ThermoFisher 74225Z25KU) by incubation with 

0.48 mM ATP, 20 U/µL Poly(A) Polymerase and 1x Poly(A) Polymerase Reaction Buffer at 

37 °C for 15 min. The product was size selected using ZYMO RNA Clean & Concentrator-5 

(R1013) kit and RNA molecules >200nt were retained. The sample was eluted with 20 µL 

RNase-Free H2O. Then ~500 ng of this rRNA mixture was used for nanopore direct RNA seq 

library preparation and nanopore direct RNA sequencing described below. 

 

2.4.3 rRNA mixture Illumina sequencing and mapping 

For Illumina sequencing, bisulfite treatment was performed as described 

previously(Khoddami et al., 2019). Ψ modification was identified through the deletion at the Ψ 

site in the sequencing data. Raw reads were demultiplexed via a 4nt barcode on read 2 using je 

suite (Girardot, Scholtalbers, Sauer, Su, & Furlong, 2016) with the following parameters: je 

demultiplex F1=#read1 F2=$read2 BF=$barcode_key BPOS=BOTH BM=READ_2 LEN=6:4 

O=$output. Only read 2 from paired-end reads were mapped with bowtie2 (version: bowtie2-

2.3.3.1-linux-x86_64) (Langmead & Salzberg, 2012) using the following parameters: bowtie2 -x 

$reference -U $read2   -S $ouput -q -p 10 --local --no-unal. Reads were mapped to either a set of 

rRNA from model organisms, or a set of bacterial rRNA reads: rfam family RF02541 (bacterial 

large subunit) and RF00177 (bacterial small subunit). SAM files from bacterial rRNAs were 

processed with a custom python script to count the total number of reads mapping to each 

sequence. Only sequences with >1000 reads were processed further. Model organism rRNA 

sequences from human (NCBI: NR_003286.4, NR_003287.4), yeast (RNACentral: 
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URS00005F2C2D_559292, URS000061F377_4932), C. elegans (RNACentral: 

URS00005A42AA_6239, URS00008C9AB9_6239), and Drosophila (RNACentral: 

URS000030AF9A_7227, URS000008C6A9_7227) to form a reference genome for bowtie 

mapping. Bowtie2 output “sam” files were converted to sorted bam files with samtools (Heng Li 

et al., 2009). IGV was used to calculate deletion rates with the following parameters: igvtools 

(Robinson et al., 2011) count -z 5 -w 1 -e 250 --bases $input $output $reference. Custom python 

scripts were used to reformat the “wig” file. 

 

2.4.4 Nanopore direct RNA seq library preparation and sequencing 

The library preparation followed the protocol of Direct RNA Sequencing Kit (SQK-

RNA002) provided by Oxford Nanopore Technology. Briefly, ~500 ng of Poly(A)+ RNA sample 

was used for each run. Each single run contained one biological replicate of one sample. The RT 

Adaptor (RTA) was ligated to the 3’ end of Poly(A)+ RNA by T4 DNA ligase (NEB M0202S) 

and then reverse transcribed by SuperScript III Reverse Transcriptase (ThermoFisher 12574018). 

The RNA was purified by 1.8x RNAClean XP beads (72 µL) (Beckman Coulter A63987) and 

then the RNA Adaptor (RMX) was ligated to the 3’ end of Poly(A)+ RNA using T4 DNA ligase 

(NEB M0202S) and then the RNA was purified with 1x RNAClean XP beads (40 µL). The 

sample was eluted with 21 µl Elution Buffer. Then the sample was loaded onto a R9.4.1 flow cell 

(FLO-MIN106D) in a MinION sequencer. Each flow cell was sequenced for 72 hours. 

 

2.4.5 Nanopore data pre-processing 

All raw fast5 files generated during sequencing were uploaded to Midway2 cluster for the 

following steps. Reads were base called by guppy base caller (version 3.2.2+9fe0a78) with 
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min_qscore 7. The reads were aligned to by minimap2 (version 2.18-r1015) (H. Li, 2018) with 

parameters -ax splice -uf -k14. The rRNA mixture reads are aligned to the same reference as the 

rRNA Illumina seq data described above. The human mRNA reads are aligned to the hg38 

human genome reference (GRCh38.p13). The mapped reads were piled up to the reference 

chromosomes by samtools (v1.11). The “error” features were extracted from the mpileup files by 

customized python scripts (https://github.com/sihaohuanguc/Nanopore_psU). 

 

2.4.6 Model training 

For nanopore seq data of rRNA, all sites mapped to “T” in the reference with >20 

coverage made up the data pool. 640 Ψ sites revealed by Illumina sequencing and 689 randomly 

selected U sites from the data pool made up the model training dataset. The dataset was divided 

into 60% training set, 20% validation set and 20% testing set. The Ψ modification prediction 

models were generated by training set and validated with the validation set by extremely 

randomized trees (EXT) models with 1-12 features and customized parameters. Then the models 

were applied to predict Ψ modification probabilities of the testing set and evaluated by AUC of 

ROC (Receiver Operating Characteristic) curves derived from the predicted probabilities of the 

testing set. The final model used EXT algorithm (n_estimators=200, criterion="gini", 

max_depth=None, min_samples_split=2) with 12 features. 

 

2.4.7 HeLa cell culture and interferon treatment 

HeLa cells (ATCC, authenticated and tested for mycoplasma contamination) were 

cultured in the presence of 500 U/mL human interferon gamma (IFN γ, Peprotech), 500 U/mL 

human interferon beta (IFN β, Peprotech), or left untreated, with biological duplicates for each. 
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Cells were incubated for 24 hours, and an aliquot of each was processed for flow cytometry. 

Cells were washed into a flow cytometry staining buffer (FBS-containing RPMI and Hanks’ 

Balanced Salt Solution) containing the anti-pan-MHC-I antibody W6/32 (BioXcell) conjugated 

with AlexaFluor 647 (Invitrogen). Cells were then washed 3x and analyzed by a Fortessa X-20 

(BD Biosciences) to determine upregulation of MHC class I. The rest of the cells were used for 

RNA extraction via the RNeasy Mini kit (Qiagen) following the manufacturer’s protocol. RNA 

was eluted in pure water and quantified by Nanodrop (Thermo). PolyA+ RNA from 50 µg total 

RNA of each sample was extracted by Promega PolyATtract® mRNA Isolation Systems Z5310. 

Each sample was eluted with 15 µL H2O. 

 

2.4.8 Prediction of Ψ in HeLa samples 

The raw data of two replicates for the untreated, IFN γ treated and IFN β treated samples 

were merged after aligned to the hg38 human genome reference (GRCh38.p13). The merged 

samples were down sampled so that they have almost the same number of reads and are directly 

comparable. The Ψ modification probabilities of all sites mapped to “T” in the reference with 

over 20 coverage were evaluated by the EXT model generated with the rRNA mixture sample. 

The coverage independence of Ψ probability was examined by down sampling all sites of the 

samples to similar coverages (expectation = 30) using different random seeds. We found that the 

change in mean Ψ probability of the transcripts maintained the same after down sampling. The 

coverage completeness of the transcripts was checked by counting the U sites predicted in the 

samples (Quinlan & Hall, 2010). For the untreated sample, the U sites within 5’UTR, CDS and 

3’UTR represented 2.43%, 42.84% and 54.73% of all U sites, respectively. The gene information 

was provided by the comprehensive gene annotation file (gencode.v37.annotation.gff3) in the 
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GENCODE database (https://www.gencodegenes.org) (Adam Frankish et al., 2021). The gene 

ontology (GO) analysis was performed using the Gene Ontology Resource 

(http://geneontology.org) (Ashburner et al., 2000; "The Gene Ontology resource: enriching a 

GOld mine," 2021). The sequence logo plots were generated by MEME (https://meme-

suite.org/meme/tools/meme) (Bailey, Johnson, Grant, & Noble, 2015). 

 

2.4.9 CMC-mediated RT-qPCR (CRP) validation of Ψ level in mRNA transcripts 

2.4.9.1 Primer design 

qPCR primers were designed using NCBI Primer-BLAST tool 

(https://www.ncbi.nlm.nih.gov/tools/primer-blast/). 2-3 sets of primers were selected to cover the 

3’ end, middle and 5’ end region of the whole transcript. qPCR was performed with TaqMan 

style fluorescent probes. Probes for each PCR primer pair were designed using IDT PrimerQuest 

tool (https://www.idtdna.com/pages/tools/primerquest) and examined using NCBI nucleotide 

BLAST. Primers and probes were purchased from IDT. Actin (NM_001101.5) and ISG15 

(NM_005101.4) transcripts were selected for Ψ validation. Below is the list of the sequences of 

qPCR primers and probes. 

ISG15 primer1-Forward: GTGGACAAATGCGACGAACC 

ISG15 primer1-Reverse: ATTTCCGGCCCTTGATCCTG 

ISG15 probe1:  5'- /56-FAM/TCC TGG TGA /ZEN/GGA ATA ACA AGG GCC /3IABkFQ/ -3' 

ISG15 primer2-Forward: GCGCAGATCACCCAGAAGAT 

ISG15 primer2-Reverse: GTTCGTCGCATTTGTCCACC 

ISG15 probe2:  5'- /56-FAM/TTC CAG CAG /ZEN/CGT CTG GCT GT /3IABkFQ/ -3' 

ISG15 primer3-Forward: CAGCGAACTCATCTTTGCCAG 
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ISG15 primer3-Reverse: GACACCTGGAATTCGTTGCC 

ISG15 probe3:  5'- /56-FAM/TGG GAC CTG /ZEN/ACG GTG AAG ATG C/3IABkFQ/ -3' 

ACTB primer1-Forward: ACAGGAAGTCCCTTGCCATC 

ACTB primer1-Reverse: CAGTGTACAGGTAAGCCCTGG 

ACTB probe1:  5'- /56-FAM/ACA CGA AAG /ZEN/CAATGCTATCACCTCCC/31ABkFQ/ -3' 

ACTB primer2-Forward: AGATGTGGATCAGCAAGCAGG 

ACTB primer2-Reverse: GGGGGATGCTCGCTCCA 

ACTB probe2:  5'- /56-FAM/TCG TCC ACC /ZEN/GCA AAT GCT TCT AGG /31ABkFQ/ -3' 

 

2.4.9.2 CMC-mediated RT-qPCR (CRP) experiment 

CMC [N-cyclohexyl-N′-(2-morpholinoethyl) carbodiimide] treatment was done as 

previously described (W. Zhang, Eckwahl, Zhou, & Pan, 2019). 1.5 μg of untreated, IFNβ 

treated, and IFNγ treated total RNA in 12 μl was mixed with 24 μl TEU buffer (50 mM Tris-HCl 

(pH 8.3), 4 mM EDTA, 7 M urea) in microcentrifuge tubes. 4 μl freshly made 1 M CMC (Sigma, 

C1011) in TEU buffer or 4 μl TEU buffer was added to each sample for +CMC or -CMC 

treatment, respectively. The sample mixture in 40 μl 0.7× TEU was incubated at 37 ºC for 1 hour. 

The mixture was diluted to 200 μl with 160 μl of 50 mM KOAc (pH 7), 200 mMKCl. 1 μl 5 

μg/μl glycogen and 550 μl ethanol were added to the mixture to precipitate RNA at -80 ºC for >2 

hours. The mixture was then centrifuged at highest speed (17000× g) for 30 min. The RNA 

precipitate was mixed with 500 μl 75% ethanol and kept at -80 ºC for >2 hours followed by 

centrifugation at 17000× g for 30 min. The washing step was repeated once. The RNA precipitate 

was mixed with 50 μl of 50 mM Na2CO3, 2 mM EDTA (pH 10.4), and incubated at 37 ºC for 6 

hours to remove CMC-U/CMC-G adducts. The RNA was purified using Zymo RNA Clean and 
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Concentrator column (Zymo, R1014) with in-column DNase treatment by following the 

manufacturer’s manual. The RNA was eluted in 11 μl sterile H2O. The concentration of the 

±CMC treated RNA was measured using Nanodrop and equal amount (~300 ng) of total RNA 

was used for RT-qPCR experiment. 

Eleven μl of 300 ng ±CMC treated total RNA from Untreated/IFNβ/IFNγ samples were 

mixed with 1 μl 50 μM 5’T22VN (V=A,C,G, N=A,C,G,T) primer (IDT) and 1 µl 10 mM dNTP 

mix. The mixtures were incubated at 65 ºC in thermal cycler for 5 mins followed by incubation 

at room temperature for 3 min. The PCR tubes were kept on ice until the addition of the 

SuperScript IV RT mix. 7 µl RT mix was prepared for each sample by combining 4 µl 5× SSIV 

Buffer, 1 µl 100 mM DTT, 1 µl RNaseOUT RNase inhibitor, and 1 µl SSIV reverse transcriptase. 

7 µl RT mix was added to each PCR tube. The tubes were incubated at 55 ºC in thermal cycler 

for 1.5 hours. The PCR tubes were then incubated at 80 ºC for 10 min followed by incubation on 

ice immediately to deactivate RT. 45 µl sterile H2O was added to each tube to dilute the RT 

mixture to 65 µl, and 2 µl was used for qPCR reaction. 

qPCR reaction was performed in 10 µl consisting of 5 µl 2× PrimeTime Gene Expression 

Master Mix (IDT, 1055772), 2 µl RT mix, and 3 µl primer and probe mix. 3 µl primer and probe 

mix (1.5 µM each PCR primer and 0.6 µM probe) were first added into each well of 384-well 

plate or 96-well plate. RT mix of each sample and 2× PrimeTime Gene Expression Master Mix 

were mixed at 2:5 ratio to make master mix based on the number of qPCR reactions for each 

sample. 7 µl of the template and PrimeTime master mix were then added to each well. The plate 

was spun on a swing bucket plate centrifuge at 3000 RPM for 2 min. qPCR reaction was 

performed on Bio-Rad CFX384 or CFX96 qPCR machine for 40 cycles. Cq/CT values was 

obtained for follow-up data analysis. 
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Relative Ψ levels for ISG15 transcript was calculated using ACTB-1 as internal 

reference. First we obtained ΔCq(-) = Cq(ISG15,-CMC) - Cq(ACTB,-CMC), and ΔCq(+) = 

Cq(ISG15,+CMC) - Cq(ACTB,+CMC); then we obtained ΔΔCq(ISG15) = ΔCq(+) - ΔCq(-). The 

relative Ψ level is represented as 2^ ΔΔCq(ISG15).  
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Chapter 3. Nanopore sequencing protocol for simultaneous 

transcriptome wide m6A and pseudouridine profiling 
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3.1 Introduction 

N6-methyladenosine (m6A) and pseudouridine (Ψ) are the top two most abundant internal 

mammalian mRNA modifications according to the total m6A or Ψ content in total mRNA 

measured by mass spectrometry (I. A. Roundtree et al., 2017). m6A is the most extensively 

studied mRNA modification; it participates in many cellular processes including mRNA stability, 

splicing, export, localization, and translation (Frye, Harada, Behm, & He, 2018; I. A. Roundtree 

et al., 2017). The best known Ψ function is innate immune avoidance when in delivered mRNAs, 

as shown in the successful COVID-19 mRNA vaccines (Jackson et al., 2020); Ψ has also been 
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shown to affect splicing and translation (B. R. Anderson et al., 2010; Eyler et al., 2019; Kariko et 

al., 2008; Martinez et al., 2022). 

A major gap in the biological studies of m6A and Ψ is how they enhance or antagonize 

each other in the same mRNA transcript. The investigation of coordinated m6A and Ψ function 

requires mapping methods that can simultaneously report m6A and Ψ in the same sequencing 

library. So far, Illumina sequencing of m6A and Ψ has always been performed separately and 

independently. Nanopore sequencing has also been employed to map either m6A or Ψ in 

numerous studies and pipelines (O. Begik et al., 2021; A. M. Fleming, N. J. Mathewson, S. A. 

Howpay Manage, & C. J. Burrows, 2021; Gao et al., 2021; Hassan et al., 2022; Hendra et al., 

2022; S. Huang et al., 2021; P. Jenjaroenpun et al., 2021; Leger et al., 2021; F. Li et al., 2021; H. 

Liu et al., 2019; H. Liu, Begik, & Novoa, 2021; R. Liu et al., 2022; D. A. Lorenz et al., 2020; 

Parker et al., 2020; Piechotta, Naarmann-de Vries, Wang, Altmuller, & Dieterich, 2022; 

Pratanwanich et al., 2021; Price et al., 2020; Qin et al., 2022; Ramasamy, Mishra, et al., 2022; 

Ramasamy, Sahayasheela, et al., 2022; Stoiber et al., 2016; Tavakoli et al., 2023; R. E. Workman 

et al., 2019; F. Yu et al., 2023; Y. Zhang, Huang, Wei, & Chen, 2022), but these studies also 

considered m6A or Ψ separately. Therefore, no prior studies investigated the potential crosstalk 

between m6A and Ψ in the mRNA transcriptome. In this chapter, we develop a computation 

pipeline named Nanopore Simultaneous investigation for Pseudouridine and m6A (NanoSPA) 

that analyzes m6A and Ψ modifications in the same nanopore direct RNA sequencing dataset. We 

apply NanoSPA to both the human transcriptome with or without knocking down the m6A writer 

METTL3 or one of the thirteen Ψ writers TRUB1 to reveal their co-dependence, and to 

polysome associated mRNA samples to reveal their effects and co-dependence on translation. 
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3.2 Results 

3.2.1 A fused workflow for simultaneous m6A and pseudouridine identification 

To investigate m6A and Ψ at the same time, we aimed at designing a fused workflow 

(Fig. 3.1a) for base calling, alignment and feature extraction for these two modifications 

together, which saves processing steps and storage for different types of features from two 

independent protocols. It is obvious that for the same nanopore data, the protocol for base calling 

and alignment could be the same for different models. The feasibility of a fused workflow relies 

on the usage of same feature space for m6A and pseudouridine prediction. For Ψ prediction, we 

decided to use our previously published model of NanoPsu (S. Huang et al., 2021). The 

challenge here was to make models for m6A that could use the same set of features as NanoPsu. 

 

We checked the correlation of the 12 features used in NanoPsu with the modification 

state (m6A=1, A=0) (Fig. 3.2a). Both values of centered and flanking sites of the top 8 m6A 

enriched 5mer motifs are checked. To note, for each motif, some features are useless. For 

example, in “AGACA” motif, the feature “mutation to A at position 1” is always 0, as A means 

no mutation at this position in this motif. We chose to keep these useless features to simplify the 

 
Figure 3.1 NanoSPA method pipeline 
(a) Workflow of the NanoSPA pipeline. 
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process of feature extraction for all motifs and due to the fact that they are harmless to the 

models. Overall, we found that there are some significant features for each motif but the most 

significant ones for each motif are different. For example, “mutation to G at position 1” is useful 

for AGACT but not for TGACT, which means that A bases 2nt 5’ to m6A are likely to mutate to 

G in the nanopore signal but T bases at the same relative position don’t. Based on the difference 

in feature preference, we decided to keep all features for model training to simplify the feature 

extraction process for different motifs. The correlation map indicated that it’s possible to use this 

set of features to make models for m6A prediction. 

Of course, there is doubt whether it’s valuable to use the same set of features for m6A and 

pseudouridine models. The comparison of the fused workflow with other published nanopore 

direct RNA sequencing based workflows is shown below in section 3.2.4. 
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Figure 3.2 m6A prediction model features and training process in NanoSPA 
(a) Correlation between features of the five sites in the top 8 m6A motifs and modification 
state (m6A=1, A=0). The suffix 1-5 indicate the position of the base in each motif. Ins, 
insertion rate after the base. Ins_len, insertion length mean. Del, deletion rate after the base. 
Del_len, deletion length mean. Del_site, deleted site ratio (the site is in a deletion). Mis, 
overall mismatching ratio. Mis_C, mutation to C ratio. Mis_G, mutation to G ratio. Mis_T, 
mutation to T ratio. Base_qual_mean, average base quality score. Base_qual_STD, base 
quality score standard deviation. Base_qual_count_0, ratio of bases with a quality score 0 at a 
site. (b) Training process of the models for the 8 m6A motifs. Every two panels are for one 
motif. Left panel, training and validation accuracy. Right panel, training and validation loss. 
The order of the 8 motifs is AGACA, AGACC, AGACT, GGACA, GGACC, GGACG, 
GGACT, TGACT from left to right first and then from up to bottom. (c) ROC curves of the 8 
final FNN models on testing sets for the 8 m6A motifs that covers >90% of all m6A sites in 
our training data (Table S1). AUC is indicated for each motif. (d) Sum of the prediction 
results of the annotated m6A and A sites in the testing sets for the 8 m6A motifs.  
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3.2.2 m6A model development 

Since we are going to use the pseudouridine prediction model in NanoPsu for 

pseudouridine identification, the only thing we need to build is a new m6A prediction model. The 

reasons that we do not use a m6A model from a published method is shown below in section 

3.2.4, where we compare the performance of our model with other methods. To make the output 

of two modifications in the same format, we decided to make a “single mode” supervised 

learning model for m6A. The model will be a classification model which does not provide 

prediction for modification fraction, the same as the pseudouridine model. For this purpose, high 

quality training materials for m6A are crucial. 

We took advantage of the recently published m6A-SAC-seq data by Illumina sequencing, 

which mapped m6A at single-base resolution and with modification stoichiometry transcriptome-

wide (L. Hu et al., 2022). The reason why we use data from this method is discussed in section 

1.1.2.3, where m6A-SAC-seq is introduced. To maximize accuracy, we employed information 

from the modified or unmodified A nucleotide, as well as two flanking nucleotides on either side 

of A, since m6A modification has a preference for the motifs of DRACH (D = A,G,U, R = A,G, 

H = A,C,U, Fig. 3.2a). Models considering more useful information tend to have better 

performance. It is feasible to consider the flanking sites as m6A is enriched in specific motifs so 

that we could gain enough known sites for training in these motifs, without the necessity to pool 

the sites from different sequence content to increase the amount of training materials. 

To strike a balance between covering as many m6A sites as possible and ensuring 

sufficient number of mapped m6A sites in each motif for training, we included the top 8 motifs 

quantified by m6A-SAC-seq which covered 90.46% of all m6A sites (Table 3.1). Although data 
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of 248 A-centered 5mer motifs will be discarded in advance, this only decreased the recall by 

less than 10%. In the application for real biological samples, it will only miss a small group of 

m6A sites. Also, m6A in the other 248 motifs are low in frequency, which means there will hardly 

be enough known m6A sites in these motifs for model training. To note, although we limit the 

range of applied sites of each model by sequence content, we do not use sequence content as 

features in any models. All the values of the features are solely from processed nanopore direct 

RNA sequencing data, but not prior knowledge from databases or reference sequences. Thus, 

these models are not static regarding the sequence content of reads and could be applied to cells 

of different biological or physiological conditions. 

 

Using the HeLa m6A-SAC-seq data together with our nanopore direct mRNA sequencing 

data, we selected high confidence, 100% modified m6A sites for model training (Table 3.2, also 

see section 3.4.4). High confidence m6A sites are more likely to be also m6A sites in our training 

sample and thus facilitate the training process. For each motif, we decided to train a feedforward 

neural network (FNN) model. In order to amplify the number of data points used for neural 

network training, we used a strategy to do data augmentation (Table 3.3). The reads covering a 

site were shuffled and samples of 16 random reads as a group was generated. These 16 reads 

Index Motif Count Fraction Cumulative 
sum 

1 GG-CT 9853 0.2292 0.2292 
2 AG-CT 8897 0.2070 0.4362 
3 GG-CA 6014 0.1399 0.5762 
4 TG-CT 5568 0.1296 0.7057 
5 GG-CC 3487 0.0811 0.7868 
6 AG-CA 2659 0.0619 0.8487 
7 AG-CC 1304 0.0303 0.8790 
8 GG-CG 1099 0.0256 0.9046 

Table 3.1 Top 8 motifs in HeLa cells from m6A-SAC-seq 
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were viewed as covering the “artificial” m6A or A site. From each site, 20 groups of random 

reads are selected to generate 20 artificial sites. In this way, the number of data points used for 

training increased by 20 times and the magnitude of data points for each model increased from 

103 to 104, which made it appropriate to use neural network models. Also, when generating the 

artificial sites, no matter what the coverage of the original site is, only 20 sites of 16 reads will be 

generated, so that the possible effect of the coverage on the final models are thoroughly removed. 

 

 

Motif 
m6A in 

m6A-SAC-
seq 

High 
confidence 

m6A in 
m6A-SAC-

seq 

Total A and 
m6A in 

Nanopore 
sample 

A for 
training 

m6A for 
training 

GG-CT 9853 6360 4600 3457 600 
AG-CT 8897 5912 3673 2873 410 
GG-CA 6014 3267 5893 5158 229 
TG-CT 5568 3239 3970 3446 184 
GG-CC 3487 1719 6060 5533 138 
AG-CA 2659 1318 4688 4344 74 
AG-CC 1304 549 4945 4646 18 
GG-CG 1099 511 3098 2894 41 

Table 3.2 Number of A and m6A sites used to train the models 

Motif A train m6A train A test m6A test 
GG-CT 53468 9519 13312 2461 
AG-CT 43371 6669 10889 1671 
GG-CA 80446 3687 20094 893 
TG-CT 54708 2936 13672 744 
GG-CC 86585 2201 21595 559 
AG-CA 65662 1199 16458 281 
AG-CC 71043 283 17757 77 
GG-CG 44956 651 11264 169 

Table 3.3 Number of A and m6A sites in training/validation and testing sets after data 
augmentation and splitting 
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We optimized 8 feedforward neural network (FNN) models for the top 8 m6A motifs (Fig. 

3.2b, Table 3.4) and the models with the lowest validation loss were the final models. The 

structures of the 8 neural networks are the same to simplify the pipeline. Also, it was discovered 

that the structure of the neural networks was not the key factor that affected the model 

performance. The AUC values ranged from 0.9776 to 0.9931 for the 8 motifs separately on 

testing sets (Fig. 3.2c) and most known m6A and A sites are predicted correctly (Fig. 3.2d). For 

m6A, we found that most of the predicted probabilities are very close to either 0 or 1 so there is 

no necessity to keep the value of probabilities as the final output. Instead, we use 0.5 as the 

threshold to call m6A and A sites. 

 

 

3.2.3 Validation of m6A model by NGS methods 

To further validate the performance of NanoSPA on m6A calling, we performed NanoSPA 

on a published wild type nanopore human transcriptome sample (S. Huang et al., 2021) and 

compared the m6A sites called by NanoSPA with the m6A sites called by three recently published 

single-nucleotide resolution m6A mapping methods, m6A-SAC-seq (L. Hu et al., 2022), GLORI 

Motif Minimal 
validation loss Epoch Validation 

accuracy 
GGACT 0.1208 47 0.9553 
AGACT 0.0709 44 0.9756 
GGACA 0.0408 57 0.9868 
TGACT 0.0561 40 0.9829 
GGACC 0.0264 34 0.9911 
AGACA 0.0132 63 0.9963 
AGACC 0.0059 19 0.9989 
GGACG 0.0284 32 0.9926 

Table 3.4 Number of epochs, minimal validation loss and validation accuracy of the final 
models for the 8 motifs 
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(C. Liu et al., 2023), and eTAM-seq (Y.-L. Xiao et al., 2023). Among the 7841 m6A sites called 

by NanoSPA, 4133 (52.71%) were called by all three, 3397 (43.32%) were called by one or two, 

and only 311 (3.97%) were not called by any of the three m6A sequencing methods (Fig. 3.3a). 

For comparison, the fraction of m6A sites called only by one of the four methods was 15.28% for 

m6A-SAC-seq, 80.29% for GLORI, and 13.13% for eTAM-seq (Fig. 3.3a). There is no gold 

standard for human mRNA m6A sites, so it is unclear whether these sites called only by one 

method are false positive or true positive results. These wide discrepancies of m6A site calling 

render a precise assessment of the m6A methylome very difficult. At the same time, high overlaps 

(>96%) of NanoSPA called m6A sites with three orthogonal methods demonstrate the reliability 

of NanoSPA within current scope of knowledge of RNA epitranscriptomics and provide high 

confidence of using NanoSPA for downstream analysis. 
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Additional supports for the accuracy of our NanoSPA method included the higher m6A 

fraction called by m6A-SAC-seq, GLORI, and eTAM-seq, the higher probability for m6A calling 

by NanoSPA (Fig. 3.3b-d), and high-confidence m6A sites called by m6A-SAC-seq were also 

 
Figure 3.3 Validation of m6A prediction model in NanoSPA by NGS and nanopore based 
methods 
(a) Venn diagram of called m6A sites in NanoSPA, m6A-SAC-seq, GLORI and eTAM-seq. (b) 
m6A sites from GLORI data are grouped by m6A fraction and the percentage of those m6A 
sites revealed by NanoSPA are shown. Blue, m6A sites called by NanoSPA; red, m6A sites not 
called by NanoSPA. (c) m6A sites from eTAM-seq data are grouped by m6A fraction and the 
percentage of those m6A sites revealed by NanoSPA are shown. Blue, m6A sites called by 
NanoSPA; red, m6A sites not called by NanoSPA. (d) m6A sites from m6A-SAC-seq data are 
grouped by m6A fraction and the percentage of those m6A sites called by NanoSPA are 
shown. Blue, m6A sites called by NanoSPA; red, m6A sites not called by NanoSPA. (e) m6A 
sites from m6A-SAC-seq data are grouped by confidence (high = more than 20% mutation 
rates in m6A-SAC-seq data in both replicates, low = others) and the percentage of those m6A 
sites called by NanoSPA are shown. Blue, m6A sites called by NanoSPA; red, m6A sites not 
called by NanoSPA. (f) Meta gene distribution of the m6A sites called by NanoSPA. (g) The 
ROC curve of NanoSPA on a published mESC sample (Zhong et al., 2023), based on the 
ground truth of miCLIP2 called m6A sites. The AUC is 0.8553. The AUC values of other 
nanopore direct RNA sequencing methods on m6A prediction under the same setting from fig 
S2a panel 2 of Zhong et al., 2023 are: Tombo (0.69), MINES (0.64), Nanom6A (0.75), 
m6Anet (0.89), ELIGOS (0.80) and Epinano (0.77). Compared to m6Anet, NanoSPA took 
less time and storage to run. 
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better called by NanoSPA (Fig. 3.3e). Our predicted m6A sites had a metagene profile consistent 

with the known m6A enrichment around the stop codon (Fig. 3.3f). 

 

3.2.4 Validation of m6A model by nanopore methods 

Besides comparison with NGS based m6A calling methods, it is also valuable to show the 

performance of NanoSPA by directly comparing with other m6A prediction methods based on 

nanopore direct RNA sequencing data. To compare to other nanopore direct RNA sequencing 

based m6A detection methods, we run NanoSPA on a previously published mouse ESC sample 

and call m6A sites based on the same ground truth from miCLIP2(Körtel et al., 2021). NanoSPA 

has a better AUC over Tombo (0.69), MINES (0.64), Nanom6A (0.75), ELIGOS (0.80) and 

Epinano (0.77) (Zhong et al., 2023) (Fig. 3.3g, Fig S2a panel 2 of Zhong et al., 2023) which 

mean the m6A model itself in NanoSPA is better than the other models. 

Although m6Anet has higher AUC than NanoSPA, the time and storage demand of 

NanoSPA is much smaller than m6Anet. It took 1.75 hours to run the whole protocol of NanoSPA 

on 1.0 million base called reads with 16 CPUs with 29 GB of generated intermediate and final 

data. To note, this includes the pipelines for both m6A and pseudouridine prediction. As a 

comparison, one of the multiple steps of m6Anet, “nanopolish eventalign”, took 13.3 hours to run 

on the same data with the same computation resources and generated a 174 GB “eventalign.txt” 

file. 

The fused workflow for m6A and pseudouridine has advantages over other methods. 

Since m6Anet itself takes more time and storage than NanoSPA, combining m6Anet with any 

current available pseudouridine detection pipeline for simultaneous m6A and pseudouridine 

investigation will take even longer processing time and more storage. 
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The prediction modules are removable and extendable. Since the features for all bases are 

extracted, the pipeline could easily be extended to other modifications like m7G, m1A or m5C and 

the only thing needed is a new model for these modifications. The prediction steps are time 

saving. If the protocol has been run on pseudouridine and the intermediate files are stored, the 

extra time for running m6A prediction on 2.6 million reads is just 6 minutes, which is extremely 

time saving to run predictions on new modifications on previously processed old samples. 

Importantly, a lower number of processing steps can be crucial for the application by 

biological scientists who have less computational background. In the experience of the field, 

biological scientists using several pipelines are commonly stuck when there are too many 

packages to install (e.g. one for m6A, and a different one for Ψ), require too many intermediate 

steps, and the packages may even conflict with each other. 

 

3.3 Discussion 

In summary, we developed a machine learning pipeline NanoSPA for nanopore 

sequencing to analyze m6A and Ψ simultaneously. The new m6A model outperforms most 

published m6A models for nanopore direct RNA sequencing and is fused with the pseudouridine 

model for less time and storage cost. It tries to reach a balance between covering as most known 

m6A sites as possible and maintain high accuracy for overall prediction. Of course, the number of 

motifs included could be discussed. If more motifs are included, the pipeline will be able to 

cover more m6A sites, but the model performance will decrease. If fewer motifs are included, the 

model performance will be better with the risk of losing more m6A sites. There are no standard 

answers for such balance questions. 
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The strategy used in this chapter for simultaneous detection of m6A and pseudouridine 

could also be extended and applied to other modifications. Since the features of all 4 bases are 

extracted, building models for other modifications such as m7G, m1A or m5C could be carried out 

using the same set of extracted features. All the prediction models could be fused into one single 

pipeline and the predictions could be done on the same sample without the requirement of 

running the experiments and data processing of the same sample multiple times. Also, as 

enzymatic or chemical pre-treatment is not required during library preparation, those historical 

samples run before the methods are developed could also be reanalyzed by the new protocols or 

new models in the future. Of course, there are also challenges to extend the models to more 

modifications. The main challenge is to find out reliable data for training. The modification less 

prevalent than m6A and pseudouridine usually have less available NGS based results and thus the 

availability of high-quality known modification sites could be questionable. One possible 

solution is to use synthesized sequences with the specific modifications, but usually the 

synthesized sequences are over-modified with too high density of modification sites and the 

sequence content could not reflect the real biological conditions. Also, there will be fewer 

datasets available for validation and comparison to convince the users. 

Same as the pseudouridine model in NanoPsu, the m6A model in NanoSPA is also not 

perfect. First of all, it only covers the 8 most prevalent motifs in human cells. Although the 8 

motifs could cover over 90% of overall m6A sites in human and the situation is similar for other 

species like mouse, but it will not perform well if it is applied to those species that have a 

different preference for types of m6A motifs. To solve this, a model that equally consider all 

motifs is needed. The challenge here would be to obtain training dataset, as m6A is rare in many 

motifs in the model species that we use, and it will be hard to achieve known m6A sites from 
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these motifs. The problem for synthesized sequenced have been mentioned in the last paragraph 

and thus is also not a good choice. 

Second, the m6A model is a supervised learning model, which rely on the ground truth 

from known m6A sites from NGS methods. Here we use the data from m6A -SAC-seq, which is 

currently one of the most accurate datasets available. However, as m6A is highly dynamic, the 

distributions of m6A may vary among different samples, even if they are all WT samples from 

the same human cell line. We tried to maximize the reliability by only using the highly confident 

m6A sites as the modification sites for training. The improvement in NGS m6A detection 

accuracy could benefit the accuracy in nanopore models in the future, with the impossibility to 

confirm every single called m6A site by low throughput experimental methods.  

Third, the identification of m6A is not quantitative in this model. Including stoichiometry 

prediction will lower the reliability of the model. Of course, it is possible to train a model for 

m6A stoichiometry evaluation without the necessity of any extra data. The training dataset from 

m6A-SAC-seq includes stoichiometry information and it’s straightforward to transform a 

classification model into a regression model, which provides the stoichiometry. 

It is to be emphasized that the development of nanopore based m6A detection methods 

will not replace NGS based methods. The major goal for nanopore methods is not to have higher 

accuracy than any NGS based methods. It is to combine the identification of RNA modifications 

with the advantages of nanopore sequencing like long read length to facilitate the studies of 

relationship of modifications and splicing, poly A tail length, etc. 
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3.4 Methods 

3.4.1 WT cell sample culture 

HeLa cells (ATCC) used for model training were cultured in Dulbecco’s Modified 

Eagle’s Medium (DMEM) with high glucose and L-glutamine, without sodium pyruvate 

(HyClone, SH30022.01) with 10% FBS and 1% Pen–Strep (Penicillin–Streptomycin). ~3.5 x 106 

cells were seeded into three 150 mm plates with the same media without 1% Pen–Strep 

(Penicillin–Streptomycin). The plates were mixed by gently rocking and incubated in a 37°C 

with 5% CO2 for 72 hours.  

The three 150 mm plates of ~80% confluent HEK293T cells were treated with 100 

μg/mL cycloheximide (CHX AC3574200500, Fisher Scientific) for 7 minutes at 37°C. Media 

was removed from the plates and the cells were washed twice with 10 mL of ice-cold 1x PBS 

containing 100 μg/mL CHX prior to being scraped and collected in 5 mL 1x ice-cold PBS. Cells 

were pelleted by centrifugation at 500 g for 5 minutes, then the three plates were combined in 0.8 

mL Lysis Buffer (20 mM HEPES, pH 7.6, 100 mM KCl, 5 mM MgCl2, 1% Triton X-100, 100 

μg/mL CHX supplemented with fresh 1x Roche protease inhibitor and 1% Superase inhibitor) 

and lysed by rotating at 4°C for 20 minutes. Cell debris was pelleted by 15-minute centrifugation 

at 16,000 g. To this lysate, 4 μL T4 Turbo DNAse (Invitrogen, AM2238) was added, and the 

mixture was incubated at room temperature for 15 minutes. 0.9 mL TRIzol™ Reagent was added 

to the tube. The sample was incubated for 5 minutes at room temperature prior to addition of 

0.18 mL chloroform and an additional 3-minute incubation. The aqueous layer was separated by 

centrifugation for 15 minutes at 12,000 g and 4°C and then added to a new tube. The sample was 

frozen overnight at -80°C following addition of 0.45 mL isopropanol. RNA was precipitated by 

centrifugation for 15-minute at 12,000 g and 4°C. The supernatant was removed, and the RNA 
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pellet resuspended and washed in 0.9 mL 75% ethanol before being centrifuged for 5 minutes at 

7,500 g and 4°C. The supernatant was removed and the pellet air-dried for ten minutes prior to 

resuspension in 10 μL dH2O. 

The RNA sample was made to 150 μL in dH2O and cleaned by adding 280 μL Beckman 

RNAClean XP beads. The sample was mixed by pipetting up and down, incubated at room 

temperature for 5 minutes, pelleted on a magnetic rack for 5 minutes, washed with 1000 μL 70% 

EtOH three times, and air-dried for ten minutes before eluting into 150 μL dH2O. Poly(A)-

selection of cleaned RNA sample was then done using Promega PolyATract mRNA Isolation 

System IV per the manufacturer’s protocol. Briefly, the sample was made to 500 μL and 

incubated at 65°C for 10 minutes before addition of 3 μL Biotin-dT and 1x SSC. Once cooled, 

the sample was added to 100 μL of washed poly(A) magnetic beads in 0.5x SSC. Following a 

10-minute incubation at room temperature, RNA-bound beads were captured using a magnetic 

rack, washed in 0.1X SSC, and eluted in a total of 250 μL dH2O.  

PolyA+ RNA was concentrated using Zymo Oligo Clean & Concentrator columns per 

manufacturer’s protocol prior to Nanopore sequencing. Briefly, 500 μL Oligo Binding Buffer and 

2 mL absolute ethanol were added to 250 μL PolyA+ RNA and mixed by pipetting. The sample 

was transferred to a Zymo-Spin™ IC Column in a collection tube and centrifuged. The sample 

was washed using 750 μL DNA Wash buffer prior to elution in 11 μL nuclease-free dH2O. For 

quality control, polyA+ RNA was submitted to the University of Chicago Genomics facility and 

analyzed using an Agilent 2100 Bioanalyzer system. 5 μL of RNA containing ~1 ng/μL was 

analyzed using the RNA Pico/High Sensitivity Assay (input sensitivity of 0.05-5 ng/μL) to 

confirm RNA integrity. 
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3.4.2 Nanopore direct RNA sequencing 

The library preparation of direct RNA seq samples followed instructions from Oxford 

Nanopore Technology for Direct RNA Sequencing Kit (SQK-RNA002). Concisely, 500 ng of 

Poly(A)+ RNA sample was used to perform a run. The RT Adaptor (RTA) was ligated to the 3’ 

end of Poly(A)+ RNA using T4 DNA ligase (NEB M0202S), followed by reverse transcription by 

SuperScript III Reverse Transcriptase (ThermoFisher 12574018). The RT product was then 

purified by 1.8x RNAClean XP beads (72 µL) (Beckman Coulter A63987). A second RNA 

Adaptor (RMX) was then attached to the 3’ end of Poly(A)+ RNA by T4 DNA ligase (NEB 

M0202S). The RNA product was purified with 1x RNAClean XP beads (40 µL) and eluted with 

21 µl Elution Buffer. The sample was loaded onto a R9.4.1 flow cell (FLO-MIN106D) and then 

run on the MinION sequencer for 72 hours. 

 

3.4.3 Nanopore data pre-processing 

Raw sequencing data files were uploaded to UChicago midway2 cluster for pre-

processing. Base calling was performed by guppy base caller (version 3.2.2+9fe0a78). Then, the 

reads were aligned to human genome (GRCh38.p13) by minimap2 (H. Li, 2018) (version 2.18-

r1015) with parameters -ax splice -uf -k14. The mapped reads were piled up by samtools (H. Li 

et al., 2009) (v1.11) and features for modifications prediction were extracted by customized 

python scripts (https://github.com/sihaohuanguc/NanoSPA). 

 

3.4.4 Model training for m6A prediction 

The wild-type HeLa cell nanopore seq sample was used to train the model for m6A 

prediction. The data was pre-processed as described above. Based on data achieved from the 
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m6A-SAC-seq study (L. Hu et al., 2022), we screened for all high confidence m6A sites in the 8 

motifs. High confidence was defined as >20% induced mutation rate by reverse transcriptase in 

the mapped cDNA reads in both replicates in m6A-SAC-seq. Those screened high confidence 

m6A from m6A-SAC-seq which were also covered by > 20 reads in our nanopore sample were 

used as m6A sites in the training process (Table 3.2). At the same time, those A sites covered 

by > 20 reads in our nanopore sample not in the list of m6A sites (including all high and low 

confidence m6A sites) were used as the unmodified A sites for training (Table 3.2). Data 

augmentation was performed by shuffling the reads of a site and sampling 16 random reads as a 

group with 20 groups for each site. Then the dataset for each motif was randomly split into 80% 

training and validation set and 20% testing set (Table 3.3). Sixty features (see Fig. 3.2a) for the 

centered, -2, -1, +1, and +2 sites were collected for all generated sites in the 8 motifs. For each 

motif, feedforward neural network (FNN) models were trained on training set and evaluated by 

validation loss (cross entropy). The FNN models had two hidden layers (128 and 64 nodes, 

activation function ReLU, drop rate 0.1 and 0.2 after each layer respectively), with learning rate 

0.001 and maximum epochs 200. The models with the lowest validation loss were stored (Table 

3.4) as the final models. The final performance for the 8 models was evaluated on the testing sets 

(not used in training or validation) by AUC (area under curve) of ROC (Receiver Operating 

Characteristic) (Dean & Monga‘TensorFlow, 2015; Harris et al., 2020; Hunter, 2007; McKinney, 

2010; Pedregosa et al., 2011). 

 

3.4.5 Validation for m6A models 

To further validate the m6A prediction models, NanoSPA was performed on published 

HeLa samples (S. Huang et al., 2021) (GSM5467024, GSM5467025). The reads from the two 
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replicates were combined before running the pipeline. The A sites with an output value >0.5 in 

the FNN models were called as m6A sites. The m6A-SAC-seq HeLa m6A sites were provided by 

the authors of this publication. The GLORI study did not have HeLa samples, so HEK293T 

samples were used instead; the union of the m6A sites in the two replications (GSM6432590, 

GSM6432591) was used for comparison. For eTAM-seq, the deep version of replicate 1 HeLa 

sample (GSE211303) was used for comparison. Venn diagram of the intersections among the 

four methods was shown in Figure 1d. 

The stoichiometry of m6A modifications was also obtained from the same samples of the 

three published methods. For GLORI, for sites present in both replicates, the m6A fraction values 

were averaged. The m6A sites were assigned into groups according to their reported modification 

fractions. 

To compare NanoSPA with other nanopore direct RNA sequencing methods, we followed 

the protocol of a previously published paper (Zhong et al., 2023) and run the same mESC sample 

(GSM5841801) by NanoSPA and used the same set of miCLIP2 called m6A sites (Körtel et al., 

2021) (GSE163500) as ground truth to draw the ROC curve and calculate AUC. 

To compare the time and storage demand of NanoSPA and m6Anet, we run both protocols 

on the same 1.0 million base called reads with 16 CPUs on the same computation node. It took 

1.75 hours to run the whole protocol of NanoSPA with 29 GB of generated intermediate and final 

data. As a comparison, one of the multiple steps of m6Anet, “nanopolish eventalign”, took 13.3 

hours to run and generated a 174 GB “eventalign.txt” file. 
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Chapter 4. Simultaneous mRNA m6A and pseudouridine nanopore 

profiling reveals coordination in translation 

 

4.1 Introduction 

Translation is the process of producing proteins for metabolism and regulation. RNA 

modifications are involved in the translation process. Ψ has been shown to affect splicing and 

translation (B. R. Anderson et al., 2010; Eyler et al., 2019; Kariko et al., 2008; Martinez et al., 

2022). The tRNA pseudouridine at anticodon positions were reported to affect base pairing, 

translation efficiency and fidelity (D. R. Davis et al., 1998; Harrington et al., 1993). Since 

anticodons are directly base paired with mRNA, it is likely that pseudouridine on mRNA will 

also affect base pairing efficiency. Effect of pseudouridine in mRNA on translation was reported 

in vitro. It was reported to promote translation in rabbit reticulocyte system, while negatively 

affect translation in the wheat germ system and E.coli system (Kariko et al., 2008). The previous 

results show totally opposite views and there is still no consensus on whether and how 

pseudouridine affect translation. 

m6A was reported to be involved a wide range of events in gene expression process like 

splicing, mRNA decay, nuclear export and translation (Louloupi et al., 2018; I. A. Roundtree et 

al., 2017; X. Wang et al., 2014). m6A is involved in translation from multiple aspects. Transcripts 

bound by m6A reader protein YTHDF2 are directed to mRNA decay site rather than to 

translatable pool and thus protein production is controlled (X. Wang et al., 2014). It was reported 

that human YTHDF1 bound to mRNA m6A could recruit translation initiation factors and 
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promote translation (X. Wang et al., 2015). It was reported that m6A could form clusters, and 

transcripts with more m6A clusters had significant lower level of translation (C. Liu et al., 2023). 

The NanoSPA pipeline developed in Chapter 3 enables us to identify m6A and 

pseudouridine simultaneously transcriptome wide from nanopore direct RNA sequencing data. 

Thus, in this chapter, we apply the method on input and polysome associated mRNA to study the 

effect of m6A and pseudouridine on translation. We also investigate the change of results when 

m6A writer METTL3 or one of the pseudouridine writers TRUB1 is knocked down. 

 

4.2 Results 

4.2.1 m6A and Ψ in the siCTRL sample 

To investigate the relationship between m6A and Ψ, our experimental design (Fig. 4.1a, 

b) used siRNA knockdown by negative control siRNA (siCTRL), against the core m6A writer 

METTL3, and against one of the major Ψ writers for mRNA in cultured human cell lines, 

TRUB1 (E. K. Borchardt et al., 2020; Dai et al., 2023; M. Safra et al., 2017). We performed 

polyA-selection and ran nanopore direct RNA sequencing of biological replicates, which yielded 

good mapping coverages (Fig. 4.1c). Applying NanoSPA on the siCTRL samples, we found that 

transcript groups with more Ψ had fewer m6A sites (Fig. 4.2a, b). Conversely, transcript groups 

with more m6A had less Ψ modification (Fig. 4.2c, d). These results suggest that m6A and Ψ are 

less likely to co-occur on the same transcripts. 
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Figure 4.1 Experimental design and sequencing data overview 
(a) Experimental design. A total of 12 nanopore data sets were generated: siCTRL, 
siMETTL3, siTRUB1; input and polysome, two biological replicates. (b) Western blots 
showing knockdown of the METTL3 or the TRUB1 protein. Actin is the loading control. Full 
scans are attached in Fig. S4.1. The same experiment was performed in biological replicates. 
(c) RNA expression of biological replicates of each condition with Pearson’s correlation 
coefficient r values indicated.  
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4.2.2 m6A and Ψ in the knock down samples 

To further evaluate m6A and Ψ relationship, we analyzed the changes of m6A and Ψ upon 

writer knockdowns. As expected, METTL3 knockdown reduced m6A in all transcript groups 

regardless of their Ψ status (Fig. 4.3a), whereas TRUB1 knockdown reduced Ψ modification 

globally (Fig. 4.3b). We compared the mRNA expression of siCTRL and writer knockdown 

samples (Fig. 4.3c) and found that m6A or Ψ writer knockdown primarily affected genes 

 
Figure 4.2 Experimental results of the siCTRL sample  
(a) Mean m6A fraction of transcripts grouped by mean Ψ probability in the siCTRL input 
sample. Transcripts with ≥20 U sites and ≥7 A sites are distributed into 7 groups evenly 
(N=670 each for groups 1-6, N=667 for group 7) based on mean Ψ probability of the sites in 
each transcript; group 1 has the lowest and group 7 the highest mean Ψ probability. (b) Violin 
plot of Fig. 4.2a (N=670 each for groups 1-6, N=667 for group 7). (c) Mean Ψ probability of 
transcripts grouped by m6A fractions in the siCTRL input sample. Transcripts with ≥20 U 
sites and ≥7 A sites containing at least one m6A site are distributed into 7 groups evenly 
(N=346 each for groups 1-6, N=339 for group 7) based on mean m6A fraction of the sites in 
each transcript; group 1 has the lowest and group 7 the highest m6A fraction. (d) Violin plot of 
Fig. 4.2c. Groups 1 and 2 (N=692), or groups 6 and 7 (N=685) are combined. For a-d, p 
values are determined by two-sided Mann-Whitney U test, error bar represents 95% 
confidence interval (CI). In violin plots (b, d), the center line in the inner box plots represents 
the median, the lower and upper hinges represent the first and third quartiles, and the 
whiskers represent ±1.5x interquartile range. 
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involved in metabolic processes (Fig. 4.3d, e). We observed an appreciable increase of Ψ upon 

METTL3 knockdown in transcripts that contained more m6A sites (groups 6 and 7), but little 

change in transcripts containing few m6A sites (groups 1 and 2), consistent with m6A inhibiting 

Ψ modification (Fig. 4.3f, g). TRUB1 knockdown decreased m6A modification (Fig. 4.3h, i), 

which was unexpected from the opposing co-occurrence of m6A and Ψ in the control sample 

(Fig. 4.2a, c). A plausible explanation is that TRUB1 installed Ψ sites promote m6A, whereas Ψ 

sites installed by the other 12 human Ψ writers inhibit m6A installation. Such intricate m6A and Ψ 

modification dynamics would be an exciting avenue to pursue for future studies. 
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Figure 4.3 Experimental results of KD samples 
(a) Mean m6A fractions of transcripts grouped by mean Ψ probability in the siCTRL and 
siMETTL3 input samples. Transcripts with ≥20 U sites and ≥7 A sites are distributed into 7 
groups evenly (N=670/444 each for groups 1-6, N=667/437 each for group 7 in 
siCTRL/siMETTL3 sample respectively) based on mean Ψ probability of the sites in each 
transcript; group 1 has the lowest and group 7 the highest mean Ψ probability. Error bar 
represents 95% confidence interval (CI). (b) Comparison of Ψ probability distribution of 
siCTRL and siTRUB1 (N=1079233 U sites). (c) Comparison of RNA expression of siCTRL 
versus siMETTL3 or siTRUB1. (d) Biological process gene ontology (GO) of top 200 highest 
expressed transcripts in siCTRL over siMETTL3. (e) Biological process GO of 200 highest 
expressed transcripts in siCTRL over siTRUB1. (f) Mean Ψ probability of transcripts grouped 
by m6A fractions in the siCTRL and siMETTL3 input samples. Transcripts with ≥20 U sites, 
≥7 A sites containing at least one m6A site are distributed into 7 groups evenly (N=346/182  
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4.2.3 effect of m6A and Ψ on translation 

To investigate the effect of m6A and Ψ on translation, we performed polysome profiling 

without and with knockdown of METTL3 or TRUB1 as above (Fig. 4.4a, 4.1a, b). Among the 

two commonly used methods to study translation, ribo-seq and polysome profiling, only 

polysome profiling retains intact mRNA bound to the ribosome and is useful for nanopore 

sequencing. Both METTL3 or TRUB1 knockdown reduced the polysomes over the 80S 

monosome, even more so for the TRUB1 knockdown, implicating a significant change in 

translation properties upon the loss of this Ψ writer. For the siCTRL sample (Fig. 4.4b), gene 

ontology analysis showed that transcripts with the greatest reduction in the polysome belonged to 

genes involved in protein synthesis (Fig. 4.4c), and transcripts with the greatest increase in the 

polysome belonged to cellular organelles (Fig. 4.4d). The overall m6A level in the polysome was 

about the same as the input (Fig. 4.4e, f), as was the overall Ψ level in the polysome (Fig. 4.4g, 

h). The ratio of polysome over input mRNA for each transcript is termed translation efficiency 

(TE) (Ingolia, Hussmann, & Weissman, 2019). TE includes multiple properties in translation 

(Figure 4.3 continued) each for groups 1-6, N=339/176 for group 7 in siCTRL/siMETTL3 
sample respectively) based on mean m6A fraction of the sites in each transcript; group 1 has 
the lowest and group 7 the highest m6A fraction. (g) Violin plot of Fig. 4.3f. Groups 1 and 2 
(N=692/364 for siCTRL/siMETTL3 sample respectively), or groups 6 and 7 (N=685/358 for 
siCTRL/siMETTL3 sample respectively) are combined. (h) Mean m6A fractions of transcripts 
grouped by mean Ψ probability in the siCTRL and siTRUB1 input samples. Transcripts with 
≥20 U sites and ≥7 A sites are distributed into 7 groups evenly (N=670/249 each for groups 1-
6, N=667/248 each for group 7 in siCTRL/siTRUB1 sample respectively) based on mean Ψ 
probability of the sites in each transcript; group 1 has the lowest and group 7 the highest mean 
Ψ probability. (i) Violin plot of Fig. 4.3h (N=670/249 each for groups 1-6, N=667/248 each 
for group 7 in siCTRL/siTRUB1 sample respectively). For a-b, f-i, p values are determined 
by two-sided Mann-Whitney U test, error bar represents 95% confidence interval (CI). In 
violin plots (b, g, i), the center line in the inner box plots represents the median, the lower and 
upper hinges represent the first and third quartiles, and the whiskers represent ±1.5x 
interquartile range. 
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such as initiation and elongation rates. Although m6A and Ψ in coding region slow elongation, in 

UTRs they could help recruit ribosome to mRNA which can increase initiation (Choi et al., 2016; 

Eyler et al., 2019; Kate D Meyer et al., 2015; Svitkin et al., 2017; X. Wang et al., 2015). By 

convention, transcripts with higher TE are considered to be positively regulated in translation. 

We found that the transcript groups with more m6A in both input and polysome had a higher 

average TE than those with less m6A (Fig. 4.4i). Transcripts in several TE groups also showed 

higher m6A levels on the polysome (Fig. 4.4j), indicating that m6A in the transcripts on the 

polysome can benefit translation. Transcripts with more Ψ in polysome over input also had 

higher TE (Fig. 4.4k), indicating that Ψ on the polysome can also benefit translation. 
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Figure 4.4 Effect of m6A and Ψ in translation in siCTRL samples 
(a) Polysome profiles of siCTRL, siMETTL3, and siTRUB1 samples. Knockdown of the m6A 
writer or a major Ψ writer resulted in global decrease in translation. The “polysome” line 
shows the combined fractions used for RNA extraction and nanopore sequencing. (b) 
Comparison of siCTRL mRNA expression between input and polysome. (c) Biological 
process gene ontology (GO) analysis of top 200 highest expressed transcripts in siCTRL input 
over polysome. (d) Cellular Component GO of top 200 highest expressed transcripts in 
siCTRL polysome over input. (e) Mean m6A fractions of transcripts grouped by mean Ψ 
probability in the siCTRL input and polysome samples. Transcripts with ≥20 U sites and ≥7 A 
sites are distributed into 7 groups evenly (N=670/210 each for groups 1-6, N=667/204 each 
for group 7 in siCTRL input/polysome sample respectively) based on mean Ψ probability of 
the sites in each transcript; group 1 has the lowest and group 7 the highest mean Ψ 
probability. (f) Distribution of mean m6A fraction of genes of siCTRL input (N=4687) and 
polysome (N=1464). (g) Mean Ψ probability of transcripts grouped by m6A fractions in the  
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4.2.4 m6A and Ψ effect on translation in knock down samples 

We further investigated the m6A and Ψ writer knockdown effects on polysome profiling. 

Even though METTL3 knockdown showed a decrease in the input m6A levels (Fig. 4.3a), m6A 

levels in polysome transcripts persisted at similar levels as in the siCTRL (Fig. 4.5a). TE 

changes upon METTL3 knockdown were not significant and transcripts with more m6A still had 

higher TE than those with less m6A (Fig. 4.5b), which mirrored the m6A level changes on the 

polysome. Ψ levels slightly increased in the polysome transcripts in siMETTL3 relative to 

siCTRL (Fig. 4.5c), which could be related to increased Ψ in the input mRNA upon METTL3 

knockdown. This increase was accompanied by a slight increase in TE among transcript Ψ 

probability groups (Fig. 4.5d). 

(Figure 4.4 continued) siCTRL input and polysome samples. Transcripts with ≥20 U sites, 
≥7 A sites containing at least one m6A site are distributed into 7 groups evenly (N=346/100 
each for groups 1-6, N=339/96 for group 7 in siCTRL input/polysome sample respectively) 
based on mean m6A fraction of the sites in each transcript; group 1 has the lowest and group 7 
the highest m6A fraction. (h) Distribution of mean Ψ probability of genes of siCTRL input 
(N=4687) and polysome (N=1464). (i) Modification state combinations in input and 
polysome for all A sites in siCTRL input and polysome and their corresponding mean 
translation efficiency (TE). A: unmodified, m6A: modified. (j) Mean m6A fractions of 
transcripts grouped by TE in the siCTRL sample. Transcripts with ≥7 A sites containing at 
least one m6A site in input or polysome are distributed into 7 groups evenly (N=124 for 
groups 1-6, N=120 for group 7 in siCTRL input/polysome sample) based on TE of each 
transcript; group 1 has the lowest and group 7 the highest TE. (k) TE of siCTRL transcripts 
grouped by differential mean Ψ probability. Transcripts with ≥20 U sites in both input and 
polysome samples are distributed into 7 groups evenly (N=883, 877, 880, 880, 877, 883, 876) 
based on Ψ probability difference between polysome and input; group 1 has the lowest and 
group 7 the highest TE. For e-h, j-k, p values are determined by two-sided Mann-Whitney 
U test, error bar represents 95% confidence interval (CI). In violin plots (f, h), the center line 
in the inner box plots represents the median, the lower and upper hinges represent the first 
and third quartiles, and the whiskers represent ±1.5x interquartile range. 
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Figure 4.5 Effect of m6A and Ψ in translation in KD samples  
(a) Mean m6A fractions of transcripts grouped by mean Ψ probability in the siCTRL and 
siMETTL3 polysome samples. Transcripts with ≥20 U sites and ≥7 A sites are distributed into 
7 groups evenly (N=210/200 each for groups 1-6, N=204/195 each for group 7 in 
siCTRL/siMETTL3 polysome sample respectively) based on mean Ψ probability of the sites 
in each transcript; group 1 has the lowest and group 7 the highest mean Ψ probability. (b) 
Modification state combinations in input and polysome for all A sites in siMETTL3 sample 
and their corresponding mean translation efficiency (TE). A: unmodified, m6A: modified. (c) 
Mean Ψ probability of transcripts grouped by m6A fractions in the siCTRL and siMETTL3 
polysome samples. Transcripts with ≥20 U sites, ≥7 A sites containing at least one m6A sites 
are distributed into 7 groups evenly (N=100/89 each for groups 1-6, N=96/84 for group 7 in 
siCTRL and siMETTL3 polysome sample respectively) based on mean m6A fraction of the 
sites in each transcript; group 1 has the lowest and group 7 the highest m6A fraction. (d) TE of 
siCTRL and siMETTL3 transcripts grouped by differential mean Ψ probability. Transcripts 
with ≥20 U sites in both input and polysome samples are distributed into 7 groups evenly 
(N=883, 877, 880, 880, 877, 883, 876 for siCTRL and N=884, 887, 881, 881, 881, 881, 875 
for siMETTL3) based on Ψ probability difference between polysome and input, with group 1 
having the lowest and group 7 the highest TE.  (e) Mean Ψ probability of transcripts grouped 
by m6A fractions in the siTRUB1 input and polysome samples. Transcripts with ≥20 U sites, 
≥7 A sites containing at least one m6A site are distributed into 7 groups evenly (N=106/109 
each for groups 1-6, N=101/106 for group 7 in siTRUB1 input/polysome sample respectively) 
based on mean m6A fraction of the sites in each transcript; group 1 has the lowest and group 7  
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As for TRUB1 knockdown, which reduced Ψ levels in the input (Fig. 4.3b), Ψ levels of 

the polysome transcripts were down regardless of the m6A group (Fig. 4.5e), but m6A level 

remained similar or became slightly higher in polysome transcripts over input (Fig. 4.5f). TE 

value decreases upon TRUB1 knockdown were very significant in magnitude for almost all Ψ 

groups (Fig. 4.5g) regardless of the m6A modification state (Fig. 4.5h), consistent with the large 

Ψ level decrease on the polysome. These results indicate that polysome accumulation of 

transcript m6A and Ψ is synergistic, but with a hierarchical relationship of Ψ exerting a larger TE 

effect over m6A. 

 

4.3 Discussion 

We identified an opposing effect of m6A and Ψ in total mRNA input, but a synergistic 

effect of m6A and Ψ for polysome-associated mRNA. Furthermore, m6A and Ψ have a 

hierarchical effect on promoting translation efficiency in which Ψ takes precedent over m6A. 

However, we should also be cautious about the phenomenon shown in this chapter, as this is so 

far the only research to check the relationship of pseudouridine and m6A and their combined 

(Figure 4.5 continued) the highest m6A fraction. (f) Mean m6A fractions of transcripts 
grouped by mean Ψ probability in the siTRUB1 input and polysome samples. Transcripts 
with ≥20 U sites and ≥7 A sites are distributed into 7 groups evenly (N=249/226 each for 
groups 1-6, N=248/224 each for group 7 in  siTRUB1 input/polysome sample respectively) 
based on mean Ψ probability of the sites in each transcript; group 1 has the lowest and group 
7 the highest mean Ψ probability. (g) TE of siCTRL and siTRUB1 transcripts grouped by 
differential mean Ψ probability. Transcripts with ≥20 U sites in both input and polysome 
samples are distributed into 7 groups evenly (N=883, 877, 880, 880, 877, 883, 876 for 
siCTRL and N=794, 795, 791, 794, 794, 797, 786 for siTRUB1) based on Ψ probability 
difference between polysome and input; group 1 has the lowest and group 7 the highest TE. 
(h) Modification state combinations in input and polysome for all A sites in siTRUB1 samples 
and their corresponding mean translation efficiency (TE). A: unmodified, m6A: modified. For 
a, c-g, p values are determined by two-sided Mann-Whitney U test, error bar represents 95% 
confidence interval (CI). 
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effect on translation. All the observations are not yet further validated by wet lab experiments or 

convinced in other cell lines. It is possible that some of the conclusions are just occasionally 

happening in these samples. It is hopeful that in the future, there will be NGS based or other 

nanopore based simultaneous mapping method for pseudouridine and m6A, which could be used 

to confirm or deny the observations of this study. 

Among all the results, we could make some conclusions that happens all the time. The 

first major conclusion is that the anti-correlation relationship of m6A and pseudouridine happens 

in all 6 samples, no matter whether it’s input or polysome, or whether it is ctrl or knockdown 

sample. The second on is that both m6A and pseudouridine have positive effect on translation 

efficiency, which also happens in all conditions. The conclusions concerning the knockdown of 

the two writers are less convincing or significant. Knock down of METTL3 results in 

significantly decrease in m6A level, as METTL3 is the key component of the only m6A writer 

complex. However, in some results, the knock down of TRUB1 results in modest effect. This is 

probably due to the existence of 12 other pseudouridine synthase and at least 3 of them (PUS1, 

PUS7, TRUB2) are proved to also work on human mRNA. The redundancy in pseudouridine 

synthase probably make the change brought about by TRUB1 knock down rescued by other 

writers. In the meantime, it is challenging to knock down or knockout all the pseudouridine 

synthases at the same time. Thus, the studies on pseudouridine depletion state in cells remains 

difficult to realize. 

Most of the observations are based on the average values from each transcript but not 

from single sites. We did not find significant conclusions for the relative positions of m6A and 

pseudouridine sites. Biologically, it could mean that either or both m6A and/or pseudouridine do 

not function as individuals and only accumulation of modifications within a range could result in 
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significant biological consequence. In the paper of GLORI, the researchers find that m6A are not 

evenly distributed along the transcripts and tend to form clusters, which may indicate the similar 

conclusion (C. Liu et al., 2023). Technically, the base calling accuracy of nanopore direct RNA 

sequencing data and the accuracy of our models for m6A and pseudouridine prediction are not 

perfect, which may result in errors on the prediction of individual sites. However, as long as the 

errors are random errors without systematic bias, average results along the transcripts could 

largely reduce such random errors and show more accurate conclusions. 

 

4.4 Methods 

4.4.1 Cell culture and siRNA knockdown 

Human embryonic kidney (HEK) HEK293T/17 cells (CRL11268) were cultured in 

Dulbecco’s Modified Eagle’s Medium (DMEM) with high glucose and L-glutamine, without 

sodium pyruvate (HyClone, SH30022.01) and with 10% FBS in a 37°C incubator at 5% CO2 to 

seed for reverse transfection by RNAiMax (Sigma 13778150). For each knockdown condition, 

75 μL Lipofectamine RNAiMax was added to three separate 150 mm plates containing 300 pmol 

siRNA (siCTRL, Sigma-Aldrich SIC001-10NMOL MISSION® siRNA Universal Negative 

Control #1, proprietary sequence; siMETTL3, Sigma-Aldrich PDSIRNA5D 

SASI_HS_00044317, duplex of GAUCCUAGAGCUAUUAAAU[dT][dT] and 

AUUUAAUAGCUCUAGGAUC[dT][dT]; siTRUB1, Sigma-Aldrich PDSIRNA5D 

SASI_Hs02_0036419, duplex of GAGUUCUGGUUGUUGGAAU[dT][dT] and 

AUUCCAACAACCAGAACUC[dT][dT]) in 5 mL Opti-MEM™ I Reduced Serum Medium 

(31985070) and incubated at 37°C with 5% CO2 for 20 minutes. HEK293T cells grown to 80% 

confluency were washed and detached in 1x Phosphate Buffer Saline (PBS) before pelleting by 
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centrifugation at 500 g for 3 minutes. The cell pellet was resuspended in media and cells were 

counted using an Invitrogen™ Countess™ 3 FL Automated Cell Counter, for which a 10 µL 

aliquot of cells was mixed with 10 µL trypan blue and loaded into a chamber slide. For control 

and METTL3 knockdowns, ~3.5 x 106 cells were seeded into three 150 mm plates containing the 

appropriate siRNA-lipofectamine mixture. As these conditions were not viable for TRUB1 

knockdown cells, ~5 x 106 cells were seeded instead.  The plates were mixed by gently rocking 

and incubated in a 37°C with 5% CO2 for 72 hours.  

 

4.4.2 Polysome Profiling 

Polysome profiling procedures were adapted from a previous publication (X. Wang et al., 

2014). For each knockdown condition, three 150 mm plates of ~80% confluent HEK293T cells 

were treated with 100 μg/mL cycloheximide (CHX AC3574200500, Fisher Scientific) for 7 

minutes at 37°C. Media was removed from the plates and the cells were washed twice with 10 

mL of ice-cold 1x PBS containing 100 μg/mL CHX prior to being scraped and collected in 5 mL 

1x ice-cold PBS. Cells were pelleted by centrifugation at 500 g for 5 minutes, then the three 

plates for each knockdown conditions were combined in 0.8 mL Lysis Buffer (20 mM HEPES, 

pH 7.6, 100 mM KCl, 5 mM MgCl2, 1% Triton X-100, 100 μg/mL CHX supplemented with 

fresh 1x Roche protease inhibitor and 1% Superase inhibitor) and lysed by rotating at 4°C for 20 

minutes. Cell debris was pelleted by 15-minute centrifugation at 16,000 g. To this lysate, 4 μL T4 

Turbo DNAse (Invitrogen, AM2238) was added, and the mixture was incubated at room 

temperature for 15 minutes. 180 μL of this lysate was saved as “Input” for RNA downstream 

nanopore sequencing, and 20 μL was saved for western blot (see below).  
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5-50% sucrose gradient (20 mM HEPES, pH 7.6, 100mM KCl, 5 mM MgCl2, 100 μg/mL 

CHX supplemented with fresh 1x Roche protease inhibitor and 1% SUPERase Inhibitor) was 

prepared in SETON 7042 tubes using a Biocomp Gradient Station. 600 μL sucrose gradient was 

removed from the top of each balanced sucrose gradient tube and then replaced by gently 

pipetting 600 μL of the respective knockdown cell lysate on top the gradient. Sucrose gradients 

were centrifuged for 3 hours at 1.41 x 105 g in an Optima L-100XP centrifuge using a Beckman 

SW28 rotor. Sucrose gradient fractions were collected and absorbances continuously measured 

using a Biocomp gradient station.  

For each knockdown replicate, the 30 generated fractions were split in half and 0.9 mL 

TRIzol™ Reagent was added to each tube. Samples were incubated for 5 minutes at room 

temperature prior to addition of 0.18 mL chloroform and an additional 3-minute incubation. The 

aqueous layer was separated by centrifugation for 15 minutes at 12,000 g and 4°C and then 

added to a new tube. The sample was frozen overnight at -80°C following addition of 0.45 mL 

isopropanol. RNA was precipitated by centrifugation for 15-minute at 12,000 g and 4°C. The 

supernatant was removed, and the RNA pellet resuspended and washed in 0.9 mL 75% ethanol 

before being centrifuged for 5 minutes at 7,500 g and 4°C. The supernatant was removed and the 

pellet air-dried for ten minutes prior to resuspension in 10 μL dH2O. The two tubes for each 

fraction were combined prior to combining all fractions disome and after.  

Input and polysome RNA samples were made to 150 μL in dH2O and cleaned by adding 

280 μL Beckman RNAClean XP beads. Samples were mixed by pipetting up and down, 

incubated at room temperature for 5 minutes, pelleted on a magnetic rack for 5 minutes, washed 

with 1000 μL 70% EtOH three times, and air-dried for ten minutes before eluting into 150 μL 

dH2O. Poly(A)-selection of cleaned RNA samples was then done using Promega PolyATract 
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mRNA Isolation System IV per the manufacturer’s protocol. Briefly, RNA samples were made to 

500 μL and incubated at 65°C for 10 minutes before addition of 3 μL Biotin-dT and 1x SSC. 

Once cooled, this sample was added to 100 μL of washed poly(A) magnetic beads in 0.5x SSC. 

Following a 10-minute incubation at room temperature, RNA-bound beads were captured using a 

magnetic rack, washed in 0.1X SSC, and eluted in a total of 250 μL dH2O.  

PolyA+ RNA was concentrated using Zymo Oligo Clean & Concentrator columns per 

manufacturer’s protocol prior to Nanopore sequencing. Briefly, 500 μL Oligo Binding Buffer and 

2 mL absolute ethanol were added to 250 μL PolyA+ RNA and mixed by pipetting. The sample 

was transferred to a Zymo-Spin™ IC Column in a collection tube and centrifuged. The sample 

was washed using 750 μL DNA Wash buffer prior to elution in 11 μL nuclease-free dH2O. For 

quality control, polyA+ RNA was submitted to the University of Chicago Genomics facility and 

analyzed using an Agilent 2100 Bioanalyzer system. 5 μL of RNA containing ~1 ng/μL was 

analyzed using the RNA Pico/High Sensitivity Assay (input sensitivity of 0.05-5 ng/μL) to 

confirm RNA integrity.  

 

4.4.3 Western Blot 

Samples were prepared by adding 1x LDS and 100 mM DTT before boiling at 95°C for 5 

minutes. Samples were loaded onto 12-well 4–12% polyacrylamide Bis-Tris gels (NP03322, 

Invitrogen) and ran at 150V for 1 hour. The gels were then transferred to polyvinylidene fluoride 

membranes (IPVH00010, Millipore). The membranes were blocked overnight in 10% w/v milk 

(1706404, Bio-Rad). The blots were probed with 1/1000 v/v anti-actin (clone C4 MAB1501), 

1/1000 v/v anti-METTL3 (ab195352), or 1/500 v/v anti-TRUB1 (1250-1-AP) in 5% w/v milk 

(1706404, Bio-Rad) followed by 1/10000 v/v sheep anti-mouse IgG (NA931V, Cytiva) or 
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1/10000 v/v donkey anti-rabbit IgG conjugated to horseradish peroxidase (NA934V, Cytiva) in 

5% w/v milk (1706404, Bio-Rad). The blots were then visualized with ECL Prime Western 

Blotting Detection Reagents (RPN2232, Amersham) using a BioRad ChemiDoc MP. 

 

4.4.4 Nanopore direct RNA sequencing 

The library preparation of direct RNA seq samples followed instructions from Oxford 

Nanopore Technology for Direct RNA Sequencing Kit (SQK-RNA002). Concisely, 500 ng of 

Poly(A)+ RNA sample was used to perform a run. The RT Adaptor (RTA) was ligated to the 3’ 

end of Poly(A)+ RNA using T4 DNA ligase (NEB M0202S), followed by reverse transcription by 

SuperScript III Reverse Transcriptase (ThermoFisher 12574018). The RT product was then 

purified by 1.8x RNAClean XP beads (72 µL) (Beckman Coulter A63987). A second RNA 

Adaptor (RMX) was then attached to the 3’ end of Poly(A)+ RNA by T4 DNA ligase (NEB 

M0202S). The RNA product was purified with 1x RNAClean XP beads (40 µL) and eluted with 

21 µl Elution Buffer. The sample was loaded onto a R9.4.1 flow cell (FLO-MIN106D) and then 

run on the MinION sequencer for 72 hours. 

 

4.4.5 Nanopore data pre-processing 

Raw sequencing data files were uploaded to UChicago midway2 cluster for pre-

processing. Base calling was performed by guppy base caller (version 3.2.2+9fe0a78). Then, the 

reads were aligned to human genome (GRCh38.p13) by minimap2(H. Li, 2018) (version 2.18-

r1015) with parameters -ax splice -uf -k14. The mapped reads were piled up by samtools (H. Li 

et al., 2009) (v1.11) and features for modifications prediction were extracted by customized 

python scripts (https://github.com/sihaohuanguc/NanoSPA). 
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4.4.6 HEK293T cell data processing 

The HEK293T samples were sequenced and pre-processed as described above. The 

mapped reads of two biological replicates were combined to increase the data analysis 

throughput. We obtained 1.1-3.6 million mapped reads for the input, and 1.2-1.6 million mapped 

reads for the polysome samples. For Ψ and m6A prediction, features of all U sites with >20 

coverage and all A sites within the 8 motifs with >20 coverage in all 5 nucleotides in each motif 

were used for prediction by NanoSPA. The expression counts of transcripts were calculated as 

the maximum peak height of the reads piled at the transcript regions. Relative expression level of 

a transcript was calculated as the expression count of a transcript divided by the sum of 

expression counts of the sample. Transcripts with <15 coverage were filtered. Translation 

efficiency (TE) of a transcript was calculated as its level in polysome sample divided by its level 

in the input. The gene information was provided by the comprehensive gene annotation file 

(gencode.v41.annotation.gff3) in the GENCODE database (https://www.gencodegenes.org) (A. 

Frankish et al., 2021). Gene ontology (GO) analysis was performed using the Gene Ontology 

Resource (http://geneontology.org) (Ashburner et al., 2000; "The Gene Ontology resource: 

enriching a GOld mine," 2021). All p values were calculated by Two-sided Mann-Whitney U test 

unless noticed otherwise. 

For transcripts grouped based on Ψ probability and the y-axis being “m6A fraction”, 

samples were screened for transcripts containing ≥ 20 U sites and ≥ 7 A sites in the 8 motifs. 

Then, transcripts were sorted and divided into 7 groups with even group sizes, with transcripts in 

group 1 possessing lowest and transcripts in group 7 highest mean Ψ probability. 
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The m6A fraction of a transcript was defined as the number of m6A sites in the transcript 

divided by the sum of number of A and m6A sites in the transcript. For transcripts grouped based 

on m6A fraction and the y-axis being “Ψ probability”, samples were screened for transcripts with 

≥ 20 U sites and ≥ 7 A sites in the 8 motifs in which at least one A was modified to m6A. Then, 

transcripts were sorted and divided into 7 groups with even group sizes, with transcripts in group 

1 possessing lowest and transcripts in group 7 highest m6A fraction. 

For TE calculation, the transcript must have ≥ 15 coverage in both input and polysome. 

For transcripts grouped based on TE and the y-axis being “m6A fraction”, samples were screened 

for transcripts containing ≥ 7 A sites in the 8 motifs in which at least one A was modified to m6A 

in input or polysome. For transcripts grouped based on differential mean Ψ probability and the y-

axis being TE, samples were screened for transcripts with ≥ 20 U sites in both input and 

polysome, the differential mean Ψ probability was defined as the difference of mean Ψ 

probability between polysome and input. Then, transcripts were sorted and divided into 7 groups 

with even group sizes, with transcripts in group 1 possessing lowest and transcripts in group 7 

highest differential mean Ψ probability. For the heatmaps of TE comparison for m6A and A sites, 

each A site in both input and polysome was assigned to four groups by its modification state in 

input and polysome: “A in both input and polysome”, “A in input and m6A in polysome”, “m6A 

in input and A in polysome”, and “m6A in both input and polysome”. Then, the mean TE of all 

the transcripts corresponding to the A sites in each group were shown in the heatmaps. 
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Chapter 5. Single read analysis reveals stoichiometry and co-occurrence 

of pseudouridine 

 

5.1 Introduction 

RNA modification fractions could be told from some previous methods by calibration 

curves (L. Hu et al., 2022). However, the modification state at a site of each RNA molecule is 

still unknown. When we have two partially modified sites, we do not know whether the RNA 

molecules tend to have either both modified sites or both unmodified sites, or the molecules with 

modification on one site tend to be unmodified on the other. The bulk read analysis collect 

information from all reads and calculate averaged values as features, for example mutation rates. 

During this process, the information in each single molecule is also averaged out and omitted. 

For nanopore sequencing data, it’s possible to analyze the information of each nucleotide in the 

full transcript and thus it’s possible to know the modification state for each read of two distant 

sites on the same transcript. Previously, the nanoRMS protocol collects features from single 

reads, but the single read features were averaged before Ψ prediction, erasing single molecule Ψ 

site incorporation information (O. Begik et al., 2021). 

In this chapter, we are going to show the development of a single read pseudouridine 

prediction model based on nanopore sequencing data and the application of the model on 

prediction modification stoichiometry and multi-site linkages. 
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5.2 Results 

5.2.1 Development of the model 

We performed single read analysis for quantitative Ψ stoichiometry prediction and 

investigation of linking modification states of Ψ sites in single molecules of a mRNA transcript. 

To realize single read analysis, we need to develop a model which take features from each U 

sites from a read and do prediction. The first problem to solve is to find out reads of 

pseudouridine and uridine. In the samples, usually the modified sites are only partially modified, 

which means in all the reads that cover this site, only some of the read provide signals of 

pseudouridine and the rest provide signals of unmodified U. Such modified sites could not 

provide high quality training material. Only in 100% modified sites, every read covering this site 

provide a signal of the modified base. Our training set contained the data points from previously 

reported (Masato Taoka et al., 2018), 100% modified human rRNA Ψ sites and randomly 

selected unmodified human rRNA U sites. 

We used the same set of features and the same EXT algorithm as NanoPsu to train the 

model for single read pseudouridine prediction, while we replaced all the “rate” features (like 

“mismatch ratio”) with “indicator” features (like “mismatch-or-not”). It is much harder to 

generate good single read prediction model as the information that could be used is much less for 

each prediction. The model still predicted most known pseudouridine and unmodified U data 

points correctly in the testing set (Fig. 5.1a), although the peaks are wider than the bulk 

prediction model. The AUC value for the prediction of testing set was 0.8269. 
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The size of data is much larger for single read prediction, as each U site in each read will 

result in a prediction. When the work was published in 2021, the algorithm could only be applied 

to specific transcript by extraction the reads covering the sepcific transcript in advance and then 

do feature extraction and prediction. The protocol could not be completed in finite time on the 

whole human transcriptome. Later the algorithm was optimized, and it could be applied to the 

whole human transcriptome and be completed in several hours. 

 

5.2.2 Prediction of stoichiometry 

Since we have the ability to predict the modification state of each read covering a specific 

site, we could calculate the ratio of data points predicted as modified at a specific site and view it 

as the stoichiometry at this site. We tested the Ψ stoichiometry prediction from single reads on 22 

partially modified Ψ sites (5%-85%) in human rRNA. These sites are partially modified and are 

not involved in the training process of the single read pseudouridine prediction model above. We 

found that the predicted stoichiometry is correlated with the previous reported stoichiometry 

 
Figure 5.1 Ψ single read prediction model training and stoichiometry calculation 
(a) Density plot of predicted Ψ modification probabilities of U and Ψ data points of single read 
prediction in the rRNA testing set. (b) Single read prediction results for the partially modified 
Ψ sites in human rRNA. The stoichiometry predicted by our method is compared with the 
stoichiometry reported previously by quantitative LC/MS. The correlation coefficient is 0.6566 
(Pearson’s r). 
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obtained by LC/MS (Masato Taoka et al., 2018) (Fig. 5.1b). This indicates that single read 

analysis could provide a new strategy for quantification of modification fractions. 

 

5.2.3 Linkage among sites 

A new application of the single read prediction method is the ability to perform single 

read analysis that links occurrence of multiple Ψ sites in individual mRNA transcripts. We 

examined whether pairs of Ψ site modifications are linked either positively or negatively, 

meaning whether the modification state of site 2 is affected by the modification state of site 1 and 

vice versa. We selected 31 positions in the B2M transcript (which encodes the common small 

subunit of MHC class I molecules) for investigation. 

We show two examples of site pairs in Fig. 5.2a. In the example on the left, when the 

first site is modified (dark blue), the second site tends to be unmodified. When the second site is 

modified, the first site tends to be unmodified. In these two sites, pseudouridine tends to avoid 

appearing at the same time and these two sites are viewed as negatively linked. In the example 

on the right, the distributions of the modification state of the second site are the same when the 

first is either modified or unmodified. This is an example of independent pair, which means the 

modification states of the two sites are independent from each other. We could use cumulative 

distribution curves to describe and visualize the different types of linkage (Fig. 5.2b). The reads 

are assigned into two groups based on their modification states at the first position and the 

cumulative distribution curves of the pseudouridine probabilities of the second site are shown. 

When the two sites are either positively or negatively linked, the two curves will be separated 

from each other (Fig. 5.2b, left panel). When the two sites are independent from each other, the 
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two curves will overlap with each other (Fig. 5.2b, right panel). Then the patterns could be 

quantified by two sample Kolmogorov-Smirnov test. 



 118 
 

 
Figure 5.2 Linkage analysis of multiple Ψ sites 
(a) Clustering heatmap showing the Ψ probability of two pairs of sites in single reads of the 
B2M transcript in the IFN γ treated sample. Each row represents a read. Site numbers are 
defined as the chromosomal locations in the hg38 nomenclature. These two pairs show either 
negative linkage (left) or no linkage (right). (b) Reads in Fig. 5.2a are assigned to “Ψ” and 
“U” groups based on the posterior probabilities of site 1 in Gaussian mixture model (k=2). 
The cumulative distribution curves of Ψ probabilities of site 2 are drawn for reads in “Ψ” or 
“U” groups or for all reads. The curves for “Ψ” and “U” groups undergo two sample 
Kolmogorov-Smirnov test; p values are <2.2x10-16 (left) and 0.7684 (right). (c) Value of the 
maximum distance D (p<0.01) in the two sample Kolmogorov-Smirnov test for selected pair 
of sites in the B2M transcript in IFN treated and untreated samples. X axis represents site 1 
and Y axis represents site 2. Site numbers are defined as the chromosomal locations in the 
hg38 nomenclature. The two pair of sites shown in Fig. 5.2a and 5.2b are indicated by red 
arrows. (d) Maximum distance D value in the two sample Kolmogorov-Smirnov test for pair 
of sites when D >0 and p<0.01 in the B2M transcript in IFN treated and untreated samples. X 
axis represents site 1 and Y axis represents site 2. (e) P value in the two sample Kolmogorov-
Smirnov test for selected pairs of sites in the B2M transcript in the untreated and IFN treated 
samples.  



 119 

In most cases, the maximum distance D value from two sample K-S test was small (Fig. 

5.2c), which is consistent with the presence of Ψ at site 1 being independent of Ψ at site 2, these 

two sites are not linked. A few pairs of sites had high D values, but most of those were 

immediately adjacent Ψ sites. The diagonal has the highest D values as every site is perfectly 

positively linked with itself. The pairs of Ψ sites with negative linkage tend to avoid each other 

in the same mRNA molecule (Fig. 5.2d). This result indicates that the modification of Ψ at two 

sites in single molecule transcripts is negatively related for some, and completely independent 

for others. Upon IFN treatment, the linkage between some sites in the B2M transcript became 

more prominent (Fig. 5.2e), suggesting that IFN-induced Ψ installation has stronger co-

dependency. 

 

5.3 Discussion 

In this chapter we developed a pseudouridine prediction model based on single reads. As 

the information is much less to predict based on single reads, the performance of the model is not 

as good as bulk prediction models. Also, as the size of data massively increases, it is much more 

challenging to process the data on the whole human transcriptome and do the downstream 

analysis. Thus, example analysis on specific transcripts is provided. 

The two major applications of single read pseudouridine prediction is the evaluation of 

stoichiometry and the investigation of linkages between different sites. Although single read 

analysis could evaluate stoichiometry, but its efficiency is relatively lower than bulk read 

regression models and thus it’s hard to make it into practical use. The ability to describe site-site 

linkage is useful, which may reflect the co-regulation of distant sites. These sites maybe distant 

in the one-dimensional sequence but could be close to each other in the secondary structure and 
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thus could be biologically meaningful. The application of such analysis need to be further 

revealed in the future experiments. 

 

5.4 Methods 

5.4.1 Single read Ψ prediction model training 

The 100% modified human rRNA sites were reported in a previously work measured by 

quantitative LC/MS (Masato Taoka et al., 2018). A basic assumption was that all reads in our 

human rRNA sample would have Ψ at the reported 100% modified sites and U at the reported 

completely unmodified sites. The dataset for training contained 25 100% Ψ sites with 49,437 

data points and 26 randomly selected U sites with 50,922 data points. The dataset was divided 

into 60% training set, 20% validation set and 20% testing set. Features were extracted from each 

base in each read. The features describing the ratios in bulk prediction model were replaced with 

features indicating the mismatching and indel states of the base. The Ψ modification prediction 

models were generated by training set and validated with the validation set using the EXT 

algorithm (n_estimators=200, criterion="gini", max_depth=None, min_samples_split=2) with 10 

features, which are insertion_ot_not, insertion_length, deletion_or_not, deletion_length, 

deleted_site_or_not, mismatch_or_not, mutate_to_A, mutate_to_C, mutate_to_G, base quality 

score. The AUC value for the prediction of testing set was 0.8269. To further evaluate the model, 

Ψ modification probabilities of data points from 22 previously reported (Masato Taoka et al., 

2018), partially modified human rRNA Ψ sites (modification fraction from 5% to 85%) were 

predicted. The base was viewed as Ψ when the probability was larger than 0.5 and as U when the 

probability was less than 0.5. The stoichiometry of each site was calculated as the number of 

predicted Ψ bases divided by the coverage of the site. 
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5.4.2 Single read Ψ analysis in HeLa samples 

The Ψ probabilities of all U residues in selected genes were predicted with the protocol 

above. To investigate the linkage of multiple Ψ on single reads, each read was indexed so that the 

U data points with the same read index were from the same read. Ψ probabilities of residues of a 

certain site were fitted by Gaussian mixture model (GMM) with 2 components. The sites with 

abs(µ1-µ2)>0.5 and λ1, λ2>0.05 were selected for following analysis. When doing pair wise 

linkage analysis, the reads were assigned into “Ψ” and “U” groups when it had >95% posterior 

probability for one population in the GMM for site 1. To evaluate whether there was a difference 

in the Ψ probabilities distribution of site 2 upon the presence or absence of Ψ at site 1, two 

sample Kolmogorov-Smirnov test was performed on the Ψ probabilities cumulative distribution 

curves of site 2 in the “Ψ” and “U” groups with an output of the maximum distance D value and 

p value. The R library to do two sample Kolmogorov-Smirnov test was from GitHub 

(https://rdrr.io/github/happyrabbit/DataScienceR/man/pairwise_ks_test.html). 
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Chapter 6. Conclusions and Perspectives 

 
6.1 Better mapping methods for RNA modifications 

RNA sequencing methods for RNA modification identification requires special designs 

and remains challenging. On one hand, there are mapping methods available for prevalent 

modifications like m6A and pseudouridine, but none is perfect. As for identification resolution, 

accuracy, quantifiability, low required input amount, multi-sites coordination, single cell 

capacity, all methods manage to achieve some by compromising the others. New methods for 

these modifications come out with the improvement of one or several aspects. On the other hand, 

more modifications are detected in RNA, especially mRNA, by methods like mass spectrometry, 

but whole transcriptome distribution and modification fractions of single sites are unknown. 

Both conditions require novel strategies to map the modifications in transcriptome. There is 

plenty of demand for more and better RNA modification mapping methods, which will facilitate 

the future studies of epitranscriptomics. 

Ideally, for NGS based methods, the best strategy for modification identification is to 

change the signals of the modified nucleotides and maintain the signals of the unmodified ones. 

This requires a reaction that could happen to the modified but not the unmodified nucleotides. 

The ideal situation is that the reaction on the unmodified nucleotides is <10-4(X) preference 

compared with modified nucleotides. This is due to the fact that the expected number of 

unmodified nucleotides is usually 200-5000 times of the modified ones. It is less recommended 

to change the signals of unmodified nucleotides and maintain the signals of modified ones, 

because this requires the yield of reaction on unmodified nucleotides as close as possible to 

100%(1-X), otherwise the small fraction of unreacted unmodified nucleotides will dominate the 
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positive predictions. For both directions, the purpose is to make the “X” as small as possible. Of 

course, there are ideas to jump out of the frame. For example, if both the signals of modified and 

unmodified nucleotides could be changed and their outputs are different and only those 

nucleotides with signal changes are counted, then there is no need to worry about the magnitude 

of X. It is hopeful that such strategies could be developed in the future for high accuracy RNA 

modification identification. 

There is still much room for both NGS and TGS based strategies to generate better 

modification identification methods. It is also possible to have totally novel concepts in 

sequencing technologies and then apply them to modification identification and quantitation. 

Each technology has its own advantages and disadvantages. Currently there is no trend for TGS 

to replace NGS as both TGS and NGS have unique advantages and disadvantages. It’s the same 

case for modification detection. NGS based methods and TGS based methods are more like 

complement to each other to satisfy high accuracy and long read length. If the advantages of 

NGS and TGS could be combined to study RNA modifications in the future studies, there will be 

more detailed and concrete discoveries. 

 

6.2 Nanopore sequencing of more RNA modifications 

As we mentioned in the results, the NanoSPA pipeline could be extended to more 

modifications using the same feature space. For modifications beyond m6A and pseudouridine, 

there are few publications working on their whole human transcriptome mapping. Technically, 

there are some problems for developing nanopore models for other modifications. As there is less 

prior knowledge on other modifications, it will be more challenging to train good models for 

nanopore sequencing data. Also, there are fewer cross validations from different studies for the 
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previously discovered modification sites and for some modifications there are even conflicts on 

whether they appear in mRNA or not. Thus, the quality of training material could not be ensured. 

Third, the abundance of other modifications in mRNA are evenly lower than m6A and 

pseudouridine, which means the prediction is based on an extremely unbalanced dataset and it 

could result in a large fraction of false positive predictions. If the modification is not preferred in 

any specific motifs, then the problem will be harder. Fewer abundance also means less training 

materials. 

However, even if the technical problems could be solved, the major problem for other 

modifications remains. The currently available biological discoveries on other modifications are 

limited and it’s not easy to find an application setting even if new methods are developed. In 

another word, NGS based methods seems to be plenty at this moment. If any of the other 

modifications could be found to have major functions in diseases or more biological pathways, 

then there will be more applications available for nanopore based methods. Also, in that case 

there will be more materials for cross validations and functional tests. 

 

6.3 Coordinate of RNA modifications and other RNA events 

One of the major advantages of nanopore sequencing is long read length. However, when 

we use nanopore sequencing for direct RNA modification detection, we seldom make the use of 

the advantage of long reads. Long reads enable the detection of large structure events or multiple 

events happening distant to each other on the same transcript, like alternative splicing and large 

structure variation of the genome. For nanopore sequencing data, it is possible to study whether 

the distributions of specific RNA modifications are correlated to those RNA events without the 

requirement of any extra pre-treatment on the samples. For example, m6A at specific positions 
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are reported to be related to splicing regulation and such problems could be studied 

straightforwardly by nanopore direct RNA sequencing. 

Also, currently multi-omics studies are prevalent, but RNA modifications are seldom 

considered as one of the omics. We have shown that RNA modifications play roles in biological 

processes like translation and there could be coordination. It is possible to coordinate the mRNA 

modifications with other genomic, transcriptomic and proteomic groups to better understand the 

process of gene expression and regulation. 

 

6.4 Single read analysis 

Whether the modifications affect each other on the same mRNA transcript remains a 

major biological question of the epitranscriptome field. Bulk RNA sequencing could only tell the 

overall modification fraction of each site, but the modification state in each molecule is unknown 

and is averaged out. Single read analysis could overcome these problems. We show the proof-of-

concept results of our single read pseudouridine prediction model and apply it to analyze 

modification stoichiometry and multi-site linkage. 

However, there are many unsolved problems in single read analysis. The prediction 

accuracy of single read pseudouridine model is fair, but not high enough to provide convincing 

biological discoveries. Also, although we observed exciting phenomena based on single read 

analysis, it is hard to use wet lab experiments to validate the observations. Third, the size of 

output is huge if the analysis is performed on the whole human transcriptome, and it is 

challenging to process and interpret the data. Currently, our compromised way is to show results 

within one specific transcript. It is hopeful that more approaches to interpret the single read data 

could be developed in the future. 
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The application of single read analysis is still promising. Personally, I do not recommend 

to use single read analysis to calculate stoichiometry for the whole transcriptome, as there are 

more practical ways to complete such tasks like using calibration curves for bulk reads. 

However, it will be useful to use single read analysis to investigate site-site linkage. The linkage 

of distant sites along a transcript may reflect secondary or higher dimension structure 

information, or regulation events happening spatially, which could not be revealed by one 

dimension information. 
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Supplementary information 
 

 

 
Figure S4.1 Full scans of Western blot gels 
(a) Full scan for siCTRL and siTRUB1, also see Fig. 4.1b. (b) Full scan for siCTRL and 
siMETTL3, also see Fig. 4.1b. 
 


