
THE UNIVERSITY OF CHICAGO

ON VOLUME LEAKAGE BASED ATTACKS AGAINST SECURE OUTSOURCED

DATABASES AND THEIR RELATION TO THE TURNPIKE PROBLEM AND

TILINGS

A DISSERTATION SUBMITTED TO

THE FACULTY OF THE DIVISION OF THE PHYSICAL SCIENCES

IN CANDIDACY FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

BY

JESSE ALEXANDER STERN

CHICAGO, ILLINOIS

JUNE 2024

Copyright© 2024 by Jesse Alexander Stern

All Rights Reserved

Dedicated to my family, for their endless love and support throughout my life, especially

during di�cult times.

To my loving and brilliant wife, who has �lled every day since we met with joy and helped

me improve in countless ways.

�. . . theories rest on conditions. Science does not inquire whether those conditions are

ful�lled, but only what the result would be on the hypothesis of their ful�llment . . ." . . .

What does his lucid explanation amount to but this, that in theory there is no di�erence

between theory and practice, while in practice there is?

-Benjamin Brewster The Yale Literary Magazine, 1881-1882

TABLE OF CONTENTS

LIST OF FIGURES . vii

ACKNOWLEDGMENTS . viii

ABSTRACT . ix

1 INTRODUCTION . 1
1.1 Organization . 3
1.2 Preliminaries . 4

1.2.1 Databases . 4
1.2.2 Volume Leakage . 5

2 NOISY D-DIMENSIONAL DATABASE RECONSTRUCTION FROM VOLUME
LEAKAGE . 7
2.1 Introduction . 7

2.1.1 Modi�ed Sets of Queries . 8
2.1.2 The Turnpike Problem and Equivalent Problems 9
2.1.3 Other Prior Work . 9

2.2 Volume-based Reconstruction in 1-Dimension 10
2.2.1 Application of Turnpike Results to Database Reconstruction 13
2.2.2 Backtracking Algorithm . 15

2.3 Noisy Volume-based Reconstruction in 1 Dimension 16
2.3.1 Algorithm for Noisy Multiset Reconstruction Attack 19

2.4 Volume-based Reconstruction in Multiple Dimensions 32
2.4.1 Attack Overview . 34

3 TILINGS OF CONTIGUOUS FINITE SUBSETS OF Z WITH TILES OF FIXED
SIZE . 36
3.1 Introduction . 36

3.1.1 Characterizations of Tilings . 38
3.1.2 Counts on the Number of Distinct Tilings 38
3.1.3 Upper and Lower Bounds on the Number of Distinct Tilings 39

3.2 De�nitions . 40
3.3 Turnpike Reduces to Tiling Multisets . 43
3.4 Formulas for Enumerating T (α, [n]) . 44
3.5 Upper and Lower Bound Calculations . 53

4 NON-CONTIGUOUS TILINGS IN HIGHER DIMENSIONS 68
4.1 Introduction . 68

4.1.1 Generalizations to Higher Dimension and Tiling Non-Contiguous Sets 69
4.1.2 Prior Work On Tilings of Some Finite Non-Contiguous Multisets . . . 69

4.2 Extending to Zd . 70

v

4.3 Tilings for Non-Contiguous C . 75

REFERENCES . 80

APPENDIX . 83

vi

LIST OF FIGURES

1.1 Formal game de�ning an honest but curious adversary against a cryptographic
scheme Π. 6

2.1 Example of a complete backtracking pyramid from the algorithm of Skiena et al. 21
2.2 Example I after running Setup as part of NoisyReconstruction. 26
2.3 Example run of NoisyReconstruction, part 1. 26
2.4 Example run of NoisyReconstruction, part 2. 26
2.5 Example run of NoisyReconstruction, part 3. 26
2.6 Example run of NoisyReconstruction, part 4. 27
2.7 Example run of NoisyReconstruction, part 5. 27

A.1 Standard Backtracking Algorithm for the Turnpike problem [27]. 84
A.2 Turnpike Backtracking Algorithm Initialization Procedure 85
A.3 Right Branch Procedure of Turnpike Backtracking Algorithm 86
A.4 Left Branch Procedure of Turnpike Backtracking Algorithm 87
A.5 Algorithm for database reconstruction from noisy volume multiset leakage. Part

1 of 2. 88
A.6 Algorithm for database reconstruction from noisy volume multiset leakage. Part

2 of 2. 89
A.7 Setup procedure for noisy database reconstruction algorithm. 90
A.8 Core interval backtracking procedure for noisy database reconstruction algorithm.

Part 1 of 2. 91
A.9 Core interval backtracking procedure for noisy database reconstruction algorithm.

Part 2 of 2. 92
A.10 Main counter update sub-routine for noisy database reconstruction algorithm.

Used when placing intervals into the backtracking pyramid. 93
A.11 Counter update sub-routine for noisy database reconstruction algorithm. Used

when updating intervals. 94
A.12 Sub-routine for managing restriction of elements in the interval pyramid of noisy

database reconstruction algorithm. Part 1 of 2. 95
A.13 Sub-routine for managing restriction of elements in the interval pyramid of noisy

database reconstruction algorithm. Part 2 of 2. 96
A.14 Intervals optimization Sub-routine of noisy database reconstruction algorithm. . 97
A.15 Algorithm for extracting a single solution from the output of the noisy database

reconstruction algorithm. 98
A.16 2d-database reconstruction algorithm from multiset volume leakage. Part 1 of 3. 99
A.17 2d-database reconstruction algorithm from multiset volume leakage. Part 2 of 3. 100
A.18 2d-database reconstruction algorithm from multiset volume leakage. Part 3 of 3. 101

vii

ACKNOWLEDGMENTS

There are many people in both my personal and professional life who have supported me

both directly and indirectly in this work. While I cannot name everyone here, there are a

few people I wish to explicitly acknowledge here.

First, I want to thank my adviser David Cash. David has supported my research here

since very early on and has always had exceptional insight and advice when working together

on projects. What really stood out to me however has been the immense amount of support

David has provided me even when I was working on independent projects. David was always

available to o�er excellent advice about how to organize and prioritize my research as well

as helping me stay on track within the program as a whole. David's care and consideration

for his students are always evident, and I greatly appreciate the time and e�ort he has put

into helping me improve as a researcher and achieve my goals within the program.

I want to thank all of my collaborators throughout the years. Not only have these

collaborations been the source of numerous joint results, but they have also helped me grow

as a researcher. Discussing problems with other people deeply engaged on the same problems

has a way of o�ering insights not only on the problems in question, but also into di�erent

ways of thinking about and solving problems in general.

I also want to thank my colleague Neng Huang. Neng was always very sel�ess with his

time as I worked on my tiling research. Working independently on that project presented

me with many new challenges. Having someone to speak to periodically about these results

and receive feedback from was always extremely helpful and I am very grateful for the many

conversations he took the time to have with me on this topic.

Last, but certainly not least, I want to thank my wife Yichen Hou. A Ph.D. can be

a long and grueling experience at times. Being able to share that experience and o�er

mutual support has made it in�nitely easier and improved the quality of both my life and

my research.

viii

ABSTRACT

When outsourcing data, one of the things the host learns about the data is the number of

records returned in response to each user query. We refer to this as volume leakage and

study attacks on databases that leak the volumes of range queries over database attributes.

We provide two new attacks within this area, one against noisy volume leakage and another

against volume leakage of d-dimensional databases for d > 1 (where previously work only

considered the case of d = 1).

To build these attack algorithms, we prove the equivalence of this problem to the turnpike

problem. We then take ideas from algorithms previously used to solve the turnpike problem

and expand upon them to yield our attacks. This connection also allows us to directly

apply numerous theoretical results from the turnpike problem to the problem of database

reconstruction from volume leakage. Further, we prove several new theoretical results with

respect to the database reconstruction problem using ideas from the turnpike literature.

In order to address the issue of determining uniqueness of some reconstruction of a

database from volume leakage, we are forced to take a step back and study the mathematical

foundations of the problem. We do this by reducing the problem of database reconstruction

to that of tiling �nite multisets with a tile of �xed size. Unfortunately, many of the questions

we asked with respect to multisets were still open, even with respect to sets of contiguous

elements. Thus, we start by proving structural results about the properties of tilings of �nite

intervals of integers and prove upper and lower bounds on the number of such tilings.

In an initial e�ort to generalize these tiling results and work towards our desired database

reconstruction results, we generalize our tiling results in two major ways. The �rst is to

generalize them to tilings of d-dimensional �nite sets. The second is to generalize them to

certain families of non-contiguous �nite sets. We hope that further generalizations of our

latter results will yield an algorithm for e�ciently determining uniqueness of a database

reconstruction attack's output.

ix

CHAPTER 1

INTRODUCTION

Big data plays a critical role in modern computation, but with big data comes massive

storage requirements. Further, it is often the case that many people require access to the

same data. Rather than maintaining a personal server room, many have turned to the more

convenient and e�cient solution of cloud databases. While outsourcing ones data in this

way has many advantages, trusting a vendor with potentially sensitive data requires careful

analysis of the potential security vulnerabilities of such a scheme. Even if one's data is in

encrypted, storing it on a cloud database has risks, as the vendor or other parties able to

eavesdrop can learn information about what encrypted information users are accessing.

While di�erent settings result in distinct forms of leakage, one form of leakage that is

extremely di�cult to entirely remove is volume leakage. At a high level, we say that a query

to retrieve some subset of outsourced data leaks query volume if some adversarial party is

able to infer the number of records sent back to the user in response to the query. The study

of volume leakage-based attacks was initiated by Kellaris et al. [16] where they showed that,

after viewing the volume leakage of su�ciently many queries over ranges of record attributes,

they could recover how many records were associated with each attribute. This initial work

on volume-based attacks left many open questions which we broadly sort into two categories:

� Practical questions about such attacks in real-world environments. This includes re-

laxations of assumptions such as those on the query distribution and noise, as well as

potential defenses such as padding the database via the inclusion of dummy records.

� Theoretical questions about the underlying mathematics of the associated reconstruc-

tion problem. This includes information theoretic questions about the set of solutions

consistent with the leakage (such as the number of such solutions and their properties),

as well as worst-case runtime analysis of attacks.

1

A fundamental contribution of our work is our reduction from the problem of recon-

structing a database from multiset volume leakage to the turnpike problem, a well-studied

computer science problem that is also connected to problems in biology and physics. From

this, we are able to port numerous practical and theoretical results from the turnpike liter-

ature. This reduction also allows us to develop new practical and theoretical results based

on the ideas of a wider range of prior works.

Most of the recent cloud database security literature has focused on more practical ques-

tions. In this dissertation, we consider questions of both of the above types. In terms of

practical questions, our �rst contribution is to classify some of the various noise models one

can work under in this setting. Di�erent methods for modeling noise correspond to distinct

real-world settings, and the diversity of of noise models used in recent works re�ects this.

Thus, we formalize the noise models previously used in the literature on cloud database

attacks here, as well as contribute several new ones. With these noise models in hand, we

focus in on the natural noise model where each volume has noise added independently from

some range (naturally modeling cases where an eavesdropper's measure of the number of

records returned is o� by some additive or multiplicative factor). We then give a new noisy

volume leakage-based attack that allows for database reconstruction in the presence of such

noise. Further, we prove that our attack can, for some databases, uniquely reconstruct the

database1 despite the presence of noise.

As to theoretical contributions, we prove upper and lower bounds on the number of

valid reconstructions of a database from volume leakage, utilizing bounds from the turnpike

literature in the case of multiset volume leakage and using a new construction in the case

of a lower bound given set volume leakage. We prove a reduction from turnpike (and thus,

from database reconstruction as well given their equivalence) to a new �nite tiling problem.

From this, we investigate the mathematical foundations of this problem via tilings. With

1. Up to re�ection of the databases attribute, which is an information-theoretic restriction that exists
even when there is no noise present.

2

respect tilings, we are able to give characterizations of all valid tilings of �nite contiguous

sets of integers by tiles of �xed size. We then work to generalize these results to higher

dimensions and to the tiling of non-contiguous sets. To apply these results back to outsourced

database attacks, we would like to eventually extend these results to tilings of multisets.

While we are unable to complete this program here, we make meaningful progress towards

this goal. Achieving this generalization of our tiling results has the potential to yield an

e�cient algorithm for determining if a database reconstruction from multiset volume leakage

is unique, signi�cantly improving attack capabilities on volume leakage.

1.1 Organization

This dissertation is organized into four chapters as well as one appendix.

� Chapter 1 provides a high-level introduction to the overall focus of the dissertation and

highlights some of the key prior works that have in�uence across several other chapters.

We also cover some of the most prominent de�nitions and concepts that appear in later

chapters.

� Chapter 2 focuses on new attacks against databases that support range queries and leak

query volumes. We establish a connection to prior work by proving the equivalence

of this problem in 1-dimension to the turnpike problem. Utilizing this connection,

several theoretical results are adapted to apply to database attacks, and a new attack is

developed that works on noisy data. We also give the �rst attack against d-dimensional

databases using their multiset volume leakage. Further, our attack using noisy leakage

and attack against d-dimensional databases can be combined in a natural way to yield

attacks on noisy volume leakage of d-dimensional databases supporting range queries.

� Chapter 3 is concerned with improving our understanding of the underlying mathe-

matical structure of the turnpike problem. We begin by reducing the turnpike problem

3

to the tiling problem of �nding tilings of a �nite multiset by a tile of �xed size. We

then work to establish a foundation for the problem of studying tilings of multisets by

studying the related problem of tiling contiguous sets, providing characterizations of

and bounds on the number of such tilings.

� Chapter 4 covers generalizations of the results of Chapter 3 to tilings of d-dimensional

�nite sets. Further, we work to begin removing the restriction from Chapter 3 of the

set to be tiled needing to be contiguous.

� The appendix contains full psudocode for all of our algorithms and their sub-routines

from chapter 2, as well as psudocode for the main backtracking algorithm for turnpike

from prior work [27].

1.2 Preliminaries

We brie�y cover some key concepts and de�nitions that will be used throughout this work.

1.2.1 Databases

We de�ne a 1d-database DB with domain size N and m records as a multiset of values

DB = {{r1, r2, . . . , rm}} where ri ∈ [N] for all i ∈ [m]. Alternatively, we typically write

DB = (v1, . . . , vN), where vi =
∑m
j=1 1[rj=i], which corresponds to the number of records

taking value i in the database. We say that a database supports range queries if and only

if a user can make a query of the form [x, y] for x, y ∈ [N] such that x ≤ y and receive all

ri ∈ [x, y] on response.

We de�ne a d-dimensional database DB with ith dimensional domain size Nj for each j ∈

[d] and m records as a multiset of tuples DB = {{r1, r2, . . . , rm}} where ri ∈ [N1]× . . .× [Nd]

for all i ∈ [n]. Alternatively, we typically write DB = (v(1,...,1), . . . , v(N1,...,Nd)
), where

vx =
∑m
k=1 1[rk=x]

, which corresponds to the number of records taking each of the d values

4

in the tuple x in the corresponding dimension of the database. In a natural generalization of

range queries to a 1d-database, a range query to a d-dimensional database is a d-dimensional

rectangle in [N1]× . . .× [Nd].

1.2.2 Volume Leakage

We say that a database leaks query volume if and only if some adversarial party learns the

number of records returned in response to any user query. Kellaris et al. [16] introduced

volume-based reconstruction attacks. Their paper considers a model in which an adversary

is observing range queries made to a domain of size N . In their model, they note that an

adversary must observe Ω(N4 logN) uniformly random queries in order to estimate vi, the

number of queries that return exactly i records. In our notation, we will refer to this type

of leakage as the multiset model, and we present attackers whose input is a multiset Vols

of volumes, where i is in Vols exactly vi times. Implicitly these attacks are run only after

observing su�ciently many queries to construct the multiset.

Later work, beginning with [12], presents attacks that work in a model making fewer

assumptions about the query distribution and the number of queries the adversary observes.

Although there are a few di�erent models, we will consider one in which an adversary observes

Ω(N2 logN) range queries in order to observe each record at least once. In this model, the

adversary cannot estimate the counts accurately (via a lower bound from [16]). Instead, the

adversary can determine whether or not at least one range query contains exactly i records

(but not their multiplicity). We refer to this model as the set model and note that is strictly

stronger than the multiset model, in the sense that any attack in the set model can be run

in the multiset model and that the model makes fewer assumptions.

Although we formally de�ne the honest-but-curious setting in Figure 1.1, we will generally

consider these models in the setting after the adversary has either captured the multiset or

set of volume information respectively. Similarly to Kellaris et al., [16], we focus on the

5

volume leakage of databases that support range queries.

GΠ,L,S,DataGen,QueryGen(A) :
b←$ {0, 1}
DB← DataGen
C ← Π.Setup(DB)
(ℓ, stLL)← Lsetup(DB,⊥)
(C ′, stS)← S(ℓ,⊥)
If b = 0 run b′ ← AO(C)
Else run b′ ← AO(C ′)
Return [b = b′]

O() :
q ← QueryGen
c← Π.Query(q, C)
(ℓ, stLL)← Lquery(q, stLL)
(c′, stS)← S(ℓ, stS)
If b = 0 return c
Else return c′

Figure 1.1: Formal game de�ning an honest but curious adversary against a cryptographic
scheme Π.

6

CHAPTER 2

NOISY D-DIMENSIONAL DATABASE RECONSTRUCTION

FROM VOLUME LEAKAGE

2.1 Introduction

In this chapter, we provide a security evaluation of schemes supporting range queries and

leaking volume with the following contributions:

� We formally provide an equivalence between volume-based reconstruction and the turn-

pike problem. From this equivalence, we import theoretical results and new attacks

to volume-based reconstruction setting. This includes new guarantees on attacks from

prior work [16], new attacks, and bounds on the size of homometric solutions for the

set and multiset cases.

� We provide new set and multiset volume-based reconstruction attacks in noisy models

based on backtracking algorithms from the turnpike problem literature. Our attacks

perform better than attacks from prior work in the regime we care about, and our

techniques give an attack on a previously unconsidered noise model.

� We give the �rst volume-based reconstruction attack against databases with dimension

greater than one and give attacks for the multiset volume leakage. Our attacks use

a recursive backtracking structure to generalize to any dimension. The form of our

algorithms also lends themselves to �partial progress,� which boosts performance by

running a lower dimensional attack and seeding the higher dimensional attack with the

result.

These results are part of an as-of-yet unpublished joint work with David Cash and Alex

Hoover.

7

2.1.1 Modi�ed Sets of Queries

In practice, it may be the case that some range quires a database supports are never actually

made by the client and thus, no volume leakage with respect to such queries can be expected.

Thus, following up on the initial attacks utilizing volume leakage [12, 16], several lines of

work began to study similar attacks in circumstances where only certain types of query

volumes are leaked. Gui et al. [13] consider this setting by restricting the window size of

the queries that are leaked (i.e. any given query may only be over at most b attributes for

some constant b). In a later work, Kornaropoulos et al. [19] consider databases that support

range queries as constructed by Demertzis et al. [8]. For these databases, only a subset of

range queries are actually supported, and client's queries are answered by returning several

smaller range queries or a superset of the client's query utilizing only those range queries

that are supported. Unlike the set model, neither of these models is strictly stronger than

the multiset model. Given that the best set of allowable queries for such a model is unclear

as is their relationship with the multiset and set models, we do not consider them in this

work.

Consideration has also been given to models where the attacker has some additional

ability that allows them to in�uence queries or their volumes. One example of this allows the

attacker to perform an injection attack and add records to the database [2, 34], which impacts

the volumes of queries the adversary sees in a key way. Such capabilities can signi�cantly

improve the ability of an attacker to reconstruct a database, even in the presence of noise.

While we do not allow the attacker access to such powerful tools in this work, it is possible

our attacks could all be improved with access to some additional capability or information

based on context.

8

2.1.2 The Turnpike Problem and Equivalent Problems

The turnpike problem is one of several problems with identical underlying mathematical

structures. The �rst appearance of such a problem was in X-ray crystallography in the case

of solving the phase problem [22, 23]. In this setting, the peak positions output from the

Patterson function are the inter-atomic distance vectors, with the height of a peak providing

information as to the multiplicity of atoms with the corresponding inter-atomic distance.

Later, the problem of inferring DNA structure from partial digest data appeared in biology,

with the earliest attempts to solve this problem algorithmicly appearing in the late 70s [30].

A polynomial factorization approach to the problem was later discovered by Rosenblatt and

Seymour [26]. Not only did this provide methods for solving the problem, but established

the properties of homometric sets (i.e. the properties of the set of all solutions to any given

instance).

In both the contexts of X-ray crystallography and partial digest, measurement errors in

the data are signi�cant issues. Thus, there has been both theoretical and algorithmic progress

in studying these problems in such a setting. On the theory side, it was shown that additive

or multiplicative error applied to each value in the multiset results in the corresponding

reconstruction problem becoming strongly NP-complete [5]. Following up on these results,

it was then also proven that missing data leads to the problem being NP-hard, and adding

additional data makes the problem hard to approximate (as hard as approximating MAX

CLIQUE) [6].

2.1.3 Other Prior Work

While d-dimensional access pattern leakage attacks have been considered [9, 10], there has

not yet been any work on d-dimensional volume leakage attacks. On the other hand, there

has been work in higher dimensions for the problems of solving the phase problem in X-

ray crystallography using the Patterson function and the Turnpike problem. Unfortunately,

9

while we prove the equivalence of solving the phase problem using the Patterson function, the

Turnpike problem, and database reconstruction from multiset volume leakage in 1-dimension,

all three of these problems are distinct in higher dimensions.

With respect to quantifying how many distinct databases have the same leakage, there

have been several e�orts, but none particularly focused on the volume leakage setting. Ko-

rnaropoulos et al. [19] consider how many databases have the same leakage, but do so in

various keyword-based settings and generally with access pattern. As it does not consider

volume leakage in either the multiset or set models, their results and our own are disjoint.

A follow-up work [18] provides a more general framework for considering what databases

are information-theoretically indistinguishable, which they refer to as the reconstruction

space of the database. Unfortunately, they do not o�er non-trivial bounds on the size of a

database's reconstruction space given its multiset or set volume leakage, as their results are

not speci�cally tuned for this purpose.

2.2 Volume-based Reconstruction in 1-Dimension

The study of database reconstruction in 1-dimension from volume leakage was initiated by

Kellaris et al. [16]. They give two di�erent types of attacks. The �rst is a polynomial

factorization-based method and the other is a backtracking algorithm. One of our main con-

tributions in this section is to prove that multiset volume-based reconstruction attacks and

turnpike reconstruction are reducible to one another in linear time and, from this connection,

highlight several important prior results from the turnpike literature and their implications

for multiset volume-based reconstruction. Motivated by the work of Zhang on the turnpike

problem [35], our second contribution in this section is a proof that the homometric set size

(or reconstruction space as it is referred to in [18]) of a database DB = (v1, . . . , vN) can be

exponential in N . Lastly, we conclude this section with a review of the backtracking algo-

rithm of Kellaris et al. [16] (independently discovered in the turnpike literature by Skeina

10

et al. [27]), as this algorithm motivates our own for attacks on multidimensional and noisy

leakage.

We begin with the de�nitions of multiset volume-based reconstruction attacks and set

volume-based reconstruction attacks.

De�nition 1. For a 1d-database DB = (v1, . . . , vN) with m records and domain size N , a

multiset volume-based reconstruction attack is one which takes as input

Vols =

j∑
k=i

vk : 1 ≤ i ≤ j ≤ N

and outputs a database DB′ = (v′1, . . . , v
′
N) with domain size N and m records. We say that

a multiset volume-based reconstruction attack succeeds if and only if

Vols =

j∑
k=i

v′k : 1 ≤ i ≤ j ≤ N

De�nition 2. For a 1d-database DB = (v1, . . . , vN) with m records and domain size N , a

multiset volume-based reconstruction attack is one which takes as input (Volsset, N)

where we let

Volsset =

j∑
k=i

vk : 1 ≤ i ≤ j ≤ N

and outputs a database DB′ = (v′1, . . . , v

′
N) with domain size N and m records. We say that

a multiset volume-based reconstruction attack succeeds if and only if

Volsset =

j∑
k=i

v′k : 1 ≤ i ≤ j ≤ N

It will often be convenient to, with respect to some DB and some leakage model, refer

to those databases that are indistinguishable from DB. Thus, if an attack A like the ones

11

de�ned above succeeds by outputting when DB′ when given the leakage of DB, we say that

DB and DB′ are information theoretically consistent. This is always with respect to

some leakage model that will, in this work, always be clear from context. We now proceed

with the de�nitions of turnpike reconstruction and the turnpike problem.

De�nition 3. A turnpike reconstruction takes as input a multiset D of
(N
2

)
−N positive

integers and outputs a set of natural numbers L′ of size N that includes 0. We say that a

turnpike reconstruction succeeds if and only if

D = {{x− y ∈ (L− L) : x > y} .

The turnpike problem is a decision problem that is true if and only if, its input is a multiset

D of
(N
2

)
−N positive integers and there exists a set L′ such that a turnpike reconstruction

that outputs L′ on input D succeeds.

We can now prove that multiset volume-based reconstruction attacks and turnpike re-

constructions are reducible to one another in linear time.

Corollary 1. For any multiset volume-based reconstruction attack A, there exists a turnpike

reconstruction A′ such that

� The runtime of A′ is the runtime of A plus O(N).

� If A succeeds on DB = (v1, . . . , vN) with probability p, then A′ succeeds on

D =

j∑
k=i

vk : 1 ≤ i ≤ j ≤ N

 ∪ {{0}}

with probability p.

Proof. A′ runs A on its input, adds the element 0 to the output DB′ of A, then outputs the

result as L′. Notice that, if we index the elements xi ∈ L by their value (in increasing order

starting with 0), vi equals xi − xi−1 as desired.

12

Corollary 2. For any turnpike reconstruction R, there exists a multiset volume-based re-

construction attack R′ such that

� The runtime of R′ is the runtime of R plus O
((N

2

))
.

� If, for some set of non-negative integers L of size N that includes 0, R succeeds on

D = {{x− y ∈ (L− L) : x > y} with probability p, then R′ succeeds on DB = L \ {0}

with probability p.

Proof. R′ runs R on its input, removes the element 0 from the output L′ of R, then outputs

the result as DB′.

2.2.1 Application of Turnpike Results to Database Reconstruction

With the above connection to turnpike, it follows that the polynomial factorization of Kellaris

et al. [16] is equivalent to the polynomial factorization method from X-ray crystallography

of Rosenblatt and Seymour [26], while their backtracking algorithm is equivalent to the

backtracking algorithm of Skiena, Smith, and Lemke for solving turnpike [27]. We now

prove several interesting corollaries about both database reconstruction algorithms, as well

as the database reconstruction problem in general.

Corollary 3. There exists databases DB = (v1, . . . , vN) such that, given Vols, the num-

ber of databases information theoretically consistent with DB is at least (n + 1)0.8107144/2.

Further, given Vols for any DB, the number of databases consistent with DB is at most

(n+1)2.4649654/2. If DB is not sparse (i.e. has no vi with no records), then the upper bound

can be improved to (n+ 1)1.2324827/2.

Proof. The polynomial factorization approach of Rosenblatt and Seymour [26] was later

analyzed by Lemke and Werman [21], where the bulk of these results were proven. Skiena

et al. [27] put these bounds into the context of the turnpike problem and extend the upper

13

bound to the case where a point can appear multiple times on a line (which translates to

the sparse case for databases in our setting). Thus, these results follow from theirs and our

reduction. As the size of a turnpike instance is 1 greater than that of the corresponding

database reconstruction problem (i.e. N = n+1), we have modi�ed the results accordingly.

Corollary 4. For any DB = (v1, . . . , vN), given Vols, the polynomial factorization attack of

Kellaris et al. runs in polynomial time with respect to |Vols|.

Proof. Kellaris et al. are aware of this in the case of unique reconstruction (though they do

not highlight this directly, it follows from their use of LLL and the bound on the degree of the

polynomial). The polynomial upper bound on homometric set size of Lemke and Werman

[21] and Skiena et al. [27] is proven via a polynomial factorization-based argument that

shows the number of non-self-reciprocal irreducible factors is upper bounded by a polylog

factor. Lemke and Werman [21] then did runtime analysis in the presence of such bounds

to prove that their problem could be solved in pseudo-polynomial time (i.e. in polynomial

time with respect to the largest distance in the given interpoint distance set). Thus, the last

step of the Kellaris et al. method that tries all possible ways to sort irreducible factors into

two reciprocal products runs in polynomial time with respect to |Vols|.

Corollary 5. For any DB = (v1, . . . , vN), given Vols, the backtracking attack of Kellaris et

al. has worst case runtime Ω(2(N/5)−2).

Proof. Zhang [35] gives a family of exponential time instances for the backtracking algorithm

of Skiena and Sundaram [28] to which the Kellaris et al. algorithm is equivalent.

Motivated by the family of turnpike instances de�ned by Zhang [35], we can de�ne a

family of databases such that, when given access only to set leakage, they have exponentially

many informational theoretically consistent reconstructions from that leakage. To put this

14

another way, the homometric set (or reconstruction space) of DB with set volume-based

leakage can be exponential in N .

Lemma 1. For any ϵ > 0, there exists a DB = (v1, . . . , vN) such that there are (1− ϵ)
(N/3
N/6

)
distinct databases on which a set volume-based reconstruction attack succeeds.

Proof. For any database DB and any i and j such that 1 ≤ i < j ≤ N , we call vi, . . . vj a

dense region if and only if ∀k ∈ [i, j](vk = 1). For any database DB and any i and j such

that 1 ≤ i < j ≤ N , we call vi, . . . vj a sparse region if and only if
∑j
k=i vk = 2(j−i+1)+1.

For any ℓ ∈ Z+, consider any database DB(v1, . . . , vN) where N = (2r+1)(2ℓ+1) made up

of ℓ + 1 dense regions of size 2r + 1 (i.e. j − i + 1 = 2r + 1) with exactly one sparse region

of size r between each dense region. Notice that, regardless of the distribution of records

within sparse regions, Volsset = [N]. Each sparse region has
(2r
r

)
con�gurations and thus,

if ℓ = 1, we have N = 4r + 2 with a homometric set of size
(2r
r

)
. To get the claim, we

not only allow for greater ℓ, but also also allow for each sparse region to have any size, but

without changing the number of records (and without changing the sum of the sizes of all of

the sparse regions). This results in a homometric set of size
(2rℓ
rℓ

)
for N = (2r + 1)(2ℓ+ 1).

As ℓ increases, this approaches a homometric set size of
(N/3
N/6

)
.

2.2.2 Backtracking Algorithm

We now review backtracking-based multiset volume-based reconstruction attack by [16],

but written in a format closer to that of the equivalent backtracking algorithm for solving

turnpike [27]. For Vols of size
(N
2

)
+N , the algorithm maintains a backtracking pyramid

(which we denote by B) with N rows and i elements in row i. We use (i, j)B to indicate the

element in row i and column j of the backtracking pyramid. The algorithm then works to

�ll in (i, j)B for all i and j in such a way that (i, j)B is equal to the number of records with

an index in the range of vi to vn+i−j . As the size of B is exactly that of Vols, �lling in B

with exactly the elements of Vols serves as a multiset volume-based reconstruction attack.

15

The algorithm proceeds by taking the largest unassigned volume from Vols and assigning

it the �rst empty location in B along either the left or right side of (i.e. (i, 1)B or (j, j)B

for the minimum i or j such that that position of B has not been assigned a volume). After

the kth such assignment, notice that we will learn k− 1 additional volumes. For example, if

we just assigned a volume (j, j)B that implies that, for all i such that i < j, (i, i)B has been

assigned a volume. Additionally, as (i, i)B and (j, j)B corresponds to the number of records

with an index in the range of vi to vn+i−i and vj to vn+j−j , it follows that (i, i)B − (j, j)B

corresponds to the number of records with an index in the range of vi to vj . Thus, when we

assign a new volume, we can take its di�erence with k − 1 other elements along the side of

B it was placed and use these values to �ll in k − 1 additional elements of B. While this

means that the algorithm proceeds for at most N steps, the guess of assigning a volume to

the left or right means the upper bound on its runtime is 2N . We provide pseudocode for

this algorithm in algorithm 1, which runs algorithms 2, 3, and 4 as subroutines.

2.3 Noisy Volume-based Reconstruction in 1 Dimension

We begin by de�ning various noise models, then give a novel noisy multiset reconstruction

attack

De�nition 4. For a 1d-database DB = (v1, . . . , vN) with m records and domain size N , a

noisy multiset reconstruction attack is one which takes as input the domain size N and

Vols∼

zi,j +

j∑
k=i

vk : 1 ≤ i ≤ j ≤M

 ,

where zi,j ←$ χi,j,DB is a set of volumes drawn from a noise distribution that can depend on

the database. Then, the attack outputs a database DB′ = (v′1, . . . , v
′
N) with domain size N .

We say that a noisy multiset reconstruction attack succeeds if and only if the probability

16

that

Vols∼ =

zi,j +

j∑
k=i

v′k : 1 ≤ i ≤ j ≤ N

is greater than 0.

De�nition 5. For a 1d-database DB = (v1, . . . , vN) with m records and domain size N , a

noisy set reconstruction attack is one which takes as input the domain size N and

Vols∼set =

zi,j +
j∑
k=i

vk : 1 ≤ i ≤ j ≤ N

 ,

where zi,j ←$ χi,j,DB is a set of volumes drawn from a noise distribution that can depend on

the database. Then, the attack outputs a database DB′ with domain size N . We say that a

noisy set reconstruction attack succeeds if and only if the probability that

Vols∼set =

zi,j +
j∑
k=i

v′k : 1 ≤ i ≤ j ≤ N

is greater than 0.

The noisy multiset reconstruction attack was initially de�ned in [13]. They also de�ne two

other noise models. While we do not give any additional novel algorithms for this problem

in this work, we are able to prove results with respect to these models via the connection to

the turnpike problem.

For a noisy multiset reconstruction attack, for each element of DB, we may be able to

reconstruct the elements of DB up to some error. In such cases, it may make more sense

to output a set of possible values for each element of DB as opposed to a single one. This

motivates a new attack de�nition.

De�nition 6. For a 1d-database DB = (v1, . . . , vN) with m records and domain size N , a

noisy multiset full reconstruction attack is one which takes as input the domain size

17

N and
zi,j +

j∑
k=i

vk : 1 ≤ i ≤ j ≤ N

 ,

where zi,j ←$ χi,j,DB is a set of volumes drawn from a noise distribution that can depend on

the database. Then, the attack outputs a N tuple of set approx − DB = (V1, . . . , VN). We

say that a noisy multiset full reconstruction attack succeeds if and only if for all i ∈ [N]

we have that v′ ∈ Vi if and only if there exists a DB′ with ith element v′ such that a noisy

multiset reconstruction attack with input DB and output DB′ succeeds.

One type of noise, considered by Gui et al. [13] captures a real-world setting where an

adversary is con�dent they have observed every range query at least once but they may have

also recorded volumes that do not correspond to range queries on the data. An example of

this would be an adversary that observes both continuous range queries from users along

with a few discontinuous range queries (a query on a disjunction of ranges).

De�nition 7. For a 1d-database DB = (v1, . . . , vN) with m records and domain size N

spurious volumes reconstruction attack is one which takes as input the number of

records n, the domain size M , and

Volsspur =

j∑
k=i

vk : 1 ≤ i ≤ j ≤ N

 ∪ Z,
where Z←$ χDB is a set of volumes drawn from a noise distribution that can depend on the

database. Then, the attack outputs a database DB′ with domain size N .

Another noise model was proposed by [34]. While we do not discuss this noise model at

length, we include it here for completeness. At a high level, this �noise" can be introduced as

a defense against volume-based reconstruction by padding the database with fake records.

De�nition 8. For a 1d-database DB = (v1, . . . , vN) with m records and domain size N , a

noisy record-padded multiset reconstruction attack is one which takes as input the

18

domain size N , a positive integer s and

j∑
k=i

vk + zk : 1 ≤ i ≤ j ≤ N

 ,

where zk ∈ [0, s]←$ χi,j,DB is a set of additional records drawn from a noise distribution

that can depend on the database. Then, the attack outputs a database DB′ with domain size

N .

The last noise model we de�ne models the case of missing volumes (or at least missing

multiplicity of some volumes). This formalization is motivated by a noisy turnpike model

proven to be NP-hard [6].

De�nition 9. For a 1d-database DB = (v1, . . . , vN) with m records and domain size N , a

multiset superset reconstruction attack is one which takes as input the domain size N

and

j∑
k=i

vk : 1 ≤ i ≤ j ≤ N

 ∪X,

where X is a multiset set of volumes drawn from a noise distribution that can depend on the

database and V . Then, the attack outputs a database DB′ with domain size N .

2.3.1 Algorithm for Noisy Multiset Reconstruction Attack

In this section, we �rst give a high-level overview of a backtracking algorithm for partial digest

[28] (recall that partial digest is equivalent to the turnpike problem as well as noisy multiset

reconstruction). We then give a new noisy multiset full reconstruction attack algorithm.

While our algorithm also takes a backtracking approach, it di�ers from the prior work in

several key ways. For simplicity, we begin by assuming that the database is 1-dimensional

and that the noise is such that ∀a, b ∈ Z(k ∈ [a, b]⇔ Pr(zi,j = k) > 0. The former restriction

can be removed by using ideas from our multidimensional algorithm in the following section,

19

whereas the latter condition may or may not be easy to remove depending on the noise

distribution in question.

Our approach is motivated by the work of Skiena and Sundaram [28]. In their work

they use a backtracking algorithm to solve the Turnpike problem where a small amount of

multiplicative noise has been applied to each interpoint distance. To deal with the noise,

they treat elements as intervals (as opposed to integers like in the standard backtracking

algorithm for the Turnpike problem [27]). There are two key issues with this. The �rst is

that, as one proceeds in constructing the backtracking pyramid, assignments and implications

are no longer unambiguous (beyond the choice of whether the next largest distance will be

placed on the left or right side of the backtracking pyramid). For example, if we calculate

that some volume is equal to x − y for x ∈ [8, 10] and y ∈ [3, 5], then we only know that

x − y ∈ [min[x] − max[y],max[x] − min[y]] = [3, 7]. If our multiset of volume intervals

contains the intervals [2, 4], [4, 6], [5, 7], [6, 8], then any of these is a valid interval to place at

this point in the backtracking pyramid. Thus, if all elements in the base of the pyramid

intersect, one can end up with a runtime on the order of n! as opposed to 2n. To address

this, they adopt a grouping idea of Chang's [4], where they group several intervals based on

their mean. While this can lead to a runtime improvement, it can also cause the algorithm

to miss valid solutions.

The second issue with this algorithm is that, even once a backtracking pyramid is fully

constructed, its elements are intervals and thus, one may still need to do an additional

backtracking process of guessing values within those intervals in order to arrive at a solution,

a process which could easily take exponential time. This issue is best illustrated by the

example in �gure 2.1.

In this work, we do not take the mean of any intervals, nor do we add the volume inter-

vals we start with to our backtracking pyramid directly. Instead, we maintain a quadratic

number of counters that keeps track of how many copies of various intervals can exist in the

20

[13, 15]

[3, 5] [13, 15]

[0, 2] [3, 5] [6, 8]

Figure 2.1: Example of a complete backtracking pyramid from the algorithm of Skiena et al.

Suppose we are given Vols = {{1, 4, 4, 7, 14, 14}} with error range [−1, 1]. Then the intervals we
run our backtracking procedure on would be V = {{[0, 2], [3, 5], [3, 5], [6, 8], [13, 15], [13, 15]}}.

While constructing the backtracking pyramid using the algorithm of Skiena and Sundaram [28] is
e�cient in this case (avoiding the �rst issue), it is not clear how to e�ciently extract a potential

solution.

backtracking pyramid at once. As the backtracking progresses and some of these counters

reach 0, we are able to re�ne the intervals we have put into the backtracking pyramid prior

and reduce their length. By doing this, we are able to ensure that our multiset volume-based

reconstruction attack always succeeds, that it still takes on the order of 2n time to produce

a backtracking pyramid (as opposed to order n! time), and that it does not need to run an

additional backtracking procedure on our �nal backtracking pyramid in order to produce a

solution.

We now describe our algorithm at a high level, beginning with its initialization:

1. Take each noisy volume v and replace it with an interval [x, y], such that a x is the

minimum possible value of v prior to adding noise and y is the maximum possible value

of v prior to adding noise. We call the resulting multiset of intervals V and we let V ′

be the set (not multiset) containing exactly those elements in V .

2. We construct an interval pyramid I with m rows and k columns in row k where m =

|V ′|. We associate each element of I with a unique interval [x, y]. The interval [x, y]

associated with the element of I in row i and column j is such that x is the min element

of the jth smallest interval in V ′ and y is the max of the ith largest interval of V ′.

3. Each element of I has a counter that is set to the number of subsets of its associated

interval in V (counting multiplicity).

21

The algorithm then proceeds by interval backtracking, with the key modi�cation that,

we add the maximum possible interval from any implication to our pyramid, whether or

not it is in our set of volume intervals. Further, when a new interval [x, y] is added to the

backtracking pyramid B, it is also added to the bucket in I associated with an interval that

is the minimum superset of [x, y] in I.1 Then the counter of every element of I associated

with a superset of [x, y] is reduced by 1. When a counter in I hits 0, we restrict that element

of I as well as every other element of I that is above it in I and which share a diagonal with

it (so all those up and to the right and up and to the left), then move all elements out of

restricted buckets and into the �rst non-restricted bucket further down in I. When doing

this, we are able to take the intersection of the elements being moved and the interval of

its new bucket, providing us an opportunity to re�ne the intervals and improve our attack.

When we get an improvement in this way, we can then also look back at other intervals in the

backtracking pyramid and look for further opportunities for re�nement before continuing.

The full algorithm begins with Algorithm 5, but is split across multiple subroutines. To

reduce clutter in the pseudocode of all our algorithms, we omit the process of taking the

intersection of each interval with [max[Vols] + a,max[Vols] + b] (or if max[Vols] + a < 0) at

each step (which we must do to avoid getting volumes that are clearly impossible). Before

proceeding with a more detailed description of our algorithm, we must rigorously de�ne how

I will be represented, as well as how we will reference elements of both our backtracking

pyramid B and interval pyramid I.

Each element of I is a 4-tuple ([x, y], c, r, {{}}) with an associated interval, counter,

indicator variable for �restriction," and bucket (i.e. multiset) respectively. We use (i, j)B

and (i, j)I to indicate row i and column j of B and the 4-tuple there in I respectively. We

use [x, y](i,j)B and [x, y](i,j)I to refer to the interval stored in (i, j)B and the �rst element

of (i, j)I respectively. We use (i, j)c to indicate the second element (i.e. the value of the

1. Sometimes the �minimum" interval is ambiguous which we discuss in further detail in the summary of
algorithm 7

22

counter) of (i, j)I . We use Res((i, j)I) to indicate the value of the third element of (i, j)I

and say that (i, j)I is restricted if and only if Res((i, j)I) = 1.

We now summarize NoisyReconstruction and each of its subroutines.

� Algorithm 5 - NoisyReconstruction takes as input the noisy volumes and noise bounds.

It calculates how many distinct identi�ers (i.e. N) the database has, then runs Setup

to generate the multiset intervals and I. It then chooses to branch left or right in

placing the next largest volume intervals from Vols into B. Once it makes this choice,

it calls the main interval backtracking subroutine IBT to assign the volume and manage

any implications. If one of the subroutines ever outputs �Backtrack", it manages the

backtrack and tries a new path. This continues until all paths have failed or B is �lled

correctly.

� Algorithm 6 - Setup is passed the the noisy volumes and noise bounds by NoisyReconstruction.

It uses this to generate V , which replaces each element of Vols with an interval, the size

of which is based on the noise bound. It then uses V to generate an interval pyramid

I, each element of which keeps track of how many intervals of various lengths can exist

in B. It then passes V and I back to NoisyReconstruction.

� Algorithm 7 - IBT is passed a volume interval to assign to B, as well as the location in

B to assign it to. It is also given B and I. IBT runs in much the same ways as interval

backtracking, except it also needs to identify which bucket in I to place the assigned

and implied volume intervals. If there is some [x, y](i,j)I that is the unique smallest

interval that is a superset of the assigned or implied volume interval in question, then it

is placed (i, j)I . Each time a volume interval is placed into a bucket, a counter update

C is run. It is worth noting that there may be several intervals in the same row of I

that are all supersets of the assigned or implied volume interval in question. In such

cases, there is no unique smallest interval as relied upon above. Thus, when this is the

23

case, we instead place our current assigned or implied volume interval in the element

of I which is the unique minimum superset of all of the supersets on the same level

I. For example, suppose the volume interval [3, 4] is implied, and I has buckets for

intervals [2, 4] and [3, 5] at its base. As these are on the base of I, there is no bucket

for [3, 4] below them, but there ss a bucket for [2, 5] above them. In this case, [3, 4]

would be placed in the bucket of I associated with [2, 5].

� Algorithms 8 and 9 - After a volume interval is placed into a bucket in I, we call C

to update the counters of that bucket and all buckets that are supersets of it. If the

volume interval is being moved between buckets in I as opposed to being added to I

for the �rst time, we run C ′ instead of C. If some bucket's counter drops below 0, we

know we need to backtrack and return to IBT to try a new path. If a buckets counter

drops to 0, we mark it as one that should be restricted by adding it to Z. Once we

are done updating counters, we run Res to actually apply restrictions to buckets and

manage any elements that may be in them.

� Algorithm 10 - Res goes through the list of Z given to it by C or C ′ and, one at a time,

restricts them. Res then restricts all superset of this bucket in I that share a diagonal

with it (i.e. they are up and to the right or up and to the left of the initially restricted

bucket). For each bucket that is restricted, the elements in it are �pushed" from them

to a nearby bucket in I that is not restricted. If our initially restricted bucket is (i, j)I

with associated volume interval [x, y](i,j)I , then everything up and to the right of it are

such that [x, y′](i′,j)I for various y′ and i′. Thus, the restriction of (i, j)I tells us that

the lower bound of x is no longer a possible value for the intervals in (i′, j)I to take.

Thus, we are able to move these elements out of (i′, j)I down and to the right from it,

restrict (i′, j)I , and potentially improve the moved elements (by taking the intersection

of the interval being moved with the interval associated with its destination bucket).

When elements are moved in this way, we then need to call C ′ to adjust the counter

24

accordingly. We also need to call out interval optimization subroutine Optimize so as

to make adjustments that might be implied by improvements made to intervals during

the restriction process.

� Algorithm 11 - Optimize goes through the list of Z given to it by C or C ′ and, one at

a time, restricts them. Res then restricts all superset of this bucket in I that share a

diagonal with it (i.e. they are up and to the right or up and to the left of the initially

restricted bucket). For each bucket that is restricted, the elements in it are �pushed"

from them to a nearby bucket in I that is not restricted. If our initially restricted

bucket is (i, j)I with associated volume interval [x, y](i,j)I , then everything up and to

the right of it are such that [x, y′](i′,j)I for various y′ and i′. Thus, the restriction of

(i, j)I tells us that the lower bound of x is no longer a possible value for the intervals

in (i′, j)I to take. Thus, we are able to move these elements out of (i′, j)I down and

to the right from it, restrict (i′, j)I , and potentially improve the moved elements (by

taking the intersection of the interval being moved with the interval associated with

its destination bucket). When elements are moved in this way, we then need to call

C ′ to adjust the counter accordingly. We also need to call out interval optimization

subroutine Optimize to make adjustments that might be implied by improvements made

to intervals during the restriction process.

To assist in understanding the above description, we give an example execution across

several �gures, starting with �gure 2.2. We use the same example as we used for interval

backtracking (i.e. Vols = {{1, 4, 4, 7, 14, 14}} with error range [−1, 1]). In contrast to the

prior interval backtracking algorithm, we are able to achieve exact reconstruction for this

instance without the need for an additional backtracking algorithm in post-processing. Our

additional overhead in maintaining I is at most polynomial at each step.

While NoisyReconstruction outputs a backtracking pyramid B with intervals as elements,

this doesn't immediately translate to it outputting some database DB′ as required for a

25

[0, 15], 6, 0, {}

[0, 8], 4, 0, {} [3, 15], 5, 0, {}

[0, 5], 3, 0, {} [3, 8], 3, 0, {} [6, 15], 3, 0, {}

[0, 2], 1, 0, {} [3, 5], 2, 0, {} [6, 8], 1, 0, {} [13, 15], 2, 0, {}

Figure 2.2: Example I after running Setup as part of NoisyReconstruction.

Initialization of I given Vols = {{1, 4, 4, 7, 14, 14}}. As the error range is [−1, 1], the setup also
outputs V = {{[0, 2], [3, 5], [3, 5], [6, 8], [13, 15], [13, 15]}}. For improved legibility, parenthesis

around the tuples in I are suppressed and multisets are written with only one pair of brackets.

[13, 15]

[13, 15]

[0, 2]

[0, 15], 3, 1, {}

[0, 8], 3, 1, {} [3, 15], 3, 1, {}

[0, 5], 2, 1, {} [3, 8], 3, 0, {} [6, 15], 1, 1, {}

[0, 2], 0, 1, {[0, 2]} [3, 5], 2, 0, {} [6, 8], 1, 0, {} [13, 15], 0, 1, {[13, 15], [13, 15]}

Figure 2.3: Example run of NoisyReconstruction, part 1.

Each element of B (shown left) is placed in a bucket in I (shown right) for which the associated
interval is its minimum superset. This drops the counter of two elements of I to 0, restricting

most elements of I (highlighted in red).

[13, 15]

[13, 15]

[0, 2] [6, 8]

[3, 8], 2, 1, {}

[3, 5], 2, 0, {} [6, 8], 0, 1, {[6, 8]}

Figure 2.4: Example run of NoisyReconstruction, part 2.

We are left with V = {{[3, 5], [3, 5], [6, 8]}} and so guess that [6, 8] should be assigned to the right.
We redact the elements of I restricted in the previous step for the sake of visual clarity.

[13, 15]

[3, 5] ∩ [5, 9] [13, 15]

[0, 2] [6, 8]

[3, 8], 2, 1, {}

[3, 5], 1, 0, {[3, 5] ∩ [5, 9]} [6, 8], 0, 1, {[6, 8]}

Figure 2.5: Example run of NoisyReconstruction, part 3.

The placement of [6, 8] leaves all but one bucket in I restricted. The implied volume interval on
the far left is [5, 9]. The minimum superset of [5, 9] in I is [3, 15] which is restricted (and no longer
shown). This pushes it down to [3, 8] which is also restricted, so it ends in the bucket for [3, 5] in

I. Thus, the volume must be in [3, 5] ∩ [5, 9].

26

[13, 15]

[5, 5] [13, 15]

[0, 2] [3, 5] ∩ [5, 9] [6, 8] ([3, 5], 0, 1, {{[5, 5], [3, 5] ∩ [5, 9]}})

Figure 2.6: Example run of NoisyReconstruction, part 4.

The previous implication was improved by using I resulting in a non-trivial intersection.
This triggers an update. Before the update however, we �nish calculating the remaining

implications from the assignment of [6, 8].

[13, 15]

[5, 5] [13, 15]

[0, 0] [5, 5] [6, 8] ∩ [8, 10]

13

5 13

0 5 8

Figure 2.7: Example run of NoisyReconstruction, part 5.

We can now proceed with the update. As this leads to the improvement of the bottom left and
bottom right elements (shown left), another update is required which manages to �nd the exact
value of all volumes (shown right). Thus, for Vols = {{1, 4, 4, 7, 14, 14}} and error range [−1, 1],
the only possible database is DB = (0, 5, 8). As I is not meaningfully used in these updates, we

redact I for the sake of visual clarity.

27

noisy multiset reconstruction attack to succeed. Thus, we de�ne an additional procedure in

DBguess (i.e. algorithm 12) that takes B as input and outputs an actualDB′ and allows us to

reason formally about the success of NoisyReconstruction. At a high-level, DBguess takes an

interval inB, assigns it an arbitrary value within that interval, then runs Algorithm 11 update

B based on the assignment. We now prove the correctness of NoisyReconstruction(Vols, [a, b]).

Lemma 2. Let Vols be noisy multiset leakage from DB with the additive noise applied to

each volume being in [a, b] such that, for every range query, the probability that any given

element in [a, b] is the amount of noise applied to that range queries volume leakage is

non-zero (i.e. all amount of noise in the range are possible for any particular range).

DBguess(NoisyReconstruction(Vols, [a, b])) is a noisy multiset reconstruction attack that al-

ways succeeds.

Proof. We walk through a single path of NoisyReconstruction that leads to a complete back-

tracking pyramid B and prove that any outcome of running DBguess on the output of

NoisyReconstruction results in a DB′ that is information-theoretically consistent with the

leakage. To do this, we focus on proving that, for every element in B, replacing any ele-

ment [x, y] in B with an interval [z, z] for z ∈ [x, y] and running Optimize does not lead

to any information theoretically impossible state of B. There are essentially three checks

done throughout the algorithm that in�uence the intervals in B. The �rst is a backtracking-

based calculation for implications, the correctness of which follows from the correctness of

interval backtracking [28]. The second is that, as mentioned prior, we always make sure

that intervals obey some global upper and lower bound on their ranges, which are 0 and

min[Vols] + a in the lower bound and max[Vols] + b in the upper bound, the correctness of

which is straightforward. The third in�uence on intervals comes from I which enforces the

rule that no interval can appear in B more than it appears in V . The fact that it achieves

this however is non-trivial and thus, we pay special attention to steps involving I when we

reach the discussion of them in this proof.

28

During setup, the elements of Vols are converted to intervals that capture all possible

elements they could correspond to. What we mean by this is, if we only knew that x ∈ Vols

and the error range is [a, b], then x could have been anywhere in that range [a + x, b + x]

prior to the inclusion of error. That being said, we know that no volume is negative, so we

must take the min of each element with 0. Thus, without considering any interplay between

the volumes, each volume interval is as tight as possible.

Proceeding to backtracking, we begin by establishing that the �largest" interval to be

placed next is unambiguous. All intervals in V are of equal length (exactly length 1 + b− a

to be precise) and thus, we can simply take the element of V with the largest maximum

element and place it left or right in the backtracking pyramid.2 As to implication, the

location of implications is correct for the same reason as in standard backtracking, as are

the initial intervals computed before utilizing I.

We must now justify how I operates. After setup, each element of I has a counter

correctly tracking how many intervals within any range could possibly exist in B. When an

interval [x, y] is placed into a bucket in I, the placement follows three major criteria.

1. The bucket it is placed into cannot be restricted.

2. The bucket it is placed into is such that there is no other bucket on the same level (i.e.

at the same height in the interval pyramid I) that is a superset of [x, y].

3. The bucket it is placed into is such that its associated interval is the minimum superset

of [x, y] (i.e. [x, y] ⊂ [x′, y′](i′,j′)I) among all elements of I for which criteria 1 and 2

hold.

We now consider each of these criterion in order and justify them. As to the �rst, a

bucket can be restricted for one of two reasons: its counter is 0 or the counter of a bucket

2. Under a di�erent noise model where this may not hold we can break ties in the maximum element of
an interval by taking the interval with the largest minimum element.

29

that shares a diagonal with it and is below it in I (i.e. closer to the base of the interval

pyramid I) has a counter set to 0. Let (i, j)c = 0 for some i and j. As we only decrement

a counter when a subset of the associated interval (i.e. a subset of [x, y](i,j)I) is added to

B, if (i, j)c = 0 we know there can be no more intervals in this range. Thus, the attempt to

add an additional interval to this bucket signals a contradiction and causes a backtrack as

desired. Alternatively, let us assume that (i, j)c > 0, but that there is an element of I below

it on the same diagonal with a counter set to 0. Without loss of generality, let us assume

that this element appears below and to the left of (i, j)I (i.e. There exists an i′ > i such

that (i′, j)c = 0). By construction, we have that [x, y](i,j)I and that [x, y′](i′,j)I . To put this

more plainly, the diagonal they share is one that contains all of the intervals with a minimum

of x. This means we can re�ne the interval we are placing by increasing its lower bound

to some x′ greater than x, where x′ is equal to the minimum element of all of the intervals

on the �rst unrestricted diagonal that is down and to the right of and perpendicular to the

diagonal shared by (i, j)I and (i, j)I . We refer the read to the full interval backtracking

pyramid displayed in �gure 2.2 along with the interval volume assignment in �gure 2.4 to

see an example of exactly this type of occurrence.

As to the second criterion, we reuse an example from earlier to exemplify its application.

Suppose the volume interval [3, 4] is implied and I has buckets for intervals [2, 4] and [3, 5]

at its base. As these are on the base of I, by construction, there is no bucket for [3, 4] below

them, but there is a bucket for [2, 5] above them. In this case, [3, 4] would be placed in the

bucket of I associated with [2, 5]. The reason for this is that [3, 4]∩ [2, 4] and [3, 4]∩ [3, 5] are

both non-empty. If we attempted to place [3, 4] into either bucket prior to the restriction of

the bucket associated with the interval [2, 5], we would be making an assumption that may

be premature. This is best displayed with an example and thus, without loss of generality,

assume we placed [3, 4] in the bucket associated with [2, 4]. But suppose the bucket for [2, 4]

should actually be �lled entirely with intervals that are eventually re�ned down to the value

30

of 2. Then placing [3, 4] in this bucket as well would cause the counter to fall below 0 and

backtrack, even though the counter for the bucket associated with [3, 5] may not yet be 0.

Thus, this backtrack is incorrect. On the other hand, if we leave the interval [3, 4] in the

bucket for [2, 5], then if the same scenarios occurs again and the bucket associated with [2, 4]

is �lled with 2, this causes a restriction to the bucket for [2, 5], pushing the intervals [3, 4]

out of that bucket and into the bucket associated with the interval [3, 5] as required.

The third and �nal criterion is fairly straightforward compared to the other 2. As the

goal of the counters in I is to track how many more of each interval can be added to B, if

[x, y] is being added to B by assignment or implication, we wish to decrement the counter

for each interval in I that is a superset of it (excepting those rules of by criteria 1 and 2 for

the reasons expressed prior). Thus, by the rules of C and C ′ which manage the counters in

I, the interval [x, y] should be placed in the bucket associated with the interval that is the

minimum superset of [x, y] among all elements of I for which criteria 1 and 2 hold.

While the above considerations with respect to I are primarily focused on the subroutine

IBT , the same reasoning also justi�es the actions of the subroutine Res, which manages the

restriction of elements of I and the shifting of those elements to new buckets as appropriate.

The correctness of Optimize follows from the correctness of interval backtracking as, if we

update any value in B using I, then it follows that we must recalculate all of the standard

backtracking implications to make sure we have not missed any cascading improvement that

would a�ect global consistency. Lastly, DBguess simply guesses values in the range of base

elements of B and updates the rest of B accordingly using Optimize. We know that any

solution found in this way is correct by the correctness of the intervals calculated using

some global bounds on intervals, standard interval backtracking arithmetic, and re�nements

utilizing I. Further, we cannot have missed any solution as, if we replace any element of B

with some element not in the associated interval, then this would change which counter is

being decremented in I and cause at least one counter to drop below 0. This would imply

31

that some value appears more often in B than we know is possible given V and thus, the

assumption that this is an information-theoretically valid solution is false.

Note that, one enumerates all paths of NoisyReconstruction that result in a complete

backtracking pyramid, then enumerates all paths of DBguess on each of these backtracking

pyramids, then this algorithm becomes a full noisy multiset reconstruction attack that always

succeeds. The proof of this is essentially that of Lemma 2.

2.4 Volume-based Reconstruction in Multiple Dimensions

In this section, we give a backtracking algorithm for database reconstruction from multiset

volume leakage in 2-dimensions. While we focus on two 2-dimensional databases, the algo-

rithm naturally generalizes to d-dimensional databases for arbitrarily large d. We discuss

how to do this at a high level at the end of this section. We now formally de�ne the re-

construction problem in question for higher dimensions (both in terms of multiset and set

leakage).

De�nition 10. For a d-dimensional-database DB = (v(1,...,1)), . . . , v(M1,...,Md)
) with m

records and ith dimensional domain size Mj d-dimensional multiset volume-based re-

construction attack is one which takes as input the tuple of domain sizes for each dimen-

sions (M1, . . . ,Md) and

Vols =

∑
vx∈R(y,z)

vx : (1, . . . , 1) ≤ y ≤ z ≤M1 × . . .×Md

where R(y,z) = {vx : y ≤ x ≤ z} and outputs a database DB′ = (v′
(1,...,1))

, . . . , v′
(M1,...,Md)

)

with ith dimensional domain sizeMi and m records. We say that a d-dimensional set volume-

32

based reconstruction attack succeeds if and only if

Vols =

∑
vx∈R(y,z)

vx : (1, . . . , 1) ≤ y ≤ z ≤ N1 × . . .×Nd

where R′
(y,z)

= {v′x : y ≤ x ≤ z}

De�nition 11. For a d-dimensional-database DB = (v(1,...,1)), . . . , v(M1,...,Md)
) with m

records and ith dimensional domain size Mj d-dimensional set volume-based recon-

struction attack is one which takes as input the tuple of domain sizes for each dimensions

(N1, . . . , Nd) and

Volsset =

∑

vx∈R(y,z)

vx : (1, . . . , 1) ≤ y ≤ z ≤ N1 × . . .×Nd

where R(y,z) = {vx : y ≤ x ≤ z} and outputs a database DB′ = (v′

(1,...,1))
, . . . , v′

(N1,...,Nd)
)

with ith dimensional domain sizeMi and m records. We say that a d-dimensional set volume-

based reconstruction attack succeeds if and only if

Volsset =

∑

vx∈R(y,z)

vx : (1, . . . , 1) ≤ y ≤ z ≤ N1 × . . .×Nd

where R′

(y,z)
= {v′x : y ≤ x ≤ z}

As the volume leakage one has access to in such attacks is strictly weaker than access

pattern leakage, we know that the number of possible reconstructions that are information

theoretically consistent with the leakage is at least as large when given volume leakage as

access pattern leakage. Thus, unlike the in the 1-dimensional case, we can use the result of [9]

Falzone et al. to conclude that the worst case number of valid reconstructions is exponential

(as there this lower bound is proven, but with access pattern leakage).

33

2.4.1 Attack Overview

We now give a high level description of our 2-dimensional multiset volume-based reconstruc-

tion attack, which succeeds on any valid input DB. The �rst important thing to note is that,

similar to the backtracking algorithms for volume-based database reconstruction [16] and the

turnpike problem [27], one can use small number of guesses to infer a polynomial number of

additional assignments of volumes to range queries. In 1-dimension, this allows one to solve

the problem after n volume assignment guesses, despite the input including volumes from(n
2

)
distinct range queries. At a high level, the principles that dominate the behavior for the

1-dimensional backtracking algorithm are as follows:

1. At each step, the largest volume is assigned to one of the two ranges that starts from

either end point and for which all of its supersets have already been assigned.

2. One takes the di�erence between the volumes of the newly assigned range with each

range that shares and end point with it (each of which is the volume of some range

that would not yet have a volume associated with it).

These ideas can be naturally generalized to d-dimensions as follows:

1. At each step, the largest volume is assigned to some range that starts from either end

point and for which all of its supersets have already been assigned.

2. One takes the di�erence between the volume of the newly assigned range with each

range that shares all but one boundary with it (each of which is the volume of some

range that would not yet have a volume associated with it).

In both cases, if any volume is assigned to more ranges then the number of time it is

observed in the leakage, then one backtracks and try a new path. Both items present greater

di�culty in higher dimensions. The �rst of these two generalizations is straightforward,

though it vastly complicates tracking what options are available at each step. The basic idea

34

is that, as you are assigning the largest volume to some range, if some superset of it does

not yet have a volume associated with it, you know that range has at least as large a volume

as the range you just assigned a volume. If the database is dense (has no range queries with

no associated records), then the range that is a superset of the one assigned will be strictly

larger and this will always result in backtracking. If they have equal volume, it can at best

give the same result as having assigned the largest volume to the range that is a superset

of the one just assigned a volume. An example of how to do this with nested backtracking

pyramids can be found in Algorithm 13.

As to the second generalization, we prove that this is reasonable for an algorithm such

as Algorithm 13 with Lemma 3.

Lemma 3. Let q = ([a1, b1], · · · , [an, bn]) be the most recent range query assigned a vol-

ume. Let q′ be a superset of q that shares all but one boundary with it, and assume with-

out loss of generality that q′ = ([a1, b1], · · · , [an, b′n]) for b′n > bn. Then the volume of

q′′ = ([a1, b1], · · · , [bn, b′n]) equals the volume of q′ minus that of q and the volume of q′′ can-

not have been implied in this way in a previous step of the backtracking algorithm generalized

to d-dimensions.

Proof. The fact that the volume of q′′ equals the volume of q′ minus that of q follows

immediately. Suppose q′′ already had an associated volume from a prior step of the algorithm.

If q′′ had a volume prior prior, then we would have been able to take the di�erences of the

volumes of q′ and q′′ to give a volume to q. As q is assumed to have just been assigned a

volume, this is a contradiction.

Computing implied values in this way and, with backtracking, trying every potential

guess at each step also ensures correctness of the algorithm, as no implied query would be

computed in two di�erent ways.

35

CHAPTER 3

TILINGS OF CONTIGUOUS FINITE SUBSETS OF Z WITH

TILES OF FIXED SIZE

3.1 Introduction

In this chapter, we study the number of �nite tiles A ⊂ Z of size α that can translationally

tile any C that is a �nite contiguous subset of Z, results that previously appeared in [31].

Under these restrictions the tile A can be translated any number of times to cover exactly C,

but cannot be rotated or re�ected. Further we consider two tiles A and A′ to be congruent

(i.e. not distinct) if and only if one can be transformed into the other via some translation.

The study of this problem is motivated by the fact that we can reduce the turnpike problem

to the problem of �nding a tiling for a speci�c multiset by a tiling of size square root the

size of the the multiset, a result we also prove in this chapter.

For any α ∈ Z+ and C = [x1]× [x2]× . . . [xd] where x1, . . . , xd ∈ Z+ (which we refer to as

a �nite contiguous C), we classify exactly which A of size α can tile C. More speci�cally, we

give an e�cient1 method for enumerating all elements of T (α,C), where (A,B) ∈ T (α,C)

if and only if

1. A,B ⊂ Z

2. A+B = C

3. |A| = α

4. |C| = α|B|,

where we use A+B to mean the Minkowsji sum of A and B. Further, we assume (A,B) is

some canonical representative (to be formally de�ned later) of the class of all (A′, B′) such

that A is congruent to A′. This classi�cation of the elements of T (α,C) also allows us to

prove a partial order on |T (α,C)| with respect to α for any �nite contiguous C.

1. By e�cient, we mean polynomial time with respect to |T (α,C)|.

36

We then study the extremal question as to the the growth rate of maxα,C [|T (α,C)|] with

respect to |C|. The trivial bounds for this value are very poor, with a lower bound of roughly

log n and an upper bound of
(n
n/2

)
. We improve these bounds for �nite contiguous C to the

upper bound of

n
(1+ϵ) logn
log logn

and an in�nitely often super linear lower bound. More speci�cally, the lower bound states

that there exists some in�nite N ⊂ Z+,

∀n ∈ N∃α ∈ Z+(|T (α,C)| > ω(n)

where n = |C| and C is both �nite and contiguous.

Translational tilings of Z [7, 20, 33], and of Zd [1, 11, 17, 32] more generally, are natural

problems that have been studied in many prior works. While the vast majority of work in

this area seeks to tile the in�nite set Zd, Pederson and Wang [24] initiated the study of tiling

�nite intervals of Z. This was later followed by the independent work of Bodini and Rivals

[3], with the combined works outlining necessary and su�cient conditions for such tilings.

Additionally, Bodini and Rival [3], as well as Rivals [25], initiated the study of counting the

number of such tilings. We expand upon the prior works in the following ways:

1. Introducing new characterizations of tilings of [n] that allows for the speci�cation of a

�xed tile size.

2. Proving a partial order on |T (α,C)| with respect to α for any �nite contiguous C.

3. Proving strong upper and lower bounds as to the number of such tilings.

We now discuss how each of these contributions and the prior works that relate to them.

37

3.1.1 Characterizations of Tilings

With respect to the tilings of �nite intervals of Z, a number of our results align with results

of Bodini and Rivals [3] and Pederson and Wang [24], but allow for speci�cation of the

additional parameter α (i.e. a speci�c tile size). For us to specify properties of tilings of

�nite intervals of Z by tiles of size α, it must be the case that any properties we highlight

must also be true of tilings of �nite intervals of Z without a speci�ed tile size. Thus, one

can recover many of the structural results of these prior works from our own by considering

them for all α. Unfortunately, there does not appear to be a straightforward way to derive

our results from those prior without writing new proofs that take tile size into consideration

at each step. Despite this, there are several properties of tilings utilized in our proofs that

were proved in these prior works and which we summarize in Lemma 5. For completeness,

we provide a proof Lemma 5 in the terminology of this paper.

3.1.2 Counts on the Number of Distinct Tilings

As to the counting of tilings of �nite subsets of Zd, Bodini and Rivals [3] and Rivals [25]

began working towards this by counting the tilings of �nite intervals of the discrete line (i.e.

the case of d = 1). While the recent work of Benjamini, Kozma, and Tzalik counts the

number of tiles from some �nite contiguous subset of Zd, the tiles counted are those that

tile the in�nite set Zd as a whole, which is a fundamentally di�erent question then tiling a

�nite subset of Zd. Given this, we focus on the results of Bodini and Rivals [3] and Rivals

[25], who begin by proving that the number of tilings of a �nite interval of Z is equal to

the elements of the integer sequences A067824 and A107067 as indexed by The On-Line

Encyclopedia of Integer Sequences [29], though we note that the equivalence of sequences

A067824 and A107067 was independently established by Karhumaki, Lifshits, and Rytter

[15]. Unfortunately, neither sequence has clear upper or lower bounds. Further, our goals

di�er somewhat from those of Rivals as we wish to study �xed tile sizes and extend beyond

38

�nite intervals to some �nite non-contiguous C. Thus, even if one did derive a satisfactory

upper or lower bound from these integer sequences, this would not provide an upper of lower

bound on the number of tilings for any particular �xed tiles size. This means that we require

new formulas for counting tilings, even in the case of �nite intervals of Z.

3.1.3 Upper and Lower Bounds on the Number of Distinct Tilings

While we are unaware of any previous literature counting the number of tilings of [n] with

tiles of a �xed tile size α, one can derive some trivial upper and lower bounds on the number

of such tilings. For an upper bound on T (α, [n]) and without relying on prior work, one can

simply note that there are at most
(n−1
α−1

)
ways to make a tile of size α using elements in [n]

and such that the tile always includes 1. While many of these tiles would fail to tile [n], by

setting α to n/2 we get a very crude upper bound of
(n
n/2

)
. Another more in-depth approach

would be to use our arguments from Lemma 12 and Corollary 7 along with Theorem 5 of

Bodini and Rivals [3], but this would result in the upper bound we obtain raised to the

log n.2 To shave of this additional log n multiplicative factor from the exponent, we are thus

motivated to give De�nition 19 and prove Lemma 6.

As to lower bounds for T (α, [n]), we note that a trivial lower bound of log n can be

obtained without prior work by considering tilings of [2k] for tiles of size 2k/2. To achieve an

improved lower bound, we require a new formula for enumerating the elements of T (α, [n]).

The way we chose to enumerate the elements of T (α, [n]) in Lemma 6 does not appear

conducive to good lower bound arguments. Thus, in Lemma 10, we establish a second

formula for enumerating the elements of T (α, [n]) utilizing the inclusion-exclusion principle.

From this, we begin by proving a nearly linear lower bound on |T (α, [n])|. We are then able

to apply a more �ne-grained analysis to achieve a super-linear lower bound for in�nitely

2. This is due to not knowing how the distinct tilings are distributed with respect to tile size, necessitating
a multiplication by the number of distinct tile sizes (which itself equals the number of divisors of the size of
the set to be tiled).

39

many n and certain α chosen based upon n. We note that such a lower bound cannot be

achieved for all n nor for all α, as if n is prime or α = 1 there is at most a single tiling of [n].

3.2 De�nitions

For n ⊂ Z+ and x, y ⊂ Z, we let [n] ≜ {1, . . . , n} and [x, y] ≜ {x, x + 1, x + 2, . . . , y − 1, y}

where x ≤ y. We take pi to be the ith prime and we use x|y to mean x divides y. Let

the divisor function σ0(n) for n ∈ Z equal the number of positive divisors of n. We write

ω∗(n) and Ω∗(n) to the prime omega functions, where ω∗(n) equals the number of distinct

prime factors of n (ignoring multiplicity of these prime factors) and Ω∗(n) equals the total

number of prime factors of n (i.e. the sum of the exponents across all prime factors of n).3

Throughout this work we use log to mean log2. All sets discussed in this work are assumed

to be �nite. For sets A and B, let A+B = {a+ b : a ∈ A, b ∈ B} be the Minkowski sum of

A and B. For a �nite set A ⊂ Z, we use min[A] and max[A] to indicate the minimum and

maximum element of A. For a function f , we write minx[f(x)] and maxx[f(x)] to indicate

the value of f(x) for any choice of x the minimizes or maximizes f(x) respectively.4 When

we take the max or min of a set of sets, we take the max or min respectively from the union

over all elements of the set (e.g. max
[{
{1, 2}{5, 6}

}]
= 6). Similarly, if we use a set of sets

S in a set di�erence operation, we treat S as the union of its elements. Let proji(x) be the

projection of x ∈ Zd onto the ith dimension (i.e. proji(x1, . . . , xi, . . . , xd) = xi). Further,

we let proji(A) for a set A equal the set {proji(x)|x ∈ A}.

De�nition 12. We call a set C contiguous if, for some d ∈ Z+, we have C = [x1]× [x2]×

. . . [xd] where x1, . . . , xd ∈ Z+.5

3. The prime omega functions are usually denoted by ω(n) and Ω(n) for ignoring and counting multiplicity
of the prime factors respectively, however we use ω∗(n) and Ω∗(n) respectively so as to avoid confusion with
asymptotic notation.

4. If such an x does not exist we treat this as unde�ned though this circumstance does not occur in this
work.

5. One could alternatively de�ne contiguous C to be C such that C = [x1, y1] × [x2, y2] × . . . [xd, yd] for

40

When d = 1, a contiguous C is simply a �nite interval of the discrete line, though we �x

its minimum point to be at 1 for convenience.

De�nition 13. For �nite sets A,B,C ⊂ Zd such that |A| = α and |B| = β, the pair (A,B)

is a valid translational tiling of C if and only if A + B = C and |C| = αβ. We refer to

A as the tile and B as the translations.

We will typically drop the term �translational" from the above de�nition and simply refer

to (A,B) as a valid tiling of C. De�nition 13 allows for in�nitely many tilings of all �nite

sets as, to tile C, one can set A = C +m and B = C −m for all m ∈ Zd. So that we may

count the number of tilings up to such translations, we give the following de�nition.

De�nition 14. The congruence class of a tiling (A,B) is the set of all tilings (A′, B′)

such that A+m = A′ and B−m = B′ for some m ∈ Zd (we would also then refer to A and

A′ as themselves congruent). Let the canonical representative of each congruence class

of tilings be (A,B) such that (0, . . . , 0) ∈ B and ∀i(min[proji(B)] ≥ 0).

For the remainder of the paper, we presume all tilings are the canonical representative

of the congruence class of tilings to which they belong. With this, we can now de�ne the set

of �xed tile size tilings of a �nite set C.

De�nition 15. For �nite sets A,B,C ⊂ Zd such that |A| = α and |B| = β, we de�ne

T (α,C) to be the set of all (A,B) that are the canonical representative of their congru-

ence class of tilings, are valid tilings of C, and are such that |A| = α. Further, we de�ne

T ((α1, α2, . . . , αd), C) to be the set of all (A,B) that are the canonical representative of their

congruence class of tilings, are valid tilings of C, and are such that ∀i ∈ [d](|proji(A)| = αi).

The remaining de�nitions in this section are purely with respect to �nite intervals of

Z (i.e C such that d = 1). So that we may refer to a speci�c member of T (α,C) when

necessary, we require the following.

x1, . . . , xd, y1, . . . , yd ∈ Z and ∀i(xi ≤ yi), however this complicates some statements and proofs without
increasing the generality of the results.

41

De�nition 16. Let C be a �nite subset of Z. For T = (A,B) and T ′ = (A′, B′) such that

T, T ′ ∈ T (α,C), we say that T < T ′ if and only if min[A \ A′] < min[A′ \ A]. Otherwise,

T = T ′. We use Ti = (Ai, Bi) to represent the ith valid tiling of C according to this total

order.

To see that De�nition 16 is valid, we require that it indeed de�nes a total order on T (α,C)

when d = 1. To see this notice that, if i ̸= j, then Ai ̸= Aj , as there is a unique B for tiling

C with translates of any �xed A. For the rest of the properties of a total order, we can see

Ai as corresponding to an integer that is the sum of 2k for all k ∈ Ai. Thus, this being a

total order follows from any subset of the integers being totally ordered by their value. We

de�ne a(i,j) to denote the ith smallest element of Aj . We will usually drop the subscript j

from this and other notation when it is clear from context or irrelevant (e.g. writing ai as

opposed to a(i,j)). We de�ne b(i,j) similarly to a(i,j), but with reference to B instead of A.

De�nition 17. Let (Aj , Bj) ∈ T (α, [n]) be the jth valid tiling of [n]. We de�ne the �rst

segment and �rst rift of the jth tiling (i.e. s(1,j) and r(1,j) respectively) to be:

� s(1,j) ≜ {x ∈ A : x < min[C \ A]}

� r(1,j) ≜ {x ∈ C \ A : x < min[A \ s1]}.

As we frequently require the size of the �rst segment and �rst rift of a tiling, we let k(s,j) ≜

|s(1,j)| and k(r,j) ≜ |r(1,j)|. For i > 1, we de�ne the ith segment and ith rift of the jth

tiling (i.e. s(i,j) and r(i,j) respectively) recursively as follows:

� s(i,j) ≜
{
x ∈ A : max[si−1] < x < min[(C \ A) \ {y ∈ C : y ≤ max[ri−1]}]

}
� r(i,j) ≜

{
x ∈ C \ A : max[ri−1] < x < min

[
A \

(
i−1⋃
k=1

sk

)]}
.

To put the above more intuitively, the ith segment of a valid tiling Tj is the ith set

of consecutive (relative to C) elements of Aj where as the the ith rift of a tiling Tj is

42

the elements of C between si and si+1. We de�ne Sj and Rj to be the set of all non-

empty s(i,j) and r(i,j) respectively. For example, let A = {1, 2, 5, 6, 9, 10}, B = {0, 2}

and C = [12]. Then s1 = {1, 2}, s2 = {5, 6}, and s3 = {9, 10} while r1 = {3, 4} and

r2 = {7, 8}. The aforementioned segments and rifts would then be exactly the elements of

S and R respectively, as all other segments and rifts are empty in this example. We de�ne

T (α,C, (ks, ·)) to be

T (α,C, (ks, ·)) ≜ {(Ai, Bi) ∈ T (α,C) : |s(1,i)| = ks}

and de�ne T (α,C, (ks, ·)) to be

T (α,C, (ks, kr)) ≜ {(Ai, Bi) ∈ T (α,C) : (|s(1,i)| = ks) ∧ (|r(1,i)| = kr)}.

3.3 Turnpike Reduces to Tiling Multisets

While our results in this chapter focus primarily on translational tilings of sets, we do

this because similar results about multisets are currently out of reach. Thus, we focus on

establishing a mathematical foundation of results related to sets that we hope to generalize

to multisets in future work. To put the overall program in context and motivate these results,

we brie�y discuss tiling multisets and reduce the turnpike problem to this problem.

De�nition 18. For multisets A,B,C ⊂ Z, let A + B equal the multiset {a + b|a ∈ A, bB}

sucht that distinct pairs of elements in A and B summing tot he same value increases that

sums multiplicity in A+B. We say that A tiles a multiset C if and only if there exists a B

such that A+B = C.

For the de�nition of the turnpike problem, we refer the reader to De�nition 3.

Lemma 4. There exists a polynomial time reduction from the turnpike problem to the prob-

lem of, given a multiset C ⊂ Z, �nding a tile A ⊂ Z such that A tiles C/

43

Proof. Given the distance multiset D of
(n
2

)
integers (counting multiplicity), and we build

a new multiset D′ by including in it the elements of D, the elements of −1 · D, and the

element 0 with multiplicity n. We can then ask if there exists a tile of size n that tiles D′.

Due to our use of B in this chapter for the set of translations of a tile, we use P in this proof

for th backtracking pyramids described in Chapter 2. Let P be the backtracking pyramid

containing the elements of D. From P , we can build a new construct P ′ where we take the

n copies of 0 from D′ and add them to P as a part of a new bottom row, then re�ect the

elements of D across this new row of 0, but make the re�ected copies of the elements of

D below the row of all 0 negative. Notice that any A of size n that tiles D′, is exactly a

diagonal of such a P ′, and that each is just an additive shift (or translation) of each other

diagonal in P ′. As the tilings of D′ are in one-to-one correspondence with valid backtracking

pyramid P (or equivalently, with sets of n points on a line whose set
(n
2

)
interpoint distances

equal D), the reduction is complete.

3.4 Formulas for Enumerating T (α, [n])

In this section, we de�ne two formulas for counting the exact number of distinct tilings for

any α and C = [n]. By summing over all tile sizes, To prove the �rst of these formulas is

correct, we do two things:

� De�ne necessary and su�cient conditions as to the size of segments and rifts in valid

tilings.

� Group points into meta-points such that each element of the meta-point is in the same

segment or rift as each other element of the meta-point.

Taken together, we are able to calculate |T (α, [n])| by taking the sum of a small number of

|T (α′, [n′])| for n′ < n where α′ and n′ are straightforward to calculate from α and n. This

�rst formula is useful for proving both our partial order on |T (α, [n])| with respect to tile size

44

for �xed n, as well as for proving our upper bound on |T (α, [n])|. Unfortunately, it is less

useful for deriving a strong lower bound. Thus, we de�ne our second formula for counting

|T (α, [n])|, the correctness of which we prove from the �rst formula using a combinatorial

argument.

Before proceeding further with our results, we present a result characterizing the tilings

of discrete intervals that was independently proven by Pederson and Wang [24] as well as by

Bodini and Rivals [3]. For completeness, we present a proof of this as Lemma 5, but with

the statement of the lemma and proof in the notation of this work.

Lemma 5 ([3, 24]). For all α, n ⊂ Z and any valid tiling (Ai, Bi) ∈ T (α, [n]), all segments

of the ith tiling have size ks and the length of any rift of the ith tiling is divisible by ks.

Proof. Once a ks and kr have been selected and knowing that r1 ̸= ∅, the only way to tile r1

with translates of elements of A is with translates of elements of s1. As elements of s1 are

consecutive as are those of r1, the only way to do this is as in Lemma 7 (i.e. by de�ning B∗

to be {x ·ks|x ∈ [0, kr/ks]} and let B∗ be a subset of B). This also justi�es the restriction of

R that ks|kr, as otherwise tiling r1 with translates of s1 would not be possible (example: for

s1 = {1, 2} and s2 = {x, x+ 1}, the number of elements in r1 = [3, x− 1] must be divisible

by 2).

Now we prove that ∀i[(|si| ≠ 0) =⇒ (|si| = ks)]. By de�nition, |s1| = ks. Suppose this is

the case for all sj such that j < i. Consider si. If |si| = 0 the statement holds. Suppose then

that |si| ≠ 0 and that |si| > ks. Then, as ks is an element of B∗, we have that si∩(si+ks) ̸= ∅

which is a contradiction. Suppose |si| < ks. Let I =
[
max[si] + 1,min[si + ks] − 1

]
and

observe that 1 ≤ |I| < ks. The lower bound on |I| follows directly from |si| < ks and the

translation of si by ks, while the upper bound on |I| follows from the fact that |si| > 0 and

the fact that we are taking the max from si for lower bound I, but we are taking the min

from si + ks the upper bound I. Taken together, with the fact that |si| > 0, we have that

|I| < ks. Notice that introducing any element to B smaller then any element of B∗ would

45

result in a collision between translates of s1. Given this, I must be tiled by some translate

of sj for j < i, but |sj | = ks > |r∗| and thus, we have a contradiction. Together, these prove

that ∀i[(|si| ≠ 0) =⇒ (|si| = ks)] as desired.

With this, we proceed with de�ning the �rst counting formula and proving its correctness.

We do this in two main steps in which we:

� Prove that the restrictions to the size of the �rst segment and rift (i.e. ks and kr

respectively) and the sub-cases we sum over based upon these these values are su�-

cient to yield a valid tiling. This proves that our formula acts as a lower bound to

|T (α, [n])|.

� Prove that the restrictions to the size of the �rst segment and rift (i.e. ks and kr

respectively) and the sub-cases we sum over based upon these these values are neces-

sary to yield a valid tiling. This proves that our formula acts as an upper bound to

|T (α, [n])|.

As the value produced by our formula is both an upper and lower bound on |T (α, [n])|, it

follows that it calculates the exact value of |T (α, [n])|. We can now de�ne the �rst formula

in full detail.

De�nition 19. For S = {ks ∈ Z+ : ks|α} and

Rks = {kr ∈ Z+ : (ks|kr) ∧ (ks + kr|ksβ) ∧
(
(ks = α)⇐⇒ (kr = 0)

)
}

we de�ne the set Ψ(α,[n],(ks,kr)) to be

Ψ(α,[n],(ks,kr)) ≜

0, α ∤ n

1, kr = 0∣∣∣∣T (α/ks, [n
ks+kr

])∣∣∣∣− ∣∣∣∣T (α/ks, [n
ks+kr

]
, (1, ·)

)∣∣∣∣, otherwise

46

Using this de�nition, we prove that the following method can be used to count the tilings

of [n] by sets of size α.

Lemma 6.

|T (α, [n])| =
∑
ks∈S

∑
kr∈Rks

Ψ(α,[n],(ks,kr)).

To prove Lemma 6, we �rst prove that the right hand side is an upper bound for the

left hand side. We then use this to prove equality in all cases of Ψ(α,[n],(ks,kr)) as well as

justifying the de�nitions of S and Rks . After these lemmas, we proceed with the formal

proof of Lemma 6.

We note that Lemma 7 and Lemma 8 require a structural result similar to Theorem

4 of Bodini and Rivals [3] and Corollary 2.2 of Pedersen and Wang [24] in their proofs.

Unfortunately, the structural result we require is distinct from these, as it requires the

additional allowance for the case of �xed tile size. This necessitates a new proof which is

implicitly contained in the proofs of Lemma 7 and Lemma 8.

Lemma 7.

|T (α, [n])| ≥
∑
ks∈S

∑
kr∈Rks

Ψ(α,[n],(ks,kr)).

Proof. The de�nition of Ψ(α,[n],(ks,kr)) gives us three cases, which are where its value equals

either 0, 1, or in which its value is based on |T (α′, [n′])| (where the negative term can be

seen as subtracting away the case where ks = 1). The �rst case, where |T (α,C)| = 0, need

not be handled for the lower bound, as such cases only reduce the value of the sum. For

|T (α,C)| = 1, as kr = 0 and α|n, we can always set A = [α] and B = {x ·α : x ∈ [0, β− 1]},

resulting in A+B = C. Lastly, we handle the case where the value of Ψ(α,[n],(ks,kr)) is based

upon |T (α′, [n′])|. To address this case, we de�ne an injective mapping

fk(s,i),k(r,i) : T (α/k(s,i), [n/(k(s,i) + k(r,i))])→ T (α, [n], (k(s,i), k(r,i)))

47

where we let Ti = (Ai, Bi) ∈ T (α, [n], (k(s,i), k(r,i))) and Tj = (Aj , Bj) ∈ T (α/k(s,i), [n/(k(s,i)+

k(r,i))]) and assume k(s,i), k(r,i) ≥ 2. For notational convenience, we suppress the subscripts

of f for the remainder of this proof. We abuse notation slightly and let f(Aj) = Ai (or

f(Bj) = Bi) if and only if f(Tj) = Ti. To construct such an f , we map Tj to Ti such that

m ∈ Aj +Bj if and only if [(m− 1)(k(s,i) + k(r,i)) + 1,m(k(s,i) + k(r,i))] ∈ Ai +Bi. We call

this the key property of f . The main idea behind the key property is that, as Ti tiles a

larger set than Tj , we can expand each point of Aj to be multiple consecutive points in Ai.
6

To complete the proof, we de�ne f and show it is injective. Let Tj be an arbitrary valid

tiling in T (α/k(s,i), [n/(k(s,i) + k(r,i))]) such that k(s,j) ≥ 2. As Tj is arbitrary, maintaining

the key property forces us to make sure that [2(k(s,i)+k(r,i))] ⊂ Ai+Bi for any Ai and Bi such

that fTj = (Ai, Bi) for some j. Thus, let [k(s,i)] and [k(s,i)+k(r,i)+1, 2k(s,i)+k(r,i)] both be

subsets of Ai. Given these facts about Ai, it follows that B
∗ = {x·k(s,i) : x ∈ [0, k(r,i)/k(s,i)]}

is a subset of Bi. This gives us that [2(k(s,i)+k(r,i))] ⊂ Ai+Bi as desired. For otherm ∈ Aj ,

we let [(m−1)(k(s,i)+k(r,i))+1, (m−1)(k(s,i)+k(r,i))+k(s,i)] be in f(Aj) = Ai to ensure that

key property is maintained. To see this, notice that this implies that B∗ + [(m− 1)(k(s,i) +

k(r,i))+1, (m−1)(k(s,i)+k(r,i))+k(s,i)] = [(m−1)(k(s,i)+k(r,i))+1,m(k(s,i)+k(r,i))] ⊂ Ai+Bi

as desired. For all b(ℓ,j) ∈ Bj , we have Aj + b(ℓ,j) ⊂ Aj + Bj by de�nition. Let m be in

Aj + b(ℓ,j) where b(ℓ,j) ̸= 0. Notice, that by adding

B∗ +
{
bℓ,j(k(s,i) + k(r,i))

k(s,i)

}

to f(Bj) = Bi, we get that [(m − 1)(k(s,i) + k(r,i)) + 1,m(k(s,i) + k(r,i))] ⊂ Ai + Bi as

desired.

To give an example of the above using Ai + Bi = [24] and Aj + Bj = [48], the tiling

6. The opposite direction also holds in that on can compress consecutive points in Ai down to single
points of Aj , but this follows from the upper bound, not the lower bound

48

T(k′,j) = ({1, 3, 9, 11}, {0, 1, 12, 13}) would map to

T(k,i) = ({1, 2, 5, 6, 17, 18, 21, 22}, {0, 2, 24, 26})

via f . In order to prove that the sum from Lemma 6 (along with the given de�nitions for

S and Rks) act as an upper bound to the number distinct tilings of C = [n], we require the

following de�nition.

De�nition 20. For (A,B) ∈ T (α,C), let the xth meta-point of C with respect to A (denoted

by x∗) be the set [(x − 1)(ks + kr) + 1, x(ks + kr)]. We use the terminology of segments to

refer to consecutive sets of meta-points in C and refer to these as meta-segments (i.e. s∗i).

We extend the idea of rifts to meta-rifts (i.e. r∗i) similarly. More formally we have that

� s∗1 ≜
{
x∗ ⊂ A : max[x∗] < min[C \ A]

}
� r∗1 ≜

{
x∗ ⊂ C \ A : max[x∗] < min

[
A \ s∗1

]}
.

� s∗i ≜
{
x∗ ⊂ A : max[s∗i−1] < x < min

[
(C \ A) \

{
y ∈ C : y ≤ max[r∗i−1]

}]}

� r∗i ≜

{
x∗ ⊂ C \ A : x∗ ⊂

(
max[r∗i−1],min

[
A \

(i−1⋃
k=1

s∗k

)])}
.

Lemma 8. Suppose that α|n, ks ∈ S, and kr ∈ Rks \ {0}. Then it follows that

Ψ(α,[n],(ks,kr)) =

∣∣∣∣T (α/ks, [n

ks + kr

])∣∣∣∣−∣∣∣∣T (α/ks, [n

ks + kr

]
, (1, ·)

)∣∣∣∣ = ∣∣T (α, [n], (ks, kr))]∣∣.
In addition, no selection of ks and kr such that ks ̸∈ S and kr ̸∈ Rks has any valid tilings

associated with them.

Proof. Lemma 5 justi�es the �rst restriction of S, as A is made up of segments, so if each

segment has cardinality ks, then it must be the case that ks|α. Further, from the proof of

Lemma 5, we can conclude that (s1∪s2)+B∗ must tile exactly [2(ks+kr)] in any valid tiling

49

as done in Lemma 7. For example, if s1 = {1, 2} and s2 = {7, 8}, we know that {0, 2, 4} ⊂ B

as these are necessary to tile r1 = [3, 6] with translates of s1. These elements of B then also

sum with the elements s2 so that (s1 ∪ s2) + {0, 2, 4} = [12]. Unless C = [12], there are two

possible ways the next elements of C (i.e. {13, 14}) can be tiled. Either these elements are

in s3 or they are tiled by further translates of s1. As we will see below, this decision for

C = [n] in this example ends up being akin to the choice of whether or not to include 3 in

A for C = [n/(ks + kr)] = [n/6] (and with the size of A reduced by a factor of ks = 2).

If n = 2(ks + kr), we have found the unique valid tiling for this ks and kr. In terms

of meta-points, this case corresponds to tiling the set {1∗, 2∗}, where 1∗ = [ks + kr] and

2∗ = [ks + kr + 1, 2(ks + kr]. Consider the case of n = ℓ(ks + kr) for ℓ > 2. There are two

ways to tile 2(ks + kr) + 1 in A+ B. Either 2(ks + kr) + 1 ∈ s3 or 2(ks + kr) + 1 ∈ s1 + bi

for some bi ∈ B. It cannot be the case that 2(ks + kr) + 1 ∈ s2 + bi for some bi ∈ B,

as this would imply that (s1 + bi) ∩ [2(ks + kr)] ̸= ∅ which would not yield a valid tiling.

Suppose 2(ks + kr) + 1 ∈ s3. It follows that (s1 ∪ s2 ∪ s3) +B∗ = [3(ks + kr)]. The number

of times we repeat this process determines |s∗i |, as each such decision to add si for a new

i as soon as possible essentially adds one new point to the �rst meta-segment. Suppose

2(ks + kr) + 1 ∈ s1 + bi. It follows that min[s3] > 4(ks + kr). This is because the number

of elements between s1 + bi and s2 + bi is 2(ks + kr)− ks, but s3 +B∗ is a set of 2(ks + kr)

consecutive elements. Thus, s3 (and by extension, s3 + B∗) cannot appear until at least

4(ks + kr) + 1. Thus, this decision of how to tile 2(ks + kr) + 1 leads to a meta-point being

added to a meta-rift.

The choice between the two options outlined above as to how to tile 2(ks + kr) + 1 is

repeated once every ks + kr elements and are the only ones, as repeating the case analysis

from above leads to similar contradictions. As these potential tilings align exactly with

those in Lemma 7, we know these tilings are valid. Thus, the solutions as to how to tile [n]

are exactly the ways to tile [n/(ks + kr)] with a valid tiling for which k(s,j) ≥ 2 (which is

50

accounted for by the negative term with k(s,j) �xed to 1). To justify the second restriction

(i.e. ks + kr|ksβ) of Rks notice that, due to the fact that segments are of length ks and the

de�nition of B∗, we have that ks + kr elements are grouped into meta-points and are either

tiled or not tiled as a group. Once r1 is tiled by translates of s1, the �rst a · (ks + kr)/ks

elements of C will be tiled. Thus, it must be that (α · T (ks + kr)/ks)|αβ, as otherwise

translates of these a · (ks + kr)/ks elements could not tile C. This divisibility requirement

simpli�es to the restriction (ks + kr)|ksβ as required. For the last restriction to elements of

Rks , its necessity follows from the de�nition of segments and rifts.

We now handle the other two cases for Ψ(α,[n],(ks,kr)) relevant to the upper bound.

Lemma 9. For some T (α, [n], (ks, kr)), if α ∤ n, then |T (α, [n], (ks, kr))| = 0. Otherwise, if

kr = 0, then |T (α, [n], (ks, kr))| = 1.

Proof. If a ∤ n, then |C| = αβ is impossible and the lemma holds. If kr = 0, then r1 = ∅

and A = [α]. Consider trying to change B from B = {x · α : x ∈ [0, b − 1]} as de�ned in

Lemma 7. We attempt to do this via induction on the elements of B. The base case would

be to change 0, but this is not allowed by the de�nition of T . Suppose that bi is the �rst

element that should be adjusted and assume without loss of generality that we cannot reduce

it below bi−1 + 1 or increase it to be greater then bi+1 − 1. If we increase bi, then bi + 1 is

no longer in A+ B which is a contradiction. If we decrease bi, then A+ bi−1 ∩ A+ bi ̸= ∅.

Thus, bi cannot be changed while still yielding a valid tiling.

With the prior results of this section in hand, Lemma 6 immediatly follows.

Proof of Lemma 6. Lemma 8 bounds shows equality in the recursive case of Ψ(α,[n],(ks,kr))

and justi�es the restrictions to S and Rks . Lemma 9 shows equality in the other two cases

of Ψ(α,[n],(ks,kr)). Summing over all valid ks and kr yields the lemma.

51

While the formula from Lemma 6 is the one we use to prove our upper bound, it is not

in a convenient form for the purpose of lower bound analysis. Thus, we give an alternative

formula that we prove to be equivalent and which we use to prove our lower bound.

Lemma 10. Let P(n,k) be the set of products of k distinct prime divisors of n.

|T (α, [n])| =
∑
k∈[n]

∑
v∈P(n,k)

(−1)k+1
(
|T (α, [n/v])|+ |T (α/v, [n/v])|

)
.

Proof. Let k(s,i) and k(r,i) be the size of the �rst segment and rift of the sumset tile (Ai, Bi).

We prove this by showing this formula's equivalence to the formula from Lemma 6. We break

the tilings from Lemma 6 into two case: tilings of T (α, [n]) such that ks > 1 and tilings

such that ks = 1. We de�ne a function f1 that takes as input (α, [n]) and an element of

T (α, [n/v]), and outputs an element of T (α, [n]) such that v|(ks+kr) and ks = 1. Further we

prove that, for any (Ai, Bi) ∈ T (α, [n]) such that v|(k(s,i)+k(r,i)) and k(s,i) = 1, there exists a

unique (Aj , Bj) ∈ T (α, [n/v]) such that f1((α, [n]), (Aj , Bj)) = (Ai, Bi). Similarly, we de�ne

a function f2 that takes as input (α, [n]) and an element of T (α/v, [n/v]), and outputs an

element of T (α, [n]) such that v|ks. Further we prove that, for any (Ai, Bi) ∈ T (α, [n]) such

that v|k(s,i), there exists a unique (Aj , Bj) ∈ T (α/v, [n/v]) such that f2((α, [n]), (Aj , Bj)) =

(Ai, Bi).

We begin with f1. For any (Aj , Bj) ∈ T (α, [n/v]) such that f1((α, [n]), (Aj , Bj)) =

(Ai, Bi), we let Ai = {x : x/v ∈ Aj} and Bi = {y : y/v ∈ Bj} + [0, v]. k(s,i) = 1 follows

from the fact that v ≥ 2. As for d|(k(s,i) + k(r,i)), one can see from the de�nition of Bi that

the �rst rift must end at some multiple of v which implies that v|(k(s,i) + k(r,i)). For any

(Ai, Bi) ∈ T (α, [n]) such that v|(k(s,i) + k(r,i)) and k(s,i) = 1, it follows from Lemma 6 that

the single point segments of (Ai, Bi) occur only at positions t such that pi|(t−1) (this follows

from the division of n by ks + kr in the last case of the de�nition of Ψ(α,[n],(ks,kr))). Thus,

f1 is invertable and the claim follows. As for f2, for any (Aj , Bj) ∈ T (α/v, [n/v]) such that

52

f1((α, [n]), (Aj , Bj)) = (Ai, Bi), we let Ai = {x : ⌊x/v⌋ ∈ Aj} and Bi = {y : y/v ∈ Bj}.

v|k(s,i) follows from the fact that ⌊x/v⌋ has the same value for every v consecutive values

of x. For any (Ai, Bi) ∈ T (α, [n]) such that v|k(s,i), it follows from Lemma 6 that every

segment and rift is divisible by v. Thus, f2 is invertable and the claim follows.

Let {p1, . . . , pm} be the prime divisors of n. Notice that f1 and f2 map to disjoint

subsets of T (α, [n]), but that the union of their codomains on inputs from T (α, [n/pi]) and

T (α/pi, [n/pi]) respectively for all i ∈ [m] is exactly T (α, [n]). The issue then in simply

summing the size of these codomains is that an element of T (α, [n/pi]) and an element of

T (α, [n/pj]) for i ̸= j may map to the same element (Az, Bz) ∈ T (α, [n]) by f1. By the

de�nition of f1, this would imply that pipj |(k(s,z) + k(r,z)) and k(s,z) = 1, which means we

can remove the over counting by subtracting cases for which v is composed of 2 distinct

prime factors of n (though now we may be under counting). More generally, we can apply

the inclusion-exclusion principle with respect to the number of prime factors of v to arrive

at an exact count as desired.

3.5 Upper and Lower Bound Calculations

In this section, we have three primary results:

1. A partial order on |T (α, [n])| with respect to α.

2. A upper bound on |T (α, [n])| for su�ciently large n utilizing Ψ(α,[n],(ks,kr)).

3. A lower bound on |T (α, [n])| for speci�c α and in�nitely many n that is super-linear

in n, proved by analyzing the formula from Lemma 10.

Prior to beginning the proof (or series of proofs) necessary to prove each of these results, we

provide a high level outline as to our approach. Further, before we dive into any of these,

we wish to establish the following useful corollary.

53

Corollary 6. T (α, [n]) = T (β, [n]).

Proof. Let Pj = (A,B) be a tiling of [n] such that |A| = α and |B| = β. De�ne P ′j to be

(A′, B′), where A′ = B + {1} and B′ = A− {min[A]}. Notice that P ′j is a tiling of [n] such

that |A′| = β and |B′| = α.

As our results allow for �xed tile sizes, it is natural to ask, for a �xed [n], are there

more tiles of size α or of size α′ that tile C? While we are unable to prove a total order on

|T (α, [n])| with respect to α and fully resolve this question, we are able to prove a partial

order by leveraging the intuition that, the closer α is in its prime factorization to being a

square root of n, the more distinct tiles there will be of size α that tile [n]. The di�culty in

proving this statement is in formalizing this notion of �closeness" to being a square root of

n. Our proof simpli�es this question by proving an order with respect to α and α′ in cases

where one has strictly higher multiplicity in each of its prime factors (and such that neither

has too high of a multiplicity in any prime factor).

With this restriction as to the α we compare, we can utilize the recursive case of

Ψ(α,[n],(ks,kr)) to give an inductive proof and derive our desired partial order. In Lemma

11, we �rst prove a base case with respect to α by comparing tiles of size 1 to tiles of size

pi. We then make our inductive hypothesis with respect to both α and n, as to apply our

inductive step, we will be relying on the recursion from De�nition 19, which reduces the size

of both α and n. Lastly, we pick apart the elements from the sets S and Rks for the cases in

question, separating these pairs into groups of cases that can be more easily compared via

an equality or inequality. Once all cases have been accounted for in this manner and with

all inequalities being in the same direction, the proof will be complete.

Lemma 11. Let α = p
µ1
1 ·p

µ2
2 · . . . ·p

µk
k , let n = p

ψ1
1 ·p

ψ2
2 · . . . ·p

ψk
k , and assume ∀i(2µi ≤ ψi).

It follows that, for all j such that 1 ≤ µj, we have |T (α/pj , [n])| < |T (α, [n])|.

54

Proof. We proceed by induction on

Ω∗(α) =
k∑
i=1

µi

and n, where Ω∗(α) is the prime omega function. For Ω∗(α) = 1 and all n, we have that

|T (α/pj , [n])| = |T (1, [n])| = 1. By assumption we have p2j |n and thus, in conjunction with

Lemma 6, we have that |T (pj , [n])| ≥ |T (1, [n/pj])| + |T (pj , [n/pj]) ≥ 2. Thus, the base

case with respect to Ω∗(α) holds for all n. Assuming that |T (α/pj , [n])| < |T (α, [n])| holds

for all α such that Ω∗(α) ≤ m and for contiguous C such that |C| < n, we prove that this

implies it holds for Ω∗(α) = m + 1 and n. Without loss of generality, let this case be such

that

α = p
µ1+1
1 · pµ22 · . . . · p

µk
k

and assume that 2µ1 ≤ ψ1. By the assumption that ∀i(2µi ≤ ψi), it follows that

T (α, [n], (ks, kr)) has strictly more potential values for ks (i.e. has larger |S|) when com-

pared to T (α/p1, [n], (ks, kr)), but that each value of ks ∈ S \ {α, α/p1} has exactly one

more option for kr (i.e. |Rks| is one larger in the case of α/p1). This latter fact follows

from the requirement that ks + kr|ksβ and that the case with α/p1 results in an associated

β′ such that β′ = p1β, as we have (α/p1)(β
′) = n by the de�nition of a valid tiling. Thus,

ks + kr = p1ksβ is possible in the case of T (α/pi, [n], (ks, kr)), but not T (α, [n], (ks, kr)).

The only exception to this is when we have T (α, [n], (α, kr)) and T (α/p1, [n], (α/p1, kr)) as

in both such cases the only possible kr is 0.

Based on the above, we begin by separating out the easiest cases to compare for both

T (α, [n]) and T (α/p1, [n]), then proceed with handling the outliers. First, we have that

|T (α, [n], (α, 0))| = |T (α/p1, [n], (α/p1, 0))| = 1.

55

Next, for ks ∈ S \ {α, α/p1} and kr such that ks + kr|ksβ, we have that

|T (α, [n], (ks, kr))| =
∣∣∣∣T (α/ks, [n

ks + kr

])∣∣∣∣− ∣∣∣∣T (α/ks, [n

ks + kr

]
, (1, ·)

)∣∣∣∣
as well as

|T (α/p1, [n], (ks, kr))| =
∣∣∣∣T (α/p1ks, [n

ks + kr

])∣∣∣∣− ∣∣∣∣T (α/p1ks, [n

ks + kr

]
, (1, ·)

)∣∣∣∣.
By our inductive hypothesis, we have that

∣∣∣∣T (α/ks, [n

ks + kr

])∣∣∣∣ > ∣∣∣∣T (α/p1ks, [n

ks + kr

])∣∣∣∣.
By Lemma 6 and our prior observation about the relative number of kr in such cases, we

have that

∣∣∣∣T (α/ks, [n

ks + kr

]
, (1, ·)

)∣∣∣∣ = ∣∣∣∣T (α/p1ks, [n

ks + kr

]
, (1, ·)

)∣∣∣∣+ 1.

Thus, it follows that |T (α, [n], (ks, kr))| ≥ |T (α/p1, [n], (ks, kr))| for all such ks and kr.

We now classify all remaining tilings for tiles of size α/p1. In this case we have

T (α/p1, [n], (ks, kr)) for ks ∈ S \ {α/p1} and kr such that ks + kr = p1ksβ. As n = αβ by

de�nition, we also have that

n

ks + kr
=

αβ

p1ksβ
=

α

p1ks

from which it immediately follows that

|T (α/p1, [n], (ks, (p1β − 1)ks))| = |T (α/p1ks, [α/p1ks])| − |T (α/p1ks, [α/p1ks], (1, (·)| = 1.

Further, this implies that
∑
ks |T (α/p1, [n], (ks, (p1β − 1)ks))| = |S \ {α, α/p1}| for ks ∈

S \ {α, α/p1}.

56

Lastly, we show that there are a strictly greater then |S \{α, α/p1}| tilings in T (α, [n]) we

have not yet counted, thus proving the lemma. Consider the tilings in T (α, [n], (α/p1, kr)).

Notice that, by our assumption that ∀i(2µi ≤ ψi) and with ks = α/pi, it follows that

|Rα/pi| > |S \ {α, α/p1}|.

As each kr ∈ Rα/pi has at least one valid tiling associated with it, this proves the lemma.

We now move on to proving our upper bound on |T (α, [n])|. Lemma 12 leverages the fact

that the formula from Lemma 6 has a recursive structure, with a branching factor based upon

|S| and the size of |Rks| for each ks and at most logarithmic depth. We then use the fact that

the de�nitions of S and Rks are based around divisibility to estimate the maximum number

of branches based on the number of divisors of α and β (and thus, the maximum number

of valid tilings). We conclude the upper bound proof with Corollary 7, which combines the

result of Lemma 12, an estimate on the number of divisors of an integer, and an ideal setting

of α to yield our upper bound. A similar proof to the one just outlined likely works to prove

an upper bound on the number of tilings of an interval of the discrete line via the structural

results Bodini and Rivals [3]. However, it would introduce an additional σ0(n) multiplicative

factor to Lemma 12, resulting in a �nal upper bound that would be larger by approximately

a log n multiplicative factor in the exponent.

Lemma 12. |T (α, [n])| ≤ (σ0(α) · σ0(β)− σ0(α)− σ0(β) + 2)log n.

Proof. By Corollary 6, we can assume without loss of generality that α ≥ β. We prove that

the number of tilings that do not violate the restrictions of Lemma 7 on S and Rks is exactly

σ0(α) · σ0(β)− σ0(α)− σ0(β) + 2. The number of valid choices of ks is exactly σ0(α). As to

Rks , we �rst handle the case of ks = α. As the third restriction forces kr = 0, this results in

a single valid kr. Next, consider when ks = 1. In this case, ks|kr for any choice of kr, so the

�rst restriction is satis�ed. Lastly, the second restriction simpli�es to kr +1|β. The number
57

of kr that satisfy this is exactly σ0(β)− 1, as the only divisor of β we cannot form with the

sum kr + 1 is 1.

We can now handle any remaining cases. Let div(β) be the set of divisors of β. Notice

that div(ksβ) is exactly
(
ks · div(β)

)
∪ div(ks)∪ div(β). Due to the second restriction of Rks

(i.e. ks + kr|ksβ) and that fact that ks + kr > ks, we can narrow down options for kr from

div(ksβ) to (ks · div(β)) ∪ div(β). By the �rst restriction of Rks , we have that ks|kr, so we

can further simplify valid options for kr from ks ·div(β)∪div(β) to ks ·div(β). Lastly, kr ̸= ks

and thus, the number of valid options for kr equals

|ks · div(β)| − 1 = σ0(β)− 1.

Thus, for all ks such that ks|a and ks ̸= a, we have σ0(β)−1 options for β. When ks = α, we

have exactly 1 option for ks. Each of these σ0(α) · σ0(β)− σ0(α)− σ0(β) + 2 sub-cases then

divides n by at least 2. Thus, if we very conservatively assume that each sub-case decreases

n by a factor of 2, we get that

|T (α, [n])| ≤ (σ0(α) · σ0(β)− σ0(α)− σ0(β) + 2)log n

as desired.

By Theorem 317 of Hardy and Wright [14] (which is attributed to Wigert (1907)) we

have that, for any ϵ > 0 and in�nitely many su�ciently large n,7

2(1−ϵ) log(n)/ log log(n) < σ0(n) < 2(1+ϵ) log(n)/ log log(n).

Thus, for in�nitely many n, we have that σ0(n) ∼ 2log(n)/ log log(n).

7. Only the lower bound is in�nitely often. The upper bound holds for all su�ciently large n.

58

Corollary 7. For C = [n], all n, and any ϵ > 0 we have that

max
α

[
|T (α,C)|

]
≤ (2

(1+ϵ) logn
log log

√
n − 2

log
√
n

log log
√
n
+1

+ 2)log n < n
(1+ϵ′) logn
log logn .

Proof. Notice that the inner σ0(α)·σ0(β)−σ0(α)−σ0(β)+2 is maximized when α = β =
√
n.

By Lemma 12, we have at most (σ0(
√
n)2−2σ0(

√
n)+2)log n valid tilings. Using the bounds

of Wigert [14] yields the statement.

This is a signi�cant improvement over the trivial upper bound of
(n
2

)
. Next, we prove our

super-linear lower bound on |T (α, [n])|. The primary lemmas that achieve this are Lemma

14 and Lemma 15.

We begin our series of lower bound proofs with Lemma 13. All of the lemmas related

to our lower bound rely on our formula for counting |T (α, [n])| from Lemma 10. Thus,

the primary purpose of Lemma 13 is to highlight this by applying Lemma 10 to calculate

|T (2⌊k/2⌋, [2k])|. The choice of n and α greatly simplify this lemma, as the choice of n = 2k

means that their are no negative terms, and our choice of α = 2⌊k/2⌋ leads to an opportunity

to apply Corollary 6.

Lemma 13. For k ∈ Z+, we have that |T (2⌊k/2⌋, [2k])| > 2k√
2k
.

Proof. In this case, Lemma 10 simpli�es to

|T (2⌊k/2⌋, [2k])| = |T (2⌊k/2⌋, [2k−1])|+ |T (2⌊k/2⌋−1, [2k−1])|.

Notice that, if we continue to reapply Lemma 10 in this way, we eventually end up with only

the term |T (1, [1])| with multiplicity
(k
k/2

)
. This is because there it take k divisions by 2

before the set to be tiled resolves to [1], but exactly k/2 of these must divide the tile size by

59

2 to reach a tile size of 1. Thus, we have that

T (2⌊k/2⌋, [2k])| =
(
k

k/2

)
|T (1, [1])|

=

(
k

k/2

)
>

2k√
2k
.

The next two preliminary lower bound lemmas are Lemma 14 and Lemma 15. Lemma 15

extends Lemma 13 by multiplying n by 32. While this appears to be a minor change, it serves

to illustrate the idea that increasing the number of prime factors of n can have the e�ect

of increasing the number of valid tilings by some constant factor in the exponent. However,

now that we have more then one prime factor of n and unlike in Lemma 15, applying Lemma

10 results in some positive and some negative terms. Thus, we require an inequality that

allows us to remove all of the negative terms at the cost of positive terms of relativity little

importance. We provide such an inequality and prove its correctness in Lemma 14, then

prove Lemma 15 utilizing it.

Lemma 14. For k ≥ 1 and α such that 3|α and 32 ∤ α,

|T (α, [2k32])| ≥ |T (α, [2k−132])|+ |T (α/2, [2k−132])|+ |T (α/3, [2k])|.

Proof. Our approach to this proof will be to expand |T (α, [2k32])| using Lemma 10, isolate

the terms in the sum |T (α, [2k−132])|+ |T (α/2, [2k−132])|+ |T (α, [2k])| and prove that the

sum of the remaining terms from the inclusion-exclusion formula is non-negative. By Lemma

60

10, we have that

|T (α, [2k32])| =|T (α, [2k−132])|+ |T (α/2, [2k−132])|+ |T (α, [2k3])|+

|T (α/3, [2k3])| − |T (α, [2k−13])| − |T (α/6, [2k3])|.

We can now apply Lemma 10 again, this time to the term |T (α, [2k3])| to get

|T (α, [2k32])| =|T (α, [2k−132])|+ |T (α/2, [2k−132])|+ |T (α, [2k−13])|+ |T (α/2, [2k−13])|+

|T (α, [2k])|+ |T (α/3, [2k])| − |T (α, [2k−1])| − |T (α/6, [2k−1])| (3.1)

+ |T (α/3, [2k3])| − |T (α, [2k−13])| − |T (α/6, [2k3])|

=|T (α, [2k−132])|+ |T (α/2, [2k−132])|+ |T (α, [2k−13])|+ |T (α/2, [2k−13])|+

|T (α/3, [2k])| − |T (α/6, [2k−1])|+ |T (α/3, [2k3])|− (3.2)

|T (α, [2k−13])| − |T (α/6, [2k3])|

=|T (α, [2k−132])|+ |T (α/2, [2k−132])|+ |T (α/2, [2k−13])|+ |T (α/3, [2k])|−

(3.3)

|T (α/6, [2k−1])|+ |T (α/3, [2k3])| − |T (α/6, [2k3])|

where equation 5 follows from equation 4 due to 3|a and 3 ∤ |C|. Thus, as a ∤ |C|, no valid

tilings were dropped between these two lines. We now set aside the terms in |T (α, [2k−132])|+

|T (α/2, [2k−132])|+ |T (α, [2k])|, leaving us with

|T (α/2, [2k−13])| − |T (α/6, [2k−1])|+ |T (α/3, [2k3])| − |T (α/6, [2k3])|.

Notice that

|T (α/2, [2k−13])| ≥ |T (α/6, [2k−1])|

61

and

|T (α/3, [2k3])| ≥ |T (α/6, [2k3])|.

Thus,

|T (α/2, [2k−13])| − |T (α/6, [2k−1])|+ |T (α/3, [2k3])| − |T (α/6, [2k3])| ≥ 0

as required.

We now wish to leverage Lemma 14 to prove an improved lower bound in the case of

|T (2⌊k/2⌋ · 3, [2k32])|. To do this, the main insight that is required is that, if one repeatedly

applies Lemma 14, �rst to some given T (α, [n]) and then again to some of the terms that

result from applying Lemma 10 to T (α, [n]), there will begin to be �collisions" between some

of the resulting terms. In Lemma 15, we are able to create many such collisions and utilize

high multiplicity terms to improve our lower bound on |T (α, [n])| with respect to n.

Lemma 15. For k ∈ Z+, for α = 2⌊k/2⌋ · 3, we have that |T (α, [2k32])| = ω(n).

Proof. By Lemma 14, we know that

|T (α, [2k32])| ≥ |T (α, [2k−132])|+ |T (α/2, [2k−132])|+ |T (α/3, [2k])|.

Consider the terms on the right side of the inequality. Notice that we can also apply Lemma

14 to the �rst two terms while leaving the third unchanged. If we continue to reapply Lemma

14 to the �rst two of the three terms that result (keeping the third term each time), we will

be left with a sum of terms in the form of Pascal's triangle.8 More formally, all of the terms

8. Alternatively known as Pingala's triangle, Yang Hui's triangle, and several other names due to its
repeated independent discovery.

62

in the sum would be of the form

(
j

i

)
|T (α/2i3, [2k−j])|,

where the coe�cient of
(j
i

)
follows from the observation that, when visualized as Pascal's

triangle, the term |T (α/2i3, [2k−j])| appears in the jth row and ith column.

To clarify that this is indeed the case, notice that the �rst term on the right hand side

of Lemma 14 equals the term from the left hand side with |C| divided by two. By contrast,

the second term on the right hand side of Lemma 14 equals the term from the left hand side

with both α and |C| divided. Thus, when we consider the number of ways to output the

aforementioned third term of (
j

i

)
|T (α/2i3, [2k−j])|,

it follows that Lemma 14 was applied j + 1 times (in j cases, |C| was divided by 2, while

the �nal application removed the 32 term). Further, the tile size α was divided by 2 only

i times. Thus, there are
(j
i

)
copies of this term when utilizing Lemma 14 to fully expand

|T (α, [2k32])| (except for the third right hand side terms according to Lemma 14 which never

expanded as mentioned prior).

We now wish to focus on a subset of terms from this expansion that balances reasonably

high multiplicity with a fairly large set of tilings, as this will maximize the value of their

product. This desire for a large number of distinct tilings means we wish to have fairly large

|C|, with α =
√
|C|, an objective that is achieved by consedering all of the terms in the

middle vertical slice of cases when visualized as Pascal's triangle. For all cases in this slice,

63

if we only focus only on the term with the 3 terms removed, we have that there are

(
(1− w)k

(1− w)(k/2)

)
|T (2w(k/2), [2wk])| = 2(1−w)k√

(1− w)(2k)
· 2wk√

w(2k)

=
2k√

(1− w)(2k)
√
w(2k)

distinct tilings for 0 < w ≤ 1. There are k such middle terms (or pairs of middle terms)

for various settings of w. The denominator is minimized in the case explored in Lemma 13

where in it is equal to
√
2k and it is maximized in the case of w = 0.5 in which case the

denominator is equal to k (though this is the only case with such a high denominator). As

there are k such cases and we can take their sum, we have a super-linear number of distinct

tilings.

Lemma 15 is essentially a �nite example of a more general method for improving upon

Lemma 13. As mentioned prior, increasing the number of distinct prime factors in n in

the correct manner has the e�ect of increasing the number of valid tilings. The method

for doing this is to take the argument from Lemma 15 and continue to apply it, removing

each prime one at a time, steadily multiplying the number of cases of |T (2k(w/2), [2wk])| for

various 0 ≤ w ≤ 1. The issue in doing this is that Lemma 14 cannot be applied when their

are prime factors other than 2 and 3 and thus, we will require we will require a generalized

version of Lemma 14. We prove such a generalization in Lemma 16, the proof of has much

more in common with the proof of Lemma 10 then Lemma 15. We now proceed with the

proof Lemma 16.

Lemma 16. Let pi be the ith prime, and let t, tpm, t1, and t2 be de�ned as

t ≜ T
(
α,
[
2k
∏m
i=2 p

2
i

])
tpm ≜ T

(
α
pm
,
[
2k
∏m−1
i=2 p2i

]) t1 ≜ T
(
α,
[
2k−1

∏m
i=2 p

2
i

])
t2 ≜ T

(
α
2 ,
[
2k−1

∏m
i=2 p

2
i

])
64

where we de�ne the products to be equal to 1 if m = 1 and 0 if m = 0. It follows that

|t| ≥ |tpm |+ |t1|+ |t2|.

Proof. Throughout this proof, we will use (At, Bt) to refer to A and B such that (A,B) ∈ t.

We prove the lemma via a combinatorial argument in which we prove that tpm , t1 and t2

have size equal to that of three disjoint subsets of t. More speci�cally, we de�ne mappings

fpm , f
′
1, and f

′
2 from tpm , t1 and t2 respectively to t, such that their codomains are disjoint.

All three mappings are similar to mappings f1 or f2 from the proof of Lemma 10. This

is especially true of f ′1 and f ′2, whereas fpm requires a more complex piece-wise de�nition.

After de�ning a mapping, we brie�y analyze several properties of elements of that mappings

codomain. By the fact that the elements of the codomain of each mapping have mutually-

exclusive properties, we are able to conclude that the codomains of the mappings are disjoint

sets as desired.

For convenience, we brie�y review the de�nitions of f1 and f2 from Lemma 10 at a

high level. For these functions formal de�nitions, we refer the reader back to Lemma 10.

f1(x, y) takes a pair as input, where x is a target set of tilings T (α, [n]) and where y is some

(A,B) ∈ T (α, [n/v]) for �xed v ≥ 2. The output of f1 is some (A′, B′) ∈ T (α, [n]) for which

ks = 1. To achieve this, when imagined as a process or algorithm, f1 essentially �pushes

apart" the elements of [n/v] by adding v−1 points between each (following a similar process

for A), then builds a larger B′ from B so as to cover [n] with A′+B′. f2(x, y) takes a pair as

input, where x is a target set of tilings T (α, [n]) and where y is some (A,B) ∈ T (α/v, [n/v])

for �xed v ≥ 2. The output of f2 is some (A′, B′) ∈ T (α, [n]) for which ks > 1. f2 is de�ned

in much the same as f1, except that one adds v contiguous points to A′ for each element of

A.

We begin by de�ning f ′1 using the de�nition of f1. For (At1 , Bt1) ∈ t1, let f ′1(At1 , Bt1) ≜

f1(t, (At1 , Bt1)). By Lemma 10 all elements in the codomain of f1 are such that k(s,t) = 1.

65

Further, notice that k(r,t) is always odd. To see this, if k(s,t1) > 1, then k(r,t) = 1 by a single

point being inserted between the �rst and second points of the �rst segment. Thus, suppose

k(s,t1) = 1. If k(r,t1) is even, then an odd number of points are added to the �rst rift to get

the �rst rift of the tiling of t and thus, k(r,t) is odd. Conversely, if k(r,t1) is odd, then an

even number of points is added to the �rst rift to get the �rst rift of the tiling of t and thus,

k(r,t) is odd. Thus, in all cases, an element of the codomain of f1 has an odd valued k(r,t).

Next we de�ne f ′2 using the de�nition of f2 from Lemma 10. Let f ′2(At2 , Bt2) =

f2(t, (At2 , Bt2)). This gives us a tiling of t with even k(s,t) and k(r,t). The �rst of these

facts follows from the fact that each segment from the tiling from t2 has had its length

exactly doubled. The latter observation then follows from ks|(ks + kr) and the fact that

k(s,t) is even. Just as in Lemma 10, as elements of the codomain of f1 are tilings such that

k(s,t) = 1 elements of the codomain of f2 have even k(s,t), we know that the codomains of

f1 and f2 are disjoint.

We now give a piece-wise de�nition of fpm , with one de�nition when k(s,tpm) of the input

is even and another when k(s,tpm) of the input is odd. For some, (Atpm , Btpm) ∈ tpm , if

k(s,tpm) is even, we begin by applying f1(t, (Atpm , Btpm)) = (A′, B′). This increases the size

of Atpm +Btpm by a multiplicative factor of pm and does not change the size of Atpm . This

would tile exactly the �rst pm fraction of points of At+Bt ∈ t (i.e. A′+B′ = [|At+Bt|/pm]).

Thus, we build our �nal A′′ from A′ by letting A′′ = A′ + {x · pm|x ∈ [0, pm]}. This then

gives us our desired output of fpm on such inputs, which is (A′′, B′) = (At, Bt). As k(s,tpm) is

even, so is k(r,tpm). As the number of points added to the �rst rift is pm− 1 (which is even),

we have that k(r,t) is even. This makes the codomain of fpm disjoint from the codomain

of f ′1 in this case. Further, it follows from the portion of the de�nition based on f1 that

k(s,t) = 1. This makes the codomain of fpm disjoint from the codomain of f ′2 in this case.

Now for the case when k(s,tpm) of the input to fpm is odd. For some, (Atpm , Btpm) ∈ tpm ,

66

we begin by applying

f2(t, (Atpm , Btpm)) = (A∗, B∗).

This would tile exactly the �rst pm fraction of points of At + Bt (i.e. A
∗ + B∗ = [|At +

Bt|/pm]). Thus, we build our �nal B∗∗ from B∗ by letting B∗∗ = (B∗+{x·pm|x ∈ [0, pm]})∪

{x·pm|x ∈ [0, pm]} to get us our desired output of fpm on such inputs of (A∗, B∗∗) = (At, Bt).

As k(s,tpm) is odd and we are multiplying the size of the �rst segment by pm (which is also

odd), we are left with an odd value for k(s,t). This makes the codomain of fpm disjoint from

the codomain of f ′2 in this case. Further, it follows from the �rst part of the mapping that

k(s,t) > 1. This makes the codomain of fpm disjoint from the codomain of f ′1 in this case.

As we have shown the codomains of each function to be disjoint, the lemma follows.

It is unclear exactly what super-linear lower bound Lemma 15 achieves nor what improve-

ment utilizing Lemma 16 to generalize Lemma 15 enables. We leave this analysis to future

work, but conjecture that a lower bound that is linear times some super-polylogarithmic

factor is achievable. While one could expand upon the in�nite families of values of n for

which such lower bounds hold, one cannot prove any such bound for all n. This follows im-

mediately from the fact that, if n is prime, the only tile sizes that tile n are when α ∈ {1, n}

and in each case, there is only a single distinct tiling of [n].

67

CHAPTER 4

NON-CONTIGUOUS TILINGS IN HIGHER DIMENSIONS

4.1 Introduction

In this chapter, we generalize the results of the previous chapter to tiling of C ⊂ Zd and

to some families of non-contiguous C. As with the previous chapter, these results originally

appeared in [31]. While there is prior work in on tiling the in�nite set Zd [1, 11, 17, 32],

none of these works consider tilings of a �nite subset of Zd. Bodini and Rivals [3] posit that

their results generilize to d-dimensions, a claim that our results can be used to verify (while

also allowing for the handleing of �xed tile sizes).

We conjecture that the number of tilings of any �nite contiguous C by tiles of size α is

an upper bound on the number of tilings of any �nite C ′ ⊂ Zd by tiles of size α. In an e�ort

to begin working towards this and other results for non-contiguous C, we prove that any A

of size α that tiles some �nite contiguous C itself has at most as many tilings by tiles of size

α′ (for any α′ ∈ Z+) as there are tilings of [α] by tiles of size α′.

To relate our results back to the turnpike problem and database reconstruction, one

would not only need to characterize the tilings of �nite non-contiguous C ⊂ Z, but of tilings

of any �nite multiset of integers. Despite this, we believe that the true di�culty is a full

characterization of tilings of �nite non-contiguous C ⊂ Z, and that the multiset case would

follow readily from this in a similar fashion to the generalization of results on tilings of C ⊂ Z

to tilings of C ⊂ Zd.

In this section, we rely upon the de�nitions of the previous sections, as well as the folliwng

de�niton of a projection. Let proji(x) be the projection of x ∈ Zd onto the ith dimension

(i.e. proji(x1, . . . , xi, . . . , xd) = xi). Further, we let proji(A) for a set A equal the set

{proji(x)|x ∈ A}. We now discuss some of the prior work related to these topics in greater

detail.

68

4.1.1 Generalizations to Higher Dimension and Tiling Non-Contiguous Sets

While our aforementioned results consider more restricted sets of tilings (by allowing for an

additional restriction in the form of a �xed tile size), we also work to reduce the number

of restrictions on the underlying set to be tiled. We do this by considering tilings in higher

dimensions as well as tilings of sets with non-contiguous elements. In their conclusion, Bodini

and Rivals [3] claim that many of their results can be extended to tilings of a d-dimensional

rectangle and give a brief high-level description as to the technique for doing so. We prove

that our results with respect to �xed tile size can be extended to d-dimensions. For the

structural results of this form, these proceed in essentially the manner Bodini and Rivals

[3] describe (though again, with the additional need to take into account �xed tile size).

As one can remove the �xed tile size restriction in these results by summing over all α,

these results also con�rm the claim of Bodini and Rivals [3]. In addition we note that our

upper and lower bounds from the 1-dimensional case still apply in d-dimensions. As to our

counting results, their extension to d-dimensions follows readily from the generalization of

the structural results to d-dimensions.

As to the tiling of �nite non-contiguous C we prove an upper bound on the number of such

tilings with a tile of size α for a particular family of such C. More speci�cally, we prove that

any A of size α that tiles C = [x1]× [x2]× . . . [xd] has at most as many tilings of size α′ (for

any α′ ∈ Z+) as there are tilings of [α] by tiles of size alpha (i.e. |T (α′, A)| ≤ |T (α′, [α])|).

4.1.2 Prior Work On Tilings of Some Finite Non-Contiguous Multisets

While there does not appear to be prior work on the number of tilings of non-contiguous �nite

subsets of integers, given the reduction from turnpike to tilings from lemma 4, some research

on the Turnpike Problem [27] implicitly studies the number of �tilings" of a restricted family

of �nite multisets of integers. By the tiling of a multiset, we mean that the elements of the

multiset are covered by translates of a given tile a number of times exactly equal to their

69

multiplicity in the multiset. Thus, a count on the number of valid turnpike reconstructions is

also a bound on the number of distinct tiles that can tile some highly speci�c related multiset.

As metnioned in chapter 2, Skiena, and Smith, and Lemke [27] give a polynomial1 upper

bound on the number of solutions to the turnpike problem. They do this by transforming

the problem into a question about the factorization of related polynomials, then counting

the number of irreducible factors that are not self-reciprocal. This is interesting, as this

polynomial formulation of the problem has a similar �avor to characterizations of tilings of

�nite intervals studied in the algebraic approach of Bodini and Rivals [3] and Theorem 2.5 of

Pederson and Wang [24]. While we did not use this approach in our method of counting, we

leave as an open question whether or not some of the techniques from either body of work

can be applied to the other to yield improved results.

4.2 Extending to Zd

We now extend the above results for �nite subsets of Z to results for Zd for arbitrary

d ∈ Z+. In their conclusion, Bodini and Rivals [3] correctly claim that their results about

tiling �nite intervals of the discrete line can be extended to Zd and brie�y mention what

the characterization of the tilings in this setting would be. As we work with the additional

restriction of �xed tile size we adjust our claim appropriately, but we note that our core

idea appears to align witht heir own. Further, our proof veri�es their claim, as one can sum

over all tile sizes to recover their claim. Once we have extended our structural results to

Zd, we use this to show that our upper and lower bounds from the previous section still

hold in Zd.2 The extension of our structural results appears as Lemma 18 and proceeds by

induction however, the base case of the induction is somewhat non-trivial in that it requires

1. The exact degree of the polynomial bound depends on if the underlying point set is permitted to have
points with multiplicity greater than 1, though they handle both cases.

2. The fact that the lower bound still holds follows immediately from the fact that one can set d = 1 and
use the same case and argument as in Lemma 16.

70

a fact about the distribution of the elements of A with respect to B for any (A,B) that is

valid tiling of [n]. For the sake of clarity, we separate out this base case structural result and

present it as Lemma 17 before proving Lemma 18.

Lemma 17. Let C = [n]. For m ∈ Z, either |A∩ (B+m)| = 1 or |C ∩ (B+m)| < |B+m|.

Proof. We proceed by induction on the Ω∗(n). For the base case of Ω∗(n) = 1, we have that

exactly one of |A| and |B| is n. Assume without loss of generality that |A| = n, then A = C

and B + m is either in C and has a unique intersection with A or is not in C. Thus, the

base case holds. Suppose the lemma holds for Ω∗(n) = k − 1 and we prove that it holds for

Ω∗(n) = k. Notice that, as k > 1, either A or B has segments of size greater than 1. Suppose

without loss of generality that A has segments of size greater than 1. Thus, we can group

C into meta-points such that, for each meta-point, the consecutive elements it encompasses

are either all in A or all not in A. Further, by the de�nition of B, its segment size is 1 and

its minimum rift size is the segment size of A minus 1. Thus, it follows that each meta-point

of C is such that either its �rst element is in B or it has no elements in B. Let w > 1 be the

number of points per meta-point and suppose m is such that |C ∩ (B +m)| = |(B +m)| (if

not, we are done). As meta-points have size greater then 1, we can reconsider the intersection

of |A∩ (B+m)| = 1 with respect n/w points and ⌊m/w⌋ and apply our inductive hypothesis

to say that exactly one meta-point of C that is entirely elements of A intersects a meta-point

of B+ ⌊m/w⌋. This gives us an intersection of A∩ (B+ ⌊m/w⌋) at the �rst point of a meta

point. If we replace ⌊m/w⌋ by m as required, this increases the shift by at most w − 1.

As the intersection between A and B + ⌊m/w⌋ is in the �rst point of a meta-point and the

meta-point in question contains w consecutive elements, |A ∩ (B +m)| = 1 still holds and

the lemma follows.

We can now prove our main lemma of the section.

71

Lemma 18. Let C = C1 × C2 × . . .× Cd for Ci such that Ci = [ni] for some ni ∈ Z+. We

have that

|T ((α1, α2, . . . , αd), C)| = |T (α1, C1)| · |T (α2, C2)| · . . . · |T (αd, Cd)|.

More speci�cally, (A,B) is an element of valid tilings of T ((α1, α2, . . . , αd), C) if and only

if

A = {(x1, x2, . . . , xd) : xi ∈ Ai} and B = {(y1, y2, . . . , yd) : yi ∈ Bi} where (Ai, Bi) ∈

T (αi, Ci). Further, for m ∈ Zd, either |A ∩ (B +m)| = 1 or |C ∩ (B +m)| < |B +m|.

Proof. To tile the elements of C1 × min[C2] × . . . × min[Cd], the only elements of A that

can be utilized are those in C1 × min[C2] × . . . × min[Cd]. Thus, the elements of A in

C1×min[C2]×. . .×min[Cd] and the elements of B in Z+×{0}×. . .×{0} exactly correspond

to the one-dimensional tiling of C1 with |A| = α1.

We prove the lemma via two nested inductive arguments. We begin with induction on

the dimension d. For d = 1, this follows by de�nition and Lemma 17. Thus, suppose this

is the case for some d and we wish to prove that the lemma still holds for d + 1. To do

this, we prove by induction on z that, for all z ∈ [nd+1] there exists a k ∈ [z] such that,

C1 × C2 × . . .× Cd × z is tiled by

(A ∩ (C1 × C2 × . . .× Cd × k)) + {b ∈ B : projd+1 = z − k}.

For the case of z = 1 it follows from our inductive hypothesis relative to d that C1×. . .×Cd×1

can only be tilings as described in the lemma. More speci�cally, one takes the d dimensional

tiling, then includes 1 and 0 as the (d+ 1)th element in the tuples of each element of A and

B respectively. Now, for our inductive hypothesis relative to z, suppose the claim holds for

the subsets of A and B that tile exactly the elements of C1 × C2 × . . . × Cd × [z − 1] for

z ≤ nd+1. We wish to prove this holds for C1 × C2 × . . .× Cd × z.

72

Let A′ be the elements of A in C1 × C2 × . . . × Cd × 1. As (1, . . . , 1, z) must be tiled,

this must either be because (1, . . . , 1, z) ∈ A or (1, . . . , 1, z) is covered by a translation of an

element of A in C1 × C2 × . . .× Cd × [z − 1]. First, suppose (1, . . . , 1, z) ∈ A. Let B∗ ⊂ B

be such that

A′ +B∗ = C1 × C2 × . . .× Cd × 1

and let b′ = (y1, . . . , yd+1) for yd+1 ∈ [z − 1] be an element of B that translates an element

of A∩ (C1×C2× . . .×Cd× [z− 1]) to C1×C2× . . .×Cd× z. For now, let us assume that

yd+1 = z − 1. By our inductive hypothesis on d, we have that either |A ∩ (B +m)| = 1 or

|C∩(B+m)| < |B+m| for m ∈ Zd. Thus, it follows that |((1, . . . , 1, z)+B∗)∩(A′+b′)| = 1

or |C ∩ A′ + b′| < |A′ + b′| which implies that C1 × C2 × . . . × Cd × z cannot be tiled by

elements of A′ if it (1, . . . , 1, z) ∈ A. Notice then that this together with our inductive

hypothesis on z implies that, for k ∈ [z − 1], A ∩ (C1 × C2 × . . . × Cd × k) = ∅, or that

A∩(C1×C2×. . .×Cd×k) = A′. This observation then allows us to circle back and inductively

remove the restriction that yd+1 = z − 1 from the prior argument. Taken together, these

restrictions turn the case of tiling C1 × C2 × . . .× Cd × z when (1, . . . , 1, z) ∈ A into tiling

a d-dimensional space with �xed B∗, at which point we can apply the inductive hypothesis

d to conclude that the claim holds.

The argument for the case of (1, . . . , 1, z) ̸∈ A proceeds similarly, so we merely outline

the di�erences at a high level. To cover (1, . . . , 1, z), it follows that there exists a b′ such that

(A∩(C1×C2×. . .×Cd×k))+b′ = (A′+(0, . . . , 0, k−1))+b′ covers (1, . . . , 1, z). Adding any

element a′ ∈ C1×C2×. . .×Cd×z to A then creates an issue, as a′ = (1, . . . , 1, z)+m for some

m such that projd+1(m) = 0. At this point we treat (A∩ (C1×C2× . . .×Cd× k)) + b′ and

a′+B∗ as A and B respectively from the statement that, form ∈ Zd, either |A∩(B+m)| = 1

or |C ∩ (B +m)| < |B +m|.

Lemma 18 can then be leveraged to prove that max
α,C

[|T (α,C)|] is maximal when d = 1

73

Lemma 19. Let C = [x1]× [x2]× . . . [xd] for x1, . . . , xd ∈ Z+ and C ′ = [n] for n = |C|. It

follows that

max
α,C

[|T (α,C)|] ≤ max
α′,C ′

[|T (α′, C ′)|].

Proof. Recall that we use [a] for the set of integers 1 through a and [a, b] for the set of

integers from a to b (inclusive of a and b). We give a mapping from any (A,B) ∈ T (α,C)

to a distinct (A′, B′) ∈ T (α′, C ′). We know by Lemma 18 that
∏
i∈[d] |proji(A)| = |A|. We

de�ne A′ in terms of A by specifying the elements of

A′ ∩
[∏
i∈[k]

xi

]

inductively with respect to k with k ≤ d. For k = 1, we let A′ ∩ [x1] = proji(A). Suppose

that the elements of

A′ ∩
[∏
i∈[k′]

xi

]
are de�ned for all k′ < k and that 1 < k. Then we de�ne the elements of

A′ ∩
[∏
i∈[k−1]

xi,
∏
i∈[k]

xi

]

by ⋃
z∈projk(A)

((
A′ ∩

[∏
i∈k−1

xi

])
+ (z − 1)

)
.

We can prove by induction on d that there exists a B′ such (A′, B′). For d = 1, we have

that C = C ′ and (A,B) = (A′, B′). Suppose the lemma holds up to d− 1. Then in the case

of d, our de�nition of A′ from A as well as the fact that

∏
i∈[d]
|proji(A)| = |A|,

74

we have that |A| = |A′|. Consider C ′ condensed into xd meta-points of size

∏
i∈[d−1]

xi

each. We know by the inductive hypothesis that there exists a B∗ ⊂ B′ such that A′+B∗ tiles

exactly each meta-point with at least one element of A′. This tiles exactly the meta-points

indexed by elements of projd(A). By Lemma 18, projd(A) is such that (projd(A), B
′) ∈

T (|projd(A)|, [xi]) for some B′ and thus, the lemma follows.

Note that one cannot hope to achieve an improvement of Lemma 19 that yields equality

for all α, n and d, as evidenced by the following counterexample.

Corollary 8. Let C = [x1] × [x2] × . . . [xd] for x1, . . . , xd ∈ Z+ and C ′ = [n] for n = |C|.

∃α, n, d ∈ Z+ such that

max
α,C

[|T (α,C)|] < max
α′,C ′

[|T (α′, C ′)|].

Proof. Let α = 2 and C = [3]× [2]. The only valid tiling of C ′ is

({(1, 1), (2, 1)}, {(0, 0), (0, 1), (0, 2)})

where as C ′ = [6] has the tilings T1 = ({1, 2}, {0, 2, 4}) and T2 = ({1, 4}, {0, 1, 2}).

4.3 Tilings for Non-Contiguous C

For all α and n, we hypothesis that C = [n] has at least as many tilings as any α′ and C ′

such that |C ′| = n. More formally, we claim the following

Conjecture 1.

∀α, n, d ∈ Z+,∀C ⊂ Zd
[
(|C| = n) =⇒ |T (α,C)| ≤ |T (α, [n])|

]
.

75

While we are unable to resolve this conjecture, we make some progress towards this by

proving that Conjecture 1 holds when C can tile [n] for some n. We begin by proving

this only for the case of d = 1 in Lemma 20, but we brie�y show how to extend this to

any d in Corollary 11. Before we proceed with Lemma 20, we make two useful structural

claims. Corollary 9 clari�es that the �rst rift in any tiling is the smallest. Corollary 10 is a

structural result about valid tilings of [n] that shows the segments only ever appear as the

�rst ks elements of a meta-point (where meta-points are as de�ned in De�nition 20).

Corollary 9. For any (A,B) ∈ T (α, [n]) with j rifts we have that ∀i ∈ [1, j](|r1| ≤ ri).

Proof. Suppose not, then consider B∗ ⊂ B such that B∗ is the minimum size subset set of B

for which [1, ks + kr] ⊂ A+B∗ holds. We know from Lemma 8 that elements in [1, ks + kr]

must be covered by shifts of elements in s1 by elements in B∗. Let ri be such that |ri| < |r1|,

then si +B∗ ∩ si+1 ̸= ∅, which contradicts our assumption that (A,B) ∈ T (α, [n]).

Corollary 10. For all (A,B) ∈ T (α, [n]), we have that

∃!M ⊂
[
0,

n

(kr/ks) + 1
− 1

](
A =

⋃
m∈M

([1, ks] + {m(ks + kr)})
)
.

Put another way, there is a unique subset of the meta-points of C with respect to A such that

the elements of A are the �rst ks elements of these meta-points.

Proof. Notice that, by the de�nition of ks, it is certainly the case that [1, ks] ⊂ A. As is

shown in the arguments of Lemma 7, the remaining segments of A outside of s1 must begin

at intervals of ks + kr. The upper bound on the interval of which M is a subset then comes

from the fact that an element of A beyond this point would be translated by an element of

B to a value greater than n, making the tiling invalid.

With this, we can now proceed with proving the main lemma of the section.

76

Lemma 20. For any α, α′, n ∈ Z+ and any (A,B) ∈ T (α, [n]), we have that |T (α′, A)| ≤

|T (α′, [α])|.

Proof. We prove the lemma via the following steps:

1. We de�ne a compression function f for taking certain well structured sets of integers

and outputting a new set of integers with larger groups of contiguous elements (i.e.

larger segment size).

2. We de�ne an injective function g1 that maps any (A,B) ∈ T (α, [n]) such that A has

at least one rift, to some (A′, B′) ∈ T (α, [n/(kr/ks) + 1)]).

3. We de�ne an injective function g2 that maps any (A,B) ∈ T (α′, A) to some (A′,B′) ∈

T (α′, [A′]).

4. We an injective function g3 thats maps any (A,B) ∈ (T (α′, A) to an element of

T (α′, [α]), where g3 simply applies g2 to (A,B) a number of times based upon g(A,B)

for (A,B) ∈ T (α, [n]).

De�ne the function f(A,C), where there exists a B such that (A,B) ∈ T (α,C), to be such

that

f(A,C) = {a− ks⌊a/(ks + kr)⌋ : a ∈ A)|}.

Note that, while C is not explicitly mentioned on the right hand side of the equality, it is

implicit by the use ks and kr and thus, C is in fact required in the input for the function to

be well de�ned. Let C be a �nite contiguous set of integers. By corollary 9, the intuition

as to the e�ect of f is that it takes the �rst ks elements of A from each meta-point of C

with respect to A and makes them contiguous by removing elements besides the �rst ks of

each meta-point, followed by �shifting" those remaining appropriately (which formalize in a

moment).

77

Before de�ning g1 and g2, we de�ne B̃ to be such that

B̃ =
{
bi ∈ B : i = 1 mod

kr
ks

+ 1
}
.

By corollary 10, B is de�ned in such a way that the elements of A + B̃ cover exactly the

�rst ks elements of each meta-point of [n] with respect to A. More formally, we have that

(A, B̃) ∈ T

(
α,

⋃
m∈[0, n

(kr/ks)+1
−1]

([1, ks] + {m(ks + kr)})

)
.

We can now de�ne both g1 and g2. Let g1(A,B) = (f(A, [n]), f(B̃, [0, n − 1]) = (A′, B′).

By Corollary 10, this transformation is such that |A′| = |A| and |B′| = |B̃| = ks|B|/kr.

This compression of the element of both A and B̃ leads to A′ and B′ such that (A′, B′) ∈

T (α, [n/(kr/ks) + 1)]). Similarly we de�ne g′(A,B) = (f(A, [n]), f(B, [0, n− 1]) = (A′,B′).

In the case of g2, we now have that |A′| = |A| and |B′| = |B|. Further, We have that

(A′,B′) ∈ T (α′, A′) where α′ = |A|.

We now de�ne g3 from g2, using g1 to show its correctness. Suppose A has ℓ distinct

lengths of rift. Certainly, ℓ is �nite and less than or equal to the total number of rifts in

A. Notice though that applying g1 to (A,B) results in an (A′, B′) with one less distinct

rift length. Thus, it follows that gℓ1(A,B) = ([α], {0}). Knowing this, observe that we can

then apply g2 the same number of times (i.e. ℓ times) to (A,B) ∈ T (α′, A), giving us

gℓ2(A,B) = (A′,B′) such that A′+B′ = [α]. Thus, we de�ne g3 to be g
ℓ
2(A,B) where ℓ is the

number of rifts in A+B. As g2 is injective, it follows that distinct tilings (A,B) ∈ T (α′, A)

map to distinct elements of T (α′, [α]) by g3. Thus, the lemma follows.

We now generalize Lemma 20 to arbitrary dimension.

Corollary 11. Let C = C1 × C2 × . . . × Cd for Ci such that Ci = [ni] for some ni ∈ Z+.

78

For all (A,B) ∈ |T ((α1, α2, . . . , αd), C)| and any set of α′i ∈ Z+ for all i, we have that

|T ((α′1, α
′
2, . . . , α

′
d), A)| ≤ |T ((α

′
1, α
′
2, . . . , α

′
d), [α1]× [α2]× . . .× [αd)])|.

Proof. Applying the function g3 as in Lemma 20 to each dimension one at a time injectivley

maps any element of T ((α′1, α
′
2, . . . , α

′
d), A) to an element of T ((α′1, α

′
2, . . . , α

′
d), [α1]× [α2]×

. . .× [αd)]).

79

REFERENCES

[1] I. Benjamini, G. Kozma, and E. Tzalik. The number of tiles of Zd. arXiv preprint
arXiv:2303.07956, 2023.

[2] L. Blackstone, S. Kamara, and T. Moataz. Revisiting leakage abuse attacks. In ISOC
Network and Distributed System Security Symposium � NDSS 2020, San Diego, CA,
USA, Feb. 23�26, 2020. The Internet Society.

[3] O. Bodini and E. Rivals. Tiling an interval of the discrete line. In Annual Symposium
on Combinatorial Pattern Matching, pages 117�128. Springer, 2006.

[4] W. Chang. personal communication with steven skiena and gopalakrishnan sundaram.

[5] M. Cieliebak and S. Eidenbenz. Measurement errors make the partial digest problem
np-hard. In Latin American Symposium on Theoretical Informatics, pages 379�390.
Springer, 2004.

[6] M. Cieliebak, S. Eidenbenz, and P. Penna. Partial digest is hard to solve for erroneous
input data. Theoretical computer science, 349(3):361�381, 2005.

[7] E. M. Coven and A. Meyerowitz. Tiling the integers with translates of one �nite set.
Journal of Algebra, 212(1):161�174, 1999.

[8] I. Demertzis, S. Papadopoulos, O. Papapetrou, A. Deligiannakis, and M. Garofalakis.
Practical private range search revisited. In Proceedings of the 2016 International Con-
ference on Management of Data, pages 185�198, 2016.

[9] F. Falzon, E. A. Markatou, Akshima, D. Cash, A. Rivkin, J. Stern, and R. Tamassia. Full
database reconstruction in two dimensions. In J. Ligatti, X. Ou, J. Katz, and G. Vigna,
editors, ACM CCS 2020: 27th Conference on Computer and Communications Security,
pages 443�460, Virtual Event, USA, Nov. 9�13, 2020. ACM Press.

[10] F. Falzon, E. A. Markatou, Z. Espiritu, and R. Tamassia. Attacks on encrypted range
search schemes in multiple dimensions. Cryptology ePrint Archive, Report 2022/090,
2022. https://eprint.iacr.org/2022/090.

[11] R. Greenfeld and T. Tao. The structure of translational tilings in Zd. Discrete Analysis,
2020.

[12] P. Grubbs, M.-S. Lacharité, B. Minaud, and K. G. Paterson. Pump up the volume:
Practical database reconstruction from volume leakage on range queries. In D. Lie,
M. Mannan, M. Backes, and X. Wang, editors, ACM CCS 2018: 25th Conference
on Computer and Communications Security, pages 315�331, Toronto, ON, Canada,
Oct. 15�19, 2018. ACM Press.

80

https://eprint.iacr.org/2022/090

[13] Z. Gui, O. Johnson, and B. Warinschi. Encrypted databases: New volume attacks
against range queries. In L. Cavallaro, J. Kinder, X. Wang, and J. Katz, editors, ACM
CCS 2019: 26th Conference on Computer and Communications Security, pages 361�
378, London, UK, Nov. 11�15, 2019. ACM Press.

[14] G. H. Hardy, E. M. Wright, et al. An introduction to the theory of numbers. Oxford
University Press, 1979.

[15] J. Karhumaki, Y. Lifshits, and W. Rytter. Tiling periodicity. Discrete Mathematics &
Theoretical Computer Science, 12, 2010.

[16] G. Kellaris, G. Kollios, K. Nissim, and A. O'Neill. Generic attacks on secure outsourced
databases. In E. R. Weippl, S. Katzenbeisser, C. Kruegel, A. C. Myers, and S. Halevi,
editors, ACM CCS 2016: 23rd Conference on Computer and Communications Security,
pages 1329�1340, Vienna, Austria, Oct. 24�28, 2016. ACM Press.

[17] M. N. Kolountzakis and M. Matolcsi. Algorithms for translational tiling. Journal of
Mathematics and Music, 3(2):85�97, 2009.

[18] E. M. Kornaropoulos, N. Moyer, C. Papamanthou, and A. Psomas. Leakage inver-
sion: Towards quantifying privacy in searchable encryption. In H. Yin, A. Stavrou,
C. Cremers, and E. Shi, editors, ACM CCS 2022: 29th Conference on Computer and
Communications Security, pages 1829�1842, Los Angeles, CA, USA, Nov. 7�11, 2022.
ACM Press.

[19] E. M. Kornaropoulos, C. Papamanthou, and R. Tamassia. Response-hiding encrypted
ranges: Revisiting security via parametrized leakage-abuse attacks. In 2021 IEEE Sym-
posium on Security and Privacy, pages 1502�1519, San Francisco, CA, USA, May 24�27,
2021. IEEE Computer Society Press.

[20] J. C. Lagarias and Y. Wang. Tiling the line with translates of one tile. Inventiones
Mathematicae, 124(1):341�365, 1996.

[21] P. Lemke and M. Werman. On the complexity of inverting the autocorrelation function
of a �nite integer sequence, and the problem of locating n points on a line, given the (n
atop 2t) unlabelled distances between them. 1988.

[22] A. L. Patterson. A fourier series method for the determination of the components of
interatomic distances in crystals. Physical Review, 46(5):372, 1934.

[23] A. L. Patterson. A direct method for the determination of the components of interatomic
distances in crystals. Zeitschrift für Kristallographie-Crystalline Materials, 90(1-6):517�
542, 1935.

[24] S. Pedersen and Y. Wang. Universal spectra, universal tiling sets and the spectral set
conjecture. Mathematica Scandinavica, pages 246�256, 2001.

[25] E. Rivals. Counting the tiles of an interval of the discrete line. 2007.

81

[26] J. Rosenblatt and P. D. Seymour. The structure of homometric sets. SIAM Journal on
Algebraic Discrete Methods, 3(3):343�350, 1982.

[27] S. S. Skiena, W. D. Smith, and P. Lemke. Reconstructing sets from interpoint distances.
In Proceedings of the sixth annual symposium on Computational geometry, pages 332�
339, 1990.

[28] S. S. Skiena and G. Sundaram. A partial digest approach to restriction site mapping.
Bulletin of Mathematical Biology, 56:275�294, 1994.

[29] N. Sloane. The on-line encyclopedia of integer sequences, 1964.

[30] M. Ste�k. Inferring dna structures from segmentation data. Arti�cial Intelligence,
11(1-2):85�114, 1978.

[31] J. Stern. On the number of distinct tilings of �nite subsets of Zd. arXiv preprint
arXiv:2303.06717, 2023.

[32] M. Szegedy. Algorithms to tile the in�nite grid with �nite clusters. In Proceedings 39th
Annual Symposium on Foundations of Computer Science, pages 137�145. IEEE, 1998.

[33] R. Tijdeman. Decomposition of the integers as a direct sum of two subsets, page 261�276.
London Mathematical Society Lecture Note Series. Cambridge University Press, 1995.

[34] S. Wang, R. Poddar, J. Lu, and R. A. Popa. Practical volume-based attacks on
encrypted databases. Cryptology ePrint Archive, Report 2019/1224, 2019. https:

//eprint.iacr.org/2019/1224.

[35] Z. Zhang. An exponential example for a partial digest mapping algorithm. Journal of
Computational Biology, 1(3):235�239, 1994.

82

https://eprint.iacr.org/2019/1224
https://eprint.iacr.org/2019/1224

APPENDIX

83

Algorithm 1 Turnpike via Backtracking

TurnpikeBT(Vols):

Input: The multiset Vols.
Output: A database DB′ such that, if Vols is the multiset volume leakage of some database
DB, then TurnpikeBT is a successful multiset volume-based reconstruction attack. Other-
wise, reject.

1: Run Intialize(Vols)
2: if Intialize(Vols) rejects then
3: Halt and reject

4: path := ()
5: d := 3
6: while d ≤ N do

7: Run Right(B, d,Vols)
8: if Right(B, d,Vols) outputs �backtrack" then
9: while Last element of path is L do

10: pop(path)
11: Return elements from Vd to Vols

12: Set corresponding elements of B to −1
13: d−−
14: if d = 2 then
15: reject

16: while Last element of path is R do

17: Run Left(B, d,Vols)
18: if Left(B, d,Vols) outputs �backtrack" then
19: pop(path)
20: Return elements from Vd to Vols

21: Set corresponding elements of B to −1
22: d−−
23: if d = 2 then
24: reject

25: Append L to path

26: Update B, Vd, and Vols according to Left(B, d,Vols)
27: else

28: Append R to path

29: Update B, Vd, and Vols according to Right(B, d,Vols)

Figure A.1: Standard Backtracking Algorithm for the Turnpike problem [27].

84

Algorithm 2 Backtracking Initialization

Intialize(Vols):

Input: The multiset Vols.
Output: The multiset Vols and initializations for B and N . If Vols is of the wrong size or
initial volume placements fail reject.

1: N := ⌈
√

2|Vols|⌉
2: if |Vols| ≠

(N
2

)
+N then

3: reject

4: i := 2
5: j := 1
6: while i ≤ N do

7: while j ≤ i do
8: (i, j)B := −1
9: j ++

10: j := 1
11: i++

12: (1, 1)B = max[Vols]
13: Vols := Vols \ {max[Vols]}
14: (2, 2)B = max(Vols)
15: Vols := Vols \ {max[Vols]}
16: if (1, 1)B − (2, 2)B ∈ Vols then

17: (n, 1)B := (1, 1)B − (2, 2)B
18: Vols := Vols \ {(1, 1)B − (2, 2)B}
19: else

20: Halt and reject

Figure A.2: Turnpike Backtracking Algorithm Initialization Procedure

85

Algorithm 3 Adding Volume to the Right

Right(B, d,Vols):

Input: The backtracking pyramid B, depth d, and set of remaining volumes Vols.
Output: (B, Vd,Vols) or backtrack if this path was incorrect.

1: i := min[{k : (k, k)B = −1}]
2: (i, i)B := max[Vols]
3: Vd := max[Vols]
4: j := i
5: i−−
6: while 2 ≥ i do
7: if (i, i)B − (j, j)B ∈ Vols then

8: (n+ i+ 1− j, i)B := (i, i)B − (j, j)B
9: Vd := Vd ∪ {(i, i)B − (j, j)B}
10: Vols := Vols \ {(i, i)B − (j, j)B}
11: i−−
12: else

13: backtrack

Figure A.3: Right Branch Procedure of Turnpike Backtracking Algorithm

86

Algorithm 4 Adding Volume to the Right

Left(B, d,Vols):

Input: The backtracking pyramid B, depth d, and set of remaining volumes Vols.
Output: (B, Vd,Vols) or backtrack if this path was incorrect.

1: i := min[{k : (k, 1)B = −1}]
2: (i, 1)B := max[Vols]
3: Vd := max[Vols]
4: j := i
5: i−−
6: while 2 ≥ i do
7: if (i, 1)B − (j, 1)B ∈ Vols then

8: (n+ i+ 1− j, n+ i+ 1− j)B := (i, 1)B − (j, 1)B
9: Vd := Vd ∪ {(i, 1)B − (j, 1)B}
10: Vols := Vols \ {(i, 1)B − (j, 1)B}
11: i−−
12: else

13: backtrack

Figure A.4: Left Branch Procedure of Turnpike Backtracking Algorithm

87

Algorithm 5 Noisy Reconstruction from Volume Multiset

NoisyReconstruction(Vols, [a, b]):

Input: The multiset Vols.
Output: A backtracking pyramid B if Vols is constant with the noisy multiset volume
leakage of some database DB. Otherwise, reject.

1: N := ⌈
√

2|Vols|⌉
2: if |Vols| ≠

(N
2

)
+N then

3: reject

4: i := 2
5: j := 1
6: while i ≤ N do

7: while j ≤ i do
8: (i, j)B := −1
9: j ++

10: j := 1
11: i++

12: Run Setup(Vols, [a, b])
13: (1, 1)B = max[V]
14: V := V \ {max[V]}
15: path := ()
16: d := 2

Figure A.5: Algorithm for database reconstruction from noisy volume multiset leakage. Part
1 of 2.

88

17: while d ≤ N do

18: a := min[{k : (k, k)B = −1}]
19: Set i to be the bottom row of I
20: Set j to be the max integer such that (i, j)I is not restricted
21: Run IBT ([x, y](i,j), [a, a], B, I)

22: if IBT ([x, y](i,j), [a, a], , B, I) outputs �Backtrack" when running R then

23: while Last element of path is L do

24: pop(path)
25: Undo one execution of IBT
26: d−−
27: if d = 2 then
28: reject

29: while Last element of path is R do

30: a := min[{k : (k, 1)B = −1}]
31: Set i to be the bottom row of I
32: Set j to be the max integer such that (i, j)I is not restricted
33: Run IBT ([x, y](i,j), [a, 1], B, I)

34: if IBT (max[V], [a, 1], B, I) outputs �backtrack" when running R then

35: pop(path)
36: Undo one execution of IBT
37: d−−
38: if d = 2 then
39: reject

40: Append L to path

41: else

42: Append R to path

43: Output (B, I)

Figure A.6: Algorithm for database reconstruction from noisy volume multiset leakage. Part
2 of 2.

89

Algorithm 6 Setup

Setup(Vols, [a, b]):

Input: Noisy multiset volume leakage Vols and an interval [a, b] from which the additive
noise is drawn.
Output: A multiset of volume intervals V and an interval pyramid I of 4-tuples.

1: V := ∅
2: Initialize I as n empty pyramid with M rows
3: for all {x ∈ [|Vols|]} do
4: V := V ∪ [min[0, x+ a],min[0, x+ b]]

5: Let u equal the number of unique elements in V
6: for all j ≤ u do
7: for all i ≤ j do
8: Set x equal to jth smallest min element of an interval in V
9: Set y equal to ith largest max element of an interval in V
10: Set z equal to number of intervals in V that are sub-intervals of [x, y]
11: Set (i, j)I (i.e. row i column j of I) to ([x, y], z, 0, {{}})
12: Output I

Figure A.7: Setup procedure for noisy database reconstruction algorithm.

90

Algorithm 7 Backtracking

IBT ([x, y], [a, b], B, I):

Input: Assigned volume interval [x, y], the position [a, b]B to assign it to, the backtracking
pyramid B, and the interval pyramid I.
Output: Updated B and I based on assignment and associated implications.

1: (i, j) := min{i, j ∈ [N]|[x, y] ⊂ [x′, y′](i,j) ∧ Restricted((i, j)I) = 0} ▷ Find correct
bucket

2: (a, b)B := [x, y]
3: (i, j)I := (i, j)I ∪ [x, y] ▷ Add to bucket
4: Run C((i, j)) ▷ Update counters
5: if b = 1 then ▷ Implication if placed on left
6: (N + 2− a,N + 2− a)B := IntAbs((1, 1)B , (a, 1)B)
7: if There is a unique (i, j) such that (N + 2 − a,N + 2 − a)B ⊂ [x′, y′](i,j) ∧

Restricted((i, j)I) = 0 and i is maximized then
8: Set (i, j) to this value
9: else

10: Set h to height of I
11: i := min{i ∈ [N−1]|(N+2−a,N+2−a)B ⊂ [x′, y′](h,i)∧Restricted((h, i)I) = 0}
12: j := max{i ∈ [N−1]|(N+2−a,N+2−a)B ⊂ [x′, y′](h,j)∧Restricted((h, j)I) = 0}
13: (i, j)I := (i, j)I ∪ (N + 2− a,N + 2− a)B
14: Run C((i, j), B, I)
15: for all (a′, 1) ∈ {(a′, 1)|(a′ ̸= a) ∧ ((a′, 1)B ̸= ∅)} do ▷ Compute implications
16: (N +1−|a−a′|, N +2−max{a, a′})B := IntAbs((a, 1)B , (a

′, 1)B)∩ IntAbs((N +
2−max{a, a′}, N + 2−max{a, a′})B , (N + 2−min{a, a′}, N + 2−min{a, a′})B)

Figure A.8: Core interval backtracking procedure for noisy database reconstruction algo-
rithm. Part 1 of 2.

91

17: if b = a then ▷ Implication if place on right. Works just as left
18: (N + 2− a, 1)B := IntAbs((1, 1)B , (a, a)B)
19: if There is a unique (i, j) such that (N+2−a, 1)B ⊂ [x′, y′](i,j)∧Restricted((i, j)I) =

0 and i is maximized then
20: Set (i, j) to this value
21: else

22: Set h to height of I
23: i := min{i ∈ [N − 1]|(N + 2− a, 1)B ⊂ [x′, y′](h,i) ∧ Restricted((h, i)I) = 0}
24: j := max{i ∈ [N − 1]|(N + 2− a, 1)B ⊂ [x′, y′](h,j) ∧ Restricted((h, j)I) = 0}
25: (i, j)I := (i, j)I ∪ (N + 2− a, 1)B
26: Run C((i, j), B, I)
27: for all (a′, a′) ∈ {(a′, a′)|(a′ ̸= a) ∧ ((a′, a′)B ̸= ∅)} do
28: (N + 1 − |a − a′|,max{a, a′})B := IntAbs((a, a)B , (a

′, a′)B) ∩ IntAbs((N + 2 −
max{a, a′}, 1)B , (N + 2−min{a, a′}, 1)B)

Figure A.9: Core interval backtracking procedure for noisy database reconstruction algo-
rithm. Part 2 of 2.

92

Algorithm 8 Counter Update

C((i, j), B, I):

Input: The index of I such that a volume interval was just added to the bucket (i, j)I . The
backtracking pyramid B and the interval pyramid I.
Output: I (with updated counters and restrictions of its elements).

1: Z := ∅
2: for all {i′|0 ≤ i′ ≤ i} do ▷ Reduce each superset's counter by 1
3: for all {j′|max{1, j + i′ − i} ≤ j′ ≤ min{i',j}} do
4: if (i′, j′)c > 0 then
5: (i′, j′)c −−
6: if (i′, j′)c = 0 then
7: Z := Z ∪ (i′, j′)

8: else

9: Backtrack
10: if Z ̸= ∅ then
11: Run R(I, Z)
12: Update I based on execution of R(I, Z)

Figure A.10: Main counter update sub-routine for noisy database reconstruction algorithm.
Used when placing intervals into the backtracking pyramid.

93

Algorithm 9 Counter Update Bucket Move

C ′((i, j), (i′, j′), B, I):

Input: The index (i, j) such that a volume interval was just moved to (i, j)I during a
restriction update. The index (i′, j′) of the such that this volume was just removed from
(i′, j′)I . The backtracking pyramid B and the interval pyramid I.
Output: An update to counters in I.

1: Z := ∅
2: if j = j′ then ▷ If new bucket is left of original
3: for all {z|i′ + 2− j′ ≤ z < i} do ▷ Reduce each superset of (i, j) counter by 1
4: for all {w|i′ − j′ < z − w ≤ i′ − j′} do ▷ Ignore supersets of (i′, j′)
5: if (z, w)c > 0 then
6: (z, w)c −−
7: if (z, w)c > 0 then
8: Z := Z ∪ (z, w)

9: else

10: Backtrack
11: else ▷ If new bucket is right of original
12: for all {z|j′ + 1 ≤ z < i} do ▷ Reduce each superset of (i, j) counter by 1
13: for all {w|j′ < w ≤ j′} do ▷ Ignore supersets of (i′, j′)
14: if (z, w)c > 0 then
15: (z, w)c −−
16: if (z, w)c > 0 then
17: Z := Z ∪ (z, w)

18: else

19: Backtrack
20: if Z ̸= ∅ then
21: R(Z,B, I)

Figure A.11: Counter update sub-routine for noisy database reconstruction algorithm. Used
when updating intervals.

94

Algorithm 10 Restriction Update

R(Z,B, I):

Input: Set of buckets in I to restrict Z, the backtracking pyramid B, and the interval
pyramid I.
Output: An update to I with restrictions to buckets, changes to their elements and associ-
ated updates to counters, as well as the backtracking pyramid B, and the interval pyramid
I.

1: ℓ := min[
⋃
j∈[|V ′|]{(|V ′|, j)|(|V ′|, j)c ̸= 0}]

2: u := max[
⋃
j∈[|V ′|]{(|V ′|, j)|(|V ′|, j)c ̸= 0}]

3: for all (i, j) ∈ Z do

4: k := 0
5: while k < j do
6: Res

(
(|V ′| − k, j − k)I

)
:= 1 ▷ Restrict all up and left

7: if (|V ′| − k, j − k)I ̸= ∅ then
8: z := 1
9: while z ≤ k do
10: if Res

(
(|V ′| − k + z, j − k)I

)
:= 0 then ▷ Find valid new bucket

11: for all [x, y] ∈ (|V ′| − k, j − k)I do
12: (|V ′| − k + z, j − k)I := (|V ′| − k + z, j − k)I ∪ {[x, y] ∩

[x′, y′](|V ′|−k+z,j−k)} ▷ Move elements down left

13: C ′((|V ′| − k, j − k), (|V ′| − k + z, j − k), B, I) ▷ Adjust new
bucket's counter

14: Run Optimize(B, I, (a, b)) (where (a, b) ∈ B pointed to by [x, y])

15: (|V ′| − k, j − k)I := ∅
16: Break While

17: else if z = k then
18: Backtrack
19: else

20: z ++

21: k ++

22: k := 0

Figure A.12: Sub-routine for managing restriction of elements in the interval pyramid of
noisy database reconstruction algorithm. Part 1 of 2.

95

23: while k < |V ′| − j do
24: Res

(
(|V ′| − k, j)I

)
:= 1 ▷ Restrict all up and right

25: if (|V ′| − k, j)I ̸= ∅ then
26: z := 1
27: while z ≤ k do
28: if Res

(
|V ′| − k + z, j + z

)
I) := 0 then ▷ Find valid new bucket

29: for all [x, y] ∈ (|V ′| − k, j)I do
30: (|V ′| − k + z, j + z)I := (|V ′| − k + z, j + z)I ∪ {[x, y] ∩

[x′, y′](|V ′|−k+z,j+z)} ▷ Move elements down right

31: C ′((|V ′| − k, j), (|V ′| − k + z, j + z), B, I) ▷ Adjust new bucket's
counter

32: Run Optimize(a, b) (where (a, b) ∈ B pointed to by [x, y])

33: (|V ′| − k, j + z)I := ∅
34: Break While

35: else if z = k then ▷ No valid bucket for element move
36: Backtrack
37: else

38: z ++

39: k ++

Figure A.13: Sub-routine for managing restriction of elements in the interval pyramid of
noisy database reconstruction algorithm. Part 2 of 2.

96

Algorithm 11 Interval Optimization

Optimize(B, I, (a, b)):

Input: The backtracking pyramid B, interval pyramid I, and position (a, b) in backtracking
pyramid B to be updated.
Output: Updated B and I based on assignment and associated implications.

1: for all (a′, b′) ∈ {(a+k, b+k)|k ∈ [1− b,N −a] \{0}} do ▷ Updates along one diagonal
2: (N + 1 − |a − a′|,max{a, a′})B := (N + 1 − |a − a′|,max{a, a′})B ∩

IntAbs((a, b)B , (a
′, b′)B)

3: if (N + 1− |a− a′|,max{a, a′})B ̸= IntAbs((a, b)B , (a
′, b′)B) then

4: Let (i′, j′)I be the bucket of (N + 1− |a− a′|,max{a, a′})B
5: if There is a unique (i, j) s.t. (N + 1 − |a − a′|,max{a, a′})B ⊂ [x, y]i,j and

Restricted((i, j)I) = 0 that maximizes i then
6: Set (i, j) to this value
7: else

8: Set h to height of I
9: i := min{i ∈ [N]|((N, k)B ⊂ [x′, y′](h,i)) ∧ Restricted((h, i)I) = 0}
10: j := max{j ∈ [N]|((N, k)B ⊂ [x′, y′](h,j)) ∧ Restricted((h, j)I) = 0}
11: Run C ′((i, j), (i′, j′))

12: Run Optimize(B, I, (N + 1− |a− a′|,max{a, a′}))
13: for all (a′, b) ∈ {(a+ k, b)|k ∈ [b− a,N − a] \ {0}} do ▷ Updates along other diagonal
14: (N + 1 − |a − a′|, b + |max{a, a′} − (N + 1 − |a − a′|)|)B := (N + 1 − |a − a′|, b +
|max{a, a′} − (N + 1− |a− a′|)|)B ∩ IntAbs((a, b)B , (a′, b)B)

15: if (N +1− |a− a′|, b+ |max{a, a′}− (N +1− |a− a′|)|)B ̸= IntAbs((a, b)B , (a
′, b)B)

then

16: Let (i′, j′)I be the bucket of (N+1−|a−a′|, b+ |max{a, a′}−(N+1−|a−a′|)|)B
17: if There is a unique (i, j) s.t. (N+1−|a−a′|, b+|max{a, a′}−(N+1−|a−a′|)|)B ⊂

[x, y]i,j and Restricted((i, j)I) = 0 that maximizes i then
18: Set (i, j) to this value
19: else

20: Set h to height of I
21: i := min{i ∈ [N]|((N, k)B ⊂ [x′, y′](h,i)) ∧ Restricted((h, i)I) = 0}
22: j := max{j ∈ [N]|((N, k)B ⊂ [x′, y′](h,j)) ∧ Restricted((h, j)I) = 0}
23: Run C ′((i, j), (i′, j′))

24: Run Optimize(B, I, (N + 1− |a− a′|, b+ |max{a, a′} − (N + 1− |a− a′|)|))
25: Output B and I

Figure A.14: Intervals optimization Sub-routine of noisy database reconstruction algorithm.

97

Algorithm 12 Noisy DB′ Guess

DBguess(B, I):

Input: A backtracking pyramid B and interval pyramid I output by
NoisyReconstruction(Vols, [a, b]).
Output: A database DB′ = (v′1, . . . , v

′
N).

1: j := 1
2: while k ≤ N do

3: if |[x, y](N,k)B | > 1 then

4: Set (N, k)B to be a uniformly random element in [x, y](N,k)B
5: if There is a unique (i, j) s.t. (N, k)B ⊂ [x′, y′](i,j) and (i, j)c > 0 that maximizes
i then

6: Set (i, j) to this value
7: else

8: Set h to height of I
9: i := min{i ∈ [N]|((N, k)B ⊂ [x′, y′](h,i)) ∧ Restricted((h, i)I) = 0}
10: j := max{j ∈ [N]|((N, k)B ⊂ [x′, y′](h,j)) ∧ Restricted((h, j)I) = 0}
11: Set (i′, j′) such that (N, j)B is in (i′, j′)I
12: Move (N, k)B out of (i′, j′)I and into (i, j)I
13: Run C ′((i, j), (i′, j′)))
14: Run Optimize(B, I, (N, k))
15: Update B and I based on output

16: k ++

17: DB′ := ()
18: k := 1
19: while k ≤ N do

20: vj := (N, k)B
21: Append vk to DB′

22: j ++

23: Output DB′

Figure A.15: Algorithm for extracting a single solution from the output of the noisy database
reconstruction algorithm.

98

Algorithm 13 2d-database Reconstruction

2-DimTurnpikeBT(Vols):

Input: The multiset Vols and (N1, . . . , Nd).
Output: A 2d-database DB′ such that, if Vols is the multiset volume leakage of some
database DB, then 2-DimTurnpikeBT is a successful multiset volume-based reconstruction
attack. Otherwise, reject.

1: if If |Vols| ≠ |N1 ×N2| then
2: Halt and reject

3: Build Bx with entries B(y,(i,j)) for all i ∈ [N1] and j ∈ [i]
4: for all B(y,(i,j)) ∈ Bx
5: B(y,(i,j)) let B(y,(i,j))(a, b) be the element in row a column b and initialize each to −1
6: B(y,(1,1))(1, 1) := max[Vols]

7: for all i ∈ [2, N1] do
8: Set CL

(y,(i,1))
, CR

(y,(i,1))
, CL

(y,(i,i))
, and CR

(y,(i,i))
to 0

9: Choose x or y branch
10: Choose max or min branch
11: if Branch is x and min then

12: Set i to min element of [N1] s.t. B(y,(i,1))(1, 1) = −1
13: B(y,(i,1))(1, 1) := max[Vols]

14: for all i′ ∈ [N1] s.t. B(y,(i′,1))(1, 1) ̸= −1 do do
15: B(y,(N1+1−|i−i′|,N1+2−|i−i′|−min(i,i′))(1, 1) := |B(y,(i,1))(1, 1)−B(y,(i′,1))(1, 1)|
16: if |B(y,(i,1))(1, 1)−B(y,(i′,1))(1, 1)| ∈ Vols then

17: Vols := Vols \ {|B(y,(i,1))(1, 1)−B(y,(i′,1))(1, 1)|}
18: else

19: Backtrack
20: if Vols ̸= ∅ then
21: Return to branch choice on line 9

Figure A.16: 2d-database reconstruction algorithm from multiset volume leakage. Part 1 of
3.

99

22: if Branch is x and max then

23: Set i to min element of [N1] s.t. B(y,(i,i))(1, 1) = −1
24: B(y,(i,i))(1, 1) := max[Vols]

25: for all i′ ∈ [N1] s.t. B(y,(i′,i′))(1, 1) ̸= −1 do
26: B(y,(N1+1−|i−i′|,min(i,i′))(1, 1) := |B(y,(i,i))(1, 1)−B(y,(i′,i′))(1, 1)|
27: if |B(y,(i,i))(1, 1)−B(y,(i′,i′))(1, 1)| ∈ Vols then

28: Vols := Vols \ {|B(y,(i,i))(1, 1)−B(y,(i′,i′))(1, 1)|}
29: else

30: Backtrack
31: if Vols ̸= ∅ then
32: Return to branch choice on line 9
33: if Branch is y and min then

34: Choose (i, j) s.t. i ∈ [N1] and j ∈ {1, i} s.t. either i = j = 1 or s.t. B(y,(i,j))(1, 1) ̸=
−1 and BL

(y,(i,j))
> 0

35: Substitute in 1 for all instances of b and b′ in the following and substitute in L for D

36: if Branch is y and max then

37: Choose (i, j) s.t. i ∈ [N1] and j ∈ {1, i} s.t. either i = j = 1 or s.t. B(y,(i,j))(1, 1) ̸=
−1 and BR

(y,(i,j))
> 0

38: In the following, substitute in a and a′ for all instances of b and b′ respectively
39: In the following, substitute in R for all instances of D

40: if Branch is y then
41: Set a to min element of [N2] s.t. B(y,(i,j))(a, b) = −1
42: B(y,(i,j))(a, b) := max[Vols]

43: Vols := Vols \ {max[Vols]}
44: if j = 1 then
45: Substitute in 1 for all instances of z and z′ in the following and substitute in

N1 + 2− |i− i′| − 2min{i, i′} for t
46: else

47: In the following, substitute in i and i′ for all instances of z and z′ respectively
48: t := 0
49: for all i′ ∈ [N1] \ {i} s.t B(y,(i′,z′))(a, b) ̸= −1 do
50: if |B(y,(i,z))(a, b)−B(y,(i′,z′))(a, b)| ∈ Vols then

51: B(y,(N1+1−|i−i′|,min(i,i′)+t)(a, b) := |B(y,(i,z))(a, b)−B(y,(i′,z′))(a, b)|
52: Vols := Vols \ {|B(y,(i,z))(a, b)−B(y,(i′,z′))(a, b)|}
53: else

54: Backtrack

Figure A.17: 2d-database reconstruction algorithm from multiset volume leakage. Part 2 of
3.

100

55: for all a′ ∈ [N2] \ {a} s.t. B(y,(i,j))(a
′, b′) ̸= −1 do

56: if |BTPy,(i,j)(a, 1)−BTPy,(i,j)(a
′, b′)| ∈ Vols then

57: BTPy,(i,j)(N2+1−|a−a′|, N2+2−|a−a′|−min{a, a′}) := |BTPy,(i,j)(a, b)−
BTPy,(i,j)(a

′, b′)|
58: Vols := Vols \ {|BTPy,(i,j)(a, b)−BTPy,(i,j)(a

′, b′)|}
59: else

60: Backtrack
61: for all i′ ∈ [N1]\{i} s.t B(y,(i′,z′))(N2+1−|a−a′|, N2+2−|a−a′|−min{a, a′}) ̸= −1

do

62: if B(y,(N1+1−|i−i′|,min{i,i′}+t))(N2+1−|a−a′|, N2+2−|a−a′|−min{a, a′}) ∈ Vols

then

63: B(y,(N1+1−|i−i′|,min{i,i′}+t))(N2+1−|a−a′|, N2+2−|a−a′|−min{a, a′}) :=
|B(y,(i,z))(N2 + 1 − |a − a′|, N2 + 2 − |a − a′| − min{a, a′}) − B(y,(i′,z′))(N2 + 1 − |a −
a′|, N2 + 2− |a− a′| −min{a, a′})|

64: Vols := Vols \ {B(y,(N1+1−|i−i′|,min{i,i′}+t))(N2 + 1 − |a − a′|, N2 + 2 − |a −
a′| −min{a, a′})}

65: else

66: Backtrack
67: CD

(y,(i,j))
:= CD

(y,(i+1,j+1))
− 1

68: i++
69: CD

(y,(i,z))
:= CD

(y,(i,z))
− 1

70: if Vols ̸= ∅ then
71: Return to branch choice on line 9

Figure A.18: 2d-database reconstruction algorithm from multiset volume leakage. Part 3 of
3.

101

	List of Figures
	Acknowledgments
	Abstract
	1 Introduction
	1.1 Organization
	1.2 Preliminaries
	1.2.1 Databases
	1.2.2 Volume Leakage

	2 Noisy d-Dimensional Database Reconstruction from Volume Leakage
	2.1 Introduction
	2.1.1 Modified Sets of Queries
	2.1.2 The Turnpike Problem and Equivalent Problems
	2.1.3 Other Prior Work

	2.2 Volume-based Reconstruction in 1-Dimension
	2.2.1 Application of Turnpike Results to Database Reconstruction
	2.2.2 Backtracking Algorithm

	2.3 Noisy Volume-based Reconstruction in 1 Dimension
	2.3.1 Algorithm for Noisy Multiset Reconstruction Attack

	2.4 Volume-based Reconstruction in Multiple Dimensions
	2.4.1 Attack Overview

	3 Tilings of Contiguous Finite Subsets of Z with Tiles of Fixed Size
	3.1 Introduction
	3.1.1 Characterizations of Tilings
	3.1.2 Counts on the Number of Distinct Tilings
	3.1.3 Upper and Lower Bounds on the Number of Distinct Tilings

	3.2 Definitions
	3.3 Turnpike Reduces to Tiling Multisets
	3.4 Formulas for Enumerating T(,[n])
	3.5 Upper and Lower Bound Calculations

	4 Non-Contiguous Tilings in Higher Dimensions
	4.1 Introduction
	4.1.1 Generalizations to Higher Dimension and Tiling Non-Contiguous Sets
	4.1.2 Prior Work On Tilings of Some Finite Non-Contiguous Multisets

	4.2 Extending to Zd
	4.3 Tilings for Non-Contiguous C

	References
	Appendix

