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ABSTRACT

This dissertation consists of two chapters. The first chapter studies the agglomeration effects
resulting from the forced relocation of 600,000 rural Chinese to compact villages in 1950s
British Malaya. I find that counties receiving more resettlement experienced persistently
higher population densities and a greater share of Chinese, with increased internal migration
over time. These areas saw a shift in employment from agricultural to non-agricultural
sectors. Residents in the more resettled counties had higher incomes, particularly among
local Chinese, while other ethnic groups benefit mainly through entering the non-agricultural
sector. I estimate a spatial general equilibrium model with occupational choice, migration,
and heterogeneous agglomeration forces across sectors and groups, exploiting the resettlement
program as a population shifter. I find substantial barriers to productivity spillovers between
different ethnic groups and a larger external economy for the non-agricultural sector.

In the second chapter, we examine how access to local waterpower delayed the transition
from water to steam power in 19th-century US manufacturing, focusing on early users of
mechanical power: lumber and flour mills. Digitizing Census of Manufactures manuscripts
for 1850-1880, we show that as steam costs declined, manufacturing activity grew faster in
counties with less waterpower potential. This growth was driven by steam powered entrants
and agglomeration, as water powered incumbents faced barriers to switching technologies
primarily from sunk costs. Despite substantial entry and exit, these switching barriers
remained influential for aggregate steam adoption throughout the 19th century, as water
power required lower fixed costs and therefore was attractive to relatively low productivity
entrants. These entrants were later locked-in to water power, even if their productivity grew.
Estimating a dynamic model of firm entry and steam adoption, we find that the interaction
of switching barriers and high fixed costs is a quantitatively important drag on technology

adoption.
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CHAPTER 1
COERCIVE GROWTH: FORCED RESETTLEMENT,
AGGLOMERATION, AND ECONOMIC DEVELOPMENT IN
MALAYSIA

1.1 Introduction

The clustering of people and economic activity can increase productivity through shared
inputs, labor market pooling, and knowledge spillovers. These agglomeration forces—typically
manifested in urban environments—are closely linked to growth and economic development.
Local interactions are fundamental to these benefits. However, in settings with cultural and
social tensions—a reality in many countries—these productive interactions could be impeded.
Knowing the magnitude of these barriers and their economic impact is essential for designing
placed-based and nation-building policies, yet empirical evidence on this is rare.

A major challenge for examining local productivity spillovers across individuals is self
selections—people choosing locations based on unobserved productivity or amenities. For
instance, in the presence of ethnic tensions, the decision by individuals to settle in areas with
a higher concentration of their ethnic group could be due to better location fundamentals,
increased productivity from interacting with local population, or a preference for being close
to others of the same ethnicity. Identifying productivity spillovers within and across ethnic
groups requires separating these various forces.

This paper analyzes an ethnic-based resettlement program during the 1950s Malayan
Emergency in British Malaya, which forcibly relocated 600 thousand rural Chinese into
roughly 500 compact villages. This historical setting offers a rare opportunity to examine
agglomeration forces by sector and the ethnic share in a sector. The ethnic-based forced
resettlement shifted both the population size and ethnic composition across regions, while

limiting self selection. I leverage the program to study its economic consequences by ethnic
1



group over the next 50 years. I develop a spatial general equilibrium model with occupation
and migration choices, while allowing the agglomeration forces to depend on local ethnic share.
I use the resettlement as an exogenous population shifter to identify key model parameters
related to the agglomeration forces.

Chinese settlements in Malaya substantially expanded during the British colonization,
especially after the 19th century, due to the growth of labor-intensive industries of tin
mining and rubber plantation. A large portion of the Chinese immigrants were employed
in these exporting industries and residing in towns or cities, despite agriculture being the
main economic activity throughout the colonial regime. However, there has been a growing
community of rural Chinese living near the forest after the Great Depression due to the
disruption of the tin and rubber industries. The Japanese occupation during 1942-1945
further pushed many Chinese to the forest fringe. These Chinese “squatters”™—who typically
occupied lands without titles—became a security issue in the post-war Malayan Emergency
(1948-1960) as some of them were a source of food and information for the communists.

With the goal of controlling the squatters and cutting off their support to the communists,
the British initiated a large-scale resettlement program (the “Briggs Plan”) that forcibly
relocated the squatters into compact, guarded villages in more accessible areas. By the end
of the Emergency, approximately 600,000 individuals were relocated to around 500-600 New
Villages across Malaya, almost 90% of them were ethnic Chinese. The resettled population
amounted to one-tenth of the total population and one-third of all the Chinese in Malaya.

I exploit knowledge of the program to isolate exogenous variation of the population
distribution caused by the forced resettlement and examine its long-run impacts in the
receiving areas. The policy was implemented in two stages: first, sites were selected for
accommodating the squatters. This process was primarily driven by proximity to main roads
or rivers to ensure better security access, with many similarly suitable locations scattering

along the transportation network. Second, the squatters were relocated to these “New Villages”



in a manner that minimized dislocation.

Guided by this two-stage procedure, I specify counterfactual resettlement in two steps.
First, I randomly permute counterfactual locations of the New Villages along the road
and river network, conditioning on the type of land use and proximity to initial squatter
settlements. Next, I overlay historical maps on land-use pattern, communist activities, and
population settlement to measure the squatter distribution, and use a gravity model to specify
the dislocation-minimizing plan, assuming that the resettlement officers incurred a cost
proportional to the distance over which the squatters were moved. I repeat this permutation
procedure for a thousand times and average the resettlement density in a county, defined
as a function of total number resettled into a county per unit area, to obtain the expected
resettlement density.

The estimation compares areas with varying resettlement density while controlling for the
expected density (Borusyak and Hull, 2023) and other covariates pertaining to initial access to
roads and population distribution. The identifying variation comes from the exact locations
of the New Villages relative to the average location along the major transportation routes,
and deviations from the dislocation-minimizing plan predicted by a gravity model. These
residual variations were driven by wartime security and the British’ limited information on
the squatter distribution, preventing them from fine-tuning the site selection and relocation
process based on unobserved economic factors. I provide supporting evidence that they were
orthogonal to prewar economic conditions.

Indeed, key geographic characteristics, including topography and agricultural suitability,
are balanced across locations of varying residual resettlement density. Important pre-
period characteristics are also balanced, including proximity to public goods and amenities,
population density, shares of land use by main exporting industries, distance to major
industrial facilities, and distance to major towns or cities.

The resettlement substantially altered the population distribution both in the short run



and over a longer horizon. Chinese population in counties with one SD higher resettlement
increased roughly 40% from 1947 to 1957, a mechanical effect of the policy, whereas there was
no change of non-Chinese population in these counties during this period. After the mobility
restriction was lifted in 1960, the more resettled counties attracted additional migrants from
other counties. By 2000, counties with one SD higher resettlement had a 60% increase in
Chinese population and 20% in total population. Overall, areas with higher resettlement
experienced an immediate and sustained rise in the share of Chinese.

These endogenous population changes in the more resettled areas after 1960 can result
from a preference for locating near people in the same ethnic group, but the increase of
non-Chinese over time suggests that it was also driven by changes in the underlying economic
structure. Since the Chinese predominantly employed in the secondary or tertiary industries
during the colonial period, a higher Chinese population thus serves as an skill-biased labor
supply shock that can induce entry of firms that benefit from the local abundance of industrial
human capital.

Indeed, I find that while the more resettled counties experienced a larger overall employment
size, growth of employment in the secondary and tertiary sectors—such as manufacturing,
trade, and services—outweighs that in the primary sector. This is driven both by a higher
presence of Chinese who were more likely to employ outside the agricultural sector and by
the lower share of non-Chinese working in agriculture in these areas.

The lower share of agricultural employment in the resettled areas is consistent with a higher
returns to scale for non-agricultural sectors. Considering that Chinese had a comparative
advantage in non-agricultural works prior to the resettlement, local abundance of Chinese
workers tend to lower the relative wages in non-agricultural industries in the absence of
external economies of scale. That the resettled areas saw a higher employment share in these
industries suggests that local spillovers between workers make them more productive, which

further attracts a larger employment.



Additionally, T find suggestive evidence of knowledge spillovers from Chinese to non-
Chinese entrepreneurs within the manufacturing sector. Counties with higher resettlement
density saw a surge in non-Chinese owned establishments entering industries that initially
employed a higher share of Chinese prior to resettlement. This is consistent with transfers of
industry know-how between Chinese and non-Chinese entrepreneurs.

Besides industry spillovers, I also find evidence of within-ethnicity productivity spillovers,
with a larger Chinese income premium in the more resettled counties. Indicators of household
asset ownership from the Census data in 1980 show that households in the more resettled
areas were more likely to own durable assets—including vehicle, television, refrigerator—and
have higher income, consistent with an agglomeration economy. However, the benefit of the
concentration of Chinese mainly accrues to Chinese households. Non-Chinese households
overall did not earn higher income in the more resettled areas and only those employed in
the non-agricultural sector saw a marginal income gain.

Measures of human capital were also higher in the more resettled areas. I find that in
1980, individuals in these areas had higher educational attainment in years of schooling,
completion rate of primary and secondary education, and the ability to speak English. These
effects are stronger for the Chinese individuals, who showed a much higher completion rate
for secondary education. The education effect shows up only for younger cohorts below age 50
by 1980, a group of people who had not finished their education by the time the resettlement
occurred. I also find better health outcomes for people living in the more resettled areas, as
indicated by a larger birth weight of the first child.

The larger effect of resettlement on human capital and income for Chinese suggests that an
influx of Chinese incurs a different level of productivity externality to local Chinese population
as compared to other ethnic groups, and that the within-group spillovers are stronger than
cross-group spillovers. In fact, cross-group spillovers can even be negative in sectors with a

small external economy. This aligns with anecdotal accounts of tensions between Chinese and



Malays inhibiting interactions and knowledge sharing. Additional barriers, such as language
differences and an ethnically segregated education system, could further isolate the social
networks of different ethnic groups and contribute to reduced sharing of ideas and knowledge
across groups.

The evidence so far provides a qualitative sense of the sign of the spillover elasticities.
However, the effects of resettlement on local wages and population changes includes both the
direct effect of spillover and an indirect effect of occupational choice and migration due to the
general equilibrium channels. For example, an influx of Chinese with industrial human capital
can increase the wage in manufacturing relative to agriculture because of positive productivity
spillovers, thereby attracting more people into manufacturing that further amplifies the
effect. On the other hand, agglomeration raises the average wage of that region and induces
in-migration from other places, which generates even more externality. Therefore, simply
regressing wages on sectoral population can over-estimate the elasticity.

I develop a spatial general equilibrium model with occupation choice and migration, and
one that allows the agglomeration forces to vary by sector and with the ethnic share in a sector.
The model takes as given the initial population distribution right after the resettlement, as
measured by the 1957 census, and generates the equilibrium outcomes in 1980 census.

I identify key model parameters related to the agglomeration forces using the plausibly
exogenous variation of the resettlement as instruments for equilibrium population distribution.
Consistent with the empirical evidence, the model rationalizes the higher manufacturing
employment share in the more resettled areas with a larger external economy for manufacturing
than agriculture. Moreover, I estimate that the elasticity of productivity with respect to the
ethnic share in an industry to be 0.1, implying that within-group spillovers are stronger than
cross-group spillovers.

A rich literature has documented the advantages of density and geographic concentration

of economic activity (Glaeser et al., 1992; Duranton and Puga, 2004; Rosenthal and Strange,



2004; Ahlfeldt et al., 2015; Davis and Dingel, 2019; Heblich et al., 2020; Smith and Kulka,
2023). The positive spillovers have been studied across firms (Greenstone et al., 2010) as
well as individuals (Moretti, 2004b; Ciccone and Peri, 2006). This paper contributes to
the relatively understudied area of spillovers across social groups that exhibit frictions in
interactions, highlighting the uneven benefits from agglomeration that could exacerbate
inequality across groups. One exception is Ananat et al. (2013, 2018), who argue the lower
levels of cross-race social interactions can be an important driver for the increasing black-
white wage gap in city size. My paper contributes by studying a natural experiment that
exogenously changes the ethnic composition of a place, and using a model to quantify the
economic loss due to frictions of cross-group interactions. It also complements works that
document the distributional consequences from agglomeration (Ahlfeldt and Pietrostefani,
2019; Fajgelbaum and Gaubert, 2020).

A burgeoning body of work has attributed stronger productivity spillovers among workers
in specific occupations or industries as an important driver of innovative activities (7). This
paper emphasizes the differential spillovers among people of different demographic or social
backgrounds in an early development context, where industrialization and the increasing
returns of manufacturing plays a crucial role. In addition, allowing ethnic composition to
be part of the amenity of a location, this paper also relates to the literature examining how
local amenities, including residents’ characteristics, shape residential sorting patterns (Bayer
et al., 2004, 2007; Diamond, 2016).

This paper contributes to works on the economic consequences of forced migration and
villagization (Hilhorst and Leeuwen, 2000; Whittaker, 2012; Bazzi et al., 2016; Abel, 2019;
Becker et al., 2020; Carlitz et al., 2022; Peters, 2022; Sarviméki et al., 2022). The nature of
coercive population movement generally leads to welfare loss of the relocated individuals. The
literature has mainly focused on the economic or political consequences of these historical

events and the longer-run impacts on the descendants. The closest work to mine is Peters



(2022), who studies the refugee settlement in postwar Germany and, consistent with the
increasing returns to scale for manufacturing, also finds that the increased population persisted
and spurred industrialization later. My work highlights that the economic consequences on
the receiving areas can vary by local population composition.

Forced villagization has been commonly used in many countries as a development policy (cf.
(Hilhorst and Leeuwen, 2000)) or nation/state-building policy (cf. Whittaker (2012); Carlitz
et al. (2022). The literature has typically found that villagization has either neutral or negative
economic impacts on the villagers, presumably because inter-group conflicts intensified as
people from different social or historical backgrounds were forced to co-locate (Dippel, 2014).
Consistent with my theoretical framework, when the within-ethnicity productivity elasticity is
large enough, the cross-group spillover can even be negative. Another reason that villagization
often fails in the past might be also due to the non-market, economic planning aspect in those
settings, where villagers were forced to grow certain crops required by the government. In
contrast, people in the New Villages after the end of the Emergency were in a market-driven
economy and can choose any productive activity or move out of the village at their will.

There is a large literature on the economic implications of ethnic diversity and conflicts
(Abadie and Gardeazabal, 2003; Alesina and La Ferrara, 2005; Montalvo and Reynal-Querol,
2005; Besley and Mueller, 2012; Rohner and Thoenig, 2021; Eberle et al., 2020). Much
of this literature has been largely descriptive or focused on the economic aftermath of
violent conflicts, overlooking the costs stemming from latent tensions between groups. This
paper underscores that even if the underlying social tensions are not severe enough to cause
violent conflicts, they may still lead to economic losses through lower productivity spillovers.
Relatedly, Ashraf and Galor (2013) show a U-shaped relationship between ethnic diversity
and economic performance across countries, consistent with the idea that diversity can be
beneficial via positive spillovers from knowledge exchange, yet excessive diversity may prove

detrimental due to amplified inter-group frictions and reduced productivity spillovers. My



paper contributes to this strand of work by studying a within-country context and using a
general equilibrium model to quantify the economic loss due to inter-group frictions.

Finally, this paper is related to the literature on Asia’s rapid economic development,
particularly the role of state intervention in the growth experience (Haggard, 1990; Amsden,
1992; Mundial, 1993; Wade, 2004; Dell et al., 2018; Lane, 2022). The higher returns to scale for
manufacturing than agriculture I find suggests that industrial policies that promote structural
change from agriculture to manufacturing, common in many East/Southeast Asian countries,
may spur an economic takeoff with self-reinforcing dynamics stemming from productivity
spillovers. In addition, I estimate from the resettlement of Chinese a higher within-group
productivity spillover, which, if allowed to vary by group, may differ from what one would
obtain from variations of other groups. The positive ethnic-share elasticity indicates that the
productivity spillover for the Chinese is more substantial in sectors or regions dominated by
Chinese. This might be attributed in part to a higher local collective action among Chinese
community due to their historical exposure to centralized state in the theme of Dell et al.
(2018).

The rest of the paper is organized as follows. Section 1.2 discusses the historical context,
and Section 1.3 describes the data. Section 1.5 discusses the empirical strategy and examines
the reduced-form effects of resettlement. Section 2.5 lays out the model, and Section 1.7

discusses the structural estimation. Section 1.8 concludes.

1.2 Historical Context

This section first provides a brief introduction of the historical origins of Chinese in Malaysia.
Next, I will discuss the resettlement of Chinese squatters during the Malayan Emergency

and factors that determine the number of people relocated to which locations.



1.2.1 Chinese in British Malaya

Chinese settlements have been in Malaya since the 16th century and greatly expanded in the
19th century during the British colonization, spurred by new discoveries of tin deposits in
Malaya and the deteriorating economic and political conditions in China.! Most Chinese
immigrants were brought in by labor brokers to work on labor-intensive tin mining and
rubber plantation, the two main exporting industries in the colonial period. The influx of
Chinese labor into Malaya continued to rise until the 1930s when the Malayan government
implemented immigration quotas for male labor and banned direct emigration from China,
after which the population composition in Malaya remained stable, with roughly 50% Malays,
35% Chinese, and 15% Indians and others (Appendix Table 1.9).2

The Chinese and Malays have historically specialized in different industries, with the
former primarily working in mining, rubber plantation, and the industrial/commercial sectors,
and the latter mostly employed in agriculture (Appendix Figure 1.8). Specifically, tin
mining was dominated by the Chinese up to the early 20th century until European mining
companies entered with more advanced technology and out-competed Chinese miners, many
of which then transitioned to rubber growing.?’. Even though British Malaya was still a
predominately agricultural economy, the capital accumulated from tin mining and rubber
plantations allowed some Chinese to venture into commercial banking, manufacturing, and
other secondary /tertiary industries.* In contrast, the Malays mainly specialized in coconut

cultivation and padi rice planting.5

1. Lim (1964, p. 44).
2. Humphrey (1971, p. 34).
3. Humphrey (1971, p. 36), Lee and Tan (2000, pp. 96-98)

4. The secondary industries mainly involved the processing of rubber and tin for export and consumer
goods for the domestic market, such as food processing and pineapple canning (Lee and Tan, 2000, p. 19-20).

5. Ginsburg et al. (1958, p. 244), Lee and Tan (2000, p. 100).
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1.2.2  The Squatter Problem in the Malayan Emergency

Chinese communities were primarily located in urban areas along the west coast or mining
towns within tin-rich states due to their commercial and industrial roles until the 1930s, after
which there had been a growing community in the rural areas near the forest fringe.5 By
the end of World War II, about one third of the Chinese in Malaysia lived near the forest.”.
As these Chinese agriculturalists often occupied lands without formal title—typically forest
reserve lands, state lands, or Malay Reservation lands—the government referred to them as
“squatters.”8

The large squatter population resulted from several factors, most notably shifts in the
mining and rubber industries and the Japanese occupation.? Labor demand for Chinese
workers in tin mining shrank due to increased mechanization, exhaustion of existing tin
deposits, displacement of smaller Chinese miners by European mining companies, and a drop
in prices during the Great Depression.'? The rubber industry also experienced significant
price volatility on the international market, prompting Chinese laborers to revert to food
cultivation. In addition, the Japanese occupation from 1942 to 1945 contributed significantly
to the surge of the squatter population. The British employed a scorched earth policy to
hinder their use by the Japanese during their retreat at the end of 1941, causing widespread
destruction to the industrial sectors and unemployment among Chinese populations. The
ongoing war between Japan and China, along with the Japanese’ imposition of forced labor,

exacerbated the exodus of urban Chinese to rural areas.!!

6. Robinson (1956, p. 76), Sandhu (1964, p. 2), Lee and Tan (2000, p. 96)

7. It was initially estimated to be around 300,000 and was updated in 1952 to around 500,000, which was
further revised post-war to more than 600,000. See The National Archives of the UK (hereafter “TNA”), CO
1022/29, pp. 63, 71-72.

8. TNA: CO 1022/29, p. 71, Humphrey (1971, p. 39).
9. TNA: CO 717/178.

10. Humphrey (1971, p. 43), Loh (1988, pp. 23, 27-29).
11. Humphrey (1971, p. 39, 47), Loh (1988, pp. 57-60).
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The squatters participated in a range of occupations, including fishing, cultivation of food
and cash crops, and livestock rearing. Some undertook commercial farming and became the
primary source of fresh vegetables for urban markets.!2

After the British returned in 1945, they realized the security concern with the squatter
community, especially after the conflicts erupted with communists during the Malayan
Emergency (1948-1960). Many Chinese squatters either sympathized with or directly
participated in the activities of the communists because of the general animosity between
ethnic Chinese and the Japanese, and that the Malayan Communist Party (MCP) was
involved in the previous battle against the Japanese during the occupation.!® Some of the
Chinese squatters were part of the non-military association of the communists that was in
charge of collecting information and supplies.!* The lack of administrative control in the
isolated locations where the squatters resided made it difficult for the British to prevent
the squatters from, voluntarily or forcibly, providing support to the Communists, who were
conducting guerrilla warfare in the jungle.1?

A committee was appointed by the end of 1948 to examine the circumstances and it
concluded that squatters should ideally be settled in areas they were already occupying, and

where this was not feasible, they should be resettled in suitable alternative locations.!6

12. Sandhu (1964, p. 4).

13. The MCP had strong ties to the Malayan Period’s Anti-Japanese Army (MPAJA), a group that
previously fought against the Japanese. After the Japanese invasion, the MCP retreated into the jungle
and built up its fighting force, MPAJA, which was disbanded after the British returned (Sandhu, 1964,
p.- 4). Many of the members of MPAJA later became the fighters of the communist guerrilla in the Malayan
Emergency.

14. The Communist movement comprised two organizations: the fighting forces—Malayan Races Liberation
Army (MRLA)—and the non-military association—Min Yuen (“Masses Movement”)—that primarily provided
information and supplies. See Sandhu (1964, p. 6), Humphrey (1971, p. 63), Loh (1988, p. 121).

15. Humphrey (1971, p. 49), Loh (1988, pp. 106-107).
16. TNA: CO 717/178.
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1.2.3 The Briggs Plan: Emergency Resettlement

The resettlement or squatters was delegated to the state governments but due to the high
cost involved and the limited finance of the states, it was only after General Briggs was
appointed the new Director of Operations in 1950 that the program started to scale up.1”
General Briggs viewed the resettlement—Ilater known as the “Briggs Plan”—as central to
the counterinsurgency strategy and ensured the necessary resources were allocated from the
federal government to the states.

The main objectives of the Briggs Plan were twofold: to create secure, populated areas to
facilitate intelligence gathering; and to cut the Communists’ logistical support by isolating
them and forcing them to eventually attack the British on unfavorable terms.!® The
resettlement was implemented with a focus on speed: starting from the southern states in
June 1950, it moved fast toward the north and was largely completed by the end of 1952.19

The procedure in each state varied to some degree, but typically followed the order of site
selection, land clearing, marking house plots and roads, and issuing removal notice to the
squatters before the actual relocation.?Y Site selection was mainly based on security concerns
which I will discuss in more detail later. After a site was selected, lands had to be cleared for
setting up a “New Village”, often involved cutting down rubber trees as many sites were on
state-owned rubber estates. To prevent escape, the length of notice was usually less than 14

days, and shorter when the perceived risk of escape or resistance was higher.2! After the

relocation, the original settlement was burned down.

17. In early 1950, just prior to Briggs’ arrival, only about 7,000 squatters had been resettled (Loh, 1988,
pp. 123-124).

18. TNA: AIR 20/7777.
19. Sandhu (1964, p. 11), Humphrey (1971, p. 106).
20. TNA: CO 1022/29, p.125.

21. If the target squatters were suspected to have links to the Communists and/or might resist resettlement,
the British military would have appeared at dawn without notice to forcibly resettle them (Humphrey, 1971,
p. 102)
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The relocation was fairly short-range, normally involved a distance of fewer than 15
miles.22 When the distance relocated was larger than 3 miles, the squatters typically had to
abandon their homes, crops, and potentially their previous occupation. For other cases where
the resettlement were close enough to the original settlement, the squatters were concentrated
around a central site that enabled them to maintain their holdings and jobs but required
them to give up their homes unless they were within the new settlement’s perimeter.23

In addition to the general mobility regulation in the so-called “Black Areas”™—high-risk
areas with communists activity that were subject to curfews, food restrictions, and travel
bans—the movement into and out of the resettlement areas was further controlled.?* The
New Villages were encircled by double barbed wire with checks and searches by the police at
the entrance to prevent food smuggling for the communists.2?

By the end of the Emergency, approximately 573,000 individuals were resettled to about
500 New Villages. The resettled population was 86 percent Chinese, 9 percent Malays, and

the remaining 5 percent consisting of Indians and others.

Determinants of Resettlement Density

Understanding why the New Villages were sited in certain areas and, given these sites, what
determines the number resettled in specific locations, is critical for the identification of the
impacts of resettlement. As briefly discussed above, the policy was implemented in two
stages: the sites were first selected and then the squatters were relocated to these sites in a
way that minimized their dislocation. Therefore, the site selection criteria and the initial
distribution of Chinese squatters play a crucial role in determining the variation of population

resettlement.

22. Sandhu (1964, p. 14).

23. Humphrey (1971, p. 27).

24. Corry (1954, pp. 19-20), Nyce (1973, p. 180).

25. Humphrey (1971, p. 358), Humphrey (1971, pp. 118).
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The key principles for the placement of resettlement areas outlined by General Briggs are:
(i) proximity to main transportation routes and distance from elevated observation points
for security reasons; (ii) availability and cost-effectiveness of land; (iii) sustainability and
potential for economic development, factors such as proper terrain for drainage, sufficient
agricultural suitability, and proximity to water sources; (iv) proximity to squatter populations
to minimize dislocation.26 T will discuss these factors in turn.

First, the main objective of the program was security. This led to Chinese squatters being
relocated near major transportation network for ease of police access and away from elevated
observation points for defense purposes.27 In instances where a village had to be situated
away from a main road, an all-weather connecting road was constructed. In more remote
areas lacking major roads, sites were chosen to be in proximity to navigable waterways2.
Indeed, most of the New Villages were situated along the roads or in proximity to a navigable
river (Figure 1.1). For defensibility, resettlement areas should also be more elevated though
the data does not show a meaningful correlation.

Second, there needed to be available lands for squatter settlement. Considering the
land acquisition costs, there was a preference for State lands or lands of little town value if
alienated.?? Indeed, as I will show from the digitized land use map prior to the resettlement,
many New Villages were located on rubber estates, a large number of which were state-owned.
I thus control for land use patterns in the analysis and I will revisit this when discussing the
empirical strategy.

Third, factors for future sustainability was considered, including drainage, agricultural
suitability, and proximity to water sources. The village should ideally be sited on rolling

terrain to promote drainage and prevent flooding. As a large portion of the squatters

26. Humphrey (1971).

27. TNA: CO 717/177, Sandhu (1964), dhu Renick (1965), Humphrey (1971).
28. TNA: CO 717/201, Humphrey (1971)

29. Humphrey (1971).
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were initially vegetable farmers, it was preferable to have high-quality soil and abundant
agricultural land in the vicinity. There should also be sufficient water supply either from
adjacent towns or from wells within the village.30

While information about these economic aspects were meant to be collected through
field surveys prior to resettlement, in practice this was often not feasible due to the security
risks, staff shortages, and urgent situation.?! Numerous cases have shown that economic
considerations were overlooked in favor of security and speed.?2 I will show that geography
related to the productivity of a place, such as ruggedness, agricultural suitability, and
proximity to rivers are balanced once conditional on the transportation network, suggesting
that the colonial government was not able to fine-tune the locations based on economic
considerations.

Finally, the squatters were resettled in a way that minimized their dislocation as much as
possible conditional on meeting the security needs because the closer the distance relocated,
the lower the moving costs and the economic disturbance.?? In practice, the squatters were
relocated to the closest site until the capacity of that site was filled, but due to the lack of
field survey, the British was poorly informed about the squatter distributions during site
selection.?* As a result, if an area had more squatters requiring resettlement than previously
expected, additional squatters would need to be relocated to other sites further away.

As the squatters self-selected to where they were prior to the resettlement and that initial

distribution played an important role in the number resettled into a region, it is crucial to

30. Humphrey (1971).
31. Humphrey (1971).

32. A colonial liaison officer noted that “...a major mistake in site selection was that some sites became
flooded in heavy rains.”—Notes on Planning and Housing Aspects of Resettlement and the Development of
New Villages (Arkib Negara Malaysia, hereafter, “ANM”, 1953).

33. Sandhu (1964), Tsou (2007).

34. A newspaper clip in 1952 wrote: “The Government had only the haziest idea of the numbers [of the
squatters|: it was first believed that there were 318,500, but the total was nearer 500,000.” (TNA: CO
1022/29, p. 63). In fact, by the end of the Emergency, around 600,000 were resettled.
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condition on that in the empirical analysis. I will revisit this in Section 1.4.

1.3 Data

1.3.1 Resettlement Density

I measure counties’ resettlement density—the number of people relocated to a county per
county area, with the inverse hyperbolic sine transformation—as a shifter for population
distribution by the end of the Emergency. The total number of relocated individuals per
county is obtained by adding the populations of each New Village within the county.

I measure the resettled population by village and the location of the village from the
“Corry report” (Corry, 1954), an official 1954 colonial report to the High Commissioner of the
Federation of Malaya. It offers a detailed list of 430 New Villages shortly after the primary
resettlement phase, with the village names and the estimated populations of the Villages.35
Village locations are drawn from Baillargeon (2021), who georeferenced the locations of the
New Villages documented in the Corry report.

I cross-check resettlement figures with a 1959 Malayan Christian Council survey, which
shows consistent village populations for those documented in both sources. It also shows
additional villages compared to the Corry report, suggesting that there were around 150
villages built between 1954 and 1959.

I use the Corry report as my baseline measure of resettled populations as it was an official
report that meant to provide a comprehensive coverage of the early resettlement outcomes
during the Briggs Plan, where speed and security were the top priority. The Corry report
may be less biased compared to the Christian survey, which could have selectively targeted

places based on evangelistic motivations. I assess robustness of the results using the 1959

survey.

35. The report aimed to assess agricultural land sufficiency in the villages, investigate land titles to prevent
unlawful reoccupation, and estimate the number of rural Chinese needing resettlement for security reasons.
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1.3.2  Population Census, 1931-2000

I collected and digitized the tabulated Census of Population of Malaysia at the county level
for the years 1931, 1947, 1957, 1970, 1980, and 2000.36 County (or “Mukim”) is the smallest
administrative unit consistently tabulated over time, where 1931 was the first year that
documents population by county.

To accommodate changes in county boundaries over time, I created time-consistent borders
based on the boundaries in 1947, right before the Emergency, grouping together counties with
overlapping geographies across years. My baseline county boundaries consist of a sample of
777 counties. For panel regressions starting from 1931, I generate another set of 614 grouped
counties based on the 1931 borders.

The tabulated data provides population count by ethnic group—Malays, Chinese, Indians,
and Others—in each county from 1931 to 2000. My main analysis focuses on outcomes
in 1980, where the census report tabulates additional information such as employment by
industry and occupation for each county. The 1980 census also tabulates, at the district
level, population by place of last previous residence for each current residence.3” T use these
bilateral migration flows to estimate migration costs.

I use the 2% microdata from the 1980 census to measure labor market outcomes, asset
ownership, migration status, and educational attainment at the individual or household level.
The microdata allows me to measure key economic outcomes by county-ethnicity, which is
typically not available in the tabulation data. For example, I draw on data regarding the
ownership of various household assets to measure the consumption of durable goods, which

can serve as a proxy for household income.38

36. Unified British Malaya censuses covering the whole British Malaya—including the Straits Settlements,
Federated Malay States, and Unfederated Malay States— began in 1921.

37. Each administrative district contains several counties.

38. If one assumes that durable assets enter the household utility function in a Cobb-Douglas form, these
assets would constitute a fixed share of household income. This implies that consumption on these assets
would scale linearly with household income.
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1.3.3  Other Data Sources

I measure manufacturing activity from the Directory of Manufacturing in 1970, which lists
all registered manufacturing firms in Peninsular Malaysia with a total of around 12,000
establishments.3? It includes the establishments’ name, address, main products and industry,
and employment size. I digitized and georeferenced the establishments to the county using
the provided addresses, and classified the ownership of the establishments into Chinese-owned
and others, exploiting the distinct patterns between Chinese names and other ethnic groups.40

Since the census lacks direct productivity measures like income or wages, I turn to
the Second Malaysian Family Life Survey (MFLS-2) from 1988-1989 for household income
information.4! Using this survey, I estimate a linear model to predict household earnings
and apply the model to the census sample for a more comprehensive coverage of household
income.*2 The model includes district fixed effects, household size, and indicators of various
assets ownership—including automobile, motorcycle, bicycle, phone, refrigerator, and TV—as
well as pairwise interactions of these dummies, with an R squared of 0.34.

In addition to the census data, I also use satellite-based, built-up volumes from the Global
Human Settlement Layer (GHSL) project to measure the persistence effect of resettlement
on population distribution. The built-up volumes are calculated using the surface and height
data at a 100-meter resolution from the Sentinel-2 and Landsat satellite images.

To measure key geographical covariates, I collected and digitized various historical
maps. These include a road and railway map from 1942; a land utilization map from

1943; topographical maps from 1945 showing the locations of buildings by type (e.g., mosques,

39. All establishments are required to register under the Registration of Business Ordinance 1957.

40. Most Malaysian establishments at the time were sole proprietorships or partnerships and were often
named after the owner(s).

41. Conducted by RAND and Malaysia’s National Population and Family Development Board, the survey
offers comprehensive demographic and socioeconomic data on nearly 3,000 households.

42. Although the sample of MFLS-2 is meant to be representative of Peninsular Malaysia, the geographic
coverage is limited with less than 200 counties covered.
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Chinese temples, post offices, and railway stations); and a map from 1945 showing prewar
industrial facilities.*> Additional covariates were sourced from publicly accessible data:
elevation data was obtained from the Shuttle Radar Topography Mission (SRTM) in 2000;
suitability for padi rice, coconut, and palm oil cultivation comes from the Food and Agriculture
Organization’s Global Agro-Ecological Zones (GAEZ) database; and terrain ruggedness is
based on Nunn and Puga (2012).

1.4 Empirical Strategy

In this section, I first discuss how I isolate plausibly exogenous variations from the Briggs Plan
to construct a shifter for population distribution and the identification assumptions. Next,
I discuss the estimation procedure. Lastly, I examine balance of geography and pre-period

characteristics as supporting evidence of the identifying assumptions.

1.4.1  Empirical Specification

The empirical analysis aims to examine whether places that became more densely populated
and ethnically homogeneous due to the Briggs Plan, have experienced a different development
trajectory. The thought experiment compares two initially similar locations, one of which
received greater resettlement density than the other, and examines whether they have
different economic outcomes over time and whether such differences vary by ethnic group.
Reduced form effects at the county level thus encompasses responses from both local residents
and migrants, including those who initially resettled and those who subsequently sorted

endogenously.

43. The road/railway map and industrial facilities map originate from the U.S. Office of Strategic Services
(U.S. Office of Strategic Services, 1942, 1944). The topographical maps are from the HIND 1076 map series
Survey of India Offices (P.Z.0.) (1944), and the land use maps are from the GSGS 4474 series War Office
(1943).
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Consider a reduced-form model of county c as follows.

Y. = BResettle Density. + vX¢ + ec, (1.1)

where Y. includes county population density, population share of Chinese, the (log) number of
manufacturing establishments, employment shares by sector, and average household income.
These outcomes are examined separately for Chinese and non-Chinese populations to inform
the relative strength of productivity spillovers among people of the same ethnicity versus
those across ethnic lines.

The baseline controls X, include state fixed effects, (log) county area, an indicator for
whether a county underwent any resettlement, distance to the coast, pre-period road density,
distance to roads, distance to rail stations, 1947 Chinese population share, and land use
shares for rubber plantation and mining.** T control for the extensive margin of resettlement
to compare only within counties that received some resettlement. This is to account for
potential unobservables that might differ between areas with and without any resettlement.*?
I define county resettlement density from the Briggs Plan, which serves as a population

shifter post resettlement, as the inverse hyperbolic sine of the total number of resettled

population in a county per unit area; i.e.,

ResettleDensity. = asinh (ZZGC Il g%) : (1.2)
areac

where i denotes spatial units (or “sites”) more granular than counties; gq; is an indicator of

whether site 7 is chosen as a resettlement area; go; denotes the number resettled to site ¢; and

44. Tt is assumed without loss of generality that ¢, is orthogonal to X, as one can always project the term
~vX. + €. onto the space of X, to decompose it into two orthogonal terms.

45. In one extreme, counties along the coast were mostly alienated and too populated to be feasible for
resettlement. Areas deep in the jungle were also not feasible for resettlement due to their remoteness and
lack of state capacity. The non-resettled counties were included only to improve efficiency and I show in the
Appendix that results are robust to using only the resettled counties in the analysis.
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area,. denotes the area of county c¢.*6

Based on the historical record summarized in Section 1.2.3, I make two assumptions
about g; = {glz}fisl) and g9 = {gzl}fisl) . First, I assume that the exact locations of the New
Villages are orthogonal to the economic fundamentals or amenities of a place, conditional on
the vector wy = {wll}fisl) which includes distance to the transportation network, land-use
type, and the number of nearby Chinese squatters. This assumption is motivated by the
British objective to resettle squatters near the transportation network and that, given the
urgency of the situation and lack of field survey, the British were unable to fine-tune the
location selection based on other unobserved economic factors.

Second, I assume that the number resettled to a new village is exogenous, given the chosen
locations and the initial distribution of squatters (wg = {wgi}i[g)). This is motivated by the
goal of minimizing dislocation when relocating squatters and the fact that the British were
poorly informed about the spatial distribution of squatters when the sites were selected. For
instance, if the British realized that an area had more squatters with security concerns than
previously expected, the additional squatters would have to be relocated to other nearby
counties as there weren’t sufficiently capacity to accommodate them locally. This generates

idiosyncratic variation of the realized resettlement density.

These assumptions are formalized as follows.
Assumption 1. (Resettlement Exogeneity)

(i) Site selection: g1 L € | wy; that is, conditional on the transportation network, land-use

patterns, and the number of nearby Chinese squatters, the location of a New Village is

considered exogenous.*”

46. Without loss of generality, let sites be small enough that each site contains at most one New Village.
The random variables g;; and go; are not independent since the number of people resettled to site ¢ would be
zero if it is not selected as a resettlement area.

47. A weaker assumption of mean independence between g; and ¢, conditional on w, suffices for identification.
Here, € represents error terms across all counties, denoted as € = {5C}§:(‘;), where C(s) is the number of
counties in state s.
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(ii) Number resettled: go I € | (g1, w2); that is, conditional on the locations of the New
Villages and the initial distribution of Chinese squatters, the number of individuals

resettled to a village is exogenous.

Assumption 1(i) would be violated if, for example, squatters bribed resettlement officers to
influence their final destination. This is less of a concern in this context, as the resettlement
officers were largely British or white Commonwealth citizens who generally lacked trust
towards the squatters due to the difficulty of distinguishing them from the communists.
In addition, historical work documented that corruption among the British civil servants
in Malaya were rare (Humphrey, 1971). Indeed, I will show that there is no meaningful
correlation between resettlement density and desirable geography of a place, nor with pre-
period economic conditions.

Assumption 1(ii) might be problematic if the unobserved communist risk that affected
resettlement density also itself impacted long-term economic outcomes. However, this is
unlikely given the sporadic nature of the communist attacks, which were mainly conducted as
guerrilla warfare in the jungle, whereas most of the economic activities happened in towns or
cities controlled by the British. Anecdotal evidence shows that despite the risk, people were
able to travel and work daily, suggesting that communist activities during the Emergency
were unlikely to influence post-Emergency economic outcomes.*®

Under Assumption 1, the remaining challenge to identifying 5 comes from the fact that
the number resettled to a county depends on the initial layout of transportation network and
Chinese squatter settlement not only within the county, but also other counties in the state.
For example, a county would likely receive more resettled squatters if nearby counties lacked
sufficient roads or suitable sites to accommodate the squatters. This means that two counties

with identical road density could experience vastly different resettlement density depending

3

48. A resettlement officer wrote in a memorandum: “...it is not then the situation that the bandits have
paralyzed the country...people do travel freely by road and rail between Singapore and Kuala Lumpur, people
do go to work every day and come home again.” (TNA: CO 1022/29).
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on the road density of their neighboring counties, a factor that can directly influence county
outcomes through channels such as market access (Donaldson and Hornbeck, 2016). Similarly,
counties with a large Chinese population in nearby counties were also likely to receive more
resettlement, even when conditioning on the Chinese population within the county itself.
These exposures, if not captured by X, would show up in the error term and lead to omitted
variable bias.

To address this issue, I directly model and control for the omitted variable using the
knowledge of the program. Specifically, the potential omitted variable in (1.1), under
Assumption 1, is the conditional expectation of resettlement density given wy and wso,
denoted E[fc(g1, g2)|w1, ws]. Therefore, 8 can be identified once this expected resettlement
density is controlled for (Borusyak and Hull, 2023).49

To measure the expected resettlement density, I make two further assumptions regarding
the distribution of g1 and g9, drawing upon the design of the Briggs Plan. Let the probability
distribution of g; and go be G1(-) and Go(+), respectively, the assumptions are formalized as

follows.
Assumption 2. (Resettlement Design)

(i) Equally suitable sites: G1(gi|wy) is uniform; i.e., conditional on the transportation
network, land use patterns, and the number of nearby Chinese squatters, areas are

equally suitable for establishing a New Village.

(ii) Minimized dislocation: E[f¢(g1, 92; w1, w32)|g1, wa| = fe(g1, g2(g1, w); w); that is, conditional
on the locations of the New Villages and the initial distribution of Chinese squatters,
the expected resettlement density aligns with a dislocation-minimizing number g9, as

predicted by a gravity model.

49. As shown in Borusyak and Hull (2023), controlling for or re-centering ResettleDensity. by
E[f.(g1, g2)|w1, ws] can both purge the omitted bias. One application of this method is Dell and Olken (2020),
who identify the impact of proximity to sugar plants by contrasting actual proximity to sugar plants with
that to counterfactual sugar plants to eliminate omitted variable bias.
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Assumption 2(i) imposes that sites with identical covariates w; had an equal probability
of being selected as a resettlement area. Assumption 2(ii) models the dislocation-minimizing
resettlement g9 using a gravity migration equation. The micro-foundation is that while
resettlement officers might have idiosyncratic preferences over where to relocate the squatters
due to security concerns during the Emergency, they faced a resettlement cost that increases
with the distance. Otherwise, they considered potential sites with the same covariates as

equally attractive. The “dislocation-minimizing” number of people resettled to village 7 is

given by
J d._-a
_ 1
G291, w) =Y nj x —r—, (1.3)
j=1 Zszl djs
where n; denotes the Chinese squatter population at the original settlement j =1,...,J; dj;
denotes the distance between origin j and destination ¢ = 1,...,I; and 0 is the resettlement

cost elasticity that captures how costly it was to relocate a person to a greater distance.””

To measure the initial population of Chinese squatters, {nj } ]'»]:1, I digitize and overlay three
historical maps: (i) land-use maps from 1944; (ii) population census map from 1947 (Appendix
Figure 1.9); and (iii) a map during the early years of Malayan Emergency delineating the
“Black Areas”, which were regions with communist activities (Appendix Figure 1.1051 1
classify a cluster of Chinese population as “squatters” susceptible to resettlement if it was
located within the Black Areas and within a 5 kilometer radius of a forest (Appendix Figure

1.11).

50. The resettlement cost elasticity 6 is calibrated to be 0.65 using the observed number of people resettled.
The calibration minimizes the sum of squared residuals when regressing the actual number resettled on the
ideal plan; i.e., § = argming 3, (g2 — G2i(6))>.

51. From 1953, the British refer to high-risk environments with communist activities as the “Black Areas”
(as opposed to “White Areas”). These areas were subject to various Emergency regulations, including curfews,
food restrictions and travel bans (Baillargeon, 2021).
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I estimate the conditional expected resettlement density using a permutation procedure.??

Each permutation s = 1,2,...,.5 consists of two steps and is performed independently for

each state:

(s)

(i). Randomly (and uniformly) permute counterfactual New Village locations g;”’, conditional
on (i) distance to roads; (ii) land-use type; and (iii) the number of nearby Chinese

squatters in the county.53

(s)

(ii). Calculate the “dislocation-minimizing” number resettled g, * according to (1.3), following

0N

which the permuted resettlement density is calculated as fc(g§S , 95

) =(s)

The expected resettlement density is then approximated by averaging fc(ggs ,J5 ) across

permutations of a thousand times (S = 1000):
J—— 13
Resettle Density, = — Z fc(ggs), ggs)). (1.4)
5 s=1

Figure 1.2 illustrates this procedure with a single covariate—distance to road—for the
state of Johor. The black dot is one actual New Village in the state. The dashed lines show
the pre-existing transportation network. The plausibly suitable areas, shaded in gray, are
those with roughly the same distance to the network as the actual village.?* A counterfactual
location for that particular village, marked by triangle, is drawn randomly from the suitable

areas.

52. Under Assumption 2, the expected resettlement density can be expressed as E [f.(g1,92) | w] as

/G [ el 02) G 2| g1.0) G (g1 | w) = [ (01,5 4G (0 ).

53. When no roads were accessible within a 5-kilometer buffer but a river falls within that range, the
permutation is conditional on the same distance to the nearest river. In terms of the number of Chinese
squatter, I order counties within a state according to the quantile of Chinese squatters and block by counties
within the same quantile.

54. In practice, the suitable areas for that particular village would be a subset of the depicted gray areas
because of other covariates. For example, only areas with equal distance to the road, under the same land-use
type, and have a similar number of Chinese squatters nearby are equally suitable.
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A comparison of the actual resettlement pattern with the conditional expected resettlement
density suggests that Assumption 2(ii) is reasonable. The actual county resettlement density
is strongly correlated with and centered around the expected resettlement density calculated
according to the permutation procedure (Appendix Figure 1.12). The underlying resettled
population at the village level also aligns well with the prediction of the gravity model
(Appendix Figure 1.13).

Figure 1.3 maps the New Villages on top of the expected county resettlement density.
Panel A exhibits spatial clustering and overlap between the resettlement areas and the
expected resettlement density, consistent with the British relocating people to places with a
denser road network and/or a larger pre-existing Chinese settlement.

My preferred specification for estimation controls for the expected resettlement density,

in addition to the baseline controls:
Y. = BResettleDensity. + )\Reset@nsityc + X + ee. (1.5)

The identifying variation—the residualized resettlement density (Figure 1.3, panel B)—mainly
comes from the exact location of the New Villages, relative to the average location along the
transportation network, as well as the more distant resettlement that are not explained by
pulling in nearby squatter populations.

To estimate differences in industrial activities at the county-industry pair level with varying

resettlement density and Chinese employment share, I estimate the following regressions:

Y.; =p1ResettleDensity. + [ Resettle Density. x ChiEmpShare.; + aChiEmpShare,;

+ AlReset@nsityc + A9 X Reset@nsitycC’hiEmpSharecj + Yej Xej + 05 + €cts
(1.6)

where ChiEmpShare.; is the state-by-industry employment share of Chinese individuals
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measured from the 1947 Population Census; X.; fully saturates ChiEmpShare.; and baseline
controls X, from equation (1.5); and §; denotes industry fixed effects that absorb nationwide
industry-specific shocks.

The identifying variations for $; and (9 come from within-state differences in county
resettlement density and its interaction with pre-period industry-specific shares. Specifically,
the estimated 1 corresponds to the impact of a one percent increase in resettlement density
on county-industry outcomes Y; for industries initially having zero Chinese employment
share; and the estimated 39 gives the additional effect for industries fully employed by Chinese,
relative to those with zero Chinese share.

To estimate elasticity with respect to county resettlement density for variables like the total
number of establishments and the employment share of ethnic groups in specific industries, I
face a challenge due to zeros in the data—for instance, counties without any manufacturing
establishments. To estimate elasticities that reflect differences on both the extensive and
intensive margins in a way not affected by the unit of outcomes, I use the Poisson Pseudo
Maximum Likelihood (PPML) estimator (Silva and Tenreyro, 2006). This estimates the effect
of county resettlement density as a percentage of the baseline mean (Chen and Roth, 2023).

I report the Conley standard errors that are robust to spatial correlation within a 30-
kilometer radius (Conley, 1999). The distance cutoff is chosen based on the localized nature
of resettlement shock, which was predominantly within 15 kilometers, beyond which the
treatment can be regarded as independent. This is in line with Figure 1.3 (panel B), where
there is no significant spatial correlation in the residual resettlement density across counties,
with a median county width of approximately 8 kilometers. In the Appendix, I consider
robustness of the results to a set of distance cutoffs up to 50 kilometers and clustered standard

errors by district (with a total of 66 districts).
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1.4.2  Pre-characteristic Balance

In this section, I explore whether various county characteristics measured before resettlement
were balanced. Certain characteristics, such as road density and initial Chinese settlement,
should naturally correlate with county resettlement density given the objective of the program.
However, one would expect that the residual variation—after controlling for the expected
resettlement and baseline controls—to be orthogonal to those characteristics, if indeed the
procedure successfully purged any remaining omitted variable bias.

Table 1.1 reports the relationship between county resettlement density and various location
characteristics. For attributes related to geographic productivity (Columns 1-4), I consider
elevation, ruggedness, and the suitability for rice and coconut cultivation—the main food
crops in Malaysia. For location amenities and public goods (Columns 5-8), I consider distance
to the nearest police station, distance to the nearest post or telegraph office, distance to the
nearest hospital, and distance to the nearest Chinese temple. I also examine characteristics
related to pre-period economic activities, including (log) population density, the land use
shares for rubber and mining—the two major export industries in British Malaya—and
proximity to industrial facilities and major cities like Singapore, George Town, Malacca, Ipoh,
and Kuala Lumpur—the main commercial and administrative centers of British Malaya."®

The raw correlations between these characteristics and county resettlement density are
consistent with the resettlement plan, which relocated squatters along the road network.
Indeed, Panel A shows that when controlling only for state fixed effects, an indicator of any
resettlement in the county, and (log) county area, counties more densely resettled were closer
to other public goods provided by the state (Columns 5-7), more densely populated (Column
9), and closer to industrial factories and major cities (Columns 12-13). The higher land use

for rubber plantation also aligns with historical accounts that many resettlement areas were

55. Industrial facilities include major strategic industries—airplane and automotive repair facilities,
engineering and machine shops, shipbuilding and repair facilities, chemical plants, construction plants,
coal mines, power plants, storage facilities, rubber plants, tin plants, and food and clothing manufacturers.
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on state-owned rubber estates (Column 10).

However, the examined characteristics are generally balanced once I additionally control for
key covariates from the Briggs Plan—including proximity to roads and rail stations, distance
to coastline, initial Chinese population share, and the expected resettlement density. Moreover,
the magnitudes of the estimates are small: one standard deviation higher resettlement density
is associated with a 14-meter increase in elevation, which is about one-ninth of the county
mean. These suggest that the identification assumptions are plausible.

Notably, counties with higher resettlement density are not more suitable for agricultural
production—if anything, they are less so—even though agricultural suitability was considered
in selecting resettlement sites (Columns 3 and 4). This is consistent with historical documentation
that resettlement areas often lacked sufficient agricultural land and that economic factors

were secondary to security and expedience in the resettlement process.?®

1.5 Results

This section examines the effects of higher resettlement density in the receiving areas over
the next five decades. I first show how the resettlement persistently altered the population
distribution. I then present the reduced-form impacts of resettlement for Chinese and

non-Chinese individuals separately.

1.5.1 Population Growth and Changes in Ethnic Composition

There was a substantial change in population distribution of the Chinese during the Emergency.
Figure 1.4 maps the population growth by Chinese and non-Chinese from 1947 to 1957,
during which most resettlement were completed. Counties that experienced resettlement
saw substantial Chinese population growth, while neighboring counties witnessed a decline,

consistent with the relocation of Chinese squatters from surrounding areas into compact

56. Humphrey (1971), Short (1975, p. 399), Lee and Tan (2000, p. 261).
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villages (Panel A). In contrast, there were no significant changes in the population of other
ethnic groups (Panel B).

Indeed, regression results show that the Emergency resettlement has persistently shaped
the population distribution in Malaysia. Figure 1.5 shows regression (1.5) estimates on county
population growth over time (Panel A) and changes in Chinese population share (Panel B)
since 1947.57 By 1957, shortly after most resettlement was completed, counties with one
standard deviation higher resettlement density witnessed a 40% rise in Chinese population
and negligible changes in other ethnic groups, leading to a 6 percentage point increase in the
Chinese population share. This can be seen as the mechanical outcome of the resettlement
program.

Post-1960, after mobility restrictions were lifted, these counties not only retained their
Chinese population but also saw a steady increase in non-Chinese population over time.
From 1957 to 2000, counties with one standard deviation higher resettlement density had an
additional 20% increase in both the Chinese and non-Chinese population.

Before resettlement, there were no significant pre-existing population differences in counties
later experiencing higher resettlement density, consistent with the identification assumption
that counties with different (residualized) resettlement density are comparable in unobserved
characteristics. For instance, had the British targeted areas already experiencing growth due
to higher labor demand that I do not observe, an influx of population from 1931 to 1947 would
have been expected. Moreover, any non-resettlement related factors affecting post-period
population shifts would need to disproportionately affect the Chinese. This rules out concerns
related to general locational advantages that would have affected both populations equally.

Despite initial similarities, counties with varying resettlement density eventually differed

in population density and ethnic composition (Table 1.2). By 1980, counties with one

57. This specification is equivalent to a Two-Way Fixed Effects regression with year and county fixed effects,
and interactions of year dummies with county resettlement density, excluding year 1947. The identification
assumption is a parallel trend in population size and composition for counties with varying resettlement
density, and is weaker than assuming exogeneity in level as in section 1.4.
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standard deviation higher resettlement density saw an 11% population density increase and
a b percentage point rise in Chinese share. By 2000, these figures reached 19.4% and 4.1
percentage points, respectively (Columns 3 and 6).

The denser population in counties with higher resettlement were reflected in a 30.2%
more build-up volumes in 1990 (Column 7). The larger point estimate of build-up capital
than population suggests that housing supply is relatively elastic. The greater amount of
build-up capital also shows up at a more granular scale on satellite images, with a clustering
of built-up volumes precisely at the location of the New Village despite a relatively uniform
settlement pattern in surrounding areas prior to the resettlement for many cases (Appendix
Figure 1.14). This is consistent with a concentration of nearby population in the resettlement
areas.

From 1957 to 2000, the population shifts suggest counties with higher resettlement density
attracted migrants from other regions. Indeed, Appendix Table 1.10 documents that these
counties had a higher share of internal migrants by 1980, particularly among the Chinese.
Chinese residents in higher resettlement density counties are 13% more likely to be internal
migrants (Panel A, Column 2) and this higher share of Chinese migrants was driven more by
endogenous migration after 1960 rather than the initial forced resettlement (Panel B, Column
2).

The post-1960 sorting of Chinese into more densely resettled counties may be attributed to
economic benefits, such as higher wages, or homophily—the preference for living near others
with similar ethnic backgrounds—or both. However, the rise in the non-Chinese population
in these areas was unlikely due to social incentives given the ethnic tensions and more likely

driven by economic incentives, which I examine next.”

58. For example, a violent ethnic conflict (the “13 May Incident”) between Chinese and Malays erupted
following an election in 1969.
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1.5.2 FEconomic Structure

I now turn to examine whether the increased population density and a higher concentration of
Chinese in the more densely resettled counties impacted the local economic structure by 1980,
two decades after the Emergency ended. Table 1.3 documents that counties with greater
resettlement density exhibited a larger overall employment size, with heterogeneous effects
across sectors. Employment in the primary sector, which includes agriculture and mining, saw
a 10% increase in counties with one standard deviation higher resettlement density, similar
in scale to that of the population (Table 1.2, Column 2). In contrast, employment in the
secondary and tertiary sectors expanded by over 20% in these counties.

This significant growth in employment outside the primary sector stems from a combination
of factors. First, the Chinese population, which had a higher propensity to work in the
secondary and tertiary sectors (Appendix Figure 1.8), would contribute to a disproportionally
higher employment increase in these sectors even if they continue to choose occupation by
sector with the same probability as before the resettlement. Indeed, I find that although the
Chinese were slightly more likely to sort into manufacturing and services, this mostly reflects
changes in occupation within the non-agricultural sector and not across, with a similar share
of Chinese working in the primary sector in the more densely resettled counties (Table 1.4,
Column 1). The other source of changes in the employment structure in the more resettled
counties is a 14% reduction in the share of non-Chinese working in the primary sector (Panel
A, Column 2).

The shift towards non-agricultural employment in these counties suggests that local wages
in these industries rose following the influx of Chinese, who had a comparative advantage in the
industrial and services sector historically. This right-shift in labor supply would theoretically
lower relative wages in these sectors in a neoclassic model with downward-sloping demand.
However, the observed relative employment growth implies that labor demand may be flat or

even upward-sloping. This is consistent with the non-agricultural sectors exhibiting a larger
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external economy of scale due to agglomeration forces such as those proposed by Marshall
(1890).99

The substantial increase in employment share of the non-Chinese in sectors such as utility,
construction, trade, and transportation, suggest that these industries might indirectly benefit
from their input-output linkages with sectors like manufacturing and services, which directly
benefited from a positive Chinese labor supply shock.

Additionally, evidence on the manufacturing sector suggests knowledge spillovers from
Chinese to non-Chinese within the manufacturing sector. Table 1.5 documents that counties
with one standard deviation higher resettlement density saw an average increase of 13
manufacturing establishments, driven by both Chinese and non-Chinese ownership (Panel A).
In particular, there was a surge in non-Chinese entrepreneurs entering the manufacturing
sector, particularly in sub-industries initially dominated by Chinese employment. This is
consistent with transfers of industry know-how between Chinese and non-Chinese entrepreneurs
(Appendix Table 1.11).

Considering the varying skill demands across industries, with the industrial sector typically
demanding higher skilled labors compared to agriculture, one might expect that the different
economic structures in the more densely resettled counties could lead to a higher human
capital. Indeed, Table 1.6 shows that residents in counties with more resettlement generally
have better education, particularly for the Chinese, with an additional 0.42 years of schooling
(Panel A, Column 2); 6.9% more likely to complete primary education (Panel B, Column 2);
and 17.8% more likely to complete secondary education (Panel C, Column 2). The larger
estimate from secondary education completion is consistent with a higher valued placed on
skilled labor.

Younger individuals, particularly those under 50 in 1980 who were still in or had not finished

their educational years during the resettlement, showed the most significant educational gains

59. Agglomeration economies include benefits like labor market pooling, reduced transportation costs, and
knowledge spillovers.
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(Appendix Table 1.12). In contrast, the resettlement is not correlated with the cohorts that
had completed their education by 1950. This provides an additional supporting evidence
that these counties were not ex-ante more industrialized and populated with a group of more
educated individuals during the colonial period.

Health outcomes also improved in these counties, as evidenced by higher birth weights
reported in the Malaysian Family Survey of the late 1980s. This improvement was observed

across both Chinese and non-Chinese mothers, with a more substantial effect for Chinese

(Table 1.6, Panel D).

1.5.8 Household Income

The analysis so far suggests that resettlement led to a shift in the local economic structure
of recipient counties towards the non-agricultural sector. This section examines how this
change might have translated into different levels of household income by 1980 for Chinese
and non-Chinese households, respectively.

I first document that households in counties with higher resettlement density were more
likely to own durable assets, such as automobile, refrigerator, TV, etc., by late 1980s (Appendix
Table 1.13), especially for Chinese households. This suggests that in the more resettled
counties, households were generally richer and there was a larger income premium between
Chinese and other ethnic groups.

Indeed, Table 1.7, Panel A, documents that households in counties with one standard
deviation higher resettlement density had, on average, a 6.9% higher household income
(Column 1). The effect is notably stronger for Chinese households, which saw an 11.1%
income increase in these counties compared to those in other areas (Column 2). In contrast,
non-Chinese households in higher resettlement density counties had a marginally higher
income of 3.7%, which was not statistically significant (Column 3). This leads to a 7.4%

Chinese income premium in more resettled counties (Column 4).
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When splitting households based on the employment sector of the household head—
primary versus secondary /tertiary—the income differential in more resettled counties is
smaller for the primary sector at 2.9% (Panel B, Column 1). Even so, Chinese households
involved in the primary sector still earn 7.3% more in counties with higher resettlement
density (Column 2), whereas non-Chinese households’ incomes remained comparable to those
in other areas (Column 3).

The larger income differential in the more resettled counties was primarily driven by
households in the non-agricultural sector, who, on average, earned 7.7% more than non-
agricultural households in other areas (Panel C, Column 1). The effect is again stronger
among Chinese households, at 12.1% (Column 2). There was a smaller, 4.4% (and not
statistically significant) increase in income for non-Chinese households (Column 3). Despite
the overall gains for non-Chinese households in these areas, a 7.8% Chinese income premium
persists (Column 4).

These income differences across counties, sectors, and ethnic groups remain even after
controlling for the educational level of the household head (Appendix Table 1.14). Given the
higher average educational attainment in more resettled counties, especially among Chinese,
the observed income disparities could partly stem from the private returns to education
rather than from productivity spillovers due to local agglomeration. Indeed, controlling for
the years of schooling of the household head reduces the income differential in the more
resettled counties, especially among the Chinese households. However, the general pattern of
a Chinese income premium in both the primary and non-primary sectors persists, suggesting
that educational disparities alone cannot fully explain the economic benefits experienced by

Chinese in these areas relative to other groups.
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1.5.4 Discussion

The evidence put together above suggests that the resettlement of Chinese squatters during the
Emergency stimulated an agglomeration economy. Counties with higher resettlement densities
saw an increase in population density, income levels, and a shift toward non-agricultural
sectors, consistent with external economies of scale. Improved labor market conditions then
attracted further migration from other regions.

The Chinese population benefited substantially from this agglomeration, achieving
significant income gains, even after accounting for industry and educational attainment,
suggesting a stronger benefit from population concentrations of similar ethnic backgrounds.
This is consistent with stronger within-group social interactions that generate larger productivity
spillovers among the Chinese population.

Non-Chinese ethnic groups also gained from agglomeration, albeit to a lesser degree, mainly
through transitioning into non-agricultural sectors. In the more densely resettled counties, they
were more likely to work outside agriculture. Manufacturing firm data suggests that industry-
specific expertise from the Chinese spilled over to non-Chinese entrepreneurs, facilitating their
entry into sectors traditionally dominated by Chinese. Nonetheless, non-Chinese households
saw lesser income increases, hinting at more limited cross-ethnic productivity spillovers. This
is presumably due to barriers of social interactions between groups, such as ethnic tensions
and language barriers, that hindered cross-ethnic spillovers.

In a counterfactual world without these barriers, Malays might have seen greater benefits
from interacting with the Chinese population, potentially encouraging more Malays to move
to Chinese-dense areas and speed up the structural change towards the non-agricultural
sector. Similarly, as a minority constituting less than 40% of Malaysia’s total population, the
Chinese could have gained from interacting with a broader group of people.

To quantify the aggregate economic impact of these barriers, I develop a spatial general

equilibrium model with migration and occupational choices, which allows the agglomeration
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forces to vary with sector and local ethnic composition.

1.6 Model

The model consists of N locations (or counties) and two sectors k € {A, M }: Agriculture (A)
and Manufacturing (M). Individuals are characterized by ethnicity e € {¢,m}: Chinese (c)
and Malays (m), and each is endowed with an initial county. After drawing a regional taste
shock, individuals make their migration decision. After they move, they draw idiosyncratic
efficiency units for each sector and choose which sector to work. Lastly, consumption and

production takes place.

1.6.1 Production

Each region n produces a unique good in sector A and M (Armington, 1969). In each sector
k € {A, M} of a region, there is a continuum of perfectly competitive firms producing this
homogeneous regional variety. Each firm’s production technology has constant returns to
scale and uses labor as the only input, leading to the region production function @, = H,,
where H,,;. is the total labor summed across ethnic groups (in efficiency unit, defined later)
employed in region n, sector k. I assume that efficient units from Chinese and Malays are
perfect substitutes in the production function.

Firms in sector k, region n choose labor H,,;. to maximize profit, taking local sectoral
wages (per efficiency unit) w,,;. and prices {p,,,1.} as given, where p,,,;. is the price of goods
produced in sector k£ and region n when sold in region r. In equilibrium, no arbitrage condition
implies that ppr = (Tnr/Tnn ) Ppni for regions n, r, and sector k, with 7, > 1 for all n and
r being the iceberg trade cost from n to r. Perfect competition implies that in equilibrium
firms earn zero profit, with wy,;, = ppnk/Tnn, Where p,,i. is the price of sector-k goods sold

locally under the trade cost 7y, within region n.50

60. Notice that I allow within-region trade to be costly (when 7,, > 1). Local wage would decline as 7,
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1.6.2  Consumption

Individuals of ethnicity e living in location n derive utility from consuming agricultural and
manufacturing goods and enjoying the amenity in location n:

C « C l—«
viicacan =a (4 ({24)

1l -«

where o > 1 is the constant elasticity of substitution across regional varieties, which is
assumed to be the same for both sectors; and af, is the valuation of individuals of ethnicity e
for amenities in location n, which I will discuss in more detail in the migration decision.
Utility maximization implies that the indirect utility of a group-e individual in region n
with income yj; is ayyy, /P, where P, = P AP;MO‘ is the ideal price index in region n; and

P, = (Z;\il le_aw}k_a)l/(l_") is the price index of sector k& goods in region n.

1.6.3  Sectoral labor supply

Individuals with heterogeneous productivity earn their income by inelastically supplying one
unit of labor. Each person is characterized by a vector of efficiency units in sectors A and M,
A; = (A4, Ajpr), where A, denotes the effective labor individual ¢ provides if he/she works
in sector k. I assume that individuals of ethnicity e, region n, draw their gross efficiency

units in sector k£ independently from the following Fréchet distribution:

or(A) = exp <— Zk/\_e) 7

increases, which plays the same role of worse location fundamental.
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where scale ¢¢ . parameterizes the average productivity of ethnicity e in sector & and region
n. The ¢? ;. captures the absolute and comparative advantage of different ethnic groups, as
well as fixed location fundamentals that make a place more productive in specific sectors.
The dispersion of efficiency units is governed by shape parameter 6, with a higher value of 6
corresponding to smaller dispersion.

Due to human capital externalities, an individual 7 in ethnic group e’s net efficiency unit
in region n and sector k, denoted by A7 ,, depends not only on its own skill A . but also

local population distribution:
e _ Ae e e
ink — Ainkf)\(Lnk’ Lnk)’

where I parameterize f)(-) as a function of sectoral population size and ethnic composition:

e
/

e \7
INLys Lyg) = (Lyg) (L—nk) :
nk

Parameters 7, and ¢ govern the strength of productivity spillovers from local interactions,
which are allowed to depend not only on the number of workers in the sector (v;), but the
ethnic composition (7¢) of that sector. Specifically, the elasticity of productivity with respect

to the concentration of ethnic group e in region n is given by

Oln \¢ N ¢ Jln7¢
b (e (1 B (14 o) 0
Jln Ln R Lnk Lnk R Oln Ln g

Direct effect Indirect /E?E effect

where 77, is the share of ethnicity e in region n working in sector k.

A higher population of ethnicity e has a direct effect on group e’s productivity in sector k,
holding fixed the occupation structure of group e, and an indirect effect due to endogenous
changes in occupation share. Let’s first consider the direct effect. The firm term in equation

(1.7) is a weighted average of ;. and ¢, weighted by the share of workers in sector k from
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ethnicity e. That is, if sector k in region n is dominated by group e (with a large LS, /L),
the agglomeration elasticity for group e is close to 7. If instead, the sector is dominated by
group €, the agglomeration elasticity for group e would be close to v¢. The indirect effect
then scales the agglomeration elasticity, depending on how a larger size of ethnic group e
affects the occupation share of e in sector k due to changes in the relative wage in the general
equilibrium.

There are also cross-ethnicity productivity spillovers. For ethnic €’ # e, the elasticity of

group e’s efficiency with respect to the concentration of the other group €’ is given by

dln A Le dln ¢
—— 1k — (o — %) 2R (14 nk | (1.8)
Oln LS L, Oln L§

J/

Direct effect Indirect/GE effect

Again, the cross-ethnicity spillover from €’ to e also has a direct and indirect component. But
overall, when ;. > ~¢, the cross-ethnicity spillover for sector k tends to be positive, and vice
versa. Moreover, the effect is proportional to the share of group €’ in sector k.

Given the Frechet distributed efficiency units A7, the share of individuals of ethnicity e in

region n who work in sector k£ can be expressed as

0
we
Tk = Pk <——nk) ; (1.9)

(&
wn

where

e

e Lek 7
Wik = Wnk (Lng) T (—L” ) : (1.10)
nk

and the average wage (up to a scale) for ethnicity e in region n is given by

—e e e e e 1/6
Wp, = < nA (wnA)a + (bnM (wnM)e) :
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1.6.4 Migration

Each individual is endowed with an initial location, who then decides where to migrate at a
cost after drawing a regional taste shock. When making the migration decision, individuals
know their ethnicity but have not learned their skill realizations. Individual ¢ of ethnicity e

draws an idiosyncratic taste for region n, denoted us, , from the following Fréchet distribution:

Ff(u) = exp (—aflu*’/) ,

where the scale parameter af, captures any exogenous, ethnicity-specific amenity of location
n; and the shape parameter v describes the dispersion of u, with a higher v corresponding to
a smaller taste dispersion across regions.

Individual 7 of group e has a valuation for amenities in region n, denoted a, , that depends

on her idiosyncratic taste ug,, and local population distribution:

/
afn = Ufﬁa@%» L% )»

where, again, I parameterize f,(-) as a function of population size and ethnic composition:

gz, 22 = (y? ()"
Parameters 5 and 8¢ capture congestion and amenity spillovers that are allowed to depend
not only on the size of local population but also on the ethnic composition. Specifically, 5¢
allows for homophily, a taste for living near other people of the same ethnicity, which might
also reflect ethnic tension across groups.

Indirect utility for individual ¢ of ethnicity e from origin r living in destination n, who
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has an idiosyncratic preference af,, is given by

e

_ . —1 e —e p—1
irn = Tlrn ainrﬁwnpn )

where 7, is the iceberg migration cost from 7 to n, and I'yw, P, 1 i5 the real wage in region
n, with 'y = I'(1 — 1/0) and I'(-) being the Gamma function.

Since the indirect utility is equal to a Fréchet random variable uf, multiplied by a constant
n;%Lg(L% /Lp)P Tgwt Pt it is itself Fréchet distributed. The distribution of Ve, implies

that the share of ethnicity e initially residing in region » who choose to migrate to n is

where the mean value of residing in region n for ethnicity e is

e\ B¢
Vi = @) @) (£2) anrt (111)

n

We can then write the bilateral migration flow of ethnic group e from r to n as

e B 14/l
™™

X T g )

where, following the terminology of the trade literature, I define two migration market access

terms:
N 1/v
me= > ' VO . (1.13)
=1
Ve = Vi (Le/D) (1.14)

and I use L to denote the total population in the country, which I normalize to be one.
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The term IIY captures the overall value for group e to move out of region . On the other
hand, Vj; captures group e’s overall value of moving into region n. These terms are referred
to as the outward or inward migration market access in the trade literature (Anderson and

Van Wincoop, 2003).

1.6.5 Trade

Bilateral trade flows from region n to region r incur an exogenous iceberg trade cost, 7, > 1,
with 7, = 1 corresponding to the case of friction-less trade. Given this and consumer
preferences, trade flow expenditures on sector-k goods from r to n (with goods flowing from

n to r), denoted X,,,1., have the standard gravity form:

7%;J(wnk

([ —y 1— —
S, (w1

)170

Xprie = X (1.15)

where the total expenditure of region r on sector-k goods is given by X, = a;Y;, with
ap=aand ap =1—a;and Yy, = w0 Hpp +weprHy g

It is useful to rewrite the above equation as

o /Y Y
Xy = gy X b X —— (1.16)
¢%k };k
where, similar to migration flows, I define two terms of the trade market access:
N 1/(1_(7)
_ -0, 1—
P= | ) mhwy : (1.17)
=1
— —\1/(1—
P = w ! (Y 7)) (1.18)

Tuse Y = > Y to denote the total income of the economy, which is normalized to one as

the numeraire.
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As with the migration flows described above, (the inverse of) P,; captures the inward
trade market access to sector-k goods of region r and (the inverse of) Py, captures the

outward trade market access to sector-k goods of region n.

1.6.6 Static equilibrium

For any strictly positive initial population vector {I:f} and a vector of ethnicity- or industry-

(&

specific location fundamentals {¢¢

10> @ Tins Min }» an equilibrium is a vector of prices {wy,x, ppi
and quantities { LS, .}, such that (i) firms and consumers behave optimally and (ii) goods
and labor markets clear for all regions.

The goods market clearing condition can be written as

N Tl—awlga
nr
WniHpe = Y ag(wp aHy g + wyng Hypp) =55 (1.19)
r=1 D=1 Ty Wy,

which embeds two underlying conditions: (i) total sectoral sales of a region are equal to
payments to labor and (ii) a region’s total income is fully spent on goods from all locations.

The labor market clearing condition can be written as

o = Y Hiy = > Loy, (Tguwgw, ) (1.20)
e e
_1 e 14
) v,
Lo =3It (n Vi)™ (1.21)

e 1 %
r Zl:l (nrl Vle>

Equation (1.20) says that a region’s total efficiency units in sector k is given by the sum
of efficiency units contributed by the two ethnic groups, and the part coming from group e
is the product of their sectoral employment (L%?T'Zk) multiplied by their average efficiency
units (F@U_}%wgkl). Equation (1.21) follows from the migration flow identity, where a region’s
equilibrium population of ethnicity e is equal to the sum of migration flows of ethnicity-e

individuals from all regions.
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Using equations (1.9), (1.10), and (1.11), one can substitute out «¢ ., wy,, and V;{ and
replace them with exogenous parameters and endogenous outcomes {w,,, L5 }. As a result,
the equilibrium is characterized by a system of 6 x NV equations (1.19-1.21) in 6 x N unknowns

{wpp, Hyp, LG} with k € {A, M} and e € {¢,m}.

1.7 Identification and Estimation

In this section, I discuss how I identify and estimate the model parameters. I assume that
the bilateral migration and trade costs are symmetric and scale proportionally with distance.
Specifically, bilateral migration costs are modeled as 1y, = (drp/dpin)", where dp,;, is the
minimum within-county distance, and x > 0 represents the distance elasticity of migration
costs. Similarly, bilateral trade costs are represented by 7, = (dpp/ dmm)f, where £ > 0 is
the distance elasticity for trade costs.%! The model is characterized by a tuple of location

fundamentals {¢¢ a5} and 11 structural parameters:

@E{ a,o 57"{ ) 9,’7A77M776> Va@aﬂe}'
~— ~— ————— N —
Preference Trade/Migration Productivity =~ Amenity
I take 3 parameters externally: the elasticity of substitution across regional variety o, the
migration elasticity v, and the distance elasticity of trade cost . I estimate the remaining 8

parameters.

61. I measure cross-county distances d,., for any r # n with the Euclidean distance between the centroid of
r and n; and within-county distances d,.- with the distance between the centroid and boundary of county r.
I allow the within-county migration or trade costs to be greater than one (except for the county with the
smallest distance) to accommodate the fact that counties vary in size. This is without loss of generality as
costly migrations within a county lowers the utility in a way isomorphic to having worse amenity fundamentals
a¢. Similarly, costly trades within a county lowers the productivity in a way isomorphic to having worse
productive fundamentals ¢, .
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1.7.1 Identification Strategy

In this section, I first introduce a proposition that shows the identification of the agricultural

expenditure share o and the market access terms. Next, I discuss my strategy for identifying

the remaining model parameters and recovering the location fundamentals. Finally, I discuss

the estimation procedure and results.

Market Access Terms

I derive four underlying conditions involving the trade and migration market access terms

from the equilibrium conditions (1.19)-(1.20).

().

(ii).

Total sales equals payments to labor: wy,; H,; = >, Xp,. Using equation (1.16), this

can be written as

10_ o l1-o o—1
nk _Q Z YP ’

where Q,,;. = w,,;.H,,j./ Yn denotes the share of income in region n generated from sector

k.

. Total income equals total expenditure: Yyap = >, X,,t. This can be written as

Py =2 mr YaPl !
n

Final population equals total in-migrations: Lf, = Zi\le LE,,. Using equation (1.12),

this can be written as
= Z ey Ly (1) 7
T
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1v). 1nitial population equals total out-1migrations: [ = — . is can be written as
iv). Initial populati Is total out-migrations: L& = SN | L, Th be writt

e

n

Putting these together, the derivation above yields a system of four equations:

1 _ 1
PO = Q " Z Y, Po L, (1.22)
Pl = ZTW Y, Pt (1.23)
=D e L ()T, (1.24)
-
= Ly (V) (1.25)
n

Proposition 1. Given observed data on {Yy, Q. LE, LS} and parameter values {777 -V},
there exists a unique (up to scale) set of values of {P7,~ 17P7?k L (we)Y  (1I19)°} that satisfy

equations (1.22)—(1.25).

Proof. Given data on total income {Y},} and the sectoral income share ., the agricultural
expenditure share « is identified. This follows from the fact that since every region spends
a4 of income on agricultural goods, the whole economy must also spend that same share on

agricultural goods in aggregate:

annAHnA Znyﬂ nA ZY N
nsin

o =
Zn wpAHpA + wnMHnM

The remainder of the proof follows closely from Allen and Donaldson (2022), Proposition
3. m

Notice that equations (1.22)—(1.25) can be split into two distinct system of equations
(1.22)—(1.23) and (1.24)—(1.25). In fact, identification of the trade market access terms
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(P L P 1Y only requires {Yy,, Q,,5, 75 }; and, similarly, to identify the migration market
access terms {(VS)”, (TI9)V} one only requires {L¢, L%, 1 ¥}. This Proposition also implies
that I can determine the market access terms without taking a stand on the functional form

of the agglomeration forces or the values of parameters {v4,vas, V¢, 5, 8¢}

Migration Cost Elasticity

As the migration cost elasticity x enters the migration cost multiplicatively with the taste
dispersion v, I estimate the product of & = kv. Specifically, I proceed with non-linear least
squares that minimizes the difference between model-predicted (county-to-county) migration
flows and the observed (district-to-district) migration flows data. The estimation proceeds as

follows.
(i). Guess an initial # and calculate the associated migration costs 0%, = (drn/dymin)"

(ii). Given data on the initial and final population distribution {L¢, L¢}, solve for the

migration market access terms {(V5)”, (IIS)”} using Proposition 1.

(iii). Calculate the implied bilateral migration flows:

Le
— € n
Lyn = ; L, Z dyF He Jone

(iv). Aggregate the model-implied migration flows to the level of data, which is district-by-

district, and calculate the bilateral migration shares of each destination by origin:

Z’/‘E] Zneh Lyn
= ’
/ ZTE] Zn LT“

where j(r) and h(n) denote the district that county r and n belongs to, respectively.

(v). Calculate the loss objective as the sum of squared differences between the model-
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predicted (log) migration shares and the data counterparts:

1 L \2
loss = V2 Z (In mjp, — In mjh) : (1.26)
d j,h
where Ny is the total number of districts and mn;, denotes the bilateral migration shares

in the data.
(vi). Search over the space of & until the loss function is minimized.

The identification assumption underlying this approach is that differences between observed
migration flows and the model predicted migration is due to classical measurement errors that
are uncorrelated with geography and other unobservables that enter the migration market
access terms. As sample size approaches infinity, measurement errors vanish and the observed
migration flows would exactly equal the model predicted migration flows under the true .
Identification thus requires that there exists such a unique . Although this is hard to prove
directly, I provide suggestive evidence in Figure 1.16 that, at least in the sample, the loss
function appears to be convex and there is a unique & that attains the minimum.

Another challenge is that the observed migration flows may not have the same frequency
of 24 years as in the model. This is because the 1980 census from which I measure migration
flows tabulates population by place of last previous residence by each place of current residence
without restricting to a period. Indeed, the 2% census microdata suggests that the average
person spends around 12 years in the current location. Given this, I consider that the
tabulated migration flows are measured at a frequency of 12 years and, assuming that the
migration shares are stable over time, I convert the migration shares matrix to a frequency of

24 years, following the procedure of Artug et al. (2010) and Caliendo et al. (2019).92 This

62. Specifically, I first calculate the 12-years migration shares matrix from the observed bilateral flows,
such that each row sums to 1. Then, under the assumption that the migration shares matrix, which can be
interpreted as a probability transition matrix, is constant over the two 12-years period, I take the square of it
to obtain the 24-years migration shares matrix .
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procedure also ensures that there are no zeros in the 24-years migration shares, which I can

take log as in equation (1.26).

Shape of Fréchet Skills

The shape parameter 6 governs the dispersion of Fréchet distributed productivity draws of
the individuals. A higher value of 6 implies a smaller dispersion of productivity. Notice that
each individual’s potential earning is also Fréchet distributed. Let yf , denote the earning of
individual ¢ of ethnicity e who works in sector k and resides in region n. Then, the assumed

distribution implies

Varlye,]  T(1-%)—T(1-3)?
]E[ye ]2 - F(l _ %)2 . (1.27)

ink

Specifically, the variance of yf ., normalized by the squared expectation, is a function of 6
that goes to infinity as 6 approaches 2 from above, and decreases monotonically toward zero
as 6 increases.%3 This implies that there exists a unique solution of # for any normalized

variance; i.e., 8 is identified from this moment.%%

Productivity Spillovers

The parameters governing the strength of productivity spillovers {v4,vas,7¢} affect the

expected earning in a sector and hence people’s occupational choice. I rewrite the occupation

63. For the variance of Fréchet distributed yf,, to exist, # must be larger than 2.

64. As 0 is assumed to identical across locations, sectors, and ethnic groups, it is over-identified from the
data, where the normalized variance can differ across locations, sectors, and ethnic groups.
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choice equation (1.9) in terms of the trade market access (1.18) as

1

Le
Inw, =~y In L, +~1n (L—Z];) ~3 Inme,

1 -1 1 1
_<J_1>1D(Pnk)g _<J_1)1nYn‘|‘ 5ln¢flk, Vk‘G{A,M}.
——
error term

(1.28)

The outcome variable is the average wage of ethnic group e in location n, which is observed
in the data.% Local employment size in sector k shifts the average wage of group-e via V-
The ethnic composition of local employment shifts local wage via €.

To see the key variation that identifies 4¢, we can subtract equation (1.28) of one group

from the other to eliminate any region-industry specific terms:

wg, ¢ 1, (7 1 "
In (—n) =17%In (—nk> ——1In (M) +—1In (ik) : (1.29)
wy! Lk 0\ 0 ok
~—
error term

This expression is a relative (inverse) demand curve of sector k, where the negative 1/6
term reflects the neoclassical force that gives rise to a downward sloping demand when the
within-group agglomeration force disciplined by 7€ is not too strong.56

The unobserved productivity for ethnicity e in sector k& and region n enters as the error
term, which typically correlates positively with local population due to the selection of people
into more productive places. This tends to bias the OLS estimate of ;. upward. Similarly,

ethnic group e who is more productive in a specific location-industry pair would sort to take

65. The reason that the left-hand-side of equation (1.28) doesn’t vary with k, while the right-hand-side
does, is due to a Fréchet property and the fact that the shape parameter is constant across industries (see
Appendix 1.C.1). If the Fréchet skills have different shape parameters across sectors, that would generate
sector-specific average wages by ethnicity. In that sense, one can view equation (1.28) as a limiting case
where the sector-specific shape parameters converge to the same value.

66. Only the relative share matters here and not the relative quantity because I assume that Chinese and
Malays are perfect substitutes. If Chinese and Malays have equal probability of choosing to work in sector k,
then the relative abundance of ethnic populations would not influence relative wages, except through ~¢.
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advantage of the better fundamentals, biasing the OLS estimate of v¢ upward. On the other
hand, classical measurement errors of the population distribution can also bias v and ¢
downward due to attenuation.

I address these issues with an instrumental variable strategy, exploiting the exogenous
resettlement shocks that shifted the initial population distribution in 1957 and ended up
affecting equilibrium population in 1980. Specifically, I use the residualized resettlement
density as the population shifter, which I have shown in section 1.5 that persistently increased
both the total population size and the Chinese share in 1980. Let it be denoted by Zj,.

Since the British did not relocate people in a way that correlates with underlying
productivity (conditional on covariates), this population shifter is plausibly orthogonal

to location fundamentals ¢¢, , leading to my identifying moment conditions:
E[Z,In¢; ] =0, Vk,e. (1.30)

These four moment conditions identify the three parameters related to productivity
spillovers: {v4,var,7¢}. To see this, notice that 4¢ can be identified from equation (1.29),
using Zj, as an instrument for In(L¢, /L), given 6. Then, moving all the terms in equation
(1.28) to the left, except for In L, I identify 7 with the same instrument for In L.

I require bilateral trade costs 7077 = (dpn/dpmin)$~7) to solve for the trade market
access terms {ng_ 1, ng_ 1}, which are used in the estimating equation. However, since I do
not observe data on trade flows, I target £(1 — o) = —1.29 as the elasticity of trade flows with
respect to distance, estimated by Monte et al. (2018). In the literature, estimates of o—the
elasticity of substitution between goods produced in different regions—often lie within the

range of 4 and 9.7 I set o = 8 based on recent work of Vietnam (Balboni, 2024) and assess

67. For example, Donaldson and Hornbeck (2016) estimates a value of 9.22 in the U.S. during the late 19th
century; Peters (2022) estimates 5.02 in post-war Germany; and Balboni (2024) estimates 7.92 in Vietnam in
2009.
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the robustness of the results to a set of other values.6®

Amenity Spillovers

The parameters of amenity spillovers, 5 and 3¢, affect people’s migration choices. The value
of residing in region n (1.11) can be rewritten in terms of the migration market access (1.14)

as

Inawy, = (=8 + %) In Ly + (l — Be> In Lf, + % In (V5)”

v
C Vpool o (L2 mpot - Longe 1.31
+U_1nnA+a_1nnM_,/nan' (1.31)
——
error term

To gain more insights of the within-group amenity spillover 8¢, we can again write the log

Chinese wage premium as

() () () o) o

error term

|

This expression is a relative (inverse) labor supply curve across space, where the first term
shows that the neoclassical force, disciplined by 1/v, tends to predicts a upward sloping
supply when the amenity spillover term (¢ is not too strong. Intuitively, if € is positive and
large, a higher Chinese share is an attractive amenity to Chinese that makes them willing to
accept a lower wage. The inward migration market access term V), captures the potential
migrants of group e from other counties, which is a shifter of the labor supply. The error

term captures all unobserved characteristics that make a county more attractive to one group

68. In theory, equation (1.28) could be used to estimate o (and 6) if one can exogenously shift the relevant
independent variable (e.g., the market access term P7,” 1) using an instrument that is uncorrelated with
location fundamentals. In practice, however, my cross-sectional resettlement instruments lack enough variation
for this purpose. This is unsurprising given the high spatial correlation typically observed in right-hand-side
variables like trade market access and local income.
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versus the other. This means that OLS estimate of 3¢ tends to be biased upward.

To address the endogeneity issue, I again exploit population shifters Z], for identification,
as the resettlement program did not target places with varying amenity fundamentals. One
concern that remains is that even though resettlement was plausibly independent of the
pre-existing amenities, it might change local amenities ex-post by making it more or less
attractive for reasons not related to population distribution, and hence not captured by /3
and (€. For example, if the British built more schools per unit area in places with a higher
resettlement density, the better school access would show up in the error term, violating the
exogeneity assumption. In light of this, I also employ productivity shifters as the model-
implied instruments for local population that are plausibly uncorrelated with local amenity.
I use measures of agricultural suitability from FAO, such as suitability of padi rice (Z5),
coconut (Z¢), and palm oil (Z%)—major crops in Malaysia during the studied period—as the

instruments. The moment conditions are:
E[ZyInal) =0, Ve, Z, € {25, 78, Z5, Z1 . (1.33)

I require the migration elasticity v to identify both 8¢ and . Estimates of this parameter
are rare in the literature, particularly in the developing countries. Existing studies generally
estimate a value between 2 and 4 (Monte et al., 2018; Morten and Oliveira, 2018; Bryan and
Morten, 2019; Tombe and Zhu, 2019). I assume v = 3 as my baseline and consider robustness

of the results to alternative values between 2 and 4.69

69. Again, I could potentially use equation (1.32) to estimate the migration elasticity. However, my
instruments do not provide enough independent variations for both terms on the right, as the value of residing
in a place for group-e is highly correlated with its population distribution.
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Recovery of Location Fundamentals

The exogenous location fundamentals can be recovered as the residuals from equations (1.28)
and (1.31). Specifically, I recover ¢¢, as the residuals of (1.28) after estimating 7;, and
7¢. Notice that the average of ¢f, within sector k£ and group e across regions captures the
absolute advantage of ethnicity e in sector k. Any deviation from that average across regions
reflects idiosyncratic reasons that make group e more productive in a sector-region pair.
Similarly, I recover af, as the residuals of (1.31), which captures both the location amenities
that are neutral to all ethnicities and features of a place that are particularly attractive to a

specific ethnic group.

1.7.2 Estimation

In this section, I discuss my estimation procedure and the results. I also discuss how my

estimates relate to the literature.

Estimation Procedure

The estimation proceeds as follows. I first estimate the migration cost elasticity with respect
to distance, R, and use it to calculate the migration cost matrix n,,”. Next, I iteratively
solve for the market access terms and agricultural expenditure share o, based on Proposition
1. Then, I estimate the shape parameter of Fréchet skills # by targeting the average of the
normalized variance of wages within a (n, k,e) cell, weighted by the number of population
in the cell. Lastly, I estimate {4, v, 5,8} using a generalized method of moments
(GMM) estimator based on the moment conditions of equations (1.30) and (1.33).

In implementing the procedure, I weight the estimations by the number of households to
mitigate small sample biases as in section 1.5. I bootstrap this entire procedure to get the
standard errors of the parameter estimates, where, in each bootstrap, I randomly sample with

replacement individuals from the census microdata by district, and aggregate the outcomes
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to the county level.”™

Estimation Results

This section presents my parameter estimates and discusses how they relate to the literature.

Table 1.8 documents the parameter estimates.

Distance elasticity of migration costs Migration costs rise in distance with an elasticity
k of 0.52. This estimate falls within the range of existing estimates from the literature. For
example, Bryan and Morten (2019) estimates around 0.37 in Indonesia between 1995 and

2012, and Peters (2022) estimates 1.09 in post-war Germany in 1955.1

Skill dispersion. The dispersion of productivity draws, governed by the shape parameter
0, determines the scope of selection into sectors based on individuals’ comparative advantage,
with a larger 6 corresponding to a smaller dispersion. My estimate of 3.79 falls within the
range of existing works. Lagakos and Waugh (2013) estimates a value of 5.3 for agriculture
and 2.7 for the non-agricultural sector in the U.S. from 1996-2010. Hsich et al. (2019)

estimates a value between 1.5 and 2.6 in the U.S. from 1960-2012.72

Productivity spillovers. I estimate that the size of local employment in the non-agricultural
sector increases labor productivity of that sector with an elasticity of v, = 0.55, whereas the

elasticity for the agricultural sector is much smaller, with v4 = 0.23. For the non-agricultural

70. Administrative districts are larger than the counties. There are 66 grouped districts with consistent
boundary over 1957-1980.

71. As Bryan and Morten (2019) estimates the bilateral migration costs non-parametrically instead of
assuming them to be proportional to distance, I translate the Figure 3 of their paper into my setting, with
1—mn,} ~ —0.5+ 0.147Ind,,. This implies that their distance elasticity of migration costs varies with
distance, as opposed to a constant elasticity in my case. For the comparison exercise, I take the average log
distance of 7.5 of their setting to arrive at d1Inn,,./01nd,, ~ 0.37.

72. One reason why their estimates might be smaller is that the variance of wages in their model can also
be attributed to variations in (endogenous) educational attainment, and not solely come from idiosyncratic
productivity draws.
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sector, my estimate is larger than the values of 0.2 estimated by Kline and Moretti (2014)
but smaller than the estimates obtained by Greenstone et al. (2010), in the range 1.25-3.1 .73
Estimates of productivity spillover in the agricultural sector are rare but my estimate of a
smaller elasticity aligns with the conventional wisdom that agglomeration forces in agriculture
is more limited than the industrial sector.™

I estimate a sizable productivity spillover elasticity with respect to ethnic composition,
with v¢ = 0.31. This suggests that holding fixed the total population size of a county,
increasing the Chinese employment share would enhance the productivity of local Chinese
workers. The effect on Malay workers is more nuanced and depends on the sector. Since
v < v, equation (1.8) shows that Malay workers in the non-agricultural sector would still
benefit from a rise of Chinese population. But since v¢ > 74, increased Chinese population
can reduce the agricultural productivity of Malay workers. These predictions are consistent
with my empirical findings that Malays working in the non-agricultural sector have higher
income in the more resettled counties, while those working in agriculture did not see significant
changes in in income.

Although my estimated composition-dependent spillover based on ethnicity lacks direct
comparisons in existing literature, prior studies have examined similar externality based on
other demographic characteristics such as education and occupations. For instance, Moretti

(2004a) estimates wage elasticities of 0.14 and 0.21 for college and high school graduates,

respectively, with respect to the share of college graduates in a city.75 Rossi-Hansberg et al.

73. See a discussion in Kline and Moretti (2014).

74. A large literature estimates the overall productivity elasticity with respect to density though mainly
focused on the more developed countries. They generally find a value between 0.02 and 0.09. Estimates for
the developing countries are scarce, but tend to be larger than 0.1. See Combes and Gobillon (2015) and
Melo et al. (2009) for a review.

75. Moretti (2004a) finds that a 1 percentage point increase in the share of college educated workers in a
city leads to a 1.3% increase in wages. I convert this to elasticity by taking 0.25 as the average college share
in 1990. Diamond (2016) obtains larger estimates, with a wage elasticity with respect to college share of 0.31
for college graduates and 0.93 for non-college workers. Although her estimates include the substitution effect
across high- and low-skilled workers.
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(2023) estimates the wage elasticities with respect to the share of “cognitive non-routine”
occupations, and finds substantial elasticities of 1.3 for workers in cognitive occupations and
0.84 for those in non-cognitive occupations.76

Having estimated {v4,vas,7¢}, I calculate the marginal spillover of a group-e worker
on the efficiency of group-e¢/ worker for each county n and industry k, denoted by fyZ’ke/,
using equations (1.7) and (1.8).77 Figure 1.6 illustrates their distributions across counties.
Within-group (e = €’) spillovers are generally stronger than cross-group (e # ¢’) spillovers
and the marginal spillovers tend to be larger than the values obtained by Fajgelbaum and
Gaubert (2020) when examining within /cross-group spillovers among college and non-college

graduates.78

Amenity spillovers. My baseline estimate of the amenity spillover elasticity with respect
to local population size is = —0.05.79 The small estimate suggests that congestion forces—
any disamenities due to density, such as a greater traffic or higher housing price—is weak.
As discussed in Bryan and Morten (2019), an extension of the model to include housing
as a non-traded good imply that my current endogenous amenity spillover with respect to

B _ [ a0

population size can be decomposed as L , where 3, is the pure amenity spillover

76. I assume perfect substitutability between Chinese workers and non-Chinese workers. If they are in fact
imperfect substitutes, which seems plausible, the true v¢ should be even higher. The reason is that neoclassical
forces would predict that an influx of Chinese would lead to higher wage gains among non-Chinese workers
compared to Chinese workers due to the complementarity between groups. Hence, a stronger within-group
productivity spillover would be required to justify the minimal wage increase among non-Chinese workers in
the data.

77. By the Envelop Theorem, marginal spillovers evaluated at equilibrium outcomes only entail the direct
effect (first term of (1.7) and (1.8)), as the indirect/general equilibrium effect would be zero. Intuitively, at
equilibrium wages and prices, a marginal population increase doesn’t change relative wages across industries
and locations, thus occupation and migration choices remain unchanged.

78. They calibrate four constant elasticities using the estimates from Diamond (2016): (v&, v, 75 e, 7Es),
where 7L}, denotes the marginal productivity spillover of a college graduate (S) on the efficiency of a
non-college graduate (U), and so forth. They obtain (v, ¥4, v vs) = (0.003,0.044,0.020, 0.053).

79. My baseline estimate uses county resettlement density as the instrument. Using the FAO agricultural
suitability indices as alternative instruments, which do not have the potential endogeneity concern discussed
in section 1.7.1, I estimate 8 = 0.09 and 8¢ = 0.19.
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capturing the preference for living in a more populated county and (, is the inverse of housing
supply elasticity, with ¢ being the share of income on housing. Using the Malaysian Family
Life Survey in 1989, I estimate 3, to be around 0.3 using the resettlement shocks as demand
shifter (Appendix Table (7)), which corresponds to an elasticity of 3.3 (1/0.3). This is a
relatively high elasticity compared to estimates in the U.S, which are mostly between 1 and 3
(Gyourko et al., 2008; Saiz, 2010).80 In addition, housing expenditure share ¢ in 1980 was
17.6% (Department of Statistics Malaysia, 1980).%1 Together, these imply that pure amenity
spillover is around S, = 8 + 08, = 0.003.

There are few estimates of the (net) amenity spillover () in low-income countries that I
can use for comparison with my estimate. Bryan and Morten (2019) estimates a value of
0.04, albeit with limited statistical power. Allen and Donaldson (2022) uses historical data
from the U.S. spanning 1800 to 2000 to estimate contemporaneous and historical amenity
spillovers jointly. They find a value of -0.26 for contemporaneous spillover and 0.31 for
historical spillover. Their historical amenity spillover is generated from population 50 years
ago. Considering that my two-period model on a 24-year time scale does not distinguish
between contemporaneous and historical spillovers, it is reasonable that my estimate falls
between the values of their contemporaneous and historical spillovers.

My baseline estimate of the amenity spillover elasticity with respect to ethnic composition
is 5¢ = 0.05. Similar to the productivity spillover, I calculate the marginal amenity spillover
of a group-e individual on the utility of group-e’ individuals for each county n, denoted
by BS’Q/, which varies with population composition across counties. Figure 1.7 shows the
distribution of 6576/. Given that (¢ is positive, an increase in group-e’s population would
increase the utility of people in group-e more than those in group ¢’ # e. The stronger

within-group amenity spillover is consistent with specialization and the economies of scale

80. In Indonesia, Bryan and Morten (2019) estimates a value of 4 (although underpowered).

81. The expenditure category is “gross rent, fuel and power”. The same expenditure share in 1973 was
14.9%.
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in the provision of urban amenities, such as restaurants or entertainment, as discussed in
Duranton and Puga (2004). It is also in line with the presence of social frictions, as indicated
by consumption segregation documented in Davis et al. (2019).

There are no existing estimates in the literature that my estimates of Bﬁ’e/ can be directly
compared to. The closest paper, Fajgelbaum and Gaubert (2020), considers the amenity
spillover with respect to college share estimated by Diamond (2016) and obtains marginal
elasticities ranging from -1.24 to 0.77. Notably, their numbers also indicate that within-group

amenity spillovers tend to be more positive than cross-group spillovers.52

1.8 Conclusion

This paper studies the agglomeration economies resulting from a large-scale, forced relocation
of rural Chinese to compact villages in 1950s British Malaya. This ethnicity-based resettlement
substantially altered both population size and ethnic composition across Malaysia’s landscape.
Leveraging the resettlement program, I employ a design-based identification strategy and find
that areas with higher resettlement densities experienced an increase in industrial activities
and a higher share of non-agricultural employment, alongside higher income and education
levels. Additionally, these areas attracted internal migration from other regions.

The observed higher income among Chinese households in the more resettled areas, along
with limited income differences for other groups, is consistent with social frictions across ethnic
lines hindering productive interactions that underlie the agglomeration forces discussed in
Marshall (1890), such as labor market pooling, input-output linkages, and knowledge spillovers.
Meanwhile, other ethnic groups primarily benefit from switching into the non-agricultural
sector, which exhibits a larger external economy of scale than agriculture.

The finding that within-group productivity spillovers surpass cross-group spillovers

82. Similar to marginal productivity spillovers, the authors calibrate four constant amenity spillover
elasticities: (Vi1 Vars Vivs, Vig) = (—0.43,0.18,—-1.24,0.77), where 74, denotes the marginal amenity
spillover of a college graduate (S) on the utility of a non-college graduate (U), and so forth.
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underscores a diversity trade-off. While higher diversity permit greater gains from idea
exchange, excessive diversity can lead to tension and impede productive social interactions.
This trade-off may also vary with development stage; in technologically backward economies
like Malaysia during the studied period, lower diversity may be more crucial for productivity
enhancement through channels of technology adoption. In contrast, closer to the technology
frontier where innovation is presumably more important, diversity could prove more economically
advantageous. Further empirical evidence along this line would be valuable.

While this paper focuses on ethnic composition as a source of heterogeneity in agglomeration
forces, other demographic characteristics, such as religion and education, could also exhibit
differential agglomeration spillovers within versus across groups. Considering the spatial
variations in these demographic attributes, agglomeration elasticities are likely to vary
spatially, implying that spatial or place-based policies could potentially enhance welfare.

The larger external economies of scale in the non-agricultural sector compared to
agriculture suggest that reallocating resources from the latter to the former through industrial
policies can increase aggregate output. Prominent examples include the growth trajectory
of the East Asian Tigers and a few Southeast Asian countries, including Malaysia, during
the postwar era. The heterogeneity in external economies across sectors may also apply to
more detailed industry classifications. Further research into mechanisms through which size
influences productivity, particularly why these mechanisms might differ by sector, is crucial
for policy formulation. This includes understanding the relative contributions of firm-level

increasing returns versus external economies at both the sector and location levels.
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1.A Figures

Figure 1.1. The New Villages and Transportation Network

O New Villages
— Roads/Railways (1942)

Notes: This figure shows the location of the New Villages (round circles) and the roads and railways in 1942
(line). The gray polygons indicate state boundaries. Data on the New Villages are from the Corry report.
Data on roads and railways from U.S. Office of Strategic Services (1942).
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Figure 1.2. Permutation Procedure: Counterfactual Site Selection
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Notes: This figure illustrates the permutation procedure for counterfactual site selections. The black dot is
one actual New Village in State Johor. Dashed lines are the roads and railroad network. Gray areas have
equal distance to the depicted actual village and are equally suitable for resettlement. The triangle shows a
counterfactual village location randomly and uniformly drawn from the suitable areas.
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Figure 1.3. County Resettlement Density, Expected and Residualized

Panel A. County Resettlement Density, Panel B. County Resettlement Density,
Expected Residualized

) o

Notes: This figure shows the expected county resettlement density and the residualized county resettlement
density, with darker shades corresponding to greater resettlement density deciles. The white bubbles denote
the New Villages, with their sizes proportional to the resettled population. The sample is restricted to the
249 counties with any New Village, which are where the identifying variations are drawn from. Panel A
shows the calculated expected resettlement density, calculated with equation (1.4). Panel B shows the
residualized resettlement density after partialling out state fixed effects, the expected resettlement density,
and the baseline controls: an indicator for any resettlement in the county; (log) county area; distance to the
nearest road; road density of the county; distance to the nearest rail station; distance to coastline; Chinese
population share of the county in 1947; (log) population density of the county in 1947; the share of lands
used for rubber cultivation in 1944; and the share of lands used for mining in 1944. Data on the resettlement
density from the Corry report.
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Figure 1.4. County Population Growth from 1947 to 1957, by Ethnic Group

Panel A. County Population Growth, Panel B. County Population Growth,
Chinese Non-Chinese
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Notes: This figure shows county population growth from 1947 to 1957, by ethnic group. Panel A shows the
log changes of Chinese population. Panel B shows the log changes of non-Chinese population. The white
bubbles denote the New Villages, which are sized in proportion to the log resettled population in that village.
Counties with missing population are shaded in white. Data from the tabulated Census of Population and

the Corry report.
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Figure 1.5. Changes in Population Distribution from 1931 to 2000,
by County Resettlement Density

Panel A. Population Growth Panel B. Changes in Chinese Share
0.8+ ® Chinese 0.08
Non-Chinese

0.06 9

0.0414

0.024

0.004

Estimates of Changes in Log Population
Estimates of Changes in Chinese Share

T + T T T T T + T T T T
1931 1947 1957 1970 1980 2000 1931 1947 1957 1970 1980 2000

Notes: Regressions control for the expected resettlement density, whether a county has any resettlement,
(log) county area, (log) distance to nearest road, road density, distance to nearest rail station, distance to
coastline, 1947 Chinese population share and population density, and the land shares of rubber and mining.
The shaded region reflects the 95% confidence interval under Conley standard errors, with a distance cutoff
of 30 kilometers.
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Figure 1.6. Distribution of Marginal Productivity Spillovers, by Ethnic Group

Panel A. Chinese-to-Chinese Spillover

Panel C. Malays-to-Chinese Spillover
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Notes: This figure shows the distribution of marginal productivity spillovers across counties, by pairwise
combination of Chinese and Malays (non-Chinese). Panel A shows the elasticity of Chinese productivity with
respect to local Chinese population; that is, the percent changes in Chinese productivity resulting from a one
percent increase in the local Chinese population. Panel B shows the elasticity of Malays productivity with
respect to local Chinese population. Panel C shows the elasticity of Chinese productivity with respect to
local Malays population. Panel D shows the elasticity of Malays with respect to local Malays population.
These elasticities are calculated from equations (1.7) and (1.8), holding fixed occupational shares.
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Figure 1.7. Distribution of Marginal Amenity Spillovers, by Ethnic Group

Panel A. Chinese-to-Chinese Spillover Panel C. Malays-to-Chinese Spillover
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Notes: This figure shows the distribution of marginal amenity spillovers across counties, by pairwise
combination of Chinese and Malays (non-Chinese). Panel A shows the elasticity of Chinese utility with
respect to local Chinese population; that is, the percent changes in Chinese utility resulting from a one
percent increase in the local Chinese population. Panel B shows the elasticity of Malays utility with respect
to local Chinese population. Panel C shows the elasticity of Chinese utility with respect to local Malays
population. Panel D shows the elasticity of Malays with respect to local Malays population. These
elasticities are calculated similarly as in equations (1.7) and (1.8) for the marginal productivity spillovers,
holding fixed migration shares.
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Table 1.2. Post-Resettlement Population Distribution, by County Resettlement Density

Log

Chinese Share of Built-up

Log County Population County Population Volume
1957 1980 2000 1957 1980 2000 1990

(1) (2) (3) (4) () (6) (7)
ResettleDensity ~ 0.004***  0.108%  0.177%%  0.048*%%  0.050%%*  0.041%%*  (.264%**

(0.034)  (0.062)  (0.075)  (0.012)  (0.011)  (0.011)  (0.087)
# Counties 777 777 777 777 777 777 777

Notes: This table shows the relationship between measures of population distribution and county resettlement
density. “ResettleDensity” is the county resettlement density constructed according to equation (1.2), standardized
such that it has a standard deviation of one. Columns 1-3 report the effect of resettlement density on log county
population in 1957 (Column 1), 1980 (Column 2), and 2000 (Column 3). Columus 4-6 report the effect of resettlement
density on the Chinese share of county population in 1957 (Column 4), 1980 (Column 5), and 2000 (Column 6).
Column 7 reports the effect on log built-up volume in 1990. All regressions are estimated using OLS and include
state fixed effects, the expected resettlement density, and the baseline controls: an indicator for any resettlement in
the county; (log) county area; distance to the nearest road; road density of the county; distance to the nearest rail
station; distance to coastline; Chinese population share of the county in 1947; (log) population density of the county
in 1947; the share of lands used for rubber cultivation in 1944; and the share of lands used for mining in 1944. The
unit of observation is the county. Columns 1-6 use data from the tabulated Census of Population. Column 7 uses
data from the Global Human Settlement Layer (GHSL) project. Conley standard errors with a distance cutoff of 30
kilometers are reported in parentheses. Level of significance: *p<0.1; **p<0.05; ***p<0.01.
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Table 1.3. Sectoral Employment, by County Resettlement Density

Total Employment by Industry:

Primary Utility and ~ Trade and
Sector Manuf. Construction Transport Services
(1) (2) (3) (4) (5)
ResettleDensity 0.101%** 0.258* 0.327%* 0.216* 0.209
(0.034) (0.148) (0.136) (0.131) (0.147)
# Counties T T 7 T T

Notes: This table shows the relationship between sectoral employment and county resettlement density.
“ResettleDensity” is the county resettlement density constructed according to equation (1.2), standardized
such that it has a standard deviation of one. Each column shows the effect of resettlement on total
employment in a different industry sector: the primary sector, comprised of agriculture, hunting, forestry,
fishing, mining, and quarrying (Column 1); manufacturing (Column 2); utility and construction (Column
3); wholesale/retail trade, transport, and communication (Column 4); finance, business and other services
(Column 5). All regressions are estimated using the Poisson pseudo-maximum-likelihood (PPML) estimator
and include state fixed effects, the expected resettlement density, and the baseline controls: an indicator
for any resettlement in the county; (log) county area; distance to the nearest road; road density of the
county; distance to the nearest rail station; distance to coastline; Chinese population share of the county
in 1947; (log) population density of the county in 1947; the share of lands used for rubber cultivation
in 1944; and the share of lands used for mining in 1944. The unit of observation is the county. Data
from the tabulated Census of Population in 1980. Conley standard errors with a distance cutoff of 30
kilometers are reported in parentheses. Level of significance: *p<0.1; **p<0.05; ***p<0.01.
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Table 1.4. Sectoral Employment Share, by County Resettlement Density

Chinese Non-Chinese Difference
Individuals Individuals (1) = (2)

(1) (2) (3)

Panel A. Primary Sector

ResettleDensity 0.031 -0.141%* 0.172%%*
(0.081) (0.072) (0.053)
Panel B. Manufacturing
ResettleDensity 0.128* -0.006 0.134*
(0.070) (0.114) (0.081)
Panel C. Utility and Construction
ResettleDensity -0.103 0.255%* -0.357***
(0.086) (0.107) (0.104)
Panel D. Trade and Transport
ResettleDensity 0.016 0.1607*** -0.145%*
(0.046) (0.058) (0.057)
Panel E. Services
ResettleDensity 0.160* 0.024 0.136**
(0.083) (0.069) (0.065)
# Individuals 21,086 38,819
# Counties 515 744

Notes: This table shows the relationship between sectoral employment share and county resettlement
density, separately for Chinese and non-Chinese individuals. “ResettleDensity” is the county resettlement
density constructed according to equation (1.2), standardized such that it has a standard deviation of
one. Each panel shows the effect of resettlement density on the probability that a person is employed
in a different sector: the primary sector, comprised of agriculture, hunting, forestry, fishing, mining,
and quarrying (Panel A); manufacturing (Panel B); utility and construction (Panel C); wholesale/retail
trade, transport, and communication (Panel D); finance, business and other services (Panel E). Column
1 reports estimates restricting the sample to Chinese individuals only. Column 2 restricts the sample to
non-Chinese individuals only. Column 3 reports the difference between the estimates in Columns 1 and
2. All regressions are estimated using the Poisson pseudo-maximum-likelihood (PPML) estimator and
include state fixed effects, the expected resettlement density, and the baseline controls: an indicator
for any resettlement in the county; (log) county area; distance to the nearest road; road density of the
county; distance to the nearest rail station; distance to coastline; Chinese population share of the county
in 1947; (log) population density of the county in 1947; the share of lands used for rubber cultivation in
1944; and the share of lands used for mining in 1944. The unit of observation is the individual. The
sample is restricted to individuals aged 15 or above reporting employed in an industry. Data from the
2% individual-level Census of Population microdata in 1980. Conley standard errors with a distance
cutoff of 30 kilometers are reported in parentheses. Level of significance: *p<0.1; **p<0.05; ***p<0.01.
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Table 1.5. Manufacturing Activity, by County Resettlement Density

Chinese Non-Chinese
All Owned Owned

(1) (2) (3)

Panel A. Number of Establishments

ResettleDensity 13.319* 9.476* 3.843*
(7.565) (5.386) (2.319)
Panel B. Log Establishments (PPML)
ResettleDensity 0.138 0.139 0.123
(0.121) (0.103) (0.181)
Panel C. Any Establishment
ResettleDensity 0.010 0.018 0.083%#*
(0.027) (0.030) (0.024)
# Counties T 7 T

Notes: This table shows the relationship between measures of manufacturing activity and county
resettlement density. “ResettleDensity” is the county resettlement density constructed according to
equation (1.2), standardized such that it has a standard deviation of one. Each cell corresponds to a
regression. Panel A, Column 1 shows the effect of resettlement density on an indicator of whether
the county has any manufacturing establishment. Column 2 (or 3) shows the effect on whether
the county has any Chinese-owned (or non-Chinese owned) manufacturing establishment. Panel B
reports the effect of resettlement density on the total number of establishments (Column 1) and
the number of Chinese-owned establishment (Column 2) and non-Chinese owned establishments
(Column 3). Panel C shows the effect of the same outcome as B but is estimated with the Poisson
pseudo-maximum-likelihood (PPML) estimator, whereas Panels A and B are estimated with OLS.
All regressions include state fixed effects, the expected resettlement density, and the baseline controls:
an indicator for any resettlement in the county; (log) county area; distance to the nearest road; road
density of the county; distance to the nearest rail station; distance to coastline; Chinese population
share of the county in 1947; (log) population density of the county in 1947; the share of lands used for
rubber cultivation in 1944; and the share of lands used for mining in 1944. The unit of observation
is the county. Data from the Directory of Manufacturing in 1970. Conley standard errors with a
distance cutoff of 30 kilometers are reported in parentheses. Level of significance: *p<0.1; **p<0.05;
#*5<0.01.
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Table 1.6. Human Capital, by County Resettlement Density

All Chinese Non-Chinese  Difference
Individuals  Individuals  Individuals (2) — (3)

(1) (2) (3) (4)

Panel A. Years of Schooling

ResettleDensity 0.180 0.416* 0.098 0.317**
(0.157) (0.224) (0.123) (0.150)
# Individuals 88,852 31,507 57,345
# Counties 752 522 745
Panel B. Primary Education
ResettleDensity 0.044 0.069** 0.029 0.040**
(0.027) (0.032) (0.024) (0.016)
# Individuals 88,852 31,507 57,345
# Counties 752 522 745
Panel C. Secondary Education
ResettleDensity 0.072 0.177%* 0.024 0.153%**
(0.057) (0.079) (0.048) (0.051)
# Individuals 88,852 31,507 57,345
# Counties 752 522 745
Panel D. Log Birth Weight of First Child
ResettleDensity 0.051%** 0.078*** 0.038* 0.040
(0.015) (0.029) (0.020) (0.030)
# Individuals 1,451 396 1,055
# Counties 164 79 152

Notes: This table shows the relationship between measures of human capital and county resettlement density.
“ResettleDensity” is the county resettlement density constructed according to equation (1.2), standardized
such that it has a standard deviation of one. Each panel shows the effect of resettlement density on a
different outcome of human capital: years of schooling (Panel A); completion of primary education (Panel B);
completion of secondary education (Panel C); log birth weight of of the first child. Column 1 reports pooled
estimates for Chinese and non-Chinese households. Column 2 restricts the sample to Chinese households only.
Column 3 restricts the sample to non-Chinese households only. Column 4 reports the difference between the
estimates in columns 2 and 3. Panels A to C are estimated using the Poisson pseudo-maximum-likelihood
(PPML) estimator, and Panel D is estimated using OLS. All regressions include state fixed effects, the
expected resettlement density, and the baseline controls: an indicator for any resettlement in the county;
(log) county area; distance to the nearest road; road density of the county; distance to the nearest rail station;
distance to coastline; Chinese population share of the county in 1947; (log) population density of the county
in 1947; the share of lands used for rubber cultivation in 1944; and the share of lands used for mining in
1944. The unit of observation is the individual. For panels A to C, the sample is restricted to individuals
aged 20 or above from the 2% individual-level Census of Population microdata in 1980. For panel D, the
sample is restricted to females who report having at least one child from the Malaysian Family Survey in
1989. Conley standard errors with a distance cutoff of 30 kilometers are reported in parentheses. Level of
significance: *p<0.1; **p<0.05; ***p<0.01.
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Table 1.7. Household Income, by County Resettlement Density

All Chinese Non-Chinese  Difference
Households ~ Households  Households (2) — (3)

(1) (2) (3) (4)

Panel A. Log Earnings

ResettleDensity 0.069* 0.111%* 0.037 0.074**
(0.038) (0.052) (0.031) (0.038)
# Households 33,328 10,622 22,706
# Counties 713 495 705
Panel B. Log Earnings, Primary Sector
ResettleDensity 0.029 0.073** -0.009 0.082*
(0.037) (0.036) (0.040) (0.044)
# Households 9,726 1,660 8,066
# Counties 679 349 649
Panel C. Log Earnings, Non-Primary Sector
ResettleDensity 0.077* 0.121%* 0.044 0.078%*
(0.039) (0.052) (0.030) (0.033)
# Households 23,602 8,962 14,640
# Counties 698 445 689

Notes: This table shows the relationship between household income and county resettlement density.
“ResettleDensity” is the county resettlement density constructed according to equation (1.2), standardized
such that it has a standard deviation of one. Panel A, Columns 1-3 show the effect of resettlement density
on log household earnings predicted from asset ownership for all households (Column 1); Chinese households
(Column 2); and non-Chinese households (Column 3). Column 4 reports the difference between the estimates
in columns 2 and 3. Panel B restricts the sample to households whose head employ in the primary sector,
comprised of agriculture and mining. Panel C restricts the sample to households whose head employ outside
the primary sector. All regressions are estimated by OLS and include state fixed effects, the expected
resettlement density, and the baseline controls: an indicator for any resettlement in the county; (log) county
area; distance to the nearest road; road density of the county; distance to the nearest rail station; distance
to coastline; Chinese population share of the county in 1947; (log) population density of the county in 1947;
the share of lands used for rubber cultivation in 1944; and the share of lands used for mining in 1944. The
unit of observation is the household. Data from the 2% individual-level Census of Population microdata in
1980. Conley standard errors with a distance cutoff of 30 kilometers are reported in parentheses. Level of
significance: *p<0.1; **p<0.05; ***p<0.01.
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Table 1.8. Parameter Estimates

Parameter  Description

(1) (2)

Value
(3)

Panel A. Estimated Parameters

K Distance elasticity of migration costs

a Expenditure share on agriculture

0 Skill dispersion

YA Productivity spillover w.r.t. size, agric.
VM Productivity spillover w.r.t. size, manuf.
~¢€ Productivity spillover w.r.t. ethnic share
15} Amenity spillover w.r.t. size

o Amenity spillover w.r.t. ethnic share

Panel B. External Parameters

o Elasticity of substitution
v Migration elasticity
19 Distance elasticity of trade costs

0.520
0.316
3.786
0.230
0.549
0.305
-0.053
0.045

8.00
3.00
0.18

Notes: Bootstrap standard errors reported in parentheses.
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1.C Theoretical Results

1.C.1 Properties of Fréchet Distribution

Let {z;}!" | be ii.d. random variables of the Fréchet distribution with scale ¢; and shape 6,

such that the c.d.f. is given by
—p;z? .
Fp.(x)=e 9" [ Vi=1,2,...,n,

where E[z;] = I'(1 — 1/9)¢3/9. Going forward, let I'y =I'(1 — 1/6).
One property of Fréchet distribution is that the maximum of n i.i.d. Fréchet random
variables is also Fréchet distributed, with the same shape parameter, and its scale parameter

is the sum of scales across z;, i = 1,...,n. Let & denote the maximum of {x;}!"_,, we have
n No—0
Fi(z) = e~ (Xiz1 0 , (1.34)

- 1/6

where E[#] = Ty (321, ¢:)/°.
Furthermore, a key property of Fréchet distribution is that the above, unconditional
expectation of 7 is also the conditional expectation, conditional on any x; being the maximum;

that is,
E[7] = E[z;|r; = max{z;}], Vi=1,...,n. (1.35)
J

Any multiplication of a Fréchet random variable with a constant also has a Fréchet
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distribution. To see this, let y; = wx; and we can write the c.d.f. of y; as

Fy(y) =P(y; <)
=P(z; < y/w)

_ (o) (1.36)

where the scale parameter of y; is gzﬁl-wg
Another useful property of Fréchet distribution is that the probability of x; being the
maximum among all the n i.i.d. random Fréchet distributed random variables is simply the

ratio of the scale of z; to the sum of scales across n:

P(x; = max z;) = # (1.37)
ZZl,...,’I’L i=1 sz

1.C.2  Sectoral Labor Supply

I now derive the key equations pertaining to the sectoral labor supply. Individuals draw their
efficiency units independently across sectors of agriculture and manufacturing A¢ = ( Y A?M)

from the joint distribution:

Fr(ha, M) = T Fo(An),
k=AM

where the marginal probability distribution is Fréchet:

After knowing their efficiency units, they choose the sector that pays higher earnings. Let

wy, be the wage per efficiency unit for industry % in region n. The earnings of individual ¢

80



of ethnicity e in industry k, location n is thus

e _ e
Yink = wnk)‘ink‘

= Wy A f (Lo L)

€

_ e
- wnkAmk’

where

Wk = Wnkf (Lyg: L)

Function f(L{,, L), which depends on local population distribution, captures human
capital externalities.

Since yfnk equals a constant wgk multiplied by a Fréchet random variable Afnk? it is also
Fréchet distributed with shape 6 and scale qbzk(wflk)o. The expected earning for ethnicity e
in industry & and region n is thus I'y ( flk(wflkﬁ) 1/6.

For an individual of ethnicity e in region n, the probability of choosing to work in industry

k is

e (we )0 w® 0
¢ =P, — maxyt ) — nk\ “nk _ e nk :
Tnk <ymkz s yms) Zs d)%s(w%s)e ¢nkj ws

where

_e e (e e (e \O\M?
wnE< nA (wnA) +¢nM (wnM)> :

Since people of ethnicity e choose the sector that pays more and this process continues

until the (e-specific) earning equalize across the two sectors, in equilibrium, the average wage
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for ethnic group e in region n is given by

1/0
E[max yj,;] = T'g (Z ¢i(w§k)9> = [y,
p

Moreover, due to a Fréchet property shown in Equation (1.35), ethnic group e in region n
attain, on average, the same earning across the two sectors.

It follows that the average skill of group-e in region n, sector k, is given by

e —1
E[yfnk’/wrezk: ‘yzenk = HlSaX yfns]f( %k’ me) = Fﬂw%wnk'
Ae
ink

Notice that it can also be written in terms of occupation share as

Ly (@ik)l/e (me)il/a F(Lygs L),

where the neoclassical force (ng)_l/ 0 implies that a higher share of labor supply tends
to lower the average skill in the sector due to selection. In contrast, the externality term
f(LS ., L) tends to increase the average skills in the number of population.

The aggregate sectoral earnings from ethnicity e in industry k& and region n is the local
population of ethnicity e multiplied by the share working in industry k and by their average

sectoral earning conditional on choosing &:
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This implies that the aggregate human capital supply in industry k, region n is

—1 1—
Hyp =Ty Y Ladf (wl) fw L ws) =0
e

—FQZanbkwnkwnk( et (S

Lek ~¢€ wek 0—1
=Ty Y Li¢h (L) ( - ) ( = ) .
p nk n

1.C.3 Mgration

Individuals of group e draw an idiosyncratic taste shock for each location and decide where
to migrate before knowing their efficiency units. The taste shock uf, is assumed to drawn

from the following location-specific Fréchet distribution
Ff(a) = exp (—(zfla_y) ,

where the scale af, captures the average attractiveness of location n for group e and the
shape v captures the dispersion of taste (which is assumed to be the same for all groups and
locations).

The value of relocating from r to n for ethnicity e is
V;“en_nrna Lywy, P_

where 7y, is the migration cost and the amenity term af, depends on the local population:

As VS, is a Fréchet random variable uf, multiplied by a constant 7., 594 n(LS /Ly)P Tywt Pyt

it is itself Fréchet distributed. The distribution of V¢, thus implies that the probability of

83



relocating from r to n for ethnicity e is

e v
a5, (md (Ln)” (L6 /L) P )

= ” v*
S ay (nﬁl (L)? (L§/Ly)" wzePz_1>

min =P (V;"en = mlaX r€l>
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1.D Appendix Figures
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Figure 1.8. Employment Share in 1947, by Ethnic Group
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Notes: This figure shows the employment share across the primary, secondary, and tertiary industries for
Chinese and non-Chinese, respectively. The primary sector includes agriculture and mining. The secondary
sector includes manufacturing, utility, and construction. The tertiary sector includes transportation,
communication, commerce, finance, business, and other services. Data from the 1947 Census of Population
(Del Tufo, 1947).
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Figure 1.9. Population Distribution in 1947

Notes: This figure shows the distribution of population in 1947. Data from the 1947 Census of Population
(Del Tufo, 1947).
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Figure 1.10. The Black Areas in 1957

l

Notes: This figure shows the “Black areas” in 1957—areas considered to have substantial communists
activities and were under various Emergency regulation. Data from the National Archives of the UK.
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Figure 1.11. Population Distribution of the Squatters
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Notes: This figure shows the distribution of the squatters inferred from the intersection of three maps. The
gray dots represent population clusters provided by the 1947 census. The areas shaded in dark are the “Black
areas” with communist activities and were under various Emergency regulation. The areas shaded in green
are areas classified as forest from land utilization maps in 1943 (War Office, 1943).
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Figure 1.12. County Resettlement Density, compared to Expected Resettlement
Density Predicted by Gravity Model
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Notes: This figure compares the measured county resettlement density and the expected resettlement density
calculated from equation (1.4). Expected resettlement density is calculated conditional on the actual
locations of the New Villages. Data from the Corry report.
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Figure 1.13. Village Resettled Population, compared to Expected Resettled
Population Predicted by Gravity Model
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Notes: This figure compares the measured resettled population of each village and the counterfactual
resettled population in the villages, conditional on their locations. The counterfactual village resettlement is
calculated based on gravity equation (1.3), which models the dislocation-minimizing plan. Data from the
Corry report.
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Figure 1.14. Built-up Capital in 1990
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Notes: This figures shows the distribution of built-up capital in 1990 in a region within the state of Johor
and the locations of the New Villages in that area. The New Villages are marked by red dots. Built-up
volumes, shaded in white, are calculated using the surface and height data at a 100-meter resolution from the
Sentinel-2 and Landsat satellite images. The base map shows the population clusters, marked by black dots,
from the Census of Population in 1947. Data on built-up volume and New Villages from the GHSL project
and the Corry report.
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Figure 1.15. Chinese Employment Share Within Manufacturing in 1947, by

Industry
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Notes: This figure shows the Chinese employment share across industries within the manufacturing sector in
1947. Each bar shaded in dark shows the share of Chinese employment in total employment of a specific
industry within manufacturing. Data from the 1947 Census of Population (Del Tufo, 1947).



Figure 1.16. Convexity of the Loss Function in Estimating Migration Costs
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Notes: This figure shows convexity of the loss function for estimating migration cost. The y-axis plots the
loss from equation (1.26), which is a function of observed bilateral migration flows and parameter value &,
shown in the x-axis. Data from the tabulated Census of Population in 1980.
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1.E Appendix Tables
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Table 1.9. Population in British Malaya from 1911 to 1957, by Ethnic Group

Malays Chinese Indians and Others

Number Percent Number Percent Number Percent
Year (1) (2) (3) (4) (5) (6)
1911 1,367,245 59% 692,228 30% 239,169 12%
1921 1,568,588 54% 855,863 29% 439,172 17%
1931 1,863,723 49% 1,284,094 34% 572,205 17%
1947 2,395,686 49% 1,882,700 39% 529,594 12%
1957 3,126,773 50% 2,328,480 37% 695,923 13%

Notes: This table shows the population and share by ethnic group in British Malaya from 1911 to 1957.
Columns 1 and 2 report the number of Malays and its share in total population of a given year. Columns 3
and 4 report the same figures for Chinese. Columns 5 and 6 report the same figures for Indians and other
ethnic groups. Data from the Census of Population 1911-1957 (Vlieland, 1931; Del Tufo, 1947; Purcell,
1947; Fell, 1960).
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Table 1.10. Migration Outcomes in 1980, by County Resettlement Density

All Chinese Non-Chinese  Difference
Individuals  Individuals  Individuals (2) — (3)

(1) (2) (3) (4)

Panel A. Internal Migrant

ResettleDensity 0.019 0.130%* 0.012 0.118**
(0.043) (0.071) (0.034) (0.054)
# Individuals 173,375 57,512 115,863
# Counties 752 526 744
Panel B. Internal Migrant After 1960
ResettleDensity 0.028 0.171* 0.025 0.146**
(0.052) (0.092) (0.040) (0.073)
# Individuals 172,514 57,225 115,289
# Counties 752 524 744

Notes: This table shows the relationship between migration outcomes and county resettlement density.
“ResettleDensity” is the county resettlement density constructed according to equation (1.2), standardized
such that it has a standard deviation of one. Panel A shows the effect of resettlement density on whether
a person is an internal migrant—those who moved to the current locality from another village or town
within Malaysia. Panel B shows the effect of resettlement density on whether a person is an internal
migrant who moved into the current locality within the last 20 years (or after 1960). Column 1 reports
pooled estimates for Chinese and non-Chinese households. Column 2 restricts the sample to Chinese
households only. Column 3 restricts the sample to non-Chinese households only. Column 4 reports the
difference between the estimates in columns 2 and 3. Both panels are estimated using the Poisson pseudo-
maximum-likelihood (PPML) estimator and include state fixed effects, the expected resettlement density,
and the baseline controls: an indicator for any resettlement in the county; (log) county area; distance to
the nearest road; road density of the county; distance to the nearest rail station; distance to coastline;
Chinese population share of the county in 1947; (log) population density of the county in 1947; the share
of lands used for rubber cultivation in 1944; and the share of lands used for mining in 1944. The unit
of observation is the individual. The sample is restricted to individuals who are not external migrant—
those moved to the current locality from outside Malaysia. Data from the 2% individual-level Census
of Population microdata in 1980. Conley standard errors with a distance cutoff of 30 kilometers are
reported in parentheses. Level of significance: *p<0.1; **p<0.05; ***p<0.01.
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Table 1.11. Manufacturing Activity in 1970, by County Resettlement
Density and Industry Employment Share of Chinese

Chinese Non-Chinese
All Owned Owned

(1) (2) (3)

Panel A. Number of Establishments

ResettleDensity 0.121 0.083 0.038
(0.223) (0.134) (0.098)
ResettleDensity x ChiEmpShare 0.595 0.422 0.173
(0.409) (0.297) (0.122)
Panel B. Log Establishments (PPML)
ResettleDensity -0.126 -0.016 -0.402
(0.246) (0.221) (0.347)
ResettleDensity x ChiEmpShare 0.282 0.164 0.584
(0.251) (0.205) (0.417)
Panel C. Any Establishment
ResettleDensity -0.009 0.000 -0.026*
(0.025) (0.024) (0.016)
ResettleDensity x ChiEmpShare 0.053* 0.036 0.066***
(0.031) (0.029) (0.025)
# Counties 7 T T
# County-Industries 15,540 15,540 15,540

Notes: This table shows the relationship between measures of manufacturing activity and county
resettlement density. “ResettleDensity” is the county resettlement density constructed according to
equation (1.2), standardized such that it has a standard deviation of one. “ChineseEmpShare” is the
share of Chinese employment within the state-industry pair measured in 1947, with 20 categories of
2-digit industries within manufacturing (see Figure (1.15)). Each panel-column cell corresponds to a
regression. Panel A, Column 1 shows the effect of resettlement density and its interaction with the pre-
period Chinese employment share of the industry on an indicator of whether the county-industry has
any establishment. Column 2 (or 3) shows the effect on whether the county-industry has any Chinese-
owned (or non-Chinese owned) establishment. Panel B reports the effect of resettlement density on the
total number of establishments (Column 1) and the number of Chinese-owned establishment (Column
2) and non-Chinese owned establishments (Column 3). Panel C shows the effect of the same outcome
as B but is estimated with the Poisson pseudo-maximum-likelihood (PPML) estimator, whereas
Panels A and B are estimated with OLS. All regressions include state fixed effects, the expected
resettlement density, and the baseline controls: an indicator for any resettlement in the county;
(log) county area; distance to the nearest road; road density of the county; distance to the nearest
rail station; distance to coastline; Chinese population share of the county in 1947; (log) population
density of the county in 1947; the share of lands used for rubber cultivation in 1944; and the share
of lands used for mining in 1944. The unit of observation is the county. Data on manufacturing
establishments are from the Directory of Manufacturing in 1970. Data on Chinese employment share
are from the tabulated Population Census in 1947. Conley standard errors with a distance cutoff of
30 kilometers are reported in parentheses. Level of significance: *p<0.1; **p<0.05; ***p<0.01.
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Table 1.13. Household Asset Ownership, by County Resettlement Density

All Chinese Non-Chinese  Difference
Households ~ Households ~ Households (2) = (3)

(1) (2) (3) (4)

Panel A. Owned the House

ResettleDensity 0.043*** 0.048%** 0.030* 0.018
(0.014) (0.015) (0.017) (0.017)
Panel B. Have Vehicle
ResettleDensity 0.038** 0.058** 0.020* 0.038*
(0.018) (0.028) (0.012) (0.022)
Panel C. Have Fridge
ResettleDensity 0.038* 0.037 0.032 0.004
(0.022) (0.028) (0.020) (0.024)
Panel D. Have TV
ResettleDensity 0.013 0.035%** 0.003 0.032%*
(0.017) (0.013) (0.018) (0.015)
Panel E. Have Phone
ResettleDensity 0.023* 0.034 0.013 0.021
(0.013) (0.022) (0.008) (0.016)
# Households 37,124 11,604 25,520
# Counties 759 521 751

Notes: This table shows the relationship between household asset ownership and county resettlement
density. “ResettleDensity” is the county resettlement density constructed according to equation (1.2),
standardized such that it has a standard deviation of one. Each panel shows the effect of resettlement
density on a different indicator of asset ownership: the occupied house (Panel A); any motor car or van
(Panel B); any refrigerator (Panel C); any black or color TV (Panel D); any phone (Panel E). Column
1 reports pooled estimates for Chinese and non-Chinese households. Column 2 restricts the sample to
Chinese households only. Column 3 restricts the sample to non-Chinese households only. Column 4
reports the difference between the estimates in columns 2 and 3. All regressions are estimated by OLS and
include state fixed effects, the expected resettlement density, the baseline county controls—an indicator
for any resettlement in the county; (log) county area; distance to the nearest road; road density of the
county; distance to the nearest rail station; distance to coastline; Chinese population share of the county
in 1947; (log) population density of the county in 1947; the share of lands used for rubber cultivation in
1944; and the share of lands used for mining in 1944—and controls of household head’s characteristics:
age; years of schooling; and industry of employment. The unit of observation is the household. Data from
the 2% individual-level Census of Population microdata in 1980 and Second Malaysian Family Life Survey
1988-1989. Conley standard errors with a distance cutoff of 30 kilometers are reported in parentheses.
Level of significance: *p<0.1; **p<0.05; ***p<0.01.
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Table 1.14. Household Income, Controlling for Household characteristics,
by County Resettlement Density

All Chinese Non-Chinese  Difference
Households ~ Households  Households (2) — (3)

(1) (2) (3) (4)

Panel A. Log Earnings

ResettleDensity 0.063* 0.089** 0.038 0.051
(0.033) (0.042) (0.029) (0.034)
# Households 33,328 10,622 22,706
# Counties 713 495 705
Panel B. Log Earnings, Primary Sector
ResettleDensity 0.032 0.066* -0.005 0.071
(0.038) (0.035) (0.041) (0.045)
# Households 9,726 1,660 8,066
# Counties 679 349 649
Panel C. Log Earnings, Non-Primary Sector
ResettleDensity 0.071%* 0.096** 0.046* 0.050%*
(0.034) (0.044) (0.028) (0.029)
# Households 23,602 8,962 14,640
# Counties 698 445 689

Notes: This table shows the relationship between household income and county resettlement density.
“ResettleDensity” is the county resettlement density constructed according to equation (1.2), standardized
such that it has a standard deviation of one. Panel A, Columns 1-3 show the effect of resettlement density
on log household earnings predicted from asset ownership for all households (Column 1); Chinese households
(Column 2); and non-Chinese households (Column 3). Column 4 reports the difference between the estimates
in columns 2 and 3. Panel B restricts the sample to households whose head employ in the primary sector,
comprised of agriculture and mining. Panel C restricts the sample to households whose head employ outside
the primary sector. All regressions are estimated by OLS and include state fixed effects, the expected
resettlement density, the baseline county controls—an indicator for any resettlement in the county; (log)
county area; distance to the nearest road; road density of the county; distance to the nearest rail station;
distance to coastline; Chinese population share of the county in 1947; (log) population density of the county
in 1947; the share of lands used for rubber cultivation in 1944; and the share of lands used for mining in 1944—
and controls of the household head’s age and years of schooling. The unit of observation is the household. Data
from the 2% individual-level Census of Population microdata in 1980. Conley standard errors with a distance
cutoff of 30 kilometers are reported in parentheses. Level of significance: *p<0.1; **p<0.05; ***p<0.01.
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Table 1.15. Housing Elasticity in 1989

Log Rents (1989)

OLS Y
(1) (2)

Panel A. Year 1980

Log Population 0.274 0.326
(0.051) (0.144)

F-stat (1st Stage) 64.6

Panel B. Year 2000

Log Population 0.267 0.270
(0.051) (0.110)

F-stat (1st Stage) 106.2

# Counties 103 103

Notes: This table shows the relationship between log housing rents in
1989 and log population in years 1980 (Panel A) and 2000 (Panel B).
Column 1 reports the OLS estimates. Column 2 reports the IV estimates
and the first-stage F statistics. The instrumental variable used is the
residual resettlement density, as shown in Figure 1.3, Panel B. The unit
of observation is the household. The sample is restricted to households
reporting non-missing rent expenditure. Data from the Malaysian Family
Life Survey in 1989. Conley standard errors with a distance cutoff of 30
kilometers are reported in parentheses.
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CHAPTER 2
GAINING STEAM: INCUMBENT LOCK-IN AND ENTRANT
LEAPFROGGING

2.1 Introduction

Technological innovation drives economic growth, but the widespread adoption of new
technology can be slowed by firms continuing to use and invest in old technologies (Strassmann,
1959; David, 1990; Comin and Hobijn, 2010). We examine the adoption of steam power, an
iconic general purpose technology (Bresnahan and Trajtenberg, 1995; Jovanovic and Rousseau,
2005). Steam power broke the dependence of mechanization on local geographic characteristics,
particularly local waterpower availability, and steam was a central technological driver of
widespread industrialization (Hunter, 1985; Atack et al., 2008).

Our primary goal is estimating the forces underpinning the slow transition from water to
steam power in American flour mills and lumber mills, which were leading users of mechanical
power. We estimate that steam created aggregate economic opportunities but hastened the
exit of water powered incumbents, as switching barriers (particularly sunk costs) prevented
many incumbents from upgrading technologies. As steam power improved, counties with less
waterpower potential grew faster, both because steam power was relatively more useful in
those places and because the actual prior use of waterwheels slowed steam’s adoption.

It may seem surprising that switching barriers faced by incumbent establishments could be
an important driver of the market-level spread of steam power, as there was substantial churn
in establishments: only 2% of mills active in 1880 also existed in 1850. The fundamental
force is that water power’s relatively low fixed costs made it the optimal choice for relatively
less productive entrants. One period’s water powered entrants can become the next period’s
locked-in incumbents, so switching barriers can matter long after the initial incumbents

have closed. We show that the interaction of switching barriers and high fixed costs slows
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aggregate technology adoption. If the new technology instead had a lower fixed cost (and
higher marginal cost) or lower switching barriers, it would have diffused much faster.

To measure plant-level technology use and switching, we digitize the complete surviving
establishment-level records from the US Census of Manufactures in 1850, 1860, 1870, and
1880.1 These records include data on power use for every establishment. We create a panel by
hand-linking mills over time based on their name, industry, and location, and we explore the
influence of linkage error and unobserved resale of water power capital from incumbents to
entrants. From the places with complete surviving establishment level records, we construct
a balanced panel of 1199 county-industries (612 lumber-mill counties and 587 flour-mill
counties), covering 690 unique counties and 80,000 establishment-year observations.

For causal identification, we use geographic variation in counties’ access to waterpower.
Local waterpower potential, measured in horsepower, is generated by the interaction of
water flow and elevation changes. We use the geographic variation in waterpower potential,
controlling for the main effects of water flow and terrain ruggedness that can otherwise
influence local economic activity. We also control for other local characteristics that might
impact local manufacturing activity, such as coal access and market access (Chandler, 1972;
Hornbeck and Rotemberg, 2024). We measure local waterpower potential using modern
hydrological models (McKay et al., 2012), which we validate with historical records.

The purchase cost of steam equipment declined from 1850 to 1880, leading to increases in
aggregate steam-use in milling: in 1850, ten percent of mills were powered by steam, a share
which increased to forty percent by 1880. We find that counties with higher potential for
waterpower had more initial industrial activity. However, the decline in steam costs led to an

“advantage of backwardness” (Gerschenkron, 1962). Counties with less waterpower potential

1. Samples of these manufacturing schedules were digitized by Bateman et al. (1971), Atack (1976), and
Bateman and Weiss (1981), see also Sokoloff (1984) and ?. Atack and Bateman (1999) provide detailed
description of these samples. Recent efforts have digitized historical manufacturing microdata in a few
contexts, including Japan, Russia, France, and Sweden (Braguinsky et al., 2015; Gregg, 2020; Juhész et al.,
2023b; Berger and Ostermeyer, 2023).
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adopted steam faster and experienced faster growth in their number of mills and mill output.
Some incumbent mills switched from water to steam power, but county growth was driven by
steam powered entrants. Incumbents were more likely to exit in counties with lower water
power, despite more overall growth in these counties.

Lumber and flour mills were at the forefront of driving the adoption of steam power in the
broader US economy, which brought mechanization to new industries and spurred productivity
growth.2 We find evidence of backwards linkages (Hirschman, 1958; Baldwin and Venables,
2015), as counties with less waterpower potential experienced disproportionate growth in
makers of steam equipment such as engines and boilers, and shift to steam power outside of
milling. Accelerating growth in upstream industries heightens the aggregate gains from early
adoption of general purpose technologies like steam power, as it can encourage faster adoption
in mechanizing industries.> This suggests that privately optimal technology adoption can be
socially inefficient (Juhész et al., 2023a), and we evaluate potential counterfactual policies
that might counteract the technological lock-in caused by historical advantages.

Because mills’ technology adoption decisions depend on choices made by their competitors,
as well as potential entrants, it is difficult to assess the equilibrium implications of the
reduced-form estimates without some structure. A model also helps generalize lessons from
steam power, isolating specific influences on technology adoption from other features of the
technology itself and its economic environment. Further, given agglomeration spillovers in
the adoption of this general purpose technology, a model allows us to consider the potential
for welfare-enhancing policies whose effects depend on equilibrium responses.

To explore counterfactual technology adoption transitions, we develop and estimate a

dynamic equilibrium model of firm entry and steam adoption. We build on Hopenhayn

2. For discussions of the role steam power played in the Industrial Revolution, see, for instance, Ashton
(1948); North (1958); Kuznets (1967); Landes (1969); Rostow (1975); Atack et al. (2019), and Ridolfi et al.
(2023).

3. A large literature studies technology adoption in the presence of network effects, including ?? and 7.
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(1992) and model firm dynamics with entry and investment in industry equilibrium, where
firms make dynamic discrete choices in the tradition of Rust et al. (1987). In the model,
heterogeneous firms make forward-looking decisions in each period about whether to enter,
operate or exit, and which power source to use. Each power source is associated with costs and
benefits that potentially vary over time and space, and incumbents face additional barriers
to switching technologies.

Steam power was not a strictly dominant technology, and, even into the 20th century,
water and steam power were both used by many millers. A key economic force in our model
rationalizes that both water and steam power were used in equilibrium: one technology had
lower marginal costs, and the other had lower fixed costs (where the fixed costs include both
the purchase price and non-variable operating costs). We find that steam powered mills were
larger than water powered mills (Atack et al., 2008; Ridolfi et al., 2023). Correspondingly,
we estimate that steam had lower marginal costs and higher fixed costs (Melitz, 2003).

Steam power also attracted more-productive millers because it was easier to scale. While
the direct marginal costs of water power were likely low in many places, our estimates reflect
the difficulty of scaling up water power due to capacity constraints, and that many of the
additional costs of steam power (such as skilled steam operatives) reflect fixed overhead costs.
The size advantage of steam mills was not driven by steam’s expansion of milling to new
locations, as we find a similar pattern within counties.

Using variation across time and space, we estimate that the fixed costs of steam power
declined over time and that higher local waterpower potential lowered the fixed costs of water
power.* We also estimate the presence of agglomeration spillovers in steam-use.

A striking pattern in the data is that entrants were around four times more likely to use
steam power than incumbent water powered mills, even though incumbents were typically

larger and therefore predisposed to benefit more from steam. Nevertheless, the incumbents

4. Declining steam fixed costs are consistent with qualitative histories of steam use in rural US milling, in
particular, which emphasize the development of practical low-cost engines (Hunter, 1985).
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who did switch technologies grew faster than those who did not, consistent with costly
switching barriers causing technological lock-in. We quantify that the barriers to switching
from water to steam power were equal to about two months of revenue, and that sunk costs
can account for around 90% of the switching barriers. Incumbents already had a functional
power source, and most were reluctant to abandon it to switch to steam power.

We estimate the model using the Method of Simulated Moments, leveraging our reduced-
form differences by county waterpower availability to identify key parameters in the model
along with the patterns of establishment level usage of water and steam power.

We simulate the transition path from 1830 to 1900, as there was a secular decline in the
price of steam power along with local agglomeration in steam-use and competition in local
product markets. The estimated model closely matches the targeted moments. In addition,
the model matches several non-targeted moments related to how waterpower potential leads
to entrant-driven growth, as well as 19th-century accounts of the costs of power.

We use the model to estimate how technological lock-in from counties’ waterpower
potential delayed and reduced overall adoption of steam power in lumber and flour milling.
Waterpower potential substantially slowed steam adoption: if the average county had one
standard deviation lower waterpower potential, the share of mills using steam would have
reached one-half 31 years earlier and been 18 percentage points greater in steady-state.

To quantify the role of barriers to switching, we evaluate a counterfactual economy where
we remove all sources of lock-in. We estimate that without any switching barriers, the share
of mills using steam would have reached 30% of US mills a decade earlier.? The delay was
mainly caused by relatively low productivity entrants, initially attracted to the lower fixed
costs of water, who then faced barriers in switching to steam power if their productivity grew.

Though these barriers slowed adoption, switching was still an important mechanism for the

5. Even in the absence of barriers to switching, steam power would not have reached its steady state usage
immediately, as the technology improved over time (David, 1969; Sandberg, 1969; Atack, 1979; Manuelli and
Seshadri, 2014).
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technological transition to steam power. For a counterfactual economy with infinite switching
costs, we estimate that the steady state share of plants using steam would have been ten
percent lower.

We estimate that switching barriers were sufficiently large that incumbent firms actually
suffered overall from the introduction of steam power. While incumbents directly benefited
from the option to switch to the new technology, this force is smaller than the increased
competition from entrants.

The importance of switching barriers for steam use became relatively less important as
steam reached maturity, and their removal would have resulted in a similar steady-state
adoption rate. However, there would have been more entry in the absence of switching barriers,
as entrepreneurs would have been attracted to the option value of seamlessly switching to
steam power in the future. Therefore, switching barriers had persistently large effects on
output.

In the presence of agglomeration spillovers, a natural policy intervention could mitigate
switching barriers by purchasing the old sunk capital (i.e., “cash for clunkers”). We find
that this type of subsidy would have generated positive social surplus, through raising steam
adoption in the short run for the directly affected incumbents and through agglomeration
spillovers on later entrants. However, the estimated agglomeration forces are weak enough
that temporary policies do not have permanent effects on steam use (nor are there multiple
equilibria).

Finally, to quantify the importance of the interaction of switching barriers and fixed
costs, we estimate technology adoption rates in a counterfactual environment where the new
technology has features of water (lower fixed costs and higher marginal costs) in comparison
to an environment in which the new technology has features of steam (higher fixed costs
and lower marginal costs). Even in the presence of switching barriers, the counterfactual

lower fixed cost new technology would have rapidly reached its steady-state adoption. This is
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because relatively low productivity entrants would be attracted to the new technology, and
so would not later become incumbents locked into the old technology.

The study of the transition from waterpower has a long intellectual history, for instance
motivating Schumpeter (1942), and our establishment-level panel analysis complements a
large literature studying long-run technology diffusion from a more aggregate perspective
(Griliches, 1957; Jovanovic and Lach, 1989; Greenwood and Yorukoglu, 1997; 7). The panel
microdata allow us to measure directly plants changing their technologies over an extended
period of time. We estimate large but not prohibitive barriers to switching, placing our
results between common assumptions of either infinite switching costs (Chari and Hopenhayn,
1991; Atkeson and Kehoe, 2007; Collard-Wexler and De Loecker, 2015) or no lock-in (Basu
and Weil, 1998; Acemoglu and Zilibotti, 2001; Greenwood et al., 2005; Benhabib et al., 2021;
Miller et al., 2022). Our questions have similarities to those in a macroeconomic literature
on “vintage capital,” which considers the technology embedded in each successive generation
of capital (Salter, 1960; Solow, 1962; Denison, 1964; Benhabib and Rustichini, 1991; Chari
and Hopenhayn, 1991; Atkeson and Kehoe, 1999; Gilchrist and Williams, 2000; Jovanovic
and Yatsenko, 2012; Caunedo and Keller, 2021), though we emphasize that an important
driver of adoption speeds is if entrants use the old technology (and then become locked-in).

We focus on lumber mills and flour mills because they were heavy users of mechanical
power that relied initially on local waterpower availability. Combined, they accounted for
20% of American manufacturing revenue at the start of our sample and 60% of mechanized
establishments. Lumber mills and flour mills sold primarily to local markets, and were
classified by the Census as “neighborhood industries.” Due to transportation costs and the
high perishability of their finished products (Kuhlmann, 1929), these mills were broadly

spread across the country and dependent on local geographic endowments for access to power.

6. Our setting is before the development of systematic industry codes, and for readability we combine the
various names used to describe the industries into “flour” and “lumber.” Similarly, we refer only to those two
sectors when discussing “mills.”
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As a consequence, we model each county as having a distinct market, as in a recent literature
that studies goods with prohibitive transport costs such as ready mix concrete (Syverson,
2004). By contrast, textile mills were geographically concentrated, as textiles were more
broadly traded across domestic and international markets.

The importance of waterpower availability for power technology choices was understood
contemporaneously (Montgomery, 1840), and occurs empirically across different contexts
(Temin, 1966; Atack, 1979; Atack et al., 1980; Cooney, 1991; Bishop and Munoz-Salinas,
2013; Chernoff, 2021; Gershman et al., 2022; Guilfoos, 2022).7 Relative to this literature,
our contribution is emphasizing the importance of establishment-level dynamics. This
complements research on path dependence and inertia in other contexts, including railroad
gauges (Veblen, 1915), prices (Rotemberg, 1982), keyboard layouts (David, 1985), consumer
choice (Klemperer, 1995), migration (Kennan and Walker, 2011), city locations (Bleakley and
Lin, 2012), health care (Handel, 2013), light bulbs (Armitage, 2023), telephone switchboards
(Feigenbaum and Gross, 2023), and skills (Adao et al., ming). We also contribute to a literature
studying why incumbents are slow to adopt new technologies (Chari and Hopenhayn, 1991;
Jovanovic and MacDonald, 1994; Parente, 1994; Henderson, 1995; Jovanovic and Nyarko,
1996; Hall, 2004; Snow, 2004; Holmes et al., 2012; Verhoogen, 2023).8 The most closely
related model is from Humlum (2022), who studies robot adoption in modern firms but
abstracts from entry decisions.

Because steam power reduced the dependence of manufacturing on local geography, it
was adopted faster in places with less waterpower potential. This was caused by static forces,

which raised the returns to adopting steam in those places, and dynamic forces, due to those

7. Duflo and Pande (2007), Lipscomb et al. (2013), Severnini (2023), and Brey (2023) leverage similar
geographic characteristics to understand the effects of 20th-century dams. Arkolakis and Walsh (2023) use
measures of solar insolation and wind speed to measure geographic variation in the potential for renewable
energy production.

8. Frankel (1955) considers the importance of sunk costs for slow technological transitions, and Saxonhouse
and Wright (1987) argue that sunk costs and durable capital led to a slow transition from spinning mules to
ring-frame spinning in Lancashire, though both also abstract from the role of entry.
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places also having fewer locked-in incumbents. Both static and dynamic forces were amplified
by agglomeration spillovers, which encouraged further adoption of steam power in places
where its adoption was already higher. Technology adoption was largely driven by entrants,
but even entrants become stuck in prior technology when the new technology has higher
fixed costs and lower marginal costs. Therefore, despite substantial firm entry, technological

lock-in can dampen social gains from new technologies over a long time horizon.

2.2 Context and Data Construction

2.2.1 Water and Steam Power in US Mills

Water powered milling has a long history in the United States, as the Massachusetts Bay
Colony built several watermills in the 1630s, some of which remained in use into the nineteenth
century (Weeden, 1890). Mullin and Kotval (2021) note that Puritans believed every “town
required four essential elements if it were to succeed: a meeting house with a pastor, a
blacksmith, a sawmill and a grain mill.” Flour and lumber mills were needed throughout the
country, using the available local water power. They could use smaller rivers and did not
typically require large installations. In contrast, textile mills could be agglomerated in major
manufacturing centers in places with substantial waterpower capacity. Hunter (1979, 1985)
provides an overview of water and steam power in the 19th century,” and we summarize a
few key features of this context.

Most flour and lumber mills served their “local clientele” (Brown, 1923), though some
“merchant mills” served cities and export markets (Kuhlmann, 1929). The nationalization
of these industries occurred after our sample period. Flour milling began to concentrate in
Minneapolis in the 1880s, after the development of less-perishable flours made possible by

the middlings purifier and the roller mill (Kuhlmann, 1929; Perren, 1990). The rise of the

9. See Howes (2022) for a description of innovations in steam power before the 19th century.
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milled lumber trade was facilitated by the emergence of manufacturers’ associations to create
and maintain standards (such as those regarding sapwood and knots). These associations did
not exist in lumber until the 1880s, and did not reach prominence until the 1890s (Brown,
1923; National Industrial Conference Board, 1925).

The fundamental change from the arrival of steam power was a new source of mechanical
power, less subject to natural constraints (Hunter, 1985): steam power was not as expensive
to scale up, and it offered consistent year-round access to power. As a result, steam power
was particularly useful in places with less local waterpower potential (Sharrer, 1982). These
places had higher fixed costs for using water power, due to greater need for constructing
dams, millponds, and riverwalls, which were generally more expensive to build than the
wheels themselves (Monroe, 1825). Places with lower waterpower potential may have also
required higher costs for securing water rights.!9 While water power technology improved
over the 19th century, for instance with the development of the Jonval turbine in the 1840s
and the Pelton wheel in the 1880s (Hunter, 1979), the more-substantial forces were that
steam improved substantially over time and that waterpower availability varied substantially
over space. For instance, a congressional report discussing options for a national armory on
the “Western Waters” (Armistead et al., 1841) used, without updating, the estimated costs of
water power from a previous Presidential report (Monroe, 1825).

While steam offered advantages, it was not a strictly dominant technology, as it required
high non-variable costs: “the first cost of steam engines, and their annual expense, [did] not
increase or diminish in proportion to the size of each engine” (Monroe, 1825). For instance,
steam equipment required installation and continued maintenance oversight from trained
engineers (Fisher, 1845).

Early steam engines were not widely adopted in the early United States.!! With the

10. Swain (1888) reports the cost of water rights for 25 counties, which are negatively (though not
significantly) correlated with our measure of waterpower potential.

11. Early Newcomen engines were coal-intensive and inefficient, wasting energy in the process of heating
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introduction of the Corliss engine, patented in the US in 1849, manufacturing hubs in the
US were increasingly using more-sophisticated and massive steam power systems. But these
increasingly large and intricate systems were not particularly suitable for the small local mills
throughout the US.

Local mills focused on relatively cheap “high-pressure” engines, patented and evangelized
by Oliver Evans in the early 19th century, which did not use a condenser and instead used
substantially higher pressure in the boiler. These engines were smaller and had substantially
lower fixed costs, but were prone to explode (Burke, 1966; Mayr, 1975). Over the 19th century,
many engineers adapted and improved on the standard designs (?), which allowed mill owners
to purchase steam engines at steadily decreasing prices. Further, as local expertise in steam
power spread geographically, increased local construction of steam machinery reduced shipping
and installation costs (Greenberg, 1982).

In the second half of the 19th century, US mills began using “high-speed” engines that drew
on earlier high-pressure boilers. High-speed engines were smaller and cheaper, though the parts
needed to be made precisely to avoid the machine shaking dangerously and disintegrating.?
New high-speed engine designs were introduced by Porter and Allen in 1862, and were
described contemporaneously as a “revolution in engineering” (Scientific American, 1870).
Porter (1868) argued that their design required efforts that machinists “were now thoroughly

Y

accustomed to,” and that the “commercial benefits” to the engine included “the saving of
space and the economy in first cost.”

Many classic examples of switching barriers were likely relatively less important in this

and cooling water to drive a piston in a cylinder. In the late 18th century, James Watt introduced a separate
condensing chamber so the primary cylinder never needed to be substantially cooled, which dramatically
improved the efficiency and force of British engine designs. In the spirit of Arrow (1962), steam engine
manufacturing was characterized by learning-by doing, as many subsequent improvements to Watt’s design
came as machinists gained experience and tinkered with the size and arrangement of the parts.

12. Although steam engines and boilers got safer over time, explosions are often described in histories of
individual mills and, during the period, a plurality of steam engine explosions were in lumber mills (Scientific
American, 1871, 1881).
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context. Technological interrelatedness between components within the production process
can rationalize lock-in in other contexts (David and Bunn, 1988; Bresnahan and Greenstein,
1996), but are unlikely to be relevant in our setting as the power remained rotational in
nature, and the millstones or saws as well as the material inputs and outputs were the same
regardless of the power source. 3 Similarly, catering to existing customers (?) or changing
suppliers (Farrell and Klemperer, 2007) are unlikely to be important, as the milled products
remained unchanged and the physical waterwheels were very durable. By contrast, the later
introduction of electricity ushered in more wholesale changes in manufacturing operations,
and it was more difficult for incumbents to change power sources (Devine, 1983; David, 1990;
Damron, 2023).

In Appendix 2.F, we collect the histories of several mills who switched from water to
steam power. The most common reason why mills switched to steam power we found was
they outgrew the power availability of their local waterway, or they lost their local water
rights (Emery, 1883). A few millers physically moved their operations to a new structure
when switching power sources, but most retrofitted their existing mills in place even after
losing the original motivation for their location. Many switches from water to steam power
were associated with a change in ownership, often through sons taking over from their fathers,
which suggests switching frictions on the part of operators and points to the importance of

management (Bloom et al., 2013; Giorcelli, 2019).

2.2.2  County Waterpower Potential

We measure counties’ waterpower potential, based on natural geographic characteristics, as
a cost-shifter for local firms’ use of water power. A key assumption for our analysis is that

waterpower potential affected mills only through the costs of water power use. To support

13. The technologies are similar enough that some water powered mills used steam as an auxiliary power
source (Hunter, 1985), and in our data around a third of establishments who switched from only-water to
steam power continued using some water power.
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this assumption, we focus on variation in local waterpower potential from the interaction
of particular geographic characteristics, controlling for their main effects and other local
characteristics.

For any river segment, its theoretical potential for generating waterpower (in units of
horsepower) is given by multiplying: (1) the flow rate of water; (2) the change in elevation
(fall height); and (3) a gravitational constant equal to roughly 0.1134:

Theoretical Water Power = FlowRate x FallHeight xGrg"imtional.
——— — onstant

Cubic Feet
Per Second Feet

For each river segment in the country, we use information from the National Hydrography
Dataset Plus (NHDPlusV2), which is a national database of surface water from the US
EPA and USGS. For measuring fall heights, we use the difference in elevation between the
maximum and minimum elevation along each river segment. Given the absence of detailed
and comprehensive direct measurements of historical water flow, and the potential influence
of dams and other modern influences on modern rivers, we use monthly flow estimates from a
USGS flow-balance model based primarily on natural and slowly changing climatic variables,
such as rainfall, evaporation, and soil moisture. We use the average flow rate over the
three lowest months of the year, which historical accounts argued was a key determinant
of the feasibility of water power (Census Bureau, 1883).14 Figure 2.1 shows flow rates and
fall heights for each river segment across the US, whose interactions determine waterpower
potential.

We calculate waterpower potential at the county level, summing over each river segment
in the county. We exclude wide river segments (more than roughly 106 feet wide) because

those segments were considered at the time to be too wide for use as a practical source of

14. We include in our calculations “seasonal” rivers with intermittent flows, though in practice many do
not have any flows in the lowest three months of the year and therefore do not affect our measure of local
waterpower potential.
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water power, due to high dam costs, and were used instead for transportation.1®

We validate the estimates of waterflow using historical records from the 1880 Census
“Reports on the Water Power of the United States” (the “Water Census”). Consistent with the
historical importance of water power, the US government spent resources to promote its use
even in 1880: the stated purpose of the Water Census was to “describe the privileges actually
in use and call attention to locations where power could be advantageously developed.” For
river segments covered in the historical Water Census, their flow rates are in close agreement
with the modern data (Appendix Figure 2.11).16

Our measurement of county waterpower potential does not directly use the Water Census,
however, because the Water Census has non-random incomplete coverage based on historical
economic activity (Appendix Figure 2.12 Panel A). The Water Census was intended to focus
on places with high waterpower potential or usage, systematically missing places that have
lower waterpower potential and lower usage. Further, the Census data collection effort ran
out of funds before getting to much of our sample area (Atack et al., 1980). In Section 2.3.1,
we show how relying on only the Water Census would bias estimated impacts of county
waterpower potential on water power usage.

Appendix 2.D describes in more detail our processing of the NHDPlusV2 data. We also
compiled a variety of county-level information for supplementary analysis and controls, such

as access to coal deposits, which we also describe in Appendix 2.D.

‘

15. For example, the 1880 Water Census writes: “...the Mississippi as it flows past New Orleans gives
an exhibition of tremendous force, and by damming it up to a head of 10 feet a power of nearly 700,000
horse-power would result, but the river would be flooded back for 300 miles, and the plan is therefore
impracticable.” Indeed, Appendix 2.D.3 shows that these wide rivers are not predictive of water powered
mills.

16. There are some exceptions where the values diverge, which generally reflect segments where merging
the two datasets is difficult (e.g., if a river splits into several sections and we are not sure how many segments
to aggregate when comparing our smaller river segments to what the Census considered a river segment, or
when distinct rivers in a county share a name).
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2.2.3 Census of Manufactures, Establishment level Data

We collected and digitized all known establishment-level manuscripts from the Census of
Manufactures in 1850, 1860, 1870, and 1880 (see Appendix Figure 2.13 for example images,
and Appendix Table 2.13 for the coverage of manuscripts). We classify each establishment
into one of 31 industries, following Hornbeck and Rotemberg (2024), using information on
self-reported “name of business” and products the establishment produced.

We restrict our main analysis to county-industries with at least one active mill in 1850
and non-missing data in each decade from 1850 to 1880. Our sample covers lumber mills in
612 counties and flour mills in 587 counties. There are 690 unique counties with at least one
of these industries in the sample. Our sample includes over 80,000 lumber or flour mills from
1850-1880, and cover 83% of all steam powered mills and 89% of reported steam-generated
sales in the lumber and flour industries. Figure 2.2 Panel A shows the waterpower potential
of the counties in our balanced sample.

Our data include the type of power used by each establishment, which was not geographically
disaggregated in contemporaneous census tabulations (Hornbeck and Rotemberg, 2024). We
also use the total annual revenue for each establishment, which inform distributions of
establishment sizes that are unavailable in the previous more-aggregated data. We record
establishment names, which were not entered in previous samples of the establishment-level
manuscripts due to punchcard width limitations (Atack and Bateman, 1999), which allow us
to link mills over time.

Not all manuscripts have survived, which we can assess using contemporaneously published
Census tabulations at the county level for 1850-1880 (Haines, 2010) and county-by-industry
level for 1860-1880 (Hornbeck and Rotemberg, 2024). Manuscripts for some entire states and
decades were lost when the original manuscripts were returned to states. Manuscripts for
some counties were lost for reasons such as being used as wrapping paper when returning

other manuscripts (Atack and Bateman, 1999) and manuscripts for some industries (though
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neither lumber nor flour) were lost in 1880 (Delle Donne, 1973). To separate “missing” from
“zero,” we classify a county as having missing data if the county has no manuscripts but the
tabulations report positive establishments; otherwise, we record the county as truly having
no manufacturing activity.

For counties with surviving manuscripts, Appendix Figure 2.14 shows that our microdata
generally align closely with the tabulated county-level data. However, we provide the first
comprehensive information on lumber and flour mills in the period because the Census did
not report county-industry statistics in 1870 and 1880 for small “local industries” (Appendix
Figure 2.15 Panel A). For county-industry cells above the Census tabulation threshold, our
data aligns closely (Panel B). Appendix 2.C discusses in detail our collection and processing of
these data, data coverage issues, and how we group counties into time-consistent geographic
units.

While mechanical power eventually spread throughout manufacturing (Atack et al., 2019,
2022), we focus on industries that had widely mechanized before steam arrived to study the
transition of mechanical power from water to steam. Most water powered establishments in
1850 were either lumber or flour mills (Figure 2.3). Flour milling was the largest industrial
sector in the economy during our period, by revenue, and lumber milling was the largest by
number of establishments. Textile mills were also heavily-mechanized, though records for
textiles in 1880 have been almost completely lost (see Appendix 2.C and Atack and Bateman
1999).

Among lumber and flour mills in 1850, 91% report using either water or steam power.
Around 1% of mills used both water and steam power, which we classify as steam mills
because they paid the fixed costs of steam and thereby benefited from the ability to scale
relatively cheaply. Non-mechanized mills contributed little revenue share (Figure 2.3, Panel
B), and our main analysis omits these non-mechanized mills.

Mills had substantial local competition. The median county-industry had 10 mills
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operating in a given year. Almost all county-industries had more than one mill (96%). Of
these, 62% had at least one mill using each type of power and this share increased over time
as steam power became more prevalent.

A useful feature of lumber and flour mills, for our analysis, is they primarily served
local demand because cut lumber and ground flour were perishable and not economical
to trade, especially to rural destinations (Hunter, 1979). Indeed, an important source of
revenue for flour mills was “custom milling”: grinding grain that customers brought themselves
(Dondlinger, 1919; Le Bris et al., 2019). The Census asked specifically about this practice
in 1880: 95% of mills did at least some custom milling in 1880, and it represented 41% of
total flour milling output. While milling was dependent on local geographic endowments
to generate power, the material inputs (logs and whole grains) for these mills were less
perishable and could be transported long distances, so the local endowment of inputs was
not as important for millers (Cronon, 2009).

Consistent with historical accounts that flour and lumber milling produced relatively
non-tradable output, Appendix Figure 2.16 shows that the spatial concentration of lumber
and flour mills was particularly low (in the spirit of Mian and Sufi 2014).17 This contrasts
with clothing and textile mills, whose output was more easily traded and so was much more
concentrated geographically. Lumber milling remains diffused: in the 2021 County Business
Patterns, 98% of commuting zones had a lumber mill and 25% had a flour mill.

Census schedules in 1870 and 1880 also asked mills for their installed horsepower, shown
in Appendix Figure 2.17: steam powered mills typically used more horsepower than water
powered mills, and most mills used between 10-60 horsepower with the mode around 25

horsepower.

17. The other least geographically concentrated sectors are leather and iron & steel (due to blacksmithing,
as discussed by Atack and Margo 2019).
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2.2.4  Data Linking

We create a linked panel of manufacturing establishments over time, which allows us to
observe technology switching and entrant technology choices. The manuscripts do not have a
time-consistent identifier for each establishment, just as in the Censuses of Population (Ferrie,
1996; Feigenbaum, 2016; Ruggles et al., 2018; Bailey et al., 2020; Abramitzky et al., 2021;
Price et al., 2021), so we generate our own links.

We define a stable manufacturing establishment based on its owner name, industry,
and place. If the owner shuts down an establishment and reopens an establishment in a
different county, we consider that a new establishment. Similarly, if the owner changes
their establishment to no longer be a mill, we consider the mill closed.1® While we link
establishments with partial ownership changes (such as a son taking over from his father), if
the establishment’s ownership changes entirely, with no clear link between previous and new
owners, then we also consider that a new establishment. This is dictated by data availability,
and also raises philosophical questions about what is a surviving establishment. Our view is
that mill owners at the time were sufficiently involved in the operation of the establishment
that entire ownership changes are akin to closing operations and selling capital assets to a
new venture.

We link establishments over time, within a county, using data on owner or company names,

industry, product types, and (when available) nearest post office. Importantly, we do not use

mills’ type of power to make the panel identifiers. We hand-linked all lumber and flour mills,

18. These cross-county “migrations” appear unusual for millers, based on historical society records (Appendix
2.F), and when we hand-linked the establishments we allowed for cross-industry links and found very few
outside of milling. Around 4% of surviving mills switched between lumber and flour.

19. We do find evidence of ownership transfers in historical accounts, though most business closures appear
to be associated with the mill no longer being operated. The Census data do not allow us to directly observe
the resale market (Lanteri, 2018), though measuring the importance of durable capital across in addition
to within firms is an interesting direction for future research on technology transitions. We discuss the
implications of unobserved reselling for our reduced-form estimates in Section 2.4. In Section 2.5, we model
and estimate how local technology choices affect the relative purchase prices of steam and water power, which
captures if the transition to steam power lowered the purchase price of water power.
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across each decade. Two people searched for matches for each mill, and we reconciled any
disagreements. We also trained a machine-learning (“ML”) algorithm to predict the matches,
described in Appendix 2.C.4, which allows us to analyze robustness to different confidence
thresholds, and show that the distribution of predicted ML link probability for our actual
matches is similar in counties with above and below median waterpower potential counties.

We also link establishment owners to the Census of Population, based on owner name,
industry /occupation, and place, as described in Appendix 2.C.4. For our analysis, we use
three owner characteristics from the Census of Population: their age; whether they were
born outside the United States (“immigrant”); and if their listed occupation was a miller or

manufacturer (“professional miller”).20

2.3 Estimating Differences by County Waterpower Potential

Our analysis looks to estimate how local waterpower potential affected early water power
usage and the growth of steam use. We contrast impacts on incumbents and entrants to
explore how both the potential for waterpower and actual prior use of water power affected
steam adoption.

To estimate cross-sectional effects of county waterpower potential on lumber and flour mill

activity, we estimate the following regressions where each observation is a county-industry:

Y;. = BLowerWaterpower Potential, + v; X¢ + A\ + €je- (2.1)

We define LowerW aterpower Potential. as a negative standardized measure of (log) county
waterpower potential per square mile, so the coefficient 5 can be interpreted as the effect
of having one standard deviation lower waterpower potential. We focus on the estimated

pooled 3, across lumber and flour mills.

20. The modal listed occupation for a person we link to the Census of Manufactures is “farmer,” and we
explore whether self-reported “professional millers” are more likely to use the more modern technology.
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The estimated effect of LowerW aterpower Potential. is conditional on industry fixed
effects \; and a set of county controls X, whose effects are allowed to vary by industry
1. We include three types of baseline controls, within X.. First, as waterpower potential
comes from the interaction of water flow and elevation changes, we control for its components:
total county water flow, summing over all river segments; and county ruggedness, defined
as each county’s average terrain ruggedness index (?).21 Second, because access to markets
also affected economic activity and some mills got access to their material inputs through
waterways (Cronon, 2009), we also control for: whether the county has navigable waterways;
distance to the nearest navigable waterway; and county market access in 1850 including
the waterway and railroad network (Hornbeck and Rotemberg, 2024). Third, because an
important source of fuel for steam mills was coal, 22 we control for: whether there are workable
coal deposits in the county, the share of the county covered by coal deposits (Campbell, 1908),
and access to coal via the transportation network.

We also estimate some pooled cross-sectional regressions, across 1850 to 1880. For this
analysis we replace the industry fixed effects in Equation (2.1) with year-industry fixed effects
(A\j¢) and allow the effects of the control variables to vary jointly by year and industry (v;+X¢).

The key identifying variation comes from the interaction of river flow rates and fall heights.
For the baseline cross-sectional specification, the identification assumption is that counties
with lower waterpower potential would have had similar mill activity in 1850 as counties
with more waterpower potential, on average, aside from differences due to power use. In
practice, the identification assumption is conditional on any other differences associated with
the included control variables. The control variables look to adjust for direct effects of rivers,
particularly through lower transportation costs and differential impacts from the railroad

network, along with different economic outcomes associated with variable elevation, access to

21. County ruggedness is closely associated with the presence of changes in elevation, whereas fall height
along river segments is not defined in the absence of rivers.

22. Some lumber mills used scrap wood for fuel (Cole, 1970).
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markets, and access to coal. We discuss alternative controls in Section 2.3.3 and Appendix
2.G, including specifications without controls, with fewer controls, or with additional controls
that adjust for other factors that might be associated with differential steam adoption and
growth in mill activity across counties with different waterpower potential.

Our main sample is a balanced panel of county-industries, from 1850 to 1880, restricting
our analysis to 690 counties with at least one lumber or flour mill in 1850 and surviving
Census manuscripts in each decade. Figure 2.2 Panel B shows the residual waterpower
potential of the counties in our sample after partialling out the baseline controls.?

To estimate changes over time in counties with lower waterpower potential, as steam
technology improved, we estimate the following panel regressions where each observation is a

county-industry-decade:

Yt = BrLowerW aterpower Potentiale + vjt Xe + Nie + Nit + €ict- (2.2)

The estimated (3 coefficients report the relative change in counties with one standard deviation
lower waterpower potential. We estimate the regressions separately by decade-pair, for instance
estimating changes from 1850 to 1860 including only data from 1850 and 1860, which avoids
interpretation issues associated with regression models that pool across many time periods
(e.g., Roth et al., 2023). We include county-industry fixed effects (\;.), year-industry fixed
effects (v;t), and interact our baseline control variables with year-industry dummies (y;+X¢).

For the panel regressions, the identification assumption is that counties with lower
waterpower potential would have changed similarly to counties with more waterpower potential,
on average, aside from differences due to water power and steam. This assumption is
conditional on differential changes associated with our baseline county controls (river flow,

terrain ruggedness, navigable rivers and market access, coal deposits).

23. The Appalachia region generally has higher waterpower potential and in Appendix 2.G we show directly
that our results are not driven by regional differences for Appalachia (with its own distinct topography and
history).
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For the cross-sectional and panel regressions, our main outcome variables relate to mill
activity and their power source. We also examine outcomes separately for entrants and
incumbents, which informs the role of switching barriers in the transition from water to steam
power.

Some outcome variables are well-defined in levels, such as the share of mills using steam
power, and for these outcomes we estimate Equation (2.2) using OLS. Shares are undefined
when there are no mills, so we omit counties with no mills in one of the relevant decades.
When estimating impacts on the share of mills using steam, we weight county-industries by
their number of mills in the initial year to make our estimates comparable to a firm-level
regression for an indicator of power adoption choice.

For outcomes such as total mills, we want to measure their elasticity with respect to
waterpower potential. There are a few zeros in the sample, for county-decades where all
incumbent mills closed after 1850 and there were no entrants. To estimate elasticities, and
include growth on both extensive and intensive margins, we use Poisson Pseudo Maximum
Likelihood (PPML) regressions (Silva and Tenreyro, 2006) rather than approaches such as
log(1 + z) or inverse hyperbolic sine that are sensitive to units and therefore difficult to
interpret (Chen and Roth, 2023).24 Similarly, we use PPML to estimate the elasticity of the
entry rate (entrants / previous mills) and the survival rate (incumbents / previous mills)
with respect to waterpower potential.2?

We focus on linear specifications, as Appendix Figure 2.12 Panels B and C show that the
estimated impacts on mill activity from county waterpower potential are roughly linear. We

report robust standard errors clustered by county. Mill activity serves largely local markets,

24. Formally, PPML estimates the average effect of county waterpower potential as a percentage of the
baseline mean.

25. To estimate the elasticity of the entry rate with respect to waterpower potential, we use PPML
regressions where the outcome in the current period is the number of entrants and the outcome in the previous
period is the total number of establishments. This is equivalent to running a cross-sectional OLS regression
for the log of entrants minus the log of total prior establishments, but does not require dropping counties
without prior establishments or entrants. We use the same approach for the incumbent survival rate.
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though waterpower potential is correlated across nearby counties, and we also estimate Conley
(1999) standard errors that adjust for spatial correlation across counties assuming counties
are independent beyond a distance cutoff. The Conley standard errors are similar to the
clustered ones for distance cutoffs within 500 miles, and are 10-40% smaller for cutoffs up to
1000 miles.

The main outcomes that we are interested in are how milling was shaped by entrants
vs. incumbents, and steam vs. water users. Table 2.1 shows the share of milling in each
decade for each type of mill. In each Census year, most mills entered during the previous
decade, and entrant establishments disproportionately used more steam power than incumbent

establishments.

2.3.1 Waterpower Potential, Power Use, and Mill Growth

Table 2.2 reports that counties with one standard deviation lower waterpower potential had
substantially fewer water powered mills in 1850 (Panel A) and substantially less revenue
from water powered mills in 1850 (Panel B). Columns 2 and 3 report estimates separately for
lumber mills and flour mills. The estimated coefficients of -1.06 and -1.13 imply 65% fewer
water powered mills and and 68% less water powered revenue (Column 1).

By 1850, there had been faster adoption of steam power in counties with lower waterpower
potential (Table 2.2, Panels C and D). The share of mills using steam power was 8.9 percentage
points higher in these counties in 1850 (Panel C), and the share of revenue produced using
steam power was 12 percentage points higher (Panel D).

Overall mill activity was still substantially lower in counties with lower waterpower
potential (Panels E and F), though somewhat muted by the increased use of steam power.
Particularly in lumber milling, where there was a more substantial early shift to steam power,
there are more muted effects on total revenue in 1850.

Table 2.3 reports estimated changes in counties with lower waterpower potential. From
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1850 to 1860, the share of mills using steam power grew 6.7 percentage points more in counties
with lower waterpower potential (Column 1). Steam-use grew by 3.4 percentage points from
1860 to 1870 in lower waterpower counties. From 1870 to 1880, steam adoption began to catch
up in counties with more waterpower potential by a statistically insignificant 0.9 percentage
points. Figure 2.4 shows that steam use also increased from 1850 to 1880 in counties with
average waterpower potential, but more so initially in counties with one standard deviation
lower waterpower potential.

Counties with lower waterpower potential also experienced substantial relative growth in
the total number of mills and total revenue (Table 2.3, Columns 2 and 3). The number of
mills increased by 25% and revenue increased by 20% from 1850 to 1860. Growth continued
at lower rates through 1880, suggesting continued benefits from lower waterpower availability
and earlier steam adoption.

Table 2.4 shows this growth in counties with lower waterpower potential was driven by
entrant firms. The entry rate was 38% higher, from 1850 to 1860, while the firm survival rate
was 21% lower. In each period, entrants crowded-out local incumbent firms, which exited at
higher rates in counties with lower waterpower potential despite the overall growth in these
counties.

We can also separate incumbents by their prior-period power use. We refer to “water
incumbents” and “steam incumbents” as surviving firms who used water and steam in the
previous decade, regardless of their technology in the current period. Appendix Table 2.14
shows that waterpower potential had roughly similar effects on the exit probabilities of steam
and water incumbents.

Table 2.5 shows that entrant firms mostly drove the greater adoption of steam power in
counties with lower waterpower potential. In each decade, entrants were 16 — 19 percentage
points more likely to be using steam power, relative to entrants in counties with higher

waterpower potential (Column 1). Among incumbent firms that had been using water power
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(“water incumbents”), these firms were a more modest 3 — 5 percentage points more likely to
adopt steam power in counties with lower waterpower potential (Column 2).

Steam adoption by entrant mills was substantially more responsive than switching to
steam by water incumbents (Column 3, Table 2.5). Water incumbents’ lower steam use,
combined with the increased exit of incumbents from Table 2.4, suggest that incumbent mills

were subject to switching barriers.

In Summary: The increase in steam use for lower water power counties was driven by
more entrants in lower water power counties, as incumbents were crowded out (Table 2.4).
Furthermore, in counties with less waterpower potential, entrants adopted steam more readily
than water incumbents (Table 2.5). Section 2.5 quantifies this technological lock-in and its

implications.

2.3.2  Non-Mill Manufacturing, Steam-Use, and Backward Linkages to Steam

Production

This section shows differences by waterpower potential in broader manufacturing activity,
outside lumber and flour mills. We also then narrow our focus to local steam engine production,
which supported higher local steam-use across manufacturing. We restrict this analysis to
1850-1870 due to the missing Census manuscripts for some industries in 1880.

Table 2.6, Column 1, shows that counties with lower waterpower potential also had
substantially less manufacturing activity in 1850 outside of lumber and flour mills. This is
consistent with less local waterpower potential making locations less attractive, both due to
lower water power use in other sectors and co-agglomeration of other sectors with milling
that supported local economic activity generally. This difference declined slightly over time,
as steam-use increased modestly (Column 2). In 1850, non-mills were already more likely to

use steam power if located in counties with lower waterpower potential. Non-mills in these
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counties adopted steam power somewhat faster over the subsequent decades, though not as
much as mills (shown in Table 2.3).

Differences in steam-use across the manufacturing sector can reflect both a direct effect,
from restricted access to water power, and an indirect agglomeration effect from local
complementarities in steam adoption. Lumber and flour milling were leading sectors for steam
adoption, given their heavy initial reliance on mechanical power. Earlier steam-use by some
agents could plausibly hasten steam adoption in the broader economy, given more-limited
general knowledge of steam engine technology.20 Installation and operation of steam power
was not an off-the-shelf process; rather, steam was a more complicated and volatile technology,
whose use might plausibly depend on the local knowledge base and, in turn, whose use might
plausibly affect the local knowledge base. Delayed steam adoption by mills, in places with
more waterpower availability, may have then held back steam adoption in local manufacturing
more broadly.

One mechanism for these agglomeration effects is backward linkages in manufacturing of
steam equipment: steam-use encouraging local manufacturing of steam equipment, which in
turn encourages others to use steam power. Most manufacturing establishments purchased
equipment from local manufacturers (Woodbury Report, 1838; Temin 1966), and a quarter of
steam equipment manufacturers also report repair services in the Census of Manufactures,
which highlights the importance of a local technical knowledge base.

Table 2.6, Column 3, shows that counties with lower waterpower potential had more
manufacturers of steam engines, boilers, and related equipment (relative to all manufacturing
establishments). The overall manufacturing sector was smaller in lower waterpower counties,
but for manufacturing establishments in these counties there was a greater density of steam
equipment makers to support steam adoption. This is consistent with the demand for steam

power helping to create its own supply.

26. Indeed, Franck and Galor (2021, 2022) argue that an important driver of the spread of steam power in
France was distance to Fresnes-sur-Escaut, the location of the first commercial steam engine in the country.
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2.3.3  Potential Other Forces Driving Steam Adoption

Increases in local demand could have encouraged adoption of steam power in counties with
lower waterpower potential, including steam power making these counties more attractive
for a variety of activities that increase local demand for milling (Benhabib and Rustichini,
1993). Appendix Table 2.15, Column 1, shows that counties with lower waterpower potential
experienced faster population growth during this period (7% to 10% per decade), but
population is not driving our estimates on steam adoption. While counties with lower
waterpower potential had a higher share of mills using steam power (Table 2.2) in 1850, but
had lower population in 1850 (Appendix Table 2.15). Further, Appendix Table 2.15 shows
that lower water power counties experienced increases in milling activity even in per capita
terms. Our estimates from Table 2.4 are also inconsistent with population growth driving
our results: if county growth were being driven by more customers, it would be difficult to
rationalize the decreased survival of incumbents.

In Appendix Tables 2.16, 2.17, and 2.18, we show our results are similar when constraining
the sample to only flour, which was less technologically less-tradable than lumber at the
time due to its perishability. In Appendix 2.G, we explore the robustness of our results to
controlling for a variety of other features of the economic environment that may have had
direct effects on steam adoption or general effects on economic activity. We summarize our
approach below.

Geographic variation in waterpower potential could be correlated with other factors
affecting economic activity, in levels or in changes, and in Appendix Tables 2.19 and 2.20 we
consider how our results change when controlling for alternative local factors. In Appendix
Table 2.19, we show that our results are robust to including various characteristics that
have been discussed as important drivers of steam power adoption across different contexts
(Crafts, 1977; Floud and McCloskey, 1981; Allen, 2009; Mokyr, 2016): alternative measures of

access to coal (Wrigley, 2010; Fernihough and O’Rourke, 2021; Reichardt, 2023); agricultural
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productivity and woodland that affect mills’ material input availability (Ragnar, 1953);
differences in labor availability reflected in manufacturing wages (Habakkuk, 1967; Allen,
2009) and mechanics and engineers (Hanlon, 2022), though also potentially outcomes of mills’
steam adoption; capital availability through banks (Jaremski, 2014); and all of the above
controls.

In Appendix Table 2.20, we show that our results are robust to other adjustments to
our controlling for features of counties’ economic environment. First, we show our results
are robust to removing some or all of our controls for access to markets or coal. Our
results are robust to controlling for time-varying market access and population, which are
themselves potentially endogenous to steam adoption, or growth associated with counties’
fixed 1850 population. Some estimates are smaller when controlling for population, but this
also introduces bias because county population is endogenous to local waterpower potential
(even in 1850). Our results are robust to controlling for alternative sources of potential
growth: an indicator for being in Appalachia or on the frontier (Bazzi et al., 2020), the share
of workers in agriculture (Eckert and Peters, 2023), having a portage site (Bleakley and Lin,
2012), exposure to the Civil War, and all of these time-invariant controls interacted with
decade.

Our analysis focuses on county-level geographic variation in waterpower availability,
though there could also potentially be within-county differences in location advantages for
steam power. One salient locational characteristic could be the distance to the closest railroad,
which was a source of fuel imported from other counties. We digitized historical maps of
railroad station locations, and found locational variation within and between counties. Some
counties had water power sites close to stations and in others they are far away, which could
lead to differences across water incumbents in the feasibility of switching to steam power
and therefore a potential source of technological lock-in. Nevertheless, Appendix Table 2.21

shows that distance to railroad station is not an additional substantive source of variation in
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steam suitability: it does not predict steam-use, water incumbents switching to steam, or a

differential response of entrants versus incumbents.

2.3.4 Robustness to Linkage Error

A natural question is how much our estimates might be affected by measurement error,
particularly errors in the construction of our panel links. For our main results, we invested in
a resource-intensive approach that used hand-links, but there are inevitably false negatives
and false positives in the links. The hand links are binary, such that mills are either linked
or they are not. To create a measure of confidence for any given link, we train a supervised
machine learning algorithm on the hand-made links (see Appendix 2.C.4 for details). We
then use the estimated linking probabilities to explore the the quality of hand-links, and the
sensitivity of our estimates to adding panel mills that were almost linked, or removing those
for whom the links are less predictable.

Appendix Figure 2.18 Panel A shows the predicted match probability for the hand-links.
For mills whose sector and ownership structure were unchanged from one decade to the
next, the hand-links are very predictable: most match probabilities are above 0.8. For mills
that changed milling sector (e.g. flour-to-lumber), and especially for mills that gained or
lost some owners, the match probabilities are lower but still mostly above 0.5. For our
regression analysis, a primary concern would be that linkage errors are correlated with county
waterpower potential. Appendix Figure 2.18 Panel B shows that the distributions of predicted
match probabilities are similar for mills in counties with low and high waterpower potential.

One advantage of the ML model for robustness analysis is that we can change the matching
cutoff, which mechanically changes the firm survival rate along with the rate of false-negative
and false-positive matches. Appendix Figure 2.19 shows how raising the cutoff lowers the
share of ML links that are not hand-links (the “false match” rate, akin to a false discovery

rate) but also lowers the share of hand-links that are made by the ML model (the “found
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match” rate, akin to the sensitivity). Our baseline machine-learning links use a predicted
match probability of 0.6 as the benchmark cutoff for classifying a mill as surviving from
one decade to the next, which is close to maximizing the “found match” rate while keeping
the “false match” rate relatively low. Appendix Table 2.22 shows that with this cutoff, the
survival rate is higher using the ML-links (compared to the hand-links), as many mills are
only classified as surviving using the ML model. Most hand-links (67%) are also predicted by
the ML model. Conditional on finding a match, it is rare that the ML-links and hand-links
disagree on the identity of the match.

Appendix Tables 2.23 and 2.24 show that our results are not sensitive to changing the
sample to include more- or less-confident matches based on the ML-link probabilities. Our
results are similar if we restrict our panel sample to those mills linked by hand and the
baseline ML model, rather than our main sample of hand-links, or use only the benchmark
ML-links. Using the ML-links only, the results are also similar if we raise or lower the
benchmark cutoff of 0.6 for classifying matches.

A useful feature of our approach is we classify whether mills have a “business name”
(such as the “Rock Creek Mill”) or whether mills are named after their proprietors (and
might therefore be differentially subject to linkage error). Our estimates are similar when
considering each type of mill separately.

We also explore potential measurement error in the type of power source recorded for
mills, which is based on Census enumerator visits to the mills. The original manuscripts
contain some corrections, with scratched out and re-written information by an occasional
second enumerator, so the final recorded data could also differ in some cases from mills’
actual operations. For instance, we searched in historical records for mills that reported
power sources other than water and steam — in particular, some suspiciously large mills
without reported mechanical power — and found that these mills often did actually use

water or steam power. Some report “horse” as a power source, without further detail, which
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probably often represents water or steam power rather than horse-powered mills. We cannot
systematically correct these mills’ recorded power use, so our baseline estimates exclude these
mills; but as there are few of these mills, our results are not sensitive to including them as
non-steam powered mills.

Our main analysis restricts the sample to the panel of counties with at least one mill in
1850. In Appendix Table 2.25, we show that our results are similar when including different
sets of counties: expanding the sample to include all counties that ever had a mill, or limiting
the sample to counties with multiple mills in 1850. Our estimates are also not sensitive
to dropping large county groupings, made in the construction of geographically-consistent
counties, which potentially misclassify local waterpower availability, or the counties with
extreme local waterpower potential. Our results are also similar if we exclude counties that
were more involved with cross-county or international trade in mill output: the 20 largest
cities at the time, or places that Kuhlmann (1929) describes as having “merchant mills” that
exported their output.

It is important to use our geographically comprehensive measurement of waterpower
potential. Because the 1880 Water Census effectively selected on the dependent variable
(by omitting places with lower waterpower potential and lower water power use), we would
expect estimates based on the 1880 Water Census to be biased toward zero, which we confirm
when looking at the number of water powered mills in 1850 (Appendix Figure 2.12 Panel B)
or 1850-1880 growth in mills (Panel C).

2.4 Key Empirical Patterns

Overall, there is a stable relationship between greater waterpower potential and slower
adoption of steam power. The differences in steam adoption rates among entrants and
incumbents is suggestive of technological lock-in, with barriers to steam adoption for those

establishments that had been using water power. We use a quantitative model to estimate the
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magnitude of this lock-in and its implications for aggregate manufacturing outcomes given
firm entry and exit. The model estimation draws on these estimated differences by county
waterpower potential. The model also reflects other features of the economic environment,
such as the costs and benefits of using steam power, which we describe further in Section 2.5.
In this section, we describe several empirical patterns to motivate the model’s structure, and
which provide moments in the model’s estimation.

Our view of the technological transition from water to steam is motivated by the following
intuition. Each technology was associated with marginal costs and fixed costs (where fixed
costs include both purchase and overhead costs). Because neither technology was clearly
more attractive to millers, we model steam power as better on one cost dimension and water
power as better on the other cost dimension. To distinguish which technology has which
features, we use a logic in the spirit of Melitz (2003) (see also Olmstead and Rhode 2001;
Cabral and Mata 2003, and Bustos 2011).

Millers have different productivities, for instance due to their ability to attract customers,
manage suppliers, and operate the machinery (Huntington et al., 2023). Holding fixed
productivity, firms will be larger if they use the lower marginal cost technology. For a given
power technology, more-productive firms will have higher sales. More-productive firms are
then more likely to prefer the high fixed cost and low marginal cost technology, because they
can amortize the fixed costs over more units. Combined, this means that the technology
associated with larger firms is the one with lower effective marginal costs. We compare a
variety of firm size distributions and use a similar logic to study how the costs of steam and
water power varied over space and time. Characterizing these size distributions relies on
our digitization of the micro-level Census data, as these economic patterns were previously
unknowable from aggregated tabulations or smaller samples of micro-data without firm names

or panel links.
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2.4.1 Cost Structures for Steam and Water

Figure 2.6 shows that steam powered mills were larger than water powered mills, on average.
Given the Melitz (2003)-style logic discussed above, this implies steam power has higher fixed
costs and lower marginal costs than water power.

This implication requires some further interpretation, though, as steam power, unlike
water power, requires daily expenditure in order to access mechanical power. The empirical
patterns reflect the realities of running steam engines and waterwheels. Even small steam
mills employed full time engineers and firemen. To avoid ramping costs, mills used a relatively
consistent amount of fuel to keep their engines on throughout the day (Fisher, 1845; Swain,
1888). As a result, many of these costs were fixed overhead costs, not marginal costs, which
is in turn reflected in the firm-size distribution.

Furthermore, the effective marginal costs of water power were higher than their inframarginal
variable costs. Waterwheels were limited by their local geography: the size, speed, seasonality,
and reliability of their local waterway, as well as contractual water rights. The data reflect
not only the actual monetary expenditure for the marginal power use for water mills, but
also the shadow costs associated with expansion. Some water powered incumbents did
grow (Appendix Figure 2.20), so water powered mills were not completely constrained, but
expanding production further could require increasingly expensive modifications to their
operations. On average, the water incumbents who stuck with waterpower expanded their
horsepower capacity by 7%, and those who switched to steam power expanded their capacity
by over 50%.

Finally, the relevant marginal costs are those of production, not of power alone. Appendix
Figure 2.17 shows that steam mills had access to more power than water powered mills,
lowering the non-power marginal costs of steam powered mills (for instance, because the mill
could process more inputs per hour (Evans, 1795; Dedrick, 1931)).

To support the interpretation that steam powered mills had lower marginal costs, we
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analyze prices. Due to data constraints, we are only able to study prices for single-product
lumber mills in 1880, but indeed find that steam use predicts lower output prices (by 6%).

Figure 2.6 shows that the size distributions for steam and water powered mills converged
over time. This suggests a corresponding decline in the fixed cost of steam power, as less-
productive firms started to find steam power more attractive, whereas a declining marginal
cost of steam power would have increased the size premium of steam powered mills. This is
consistent with the importance of the development of high-speed engines that reduced steam
fixed costs for lumber and flour mills.27

One potential explanation for these results could be that steam power shifted activity to
new locations that, for unrelated reasons, had mills of different sizes. This geographic shift is
not driving our results, though: Appendix Figure 2.21 shows firm-size distribution patterns
we find are similar within-counties (for counties with both types of mills).

For local waterpower potential to make water power use more attractive to firms (as in
Figure 2.12 Panel B), it must have lowered the fixed costs or marginal costs of using water
power. If waterpower potential lowered the marginal costs of water power, then counties with
higher waterpower potential would have larger water powered mills (and, due to the resulting
selection, also larger steam powered mills). Figure 2.7 shows this was not the case and, indeed,
somewhat the opposite: in most decades, counties with higher waterpower potential have
more small mills. Thus, we model county waterpower potential as lowering the time-invariant
fixed costs of water power, such as the costs of water rights and constructing millponds.

Congestion was not an important force driving differences in steam power in the United
States (Gordon, 1983). In our data, counties still had substantial available waterpower

capacity.28 Further, Table 2.5 shows that water incumbents are more likely to switch to

27. Figure 2.6 shows that the convergence of firm size distributions is partially driven by the left tail of
low-productivity water mills disappearing over time. In our model, increasing competition (driven by the
spread of steam power) crowded out the least productive water mills. Collard-Wexler and De Loecker (2015)
document a similar pattern in US steel manufacturing during the spread of the minimill.

28. The median county used less than 10% of the available waterpower potential, and over 95% of counties
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steam in places with lower waterpower potential. If the increased adoption of steam power
was driven by difficulties finding available water power sites, water incumbents would be
unaffected.

Figure 2.6 also shows there was substantial overlap in the size distributions of steam and
water powered mills in every decade. This suggests a substantial idiosyncratic component to
mills” technology adoption. One natural candidate for this heterogeneity is the preferences
and talents of firm owners. Linking the Censuses of Manufactures and Population, Appendix
Table 2.28 shows that owners who were immigrants or younger were more likely to use steam

power, highlighting the role of owner characteristics for technology adoption.??

2.4.2  Operating Costs

We calculate that 19-24% of mills survived from one decade to the next (Appendix Table
2.26).30 Firm exit implies that dynamic incentives are important, as only some firms
successfully amortize their fixed costs of entry and technology adoption over a long time
period.

Appendix Figure 2.22 shows that, on average, surviving firms are larger than exiting firms.
This suggests a fixed cost of production in every period, with an additional idiosyncratic
component, to rationalize the correlation between firm exit and initial size. Water incumbents
were also more likely to survive than steam incumbents, consistent with explosions and the

additional operating costs associated with steam power.

used less than half of the available waterpower potential. Hunter (1979) and Gordon (1983) report that
standard estimates of waterwheel efficiency in the era were at least 50-70%.

29. McElheran et al. (2023) find that younger owners are more likely to adopt artificial intelligence
technologies.

30. This implies an annual exit probability of around 15%, higher than modern annual exit probabilities of
around 8% (Foster et al., 2016).
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2.4.3 Barriers to Switching Technologies

Entrants’ decisions to adopt steam is a useful contrast to incumbents’ decisions, as entrant
firms started with a clean slate. Figure 2.5 shows that entrants were four times more likely

31 The difference in steam adoption rates is

to use steam power than water incumbents.
not driven by differences in firm size and is slightly larger when conditioning on firm size
(Appendix Table 2.27).

This difference in steam adoption rates, between entrants and incumbents, suggests there
are barriers to switching from water to steam power. A barrier to switching technologies
also causes only the highest-productivity water incumbents to adopt steam, while relatively
lower-productivity entrants would use steam. Consistent with this logic, Appendix Figure 2.23
shows that incumbents are larger than entrants within each power technology: on average,
incumbents are 20% larger when using water and 40% larger when using steam.

Switching barriers were not infinite, however, as both entrants and incumbents were more
likely to adopt steam power over time. This is consistent with the technological improvements
in steam power. Over the course of our sample, steam adoption rates increased by sixty

percent for both entrants and water incumbents, from a base rate of thirty percentage points

for entrants and 8 percentage points for water incumbents (Figure 2.5).

2.4.4 Alternative Reasons for Lower Steam Adoption among Incumbents

While the data patterns are consistent with fixed barriers to switch power technologies, we
also consider several alternative explanations for the serial persistence in firm technologies.

Across different contexts, one leading alternative explanation for low technology switching
by incumbents is learning-by-doing (Jovanovic and Nyarko, 1996). The idea would be that

water powered incumbents could have freely adopted steam, but did not want to because

31. A few firms report switching from steam to water, which is rare enough that we do not report separate
statistics for these firms, though we do include these firms when we estimate the model in Section 2.5.
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they had learned to use water power and, for them, it continued to dominate steam. For
this context, high rates of learning-by-doing for water power would be inconsistent with the
longstanding use of water power in the US, but we can explore this further in the data.

Learning-by-doing would imply that water incumbents experience relatively fast growth,
as they benefit both from learning and any other general economic changes that would
increase firm size. To test for learning in the spirit of Bahk and Gort (1993), we compare
the growth rate of water incumbents who keep using water power to the growth in the
firm-size distribution for entrants over the same time period. Appendix Figure 2.24 shows
that incumbents and successive generations of water powered entrants “grow” at a similar
speed, consistent with no additional learning-by-doing boost for water incumbents.

We consider switching barriers as equivalent to an expenditure (a combination of the
opportunity cost of scrapping a functional power source and other actual costs such as
retrofitting). An alternative modeling approach could assume a productivity cost from
switching technologies (see, e.g., Parente and Prescott 1994). For our context, productivity
losses seem implausible, because most of the day-to-day operations of milling are the same
with either power source. In the data, Appendix Figure 2.20 shows that switchers grow faster
than stayers, which is not consistent with productivity losses from switching. Indeed, even
though water incumbents were initially negatively selected (because only firms with relatively
low initial productivity chose water power), those that switched to steam power were 2.6%
larger than steam entrants.

Another potential reason why incumbents would not switch technologies is permanent
unobserved heterogeneity (i.e., “steam types” and “water types”’). Appendix Table 2.28 does
show some specific examples of persistent firm heterogeneity (for instance the immigration
status of the owner), but we do not include it in the model for a variety of reasons. First,
the results from the owner-linking analysis are not quantitatively important on aggregate.

While immigrant owners are much more likely to use steam power, they are a small share of
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overall millers. The effect of age is relatively small. Appendix Table 2.28 also shows that
professional millers were more likely to use steam power, but this is not a permanent type.

Other features of the data also suggest that permanent idiosyncratic variation in costs and
productivity is not driving the main data patterns. Appendix Figure 2.20 shows that firms’
revenue grew more when they switched, which is not a general prediction of models with
persistent types, but is a prediction of a model with switching barriers (as only the mills with
productivity growth would choose to change technologies). Historical accounts of mills also
discuss instances of mills switching technologies after a fire destroyed their original structure
(Appendix 2.F), which suggests owners do not persistently prefer a particular technology, but
instead face sunk fixed costs or other barriers to switching (Hornbeck and Keniston, 2017,
Huesler and Strobl, 2023).

We can also use the timing of mills’ water use and steam use to compare the implications of
switching barriers that generate state-dependent technology choices against the implications
of heterogeneous types. Methods of quantifying the importance of state dependence versus
types require observing agents for many periods (Lancaster and Nickell, 1980; Chamberlain,
1985; Dano, 2023), whereas we observe mills for a maximum of four census rounds (and
normally fewer). We provide two alternative tests, in the spirit of Chay et al. (1999), which
are inconsistent with the presence of types driving relatively low switching rates.

One test of state dependence is to examine firms’ technology choices, conditional on their
prior use of water and steam power. Consider the sample of mills over four periods who start
with water power, end with steam power, and use steam power exactly twice. These mills use
steam power half of the time, and all have the same initial and final conditions (as in Hotz and
Miller, 1993; Arcidiacono and Miller, 2011). Switching barriers would make it substantially
more costly for these firms to alternate between technologies twice, as opposed to using water
for two periods and then steam for two periods. By contrast, under heterogeneous types,

switching is driven by period-specific idiosyncratic shocks, so each pattern would be equally
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likely. In our data, the vast majority of these mills switch technologies only once and then
keep their new technology, which suggests switching barriers are driving technological choice.

The second test is based on the logic that under persistent heterogeneity, a Bayesian
observer would update that a water powered incumbent who previously also used water
power would be more likely to be a “water-type” than a water entrant, since the former chose
water power multiple times. This would subsequently imply that the water incumbent stayers
would be more likely to use water power than water entrants in subsequent decades, but this
is not what we find in the data.

Another potential source of differences in technology use for entrants and incumbents could
be differences across locations, if the (new) steam users locate in different places than the
(pre-existing) water users. We find significant differences in adoption choices within counties,
however, and we compare technologies choices within county-industries when estimating the
relevant moments in Section 2.6.

Finally, we do not observe if entrants build their own mills, or if they purchase used mills.
The resale of water infrastructure would generally attenuate the differences between entrants
and incumbents: if persistent county-level infrastructure were important to the choices of
entrants, then they too would face opportunity costs of using steam, and they would not be
substantially more likely to use steam power than the water incumbents. Nevertheless, Table
2.5 shows that entrants are particularly more likely to use steam power in places with lower

waterpower potential, which have relatively higher exit of waterpowered establishments.

In Summary: Steam power allowed firms to scale production at lower effective marginal
costs, which required higher fixed costs. Those fixed costs declined over our sample period as
steam technology improved. Both water and steam required fixed overhead costs, and millers
faced some cost of switching power technologies. Counties with higher waterpower potential
used relatively less steam power, due to their continued access to water power (direct effects

of geography) and their previous use of water power (dynamic effects of geography, through
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technological lock-in). We now turn to a formal framework that fits these estimates and

quantifies the influence of technological lock-in.

2.5 A Model of Steam Adoption

It is difficult to interpret all of the estimates jointly — the empirical patterns along with
the estimated differences by waterpower potential — with only economic intuition. One
main purpose of the model is to collect and synthesize the magnitudes of these different
relationships. Further, the structural model allows us to evaluate how switching barriers —
and policies aimed to alleviate them — matter for the aggregate spread of new technologies.

We develop a dynamic equilibrium model of technology adoption and firm entry. In the
model, firms face a dynamic power source choice. The key tradeoff is that water power
has a lower fixed adoption cost than steam, but a higher marginal cost that inhibits higher
production levels. The only primitive that varies across counties is the cost of adopting water
power. The only primitive that varies across time is the purchase price of steam. A falling
price of steam power drives steam adoption but also incentivizes forward-looking firms to
wait to adopt. The barriers to switching from water to steam power encourage firms to enter

using steam. In this section, we describe the formal setup of the model.

2.5.1 Static Choices: Production and Demand

Each firm j in county c¢ in year ¢ maximizes its static profit by choosing its optimal levels of
variable inputs x ;. and price pjq, given its power source R, its baseline productivity ¢, and
the choices of other firms.

We assume all demand for mill products takes place locally and takes a nested CES

1
form.32 The price index P, equals [ / p}c_te dj} 1_6, where € is the elasticity of substitution

32. Appendix Table 2.14 shows that the competitive pressure from steam entrants has similar effects on the
exit probabilities of steam and water incumbents. This result is consistent with entry raising competitive
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across mills’ products. Local demand for mill output Y. equals chn, where 7 is the elasticity
of demand for mill products. If firm j charges price pje, its quantity sold is: yjee = pﬁipft_n.
Firms produce using a constant-returns-to-scale technology in flexible inputs x (labor and

materials), which are elastically supplied at a price w:

Yjet = exXP(Pjct + VRjey + ORjoy Sct)Tjct- (2.3)

Firms’ overall productivity is determined by their baseline productivity ;. and an
additional yp, , from their power choice R, which is either water (W) or steam (5). We
normalize vy = 0 so vg = . The productivity boost from steam power is also a function of
contemporaneous local steam usage («gsqt), where s¢ is the share of firms using steam and
g is the strength of this agglomeration force.?3 Agglomeration effects (ag) could reflect
that increased local steam use generates greater local human capital in steam production.

Firms buy inputs z to maximize flow profits. Their price, output, and profit functions are:

€ w
Ro) = ’ 2.4
1—e
€ w

R.) = Py 7 2.5
Yet (R, p) = Pet (6 —Texp(p + 7+ ozRSct)) =

(R, ) lp enf_€ 2 a (2.6)
T B = = ' ‘

ct 2 P ct € — 1exp(¢+73+a350t)

The next section describes how firms choose if they produce and with what power choice.

pressure by lowering the aggregate price index, and more consistent with monopolistic competition than a
Bertrand model in which the initially water powered mills would be especially unable to match the low prices
of the steam mills.

33. We normalize the agglomeration force in water power to zero, such that cvg captures the net agglomeration
force in steam power.
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2.5.2  Dynamic Choices: Firm Entry and Power Choice

We model a firm’s dynamic choices in four stages (Hopenhayn, 1992; Melitz, 2003; Chernoff,
2021). In Stage 1, prospective entrants decide if they want to pay a fixed cost and enter the
economy. In Stage 2, entrants draw their productivity ;. and incumbents update their
productivity. In Stage 3, firms choose if they want to exit, given their revealed productivity
and fixed operating cost. In Stage 4, surviving firms select their optimal power source and
produce. After these four stages, the cycle starts over again. For the initial stages, we
consider the possible power states to be E, W, or S (respectively for entrant, water, or steam).
Entrants need to adopt water or steam power to produce in the final stage.

Stage 1: Entry. A prospective firm enters in county c in year t if its expected continuation

value upon entry exceeds the fixed cost of entry:

E, Vet (E, 9)] = [, (2.7)

where V¢ (E, ¢) is the continuation value for an entrant.
Stage 2: Updating Baseline Productivity. The productivity of an incumbent mill j, ¢,

follows an AR(1) process:

Qjet = TPji—1 + 01, (2.8)

where m and o are parameters that represent the persistence and dispersion of latent
productivity . Entrants draw their productivity from the stationary distribution of the
same AR(1) process.

Stage 3: Sinking the Operating Cost. All firms pay a common deterministic operating cost
fé%, given their power source R € {E, W, S}. Furthermore, each firm j pays an idiosyncratic

cost Vﬁ}t(O) it it continues its operation, and Vﬁ}t(l) if it chooses to exit. Each firm compares
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the expected value from paying the operating cost to the value from exit:

Vet(R, ) = max{Ee [V§(R.0)] = 5 = vj};(0), 98 — w5 (D)}, (2.9)
where VS (R, ¢) is the continuation value after sinking the operating cost and Qg is the resale
value of technology R.

Stage 4: Choosing a Power Source and Producing. Having paid its fixed operating cost,
each firm chooses its optimal power source as a function of adoption costs, switching barriers,
and expectations over future productivity. The value function for an establishment with

power source R and productivity ¢ is:

VE(R.9) = | s (mal ) = R ) = eja(R) + 0By [Versa (R ] (2.10)

met(R, ) is the firm’s static profit from Equation (2.6), ¢ is the discount factor, and
B [Vct+1(R/ ! )} is the expected continuation value given the law of motion for productivity
in Equation (2.8). For each power source, the firm draws an idiosyncratic usage cost €.4(R).
To give some examples of idiosyncratic costs, Swain (1888) describes some millers preferring
water power due to its “greater cleanliness, less annoyance, and less area required.” If the
firm chooses to change power sources, the firm pays cq¢(R, R') to switch from power source R
to power source R’. The firm then produces, charging the profit-maximizing price described

in Equation (2.4).

2.5.83  Equilibrium

Firms make forward-looking decisions anticipating improvements in steam power and the
competition from other firms in their local product market. For example, while lower steam
costs create an option value for incumbents to switch to steam, these firms understand that
cheaper steam may also induce other firms to enter, adopt steam, and compete for customers.
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We study the local economies along their transition path as steam power becomes available

at lower costs.

Definition 1 (Dynamic Equilibrium). An equilibrium for county c is a time path for the
mass of entrants M., the mass of operating firms F(R, ¢), and the policy functions for

operation/exit Og (R, ¢) and power Rét(R, ©), taking the time path of steam costs cq¢(.S) as

given, such that:

(i). Firms enter, exit, and adopt power sources to maximize expected discounted profits

(Equations (2.7), (2.9), and (2.10)).
(ii). Firms source inputs = to maximize flow profits period-by-period (Equation (2.6)).

(iii). Output markets clear:
PCtYCt — cht + Hct, (2.11)

where Iy = [ 7at(R, ¢)dEq(R, @) are total local profits, and Xot = [ 2(R, p)dFet(R, ¢)

is local demand for inputs.

(iv). The free entry condition holds:

Ey [Vet(E, 0)] < f€. (2.12)

(v). The evolution of firm masses {F} is consistent with the policy functions {Oc, RL; }+.

2.5.4 The Arrival of Steam

We initiate the model in 1830, before steam power became broadly available to mills in the

US. We assume the economy was in a steady state before steam, with differences across
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counties reflecting their different water costs.?* In 1830, firms receive the news that steam
will become increasingly available. After the surprise of steam power, firms have perfect
foresight about the path of falling steam costs.?® In particular, steam power first becomes
purchasable at a high price in 1830, and its fixed adoption cost then monotonically declines
until reaching its steady-state level in 1900.36

The falling steam cost is the only driving force along the transition path. In particular,
we assume water technology is comparatively unchanged over this period, as it was a

comparatively mature technology. Rosenberg and Trajtenberg (2004) estimate that horsepower

per waterwheel was largely stable over time.

2.5.5 Parametric Assumptions

We make a series of parametric assumptions to solve and estimate our model.
Firm operating/exit costs are drawn from a Gumbel distribution with dispersion parameter
po, and the adoption costs for each power source are drawn from Gumbel distributions with

dispersion parameter p:

v (OPERATE/EXIT) * GEV1(p,) (2.13)
ciet(R) % GEV1(p). (2.14)

These distributional assumptions follow Rust et al. (1987).

34. The Census of Manufactures was professionalized and comprehensive beginning in 1850 (United States
Census Bureau, 1900; Atack and Bateman, 1999), after the first introduction of steam power. Because some
firms were already using steam, we cannot use the start of our data (1850) as the steady state before steam
power. Instead, we initiate the model simulations in 1830, when very few steam engines were used in US
milling (Woodbury Report, 1838), and estimate the model to match steam adoption from 1850 to 1880.

35. Humlum (2022) adopts a similar approach to modeling the arrival of robots in modern manufacturing.
While we do not have measures of millers’ expectations, contemporaneous accounts of steam technology are
consistently optimistic about the potential for future improvements (e.g., 7).

36. Steam power reached its peak adoption in US manufacturing around 1890-1900 (Jovanovic and Rousseau,
2005), prior to the large-scale arrival of electricity in milling (Fenichel, 1966).
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The productivity innovations are drawn from a standard-normal distribution

iid

Eit S N(0,1), (2.15)

which implies that entrants draw their productivities from the normal distribution

2

Piet S N (0, (1‘_7—7T)2) . (2.16)

The resale value of each technology (Qg) is a share of the current purchase price:
Qg = wlcuq(R). (2.17)

The costs of switching power sources reflect buying prices, resale values, and other costs:

p

0 if R=R

cet(R, R/) = Cct(R,) ifR=F (2.18)

cet(R') + (R, Ry — QIF  otherwise.

\

Mills keeping their existing technology do not pay any further costs. Mills purchasing
technology R’ have to pay a fixed purchase price cq¢(R'). Switchers face two additional forces.
First, incumbents face an additional switching cost to change power sources, ¢(R, R’), which
captures all costs of changing technologies. Second, incumbents may sell their pre-existing
technology (if wit > 0), though the scrap value may not be equal to the purchase price of
their old technology (Bertola and Caballero, 1994; Ramey and Shapiro, 2001).

We parameterize the fixed cost of steam adoption declining over time as follows:

ct(S) = Kset + anitial) i (Cgfermmal) B Cgimtz'al)) exp (_Cgslope) (t— T())) ’ (2.19)
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where the cost at period T is c7; (S) = cgmm”, and limg_yo0 ¢ (S) = cgermmal). This set-up

implies that the price of steam varies over time but not space. Conversely, the price of
water power varies over space due to local waterpower potential, but does not vary over time.
Finally, we allow the price of steam power to be a function of local steam use (k), capturing
the potential for agglomeration (or congestion) in power adoption, such as information sharing
and limited local access to the relevant capital.3”

Given these distributional assumptions, the firm-level expected continuation value is:

R 0 N1 _ rR
B, [V (R, )]  polog [exp <&> texp (E V(R )] = Jo )] S )

Po Po

while the expected continuation value after sinking the operating cost is:

1
Ec[VH(R, @)l =plog | Y exp (—(—cct(R, R') +7et(R', @) + 0B [Ver 1 (R, 90’)])
RIE{W,S)

(2.21)

The probability of exit, given the existing power source R and the baseline productivity ¢, is:

R
()
Pr.; (OPERATE/EXIT|R, o) = e TR
exp (P_Zt> —f-eXp ( el Vet pjo [ >

The conditional probability of choosing power source R’ € {W, S}, given a mill is starting

(2.22)

37. While we formally model « as affecting the price of steam power, it also functionally serves as a local
shifter for the relative price of steam. For instance, if the price of local water power falls in the local use of
steam, due to a move along the supply curve for water power (in the spirit of Hansen and Prescott 2002), we
would estimate a positive k.
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with power source R, is:

exp (%(_Cct(Ra R+ 7 (R, ) + 5E<p’ Verr1(, SO/)D)
ZR”E{WS} exp (%(_Cct(Ra R//) + 7Tct<R”a 90) + 5]E<pl [Vct-i-l(R//a 90/>])> |

(2.23)

Prct (R/’Ra (10) =

2.5.6 Solution Algorithms

The equilibrium for each economy is a complicated fixed point: heterogeneous firms make
forward-looking decisions about entry, exit, and power adoption, and firms’ decisions are
interlinked through their competition in local product markets and agglomeration spillovers
in steam power choices. We study the transition path of the economy, where falling steam
costs drive the transition from water to steam power.

Appendix 2.H describes our solution algorithms. In brief, we solve firms’ dynamic programs
by combining value function iteration (in the steady states) with backward recursion (along
the transition path). We solve the dynamic equilibrium using a fixed-point shooting algorithm

in the aggregate state variables.

Existence and Uniqueness

Appendix 2.H discusses the properties of our solution algorithm, including the existence and
uniqueness of the equilibrium. The convergence of our iterative algorithm is ensured by a
congestion force due to competition in the product market, which in turn ensures the existence
of an equilibrium. The congestion force behind the convergence property also tends to make
the equilibrium unique. Strong steam agglomeration forces (k and ag) could, however, lead
to multiple equilibria: a “low steam” equilibrium where few mills adopt steam (because the
net agglomeration force is weak) and a “high steam” equilibrium where many mills use steam
(because the net agglomeration force becomes strong). We verify that multiple equilibria

are not present in our terminal steady state (when steam power is fully available and more
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firms are at the margin of steam use) by initiating our solution algorithm at different starting

values for the equilibrium steam share.

2.6 Structural Estimation

In this section, we describe the quantification of the model developed in Section 2.5. We
consider two counties: a baseline county with the average amount of water power in the
United States, and a “lower waterpower” county with one standard deviation less waterpower
potential. We assume that the only fundamental difference between the counties is the cost
of water power c.(W). This structural modeling mirrors the identifying assumption in our
reduced-form analysis in Section 2.3, using waterpower potential as a cost-shifter for local
firms’ use of water power (after controlling for county water flow, elevation changes, and other
characteristics). In particular, the differences between the model counties correspond to our
reduced-form regression coefficients 8y in Equations (2.1)-(2.2). One feature of our setting is
that the transition to steam power had already started when comprehensive manufacturing
census data started to be collected in 1850, as by then 10% of mills used steam power. We
model the adoption curve directly, allowing us to interpret the reduced-form regressions as

estimates of the effect of waterpower potential at different dates along the adoption curve.

2.0.1 Estimation Strategy

In this section, we describe the set of structural parameters and the target moments used
for estimation. We estimate the structural model to match the empirical patterns and the
reduced-form estimates from Section 2.3. In particular, we target a mix of estimates within
county-industries and between counties. We estimate the parameters simultaneously using the
Method of Simulated Moments (MSM). Appendix 2.1 provides details on the MSM estimation

procedure.
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Within-County Moments

Most of the moments we match in the model come from predicting the value of a typical
baseline county (denoted B). We have data on two sectors (flour and lumber), while in the
model we consider one composite “milling” sector. To create this composite, we calculate the
relevant moment Y;.; for each sector separately. We then predict Y;.; using our reduced-form
specification in Equation (2.1).38 We then take the average to generate Yp;, weighting by
the number of mills. Specifically, the baseline moment we match is the predicted outcome for

a county with average waterpower potential:

Yp: = E; [Ec{YictH =E; [%tlEc[XicH ) (2-24)

where Xj. consists of our baseline controls, our standardized measure of local waterpower
potential (whose average is normalized to zero), and an industry fixed effect.

For some moments, we compare outcomes in the baseline county to those in a “lower
water power” county (denoted L). The counterfactual moments for county L are identified
under the assumption that local waterpower potential is a cost-shifter for local firms’ use
of water power (conditional on our included control variables). To calculate outcomes in
county L, we follow Equation (2.24) but predict outcomes for a county with one standard
deviation lower waterpower potential (while holding all of the other characteristics fixed at
their average levels). The difference in moments between counties B and L corresponds to
our estimated reduced-form impacts of lower water power, Bt-

While the parameters are estimated jointly, many have an intuitive mapping to specific
moments, which we discuss below. Appendix 2.1 supports these intuitive explanations with a
formal analysis of our sources of identification, using the local relationships between structural

parameters and simulated moments, following Andrews et al. (2017).

38. We weight by the number of mills in each county-industry, for estimating these moments, because some
of our moments relate to dispersion and we want these to reflect aggregate dispersion.
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Steam productivity. A positive v means that steam is relatively more productive, and
consequently steam users will have higher sales. We therefore use the sales differential between
steam and water users within each county, as in Figure 2.6, to help identify v. Importantly,
the observed difference in sales between steam and water users also reflects selection, as
productive mills are more likely to use steam power. We model this selection directly and

account for it when estimating v jointly with the other parameters.

Baseline productivity process. We estimate the persistence of the baseline productivities
7 using the 10-year auto-correlation of log sales at the establishment level (0.4). To help
estimate the dispersion of productivities o, we use the standard deviation of log sales within

each county (1.0).

Operating costs. Given the dynamics of productivity, higher operating costs f(f% will
make firms more likely to exit. We therefore use the share of water (or steam) users that

subsequently exit the market, as in Table 2.26, to help estimate f(fz.

Startup costs. Entrants have to pay ff + ¢(R) to start producing. A higher startup
cost toughens the selection upon entry, increasing the relative sizes of entrant mills. We use

the sales differential between incumbents and entrants (as in Figure 2.6) to help pin down

FE + ¢(R).

Power adoption costs: Water power. We split the startup costs into general milling
capital ff and power-specific capital ¢(R) by comparing water mills (who pay ff +¢(W)) to
hand powered mills (who only pay ff ) in our data.? The capital premium for water users

is 0.5 log points, implying fECj-—Z)W) =0.4.

39. We do not include hand powered mills in our broader analysis, as these mills only constitute 0.6% of
total revenue in flour and lumber milling.
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Power adoption costs: Steam power. A higher adoption cost of steam power ¢(S)
leads fewer firms to choose steam over water power. We use the share of establishments using

steam power in 1850 and 1880, as in Figure 2.5, to help estimate c(.5).

Power switching barriers. Higher power-switching barriers lead incumbents to switch
power technologies less often. To help estimate the barriers that incumbents face to switch
technologies, we follow Equation (2.23) and use the (within-county) difference in adoption

shares for entrants versus incumbents, as in Figure 2.5:

Pr(R|R, ¢)
Pr(R'|R, ¢)

_log LHBIE ) 1 (C(R, R)+(1— wR)cct(R)> . (2.25)

1
o Pr(RI|E, o) p

Entry costs. A higher entry cost will deter mills from entering the market. We use the

share of producers who are entrants, as in Table 2.1, to inform our estimate of f€.

Across-County Moments

The comparison across counties is crucial for identifying key model parameters, including the
demand elasticity for milling and the strength of the steam agglomeration forces. We match

four moments that are generated by comparing counties of different waterpower potentials.

Regional cost of water power. The additional fixed cost of water power in places with
lower waterpower potential, ¢y, (W) — cg(W), lowers the attractiveness of using water power.
Therefore, we estimate it using the relationship between waterpower potential and the share

of mills using water power (as in Table 2.2).

Total demand elasticity. The total demand elasticity 1 determines how sensitive the

demand for milling output is to milling prices. The primary moment used to identify 7 is the
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initial (1850) relationship between lower waterpower potential (which increases milling costs)

and local milling activity.

Agglomeration in steam adoption. An agglomeration force in steam adoption costs
(negative k) will further boost the adoption of steam power in the low-water region. Hence,
to identify the agglomeration in power costs, we use the impact of lower water power on the

observed use of steam power from 1850 to 1880, as in Table 2.3.

Agglomeration in steam productivity. An agglomeration force in steam productivity
(positive ag) will further boost economic growth in the low-water region (where steam is
diffusing faster). Hence, to identify the agglomeration in steam productivity, we use the

impact of lower water power on revenue growth from 1850 to 1880, as in Table 2.3.

Calibrated Parameters

We calibrate the following parameters outside the estimation routine.

Firm demand elasticity. In our model, mills charge a constant sales-to-cost markup e—Ll
over variable costs (materials and labor). In Appendix 2.C, we calculate that the median
sales-to-cost markup among flour and lumber mills is 20%, implying a firm demand elasticity
of 6. In comparison, modern estimates range between 3 and 11 (Asker et al., 2014; Bloom,
2009; Sedlacek and Sterk, 2017; Felbermayr et al., 2018; Acemoglu et al., 2018; Buera et al.,

2021), and are relatively large in milling (Broda and Weinstein, 2006).

Time discounting. The discount factor (denoted as §) is calibrated to reflect an annual
interest rate of 6%. In Section 2.6.3, we support the forward-looking assumption by
demonstrating that ignoring future returns (a scenario with § = 0) would imply an implausibly

low estimate for the startup capital cost of milling.
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Sunk costs. Our baseline setup assumes that water and steam capital is fully sunk and
sets wlt to zero. We explore the robustness of our estimates to these assumptions by allowing
water to steam switchers to partially recover the value of their power assets, setting w" to

0.35 following Kermani and Ma (2023). We also explore counterfactuals where instead capital

is fully recoverable.

Convergence rate for steam technology. The parameter cglep 2 governs how fast steam
adoption costs fall from their initial state cgmtml) to their mature state cgermmal). We set

the convergence rate to 4% per year, which implies that steam power matures by 1890. This
assumption is consistent with the long-run diffusion patterns in Jovanovic and Rousseau
(2005) and aligns with the power cost estimates presented in Atack (1979). We show that the
estimated model can match the steam adoption patterns in all decades from 1850 to 1880,

despite fixing the convergence rate to this literature-informed value.

Dispersion of cost shocks. We set the dispersion parameters p and p, to 2, equivalent
to about 6.5% of median 1850 sales. These values fall within the range of estimates in
the literature (Chernoff, 2021; Humlum, 2022) and imply a limited amount of idiosyncratic
variation in power and operation costs. As a validation of the amount of idiosyncrasies in
power and exit choices, our estimated model can match the observed overlap between exiting
and surviving firms (as in Figure 2.6) and the overlap in firm size distributions between steam

and water users (as in Figure 2.22).

Estimation Procedure

We use an adapted Newton-Rhapson method to estimate our structural model. Appendix 2.1.1
details the algorithm and validates the method. In particular, we ensure that the estimated

model satisfies the parameter-moment relationships predicted in Sections 2.6.1-2.6.1.
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2.6.2 Estimation Results

Model Fit

Table 2.7 shows the targeted moments and how well the model does at matching the
data. We estimate 15 parameters using 15 target moments. Due to the robust and
monotone relationships between parameters and moments described in Sections 2.6.1-2.6.1,
our estimation procedure matches the target moments exactly. In Section 2.6.3, we conduct
overidentification tests of the model by comparing model simulations to the non-targeted

regressions from Section 2.3.1.

Parameter Identification

Appendix 2.1.2 conducts a formal analysis of our sources of parameter identification, following
the local sensitivity measures proposed by Andrews et al. (2017). In particular, we verify that
the relationship between moments and parameters have the signs and magnitudes predicted
in Sections 2.6.1-2.6.1. The analysis also highlights the importance of estimating the model

parameters jointly, as many parameters affect multiple target moments simultaneously.

Parameter Estimates

Table 2.8 reports our estimated parameters. We discuss the estimated magnitudes below
and, when possible, compare them to estimates in the literature and from contemporaneous

sources.

Productivity. The steam power productivity premium, 7, lowers marginal production
costs by about 9.3%. This structural estimate falls within the range of existing estimates
of the efficiency of steam engines vs. waterwheels in the 19th century (Atack, 1979; Crafts,

2004; Chernoff, 2021). Our estimated parameters for the baseline productivity process (m, o)
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are within the standard range of estimates from modern data (Bachmann and Bayer, 2014;

Cosar et al., 2016; Schaal, 2017; Ottonello and Winberry, 2020).40

Operating costs. The operating costs of steam power fgq are larger than those of water
power fXV , constituting 30% and 10% of 1850 median sales, respectively. Large operating
costs of steam are consistent with the qualitative evidence that steam engines required more
upkeep and reflect that steam users exit at a higher rate, despite being larger and more
productive (as in Table 2.26 and Figure 2.21). Swain (1888) estimates that the annual fixed
costs of steam and water power, respectively, were around $20 and $10 dollars per horsepower,

which applied to 1850 firm medians are around 16% and 8% of annual sales.

Startup costs. The startup cost of setting up a watermill ff + cg(W) is around 44%
of annual sales. These inferred costs are close to the capital stocks of water users directly
observed in our data, as the value of the capital stock of the average water mill in 1850 was

51% of annual sales.

Power adoption costs. Figure 2.26 plots the estimated adoption costs of water and
steam power over time. Water power in the baseline region c¢g (W) had an upfront cost of
around 444 dollars, equivalent to about 18% of 1850 median sales. Steam initially had a
higher upfront cost, and we estimate that in 1850 the additional upfront cost of steam power
c1850(5) was about 611 dollars or 24% of median sales. By comparison, in our 1850 data, the
typical water and steam mills had, respectively, around $500 and $2000 more capital installed
than the hand-powered mills. Our estimated purchase prices are also somewhat smaller
than contemporaneous accounts that 20 horsepower engines — including the boiler and other

associated equipment — cost $2,500 in the 1840s and $2,000 in the 1880s (Armistead et al.,

40. For example, Bachmann and Bayer (2014) estimate (7, 0) to be (0.9675,0.0905), which falls close to
our estimates of (0.9663,0.0875).
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1841; Emery, 1883; Atack et al., 1980), though our estimated operating costs are slightly
higher than those in contemporaneous accounts.

We estimate that as steam became more available and adaptable, the upfront cost of
steam fell below water, converging to a level of around 8% of annual sales. Emery (1883)
reports that the purchase prices of steam and water power were similar in 1880, which is
consistent with our estimates. The continued use of water power in this later period reflects

lower operating costs, idiosyncratic shocks, and switching costs.

Power switching barriers. The barrier to switching from water to steam includes sunk
capital (1 —w")e(1W) and other switching costs ¢(W, S). This total switching barrier from
water constitutes 19% of 1850 median annual sales or just above two months’ worth of
revenue. Notably, fully sunk water capital (w" = 0) can account for the vast majority of
these switching barriers (93%), and the switching costs ¢(W, S) only represent 1.4% of annual
sales. This implies that other forces that might make it difficult for enterprises to adopt new
technologies (e.g., retrofitting, uncertainty about the costs and benefits of steam power, or
some millers being stuck in their ways) are quantitatively less important for the transition
to steam power. Sunk steam capital (w® = 0) similarly accounts for the majority (81%) of
switching barriers from steam to water power, though we estimate larger costs of switching

from steam to water, perhaps due to the importance of location for water power.

Regional cost of water power. The additional water cost in the low-water region ¢, (W),
106 dollars, is around a quarter of the cost in the baseline region. By comparison, Atack
et al. (1980) estimate that the average water-horsepower for all manufacturing in 1850 cost
67 percent more in the Midwest compared to New Emgland.41 One reason why our numbers

might be smaller is that millers were relatively small power users, and therefore less affected

41. On average, counties in the Midwest have around 1.1 standard deviations less waterpower potential
than counties in New England.
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by more-limited local water power.

2.6.3 Model Validation

In this section, we examine the validity of our estimated model of steam adoption. First, we
reproduce a series of non-targeted regressions from Section 2.3.1 on how waterpower potential
shapes steam adoption and economic growth of incumbents and entrants. Second, we examine
the validity of two key model features: the forward-looking behavior of establishments and

agglomeration effects in steam power.

Testing the Model: Reproducing Regressions

In Table 2.9, we compare the data patterns in Tables 2.3, 2.4, and 2.5 to the patterns we find
when we run equivalent regressions on simulated data from our model.

Table 2.3 shows that higher water costs cause faster steam adoption, and Table 2.5 shows
that this is driven by entrants. However, over time the effect of local waterpower potential
diminishes. Our estimated model demonstrates the same pattern. This is because higher costs
of water affect steam adoption by making steam power a comparably cheaper technology (a
technology cost effect), strengthening the selection of operating mills (a productivity selection
effect), and weakening competition in local product markets (a competition effect). These
effects are reinforced by an agglomeration effect in steam power. The technology cost, selection,
competition, and agglomeration effects all lead to more steam use in places with higher water
costs. Incumbents differ from entrants due to switching barriers, which make their steam
adoption decisions less responsive to the cost of water power. Places with less waterpower
potential approach their steady-state use of steam power earlier. As a result, along the
adoption curve, the effect of waterpower potential on the growth in steam use diminishes and
reverses over time, though in levels places with less waterpower potential are always more

likely to use steam power.
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Table 2.3 also shows that higher water costs cause faster revenue growth, and Table
2.5 again shows that this is driven by entrants. Our estimated model replicates this
pattern. Higher costs of water increase the revenue growth from steam power through
the technology cost, selection, and agglomeration channels described above. The technology
cost and agglomeration benefits depend on mills” access to steam power, with diminished
gains for water incumbents who face switching barriers. Incumbents are crowded out in
places with higher water costs when the negative competition effect from new entrants is
strong enough.

Our estimated model is also able to match the two potentially incongruous features of
the data that incumbents in places with lower waterpower potential are both (1) more likely
to invest and switch to steam power (Table 2.5) and (2) more likely to exit (Table 2.4).
This reflects countervailing forces that dominate in different parts of the firm-productivity
distribution: incumbents in places with lower waterpower potential places are relatively high
productivity, and this selection means that (all else equal) they are more likely to choose to
switch to steam power. However, the increased entry and greater steam-use in places with
lower waterpower potential lowers the local price index, which lowers survival rates for the

marginal incumbents (of which there are more in places with less waterpower potential).

Validating Model Features

Forward-looking behavior. Forward-looking expectations are at the heart of our adoption
model: some establishments adopt steam power even though they anticipate that adoption
costs will continue to fall, and other establishments choose water power, even knowing that
they will face switching barriers if they later want to scale up production with steam power.

To illustrate the importance of allowing for expectations, we re-estimate the model
assuming that establishments are fully myopic (6 = 0) and compare our estimates to external

benchmarks. We find that myopia would imply an implausibly low estimate for the startup
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capital cost of milling. With forward-looking millers, we estimate that the total startup costs,
IE 4+ ¢(W), are 44% of median firm sales, whereas we would estimate that the total startup
costs are under 10% of median firm sales if millers were myopic. For comparison, the median
1850 water mill in our data has a capital stock worth 51% of annual sales (which is not a

data feature used in the model estimation).

Agglomeration. Agglomeration effects in steam power are one prominent reason why
adoption may be inefficiently slow, motivating a potential role for policy intervention. While
Section 2.3.2 provides suggestive evidence of agglomeration spillovers through backward
linkages, we can now use the estimated model to directly assess the quantitative importance
of agglomeration effects in driving the economic impacts of steam power.

Increasing the local share of steam users from 0 to 100% further boosts the productivity
of steam power by ag = 2.5 percentage points (over its baseline level of 9.3%). This
agglomeration effect on marginal costs, potentially due to the increased local knowledge base,
has a meaningful impact on the aggregate economic growth from steam power. In particular,
in Table 2.30, we estimate the model while forcing g = 0 and find that this constrained
model can only account for around half of the differential growth we observe in the low-water
region.

By contrast, we do not find economically significant agglomeration effects in steam
purchase prices. Increasing the local share of steam users from 0 to 100% slightly increases
the steam adoption cost by 1.8% of 1850 median sales (over a baseline level of 24%). In
particular, in Table 2.30, we estimate the model while forcing x = 0, and find that the
constrained model can nevertheless still match the differential steam adoption and economic
growth in the low-water region. One interpretation of this result is that it suggests that
information about the existence of steam, and its broad costs and benefits, was not a barrier
to adoption: having more steam-using neighbors did not make mills more likely to adopt,

other than through the measured productivity spillover.
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2.7 Counterfactual Experiments

In this section, we use our estimated model to assess the determinants of technology adoption
and to evaluate policies aimed at alleviating barriers to adoption. In Section 2.7.1, we evaluate
the importance of waterpower potential and switching barriers for the aggregate spread of
steam power. In Section 2.7.2, we evaluate a “cash for clunkers’-style program that pays
mills to switch from water to steam by buying the mills’ sunk water capital. Finally, in
Section 2.7.3, we show how the interaction of switching barriers and the new technology’s
high fixed costs leads to slow aggregate technological adoption, whereas technology adoption
is much faster if there is only one of these. Even when there are substantial entry and exit
of establishments, aggregate technology adoption is still slowed by sunk costs when the old
technology’s cost structure is relatively appealing to entrant firms — successive waves of

entrants are still willing to become stuck in the old technology for future periods.

2.7.1 Local Waterpower Potential, Switching Barriers, and the Incidence of

Steam Power

Waterpower Potential. In Figure 2.8, Panel A, we simulate the share of mills using
steam power in the baseline region, and in a region with one standard deviation lower
waterpower potential.*2 Higher costs of water power induce the use of steam: places with
lower waterpower potential reach the baseline steady-state steam share 31 years faster and
ultimately experience an 18% higher steady-state steam share.

Figure 2.8, Panel B shows the influence of water costs on total milling activity.*> Initially,

42. Appendix Figure 2.27 shows that the simulated implications are similar if, instead of assuming power
costs are fully sunk, we set w" = 0.35 for water mills that switch to steam power. When sunk costs are lower,
other estimated switching barriers are correspondingly higher to rationalize the relatively low switching rates
in the data.

43. Note that the impacts on mill revenues (Figure 2.8, Panels B and D, and Table 2.10) capture consumer
surplus, scaled by a factor of n — 1 = 4.9. This is because mill revenues and the price index (our theory-
consistent measure of consumer surplus) are log-log linearly related: log(Revenues.;) = (n — 1) log P,;.
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lower waterpower potential constrains milling, as mill revenues in 1830 are 75% lower than in
the baseline region. With the arrival of steam power, places with lower waterpower potential
catch up to the baseline region and shrink the gap in total milling activity to 11% by 1890.
Limited access to water power created an “advantage of backwardness” in steam adoption,
but this advantage was not strong enough for the lower waterpower region to overtake the
baseline region in aggregate mill revenue. This is because the direct benefits from lower
water costs in the baseline region continued to outweigh the benefits from higher steam power
adoption in places with less waterpower potential.

Table 2.10 reports the impact of steam power on milling activity, separately for 1830
incumbents and all future entrants.** Entrants are the sole driver of higher economic activity
from steam power in the baseline region (Column 1) and lower water power region (Column 2).
Entrant revenue grows by 111% and 201% in these regions, respectively, whereas incumbent
establishments earn only 0.2% and 0.3% more due to steam power. Lower incumbent revenue
reflects increased competition from entrants, which entirely mitigates the direct benefits to
incumbents from increased access to improved power technology. Quantitatively, the net
effects on 1830 incumbents are small because steam power diffused relatively slowly.

These unequal gains from steam power are consistent with our findings in Section 2.3.1,
in which incumbents have lower survival rates in regions with lower waterpower potential
where steam is diffusing faster. These counterfactuals report the total impact of steam on
milling, including “level effects” shared across regions, whereas the estimates from Section
2.3.1 identify only the relative impact of steam power across regions.

Table 2.11 shows the impact of steam power on incumbent firm values in 1830 (Equation
(2.10)), decomposing the values into operating profits, the option value of exit, and the option

value of steam power (see Appendix 2.J.1 for a formal definition of the components).45 While

44. In this section, we evaluate the impacts on incumbents in 1830 because incumbency in later periods is
endogenous to the arrival of steam power.

45. Because the free entry condition holds in equilibrium (Equation (2.12)), all of the value of steam power
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steam power raised incumbent revenues (Table 2.10), Table 2.11 shows that steam lowered
incumbent firm values by 0.1% in the baseline and lower waterpower regions (Columns
1 and 2). This is because impacts on firm values reflect both firm revenues and firms’
costly adjustments. Some incumbents switch to steam power, which incurs costs along with
increasing revenue. Much of the decline in incumbents’ profits due to steam was counteracted

by their value of exiting the market. The option value of steam power compensated 68%-73%

of the losses in incumbent firm values after considering the effects on profits and exit.

Water Lock-in. Figure 2.8 also shows the importance of establishment-level switching
barriers for aggregate steam power adoption and mill revenue. This extends our results in
Section 2.3.1, which suggested a relative influence of switching barriers on the steam adoption
of water incumbents compared to entrants. We simulate the arrival of steam power in two
counterfactual scenarios: a “No Water Lock-In" scenario in which water mills face no switching
barriers and choose power sources as freely as entrants (W =1, ¢(W, S) = 0); and a “Full
Water Lock-in” scenario in which water mills face insurmountably high costs of switching
(c(W,S) — o0). Entrants are free to choose their power source in the baseline and both
counterfactual scenarios.

Panel C shows that establishment-level switching barriers substantially delay aggregate
steam adoption, despite substantial entry and exit in the economy. The economy reaches
a 30% steam adoption rate 22 years faster when water mills face no switching barriers,
compared to the scenario with full water lock-in (1855 vs. 1877). Switching barriers matter
the most in the middle of the adoption curve, when steam technology is improving and more
establishments are on the margin of choosing steam power. Switching barriers also continue
to be important, however, and lower steam adoption by about eight percentage points even
in the terminal steady state.

Steam adoption rates in our baseline economy fall roughly halfway between the “Full

generated by entrants is passed through to lower consumer prices.
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Water Lock-In" and “No Water Lock-In" scenarios. Our baseline economy is closer to the “Full
Water Lock-In" scenario early on the adoption curve and, over time, converges to the “No
Water Lock-In" scenario. Technology switching is particularly important for the acceleration
in steam adoption that we see in our data period, from 1850 to 1880.

Panel D of Figure 2.8 shows the impact of switching barriers on total mill revenue.
Switching barriers of water mills continue to hamper the economic potential of steam power,
even in the steady-state when steam technology is fully mature. Without water lock-in,
the steady-state gains in total revenue from steam power would be 2.6 times larger. These
substantial gains arise because there would be substantially more entry without switching
barriers, as firms are attracted by the option of switching to steam in the future (Dixit and
Pindyck, 1994). This substantially increases the number of active mills in the no lock-in
scenario, whereas total revenue in the baseline economy is closer to the scenario with full
water lock-in.

Columns 3 and 4 of Table 2.10 report how switching barriers shape the impact of steam
power on incumbent and entrant establishments. When water mills do not face switching
barriers, in Column 3, the introduction of steam power increases incumbent mill revenue
by more than in the baseline, while Column 4 shows that with infinite switching barriers,
incumbent mill revenue increases by less. Table 2.11 shows that effects on incumbent values
are muted relative to those on revenue, as switching is also associated with increases in
adoption and overhead costs. In total, while the option value of steam power is higher when
water mills face no lock-in (1.9% vs. 0%), this benefit is counterbalanced by the increased
competition from entrants, lowering the profitability of existing mills (by 3.8% vs. 0.6%).

This last result, in particular, highlights the importance of accounting for firm competition
and forward-looking behavior. Removing lock-in effects would seemingly benefit the incumbent
firms who are locked into water power, but that also benefits new firms who are more willing

to enter when there are no future switching barriers. Quantitatively, removing switching
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barriers raises competition enough that, on net, incumbents do not benefit from the arrival

of steam power.

2.7.2  “Cash for Clunkers” Policy Counterfactual

Agglomeration spillovers from technology use can make private adoption decisions inefficiently
slow. Section 2.7.1 showed that establishment-level switching barriers cause substantial delays
in aggregate technology adoption, which raises questions about the aggregate consequences
of removing those barriers. In this section, we show that our estimated agglomeration effects
are small enough that removing switching costs does not generate persistent long-run effects.
However, the agglomeration effects are large enough that government subsidies to steam
adoption would generate a 38% return.

We evaluate both temporary and permanent policies that counterfactually subsidize water
incumbents switching to steam power by purchasing their old water power infrastructure,
thereby eliminating the sunk costs. These policies are motivated by the 2009 “cash for
clunkers” program (Blinder, 2008), which lasted for two months and incentivized drivers to
trade-in old (fuel-inefficient) cars.

Figure 2.9 shows the effect of different counterfactual policies, along with their annual
costs. Panel A shows the counterfactual effects of a one-year temporary policy, implemented in
1850. The share of mills using steam power instantaneously doubles, as many establishments
take advantage of the subsidy. The share falls over time, however, and by 1865 there is no
remaining impact of the program on the share of establishments using steam power. This
response illustrates that our estimated agglomeration effects are too small to generate “big
push” effects from a short-duration policy.

Even longer-duration policies would not have had permanent effects. Appendix Figure
2.28 shows the counterfactual effects of 5 and 20-year temporary policies, also starting in

1850. Compared to the one-year program, fewer establishments switch to steam immediately
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because some prefer to wait (knowing they can still take advantage of the policy later). There
is a spike in steam adoption, and program cost, in the last year of these policies because of
mills’ forward-looking behavior.*6 Nevertheless, the policy effects fully dissipate within two
decades of their termination.

Figure 2.9, Panel C shows that a permanent policy, paying firms’ sunk costs in water,
induces steam adoption that is broadly the same as our counterfactual with no switching
barriers (shown in Figure 2.8). A permanent policy leads to a small steady-state increase in
steam-use, but at very high costs because of low “additionality” (Russo and Aspelund, 2024):
many subsidized steam switchers would have switched without the subsidy. Furthermore, the
subsidy encourages many firms that would have entered using steam power to instead enter
using water power and later switch to steam.

Table 2.12 conducts a cost-benefit analysis of the subsidies, comparing benefits (for
producers and consumers) to the cost of the programs. Our baseline estimates are that for
every $1 in subsidies, the one-year temporary program generates $1.38 in total benefits and
the permanent program generates $1.13 in total benefits.

Consumers receive the majority of benefits through lower goods prices from the subsidies
(30.91 to $1.13 per dollar spent in our baseline economy). Part of the total gains are also
driven by agglomeration spillover effects on steam entrants: even though entrants do not
qualify for the one-year subsidy, the agglomeration spillover from incumbents’ steam adoption
is strong enough to crowd in entry of steam users, further lowering the price index.

Incumbent firms directly benefit from switching subsidies, and the gains to 1850 incumbents
from the one-year program are around $0.47 per dollar spent. However, increased competition
from future entrants attenuates the gains to 1850 incumbents under longer-duration subsidies.

The payoff from subsidizing steam switching depends crucially on the presence of

agglomeration spillovers. Without steam agglomeration, we estimate that both the temporary

46. This is consistent with modern evidence on bunching at the expiration of subsidy policies (Chen, 2024).
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and permanent programs would generate net deficits. Without agglomeration, subsidizing
switching crowds out entrants, mitigating the direct effects on the price index.

This exercise shows how a model of the economic environment can be used to evaluate
gains from potential subsidies to technology adoption. We show that a switching subsidy
that compensates incumbents can generate a net surplus, but only when there are some
agglomeration spillovers in the adoption of the new technology, and especially when implemented
for a short time horizon. These substantial gains accrue even under our estimated “weak”
agglomeration spillovers, which are insufficient to generate a permanent shift in steam adoption

from temporary subsidies.

2.7.8 Fized Costs and the Speed of Technology Adoption

The aggregate importance of switching barriers may seem surprising given the substantial
amount of entry and exit in our data. From one decade to the next, about 80-85% of
establishments exit. In this economic environment, how can switching barriers continue
to matter even though most establishments are entrants? The answer is that water power
continued to appeal to entrants far along the transition path to steam. Switching barriers
influence aggregate technology adoption even with exit and entry when entrants often adopt
the old technology, and then themselves have to face switching barriers.

In particular, water power appealed to less-productive entrants who did not yet have
the scale to benefit from steam power: water had lower purchase prices (at the start of our
sample period), and lower fixed costs of operation (throughout our sample period). When
some of these entrants later had successful businesses with higher productivity, however, they
faced switching barriers to scaling up with steam power. Importantly, these “entrant lock-ins”
are not indicative of mistakes in adoption decisions. On the contrary, entrants in our model
choose water power fully anticipating that they will have to pay switching costs in the future

if their productivity increases and they later want to adopt steam.
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To conclude our counterfactual analysis, we isolate how the interaction of fixed costs and
switching costs slows technology adoption by holding constant the overall attractiveness of
the new technology. To do this, we consider two hypothetical technologies that are equally
attractive (so their steady-state adoption rates are 50%), but they have different purchase
prices and different marginal costs. Technology 1 (“High FC & low MC”) has a marginal
cost advantage that is equal to our estimated marginal cost advantage of steam over water.
Technology 2 (“Low FC & high MC”) has a lower fixed adoption cost, chosen such that its
steady-state adoption rate is 50%. Otherwise, for both technologies we hold all parameters
fixed at those we estimate for water power (e.g., demand elasticities, overhead costs, and
idiosyncratic shocks).

Figure 2.10 shows the adoption speed of new technologies in this environment, separately
by whether all firms initially use technology 2 or technology 1. As a benchmark, the gray
line shows the importance of switching costs: if the economy starts with technology 2 and
we introduce an identical technology, it takes 5 years for the new technology to get close to
steady-state adoption (47% adoption share).47 The black line shows that higher fixed costs
slow adoption: if technology 1 is introduced into an economy that only has technology 2,
it takes 19 years for the new technology to reach 47% adoption. By contrast, the dashed
line shows that lower fixed costs accelerate adoption: if technology 2 is introduced into
an economy that only has technology 1, it reaches 47% adoption in its first year.*® These
estimates are all driven by the interaction of fixed costs and switching barriers: in the absence
of switching barriers, adoption would immediately reach its steady-state level, regardless of

the relative costs of the two technologies.

47. The steady-state share of firms using the new technology asymptotically trends to 50%, so we report
the duration to reach an adoption rate of 47%.

48. When the new technology has relatively low fixed costs, it overshoots upon introduction and reaches
over 50% adoption. This is because, initially, the price index is relatively high and so low-productivity
establishments (who prefer technology 2) are initially able to profitably produce before getting crowded out
in steady-state.
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2.8 Conclusion

This paper studies the adoption of steam power in milling in the late 19th century. Steam
power was a general purpose technology that alleviated the dependence of mechanized power
on local geography. The adoption of steam power, and its impacts, depended on places’
access to water power. Indeed, a general feature of new technologies is their impacts vary
with differences in access to previously-available alternative technologies. Over time, steam
technology improved both nationally (through technological change) and locally (through
agglomeration). Nevertheless, as steam became increasingly more cost-effective than water
power in more places and for more firms, many incumbents were resistant to changing
technologies.

To understand the effect of improvements in steam power on milling, this paper draws
on substantial data contributions. We compile a full panel dataset of manufacturing
establishments in the United States during the Second Industrial Revolution. We link
the data to the geographic distribution of waterpower potential, which allows insights into
the adoption of steam power: places with less waterpower potential adopted more steam
power, earlier, and steam adoption was driven predominantly by entrant mills.

We emphasize dynamic effects, through which prior use of water power (1) created lock-in
effects discouraging steam adoption, (2) generated leapfrogging by entrants, and (3) made
steam adoption inefficiently slow due to agglomeration spillovers.

We estimate a dynamic equilibrium model of entry and investment to characterize the
forces that determine technology use across space and time. We estimate the importance of
economic features for the slow spread of steam power, and evaluate policies that counteract
the technological lock-in caused by historical advantages.

We find that the interaction of high fixed costs and switching barriers delays aggregate
technology adoption. For technologies with both of these features, entry of new firms may not

be a panacea against technological lock-in. High fixed costs made smaller entrants predisposed
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to use the old technology (the low-initial-cost and high-marginal-cost technology). Switching
barriers then meant that these entrant firms became stuck with water power, even though
the barriers were anticipated. Either feature on its own has little effect on adoption speeds.

Many recent quickly-embraced innovations, such as cloud computing (Lu et al., 2023),
allow small firms to use new technologies without substantial fixed investments. Energy
transitions have historically been protracted (Smil, 2014), and many modern environmentally
friendly technologies, such as heat pumps and renewable energy sources, are associated with
low marginal costs, but high fixed costs and switching barriers. Our results highlight how

these characteristics can lead to slow adoption.
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2.A Figures
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Figure 2.1. Components of County Waterpower Potential

Panel A. Flow Rate of River Segments

Notes: This figure plots the sources of waterpower potential in the United States, with darker shares
corresponding to greater flow rates or fall heights. Panel A plots our estimated flow rates for each river
segment, in cubic feet per second. Panel B plots the drop in elevation for each river segment, in feet per mile.
Data from NHDPlusV2.
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Figure 2.2. County Waterpower Potential, Measured and Residualized

Panel A. County Waterpower Potential, Measured

Panel B. County Waterpower Potential, Residualized

Notes: This figure shows our estimated county waterpower potential, with darker shares corresponding to
greater waterpower potential deciles. The sample is restricted to our main balanced panel of 690 counties.
Panel A shows our measure of county waterpower potential: summing across all river segments in the county
the flow rate of the river segment times its fall height (and a gravitational constant), per square mile. Panel
B shows the residual county waterpower potential, after controlling for our main baseline controls: total
county water flow and terrain ruggedness; the presence of a navigable waterway, distance to the nearest
navigable waterway, and county market access in 1850; the presence of coal in the county, the share of county
area covered by coal deposits, and market access to coal deposits. Data from NHDPlusV2.
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Figure 2.3. Power Source By Industry

Panel A. Number of Establishments, by Power Source
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Panel B. Total Revenue, by Power Source
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Notes: This figure plots power-use, by industry and decade. Industries are sorted by the number of
establishments using either steam or water power in 1850 (in decreasing order). Panel A shows the number of
establishments in each industry using steam, water, and hand power. Panel B shows the total revenue
produced in establishments using steam, water, and hand power. We define “steam” to include all
establishments using any steam power; “water” includes establishments using water power and no steam
power; “hand” includes the remaining establishments that use neither steam nor water. Data from our
digitized establishment-level Census of Manufactures (1850-1880).
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Figure 2.4. Share of Mills using Steam Power, by Decade and County
Waterpower Potential

0.6

0.4+ °

Share of Mills Using Steam Power
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® Average County Counties With 1 Standard Deviation Lower Waterpower Potential

Notes: Darker circles represent the share of mills using steam power in the average county. For the lighter
circles, we add the estimated increase in steam share from a one standard deviation decrease in county
waterpower potential (conditional on our baseline controls as in Table 2), with an indicated 95% confidence
interval. Standard errors are robust and clustered at the county level. Data from our main sample (Figure
2.2), using our digitized establishment-level Census of Manufactures (1850-1880) and NHDPlusV2.
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Figure 2.5. Steam-use Share, for Entrants and Water Incumbents

Panel A. Share of Mills Using Steam Power
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Panel B. Share of Revenue Produced Using Steam Power
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Notes: This figure shows steam-use rates, by mill type (“Entrants” and “Water Incumbents”). Entrants began
operations after the prior Census. Water Incumbents used water power in the prior Census. Panel A shows
the share of mills using steam power, for each mill type. Panel B shows the share of revenue produced using
steam power, for each mill type. Data from our main sample (Figure 2.2), using our digitized
establishment-level Census of Manufactures (1850-1880).
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Figure 2.6. Mill Size Distribution, by Power Source

1850 1860 1870 1880

Mill Log Revenue

[l
L

Waterpowered Mills [l steam Powered Mills

Notes: This figure shows the distribution of mill revenue, by power source, in each decade. Data from our
main sample (Figure 2.2), using our digitized establishment-level Census of Manufactures (1850-1880).
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Figure 2.7. Mill Size Distribution, by County Waterpower Potential
Panel A. Revenue Distribution of Water-Using Mills
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Panel B. Revenue Distribution of Steam-Using Mills
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Notes: This figure shows the distribution of mill revenue in each decade, separately for counties with

above-median and below-median waterpower potential. Data from our main sample (Figure 2.2), using our
digitized establishment-level Census of Manufactures (1850-1880) and NHDPlusV2.
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Figure 2.8. Water Technology and the Impacts of Steam Power

A. Water Costs and Steam Adoption C. Switching Barriers and Steam Adoption
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Notes: This figure shows the share of steam users and total mill revenue in model counties with different
water technologies. Mill revenue is measured in log differences to the initial steady state of the baseline
region. Panels A and B plot the impacts of steam power in the average county (black line) and a region with
a standard deviation lower waterpower potential (gray line), where the only parameter difference between the
regions is the fixed cost of water power adoption. Panels C and D plot the impacts of steam power as a
function of switching barriers. The black line shows adoption for our baseline estimates, the gray line
removes switching barriers (w" = 1,¢(W, S) = 0), and the dashed line represents prohibitive switching
barriers (¢(W,S) — o0).
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Figure 2.9. Water-to-Steam Switching Subsidies: Steam Adoption and Annual
Costs

A. Temporary Subsidy: Steam Adoption C. Permanent Subsidy: Steam Adoption
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Notes: This figure simulates counterfactual “cash-for-clunkers” policies that pay water incumbents ¢z (W) to
switch to steam power, exactly offsetting the sunk cost of switching. Panel A shows the adoption of steam
power with a one-year-only temporary policy in 1850, and Panel B shows its annual costs in percent of
aggregate mill revenues. Panel C shows the adoption of steam power after a permanent policy introduced in
1850, and Panel D shows its annual costs. Panels A and C compare the counterfactual adoption of steam
power (in black) to the factual adoption (in gray).
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Figure 2.10. Technology Adoption and Fixed Costs
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Notes: This figure simulates the adoption of new technologies under various scenarios. One technology (“High
FC & low MC”) has a marginal cost advantage equal to our estimated steam’s marginal cost advantage over
water in 1900, while the other technology (“Low FC & high MC”) has a lower fixed cost, chosen such that in
an economy with both, the steady-state adoption rate of each is 50%. Otherwise the technologies have the
same parameters as those we estimate for water power. The gray line shows the adoption speed when
introducing the latter technology in an environment that already has its equivalent (so the old and new
technologies are identical other than through idiosyncratic shocks). The black line shows the adoption of the
former technology in an environment that already has the latter. The dashed line shows the adoption of the
latter technology in an environment that already has the former. The x-axis is years (the new technology is
introduced in year 1), and the y-axis is the share of establishments using the new technology.
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Table 2.2. Mill Activity in 1850, by County Waterpower Potential

Only Only
All Mills Lumber Mills  Flour Mills

(1) (2) (3)

Panel A. Number of Waterpowered Mills

Lower Waterpower -1.055 -1.246 -0.783
(0.130) (0.173) (0.109)
Panel B. Revenue of Waterpowered Mills
Lower Waterpower -1.127 -0.974 -1.178
(0.249) (0.215) (0.302)
Panel C. Steam Share of Mills
Lower Waterpower 0.089 0.107 0.060
(0.015) (0.019) (0.016)
Panel D. Steam Share of Revenue
Lower Waterpower 0.123 0.160 0.060
(0.022) (0.031) (0.021)
Panel E. Total Number of Mills
Lower Waterpower -0.956 -1.100 -0.738
(0.119) (0.156) (0.105)
Panel F. Total Revenue of Mills
Lower Waterpower -0.876 -0.704 -0.973
(0.215) (0.173) (0.291)
# County-Industries 1,199 612 587

Notes: This table shows the relationship between mill activity in 1850 and county waterpower potential.
“Lower Waterpower” is a negative standardized measure of county water power potential, with standard
deviation of one, so the estimates reflect differences in counties with one standard deviation lower waterpower
potential.

Each panel shows the effect of water power potential on a different outcome in 1850: the total number of
water powered mills (Panel A); the total revenue of water powered mills (Panel B); the share of mills using
steam power (Panel C); the share of milling revenue from using steam power (Panel D); the total number of
mills (Panel E); and total mill revenue (Panel F). Column 1 reports pooled estimates from county-industry
regressions, for lumber and flour milling; Column 2 restricts the sample to lumber mills only; and Column 3
restricts the sample to flour mills only. Panels A, B, E, and F use PPML estimation, which approximates
percent differences. Panels C and D are OLS regressions, weighting county-industries by their number of
mills, which reflect percentage point differences in the shares.

All regressions include industry fixed effects and our baseline controls interacted with industry: an indicator
for the presence of navigable waterways in the county; distance to the nearest navigable waterway; county
market access in 1850; an indicator for workable coal deposits in the county; the share of the county covered
by coal deposits; and access to coal via the transportation network.

Each observation is a county-industry in 1850. Robust standard errors clustered by county are reported in
parentheses. Data from our main sample counties (Figure 2.2), using our digitized establishment-level Census
of Manufactures (1850) and NHDPlusV2.
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Table 2.3. Steam Adoption and Mill Growth, by County Waterpower Potential

Steam Share Total Total
of Mills Mills Mill Revenue

(1) (2) (3)

Growth in Lower Waterpower Counties:

From 1850 to 1860 0.067 0.220 0.183
(0.016) (0.062) (0.081)

# County-Industries 1,084 1,199 1,199
From 1860 to 1870 0.034 0.113 0.203
(0.013) (0.052) (0.097)

# County-Industries 1,061 1,199 1,199
From 1870 to 1880 -0.009 0.092 0.140
(0.013) (0.036) (0.087)

# County-Industries 1,138 1,199 1,199

Notes: This table shows the relationship between growth in mill activity and county waterpower potential.
“Lower Waterpower” is a negative standardized measure of county water power potential, with standard
deviation of one, so the estimates reflect differences in counties with one standard deviation lower
waterpower potential.

The outcomes are the share of mills using steam power (column 1), the total number of mills (column
2), and total mill revenue (column 3). Each row corresponds to growth over the indicated decade, using
only data from the indicated years.

Column 1 reports OLS estimates, restricting the sample to county-industries with at least one mill in
both decades (for the steam share to be defined) and weighting by the number of mills in that county-
industry in 1850. These estimates reflect percentage point differences in the shares. Columns 2 and 3
report PPML estimates for a balanced panel of county-industries (including zeros), which approximate
percent differences.

All regressions include county-industry fixed effects, industry-year fixed effects, and our baseline controls
interacted with industry and year: an indicator for the presence of navigable waterways in the county;
distance to the nearest navigable waterway; county market access in 1850; an indicator for workable
coal deposits in the county; the share of the county covered by coal deposits; and access to coal via the
transportation network.

Each observation is a county-industry-year. Robust standard errors clustered by county are reported in
parentheses. Data from our main sample counties (Figure 2.2), using our digitized establishment-level
Census of Manufactures (1850-1880) and NHDPlusV2.
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Table 2.4. Entry Rates and Survival Rates, by County Waterpower Potential

Entry Survival Difference
Rate Rate (1) — (2)
(1) (2) (3)

Elasticity with Respect to Lower Waterpower:

In 1860 0.323 -0.230 0.554
(0.074) (0.065) (0.089)

# County-Industries 1,199 1,199
In 1870 0.168 -0.266 0.434
(0.058) (0.057) (0.072)

# County-Industries 1,199 1,199
In 1880 0.158 -0.158 0.316
(0.045) (0.040) (0.061)

# County-Industries 1,199 1,199

Notes: This table shows the elasticity of mill entry and mill survival, over the previous decade, with
respect to county waterpower potential. “Lower Waterpower” is a negative standardized measure of county
waterpower potential, with standard deviation of one, so the estimates reflect differences in counties with
one standard deviation lower waterpower potential.

Column 1 reports results for entry, column 2 reports results for incumbent survival, and column 3 reports
the difference in these estimates. Each row corresponds to a different PPML regression, using data from
the indicated Census year and previous Census year, which approximates percent differences in the rates.

All regressions include county-industry fixed effects, industry-year fixed effects, and our baseline controls
interacted with industry and year: an indicator for the presence of navigable waterways in the county;
distance to the nearest navigable waterway; county market access in 1850; an indicator for workable
coal deposits in the county; the share of the county covered by coal deposits; and access to coal via the
transportation network.

Each observation is a county-industry-year. Robust standard errors clustered by county are reported
in parentheses. Data from our main sample counties (Figure 2.2), using our digitized establishment-level
Census of Manufactures (1850-1880) and NHDPlusV2.
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Table 2.5. Steam Adoption Shares for Entrants and Water Incumbents,
by County Waterpower Potential

Water Difference
Entrants Incumbents (1) = (2)

(1) (2) (3)

Adoption in Lower Waterpower Counties:

In 1860 0.169 0.034 0.135
(0.024) (0.021) (0.023)

# County-Industries 1,076 607
In 1870 0.188 0.049 0.139
(0.022) (0.018) (0.025)

# County-Industries 1,151 560
In 1880 0.172 0.051 0.121
(0.022) (0.024) (0.025)

# County-Industries 1,169 685

Notes: This table shows the relationship between county waterpower potential and the steam use of
entrant mills and water incumbent mills. “Lower Waterpower” is a negative standardized measure of
county waterpower potential, with standard deviation of one, so the estimates reflect differences in counties
with one standard deviation lower waterpower potential.

The outcome in column 1 is the share of entrants using steam power, restricted to county-industries
with at least one entrant in that year. Column 2 reports the share of “water incumbents” (mills that
used water power in the previous Census year) who switched to steam power. For column 2, the sample
is restricted to county-industries with at least one surviving water incumbent. Column 3 reports the
difference between the estimates in columns 1 and 2. Each row corresponds to a different OLS regression,
using data from the indicated Census year only, which reports percentage point differences in the shares.

All regressions include industry fixed effects and our baseline controls interacted with industry: an
indicator for the presence of navigable waterways in the county; distance to the nearest navigable waterway;
county market access in 1850; an indicator for workable coal deposits in the county; the share of the
county covered by coal deposits; and access to coal via the transportation network.

For each row, each observation is a county-industry, weighted by the number of mills in 1850. Robust
standard errors clustered by county are reported in parentheses. Data from our main sample counties
(Figure 2.2), using our digitized establishment-level Census of Manufactures (1850-1880) and NHDPlusV2.
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Table 2.6. Non-Mill Manufacturing Establishments, Non-Mill Steam-Use, and
Steam Manufacturing, by County Waterpower Potential

Total Steam User Share Steam Makers,
Non-Mill of Non-Mill Relative to
Establishments Establishments All Establishments

(1) (2) (3)

Differences in Lower Waterpower Counties:

In 1850 -0.584 0.017 0.444
(0.224) (0.005) (0.164)

# Counties 690 674 690
In 1860 -0.443 0.024 0.340
(0.338) (0.008) (0.207)

# Counties 690 661 690
In 1870 -0.529 0.034 0.504
(0.236) (0.009) (0.240)

# Counties 690 678 690

Notes: This table shows the relationship between county waterpower potential and local non-mill manufacturing
activity (i.e., outside the flour mill and lumber mill industries). “Lower Waterpower” is a negative standardized
measure of county waterpower potential, with standard deviation of one, so the estimates reflect differences in
counties with one standard deviation lower waterpower potential.

The outcome in column 1 is the total number of non-mill manufacturing establishments. The outcome
in column 2 is the share of non-mill establishments using steam power. The outcome in column 3 is the
number of steam makers (establishments reporting making engines or boilers) relative to the number of all
manufacturing establishments. Each row corresponds to a different regression, using data from the indicated
year only. Columns 1 and 3 report PPML estimates, including zeros, which approximate percent differences.
Column 2 reports OLS estimates, weighting by the number of non-mills in that county in 1850, which reflect
percentage point differences in the shares.

All regressions include our baseline controls: an indicator for the presence of navigable waterways in the
county; distance to the nearest navigable waterway; county market access in 1850; an indicator for workable
coal deposits in the county; the share of the county covered by coal deposits; and access to coal via the
transportation network.

For each row, each observation is a county. We exclude 1880 because data for several non-mill industries are
mostly lost for 1880. Robust standard errors are reported in parentheses. Data from our main sample counties
(Figure 2.2), using our digitized establishment-level Census of Manufactures (1850-1880) and NHDPlusV2.
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Table 2.7. Model Fit to Target Moments

Parameter ~ Moment Years Model Data
(1) (2) (3) (4) (5)
Panel A. Baseline County

c¢(W,S)  Water Choice Differential: 18501880 0.552 0.553
Water Incumbents vs. Entrants (0.062)
c(S,W)  Steam Choice Differential: 1850-1880 0.977 0.977
Steam Incumbents vs. Entrants (0.123)
cémmal) Steam Adoption Rate 1850 0.102 0.103
(0.006)
(terminal) Steam Adoption Rate 1880 0.393 0.393
c (0.011)
fe Entry Rate 18501860 0.737 0.750
(0.006)
fOE Log Sales Differential: 1850-1880 0.132 0.131
Incumbents vs. Entrants (0.015)
1w Water Exit Rate 1850-1880 0.789 0.789
(0.003)
5 Steam Exit Rate 1850-1880  0.835 0.835
(0.006)
vy Log Sales Differential: 18501880 0.855 0.855
Steam vs. Water Users (0.029)
T Log Sales Autocorrelation 1850-1860 0.412 0.412
(0.019)
o Log Sales Standard Deviation 1850-1860 1.019 1.019
(0.011)

Panel B. Differences in Lower Waterpower Counties
cr,(W) Steam Adoption Rate 1850 0.089 0.089
(0.016)
n Log Total Output 1850 -0.876 -0.876
(0.215)
K Change in Steam Adoption Rate 1850, 1880 0.092 0.092
(0.019)
ag Growth of Output 1850, 1880 0.525 0.525
(0.118)

Notes: This table shows the empirical fit of our estimated model. The table shows each parameter of
the model (Column 1) and the moment (in time period) that most closely targets it (Columns 2 and 3).
Column 4 reports the model-simulated moments, and Column 5 contains the empirical estimates with robust
standard errors in parentheses. Panel A includes the within-county moments described in Section 2.6.1, and
Panel B includes the across-county moments described in 2.6.1. Our estimation procedure, described in
Section 2.6.1, matches these target moments exactly, up to a preset numerical tolerance of 1%.
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Table 2.8. Parameter Estimates

Parameter  Description Value Dollars Source

(1) (2) (3) (4) ()

Panel A. Power Costs

c¢(W,S)  Switching costs from water 0.014 36 Table 2.7
c(S, W)  Switching costs from steam 0.058 145 Table 2.7
cmitiel) - Steam cost (initial) 0.441 1102 Table 2.7
, Steam cost (terminal) 0.084 211 Table 2.7
C(termmal)
cglep °) Steam cost (time-slope) 0.040 Section 2.6.1
cg(W) Water cost in baseline county 0.178 bl Table 2.7
cr,(W) Water cost in lower water power county 0.220 551 Table 2.7
K Agglomeration in steam adoption 0.018 44 Table 2.7
) Dispersion in power costs 0.064 159 Table 2.7
Panel B. Entry and Operating Costs
fe Entry costs 0.004 10 Table 2.7
B Startup cost 0.266 666 Table 2.7
XV Operating cost of water user 0.103 257 Table 2.7
59 Operating cost of steam user 0.299 748 Table 2.7
Po Dispersion in operating costs 0.064 159 Table 2.7
Panel C. Productivity
~y Steam productivity premium 0.093 Table 2.7
m Autocorrelation in baseline productivities 0.966 Table 2.7
o Dispersion in baseline productivities 0.088 Table 2.7
ag Agglomeration in steam production 0.025 Table 2.7
Panel D. Demand
€ Elasticity of firm demand 6.000 Section 2.6.1
i Elasticity of local demand 0.877 Table 2.7
Panel E. Other Parameters
15} Water share in startup cost 0.400 Section 2.6.1
W Power resale value 0.000 Section 2.6.1
) Discount factor 0.940 Section 2.6.1

Notes: This table shows the estimated values of our model parameters and their sources of identification. Columns
1 and 2 list each parameter and its description. Column 3 reports the parameter values. Panel A includes the
parameters of power adoption costs, Panel B includes the parameters of entry and operating costs, Panel C includes
the production technology parameters, Panel D includes the parameters of product demand, and Panel E includes
other calibrated parameters. Parameter values in Panels A and B are in units of 1850 median firm sales, while
Panels C, D, and E are unit-free elasticities unless otherwise noted. Parameters with Table 2.7 as their sources are
directly estimated, with the other parameters calibrated in Section 2.6.1.
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Table 2.9. Non-Targeted Differences between Lower Waterpower and
Baseline Regions

Moment Years Model Data
(1) (2) 3) (4)
Panel A. Steam Adoption and Mill Growth (Table 2.3)
Change in Steam Share of Mills 1850-1860 0.054 0.067
(0.016)
Change in Steam Share of Mills 1860-1870 0.030 0.034
(0.013)
Change in Steam Share of Mills 1870-1880 0.008 -0.009
(0.013)
Total Mills 18501860 0.184 0.220
(0.062)
Total Mills 1860-1870 0.157 0.113
(0.052)
Total Mills 18701880 0.142 0.092
(0.036)
Total Revenue 1850-1860 0.217 0.183
(0.081)
Total Revenue 1860-1870 0.169 0.203
(0.097)
Total Revenue 1870-1880 0.139 0.140
(0.087)
Panel B. Entry Rates and Survival Rates (Table 2.4)
Entry rate 1850-1860 0.218 0.323
(0.074)
Entry rate 18601870 0.189 0.168
(0.058)
Entry rate 1870-1880 0.170 0.158
(0.045)
Survival rate 1850-1860 -0.047 -0.230
(0.065)
Survival rate 1860-1870 -0.102 -0.266
(0.057)
Survival rate 1870-1880 -0.127 -0.158
(0.040)
Panel C. Steam Adoption of Entrants and Water Incumbents (Table 2.5)
From Entrants 1850-1860 0.145 0.169
(0.024)
From Entrants 18601870 0.173 0.188
(0.022)
From Entrants 18701880 0.181 0.172
(0.022)
From Water Incumbents 1850-1860 0.068 0.034
(0.021)
From Water Incumbents 1860-1870 0.088 0.049
(0.018)
From Water Incumbents 1870-1880 0.089 0.051
(0.024)

Notes: This table replicates non-targeted regressions from Section 2.3.1 on our model-simulated
data. Each panel reports the regression estimates from a different table. Columns 1 and 2 describe
each regression moment, Column 3 reports the model-simulated values, and Column 4 repeats the
empirical values from the relevant table in Section 2.3.1 with standard errors in parentheses.
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Table 2.10. The Impact of Steam on Mill Revenue 1830-1900 (PDV in %)

Baseline Lower Waterpower No Water Lock-In Full Water Lock-In

(1) (2) (3) (4)

Total 85.21 165.77 267.01 53.28
Incumbents 0.16 0.28 1.08 -0.10
Entrants 110.86 200.79 305.55 72.44

Notes: This table reports the impact of steam on the present discounted values of mill revenues of
incumbent and entrant establishments. Incumbents refer to establishments that have been active
since 1829 or earlier. Entrants refer to the establishments that entered the region in 1830 or later.
Incumbents represent 34% of revenues in the initial steady state without steam power. Columns
(1)-(4) report the impact of steam power (measured in percent log points) relative to this initial
steady state. Column 1 considers our baseline region, while Column 2 considers an economy with
one standard deviation lower waterpower potential. Column 3 considers a counterfactual without
switching barriers (w" = 1,¢(W,S) = 0). Column 4 considers a counterfactual with prohibitive
switching barriers (¢(W,S) — o0).
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Table 2.11. The Impact of Steam Power on Firm Values in 1830 (in Percentage Points)

Lower Waterpower No Water Lock-In  Full Water Lock-In

Baseline
(1) (2) (3) (4)
Total -0.05 -0.08 0.02 -0.05
Operating Profits -0.98 -1.50 -3.76 -0.61
Option Value of Exit 0.80 1.24 1.91 0.56
Option Value of Steam 0.13 0.18 1.86 0.00

Notes: This table decomposes the percent impact of steam power on firm values in 1830. “Option Value of Steam”
reflects the difference in firm value relative to a mill that cannot access steam power. “Option Value of Exit”
reflects the additional difference in firm value relative to a water mill that is forced to stay in business indefinitely
(labeled “Operating Profits”). Appendix 2.J.1 provides formal definitions of these components. Column 1 considers
our baseline region, and Column 2 considers an economy with one standard deviation lower waterpower potential.
Column 3 considers a counterfactual without switching barriers (W = 1,¢(W,S) = 0). Column 4 considers a

counterfactual with prohibitive switching barriers (¢(W, S) — 00).
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Table 2.12. Costs and Benefits of Steam Switching Subsidies

Baseline No Agglomeration
Temporary Permanent Temporary Permanent
Subsidy Subsidy Subsidy Subsidy
(1) (2) (3) (4)
Incumbent Firms 0.47 0.00 0.40 0.00
Consumers 0.91 1.13 0.01 0.83
Government -1.00 -1.00 -1.00 -1.00
Total 0.38 0.13 -0.59 -0.16

Notes: This table shows the costs and benefits per dollar of steam switching subsidies,
measured in present-discounted values in 1850. Columns 1-2 evaluate the subsidy
programs in the baseline economy, and Columns 3-4 consider a counterfactual economy
without agglomeration in steam power (g = k = 0). Columns 1 and 3 evaluate a 1-year
temporary program, and Columns 2 and 4 evaluate a permanent program, where both
programs are enacted in 1850. “Incumbent Firms” refer to producer surplus, measured
by the impact on firm values in 1850. “Consumers” refer to consumer surplus, measured
by the equivalent-variation impact on consumer prices; see Appendix 2.J.2 for details.
“Government” refers to the direct cost of the switching subsidies.
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2.C Establishment-Level Manuscripts from the Census of

Manufactures

We have digitized establishment-level data from the original published manuscripts of the
Census of Manufactures for 1850, 1860, 1870, and 1880 . We are grateful to Jeremy Atack
for providing us many manuscripts; the rest we located in a variety of state, non-profit, and
university archives. Most manuscripts were already microfilmed, and the rest we photographed
or acquired photos of from archive staff. Our data include some manuscripts that had not
been found during the construction of previously-digitized samples described in Atack and
Bateman (1999), including Rhode Island and Nevada.

The Census of Manufactures was professionalized and comprehensive beginning in 1850
(Atack and Bateman, 1999). Before 1880, Census enumeration was done in person by U.S.
Marshals and all establishments received the same questionnaire, though it changed slightly
over time. In 1880, the Census of Manufactures was split into three broad parts: (1) a “general”
schedule; (2) a “special agent” schedule; and (3) a “special” schedule. First, many industries
received a “general” schedule, similar to that used in 1850, 1860, and 1870. Second, some
important sectors were instead given “special agent” schedules, which involved sector-specific
questions and specially trained enumerators. These “special agent” manuscripts for 1880 are
all believed to be lost (Delle Donne, 1973), which include most manufactures of: cotton, wool,
and worsted goods; silk and silk goods; iron and steel; the coke industry; the glass industry;
the mining of metals, coal, and petroleum; distilleries and breweries; shipbuilding; and
fisheries.*Y Some establishments in these industries were surveyed in the “general” schedule
(Atack et al., 2004).

A third category of sectors were enumerated in “special schedules” with sector-specific

49. In 1880, cities with over 8,000 inhabitants were surveyed separately from their counties, also by special
agents. While Delle Donne (1973) reports that the special agent city records were lost, we found the city
manuscripts and they are included in our samples (the city manuscripts were with the other records, so we
are not sure why they were considered lost).
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questions, but these were administered by the regular enumerators and these manuscripts were
not lost along with the “special agent” schedules. For 1880, these special schedules include
“Lumber and Saw Mills” and “Flouring and Grist Mills,” along with other manufacturing
sectors: agricultural implements; paper mills; boots and shoes; leather; brick and tile; cheese
and butter; and slaughtering and meat packing. For example, the additional sector-specific
questions include: the extent of custom milling for flour mills; and whether a lumber mill

does its own logging.

2.C.1 Variable Coverage

The 1860 Census instructions to enumerators discuss the data collection guidelines in useful

detail. In addition to establishment count, our main variables of interest are:

Manufacturing Revenue. Products were valued at the factory gate, excluding transportation
costs to customers: “In stating the value of the products, the value of the articles at the
place of manufacture is to be given, exclusive of the cost of transportation to any market”
(emphasis original, United States Census Bureau 1860a). We consider a mill active if it
reports positive revenue, and include only active mills in our analysis.

From 1850 to 1870, establishments were asked about the quantities and values for each
product, but both units and types were not consistently recorded and so we were unable to
create a reliable measure of prices. In 1880, the quantities of common products were more
consistently defined in special schedules (e.g., “number of thousands of feet of lumber”) but the
value of sales was recorded at the establishment level, not the product level, for the lumber
and flour milling special schedules. In the general schedule, and for less-common products
in special schedules, the only recorded output was total value of sales at the establishment
level, with no disaggregation by product or reported quantities at any aggregation level.

When using price data, we therefore use data from single-product lumber mills in 1880 (both
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because flour mills are more likely to produce multiple products, and flour prices were often

regulated and therefore less informative about marginal costs).

Input Expenditure. To estimate the demand elasticity ¢, we need a measure of variable
input expenditure. We calculate variable input expenditure as the sum of reported labor
costs and materials. Total wages paid are reported directly in 1870 and 1880. In 1850 and
1860, we calculate labor costs as the sum (for men and women) of the monthly wage bill
times twelve. Materials expenditures are reported directly in the data. For estimating the
demand elasticity, we need the input expenditure, so for this calculation we only include mills
that report all inputs (94% of the sample). Equation 2.5 shows that prices are a multiple
.
Vict 4

Tijct

20% higher than expenditures, which implies ¢ = 6.

€

——71 of marginal costs, so € = . We find that for the median mill, revenues are around

For the custom milling of flour, millers were paid in wheat, keeping a fraction of what
their customers brought. The “millers toll” (the price that could be charged for custom flour
milling) was regulated, ranging across regions from a quarter to a sixteenth. The markup for
wheat sold on the market was higher (Dondlinger, 1919). Consistent with these regulations,

we estimate lower markups in flour (10%) than lumber (33%).

Power Source. The Census also asked all establishments for their number of horsepower
used in 1870 and 1880. The kind of power source was asked in every year. Across

PN

manufacturing, the most common responses were variations on “steam,” “water,” “horse,” and
“hand,” which we processed to make those broad categories (as well as “other” and “nothing”).
Wind power was relatively rare, and by the time of our sample most American enterprises
using tides for power had closed (Charlier and Menanteau, 1997). In milling, “steam” and
“water” were by far the most common power sources. For our main analysis, we exclude mills
who report other categories, mostly because there are very few and therefore are difficult

to quantitatively model, but also due to concerns about measurement error for the larger
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ones. We found historical records for steam or water power use for several suspiciously-
large self-reported “non-mechanized” mills. Since we cannot systematically correct these
non-mechanized mills’ recorded power-use, we drop them from the main analysis. The one
exception is that some mills use “steam” or “water” in their industry name (e.g., “steam mill”),
but do not also directly report steam or water as their power source, and for those mills we
assume they used the named power source. We do use the reported capital stock of “hand”
and “manual” mills in order to estimate the share of the capital for water powered mills that

was due to water power (as opposed to other milling equipment or structures)).

Industry. In all years, the general schedule Census asked establishments to report the
type of business that they were in. Before 1880, the general schedule Census also asked for
the types of products they made. In 1880, most flour mills and lumber mills were surveyed
on their own special schedules. Two percent of the flour and lumber mills in 1880 were
recorded in the general schedule, and we include those mills in our analysis unless the same
mill was already also recorded in the special schedule. Below, we describe our processing of
the industry strings.

The Census of Manufactures included some establishments outside of manufacturing,
including mining, fisheries, and liquor packaging. We do not include those establishments
in our analysis. In Appendix Figure 2.14, we compare totals from our sample of only
manufacturing establishments to the published totals compiled by the Census. If the Census
included non-manufacturing establishments in their totals (which we can observe that they
did in 1850 and 1860), then that might lead to differences. On the whole, non-manufacturing
made up less than 2% of the establishments in the data.

For Table 2.6, we define “steam makers” as follows. First, we search for establishments
whose products are variations on “steam”; “engine”, “heat”, or “boiler”. We then constrained
the set to establishments who self-reported being in a potentially relevant industry: “iron

P44

and steel”, “iron and steel products”, “brass and other metal products”, “machinery and fine
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instruments”, or have industry unclassified /unknown. Finally, we manually verified that the
product strings plausibly related to steam products and were not false positives. For instance,
we found several establishments that passed these criteria but also produced baked goods,
which we did not classify as steam makers. Because product names are not available in the

1880 general schedule, we only classified steam makers in 1850, 1860, and 1870.

Location. The manuscripts record county and state in each decade, based on contemporaneous
county names and boundaries. In addition, the name of the closest post office is available
for 90% of establishments in 1860, 1870, and the 1880 general schedule. Post office is rarely

recorded on the 1850 manuscripts and 1880 special schedules.

2.C.2 Digitization and Processing of the Census Manuscripts

We worked with Digital Divide Data to double-enter and reconcile data from the manuscript
images. In total, there were 99,198 manuscript images with manufacturing establishments,
including 49,547 pages from 1880. The average page had 7 establishments. Appendix Table
2.13 shows the coverage for which states and decades we were able to find and digitize. When
we have records for a state and decade, the records are normally complete for the entire state.
For some states and decades, there are some entire counties missing or parts of counties from
comparing our establishment totals to the published county-level tabulations.’? We track
each establishment’s decade, state, county, page, and row.

To help clean the data, we received assistance from many UChicago undergraduates,
graduate students, and full-time research professionals. The team randomly checked many

entries, finding a very low error rate. We also used a useful feature of the manuscripts to

50. There are 7 counties that, in the manuscripts and tabulated data, have more than 10 firms in an initial
decade, have no firms in the subsequent decade, and then have more than 10 firms. We drop these counties,
given our concerns for enumeration error (or the manuscripts being lost contemporaneously). This is in the
spirit of Allcott et al. (2016), who similarly drop firms with observations in a given year that are very different
from both adjacent observations.
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verify numeric entries on many sheets: many 19th-century enumerators entered totals, such
as writing the total production value for the entire page or for a given firm. We also digitized
these row totals and page totals, and compared the entered total with the sum of the relevant
responses. Consistent with our general verification of the data, the most common sources for
discrepancies were that the total was calculated incorrectly by the enumerator or the total
reflected a sum of values that were later crossed out and replaced with other values. In these
cases, we made no changes. We also manually checked entries when a ratio seemed highly
unusual, such as the output to employment ratio, which was inspired by the data cleaning
processes at the current U.S. Census (Fellegi and Holt, 1976; Thompson and Sigman, 1999;
Rotemberg and White, 2021). We manually changed any cells where we found a difference
between entered values and the manuscripts themselves, but did not otherwise “correct” the
original written entries.

We manually processed the entered strings for product names, material inputs, and
self-reported industry, along with categorizing the entered power strings based on relevant
information such as “water” and “steam.” The overall goal was to standardize misspellings
and British spellings, expand abbreviations, and assign strings to broader categories. To
clean industries, we also used the product strings.

The data include many self-reported industries in each decade, which we group together
for our analysis. Following Hornbeck and Rotemberg (2024), we homogenized industry names
into 31 categories, using additional information on products when needed. Our analysis
focuses on flour and lumber milling, which were relatively straightforward to classify since
they had unique outputs. To give a sense of the raw data, there were over 4000 distinct
industry strings in the original manuscripts that we associate with the flour and lumber

YRR

industries, including: “grist,” “flower mill,” “wood & lumber,” “steam saw mill,” and “mill”
(for the last, we could only identify the industry by the products).

In Appendix Figure 2.15, we compare total lumber and flour milling from the establishment
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data to contemporaneous tabulations, described and digitized by Hornbeck and Rotemberg
(2024). Note that although the tabulation data is useful for detecting missing data, it should
not be considered as the ground truth. Some counties may have manuscripts that were not
tabulated in the census reports or were mistabulated, for instance because of difficulties
defining the industry for each establishment.

Some values for string variables were entered in the “wrong place,” when the surveyor
had run out of room, which we manually corrected. Similarly, we corrected when numeric
variables were entered in a string column. Some entries were marked with a question mark,
when the data processing team could not read part or all of a cell. We looked at those entries,
and were rarely able read them either.

The Census recorded an enterprise as one establishment even if it contained multiple
locations within the same Census subdivision, if these activities across sites were for the
“same concern, and all engaged in the same manufacture” (United States Census Bureau,
1860a). There were also some entries in the Census that were associated with one owner
but represent multiple industries (for instance, below we discuss the case of E. E. Locke
& Co, which operated a distillery and a mill). We split each establishment into multiple
industries, so as to consider only the output of each industry. For instance, when we consider
the revenue of E. E. Locke & Co, we only consider the revenue of the mill and not that of
the distillery. This is particularly relevant for the mills in the period that produced both
cut lumber and flour, which we classify as separate mills in our analysis. This approach
follows historical Census practice to, for multi-industry establishments, “[separate| the two
parts of the business and [assign| each to its appropriate place in the Statistics of Industries”
(United States Census Bureau, 1870a). We often refer to “firms” for convenience, though
note that the Census enumeration is at the establishment level (unless there were multiple
buildings within the same enumeration area) and activity is recorded where it takes place,

not at headquarters, so we are then referring to single-establishment “firms.”
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2.C.8 Adjustment for County Border Changes

Some county borders change over our sample period, and we group together counties with
overlapping geographies to create time-consistent borders. This approach is preferable for
our analysis of individual mills and establishment-level panel-linking. This differs from an
alternative approach of splitting aggregate county activity based on geographic area and
aggregating to baseline county borders (Hornbeck, 2010), which would make it difficult to
interpret split shares of individual establishments in establishment-level data.

Our baseline county boundaries start with 1850 borders. Issues arise when county polygons
from 1860, 1870, or 1880 overlap with multiple 1850 county borders. We group together 1850
counties so that every county from 1860 to 1880 corresponds to a unique grouped 1850 cell.
The first step is to group together all of the 1850 counties that overlap with at least 5% of
the area of the same 1860, 1870, or 1880 county.

The second step is then grouping together all of the 1850 counties that were linked in the
previous step. As an example, suppose 1860 county a overlaps with 1850 counties i and 7,
and 1870 county b overlaps with 1850 counties j and k. In the first step, we would group i
and 7 and 7 with k. In the second step, we create a time-consistent boundary that covers i,
7, and k.

We use conservatively large county groupings because we do not want to split individual
establishments across counties and we want to find the same establishments in subsequent
decades. Two grouped counties have an area larger than a circle with a radius of 50 miles,
which is too large to be considered a single market, so we drop them from our analysis. We
focus our analysis on counties east of the 98th meridian, where county borders are more
stable and settlement patterns are less irregular (Webb, 1931). For simplicity, we continue to
call the grouped geographies “counties.” Our baseline sample covers 750 counties using the
actual 1850 borders, which we group into 690 consistent geographies. This covers 83951 flour

and lumber mills, and around 90% of all steam-generated sales in those industries.
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2.C.4 Creating a Linked Panel of Mills

We link mills by hand, from one decade to the next, in combination with a machine-learning
linkage model. We employed a team of data associates to compare a mill in one decade to
plausible matches in the subsequent decade. We matched mills on name and location, but
did not force establishments to be in the same industry in every decade. Because mills rarely
switched between lumber and flour, and we consider working in a different manufacturing
sector to be part of the outside option in our model, and so we consider industry switches to
be “exits.” We never make links using information on power source.

To guide the large-scale hand-links, we first matched a few counties ourselves and compared
every mill to every manufacturing establishment in the subsequent decade. We then trained
a machine learning algorithm on those matches. For the large-scale hand-linking, we then
only considered potential matches with a relatively high linking probability. For the possible
matches, we mostly included all candidates with over a 9% linking probability. For mills
with many potential links, we only sent the top twenty; for mills with few potential links,
we sent the top five as long as their linking probabilities were above 5%. In practice, the
potential links with a low match probability were rarely hand-chosen as an actual match. For
the analysis in the paper, we then retrained the machine-learning model on the full set of

matches. Below, we describe our approach in more detail.

Hand-Linking Procedure

Our first step was to create some panel links by hand, linking establishments in 1860 to
their 1870 counterparts in 97 counties. We chose relatively small counties, to start, so it was
feasible to compare all possible matches in the same county. We matched 2,709 establishments
in 1860 to 5,518 establishments in 1870, adding up to 282,341 comparisons.

To make the links, we considered each establishment’s name, industry classification
(including the self-reported string and our own cleaned industry measures), and the nearest
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post office. We also had access to the original CMF manuscript images for each establishment
to double-check mistakes, either in the original handwriting or its transcription. Each hand-
linking sheet was completed by two UChicago students, and assigned to a third person to
reconcile any discrepancies. For each 1860 establishment, we sorted all 1870 candidates by
Jaro-Winkler (JW) name similarity, and by whether or not their broad industries matched,
to increase the likelihood that links were at the top of each block of names.

Broadly, we made two types of matches in the data. “Direct” matches are when the
establishment names in both periods are close matches. This is similar to common practice in
literature linking men across decades in the Census of Population (Ferrie, 1996; Feigenbaum,
2016; Ruggles et al., 2018; Bailey et al., 2020; ?; 7). However, an important difference between
linking men and linking establishments is that many mills actually changed their names,
especially when adding owners. While additional data would be needed to link women who
change their last names, our Census of Manufactures data can tolerate moderate changes in
ownership. For instance, Appendix Figure 2.13 shows the manuscript images for a mill that
was initially owned by Alson Rogers, which later passed to his son Lucian. To account for
“ownership transfers,” we also match establishments where part of the name is very similar
but another part is different in a manner consistent with a partial change in ownership. In
practice, this second category includes partnership formation or newer members taking on

the family business.’!

Model Specification

From hand-linking establishments, we noticed there were broadly four categories for how the
establishment’s name was reported (consistent with guidance from Jeremy Atack). These
were not formal rules, and the way names were written down varied across time and space,

but we list the categories below along with our interpretation of their meaning.

51. In our replication files, we denote direct matches as “y”, ownership transfer matches as “o”, and
non-matches as “n”. We denote direct matches where the industry changed within milling as “s.”
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(i). Establishments with sole proprietorship contain a single owner’s name. Names were

sometimes initialized, and the names did not consistently follow a first/last name order.

(ii). Establishments owned by families normally appeared as a person’s name followed by &
sons or & brothers. Others appeared with two first names separated by an ampersand,

followed by a last name.

(iii). Establishment that were a partnership or expanded partnership reported two or more
names of the proprietors; limited partnerships reported one or more people’s names

followed by € co.

(iv). Establishments that reported names that were impersonal, and often included tokens

related to the business and location.

For our mills, in particular, there were two broad types of naming patterns: those with
general company names, sometimes including the name of the water power source; and those
named after people. Across Census decades, the order of people’s names can change. Even
for establishments with a single owner, the order of first and last names can change, along
with changes in the use of initials.

These features motivate us to build two separate linking models: one matching the whole
establishment name, and one matching owners’ names with flexibility in their ordering.”?> We
use two random forest models to predict establishment pairs, either tracking the company as
a whole or tracking individual owners.?3 Both linking models predict establishment pairs to
be: a same-owner match, an ownership transfer match, or not a match. We describe this

approach in more detail below.

52. We are grateful to Jeremy Atack for suggesting this approach.

53. We generated linking models based on several classifier families, including logistic regression, random
forests, and extreme gradient boosting (Chen and Guestrin, 2016). After evaluating their performance on
the validation data, we settled on a random forest trained using the R library ranger. The random forest
model provided the most reliable output, with respect to false positive and negative rates, and the empirical
distribution of predicted probability does not concentrate on the two ends which leaves room for setting the
probability threshold and varying the false positive and false negative errors.
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Name Classifier. We built a name classifier to categorize establishments by their naming
pattern type, extract the name of the owners, and identify the name order. While owner
names are embedded in establishments owned by sole proprietors, families, partners, or
expanded partnerships, the names were often initialized and would switch first-last name
orders.

We first use a list of company tokens to identify establishments with impersonal names,
which includes: names of locations, such as state and county names; and tokens related to
their product or business, such as tanning, manufacturing, lumber, etc.

For establishments without those company tokens, we implement the following steps to
extract and format the owner names. First, we remove the non-name tokens, such as "&

"and split the establishment names into owners’ names. For a family-owned

co" or "& sons,’
establishment with two first names and one last name, we assign the last name to both owners
(e.g., turn "J & D. Taflinger" into "J Taflinger" and "D. Taflinger.") We then standardize
common nicknames and abbreviations to their original names (e.g., Wm to William and Geo
to George.) We determine the name order using the first and last name frequency in the 1880

Census of Population. When both names can be first or last names, we keep both orders and

look for both of them in the next Census decade.

Owner Linking Model. Our owner-linking model predicts links based on three sets of
information: establishment name, industry, and post office. We define several sets of variables
for each of the first, middle, and last names: Jaro-Winkler string distance, whether the name
is initialized, and whether the initial matches exactly. When there are missing values, which
are incompatible with the random forest model, we assign the median value and define an
indicator flag for missing. For industry, we use our industry classification based on the raw
industry string to create matching indicators for broad and detailed industries. We also
create a measure of industry distance based on the industry classification and similarity in

their reported kinds of products. For post office, we use the Jaro-Winkler string distance
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between post office names and an indicator for missing values.

For establishments with multiple owners, the model predicts matches at the establishment-
owner level. At the predicting stage, we take the maximum of the predicted probability for
each establishment pair (from all owner pairs) to let the output be at the establishment-pair
level. This process allows a firm to match when one owner is the same, even if other owners

are different, which mimics how humans generally make links.

Company Linking Model The company-linking model also predicts links based on
establishment name, industry, and post office. However, instead of extracting the owner
information from the establishment names, this model uses the full string of establishment
names and looks for establishments with similar whole names. We use the Jaro-Winkler
string distance for the full names, in addition to string distance after removing business and
location tokens and the minimum string distance between those remaining tokens among all
token pairs. The remaining name distances measure the name similarity unrelated to the
business itself, which removes false matches that only have closer string distances on the full

name because of common tokens (e.g., “Eagle Mill” and “James Mill”).

Model Prediction Reconciliation and Hand-Linking

We use both models to predict matches, separately, and then take the maximum of the
predicted probabilities. For the set of potential matches that we consider when making
hand-links, we select the top 20 pairs with a linking probability above 9%. If there are 5 or
fewer pairs to send, we send the top 5 pairs with a linking probability above 5%.

We worked with Digital Divide Data (DDD) in Kenya to hand-link the matches, at
scale. Our team helped train the DDD associates in person, who also had experience linking
individuals across decades in the Census of Population. We then continued to work closely

with them remotely, handling the data process ourselves while their managers handled HR.
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We sent DDD lists of all potential matches with identifying information: establishment
name, industry, post office, and product kinds produced. We did not include the estimated
linking probabilities. Two randomly-assigned separate members of the DDD team found the
best match for each establishment, or indicated no close match, and a third random member
reconciled any disagreements between the original two members.

We then iterated on these hand-links using the machine-learning model, asking them to
manually check “unlikely” matches or “likely” non-matches. We used the same protocol as for
the original data, sending DDD the information about the firm but not the estimated link
probability. First, we flagged the following three sets of potential matches for review: (1)
links that were made for which the algorithm predicted link probability was below 40%, (2)
mills with no links, but for which the algorithm predicted at least one link probability above
40%, and (3) if DDD and the highest-predicted link were different (and the predicted link
probability of the actual match was at least 0.1 lower than the best predicted match). For all
mills that met one of these three criteria, we resent all of the candidate matches back to DDD
for hand-linking. After iteration, the “unlikely” hand-linked matches were generally found to
be reasonable matches (and missed by the machine-learning model) and the predicted “likely”
matches were also generally decided to be matches after a second look. The automated
linking model performed relatively worse in identifying ownership transfers, compared to the
hand-links (Figure 2.18 Panel A).

Using this final hand-linked data, after iteration with the original model, we re-estimate
the model to create final model-predicted links for our analysis. We consider two mills linked
in the baseline ML linking specification if the predicted match probability is above 0.6. To
eliminate a small number of multiple links from handlinking (3% of all links), we keep the
mostly likely period 2 link for every period 1 establishment and then keep the most likely
period 1 link for every period 2 establishment. There are a few tied matches (0.8% of all

links), in cases where adjacent establishments in the same industry have the same owners; in
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these cases, we randomly select one of the establishments.

Linking Mill Owners to the Census of Population

We link mill owners to the complete Census of Population, using a similar procedure to our
panel links. We construct an owner-name dataset with each probable person name ordering
in the establishment name. For each owner-name, we keep up to 20 most likely matches in
the Census from the same year and county who: were over 18 years old; had a matching first
initial or first name Jaro-Winkler distance less than 0.3; and had a last name Jaro-Winkler
distance less than 0.3. In rare cases when more than 20 individuals meet these criteria, we
keep people with milling-adjacent occupations and those with the lowest string distances.

We sent the list of potential matches to Digital Divide Data, where two team members
selected the best match (or no match) and a third team member reconciled all disagreements.
Team members matched on the basis of: mill owner name and Census name; mill industry
and Census person occupation.

Using the final match list, we first collapse between multiple matches, where for every
owner name, we take the top match, sorting by milling status, last name distance, first name
distance, and, for very rare cases, a seeded random variable. The same is done to collapse
between multiple name orderings of the same owner, such that there is a list of unique owners
paired to a single census person.

For mills with multiple owners who match to the Census of Population, we use all matches
to characterize firm-level ownership characteristics: average owner age, whether any owner
was born outside the United States (immigrant), and whether any owner has a self-reported

occupation associated with being a “professional miller.”®* In most cases, only one owner

54. These occupations, listed in decreasing prevalence among the owners, are: Millers; Lumbermen and
raftsmen; Sawyers; Manufacturers; Saw and planing mill operatives; Carpenters and joiners; Traders and
dealers in lumber; Machinists; Mill and factory operatives (not specified); Mechanics (not specified); Traders
and dealers in produce and provisions; Woolen mill operatives; Paper mill operatives; Cotton-mill operatives;
Employees in manufacturing estabs. (not specified); and Traders and dealers in coal and wood.
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name is linked to the Census of Population.

2.D Measuring County Waterpower Potential

This section describes how we measure county waterpower potential. We start with data on
rivers in the United States (Section 2.D.1); define theoretical waterpower potential (Section
2.D.2); discuss our exclusion of rivers that were impractical for water power (Section 2.D.3);
and aggregate flowline-level water power to the county-level, including adjustment for river

segments that cross county boundaries (Section 2.D.4).

2.D.1 NHDPIlusV2 Data

National Hydrography Dataset Plus is a national geospatial surface water framework for
water resource analysis, developed and maintained by the U.S. EPA in partnership with the
U.S. Geological Survey (USGS).

We use NHDPlus Version 2 (NHDPlusV2), released in 2012 (McKay et al., 2012).%°
NHDPIlusV2 is built from multiple data sources, including: the medium-resolution (1:100,000)
National Hydrography Dataset (NHD), 30 meter National Elevation Dataset (NED), and the
National Watershed Boundary Dataset (WBD).

We generate waterpower potential for each “fowline” or “river segment,” which is the
basic unit in the NHD linear surface-water network. We use the two types of flowlines that
represent natural rivers: “Stream Rivers” and “Artificial Paths.” A Stream River (SR) is
a river segment, often extending between tributary confluences. An Artificial Path (AP)
represents a flow-path through a waterbody in the surface water network: for particularly

wide rivers, normally those wider than 50 feet and longer than 2640 feet, an “artificial path”

55. Another version is NHDPlus High Resolution (NHDPlus HR), which is at a higher resolution (1:24,000-
scale or better) (Moore et al., 2019), but does not currently include monthly streamflow estimates. The
resolution of NHDPlusV2 is sufficient for us, particularly given that we later aggregate data to the county
level.
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is drawn to represent the flow-path within the waterbody.

2.D.2 Theoretical Water Power

For each river segment r, the theoretical water power generated from the flow of water along

this segment can be derived using the following formula (assuming no friction):

Theoretical Water Power, = FIOWEMGC x FallHeight, xGrélgif;gg?al, (2.26)
Cubic Feet Feet

Per Second

where the gravitational constant roughly equals 0.1134 when the theoretical water-power is
measured in horsepower. This formula closely approximates horsepower calculations in the
1880 Water Census.

Intuitively, the theoretical water power available is proportional to the flow rate of water

(volume per second) and its falling height.

Flow Rate. Our data from NHDPIlusV2 are based on the Enhanced Unit Runoff Method
(EROM), a five-step procedure, to estimate mean monthly flow rates of rivers under natural

conditions:

Step 1. Unit runoff based on a flow-balance model, taking into account: precipitation,

potential evapotranspiration, evapotranspiration, and soil moisture.
Step 2. Adjustment for excessive evapotranspiration.
Step 3. Adjustment in a log-log regression estimated using reference gauge.
Step 4. Adjustment for flow transfers, withdrawals, and augmentations.

Step 5. Gage-adjustment based on actual observed flow at the gauge.
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Step 4 is significant for our purposes, because the model predicts waterpower potential
in the absence of the hydrological infrastructure built in the United States since the 19th
century. The modeled water volume reflects natural waterflows, close to those observed in

the 19th century (verified in Appendix Figure 2.11).

Fall Height. NHDPlusV2 data also provide the maximum and minimum elevation values
for each river segment. Following the hydrology literature, we approximate the fall height (or

hydraulic head) using the difference in elevation along each river segment.

2.D.3 Practical Water Power.

As discussed in the 1880 Water Census: “There is a sharp distinction to be made between
theoretical and actually available water power” (emphasis original). Some sources of water
power were infeasible (e.g., the Mississippi River). We discuss two reasons why theoretical
water power was not usable in practice — river width and seasonality — and how this enters

into our calculations of county waterpower potential.

River Width

We exclude wide rivers, such as the lower Mississippi River, that were impractical to dam for
the purposes of generating water power. These rivers were also used for water transportation,
which crowded out water power for manufacturing because millers had to provide rights
of way. We use the maximum “top” (surface) width of rivers for NHD segments from the
National Water Model (NWM), developed by NOAA (2016).99

For each county, we calculate local waterpower potential excluding rivers with maximum
widths above a cutoff. Appendix Figure 2.25 plots the coefficient on Lower Waterpower

against each cutoff, where the outcome is the number of water mills in 1850 (as in Table 2.2).

56. For more details of the National Water Model, see https://water.noaa.gov/about/nwm.
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There is a sharp attenuation in the relationship for very wide rivers. Our main measure of
county waterpower potential therefore excludes rivers that are wider than the 96th percentile
(106.3 feet). This cutoff mostly excludes “Artificial Paths” in the database, including most
of the lower Mississippi River network, which were impractical for water power use. We
also exclude Niagara Falls from our analysis, as water-wheels during our sample period
were “inadequate” for the magnitude of the falls (Adams, 1927): there was only one nearby

water-mill in our sample, that opened in the late 1870s.

Seasonality

The seasonality of water flow rates is also important for the practical use of water power,
in addition to average flow rates, because it determines whether watermills can be active
throughout the year. Some mills were more seasonal, using water power when available, but
the strong tendency was for mills to focus on year-round water power availability.

For many rivers, water flow rates varied over the year. We use the average flow rate over
the three lowest months of the year, as historical accounts viewed this as a key determinant
of feasible water power (Census Bureau, 1883). Consistent with these accounts, while we
include “intermittent” rivers in our analysis, they do not on their own predict water power-use
(Appendix Table 2.29, Column 2). Similarly, the average flow rates across all 12 months
are less predictive of county water power-use in 1850 than our baseline approach (Appendix

Table 2.29, Column 3).

2.D.4 Aggregating to County Waterpower Potential

The above procedure constructs river segment waterpower potential, which we aggregate
to the county level for our analysis of US Census data. For flowlines that intersect county
boundaries, we split flowlines into multiple segments that are contained entirely within county

boundaries. We allocate the total river segment waterpower potential in proportion to the
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share of its length inside each county. We then sum across all river segments in a county.

2.E Other County-Level Data

This section provides additional detail on some of our supplementary data sources.
Market Access, Navigable Waterways, and Railroad Stations. We use measures
of county “market access” in 1850, and decadal changes from 1850 to 1880 (Donaldson and

Hornbeck, 2016; Hornbeck and Rotemberg, 2024). Market access is approximated as:

MAe = (req) " Ly. (2.27)
dc
The market access of county c is the trade-cost-weighted sum of population L in other counties
d, where the iceberg trade cost 7 is raised to the power of the trade elasticity. We set 8 = 3.05,
following Hornbeck and Rotemberg (2024), and control for the log of county market access in
1850 and decadal changes in log county market access.

Measured transportation costs are based on least-cost routes using railroads, navigable
waterways, and wagon transportation. We also control directly for whether the county is
on a navigable river (as defined by Fogel 1964) or other navigable waterway (canal, lake, or
ocean), and log distance to the nearest navigable waterway (based on average distance from
200 random points in the county to the nearest navigable waterway). Using maps of the
railroad network in Colton (1882), we also collect detailed locations of railroad stations.

Coal Access. We digitized maps of workable coal deposit locations from Campbell (1908),
a survey run by the United States Geological Survey. The map shows workable deposits for
each type of coal (lignite, subbituminous, bituminous, and anthracite), and we calculate both
if the deposits overlap with a county and the share of the county with a deposit. In addition to
using measures of coal in the county, we also calculate the lowest-cost “iceberg” transportation

cost from any workable deposit to each county along the transportation network.
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Specifically, we assume that if there is coal in a county, there is no transportation cost to
access coal. If there is no coal in a county, we calculate (a) the cheapest cost to a county with
coal, using the iceberg transportation costs calculated by Hornbeck and Rotemberg (2024).
We also calculate (b) the minimum wagon cost (again using the Hornbeck and Rotemberg
2024 costs) from the border of the county to the nearest coalfield. We then calculate the
relative cost of shipping as the transportation cost divided by the price of coal, using the
minimum of (a) and (b).

The actual price we use does not affect our regressions (because we take logs and use
a national commodity price), but to be consistent we followed Cole (1938) and calculated
the weighted average price of coal in 1880 (40% anthracite and 60% bituminous), using
commodity prices from the Statistical Abstract of the United Statesd’

Local Milling Material Availability. We define counties’ wheat suitability using crop
suitability data from the Global Agro-Ecological Zones project of the Food and Agriculture
Organization (GAEZ-FAO), from Rusanov (2021). We also use counties’ acreage share in
woodland in 1870 (Haines, 2010).

Portage Site Locations. Following Bleakley and Lin (2012), we use data from Semple
(1903) and Fenneman (1946) to measure whether counties contain actual or potential portage
sites based on the fall line. We also included the historic location of portage sites along the
Ohio, Missouri, and Mississippi rivers described by Bleakley and Lin (2012).

The Water Census We digitized the “detailed tables” of the water census, which gives
us information of waterpower potential at the level of the site, which we then aggregate to

the county level as we do with the NHDPlusV2.

57. Available at:
https://fraser.stlouisfed.org/files/docs/publications/stat_abstract/pages/18654_1915-1919.
pdf.
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2.F Switching Case Studies from Historical Society Records

For some cases in which incumbent water mills adopted steam power, we looked through
historical society records (and other documents, when possible) for guidance on why these
mills adopted steam and what impediments to steam adoption may have confronted incumbent
water mills. This qualitative history of switching helps motivate assumptions of our model
for why water incumbents faced higher costs of steam power than entrants.”® The available
historical detail was limited in most cases, or we were unable to find records for the mills,
though we could generally see that most millers did not change locations and verify Census
data on when mills switched to steampower.

Below, we provide some examples of millers (in alphabetical order) for whom we were
able to find more-detailed information. These case studies suggest some of the push and pull
factors behind mills switching from water to steam power:®?

The Blanchards Brick Mill was built in 1842 in Watertown, Wisconsin (Watertown
Historical Society, 2022). Due to concerns about low flow from the Rock River, the proprietors
started construction of a steam mill (next door to their original mill) in the 1840s, though in
our data the mill did not switch to steam until the 1860s.

The Canal Mill in Erie, Pennsylvania was sold by Jehiel Towner to Oliver & Bacon
in 1865, who immediately converted it to a steam mill (Bates, 1884). Oliver & Bacon had
previously operated a mill called Hopedale, located in the same county but outside the city,
but left it to purchase the Canal Mill.

The Ellis Mill was built around 1838 by Moses Ellis, in Fayette County, Indiana (Barrows,
1917). After Moses’ death in the 1840s, his son Lewis operated the mill for a few years, until

he abandoned the watermill in the 1850s and built a steam mill in nearby Bentonville.

58. We are particularly grateful to David Kirchenbauer and Tony Li for outstanding research assistance in
finding these historical sources. We also include examples of switching that we found in secondary sources.

59. We provide an additional example in Appendix Figure 2.13.
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Elhanan Garland owned a water powered mill on the East bank of a stream in
Kenduskeag, Maine, and Moses Hodson owned a water powered mill on the West bank
of that same stream (Hubbard, 1861). After a lawsuit, it was determined that Garland had
the senior water rights for using two stones of grist mill, but Hodson’s rights were prior to
Garland’s for other purposes (such as a saw mill). Garland subsequently switched to steam
power, but did not change locations.

Charles Gwinn, who was already a prominent miller exploiting high water power
availability in Baltimore, built a steam powered mill there in 1813. He did not use steam
power for very long, though, as it became clear that steam was “too costly to operate for
milling flour” relative to water, in Baltimore at that time (Scharf, 1874; Sharrer, 1982).

The Graue Mill in Oak Brook, Illinois (which is now a museum, conveniently close to
Chicago) was a gristmill that opened in 1852 (York Township Historical Society, 2023). The
ground was relatively flat, so the immigrant owner (Frederick Graue) had to construct a dam
to create a three foot fall. In order to expand, Graue spent three years retrofitting his mill
for steam use (including the help of a visiting millwright). Graue had also made his own
bricks on site, for the building, and seemed quite entrepreneurial and adventurous in further
modifications prior to the steam engine’s explosion.

The Hardesty Brothers inherited a profitable grist mill in Canal Dover, Ohio after
their father died in 1869 (Hardesty, 2019). Within a decade, they borrowed money to buy a
steam engine (without changing the location of their mill). The mill dissolved a few years
later, and Hardesty (2019) speculates that one possible reason was due to the heavy financing
needs.

Chauncey B. Knight inherited a water powered flour and grist mill built by his
grandfather Nicholas Knight in Monroe, New York (Flour and Feed, 1945). Close to what is
now Harriman State Park, the location has excellent access to water power. Knight converted

the mill to run on steam power, which was the first steam mill in the county. Knight recounted
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that “it was freely predicted that it would be a failure,” as many thought steam “could not
compete with water power which was so much cheaper.” Knight’s mill was large enough to
process corn meal, wheat bran and middlings, and malt sprouts by the “carload,” with the
bulk discounts allowing his mill to sell meal much more cheaply than his competitors.

E. E. Locke & Co operated a distillery along with a mill in Mifflin, Pennsylvania (Ellis
and Hungerford, 1886). The mill only used water power in 1850 and only used steam power in
1860. The distillery and mills of E. E. Locke were destroyed by a fire in 1857. The rebuilding
and the restoration was finished by 1858. We suspect that the mill switched from water to
steam after and because of the fire, and otherwise the broad site of the mill stayed the same.

David and Andrew Luckenbach purchased a grist mill from their father in 1861
in Bethlehem, Pennsylvania (Jackson, 1975). As the business expanded, “the water power
provided by Monocacy Creek was found unsatisfactory,” and they installed steam engines in
1877 after a fire destroyed the original mill.

J.S. Manning owned a mill in Columbus, Wisconsin that used only water power in 1870
and used only steam power in 1880 (Jones, 1914). He purchased the mill in 1849, which was
already the busiest mill in Central Wisconsin. It is described that the wait for grist work
was often weeks. Manning is described as switching to steam power to keep up with demand.
When the mill switched from water to steam power, the location of the mill did not change,
though new machinery was added to the pre-existing mill.

John Orf purchased a mill in Allen County, Indiana in 1856 (Bates, 1945). Water from
the Wabash and Erie Canal was taken into a mill pond just east of the St. Mary’s aqueduct
and run across an overshot wheel. Anticipating the canal’s closure, Orff retrofitted the mill
to be able to run on either steam or water power in the 1870s. The canal closed in the 1880s,
at which point Orf’s mill used steam power exclusively.

The Phoenix Mill in Millwakee, Wiscosin was built by brothers William and Edward
Sanderson in 1847 (Andreas, 1881). William died in 1868, and Edward added Isaac van
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Schnaick as a partner. They expanded the business, and switched to steam power.

The Shoemaker Mill was built in 1746 on a mill race off Tookany Creek in Montgomery
County, Pennsylvania Rothschild (1976). The family operated the mill for 100 years before it
was purchased by Charles Bosler, an employee. After Charles died, his son Joseph enlarged
the mill and converted to steam power.

Williams & Lufbury owned a water powered lumber mill in Rahway, NJ (International
Publishing Co, 1887). The mill used water power in the 1850 Census and steam power in the
1860 Census, without changing location. During that time, dams were abolished within the
city limits.

Emery (1883) describes an (unnamed) water mill forced to switch to steam power
because it lost its water rights. Emery (1883)’s goal was to describe the cost of switching
to steam power, as testimony for a hearing to determine how much the mill should be

compensated.

2.G Alternative Specifications

In this section, we discuss in more detail the robustness specifications described in Section
2.3.3. In each table, the first row corresponds to our main specification for comparison.

Appendix Tables 2.19, and 2.20 consider other county-level characteristics that could affect
the relative adoption of steam power across counties with different waterpower potential.
Correspondingly, the outcomes in these tables are our main county-level outcomes: the
number of water establishments (column 1) and the steam share (column 2) in 1850, the
growth in total establishments over each decade (columns 3-5), and the change in the share
of mills using steam power (columns 6-8).

Appendix Tables 2.19 and 2.20 include additional controls for potential drivers of county-
level steam adoption and economic growth. Appendix Table 2.19, rows 2 and 3, include

additional controls for county access to coal (in addition to our baseline controls that include
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an indicator for any workable coal in the county, the share of the county covered by workable
coal deposits, and access to workable coal deposits via the transportation network). Row
2 includes separate controls for each type of coal (lignite, subbituminous, bituminous, and
anthracite). Row 3 controls for a cubic polynomial in the share of the county covered by
workable coal deposits. Because different access to material inputs may have influenced flour
and lumber mills’ steam adoption (Ragnar, 1953), row 4 controls for county wheat suitability
(from FAO-GAEZ data provided by Rusanov 2021) and row 5 controls for share of the county
covered by woodland (as in Hornbeck 2010). Rows 6-8 control for county access to labor
and capital inputs: row 6 controls for local wages in manufacturing in the Census data
(Allen, 2009); row 7 controls for the share of county population who report being engineers
or mechanics (Hanlon, 2022); row 8 controls for the number and total capital of local banks
(Jaremski, 2014). Row 9 includes all of the above controls. Our results are broadly robust
across these specifications, though the point estimates fall in row 9.

Appendix Table 2.20 adjusts our baseline controls for different influences on county growth.
Rows 2—4 use subsets of our baseline controls: row 2 excludes our baseline controls for market
access and navigable rivers; row 3 excludes our baseline controls for coal; and row 4 excludes
both sets of controls. Row 5 controls for contemporaneous market access. Row 6 controls for
contemporaneous population. This is itself an endogenous outcome to water power availability
and the arrival of steam power, so this is not our preferred specification, but rather gives a
sense of how much the evolution of overall economic activity matters as a control. Rows 7-12
alternatively control for time-invariant county characteristics (interacted with year), which
adjust for potentially differential growth patterns across counties with different waterpower
potential, though even 1850 county outcomes are influenced by county waterpower potential.
Rows 7-10 control for variation in counties’ initial settlement, which may have been associated
with differential growth subsequently: row 7 controls for 1850 population; row 8 controls for

being in Appalachia; row 9 controls for being on the frontier (Bazzi et al., 2020); and, given
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the historical pattern of spatial convergence in structural transformation, row 10 controls for
the 1850 population share working in agriculture (Eckert and Peters, 2023). Row 11 controls
for whether counties had historical portage sites, which less directly relevant by our sample
period but had persistent path-dependent effects on economic activity (Bleakley and Lin,
2012).60 Exposure to the Civil War had direct effects on economic activity (Margo, 2002;
Feigenbaum et al., 2022),61 and so row 12 includes controls for differential exposure to the
Civil War, following Hornbeck and Rotemberg (2024): whether there was a battle in the
county; the number of battles; the total number of casualties; an indicator for if the number
of casualties was over 500; if the county was on the Union/Confederacy border; if the state
had legal slavery in 1864; if the state seceded from the union; and the share of industrial
activity in broadly war-related industries.2 Row 13 controls for all of the time-invariant
controls listed in rows 812, and row 14 controls for all of the time-invariant controls listed in
rows 7-12.

The estimates are broadly robust across these specifications in Appendix Tables 2.19
and 2.20, though the estimated initial differences in 1850 are more sensitive to controls for

population.® We view time-varying population as an example of “bad controls” that introduce

60. Conceptually, there are two differences between waterpower potential and portage sites, which create
independent variation in the two. First, portage sites were on navigable rivers, whereas local waterpower
potential can also come from non-navigable rivers. Second, portage sites reflect any discrete changes in
elevation, whereas waterpower potential varies more continuously in terrain ruggedness. For example, the St.
Anthony Falls in Minneapolis has a elevation change of 49 feet, almost double the height of the Falls of Ohio
by Louisville. Both were portage sites, but the former was more useful for water power.

61. Feigenbaum et al. 2022 argue that during his 1864 March, Sherman’s troops explicitly targeted lumber
mills. Following their identification strategy, we confirm in our data that counties affected by Sherman’s
March experienced a decline in lumber mills. We also find that the survival rate fell. We do not find an effect
on switching for the water incumbents, but we only have data on only nine affected counties with surviving
mills (since the microdata for Georgia was lost), so the test is underpowered.

62. These broad war-related industries include: artificial limbs and surgical appliances; awnings and tents;
coffins; cutlery, edge tools, and axes; drugs; chemicals and medicines; explosives and fireworks; flags and
banners; gun- and lock-smithing; gunpowder; lead; military goods; ship and boat building; bronze; canning
and preserving; carriage and wagon materials; carriages and wagons; clothing (general); cooperage; gloves
and mittens; and hats and caps.

63. The controls related to the Civil War affect the point estimates in 1850, though by little.
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bias (Angrist and Pischke, 2009), as county population is endogenous to our mechanism:
milling in lower waterpower potential places benefited more from the adoption of steam power,
lowering the local price index and drawing population to those places. Indeed, Appendix
Table 2.15 shows that population grew more in counties with lower waterpower potential,
so controls for population potentially capture the direct effects of steam power. Row 7,
columns 1 and 2, suffers from the same issue: population in 1850 is also endogenous to county
waterpower potential and the existing steam power, which makes it difficult to interpret
effects conditional on counties’ contemporaneous population. For this reason, we only include
the time-invariant controls in our omnibus regressions (rows 13 and 14). Row 13, which does
not control for 1850 population, is our preferred omnibus regression.

Appendix Tables 2.23 and 2.24 explore the influence of linkage error for our results.
These tables compare entrant and incumbent outcomes, which are the estimates most likely
affected by linkage errors. Appendix Table 2.23 shows how the entry rate (columns 1-3)
and incumbent survival rate (columns 4-6) vary with county waterpower potential, in each
decade. Appendix Table 2.24 shows results for steam use by entrants (columns 1-3) and water
incumbents (columns 4-6). The rows correspond to the same alternative specifications across
the two tables. For rows 2-5, we use the machine-learning (ML) links described in Appendix
2.C.4. Our benchmark ML model considers mills linked across decades if they have a match
probability of at least 0.6. In row 2, we limit the panel links to only mills that are matched
both by hand and by the benchmark ML model. In row 3, we use only the benchmark ML
links. Row 4 restricts the matches to those with a ML-link probability of 0.8, and row 5
expands the matches to those with a ML-link probability of at least 0.4. Rows 2-5 change
the survival and entry rates, mechanically, but do not qualitatively change the relationship
between waterpower potential and entry or survival. In rows 6 and 7, our estimates are similar
for mills with a predicted “business name,” often based on a local geographic feature, or other

mills named after their proprietors. Our baseline regression sample includes mills who report
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positive sales, regardless of their input costs, though we further limit the sample to mills
who report all inputs to calculate the elasticity of substitution. Rows 8 and 9 show that our
regression results are robust to these sample choices: row 8 restricts the sample to mills who
report all inputs, and row 9 expands the sample to include the mills with unreported output
(who were likely inactive at the time). Finally, row 10 includes mills that do not explicitly
report using water or steam power, where we consider a mill as steam powered only if it
explicitly mentions steam.

Appendix Table 2.25 shows the robustness of our results to changes in the county sample.
Rows 2-5 consider the role of zeros in the data. Row 2 expands the sample to an unbalanced
panel of all counties that ever had a mill in our sample period. Rows 3 and 4 constrain
the sample to counties that had at least 3 or 5 mills in 1850, which are counties that are
substantially less likely to report no mills in subsequent decades. When we limit the sample to
at least 3 mills or 5 mills in 1850, we exclude 94 and 175 counties, respectively. Our baseline
sample drops the two grouped counties with areas larger than a circle with a radius of 50 miles,
and row 5 shows that our similar when we include them. Rows 6 and 7 exclude counties with
extreme values of measured waterpower potential: row 6 drops the 1% largest and smallest
values, and row 7 drops the 5% largest and smallest values. Rows 8 and 9 exclude counties
that were more involved in trading mill output: row 8 drops the 20 largest cities in our sample,
and row 9 drops cities that Kuhlmann (1929) describes as having export-oriented “merchant
mills” (Baltimore, Buffalo, Chicago, Cincinnati, Cleveland, Milwaukee, Minneapolis, Oswego,

Philadelphia, Richmond, Rochester, St. Louis, and Washington DC).
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2.H Solution Algorithms

2.H.1 Dynamic Programming

The expected operating values E¢[V9(R, )] are the key determinant of firms’ forward-looking
decisions. Once firms know the operating values, their optimal decisions about entry, exit, and
power adoption in Equations (2.7)-(2.10) are only determined by contemporaneous features

of the economy.

The expected operating values satisfy the Bellman equation:

Tet(R, ) = cat(R, R') — gjet(R)
(R, )] = E. max . (2.28)

’

E.[VS
+5E(¢’\¢)Eu max {Ee [Vct-s-l( )] fo ]ct( )s QR _Vﬁzt(l)}

ct

Equation (2.28) involves two maximization steps over distributions of idiosyncratic cost
shocks (for adoption € and operation/exit v, respectively). The parametric assumptions
in Section 2.5.5 simplify these steps. In particular, when the cost shocks follow Gumbel
distributions, Equation (2.28) simplifies to a log-sum expression for the expected maximum

(EMAX) (Train, 2009; Keane et al., 2011):

o N\ _ fR’ R’
Ec [V (R, )] = plog {Z exp {/1) <ﬂ'ct(R, ©) = cet (R, R') + 6E (| 0y po log [exp (Es Veira (B, = fo ) + exp <Qd )}) H .

R/ P Po

We use the recursive scheme in Equation (2.29) to solve for the expected operating values
in the steady states and along the transition path between the steady states. To do so, we
discretize the productivity process using the ? method on 100 grid points. We assume that
firms have perfect foresight about the price index and steam share (our two aggregate state
variables) up to unanticipated aggregate shocks to the economy (e.g., the first arrival of steam

power or policy announcements).
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Steady State

Equation (2.29) is a contraction mapping when operating values are stationary, E<[V$ 1 (R, ¢)] =

E:[V3(R, ¢)], so we can solve for the unique fixed point E.[VS(R, ¢)] by iterating on Equation

(2.29) until convergence. Convergence of the value function iteration procedure is ensured by

Blackwell’s sufficient conditions for contraction mappings (Stokey et al., 1989, Theorem 4.6).

Transition Path

Starting from the terminal steady-state values E€[vc()T1 (R, )], we may solve for the operating
values along the transition path {Ec[V3(R, cp)}tTi}Ol using backward recursion on Equation

(2.29) from T} — 1 to the initial period Tj.

2.H.2 Dynamic Equilibrium

This section discusses how we solve for the dynamic equilibrium of our economy.

We first describe our algorithms for solving the equilibrium in steady states and along a
transition path. In brief, we use a shooting algorithm that iterates on the time paths for the
mass of operating firms and entrants to find a fixed point of the equilibrium policy functions.

We then discuss the properties of our solution algorithm, including the existence and
uniqueness of equilibrium. The convergence of our iterative algorithm is ensured by a
congestion force in the product market. The convergence property also ensures that an
equilibrium exists and tends to be unique, although strong agglomeration effects in steam

adoption can lead to multiple equilibria, which we consider directly.

Steady State

This section describes how we solve for the steady state equilibrium. We use a nested

algorithm, where the outer loop searches for the mass of entrants M. that closes the free
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entry condition, and the inner loop iterates over the mass of operating firms F¢.(R, ¢) to find
a fixed point of the equilibrium policy functions for exit and power adoption. Our solution

algorithm reads as follows.

(i). Set an initial grid for the mass of entrants {MC(O), Mc(l), MC(Q), ...}. For each grid point

(1) =0,1,2,....:
(ii). Solve for the equilibrium mass of operating firms Fc(i)(R, ©):

(a) Set an initial guess for the mass of firms F, C(tZ ’0)(R, ¢). For each iteration (j) =
0,1,2,...,:
(b) Solve for the expected operating values Eg[VC(z(i’j )(R, ¢)] by iterating on the

contraction mapping in Equation (2.29).

(c) Simulate the mass of operating firms: given FC(Z’j ) and M (@) use the policy

ct

functions for exit and power adoption (Equations (2.9)-(2.10)) to simulate the

firm mass Fc(f’NEW) (R, ).

(d) Update the mass of operating firms:

FUI (R o) = AFUYE (R o)+ (1= NEU (R, g),  (2.30)

ct

where \ = 0.5 is the relaxation parameter in the Gauss-Seidel update.

(e) Repeat Steps (ii)b-(i))d until g, |Fy7 (R, o) = FY 7 (Rog)| < tolp for a

small tolerance level tolp.
(iii). Evaluate the free entry condition:
(a) Compute entry values EV&? =E, [Vc(i)(E, go)} by plugging ]Eg[VCO(i)(R, ©)] into

Equation (2.9) and integrating over the stationary distribution for ¢.
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(b) Compute the deviation from the free entry condition:
FO —py® _ e (2.31)

Mc(z'H)

(iv). Update the mass of entrants to set the predicted free entry condition to zero.

We use a linear interpolation based on the previous iterations {Mc(k),}"c(k)}};zo.

(v). Repeat Steps (ii)-(iv) until |.7-"C(i)| < tolps for a small tolerance level toly;.

We solve for the initial steady state (T = 1830) and the terminal steady state (after
T = 1900). In the initial equilibrium, water power is the only available power source, which
we model with a prohibitively high cost of steam adoption 7 (S). In the terminal equilibrium,

the cost of steam power has reached its new steady-state level.

Transition Path

This section describes how we solve for the transition path between the initial steady state
(Tp = 1830) and the terminal steady state (77 = 1900).

The dynamic equilibrium along the transition path is a technically challenging fixed point:
We simulate a 70-year transition path, where heterogeneous firms make forward-looking
decisions about entry, exit, and power adoption, as steam costs are falling over time, and
decisions are interlinked through competition in product markets and agglomeration spillovers
in steam power.

We use a nested shooting algorithm, where the outer loop searches for a time path for
the mass of entrants that closes the free entry condition, and the inner loop iterates over the
mass of operating firms to find a fixed point of the equilibrium policy functions for exit and

power adoption. Our solution algorithm reads as follows.

)

(i). Set an initial guess for the mass of entrants MC(? . For each iteration (i) =0,1,2,...,:
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(ii). Solve for the equilibrium mass of operating firms F C(Z )(R, ©):

a) Set an initial guess for the mass of operating firms F| (i.0) R, ). For each iteration
ct
(j)=0,1,2,...,:
b) Solve for the expected operating values E. Vo(i’j ) R, p)| by iterating on the
ct

contraction mapping in Equation (2.29).

(c) Simulate the mass of operating firms: given F C(ti’j ) and M

ot » use the policy

functions for exit and power adoption (Equations (2.9)-(2.10)) to simulate the

firm mass Fc(z’NEW) (R, ).

(d) Update the mass of operating firms:

FUITD (R o) = AECYE) (R o)+ (1= VU (R, g),  (2.32)

where A = 0.5 is the relaxation parameter in the Gauss-Seidel update.
(e) Repeat Steps (ii)b-(ii)d until > °p ., ]Fc(f’j+1)(R, ©) — Fc(ti’j)(R, ©)| < tolp.
(iii). Evaluate the free entry condition:
(a) Compute entry values EVg) =E, [Vc(ti)(E, go)} by plugging ]Eg[Vc(;(i)(R, ¢)| into
Equation (2.9) and integrating over the stationary distribution for ¢.

(b) Compute the deviations from the free entry condition:

FO — gyl _ e (2.33)
(iv). Update the path of entrants MC(Hl) to set the predicted free entry condition to zero.

We use a Newton-Rhapson method to update the mass of entrants:

(i+1) -1

MY = pl s <Mc(i)) FO, (2.34)
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where Jr (MC(Z)> is the Jacobian of the free entry condition ]-"c(i), evaluated numerically
around Mc(i), and A\ = 0.5 is a dampening parameter that mitigates overshooting and

ensures stable convergence toward clearing the free entry condition.

The Newton-Rhapson method is versatile but also potentially unstable, as Equation
(2.34) is a system of 70 free entry conditions in 70 unknown masses of entrants. To
mitigate erratic fluctuations in Mé”l), we apply a lowess smoother (that allows for

breakpoints at shocks) to the path of entrants after each Newton update.

(v). Repeat Steps (ii)-(iv) until H]—"C(Z)H < tolypy.

To ensure smooth convergence at the end of our transition path, we extrapolate the
final years of M} before running the inner loop for the mass of operating firms one final

time.

As a consistency check, we verify that the mass of operating firms has reached its terminal

steady-state values by T7. Otherwise, the time horizon 77 has to be expanded.

Approximate Path of Entrants. The algorithm for finding the path of entrants in Section
2.H.2 is versatile and exact but also computationally expensive. We aid our algorithm with
an approximate method that works well when the economy is transitioning smoothly between
two known steady states (as in our baseline simulations). As we describe below, we use the
approximation as starting values in Step (i) of Section 2.H.2, and to ease the computational
burden of the structural estimation in Section 2.6.

Our approximation to the path of entrants M is based on the knowledge that: (i) the
economy transitions between the steady states found in Section 2.H.2, and (i) the only
driving force along the transition path is a steadily falling steam cost. In particular, we know
that lower steam costs induce more entry, more steam adoption, and a lower price index.

Hence, we search for a transition path where the mass of entrants evolves smoothly between
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the steady states:

t—Ty \¢
Mct(f) = exp <log MCTO + (rjqb) (log MCT1 - 1Og MCTQ)) te [T()?Tl]a (235)

where ¢ > 0 governs the speed of convergence to the terminal steady state. Our goal is to

find the value £* that satisfies free entry and the other equilibrium conditions.

(i) Set an initial grid for the mass of entrants {520),5?),59), ...}. For each grid point

(7)=0,1,2,...,:
(i) Perform Steps (ii)-(iii) of Section 2.H.2 for cach value of £U),

(iii) Update the parameter & () to set the predicted free entry condition to zero. We use a

linear interpolation based on the previous iterations {& (k),fc(k)}‘i;:o.
(iv) Repeat Steps (ii)-(iii) until | Y, f(gg)| < tolpy.

The approximate path of entrants M (£*) performs well in our baseline simulations: The
mean absolute deviation of the free entry condition F}; is less than 0.005% of average firm
sales. The approximation has the advantage of greater computational efficiency compared to
the exact method in Section 2.H.2. In particular, the approximate and exact algorithms take,
respectively, 4 seconds and 8.5 minutes to solve the baseline equilibrium. This difference
in computational time is valuable when estimating the model, where the equilibrium needs
to be solved and simulated repeatedly at various parameter values. Hence, to ease the
computational burden of the estimation procedure, we use the approximate path of entrants
when estimating the model in Section 2.6. The versatility of the exact algorithm is useful

when evaluating the counterfactual experiments in Section 2.7.
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Existence of Equilibrium

The convergence of our iterative algorithm (and thus the existence of an equilibrium) is
ensured by the competition between firms in product markets, creating a congestion force (as
summarized by the price index Pp). For intuition, we describe a few practical examples of
the congestion force.

First, suppose entry values exceed the fixed entry cost (such that the free entry condition
in Equation (2.12) is not met) at our initial guess. More firms will then enter the market.
The additional entrants strengthen the competition (i.e., lower the price index Pt), which
lowers profits (%ﬁ’w) > 0 in Equation (2.6)) and the value of entry.

Similarly, suppose the optimal survival rates exceed our initial guess. More firms will then
stay in business. The additional operating firms lower the price index P, which decreases
operating values and, thus, optimal survival rates.

Finally, suppose the optimal steam adoption rates exceed our initial guess. More firms
will then adopt steam power. The additional steam users lower the price index P, (when
steam has lower marginal costs, v > 0), which decreases optimal steam adoption (because of

the profit complementarities between steam power and the price index, aﬂg](gi’(p) > aﬂcégt/’@)
C C

when v > 0).

Uniqueness of Equilibrium

As Section 2.H.2 describes, the convergence of our solution algorithm relies on a monotone
relationship between the mass of firms (steam users) and the price index: a higher price
index induces more entry/survival (steam use), which in turn lowers the price index. This
monotone relationship also tends to ensure the equilibrium of the economy is unique.

To see this, suppose — for the sake of contradiction — that the economy could sustain two
equilibria with different masses of entrants. The price index in the “low entry” equilibrium
would then be higher, all else equal. However, that higher price index would induce more
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entry, contradicting its “low entry” nature.
A strong steam agglomeration force (i.e., a very positive ag or very negative k) could,
however, lead to multiple equilibria. For example, suppose that the agglomeration force is

so strong that a higher steam share s.; makes even more mills want to adopt steam (i.e.,

dwct(S,go) > dmet (W#’)
dsct - dsct

). In this case, the economy could sustain multiple equilibria: a “low
steam” equilibrium where few mills adopt steam (because the agglomeration force is weak)
and a “high steam” equilibrium where many mills use steam (because the agglomeration force
becomes strong).

The potential for multiple equilibria is larger when steam is more available, so that more
firms are at the margin of steam adoption. We check for multiple equilibria in our terminal
steady state (when steam power is fully available) by initiating our solution algorithm at
different starting values for the equilibrium steam share (from 0% to 100%). The solution
algorithm converges to our baseline equilibrium for all initial values. We also do not find
persistent effects of “cash for clunkers” style programs described in Section 2.7.2, even those

that temporarily raise steam adoption to well above its steady-state usage.

2.1 Structural Estimation

2.1.1 FEstimation Procedure

We estimate the structural model using a Newton-Rhapson algorithm that leverages the
relationships between parameters and moments discussed in Sections 2.6.1-2.6.1. The method
iteratively adjusts the parameter values # € R to match model-simulated moments f(6) €
RE to their target values y* € RE.

Starting from an initial value g, the Newton method updates the parameter estimates as
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follows:

On1 = On — M p(00) " (f(0n) — ), (2:36)

where J¢(6) is the Jacobian of the moment function f, evaluated numerically around 6y, and
A = 0.5 is a dampening parameter that mitigates overshooting and ensures stable convergence
to the target values.

The theoretical relationships between parameters and moments described in Sections
2.6.1-2.6.1 are critical for the performance of the Newton method. In particular, the method
works well when parameters and moments have smooth (especially linear) relationships (such
that Jy does not change too rapidly) and the parameters have distinct (especially one-to-one)
mappings to each target moment (such that J 1 1s well-conditioned and non-singular).

We make three adjustments to the estimation procedure to ensure these regularity
conditions are robustly met.

First, we estimate the baseline productivity process (m, o) and entry costs f€ in an initial
step to match their target moments before the arrival of steam power. Second, we implement
an adaptive grid search in the steam production parameters (7, fag ), executing the Newton
method on each grid point. Third, we adopt a dimensional continuation strategy for our
Newton method, gradually incorporating more parameter-moment pairs into the estimation

problem:

(a) Steam adoption within regions: estimate c(Smmal),cgermmal),c(R,R’ ) to match their
target moments.

(b) Steam adoption between regions: add (cr(W),x) and their target moments to the

estimation problem.

(c) Output between regions: add (g, n) and their target moment to the estimation problem.
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(d) Startup and fized costs: add (fF, f%V) and their target moments to the estimation

problem.

Our estimation algorithm only proceeds to the next step once the incorporated moments
are sufficiently close to their target values. These adjustments ensure that our estimation
algorithm is well-behaved. We validate that Jy, at all iterations n, has the signs and

magnitudes predicted in Sections 2.6.1-2.6.1.

2.1.2  Identification of Structural Parameters

We now further analyze the local relationships between parameters and moments around the
best-fit values 6*. Appendix Tables 2.31 and 2.32 report two standard measures of parameter
identification: the Jacobian of the moment function, which captures how simulated moments
change with parameter values,64 and the sensitivity measure of Andrews et al. (2017), which
captures how estimated parameters change with target moments.%

We show these relationships for our Newton-based estimation, which relies directly on
the Jacobian for the estimation (see Section 2.1.1). We order the table rows and columns
such that the diagonal elements capture the relationship between parameters and their target
moments, as discussed in Sections 2.6.1-2.6.1. The tables yield several insights into the
identification of our structural model.

First, the simulated moments are highly sensitive to our parameters, suggesting that
our parameter estimates are tightly identified. For example, increasing the water-to-steam
switching costs by 1% of firm sales brings the incumbent-to-entrant steam switching rate 6.4

percentage points away from its perfectly fitted target values, cf. the first element of the

Jacobian matrix.

64. The Jacobian is a commonly used diagnostic to assess the empirical properties of structural models
(see, e.g., Berger and Vavra (2015); Ottonello and Winberry (2020); Balke and Lamadon (2022)).

65. The sensitivity matrix M is related to the Jacobian J as follows: M = (J'W.J)~*J'W, where W is a
weighing matrix that does not matter in our exactly-identified case.
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Second, there is a particularly strong link between model parameters and each of their
target values, as the Jacobian and sensitivity matrices have pronounced excess mass along
their diagonals. This suggests that the selected target moments are particularly important
for identifying each of the parameters.

Third, and reassuringly, all the diagonal elements have the theory-predicted signs, as
the relationship between moments and parameters have the directions predicted in Sections
2.6.1-2.6.1.

Finally, the Jacobian and sensitivity matrices also have important off-diagonal elements,
which highlight the importance of estimating the model parameters jointly. For example,
Appendix Table 2.32 shows that a higher water exit rate implies that steam costs must be

higher to rationalize the observed level of steam adoption.

2.J Counterfactual Experiments

2.J.1  Option Value Decomposition

In this section, we describe how to decompose firm values into operating profits, the option
value of exit, and the option value of steam power, as discussed in Section 2.7.1.

The value of a water mill (Equations (2.9)-(2.10)) is determined by its productivity (its
idiosyncratic state variable, @), the steam adoption cost path (the exogenous aggregate state
variable, ctS = {2 }22,), as well as the paths for the price index and steam adoption rate

(the endogenous state variables, P and sg):

]Ef[ Cct)(907 W)] - V(QO7C]S3t,PBt,SBt>, (237)

where subscript B denotes the baseline values.

The option value of steam power reflects the differences in firm value if the water mill
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cannot access steam power, keeping all other state variables fixed at their baseline values:
OVS(p, W) = V(p, cBy. Pt sBt) — V(. 00, Py, sBt) (2.38)

The option value of exit reflects the additional difference in firm value relative to a water

mill that is forced to stay in business indefinitely:
OVE¢(p, W) = V(pt, 00, Pgt,sBt) — OPi(p, W). (2.39)

The value of staying in business with water is the present-discounted value of operating

profits:
o0
OP (i, W) = 3 0B [n(ptr W, Poryr) = £Vl = ] (2:40)
7=0

where the flow profit m; is determined by the mill’s productivity ¢ and the price index P;.
Finally, combining Equations (2.37)-(2.40), we can decompose the value of a water mill

into operating profits, the option value of exit, and the option value of steam power:
Ec[Vii(p, W)] = OPt(p, W) + OVE(p, W) 4+ OVS¢(p, W). (2.41)

Table 2.11 reports the effect of steam power on each of the terms of Equation (2.41).

2.J.2  Consumer Surplus

We measure the consumer surplus from a policy using equivalent-variation impacts on
consumer prices. That is, we calculate the transfer that would deliver the change in real
consumption that is equivalent to the one caused by the policy’s impact on consumer prices.

As specified in Section 2.5.1, consumers’ utility from mills” products is CES with elasticity
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1
1—e¢

¢, such that Py = [ f p}c_te dj} is the utility-consistent price index.

The consumer surplus (CS) of a policy enacted in year ¢ is

o0
1 1
CS(Py, Py|Cop) = st=toQ x(———), 2.42
(P1, Po|Cor) tzg) o\ B~ By (2.42)

where Py and Py are the consumer prices in year t of the policy and baseline equilibria, and

Cyy is the baseline path of nominal consumption.
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2.K Appendix Figures
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Figure 2.11. River Segment Flow Rates, in the 1880 Water Census Compared to

NHDPIlusV2
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Notes: This figure compares the log water flow rates of river segments that we linked by name from the 1880
Water Census to the National Hydrography Dataset Plus Version 2.0 (NHDPlusV2). Each point represents
one linked river segment.
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Figure 2.12. Selected Coverage in the 1880 Water Census, Compared to
Comprehensive NHDPlusV2 Data

Panel A. Distribution of County Waterpower Potential, for Counties Included and
Excluded by 1880 Water Census
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Panel C. Measured Relationship between 1850-1880 Mill Growth and County
Waterpower Potential
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Notes: Panel A shows the distribution of country waterpower potential, measured using NHDPlusV2 data,
for counties included by the 1880 Water Census (light gray) and counties excluded by the 1880 Water Census
(dark gray). Panel B shows a binscatter of the unadjusted relationship between the number of water powered
mills in 1850 and county waterpower potential, using the full NHDPlusV2 data and the Water Census data.
Panel C shows a binscatter of the unadjusted relationship between the growth in the number of mills
between 1850 and 1880 and county waterpower potential, using the full NHDPlusV2 data and the Water
Census data. Panels B and C use PPML estimation, which approximates percent differences in the rates.
Data from our main sample (Figure 2.2), using our digitized establishment-level Census of Manufactures
(1850-1880), NHDPlusV2, and Census Bureau (1883).
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Figure 2.13. Example Census Images: The Rogers’ Lumber Mill

Panel A. 1850

Panel B. 1860
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Notes: This figure shows example images for the Census of Manufactures in each decade, and follows the
Rogers’ Mill across each decade. Alson Rogers settled in Warren, Pennsylvania and started in the lumber
business after marrying in 1835. After he passed away in 1867, his sons Lucian (the “L.P.” seen in the 1870
and 1880 Census images) and Burton took over the business, and built a steam engine. Sources: Schenck and
Rann (1887), Census of Manufacturers (1850-1880), Census of Population (1850-1880).
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Figure 2.14. Distribution of County-Level Manufacturing Revenue, in County
Tabulations and Aggregated Establishment-level Data
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Notes: This figure shows the distribution of total recorded manufacturing revenue by county, comparing
county-level tabulations made contemporaneously by the Census against the county-level sums of our
digitized establishment-level data from Census manuscripts. Data from our main sample (Figure 2.2), using
our digitized establishment-level Census of Manufactures (1850-1880), county-level tabulations (Haines,
2010).
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Figure 2.15. Unreported Data in County-Industry Tabulations, for Flour and
Lumber Mills, Compared to Aggregated Establishment-Level Data

Panel A. Distribution of County Revenue for Flour Mills and Lumber Mills, in
County-Industry Tabulations or Aggregated Establishment-level Data
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Notes: This figure shows the distribution of total flour mill revenue and total lumber mill revenue, by county,
comparing county-industry tabulations for 1860-1880 made contemporaneously by the Census against the
county-industry-level sums of our digitized establishment-level data from Census manuscripts (the Census
did not publish county by industry tabulations in 1850). Panel A reports the distribution of values for
county-industries with data in either source. Panel B reports the distribution of values for only those
county-industries for which we have data from both sources. The Census had a de jure minimum value of
total revenue for reporting county-industry values in 1870 and 1880, which corresponds to the vertical lines,
and the Census also omitted tabulations for some other county-industry cells. Data from our main sample
(Figure 2.2), using our digitized establishment-level Census of Manufactures (1860-1880) and

county-industry-level tabulations digitized by Hornbeck and Rotemberg (2024).
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Figure 2.16. Geographic Concentration of Production in 1850, by Industry
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Notes: For each sector, this figure shows the Herfindahl-Hirschman index of revenue across counties in 1850
(sorted in increasing order). Data restricted to counties in our main sample (Figure 2.2), using our digitized
establishment-level Census of Manufactures (1850).

246



Figure 2.17. Distribution of Total Horsepower Installed, by Power Source
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Notes: This figure shows the distribution of horsepower installed for flour mills and lumber mills in 1870 and
1880, pooled across both industries and decades. For this figure, we truncated the data at 120 horsepower.
Data from our main sample counties (Figure 2.2), using our digitized establishment-level Census of

Manufactures (1870 and 1880).
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Figure 2.18. Distribution of Hand-Links’ ML-Model Probability,
by Type and Waterpower Potential

Panel A. Distribution of Hand-Links’ ML-Model Probability, by Hand-Link Type
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Notes: Panel A shows the distribution of hand-links by machine-learning probability, separately by the type
of hand-link: those in the same industry and same ownership structure; those in a different mill industry (i.e.,
switched from flour to lumber milling); and those with ownership changes (i.e., added /removed some owners
or changes to first names/initials). Panel B shows the distribution of machine-learning probabilities assigned
to hand-links, separately for counties with above-median waterpower potential and below-median waterpower
potential. The ML-Linking model is described in Appendix 2.C.4. Data from our main sample (Figure 2.2),
using our digitized establishment-level Census of Manufactures (1850-1880) and NHDPlusV2.
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Figure 2.19. “False Match Rate” and ‘“Found Match Rate” of Machine-Learning
Model, Compared to Hand-Links, by ML-Model Cutoff Value
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Notes: For different cutoff values on the machine-learning model predictions, the light gray line shows the
share of links made by the machine-learning model that are not hand-links (“False Match Rate,” if hand-links
are assumed correct). The black line shows the share of hand-links made by the machine-learning model
(“Found Match Rate”). The ML model reports a probability that mills in adjacent decades are the same, and
the chosen ML-model cutoff value is the lowest probability that we would classify as a match. If there are
multiple mills above the cutoff, we match only the highest probability mill. The ML-Linking model is
described in Appendix 2.C.4. Data are for all lumber and flour mills in our digitized establishment-level
Census of Manufactures (1850-1880).
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Figure 2.20. Growth in Mill Revenue, by Steam Switching Choice
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Notes: This figure shows the growth in mill revenue, by decade, for water incumbents who (1) kept using
water power or (2) switched from water to steam power. Data from our main sample (Figure 2.2), using our
digitized establishment-level Census of Manufactures (1850-1880).
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Figure 2.21. Mill Size by Power Source, Within-County
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Notes: This figure shows the distribution of mill revenue, in each decade, for each type of power source (steam

or water). For each mill, we subtract mean log revenue in their county-industry (flour or lumber). Data from
our main sample (Figure 2.2), using our digitized establishment-level Census of Manufactures (1850-1880).
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Figure 2.22. Initial Mill Size, for Exiters and Survivors
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Notes: This figure shows the distribution of mill revenue in each baseline decade, separately for “Exiters” who
close in the subsequent decade and “Survivors” who remain in operation by the next Census. Data from our
main sample (Figure 2.2), using our digitized establishment-level Census of Manufactures (1850-1880).

252



Figure 2.23. Mill Size for Entrants and Incumbents, within Power Source

Panel A. Log Revenue of Entrants and Incumbents Using Water Power
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Notes: This figure shows the distribution of mill revenue, in each decade, comparing entrant mills and

incumbent mills using the same power source (water power in Panel A, steam power in Panel B). Data from
our main sample (Figure 2.2), using our digitized establishment-level Census of Manufactures (1850-1880).
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Figure 2.24. Mill Growth for Incumbents and Successive Generations of Entrants

Panel A. Log Revenue of Entrants Using Water Power
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Notes: This figure plots the distribution of mill revenues for water mills, by decade. The top panel shows the
size distributions of water entrants in ¢ and ¢ + 10. The bottom panel shows the size distributions of the water
incumbents (who do not subsequently switch to steam power) in ¢ and ¢ + 10. Data from our main sample
(Figure 2.2), using our digitized establishment-level Census of Manufactures (1850-1880) and NHDPlusV2.
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Figure 2.25. Estimated Relationship between Water Powered Mills in 1850 and
County Waterpower Potential, Excluding Rivers with Widths
Above Different Cutoffs
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Notes: This figure shows the estimated relationship between a county’s number of water powered mills in
1850 and a one standard deviation decrease in county waterpower potential, where county waterpower
potential is measured excluding rivers that are wider than the indicated cutoff percentile of river widths. We
sort rivers into percentile bins, based on their width, estimate our main specification from Panel A of Table
2.2, and plot the estimated coefficient on Lower Water power along with its 95% confidence interval. All
regressions include our baseline controls interacted with industry: an indicator for the presence of navigable
waterways in the county, distance to the nearest navigable waterway, county market access in 1850, an
indicator for workable coal deposits in the county, the share of the county covered by coal deposits, and access
to coal via the transportation network. Robust standard errors are clustered by county. Data from our main
sample (Figure 2.2), using our digitized establishment-level Census of Manufactures (1850) and NHDPlusV2.
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Figure 2.26. Water and Steam Adoption Costs: Structural Estimates
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Notes: This figure plots our structural estimates of the adoption costs of water cg(W) and steam power
¢t(S), estimated in Table 2.8. The right axis is in percent of 1850 median firm sales, which the left axis
converts to 1850 dollars using median firm sales in our 1850 data.
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Figure 2.27. Water Technology and the Impacts of Steam Power (with Partial
Reversibility of Water Power)

A. Water Costs and Steam Adoption C. Switching Barriers and Steam Adoption
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Notes: This figure shows the share of steam users and total mill revenue in model counties with different
water technologies. The figure is based on a re-estimation of the structural model that assumes partial
reversibility of water power. We set w"' = 0.35 for water mills that switch to steam power, reflecting the
average liquidation rate estimated by Kermani and Ma (2023). Mill revenue is measured in log differences to
the initial steady state of the baseline region. Panels A and B plot the impacts of steam power in the average
county (black line) and a region with a standard deviation lower waterpower potential (gray line), where the
only parameter difference between the regions is the fixed cost of water power adoption. Panels C and D plot
the impacts of steam power as functions of switching barriers. The black line shows adoption for our baseline
estimates, the gray line removes switching barriers (w" = 1,¢(W, S) = 0), and the dashed line represents
prohibitive switching barriers (¢(W,.S) — 00).
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Figure 2.28. Water-to-Steam Switching Subsidies: Steam Adoption and Annual

Costs
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Notes: This figure simulates counterfactual “cash-for-clunkers” policies that pay water incumbents ¢z (W) to
switch to steam power, exactly offsetting the sunk cost of switching. Panel A shows the adoption of steam
power with a 5-year policy in 1850, and Panel B shows its annual costs. Panel C shows the adoption of steam
power with a 20-year policy introduced in 1850, and Panel D shows its annual costs. Panels A and C
compare the counterfactual adoption of steam power (in black) to its factual adoption (in gray).
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2.LL. Appendix Tables
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Table 2.13. Coverage Rates

State 1850 1860 1870 1880 State 1850 1860 1870 1880
AL v v v v MT - - v v
AR v v v v NE - v v v
CA v v v v NV - - v v
CcO - - v v NH v v v v
CT v v v v NJ v v v v
DE v v v v NY v v 82% 99%
DC v v v v NC v 84% v v
FL v v v v ND&SD - - 0% 18%
GA 0% 0% 0% v OH v 26% 74% 68%
IL v v 46% v OR v v v v
IN v v v v PA v v v v
IA v v v v RI v v v v
KS - v v v SC v v v v
KY v v v v TN v 30% 35% v
LA 0% 0% 0% v TX v v 85% v
ME v v v v uT - v v v
MD v v 0% v VT v v v v
MA v v 32% v VA v v v v
MI v v 49% v WA - v v v
MN v v v v WV - - v v
MS v v v v WI v v v v
MO v v v v

Notes: This table shows our coverage of counties. Percents indicate estimates of the share of
establishments that we digitized, given the published county-level tabulations. In 1850, the Census
records for three counties in California (Contra Costa, San Francisco, and Santa Clara) were lost
and never tabulated, we have complete coverage of the remaining counties in California. Dashes
indicate that no survey was conducted, checkmarks indicate that we have complete coverage.
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Table 2.14. Survival Rates, by County Waterpower Potential and Initial Power

Source
Water Steam
Survival Survival Difference
Rate Rate (1) — (2)

(1) (2) (3)

Elasticity with Respect to Lower Waterpower:

In 1860 -0.173 -0.490 0.317
(0.068) (0.210) (0.217)

# County-Industries 1,199 1,199
In 1870 -0.237 -0.188 -0.049
(0.064) (0.116) (0.126)

# County-Industries 1,199 1,199
In 1880 -0.180 -0.002 -0.179
(0.048) (0.070) (0.079)

# County-Industries 1,199 1,199

Notes: This table shows the elasticity of survival in both water and steam mills, over the previous decade,
with respect to county waterpower potential from 1860-1880. “Lower Waterpower” is a negative standardized
measure of county waterpower potential, with standard deviation of one, so the estimates reflect differences
in counties with one standard deviation lower waterpower potential.

Column 1 reports results for water powered incumbents, column 2 reports results for steam powered ones,
and column 3 reports the differences. Each row corresponds to a different PPML regression, using data from
the indicated Census year and previous Census year, which approximates percent differences in the rates.

All regressions include county-industry fixed effects, industry-year fixed effects, and our baseline controls
interacted with industry and year: an indicator for the presence of navigable waterways in the county;
distance to the nearest navigable waterway; county market access in 1850; an indicator for workable
coal deposits in the county; the share of the county covered by coal deposits; and access to coal via the
transportation network.

Each observation is a county-industry-year. Robust standard errors clustered by county are reported
in parentheses. Data from our main sample counties (Figure 2.2), using our digitized establishment-level
Census of Manufactures (1860-1880) and NHDPlusV2.
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Table 2.15. Per Capita Manufacturing Growth and Steam Adoption,
by Waterpower Potential

Mills Mill Revenue
Population Per Capita Per Capita

(1) (2) 3)

Panel A. Differences in Lower Waterpower Counties:

In 1850 -0.284 -0.672 -0.592
(0.226) (0.233) (0.232)

Panel B. Growth in Lower Waterpower Counties:
From 1850 to 1860 0.094 0.126 0.088
(0.029) (0.065) (0.082)
From 1860 to 1870 0.067 0.046 0.136
(0.040) (0.060) (0.066)
From 1870 to 1880 0.075 0.017 0.065
(0.024) (0.044) (0.101)
# County-Industries 1,199 1,199

Notes: This table shows the relationship between per capita growth in mill activity and county waterpower
potential. “Lower Waterpower” is a negative standardized measure of county waterpower potential, with standard
deviation of one, so the estimates reflect differences in counties with one standard deviation lower waterpower
potential.

The outcome in column 1 is (log) population, the outcome in column 2 is mills per capita, and the outcome
in column 3 is milling revenue per capita. Panel A reports cross-sectional differences in 1850. Panel B reports
growth rates over the following decades. Each row corresponds to a different regression, using only data from the
indicated years. Column 1 reports OLS estimates, and columns 2-3 report PPML estimates, which approximate
percent differences.

All regressions industry fixed effects and our baseline controls interacted with industry: an indicator for the
presence of navigable waterways in the county; distance to the nearest navigable waterway; county market access
in 1850; an indicator for workable coal deposits in the county; the share of the county covered by coal deposits;
and access to coal via the transportation network. Panel B regressions also include county-industry fixed effects,
industry-year fixed effects, and our baseline controls interacted with industry and year.

Each observation is a county-industry-year. Robust standard errors clustered by county are reported in
parentheses. Data from our main sample counties (Figure 2.2), using our digitized establishment-level Census of
Manufactures (1850-1880) and NHDPlusV2.
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Table 2.16. Steam Adoption and Flour Mill Growth, by County Waterpower
Potential

Steam Share Total Total
of Mills Mills Mill Revenue

(1) (2) (3)

Growth in Lower Waterpower Counties:

From 1850 to 1860 0.018 0.114 0.154
(0.020) (0.069) (0.110)

# Counties 535 587 587
From 1860 to 1870 0.038 0.163 0.194
(0.019) (0.072) (0.088)

# Counties 531 57 57
From 1870 to 1880 0.013 0.053 0.160
(0.015) (0.041) (0.120)

# Counties 574 57 57

Notes: This table shows the relationship between growth in mill activity and county waterpower potential,
limiting the sample to flour mills. “Lower Waterpower” is a negative standardized measure of county
waterpower potential, with standard deviation of one, so the estimates reflect differences in counties with
one standard deviation lower waterpower potential.

The outcomes are the share of flour mills using steam power (column 1), the total number of mills
(column 2), and total mill revenue (column 3). Each row corresponds to growth over the indicated decade,
using only data from the indicated years.

Column 1 reports OLS estimates, restricting the sample to counties with at least one flour mill in both
decades (for the steam share to be defined) and weighting by the number of flour mills in that county in
1850. These estimates reflect percentage point differences in the shares. Columns 2 and 3 report PPML
estimates for a balanced panel of counties (including zeros), which approximate percent differences.

All regressions include county fixed effects, year fixed effects, and our baseline controls interacted with
year: an indicator for the presence of navigable waterways in the county; distance to the nearest navigable
waterway; county market access in 1850; an indicator for workable coal deposits in the county; the share
of the county covered by coal deposits; and access to coal via the transportation network.

Each observation is a county-year. Robust standard errors clustered by county are reported in parentheses.
Data from our main sample counties (Figure 2.2), using our digitized establishment-level Census of
Manufactures (1850-1880) and NHDPlusV2.
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Table 2.17. Flour Mill Entry Rates and Survival Rates, by County Waterpower
Potential

Entry Survival Difference
Rate Rate (1) — (2)
(1) (2) (3)

Elasticity with Respect to Lower Waterpower:

In 1860 0.183 -0.153 0.336
(0.084) (0.093) (0.120)

# Counties 587 587
In 1870 0.203 -0.117 0.320
(0.082) (0.071) (0.101)

# Counties 587 H&7
In 1880 0.129 -0.223 0.352
(0.050) (0.057) (0.079)

# Counties 587 H&7

Notes: This table shows the elasticity of mill entry and mill survival, over the previous decade, with respect
to county waterpower potential, limiting the sample to flour mills. “Lower Waterpower” is a negative
standardized measure of county waterpower potential, with standard deviation of one, so the estimates
reflect differences in counties with one standard deviation lower waterpower potential.

Column 1 reports results for entry, column 2 reports results for incumbent survival, and column 3 reports
the difference in these estimates. Each row corresponds to a different PPML regression, using data from
the indicated Census year and previous Census year, which approximates percent differences in the rates.

All regressions include county fixed effects, year fixed effects, and our baseline controls interacted with
year: an indicator for the presence of navigable waterways in the county; distance to the nearest navigable
waterway; county market access in 1850; an indicator for workable coal deposits in the county; the share of
the county covered by coal deposits; and access to coal via the transportation network.

Each observation is a county-year. Robust standard errors clustered by county are reported in parentheses.
Data from our main sample counties (Figure 2.2), using our digitized establishment-level Census of
Manufactures (1850-1880) and NHDPlusV2.
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Table 2.18. Steam Adoption of Entrants and Water Flour Mills,
by County Waterpower Potential

From Water Difference
Entrants Incumbents (1) = (2)

(1) (2) (3)

Adoption in Lower Waterpower Counties:

In 1860 0.091 0.033 0.059
(0.029) (0.033) (0.037)

# Counties 530 333
In 1870 0.103 0.063 0.040
(0.022) (0.027) (0.035)

# Counties 575 326
In 1880 0.126 0.047 0.079
(0.026) (0.023) (0.027)

# Counties 577 416

Notes: This table shows the relationship between county waterpower potential and the steam use of
entrant mills and water incumbent mills, limiting the sample to flour mills. “Lower Waterpower” is a
negative standardized measure of county waterpower potential, with standard deviation of one, so the
estimates reflect differences in counties with one standard deviation lower waterpower potential.

The outcome in column 1 is the share of entrants using steam power, restricted to county-industries
with at least one entrant in that year. Column 2 reports the share of “water incumbents” (mills that
used water power in the previous Census year) who switched to steam power. For column 2, the sample
is restricted to county-industries with at least one surviving water incumbent. Column 3 reports the
difference between the estimates in columns 1 and 2. Each row corresponds to a different OLS regression,
which report percentage point differences in the shares.

All regressions include our baseline controls: an indicator for the presence of navigable waterways in
the county; distance to the nearest navigable waterway; county market access in 1850; an indicator for
workable coal deposits in the county; the share of the county covered by coal deposits; and access to coal
via the transportation network.

For each row, each observation is a county, weighted by the number of flour mills in 1850. Robust
standard errors clustered by county are reported in parentheses. Data from our main sample counties
(Figure 2.2), using our digitized establishment-level Census of Manufactures (1850-1880) and NHDPlusV2.
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Table 2.21. Steam use, by Distance to Railroad Station

From From Difference
Entrants Water Incumbents (1) —(2)
(1) (2) (3)
Lower Waterpower 0.177 0.045 0.132
(0.021) (0.014) (0.017)
Log Distance, WPP-to-RR Station 0.017 -0.033 0.050
(0.042) (0.028) (0.041)
Log Distance, to RR Station -0.017 0.035 -0.052
(0.047) (0.032) (0.045)
# County-Industries 1,190 841

Notes: This table shows the relationship between waterpower potential, railroad station placement, and the steam
use of entrant and incumbent mills from 1860-1880. “Lower Waterpower” is a negative standardized measure of
county waterpower potential, with standard deviation of one, so the estimates reflect differences in counties with
one standard deviation lower waterpower potential. “Log Distance, WPP-to-RR Station” is the log of the average
distance from water segments to the closest railroad stations, weighting by potential horsepower. “Log Distance, to
RR Station” is the log of the average distance from railroad stations from all points in the county.

The outcome in column 1 is the share of entrants using steam power, the outcome in column 2 is the share of water
incumbents (incumbents who used water power in the previous decade) who switched to steam power, and column 3
reports the difference. Each row corresponds to different OLS regressions, using data pooled across all 1860-1880.
The sample is restricted to all county-industry-years at least one current entrant (in column 1) or incumbent (in
column 2).

All regressions include our baseline controls interacted with year and industry: an indicator for the presence of
navigable waterways in the county; distance to the nearest navigable waterway; county market access in 1850; an
indicator for workable coal deposits in the county; the share of the county covered by coal deposits; and access to
coal via the transportation network. Regressions are weighted by the number of mills in the county in 1850.

Each observation is a county-industry-year. Robust standard errors clustered by county are reported in parentheses.
Data from our main sample counties (Figure 2.2), using our digitized establishment-level Census of Manufactures
(1850-1880) and NHDPlusV2.
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Table 2.22. Confusion Matrix: Hand Links vs. Predicted Links

Machine Learning Links

Linked Linked )
(Same) (Different) Not Linked Total
Hand Links (1) (2) (3) (4)
Panel A. 1850 to 1860
Linked 2,590 69 942 3,601
Not Linked - 217 14,114 14,331
Panel B. 1860 to 1870
Linked 2,313 256 816 3,385
Not Linked - 2,237 11,885 14,122
Panel C. 1870 to 1880
Linked 3,486 187 1,849 5,522
Not Linked - 1,096 16,697 17,793

Notes: This table shows the confusion matrix for the panel links. The rows report matches made by
the hand-linking procedure, and the columns correspond to matches made by the machine-learning
model, both of which are described in Appendix 2.C.4. Data from our main sample counties
(Figure 2.2), using our digitized establishment-level Census of Manufactures (1850-1880).
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Table 2.26. Survival Rates

Survival Rate
By Initial Power Source

All Water Steam

(1) (2) (3)
From 1850 to 1860 0.201 0.208 0.138
From 1860 to 1870 0.194 0.214 0.136
From 1870 to 1880 0.237 0.257 0.194

Notes: This table shows the measured survival rate of mills, by
decade. Column 1 reports the share of all mills that survive in
each decade, column 2 reports survival for water powered mills, and
column 3 reports survival for steam powered mills. We denote a mill
as surviving if we can find a record for it in the subsequent Census.

Each observation is a county-industry-year. Data from our main
sample counties (Figure 2.2), using our digitized establishment-level
Census of Manufactures (1850-1880).
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Table 2.27. Incumbency, Size, and Steam Use

Steam Adoption

(1) (2) (3)

Water Incumbent -0.175 -0.177
(0.009) (0.009)

Mill Log Revenue 0.091 0.091
(0.004) (0.004)

# Mill-Years 63,755 63,755 63,755

Notes: This table shows how incumbency and size predict steam use.
Column 1 shows the bivariate relationship of (water) incumbent
status and steam use, Column 2 the bivariate relationship between
revenue and steam use, and Column 3 includes both as independent
variables.

All regressions include industry fixed effects and our baseline
controls interacted with industry: an indicator for the presence of
navigable waterways in the county; distance to the nearest navigable
waterway; county market access in 1850, an indicator for workable
coal deposits in the county; the share of the county covered by coal
deposits; and access to coal via the transportation network.

Each observation is a county-industry-year. Robust standard
errors clustered by county are reported in parentheses. Data
from our main sample counties (Figure 2.2), using our digitized
establishment-level Census of Manufactures (1850-1880) and
NHDPlusV2.
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Table 2.28. Steam Use and Characteristics of Owners

Mean Value Uses Steam
(1) (2) (3) (4) (5)

Immigrant 0.069 0.076 0.075

[0.253] (0.015) (0.015)
Age, in years 44.7 -0.0018 -0.0016

[13.3] (0.0002) (0.0002)
Professional Miller 0.395 0.041 0.035

[0.489] (0.006)  (0.006)
# Mills 30,777 30,777 30,777 30,777 30,777
Mean of Dependent Variable 0.203 0.203 0.203 0.203

Notes: This table shows the relationship between owner characteristics and steam use. We link
(when possible) Census of Manufacturers establishments to the Census of Population, as described
in the text.

Column 1 shows the mean value for each characteristic of the linked millers in the sample.
Column 2 shows the relationship between steam use and immigrant status, column 3 the relationship
with age, and column 4 the relationship with the owner self-reporting their occupation as a miller
(or milling-related). Column 5 includes all covariates jointly.

All regressions include our baseline controls interacted with year and industry: an indicator for
the presence of navigable waterways in the county; distance to the nearest navigable waterway;
county market access in 1850; an indicator for workable coal deposits in the county; the share of
the county covered by coal deposits; and access to coal via the transportation network.

Each observation is a mill-year. Robust standard errors clustered by county are reported in
parentheses. Data from our main sample counties (Figure 2.2), using our digitized establishment-
level Census of Manufactures (1850-1880) and NHDPlusV2.
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Table 2.29. Lumber and Flour Mill Activity in 1850, by County Waterpower
Potential, by Different River Classifications

Intermittent 12-Month
Baseline River Average

(1) (2) (3)

Panel A. Number of Waterpowered Mills

Lower Waterpower -1.055 0.023 -0.553
(0.130) (0.036) (0.106)
Panel B. Revenue of Waterpowered Mills
Lower Waterpower -1.127 0.017 -0.678
(0.249) (0.059) (0.170)
Panel C. Steam Share of Mills
Lower Waterpower 0.089 -0.005 0.048
(0.015) (0.003) (0.015)
Panel D. Steam Share of Revenue
Lower Waterpower 0.123 -0.007 0.052
(0.022) (0.005) (0.023)
Panel E. Total Number of Mills
Lower Waterpower -0.956 0.018 -0.496
(0.119) (0.035) (0.095)
Panel F. Total Revenue of Mills
Lower Waterpower -0.876 -0.003 -0.474
(0.215) (0.051) (0.151)
# County-Industries 1,199 1,191 1,199

Notes: This table shows the relationship between 1850 milling activity and waterpower potential. “Lower
Waterpower” is a negative standardized measure of county waterpower potential (as described in the text)
with standard deviation of one.

Column uses the benchmark measure of waterpower potential from the main text, as in Table 2.2 column 1
(where waterpower potential is proportional to the fall height times the average flow rate in the three lowest
months in the year). Column 2 instead calculates waterpower potential only from intermittent rivers, and
Column 3 uses the 12-month average flow rate. “Artificial Path” rivers are not formally labeled as intermittent
or not, and so we predict their classification as a function of their observables, such as their monthly flows.
Each panel shows the effect of waterpower potential on a different outcome. Panel A shows total number of
water powered mills and Panel B shows the total revenue of water powered mills. Panel C shows the share
of mills using steam power, and Panel D shows the share of milling revenue from steam power. Panel E
shows the total number of mills, and Panel F shows total milling revenue. Panels A, B, E, and F use PPML
estimation. Panels C and D weight counties by their number of mills.

All regressions include industry fixed effects and our baseline controls interacted with industry: an indicator
for the presence of navigable waterways in the county; distance to the nearest navigable waterway; county
market access in 1850; an indicator for workable coal deposits in the county; the share of the county covered
by coal deposits; and access to coal via the transportation network.

Each observation is a county-industry-year. Robust standard errors clustered by county are reported in
parentheses. Data from our main sample counties (Figure 2.2), using our digitized establishment-level Census
of Manufactures (1850-1880) and NHDPlusV2.
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Table 2.30. Model Fit without Agglomeration

Model
Parameter = Moment Years ag=0 k=0 Data
(1) (2) (3) (4) (5) (6)
Panel A. Baseline County

c(W,S)  Water Choice Differential: 1850-1880  0.546 0.557 0.553
Water Incumbents vs. Entrants (0.062)
c(S,W)  Steam Choice Differential: 1850-1880  0.983 0.972 0.977
Steam Incumbents vs. Entrants (0.123)
cGmifiel) Steam Adoption Rate 1850 0.100 0100 0.103
(0.006)
(terminal) Steam Adoption Rate 1880 0.393 0.390 0.393
c (0.011)
fe Entry Rate 1850-1860  0.750 0.750 0.750
(0.006)
B Log Sales Differential: 1850-1880  0.134 0.131 0.131
Incumbents vs. Entrants (0.015)
w Water Exit Rate 1850-1880  0.789 0.789 0.789
(0.003)
S Steam Exit Rate 1850-1880  0.834 0.834 0.835
(0.006)
y Log Sales Differential: 1850-1880  0.853 0.864 0.855
Steam vs. Water Users (0.029)
s Log Sales Autocorrelation 1850-1860  0.412 0.412 0.412
(0.019)
o Log Sales Standard Deviation 1850-1860  1.019 1.019 1.019
(0.011)

Panel B. Differences in Lower Waterpower Counties
cr,(W) Steam Adoption Rate 1850 0.089 0.088 0.089
(0.016)
n Log Total Output 1850 -0.882  -0.886  -0.876
(0.215)
K Change in Steam Adoption Rate 1850, 1880  0.093 0.098 0.092
(0.019)
ag Growth of Output 1850, 1880  0.250 0.529 0.525
(0.118)

Notes: This table shows the empirical fit of our estimated model, without agglomeration in steam power. The table
shows each estimated parameter of the model (Column 1) and the moment that most closely targets it (Columns
2 and 3). Columns 4 and 5 show the model-simulated moments without agglomeration in steam productivity
(s = 0) and steam adoption costs (x = 0), respectively. The columns restrict each parameter to zero and exclude
the corresponding target moment from the estimation. Column 6 presents the empirical estimates with robust
standard errors, clustered by county, in parentheses.
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