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ABSTRACT

I use rich administrative data and several quasi-experiments in Texas to study which stu-

dents benefit most from college grant aid and why. For “extensive-margin” students, grant

aid causes enrollment in college, and therefore has potentially large benefits relative to these

students’ no-college counterfactual. In contrast, “intensive-margin” students would attend

college even in the absence of additional aid, but nevertheless may benefit from additional

financial support. The goal of this paper is to compare the costs and benefits of aid targeted

at different groups of students and college sectors, and to understand the contributions of

the intensive and extensive margins in shaping aid’s overall effects. To do so, I leverage

discontinuities in grant award rules which create variation in aid targeting three distinct

populations: middle-income applicants to four-year colleges, low-income applicants to four-

year colleges, and low-income applicants to community colleges. While these discontinuities

provide exogenous variation in grant awards, I still encounter a common missing-data prob-

lem: my data contains all enrolled students, not all applicants, meaning that discontinuities

in outcomes at the eligibility cutoff may conflate the causal effects of grants with compo-

sitional changes in enrolled students. I develop a bounding approach to overcome sample

selection bias stemming from this missing-data problem. I find that grant aid targeted at

low-income applicants to four-year colleges has large impacts on academic outcomes and

students’ future earnings. In sharp contrast, there is little overall effect of additional aid on

academic outcomes and future earnings among middle-income applicants to four-year col-

leges and low-income applicants to community colleges. Across all three treatment margins,

extensive-margin effects do not play a large positive role in determining the overall effects of

grant aid.
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CHAPTER 1

WHO BENEFITS FROM COLLEGE GRANT AID AND WHY?

EVIDENCE FROM TEXAS

1.1 Introduction

Grant-based financial aid is the dominant form of financial assistance to college students

in the United States. Undergraduate students receive more than $110 billion in grant aid

each year from federal and state governments and college institutions (Ma and Pender 2022).

This paper uses rich administrative data and several quasi-experiments in Texas to ask which

students benefit most from this financial support and why.

The overall impact of grant aid on student outcomes depends on two distinct effects. For

“extensive-margin” students, grant aid causes enrollment in college, and therefore has po-

tentially large benefits relative to these students’ no-college counterfactual (Autor 2014). In

contrast, “intensive-margin” students would attend college even in the absence of additional

aid, but nevertheless may benefit from additional financial support (Denning et al. 2019;

Scott-Clayton 2011; Scott-Clayton and Zafar 2019). The relative importance of these two

margins is likely to differ across grant programs depending on how they are targeted. For

example, aid targeted to low-income community college applicants may have larger extensive-

margin benefits, because these students are less likely to enroll in college without aid. In

contrast, aid targeting higher-income applicants to four-year institutions may primarily have

intensive-margin benefits, relieving students’ financial constraints while they are enrolled in

college. The goal of this paper is to compare the costs and benefits of aid targeted at different

groups of students and college sectors, and to understand the contributions of the intensive

and extensive margins in shaping aid’s overall effects.

To achieve this goal, I develop an econometric framework that decomposes grant aid’s

overall effects into its separate impacts on the outcomes of extensive-margin and intensive-
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margin students. I apply the framework to administrative data from Texas, using discontinu-

ities in grant award rules which create variation in aid targeting three distinct populations:

middle-income students in four-year colleges, low-income students in four-year colleges, and

low-income students in community colleges.1 While these discontinuities provide exogenous

variation in grant awards, I still encounter a common missing data problem: I observe all

enrolled students, not all applicants, meaning that discontinuities in outcomes at the eligi-

bility cutoff may conflate the causal effects of grants with compositional changes in enrolled

students. I develop a bounding approach to overcome this missing data problem, yielding

three main findings. First, grant aid targeted at low-income applicants in four-year colleges

has large positive impacts on college persistence, bachelor’s degree completion, and future

earnings. Second, in sharp contrast, there is little overall effect of additional aid on these

outcomes for middle-income students in four-year colleges and low-income students in com-

munity colleges. Third, across all three treatment margins, extensive-margin effects do not

play a large positive role in determining the overall effects of grant aid.

Three sources of variation in grant aid, described in Section 1.2, enable my analysis. The

first is a financial cutoff rule used to allocate the TEXAS Grant, the state of Texas’s flagship

need-based grant aid program for four-year public university students.2 The program covers

the entirety of grant recipients’ tuition and fees, making it unusually generous compared to

other state and federal sources of need-based aid.3 The second and third treatment mar-

1. Following Mountjoy (2022), I use the terms “two-year colleges” and “community colleges” interchange-
ably to refer to nonprofit academic institutions that offer associate’s degrees as their highest academic
credential. I limit my analysis to public community colleges, excluding private two-year institutions.

2. Two dissertations have examined the TEXAS Grant using regression discontinuity analyses, finding
mixed results. Villareal (2018) finds significant positive effects on TEXAS Grants’ probability of graduation
and imprecise impacts on future earnings using data on college entrants between 2004 and 2013. Montenegro
(2020) examines a limited set of academic outcomes for later cohorts, finding reductions in loans and GPA
among treated students. Relative to these findings, my paper finds null effects of the TEXAS Grant using
a broader set of cohorts and more comprehensive set of academic and longer-run labor market outcomes.

3. An exception is the Cal Grant (Bettinger et al. 2019), which provides similar levels of renewable support
on the basis of need to California public college students. Large aid increases and tuition guarantees have also
been studied in experimental evaluations of privately-funded aid programs (Anderson et al. 2020; Angrist
et al. 2022) and state merit aid programs (Cohodes and Goodman 2014; Dynarski 2000; Scott-Clayton 2011).

2



gins target lower-income students in four-year public universities and two-year community

colleges. Variation in aid at these margins stems from the federal government’s formula for

determining a student’s Expected Family Contribution (EFC), previously studied in isola-

tion by Denning et al. (2019) and Eng and Matsudaira (2021). Students at the margin of

receiving an “Automatic Zero EFC” have substantially lower incomes than students at the

margin of receiving a TEXAS Grant, allowing me to compare how the impacts of grant aid

on student outcomes depend on the income of aid recipients.

I study these grant programs’ impacts using administrative data spanning the entire

state of Texas, described in Section 1.2.1. I link all Texas public high school graduates to

enrollment, financial aid, and degree completion records from all public and private Texas

colleges and universities. I further link these students to quarterly earnings records from

the state’s unemployment insurance system, allowing me to track students’ labor market

earnings both during and after college. Importantly, the data contain students’ standardized

test scores, allowing me to examine how the effect of grant aid on students’ enrollment

decisions and outcomes varies depending on their level of academic preparedness for college.

Despite the comprehensiveness of these data, I still encounter a missing-data problem,

described in Section 1.3. While I observe outcomes for all Texas high school graduates,

I only observe the running variables for my regression discontinuity (RD) analyses in the

selected sample of students who enroll in college.4 Students who enroll in college as a result

of crossing the threshold therefore appear in my sample only on the eligible (but not on the

ineligible) side of the cutoff. I show that failing to account for this missing data problem leads

to biased estimates of grant treatment effects, invalidating standard instrumental variables

(IV) approaches whenever grants cause students to enroll in college.

4. This issue occurs because my financial aid data come from colleges’ and universities’ annual submissions
to state regulators. Institutions are only required to report financial aid information for enrolled students, not
for the applicant pool. Similar missing-data problems are common in academic studies of higher education
generally (Rothstein 2004) and of financial aid more specifically (Park and Scott-Clayton 2018; Scott-Clayton
and Zafar 2019).

3



In Section 1.4, I evaluate the extent of this bias in each of my three empirical settings.

I use the discontinuity in the density of the running variable at each treatment margin to

measure the empirical importance of the missing-data problem by measuring the impact

of aid on enrollments. I find that for four-year college students, additional grant aid at the

TEXAS Grant and Auto-Zero EFC margins has economically small and statistically insignif-

icant impacts on college enrollments, implying that standard IV approaches are sufficient to

measure the effects of grant aid at these treatment margins. In contrast, I find a significant

and substantial enrollment effect associated with crossing the Auto-Zero EFC threshold for

two-year community college applicants.5 This enrollment effect implies that standard IV

approaches will be biased due to missing data, necessitating an estimation approach that

accommodates both intensive- and extensive-margin responses to aid.

In Section 1.5, I present RD estimates of the impact of grant aid for students enrolled

in four-year colleges, focusing on the sources of variation in grant aid for which there is no

missing-data problem. For middle-income students at the margin of receiving a TEXAS

Grant, I find that additional grant aid is effectively a pure transfer with no detectable

impacts on marginal recipients’ academic outcomes or future earnings. These null effects

emerge despite a significant impact on student finances during college: “complier” students

who receive TEXAS Grants at the threshold receive over $5,000 in additional first-year

aid, and respond by reducing their loans and labor market earnings during college.6 In

contrast, for low-income students at the margin of receiving an Automatic Zero EFC, I

find that additional grant aid has significant positive impacts on college persistence, degree

5. These findings accord with Denning et al. (2019), who also document enrollment impacts at the Auto-
Zero EFC cutoff in Texas community colleges, but not in four-year universities. As a result, they limit
attention to four-year students due to concern over bias caused by sample selection. In contrast, the frame-
work I develop in Section 1.7 is able to estimate bounds on treatment effects even in the presence of enrollment
effects.

6. Similar trade-offs between grants and loans have been documented in other settings. Marx and Turner
(2018) find that among City University of New York students, an additional dollar of Pell Grant aid causes
a $1.80 reduction in student loans. In contrast, I find that loans fall by about half of the increase in grants.
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attainment, and post-college earnings, replicating findings from Denning et al. (2019). These

impacts emerge despite the fact that the increase in grant aid at the Auto-Zero threshold is

less than one fifth of the increase in aid for TEXAS Grant compliers.

I examine the mechanisms behind these divergent effects in Section 1.6. Schools are

given discretion to determine who among eligible students to award TEXAS Grants. Because

schools must supplement state funds with institutional aid to cover TEXAS Grant recipients’

tuition and fees, they face an incentive to award grants to students with high preexisting

(i.e., non-TEXAS-Grant) levels of aid. Moreover, several factors may target the TEXAS

Grant to ex-ante high-achieving students. If schools wish to maximize graduation rates

among the pool of grant recipients, they may allocate TEXAS Grants to students with

high graduation probabilities rather than targeting to students with larger grant treatment

effects. Furthermore, state TEXAS Grant rules give priority to students who apply early for

financial aid, which may effectively target the grants to especially motivated or high-ability

students. Analyzing complier characteristics at the grant threshold (Abadie 2002), I find

that TEXAS Grants at the threshold are disproportionately targeted to better-funded and

higher-achieving students. On average, marginal TEXAS Grant recipients enter college with

over $820 more in preexisting first-year grant aid than students not chosen to receive TEXAS

Grants. Moreover, even if they had not received TEXAS Grants, marginal grant recipients

would be 12 percentage points more likely to graduate from college than marginal grant

nonrecipients.7 These results are consistent with schools allocating TEXAS Grants to lower

their costs and ensure high graduation rates among grant recipients, rather than allocating

the grants to maximize the program’s overall value-added.

Section 1.7 shifts focus to low-income community college students at the Automatic Zero

EFC threshold, where missing data due to enrollment effects invalidates standard regres-

7. I find that this difference is essentially unchanged by the introduction of merit standards to the TEXAS
Grant in 2014, suggesting that schools independently value ex-ante high achieving students when awarding
grants.
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sion discontinuity methods. Because receiving a zero EFC causes some students to enroll in

college, grant recipients at the threshold consist of extensive-margin students brought into

college attendance by additional aid as well as intensive-margin students who would attend

college even without it. The key missing piece of data is the counterfactual outcomes of

extensive-margin students, who are only observed on the eligible (but not the ineligible) side

of the cutoff. I develop a proxy measure of these counterfactual outcomes using data on the

B.A. completion rates and earnings of college non-attenders, allowing me to estimate the

overall treatment effects of additional aid despite the missing data problem. I then present

the bounding approach that allows me to decompose this overall effect into its intensive-

margin and extensive-margin components.8 I show that among “compliers” who receive zero

EFCs at the threshold, extensive-margin students are heavily negatively selected, with aver-

age tenth grade test scores roughly 15 percentiles below those of intensive-margin students.

Motivated and guided by this result, I tighten nonparametric bounds on treatment effects for

both groups by assuming that intensive-margin compliers have weakly higher rates of B.A.

completion and future earnings than extensive-margin compliers. This “mean-dominance”

assumption is supported by the test score patterns identified by the data, and is consistent

with students choosing college sectors based on their comparative advantage (Kirkeboen et

al. 2016).

Section 1.8 applies the bounding method to estimate the impacts of additional grant

aid on the outcomes of low-income community college students at the Automatic Zero EFC

threshold. Although receiving a Zero EFC at the grant threshold corresponds to an increase

of over $1,900 in first-year grant aid, I find that this additional aid has economically small

and statistically insignificant overall effects on students’ B.A. completion rates and future

earnings. Using the bounding method, I decompose these overall null effects into their

8. This approach extends sample-trimming methods (Gerard et al. 2020; Horowitz and Manski 1995; Lee
2009) which use identified complier shares to place best-case and worst-case bounds on treatment effects for
inframarginal program participants.
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intensive-margin and extensive-margin components. Standard no-assumptions bounds on

treatment effects (Gerard et al. 2020; Lee 2009) are too wide to be informative, failing to

reject either positive or negative effects of grant aid on either intensive or extensive margin

students’ B.A. completion or earnings at any time horizon. However, applying the mean-

dominance assumption yields two key findings. First, the effect of receiving a Zero EFC on

B.A. completion rates among intensive-margin compliers is weakly positive, but economically

small, and does not exceed one percentage point. Although the bounds cannot rule out

significant increases in B.A. completion among extensive-margin compliers, these students’

small share in the overall complier population lessens their contribution in shaping grant aid’s

overall effects. Second, the bounds reveal offsetting effects on the early-career earnings of

intensive-margin and extensive-margin students, suggesting that intensive-margin earnings

effects are weakly positive and extensive margin earnings effects are weakly negative. These

results imply that extensive-margin effects do not play a large positive role in determining

the overall effects of grant aid for students at the Auto-Zero threshold in community colleges.

Taken together, the results indicate that additional grant aid produces large gains when

targeted at low-income four-year college students, but has limited effects on middle-income

four-year college students and low-income community college students. Section 1.9 unifies

these results with a cost-benefit analysis that compares the impact of additional grant aid

on student outcomes across the three treatment margins. I derive the costs and benefits of a

marginal expansion of grant aid eligibility and show how these parameters can be expressed

in terms of complier shares and margin-specific local average treatment effects. I find that

the benefits of providing grant aid to lower-income students enrolled in four-year colleges

exceed their costs. In contrast, the costs of providing grant aid to either higher-income

students enrolled in four-year colleges or lower-income students enrolled in two-year colleges

exceed the benefits. An implication of these results is that the current policy environment

provides aid inefficiently, suggesting potentially large gains from budget-neutral reallocations
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of grant aid towards lower-income students enrolled in four-year colleges.

This paper contributes to a large literature studying the impact of grant aid on student

outcomes (see Deming and Dynarski (2010), Dynarski and Scott-Clayton (2013), Page and

Scott-Clayton (2016), and Dynarski et al. (2022) for reviews), but differs in several important

ways. First, I provide a framework for decomposing the overall impact of grant aid into its

extensive-margin and intensive-margin components. While many papers document that

grant aid affects both enrollment and students’ eventual probability of graduation (e.g.,

Angrist et al. 2022; Bettinger et al. 2019; Castleman and Long 2016; Fack and Grenet 2015;

Lovenheim and Owens 2014), these results do not speak to whether effects are larger for

extensive-margin students induced by aid to attend college or intensive-margin students who

would have enrolled regardless.9 Prevous studies have addressed this question by limiting

attention to grant programs with no extensive-margin impacts on enrollment (Denning 2018;

Goldrick-Rab et al. 2016),10 often because data is only available on the enrolled population

(Scott-Clayton 2011; Scott-Clayton and Zafar 2019).11 An example is Denning et al. (2019),

who study the same source of variation in aid at the Auto-Zero EFC cutoff as I do, but who

restrict attention to four-year college students due to the missing-data problem caused by

enrollment effects among community college students. In contrast, I recover the total effect of

grant aid for this population and decompose it into its intensive-margin and extensive-margin

9. On enrollment impacts of aid, see (Barr 2019; Cornwell et al. 2006; Darolia 2013; Eng and Matsudaira
2021). A strand of the literature has focused on state merit-aid programs (Dynarski 2000, 2003; Sjoquist
and Winters 2014), which increase the probability that students remain in their home state (Fitzpatrick and
Jones 2016) but may cause students to enroll in lower-quality colleges (Cohodes and Goodman 2014). Several
studies have focused on the minimum Pell Grant threshold, finding little impact on students’ decisions of
whether or where to enroll in college (Carruthers and Welch 2019; Marx and Turner 2018), although Bettinger
(2004) finds positive impacts on persistence conditional on initial enrollment.

10. Relatedly, Scott-Clayton and Schudde (2020) study the impact of performance standards, which affect
students’ ability to retain financial aid received at college entry.

11. A notable exception is Park and Scott-Clayton (2018), who analyze the impact of the Pell Grant on the
outcomes of community college students in an enrollment-selected sample. They consider two approaches:
restricting attention to the subsample of community colleges with no apparent enrollment effect, and using
Lee (2009)-style bounds to estimate the Pell Grant’s impact on intensive-margin students (Gerard et al.
2020). The bounds I develop take these these bounds as a starting point, and tighten them with additional
assumptions on the relative potential outcomes of students at different complier margins.
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components, finding weakly positive impacts of aid on future earnings for intensive-margin

students but weakly negative impacts for students on the extensive margin.

Second, I contribute to a growing literature studying how institutional responses to grant

aid policies shape their incidence and effectiveness. Turner (2017) shows that institutions

respond to exogenous increases in students’ Pell Grant funding by adjusting institutional

aid, capturing $0.15 of every marginal Pell Grant dollar on average. Other existing work

has shown that schools price-discriminate using information reported by students during the

financial aid application process (Fillmore 2023), or reduce institutional aid in response to

increases in state or federal grants (Long 2004; Turner 2012). In contrast, my analysis of

the TEXAS Grant shows that when institutions are given discretion in awarding state grant

funds, they select recipients who are not only disproportionately cheaper to fund, but who

are also more likely to graduate. Given that existing work has found that the marginal

impacts of aid are higher for students with lower levels of pre-college preparedness (e.g.,

Angrist et al. 2022), this selection behavior by schools may limit grant aid’s overall impact

on their outcomes.

Lastly, this paper contributes to the methodological literature on estimating nonpara-

metric bounds on treatment effects (Horowitz and Manski 1995; Manski 1989, 1990, 1997;

Manski and Pepper 2000). The bounds I develop take Lee (2009) bounds as a foundation, and

I use methodological results from Gerard et al. (2020) to implement them in the regression-

discontinuity context. I show how the “no-assumptions” bounds considered in these studies

can be substantially tightened by imposing assumptions on the relative potential outcomes

of students at different complier margins, and show how to motivate these assumptions by

separately identifying the pretreatment characteristics of different complier groups. The

closest existing work is Dong (2019), who studies a similar mean-dominance assumption in

an RD setting where data on outcomes is censored but the running variable is available for

all units. Other work has considered similar assumptions in cases where full data on program
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non-participants is available (Chen et al. 2018; Huber et al. 2017). In contrast, I show how

the complier characteristics required to motivate these assumptions are identified even when

missing data on the running variable prevents RD estimation of enrollment effects. Other

work uses parametric assumptions (Frangakis and Rubin 2002; Hull 2020; Kline and Walters

2016) or multiple instruments (Kirkeboen et al. 2016; Mountjoy 2022) to disentangle causal

effects across different complier margins, but these require both access to data on untreated

units and several sources of variation, which are frequently unavailable in settings where

data availability depends on take-up.

1.2 Setting and Data

The setting for my analysis is the public higher education system in Texas.12 The state’s

higher education system is the second-largest in the United States in terms of enrollment,

providing a large and fairly representative setting for studying the impact of grant aid on

student outcomes. During my sample period, roughly 1.4 million public undergraduate stu-

dents enroll annually at one of 35 public four-year colleges or 60 public two-year community

colleges and technical schools. Together, these students represent over 7 percent of overall

U.S. undergraduate enrollment and roughly a tenth of all U.S. students in public college

institutions during my sample period (U.S. Department of Education 2021).

Variation in Aid for Middle-Income Applicants: The TEXAS Grant

To study the impact of financial aid on the enrollments and outcomes of middle-income col-

lege applicants, I analyze the TEXAS Grant, the largest financial aid program administered

12. Because TEXAS Grants can only be awarded to public university students, I exclude private university
students from the analysis and limit focus to the Texas public education sector. The public sector represents
the vast majority of Texas college enrollments; for example, in 2017, 88% of Texas college students enrolled
in public institutions (U.S. Department of Education 2021).
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by the state of Texas.13 Students awarded TEXAS Grants receive grant aid covering the

entirety of tuition and fees, renewable for up to five years subject to requirements on satis-

factory academic performance.14 Eligibility is limited to graduates from Texas high schools

who enroll in college within 16 months of high school graduation.15

Eligibility for the TEXAS Grant in the initial year of college depends on a cutoff rule based

on students’ Expected Family Contribution (EFC). The EFC is a scalar measure of financial

need assigned to students by the federal government for the purpose of administering the

federal Pell Grant. To be assigned an EFC, students must complete the Federal Application

for Student Aid (FAFSA). The inputs reported on the FAFSA determine each student’s

EFC through a complicated nonlinear formula that takes household income, assets, family

size, government benefits, and other factors as inputs. Institutions are instructed to give

first priority in awarding TEXAS Grants to students whose EFCs fall below a year-varying

threshold determined by the state’s higher education regulatory body, the Texas Higher

Education Coordinating Board (THECB).16 The threshold rule creates a discontinuity in

students’ probability of receiving a TEXAS Grant based on their EFC, providing the basis

for my research design.

Importantly, because the TEXAS Grant is oversubscribed, not all eligible students re-

ceive TEXAS Grants. The program’s rules give schools discretion to choose TEXAS Grant

13. Yearly disbursements for the TEXAS Grant range from $200 million to over $400 million during my
sample period.

14. To remain eligible in future years after being awarded an initial-year TEXAS grant, students must
achieve a 2.5 or higher GPA, be enrolled at least 3/4 time, and complete at least 24 semester credit hours
per year in the program.

15. This eligibility requirement describes the TEXAS Grant’s “high school graduation pathway,” which
represents roughly 95 percent of students awarded TEXAS Grants and is the main focus of my study (Texas
Higher Education Coordinating Board 2020). The remaining pathways allocate TEXAS Grants to recently-
completed Associate’s Degree holders, students entering college after being honorably discharged from the
military, and transfer students from community colleges.

16. Over my sample period, the priority EFC remained fixed at $4,000 until 2014. A policy change in
2014 redefined the priority EFC as 60 percent of the annual average statewide tuition and fees for four-year
institutions.
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recipients from the pool of eligible students. However, schools are required to use institu-

tional aid to “top up” TEXAS Grant awards for any students whose TEXAS Grant awards

and other sources of grant aid do not fully cover tuition and fees.17 As a result, schools

may face an incentive to target the grant to students for whom “topping up” TEXAS Grant

awards to cover full tuition and fees is less costly.

A related grant program, the Texas Educational Opportunity Grant (TEOG), provides

grant aid to students at two-year community and technical colleges.18 In practice, the pro-

grams are similar but target different academic sectors; the TEXAS Grant funds students

in four-year B.A.-granting institutions, and the TEOG funds students in two-year commu-

nity colleges. Both programs provide funding covering the entirety of tuition and fees for

students receiving grants, and are allocated using the same cutoff rule based on students’

Expected Family Contribution (EFC). I present results in Section 1.4 that strongly indicate

that crossing the TEXAS Grant cutoff does not influence students’ enrollment decisions,

limiting concerns that the confluence of these grant cutoffs cause selection bias in my esti-

mates of the TEXAS Grant’s effects. I primarily limit my focus in this paper to the TEXAS

Grant, which funds a larger share of eligible students and provides larger increases in grant

aid than the TEOG (Baum and Blagg 2021).

Variation in Aid for Low-Income Applicants: The Auto-Zero EFC Threshold

To study the impact of additional grant aid on the enrollments and outcomes of low-income

college applicants, I analyze a federal income-based cutoff rule that determines the likelihood

17. The eligibility rules that govern schools’ allocation decisions have changed over time. For cohorts
entering college prior to 2013, the main guidance issued to was to target grants based on financial need,
prioritizing students with EFCs below the TEXAS Grant threshold. In contrast, for cohorts entering college
in 2014 or later, the state added a set of merit-based criteria that gave priority to students with high levels
of pre-college achievement. I return to this distinction in Section 1.6, analyzing the impact of this policy
change on the composition of grant recipients and the impacts of grant aid on their outcomes.

18. The TEXAS Grant provided funding to two-year community college students until the 2014 academic
year, when part of the TEXAS Grant was reappropriated to create the TEOG as a standalone grant program.
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that a student is assigned a $0 Expected Family Contribution. Students at the margin of

this “Automatic Zero EFC” threshold have substantially lower family incomes than students

at the margin of receiving a TEXAS Grant; while marginal TEXAS Grant recipients have

average family incomes of roughly $50,000 on average (in 2012 dollars), the Adjusted Gross

Income (AGI)-based threshold for receiving an Automatic Zero EFC ranges from $20,000 to

$31,000 over the 2008-2012 sample period.

Variation in grant aid at the automatic zero EFC threshold stems from an income-based

cutoff in the federal government’s formula for calculating the EFC. Students with family

AGI below a year-specific threshold become automatically eligible to be assigned an EFC of

$0, making them eligible to receive the maximum federal Pell Grant.19 In addition, because

the EFC is used as an input to determine other grant awards (including the TEXAS Grant),

receiving an automatic zero EFC can substantially increase grant aid from other sources

besides the Pell Grant.

1.2.1 Data Sources and Sample Construction

Data Sources. To conduct my analysis, I combine three sources of administrative data:

high school graduation records from the Texas Education Agency (TEA), college enroll-

ment and degree completion records from the Texas Higher Education Coordinating Board

(THECB), and quarterly earnings records from the Texas Workforce Commission (TWC).20

Together, these data sources allow me to track individual students’ trajectories from high

school into college and the labor market in early adulthood. I supplement these administra-

tive records with several school- and neighborhood-level data sources: tract-level measures of

19. Because the EFC depends on factors other than family AGI, it is possible both for families to have a
$0 EFC despite being on the ineligible side of the threshold, and to have a nonzero EFC despite being on
the eligible side.

20. I access the data through a data-sharing agreement with the UT Austin Education Research Center
(https://texaserc.utexas.edu/).
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economic disadvantage from the American Community Survey,21 and institution-level mea-

sures of college tuition and instructional costs from the Integrated Postsecondary Education

Data System (IPEDS).

Sample Construction. The analysis sample begins with records on all Texas high school

graduates between 2000 and 2018 with valid student identifiers, demographics, and test

scores. I link this population to college enrollment and financial aid records from THECB,

making two sample restrictions in the process. First, I restrict the enrolled sample to stu-

dents who enter college within two academic years of their high school graduation. This

restriction reflects the TEXAS Grant’s eligibility rules, which require that students enroll in

college within sixteen months of high school graduation to be eligible for a grant. I classify

students’ college sector (two-year, four-year, or no college) by the sector of their first enrolled

institution within this two-year window.22

Second, I restrict the sample to students who enroll in college between the 2007 and

2017 academic years. This restriction is due to data availability: 2007 is the oldest cohort

for which complete financial aid data are available for all FAFSA submitters, and 2017 is

the latest cohort for which I observe five-year graduation outcomes. Observing outcomes at

longer time horizons requires dropping later-entering cohorts from the sample; I observe six-

year graduation rates, enrollments, and earnings for ten cohorts of entering college students

(2007-2016), eight years of these outcomes for eight cohorts (2007-2014), and ten years for

six cohorts (2007-2012).

Several additional restrictions are required when studying the Auto-Zero EFC cutoff.

First, I restrict to cohorts entering college after 2008, as this is the first year that family AGI

21. I use 2009-2013 five-year American Community Survey estimates, matching students’ high school lo-
cation to census tracts.

22. I classify the very small proportion of students who simultaneously enroll in four-year and two-year
institutions as attending four-year colleges. I follow Mountjoy (2022) and Andrews et al. (2016) in ignoring
summer terms when defining sector of enrollment.
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(the running variable) is available in the data. Following Denning et al. (2019), I exclude

students whose listed family AGI is a multiple of $1,000 to avoid bias caused by bunching in

the running variable. Finally, I make an additional sample restriction related to the strength

of the first-stage in grant aid awards at the Auto-Zero cutoff. A policy change in 2013

significantly lowered the family income threshold for receiving a Zero EFC, targeting aid to

students who already received significant financial aid packages at baseline. Appendix Figure

A.4.1 shows that as a result, the first-stage increase in first-year grant aid associated with

crossing the threshold becomes statistically indistinguishable from zero from 2013 onwards.

For this reason, I primarily limit attention to the 2008-2012 entry cohorts when studying the

automatic zero EFC threshold, when crossing the threshold corresponded to a large increase

in aid.

1.2.2 Variable Definitions

Treatments. Throughout the analysis, I consider binary treatment indicators associated

with crossing each grant threshold. To avoid endogeneity issues stemming from grant aid’s

impacts on college persistence, I define all treatment indicators based on students’ first year

of college enrollment. For the TEXAS Grant, treatment is an indicator for whether the

student receives a TEXAS Grant in her initial year of college. For the Auto-Zero EFC

cutoff, treatment is an indicator for whether the student receives a Zero EFC in her initial

year of college.

Covariates. I measure student-level demographics using records from TEA graduation

files. I observe categorical variables for gender, race, and ethnicity, together with a binary

indicator for whether students are eligible for a free and reduced-price lunch (FRPL), a

measure of economic disadvantage. To obtain a scalar measure of students’ test scores,

I follow Mountjoy (2022) in combining raw tenth grade math and reading scores using a
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one-factor model separately by cohort, and calculating percentiles of this factor within high

school graduating classes.23 Finally, I match students’ geocoded high school locations to

their census tracts, and merge these to tract-level measures of economic disadvantage from

the ACS.

Academic Outcomes. I measure academic outcomes using THECB financial aid, enroll-

ment, and graduation files. I measure students’ total grants and total loans by summing

across all sources in the financial aid data within academic years and deflate to 2019 dollars

using the annual Consumer Price Index. To measure students’ college persistance, I con-

struct an indicator for whether a student remains enrolled in her institution of first college

enrollment in each year following college entry. Finally, I measure B.A. completion as an

indicator for whether a student appears in THECB graduation files for her initially-enrolled

institution, constructed separately in each year.

Earnings. I measure yearly real earnings by summing individual earnings from all sources

within academic years, Winsorizing at the 99th percentile, and deflating to 2019 dollars using

the annual Consumer Price Index. I use academic rather than calendar years to align the

earnings data with the financial aid and enrollment data.24

23. Students who graduated from high school in Spring 2014 or earlier generally took the Texas Assessment
of Knowledge and Skills (TAKS) in tenth grade, providing a single math score and a single reading score
for each student. Students who graduated from high school in later years instead took the State of Texas
Assessments of Academic Readiness (STAAR), which replaced general math and reading tests with subject-
specific end-of-course assessments. For these cohorts, I use the end-of-course assessments for Algebra 1 and
English 1 as my measures of math and reading scores. The factor model combines these raw scores by
estimating Xm = βmF + εm, where Xm, m ∈ {math, reading} are raw math and reading scores, βm is an
estimated coefficient, F is the estimated common factor, and εm is an error term that by construction is
uncorrelated with F and uncorrelated across subjects.

24. For example, I construct earnings for Academic Year 2015 by summing quarterly earnings records for
quarters 3 and 4 of calendar year 2014 and quarters 1 and 2 of calendar year 2015.
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1.2.3 Descriptive Statistics

Table 1.1 reports summary statistics for students near the three sources of variation in grant

aid. Students near the TEXAS Grant threshold are substantially economically advantaged

compared to students near the margin of receiving an Automatic Zero EFC. Near the TEXAS

Grant threshold, students are roughly half as likely to have received a free or reduced-price

lunch in high school, attended high schools with substantially lower poverty rates, and are

substantially less likely to be nonwhite. Students near the TEXAS Grant threshold also

have higher measures of pre-college preparedness compared to students near the margin of

receiving an Automatic Zero EFC, with high school test scores that are six percentiles higher

on average. The samples also differ considerably in terms of their baseline financial support;

students on the ineligible side of the Auto-Zero cutoff receive substantially higher baseline

grant awards than students on the ineligible side of the TEXAS Grant cutoff, while the latter

group takes out substantially higher amounts in first-year loans.

1.3 Empirical Framework

This section lays the groundwork for my empirical analysis, describing the empirical challenge

of identifying grant treatment effects in selected data when grants affect enrollment.

1.3.1 Setup and Target Parameters

Let D be a binary indicator for whether a college applicant is offered a grant. Assume that

each applicant has a financial running variable k, with Z = 1{k ≤ k∗} denoting whether

the running variable falls below a cutoff k∗. The potential grant treatments Dz(k) denote

the applicant’s grant status if k falls on the eligible (z = 1) or ineligible (z = 0) side of the

cutoff. Finally, the potential outcomes Y1 and Y0 denote the applicant’s outcome, such as
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Table 1.1: Summary Statistics

TEXAS Grant Auto-Zero EFC Auto-Zero EFC
(4-Year Enrollees) (4-Year Enrollees) (2-Year Enrollees)

Ineligible Eligible Ineligible Eligible Ineligible Eligible
(1) (2) (3) (4) (5) (6)

Panel A. Demographics
Female 0.57 0.56 0.57 0.56 0.54 0.54
Asian 0.06 0.06 0.06 0.07 0.02 0.02
Black 0.18 0.16 0.22 0.23 0.17 0.16
Hispanic 0.39 0.34 0.50 0.44 0.60 0.55
White 0.35 0.42 0.21 0.26 0.20 0.25
Free/reduced price lunch 0.34 0.22 0.63 0.51 0.67 0.57
Test score percentile 67.61 69.43 61.89 62.95 38.35 40.72
Poverty Rate 0.17 (0.12) 0.16 (0.12) 0.21 (0.13) 0.20 (0.13) 0.21 (0.13) 0.20 (0.13)
Unemployment Rate 0.07 (0.04) 0.07 (0.04) 0.08 (0.05) 0.07 (0.05) 0.07 (0.04) 0.07 (0.04)
SNAP Receipt Rate 0.14 (0.11) 0.13 (0.11) 0.18 (0.13) 0.16 (0.13) 0.19 (0.13) 0.17 (0.12)

Panel B. Binary Treatments

Any TEXAS Grant 0.62 0.06 0.72 0.64 0.38 0.36
Zero EFC 0 0 0.87 0.18 0.90 0.29

Panel C. Financial Aid

Total Grant Aid 9,262 4,746 13,031 11,330 5,837 4,855
(5,314) (4,807) (5,449) (5,662) (2,910) (2,905)

TEXAS Grant 3,624 349 4,328 3,911 694 660
(3,046) (1,463) (3,012) (3,137) (971) (962)

Pell Grant 2,108 269 5,469 4,077 4,546 3,558
(1,047) (515) (1,537) (1,807) (1,931) (1,930)

HB3015 Set-Asides 523 1,005 480 467
(1,268) (1,706) (1,273) (1,229)

Total Loans 4,702 6,597 3,076 3,877 502 604
(4,657) (6,106) (3,682) (4,174) (1,453) (1,622)

Observations 39,123 28,107 23,704 20,841 34,645 27,992
67,230 44,545 62,637

Cohorts 2007-2017 2008-2012 2008-2012

Notes: Table reports summary statistics for the main estimation samples. TEXAS Grant observations in
columns 1 and 2 are students enrolled in four-year public TEXAS universities with incoming Expected Family
Contribution (EFC) within $2,000 of the TEXAS Grant cutoff. Auto-Zero EFC observations in columns 3
through 6 are students enrolled in four-year (columns 3 and 4) and two-year (columns 5 and 6) colleges with
incoming family Adjusted Gross Income (AGI) within $10,000 of the automatic zero EFC threshold. The
sample is restricted to students who graduate from a public Texas high school within two years prior to
first college enrollment. Poverty rate, unemployment rate, and SNAP receipt rate are measured by students’
home census tract, as measured by the location of the high school from which they graduated. Dollar values
are in 2019 dollars.
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graduation or earnings, if she does or does not receive a grant. The relationship between

observed and potential outcomes is therefore Y = DY1 + (1−D)Y0.

Throughout the paper, I make two standard fuzzy regression-discontinuity assumptions:

Assumption 1 (Grant Monotonicity). D1(k∗) ≥ D0(k∗) for all applicants.

Assumption 2 (Continuity). E[Yd | k] and E[Dz | k] are continuous at k = k∗ for z ∈ {0, 1}

and d ∈ {0, 1}.

Assumption 1 is a monotonicity condition, imposing that crossing the grant threshold weakly

increases an applicant’s chance of receiving a grant offer. Assumption 2 imposes that the

potential outcome and treatment assignment functions are continuous at the grant threshold,

so that crossing the threshold only affects students’ outcomes through its impact on grant

awards.

Under these assumptions, the fuzzy RD estimand at the cutoff identifies the following

local average treatment effect (LATE):

limr↑k∗ E[Y | k]− limr↓k∗ E[Y | k]

limr↑k∗ E[D | k]− limr↓k∗ E[D | k]
= E [Y1 − Y0 | D1 > D0, k = k∗]

≡ LATE

(1.1)

The LATE in (1.1) is the first target parameter. It describes the grant’s overall impacts on

the outcomes of compliers : college applicants who receive a grant if and only if they cross

to the eligible side of the grant threshold (D1 > D0). This overall treatment effect captures

the returns of grant aid for students on the margin of aid receipt, and is thus relevant for

evaluating the costs and benefits of slightly increasing the threshold for grant eligibility.

Intensive and Extensive Margin Responses Importantly, the overall effect in (1.1)

summarizes several distinct mechanisms through which grant aid affects student outcomes.

In particular, while some college applicants would enroll in college regardless of whether they
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receive additional aid at the threshold, others would only enroll in college if they receive aid.

The overall LATE is a weighted average of these intensive-margin and extensive-margin

responses to receiving grant aid.

To see this, let S denote whether a college applicant ultimately decides to enroll in college

in the upcoming school year. The applicant’s potential enrollment status is S1 if she receives

a grant and S0 if she does not. Stratifying the sample using these potential enrollments

yields the following decomposition:25

LATE =

πIME[Y1 − Y0 |
Intensive-Margin Compliers︷ ︸︸ ︷
S1 = S0 = 1, D1 > D0 ] + πEME[Y1 − Y0 |

Extensive-Margin Compliers︷ ︸︸ ︷
S1 = 1, S0 = 0, D1 > D0]

+ πNTE[Y1 − Y0 | S1 = S0 = 0, D1 > D0︸ ︷︷ ︸
Enrollment Never-Takers

] + πDFE[Y1 − Y0 | S1 = 0, S0 = 1, D1 > D0︸ ︷︷ ︸
Enrollment Defiers

]

(1.2)

The decomposition in (1.2) divides the compliers into four types, defined by how applicants’

enrollment choices respond to grant offers. The first two groups are intensive-margin com-

pliers and extensive-margin compliers. Intensive-margin compliers receive grants as a result

of crossing the threshold, but would attend college regardless of whether they are awarded

additional aid (S1 = S0 = 1). In contrast, extensive-margin compliers are induced by addi-

tional aid to enroll in college (S1 = 1, S0 = 0). The population shares of these two types are

πIM and πEM .

The second two groups are enrollment never-takers and enrollment defiers. Enrollment

never-takers do not enroll in college regardless of whether they receive additional aid at the

cutoff (S1 = S0 = 0), while enrollment defiers are induced by additional aid to not enroll in

25. Purely to reduce notation in this section, I remove the condition k = k∗ in expressions of conditional
expectations, defining the binary instrument Z as falling on the “barely-eligible” and “barely-ineligible” side
of the cutoff. I refer to switching from Z = 0 to Z = 1 as “crossing the threshold.”
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college, but otherwise would have enrolled (S1 = 0, S0 = 1). The population shares of these

types are πNT and πDF .

To make the decomposition in (1.2) empirically tractable, I impose two additional as-

sumptions concerning enrollment never-takers and enrollment defiers:

Assumption 3 (No Impact on Enrollment Never-Takers). E[Y1 − Y0 | S1 = S0 = 0, D1 >

D0] = 0.

Assumption 4 (No Enrollment Defiers). (S1 ≥ S0) | k = k∗ for all applicants.

Assumption 3 states that merely being offered a grant cannot affect an applicant’s out-

comes if she does not go to college (S1 = S0 = 0). This assumption is motivated by the

structure of almost all college grant programs, which are offered as an in-kind subsidy that

lowers the price of college but cannot be used for other purposes. As a result, enrollment

never-takers drop out from Equation (1.2).

Assumption 4 states that additional grant aid weakly increases the probability that a

student enrolls in college, ruling out the existence of enrollment defiers. Importantly, while

this assumption is likely to hold for grant programs that are targeted at a particular college

sector or institution,26 it may not hold in general for all grant programs. In particular, if

D represents a source of grant aid that can be used by students at institutions outside the

scope of the data, then treatment may cause some students to leave the sample as a result of

crossing to the eligible side of the threshold. This is a particular concern for the Auto-Zero

EFC cutoff, which increases students’ federal Pell Grant aid at any institution (including

out-of-state schools) and therefore may cause students to leave the sample.27

26. Examples of such programs include UT-Austin’s Longhorn Opportunity Scholars program and Texas
A&M’s Century Scholars Program, studied by (Andrews et al. 2020).

27. I return to this concern in Section 1.4, showing that a small number of community college students
(namely, those with high test scores) are enrollment defiers who leave the sample as a result of crossing the
Auto-Zero EFC threshold and therefore must be excluded from the analysis.
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Under these assumptions, the LATE in (1.2) summarizes the impact of grant aid on two

sets of applicants: “intensive-margin” compliers who attend college regardless of whether

they receive a grant at the cutoff, and “extensive-margin” compliers who are induced by

grant offers to enroll:

LATE = LATEIM × πIM + LATEEM × πEM (1.3)

where LATEIM = E[Y1 − Y0 | S1 = S0 = 1, D1 > D0] denotes aid’s impact on intensive-

margin compliers, and LATEEM = E[Y1 − Y0 | S1 > S0, D1 > D0] denotes impacts for

extensive-margin compliers. The sample shares πIM = P (S1 = S0 = 1 | D1 > D0) and

πEM = P (S1 > S0 | D1 > D0) describe the shares of students who fall into the two groups.

The margin-specific treatment effects LATEIM and LATEEM are important target

parameters, describing how grant aid affects students on the intensive and extensive margin of

college attendance. Many possible combinations of LATEIM and LATEEM could produce

the overall LATE identified in (1.1). The difference between these component “subLATEs”

has important policy implications for how grants should be targeted. On the one hand, if

LATEEM is larger than LATEIM , then the overall impact of grant aid is larger for students

who attend college as a result of receiving funds. This case would suggest large benefits from

policies that target grant aid towards college students who are unlikely to attend college

otherwise (Dynarski et al. 2021). On the other hand, if extensive-margin compliers forego

labor-market earnings to attend college or are unlikely to complete college at high rates, then

LATEIM may exceed LATEEM , justifying grant programs that are primarily targeted at

intensive-margin students.

However, LATEIM and LATEEM are not separately point identified even with data on

the full population of college applicants. The reason is a fundamental underidentification

problem that arises in any setting with multiple treatment margins but only one instrument:

though it is possible to identify the overall LATE and the shares of both complier types
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in (1.3), the data do not reveal who among the compliers is an intensive-margin complier

and who is an extensive-margin complier.28 To address this problem, I develop a bounding

approach in Section 1.7 that delivers nonparametric bounds on LATEIM and LATEEM .

1.3.2 The Missing Data Problem

A further challenge arises when data on the running variable is only available for enrolled

students. In this case, extensive-margin compliers will appear in the dataset only on the

eligible side of the cutoff, as grant awards resulting from crossing the grant threshold cause

this population to enroll. As a result, the populations to either side of the cutoff are no longer

directly comparable, biasing standard IV approaches to estimating the impact of grant aid

on outcomes. I show in Appendix A.1.1 that failing to account for this compositional bias

results in IV estimates that fail to recover a LATE for any group. When grants cause some

students to enroll, the limiting Wald estimand at the cutoff in enrollment-selected data

becomes:

limk↑k∗ E[Y | S = 1, k]− limr↓k E[Y | S = 1, k]

limk↑k∗ E[D | S = 1, k]− limk↓k∗ E[D | S = 1, k]

= LATEIM ×

(
π−IM

π−IM + π−EM (1 + D̄+)

)
︸ ︷︷ ︸

Sample Size Bias

+

(
E[Y1 | EM Complier, k∗]− lim

k↓k∗
E[Y | S = 1, k∗]

)
×

(
π−EM

π−IM + π−EM (1 + D̄+)

)
︸ ︷︷ ︸

Compositional Bias

(1.4)

28. In fact, when there are multiple treatment margins, standard IV methods such as two-stage least squares
do not recover margin-specific treatment effects even when there are as many instruments as treatment
margins (Kirkeboen et al. 2016). However, Mountjoy (2022) shows that with two treatment margins and
two continuous instruments, it is possible to recover margin-specific treatment effects using a nonparametric
separate-identification approach.
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where π−IM = P (S1 = S0 = 1, D1 > D0 | S1 = 1) and π−EM = P (S1 > S0, D1 > D0 | S1 =

1) denote the share of intensive- and extensive-margin compliers directly to the left (barely-

eligible) side of the cutoff in the enrollment-selected sample. The term D̄+ = limk↓k∗ E[D |

S = 1, k] denotes the share of students in the enrollment-selected sample who are “always-

takers,” receiving grants despite being on the right (barely-ineligible) side of the threshold.29

Equation (1.4) shows that when grants cause some students to enroll in college, a naïve

fuzzy RD recovers a biased estimate of LATEIM , the treatment effect for intensive-margin

compliers. This bias enters the limiting Wald estimand in two ways. The first term is

the sample size bias, which arises because the sample on the eligible side of the cutoff

becomes larger due to the entry of extensive-margin compliers. The second term is the

compositional bias, which depends on E[Y1 | EM Complier], the mean treated potential

outcome of extensive-margin compliers. The sign of this bias term depends on how extensive-

margin compliers’ treated potential outcomes differ from the mean potential outcome across

all students on the ineligible side of the cutoff. Unfortunately, even if this difference is zero,

the presence of any enrollment effect will cause the sample size bias to be nonzero, leading

the selected-sample Wald estimand to be biased downwards relative to LATEIM . Equation

(1.4) therefore recovers LATEIM if and only if there are no enrollment effects so that π−EM

equals zero.

Of course, one solution to this identification challenge is to restrict attention to grant aid

programs that have no impact on student enrollment. Indeed, this is the approach taken

by many RD studies of grant aid using selected data, which first establish the absence of

enrollment effects by showing continuity of the density of the running variable at the grant

threshold (Denning et al. 2019; Scott-Clayton and Zafar 2019). Because all compliers are

intensive-margin compliers in this case, meaning that π−EM = 0, both bias terms in (1.4)

29. Note that because the entry of extensive-margin compliers increases the sample size on the eligible side
of the cutoff, it is no longer the case that the sample shares of various complier types are equal approaching
the cutoff from both sides. For this reason, I use the notation k∗− and k∗+ to denote limits of the cutoff
from the left (eligible) and right (ineligible) sides.
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disappear. As a result, the fuzzy RD estimand is a valid estimator of LATEIM whenever

grant programs do not cause marginal students to enroll.

However, the fact that enrollment-selected data is ubiquitous in higher education (Roth-

stein 2004), together with the fact that many grant aid programs have impacts on enrollment

(Dynarski 2000), suggests the need for an alternative approach that delivers valid estimates

of treatment effects even in the presence of the selection bias caused by enrollment effects.

Before developing such an approach in Section 1.7, I first evaluate the extent of this enroll-

ment bias in my empirical settings.

1.4 How Empirically Important is the Missing Data Problem?

The foregoing analysis shows that when grant aid programs have enrollment effects, standard

RD estimation in a selected sample of enrolled students will be biased due to missing data on

students induced by grant aid to enroll in college. In this section, I evaluate the magnitude

of this missing-data problem in my empirical settings by estimating the enrollment effects

of grant aid at each of the three treatment margins I study.

1.4.1 Measurement and Testing

With data on all college applicants, it would be possible to directly observe changes in

enrollments across the cutoff, making it possible to measure grants’ enrollment effects using

an RD estimator with an indicator for college enrollment as the outcome variable.30 Such

an estimator is not possible in my setting because my dataset is itself conditioned on college

enrollment. However, if the increase in grant aid at the cutoff causes some studendts to

enter the sample, then the density of the running variable will jump discontinuously at the

30. In fact, with data on all college applicants and a grant system targeted towards a single schooling option
(e.g., four-year schooling), variants of Abadie (2002)-style regressions identify not only the overall share of
extensive-margin compliers but the distribution of their origin locations. This distribution is described in
Angrist et al. (2022) and Abdulkadiroğlu et al. (2017) as the “distribution of counterfactual destinies.”

25



cutoff. As a result, a standard regression discontinuity manipulation test (e.g., McCrary

2008) provides a useful diagnostic test for evaluating whether standard IV is appropriate for

estimating grant impacts.

1.4.2 Estimates of Enrollment Effects

Enrollment Effects among Four-Year College Applicants

Figures 1.1a and 1.1b plot estimates of the density of the running variable at the TEXAS

Grant and Auto Zero thresholds for students in four-year colleges. Panel (a) shows the

density of the EFC for students near the TEXAS Grant threshold, and Panel (b) shows the

density of AGI for students near the Auto-Zero threshold. To make the density estimates

comparable, I normalize the y-axis in each figure so that 1 equals the point estimate of the

density on the right (barely-ineligible) side of the cutoff. Each figure plots a scaled histogram

of the running variable for each cutoff at regularly-spaced bins,31 together with estimated

densities and bias-corrected confidence intervals constructed using the method of Cattaneo

et al. (2018).

The estimates in Figures 1.1a and 1.1b indicate that neither the TEXAS Grant nor the

Automatic Zero EFC threshold has a significant effect on student enrollments in four-year

schools. While an enrollment effect would cause the density on the left (barely-eligible)

side of the cutoff to be higher than the density on the right, there is no evidence of such

a jump in either sample. Appendix Tables A.5.1 and A.5.2 confirm this visual evidence,

showing results from formal McCrary (2008) and Cattaneo et al. (2018) tests of the null

hypothesis of equality at the cutoff. I cannot reject that the density is continuous across a

wide variety of estimation bandwidths and subsamples; for example, the estimated (McCrary

2008) difference in densities at the TEXAS Grant cutoff is exactly zero with a standard error

31. The binwidth for Panel (a) is $100 of EFC, and the binwidth for Panels (b) is $1,000 of AGI.
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of (0.23), and the estimated difference at the Auto-Zero cutoff is −0.018 with a standard

error of (0.028).

A second heuristic test for enrollment effects is to examine whether the bivariate rela-

tionship between students’ predetermined characteristics and the running variable jumps

discontinuously at the cutoff. Appendix Figures A.4.2 and A.4.3 plot these relationships

and report RD estimates at the threshold for a wide variety of predetermined covariates at

the TEXAS Grant and Auto-Zero cutoffs in four-year schools. I find no evidence of a sta-

tistically significant discontinuity in any student characteristic at either the TEXAS Grant

or the Auto-Zero thresholds for students attending four-year colleges, indicating that the

composition of students does not meaningfully change across either cutoff.

I also find no evidence that the increase in grant funding at the TEXAS Grant thresh-

old causes four-year students to “upgrade” their schooling choices, e.g., by attending more

expensive or higher-quality schools. Appendix Table A.5.4 reports regression discontinuity

estimates where the outcomes are means of institutional characteristics, measured at the en-

try cohort-by-institution level. If TEXAS Grant recipients change their enrollment choices,

then cohort-by-school characteristics should be discontinuous at the grant threshold. I find

no evidence of any such discontinuity in the mean demographic characteristics, standardized

test scores, or mean financial aid awards of students’ peers across the threshold. These re-

sults hold even when restricting the sample to students whose application records indicate

acceptance to more than one college (columns (3) and (4)), arguably the population most

likely to respond to the TEXAS Grant by changing their enrollment behavior. Overall, the

results indicate that at the margins of receiving a TEXAS Grant or an Automatic Zero

EFC, the increase in grant aid at the threshold does not cause students to enroll in four-year

colleges or change their enrollments conditional on this sector.
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Figure 1.1: Enrollment Effects at the TEXAS Grant and Auto-Zero Cutoffs
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(c) Density: Auto-Zero (2-Year Enrollees)
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(d) 10th Grade Test Scores (2-Year Enrollees)
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Notes: Panel (a) shows the density of four-year college enrollees’ Expected Family Contribution (EFC) in
a neighborhood of the TEXAS Grant cutoff. Panels (b) and (c) show the density of students’ incoming
family Adjusted Gross Income (AGI) in a neighborhood of the Auto-Zero EFC threshold, with Panel (b)
showing four-year enrollees and Panel (c) showing two-year enrollees. The y-axis in Panels (a) through (c) is
normalized so that 1 equals the density point estimate on the right (ineligible) side of the cutoff. The points
show histogram estimates of the running variable. The smoothed fits to either side of the cutoff are local-
linear estimates of the density and the blue shaded regions are 95 percent bias-corrected confidence intervals
produced using the method of Cattaneo et al. (2018). Panel (d) plots the bivariate relationship between
two-year community college students’ entering family AGI and their tenth grade test score percentile. The
circles show raw means by $1,000 AGI bins. The lines and shaded regions on either side of the threshold are
local-linear fits with 95 percent bias-corrected confidence intervals produced using the method of Calonico
et al. (2014). The annotation reports the estimated discontinuity at the cutoff together with the estimated
fit approaching the threshold from the right (ineligible) side. The plots are shown for the main estimation
samples: the 2007-2017 entering cohorts for the TEXAS Grant, and the 2008-2012 entering cohorts for the
Auto-Zero threshold.
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Enrollment Effects at the Auto-Zero Threshold in Two-Year Colleges

Figures 1.1c and 1.1d investigate whether crossing the Auto-Zero EFC threshold causes

students to enroll in two-year community colleges. In contrast to the results in four-year

schools, and consistent with the findings of Denning et al. (2019), I find evidence that

students respond to receiving a zero EFC by changing their enrollment behavior. Figure 1.1c

shows visual evidence of a jump in the number of students attending community colleges on

the left (barely-eligible) side of the threshold, consistent with an effect of zero-EFC eligibility

on students’ enrollment behavior. Figure 1.1d reinforces this conclusion, plotting students’

average tenth-grade test scores in a window of the Auto-Zero cutoff. Students on the barely-

eligible side of the Auto-Zero threshold have mean test scores that are roughly 1.5 percentiles

lower than students on the barely-ineligible side, and the difference is significant at the 95

percent level. Appendix Figure A.4.4 shows that similar discontinuities appear in many

predetermined covariates: two-year community college students on the barely-eligible side

of the threshold are less likely to be white and have higher home-tract poverty and SNAP

benefit receipt rates than students on the barely-ineligible side, as measured by the location

of their high schools. Taken together, the results indicate that standard fuzzy RD methods

applied across the Auto-Zero threshold in two-year schools will not yield valid estimates of

treatment effects.

Testing for the Presence of Defiers

Importantly, the patterns documented in Figures 1.1c and 1.1d do not by themselves prove

that the compositional changes at the cutoff are entirely due to the entry of students who

otherwise would not have enrolled in college. Indeed, because a $0 EFC qualifies students

for the maximum federal Pell Grant, it is possible that some students may leave the sample

as a result of crossing the cutoff, for example by enrolling in four-year or private institu-

tions. Students of this behavior type are “enrollment defiers” in terms of the enrollment
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monotonicity assumption (Assumption 4) and represent a threat to identification. If some

students leave the sample as a result of crossing to the eligible side of the threshold, then

regression-discontinuity estimates across the cutoff will conflate the causal impacts of grant

aid programs with compositional changes caused by the departure of enrollment defiers from

the sample. Moreover, even the number of choice defiers is not identified due to the fact

that other students (the extensive-margin compliers) enter the sample as a result of treat-

ment. The overall positive enrollment effect in Figure 1.1c could therefore be caused by

either small or large numbers of defiers leaving the sample, as long as the offsetting number

of extensive-margin compliers is slightly larger.

However, if defiers exist, then the compositional changes in Figure 1.1d offer a clue as

to their likely composition. Average test scores fall at the cutoff, suggesting that defiers

who leave the sample at the cutoff are higher-achieving students than students who remain.

Appendix Figure A.4.5 finds support for this hypothesis, plotting the density of the run-

ning variable separately by students’ pre-college achievement. Figure A.4.5a shows positive

enrollment effects among the roughly 90 percent of community college students who score

below the 80th percentile on standardized tests among their high school graduating class. In

contrast, Figure A.4.5b shows a significant negative enrollment effect among students who

score in the top quintile of their high school graduating class on standardized tests. This

discontinuity is statistically significant; Appendix Table A.5.3 shows that the p-value associ-

ated with the McCrary (2008) test of equality at the cutoff is 0.028. Moreover, as Appendix

Figure A.4.6 shows, this defier behavior appears limited to top-scoring students; the discon-

tinuities among all other quintiles are consistent with at least weakly positive enrollment

effects.

As a result of these patterns, the effect of financial aid on the outcomes of top-scoring

community college students at the Auto-Zero cutoff is not identified. I therefore remove these

students from the sample, dropping roughly 10 percent of community college students within
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my estimation window of the Auto-Zero cutoff. I assume that defiers do not exist among the

remaining students, so that the enrollment monotonicity assumption (Assumption 4) holds

in the remaining sample.

Taking Stock

Taken together, the results in this section suggest that standard IV methods are sufficient

to study the impacts of the TEXAS Grant and Auto-Zero cutoffs among four-year college

students. Figure 1.1 implies that at these treatment margins, all compliers are intensive-

margin compliers who would attend four-year colleges even without additional grant aid. As a

result, neither bias term in (1.4) applies, so that a standard fuzzy RD recovers valid estiamtes

of LATEIM . I therefore proceed in Section 1.5 with standard fuzzy regression-discontinuity

methods in order to estimate these grants’ impacts on intensive-margin compliers.

In contrast, the results in Figures 1.1c and 1.1d suggest that standard IV methods applied

to the 2-year Auto-Zero EFC cutoff will fail to recover a valid LATE for any group of

compliers. At this margin, there exist extensive-margin compliers who enter the sample as

a result of crossing the Auto-Zero EFC threshold, as shown in Figure A.4.5a. The entry

of these students into the sample will cause standard IV to recover a biased estimate of

LATEIM by (1.4), suggesting the need for an alternative framework which recovers valid

estimates of treatment effects even in the presence of this missing-data problem. I return to

this issue in Section 1.7, developing a nonparametric identification argument that separately

develops bounds on treatment effects for extensive-margin and intensive-margin compliers.

1.4.3 Implementation

The previous sections indicate that for programs without enrollment effects —- namely,

the TEXAS Grant and the Auto-Zero EFC cutoff in four-year schools —- the populations

to either side of the cutoff consist entirely of intensive-margin students and are therefore
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comparable using a standard fuzzy RD design. The estimand of interest is:

βIV =
limr↑k∗ E[Y | k = r]− limr↓k∗ E[Y | k = r]

limr↑k∗ E[D | k = r]− limr↓k∗ E[D | k = r]

where Y is an outcome such as graduation, and where D is an indicator for the grant

treatment.32 I follow standard nonparametric practice to estimate βIV by taking the ratio

of two RD estimators:

β̂IV =
µ̂Y− − µ̂Y+

µ̂D− − µ̂D+

where (µ̂Y−, µ̂Y+, µ̂D−, µ̂D+) are local linear estimates of the conditional expectations of Y

and D given k, estimated separately approaching the cutoff from the left and the right.33

I also report results from specifications that include an additively separable linear term

in a vector of covariates X (Calonico, Cattaneo, Farrell, and Titiunik 2019). Reassuringly,

adding covariates does not significantly change the IV point estimate for any outcome I

consider. However, including covariates slightly improves the precision of the estimates. I

implement the estimators by choosing the MSE–optimal bandwidth separately for each out-

come according to Calonico, Cattaneo and Farrell (2019). Practically, the optimal bandwidth

is almost always between $750 and $900 of EFC for models with covariates and between $900

32. In the case of the TEXAS Grant, the treatment an indicator for whether the student receives a TEXAS
Grant in their first year of college. In the case of the auto zero EFC cutoff, the treatment is an indicator for
whether the student receives a zero EFC.

33. Formally, for W ∈ {Y,D}, the estimators are given by µ̂Y− = αW−(k∗, h) and µ̂Y+ = αW+(k∗, h),
where αW−(k∗, h) and αW−(k∗, h) come from the solutions to the following kernel-weighted least squares
problems: (

αW−(k, h)
βW−(k, h)

)
= arg min

α,β

N∑
i=1

1{k ≤ k∗} (Wi − α− β(ki − k∗))2Kh(ki − k)

(
αW+(k, h)
βW+(k, h)

)
= arg min

α,β

N∑
i=1

1{k > k∗} (Wi − α− β(ki − k∗))2Kh(ki − k)

where (Wi, ki) denote data onW and k for observation i, and where Kh is a triangular kernel with bandwidth
h.
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and $1200 of EFC for models without covariates.

1.5 The Impact of the TEXAS Grant on Student Outcomes

1.5.1 First Stage: The TEXAS Grant Cutoff and Grant Aid Awards

I first show that crossing the EFC threshold results in a substantial jump in the probability

of receiving a TEXAS Grant. Panel (a) of Figure 1.2 shows the increase in TEXAS Grants at

the cutoff among students entering public four-year Texas colleges during my sample period.

The running variable is students’ EFC in the year of college entry, which determines whether

students are eligible for TEXAS Grants in their first year of college.

The figure documents a large jump in initial-year TEXAS Grants at the cutoff. The

proportion of students receiving TEXAS Grants in their first year of college jumps by 45

percentage points, from 11.6 percent of barely-ineligible students receiving grants on the

right of the cutoff to 56.8 percent of barely-eligible students receiving grants on the left.

Importantly, compliance with the grant assignment rule is imperfect: roughly half of barely-

eligible students do not receive TEXAS Grants despite being on the eligible side of the

threshold, and 12 percent of financially-ineligible students receive TEXAS Grants anyway.

There are two main reasons for this imperfect treatment assignment. First, the grants are

rationed; there are not sufficient funds available to award TEXAS Grants to all students who

are eligible on the basis of their EFC. Second, schools are afforded substantial discretion in

determining which students are awarded grants, and are allowed to award TEXAS Grants

even to students whose EFCs fall above the grant assignment threshold. In practice, Figure

1.2a shows that this discretion is used relatively sparingly, and crossing the threshold still

confers a large increase in the probability of receiving a TEXAS Grant.

Figures 1.2b and 1.2c show that receiving a TEXAS Grant corresponds to a substantial

and persistent increase in students’ grant aid packages. Figure 1.2b plots the bivariate
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Figure 1.2: First Stage at the TEXAS Grant Threshold
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(c) Persistence of Grant Aid

Notes: This figure plots the bivariate relationship between students’ grant aid awards and their Expected
Family Contribution (EFC) in a window of the TEXAS Grant Cutoff. Panel (a) shows the instrumental
variables first stage. The outcome is an indicator for whether the student receives a TEXAS Grant in their
initial year of college. The plot annotation reports the estimated jump in initial-year TEXAS Grants at the
threshold, together with the mean fraction of students on the barely-ineligible (right) side of the cutoff who
do not receive grants. Panel (b) plots the relationship between total first-year grant aid awards, defined as
the sum of all grant aid sources, and students’ entry-year EFCs. The plot annotation reports reduced-form
and IV estimates of the change in grant aid at the cutoff. Panel (c) reports IV estimates from year-by-year
regressions, where the outcome is the total grant aid award received by students in each year following college
entry. The error bars reflect 95 percent bias-corrected confidence intervals (Calonico et al. 2014), clustered
at the institution-by-entry-cohort level. Note that because students who leave college are assigned grants
of zero, the estimates in Panel (c) summarize the TEXAS Grant’s impacts on both grant aid and college
reenrollment.
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relationship between students’ first-year grant aid awards and their EFC in the first year

of college. Students on the barely-eligible side of the threshold receive $2, 350 more in

grant aid, on average, than barely-ineligible students. The corresponding IV estimate for

the increase in first-year grant aid among compliers is $5, 197. Figure 1.2c shows that this

increase in grant aid is persistent. The figure plots IV estimates of the increase in grant

aid for compliers separately in each year after college. In constructing the figure, I assign

$0 in grant awards to students who exit the college sample; as a result, a note of caution is

warranted in interpreting Figure 1.2c, because the plotted estimates incorporate any causal

effect of the TEXAS Grant on students’ probability of remaining in college. Nevertheless,

the impact of receiving an initial-year grant on average future aid receipts is significant; for

compliers, an initial-year TEXAS Grant increases average aid received over the next 6 years

of college by $14, 637 on average.

1.5.2 Impacts on Persistence and Graduation

Figure 1.3 reports estimates of the impact of the TEXAS Grant on students’ persistence

in college and graduation probability. Figure 1.3a displays the reduced-form graphical rela-

tionship between students’ Expected Family Contribution and the probability that students

re-enroll in college for a second year. The figure shows that despite the large increase in

average grant aid awards at the cutoff, there is no statistically significant change in the

probability of second-year reenrollment at the threshold. The reduced-form RD estimate at

the cutoff is a relatively precise zero (confidence interval [−0.02, 0.02]), and I am able to rule

out that the overall rate of reenrollment changes by more than 2 percentage points at the

cutoff.

Figure 1.3b shows results for BA completion, plotting the relationship between students’

EFC and the probability of graduating within six years of college entry. I do not find evidence

that the TEXAS Grant singificantly increases graduation rates at the cutoff; the reduced-
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form point estimate is positive at 1 percentage point, but the confidence interval rules out

increases in graduation rates of more than 3 percentage points or declines of more than 2

percentage points. Importantly, this null result is not because baseline graduation rates are

too high for any program to improve them; the figure shows that just over half of barely-

ineligible students graduate. The results therefore indicate that for middle-income students

at the margin of receiving a TEXAS Grant, additional grant aid is not a key determining

factor in whether students complete college.

Figures 1.3c and 1.3d examine effects on persistence and graduation at different time

horizons. The figures plot IV estimates of the impact of receiving a first-year TEXAS Grant

on the probability of reenrollment and graduation, with the corresponding point estimates

reported in Appendix Table A.5.8. Though the point estimates are small and positive in

most years, they are not statistically significant at any time horizon. I conclude that the

increase in financial support associated with crossing the TEXAS Grant threshold does not

cause a significant increase in students’ probability of reenrolling or graduating from college.

In addition to these results, I also find no evidence that the TEXAS Grant has a significant

effect on shorter-run measures of student success in college. Appendix Figure A.4.7 examines

the impact of the TEXAS Grant on complier students’ course completion. The results show

that there is no significant effect of the TEXAS Grant on the number of credits completed

by complier students, indicating that additional grant aid does not induce students awarded

TEXAS Grants to complete significantly greater numbers of credit hours.

Taken together, the results indicate that the increase in grant aid at the threshold has

no impact on the average postsecondary outcomes of TEXAS Grant recipients. Importantly,

this result applies only to marginal recipients of the TEXAS Grant who receive funds as

a causal result of crossing the grant’s eligibility threshold, and may not be representative

of the TEXAS Grant’s impacts on lower-income students with EFCs well below the grant

cutoff. In Section 1.5.3, I investigate the possibility that reallocations of grant aid to lower-
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income students would produce gains in overall student outcomes through a comparison to

the Auto-Zero EFC threshold in four-year schools.

Impacts on Loans and Earnings

Figure 1.4 reports estimates of the TEXAS Grant’s impacts on students’ labor market earn-

ings and student loans. The increase in TEXAS Grants at the cutoff corresponds with a

sharp decrease in student loans and earnings during college, shown in Figures 1.4a and 1.4b.

Students on the barely-eligible side of the TEXAS Grant threshold take out over $1, 000 less

in average first-year loans than students on the barely-ineligible side. Scaling this reduced-

form estimate by the first stage implies that compliers reduce their first-year loans by over

$2, 100 in response to receiving a TEXAS Grant award. Panel (b) documents a similar effect

on complier students’ earnings during college. Students on the barely-eligible side of the

cutoff reduce their earnings by $300, on average, relative to students on the barely-ineligible

side. The corresponding IV estimates indicate a $700 decrease in first-year earnings among

grant compliers.

Panels (c) and (d) investigate the persistence of these effects, plotting IV estimates of the

TEXAS Grant’s impact on compliers’ yearly borrowing and labor market earnings.34 The

grant’s impact on compliers’ loans and earnings is persistent, with point estimates remaining

negative and significant through the second year of college. This persistence reflects the

fact that TEXAS Grant recipients can renew their grants for additional years, subject to

satisfactory academic progress requirements. Estimates of loan impacts fall towards zero over

time, in part reflecting the fact that many students do not remain in college. Estimates on

earnings appear more persistently negative, although they become imprecise in later years.

34. To make the figures comparable, I code students who exit college as taking out zero loans.
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Figure 1.3: Effects of the TEXAS Grant on Persistence and Graduation
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(c) IV Estimates: Reenrollment by Year (d) IV Estimates: Graduation by Year

Notes: This figure shows estimates of the impacts of the TEXAS Grant on students’ reenrollment in
college and probability of graduation. Panel (a) shows the reduced-form relationship between students’
Expected Family Contribution (EFC) and the probability of completing a BA degree at their initially-
enrolled institution within 6 academic years of entry. I pool all entry cohorts and normalize the running
variable so that zero equals the TEXAS Grant’s EFC cutoff. The points show unconditional means by
$100-wide EFC bins, and the lines to either side of the cutoff are local-linear fits with bias-corrected
confidence intervals following Calonico et al. (2014). The annotation reports reduced-form and IV
estimates of the discontinuity at the cutoff. Panel (b) shows IV estimates of the discontinuity at the
cutoff at several estimation horizons. Results through 4 years are for the 2007-2017 entry cohorts The
last entry year for results at 5, 6, 7, and 8 years is 2016, 2015, 2014, and 2013, respectively. The error
bars reflect 95 percent bias-corrected confidence intervals, clustered at the institution-by-entry-cohort
level.
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Figure 1.4: Effects of the TEXAS Grant on Loans and Earnings

(a) Reduced Form: Loans in Year 1 (b) Reduced Form: Earnings in Year 1

(c) IV Estimates: Loans by Year (d) IV Estimates: Earnings by Year

Notes: This figure shows estimates of the impacts of the TEXAS Grant on enrollment persistence Panel
(a) shows the reduced-form relationship between students’ Expected Family Contribution (EFC) and
the probability of completing a BA degree at their initially-enrolled institution within 6 academic years
of entry. The points show unconditional means by $100-wide EFC bins, and the lines to either side of
the cutoff are local-linear fits with bias-corrected confidence intervals following Calonico et al. (2014).
The annotation reports reduced-form and IV estimates of the discontinuity at the cutoff. Panel (b)
shows IV estimates of the discontinuity at the cutoff at several estimation horizons. Results through 4
years are for the 2007-2017 entry cohorts The last entry year for results at 5, 6, 7, and 8 years is 2016,
2015, 2014, and 2013, respectively.
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1.5.3 Comparison: Impacts of Automatic Zero EFC Eligibility

The results in Section 1.5 indicate that for middle-income students at the margin of receiv-

ing a TEXAS Grant, additional grant aid is not an influential factor in determining post

secondary outcomes. In this section, I compare these null effects against estimates of the

impact of additional financial support on student outcomes for four-year college students at

the Automatic Zero EFC Cutoff.

First Stage: The Auto-Zero EFC Cutoff and Grant Aid

Figure 1.5 describes the impact of crossing the automatic zero EFC threshold on the grant

aid awards of four-year college students. Figure 1.5a shows how crossing the Automatic

Zero EFC threshold affects whether students receive a zero EFC in their first year of college,

which I use as the definition of binary treatment to analyze the Automatic Zero EFC cutoff.

The x axis plots students’ family Adjusted Gross Income in $1,000 bins, and the y axis

plots the proportion of four-year college students whose EFC is zero in the entering year.

The figure shows that the probability of being assigned a $0 EFC jumps by 49 percentage

points at the threshold. Because other inputs into the EFC formula affect whether a student

receives a $0 EFC, a substantial number of students receive zero EFCs despite being on

the barely-ineligible side of the threshold; likewise, a small proportion of students receive

nonzero EFCs despite being on the barely-eligible side. Nevertheless, the jump in $0 EFC

assignments results in a substantial increase in students’ first-year grant aid awards, as shown

in Figure 1.5b. Students on the barely-eligible side of the threshold receive an additional

$800 of grant aid, on average, than students on the barely-ineligible side. The instrumental-

variables estimates show that compliers who receive zero EFCs as a result of crossing the

auto-zero threshold receive an additional $1,800 in aid, on average, as a result of crossing

the threshold.
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Figure 1.5c shows that this increase in aid is much smaller than the increase for compliers

at the TEXAS Grant threshold. The figure plots yearly IV coefficients of the increase in

grant aid for compliers at the TEXAS Grant and Auto-Zero thresholds, plotted separately by

grant program.35 The point estimates at x = 1 show that the $1,800 increase in first-year aid

for Auto-Zero compliers is only a third of the $5,200 increase for TEXAS Grant compliers.

This difference persists over time. Summing the yearly estimates reveals that while TEXAS

Grant compliers receive an additional $14,600 in aid over the six years following college entry,

the increase for compliers at the Automatic Zero EFC threshold is only a quarter as large,

amounting to roughly $3,400 in aid.

Figure 1.5d shows analogous yearly IV estimates where the outcome is students’ yearly

loans. The point estimates at x = 1 show that Auto-Zero EFC compliers reduce their

first-year loans by roughly half as much as TEXAS Grant compliers. Notably, the offsetting

reduction in loans is roughly half of the first-year change in aid for both programs, suggesting

similar elasticities of loan originations to grant aid for both populations. However, in contrast

to the persistently negative impact of the TEXAS Grant on student loans, students who

receive an Auto-Zero EFC as a result of crossing the threshold take out greater average loan

burdens in later years of college as a result. Such an effect would arise if treated students

become more likely to remain in college. I investigate this possibility in the next subsection

by comparing the impacts of the TEXAS Grant and the Zero-EFC policy on students’ college

persistence and graduation probability.

Grant Awards and Student Outcomes at the Auto-Zero EFC Threshold

Figure 1.6 plots IV estimates of the impact of financial support on students’ academic out-

comes and later-life earnings at the TEXAS Grant and Auto-Zero thresholds. To make the

35. In constructing the figure, I code students who drop out of college as receiving $0 in grant aid to avoid
bias due to differential attrition. Estimates in later years may therefore incorporate any potential impacts
of grant aid on the probability that students remain in college.
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Figure 1.5: First Stage at the Auto-Zero Threshold in Four-Year Schools

(a) Zero EFC at Auto-Zero Cutoff
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(b) First-Year Grant Aid at Auto-Zero Cutoff
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(c) IV Estimates: Yearly Grants for Compliers
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Notes: This figure summarizes the increase in grant aid stemming from crossing the Automatic Zero
EFC threshold, and compares this increase to the change in grant aid at the TEXAS Grant cutoff. Panel
(a) reports the fraction of four-year college students who have a zero EFC by their family adjusted
gross income (AGI). The plot pools all years of data for the 2008-2012 entering cohorts, and the x axis
is normalized within each year so that zero equals the federal Auto-Zero EFC threshold. Panel (b) is
similar, but instead plots students’ first-year grant aid awards by their incoming AGI. I plot unrestricted
means of both outcomes in $1,000 bins and include estimated local linear regression lines and 95% bias-
corrected confidence intervals on each side of the cutoff. Panels (c) and (d) plot instrumental variables
estimates of the effect of receiving a TEXAS Grant or an initial-year Zero EFC on students’ yearly
grant aid (Panel c) and loans (Panel d). The first stage for each program is a binary indicator for
whether the student is “treated” by receiving an initial-year TEXAS Grant or an initial-year zero EFC,
respectively. In constructing the figures, I define grants and loans as $0 for students who do not appear
in the college sample to avoid attrition bias; note, however, that these grant and loan impacts therefore
incorporate the effects of each grant program on students’ college persistence. The error bars reflect 95
percent bias-corrected confidence intervals estimated using the method of (Calonico et al. 2014) and
clustered at the institution-by-entry-cohort level.
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estimates comparable in terms of aid’s impact on outcomes, I estimate models where the

first stage is measured in $1,000s of grant aid rather than a binary indicator for treatment.36

Comparing the estimates reveals that the impact of additional grant aid on student

outcomes is starkly different across the two thresholds. Figure 1.6a shows impacts for college

persistence, measured as an indicator for reenrollment. While an additional $1,000 of grant

aid at the TEXAS Grant cutoff has a precise null effect on students’ probability of college

reenrollment, an equivalent increase for poorer students at the margin of the Auto-Zero EFC

cutoff increases the probability of reenrollment by 3.4 percentage points in year 3 and 3.9

percentage points in year 4. The point estimate for reenrollment in year 1 is positive, at 1

percentage point, but is statistically imprecise.

This increase in reenrollment probabilities corresponds to large increases in graduation

for compliers at the margin of receiving an automatic zero EFC. Figure 1.6b shows that while

TEXAS Grant compliers are not significantly more likely to complete a B.A. at any time

horizon, an additional $1,000 of grant aid for compliers at the Auto-Zero cutoff increases

graduation rates by 2.9 percentage points by the end of the fourth year after college entry,

3.8 percentage points by the end of the fifth year, and 4.8 percentage points by the end

of the sixth. These effects are large; for example, the six-year graduation increase of 4.8

percentage points is a 12 percent increase over the mean 6-year graduation rate of 41% on

the barely-ineligible side of the cutoff.

Finally, Figure 1.6c provides suggestive evidence that these increases in persistence and

graduation probability affect students’ earnings trajectories. The figure plots the IV impact

36. This normalization effectively assumes that the TEXAS Grant and the Auto-Zero EFC cutoff affect
students’ grant aid awards only through the channel of increased financial support. This assumption would be
violated if qualifying for either grant program gave students access to nonfinancial resources that potentially
impacted their college performance. This assumption seems reasonable in the case of the Automatic Zero
EFC threshold, as students’ EFCs are calculated by the federal government (not by colleges) and are primarily
used by colleges as an input into financial aid awards. My conversations with financial aid administrators
indicate that the TEXAS Grant also acts solely as a subsidy that reduces the price of college. Note also that
a similar assumption is inherent in MVPF calculations which scale the benefits of grant programs by their
fiscal net costs.
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of an additional $1,000 of financial support on students’ earnings, estimated separately by

year. The figure has two main takeaways. I find that the increase in aid for compliers at the

Auto-Zero threshold lowers labor market earnings during college. Notably, the elasticity of

this earnings response to first-year grant aid is larger for Auto-Zero compliers than it is for

compliers at the margin at the TEXAS Grant cutoff, although the difference between these

coefficients is not statistically significant. Second, I find evidence that this initial decline in

earnings is compensated by increased earnings starting six years after college entry. While

the coefficients are not statistically significant, they suggest that the impact of financial

support on the graduation rates of Auto-Zero compliers spills over into their labor market

earnings after college.

Overall, these results align with the findings of Denning et al. (2019) (DMT), who use the

same data source to study the impact of crossing the Auto-Zero threshold on the outcomes of

four-year college students in Texas. However, my results differ from theirs in some notable

respects. First, I find that Auto-Zero EFC compliers’ earnings fall during college, while

DMT do not find any evidence of this temporary earnings decline. Second, I find slight

differences in the estimated impacts on persistence and graduation, finding (in contrast to

DMT) that students are more likely to persist until the fourth year of college, and finding

slightly smaller impacts than theirs on the probability of graduating within 5 years. These

differences may stem from differences in sample composition; I use one additional year of

data (2012) compared to DMT, and the starting point for constructing my sample is the

set of all recent Texas public high school graduates rather than the full set of all first-

time-in-college dependent students (including non-Texas residents). Overall, however, I find

robust positive impacts of crossing the Auto-Zero threshold on the outcomes of compliers in

four-year schools.

Additionally, my results may shed insight on the mechanism through which financial

aid affects the outcomes of low-income students. A recent study by Eng and Matsudaira
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(2021) re-visits the Auto-Zero EFC threshold using the universe of federal aid recipients

(rather than the selected sample of Texas students), finding much smaller effects of crossing

the Automatic Zero EFC cutoff on students’ probability of graduating from their initially-

enrolled institution. For example, their IV estimates indicate that an additional $1,000 of

aid at the threshold corresponds to a statistically imprecise 0.8 percentage point increase

in the probability of BA degree completion within 6 years,37 in contrast to my and DMT’s

estimate of roughly 5 percentage points. In considering the discrepancy between these results

and the findings of DMT, they conjecture that qualifying for an Auto-Zero EFC may cause

large outcome gains for Texas students because a zero EFC also increases the probability

of receiving a TEXAS Grant, which — in contrast to the federal Pell grant — provides a

guarantee of financial support covering the entirety of tuition and fees for up to five years

after students’ initial college enrollment. The Automatic Zero EFC policy may therefore be

especially effective in improving the outcomes of TEXAS students because it coresponds to

the persistent increase in grant aid documented in Figure 1.5c. This persistent increase is

likely entirely due to the impact of the TEXAS Grant, because an initial-year zero EFC is

not automatically renewed in future years.38 In contrast, an initial-year TEXAS Grant is

renewable regardless of most changes in students’ financial situations, yielding a persistent

increase in grant aid over time. Overall, the results suggest that the renewal-guarantee aspect

of the TEXAS Grant, and not the Pell Grant alone, is important in shaping the outcomes

of students near the Auto-Zero EFC threshold.

37. See Eng and Matsudaira (2021), Table 3.

38. In fact, if students’ yearly family AGI incorporates an element of random noise, then students who
barely receive a zero EFC in the initial year of college have probability zero of being on the barely-eligible
side of the threshold in any future year. This is likely to especially hold in the samples used in my paper and
DMT, which remove students who report AGI multiples of $1,000 due to bias concerns due to bunching.
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Figure 1.6: IV Effects of $1, 000 of Grant Aid at the TEXAS Grant and Auto Zero Cutoffs
in Four-Year Schools
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Notes: This figure compares the impact of an additional $1, 000 of grant aid on two groups of students:
middle-income students at the TEXAS Grant threshold, and lower-income students at the Auto-Zero AGI
threshold. Each point estimate and 95% confidence interval reports the results of a separate instrumental
variables regression, where the first stage is first-year grant aid measured in thousands of dollars. In all
figures, the x axis is the number of years since the student entered college. The outcomes in Panels (a), (b),
and (c), respectively, are graduation, persistence, and earnings at the given time horizon. The results for
the TEXAS Grant are estimated on the 2007-2017 entering cohorts, and the results for the Auto-Zero cutoff
are estimated on the 2008-2012 entering cohorts.
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1.6 Mechanisms: Who Gets a TEXAS Grant?

The previous sections show that for compliers at the TEXAS Grant threshold, a substantial

increase in grant funding does not correspond to significant increases in enrollment, gradu-

ation, or earnings. This section examines possible mechanisms for this result by analyzing

the characteristics of students who receive grants at the threshold. Which students receive

grants as a result of crossing the threshold, and how do they compare to students who do not

receive grants despite being financially eligible? I find that schools are substantially more

likely to give grants to two subpopulations of students: those who are likely to graduate,

and those who would receive substantial amounts of grant-based financial aid even if not

awarded TEXAS Grants.

Measurement. To characterize how grants are allocated at the TEXAS Grant cutoff, I

analyze the mean untreated potential outcomes of compliers at the threshold. Abadie (2002)

shows that this mean is identified by:

limk↑k∗ E[Y (1−D) | k]− limk↓k∗ E[Y (1−D) | k]

limk↑k∗ E[(1−D) | k]− limk↓k∗ E[(1−D) | k]
= E[Y0 | D1 > D0, k = k∗] (1.5)

For example, if Y denotes graduation, then (1.5) identifies the mean graduation rate that

TEXAS Grant compliers at the threshold would have achieved if they had not been awarded

TEXAS Grants.

I compare this mean to the mean outcomes of “never-takers,” who are not awarded

TEXAS Grants despite being on the barely-eligible side of the threshold:39

lim
k↑k∗

E[Y | D = 0, k] = E[Y0 | D0 = D1 = 0, k = k∗] (1.6)

39. In addition to compliers and never-takers, 12 percent of students at the cutoff are “always-takers” who
receive grants despite being on the ineligible side of the threshold. Because always-takers are never observed
in the untreated state, it is not possible to identify their mean untreated potential outcomes.
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Together, (1.5) and (1.6) measure how students who are awarded grants as a result of crossing

the threshold (compliers) compare to students who are not awarded grants despite being

barely eligible (never-takers).

Factors influencing grant allocations at the threshold. Two mechanisms may con-

tribute to observed differences between compliers and never-takers. First, schools have dis-

cretion in allocating TEXAS Grants, meaning that the observed pattern of grant awards at

the threshold is influenced by schools’ preferences in deciding grant funding. In particular,

because schools are required to fully cover tuition and fees for TEXAS Grant recipients, they

may face an incentive to allocate the grant to students with high levels of aid at baseline.

Second, the process of applying for a TEXAS Grant may advantage high-achieving students.

In particular, schools are instructed to give priority to students who submit their FAFSA

forms by a “priority deadline.”40 If students who apply by the state’s deadline have higher

academic ability on average, then this system of grant allocation may effectively target grants

to students with higher ex-ante levels of achievement.

Results: Targeting on Ability

Figures 1.7a and 1.7b report estimates of Equations (1.5) and (1.6), examining how schools

target TEXAS Grants at the threshold by students’ ex-ante ability. The results indicate that

schools target TEXAS Grants at the threshold to high-ability students. Figure 1.7a shows

results for BA completion, showing that compliers would complete BA degrees at far higher

rates than never-takers, even if they had not been awarded TEXAS Grants. For example, six

years after entering college, the difference in mean untreated graduation rates between these

groups is 12 percentage points. Figure 1.7b shows evidence of a similar pattern in students’

post-college earnings. The mean untreated potential earnings of compliers, measured six

40. During my sample period, the priority deadline is January 15 of the academic year prior to a student’s
year of college entry.
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to eight years after college entry, are several thousand dollars higher than those of never-

takers who are not awarded TEXAS Grants. Taken together, the results imply that TEXAS

Grants at the threshold are disproportionately targeted to students who would graduate at

higher rates and have higher post-college labor-market earnings even if they had not received

TEXAS Grants, compared to students who are not selected to receive grants.

Figure 1.7c confirms these patterns, reporting estimates of Equations (1.5) and (1.6)

where outcomes are replaced with students’ tenth grade test scores. Because predetermined

characteristics are not affected by TEXAS Grants, it is also possible to examine the char-

acteristics of “always-taker” students who receive grants despite falling on the ineligible side

of the threshold.41 The figure indicates that compliers’ test scores are more than three per-

centiles higher, on average, than the test scores of never-taker students. The test scores of

always-takers fall between the complier and never-taker estimates. The results indicate that

schools target on preexisting academic ability within the set of students for whom crossing

the threshold is required to receive a grant aid award.42

Importantly, these targeting patterns favoring high-ability students are the opposite of

how $0 EFCs are distributed to eligible students at the Auto-Zero cutoff. Appendix Figure

A.4.8 compares the test scores of compliers, never-takers, and always-takers at the Auto-Zero

EFC cutoff, where treatment is defined as an indicator for receiving a zero EFC. In sharp

contrast to the targeting patterns at the TEXAS Grant threshold, the mean test scores of

compliers at the Auto-Zero cutoff are 7 percentage points lower than the mean test scores

41. The mean test score for always-takers is identified by limk↓k∗ E[X | D = 1, k] = E[X | D0 = D1 =
1, k = k∗].

42. One possibility is that these selection patterns are due to merit standards, which since the 2014
academic year have been part of the TEXAS Grant’s design. Although only four out of the eleven cohorts in
my sample enter college after this policy change, it is in theory possible that the observed disproportionate
allocation of grants towards high-achieving students is a reflection of state-administered merit criteria rather
than a consequence of schools’ preferences in distributing grant aid awards. Appendix Figure A.4.10 provides
evidence against this possibility, showing that school’s revealed preference for awarding TEXAS Grants to
high-achieving students predates the 2014 introduction of merit standards to the TEXAS Grant, and for
some outcomes (e.g., five-year graduation rates) appears to favor ex-ante high-achieving students even more
strongly.
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of never-takers. The results indicate that students assigned zero EFCs at the threshold are

less academically prepared for college than students receiving nonzero EFCs despite falling

on the eligible side of the threshold.43 Combined with the high impacts on these students’

outcomes documented in Section 1.5, these patterns are consistent with marginal impacts of

grant aid being higher for students with lower ex-ante ability (Angrist et al. 2022).

Results: Targeting on Preexisting Aid

Because schools are required to supplement TEXAS Grants with institutional aid to fully

cover grant recipients’ tuition and fees, they may face an incentive to disproportionately

award TEXAS Grants to students with high preexisting aid awards.44 Figure 1.7d compares

the mean untreated potential aid awards of TEXAS Grant compliers (Equation 1.5) against

the aid awards of never-takers at the grant threshold (Equation 1.6). The results show that

schools disproportionately award TEXAS Grants to students with high preexisting levels of

grant-based financial aid. Even if TEXAS Grant compliers at the threshold did not receive

TEXAS Grants, they would still enter college with roughly $820 more in first-year aid than

never-taker students. The results indicate that schools disproportionately target marginal

TEXAS Grants to ex-ante higher-funded students.

1.7 Nonparametric Bounds on Grant Treatment Effects

So far, the paper has shown that the impact of grant aid on student outcomes differs sub-

stantially across the TEXAS Grant and Auto-Zero EFC cutoffs for students in four-year

43. This pattern is consistent with the non-AGI criteria for receiving a zero EFC. In addition to crossing the
Auto-Zero threshold, students’ families either must have been eligible to file a 1040A or 1040EZ tax return
or have received means-tested benefits in the previous year to receive an Automatic Zero EFC. “Never-taker”
families who do not meet these criteria are likely to have higher assets, which may result in higher academic
preparedness among their children.

44. The idea that this incentive shapes schools’ allocation decisions has been widely conjectured in de-
scriptions of the TEXAS Grant (Andrews and Stange 2019; Denning et al. 2019), but to my knowledge has
not been empirically documented.
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Figure 1.7: Selection at the TEXAS Grant Threshold

(a) Graduation
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Notes: This figure shows estimates of graduation probabilities (Panel (a)) and post-college earnings (Panel
(b)) by the complier group of students at the TEXAS Grant cutoff. “Always-takers” are students who receive
TEXAS Grants despite being on the barely-ineligible side of the threshold. “Compliers” are students who
receive TEXAS Grants as a causal result of crossing the threshold. “Never-takers” are students who do not
receive TEXAS Grants despite being on the barely-eligible side of the threshold. Panel (c) shows the mean
tenth grade test score percentile of compliers, always-takers, and never-takers at the threshold. Panel (d)
shows the mean baseline grant awards of compliers and never-takers at the TEXAS Grant threshold, defined
as the amount of grant aid these students would receive if not awarded a TEXAS Grant. Counterfactual grant
amounts for always-takers cannot be estimated, because all always-takers at the threshold receive TEXAS
Grants. The point estimates and confidence intervals at each time horizon are constructed by separately
estimating equations (1.5) through (1.6) for each outcome and time horizon; see main text for details. The
error bars reflect 95 percent bias-corrected confidence intervals estimated using the method of (Calonico
et al. 2014).
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schools. The remaining task is to estimate the impact of grant aid on two-year students

at the Auto-Zero cutoff. However, this task is made more difficult by the existence of a

significant enrollment effect at the grant assignment threshold, meaning that standard IV

methods applied at the threshold do not recover a valid LATE for any population.

To deal with this challenge, this section develops a bounding approach extending Lee

(2009) and Gerard et al. (2020). I extend their framework by showing how an addi-

tional mean-dominance assumption motivated by the relative pretreatment characteristics

of extensive-margin and intensive-margin compliers yields substantially tighter bounds than

the “no-assumptions” bounds derived by Gerard et al. (2020) and considered in prior work

on grant impacts (Park and Scott-Clayton 2018).

1.7.1 Target Parameters

The first target parameter is the overall effect of grant aid for community college students

at the Auto-Zero EFC threshold. I denote this quantity by LATE∗ = E[Y1 − Y0 | S1 =

1, D1 > D0, k = k∗], which expresses the impact of grant aid on the total population of

enrolled compliers : students who receive grants by crossing the threshold (D1 > D0), and

who enroll in college in the treated state (S1 = 1).

I then decompose this overall effect into its intensive-margin and extensive-margin com-

ponents. Appendix A.1.2 shows that LATE∗ can be expressed as the sum of grant aid’s

intensive-margin and extensive-margin effects:

LATE∗ = (1− ω)LATEIM︸ ︷︷ ︸
Intensive-Margin Effect

+ ωLATEEM︸ ︷︷ ︸
Extensive-Margin Effect

(1.7)

where the weight ω = P (S1 > S0 | S1 = 1, D1 > D0) denotes the proportion of enrolled

compliers who are extensive-margin compliers. The terms (1−ω)LATEIM and ωLATEEM

express the contributions of the intensive and extensive margins in shaping the overall impact
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of grant aid on the outcomes of enrolled compliers. These contributions depend on the

intensive-margin and extensive-margin treatment effects of aid, given by:

LATEIM ≡ E[Y1 − Y0 | S1 = S0 = 1, D1 > D0︸ ︷︷ ︸
IM Complier

, k = k∗]

= Ȳ IM
1 − Ȳ IM

0

LATEEM ≡ E[Y1 − Y0 | S1 > S0, D1 > D0︸ ︷︷ ︸
EM Complier

, k = k∗]

= Ȳ EM
1 − Ȳ EM

0

(1.8)

The remainder of this section lays out how I estimate the overall effect of grant aid at

the threshold (LATE∗), and develops an approach that allows me to separately bound the

intensive-margin and extensive-margin components (1− ω)LATEIM and ωLATEEM .

1.7.2 Identification

Step 1: Identifying the Share of Extensive-Margin Compliers

The first step in deriving the target parameters is to identify the share of extensive-margin

compliers among all enrolled compliers, denoted ω in Equation (1.7). Appendix A.2 shows

that the mass of extensive-margin compliers on the barely-eligible side of the cutoff is iden-

tified by the discontinuity in the density of the running variable at the threshold:

π−EM = P (D1 > D0, S1 > S0 | S = 1, k = k∗−) =
fS=1(k∗−)− fS=1(k∗+)

fS=1(k∗−)
(1.9)

where fS=1(k) is the density of the running variable in the selected sample of enrolled

students, and where the notation k∗− and k∗+ denotes limits approaching the cutoff from

the left and right sides.
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It is also possible to identify the total mass of enrolled compliers on the barely-eligible

side of the threshold. Appendix A.2 shows that this total complier share is recovered by:

π−Complier = P (S1 = 1, D1 > D0 | S = 1, k = k∗−)

= D̄− − fS=1(k∗−)

fS=1(k∗+)
D̄+

(1.10)

where D̄− ≡ limr↑k∗ E[G | S = 1, k = r] and D̄+ ≡ limr↓k∗ E[G | S = 1, k = r] denote

the proportion of students with zero EFCs on the left and right of the cutoff in the sample

of enrolled students. Equation (1.10) is analogous to the standard Wald first stage, but

contains an additional sample-size correction term (fS=1(k∗−)/fS=1(k∗+)) which adjusts

for the fact that the left side of the cutoff includes additional students (the extensive-margin

compliers) who are not present to the right of the cutoff.

Because (1.9) identifies the mass of extensive margin compliers and (1.10) identifies the

mass of all compliers, the share of extensive-margin compliers among all compliers is identi-

fied by Bayes’ rule:

ω ≡
π−EM

π−Complier
= P (S1 > S0 | D1 > D0, S1 = 1, k = k∗−)

= P (EM Complier | Complier, k = k∗−)

(1.11)

The share ω measures the share of extensive-margin compliers among the overall enrolled

complier population on the barely-eligible side of the cutoff.

Table 1.2 reports estimates of complier shares obtained by estimating Equations (1.9)

through (1.11). The first row shows the estimate of π−EM, the overall mass of extensive-

margin compliers on the barely-eligible side of cutoff. The point estimate indicates that

5.2 percent of the population on the barely-eligible side of the cutoff consists of extensive-

margin compliers. The second row reports estimates from the modified first-stage regression
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Table 1.2: Estimates of Complier Shares

Quantity Symbol Derivation Estimate

EM Compliers on Eligible Side
π−EM Eqn. (1.9) 0.052

P (D1 > D0, S1 > S0 | S1 = 1, k = k∗−) (0.028)

Compliers on Eligible Side
π−Complier Eqn. (1.10) 0.398

P (D1 > D0 | S1 = 1, k = k∗−) (0.019)

EM Share of Compliers on Eligible Side
ω

(
π−EM/π

−
Complier

) 0.131
P (S1 > S0 | D1 > D0, S1 = 1, k = k∗−) (0.066)

Notes: This table reports estimates of complier shares for the population of students on the
eligible side of the Automatic Zero EFC threshold in two-year community colleges. The first row
reports the share of all students on the barely-eligible side of the cutoff who are extensive-margin
compliers. The second row reports the share of all students on the barely-eligible side of the
cutoff who are compliers (either extensive-margin or intensive-margin). The third row takes the
ratio of these two terms to report the share of all compliers who are extensive-margin compliers.
Bootstrap standard errors are in parentheses, where the optimal bandwidth for density estimation
is chosen separately within each of 500 bootstrap replications.

in (1.10), estimating that intensive and extensive margin compliers make up 39.8 percent of

the population on the barely-eligible side of the cutoff. Dividing these two numbers yields

the estimate that 13.1% of the complier population consists of extensive-margin compliers.

Step 2: Identifying Potential Outcome Means

The second step is to identify the potential outcome means which make up LATE∗, LATEIM ,

and LATEEM . Note first that by plugging (1.8) into (1.7), it is possible to express LATE∗

as:

LATE∗ = Ȳ
Complier
1 − (1− ω)Ȳ IM

0 − ωȲ EM
0 (1.12)
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where Ȳ Complier
1 represents the mean potential outcome in the treated state among all en-

rolled compliers, including both intensive-margin and extensive-margin compliers:

Ȳ
Complier
1 = (1− ω)Ȳ IM

1 + ωȲ EM
1 (1.13)

and where ω = P (S1 > S0 | S1 = 1, D1 > D0, k = k∗−) is the extensive-margin share

among compliers, identified by (1.11). Equation (1.12) shows that to identify LATE∗, it is

sufficient to identify Ȳ IM
0 , Ȳ Complier

1 , and Ȳ EM
0 . I address each potential outcome in turn.

Identifying Ȳ IM
0 and Ȳ Complier

1

Despite the missing-data challenge, Ȳ IM
0 — the mean untreated potential outcome of intensive-

margin compliers in their no-grant counterfactual — is still nonparametrically point identi-

fied. Appendix A.2.2 shows that this counterfactual mean potential outcome is given by:

Ȳ IM
0 = E[Y0 | S1 = S0 = 1, D1 > D0, k = k∗] =

Ȳ +
0 − Ȳ

−
0 κ0

1− κ0
(1.14)

where Ȳ +
0 = lim

k↓k∗
E[Y | S = 1, D = 0, k] and Ȳ −0 = lim

k↑k∗
E[Y | S = 1, D = 0, k] are

limits of the mean outcomes of untreated students approaching the cutoff from the right

and left, and where κ0 =
fS=1(k∗−)
fS=1(k∗+)

(1−D̄−)
(1−D̄+)

is a modified first stage ratio that corrects for

the fact that there is a greater mass of students on the eligible side of the cutoff. The

adjustment term κ0 adapts the complier-describing logic of Abadie (2002) to a case where

treatment leads some individuals to enter the sample. The intuition is the same: as intensive-

margin compliers become treated by crossing the threshold, the change in outcomes among

untreated units identifies the intensive-margin compliers’ counterfactual potential outcomes

in the untreated state.45 It is straightforward to verify that if there are no enrollment effects,

45. Equation (1.14) is a special case of a more general result proven in Gerard et al. (2020). Their paper de-
rives bounds on treatment effects of “non-manipulated” units in RD designs when there are also “manipulated”
units on one side of the cutoff. In this paper, the “non-manipulated” units correspond to intensive-margin
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then fS=1(k∗−) = fS=1(k∗+) and (1.14) collapses to a standard Abadie (2002)-style Wald

estimand where the numerator is a treatment-by-outcome interaction.

Appendix A.2.2 shows that a similar argument identifies the pooled mean potential out-

comes for treated intensive-margin and extensive-margin compliers:

Ȳ
Complier
1 = E[Y1 | S1 = 1, D1 > D0, k = k∗] =

Ȳ −1 − Ȳ
+
1 κ1

1− κ1
(1.15)

where Ȳ −1 and Ȳ +
1 are limits of the mean outcomes of treated students approaching the

cutoff from the left and right, and where κ1 =
fS=1(k∗+)
fS=1(k∗−)

D̄+

D̄− .

Identifying Ȳ EM
0

The final ingredient required to identify LATE∗ is Ȳ EM
0 , the mean untreated potential

outcome of extensive-margin compliers on the barely-ineligible side of the cutoff. Because

I only observe the running varaible for enrolled students, and because extensive-margin

compliers only enroll in college if they are treated, I cannot precisely estimate Ȳ EM
0 due to

the missing-data problem.

I address this problem by constructing a noisy measure of Ȳ EM
0 . Although my data do

not contain the running variable for students who do not attend college, the data contain

outcomes, including eventual B.A. completion and earnings, for all high school graduates.

I therefore estimate Ȳ EM
0 by taking means of outcomes over the population of high school

graduates who do not enroll in college within two years of graduating from high school.46

compliers and the “manipulated” units correspond to extensive-margin compliers. In contrast to their pa-
per, which assumes that manipulated units can be either treated or untreated, the exclusion restriction in
Assumption 2 implies that all extensive-margin compliers are treated, entering the 2-year sample if and only
if they receive a zero EFC as a result of crossing the grant assignment threshold. This requirement is key to
the point-identification results in this subsection.

46. Because students at the margin of receiving an Automatic Zero EFC are poorer than the overall
population of non-college-attending high school graduates, this proxy measure of Ȳ EM

0 is likely to be higher
than the true counterfactual mean outcomes of extensive-margin compliers at the cutoff. This, in turn, leads
to estimates of LATE∗ that are likely smaller than estimates based on the true value of Ȳ EM

0 . However,
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Combining this proxy measure of Ȳ EM
0 with the point-identified values of Ȳ Complier

1 and

Ȳ IM
0 from Equations (1.14) and (1.15) yields estimates of LATE∗ by Equation (1.12). In the

next subsection, I describe the bounding approach that allows me to decompose this overall

treatment effect into its intensive-margin and extensive-margin components.

Step 3: Bounds on Intensive-Margin and Extensive-Margin Effects

The remaining task is to decompose LATE∗ into its component intensive-margin and extensive-

margin effects, (1−ω)LATEIM and ωLATEEM . Because the weight ω and the counterfac-

tual mean potential outcomes Ȳ IM
0 and Ȳ EM

0 are identified, the last remaining ingredients

required to identify (1 − ω)LATEIM and ωLATEEM are the mean treated potential out-

comes Ȳ IM
1 and Ȳ EM

1 .

Note that Ȳ Complier
1 identifies a weighted average of Ȳ IM

1 and Ȳ EM
1 by (1.13). This expres-

sion is at the heart of the identification challenge. Comparisons across the grant threshold

are able to identify Ȳ Complier
1 , but not its component parts. Despite this identification chal-

lenge, it is possible to obtain meaningful bounds on Ȳ IM
1 and Ȳ EM

1 , and therefore on the

intensive-margin and extensive-margin effects (1− ω)LATEIM and ωLATEEM , given our

knowledge of the complier shares.

Worst-Case Bounds

The starting point for bounding Ȳ IM
1 and Ȳ EM

1 is to consider “worst-case” bounds (Gerard

et al. 2020; Lee 2009). These bounds are built from two identified quantities: the number of

extensive margin compliers ω, and the distribution of outcomes among the pooled set of all

because Ȳ EM
0 is weighted by the extensive-margin complier share ω in the calculation of LATE∗ in (1.12),

the overall bias in LATE∗ stemming from bias in Ȳ EM
0 is likely to be small.
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enrolled compliers at the threshold.47 The key intuition, first developed by Lee (2009), is that

no sample of size (1−ω) drawn from the complier population can have a lower mean treated

outcome than the lowest (1 − ω) fraction of this distribution. Hence, the mean outcome

among this lowest fraction is a “worst-case” bound for Ȳ IM
1 . A similar argument obtains an

upper bound for Ȳ IM
1 by assuming that intensive-margin compliers have the highest (1− ω)

outcomes in the distibution of complier outcomes.

To formalize this intuition, let HS1=1,D1>D0,k=k∗(y) denote the distribution of outcomes

among enrolled compliers at the threshold. Let yω and y(1−ω) denote the ω-quantile and

(1− ω)-quantile of HS1=1,D1>D0,k=k∗(y). Then Ȳ IM
1 is bounded by:

E[Y1 | S1 = 1, D1 > D0, Y1 ≤ y1−ω] ≤ Ȳ IM
1 ≤ E[Y1 | S1 = 1, D1 > D0, Y1 ≥ yω] (1.16)

Of course, each bound on Ȳ IM
1 also implies a bound on Ȳ EM

1 because the weighted aver-

age of these two terms must add up to the overall complier mean
(
Ȳ
Complier
1

)
by Equation

(1.13). Intuitively, if the intensive-margin compliers have the lowest (highest) (1 − ω) out-

comes among all compliers, then the extensive-margin compliers must have the remaining

highest (lowest) ω share of outcomes. The bounds in (1.16) therefore yield the following

no-assumptions bounds on Ȳ EM
1,1 :

E[Y1 | S1 = 1, D1 > D0, Y1 ≤ yω] ≤ Ȳ EM
1 ≤ E[Y1 | S1 = 1, D1 > D0, Y1 ≥ y(1−ω)]

47. Gerard et al. (2020) show that this distribution is identified by replacing the outcome in Equation
(1.15) with 1{Y ≤ y}, where y is a value in the support of the distribution of Y :

limk↑k∗ E[Y | G = 1, k]− κ1 limk↓k∗ E[Y | G = 1, k]

1− κ1
= E[1{Y1 ≤ y} | S1 = 1, D1 > D0, k = k∗]

= H(y | S1 = 1, D1 > D0, k = k∗)

where H(y | S1 = 1, D1 > D0, k = k∗) is the CDF of Y among units with (S1 = 1, D1 > D0, k = k∗),
evaluated at y.
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Mean Dominance

We can tighten these bounds by adding assumptions on the relationship between potential

outcomes and students’ complier types. The first assumption is that mean treated outcomes

among intensive-margin compliers are weakly larger than mean treated outcomes among

extensive-margin compliers:

Assumption 5 (Mean Dominance). Ȳ IM
1 ≥ Ȳ EM

1 .

Assumption 5 states that intensive-margin compliers, who would have attended college

even without having received a zero EFC, perform at least as well as extensive-margin

compliers brought into college attendance by receiving a zero EFC.48 Such a restriction is

consistent with the notion that students sort into college options based on their comparative

advantage (Kirkeboen et al. 2016).

Assumption 5 tightens bounds on treatment effects by raising the lower bound on Ȳ IM
1

and lowering the upper bound on Ȳ EM
1 . Specifically, because Y IM

1 and Ȳ EM
1 must have

Ȳ
Complier
1 as their weighted average, the constraint that Ȳ IM

1 ≥ Ȳ EM
1 implies that the lower

bound on Ȳ IM
1 and the upper bound on Ȳ EM

1 both become Ȳ Complier
1 , the pooled treated

mean potential outcome among all compliers.49

48. This assumption is a related to the Monotone Treatment Selection (MTS) restriction first introduced
by Manski and Pepper (2000), but is not identical. Standard applications of MTS make assumptions about
the potential outcomes of units who take up treatment versus the potential outcomes of units who do not.
For example, considering the “treatment” of attending a community college, a standard MTS assumption in
my setting might be:

E[Y1 | S = 1] ≥ E[Y1 | S = 0]

which would state that the potential outcomes of students who select into two-year schooling are different
from the potential outcomes of students who do not select into two-year schooling. Assumption (5) is slightly
different from such a condition because the populations on both sides of the equation Y IM

1 ≥ Y EM
1 enroll in

two-year schooling if they receive a zero EFC (S1 = 1). Rather than restricting expected values of treated
outcomes Y1 based on the observed college choice under grant assignment (S1), Assumption (5) instead
restricts potential outcomes based on the counterfactual college choice S0 that students would make if they
did not receive grants.

49. To see this, note that because Ȳ IM
1 and Ȳ EM

1 must average to Ȳ Complier
1 by (1.13), it cannot be the

case that Y IM
1 < Ȳ Complier

1 and Ȳ IM
1 > Ȳ EM

1 , because the average of a number (Y IM
1 ) with a smaller number

(Y EM
1 ) cannot produce a larger number (Ȳ Complier

1 ).
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Motivating the Mean Dominance Assumption with Identified Characteristics

Importantly, we can motivate the mean dominance assumption by comparing the pretreat-

ment characteristics of extensive-margin and intensive-margin compliers. Even though the

mean treated potential outcomes Ȳ IM
1 and Ȳ EM

1 are not separately point identified, the

pretreatment characteristics of students of both complier types are separately identified.

Replacing Y in Equation (1.13) with a predetermined characteristic X results in:

X̄Complier = (1− ω)X̄IM + ωX̄EM (1.17)

where the loss of the d subscript reflects the fact that predetermined characteristics do

not depend on treatment. Because X̄Complier is identified by (1.15) and X̄IM is identified

by (1.14), it is possible to solve (1.17) for X̄EM, obtaining the mean covariate values of

extensive-margin compliers.

Appendix Figure A.4.9 shows estimates of mean tenth-grade test scores for intensive-

margin and extensive-margin compliers at the Auto-Zero EFC Cutoff among students en-

rolled in two-year colleges. The point estimates indicate that extensive-margin compliers

are heavily negatively selected, with high school test scores more than 20 percentiles lower

than those of intensive-margin compliers. However, the estimates are imprecise, owing to

the fact that extensive-margin compliers represent a small fraction of the complier popu-

lation.50 The results indicate that extensive-margin compliers enter college with far lower

50. This imprecision arises because X̄EM is backed out of (1.17) by:

X̄EM =
X̄Complier − (1− ω)X̄IM

ω

In some bootstrap replications, the estimate of ω is small, leading to the conclusion that the (large) overall
decline in test scores is caused by the entry of a very small proportion of the population. This fact leads
to standard errors for X̄EM with a lower bound below zero, which is lower than permissible for a variable
defined as a 0-100 percentile. The upper end of the 90 percent confidence interval for the test scores of
EM compliers includes the level for IM compliers; nevertheless, the results suggest that extensive-margin
compliers are negatively selected and provide motivation for the mean-dominance assumption introduced in
Section 1.7.2.
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average levels of ability. As a result, they lend credence to the mean-dominance assumption,

which assumes that these students have weakly lower average graduation probabilities and

post-college earnings than intensive-margin compliers.

From Bounds on Treated Outcomes to Bounds on LATEs

Finally, I convert bounds on Ȳ IM
1 and Ȳ EM

1 into bounds on LATEIM and LATEEM

by subtracting the counterfactual means, Ȳ IM
0 (for intensive-margin compliers) and Ȳ EM

0

(for extensive-margin compliers). Because the extensive-margin complier share ω is point-

identified, the resulting bounds on LATEIM and LATEEM immediately yield bounds on

the intensive-margin and extensive-margin effects (1− ω)LATEIM and ωLATEEM .

1.7.3 Implementation

Estimating the bounds for discrete outcomes requires six ingredients: estimates of the density

to the left and right side of the cutoff (fS=1(k∗−)) and (fS=1(k∗+)), as well as limits of the

proportion of treated students approaching the cutoff from the left and right (D̄−, D̄+) and of

four limits of treatment-by-outcome interactions (Ȳ +
1 , Ȳ −1 , Ȳ +

0 , Ȳ −0 ). I estimate the densities

using the CDF-based estimator of Cattaneo et al. (2018) and estimate limiting quantities of

outcomes at the cutoff using local-linear regressions with optimal bandwidth set using the

method of Calonico et al. (2014).

1.8 Results: Nonparametric Bounds on Grant Treatment Effects

1.8.1 Overall Effects of Grant Aid

Figure 1.8 plots estimates of LATE∗, the overall effect of receiving a zero EFC on the

academic outcomes and earnings trajectories of community college students at the Auto-

Zero EFC cutoff. Appendix Tables A.5.6 and A.5.7 report the corresponding point estimates,
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together with estimates of the extensive-margin complier share ω and component potential

outcomes Ȳ Complier
1 , Ȳ IM

0 , and Ȳ EM
0 that comprise LATE∗ by equation (1.12).

Figure 1.8a shows results for BA completion. The results indicate that the overall impact

of grant aid on B.A. completion among intensive-margin compliers and extensive-margin

compliers is economically small and statistically indistinguishable from zero. Importantly,

this effect arises despite the fact that extensive-margin compliers, who are brought into

community college attendance as a result of being assigned a zero EFC, make up 13.1%

of the complier population. Appendix Table A.5.6 shows that the estimated counterfactual

B.A. completion rate for extensive-margin compliers is very small,51 meaning that the overall

treatment effects for all compliers are small despite the fact that the extensive-margin effect

ωLATEEM is bounded below almost at zero.

Figure 1.8b examines overall impacts on yearly earnings. The point estimates indicate

that zero-EFC recipients’ earnings fall by roughly $470 in the year of college entry, with point

estimates remaining negative through the fourth year after college enrollment. Estimated

impacts on earnings are positive five to seven years after entry, but are not statistically

significant, and are smaller in magnitude than estimated impacts for low-income four-year

students reported in Figure 1.6. Taken together, the results suggest that receiving an Auto-

Zero EFC lowers average earnings in the short term among the pooled set of intensive-margin

and extensive-margin compliers, but does not produce significant longer-run earnings gains.

Importantly, these null overall effects could reflect offsetting effects for intensive-margin

and extensive-margin compliers. Take earnings as an example. Because extensive-margin

compliers are induced by aid to enroll in college, earnings impacts on this group may be

negative as they forego full-time work in the labor market. In contrast, if intensive-margin

compliers exit community colleges more quickly as the result of aid, the impacts of this

group’s medium-run earnings may be positive as they re-enter the labor market. The next

51. for example, the estimate of Ȳ EM
0 for six-year B.A. completion is 0.007.
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Figure 1.8: Overall Effects of Aid at the Auto-Zero Threshold in Two-Year Community
Colleges
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Notes: This figure shows estimates of the overall local average treatment effect of receiving a Zero EFC on
BA Completion (Panel (a)) and yearly earnings (Panel (b)) for students at the Auto-Zero cutoff in two-
year community colleges. The figure reports estimates of the overall LATE∗ defined in Equation (1.12),
representing the pooled effect on both intensive-margin and extensive-margin compliers. See main text for
details. Appendix Tables A.5.6 and A.5.7 report point estimates and confidence intervals for the reported
overall LATE∗ estimates and their component parts.

two sections investigate this possibility, presenting bounds on grant aid’s intensive-margin

and extensive-margin impacts.

1.8.2 Bounds on Margin-Specific Treatment Effects

Impacts on B.A. Completion. Figures 1.9a and 1.9b report bounds on the treated

potential outcomes of intensive-margin and extensive-margin compliers, Ȳ IM
1 and Ȳ EM

1 . The

outcome is an indicator for whether a student completes a BA degree within 6 years of initial

college entry. Figure 1.9a shows no-assumptions bounds. The black downward-sloping line

plots the linear relationship between Ȳ IM
1 and Ȳ EM

1 specified by Equation (1.13), showing

all possible combinations of these two unknown quantities that are consistent with the share
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of extensive-margin compliers ω and the pooled treated potential outcome Ȳ Complier
1 .52 The

extrema of the line, and their projections onto the x and y axes, correspond to the worst-case

Lee (2009) bounds described in Equation (1.16). For example, the lower-right point of the line

describes the case where no intensive-margin compliers graduate, which by (1.13) implies a 45

percent graduation rate among extensive-margin compliers. The upper-left point describes

the opposite scenario in which no extensive-margin compliers graduate, corresponding to a 7

percent graduation rate among intensive-margin compliers. Importantly, the bounds contain

the counterfactual mean potential outcome for intensive-margin compliers, shown by the blue

horizontal dotted line. As a result, it is impossible to rule out without further assumptions

whether treatment effects for intensive-margin compliers are positive or negative.

Figure 1.9b adds the Mean-Dominance assumption, imposing the condition that intensive-

margin compliers fare weakly better than extensive-margin compliers in terms of their grad-

uation rates (Ȳ IM
1 ≥ Ȳ EM

1 ). The assumption is represented by the 45-degree line, defined

by (Ȳ IM
1 = Ȳ EM

1 ). The remaining permissible combinations of (Ȳ EM
1 , Ȳ IM

1 ) lie above the

45-degree line’s intersection with the black line. The assumption considerably narrows the

bounds for both groups. The lower bound for intensive-margin compliers and the upper

bound for extensive-margin compliers becomes 6 percent, which is the mean treated grad-

uation rate among all compliers Ȳ Complier
1 . Notably, imposing this assumption places the

lower bound for Ȳ IM
1 above the counterfactual mean potential outcome for intensive-margin

compliers, meaning that the lower bound for LATEIM becomes positive.

Figures 1.9c and 1.9d present the resulting bounds on LATEIM and LATEEM under

the mean-dominance assumption, obtained by subtracting the point-identified counterfactual

52. Specifically, the equation for the black downward-sloping line is obtained by rearranging (1.13):

Ȳ IM
1 =

Ȳ Complier
1

1− ω
− ω

1− ω
Ȳ EM
1

The line has slope (−ω/(1 − ω)) and y-intercept Ȳ Complier
1 /(1 − ω). Any permissible combination of

(Ȳ EM
1 , Ȳ IM

1 ) must lie somewhere on this line.
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means Ȳ IM
0 and Ȳ EM

0 from the upper and lower bounds shown in Panel (b). Figure 1.9c

indicates that receiving a Zero EFC has limited effects on the graduation probabilities of

intensive-margin compliers. The bounded ranges for LATEIM are positive at the four year

and six year horizons, but are economically small; at the six-year horizon, the estimates

suggest that recieiving a zero EFC improves intensive-margin compliers’ rates of 6-year B.A.

completion by no more than 1 percentage point. The bounds for extensive-margin compliers,

shown in Figure 1.9d, are large and include zero at every time horizon. However, note that

the linear relationship between Ȳ IM
1 and Ȳ EM

1 in (1.13) implies a relationship between the

intensive-margin and extensive-margin bounds. If the intensive-margin compliers are at the

lower bound for LATEIM , then Equation (1.13) implies that extensive-margin compliers

must be at their upper bound for LATEEM . Moreover, the vast majority of the bounded

range for LATEEM is above zero, implying that the only case in which treatment effects

for this population are not positive is one where intensive-margin compliers achieve nearly

the upper bound of LATEIM . Overall, the results are consistent with null effects on the

graduation rates of intensive-margin compliers, together with plausible evidence that being

brought into college attendance by receiving an automatic zero EFC improves extensive-

margin compliers’ graduation outcomes.

The intuition for these results can be summarized as follows. A naïve reduced-form

RD across the cutoff shows that 6-year graduation rates fall slightly across the threshold;

Appendix Figure A.4.11 shows that the overall graduation rate at the cutoff exhibits a

small and statistically insignificant negative jump, corresponding to an reduced-form point

estimate of −0.01. However, this negative jump combines two forces: treatment effects of

the grant, and compositional changes due to the entry of extensive-margin compliers on the

left of the cutoff. These forces may act in opposite directions, e.g. if the grant improves

B.A. completion rates but new students entering the sample on the eligible side of the cutoff

are less likely to graduate. If one imposes this belief upon the data, as in Figure 1.9b,
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Figure 1.9: Bounds on LATEIM and LATEEM : B.A. Completion
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(c) Bounds on LATEIM by Year
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Notes: This figure shows how the Mean-Dominance assumption tightens nonparametric bounds on treatment
effects. Panels (a) and (b) show bounds on treated potential outcomes for extensive-margin compliers (on the
x-axis) and intensive-margin compliers (on the y-axis), where the outcome is an indicator for completing a
BA degree within 6 years of college entry. The blue shaded regions show the bounded area for each complier
group. The blue dotted line shows the counterfactual mean outcome for intensive-margin compliers, denoted
Ȳ IM
0 in the main text. Panel (a) shows “no-assumptions” (e.g., (Lee 2009)) bounds. Panel (b) shows how the

Mean Dominance assumption (Assumption 5) tightens bounds by assuming that intensive-margin compliers
have weakly higher outcomes than extensive-margin compliers (represented by the red 45-degree line). Panels
(c) and (d) apply the mean-dominance assumption in order to estimate the effects of receiving a Zero EFC on
the graduation probability of intensive-margin compliers (Panel (c)) and extensive-margin compliers (Panel
(d)). The point estimates corresponding to the bounds shown in the figures are reported in Appendix Table
A.5.10.
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then one must also believe that the treatment of a zero EFC causes small and statistically

insignificant increases in BA completion rates among intensive margin compliers, ruling out

that a zero EFC harms intensive-margin students’ outcomes. Such a result is obfuscated

by the no assumptions bounds in Figure 1.9a, which do not make any assumptions about

the relative potential outcomes of different complier groups and thus cannot rule out that

a Zero EFC is so harmful to intensive-margin compliers that it reduces their rates of B.A.

completion to zero.

1.8.3 Are Intensive-Margin or Extensive-Margin Effects More Important?

The previous section reported bounds on LATEIM and LATEEM , the effects of receiving

a Zero EFC on the outcomes of intensive-margin and extensive-margin compliers. These

ingredients allow me to decompose grant aid’s overall effect into its intensive-margin and

extensive-margin components (1−ω)LATEIM and ωLATEEM . Figure 1.10 reports bounds

on these components, again using the mean dominance assumption to impose that the mean

treated outcomes of intensive-margin compliers are weakly higher than those of extensive-

margin compliers.

Figure 1.10a reports bounds on intensive-margin and extensive-margin earnings effects.

The left panel shows bounds on the extensive-margin effect ωLATEEM , and the right panel

shows bounds on the intensive-margin effect (1−ω)LATEIM . The figure shows two extreme

possibilities for how the intensive-margin and extensive-margin earnings effects combine to

form the overall effects of aid. At one extreme, represented by the upper bound for the

extensive-margin effect and the lower bound for the intensive-margin effect, neither the

extensive-margin impact nor the intensive-margin impact of the Auto-Zero EFC policy is

large. At the other extreme, the overall small effect of grant aid on students’ earnings

trajectories reflects large positive intensive-margin effects, offset by large negative extensive-

margin effects. Importantly, the bounds rule out either large positive extensive-margin effects
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or large negative intensive-margin effects, suggesting that extensive-margin effects do not

play a large positive role in determining the overall effects of grant aid on the future earnings

of students at this threshold.

Figure 1.10b reports bounds on intensive-margin and extensive-margin graduation effects.

The bounds imply that neither the extensive-margin effect nor the intensive-margin effect on

graduation is large. The extensive-margin component is limited because even though the im-

pact of grant aid on these students’ graduation rates (LATEEM ) can be large, these students

make up a small share (ω) of the overall complier population, which lowers their contribution

(ωLATEEM ) in making up the overall treatment effect. In contrast, the intensive-margin

component is limited because while intensive-margin compliers make up most of the complier

population, they do not see large increases in graduation probability from receiving a Zero

EFC.

Taken together, the results suggest that the extensive-margin channel does not play a

large positive role in shaping the overall impacts of aid on the earnings of community college

students on the margin of receiving an Automatic Zero EFC. This limited extensive-margin

effect is the result of two factors. First, the extensive-margin share of compliers is small,

limiting the contribution of these students to shaping the overall effect of grant aid on

students’ outcomes. Second, the earnings gains among these students are somewhat limited

under the mean-dominance assumption, which imposes that intensive-margin compliers have

weakly higher post-college earnings. These results arise despite the fact that receiving a zero

EFC may have large impacts on the B.A. completion rates of extensive-margin compliers, as

shown in Figure 1.9d. The results are consistent with earnings losses for extensive-margin

compliers despite these B.A. completion effects, as they exit the labor market to attend

college.
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Figure 1.10: Extensive- and Intensive-Margin Effects of Aid under Mean Dominance As-
sumption

(a) Bounds on ωLATEEM and (1− ω)LATEIM : Earnings
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(b) Bounds on ωLATEEM and (1− ω)LATEIM : BA Completion
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Notes: This figure reports bounds on the intensive-margin and extensive-margin effects of grant aid on the
outcomes of students at the Auto-Zero cutoff in two-year community colleges. Panel (a) shows bounds for
effects on yearly earnings, and Panel (b) shows bounds for effects on BA completion. The left panel of each
figure shows results for extensive-margin compliers, and the right panel shows results for intensive-margin
compliers. The bounds are constructed under the the mean dominance assumption (Assumption 5); see main
text for details. The figure represents two extremes on the jointly bounded outcomes for the two complier
groups. One extreme corresponds to the upper bound for extensive-margin compliers and the lower bound
for intensive-margin compliers. The other extreme corresponds to the lower bound for extensive-margin
compliers and the upper bound for intensive-margin compliers.
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1.9 Costs and Benefits of Grant Aid

In this section, I unify the analyses of the TEXAS Grant and the Automatic Zero EFC

policies by comparing the relative costs and benefits of providing additional grant aid at

each threshold.

1.9.1 Marginal Benefits and Costs

I model average per-student costs and benefits as a function of discounted yearly grants,

loans, earnings, and costs per enrolled student:

B =
T∑
t=1

βt−1E[Grantst + Loanst + (1− τ)Earningst − 1{Enrolled}t × δtuition]

C =
T∑
t=1

βt−1E[Grantst + Loanst − τEarningst + 1{Enrolled}t × δinstruction]

(1.18)

where β is the discount factor, τ is the tax rate on earnings, and δtuition and δinstruction

denote per-student tuition expenses and instructional costs.53 Equation (1.18) states that

benefits per enrolled student are the present discounted value of grants, loans, and after-tax

earnings, net of tuition costs incurred in every enrolled year. Costs to the government are

the discounted sum of grants, loans, and instructional expenditures per enrolled student, net

of tax receipts.54

Appendix A.3 shows that the marginal benefit of slightly expanding a grant program

by raising the grant threshold k∗ can be expressed in terms of overall LATEs for enrolled

53. I use β = 0.95 and a constant tax rate of τ = 0.33 to calculate marginal costs and benefits.

54. I abstract away from transfers between federal, state, and local governments and model the costs to
a unitary public sector, which provides public education and provides subsidies to students through grants
and loans.
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compliers:

∂B

∂k∗
=

[
T∑
t=1

βt−1 (LATE∗(Grantst) + LATE∗(Loanst) + (1− τ)LATE∗(Earningst))

− ω × δtuition︸ ︷︷ ︸
First-Year

Enrollment Effect
(EM Compliers)

− δtuition
T∑
t=2

LATE∗(Enrolledt)︸ ︷︷ ︸
Later-Year Enrollment Effects

(All Compliers)

]
× P (S1 = 1, D1 > D0 | k∗)f(k∗)︸ ︷︷ ︸

Mass of Enrolled Compliers

(1.19)

where LATE∗(Yt) = E[Y1,1 − YS0,0 | S1 = 1, D1 > D0, k = k∗] is the overall effect of the

grant treatment for outcome Yt, and where ω = P (S1 > S0 | S1 = 1, D1 > D0, k = k∗)

is the fraction of enrolled compliers at the threshold who are extensive-margin compliers.

Equation (1.19) shows that the marginal benefits of a grant expansion depend on the grant’s

overall impacts on students’ grants, loans, earnings, and enrollment trajectories. The term

(ω×δtuition) denotes first-year tuition for extensive-margin compliers who enroll in college as

a result of receiving a grant. Intensive-margin compliers do not incur this negative benefit,

because they enroll at t = 1 regardless of whether they are treated. In later years, the

negative benefits from tuition incorporate the effect of treatment on college persistence for

both extensive-margin and intensive-margin compliers.

Similarly, the marginal cost of raising the grant threshold is:

∂C

∂k∗
=

[
T∑
t=1

βt−1 (LATE∗(Grantst) + LATE∗(Loanst)− τLATE∗(Earningst))

+ δinstruction

ω +
T∑
t=2

LATE∗(Enrolledt)

]× P (S1 = 1, D1 > D0 | k∗)f(k∗)︸ ︷︷ ︸
Mass of Enrolled Compliers

(1.20)
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where again, the instructional costs term incorporates the first-year enrollment response of

extensive-margin compliers.

Importantly, the marginal cost and benefit terms do not require separately estimat-

ing LATEIM and LATEEM . Instead, they depend on LATE∗ = (1 − ω)LATEIM +

ωLATEEM , which pools the effects on both complier groups. As a result, while the bounds

in Section 1.7 are useful for separately considering the grant’s impacts on the outcomes of

intensive-margin and extensive-margin compliers, they are not necessary for evaluating the

overall costs and benefits of the grant expansion. Instead, the point-identified ingredients

Ȳ
Complier
1 , Ȳ IM

0 , and Ȳ EM
0 , together with the extensive-margin complier share ω, are suffi-

cient to characterize the LATE∗ terms by (1.12). This result underscores the usefulness of

the selection-corrected potential outcomes identified in Section 1.7. Even if the analyst only

observes data on enrolled students, it is possible to estimate the costs and benefits of grant

expansions given that a noisy measure of Ȳ EM
0 , the counterfactual mean outcomes among

extensive-margin compliers, is available.

The MVPF of a Grant Expansion

Taking the ratio of (1.19) and (1.20) yields the MVPF (Hendren and Sprung-Keyser 2020)

of a marginal expansion of the grant threshold k∗:

MVPFk∗

=

T∑
t=1

βt−1
(
∆∗t (Grant) + ∆∗t (Loan) + (1− τ)∆∗t (Earn)

)
+ δtuition

(
1 +

T∑
t=2

∆∗t (Enroll)

)
T∑
t=1

βt−1
(
∆∗t (Grant) + ∆∗t (Loan)− τ∆∗t (Earn)

)
+ δinstructional

(
1 +

T∑
t=2

∆∗t (Enroll)

)
(1.21)

where ∆∗t (Yt) is shorthand for LATE∗(Yt). Equation (1.21) measures the value of the grant

program net of the fiscal externality from potential increases in government tax revenue
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owing to the grant’s treatment effect on students’ lifetime earnings.

Implementation

For students enrolled in four-year colleges, the results in Section 1.4 indicate that neither

the TEXAS Grant nor the increase in grant aid at the Auto-Zero threshold impacts stu-

dent enrollment. In this case, there are no extensive-margin compliers, so that ω = 0 and

LATE∗ = LATEIM , simplifying the marginal cost and benefit formulas. I further assume

(following the results in Section 1.5) that the TEXAS Grant has no meaningful impact on

students’ reenrollment probabilities, meaning the TEXAS Grant’s costs and benefits boil

down to its intensive-margin effects on grants, earnings, and loans. In contrast, the increase

in aid at the Auto-Zero threshold has positive impacts on initial enrollment among students

in two-year community colleges. For students at this treatment margin, I calculate yearly

treatment effects in terms of the combined LATE∗ identified by Equation (1.12).

1.9.2 Results

Table 1.3 reports estimates of the overall costs and benefits of grant aid for students at

the three program margins: middle-income four-year students at the margin of the TEXAS

Grant, and low-income four-year and community college students at the margin of the Au-

tomatic Zero EFC cutoff. There are several key takeaways. First, for the TEXAS Grant and

the Automatic Zero EFC cutoff in two-year colleges, the benefits of grant aid do not exceed

the costs. For the TEXAS Grant, this effect arises because the grant fails to produce mean-

ingful gains in later-life earnings that make up for the cost of providing grant aid. Column

(1) shows that TEXAS Grant recipients receive a total discounted sum of roughly $13,700

in additional grant aid in the years following receiivng a TEXAS Grant, causing a $2, 000

decline in earnings and a roughly $4, 400 decline in loans. As a result, the grant represents

a net transfer of $7, 700 to TEXAS Grant compliers. The government saves money on the

74



loans that would have been taken out by compliers, but loses roughly $1,000 in tax revenues

that would have otherwise been collected from the compliers’ labor market earnings, corre-

sponding to a net cost of roughly $11, 000. Put together, I estimate that the MVPF of a

marginal increase in the TEXAS Grant cutoff is 0.7, indicating benefits to compliers that

are less than the grant’s costs.

Column (3) shows that for the Automatic Zero EFC cutoff in two-year schools, the com-

parison of costs and benefits is even less favorable. The entry of extensive-margin compliers

into the sample lowers benefits and increases costs due to increases in tuition and institutional

expenditures. In addition, because the grant increase at the cutoff does not produce overall

earnings gains for two-year students, the government does not recoup the costs of providing

grant aid to students at the margin. Overall, while the benefits are positive for students at

the margin of grant reciept, they are overwhelmed by the cost increases, producing a MVPF

of roughly 0.3.

In contrast, Column (2) shows that for the Automatic Zero EFC cutoff in four-year

schools, the benefits of providing grant aid are more than double the costs. The main reason

for this difference is the grant’s positive impact on students’ lifetime earnings, which far

outweigh increases in students’ tuition costs stemming from the grant’s impact on college

persistence. The goverment recoups some of these earnings increases as tax revenue, lowering

the overall costs. While this estimate indicates a positive MVPF from expenditures of public

funds on four-year college students at the margin of the Auto-Zero cutoff, it is smaller than

the infinite MVPF estimated by Denning et al. (2019), who find that the increase in grant

aid to students is likely to be fully recouped by the government within 10 years. The reason

for this discrepancy is that my cost-benefit framework includes impacts on persistence, which

lowers benefits for students (by increasing tuition) and increases costs to the government (by

increasing institutional expenditures).

Overall, the results indicate that budget-neutral reallocations of funding to students at
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the Auto-Zero cutoff in four-year schools, financed by reductions in funding at the other two

treatment margins, are likely to be welfare enhancing. Among four-year college students,

such a reallocation would imply aggregate benefits from lowering the TEXAS Grant thresh-

old, targeting grant aid towards lower-income students at the margin of receiving a Zero

EFC rather than funding comparatively higher-income students at the margin of receiving

a TEXAS Grant. Among the overall population of lower-income students at the margin of

receiving an Automatic Zero EFC, the results suggest benefits from reallocating grant aid

from the two-year to the four-year sector. The results suggest that despite the fact that

while receiving Zero EFC has substantial impacts on two-year college enrollment, the overall

gains in earnings and B.A. completion among compliers are not sufficiently large to justify

spending public funds on this population instead of on four-year students.

1.10 Conclusion

The goal of this paper was to compare the costs and benefits of grant aid targeted at dif-

ferent groups of students and college sectors, and to understand the contributions of the

intensive and extensive margins in shaping aid’s overall effects. To achieve this goal, I de-

veloped an economic framework that decomposed the overall impact of grant aid into its

separate impacts on the outcomes of “extensive-margin” and “intensive-margin” students.

While extensive-margin students are induced by grant aid to enroll in college, intensive-

margin students would attend college even without additional aid, but nevertheless may

benefit from additional financial support while enrolled.

I applied the framework to administrative data from Texas, where several discontinu-

ities in grant aid award rules create variation in aid targeting three distinct populations

of students: middle-income students in four-year colleges, low-income students in four-year

colleges, and low-income students in community colleges. I analyzed grant aid’s impact at

these margins using variation from income-based cutoff rules provided by two programs.
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Table 1.3: Costs and Benefits of Grant Programs

TEXAS Grant Auto-Zero (4-Year) Auto-Zero (2-Year)
(1) (2) (3)

Panel A. Benefits
After-Tax Earnings -2,088 2,653 -451
Grants 13,733 3,270 2,748
Loans -4,447 105 81
Tuition and Fees 0 -409 -739

Total Discounted Benefits 7,700 7,779 1,761

Panel B. Costs
Tax Receipts 1,029 -1,307 222
Grants 13,733 3,270 2,748
Loans -4,447 105 93
Institutional Expenditures 0 1,642 2,958

Total Discounted Costs 11,070 3,255 6,237

MVPF 0.70 2.39 0.28
BCR 0.30 2.92 1.70

Notes: This table reports estimates of the costs and benefits of the TEXAS Grant and the increase
in grant aid associated with crossing the Automatic Zero EFC threshold. Benefits to students are
defined as the sum of after-tax earnings, grant receipts, loan awards, and changes in tuition, defined as
the change in the probability of reenrollment multiplied by statewide average tuition and fees. Costs
are defined as grants, loans, and expenditures net of tax revenues, where changes in expenditures are
calculated as enrollment effects multiplied by statewide average institutional costs per full-time-enrolled
student. Expenditure is calculated as average statewide four-year institutional expenditures per full-
time enrolled student, calculated separately for 2-year and 4-year students using 2008-2012 IPEDS data
and weighted by effects on enrollment. Tuition is calculated similarly using average statewide tuition
and fees in 2-year and 4-year schools. I use a constant tax rate of 0.33 to calculate after-tax earnings
and tax receipts. I use a deadweight loss of φ = 0.5 to calculate the benefit-cost ratio.
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The first is the TEXAS Grant, the state of Texas’s flagship need-based financial aid pro-

gram for four-year public university students. The second is a discontinuity in the federal

government’s formula that influences whether a student receives a zero Expected Family

Contribution (EFC). Analyzing the impact of aid at these margins required overcoming a

missing-data problem: because the data contain all enrolled students rather than all appli-

cants, discontinuities in outcomes at the eligibility threshold may conflate the causal effects

of grants with compositional changes in enrolled students. I developed a bounding approach

to overcome this missing-data problem, yielding three main conclusions. First, grant aid

targeted at low-income applicants to four-year colleges has large positive impaccts on college

persistence, bachelor’s degree completion, and future earnings. Second, there is little if any

overall effect of additional aid on these outcomes for middle-income students in four-year

colleges and low-income students in community colleges. Third, across all three treatment

margins studied, the extensive-margin impacts of grant aid on overall outcomes is small.
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APPENDIX A

APPENDIX

A.1 Identification with Data on All Applicants

A.1.1 Fuzzy RD in Enrollment-Selected Data is Biased (Equation 1.4)

This section shows that Fuzzy RD does not recover a valid LATE for any subpopulation

when grants cause enrollment and data is limited to enrolled students. Consider the fuzzy

RD estimand in the sample of enrolled students (S = 1):

limk↑k∗ E[Y | S = 1, k]− limr↓k E[Y | S = 1, k]

limk↑k∗ E[D | S = 1, k]− limk↓k∗ E[D | S = 1, k]

First, consider the terms in the numerator. Using Assumptions 1 and 4, we can expand

the limit of E[Y | S = 1, k] approaching the cutoff from the left (eligible) side into mean

potential outcomes for each complier stratum:

lim
k↑k∗

E[Y | S = 1, k]

= E[Y1 | D1 > D0, S1 = S0 = 1, k = k∗]P (D1 > D0, S1 = S0 = 1 | k = k∗−, S = 1)

+ E[Y1 | D1 = D0 = 1, S1 = S0 = 1, k = k∗]P (D1 = D0 = 1, S1 = S0 = 1 | k = k∗−, S = 1)

+ E[Y1 | D1 > D0, S1 > S0, k = k∗]P (D1 > D0, S1 > S0 | k = k∗−, S = 1)

+ E[Y1 | D1 = D0 = 1, S1 > S0, k = k∗]P (D1 = D0 = 1, S1 > S0 | k = k∗−, S = 1)

+ E[Y0 | D1 = D0 = 0, S1 = S0 = 1, k = k∗]P (D1 = D0 = 0, S1 = S0 = 1 | k = k∗−, S = 1)

(A.1)
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By a similar expansion, we can write limk↓k∗ E[Y | S = 1, k∗] as:

lim
k↓k∗

E[Y | S = 1, k]

= E[Y0 | D1 > D0, S1 = S0 = 1, k = k∗]P (D1 > D0, S1 = S0 = 1 | k = k∗+, S = 1)

+ E[Y1 | D1 = D0 = 1, S1 = S0 = 1, k = k∗]P (D1 = D0 = 1, S1 = S0 = 1 | k = k∗+, S = 1)

+ E[Y1 | D1 = D0 = 1, S1 > S0, k = k∗]P (D1 = D0 = 1, S1 > S0 | k = k∗+, S = 1)

+ E[Y0 | D1 = D0 = 0, S1 = S0 = 1, k = k∗]P (D1 = D0 = 0, S1 = S0 = 1 | k = k∗+, S = 1)

(A.2)

As discussed in Appendix A.2, the notation k∗+ and k∗− denote limits of sample shares

to the left and right of the cutoff in enrollment-sepected data. To relate these shares to each

other, note that by Bayes’ rule we can write:

P (W | k = k∗+) =
fS=1(k∗+ | W )P (W | S = 1)

fS=1(k∗+)

P (W | k = k∗−) =
fS=1(k∗− | W )P (W | S = 1)

fS=1(k∗−)

where fS=1(k) is the density of the running variable in enrollment-selected data, and where

W denotes any complier stratum defined by values of D1, D0, S1, and S0. Rearranging gives:

P (W | k = k∗−, S = 1) =
fS=1(k∗+)

fS=1(k∗−)
P (W | k = k∗+, S = 1) (A.3)
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Using (A.3) to re-write (A.1) and subtracting (A.2) yields, after some algebra:

lim
k↑k∗

E[Y | S = 1, k]− lim
k↓k∗

E[Y | S = 1, k]

= E[Y1 − Y0 | D1 > D0, S1 = S0 = 1, S = 1, k = k∗]︸ ︷︷ ︸
LATEIM

P (D1 > D0, S1 = S0 = 1 | S = 1, k = k∗)︸ ︷︷ ︸
π−IM

+ E[Y1 | D1 > D0, S1 > S0︸ ︷︷ ︸
EM Complier

, S1, k = k∗]P (D1 > D0, S1 > S0 | k = k∗−, S = 1)︸ ︷︷ ︸
π−EM

−
(

1− fS=1(k∗+)

fS=1(k∗−)

)
︸ ︷︷ ︸

(∗)

(
lim
k↓k∗

E[Y | S = 1, k]

)

In Appendix A.2.1 I prove that the starred term (∗) equals π−EM = P (D1 > D0, S1 > S0 |

k = k∗−, S = 1). Using this result, the numerator becomes:

LATEIMπ−IM +

(
E[Y1 | EM Complier]− lim

k↓k∗
E[Y | S = 1, k]

)
π−EM (A.4)

Now consider the denominator, limk↑k∗ E[D | S = 1, k]− limk↓k∗ E[D | S = 1, k]. Writing

D̄+ and D̄− as shorthand for these limits, note that we can write:

D̄+ − D̄− =

(
D̄− − fS=1(k∗+)

fS=1(k∗−)
D̄−
)

︸ ︷︷ ︸
(†)

−
(

1− fS=1(k∗+)

fS=1(k∗−)

)
︸ ︷︷ ︸

(∗)

D̄+

Appendix A.2.1 shows that the term (†) equals π−IM , and the term (∗) equals π−EM . As a

result, we have:

D̄+ − D̄− = π−IM − π
−
EM (1 + D̄+) (A.5)

Dividing (A.4) by (A.5) yields Equation (1.4) in the main text, completing the proof.
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A.1.2 Derivation of LATE∗ (Equation 1.7)

By Equation (1.1), we have LATE = E[Y1−Y0 | D1 > D0, k = k∗]. Expand this LATE into

two cases defined by whether students enroll in the treated state (S1 = 1):

LATE = LATE∗ × P (S1 = 1 | D1 > D0, k = k∗)

+ E[Y1 − Y0 | S1 = 0, D1 > D0, k = k∗]︸ ︷︷ ︸
(∗)

P (S1 = 0 | D1 > D0, k = k∗)

where LATE∗ = E[Y1 − Y0 | S1 = 1, D1 > D0, k = k∗] is the local average treatment

effect on “enrolled compliers”: students who receive grants as a result of crossing the grant

threshold (D1 > D0), and who enroll in the treated state (S1 = 1). The starred term (∗) is

zero by Assumption 3, which states that grants only affect outcomes if students enroll. The

decomposition in Equation (1.7) immediately follows by expanding LATE∗ into:

LATE∗ = E[Y1 − Y0 | S1 = S0 = 1, D1 > D0, k = k]P (S0 = 1 | S1 = 1, D1 > D0, k = k∗)

+ E[Y1 − Y0 | S1 > S0, D1 > D0, k = k]P (S0 = 0 | S1 = 1, D1 > D0, k = k∗)

= LATEIM × (1− ω) + LATEEM × ω

A.2 Identification with Data Restricted to Enrolled Students

This appendix shows how to derive important quantities with data subject to sample selec-

tion. I first show point-identification of the following sample shares:

P (Treated Complier | S = 1, k = k∗−) ≡ P (S1 = 1, D1 > D0 | S = 1, k = k∗−)

P (IM Complier | S = 1, k = k∗−) ≡ P (S1 = S0 = 1, D1 > D0 | S = 1, k = k∗−)

P (EM Complier | S = 1, k = k∗−) ≡ P (S1 > S0, D1 > D0 | S = 1, k = k∗−)
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where the notation k = k∗− denotes limits of the relevant quantity approaching the cutoff

from the left. Then I show how to point-identify the following potential outcome means:

E[Y1 | Treated Complier] ≡ E[Y1 | S1 = 1, D1 > D0, k = k∗]

E[Y0 | IM Complier] ≡ E[Y0 | S1 = 1, S0 = 1, D1 > D0, k = k∗]

The selection problem is that the running variable is not available for the S = 0 sample.

As a result, it is not possible to derive the full-sample analogues of sample shares. Instead, I

show how to derive sample shares in the selected sample of four-year students immediately

to the left of the cutoff, and show how the data are still sufficient to point-identify certain

potential outcome means in the full sample.

The identification proofs in this section measure selection behavior using the densities

of the running variable k in various samples. Throughout, I assume that the full-sample

distribution of k, written f(k), is continuous at the cutoff k∗. However, this full-sample

distribution is not observed because data is missing for students who forego college. Instead,

we observe the distribution of the running variable in selected samples:

f(k) = fS=1(k)︸ ︷︷ ︸
observed

×P (S = 1) + f0(k)︸ ︷︷ ︸
observed

×P (S = 0)

where fs(k) = f(k | S = s).

As a result of this selection problem, while Assumption (2) ensured continuity of po-

tential outcomes and potential college choices in the full sample, this continuity does not

necessarily hold in selected samples, as crossing the threshold leads some students to leave

one sample and enter another. The proofs in this appendix leverage the fact that discon-

tinuities in the densities of k selected samples in fact measure these selection responses to

grant receipt. Throughout, I use the notation k∗+ and k∗− to denote limits of the relevant
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quantity approaching the cutoff from the right and the left.

Some of these identification arguments extend proofs originally derived by Gerard et al.

(2020), who derive bounds for treatment effects in regression discontinuity designs subject

to manipulation. In contrast to their framework, which derives bounds for non-manipulated

units in a setting where some units on the treated side of the cutoff are manipulated, my

framework assumes that the full-sample distribution of the running variable is not manipu-

lated, but uses a similar limiting-densities argument to address sample selection.1

A.2.1 Point-identification of population shares from densities

Identifying the mass of treated compliers

To identify P (Treated Complier | S = 1, k = k∗−) ≡ P (S1 = 1, D1 > D0 | S = 1, k = k∗−),

let D̄+ and D̄− denote the share of treated students to the left and right of the cutoff in the

enrolled sample:

D̄+ ≡ lim
k↓k∗

E[D | S = 1, Z = 0] = E[D | S = 1, k = k∗+]

D̄− ≡ lim
k↑k∗

E[D | S = 1, Z = 1] = E[D | S = 1, k = k∗−]

Let fS=1(k) = f(k | S = 1) denote the density of EFC conditional on enrollment. Let

fS=1(k∗−) and fS=1(k∗+) denote the limits of this density approaching the cutoff from the

left and right. To the right of the cutoff we have D = D0, and to the left we have D = D1.

1. Here is a mapping between concepts in Gerard et al. (2020) (GRR) and this paper. The full sample in
GRR is analogous to the S = 1 sample in my paper, and the M = 1 group in their paper corresponds to the
extensive margin compliers (S1 > S0, D1 > D0) in this paper. Furthermore, in the notation of their paper,
τ0 = 0 in my setting because there are no “manipulated” untreated units to the left of the cutoff; students
only enter the enrolled sample as a result of being awarded a grant.
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All grant recipients to the right of the cutoff are grant always-takers, allowing us to

expand D̄+ as follows:

D̄+ ≡ lim
k↓k∗

E[D | S = 1]

= P (D0 = 1 | S = 1, k = k∗+)

= P (D0 = D1 = 1 | S = 1, k = k∗+)

= P (D0 = D1 = 1, S1 = 1 | S = 1, k = k∗+)

=
fS=1(k∗+ | S1 = 1, D1 = D0 = 1)P (S1 = 1, D1 = D0 = 1 | S = 1)

fS=1(k∗+)

(A.6)

where the third equation comes from the grant monotonicity assumption, the fourth equation

is by the law of total probability, and the fifth equation is by Bayes’ theorem.

In contrast, grant recipients to the left of the cutoff are a mix of grant always-takers and

grant compliers:

D̄− ≡ lim
k↑k∗

E[D | S = 1]

= P (D1 = 1 | S = 1, k = k∗−)

= P (D1 > D0 | S = 1, k = k∗−) + P (D1 = D0 = 1 | S = 1, k = k∗−)

= P (D1 > D0, S1 = 1 | S = 1, k = k∗−) + P (D1 = D0 = 1, S1 = 1 | S = 1, k = k∗−)

=
1

fS=1(k∗−)

(
fS=1(k∗− | S1 = 1, D1 > D0)P (S1 = 1, D1 > D0 | S = 1)

+ fS=1(k∗− | S1 = 1, D1 = D0 = 1)P (S1 = 1, D1 = D0 = 1 | S = 1)
)

(A.7)
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Combining and rearranging (A.6) and (A.7) yields:

D̄− − fS=1(k∗+)

fS=1(k∗−)
D̄+ =

fS=1(k∗− | S1 = 1, D1 > D0)P (S1 = 1, D1 > D0 | S = 1)

fS=1(k∗−)

= P (S1 = 1, D1 > D0 | S = 1, k = k∗−)

≡ P (Treated Complier | S = 1, k = k∗−)

(A.8)

where the first equation uses the fact that fS=1(k∗− | S1 = 1, D1 = D0 = 1) = fS=1(k∗+ |

S1 = 1, D1 = D0 = 1),2 and the second equation comes from Bayes’ theorem.

Equation (A.8) identifies the fraction of the four-year sample directly to the left of the

cutoff who are grant compliers. We can expand this population into the two complier mar-

gins:

P (Treated Complier | S = 1, k = k∗−) ≡ P (S1 = 1, D1 > D0 | S = 1, k = k∗−)

= P (S1 = S0 = 1, D1 > D0 | S = 1, k = k∗−)

+ P (S1 > S0, D1 > D0 | S = 1, k = k∗−)

= P (IM Complier | S = 1, k = k∗−)

+ P (EM Complier | S = 1, k = k∗−)

(A.9)

2. To see this, use Bayes’ theorem to write:

fS=1(k∗− | S1 = 1, D1 = D0 = 1) =

=1︷ ︸︸ ︷
P (S = 1 | S1 = 1, D1 = D0 = 1)

=f(k∗|S1=1,D1=D0=1)︷ ︸︸ ︷
f(k∗− | S1 = 1, D1 = D0 = 1)

P (S = 1 | S1 = 1, D1 = D0 = 1)

=
f(k∗ | S1 = 1, D1 = D0 = 1)

P (S = 1 | S1 = 1, D1 = D0 = 1)

where the second equation comes from Assumption (2), as f(k∗− | S1 = 1, D1 = D0 = 1) is defined on
the full sample, not on a selected sample. Finally, note that we would get the an equal result expanding
fS=1(k∗+ | S1 = 1, D1 = D0 = 1) the same way.
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Identifying the mass of extensive-margin compliers

To identify P (EM Complier | S = 1, k = k∗−), note that under Assumptions 1 and 4, we can

break the enrolled sample on the right (ineligible) side of the cutoff into four subpopulations

defined by possible combinations of (S0, S1, D0, D1):3

fS=1(k∗+) =

=0︷ ︸︸ ︷
fS=1(k∗+ | S1 > S0, D1 > D0)P (S1 > S0, D1 > D0 | S = 1)

+ fS=1(k∗+ | S0 = S1 = 1, D1 > D0)P (S1 = S0 = 1, D1 > D0 | S = 1)

+ fS=1(k∗+ | S0 = S1 = 1, D1 = D0 = 0)P (S0 = S1 = 1, D1 = D0 = 0 | S = 1)

+ fS=1(k∗+ | S1 = 1, D1 = D0 = 1)P (D1 = D0 = 1 | S = 1)

where fS=1(k∗+ | S1 > S0, D1 > D0) = 0 because extensive-margin grant compliers only

enter the four-year sample if they receive grants, which only happens if they are on the left

3. They are:

• D1 > D0, S1 > S0: Extensive-margin grant compliers. These students receive a grant if and only if
they cross the grant threshold (D1 > D0), and attend four-year schools if and only if they receive a
grant (S1 > S0). For this reason, they appear only on the left side of the cutoff in the S = 1 sample,
not on the right.

• D1 > D0, S0 = S1 = 1: Intensive-margin grant compliers. These students do not receive a grant
because they are on the right of the threshold, but would receive a grant if moved to the left of
the threshold (D1 > D0). However, they attend four-year college despite not being offered a grant
(S0 = S1 = 1).

• D1 = D0 = 0, S0 = S1 = 1: Intensive-margin grant never-takers. These students do not receive a
grant regardless of whether they cross the threshold (D0 = D1 = 0). However, they attend four-year
college regardless of grant receipt (S1 = S0 = 1).

• D1 = D0 = 1, S1 = 1: Intensive-margin grant always-takers. These students receive a grant despite
being on the “wrong” side of the cutoff (D0 = 1), and enroll in college (S1 = 1). Note that this
population can be broken down further into students with S0 = 1 and students with S0 6= 1, but this
decomposition is not necessary for the proof.
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of the cutoff. The expansion of fS=1(k∗−) incorporates extensive-margin grant compliers:

fS=1(k∗−) = fS=1(k∗− | S1 > S0, D1 > D0)P (S1 > S0, D1 > D0 | S = 1)

+ fS=1(k∗− | S0 = S1 = 1, D1 > D0)P (S1 = S0 = 1, D1 > D0 | S = 1)

+ fS=1(k∗− | S0 = S1 = 1, D1 = D0 = 0)P (S0 = S1 = 1, D1 = D0 = 0 | S = 1)

+ fS=1(k∗− | S1 = 1, D1 = D0 = 1)P (D1 = D0 = 1 | S = 1)

Letting W denote groups of students, note that f(k∗− | W,S = 1) = f(k∗+ | W,S = 1)

for each of the principal strata W ∈ {(S0 = S1 = 1, D1 > D0), (S0 = S1 = 1, D1 = D0 =

0), (S1 = 1, D1 = D0 = 1)}. To see this, note that by Bayes’ theorem, we can write both

f(k∗+) and f(k∗−) as:

f(k∗(sgn) | W,S = 1) =

=1︷ ︸︸ ︷
P (S = 1 | W,k = k∗(sgn))

=f(k∗|W )︷ ︸︸ ︷
f(k∗(sgn) | W )

P (S = 1 | W )
=

f(k∗ | W )

P (S = 1 | W )

which holds for both (sgn) ∈ {+,−} and shows that f(k∗+ | W,S = 1) = f(k∗− | W,S = 1)

for all W ∈ {(S0 = S1 = 1, D1 > D0), (S0 = S1 = 1, D1 = D0 = 0), (S1 = 1, D1 = D0 =

1)}. The same equality does not hold for W = (S1 > S0, D1 > D0), because P (S = 1 | S1 >

S0, D1 > D0, k = k∗−) = 0 while P (S = 1 | S1 > S0, D1 > D0, k = k∗−) = 1 due to the fact

that extensive-margin compliers appear only to the left of the cutoff.

As a result, differencing the conditional densities in the enrolled sample across the cutoff

yields:

fS=1(k∗−)− fS=1(k∗+) = fS=1(k∗− | S1 > S0, D1 > D0)P (S1 > S0, D1 > D0 | S = 1)
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It follows from Bayes’ theorem that:

fS=1(k∗−)− fS=1(k∗+)

fS=1(k∗−)
= P (S1 > S0, D1 > D0 | S = 1, k = k∗−)

= P
(
EM Complier | S = 1, k = k∗−

) (A.10)

which identifies the mass of extensive-margin compliers in the enrolled sample to the left of

the cutoff.

Identifying the mass of intensive-margin compliers

Combining (A.9) and (A.10) immediately yields the mass of intensive-margin compliers:

P (IM Complier | S = 1, k = k∗−) =

(
D̄− − fS=1(k∗+)

fS=1(k∗−)
D̄+
)

︸ ︷︷ ︸
Treated Compliers

− fS=1(k∗−)− fS=1(k∗+)

fS=1(k∗−)︸ ︷︷ ︸
EM Compliers

(A.11)

With the sample shares in hand, it remains to identify the counterfactual means.

A.2.2 Point-Identification of Counterfactual Means

We wish to identify:

• E[Y0 | S1 = 1, S0 = 1, D1 > D0, k = k∗]

• E[Y1 | S1 = 1, D1 > D0, k = k∗]
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Both sides of the cutoff contain grant-receiving and non-grant-receiving students (D ∈

{0, 1}). We therefore observe four conditional mean outcomes directly from the data:

Ȳ +
1 ≡ lim

k↓k∗
E[Y | S = 1, D = 1, Z = 0]

Ȳ +
0 ≡ lim

k↓k∗
E[Y | S = 1, D = 0, Z = 0]

Ȳ −1 ≡ lim
k↑k∗

E[Y | S = 1, D = 1, Z = 1]

Ȳ −0 ≡ lim
k↑k∗

E[Y | S = 1, D = 0, Z = 1]

as well as the share of treated students to the left and right of the cutoff:

D̄+ ≡ lim
k↓k∗

E[D | S = 1, Z = 0] = E[D | S = 1, k = k∗+]

D̄− ≡ lim
k↑k∗

E[D | S = 1, Z = 1] = E[D | S = 1, k = k∗−]

and the limiting densities fS=1(k∗+) and fS=1(k∗+) of the running variable on either side

of the cutoff.

First, note that grant monotonicity (Assumption 1) implies that crossing the grant thresh-

old can only increase the probability that a student receives a grant. Thus, all of the units to

the right of the threshold who receive grants (D = 1, Z = 0) are grant always-takers, and all

of the units to the left of the threshold who do not receive grants (D = 0, Z = 1) are grant

never-takers. Futhermore, any student who enrolls not receiving a grant (S = 1, D = 0) must

have (S1 = S0 = 1) by Assumption 4. Therefore Ȳ −0 and Ȳ +
1 identify potential outcomes
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for enrolled grant never-takers and enrolled grant always-takers:

Ȳ −0 ≡ lim
k↑k∗

E[Y | S = 1, D = 0, Z = 1]

= lim
k↑k∗

E[Y0 | S = 1, D = 0, Z = 1]

= lim
k↑k∗

E[Y0 | S0 = 1, D1 = 0]

= E[Y0 | S0 = 1, D1 = D0 = 0, k = k∗] (by continuity and grant monotonicity)

= E[Y0 | S0 = S1 = 1, D1 = D0 = 0, k = k∗] (by enrollment monotonicity)

and:

Ȳ +
1 ≡ lim

k↓k∗
E[Y | S = 1, D = 1, Z = 0]

= lim
k↓k∗

E[Y1 | S = 1, D = 1, Z = 0]

= lim
k↓k∗

E[Y1 | S1 = 1, D0 = 1]

= E[Y1 | S1 = 1, D1 = D0 = 1, k = k∗] (by continuity and grant monotonicity)
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In contrast, untreated mean outcomes for four-year students to the right of the cutoff are a

weighted average across grant compliers and grant never-takers:

Ȳ +
0 ≡ lim

k↓k∗
E[Y | S = 1, D = 0, Z = 0]

= lim
k↓k∗

E[Y0 | S0 = 1, D0 = 0, Z = 0]

= E[Y0 | S0 = S1 = 1, D0 = D1 = 0, k = k∗]P (D1 = 0 | S0 = 1, D0 = 0, S = 1, k = k∗+)

+ E[Y0 | S0 = S1 = 1, D1 > D0, k = k∗]P (D1 = 1 | S0 = 1, D0 = 0, S = 1, k = k∗+)

= Ȳ −0 P (D1 = D0 = 0 | S0 = 1, D0 = 0, S = 1, k = k∗+)

+ E[Y0 | S0 = S1 = 1, D1 > D0, k = k∗]P (D1 > D0 | S0 = 1, D0 = 0, S = 1, k = k∗+)

= Ȳ −0 (1− P (D1 > D0 | S0 = 1, D0 = 0, S = 1, k = k∗+))

+ E[Y0 | S0 = S1 = 1, D1 > D0, k = k∗]P (D1 > D0 | S0 = 1, D0 = 0, S = 1, k = k∗+)

where the fourth equation used grant monotonicity. This implies that untreated mean out-

comes for intensive-margin grant compliers are:

E[Y0 | S0 = S1 = 1, D1 > D0, k = k∗]

=
Ȳ +

0 − Ȳ
−
0 (1− P (D1 > D0 | S0 = 1, D0 = 0, S = 1, k = k∗))

P (D1 > D0 | S0 = 1, D0 = 0, S = 1, k = k∗)

(A.12)
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Similarly, treated mean outcomes to the left of the cutoff are a weighted average of grant

compliers and grant always-takers:

Ȳ −1 ≡ lim
k↑k∗

E[Y | S = 1, D = 1, Z = 1]

= lim
k↑k∗

E[Y1 | S1 = 1, D1 = 1, Z = 1]

= E[Y1 | S1 = 1, D1 = D0 = 1, k = k∗]P (D0 = 1 | S1 = 1, D1 = 1, S = 1, k = k∗)

+ E[Y1 | S1 = 1, D1 > D0, k = k∗]P (D0 = 0 | S1 = 1, D1 = 1, S = 1, k = k∗)

= Ȳ +
1 (1− P (D1 > D0 | S1 = 1, D1 = 1, S = 1, k = k∗))

+ E[Y1 | S1 = 1, D1 > D0, k = k∗]P (D1 > D0 | S1 = 1, D1 = 1, S = 1, k = k∗)

Implying that treated mean outcomes for grant compliers are:

E[Y1 | S1 = 1, D1 > D0, k = k∗]

=
Ȳ −1 − Ȳ

+
1 (1− P (D1 > D0 | S1 = 1, D1 = 1, S = 1, k = k∗))

P (D1 > D0 | S1 = 1, D1 = 1, S = 1, k = k∗)

(A.13)

It remains to identify P (D1 > D0 | S0 = 1, D0 = 0, k = k∗) and P (D1 > D0 | S1 =

1, D1 = 1, S = 1, k = k∗). These probabilities are identified by the treated shares to either

side of the cutoff D̄+ and D̄−, together with the limiting EFC densities f(k∗+) and f(k∗−).
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To identify P (D1 > D0 | S0 = 1, D0 = 0, S = 1, k = k∗+), note first that we can write:

(1− D̄+) ≡ lim
k↓k∗

E[(1−D) | S = 1]

= P (D0 = 0 | S = 1, k = k∗+)

= P (D1 > D0 | S = 1, k = k∗+) + P (D1 = D0 = 0 | S = 1, k = k∗+)

= P (D1 > D0, S1 = S0 = 1 | S = 1, k = k∗+)

+ P (D1 = D0 = 0, S1 = S0 = 1 | S = 1, k = k∗+)

=
1

fS=1(k∗+)

(
fS=1(k∗+ | S1 = S0 = 1, D1 > D0)P (S1 = S0 = 1, D1 > D0 | S = 1)

+ fS=1(k∗+ | S1 = S0 = 1, D1 = D0 = 0)P (S1 = S0 = 1, D1 = D0 = 0 | S = 1)
)

where the third equality comes from expanding into the D1 = 1 and D1 = 0 cases, and the

fourth equality comes from recognizing that D0 = 0 and S = 1 imply S0 = S1 = 1.4 The

fifth equality is a direct application of Bayes’ theorem.

We can use an analogous argument to write:

(1− D̄−) =
fS=1(k∗− | S1 = S0 = 1, D1 = D0 = 0)P (S1 = S0 = 1, D1 = D0 = 0 | S = 1)

fS=1(k∗−)

4. To see this, expand the terms into the S0 = 1 and S0 6= 1 cases. For example:

P (D1 > D0 | S = 1, k = k∗+) = P (D1 > D0, S0 = 1 | S = 1, k = k∗+) + P (D1 > D0, S0 6= 1 | S = 1, k = k∗+)︸ ︷︷ ︸
=0

where the second term is zero because (k = k∗+ implies D = D0), (D1 > D0 implies D0 = 0), and therefore
S = S0 = 1. A similar argument applies to the P (D1 = D0 | S = 1, k = k∗+) term.
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Re-arranging these two results gives us:

(1− D̄+)− fS=1(k∗−)

fS=1(k∗+)
(1− D̄−)

=
fS=1(k∗+ | S1 = S0 = 1, D1 > D0)P (S1 = S0 = 1, D1 > D0 | S = 1)

fS=1(k∗+)

= P (S1 = S0 = 1, D1 > D0 | S = 1, k = k∗+)

= P (S1 = S0 = 1, D1 > D0 | D0 = 0, S = 1, k = k∗+)P (D0 = 0 | S = 1, k = k∗+)

+ P (S1 = S0 = 1, D1 > D0 | D0 = 1, S = 1, k = k∗+)︸ ︷︷ ︸
=0

P (D0 = 1 | S = 1, k = k∗+)

where the first equation comes from the fact that fS=1(k∗− | S1 = S0 = 1, D1 = D0 =

0) = fS=1(k∗+ | S1 = S0 = 1, D1 = D0 = 0) by Assumption 2. The second equation again

comes from Bayes’ theorem, and the third comes from the law of total probability. Further

dividing both sides by (1− D̄+) = P (D0 = 0 | S = 1, k = k∗) gives:

1− fS=1(k∗−)

fS=1(k∗+)

(1− D̄−)

(1− D̄+)
= P (S1 = S0 = 1, D1 > D0 | D0 = 0, S = 1, k = k∗+)

= P (S0 = 1, D1 > D0 | S0 = 1, D0 = 0, S = 1, k = k∗+)

= P (D1 > D0 | S0 = 1, D0 = 0, S = 1, k = k∗+)

where the second equality comes from Assumption 4 and from the fact that (D0 = 0, S =

1, k = k∗+) imply S0 = 1.
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The derivation of P (D0 = 0 | S1 = 1, D1 = 1, S = 1, k = k∗−) proceeds similarly.

Starting with Equation (A.8) we have:

D̄− − fS=1(k∗+)

fS=1(k∗−)
D̄+ = P (D1 > D0, S1 = 1 | S = 1, k = k∗−)

= P (D1 > D0, S1 = 1 | D1 = 1, S = 1, k = k∗−)P (D1 = 1 | S = 1, k = k∗−)

+ P (D1 > D0, S1 = 1 | D1 = 0, S = 1, k = k∗−)︸ ︷︷ ︸
=0

P (D1 = 0 | S = 1, k = k∗−)

Dividing both sides by D̄− = P (D1 = 1 | S = 1, k = k∗−) gives:

1− fS=1(k∗+)

fS=1(k∗−)

D̄+

D̄−
= P (D1 > D0, S1 = 1 | D1 = 1, S = 1, k = k∗−)

= P (D1 > D0, S1 = 1 | S1 = 1, D1 = 1, S = 1, k = k∗−)

= P (D1 > D0 | S1 = 1, D1 = 1, S = 1, k = k∗−)

where the second equation comes from the fact that (D1 = 1, S = 1, k = k∗−) imply S1 = 1.

Armed with expressions for P (D1 > D0 | S0 = 1, D0 = 0, S = 1, k = k∗+) and P (D1 >

D0 | S1 = 1, D1 = 1, S = 1, k = k∗−) in terms of observable quantities, we can now write

Equations (A.12) and (A.13) as:

E[Y0 | S0 = S1 = 1, D1 > D0, k = k∗] =
Ȳ +

0 − Ȳ
−
0 κ0

1− κ0

E[Y1 | S1 = 1, D1 > D0, k = k∗] =
Ȳ −1 − Ȳ

+
1 κ1

1− κ1

where:

κ0 =
fS=1(k∗−)

fS=1(k∗+)

(1− D̄−)

(1− D̄+)
κ1 =

fS=1(k∗+)

fS=1(k∗−)

D̄+

D̄−

which completes the proof.
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A.3 Derivation of Marginal Cost and Benefit Formulas

Start with the definitions in Section 1.9.1:

B =
T∑
t=1

βt−1E[Grantst + Loanst + (1− τ)Earningst − 1{Enrolled}t × δtuition]

C =
T∑
t=1

βt−1E[Grantst + Loanst − τEarningst + 1{Enrolled}t × δinstruction]

Taking ∂B/∂k∗ or ∂C/∂k∗ boils down to deriving ∂E[Yt]/∂k
∗, where Yt is an outcome in

{Grantst,Loanst,Earningst,1{Enrolled}t}. To take this derivative, note first that E[Yt] can

be written:

E[Yt] = E[Yt(S(D(Z)), D(Z))] =

∫ k̄

k
E[Yt(S(D(Z)), D(Z)) | k]f(k)dk

=

∫ k∗

k
E[Yt(S(D1), D1) | k]f(k)dk +

∫ k̄

k∗
E[Yt(S(D0), D0) | k]f(k)dk

where the last equality comes from the law of iterated expectations. It follows by the

Fundamental Theorem of Calculus that:

∂E[Yt]

∂k∗
= E[Yt(S(D1), D1)− Yt(S(D0), D0) | k∗]f(k∗)

= E[Yt(S(D1), D1)− Yt(S(D0), D0) | D1 > D0, k
∗]P (D1 > D0 | k∗)f(k∗)

= E[Yt(S1, 1)− Yt(S0, 0) | D1 > D0, k
∗]︸ ︷︷ ︸

LATE

·P (D1 > D0 | k∗) · f(k∗)

= E[Yt(S1, 1)− Yt(S0, 0) | S1 = 1, D1 > D0, k
∗]︸ ︷︷ ︸

LATE∗

·P (S1 = 1, D1 > D0 | k∗) · f(k∗)

where the second equality comes from the fact that the difference inside the expectation

can only be nonzero if D1 > D0, and where the third equality comes from Assumption 1

(Grant Monotonicity). The fourth equality comes from the law of total expectation and from
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Assumptions 3 and 4 (Partial Exclusion and Enrollment Monotonicity).

Applying this result to each outcome and plugging the result back into the expression for

B gives:

∂B

∂k∗
=

[
T∑
t=1

βt−1
(
LATE∗(Grantst) + LATE∗(Loanst) + (1− τ)LATE∗(Earningst)

+ δtuition × LATE∗(1{Enrolled}t)
)]
× P (S1 = 1, D1 > D0 | k∗)f(k∗)

Now consider the enrollment term. At t = 1, the enrollment indicator is equal to S, the

student’s initial enrollment choice. We can expand LATE∗(Enrolledt) into:

LATE∗(Enrolledt) = (1− ω)LATEIM (Enrolledt) + ωLATEEM (Enrolledt)

where ω = P (S1 > S0 | S1 = 1, D1 > D0, k = k∗) is the share of extensive-margin compliers

among all enrolled compliers. At t = 1, we have by definition that LATEIM (Enrolled1) = 0

and LATEEM (Enrolled1) = 1, because intensive-margin compliers are students who would

have enrolled in college regardless of treatment and extensive-margin compliers are brought

into initial college enrollment by the treatment. This allows us to finally write:

∂B

∂k∗
=

[
T∑
t=1

βt−1 (LATE∗(Grantst) + LATE∗(Loanst) + (1− τ)LATE∗(Earningst))

+

ω +
T∑
t=2

βt−1LATE∗(1{Enrolled}t)


× δtuition

]
× P (S1 = 1, D1 > D0 | k∗)f(k∗)

The proof for ∂C/∂k∗ proceeds similarly.
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A.4 Additional Figures

Figure A.4.1: Strength of the First-Stage Relationship at the Auto-Zero Cutoff by Year

(a) Zero EFC: 4-Year Schools (b) Zero EFC: 2-Year Schools

(c) Total Grant Aid: 4-Year Schools (d) Total Grant Aid: 2-Year Schools

Notes: This figure shows regression discontinuity estimates of the effect of crossing the Auto-Zero EFC
cutoff on receipt of a Zero EFC (Panels A and B) and students’ first-year grant aid awards (Panels B and
C). Each point estimate and 95 percent bias-corrected confidence interval (Calonico et al. 2014) is the result
of a separate regression discontinuity estimate. The gray solid and dotted horizontal lines show estimates
from regression discontinuity estimations that pool the 2008-2012 and 2013-2017 samples.
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Figure A.4.2: Covariate Balance: TEXAS Grant
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(f) HS Reading Test Pctile
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Notes: This figure shows individual characteristics by students’ Expected Family Contribution (EFC)
in students’ entering year of college, for students within $4,000 of the TEXAS Grant threshold. All
individual characteristics are obtained from high school graduation data and measured prior to college
entry. The sample consists of students who enter college between the 2007 and 2017 academic years.
In each graph, I plot unrestricted means within $100-wide EFC bins and predicted means from local
linear regressions estimated separately on each side of the cutoff. The blue regions represent 95 percent
confidence intervals of the regression lines. The annotation reports the estimated RD coefficient at the
cutoff, together with the mean value of the characteristic on the right (ineligible) side of the cutoff.
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Figure A.4.3: Covariate Balance: Auto-Zero Cutoff in Four-Year Schools
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(f) HS Reading Test Pctile
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Notes: This figure shows individual characteristics by students’ family Adjusted Gross Income (AGI),
for students within $20,000 of the Auto Zero threshold in four-year schools. Family AGI is measured
in students’ entering year of college. All individual characteristics are obtained from high school grad-
uation data and measured prior to college entry. The sample consists of students who enter college
between the 2007 and 2012 academic years. Each graph plots unrestricted means within $1000-wide
AGI bins and predicted means from local linear regressions estimated separately on each side of the cut-
off. The blue regions represent 95 percent confidence intervals of the regression lines. The annotation
reports the estimated RD coefficient at the cutoff, together with the mean value of the characteristic
on the right (ineligible) side of the cutoff.
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Figure A.4.4: Covariate Balance: Auto-Zero Cutoff in Two-Year Schools
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Notes: This figure shows individual characteristics by students’ family Adjusted Gross Income (AGI),
for students within $20,000 of the Auto Zero threshold in two-year schools. Family AGI is measured
in students’ entering year of college. All individual characteristics are obtained from high school grad-
uation data and measured prior to college entry. The sample consists of students who enter college
between the 2007 and 2012 academic years. In each graph, I plot unrestricted means within $1000-wide
AGI bins and predicted means from local linear regressions estimated separately on each side of the cut-
off. The blue regions represent 95 percent confidence intervals of the regression lines. The annotation
reports the estimated RD coefficient at the cutoff, together with the mean value of the characteristic
on the right (ineligible) side of the cutoff.
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Figure A.4.5: Defier Behavior among High-Test-Score Community College Students
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Notes: The figure plots density estimates of students in two-year community colleges in a window of
the Automatic Zero EFC cutoff. Panel (a) plots the density for students whose high school test scores
are below the 80th percentile of the test score distribution of their graduating class. Panel (b) plots the
density for students whose test scores are in the top 20 percent of their high school graduating class.
The densities are scaled so that 1 equals the point estimate of the density to the right of the threshold.
The blue dots show scaled histogram estimates of the data in $1,000 AGI bins. The blue fits and 95%
confidence intervals are constructed using the method of Cattaneo et al. (2018) at the MSE-optimal
bandwidth.

Figure A.4.6: Density Estimates by Quintile: Auto-Zero Cutoff in Two-Year Schools
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Notes: This figure plots the density of students’ family Adjusted Gross Income (AGI) in a neighborhood
of the Auto Zero cutoff for the sample of community college students. Each panel plots the density
separately by a different quintile of students’ high school test scores, with the lowest-scoring students on
the left and the highest-scoring students on the right. The y axis is scaled so that 1 equals the density
point estimate to the right of the cutoff. The dots plot scaled histogram estimates in $1, 000 AGI bins,
and the solid lines and shaded regions are density estimates and bias-corrected 95% confidence intervals
using the method of Cattaneo et al. (2018). The sample is all students entering between the 2008 and
2012 academic years.
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Figure A.4.7: Effects of the TEXAS Grant on Course Completion
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Notes: This figure shows regression discontinuity estimates of the impact of crossing the TEXAS Grant
threshold on the credit completion of compliers. The x axis measures years since the student entered college,
and the outcome variable at each time horizon is the number of credits completed in the given year. The figure
shows point estimates and 95 percent bias-corrected confidence intervals constructed using the method of
Calonico et al. (2014). The gray estimates report covariate-adjusted estimates following Calonico, Cattaneo
and Farrell (2019).
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Figure A.4.8: Targeting of the TEXAS Grant and the Auto-Zero Policy at the Grant Thresh-
old
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Notes: This figure shows the characteristics of compliers, always-takers, and never-takers at the TEXAS
Grant and Auto-Zero EFC thresholds. The binary treatment for the Auto-Zero cutoff is an indicator for
whether a student receives a Zero EFC, and the binary treatment for the TEXAS Grant cutoff is whether
a student receives an initial-year TEXAS Grant. “Always-Takers” are students who receive the treatment
despite being on the barely-ineligible side of the cutoff, “Never-Takers” are students who do not receive the
treatment despite being on the barely-eligible side, and “Compliers” are students who receive the treatment
as a result of crossing the grant threshold. The point estimates and confidence intervals are constructed
by separately estimating equations (1.5) and (1.6) in the main text. The error bars reflect 95 percent bias-
corrected confidence intervals estimated using the method of Calonico et al. (2014).
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Figure A.4.9: Extensive-Margin Compliers are Negatively Selected
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Notes: This figure reports estimates of the characteristics of extensive-margin and intensive-margin compli-
ers at the threshold for Auto-Zero EFC assignment in two-year community colleges. The point estimates
are constructed by estimating the analogue to (1.17) by the analogy principle, and the standard errors are
constructed by taking the 5th and 95th percentiles of the estimated parameters from 1,000 bootstrap repli-
cations of the entire estimation procedure. The figure truncates the lower confidence interval for mean test
scores among extensive-margin compliers; because the overall extensive-margin complier share is very small
in some bootstrap replications, the lower bound on the confidence interval falls below zero despite the fact
that test score percentile is bounded between 0 and 100.
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Figure A.4.10: Grant Allocation at the Cutoff Before and After the 2014 Introduction of
Merit Standards
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Notes: This figure shows the relative graduation rates of TEXAS Grant compliers and never-takers, sepa-
rately for students who enter college in 2013 or prior (in the left panel) and for students who enter college in
2014 or later (in the right panel). The error bars are bias-corrected 95 percent confidence intervals following
the method of (Calonico et al. 2014).
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Figure A.4.11: Raw Comparisons of BA Completion Rates at the Auto-Zero Cutoff in Com-
munity Colleges
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(c) BA Within 6 Years

β = -0.00 [-0.02, 0.01]

Mean | Ineligible: 0.08

0.06

0.08

0.10

0.12

-20000 -10000 0 10000 20000

Distance from Auto-Zero Threshold

B
A

 W
it
h
in

 6
 Y

e
a
rs

(d) BA Within 7 Years
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Figure A.4.12: Bounds on Earnings Effects: Intensive-Margin Compliers

(a) No–Assumptions Bounds (b) Add Mean-Dominance Assumption

Notes: This figure reports bounds on the causal effect of receiving a zero EFC on the earnings trajectories
of intensive-margin compliers at the Auto-Zero EFC cutoff in two-year community colleges. Panel (a)
shows no-assumptions bounds. Panel (b) introduces the mean-dominance assumption, which raises the lower
bound on treatment effects for intensive-margin compliers. Panel (c) adds monotone treatment response
assumptions which restrict the grant’s impact on earnings to be negative in the first four years after college
entry and positive in subsequent years. Panel (d) adds positive monotone treatment response in later years for
extensive-margin compliers, which results in tighter upper bounds on treatment effects for intensive-margin
compliers.
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A.5 Additional Tables
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Table A.5.1: Density Tests at the TEXAS Grant Cutoff

Cattaneo et al. (2018) Test McCrary (2008) Test

N BWleft BWright Diff (s.e.) p BW Diff (s.e.) p

Optimal Bandwidth 146172 863.4 863.4 0.018 0.72 1185.9 0.000 0.98
(0.049) (0.023)

By Bandwidth

BW = 400 146172 400.0 400.0 0.038 0.17 400.0 -0.066 0.095
(0.072) (0.039)

BW = 800 146172 800.0 800.0 0.008 0.96 800.0 -0.032 0.25
(0.051) (0.028)

BW = 1200 146172 1200.0 1200.0 0.051 0.97 1200.0 0.001 0.97
(0.042) (0.023)

Entry 2007–2012 82927 880.4 880.4 0.004 0.71 1397.3 -0.018 0.5
(0.066) (0.027)

Entry 2013–2017 63245 1726.1 1726.1 0.065 0.09 1152.1 0.040 0.27
(0.052) (0.037)

By Subsample

Women 82086 1850.3 1850.3 -0.020 0.75 1558.5 -0.026 0.33
(0.045) (0.027)

Men 64086 853.3 853.3 0.068 0.98 1059.2 0.019 0.6
(0.074) (0.037)

Asian 10235 2862.0 2862.0 0.068 0.92 1200.9 -0.081 0.36
(0.099) (0.089)

Black 25775 902.3 902.3 0.045 0.21 1226.1 0.043 0.44
(0.112) (0.055)

Hispanic 57242 2921.6 2921.6 0.043 0.24 1096.7 -0.001 0.98
(0.042) (0.040)

White 50755 1007.8 1007.8 0.075 0.72 1334.7 -0.007 0.83
(0.083) (0.034)

Test Quintile = 1 (Lowest) 5440 1247.0 1247.0 0.091 0.87 1398.3 0.064 0.58
(0.201) (0.115)

Test Quintile = 2 15753 1526.6 1526.6 0.014 0.07 1040.0 -0.117 0.14
(0.107) (0.079)

Test Quintile = 3 27807 1827.1 1827.1 0.060 0.07 965.0 0.086 0.15
(0.078) (0.060)

Test Quintile = 4 41310 1148.4 1148.4 0.040 0.89 1102.4 -0.024 0.58
(0.081) (0.044)

Test Quintile = 5 (Highest) 55862 989.5 989.5 0.061 0.78 1343.3 -0.010 0.76
(0.076) (0.034)

Notes: This table reports results from formal tests of equality of the density of Expected Family Contribution
(EFC) across the TEXAS Grant cutoff. The estimation sample is students entering from 2007-2017 with
EFC within $4, 000 of the cutoff. Columns 3 through 6 report estimates of the test of Cattaneo et al. (2018),
and columns 7 through 9 report esitmates of the test of McCrary (2008). Except for tests by bandwidth,
the bandwidths for each test are optimally chosen according to each test’s selection procedure. Columns 5
and 8 report estimates and standard errors of the discontinuity in the estimated density at the threshold,
and columns 6 and 9 report p-values from Wald tests of equality at the cutoff.
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Table A.5.2: Density Tests at the Auto-Zero Cutoff in 4-Year Schools

Cattaneo et al. (2018) Test McCrary (2008) Test

N BWleft BWright Diff (s.e.) p BW Diff (s.e.) p

Optimal Bandwidth 80077 19999.0 19999.0 -0.042 0.72 5292.4 -0.018 0.52
(0.007) (0.028)

By Bandwidth

BW = 1000 80077 1000.0 1000.0 -0.001 0.33 1000.0 -0.044 0.51
(0.031) (0.066)

BW = 3000 80077 3000.0 3000.0 -0.001 0.70 3000.0 -0.019 0.61
(0.018) (0.038)

BW = 5000 80077 5000.0 5000.0 -0.001 0.78 5000.0 -0.018 0.55
(0.014) (0.029)

BW = 7000 80077 7000.0 7000.0 -0.005 0.99 7000.0 -0.018 0.47
(0.012) (0.025)

BW = 9000 80077 9000.0 9000.0 -0.007 0.87 9000.0 -0.021 0.33
(0.010) (0.022)

By Subsample

Women 45332 5186.9 5186.9 0.002 0.47 6018.4 -0.016 0.65
(0.018) (0.035)

Men 34745 19999.0 19999.0 -0.035 0.44 4747.5 -0.025 0.58
(0.011) (0.046)

Asian 5137 13573.2 13573.2 0.021 0.36 6188.3 -0.028 0.78
(0.034) (0.102)

Black 17258 6085.9 6085.9 0.020 0.41 6767.5 0.014 0.78
(0.029) (0.052)

Hispanic 37373 18468.3 18468.3 -0.056 0.98 4857.7 -0.002 0.96
(0.011) (0.044)

White 19607 5237.7 5237.7 -0.005 0.37 6525.3 -0.046 0.38
(0.027) (0.053)

Test Quintile = 1 (Lowest) 4645 10432.6 10432.6 0.013 0.78 7195.2 -0.073 0.47
(0.042) (0.101)

Test Quintile = 2 11309 5218.5 5218.5 0.015 0.69 5028.1 0.001 0.99
(0.037) (0.076)

Test Quintile = 3 16861 6203.6 6203.6 -0.011 0.53 5375.2 -0.074 0.22
(0.028) (0.060)

Test Quintile = 4 21933 8190.1 8190.1 0.013 0.24 6130.2 0.025 0.61
(0.021) (0.050)

Test Quintile = 5 (Highest) 25329 6825.5 6825.5 -0.030 0.59 8503.2 -0.034 0.4
(0.021) (0.041)

Notes: This table reports results from formal tests of equality of the density of family Adjusted Gross
Income (AGI) across the Auto-Zero cutoff in 4-year schools. The estimation sample is students entering
from 2008-2012 with AGI within $20, 000 of the cutoff. Columns 3 through 6 report estimates of the
test of Cattaneo et al. (2018), and columns 7 through 9 report esitmates of the test of McCrary (2008).
Except for tests by bandwidth, the bandwidths for each test are optimally chosen according to each
test’s selection procedure. Columns 5 and 8 report estimates and standard errors of the discontinuity
in the estimated density at the threshold, and columns 6 and 9 report p-values from Wald tests of
equality at the cutoff. 118



Table A.5.3: Density Tests at the Auto-Zero Cutoff in 2-Year Schools

Cattaneo et al. (2018) Test McCrary (2008) Test

N BWleft BWright Diff (s.e.) p BW Diff (s.e.) p

Optimal Bandwidth 113896 5402.5 5402.5 -0.009 0.46 4398.5 -0.006 0.83
(0.011) (0.027)

By Bandwidth

BW = 1000 113896 1000.0 1000.0 0.013 0.21 1000.0 0.059 0.3
(0.026) (0.057)

BW = 3000 113896 3000.0 3000.0 -0.006 0.71 3000.0 0.007 0.84
(0.015) (0.032)

BW = 5000 113896 5000.0 5000.0 -0.009 0.54 5000.0 -0.008 0.75
(0.012) (0.025)

BW = 7000 113896 7000.0 7000.0 -0.011 0.54 7000.0 -0.019 0.36
(0.010) (0.021)

BW = 9000 113896 9000.0 9000.0 -0.012 0.29 9000.0 -0.024 0.2
(0.009) (0.018)

By Subsample

Women 61645 4714.3 4714.3 -0.010 0.61 6268.4 -0.008 0.8
(0.017) (0.030)

Men 52251 5040.3 5040.3 -0.007 0.70 4393.6 -0.029 0.46
(0.017) (0.039)

Asian 2759 7745.6 7745.6 -0.073 0.04 5354.6 -0.399 0.01
(0.061) (0.156)

Black 18192 8071.6 8071.6 -0.028 0.67 5388.8 -0.073 0.21
(0.024) (0.058)

Hispanic 66034 5680.3 5680.3 -0.009 0.59 4475.4 0.001 0.98
(0.015) (0.035)

White 26006 4656.4 4656.4 0.003 0.95 5374.0 0.043 0.39
(0.025) (0.050)

Test Quintile = 1 (Lowest) 29987 8399.7 8399.7 -0.009 0.32 4631.4 -0.084 0.096
(0.018) (0.050)

Test Quintile = 2 31141 14171.5 14171.5 -0.026 0.74 6094.0 -0.010 0.82
(0.013) (0.043)

Test Quintile = 3 25515 6301.4 6301.4 -0.016 0.67 6443.6 -0.047 0.29
(0.023) (0.045)

Test Quintile = 4 18073 10862.2 10862.2 -0.005 0.78 5036.2 0.030 0.64
(0.020) (0.063)

Test Quintile = 5 (Highest) 9180 5749.2 5749.2 0.040 0.10 5591.6 0.183 0.028
(0.038) (0.083)

Notes: This table reports results from formal tests of equality of the density of family Adjusted Gross
Income (AGI) across the Auto-Zero cutoff in 2-year schools. The estimation sample is students entering
from 2008-2012 with AGI within $20, 000 of the cutoff. Columns 3 through 6 report estimates of the
test of Cattaneo et al. (2018), and columns 7 through 9 report esitmates of the test of McCrary (2008).
Except for tests by bandwidth, the bandwidths for each test are optimally chosen according to each
test’s selection procedure. Columns 5 and 8 report estimates and standard errors of the discontinuity
in the estimated density at the threshold, and columns 6 and 9 report p-values from Wald tests of
equality at the cutoff.
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Table A.5.4: RD Estimates: Institutional Characteristics

All Students > 1 Acceptance

RF IV RF IV
(1) (2) (3) (4)

Mean Share Asian -0.00 -0.00 -0.00 -0.00
[-0.00, 0.00] [-0.01, 0.01] [-0.01, 0.01] [-0.02, 0.01]

Mean Share Black -0.01 -0.02 -0.00 -0.01
[-0.02, 0.00] [-0.04, 0.00] [-0.02, 0.01] [-0.04, 0.02]

Mean Share Hispanic 0.01 0.01 0.00 -0.00
[-0.00, 0.02] [-0.02, 0.04] [-0.02, 0.02] [-0.05, 0.04]

Mean Share White 0.00 0.01 0.00 0.02
[-0.01, 0.01] [-0.02, 0.03] [-0.01, 0.03] [-0.02, 0.06]

Mean Share Female 0.00 0.00 -0.00 -0.00
[-0.00, 0.00] [-0.01, 0.01] [-0.01, 0.00] [-0.02, 0.01]

Mean Incoming SAT Score 0.35 2.58 -0.12 1.58
[-5.63, 6.07] [-10.75, 15.42] [-9.47, 10.19] [-19.40, 23.65]

Mean Parent AGI -778.66 -646.13 -654.96 -1358.60
[-3302, 1539] [-7261, 6186] [-4743, 4558] [-12358, 10719]

Mean Share w/ TEXAS Grant 0.00 0.01 0.00 0.00
[-0.00, 0.01] [-0.01, 0.02] [-0.01, 0.01] [-0.03, 0.03]

Mean Total Grant Aid 82.82 47.40 184.29 116.21
[-227, 371] [-731, 778] [-246, 614] [-982, 1149]

Mean Total Loans 12.50 149.45 257.96 722.10
[-321, 280] [-745, 1074] [-254, 919] [-628, 2306]

Mean TEXAS Grant 77.65 155.77 44.37 69.33
[-18, 182] [-58, 395] [-93, 183] [-296, 412]

Mean Pell Grant 44.42 -3.55 34.70 -132.53
[-82, 165] [-309, 299] [-154, 188] [-678, 265]

Notes: This table reports estimates of changes in mean institutional characteristics among four-year college
students across the TEXAS Grant cutoff. N = 160, 270 for regressions on all students and N = 55, 025
for regressions on students with > 1 acceptance. The outcome in each regression is the mean of the given
characteristic within a student’s institution and entering cohort. Columns (1) and (2) report results for the
full population of college entrants between the 2007 and 2017 academic years. Columns (3) and (4) restrict
the sample to students whose application records indicate more than one acceptance to a Texas public four-
year college. Each estimation uses the MSE-optimal bandwidth calculated separately for each outcome using
the method of Calonico et al. (2014).
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Table A.5.5: Estimated Bounds for Potential Outcomes by Complier Group, 6-Year BA
Completion

Complier Margin Intensive Extensive

(1) (2)

Panel A. Untreated Potential Outcomes

Untreated Mean, IM Compliers 0.057
(0.015)

Untreated Mean, EM Compliers 0.007
(Assumed)

Panel B. Treated Potential Outcomes

Pooled Treated Mean, All Compliers 0.058
(0.017)

Panel C. Bounds on Treated Potential Outcomes by Group

Upper Bound, No Assumptions 0.067 (0.020) 0.445 (0.277)
Lower Bound, No Assumptions 0.000 (0.018) 0.000 (0.000)

Upper Bound, Mean Dominance 0.067 (0.020) 0.058 (0.017)
Lower Bound, Mean Dominance 0.058 (0.017) 0.000 (0.000)

Upper Bound, Mean Dominance + MTR 0.066 (0.019) 0.058 (0.031)
Lower Bound, Mean Dominance + MTR 0.058 (0.013) 0.007 (0.000)

Panel D. Bounds on LATEs by Complier Group

Upper Bound, No Assumptions 0.010 (0.026) 0.439 (0.277)
Lower Bound, No Assumptions -0.057 (0.023) -0.007 (0.000)

Upper Bound, Mean Dominance 0.010 (0.026) 0.052 (0.017)
Lower Bound, Mean Dominance 0.001 (0.023) -0.007 (0.000)

Upper Bound, Mean Dominance + MTR 0.009 (0.025) 0.052 (0.031)
Lower Bound, Mean Dominance + MTR 0.001 (0.015) 0.000 (0.000)

Share of Compliers 0.869 0.131

Notes: This table shows estimates of bounds on the effect of receiving a Zero EFC on students’ probability of
B.A. completion within six years of initial college entry. Panel A reports the mean B.A. completion rates of
untreated intensive-margin compliers (Column (1)), estimated by Equation (1.14), and untreated extensive-
margin compliers (Column (2)), estimated by taking the mean 6-year B.A. completion rate among all non-
college-attenders in my sample. Panel B reports the pooled B.A. completion rates of treated intensive-margin
and extensive-margin compliers, etsimated by Equation (1.15). Panel C reports upper and lower bounds on
Ȳ IM
1 and Ȳ EM

1 , the treated mean potential outcomes of intensive-margin and extensive-margin compliers.
Panel D subtracts the counterfactual means in panel A from these estimates to arrive at bounds on LATEIM
and LATEEM . See main text for additional details.
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Table A.5.6: Overall BA Completion Effects, Community College Students at Auto-Zero
EFC Cutoff

LATE∗ = Ȳ
Complier
1 − (1− ω) Ȳ IM

0 − ω Ȳ EM
0

Overall Treated Mean, Share IM Counterfactual, Share EM Counterfactual,
Grad. w/in: LATE All Compliers Compliers IM Compliers Compliers EM Compliers

4 Years 0.003 0.015 0.869 0.014 0.131 0.001
(0.008) (0.007) (0.066) (0.004) (0.066) (—)

5 Years 0.001 0.039 0.869 0.042 0.131 0.004
(0.017) (0.013) (0.066) (0.011) (0.066) (—)

6 Years 0.008 0.058 0.869 0.057 0.131 0.007
(0.022) (0.017) (0.066) (0.015) (0.066) (—)

7 Years 0.006 0.090 0.869 0.095 0.131 0.009
(0.027) (0.019) (0.066) (0.017) (0.066) (—)

8 Years 0.001 0.102 0.869 0.115 0.131 0.012
(0.027) (0.020) (0.066) (0.018) (0.066) (—)

Notes: This figure reports estimates of the overall effect of receiving a Zero EFC on the B.A. completion
rates of community-college applicants at the Auto-Zero EFC threshold. The first column of the table reports
the overall LATE∗ defined by Equation (1.7), and the remaining columns decompose this effect into com-
plier shares and potential outcomes following Equation (1.12). Standard errors come from 1,000 bootstrap
replications of the entire estimation procedure. Standard errors are not reported for Ȳ EM

0 , because this
counterfactual value is assumed constant following the proxy assumption described in Section 1.7.
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Table A.5.7: Overall Earnings Effects, Community College Students at Auto-Zero EFC
Cutoff

LATE∗ = Ȳ
Complier
1 − (1− ω) Ȳ IM

0 − ω Ȳ EM
0

Years Post Overall Treated Mean, Share IM Counterfactual, Share EM Counterfactual,
College Entry LATE All Compliers Compliers IM Compliers Compliers EM Compliers

1 Year -469 5,822 0.869 6,201 0.131 6,884
(285) (236) (0.066) (182) (0.066) (—)

2 Years -576 8,644 0.869 9,219 0.131 9,226
(372) (307) (0.066) (228) (0.066) (—)

3 Years -614 10,980 0.869 11,691 0.131 10,958
(480) (409) (0.066) (303) (0.066) (—)

4 Years -316 13,685 0.869 14,153 0.131 12,999
(611) (515) (0.066) (384) (0.066) (—)

5 Years 538 16,723 0.869 16,344 0.131 15,127
(703) (602) (0.066) (431) (0.066) (—)

6 Years 628 19,265 0.869 18,879 0.131 17,032
(783) (668) (0.066) (487) (0.066) (—)

7 Years 589 21,615 0.869 21,371 0.131 18,738
(836) (711) (0.066) (548) (0.066) (—)

8 Years 585 24,138 0.869 24,034 0.131 20,360
(966) (851) (0.066) (617) (0.066) (—)

9 Years -327 24,874 0.869 25,743 0.131 21,600
(1,050) (899) (0.066) (675) (0.066) (—)

10 Years -187 25,846 0.869 26,596 0.131 22,296
(1,185) (988) (0.066) (740) (0.066) (—)

11 Years -330 27,215 0.869 28,197 0.131 23,215
(1,244) (1,056) (0.066) (749) (0.066) (—)

Notes: This figure reports estimates of the overall effect of receiving a Zero EFC on the yearly earnings
of community-college applicants at the Auto-Zero EFC threshold. The first column of the table reports
the overall LATE∗ defined by Equation (1.7), and the remaining columns decompose this effect into com-
plier shares and potential outcomes following Equation (1.12). Standard errors come from 1,000 bootstrap
replications of the entire estimation procedure. Standard errors are not reported for Ȳ EM

0 , because this
counterfactual value is assumed constant following the proxy assumption described in Section 1.7.
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Table A.5.8: IV Estimates of the Impact of the TEXAS Grant on Persistence and Graduation

X = 2 3 4 5 6 7 8

A. Reenrollment in Year X

TEXAS Grant -0.01 0.01 0.01 0.01 0.02 0.01 0.00
[-0.06, 0.05] [-0.05, 0.06] [-0.04, 0.07] [-0.04, 0.06] [-0.01, 0.05] [-0.01, 0.03] [-0.01, 0.01]

Mean | Ineligible 0.42 0.24 0.15 0.16 0.09 0.03 0.01
Observations 146,172 146,172 146,172 146,172 146,172 146,172 146,172
Obs. w/in Bandwidth 27,273 31,119 29,455 30,399 27,063 26,935 26,420

Panel B. Graduation by End of Year X

TEXAS Grant -0.00 -0.00 0.00 0.01 0.02 0.02 0.01
[-0.01, 0.00] [-0.02, 0.02] [-0.05, 0.05] [-0.06, 0.08] [-0.05, 0.08] [-0.04, 0.08] [-0.07, 0.09]

Mean | Ineligible -0.00 0.00 -0.06 0.00 0.04 0.05 0.07
Observations 146,172 146,172 146,172 133,480 126,714 112,927 99,246
Obs. w/in Bandwidth 40,982 25,981 27,580 21,910 25,463 33,234 21,766

Notes: This table reports estimates of the impacts of the TEXAS Grant on students’ probability of renrollment in college (Panel A) and
graduation (Panel B). Each point estimate comes from a separate fuzzy RD specification across the TEXAS Grant threshold, where the
first stage is an indicator for receiving a TEXAS Grant in the first year of college. The columns show outcomes measured at different time
horizons, measured from the year of college entry. Each estimation uses the MSE-optimal bandwidth calculated using the method of Calonico
et al. (2014).
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Table A.5.9: IV Estimates of the Impact of the TEXAS Grant on Loans and Earnings

X = 1 2 3 4 5 6 7

Panel B. Loans in Year X

TEXAS Grant -2,186 -1,404 -465 -621 30 -114 63
[-2881, -1554] [-2078, -739] [-1157, 224] [-1299, -7] [-438, 476] [-419, 172] [-130, 270]

Mean | Ineligible 6195 4693 4338 3798 1672 569 232
Observations 146,172 146,172 146,172 146,172 146,172 133,480 126,714
Obs. w/in Bandwidth 27,793 30,514 31,755 33,491 34,420 31,003 31,949

Panel B. Earnings in Year X

TEXAS Grant -734 -886 -779 -759 -140 -1,215 -972
[-1434, -169] [-1836, -22] [-1875, 269] [-2411, 605] [-2347, 2035] [-4284, 1708] [-4450, 2413]

Mean | Ineligible 6189.16 10188.52 13256.89 14630.12 14981.33 17190.14 19380.95
Observations 146,172 146,172 146,172 146,172 146,172 146,172 133,480
Obs. w/in Bandwidth 25,523 25,604 28,474 22,868 26,081 23,118 23,405

Notes: This table reports estimates of the impacts of the TEXAS Grant on students’ student loans (Panel A) and labor market earnings
(Panel B). Each point estimate comes from a separate fuzzy RD specification across the TEXAS Grant threshold, where the first stage is
an indicator for receiving a TEXAS Grant in the first year of college. The columns show outcomes measured at different time horizons,
measured from the year of college entry. Each estimation uses the MSE-optimal bandwidth calculated using the method of Calonico et al.
(2014).
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Table A.5.10: Bounds on BA Completion Effects by Horizon for Intensive-Margin and Extensive-Margin Compliers

LATE for IM Compliers LATE for EM Compliers

BA
Within: Bound No-Assm. MD MD + MTR No-Assm. MD MD + MTR

4 Years Upper 0.004 (0.009) 0.004 (0.009) 0.004 (0.009) 0.116 (0.255) 0.014 (0.007) 0.014 (0.009)
Lower -0.014 (0.006) 0.002 (0.008) 0.002 (0.005) -0.001 (0.000) -0.001 (0.000) 0.000 (0.000)

5 Years Upper 0.002 (0.020) 0.002 (0.020) 0.002 (0.019) 0.291 ( NA) 0.035 (0.013) 0.011 (0.023)
Lower -0.042 (0.015) -0.003 (0.018) 0.000 (0.011) -0.004 (0.000) -0.004 (0.000) 0.000 (0.000)

6 Years Upper 0.010 (0.026) 0.010 (0.026) 0.009 (0.025) 0.439 (0.277) 0.052 (0.017) 0.052 (0.031)
Lower -0.057 (0.023) 0.001 (0.023) 0.001 (0.015) -0.007 (0.000) -0.007 (0.000) 0.000 (0.000)

7 Years Upper 0.008 (0.031) 0.008 (0.031) 0.007 (0.030) 0.676 (0.242) 0.081 (0.019) 0.044 (0.045)
Lower -0.095 (0.034) -0.006 (0.028) 0.000 (0.015) -0.009 (0.000) -0.009 (0.000) 0.000 (0.000)

8 Years Upper 0.003 (0.030) 0.003 (0.030) 0.002 (0.030) 0.771 (0.215) 0.091 (0.020) 0.011 (0.050)
Lower -0.115 (0.040) -0.012 (0.027) 0.000 (0.014) -0.012 (0.000) -0.012 (0.000) 0.000 (0.000)

Notes: This table shows estimates of bounds on the effects of receiving a Zero EFC on the graduation probability of intensive-
margin compliers and extensive-margin compliers at the Auto-Zero EFC threshold in two-year community colleges. Extensive-
margin compliers are students who enter the sample as a result of treatment, and intensive-margin compliers are students who
would remain in two-year colleges even without the treatment of receiving a zero EFC. Each row reports results for a separate
outcome, defined as an indicator for completing any BA degree within the specified number of years. The “no-assumptions”
columns report no-assumptions bounds, while the “MD” and “MD+MTR” bounds add mean-dominance and monotone treatment
response assumptions; see main text for details. Standard errors are from 1, 000 bootstrap replications of the entire estimation
procedure, following the bootstrap procedure for RD designs with manipulation of Gerard et al. (2020).
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