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ABSTRACT

Most product industries are local. In the U.S., firms selling goods and services to local

consumers account for half of the economy’s sales and create over sixty percent of jobs.

Competition in these industries occurs in local product markets. I propose a theory of

such competition in which firms have output market power and choose where to operate.

Spatial differences in local competition arise endogenously due to the spatial sorting of

heterogeneous firms. The ability of more productive firms to charge higher markups induces

them to overvalue locating in larger markets, leading to firm misallocation across space. The

optimal policy is a location-specific output subsidy that eliminates markups, providing a

rationale for place-based policies. Moreover, the optimal policy incentivizes productive firms

to relocate to smaller markets by eliminating markup dispersion. I use U.S. Census micro-

data to estimate the model’s parameters and find significant heterogeneity in markups across

U.S. markets. Producers in markets in the top decile of the market-size distribution have

a fifty percent lower markup than those in the bottom decile. Using the estimated model,

I quantify the general equilibrium effects of implementing the optimal policy and find that

welfare losses due to output market power are 2.4%. Additionally, this policy increases local

productivity in smaller markets by 14%, but decreases local productivity in larger markets

by 5%.
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CHAPTER 1

OUTPUT MARKET POWER AND SPATIAL MISALLOCATION

1.1 Introduction

Most product industries are local. In the U.S., firms selling goods and services to local

consumers account for 50% of total sales and generate 60% of the nation’s total jobs.1

Firms in these industries operate in local output markets. For example, restaurants or

retail stores in New York do not compete with similar establishments in Chicago or Seattle.

As such, competition in these industries varies at the local level. The location choice of

producers is one key determinant of the strength of local competition: some places attract

productive firms that set low prices, while others hardly attract any producers, leading to

slack competition. When firms in these industries exert output market power, the degree of

local competition becomes a crucial determinant for local welfare and resource allocation.

What determines firms’ location decisions in imperfectly competitive markets, and what are

the consequences for local competition? What are the general equilibrium effects of altering

firm location choices through place-based policies?

In this paper, I answer these questions with three contributions. First, I develop a model

in which spatial differences in local competition arise endogenously due to the location choices

of heterogeneous firms charging variable markups. The equilibrium allocation is inefficient

as more productive firms over-concentrate in bigger cities. Second, I use the model and U.S.

Census micro-data to estimate markups for establishments in local industries. I document

significant heterogeneity in markups across U.S. cities, with cities in the top decile of city-size

distribution having a markup 50% lower than cities in the bottom decile. Third, I estimate

the model and use it to quantify the welfare effects of the optimal policy. A utilitarian social

planner chooses a policy that eliminates markups by inducing firms to produce at marginal

1. See Delgado et al. (2015) and my calculations in Table 1.1.
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cost and incentivizes productive firms to relocate from larger to smaller cities, providing a

rationale for commonly used place-based policies.

In the model, production takes place in locations that I call cities. These locations are

populated by freely mobile workers with idiosyncratic location tastes who consume local

goods, housing, and a traded good. Cities differ ex-ante along two dimensions. First, they

differ in local amenities, which affect workers’ utility of residing in a specific city. Second,

local productivity differs, which determines efficiency in producing the traded good. This

good is homogeneous, produced by perfectly competitive producers in each city, and freely

traded.

At the core of the model lies the location choice of heterogeneous local goods produc-

ers. Potential entrants pay an entry cost to learn their productivity and then choose a city

to operate. Once located in a city, they produce a differentiated variety using labor and

commercial structures and compete monopolistically with other local producers.2 Work-

ers have Kimball preferences (Kimball, 1995) over the local varieties of their city, allowing

each firm’s price elasticity to vary with its position on its residual demand curve, resulting

in heterogeneous markups. More productive firms charge lower prices and exhibit higher

markups.3

Local producers consider two endogenous city characteristics when choosing where to

locate: city size and local competition. The size of a city is determined by the total income

of workers, which, in turn, influences potential sales. Local competition is influenced by

other producers’ prices and the cost of production inputs: wages and land rents. The level

of local competition affects the markup a firm can charge in two ways. First, consumers

2. Traded good producers also have a technology that uses labor and commercial structures.

3. Alternative frameworks with heterogeneous markups are models of oligopolistic competition, similar
to Atkeson and Burstein (2008). More productive firms are larger and have lower demand elasticity in
such models, resulting in higher markups. Kimball preferences within monopolistic competition capture this
characteristic parsimoniously, and the main forces of my model can seamlessly be extended to oligopolistic
competitive environments.
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become more price-sensitive when other local producers charge low prices, leading to lower

markups. Second, because firms experience incomplete costs-to-price pass-through, higher

input costs also reduce markups. In equilibrium, larger locations are more competitive.

Therefore, firm location decisions are driven by a trade-off between sales gains and markup

reductions. However, more productive firms value relatively more production in the largest

cities. Due to their ability to charge higher markups, they benefit more from the increased

sales opportunities in larger cities. This results in positive assortative matching: more

productive firms choose to locate in larger cities where local competition is more intense.

Two opposite forces determine differences in market power across cities. First, a ’com-

petition force’ pushes markups down in bigger cities. As larger markets are endogenously

more competitive, firms in those markets must charge lower markups. Second, bigger mar-

kets attract more productive firms that charge higher markups. This ’selection force’ pushes

markups up in bigger cities. The relative strength of these two forces determines whether

bigger cities have lower or higher markups. When firms’ productivity dispersion is low, the

competition force dominates: big cities attract firms of similar productivity who compete

in prices by charging lower markups. In contrast, when productivity dispersion is high, big

cities attract producers with distinct productivities, allowing the most productive among

them to face milder competition and charge higher markups.

The spatial equilibrium allocation is inefficient due to two externalities arising from firms’

entry into a city. Introducing a new variety raises consumer surplus, but firms can only

partially appropriate this gain, resulting in insufficient entry—a ’variety gains’ externality.

Simultaneously, firms impose a ’business-stealing’ externality on incumbents by reducing the

consumption of existing varieties, leading to excessive entry as firms do not internalize their

negative impact on others’ profits. The dominance of these externalities determines whether

entry is excessive, insufficient, or efficient.4 The interplay between variety gains and business-

4. These externalities exist in free entry and differentiated varieties models and are not specific to my
framework. However, Dixit and Stiglitz (1977) show that in standard models of monopolistic competition
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stealing externalities causes productive firms to over-concentrate in larger cities. While the

gains from additional varieties are higher in smaller cities, the business-stealing effect is

more pronounced in larger cities. This imbalance results in excessive entry in larger cities

and insufficient entry in smaller ones, leading to spatial misallocation. Relocating productive

firms from larger to smaller markets enhances aggregate welfare.

The extent of spatial misallocation is mitigated when larger cities exhibit smaller markups.

In equilibrium, there is less competition in smaller places, and profits are higher in bigger

places. These two factors make the variety gains externality larger in smaller cities and the

business stealing effect larger in bigger cities. Consequently, spatial misallocation persists

regardless of markup variations across locations. However, if markups are lower in larger

cities, the impact of the ‘business stealing’ effect diminishes, preventing some productive

firms from favoring the largest locations. In essence, lower markups in larger cities curtail

firms’ profits, prompting marginally productive firms to opt for smaller locations, thereby

reducing spatial misallocation.

In the second part of the paper, I examine the positive implications of the model. To do

so, I estimate markups for U.S. local producers. Since physical output and total input costs

are not directly observed, I employ an empirical strategy to estimate markups by combining

the demand system with the firm’s production function similar to De Loecker (2011). I

begin with the firm’s first-order condition for labor, linking the labor cost share of sales

to the markup and the labor output elasticity, following the approach in De Loecker and

Warzynski (2012). The demand system implies that a firm’s markup is a function of its

local sales share. I use this relationship to construct a non-parametric control function. By

substituting this function into the firm’s first-order condition, I jointly estimate the labor

output elasticity and the markup. The within-city variation in the sales market share and

with CES preferences, these externalities remain constant and precisely offset each other, resulting in efficient
entry.
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the labor cost share of sales serve to identify both objects .5

I implement the proposed empirical strategy using U.S. Census micro-data.6 I use data

from the Longitudinal Business Database (LBD) to construct establishments’ labor cost-

shares of sales and data from the Economic Censuses (EC) to construct establishments’

local sales shares. For my baseline 2017 sample, I estimate markups for five million local

establishments. To corroborate my empirical strategy, I estimate markups for Manufacturing

using the ratio estimator of De Loecker and Warzynski (2012), estimating the labor output

elasticity using cost-shares as in De Loecker et al. (2020) and Edmond et al. (2023). Both

markup estimates exhibit similar levels and show a correlation close to one. Subsequently,

for constructing the city-level aggregate markup, I adopt the aggregation method implied by

my model, which is a sales-weighted harmonic mean of the establishment-level markups.

I find significant heterogeneity in markups for local industries across U.S. cities. Cities in

the top decile of the city-size distribution have a 50% lower markup than cities in the bottom

decile. This finding implies that the competition force outweighs the selection force in U.S.

local industries. Furthermore, it suggests that the competitiveness of larger cities contributes

to the reduction of spatial misallocation. This empirical regularity holds consistently across

various years and remains robust, whether defining a city as a county or as a Commuting

Zone.

I also uncover heterogeneity in the spatial distribution of markups across sectors. Ex-

panding the baseline empirical strategy, I incorporate variations in labor output elasticity

and consumer demand across sixteen 2-digit NAICS sectors. Notably, bigger cities exhibit

lower markups in nine out of the sixteen sectors. For local Retail, cities in the top decile

of the city-size distribution have a 40% lower markup than cities in the bottom decile. In

5. If firms have labor market power, the markdown appears in the firm’s first-order condition. I control
for a flexible polynomial in the firm’s wage bill share to address this issue. In models of labor market power
like Berger et al. (2022) and Trottner (2023), the markdown is a function of the firm’s wage bill share.

6. To classify establishments as local, I rely on the categorization by Delgado et al. (2015).
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contrast, for local Manufacturing, cities in the top decile have a 60% higher markup than

those in the bottom decile. These empirical findings suggest significant variation in the de-

terminants of the competition and selection forces across economic sectors. Moreover, they

imply that the degree of firm spatial misallocation may be more pronounced in sectors where

producers in larger cities command higher markups.

In the final section of the paper, I estimate the remaining parameters of the model to

study its normative implications. Firstly, the model generates estimating equations that link

demand parameters, firm markups, and sales shares. I use the estimated markups to iden-

tify the Kimball demand parameters from these equations. Secondly, I employ a Simulated

Method of Moments (SMM) approach to estimate the local producer’s productivity distribu-

tion and the aggregate entry cost. Leveraging the model’s structure, I infer the productivity

distribution parameters from the average employment per establishment across cities and

determine the entry cost from the economy-wide aggregate markup. Location productivity

and amenities are estimated by precisely matching population and average wages for each

city. The estimated model replicates the negative relationship between markups and city

size, which constitutes a non-targeted moment.

I utilize the estimated model to conduct a counterfactual exercise assessing the impact

of the optimal policy. I show that the optimal policy involves a non-linear, location-specific

subsidy contingent on the firm’s total production financed by a non-distortionary flat la-

bor tax. This subsidy effectively eliminates markups by incentivizing firms to produce at

marginal cost. After transfers, net profits align with the consumer surplus each firm gener-

ates, correcting variety gains and business-stealing externalities and leading to an efficient

firm location. Marginally productive producers in larger cities find it optimal to relocate to

smaller cities, where they can earn higher profits by generating a greater consumer surplus.

The optimal policy reduces the prices of local varieties in all cities. As the policy elimi-

nates markups, all local producers lower their prices. Nevertheless, since markups were ini-
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tially higher in smaller cities, these locations experience larger price reductions. For example,

prices for local producers in Franklin, FL, drop by 75%, while prices for local producers in

Richmond, VA, drop by 22%. Moreover, firm entry magnifies the effect of individual firm

prices on the local goods price index. As smaller cities witness an inflow of new producers,

the price index in such locations decreases by almost 90%. On the contrary, as firms move

out from the bigger cities, the price index in places like Chicago decreases only by 14%.

The policy also has notable implications for the spatial distribution of local producers.

On one hand, the policy is effective in reallocating productive establishments from larger to

smaller cities. Mid-sized cities experience the most significant productivity improvements,

with a 3% increase in the productivity of local producers. Intuitively, marginally productive

producers in the biggest markets, such as Los Angeles, move to smaller suburban areas like

Santa Clara. On the other hand, once accounting for net entry, smaller cities undergo an

even more substantial productivity surge, with Total Factor Productivity (TFP) increasing

by 14% in locations like Wilcox County, GA. This, however, comes at the cost of slight

reductions in TFP in larger cities as productive firms relocate. For instance, places like

Manhattan experience a 5% TFP reduction.

The aggregate welfare gains of the policy are more modest than the reduction in prices

and the gains in productivity. Due to the reduction in markups, producers increase the

usage of commercial structures, leading to an increase in housing rents across all cities.

Furthermore, the policy is costly, with workers contributing 15% of their income to finance

the producer’s subsidies. These two effects counterbalance the gains from lower prices and a

better allocation of producers across space. All in all, the policy enhances aggregate worker

welfare by 2.35%.
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Related Literature

This paper contributes to five strands of the literature. The first strand it relates to is the one

studying competition in local output markets. Studies by Hsieh and Rossi-Hansberg (2023),

Oberfield et al. (2023) , and Kleinman (2023) explore the competition of multi-establishment

firms across regions where consumers have CES preferences, resulting in constant markups

for all firms. I enhance this literature by introducing a framework in which firms have

endogenous variable markups. Abstracting from the combinatorial problem of firms opening

branches in different locations, my innovation enables a study of richer local pricing dynamics,

introducing an additional force influencing firm location. Additionally, Rossi-Hansberg et al.

(2020) and Autor et al. (2023) document diverging trends in market concentration at the

national and local levels. My paper complements this study by providing direct empirical

measures of output market power across local markets.

The second strand is the work on firm sorting. Gaubert (2018) and Bilal (2023) inves-

tigate firm sorting through agglomeration forces and labor market frictions. I diverge from

these studies by focusing on how firms sort through competitive price pressures. The policy

implications of my framework align with those in Bilal (2023), who finds policies relocating

firms to smaller locations beneficial. Additionally, Nocke (2006), Combes et al. (2012), and

Matsuyama and Ushchev (2022) also consider settings in which firms sort through com-

petitive price pressures, but local population is exogenous. In contrast, local population is

endogenously determined in my model, enabling me to investigate additional general equi-

librium implications of firm location decisions.

The third strand is the recent body of work examining the aggregate implications of

markups. Edmond et al. (2023) quantify the aggregate welfare cost of markups using a

model encompassing monopolistic competition with Kimball preferences and oligopolistic

competition with nested-CES. I adopt their monopolistic competition market structure and

extend it into a spatial framework with many output markets. However, I depart from their
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work by quantifying the welfare costs of markups through a new channel: the inefficient

location of firms. Other studies, such as Peters (2020), De Loecker et al. (2022), Aghion

et al. (2023), and Akcigit and Ates (2023), have analyzed the implications of markups for

business dynamism. In contrast, my focus is on the effect of markups on regional aggregates,

such as productivity and prices.

The fourth strand of the literature to which this paper relates is the one on misallocation.

In my framework, more productive firms charge higher markups, creating misallocation in

the form of Restuccia and Rogerson (2008) and Hsieh and Klenow (2009). However, I focus

on misallocation across cities, similar to Hsieh and Moretti (2019), rather than concentrating

on misallocation across firms. Unlike their work, I demonstrate how heterogeneous markups

lead firms to locate inefficiently across cities and how aggregate welfare increases by relocating

firms across places. My results complement those in Fajgelbaum and Gaubert (2020) and

Donald et al. (2023), who also find that reallocating production to smaller cities can increase

aggregate welfare.

The final strand of the literature to which I contribute is the one studying markups across

space. Hottman (2021) and Anderson et al. (2018) focus on markups across cities within the

Retail sector. I depart from these studies in two ways. First, my markup estimation extends

beyond the Retail sector to encompass all local industries in the U.S. Second, I develop a

general equilibrium model that utilizes the estimated markups as inputs to conduct policy

evaluation.

The rest of the paper is organized as follows. Section 1.2 lays out the theoretical frame-

work. Section 1.3 explores the model’s efficiency properties, emphasizing firms’ spatial mis-

allocation. Section 1.4 presents the empirical analysis investigating markups across cities

and model predictions. Section 1.5 details the quantitative analysis in which I estimate the

model and quantify the welfare gains of place-based policies. Finally, Section 1.6 concludes.
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1.2 Model

This section develops a theory of spatial differentials in local competition, where production

takes place in locations I call cities. The theory abstracts from dynamics, describing a

long-run steady state of the economy.

1.2.1 Environment

Geography. There is a continuum of cities indexed by c ∈ [0, 1], that differ in their local

productivity, a(c) ∈ [a, a], and their local amenities b(c) ∈ [b, b]. These characteristics

are distributed with a cumulative distribution function F (c) ≡ F (a(c), b(c)), with density

f(c) ≡ f(a(c), b(c)).

Workers Preferences. The whole economy is populated by L freely mobile identical

workers, indexed by i. Each worker has one unit of labor, which is supplied inelastically.

Worker i observes a collection of idiosyncratic location-specific preference shocks, ςi(c), and

decides her location of work and residence. When locating in c, worker i derives utility from

consuming a bundle of local varieties Y (c), housing, H(c), and a freely traded good, Q(c),

according to:

Ui(c) = b(c)

(
Y (c)

η

)η (H(c)

α

)α( Q(c)

1− η − α

)1−η−α
ςi(c), (1.1)

where η and α are the expenditure shares on local goods and housing. Consumers have

symmetric Kimball preferences (Kimball (1995)) over local varieties. These preferences are

in the Homothetic with Direct Implicit Additivity (HDIA) family of preferences defined by

Matsuyama and Ushchev (2017). Under these preferences, the per-capita consumption of

the bundle of local goods, Y (c), is implicitly given by∫
z

Υ

(
y(z, c)

Y (c)

)
dGc(z) = 1, (1.2)
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where y(z, c) is the per-capita consumption of a local variety produced by a firm with

productivity z, Gc(·) is local producers productivity distribution in c, and Υ(·) is a strictly

increasing and concave function satisfying Υ(0) = 0.7 CES preferences are special case of

(1.2) when Υ(x) = x
σ−1
σ .

Kimball preferences have three advantages. First, they can generate cross-sectional vari-

ation in markups, the central object of this paper. Second, they are homothetic. Therefore,

they allow us to focus on markup differences across cities due to price competition pressures

and not from potential income effects.8 Third, despite their flexibility, they remain tractable

enough to characterize the model’s equilibrium uniquely. In models with similar preferences

like nested CES (as in Atkeson and Burstein (2008)), problems of multiple equilibria often

arise. This becomes more challenging when producers have an entry decision per market, as

is the case in this study.

The idiosyncratic preferences draw ςi(c) is assumed to be independent, identically dis-

tributed across individuals and cities, and following a Frechet distribution with shape pa-

rameter θ.

Local Varieties. A mass Me of potential entrants pays an entry cost ce to learn their

productivity z. This productivity has common distribution with cumulative distribution

function G(·), density function g(·), and connected support [z, z].9 After learning their

productivity, firms choose a city to produce and sell. This location decision determines the

set of locally available varieties. Within a city, local producers compete in a monopolistically

competitive fashion and produce according to a Cobb-Douglas production function

7. This notation previews that in equilibrium, two firms of the same productivity in the same city make
the same pricing decisions. Hence, workers consume the same amount of each variety produced by each firm.

8. Although this is an important channel, it is left for future research. See Melitz and Ottaviano (2008)
and Combes et al. (2012) for settings with endogenous variable markups due to non-homothetic linear
preferences.

9. The overall productivity distribution G(·) does not necessarily coincide with the productivity distri-
bution in a given city, Gc(·). The latter is an endogenous object determined by the location choices of the
local producers.
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y(z, c) = z l(z, c)βs(z, c)1−β , (1.3)

where l(z, c) is labor, and s(z, c) is commercial structures (buildings). Firms pay a

common wage of W (c) and commercial structures rent R(c) in city c.

Traded Good. A perfectly competitive representative firm produces the homogeneous

traded good in every location. This good is freely traded and used as the numeraire. Simi-

larly to the local varieties technology, the traded good is produced by combining labor and

commercial structure according to a Cobb-Douglas production function given by

QT (c) = a(c)
(
LT (c)

)γ (
ST (c)

)1−γ
, (1.4)

where QT (c) denotes the total production of traded good in city c, LT (c) is the traded

good total employment, and ST (c) is the traded good total commercial structures demand.

We use different notation for the traded good quantities produced in c, QT (c), and the

traded good workers demand, Q(c). Because of trade across cities, these two quantities are

different. Traded good producers compete in the same local inputs market with the local

varieties producers, paying a wage W (c) and a price for commercial structures R(c).

Land Developers. In every city, competitive land developers use the traded good to

produce housing and commercial structures according to the isoelastic production function:

H(c) =

(
1 + ϕ

ϕ
Q(c)

) ϕ
1+ϕ

, (1.5)

where H(c) is the total supply of buildings in city c (housing and commercial structures),

and Q(c) is the amount of traded good used for buildings. I assume that land developers

use their profits to consume the final good only. However, for the counterfactual exercises,

I consider an alternative formulation in which land developers’ profits are aggregated into a
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national portfolio and rebated back to workers as a flat labor subsidy.10

1.2.2 Worker’s Consumption and Location Decisions

We start by characterizing the workers’ optimal consumption and location decisions. Workers

solve this problem in two steps: first, conditional on locating in c, they solve for the optimal

consumption quantities, which determines local utility. Then, they choose where to locate,

conditional on local utility and the realization of their preference shocks.

When choosing how much of the local varieties, housing, and traded good to consume,

workers face the budget constraint

P(c)Y (c) +R(c)H(c) +Q(c) = W (c), (1.6)

where P(c) is the price of the bundle of local varieties, R(c) is the housing price, and where

we used the fact that the traded good is used as the numeraire.11 The homotheticity of the

Kimball preferences guarantees the existence of a price index for the bundle of local varieties.

Therefore, workers maximize (1.1) subject to (1.2) and (1.6). The per capita consumption

of local varieties, housing, and the traded good that result from this maximization are given

by

Y (c) =
ηW (c)

P(c)
, H(c) =

αW (c)

R(c)
, and Q(c) = (1− η − α)W (c). (1.7)

Appendix A.1 shows that the per-capita consumption of an individual variety y(z, c) is,

in turn

10. This can be interpreted as workers having a share in the national portfolio which is increasing in the
level of income. See Redding and Rossi-Hansberg (2017) Section 2.7.3 for a general discussion of rebate
schemes in quantitative spatial models.

11. Throughout the text, I use the blackboard bold font notation for indices. There are three of them: the
ideal price index P(c), the price competition index, D(c), and the competition index, C(c).
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y(z, c)

Y (c)
= φ

(
p(z, c)

D(c)

)
. (1.8)

where p(z, c) is the price of a variety produced by a firm with productivity z in city c,

φ(·) ≡
(
Υ′)−1

(·), and D(c) is a price index implicitly defined by

∫
z
Υ

(
φ

(
p(z, c)

D(c)

))
dGc(z) = 1. (1.9)

The expression in (1.8) is the residual demand curve faced by local variety producers. For

an individual firm, changes in other firms’ prices are summarized by the price index D(c).

In other words, firms in every location compete against the price index D(c) when choosing

their optimal price. Therefore, D(c) captures the degree of local competition, and I call it

the competition price index. In contrast, the ideal price index, P(c), which is the price of the

bundle of local varieties, is given by

P(c) =
∫
z
p(z, c)φ

(
p(z, c)

D(c)

)
dGc(z). (1.10)

Two price indices then characterize the Kimball demand system. The competition price

index D(c) mediates the relative consumption of different varieties, whereas the ideal price

index P(c) determines the consumption of the overall bundle Y (c) relative to other goods.

In the particular case of CES, these price indices are proportional.

Workers consumption decisions (1.7) imply that the indirect utility of worker i in city c

is given by

Ui(c) = u(c)ςi(c), with u(c) ≡ b(c)
W (c)

P(c)ηR(c)α
, (1.11)

where u(c) is the mean utility of workers residing in c. After observing the elements of

u(c) and the collection of idiosyncratic location preference shocks, ςi(c), workers choose the

location c that maximizes Ui(c). The Frechet assumption implies that the share of workers
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residing in c is

L(c)

L
=

(
u(c)

U

)θ
, with U =

[∫
c
u(c)θdF (c)

]1
θ
. (1.12)

The expression (1.12) is the supply of workers in city c. When θ is larger, the idiosyncratic

preference shocks, ςi(c), are less dispersed, and therefore cities become closer substitutes. In

equilibrium, (1.12) implies that a higher θ makes workers in c more sensitive to changes in

the local utility level, u(c). Note that, all else equal, cities with higher wages and amenities

are more desirable for workers. Similarly, cities with lower housing rents and local varieties

price index attract more workers.

1.2.3 Local Varieties Production and Location Decisions

Firms producing local varieties pay the entry cost, ce, to learn their productivity. Then,

they choose a city to operate and the price that maximizes profits. We solve this problem

backwards.

Pricing Decision

Local varieties producers in c set their optimal price given their own productivity, z, and

location aggregates, Y (c), D(c), W (c), and R(c).

The production function in (1.3) implies that the marginal cost for firm z of producing

one unit of output in location c is equal to ν(W (c)βR(c)1−β)/z, where ν ≡ 1
ββ(1−β)1−β .

Therefore, firm z located in c chooses p(z, c) to maximize:

Π(z, c) = max
p(z,c)

[
p(z, c)y(z, c)− νW (c)βR(c)1−β

z
y(z, c)

]
L(c) s.t (1.8). (1.13)

The profit function in (1.13) scales with the number of workers in c, because larger cities
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represent a larger customer base. The first-order condition of this problem is given by

p(z, c)

D(c)

1− 1

σ
(
p(z,c)
D(c)

)
 =

C(c)
z

, (1.14)

where σ(·) is the price-elasticity of demand implied by the residual demand curve (1.8),

σ

(
p(z, c)

D(c)

)
≡ −∂ log y(z, c)

∂ log p(z, c)
=

−p(z,c)
D(c) φ

′
(
p(z,c)
D(c)

)
φ
(
p(z,c)
D(c)

) , (1.15)

and C(c) is a competition index summarizing the local competitive pressures:

C(c) ≡ νW (c)βR(c)1−β

D(c)
. (1.16)

This index accounts for competition in the local input and output markets. When there

is more intense competition in the input market, wages or commercial structures rents are

high; therefore, C(c) increases. Similarly, when other local producers in location c set lower

prices, profits for potential entrants decrease. This is captured by a lower price index D(c),

which ultimately translates into a higher C(c).

Under the concavity assumption of the aggregator Υ(·), the firs-order condition (1.14) de-

fines a strictly increasing function ψ(·) that determines the optimal relative price p(z, c)/D(c)

p(z, c)

D(c)
= ψ

(
C(c)
z

)
. (1.17)

Similar to the frameworks of Atkeson and Burstein (2008) and Amiti et al. (2019), firms

“price-to-market” by choosing an optimal price relative to their competitor’s prices summa-

rized by the price index D(c).

The optimal markup is given by the Lerner formula that combines (1.15) and (1.17),
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µ

(
C(c)
z

)
=

σ
(
ψ
(
C(c)
z

))
σ
(
ψ
(
C(c)
z

))
− 1

. (1.18)

Equation (1.18) reveals the forces that determine firms markups. On the one hand, the

function ψ(·) is always strictly increasing. Therefore, conditional on firm productivity, an

increase in local competition forces firms to charge higher relative prices. On the other

hand, conditional on local competition, more productive firms charge lower relative prices.

However, whether differences in relative prices due to competition or firm productivity lead

to differences in markups depends on the properties of the price-elasticity function σ(·). As I

discuss later, if σ(·) is increasing, then tougher competition reduces the markups for all firms

in a city, and more productive firms charge higher markups within a city. In the particular

case of CES, σ(·) is constant. Therefore, all firms charge the same markup in all locations

regardless of the local competition or their productivity.

Similarly, the firm’s optimal relative quantity is given by (1.8) and (1.17):

y(z, c)

Y (c)
= φ

(
ψ

(
C(c)
z

))
. (1.19)

Finally, Appendix A.2 shows that optimal labor and commercial structures demands are

given by:

l(z, c) = β
ψ
(
C(c)
z

)
φ
(
ψ
(
C(c)
z

))
D(c)Y (c)

µ
(
C(c)
z

)
W (c)

, (1.20)

s(z, c) = (1− β)
ψ
(
C(c)
z

)
φ
(
ψ
(
C(c)
z

))
D(c)Y (c)

µ
(
C(c)
z

)
R(c)

.

Total labor employed by local producers, LN (c), and total structures demanded by local
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producers, SN (c), are given by:

LN (c) =

∫
z
l(z, c)dGc(z), and SN (c) =

∫
z
s(z, c)dGc(z). (1.21)

Location Decision

Now we turn to analyze the location decision of the local varieties producers. A producer

z contemplates potential profits in every city and chooses the city that delivers the highest

profits.

LetM(c) denote the total expenditure of local varieties in location c: M(c) ≡ P(c)Y (c)L(c).

We refer to M(c) as the size of the city c as it measures local producers’ potential revenue

in a particular location.

We can use (1.17) to write into the firms profits gives firms’ z overall potential profits:

c∗(z) = max
c

logM(c)︸ ︷︷ ︸
Market size

+ log
ψ
(
C(c)
z

)
φ
(
ψ
(
C(c)
z

))
P(c)/D(c)︸ ︷︷ ︸

Market Share

− log
µ
(
C(c)
z

)
µ
(
C(c)
z

)
− 1︸ ︷︷ ︸

Fraction of sales
going to inputs

. (1.22)

Equation (1.22) reveals three forces that shape the location decision of local varieties

producers. The first, market size, reflects the total expenditure of local varieties in the city

c. All producers prefer bigger cities because potential revenue is higher.

The second term, market share, indicates how much of the total revenue in a given city

each firm can appropriate. The market share of firm z depends on the firm’s relative price,

ψ (C(c)/z), and on the demand’s price indices, D(c) and P(c). Producers charging a lower

relative price have a higher market share, which allows them to capture a larger fraction of

the total expenditure on local varieties and, therefore, have higher sales. The ratio P(c)/D(c)
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captures the sales of the other local producers in c.12 Producers prefer locations in which

they can have a higher market share.

Finally, the last term (1.22) encodes how much of the firms’ sales are going to their profits

and how much goes to pay the inputs of production. In the particular CES case, this last

term is constant, which implies that firms’ profits are always proportional to firms’ sales.

Nevertheless, profits are no longer proportional to sales once one departs from CES. Because

each firm chooses its optimal markup, how much revenue goes to pay the production inputs

varies across producers. In particular, high markup producers turn a larger fraction of the

sales into revenue. All else equal, firms value locations in which they can charge higher

markups.

1.2.4 Traded Good Producers

Now, we turn to characterize the traded good producers problem. Recall that these producers

are immobile and only make production decisions.13 The production function (1.4) implies

that the marginal cost of the perfectly competitive producers is ϱ(W (c)γR(c)1−γ)/a(c),

where ϱ ≡ 1
γγ(1−γ)1−γ . Therefore, the zero-profit condition in every city implies:

a(c) = ϱW (c)γR(c)1−γ . (1.23)

In equilibrium, the cost of production in more productive cities is higher. This translates

into higher wages and housing/commercial structures rents in such locations. Note that

(1.23) has implications for the local good producers’ production and location decisions.

Because traded good and local producers compete in the same labor and housing markets,

local producers in more productive cities face tougher competition in the input market,

12. Indeed, note that (1.10) and (1.17) imply that: P(c)/D(c) =
∫
z
ψ
(

C(c)
z

)
φ
(
ψ
(

C(c)
z

))
dGc(z).

13. The retrained mobility of the traded good producers is immaterial for the model predictions. As these
producers make zero profits in every location, they would be indifferent between locating among any cities.
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embedded in higher input costs. As seen from (1.16), tougher competition in the input

market leads to a higher competition overall.

Finally, the production function (1.4) implies that total labor labor demand and total

commercial structures demand from traed good producers in city c are given by:

LT (c) =
γQT (c)

W (c)
, ST (c) =

(1− γ)QT (c)

R(c)
. (1.24)

Because traded good producers earn zero profits in equilibrium, each production input

receives a fraction of the total sales given by their output elasticities.

1.2.5 Equilibrium Definition

Having laid how workers and firm make their optimal consumption, production, and location

decisions, characterize the conditions for the decentralized equilibrium.

First, the land developer’s production function leads to an equilibrium buildings supply

equal to R(c)ϕ and traded good demand of ϕR(c)1+ϕ/(1+ϕ). Then, local housing and local

labor markets clear in every city:

R(c)ϕ = L(c)H(c) + SN (c) + ST (c), L(c) = LN (c) + LT (c), (1.25)

where H(c) is given by (1.7), L(c) is given by (1.12), LN (c) and SN (c) are given by

(1.20), and LT (c) and ST (c) are given by (1.24). Moreover, the traded good market must

also clear. Recall that the traded good is consumed by workers, used to build housing and

structures, and used to pay the local producers’ entry costs. Hence, the traded good market

clearing condition is

∫
c
QT (c)dF (c) =

∫
c

(
L(c)Q(c) +

ϕ

1 + ϕ
R(c)1+ϕ

)
dF (c) + ceMe. (1.26)

Because of free entry, local producers’ expected profits must equal the entry cost. Fur-
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thermore, the labor market clears in the aggregate:

∫
z
Π(z, c∗(z))dG(z) = ce,

∫
c
L(c)dF (c) = L. (1.27)

A decentralized equilibrium is comprised of a mass of entering local producers Me, an

ex-ante utility U , an optimal price function, ψ(·), a location choice function, c∗(z), a local

productivity distribution, Gc(·), a wage function, W (c), housing prices, R(c), and population

distribution, L(c), such that workers maximize utility given prices, (1.7), local producers

maximize profits given location aggregates, (1.17), local producers choose optimally where

to locate (1.22) and the local productivity distribution Gc(·) is consistent with these location

choices, local labor and housing markets clear, (1.25), the traded good market clears, (1.26),

local producers make zero profits on average and aggregate labor market clears, (1.27). I

characterize the equilibrium’s existence, uniqueness, and properties in the next section.

1.2.6 Equilibrium Characterization

In equilibrium, cities are characterized by a combined index, x, which I denote as the appeal

of a city. Recall that, initially, a city is described by a pair of traded good productivity and

local amenities, (a, b). Nevertheless, Appendix B.1 shows that:

x = x(a, b) = a
1+θ(1−ηβ)

γ bθ, (1.28)

is a sufficient statistic for the firm’s location decisions. Intuitively, amenities govern local

population (see (1.12)), and productivity determines wages (see (1.23)). Hence, city size

depends on a combined index of these two characteristics and firms decide where to locate

based on the appeal of a city, x, rather than on the pair (a, b).14 Furthermore, all the

equilibrium objects, except for wages and population, also depend only on this combined

14. This implies that firms are indifferent between locating among cities c = (a, b) ̸= c′ = (a′, b′) if these
locations have the same appeal index, x(a, b) = x′(a′, b′).
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index, x.

Formally, denoting cities by their appeal allows us to characterize location choice prob-

lem (1.22), by taking the first-order condition with respect to x. The following expression

anticipates that equilibrium conditions involve only continuously differentiable fixed point

functionals:

∂

∂x

(
logM(x)− log

P(x)
D(x)

)
︸ ︷︷ ︸

∆ in sales from locating
in more appealing cities

(
µ

(
C(x)
z

)
− 1

)
︸ ︷︷ ︸

fraction of sales
going to profits

=
C′(x)
.

C︸ ︷︷ ︸
∆ in costs from locating
in more appealing cities

(1.29)

We start by describing the economic mechanisms that (1.29) encodes from right to left.

On the one hand, the right-hand side (RHS) represents the costs of locating in more appealing

cities. This term reveals that the cost of locating in high x locations is summarized by the

changes in the competition index, C(x). Importantly, this cost is the same for all firms,

regardless of their productivity.

On the other hand, the left-hand side (LHS) of (1.29) encodes the benefits of locating

in more appealing cities. The first term in parenthesis reflects the increase in sales when

locating in high x markets. The term M(x) captures changes in market size, and the term

P(x)/D(x) reflects how the firm’s market share changes as x increases.15 Note that the

increase in sales from operating in more appealing places is also the same for all firms,

irrespective of their productivity. Nevertheless, the second term in parenthesis does depend

on firm productivity and is the one driving the sorting patterns in the economy. Through

firm’s markups, this term indicates how much of the extra sales a firm makes from locating

in high x cities actually goes to firm profits and how much goes for paying the inputs of

production. If all firms charge the same markup, the LHS of (1.29) is not a function of the

15. Appendix B.1 shows that, to a first order, the firm’s pricing decisions do not affect market shares.
That is, because firms are already choosing their optimal price, the envelope theorem implies that
∂ logψ

(
C(x)
z

)
φ
(
ψ
(

C(x)
z

))
/∂x = 0.

22



firm’s productivity z. In this scenario, which is the case when workers have CES preferences

over local varieties, the benefits of locating in more appealing cities are the same for all

producers, and the model does not generate any sorting predictions.16

Once we allow the price-elasticity σ(·) to vary with the firms price, the model delivers

stark sorting predictions. If σ(·) is an increasing function, more productive firms charge

higher markups. This is often referred to as “Marshall’s Second Law of Demand” (MSLD).

Intuitively, consumers become less price elastic when facing lower prices. This allows more

productive firms, who charge lower relative prices, to have higher markups. I call this

complementarity between the firm’s productivity and the markup, pricing complementarities.

Because of the pricing complementarities, the LHS of (1.29) indicates that the benefits

of locating in more appealing cities are larger for high-productivity firms. Because more

productive firms charge higher markups, they benefit relatively more from the larger sales a

more appealing market allows.17

Of course, market size, local price indexes, and local competition are endogenous objects.

Whether more appealing cities yield higher sales or whether more appealing cities are more

competitive is determined in general equilibrium. As formalized in Proposition 1 below,

under MSLD, more productive firms self-select in more appealing cities that are bigger and

where competition is endogenously tougher. The main driver of this spatial sorting is the

fact that more productive firms gain relatively more from the increased sales a bigger city

allows.

To characterize the problem (1.22), I restrict the attention to parametrizations Υ(·) that

satisfy MSLD. There is empirical evidence supporting this feature of the consumer prefer-

ences (see, for instance, De Loecker and Goldberg (2014) and Amiti et al. (2019)) and its

16. Formally, the first-order condition (1.29) is not a function of the firm’s productivity, z, and therefore
it is not possible to characterize the location choice problem.

17. These pricing complementarities also drive firm sorting patterns in Nocke (2006).
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converse, although theoretically possible, seems counter-intuitive.18 Furthermore, to facil-

itate the exposition, I assume the particular functional form of Klenow and Willis (2016)

which satisfies MSLD. Appendix B provides conditions for general Kimball aggregators sat-

isfying MSLD for which the main theoretical predictions of the model hold.

Assumption 1 (Parametric form of Kimball aggregator). The Kimball aggregator Υ(·) is

given by the Klenow and Willis (2016) functional form:

Υ(x) = (σ − 1) exp

(
1

ε

)
ε
σ
ε−1

[
Γ

(
σ

ε
, 0

)
− Γ

(
σ

ε
,
xε/σ

ε

)]
, (1.30)

where σ > 1, ε > 0, and Γ(·, ·) is the Upper incomplete Gamma function,

Γ(x1, x2) =

∫ ∞

x2

tx1−1e−tdt.

Appendix A.3 derives expressions for the price-elasticity, σ(·), relative price ψ(·), relative

quantities, φ(·), and markup, µ(·) under functional form (1.30) for the Kimball aggregator.

I define an assignment pair as a pair of functions c → (z(x),M(x)), where z(x) is the

assignment function of local producers to cities, which is the inverse of c∗(z).19 The function

M(x) is the equilibrium market size that supports this location choice.

Proposition 1 (Sorting). Suppose that Assumption 1 holds, and that ξ(σ− 1) > 1, where ξ

is given by:

ξ ≡ γ(1 + ϕ) + θ(α + ηβ) + γ(1 + θ(1− ηβ))

ηθγ(1 + ϕ)
. (1.31)

Then, there exists a threshold ε such that for all ε ∈ (0, ε] there exists a unique solution

to (1.22). This solution exhibits positive assortative matching: the functions z(x), M(x),

and C(x) are strictly increasing.

18. Melitz (2018) offers a detailed discussion of the implications of violations of the MSLD.

19. As Proposition 1 shows, z(x) is strictly increasing and, therefore, its inverse is well defined.
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Proof. See Appendix B.1.

Proposition 1 demonstrates the existence and uniqueness of the assignment between city

appeal c and local producer’s productivity z. It features positive assortative matching. More

productive producers go to more appealing cities, z′(x) > 0. Furthermore, more appealing

cities are bigger, M ′(x) > 0, and have tougher competition, C′(x) > 0. Intuitively, more

appealing cities attract more workers and pay higher wages. This triggers the incentives

for local producers to enter such markets. In turn, local competition increases. Because of

pricing complementarities, only the most productive firms can sustain the high level of local

competition. Low-productivity firms opt-out and locate in smaller cities where competition

is slack.

The parameter restrictions in Proposition 1 ensure the existence of a unique assignment.

The term ξ captures different congestion forces in the framework. Namely, as cities grow, the

cost of labor and buildings (housing and commercial structures) also grow. Moreover, cities

are not perfect substitutes for workers because of the idiosyncratic location tastes. Therefore,

these forces prevent all workers and firms from locating in the most appealing city. When ε

is not too large, workers’ valuation from an additional variety is given by 1/(σ − 1), which

is the central agglomeration force in this framework. Therefore, the condition ξ(σ − 1) > 1

captures the standard condition for the uniqueness of equilibrium in general equilibrium

spatial models: congestion forces need to be greater than agglomeration forces.20 Proposition

2 formalizes this discussion by showing that under the assumptions of Proposition 1, there

exists of a unique equilibrium.

Proposition 2 (Existence and uniqueness). Suppose the assumptions of Proposition 1 hold,

and that the supports of G(·) and F (·) are not too large. There exists a unique decentralized

equilibrium. This equilibrium exhibits positive assortative matching.

20. See Redding and Rossi-Hansberg (2017) Section 3.5 for a detailed discussion on congestion and ag-
glomeration forces in a canonical spatial quantitative model.
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Proof. See Appendix B.2.

The results in Proposition 2 make it possible to shed further light on how differences in

local competition depend on the local producers sorting using a particular limiting equilib-

rium. Suppose that the ex-ante differences across cities become arbitrarily small: all cities

have arbitrarily small differences in the productivity of the traded good and local amenities.

In this limiting, all cities have virtually the same appeal (1.28). In that case, only differences

in the pool of local producers determine any ex-post differences across cities. Corollary 1

below shows that spatial differentials in local competition arise even without any ex-ante

heterogeneity between locations.

Corollary 1 (Equilibrium with ex-ante identical locations). Suppose the assumptions of

Proposition 2 hold. Then, there exists a limiting equilibrium in which more appealing cities

are larger and more competitive as the exogenous differences in appeal, c, go to zero.

Proof. See Appendix B.3.

The results in Corollary 1 highlight that pricing complementarities are the mechanism

that generates spatial differences in local competition. In the limiting economy, cities are

ex-ante identical, but ex-post differences arise endogenously. These differences arise due

to the spatial sorting of the local producers. On the one hand, because of the pricing

complementarities, more productive firms can adapt better to environments with intense

competition and hence locate in bigger cities in which competition is endogenously tougher.

On the other hand, the least productive firms find it optimal to locate in smaller cities where

competition is slack. Note that as locations do not differ ex-ante along any dimension, the

size of a city and the level of local competition are driven purely by the location choice of

the local producers.

This result should not be surprising as there are no technological complementarities be-

tween the local producer’s productivity and the city’s local productivity or amenities in the
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baseline economy. Local producers only value the exogenous city characteristics through

their effect on city size. When there are no differences in the city’s ex-ante characteristics,

firms still sort across space due to the endogenous differences in city size and local compe-

tition. Of course, city size and local competition are determined in equilibrium with the

location choice of local producers. The message Corollary 1 emphasizes is that the limiting

economy illustrates a case in which the joint determination of these three objects leads to

non-degenerate equilibrium. In this equilibrium, bigger cities are more competitive, and

more productive firms are located in such places.

Formally, Corollary 1 selects a particular equilibrium of the limiting economy. If ex-ante

differences across cities are precisely zero, there are infinite equilibria. However, in Corollary

1, we contemplate an economy in which cities differ ex-ante, but those differences become

arbitrarily small. In the limit, there are two possible equilibrium outcomes: the mixing

economy in which all cities are identical or the separating economy in which cities differ

ex-post. What Corollary 1 shows is that, in the limit, the separating economy is the one

that emerges due to the pricing complementarities.

1.2.7 Markups across Cities

Having characterized the location decision of the local varieties producers, we turn to study

how these decisions shape the distribution of markups across cities. Under the assumptions

of Proposition 1, local producers in c charge a markup equal to µ (C(x)/z(x)). The term

z(x) is the assignment function from Proposition 1 and reflects the productivity level of the

local producers.

Let M(x) denote the city-level markup, implicitly defined by the city-level labor share

in local goods:

W (x)LN (x)

M(x)
=

β

M(x)
.
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Combining this definition with the firm-level labor share (1.20), one can show that the

city-level markup is a sales-weighted harmonic average of the firm-level markups.21 Never-

theless, under Proposition 1 all firms in c charge the same markup and therefore the aggregate

markup, M(x), is

M(x) = µ

(
C(x)
z(x)

)
. (1.32)

Equation (1.32) reveals two opposite forces that determine the city-level markup. On

the one hand, bigger cities have tougher competition: C(x) is strictly increasing. Therefore,

a competition force in bigger cities pushes the city-level markup down. On the other hand,

bigger cities attract more productive firms: z(x) is strictly increasing. Hence, a selection

force in bigger cities pushes the level of markups up. The relative strength of these two

forces determines if bigger cities have higher or lower markups in equilibrium.

To facilitate the characterization of the level of markups across cities, I adopt here a

particular functional form of the economy-wide productivity distribution of local producers

G(·).

Assumption 2 (Firm Productivity Distribution). The common productivity distribution of

local producers is a truncated Pareto with support [z, z] and shape parameter κ, namely

G(z) =
1− (z/z)κ

1− (z/z)κ
, κ > 0. (1.33)

Corollary 2 (Markups and City Size). Suppose that Assumptions 1 and 2 hold. There exists

a threshold κ such that

1. If κ > κ, M(x) is strictly decreasing.

2. If κ < κ, M(x) is strictly increasing.

21. Edmond et al. (2023) obtain an equivalent expression when defining the sector-level markup.
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Proof. See Appendix B.4.

Proposition 2 establishes that the productivity dispersion of local producers determines

the cross-sectional markup variation across cities. The productivity distribution shape pa-

rameter, κ, is a measure of how dispersed is the productivity of local producers. When

the productivity of local producers is not that dispersed, bigger cities have lower markups:

the competition force dominates. If, on the other hand, local producers differ too much

in their productivity, then bigger cities have higher markups: the selection force domi-

nates. Appendix B.4 shows how the results in Corollary 2 extend when considering a general

economy-wide productivity distribution for local producers, G(·).

The results in Proposition 2 resemble recent findings in the literature of endogenous

variable markups. Recall that, under Proposition 1, bigger cities are more competitive.

However, depending on local producers’ productivity dispersion, bigger cities can have higher

or lower markups. Therefore, the level of markups in a given city should not be taken as

prima-facie evidence of reduced competition.22

Finally, we can also characterize how the location choice of local producers affects the

Total Factor Productivity (TFP) of a city. Formally, we consider an aggregation exercise in

which the total labor and structures determine the amount of the bundle of local varieties

produced in a given city. Formally, let Z(x) be implicitly defined by the aggregate production

function:

Y (x) = Z(x)
(
LN (x)

)β (
SN (x)

)1−β
,

where LNT (x) and SNT (x) are given by (1.21). In the decentralized equilibrium, we

have that

22. Baqaee et al. (2023) and Matsuyama and Ushchev (2022) also find conditions under which larger
markets could have higher markups.
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Z(x) = z(x)
Υ
(
φ
(
ψ
(
C(x)
z(x)

)))
φ
(
ψ
(
C(x)
z(x)

)) , (1.34)

where φ (ψ (C(x)/z(x))) is the optimal relative quantity of local producers in city c given

by (1.19). Equation (1.34) reveals that local TFP has two components. On the one hand,

it depends on the productivity of local producers. Cities that attract more productive firms

have higher TFP. On the other hand, local TFP also depends on the production distribution

within a city. Because consumers have a taste for variety, cities that attract more producers

will exhibit higher TFP. The relative quantities of local producers capture this feature. In the

counterfactual exercises, I explore how the number of local producers in each city magnifies

differences in TFP coming from the productivity differences of local producers.

1.3 Efficiency

In a single location model with variable markups, there are two different margins of ineffi-

ciency. As pointed out by Baqaee et al. (2023) and Edmond et al. (2023), variable markups

can lead to inefficient overall entry and misallocation of factors of productions across firms.23

The entry inefficiency arises because profits (private return) from the marginal entrant differ

from the consumer surplus their entry generates (social return). Moreover, misallocation of

factors of production arises when more productive firms charge higher markups.24 Relative

to the social optimum, more productive firms are too small, and aggregate welfare could

increase by reallocating production from low to high-productivity firms.

With geography, local good producers make another decision: choose where to locate.

With this additional layer, the overall entry margin may be inefficient, and the city-specific

entry rate could be inefficient. The equilibrium allocation in the decentralized equilibrium

23. Moreover, with overhead costs, there is a third margin of inefficiency: the selection cutoff in produc-
tivity.

24. Which is the case when Marshall’s second law holds.
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is inefficient because of two opposite externalities that arise with local entry.

Firms create a positive externality when entering a particular city. Because consumer

values variety in local goods, when a firm enters a city, it raises consumer surplus by creating

a new good. I call this externality, variety gains externality. Nevertheless, firms can only

partially appropriate the gain in consumer surplus into their profits. This non-appropriability

reduces firms’ incentives to enter a particular city, leading to insufficient entry. From a social

planner’s perspective, we would like to have more firms in particular locations.

Firms also create a negative externality when entering a city. Because local varieties

are imperfect substitutes, when a producer enters a city, it reduces the consumption of the

existing varieties. Thus, firms impose a negative externality on incumbents by reducing their

profits. This is a business stealing externality. There is excessive entry because firms do not

internalize their effect on other producers. From a social planner perspective, we would like

to have fewer varieties in a particular location and increase the consumption of the existing

ones.

It is worth to highlight that the variety gains and the business stealing externality are not

specific to my framework and are present in standard models of firm entry.25 Nevertheless, in

the commonly used models with CES preferences, these two externalities are always constant

and offset each other (Matsuyama and Ushchev (2021)).

In equilibrium, whether there is too much or too little entry in a particular city depends

on the strength of the variety of gains and business stealing externalities. In the spatial

equilibrium described in the previous section, the variety gains externality is higher in small

cities, and the business stealing externality is higher in bigger cities. Consequently, there

is too much entry in bigger cities and too little in small cities. The spatial sorting of

firms through pricing complementarities leads to more productive firms over-concentrating

in larger markets relative to the social optimum. This inefficiency ignites a “top-down” effect

25. This was early pointed out by Dixit and Stiglitz (1977) and Mankiw and Whinston (1986).
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on other cities, generating misallocation throughout the economy.

To better understand the spatial nature of the variety gains and the business stealing

externalities, consider two locations x1 < x2. Because location x2 is more appealing, it is

bigger and more competitive, M(x1) < M(x2) and C(x1) < C(x2). A lower competition

level in the small city reflects that it cannot attract too many local producers, and the ones

that decide to operate there are of low productivity, z(x1) < z(x2). Therefore, consumers in

the small location benefit more from an additional variety than consumers in the big city.

On the other hand, bigger cities can attract the more productive firms because potential

profits are higher relative to small cities.26 Therefore, the incumbents’ profit loss from a

marginal entrant is higher in big cities than in smaller cities. As a result, the variety gains

externality dominates in smaller markets, while the business stealing externality dominates

in bigger ones.

Other sources of misallocation: Two additional features of the model give also rise to

spatial misallocation. As highlighted by Fajgelbaum and Gaubert (2020) and Donald et al.

(2023), these elements are the worker’s idiosyncratic location tastes and the rebatements of

the local developer’s profits through the national portfolio. When workers have idiosyncratic

preferences over locations, those who decide to locate in smaller markets are the ones who

obtain a large realization of the location taste, ςi(c). Hence the marginal utility of con-

sumption is larger in such places than in bigger locations. Differences in the marginal utility

of consumption and the utility function’s concavity give the planner incentives to smooth

consumption across locations through public transfers to increase aggregate welfare.

A simpler version of the model to better isolate the role of the variety gains and the

business stealing externalities on the spatial misallocation. In particular, in the Online

Appendix, I consider a framework without idiosyncratic location tastes and a fixed housing

supply in each location owned by absentee landlords. Then, I show that spatial misallocation

26. Note that if profits were higher in smaller cities, then high productivity firms would have a profitable
deviation by locating in smaller cities, which contradicts the results of Proposition 1.
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remains.

1.3.1 Social Planner’s Problem

I formalize the previous arguments by characterizing the planner’s problem. An utilitarian

planner maximizes the population-weighted sum of workers’ utility in every city. The planner

chooses the location of local producers and population subject to workers’ idiosyncratic

location tastes. The planner also chooses the allocation of labor into traded good production

and local varieties production in every city. Moreover, she is subject to the housing supply

technology in every location. I relegate the formal definition of the planning problem to

Appendix C and characterize the solution in the main text. I use SP superscripts for

the solutions in the planner problem. The decentralized equilibrium is inefficient when the

decentralized allocation does not coincide with the planning one.

Proposition 3 (Efficient Allocation). The decentralized equilibrium is inefficient. Moreover,

suppose that the supports of G(z) and F (c) are not too large as in Proposition 2. Then,

z(x) < zSP (x) for all x ∈ (x, x). (1.35)

Proof. See Appendix C.1.

Proposition 3 establishes that the decentralized equilibrium is inefficient. In the baseline

framework, markups generate inefficiencies through three channels. First, they distort the

relative consumption between local varieties, housing, and the traded good. Second, they

distort the location decisions of firms. Third, they distort the aggregate entry margin of local

producers. Importantly, because local producers in each city have the same productivity,

there is no misallocation within a city in the sense of Hsieh and Klenow (2009).

Equation (1.35) shows that firms are misallocated across cities. Local producers in the

decentralized equilibrium are not productive enough relative to the social planners’ solution,
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and too concentrated in bigger cities. On the other hand, for any city x, the social planner

selects more productive firms z(x) < zSP (x). Therefore, there is a misallocation of firms

across cities: aggregate welfare can increase by reallocating productive producers from big

to small markets.

Whether big cities have higher or smaller markups affects firm misallocation. As Ap-

pendix C.3 formalizes, the slope of markups across cities exacerbates the business stealing

externality. To understand this mechanism, it is helpful to consider two economies: one in

which markups in big cities are low and another in which markups are high. In the first

economy, more productive firms face the trade-off between locating in larger markets when

they sell more but make lower margins. This trade-off reduces the incentives for setting

production in big cities, and marginal producers find it optimal to reallocate to smaller

locations. On the other hand, in the second economy, where markups are high in bigger

cities, firms no longer face this trade-off: they sell more and have larger margins in such

locations. Of course, low-productive producers still self-select into smaller cities because of

the pricing complementarities. However, the more productive producers who can handle the

high competitive pressure in bigger cities over-concentrate even more in such locations than

in the first economy scenario.

As the results in the empirical section highlight, the slope of the relationship between

markups and city size is then informative of the degree of misallocation in the economy.

Even though firms always over-concentrate in big cities, a negative slope suggests that mis-

allocation across space is less severe than in a situation with a positive slope.

1.3.2 First-best Implementation

How can efficiency in the decentralized equilibrium be restored? Proposition 4 shows that the

first-best allocation can be attained by implementing a location-specific subsidy per total

production. This subsidy corrects the three margins of inefficiency previously discussed:
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markups, misallocation of firms across cities, and overall entry. Finally, the subsidy is

financed by a flat labor tax.27

Formally, consider T (y, x) that is city-specific and depends the quantities sold, y,

T (y(z, x), x) =

[
Υ

(
y(z, x)

Y (x)

)
︸ ︷︷ ︸
worker’s utility

−Υ′
(
y(z, c)

Y (x)

)
y(z, x)

Y (x)︸ ︷︷ ︸
original revenue curve

]
D(x)
P(x)

M(x). (1.36)

The policy in (1.36) affects firm revenue in two ways. First, it takes away the sales from

the firm’s original revenue curve: the term corresponding to Υ′ (y/Y (x)) (y/Y (x)). Second,

it returns revenues proportionately to Υ(y/Y (x)), which measures the relative “utility” each

firm generates. Under this policy, the net profits for firm z in city c are given by

Π̂(z, x) = Π(z, x) + T (y(z, x), x) =

[
Υ

(
y(z, x)

Y (x)

)
− C(x)

z

y(z, x)

Y (x)

]
D(x)
P(x)

M(x). (1.37)

Equation (1.37) reveals that the transfer eliminates any incentives for firms to charge a

markup. When sales come from the original revenue curve, producers are incentivized to

shrink production to maximize sales. However, when sales come proportional to Υ(y/Y (x)),

firms have the incentives to maximize the units produced. In turn, firms produce at marginal

cost and exert no market power. As Proposition 4 clarifies, when firms profits are given by

(1.37), firm misallocation across cities is also eliminated.

Proposition 4 (Optimal Policy). Under the location-specific subsidy (1.36), the decentral-

ized equilibrium allocation coincides with the planner solution.

Proof. See Appendix C.4.

Proposition 4 shows that the subsidy (1.37) corrects the three margins of inefficiency in

the decentralized equilibrium. First, it eliminates markups, which corrects the inefficient

27. That is, workers earnings in every city are equal to (1− τ)W (x), where τ is the tax.
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relative consumption between the bundle of local varieties, housing, and the traded good.

Second, it gives the right incentives for firms to locate efficiently. Lastly, it also corrects the

overall entry into the economy. As Appendix C.4 shows, in equilibrium, firms profits (1.37)

can be written as:

Π(z, x) =
[
δ

(
y(z, x)

Y (x)

)
︸ ︷︷ ︸

consumer surplus

−1
]
Υ

(
y(z, x)

Y (x)

)
︸ ︷︷ ︸
market share

M(x), (1.38)

where δ
(
y(z,x)
Y (x)

)
is the ratio of the consumer surplus to firm sales.28 In equilibrium,

firms capture a share of the total revenue in a market proportionally to workers’ utility.

Moreover, firms’ profits exactly coincide with the consumer surplus they generate. Then,

because firms are now correctly compensated for their effect on workers’ utility, the location

and the overall entry margin are corrected. Finally, it is worth to highlight that (1.36)

generalizes the insights of Edmond et al. (2023). In their setting, the optimal policy for a

single market is similar to (1.37).

This section outlined a spatial general equilibrium model in which spatial markup differ-

ences arise because of the location choice of heterogeneous local producers. The framework

highlights that differences in markups across are explained by differences in local compe-

tition and the productivity of local producers. Moreover, In the next section, I study the

framework’s predictions using data from local producers in the United States.

1.4 Empirical Analysis

In this section, I empirically investigate the theory predictions. When taking the model to

the data, we need to take a stand of a definition of a city and on the map between locations

in the model (continuum) and cities in the data (discrete). In turn, I define a city in the

28. Formally, δ
(

y(z,x)
Y (x)

)
= Υ

(
y(z,x)
Y (x)

)
/
(

y(z,x)
Y (x) Υ

′
(

y(z,x)
Y (x)

))
. See Figure 1 in Baqaee et al. (2023) for a

visual representation of this object.
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data as a county and I consider a county as being a collection of related locations in the

model. Formally, a county is an interval [x, x+ dx] of cities in the model.

To conduct the empirical investigation, I first describe the U.S. establishment-level data

used for all exercises. Second, I introduce the classification of traded and local (non-traded)

sectors I use through the empirical exercises. Then, I perform model validation exercises.

Finally, I outline and implement the empirical strategy to estimate markups and study the

variation across U.S. cities.

1.4.1 Data

The primary dataset used in this project is the micro-data from the U.S. Census Longitudinal

Business Database (LBD). This data source uses administrative employment records of every

non-farm private establishment in the U.S. economy. The establishment-level variables I used

are employment, wage bill, geographic location (county), industry (6-digit NAICS), and the

establishment identifier.

I supplement the LBD data with sales data at the establishment level from the Eco-

nomic Censuses every five years from 2002 to 2017. Specifically, I use the micro-data from

the Census of Construction Industries, Manufacturing, Retail Trade, Census of Services,

Wholesale Trade, Finance, Insurance and Real Estate, and the Census of Transportation,

Communications and Utilities. I use the establishment identifier to link the establishment

in the Economic Censuses to the establishments in the LBD. The final sample is the estab-

lishments in the LBD with matched sales data from the Economic Censuses.29 I use 2017

as the baseline year, leaving 2002, 2007, and 2012 for robustness exercises.

I use the Census of Manufactures to perform additional markup estimation exercises. The

Census of Manufactures has detailed data on establishment materials, capital (equipment

and structures), and energy expenditures. Unfortunately, such detailed data is not available

29. This is virtually the same sample used in Hsieh and Rossi-Hansberg (2023).
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in the other Economic Censuses. I construct real capital, materials, and labor measures

using standard procedures used in the productivity estimation literature (see Foster et al.

(2016)).

In the baseline exercises, I associate a city with a county. Focusing on continental U.S.,

I include 3080 counties. For some the robustness exercises, I define cities as Commuting

Zones.30

1.4.2 Local Industries

I use the definition of Delgado et al. (2015) to classify establishments in the LBD as traded

or local producers. Broadly, this definition classifies 6-digit NAICS industries into “Traded”

or “Local” based on employment specialization, geographic concentration, and distance to

final consumers. Local producers belong to industries in most of the geographic areas and

sell to local consumers. On the other hand, traded industries sell to other regions and are

sometimes geographically concentrated. Formally, the authors group 310 6-digit NAICS

industries as Local and 778 6-digit NAICS industries as Traded.31 Using the industry codes

from the LBD, I classify an establishment as a local producer if it belongs to any of the 310

local industries.32

Table 1.1 displays summary statistics for the baseline sample. The sample includes 85%

of all the LBD establishments in 2017. Establishments operating in local industries are to be

smaller in number of workers, sales, and wage bill compared to their counterparts in traded

industries. Nevertheless, the number of local establishments is almost three times that of

traded ones. Hence, in the aggregate, local industries represent more than half of the U.S.

economic activity by employing 67% of the labor force and by accounting for 52% of the

total sales and 59% of total labor income.

30. To map counties to commuting zones, I use the crosswalk provided by Autor and Dorn (2013).

31. For the full list of 310 local NAICS industries see Cluster Mapping Project.

32. This classification is used in Berger et al. (2022).
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Table 1.1: Summary Statistics Baseline 2017 Sample

All Local Traded
Industries Industries Industries

(1) (2) (3)

Number of establishments 6,655,000 5,075,000 1,579,000
Avg. Employment (# of workers) 17.82 15.70 24.61
Avg. Sales (thousands) 3,463 2,376 6,955
Avg. Wage bill (thousands) 627.4 488.1 1,075

Agg. employment share ... 0.67 0.33
Agg. sales share ... 0.52 0.48
Agg. wage bill share ... 0.59 0.41
Notes: Table 1.1 displays summary statistics for the 2017 LBD-EC matched sample (baseline
sample). The traded-local industries classification is based on Delgado et al. (2015).

1.4.3 Model Validation

Before analyzing the empirical patterns of markups across U.S. cities, I provide empirical

support for the model’s sorting prediction. Proposition 1 indicates that local producers are

more productive in bigger cities. Because firm productivity is not observed in the data, I

consider how two proxies of firm productivity relate to city size.

Labor productivity and city size. The first proxy for firm productivity is labor pro-

ductivity. Ideally, one would like to study output (physical quantities) per worker. However,

I cannot separate prices and quantities as I only observe sales at the establishment level.

Therefore, I define labor productivity at the establishment level as sales per worker.

I construct measures of labor productivity and size for every county. Using the establish-

ment’s location and local-traded classification, I compute sales per worker for establishments

in local industries across all counties. Then, for every county, I compute the average sales

per worker across all establishments in local industries in a given county. This is the mea-

sure of labor productivity at the county level. On the other hand, guided by the theoretical

framework, I define the “size” of a county as the total income of workers residing in that

39



Figure 1.1: Local Industries Sales per Worker and Average Employment
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Notes: Figure 1.1a shows a bin-scatter of county log average sales per worker and log total labor income
for local industries. The bin-scatter considers 50 equally sized county bins according to their total labor
income. Average sales per-worker is computed among establishments in local industries. Figure 1.1b
displays average employment for establishments in local industries across counties in different percentiles
of the county-size distribution. Different bars indicate percentiles of the county-size distribution: 5th,
10th, 25th, 50th, 75th, 90th, and 95th percentiles. The height of each bar represents the average
employment of establishments in local industries across counties in each percentile. County size is
defined as total labor income.

county.33

Figure 1.1a displays a bin-scatter of counties’ log labor productivity and log county size.

As Proposition 1 establishes, county size and county labor productivity have a positive and

significant relationship. An increase of 1% in a county’s size is associated with a 0.03%

increase in county labor productivity. Moreover, counties in the top decile of the county-size

distribution have a labor productivity 13% higher than counties at the bottom.

Establishment size and county size. The second firm productivity proxy we consider

is establishment size. Appendix A.2 shows that the model predicts that producers in bigger

cities employ more workers than producers in smaller cities. To empirically investigate

this prediction, I first measure establishment size in each county by computing the average

establishment employment for local industries. Then, I split counties into 100 equally-sized

33. As my model indicates, I consider all workers regardless of whether they are employed in local or traded
industries.
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bins according to their total labor income and compute the average establishment size across

counties in each bin. Generally, we compute the average establishment size for counties across

the percentiles of the county-size distribution.

Figure 1.1b shows the average employment for local establishments in different counties

across the county-size distribution. In particular, it displays the average employment for

local establishments in counties in the 5th, 25th, 50th, 75th, and 95th percentiles of the

city-size distribution. A typical local establishment in the smaller counties (5th percentile)

has 7.76 workers; in the largest counties (95th percentile), it employs 16.23 workers. This

demonstrates that average employment in local industries doubles across the county-size

distribution.

1.4.4 Markup Estimation

This section outlines the empirical strategy to estimate markups for establishments in local

industries. Using the insights of De Loecker (2011), I develop an alternative method for

markup estimation that combines consumer preferences with the firm optimal input deci-

sions. Before proceeding with the description of the method, I discuss the limitations of

applying some of the existing methods in my LBD-Economic Census sample.

Existing Methods

I build on the production approach to estimate markups. Originally developed by Hall

(1988) and recently extended by De Loecker and Warzynski (2012), this approach produces

markup estimates using data on sales, variable input expenditures, paired with estimates

of output elasticities. In contrast, an alternative procedure often refereed as the demand

approach, uses data on prices and quantities to estimate the marginal cost of production.

With estimates on own and cross-price elasticities across goods, markups can be recovered

from the firms pricing first-order conditions after specifying the market structure under which

41



firms compete.34 I do not observe prices or product characteristics in the LBD or the EC’s

data, and therefore I cannot implement the demand approach.

I index establishments by j and counties by c in the data. Under certain regularity

conditions of the firms’ cost-minimization problem, markup for establishment j in county c

can be expressed as the ratio of the output elasticity of a flexible input and the cost-shares

of sales of that input.35 The conditions for the ratio estimator hold in the setting outlined

in Section 1.2 and equation (1.20) implies that:

µjc =
β

αljc
, (1.39)

where αljc = (Wcljc)/(pjcyjc) is the labor expenditure share of total sales, which is ob-

served in the data. Then, using (1.39), one can form an estimate of the markup by obtaining

an estimate of the labor output elasticity, µ̂jc = β̂/αljc. This estimator is commonly called

the “ratio estimator”.36 Under this approach, the main econometric challenge is to estimate

production elasticities.

The first procedure to estimate output elasticities is the production function approach.

Under this alternative, researchers estimate a production function by regressing output on

inputs. The estimation is usually done by implementing a control function approach as in

Olley and Pakes (1996), Levinsohn and Petrin (2003), Ackerberg et al. (2015), and Gandhi

et al. (2020), or by estimating dynamic panel models as in Arellano and Bover (1995) and

Blundell and Bond (1998, 2000). Each of these approaches has costs and benefits. However,

one common requirement is data on physical quantities as the output measure.37 Unobserved

34. See Ackerberg et al. (2007) and Berry et al. (2019) for excellent overviews.

35. A flexible input is one that: 1) can be adjusted freely every period, and 2) establishments take as given
the price of the input. The latter condition rules out the possibility of monopsony power that inputs the
market.

36. See De Loecker and Warzynski (2012) for a detailed derivation of this estimator.

37. De Loecker and Syverson (2021) offer an exhaustive review of the control functions and dynamic panel
models.
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output price differences confound the identification of the production function parameters

when sales are used as an output measure.38 Data on physical quantities for establishments

throughout different economic sectors in the U.S. does not exist.39 In particular, I observe

sales as the output measure in the LBD-EC sample. Therefore, we cannot implement the

production function approach to form the ratio estimator.

The second alternative to estimate production elasticities is the cost-share approach.40

Relying on cost minimization conditions, an input’s output elasticity equals the input’s

cost share of total costs times the scale elasticity.41 In contrast to the production function

alternative, this approach does not require data on physical quantities. However, it requires

data on the establishment’s total costs. As highlighted by De Loecker and Syverson (2021),

data on total costs is rare, with capital costs being the most difficult to observe. Indeed, data

on the U.S. establishment’s total costs does not exist except for publicly traded companies

and manufacturing establishments. Thus, I cannot implement the cost-share approach to

the LBD-EC sample to estimate markups through the ratio estimator.

In sum, data limitations prevent the implementation of the ratio estimator. As an alter-

native, in the same spirit of De Loecker (2011), I use the demand structure from my model

to overcome the identification challenge. De Loecker (2011) uses a CES demand structure

to control for unobserved prices in a production function estimation context. Similarly, I

use the demand structure from the theory section to construct a markup control function.42

The following section describes in detail this alternative procedure.

38. Bond et al. (2021) discusses pitfalls of using the ratio estimator without data on physical quantities.

39. Exemptions are Manufacturing sub-samples in Foster et al. (2008) and Atalay (2014).

40. De Loecker et al. (2020) and Edmond et al. (2023) use this approach to estimate markups for publicly
traded firms and manufacturing establishments, respectively.

41. The scale elasticity is the degree of returns to scale of the production technology.

42. The main difference between my framework and De Loecker (2011) is that my demand structure allows
for variable markups.
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Alternative Procedure

To avoid estimates dependency on functional forms specifications, I consider a general

parametrization of the Kimball aggregator Υ(·) with the only assumption of a choke price.43

Assumption 3 (Kimball Aggregator for Markup Estimation). Assume Υ(·) is a strictly

increasing and concave function satisfying Υ(0) = 0. Moreover, assume there exists p < ∞

such that:

(
Υ′)−1

(p) = 0. (1.40)

Recall from (1.8) that workers relative demand is given by the inverse of the derivative

of the Kimball aggregator.44 Hence, condition (1.40) implies the intuitive idea that a finite

price exists at which workers demand zero quantities.

On the other hand, we can re-organize (1.39) and take logs to obtain:

logαljc = β − log µjc (1.41)

Note that the LHS of (1.41) is observed in the data. Therefore, one could potentially

estimate markups as the residual of a regression of log labor cost share of revenue and a

constant. Nevertheless, this procedure has two potential threats. First, any measurement

error on the labor cost share of revenue is absorbed in the error term confounding markup

estimates. Second, as Appendix D.4 illustrates, if one considers a more general production

function in which output elasticities are not constant and vary with inputs, the potential

correlation between markups and input usage invalidates the identification of markups as

residuals from (1.41). I use the demand system in Assumption 3 to construct a markup

control function to avoid these issues.

43. The Klenow and Willis (2016) introduced in Assumption 1 has a choke price. The CES functional form
for Υ(·) has no choke price.

44. The strict concavity of Υ(·) guarantees the existence of this inverse function.
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Let pjc be the price establishment j charges in county c. Moreover, let Pc and Dc be the

ideal and competition price indices in county c, respectively. Using the Lerner formula, we

can µjc as a function on the relative price:

µjc = µ

(
pjc
Dc

)
,

=
1

1− 1

σ
(pjc

Dc

) (1.42)

where σ(·) is given by (1.15). Because there is no price information in the U.S. micro-

data, the object pjc/Dc is unobserved. However, we can use the demand system to express

relative prices as a function of sales market shares. Let syjc be th sales share of establishment

j in county c.45 Using the residual demand (1.8), we can write the sales share as:

s
y
jc = φ

(
pjc
Dc

)
pjc
Dc

Dc
Pc
, (1.43)

Appendix D.1 shows that the function φ(x)x is strictly decreasing, and therefore we can

use (1.43) to solve for pjc/Dc as a function of the sales market share and the price index

ratio Pc/Dc:

pjc
Dc

= ζ

(
s
y
jc

Pc
Dc

)
, (1.44)

where ζ(x) is the inverse of the function φ(x)x. By combining (1.42) and (1.44) we can

write µjc as function of syjc × (Pc/Dc):

µjc = µ

(
ζ

(
s
y
jc

Pc
Dc

))
(1.45)

45. Formally, syjc ≡ pjcyjc/
(∑

j′∈c pj′cyj′c

)
.
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The exact functional form of the markup function µ (ζ(·)) depends on the parametrization

of Υ(·). However, to maintain the estimation parsimoniously, I use a semi-parametric ap-

proximation for the markup function and use a sieve series estimator as analyzed in Hansen

(2014) and used in the production function estimation context by Gandhi et al. (2020).

Formally, I approximate the log markup function by a third-order degree polynomial in

s
y
jc × (Pc/Dc):46

log µ

(
ζ

(
s
y
jc

Pc
Dc

))
= ς1sjc

Pc
Dc

+ ς2

(
s
y
jc

Pc
Dc

)2

+ ς3

(
s
y
jc

Pc
Dc

)3

+ υjc, (1.46)

where υjc is an approximation error that goes to zero once one considers higher poly-

nomial terms.47 Crucially, the approximation in (1.46) does not have a constant term. As

shown in Appendix D.1, Assumption 3 implies that when producers have a zero sales share,

they charge a markup equal to one. Intuitively, because of the choke price, firms with zero

sales share face an infinite elasticity of demand and, therefore, have markups equal to one.

Combining (1.41) and (1.46) yields the equation from which markups are identified:

logαljc = log β + ς1,cs
y
jc + ς2,c(s

y
jc)

2 + ς3,c(s
y
jc)

3︸ ︷︷ ︸
≡logµjc

−υjc, (1.47)

where ς1,c ≡ −ς1(Pc/Dc), ς2,c ≡ −ς2(Pc/Dc)2, and ς3,c ≡ −ς3(Pc/Dc)3. Because I do

not observe the county price indices, I treat them as county fixed-effects, and hence (1.47)

takes the form of a heterogeneous slopes model. Appendix D.2 derives conditions on Υ(·)

such that the regularity conditions in Newey (1997) are satisfied and the sieve estimator for

(1.47) is consistent.

Equation (1.47) reveals the variation that identifies markups. Conditional on the es-

tablishment technology, β, markups are identified using within-county variation in the sales

46. The results in Section 1.4.4 virtually do not change when considering higher-order polynomials.

47. The error term is given by υjc = logµ
(
ζ
(
syjc

Pc

Dc

))
− ς1sjc

Pc

Dc
− ς2

(
syjc

Pc

Dc

)2
− ς3

(
syjc

Pc

Dc

)3
.
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shares and the labor cost share of sales. Within a county, establishments with high sales

shares and low labor expenditure share have higher markups. The choke price allows us

to separate the markup approximation function’s constant (zero) from the labor output

elasticity β. Thus, the levels of markup are correctly identified.

Appendix D.3 shows how to extend the estimation when considering multiple sectors and

controlling for potential labor market power.48 In particular, when estimating markups by

sector, the estimating equation takes the form of:

logαljnc = log βn + ς1,ncs
y
jnc + ς2,nc(s

y
jnc)

2 + ς3,nc(s
y
jnc)

3 − υjnc, (1.48)

where n index sector. In contrast to (1.47), the sector estimation uses the within-county-

sector variation in sales share and labor cost share of sales to recover markups.

Markups for Establishments in Local Industries

This section presents the results for the markup estimation outlined in Section 1.4.4. Table

1.2 presents summary statistics for establishments in different local industries. The first row

displays the results from the estimation for all local industries in (1.47). The remaining rows

present markup estimates for the sector estimation in (1.48). For the sector estimation, I

define a sector as a 2-digit NAICS industry.

There is considerable heterogeneity in markups across establishments in local industries.

The median establishment in local industries has a markup of 1.43, which is along the lines

of the findings of De Loecker et al. (2020) for publicly traded companies. However, I find

significant cross-sectional heterogeneity, with establishments in the top decile of the markup

distribution charging a markup seven times higher than establishments in the bottom decile.

There is also significant markup heterogeneity across local industries. On the one hand,

48. In the baseline estimations, I control for potential labor market power by adding a flexible polynomial
in the establishments’ wage bill share to (1.47).
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Table 1.2: Summary Statistics: Markups for Establishments in Local Industries

Mean Median p10 p90
(1) (2) (3) (4)

All Local 2.57 1.43 1.07 7.78
Local Construction 1.79 1.13 1.01 3.25
Local Manufacturing 2.56 1.43 1.07 7.77
Local Wholesale 3.28 1.79 1.05 7.76
Local Retail 2.4 1.35 1.04 7.78
Local Transportation and Warehousing 1.89 1.16 1.02 3.82
Local Information 2.7 1.41 1.05 7.75
Local Finance and Insurance 1.67 1.17 1.03 2.75
Local Real Estate 1.29 1.1 1.02 1.85
Local Profesional, Scientific and Technical Services 1.24 1.08 1.01 1.69
Local Administrative 1.41 1.1 1.01 2.22
Local Education Services 1.11 1.06 1.01 1.3
Local Healthcare 1.54 1.14 1.02 2.48
Local Arts, Entertainment, and Recreation 1.36 1.13 1.02 2.07
Local Accommodation and Food Services 1.32 1.17 1.03 1.87
Local Other Services 1.18 1.08 1.01 1.52
Notes: Table 1.2 displays summary statistics for the estimated markups using (1.47). The first row
considers all local establishments. The following rows display statistics for establishments in local
industries for 2-digits NAICS sectors. Columns p10 and p90 denote the 10th and 90th percentile of
the markup distribution, respectively. The traded-local industries classification is based on Delgado
et al. (2015).

the median and the 10th markup percentile are similar across different local sectors. Nonethe-

less, sectors like Manufacturing, Wholesale, and Information exhibit a mean markup signif-

icantly higher than the other sectors. These sectors also exhibit a larger p90 - p10 gap than

the others.

Local Industries Markups across Cities

I now turn to the main empirical analysis of this section: markups across cities. I construct

the sales-weighted harmonic mean of establishment markups to compute the county-level

markup. Formally, following the implications of the theory in Section 1.2, the county aggre-

gate markup Mc is defined as:
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Figure 1.2: County Aggregate Markup and County Size
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Notes: Figure 1.2 shows a bin-scatter of county log aggregate markup and log total
labor income. County size is defined as total labor income. The bin-scatter considers
50 equally sized county bins according to their total labor income. County aggregate
markup is a sales-weighted harmonic mean of the local establishment’s (1.49).

Mc =

∑
j∈c

s
y
jc

1

µjc

−1

, (1.49)

where the sum is taking over the local establishments in county c.

Figure 1.2 shows the relationship between county aggregate markup and county size. The

figure displays a clear empirical pattern: bigger counties have a markup significantly lower

than their smaller counterparts. Counties like Manhattan or Cook County (Chicago) have

a markup 50% lower than small counties like Highland, VA, or Armstrong, TX. Moreover,

an increase of 1% in a county’s size is associated with a decrease in the county markup of

0.084%. Table 1.3 shows that empirical findings are not particular to 2017 or defining a city

as a county. The negative pattern between county markup and county size is also present

when considering other years and defining a city in the data as a Commuting Zone.

Figure 1.2 sheds light on the mechanisms that shape the distribution of markups across

cities. On the one hand, the empirical regularities shown in Section 1.4.3 show that bigger
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Table 1.3: Average City Markup Elasticity with respect to City Size

Dep. var.: Log aggregate markup
2002 2007 2012 2017
(1) (2) (3) (4)

Panel A: Counties
Log total labor income -0.0987*** -0.0897*** -0.0931*** -0.0834***

(0.0032) (0.0034) (0.0033) (0.0031)
Observations 3100 3100 3100 3100
R-squared 0.368 0.328 0.363 0.323

Panel B: Commuting Zones
Log total labor income -0.0671*** -0.0662*** -0.0651*** -0.0609***

(0.0029) (0.0026) (0.0030) (0.0029)
Observations 750 750 750 750
R-squared 0.598 0.61 0.526 0.551

Notes: Table 1.3 displays the average elasticity of county aggregate markup and city
size. City aggregate markups is defined as (1.49) and city size is defined as total labor
income. Panel A shows the mean elasticity defining cities as counties. Panel B shows the
mean elasticity defining cities as Commuting Zones. Robust standard errors in parenthesis.
*10% level, **5% level, ***1% level.

locations attract more productive producers. However, Figure 1.2 shows that markups in

such locations are significantly lower than in small locations. Through the lens of the theory,

the competition force dominates the selection force. Even though bigger cities attract more

productive local producers, competition in those locations is high enough to restrain the

market power of local producers. Furthermore, guided by the results in Proposition 2, this

finding suggests that the dispersion of local producers’ productivity is lower relative to the

local characteristics of cities.

The negative relationship between county markup and county size also sheds light on the

spatial misallocation of local producers. Proposition 3 highlights that if markups were higher

in bigger cities, the misallocation of local producers would be exacerbated. Nonetheless,

Figure 1.2 sends a reassuring message that markups in larger cities are lower than in smaller

cities. The results suggest that the competition force governing local producers’ location
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Figure 1.3: County Aggregate Markup and Size, Local Retail and Manufacturing
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(a) Retail
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(b) Manufacturing

Notes: Figure 1.3a shows a bin-scatter of county log aggregate markup for Local Retail and log total
labor income. Figure 1.3b shows a bin-scatter of county log aggregate markup for Local Manufacturing
and log total labor income. County aggregate markup for Retail is a sales-weighted harmonic mean of
the Retail local establishment’s (1.49). County aggregate markup for Manufacturing is a sales-weighted
harmonic mean of the Manufacturing local establishment’s (1.49). In both figures, county size is defined
as total labor income. Both bin-scatters consider 50 equally sized county bins according to their total
labor income.

decisions prevents establishments from over-locating in bigger cities. Competition in bigger

cities is intense enough to prevent local producers from charging higher markups and induces

marginal producers to locate in smaller cities.

Although the primary goal of the current section is to analyze markups for all local

industries, I turn now to a sector-specific analysis of markups across cities. Although I focus

on the Retail and Manufacturing, Appendix E.2 shows results for the other sectors.

Figure 1.3 shows markups across cities for local Retail and Manufacturing. The retail

patterns resemble those of all local industries. Local Retail producers in big cities charge

a markup 60% lower than local Retail producers in the smallest cities. This finding is

unsurprising as local Retail accounts for one-quarter of local industries’ employment. Hence,

it is reasonable to think that local Retail producers are one of the drivers of the dynamics

displayed in Figure 1.2.

Markups for local Manufacturing producers are higher in larger cities. Contrary to the

results for all local industries, local Manufacturers in the bigger counties charge a markup

51



two times higher than producers in the smallest cities. Furthermore, the local Manufacturing

markup distribution across cities unveils two additional findings. First, the forces that govern

competition and selection of local producers seem to vary across sectors. Second, the markup

estimation procedure outlined in Section 1.4.4 does not mechanically deliver lower markups

in big cities.

The different empirical patterns for local Retail and local Manufacturing inform the

spatial misallocation across sectors. Because local manufacturing markups in larger markets

are higher, the spatial misallocation in Manufacturing may be more considerable than the

misallocation in Retail. The selection force in local Manufacturing is significantly stronger

than in local Retail. Intuitively, the productivity differences across local Manufacturing

plants are much more significant than those across local Retail producers.

Robustness. I use the Manufacturing sector to perform robustness exercises that provide

additional empirical support for the findings of this section. In contrast to other censuses,

the Census of Manufactures has detailed data on production inputs. In particular, I observe

materials, energy, and capital expenditure measures. The detailed data allows me to inves-

tigate the variation in markups across cities with three variations of the baseline estimation.

Appendix E.3 shows the results of these alternative exercises.

First, one potential threat to the markup estimating equation (1.47) is that labor might

not be fully flexible. I tackle this concern by estimating this equation using materials and

energy as flexible inputs. Second, I relax the Cobb-Douglas assumption by considering a

general production function. Under this approach, output elasticities are no longer constant

and can be a function of the production inputs. In particular, I approximate the output

elasticity by a flexible polynomial in labor, materials, energy, and capital as in Gandhi et al.

(2020). Under these two alternative procedures, the estimated markups highly correlate with

the baseline estimates. I also obtain the same cross-sectional city variation as in Figure 1.3b.

Finally, I perform a third robustness exercise by computing markups for local manu-
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facturing producers using a cost-share approach. Under this methodology, one recovers an

estimate of the labor output elasticity by exploiting the firm’s first-order conditions from

cost-minimization and by assuming a level of the scale elasticity. Similarly to De Loecker

et al. (2020) and Edmond et al. (2023), I assume constant returns to scale and compute the

labor elasticity at the 2-digit and 4-digit NAICS industry levels. Then, I obtain markup

estimates by plugging back these estimates into (1.39). Figures G4 and G5 show that these

markup estimates exhibit virtually the same levels and cross-sectional variation as my base-

line markup estimates.

This section outlined the empirical approach to estimating markups using U.S. micro-data

and showed the resulting markup estimates. There is significant cross-section heterogeneity

in markups across local producers. Moreover, there is also a significant heterogeneity in the

markups across cities, with bigger cities having lower markups than smaller ones. The results

support the idea that local competition and local producers’ productivity vary tremendously

across space and, in turn, offer empirical support for the economic forces proposed in the

theoretical framework. We now turn to the quantitative investigation that measures the

welfare effects of place-based policies.

1.5 Quantitative Analysis

In this section, I estimate the model and use it to quantify the general equilibrium effects

of place-based policies. Similarly to the empirical analysis section, I define a city in the

model as a county. Focusing on the continental U.S., the quantitative exercises consider

3,080 counties. Even though the different forces highlighted in the model may act differently

across sectors, as shown in 1.3a, I estimate the parameters for establishments in all local

industries. Similarly, the counterfactual exercises abstract from sector heterogeneity across

local industries.
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Table 1.4: First Group: External Calibration

Parameter Description Source Value
α Housing expenditure share Davis and Ortalo-Magne (2011) 0.24
ϕ Housing supply elasticity Saiz (2010) 1.75
θ Dispersion location preferences Fajgelbaum et al. (2018) 1.73

Notes: Table 1.4 displays parameter values for the first estimation block.

1.5.1 Model Estimation

The model has 12 parameters, which I divide into three groups. Three parameters in the

first group are externally calibrated using standard values from the literature. The second

group comprises five parameters estimated using Generalized Method of Moments (GMM).

The model delivers estimating equations for each of the parameters. A Simulated Method of

Moments (SMM) routine estimates four parameters in the third group. I target the establish-

ment’s average employment across counties displayed in Figure 1.1b and the economy-wide

aggregate markup.

City exogenous characteristics, traded good productivity and amenities, are recovered

non parametrically by exactly matching employment and average wages per county.

Externally Calibrated Parameters (3 parameters). This group has three param-

eters: housing expenditure share α, buildings supply elasticity ϕ, and the idiosyncratic

location preference tastes dispersion, θ.

Table 1.4 summarizes the values for the three parameters. The housing expenditure share

takes the value reported by Davis and Ortalo-Magne (2011), α = 0.24. The housing supply

elasticity is set to ϕ = 1.75, the unweighted median elasticity of Saiz (2010). Finally, I set the

dispersion of the location idiosyncratic preference tastes to θ = 1.73, which is the baseline

value estimated by Fajgelbaum et al. (2018) for the U.S.

GMM Estimated Parameters (5 parameters). There are five parameters in this

group: local goods expenditure share η, Kimball demand parameters σ, ε, and local and

traded good producer output elasticities, β and γ. Table 1.5 summarizes the results.
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Table 1.5: Second Group: GMM

Parameter Description Moment Estimate
η Local goods expenditure share Aggregate sales share 0.39
ε Demand super-elasticity Markups and sales share 1.38
σ Demand elasticity Markups and quantities 2.26
β Labor output elasticity (local) Local establishments FOC 0.22
γ Labor output elasticity (traded) Traded establishments FOC 0.29

Notes: Table 1.5 summarizes the GMM estimation results for the second block of parameters.

The local goods expenditure share, η, is estimated using the local goods sales share

reported in Table 1.1. Given the housing expenditure share value, α = 0.24, an aggregate

sales share of 52% implies a value of η = 0.39.

I estimate the Kimball demand parameters in two steps. I provide a summary of the

variation that allows me to estimate these parameters. Appendix D.5 provides the estimation

details. First, the Kimball preferences imply that markups and sales shares are related

through a log-linear equation. From this equation, and using the markup estimates and data

on sales shares, I recover an estimate of the ratio ε/σ. Intuitively, this ratio is estimated

using within-city variation on sales shares and markups.49

Equipped with an estimate of the ratio ε/σ, I develop an iterative GMM procedure that

estimates σ. Using a similar logic to the one used in equation (1.43), the Kimball demand

implies a system of equations for relative quantities and price indices as functions of sales

market shares. Given an initial guess for σ, I solve this system to obtain relative quantities.

Then, I use the relative quantities to compute an implied markup, using (1.17) and (1.42).

I estimate σ by minimizing the distance between the implied markups and the markups

estimates from (1.47).

Lastly, we turn to the estimation of the labor output elasticities. On the one hand, for

the establishments in local industries, I estimate β from the markup estimation equation

49. Edmond et al. (2023) use a similar strategy to estimate ε/σ. The key difference between their estimation
and mine is that I use within-city variation in sales shares and markups. Because Edmond et al. (2023) do
not have a spatial component in their setting, they use the pooled variation in sales shares and markups for
all firms in the economy.
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(1.47). On the other hand, I estimate γ for the establishments in traded industries from

(1.24). This equation states that γ equals the labor cost share of sales.

SMM Estimated Parameters (four parameters). The parameters in the last group

are the ones governing the local producers’ productivity distribution in (1.33), z, z, and κ, in

addition to the entry cost ce. Table 1.6 displays the estimated parameters and the goodness

of fit.

I estimate the four parameters via SMM. I target the sales-weighted establishment’s

average employment reported in Figure G1 in Appendix E.1.50 However, to avoid taking

a stand on the units in which labor is measured in the model, I target the sales-weighted

average establishment employment for counties in the 25th, 50th, 75th, and 95th percentiles

relative to the sales-weighted average establishment employment in the 10th percentile. This

yields four moments. Additionally, I target the economy-wide aggregate markup for local

industries. Following Yeh et al. (2022), I define the economy-wide markup as a population-

weighted average of the county-level markups. I compute this object using the markup

estimates from Section 1.4. In total, I am over-identified by having five moments and four

parameters.

Formally, let Θ = (z, z, κ, ce) be the vector of parameters to estimate. I implement the

SMM by minimizing the squared percent distance between the model-simulated moments,

Ψm(Θ), and their empirical counterparts, Ψd:

min
Θ

5∑
i=1

 Ψmi (Θ)−Ψdi

0.5
(
Ψmi (Θ) + Ψdi

)
2

.

I employ the TikTak algorithm for global optimization of Arnoud et al. (2019) to search

over the parameter space.51 In every iteration of the optimization routine, I use the Mul-

50. To capture potential within-city firm heterogeneity, I use the sales-weighted average employment rather
than the raw averages reported in Figure 1.1b.

51. I use 2000 starting points and a simplex search method for local optimization.
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Table 1.6: Third Group: SMM

Moments Model Data
Ratio avg. estab. employment p25/p10 1.5 1.4
Ratio avg. estab. employment p50/p10 2.3 2.2
Ratio avg. estab. employment p75/p10 3.2 2.8
Ratio avg. estab. employment p95/p10 3.9 3.4
Aggregate markup 2.65 3.08
Description Parameter Estimate
Min. productivity z 20.5
Max. productivity z 45.6
Shape parameter κ 11.5
Entry cost ce 0.068
Notes: Table 1.6 presents SMM estimation results and goodness of fit for the third
block of parameters.

tidimensional Bisection Method of Bachrathy and Stepan (2012) to solve for the model

equilibrium. Moreover, I invert the model to recover non-parametric estimates of ac and bc

using (1.12) and (1.23). Appendix D.6 discusses the inversion procedure.

Even though all parameters are jointly identified, it is possible to shed light on which

moments help to identify each parameter. The counties’ average employment relative to the

smaller counties identifies the local producers’ productivity distribution parameters: z, z,

and κ. Conversely, the aggregate markup identifies the entry cost.

Table 1.6 shows the goodness of fit of the SMM estimation. The model is flexible enough

to match the average employment of counties in the 25th, 50th, 75th, and 95th percentiles

of county size distribution relative to counties in the 10th percentile. Nevertheless, the

model falls slightly short when matching the aggregate markup. Solving the decentralized

equilibrium involves challenging fixed point algorithms with systems of highly non-linear

equations within them. Improving the match between the model aggregate markup and the

one estimated in the data is still a work in progress.
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1.5.2 Model to the Data: the Decentralized Equilibrium

In this section, I solve for the decentralized equilibrium using the estimated parameters and

show that the model can quantitatively account for spatial markup differences.

First, Figure 1.4 displays the results from the model inversion. Local productivity of the

traded good is displayed on the left panel, while local amenities are displayed on the right.

Overall, both county characteristics are highly correlated. Because the inversion exactly

matches wages and population, the model rationalizes high-wage counties as having high

traded good productivity. These counties are typically in the upper east coast, southern

Florida, the Midwest, and southern California. On the other hand, counties with large

populations are rationalized to have higher local amenities. In contrast, a significant fraction

of the southern counties have high local estimated amenities.

Second, Figure 1.5 displays the model implied markups. It is worth mentioning that even

though the economy-wide aggregate markup is one of the targeted moments, the markup’s

cross-sectional variation is not constrained by the estimation. Therefore, this figure serves

as an over-identifying exercise. Figure 1.5a is the model equivalent of Figure 1.2. On the one

hand, the model can qualitatively replicate the negative relationship between county aggre-

gate markup and county size. However, on the other hand, the model estimated elasticity of

aggregate markup with respect to county size is -0.048, which is lower than the one estimated

with the data. Indeed, there is a level effect that the model fails to capture, and therefore,

it predicts markups somewhat low. Nonetheless, the model can capture the relative markup

difference between the smallest and biggest counties illustrated in Figure 1.2: counties in

the top decile of total labor income distribution exhibit a markup 50% lower than counties

in the bottom decile.

Figure 1.5b shows the model implied markups for all counties in the U.S. Small counties

typically located in the south and central parts of the U.S. have markups from 2.17 to 3.17.

On the contrary, big counties like Manhattan, Chicago, or Los Angeles display markups that
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Figure 1.4: Local Productivity and Local Amenities

(a) Traded Good Productivity (b) Local Amenities

Notes: Figure 1.4a shows the model implied local traded good productivity and Figure 1.4b shows the
model implied local amenities. Counties omitted in the analysis are not colored.

are almost twice as small as those in small locations.

Figure 1.6 shows that the model can qualitatively account for different empirical regular-

ities across cities. The blue solid line across panels illustrates different economic outcomes

in decentralized equilibrium (Laissez-faire case). First, in line with the findings of Combes

et al. (2012), the model predicts that bigger cities are more productive. The productivity

advantage of bigger cities comes through two channels: it attracts more productive firms

and displays higher local TFP. Equation (1.34) shows that local TFP accounts for the pro-

ductivity of local producers, but also it increases with the number of firms in a location.

Indeed, TFP in bigger counties doubles TFP in smaller counties. Second, the bottom-left

panel displays the local varieties price index, P(c). Consistent with the findings of Handbury

and Weinstein (2014), bigger cities have a lower price index. The model also accounts for

the fact that bigger counties have higher housing rents.

Figure 1.6 also shows the cross-sectional differences in local competition across counties.

The top-right panel documents a significant heterogeneity in the competition index across

counties in the estimated model. As illustrated by the central panels at the bottom of the

figure, the tougher competition in these locations is partially explained by intense competi-

tion in the inputs markets. Furthermore, firm prices in such locations are also lower than in

smaller counties, magnifying the differences in the local competition index.
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Figure 1.5: Markups in the Decentralized Equilibrium
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Notes: Figure 1.5a shows the model equivalent of Figure 1.2. Figure 1.5b shows markups across
counties in the decentralized equilibrium. Counties omitted in the analysis are not colored.

1.5.3 Place-based Policy Counterfactual

This final section studies a policy counterfactual. Formally, I investigate the aggregate effects

of implementing the optimal policy of Proposition 4.

The location-specific subsidy (1.36) implements the optimal policy and achieves the first-

best allocation. Recall that this transfer corrects three margins of inefficiency in the decen-

tralized equilibrium: removes output price distortions, corrects the inefficient location of local

producers, and generates an efficient aggregate entry rate. A non-distortionary tax on work-

ers finances this subsidy. Moreover, I use the equivalent formulation of the baseline model

in which profits from local developers are rebated back to workers in a non-distortionary flat

earnings subsidy.

Figure 1.6 displays the cross-sectional patterns of the equilibrium under the laissez-faire

and the optimal policy. Consistent with the results from Proposition 4, the optimal pol-

icy removes markups in all locations. Furthermore, the policy makes marginally productive

producers relocate to smaller locations. More than 90% of the counties experience a pro-

ductivity boost due to this policy. Nonetheless, this comes at the expense of productivity

losses in larger locations. By removing markups, the policy also makes the price index fall
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Figure 1.6: Model’s Solution in the Decentralized Equilibrium and the Optimal Policy
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Notes: Figure 1.6 shows the model solution in the decentralized equilibrium and under the optimal
policy for all U.S. local industries. The x-axis represents the city’s estimated appeal c(a, b).

everywhere. Nevertheless, the price index in smaller counties experience a more prominent

decrease because of two channels. First, these locations initially had higher markups and,

therefore, experience more considerable reductions in prices. Second, as these locations ex-

perience an influx of producers, the increase in local varieties also causes the price index to

fall relatively more than in larger locations.

As a result of the policy, smaller cities expand. The bottom half of Figure 1.6 shows that

smaller cities experience an increase in wages, housing rents, and population. The spatial

reallocation of firms increases labor demand in smaller cities, which creates an upper pressure

on wages and causes a relocation of workers to such locations. In larger counties, this spatial

reconfiguration slightly decreases wages but has milder effects on population. Interestingly,

housing rents increase in all locations. The reason is that reducing markups induces firms to

increase production and augment their input demand. As firms demand more commercial

structures, housing rents rise.

61



To highlight the spatial effects of the optimal policy, Figure 1.7 maps changes at the local

level for different equilibrium outcomes. First, Figure 1.7a shows the change in productivity

of local producers. There are two crucial messages this graph conveys. First, the local

productivity level in the biggest and smallest counties remains unchanged. Local producers

in Manhattan or rural small counties do not change their location decisions due to the policy.

The reason is that positive assortative matching still holds in the optimal policy. Therefore,

the very best producers are still located in the bigger cities, and the very least productive

in the smallest. Second, counties that experience the most significant productivity increases

are those located next to the most extensive locations. Indeed, the productivity of local

producers in adjacent counties to large urban areas like Miami, Chicago, and Los Angeles

increases by almost 15%. This reflects the “top-down” effect of the optimal policy: marginal

producers relocate from big cities to marginally smaller ones. This reallocation effect also

occurs once we move down across smaller counties.

Figure 1.7b shows the change in local TFP. In addition to accounting for the productivity

level of local producers, total TFP also accounts for the total number of firms. Interestingly,

as the policy also changes the number of producers in each city, changes in local productivity

are magnified through the number of local producers, which leads to more significant changes

in total TFP. On the one hand, smaller counties, primarily located in the inner part of

the country, experience a significant increase in TFP. For instance, Floyd, TX, reaches a

productivity increase of 14%. On the other hand, highly populated counties like Los Angeles

suffer a mild decrease of around 5%. Changes in the number of producers primarily drive

changes in TFP for the biggest and smallest counties. Interestingly, Figure 1.7b shows the

pattern that rural counties seem to be the ones that benefit the most from the policy. Along

these lines, the policy speaks to the discussion of Urban vs Rural development, suggesting

that the policies that aim to boost commercial activity in under-developed rural areas may

be beneficial.
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Figure 1.7: Changes in Firm Productivity, TFP, Firm Price and Ideal Price Index

(a) Firm Productivity, z(c) (b) Local TFP, Z(c)

(c) Firm price, p(c). (d) Ideal Price Index, P(c)

Notes: Figures show the percentual changes in local equilibrium objects in the optimal policy relative
to the Laissez-faire scenario. Figure 1.7a shows the percentual change in local firm productivity. Figure
1.7b displays the percentual change in local TFP. Figure 1.7c illustrates the percentual change in the
individual firm prices, and Figure 1.7d describes the percentual change in the ideal price index.

Finally, Figures 1.7c and 1.7d depict the spatial heterogeneity in price changes. On the

one hand, Figure 1.7c illustrates the change in prices charged by individual firms. Prices

charged by individual firms decrease more in smaller counties, as they initially had larger

markups. While a typical firm in Manhattan reduces its price by 22%, a typical firm in

Wilcox, GA, decreases its price by more than 90%. On the other hand, Figure 1.7d displays

the spatial heterogeneity in the price of the bundle of local goods. Counties in the coastal

parts of the country and around the Great Lakes region experience a reduction in local prices

of around 14%. As productive firms exit those locations, the decrease in the price index is

less than the decrease in the price of an individual firm. Strikingly, southern and central

counties witness a reduction in the price index close to 95%. In such locations, the large
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influx of new local producers magnifies the initial reduction in the firm’s prices.

The results from the counterfactual exercise illustrate the benefits of a policy that re-

allocates producers from big to small cities. Qualitatively, these results are similar to the

ones in Bilal (2023). Nevertheless, the rationale for such types of policy in Bilal (2023) is

different from the ones considered in this study. While the rationale in Bilal (2023) comes

from labor market frictions, I offer theoretical and empirical support for these policies based

on the premise that output market power causes local producers to locate inefficiently. Both

papers contrast with the findings Gaubert (2018), who finds that incentivizing producers to

locate in smaller locations is detrimental because of agglomeration externalities. A poten-

tially interesting future research avenue would be explicitly combining to explicitly combine

all these mechanisms and asses their relative importance.

Finally, the optimal policy yields an aggregate welfare gain of 2.36%. This magnitude is

within the range of results of both Bilal (2023) and Gaubert (2018). However, the gain in

welfare is lower than in Edmond et al. (2023). Of course, the framework they consider differs

significantly from the one in this paper, with the spatial component being the key difference.

1.6 Conclusion

This paper has developed a new theory of endogenous competition across cities. The theory

sheds light on the mechanisms that govern the ability of local producers to exert output

market power. Differences in markups across space arise due to differentials in local compe-

tition and the productivity of local firms. Pricing complementarities are the central driver

of the location choice of heterogeneous producers. As a result, more productive firms over-

value locating in bigger cities, and spatial misallocation arises. This view emphasizes that

relocating production from bigger to smaller cities increases aggregate welfare.

The paper also provides empirical evidence on markup heterogeneity across the U.S.

The structure of my model allows me to estimate markups for all the establishments that
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operate in local markets. Producers in larger cities have significantly lower markups than

producers in smaller cities. This empirical regularity is informative of the degree of firm

spatial misallocation.

Finally, I use the model to quantify the welfare gains of place-based policies. Policies that

eliminate markups yield sizable welfare gains by eliminating price distortion and relocating

firms from big to small cities. The view that output market power creates firm misallocation

across cities helps to reconcile the intuition of place-based policies.

The methodology proposed in this paper can readily be used to study the determinants of

local competition across different sectors. I empirically illustrate that different sectors have

different patterns for markups across cities. These patterns suggest that the magnitude of

the economic forces that determine firm location and local competition might differ across

sectors. This has implications for the degree of spatial misallocation across sectors. The

degree of firm misallocation across cities would be worse in sectors where markups are higher

in bigger cities. Studying general equilibrium counterfactuals for different sectors is left for

future research. A quantitative assessment of the general equilibrium effects of place-based

policies for different sectors could be used to inform industrial policy.
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A Derivations

A.1 Local Goods Demand

For any given Y (c) consumer minimize total expenditure on local goods, subject to the utility

constraint (1.2). The Lagrangian associated with this minimization problem is

LW (c) =

∫
z
p(z, c)y(z, c)dGc(z) + λW (c)

[
1−

∫
z
Υ

(
y(z, c)

Y (c)

)
dGc(z)

]
,

where λW (c) is a Lagrange multiplier. The first order condition with respect to the

consumption of a single variety, y(z, c), is

p(z, c) =
λW (c)

Y (c)
Υ′
(
y(z, c)

Y (c)

)
.

Defining the competition price index as

D(c) ≡ λW (c)

Y (c)
,

we can write the inverse demand for a single variety, y(z, c), as follows:

p(z, c)

D(c)
= Υ′

(
y(z, c)

Y (c)

)
.

Similarly, defining φ(·) ≡
(
Υ′)−1

(·), the demand function for a single variety is

y(z, c)

Y (c)
= φ

(
p(z, c)

D(c)

)
.

With these expressions, the competition price index, D(c), is implicitly given by

∫
z
Υ

(
φ

(
p(z, c)

D(c)

))
dGc(z) = 1.

Finally, given D(c) and the firm-level prices, we can solve the ideal price index, P(c):
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P(c) = D(c)
∫
z

p(z, c)

D(c)
φ

(
p(z, c)

D(c)

)
dGc(z). (A1)

A.2 Input Demands

Input demands follow from the firms’ cost minimization problem. Taking input prices as

given, firms minimize total input expenditure subject to a certain level of production. The

Lagrangian associated to this problem is:

LF (z, c) = W (c)l(z, c) +R(c)s(z, c) + λF (z, c)
[
y(z, c)− zl(z, c)βs(c, z)1−β

]
,

where λF (z, c) is a Lagrange multiplier that equals the marginal cost of production.

Taking first-order conditions and recognizing that µ(z, c) ≡ p(z, c)/λF (z, c) we obtain:

l(z, c)W (c) = β
p(z, c)y(z, c)

µ(z, c)
, s(z, c)R(c) = (1− β)

p(z, c)y(z, c)

µ(z, c)

Substituting in the optimal relative price, ψ(C(c)/z), and the optimal relative quantities

φ(ψ(C(c)/z)) gives (1.20).

A.3 Klenow and Willis (2016) Derivations

The functional form (1.30) implies that the price-elasticity σ(·) takes the functional form

σ

(
p(z, c)

D(c)

)
=

σ

1 + ε log σ−1
σ − ε log

p(z,c)
D(c)

.

Moreover, the optimal relative price function is
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p(z, c)

D(c)
=
σ

ε

C(c)
z

1

Ω
(
λ
C(c)
z

) ,
where λ is a constant, Ω(·) is the main branch of the Lambert-W function.52 The optimal

relative quantity is

log
y(z, c)

Y (c)
=
σ

ε
log

(
1 + ε log

σ − 1

σ
− ε log

p(z, c)

D(c)

)
,

Note that, as in any model of monopolistic competition, local producers will never pro-

ducer in the inelastic area of the demand curve. Formally, producers set p(c, z)/D(c) such

that

σ

(
p(z, c)

D(c)

)
> 1 ⇐⇒ p(z, c)

D(c)
> exp

(
1 + ε log σ−1

σ − σ

ε

)

Similarly, the Klenow and Willis (2016) has a choke price given by the requirement that

optimal relative quantities are positive. From the expression for y(z, c)/Y (c), the condition

on the relative price is

p(z, c)

D(c)
≤ exp

(
1 + ε log σ−1

σ

ε

)

B Proofs

B.1 Proof of Proposition 1

The proof of Proposition 1 is structured in three steps. First, we show that there is pos-

itive assortative matching conditional on the location’s competition index C(c). Second,

52. λ ≡ σ
(σ−1)ε exp

(
σ−1
ε

)
, and Ω(x) is implicitly defined by x = Ω(x) exp(Ω(x)).
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we characterize general equilibrium objects when firms sort based on competition. Third,

we construct a location’s single index which is a sufficient statistic for the firm’s location

decisions. Then, we show that there is positive assortative matching when the location’s

competition index is determined in general equilibrium.

Step 1: sorting conditional on competition index. Note that the optimal relative

price and, hence, the optimal markup depend directly on the location c only through the

aggregate object C(c). Hence, following the insights of Bilal (2023), we index locations by

their competition index C rather than by their appeal c.53 In doing so, we momentarily

consider the inverse function c(C). The profit function (1.3) takes the form:

log Π(z,C) = logM(C) + logψ

(
C
z

)
+ logφ

(
ψ

(
C
z

))
− log

P (C)
D(C)

+ log

1− C
z

1

ψ
(
C
z

)
 , (B1)

where substituted in the optimal relative prices and quantities from the profit maximiza-

tion problem. Under this alternative formulation, firms sort based on the competition index

C rather than the appeal of a city c. To prove that there is strictly increasing assignment be-

tween C and z, we use the methods of standard assignment problems (i.e., Galichon (2016)).

In particular, note that because of the envelope theorem,

∂ log Π(z,C)
∂C

=
M ′(C)
M(C)

− P ′(C)
P (C)

+
D′(C)
D(C)

− 1

zψ
(
C
z

)
− C

.

Moreover, replacing the expression from the first-order condition (1.14) implies:

∂ log Π(z,C)
∂C

=
M ′(C)
M(C)

− P ′(C)
P (C)

+
D′(C)
D(C)

−
σ
(
ψ
(
C
z

))
− 1

C
.

53. See Bilal (2023), Appendix B.3.3.
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Thus,

∂2 log Π(z,C)
∂z∂C

=
1

z2
σ′
(
ψ

(
C
z

))
ψ′
(
C
z

)
︸ ︷︷ ︸

>0

> 0 ⇐⇒ σ′ (·) > 0.

We see that the profit function is log-sumpermodular if and only if the elasticity of

demand is increasing the relative price. Therefore, under Marshall’s second law, which

holds in the Klenow and Willis (2016) specification, there is a strictly increasing assignment

function between z and C, z(C).

Step 2: general equilibrium objects. We now derive expressions for the general equilib-

rium objects under the PAM between z and C result. First, using the tools from Costinot

and Vogel (2010), the definition of the competition price index (1.9) implies:

z′(C)
Meg(z(C))
fC(C)

=
1

Υ
(
φ
(
ψ
(

C
z(C)

))) (B2)

where fC(C) is the equilibrium density of C. With this expression, the ideal price index

in (A1) takes the form

P(C) = D(c)
ψ
(
C
z

)
φ
(
ψ
(
C
z

))
Υ
(
φ
(
ψ
(

C
z(C)

))) .
Define δ(C/z(C)) as the ratio D(c)/P(c):

δ

(
C
z(C)

)
≡ D(C)

P(C)
=

Υ
(
φ
(
ψ
(

C
z(C)

)))
ψ
(

C
z(C)

)
φ
(
ψ
(

C
z(C)

))
Then, ideal price index P(C) is:
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P(C) =
D(C)

δ (C/z(C))
,

= ν
W (C)βR(C)(1−β)

Cδ (C/z(C))
(B3)

On the other hand, labor labor supply (1.12) implies that market size, M(C), is expressed

as:

M(C) =
ηL

U
θ

b(C)θW (C)1+θ

P(C)ηθR(C)αθ
(B4)

The housing land market clearing condition is:

R(C)ϕ =
α

η

M(C)
R(C)

+ (1− γ)
QT (C)
R(C)

+
(1− β)

µ
(

C
z(C)

)M(C)
R(C)

, (B5)

where the terms on the right-hand side correspond to worker’s, traded good producers,

and local producer’s total housing consumption, respectively. Local labor market clearing

implies:

L(C) = β
M(C)

W (C)µ
(

C
z(C)

) + γ
QT (C)
W (C)

.

Using the definition of M(C) and solving for the traded-good production gives:

QT (C) =
M(C)
γ

1
η
− β

µ
(

C
z(C)

)
 (B6)

Therefore, replacing the above expression for QT (C) into (B5) gives:

R(C)ϕ =
α

η

M(C)
R(C)

+
(1− γ)

γ

M(C)
R(C)

1
η
− β

µ
(

C
z(C)

)
+

1− β

µ
(

C
z(C)

)M(C)
R(C)
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Solving for R(C) gives the equilibrium land rents:

R(C) =M(C)
1

1+ϕχ

(
C
z(C)

) 1
1+ϕ

, (B7)

with

χ

(
C
z(C)

)
≡

α
η
+

(1− γ)

ηγ
+

(1− β)γ − β(1− γ)

γµ
(

C
z(C)

)


The zero profit condition of the traded good producers imply that equilibrium wages are

given by:

W (C) =
(

a(C)
R(C)(1−γ)ϱ

) 1
γ

. (B8)

Substituting (B7), (B3), and (B8) into the market size expression (B4) and solving for

M(C) gives:

M(C) =

 ηL

U
θ
νηθϱ

1+θ(1−ηβ)
γ

Cηθδ
(

C
z(C)

)ηθ
χ
(

C
z(C)

)ξ−1
a(C)

1+θ(1−ηβ)
γ b(C)θ


1
ξ

, (B9)

where ξ ≡ γ(1+ϕ+θ(α+η(1−β)))+(1−γ)(1+θ(1−ηβ))
γ(1+ϕ)

.54

Step 3: single index property. The assignment function z(C) and the competition index

C are jointly determined by a coupled ODE system:

54. Note that ξ − 1 = γθ(α+η(1−β))+(1−γ)(1+θ(1−ηβ))
γ(1+ϕ) > 0.
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z′(C)
Meg(z(C))
fC(C)

=
1

Υ
(
φ
(
ψ
(

C
z(C)

))) ,
σ

(
ψ

(
C
z(C)

))
− 1 = Eδ(C) + EM (C), (B10)

where the first equation comes from (B2) and the second from the first-order condition of

the firm’s location problem (1.22). The first equation only depends on demand parameters,

densities, z(C) and C. On the other hand, to inspect the second equation, we look at (B2)

and (B9). The the term on the left-hand side and the first term on the right-hand side

depends on primitives of the model, z(C) and C. On the contrary, the last term on the

right-hand side, depends on primitives of the model, z(C), C and the combined object,

a(C)
1+θ(1−ηβ)

γ b(C)θ. Therefore, the equilibrium objects z(C) and C depend only on the

characteristics of a location through a combined index with specific weights on productivity

and amenities. This result implies that, local good producers make their sorting decisions

based on a uni-dimensional index x(c) rather than considering the two dimensions of location

heterogeneity separately:

x(c) ≡ a(c)
1+θ(1−ηβ)

γ b(c)θ.

Step 4: sorting in general equilibrium. In the last step we characterize under which

conditions more appealing locations have higher competition: i.e. the function x(C) is

increasing in general equilibrium. We can use (B9) to write the first-order condition (B10)

as:
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σ

(
ψ

(
C
z(C)

))
− 1 = Eδ(C) +

1

ξ

[
ηθ + ηθEδ(C) + Ex(C)− (ξ − 1)Eχ(C)

]
,

=
ηθ

ξ
+
ξ + ηθ

ξ
Eδ(C) +

1

ξ
Ex(C)−

ξ − 1

ξ
Eχ(C)

Under the Klenow and Willis (2016) specification, when ε = 0, δ(·) and χ(·) become

constants and hence the above equation collapses to:

σ − 1 =
ηθ

ξ
+

1

ξ
Ex(C),

which implies that Ex(C) > 0 if (ξ/ηθ) (σ − 1) > 1. Therefore, when

1

σ − 1
<

ξ

ηθ
,

there exists a region of the space parameter where ε is small and PAM is obtained in gen-

eral equilibrium: both z(C) and x(C) are strictly increasing, and therefore more productive

firms locate in more appealing cities.

B.2 Proof of Proposition 2

The proof of Proposition 2 is structured in three steps. First, derive the system of ODEs that

determine the equilibrium for the local good sector. Second. show existence of a solution

to these systems conditional on general equilibrium aggregates, Me and U . Third, show

existence and uniqueness of general equilibrium objects.

Step 1: ODE system for local goods producers. Impose Assumption 1, and the as-

sumptions of Proposition 1. Then, PAM between firm and location productivity is obtained.

Indexing locations by x, the definition of the competition price index (1.9) implies:
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z′(x) =
fx(x)

g(z(x))Me

1

Υ
(
φ
(
ψ
(
C(x)
z(x)

))) , (B11)

where fx(·) is the density of the appeal index, x. On the one hand, the FOC of the

location problem (1.22) is:

(
σ

(
ψ

(
C(x)
z(x)

))
− 1

)
EC(x) = Eδ(x) + EM (x). (B12)

On the other hand, indexing locations by their appeal, market size is given by

M(x) =

 ηL

U
θ
νηθϱ

1+θ(1−ηβ)
γ

C(x)ηθδ
(
C(x)
z(x)

)ηθ
χ
(
C(x)
z(x)

)ξ−1
x


1
ξ

,

which further implies that

EM (x) =
ηθ

ξ
EC(x) +

ηθ

ξ
Eδ(x) +

1

ξ
− ξ − 1

ξ
Eχ(x).

We start deriving expressions for each of the terms in the expressions above. First, (A1)

implies that under PAM:

δ

(
C(x)
z(x)

)
=

Υ
(
φ
(
ψ
(
C(x)
z(x)

)))
ψ
(
C(x)
z(x)

)
φ
(
ψ
(
C(x)
z(x)

)) .
Therefore,

Eδ(x) = Θ

(
C(x)
z(x)

)
Ez(x)−Θ

(
C(x)
z(x)

)
EC(x),

with
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Θ

(
C(x)
z(x)

)
= ρ

(
C(x)
z(x)

)[
σ

(
C(x)
z(x)

)
− 1

] [
µ

(
C(x)
z(x)

)
/δ

(
C(x)
z(x)

)
− 1

]
, (B13)

where I have omitted the dependence of σ(·) and µ(·) on the physical quantities to ease

notation:

σ

(
C(x)
z(x)

)
≡ σ

(
ψ

(
C(x)
z(x)

))
, µ

(
C(x)
z(x)

)
≡ µ

(
ψ

(
C(x)
z(x)

))
=

σ
(
ψ
(
C(x)
z(x)

))
σ
(
ψ
(
C(x)
z(x)

))
− 1

,

and where ρ(·) denotes the pass-through rate

ρ

(
C(x)
z(x)

)
≡ 1

1 +
ψ
(
C(x)
z(x)

)
µ′
(
C(x)
z(x)

)
µ
(
C(x)
z(x)

) σ
(
C(x)
z(x)

) .

Second, the definition of χ(·) implies:

Eχ(x) = Λ

(
C(x)
z(x)

)
EC(x)− Λ

(
C(x)
z(x)

)
Ez(x),

with

Λ

(
C(x)
z(x)

)
≡

(
1− ρ

(
C(x)
z(x)

))
(
α + 1−γ

γ

)
µ
(
C(x)
z(x)

)
+ η

(
(1− β)− β(1−γ)

γ

) . (B14)

Combining these results gives the following expression for the elasticity of the market

size

EM (x) =
ηθ

ξ
EC(x) +

ηθ

ξ
Θ

(
C(x)
z(x)

)
[Ez(x)− EC(x)]−

ξ − 1

ξ
Λ

(
C(x)
z(x)

)
[EC(x)− Ez(x)] +

1

ξ
.
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By substituting the elasticity of market size into the firm’s location first-order condition,

we obtain

C′(x)x
C(x)

[
ξ

(
σ

(
C(x)
z(x)

)
− 1

)
+ (ξ + ηθ)Θ

(
C(x)
z(x)

)
+ (ξ − 1)Λ

(
C(x)
z(x)

)
− ηθ

]
= 1 +

[
(ξ + ηθ)Θ

(
C(x)
z(x)

)
+ (ξ − 1)Λ

(
C(x)
z(x)

)]
z′(x)x
z(x)

, (B15)

where we explicitly wrote the expression for the elasticities Ez(x) and EC(x). Given Me,

equations (B11) and (B15) define a coupled system of ODE’s, with two boundary conditions

z(x) = z and z(x) = z. The first boundary condition states that the most productive

firms go to the most appealing cities locations, while the second condition implies that least

productive firms locate in the least appealing cities. The solution to this ODE system is the

assignment function z(x) and the competition index function C(x).

Step 2: Existence of a solution to the ODE system given Me. The system (B11)

- (B15) is Lipschitz continuous and therefore has a unique solution if two terminal conditions

are provided. Nevertheless, the present system has one initial and one terminal condition.

Therefore, we proceed in an alternative way. Let C ≡ C(x). Given Me and the terminal

condition z(x) = z, we will show that there exists C such that z(x) = z. Lipschitz continuity

guarantees z(x) to be a continuous function of C. Then, note that when C → ∞, z(x) → 0.

Similarly, when C → 0, we obtain that z(x) → ∞. Hence, there exists at least one C(Me)

such that C(x) = C(Me), and z(x) = z.

Step 3: Existence and uniqueness of Me and U . On the one hand, the aggregate

labor adding-up constraint uniquely pins down U . Local population cannot be solely char-

acterized by the appeal x, as workers directly value local amenities. In particular, using the

equilibrium expression for market size and wages, population in location c = (a, b) is given

by:
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L (x(a, b), b)) =

 η1−ξL

U
θ
νηθϱ

1+θ(1−ηβ)−ξ
γ

C(x(a, b))ηθδ
(
C(x(a,b))
z(x(a,b))

)ηθ
χ
(
C(x(a,b))
z(x(a,b))

)(ξ−1)− ξ(1−γ)
γ(1+ϕ)

x(a, b)
1− ξ

1+θ(1−ηβ)


1
ξ

× b
θ

1+θ(1−ηβ) .

The ex-ante workers mean utility, U , is given then by the economy-wide labor adding-up

constraint

∫
a

∫
b
L (x(a, b), b)) f(a, b)db da = L,

which can also be written as

∫
x

∫
b
L (x, b)) fb|x(b)fx(x)db dx = L,

where fb|x(·) is the PDF of b given x. On the other hand, the free-entry condition (1.27)

can be written as

ceMe =

∫
x

M(x)

σ
(
C(x)
z(x)

)fx(x)dx. (B16)

When Me → 0, σ
(
C(x)
z(x)

)
→ 1. As wages and population are bounded by the traded-

good zero profits condition and adding-up constraint, the market size function M(x) remains

bounded for all x. Thus, the RHS of (B16) is of the order of M , where M > 0 only depends

on parameters. On the other hand, when Me → ∞, σ
(
C(x)
z(x)

)
→ ∞. Thus, as M(x) remains

bounded, the RHS of the free-entry condition goes to zero. We then conclude that there

exists Me such that (B16) holds.

To prove the uniqueness of Me, we assume that supports of F (·, ·) and G(·) are small
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enough. This implies that the support of Fx(·) is also small enough. This assumption makes

possible using a first-order approximation of the ODE system (B11) - (B15). Therefore, to

a first order,

Mez
′(x) ≈ fx(x)

g(z)

1

Υ
(
φ
(
ψ
(
C
z

))) = κ1
1

ΥC(C)
,

where κ1 is a constant that depends only on parameters, and the function ΥC(·) is strictly

decreasing. Integrating this expression gives

Me =
κ1(x− x)

z − z

1

ΥC(C)
. (B17)

Similarly, the free-entry condition (B16) can by approximated up to a first order by

ceMe =
κ2(x− x)

z − z

1

σC(C)
, (B18)

where κ2 is a transformation of model parameters and σC(·) is strictly increasing. By

equating (B17) and (B18), one obtains

σC(C)
ΥC(C)

=
κ2
κ1ce

. (B19)

The LHS of (B19) is strictly increasing in C. Hence, (B19) uniquely determines C, and

(B18) uniquely determines Me.

B.3 Proof of Corollary 1

The limiting case economy considers a scenario with a wide support for G(·), but a small

support of F (·). In that case, we index locations by their competition index, C, rather than

by their appeal x. Using the The first-order condition (B10) implies:
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σ

(
ψ

(
C
z(C)

))
− 1 =

ηθ

ξ
+
ξ + ηθ

ξ
Eδ(C) +

1

ξ
Ex(C)−

ξ − 1

ξ
Eχ(C).

On the other hand, the definition of δ(·) implies that:

Eδ(C) = Θ

(
C
z(C)

)
Ez(C)−Θ

(
C
z(c)

)
,

where Θ(·) is defined as in (B13). Similarly,

Eχ(C) = Λ

(
C
z(c)

)
− Λ

(
C
z(C)

)
Ez(C),

with Λ(·) defined as in (B14). Combining these expressions yields

ξ

[
σ

(
ψ

(
C
z(C)

))
− 1

]
= ηθ +

[
(ξ + ηθ)Θ

(
C
z(C)

)
+ (ξ − 1)Λ

(
C
z(c)

)]
Ez(C)

− (ξ + ηθ)Θ

(
C
z(C)

)
− (ξ − 1)Λ

(
C
z(c)

)
+ Ex(C).

In the limiting economy, we shrink the support of F (·). This implies that Ex(C) = 0.

Hence, this first-order condition of the local producers defines a non-degenerate assignment

z(C):

ξ

[
σ

(
ψ

(
C
z(C)

))
− 1

]
= ηθ +

[
(ξ + ηθ)Θ

(
C
z(C)

)
+ (ξ − 1)Λ

(
C
z(c)

)]
Ez(C)

− (ξ + ηθ)Θ

(
C
z(C)

)
− (ξ − 1)Λ

(
C
z(c)

)
.

The super-modularity properties of the profit function Π(z,C) derived in Appendix B.1

still hold in this limiting economy. Hence, there is positive assortative matching, z′(C) > 0,

and more competitive cities are bigger, M ′(C) > 0.
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B.4 Proof of Corollary 2

Using the elasticity notation, (1.32) implies

EM(x) = Eµ
(
C(x)
z(x)

)
[EC(x)− Ez(x)]

Recall that µ(·) is a decreasing function, and hence, Eµ
(
C(x)
z(x)

)
< 0. Therefore, we get

that

EM(x) < (>) 0 ⇐⇒ EC(x) > (<) Ez(x)

Equation (B15) shows that:

EC(x)
[
α

(
σ

(
C(x)
z(x)

)
− 1

)
+ (α + η)Θ

(
C(x)
z(x)

)
+
ξ − 1

ξ
Λ

(
C(x)
z(x)

)
− ηθ

]
= ξ +

[
(α + η)Θ

(
C(x)
z(x)

)
+
ξ − 1

ξ
Λ

(
C(x)
z(x)

)]
Ez(x),

Then, solving for EC(x) in the above equation yields that:

Ez(x) > (<) EC(x) >⇐⇒ Ez(x) > (<)
ξ

α
(
σ
(
C(x)
z(x)

)
− 1
)
− ηθ

Furthermore, equation (B11) implies that

Ez(x) =
f(x)c

Meg(z(x))z(x)

1

Υ
(
φ
(
ψ
(
C(x)
z(x)

))) .
Hence,
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Ez(x) > (<) EC(x) > ⇐⇒ f(x)c

Meg(z(x))z(x)

1

Υ
(
φ
(
ψ
(
C(x)
z(x)

)))
> (<)

ξ

ξ
(
σ
(
C(x)
z(x)

)
− 1
)
− ηθ

,

⇐⇒ 1

g(z(x))z(x)
> (<)

ξΥ
(
φ
(
ψ
(
C(x)
z(x)

)))
ξ
(
σ
(
C(x)
z(x)

)
− 1
)
− ηθ

Me

f(x)c
.

Moreover, under Assumption 2, the density-weighted productivity g(z)z is

g(z)z = κ
(z/z)κ

1− (z/z)κ
.

With these expressions, we start by characterizing the conditions for the first inequality.

Under the conditions of Proposition 1, we have that ξ
(
σ
(
C(c)
z(c)

)
− 1
)
− ηθ > 1− ηθ. Also,

the parametric specification for Υ(·) implies that Υ
(
φ
(
ψ
(
C(c)
z(c)

)))
< Υ, where Υ is a

constant that depends on ε and σ. Recall that both traded good productivities and local

amenities are defined over a bounded space. Therefore, there exists x such that x > x for

all x. Finally, let f be the lower bound of the city density, which is exogenous. Thus, we

obtain that Ez(x) > EC(x) if

κ <
(1− ηθ) fx

ξΥ︸ ︷︷ ︸
≡κ

1

Me
.

With a sufficiently low entry cost, the term 1/Me is large. Therefore, we conclude that if

κ < κ and the entry cost is not too large, Ez(x) > EC(x) and hence city aggregate markup

is increasing in city appeal x.
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C Efficiency

C.1 Social Planner’s Problem

An utilitarian planner aims to maximize worker’s ex-ante utility, U . The planner choose

the consumption of local goods, Y (x), housing, H(x), and traded good, Q(x) in every loca-

tion. For the production side, the planner chooses the number of workers in the traded and

local good sectors, LT (x) and LN (x), subject to the worker’s idiosyncratic location tastes

and the aggregate population constraint. Moreover, she also chooses commercial structures

consumption in the traded and non-traded sectors, ST (x) and SN (x). For the location of

local goods producers, I anticipate that the planner will choose PAM. Hence, she chooses the

matching function z(x), the slope of this function, and the mass of entrants Me. To simplify

the derivations, I follow an alternative formulation in which instead of choosing directly the

slope of the assignment function, the planner chooses ζ(x), where ζ(x) ≡ z′(x)g(z(x))
f(x)

.55 Fi-

nally, the planner also builds local housing for workers and firms, subject to the technology

constraint (1.5). Therefore, the planner maximizes U subject to:

55. Note that with z(x) and ζ(x), one can recover the true slope of the assignment function z′(x) =
ζ(x)f(x)/g(z(x)).
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∫ x

x

(
LT (x) + LN (x)

)
f(x)dx = L,∫ x

x
a(x)(LT (x))γ(ST (x))1−γf(x)dx

= ceMe +

∫ x

x

{
Q(x)

(
LT (x) + LN (x)

)
+Q(x)

}
f(x)dx,

(
1 + ϕ

ϕ
Q(x)

) ϕ
1+ϕ

= H(x)
(
LT (x) + LNT (x)

)
+ ST (x) + SN (x) ∀x,

Υ

(
z(x)(LN (x))β(SN (x))1−β

Meζ(x)
(
LT (x) + LN (x)

)
Y (x)

)
Meζ(x) = 1 ∀x,∫ x

x
ζ(r)f(r)dr = G(z(x)) ∀x,

LT (x) + LN (x)

L
=

1

U
θ

[
b(x)

(
Y (x)

η

)η (H(x)

α

)α( Q(x)

1− η − α

)1−η−α
]θ

∀x.

The first constraint corresponds to the aggregate labor market clearing. The second

constraint is the traded good’s aggregate resource constraint. The third constraint states

that the land markets clear in every location. The fourth constraint corresponds to the

local resource constraint, coming from the local goods Kimball preferences. The fifth con-

straint is an adding-up condition coming from the definition of ζ(x), and the last constraint

corresponds to the free mobility condition. The planner’s Lagrangian is given by:
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LP = U,

+κ1

[
L−

∫ x

x

(
LT (x) + LN (x)

)
f(x)dx

]
+κ2

[∫ x

x
a(x)(LT (x))γ(ST (x))1−γf(x)dx− ceMe

−
∫ x

x

{
Q(x)

(
LT (x) + LN (x)

)
+Q(x)

}
f(x)dx

]

+

∫ x

x
ς1(x)

(1 + ϕ

ϕ
Q(x)

) ϕ
1+ϕ

−H(x)
(
LT (x) + LN (x)

)
− ST (x)− SN (x)

 f(x)dx
+

∫ x

x
ς2(x)

[
Υ

(
z(x)(LN (x))β(SN (x))1−β

Meζ(x)
(
LT (x) + LN (x)

)
Y (x)

)
Meζ(x)− 1

]
f(x)dx

−
∫ x

x
ς3(x)G(z(x))f(x)dx+

∫ x

x
(ς3 − ϑ(x))ζ(x)f(x)dx,

+

∫ x

x
ς4(x)

L

θ

{
1

U
θ

[
b(x)

(
Y (x)

η

)η (H(x)

α

)α( Q(x)

1− η − α

)1−η−α
]θ

− LT (x) + LN (x)

L

}
f(x)dx,

where κ1, κ2, ς1(x), ς2(x), ς3(x), and ς4(x) are Lagrange multipliers. To ease the

derivations, I normalized the Lagrange multiplier ς4(x) by θ
L

. Moreover, I integrated by

parts the constraint on ζ(x) with multiplier ς3(x), and defined ς3 ≡
∫ x
x ς3(x)f(x)dx and

ϑ(x) ≡
∫ x
x ς3(r)f(r)dr.

Consumption and housing. The first-order conditions with respect to Y (x), H(x), and

Q(x) are respectively:
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ς4(x)Lη

Y (x)

(
U(x)

U

)θ
= ς2(x)

Υ′(q(x))q(x)
Y (x)

Meζ(x), (C1)

ς4(x)Lα

H(x)

(
U(x)

U

)θ
= ς1(x)L(x), (C2)

ς4(x)L(1− η − α)

Q(x)

(
U(x)

U

)θ
= κ2L(x), (C3)

where U(x) ≡ b(x)
(
Y (x)
η

)η (H(x)
α

)α ( Q(x)
1−η−α

)1−η−α
, and q(x) ≡ z(x)(LN (x))β(SN (x))1−β

Meζ(x)L(x)Y (x)
,

with L(x) ≡ LT (x) + LN (x).

Using the free mobility constraint and normalizing κ2 to be one, these first-order condi-

tions imply that:

ης4(x) = P∗(x)Y (x),

ας4(x) = R∗(x)H(x),

(1− η − α)ς4(x) = Q(x),

with:

P∗(x) ≡ D(x)
δ(q(x))

,

D∗(x) ≡ ς2(x)

Y (x)L(x)
,

R∗(x) ≡ ς1(x).

Note that P∗(x), D∗(x) and R∗(x) are the planner’s ideal price index, the planner’s

competition price index, and the planner’s land shadow price, respectively. Moreover, the
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first-order condition with respect to U implies that the equilibrium ex-ante utility is given

by:

U =

∫ x

x
ς4(x)L(x)f(x)dx. (C4)

Labor and Structures. Define the planner’s shadow wage W ∗(x) as:

W ∗(x) =
1 + θ

θ
ς4(x) + κ1 (C5)

Then, the first-order conditions with respect to LT (x), and LNT (x) are respectively:

γ
QT (x)

LT (x)
= W ∗(x), (C6)

β
P(x)Y (x)L(x)

LN (x)
= W ∗(x), (C7)

where QT (x) ≡ a(LT (x))γ(ST (x))1−γ , and where we used (C1) - (C3) for the definition

of the planner’s shadow wage, W ∗(x).

Moreover, the first-order conditions with respect to the traded and local goods commercial

structures are given by

(1− γ)
QT (x)

ST (x)
= R∗(x), (C8)

(1− β)
P(x)Y (x)L(x)

SN (x)
= R∗(x). (C9)

Expressions (C6) and (C8) give the planner’s counterpart of (1.23):

a(x) = ϱ (W ∗(x))γ (R∗(x))1−γ . (C10)
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Similarly, combining (C7) with (C9) gives the planner’s optimal condition for q∗(x):

Υ′(q∗(x)) =
C∗(x)
z(x)

, (C11)

where C∗(x) is the planner’s competition index given by:

C∗(x) ≡ ν
(W ∗(x))β (R∗(x))1−β

D∗(x)
.

Housing and Commercial Structures Developing. The first-order condition with re-

spect to the traded good used for building housing and commercial structures pins down the

equilibrium level of Q(x):

Q(x) =
ϕ

1 + ϕ
(R∗(x))1+ϕ (C12)

Local goods producers aggregate entry. The first-order condition with respect to the

mass of entrants Me is:

ceMe =

∫ x

x
ς2(x)

[
δ(q∗(x))− 1

δ(q∗(x))

]
f(x)dx.

Replacing the expression for P∗(x) gives the planner’s free entry condition:

ceMe =

∫ x

x
P∗(x)Y (x)L(x) [δ(q∗(x))− 1] f(x)dx. (C13)

Local goods producers spatial allocation. The first-order conditions with respect z(x)

and ζ(x) are respectively:

ς2(x)
Υ′(q∗(x))q∗(x)ζ(x)

z(x)
= ς3(x)g(z(x)),

ς2(x)
[
Υ(q∗(x))−Υ′(q∗(x))q∗(x)

]
= ϑ(x)− ς3
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Define J(x) ≡ ϑ(x)− ς3. Therefore, we have that J ′(x) = ς3(x)f(x) and we can re-write

the first-order condition with respect to z(x) as:

ς2(x)
Υ′(q∗(x))q∗(x)ζ(x)

z(x)
=
J ′(x)
J(x)

(ϑ(x)− ς3)
g(z(x))

f(x)

We can combine the above equation with the first-order condition with respect to ζ(x)

to get:

EJ (x) =
Ez(x)

δ(q∗(x))− 1
, (C14)

where we used the definition of ζ(x) and δ(q∗(x)). Furthermore, re-write the first-order

condition with respect to ζ(x) as:

J(x) = D∗(x)L(x)Y (x)Υ(q∗(x))
δ(q∗(x))− 1

δ(q∗(x))
(C15)

Then,

EJ (x) = ED∗(x) + EL(x) + EY (x) + E∗q (x)
[

1

δ(q∗(x))
+

Eδ(q∗(x))
δ(q∗(x))− 1

]
The elasticities Eδ(q∗(x)) and E∗q (x) are given by:

Eδ(q∗(x)) =
1

δ(q∗(x))
+

1

σ(q∗(x))
− 1, (C16)

Eq∗(x) = σ(q∗(x)) (Ez(x)− EC∗(x)) (C17)

where we used the definition of δ(q∗(x)) for the first expression and (C11) for the second.

Define Θ∗(x) as:
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Θ∗(x) ≡ (σ(q∗(x))− 1)

(
µ(q∗(x))
δ(q∗(x))

− 1

)
. (C18)

With this notation:

Eδ∗(x) = Eδ(q∗(x))Eq∗(x),

= Eδ(q∗(x))σ(q∗(x)) (Ez(x)− EC∗(x)) ,

= (σ(q∗(x))− 1)

(
µ(q∗(x))
δ(q∗(x))

− 1

)
(Ez(x)− EC∗(x)) ,

= Θ∗(x) (Ez(x)− EC∗(x)) ,

Combining these expressions gives:

EJ (x) = ED∗(x) + EL(x) + EY (x) +
Ez(x)

δ(q∗(x))− 1
− EC∗(x)

δ(q∗(x))− 1
(C19)

Equating (C14) and (C19) implies:

EC∗(x) = (δ(q∗(x))− 1) [Eδ∗(x) + EM∗(x)] , (C20)

where M∗(x) ≡ P∗(x)Y (x)L(x) is the planner’s market size. This expression closely

resembles the one for the decentralized equilibrium (B12). To find an expression for the

planner’s market size M∗(x), first note that free mobility condition, together with the plan-

ner’s optimal consumption decisions, imply

L(x)

L
=

(
b(c)

ς4(x)

(P∗(x))η (R∗(x))α

)θ 1

U
θ

(C21)

Combining this expression with the planner’s expenditure on local goods gives:
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M∗(x) =
ηL

U
θ

b(c)θς4(x)
θ+1

(P∗(x))ηθ (R∗(x))αθ
.

On the other hand, the definition of W ∗(x) implies that:

ς4(x) =
θ

1 + θ
[W ∗(x) + κ1] .

As ς4(x) denotes workers total income in location c, the planner lump-sum transfers are

θ/(1 + θ)κ1. Also, note that from equation (C10) we get that

W ∗(x) =
(

a(c)

ϱ(R∗(x))1−γ

) 1
γ

Finally, using the equilibrium value of the traded good used in construction, the housing

market clearing condition is

(R∗(x))1+ϕ =
α

η
M∗(x) + (1− γ)QT (x) +

(1− β)

η
M∗(x)

Following the same steps as in the decentralized equilibrium derivations, we obtain the

following expression for the planner’s market size

M∗(x) =

 ηLθ

Uνηθ(1 + θ)

C∗(x)

δ∗
(
q
(
C∗(x)
z(x)

))
(χ∗)ξ−1

x

1
ξ [

1 +
κ1

W ∗(x)

]1+θ
ξ
, (C22)

where χ∗ ≡ α/η + (1− γ)/(ηγ) + [(1− β)γ − β(1− γ)] /γ. When transfers κ1 are small

relative to the worker’s wages, we obtain the following expression for the elasticity of market

size with respect to c:

EM∗(x) =
1

ξ
[EC∗(x)− Eδ∗(x)] + 1
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Replacing the resulting expression into (C20) gives:

EC∗(x)

 ξ

δ
(
q∗
(
C∗(x)
z(x)

))
− 1

+ (ξ + ηθ)Θ∗
(
C∗(x)
z(x)

)
− ηθ


= ξ + (ξ + ηθ)Θ∗

(
C∗(x)
z(x)

)
Ez(x), (C23)

with q∗(·) and Θ∗ (·) given by (C11) and (C18), respectively. Finally, the local goods

resource constraint implies

Ez(x) =
f(x)c

g(z(x)Me)

1

Υ
(
q∗
(
C∗(x)
z(x)

)) . (C24)

The system (C23) - (C24) together with the terminal condition and initial conditions

z(x) = z, z(x) = z determine C∗(x) and z(x).

Closing the social planner’s problem. The solution to the planner’s ODE’ obtains C∗(x)

and z(x). With these equilibrium objects, we can use the planner’s optimality conditions to

recover the location-specific equilibrium objects. The last step is to solve for the aggregate

objects U , κ1 and Me. First, note that U and Me are given by (C4) and (C13), respectively.

Inputs first-order conditions imply that:

P(x)Y (x)L(x) +QT (x) = W ∗(x)L(x) +R∗(x)(ST (x) + SN (x))

Therefore, the aggregate resource constraint becomes:

∫ x

x

{
W ∗(x)L(x)R∗(x)(ST (x) + SN (x))−Q(x)

}
f(x)dx

= ceMe +

∫ a

a
[P∗(x)Y (x)L(x) +Q(x)L(x).] f(x)dx
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Using (C4), the equilibrium value for Q(x), the aggregate population constraint, and the

optimal consumption decisions, we obtain

1

θ
U + κ1L+

∫ x

x

(R∗(x))1+ϕ

1 + ϕ
= ceMe,

which pins down the value of κ1.

C.2 Comparison of Allocations

In the case of small supports for F (·) and G(·) is possible to compare the decentralized and

the optimal assignment functions. Comparing (B15) and (C23) one can see three differences:

1) the business stealing externality through the terms 1/(µ−1) and 1/(δ−1) on the LHS, the

variety gains externality through Θ and Θ∗, and the misallocation of housing in production

through Λ. Importantly, for any given q: 1/(µ(q)− 1) < 1/(δ(q)− 1), and Θ(q) < Θ∗(q).

Then, A first-order approximation to (B15) and (C23) allows us to write C(x) ≈ C (x/x)κ,

and CSP (x) ≈ C (x/x)κ
SP

, with κ < κSP due to the presence of the business stealing

externality, the variety gains externality, and the misallocation of housing. Hence, up to a

first order, C(x) < CSP (x), except at the boundaries.

Replacing the firs-order approximations of C(x) and CSP (x) into (B11) and (C24), to-

gether with the initial condition that z(x) = zSP (x) = z, implies that z′(x) < (zSP )′(x) for

any x ∈ (x, x). Therefore, iterating forward the systems (B11) - (B15) and (C24) - (C23)

delivers the result that z(x) < zSP (x), except at the boundaries.

C.3 Misallocation from Increasing Markups

This section shows how misallocation of firms across space is exacerbated by increasing

markups on city size. To derive this result, note that the value for a producer with produc-

tivity z of locating in c is given by:
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π(z, x) =

[
1− 1

µ(q(z, x))

]
δ (q(z, x))Υ′ (q(z, x)) q(z, x)M(x),

where q(z, x) are the relative quantities produced by z in c, and M(x) is location’s c

market size. Moreover, the object J(x) in (C15) gives the planner’s value of locating z in c:

π∗(z, x) = [δ (q(z, x))− 1]Υ (q(z, x))M(x).

Taking the ration of these objects gives us the private value for a producer z of locating

in c, relative to it’s social value

π(z, x)

π∗(z, x)
=

1

µ(q(z, x))δ(q(z, x))

µ(q(z, x))− 1

δ(q(z, x))− 1
δ(q(z, x))

Using the equilibrium expression for q(z, x) and the properties of the functions µ(·) and

δ(·) one obtains that

∂2 log (π(z, x)/π∗(z, x))
∂z∂x

> 0 ⇐⇒ Ez(x) > EC(x)

This condition implies that the private value of locating in more appealing cities increases

for more productive firms, relative to the social value, if the condition for markups to be

increasing in the decentralized equilibrium is satisfied. Hence, the spatial misallocation is

exacerbated when producers charge higher markups in the bigger markets.

C.4 First-best Implementation

In this section. In three steps, I show how the location-specific subsidy (1.36) implements

the first-best allocation. First, I show that the subsidy removes markups. Second, I show

that the policy induces firms to locate optimally. Third, I show that subsidy also corrects

the aggregate entry margin.
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Step 1: Markup removal. First, (1.13) and (1.36) imply that the net profits after

transfers are given by (1.37). The first-order condition of this problem gives the optimal

relative quantities y(z, x)/Y (x):

Υ′
(
y(z, x)

Y (x)

)
=

C(x)
z

. (C25)

Compared to (1.14), we see that the above expression does not have any markup. More-

over, the expression above coincides with the social planner first-order condition (C11).

Step 2: Optimal Firm Location. Regarding firm’s location decisions, we first show

that there is still PAM under the subsidy (1.36). Using the envelope theorem, we have from

(1.37) that:

∂ log Π̂(z, x)

∂C(x)
= − 1

C(x)
1

δ
(
y(z,x)
Y (x)

)
− 1

,

where we used (C25) and the definition of δ (·). Then, we get that:

∂2 log Π̂(z, x)

∂z∂C(x)
=

1

C(x)
[
δ
(
y(z,x)
Y (x)

)
− 1
]2 ×

∂
y(z,x)
Y (x)

∂z︸ ︷︷ ︸
>0

×δ′
(
y(z, x)

Y (x)

)
,

where the second term on the RHS is positive because of the first-order condition (C25).

Therefore, Π̂(z, x) is log-supermodular if and only if δ′ (·) > 0 which is true for any Υ(·)

satisfying MSLD. This establish PAM between z and C(x). I now provide conditions under

C(x) is increasing in general equilibrium. The first-order condition of (1.37) with respect to

c is:

EC(x)
1

δ
(
y(z,x)
Y (x)

)
− 1

= Eδ(x) + EM (x).

The term EM (x) is the same as before, except that, because firms no longer charge any
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markup, the function χ(·) becomes a constant and therefore Eχ(x) = 0. Hence,

EM (x) =
ηθ

ξ
EC(x) +

ηθ

ξ
Eδ(x) + 1.

Moreover, (C25) implies that:

Eδ(x) = Θ∗
(
C(x)
z(x)

)
Ez(x)−Θ∗

(
C(x)
z(x)

)
EC(x),

with

Θ∗
(
C(x)
z(x)

)
=

[
σ

(
ψ∗
(
C(x)
z(x)

))
− 1

] [
µ

(
C(x)
z(x)

)
/δ

(
C(x)
z(x)

)
− 1

]
,

where ψ∗
(
C(x)
z(x)

)
is the optimal pricing decision implied by (C25). Putting all together,

we get that

EC(x)

 ξ

δ
(
y(z,x)
Y (x)

)
− 1

+ (ξ + ηθ)Θ∗
(
C(x)
z(x)

)
− ηθ

 = ξ+(ξ+ηθ)Θ∗
(
C(x)
z(x)

)
Ez(x). (C26)

Equation (C26) reveals two insights. First, when Υ(·) takes the Klenow and Willis (2016)

specification and ε→ 0, the expression collapses to

EC(x) [ξ(σ − 1)− ηθ] = ξ,

which further implies that, under the policy, C′(x) > 0 if and only if ξ(σ − 1) > ηθ.

Note that the conditions of Proposition 1 imply this result. The second insight is that (C26)

coincides with the social planner location decision (C23). Thus, firms sort optimally under

the considered policy.

Step 3: Optimal Entry. It is straightforward to show that the policy generates an effi-

101



cient economy-wide aggregate entry rate. Indeed, (1.38) implies that the free-entry condition

under the policy is∫
x

[
δ

(
y(z(x), x)

Y (x)

)
− 1
]
Υ

(
y(z(x), x)

Y (x)

)
M(x)f(x)dx = ceMe,

which coincides with the social planner’s entry condition (C13).

D Additional Derivations for Estimation

This section further explores the framework for markup estimation of Section 1.4.4.

D.1 Derivations for Estimating Equation

This section derives additional results for the baseline markup estimation. First, the sales

market share of firm j in city c is given by:

s
y
jc ≡

pjcyjcLc

PcYcLc
,

=
pjcyjc
PcYc

,

where we used the fact that PcYcLc is the total expenditure on local goods in city c.

Then, using the residual demand curve (1.8), we can write this share as:

s
y
jc =

pjc
Dc

yjc
Yc

Dc
Pc
,

=
pjc
Dc

φ

(
pjc
Dc

)
Dc
Pc
.

To guarantee that one can always invert the sales share equation to write the relative
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price, pjc/Dc, as a function of the sales share, syjc, and the ratio Pc
Dc

, we need to show that

the function xφ(x) is strictly monotonic. Indeed, note that

d (xφ(x))

dx
= φ(x) + xφ′(x),

= −φ(x) (σ(x)− 1) ,

where we used (1.15) for the definition of σ(·). Because firms always choose prices such

that σ(x) > 1, we have that xφ(x) is strictly decreasing and therefore has an inverse function

ζ(·).

D.2 Consistency of Sieve Estimator

This section outlines the necessary conditions for the consistency of the sieve estimator used

in (1.47) for the markup estimation. Theorem 4 in Newey (1997) provides conditions for

root-n consistency of a polynomial (power series) sieve estimator. It is straightforward to

extend these conditions to the current setting.

First, note that Assumption 3 implies that firms charge finite prices. Therefore, the price

index Dc is bounded. Moreover, this assumption also implies that active firms have a strictly

positive market share, sYjc > 0. Thus, the object syjc (Pc/Dc) is bounded away from zero and

Assumption 8 in Newey (1997) is satisfied.

Second, note that the derivative of the markup function is given by

dµ(ζ(x))

dx
=

µ′(ζ(x))
φ(ζ(x)) + ζ(x)φ′(ζ(x))

,

where we used the fact that ζ(·) is the inverse of the function xφ(x). Note that the order

of differentiability of the functions µ(·) and φ(·) is given by the order of differentiability of

the Kimball aggregator Υ(·). In particular, if Υ(·) is differentiable of order d, the functions
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µ(·) and φ(·) are differentiable of order d − 1. Hence, Assumption 9 in Newey (1997) is

satisfied with s = d− 1.

Lastly, we are required to impose the condition that Var(µ|sy,P,D) is bounded. Under

these conditions, Theorem 4 applies and the error term υ = O(K−d+1) where K is degree of

the polynomial approximation. Higher smoothness of Υ(·) guarantees a quicker convergence

rate.

D.3 Multi-Sector Estimation and Labor Market Power

In this section, I show how to extend the baseline estimation framework when having multiple

sectors. Moreover, it shows how can we control for potential labor market power.

The multi-sector markup estimation procedure considers a framework in which consumers

have Cobb-Douglas preferences over different bundles of local varieties within a sector. For-

mally, the bundle of local varieties Y (c) is a Cobb-Douglas aggregator of sector-specific

bundles:

Y (c) =
N∏
n=1

Yn(c)
θn ,

N∑
n=1

θn = 1,

where n denotes the sector. Furthermore, each of the sector bundles Yn(c) is implicitly

defined by a Kimball aggregator:

∫
z
Υn

(
yn(z, c)

Yn(c)

)
dGn,c(z) = 1,

where yn(z, c) is the consumption in city c of a variety produced by a firm with pro-

ductivity z in sector n, Gn,c(z) is the local productivity distribution of sector n in city c,

and the Kimball aggregator Υn(·) now is sector-specific. Under this alternative formulation,

all derivations from Section 1.4 extend, with the caveat that the markup function (1.45) is

sector specific
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µjnc = µn

(
ζn

(
sjnc

Pnc
Dnc

))
, (E1)

with markups, sales shares, and price indices being sector-specific as well. Moreover,

under the multi-sector formulation, we allow different sectors to have different production

functions

yn(z, c) = zln(z, c)
βnsn(z, c)

1−βn . (E2)

Equations (E1) and (E2) imply the multi-sector estimating equation (1.48).

D.4 General Production Function

This section derives the markup estimating equation with a general production. Because

data in sectors other than Manufacturing is limited, I derive the estimation equation using

the data available for Manufacturing. Formally, consider a Hicks-neutral production function

in labor, materials, energy and capital:

y(z, c) = zF (l(z, c),m(z, c), e(z, c), k(z, c)) , (E3)

where F (·) is a continuously differentiable function, m(z, c) denotes materials, e(z, c)

denotes energy and k(z, c) denotes capital. Under this specification, the elasticities of output

with respect to labor, materials, and energy are given by

∂ log y(z, c)

∂ log l(z, c)
=
∂F (l(z, c),m(z, c), e(z, c), k(z, c))

∂l(z, c)

l(z, c)

F (l(z, c),m(z, c), e(z, c), k(z, c))

∂ log y(z, c)

∂ logm(z, c)
=
∂F (l(z, c),m(z, c), e(z, c), k(z, c))

∂m(z, c)

m(z, c)

F (l(z, c),m(z, c), e(z, c), k(z, c))
,

∂ log y(z, c)

∂ log e(z, c)
=
∂F (l(z, c),m(z, c), e(z, c), k(z, c))

∂e(z, c)

e(z, c)

F (l(z, c),m(z, c), e(z, c), k(z, c))
.
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Note that in all cases, the Hicks-neutral assumption on the production function implies

that the output elasticity with respect to any variable input is just a function of the inputs

of production:

∂ log y(z, c)

∂ log l(z, c)
≡ κl (l(z, c),m(z, c), e(z, c), k(z, c)) ,

∂ log y(z, c)

∂ logm(z, c)
≡ κm (l(z, c),m(z, c), e(z, c), k(z, c))

∂ log y(z, c)

∂ log e(z, c)
≡ κe (l(z, c),m(z, c), e(z, c), k(z, c)) .

Therefore, under the general production function (E3), the markup estimating equation

(1.47) takes the form of:

logαljc = κx (l(z, c),m(z, c), e(z, c), k(z, c))− ς1,cs
y
jc − ς2,c

(
s
y
jc

)2
− ς3,c

(
s
y
jc

)3
− υjc, (E4)

where x denotes the input of production, x ∈ {l,m, e}. The function

κx (l(z, c),m(z, c), e(z, c), k(z, c)) ,

can be semi-parametric approximated as the markup function. Formally, I approximate

this function by a third-order polynomial in its arguments as in Gandhi et al. (2020).

D.5 GMM Estimation

This section provides the details of the GMM estimation in Section 1.5. First, the Klenow and

Willis (2016) Kimball specification implies the following relationship between establishment

j markup in county c, µjc, and the establishments sales share, syjc:
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1

µjc
+ log

(
1− 1

µjc

)
=
σ − 1

σ
− log σ +

ε

σ
log

σ

σ − 1
− ε

σ
log

Pc
Dc

+
ε

σ
log s

y
jc, (E5)

Using the estimated markups, µ̂jc, I estimate the following equation via OLS:

1

µ̂jc
+ log

(
1− 1

µ̂jc

)
= ϖ +ϖc +

ε

σ
log s

y
jc + ιjc, (E6)

where ϖ is a constant absorbing the constant terms in (E5), ϖc is a county fixed-effect

absorbing the term (ϵ/σ) log (Pc/Dc), and ιjc is an approximation error coming from the

estimation of the markups. The regression coefficient of log syjc is an estimate of the ratio

ε/σ.

Moreover, the Klenow and Willis (2016) also implies the following system of equations

in the relative quantities yjc/Yc and the ratio of price indices Pc/Dc

yjc
Yc

=

−σΩ
−

(
s
y
jc

Pc
Dc

σ

σ − 1

) ϵ
σ exp

(
− 1
σ

)
σ


σ
ϵ

,

Pc
Dc

=
∑
i∈c

σ − 1

σ
exp

1− yjc
Yc

ε
σ

ε

 yjc
Yc
.

With the ε/σ estimate, the data on sales share, and a given value of σ, the above system

gives relative quantities yjc
Yc

(σ). With the implied relative quantities, I compute the implied

markups:

µ̌jc(σ) =
1

1− 1
σ
yjc
Yc

(σ)
ε
σ

Then, I estimate σ such that we minimize the distance between the predicted and the
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estimated markups:

σ̂ = argminσ
∥∥µ̌jc(σ)− µ̂jc

∥∥
D.6 Estimation of City Fundamentals

Within the loop of the SMM estimation, I perform the model inversion to obtain local

productivities and amenities. Given parameters, I solve the decentralized equilibrium and

use (1.23) to recover traded good productivity

a(c) = ϱW (c)γR(c)1−γ ,

where W (c) is data on the county average wages and R(c) is the model’s implied hous-

ing rent. Similarly, I obtain local productivities from the labor supply condition (1.12).

Replacing the equilibrium objects of the model in such expression gives

b(c) =
L(c)

λ1
θ

W (c)λ2
νη
(
U

L

)1
θ χ

(
C(c)
z(c)

)α+ηβ
1+ϕ(

C(c)δ
(
C(c)
z(c)

))η ,
where L(c) and W (c) are data on counties population and average wages, and λ1 and λ2

are constants given by

λ1 = 1 +
θ(α + ηβ)

1 + ϕ
, and λ2 =

(1 + ϕ)(1− ηβ)− (α + ηβ)

1 + ϕ
.
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E Empirical Appendix

E.1 Additional Figures and Tables

Figure G1: Sales-Weighted Average Establishment Employment by County Size
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Notes: Figure G1 displays sales-weighted average employment for establishments in local industries
across counties in different percentiles of the county-size distribution. Different bars indicate percentiles
of the county-size distribution: 5th, 10th, 25th, 50th, 75th, 90th, and 95th percentiles. The height of
each bar represents the sales-weighted average employment of establishments in local industries across
counties in each percentile. County size is defined as total labor income.
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Figure G2: County Aggregate Markup (Inverse Labor Share) and County Size
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Notes: Figure G2 shows a bin-scatter of county log aggregate markup and log total labor income.
County size is defined as total labor income. The bin-scatter considers 50 equally sized county bins
according to their total labor income. Establishment markup is defined as the inverse of the labor share,
µjc = 1/ωjc, with ωjc ≡ ℓjcwjc/(pjcyjc). County aggregate markup is the sales-weighted harmonic
mean in (1.49).

Figure G3: County aggregate Markup (No Labor Market Power) and County Size

.3
2

.3
4

.3
6

.3
8

.4
.4

2

L
o
g
 a

g
g
re

g
at

e 
m

ar
k
u
p

8 10 12 14 16 18

Log total labor income

Notes: Figure G3 shows a bin-scatter of county log aggregate markup and log total labor income.
County size is defined as total labor income. The bin-scatter considers 50 equally sized county bins
according to their total labor income. Establishment markup is estimated from (1.47), without con-
trolling for the wage-bill flexible polynomial. County aggregate markup is the sales-weighted harmonic
mean in (1.49).
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Table G1: Markups as Inverse Labor Share

Dep. var.: Log aggregate markup

2002 2007 2012 2017

(1) (2) (3) (4)

Panel A: Counties

Log total labor income -0.0260*** -0.0269*** -0.0260*** -0.0055**

(0.0024) (0.0026) (0.0023) (0.0027)

Observations 3100 3100 3100 3100

R-squared 0.078 0.079 0.067 0.003

Panel B: Commuting Zones

Log total labor income -0.0179*** -0.0199*** -0.0223*** -0.0152***

(0.0025) (0.0027) (0.0029) (0.0028)

Observations 750 750 750 750

R-squared 0.119 0.125 0.138 0.075

Notes: Table G1 displays the average elasticity of county aggregate markup and city

size. Establishment markup is defined as the inverse of the labor share, µjc = 1/ωjc, with

ωjc ≡ ℓjcwjc/(pjcyjc). County aggregate markup is the sales-weighted harmonic mean in

(1.49), and city size is defined as total labor income. Panel A shows the mean elasticity

defining cities as counties. Panel B shows the mean elasticity defining cities as Commuting

Zones. Robust standard errors in parenthesis. *10% level, **5% level, ***1% level.
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Table G2: Markups without Labor Market Power

Dep. var.: Log aggregate markup

2002 2007 2012 2017

(1) (2) (3) (4)

Panel A: Counties

Log total labor income -0.0102*** -0.0135*** -0.0118*** -0.0069***

(0.0006) (0.0007) (0.0008) (0.0007)

Observations 3100 3100 3100 3100

R-squared 0.113 0.166 0.117 0.051

Panel B: Commuting Zones

Log total labor income -0.0087*** -0.0107*** -0.0111*** -0.0076***

(0.0007) (0.0008) (0.0008) (0.0008)

Observations 750 750 750 750

R-squared 0.273 0.291 0.299 0.188

Notes: Table G2 displays the average elasticity of county aggregate markup and city

size. Establishment markup is estimated from (1.47), without controlling for the wage-bill

flexible polynomial. County aggregate markup is the sales-weighted harmonic mean in

(1.49). Panel A shows the mean elasticity defining cities as counties. Panel B shows the

mean elasticity defining cities as Commuting Zones. Robust standard errors in parenthesis.

*10% level, **5% level, ***1% level.

E.2 Markups Across Cities for additional Sectors

Table G3 displays the estimated mean elasticity of county aggregate markup and county

size for different 2-digit NAICS sectors. The establishment-level markup is estimated using

equation (1.48). The results show heterogeneity across sectors in the estimated elasticity of

county-sector aggregate markup and county size. Manufacturing, Wholesale, Transportation,

Information and Education Services display a positive elasticity, while the other sectors
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display a negative elasticity. Strikingly, the elasticity for all sectors is statistically significant

than zero, suggesting that there is indeed large variation in the degree of local competition

across counties in all sectors.

The results also shed light on the sectors that are driving the aggregate negative rela-

tionship of markup and city size displayed in Figure 1.2. The bottom row in each panel

shows the average employment share of each sector among the total employment of local

industries across counties. Retail, healthcare, and accommodation and food services are the

sectors with higher local employment shares. The three sectors display a negative elasticity,

suggesting that they are the main drivers behind the results in Figure 1.2
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Table G3: County Aggregate Markup and County Size by Sector

Panel A
Construction Manufacturing Wholesale Retail Transportation

(1) (2) (3) (4) (5)
Log total labor income -0.0427*** 0.1496*** 0.0817*** -0.0706*** 0.0448***

(0.0077) (0.0131) (0.0114) (0.0059) (0.0089)

Observations 3100 1900 2400 3100 2800
R-squared 0.011 0.045 0.014 0.064 0.006
Avg. Local Emp. Share 0.0796 0.013 0.0203 0.241 0.0262

Panel B
Information Finance Real Estate PST Services AWR Services

(1) (2) (3) (4) (5)
Log total labor income 0.1218*** -0.0428*** -0.0151* -0.0565*** -0.0157*

(0.0099) (0.0083) (0.0086) (0.0081) (0.0089)

Observations 2800 3100 2800 3000 2900
R-squared 0.035 0.009 0.001 0.018 0.001
Avg. Local Emp. Share 0.0162 0.0464 0.0157 0.0274 0.0553

Panel C
Education Services Healthcare Arts, Entertainment Accommodation Other Services

and Recreation and Food Services
(1) (2) (3) (4) (5)

Log total labor income 0.1384*** -0.0639*** 0.1567*** -0.0718*** -0.1115***
(0.0162) (0.0097) (0.0123) (0.0073) (0.0076)

Observations 1400 3100 2100 3100 3100
R-squared 0.041 0.016 0.054 0.044 0.076
Avg. Local Emp. Share 0.00379 0.273 0.0112 0.143 0.05
Notes: Table G3 displays the average elasticity of county aggregate markup and county size. County aggregate markup is defined as (1.49), and
county size is defined as total labor income. The dependent variable in all columns and panels is log county aggregate markup. County aggregate
markup is computed using establishments in local industries within the specific sector. Sectors are defined as 2-digits NAICS sectors. PST services:
Professional, Scientific, and Technical Services. ARW Services: Administrative and Support and Waste Management and Remediation Services.
Average local employment share is the average employment share of the sector across counties among the total employment of local industries.
Robust standard errors in parenthesis. *10% level, **5% level, ***1% level.
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E.3 Robustness Exercises

This section presents the robustness exercises for the empirical analysis section. To perform

these exercises, I use Manufacturing as it is the only sector with detailed data on different

inputs of production other than labor.

General Production Function

I estimate markups for Manufacturing using the equation (E4) derived in Appendix D.4. In

particular, I use materials and energy as flexible inputs. As highlighted by Yeh et al. (2022),

when there is labor market power, the markdown firms charge in the labor market appears

in the first-order condition for labor. Arguably, the materials and energy markets are such

that firms do not have any market power in those input markets. Moreover, the data in

Manufacturing also allow me to relax the assumption of constant output elasticities. Then,

I follow Foster et al. (2016) and construct measures of labor, materials, energy, and capital

usage at the establishment level. Equipped with these measures, I estimate markups using

(E4), where a third-order polynomial in labor, materials, energy, and capital approximates

the elasticities for materials and energy.

Estimating markups for Manufacturing using (E4) then serves for two robustness checks:

1) using an input for which producers do not have input market power, and 2) considering

a general production function for which output elasticities are not constant and does not

necessarily exhibit constant returns to scale.

On the one hand, Table G4 displays the results of regression between the baseline man-

ufacturing markups estimated using (1.47) and the estimates using (E4). The baseline

markups are estimated pooling all establishments in local industries while the estimates us-

ing (E4) only include establishments in local manufacturing industries. Moreover, I consider

two definitions of a city: a county and a Commuting Zone. Columns indicate the baseline

markups, whereas rows indicate the alternative estimates.
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The results show that baseline markups highly correlate with the alternative estimates.

Strikingly, the regression coefficients are close to one, suggesting that the baseline and the

alternative markups move almost one-for-one. Nonetheless, the constant terms are positive

and statistically significant than zero in all columns, suggesting that the baseline markups

exhibit slightly higher levels than the alternative estimates.

On the other hand, Table (G5) shows the elasticity of county aggregate markup to county

size using the alternative estimates. This table replicates the results in Figure 1.3b. The

elasticity of aggregate markup to county size remains almost unchanged when considering

the alternative markup estimates. Indeed, the elasticity in Figure 1.3b is 0.14 while the

elasticities reported in Table (G5) are 0.141 for materials and 0.135 for energy. The results

are reassuring in two ways. First, the flexible polynomial that controls for potential market

power in the baseline estimation indeed corrects for any potential monopsony power in the

labor market. Second, the Cobb-Douglas technology assumption in the baseline estimation

does not seem restrictive, as considering a more flexible production function yields similar

county markup and size elasticities.
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Table G4: Baseline Markups and Alternative Estimates for Manufacturing

County CZ County CZ

(1) (2) (3) (4)

Flex. PF, Energy (County) 1.036***

(0.004)

Flex. PF, Energy (CZ) 1.022***

(0.005)

Flex. PF, Materials (County) 1.075***

(0.005)

Flex. PF, Materials (CZ) 1.061***

(0.005)

Constant 0.341*** 0.281*** 0.304*** 0.243***

(0.009) (0.007) (0.009) (0.007)

Observations 27500 27500 27500 27500

R-squared 0.745 0.782 0.738 0.778

Notes: Table G4 displays coefficients of a regression between the baseline markups and

the alternative markup estimates for Manufacturing. The baseline markups are the ones

estimated by equation (1.47) and pool establishments in all local industries. Alternative

markup estimates are estimated using (E4) and consider only establishments in local

manufacturing industries. Columns indicate the baseline markups and rows indicate the

alternative estimates. Different columns and rows consider two definitions of a city: county

and Commuting Zone (CZ). Robust standard errors in parenthesis. *10% level, **5% level,

***1% level.
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Table G5: County Aggregate Markup and Size, Alternative Manufacturing
Estimates

Log agg. Markup Materials Log agg. Markup Energy

(1) (2)

Log labor income 0.141*** 0.135***

(0.006) (0.006)

Observations 1800 1800

R-squared 0.183 0.17

Notes: Table G5 displays the average elasticity of county aggregate markup and county

size, using the alternative estimates for Manufacturing. Alternative markup estimates are

estimated using (E4) and consider only establishments in local manufacturing industries.

The dependent variable in Column (1) is the log county aggregate markup using materials

as the flexible input in (E4). The dependent variable in Column (2) is the log county

aggregate markup using energy as the flexible input in (E4). County size is defined as total

labor income. Robust standard errors in parenthesis. *10% level, **5% level, ***1% level.
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Cost-Shares Approach

As an alternative procedure, I compute markups for local producers in Manufacturing by es-

timating the labor output elasticity from the firm’s cost minimization problem. As discussed

in De Loecker and Syverson (2021), under the assumption that producers operate under a

constant return to scale technology, the output labor output elasticity for establishment j in

city c and industry n is given by:

βjc =
Wjcℓjc

Wjcℓjc +Wm
n(j)

mjc +W e
n(j)

ejc +W
k,e
n(j)

kejc +W
k,s
n(j)

ksjc

, (E7)

where similarly to Foster et al. (2022), I consider five inputs in production: labor, ℓjc,

materials, mjc, energy, ejc, capital equipment, kejc, and capital structures (buildings), ksjc.

Wages, wjc, are directly observed in the data. To construct industry-level prices for materials

and energy I follow the methodology of Foster et al. (2022) described in Appendix B. For the

capital cost, I follow Foster et al. (2016) and construct rental prices for equipment, W k,e
n(j)

,

and structures, W k,s
n(j)

as:

W
k,e
n(j)

=
EQKYn(j)

EQPKn(j) × EQKCn(j)
, W

k,s
n(j)

=
STKYn(j)

STPKn(j) × STKCn(j)
,

where EQKYn(j) and STKYn(j) denote capital income for equipment and structures,

EQPKn(j) and STRPKn(j) denote productive capital stock, and EQKCn(j), STKCn(j)

denote capital composition, for equipment and structures respectively.

To reduce the role of measurement error, I estimate the labor output elasticity by aver-

aging the expression given in (E7) within each 2-digit and 4-digit NAICS sector. This also

follows from the fact that materials, energy, and capital costs are estimated at the sector

level. I allow for these elasticities to vary over time by constructing them for every Census

year. Then, after estimating these elasticities for every Census year, I compute markups

by plugging them into (1.39). Figures G4 and G5 display the correlation between markups
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estimated using the control function approach in (1.47) and markups via cost-shares with

the labor output elasticity, β, estimated within 2-digit and 4-digit NAICS industries, re-

spectively. Both figures represent a bin-scatter with 50 equally-sized bins according to the

establishment-level control function markup. For each bin, the figures display the average

control function markups and the average cost-shares markup. Markups estimated via cost-

shares with output elasticity at the 2-digits NAICS industry exhibit slightly higher levels

but highly correlate with the control function markup. In contrast, markups estimated via

cost-shares with output elasticity at the 4-digits NAICS industry exhibit levels that are close

to the ones of the control function markups. Moreover, there is a correlation of one between

both markup estimates.
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Figure G4: Control Function and Cost-Shares based Markups (β at 2-digit NAICS)

Notes: Figure G4 shows a bin-scatter of the control function markups obtained from (1.47) and the
cost-shares markups obtained from (E7) by averaging within 2-digit NAICS industries. The bin-scatter
considers 50 equally sized establishment bins according to their control function markup.

Figure G5: Control Function and Cost-Shares based Markups (β at 4-digit NAICS)

Notes: Figure G5 shows a bin-scatter of the control function markups obtained from (1.47) and the
cost-shares markups obtained from (E7) by averaging within 4-digit NAICS industries. The bin-scatter
considers 50 equally sized establishment bins according to their control function markup.
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