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ABSTRACT

In macroeconomic forecasting, principal component analysis (PCA) has been the most preva-
lent approach to the recovery of factors, which summarize information in a large set of macro
predictors. Nevertheless, the theoretical justification of this approach often relies on a con-
venient and critical assumption that factors are pervasive. This thesis, however, delves into
the terrain of 'weak factors—elements that are not pervasively influential but nonetheless
critical for precise predictions.

To incorporate information from weaker factors, in Chapter 1, we propose a new predic-
tion procedure based on supervised PCA, which iterates over selection, PCA, and projection.
The selection step finds a subset of predictors most correlated with the prediction target,
whereas the projection step permits multiple weak factors of distinct strength. Our ap-
proach is theoretically supported within an asymptotic framework where sample size and
cross-sectional dimension may increase at potentially different rates.

In Chapter 2, we transition the discussion to empirical asset pricing, where weak factors
and the selection of test assets are identified as interconnected challenges. Since weak fac-
tors are those to which test assets have limited exposure, an appropriate selection of test
assets can improve the strength of factors. Building on this insight, we design the SPCA
methodology for risk premia estimation and factor model diagnosis. The theoretical efficacy
of this approach is validated through its asymptotic properties.

Chapter 3 showcases SPCA’s empirical applications. The first application highlights the
role of weak factors in predicting inflation, industrial production growth, and changes in
unemployment. The second application employs SPCA to estimate the risk premia of a
variety of observable factors, and to diagnose observable factor models. All chapters are
adopted from my joint research work with Stefano Giglio and Dacheng Xiu in Giglio et al.
[2023] and Giglio et al. [2021].
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CHAPTER 1
PREDICTION WHEN FACTORS ARE WEAK

1.1 Introduction

Starting from the seminal contribution of Stock and Watson [2002al, factor models have
played a prominent role in macroeconomic forecasting. Principal component analysis (PCA),
advocated in that paper, has been the most prevalent approach to the recovery of factors
that summarize the information contained in a large set of macroeconomic predictors, and
reduce the dimensionality of the forecasting problem.

The theoretical justification for the PCA approach to factor analysis often relies on a
convenient — but critical — assumption that factors are pervasive (strong), see for example
Bai and Ng [2002] and Bai [2003]. In that case, the common components of predictors
can be extracted consistently by PCA and separated from the idiosyncratic components.
Recently, Bai and Ng [2021] relax this condition, showing that PCA can consistently recover
the underlying factors under weaker assumptions.

Nevertheless, PCA is an unsupervised approach, and by its nature, this poses some limits
to its ability to find the most useful low-dimensional predictors in a forecasting context.
Specifically, if the signal-to-noise ratio is sufficiently low, the factor space spanned by the
principal components is inconsistent, or even nearly orthogonal to the space spanned by true
factors, see Hoyle and Rattray [2004] and Johnstone and Lu [2009]. In such instances, we
refer to the underlying factors as weak.

In this paper we study a setting in which factors are sufficiently weak that PCA fails
to recover them. We propose a new approach to dimension reduction for forecasting, based
on supervised PCA (SPCA). The key idea of supervised PCA is to select a subset of pre-
dictors that are correlated with the prediction target before applying PCA. The concept of

supervised PCA originated from a cancer diagnosis technique applied to DNA microarray
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data by Bair and Tibshirani [2004], and was later formalized by Bair et al. [2006] in a pre-
diction framework, in which some predictors are not correlated with the latent factors that
drive the outcome of interest. Bai and Ng [2008] generalize this selection procedure (i.e.,
a form of hard-thresholding) to what they call the use of targeted predictors (that include
soft-thresholding as well), and find it helpful in a macroeconomic forecasting environment.

Unlike Bair et al. [2006], our supervised PCA proposal involves an additional projection
step, and a subsequent iterative procedure over selection, PCA, and projection to extract
latent factors. More specifically: we first select a subset of the predictors that correlate with
the target, and extract a first factor from that subset using PCA. Then, we project the target
and all the predictors (including those not selected) on the first factor, and take the residuals.
We then repeat the selection step using these residuals, extract a second factor from the new
subset using PCA, and then project again the residuals of the target and all predictors on
this second factor. We keep iterating these steps until all factors are extracted, each from a
different subset of predictors (or their residuals). We provide examples to illustrate that our
iterative procedure is necessary in general settings where factors can grow at distinct rates
(that is, they are of different strength) and factors are not necessarily marginally correlated
with the target. The final step of our procedure is to make predictions with estimated factors
via time-series regressions.

We justify our procedure in an asymptotic scheme where both the sample size and the
cross-sectional dimension increase but at potentially different rates. We show that our itera-
tive procedure delivers consistent prediction of the target. While our procedure can extract
weak factors, we do not have asymptotic guarantee for recovery of the factor space that is
orthogonal to the target. Importantly, this is irrelevant for consistency in prediction. Intu-
itively, using information about the correlation between each predictor and the target, we
gain additional information useful to extract some of the factors even when they are weak.

As a result, the factor space that we may fail to recover must be orthogonal to the target,



and therefore missing it does not affect the consistency of the prediction.

The weak factor problem in our setting arises from the factor loading matrix, whose
singular values increase but at a potentially slower rate than the cross-sectional dimension.
The factors we consider are weaker than those discussed in Bai and Ng [2021]; as we show
in the paper, PCA cannot consistently recover them, and prediction via PCA is biased.
Interestingly, in this setting even supervised procedures may in general fail to recover the
relevant factors: specifically, we show that a widely used supervised procedure, partial least
squares (PLS), is in fact subject to the same bias as PCA. That said, our procedure will
miss factors that are extremely weak. These are the kind of factors studied by Onatski [2009]
and Onatski [2010], cases in which the eigenvalues corresponding to the factor component
are of the same order of magnitude as those of the idiosyncratic component. In this context,
while it is possible to infer the number of factors, Onatski [2012] show that the factor space
cannot be recovered consistently (and neither SPCA will be able to do so).

Finally, beyond consistency (which requires weaker assumptions), if we make an addi-
tional assumption that each of the latent factors is correlated with at least one of the variables
in a multivariate target, we can obtain stronger results: we can estimate the number of weak
factors consistently, recover the space spanned by all factors, as well as provide a valid pre-
diction interval on the target. Our asymptotic result does not rely on a perfect recovery of
the set of predictors that are correlated with the factors, unlike Bair et al. [2006]. Moreover,
our result accounts for potential errors accumulated over the iterative procedure.

Our paper relates to several strands of the literature on forecasting and on dimension
reduction. Within the context of forecasting using latent factors, it focuses on static ap-
proximate factor models. Dynamic factor models are developed in Forni et al. [2000], Forni
and Lippi [2001], Forni et al. [2004], and Forni et al. [2009], in which the lagged values of
the unobserved factors may also affect the observed predictors. It is possible to extend our

approach to the dynamic factor setting, which is beyond the scope of this paper. Chao



and Swanson [2022] study estimation and forecasting within a weak-factor-augmented VAR
framework. They also use a pre-selection step since factors only have influence on a subset of
predictors. A unique contribution of theirs is a self-normalized score statistics for selection
in place of correlation screening as in supervised PCA, which ensures consistent selection of
marginally correlated predictors with vanishing Type I and II errors. Similar to Bair et al.
[2006], they assume all factors to have the same order of strength and all important predic-
tors to be marginally correlated with the target, which our iterative procedure is designed
to avoid.

Our paper is also related to a strand of the literature on spike covariance models defined
in Johnstone [2001|, where the largest few eigenvalues in the covariance matrix differ from
the rest in population, yet are still bounded. In this setting, Bai and Silverstein [2009],
Johnstone and Lu [2009] and Paul [2007]| show that the largest sample eigenvalues and their
corresponding eigenvectors are inconsistent unless the sample size grows at a faster rate than
the increase of the cross-sectional dimension. Wang and Fan [2017| extend this setting to the
case of diverging eigenvalue spikes, and characterize the limiting distribution of the extreme
eigenvalues and certain entries of the eigenvectors in a regime where the sample size grows
much slower than the dimension. All these papers shed light on the source of bias with the
standard PCA procedure in various asymptotic settings.

Besides supervised PCA, an alternative route taken by an adjacent literature to resolving
the inconsistency of PCA is sparse PCA, which imposes sparsity on population eigenvectors,
see, e.g., Jolliffe et al. [2003], Zou et al. [2006], d’Aspremont et al. [2007|, Johnstone and Lu
[2009], and Amini and Wainwright [2009]. Uematsu and Yamagata [2022a] adopt a variant of
the sparse PCA algorithm proposed in Uematsu et al. [2019] to estimate a sparsity-induced
weak factor model. Bailey et al. [2020] and Freyaldenhoven [2022]| adopt a similar framework
for estimating factor strength and number of factors. Because sparsity is rotation depen-

dent, such weak factor models require rotation-specific identification assumptions, whereas



standard factor models do not. The weak factor models we consider, for instance, avoid such
a sparsity assumption, which makes our approach distinct from the sparse PCA.

Our approach also shares the spirit with Bai and Ng [2008] and Huang et al. [2022]. The
former suggests a hard or soft thresholding procedure to select “targeted” predictors to which
PCA is then applied, without providing theoretical justification. The latter suggests scaling
each predictor with its predictive slope on the prediction target before applying the PCA.
Our procedure and its asymptotic justification are more involved because the eigenvalues of
the factor loadings in our setting can grow at distinct and slower rates.

The rest of this chapter is organized as follows. In Section 1.2 we introduce the model,
provide examples to illustrate the impact of weak factors on prediction, and develop our
supervised PCA procedure. In Section 1.3, we present our approach in general settings and
provide asymptotic theory for our procedure. Section 1.4 provides Monte Carlo simulations
demonstrating the finite-sample performance. Section 1.5 concludes. Section 1.6 provides

mathematical proofs of the main theorems and propositions.

1.2 Methodology

1.2.1 Notation

Throughout this chapter, we use (A, B) to denote the concatenation (by columns) of two
matrices A and B. For any time series of vectors {at}g;l, we use the capital letter A to
denote the matrix (a1, as, -+ ,ag), A for (a1p,a04p, -+ ,ar), and A for (ay, a9, ,ar_p),
for some h. We use (N) to denote the set of integers: {1,2,..., N}. For an index set I C (),
we use |/| to denote its cardinality. We use A7) to denote a submatrix of A whose rows are
indexed in [I.

We use a V b to denote the max of a and b, and a A b as their min for any scalars a and

b. We also use the notation a < b to denote a < Kb for some constant K > 0 and a Sp b to



denote a = Op(b). If a < b and b < a, we write a < b for short. Similarly, we use a <p b if
a<pbandb=<pa.

We use Apin(A) and Apax(A) to denote the minimum and maximum eigenvalues of A,
and use \;(A) to denote the i-th largest eigenvalue of A. Similarly, we use o;(A) to denote the
ith singular value of A. We use ||A|| and ||A||p to denote the operator norm (or ¢ norm),
and the Frobenius norm of a matrix A = (a;;), that is, VAmax(A’A), and /Tr(A’A),
respectively. We also use ||Al[yjax = max; ; |a;j| to denote the oo norm of A on the vector
space. We use P4 = A(A’A)"1 A" and My = I; — P4, for any matrix A with d rows and

rank d, where [; is a d X d identity matrix.

1.2.2  Model Setup

Our objective is to predict a D x 1 vector of targets, yr,p, h-step ahead from a set of N
predictor variables z; with a sample of size T'.

We assume that z; follows a linear factor model, that is,

vt = Bft + Buwe + ug, (1.1)

where f; is a K x 1 vector of latent factors, wy is an M x 1 vector of observed variables, wu; is
an N x 1 vector of idiosyncratic errors satisfying E(u) = 0, E(fruy) = 0, and E(wsuy) = 0.
Without loss of generality, we also impose that E( frw}) = 0.1

We assume that the target variables in y are related to x through factors f in a predictive

model:

Yk = Qft + awi + Zeyp, (1.2)

1. Otherwise, we can define f, = f, — B(fyw})E(wyw}) " w, and By = By + BE(frw))E(wyw]) ™!, then
E(fiw;) = 0 and z; satisfies a similar equation to (1.1): z; = Bf; + Bwws + uz.



where 24,4 is a D x 1 vector of prediction errors.
Using the aforementioned notation, we can rewrite the above two equations in their

matrix form as

X = BF + BuW + U,

Y =aF 4+ au,W + Z.

We now discuss assumptions that characterize the data generating processes (DGPs) of
these variables. For clarity of the presentation, we use high-level assumptions, which can
easily be verified by standard primitive conditions for i.i.d. or weakly dependent series. Our

asymptotic analysis assumes that N, T — oo, whereas h, K, D, and M are fixed constants.

Assumption 1. The factor F, the prediction error Z, and the observable regressor W,

satisfy:

|7 EF — | sp T2 I Fllyax e (log )2, |7 ! — || sp 7712,

IWF|| <p T2 11211 Sp T2, 1 Zlax Sp (QogT)V2 | ZE || Sp T2, | 20| Sp T2,
where ¥y € REXEK 53 e RMXM 4o positive-definite matrices with
Ak (Bp) 21 Ay (Cw) 21, A (Ef) S1and M (Sw) ST

Assumption 1 imposes rather weak conditions on the time series behavior of f¢, z¢, and
w¢. Since all of them are finite dimensional time series, the imposed inequalities hold if these
processes are stationary, strong mixing, and satisfy sufficient moment conditions.

Moreover, Assumption 1 implies that the K left-singular values of F' neither vanish nor
explode. Therefore, it is the factor loadings that dictate the strength of factors in our

setting. This is without loss of generality because F' can always be normalized to satisfy this
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condition.

Next, we assume

Assumption 2. The N x K factor loading matrix B satisfies

1Blvax S5 Ax (Bl Biy) 2 Mo,

for some index set Iy C (N), where Ny = |Iy| — oo.

Assumption 2 implies that there exists a subset, I, of predictors within which all latent
factors are pervasive. This is a much weaker condition than requiring factors to be pervasive
in the set of all predictors, in which case \1(5'8) < ... < Ag(5’8) < N. In contrast,
Assumption 2 allows for distinct growth rates for these eigenvalues, in that no requirement
is imposed on ﬂ[ Ig)- Moreover, these eigenvalues can grow at a slower rate than NN, since
No/N is allowed to vanish very rapidly. We will make precise statement about the relative
magnitudes of these quantities when it comes to our asymptotic results.

Since the number of factors, K, is assumed finite, even if each factor is pervasive in
some separate (and potentially non-overlapping) index set, it is possible to construct a
common index set Iy within which all factors are pervasive.2 Assumption 2, neverthe-
less, rules out a somewhat extreme case where all entires of # are uniformly vanishing, i.e.,
SUP 7|00 11|~ g (Bff]ﬁ[j-o = op(1), to the extent that the desired subset Iy does not
exist.

Next, we need the following moment conditions on U.

2. To see a concrete example, suppose that 8 has a block diagonal structure, such that its kth column Sy
is supported on an index set Ji, and the intersection of all Jis is empty. Suppose the non-zero entries of 3
follow standard normal. Then we can find &* := miny |Ji|, and build up Iy from Jy« (so that |Iy| > |Jk+])
by arbitrarily adding |Jg | number of predictors from each Jx, k =1,2,..., K,k # k*. We can take a union
of all such subsets of Jj. The resulting index set Iy contains K X |Ji«| number of predictors, and all factors
are pervasive within this common set.



Assumption 3. The idiosyncratic component U satisfies:
[Ullvmax Sp (logT)l/2 + (log N)1/2,
In addition, for any given non-random subset I C (N),
|vin| sp 1712 + 702

Assumption 3 imposes restrictions on the time-series dependence and heteroskedasticity
of us. The first inequality is a direct result of a large deviation theorem, see, e.g., Fan et al.
[2011]. The second inequality can be shown by random matrix theory, see Bai and Silverstein
[2009], provided that w; is i.i.d. both in time and in the cross-section. While it is tempting
to impose a stronger inequality that bounds sup IC(N) HU 1] H uniformly over all index sets of
a given size |I|, the rate |I|Y/2 +T1/2 we desire may not hold. In fact, assuming |I| is small,
Cai et al. [2021] establish a uniform bound that differs from our non-uniform rate only by a
log factor. When |I| is large, the result on uniform bounds no longer exists to the best of
our knowledge. We thereby avoid making any assumption on uniform bound over all index
sets.

For the same reason, we make the following moment conditions with any given non-

random set /. The conditions should hold under weak dependences among U, F, W, and

B.

Assumption 4. For any non-random subset I C (N), the factor loading 5[[]7 and the



tdiosyncratic error U[I] satisfy the following conditions:

(i) | U A’ <p (log N)!/21/2,

<p [1[V2112, HQ[I]AI

MAX
(é4) %]UU]H Sp II\I/QTI/Q,‘

B,y SP 111208 7)1,
BinUmA'|| Sp 111V2T2,

(iid) || (ur) Uy A’

<p |1 + |1)Y/2T1/2,

By (wr) | e 1112

where A is either F, W or Z.

The ¢9-norm bounds in Assumption 4(i) and (ii) are results of Assumptions D, F2, F3
of Bai [2003] when I = (N), and Assumption 4(iii) is implied by Assumptions A, E1, F1
and C3 in Bai [2003], except that here we impose a stronger version which holds for any
non-random subset I C (N). The MAX-norm results can be shown by some large deviation
theorem as in Fan et al. [2011].

Assumptions 2 and 3 are the key identification conditions of the weak factor model we
consider. It is helpful to compare these conditions with those spelled out by Chamberlain
and Rothschild [1983]|. We do not require that wu; is stationary, but for the sake of comparison
here, we assume that the covariance matrix of u; exists, denoted by ¥, and that 3, = 0. By
model setup (1.1), we have ¥ := Cov(z;) = % ¢’ +3,. Chamberlain and Rothschild [1983]
show that the model is identified if ||%,|| < 1 and Ag — oo, which guarantees the separation
of the common and idiosyncratic components in the population model. To implement this
strategy, Bai [2003] provides an alternative set of conditions (Assumption C therein) on the
time-series and cross-sectional dependence of the idiosyncratic components that ensure the
consistency of PCA, but in the case of pervasive factors, that is A\ (3'5) = N.

In fact, PCA can separate the factor and idiosyncratic components from the sample
covariance matrix under much weaker conditions. To see this, note that from (1.1) and

Bw = 0, we have XX’ = BFF'B" + UU' + BFU’ + UF'B’. Using random matrix theory
10



from Bai and Silverstein [2009], \(UU’) <p T + N, if u is i.i.d. with |2, < 1. Since
TAk(B8'B8) <p A\g(BFF'B") and because of the weak dependence between U and F as in
Assumption 4, the eigenvalues corresponding to the factor component 3FF’/3’ dominate the
three remainder terms that are related to the idiosyncratic component U asymptotically, if
(T+N)/(TAg(B'B)) — 0, enabling the factor components to be identified from X X’. Wang
and Fan [2017| and Bai and Ng [2021] study the setting N/(TAg(8'8)) — 0, in which case
PCA remains consistent despite the fact that factor exposures are not pervasive. Wang and
Fan [2017] also study the borderline case N =< TAg ('), and document a bias term in the
estimated eigenvalues and eigenvectors associated with factors.

In this paper, we consider an even weaker factor setting in which N/(TAg(8'3)) may
diverge. In this case, PCA generally fails to recover the underlying factors (except for the
special case in which errors are homoscedastic). We will require, instead, the existence of a
subset Io C (NN), for which |IO’/(T>‘K(5fIO]5[Io})) — 0, to ensure the identification of factors

on this subset.? In what follows, we introduce our methodology to deal with this case.

1.2.3  Prediction via Supervised Principal Components

One potential solution to the weak factor problem was proposed by Bair and Tibshirani
[2004], namely, supervised principal component analysis. Their proposal is to locate a subset,
f, of predictors via marginal screening, keeping only those that have nontrivial exposure to
the prediction target, before applying PCA. Intuitively, this procedure reduces the total
number of predictors from N to \f |, while under certain assumptions it also guarantees that
this subset of predictors has a strong factor structure, i.e., )\min(ﬁfﬂ Bm) = |f| As a result,
applying PCA on this subset leads to consistent recovery of factors.

We use a simple one factor example to illustrate the procedure, before explaining its

3. The aforementioned settings all require Mg (3'3) — oo, in contrast with the extremely weak factor
model that imposes Mg (8'8) < 1. As such, eigenvalues of factors and idiosyncratic components do not
diverge as dimension increases. While Onatski [2009] and Onatski [2010] develop tests for the number of
factors, Onatski [2012] shows that factors cannot be consistently recovered in this regime.
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caveats with the general multi-factor case. To illustrate the idea, we consider the case in

which D = K =1, ayy = 0, and Sy = 0. We select a subset T that satisfies:

f:{i

where ¢ is some threshold. Therefore, we keep predictors that covary sufficiently strongly

T7XY | 2 e} (13)

(positively or negatively) with the target. This step involves a single tuning parameter, c,
that effectively determines how many predictors we use to extract the factor. The fact that
7 incorporates information from the target reflects the distinctive nature of a supervised
procedure. Given the existence of Iy by Assumption 2, there exists a choice of ¢ such that
predictors within the set T have a strong factor structure. The rest of the procedure is a
straightforward application of the principal component regression for prediction. Specifically,
we apply PCA to extract factors {ﬁ}?zzh from X[f]’ which can be written as ﬁ = E’xt for
some loading matrix Z, then obtain @ by regressing {yt}g;l L, onto {ft}thflh based on the
predictive model (1.2). The resulting predictor for y7j is therefore given by: ypr.;, =
afr =al'zr.

Bair et al. [2006]’s proposal proceeds in the same way when it comes to multiple factors,
with the only exception that multiple factors are extracted in the PCA step. Yet, to ensure
that marginal screening remains valid in the multi-factor setting, they assume that predictors
are marginally correlated with the target if and only if they belong to a uniquely determined
subset [, outside which predictors are assumed to have zero correlations with the prediction
target, i.e., they are pure noise for prediction purpose. Given this condition, they show
marginal screening can consistently recover I, and all factors can thereby be extracted
altogether with a single pass of PCA to this subset of predictors.

In contrast, we assume the existence of a set Ij within which predictors have a strong
factor structure, yet we do not make any assumptions on the correlation between the target

and predictors outside this set I, nor on the strength of their factor structure. As a result,
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Iy under our Assumption 2 needs not be unique, and we will show that the validity of
the prediction procedure does not rely on consistent recovery of any pre-determined set I.
More importantly, since marginal screening is based on marginal covariances between Y
and X, in a multi-factor model the condition that marginal screening can recover a subset
within which all factors are pervasive (even if such a subset is uniquely defined as in Bair
et al. [2006]) is rather strong. On the one hand, marginal screening can be misguided by
the correlation induced by a strong factor to the extent that weak factors after screening
remain unidentifiable. On the other hand, predictors eliminated by marginal screening can
be instrumental or even essential for prediction. We illustrate these points using examples

of two-factor models below.

Example 1. Suppose x+ and y+ satisfy the following dynamics:

-511ﬁ12-

Tt ft+ue,  Yppp = { 11 ] Its (1.4)

P21 | O

where $11 and Bio are Ny x 1 vectors, [Bo1 is an (N — Ng) X 1 vector, satisfying ||f12| =< N5/2

and ||Ba1]] < (N — N0)1/2, and Ny is small relative to N.

In this example, the first factor is strong (all predictors are exposed to it) while the
second factor is weak, since most exposures to it are zero. In addition, the target variable
y is correlated with both factors and hence potentially with all predictors. As a result,
the screening step described above may not eliminate any predictors: all predictors may
correlate with the target (through the first factor). But because the second factor is weak, a
single pass of PCA, extracting two factors from the entire universe of predictors, would fail
to recover it: we can show that Ay (8'8) < [|B12]|> < No, so that PCA would not recover

the second factor consistently if N/(NyT') does not vanish.
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The issue highlighted with this example is that the (single) screening step does not
eliminate any predictors, because their correlations with the target are (at least partially)
induced by their exposure to the strong factor, and therefore PCA after screening cannot
recover the weak factor. The assumptions proposed by Bair et al. [2006] rule this case out,
but we can clearly locate an index set Iy (say, top Ny predictors), within which both factors
are strong. In other words, our assumptions can accommodate this case.

We provide next another example, that shows that in some situations screening can
eliminate too many predictors, making a strong factor model become weak or even rank-

deficient.

Example 2. Suppose x¢ and y; satisfy the following dynamics:

B11 | P11

v = | ——1——| ft +uy, Yt = { 10 } Its (1.5)

0 | Bog

where B11 and Pag are N/2 x 1 non-zero vectors satisfying ||B11]| =< ||B22]| < VN and fis

and for are uncorrelated.

In this example, there are two equal-sized groups of predictors, so that g is full-rank
and both factors are strong and that Iy can be the entire set (V) (therefore, a standard
PCA procedure applied to all predictors will consistently recover both factors). But two
features of this model will make supervised PCA fail, if the selection step based on marginal
correlations is applied only once (as in the original procedure by Bair et al. [2006]). First,
Ys1p, is uncorrelated with the second half of predictors (since only the first group is useful
for prediction). Second, the exposure of the first half of predictors to the first and second
factors are the same (both equal to f11).

After the screening step the second group of predictors would be eliminated, because
14



they do not marginally correlate with y;, ;. But the remaining predictors (the first half)
have perfectly correlated exposures to both factors, so that only one factor, fi; + for, can be
recovered by PCA. Therefore, the one-step supervised PCA of Bair et al. [2006] would fail
to recover the factor space consistently, resulting in inconsistent prediction. This example
highlights an important point that marginally uncorrelated predictors (the second half)
could be essential in recovering the factor space. Eliminating such predictors may lead to
inconsistency in prediction.

Both examples demonstrate the failure of a one-step supervised PCA procedure in a
general multi-factor setting. Such data generating processes are excluded by the model
assumptions in Bair et al. [2006], whereas we do not rule them out. We thus propose
below a new and more complete version of the supervised PCA (SPCA) procedure that can

accommodate such cases.

1.2./ Iterative Screening and Projection

To resolve the issue of weak factors in a general multi-factor setting, we propose a multi-step
procedure that iteratively conducts selection and projection. The projection step eliminates
the influence of the estimated factor, which ensures the success of the screening steps that
occur over the following iterations. More specifically, a screening step can help identify one
strong factor from a selected subset of predictors. Once we have recovered this factor, we
project all predictors z; (not just those selected at the first step) and y;, 5, onto this factor,
so that their residuals will not be correlated with this factor. Then we can repeat the same
selection procedure with these residuals. This approach enables a continued discovery of
factors, and guarantees that each new factor is orthogonal to the estimated factors in the
previous steps, similar to the standard PCA.

It is straightforward to verify that this iterative screening and projection approach suc-

cessfully addresses the issues with the aforementioned examples. Consider first Example
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1. In this case, the first screening does not rule out any predictor, and the first PC will
recover the strong factor fi; after projecting both X and y onto fi, the residuals for the
first Ny predictors still load on fo, whereas the remaining N — Nq predictors should have
zero correlation with the residuals of y. Therefore, a second screening will eliminate these
predictors, paving the way for PCA to recover the second factor fo based on the residuals
of the first Ny predictors. Similarly, for Example 2, the first screening step eliminates the
second half of the predictors, so that the first pass of PCA will recover the only factor left
over in the remaining predictors, namely, f1 + fo. The residuals of the first half of predictors
consist of pure noise after the projection step, whereas the residuals of the second half of
predictors are spanned by f; — f9, which a second PCA step will recover. Therefore, the
iterated supervised PCA will recover the entire factor space. This example illustrates that
marginal screening can succeed as long as iteration and projection are also employed.

Formally, we present our algorithm for the general model given by (1.1) and (1.2):

Algorithm 1 (Prediction via SPCA).

Inputs: Y, X, W, xp, and wp. Initialization: Y<1) = VMW/, X<1) = XMy,
S1. For k=1,2,... iterate the following steps using X(k) and Y(k):

a. Select an appropriate subset fk C (N) via marginal screening.

b. Estimate the kth factor E(k) = ?k) (X(k)> 7] vta SVD, where A(,g) 1s the first left
k

—~

singular vector of <X(k)>[f]- E(k) can also be rewritten as E(k) = Ezk)iMW”
L w

where Z(k) = (]IN - Zf’:—f B(i)zgz’)>l[fk] S(k) s constructed recursively using B(k;—l)
(defined in c.).

c. Estimate the coefficients o) = Y(k)E/(k)(E(k)F(k))_l and
~ ~
By = X E ) (E oy Eqry) ™

d. Obtain residuals }/(k—ﬁ—l) = Yv(k) - a(k)E(k) and X(k—l—l) = X(k) — B\(k)E(k)

Stop at k = IA(, where K is chosen based on some proper stopping rule.
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S2. Obtain fp = E’(xT — waT); where = (C C )) and By = XW'(Ww"~
and the prediction ypy) = afT + apwp = Frp + (G — ?Bw)wT, where a :=
1

(a(l)aa@)aaa([’%)) A:aC daw_YW/(WW/)

N -~ ~/ ~/ , , ~
Outputs: the prediction Yy, the factors F = (E(1),--->E(f())/; their loadings, [ :=

(B(l), . ,B(f()), and the coefficient estimates a, Z, Q) Bw; and 7.

We discuss the details of the algorithm below.
Step S1. of Algorithm 1 requires an appropriate choice of fk and a stopping rule. One

possible choice for I, o is:d

S oB) L,

I, = {z"T_l H(X(k))[i]y(/k)HMAX qN

where Egj\){ is the (1 — g)th-quantile of {T*l H(X(k))[i]yl

(k)HMAX}izl,...,N' (16)

The reason we suggest using the top ¢/V predictors based on the magnitude of the covariances

between X (k) and Y( k) is that the factor estimates tend to be more stable and less sensitive

to this tuning parameter g, compared to a conventional hard threshold parameter adopted

in a marginal screening procedure. Moreover, at each step, a subset of a fired number of

predictors are selected, which substantially simplifies the notation and the proof.
Correspondingly, the algorithm terminates as soon as

A((Jlj\;rl) < ¢, for some threshold c. (1.7)

Thus, the resulting number of factors is set as K=k Asa result, the tuning parameter, c,

effectively determines the number of factors extracted out of our procedure.

4. Using covariance for screening allows us to replace all Y in the definition of 17 r and Algorithm 1 by
Y(1), that is, only the projection of X(1) is needed, because this replacement would not affect the covariance
between Y() and X(). We use this fact in the proofs, which simplifies the notation. We can also use
correlation 1nstead of covariance in constructing fk7 which does not affect the asymptotic analysis. That
said, we find correlation screening performs better in finite samples when the scale of the predictors differs.
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For any given tuning parameters, ¢ and ¢, we select predictors that have predictive power
for (at least one variable in) y;,, at each stage of the iteration. With a good choice of tuning
parameters, g and ¢, the iteration stops as soon as most of the rows of the projected residuals
of predictors appear uncorrelated with the projected residuals of y;.;, which implies that
the factors left over, if any, are uncorrelated with y;p,.

The last step of the algorithm needs more explanations. Step S1. provides a set of
factor estimates, E , on the basis of Y and X. Moreover, a time series regression of Y
on F and W yields an estimator of o (coefficient defined in (1.2)). That is, @y =
VMW (Mwﬁ,w’)_l = YW/(WW')~!, since MW’ = W' by construction, which
explgins the for?nula for @iy in Step S2.. Finally, Wi;h Q, Oy, and fT, it is sufficient to

construct the predicted value of ypj by combining afAT with ay,wy, which yields the final

prediction formula for ¥, a projection on observables, x7 and wy.

1.3 Asymptotic Theory

We now examine the asymptotic properties of SPCA. The analysis is more involved than
those of Bair et al. [2006] because of the iterative nature of our new SPCA procedure and

the general weak factor setting we consider.

1.3.1 Consistency in Prediction

To establish the consistency of SPCA for prediction, we first investigate the consistency of
factor estimation. In the strong factor case, e.g., Stock and Watson [2002a|, all factors are
recovered consistently via PCA, which is a prerequisite for the consistency of prediction. In
our setup of weak factors, we show that the consistency of prediction only relies on consistent
recovery of factors that are relevant for the prediction target.

Recall that in Algorithm 1, we denote the selected subsets in the SPCA procedure as 1, ks

k=1,2,.... We now construct their population counterparts iteratively, for any given choice
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of ¢ and ¢. This step is critical to characterize the exact factor space recovered by SPCA.
For simplicity in notation and without loss of generality, we consider the case Xy = I ¢ here,
because in the general case, we can simply replace 8 and « by * = 52}/ 2 and o = 042}/ 2

in the following construction.

In detail, we start with agl) = Hﬁmal and define I := {i!agl) > Cg\)[}, where C((;\)/
is the |¢N |th largest value in {az(-l) } . . Then, we denote the largest singular value of
i=1,...,

5(1) = B[ i by )\21/)2 and the corresponding left and right singular vectors by S(1) and b(l)'

For k > 1, we obtain az(-k) = Hﬁm [Tick Mb(j)a’H = {i|a£k) > célj\),}, and )\142, S(k)>

MAX (k)

b(k) are the leading singular value, left and right singular vectors of 5(k;) = B[ 1] Hj <k M, )
This procedure is stopped at step K (for some K that is not necessarily equal to K or K ) if
cé§+1) < c. In a nutshell, I}.’s are what we will select if we do SPCA directly on 3 € RN XK
and a € RP*E and they are deterministically defined by «, 5, % £,¢,q, and N, whereas 1, LS
are random, obtained by SPCA on X € RV*T and Y € RP*T,

To ensure that the singular vectors b(j)’s are well defined and identifiable, we need that
the top two singular values of ﬁ( k) are distinct at each stage k. We also need distinct values
of cl(]];\), to ensure that I;’s are identifiable. More precisely, we say that two sequences of
variables ap and by are asymptotically distinct if there exists a constant § > 0 such that

lany — by | > 6|by| for sufficiently large N. In light of the above discussion, we make the

following assumption:

Assumption 5. For any given k, the following three pairs of sequences of variables, Jl(ﬂ(k))

(F) (k) (K+1)
N

and ‘72<5(k:))7 CoN and CuN+17 and o and ¢ are asymptotically distinct, as N — oo.

This assumption is rather mild as it only rules out corner cases, despite the fact that
this is not very explicit. Excluding such corner cases is common in the literature on high
dimensional PCA, see, e.g., Assumption 2.1 of Wang and Fan [2017]. Assumption 5 is closely
tied to our choice of the number of predictors ¢/N and the parameter ¢ in the stopping rule.

In particular, the current algorithm adopts a strategy where the same number of predictors is
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selected at each step, representing one version of SPCA. An alternative approach may involve
selecting predictors based on a predetermined threshold for their covariances and stopping
the selection process when || becomes smaller than another threshold. By allowing for the
flexibility of using varying numbers of predictors at each step, this alternative approach can
be particularly useful in addressing certain corner cases ruled out by the current version of
Assumption 5.° Similar asymptotic results, akin to those presented in Theorem 1 through
3 below, can be derived with more intricate conditions regarding the rate of convergence,
etc. However, the current version of SPCA, with its more concise theorems and superior
performance in simulation, is the primary focus of our discussion in the main text. We now

are ready to present the consistency of the estimated factors by SPCA:
Theorem 1. Suppose that xy follows (1.1) and y; satisfies (1.2), and that Assumptions 1-5
hold. If log(]\fT)(J\fO_1 + T_l) — 0, then for any tuning parameters ¢ and q that satisfy

¢c—0, ¢ YogNT)V2(q VENTV2 L1712y 50, gN/Ny — 0, (1.8)

we have K < K, P(fk =1) =1, forany1 <k <K, and P([A( = K) — 1. Moreover, the
factors recovered by SPCA are consistent. That is, for any 1 < k < K,

~

HE%)H_l |y = BgPr|| sp a7 2NY2 4 1, (1.9)

We make a few observations regarding this result. First, the assumptions in Theorem
1 do not guarantee a consistent estimate of the number of factors, K, because the SPCA
procedure cannot guarantee to recover factors that are uninformative about y. At the same

time, the factors recovered by SPCA are not necessarily useful for prediction, because it

(1)

)

5. A concrete example may be the case where all a; ’s defined above are identical, resulting in c((;\), =
(J\), +1- By adopting the alternative algorithm, we only need an assumption on a non-vanishing lower bound

of oV ie., alV

1 ? (3
1teration.

C

> ¢ > 0. Correspondingly, this alternative procedure will select all predictors in this
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is possible that some strong factors with no predictive power are also recovered by SPCA.
Ultimately, the factor space recoverable is determined by 3, a, ¥, ¢, ¢, and N. For this
reason, we have consistency of factor estimates up to the first K factors. Moreover, K is a
consistent estimator of K, which we prove satisfies K < K. That is, SPCA omits K — K
factors. Also, the inequality (1.9) has a clear geometric interpretation. The left-hand-side
is exactly equal to sin(@(k)), where @(k) is the angle between the estimated factor at each
stage k and the factor space spanned by the true factors, P - (1.9) shows that this angle
vanishes asymptotically.

Second, with respect to the tuning parameters, the condition (1.8) implies that ¢ — 0,
VT — 00, and ¢/gN — 0o. On the one hand, the threshold ¢ needs be sufficiently small so
that the iteration procedure continues until selected predictors have asymptotically vanishing
predictive power; on the other hand, ¢ needs be large enough that dominates error in the
covariance estimates from the screening step. The estimation error consists of the usual error
in the construction of the sample covariances between X (1) and Y(1)7 which introduces an

error of order T—1/2

, as well as the construction of residuals in the projection step, X (k)
and Yir), for k > 1, as soon as multiple factors are involved (i.e., K > 1). As we show next,
the factor estimation error is of order (¢N )_1/ 2 4+ 71, which pollutes the residuals and
hence affects screening. Taking these two points into consideration, the choice of ¢ needs
dominate 7-1/2 + (qN)*l/Q. In terms of ¢, it appears that the maximal number of selected
predictors, [¢/N], allowed for should be of the same order as Ny. Nevertheless, since Ny
given by Assumption 2 is not precisely defined, in the sense that the assumption holds if
Ny is scaled by any non-zero constant, we require ¢N/Ny — 0 to ensure that the scaling
constant of Ny does not matter for the choice of ¢ and that the selected |gN | predictors are
within the subset of Ny predictors that guarantee a strong factor structure.

Third, the estimation error of factors are bounded from the above by q_l/ 2N-124 -1,

Recall that in the strong factor case, the factor space can be recovered at the rate of N —1/24
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T see, e.g., Bai [2003]. In our result, ¢N plays the same role as N in the strong factor
case. Nevertheless, our Assumption 2 does not require all factors to have the same strength.
It is possible that some factors could be recovered with a higher convergence rate, should
we select a different number of predictors for each factor based on its strength. In fact, an
alternative choice of I, i based on (1.3) allows different numbers of predictors to be selected at
each stage, since the threshold itself is a fixed level. While this approach may achieve a faster
rate for relatively stronger factors, the prediction error rate is ultimately determined by the
estimation error of the weakest factor. Yet, we find that the approach based on (1.6) offers
more stable prediction out of sample, whereas prediction based on (1.3) can be sensitive to
the tuning parameters. Given that our ultimate goal is about prediction rather than factor
recovery, we prefer a more stable procedure and thereby focus our analysis on the former
approach.

With no relevant factors omitted, our prediction Y7, is consistent, as we show next.

. : ~ P
Theorem 2. Under the same assumptions as in Theorem 1, we have iy — oy — 0,

~ P ~ P
|78 — || — 0, and consequently, yrp — Er(yrin) = afr + awwr.

Theorem 2 first analyzes the parameter estimation “error” measured as ai,, — ay, and
45 — a. The reason the latter quantity matters is that there exists a matrix H such that
~6 = aH. In other words, the first statement of the theorem implies that we can consistently
estimate o, up to a matrix H. This extra adjustment matrix H exists due to the fundamental
indeterminacy of latent factor models. In fact, we can define H € ]Rf{ <K as E’B , Where Z is

given by Algorithm 1. Then, it is straightforward to see from the definition of 4 that

vB = aH, so that by Theorem 2  ||aH — «| = op(1). (1.10)
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On the other hand, the proof of Theorem 1 also establishes that for k < K:

Hﬁ(k) H_l HE(/@) - thH <p g VANTVZ el (1.11)
where hy, is the kth row of H. Therefore, Z)ZE by(éll) aHF by%m) aF', which, together with
Qw — ayy = op(1), leads to the consistency of prediction.

The consistency result in Theorem 2 does not require a full recovery of all factors. In
other words, K is not necessarily equal to K. On the one hand, factors omitted by SPCA
are guaranteed to be uncorrelated with y;,5; on the other hand, some factors not useful
for prediction may be recovered by SPCA. Obviously, missing any uncorrelated factors or
having extra useless factors (for prediction purposes) do not affect the consistency of ¥ .

Moreover, this result does not rely on normally distributed error nor on the assumption
that all factors share the same strength with respect to all predictors. The assumption on
the relative size of N and T is also quite flexible, in contrast with existing results in the
literature in which N cannot grow faster than a certain polynomial rate of T, e.g., Bai and

Ng [2021], Huang et al. [2022].

1.8.2  Recovery of All Factors

In this section we develop the asymptotic distribution of y7j from Algorithm 1. Not
surprisingly, the conditions in Theorem 2 are inadequate to guarantee that y,j converges
to Ep(ypyp) at the desirable rate T-1/2. The major obstacle lies in the recovery of all

factors, which we will illustrate with a one-factor example.
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Example 3. Suppose that x follows a single-factor model with sparse 3:

T Jttue,  Yipn = aft+ zn,

where By is the first Ny entries of B with ||f1]| < NS/2 and o < T—1/2.

Recall that we use the sample covariance between x4 and ;5 to screen predictors. Even
if y41p is independent of x4, their sample covariance can be as large as 71/ 2(log N )1/ 2,
Therefore, the threshold ¢ needs be strictly greater than T —1/ 2(log N )1/ 2 to control Type
I error in screening. However, the signal-to-noise ratio in this example is rather low, i.e.,
a=xTY 2 that is, Y¢+p 1s not too different from random noise. Consequently, screening
will terminate right away because the covariances between y;,; and x; are at best of order
7Y 2(log N )1/ 2 < ¢, which in turn leads to no discovery of factors. Our procedure thereby
gives ypip = 0, which is certainly consistent as the bias |Ep(ypiyp) — 0] < T2 but the
usual central limit theorem (CLT) fails.

Generally speaking, this issue arises because of the potential failure to recover all factors
in the DGP. As long as all factors are found, the bias is negligible and the central limit
theorem holds regardless of the magnitude of a. So to go beyond consistency and make valid
inference we need a stronger assumption that rules out cases like this, in order to insure
against a higher order omitted factor bias that impedes the CLT even if it does not affect

RPXE gatisfies Apin (o) > 1, we can rule out

consistency. It turns out that as long as o €
the possibility of missing factors asymptotically. On the one hand, in this case the dimension
of target variables, D, must be no smaller than the dimension of the factors, K; and for each

factor there exist at least one target variable in y that is correlated with the factor; together

they guarantee that no factors would be omitted. On the other hand, our algorithm will
24



not select more factors than needed asymptotically, because the iteration is terminated as
soon as all covariances vanish. With a consistent estimator of the number of factors, we can
recover the factor space as well as conduct inference on the prediction targets.

The inference theory on strong factor models also relies on a consistent estimator of the
count of (strong) factors, e.g., Bai and Ng [2002]. Our assumptions here are substantially
weaker than the pervasive factor assumption adopted in the literature. That said, in a finite
sample, a perfect recovery of the number of factors may be a stretch. In Section 1.3.5, we
show that our version of the PCA regression is more robust than the procedure of Stock and
Watson [2002a| with respect to the error due to overestimating the number of factors. We
also provide simulation evidence on the finite sample performance of our estimator of the
number of factors.

The next theorem summarizes a set of stronger asymptotic results under conditions that

guarantee perfect recovery of all factors:

Theorem 3. Under the same assumptions as Theorem 2, if we further have Ayn(a’a) 2 1,

then for any tuning parameters ¢ and q in (1.6) and (1.7) satisfying
c—0, ¢ tlogNT)V2(q VAN"YV2 477 Y2) 50, gN/Ny— 0,

we have
(i) K defined in Algorithm 1 satisfies: P([A( = K)—1.

(ii) The factor space is consistently recovered in the sense that

HIP’E/ —Pp

— Op (q71/2N71/2 X TA) _
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(1ii) The estimator 7 constructed via Algorithm 1 satisfies
H% —a— T_17E’E]71H = Op(¢g ' N"L+ T,

Theorem 3 extends the strong factor case of Bai and Ng [2002] and Bai [2003|. In par-
ticular, (i) shows that our procedure can recover the true number of factors asymptotically,
which extends Bai and Ng [2002] to the case of weak factors. Combining this result with
Theorem 1(i) suggests that K = K under the strengthened set of assumptions. We thereby
do not need distinguish K with K below. Our setting is distinct from that of Onatski [2010],
and as a result we can also recover the space spanned by weak factors, as shown by (ii). This
result also suggests that the convergence rate for factor estimation is of order (¢/V )1/ 2AT,
as opposed to NY/2 AT given by Theorem 1 of Bai [2003]. (iii) extends the result of Theorem
2, replacing the target a by a + T~ ZF/ 2;1. Note that the latter is precisely a regression

estimator of « if F' were observable. (iii) thereby points out that the error due to latent

factor estimation is no larger than Op(¢ I N~t 4+ 71,

1.3.3 Inference on the Prediction Target

In the case without observable regressors w, the prediction error can be written as yp,p —
Er(yran) = (W6 — a) fr + Fup, where the second term Fup is of order (gN)~1/2. In light
of Theorem 3(iii), if ¢ IN7IT = 0, then the second term is asymptotically negligible (i.e.,
op(T~1/2)) compared to the first term, (58 — a) fp = T_17E'E;1fT + Op(T™1), in which
case we can achieve root-7" inference on Ep(yp ;). Nevertheless, we strive to achieve a
better approximation to the finite sample performance by taking into account both terms
of the prediction error altogether, without imposing additional restriction on the relative
magnitude of g/N and T

To do so, we impose the following assumption:
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Assumption 6. As N,T — oo, T-Y2ZF', T-YV2ZW' and (¢N)"V/2Wup are jointly

asymptotically normally distributed, satisfying:

vec(T1/2ZF") 0 My; M2 O

— d
vee(T~Y2Zw | — N[ o] .11= |11, T 0 :
(gN)~Y2up 0 0 0 I3

where ¥ is a K x N matrix whose kth row is equal to b/(k)ﬁflk] (HN)[Ik] and b(k) is the first

right singular vector of B(k) = B[Ik] Hj<k Mb(j) as defined in Section 1.5.1.

Assumption 6 characterizes the joint asymptotic distribution of ZF', ZW' and Yurp. For
the first two components, as the dimensions of these random processes are finite, this CLT is
a direct result of a large-T" central limit theory for mixing processes. With respect to Wurp,
its large-N asymptotic distribution is assumed normal, asymptotically independent of the
distribution of the other two components. This holds trivially if u;7’s are cross-sectionally
i.i.d., independent of z¢, wy, and f; for t < T, so that the kth row of Wup, b,(k)ﬁflk] (uT)[Ik], is
a weighted average of u; for i € I;.. The convergence rate (¢/N )1/ 2 for Vup arises naturally
because |I},| = ¢gN.

Before we present the CLT next, we need define a K x K matrix 2 = (wq,...,wg) with
w1 =e1 and wy = ey, —Zf:ll )‘&)lb/(k)ﬁflk}ﬁ[fk]b(i)wi’ where e, is a K-dimensional unit vector

with 1 on the kth entry and 0 elsewhere.

Theorem 4. Suppose the same assumptions as in Theorem 8 hold. If in addition, Assump-

tion 6 holds, we have

o V2@ — Erlyran)) L5 N (0.1p),
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where ® = T~ &, + q_lN_lfbg and ®1 and P9 are given by

II;; 1o

1 = (/7. wp)37), @1p) (Z7n ) @),

IPENIEY

By = aB(A/gN) L TI53Q(A /gN) ' B'd/,

IL;; is specified by Assumption 6, X¢,, = diag(Xr, Xy), A = diag()\(l), e )\(K)), and B is

a K x K matrix whose kth column is given by b(k;): where )\(1]4)2 15 the largest singular value

of ﬁ(k) and b(k) 15 the corresponding right singular vector as defined in Section 1.3.1.

The convergence rate of y7j depends on the relative magnitudes of 7" and ¢N. For
inference, we need construct estimators for each component of ®; and ®9. Estimating &
is straightforward based on its sample analog, constructed from the outputs of Algorithm 1.
Estimating ®9 is more involved, in that II33 depends on the large covariance matrix of up.
We leave the details to the next section.

Algorithm 1 (Step S2.) makes predictions by exploiting the projection of yr.,p onto xp
and wp, with loadings given by v and oy, — v8y. This is convenient and easily extendable
out of sample, as both x7 and wyp are directly observable, unlike latent factors. Section 1.3.5
investigates potential issues with plain PCA and PLS, as well as an alternative algorithm

based on Stock and Watson [2002a], which does not involve the projection parameter -.

1.3.4  FEstimation of ®1 and P,

Recall that from the outputs of Algorithm 1, we have defined E, B, and @. As a result, we
can also estimate Z = Y — aE — W and Q =X — BE — wa Then we can construct
Newey-West-type estimators for Iy, 112 and Il99, given that each component of them can
be estimated based on their sample analog constructed above. Estimators of ¥ and 3y, can
be obtained by if = Th_lﬁ, and S = Th_lw’. With J/C\T = E’(.IT — waT), 61 can be
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constructed as follows:

I Ihig | /-~

b1 = ((Frwh)S7), @ 1p) (S Frwh) ©1p)

I, Tl
The above estimators are built as if the latent factors were observed. This is because any
rotation matrix involved with latent factor estimates is canceled out, which eventually yields
consistent estimators of ;. This part of the asymptotic variance is straightforward to im-
plement, thanks to the fact that it does not involve estimation of high-dimensional quantities
like ;. The proof of consistency of (51 follows directly from Giglio and Xiu [2021] and is
thus omitted here.

With respect to ®9, we may apply a thresholding estimator of 3, = Cov(uy) following

Fan et al. [2013]. In detail, &, can be constructed by

- (Bw)ij, i=j -
(Zu)ij = . =T, 'UU,

Sij <<iu)ij> , 1F£]

where s;;(-) is a general thresholding function with an entry-dependent threshold 7;; satis-

fying (i) s;(2) = 0 when [z| < 7;; (ii) [sjj(2) — 2| < 7;;. The adaptive threshold can be

chosen by 7;; = C ( \/;W + 105:er) é\ij, where C' > 0 is a sufficiently large constant and
N 1 L - 5
0;j = 7 Z (@i — (Zu)if)”,

t<Ty,

where u;; are the entries of Q With EA]u, ®9 can be estimated by EI;Q = qN’y\iqﬁl.
The following theorem ensures the consistency of (/132 under standard assumptions as in

Fan et al. [2013].

Theorem 5. Under the assumptions of Theorem 4, if we further assume that
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(1) uyt is stationary with E(uy) = 0 and X, = Cov(ut) satisfying C1 > A () > Ay (Zy) >

Co and min; ; Var(ujujy) > Co for some constant Cp,Cy > 0,

(1) uy has exponential tail, i.e., there exist r1 > 0 and C' > 0, such that for any s > 0 and

i <N, P(Juig| > ) < exp(~(s/C)™).

(iii) uy is strong mizing, i.e., there exist positive constants r9 and C such that for allt € ZT,
a(t) < exp(=Ct"2), where a(T) = supAe]_-nge]_-%JP(A)P(B) — P(AB)| and F° ,

F1° are o-algebras generated by {u} —co<i<0, {ut}T<t<o0-

(iii) (log N)SGTT 72 +1) — o(T), T = o(2N?).

l—q
log N
Sp Mg N (L + OgT ) , where my Ny = max;<

VaN

Then ﬁu satisfies Hiu — Y

1—q N
> i<nNI(Bu)ijle. In addition, if my (erN + IO%N) = o(1), then 3y 2 @y,

1.3.5 Alternative Procedures

In this section, we at first discuss the failure of PCA and PLS in the presence of weak factors.

To illustrate the issue, it is sufficient to consider a one-factor model example:

Example 4. Suppose that x follows a single-factor model with sparse 3:

Tt = Jt Hur,  ypn = aft,

where P is the first Ny entries of B with ||f1] =< Né/2. Moreover, fi i N(0,1) and

U = €A, where € is an N x T matriz with i.i.d. N(0,1) entries and A is a T x T matriz

satisfying || Al < 1.

30



1.3.5.1 Principal Component Regression

Formally, we present the algorithm below:

Algorithm 2 (PCA Regression).

Inputs: Y, X, W, xp, and wy.

S1. Apply SVD on XMy, and obtain the estimated factors EPCA = J XMy, where

¢ e RVXE gre the first K left singular vectors of KMEI. Estimate the coefficients
o ~ ~/ -1
a=YFpcy (EPCAEPCA) :

52. Obtain ¥ = a<' and output the prediction g//\z]fg;? = Yrp + (G — ﬁgw)w:p, where

Qw =YW WW) and By = XW'(WW')~L.
OU’tPUtS @\]P‘f}?; EPCA; a; aw; B\w; and ’/7\

Proposition 1. In Example 4, suppose that N/(NgT) — § > 0 and ||B|| — oo and define
Mas M =T F'F+ (5A’1A1, where Ay is the first T — h columns of A. Then, if the two
leading eignvalues of M are distinct in the sense that (A (M) — Ao(M))/ M (M) Zp 1, the

estimated factor EPC’A satisfies

P
— 0,

P —P
H Fpoa npPCA

where npc 4 is the first eigenvector of M. In the special case that A’1A1 = ly_y, it satisfies
that

HIP’A/ —Pp .o

Fpca

Proposition 1 first shows that even if the number of factors is known to be 1, the factor
estimated by PCA is in general inconsistent, because the eigenvector npc 4 deviates from that

of T7LF'F | as the latter is polluted by A. In the special case where error is homoskedastic
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and has no serial correlation, i.e., A’lAl = [p_j, the estimated factor becomes consistent,
in that §A’1A1 in M does not change the eigenvectors of T-LF'F. This result echoes a
similar result in Section 4 of Bai [2003], who established the consistency of factors with
homoskedasticity and serially independent error even when T is fixed. That said, while
factors can be estimated consistently in this special case, the prediction of y7j; based on

Algorithm 2 is not consistent.

Proposition 2. Under the same assumptions as in Proposition 1, if we further assume

AYAy =Tp_y, then we have @5_%14 r, (1+8) " Er(yrrpn)-

The reason behind the inconsistency is that even though E pcA, (effectively the right
singular vector of X)) is consistent in the special case, the left singular vector, ¢ and the
singular values are not consistent, which lead to a biased prediction. This result demonstrates

the limitation of PC regressions in the presence of weak factor structure.

1.3.5.2 Partial Least Squares

PCA is an unsupervised approach, in that the PCs are obtained without any information
from the prediction target. Therefore, it might be misled by large idiosyncratic errors in
x+ when the signal is not sufficiently strong. In contrast with PCA, partial least squares
(PLS) is another supervised technique for prediction, which has been shown to work better
than PCA in other settings, see, e.g., Kelly and Pruitt [2013]. Unlike PCA, PLS uses the
information of the response variable when estimating factors. Ahn and Bae [2022] develop
its asymptotic properties for prediction in the case of strong factors. We now investigate its
asymptotic performance in the same setting above.

The PLS regression algorithm is formulated below:
Algorithm 3 (PLS). The estimator proceeds as follows:
Inputs: Y, X, W, xp, and wp. Initialization: Y<1) = VMW/, X<1) = XMy,
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S1. Fork=1,2,--- | K, repeat the following steps using X(k)-

a. Obtain the weight vector €(k) from the largest left singular vector of X(k:)Y(/k)'
b. Estimate the kth factor as E(k;) = qk)X(k)'
‘ ‘ N S (o \E

c. Estimate coefficients Qp) = Y(k)E(k) <E(k)E(k:)) and

~ ~/ ~ ~/ -1

B = XwEw (EwEa)
e. Remove E(k) to obtain residuals for the next step:

Xie1) = Xy = By Ly and Yign) = Yoy = @y Eiry-

52. Obtain 3 = @< and the prediction GhLy = Nrp + (G — /7\5 Jwr, where dy, =
T+h w w )T, w
YW (WW) ™! and By = XW/ (WW')~ L.

~/

~ > -~/ ~ ~ 7D ~
Outputs: yjef_g, Fprs = (Fqy,--- ,E(f())/, a, Quy, Pw, and 7.

The PLS estimator has a closed-form formula if Y is a 1 x T" vector and a single factor

model is estimated (K = 1):
i = VXX VX XYV X 0

While the PLS procedure is intuitively appealing, the next propositions show that this

approach produces biased prediction results in the presence of weak factors.

Proposition 3. In Ezample J, suppose that N/(NogT) — 6 > 0 and ||5|| — oo, then the

where nprg = (Ip_p, + 6AYAL)F'. In the special case that AJAy = Ip_p,, it satisfies

estimated factor EPLS satisfies

P
Py —Pppgl — 0,

L PLS

HPN —Pp ..

£ PLS
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Proposition 4. Under the assumptions of Proposition 3, if we further assume that A’lAl =

~ P _
Ip_y,, then we have yiﬁ{;g — (1+8) ' Br(ypin)-

Therefore, the consistency of the PLS factor also depends on the homoskedasticity as-
sumption A’lAl = [p_; and the forecasting performance of PLS regression is similar to PCA
in our weak factor setting. The reason is that the information about the covariance between
X and Y used by PLS is dominated by the noise component of X, hence PLS does not
resolve the issue of weak factors, despite it being a supervised predictor.

Finally, before we conclude the analysis on PLS, we demonstrate a potential issue of
PLS due to “overfitting.” It turns out that PLS can severely overfit the in-sample data
and perform badly out of sample, because PLS overuses information on y to construct its

predictor. We illustrate this issue with the following example:

Example 5. Suppose x¢ and y;1p, follow a “0-factor” model:

Tt = Ut,  Yi+h = Zt+h>

where ugs follow i.i.d. N(0,Iy) and zs follow i.i.d. N(0,1).

Proposition 5. In Example 5, if we use K = 1, then we have

oPL 271/2 /¢ A2 2 0 ~PCA 1/2 1/2
yT+I€ZPN3/T//(N —l—T)whzlenyh <p L/(NY2 1112,

Specifically, in the case of N < T,

~PLS ~PCA —1/2
yrin =p L and yryp Sp N 2.

The conditional expectation of y7, is 0 in this example, but @ﬁf can be bounded away

from 0 when using more factors than necessary. In contrast, @f;f;? remains consistent. The

failure of PLS is precisely due to that it selects a component in = that appears correlated
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with y, despite the fact that there is no correlation between them in this DGP. While SPCA’s
behavior is difficult to pin down in this example, intuitively, it falls in between these two
cases. When ¢ is very large, SPCA resembles PCA as it uses a large number of predictors in
x to obtain components. When ¢ is too small, SPCA is prone to overfitting like PLS. With

a good choice of ¢ by cross-validation, SPCA can also avoid overfitting.

1.3.5.3 PCA Regression of Stock and Watson [2002a)

Stock and Watson [2002a| adopt an alternative version of the PCA regression algorithm
(hereafter SW-PCA) to what we have presented in Algorithm 2. The key difference is that
SW-PCA conducts PCA on the entire X instead of X. Therefore, they can obtain J/C\T
directly from this step, instead of reconstructing it using the estimated weights in-sample.
While our focus is not on PCA, the PCA algorithm is part of our SPCA procedure. Given
the popularity of SW-PCA, we explain why we prefer our version of PCA regression given
by Algorithm 2.

Formally, we present their algorithm below:

Algorithm 4 (SW-PCA).
Inputs: Y, X, and W.

S1. Apply SVD on X, and obtain the estimated factors ﬁSW = XMy, where S €

RVXE gre the first K left singular vectors of X.

S2. Estimate the coefficients by time-series regression:

-1
— ~/ ~ ~/ -1 —
~ 6 ~ !/ !/
& = YWy Egw (EswMyyEsy ) © and @y = VMg W (WMﬁ,S W ) .

S8. Obtain the prediction /y\gyh = afT + Quwp, where fT 1s the last column of ﬁSW and

ay =YW Www'~1

6. Unlike Algorithm 1, F' sw is not orthogonal to W.
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Outputs: @\jsﬂ_iwh, ﬁSW, a, and Q.

The advantage of SW-PCA is that the consistency of factors is sufficient for the consis-
tency of the prediction, unlike PCA as shown by Proposition 2. In other words, even though
this is not true in general, ngh can be consistent in the special case A’A = Ip. Additionally,
SW-PCA is more efficient for factor estimation in that it uses the entire data matrices X
and W.

Nevertheless, the negative side of the SW-PCA is that it can be unstable because it is

more prone to overfitting. We illustrated this issue using the example below.

Example 6. Suppose x¢ and y;1, follow a “0-factor” model:

Tt = Ut,  Yi+h = Zt+h

where ugs are generated from mean zero normal distributions independently with Cov(uy) =

Iy fort <T and Var(up) = (1+€)ly for some constant € > 0, and zs follow i.i.d. N'(0,1).

Proposition 6. In Ezample 6, suppose that T/N — 0, if we use K = 1, then we have

Var@%yh) — oo and /y\gfff LN

Intuitively, SW-PCA uses in-sample estimates of the eigenvectors based on data up to 71" as
factors for prediction, whereas PCA uses out-of-sample estimates of the factors, constructed
at time T" but based on weights estimated up to T'— h. Because of this, SW-PCA may suffer
more from “overfitting” compared to PCA, if the statistical properties of the data differ from
T — h to T. Example 6 investigates the case with heteroskedastic up in the scenario of
overfitting K=1>K= 0, in which case SW-PCA could perform rather wildly. This
example appears contrived, but in practice macroeconomic data are often heterogenous and
the number of factors is difficult to pin down. Such an issue is thereby relevant and we hence

advocate Algorithms 2 for robustness.
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1.3.6  Tuning Parameter Selection

Along with the gain in robustness to weak factors comes the cost of an extra tuning pa-
rameter. To implement the SPCA estimator, we need to select two tuning parameters, ¢
and c. The parameter ¢ dictates the size of the subset used for PCA construction, whereas
the parameter ¢ determines the stopping rule, and in turn the number of factors, K. By
comparison, PCA and PLS, effectively, only require selecting K. We have established in
Theorem 3 that we can consistently recover K, provided ¢ and ¢ satisfy certain conditions.

In practice, we may as well directly tune K instead of ¢, given that K is more inter-
pretable, that K can only take integer values, and that the scree plot is informative about
reasonable ranges of K. Moon and Weidner [2015] demonstrate that, within the context of
linear panel regression with interactive fixed effect, the inference on regression coefficients
remains robust even with the inclusion of noise as factors. With respect to ¢, a larger choice
of q renders the performance of SPCA resemble that of PCA, and hence becomes less ro-
bust to weak factors. Smaller values of ¢ elevate the risk of overfitting, because the selected
predictors are more prone to overfit y. We suggest tuning [¢/V| instead of ¢, because the
former can only take integer values, and that multiple choices of the latter may lead to the
same integer values of the former.

In our applications, we select tuning parameters based on 3-fold cross-validation that
proceeds as follows. We split the entire sample into 3 consecutive folds. Because of the
time series dependence, we do not create these folds randomly. We then use each of the
three folds, in turn, for validation while the other two are used for training. We select the
optimal tuning parameters according to the average R? in the validation folds. With these
selected parameters, we refit the model using the entire data before making predictions. We
conduct a thorough investigation of the effect of tuning on the finite sample performance of

all procedures below.
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1.4 Simulations

In this section, we study the finite sample performance of our SPCA procedure using Monte
Carlo simulations.

Specifically, we consider a 3-factor DGP as given by equation (1.1) with two strong factors
fit, for and one potentially weak factor f3;. For strong factors fi; and for, we generate
exposure to them independently from A(0,1). To simulate a weak factor f3;, we generate
exposure to it from a Gaussian mixture distribution, drawing values with probability a from
N(0,1) and 1 — a from N(0,0.12). The parameter a determines the strength of the third
factor and it ranges from {0.5,0.1,0.05} in the simulations.

Our aim is to predict yp 1, or equivalently, estimate Ep(yp11) = afr + aywr, where
w includes an intercept term and a lagged term of y. We consider two DGPs for y. In
the first scenario, we set oy, = (0,0.2) and o = (0,0,1), i.e., ypr1 = f3r + 0.2y + 2z¢41.
Since y is a univariate target, there is no guarantee that we can recover all factors. We thus
examine the consistency of the prediction, as shown in Theorem 2, on the basis of MSE
and |75 — «||. In the second scenario, we examine the quality of factor space recovery and
inference. We thereby simulate a multivariate target with a = I3 and ay, = (03x1,0.2[3),
e, Yitr1 = fir +0.2y;4 + 24441, for i =1,2,3.

We generate realizations of f;;, z;; independently from the standard normal distribution.
To generate u;y, we first draw e;s from AN(0,3) independently and construct the matrix
A = ST, where Sisa (T+1) x (T+1) diagonal matrix with elements drawn from Unif(0.5, 1.5)
and I'is a (T'+ 1) x (T'+ 1) rotation matrix drawn uniformly from a unit sphere. Therefore,
u;j; as constructed by U = €A features heteroskedasticity.

Table 1.1 compares the finite sample performance of SPCA, PCA, and PLS in the first
scenario. In both panels, the sample size is T' = 60, 120, and around a/N = 100 predictors
have exposure to the factor f3;. We simulate N = 200 (a = 0.5) predictors in the upper

panel, so that f3; is exposed to half of them and is thereby strong, and set N = 2,000
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(a = 0.05) in the lower panel, where f3; becomes much weaker due to the large number of
predictors that do not load on it.

To highlight the sensitivity of all estimators to the number of factors, we separately report
results for each choice of K from 1 to 5 (not tuned), while only selecting the other tuning
parameter ¢ for SPCA via cross-validation. We also report results with both parameters
tuned jointly for SPCA, and the single parameter K tuned for PCA and PLS, respectively.

The simulation results in Table 1.1 square well with our theoretical predictions. In the
strong factor case (upper panel), PCA and SPCA perform similarly. They achieve minimum
prediction error when K is set at the true value 3 in that the first two factors do not predict y.
This suggests that tuning ¢ does not worsen the performance of SPCA. PLS can also achieve
desirable performance but typically with K smaller than 3. Interestingly, its performance
deteriorates rapidly as K increases and surpasses the true value. The reason, as we explain in
Proposition 5, is that PLS is more likely to overfit as it uses information about y to directly
construct predictors. In contrast, PCA based approaches are more robust to noisy factors
used in prediction.

As to the weak factor case (lower panel), SPCA outperforms both PLS and PCA as
predicted by our theory. Moreover, SPCA tends to achieve optimal performance when K = 2.
Recall that in this case, we do not have asymptotic guarantee that SPCA can recover the
entire factor space. For this reason, it is possible that a third factor out of this procedure
contributes more noise than signal, hence the performance of SPCA deteriorates with an
additional factor.

Both panels show that tuning K in most cases slightly deteriorates the optimal prediction
MSE and estimation error. That said, the resulting errors remain smaller than what the
second best choice of K can achieve.

Furthermore, Table 1.2 reports the performance of SPCA, PCA, and PLS for each entry

of y in the multi-target scenario. In this case we only report results with parameters tuned.
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Table 1.1: Finite Sample Comparison of Predictors (Univariate y)

MSE 78 — «fl
K 1 2 3 4 5 K 1 2 3 4 5 K
T Panel A: N =200 a=05
SPCA | 0091 0.52 0.15 0.17 0.17 0.16 0.92 0.59 0.24 025 0.25 0.25
60 PCA 1.05 1.08 0.15 0.15 0.15 0.15 1.01 1.02 0.26 0.26  0.25 0.26

PLS 0.34 0.17 0.37 0.51 0.70 0.21 0.50 0.22 0.28 0.27 0.27 0.25
SPCA 0.89 0.49 0.09 0.11 0.11 0.10 0.92 0.55 0.17 0.17 0.17 0.17
120 PCA 1.04 1.06 0.09 0.09 0.09 0.09 1.00 1.01 0.17 0.17 0.17 0.17
PLS 0.25 0.10 0.31 0.40 0.66 0.11 0.38 0.16 0.26 0.18 0.19 0.16

Panel B: N =2000 a = 0.05

SPCA 0.75 0.29 0.41 0.52 0.58 0.36 0.78 0.32 0.42 0.45 0.47 0.36
60 PCA 1.11 1.14 0.69 0.67 0.65 0.67 1.01 1.03 0.75 0.74 0.73 0.74
PLS 1.14 0.55 0.52 0.67 0.75 0.55 1.00 0.56 0.50 0.49 0.47 0.51
SPCA 0.55 0.13 0.18 0.26 0.27 0.16 0.65 0.19 0.28 0.34 0.35 0.22
120 PCA 1.05 1.08 0.27 0.27 0.27 0.27 1.01 1.02 0.44 0.44 0.44 0.44
PLS 0.94 0.24 0.26 0.45 0.55 0.23 0.92 0.34 0.30 0.32 0.30 0.29

Notes: We evaluate the performance of SPCA, PCA, and PLS in terms of prediction MSE and |58 — «/||. All numbers reported
are based on averages over 1,000 Monte Carlo repetitions. We highlight the best values based on each criterion in bold.

As discussed previously, we expect the recovery of all factors using SPCA, because to each
factor, at least one entry of y; has exposure. We first report the distance between F and the

true factors F', defined by d(ﬁ, F) = HIP];, — Pp

We also report the MSE;s for ; 741,
i = 1,2,3, where MSEg is based on y3 71, which depends on the potentially weak factor
f3T by construction. Again, we vary the value of a and N, while maintaining a/N = 100, so
that the number of predictors with exposure to the third factor is fixed throughout.

The findings here are again consistent with our theory. In particular, as a varies from 0.5
to 0.05, the third factor becomes increasingly difficult to detect. Both PCA and PLS report
a substantially larger distance d(ﬁ , ') than SPCA. In the mean-time, the distortion in the
factor space translates to larger prediction errors for the third target ys, in that it loads on
the weak factor f3 besides its own lag. Throughout this experiment, SPCA maintains almost
the same level of performance as a varies, demonstrating its robustness to weak factors.

Last but not least, we report the histograms of the standardized prediction errors using
the CLT of Theorem 4 in Figure 1.1. The setting is identical to that of Table 1.2 with
a = 0.05 and T" = 120. The histograms match well with the standard normal density for

SPCA, and hence verifies the central limit result we derive. As to PCA, there is visible
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Table 1.2: Finite Sample Comparison of Predictors (Multivariate y)

SPCA PCA PLS

a | d(F,F) | MSE; MSE» MSE3 | d(F,F) | MSE:1 MSE» MSE; | d(F,F) | MSE; MSE; MSEs
T = 60

0.5 0.40 0.14 0.16 0.20 0.40 0.14 0.15 0.21 0.41 0.14 0.15 0.19

0.1 0.44 0.13 0.14 0.25 0.55 0.12 0.12 0.55 0.54 0.12 0.13 0.38

0.05 0.45 0.14 0.13 0.27 0.66 0.12 0.11 0.72 0.59 0.12 0.12 0.53
T =120

0.5 0.30 0.07 0.08 0.10 0.30 0.07 0.08 0.10 0.31 0.08 0.08 0.10

0.1 0.31 0.07 0.07 0.12 0.36 0.06 0.06 0.22 0.39 0.07 0.06 0.17

0.05 0.31 0.07 0.07 0.11 0.39 0.06 0.06 0.29 0.44 0.06 0.06 0.22

Notes: We evaluate the performance of SPCA, PCA, and PLS in terms of the distance between estimated factor space and the
true factor space, d(F, F) = ||IP13, — Pps ||, as well as MSE; for predicting the ith entry of y. All numbers reported are based
on averages over 1,000 Monte Carlo repetitions. We vary the value a takes, while fixing aN = 100.

distortion to normality for y3, due to the presence of the weak factor fs.

Figure 1.1: Histograms of the Standardized Prediction Errors
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Notes: We provide histograms of standardized prediction errors for each entry of y using SPCA and PCA, respectively, based
on 1,000 Monte Carlo repetitions. The dashed curve on each plot corresponds to the standard normal density.

1.5 Conclusions

The problem of macroeconomic forecasting is central in both academic research as well
as for designing policy. The availability of large datasets has spurred the development of
methods, pioneered by Stock and Watson [2002a], aimed at reducing the dimensionality of

the predictors in order to preserve parsimony and achieve better out of sample predictions.
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The existing methods that are typically applied to this problem aim to extract a common
predictive signal from the large set of available predictors, separating it from the noise and
reducing the problem’s dimensionality. What our paper adds to this literature is the idea
that the availability of a large number of predictors also allows us to discard predictors
that are not sufficiently informative. That is, predictors that are mostly noise actually hurt
the signal extraction because they contaminate the estimation of the common component
contained in other, more informative, signals.

How can one know which predictors are noisy and which are useful? The key idea of
SPCA is that one can discriminate between useful and noisy predictors by having the target
itself guide the selection. This idea, first proposed in Bair and Tibshirani [2004], naturally
leads to adding a screening step before factor extraction. But this original version of SPCA
only works in very constrained environments that they can all be extracted via PCA from
the same subset of predictors.

In practice, there is no guarantee for that to be the case. Whether a latent factor is
strong or weak (and how strong) depends on how exposed the various predictors are to it
— and each empirical applications could feature a different mix of strong and weak latent
factors. Therefore, we propose a new SPCA approach that iterates a selection step, a factor
extraction step, and a projection step. As we demonstrate in the paper, this procedure can
consistently handle a whole range of latent factor strength. Our empirical analysis in section
3.2 shows that indeed this procedure fares well in an application with a large number of
potentially noisy macroeconomic predictors.

Two final points are worth noting. First, like any procedure, it will work best under some
DGPs, and worse under others. In particular, the procedure will potentially miss factors
that are extremely weak — no procedure can ever distinguish them from noise, because the
exposures of the predictors to these factors are simply too small.

Second, our theory highlights an interesting tradeoff that emerges when working with
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weak factors. Detecting the weak factors using unsupervised methods (like PCA) is, by
definition, difficult or impossible: there is a wide range of strength of factors that will be
missed by these methods. Methods based on supervised selection can help extract additional
signal, thanks to the guidance from the target. This ability comes at a cost: the possibility
of missing factors that are not related to the target. Therefore, this procedure is most useful
in applications, like forecasting, where omitting factors not related to the target does not
bias the prediction. We leave to future work an additional exploration of other contexts in

which SPCA can be useful.

1.6 Mathematical Proofs

For notation simplicity, we use X, F, U, Y, Z in place of X, F, U, Y, and Z, and use T},
for T' — h. In addition, without loss of generality, we assume that Xy = I in the proof, in
that we can always normalize the factors by Z;l/ ? and redefine g in (1.1) and « in (1.2)

accordingly.

1.6.1  Proof of Theorem 1

Proof. We start with the DGP without w; first. Throughout the proof, we use )N((k) =

<X ( k)) ] to denote the matrix on which we perform SVD in each step of Algorithm 1. The
k

first left and right singular vectors of X (k) are denoted by €(k) and Z‘(k), while the largest

~ = ~ ~ 2
singular value of X(k) is denoted by w/Th)‘(k)- As a result, )\(k) = T};1 HX(k) ‘ . Moreover,
by definition

o~ 12125 o S 12125

) =T Ay XwEm Soy =T Ay XS (L.12)
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Therefore, our estimated factor at k-th step is ﬁ(k) = é\ék))}( k) = T1/2/\b£)2§(k)' Conse-

quently, the coefficients of regressing X and Y onto this factor are, respectively:

By =Ty oA X and Gy = T, A e (1.13)

Then we define 13( k) € RIV*N iteratively by
= 1/2~-1/2
~ o S e
Dy = (In)7, ;Th Aiy X300 P
1=
with IN)( 1) = (HN)[IA}- We can show by induction that )N(( k) = 5( )X In fact, by Lemma

1, we have 5 5 G) = 0 for v # 5 < K which suggests that F( k) 's for all k are pairwise

orthogonal. Using this property and the definition of X (k) We have

T
I

X s oa
Koo = (Xw) g, = X [ Mp =X I -2 €0l | 019

X(l) =X ~, = ﬁ[j\ﬂF—l—U[ﬁ]

Using (1.12), if )?@) = 5(i)X for any ¢ < k we can write (1.14) as

-1
_ >~ a9 | ~1/27-1/2 > S
Xy = X5 (I — 22 S _X[fk}_;Th Ao Xpgt%n X = P X
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Since X(l) = X[fl] = ﬁ(l)X holds immediately by definition, we have )N((k) = IN)(k)X by

induction. In light of this, the estimated factors satisfy
Firy =S Xy = Sty P X (1.15)

for all k, and by definition, we have Z( k) = (

L2

k)ﬁ(k))/. Moreover, using (1.13) the estimated

coefficient 4 can be written as

K K
= aw Doy = 2T Ny Y& Doy (1.16)
We further define E(m = ﬁ<k)ﬁ and fj(k;) = ﬁ(k)U, then )?(k) can be written in the form of
Xy = B F + Ugy- (1.17)

We also define the population analog of l~)( k) for each k by

Dy = (n)g,) — wa Bir, b f)D() Dy = (IN)p);

where A(k) is the leading singular value of ﬁ(k), S(k) and b(k) are the corresponding left

and right singular vectors of 5( k)- By a similar induction argument, we can show that

= Al H Mb(i) -

i<k

Intuitively, E(k) and f)(k) are sample analogs of B(k) and D(k)'

Similar representations to (1.17) can be constructed for Yy =Y Hi-:ll M, for each
(@)
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k. Specifically, we have
~ _ ~
Y(k) =Y I[Th — , (Z)g(z) = Oé(k)F—F Z(k)’ (1.18)

where &(k) c RP*K and Z(k) c RP*Th are defined as

a = 0 — ZT 1/2Yf (Z 5( ) and Z(k) = Z — ZTh_ / ( 1/2Y§ /C\ZZ N( )

By Lemma 3, we have P(fk = I;;) — 1 for k < K and P(}A( = K) — 1. Thus, with
probability approaching one, we can impose that 1, r = I for any k£ and K = K in what
follows.

To prove Theorem 1, using (1.17), the estimated factors can be written as

Using Lemma 5(i), F\(k)H = Th:\\(k)a and M| <1, we have

B || B

< Rl ] v

1.6.2  Proof of Theorem 2

Proof. By definition of X (k) In Algorithm 1, we have

k-1 k-1
_ N . e
X = XpMp =X [IMp =X {15 =3 o
i=1 1=1
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Therefore, using (1.18), we have

as Y<,€)§(Z-> = 0 for 7 < k by Lemma 1. Therefore, the covariance <X (k)>[i] Y(Ik) for each
predictor equals to X [i]Y(/Ic)‘ Based on the stopping rule, if our algorithm stops at K, there

are at most ¢N — 1 predictors among all satisfying T} Hix [i ]Y' > c. Let S denote
(K+1) MAX
the set of these predictors. For ¢ € S, we have
1 ! 1 / <
TR o T SR T

where we use ||5]yax S 1 from Assumption 2 and Lemma 3(vi) in the last step. On the

other hand, in light of the set I in Assumption 2, we have

Sty = X et X 15|,
(K+1) (k41 (k11
1€l i€lgnNs elpnse
Sp [T S|+ [Ion 9 < qN+C2No = o(Np), (1.20)

where we use (1.19), |S| < gN — 1, ¢ — 0, and ¢N/Ny — 0. Consequently, (1.20) leads

to Hy(fﬂ'l)X[/fo]H = OP(TN5/2). Moreover, using (1.18) and that X = SF + U, we can
decompose
; ! / / - ! ol 5 /
Y X = Qe FF B + 8y F Ul + 20y F Bty + 2y Vi (1:21)

Using (1.20), (1.21), Lemma 9(i)(ii), and the fact that

1/2
‘B[IO]H < NO/ , we have

| isr) (FF 81+ FUL || = o (N6 T). (1.22)
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Also, using Assumption 4(i), Assumption 1(i) and Weyl’s theorem, we have

o (FF g + U = ok Tnbiag)) < [FUfy |+ 757 P = e 70|

<pNJPT2, (1.23)

Since Assumption 2 implies that o (5[7,)) = N/ , we have JK(FF’ﬁ —|—FU[ ]) Né/QT.

Using this result, (1.22) and the inequality H (R41) ( F/B/ |+ FU )H > o (FF Bire) +

FU H (K+1) H, we have H~ &+1) H — 0. That is, by deﬁmtlon of a a(K+1) n (1.18),
. L~
- @
a=) Y, D2 = op(1). (1.24)
1=1 Th>‘(7,)

Next, (1.16) and E(k;) = 5(k)ﬁ imply that

K
368 =31, 5 Y &l By
1=1

Therefore, (1.24) is equivalent to |75 — «|| = op(1).
As shown in Lemma 12, Assumptions 1, 3, and 4 hold when we replace F', Z and U by
FMyyr, ZMyyr and UMyys. Therefore all of the lemmas and the result |75 — af = op(1)

also hold when wy is included. We write the prediction error of yp, as

Yr+h — Er(yrsn) = Jor + (Qw — VBuw)wr — afp — apwy (1.25)

=38 = a) (fr = FW'WW) " wp) +5(ur = UW WW) " wp) + 20 (i) !
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Using (1.16) and ||Y]| < |laF|| + || Z|| <p T'/2 by Assumption 1, we have

Furll < 37 732300 W& [ Py <2 32 337 [0y Psyer | 120
k<K k<K

and

1 FUW| < 30 1 RGP IV || Doy v
k<K
<o 2 T o
k<K

(1.27)

Using //\\(k) =p ¢N from Lemma 3 and Lemma 5(ii)(iv), we have

~—1/2 ||~
h

—1 I —1 -1 1 2-1/2 ~ 1/2e1/0 1
Ty Ry o U | e o™ N+ 7RG G Digur | o VAN 4 T2

(1.28)

Therefore, ||Jur|| = op(1). Furthermore, with H(I/VI/V')_1 | <p T~ from Assumption 1, we
have HﬁUW’(WW’)le = op(1). Together with HFW’” <p T2 ||ZW’|| <p T2 from
Assumption 1 and |55 — af| = op(1), we show that each term of (1.25) vanishes, and hence

—~ P
Yyr+n — Erlyrin — 0. O

1.6.3  Proof of Theorem 3

Proof. As in the proof of Theorem 1, we impose that K = K and fk = I, since Lemma 3
shows that both events occur with probability approaching 1. As shown in Lemma 2(iv),
under the assumption that Mg (o/a) > 1, we have K = K. Together with P(K = K) — 1,
we have obtained (i) of Theorem 3. Below we directly impose that K = K.

Again, following the same argument above (1.25), we only need analyze the case without
Ely M

wy. As Z/T\(k,) = T;/T)\\l/ng,), Theorem 1 implies ‘ <p q_l/zl\f_l/2 + 771 for

(k) >(
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k < K. Let v denote F'(FF')~1/2, we have
6Bt = 6 - ] o 2w 102 71 1.29)
where E is a T' x K matrix with each column equal to g(k). (1.29) implies that
H?w’f— ]IKH <p q_1/2]\7_1/2 +7 L
By Weyl’s inequality, |ai(§v) -1 <p ¢ V2N-12 4771 for 1 <i < K, and thus

- o o8-8« [ 1)

<pg V2N-U2 L7l

Then, using this, (1.29), and the fact that ||v|| = 1 and HEH = 1, we have

—1/2—1/2 L p-1.

Hpﬁ, P (€80 — v}

-Jee -

< &€

Next, we need a more intricate analysis of 7. Recall from the proof of Theorem 2 that

58 = ZT 1/2Y§ B (1.30)
Denote By = (by1,...,bz) € ]RKXIA(, By = (b12,...,bp,) € ]RKX[A{, where
by =T~ V2FEyy, by = X(‘kl)/zﬁgk)jk). (1.31)
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By Lemma 6,
HTh_l/ng(k) - Th_1ZF/bI~32H Sp T+ N (1.32)

As we impose that K = K = K, combining (1.30), (1.31) and (1.32), with ||By| <p 1

| Bo|| <p 1 from Lemma 10, we have

H% —aB By~ T; \ZF'ByBY|| <p T 4 g IN L, (1.33)

Using Lemma 10(iv)(v), we obtain H?B —a— Th_lZF/ <pT 1 +qgIN"L O

1.6.4 Proof of Theorem 4

Proof. As in the proof of Theorem 2, we have ||FW/(WW/)_1 H <p T-1/2 from Assumption
1 and }HUW’(WW’)_lH <p T~' + ¢ N~ as shown in (1.27) and (1.28). Together with

H/V\B —a— Th_1ZF/ <p T+ ¢ N1 we can derive from (1.25) that:

Ireh — Brlyran) =T, ZF fp + ZW' (WW") " hop + Fur + Op(T7 1 + ¢ TN,

By Assumption 1, we have |\; < oW V2wwrs 1/2> — 1] <p T~Y/2 and thus

HZW’ WW) " wp — T Z2W'sy, wTH <7 1HZW’HH -ty *1H|wa|y
—1/2 —1lw— —1lw— —1/2
<oy 2 | tme Ay V2 - ap | = 7 rzréaéc\)\ (7, = s, /> —1
ST (1.34)
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~

For Jup, by (1.16), we have yup = Zszl a(k)§(k)l~)(k)“T and thus

K
up — Z by 1/2ab ) < Z H (k: k)UT — )\(_kl)/2ab(k)gék)D(k)uTH .
(1.35)
Lemma 8(vi) gives
(]_1/2N_1/2|6Z]{;)5(k)uT — g{k)D(k)uT| <p 71 + q_lN_l. (1.36)

1/2

In addition, (1.13) and Lemma 1 give 25 T, / Yg\(k) = abyy + Th_l/QZg(k). With

(k) (k) =
(1.32), || ZF'|| <p TY2 and ||bys|| $p 1 from Lemma 10(i), this equation leads to

H N —ableSHT;l/QZE( — T ZFkaHJrHT ZFkaH <p T Y24 g IN-L,

Using kug = b H <p T~Y24 ¢ 1/2N~1/2 implied by Lemma 10(iii) and X(k) =p ¢N from

Lemma 3(iii), we have

~

[ = 30| < ey =R atia] + Ry ot - i)

<pT 1247 12N-1/2 4 g~IN—L, (1.37)

Also, with Lemma 3(iii), we have

’)\ -1/2 (_1411)/2’ < X(_kl)ﬂyleéf/)‘bi? — 1| <p T—1/2q—1/2N—1/2 —|—q_1N_1.

Since Hb(k) H = 1, the above two inequalities lead to
~ —-1/2 - — — — —
Ho‘(k) - )‘(k:)/ O‘b(k)H <7 VR VANTYE g INTL (1.38)
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For each term in the summation of (1.35), we have

Ha(k)g(/k)ﬁ(k)“T - A@l)/QO‘b(k)gme(k)UTH
<@ @y Dayer = sfay Py + || @y = A *aby)so Payur |- (1:39)

Note that (1.37) also implies H&(k)H <p g V2ZN"1/2 g5 X(k) = ¢N, and that (1.36) implies
the first term in (1.39) is Op (T~ +¢~!N~1). Furthermore, |§Ek)D(k)“T’ <p 1 from Lemma
5(iv) and (1.38) show that the second term in (1.39) is also Op(T '+ ¢ ' N~1). Given this,
(1.35) becomes

K
Jur =) )\(—kl)/zab(k)gzk)D(k)uT SpT M 4g N (1.40)
k=1

To sum up, we have established that

~ ZF' W', K
yren — Er(yron) = T fr+ T, Y wr + kZ )\(k)/ b1y (1) Dy ur
—1

+ Op (Tfl + q*1N71> .

In the general case that ¥y may not be Ij, the first term becomes Ti;lZF’EflfT. Using

—-1/2 —-1/2 . . .-
the fact S(k) = )‘(k:)/ 5(k)b(k) = )‘(k)/ 5[Ik]b(k) and the iterative definition of D(k)? we can
see that A&;/%{MD(@UT is exactly the kth row of A~ QY Wup with A, Q, and U defined

in Theorem 4. Using Delta method and Assumption 6, it is straightforward to obtain the
desired CLT. O]
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1.6.5 Proof of Theorem 5

Proof. Using Theorem 5 in Fan et al. [2013], to establish the error bound Hiu — Yul|, it is

sufficient to show that Hﬁ — UH = op(1) and
MAX

1 log N
-1 ~ 2 _ g
?%%(Th ;|uit_uit| =Op (q_N+ T )

1—q
These two estimates have been shown by Lemma 11(iii) (iv). If m, n ( \/;W + lo% N ) =

o(1), then ‘ I 3

= OP(l). With Hé\ék)ﬁ(k) — gzk)D(k)H SP Tﬁl/2 + q*1/2N71/2 from

Lemma 8(iv) and ¥ = Y j < a(/ﬂ)g(,k)D(k% rewrite the proof of (1.40), we have

~— Z A&cl)/Qab(k)gzk)D(k) <p T_1/2q_1/2]\/v_1/2 + q_lN_l. (1.41)
k<K

The difference between the rate of (1.40) and this equation arises from the difference between

-1/2
(k) S(k)

hand side of (1.41) is equivalent to |ﬁ — aBAYY \IIH In addition, under the assumption

Lemma 8(iv) and (vi). Recall that A Dy, is exactly the kth row of ATIQ/T, the left

Cov(ug) = By, 133 equals to (¢N)~1UE, . Let 4 denote « BA™1Q/W, then we have
By — @y = gN (757 = 7).
Consequently, we have
|8 — @2 <oV [FEu - )7 || + |G -z + 52 - 5Y ] (142)

Using the definition of D(k)7 Hﬁ[Ik]H < (qN)l/?7 and A(k) = gN, we have HD(k)H < 1 and
thus |[F]] < ¢~ /2N~1/2. Using Hiu - EUH — op(1), (1.41), ||Zy|| < 1 from the assumption

and |[7]| < ¢ Y/2N~1/2 all three terms in (1.42) are op(1). O
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1.6.6  Proofs from Section 1.3.5

1.6.6.1 Proof of Propositions 1 and 2

Proof. Note that for any orthogonal matrix I' € RV*N  the estimators based on PCA and
PLS on I'R are the same as those based on R. Thus, without loss of generality, we can
assume 3 = (A/2,0,---,0)’, where XA = ||8]|? and it will not affect A.

We can then write X in the following form:

VAF + €141
X=pF+U=p0pF+€eA = , (1.43)

€9 A1

where €7 is the first row of € and €9 contains the remaining rows. Correspondingly, we write

the first left singular vector of X as <= (1,<})’, where ¢ is the first element of < and ¢ is

a vector of the remaining N — 1 entries of ¢, write E as the first right singular vector of X,

and denote the first singular value as V TX. By simple algebra we have
~ (\/XF—}-ElAl)f ~ €9 A&

1= = y 82

= (1.44)
T T

Since the entries of F are i.i.d. N (0,1), we have large deviation inequality |Th_1FF’ -1 <p

T—1/2. This also implies that ||F|| — T, 1/2 <Sp 1 by Weyl’s inequality.

Similarly, we can get |Th_1ele/1 -1 <p T2 and le1|| — Th_l/2 <p 1. In addition, by
Lemma A.1 in Wang and Fan [2017], we have HN_lU/U — A4 < 1417 ||N_le’e - ]IThH

<p vT/N. Next, by direct calculation using the previous inequalities we obtain

Flet A + A/16/1F U'U — NAllAl 1 VvVNT 1
+ SP =+ 7 Sp
TV TpA VA T VA
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Together with (1.43), we have

<p % (1.45)

X'X F'F NAA
A T, T\

Let 1 denote the first eigenvector of the matrix M := T}~ a3 +5A’1A1. With the assumption
that N/(TA) — 6, (M (M) — Xo(M))/A (M) Zp 1 and (1.45), by the sin-theta theorem in
= Op(l).

In the case that A} A4; = L7, , the eigenvalues of M are given by

Davis and Kahan [1970], we have P, — Pgl| = |, — P,

T, 'FF' +4§ i=1,
A = (1.46)
5 i> 2.

and the first eigenvector is £/ /|| F||. Since the largest eigenvalue of X’ X/(T})\) is X/ A with

its corresponding eigenvector E, (1.45) and Weyl’s theorem yield that

X FF N 1
~ = +—4+0p|—=]=1+5+ 1 1.4

and the sin-theta theorem implies that

HIP’F/ —IP’EH — HF’(FF’)—lF—Eé”H — op(1). (1.48)

Furthermore, (1.48) implies that (FF)*l(Fg)2 = gF’(FF)*lFEZ 1 4 op(1). Together
with |Th_1FF’ -1 < T—1/2, and the fact that the sign of £ plays no role in the estimator

Y11 p, we can choose E such that

—= —1=o0p(1). (1.49)
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Therefore, we have

., Y&ep  F&dap  IBfr+Sup
Yprh = OF wp = — =a——=a =
VT VT VA

Using (1.44), we have

(1+ op(1)). (1.50)

(F+A"12640)¢

I8 VA

A A
VaooVva A VT 3

Using (1.47), (1.49), [|A1]| < 1, and |le1|| <p VT, it follows that
AN (1.51)

In addition, as Cov(us,ut) = 0 for s # t, ur is independent of < and thus Jup = Op(1).

. . ~ P _
Combined with (1.50) and (1.51), we have yp ., — ?Tf% = (1+6) " "Br(ypan) O

1.6.6.2 Proof of Propositions 3 and 4

Proof. In the case d = K = 1 and z = 0, the PLS estimate of the factor is F=FX'X.
With (1.45) and T;, 'FF' — 1 = op(T~!/2), we have

|77 07 F = F (1, + 04341) | = op (TY/2). (1.52)

Letn=F (]ITh + 5A’1A1), and {1 = ﬁ/ Hﬁ”, Eg =n/||n||, with ||n|| < TY/2 and HTh_l)\_lﬁH

— |In|l = op(TY/2) implied by (1.52), we have H§1 - ng P, 0 and thus

e

5Pyl = |86 - 88| <2(6-&| o
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This completes the proof of Proposition 3. In the specical case A'lAl = Ip,, as in Section

1.3.5.2, we can write
I = [V X'X|| Y X' XYY X wp = of|[FX'X || 2FX' XF FX 2. (1.53)

We now analyze HFX’X”, FX'XF' and FX'zr, respectively. Recall that from (1.45), we

have ‘ % — };:f - (5]IThH = op(1). Along with \Th_lFF' —1| <p T~1/2 we have

1
IFXX]| = —=

/Ty

F'F
3/2 F( +6]ITh)H+OP )—1—|—5+0p( ) (1.54)

1y,

For the same reason, by direct calculation we have

1 1 F'F P
—FXXF’ —F ol | F’ 1 1+0. 1.55
- 2 (Do, ) e 214 (1.55)

Next, write X in the form of (1.43) as in the proof of Proposition 1. Then, using
lexll Sp VT, we have

FF' FA
19 2y

—FX = + 1.56
T B = Tt T (1.56)
In addition, as up is independent of f; and x4 for t < T, and (1.55), we have
/
||FX up|| Sp =~ T T |Fx’|| 25 0. (1.57)
In light of (1.54), (1.55), (1.56), (1.57) and (1.53), we have concluded the proof. O
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1.6.6.3 Proof of Proposition 5
Proof. The explicit form of the PLS estimator in this case is

gL — Y X'X|| Y X' XYY X ap = || ZU'U|| 2 20U 2 20 g,
Recall that U=(uy, -+ ,up_p), up is independent of U and Z. Therefore,
|—4

Va5 = 20w~ 1207

As z; and u; are generated from independent standard normal distribution, we have
|zU'|| =p TV/?NY? and |U|| =p NV/2 4 T2,

Thus, Var(/y\g_%g) >p N3T/(N* +T%). On the other hand, the PCA estimator is /y\gflf? =

[ ng’uT, where < and ¢ are the first left and right singular vectors of U. Note that

SP 1 and HE\/UT” SP 1.

Z is independent of E and up is independent of ¢, we have HZg'

Along with the fact that |U|| =p N/2 +TY2 we have y{ﬁfﬁl <p 1/(N1/2 4+ 11/2), O

1.6.6.4 Proof of Proposition 6

Proof. The estimated factor F is the first eigenvector of X'X = U'U. By Lemma A.l in
Wang and Fan [2017], we have HN_lU’U— diag(1,...,1,1+¢)|| Sp /T/N. Note that
the first eigenvector of diag(1,...,1,1 + ¢€) is (0,0,...,1), sin-theta theorem implies that

~ -~ ~[12 ~[12 ~[| o~ —
|frl/ HFH Lo As HEH —1—]?% = HF‘ , we have HEH /fr L0 AsZis independent of U,

~ s (aa e
conditioning on U, the estimated coefficient & = ZF (M > follows a normal distribution

~||—2
with mean 0 and variance H F H . Consequently,

Var (I 10) = Var(@Fl0) = (Fr/ |[E])” 2 oc.
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which in turn implies that Var(fjim) — 00. On the other hand, in our PCA algorithm, let <
and E denote the first left and right singular vectors of X = U, then @5%;4 = ||U H_l 75&’1@.
Note that Z is independent of E and up is independent of ¢, we have H?EH <p 1 and
H?’uﬂ‘ <p 1. Along with the fact that |U| >p N¥/2 + TY2, we have 377}35;:1 LN} O

1.6.7 Technical Lemmas and Their Proofs

Without loss of generality, we assume that ¥y = [;¢ in the following lemmas. Also, except
for Lemma 3, we assume that K = K and I, =1 for k < K, which hold with probability

approaching one as we will show in Lemma 3.

Lemma 1. The singular vectors E(k)s i Algorithm 1 satisfy ?U)E(k) = 0j, for j,k < K.

Proof. If j = k, this result holds from the definition of E(k). If j < k, recall that X (k) is

defined in (1.14) and E(k) is the first right singular vector of )Z(k), we have

N ~ R X
Kby = A1 ljk (1 - &) and & - arg max H”i,—kﬁUH
It §Ek)g(j) = ¢g # 0 for some j < k, then
| Xy &y — 02| = | K — 0% wn|| = || Kn| (1.58)

since the definition of X(k:) implies that X(k)g(j) = 0 for 7 < k. On the other hand, since

~

?(k)é(j) = ¢p # 0, we have (E(k) — cof(j))’g(j) = 0, and consequently,

H%W - Hf@) - COg(j)H2 T Hcog(j) H2 > Hg(k) - COg(j)H2 : (1.59)

Apparently, if H)Z(k)H = 0, the SPCA procedure will terminate so we have H)?(k)H > ( for
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k < K. Together with (1.58) and (1.59), we have

qu H B HX@ (k)H . H&k)@k) - 0050))\\7
Ewl [0 =
which contradicts with the definition of {/"\(k). Therefore, 3( k)g( §) = 0 for j < k. O]

Lemma 2. Under assumptions of Theorem 1, b(k)’ 5(1:) and K in Section 1.3.1 satisfy
(i) b/(j)b(k) =0 for j <k < K.
() My = ||Boo| < /252

(iii) K < K.

(w) K = K, if we further have A (a/a) > 1.

Proof. (i) Recall that b(x) s the first right singular vector of §;) and 53y = By, Hj<k Mb(j)-
Using the same argument as in the proof of Lemma 1, we have bl(j)b(k) =0, for j, k < K.

(ii) The selection rule at kth step implies that

2 2

D 18 T M, > No > |8 1T M, . (1.60)

1€y, i<k MAX 1€ly i<k MAX

For any matrix A € RV*P and set I ¢ [N], we have

2
MAX '’

>[4
i€l

o < 4]l < P2 |4

2 2 2
and HA[I]H < HAU]HF <D HAU]H . We thereby have

2

: 1.61
MAX (6)

o ey
i€l
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Using this result, (1.60) becomes

-1 !
el = By 11 My o'l 2N, o 118 11 M,
i<k i<k

Then, we have

1
HMb 2\/—_ (k] HMb / Z\/— [£o] HMb(J

i<k j<k i<k
) 1T My, o[, (1.62)
i<k
where we use f7,1 [T Mb(j) Bir, (< Mb( )2a) = = B Hj<r Mb(j)o/ in the first

inequality. With oz (8(7,) 2 vNo from Assumption 2, (1.62) leads to HB(MH > |12 In
addition, ||5]yax S 1 from Assumption 2 leads to Hﬁ(k)H < \Ik|1/2. Therefore, we have
Hﬁ(k) ’ = |[Ig]1/2 < ¢}/2N1/2

(i) From (i), we have shown that b(;)’s are pairwise orthogonal for k < K. Tt is

impossible to have more than K pairwise orthogonal K dimensional vectors. Thus, K < K.

(iv) Recall that K is defined in Section 1.3.1. Since the SPCA procedure stops at K + 1,

/

we have at most ¢N — 1 rows of 3 satisfying Hﬂm I Q@

o S S
i<k M, ) = ¢, which implies

2
B} [T Moo < N + (Vo = aN)e? = o(N).
J<K
where we use (1.61) and the assumptions ¢ — 0, ¢N/Ny — 0, and a similar argument for

the proof of (1.20). With o (8|f,) 2 vNo from Assumption 2, we have

o [] My, || < o (8 By 11 My, 0| = o(1). (1.63)

j<K j<K
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If K < K —1, using (i), we have aHj<[(Mb() osz<K ( ) 50 that

OK < 01 H Mb +og | & Z b(])b/(J) . (164)
j<K J<K
Since
) _
Rank [ « Z b)) | SK<K-1, (1.65)
j<K

we have o <042'<f(b ~b’< .>> = 0. Therefore, by (1.64) and (1.63), we further have
og(a) <o <a H]<K Mb( )> —0. This contradicts with the assumption that Ag (o/a) 2 1.

Therefore, we have established that K > K. Together with (iii), we have K = K. O
Lemma 3. Under assumptions of Theorem 1, for k < K, Iy, K and ﬁ(k) satisfy

(i) P(Ip = I;,) — 1.

(1i) ‘)X(k) - 5(k)FH <p ¢/2NV2 4 712,
(iii) |Xbé)2/A%2 — 1] Sp g VANTV2 T2 and X gy =p Ay < g

(iv) HT Y2FE G — b, HA’

IP’Ak) — Th_lF’]P’b(k)FH <p ¢ VIN-1/2 4y T7-1/2

(v) P(K = K) — 1.

For k < f(—b—l, we have

(vi) HT XV, - BT

1/2 —1/2aA7—1/2 —-1/2
MAXgp(logNT)/ <q /2N-1/2 41 />.

Proof. We prove (i)-(iv) by induction. First, we show that (i)-(iv) hold when k = 1:
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i) Recall that fl is selected based on T, 'XY”’ and I7 is selected based on Ba’. With
h

simple algebra, we have
TolXY — Ba—ww lFFthym+T1UWJ+T]ﬂRT+T1UZ
With Assumptions 1, 2 and 4, we have

H@fXW—ﬁd

-1 / —1 !
o SIBIiax || T FF = T ol + T [UF |y o

+ Ty Bllviax | F2'|| + T, [UZ || yax Sp (log N)Y2T712,

From Assumption 5, we have cg\), — c((i\)[ 41 > 0(2 and the definition of K implies that

~Y

célj\)[ > ¢ for k < K. Thus, we have c((;\)] — Cg\)H-l 2 c. Define the events
A ={ T xY||| > (R )2 forallie I}
~1
Ag = { T, XmY/ MAX S (c (J\>f +C((;N+1)/2 for all i € Il}
_ 1 1 .
Ag = { T, IXMY' - B[i]o/ MAX > (cé]\)[ - céj\),+1)/2 for some i € [N]} . (1.66)

It is easy to observe that {fl =11} D A1 N As. In addition, from the definition of I, we

/ (1) ¢
MAX <c CuN+1 for all + € I{. Therefore,

MAX (cé% — cg\),_H)/Z for some ¢ € I, which

implies A{ C Ag. Similarly, we have A C As3. Using {fl =11} D AjNAg and AJUAS C As,

ﬁ[i]a VAKX ((]]\)7 for all 7 € I] and HB

if A{ occurs, we have HTh X[i]Y - /6[2']0/

have

we have
P(I} = ) > P(A1 N Ag) = 1 = P(AT U A5) > 1 — P(43). (1.67)

Using ¢! (log N)UQT_l/2 — 0 and c((;\), — c((;\),ﬂ 2 ¢, we have P(A3) — 0 and consequently,

P(I; = 1)) — 1.
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(ii) Since fl = [; with probability approaching one, we impose fl = I; below. Then,
we have )?(1) = X[z by (1.14) and Assumption 3 gives H)}:(l) —B(l)FH = ’U[[l]H S

G/2N1/2 4 TL/2,

(i) From Lemma 13, we have o;(81)F)/0;(B1)) = 1/2 + Op(1), which leads to
8y || = 722N = I8y B) = Ty Pon (Bl S @' 2NV2 (168)

where we use /\ HB H = 1/2]\71/2 from Lemma 2 in the last step. In addition, the

result in (ii) nnphes that
|H)?(1)H - H5(1)FH| < Hf(u) - ﬁ(l)FH Sp ¢! ANV T2, (1.69)

Using (1.68), (1.69) and A2 =< ¢/2N1/2, we have

(1)
N OO 1 e [ e v
T A i

<pg V2NV2 47172

and thus /):(1) =p qN.

(iv) Let é(l) € RTh*1 denote the first right singular vector of ﬁ(l)F . Lemma 13 yields
—1 v —1/2

HIP’~ T FIP’b(l)FH <p T Y (1.70)

and o;(8(1)F)/0(B(1)) = 1/2 + Op(1). The latter further leads to

o1(ByF) — o228y F) = T;/2(01(5(1)) —o2(By)) + Op(o1(By)) =p T201(B1)).

(1.71)
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where we use the assumption that o2(5(1)) < (1 + 6oy (8(1)) In the last equation.
Using H)?(l) — ﬁ(l)FH <p (]1/2]\71/2—1—T1/2 as proved in (ii), (1.71), Lemma 2 and Wedin

[1972|’s sin-theta theorem for singular vectors, we have

G/2NV/2 4 71/2 _

< 2N 12, 1.72
~P 0180y F) — 2By F) ~F ! (172)

i

- _P-
F(/l) S

In light of (1.70) and (1.72), we have the first equation in (iv) holds for k = 1. As ]P’ﬁ(, ) =
k
E(k)g(k), left and right multiplying this equation by 3(1) and E(l), we have

1 =T, (b FEr))?) Sp g VANTVR 412,

which leads to [1 — 7}/ 2b’(1)F§(1)\ Sp ¢ Y2NY2 £ 7712, Left-multiplying it by by
gives the second equation in (iv).

So far, we have proved that (i)-(iv) hold for £ = 1. Now, assuming that (i)-(iv) hold for
Jj <k —1, we will show that (i)-(iv) continue to hold for j = k.

(i) Again, we show the difference between the sample covariances and their population
counterparts introduced in the SPCA procedure is tiny. At the kth step, the difference can

be written as

k-1 k—1
-1
511 My, o' — T, (BF + U) 1Mz (oF +2)
i=1 i=1 ()
J J MAX
k-1 k-1 k-1
/ -1 !/ ! -1 /
< |8 [T Moo =7, 87 [T wap Pl +7,0 |oF [T g, 2
i—1 i—1 (4) i—1 (4)
J J MAX J MAX
k—1 k—1
+ T, U [ Mz Flof +T, U [ My 2 . (1.73)
o) el )
J MAX J MAX
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Since (iv) holds for j < k — 1, we have

k—1 _
S, ot [ (o, )

=1

<pg VENTV2 4712, (1.74)

Using Lemma 1 and Lemma 2(i), we have

k-1 k-1 k—1 k-1

11 My, =1k - > Py, and 11 MF(’ - I, — D Pﬁ(’.)'

j=1 j=1 j=1 j=1 Y
Using the above equations, (1.74), and HTh_lFF/ —Ix ‘ <p T_1/2, we have

12 k—1 12 k-1 k-1

T, FHM - Hle(j)F =T, F_lef(’j) —leb(j)F
Jj= J= J=

<pg VANT2 4712, (1.75)

Similarly, right multiplying F’ to the term inside the ||-|| of (1.75), we have

k—1
TR [[ Mg F - H My, || Sp g VANV T2 (1.76)

]1 (4)

Next, we analyze the four terms in (1.73) one by one. For the first term, using (1.76) and

Assumption 2, we have

(J)

k—1
811 Mb(j)o/ ~ T, 18F H Mg F'o/
j=1 j=1 MAX

k—1

k—
il Mg, Flllall 5 g VANVl
j=1 ‘ ’
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For the second term, using (1.75), Assumption 2, we have

k-1 k—1
-1 / —1 /
T, 5FHM13(/,)Z STy, 11Blhvax HMb(j) |FZ'||
=17 llmax j=1
k-1 k—1
-1 —1/2A7—1/2 ~1/2
+ T, 18llvax FHMﬁ(j)‘HMb(j)F 1Z)| <p g VANV 712,
j=1 j=1

For the third term, using (1.75), we have

k—1 k—1 k—1
—1 -1 1/2
T, U [ Mp Flof ST UIhax T2 | F T Me - ] My, F|l lla
j=1 () 1 ) Bt
MAX J J
k—1
—1 / 1/2 ( —1/2771—1/2 —-1/2
+ T | UF | yax 1_[1Mb(j) ol Sp (log NT)Y/2 (q7/2N—12 4 771/
j:
For the forth term, using (1.74), we have
k-1 k-1
—1 ! —1 ! -2 / !
o UHMﬁ(’.)Z ST U Z yiax + T 2 NUF [agaxe | D Boy || 1FZ|
10 lhax =
12 k-1 k-1
— 1
F T2 U ax |13 Y By F - S B 112
<p(log NT)l/2 <q_1/2N_1/2 + T_1/2> )
Hence, we have
k-1 k—1
X [[ Mg v/ =5 T] My, of <p (log NT)1/2 <q—1/2N—1/2 + T—1/2) .
S MAX

(1.77)

As in the case of k = 1, with the assumption that ¢! (log NT)l/2 (q_l/zN_l/2 + T_1/2> —

0, and Assumption 5, we can reuse the arguments for (1.66) and (1.67) in the case of k =1
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and obtain P(fk =1)— 1.

(i) We impose Ij, = I}, below. Then, we have )?(k) = X1, Hé‘:ll Mg, and thus
()

k—1 k—1 k—1
Xy = BuyF =By | FIIMp — TI My, F | + Ui 1T M5 -

Hence, using Assumption 2 and (1.75), we have

k—1 k-1 k—1
%y = B || = |Bma | | TT g, — TT Mg, | + [0 | TT vz
=1 U =1 U

<pg2NV2 4 T1/2,

(iii)(iv) The proofs of (iii) and (iv) are analogous to the case k = 1.
To sum up, by induction, we have shown that (i)-(iv) hold for k < K.

v) Recall that K is determine v Bl o whereas K is determine y
Recall that K is d d b BM 3<ka " wh Kisd db

©)
-1 /
T Xy L1 Mg v
j<k J
. Since (iv) holds for j < K as shown above, using the same proof for (1.77), we have

K IS
T, X [ Mg Y -] My 0 <p (log NT)'/? (q*WN*l/2 + T*l/Q) .
j=1 j=1

MAX

o,
iy

(1.78)

The assumption cég—i_l) < (1+ 5)710 in Assumption 5 implies that ¢ — c(gg—ﬂ) = c. Together

with ¢~ 1(log NT)1/2 (q_1/2N_1/2 +T_1/2> — 0, we can reuse the arguments for (1.66)
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and (1.67) with events

K .
— K+1 .
By =9 |1} 1Xm HMA,j)Y/ > (c—i—cEINJr ))/2 for at most ¢N — 1 isin [N] 5,
=1 MAX
K K (K+1)
-1 + .
By = ¢ || T;, " Xy HMﬁ(.YI_B[i] HMb(j)O/ > (c—ch )/2 for some i € [N] p,
=t 7 j=1 MAX

to obtain P(K = K) > P(By) =1 —P(B§) > 1 - P(By) — 1.
(vi) This result comes directly from (1.77) and (1.78). O

Lemma 4. Under assumptions of Theorem 1, for k < K, we have

(i) HU H <p TY2 4 T-1/241/2N1/2,

(ii) HFU H <p ¢1/2NV2 L T1/2, HZU/ % H <o qV/2N1/2 4 T1/2
(1) [y (wr) )| Sp 1+ T-12qV2NY2,
Proof. (i) Using Lemma 1, we have

k—1
1/271/2 . > > -~ -~
m%m—%huIEM@ﬁ@rﬂﬁm&m—ﬁmﬁﬁm+Umﬁw- (1.79)
]:

T,""\

1
h "X

Therefore, along with Assumption 1, Assumption 3 and Assumption 4(ii), we obtain
1/271/2

%AWWMMNQEFWM%”ngW%ﬂ

1/2771/2
Uil Ol | sp 22T+ g, (1.80)

Together with X( k) =P gN, we have the desired result.
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(ii) Similarly, by Assumption 1, Assumption 3 and Assumption 4(i)(ii), we have

T1/2/\1/2 HA/ P

H5 F' [Ik]UUk F

+ || Ul

<p ¢\2NY2T 4 gNTV/2, (1.81)

/
U ¥

* HUfk v

Together with X(k) =p gN, we have the desired result. In addition, replacing F' by Z and
W, we have the second and third equations in (ii).

(iii) By Assumption 1, Assumption 3 and Assumption 4(iii), we have

T1/231/2

T N Gty ) ) < Wy B0 g | + [y Ul (i
<17 Hﬁffk]wT)[Ik]H || ||| sp o /2NY2TY2 4 0.
Together with X( k) =P gN, we have the desired result. O

Lemma 5. Under assumptions of Theorem 1, for k,l < K, we have

U3 T
(i) (k)A(k) <p g V2N-1/2 4 71 (k) <p g V2N-V2 L 771/2,
AU,
(i1) L)A(k) <p ¢ NV 4Tl for A=F, Z, and W.
& €Uk
fii) 12000 < iyt et i) < eyt et
Tuhh) ThA )
(iv) |< wurl Sp1+T7 202 N1/2, |€ wyur| Sp 1

Proof. (i) Recall that from the definition of Uy (below (1.16)), we have

-~

- = Xgée Ve

U =U .
(k) = Uln = T. A
i=1 VA6

(1.82)

71



Then, a direct multiplication of ¢/ Stk / Th)\ from the left side of (1.82) leads to

Syl ’“Z‘: o X <ol

\/Th)\ \/Th)\ \/Th)\ \/ThX@ '

Consequently, using HX[[k]H < Hﬁ[lk]H I|F|| + HU[I’C]H <p q1/2N1/2T1/2, X(k) =p ¢N and

[y

Lemma 4(i) we have

<ty Uik) < T Vin N | X Yo
ThA (k) Ty || =1 ThA(k) Th )
_ 6/ [7 ;
Spq VANTV2 ! +Z SUMON (3 (1.83)
=1 [y Znh
‘T (2)1/2%)(7(') ~Y2N=1/2 4 71 holds for i < k — 1, then (1.83) implies that

this inequality also holds for k. In addition, when k£ = 1, U( 1) = U[ I and this equation is
implied from Lemma 4(i). Therefore, we have (i) holds for k¥ < K by induction.

Using (1.82) again, with Assumption 3, we have

‘1 Xip, Ut
, /Th)\ , /Th)\ \/Th)\ \/Thx(,.)
—1/2 n—1/2 1/2 | - ﬁ(i)
Spg ONTHE4TT 3 (1.84)
i=1 [/ ThA)
When k = 1, Assumption 3 implies HTh_l/2 (k1/2 H <p q —12N-1/2 L 7-1/2, Then,

using the same induction argument with (1.84), we have this inequality holds for k < K.
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(ii) Similarly, by simple multiplication of F’ from the right side of (1.82), we have

U SplmF s 1%#[@@()%@ F

T /Ag TiAa = T Th\/>

Consequently, we have

%)U(k)F/ %)U[Ik}F/ " X1, %’)U(i)pl

k=112 U, F'
S

<pg Nl Y

=1

(1.85)

When k =1, HTll_lx_l/QE’k)(Aj(k)F’ <p ¢ N7+ 771 is a result of Lemma 4(ii). Then, a

(k)
direct induction argument using (1.85) leads to this inequality for k£ < K.

Replacing F' by Z in the above proof, and using Lemma 4(ii), we have:

ZU! S
(k)>(F) <pg N1yl

PN ~

(iii) Recall that X(k) = g(k)F + ﬁ(k) as defined in (1.14), we have

o KUt < oo | [ 0tn] + [Pl ot

Along with (1.12), we have

Sl _ |l || P | | s || T 150
Tik) Ay I Th Ay Tidan 11y Tiday

Using H)\ /2 Sth) ~(k) H <p 1 from Lemma 10, results of (i)(ii) and Lemma 4(i) completes the
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proof. Replacing U, 3] by ﬁ(k) above and using the inequality that

o %0y <[5 [| 707 | + |5 T

Oty

and (1.12), we obtain the second equation in (iii).

(iv) Similar to (ii), by induction, we have

Sy Doy | < Sy (ur)pzy

|?fi)5(i)UT| <p L+ T 12¢12N1/2

For the second inequality, from Lemma 2, we have b/(z')b(j) = 0 when ¢ # j. Thus, by def-
c —-1/2 —-1/2 .
Inition, we have §(k) = )\(k)/ ﬂ(k,)b(k,) = )\(k)/ B[Ik]b(k)' Usmg Hﬁflk](uT)[Ik]H Sp q1/2N1/2

from Assumption 4(iii), /\( k) < alN from Lemma 2 and the definition of Dyy, we have

[ty Piyur| < Iy (ur) i) +Z>\&)1/2 Hﬁ[zk] bay|| Is(sy Py
i<k

Syl

i<k i<k

1/2

As |§€1 uT| < )\ Hb H H/Bh ur)r] H <p 1, |§ (xyur| Sp 1 holds by induction.
O
Lemma 6. Under assumptions of Theorem 1, for k < K, we have
(i) Hf /Fbk2H Sp Tt g VAN
(ii) HT Y278 - T, 2F kaH <p Tl 4 g INTL
Proof. (i) By the definitions of b9 and §(k), )A(:(k) = g(k)F + ﬁ(k), we have
U<
~ ~1/2 k) (k)
Sy — Ty PPy = —E (1.87)



Then, Lemma 5(i) leads to (i) directly. (ii) Similarly, Lemma 5(ii) yields (ii). O
Lemma 7. Under assumptions of Theorem 1, for k,j < K, we have

9 || 50 24

(ii) 5flk]U(,€>§(j)H <p qU/2NV/2 4 T1/2

(iii) || (wr)p Uiraéi H <p T-V2gN + T2,

(i) || ur)iy Doy | Sp 77120 + Y2,

Proof. (i) With Lemma 6 and Assumption 4, we have Hﬂffk]U[Ik]g(j) H < Th—l 2
/ I, / —1/2

|t Vel + g Vi |73

1, 2 and 3 imply that HX[I’“]H < HB[I’C]H | F|| + HU[I’C]H <p ¢*/2NY/271/2 Together with (i)

F/bjz — E(j)H <p q1/2N1/2 + 712, (ii) Assumptions

and Lemma 5(iii), we have

Bffk]ﬁ ‘

i Vit H+ZHB

<pg/2N1/2 4 /2,

~

(iii) With Lemma 6 and Assumption 4, we have

| @) gigéon|| T2 || )i O F oo | + | el Ui | | 702

<pT V2N + T2

F'bjo — g<.7')H

(iv) Similar to (ii), with Lemma 5, HX[Ik] H <p ¢"/2N1/27Y/2 and (iii), we have

|

Lemma 8. Under assumptions of Theorem 1, for k < K, we have

&) ‘ <p T-V2gN + T2, 0

(UT)f L] U (k)

i) Gy — s | <o T2 4 V2NV
75



(i) a PN qu‘)ﬁ[lk] = () ” Sp T V24 gt AN,

(i) 153y (W) (1) = () (W) ) Sp T~ Ll 2NY2 4 g2 N =12,

() ’qk)ﬁ(k) - gék)D(k)H Sp T2+ g 12N
(o) 0= PNV |G Doy = sy Diy 8| 5 7712 4 72N
(vi) [y Digyur = s(pyDiyur| Sp T 2N12 4+ g 12N,

Proof. We prove (i) - (vi) by induction. Consider the k =1 case. The definitions of <, in
(1.12) and ¢, in Section 1.3.1 lead to

) stk =Th I/QX@I)/Q(E(MBF &)+ Dy Uliny) — N 1)/ 2Dy By (1.88)

when k =1, as 5(1) = D1y = (In)1,]> (1.88) becomes

S s = @A 80) ey =2 b)) + T A Mgy (189)
As Lemma 3(iii) and (iv) imply that
HTh ( 1/2F€ 1/26(1)” <pg N +T_1/2q_1/2N_1/2

and H/B(l) H < ql/QNl/Q7 to prove (i) it is sufficient to show that Th_l/qul/QNfl/2 HUUﬂ H <
T2 4 q_l/QN_1/2, which is given by Assumption 3.

(i) As Hﬁ(l)H < gM/2N1/2_ (i) is implied by (i).

(iii) Left-multiplying (1.89) by (uT)/[Iﬂ’ as H<UT)/[I1]/B[—71]H <p ¢*/2NY2, to prove (iii)

when k£ = 1, it is sufficient to show that
=1/2 _1/2r7—1/2 - -1, 1/2771/2 —1/2p7—1/2
Th /q [2N—1/ H(UT)EII]UUl]é(l)H <pT 'q 12N/ +q /2N /7
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which is implied by Lemma 7.

(iv)-(vi) are equivalent to (i)-(iii) when k =1 as Dqy =D = (HN)[Il]-

Then, we assume that (i) - (vi) hold for i < k and prove (i) - (vi) also hold for k.

(i) Similar to the k = 1 case, using (1.88) and Lemma 3(iii)(iv), it is sufficient to show
(D(gy = D)8 ’
<p qil/QN*l/2 +T~1/2, The first inequality is the same as the k = 1 case, which is implied

that Th—l/Zq—l/zN—l/Q Hﬁ(k) <p T2 1 ¢~ /2N-1/2 and ¢~ 1/2N-1/2

by Lemma 5. As to the second inequality, write

_ Bip b Xii€ o ~
(Dy = D)8 =) ( 0 Dys - L0 )%D@)ﬁ) :

)
i<k Ali) v T

As (v) holds for i < k, it is sufficient to show that

Bugbey  Xugéa
W NG

Plugging X{;,1 = By7,1F + Uy, ) into (1.90) and using Lemma 3(iii)(iv) again, we only need to

<p T2 4 7 12N12, (1.90)

show that T} ~1/2 *1/2N 1/2 HU —1/2N-1/2 4 7~ 1/2 which holds by Assump-

tion 3 and Hg(i)

(ii) It is implied by (i) as HB[Ik]H < q1/2N1/2.
(iii) By (1.88), we have

(wr) {7,150k — )7 Sy =), ](Th_l/ (k) 1/2 (k) BFE ) (_kl)/zD(k)ﬁ(k)b(k))

—1/27-1/2 ~
+1, / A(k)/ (UT)EIk]U(k)&k)

As in the k = 1 case, for the second term, we have Th_1/2q_1/2N_1/2 H(UT)EIk]U/(k)g(k) H Sp
T_lql/QNl/2 - q_l/QN_l/Q, as is given by Lemma 7(iv). For the first term, similar to the

proof of (i), using Lemma 3(iii)(iv), it is sufficient to show that
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q AN H(uT)/[Ik](E(k) - D(k)>ﬁH Sp T 1 2N 4 712N 12 Write

(wr) (7, (Dgky = D))

/ 5 b

[1] (k] ()
=>_ ( y <y Py = =
i<k AGi) ThA )

~

“iyPs

(wr)1) B F + Uinéy , ~ )

As (v) holds for i < k, we only need to show that

() Bt @)y B F + Ui

Ai) ThA)

<p T-Lg2NV2 L =1 2N-1/2 (1.91)

Using Lemma 3(iii)(iv) again, it is sufficient to show

“12N1/2 4 12N -1/2,

22N ) U

which holds by Lemma 7(iii).

(iv) By simple algebra, we have

Using the fact that (i) holds for k, (iii) holds for ¢ < k£ and (1.90), the proof is completed.

(v) Similarly, we have
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Using the fact that (i) holds for k, (v) holds for i < k and (1.90), the proof is completed.

(vi) Replace ¢~/2N"1/283 by up in the proof of (v), we obtain (vi). O
Lemma 9. Under assumptions of Theorem 1, for k < K +1, we have

(i) ‘)Z(k)F’ <p TV2 4 Tg IN-1.

(i) ‘)Z(k)U[’IO]H <p NP2 4 mg 1 2N-12,

Proof. (i) From the definition (1.18) of Z(k;)’ we have

~ / gj)l/j(z)F/
ZgoF' = 2ZF' — ZY5 RUARC.
(k)
=1 Th)\()
Then along with Lemma 5(ii), we have
7 P A =P O OL Iy
|22 < W2+ 32 o | || e 2
i=1 T

(4)
(ii) With (1.18) again, we have
U/

~ I
Zy Ul = 2Uly, Z e 2O W7l

which, along with Lemma 5(i) and the assumptions on ¢, lead to

/\/ 77 .
S U

i)~ (i)

i |1
NPTV (q‘1/2N—1/2 + T_1> (N3/2T1/2 + T)

<p N3/2T1/2 4T 1 2N12,

k—1
|Zos | < 20t + X v
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Lemma 10. Under assumptions of Theorem 1, By, Bo defined by (1.31) satisfy
(1) 1Bl Sp 1, [|B2|l Sp 1.
(ii) HB{BQ - ]If(H <p T4 q N,
(iii) | By — Ba| $p T7Y2 + ¢ 'N=1 ||By — B|| Sp T2 4 ¢ 1/2N-1/2,
(iv) ||B2Bb — 1k || Sp T2 4 ¢ IN"1 when K = K.
(v) |BiBy —1Ik|| Sp T+ ¢ N7, when K = K.

Proof. (i) Using the definition (1.31) of By and Assumption 1, we have

~

legall = H%_’: Sl
which leads to ||B1]| Sp 1. Using the definition (1.31) of Bs, we have
ol = | 50| < vy (192)
Atk)
Note that
ol < ot + 5 | 22 N o e a2+ Sl a0
‘ i=1 Thx(i) ) i=1
and Hﬁ(l)H = HB[MH < ¢1/2N1/2 we have HB(]“)H < ¢1/2N1/2 by induction. Together with

(1.92), we have ||bgs|| <p 1 and thus || Bs|| <p 1.

(ii) By (1.12) and Lemma 1, we have

g F/B’/ o é? (7/ o é? (7/ ~
()" Pk)S(k) . ()™ (k)S(k) _ bﬁlbkz n (1) (k) (k>'
k)

NSy VA g

80

O = €&,

NS(k) = =
(1) /TL A




By Lemma 5(iii), we have |bj,bro — 0| Sp ¢ “IN=1 4+ 771 and thus HBIBQ — ]IKH
g IN“t 7L
(iii) Using (1.12) and X 3y = B3, F + Uy, we have

FF’ﬁ Fﬁ(’ 1Sk
\ /Th)\ N

By the definitions of b; and bg9, it becomes

FF' FU/ Sy
br1 =~ bk + (—)A (1.94)

With || Ba|| <p 1, Assumption 1 and Lemma 5(ii), (1.94) leads to
ber —br Sp T2 4+ N

This completes the proof. The second inequality of (iii) comes from Lemma 3(iv) directly.

(iv) When K = K, BB is a K x K matrix. By (i), (i) and (iii), we have
|B5Ba — 1| < || B{Bs — Ic|| + 1B1 — Ball | Ball Sp T Y2 4+ g N7,
Since By is a K x K matrix, we have
| BoBsy — || = lgliig%l/\i(BéBﬁ — 1| = ||ByBy — I || Sp T2+ g7 INTL
(v) With respect to By Bj, we have

K (B2)||B2B] — Ic|| < ||(B2By — 1) Ba|| = || B2(B1 B2 — I )|| < 01(B2) || B1B2 — Ik || -
(1.95)
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Since (iv) implies that o1(Bs) /0 (Bs) <p 1 when K = K, (ii) and (1.95) yield

0(

|B1By — Ig|| = || B2B] — Igc|| < ||B1 Bo—Ig|[ Sp T +¢'N7L (1.96)

ok (B

Lemma 11. Under Assumptions 1-5, we have

(i) Tg/2g(k) _ b;CZFHMAX <p ¢ V2N"1210g T2 4 T-1/2 | ¢~ IN-1T1/2,
(ii) [Ny By = B |, o SP T~/ (108 N)Y/2,
(iii) ||U - UH <p ¢~ V2N=12(1og T)V/2 + T=1/2(log NT)V/2 4 ¢~ I N~1T1/2,

~1/2

(iv) maxl<NT Hf]\[z] — U[z] H <p T*1/2(10g N)1/2 + qil/QNfl/Z.

Proof. (i) Recall that by (1.87), (1.12), and(l 14) we have Ty 28 ) — by F = by 1)/ Uy

and 6\(;{) /2)\( 1/2 E 1/2)\( E Therefore, we have

HT;/QQ’” ~ b HMAX (1.97)

Spa INTITTH (Hg(k)F/Bffk]ﬁ(k HMAX + Hf (k)HMAX) '

When k =1, (7(1) = Uiy with Hﬂffl]ﬁ(l) <p q1/2N1/2(logT)1/2 from Assumption 4

Jyuax
and HU[h] H <p ¢*/2N/2 4+ TY/2 from Assumption 3, we have

1/22 —1
|72%€0) VP, SPa N

[11 Uy HMAX L g INTip-1/2 HU[Ill]UVl]H

Now suppose that this property holds for i < k, then for the first term in (1.97), we have

~1/23-1/2y 2
) Uiy

i Ik}HMAXJFZHBIk H HT SORRMIANG
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The assumption that (i) holds for ¢ < k implies that

With Hﬁ[lk}H < ¢/2N1/2 ana HXUMH < HBWH I1F| + HUWH <p ¢/2NV/2TV/2 and As-

~

Uy SP (Q0g T2 4 g 2NIRT=1/2 4 =123 =1/2,

MAX

sumption 4(ii), we have the first term in (1.97) satisfies

NG P Ty S a2 |8 P

MAX Bffk]ﬁ(’f) HMAX

Bffk]U[fk] HMAX + Z ¢ V/2N—1/2 ‘ AE

S(i
1<

<p g INT! ‘

U

MAX

<p ¢ VANTV2(log T)V2 4 T2 4 T INTITY,

For the second term in (1.97), we have

&) V1009 |y < |

o = &0 VigT|| < ||l | O] 5 /28212008 T2 4 T,

where we use Assumption 3 and Lemma 5(i) in the last step. Consequently, (i) also holds

for k£ and this concludes the proof by induction.

(i) By simple algebra, X}gﬁ(k) = Th_l/QXg(k) = Bbq + Th_l/QUg(k), which leads to

1/25 -1 ! -1 1/22 /
H/\(k) Pty = /Bb“HMAX STy |UF bizlyiax + 7 HU(Th Sw—F bk2)HMAX
-1 —~1/2 1/22 -1/2 1/2
ST H|UF |yax + T2 Ulliax || T €y — F'owo| Sp 77120108 N) 12
where we use Assumptions 3, 4, and Lemma 6.
(iii) By triangle inequality, we have
0= Ul <2 | 2 ke =1 | £+ 3 [[By Py = BathoF -
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By Assumptions 1, 2 and Lemma 10, the first term satisfies

> bl —Ig | F S8 Iax 1Flhax | B1Bs — k||
k<K MAX

<p(log TYV2(T~1 4 7N,

For the second term, note that by triangle inequality we have

> 05 / 1/25 /
[0 Pty = Ot | < NP = 00|y Moo F llsa
VR0 g 36077 = 20 /|
kol )‘() Fi lgax + 1w 7~ B0y [[Ph2F = A() Fm flaiax
which, together with (i)(ii), conclude the proof.
(iv) Because we have T}Zl/Z ‘fj[i] - Uyl = 71/2 Hﬁ F— B F|| » it then follows from

triangle inequality that

|7 = s | < |3 (BB ~ 1) F| + ||y ]| | A7/2F - B3|

+ |6 By B R | A2 E

We analyze the three terms on the right-hand side one by one. With T-1/2 H/A\*l/QF\ — BéFH

84



<pT1+¢ Y2N"1/2 from Lemma 6, 18]lviax S 1, Lemma 10 and (ii), we have

maXTh_l/Q HBZ (B1By — 1) FH

< T 2118 laiax | B1BY — || |1 FIl Sp g N4 7L,

e L [ty

ST, Bllax |AY2F - ByF | sp g AN 2T,

maXTh_l/2 Hﬂ@ By — B\[i]xl/zu HK_l/QﬁH

ST, 2|6 - BRY2| | IFI Sp T2 (105 )2

Consequently, we have the desired bound.

Lemma 12. Under Assumptions 1-4, for any I C [N], we have the following results:
(i) || Py P! = Te|| Sp 7112, || 2Mgl| Sp T2
(ii) | FMyy[lyax Sp (log 7)Y, || ZMypr |[yax Sp (log T)V/2.

(111) HB My

81U M

e IIVY2TY, |61 Sp 11112 (1og T)1/2.

MAX
(iv) HB My F’

<p |I]1/2T1/2T1/2 ‘

Bl UMy 2/

<P |I‘1/2T1/2T1/2.

(v) [lUMyplyax Sp (log NT)V/2.

(vi) HUMW/F HMAX (logN)1/2T1/2 HUMW’Z HMAX p (log N)1/2T1/2

(vii) HU[ i

5P |]|1/2 + T1/2, HU[I]MW/A/

<p I|Y2TY2, for A=F, Z.
(viii) ||[FMy-Z'|| <p TY?, |FMy» 2’ — FZ'|| <p 1.

(iz) H(UT)EI]Q[I]MW’F/

Sp 1+ [TY2TY2, | (g U Mg 2/

Sp ||+ 11272,
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Proof. (i) With ||[(WW")~Y| <p T

|| <p T1/2, we have
HT LMy B! —]IKH < HT Lpp! —]IKH + 77| W H (W) H <p T2
(ii) Using the bound on ||F||y\jax and that ||[W]| < T2 by Assumption 1, we have
| PVl < IF I+ ([ W[ v w!) =2 1w <p tog 7)1/2

Replacing F' by Z in the above proof, we obtain the second inequality.

(iii) Using Assumption 4(ii) and |[Myy~|| < 1, the first equation holds directly. Also,

f]] U[I]MW’

3
MAX ™~

/
[]UW

1 yeax | w2 iw ) sp 12112 0g 7)1/2

where we use Assumption 1 and Assumption 4(ii) in the last equality.

(iv) With H(WW’)_lH <pT71, ||WF’H <p T1/2, and by Assumption 4, we have

f]]U[I]MW’F/

(Uit

/ U[]} W/

H(WW/)—1H HWF/H <p |[\1/2T1/2_

Replacing F' by Z in the above proof, we have the second inequality in (iv).

(v) Similar to (ii), using Assumption 3 and 4, we have
UM lyiax < 10 Iax + [0 lygae | (W07 W]| Sp (tog )2+ (10g 7).
(vi) Similar to (iv), by Assumptions 1 and 3, we have

|08 F [iax S 10F ax + 107 heaxe (W0~ WF|| Sp (tog 3)! /217172,

Replacing F' by Z in the above inequality, we also have H UMy 2 ||M ax Sp (log N )1/ 271/2,
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(vii) With Assumption 3 and ||Myy/|| < 1, the first inequality holds directly. By Assump-

tions 1 and 4, we have

|viy P | < 0P

+HU w’

|yt e < 222

Replacing F' by Z in the above proof, we also have the third inequality.

(viii) Using Assumption 1 and ||[My| < 1, we have || ZMyp~| Sp T2, Also,
| PMy 2’ = FZ|| = | PRy 2 || < | FW| || ovw!) =t w2’ sp 1.

Consequently, ||[FMyZ'|| < ||FMy.Z' — FZ'|| + |[FZ'|| <p T1/2 as we have |FZ'|| <p
T1/2 from Assumption 1.

(ix) By Assumptions 1 and 4, we have

e B ey e e

H (WW')~ H Niead|

<plI| + 11274/,

Replacing F' by Z, we have the second inequality. O]
Lemma 13. For any N x K matriz 3, if HTEIFF’ — ]IKH <p T_1/2, we have
: 1/2 :
(i) 05(BF)/0;(B) =T, + Op(1) for j < K.

(1) If o1(8) — o9(B) < 01(B), then H[P’~— 1F/IP’bFH <p T2 where b and £ are the

first right singular vectors of 5 and BF, respectively.

Proof. (i) For j < K, aj(ﬁF)2 = XNj(BFF'f') = \j(8'BFF'), which implies \;(5'f)
M(FF') < Jj(ﬁF)2 < Xj(B'B)A(FF'). With the assumption HTh_lFF—]IKH <p T2
we have Th_l/Qaj(BF)/aj(B) =1+4+0p (T_1/2> by Weyl’s inequality.
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(ii) Let ¢ and ¢ be the first left singular vectors of 8 and SF, respectively. Equiva-
lently, ¢ and ¢ are the eigenvectors of 33 and TglﬁFF'ﬁ’. As Hﬁﬁ' — T{lﬁFF’ﬁ'

<

Hﬁ“2 HTh_lFF’ — ]IKH <p 01(5)2T’1/2 and o1(5) — 09(8) < 01(5), by sin-theta theorem

|65 — 73 6EF s i
o1(8)2 - 0a(8)2 - O(||p - 1y pFFE) ™

|sc" = &) S
Using the relationship between left and right singular vectors, we have b’ = ¢/8/01(B)
and & = & BF/||BF||. Therefore,

F/6/§§,ﬁF
2
I1BE|

FlﬁléflﬁF F/6,§§/BF

IBF 2 IBF?

2
o1(8) F/PbFH _ ||g§~/ B

o <, 7~1/2
Hf IBFI?

~Y

(1.98)

By Weyl's inequality, 7}, ! |8F||* = M\ (T71BFF'A') = 01(8)% + Op(01(8)?T~1/2). In light
of (1.98), we have [Pz — T ' F'ByF || <p 7712 O
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CHAPTER 2
TEST ASSETS AND WEAK FACTORS

2.1 Introduction

Estimation and inference on factor models are central elements of empirical work in asset
pricing. Typically, a researcher starts with a given factor, for example an aggregate liquidity
factor, motivated by economic theory. The objective of the researcher is to estimate and test
its risk premium. To proceed, the researcher needs to decide which test assets to use in the
estimation. While the literature has made a variety of choices for test assets, little work has
been dedicated to investigating rigorously and systematically how they should be chosen.

Another issue the researcher has to face is the potential presence of weak factors. Broadly
speaking, the factor of interest to the researcher is one of many factors potentially driving
returns. Some may be weak: these are factors to which the available test assets have little
or no exposure. This makes it difficult to learn about them using the available assets.
Their presence also contaminates inference about the entire model: the literature shows the
presence of a weak factor biases the estimation of the risk premia of all factors, including
the one of interest to the researcher (whether that factor itself is strong or weak) as well as
the inference about the pricing ability of the model. To make things worse, a weak factor
could be latent, so that we may not even know it exists in the first place.

In this paper, we document a deep connection between the selection of test assets and
the long-standing problem of weak factors in asset pricing. Exploiting this connection, we
propose a novel methodology, supervised principal component analysis (SPCA), that serves
a dual purpose: first, it provides a well-founded basis for the selection of test assets, and
second, it leverages the selection to mitigate the bias in risk premium estimation for the
factor of interest to the researcher, irrespective of its strength and the strength of (known or

unknown) factors in the panel of test asset returns.
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The connection we emphasize between weak factors and test assets is that the strength or
weakness of a factor (whether it is observable or latent), should not be viewed as a property
of the factor itself, as typical in the asset pricing literature; rather, it should be viewed as a
property of the set of test assets used in the estimation. As an example, a liquidity factor
may be weak in a cross-section of portfolios sorted by, say, size and value, but may be strong
in a cross-section of assets sorted by characteristics that capture well exposure to liquidity.

This perspective provides clear guidance on how to choose test assets: select them in
a way that yields a consistent estimate of the risk premium of the factor chosen by the
researcher, and that is robust to the presence of observable or latent weak factors among
those driving returns. This criterion is statistical in nature, and offers an agnostic selection
and estimation technique that complements alternative selection strategies found in the
literature, where researchers often use strong economic priors or ad-hoc methodologies to
determine which test assets to include and which to exclude.

Estimating and testing the risk premium of a factor of interest requires properly con-
trolling for all the other factors relevant to investors (whether they are observed or latent),
in order to avoid an omitted variable bias (see for example Giglio and Xiu [2021]).1 Giglio
and Xiu [2021] propose to do so by first estimating a latent factor model for the stochastic
discount factor (SDF) using principal component analysis (PCA), and then using it to es-
timate the factor of interest’s risk premium. This approach eliminates the need for explicit
specification of all the control factors, but relies on the assumption that all the latent factors
driving the SDF are pervasive (i.e., strong). Our SPCA procedure also utilizes PCA for
extracting latent factors while remaining agnostic about the identities of the control factors.

However, it exploits correlations with the factor of interest as a guiding criterion for selecting

1. This is only necessary when the factor of interest is not itself a tradable portfolio (i.e., it is a non-
tradable factor, like a macroeconomic risk). If the factor of interest is itself a portfolio (also referred to as
tradable factor), like in the case of the CAPM, the computation of the risk premium just requires computing
the average excess return of the portfolio. In practice, most economic models have predictions about the
risk premia of non-tradable factors.
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a subset of test assets, before applying PCA. This results in a versatile methodology that
remains robust even in scenarios where certain factors are omitted, including cases where
these omitted factors are weak.

Given a factor g; specified ex-ante by the researcher, the procedure estimates its risk
premium as follows. We start from a large universe of potential test assets. In a first step of
the procedure (selection step), we compute the univariate correlation of each asset’s return
with g;. We select a relatively small portion of assets, only keeping those with sufficiently
high correlation (in absolute value): these are assets that are particularly informative about
the factor of interest g;. We then compute the first principal component of the returns of
these assets (PCA step), which will be our first estimated latent factor. Next, we remove
via linear projection from both g; and all the returns of the test assets the part explained by
this first latent factor (projection step). We then go back to the selection step, computing
the univariate correlation of the residuals of the factor and the residuals of the assets from
the projection step. Again, we select from the universe of test assets a subset for which this
correlation is especially high, and compute the first principal component of these residuals.
This will be our second estimated latent factor. We then further remove (from ¢; and the
test assets) the part explained by this second estimated factor as well, and iterate again on
the residuals. We repeat this procedure p times, where p is a tuning parameter which can be
determined by some validation step. In the most desirable scenario, p serves as a desirable
estimate of the actual number of factors, p, in the data. This procedure recovers from the
data latent factors that are informative about the factor of interest g;. Importantly, the
fact that at each iteration only test assets that are sufficiently correlated with the factor g;
are selected ensures that not only strong, but also weak factors (relative to the entire cross-
section) are captured by the procedure — contrary to standard PCA that uses all assets at all
steps to extract latent factors. Finally, a time-series regression of g; on the p latent factors

yields a consistent estimator of the risk premium of g¢, by linking it to the risk premia of

91



these latent factors. The latent factors themselves can be thought of as the part of the SDF
that is related to g and determines its risk premium.

While the supervision of g¢ aids in the recovery of factors, including weak ones, this
procedure may not retrieve all the factors driving the cross-section of returns (i.e., the entire
SDF). It specifically ensures the recovery of factors correlated with g;, while uncorrelated
factors, particularly if they are weak, may remain unrecoverable (so it may be true that
P < p). Fortunately, but crucially, the omission of these factors by SPCA does not affect
the consistency of the risk premium estimation for g;, since such factors do not contribute
to the pricing of g¢. That said, complete recovery of all factors remains feasible, contingent
on including multiple variables in the target ¢g; and ensuring that each latent factor has at
least one variable in g; with a non-vanishing exposure to it.

Beyond risk premia estimation, SPCA can also be used to diagnose omitted factors in a
model based on a set of observable factors in g¢+. Supervised by g+, SPCA recovers all the
latent factors that drive the SDF and correlate with g;. We prove that SPCA consistently
recovers the true SDF if and only if g; is spanned by all factors that drive the SDF. We
apply this result to diagnose whether gy misses any factors. This diagnosis on ¢; can be
executed as a simple comparison between the maximal Sharpe ratio achieved by ¢+ and that
achieved by the factors recovered by SPCA. When the latter is larger than the former, it
indicates that g; misses some factor, and that the researcher should seek a better model. On
the other hand, if the latter is smaller, it implies that g; contains factors to which the given
cross-section of test assets have insufficient exposures. In such a scenario, a richer set of test
assets is needed.

The choice of test assets in the literature has mainly followed one of three approaches.
The vast majority of the literature has adopted a “standard” set of portfolios sorted by a few
characteristics, such as size and value, following the seminal work by Fama and French [1993].

A second approach, taken more recently, e.g., Kozak et al. [2020], has been to expand this

92



cross-section to include portfolios sorted by a much larger set of characteristics discovered in
the last decades, on the order of hundreds of portfolios. Finally, a third approach, see, e.g.,
Ang et al. [2006], has been more “targeted” around the specific factor of interest: sorting
assets into portfolios by their estimated exposure to the factor, and then estimating risk
premia using only these sorted portfolios, that is, using a small cross-section expected to be
particularly informative about that factor.

It is useful to contrast the asset selection procedure of SPCA with the three approaches
summarized above. Using a standard, small cross-section (like the size- and value-sorted
portfolios) to estimate risk premia has the problem that except for size and value, which
are strong factors in this cross-section, many other factors are weak: these test assets do
not contain sufficient information to identify their risk premia. The second approach may
appear, on the surface, to address this issue: a large cross-section of test assets are likely
exposed to many potential factors. However, if only a few of those many assets are exposed
to some factor, whereas most others are not, that factor will, again, be weak. Finally, the
third approach — building targeted portfolios of assets sorted by the exposure to the factor
of interest to the researcher — is affected by the omitted factor problem, since it considers
univariate exposures only; in general, it will fail in a multi-factor context.

In the paper, we derive the asymptotic properties of SPCA, in a setting that allows
for weak factors and test assets with highly correlated risk exposures. The latter scenario
potentially involves the same (asymptotically) rank-deficiency issue as weak factors. We
also analyze in this setting alternative estimators that have been proposed in the recent
literature, which rely on PCA, Ridge, Lasso, and Partial Least Squares (PLS). We show that
the PCA (and some other variations of it), Ridge, and PLS are inconsistent in the presence
of weak factors, and that the Lasso approach is consistent for the estimation of the SDF,
as well as risk premia estimation, but is not as efficient as SPCA in general. Additionally,

we perform an extensive set of simulations to study the performance of SPCA in different

93



scenarios. These simulations isolate issues in conventional two-pass regressions, facilitating
a clear comparison of SPCA with other estimators. Our findings confirm SPCA’s robustness
to omitted factors and weak factors, as well as measurement error, which SPCA also tackles.

As expected, a trade-off exists between robustness and efficiency. In scenarios where all
factors are strong, the PCA-based approach by Giglio and Xiu [2021] is consistent and likely
to outperform SPCA in terms of efficiency. The potential efficiency loss associated with
SPCA arises from its selective use of test assets when all of them are in fact informative, or
the possibility that it may not recover all factors driving returns. However, the PCA-based
estimator is biased in the presence of weak factors, a major concern in empirical applications.
We therefore advocate for using SPCA to estimate risk premia due to its robustness when
weak factors are potentially present: where consistency is compromised, prioritizing efficiency
becomes irrelevant.

The problem of weak factors in latent factor models is closely connected to that of
weak factors in observable factor models, which has been widely examined in the literature.
The seminal contribution of Kan and Zhang [1999] shows that the inference on risk premia
estimates from Fama-MacBeth regressions becomes invalid when a “useless" factor — a factor
to which test assets have zero exposures — is included in the model. Kleibergen [2009] further
points out the failure of the standard inference even for strong factors, if betas are relatively
small.2 In our paper, we show that the same logic applies in the context of latent factor
models: if some (latent) factors are weak in a cross-section, the PCA estimator will not be
able to disentangle them from idiosyncratic error, leading to biases in the estimated factors
and their risk premia.

The issue of weak factors is particularly important in empirical work in asset pricing,

because most economically-motivated factors (e.g., most macroeconomic factors) do seem to

2. Related literature also include Gospodinov et al. [2013] and Gospodinov et al. [2014]. On the other
hand, Pesaran and Smith [2019] investigate the impact of factor strength and pricing error on risk premium
estimation. They point out that the conventional two-pass risk premium estimator converges at a lower rate
as the factors become weaker.
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be weak in practice. Moreover, a statistical problem analogous to weak factors arises when
betas are collinear, that is, some factors are redundant in terms of explaining the variation of
expected returns. This is again a relevant issue in practice due to the existence of hundreds
of factors discovered in the literature, see, e.g., Harvey et al. [2016], many of which are close
cousins and do not add any explanatory power (Feng et al. [2020]). The weak factor problem
appears to be caused by having seemingly more factors than necessary, which is why some
suggest eliminating such factors (Bryzgalova [2015]) or shrinking their risk premia estimates
(Bryzgalova et al. [2019]), so as to improve the estimates for strong factors. We instead
argue that the weak factor problem is fundamentally an issue of test asset selection. Since
weaker factors may still be priced, our solution is to accommodate them using an adapted
procedure with carefully selected test assets.

Several recent papers have proposed different methodologies to deal with weak factors.
Lettau and Pelger [2020] propose an estimator of the SDF in the presence of weak factors,
rpPCA, which generalizes PCA with a penalty term that accounts for expected returns.
Whereas this estimator features desirable properties as explored by Lettau and Pelger [2020],
we show that it is inconsistent for estimating risk premia in the weak-factor setting we
consider.? Anatolyev and Mikusheva [2021] propose an complementary four-split approach

to dealing with weak factors, based on sample-splitting and instrumental variables. This

3. It is worth noting that whereas some theories assume that only strong factors can be priced, this is
not true in general for two reasons. First, many theoretical models — e.g., the consumption-CAPM — are
silent on what assets are traded in equilibrium, and if markets are incomplete, it may very well be that some
priced factors may not be reflected in many of the assets that are traded. Second, even if investors may have
access to many assets exposed to a particular factor, the econometrician may not, making the factor weak
for the set of test assets available to the econometrician.

4. Lettau and Pelger [2020] focus their analysis on the case where factors are extremely weak — so much
so that they are not statistically distinguishable from idiosyncratic noise. In that case, no estimator can be
consistent for either risk premia or the SDF. They show that rpPCA does not recover consistently the SDF,
but in simulations it correlates with the SDF more than the SDF estimator obtained from standard PCA.
Rather than focusing on this extreme case of weak factors, our theory covers a range of factor weaknesses,
which includes the cases from strong to very weak, and which still permits consistent estimation of factors
and risk premia. Formally, we study the case where the minimum eigenvalues of the factor component in
the covariance matrix of returns diverges whereas the largest eigenvalue due to the idiosyncratic errors is
bounded.
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alternative procedure works well to address the weak factor bias, though it does not deal
with omitted priced factors or with measurement error in the factors.”

Our paper also relates to a literature that has explored different methods to form port-
folios to test asset pricing models, like Ahn et al. [2009] or Bryzgalova et al. [2020]. These
methods are useful in helping to build or expand the starting cross-section for SPCA. In
this paper, we use the simpler approach of working with an existing large cross-section of
portfolios sorted by firm characteristics, as in Chen and Zimmermann [2020] and Hou et al.
[2020].

The concept of supervised-PCA originated from a cancer diagnosis technique applied
to DNA microarray data by Bair and Tibshirani [2004], and was later formalized by Bair
et al. [2006] in a prediction framework, in which some predictors are not correlated with
the latent factors that drive the outcome of interest. Bair et al. [2006] suggest a screening
step using marginal correlations between predictors and the outcome variable to select the
subset of useful predictors, before applying the standard PCA to this subset.5 They prove
the consistency of this so-called SPCA procedure, but relying on a restrictive identification
assumption that any important predictor must also have a substantial marginal correlation
with the outcome. We provide several examples of multivariate factor models in which this
assumption fails. While the screening step of our SPCA procedure shares the spirit with

theirs (in the sense that their outcome variable is our factor of interest, and their predictors

5. Our paper also relates to a growing strand of econometrics literature on weak factor models. Bai and
Ng [2021] show that PCA can recover moderately weak factors at the cost of efficiency. Bai and Ng [2008]
and Huang et al. [2022] propose supervised learning methods in the context of factor-based forecasting. Fan
et al. [2021] also exploit information from observed proxies to improve the estimation of factor models, and
Wan et al. [2023] consider moderately weak factors as in Bai and Ng [2021] in this context. Fan and Liao
[2022] propose to extract factors by diversifying away idiosyncratic noise directly. Uematsu and Yamagata
[2022a] adopt a variant of the sparse PCA algorithm proposed in Uematsu et al. [2019] to estimate a sparsity-
induced weak factor model. Uematsu and Yamagata [2022b] provide inference results in that sparse model.
Freyaldenhoven [2022] and Bailey et al. [2020] adopt a similar framework for estimating factor count and
strength.

6. The screening approach has also been adopted in the contexts, such as classification and regression,
see Fan and Fan [2008], Fan and Lv [2008].
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are our test assets), our projection step and the subsequent iteration procedure are new, and
are introduced precisely to eliminate the strong identification assumption used in the existing
statistics literature. Also, our focus is not on prediction per se, but instead on parameter

inference.

2.2 Methodology

To rigorously address the challenge of weak factors, our approach begins with the specifica-
tion of a general Data Generating Process (DGP). It is crucial to underscore that within this
population model, the concept of weak factors holds no relevance. In population, researchers
aiming to identify the risk premium of a factor like g; would ideally utilize all available assets
for this purpose.

However, the real-world (finite-sample) scenario diverges from this idealized population
model. We encounter practical constraints, such as a large number of assets (large N),
relatively short time spans (small T'), and a significant proportion of assets that are only
weakly correlated with the target variable g;. We characterize this finite sample context using
asymptotic concepts, formally defining the notion of weak factors. This particular asymptotic
perspective is useful as it enables us to investigate the issues of weak factors arising in finite

samples with existing estimators, and understand the properties of our proposed solution.

2.2.1 Model Setup

We study a standard linear factor model setup. Suppose that an N x 1 vector of test asset

excess returns, r¢, follows:

re = By + Pue +w,  E(v) = E(ug) = 0 and Cov(vy, ur) =0, (2.1)
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where [ is an N X p matrix of factor exposures, v; is a p x 1 vector of innovations of p factors
fr (e, v = fir — py, where pp = E(ft)), and ut is an N x 1 vector of idiosyncratic errors.

We assume that the vector of factor innovations v is not fully observable. Specifically,
we allow the asset pricing factors f; to be either latent or observable. In the former case,
innovations v; are naturally also latent. Even in the latter case, when a factor fy is observable,
its innovation vy is not directly observable because y ¢ is an unknown parameter.’

Also, note that we model risk exposures () as constant: we implicitly assume that the
test assets are portfolios sorted so that their factor exposures are modelled as constant, as in
Giglio and Xiu [2021]. Alternatively, one could work directly with individual stocks (which
generally have time-varying risk exposure), combining our procedure with the methodologies
of Gagliardini et al. [2016], Kelly et al. [2019], or Kim et al. [2020] to account for the time-
variation in betas.

We situate our discussion within the framework of two standard asset pricing exercises:

the estimation of risk premia and the recovery of the SDF. Given our model, an SDF can be

defined in terms of factors v; as
my=1-7T5, 1, (2.2)

where ¥, is the covariance matrix of factor innovations, see, e.g., Giglio and Xiu [2021]. It
also makes sense to consider the SDF represented in terms of the set of tradable test asset

returns:
me =1—0T(ry — E(ry)), (2.3)

where b is an N x 1 vector of SDF loadings which satisfies E(r;) = b, where ¥ is the

7. In Appendix section 2.5.3.2 we discuss the case in which factors are observable, and in Appendix section
2.5.3.3 we discuss the case in which the zero-beta rate needs to be estimated.
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covariance matrix of r¢, see, e.g., Kozak et al. [2020]. The relationship between the two
SDFs depends on the degree of completeness of markets. As will be shown later, these two
forms of the SDF are asymptotically equivalent in the asymptotic scheme we consider, with
the number of assets N going to infinity, so that there is no ambiguity with respect to which
estimand we consider.

In addition to the SDF, we are also interested in estimating the risk premium of one or
more observable factors, summarized in a d x 1 vector, g¢. It is important to emphasize that
gt is a proxy for some risks, constructed or otherwise chosen by the researcher ex-ante, not
necessarily tradable, and typically motivated from economic theory or narratives. Following
Giglio and Xiu [2021], we do not impose that g; is part of or identical to v¢; instead, ¢g¢ and

vy are assumed (potentially) correlated:

gt = & +nup + 2, (2.4)

where &€ = E(g¢), n is a d X p matrix, and z; is measurement error orthogonal to v.8 This
model clearly nests the classic linear asset pricing model with observable factors only, in
which case we can set n = I, and 2 = 0. To price g, we can simply use the SDF given by
(2.4), as g¢'s risk premium is given by vy = —Cov(gs, m¢) = 77y.

To characterize the strength of a factor, we need to set up an asymptotic environment
in which weak factors may arise. First, let us introduce some useful notation. We use the
notation a < b to denote a < Kb for some constant K > 0, and if a < b and b < a, we write
a =< b for short. We use similar notation <p and <p for bounded in probability. Also, for any
matrix A, we use A\pin(A) and Amax(A) to denote its minimum and maximum eigenvalues,
and \;(A) is the i-th largest eigenvalue.

The environment in which we study weak factors is quite general, and is characterized by

8. When ¢; is nontradable, measurement error could arise as the econometrician is implementing an
empirical counterpart of some theory-predicted factor; when g, is tradable, it captures the non-diversified
errors in the portfolio.
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three assumptions. First, we assume that both N and T go to oo (at arbitrary rates, unless
we specify otherwise), whereas the number of factors p is fixed. Letting N go to infinity in
addition to T is rather natural in the asset pricing context, as motivated in theory by Ross’
APT (Ross [1976]) and given the proliferation of “anomalies” generated by the empirical
literature in the past decades. Second, we assume that the p x p factor covariance matrix of
the factor innovations, ¥, is asymptotically non-singular: 1 < Apin(Ze) < Amax(20) S 1.
This assumption is rather weak, as it only rules out factors whose risks are (asymptotically)
negligible or exploding. Finally, we also maintain the assumption that ||3,] < 1, where
||| indicates the spectral norm of a matrix, so that there exists no factor structure in the
residuals us. This assumption is widely adopted in the so-called approximate factor models
proposed by Chamberlain and Rothschild [1983].

We are now ready to characterize the strength of factors, as an exclusive function of test
assets’ exposures to the factors, as opposed to a property of the factors themselves. We
formalize here the idea that, for instance, a momentum factor could be a strong factor when
the test assets are momentum-sorted portfolios, but this same factor may be weak when the
test assets are portfolios sorted by size or value: the latter portfolios may diversify away the
exposures to the momentum factor, and therefore may be uninformative about momentum
risk.

In the econometrics literature on factor models (for example, Bai and Ng [2002]), the
setup described in (2.1) is typically complemented by the assumption that \;(578) < N
for i = 1,2,...,p: all eigenvalues of the matrix T3 grow at rate IV, so that all factors are
pervasive. Informally, even as the number of test assets N is large, there is a sufficiently
large number of assets that are well exposed to each of the risk factors (their S with respect

to all factors are non-vanishing for a large number of assets). Under this assumption, as we

9. We only need u; to be stationary (so that X, is well defined) when we discuss the SDF in Section 2.2.3.
For risk premia estimation, we instead impose a weaker condition, namely, Assumption 10, which plays a
similar role as [|2,] < 1.
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will review later, standard PCA works well to recover the latent factors ;.

This is the point of departure of our paper: we study situations in which this pervasiveness
assumption fails, with respect to some or even all factors. Formally, we define the presence
of weak factors as the case in which some of those eigenvalues, \;(5T3), grow at a slower
rate than N (which will be made more precise later). Intuitively, in this case, while the
number of test assets /N is large, many test assets may have small or zero exposures to
some or all of the factors, making those factors weak. The lack of test asset exposures to a
factor makes it more difficult for standard PCA to recover this factor; and in more extreme
cases, PCA completely fails to recover either the factors or their loadings. In our setting,
the strength/weakness of a factor is actually not a binary distinction. Rather, we allow for
a continuum of strength/weakness of factors, determined by how large the exposures to the
risk factors are (formally, by the asymptotic behavior of the eigenvalues \;(57/)).

How relevant do we expect these weak factors to be in practice? Consider Figure 3.6, the
scree plot of the eigenvalues of returns from our empirical analysis, which uses a large cross-
section of 950 assets. The figure shows that the first one or two eigenvalues are clearly much
larger than the others. But the absence of clear gaps among the remaining eigenvalues sug-
gests that several factors beyond the first two may be weak. Despite the large cross-section,
their eigenvalues remain relatively small and difficult to distinguish from idiosyncratic error.

Our model naturally allows g; to be weak, since the true factors in v; are potentially
weak and the observable factors in ¢; inherit this weakness through their loading on vy, .
However, as NV and T increase, the risk premium associated with g;, 7777, may not necessarily
converge to zero. This is because neither the risk exposure of gt to v¢, represented by n,
nor the risk premiums of v, denoted as 7, necessarily diminish asymptotically. In simpler
terms, weak factors in this model can still have non-zero risk premia as the sample size and

the cross-sectional dimension grow.
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2.2.2  Estimating Risk Premia when Factors are Weak

We begin our analysis with risk premia estimation.

2.2.2.1 The Benchmark PCA-based Estimator

Giglio and Xiu [2021] study this problem in a similar setup as in this paper, except that all
factors in vy are assumed to be strong. They propose a three-pass procedure to estimate
g¢'s risk premium 77y: 1) apply PCA to the sample covariance matrix of returns to obtain
estimates of the latent factors, vy; 2) use Fama-MacBeth regressions to recover the risk
premia of Uy, 7; 3) use time series regressions of gy on v to estimate 7. The product of
the estimates at steps 2 and 3 yields 777, the estimate of risk premia. We summarize this

procedure in the following algorithm:

Algorithm 5 (PCA-based Estimator of Risk Premia). The estimator proceeds as follows:

Inputs: R and G, the matrices of demeaned returns and demeaned gy, respectwely.lo

S1. Apply singular-value decomposition (SVD) on R, and write the first p right singular

vectors as €. The estimated factors are given by V= VTET.

S2. Estimate the risk premia of V by 3 = (BTE)’l,/B\TF, where B = R‘A/T(?\A/T)’l and T s
the vector of average excess returns.

S3. Estimate the factor loading of g+ on vy by N = G\A/T(YA/‘/}T)_l.

SPCA 75

Outputs: V,ﬁ, ~, and .

As discussed in Giglio and Xiu [2021], one interpretation of this estimator is that it builds
a mimicking portfolio for the factor g+, by projecting it onto the first p principal components

of the space of returns. A mimicking portfolio would be ideally built directly using all

10. For any time series of vectors {a;}/_;, we denote a = % ZZ;I a. In addition, we write a; = a; — a.
We use the capital letter A to denote the matrix (a1, as,--- ,ar), and write A = A — au). correspondingly.
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possible assets. But when N is large, this can be inefficient or even infeasible (if N > T).
The three-step estimator effectively regularizes the mimicking portfolio problem by using
only p portfolios appropriately constructed as basis assets, i.e., the principal components
of the returns. Giglio and Xiu [2021] establish the consistency of this estimator and derive
its asymptotic inference, in the case that all latent factors are strong. This procedure also
recovers the SDF, because it consistently estimates all latent factors, v (columns of YA/), that
drive the SDF, along with their SDF loadings as in (2.2), $,15.

This estimator is appealing for its simplicity, efficiency, and, importantly, robustness to
missing factors (since the identity of any factors beyond g; does not need to be specified).
Unfortunately, it fails precisely when some latent factors are weak, which we will show next.

To understand this, it is sufficient to consider a one-factor model with p = d = 1 and
Yy = 1, in which case the covariance matrix of returns satisfies: ¥ = 88T + X,,. This matrix
has a noisy low rank structure in that ST has rank 1, whereas ¥, is a full-rank covariance
matrix. To make the exposition simple, we also assume that g; has no measurement error,
ie., z+ =0 and g = nuy.

As discussed above, the problem of weak factors stems from the fact that many assets may
not have sufficiently strong exposure to the factor of interest, which hinders the construction
of its mimicking portfolio, and in turn, the estimation of its risk premium. This intuition
applies also when the weak factor is latent (v¢). In this case, the manifestation of the weak
factor problem is that PCA will fail to recover this factor.

Estimation of the latent factors vy via PCA involves recovering the matrix of risk expo-
sures [ from the covariance matrix of realized returns, S A successful recovery of [ via
PCA of realized returns therefore requires a favorable signal-to-noise ratio. If the “signal”, as
measured by || 3|, dominates the “noise”, which arises from the idiosyncratic component ¥,
and the estimation error in the sample covariance matrix S 3, the first sample eigenvector

of ¥ would (approximately) span the same space spanned by the true 5. Thus using 3 , ef-
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fectively the eigenvector of f], in the cross-sectional regression step (step 2 of the estimator)
would yield a consistent estimator of the risk premium of the estimated latent factor, which
in turn leads to a consistent estimator of the risk premium of ¢g;. Otherwise, if the signal
8] is so weak that the estimation error in 3 dominates, there would be a non-vanishing
angle between the space spanned by B and that by . But estimating risk premia requires
comparing the average returns of assets with different betas (e.g., computing the slope in a
cross-sectional regression); “measurement” error in the betas thereby induces a bias in the
risk premium estimate.
Proposition 7 below shows that the PCA-based estimator is consistent only if N/(||3]|? T) —

0. This condition formalizes our notion of factor weakness. In a one-factor model, the factor
is weak if this condition fails. We generalize this definition for the case of multiple factors

later.

Proposition 7. Suppose that test asset returns follow a single-factor model in the form
of (2.1) with p = 1, that g; satisfies (2.4) with d = 1, that uy and vy are i.i.d. normally
distributed and mutually independent, and that zz = 0. In addition, suppose that B satisfies

N/(|IBII?T) = B >0 and ||8|| = oo. Then we have ?éPCA 2, (1+B) .

In the presence of strong factors, ||| = /N, which leads to B = 0 as T" — o0, so
there is no bias. In general, the consistency depends on the relative magnitude of N, T', and
|8]|. When N and T are of the same order, ||3|| — oo is sufficient for the consistency of
risk premia estimation. This makes sense in that the eigenvalue of returns corresponding to
this factor is proportional to || ﬁ]|2, whereas the eigenvalues for the idiosyncratic errors are
bounded, so that ||8]| — oo guarantees the separation between factors and errors and hence
the identification of factors.

This example also shows that the risk premium estimator could be biased even if we have

consistent estimator of the factors. In fact, the estimated factors in V are consistent under
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the assumptions of Proposition 7 in the sense that |Corr(V, V)| P However, esti-
mating a large-dimensional vector 5 given V remains a challenging problem, which requires,
additionally, B = 0, for consistency.

Section 2.5.1 of the appendix studies how several other estimators perform in a weak-
factor setting, including PLS, Ridge regression, and rpPCA. The analysis there reveals that
these estimators exhibit failures that mirror that of PCA, despite PLS leveraging information
from gy for supervision and rpPCA being specifically designed for weak factors. None of these

estimators, therefore, can address the bias originating from the presence of weak factors.

2.2.2.2  Our Solution: Supervised-PCA and Test Asset Selection

The results in the previous section shed light on the detrimental influence of weak factors
on the PCA-based estimator (as well as other existing approaches). As we mention in the
introduction, an important difference with the prior literature is that we do not view the
weakness of a factor as a property of the factor itself; rather, we see it as a property of the
universe of test assets that are used in the estimation. This leads us to find a potential
solution in modifying the set of test assets. The solution we propose is to screen test assets
and only keep those that have nontrivial exposure to the factor of interest g¢. Then, if the
factor is strong within this smaller set of test assets, it is possible to apply PCA (or other
procedures discussed in the appendix) to recover its risk premium. The key idea behind the
screening approach is to remove those uninformative assets, focusing the estimation on a set
of assets whose exposures are large and dominate the estimation error in /.

To proceed with this idea, we formalize the problem by imposing an assumption that
there exists a subset Iy C (N),'? within which test assets feature a strong factor structure.

In other words, there exists a subset of assets that are sufficiently informative about latent

11. We can further establish that a sufficient condition for consistent recovery of factors is N/(||8]|* T) — 0,
which clearly holds in the setup of Proposition 7.

12. We use (N) to denote the set of integers: {1,2,..., N}.
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factors driving test asset returns. To be clear, we do not make any assumption about the

remaining test assets in the complement set of I — they may or may not be informative.

Such a set is thus not uniquely defined. In this regard, this assumption is relatively mild.
To see how this assumption helps, note that in the population model of Proposition 7,

the expected excess return of g¢+’s mimicking portfolio built only with test assets in Iy is

Cov (91, 74 10)) Cov (1)) ™ Bl 1)) = 1508 (Bt By + S fao]) ™ By

where e denotes the vector of returns of test assets in I, and ﬁ[ Io) is their corresponding
beta.!? It can be shown that (see the proof of a more general setting in Proposition 13 of

the appendix)

-2

). (2.5)

COV(gt, Tt,[[o])COV(Tt,[IO])—lE(rt,[Io]) =ny + O(HB[IO}

2
Since test assets in [ feature a strong factor structure, = |Ip| =: No,'* the approx-

Blto]
imation error is thereby O(NO_ 1). This result establishes the fact that in population using a

smaller number of sufficiently informative assets leads to an asymptotically vanishing error
2
-1
’5[]0]H T) =0(T"),

i.e., factors are pervasive within this subset. Therefore, as long as we locate a subset that

in approximating the risk premium. Moreover, it holds that Ng/(

satisfies the properties of Iy, we can estimate g¢’s risk premium consistently with PCA by
only using test assets within this subset.

In practice, it is the researcher who decides which test assets to employ in an empirical
study. Assuming that a strong factor structure exists at least within a subset of test assets
seems practical and plausible. That said, this assumption does rule out the case in which

exposures to a factor are uniformly small for all test assets. In this scenario, there is no

13. We use A[j) to denote a submatrix of A whose rows are indexed in I.

14. For an index set I C (N), we use |I| to denote its cardinality.
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guarantee that SPCA can recover this factor, a limitation shared with other estimators.

Unfortunately, we do not know ex-ante such a set, i.e., which assets are informative about
the latent factor v;. Rather than using all assets, the idea of SPCA revolves around selecting
the most informative assets based on their covariances with g;. In the DGP of Proposition 7,
the group of assets exhibiting high covariances with g+ comprises those with large magnitudes
of Bs. Therefore screening via correlation selects a subset of assets satisfying the desirable
properties of I.

Our proposed screening strategy echoes some of the practice in the empirical asset pric-
ing literature. Very often, test assets are formulated using the exact characteristics-sorted
portfolios that the factor of interest is generated from. For instance, Fama and French [1993]
use size and value double-sorted portfolios as test assets when estimating a factor model
that includes size and value as factors. In other cases, for nontradable factors, portfolios are
sorted based on individual stock betas with respect to the factor of interest.

These choices seldom are justified formally, and are often only valid in very special cases.
For example, building portfolios by sorting stocks on beta with respect to g+ may inadver-
tently incorporate compensation for other correlated risks, introducing a bias when omitted
factors exist in the asset pricing model that is used to calculate the betas, not to mention the
issue of propagation of errors that arise in the estimation of the beta. Similarly, using Fama-
French portfolios as test assets assumes implicitly that they span the investment universe.
This assumption contradicts the recent asset pricing literature, from which numerous factors
or anomalies emerge. While our methodology formalizes the insight behind these traditional
procedures, the fundamental motivation behind our approach is precisely to circumvent the
adoption of arbitrary priors when selecting assets.

We next formally present our SPCA procedure in the simple one factor setting as dis-
cussed in the previous proposition, which helps illustrate the intuition behind our proposal

and facilitates the comparison with existing estimators (the next section is devoted to the
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general case).

Algorithm 6 (SPCA-based Estimator of Risk Premia for a Single Factor Model (p = 1)).
The procedure is as follows:

Inputs: R and G, a 1 x T vector. 12

S1. Select a subset I C (N): T = {i)T‘1|R[i]C_¥T| > cq}, where cq is the (1 —q)-quantile of

TR}
{ Ry Tl ie(N)

S2. Repeat S1. — S3. of Algorithm 5 with selected return matrix Rm and G, and p = 1.
Outputs: %S‘POA =77, V.7, and 3.

SPCA (Algorithm 6) adds the screening step, S1, to the PCA-based risk-premium esti-
mation method of Giglio and Xiu [2021] (Algorithm 5). In this step, out of the N assets
available, only a subset T is selected, and the three steps of Algorithm 5 are applied to this
subset only.

The selection is operated by computing the absolute value of the covariance between
each of the N assets and the factor g: (T‘HRM GT| for each asset i). Only those assets
for which the magnitude of this covariance is large enough are selected: specifically, the top
q% of them. Therefore, SPCA involves a tuning parameter, ¢, which plays a crucial role
in determining how many assets we use to extract the factor. Note that the fact that T
incorporates information from the target, g, reflects the distinctive nature of a supervised
procedure (from which the name supervised-PCA).

We next prove that SPCA is consistent in the presence of weak factors.

Proposition 8. Suppose that log N/T — 0 and test asset returns follow a single-factor
model in the form of (2.1) and that g; satisfies (2.4), with uz, v¢, and z¢ i.4.d. normally

distributed and independent from each other. The loading matriz ( satisfies ||B||yax S 1

15. We discuss the case of a multivariate (d x T') G in Section 2.2.2.4.
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and there ezists a subset Iy C (N) such that Hﬁ[IO]H = /Ng where Ny = |Iy] — oc.
Then, for any choice of q in Algorithm 6 such that gN/Ny — 016 and ¢N — oo, and that

Blign1y < (1+ 5)_1’5|{qN}17 for some § > 0, where |B|(;y denotes the kth largest value

. ~ P
in {m[i]’}ie(N)’ we have ,ngCA — .

To gain a better understanding of the intuition, let us delve into some key steps of the
proof, which is detailed in the appendix. Given a specific choice of the tuning parameter
q, we can identify the population counterpart of f, denoted as I. This set I consists of the
gN largest entries of 3 in terms of their magnitudes, as specified before Assumption 13 in

the appendix.!® The proof of Proposition 8 establishes the consistency of the selected set

~

I (which contains the top ¢/N test assets with the largest sample covariances with g;) with
respect to I in the following sense: P(f: I)— 1.

This result is valid for two reasons. Firstly, the estimation error for the (population)

1/2

covariance with g; for any test asset is of order T~ "/#. By applying the large deviation bound

in high-dimensional statistics, we can establish that the estimation error for covariances

/2, Consequently, to

between g¢ and all test assets is uniformly bounded by (log N)/27~
ensure consistent estimation of all covariances, it is necessary that log N/T — 0.

2
Secondly, the condition that there exists Iy such that = Ny and ¢N/Ng — 0

Blro)
guarantee the existence of at least ¢N test assets with non-zero population covariances
with g¢. Thus, according to the definition of I, the smallest population covariance with
‘ﬁm‘

Furthermore, since we assume a non-vanishing gap between the (¢/N)th and (¢N + 1)th

2
= |I| = ¢N.

gt among all test assets in I must be non-zero. This suggests that

16. It may be tempting to use ¢N/Ny 5 const < 1. However, this is not viable because Ny and I are
not precisely defined in the assumption HB[IO]H = +/Ny. That is, if we replace Ny by Ny/2, the previous
assumption still holds but ¢N/Ny might be greater than 1.

17. This technical condition on |3|;4n+1} simply states that the test assets should have (asymptotically)
distinct risk exposure. It is a rather mild assumption that simplifies the proof.

18. It is crucial to distinguish between I and I. I is uniquely defined for each ¢ that satisfies the conditions
of Iy, whereas Iy is a general mathematical abstraction not uniquely defined.
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population covariances, it thereby follows that the set of test assets with largest population
covariances must coincide with those having the largest sample covariances, because the
vanishing estimation error is dominated by this non-vanishing gap in the asymptotic context.

Given that the identified set I can function as Iy (since H Al H2 = |I]), and as demon-
strated in equation (2.5), we can directly approximate the risk premium of ¢; using its
mimicking portfolio built on this subset I of test assets. The consistency of risk premium
estimate thereby follows from the consistency of T in the recovery of [.

Proposition 7 and Propositions 10 - 12 in the appendix show that in the single factor
case, the consistency of PCA, Ridge, PLS, and rpPCA requires B = 0. Suppose ||B||2 =NV,
for some v > 0, then B = 0 is equivalent to Nl_v/T — 0. The consistency of SPCA, as

shown by Proposition 8, nonetheless, only requires (log N)/T — 0.19

2.2.2.3 SPCA in the General Case: Selection and Projection

Propositions 7 - 8 focus on an unrealistic single-factor model since they are meant to illustrate
the failure of PCA due to the presence of a weak factor as well as the intuition behind our
procedure. In general, the DGP of returns is likely driven by more than one factor; in
addition, these factors will generally have different strength in any specific cross-section of
test assets. Note also that g; could have more than one dimension in the general setup
(2.4). In this section, we show how to generalize SPCA to the case where multiple factors
of distinct strength are present.

To begin with, in the same spirit of Proposition 7, we can show that a general necessary

19. Another idea that shares the spirit of SPCA is the scaled-PCA proposed by Huang et al. [2022], which
uses regression coefficients of G on R to weight R before feeding it into the PCA procedure. An advantage of
the scaled PCA approach is that it does not involve any tuning parameter. Nonetheless, the scaled PCA still
assigns weights of 1/ VT magnitude to assets that have zero-correlations with the target variable, whereas
our approach assigns zero weights to such assets. As a result, our procedure only requires log NV to be small
relative to T, whereas both the scaled PCA and PCA require N to grow no faster than a certain polynomial
rate relative to 7.
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condition for the consistency of PCA in a multi-factor model is that
N/(Amin(BTB)T) — 0. (2.6)

If this holds, it means that even the weakest one among all p factors in (2.1) is sufficiently
strong that it can be recovered by PCA. Then, the three-pass estimator of Giglio and Xiu
[2021] would properly recover risk premium for any factor g;. We thereby define weak
factors as those for which test asset exposures fail condition (2.6). This is a compact formal
description of the non-ideal finite-sample environment encountered in practice.20

Just like in the single-factor case, in the multi-factor case condition (2.6) can fail if one
of the factors is not pervasive. But in the multi-factor case, it can also happen that all
factors are individually strong, and condition (2.6) still fails because the factors’ exposures

are highly correlated. Consider, for example, a two-factor model where the beta matrix has

the following form:

_511&_

B21 | B2

where 511 and (19 are Ny x 1 vectors, [Bo1 and [99 are (N — Ny) x 1 vectors, and Ny is
small relative to N. Suppose that o1 = [29. In this setup, we can identify two groups of
test assets. The first one is a small group of Ny test assets, with exposures 11 to the first
factor and [12 to the second factor. The second is a large group of (N — Ny) assets, that

have the same exposure to both factors (since f1 = f93). In this case, we can show that

20. Note that r; is related to g; through v;. The loading of g; on v; is a low dimensional parameter 7
specific to each g;, whereas the loading of 7; on v; is a high-dimensional vector S independent of g;. The
advantage of formulating the condition in terms of Ay, (876) without 1 guarantees the applicability of our
conclusion across all factors of interest.
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condition (2.6) can fail: even if each factor is strong individually, there is a “rank deficiency”
issue in the betas. The reason is that most of the asset (group 2) do not contain information
that can separate the risk premia of the two factors, because they are equally exposed to the
two. This loss of information turns out to have exactly the same effect on estimation and
inference as the weak factor issue.2l We need a procedure that consistently estimates risk
premia in this case as well.

It is also important to note that in the general case with multiple factors of potentially
different strength, a simple extension of Algorithm 6, operating an initial screening (S1) and
then extracting multiple factors via PCA (S2) would not actually work to recover all factors.
To see this, take (2.7) again as an example. Suppose now that a1 # 22, but S22 = 0: that
is, most of the assets have zero exposure to the second factor. Consequently, the first factor
is strong, while the second factor is weak.?? Now suppose that = (1,1), implying that the
observed factor g is correlated with both factors and, by extension, with all the test assets.
In this scenario, the determination of which assets to exclude via screening hinges on the
betas of these test assets. Should a majority of the selected assets pertain to the second
group, the subsequent application of PCA in step S2 would only recover the first factor.
This would occur if condition (2.6) fails for the selected assets. On the other hand, if many
of the selected assets belong to the first group, PCA applied to them has the potential to
recover both factors. In this scenario, the first principal component may capture a linear
combination of both the strong and weak factors. This example demonstrates that even
though screening assets ensures that the first principal component after screening recovers
one factor (which could be the strong factor, the weak factor or their mixture on the basis

of the original cross-section), there is no guarantee that this procedure can solve the weak

21. Formally, we can show that Amin(878) < |81 — Bi2]” /2 < No. As a result, N/Amin(378)T) =
N/(NoT'), which does not necessarily converge to 0 if Ny and T' are small, so that the condition (2.6) could
fail.

22. It is easy to show that in this case Amin(878) < [|B12]® < No.
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factor issue in one shot.
Next we provide another example, that shows that in some situations screening can
sometimes eliminate too many assets, making a strong factor model become weak or even

rank-deficient. Suppose that § has the following form:

P11 | P11

b= —FT—, (2.8)
0 | B22

where (11 and S99 are N/2 x 1 non-zero vectors satisfying ||811]| = ||f22|| = V'N. Clearly,
[ is full-rank and both factors are strong. Therefore, a standard PCA procedure should
work smoothly. Suppose in addition that n = (1,0) (i.e., g+ = v1¢) and that v{; and vo; are
uncorrelated. Then it implies that g; is uncorrelated with the second half of test assets in ¢,
so only those test assets within the first half would remain, should screening be applied with
gt before extracting the principal components. In this example, however, the remaining test
assets have perfectly correlated exposures to both factors, so that effectively only one factor,
v1t + vy, is left. This example shows once again that the one-step supervised procedure
(screening once and then applying PCA) may fail at extracting all factors in a multi-factor
setting.23

To address the aforementioned issues, we propose a multi-step version of SPCA, that
iteratively conducts selection and projection. Step S1 of Algorithm 6 described above —
valid when there is only one factor — can help identify one strong factor from a selected
subset of test assets. In a nutshell, the multi-step SPCA, described below in Algorithm 7

iteratively applies Algorithm 6 to extract a new factor, with a projection step designed to

23. This one-step procedure was originally called Supervised PCA, as proposed by Bair et al. [2006] in
the context of prediction. We propose below an iterative version that can cope with a general multi-factor
model. We still use the term Supervised PCA for this iterative procedure.
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ensure that each new factor is orthogonal to the estimated factors in the previous steps,
similar to the factors extracted by the standard PCA.

Formally, the algorithm is given by:

Algorithm 7 (Selection and Projection). The iterative SPCA procedure for risk premia
estimation s as follows:

Inputs: R(l) =R, T(1) =T, and G(l) =G, adx T vector.
S1. For k=1,2,... iterate the following steps using R(k); T(k) and G(k) :

a. Select an appropriate subset ./f\k C (N).

b. Repeat S1. — 83. of Algorithm 5 with selected return matriz (R(k)> 0] and G(k)
k

to extract only the first principle component. Denote the estimates as ‘7(1@)) ﬁ(k),
(k)

c. Estimate the exposure of R(k) to ‘/}(k) by 6(/«) = T_IR(k)V&;).

d. Obtain Ryy1) = Rosy = By Vi Tk = oy = Bt Ty amd Gien) = Gy =

(k) Vi) -

Stop at k = D, where p is chosen based on some proper stopping rule.

S2. Estimate risk premia by 7y SPCA _ Zp_l ﬁ ﬁ(k)
Outputs: quCA h= @ )T 7= Gay 36T V= () 71/(2))T and

Each iteration k of the procedure recovers one latent factor XA/(k), estimates its risk pre-
mium ﬁ( k) and the exposure of g to that factor, 77( k)- In step S1, there is first asset selection
(S1.a). Next, the three-step estimator of risk premia of Giglio and Xiu [2021] is applied using
the selected assets (S1.b) to recover the kth factor ‘A/(k) in addition to ¥z and 7)), which
are specific to that factor. Then, in Sl.c, we project the returns of all assets (not just those
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selected) on the estimated factor XA/(k), and in step S1.d we compute the residuals of this
projection for returns and the factor g; itself. Therefore, at the end of step S1, we have
completely eliminated the effect of the kth factor on returns and the target factor g;. We
then repeat S1 again, this time using the residuals of returns and g¢;, looking for the next
factor. Iteration continues for p steps. At the end, step S2 combines the ?(k:) and the ﬁ(k)
obtained at each step into an estimator /7\95 PCA for the risk premia of gy.

Algorithm 7 requires an appropriate choice of 1, . and a stopping rule. One choice for i k

is:24
U (L WWELT 4 2
where cgk) is the (1 — g)th-quantile of {Tﬁl H(R(k))[i] ng) ”MAX}ie<N>' (2.9)
Correspondingly, we set the stopping criterion as:
c((]k) < ¢, for some threshold c. (2.10)

In other words, we select test assets that have predictive power for at least one variable in g¢
and stop when most test assets are uncorrelated with all variables in g;. With a good choice
of tuning parameters, ¢ and ¢, the iteration stops as soon as most projected residuals of
returns appear uncorrelated with the projected residuals of g;, which implies that all factors
that are correlated with g¢ are successfully recovered.

It is helpful to revisit the aforementioned examples and understand how the new pro-

cedure fixes issues with the one-step SPCA. Recall that in example (2.7), S22 = 0 and

~ 24. Using covariance for screening allows us to replace all @(k) in the definition of I, r and Algorithm 7 by
G, that is, only the projections of R() and 7(;) are needed, because this replacement would not affect the
covariance between G'(x) and R, and in turn, the test assets after screening and the estimates of 7). We
use this fact in the proofs, which simplifies the notation. We can also use correlation instead of covariance in
constructing I;. While this does not affect the asymptotic analysis, we find correlation screening performs
slightly better in finite samples.
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gt = v1+ + v9r. As discussed previously, screening will select a subset of ¢ assets that are
spread across both groups of assets since they are all correlated with g;. Consequently, ap-
plying PCA to them will identify a factor that is in general spanned by v{; and vo;. Even if
this first step only recovers the strong factor vy, once we project r+ and g; onto this factor
following Algorithm 6, both residuals should only depend on v9;. Subsequently, applying
screening again to these residuals will leave us with only the test assets within the first group
of assets, to which applying PCA can recover vg;. In cases where a linear combination of
v1+ and v9; are recovered in the first step, after projection the residuals feature a strong
factor (again a linear combination of v1; and vy but orthogonal to the first linear combina-
tion), since the second group of N — Ny assets have exposure to it. Therefore, a subsequent
screening and PCA suffice to recover this factor.

Similarly in example (2.8), the second half of the assets will be eliminated in the first step
when using g; = v1¢ to screen test assets. The returns for the remaining (first half) assets
load on vy + vo; with a common loading matrix £11. Applying PCA to these assets thereby
finds (vi¢ 4 vor)/V/2 as the first factor (up to a sign, assuming vq; and vy share the same
variance). Following Algorithm 6, we then obtain residuals from projections of r; and g¢
onto this factor. It is easy to see that the residuals of the second half of r; and the residuals
of g both load on a single strong factor (v1; — va;)/v/2 yet the first half of the residuals are
purely idiosyncratic. Applying screening plus PCA will successfully recover this factor, and
hence the span of the factor space.

To formally establish the consistency of this estimator, we introduce an assumption akin
to the single factor case. Specifically, we require that a subset of assets, indexed by Iy,
satisfies that all factors are strong within this subset. In other words, )‘min(ﬁ[T[O]B[ 10]) = Ny,
where Ny = |Iyj| — oo. Because the number of factors, p, is finite, such a subset [ always

exists as long as for each factor we can locate a sufficiently large subset, respectively, within
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which this factor can be extracted consistently.25 Proposition 13 of the appendix establishes
that test assets in such a subset suffice to serve as basis assets, building on which a mimicking
portfolio can approximate the risk premia of any observable factor. With this identification
assumption, along with moment conditions given in the appendix, the following theorem

establishes the consistency of the SPCA estimator:

Theorem 6. Suppose that test asset returns in ¢ follow (2.1), the factor proxies in g¢ satisfy
(2.4), and that Assumptions 7-14 hold. If log(NT)(NO_1 +T71) = 0 then for any tuning

parameters ¢ and q that satisfy

c—0, ¢ YlogNT)V/2(q V2N12 4177 12) 50, ¢N/Ny— 0, (2.11)

~ P
we have 75130‘4 — 7.

The screening step in Algorithm 7 ensures that the selected test assets or their residuals
must encompass one strong factor, as they have high correlations with ¢g;. As the SPCA
procedure unfolds, each iteration selects a distinct subset of test assets. By amalgamating
all such subsets, we obtain a subset of assets within which all factors are potentially strong,
given that the number of factors is finite. However, this procedure may not recover all factors
that drive returns. The number of factors that SPCA can recover depends on the interplay
between 1 and 3 as well as the tuning parameters in a complex manner.20  Some of the
factors that SPCA omits might even be strong! Intuitively, only factors correlated with g
are guaranteed to be recovered. This is the trade-off that arises for using ¢; as a supervisory

signal.2” Nonetheless, missing any factors in the SDF that are uncorrelated with ¢; does

25. This assumption is weak in that it does not imply all factors should have identical strength with respect
to the entire cross-section of assets in ;. In addition, different groups of assets could be exposed to different
factors.

26. We explicitly characterize this number, denoted by p, given in the appendix following Assumption 13.

27. In the context of forecasting, Giglio et al. [2023] provide convergence rate of the estimated factor
space, spanned by the factors that are correlated with the variables used for supervision in a similar SPCA
procedure.
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not affect the consistency of the estimate of the risk premia of ¢g;. This holds true because
such factors do not help price g+. Of course, this result will need to be strengthened if the
objective is to recover the entire SDF, a problem we tackle in Section 2.2.3.

The consistency result in Theorem 6 does not rely on Gaussian error assumptions nor on
an assumption that all factors have the same strength with respect to all test assets. The
assumption on the relative size of N and T is also quite flexible, in contrast with existing
results on factor models in the literature, where N cannot grow at a rate exceeding a certain

polynomial function of 7.

2.2.2.4  Asymptotic Inference on Risk Premia

In this section we develop the asymptotic distribution of the risk premia estimator from
Algorithm 7. Naturally, deriving asymptotic inference requires stronger assumptions than
those required for consistency discussed above. To consistently estimate the risk premia of
gt, one only needs recover factors that are correlated with g¢. Nonetheless, if SPCA misses
factors that are in the SDF but are not correlated with ¢¢, consistency is maintained, but
inference is undermined, because the omitted factors may contribute a higher-order error
that invalidates the central limit result.

More specifically, the conditions in Theorem 6 do not guarantee that %g PCA converges

/2 The major obstacle lies in the recovery of factors not

to ny at the desirable rate T
strongly correlated with g¢, which we can explain with the previous single-factor example.
Recall that we use the sample correlation/covariance between r; and ¢; to screen test
assets. Condition (2.11) necessitates two key considerations: First, it requires that ¢ — 0,
allowing the iteration procedure to continue until the selected r¢ exhibit asymptotically

diminishing correlations with g;. Simultaneously, it demands that ¢v/T — oo and ¢\/gN —

oo. In other words, ¢ must be sufficiently large to supersede the estimation error in covariance
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1/ 2,28 and to dominate error in the

estimates during the screening step, which is of order T
construction of residuals in the projection step when multiple steps are involved, an error of
order T—1/2 4 (gN )*1/ 2 However, for any given threshold, say, ¢ = 71/ 4 if it happens that
n = T3 <771/ 4 then screening based on ¢’ correlation with r; will likely not select
any assets, which in turn leads to the termination of Algorithm 7 and no discovery of factors.
Our procedure thereby gives a risk premium estimate of 0, which is certainly consistent, but
the estimation error is of an order 7-1/3 > 71/ 2 5o that the usual central limit theorem
(CLT) fails. In general, this problem arises due to the possibility of not identifying all factors
in the DGP. Once all factors are recovered, the CLT holds regardless of the magnitude of
7. To make correct inference, we thus need a stronger assumption that eliminates scenarios
like this.

It appears that if n € R%P meets the condition Amin(nTn) 2 1, we can rule out the
possibility of missing factors. This condition necessitates that each latent factor maintains a
correlation with at least one of the observable variables within g¢. Consequently, this implies
that d must be greater than or equal to p, meaning we require g; to possess at least the same
number of variables as the true number of factors. Meanwhile, our algorithm will not select
more factors than needed, as we stop the iteration as soon as cgk) is sufficiently small (below
¢), at which points no common factors are left in the residuals of g¢ and r¢. We thus obtain

the consistency result on the number of factors, which in turn leads to the CLT result on

risk premia. Formally, we have

Theorem 7. Under the same assumptions as Theorem 6, if we further have T_1/2N0 — 00,
Assumption 15 and Apin(nTn) 2 1, then for any tuning parameters ¢ and q in (2.9) and

(2.10) satisfying

c—0, g NT)V2(q ANTV2 47712 0, gN/Ng =0, ¢ INTITHZ 0,

28. Even if ¢; is uncorrelated with the test assets, their sample covariances can be as large as T—1/2.
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we have that p defined in Algorithm 7 satisfies P(p = p)—1, and that the estimator con-
structed via Algorithm 7 satisfies %gPCA —ny = OP(T_l/Q) + Op(q~'N7Y). Purthermore,

we obtain a CLT:

ﬁ(?ﬁpc"l —m) 4N (0,®),

where ® is given by
= (vt L) (5 o) + (178, @ 1) Tan™ + ity (S5 17 1) + nlleanT,
and 111, Ily9, and Il9o are dp X dp, dp X p, and p X p matrices, respectively, defined as:

1
M1 = lim —=E (vec(ZVT)vec(ZVT)T),
T—oo T
1
. K T
Iy = ThﬁmOO TE (vec(ZVT)LVT),

1
Moy = lim —E (Vi LVT).
22 TlﬁmooT ( LTLT )

In regard to our theoretical findings, several key points merit attention. Firstly, Theorem
7 hinges on the existence of a tuning parameter, ¢, which must satisfy two conditions:
q_lN_lTl/2 — 0 and ¢N/Ny — 0. A necessary condition for the existence of such a ¢ is
thus T2 /Ny — 0.

Secondly, the estimation error of /7\5 PCA _ 717y consists of two components. A portion of

this error stems from the error accumulation at each step of the iteration in Algorithm 7. This

accumulated error is compounded in each step k£ at most by a factor of \/|f kl //):(k), where

B 2
(R

which factors are pervasive ensures that >‘(k) =p qN = |—/fk|7 implying that the accumulated

~

)‘(k:) = /T. Importantly, the assumption that there exists a subset within

-~

error is only magnified by a constant factor with each iteration of SPCA. Ultimately, our

proof establishes that this iterative process results in an overall estimation error in risk premia
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estimates, that is of the order Op(T~Y2+ ¢ N1, The condition ¢ 1 N~171/2 — 0 thus
guarantees that the Op (¢ ' N™1) term does not influence the asymptotic distribution. The
derivation of the error rate for an iterative procedure is non-trivial, constituting our primary
contribution to the econometric literature on factor models.

Thirdly, the estimation error of the factor loading has no impact on the asymptotic
variance of risk premia, as the expression of ® demonstrates. This stands in contrast to
the classical Fama-MacBeth regression setting, where Shanken’s adjustment term (Shanken
[1992]) is crucial. This difference is due to the fact that when dealing with a large cross-
sectional dimension (N — o0), this adjustment term vanishes asymptotically.2? To make
inference feasible, we implement the same Newey-West-type estimator for ® as in Section
4.5 of Giglio and Xiu [2021], since each component of ® can be estimated from the outputs
of the SPCA algorithm. These estimates are consistent up to some rotation matrices which
will cancel each other and yield a consistent estimate of ®.

Fourthly, Theorem 7 suggests that, with probability approaching one, we can expect
a perfect recovery of the number of factors p. Yet, in any finite sample, perfect recovery
remains challenging. Notably, the assumptions made here are considerably less stringent
compared to the prevalent factor assumptions found in the literature, see, e.g., Bai [2003]
and Bai and Ng [2002]. In these previous studies, inference theory for factor models also
relies on the perfect recovery of the count of (strong) factors. We explore the finite sample
behavior of SPCA through simulations in Section 2.3.

Lastly, in the special case when the returns of test assets are exclusively driven by strong
factors, SPCA is asymptotically equivalent to PCA, contingent upon the appropriate selec-
tion of the tuning parameters ¢ and g. Otherwise, SPCA is less efficient — either due to an
excessively small choice of ¢ to the extent that the Op(qle *1) term plays a dominant role

in the estimation error in finite sample (note that PCA corresponds to the case of ¢ = 1), or

29. For a more detailed discussion on this point, please refer to equation 45 of Giglio et al. [2022], and the
discussion that follows it.
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to the fact that some factors (specifically those uncorrelated with g;) may not be recovered
by SPCA. The former loss of efficiency can be mitigated through careful tuning parameter
selection; the latter typically hinges on the unknown values of § and 7, which can be resolved

with a multivariate target satisfying Apin(nTn) = 1.

2.2.2.5 Tuning Parameter Selection

While the enhanced robustness to weak factors is an advantage, it comes at the expense of
introducing an additional tuning parameter. To employ the SPCA estimator, we need make
choices regarding two tuning parameters: ¢ and c. The parameter ¢ governs the subset size
employed in PCA construction, while ¢ determines the stopping rule and consequently the
number of factors, p. In contrast, PCA (and other estimators like PLS) essentially require
the selection of only p. We have established in Theorem 7 that we can consistently recover
p, as long as certain conditions are met by ¢ and c.

In theory, the textbook approach to choosing a tuning parameter for parameter estima-
tion revolves around the analytical minimization of the root-mean-squared error (RMSE) of
the estimator.3Y This approach effectively balances the trade-off between bias and variance
inherent in the estimation. Regrettably, this method necessitates intricate finite sample an-
alytical calculations of the RMSE, often relying on strong assumptions regarding the DGP.
In our context, assumptions of normal distribution for returns and certain distributional
properties and sparsity conditions for betas are likely necessary. Complicating matters fur-
ther, our iterative SPCA procedure compounds the difficulty of this analysis, rendering it
practically infeasible. Additionally, this RMSE-based criterion primarily hinges on statistical
considerations, lacking economic relevance.

In lieu of this, we instead opt for the utilization of the B2 of the hedging portfolio for g

30. Note that in the realm of machine learning, the prevailing approach involves leaning on the prediction
RMSE derived from a validation sample, where the actual values of the prediction target are available. This
stands in contrast to the estimation problem, where the true values are never known.
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built by SPCA as a criterion, which is both simpler to apply and justified from an economic
perspective. Recall that any estimator of risk premia for a nontradable factor explicitly or
implicitly builds a hedging portfolio, or a factor-mimicking portfolio, for g+, and computes
the risk premium as the average excess return of that portfolio. The empirical R? obtained
by different estimators then has an economic meaning: it reveals the hedging efficacy of
the factor mimicking portfolios constructed (explicitly or implicitly) by any risk premia
estimators.3!

Beyond the economic motivation, the R? is a useful criterion from a statistical perspective,
because attaining an optimal R? in a validation sample stands as a sufficient condition for
valid selection of tuning parameters, which in turn guarantees consistency of risk premia
estimates, see Proposition 14 in the appendix for a rigorous statement.

Furthermore, in practice we can consider directly tuning the parameter p instead of c,
as it offers greater interpretability, restricts itself to integer values, and is well-informed by
the scree plot, providing insights into reasonable ranges for p. Regarding the parameter ¢,
opting for larger values makes SPCA’s performance resemble that of PCA, thus reducing its
robustness against weak factors. Conversely, smaller values of ¢ raise the risk of overfitting,
resulting in a high in-sample R? but a low out-of-sample one. We suggest tuning |[qV |
instead of ¢, because the former can only take integer values, and that multiple choices of
the latter may lead to the same integer values of the former.

In our applications, we select tuning parameters based on cross-validation (CV) in a
training sample, that proceeds as follows. We split the sample into three folds. We then
use each of the three folds, in turn, for validation while the other two are used for training.
We select the optimal tuning parameters according to the average time series R? in the

validation folds.

31. To be clear, while comparing R?s provides an insightful depiction of the empirical performance of the
hedging portfolios, this cannot be interpreted as proof of the superiority of one estimator over another (which
is instead established based on the theoretical properties, like consistency and efficiency, discussed in the
previous sections).
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2.2.3  Recovery of the Stochastic Discount Factor

The estimation of risk premia for observable factors g;, studied in Section 2.2.2, is a natural
application of the supervised PCA approach, since ¢; can be used to supervise the latent
factor extraction. In this section we explore another application in which observable factors
help extract latent factors: a diagnostic procedure for observable factor models.

The asset pricing literature has proposed a variety of models composed of a small number
of tradable factors g¢: the CAPM, the Fama-French 3 or 5 factor models, etc. These models
are typically evaluated by computing the alphas of a universe of test assets, and testing
whether these alphas are different from zero. This is clearly a valid test for a model, but it
gives only limited insights about the reason why the model is (as is often the case) rejected
statistically. Specifically, it does not clarify if the model’s failure is due to the presence of
true alphas or the omission of priced factors. Our SPCA procedure helps shed light on this
by recovering strong and weak latent factors that drive the cross-section of returns, and
evaluating whether those factors are indeed spanned by the observable factor model g¢. This
helps ascertain whether the model is lacking certain factors.

A last point relates to the universe of test assets. The asset pricing literature (e.g.
Lewellen et al. [2010]) has emphasized that using a large cross-section of test assets is im-
portant for evaluating asset pricing model, as it can improve the power of the tests. There
is, however, a downside in expanding the set of test assets: the possibility that many of the
added assets may have little exposure to some factors, introducing a weak factor problem.
The ability of SPCA to handle weak factors also frees the researcher from worrying about
adding assets to the universe, not only in risk premia estimation, but also in performing

diagnostic tests like the one we explore in this section.
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2.2.3.1 Consistency of the SDF Estimator

We first prove that, under certain conditions, SPCA does consistently recover the SDF even
in the presence of weak factors. Using the outputs of Algorithm 7, we can estimate the SDF
as:

ffoPCA =1-—7Tty, where v1,---,0p are the columns of V. (2.12)

In the appendix, we prove the following theorem, which not only shows the consistency of

the recovery of the SDF, but also derives the rate at which the recovery occurs.

Theorem 8. Suppose the same assumptions as in Theorem 7 hold. In addition, we have

Assumption 16. Then the estimator (2.12) satisfies

lzT]ASPCA_ o . 1 logNg 513
Tt:lmt my| N Ny (2.13)

The theorem shows that consistent estimation of the entire SDF time-series is possible
in terms of average f9-distance, but under specific conditions. Firstly, for every weak latent
factor in v, there must be a sufficiently large subset of assets with exposure to that factor.
This condition, reflected in the requirement of a large Ny, is also necessary for the consistent
estimation of risk premia.

In addition, for each latent factor in v¢, there must be at least one observable factor in
gt that is correlated with that latent factor. This second assumption is not only needed for
asymptotic inference on risk premia but also for SDF recovery here. In cases where g; does
not correlate with a latent factor, that latent factor can potentially be missed by SPCA,

thereby hindering SDF recovery.
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2.2.3.2 Comparison with Alternative Procedures of SDF Estimation

There are a number of alternative approaches for SDF estimation with latent factors pro-
posed in the literature, e.g., the selection/shrinkage approach by Kozak et al. [2020] and the
risk premia PCA by Lettau and Pelger [2020]. In what follows, we provide a theoretical
comparison of Lasso- and Ridge-based estimators in our general framework where factors
can potentially be weak. The ridge estimator shares the spirit of PCA-based estimators
as shown by Giglio and Xiu [2021] and propositions in previous sections. Examining the
asymptotic behavior of these two approaches provides useful insights that may guide their
applications in practice. Developing the asymptotic guarantee of these estimators is yet
another contribution we make to the existing literature on SDF recovery.

Kozak et al. [2020] consider an SDF in the form of (2.3), whereas we represent it as in
(2.2). Prior to the asymptotic analysis of their estimators, we first establish the asymptotic

equivalence of these two definitions in our large-N setting:

Proposition 9. Suppose that test asset returns in ry follow (2.1), and Assumption 16 holds.

Then as N — 0o, we have

1 & o 1
T;Wt—mﬂ ~P m
Effectively, Proposition 9 proves that there is no ambiguity with respect to the defi-
nition of the estimand, since the two estimands are asymptotically equivalent as long as
Amin(BT8) — oo. Given that this exact assumption is necessary for Theorem 8, and that
Amin(B8T5) 2 Ny, we can replace my in the left-hand side of (2.13) by my.

Kozak et al. [2020] suggest estimating the SDF by solving an optimization problem:

b = argmin {(F SO TSN - Sh) + pM(b)} , (2.14)
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with which the estimated SDF is given by
e =1—"bT(r — 7). (2.15)

In the above, S is the sample covariance matrix of r; and p,(b) is a penalty term through
which economic priors are imposed. Depending on the penalty function, we will denote the
resulting estimator of m by mfid‘q “or T?L{J“SSO.

The objective function in (2.14) appears to require the inverse of EA], which is not well-

defined when N > T. Instead, we suggest optimizing an equivalent but different form of

(2.14):

S

- argmbin{bTib—Zbe+bT§b+pM(b)}, (2.16)

which avoids the calculation of £ 1.
The following result sheds light on the asymptotic properties of this estimator in the

cases of p,(b) = u[|bl|; and py,(b) = p I1b]|2, respectively.32
Theorem 9. We investigate two distinct scenarios.

(a) Suppose that 1y is driven by p latent factors as in (2.1). With p,(b) = wlol?, if

(N+T)/(M\T) = 0 and Assumptions 10-13, 16-18 hold, we have

T
_ — <p —

where \p is the p-th largest eigenvalue of BX,5T. Since Ay < Apin(BT5), we can replace

my in the above equation by my.

(b) Suppose that the true SDF' satisfies E(ﬁz%) S 1. With py(b) = ||y, if Assumptions

32. We use ||||o, [|ll;, and [||| to denote the o-, £1-, and fo-norms of a vector, respectively.
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16, 17 hold, we have

1 & log N

~ L ~ 12
=S I il Sp bl (217)
t=1

If, in addition, it holds that A\ynin(2) 2 1, and ||b||%10g N/T — 0, then we have a

stronger result

1 d log N

T, ~ 2
TE [my @5 —my| = Sp [|bllg ' (2.18)
=1

T

Interestingly, both the Ridge and Lasso approaches deliver consistent estimates of the
SDF, albeit under distinct sets of assumptions.

In the case of Ridge, its convergence rate hinges significantly on the strength of the
weakest factor. If condition (2.6) is not met, the SDF consistency is compromised. The
failure of this condition is a clear symptom of weak factors, precisely the scenario for which
our SPCA estimator is designed.

In contrast, the Lasso approach replaces the explicit factor model assumption on r; with a
sparsity assumption on the vector b. This sparsity assumption dictates that the SDF should
be represented as a sparse linear combination of the test assets but imposes no explicit
assumptions on the DGP of these test assets. This implies that the Lasso estimator remains
consistent regardless of the strength of the factors but converges at a rather slow rate, as
indicated in (2.17), which is ||b]|; v/log N/T. Consequently, it is not as efficient as our SPCA
estimator, which leverages the factor structure to achieve faster convergence. Nevertheless,
under a much stronger sparsity assumption where HbH% log N/T — 0, the Lasso estimator
can attain a comparable convergence rate to that of the SPCA. This more stringent notion
of sparsity essentially asserts that the set of true factors must be part of the test assets. In

contrast, our SPCA estimator allows for the presence of idiosyncratic components in any of
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the test assets, enhancing its practicality in real-world applications.
We can adapt any SDF estimator to obtain an estimator of risk premia, because of
the relationship —Cov(my, g¢) = ny. In light of this, we have a Lasso-based risk premia

estimator:33

T

/,;Lasso _ Z Lasso B g)

=1

Furthermore, the consistency of the SDF estimator translates to the consistency of the
resulting risk premia estimator.3* Deriving a valid inference procedure is possible for Lasso-
based risk premia estimator, if we employ an additional de-biasing step, see, Feng et al.

[2020], which is beyond the scope of the current paper.

2.2.3.3 Diagnosis of SDF Models using Sharpe Ratios

We now discuss the diagnosis of SDF models that consist of tradable factors exclusively.
Recall that the projection of the SDF on the space of returns achieves the highest possible
Sharpe ratio. Given that the factors recovered by SPCA are themselves portfolios, as long
as SPCA recovers the entire SDF these factors should achieve the maximal Sharpe ratio.
We can then diagnose a model g; by comparing its Sharpe ratio with that achieved by the
estimated SDF supervised by ¢;. If g; contains all the factors that drive the SDF, then the
maximal Sharpe ratio achieved by factors in g; should be on par with the Sharpe ratio of
the SDF. Otherwise, if g+ achieves a lower Sharpe ratio, it is a sign that ¢g; is missing some
factors; if g;’s Sharpe ratio is higher than that achieved by SPCA, it indicates that g; has

alpha relative to the entire cross-section of test asset returns.

33. The SDF-induced Ridge estimator is numerically equivalent to (2.21), so we do not introduce it again.

34. By Assumption 17(1), Cauchy-Schwartz and triangle inequalities, we have

HALasso _ H XT: LaSSU _ + IOgN
g Yo llmax Se T °
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For this purpose, it is more convenient to rewrite our SPCA estimator of the SDF given by
equation (2.12) in the form of portfolio returns as in (2.15), so that we can directly evaluate
its Sharpe ratio. In other words, we need an SPCA based estimate of b in the definition of

SDF given by equation (2.3). Formally, we provide the following algorithm:3°

Algorithm 8. The SPCA based procedure for estimating SDF loadings is as follows:

Inputs: R(l) =R, T(1) =T, and G(l) =G, adx T vector.

S1. For k = 1,2,... iterate the following steps using R(k); T(k)» and G(k:) and construct
an N X p matriz B:
a. Run S1.a of Algorithm 7 to obtain fk

b. Run S1. - S3. of Algorithm 5 with selected return matriz (R(k)> 7] and G'(k).
k

Construct the kth column of B as: B[fk],k = (k) and B[fg],k = 0, where g3,y is

the left singular vector of (R(k)) ik Also, obtain \A/(k) and ﬁ(k)-
k

c. Run S1.c of Algorithm 7 to obtain B\(k)-

d. Run S1.d of Algorithm 7 to obtain E(k—kl) and G(lc+1)'
Stop at k = p, where p is chosen based on some proper stopping rule.

S2. Estimate the SDF loading b as:

pPCA_TB(BTRRTB) ™' BT (2.19)

35. The effectiveness of this procedure stems from the fact that the SPCA estimates of V can be written
as a rotation of BTR. Given that b is invariant to rotations of factors, we can exploit this invariance
property to construct a convenient estimator b. To elaborate, if we use BTR as the factors, denoted by,
V, with their risk premia and covariance denoted as 7 and ¥ respectively, we can express the SDF as

my=1-—3T(5,) "0 =1-37(8,)" 0, =1 —F7(5,) ' BT(r; — 7). Consequently, we can deduce that:

~ . 1 _
b=B(%,) 7= B(TBTRRTB)’lBTF.
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Outputs: pSPCA

Similarly, we can construct estimates of b using PCA and PLS.36 With b it is convenient

to build SDFs (optimal portfolios) and evaluate their Sharpe ratio.

Theorem 10. Under the same assumptions as Theorem 6, if Assumption 16 holds, the

Sharpe ratio of the optimal portfolio constructed by pIPCA Gy (2.19) satisfies

?)\SPCATE(H)
oy > lim >\ /ATnT (nSynT) 0y, 2.20
VATE, W_N,T%oo\/ESPCATZgSPCA_\/Vn (X T) oy (2.20)

where 1 denotes the Moore—Penrose inverse of a matrix.

In the inequality (2.20), the upper bound corresponds to the optimal Sharpe ratio of
the SDF, while the middle term represents the optimal Sharpe ratio achieved by the SPCA
estimator. Meanwhile, the lower bound corresponds to the optimal Sharpe ratio achieved
by n(vt + 7). This lower bound also matches the bound attained by g¢, except for any
undiversified idiosyncratic errors that may persist in g¢+. These errors would further reduce
the Sharpe ratio, but for the sake of our discussion exclusively on observable factor models
in the literature, we follow the convention and assume that g; comprises well-diversified
portfolios, so we can ignore this aspect in this section. A sufficient condition for the upper
and lower bounds to be equal is that Api,(nTn) = 1. In this case, the SPCA-based SDF
estimator also achieves the optimal Sharpe ratio. This result is not surprising, especially
considering the consistency result outlined in Theorem 8.

Theorem 10 serves as the basis for diagnosing SDF models. We do not observe the left side
of the equation (the true maximal Sharpe ratio), but can estimate and compare the middle
term (Sharpe ratio obtained by the SPCA-recovered SDF) and the right term (Sharpe ratio

of g¢). If we find in the data that the Sharpe ratio from SPCA is higher, then we learn that

36. For PCA, the kth column of B can be chosen as the left singular vectors of R, then (2.19) yields the
standard PCA based SDF loadings. For PLS, B is a similar weight matrix given by the iterative procedure.
We compare these SDF estimators in simulations.
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gt must be missing a factor. If we instead find that the Sharpe ratio from g¢; is higher, it
means that there are factors in g; that are insufficiently represented in r; (for example, if
none of the assets in r4 has exposure to those factors): this points to an insufficiently rich

set of test assets rt.37

2.3 Simulations

In this section, we study the finite sample performance of our SPCA procedure using simu-

lations.

2.83.1 Results on Risk Premia

We implement a number of risk premia estimators for comparison, some of which are robust
to omitted or weak factors, including PCA and its related estimators (Ridge, PLS, and
rpPCA), Lasso, as well as the four-split estimator by Anatolyev and Mikusheva [2021].38
Both the standard two-pass and four-split methods directly use g+ as if they were the true
factors in their regressions. The PCA, rpPCA, Ridge, and Lasso effectively construct the
SDF first without knowledge of g¢, then estimate the risk premia of g4 factor by factor, using
the covariance between each factor and the resulting SDF. PLS and SPCA use all variables
in g¢ to supervise the estimation procedure.

To implement the SPCA estimator, we select the tuning parameters p and |¢gN| by CV
using the procedure detailed in Section 2.2.2.5. To ensure a conservative basis for comparison,

all methods, except for SPCA, use optimal (albeit infeasible) tuning parameters. Specifically,

for PCA, PLS and rpPCA, we make use of the true number of factors, p = 4, even though

37. Of course, it can also be that the two Sharpe ratios are the same. In that case, g; and the latent-factor
model recovered by SPCA are equivalent in terms of their pricing ability.

38. The four-split estimator, which does not rely on dimension reduction, selection, or shrinkage techniques,
is valid in the presence of weak observable factors and strong omitted factors that are not priced. However,
it does not have asymptotic guarantees against omitted and priced strong/weak factors, or measurement
error in the observed factors.
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it is difficult to obtain a consistent estimator of p in the regime of weak factors. The tuning
parameter u of the Ridge estimator is determined via maximum likelihood estimation, with
perfect knowledge of ¥ = Cov(r) and E(r). The second tuning parameter of rpPCA is
selected by maximizing the theoretical Sharpe ratio of the estimated SDF, using, again,
perfect knowledge of ¥ and E(r). Due to limited sample size, estimating the sample mean
and sample covariances in a separate validation sample is rather challenging, which would
further deteriorate their performance.

To demonstrate and compare the performance of different estimators, we consider various
DGPs of returns and/or the observed variables in g;. We start with the benchmark case (a),
in which all factors are strong and observed. Specifically, we consider a 4-factor DGP as given
by equation (2.1), where the first three factors are calibrated to match the three Fama-French
factors (RmRf, SMB, HML) as in Giglio and Xiu [2021], and the last one is a potentially weak
factor, denoted by V. We calibrate the parameters such that the monthly Sharpe ratio for the
optimal portfolio out of these factors is about 0.256. The process generating u; is modeled
as a vector autoregressive process: u; = 0.8u;_1 + €, where € is drawn from a Gaussian
distribution with a diagonal covariance matrix.3? The standard deviation of u; is calibrated
at 0.04. For comparison, the standard deviations of the four factors are calibrated at 0.04,
0.03, 0.03, and 0.02. The loadings of RmRf are generated independently from N (1,1) and
the loadings of SMB and HML are generated independently from N(0,1). We generate the
exposure to the fourth factor V, §; /, independently from a Gaussian mixture distribution,
with probability a from A(0,1) and 1 — a from A(0,0.1%). Our calibration suggests that
a = 0.5 ensures the factor V' is sufficiently strong with respect to the cross-section of assets
in simulations. g; includes exactly these four factors in the DGP (RmRF, SMB, HML, and
V), and we set n = I4, and measurement error is absent.

In scenario b), we choose a = 0.1 so that V' is weak in that for almost all test assets

39. Although it is conceivable to employ a more complex covariance matrix for u;, calibrating such a model
can be a challenging endeavor. We thereby simulate u;s that are cross-sectionally uncorrelated for simplicity.
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their factor loadings to V' are tiny: only 10% of the assets have nontrivial exposure to this
factor. In scenario c¢), the DGP is the same as that of the benchmark case, except that we
add Gaussian measurement error, z¢, to each of the factors in ¢g;. In scenario d), we simulate
p for V according to 8; v = —0; gy + €; instead, where e;s are generated independently
from the same mixture Gaussian distribution as above with a = 0.1. This nearly results in a
rank deficiency in the factor loading matrix due to their correlated exposures. The variable
g+ contains all four factors with no measurement error. In scenario e), we consider the same
DGP of returns as in scenario d), but in g we omit the HML factor. Finally, in scenario f),
we further add measurement error to scenario d).

For each of these six scenarios (including the benchmark), we plot in Figure 2.1 the
histograms of the estimated risk premium of V' (one entry in ¢;) for all estimators. If an
estimator is consistent, then the histogram is expected to be centered around the true risk
premium of V', whose value is represented by a vertical dashed line. This is indeed the case for
SPCA in all scenarios. It is also the case for almost all estimators in the benchmark scenario,
a), when factors are strong (except for Lasso and Ridge, which have a large shrinkage bias).
This suggests that the latter two estimators are not suitable for inference on risk premia.
Furthermore, in scenario b), when weak factors are present, only SPCA and four-split are
consistent. The same is true for scenario d) in which a similar rank-deficiency issue arises.
In scenario c¢) the four-split estimator becomes inconsistent due to measurement error, and
it is also ill-behaved in scenario e) because the omitted variable, HML, is priced. The PCA
and PLS estimators are consistent in scenario ¢) but also fail in e), because they are robust
to measurement error but not to omitted weak factors. The standard two-pass estimator is
only consistent in the benchmark scenario. Overall, the simulation evidence is in agreement
with our theoretical predictions.

Next, we focus on the last scenario f), which includes the case of weak factors as well

as measurement error. For this case, we report in Table 2.1 the bias and the RMSE (root-
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Figure 2.1: Histogram of Risk Premium Estimates of V'

Note: The figure provides histograms of the risk premium estimates in six scenarios for eight estimators
we compare, including SPCA, PCA, PLS, rpPCA, Lasso, Ridge, four-split, and the standard two-pass
estimator. We simulate the models with V = 1,000 and T = 240. The number of Monte Carlo repetitions
is 1,000. Values reported are percentages.
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mean-square error) of all estimators for various sample size T'. The four rows in each panel
provide the results of risk premia estimation for RmRf, SMB, HML, and the weak factor
V', respectively. We find that our SPCA approach has smaller biases for the weak factors,
whereas the remaining estimators have larger biases and RMSEs, which agrees with our
theoretical analysis and Figure 2.1. Notably, PLS ranks the second. All estimators perform
better in terms of RMSE as T increases.

In the appendix, we also report a scenario similar to c¢) except that the last factor is a
pure noise. In other words, the DGP is driven by the first three factors, but econometri-
cians, lacking knowledge of the true model, include these three factors alongside this pure
noise variable in their attempt to estimate risk premia. This scenario closely resembles the
one extensively discussed by Kan and Zhang [1999] and Kleibergen [2009]. For the sake of
comparison, PLS and SPCA incorporate this pure noise variable along with the aforemen-
tioned three factors into ¢g;. The histograms corresponding to the risk premium estimates
associated with the noise factor suggest that SPCA, PCA, PLS, rpPCA, Lasso, and Ridge
remain consistent and cluster around zero. The consistency stems from the fact that none of
these methods involve a cross-sectional regression on the estimated beta for the noise factor.
In contrast, the four-split and two-pass methods seem to exhibit considerable variances.

We then investigate the finite sample performance of the inference result developed in
Theorem 7. Figure 2.2 plots histograms of the standardized risk premia estimators using
the estimated asymptotic standard errors for SPCA and PCA, respectively, using the DGP
in scenario f) as an example. The histograms of PCA deviate from the standard Gaussian
distribution for the two highly correlated factors, V' and HML. In contrast, the histograms
corresponding to SPCA closely align with the standard Gaussian distribution, showcasing
significantly reduced bias for these two factors. A portion of this small bias stems from
the population-level approximation as demonstrated in (2.5) (see also Proposition 13). This

phenomenon thereby likely persists irrespective of the value of T'. Finally, we also investigate
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SPCA PCA rpPCA PLS
T Param | True | Bias RMSE | Bias RMSE Bias RMSE | Bias RMSE

RmRf | 53.7 0.2 39.2 0.4 38.9 1.8 66.4 0.2 39.1

120 SMB 21.7 -0.0 29.0 0.6 28.4 1.7 65.1 0.4 28.7
HML 25.4 -6.7 29.3 -38.0 43.9 114.6 205.8 -15.7 30.6

14 40.0 -6.6 20.9 -37.0 38.9 109.9 195.8 -15.7 22.6

RmRf 53.7 0.7 29.7 0.6 29.6 1.3 36.4 0.7 29.7

240 SMB 21.7 0.2 20.1 0.6 19.5 1.2 27.8 0.4 19.8
HML 25.4 -3.3 19.7 -36.3 39.3 64.1 111.9 -8.0 20.1

\% 40.0 -3.4 14.6 -35.5 36.5 63.0 109.0 -8.2 15.4

RmRf 53.7 -0.1 20.2 0.0 20.2 0.2 20.7 0.0 20.2

480 SMB 21.7 -0.3 14.2 -0.2 14.0 -0.2 14.7 -0.2 14.1
HML 25.4 -2.6 14.6 -13.4 18.6 22.3 34.6 -4.1 14.5

\% 40.0 -3.1 10.3 -13.7 16.1 20.7 32.7 -4.7 10.6

Lasso Ridge Four-split Two-pass
T Param | True | Bias RMSE | Bias RMSE Bias RMSE | Bias RMSE

RmRf 53.7 -27.6 37.0 -8.1 32.4 12.4 52.0 11.5 48.1

120 SMB 21.7 -12.6 16.5 -5.1 16.9 4.9 47.2 5.4 41.8
HML 25.4 -30.6 31.6 -33.4 36.2 12.9 50.5 -6.1 40.1

14 40.0 -38.3 38.6 -36.0 36.8 32.3 58.6 9.1 32.6

RmRf | 53.7 | -31.6 37.4 -4.2 25.8 13.4 40.1 12.4 37.9

240 SMB 21.7 | -14.0 16.3 -3.0 13.9 6.1 33.3 5.9 29.5
HML 25.4 | -29.9 30.7 -31.5 33.7 16.2 37.3 2.5 27.4

\% 40.0 | -37.6 37.9 -32.7 33.4 38.8 51.2 20.7 32.1

RmRf 53.7 -18.5 24.7 -1.7 19.1 12.6 29.5 11.9 27.3

480 SMB 21.7 -9.0 11.9 -1.5 12.0 4.3 24.0 4.7 20.9
HML 25.4 -32.8 33.5 -29.1 30.9 16.6 29.4 8.3 22.1

\% 40.0 | -36.8 37.1 -29.5 30.1 38.6 45.6 28.0 33.5

Note: In this table, we report the bias (Column “Bias”) and the root-mean-square error (Column “RMSE”)
of the risk premia estimates using SPCA, PCA, rpPCA, Lasso, PLS, Ridge, four-split, and the standard
two-pass regression approaches, respectively. The true data-generating process, given by scenario f), has
four factors, driven by RmRf, SMB, HML, and V, whereas we estimate the risk premia for noisy versions
of these four factors. Their true risk premia are provided in Column “True.” We fix N = 1,000 while

Table 2.1: Simulation Results for Risk Premia Estimators

varying T = 120, 240, and 480 in this experiment. All values reported are in basis points.
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the statistical power of SPCA in strong and weak cases, respectively, and draw a comparative

analysis with PCA. We report these results in the appendix.

SPCA Result: RmRf Size: 6.6% PCA Result: RmRf Size: 6.5%

0.4r

0.2

-5 0 5
SPCA Result: SMB  Size: 4.8% PCA Result: SMB Size: 4.8%

-5 0 5 -5 0 5
SPCA Result: HML Size: 4.9% PCA Result: HML Size: 61.5%

Figure 2.2: Histogram of the Standardized Estimates in Simulations

Note: The left panels provide the histograms of the standardized SPCA estimates as in Algorithm 7 with
asymptotic standard errors given by Theorem 7, whereas the right panels provide those of the standardized
PCA-based risk premia estimates as in Algorithm 5. We simulate the model in scenario f) with N = 1,000
and T = 240. The number of Monte Carlo repetitions is 1,000. These standardized statistics serve as
the basis for testing the null hypotheses that the risk premia are equal to their true values. The sizes of
these t-tests at 5% level are reported in the figure subtitles, allowing us to assess the tail behavior of our
asymptotic approximations.

2.3.2  Results on SDF recovery

Next, we study the finite sample behavior of the SDF estimators. We compare the per-
formance of SPCA, PCA, rpPCA, Lasso and Ridge estimators in scenario f). We report
in Table 2.2 the MSE of the SDF estimators where the true SDF is defined by equation
(2.3). We also include the tuned number of factors determined through our SPCA approach.

Additionally, we report in Table 2.3 the out-of-sample Sharpe ratios of different methods,
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SPCA PCA rpPCA PLS Lasso Ridge

T D MSE MSE MSE MSE MSE MSE
120 4.186 0.044 0.074 9.200 0.050 0.056 0.054
(0.389)  (0.030) | (0.026) (11.332) (0.026) (0.010) (0.013)

240 4.011 0.021 0.058 1.901 0.025 0.055 0.045
(0.104)  (0.014) | (0.013) (3.313) (0.013)  (0.009) (0.010)

480 4.004 0.010 0.018 0.087 0.012 0.050 0.036
(0.063)  (0.007) | (0.007) (0.083) (0.007)  (0.007)  (0.008)

Table 2.2: Simulation Results for SDF estimators

Note: In this table, we report the mean-squared errors (Column “MSE”) defined by 7 Zthl |y — |2 for
various SDF estimates using SPCA, PCA, rpPCA, PLS, Lasso, and Ridge approaches, respectively. The
reported MSEs are the sample average over 1,000 Monte Carlo repetitions and their standard deviations
are reported in the brackets. We also report the mean and standard deviation of the estimated number
of factors p using the SPCA approach. The true data-generating process, given by scenario f), has four
factors, driven by RmRf, SMB, HML, and a weak factor V, whereas we estimate the SDF using a vector
of factor proxies, ¢;, that includes noisy versions of the four factors. We compare three scenarios with
T = 120, 240, and 480, where N = 1,000 is fixed.

T SPCA PCA rpPCA PLS Lasso Ridge  Theoretical Value
120 0.193 0.084 0.134 0.164 0.113 0.109 0.256
(0.049) (0.046) (0.035) (0.051) (0.024) (0.046)
240 0.226 0.110 0.192 0.214 0.122 0.137 0.256
(0.026)  (0.036) (0.033) (0.031) (0.019) (0.032)
480 0.241 0.227 0.242 0.238 0.127 0.162 0.256
(0.012)  (0.019) (0.008) (0.015) (0.021) (0.019)

Table 2.3: Simulation Results for Out-of-Sample Sharpe Ratios of Optimal Portfolios

Note: In this table, we report the mean and standard deviation of the out-of-sample Sharpe ratios
for various optimal portfolios constructed by SPCA, PCA, rpPCA, PLS, Lasso, and Ridge approaches,
respectively. The true data-generating process, given by scenario f), has four factors, driven by RmRf,
SMB, HML, and a weak factor V', whereas we estimate the SDF using a vector of factor proxies, g;, that
includes noisy versions of the four factors. The reported Sharpe ratios are the sample average over 1,000
Monte Carlo repetitions and their standard errors are reported in the brackets. Column “‘Theoretical
Value” provides the benchmark Sharpe ratio calculated by bTE(r) /v’ Xb using true parameter values. We
compare three scenarios with T' = 120, 240, and 480, where N = 1,000 is fixed.
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given by bTE(r)/ \/ZT—EZ, where E(r) and ¥ are the true mean and covariance of all test
assets and b is the estimated SDF loading using each method. Overall, we find that SPCA
outperforms all other methods. PLS ranks second, while rpPCA performs the worst. rpPCA
is only competitive in terms of the out-of-sample Sharpe ratio. For risk premia estimation,
the disadvantage of rpPCA relative to other methods may not only stem from its inherent
bias but also from its tuning parameters being primarily oriented towards maximizing the
out-of-sample Sharpe ratio. Last but not least, the tuning parameter p is found to be in

close proximity to the truth value of 4.
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Figure 2.3: Out-of-sample Sharpe Ratio Patterns with Different Models of g+

Note: Each panel reports the out-of-sample Sharpe ratios for PCA (blue) and SPCA (red) as a function
of number of factors, p, for a specific model of g; = nvy + 2.
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Finally, we investigate the pattern of out-of-sample Sharpe ratios for various models g4
in Figure 2.3. The setting resembles scenario (f), except that we consider different models g¢
to examine the role of ¢; in supervising the procedure. We report Sharpe ratios as a function
of number of factors p used in the PCA and SPCA procedure. For SPCA, we select |gN |
via CV using the time series R? for each given p. The sample size T is fixed at 240. The
theoretical value of the optimal Sharpe ratio is 0.256, as shown in Table 2.3, though in finite
sample the maximum Sharpe ratio achieved by SPCA is around 0.226.

We consider four cases of g; = nur + 2z here. In case (a), we set n = Iy, so all factors
are included in g; to supervise the procedure. In case (b), only the factor V' and HML are
included in g¢. In case (c), we fix n = (1,0,0,0), that is, g¢ only includes the (strong) market

-1
[V

factor. Finally, in case (d), we let n = 4TX so that g; is a noisy measure of the SDF.
In light of Theorem 10, SPCA should achieve the maximal out-of-sample Sharpe ratio in
cases (a) and (d), provided appropriate tuning parameters. Figure 2.3 confirms this result.
In case (a), SPCA reaches its highest Sharpe ratio out-of-sample precisely at p = 4, and the
Sharpe ratio declines slightly as p increases beyond 4, since these additional factors only add
noise. Case (d) exhibits a similar pattern. In contrast, the PCA approach cannot achieve
the maximal Sharpe ratio, even as p increases to 10, because PCA cannot recover the weak
factor, which contributes to the SDF. In case (b), SPCA is supervised by two factors with
highly correlated loadings, so it can recover the part of the SDF spanned by the weak factors.
With a large enough p, we force the procedure of SPCA to continue, then it will also extract
the strong factors and achieve the maximal Sharpe ratio. In case (c), however, SPCA and

PCA provide similar results — neither achieves the optimum — because g+ only includes the

market factor, which does not help SPCA recover the missing weak factor.
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2.4 Conclusions

The choice of test assets plays a fundamental role in empirical asset pricing tests. The recent
explosion of anomaly discoveries and related characteristics in the empirical literature has
provided researchers with a large universe of potential test assets to choose from. On the
one hand, the availability of so many different characteristics gives us hope that the returns
of these portfolios can help us uncover and identify the pricing of various dimensions of risk,
including those that are not well captured by standard cross-sections. On the other hand,
the large dimensionality goes hand in hand with the weak factor issue: a factor may well
be captured by some assets within the large cross-section, but if most assets do not have
exposure to that factor, it will be weak and inference will be incorrect.

Traditional methodologies take the cross-section of assets as given. In this paper, we
present a new methodology, SPCA, that instead actively selects assets in order to estimate
risk premia of factors of interest, whether they are strong or weak, and at the same time
addresses the issue of potentially omitted factors, again regardless of whether they are strong
or weak. In addition, SPCA can exploit its ability to recover weak latent factors to help diag-
nose omitted factors in observable-factor models. The paper confirms the good performance
of SPCA for both of these tasks in a variety of simulations, and illustrates the application
of the methodology in various empirical contexts in Section 3.3.

While the road to a full understanding of risk and risk premia in financial markets is still
long, we believe that systematically tackling weak factors in empirical asset pricing is an
important step forward, that opens the door to the study of factors that, while important to
investors, may be not pervasive in either the standard cross-sections or the recently developed
large universes of test assets.

Two pressing issues on the debates related to the factor zoo are the economic interpretabil-
ity and the overwhelming amount of degrees of freedom in empirical asset pricing research.

The central issue we address in this paper is to evaluate factors motivated by economic the-
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ories. Our proposal eliminates two critical degrees of freedom altogether from this exercise:
the choice of control factors when estimating risk premia of economically motivated factors,
and the choice of test assets used for estimation and testing. Our study thereby contributes
to a promising agenda developing a fusion of asset pricing theory and machine learning. It
does so by using the factor structure as a main theoretical foundation, and applying to it
tools and results from machine learning, in order to exploit these statistical advances while

maintaining economic interpretability.

2.5 Appendix

2.5.1 Alternative Estimators and Their Asymptotic Behavior

While the literature has proposed several different estimators of the SDF and risk premia,
their properties in a general weak factor setting like ours have not been investigated. In this
section we revisit a number of estimation procedures, and show that they are inconsistent in
the presence of weak factors, using a simple model with a single weak factor.

We focus our discussion of alternative estimators on those that can be used when factors
are latent. In this setting, the researcher does not need to know the identities of all true

factors, which yields a risk premium estimator that is robust to potentially omitted factors.

PLS

As reviewed in the main text, Giglio and Xiu [2021] show that the PCA-based estimation
procedure effectively constructs a mimicking portfolio for g; via a principal component re-
gression (PCR) on ¢, which amounts to a projection of g¢ onto the first few PCs of the sample
covariance matrix of ;. This is an unsupervised approach, in that the PCs are obtained
without any information from g¢. Therefore, PCA might be misled by large idiosyncratic

errors in ¢4 when the signal is not sufficiently strong. In contrast with PCA, partial least
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squares (PLS) is a supervised procedure, which has been shown to work better than PCA in
other settings, see, e.g., Kelly and Pruitt [2013]. In the same spirit, we propose a PLS-based
approach for risk premia estimation, exploiting variation of returns that is relevant to the
target factor of interest.

The key difference between the two approaches is that PCA seeks linear combinations
of r; that maximize variation, ignoring information from the target g;, whereas PLS seeks
linear combinations that have the largest covariance with g;. The PLS-based risk premia
estimator effectively uses PLS instead of PCA in the first step of Algorithm 5 described in
the main text.

We formulate a general PLS-based algorithm for a d x 1 vector of g+ below:

Algorithm 9 (PLS-based Estimator of Risk Premia). The estimator proceeds as follows:

Inputs: R(l) =R, 7y =T and G, a d x T matriz.
S1. Fork=1,2,--- p, repeat the following steps using R(k), T(k) and G.

a. Obtain the weight vector w from the largest left singular vector of R(k,)G’T.
b. Estimate the kth factor as ‘A/(k) = \/T@TR(k)/ Hﬁ?l@@“.

c. Estimate the risk premium of ‘A/(k) by /'?(k:) = \/T@Tf(k)/ ”@TR(k) H

d. Estimate the kth factor loading of r¢+ by B(k) = T_lﬁ(k)f/&;).

e. Remove \A/(k) to obtain residuals for the next step: R(k+1) = R(k) — B(k) A(k) and

(k) ~ B V() -

=3

F(k+1) =

S2. Estimate the factor loading of g on v by f = T~1GVT, where V = (‘A/(Tl), e ,‘A/(;TD))T,

and denote their risk premia estimated above as y = @(1)> e fy\(p))T.

Output: %DLS =17.
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The PLS estimator has a closed-form formula if G is a 1 x T vector and a single-factor

is extracted (p = 1):
APLS = ||GRTR| " *GRTRGTGRTT.

While the PLS procedure seems appealing, the next proposition shows that this approach
is asymptotically equivalent to the PCA-based procedure, hence it fails in exactly the same

weak factor setting as PCA.

Proposition 10. Suppose that test asset returns follow a single-factor model in the form
of (2.1) with p =1, g¢ satisfies (2.4) with d = 1, uy and vy i.i.d. normally distributed and
independent from each other, and z = 0. In addition, suppose that 3 satisfies N/(HBH2 T)—

B >0 and ||| = oo. Then we have %DLS i> (14 B)_1777‘

Intuitively, the covariance information embedded in the objective function of PLS is
dominated by its variance component, hence PLS yields the same asymptotic behavior as

PCA with respect to estimating 3, and therefore risk premia.

Ridge

Next, we consider an alternative, ridge-regression-based approach to the construction of
mimicking portfolios, which instead directly regularizes the projection of g+ on the vector of

returns. The Ridge-based estimator can be written as:
JRidge _ GRT (RRT + plly) "7, (2.21)

where > 0 is some tuning parameter. In the case of pervasive factors, Giglio and Xiu
[2021] show that the ridge estimator yields a consistent estimate of 1y. However, we show

that the ridge estimator also fails in the presence of weak factors:
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Proposition 11. Suppose that test asset returns follow a single-factor model in the form
of (2.1) with p =1, g¢ satisfies (2.4) with d = 1, uy and vy i.i.d. normally distributed and
independent from each other, and z = 0. In addition, suppose that 3 satisfies N/(||B||2 T) —
B > 0 and ||8|| — oo, and the tuning parameter p satisfies pu/(||B|*>T) — D for some

constant D > 0 such that B+ D > 0. Then we have ﬁfidge LN (1+ B+ D) .

Intuitively, the Ridge-based estimator fails because the tuning parameter p in the ridge
procedure serves as a threshold that suppresses the influence of eigenvectors corresponding
to small eigenvalues, just like in PCA and PLS (which explains the appearance of B in the
limit). The presence of p also leads to a shrinkage bias to the first few eigenvectors (i.e.,

factors), which is why an extra term D appears in the limit as well.

Risk Premium PCA

Finally, we consider an estimator based on the approach of Lettau and Pelger [2020]. This
approach was designed to estimate a latent-factor SDF, but can also be used to estimate the
risk premium of a factor g¢, by replacing the PCA step of Algorithm 5 with the risk premia
PCA procedure of Lettau and Pelger [2020]:

Algorithm 10 (rpPCA-based Estimator of Risk Premia). The estimator proceeds as follows:

Inputs: R and G.

S1. Apply PCA on T~YRRT + T, where pu is a tuning parameter, and write the first p

eigenvectors as <. The estimated factors are given by V =CTR.
S2. Estimate the risk premia 0f‘7 by 7 =<Tr.
S3. Estimate the factor loading of g+ on vy by N = G‘A/T(\A/‘/}T)_l.

Outputs: /W\gp PCA _ .
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Standard PCA is applied to the covariance matrix of returns, that is 7-'RRT — 77T,
Lettau and Pelger [2020] show that assigning a larger weight > —1 to the term related to
average returns (the second term) improves the Sharpe ratio of the estimated SDF. Lettau
and Pelger [2020] derive asymptotic properties of rpPCA in a setting where all factors are
weak and N and T increase to infinity at the same rate. The setting they analyze is one
where all factors are extremely weak, so that they cannot be recovered — specifically, the
strength of weak factors remains indistinguishable from that of idiosyncratic errors as N and
T increase. Under this assumption, consistent estimation of the SDF is impossible, including
by rpPCA, which, despite being more correlated with the SDF than PCA, is also inconsis-
tent. In contrast, we preclude this extreme case from our discussion because no estimators
under consideration could achieve consistency and a harmless modeling choice would be to
treat these extremely weak factors as noise: their risk premia cannot be distinguished from
alpha. The weak-factor setting we investigate permits consistency, and allows for asymptotic
comparison of different estimators. The following proposition shows that, like PCA, rpPCA

is also inconsistent for estimating risk premia.

Proposition 12. Suppose that test asset returns follow a single-factor model in the form
of (2.1) with p =1, g¢ satisfies (2.4) with d = 1, ug and vy i.i.d. normally distributed and
independent from each other, and z; = 0. In addition, suppose that 3 satisfies N/(||B||2 T)—
B >0 and ||5|| — oo, that the factor has a non-zero risk premia, i.e., v # 0. Then for some

tuning parameter p > —1, we have

~rpPCA P _ _
A Y = w1+ By + (1= w)n(y + 71 B),

where w is a constant that depends on B, u,~y, explicitly given by equation (2.119) in the
proof.

Proposition 12 shows that this rpPCA estimator is inconsistent in the presence of a weak
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factor, with a more involved bias term compared to the above estimators. Like PCA and
PLS, this estimator is consistent when all factors are strong (B = 0). When B > 0, the
estimator is inconsistent.

Different asymptotic settings can affect the asymptotic behavior of rpPCA. For example,
if one assumes that the tuning parameter p — oo, the rpPCA estimator converges to n(y +
~v~1B) (so it still displays a bias). If we further assume  — co (while keeping 7y constant),
this estimator can be consistent as long as ny ™1 B £> 0. This suggests that rpPCA can be
robust to weak factors if the information about § from the expected return v dominates
the information from return covariances (when 4 — 00). But this is only the case if factors

have diverging Sharpe ratios, i.e., 251/27 — 00.

2.5.2  Model Assumptions

To derive the asymptotic properties of the SPCA and alternative estimators, we need the
following high-level assumptions, which can be easily verified by standard and more primi-
tive assumptions. We start with assumptions that characterize the data generating process

(DGP) of returns and factor proxies.

Assumption 7. The factor innovation V satisfies:
ol sp 772 |77V - s 5p 77V IViyax Sp log )2,

where ¥, € RPXP is a positive-definite matriz with \p (Xy) 2,1 and A (8y) S 1.

Assumption 8. The residual innovation Z satisfies:

l2h Sp 772 ||T7 227 = 5| Sp T2 | ZIlax Sp (og 7)1,
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where ¥, € R4 s g positive-definite matriz with Ay (X,) > 1 and A\ (2,) < 1. In addition,
|2vT)| <p T2

Assumptions 7 and 8 impose rather weak conditions on the time series behavior of the
factors and measurement error. Since vy and z; have a finite cross-sectional dimension, both
assumptions hold if these processes are stationary, strong mixing, and satisfy some moment

conditions.

Assumption 9. The factor loading matriz 3 satisfies

1Blvax S 1 (Bl Biro)) 2 Nos

for some index set Iy, where Ny = |I|.

Assumption 9 implies that there exists a subset of test assets, within which all latent
factors are strong. It does not imply all factors should have identical strength with respect
to the entire cross-section of assets in 7.

Next, we need the following moment conditions.

Assumption 10. The idiosyncratic component U satisfies:
[Uliax <p (o T)'? + (log N)'2, - Jlallyiax Sp 7~/ (log N)1/2.
In addition, for any non-random subset I C (N),
|| e 12+ 72, | < /e,

Assumption 10 imposes restrictions on the time-series dependence and heteroskedasticity

of uz. We do not necessarily need stationarity on u;. That said, the first two inequalities
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can be shown by some large deviation theorem, see, e.g., Fan et al. [2011]; the last two
inequalities can be shown by random matrix theory, see Bai and Silverstein [2009], if u; is

1.1.d. both in time and in the cross-section.

Assumption 11. For any non-random subset I C (N), the factor loading ﬁm and the

tdiosyncratic error U[I] satisfy the following conditions:

@) || 3p) ™28 | e 72

(i) “(ﬁff]ﬁ[f])_l/Zﬁﬂf]U[f}bT ‘ <p T2

Ifﬁﬂ}]ﬂm 15 singular, we need replace the matrix inverse above by the Moore-Penrose inverse.
Assumption 12. The following conditions hold for U, V, 3, and any non-random subset
I C(N):

(¢) HU[I}VTH <p |1[Y2T1/2, HUU}VTH <p (log N)1/2T1/2,

MAX
i) |88 28T UV T| e T

Assumption 13. The following conditions hold for U, Z, 3, and any non-random subset

I C (N):

@) |omaT| se iR, ugzT|| o Se (log N)YATY2,

MAX
(47) H(B[TI]ﬁ[J])_l/QB[TI]U[I}ZTH <p T2

Assumptions 11 - 13 resemble Assumptions A.7, A.9, and A.10 of Giglio and Xiu [2021],
except that here we impose their stronger versions which hold for any non-random subset I C
(N). Of course, these two sets of assumptions are equivalent if u; is identically distributed

along the cross-sectional dimension.
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In the main text, we denote the selected subsets in the SPCA procedure as fk, k=1,2,....
We now define their population counterparts. Because SPCA is an iterative procedure, we
need these quantities to characterize the limiting behavior of the procedure.

Without loss of generality, we consider the case ¥, = I, here. In the general case, we

can simply replace 3 and n by 5/ = BZ}/ 2 and n = nE}/ 2 in the following definitions. In

. . 1 1 1 1) .
detail, we start with ag ) = HBMWTHMAX and define I := {az(- ) > cé]\)[}, where c((ﬂ\)] is the
(¢N)th largest value in {az(l) } . . Then, we denote the largest right singular vector of

i=1,...
. k k k
5(1) = B[Il] by b;. For k > 1, we obtain aZ( ) = Hﬁm Hj<k MbjnTHMAX’ I, = {ag ) > cé]\)[}
and by, is the largest right singular vector of §y = B, Hj <k Mbj- This procedure is
(p+1)

stopped at step p (for some p that is not necessarily equal to p) if N <C In a nutshell,
I,.’s are what we will select if we do SPCA directly on 8 € RV*P and n € R¥P, while I}.’s
are obtained by SPCA on R € RV*T and G € R*T". We need the following assumption to

guarantee the selection consistency, that is, P(fk =) — 1lforany 1 <k <p.

Assumption 14. We assume that ﬁ(k); a(.k)

;. and c in the above procedure satisfy:
1) o1(B8 and o9( are distinct in the sense that there exists a constant 6 > 0 such
(k) (k)

that
o2(By) < (1+08) "' o1 (Bsy)-

(ii) cgj\)[ and Cé];\)H—l are distinct in the sense that there exists a constant o > 0 such that

Célj\)H-l < (1+ 5)_105@,

where célj\)[ and C((]I;\)H—l are the (¢N)th and (¢N + 1)th largest value in {al('k)}i:17...,N’

respectively.

(111) cglp,—l) and c are distinct in the sense that there exists a constant 6 > 0 such that

p+1 _
cfﬁv ) <(1+0 e
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Assumption 14 requires that these singular values are distinguishable, so that their (rel-
ative) differences will not vanish asymptotically. This assumption is rather mild, despite not

being very explicit.

Assumption 15. As T — o0, the following joint central limit theorem holds:

T1/2 T_lveC(ZVT) i}j\/’ 0 IT1;1 IIyo

v 0 HIQ II99

where 1111, 1119, Ilog are dp x dp, dp X p, and p X p matrices, respectively, defined as:

1
M1 = lim —E (vec(ZVT)vec(ZVT)T),
T—oo T

1
— i T
Iy = Thm TE (vec(ZVT)LVT)

1
Mg = lim —E (Vi L VT).
22 T1—>mooT ( ‘'t )

Assumption 15 characterizes the joint asymptotic distribution of ZVT and Vip. Since
the dimensions of these random processes are finite, this CLT is a standard result of a central
limit theory for mixing processes.

Blow we introduce assumptions needed for the SDF estimation. Assumption 16 ensures
that the SDF concept is well defined. Assumption 17 again can be shown by some large

deviation result and certain central limit theorem.

Assumption 16. Suppose that vy and uz are stationary time series independent of 3, and
that ¥, = Cov(v¢) and Xy = Cov(ug) satisfy Amin(Xv) 2 1 and Amax(Xy) S 1. Conse-
quently, 3 = Cov(ry) = 3,07 + Xy

Assumption 17. The time series r¢ and the SDF defined by my = 1 — bT(ry — E(r)) with
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b=X"1E(ry) satisfy:

(4)

Finally, we need the following assumption for establishing the convergence of the ridge-
based SDF estimator. It ensures that all eigenvalues of 5X, 3T are well separated. This

assumption shares the spirit with Assumption 14. A similar assumption has been adopted

-1

~

T—l

T—l

T—l

T
> (re = ) (mg — mg) — Cov(re, my) <p (log N)1/2771/2,
t=1 MAX
T
> (re =) (re — )T — Cov(rs) <p (log N)1/2771/2,
t=1 MAX
T
S e — E(my)| <p 77V,
t=1
T
ST —Em)||  <p (log N)YET2,
=1

MAX

by, e.g., Wang and Fan [2017].

Assumption 18. The eigenvalues of 53,87 are separated in the sense that

(Aj = Ajr1)/Aj =0

for some constant § > 0, where \j == \;(BXyB7) is the jth eigenvalue of B3y 3T.

2.5.3 Additional Theoretical Results

In this section, we present additional theoretical results.

2.5.3.1 Mimicking Portfolio Built From I

Proposition 13 establishes that test assets in a subset [ are adequate to serve as basis assets,

building on which a mimicking portfolio can approximate the risk premium of any observable
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factor in gy.

Proposition 13. Suppose that r¢ and g¢ follow (2.1) and (2.4), respectively, and that As-

sumption 16 holds. Then for any subset Iy C (N), we have

Cov(gt, 7 (1) CoV(ry (1))~ Elry ) = 1y + O <1/)‘min<6€}0]5[10])> '

Next, we provide a result that sheds light on the effectiveness of out-of-sample R% as a
criterion for tuning parameter selection. In the main text, we partition the complete dataset
into two segments, one for training and the other for evaluation (testing). Within the training
sample, we employ cross-validation to determine the optimal tuning parameters. A more
detailed procedure is outlined in Appendix 2.5.5. For the sake of simplicity, our theoretical
analysis is based on a “validation” procedure instead of “cross-validation.” In this context,
the phrase “out of sample” specifically refers to the validation sample, used to select the
tuning parameters.

For each combination of tuning parameter values ¢ and p, the application of SPCA to
the in-sample data produces factor estimates, with each estimate representing a portfolio.
Consequently, this process gives rise to a mimicking portfolio for g;, characterized by weights
denoted as w(p,q) € RN The expected return of this portfolio is thus estimated as
w(p, §)7. We also write the matrix forms of de-meaned 7; and g; ouf of sample as Roos €
RN *Toos and Goos € R Toos  where Tyos represents the sample size of out of sample data.

The time series R? of the ith factor’s hedging portfolio out of sample is thus given by

H(Goos)[i] - (w(ﬁa d))[i]Roos ?

H (Goos)[i] i

R(p,q) =1~

To derive theoretical results for parameter tuning using these R? values, we require

additional assumptions about the underlying DGP out of sample. In essence, the following
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assumption asserts that the DGP remains unchanged between the in-sample and out-of-

sample contexts.

Assumption 19. Assumptions 7, 8, and 10 hold when V', U, Z, and T are replaced by Vyos,

Uoos, Zoos; and Toos, respectively.

Moreover, we need the following assumption regarding the relationship between in-sample

estimates and out-of-sample DGP.

Assumption 20. Ugos, Voos, Zoos, and w = w(p, ) € RN constructed by in-sample data

satisfy:

1/2

1/2
To0s 5 /

TOOS ’

v

@il

w[@] UOOSAT H 5P

wm Upos|| <p lfi[l]

f07“ A - ‘/vOOS7 Zoos, L}-v a/ndl S d

Assumption 20 shares the same spirit of Assumptions 11 - 13. However, the key distinc-
tion lies in the direct imposition of constraints on the relationship between w and out-of-
sample data. Given that w is constructed solely from in-sample data, these conditions can
be interpreted as restrictions on the dependence between in-sample and out-of-sample data.

It is important to note that the first equality effectively imposes both an upper bound

and a lower bound on Hw[i]Uoos

. In the special case that Cov(ugest) = Xy and in-
sample data is independent of the out-of-sample data, each element in wm Uoos has variance

2
Amax(2y). Therefore, the

7

2
Amin(Za) and me

iy Sl which is bounded within me
first equality becomes a standard concentration result under the restriction 1 < Apin(Xw) <
Amax(Zu) S 1.

The next proposition shows that selecting tuning parameters using out of sample R2

leads to consistent estimates of risk premia, both in sample and out of sample:
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Proposition 14. Suppose that the out-of-sample DGP also follows (2.1) and (2.4), and

satisfies Assumptions 19-20. In addition, let p* and q* be defined by

d

2/v v
(", q") = argmaxy<p,,, geo ) B (7,0)
i=1

where pmax is some finite upper bound on the number of factors, and Q = {N~%|j =
L ngt, 0 <ap <ag--- < an, < 1 s a finite grid of tuning parameter values. If
pmax = p, N1 /Ny — 0 and log T/NT~%a — 0, under assumptions of Theorem 6,
as Toos — 00, we have w* = w(p*,q*) satisfies ||w*Foos — n7Y|| Lo m addition, if

~SPCA

q¢*Nlog N = O(T'), we have ||7; — nv’ = ||w*F — ny|| 0.

2.5.3.2 The Case of Observable Factors

The theoretical setup in this paper does not assume any knowledge of the identities of
the factors vy in (2.1). If vy corresponds to innovations of known and observable factors,
denoted by f¢, say, the Fama-French five factors, our procedure can be greatly simplified.
It is meaningful to study this case, because it is common in the empirical literature, albeit
having perfect knowledge of the factor model is a rather strong assumption.

Suppose first that factors in f; are tradable. If the factor of interest g; is one of the
factors in f; (therefore also tradable), then we can estimate the risk premium of g; by simply
taking its time-series average. If g is either spanned by f; or not tradable, then a simple
time series regression of g; onto the factors f; can recover its loading, n, which along with
the risk premia estimates of f; by their time-series averages yields the risk premium estimate
of g+. These scenarios are simple, and do not require cross-sectional regressions.

If some of the observed factors in f; are not tradable, say, GDP growth, then a cross-
sectional regression is necessary, which effectively constructs the mimicking portfolios for the

non-tradable factors. In this setting, a weak factor problem potentially arises as documented
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in the literature, see, e.g., Kan and Zhang [1999], Kleibergen [2009]. To tackle this issue, one
could adopt a simplified version of Algorithm 7, to supervise the construction of mimicking
portfolios for each of the observed non-tradable factors (in this case GDP growth), while
using residuals from the projection of test asset returns onto tradable factors as new test

assets.

2.5.3.3 The Case of Unknown Zero-beta Rate

In the theoretical setup, we focus on the case where the zero-beta rate is known. When it
is not known, we need to modify our SPCA procedure slightly. Suppose that the DGP of

returns follows

re = Yot + By + Bog + ug, (2.22)

where 7 is the zero-beta rate, and ¢ is a vector of 1s.
To proceed, we multiply M, = Iy — N~1uT, from the left on both sides of equation

(2.22). This results in a similar form of (2.1):

it = By + Por + iy,

where a; = M,a, for a = r, 3, and u. Subsequently, we can readily apply Algorithm 7 to
the transformed returns, 7. To better grasp the reasoning behind this adjustment, let us
consider a one-factor scenario. Choosing assets with strong absolute correlations with 7
amounts to selecting assets characterized by large magnitudes of 3. This choice, in turn,

leads to the selection of assets that exhibit high cross-sectional dispersion in their g values.
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2.5.4  Additional Simulation Results

In this section, we present a scenario akin to situation c) in the simulation setting of the
main text, with the key distinction being that the final factor in this scenario is purely
random noise. To elaborate, the DGP of r; is driven by the first three factors. However,
econometricians, who lack knowledge of the true model, include these three factors along with
a random noise variable in their attempt to estimate risk premia. This scenario resembles a
setting extensively discussed by Kan and Zhang [1999] and Kleibergen [2009].

For the sake of comparison, both PLS and SPCA incorporate this random noise variable
alongside the aforementioned three factors, considering them collectively as g¢. The his-
tograms provided in Figure 2.4 depicting the estimated risk premiums associated with this
noise factor reveal that SPCA, PCA, PLS, rpPCA, Lasso, and Ridge methods produce esti-
mates around zero — the true value. The consistency arises because none of these methods
entail a cross-sectional regression on the estimated beta of the noise factor. In contrast, the
four-split and two-pass methods seem to display substantial variances in this context.

Finally, we investigate the statistical power of SPCA in strong and weak cases, respec-
tively, and draw a comparative analysis with PCA. We adopt the setting in scenario c) of
the main text, as the case of strong factors. To simulate a weak factor scenario, we simply
replace @ = 0.5 in ¢) by a = 0.1. We consider a null hypothesis that the risk premium of
V' is zero, whereas the true risk premium of V ranges from -0.01 to 0.01. In Figure 2.5,
we present the rejection rates for both SPCA and PCA. The left panel demonstrates that
when all factors are strong, SPCA and PCA yield almost identical results. However, the
right panel indicates that SPCA exhibits greater power than PCA across most ranges of risk
premium values. The rejection rate for SPCA is around 5% when the null hypothesis is true,

and it escalates to 100% as the actual risk premium value diverges from zero.
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SPCA
PCA
PLS

rpPCA

Lasso
Ridge
Four-split

Two-pass

Figure 2.4: Histogram of Risk Premium Estimates of the noise factor

Note: The figure provides histograms of the risk premium estimates of the noise variable for eight estima-
tors we compare, including SPCA, PCA, PLS, rpPCA, Lasso, Ridge, four-split, and the standard two-pass
estimator. We simulate a model of returns driven by three strong factors, whereas g; includes a pure noise
variable, in addition to these three factors. All estimators attempt to estimate risk premia for the three
factors and the noise variable altogether. We set N = 1,000 and 7' = 240. The number of Monte Carlo

repetitions is 1,000.
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Figure 2.5: Rejection Rate

Note: We simulate the model in scenario c) of the main text, using two different values for the parameter
a: 0.5 for the strong factor case, and 0.1 for the weak factor case. We fix N = 1,000 and 7" = 240. The null

hypothesis we test is that the risk premium of V is equal to zero, whereas its actual value varies between
-0.01 to 0.01. We conduct a total of 1,000 Monte Carlo repetitions.
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2.5.5 Implementation Details

In this section we detail the steps to compute the out-of-sample R? used in tuning parameter

selection in the empirical analysis.

1. Inputs

(a) Training sample data: returns for the N assets and target factor g, for the first

half of the sample

(b) Evaluation sample data: returns for the N assets and target factor g, for the

second half of the sample

2. For each value of the number of factors p, execute the following steps:

(a) Run 100 times the following cross-validation steps:

ii.

1il.

1v.

Divide the training sample data into three folds (subsamples), chosen ran-
domly without replacement

Choose the first of the three folds as validation (and the other two folds as
training)

For each value of |gN| between 100 and the maximum number of assets in
the universe N in increments of 50:

A. Estimate SPCA in the two training folds using p and ¢V |

B. Compute the R? of the mimicking portfolio in the validation fold
Repeat steps ii and iii using folds 2 and then 3 as validation samples (with
the remaining two folds as training in each case)

Find the tuning parameter |¢N| (and therefore the corresponding ¢) that

maximizes the average R? in the validation samples across the three folds

(b) Choose |¢N | as the median of the 100 tuning choices obtained across the cross-

validation runs in (a)
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(c) Estimate SPCA in the training sample using the tuning parameters p and the
choice of [¢N | from (b).

(d) Compute the out-of-sample R? achieved by the SPCA mimicking portfolio esti-

mated in (c¢) in the evaluation sample.

(e) Repeat (a)-(d) for every value of p.

2.6 Mathematical Proofs

2.6.1 Proofs from Section 2.2.2

2.6.1.1 Proof of Proposition 7

Proof. Note that for any orthogonal matrix I' € RV*N | the estimators based on PCA, PLS
and Ridge on R’ = 'R are the same as those based on R. Thus, without loss of generality,
we can assume [3 = ()\1/2, 0,---,0)T, where A = HﬁHQ The same simplifying assumption is
adopted in the proofs of Propositions 7, 10, and 11. Also, since z = 0, G = nV.
We start with %D CA We write R in the following form:
I VAV + T4
Re BV +0 = , (2.23)

Uy
where U is the first row of U and Us contains the remaining rows. Correspondingly, we
write the largest left singular vector of R as ¢ = (¢, E\ZT)T, where ¢ is the first element of ¢
and ¢ is a vector of the remaining N — 1 entries of <. Recall that in Algorithm 5, we denote
E and < as the largest right and left singular vectors of R with the singular value VT /):, SO

that by simple algebra we have

~ (\/XV—I-Ul)E

(2.24)



Since the entries of U and V are i.i.d N(0, 1), we have
T YWV 1 = T W (I - T hpl)VT =1 < |T7WWVT 1)+ o2 <p T2,

where we use large deviation results [T 1VVT — 1| <p T~1/2 and |5| <p T~/2 in the last
equation. This equation also implies that HVH T <pl.

Similarly, we can get \T_1171U1T -1 <p T2 and HUlH —VT <p 1.

In addition, by Lemma A.1 in Wang and Fan [2017|, we have HN_lUTU - ]IT” <p
\/T/—N , which leads to

HN*UTU (I — T*HT@H - H(]IT — T L) (NTLUTU — Tg) (I — T*HTL})H

<p\/T/N.

Next, by direct calculation using the above inequalities we obtain

VTU1 + [jir‘_/ n Uty — N(]IT — T_ILTL;>
TV T

1 VNT 1
SP =+ P
VT PR

Together with (2.23), we have

RTR VIV N(p =T i)

TA T TA

<5 % (2.25)

Because of this result, to study the eigenstructure of RTR/(T)), we need analyze the eigen-

structure of

ViV N(Ip— T_leL}w) ViV . 1

M :

where B = N/(T'\) and the assumption of the proposition implies that B — B for a constant
B.
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Note that Vip = 0, the eigenvalues of M can be explicitly given by:

Ni=1{B 2<i<T—1:> (2.26)

and the first eigenvector is VT/ ||V T||. Since the largest eigenvalue of RTR/(T\) is /):/ A with
its corresponding eigenvector E, Weyl’s theorem yields that

N VVT 1 N 1 1
~=——+B+0p|—=|=14+B+0p|—=+—=, 2.27
T P(ﬁ) P(\/X ﬁ) (227

and the sin-theta theorem in Davis and Kahan [1970] implies that

1

[Py =g = |Vrvn v -E 5

(2.28)

which implies that (VV)"L(VE)2 = ETVT(VV)"IWE = 1+ Op(A~Y/2 + T71/2). Together
with [TV VT — 1| < T2, we have

V¢l ( 11 >

—=14+0p|—=+—7=). 2.29

v TR (229
It is easy to observe that the sign of E plays no role in the estimator ?5 CA, we can choose
5 such that

113 1 1

—=14+0p|—=+—7=]. 2.30

Nk p ( : T) (2.30)
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Recall that the risk premium estimator is 7P CA = = 17, where

s G as ST (2.31)
N=-—= andy=-"7x :
VT v
Using G = nV and (2.30), we have
= +O<1+1) (2.32)
n=n P I VT) .
Write
N Ty T + cTa Ta
7= T2 -0 T 0 T 239

where we use 8 = (V/),0,...,0)T in the last step. Now we analyze the two terms on the

right hand side of (2.33) one by one. For the first term, using (2.24), we have

VG MV eAV00E ) (VE | ThE
A x VT o\ v

Using (2.27) and (2.30) and HU1|| <p VT, it follows that

VG L 1
o ()

For the second term in (2.33), using (2.24) again, we can write

Ta QU 52TU2LT <1U1LT ET(lp — T~ LTLT)UQTU2LT

Vi VA TV T\/_ T3/2)

The condition that entries of U are independent N'(0,1) implies that ||Ujep| <p VT, with

(2.35)

X//\ P, 14 B as shown in (2.27), the first term in (2.35) is of order Op(T~Y2X\~1/2). For
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the second term in (2.35), using (N — 1)_1U2TU2 —1Ir|| Sp /T/N, we have

ET(Ip — T~ L gl UF Uiy

T3/2)
(N =D&y — T Yl )er N —1 _
OB Y
N—1 1 1
_ N =) WU, — T Hg —
= H( ) Uy U — Iy PR

which leads to [A~1/2¢Ta| <p A71/2. Plugging this and (2.34) into (2.33), we obtain

. SIr v 1 1
7:—A2—~+OP<—+—), 2.36
N EEY: VT (2:36)
and thus ?50‘4 N (1+ B)" 1y by (2.32), (2.36) and B — B. O

2.6.1.2 Proof of Proposition 8

Proof. Consider the set I = {[8};| = Byny}, where [B|(,ny is the (¢NV)th largest value in
{w[iﬂ}ie(N)' Since

T=IRGT — g7 = 3 (T_1VVT - 1) 0T+ T OV T + T8V 2T + T 02T,
we have

154 —1yrv; 1|77
=186 7|, S VBl T777T = 11l + T [0y

+ T Blliax V2T + T H|TZT| [y ax Sp (log N)Y2T712,

In other words, the difference between T-LRGT and BnT for all test assets is bounded by
Op ((log N)l/ZT_1/2>, which is op(1) under our assumption.

On the other hand, with the assumption that ||5]|yfax < 1 and the definition of [5]¢n,
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2
we have HB[IO} H SN+ (Ng— qN)|5|%qN}. Together with the assumption that ¢/N/Ng — 0
and 4z,

Blggn41y < (1+ 5)_115]{(1]\7}, we have that the difference between [B|(n 1) and Bl n)

= /Ny, it leads to |ﬂ\%qN} > ||510H2 /Np =< 1. Then, with the assumption that

should be at the same rate as [B|¢,yy 2 1, which is larger than the difference between
T~1RGT and BnT. Therefore, with probability approaching one, we have I = 1. In what
follows, we only need consider the case of I=1.

Since gN/Ny — 0, by the definition of I, we have HB[I] H /\/m > HB[IO] H /\/m Together
= /N, Hﬁ[IO]H — oo and |I| = ¢N — oo, we have

with the assumption that H 5[10]‘
2

|I|/(T HB[I] H ) — 0 and Hﬁm H — 00. Now compared to the case with PCA, the expansion

on %gp CA resembles that of (2.33), except for an extra term that depends on Z and the

restriction of 7 on [:

_ - . (2.37)

2
In restriction to the smaller set I, the first term matches exactly the case of |I|/(T H A H ) —

0 = B in Proposition 7, which yields

nvEsTrn

Nl 177y + op(1).

We now analyze the second term in (2.37). As shown in (2.36), we have

N

so to prove that SPCA is consistent in this case, it is sufficient to show that T-1/2 HZEH L
0, where E is the largest right singular vector of RU]' Similar to the proof of (2.28) in

Proposition 7, we can show that the difference between projection matrices, P> and Py is

§
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small by sin-theta theorem. That is to say, we have HE@ - VT(VVT)_1VH LN} Then,

with the fact that
|zvr@wvn | < (izvT| | ren | V)] sp TV x T < T2 gp
we have T~1/2{| Z€7| £+ 0. Consequently,
] = g < 7 e ] 2o

Hence, z; does not affect the consistency of the SPCA estimator. This completes the proof.

]

2.6.1.3 Proof of Theorem 6

Proof. It is sufficient to consider the case X, = I,. Otherwise, we can do transformation
1 1 _

_1 1 1 1
Vi =3%,2%V, ﬁfl] = A1 »2,n' =n¥% and v/ = ¥, 2v. All the Assumptions 7-14 still hold

for the new V’, Bf 1 Therefore, we only need analyze the case of ¥y = I,.
For notation simplicity, throughout the proofs of Theorems 6-8, we use E( k) = (R( k)) ]
k
to denote the matrix on which we perform SVD in each step of Algorithm 7. Similarly, we

use ?(k) = (f(k)> ~ . The first left and right singular vectors of E(k) are denoted by
1]

~

S(k) and E(k), while the largest singular value of E(k) is denoted by Tx(k). As a result,

N s 112
_ Rpin -~ Byt
T)\(k) T)\(k)

Using the above notation, our estimated factor at k-th step is ‘A/(k) = \/Té?k) e RI*T

the risk premium of this factor is given by ’y\(k) = X(_kl)/ QEETk)?(k), the loading matrix of R on
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this factor is B(k) = T—1/2R§(,€), and the loading of G on this factor is ﬁ(k) = T_l/QC_}g(k)
By footnote 24, we can use G instead of G(k:) in Algorithm 7 and throughout the proof.

We denote 77 = (ﬁ(l), o ,ﬁ@)) and 7 = (3(1), . ﬁ(ﬁ))T, so the risk premium estimator is

A =17,
To see more clear the relationship between E( k) and R, we define matrix D( k) € RHkIXN
iteratively:
k—1 e .
Dy =1 = 3 R £y 020
(k) = I] [T >0 ™ =
i=1 TA¢

with D( 1) = ]I[A]. We can show by induction that E( k) = D( )R. In fact, by Lemma 15, we

have 5 f = 0. With V =T ? and the definition of R( k) we have

k—1 k—1
= (F 7 3l
Ry = (R(k)>[f = Ry [T Mr =Ry, (]IT § & 5(2) (2.39)

for k > 1 and when k = 1, R(j) = R = Bz V + Uy, - Using (2.38), if Ry = DR for

i < k, we can write (2.39) as

S
~ = ~ o | 5 52 )t
By = By | Ir = 2 &kl | =Bipy = 2 R~ =—=DwR  (240)
=1 =1 T)\(Z)
As }N%(l) R[Iﬂ = D( )R holds immediately by the definition, we have E(k) = D(k)R by

induction. If we further define E(k) = D(k)ﬂ and ﬁ(k;) = D(k)[j, then E(k) can be written in

the form E(k) = E(k)f/ + ﬁ(k:)- Similarly, we can write

(k) = By (Y +0) + Uy, (2.41)

where ?(k) = D(k)f and ﬂ(k) = D(k)ﬂ .
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We also create similar representations for G k) = G Hf:ll M‘A/T . Specifically, we have
©)

k—1
~ _ = T
Gy =G | Ir - - SONG)
k=1 ?iﬁfz k=l gTigif/ k=1 32172
G =Y Gy 7+ 27— 3 66 - 3 G
i=1 TAy) i=1 TAy  i=1 TAy)
k-1 QN k-1 au
B = C()P0) | 5 = ~ ()7 (@)
= 77—2G<Z) V+ 17— G(z) —
(1) (i)
In light of this equation, if we define
L QNG _ k-1 T ﬁ(z)
ﬁ(k) =n— G (1) 0 ) and Z(k) = Z - é (1) (0) —, (2.42)
i-1 Ty i=1 TA)

é(k) can be written as é(k) = ﬁ(k)l_/ + Z(k)-
To sum up, we have defined ]:’;(k),?(k),g(k), ﬁ(k)ﬁ(k)vﬁ(k) and Z(k) at the kth step of
the algorithm. Note that B(k) e RIkI<P anq ﬁ(k) € RI*P can be viewed as the loading of

}N%(k) and CNJ(k) on V, but they are not the same as the estimators defined in Algorithm 7,
B(k) e RV*L and ﬁ(k) € R4 which are the estimated loadings of R and G on the kth
factor.

By Lemma 17, we have P(I, = I;;) — 1 for k < j and P(p = §) — 1. Thus, we can
impose that I, i = I for any k and p = p in what follows. In addition, Lemma 16(ii) and
Lemma 17(iii) imply that X(k) = gN and that |I;.| = ¢N. Therefore, the assumptions of
Lemmas 19-22 hold.

Since our algorithm stops at p, it implies that at most ¢N — 1 test assets satisfy

T Hé(ﬁﬂ)éﬁ] MAX

169



Let S denote the set of these assets. For asset ¢ € S, we have

[y < |G [ 5
D] g ~ D) |laax ~
Consider the test assets in [, we have
S rtéo 5= S G i s S |m 6 R
G+ i || p — @+ M| g @+ i) || p
1€y i€lpnNS i€lpgNSe
<p qN + ANy = o (Np) (2.43)

where we use the the assumptions ¢ — 0 and ¢N/Ny — 0 in the last equation. Consequently,

1~ ST . 1/2 .

(2.43) leads to HT G(ﬁJrl)RHO]H = op(Ny'"). Write

~ pT  _ ~ Tan ~ vaial Z % 7 7T

G 1) Ry = M+1)VV T Bito) + 50)V Uy + Zo40)V it + 24y Uy (244)
Using (2.43), (2.44) and Lemma 21(i)(ii), we have

_ - =1\l _ 1/2
H"(ﬁ 1) (V7B + VT ) H = op (Ny/*T). (2.45)

Also, using Assumption 12, Lemma 14(i) and Weyl’s theorem, we have

7oV V511 + V) = op(T il < [VO |+ 71777 =1y [ |

SPNé/QTl/Q‘

Since Assumption 9 implies that oy(57,]) =< N5/2, we have O’p(‘_/VT/B[IO]_’_VU[TZ-O]) =p Né/QT.

Using this result, (2.45) and the inequality Hﬁ(ﬁ‘H) <V‘7T6[Io] + VU[TIO]> H > ap(VVTﬁ[IO] +
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Hﬁ(ﬁﬂ) H 5 0. That is, by definition of 75,1 in (2.42),

VO |

= op(1). (2.46)

P ShBu
=30 e~ || = op(1). (2.47)
i=1 TAy)
Recall that our final estimator of v, is
b Py P B P g
T = 20 =2 G L Y Gl 4 )+ D Gy~
i=1 i=1 T i=1 TA. i=1 T
(i) (i) (4)
(2.48)
Combining (2.47) and (2.48), we have
p gT,g.) Pl g
Iy — 77l < Z O +y Gg(i)% +op(1). (2.49)
i=1 \ / T>‘(i) i=1 T/\(z')

Using HC_JH <p T2, Lemma 20(ii), Lemma 22(i) and the assumptions that gN — oo, we

have
B 8
G ()A()Tf S‘sz ()A( [9]] = op(1)
TX; T,
() ()
and
ST | )
G{iy—F—| < HGS(Z — || = op(1).




Plugging them into (2.49) completes the proof.

2.6.1.4 Proof of Theorem 7

To derive the asymptotic distribution, we need a more intricate analysis. As in the proof
of Theorem 6, we impose that p = p and 1, i = Ij., since Lemma 17 shows that both events
occur with probability approaching 1.

Recall that in Algorithm 7 the SPCA estimator is written as

5

~SPCA A~ ~ o~

Vgt =T =D ),
k=1

where p is the number of factors selected and, with the notation defined in the proof of

Theorem 6,
= =2 5o T~ T 3 AT~
. w Ve Zm ST SBw (0 Sy
M) =~ 77 = g7 + T V)= —7=— = = + ———. (2.50)
VI VT VT A) k) Ak)
Denote Hy = (h11, ..., hﬁl)? Hy = (hio, ..., hm), where
hiy =T 2VE ), o = ;(7{1)/25&)7]{). (2.51)
Therefore, we can write (2.50) as
. _A(k) - T _ 6(/c)a(/f)
Ny —nhir = —7=" k) — ha(¥ +0) = —= (2.52)
(k) JT (k) — "k2 i

Since E(k) and 6\(k) are the largest singular vectors of E(k) with the singular value ,/Tx(k),
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we have

Rpém ~  BLS
k) = (k)f(k)7 ) = (k)A(k). (2.53)
From (2.53), we have
Z&wy _ 2 Bl _ 20 Bt V0w _zvT, 20T
T U T & ~ = et ——
VI VT 1Ry, Awy Ty Am) T\ Aw)
Using Lemma 20(ii), we have
Gl ONC] PR ST C) PR

~P
/_ = T " gN

Then, along with (2.52) and Lemma 14(vi), the above equations lead to

ZVT 11
H -2 __H — 92.54
n—nHp 7 Ho PT+qN’ (2.54)
and
15— Yy — BJ0]| Sp > + —. (2.55)
2 2 ~ T qN

Combining (2.54) and (2.55), with ||H1|| <p 1, ||Hz|| Sp 1 from Lemma 22 and Assumptions

7, 8, we have

A4l

1
Hm nH1HJ (v +7v) — =———HaHJ~

S (2.56)

T ’NPT gN’

As shown in Lemma 16(iv), under the assumption that A\,(nTn) 2 1, we have p = p.

Together with P(p = p) — 1, we can impose that p = p for derivations below. To analyze
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H1H2T and HQHQT in (2.56), using Lemma 22 and the assumptions on ¢, we have
|H3 Hy = 1|| < || HT Ho = || + |[Hy — Ho| || Ha|| Sp 771/ (2.57)
Then, for the term H2H2T, we have
T — . T _ . T — T -1/2
[HoHJ =Ty = oo |\ HE) — 1] = oo |\ (H Ha) — 1| = [ Ha ~ Ty Sp 7
(2.58)

since Hy is a p X p matrix.

For the term HlHQT, by Lemma 22, we have

1 1
[ H Hy —Tp|| Sp erq_N' (2.59)

In addition, we have

op(te) | o] ~ 1| < [[(HoH] — 1) | = |[Ha( BTy — 1) < |1l | ] s ~ Ty
(2.60)

Since (2.57) implies that oy(Hs)/op(Hz) = A (HoHJ)Y? /N\p(HoHI)'/? <p 1, (2.59) and
(2.60) give

o1(Ho)
Up(HQ)

11
|2 Hy — 1| <p TN (2.61)

||H1H2T _]IPH = HH2H1T _HpH <

Combining (2.56), (2.58), (2.61) and the assumption ¢ ! N~1T12 - 0, we obtain

1 1
7 - 0) =T 2V Sp 7 + - 2.62
Hm n(y +0) RS- (2.62)
(2.62) implies that |77 —nv|| <p T2 + (¢N)~!. In addition, with the assumption
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¢ INTITY/2 5 0, (2.62) becomes |77 — n(y + ) — T_lZVTvH = op(T~1/2). Using Delta
method and Assumption 15, it is straightforward to obtain: T (77 — 1) NV (0,®),
where ® is as defined in Theorem 7. O

2.6.2 Proofs from Section 2.2.3

2.6.2.1 Proof of Theorem 8

Proof. As shown in the proof of Theorem 7, we have P(p = p) — 1 and P(I), = I;;) — 1 for
k < p. Thus, we impose p = p = p and fk = I;. below. Using the same notation as in the

proof of Theorem 7 and (2.55), we have
1 & IUPS NP 2 1| oo 1/ >
= > lme =il = = |V75 = V|| = 7 |VTEHTy + 0p(T712) = VT
t=1
1) e
- = H\/TQ*HQTV - va +0p (T, (263)

where g: (g(l), R ’g(p))'
Using (2.53), we can write

W) I = Vﬁr L 5}@% 2.6
(k)

Using Lemma 20(i), Lemma 22(i) and X(k) =p | 1|, ] = gN, we can derive from (2.64)

\/Tg(k)hgz =

that

ﬁg(k)hgz = VThyohly + Op (q_l/QN—l/QTl/2 i T—l/z) .
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That is,
VTEH] = VTH,H] + Op <q—1/2N—1/2T1/ 24 T—1/2) . (2.65)
Therefore, using (2.65), (2.58) and the assumptions on ¢, we have

T2 |\ VTEHTy - VTa|| $p T2 [VTH T = VT )| + g~ Y2N Y2 4 771
Sp 72|V ||~y + g7 ANTY2 4 7!

<p g V2N-V2 12,

Therefore, it follows from (2.63) that

1
+ —.

T

1 2
2 _a2 = 2T T
T;Wt | HV’V VVH NPT N

In light of the assumptions on ¢, we can choose ¢ such that gN 2 Ny/log Ny, which leads to

T
1 N 1 log N
T2|mt—mt|2§P_+ o0

T N
]
2.6.2.2 Proof of Proposition 9
Proof. Write B =Yy BEI/ 2 then by definition m; can be written as
= 1= ATATE B+ ) = 14780 2T (BB +1y) (B P+ 5 ),
(2.66)
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or in matrix form

M =1-ATETE BV +U) = 1 -7 T (BT 4 1y) (B Y 4 3,

(2.67)

where M = (my,...,mp), V= (v1,...,op) and U = (uq,...,us). Suppose that the SVD
of B can be written as 3 = BAL/2T, where B € RN*P and T' € RPXP are matrices of left
and right singular vectors, AY2 = diag(A; 1/ 2 = ,lej/ 2) is a diagonal matrix and XZ is the
ith ecigenvalue of 5T3. Write B = (b1, ,bp), then bZTbj =0 for i # j. Using the SVD of 3,

we have
3T (33T L pTAl2 -lpT
B (55 +11N> — ITAY2(A 4+ 1,)7 1 BT.
Hence, we have

T (3FT 1) AL,

= a2 + 1) Al |
(2.68)
- HA1/2(A L) A2 - ]IPH <3l

and

(7 1) 2 = [ s | e 3 s o

(2.69)

1/2

2
Since Cov(BTY,, ' “ut) = I, we have E <HBTZ_1/2UHF> = pT', which leads to

HBTE;1/2UH HBTZ 1/2UH <p T2, (2.70)
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2;1/2VH <p T1/2. Then, with Assumption 16, (2.67), (2.68),

For the same reason, we have

(2.69), and (2.70), we have

T
> Ime — g2
t_

P (5 () i) |
i

,SP Tl/Qs\/;l/Q,

AT BT (BT ) 2UH

512

G (5@ ty) BT,

V\H

B (3 1)

which in turn leads to

—Z\mt mil* Sp Ay

where

2287 85 %) 2 Ap (8808 Amin(E") =p Ap(BTH) Ak (Zu) 2 Ap(B78),

Xp =M <
which concludes the proof. O

2.6.2.3 Proof of Theorem 9(a)

Proof. For Ridge SDF estimator m;, we have

T

1 . | T IPN 1 2

= :|mt—mt|2:?HRT(E+MHN) 1r—va . (2.71)
t=1
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Recall that in the proof of Proposition 11, we have a condensed form of SVD on R:
B — JTAV2ET 4 TR 28T
R = VTSN2eT + VTSN el

where A/2 is the diagonal matrix of the first p singular values of T-12R and S, E are the

corresponding left and right singular vectors. & € RNVXHK 5* e RTXE are the singular

GRKXK

. .. . . ~1/2
vectors corresponding to the remaining K nonzero singular values in A*/ , Where

K = min{N,T — 1} — p. Using this representation, (2.71) becomes

T
S lme = el =||(VTET + UTGR + uD)IT7 = VIy 4 (VTBT + O3B+ D)1l
t=1

|
<[[VTETER + D) TIeT By — VT + ||V TBTER + ut) T (57 + )

|

+ HUT@(K* + uI)_la,TFH +|VTy = VT4 (2.72)

+ |[T7R + w71+ | VTR 4 )

We analyze these terms one-by-one. Firstly, we consider the properties of ¢ and E Let ¢
and Ek denote the kth columns of ¢ and E, respectively. Note that ;. and E 1 can be regarded
as the {3,y and E(k) in our SPCA procedure with I;, = (N), where ¢, and &), are the singular
vectors at the kth stage. This means we can reuse some of the proofs without repeating
essentially the same arguments therein.

Similar to (2.51), we define

hpy =T V2VE, Ty = X;;mﬂT?k, (2.73)
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and H = (izn, e ﬁpl), Hy = (h12; ..., hp2). Using Lemma 27, we can obtain

Hﬁlﬁg . ]IpH Sp TN+ M TN 4 1), Hm - H2H Sp T V24 0 T IN +1),

(2.74)

Using (2.74) and Lemma 27(i), we have HI':IQI:I2T — ]IpH < H]:Iﬂ:[; — HpH—l—Hﬁl — I:IQH Hﬁg” <p

712 4 )\Ijl(T_lN + 1), which, by (2.73), is equivalent to

1 N+T

TA-lcTg 1 H <p et 2.75
HB b=l zp 77 X (2.75)
Consequently, with Lemma 24 and HBTGA\_UQH = HH2H <p 1, we have
‘ BTa(K + /u)_ TR,
~ ~ ~ -1 < ~ ~
< ' BTSA1/2 <A1/2 (R+ur) A2 - ]Ip> A-12e1g ' + || - |
(2.76)

< orea-12|f|

AL/2 (7\ n m)_l A2 HpH + HBTGT\—%‘TB - ]IpH

where we use

RV2 (R4 pur)  RV2 -1,

With ||V <p TY2 from Lemma 14, it implies from (2.76) that the first term in (2.72)

= maxjgp(/):j +u0) " <p )\gl,u in the last step.

can be bounded:

N+T+WT
\/T/\p )‘P .

|77876@ + un) 1Ty — VT Sp 1+
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For the second term in (2.72), using Lemma 24, we have

_ o~ 1. _ o~ ~ ~ B N
HVTﬂTc(A + D)1 (B0 + a)H <||V| HﬁTgA 1/2H HAW(A + ) 1” |60 +all <p [+
P
(2.77)
Next, recall that ¢ and E* are singular vectors of R, we have
VTETS + UTS = BTG = VTEAY (2.78)

By Weyl’s theorem and Assumption 10, we have
_ _ _ _ _ N
o (T 2R) = a1 2eV) < T2 R = pV| = 7712 |0) Sp /75 +1, (279)

for j < min{N,T}. Since Rank(Tfl/Qﬁ‘_/) < p, we have aj(T*1/2BV) =0 for j > p and

thus

~ _ N
A}/QH — 0,1 (T7V2R) <p \/; Y (2.80)

|

Left multiplying (2.78) by V/, we obtain

VBTG = VIVEAL? — VTS (2.81)
Together with (2.80) and Assumption 12, we have

Il < | (v (VT VIR + v o) se \/¥+ 1, (2.82)
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and consequently,

N
6Tl < T80 I+ + [Tl S o/ 41 25

Using (2.82), (2.83), Lemma 26(iv) and ||U|| <p N2 4 T2 we have

N+T
|6 e ) @Il Se = 289)
and
N+T
|oe e+ wny71ST7| < 0| R+ ey 7| T S T (2.85)
Using Lemma 26(iii), we have
H[A\—l/zgf” <p Hj\—mgﬁH n HK—1/26T11H <pl4 N+T <p 1,
where we use ‘ 1/2”TBH = HHQH <p 1. Then, with Lemma 26(iv), we have
T N T
|O7e@ + pury=temi| < (o7 || R+ ury TRV R ;A - (2.86)
P

Plugging (2.76), (2.77), (2.84), (2.85) and (2.86) into (2.72) and using ||V — V|| <p 1, we

obtain

_zT]m ol w1 N+T N7
= tNPv T TN, 212
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With p? = T_l/\p(N + T'), we achieve the best rate from the above bound:

T
1 , 1 N4T
_ — <5
Tt_gllmt | NPT+ ™,

2.6.2.4 Proof of Theorem 9(b)

Proof. i. (Slow rate) Note that (2.14) is equivalent to a constrained optimization problem:
> les1/2-  a1/2,]1? :
b:argmbmHE F—X bH ., subject to ||b|l; < p,

for some tuning parameter p. This implies that the vector of the true SDF loadings, b,

satisfies that
s-1/2.  a1/2?  lle-1/2.  a1/2,])? >
HE r—23 bH < HE r—23 bH and Hle < u, for somep > s.
Equivalently, expanding the left- and right-hand sides of the above we have
BT — bTSb < 2(b — b)TF,

which leads to

b= 0)TS0b—b) <200 —b)T(7 — ) < 2 HE— le - f:b” .
(0. @]
With a tuning parameter p < s, we have
b —b)TS(0 - ) §s‘f—§]b“ . (2.87)
o0
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With Lemma 28, we have

log N
T

~ —~ 2
HEl/Q(b— b)H <p s (2.88)

Therefore, we have
2
> [ = -1 - E(r)|

1 T
2
=5 el =
t=1

<

M% 1 M’ﬂ

67—+ 1ZMT I
> log N log N
<2|[S126 - o)+ 21008 I — B 1, Sp 5y E + 2B

Since s < p 2 ||b||1, plugging in the optimal rate choice s =< ||b||;, we complete the proof.

N o
1l
N

ii. (Fast rate) Since b is the optimal solution of the minimization problem, it implies that
bTSb — 26T 4+ bTSb + g [|bl|; > DTS — 2677 + bTEb + ul[b]] 1. (2.89)
Rewrite (2.89) as
(b—b)TE(b—b) < 2(b— b)T(F — Tb) + (bl — [BlI1)- (2.90)
Ifpu>4 HT — Eb” (2.90) becomes

~ ~ 2 ~
[B726-n]" <2+

P sz + u(llbll; = I[oll)
0

1 - ~
<gu|p—p|, + utlelly = 151). (2:91)
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Let J denote the support of /l;, then (2.91) can be written as

[£26 -0l <gi B ol + g el + B =05, o
2 1 2 1 1 1

3 |~ 1 |~
2MH 7= bl gH|bre|, (2.92)

Define b* = b — b, then (2.92) implies that 3 ||[b%]|, > ||b%||,. and we have

- ) .
ME-DF sog Wl flog ¥ ], o e
161 MAX-{|o*| 1] r

Consequently, with the assumption |J|/log N/T — 0 and Ayin(2) 2 1, we have

PTSVE bR bT(S — S)b*
a2 T e 2
Il 16| 16

zpl

Therefore, we have
~ ~ 2 ~ ~ 2
2 2 — 2 _
[S426 )| = 780 zp 5712 = o3I = 1717 oyl = 117 B =] - (298)
Plugging (2.93) into (2.92), we have

s

3 [~ o~
< Sulfpr s, Sp g 2{| 20 - ).
Thus,

~ —~ 2
|20 - )| sp w211 (2.94)

Choosing =4 Hf — in and by Lemma 28, we obtain
(0.@]

log N

HEW = b)H <p || (2.95)
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Similar to the slow rate case, we have

1 & 1 |- 2
= >l = il = 3[BT = 7) = BTy — E(r)|
t=1 t=1
2 O | ~ 2 o L )
S ) (UGl =) Y R o]
t=1 t=1

log N
T

S1/2% 2 T(7 2
<2||Z20 - v)||” + 2057 ~ eI Sp 1l

2.6.2.5 Proof of Theorem 10

Proof. To simplify the notation, we assume X, = I, without loss of generality and define a

function sr(+):

E(le’t)
sr(ry) = arg max ————.
0£beRN \/ Var(bTz¢)

In other words, sr(x¢) is the optimal Sharpe ratio we can get from z;. It is well known

that sr(z;) = /E(z¢)TCov(z¢) 1E(z¢) and the optimal value can be achieved by b =

Cov(xy) " E(z;), where Cov(z;)~! can be replaced by the MoorePenrose inverse if it is

singular.
Recall that our estimated factors are F ( (k)/ 1 A = g R/ \ /A (k)- Define
B = (by,...,b5)7T € RPN where b; = E\ ,/ (k)- From Lemma 20(i), we have

|B|| = Op(1). With the notation of B, the estlmated factors can be written as F(k) = BR
and the SDF loading we get from SPCA is 4TB. Therefore, the out-of-sample Sharpe ratio

for SPCA estimator is sr(yTBr¢). To prove that imy 7o st(YTBre) > /7TPy17y, we first

show that limy 7,0 st(Brt) > sr(n(ve + 7)) = /7 TBy17.
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The definition of sr(Br¢) implies that

E(bThB
sr(Bry) > (bTBre)

~ /Var(bTnBry) ’

for any b € RY Therefore, sr(Bry) > sr(fjBry). Note that (2.46) can be written as

7B — 1|l = op(1) and

nBry —n(ve + ) = BB —n)(ve +7v) + NBuy,

with || B|| = op(1), we have |[7Bry — n(vi +7)|| = op(1). Consequently, for any b € RY,
E(bTnBry) — E(bTn(ve + 7)) and Cov(bTnBr¢) — Cov(bTn(vs + 7)). Therefore, sr(nBry) Lt

st(n(ve +7)).

sr(n(ve +y)) can be calculated by E(n(vt + 7)) = ny and Cov(n(vt + 7)) = nnT we have

se(n(ve +7)) = \/E((ve + 7)) TCov(n(v + 7))~ En(ve + 7))

= \/anT(nnT)*lm = /1 Pyry

Again, ('rmT)_1 here will be the Moore-Perose inverse if it is singular. To sum up, we have

lim y 7_yo0 sT(Brt) > st(n(ve+7)) = /7TPy17y. Then, we will show that the optimal Sharpe
ratio from Bry can be achieved approximately by the portfolio 4T Bry.
Note that B = H; from the definition of Hs in (2.51), we have E(Br;) = Bfy = HQT’y.

With (2.55), it leads to H/v\ - HQTVH = op(1). For the covariance matrix, write
|Cov(Bre) —Ts|| < |BBSTBT — 1| + |BSuBT|| < || H] Hy — ]| + || BII* [ Sull = op(1).

where we use Lemma 27(ii),(iii), ||B]| = op(1) and the assumption ||X,] < 1 in the last
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equation. Consequently, 7 L Cov(Br¢) " E(Br;). With this equation, we have

E(YTBry)

\/Cov(7TBry)

The proof of the lower bound limy 7o st (YT Brt) > /7TPyr7y is completed. For the

st(yTBry) = \/E (Bri)TCov(Br)~YE(Bry) = st(Bry).

upper bound, for the same reason as sr(Bry) > sr(nBry), it is straightforward to obtain
st(7TBry) < sr(ry) < 4/7Tv. In the general case that ¥, # I, replace n, v by 77211/2,

251/27 to obtain the results. O

2.6.3 Proofs from Section 2.5.1

2.6.3.1 Proof of Proposition 10

Proof. Recall that in Section 2.5.1, we have
3PLS — |GRTR||*GRTRGTGRTF. (2.96)

We analyze H@RTRH, GRTRGT and GRT7 separately. Recall that from (2.25), we have

where B = N/(T\) satisfies B — B. Together with G' = 5V and G|l <p VT, we have

v 107l = e (7 + B - ) [ 0n ()
\/_HVVTV T/H+OP (%)Ln(l%—B), (2.97)
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where we use [T71VVT — 1| <p T2 and H\_/H — /T <p 1 in the last equation. For the

same reason, by direct calculation we have

1GTGT— GVTV B(I GT+0 !
T2)\ R'R — T+ (T T LTLT> + P \/X
VVIVVT 9 = VVT 1
_ 2 i 2
=17 72 +n ’p T +Op ( )\) — n“(1+ B). (2.98)
Next, we write
i T — T _ Ty
T)\GR T = TAGR B(y+ ) + )\GR . (2.99)

We analyze these two terms in (2.99) separately. For the first term, we can write R in the

form of (2.23) as in the proof of Proposition 7. Then, using HUIH <p VT we have

1 - VT vuy VT 1
—GRTj = + i = +0 (—) 2.100
Ta IO = s = Pl 5 (2.100)
For the second term in (2.99), we have
R 1 - 1 VT Opup
— s VUV = vt +nT2>\VU Uip

N
- ( ) TQA 1UTU_HT>LT+"T2AVLT
( ) +Op ( ) , (2.101)

where we use HN‘IUTU — ]ITH <p \/T/N and Vip = 0 in the last equation. Plugging
(2.100) and (2.101) into (2.99), we have

L Grmr = E( o)+ 0p (=) 5 (2.102)
Ty GRTT = n—r—(7+70) + Op - :
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Plug (2.97), (2.98), (2.102) into (2.96), we have

~PLS P 1 2 _ 1
Vg T mn (L+ B)ny = 7B

2.6.3.2 Proof of Proposition 11

Proof. Since Rank(R) < min{N, T — 1}, and the assumptions of the proposition imply that
N/T — oo, we thereby have a condensed SVD of R as

R=VT(© AV E8)T = VIAY2ET + VTR,

where AL/2 is the diagonal matrix of T'— 1 singular values, ¢, 5 are the left and right singular
vectors corresponding to the largest singular value of Tt 2R, which is denoted by A2 I

addition, ¢ € RY *(T=2) and E* € RT*(T=2) are the singular vectors corresponding to the

rest 1" — 2 nonzero singular values, /AX}F/ 2 e RIT-2)x(T-2), By direct calculation, we have

o EEINPR T T )T

Az -1

VTRT (RRT + ul)

and thus, with G = 1V, the Ridge estimator can be written as

~ ) ~ 19 T — />\\ VAAT_ ‘7 1 A

Ridge _ GRT (RRT + i) 1f: o Ti/_gi/ﬂ ”\/E*AW (Res1l) <
X _poa, WV~ NG g
i T—l,uyg + ﬁ (A* + 71 ,u) G T

(2.103)

190



Using (2.27) and the fact that 7~'A\~!y — D and Proposition 7, we can show that the first
term in (2.103) converges to (14 B + D)~ 1ny. With respect to the second term, as shown
n (2.25), we have

RTR VTV Ny —T ')

T T T

1
Sp—

7

and the eigenvalues of

VTV N(p — T hpd)
-7 ° X

are given by (2.26), it then follows from Weyl’s theorem that \;(T IA"!RTR) = B +
1

Op(A1/2) for 2 < i < T—1. Note that Al/2 <A* +71~ ,u) isa (T'—2) x (T'—2) diagonal

matrix and the ith element on the diagonal is

N (TIRTR)VZ 1 A (T IATIRTR)LZ
N1t (TARTR) + T VAN (TINIRTR) + T 1Ny

Together with T771A\"1 — D, we have

I

Also, with ||u|| <p \/N/T, we have

7157 y1/2 1
—  max A”l(l _RTR) ” <p — (2.104)
1<i<T-2 )‘H-l( RTR> + 1T \/_

1/2

(et

1577 < |57 80y + o) + |Tal| < 11B8(y + )|l + @]l Sp VA+ VN/T <p VA (2.105)
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and

il lveal V_§2<HL2_ Vel ., (L) v
JT JT JTI| VT JT PA\VT JT
<PL+L
~ VT
(2.106)

where we use (2.30) in the last inequality. Consequently, using (2.104), (2.105) and (2.106),

we have
NV~ e Lg o Ved| <12 14, \—1/4
R (Re+17') <l < Ve ‘A (R 17) e s 74 A

By comparing this with the limit of the first term in (2.103), we obtain

T 1+ B1 +D0'"
[
2.6.3.3 Proof of Proposition 12
Proof. By direct calculation, we can write
. 2
RRT + Turi™ = R (HT + %LTL},) RT=R (]IT + %m%) RT, (2.107)

where i =/ + 1 — 1. Hence, the eigenvectors of RRT + TurrT are equivalent to the left
singular vectors of R (]IT + 71 [LLTL;). Let ¢ and E denote the largest left and right singular

vectors of R (]IT + 71 /ELTLC}). Note that fA can be viewed as the largest eigenvector of

(I + T ) RTR(Ip + T fuped),
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we analyze the eigenspace of this matrix first. Similar to (2.25) in the PCA case, we have

the following approximation of RTR

1 1
Sp

~ ﬁﬂLﬁ;

RTR VTV vV + VTL% 9 LTL% N

> T T VT T

(2.108)

by [TV VT -1 <p T7V2 |04 Sp T2 and [|[N7XOTT — (I — T~ erd])|| <p V/T/N.
Then, with (2.108) and N/(T'A) — B, we have

HT‘l)\_l(]IT + T ) RT Ry + T~ Vuugl,) — M*H = op(1) (2.109)
where the matrix M™ here is defined by
M* = Blp + TV + T Y1+ )y (opV + V) + T4 ((1 +1)%y% + 2B + zaB) ey

Recall that & is the eigenvector of T\ 11, + T_lﬂLTL%)RTR(HT + T_l/fLLTL%), we can
analyze the eigenspace of M™* first and then use sin-theta theorem to characterize 5
Firstly, the rank of M* — Bl is at most 2. Using the fact that Vip = 0, by direct

calculation, we have the two nozero eigenvalues of M* — Bl are the solutions of the equation
(x —a1)(z — as) —a% =0, (2.110)

where a; = T~} ||V||2, ag = T_1/2(1 + )y HVH and ag = (1+ j1)?y? + i®B + 21B. Since

the larger solution of (2.110) is

a; +az + \/(a1 — ag)? + 4a3
2

>a; >0 (2.111)

with probability 1, it is also the largest eigenvalue of M* — Blp. In addition, the second

largest eigenvalue of M* — Blp should be distinct with A (M* — Blp). To see this, if the
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second eigenvalue is the other solution of (2.110), we have A\ (M* — Blp) — X\o(M* — Blp) =

\/(al — a3)? + 4a3 > max{2ag, |a; — ag|} > 0. If the second eigenvalue is 0 (in which case
the second solution of the above equation must be negative), we have shown in (2.111) that
A (M* — Blp) — Ao(M* — Blp) = \M(M* — Blyp) > a; > 0. In both cases, we have

A (M* — Blp) — Ap(M* — Bly) > 6 for some constant 6 > 0. Consequently,
AL(M*) = Aog(M*) = A\ (M* — Bly) — Ao(M* — Bly) > 4, (2.112)

for some constant ¢ > 0. Now we calculate the first eigenvector of M™*, which should also be
the first eigenvector of M* — Blp. We use € to denote this eigenvector. Since we already
know that the largest eigenvalue of Aq(M* — Bly) is a solution of (2.110), which means that &
should be in the space spanned by VT and vp. Writing £ = K, H‘_/Hil VT 4+ KQT_1/2[,T and

plugging the largest eigenvalue of A\{ (M™*— Bl) of (2.111) into A\{ (M — Blp){ = (M — Blr)¢,

we directly get

Ko \/(al —az)? + 4a% +a3 —ay

which will pin down K7 and K9 because we also have Hé H =1.
Using || TN Iy + T~ g ) RTR(Ip + T~ jiupd)) — M|| = op(1), (2.112) and sin-

theta theorem, we have

- < 720 =

which implies that ]§T§A| L1 and consequently,

|- w7 v - a2

€+ V)71 VT4 KT Ry

‘ = op(1) or ’ = op(1).
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Since the sign of E plays no role in the estimator %ﬂp PCA, we can simply assume the former
one.

Also, the relationship between singular vectors implies that
~ -1 A
F=CR= HR(]IT + T—lgm})H (I + T~ jugJ)RTR. (2.114)

With the approximation of RTR in (2.108), Vip = 0, T-IVvvT =1+ OP(T*I/Q) and

N/(TX) — B, by direct calculation, we have
HHVH V(ly + T g )RTR—)\TI/Q((lJrB)VerT)H op(\T),  (2.115)
and
HT V2,3 (I + T gl )RTR — AT1/2(1+M)<7V+(7 +B) )H — op(\T). (2.116)

Plugging (2.115), (2.116) and ||€— Ky [|[V]| 7 VT + Ko~ 1/2p

( — op(1) into (2.114) we

have
H HR Ip+T1" uLTLT H F — )\T1/2(L1V + LQLT)H op(\T), (2.117)
where
L1 = Ki(1+ B) + Ko(1 + 1)y, Ly = K17+ Ko(1+ i)(42 + B). (2.118)
PCA

It is easy to observe that scalar plays no role in the estimator Vrp , we can redefine

Fr = a2 HR(]IT + T—lmw})” 2
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and use F* to create ﬁgpPCA. Then, (2.117) becomes HF\* -V - LflLQL%“ = op <T1/2> :

Consequently,
Hf/ - VH - Hﬁ*(HT — T gl - vH — op <T1/2> . A =T Fup = L7 Ly + op(1),

and

~

_~ ~ PPN _ _ -1
= GUTUVT) =gV VT (V)™ = (VT 4 0p(T)) (VVT 4+ 0p(T)) =1+ op(1),

4 _ m L nLl_ng, where L and Lo are defined in (2.118).

and the estimator 74" P
In light of that a; — 1, ay — (1+ i)y, ji = vTFu—1, 3PP By nry /0y, (2.113)

and the definitions of Ly and L9 in (2.118), we have

~rpPCA P — _
3 = w1+ By + (L—w)n(y ++7'B),
where
2+ 2B
w = . a=(1+p*+B)-B. (2.119)
14+2B++/(1—a)2+41+p)y+a
O

2.6.4 Proofs from Section 2.5.3

2.6.4.1 Proof of Proposition 13

Proof. Using (2.1) and (2.4), we have

Cov(gt, 71,10 Cov (7t 110)) ™ Bl 1)) = 208 Biag BBy + Sufao) ™ Birg) -
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Therefore, it is sufficient to show that

with No = |Io|. Write Bz, = &

Zo8l) Bitoy o8l + Su o)~ Biro) ~ I H =0 (1/Amin(6[}o]ﬁ[10])) (2.120)

~1/2

1/2
Uv[fo]ﬁ[fo]zv/ , then (2.120) becomes

1/2

Bl BBl + o) By = % = g || = O (1/Awin (BT B)) - (2121)

Suppose that the SVD of E can be written as 5 = BA1/2F where B € RNoXP and
I' € RP*P are matrices of left and right singular vectors, AY2 = dlag()\l/ 2, x ,Xll,/ 2) is a

diagonal matrix and )\i is the ith eigenvalue of B[Ig]ﬁ[fo]' Using the SVD of E[fo]’ we have

> (33 1.
B[TIO] <ﬁ[fo}ﬁ[TIO] + HN) 5[]0] = FTAI/Z(A 4 ]Ip)flAl/ZF'
Consequently, with Apax(2y) S 1 and A\pin (Xy) 2 1, the left hand side of (2.121) becomes

’ ﬁT (ﬁfoﬂ +HN0) 15[0 1/2—]1N0H
= ||z <A1/2(A+]I) A2 )rz 72|

HA1/2 (A+T,) 1AY2 _ 1 H _

w125

1+Ap

Note that

Xp = )\p ( 1/2ﬁT 15 [Io] 1/2> > )\p(ﬂ[jo]xvﬁgjo}))\min<ijl) =p )‘p(B[TIO]ﬁ[ ]))‘mzlix(zu)

Z )‘p(ﬂ[jo}ﬁ[jo]) = )‘min(ﬂ[ro]ﬁ[]o])a

we have obtained (2.121) and this concludes the proof. O
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2.6.4.2 Proof of Proposition 14

Proof. We consider the case d = 1 first. Recall that (p, ¢) denotes an arbitrary pair of tuning
parameter values and that w is a short-hand notation for w(p, ¢). By definition, maximizing

R2(p, §) is equivalent to minimizing

I°=

v Y > v 7 > 2
MSE( ) OOb HGOOS U)ROOS (wﬁ - n)VOOS + U)UOOS - ZoosH . (2122)

As shown in the proof of Theorem 6, the estimated factor at the kth step is given by
Vi = \/Té?k) and the loading of G on ‘A/(k) Is ) = T_1/2@g<k). Using (2.38) and (2.40),
we have

S —12q 5 \—1/24
Vi =M S liw = A Sl P Biey: (2.123)

~ —

Thus, the mimicking portfolio of g+ is given by ZZ 177 k) Vir) = wR, where

<) D(')

Ep: GE(i (2.124)
Next, we claim that there exists a pair of (cq, qg) that satisfy ¢y € Q and (2.11) in Theorem
6. This holds because we can set gg = N~ "¢, and the existence of ¢ is guaranteed under
the assumptions that N'7%a /Ny — 0 and logT/N'"%a — 0. Given ¢y and qq, let pg
denote the number of factors extracted. As shown in the proof of Theorem 6, we have
P(pp = p) — 1 and p < p. Therefore, since pmax > p, it implies that (pg, qo) € (Pmax) X Q
with probability approaching 1, and (pg, ¢g) corresponds to (cq, qg) mentioned above.

Denote wy = w(pg, qp). Using (2.46) and the definition B(k) = D(k)ﬂ, we have
lwo 8 — nl| = op(1). (2.125)
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Also, with HD(i) <p 1 from Lemma 20(i), we have

Po
Jwol| < ZT‘WA@)W Itedl HD@ = op(1). (2.126)
=1

Next, we write (2.122) as

Veos Vil U .31z 7T
MSE(wO) — (woﬁ _ 77) (%) (woﬂ _ 77)T w OOSjEwo oos) o;s 00S
3 B T 00Ss ~ _TOOS ~ _T 00Ss (2127)
+ 2m(woﬁ —n)T = 2(wpB —n) YoosZoos _ o olaosZoos
Toos Toos Toos

and analyze these terms one by one. Under Assumptions 19 and 20, rewriting the proof of

Lemma 14 leads to

—-1/2
SP Toos/

<P To_oé/27 H— — 2 ) HonOOSH SP HwOH Tol({sQ;

(2.128)

and

||wOUoos‘_/o1;)s|| SP ||w0|| Tol({sQ7 H‘_/OOSZJOSH SP Tc}({sza HwOUOOSZCIOSH SP HwOH Tol({SZ-

(2.129)
Therefore, together with (2.125) and (2.126), (2.127) implies that
MSE(wg) — 2= < — 2 Ain (2 2y L2
| (wp) 2 Sp llwoB = nll” Amin(Z) + [[wol|” + Toos
—1/2 —1/2 —1/2
+ llwo — nll 1ol Took”™ + llwoB — nll Tock' + llwol| Toot > (2:130)

:Op(l).

In other words, there exists (pg,qg) € (Pmax) X Q such that MSE(w(pg, o)) R Xz
Given that (p*, ¢*) minimize MSE(w(p, §)), we have MSE(w*) < MSE(wq) = 3, +op(1).
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Let 61 and 69 denote |[w*B — n|| and ||w*||, we will show that §; = op(1) and d9 = op(1).

To see this, with (2.128) and the assumption Ay (2Xy) 2 1, we have

Voos Vil Voos VL
(w5 =) (2222 05— )7 2 o (L) 21 7 2.131)
00S 008
and
w*U w*U w(p, §)U
H 1/’2’ _ 1H/2 > min_ ” V(puq> 1”/2 >p 1, (2.132)
097568 |w*|| Toos — P=Pmax:G€2 {lw(p, ¢) || Toos
where we use the assumption that pmax and |Q| = ng are finite and Assumption 20 to

construct the uniform bound. Combining (2.131) and (2.132), we have

(w*ﬁ o ) (Voosvo-[)s) ( *,3 B )T i w Uoos(w*Uoos>T
Toos Toos
= o7 , _
> max {(w*ﬁ — ) (Voosvoos> (w*B — )T, W* Ugos (0 Upos)T } (2.133)
Toos Toos

>p max{0},05} > (51 + d9)*

where the first inequality stems from the fact that the two quadratic forms on the left-hand-

side are positive numbers. On the other hand, we have

X7 AT - -
Hw (ﬁc;c;ifoos“ < ﬁ<pmax(jeg Hw(ﬁii)go;ﬁoosu <p Tc}c{sza (2.134)

for A=V and Z. The decomposition of MSE(w*) also has the form (2.127) by replacing

200



wo by w*. With the decomposition, (2.129) and (2.134), we have

(61 +8)2 <p(w*B — 1) (—) ("B — )T +
TOOS TOOS
* -1/ —-1/2 —1/2
<SMSE(w™) = X5 + Op(Toos’ “01) + Op(Toos' 0162) + Op(Toos’ 02) + op(1)
<op (1 + (81 + 82) + 6189) = op (1 + (&1 + 62)?),

(2.135)

where we use 01 + dy < (14 (61 +62)?)/2 and 6169 < (01 + d2)?/4 in the last equation. This
leads to 1 = op(1) and d9 = op(1) as d1 and Jo are non-negative. Plugging them into the
second inequality of (2.135), we obtain MSE(w*) — %, > op(1). With MSE(w*) < MSE(wy)
and (2.130), we have

MSE(w*) — 3, = op(1). (2.136)

In addition, in out-of-sample data, the expected return of g¢+’s mimicking portfolio based on

w™* satisfies

0™ Foos = 1yl = 11”8 = m)(y + Toos) + Moos — w* oo

_ —1/2 _
<p [w*B — 0l 17 + Toosl| + Toos’ > [1nll + Toor Il Uoos|l |17, || (2137)

—1/2
SP o1 + Toos/ + 09 = OP(1>7

_ o o[ — ¢ o 1/2
where we use w1 [l Unos|| < maxpep, v geo lw(@, @)l w(p,dloos|l Sp Tods and
HLToos H = v/1oos in the second last inequality. This concludes the proof of the first part of
the theorem.

For in-sample data, as we only use ¢*N assets at each step, ||w*|, is no larger than
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Pmaxq”N. Let Sy» be the set {i|(w(p], ¢;))}; # 0}, we have

|Sw*‘

lw*all = | 3" (o a0l Sp o) |ags,

ZES *
o (\/pmaxq*NIOgN)
= Op T .

With the assumption that ¢*Nlog N = O(T) and pmax is finite, we have ||w*u| = op(1)

(2.138)

and thus

139 — mv|| = [w*F = nyl| =[(w*B — n) (v +T) + 9o — w*a|
(2.139)

1/2

Se w8 =nlllly + ol + T/ [Inll + [lw*al = op(1).

Finally, we consider the general case d > 1. Note that in this case, w(p, q) € RN We use
(w(p, q“))[ ] to denote the ith row of w(p, ¢). Suppose that R2s are maximized separately for

each 7 and denote

(pj,q;) = argmin MSE;(w(p, ()),
ﬁﬁpmax,(fGQ

_ 2
(Goos)[ ]~ w[z] Roos
(w(py,q;))};) in the above proof, (2.130) and (2.136) become

where MSE; (w) = T;ok . Replacing wq and w* by (w(po, q0))[;) and

(22)i + op(1) = MSE; (w(p}, ¢F)) < MSE;(w(pg, q0)) = (£2)i + op(1). (2.140)

Recall that w* = w(p*, ¢*) is obtained by maximizing the sum of R? and

d

(p*,q") = argmax ZR2 (2.141)
P<Pmax,§€Q ;1

we then show that MSE;(w*) = (3,);; + op(1) also holds. To see this, using the definition
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of (p},q;) and (2.140), we have

MSE;(w*) = MSE;(w(p®, ¢*)) > MSE;(w(p;, ¢;)) = (X2);i + op(1) = MSE;(wp) + op(1).

(2.142)
Using the definition of (p*, ¢*) in (2.141), we have
d d d
. MSE; MSE; (w*
0<> R4 Z (59, q0) = 3 i) = MORi(w?) (2.143)
i=1 i=1 i=1 TO_OS G[Z-]
2
Together with T};o} G[-] =p 1 and (2.142), we have
~ 12
|
MSE; (wg) — MSE;(w*) > 3 12 (MSE]( ) — MSE;(w )) >op(1).  (2.144)
i#i Gm”

Combining (2.142) and (2.144), we have
MSE; (w*) = MSE; (wo) + op(1) = (£2);; + op(1). (2.145)

With this equation, replacing w*, X, by wf‘i] and (X;);; in (2.135) leads to Hwﬁ]n - BH =

op(1) and Hwi]‘ = op(1). Consequently, we have

which concludes the proof. O]
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2.6.5 Technical Lemmas and Their Proofs

Without loss of generality, we assume that >, = I, in the following lemmas. Also, except for
Lemma 17, we assume that p = p and fk = [} for k =1,...,p, which hold with probability

approaching one as we will show in Lemma 17.
Lemma 14. Under Assumptions 7-13, for any I C (N), we have the following results:
(i) |[T7VVT -5, Sp T7V2, ||T7122T — 5| Sp TR

SP T1/2.

1
(i) || (80y8m) * 801

<p T1/2.

o
(iii) | (8Ty8m) B0V

S H(ﬁ[}]ﬁg) Bl Uin 2T

(w) HUHMAX ~P (IOgNT 1/2 HUVTHMAX (logN)1/2T1/2
1TZT||\ax Sp (log N)/2T1/2,

(v) HﬁmH <p [11V2+TV2, HU[I]VTH <p [IIV2112, HU[I]ZTH <p [1V/2112,
(i) VIl <p TV, || 2] <p T2, V2T p TV2, V2T = V2T Sp 1
Proof. (i) Using Assumption 7, we have

TvT
VLTLTV

-, -

oy, +jo)? <p T2,

T
HVV _1,

H vvT

|

Replacing V by Z, we also have the second inequality.

(ii) Using Assumption 11, we have

I B 1
H(WM) *0in| < | (o)~ At + 7 () it

SP T1/2.
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(iii) By Assumptions 7, 11 and 12, we have

! 1
o ) .
<|(&pm) " vV + T | (ypm) AUy

_1 1
<||(8%8m) " UV + || (8% 8m) Bl | 191 sp TV

Replacing V by Z in the above proof, with Assumptions 8, 11 and 13, we also have

1

H(%ﬁm) U2

513 T1/2.

(iv) Using Assumption 10, we have

10 lviax < W0 viax + T |Ueridllaiax < 100wvax + lalhax ezl

<p (log N)1/2 + (10gT)1/2.
Using Assumptions 7, 10, 12, we have

10V vax S 10V Ivax + T UV T lyax S 10V Ivax + T lallyax 2]

<p (log N)'/211/2,
Replacing V by Z in the above proof, with Assumptions 8, 10 and 13, we also have

027 ygax S o8 N)H2T12
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(v) Using Assumption 10 , we have
2w = owll + 7 oz < [vin ]|+ o | tert < 17072 72
Using Assumptions 7, 10, 12, we have
O] < o]+ 7 [omerd v < vy + 7 an] won <e iner2
Replacing V by Z in the above proof, with Assumptions 8, 10 and 13, we also have
HU[I]ZTH <p [1]'*1V2.

(vi) Using Assumption 7, we have

VI < IVI+ T [V || < VI 18] ezl Sp TV
Using Assumption 8, we have

12| < 121l + T~ | Zepo | < W21+ 2] el Sp T2
Using Assumptions 7 and 8, we have

vzl < vz + 77t [Verd 2| < VI T o] 2] <p T2,

and

|vzr - vzT| = [T Verdz| = Tl E) Se 1.
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E\Ewy = 9k for

Lemma 15. The singular vectors g(k.)s we obtain from Algorithm 7 satisfy

J,k <.

Proof. If j = k, this result holds from the definition of Qk). If j < k, recall that E(k) is

defined in (2.39) and E(,C) is the first right singular vector of E(k)’ we have

é(k) = R[Ik] H (]IT — é\(i)g‘&» and é\(k) = argorénax %
i<k
If E(Tk)g(j) = ¢p # 0 for some j < k, then
| B Gy = o) = B — oBwtin| = [Bwéw| . (@148

since the definition of E(k) implies that }N%(k)é(j) =0 for j < k.
On the other hand, since g(fk)é(j) = ¢y # 0, we have (E(k) — co,;?(j))TE(j) = 0, and

consequently,

HQ. (2.147)

&l = & —eofin |+ o || > ||y — ot

Apparently, if

‘E(k) H = 0, the process will stop so we have Hé(k) H > 0 for k < p. Together
with (2.146) and (2.147), we have

_Rwtmll _ [P —003<j>>H7
Gl Jw = oo

|7

which contradicts with the definition of g(k). Therefore, g“{k){(j) = 0 for 7 < k. This

completes the proof. O

Lemma 16. Under Assumption 9, if ¢ — 0, ¢N/Ny — 0 then by, B(k) and p defined in

Section 2.5.2 satisfy
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(i) (bj,b) = d; for j <k <p.
(it) Hﬁ(k)“ = qY/2N1/2,
(ii) p < p.
(iv) B = p, if we further have \p(5Tn) 2 1.

Proof. (i) Recall that by is the first right singular vector of 83y and By = Bir, ) [ 1< M,
Using the same arguments as in the proof of Lemma 15, we have (b;, by) = ¢, for j < k < p.

(ii) The selection rule at kth step implies that

2 2

\fk! 2_ | 11 Mot F XI: H M, 77 . (2.148)

1€}, i<k MAX i<k MAX

For any matrix A € RV*? and set I ¢ (N), we have

> |4

< |4l <dZHA

MAX ™ MAX '’
and
2 2 2
A7 < [|Allg < d[[A]7,
we thereby have
AP =3 |4y 2.149
1A = 3 g (2.149)
Using this result, (2.148) becomes
2 2
1 1
_ T i T
T B 11 Myt 2 No By 11 My, 7
i<k i<k
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Then, we have

1 1
i [ Hkaj’?T vonl G R
j<

j<k

1 1
s Bizg) TT M) = —<=0 (B || TT M7

i<k

where we use Sz, [ My 0T = Bir <k Mbj)QnT = By ILj<k My,nT in the first in-
equality. With op(87,)) £ vNo from Assumption 9, (2.150) leads to HB(MH > |L|Y/2. In
addition, ||5]yax S 1 from Assumption 9 leads to Hﬂ(k)H < |I;|Y/2. Therefore, we have
Hﬁ(k) ‘ < |12 = ¢!/2NV/2,

(iii) From (i), we have shown that b;.’s are pairwise orthogonal for & < p. It is impossible

to have more than p pairwise orthogonal p dimensional vectors. Thus, p < p.
(iv) Recall that p is defined in Section 2.5.2. Since the procedure in its definition stops

at p 4+ 1, we have at most ¢/N — 1 rows of [ satisfying Hﬁm ngﬁ MbjnT‘

> ¢, which
MAX
implies

2

By [T Mu,nT|| S aN + (No — aN) = o(Ny),
J<p

where we use (2.149) and the assumptions ¢ — 0, ¢N/No — 0. With o3(8(7,)) 2 v No from

Assumption 9, we have

n [T My, || < opBg) ™ || Bag) T M, n™|| = o(1). (2.151)

J<p J<p
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If p<p-—1, using (i), we have

n [[ My, =n—n)_ bjbl,

J<P J<P
which implies that
)<or | n[[ My, | +op [ 0D bs0] |- (2.152)
J<p J<P
Since
Rank (1) bibl | <p<p-1, (2.153)
J<p

we have o (7] >oi<p bﬂ)}) < 0 and thus (2.152) and (2.151) lead to

op(n) So1 | n ][ Ms, | —0.
J<p

This contradicts with the assumption that A\, (nTn) 2 1. Therefore, we have p > p. Together

with the result in (iii), we have p = p. O

Lemma 17. Suppose Assumptions 7-14 hold. If ¢~1 log(NT)1/2 (q_l/zN_l/2 + T_1/2) —

0 and ¢ — 0, then for k < p and for I}, p and 5(k) defined in Section 2.5.2, we have
(i) P(I,, = I,) — 1.
(ii) Hé(k) - ﬁ(k)VH <p ¢/2NV2 4 T1/2,

(i) W,ﬁf/ |809]| — 11 sp /282 12,

7, —-T7vTP, VH <p g VANTV2 4 Tl2
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(v) P(p=p) = 1.

Proof. We prove (i)-(iv) by induction. First, we show that (i)-(iv) hold when k = 1:
(i) Recall that fl is selected based on T~ RGT and I; based on AnT. With simple algebra,

we have
T=IRGT — g7 = 3 (T—lm‘/T . ]Ip> 0T+ T VT T+ T8V 2T + T U 2T
With Assumptions 7, 8, 9, 12 13, we have

|r=tRa =07 S1BIax [T VVT = |l + 77 [0V [y ax

MAX
T HBlnax V2T + T H|OZ7 ||yax Sp (log N)Y2171/2.

From Assumption 14, we have cg\){ — cé% 41 pe cé% and the the definition of p implies that

cé’}e > c for k < p. Thus, we have C((;\)f — cl(]%\)]+1 > ¢. Define the events

Alzz{ T 1R HMAX>(‘(]]\)[+C£1N+1)/2 foralllell}
AQZ:{ T IR HMAX<(C((]]\)7+C((]]\)7+1)/2 for allielf},
Ag = { IR[ ]GT — T]THMAX (c((;\), — c((ﬁ\),Jrl)/Q for some i € <N>} . (2.154)

It is easy to observe that {fl =11} D A1 N As. In addition, from the definition of I, we
1 . 1 .

have Hﬂ[i]nTHMAX > cé]\)[ for all » € I and HBMUTHMAX < cé]\),+1 for all ¢ € I{. Therefore,

if A{ occurs, we have

HT Ry GT — B H (cg\)[—c((;\)]ﬂ)/z

MAX ™

for some i € Iy, which implies Af C A3. Similarly, we have A5 C A3. Using {fl =0N}D
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A1 N Ag and AT U A§ C A3, we have
P(I} = 11) > P(A; N Ay) =1 — P(AJ U A§) > 1 — P(A3). (2.155)

Using ¢ !(log N)l/QTfl/2 — 0 and cg\)[ — cé%+1 2 ¢, we have P(A3z) — 0 and consequently,
P(I, =1;) — 1.

(ii) Since fl = [I; with high probability, we impose fl = I; below. Then, we have
}N%( 1) = R[Il] and Assumption 18 gives HR (1) — VH = HU H <p ql/2]\71/2 + T2,

(i) From Lemma 23, we have o;(f ‘7)/0](61) = TY2 4 Op(1). The result in (ii)

implies that
7w = || < By - 8y v]| <p o /2802 2 72

Together with Hﬂ(l) H = ¢N from Lemma 16, we have

0 O T il 0 |

()
B T R T B T

Tl
<p g V2NV2 4 P12

(iv) Let 5(1) e RT*1 denote the first right singular vector of 5(1)\_/. From Lemma 23, we

have

HP& - T_1VTIP>kaH <p T~ 1/2 (2.156)
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and aj(ﬂ(l)V)/aj(ﬁ(l)) = T2 £ Op(1) for j < p, which leads to

o1(ByV) — 02(B)V) = TY2(o1(B1y) — 02(81)) + Op(01(B))) =<p TV 201(B1y),
(2.157)

where we use the assumption that 2(5(1)) < (1 + 6~ loy (6(1)) in the last equation.
Using Hﬁ(l) — B(l)VH <p ¢/2NY2 £ T2 a5 proved in (ii), (2.157), Lemma 16 and

Wedin’s sin-theta theorem for singular vectors in Wedin [1972], we have

q1/2]Y1/2 L7l/2 _

P < _ —12n-1/2  pe1/2 2.158
Vi 5<1>H ~ o1 (B V) — 2By V) ~F ! (2158)

i

In light of (2.156) and (2.158), we have that (iv) holds for k£ = 1.

So far, we have proved that (i)-(iv) hold for £ = 1. Now, assuming that (i)-(iv) hold for
Jj <k —1, we will show that (i)-(iv) continue to hold for j = k.

(i) Again, we show the difference between the sample covariances and their population
counterparts introduced in the SPCA procedure are tiny. At the kth step, the difference can

be written as

k—1 k—1
BT My,n™ =T~ 1BV +0) [[ Mpr (nV + 2)T

Y e M)

J J MAX

k—1 k—1 k—1

<18 I Mp,n™ =778V [ Mpr Vo7 +T7 8V [ Mgy 27

e o) e M)

J J MAX J MAX
k—1 k—1

+ T 1|0 [ Mpr VT + T MU [ Mgr 27 (2.159)
il o 5 0)
MAX J MAX
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Since (iv) holds for j < k — 1, we have

IPW) - T—lf/Tijf/) <p ¢ YAIN"V2p-1/2
J

(2.160)
Using Lemma 15 and Lemma 16(i), we have
HMb =1, — Zpb . and HMA =1y — ZIPV(J
7=1
Using the above equations, (2.160), and HTﬁl‘_/VT — ]IpH <p T*1/2, we have

VQVHMA HMb = 771/2 VZIPA Zpbv

j=1 =1 (2.161)

<p g V2N1/2 4 T‘1/2.

Similarly, right multiplying VT to the term inside the ||-|| of (2.161), we have

k—1 k—1
TV ] MV(T)VT ~ T, || sp g tAN-12 41722 (2.162)
=1 v j=1

Then, we analyze these four terms in (2.159) one by one. For the first term, using (2.162)

and Assumption 9, we have

k-1 k-1
3 1] MyynT =TV [ | Mgy VT
j=1 =1 Y

MAX
k—1 k-1
1 =
SUBIhax || 1 My, =T VHMV(T)VT 7]l
j=1 j=1

<pg V2NV2 L7172
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For the second term, using (2.161), Lemma 14 and Assumptions 9 and 8, we have

k-1 k-1
! 5‘7HM‘7(1)ZT ST 1Bllaax HMbj |VZT|
] ’ MAX j=1
k-1

“1Blmax VHM HMb 12

7=1

<pg V2NV2 L7172

For the third term, using (2.161) and Lemma 14, we have

k-1 k-1
|0 T Mg VTt STTHOVT g || LT M, |
J=1 MAX j=1
k-1
+T 1HUHMAXT1/2 VHMA HMb Ikl
7j=1

gp(logNT)W <q—1/2N—1/2 X T—1/2> _

For the forth term, using (2.160) and Lemma 14, we have

k—1 k—1
O [T Mge 27 STHOZT[yax + T2 [0V flyax | 22 Py || V27
=17 lax jzl

+ T2 [0 lypax ||T 1VTZPbV ZPA 12|

<p(log NT)/2 <q—1/2N—1/2 n T—1/2> ‘
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Hence, we have

1RIIM% aT - 5IIM%n gpmgNTﬂﬂ(qﬂﬂN‘V2+T—Vﬂ.

(2.163)

As in the case of k = 1, from Assumption 14, we have cél;:\), — c((]l;\), 41 pe céljf\),. In addition,

since the stopping rule for the procedure in Section 2.5.2 is cé};\;r b < ¢, we have cé’j\)[ > ¢ for

k < p. With the assumption that
c_l(log NT)l/2 (q_1/2]\f_1/2 + T_1/2> — 0,

we can reuse the arguments for (2.154) and (2.155) in the case of k = 1 and obtain P(_/f\k =

[k)—él.
(i) We impose Ij, = I}, below. Then, we have R( [k Hk 1MAT and thus
Vo)
_ - B k-1
By = BV = By 1] Mgr =60V
j=1 Y

- A,k_l k-1 —
=0y | V11 Mpr = 11 M0,V )+ Oy H
j=1 J=1 J=1

Hence, using Assumptions 9, Lemma 14, and (2.161), we have

k-1 k-1 k-1
|70y = 87| < || |7 TT M5 =TT, V| + [ G| | T v
j=1 V= j=1 'V

<p qV/2NV2 4 71/,
(iii) The proof of (iii) is analogous to the case k = 1. Rewrite the proof of the case k = 1 by
. 5 > 1/2 — — —
replacing R(qy and 51 by Ry, and ;). We have |)\(£) / Hﬁ(k)H—H <p ¢ VZN-1/247-1/2,
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(iv) The proof of (iv) is analogous to the case k = 1. Let é(k) denote the first right

<p T-1/2 from Lemma 23.

singular vector of ﬁ(k)V, then we have Mg(k) — T—lf/TMka
Since we have Hé(k) — ﬂ(k)VH <p ¢ Y2N-1Y2 4 7-1/2 from (ii), using the same proof as
in the case k = 1, we have

Mor —M: | <pq Y2N-12 712
H Vi f(k)H“’Pq

by Wedin’s sin-theta theorem. Combining these two inequalities completes the proof.

To sum up, by induction, we have shown that (i)-(iv) hold for k& < p.

(v) Recall that p is determined by

B 11 Myn”
j<k
whereas p is determined by T_IRM Hj <k Mpr GT. Since (iv) holds for j < § as shown
(4)
above, using the same proof for (2.163), we have

D D
1R H Mﬂ;)cﬂ ~B H MbjWT <p (log NT)1/2 <q—1/2N—1/2 i T_1/2> ‘

=1 =1 MAX
(2.164)

The assumption cé;\;rl) < (1+6)" ¢ in Assumption 14 implies that ¢ — cgg\?— D~ c. Together

with
Hog NT)? (¢ AN T712) S,
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we can reuse the arguments for (2.154) and (2.155) with events

p _
By := T_lltlm H Mo GT > (c+ cg])\—;—l))/Q for at most ¢N — 1 rows i € (N) » |
=t liax
b ) p -
By:= T_IR[%'] H M‘A/T GT — ﬁ[i] H MbjUT > (c— c((ﬁ\;r ))/2 for some i € (N) »,
=1 Y j=1 MAX
(2.165)
to obtain P(p = p) > P(By) =1 - P(B{) > 1 —-P(By) — 1. ]

Lemma 18. Suppose that F(k) e RHkIxHkl js an orthogonal matriz with the first p rows

_1
equals to (Bﬂ}k]ﬁ[jk]) 2 B[le] and we define

sl Ul _

;k) =Tde  and | ] =T O,
s U?

() (k)

where S%k) e RP* and ﬁ(lk) e RP*T gre the first p rows of F(k)g(k) and F(k)UUk]’ respec-

tively. Then, under Assumptions 7-14, we have

(i) |

2| e TR 2+ ),
@ |G| <o T2 GV e Tt (T2 | s T

Proof. (i) The assumption _/f\k = [}, and the definition (2.39) of E(k) together lead to

By = Ry T (10 - €0;)) -

i<k

Then, with (2.53) and Lemma 15, we have () = R[Ik}é\(k)/ Tx(k). From the construction
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of F(k), we have

L) Rk 2 :
Ulk)
which in turn gives
1 71
S| o] (8T ]> VUi 2
) ) = = 2 ()
S (k) Ulk)

With Lemma 14(v), we have

ENE Ulky Ulty)

—1/27—1/2
D < || sp TR AR 4 7).
TA() TAyy
(ii) With Lemma 14(ii) (iii) and the definition of I3y, these results follow immediately. [

Lemma 19. Under Assumptions 7-14, if X(k) =p |I| and |I}| < gN for k < p, then we

have

Ut g
- [1,]°(F) 1 1
i) || =A== ——— + .
VO &
. (1] (k) 1 Ik] (k) U1 1
(i) | —F—| <P qxv + T Py T <P vt T
T/ Ak ! ik Ak

Proof. (i) Using the equation EETk)U[Ik] = (s%k))Tff(lk) + (s%k))Tﬁ(Qk) and Lemma 18, we have

sty %]

st 7% | <

sty %]

|0 | < st || O |

I+ T
<p VT + % (2.166)
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which leads to

Ul S 1 | +T
[Ik]A( ) <p Ly | kL+ <p g VEIN-V2 i1
T>‘(k) /\(k) T)‘(k)

(ii) From Lemmas 14 and 18, we have

[P0 < 7 (T st + |7 (B8) " sty = ¥ (B0) N+ [V

I T
5P ﬁ + %7
A(k)

which leads to

o
w1 T

= ~P =

T /\(k) T)‘(k) T)‘(k)

g Nty

~J

Replacing V by Z and L% in the above proof and using Lemmas 14 and 18, we have similar

results:
207 S
I NI 7L and ILK g INTL T (2.167)
T/ k) Atk)
O

Lemma 20. Under Assumptions 7-14, if X(j) =p |I;| and |I;| < qN for j < p, then for

k.l <p, we have

S 0
: (k) (k) 1 ® | <, 1 H <
L ) va VT Rl e
. Vﬁ (k) 1 1 ZﬁTk k) 1 1 Sl k) 1
(ii) N+ || == NP—N+T;|()A |§P—N+T-
/ / q

(iii) |~ 0l O <p A+ 4
1/:m() N T
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Proof. (i) Recall that the definition of Uy, is

(2.168)

Then, a direct multiplication of 6(Tk;) / TX( ;) from the left side of (2.168) leads to

ol lmg =2 Bigén U

\/TX(k)_\/TX(k) =T \/TX(Z-)‘

Consequently, with Lemma 19(i) we have

N a0 =1 R T (71'
Sk)Y (k) < (k)Y Uk Z (1] (i) (8)

Thwll 1y = VT V)

k1| T,
D S AR T () Uti)

(4)
- PP A i1 || T
k-1 T U,
<pg VANTVZ4rT N NOMU
i=1 TX(Z-)

(2.169)

If <p ¢ YAN"Y2 171 holds for i < k—1, then (2.169) implies that

_1/2’\—1/2,\ 7
T U

this inequality also holds for k. In addition, when £ = 1, (7(1) = U[ I and this equation is

—1/23-1/2
T /\(k)

implied from Lemma 19(i). Therefore, we have

g(Tk)ﬁ(k)H <p ¢ V2N-1/247-1

for k < p by induction.
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Using (2.168) again, with Assumption 10, we have

_ 1 -
Uy || | Y| B ||| Y6
(k) (k) (k) 3 (2) (2.170)
k—1 U,
<p q—1/2N—1/2+T—1/2+Z (ZA)
i=1 Ay
When k£ = 1, Assumption 10 implies that ‘T_l/QX&l)/Qﬁ(k)‘ <p q_l/QN_l/2 + 71712,

Then, using the same induction argument with (2.170), we have this ineqaulity holds for

k< p.

Recall that D(k) is defined by

S %)D (1)
Dy =g = D Rugéey——=—
i=1 TAq

and D1y = Iz < 1, we have HD(;@)H <p 1 by induction as HT_l/QX&)lmPL[Ik]H Sp L
(ii) Similarly, by simple multiplication of VT from the right side of (2.168), we have
NN, T 7 k=1 po e T 071
WUV S UingVT S Bnléa) S U VT

Wy Tw H Pe T
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Consequently, we have

g(Tk)U(k)‘7T gA(Tk)U[Ik]VT " R[zk] 6(Tz'>U<z’)VT
T/ A T/ T ||| Ty A
k—1||cT (72. 74l
<p g INlpTl g 1| (i) (A)
OE=1 RV
k=1(C )U()VT
Spg NPT Y HUMC (2.171)
i=1 Ay

When £ =1,

_1X(7€1>/2€(Tk)l7(k)VT“ <p ¢ 'N71 + Tl is a result of Lemma 19(ii). Then,
a direct induction argument using (2.171) leads to this inequality for k£ < p.
Replacing V' by Z and L% in the above proof, and using Lemma 19(ii), we have the

following results:

AN ar S
W N e g |2 e L
T\ Aw) Atk)

(iii) Recall that E(k) = E(k)(/ + ﬁ(k) as defined in (2.39), we have

[ By US| < 50 By VUl + 15 Uy U]

=[5y va i H+HATU 1785

Using (2.53), we have

UTE(k) lf& %5() VU || | 05w || || T
e T/ A\ VA T/ Ak T T
(2.172)
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With Lemma 14 and (i), we have

772G | e 007 B | < By < G|+ | Bos | < 900 |+ | R

<p TV22N1/2,
which leads to H/\ / H <p ¢ —1/2N-1/2 Hﬁ H <p 1. Using this inequality and
results of (i) and (ii) in (2.172) completes the proof. O

Lemma 21. Under Assumptions 7-14, if X(j) =p |I;| and |I;| < qN for j < p, then for

E<p+1, we have
(i) ‘)Z(k)VT“ <p T1/2 + Tq_lN_l.
0l Z..0T 1/201/2 ~1/2 \y—1/2
(i1) ‘)Z(k)U[IO]H Sp N TY2 f T¢ 12N2
Proof. (i) From the definition (2.42) of E(k), we have

AT)U( 4
Z( VA VT—ZGg S

Then, with Lemma 20(ii), we have

H’z“(k)VTH < ||zvT|| + 2:; HGE@

(ii) With (2.42) again, we have
> T
Z(k)U[ = ZU Z Gg

224



which, along with Lemma 20(i) and the assumptions on ¢, lead to

o o [ S AT;_[}Z. )
|Z00% | < 1205+ 22 |6 g()TX() |71
=1 ()

<p NS/2T1/2+ <q71/2N71/2+T71> (N3/2T1/2+T>

<p NS/2T1/2 4T V2N12,

]

Lemma 22. Suppose that Assumptions 7-14 hold. If X(j) =<p |I;| and |I;| < gN for j < p,
then Hy, Ho defined by (2.51) satisfy

(1) [Hill Sp 1, [[H2] Sp 1.
(i) |HTHy — 15| Sp T~ 1+ ¢ INTL
(iii) |Hy — Hol| Sp T~V + ¢ IN"L.

Proof. (i) Using the definition (2.51) of H; and Lemma 14, we have

(k)
VT

1Pgall = <72 |V| <P 1.

which leads to ||H1| <p 1.

Using the definition (2.51) of Ha, we have

Bl ~
el = ||~ Sqfl/QN*WHﬁ(k)H. (2.173)
Alk)
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With Lemma 14 and Lemma 20(i), we have

7B 5 007 o | < B 7] < 0 [+ 1R | <1900 | + R

(2.174)
<pT12H/2N1/2,
Combining (2.173) and (2.174), we have ||hpo|| Sp 1 and thus ||Ha| Sp 1.
(ii) By (2.53) and Lemma 15, we have
- QB | Ul Ul
gT(l)g () TX() ();X) — 1 g + ( IEX)
(k) (k) (k)
By Lemma 20(iii), we have
W ho — Ol Sp g *NTE+ T
and thus ||H1TH2 — HﬁH <p g INTLy17-L
(iii) Using (2.53), we have
A ﬁ VU(Tk)Gk
w/ T)\
With the definition of Az and hpo, it becomes
T VU S
AR DN O} (2.175)
T o~
T/ A

With ||hgo]| Sp 1, Lemma 14 and Lemma 20(ii), (2.175) leads to

hy1 — hio Sp T2 g INTL
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This completes the proof. O
Lemma 23. For any N X p matriz 3, if |‘T*1V‘_/T — ]IpH <p T*1/2, we have
(i) 0j(BV)/0;(8) = T"/? + Op(1) for j < p.

(ii) If o1(B) —o2(B) < o1(B), then ) <p T_1/2, where b is the first right

singular vector of B and € is the first right singular vector of SV .

P; — T1VTR,V|

Proof. (i) For j < p, 0;(8V)? = X\;j(BVVTBT) = \;(BTAVVT) which implies
A(BTBA(VVT) < 0(BV)? < A (BTB)M(VVT).
With the assumption ||~ 1VV — TI|| <p T2, we have
TY20,(8V) /0;(8) = 1+ Op (T71/?)

by Weyl’s theorem.

(ii) Let < and < be the first left singular vectors of 8 and 3V, respectively. Equivalently,
¢ and ¢ are the eigenvectors of 38T and T~ 1VVTAT. Since HBBT —T_lﬂvaﬁTH <
18]|? ||T71‘_/‘_/T Il <p o1(8)2T~1/2 and o1(8) — 02(8) = 51(B), by sin-theta theorem

we have

1887 =T~ BV VTET]| P
- Y 7 NP °
01(B)2 — 09(B)2 — O(HBﬁT — T—lﬁvaﬁTH)

[T = <&TI S

Using the relationship between left and right singular vectors, we have

pT = 6_67 gT — ﬂ
o1(B) 18V]]
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Therefore,

{‘/TBT&\TﬁV
[y

VIFTETAV  VTBTETAY
6V v

<pT Y2

HIEL 1(8)*

_ ~ Vprf/H:HggT_
o i

(2.176)

By Weyl’s inequality, we have
TH|BV||* = A (T BVVTET) = A (BBT)+0p (01(8)2T~12) = 01(8)2+0p (01 (8)2T~1/2).

Plugging this result into (2.176), we have HPE - T_lvTIP’bVH <p T /2
[

Lemmas 24-26 below are concerned with the singular values and singular vectors of

T-12R. We use s Ej and :\\;/2, j < p to denote them throughout Lemmas 24-26.

Lemma 24. Under the assumptions of Theorem 9(a), we have

~

Y .
Zo1gp A P@TANY ) £ T2
j

where \j = \;(BT3) and Xj = )\j(T_lRRT).
Proof. Since \; (ﬁVVTﬂT) =\ (ﬁTBVVT), we have

vm) EGEARIN

A (B76) Ay (T 7 ;i (BT8) M (V—VT) . @am)

T

By Lemma 14(i) and Weyl’s inequality, we have \; (T_1VVT) -1 <p T2 for j<np.

Then, (2.177) becomes

Aj (BVVTET)

1 <p T 1/2
T (57P) ~F ’
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which is equivalent to

9j (5‘7) 1<, T2
VToj) 5

(2.178)

Using Weyl’s inequality again, we have |o; (R) — o (BV)] < ||U|| <p N1/2 4 71/2 which

is equivalent to

Combine (2.178) and (2.179), we complete the proof.

Lemma 25. Suppose that the SVD of B is given by:

e}

(2.179)

(2.180)

where T' € RV*N [ ¢ RPXP qre orthogonal matrices, and A is a diagonal matriz of the

eigenvalues of BT3. If we write I'S; = (3}1, s}Q)T, where sj1 € RP, 549 € RN=P. Then under

the assumptions of Theorem 9(a), we have

i) )Y (0 = (s epnden)|| S A7 VA@TNY2 4 1), where e s ap x 1

unit vector with the ith entry being equal to 1.
17 —1/2
(ZZ) Hsjl - <5j17€j1>ej1|| S]P )\j / (T 1/2N1/2 + 1).
(i) |(a/3) " s <p 1

(iv) lsjal) Sp A7 A@ AN 1),
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Proof. With the orthogonal matrix I" defined above, we can write

- _ U
O=r0=|_ ™7 |, (2.181)
UQ(pr)XT
so that

1 1o~

_ A2 - . A2V + Uy
'R = V+U= B
0 Usy

The relationship between singular vectors ¢; and &; can be written as
_ (PR)& ~ (TR (T
ng — ( )/\5]7 fj ( ) /(\ ]). (2.182)
TA; TX;
Specifically, we have
1o~ =~ . 1o ~N\T ~
(sz n U1> 3 0t - (sz n U1> sj1+ Ul sjo
Sj1 = = , o Sje = ==y &§ = — : (2.183)
TN TN T\
From (2.183), we have
_ ~ _ ~\T _ ~\ ~ ~
(A%v n U1> (A%v + U1> sj1+ (A%v n U1> 0] sjo = TAjs1 (2.184)
We can rewrite (2.184) as
A 1 vy AVOT
1
U1VTA2 0107 Xj
L s — [ 2L -1 s 2.1
DV LR DV L DV Rk (2.18)
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Define L = diag(ly,...,lp), where [; is equal to A;/(A; — A;) if i # j and 0 otherwise.

By left multiplying L to both sides of (2.185), we have

si1 — (81, €j1)ej1 = LA 1% fj LU1 fj + LA2 — -1, A25]1
TAJ I iy T)\ /T/\J Aj T
1~ ~ 1 ~
LA2VU] U VTA2 U] Aj
+Tj18j1+LT—)\ij1+L T)\ S41 — )\—;—1 LSjl
(2.186)
1
Now left multiplying ()\A) ’ again, we have
J
AN 2
<E) (sj1 = (sj1,¢51)e51) (2.187)
UlU ~ UJUy ~
/2A2LA V=g + 3/ A2LO =2
T)\ T, T)\ TA;
_ 1
1 1 1/VVUT A\2  VUT
—AZLA? [ —— — 1, | [ — AZLAZ -1
Y ( T p) <>\j) L T/\3/2
~ _ 1 ~ 1
Al <A>2 1 U1U1 )‘j A2
+ A2 L — 81+AL si1— | ——1 — LSjl
TAj \\j J T ?/2 J Aj Aj
=K1+ Ko+ K3+ Ky + K5 + K¢ + K7. (2.188)

Before we analyze these seven terms in (2.187), we first analyze ||L||, HLAl/QH and ||LA]|.

Since L and A are diagonal matrices, by Assumption 18 we can easily show that

Izl s, [|at? s 5% zal s Ay (2.189)
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In addition, Lemma 14(ii)(iii)(v) imply that

|0 = ||sm8) 22870 sp T2, |0T|| = ||sm) "V 2eTEV T <p T
} (2.190)

[ < 0150 2 s

Using Lemma 14(i)(vi), Lemma 24, (2.189) and (2.190), we analyze these seven terms in

(2.187) one by one. For the first term, we have
T e R N ] [ A | o e

where we also use “[721-[72“ < HUTUH <p N + T in the last equation. For the second term,

we have

[ O e el EER

—3/2

JETTIN .

For the third term, we have
i3l < AT LA [T V0T =1 || a/x) 1250 ]| e 773|800 2]

For the forth term, we have

—1,—3/2 77 —1/2 -
V<l < 7072 Al | VOT | sp oy P12,
where we use H‘_/(ZTH <p T2 from Lemma 14. For the fifth term, we have

| K5 < T HLAWH Hﬁl\_/TH H(A/Aj)l/%ﬂH <p )\j_l/?T_l/Q H(A/Aj)l/%ﬂH .
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For the sixth term, we have

~3/2

1ol < 7702 LAl |20 T || e A

where we use Hﬁl ﬁlTH Sp 7T as shown in Lemma 14. For the last term, we have
-2/3 1/2 =1/2/—1/2771/2 —1/2
lcall < 272135 = Mgl |LAYZ]| Sp a7 2@ ANy T2

To sum up, (2.187) gives

H(/\/>\J')1/2 (sj1— (sj1,€j1)e41) H

(2.191)

Note that

H(A/)\j)l/QSleS (A2 (sj1 = (sj1.ej1)en) +H(A/Aﬂm@ﬂ’eﬂ>€f1“

IN

(AADY2 (551 = (sj1,e1)eqn) | + (g1, ein) |y /A el Aejy

= (/\/>\j)1/2 (sj1 — (sj1.€51)e41) || + Op(1).

Plugging this into (2.191), we have
—1/2 ,p— _
AN (51 = (s edenn) | Sp A7 2T TANY 2y e T2 (2192)

which in turn leads to (A/)\j)l/QsﬂH <p 1 as by assumption )\;1/2(T_1/2N1/2 +1) — 0.

Similarly, we can analyze corresponding terms in (2.186), and obtain

N 12,
l[sj1 — (sj1,ej1)en|| Sp T2 H(A/Aj)l/QSle + A Pr=12N12 4 )
<p A HTANYR T2,
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From (2.183), we have

lsjol < ||—2
J ,/_TA

This concludes the proof.

Lemma 26. Under the assumptions of Theorem 9(a), we have

~Y

. 'UTSe;
(Z) 13 Sj ‘ < %_i_N-i-‘T_’_N-i-T‘

)
ﬁ |
25

. VU 1, N+T (S0 1 | N+T
(ii) = Sp T+ TX; ’ == Zp T+ ™
T\/)\i )‘i

(iv) \7—7
oY

Proof. (i) From (2.182), we have

quTy SR

TX;  T\/A\

(2.193)

Using the orthogonal matrix I' and the notations in Lemma 24 and Lemma 25, we have

. B o
TRUTS = 5] (FBV + U) UTsj =s) (AW Ul) Ulsji+sipUaUl s

+

i1

=K1+ Ko+ K3+ Ky.
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Recall that from Lemma 25, we have H<A/>\j>1/2$j1H <p 1. Using this result and Lemma

14, we analyze these four terms one by one. For the first term, we have

1l < [[shaz | [|VOT | 1sjall + Isiall |07 | sjll Sp VAT + 1.
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For the second term, we have

~ ~ N+T ~1/2
1) < lsiall |G| |71 < /S (VI +VT) VT 5p A7 P (v + 7).
7

For the third term, we have

1
171l < (|[s542

71+ ) ]l

<p VAT (VN +VT) | /NT—:T =\ AP T,

J

For the last term, we have

~ ~ —1/2,—1/2,— 9
1Kl < [ ToTF || Usial 152l Sp A7 Y2272 =1 (v - 72,

Using above equations and Lemma 24, we get

guTe STRUTS 1 N+T N+T
==l = ~7 7 "
T, T/ A\ i j

(ii) Using UTS; = [71Tsi1 + ﬁgsig and (2.190), we have

N+T
A

[VUTG|| < HV(71T8¢1

’ + HVﬁQTSzQ

= HVﬁlTH + VT Isi2ll Sp VT +

Then, with Lemma 24, we have HT_lj\\Z-_l/z‘_/UT@H <p T+ /\Z-_l(T_lN +1).
Replace V in the above proof by L%, we can get HX;U%ZTQH <pT 14 A;l(T_lN +1).

(iii) Using UTG = ﬁlTsﬂ + ﬁ;sig and (2.190), we have

N+T
VTN

0] <

shOu ||+ ||shoa|| < |0 + o1l <p vT +
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Applying Lemma 24 again completes the proof. O
Lemma 27. Under the assumptions of Theorem 9(a), Hy, Hy defined by (2.73) satisfy
(1) lfle Sp L HﬁzH Spl.

(ii) || AT iy — nﬁH <p T4+ M (TN +1).

(iii) || Ay — H2H Sp T2 4 0 1(T7IN +1).

Proof. (i) Using the definition of Hq in (2.73) and Lemma 14, we have

V_gk <T—1/2 VI <s 1
R

Jina] =

which leads to HIZHH <Sp L.
Using I'g, = (sgl, 822)1’, the SVD of  in (2.180), the definition of Hy in (2.73), Lemma

24 and Lemma 25(iii), we have

Hhm = Sp L, (2.194)

which leads to HﬁgH <p 1l
(ii) By (2.182) and Lemma 15, for [,k < p, we have

VBTG §UT< . guTg
k l k thth+ l k

ﬁ oy~

O = & & =

By Lemma 26(i), we have

1 N+T 1 N4+T
W o — 6 S S S N Sl
Iy Pz = Ol S T+Tm1n{)\l,)\k} =7t T,

and thus Hﬁ{ﬁfg - ]IpH <p T+ 0 M (T IN +1).
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(iii) Using (2.182), we have

With the definition of hj; and hjo, it becomes
- VVT. VUTG,
Iy = ——hga + —=
T/ A

With HthH <p 1, Lemma 14 and Lemma 26(ii), (2.195) leads to

(2.195)

T~
= o) < |7V - 1 | |||+ VUS| < - V2 M TN 1 1),
T )\k
which concludes the proof of (iii). O
Lemma 28. Under Assumption 18, we have
-~ log N 1
-—sz < , bT(F — E <p——.
r L SPA\T [6T(r — E(re))[| Sp Nis

Proof. For the first inequality, we have

~ log N
|7 =8| <7 = B0l + 25 -S| e /2
00 T

where we use large deviation inequalities in Assumption 17:

log N < 1 5= log N
I7 = E(o)lloe Sp o\~ and [[5b =S| = || RRTY — Covre, r]b)|  Sp /o
T o |T . T
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The second inequality follows immediately from Assumption 17:

|
o7 (7 = E(r))ll = |7 > my — E(mg)| Sp
=1
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CHAPTER 3
EMPIRICAL ANALYSIS WITH SUPERVISED PRINCIPAL
COMPONENTS

3.1 Introduction

This chapter illustrates the use of SPCA with two empirical applications. In Section 3.2,
we explore its application to macroeconomic forecasting. For this purpose, we combine the
standard Fred-Md dataset of 127 macroeconomic and financial variables with the Blue Chip
Financial Forecasts dataset, that contains hundreds of forecasts of various variables (like
interest rates and inflation) from professional forecasters, thus obtaining a large dataset of
predictors. We then apply different prediction and dimension reduction methods to forecast
quarterly inflation, industrial production growth, and changes in unemployment. We com-
pare the results using SPCA to those obtained using PCA (as in Stock and Watson [2002a])
and PLS (as in Kelly and Pruitt [2013]). We show that in a setting with a large number of
(potentially noisy and/or redundant) predictors, SPCA performs well in forecasting macroe-
conomic quantities out of sample. We also investigate the selection that SPCA operates, and
find that it isolates, for each target, a different group of useful predictors; it also focuses on a
few financial forecasters, whose survey responses are selected particularly often. Finally, we
illustrate the use of SPCA with multiple targets at the same time (macroeconomic variables
forecasted at different horizons: 1, 2, 3, 6 and 12 months).

In Section 3.3, we illustrate the use of SPCA in estimating risk premia of a variety of
tradable and nontradable factors proposed in the asset pricing literature, and for diagnosing
observable factor models. We use the large cross-section of test portfolios produced by Chen
and Zimmermann [2020] and Hou et al. [2020], covering more than 900 and 1600 portfolios,
respectively, for the period 1976-2020. We apply SPCA to estimate factor risk premia, and

evaluate its out-of-sample performance. Almost none of the non-tradable factors are priced,
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except for the intermediary capital factor. We also explore the robustness of SPCA to the
weakness of factors, by artificially changing the set of test assets used in the estimation:
for example, we show that SPCA is able to recover the risk premium for momentum even
when momentum assets are removed from the original set of test assets (and therefore the
momentum factor is weak in the cross-section). Moreover, we illustrate empirically how
SPCA can be used to diagnose whether observable factor models are missing important

priced factors.

3.2 Macroeconomic Prediction

In this section we apply the SPCA methodology developed in Giglio et al. [2023] to a stan-
dard macroeconomic prediction exercise, using a large set of predictors to forecast inflation,

industrial production, and unemployment.

3.2.1 Empirical Context

Predicting macroeconomic variables like output and inflation is a central exercise in empir-
ical macroeconomics. The availability of large macroeconomic datasets that contain many
potentially useful predictors has spurred the application of a variety of methods of dimension
reduction to this objective. Some of these methods, like those based on principal component
analysis (PCA), reduce the dimensionality of the predictors universe without using infor-
mation in the target of the forecast (see Stock and Watson [2002b]). Others instead use
information from the target to help the dimension reduction focus on the most valuable
predictors; examples include partial least squares (PLS, Kelly and Pruitt [2015]), targeted
PCA (Bai and Ng [2008]), and scaled PCA (Huang et al. [2022]). SPCA belongs to the
latter group, as it employs an iterative screening step based on correlation with the target
to eliminate useless or noisy predictors.

Because the selection step is designed to eliminate irrelevant predictors (as opposed to

240



downweight them as, for example, PLS does) we expect SPCA to perform best when faced
with a large number of predictors that are potentially irrelevant, noisy, or redundant. In
our empirical analysis, we therefore explore a context in which a large number of predictors
are available to be used for forecasting. Specifically, we include in our set of predictors not
only a standard panel of macroeconomic variables, but also a large dataset of individual
forecasts of different macroeconomic quantities by professional forecasters. Macroeconomic
forecasts have often been included in forecasting exercises, either by using the consensus
forecast as an additional predictor (Faust and Wright [2013]) or in the context of optimal
forecast combination (Genre et al. [2013]). In our context, we let SPCA decide if and which
individual forecasts to use to complement the macroeconomic predictors — so the forecast

combination will be decided automatically by SPCA.

3.2.2 Data

Our empirical exercise combines two datasets. First, we use the standard Fred-Md database

[McCracken and Ng, 2016| that contains 127 monthly macroeconomic and financial series.!

1. The series are grouped in the following categories: output and income; labor market; housing; con-
sumption, orders and inventories; money and credit; interest and exchange rates; prices; stock market. The
dataset applies a variety of transformations to the underlying series, which we follow in our analysis. We
however make a few adjustments to the series’ data transformations, to ensure that all series are stationary
and based on economic reasoning. For the Effective Federal Funds Rate (FEDFUNDS), we keep its level
(i.e., no transformation) instead of taking the first difference. We also compute the first difference of nat-
ural log instead of the second difference of natural log for the following series: M1 Money Stock (M1SL),
M2 Money Stock (M2SL), Board of Governors Monetary Base (BOGMBASE; note: starting from the Jan-
uary 2020 (2020-01) vintage, BOGMBASE replaced the St. Louis Adjusted Monetary Base (AMBSL)),
Total Reserves of Depository Institutions (TOTRESNS), Commercial and Industrial Loans (BUSLOANS),
Real Estate Loans at All Commercial Banks (REALLN), Total Nonrevolving Credit (NONREVSL), Fin-
ished Goods (WPSFD49207), Finished Consumer Goods (WPSFD49502), Processed Goods for Intermediate
Demand (WPSID61), Unprocessed Goods for Intermediate Demand (WPSID62; note: starting from the
March 2016 (2016-03) vintage, PPI: Finished Goods (PPIFGS), PPI: Finished Consumer Goods (PPIFCG),
PPI: Intermediate Materials (PPIITM), and PPI: Crude Materials (PPICRM) have been replaced with
WPSFD49207, WPSFD49502, WPSID61, and WPSID62 respectively), Crude Oil, spliced WTT and Cush-
ing (OILPRICEx), PPI: Metals and Metal Products (PPICMM), Consumer Price Index for All Urban
Consumers (CPIAUCSL), CPI: Apparel (CPIAPPSL), CPI: Transportation (CPITRNSL), CPI: Medical
Care (CPIMEDSL), CPI: Commodities (CUSRO000SAC), CPI: Durables (CUSRO000SAD), CPI: Services
(CUSRO000SAS), CPI: All Ttems Less Food (CPIULFSL), CPI: All Items Less Shelter (CUSRO000SAOL2)?,
CPI: All Items Less Medical Care (CUSRO000SAOLS5), Personal Cons. Exp: Chain Index (PCEPI), Personal
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The Fred-Md data spans the period March 1959 to February 2022. Second, we use indi-
vidual forecasts from the Blue Chip Financial Forecasts data, which is a monthly survey
of experts from various major financial institutions? and provides forecasts of interest rates
and many other macroeconomic quantities4 for each of the next six quarters (i.e., current
quarter t through ¢ + 5), for a total of hundreds of forecasts every month. Our data covers
the period February 1993 to February 2022 and we use all forecasts available (for all possible
macroeconomic targets) as potential predictors. This gives us up to 18,053 different individ-
ual forecasts that could in theory be used as predictors (though, as discussed below, many
of these forecasts are available for only a small number of periods, so they are not used in
our analysis). Given that the Blue Chip forecast is only available since 1993, we conduct all

of our analysis for the period February 1993 to February 2022.

3.2.3  Out of Sample Forecast Fvaluation

We forecast each of the three targets (inflation, industrial production growth, and change
in the unemployment rate) using a rolling out of sample procedure. We evaluate the out
of sample forecast of SPCA and compare it with two alternative forecasting methods, PCA
and PLS. We choose these alternatives because each is a prominent example of a class of
methods used in large-dimensional macroeconomic forecasting (respectively, unsupervised
and supervised dimension reduction). Each of the three methods we evaluate (SPCA, PCA,

PLS) is benchmarked to the forecast of an autoregressive model, whose number of lags is

Cons. Exp: Durable Goods (DDURRG3MO86SBEA), Personal Cons. Exp: Nondurable Goods (DND-
GRG3MO086SBEA), Personal Cons. Exp: Services (DSERRG3MO086SBEA), Avg Hourly Earnings: Goods-
Producing (CES0600000008), Avg Hourly Earnings: Construction (CES2000000008), Avg Hourly Earnings:
Manufacturing (CES3000000008), Consumer Motor Vehicle Loans Outstanding (DTCOLNVHENM), Total
Consumer Loans and Leases Outstanding (DTCTHFNM) and Securities in Bank Credit at All Commercial
Banks (INVEST).

3. For instance, Bank of America, Goldman Sachs & Co. and J.P. MorganChase.

4. For instance, the percentage changes in Real GDP, the GDP Chained Price Index, the Consumer Price
Index and a set of interest rates (e.g., Federal Funds, 3-month Treasury, Aaa as well as Baa Corporate
Bonds).
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selected by the BIC criterion with a maximum lag of 12 lags, using a direct projection
approach (Marcellino et al. [2006], Faust and Wright [2013]). We study forecast horizons of
1 to 12 months.

All of the analysis is performed using a rolling estimation on a 240-months window. At
every time t starting at the last month of the window, we predict the cumulated macroeco-
nomic variables from ¢ to t + h, where h is the forecast horizon, as in Huang et al. [2022].
Within each window, we only keep predictors that have less than 10% missing data points.
For those series that are included but do have some missing data (mostly Blue Chip forecasts)
we forward fill the last non-missing value. About half of the total of around 40 forecasters
from BlueChip available in the average month have sufficiently long series of forecasts to
be included in our analysis. All predictors are standardized within each window. Then, a
forecast is made for ¢ 4+ 1 using the three different methods, and these forecasts are then
joined over time to compute the out-of-sample R? (relative to the AR benchmark). When
we use the Blue Chip data, we also include dummies for month of the quarter, to account
for the fact that the Blue Chip data makes forecasts for calendar quarters irrespective of the
month.?

Recall that the SPCA procedure presented in Giglio et al. [2023] relies on two tuning
parameters, K and |¢N |, whereas PCA and PLS only rely on tuning K. To demonstrate
the effect of tuning parameters, we report three versions of the results. We first show
the performance of the forecasting methods for different (fixed) number of factors K and
different (fixed) choice of [¢/N|. In this case, no tuning is needed for SPCA. We then show
the performance of SPCA for each K, with a single tuning parameter of SPCA that drives the
selection step |¢N | chosen via 3-fold cross-validation (CV) separately in each time window.
Next, we show the results when both the number of factors K (for SPCA, PCA and PLS)

and the tuning parameter |g/N| (for SPCA) are jointly chosen via CV. We consider a range

5. For example, in January, February and March, the “current quarter” forecast always refers to Q1.
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of |¢N] from 50 to 300.

3.2.4 Results

3.2.4.1 Forecasting Performance

We begin by focusing on prediction at the quarterly (3-month) horizon, which is a stan-
dard horizon studied in the literature. Figure 3.1 reports the out of sample R? of different
forecasting methodologies relative to the AR benchmark, for inflation (left panel), industrial
production growth (center panel), and change in unemployment (right panel). In this figure,
the prediction exercise is performed by fixing the number of factors K. For PCA (red line)
and PLS (blue line), there are no tuning parameters beyond K. For SPCA, we report sepa-
rate results for each choice of the tuning parameter K (grey lines), as well as for the value

for |gN | chosen by CV (green line).

Figure 3.1: OOS Performance of SPCA, PCA and PLS (for different number of factors)
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Notes: Each panel reports the out-of-sample R? relative to the AR model for a different target, aggregated over 3 months.
The three panels predict inflation, industrial production growth and change in unemployment rate, respectively. The green
dashed line shows the performance of SPCA with 3-fold cross validation for the tuning parameter [¢g/N|. The grey lines show
the performance of SPCA with fixed number of predictors, [gN|. The blue dashed line uses PLS. The red dashed line uses
PCA. Rolling window of 240 months is used. Sample covers 1993-2022.
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The figure shows several interesting results. First, it is in general hard to predict inflation
beyond what an AR model predicts (see also Faust and Wright [2013]): the out of sample R2s
are close to zero or even negative. Only SPCA, among all methods, produces positive R2s,
and it does so using a small number of factors. Predictability beyond the AR model is much
higher for IP growth and change in unemployment. Second, the predictive performance
of SPCA is generally higher than that of PCA and PLS for most choices of the number
of factors. Third, the performance of PCA does depend on the tuning parameter, but in
different ways for different targets. For inflation, for example, a lower value of |¢/V| seems
to predict better; for industrial production and unemployment, higher values work better.
Finally, the performance of all these methods varies quite dramatically with the number
of factors, with substantial declines for the methods that use target information (PLS and
SPCA with a smaller |¢/N]) as the number of factors increases, because of their overfitting
issue we explained earlier.

Given how important the number of factors is for the out-of-sample performance, in
what follows we choose the number of factors via cross-validation for all three methods (so
for SPCA both |¢N| and K are jointly selected via CV). The left panel of Figure 3.2 shows
the results. Now all three targets (inflation, industrial production growth and change in
unemployment rate) appear in the same panel. The panel confirms that SPCA generally
performs well in predicting out of sample, doing better than the alternatives (in the case
of unemployment, several choices of the tuning parameter [¢/N| outperform PCA and PLS,
but not the one chosen by cross-validation). Overall, SPCA tends to do comparatively well
when choosing all parameters via cross-validation.

Given the way SPCA chooses the set of predictors, we would expect it to perform best in
contexts where there are a large number of predictors, that overall contain valuable informa-
tion, even if some predictors are redundant or noisy. The forecasting experiment we run here

falls in this category: it contains both macroeconomic and financial data (which are likely
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Figure 3.2: OOS Performance of SPCA, PCA and PLS (using CV to choose the number of
factors)
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Notes: The left panel of this figure repeats the analysis of Figure 3.1, but chooses the number of factors via CV. The right
panel performs the same analysis as the left panel, but using only Fred data.

to contain important individual predictors), as well as a large number of individual forecasts
that we would expect to be informative beyond macroeconomic quantities but where a large
part of the observed variation is likely dominated by noise. To better gauge the importance
of this additional data in the performance of SPCA, the right panel of Figure 3.2 shows the
results of running the same analysis (using the same sample) but with only the Fred data.
The figure shows that while the performance of SPCA remains broadly comparable with
the other predictors, it deteriorates compared to PCA and PLS (PLS itself has very mixed
performance, though, predicting well IP growth and unemployment, and failing to predict
inflation). So, on the one hand, this figure shows that individual expert forecasts are useful
for prediction of macroeconomic variables, confirming the results in Faust and Wright [2013];
on the other hand, it shows that SPCA does particularly well when working with this large

and informative, yet noisy, universe of individual forecasts.
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3.2.4.2 Predictors Selected by SPCA

Next, we study in detail how SPCA selects predictors. Figure 3.3 shows which variables are
chosen by SPCA to extract the first factor (focusing on the 50 with highest correlation with
the target, for reasons of readability). For the three targets (one per column), the graph
reports which variables were selected in each of the rolling windows in our sample. The
top part of the graph collects the 127 Fred variables, grouped according to the standard
Fred-Md categorization, in alternating blue and red colors. The bottom part corresponds to
the BlueChip surveys, grouped by the target of the individual forecast (therefore, each row
in this part of the graph is a forecast of a particular variable, at a particular horizon, by a
particular expert). A darker color in this graph means that the variable is selected in that
window.

Consider for example the inflation graph on the left. To extract a factor useful to predict
inflation, SPCA selects a large number of variables from a few groups: output, consump-
tion, rates, prices, and the stock market. Other groups are almost never selected. Rates are
selected more for IP growth, and labor variables are selected more when predicting unem-
ployment. Housing variables are rarely used for all three targets. Note that in many cases,
the same predictors from each group are used, indicating that the predictive power of these
macroeconomic variables is persistent.

To this macroeconomic set of predictors, SPCA adds a selection of individual forecasts
from the BlueChip data as additional predictors. For reasons of space, the greyscale part
of the graph shows a subset of these predictors: only those that are selected among the top
50 predictors at least in one window. The graph shows that different types of forecasts are
used at different points in time, with some exceptions. Not surprisingly, to predict inflation,
forecasts of the consumer price index are always included. To these forecasts, SPCA adds
forecasts of GDP in the first and last part of the sample, and interest rates in the intermediate

part of the sample. GDP forecasts are used throughout the sample to predict changes in
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Figure 3.3: Top 50 Predictors Selected by SPCA
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unemployment, and become more dominant for all target variables toward the end of the
sample, whereas inflation predictors tend to be more important beforehand. This switch is
perhaps due to the fact that in the later part of the sample the zero lower bound was close
or binding and inflation was low and not very volatile.

Finally, we note that not all Blue Chip forecasters are the same in terms of forecasting
ability. Among the institutions whose forecasts are included in our analysis because they
have a sufficiently long time series (each providing tens of forecasts, of different variables
at different horizons), we find significant heterogeneity in the frequency with which their
forecasts are selected by SPCA. For example, Nomura has its forecasts selected between
23% and 39% of the time at the first iteration (depending on the target). Swiss RE, on the
other hand, has its forecasts selected only 0.1% of the time, for each target. This distribution
is quite skewed: only 5 institutions have their forecasts selected more than 10% of the time
for each target, out of the 20 included in our sample. Similar results hold when looking at

selection at any iteration of SPCA.

3.2.4.3 Joint Forecasts using Many Targets

Next, one special feature of SPCA is that it can operate the selection using a set of multiple
targets jointly. In fact, using multiple targets is required by the theory (see Giglio et al.
[2023]) to do inference, as long as there are more than one factors in the true DGP. We
implement this here by predicting each target at horizons of 1, 2, 3, 6 and 12 months jointly.
Figure 3.4 reports the out of sample R2s on each horizon. There are two main results that
this figure highlights. First, SPCA tends to do on average well at longer horizons (3, 6 and
12 months), whereas its performance is more uneven at shorter horizons. Second, comparing
the middle panel (predicting one quarter ahead) with the left panel of Figure 3.2, which
focused on the 3-month horizon only, we see that the use of other horizons to help select

predictors has different effects for different targets. It significantly improves the forecasting
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ability for unemployment, but reduces the forecasting ability for IP growth (mildly) and
inflation (significantly so). Overall, the performance of SPCA remains on par with the other
predictors when using multiple targets, especially at longer horizons.

Figure 3.4: OOS Performances - Different Targeted Horizons
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Notes: Similar to Figure 3.2, but showing the out of sample R?s at different horizons, and using all the horizons concurrently
to estimate the factors in SPCA.

3.2.4.4 Time Series of the Forecasts

Finally, we study the time series of our out-of-sample forecasts at different horizons, using
the estimates obtained in Section 3.2.4.3, for horizons of 1, 2, 3, 6 and 12 months. Figure
3.5 reports SPCA’s forecasts with asymptotic forecast standard errors at each maturity.
In the figure, the blue dots represent the underlying time series that is the target of the
forecast: log CPI, log IP, and unemployment, all scaled to start from 0 at the beginning of
the sample. For readability, we show the forecasts every six months, each for horizons up
to 12 months. Standard errors are obtained using the asymptotic distributions derived in
Giglio et al. [2023], and are plotted in three shades (the 10th and 90th percentiles in the
darkest shade, 5th and 95th in the middle shade, and 1st and 99th in the lightest shade).
Overall, SPCA does a good job forecasting the three series, with the forecasts often
anticipating changes in the direction of the different variables. For example, IP forecasts
predicted the increase starting in 2016, and the decrease that started in 2018. Of course,

in other times the forecasts miss significantly, sometimes for several periods in the same
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direction. Two examples: first, forecasts do not fully anticipate the persistent decrease in
unemployment that occurred during 2013 and 2014. Second, all forecasts miss (as they
should have) the unexpected and extraordinary events of the Covid pandemic (both the
initial shock and the recovery). In that period, the point estimates change dramatically
over a short period of time, and standard errors increase noticeably, demonstrating the large

amount of uncertainty about the path of the economy during those times.

3.3 Risk Premia Estimation and Factor Model Diagnosis

In this section we apply SPCA to estimate the risk premia of a variety of observable factors,

and to diagnose observable factor models.

3.3.1 Data

Our main dataset is the Chen and Zimmermann [2020| data, which includes a large number
of equity portfolios sorted by characteristics. Specifically, we employ the April 2021 release
of the data. For each characteristic considered, Chen and Zimmermann [2020| construct a
variable number of portfolios (as many as are used in the original papers that introduced
the anomaly in the literature: typically 2, 5, or 10). Not all test assets are available for
the entire time period; for our analysis, we study the time period 1976m3 to 2020m12, for
which 901 test portfolios are available without missing values. To these sorted portfolios, we
add 49 industry portfolios from Ken French’s website. All of our results are at the monthly
frequency.6

We also consider an alternative dataset, proposed by Hou et al. [2020], that includes for
the same period 1672 portfolios sorted by characteristics without missing values. Hou et al.

[2020] classify their portfolios in six groups: momentum, value, investment, profitability,

6. The theory is silent on what the correct frequency of the data to study is. Here we follow the literature
and focus on monthly frequency; we leave for future work a more comprehensive study and comparison across
frequencies.
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intangibles, and frictions. These two datasets are similar and yield comparable results.
Rather than producing two versions of each result using the two datasets, we choose Chen
and Zimmermann [2020] to be our main dataset and report the robustness of the main results
using the Hou et al. [2020] data (see Section 3.3.2.6). What both datasets have in common
is that they capture a wide universe of anomaly equity portfolios discovered in the last four
decades of asset pricing research.

We consider both tradable and nontradable factors in our analysis, focusing on the best-
known ones from the literature. The tradable factors are: the market (in excess of the risk-
free rate); size (SMB); value (HML); profitability (RMW); investment (CMA); momentum
(MOM); betting-against-beta (BAB, from Frazzini and Pedersen [2014]); and quality-minus-
junk (QMJ, from Asness et al. [2013]). The nontradable factors are: the liquidity factor
from Pastor and Stambaugh [2003]; the intermediary capital factor from He et al. [2017];
AR(1) innovations in industrial production growth (IP); VAR(1) innovations in the first
three principal components of 279 macro-finance variables from Ludvigson and Ng [2010];
AR(1) innovations in the three uncertainty indexes of Jurado et al. [2015], representing
financial uncertainty, macroeconomic uncertainty, and real uncertainty; AR(1) innovations
in the term spread, the credit spread, and the unemployment rate; AR (1) innovations in two
sentiment indexes, one from Huang et al. [2015] and one from Baker and Wurgler [2006]; oil

price growth AR(1) innovations; and consumption growth AR(1) innovations.”

7. The market factor, SMB, HML, RMW, CMA and MOM are from Ken French’s website. BAB and
QMJ are from AQR’s website. The liquidity factor is from Lubos Pastor’s website. The intermediary capital
factor is from Asaf Manela’s website. The macro principal components and the uncertainty indexes are from
Sydney Ludvigson’s website. Industrial production, the credit spread, unemployment rate, the term spread,
and oil price are from Fred-MD. The Huang et al. [2015] sentiment index is from Huang’s webpage. The
Baker and Wurgler [2006] sentiment index is from Wurgler’s website. The consumption factor was built from
NIPA data using the methodology of Schortheide et al. [2018].
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3.3.2  Estimation of Risk Premia using SPCA

In this section we estimate the risk premia of a variety of tradable and nontradable factors.

We begin by discussing some details of the implementation of the estimator.

3.3.2.1 Choice of Tuning Parameters and Implementation Details

To apply SPCA to the estimation of the risk premia and to evaluate its out-of-sample per-
formance, we split the sample period into two equal-sized subsamples. The first half of the
sample (training period) is used to choose the tuning parameters and produce the risk pre-
mium estimate. The second half of the sample (evaluation period) is used to evaluate the
out-of-sample performance of the estimator and the choice of the tuning parameter.

For ease of presentation, we choose to select only one tuning parameter, ¢ (or, equiva-
lently, the number of assets selected |¢N |), for each plausible choice of p (the number of
factors) in our analysis. This approach reduces the number of tuning parameters to only one,
and also conveniently serves as a robustness check with respect to the number of factors.

To determine reasonable candidates for p, we examine the factor structure of the panel
of test asset returns. Figure 3.6 provides the scree plot of the log of the first 25 eigenvalues.
There appear to be at least three strong factors. In addition, it appears that factors 4-11
might also be relevant, but weak. Motivated by the scree plot, in the empirical study below
we highlight results for p equal to 3, 5, 7, and 11, therefore showing the robustness of our
results to a wide range of model dimensions.

To choose the tuning parameter ¢, we adopt the same R? criterion as in simulations
to evaluate the estimator’s out-of-sample performance, namely, the hedging ability of the
portfolio built by SPCA for ¢g;. Guided by this statistical justification, in our empirical work
we choose ¢ by 3-fold CV(100 runs) within the training sample, maximizing the hedging R?
for g+. Appendix 2.5.5 describes in detail the steps for the cross-validation. Once we have
tuned ¢, we use it to compute the SPCA risk premium estimate for g.
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Figure 3.6: Logarithm of the First 25 Eigenvalues in the Chen-Zimmerman data
Note: The figure plots the logarithm of the first 25 eigenvalues of the data, obtained from Chen and

Zimmermann [2020] plus 49 industry portfolios, covering the period 1976-2020.

3.3.2.2 Results: Estimation of Risk Premia and Out-of-sample Evaluation

We report the main empirical results in Table 3.1 and Figures 3.7 and 3.8. Each row of
Table 3.1 corresponds to one factor; the first 8 are tradable, the rest are nontradable. For
tradable factors, the first two columns show the average excess return of the factor, in the
training sample and in the evaluation sample, respectively; these numbers correspond to
model-free estimates of the risk premia of tradable factors, and can be directly compared
with the model-based estimate obtained from SPCA.

The next columns of the table show the SPCA results in 4 groups of columns, correspond-
ing to the number of latent factors p = 3, 5, 7, and 11, respectively. For each choice of p, we
report the risk-premium estimate (obtained in the training sample, in bp per month), the
number of assets selected by SPCA (determined by ¢), and the out-of-sample R? obtained
in the evaluation period. These estimates are obtained factor by factor: that is, in each
case, g¢ contains one factor, and the asset selection is driven by that factor only. In the last
two columns of the table, we repeat the exercise (with p = 11) but estimate all risk premia
simultaneously: ¢; contains all the factors and the selection of the assets is based on all of

them simultaneously (so that d > p as opposed to d = 1). In theory, both approaches are
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consistent. In practice, estimating risk premia factor by factor has the advantage that the
latent factors zoom in immediately on the assets relevant for each factor. On the other hand,
the joint estimation is required for the CLT of Section 2.2.2.4.

Consider first the market portfolio (first row of the table), a strong factor in this dataset.
The average return of the market in the training sample is 74bp per month, and 62bp
in the evaluation period. The SPCA estimates of the market risk premium, for the four
chosen values of p, are 68, 70, 72, and 74bp per month, respectively, all close to the average
excess return. To obtain these estimates, SPCA estimates the latent factors picking, in each
iteration, 100 assets out of the total of 950. Finally, the portfolio that SPCA builds to hedge
the market achieves, not surprisingly, a very high out-of-sample R2, above 0.98 for all p.

To better understand the performance of the estimator and the tuning parameter choice,
we can examine the heatmap in Figure 3.7, panel (a), which focuses on the market factor.
In the heatmap, the x axis reports the number of factors p; the y axis reports the number
of test assets selected by SPCA (in turn determined by ¢); for each combination of p and ¢,
the heatmap reports the out-of-sample R2 of the hedging portfolio built by SPCA.

Panel (a) shows that for all combinations of p and ¢, out-of-sample R2s are overall very
high for the market portfolio, above 85%. However, there appears to be a subset of the
parameter space where hedging performance is especially good: combinations with high p
and low g. The red marks in the heatmap correspond to the values of ¢ chosen by CV in
the training sample (one for each value of p considered in the table: 3, 5, 7, 11). Ideally,
the values of ¢ chosen by CV in the training sample would yield a hedging portfolio that
performs well out of sample: that is, the marks should lie in areas in the heatmap with high
out-of-sample R2s. This is indeed the case, as the figure shows, indicating good out-of-sample
performance of the tuning parameter selection procedure.

Consider now another tradable factor, CMA, in the 5th row of Table 3.1. Like for the

market, the estimated risk premium for CMA is not significantly different from the average
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Figure 3.7: Out-of-sample R? Heatmaps, Tradable Factors

Note: Each panel reports the out-of-sample R? heatmap for a different factor. X-axis reports p. Y-axis
reports the number of assets selected, governed by ¢. The colors in the heatmap correspond to the out-
of-sample R? of the SPCA-implied hedging portfolio for the factor g;; this R? is computed entirely in the
evaluation period. The red marks are the points chosen by CV within the training sample.
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Figure 3.8: Out-of-sample R? Heatmaps, Nontradable Factors

Note: Same as Figure 3.7, but for a subset of nontradable factors.
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excess return of the factor. The number of assets selected by SPCA ranges between 100 and
350, and the out-of-sample R2 is above 50%, indicating that the hedge portfolio built by our
latent factor model is able to capture the majority of the variation on CMA out of sample.®

The heatmap of the out-of-sample R? for the hedging portfolio of this factor is panel (e)
of Figure 3.7. The figure shows that for the case of CMA, different combinations of p and
¢ vield very different out-of-sample hedging performance, with R2s ranging from above 50%
to below 0. Ideally, if the tuning parameter were chosen properly, we would see the hedging
portfolio also does well out of sample. The red marks in the figure show that this is indeed
the case, especially for p = 5 and above.

These heatmaps also allow us to compare the results with the PCA-based estimator of
Giglio and Xiu [2021]. This is because the last row of the heatmap corresponds to the
case ¢ = 1, that is, all assets are used to estimate the factors; so PCA corresponds to a
particular choice for the tuning parameter. Looking across the various panels of Figure 3.7,
it is clear that while for some factors (like the market) similar R? can be obtained by PCA
and SPCA, for other factors (like CMA and RMW) the out-of-sample R2s obtained by SPCA
are substantially higher than those by PCA. This is not surprising given that the scree plot
has shown the presence of several weak factors in the data.

One additional advantage of SPCA that is clearly visible in the heatmaps is that SPCA
often manages to achieve the same (or better) R? than PCA, while estimating a much smaller
number of factors. For example, consider the momentum factor in panel (f). The last row
of the heatmap shows that extracting factors via PCA achieves an R2 above 70% only once

at least 6 factors are included; SPCA gets there even with 3 factors. The reason is intuitive:

8. Given that the universe of test assets includes portfolios sorted by the same characteristics used to
construct the tradable factors like CMA, one may wonder why an out-of-sample R? of 100% is not always
obtained for tradable factors. The reason is that SPCA attempts to build a hedging portfolio for the target
g¢ with factors that must also explain covariation among the universe of test assets. An advantage of our
approach is that the hedging portfolio is able to avoid fitting the “measurement error” component in g,
which, as discussed above, can be thought of as non-diversified idiosyncratic error for tradable factors, or
more literally measurement error for nontradables.
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SPCA focuses on the test assets most informative about g+, and therefore can zoom in quickly
on the most relevant latent factors.

For nontradable factors, we cannot compare the risk premium estimate from SPCA with
the average excess return; beyond relying on the theory and simulations, we can look at the
out-of-sample R? for suggestive evidence about the empirical performance of the estimator.
Note that it is well known in the literature that it is difficult to hedge nontradable factors,
like consumption or IP growth, in equity markets. We will however show that SPCA gives a
hedging portfolio that successfully hedges at least a part of the variation in many nontradable
factors.

Consider first the liquidity factor of Pastor and Stambaugh [2003], in row 9 of Table 3.1
and panel (a) of Figure 3.8. The out-of-sample R? achieved by SPCA is above 0 (up to 4%),
and the estimated risk premium appears to be high (between 70 and 95bp per month). Panel
(a) of Figure 3.8 shows how strongly this R? depends on p and ¢q. Among all combinations
of parameters, a large fraction actually delivers a negative out-of-sample R2. This simply
stresses how difficult it is to hedge this factor (like most macro factors) using equity markets,
and indicates again the relatively good performance of SPCA as tuned in the training sample.

The remainder of the table and of the two figures shows the results for all the other
factors (for reasons of space, the heatmaps only report a subset of the factors, while the
table reports them all). A few interesting patterns emerge. First, for tradable factors, SPCA
gives risk premia estimates that are always close to the model-free estimates obtained from
average excess returns: the two are never statistically different at the 5% level (with the only
exception of QMJ with p = 3). Second, confirming the previous literature, nontradable fac-
tors are much harder to hedge than tradable factors; in fact, for several factors — like the first
two JLN macro factors — we do not get positive RZ at all. For those factors, there is so little
exposure in equity returns that SPCA cannot build a proper hedging portfolio. However,

SPCA is able to hedge out of sample at least a part of the variation of many factors, like the
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third LN factor, the three uncertainty measures, the liquidity factor and the intermediary
capital factor (for which it achieves an R? above 50%). Third, the risk premia estimated
by SPCA — for those factors where SPCA can actually hedge some of the variation — make
economic sense: for example, the liquidity and intermediary factors command significantly

positive risk premia, whereas the three uncertainty measures command negative risk premia.

3.3.2.3 Asset Selection

To better understand how SPCA estimates risk premia, we can study which assets are
selected when extracting the latent factors. Table 3.2 shows, for four representative factors
(two tradables, Momentum and RMW, and two nontradables, liquidity and intermediary
capital), the top 10 test assets (by absolute value of correlation) selected at each step. The
names of the portfolios follow Chen and Zimmermann [2020|, with the numbers indicating
the quintile or decile of the characteristic.

Consider Momentum in the first set of rows. To extract the first factor, SPCA selects
the assets with the highest correlation with the momentum factor. The table indicates that
the highest correlation, at 0.44, is with IntMom09, an intermediate momentum portfolio.
The other assets with high correlation are all momentum-related, not surprisingly. In the
next columns, the table shows the assets selected at the second iteration of SPCA, after
orthogonalizing g; and the test assets to the first factor. Interestingly, the correlations among
these residuals are even higher, up to 0.79 for a different momentum sort (Mom12mOffSeason,
momentum without the seasonal component). This suggests that the first factor captures
some of the asset variation that is not exclusively specific to momentum (for example, part
of the market factor), which the projection step of SPCA removes.

The remainder of the table shows which assets are selected at the different iterations for
RMW, Liquidity, and Intermediary Capital. For RMW (a profitability factor), the assets

selected are often based on accounting measures, like asset growth, accruals, leverage, and
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Table 3.2: Assets Selected by SPCA

Factor #1 Factor #2 Factor #3

Asset | Corr | Asset | Corr | Asset | Corr |
IntMom09 0.44 Mom12mOffSeason02 0.79 Mom12m08 0.64
IntMom10 0.4 Mom12mOffSeason03 0.76 BMdec05 0.63
MomVol10 0.37 Size01 0.74 IntMom03 0.63
MomVol09 0.36 ResidualMomentum0O1  0.73 SP05 0.62
IntMom08 0.36 ResidualMomentum02  0.73 SharelssbY05 0.62
Mom Mom12m10 0.36 NumEarnIncrease01 0.72 BookLeverage02 0.62
FirmAgeMom05 0.35 SharelsshY01 0.7 cfp05 0.61
Mom12mOffSeason10  0.34 MomVol03 0.69 BMdec04 0.61
Mom12mOffSeason09  0.33 CompEqulss01 0.68 Sharelss1Y05 0.6
Mom12m09 0.33 Mom12m03 0.68 LRreversal04 0.6
Industry:Gold 0.27 OperProf05 0.54 OperProfRD01 0.53
MomOffSeason10 0.27 OperProfRD09 0.53 RoE01 0.47
AccrualsBM02 0.27 CBOperProf09 0.5 GPO1 0.45
DelEqu05 0.27 RoE05 0.49 CBOperProf02 0.45
LRreversal05 0.27 CBOperProf10 0.49 DolVol01 0.44
RMW roaq01 0.26 Leverage02 0.49 OperProfRD02 0.44
AssetGrowth10 0.26 OperProfRD08 0.49 CBOperProf01 0.43
DolVol05 0.25 realestate03 0.49 OperProf01 0.41
ChEQO05 0.25 GPO05 0.49 RoE02 0.4
Price05 0.25 GP04 0.48 VolMkt02 0.4
InvGrowth06 0.47 InvGrowth06 0.28 InvGrowth06 0.3
NetPayoutYield07 0.47 BetaFP09 0.26 DolVol01 0.27
PayoutYield05 0.46 EntMult06 0.25 XFINO8 0.26
PayoutYield07 0.46 NetPayoutYield07 0.24 MeanRankRevGrowth01l — 0.26
. BetaFP03 0.46 PayoutYield07 0.24 BetaFP03 0.25
Liq. DelLTI02 0.46 PayoutYield05 0.24 ShortInterest01 0.25
IntanBMO03 0.46 cfp04 0.23 BetaFP09 0.24
EntMult06 0.46 BetaFP10 0.23 EntMult06 0.24
VolMkt04 0.46 XFINO08 0.23 PayoutYield07 0.24
PayoutYield06 0.46 ShortInterest01 0.22 ChEQO04 0.23
Industry:Banks 0.9 Industry:banks 0.76 Industry:banks 0.7
Industry:Fin 0.84 Industry:Fin 0.56 Industry:Fin 0.47
IntMom05 0.8 DelEqu02 0.46 DebtIssuance02 0.38
EquityDuration04 0.8 greapx3y02 0.44 NOA10 0.36
IdioVolAHT05 0.8 OScore02 0.43 ChAsset Turnover04 0.35
Interm. 14365013705 0.79 GrLTNOA10 0.43  HerfAsset05 0.35
MaxRet08 0.79 ChAsset Turnover04 0.43 ShareRepurchase01 0.35
Tlliquidity01 0.79 IntMom05 0.43 HerfBEO5 0.35
IdioRisk05 0.79 IdioVolAHT05 0.42 DelEqu05 0.32
CBOperProf03 0.78 Tax01 0.42 Beta0b 0.32

Note: For each factor (one per panel) the table shows the top-10 assets selected by SPCA in extracting
the latent factors. Assets are sorted by absolute value of the correlation. For each factor from 1 to 3,
the table reports the names of the portfolios selected, and the absolute value of the correlation with g;.
Naming convention for the portfolios follows Chen and Zimmermann [2020].

operating profits. For liquidity, portfolios sorted by payout yield and beta seem to play an

important role in hedging the risk. Finally, for intermediary capital, the portfolios selected
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by SPCA relate to idiosyncratic volatility, liquidity, as well as two industry portfolios (not
surprisingly, banking and financials).

The selection of particularly informative assets is the central mechanism through which
SPCA addresses the issue of weak factors. It is also responsible for the parsimony of SPCA

to the number of factors used, since SPCA zooms in on the most informative assets.

3.3.2.4 Strength of the Factors

We next report the strength of the factors extracted by SPCA at each step. To make the
results comparable across iterations of SPCA, and between SPCA and PCA, we compute the
strength of a latent factor as the eigenvalue of the factor normalized by the number of assets
used to extract it. Figure 3.9 reports, in each panel, the log normalized eigenvalues for the
factors extracted from PCA (dashed line) and for the factors extracted by SPCA, grouped
across panels for the various targets (since the factors extracted by SPCA are different
for different targets g;): panels (a) and (b) show the factors extracted when the targets are
tradable factors, panels (c¢) use a subset of nontradables, and (d) the remaining nontradables.
The figure shows eigenvalues corresponding to the first 5 factors.

As expected, the log eigenvalues for PCA decrease as lower-variance factors are extracted.
This is also mostly (but not always) the case for SPCA, where however we see a large
difference across factors. For some factors (like most nontradables, which, as discussed
above, are mostly noise factors), SPCA chooses a large number of assets, so the results look
very similar to PCA (e.g. see panel (d)). For factors where SPCA chooses a small number
of assets (e.g., intermediary capital and many tradables) we see that the strength of the
factor extracted is higher than with PCA. This effect is strongest for the first eigenvalue
(the log scale hides it somewhat), but is there for subsequent factors as well. In general, it

appears that SPCA indeed strengthens the factor extracted from the cross-section, compared
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to PCA, and especially so when fewer assets are selected.”

Eigenvalues Eigenvalues
(a) (b)

T T T T
= =PCA = =PCA
—— SPCA:Liquidity ——SPCA:LN (1)
SPCA:Intermediary Capital SPCA'LN (2)
-1r ——SPCAIIP 1 -1 ——SPCALLN (3)
—— SPCA:Consumption —— SPCA:Fin. Unc.
SPCA:Real Unc.
2+ —— SPCA:Macro Unc. |{
——SPCA:Term
—— SPCA:Credit
\ SPCA:Unempl.
-3r —— SPCA:Sent. HITZ [
\ —— SPCA:Sent. BW
SPCA:Qil

Eigenvalues Eigenvalues

() (d)
Figure 3.9: Strength of the Latent Factors

Note: Each panel of the figure shows the log eigenvalues extracted by PCA from the universe of all assets
in the training sample, as well as the log eigenvalues extracted by SPCA at each iteration (for the first 5
factors), for the tuning parameter selected by CV. All eigenvalues are normalized by the number of assets
used, which is a measure of strength of the factor that is directly comparable. Panels (a) and (b) study
two groups of tradable factors, panel (c) a selection of the nontradables, and panel (d) the remaining
nontradables.

3.3.2.5 SPCA and the Universe of Test Assets

The fact that SPCA estimates the latent factors using the most informative assets also makes

it particularly robust to the universe of test assets used in the estimation. We explore this

9. One caveat is that once the main factors are extracted, and mostly noise is left in the cross-section,
noise itself could lead to higher normalized eigenvalues. This is why the criterion for tuning the parameter
q of SPCA is the out-of-sample R? of the hedging portfolio, and not this measure of factor strength.
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here in detail by considering three factors, value, momentum, and profitability, for which
we can easily identify test assets informative about them. Specifically, we consider (for
this section only) the dataset from Hou et al. [2020], which, as discussed in Section 3.3.1,
collects test portfolios by characteristics in six groups, among which one is labeled “value
vs. growth”, one “momentum”, and one “profitability.” We can then ask: how does SPCA
perform in estimating the value risk premium if we exclude the value and growth sorts from
the universe? Similarly, how does it perform in estimating the momentum and profitability
risk premia if momentum and profitability test assets, respectively, are removed? Once the
sorted portfolios are removed, the corresponding factors naturally become weaker. However,
we expect SPCA to still perform well, as long as sufficient exposure to the factor is present
in the remaining test assets. On the contrary, we expect PCA’s performance to deteriorate
more sharply.

We again look at the performance of SPCA through the lens of the hedging portfolio R2.
Figure 3.10 reports the out-of-sample time-series R? heatmap for the three factors: value,
momentum and profitability. On the left of each row we can see the R? obtained using all
assets from the Hou et al. [2020] dataset; on the right we can see the results excluding the
test assets corresponding to each factor. By looking at the last row of each heatmap, which
corresponds to the PCA estimate with no selection, it is clear that the hedging performance
of a portfolio built via PCA deteriorates significantly when the most informative assets are
removed. Consider for example the case p = 9. For value, the PCA hedging portfolio’s out-
of-sample R? decreases from 64% to 47%, as value and growth assets are removed; SPCA’s
R? decreases by substantially less, from 74% to 62%. In the case of momentum, the R?
decreases from 76% to 48% for PCA, but only from 86% to 77% for SPCA. Finally, for
profitability, the R? decreases from 41% to 14% for PCA, but only from 71% to 60% for
SPCA. In all cases, the SPCA portfolio hedging ability deteriorates little when the relative

sorts are removed and the factor is made weaker, whereas the deterioration is much larger
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Figure 3.10: Varying the Universe of Test Assets
Note: For value, momentum and RMW (profitability), the figure shows the out-of-sample R? heatmaps

when all the test assets from Hou et al. [2020] are used in the estimation (left), and when value portfolios,
momentum portfolios, or profitability portfolios, respectively, are excluded (right).

for PCA.
To sum up, these empirical results mirror the simulations in Section 2.3, which show that
SPCA performs well even when the factor of interest is weak in the universe of test assets

considered.
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3.3.2.6 Robustness

We conclude by reporting in Table 3.3 a version of Table 3.1 obtained using the Hou et al.
[2020] dataset instead of the Chen and Zimmermann [2020] data. The results are qualitatively
similar to the ones obtained using the Chen and Zimmermann [2020] data, and, with a few
exceptions, not statistically different. This confirms that, broadly, the results do not depend
on using one particular universe of test assets. That said, the results also suggest some
differences between these two universes of test assets, which our analysis in the next section

sheds some light on.

3.3.8  Diagnosing Factor Models via SPCA

In the previous section we apply SPCA to the estimation of risk premia. In this section, we
illustrate the use of SPCA to diagnose missing factors in observable-factor models, applying
the theory developed in Section 2.2.3. Recall that given an observable-factor model g¢, and a
set of test assets 1, we can use SPCA to recover the latent-factor SDF (using g; to supervise
the extraction of weak factors). If we find that the Sharpe ratio achieved by the latent factors
recovered by SPCA is higher than that achieved by g;, we can conclude that the factor model
using g¢ to span the SDF, is missing some factor. This is not just a test of whether g; explains
r¢, as it instead focuses on shedding light on why a model may be rejected in the data.

We consider five observable factor models: the CAPM, the Fama-French 3-factor model
(FF3), the Fama-French 5-factor model (FF5), and finally two richer models: one with
the FF5 factors plus momentum, and one with FF5 plus momentum, BAB, and QMJ. We
diagnose these models using both the CZ and the HXZ datasets.

We divide the sample into two parts as in Section 2.2.2, and use the first half for training
(and selection of the tuning parameter) and the second half for out-of-sample evaluation.
Maximal Sharpe ratios achieved using the factors in g¢ and using the factors from SPCA are
calculated out of sample.
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Figure 3.11: Out-of-sample Sharpe Ratios of Different Factor Models

Note: Each panel reports the out-of-sample Sharpe ratio of an observable-factor model g; (dashed line),

together with the out-of-sample Sharpe ratio obtained from the factors recovered using SPCA, in the HXZ

data (triangles) and in CZ (circles). The x axis corresponds to the number of factors used in SPCA (p).
Figure 3.11 reports the results. Each panel corresponds to a different model. The x axis

in each figure corresponds to the number of factors extracted via SPCA. The y axis is the

out-of-sample Sharpe ratio. The Sharpe ratio achieved by ¢; is represented by a dashed solid
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line, which naturally does not depend on the number of latent factors. In each graph, we
overlay the SPCA results with the HXZ and CZ data, respectively, using different markers
(blue triangles for HXZ and red circles for CZ). Not surprisingly, the out-of-sample Sharpe
ratios are somewhat noisy; we also plot fitted lines using raw estimates to help visualize the
trend.

Consider panel (a), in which ¢; is just the market. The market in our out-of-sample
period achieves a Sharpe ratio of 0.46 (dashed line). SPCA factors extracted using g; achieve
significantly higher Sharpe ratios, both in the HXZ and CZ data. The Sharpe ratio increases
with the number of factors, indicating that the CAPM misses several sources of risk. Results
for the FF3 and FF5 models (panels (b) and (c)) are similar: for both, once the number of
factors is sufficiently large, SPCA produces a Sharpe ratio that is superior to either model.
Once momentum is included (pane (d)), the model does perform as well as SPCA in the
HXZ data. This suggests that relative to the universe of test assets in the HXZ dataset, this
model (FF5+momentum) appears to be spanned by almost all sources of risk driving this
dataset (but not so in the CZ dataset).

As more observable factors are added to these models (panel (e) that includes BAB and
QMJ), we should expect the Sharpe ratio of the model to increase, as long as more latent
factors adds risk factors and not noise. We indeed find that this is the case. Overall, this
suggests that these richer models do a better job in capturing the fundamental sources of
risk in these dataset, although some amount of misspecification remains visible in the CZ
dataset.

The differences between the results using the HXZ and CZ datasets also emphasize the
importance of the choice of test assets. Ideally, to have as powerful tests as possible, we would
want to have a large and varied universe of test assets. The number of assets in a datasets
is, however, not a perfect proxy for the richness of the universe in terms of risk exposures. In

fact, as we have remarked in this paper, a universe with large N but low exposures to some
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factors can introduce a weak factor problem. Here we see another case in which the size
of the dataset does not necessarily translate into richer risk exposure: HXZ contains more
assets than CZ; yet, the results in this section show that using the test assets, 7+, from CZ,
SPCA diagnoses additional factors compared to the ones diagnosed using HXZ (this could
reflect, for example, a different construction of the portfolios in the different datasets, or a
different selection of characteristics).

Overall, these results illustrate that the ability of SPCA to recover weak latent factors
can prove useful as a diagnostic tool for observable factor models, and once again highlight

the importance of the choice of test assets in performing asset pricing tests.
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