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ABSTRACT

In macroeconomic forecasting, principal component analysis (PCA) has been the most preva-

lent approach to the recovery of factors, which summarize information in a large set of macro

predictors. Nevertheless, the theoretical justification of this approach often relies on a con-

venient and critical assumption that factors are pervasive. This thesis, however, delves into

the terrain of ’weak factors’—elements that are not pervasively influential but nonetheless

critical for precise predictions.

To incorporate information from weaker factors, in Chapter 1, we propose a new predic-

tion procedure based on supervised PCA, which iterates over selection, PCA, and projection.

The selection step finds a subset of predictors most correlated with the prediction target,

whereas the projection step permits multiple weak factors of distinct strength. Our ap-

proach is theoretically supported within an asymptotic framework where sample size and

cross-sectional dimension may increase at potentially different rates.

In Chapter 2, we transition the discussion to empirical asset pricing, where weak factors

and the selection of test assets are identified as interconnected challenges. Since weak fac-

tors are those to which test assets have limited exposure, an appropriate selection of test

assets can improve the strength of factors. Building on this insight, we design the SPCA

methodology for risk premia estimation and factor model diagnosis. The theoretical efficacy

of this approach is validated through its asymptotic properties.

Chapter 3 showcases SPCA’s empirical applications. The first application highlights the

role of weak factors in predicting inflation, industrial production growth, and changes in

unemployment. The second application employs SPCA to estimate the risk premia of a

variety of observable factors, and to diagnose observable factor models. All chapters are

adopted from my joint research work with Stefano Giglio and Dacheng Xiu in Giglio et al.

[2023] and Giglio et al. [2021].
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CHAPTER 1

PREDICTION WHEN FACTORS ARE WEAK

1.1 Introduction

Starting from the seminal contribution of Stock and Watson [2002a], factor models have

played a prominent role in macroeconomic forecasting. Principal component analysis (PCA),

advocated in that paper, has been the most prevalent approach to the recovery of factors

that summarize the information contained in a large set of macroeconomic predictors, and

reduce the dimensionality of the forecasting problem.

The theoretical justification for the PCA approach to factor analysis often relies on a

convenient – but critical – assumption that factors are pervasive (strong), see for example

Bai and Ng [2002] and Bai [2003]. In that case, the common components of predictors

can be extracted consistently by PCA and separated from the idiosyncratic components.

Recently, Bai and Ng [2021] relax this condition, showing that PCA can consistently recover

the underlying factors under weaker assumptions.

Nevertheless, PCA is an unsupervised approach, and by its nature, this poses some limits

to its ability to find the most useful low-dimensional predictors in a forecasting context.

Specifically, if the signal-to-noise ratio is sufficiently low, the factor space spanned by the

principal components is inconsistent, or even nearly orthogonal to the space spanned by true

factors, see Hoyle and Rattray [2004] and Johnstone and Lu [2009]. In such instances, we

refer to the underlying factors as weak.

In this paper we study a setting in which factors are sufficiently weak that PCA fails

to recover them. We propose a new approach to dimension reduction for forecasting, based

on supervised PCA (SPCA). The key idea of supervised PCA is to select a subset of pre-

dictors that are correlated with the prediction target before applying PCA. The concept of

supervised PCA originated from a cancer diagnosis technique applied to DNA microarray
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data by Bair and Tibshirani [2004], and was later formalized by Bair et al. [2006] in a pre-

diction framework, in which some predictors are not correlated with the latent factors that

drive the outcome of interest. Bai and Ng [2008] generalize this selection procedure (i.e.,

a form of hard-thresholding) to what they call the use of targeted predictors (that include

soft-thresholding as well), and find it helpful in a macroeconomic forecasting environment.

Unlike Bair et al. [2006], our supervised PCA proposal involves an additional projection

step, and a subsequent iterative procedure over selection, PCA, and projection to extract

latent factors. More specifically: we first select a subset of the predictors that correlate with

the target, and extract a first factor from that subset using PCA. Then, we project the target

and all the predictors (including those not selected) on the first factor, and take the residuals.

We then repeat the selection step using these residuals, extract a second factor from the new

subset using PCA, and then project again the residuals of the target and all predictors on

this second factor. We keep iterating these steps until all factors are extracted, each from a

different subset of predictors (or their residuals). We provide examples to illustrate that our

iterative procedure is necessary in general settings where factors can grow at distinct rates

(that is, they are of different strength) and factors are not necessarily marginally correlated

with the target. The final step of our procedure is to make predictions with estimated factors

via time-series regressions.

We justify our procedure in an asymptotic scheme where both the sample size and the

cross-sectional dimension increase but at potentially different rates. We show that our itera-

tive procedure delivers consistent prediction of the target. While our procedure can extract

weak factors, we do not have asymptotic guarantee for recovery of the factor space that is

orthogonal to the target. Importantly, this is irrelevant for consistency in prediction. Intu-

itively, using information about the correlation between each predictor and the target, we

gain additional information useful to extract some of the factors even when they are weak.

As a result, the factor space that we may fail to recover must be orthogonal to the target,
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and therefore missing it does not affect the consistency of the prediction.

The weak factor problem in our setting arises from the factor loading matrix, whose

singular values increase but at a potentially slower rate than the cross-sectional dimension.

The factors we consider are weaker than those discussed in Bai and Ng [2021]; as we show

in the paper, PCA cannot consistently recover them, and prediction via PCA is biased.

Interestingly, in this setting even supervised procedures may in general fail to recover the

relevant factors: specifically, we show that a widely used supervised procedure, partial least

squares (PLS), is in fact subject to the same bias as PCA. That said, our procedure will

miss factors that are extremely weak. These are the kind of factors studied by Onatski [2009]

and Onatski [2010], cases in which the eigenvalues corresponding to the factor component

are of the same order of magnitude as those of the idiosyncratic component. In this context,

while it is possible to infer the number of factors, Onatski [2012] show that the factor space

cannot be recovered consistently (and neither SPCA will be able to do so).

Finally, beyond consistency (which requires weaker assumptions), if we make an addi-

tional assumption that each of the latent factors is correlated with at least one of the variables

in a multivariate target, we can obtain stronger results: we can estimate the number of weak

factors consistently, recover the space spanned by all factors, as well as provide a valid pre-

diction interval on the target. Our asymptotic result does not rely on a perfect recovery of

the set of predictors that are correlated with the factors, unlike Bair et al. [2006]. Moreover,

our result accounts for potential errors accumulated over the iterative procedure.

Our paper relates to several strands of the literature on forecasting and on dimension

reduction. Within the context of forecasting using latent factors, it focuses on static ap-

proximate factor models. Dynamic factor models are developed in Forni et al. [2000], Forni

and Lippi [2001], Forni et al. [2004], and Forni et al. [2009], in which the lagged values of

the unobserved factors may also affect the observed predictors. It is possible to extend our

approach to the dynamic factor setting, which is beyond the scope of this paper. Chao
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and Swanson [2022] study estimation and forecasting within a weak-factor-augmented VAR

framework. They also use a pre-selection step since factors only have influence on a subset of

predictors. A unique contribution of theirs is a self-normalized score statistics for selection

in place of correlation screening as in supervised PCA, which ensures consistent selection of

marginally correlated predictors with vanishing Type I and II errors. Similar to Bair et al.

[2006], they assume all factors to have the same order of strength and all important predic-

tors to be marginally correlated with the target, which our iterative procedure is designed

to avoid.

Our paper is also related to a strand of the literature on spike covariance models defined

in Johnstone [2001], where the largest few eigenvalues in the covariance matrix differ from

the rest in population, yet are still bounded. In this setting, Bai and Silverstein [2009],

Johnstone and Lu [2009] and Paul [2007] show that the largest sample eigenvalues and their

corresponding eigenvectors are inconsistent unless the sample size grows at a faster rate than

the increase of the cross-sectional dimension. Wang and Fan [2017] extend this setting to the

case of diverging eigenvalue spikes, and characterize the limiting distribution of the extreme

eigenvalues and certain entries of the eigenvectors in a regime where the sample size grows

much slower than the dimension. All these papers shed light on the source of bias with the

standard PCA procedure in various asymptotic settings.

Besides supervised PCA, an alternative route taken by an adjacent literature to resolving

the inconsistency of PCA is sparse PCA, which imposes sparsity on population eigenvectors,

see, e.g., Jolliffe et al. [2003], Zou et al. [2006], d’Aspremont et al. [2007], Johnstone and Lu

[2009], and Amini and Wainwright [2009]. Uematsu and Yamagata [2022a] adopt a variant of

the sparse PCA algorithm proposed in Uematsu et al. [2019] to estimate a sparsity-induced

weak factor model. Bailey et al. [2020] and Freyaldenhoven [2022] adopt a similar framework

for estimating factor strength and number of factors. Because sparsity is rotation depen-

dent, such weak factor models require rotation-specific identification assumptions, whereas
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standard factor models do not. The weak factor models we consider, for instance, avoid such

a sparsity assumption, which makes our approach distinct from the sparse PCA.

Our approach also shares the spirit with Bai and Ng [2008] and Huang et al. [2022]. The

former suggests a hard or soft thresholding procedure to select “targeted” predictors to which

PCA is then applied, without providing theoretical justification. The latter suggests scaling

each predictor with its predictive slope on the prediction target before applying the PCA.

Our procedure and its asymptotic justification are more involved because the eigenvalues of

the factor loadings in our setting can grow at distinct and slower rates.

The rest of this chapter is organized as follows. In Section 1.2 we introduce the model,

provide examples to illustrate the impact of weak factors on prediction, and develop our

supervised PCA procedure. In Section 1.3, we present our approach in general settings and

provide asymptotic theory for our procedure. Section 1.4 provides Monte Carlo simulations

demonstrating the finite-sample performance. Section 1.5 concludes. Section 1.6 provides

mathematical proofs of the main theorems and propositions.

1.2 Methodology

1.2.1 Notation

Throughout this chapter, we use (A,B) to denote the concatenation (by columns) of two

matrices A and B. For any time series of vectors {at}Tt=1, we use the capital letter A to

denote the matrix (a1, a2, · · · , aT ), A for (a1+h, a2+h, · · · , aT ), and A for (a1, a2, · · · , aT−h),

for some h. We use ⟨N⟩ to denote the set of integers: {1, 2, . . . , N}. For an index set I ⊂ ⟨N⟩,

we use |I| to denote its cardinality. We use A[I] to denote a submatrix of A whose rows are

indexed in I.

We use a ∨ b to denote the max of a and b, and a ∧ b as their min for any scalars a and

b. We also use the notation a ≲ b to denote a ≤ Kb for some constant K > 0 and a ≲P b to
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denote a = OP(b). If a ≲ b and b ≲ a, we write a ≍ b for short. Similarly, we use a ≍P b if

a ≲P b and b ≲P a.

We use λmin(A) and λmax(A) to denote the minimum and maximum eigenvalues of A,

and use λi(A) to denote the i-th largest eigenvalue of A. Similarly, we use σi(A) to denote the

ith singular value of A. We use ∥A∥ and ∥A∥F to denote the operator norm (or ℓ2 norm),

and the Frobenius norm of a matrix A = (aij), that is,
√

λmax(A′A), and
√
Tr(A′A),

respectively. We also use ∥A∥MAX = maxi,j |aij | to denote the ℓ∞ norm of A on the vector

space. We use PA = A(A′A)−1A′ and MA = Id − PA, for any matrix A with d rows and

rank d, where Id is a d× d identity matrix.

1.2.2 Model Setup

Our objective is to predict a D × 1 vector of targets, yT+h, h-step ahead from a set of N

predictor variables xt with a sample of size T .

We assume that xt follows a linear factor model, that is,

xt = βft + βwwt + ut, (1.1)

where ft is a K×1 vector of latent factors, wt is an M ×1 vector of observed variables, ut is

an N × 1 vector of idiosyncratic errors satisfying E(ut) = 0, E(ftu′t) = 0, and E(wtu
′
t) = 0.

Without loss of generality, we also impose that E(ftw
′
t) = 0.1

We assume that the target variables in y are related to x through factors f in a predictive

model:

yt+h = αft + αwwt + zt+h, (1.2)

1. Otherwise, we can define f̃t = ft − E(ftw
′
t)E(wtw

′
t)

−1wt and β̃w = βw + βE(ftw
′
t)E(wtw

′
t)

−1, then
E(f̃tw

′
t) = 0 and xt satisfies a similar equation to (1.1): xt = βf̃t + β̃wwt + ut.

6



where zt+h is a D × 1 vector of prediction errors.

Using the aforementioned notation, we can rewrite the above two equations in their

matrix form as

X = βF + βwW + U,

Y = αF + αwW + Z.

We now discuss assumptions that characterize the data generating processes (DGPs) of

these variables. For clarity of the presentation, we use high-level assumptions, which can

easily be verified by standard primitive conditions for i.i.d. or weakly dependent series. Our

asymptotic analysis assumes that N, T → ∞, whereas h,K,D, and M are fixed constants.

Assumption 1. The factor F , the prediction error Z, and the observable regressor W ,

satisfy:

∥∥∥T−1FF ′ − Σf

∥∥∥ ≲P T−1/2, ∥F∥MAX ≲P (log T )1/2,
∥∥∥T−1WW ′ − Σw

∥∥∥ ≲P T−1/2,∥∥WF ′∥∥ ≲P T 1/2, ∥Z∥ ≲P T 1/2, ∥Z∥MAX ≲P (log T )1/2,
∥∥ZF ′∥∥ ≲P T 1/2,

∥∥ZW ′∥∥ ≲P T 1/2,

where Σf ∈ RK×K , Σw ∈ RM×M are positive-definite matrices with

λK
(
Σf

)
≳ 1, λM (Σw) ≳ 1, λ1

(
Σf

)
≲ 1 and λ1 (Σw) ≲ 1.

Assumption 1 imposes rather weak conditions on the time series behavior of ft, zt, and

wt. Since all of them are finite dimensional time series, the imposed inequalities hold if these

processes are stationary, strong mixing, and satisfy sufficient moment conditions.

Moreover, Assumption 1 implies that the K left-singular values of F neither vanish nor

explode. Therefore, it is the factor loadings that dictate the strength of factors in our

setting. This is without loss of generality because F can always be normalized to satisfy this
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condition.

Next, we assume

Assumption 2. The N ×K factor loading matrix β satisfies

∥β∥MAX ≲ 1, λK(β′[I0]β[I0]) ≳ N0,

for some index set I0 ⊂ ⟨N⟩, where N0 = |I0| → ∞.

Assumption 2 implies that there exists a subset, I0, of predictors within which all latent

factors are pervasive. This is a much weaker condition than requiring factors to be pervasive

in the set of all predictors, in which case λ1(β
′β) ≍ . . . ≍ λK(β′β) ≍ N . In contrast,

Assumption 2 allows for distinct growth rates for these eigenvalues, in that no requirement

is imposed on β[Ic0]
. Moreover, these eigenvalues can grow at a slower rate than N , since

N0/N is allowed to vanish very rapidly. We will make precise statement about the relative

magnitudes of these quantities when it comes to our asymptotic results.

Since the number of factors, K, is assumed finite, even if each factor is pervasive in

some separate (and potentially non-overlapping) index set, it is possible to construct a

common index set I0 within which all factors are pervasive.2 Assumption 2, neverthe-

less, rules out a somewhat extreme case where all entires of β are uniformly vanishing, i.e.,

supI,|I|→∞ |I|−1λK

(
β′
[I]
β[I]

)
= oP(1), to the extent that the desired subset I0 does not

exist.

Next, we need the following moment conditions on U .

2. To see a concrete example, suppose that β has a block diagonal structure, such that its kth column βk

is supported on an index set Jk, and the intersection of all Jks is empty. Suppose the non-zero entries of β
follow standard normal. Then we can find k⋆ := mink |Jk|, and build up I0 from Jk⋆ (so that |I0| ≥ |Jk⋆ |)
by arbitrarily adding |Jk⋆ | number of predictors from each Jk, k = 1, 2, . . . ,K, k ̸= k⋆. We can take a union
of all such subsets of Jk. The resulting index set I0 contains K × |Jk⋆ | number of predictors, and all factors
are pervasive within this common set.
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Assumption 3. The idiosyncratic component U satisfies:

∥U∥MAX ≲P (log T )1/2 + (logN)1/2.

In addition, for any given non-random subset I ⊂ ⟨N⟩,

∥∥∥U[I]

∥∥∥ ≲P |I|1/2 + T 1/2.

Assumption 3 imposes restrictions on the time-series dependence and heteroskedasticity

of ut. The first inequality is a direct result of a large deviation theorem, see, e.g., Fan et al.

[2011]. The second inequality can be shown by random matrix theory, see Bai and Silverstein

[2009], provided that ut is i.i.d. both in time and in the cross-section. While it is tempting

to impose a stronger inequality that bounds supI⊂⟨N⟩

∥∥∥U[I]

∥∥∥ uniformly over all index sets of

a given size |I|, the rate |I|1/2+T 1/2 we desire may not hold. In fact, assuming |I| is small,

Cai et al. [2021] establish a uniform bound that differs from our non-uniform rate only by a

log factor. When |I| is large, the result on uniform bounds no longer exists to the best of

our knowledge. We thereby avoid making any assumption on uniform bound over all index

sets.

For the same reason, we make the following moment conditions with any given non-

random set I. The conditions should hold under weak dependences among U , F , W , and

β.

Assumption 4. For any non-random subset I ⊂ ⟨N⟩, the factor loading β[I], and the
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idiosyncratic error U[I] satisfy the following conditions:

(i)
∥∥∥U [I]A

′
∥∥∥ ≲P |I|1/2T 1/2,

∥∥∥U [I]A
′
∥∥∥
MAX

≲P (logN)1/2T 1/2,

(ii)
∥∥∥β′[I]U[I]

∥∥∥ ≲P |I|1/2T 1/2,
∥∥∥β′[I]U[I]

∥∥∥
MAX

≲P |I|1/2(log T )1/2,∥∥∥β′[I]U [I]A
′
∥∥∥ ≲P |I|1/2T 1/2,

(iii)
∥∥∥(uT )′[I]U [I]A

′
∥∥∥ ≲P |I|+ |I|1/2T 1/2,

∥∥∥β′[I] (uT )[I]∥∥∥ ≲P |I|1/2,

where A is either F , W or Z.

The ℓ2-norm bounds in Assumption 4(i) and (ii) are results of Assumptions D, F2, F3

of Bai [2003] when I = ⟨N⟩, and Assumption 4(iii) is implied by Assumptions A, E1, F1

and C3 in Bai [2003], except that here we impose a stronger version which holds for any

non-random subset I ⊂ ⟨N⟩. The MAX-norm results can be shown by some large deviation

theorem as in Fan et al. [2011].

Assumptions 2 and 3 are the key identification conditions of the weak factor model we

consider. It is helpful to compare these conditions with those spelled out by Chamberlain

and Rothschild [1983]. We do not require that ut is stationary, but for the sake of comparison

here, we assume that the covariance matrix of ut exists, denoted by Σu and that βw = 0. By

model setup (1.1), we have Σ := Cov(xt) = βΣfβ
′+Σu. Chamberlain and Rothschild [1983]

show that the model is identified if ∥Σu∥ ≲ 1 and λK → ∞, which guarantees the separation

of the common and idiosyncratic components in the population model. To implement this

strategy, Bai [2003] provides an alternative set of conditions (Assumption C therein) on the

time-series and cross-sectional dependence of the idiosyncratic components that ensure the

consistency of PCA, but in the case of pervasive factors, that is λK(β′β) ≳ N .

In fact, PCA can separate the factor and idiosyncratic components from the sample

covariance matrix under much weaker conditions. To see this, note that from (1.1) and

βw = 0, we have XX ′ = βFF ′β′ + UU ′ + βFU ′ + UF ′β′. Using random matrix theory
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from Bai and Silverstein [2009], λ1(UU ′) ≲P T + N , if ut is i.i.d. with ∥Σu∥ ≲ 1. Since

TλK(β′β) ≍P λK(βFF ′β′) and because of the weak dependence between U and F as in

Assumption 4, the eigenvalues corresponding to the factor component βFF ′β′ dominate the

three remainder terms that are related to the idiosyncratic component U asymptotically, if

(T +N)/(TλK(β′β)) → 0, enabling the factor components to be identified from XX ′. Wang

and Fan [2017] and Bai and Ng [2021] study the setting N/(TλK(β′β)) → 0, in which case

PCA remains consistent despite the fact that factor exposures are not pervasive. Wang and

Fan [2017] also study the borderline case N ≍ TλK(β′β), and document a bias term in the

estimated eigenvalues and eigenvectors associated with factors.

In this paper, we consider an even weaker factor setting in which N/(TλK(β′β)) may

diverge. In this case, PCA generally fails to recover the underlying factors (except for the

special case in which errors are homoscedastic). We will require, instead, the existence of a

subset I0 ⊂ ⟨N⟩, for which |I0|/(TλK(β′
[I0]

β[I0])) → 0, to ensure the identification of factors

on this subset.3 In what follows, we introduce our methodology to deal with this case.

1.2.3 Prediction via Supervised Principal Components

One potential solution to the weak factor problem was proposed by Bair and Tibshirani

[2004], namely, supervised principal component analysis. Their proposal is to locate a subset,

Î, of predictors via marginal screening, keeping only those that have nontrivial exposure to

the prediction target, before applying PCA. Intuitively, this procedure reduces the total

number of predictors from N to |Î|, while under certain assumptions it also guarantees that

this subset of predictors has a strong factor structure, i.e., λmin(β
′
[Î]
β
[Î]
) ≍ |Î|. As a result,

applying PCA on this subset leads to consistent recovery of factors.

We use a simple one factor example to illustrate the procedure, before explaining its

3. The aforementioned settings all require λK(β′β) → ∞, in contrast with the extremely weak factor
model that imposes λK(β′β) ≲ 1. As such, eigenvalues of factors and idiosyncratic components do not
diverge as dimension increases. While Onatski [2009] and Onatski [2010] develop tests for the number of
factors, Onatski [2012] shows that factors cannot be consistently recovered in this regime.
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caveats with the general multi-factor case. To illustrate the idea, we consider the case in

which D = K = 1, αw = 0, and βw = 0. We select a subset Î that satisfies:

Î =
{
i
∣∣∣T−1|X [i]Y

′| ≥ c
}
, (1.3)

where c is some threshold. Therefore, we keep predictors that covary sufficiently strongly

(positively or negatively) with the target. This step involves a single tuning parameter, c,

that effectively determines how many predictors we use to extract the factor. The fact that

Î incorporates information from the target reflects the distinctive nature of a supervised

procedure. Given the existence of I0 by Assumption 2, there exists a choice of c such that

predictors within the set Î have a strong factor structure. The rest of the procedure is a

straightforward application of the principal component regression for prediction. Specifically,

we apply PCA to extract factors {f̂t}T−h
t=1 from X

[Î]
, which can be written as f̂t = ζ̂ ′xt for

some loading matrix ζ̂, then obtain α̂ by regressing {yt}Tt=1+h onto {f̂t}T−h
t=1 based on the

predictive model (1.2). The resulting predictor for yT+h is therefore given by: ŷT+h =

α̂f̂T = α̂ζ̂ ′xT .

Bair et al. [2006]’s proposal proceeds in the same way when it comes to multiple factors,

with the only exception that multiple factors are extracted in the PCA step. Yet, to ensure

that marginal screening remains valid in the multi-factor setting, they assume that predictors

are marginally correlated with the target if and only if they belong to a uniquely determined

subset I0, outside which predictors are assumed to have zero correlations with the prediction

target, i.e., they are pure noise for prediction purpose. Given this condition, they show

marginal screening can consistently recover I0, and all factors can thereby be extracted

altogether with a single pass of PCA to this subset of predictors.

In contrast, we assume the existence of a set I0 within which predictors have a strong

factor structure, yet we do not make any assumptions on the correlation between the target

and predictors outside this set I0, nor on the strength of their factor structure. As a result,
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I0 under our Assumption 2 needs not be unique, and we will show that the validity of

the prediction procedure does not rely on consistent recovery of any pre-determined set I0.

More importantly, since marginal screening is based on marginal covariances between Y

and X, in a multi-factor model the condition that marginal screening can recover a subset

within which all factors are pervasive (even if such a subset is uniquely defined as in Bair

et al. [2006]) is rather strong. On the one hand, marginal screening can be misguided by

the correlation induced by a strong factor to the extent that weak factors after screening

remain unidentifiable. On the other hand, predictors eliminated by marginal screening can

be instrumental or even essential for prediction. We illustrate these points using examples

of two-factor models below.

Example 1. Suppose xt and yt satisfy the following dynamics:

xt =



β11 β12

β21 0


ft + ut, yt+h =

[
1 1

]
ft, (1.4)

where β11 and β12 are N0×1 vectors, β21 is an (N−N0)×1 vector, satisfying ∥β12∥ ≍ N
1/2
0

and ∥β21∥ ≍ (N −N0)
1/2, and N0 is small relative to N .

In this example, the first factor is strong (all predictors are exposed to it) while the

second factor is weak, since most exposures to it are zero. In addition, the target variable

y is correlated with both factors and hence potentially with all predictors. As a result,

the screening step described above may not eliminate any predictors: all predictors may

correlate with the target (through the first factor). But because the second factor is weak, a

single pass of PCA, extracting two factors from the entire universe of predictors, would fail

to recover it: we can show that λmin(β
′β) ≤ ∥β12∥2 ≲ N0, so that PCA would not recover

the second factor consistently if N/(N0T ) does not vanish.
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The issue highlighted with this example is that the (single) screening step does not

eliminate any predictors, because their correlations with the target are (at least partially)

induced by their exposure to the strong factor, and therefore PCA after screening cannot

recover the weak factor. The assumptions proposed by Bair et al. [2006] rule this case out,

but we can clearly locate an index set I0 (say, top N0 predictors), within which both factors

are strong. In other words, our assumptions can accommodate this case.

We provide next another example, that shows that in some situations screening can

eliminate too many predictors, making a strong factor model become weak or even rank-

deficient.

Example 2. Suppose xt and yt satisfy the following dynamics:

xt =



β11 β11

0 β22


ft + ut, yt+h =

[
1 0

]
ft, (1.5)

where β11 and β22 are N/2 × 1 non-zero vectors satisfying ∥β11∥ ≍ ∥β22∥ ≍
√
N and f1t

and f2t are uncorrelated.

In this example, there are two equal-sized groups of predictors, so that β is full-rank

and both factors are strong and that I0 can be the entire set ⟨N⟩ (therefore, a standard

PCA procedure applied to all predictors will consistently recover both factors). But two

features of this model will make supervised PCA fail, if the selection step based on marginal

correlations is applied only once (as in the original procedure by Bair et al. [2006]). First,

yt+h is uncorrelated with the second half of predictors (since only the first group is useful

for prediction). Second, the exposure of the first half of predictors to the first and second

factors are the same (both equal to β11).

After the screening step the second group of predictors would be eliminated, because
14



they do not marginally correlate with yt+h. But the remaining predictors (the first half)

have perfectly correlated exposures to both factors, so that only one factor, f1t+ f2t, can be

recovered by PCA. Therefore, the one-step supervised PCA of Bair et al. [2006] would fail

to recover the factor space consistently, resulting in inconsistent prediction. This example

highlights an important point that marginally uncorrelated predictors (the second half)

could be essential in recovering the factor space. Eliminating such predictors may lead to

inconsistency in prediction.

Both examples demonstrate the failure of a one-step supervised PCA procedure in a

general multi-factor setting. Such data generating processes are excluded by the model

assumptions in Bair et al. [2006], whereas we do not rule them out. We thus propose

below a new and more complete version of the supervised PCA (SPCA) procedure that can

accommodate such cases.

1.2.4 Iterative Screening and Projection

To resolve the issue of weak factors in a general multi-factor setting, we propose a multi-step

procedure that iteratively conducts selection and projection. The projection step eliminates

the influence of the estimated factor, which ensures the success of the screening steps that

occur over the following iterations. More specifically, a screening step can help identify one

strong factor from a selected subset of predictors. Once we have recovered this factor, we

project all predictors xt (not just those selected at the first step) and yt+h onto this factor,

so that their residuals will not be correlated with this factor. Then we can repeat the same

selection procedure with these residuals. This approach enables a continued discovery of

factors, and guarantees that each new factor is orthogonal to the estimated factors in the

previous steps, similar to the standard PCA.

It is straightforward to verify that this iterative screening and projection approach suc-

cessfully addresses the issues with the aforementioned examples. Consider first Example
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1. In this case, the first screening does not rule out any predictor, and the first PC will

recover the strong factor f1; after projecting both X and y onto f1, the residuals for the

first N0 predictors still load on f2, whereas the remaining N − N0 predictors should have

zero correlation with the residuals of y. Therefore, a second screening will eliminate these

predictors, paving the way for PCA to recover the second factor f2 based on the residuals

of the first N0 predictors. Similarly, for Example 2, the first screening step eliminates the

second half of the predictors, so that the first pass of PCA will recover the only factor left

over in the remaining predictors, namely, f1+f2. The residuals of the first half of predictors

consist of pure noise after the projection step, whereas the residuals of the second half of

predictors are spanned by f1 − f2, which a second PCA step will recover. Therefore, the

iterated supervised PCA will recover the entire factor space. This example illustrates that

marginal screening can succeed as long as iteration and projection are also employed.

Formally, we present our algorithm for the general model given by (1.1) and (1.2):

Algorithm 1 (Prediction via SPCA).

Inputs: Y , X, W , xT , and wT . Initialization: Y(1) := YMW ′, X(1) := XMW ′.

S1. For k = 1, 2, . . . iterate the following steps using X(k) and Y(k):

a. Select an appropriate subset Îk ⊂ ⟨N⟩ via marginal screening.

b. Estimate the kth factor F̂ (k) = ς̂ ′
(k)

(
X(k)

)
[Îk]

via SVD, where ς̂(k) is the first left

singular vector of
(
X(k)

)
[Îk]

. F̂ (k) can also be rewritten as F̂ (k) = ζ̂ ′
(k)

XMW ′,

where ζ̂(k) =
(
IN −

∑k−1
i=1 β̂(i)ζ̂

′
(i)

)′
[Îk]

ς̂(k) is constructed recursively using β̂(k−1)

(defined in c.).

c. Estimate the coefficients α̂(k) = Y(k)F̂
′
(k)(F̂ (k)F̂

′
(k))

−1 and

β̂(k) = X(k)F̂
′
(k)(F̂ (k)F̂

′
(k))

−1.

d. Obtain residuals Y(k+1) = Y(k) − α̂(k)F̂ (k) and X(k+1) = X(k) − β̂(k)F̂ (k).

Stop at k = K̂, where K̂ is chosen based on some proper stopping rule.
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S2. Obtain f̂T = ζ̂ ′(xT − β̂wwT ), where ζ̂ := (ζ̂(1), . . . , ζ̂(K̂)
) and β̂w = XW ′(WW ′)−1,

and the prediction ŷT+h = α̂f̂T + α̂wwT = γ̂xT + (α̂w − γ̂β̂w)wT , where α̂ :=

(α̂(1), α̂(2), . . . , α̂(K̂)
), γ̂ = α̂ζ̂ ′, and α̂w = YW ′(WW ′)−1.

Outputs: the prediction ŷT+h, the factors F̂ := (F̂
′
(1), . . . , F̂

′
(K̂))

′, their loadings, β̂ :=

(β̂(1), . . . , β̂(K̂)
), and the coefficient estimates α̂, ζ̂, α̂w, β̂w, and γ̂.

We discuss the details of the algorithm below.

Step S1. of Algorithm 1 requires an appropriate choice of Îk and a stopping rule. One

possible choice for Îk is:4

Îk =
{
i
∣∣∣T−1

∥∥∥(X(k))[i]Y
′
(k)

∥∥∥
MAX

≥ ĉ
(k)
qN

}
,

where ĉ
(k)
qN is the (1− q)th-quantile of

{
T−1

∥∥∥(X(k))[i]Y
′
(k)

∥∥∥
MAX

}
i=1,...,N

. (1.6)

The reason we suggest using the top qN predictors based on the magnitude of the covariances

between X(k) and Y(k) is that the factor estimates tend to be more stable and less sensitive

to this tuning parameter q, compared to a conventional hard threshold parameter adopted

in a marginal screening procedure. Moreover, at each step, a subset of a fixed number of

predictors are selected, which substantially simplifies the notation and the proof.

Correspondingly, the algorithm terminates as soon as

ĉ
(k+1)
qN < c, for some threshold c. (1.7)

Thus, the resulting number of factors is set as K̂ = k. As a result, the tuning parameter, c,

effectively determines the number of factors extracted out of our procedure.

4. Using covariance for screening allows us to replace all Y(k) in the definition of Îk and Algorithm 1 by
Y(1), that is, only the projection of X(k) is needed, because this replacement would not affect the covariance
between Y(k) and X(k). We use this fact in the proofs, which simplifies the notation. We can also use
correlation instead of covariance in constructing Îk, which does not affect the asymptotic analysis. That
said, we find correlation screening performs better in finite samples when the scale of the predictors differs.
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For any given tuning parameters, q and c, we select predictors that have predictive power

for (at least one variable in) yt+h at each stage of the iteration. With a good choice of tuning

parameters, q and c, the iteration stops as soon as most of the rows of the projected residuals

of predictors appear uncorrelated with the projected residuals of yt+h, which implies that

the factors left over, if any, are uncorrelated with yt+h.

The last step of the algorithm needs more explanations. Step S1. provides a set of

factor estimates, F̂ , on the basis of Y and X. Moreover, a time series regression of Y

on F̂ and W yields an estimator of αw (coefficient defined in (1.2)). That is, α̂w =

YM
F̂
′W ′

(
WM

F̂
′W ′

)−1
= YW ′(WW ′)−1, since M

F̂
′W ′ = W ′ by construction, which

explains the formula for α̂w in Step S2.. Finally, with α̂, α̂w, and f̂T , it is sufficient to

construct the predicted value of yT+h by combining α̂f̂T with α̂wwT , which yields the final

prediction formula for ŷT+h, a projection on observables, xT and wT .

1.3 Asymptotic Theory

We now examine the asymptotic properties of SPCA. The analysis is more involved than

those of Bair et al. [2006] because of the iterative nature of our new SPCA procedure and

the general weak factor setting we consider.

1.3.1 Consistency in Prediction

To establish the consistency of SPCA for prediction, we first investigate the consistency of

factor estimation. In the strong factor case, e.g., Stock and Watson [2002a], all factors are

recovered consistently via PCA, which is a prerequisite for the consistency of prediction. In

our setup of weak factors, we show that the consistency of prediction only relies on consistent

recovery of factors that are relevant for the prediction target.

Recall that in Algorithm 1, we denote the selected subsets in the SPCA procedure as Îk,

k = 1, 2, . . .. We now construct their population counterparts iteratively, for any given choice
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of c and q. This step is critical to characterize the exact factor space recovered by SPCA.

For simplicity in notation and without loss of generality, we consider the case Σf = IK here,

because in the general case, we can simply replace β and α by β∗ = βΣ
1/2
f and α∗ = αΣ

1/2
f

in the following construction.

In detail, we start with a
(1)
i :=

∥∥∥β[i]α′∥∥∥MAX
and define I1 := {i|a(1)i ≥ c

(1)
qN}, where c

(1)
qN

is the ⌊qN⌋th largest value in
{
a
(1)
i

}
i=1,...,N

. Then, we denote the largest singular value of

β(1) := β[I1] by λ
1/2
(1)

and the corresponding left and right singular vectors by ς(1) and b(1).

For k > 1, we obtain a
(k)
i :=

∥∥∥β[i]∏j<k Mb(j)
α′
∥∥∥
MAX

, Ik := {i|a(k)i ≥ c
(k)
qN}, and λ

1/2
(k)

, ς(k),

b(k) are the leading singular value, left and right singular vectors of β(k) := β[Ik]
∏

j<k Mb(j)
.

This procedure is stopped at step K̃ (for some K̃ that is not necessarily equal to K or K̂) if

c
(K̃+1)
qN < c. In a nutshell, Ik’s are what we will select if we do SPCA directly on β ∈ RN×K

and α ∈ RD×K and they are deterministically defined by α, β,Σf , c, q, and N , whereas Îk’s

are random, obtained by SPCA on X ∈ RN×T and Y ∈ RD×T .

To ensure that the singular vectors b(j)’s are well defined and identifiable, we need that

the top two singular values of β(k) are distinct at each stage k. We also need distinct values

of c
(k)
qN to ensure that Ik’s are identifiable. More precisely, we say that two sequences of

variables aN and bN are asymptotically distinct if there exists a constant δ > 0 such that

|aN − bN | ≥ δ|bN | for sufficiently large N . In light of the above discussion, we make the

following assumption:

Assumption 5. For any given k, the following three pairs of sequences of variables, σ1(β(k))

and σ2(β(k)), c
(k)
qN and c

(k)
qN+1, and c

(K̃+1)
qN and c are asymptotically distinct, as N → ∞.

This assumption is rather mild as it only rules out corner cases, despite the fact that

this is not very explicit. Excluding such corner cases is common in the literature on high

dimensional PCA, see, e.g., Assumption 2.1 of Wang and Fan [2017]. Assumption 5 is closely

tied to our choice of the number of predictors qN and the parameter c in the stopping rule.

In particular, the current algorithm adopts a strategy where the same number of predictors is
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selected at each step, representing one version of SPCA. An alternative approach may involve

selecting predictors based on a predetermined threshold for their covariances and stopping

the selection process when |Ik| becomes smaller than another threshold. By allowing for the

flexibility of using varying numbers of predictors at each step, this alternative approach can

be particularly useful in addressing certain corner cases ruled out by the current version of

Assumption 5.5 Similar asymptotic results, akin to those presented in Theorem 1 through

3 below, can be derived with more intricate conditions regarding the rate of convergence,

etc. However, the current version of SPCA, with its more concise theorems and superior

performance in simulation, is the primary focus of our discussion in the main text. We now

are ready to present the consistency of the estimated factors by SPCA:

Theorem 1. Suppose that xt follows (1.1) and yt satisfies (1.2), and that Assumptions 1-5

hold. If log(NT )(N−1
0 + T−1) → 0, then for any tuning parameters c and q that satisfy

c → 0, c−1(logNT )1/2(q−1/2N−1/2 + T−1/2) → 0, qN/N0 → 0, (1.8)

we have K̃ ≤ K, P(Îk = Ik) → 1, for any 1 ≤ k ≤ K̃, and P(K̂ = K̃) → 1. Moreover, the

factors recovered by SPCA are consistent. That is, for any 1 ≤ k ≤ K̃,

∥∥∥F̂ (k)

∥∥∥−1 ∥∥∥F̂ (k) − F̂ (k)PF ′

∥∥∥ ≲P q−1/2N−1/2 + T−1. (1.9)

We make a few observations regarding this result. First, the assumptions in Theorem

1 do not guarantee a consistent estimate of the number of factors, K, because the SPCA

procedure cannot guarantee to recover factors that are uninformative about y. At the same

time, the factors recovered by SPCA are not necessarily useful for prediction, because it

5. A concrete example may be the case where all a(1)i s defined above are identical, resulting in c
(1)
qN =

c
(1)
qN+1. By adopting the alternative algorithm, we only need an assumption on a non-vanishing lower bound

of a
(1)
i , i.e., a

(1)
i > c > 0. Correspondingly, this alternative procedure will select all predictors in this

iteration.
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is possible that some strong factors with no predictive power are also recovered by SPCA.

Ultimately, the factor space recoverable is determined by β, α, Σf , c, q, and N . For this

reason, we have consistency of factor estimates up to the first K̃ factors. Moreover, K̂ is a

consistent estimator of K̃, which we prove satisfies K̃ ≤ K. That is, SPCA omits K − K̃

factors. Also, the inequality (1.9) has a clear geometric interpretation. The left-hand-side

is exactly equal to sin(Θ̂(k)), where Θ̂(k) is the angle between the estimated factor at each

stage k and the factor space spanned by the true factors, PF ′ . (1.9) shows that this angle

vanishes asymptotically.

Second, with respect to the tuning parameters, the condition (1.8) implies that c → 0,

c
√
T → ∞, and c

√
qN → ∞. On the one hand, the threshold c needs be sufficiently small so

that the iteration procedure continues until selected predictors have asymptotically vanishing

predictive power; on the other hand, c needs be large enough that dominates error in the

covariance estimates from the screening step. The estimation error consists of the usual error

in the construction of the sample covariances between X(1) and Y(1), which introduces an

error of order T−1/2, as well as the construction of residuals in the projection step, X(k)

and Y(k), for k > 1, as soon as multiple factors are involved (i.e., K̃ > 1). As we show next,

the factor estimation error is of order (qN)−1/2 + T−1, which pollutes the residuals and

hence affects screening. Taking these two points into consideration, the choice of c needs

dominate T−1/2+ (qN)−1/2. In terms of q, it appears that the maximal number of selected

predictors, ⌊qN⌋, allowed for should be of the same order as N0. Nevertheless, since N0

given by Assumption 2 is not precisely defined, in the sense that the assumption holds if

N0 is scaled by any non-zero constant, we require qN/N0 → 0 to ensure that the scaling

constant of N0 does not matter for the choice of q and that the selected ⌊qN⌋ predictors are

within the subset of N0 predictors that guarantee a strong factor structure.

Third, the estimation error of factors are bounded from the above by q−1/2N−1/2+T−1.

Recall that in the strong factor case, the factor space can be recovered at the rate of N−1/2+
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T−1, see, e.g., Bai [2003]. In our result, qN plays the same role as N in the strong factor

case. Nevertheless, our Assumption 2 does not require all factors to have the same strength.

It is possible that some factors could be recovered with a higher convergence rate, should

we select a different number of predictors for each factor based on its strength. In fact, an

alternative choice of Îk based on (1.3) allows different numbers of predictors to be selected at

each stage, since the threshold itself is a fixed level. While this approach may achieve a faster

rate for relatively stronger factors, the prediction error rate is ultimately determined by the

estimation error of the weakest factor. Yet, we find that the approach based on (1.6) offers

more stable prediction out of sample, whereas prediction based on (1.3) can be sensitive to

the tuning parameters. Given that our ultimate goal is about prediction rather than factor

recovery, we prefer a more stable procedure and thereby focus our analysis on the former

approach.

With no relevant factors omitted, our prediction ŷT+h is consistent, as we show next.

Theorem 2. Under the same assumptions as in Theorem 1, we have α̂w − αw
P−→ 0,

∥γ̂β − α∥ P−→ 0, and consequently, ŷT+h
P−→ ET (yT+h) = αfT + αwwT .

Theorem 2 first analyzes the parameter estimation “error” measured as α̂w − αw and

γ̂β − α. The reason the latter quantity matters is that there exists a matrix H such that

γ̂β = α̂H. In other words, the first statement of the theorem implies that we can consistently

estimate α, up to a matrix H. This extra adjustment matrix H exists due to the fundamental

indeterminacy of latent factor models. In fact, we can define H ∈ RK̂×K as ζ̂ ′β, where ζ̂ is

given by Algorithm 1. Then, it is straightforward to see from the definition of γ̂ that

γ̂β = α̂H, so that by Theorem 2 ∥α̂H − α∥ = oP(1). (1.10)
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On the other hand, the proof of Theorem 1 also establishes that for k ≤ K̃:

∥∥∥F̂ (k)

∥∥∥−1 ∥∥∥F̂ (k) − hkF
∥∥∥ ≲P q−1/2N−1/2 + T−1, (1.11)

where hk is the kth row of H. Therefore, α̂F̂
by(1.11)

≈ α̂HF
by(1.10)

≈ αF , which, together with

α̂w − αw = oP(1), leads to the consistency of prediction.

The consistency result in Theorem 2 does not require a full recovery of all factors. In

other words, K̂ is not necessarily equal to K. On the one hand, factors omitted by SPCA

are guaranteed to be uncorrelated with yt+h; on the other hand, some factors not useful

for prediction may be recovered by SPCA. Obviously, missing any uncorrelated factors or

having extra useless factors (for prediction purposes) do not affect the consistency of ŷT+h.

Moreover, this result does not rely on normally distributed error nor on the assumption

that all factors share the same strength with respect to all predictors. The assumption on

the relative size of N and T is also quite flexible, in contrast with existing results in the

literature in which N cannot grow faster than a certain polynomial rate of T , e.g., Bai and

Ng [2021], Huang et al. [2022].

1.3.2 Recovery of All Factors

In this section we develop the asymptotic distribution of ŷT+h from Algorithm 1. Not

surprisingly, the conditions in Theorem 2 are inadequate to guarantee that ŷT+h converges

to ET (yT+h) at the desirable rate T−1/2. The major obstacle lies in the recovery of all

factors, which we will illustrate with a one-factor example.
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Example 3. Suppose that xt follows a single-factor model with sparse β:

xt =



β1

0


ft + ut, yt+h = αft + zt+h,

where β1 is the first N0 entries of β with ∥β1∥ ≍ N
1/2
0 and α ≍ T−1/2.

Recall that we use the sample covariance between xt and yt+h to screen predictors. Even

if yt+h is independent of xt, their sample covariance can be as large as T−1/2(logN)1/2.

Therefore, the threshold c needs be strictly greater than T−1/2(logN)1/2 to control Type

I error in screening. However, the signal-to-noise ratio in this example is rather low, i.e.,

α ≍ T−1/2, that is, yt+h is not too different from random noise. Consequently, screening

will terminate right away because the covariances between yt+h and xt are at best of order

T−1/2(logN)1/2 < c, which in turn leads to no discovery of factors. Our procedure thereby

gives ŷT+h = 0, which is certainly consistent as the bias |ET (yT+h) − 0| ≍ T−1/2, but the

usual central limit theorem (CLT) fails.

Generally speaking, this issue arises because of the potential failure to recover all factors

in the DGP. As long as all factors are found, the bias is negligible and the central limit

theorem holds regardless of the magnitude of α. So to go beyond consistency and make valid

inference we need a stronger assumption that rules out cases like this, in order to insure

against a higher order omitted factor bias that impedes the CLT even if it does not affect

consistency. It turns out that as long as α ∈ RD×K satisfies λmin(α
′α) ≳ 1, we can rule out

the possibility of missing factors asymptotically. On the one hand, in this case the dimension

of target variables, D, must be no smaller than the dimension of the factors, K; and for each

factor there exist at least one target variable in y that is correlated with the factor; together

they guarantee that no factors would be omitted. On the other hand, our algorithm will
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not select more factors than needed asymptotically, because the iteration is terminated as

soon as all covariances vanish. With a consistent estimator of the number of factors, we can

recover the factor space as well as conduct inference on the prediction targets.

The inference theory on strong factor models also relies on a consistent estimator of the

count of (strong) factors, e.g., Bai and Ng [2002]. Our assumptions here are substantially

weaker than the pervasive factor assumption adopted in the literature. That said, in a finite

sample, a perfect recovery of the number of factors may be a stretch. In Section 1.3.5, we

show that our version of the PCA regression is more robust than the procedure of Stock and

Watson [2002a] with respect to the error due to overestimating the number of factors. We

also provide simulation evidence on the finite sample performance of our estimator of the

number of factors.

The next theorem summarizes a set of stronger asymptotic results under conditions that

guarantee perfect recovery of all factors:

Theorem 3. Under the same assumptions as Theorem 2, if we further have λmin(α
′α) ≳ 1,

then for any tuning parameters c and q in (1.6) and (1.7) satisfying

c → 0, c−1(logNT )1/2(q−1/2N−1/2 + T−1/2) → 0, qN/N0 → 0,

we have

(i) K̂ defined in Algorithm 1 satisfies: P(K̂ = K)→1.

(ii) The factor space is consistently recovered in the sense that

∥∥∥P
F̂
′ − PF ′

∥∥∥ = OP

(
q−1/2N−1/2 + T−1

)
.
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(iii) The estimator γ̂ constructed via Algorithm 1 satisfies

∥∥∥γ̂β − α− T−1ZF ′Σ−1
f

∥∥∥ = OP(q
−1N−1 + T−1).

Theorem 3 extends the strong factor case of Bai and Ng [2002] and Bai [2003]. In par-

ticular, (i) shows that our procedure can recover the true number of factors asymptotically,

which extends Bai and Ng [2002] to the case of weak factors. Combining this result with

Theorem 1(i) suggests that K̃ = K under the strengthened set of assumptions. We thereby

do not need distinguish K̃ with K below. Our setting is distinct from that of Onatski [2010],

and as a result we can also recover the space spanned by weak factors, as shown by (ii). This

result also suggests that the convergence rate for factor estimation is of order (qN)1/2 ∧ T ,

as opposed to N1/2∧T given by Theorem 1 of Bai [2003]. (iii) extends the result of Theorem

2, replacing the target α by α + T−1ZF ′Σ−1
f . Note that the latter is precisely a regression

estimator of α if F were observable. (iii) thereby points out that the error due to latent

factor estimation is no larger than OP(q
−1N−1 + T−1).

1.3.3 Inference on the Prediction Target

In the case without observable regressors w, the prediction error can be written as ŷT+h −

ET (yT+h) = (γ̂β − α)fT + γ̂uT , where the second term γ̂uT is of order (qN)−1/2. In light

of Theorem 3(iii), if q−1N−1T → 0, then the second term is asymptotically negligible (i.e.,

oP(T
−1/2)) compared to the first term, (γ̂β − α)fT = T−1ZF ′Σ−1

f fT +OP(T
−1), in which

case we can achieve root-T inference on ET (yT+h). Nevertheless, we strive to achieve a

better approximation to the finite sample performance by taking into account both terms

of the prediction error altogether, without imposing additional restriction on the relative

magnitude of qN and T .

To do so, we impose the following assumption:
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Assumption 6. As N, T → ∞, T−1/2ZF ′, T−1/2ZW ′, and (qN)−1/2ΨuT are jointly

asymptotically normally distributed, satisfying:


vec(T−1/2ZF ′)

vec(T−1/2ZW ′)

(qN)−1/2ΨuT

 d−→ N



0

0

0

 ,Π =


Π11 Π12 0

Π′
12 Π22 0

0 0 Π33


 ,

where Ψ is a K × N matrix whose kth row is equal to b′
(k)

β′
[Ik]

(IN )[Ik] and b(k) is the first

right singular vector of β(k) = β[Ik]
∏

j<k Mb(j)
as defined in Section 1.3.1.

Assumption 6 characterizes the joint asymptotic distribution of ZF ′, ZW ′ and ΨuT . For

the first two components, as the dimensions of these random processes are finite, this CLT is

a direct result of a large-T central limit theory for mixing processes. With respect to ΨuT ,

its large-N asymptotic distribution is assumed normal, asymptotically independent of the

distribution of the other two components. This holds trivially if uiT ’s are cross-sectionally

i.i.d., independent of zt, wt, and ft for t < T , so that the kth row of ΨuT , b′
(k)

β′
[Ik]

(uT )[Ik], is

a weighted average of uiT for i ∈ Ik. The convergence rate (qN)1/2 for ΨuT arises naturally

because |Ik| = qN .

Before we present the CLT next, we need define a K ×K matrix Ω = (ω1, . . . , ωK) with

ω1 = e1 and ωk = ek−
∑k−1

i=1 λ−1
(i)

b′
(k)

β′
[Ik]

β[Ik]b(i)ωi, where ek is a K-dimensional unit vector

with 1 on the kth entry and 0 elsewhere.

Theorem 4. Suppose the same assumptions as in Theorem 3 hold. If in addition, Assump-

tion 6 holds, we have

Φ−1/2(ŷT+h − ET (yT+h))
d−→ N (0, ID),

27



where Φ = T−1Φ1 + q−1N−1Φ2 and Φ1 and Φ2 are given by

Φ1 =
(
(f ′T , w

′
T )Σ

−1
f,w ⊗ ID

)Π11 Π12

Π′
12 Π22

(Σ−1
f,w(f

′
T , w

′
T )

′ ⊗ ID
)
,

Φ2 = αB(Λ/qN)−1Ω′Π33Ω(Λ/qN)−1B′α′,

Πij is specified by Assumption 6, Σf,w = diag(Σf ,Σw), Λ = diag(λ(1), . . . , λ(K)), and B is

a K ×K matrix whose kth column is given by b(k), where λ
1/2
(k)

is the largest singular value

of β(k) and b(k) is the corresponding right singular vector as defined in Section 1.3.1.

The convergence rate of ŷT+h depends on the relative magnitudes of T and qN . For

inference, we need construct estimators for each component of Φ1 and Φ2. Estimating Φ1

is straightforward based on its sample analog, constructed from the outputs of Algorithm 1.

Estimating Φ2 is more involved, in that Π33 depends on the large covariance matrix of uT .

We leave the details to the next section.

Algorithm 1 (Step S2.) makes predictions by exploiting the projection of yT+h onto xT

and wT , with loadings given by γ and αw − γβw. This is convenient and easily extendable

out of sample, as both xT and wT are directly observable, unlike latent factors. Section 1.3.5

investigates potential issues with plain PCA and PLS, as well as an alternative algorithm

based on Stock and Watson [2002a], which does not involve the projection parameter γ.

1.3.4 Estimation of Φ1 and Φ2

Recall that from the outputs of Algorithm 1, we have defined F̂ , β̂, and α̂. As a result, we

can also estimate Ẑ = Y − α̂F̂ − α̂wW and Û = X − β̂F̂ − β̂wW . Then we can construct

Newey-West-type estimators for Π11, Π12 and Π22, given that each component of them can

be estimated based on their sample analog constructed above. Estimators of Σf and Σw can

be obtained by Σ̂f = T−1
h F̂ F̂

′
and Σ̂w = T−1

h WW ′. With f̂T = ζ̂ ′(xT − β̂wwT ), Φ̂1 can be
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constructed as follows:

Φ̂1 =
(
(f̂ ′T , w

′
T )Σ̂

−1
f,w ⊗ ID

)Π̂11 Π̂12

Π̂′
12 Π̂22

(Σ̂−1
f,w(f̂

′
T , w

′
T )

′ ⊗ ID
)
.

The above estimators are built as if the latent factors were observed. This is because any

rotation matrix involved with latent factor estimates is canceled out, which eventually yields

consistent estimators of Φ1. This part of the asymptotic variance is straightforward to im-

plement, thanks to the fact that it does not involve estimation of high-dimensional quantities

like Σu. The proof of consistency of Φ̂1 follows directly from Giglio and Xiu [2021] and is

thus omitted here.

With respect to Φ2, we may apply a thresholding estimator of Σu = Cov(ut) following

Fan et al. [2013]. In detail, Σ̂u can be constructed by

(Σ̂u)ij =


(Σ̃u)ij , i = j

sij

(
(Σ̃u)ij

)
, i ̸= j

, Σ̃u = T−1
h Û Û

′
,

where sij(·) is a general thresholding function with an entry-dependent threshold τij satis-

fying (i) sij(z) = 0 when |z| ≤ τij (ii) |sij(z) − z| ≤ τij . The adaptive threshold can be

chosen by τij = C

(
1√
qN

+
√

logN
T

)√
θ̂ij , where C > 0 is a sufficiently large constant and

θ̂ij =
1

Th

∑
t≤Th

(ûitûjt − (Σ̃u)ij)
2,

where ûit are the entries of Û . With Σ̂u, Φ2 can be estimated by Φ̂2 = qNγ̂Σ̂uγ̂′.

The following theorem ensures the consistency of Φ̂2 under standard assumptions as in

Fan et al. [2013].

Theorem 5. Under the assumptions of Theorem 4, if we further assume that
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(i) ut is stationary with E(ut) = 0 and Σu = Cov(ut) satisfying C1 > λ1(Σu) ≥ λN (Σu) >

C2 and mini,j Var(uitujt) > C2 for some constant C1, C2 > 0,

(ii) ut has exponential tail, i.e., there exist r1 > 0 and C > 0, such that for any s > 0 and

i ≤ N , P(|uit| > s) ≤ exp(−(s/C)r1).

(iii) ut is strong mixing, i.e., there exist positive constants r2 and C such that for all t ∈ Z+,

α(t) ≤ exp(−Ctr2), where α(T ) = supA∈F0
−∞,B∈F∞

T
|P(A)P(B) − P(AB)| and F0

−∞,

F∞
T are σ-algebras generated by {ut}−∞≤t≤0, {ut}T≤t≤∞.

(iii) (logN)6(3r
−1
1 +r−1

2 +1) = o(T ), T = o(q2N2).

Then Σ̂u satisfies
∥∥∥Σ̂u − Σu

∥∥∥ ≲P mq,N

(
1√
qN

+
√

logN
T

)1−q

, where mq,N = maxi≤N∑
j≤N |(Σu)ij |q. In addition, if mq,N

(
1√
qN

+
√

logN
T

)1−q

= o(1), then Φ̂2
P−→ Φ2.

1.3.5 Alternative Procedures

In this section, we at first discuss the failure of PCA and PLS in the presence of weak factors.

To illustrate the issue, it is sufficient to consider a one-factor model example:

Example 4. Suppose that xt follows a single-factor model with sparse β:

xt =



β1

0


ft + ut, yt+h = αft,

where β1 is the first N0 entries of β with ∥β1∥ ≍ N
1/2
0 . Moreover, ft

i.i.d.∼ N (0, 1) and

U = ϵA, where ϵ is an N × T matrix with i.i.d. N (0, 1) entries and A is a T × T matrix

satisfying ∥A∥ ≲ 1.
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1.3.5.1 Principal Component Regression

Formally, we present the algorithm below:

Algorithm 2 (PCA Regression).

Inputs: Y , X, W , xT , and wT .

S1. Apply SVD on XMW ′ and obtain the estimated factors F̂PCA = ς̂ ′XMW ′, where

ς̂ ∈ RN×K are the first K left singular vectors of XMW ′. Estimate the coefficients

α̂ = Y F̂
′
PCA

(
F̂PCAF̂

′
PCA

)−1
.

S2. Obtain γ̂ = α̂ς̂ ′ and output the prediction ŷPCA
T+h = γ̂xT + (α̂w − γ̂β̂w)wT , where

α̂w = YW ′(WW ′)−1 and β̂w = XW ′(WW ′)−1.

Outputs: ŷPCA
T+h , F̂PCA, α̂, α̂w, β̂w, and γ̂.

Proposition 1. In Example 4, suppose that N/(N0T ) → δ ≥ 0 and ∥β∥ → ∞ and define

M as M := T−1F ′F + δA′
1A1, where A1 is the first T − h columns of A. Then, if the two

leading eignvalues of M are distinct in the sense that (λ1(M) − λ2(M))/λ1(M) ≳P 1, the

estimated factor F̂PCA satisfies

∥∥∥∥PF̂ ′
PCA

− PηPCA

∥∥∥∥ P−→ 0,

where ηPCA is the first eigenvector of M . In the special case that A′
1A1 = IT−h, it satisfies

that

∥∥∥∥PF̂ ′
PCA

− PF ′

∥∥∥∥ P−→ 0.

Proposition 1 first shows that even if the number of factors is known to be 1, the factor

estimated by PCA is in general inconsistent, because the eigenvector ηPCA deviates from that

of T−1F ′F , as the latter is polluted by A. In the special case where error is homoskedastic
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and has no serial correlation, i.e., A′
1A1 = IT−h, the estimated factor becomes consistent,

in that δA′
1A1 in M does not change the eigenvectors of T−1F ′F . This result echoes a

similar result in Section 4 of Bai [2003], who established the consistency of factors with

homoskedasticity and serially independent error even when T is fixed. That said, while

factors can be estimated consistently in this special case, the prediction of yT+h based on

Algorithm 2 is not consistent.

Proposition 2. Under the same assumptions as in Proposition 1, if we further assume

A′
1A1 = IT−h, then we have ŷPCA

T+h
P−→ (1 + δ)−1ET (yT+h).

The reason behind the inconsistency is that even though F̂PCA, (effectively the right

singular vector of X) is consistent in the special case, the left singular vector, ς̂ and the

singular values are not consistent, which lead to a biased prediction. This result demonstrates

the limitation of PC regressions in the presence of weak factor structure.

1.3.5.2 Partial Least Squares

PCA is an unsupervised approach, in that the PCs are obtained without any information

from the prediction target. Therefore, it might be misled by large idiosyncratic errors in

xt when the signal is not sufficiently strong. In contrast with PCA, partial least squares

(PLS) is another supervised technique for prediction, which has been shown to work better

than PCA in other settings, see, e.g., Kelly and Pruitt [2013]. Unlike PCA, PLS uses the

information of the response variable when estimating factors. Ahn and Bae [2022] develop

its asymptotic properties for prediction in the case of strong factors. We now investigate its

asymptotic performance in the same setting above.

The PLS regression algorithm is formulated below:

Algorithm 3 (PLS). The estimator proceeds as follows:

Inputs: Y , X, W , xT , and wT . Initialization: Y(1) := YMW ′, X(1) := XMW ′.
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S1. For k = 1, 2, · · · , K, repeat the following steps using X(k).

a. Obtain the weight vector ς̂(k) from the largest left singular vector of X(k)Y
′
(k)

.

b. Estimate the kth factor as F̂ (k) = ς̂ ′
(k)

X(k).

c. Estimate coefficients α̂(k) = Y(k)F̂
′
(k)

(
F̂ (k)F̂

′
(k)

)−1
and

β̂(k) = X(k)F̂
′
(k)

(
F̂ (k)F̂

′
(k)

)−1
.

e. Remove F̂ (k) to obtain residuals for the next step:

X(k+1) = X(k) − β̂(k)F̂ (k) and Y(k+1) = Y(k) − α̂(k)F̂ (k).

S2. Obtain γ̂ = α̂ς̂ ′ and the prediction ŷPLS
T+h = γ̂xT + (α̂w − γ̂β̂w)wT , where α̂w =

YW ′(WW ′)−1 and β̂w = XW ′(WW ′)−1.

Outputs: ŷPLS
T+h , F̂PLS := (F̂

′
(1), . . . , F̂

′
(K̂))

′, α̂, α̂w, β̂w, and γ̂.

The PLS estimator has a closed-form formula if Y is a 1 × T vector and a single factor

model is estimated (K = 1):

ŷPLS
T+h =

∥∥Y X ′X
∥∥−2

Y X ′XY
′
Y X ′xT .

While the PLS procedure is intuitively appealing, the next propositions show that this

approach produces biased prediction results in the presence of weak factors.

Proposition 3. In Example 4, suppose that N/(N0T ) → δ ≥ 0 and ∥β∥ → ∞, then the

estimated factor F̂PLS satisfies

∥∥∥∥PF̂ ′
PLS

− PηPLS

∥∥∥∥ P−→ 0,

where ηPLS = (IT−h + δA′
1A1)F

′. In the special case that A′
1A1 = IT−h, it satisfies

∥∥∥∥PF̂ ′
PLS

− PF ′

∥∥∥∥ P−→ 0.
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Proposition 4. Under the assumptions of Proposition 3, if we further assume that A′
1A1 =

IT−h, then we have ŷPLS
T+h

P−→ (1 + δ)−1ET (yT+h).

Therefore, the consistency of the PLS factor also depends on the homoskedasticity as-

sumption A′
1A1 = IT−h and the forecasting performance of PLS regression is similar to PCA

in our weak factor setting. The reason is that the information about the covariance between

X and Y used by PLS is dominated by the noise component of X, hence PLS does not

resolve the issue of weak factors, despite it being a supervised predictor.

Finally, before we conclude the analysis on PLS, we demonstrate a potential issue of

PLS due to “overfitting.” It turns out that PLS can severely overfit the in-sample data

and perform badly out of sample, because PLS overuses information on y to construct its

predictor. We illustrate this issue with the following example:

Example 5. Suppose xt and yt+h follow a “0-factor” model:

xt = ut, yt+h = zt+h,

where uts follow i.i.d. N (0, IN ) and zts follow i.i.d. N (0, 1).

Proposition 5. In Example 5, if we use K̂ = 1, then we have

ŷPLS
T+h ≳P N3/2T 1/2/(N2 + T 2) while ŷPCA

T+h ≲P 1/(N1/2 + T 1/2).

Specifically, in the case of N ≍ T ,

ŷPLS
T+h ≳P 1 and ŷPCA

T+h ≲P N−1/2.

The conditional expectation of yT+h is 0 in this example, but ŷPLS
T+h can be bounded away

from 0 when using more factors than necessary. In contrast, ŷPCA
T+h remains consistent. The

failure of PLS is precisely due to that it selects a component in x that appears correlated
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with y, despite the fact that there is no correlation between them in this DGP. While SPCA’s

behavior is difficult to pin down in this example, intuitively, it falls in between these two

cases. When q is very large, SPCA resembles PCA as it uses a large number of predictors in

x to obtain components. When q is too small, SPCA is prone to overfitting like PLS. With

a good choice of q by cross-validation, SPCA can also avoid overfitting.

1.3.5.3 PCA Regression of Stock and Watson [2002a]

Stock and Watson [2002a] adopt an alternative version of the PCA regression algorithm

(hereafter SW-PCA) to what we have presented in Algorithm 2. The key difference is that

SW-PCA conducts PCA on the entire X instead of X. Therefore, they can obtain f̂T

directly from this step, instead of reconstructing it using the estimated weights in-sample.

While our focus is not on PCA, the PCA algorithm is part of our SPCA procedure. Given

the popularity of SW-PCA, we explain why we prefer our version of PCA regression given

by Algorithm 2.

Formally, we present their algorithm below:

Algorithm 4 (SW-PCA).

Inputs: Y , X, and W .

S1. Apply SVD on X, and obtain the estimated factors F̂SW = ς̂ ′∗XMW ′, where ς̂∗ ∈

RN×K are the first K left singular vectors of X.

S2. Estimate the coefficients by time-series regression:

α̂ = YMW ′F̂
′
SW

(
F̂SWMW ′F̂

′
SW

)−16 and α̂w = YM
F̂
′
SW

W ′
(
WM

F̂
′
SW

W ′
)−1

.

S3. Obtain the prediction ŷSWT+h = α̂f̂T + α̂wwT , where f̂T is the last column of F̂SW and

α̂w = YW ′(WW ′)−1.

6. Unlike Algorithm 1, F̂SW is not orthogonal to W .
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Outputs: ŷSWT+h, F̂SW , α̂, and α̂w.

The advantage of SW-PCA is that the consistency of factors is sufficient for the consis-

tency of the prediction, unlike PCA as shown by Proposition 2. In other words, even though

this is not true in general, ŷSWT+h can be consistent in the special case A′A = IT . Additionally,

SW-PCA is more efficient for factor estimation in that it uses the entire data matrices X

and W .

Nevertheless, the negative side of the SW-PCA is that it can be unstable because it is

more prone to overfitting. We illustrated this issue using the example below.

Example 6. Suppose xt and yt+h follow a “0-factor” model:

xt = ut, yt+h = zt+h,

where uts are generated from mean zero normal distributions independently with Cov(ut) =

IN for t < T and Var(uT ) = (1+ϵ)IN for some constant ϵ > 0, and zts follow i.i.d. N (0, 1).

Proposition 6. In Example 6, suppose that T/N → 0, if we use K̂ = 1, then we have

Var(ŷSWT+h) → ∞ and ŷPCA
T+h

P−→ 0.

Intuitively, SW-PCA uses in-sample estimates of the eigenvectors based on data up to T as

factors for prediction, whereas PCA uses out-of-sample estimates of the factors, constructed

at time T but based on weights estimated up to T −h. Because of this, SW-PCA may suffer

more from “overfitting” compared to PCA, if the statistical properties of the data differ from

T − h to T . Example 6 investigates the case with heteroskedastic uT in the scenario of

overfitting K̂ = 1 > K = 0, in which case SW-PCA could perform rather wildly. This

example appears contrived, but in practice macroeconomic data are often heterogenous and

the number of factors is difficult to pin down. Such an issue is thereby relevant and we hence

advocate Algorithms 2 for robustness.
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1.3.6 Tuning Parameter Selection

Along with the gain in robustness to weak factors comes the cost of an extra tuning pa-

rameter. To implement the SPCA estimator, we need to select two tuning parameters, q

and c. The parameter q dictates the size of the subset used for PCA construction, whereas

the parameter c determines the stopping rule, and in turn the number of factors, K. By

comparison, PCA and PLS, effectively, only require selecting K. We have established in

Theorem 3 that we can consistently recover K, provided q and c satisfy certain conditions.

In practice, we may as well directly tune K instead of c, given that K is more inter-

pretable, that K can only take integer values, and that the scree plot is informative about

reasonable ranges of K. Moon and Weidner [2015] demonstrate that, within the context of

linear panel regression with interactive fixed effect, the inference on regression coefficients

remains robust even with the inclusion of noise as factors. With respect to q, a larger choice

of q renders the performance of SPCA resemble that of PCA, and hence becomes less ro-

bust to weak factors. Smaller values of q elevate the risk of overfitting, because the selected

predictors are more prone to overfit y. We suggest tuning ⌊qN⌋ instead of q, because the

former can only take integer values, and that multiple choices of the latter may lead to the

same integer values of the former.

In our applications, we select tuning parameters based on 3-fold cross-validation that

proceeds as follows. We split the entire sample into 3 consecutive folds. Because of the

time series dependence, we do not create these folds randomly. We then use each of the

three folds, in turn, for validation while the other two are used for training. We select the

optimal tuning parameters according to the average R2 in the validation folds. With these

selected parameters, we refit the model using the entire data before making predictions. We

conduct a thorough investigation of the effect of tuning on the finite sample performance of

all procedures below.
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1.4 Simulations

In this section, we study the finite sample performance of our SPCA procedure using Monte

Carlo simulations.

Specifically, we consider a 3-factor DGP as given by equation (1.1) with two strong factors

f1t, f2t and one potentially weak factor f3t. For strong factors f1t and f2t, we generate

exposure to them independently from N (0, 1). To simulate a weak factor f3t, we generate

exposure to it from a Gaussian mixture distribution, drawing values with probability a from

N (0, 1) and 1 − a from N (0, 0.12). The parameter a determines the strength of the third

factor and it ranges from {0.5, 0.1, 0.05} in the simulations.

Our aim is to predict yT+1, or equivalently, estimate ET (yT+1) = αfT + αwwT , where

w includes an intercept term and a lagged term of y. We consider two DGPs for y. In

the first scenario, we set αw = (0, 0.2) and α = (0, 0, 1), i.e., yt+1 = f3t + 0.2yt + zt+1.

Since y is a univariate target, there is no guarantee that we can recover all factors. We thus

examine the consistency of the prediction, as shown in Theorem 2, on the basis of MSE

and ∥γ̂β − α∥. In the second scenario, we examine the quality of factor space recovery and

inference. We thereby simulate a multivariate target with α = I3 and αw = (03×1, 0.2I3),

i.e., yi,t+1 = fit + 0.2yit + zi,t+1, for i = 1, 2, 3.

We generate realizations of fit, zit independently from the standard normal distribution.

To generate uit, we first draw ϵits from N (0, 3) independently and construct the matrix

A = SΓ, where S is a (T+1)×(T+1) diagonal matrix with elements drawn from Unif(0.5, 1.5)

and Γ is a (T +1)× (T +1) rotation matrix drawn uniformly from a unit sphere. Therefore,

uit as constructed by U = ϵA features heteroskedasticity.

Table 1.1 compares the finite sample performance of SPCA, PCA, and PLS in the first

scenario. In both panels, the sample size is T = 60, 120, and around aN = 100 predictors

have exposure to the factor f3t. We simulate N = 200 (a = 0.5) predictors in the upper

panel, so that f3t is exposed to half of them and is thereby strong, and set N = 2, 000
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(a = 0.05) in the lower panel, where f3t becomes much weaker due to the large number of

predictors that do not load on it.

To highlight the sensitivity of all estimators to the number of factors, we separately report

results for each choice of K from 1 to 5 (not tuned), while only selecting the other tuning

parameter q for SPCA via cross-validation. We also report results with both parameters

tuned jointly for SPCA, and the single parameter K tuned for PCA and PLS, respectively.

The simulation results in Table 1.1 square well with our theoretical predictions. In the

strong factor case (upper panel), PCA and SPCA perform similarly. They achieve minimum

prediction error when K is set at the true value 3 in that the first two factors do not predict y.

This suggests that tuning q does not worsen the performance of SPCA. PLS can also achieve

desirable performance but typically with K smaller than 3. Interestingly, its performance

deteriorates rapidly as K increases and surpasses the true value. The reason, as we explain in

Proposition 5, is that PLS is more likely to overfit as it uses information about y to directly

construct predictors. In contrast, PCA based approaches are more robust to noisy factors

used in prediction.

As to the weak factor case (lower panel), SPCA outperforms both PLS and PCA as

predicted by our theory. Moreover, SPCA tends to achieve optimal performance when K = 2.

Recall that in this case, we do not have asymptotic guarantee that SPCA can recover the

entire factor space. For this reason, it is possible that a third factor out of this procedure

contributes more noise than signal, hence the performance of SPCA deteriorates with an

additional factor.

Both panels show that tuning K in most cases slightly deteriorates the optimal prediction

MSE and estimation error. That said, the resulting errors remain smaller than what the

second best choice of K can achieve.

Furthermore, Table 1.2 reports the performance of SPCA, PCA, and PLS for each entry

of y in the multi-target scenario. In this case we only report results with parameters tuned.
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Table 1.1: Finite Sample Comparison of Predictors (Univariate y)

MSE ∥γ̂β − α∥
K 1 2 3 4 5 K̂ 1 2 3 4 5 K̂

T Panel A: N = 200 a = 0.5

60
SPCA 0.91 0.52 0.15 0.17 0.17 0.16 0.92 0.59 0.24 0.25 0.25 0.25
PCA 1.05 1.08 0.15 0.15 0.15 0.15 1.01 1.02 0.26 0.26 0.25 0.26
PLS 0.34 0.17 0.37 0.51 0.70 0.21 0.50 0.22 0.28 0.27 0.27 0.25

120
SPCA 0.89 0.49 0.09 0.11 0.11 0.10 0.92 0.55 0.17 0.17 0.17 0.17
PCA 1.04 1.06 0.09 0.09 0.09 0.09 1.00 1.01 0.17 0.17 0.17 0.17
PLS 0.25 0.10 0.31 0.40 0.66 0.11 0.38 0.16 0.26 0.18 0.19 0.16

Panel B: N = 2000 a = 0.05

60
SPCA 0.75 0.29 0.41 0.52 0.58 0.36 0.78 0.32 0.42 0.45 0.47 0.36
PCA 1.11 1.14 0.69 0.67 0.65 0.67 1.01 1.03 0.75 0.74 0.73 0.74
PLS 1.14 0.55 0.52 0.67 0.75 0.55 1.00 0.56 0.50 0.49 0.47 0.51

120
SPCA 0.55 0.13 0.18 0.26 0.27 0.16 0.65 0.19 0.28 0.34 0.35 0.22
PCA 1.05 1.08 0.27 0.27 0.27 0.27 1.01 1.02 0.44 0.44 0.44 0.44
PLS 0.94 0.24 0.26 0.45 0.55 0.23 0.92 0.34 0.30 0.32 0.30 0.29

Notes: We evaluate the performance of SPCA, PCA, and PLS in terms of prediction MSE and ∥γ̂β − α∥. All numbers reported
are based on averages over 1,000 Monte Carlo repetitions. We highlight the best values based on each criterion in bold.

As discussed previously, we expect the recovery of all factors using SPCA, because to each

factor, at least one entry of yt has exposure. We first report the distance between F̂ and the

true factors F , defined by d(F̂ , F ) =
∥∥∥P

F̂ ′ − PF ′

∥∥∥. We also report the MSEis for ŷi,T+1,

i = 1, 2, 3, where MSE3 is based on y3,T+1, which depends on the potentially weak factor

f3T by construction. Again, we vary the value of a and N , while maintaining aN = 100, so

that the number of predictors with exposure to the third factor is fixed throughout.

The findings here are again consistent with our theory. In particular, as a varies from 0.5

to 0.05, the third factor becomes increasingly difficult to detect. Both PCA and PLS report

a substantially larger distance d(F̂ , F ) than SPCA. In the mean-time, the distortion in the

factor space translates to larger prediction errors for the third target y3, in that it loads on

the weak factor f3 besides its own lag. Throughout this experiment, SPCA maintains almost

the same level of performance as a varies, demonstrating its robustness to weak factors.

Last but not least, we report the histograms of the standardized prediction errors using

the CLT of Theorem 4 in Figure 1.1. The setting is identical to that of Table 1.2 with

a = 0.05 and T = 120. The histograms match well with the standard normal density for

SPCA, and hence verifies the central limit result we derive. As to PCA, there is visible
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Table 1.2: Finite Sample Comparison of Predictors (Multivariate y)

SPCA PCA PLS
a d(F̂ , F ) MSE1 MSE2 MSE3 d(F̂ , F ) MSE1 MSE2 MSE3 d(F̂ , F ) MSE1 MSE2 MSE3

T = 60
0.5 0.40 0.14 0.16 0.20 0.40 0.14 0.15 0.21 0.41 0.14 0.15 0.19
0.1 0.44 0.13 0.14 0.25 0.55 0.12 0.12 0.55 0.54 0.12 0.13 0.38
0.05 0.45 0.14 0.13 0.27 0.66 0.12 0.11 0.72 0.59 0.12 0.12 0.53

T = 120
0.5 0.30 0.07 0.08 0.10 0.30 0.07 0.08 0.10 0.31 0.08 0.08 0.10
0.1 0.31 0.07 0.07 0.12 0.36 0.06 0.06 0.22 0.39 0.07 0.06 0.17
0.05 0.31 0.07 0.07 0.11 0.39 0.06 0.06 0.29 0.44 0.06 0.06 0.22

Notes: We evaluate the performance of SPCA, PCA, and PLS in terms of the distance between estimated factor space and the
true factor space, d(F̂ , F ) =

∥∥P
F̂ ′ − PF ′

∥∥, as well as MSEi for predicting the ith entry of y. All numbers reported are based
on averages over 1,000 Monte Carlo repetitions. We vary the value a takes, while fixing aN = 100.

distortion to normality for y3, due to the presence of the weak factor f3.

Figure 1.1: Histograms of the Standardized Prediction Errors
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Notes: We provide histograms of standardized prediction errors for each entry of y using SPCA and PCA, respectively, based
on 1,000 Monte Carlo repetitions. The dashed curve on each plot corresponds to the standard normal density.

1.5 Conclusions

The problem of macroeconomic forecasting is central in both academic research as well

as for designing policy. The availability of large datasets has spurred the development of

methods, pioneered by Stock and Watson [2002a], aimed at reducing the dimensionality of

the predictors in order to preserve parsimony and achieve better out of sample predictions.
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The existing methods that are typically applied to this problem aim to extract a common

predictive signal from the large set of available predictors, separating it from the noise and

reducing the problem’s dimensionality. What our paper adds to this literature is the idea

that the availability of a large number of predictors also allows us to discard predictors

that are not sufficiently informative. That is, predictors that are mostly noise actually hurt

the signal extraction because they contaminate the estimation of the common component

contained in other, more informative, signals.

How can one know which predictors are noisy and which are useful? The key idea of

SPCA is that one can discriminate between useful and noisy predictors by having the target

itself guide the selection. This idea, first proposed in Bair and Tibshirani [2004], naturally

leads to adding a screening step before factor extraction. But this original version of SPCA

only works in very constrained environments that they can all be extracted via PCA from

the same subset of predictors.

In practice, there is no guarantee for that to be the case. Whether a latent factor is

strong or weak (and how strong) depends on how exposed the various predictors are to it

– and each empirical applications could feature a different mix of strong and weak latent

factors. Therefore, we propose a new SPCA approach that iterates a selection step, a factor

extraction step, and a projection step. As we demonstrate in the paper, this procedure can

consistently handle a whole range of latent factor strength. Our empirical analysis in section

3.2 shows that indeed this procedure fares well in an application with a large number of

potentially noisy macroeconomic predictors.

Two final points are worth noting. First, like any procedure, it will work best under some

DGPs, and worse under others. In particular, the procedure will potentially miss factors

that are extremely weak – no procedure can ever distinguish them from noise, because the

exposures of the predictors to these factors are simply too small.

Second, our theory highlights an interesting tradeoff that emerges when working with
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weak factors. Detecting the weak factors using unsupervised methods (like PCA) is, by

definition, difficult or impossible: there is a wide range of strength of factors that will be

missed by these methods. Methods based on supervised selection can help extract additional

signal, thanks to the guidance from the target. This ability comes at a cost: the possibility

of missing factors that are not related to the target. Therefore, this procedure is most useful

in applications, like forecasting, where omitting factors not related to the target does not

bias the prediction. We leave to future work an additional exploration of other contexts in

which SPCA can be useful.

1.6 Mathematical Proofs

For notation simplicity, we use X, F , U , Y , Z in place of X, F , U , Y , and Z, and use Th

for T − h. In addition, without loss of generality, we assume that Σf = IK in the proof, in

that we can always normalize the factors by Σ
−1/2
f and redefine β in (1.1) and α in (1.2)

accordingly.

1.6.1 Proof of Theorem 1

Proof. We start with the DGP without wt first. Throughout the proof, we use X̃(k) :=(
X(k)

)
[Îk]

to denote the matrix on which we perform SVD in each step of Algorithm 1. The

first left and right singular vectors of X̃(k) are denoted by ς̂(k) and ξ̂(k), while the largest

singular value of X̃(k) is denoted by
√

Thλ̂(k). As a result, λ̂(k) = T−1
h

∥∥∥X̃(k)

∥∥∥2. Moreover,

by definition

ς̂(k) = T
−1/2
h λ̂

−1/2
(k)

X̃(k)ξ̂(k), ξ̂(k) = T
−1/2
h λ̂

−1/2
(k)

X̃ ′
(k)ς̂(k). (1.12)

43



Therefore, our estimated factor at k-th step is F̂(k) = ς̂ ′
(k)

X̃(k) = T
1/2
h λ̂

1/2
(k)

ξ̂′
(k)

. Conse-

quently, the coefficients of regressing X and Y onto this factor are, respectively:

β̂(k) = T
−1/2
h λ̂

−1/2
(k)

X(k)ξ̂(k) and α̂(k) = T
−1/2
h λ̂

−1/2
(k)

Y(k)ξ̂(k). (1.13)

Then we define D̃(k) ∈ RqN×N iteratively by

D̃(k) = (IN )
[Îk]

−
k−1∑
i=1

T
−1/2
h λ̂

−1/2
(i)

X
[Îk]

ξ̂(i)ς̂
′
(i)D̃(i),

with D̃(1) = (IN )
[Î1]

. We can show by induction that X̃(k) = D̃(k)X. In fact, by Lemma

1, we have ξ̂′
(i)
ξ̂(j) = 0 for i ̸= j ≤ K̂ which suggests that F̂(k)’s for all k are pairwise

orthogonal. Using this property and the definition of X̃(k), we have

X̃(k) =
(
X(k)

)
[Îk]

= X
[Îk]

k−1∏
i=1

M
F̂ ′
(i)

= X
[Îk]

ITh −
k−1∑
i=1

ξ̂(i)ξ̂
′
(i)

 , (1.14)

for k > 1 and when k = 1,

X̃(1) = X
[Î1]

= β
[Î1]

F + U
[Î1]

.

Using (1.12), if X̃(i) = D̃(i)X for any i < k we can write (1.14) as

X̃(k) = X
[Îk]

ITh −
k−1∑
i=1

ξ̂(i)ξ̂
′
(i)

 =X
[Îk]

−
k−1∑
i=1

T
−1/2
h λ̂

−1/2
(i)

X
[Îk]

ξ̂(i)ς̂
′
(i)X̃(i) = D̃(k)X.
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Since X̃(1) = X
[Î1]

= D̃(1)X holds immediately by definition, we have X̃(k) = D̃(k)X by

induction. In light of this, the estimated factors satisfy

F̂(k) = ς̂ ′(k)X̃(k) = ς̂ ′(k)D̃(k)X, (1.15)

for all k, and by definition, we have ζ̂(k) = (ς̂ ′
(k)

D̃(k))
′. Moreover, using (1.13) the estimated

coefficient γ̂ can be written as

γ̂ =
K̂∑
k=1

α̂(k)ς̂
′
(k)D̃(k) =

K̂∑
k=1

T
−1/2
h λ̂

−1/2
(k)

Y ξ̂(k)ς̂
′
(k)D̃(k). (1.16)

We further define β̃(k) = D̃(k)β and Ũ(k) = D̃(k)U , then X̃(k) can be written in the form of

X̃(k) = β̃(k)F + Ũ(k). (1.17)

We also define the population analog of D̃(k) for each k by

D(k) = (IN )[Ik] −
k−1∑
i=1

λ
−1/2
(i)

β[Ik]b(i)ς
′
(i)D(i), D(1) = (IN )[I1],

where
√

λ(k) is the leading singular value of β(k), ς(k) and b(k) are the corresponding left

and right singular vectors of β(k). By a similar induction argument, we can show that

β(k) = β[Ik]
∏
i<k

Mb(i)
= D(k)β.

Intuitively, β̃(k) and D̃(k) are sample analogs of β(k) and D(k).

Similar representations to (1.17) can be constructed for Y(k) := Y
∏k−1

i=1 M
F̂ ′
(i)

for each
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k. Specifically, we have

Y(k) =Y

ITh −
k−1∑
i=1

ξ̂(i)ξ̂
′
(i)

 = α̃(k)F + Z̃(k), (1.18)

where α̃(k) ∈ RD×K and Z̃(k) ∈ RD×Th are defined as

α̃(k) := α−
k−1∑
i=1

T
−1/2
h λ̂

−1/2
(i)

Y ξ̂(i)ς̂
′
(i)β̃(i) and Z̃(k) := Z −

k−1∑
i=1

T
−1/2
h λ̂

−1/2
(i)

Y ξ̂(i)ς̂
′
(i)Ũ(i).

By Lemma 3, we have P(Îk = Ik) → 1 for k ≤ K̃ and P(K̂ = K̃) → 1. Thus, with

probability approaching one, we can impose that Îk = Ik for any k and K̂ = K̃ in what

follows.

To prove Theorem 1, using (1.17), the estimated factors can be written as

F̂(k) = ς̂ ′(k)X̃(k) = ς̂ ′(k)β̃(k)F + ς̂ ′(k)Ũ(k).

Using Lemma 5(i),
∥∥∥F̂(k)∥∥∥ =

√
Thλ̂(k), and ∥MF ′∥ ≤ 1, we have

∥∥∥F̂(k)∥∥∥−1 ∥∥∥F̂(k)MF ′

∥∥∥ ≤
∥∥∥F̂(k)∥∥∥−1 ∥∥∥ς̂ ′(k)Ũ(k)

∥∥∥ ≲P q−1/2N−1/2 + T−1.

1.6.2 Proof of Theorem 2

Proof. By definition of X(k) in Algorithm 1, we have

X(k) = X(k−1)MF̂ ′
(k−1)

= X

k−1∏
i=1

M
F̂ ′
(i)

= X

ITh −
k−1∑
i=1

ξ̂(i)ξ̂
′
(i)

 .
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Therefore, using (1.18), we have

X(k)Y
′
(k) = X

ITh −
k−1∑
i=1

ξ̂(i)ξ̂
′
(i)

Y ′
(k) = XY ′

(k)

as Y(k)ξ̂(i) = 0 for i < k by Lemma 1. Therefore, the covariance
(
X(k)

)
[i]
Y ′
(k)

for each

predictor equals to X[i]Y
′
(k)

. Based on the stopping rule, if our algorithm stops at K̃, there

are at most qN−1 predictors among all satisfying T−1
h

∥∥∥∥X[i]Y
′
(K̃+1)

∥∥∥∥
MAX

≥ c. Let S denote

the set of these predictors. For i ∈ S, we have

∥∥∥T−1
h X[i]Y

′
(K̃+1)

∥∥∥2
F
≲
∥∥∥T−1

h X[i]Y
′
(K̃+1)

∥∥∥2
MAX

≲P 1, (1.19)

where we use ∥β∥MAX ≲ 1 from Assumption 2 and Lemma 3(vi) in the last step. On the

other hand, in light of the set I0 in Assumption 2, we have

∑
i∈I0

∥∥∥T−1
h X[i]Y

′
(K̃+1)

∥∥∥2
F
=

∑
i∈I0∩S

∥∥∥T−1
h X[i]Y

′
(K̃+1)

∥∥∥2
F
+

∑
i∈I0∩Sc

∥∥∥T−1
h X[i]Y

′
(K̃+1)

∥∥∥2
F

≲P |I0 ∩ S|+ |I0 ∩ Sc|c2 ≤ qN + c2N0 = o(N0), (1.20)

where we use (1.19), |S| ≤ qN − 1, c → 0, and qN/N0 → 0. Consequently, (1.20) leads

to
∥∥∥Y(K̃+1)

X ′
[I0]

∥∥∥ = oP(TN
1/2
0 ). Moreover, using (1.18) and that X = βF + U , we can

decompose

Y
(K̃+1)

X ′
[I0]

= α̃
(K̃+1)

FF ′β′[I0] + α̃
(K̃+1)

FU ′
[I0]

+ Z̃
(K̃+1)

F ′β′[I0] + Z̃
(K̃+1)

U ′
[I0]

. (1.21)

Using (1.20), (1.21), Lemma 9(i)(ii), and the fact that
∥∥∥β[I0]∥∥∥ ≲ N

1/2
0 , we have

∥∥∥α̃(K̃+1)

(
FF ′β′[I0] + FU ′

[I0]

)∥∥∥ = oP

(
N

1/2
0 T

)
. (1.22)
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Also, using Assumption 4(i), Assumption 1(i) and Weyl’s theorem, we have

|σK(FF ′β′[I0] + FU ′
[I0]

)− σK(Thβ[I0])| ≤
∥∥∥FU ′

[I0]

∥∥∥+ ∥∥∥T−1
h FF ′ − IK

∥∥∥∥∥∥Thβ[I0]∥∥∥
≲PN

1/2
0 T 1/2. (1.23)

Since Assumption 2 implies that σK(β[I0]) ≍ N
1/2
0 , we have σK(FF ′β′

[I0]
+FU ′

[I0]
) ≍ N

1/2
0 T .

Using this result, (1.22) and the inequality
∥∥∥α̃(K̃+1)

(
FF ′β′

[I0]
+ FU ′

[I0]

)∥∥∥ ≥ σK(FF ′β[I0]+

FU ′
[I0]

)
∥∥∥α̃(K̃+1)

∥∥∥, we have
∥∥∥α̃(K̃+1)

∥∥∥ P−→ 0. That is, by definition of α̃
(K̃+1)

in (1.18),

∥∥∥∥∥∥α−
K̃∑
i=1

Y ξ̂(i)

ς̂ ′
(i)
β̃(i)√

Thλ̂(i)

∥∥∥∥∥∥ = oP(1). (1.24)

Next, (1.16) and β̃(k) = D̃(k)β imply that

γ̂β =
K̃∑
i=1

T
−1/2
h λ̂

−1/2
(i)

Y ξ̂(i)ς̂
′
(i)β̃(i).

Therefore, (1.24) is equivalent to ∥γ̂β − α∥ = oP(1).

As shown in Lemma 12, Assumptions 1, 3, and 4 hold when we replace F , Z and U by

FMW ′ , ZMW ′ and UMW ′ . Therefore all of the lemmas and the result ∥γ̂β − α∥ = oP(1)

also hold when wt is included. We write the prediction error of yT+h as

ŷT+h − ET (yT+h) = γ̂xT + (α̂w − γ̂β̂w)wT − αfT − αwwT (1.25)

=(γ̂β − α)
(
fT − FW ′(WW ′)−1wT

)
+ γ̂(uT − UW ′(WW ′)−1wT ) + ZW ′(WW ′)−1wT .
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Using (1.16) and ∥Y ∥ ≤ ∥αF∥+ ∥Z∥ ≲P T 1/2 by Assumption 1, we have

∥γ̂uT ∥ ≤
∑
k≤K̃

T
−1/2
h λ̂

−1/2
(k)

∥Y ∥
∥∥∥ξ̂(k)∥∥∥∥∥∥ς̂ ′(k)D̃(k)uT

∥∥∥ ≲P

∑
k≤K̃

λ̂
−1/2
(k)

∥∥∥ς̂ ′(k)D̃(k)uT

∥∥∥ , (1.26)

and

T−1
h

∥∥γ̂UW ′∥∥ ≤
∑
k≤K̃

T
−3/2
h λ̂

−1/2
(k)

∥Y ∥
∥∥∥ξ̂(k)∥∥∥∥∥∥ς̂ ′(k)D̃(k)UW ′

∥∥∥
≲P

∑
k≤K̃

T−1
h λ̂

−1/2
(k)

∥∥∥ς̂ ′(k)Ũ(k)W
′
∥∥∥ . (1.27)

Using λ̂(k) ≍P qN from Lemma 3 and Lemma 5(ii)(iv), we have

T−1
h λ̂

−1/2
(k)

∥∥∥ς̂(k)Ũ(k)W
′
∥∥∥ ≲P q−1N−1 + T−1, λ̂

−1/2
(k)

∥∥∥ς̂ ′(k)D̃(k)uT

∥∥∥ ≲P q−1/2N−1/2 + T−1/2.

(1.28)

Therefore, ∥γ̂uT ∥ = oP(1). Furthermore, with
∥∥(WW ′)−1

∥∥ ≲P T−1 from Assumption 1, we

have
∥∥γ̂UW ′(WW ′)−1

∥∥ = oP(1). Together with
∥∥FW ′∥∥ ≲P T 1/2,

∥∥ZW ′∥∥ ≲P T 1/2 from

Assumption 1 and ∥γ̂β − α∥ = oP(1), we show that each term of (1.25) vanishes, and hence

ŷT+h − ET [yT+h]
P−→ 0.

1.6.3 Proof of Theorem 3

Proof. As in the proof of Theorem 1, we impose that K̂ = K̃ and Îk = Ik, since Lemma 3

shows that both events occur with probability approaching 1. As shown in Lemma 2(iv),

under the assumption that λK(α′α) ≳ 1, we have K̃ = K. Together with P(K̂ = K̃) → 1,

we have obtained (i) of Theorem 3. Below we directly impose that K̂ = K.

Again, following the same argument above (1.25), we only need analyze the case without

wt. As F̂(k) = T
1/2
h λ̂

1/2
(k)

ξ̂′
(k)

, Theorem 1 implies
∥∥∥ξ̂′(k)MF ′

∥∥∥ ≲P q−1/2N−1/2 + T−1 for
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k ≤ K. Let v denote F ′(FF ′)−1/2, we have

∥∥∥ξ̂ − PF ′ ξ̂
∥∥∥ =

∥∥∥ξ̂ − vv′ξ̂
∥∥∥ ≲P q−1/2N−1/2 + T−1, (1.29)

where ξ̂ is a T ×K matrix with each column equal to ξ̂(k). (1.29) implies that

∥∥∥ξ̂′vv′ξ̂ − IK
∥∥∥ ≲P q−1/2N−1/2 + T−1.

By Weyl’s inequality, |σi(ξ̂′v)− 1| ≲P q−1/2N−1/2 + T−1, for 1 ≤ i ≤ K, and thus

∥∥∥v − ξ̂ξ̂′v
∥∥∥ ≤σ−1

K (v′ξ̂)
∥∥∥vv′ξ̂ − ξ̂ξ̂′vv′ξ̂

∥∥∥ ≲P

∥∥∥vv′ξ̂ − ξ̂
∥∥∥+ ∥∥∥ξ̂(ξ̂′vv′ξ̂ − IK)

∥∥∥
≲Pq

−1/2N−1/2 + T−1.

Then, using this, (1.29), and the fact that ∥v∥ = 1 and
∥∥∥ξ̂∥∥∥ = 1, we have

∥∥∥P
F̂ ′ − PF ′

∥∥∥ =
∥∥∥ξ̂ξ̂′ − vv′

∥∥∥ ≤
∥∥∥ξ̂(ξ̂ − vv′ξ̂)′

∥∥∥+ ∥∥∥(ξ̂ξ̂′v − v)v′
∥∥∥ ≲P q−1/2N−1/2 + T−1.

Next, we need a more intricate analysis of γ̂. Recall from the proof of Theorem 2 that

γ̂β =
K̃∑
k=1

T
−1/2
h λ̂

−1/2
(k)

Y ξ̂(k)ς̂
′
(k)β̃(k). (1.30)

Denote B1 = (b11, . . . , bK̂1
) ∈ RK×K̂ , B2 = (b12, . . . , bK̂2

) ∈ RK×K̂ , where

bk1 = T−1/2F ξ̂(k), bk2 = λ̂
−1/2
(k)

β̃′(k)ς̂(k). (1.31)
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By Lemma 6,

∥∥∥T−1/2
h Zξ̂(k) − T−1

h ZF ′bk2
∥∥∥ ≲P T−1 + q−1N−1. (1.32)

As we impose that K̂ = K̃ = K, combining (1.30), (1.31) and (1.32), with ∥B1∥ ≲P 1,

∥B2∥ ≲P 1 from Lemma 10, we have

∥∥∥γ̂β − αB1B
′
2 − T−1

h ZF ′B2B
′
2

∥∥∥ ≲P T−1 + q−1N−1. (1.33)

Using Lemma 10(iv)(v), we obtain
∥∥∥γ̂β − α− T−1

h ZF ′
∥∥∥ ≲P T−1 + q−1N−1.

1.6.4 Proof of Theorem 4

Proof. As in the proof of Theorem 2, we have
∥∥FW ′(WW ′)−1

∥∥ ≲P T−1/2 from Assumption

1 and
∥∥γ̂UW ′(WW ′)−1

∥∥ ≲P T−1 + q−1N−1 as shown in (1.27) and (1.28). Together with∥∥∥γ̂β − α− T−1
h ZF ′

∥∥∥ ≲P T−1 + q−1N−1, we can derive from (1.25) that:

ŷT+h − ET (yT+h) = T−1
h ZF ′fT + ZW ′(WW ′)−1wT + γ̂uT +OP(T

−1 + q−1N−1).

By Assumption 1, we have |λi
(
T−1
h Σ

−1/2
w WW ′Σ−1/2

w

)
− 1| ≲P T−1/2 and thus

∥∥∥ZW ′(WW ′)−1wT − T−1
h ZW ′Σ−1

w wT

∥∥∥ ≤ T−1
h

∥∥ZW ′∥∥∥∥∥(T−1
h WW ′)−1 − Σ−1

w

∥∥∥ ∥wT ∥

≲PT
−1/2
h

∥∥∥T−1
h Σ

−1/2
w WW ′Σ−1/2

w − ID
∥∥∥ = T

−1/2
h max

i≤D
|λi
(
T−1
h Σ

−1/2
w WW ′Σ−1/2

w

)−1
− 1|

≲PT
−1. (1.34)
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For γ̂uT , by (1.16), we have γ̂uT =
∑K

k=1 α̂(k)ς̂
′
(k)

D̃(k)uT and thus

∥∥∥∥∥∥γ̂uT −
K∑
k=1

λ
−1/2
(k)

αb(k)ς
′
(k)D(k)uT

∥∥∥∥∥∥ ≤
K∑
k=1

∥∥∥α̂(k)ς̂ ′(k)D̃(k)uT − λ
−1/2
(k)

αb(k)ς
′
(k)D(k)uT

∥∥∥ .
(1.35)

Lemma 8(vi) gives

q−1/2N−1/2|ς̂ ′(k)D̃(k)uT − ς ′(k)D(k)uT | ≲P T−1 + q−1N−1. (1.36)

In addition, (1.13) and Lemma 1 give λ̂
1/2
(k)

α̂(k) = T
−1/2
h Y ξ̂(k) = αbk1 + T

−1/2
h Zξ̂(k). With

(1.32),
∥∥ZF ′∥∥ ≲P T 1/2 and ∥bk2∥ ≲P 1 from Lemma 10(i), this equation leads to

∥∥∥λ̂1/2(k)
α̂(k) − αbk1

∥∥∥ ≤
∥∥∥T−1/2

h Zξ̂(k) − T−1
h ZF ′bk2

∥∥∥+ ∥∥∥T−1
h ZF ′bk2

∥∥∥ ≲P T−1/2 + q−1N−1.

Using
∥∥∥bk2 − b(k)

∥∥∥ ≲P T−1/2+q−1/2N−1/2 implied by Lemma 10(iii) and λ̂(k) ≍P qN from

Lemma 3(iii), we have

∥∥∥α̂(k) − λ̂
−1/2
(k)

αb(k)

∥∥∥ ≤
∥∥∥α̂(k) − λ̂

−1/2
(k)

αbk2

∥∥∥+ ∥∥∥λ̂−1/2
(k)

α(b(k) − bk2)
∥∥∥

≲PT
−1/2q−1/2N−1/2 + q−1N−1. (1.37)

Also, with Lemma 3(iii), we have

|λ̂−1/2
(k)

− λ
−1/2
(k)

| ≤ λ̂
−1/2
(k)

|λ̂1/2
(k)

/λ
1/2
(k)

− 1| ≲P T−1/2q−1/2N−1/2 + q−1N−1.

Since
∥∥∥b(k)∥∥∥ = 1, the above two inequalities lead to

∥∥∥α̂(k) − λ
−1/2
(k)

αb(k)

∥∥∥ ≤ T−1/2q−1/2N−1/2 + q−1N−1. (1.38)
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For each term in the summation of (1.35), we have

∥∥∥α̂(k)ς̂ ′(k)D̃(k)uT − λ
−1/2
(k)

αb(k)ς
′
(k)D(k)uT

∥∥∥
≤
∥∥∥α̂(k)(ς̂ ′(k)D̃(k)uT − ς ′(k)D(k)uT )

∥∥∥+ ∥∥∥(α̂(k) − λ
−1/2
(k)

αb(k))ς
′
(k)D(k)uT

∥∥∥ . (1.39)

Note that (1.37) also implies
∥∥∥α̂(k)∥∥∥ ≲P q−1/2N−1/2 as λ̂(k) ≍ qN , and that (1.36) implies

the first term in (1.39) is OP(T
−1+q−1N−1). Furthermore, |ς ′

(k)
D(k)uT | ≲P 1 from Lemma

5(iv) and (1.38) show that the second term in (1.39) is also OP(T
−1+ q−1N−1). Given this,

(1.35) becomes

∥∥∥∥∥∥γ̂uT −
K∑
k=1

λ
−1/2
(k)

αb(k)ς
′
(k)D(k)uT

∥∥∥∥∥∥ ≲P T−1 + q−1N−1. (1.40)

To sum up, we have established that

ŷT+h − ET (yT+h) =
ZF ′

Th
fT +

ZW ′

Th
Σ−1
w wT +

K∑
k=1

λ
−1/2
(k)

αb(k)ς
′
(k)D(k)uT

+OP

(
T−1 + q−1N−1

)
.

In the general case that Σf may not be IK , the first term becomes T−1
h ZF ′Σ−1

f fT . Using

the fact ς(k) = λ
−1/2
(k)

β(k)b(k) = λ
−1/2
(k)

β[Ik]b(k) and the iterative definition of D(k), we can

see that λ
−1/2
(k)

ς ′
(k)

D(k)uT is exactly the kth row of Λ−1Ω′ΨuT with Λ, Ω, and Ψ defined

in Theorem 4. Using Delta method and Assumption 6, it is straightforward to obtain the

desired CLT.
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1.6.5 Proof of Theorem 5

Proof. Using Theorem 5 in Fan et al. [2013], to establish the error bound
∥∥∥Σ̂u − Σu

∥∥∥, it is

sufficient to show that
∥∥∥Û − U

∥∥∥
MAX

= oP(1) and

max
i≤N

T−1
h

∑
t

|uit − ûit|2 = OP

(
1

qN
+

logN

T

)
.

These two estimates have been shown by Lemma 11(iii)(iv). If mq,N

(
1√
qN

+
√

logN
T

)1−q

=

o(1), then
∥∥∥Σ̂u − Σu

∥∥∥ = oP(1). With
∥∥∥ς̂ ′(k)D̃(k) − ς ′

(k)
D(k)

∥∥∥ ≲P T−1/2 + q−1/2N−1/2 from

Lemma 8(iv) and γ̂ =
∑

k≤K α̂(k)ς̂
′
(k)

D̃(k), rewrite the proof of (1.40), we have

∥∥∥∥∥∥γ̂ −
∑
k≤K

λ
−1/2
(k)

αb(k)ς
′
(k)D(k)

∥∥∥∥∥∥ ≲P T−1/2q−1/2N−1/2 + q−1N−1. (1.41)

The difference between the rate of (1.40) and this equation arises from the difference between

Lemma 8(iv) and (vi). Recall that λ−1/2
(k)

ς ′
(k)

D(k) is exactly the kth row of Λ−1Ω′Ψ, the left

hand side of (1.41) is equivalent to
∥∥γ̂ − αBΛ−1Ω′Ψ

∥∥. In addition, under the assumption

Cov(ut) = Σu, Π33 equals to (qN)−1ΨΣuΨ
′. Let γ̃ denote αBΛ−1Ω′Ψ, then we have

Φ̂2 − Φ2 = qN
(
γ̂Σ̂uγ̂

′ − γ̃Σuγ̃
′
)
.

Consequently, we have

∥∥∥Φ̂2 − Φ2

∥∥∥ ≤ qN
∥∥∥γ̂(Σ̂u − Σu)γ̂

′
∥∥∥+ ∥∥(γ̂ − γ̃)Σuγ̂

′∥∥+ ∥∥γ̃Σu(γ̂ − γ̃)′
∥∥ . (1.42)

Using the definition of D(k),
∥∥∥β[Ik]∥∥∥ ≲ (qN)1/2, and λ(k) ≍ qN , we have

∥∥∥D(k)

∥∥∥ ≲ 1 and

thus ∥γ̂∥ ≲ q−1/2N−1/2. Using
∥∥∥Σ̂u − Σu

∥∥∥ = oP(1), (1.41), ∥Σu∥ ≲ 1 from the assumption

and ∥γ̂∥ ≲ q−1/2N−1/2, all three terms in (1.42) are oP(1).
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1.6.6 Proofs from Section 1.3.5

1.6.6.1 Proof of Propositions 1 and 2

Proof. Note that for any orthogonal matrix Γ ∈ RN×N , the estimators based on PCA and

PLS on ΓR are the same as those based on R. Thus, without loss of generality, we can

assume β = (λ1/2, 0, · · · , 0)′, where λ = ∥β∥2 and it will not affect A.

We can then write X in the following form:

X = βF + U = βF + ϵA1 =

√
λF + ϵ1A1

ϵ2A1

 , (1.43)

where ϵ1 is the first row of ϵ and ϵ2 contains the remaining rows. Correspondingly, we write

the first left singular vector of X as ς̂ = (ς̂1, ς̂
′
2)

′, where ς̂1 is the first element of ς̂ and ς̂2 is

a vector of the remaining N − 1 entries of ς̂, write ξ̂ as the first right singular vector of X,

and denote the first singular value as
√
T λ̂. By simple algebra we have

ς̂1 =
(
√
λF + ϵ1A1)ξ̂√

T λ̂
, ς̂2 =

ϵ2A1ξ̂√
T λ̂

. (1.44)

Since the entries of F are i.i.d. N (0, 1), we have large deviation inequality |T−1
h FF ′−1| ≲P

T−1/2. This also implies that ∥F∥ − T
−1/2
h ≲P 1 by Weyl’s inequality.

Similarly, we can get |T−1
h ϵ1ϵ

′
1 − 1| ≲P T−1/2 and ∥ϵ1∥ − T

−1/2
h ≲P 1. In addition, by

Lemma A.1 in Wang and Fan [2017], we have
∥∥N−1U ′U − A′

1A1

∥∥ ≤ ∥A1∥2
∥∥N−1ϵ′ϵ− ITh

∥∥
≲P

√
T/N . Next, by direct calculation using the previous inequalities we obtain

∥∥∥∥F ′ϵ1A1 + A′
1ϵ

′
1F

Th
√
λ

+
U ′U −NA′

1A1

Thλ

∥∥∥∥ ≲P
1√
λ
+

√
NT

Tλ
≲P

1√
λ
.
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Together with (1.43), we have

∥∥∥∥X ′X
Thλ

− F ′F
Th

−
NA′

1A1

Thλ

∥∥∥∥ ≲P
1√
λ
. (1.45)

Let η denote the first eigenvector of the matrix M := T−1
h F ′F+δA′

1A1. With the assumption

that N/(Tλ) → δ, (λ1(M) − λ2(M))/λ1(M) ≳P 1 and (1.45), by the sin-theta theorem in

Davis and Kahan [1970], we have
∥∥∥Pη − P

ξ̂

∥∥∥ =
∥∥∥Pη − P

F̂ ′

∥∥∥ = oP(1).

In the case that A′
1A1 = ITh , the eigenvalues of M are given by

λi =


T−1
h FF ′ + δ i = 1;

δ i ≥ 2.

(1.46)

and the first eigenvector is F ′/ ∥F∥. Since the largest eigenvalue of X ′X/(Thλ) is λ̂/λ with

its corresponding eigenvector ξ̂, (1.45) and Weyl’s theorem yield that

λ̂

λ
=

FF ′

Th
+

N

Thλ
+OP

(
1√
λ

)
= 1 + δ + oP(1), (1.47)

and the sin-theta theorem implies that

∥∥∥PF ′ − P
ξ̂

∥∥∥ =
∥∥∥F ′(FF ′)−1F − ξ̂ξ̂′

∥∥∥ = oP(1). (1.48)

Furthermore, (1.48) implies that (FF )−1(F ξ̂)2 = ξ̂′F ′(FF )−1F ξ̂ = 1 + oP(1). Together

with |T−1
h FF ′ − 1| ≲ T−1/2, and the fact that the sign of ξ̂ plays no role in the estimator

ŷT+h, we can choose ξ̂ such that

F ξ̂√
Th

− 1 = oP(1). (1.49)
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Therefore, we have

ŷt+h = α̂ς̂ ′xT =
Y ξ̂ς̂ ′xT√

Thλ̂

= α
F ξ̂ς̂ ′xT√

Thλ̂

= α
ς̂ ′βfT + ς̂ ′uT√

λ̂
(1 + oP(1)). (1.50)

Using (1.44), we have

ς̂ ′β√
λ̂
=

√
λς̂1√
λ̂

=
λ

λ̂

(F + λ−1/2ϵ1A1)ξ̂√
Th

=
λ

λ̂

(
F ξ̂√
Th

+
ϵ1A1ξ̂√
Thλ

)
.

Using (1.47), (1.49), ∥A1∥ ≤ 1, and ∥ϵ1∥ ≲P

√
T , it follows that

ς̂ ′β√
λ̂

P−→ 1

1 + δ
. (1.51)

In addition, as Cov(us, ut) = 0 for s ̸= t, uT is independent of ς̂ and thus ς̂ ′uT = OP(1).

Combined with (1.50) and (1.51), we have ŷT+h
P−→ αfT

1+δ = (1 + δ)−1ET (yT+h).

1.6.6.2 Proof of Propositions 3 and 4

Proof. In the case d = K = 1 and zt = 0, the PLS estimate of the factor is F̂ = FX ′X.

With (1.45) and T−1
h FF ′ − 1 = oP(T

−1/2), we have

∥∥∥T−1
h λ−1F̂ − F

(
ITh + δA′

1A1
)∥∥∥ = oP

(
T 1/2

)
. (1.52)

Let η = F
(
ITh + δA′

1A1
)
, and ξ̂1 = F̂ /

∥∥∥F̂∥∥∥, ξ̂2 = η/ ∥η∥, with ∥η∥ ≍ T 1/2 and
∥∥∥T−1

h λ−1F̂
∥∥∥

− ∥η∥ = oP(T
1/2) implied by (1.52), we have

∥∥∥ξ̂1 − ξ̂2

∥∥∥ P−→ 0 and thus

∥∥∥P
F̂ ′ − Pη′

∥∥∥ =
∥∥∥ξ̂′1ξ̂1 − ξ̂′2ξ̂2

∥∥∥ ≤ 2
∥∥∥ξ̂1 − ξ̂2

∥∥∥ P−→ 0.
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This completes the proof of Proposition 3. In the specical case A′
1A1 = ITh , as in Section

1.3.5.2, we can write

ŷT+h =
∥∥Y X ′X

∥∥−2
Y X ′XY ′Y X ′xT = α

∥∥FX ′X
∥∥−2

FX ′XF ′FX ′xT . (1.53)

We now analyze
∥∥FX ′X

∥∥, FX ′XF ′, and FX ′xT , respectively. Recall that from (1.45), we

have
∥∥∥X ′X
Thλ

− F ′F
Th

− δITh
∥∥∥ = oP(1). Along with |T−1

h FF ′ − 1| ≲P T−1/2, we have

1

T
3/2
h λ

∥∥FX ′X
∥∥ =

1√
Th

∥∥∥∥F (F ′F
Th

+ δITh

)∥∥∥∥+ oP(1) = 1 + δ + oP(1). (1.54)

For the same reason, by direct calculation we have

1

T 2
hλ

FX ′XF ′ =
1

Th
F

(
F ′F
Th

+ δITh

)
F ′ + oP(1)

p−→ 1 + δ. (1.55)

Next, write X in the form of (1.43) as in the proof of Proposition 1. Then, using

∥ϵ1∥ ≲P

√
T , we have

1

Thλ
FX ′β =

FF ′

Th
+

FA′
1ϵ

′
1

T
√
λ

P−→ 1. (1.56)

In addition, as uT is independent of ft and xt for t < T , and (1.55), we have

1

Thλ

∥∥FX ′uT
∥∥ ≲P

1

Thλ

∥∥FX ′∥∥ P−→ 0. (1.57)

In light of (1.54), (1.55), (1.56), (1.57) and (1.53), we have concluded the proof.
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1.6.6.3 Proof of Proposition 5

Proof. The explicit form of the PLS estimator in this case is

ŷPLS
T+h =

∥∥Y X ′X
∥∥−2

Y X ′XY ′Y X ′xT =
∥∥ZU ′U

∥∥−2
ZU ′UZ ′ZU ′uT .

Recall that U=(u1, · · · , uT−h), uT is independent of U and Z. Therefore,

Var(ŷPLS
T+h ) =

∥∥ZU ′U
∥∥−4 ∥∥ZU ′∥∥6 .

As zi and ui are generated from independent standard normal distribution, we have

∥∥ZU ′∥∥ ≍P T 1/2N1/2 and ∥U∥ ≍P N1/2 + T 1/2.

Thus, Var(ŷPLS
T+h ) ≳P N3T/(N4 + T 4). On the other hand, the PCA estimator is ŷPCA

T+h =

∥U∥−1 Zξ̂ς̂ ′uT , where ς̂ and ξ̂ are the first left and right singular vectors of U . Note that

Z is independent of ξ̂ and uT is independent of ς̂, we have
∥∥∥Zξ̂∥∥∥ ≲P 1 and

∥∥ς̂ ′uT∥∥ ≲P 1.

Along with the fact that ∥U∥ ≳P N1/2 + T 1/2, we have ŷPCA
T+h ≲P 1/(N1/2 + T 1/2).

1.6.6.4 Proof of Proposition 6

Proof. The estimated factor F̂ is the first eigenvector of X ′X = U ′U . By Lemma A.1 in

Wang and Fan [2017], we have
∥∥N−1U ′U − diag(1, . . . , 1, 1 + ϵ)

∥∥ ≲P

√
T/N . Note that

the first eigenvector of diag(1, . . . , 1, 1 + ϵ) is (0, 0, . . . , 1), sin-theta theorem implies that

|f̂T |/
∥∥∥F̂∥∥∥ P−→ 1. As

∥∥∥F̂∥∥∥2+ f̂2T =
∥∥∥F̂∥∥∥2, we have

∥∥∥F̂∥∥∥ /f̂T P−→ 0. As Z is independent of U ,

conditioning on U , the estimated coefficient α̂ = ZF̂
′ (

F̂ F̂
′)−1

follows a normal distribution

with mean 0 and variance
∥∥∥F̂∥∥∥−2

. Consequently,

Var(f̂SWT+h|U) = Var(α̂f̂T |U) =
(
f̂T /

∥∥∥F̂∥∥∥)2 P−→ ∞,
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which in turn implies that Var(f̂SWT+h) → ∞. On the other hand, in our PCA algorithm, let ς̂

and ξ̂ denote the first left and right singular vectors of X = U , then ŷPCA
T+h = ∥U∥−1 Zξ̂ς̂ ′uT .

Note that Z is independent of ξ̂ and uT is independent of ς̂, we have
∥∥∥Zξ̂∥∥∥ ≲P 1 and∥∥ς̂ ′uT∥∥ ≲P 1. Along with the fact that ∥U∥ ≳P N1/2 + T 1/2, we have ŷPCA

T+h
P−→ 0.

1.6.7 Technical Lemmas and Their Proofs

Without loss of generality, we assume that Σf = IK in the following lemmas. Also, except

for Lemma 3, we assume that K̂ = K̃ and Îk = Ik for k ≤ K̃, which hold with probability

approaching one as we will show in Lemma 3.

Lemma 1. The singular vectors ξ̂(k)s in Algorithm 1 satisfy ξ̂′
(j)

ξ̂(k) = δjk for j, k ≤ K̂.

Proof. If j = k, this result holds from the definition of ξ̂(k). If j < k, recall that X̃(k) is

defined in (1.14) and ξ̂(k) is the first right singular vector of X̃(k), we have

X̃(k) = X[Ik]

∏
i<k

(
IT − ξ̂(i)ξ̂

′
(i)

)
and ξ̂(k) = argmax

v∈RT

∥∥∥X̃(k)v
∥∥∥

∥v∥
.

If ξ̂′
(k)

ξ̂(j) = c0 ̸= 0 for some j < k, then

∥∥∥X̃(k)(ξ̂(k) − c0ξ̂(j))
∥∥∥ =

∥∥∥X̃(k)ξ̂(k) − c0X̃(k)ξ̂(j)

∥∥∥ =
∥∥∥X̃(k)ξ̂(k)

∥∥∥ , (1.58)

since the definition of X̃(k) implies that X̃(k)ξ̂(j) = 0 for j < k. On the other hand, since

ξ̂′
(k)

ξ̂(j) = c0 ̸= 0, we have (ξ̂(k) − c0ξ̂(j))
′ξ̂(j) = 0, and consequently,

∥∥∥ξ̂(k)∥∥∥2 =
∥∥∥ξ̂(k) − c0ξ̂(j)

∥∥∥2 + ∥∥∥c0ξ̂(j)∥∥∥2 >
∥∥∥ξ̂(k) − c0ξ̂(j)

∥∥∥2 . (1.59)

Apparently, if
∥∥∥X̃(k)

∥∥∥ = 0, the SPCA procedure will terminate so we have
∥∥∥X̃(k)

∥∥∥ > 0 for
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k ≤ K̂. Together with (1.58) and (1.59), we have

∥∥∥X̃(k)

∥∥∥ =

∥∥∥X̃(k)ξ̂(k)

∥∥∥∥∥∥ξ̂(k)∥∥∥ ≤

∥∥∥X̃(k)(ξ̂(k) − c0ξ̂(j))
∥∥∥∥∥∥ξ̂(k) − c0ξ̂(j)

∥∥∥ ,

which contradicts with the definition of ξ̂(k). Therefore, ξ̂′
(k)

ξ̂(j) = 0 for j < k.

Lemma 2. Under assumptions of Theorem 1, b(k), β(k) and K̃ in Section 1.3.1 satisfy

(i) b′
(j)

b(k) = δjk for j ≤ k ≤ K̃.

(ii) λ
1/2
(k)

=
∥∥∥β(k)∥∥∥ ≍ q1/2N1/2.

(iii) K̃ ≤ K.

(iv) K̃ = K, if we further have λK(α′α) ≳ 1.

Proof. (i) Recall that b(k) is the first right singular vector of β(k) and β(k) = β[Ik]
∏

j<k Mb(j)
.

Using the same argument as in the proof of Lemma 1, we have b′
(j)

b(k) = δjk for j, k ≤ K̃.

(ii) The selection rule at kth step implies that

|Ik|−1
∑
i∈Ik

∥∥∥∥∥∥β[i]
∏
j<k

Mb(j)
α′

∥∥∥∥∥∥
2

MAX

≥ N−1
0

∑
i∈I0

∥∥∥∥∥∥β[i]
∏
j<k

Mb(j)
α′

∥∥∥∥∥∥
2

MAX

. (1.60)

For any matrix A ∈ RN×D and set I ⊂ [N ], we have

∑
i∈I

∥∥∥A[i]

∥∥∥2
MAX

≤
∥∥∥A[I]

∥∥∥2
F
≤ D

∑
i∈I

∥∥∥A[i]

∥∥∥2
MAX

,

and
∥∥∥A[I]

∥∥∥2 ≤
∥∥∥A[I]

∥∥∥2
F
≤ D

∥∥∥A[I]

∥∥∥2. We thereby have

∥∥∥A[I]

∥∥∥2 ≍
∑
i∈I

∥∥∥A[i]

∥∥∥2
MAX

. (1.61)
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Using this result, (1.60) becomes

|Ik|−1

∥∥∥∥∥∥β[Ik]
∏
j<k

Mb(j)
α′

∥∥∥∥∥∥
2

≳ N−1
0

∥∥∥∥∥∥β[I0]
∏
j<k

Mb(j)
α′

∥∥∥∥∥∥
2

.

Then, we have

∥∥∥β(k)∥∥∥√
|Ik|

∥∥∥∥∥∥
∏
j<k

Mb(j)
α′

∥∥∥∥∥∥ ≥ 1√
|Ik|

∥∥∥∥∥∥β[Ik]
∏
j<k

Mb(j)
α′

∥∥∥∥∥∥ ≳
1√
N0

∥∥∥∥∥∥β[I0]
∏
j<k

Mb(j)
α′

∥∥∥∥∥∥
≥
σK

(
β[I0]

)
√
N0

∥∥∥∥∥∥
∏
j<k

Mb(j)
α′

∥∥∥∥∥∥ , (1.62)

where we use β[Ik]
∏

j<k Mb(j)
α′ = β[Ik](

∏
j<k Mb(j)

)2α′ = β(k)
∏

j<k Mb(j)
α′ in the first

inequality. With σK(β[I0]) ≳
√
N0 from Assumption 2, (1.62) leads to

∥∥∥β(k)∥∥∥ ≳ |Ik|1/2. In

addition, ∥β∥MAX ≲ 1 from Assumption 2 leads to
∥∥∥β(k)∥∥∥ ≲ |Ik|1/2. Therefore, we have∥∥∥β(k)∥∥∥ ≍ |Ik|1/2 ≍ q1/2N1/2 .

(iii) From (i), we have shown that b(k)’s are pairwise orthogonal for k ≤ K̃. It is

impossible to have more than K pairwise orthogonal K dimensional vectors. Thus, K̃ ≤ K.

(iv) Recall that K̃ is defined in Section 1.3.1. Since the SPCA procedure stops at K̃ +1,

we have at most qN − 1 rows of β satisfying
∥∥∥β[i]∏j≤K̃

Mb(j)
α′
∥∥∥
MAX

≥ c, which implies

∥∥∥∥∥∥β[I0]
∏
j≤K̃

Mb(j)
α′

∥∥∥∥∥∥
2

≲ qN + (N0 − qN)c2 = o(N0),

where we use (1.61) and the assumptions c → 0, qN/N0 → 0, and a similar argument for

the proof of (1.20). With σK(β[I0]) ≳
√
N0 from Assumption 2, we have

∥∥∥∥∥∥α
∏
j≤K̃

Mb(j)

∥∥∥∥∥∥ ≤ σK(β[I0])
−1

∥∥∥∥∥∥β[I0]
∏
j≤K̃

Mb(j)
α′

∥∥∥∥∥∥ = o(1). (1.63)
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If K̃ ≤ K − 1, using (i), we have α
∏

j≤K̃
Mb(j)

= α− α
∑

j≤K̃
b(j)b

′
(j)

, so that

σK(α) ≤ σ1

α
∏
j≤K̃

Mb(j)

+ σK

α
∑
j≤K̃

b(j)b
′
(j)

 . (1.64)

Since

Rank

α
∑
j≤K̃

b(j)b
′
(j)

 ≤ K̃ ≤ K − 1, (1.65)

we have σK

(
α
∑

j≤K̃
b(j)b

′
(j)

)
= 0. Therefore, by (1.64) and (1.63), we further have

σK(α) ≲ σ1

(
α
∏

j≤K̃
Mb(j)

)
→0. This contradicts with the assumption that λK(α′α) ≳ 1.

Therefore, we have established that K̃ ≥ K. Together with (iii), we have K̃ = K.

Lemma 3. Under assumptions of Theorem 1, for k ≤ K̃, Ik, K̃ and β(k) satisfy

(i) P(Îk = Ik) → 1.

(ii)
∥∥∥X̃(k) − β(k)F

∥∥∥ ≲P q1/2N1/2 + T 1/2.

(iii) |λ̂1/2
(k)

/λ
1/2
(k)

− 1| ≲P q−1/2N−1/2 + T−1/2, and λ̂(k) ≍P λ(k) ≍ qN .

(iv)
∥∥∥T−1/2

h F ξ̂(k) − b(k)

∥∥∥ ≍
∥∥∥∥PF̂ ′

(k)
− T−1

h F ′Pb(k)F
∥∥∥∥ ≲P q−1/2N−1/2 + T−1/2.

(v) P(K̂ = K̃) → 1.

For k ≤ K̃ + 1, we have

(vi)
∥∥∥T−1

h XY ′
(k)

− β
∏k−1

j=1 Mb(j)
α′
∥∥∥
MAX

≲P (logNT )1/2
(
q−1/2N−1/2 + T−1/2

)
.

Proof. We prove (i)-(iv) by induction. First, we show that (i)-(iv) hold when k = 1:
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(i) Recall that Î1 is selected based on T−1
h XY ′ and I1 is selected based on βα′. With

simple algebra, we have

T−1
h XY ′ − βα′ = β

(
T−1
h FF ′ − IK

)
α′ + T−1

h UF ′α′ + T−1
h βFZ ′ + T−1

h UZ ′.

With Assumptions 1, 2 and 4, we have

∥∥∥T−1
h XY ′ − βα′

∥∥∥
MAX

≲ ∥β∥MAX

∥∥∥T−1
h FF ′ − IK

∥∥∥ ∥α∥+ T−1
h

∥∥UF ′∥∥
MAX ∥α∥

+ T−1
h ∥β∥MAX

∥∥FZ ′∥∥+ T−1
h

∥∥UZ ′∥∥
MAX ≲P (logN)1/2T−1/2.

From Assumption 5, we have c
(1)
qN − c

(1)
qN+1 ≳ c

(1)
qN and the definition of K̃ implies that

c
(k)
qN ≥ c for k ≤ K̃. Thus, we have c

(1)
qN − c

(1)
qN+1 ≳ c. Define the events

A1 : =
{ ∥∥∥T−1

h X[i]Y
′
∥∥∥
MAX

> (c
(1)
qN + c

(1)
qN+1)/2 for all i ∈ I1

}
,

A2 : =
{ ∥∥∥T−1

h X[i]Y
′
∥∥∥
MAX

< (c
(1)
qN + c

(1)
qN+1)/2 for all i ∈ Ic1

}
,

A3 : =
{ ∥∥∥T−1

h X[i]Y
′ − β[i]α

′
∥∥∥
MAX

≥ (c
(1)
qN − c

(1)
qN+1)/2 for some i ∈ [N ]

}
. (1.66)

It is easy to observe that {Î1 = I1} ⊃ A1 ∩ A2. In addition, from the definition of I1, we

have
∥∥∥β[i]α′∥∥∥MAX

≥ c
(1)
qN for all i ∈ I1 and

∥∥∥β[i]α′∥∥∥MAX
≤ c

(1)
qN+1 for all i ∈ Ic1. Therefore,

if Ac
1 occurs, we have

∥∥∥T−1
h X[i]Y

′ − β[i]α
′
∥∥∥
MAX

≥ (c
(1)
qN − c

(1)
qN+1)/2, for some i ∈ I1, which

implies Ac
1 ⊂ A3. Similarly, we have Ac

2 ⊂ A3. Using {Î1 = I1} ⊃ A1∩A2 and Ac
1∪A

c
2 ⊂ A3,

we have

P(Î1 = I1) ≥ P(A1 ∩ A2) = 1− P(Ac
1 ∪ Ac

2) ≥ 1− P(A3). (1.67)

Using c−1(logN)1/2T−1/2 → 0 and c
(1)
qN −c

(1)
qN+1 ≳ c, we have P(A3) → 0 and consequently,

P(Î1 = I1) → 1.
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(ii) Since Î1 = I1 with probability approaching one, we impose Î1 = I1 below. Then,

we have X̃(1) = X[I1]
by (1.14) and Assumption 3 gives

∥∥∥X̃(1) − β(1)F
∥∥∥ =

∥∥∥U[I1]

∥∥∥ ≲P

q1/2N1/2 + T 1/2.

(iii) From Lemma 13, we have σj(β(1)F )/σj(β(1)) = T
1/2
h +OP(1), which leads to

|
∥∥∥β(1)F∥∥∥− T

1/2
h λ

1/2
(1)

| = |σ1(β(1)F )− T
1/2
h σ1(β(1))| ≲P q1/2N1/2, (1.68)

where we use λ
1/2
(1)

=
∥∥∥β(1)∥∥∥ ≍ q1/2N1/2 from Lemma 2 in the last step. In addition, the

result in (ii) implies that

|
∥∥∥X̃(1)

∥∥∥− ∥∥∥β(1)F∥∥∥| ≤ ∥∥∥X̃(1) − β(1)F
∥∥∥ ≲P q1/2N1/2 + T 1/2. (1.69)

Using (1.68), (1.69) and λ
1/2
(1)

≍ q1/2N1/2, we have

|
λ̂
1/2
(1)

λ
1/2
(1)

− 1| = |

∥∥∥X̃(1)

∥∥∥
T
1/2
h λ

1/2
(1)

− 1| ≤
|
∥∥∥X̃(1)

∥∥∥− ∥∥∥β(1)F∥∥∥|
T
1/2
h λ

1/2
(1)

+
|
∥∥∥β(1)F∥∥∥− T

1/2
h λ

1/2
(1)

|

T
1/2
h λ

1/2
(1)

≲Pq
−1/2N−1/2 + T−1/2.

and thus λ̂(1) ≍P qN .

(iv) Let ξ̃(1) ∈ RTh×1 denote the first right singular vector of β(1)F . Lemma 13 yields

∥∥∥∥Pξ̃(1) − T−1
h F ′Pb(1)F

∥∥∥∥ ≲P T−1/2 (1.70)

and σj(β(1)F )/σj(β(1)) = T
1/2
h +OP(1). The latter further leads to

σ1(β(1)F )− σ2(β(1)F ) = T
1/2
h (σ1(β(1))− σ2(β(1))) +OP(σ1(β(1))) ≍p T 1/2σ1(β(1)),

(1.71)
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where we use the assumption that σ2(β(1)) ≤ (1 + δ)−1σ1(β(1)) in the last equation.

Using
∥∥∥X̃(1) − β(1)F

∥∥∥ ≲P q1/2N1/2+T 1/2 as proved in (ii), (1.71), Lemma 2 and Wedin

[1972]’s sin-theta theorem for singular vectors, we have

∥∥∥∥PF̂ ′
(1)

− P
ξ̃(1)

∥∥∥∥ ≲P
q1/2N1/2 + T 1/2

σ1(β(1)F )− σ2(β(1)F )
≲P q−1/2N−1/2 + T−1/2. (1.72)

In light of (1.70) and (1.72), we have the first equation in (iv) holds for k = 1. As P
F̂ ′
(k)

=

ξ̂(k)ξ̂
′
(k)

, left and right multiplying this equation by ξ̂′
(1)

and ξ̂(1), we have

|1− T−1
h (b′(1)F ξ̂(1))

2| ≲P q−1/2N−1/2 + T−1/2,

which leads to |1 − T
−1/2
h b′

(1)
F ξ̂(1)| ≲P q−1/2N−1/2 + T−1/2. Left-multiplying it by b(1)

gives the second equation in (iv).

So far, we have proved that (i)-(iv) hold for k = 1. Now, assuming that (i)-(iv) hold for

j ≤ k − 1, we will show that (i)-(iv) continue to hold for j = k.

(i) Again, we show the difference between the sample covariances and their population

counterparts introduced in the SPCA procedure is tiny. At the kth step, the difference can

be written as∥∥∥∥∥∥β
k−1∏
j=1

Mb(j)
α′ − T−1

h (βF + U)
k−1∏
j=1

M
F̂ ′
(j)
(αF + Z)′

∥∥∥∥∥∥
MAX

≤

∥∥∥∥∥∥β
k−1∏
j=1

Mb(j)
α′ − T−1

h βF

k−1∏
j=1

M
F̂ ′
(j)
F ′α′

∥∥∥∥∥∥
MAX

+ T−1
h

∥∥∥∥∥∥βF
k−1∏
j=1

M
F̂ ′
(j)
Z ′

∥∥∥∥∥∥
MAX

+ T−1
h

∥∥∥∥∥∥U
k−1∏
j=1

M
F̂ ′
(j)
F ′α′

∥∥∥∥∥∥
MAX

+ T−1
h

∥∥∥∥∥∥U
k−1∏
j=1

M
F̂ ′
(j)
Z ′

∥∥∥∥∥∥
MAX

. (1.73)
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Since (iv) holds for j ≤ k − 1, we have

∥∥∥∥∥∥
k−1∑
j=1

P
F̂ ′
(j)

− T−1
h F ′

k−1∑
j=1

Pb(j)F

∥∥∥∥∥∥ =

∥∥∥∥∥∥
k−1∑
j=1

(
P
F̂ ′
(j)

− T−1
h F ′Pb(j)F

)∥∥∥∥∥∥
≲Pq

−1/2N−1/2 + T−1/2. (1.74)

Using Lemma 1 and Lemma 2(i), we have

k−1∏
j=1

Mb(j)
= IK −

k−1∑
j=1

Pb(j) , and
k−1∏
j=1

M
F̂ ′
(j)

= ITh −
k−1∑
j=1

P
F̂ ′
(j)
.

Using the above equations, (1.74), and
∥∥∥T−1

h FF ′ − IK
∥∥∥ ≲P T−1/2, we have

T
−1/2
h

∥∥∥∥∥∥F
k−1∏
j=1

M
F̂ ′
(j)

−
k−1∏
j=1

Mb(j)
F

∥∥∥∥∥∥ =T
−1/2
h

∥∥∥∥∥∥F
k−1∑
j=1

P
F̂ ′
(j)

−
k−1∑
j=1

Pb(j)F

∥∥∥∥∥∥
≲Pq

−1/2N−1/2 + T−1/2. (1.75)

Similarly, right multiplying F ′ to the term inside the ∥·∥ of (1.75), we have

∥∥∥∥∥∥T−1
h F

k−1∏
j=1

M
F̂ ′
(j)
F ′ −

k−1∏
j=1

Mb(j)

∥∥∥∥∥∥ ≲P q−1/2N−1/2 + T−1/2. (1.76)

Next, we analyze the four terms in (1.73) one by one. For the first term, using (1.76) and

Assumption 2, we have

∥∥∥∥∥∥β
k−1∏
j=1

Mb(j)
α′ − T−1

h βF
k−1∏
j=1

M
F̂ ′
(j)
F ′α′

∥∥∥∥∥∥
MAX

≲ ∥β∥MAX

∥∥∥∥∥∥
k−1∏
j=1

Mb(j)
− T−1

h F

k−1∏
j=1

M
F̂ ′
(j)
F ′

∥∥∥∥∥∥ ∥α∥ ≲p q−1/2N−1/2 + T−1/2.

67



For the second term, using (1.75), Assumption 2, we have

T−1
h

∥∥∥∥∥∥βF
k−1∏
j=1

M
F̂ ′
(j)
Z ′

∥∥∥∥∥∥
MAX

≲ T−1
h ∥β∥MAX

∥∥∥∥∥∥
k−1∏
j=1

Mb(j)

∥∥∥∥∥∥∥∥FZ ′∥∥
+ T−1

h ∥β∥MAX

∥∥∥∥∥∥F
k−1∏
j=1

M
F̂ ′
(j)

−
k−1∏
j=1

Mb(j)
F

∥∥∥∥∥∥ ∥Z∥ ≲p q−1/2N−1/2 + T−1/2.

For the third term, using (1.75), we have

T−1
h

∥∥∥∥∥∥U
k−1∏
j=1

M
F̂ ′
(j)
F ′α′

∥∥∥∥∥∥
MAX

≲ T−1
h ∥U∥MAX T

1/2
h

∥∥∥∥∥∥F
k−1∏
j=1

M
F̂ ′
(j)

−
k−1∏
j=1

Mb(j)
F

∥∥∥∥∥∥ ∥α∥
+ T−1

h

∥∥UF ′∥∥
MAX

∥∥∥∥∥∥
k−1∏
j=1

Mb(j)

∥∥∥∥∥∥ ∥α∥ ≲p (logNT )1/2
(
q−1/2N−1/2 + T−1/2

)
.

For the forth term, using (1.74), we have

T−1
h

∥∥∥∥∥∥U
k−1∏
j=1

M
F̂ ′
(j)
Z ′

∥∥∥∥∥∥
MAX

≲T−1
h

∥∥UZ ′∥∥
MAX + T−2

h

∥∥UF ′∥∥
MAX

∥∥∥∥∥∥
k−1∑
j=1

Pb(j)

∥∥∥∥∥∥∥∥FZ ′∥∥
+ T

−1/2
h ∥U∥MAX

∥∥∥∥∥∥T−1
h F ′

k−1∑
j=1

Pb(j)F −
k−1∑
j=1

P
F̂ ′
(j)

∥∥∥∥∥∥ ∥Z∥
≲p(logNT )1/2

(
q−1/2N−1/2 + T−1/2

)
.

Hence, we have

∥∥∥∥∥∥T−1
h X

k−1∏
j=1

M
F̂ ′
(j)
Y ′ − β

k−1∏
j=1

Mb(j)
α′

∥∥∥∥∥∥
MAX

≲P (logNT )1/2
(
q−1/2N−1/2 + T−1/2

)
.

(1.77)

As in the case of k = 1, with the assumption that c−1(logNT )1/2
(
q−1/2N−1/2 + T−1/2

)
→

0, and Assumption 5, we can reuse the arguments for (1.66) and (1.67) in the case of k = 1

68



and obtain P(Îk = Ik) → 1.

(ii) We impose Îk = Ik below. Then, we have X̃(k) = X[Ik]
∏k−1

j=1 MF̂ ′
(j)

and thus

X̃(k) − β(k)F = β[Ik]

F
k−1∏
j=1

M
F̂ ′
(j)

−
k−1∏
j=1

Mb(j)
F

+ U[Ik]

k−1∏
j=1

M
F̂ ′
(j)
.

Hence, using Assumption 2 and (1.75), we have

∥∥∥X̃(k) − β(k)F
∥∥∥ ≤

∥∥∥β[Ik]∥∥∥
∥∥∥∥∥∥F

k−1∏
j=1

M
F̂ ′
(j)

−
k−1∏
j=1

Mb(j)
F

∥∥∥∥∥∥+
∥∥∥U[Ik]

∥∥∥
∥∥∥∥∥∥
k−1∏
j=1

M
F̂ ′
(j)

∥∥∥∥∥∥
≲Pq

1/2N1/2 + T 1/2.

(iii)(iv) The proofs of (iii) and (iv) are analogous to the case k = 1.

To sum up, by induction, we have shown that (i)-(iv) hold for k ≤ K̃.

(v) Recall that K̃ is determined by β[i]
∏

j<k Mb(j)
α′ whereas K̂ is determined by

T−1
h X[i]

∏
j<k

M
F̂ ′
(j)
Y ′

. Since (iv) holds for j ≤ K̃ as shown above, using the same proof for (1.77), we have

∥∥∥∥∥∥T−1
h X

K̃∏
j=1

M
F̂ ′
(j)
Y ′ − β

K̃∏
j=1

Mb(j)
α′

∥∥∥∥∥∥
MAX

≲P (logNT )1/2
(
q−1/2N−1/2 + T−1/2

)
.

(1.78)

The assumption c
(K̃+1)
qN ≤ (1+δ)−1c in Assumption 5 implies that c− c

(K̃+1)
qN ≍ c. Together

with c−1(logNT )1/2
(
q−1/2N−1/2 + T−1/2

)
→ 0, we can reuse the arguments for (1.66)
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and (1.67) with events

B1 =


∥∥∥∥∥∥T−1

h X[i]

K̃∏
j=1

M
F̂ ′
(j)
Y ′

∥∥∥∥∥∥
MAX

> (c+ c
(K̃+1)
qN )/2 for at most qN − 1 is in [N ]

 ,

B2 =


∥∥∥∥∥∥T−1

h X[i]

K̃∏
j=1

M
F̂ ′
(j)
Y ′ − β[i]

K̃∏
j=1

Mb(j)
α′

∥∥∥∥∥∥
MAX

≥ (c− c
(K̃+1)
qN )/2 for some i ∈ [N ]

 ,

to obtain P(K̂ = K̃) ≥ P(B1) = 1− P(Bc
1) ≥ 1− P(B2) → 1.

(vi) This result comes directly from (1.77) and (1.78).

Lemma 4. Under assumptions of Theorem 1, for k ≤ K̃, we have

(i)
∥∥∥U ′

[Ik]
ς̂(k)

∥∥∥ ≲P T 1/2 + T−1/2q1/2N1/2.

(ii)
∥∥∥FU ′

[Ik]
ς̂(k)

∥∥∥ ≲P q1/2N1/2 + T 1/2,
∥∥∥ZU ′

[Ik]
ς̂(k)

∥∥∥ ≲P q1/2N1/2 + T 1/2.

(iii) |ς̂ ′
(k)

(uT )[Ik]| ≲P 1 + T−1/2q1/2N1/2.

Proof. (i) Using Lemma 1, we have

T
1/2
h λ̂

1/2
(k)

ς̂(k) = X[Ik]

k−1∏
j=1

M
ξ̂(j)

ξ̂(k) = X[Ik]
ξ̂(k) = β[Ik]F ξ̂(k) + U[Ik]

ξ̂(k). (1.79)

Therefore, along with Assumption 1, Assumption 3 and Assumption 4(ii), we obtain

T
1/2
h λ̂

1/2
(k)

∥∥∥ς̂ ′(k)U[Ik]

∥∥∥ ≤
∥∥∥ξ̂′(k)F ′β′[Ik]U[Ik]

∥∥∥+ ∥∥∥ξ̂′(k)U ′
[Ik]

U[Ik]

∥∥∥
≤ ∥F∥

∥∥∥β′[Ik]U[Ik]

∥∥∥+ ∥∥∥U ′
[Ik]

U[Ik]

∥∥∥ ≲P q1/2N1/2T + qN. (1.80)

Together with λ̂(k) ≍P qN , we have the desired result.
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(ii) Similarly, by Assumption 1, Assumption 3 and Assumption 4(i)(ii), we have

T 1/2λ̂
1/2
(k)

∥∥∥ς̂ ′(k)U[Ik]
F ′
∥∥∥ ≤

∥∥∥ξ̂′(k)F ′β′[Ik]U[Ik]
F ′
∥∥∥+ ∥∥∥ξ̂′(k)U ′

[Ik]
U[Ik]

F ′
∥∥∥

≤∥F∥
∥∥∥β′[Ik]U[Ik]

F ′
∥∥∥+ ∥∥∥U[Ik]

∥∥∥∥∥∥U[Ik]
F ′
∥∥∥ ≲P q1/2N1/2T + qNT 1/2. (1.81)

Together with λ̂(k) ≍P qN , we have the desired result. In addition, replacing F by Z and

W , we have the second and third equations in (ii).

(iii) By Assumption 1, Assumption 3 and Assumption 4(iii), we have

T
1/2
h λ̂

1/2
(k)

|ς̂ ′(k)(uT )[Ik]| ≤ |ξ̂′(k)F
′β′[Ik](uT )[Ik]|+ |ξ̂′(k)U

′
[Ik]

(uT )[Ik]|

≤ ∥F∥
∥∥∥β′[Ik](uT )[Ik]∥∥∥+ ∥∥∥U[Ik]

∥∥∥∥∥∥(uT )[Ik]∥∥∥ ≲P q1/2N1/2T 1/2 + qN.

Together with λ̂(k) ≍P qN , we have the desired result.

Lemma 5. Under assumptions of Theorem 1, for k, l ≤ K̃, we have

(i)

∥∥∥∥∥ Ũ ′
(k)ς̂(k)√
Thλ̂(k)

∥∥∥∥∥ ≲P q−1/2N−1/2 + T−1,

∥∥∥∥∥ Ũ(k)√
Thλ̂(k)

∥∥∥∥∥ ≲P q−1/2N−1/2 + T−1/2.

(ii)

∥∥∥∥∥AŨ ′
(k)ς̂(k)

Th

√
λ̂(k)

∥∥∥∥∥ ≲P q−1N−1 + T−1, for A = F,Z, and W .

(iii) |
ξ̂′(l)U

′
[Ik ]

ς̂(k)√
Thλ̂(k)

| ≲P q−1N−1 + T−1, |
ξ̂′(l)Ũ

′
(k)ς̂(k)√

Thλ̂(k)

| ≲P q−1N−1 + T−1.

(iv) |ς̂ ′
(k)

D̃(k)uT | ≲P 1 + T−1/2q1/2N1/2, |ς ′
(k)

D(k)uT | ≲P 1.

Proof. (i) Recall that from the definition of U(k) (below (1.16)), we have

Ũ(k) = U[Ik]
−

k−1∑
i=1

X[Ik]
ξ̂(i)√
Th

ς̂ ′
(i)
Ũ(i)√
λ̂(i)

. (1.82)
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Then, a direct multiplication of ς̂ ′
(k)

/
√
Thλ̂(k) from the left side of (1.82) leads to

ς̂ ′
(k)

Ũ(k)√
Thλ̂(k)

=
ς̂ ′
(k)

U[Ik]√
Thλ̂(k)

−
k−1∑
i=1

ς̂ ′
(k)

X[Ik]
ξ̂(i)√

Thλ̂(k)

ς̂ ′
(i)
Ũ(i)√

Thλ̂(i)

.

Consequently, using
∥∥∥X[Ik]

∥∥∥ ≤
∥∥∥β[Ik]∥∥∥ ∥F∥ +

∥∥∥U[Ik]

∥∥∥ ≲P q1/2N1/2T 1/2, λ̂(k) ≍P qN and

Lemma 4(i) we have

∥∥∥∥∥∥
ς̂ ′
(k)

Ũ(k)√
Thλ̂(k)

∥∥∥∥∥∥ ≤

∥∥∥∥∥∥
ς̂ ′
(k)

U[Ik]√
Thλ̂(k)

∥∥∥∥∥∥+
k−1∑
i=1

∥∥∥∥∥∥ X[Ik]√
Thλ̂(k)

∥∥∥∥∥∥
∥∥∥∥∥∥
ς̂ ′
(i)
Ũ(i)√

Thλ̂(i)

∥∥∥∥∥∥
≲Pq

−1/2N−1/2 + T−1 +
k−1∑
i=1

∥∥∥∥∥∥
ς̂ ′
(i)
Ũ(i)√

Thλ̂(i)

∥∥∥∥∥∥ . (1.83)

If
∥∥∥T−1/2

h λ̂
−1/2
(i)

ς̂ ′
(i)
Ũ(i)

∥∥∥ ≲P q−1/2N−1/2+ T−1 holds for i ≤ k− 1, then (1.83) implies that

this inequality also holds for k. In addition, when k = 1, Ũ(1) = U[I1]
and this equation is

implied from Lemma 4(i). Therefore, we have (i) holds for k ≤ K̃ by induction.

Using (1.82) again, with Assumption 3, we have

∥∥∥∥∥∥ Ũ(k)√
Thλ̂(k)

∥∥∥∥∥∥ ≤

∥∥∥∥∥∥ U[Ik]√
Thλ̂(k)

∥∥∥∥∥∥+
k−1∑
i=1

∥∥∥∥∥∥ X[Ik]√
Thλ̂(k)

∥∥∥∥∥∥
∥∥∥∥∥∥ Ũ(i)√

Thλ̂(i)

∥∥∥∥∥∥
≲Pq

−1/2N−1/2 + T−1/2 +
k−1∑
i=1

∥∥∥∥∥∥ Ũ(i)√
Thλ̂(i)

∥∥∥∥∥∥ . (1.84)

When k = 1, Assumption 3 implies
∥∥∥T−1/2

h λ̂
−1/2
(k)

Ũ(k)

∥∥∥ ≲P q−1/2N−1/2 + T−1/2. Then,

using the same induction argument with (1.84), we have this inequality holds for k ≤ K̃.
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(ii) Similarly, by simple multiplication of F ′ from the right side of (1.82), we have

ς̂ ′
(k)

Ũ(k)F
′

Th

√
λ̂(k)

=
ς̂ ′
(k)

U[Ik]
F ′

Th

√
λ̂(k)

−
k−1∑
i=1

ς̂ ′
(k)

X[Ik]
ξ̂(i)√

Thλ̂(k)

ς̂ ′
(i)
Ũ(i)F

′

Th

√
λ̂(i)

.

Consequently, we have

∥∥∥∥∥∥
ς̂ ′
(k)

Ũ(k)F
′

Th

√
λ̂(k)

∥∥∥∥∥∥ ≤

∥∥∥∥∥∥
ς̂ ′
(k)

U[Ik]
F ′

Th

√
λ̂(k)

∥∥∥∥∥∥+
k−1∑
i=1

∥∥∥∥∥∥ X[Ik]√
Thλ̂(k)

∥∥∥∥∥∥
∥∥∥∥∥∥
ς̂ ′
(i)
Ũ(i)F

′

Th

√
λ̂(i)

∥∥∥∥∥∥
≲P q−1N−1 + T−1 +

k−1∑
i=1

∥∥∥∥∥∥
ς̂ ′
(i)
Ũ(i)F

′√
Thλ̂(i)

∥∥∥∥∥∥ . (1.85)

When k = 1,
∥∥∥T−1

h λ̂
−1/2
(k)

ς̂ ′
(k)

Ũ(k)F
′
∥∥∥ ≲P q−1N−1+ T−1 is a result of Lemma 4(ii). Then, a

direct induction argument using (1.85) leads to this inequality for k ≤ K̃.

Replacing F by Z in the above proof, and using Lemma 4(ii), we have:

∥∥∥∥∥∥
ZŨ ′

(k)
ς̂(k)

T
√

λ̂(k)

∥∥∥∥∥∥ ≲P q−1N−1 + T−1.

(iii) Recall that X̃(k) = β̃(k)F + Ũ(k) as defined in (1.14), we have

|ς̂ ′(l)X̃(l)U
′
[Ik]

ς̂(k)| ≤
∥∥∥ς̂ ′(l)β̃(l)∥∥∥∥∥∥FU ′

[Ik]
ς̂(k)

∥∥∥+ ∥∥∥ς̂ ′(l)Ũ(l)

∥∥∥∥∥∥U ′
[Ik]

ς̂(k)

∥∥∥ .
Along with (1.12), we have

|
ξ̂′
(l)
U ′
[Ik]

ς̂(k)√
Thλ̂(k)

| ≤

∥∥∥∥∥∥
ς̂ ′
(l)
β̃(l)√
λ̂(l)

∥∥∥∥∥∥
∥∥∥∥∥∥
FU ′

[Ik]
ς̂(k)

Th

√
λ̂(k)

∥∥∥∥∥∥+
∥∥∥∥∥∥
U ′
[Ik]

ς̂(k)√
Thλ̂(k)

∥∥∥∥∥∥
∥∥∥∥∥∥

Ũ ′
(l)
ς̂(l)√

Thλ̂(l)

∥∥∥∥∥∥ . (1.86)

Using
∥∥∥λ̂−1/2

(k)
ς̂ ′
(k)

β̃(k)

∥∥∥ ≲P 1 from Lemma 10, results of (i)(ii) and Lemma 4(i) completes the
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proof. Replacing U[Ik]
by Ũ(k) above and using the inequality that

|ς̂ ′(l)X̃(l)Ũ
′
(k)ς̂(k)| ≤

∥∥∥ς̂ ′(l)β̃(l)∥∥∥∥∥∥FŨ ′
(k)ς̂(k)

∥∥∥+ ∥∥∥ς̂ ′(l)Ũ(l)

∥∥∥∥∥∥Ũ ′
(k)ς̂(k)

∥∥∥
and (1.12), we obtain the second equation in (iii).

(iv) Similar to (ii), by induction, we have

|ς̂ ′(k)D̃(k)uT | ≤ |ς̂(k)(uT )[Ik]|+
k−1∑
i=1

∥∥∥∥∥∥ X[Ik]√
Thλ̂(i)

∥∥∥∥∥∥ |ς̂ ′(i)D̃(i)uT | ≲P 1 + T−1/2q1/2N1/2.

For the second inequality, from Lemma 2, we have b′
(i)
b(j) = 0 when i ̸= j. Thus, by def-

inition, we have ς(k) = λ
−1/2
(k)

β(k)b(k) = λ
−1/2
(k)

β[Ik]b(k). Using
∥∥∥β′[Ik](uT )[Ik]∥∥∥ ≲P q1/2N1/2

from Assumption 4(iii), λ(k) ≍ qN from Lemma 2 and the definition of D(k), we have

|ς ′(k)D(k)uT | ≤ |ς ′(k)(uT )[Ik]|+
∑
i<k

λ
−1/2
(i)

∥∥∥β[Ik]∥∥∥∥∥∥b(i)∥∥∥ |ς ′(i)D(i)uT |

≤λ
−1/2
(k)

∥∥∥b(k)∥∥∥∥∥∥β′[Ik](uT )[Ik]∥∥∥+∑
i<k

λ
−1/2
(i)

∥∥∥β[Ik]∥∥∥ |ς ′(i)D(i)uT | ≲P 1 +
∑
i<k

|ς ′(i)D(i)uT |.

As |ς ′
(1)

D(1)uT | ≤ λ
−1/2
(1)

∥∥∥b(1)∥∥∥∥∥∥β[I1](uT )[I1]∥∥∥ ≲P 1, |ς ′
(k)

D(k)uT | ≲P 1 holds by induction.

Lemma 6. Under assumptions of Theorem 1, for k ≤ K̃, we have

(i)
∥∥∥ξ̂(k) − T

−1/2
h F ′bk2

∥∥∥ ≲P T−1 + q−1/2N−1/2.

(ii)
∥∥∥T−1/2

h Zξ̂(k) − T−1
h ZF ′bk2

∥∥∥ ≲P T−1 + q−1N−1.

Proof. (i) By the definitions of bk2 and ξ̂(k), X̃(k) = β̃(k)F + Ũ(k), we have

ξ̂(k) − T
−1/2
h F ′bk2 =

Ũ ′
(k)

ς̂(k)√
T λ̂(k)

. (1.87)
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Then, Lemma 5(i) leads to (i) directly. (ii) Similarly, Lemma 5(ii) yields (ii).

Lemma 7. Under assumptions of Theorem 1, for k, j ≤ K̃, we have

(i)
∥∥∥β′[Ik]U[Ik]

ξ̂(j)

∥∥∥ ≲P q1/2N1/2 + T 1/2.

(ii)
∥∥∥β′[Ik]Ũ(k)ξ̂(j)

∥∥∥ ≲P q1/2N1/2 + T 1/2.

(iii)
∥∥∥(uT )′[Ik]U[Ik]

ξ̂(j)

∥∥∥ ≲P T−1/2qN + T 1/2.

(iv)
∥∥∥(uT )′[Ik]Ũ(k)ξ̂(j)

∥∥∥ ≲P T−1/2qN + T 1/2.

Proof. (i) With Lemma 6 and Assumption 4, we have
∥∥∥β′[Ik]U[Ik]

ξ̂(j)

∥∥∥ ≤ T
−1/2
h∥∥∥β′[Ik]U[Ik]

F ′bj2
∥∥∥+ ∥∥∥β′[Ik]U[Ik]

∥∥∥∥∥∥T−1/2
h F ′bj2 − ξ̂(j)

∥∥∥ ≲P q1/2N1/2 + T 1/2. (ii) Assumptions

1, 2 and 3 imply that
∥∥∥X[Ik]

∥∥∥ ≤
∥∥∥β[Ik]∥∥∥ ∥F∥+

∥∥∥U[Ik]

∥∥∥ ≲P q1/2N1/2T 1/2. Together with (i)

and Lemma 5(iii), we have

∥∥∥β′[Ik]Ũ(k)ξ̂(j)

∥∥∥ ≤
∥∥∥β′[Ik]U[Ik]

ξ̂(j)

∥∥∥+ k−1∑
i=1

∥∥∥β[Ik]∥∥∥
∥∥∥∥∥∥X[Ik]

ξ̂(i)√
Thλ̂(i)

∥∥∥∥∥∥
∥∥∥ς̂ ′(i)Ũ(i)ξ̂(j)

∥∥∥
≲Pq

1/2N1/2 + T 1/2.

(iii) With Lemma 6 and Assumption 4, we have

∥∥∥(uT )′[Ik]U[Ik]
ξ̂(j)

∥∥∥ ≤T
−1/2
h

∥∥∥(uT )′[Ik]U[Ik]
F ′bj2

∥∥∥+ ∥∥∥(uT )′[Ik]U[Ik]

∥∥∥∥∥∥T−1/2
h F ′bj2 − ξ̂(j)

∥∥∥
≲PT

−1/2qN + T 1/2.

(iv) Similar to (ii), with Lemma 5,
∥∥∥X[Ik]

∥∥∥ ≲P q1/2N1/2T 1/2, and (iii), we have∥∥∥(uT )′[Ik]Ũ(k)ξ̂(j)

∥∥∥ ≲P T−1/2qN + T 1/2.

Lemma 8. Under assumptions of Theorem 1, for k ≤ K̃, we have

(i)
∥∥∥ς̂(k) − ς(k)

∥∥∥ ≲P T−1/2 + q−1/2N−1/2.
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(ii) q−1/2N−1/2
∥∥∥ς̂ ′(k)β[Ik] − ς ′

(k)
β[Ik]

∥∥∥ ≲P T−1/2 + q−1/2N−1/2.

(iii) |ς̂ ′
(k)

(uT )[Ik] − ς ′
(k)

(uT )[Ik]| ≲P T−1q1/2N1/2 + q−1/2N−1/2.

(iv)
∥∥∥ς̂ ′(k)D̃(k) − ς ′

(k)
D(k)

∥∥∥ ≲P T−1/2 + q−1/2N−1/2.

(v) q−1/2N−1/2
∥∥∥ς̂ ′(k)D̃(k)β − ς ′

(k)
D(k)β

∥∥∥ ≲P T−1/2 + q−1/2N−1/2.

(vi) |ς̂ ′
(k)

D̃(k)uT − ς ′
(k)

D(k)uT | ≲P T−1q1/2N1/2 + q−1/2N−1/2.

Proof. We prove (i) - (vi) by induction. Consider the k = 1 case. The definitions of ς̂(k) in

(1.12) and ς(k) in Section 1.3.1 lead to

ς̂(k) − ς(k) = T
−1/2
h λ̂

−1/2
(k)

(D̃(k)βF ξ̂(k) + D̃(k)Uξ̂(k))− λ
−1/2
(k)

D(k)βb(k), (1.88)

when k = 1, as D̃(1) = D(1) = (IN )[I1], (1.88) becomes

ς̂(1) − ς(1) = (T
−1/2
h λ̂

−1/2
(1)

β(1)F ξ̂(1) − λ
−1/2
(1)

β(1)b(1)) + T
−1/2
h λ̂

−1/2
(1)

U[I1]
ξ̂(1). (1.89)

As Lemma 3(iii) and (iv) imply that

∥∥∥T−1/2
h λ̂

−1/2
(1)

F ξ̂(1) − λ
−1/2
(1)

b(1)

∥∥∥ ≲P q−1N−1 + T−1/2q−1/2N−1/2

and
∥∥∥β(1)∥∥∥ ≲ q1/2N1/2, to prove (i) it is sufficient to show that T−1/2

h q−1/2N−1/2
∥∥∥U[I1]

∥∥∥ ≲P

T−1/2 + q−1/2N−1/2, which is given by Assumption 3.

(ii) As
∥∥∥β(1)∥∥∥ ≲ q1/2N1/2, (ii) is implied by (i).

(iii) Left-multiplying (1.89) by (uT )
′
[I1]

, as
∥∥∥(uT )′[I1]β[I1]∥∥∥ ≲P q1/2N1/2, to prove (iii)

when k = 1, it is sufficient to show that

T
−1/2
h q−1/2N−1/2

∥∥∥(uT )′[I1]U[I1]
ξ̂(1)

∥∥∥ ≲P T−1q1/2N1/2 + q−1/2N−1/2,
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which is implied by Lemma 7.

(iv)-(vi) are equivalent to (i)-(iii) when k = 1 as D̃(1) = D(1) = (IN )[I1].

Then, we assume that (i) - (vi) hold for i < k and prove (i) - (vi) also hold for k.

(i) Similar to the k = 1 case, using (1.88) and Lemma 3(iii)(iv), it is sufficient to show

that T−1/2
h q−1/2N−1/2

∥∥∥Ũ(k)

∥∥∥ ≲P T−1/2+q−1/2N−1/2 and q−1/2N−1/2
∥∥∥(D̃(k) −D(k))β

∥∥∥
≲P q−1/2N−1/2+T−1/2. The first inequality is the same as the k = 1 case, which is implied

by Lemma 5. As to the second inequality, write

(D̃(k) −D(k))β =
∑
i<k

β[Ik]b(i)√
λ(i)

ς ′(i)D(i)β −
X[Ik]

ξ̂(i)√
Thλ̂(i)

ς̂ ′(i)D̃(i)β

 .

As (v) holds for i < k, it is sufficient to show that

∥∥∥∥∥∥β[Ik]b(i)√
λ(i)

−
X[Ik]

ξ̂(i)√
Thλ̂(i)

∥∥∥∥∥∥ ≲P T−1/2 + q−1/2N−1/2. (1.90)

Plugging X[Ik]
= β[Ik]F +U[Ik]

into (1.90) and using Lemma 3(iii)(iv) again, we only need to

show that T−1/2
h q−1/2N−1/2

∥∥∥U[Ik]
ξ̂(i)

∥∥∥ ≲P q−1/2N−1/2 + T−1/2, which holds by Assump-

tion 3 and
∥∥∥ξ̂(i)∥∥∥ = 1.

(ii) It is implied by (i) as
∥∥∥β[Ik]∥∥∥ ≲ q1/2N1/2.

(iii) By (1.88), we have

(uT )
′
[Ik]

ς̂(k) − (uT )
′
[Ik]

ς(k) =(uT )
′
[Ik]

(T
−1/2
h λ̂

−1/2
(k)

D̃(k)βF ξ̂(k) − λ
−1/2
(k)

D(k)β(k)b(k))

+ T
−1/2
h λ̂

−1/2
(k)

(uT )
′
[Ik]

Ũ(k)ξ̂(k).

As in the k = 1 case, for the second term, we have T
−1/2
h q−1/2N−1/2

∥∥∥(uT )′[Ik]Ũ(k)ξ̂(k)

∥∥∥ ≲P

T−1q1/2N1/2 + q−1/2N−1/2, as is given by Lemma 7(iv). For the first term, similar to the

proof of (i), using Lemma 3(iii)(iv), it is sufficient to show that

77



q−1/2N−1/2
∥∥∥(uT )′[Ik](D̃(k) −D(k))β

∥∥∥ ≲P T−1q1/2N1/2 + q−1/2N−1/2. Write

(uT )
′
[Ik]

(D̃(k) −D(k))β

=
∑
i<k

(uT )
′
[Ik]

β[Ik]b(i)√
λ(i)

ς ′(i)D(i)β −
(uT )

′
[Ik]

(β[Ik]F + U[Ik]
)ξ̂(i)√

Thλ̂(i)

ς̂ ′(i)D̃(i)β

 .

As (v) holds for i < k, we only need to show that

∥∥∥∥∥∥
(uT )

′
[Ik]

β[Ik]b(i)√
λ(i)

−
(uT )

′
[Ik]

(β[Ik]F + U[Ik]
)ξ̂(i)√

Thλ̂(i)

∥∥∥∥∥∥ ≲P T−1q1/2N1/2 + q−1/2N−1/2. (1.91)

Using Lemma 3(iii)(iv) again, it is sufficient to show

T
−1/2
h q−1/2N−1/2

∥∥∥(uT )′[Ik]U[Ik]
ξ̂(i)

∥∥∥ ≲P T−1q1/2N1/2 + q−1/2N−1/2,

which holds by Lemma 7(iii).

(iv) By simple algebra, we have

ς̂ ′(k)D̃(k) − ς ′(k)D(k)

=(ς̂ ′(k) − ς ′(k))(IN )[Ik] +
∑
i<k

ς ′
(k)

β[Ik]b(i)√
λ(i)

ς ′(i)D(i) −
ς̂ ′
(k)

X[Ik]
ξ̂(i)√

Thλ̂(i)

ς̂ ′(i)D̃(i)

 .

Using the fact that (i) holds for k, (iii) holds for i < k and (1.90), the proof is completed.

(v) Similarly, we have

ς̂ ′(k)D̃(k)β − ς ′(k)D(k)β

=(ς̂ ′(k)β[Ik] − ς ′(k)β[Ik]) +
∑
i<k

ς ′
(k)

β[Ik]b(i)√
λ(i)

ς ′(i)D(i)β −
ς̂ ′
(k)

X[Ik]
ξ̂(i)√

Thλ̂(i)

ς̂ ′(i)D̃(i)β
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Using the fact that (i) holds for k, (v) holds for i < k and (1.90), the proof is completed.

(vi) Replace q−1/2N−1/2β by uT in the proof of (v), we obtain (vi).

Lemma 9. Under assumptions of Theorem 1, for k ≤ K̃ + 1, we have

(i)
∥∥∥Z̃(k)F

′
∥∥∥ ≲P T 1/2 + Tq−1N−1.

(ii)
∥∥∥Z̃(k)U

′
[I0]

∥∥∥ ≲P N
1/2
0 T 1/2 + Tq−1/2N−1/2.

Proof. (i) From the definition (1.18) of Z̃(k), we have

Z̃(k)F
′ = ZF ′ −

k−1∑
i=1

Y ξ̂(i)

ς̂ ′
(i)
Ũ(i)F

′√
Thλ̂(i)

.

Then along with Lemma 5(ii), we have

∥∥∥Z̃(k)F
′
∥∥∥ ≤

∥∥ZF ′∥∥+ k−1∑
i=1

∥∥∥Y ξ̂(i)

∥∥∥
∥∥∥∥∥∥
ς̂ ′
(i)
Ũ(i)F

′√
Thλ̂(i)

∥∥∥∥∥∥ ≲P T 1/2 + Tq−1N−1.

(ii) With (1.18) again, we have

Z̃(k)U
′
[I0]

= ZU ′
[I0]

−
k−1∑
i=1

Y ξ̂(i)

ς̂ ′
(i)
Ũ(i)U

′
[I0]√

Thλ̂(i)

,

which, along with Lemma 5(i) and the assumptions on q, lead to

∥∥∥Z̃(k)U
′
[I0]

∥∥∥ ≤
∥∥∥ZU ′

[I0]

∥∥∥+ k−1∑
i=1

∥∥∥Y ξ̂(i)

∥∥∥
∥∥∥∥∥∥
ς̂ ′
(i)
Ũ(i)√

Thλ̂(i)

∥∥∥∥∥∥
∥∥∥U[I0]

∥∥∥
≲P N

1/2
0 T 1/2 +

(
q−1/2N−1/2 + T−1

)(
N

1/2
0 T 1/2 + T

)
≲P N

1/2
0 T 1/2 + Tq−1/2N−1/2.

79



Lemma 10. Under assumptions of Theorem 1, B1, B2 defined by (1.31) satisfy

(i) ∥B1∥ ≲P 1, ∥B2∥ ≲P 1.

(ii)
∥∥∥B′

1B2 − I
K̃

∥∥∥ ≲P T−1 + q−1N−1.

(iii) ∥B1 −B2∥ ≲P T−1/2 + q−1N−1, ∥B1 −B∥ ≲P T−1/2 + q−1/2N−1/2.

(iv)
∥∥B2B

′
2 − IK

∥∥ ≲P T−1/2 + q−1N−1 when K̃ = K.

(v)
∥∥B1B

′
2 − IK

∥∥ ≲P T−1 + q−1N−1, when K̃ = K.

Proof. (i) Using the definition (1.31) of B1 and Assumption 1, we have

∥bk1∥ =

∥∥∥∥∥F ξ̂(k)√
Th

∥∥∥∥∥ ≲P 1,

which leads to ∥B1∥ ≲P 1. Using the definition (1.31) of B2, we have

∥bk2∥ =

∥∥∥∥∥∥
β̃′
(k)

ς̂(k)√
λ̂(k)

∥∥∥∥∥∥ ≤ q−1/2N−1/2
∥∥∥β̃(k)∥∥∥ . (1.92)

Note that

∥∥∥β̃(k)∥∥∥ ≤
∥∥∥β[Ik]∥∥∥+ k−1∑

i=1

∥∥∥∥∥∥X[Ik]
ξ̂(i)√

Thλ̂(i)

∥∥∥∥∥∥
∥∥∥ς̂ ′(i)β̃(i)∥∥∥ ≲P q1/2N1/2 +

k−1∑
i=1

∥∥∥β̃(i)∥∥∥ (1.93)

and
∥∥∥β̃(1)∥∥∥ =

∥∥∥β̃[I1]∥∥∥ ≲ q1/2N1/2, we have
∥∥∥β̃(k)∥∥∥ ≲ q1/2N1/2 by induction. Together with

(1.92), we have ∥bk2∥ ≲P 1 and thus ∥B2∥ ≲P 1.

(ii) By (1.12) and Lemma 1, we have

δlk = ξ̂′(l)ξ̂(k) =
ξ̂′
(l)
F ′β̃′

(k)
ς̂(k)√

Thλ̂(k)

+
ξ̂′
(l)
Ũ ′
(k)

ς̂(k)√
Thλ̂(k)

= b′l1bk2 +
ξ̂′
(l)
Ũ ′
(k)

ς̂(k)√
Thλ̂(k)

.
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By Lemma 5(iii), we have |b′l1bk2 − δlk| ≲P q−1N−1 + T−1, and thus
∥∥∥B′

1B2 − I
K̃

∥∥∥ ≲P

q−1N−1 + T−1.

(iii) Using (1.12) and X̃(k) = β̃(k)F + Ũ(k), we have

F ξ̂(k) =
FF ′β̃′

(k)√
Thλ̂(k)

ς̂(k) +
FŨ ′

(k)
ς̂(k)√

Thλ̂(k)

.

By the definitions of bk1 and bk2, it becomes

bk1 =
FF ′

Th
bk2 +

FŨ ′
(k)

ς̂(k)

Th

√
λ̂(k)

. (1.94)

With ∥B2∥ ≲P 1, Assumption 1 and Lemma 5(ii), (1.94) leads to

bk1 − bk2 ≲P T−1/2 + q−1N−1.

This completes the proof. The second inequality of (iii) comes from Lemma 3(iv) directly.

(iv) When K̃ = K, B′
2B2 is a K ×K matrix. By (i), (ii) and (iii), we have

∥∥B′
2B2 − IK

∥∥ ≤
∥∥B′

1B2 − IK
∥∥+ ∥B1 −B2∥ ∥B2∥ ≲P T−1/2 + q−1N−1.

Since B2 is a K ×K matrix, we have

∥∥B2B
′
2 − IK

∥∥ = max
1≤i≤K

|λi(B′
2B2)− 1| =

∥∥B′
2B2 − IK

∥∥ ≲P T−1/2 + q−1N−1.

(v) With respect to B1B
′
2, we have

σK(B2)
∥∥B2B

′
1 − IK

∥∥ ≤
∥∥(B2B

′
1 − IK)B2

∥∥ =
∥∥B2(B

′
1B2 − IK)

∥∥ ≤ σ1(B2)
∥∥B′

1B2 − IK
∥∥ .

(1.95)
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Since (iv) implies that σ1(B2)/σK(B2) ≲P 1 when K̃ = K, (ii) and (1.95) yield

∥∥B1B
′
2 − IK

∥∥ =
∥∥B2B

′
1 − IK

∥∥ ≤ σ1(B2)

σK(B2)

∥∥B′
1B2 − IK

∥∥ ≲P T−1 + q−1N−1. (1.96)

Lemma 11. Under Assumptions 1-5, we have

(i)
∥∥∥T 1/2

h ξ̂(k) − b′k2F
∥∥∥
MAX

≲P q−1/2N−1/2(log T )1/2 + T−1/2 + q−1N−1T 1/2.

(ii)
∥∥∥λ̂1/2(k)

β̂(k) − βbk1

∥∥∥
MAX

≲P T−1/2(logN)1/2.

(iii)
∥∥∥Û − U

∥∥∥
MAX

≲P q−1/2N−1/2(log T )1/2 + T−1/2(logNT )1/2 + q−1N−1T 1/2.

(iv) maxi≤N T
−1/2
h

∥∥∥Û[i] − U[i]

∥∥∥ ≲P T−1/2(logN)1/2 + q−1/2N−1/2.

Proof. (i) Recall that by (1.87), (1.12), and (1.14), we have T 1/2
h ξ̂(k)−b′k2F = λ̂

−1/2
(k)

ς̂ ′
(k)

Ũ(k),

and ς̂(k) = T−1/2λ̂
−1/2
(k)

X̃(k)ξ̂(k) = T−1/2λ̂
−1/2
(k)

X[Ik]
ξ̂(k). Therefore, we have

∥∥∥T 1/2
h ξ̂(k) − b′k2F

∥∥∥
MAX

≲P q−1N−1T−1/2
(∥∥∥ξ̂′(k)F ′β′[Ik]Ũ(k)

∥∥∥
MAX

+
∥∥∥ξ̂′(k)U ′

[Ik]
Ũ(k)

∥∥∥
MAX

)
.

(1.97)

When k = 1, Ũ(1) = U[I1]
, with

∥∥∥β′[I1]Ũ(1)

∥∥∥
MAX

≲P q1/2N1/2(log T )1/2 from Assumption 4

and
∥∥∥U[I1]

∥∥∥ ≲P q1/2N1/2 + T 1/2 from Assumption 3, we have

∥∥∥T 1/2
h ξ̂(1) − b′12F

∥∥∥
MAX

≲P q−1N−1
∥∥∥β′[I1]U[I1]

∥∥∥
MAX

+ q−1N−1T−1/2
∥∥∥U ′

[I1]
U[I1]

∥∥∥
≲P q−1/2N−1/2(log T )1/2 + T−1/2 + q−1N−1T 1/2.

Now suppose that this property holds for i < k, then for the first term in (1.97), we have

∥∥∥β′[Ik]Ũ(k)

∥∥∥
MAX

≲
∥∥∥β′[Ik]U[Ik]

∥∥∥
MAX

+
∑
i<k

∥∥∥β[Ik]∥∥∥∥∥∥T−1/2
h λ̂

−1/2
(i)

X[Ik]
ξ̂(i)

∥∥∥∥∥∥ς̂ ′(i)Ũ(i)

∥∥∥
MAX

.
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The assumption that (i) holds for i < k implies that

∥∥∥ς̂ ′(i)Ũ(i)

∥∥∥
MAX

≲P (log T )1/2 + q1/2N1/2T−1/2 + q−1/2N−1/2.

With
∥∥∥β[Ik]∥∥∥ ≲ q1/2N1/2 and

∥∥∥X[Ik]

∥∥∥ ≤
∥∥∥β[Ik]∥∥∥ ∥F∥ +

∥∥∥U[Ik]

∥∥∥ ≲P q1/2N1/2T 1/2 and As-

sumption 4(ii), we have the first term in (1.97) satisfies

q−1N−1T−1/2
∥∥∥ξ̂′(k)F ′β′[Ik]Ũ(k)

∥∥∥
MAX

≲ q−1N−1T−1/2
∥∥∥ξ̂′(k)F ′

∥∥∥∥∥∥β′[Ik]Ũ(k)

∥∥∥
MAX

≲P q−1N−1
∥∥∥β′[Ik]U[Ik]

∥∥∥
MAX

+
∑
i<k

q−1/2N−1/2
∥∥∥ς̂ ′(i)Ũ(i)

∥∥∥
MAX

≲P q−1/2N−1/2(log T )1/2 + T−1/2 + q−1N−1T 1/2.

For the second term in (1.97), we have

∥∥∥ξ̂′(k)U ′
[Ik]

Ũ(k)

∥∥∥
MAX

≤
∥∥∥ξ̂′(k)U ′

[Ik]
Ũ(k)

∥∥∥ ≤
∥∥∥U[Ik]

∥∥∥∥∥∥Ũ(k)

∥∥∥ ≲ q1/2N1/2T 1/2(log T )1/2 + T,

where we use Assumption 3 and Lemma 5(i) in the last step. Consequently, (i) also holds

for k and this concludes the proof by induction.

(ii) By simple algebra, λ̂1/2
(k)

β̂(k) = T
−1/2
h Xξ̂(k) = βbk1 + T

−1/2
h Uξ̂(k), which leads to

∥∥∥λ̂1/2(k)
β̂(k) − βbk1

∥∥∥
MAX

≲ T−1
h

∥∥UF ′bk2
∥∥
MAX + T−1

∥∥∥U(T
1/2
h ξ̂(k) − F ′bk2)

∥∥∥
MAX

≲PT
−1
∥∥UF ′∥∥

MAX + T−1/2 ∥U∥MAX

∥∥∥T 1/2
h ξ̂(k) − F ′bk2

∥∥∥ ≲P T−1/2(logN)1/2,

where we use Assumptions 3, 4, and Lemma 6.

(iii) By triangle inequality, we have

∥∥∥Û − U
∥∥∥
MAX

≤

∥∥∥∥∥∥β
∑

k≤K

bk1b
′
k2 − IK

F

∥∥∥∥∥∥
MAX

+
∑
k≤K

∥∥∥β̂(k)F̂(k) − βbk1b
′
k2F

∥∥∥
MAX

.
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By Assumptions 1, 2 and Lemma 10, the first term satisfies

∥∥∥∥∥∥β
∑

k≤K

bk1b
′
k2 − IK

F

∥∥∥∥∥∥
MAX

≲ ∥β∥MAX ∥F∥MAX

∥∥B1B
′
2 − IK

∥∥
≲p(log T )

1/2(T−1 + q−1N−1).

For the second term, note that by triangle inequality we have

∥∥∥β̂(k)F̂(k) − βbk1b
′
k2F

∥∥∥
MAX

≤
∥∥∥λ̂1/2(k)

β̂ − βbk1

∥∥∥
MAX

∥∥b′k2F∥∥MAX

+ ∥βbk1∥MAX

∥∥∥b′k2F − λ̂
−1/2
(k)

F̂(k)

∥∥∥
MAX

+
∥∥∥λ̂1/2(k)

β̂ − βbk1

∥∥∥
MAX

∥∥∥b′k2F − λ̂
−1/2
(k)

F̂(k)

∥∥∥
MAX

,

which, together with (i)(ii), conclude the proof.

(iv) Because we have T
−1/2
h

∥∥∥Û[i] − U[i]

∥∥∥ = T
−1/2
h

∥∥∥β̂[i]F̂ − β[i]F
∥∥∥ , it then follows from

triangle inequality that

∥∥∥β̂[i]F̂ − β[i]F
∥∥∥ ≤

∥∥∥β[i] (B1B
′
2 − IK

)
F
∥∥∥+ ∥∥∥β[i]B1

∥∥∥∥∥∥Λ̂−1/2F̂ −B′
2F
∥∥∥

+
∥∥∥β[i]B1 − β̂[i]Λ̂

1/2
∥∥∥∥∥∥Λ̂−1/2F̂

∥∥∥ .
We analyze the three terms on the right-hand side one by one. With T−1/2

∥∥∥Λ̂−1/2F̂ −B′
2F
∥∥∥
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≲P T−1 + q−1/2N−1/2 from Lemma 6, ∥β∥MAX ≲ 1, Lemma 10 and (ii), we have

max
i

T
−1/2
h

∥∥∥β[i] (B1B
′
2 − IK

)
F
∥∥∥

≲ T
−1/2
h ∥β∥MAX

∥∥B1B
′
2 − IK

∥∥ ∥F∥ ≲P q−1N−1 + T−1,

max
i

T
−1/2
h

∥∥∥β[i]B1

∥∥∥∥∥∥Λ̂−1/2F̂ −B′
2F
∥∥∥

≲ T
−1/2
h ∥β∥MAX

∥∥∥Λ̂−1/2F̂ −B′
2F
∥∥∥ ≲P q−1/2N−1/2 + T−1,

max
i

T
−1/2
h

∥∥∥β[i]B1 − β̂[i]Λ̂
1/2
∥∥∥∥∥∥Λ̂−1/2F̂

∥∥∥
≲ T

−1/2
h

∥∥∥βB1 − β̂Λ̂1/2
∥∥∥
MAX

∥F∥ ≲P T−1/2(logN)1/2.

Consequently, we have the desired bound.

Lemma 12. Under Assumptions 1-4, for any I ⊂ [N ], we have the following results:

(i)
∥∥∥T−1

h FMW ′F ′ − IK
∥∥∥ ≲P T−1/2, ∥ZMW ′∥ ≲P T 1/2.

(ii) ∥FMW ′∥MAX ≲P (log T )1/2, ∥ZMW ′∥MAX ≲P (log T )1/2.

(iii)
∥∥∥β′[I]U[I]MW ′

∥∥∥ ≲P |I|1/2T 1/2,
∥∥∥β′[I]U[I]MW ′

∥∥∥
MAX

≲P |I|1/2(log T )1/2.

(iv)
∥∥∥β′[I]U[I]MW ′F ′

∥∥∥ ≲P |I|1/2T 1/2T 1/2,
∥∥∥β′[I]U[I]MW ′Z ′

∥∥∥ ≲P |I|1/2T 1/2T 1/2.

(v) ∥UMW ′∥MAX ≲P (logNT )1/2.

(vi)
∥∥UMW ′F ′∥∥

MAX ≲P (logN)1/2T 1/2,
∥∥UMW ′Z ′∥∥

MAX ≲P (logN)1/2T 1/2.

(vii)
∥∥∥U[I]MW ′

∥∥∥ ≲P |I|1/2 + T 1/2,
∥∥∥U[I]MW ′A′

∥∥∥ ≲P |I|1/2T 1/2, for A = F,Z.

(viii)
∥∥FMW ′Z ′∥∥ ≲P T 1/2,

∥∥FMW ′Z ′ − FZ ′∥∥ ≲P 1.

(ix)
∥∥∥(uT )′[I]U [I]MW ′F ′

∥∥∥ ≲P |I|+ |I|1/2T 1/2,
∥∥∥(uT )′[I]U [I]MW ′Z ′

∥∥∥ ≲P |I|+ |I|1/2T 1/2.
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Proof. (i) With
∥∥(WW ′)−1

∥∥ ≲P T−1 from Assumption 1,
∥∥WF ′∥∥ ≲P T 1/2, we have

∥∥∥T−1
h FMW ′F ′ − IK

∥∥∥ ≤
∥∥∥T−1

h FF ′ − IK
∥∥∥+ T−1

h

∥∥FW ′∥∥2 ∥∥∥(WW ′)−1
∥∥∥ ≲P T−1/2.

(ii) Using the bound on ∥F∥MAX and that ∥W∥ ≲ T 1/2 by Assumption 1, we have

∥FMW ′∥MAX ≤ ∥F∥MAX +
∥∥FW ′∥∥∥∥∥(WW ′)−1

∥∥∥ ∥W∥ ≲P (log T )1/2

Replacing F by Z in the above proof, we obtain the second inequality.

(iii) Using Assumption 4(ii) and ∥MW ′∥ ≤ 1, the first equation holds directly. Also,

∥∥∥β′[I]U[I]MW ′

∥∥∥
MAX

≲
∥∥∥β′[I]U[I]

∥∥∥
MAX

+
∥∥∥β′[I]U[I]W

′
∥∥∥∥∥∥(WW ′)−1

∥∥∥ ∥W∥ ≲P |I|1/2(log T )1/2

where we use Assumption 1 and Assumption 4(ii) in the last equality.

(iv) With
∥∥(WW ′)−1

∥∥ ≲P T−1,
∥∥WF ′∥∥ ≲P T 1/2, and by Assumption 4, we have

∥∥∥β′[I]U[I]MW ′F ′
∥∥∥ ≤

∥∥∥β′[I]U[I]F
′
∥∥∥+ ∥∥∥β′[I]U[I]W

′
∥∥∥∥∥∥(WW ′)−1

∥∥∥∥∥WF ′∥∥ ≲P |I|1/2T 1/2.

Replacing F by Z in the above proof, we have the second inequality in (iv).

(v) Similar to (ii), using Assumption 3 and 4, we have

∥UMW ′∥MAX ≲ ∥U∥MAX +
∥∥UW ′∥∥

MAX

∥∥∥(WW ′)−1W
∥∥∥ ≲P (logN)1/2 + (log T )1/2.

(vi) Similar to (iv), by Assumptions 1 and 3, we have

∥∥UMW ′F ′∥∥
MAX ≲

∥∥UF ′∥∥
MAX +

∥∥UW ′∥∥
MAX

∥∥∥(WW ′)−1WF ′
∥∥∥ ≲P (logN)1/2T 1/2.

Replacing F by Z in the above inequality, we also have
∥∥UMW ′Z ′∥∥

MAX ≲P (logN)1/2T 1/2.
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(vii) With Assumption 3 and ∥MW ′∥ ≤ 1, the first inequality holds directly. By Assump-

tions 1 and 4, we have

∥∥∥U[I]MW ′F ′
∥∥∥ ≤

∥∥∥U[I]F
′
∥∥∥+ ∥∥∥U[I]W

′
∥∥∥∥∥∥(WW ′)−1

∥∥∥∥∥WF ′∥∥ ≲P |I|1/2T 1/2.

Replacing F by Z in the above proof, we also have the third inequality.

(viii) Using Assumption 1 and ∥MW ′∥ ≤ 1, we have ∥ZMW ′∥ ≲P T 1/2. Also,

∥∥FMW ′Z ′ − FZ ′∥∥ =
∥∥FPW ′Z ′∥∥ ≤

∥∥FW ′∥∥∥∥∥(WW ′)−1
∥∥∥∥∥WZ ′∥∥ ≲P 1.

Consequently,
∥∥FMW ′Z ′∥∥ ≤

∥∥FMW ′Z ′ − FZ ′∥∥ + ∥∥FZ ′∥∥ ≲P T 1/2 as we have
∥∥FZ ′∥∥ ≲P

T 1/2 from Assumption 1.

(ix) By Assumptions 1 and 4, we have

∥∥∥(uT )′[I]U [I]MW ′F ′
∥∥∥ ≤

∥∥∥(uT )′[I]U [I]F
′
∥∥∥+ ∥∥∥(uT )′[I]U [I]W

′
∥∥∥∥∥∥(WW ′)−1

∥∥∥∥∥WF ′∥∥
≲P|I|+ |I|1/2T 1/2.

Replacing F by Z, we have the second inequality.

Lemma 13. For any N ×K matrix β, if
∥∥∥T−1

h FF ′ − IK
∥∥∥ ≲P T−1/2, we have

(i) σj(βF )/σj(β) = T
1/2
h +OP(1) for j ≤ K.

(ii) If σ1(β) − σ2(β) ≍ σ1(β), then
∥∥∥Pξ̃ − T−1

h F ′PbF
∥∥∥ ≲P T−1/2, where b and ξ̃ are the

first right singular vectors of β and βF , respectively.

Proof. (i) For j ≤ K, σj(βF )2 = λj(βFF ′β′) = λj(β
′βFF ′), which implies λj(β

′β)

λp(FF ′) ≤ σj(βF )2 ≤ λj(β
′β)λ1(FF ′). With the assumption

∥∥∥T−1
h FF − IK

∥∥∥ ≲P T−1/2,

we have T
−1/2
h σj(βF )/σj(β) = 1 +OP

(
T−1/2

)
by Weyl’s inequality.
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(ii) Let ς and ς̃ be the first left singular vectors of β and βF , respectively. Equiva-

lently, ς and ς̃ are the eigenvectors of ββ′ and T−1
h βFF ′β′. As

∥∥∥ββ′ − T−1
h βFF ′β′

∥∥∥ ≤

∥β∥2
∥∥∥T−1

h FF ′ − IK
∥∥∥ ≲P σ1(β)

2T−1/2 and σ1(β)− σ2(β) ≍ σ1(β), by sin-theta theorem

∥∥ςς ′ − ς̃ ς̃ ′
∥∥ ≲

∥∥∥ββ′ − T−1
h βFF ′β′

∥∥∥
σ1(β)2 − σ2(β)2 −O(

∥∥∥ββ′ − T−1
h βFF ′β′

∥∥∥) ≲P T−1/2.

Using the relationship between left and right singular vectors, we have b′ = ς ′β/σ1(β)

and ξ̃′ = ς̃ ′βF/∥βF∥. Therefore,

∥∥∥∥∥Pξ̃ − σ1(β)
2

∥βF∥2
F ′PbF

∥∥∥∥∥ =

∥∥∥∥∥ξ̃ξ̃′ − F ′β′ςς ′βF

∥βF∥2

∥∥∥∥∥ =

∥∥∥∥∥F ′β′ς̃ ς̃ ′βF

∥βF∥2
− F ′β′ςς ′βF

∥βF∥2

∥∥∥∥∥ ≲P T−1/2.

(1.98)

By Weyl’s inequality, T−1
h ∥βF∥2 = λ1(T

−1βFF ′β′) = σ1(β)
2 +OP(σ1(β)

2T−1/2). In light

of (1.98), we have
∥∥∥Pξ̃ − T−1

h F ′PbF
∥∥∥ ≲P T−1/2.
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CHAPTER 2

TEST ASSETS AND WEAK FACTORS

2.1 Introduction

Estimation and inference on factor models are central elements of empirical work in asset

pricing. Typically, a researcher starts with a given factor, for example an aggregate liquidity

factor, motivated by economic theory. The objective of the researcher is to estimate and test

its risk premium. To proceed, the researcher needs to decide which test assets to use in the

estimation. While the literature has made a variety of choices for test assets, little work has

been dedicated to investigating rigorously and systematically how they should be chosen.

Another issue the researcher has to face is the potential presence of weak factors. Broadly

speaking, the factor of interest to the researcher is one of many factors potentially driving

returns. Some may be weak: these are factors to which the available test assets have little

or no exposure. This makes it difficult to learn about them using the available assets.

Their presence also contaminates inference about the entire model: the literature shows the

presence of a weak factor biases the estimation of the risk premia of all factors, including

the one of interest to the researcher (whether that factor itself is strong or weak) as well as

the inference about the pricing ability of the model. To make things worse, a weak factor

could be latent, so that we may not even know it exists in the first place.

In this paper, we document a deep connection between the selection of test assets and

the long-standing problem of weak factors in asset pricing. Exploiting this connection, we

propose a novel methodology, supervised principal component analysis (SPCA), that serves

a dual purpose: first, it provides a well-founded basis for the selection of test assets, and

second, it leverages the selection to mitigate the bias in risk premium estimation for the

factor of interest to the researcher, irrespective of its strength and the strength of (known or

unknown) factors in the panel of test asset returns.
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The connection we emphasize between weak factors and test assets is that the strength or

weakness of a factor (whether it is observable or latent), should not be viewed as a property

of the factor itself, as typical in the asset pricing literature; rather, it should be viewed as a

property of the set of test assets used in the estimation. As an example, a liquidity factor

may be weak in a cross-section of portfolios sorted by, say, size and value, but may be strong

in a cross-section of assets sorted by characteristics that capture well exposure to liquidity.

This perspective provides clear guidance on how to choose test assets: select them in

a way that yields a consistent estimate of the risk premium of the factor chosen by the

researcher, and that is robust to the presence of observable or latent weak factors among

those driving returns. This criterion is statistical in nature, and offers an agnostic selection

and estimation technique that complements alternative selection strategies found in the

literature, where researchers often use strong economic priors or ad-hoc methodologies to

determine which test assets to include and which to exclude.

Estimating and testing the risk premium of a factor of interest requires properly con-

trolling for all the other factors relevant to investors (whether they are observed or latent),

in order to avoid an omitted variable bias (see for example Giglio and Xiu [2021]).1 Giglio

and Xiu [2021] propose to do so by first estimating a latent factor model for the stochastic

discount factor (SDF) using principal component analysis (PCA), and then using it to es-

timate the factor of interest’s risk premium. This approach eliminates the need for explicit

specification of all the control factors, but relies on the assumption that all the latent factors

driving the SDF are pervasive (i.e., strong). Our SPCA procedure also utilizes PCA for

extracting latent factors while remaining agnostic about the identities of the control factors.

However, it exploits correlations with the factor of interest as a guiding criterion for selecting

1. This is only necessary when the factor of interest is not itself a tradable portfolio (i.e., it is a non-
tradable factor, like a macroeconomic risk). If the factor of interest is itself a portfolio (also referred to as
tradable factor), like in the case of the CAPM, the computation of the risk premium just requires computing
the average excess return of the portfolio. In practice, most economic models have predictions about the
risk premia of non-tradable factors.

90



a subset of test assets, before applying PCA. This results in a versatile methodology that

remains robust even in scenarios where certain factors are omitted, including cases where

these omitted factors are weak.

Given a factor gt specified ex-ante by the researcher, the procedure estimates its risk

premium as follows. We start from a large universe of potential test assets. In a first step of

the procedure (selection step), we compute the univariate correlation of each asset’s return

with gt. We select a relatively small portion of assets, only keeping those with sufficiently

high correlation (in absolute value): these are assets that are particularly informative about

the factor of interest gt. We then compute the first principal component of the returns of

these assets (PCA step), which will be our first estimated latent factor. Next, we remove

via linear projection from both gt and all the returns of the test assets the part explained by

this first latent factor (projection step). We then go back to the selection step, computing

the univariate correlation of the residuals of the factor and the residuals of the assets from

the projection step. Again, we select from the universe of test assets a subset for which this

correlation is especially high, and compute the first principal component of these residuals.

This will be our second estimated latent factor. We then further remove (from gt and the

test assets) the part explained by this second estimated factor as well, and iterate again on

the residuals. We repeat this procedure p̂ times, where p̂ is a tuning parameter which can be

determined by some validation step. In the most desirable scenario, p̂ serves as a desirable

estimate of the actual number of factors, p, in the data. This procedure recovers from the

data latent factors that are informative about the factor of interest gt. Importantly, the

fact that at each iteration only test assets that are sufficiently correlated with the factor gt

are selected ensures that not only strong, but also weak factors (relative to the entire cross-

section) are captured by the procedure – contrary to standard PCA that uses all assets at all

steps to extract latent factors. Finally, a time-series regression of gt on the p̂ latent factors

yields a consistent estimator of the risk premium of gt, by linking it to the risk premia of
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these latent factors. The latent factors themselves can be thought of as the part of the SDF

that is related to gt and determines its risk premium.

While the supervision of gt aids in the recovery of factors, including weak ones, this

procedure may not retrieve all the factors driving the cross-section of returns (i.e., the entire

SDF). It specifically ensures the recovery of factors correlated with gt, while uncorrelated

factors, particularly if they are weak, may remain unrecoverable (so it may be true that

p̂ < p). Fortunately, but crucially, the omission of these factors by SPCA does not affect

the consistency of the risk premium estimation for gt, since such factors do not contribute

to the pricing of gt. That said, complete recovery of all factors remains feasible, contingent

on including multiple variables in the target gt and ensuring that each latent factor has at

least one variable in gt with a non-vanishing exposure to it.

Beyond risk premia estimation, SPCA can also be used to diagnose omitted factors in a

model based on a set of observable factors in gt. Supervised by gt, SPCA recovers all the

latent factors that drive the SDF and correlate with gt. We prove that SPCA consistently

recovers the true SDF if and only if gt is spanned by all factors that drive the SDF. We

apply this result to diagnose whether gt misses any factors. This diagnosis on gt can be

executed as a simple comparison between the maximal Sharpe ratio achieved by gt and that

achieved by the factors recovered by SPCA. When the latter is larger than the former, it

indicates that gt misses some factor, and that the researcher should seek a better model. On

the other hand, if the latter is smaller, it implies that gt contains factors to which the given

cross-section of test assets have insufficient exposures. In such a scenario, a richer set of test

assets is needed.

The choice of test assets in the literature has mainly followed one of three approaches.

The vast majority of the literature has adopted a “standard” set of portfolios sorted by a few

characteristics, such as size and value, following the seminal work by Fama and French [1993].

A second approach, taken more recently, e.g., Kozak et al. [2020], has been to expand this
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cross-section to include portfolios sorted by a much larger set of characteristics discovered in

the last decades, on the order of hundreds of portfolios. Finally, a third approach, see, e.g.,

Ang et al. [2006], has been more “targeted” around the specific factor of interest: sorting

assets into portfolios by their estimated exposure to the factor, and then estimating risk

premia using only these sorted portfolios, that is, using a small cross-section expected to be

particularly informative about that factor.

It is useful to contrast the asset selection procedure of SPCA with the three approaches

summarized above. Using a standard, small cross-section (like the size- and value-sorted

portfolios) to estimate risk premia has the problem that except for size and value, which

are strong factors in this cross-section, many other factors are weak: these test assets do

not contain sufficient information to identify their risk premia. The second approach may

appear, on the surface, to address this issue: a large cross-section of test assets are likely

exposed to many potential factors. However, if only a few of those many assets are exposed

to some factor, whereas most others are not, that factor will, again, be weak. Finally, the

third approach – building targeted portfolios of assets sorted by the exposure to the factor

of interest to the researcher – is affected by the omitted factor problem, since it considers

univariate exposures only; in general, it will fail in a multi-factor context.

In the paper, we derive the asymptotic properties of SPCA, in a setting that allows

for weak factors and test assets with highly correlated risk exposures. The latter scenario

potentially involves the same (asymptotically) rank-deficiency issue as weak factors. We

also analyze in this setting alternative estimators that have been proposed in the recent

literature, which rely on PCA, Ridge, Lasso, and Partial Least Squares (PLS). We show that

the PCA (and some other variations of it), Ridge, and PLS are inconsistent in the presence

of weak factors, and that the Lasso approach is consistent for the estimation of the SDF,

as well as risk premia estimation, but is not as efficient as SPCA in general. Additionally,

we perform an extensive set of simulations to study the performance of SPCA in different
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scenarios. These simulations isolate issues in conventional two-pass regressions, facilitating

a clear comparison of SPCA with other estimators. Our findings confirm SPCA’s robustness

to omitted factors and weak factors, as well as measurement error, which SPCA also tackles.

As expected, a trade-off exists between robustness and efficiency. In scenarios where all

factors are strong, the PCA-based approach by Giglio and Xiu [2021] is consistent and likely

to outperform SPCA in terms of efficiency. The potential efficiency loss associated with

SPCA arises from its selective use of test assets when all of them are in fact informative, or

the possibility that it may not recover all factors driving returns. However, the PCA-based

estimator is biased in the presence of weak factors, a major concern in empirical applications.

We therefore advocate for using SPCA to estimate risk premia due to its robustness when

weak factors are potentially present: where consistency is compromised, prioritizing efficiency

becomes irrelevant.

The problem of weak factors in latent factor models is closely connected to that of

weak factors in observable factor models, which has been widely examined in the literature.

The seminal contribution of Kan and Zhang [1999] shows that the inference on risk premia

estimates from Fama-MacBeth regressions becomes invalid when a “useless" factor – a factor

to which test assets have zero exposures – is included in the model. Kleibergen [2009] further

points out the failure of the standard inference even for strong factors, if betas are relatively

small.2 In our paper, we show that the same logic applies in the context of latent factor

models: if some (latent) factors are weak in a cross-section, the PCA estimator will not be

able to disentangle them from idiosyncratic error, leading to biases in the estimated factors

and their risk premia.

The issue of weak factors is particularly important in empirical work in asset pricing,

because most economically-motivated factors (e.g., most macroeconomic factors) do seem to

2. Related literature also include Gospodinov et al. [2013] and Gospodinov et al. [2014]. On the other
hand, Pesaran and Smith [2019] investigate the impact of factor strength and pricing error on risk premium
estimation. They point out that the conventional two-pass risk premium estimator converges at a lower rate
as the factors become weaker.
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be weak in practice. Moreover, a statistical problem analogous to weak factors arises when

betas are collinear, that is, some factors are redundant in terms of explaining the variation of

expected returns. This is again a relevant issue in practice due to the existence of hundreds

of factors discovered in the literature, see, e.g., Harvey et al. [2016], many of which are close

cousins and do not add any explanatory power (Feng et al. [2020]). The weak factor problem

appears to be caused by having seemingly more factors than necessary, which is why some

suggest eliminating such factors (Bryzgalova [2015]) or shrinking their risk premia estimates

(Bryzgalova et al. [2019]), so as to improve the estimates for strong factors. We instead

argue that the weak factor problem is fundamentally an issue of test asset selection. Since

weaker factors may still be priced, our solution is to accommodate them using an adapted

procedure with carefully selected test assets.3

Several recent papers have proposed different methodologies to deal with weak factors.

Lettau and Pelger [2020] propose an estimator of the SDF in the presence of weak factors,

rpPCA, which generalizes PCA with a penalty term that accounts for expected returns.

Whereas this estimator features desirable properties as explored by Lettau and Pelger [2020],

we show that it is inconsistent for estimating risk premia in the weak-factor setting we

consider.4 Anatolyev and Mikusheva [2021] propose an complementary four-split approach

to dealing with weak factors, based on sample-splitting and instrumental variables. This

3. It is worth noting that whereas some theories assume that only strong factors can be priced, this is
not true in general for two reasons. First, many theoretical models – e.g., the consumption-CAPM – are
silent on what assets are traded in equilibrium, and if markets are incomplete, it may very well be that some
priced factors may not be reflected in many of the assets that are traded. Second, even if investors may have
access to many assets exposed to a particular factor, the econometrician may not, making the factor weak
for the set of test assets available to the econometrician.

4. Lettau and Pelger [2020] focus their analysis on the case where factors are extremely weak – so much
so that they are not statistically distinguishable from idiosyncratic noise. In that case, no estimator can be
consistent for either risk premia or the SDF. They show that rpPCA does not recover consistently the SDF,
but in simulations it correlates with the SDF more than the SDF estimator obtained from standard PCA.
Rather than focusing on this extreme case of weak factors, our theory covers a range of factor weaknesses,
which includes the cases from strong to very weak, and which still permits consistent estimation of factors
and risk premia. Formally, we study the case where the minimum eigenvalues of the factor component in
the covariance matrix of returns diverges whereas the largest eigenvalue due to the idiosyncratic errors is
bounded.
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alternative procedure works well to address the weak factor bias, though it does not deal

with omitted priced factors or with measurement error in the factors.5

Our paper also relates to a literature that has explored different methods to form port-

folios to test asset pricing models, like Ahn et al. [2009] or Bryzgalova et al. [2020]. These

methods are useful in helping to build or expand the starting cross-section for SPCA. In

this paper, we use the simpler approach of working with an existing large cross-section of

portfolios sorted by firm characteristics, as in Chen and Zimmermann [2020] and Hou et al.

[2020].

The concept of supervised-PCA originated from a cancer diagnosis technique applied

to DNA microarray data by Bair and Tibshirani [2004], and was later formalized by Bair

et al. [2006] in a prediction framework, in which some predictors are not correlated with

the latent factors that drive the outcome of interest. Bair et al. [2006] suggest a screening

step using marginal correlations between predictors and the outcome variable to select the

subset of useful predictors, before applying the standard PCA to this subset.6 They prove

the consistency of this so-called SPCA procedure, but relying on a restrictive identification

assumption that any important predictor must also have a substantial marginal correlation

with the outcome. We provide several examples of multivariate factor models in which this

assumption fails. While the screening step of our SPCA procedure shares the spirit with

theirs (in the sense that their outcome variable is our factor of interest, and their predictors

5. Our paper also relates to a growing strand of econometrics literature on weak factor models. Bai and
Ng [2021] show that PCA can recover moderately weak factors at the cost of efficiency. Bai and Ng [2008]
and Huang et al. [2022] propose supervised learning methods in the context of factor-based forecasting. Fan
et al. [2021] also exploit information from observed proxies to improve the estimation of factor models, and
Wan et al. [2023] consider moderately weak factors as in Bai and Ng [2021] in this context. Fan and Liao
[2022] propose to extract factors by diversifying away idiosyncratic noise directly. Uematsu and Yamagata
[2022a] adopt a variant of the sparse PCA algorithm proposed in Uematsu et al. [2019] to estimate a sparsity-
induced weak factor model. Uematsu and Yamagata [2022b] provide inference results in that sparse model.
Freyaldenhoven [2022] and Bailey et al. [2020] adopt a similar framework for estimating factor count and
strength.

6. The screening approach has also been adopted in the contexts, such as classification and regression,
see Fan and Fan [2008], Fan and Lv [2008].
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are our test assets), our projection step and the subsequent iteration procedure are new, and

are introduced precisely to eliminate the strong identification assumption used in the existing

statistics literature. Also, our focus is not on prediction per se, but instead on parameter

inference.

2.2 Methodology

To rigorously address the challenge of weak factors, our approach begins with the specifica-

tion of a general Data Generating Process (DGP). It is crucial to underscore that within this

population model, the concept of weak factors holds no relevance. In population, researchers

aiming to identify the risk premium of a factor like gt would ideally utilize all available assets

for this purpose.

However, the real-world (finite-sample) scenario diverges from this idealized population

model. We encounter practical constraints, such as a large number of assets (large N),

relatively short time spans (small T ), and a significant proportion of assets that are only

weakly correlated with the target variable gt. We characterize this finite sample context using

asymptotic concepts, formally defining the notion of weak factors. This particular asymptotic

perspective is useful as it enables us to investigate the issues of weak factors arising in finite

samples with existing estimators, and understand the properties of our proposed solution.

2.2.1 Model Setup

We study a standard linear factor model setup. Suppose that an N × 1 vector of test asset

excess returns, rt, follows:

rt = βγ + βvt + ut, E(vt) = E(ut) = 0 and Cov(vt, ut) = 0, (2.1)
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where β is an N×p matrix of factor exposures, vt is a p×1 vector of innovations of p factors

ft (i.e., vt = ft − µf , where µf = E(ft)), and ut is an N × 1 vector of idiosyncratic errors.

We assume that the vector of factor innovations vt is not fully observable. Specifically,

we allow the asset pricing factors ft to be either latent or observable. In the former case,

innovations vt are naturally also latent. Even in the latter case, when a factor ft is observable,

its innovation vt is not directly observable because µf is an unknown parameter.7

Also, note that we model risk exposures (β) as constant: we implicitly assume that the

test assets are portfolios sorted so that their factor exposures are modelled as constant, as in

Giglio and Xiu [2021]. Alternatively, one could work directly with individual stocks (which

generally have time-varying risk exposure), combining our procedure with the methodologies

of Gagliardini et al. [2016], Kelly et al. [2019], or Kim et al. [2020] to account for the time-

variation in betas.

We situate our discussion within the framework of two standard asset pricing exercises:

the estimation of risk premia and the recovery of the SDF. Given our model, an SDF can be

defined in terms of factors vt as

mt = 1− γ⊺Σ−1
v vt, (2.2)

where Σv is the covariance matrix of factor innovations, see, e.g., Giglio and Xiu [2021]. It

also makes sense to consider the SDF represented in terms of the set of tradable test asset

returns:

m̃t = 1− b⊺(rt − E(rt)), (2.3)

where b is an N × 1 vector of SDF loadings which satisfies E(rt) = Σb, where Σ is the

7. In Appendix section 2.5.3.2 we discuss the case in which factors are observable, and in Appendix section
2.5.3.3 we discuss the case in which the zero-beta rate needs to be estimated.
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covariance matrix of rt, see, e.g., Kozak et al. [2020]. The relationship between the two

SDFs depends on the degree of completeness of markets. As will be shown later, these two

forms of the SDF are asymptotically equivalent in the asymptotic scheme we consider, with

the number of assets N going to infinity, so that there is no ambiguity with respect to which

estimand we consider.

In addition to the SDF, we are also interested in estimating the risk premium of one or

more observable factors, summarized in a d× 1 vector, gt. It is important to emphasize that

gt is a proxy for some risks, constructed or otherwise chosen by the researcher ex-ante, not

necessarily tradable, and typically motivated from economic theory or narratives. Following

Giglio and Xiu [2021], we do not impose that gt is part of or identical to vt; instead, gt and

vt are assumed (potentially) correlated:

gt = ξ + ηvt + zt, (2.4)

where ξ = E(gt), η is a d × p matrix, and zt is measurement error orthogonal to vt.8 This

model clearly nests the classic linear asset pricing model with observable factors only, in

which case we can set η = Ip and zt = 0. To price gt, we can simply use the SDF given by

(2.4), as gt’s risk premium is given by γg = −Cov(gt,mt) = ηγ.

To characterize the strength of a factor, we need to set up an asymptotic environment

in which weak factors may arise. First, let us introduce some useful notation. We use the

notation a ≲ b to denote a ≤ Kb for some constant K > 0, and if a ≲ b and b ≲ a, we write

a ≍ b for short. We use similar notation ≲P and ≍P for bounded in probability. Also, for any

matrix A, we use λmin(A) and λmax(A) to denote its minimum and maximum eigenvalues,

and λi(A) is the i -th largest eigenvalue.

The environment in which we study weak factors is quite general, and is characterized by

8. When gt is nontradable, measurement error could arise as the econometrician is implementing an
empirical counterpart of some theory-predicted factor; when gt is tradable, it captures the non-diversified
errors in the portfolio.
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three assumptions. First, we assume that both N and T go to ∞ (at arbitrary rates, unless

we specify otherwise), whereas the number of factors p is fixed. Letting N go to infinity in

addition to T is rather natural in the asset pricing context, as motivated in theory by Ross’

APT (Ross [1976]) and given the proliferation of “anomalies” generated by the empirical

literature in the past decades. Second, we assume that the p× p factor covariance matrix of

the factor innovations, Σv, is asymptotically non-singular: 1 ≲ λmin(Σv) ≤ λmax(Σv) ≲ 1.

This assumption is rather weak, as it only rules out factors whose risks are (asymptotically)

negligible or exploding. Finally, we also maintain the assumption that ∥Σu∥ ≲ 1, where

∥∥ indicates the spectral norm of a matrix, so that there exists no factor structure in the

residuals ut. This assumption is widely adopted in the so-called approximate factor models

proposed by Chamberlain and Rothschild [1983].9

We are now ready to characterize the strength of factors, as an exclusive function of test

assets’ exposures to the factors, as opposed to a property of the factors themselves. We

formalize here the idea that, for instance, a momentum factor could be a strong factor when

the test assets are momentum-sorted portfolios, but this same factor may be weak when the

test assets are portfolios sorted by size or value: the latter portfolios may diversify away the

exposures to the momentum factor, and therefore may be uninformative about momentum

risk.

In the econometrics literature on factor models (for example, Bai and Ng [2002]), the

setup described in (2.1) is typically complemented by the assumption that λi(β
⊺β) ≍ N

for i = 1, 2, . . . , p: all eigenvalues of the matrix β⊺β grow at rate N , so that all factors are

pervasive. Informally, even as the number of test assets N is large, there is a sufficiently

large number of assets that are well exposed to each of the risk factors (their β with respect

to all factors are non-vanishing for a large number of assets). Under this assumption, as we

9. We only need ut to be stationary (so that Σu is well defined) when we discuss the SDF in Section 2.2.3.
For risk premia estimation, we instead impose a weaker condition, namely, Assumption 10, which plays a
similar role as ∥Σu∥ ≲ 1.
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will review later, standard PCA works well to recover the latent factors vt.

This is the point of departure of our paper: we study situations in which this pervasiveness

assumption fails, with respect to some or even all factors. Formally, we define the presence

of weak factors as the case in which some of those eigenvalues, λi(β⊺β), grow at a slower

rate than N (which will be made more precise later). Intuitively, in this case, while the

number of test assets N is large, many test assets may have small or zero exposures to

some or all of the factors, making those factors weak. The lack of test asset exposures to a

factor makes it more difficult for standard PCA to recover this factor; and in more extreme

cases, PCA completely fails to recover either the factors or their loadings. In our setting,

the strength/weakness of a factor is actually not a binary distinction. Rather, we allow for

a continuum of strength/weakness of factors, determined by how large the exposures to the

risk factors are (formally, by the asymptotic behavior of the eigenvalues λi(β
⊺β)).

How relevant do we expect these weak factors to be in practice? Consider Figure 3.6, the

scree plot of the eigenvalues of returns from our empirical analysis, which uses a large cross-

section of 950 assets. The figure shows that the first one or two eigenvalues are clearly much

larger than the others. But the absence of clear gaps among the remaining eigenvalues sug-

gests that several factors beyond the first two may be weak. Despite the large cross-section,

their eigenvalues remain relatively small and difficult to distinguish from idiosyncratic error.

Our model naturally allows gt to be weak, since the true factors in vt are potentially

weak and the observable factors in gt inherit this weakness through their loading on vt, η.

However, as N and T increase, the risk premium associated with gt, ηγ, may not necessarily

converge to zero. This is because neither the risk exposure of gt to vt, represented by η,

nor the risk premiums of vt, denoted as γ, necessarily diminish asymptotically. In simpler

terms, weak factors in this model can still have non-zero risk premia as the sample size and

the cross-sectional dimension grow.
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2.2.2 Estimating Risk Premia when Factors are Weak

We begin our analysis with risk premia estimation.

2.2.2.1 The Benchmark PCA-based Estimator

Giglio and Xiu [2021] study this problem in a similar setup as in this paper, except that all

factors in vt are assumed to be strong. They propose a three-pass procedure to estimate

gt’s risk premium ηγ: 1) apply PCA to the sample covariance matrix of returns to obtain

estimates of the latent factors, v̂t; 2) use Fama-MacBeth regressions to recover the risk

premia of v̂t, γ̂; 3) use time series regressions of gt on v̂t to estimate η̂. The product of

the estimates at steps 2 and 3 yields η̂γ̂, the estimate of risk premia. We summarize this

procedure in the following algorithm:

Algorithm 5 (PCA-based Estimator of Risk Premia). The estimator proceeds as follows:

Inputs: R̄ and Ḡ, the matrices of demeaned returns and demeaned gt, respectively.10

S1. Apply singular-value decomposition (SVD) on R̄, and write the first p right singular

vectors as ξ. The estimated factors are given by V̂ =
√
Tξ⊺.

S2. Estimate the risk premia of V̂ by γ̂ = (β̂⊺β̂)−1β̂⊺r̄, where β̂ = R̄V̂ ⊺(V̂ V̂ ⊺)−1 and r̄ is

the vector of average excess returns.

S3. Estimate the factor loading of gt on vt by η̂ = ḠV̂ ⊺(V̂ V̂ ⊺)−1.

Outputs: V̂ , η̂, γ̂, and γ̂PCA
g = η̂γ̂.

As discussed in Giglio and Xiu [2021], one interpretation of this estimator is that it builds

a mimicking portfolio for the factor gt, by projecting it onto the first p principal components

of the space of returns. A mimicking portfolio would be ideally built directly using all

10. For any time series of vectors {at}Tt=1, we denote ā = 1
T

∑T
t=1 at. In addition, we write āt = at − ā.

We use the capital letter A to denote the matrix (a1, a2, · · · , aT ), and write Ā = A− āι⊺T correspondingly.
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possible assets. But when N is large, this can be inefficient or even infeasible (if N > T ).

The three-step estimator effectively regularizes the mimicking portfolio problem by using

only p portfolios appropriately constructed as basis assets, i.e., the principal components

of the returns. Giglio and Xiu [2021] establish the consistency of this estimator and derive

its asymptotic inference, in the case that all latent factors are strong. This procedure also

recovers the SDF, because it consistently estimates all latent factors, v̂t (columns of V̂ ), that

drive the SDF, along with their SDF loadings as in (2.2), Σ̂−1
v γ̂.

This estimator is appealing for its simplicity, efficiency, and, importantly, robustness to

missing factors (since the identity of any factors beyond gt does not need to be specified).

Unfortunately, it fails precisely when some latent factors are weak, which we will show next.

To understand this, it is sufficient to consider a one-factor model with p = d = 1 and

Σv = 1, in which case the covariance matrix of returns satisfies: Σ = ββ⊺+Σu. This matrix

has a noisy low rank structure in that ββ⊺ has rank 1, whereas Σu is a full-rank covariance

matrix. To make the exposition simple, we also assume that gt has no measurement error,

i.e., zt = 0 and gt = ηvt.

As discussed above, the problem of weak factors stems from the fact that many assets may

not have sufficiently strong exposure to the factor of interest, which hinders the construction

of its mimicking portfolio, and in turn, the estimation of its risk premium. This intuition

applies also when the weak factor is latent (vt). In this case, the manifestation of the weak

factor problem is that PCA will fail to recover this factor.

Estimation of the latent factors vt via PCA involves recovering the matrix of risk expo-

sures β from the covariance matrix of realized returns, Σ̂. A successful recovery of β via

PCA of realized returns therefore requires a favorable signal-to-noise ratio. If the “signal”, as

measured by ∥β∥, dominates the “noise”, which arises from the idiosyncratic component Σu

and the estimation error in the sample covariance matrix Σ̂−Σ, the first sample eigenvector

of Σ̂ would (approximately) span the same space spanned by the true β. Thus using β̂, ef-
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fectively the eigenvector of Σ̂, in the cross-sectional regression step (step 2 of the estimator)

would yield a consistent estimator of the risk premium of the estimated latent factor, which

in turn leads to a consistent estimator of the risk premium of gt. Otherwise, if the signal

∥β∥ is so weak that the estimation error in β̂ dominates, there would be a non-vanishing

angle between the space spanned by β̂ and that by β. But estimating risk premia requires

comparing the average returns of assets with different betas (e.g., computing the slope in a

cross-sectional regression); “measurement” error in the betas thereby induces a bias in the

risk premium estimate.

Proposition 7 below shows that the PCA-based estimator is consistent only if N/(∥β∥2 T ) →

0. This condition formalizes our notion of factor weakness. In a one-factor model, the factor

is weak if this condition fails. We generalize this definition for the case of multiple factors

later.

Proposition 7. Suppose that test asset returns follow a single-factor model in the form

of (2.1) with p = 1, that gt satisfies (2.4) with d = 1, that ut and vt are i.i.d. normally

distributed and mutually independent, and that zt = 0. In addition, suppose that β satisfies

N/(∥β∥2 T ) → B ≥ 0 and ∥β∥ → ∞. Then we have γ̂PCA
g

P−→ (1 +B)−1ηγ.

In the presence of strong factors, ∥β∥ ≍
√
N , which leads to B = 0 as T → ∞, so

there is no bias. In general, the consistency depends on the relative magnitude of N , T , and

∥β∥. When N and T are of the same order, ∥β∥ → ∞ is sufficient for the consistency of

risk premia estimation. This makes sense in that the eigenvalue of returns corresponding to

this factor is proportional to ∥β∥2, whereas the eigenvalues for the idiosyncratic errors are

bounded, so that ∥β∥ → ∞ guarantees the separation between factors and errors and hence

the identification of factors.

This example also shows that the risk premium estimator could be biased even if we have

consistent estimator of the factors. In fact, the estimated factors in V̂ are consistent under
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the assumptions of Proposition 7 in the sense that |Corr(V̂ , V )| P−→ 1.11 However, esti-

mating a large-dimensional vector β given V̂ remains a challenging problem, which requires,

additionally, B = 0, for consistency.

Section 2.5.1 of the appendix studies how several other estimators perform in a weak-

factor setting, including PLS, Ridge regression, and rpPCA. The analysis there reveals that

these estimators exhibit failures that mirror that of PCA, despite PLS leveraging information

from gt for supervision and rpPCA being specifically designed for weak factors. None of these

estimators, therefore, can address the bias originating from the presence of weak factors.

2.2.2.2 Our Solution: Supervised-PCA and Test Asset Selection

The results in the previous section shed light on the detrimental influence of weak factors

on the PCA-based estimator (as well as other existing approaches). As we mention in the

introduction, an important difference with the prior literature is that we do not view the

weakness of a factor as a property of the factor itself; rather, we see it as a property of the

universe of test assets that are used in the estimation. This leads us to find a potential

solution in modifying the set of test assets. The solution we propose is to screen test assets

and only keep those that have nontrivial exposure to the factor of interest gt. Then, if the

factor is strong within this smaller set of test assets, it is possible to apply PCA (or other

procedures discussed in the appendix) to recover its risk premium. The key idea behind the

screening approach is to remove those uninformative assets, focusing the estimation on a set

of assets whose exposures are large and dominate the estimation error in β.

To proceed with this idea, we formalize the problem by imposing an assumption that

there exists a subset I0 ⊂ ⟨N⟩,12 within which test assets feature a strong factor structure.

In other words, there exists a subset of assets that are sufficiently informative about latent

11. We can further establish that a sufficient condition for consistent recovery of factors is N/(∥β∥4 T ) → 0,
which clearly holds in the setup of Proposition 7.

12. We use ⟨N⟩ to denote the set of integers: {1, 2, . . . , N}.
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factors driving test asset returns. To be clear, we do not make any assumption about the

remaining test assets in the complement set of I0 — they may or may not be informative.

Such a set is thus not uniquely defined. In this regard, this assumption is relatively mild.

To see how this assumption helps, note that in the population model of Proposition 7,

the expected excess return of gt’s mimicking portfolio built only with test assets in I0 is

Cov(gt, rt,[I0])Cov(rt,[I0])
−1E(rt,[I0]) = ηΣvβ

⊺
[I0]

(β[I0]Σvβ
⊺
[I0]

+ Σu,[I0]
)−1β[I0]γ,

where rt,[I0] denotes the vector of returns of test assets in I0, and β[I0] is their corresponding

beta.13 It can be shown that (see the proof of a more general setting in Proposition 13 of

the appendix)

Cov(gt, rt,[I0])Cov(rt,[I0])
−1E(rt,[I0]) = ηγ +O(

∥∥∥β[I0]∥∥∥−2
). (2.5)

Since test assets in I0 feature a strong factor structure,
∥∥∥β[I0]∥∥∥2 ≍ |I0| =: N0,14 the approx-

imation error is thereby O(N−1
0 ). This result establishes the fact that in population using a

smaller number of sufficiently informative assets leads to an asymptotically vanishing error

in approximating the risk premium. Moreover, it holds that N0/(
∥∥∥β[I0]∥∥∥2 T ) = O(T−1),

i.e., factors are pervasive within this subset. Therefore, as long as we locate a subset that

satisfies the properties of I0, we can estimate gt’s risk premium consistently with PCA by

only using test assets within this subset.

In practice, it is the researcher who decides which test assets to employ in an empirical

study. Assuming that a strong factor structure exists at least within a subset of test assets

seems practical and plausible. That said, this assumption does rule out the case in which

exposures to a factor are uniformly small for all test assets. In this scenario, there is no

13. We use A[I] to denote a submatrix of A whose rows are indexed in I.

14. For an index set I ⊂ ⟨N⟩, we use |I| to denote its cardinality.

106



guarantee that SPCA can recover this factor, a limitation shared with other estimators.

Unfortunately, we do not know ex-ante such a set, i.e., which assets are informative about

the latent factor vt. Rather than using all assets, the idea of SPCA revolves around selecting

the most informative assets based on their covariances with gt. In the DGP of Proposition 7,

the group of assets exhibiting high covariances with gt comprises those with large magnitudes

of βs. Therefore screening via correlation selects a subset of assets satisfying the desirable

properties of I0.

Our proposed screening strategy echoes some of the practice in the empirical asset pric-

ing literature. Very often, test assets are formulated using the exact characteristics-sorted

portfolios that the factor of interest is generated from. For instance, Fama and French [1993]

use size and value double-sorted portfolios as test assets when estimating a factor model

that includes size and value as factors. In other cases, for nontradable factors, portfolios are

sorted based on individual stock betas with respect to the factor of interest.

These choices seldom are justified formally, and are often only valid in very special cases.

For example, building portfolios by sorting stocks on beta with respect to gt may inadver-

tently incorporate compensation for other correlated risks, introducing a bias when omitted

factors exist in the asset pricing model that is used to calculate the betas, not to mention the

issue of propagation of errors that arise in the estimation of the beta. Similarly, using Fama-

French portfolios as test assets assumes implicitly that they span the investment universe.

This assumption contradicts the recent asset pricing literature, from which numerous factors

or anomalies emerge. While our methodology formalizes the insight behind these traditional

procedures, the fundamental motivation behind our approach is precisely to circumvent the

adoption of arbitrary priors when selecting assets.

We next formally present our SPCA procedure in the simple one factor setting as dis-

cussed in the previous proposition, which helps illustrate the intuition behind our proposal

and facilitates the comparison with existing estimators (the next section is devoted to the
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general case).

Algorithm 6 (SPCA-based Estimator of Risk Premia for a Single Factor Model (p = 1)).

The procedure is as follows:

Inputs: R̄ and Ḡ, a 1× T vector.15

S1. Select a subset Î ⊂ ⟨N⟩: Î =
{
i
∣∣∣T−1|R̄[i]Ḡ

⊺| ≥ cq

}
, where cq is the (1− q)-quantile of{

T−1|R̄[i]Ḡ
⊺|
}
i∈⟨N⟩

.

S2. Repeat S1. – S3. of Algorithm 5 with selected return matrix R̄
[Î]

and Ḡ, and p = 1.

Outputs: γ̂SPCA
g := η̂γ̂, V̂ , η̂, and γ̂.

SPCA (Algorithm 6) adds the screening step, S1, to the PCA-based risk-premium esti-

mation method of Giglio and Xiu [2021] (Algorithm 5). In this step, out of the N assets

available, only a subset Î is selected, and the three steps of Algorithm 5 are applied to this

subset only.

The selection is operated by computing the absolute value of the covariance between

each of the N assets and the factor gt: (T−1|R̄[i]Ḡ
⊺| for each asset i). Only those assets

for which the magnitude of this covariance is large enough are selected: specifically, the top

q% of them. Therefore, SPCA involves a tuning parameter, q, which plays a crucial role

in determining how many assets we use to extract the factor. Note that the fact that Î

incorporates information from the target, gt, reflects the distinctive nature of a supervised

procedure (from which the name supervised -PCA).

We next prove that SPCA is consistent in the presence of weak factors.

Proposition 8. Suppose that logN/T → 0 and test asset returns follow a single-factor

model in the form of (2.1) and that gt satisfies (2.4), with ut, vt, and zt i.i.d. normally

distributed and independent from each other. The loading matrix β satisfies ∥β∥MAX ≲ 1

15. We discuss the case of a multivariate (d× T ) Ḡ in Section 2.2.2.4.
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and there exists a subset I0 ⊂ ⟨N⟩ such that
∥∥∥β[I0]∥∥∥ ≍

√
N0 where N0 = |I0| → ∞.

Then, for any choice of q in Algorithm 6 such that qN/N0 → 016 and qN → ∞, and that

|β|{qN+1} ≤ (1 + δ)−1|β|{qN}
17 for some δ > 0, where |β|{k} denotes the kth largest value

in
{
|β[i]|

}
i∈⟨N⟩

, we have γ̂SPCA
g

P−→ ηγ.

To gain a better understanding of the intuition, let us delve into some key steps of the

proof, which is detailed in the appendix. Given a specific choice of the tuning parameter

q, we can identify the population counterpart of Î, denoted as I. This set I consists of the

qN largest entries of β in terms of their magnitudes, as specified before Assumption 13 in

the appendix.18 The proof of Proposition 8 establishes the consistency of the selected set

Î (which contains the top qN test assets with the largest sample covariances with gt) with

respect to I in the following sense: P(Î = I) → 1.

This result is valid for two reasons. Firstly, the estimation error for the (population)

covariance with gt for any test asset is of order T−1/2. By applying the large deviation bound

in high-dimensional statistics, we can establish that the estimation error for covariances

between gt and all test assets is uniformly bounded by (logN)1/2T−1/2. Consequently, to

ensure consistent estimation of all covariances, it is necessary that logN/T → 0.

Secondly, the condition that there exists I0 such that
∥∥∥β[I0]∥∥∥2 ≍ N0 and qN/N0 → 0

guarantee the existence of at least qN test assets with non-zero population covariances

with gt. Thus, according to the definition of I, the smallest population covariance with

gt among all test assets in I must be non-zero. This suggests that
∥∥∥β[I]∥∥∥2 ≍ |I| = qN .

Furthermore, since we assume a non-vanishing gap between the (qN)th and (qN + 1)th

16. It may be tempting to use qN/N0
P→ const < 1. However, this is not viable because N0 and I0 are

not precisely defined in the assumption
∥∥β[I0]

∥∥ ≍
√
N0. That is, if we replace N0 by N0/2, the previous

assumption still holds but qN/N0 might be greater than 1.

17. This technical condition on |β|{qN+1} simply states that the test assets should have (asymptotically)
distinct risk exposure. It is a rather mild assumption that simplifies the proof.

18. It is crucial to distinguish between I and I0. I is uniquely defined for each q that satisfies the conditions
of I0, whereas I0 is a general mathematical abstraction not uniquely defined.
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population covariances, it thereby follows that the set of test assets with largest population

covariances must coincide with those having the largest sample covariances, because the

vanishing estimation error is dominated by this non-vanishing gap in the asymptotic context.

Given that the identified set I can function as I0 (since
∥∥∥β[I]∥∥∥2 ≍ |I|), and as demon-

strated in equation (2.5), we can directly approximate the risk premium of gt using its

mimicking portfolio built on this subset I of test assets. The consistency of risk premium

estimate thereby follows from the consistency of Î in the recovery of I.

Proposition 7 and Propositions 10 - 12 in the appendix show that in the single factor

case, the consistency of PCA, Ridge, PLS, and rpPCA requires B = 0. Suppose ∥β∥2 = Nv,

for some v > 0, then B = 0 is equivalent to N1−v/T → 0. The consistency of SPCA, as

shown by Proposition 8, nonetheless, only requires (logN)/T → 0.19

2.2.2.3 SPCA in the General Case: Selection and Projection

Propositions 7 - 8 focus on an unrealistic single-factor model since they are meant to illustrate

the failure of PCA due to the presence of a weak factor as well as the intuition behind our

procedure. In general, the DGP of returns is likely driven by more than one factor; in

addition, these factors will generally have different strength in any specific cross-section of

test assets. Note also that gt could have more than one dimension in the general setup

(2.4). In this section, we show how to generalize SPCA to the case where multiple factors

of distinct strength are present.

To begin with, in the same spirit of Proposition 7, we can show that a general necessary

19. Another idea that shares the spirit of SPCA is the scaled-PCA proposed by Huang et al. [2022], which
uses regression coefficients of Ḡ on R̄ to weight R̄ before feeding it into the PCA procedure. An advantage of
the scaled PCA approach is that it does not involve any tuning parameter. Nonetheless, the scaled PCA still
assigns weights of 1/

√
T magnitude to assets that have zero-correlations with the target variable, whereas

our approach assigns zero weights to such assets. As a result, our procedure only requires logN to be small
relative to T , whereas both the scaled PCA and PCA require N to grow no faster than a certain polynomial
rate relative to T .
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condition for the consistency of PCA in a multi-factor model is that

N/(λmin(β
⊺β)T ) → 0. (2.6)

If this holds, it means that even the weakest one among all p factors in (2.1) is sufficiently

strong that it can be recovered by PCA. Then, the three-pass estimator of Giglio and Xiu

[2021] would properly recover risk premium for any factor gt. We thereby define weak

factors as those for which test asset exposures fail condition (2.6). This is a compact formal

description of the non-ideal finite-sample environment encountered in practice.20

Just like in the single-factor case, in the multi-factor case condition (2.6) can fail if one

of the factors is not pervasive. But in the multi-factor case, it can also happen that all

factors are individually strong, and condition (2.6) still fails because the factors’ exposures

are highly correlated. Consider, for example, a two-factor model where the beta matrix has

the following form:

β =



β11 β12

β21 β22


, (2.7)

where β11 and β12 are N0 × 1 vectors, β21 and β22 are (N − N0) × 1 vectors, and N0 is

small relative to N . Suppose that β21 = β22. In this setup, we can identify two groups of

test assets. The first one is a small group of N0 test assets, with exposures β11 to the first

factor and β12 to the second factor. The second is a large group of (N − N0) assets, that

have the same exposure to both factors (since β21 = β22). In this case, we can show that

20. Note that rt is related to gt through vt. The loading of gt on vt is a low dimensional parameter η
specific to each gt, whereas the loading of rt on vt is a high-dimensional vector β independent of gt. The
advantage of formulating the condition in terms of λmin(β

⊺β) without η guarantees the applicability of our
conclusion across all factors of interest.
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condition (2.6) can fail: even if each factor is strong individually, there is a “rank deficiency”

issue in the betas. The reason is that most of the asset (group 2) do not contain information

that can separate the risk premia of the two factors, because they are equally exposed to the

two. This loss of information turns out to have exactly the same effect on estimation and

inference as the weak factor issue.21 We need a procedure that consistently estimates risk

premia in this case as well.

It is also important to note that in the general case with multiple factors of potentially

different strength, a simple extension of Algorithm 6, operating an initial screening (S1) and

then extracting multiple factors via PCA (S2) would not actually work to recover all factors.

To see this, take (2.7) again as an example. Suppose now that β21 ̸= β22, but β22 = 0: that

is, most of the assets have zero exposure to the second factor. Consequently, the first factor

is strong, while the second factor is weak.22 Now suppose that η = (1, 1), implying that the

observed factor g is correlated with both factors and, by extension, with all the test assets.

In this scenario, the determination of which assets to exclude via screening hinges on the

betas of these test assets. Should a majority of the selected assets pertain to the second

group, the subsequent application of PCA in step S2 would only recover the first factor.

This would occur if condition (2.6) fails for the selected assets. On the other hand, if many

of the selected assets belong to the first group, PCA applied to them has the potential to

recover both factors. In this scenario, the first principal component may capture a linear

combination of both the strong and weak factors. This example demonstrates that even

though screening assets ensures that the first principal component after screening recovers

one factor (which could be the strong factor, the weak factor or their mixture on the basis

of the original cross-section), there is no guarantee that this procedure can solve the weak

21. Formally, we can show that λmin(β
⊺β) ≤ ∥β11 − β12∥2 /2 ≲ N0. As a result, N/(λmin(β

⊺β)T ) ≳
N/(N0T ), which does not necessarily converge to 0 if N0 and T are small, so that the condition (2.6) could
fail.

22. It is easy to show that in this case λmin(β
⊺β) ≤ ∥β12∥2 ≲ N0.
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factor issue in one shot.

Next we provide another example, that shows that in some situations screening can

sometimes eliminate too many assets, making a strong factor model become weak or even

rank-deficient. Suppose that β has the following form:

β =



β11 β11

0 β22


, (2.8)

where β11 and β22 are N/2 × 1 non-zero vectors satisfying ∥β11∥ ≍ ∥β22∥ ≍
√
N . Clearly,

β is full-rank and both factors are strong. Therefore, a standard PCA procedure should

work smoothly. Suppose in addition that η = (1, 0) (i.e., gt = v1t) and that v1t and v2t are

uncorrelated. Then it implies that gt is uncorrelated with the second half of test assets in rt,

so only those test assets within the first half would remain, should screening be applied with

gt before extracting the principal components. In this example, however, the remaining test

assets have perfectly correlated exposures to both factors, so that effectively only one factor,

v1t + v2t, is left. This example shows once again that the one-step supervised procedure

(screening once and then applying PCA) may fail at extracting all factors in a multi-factor

setting.23

To address the aforementioned issues, we propose a multi-step version of SPCA, that

iteratively conducts selection and projection. Step S1 of Algorithm 6 described above –

valid when there is only one factor – can help identify one strong factor from a selected

subset of test assets. In a nutshell, the multi-step SPCA, described below in Algorithm 7

iteratively applies Algorithm 6 to extract a new factor, with a projection step designed to

23. This one-step procedure was originally called Supervised PCA, as proposed by Bair et al. [2006] in
the context of prediction. We propose below an iterative version that can cope with a general multi-factor
model. We still use the term Supervised PCA for this iterative procedure.
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ensure that each new factor is orthogonal to the estimated factors in the previous steps,

similar to the factors extracted by the standard PCA.

Formally, the algorithm is given by:

Algorithm 7 (Selection and Projection). The iterative SPCA procedure for risk premia

estimation is as follows:

Inputs: R̄(1) := R̄, r̄(1) := r̄, and Ḡ(1) := Ḡ, a d× T vector.

S1. For k = 1, 2, . . . iterate the following steps using R̄(k), r̄(k), and Ḡ(k):

a. Select an appropriate subset Îk ⊂ ⟨N⟩.

b. Repeat S1. – S3. of Algorithm 5 with selected return matrix
(
R̄(k)

)
[Îk]

and Ḡ(k)

to extract only the first principle component. Denote the estimates as V̂(k), η̂(k),

γ̂(k).

c. Estimate the exposure of R̄(k) to V̂(k) by β̂(k) = T−1R̄(k)V̂
⊺
(k)

.

d. Obtain R̄(k+1) = R̄(k) − β̂(k)V̂(k), r̄(k+1) = r̄(k) − β̂(k)γ̂(k), and Ḡ(k+1) = Ḡ(k) −

η̂(k)V̂(k).

Stop at k = p̂, where p̂ is chosen based on some proper stopping rule.

S2. Estimate risk premia by γ̂SPCA
g =

∑p̂
k=1 η̂(k)γ̂(k).

Outputs: γ̂SPCA
g , η̂ = (η̂

⊺
(1)

, · · · , η̂⊺
(p̂)

)⊺, γ̂ = (γ̂(1), · · · , γ̂(p̂))⊺, V̂ = (V̂
⊺
(1)

, · · · , V̂ ⊺
(p̂)

)⊺ and

β̂ = (β̂(1), · · · , β̂(p̂)).

Each iteration k of the procedure recovers one latent factor V̂(k), estimates its risk pre-

mium γ̂(k), and the exposure of gt to that factor, η̂(k). In step S1, there is first asset selection

(S1.a). Next, the three-step estimator of risk premia of Giglio and Xiu [2021] is applied using

the selected assets (S1.b) to recover the kth factor V̂(k) in addition to γ̂(k) and η̂(k), which

are specific to that factor. Then, in S1.c, we project the returns of all assets (not just those
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selected) on the estimated factor V̂(k), and in step S1.d we compute the residuals of this

projection for returns and the factor gt itself. Therefore, at the end of step S1, we have

completely eliminated the effect of the kth factor on returns and the target factor gt. We

then repeat S1 again, this time using the residuals of returns and gt, looking for the next

factor. Iteration continues for p̂ steps. At the end, step S2 combines the γ̂(k) and the η̂(k)

obtained at each step into an estimator γ̂SPCA
g for the risk premia of gt.

Algorithm 7 requires an appropriate choice of Îk and a stopping rule. One choice for Îk

is:24

Îk =
{
i
∣∣∣T−1

∥∥∥(R̄(k))[i]Ḡ
⊺
(k)

∥∥∥
MAX

≥ c
(k)
q

}
,

where c
(k)
q is the (1− q)th-quantile of

{
T−1

∥∥∥(R̄(k))[i]Ḡ
⊺
(k)

∥∥∥
MAX

}
i∈⟨N⟩

. (2.9)

Correspondingly, we set the stopping criterion as:

c
(k)
q < c, for some threshold c. (2.10)

In other words, we select test assets that have predictive power for at least one variable in gt

and stop when most test assets are uncorrelated with all variables in gt. With a good choice

of tuning parameters, q and c, the iteration stops as soon as most projected residuals of

returns appear uncorrelated with the projected residuals of gt, which implies that all factors

that are correlated with gt are successfully recovered.

It is helpful to revisit the aforementioned examples and understand how the new pro-

cedure fixes issues with the one-step SPCA. Recall that in example (2.7), β22 = 0 and

24. Using covariance for screening allows us to replace all Ḡ(k) in the definition of Îk and Algorithm 7 by
Ḡ, that is, only the projections of R̄(k) and r̄(k) are needed, because this replacement would not affect the
covariance between Ḡ(k) and R̄(k), and in turn, the test assets after screening and the estimates of η̂(k). We
use this fact in the proofs, which simplifies the notation. We can also use correlation instead of covariance in
constructing Îk. While this does not affect the asymptotic analysis, we find correlation screening performs
slightly better in finite samples.
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gt = v1t + v2t. As discussed previously, screening will select a subset of q assets that are

spread across both groups of assets since they are all correlated with gt. Consequently, ap-

plying PCA to them will identify a factor that is in general spanned by v1t and v2t. Even if

this first step only recovers the strong factor v1t, once we project rt and gt onto this factor

following Algorithm 6, both residuals should only depend on v2t. Subsequently, applying

screening again to these residuals will leave us with only the test assets within the first group

of assets, to which applying PCA can recover v2t. In cases where a linear combination of

v1t and v2t are recovered in the first step, after projection the residuals feature a strong

factor (again a linear combination of v1t and v2t but orthogonal to the first linear combina-

tion), since the second group of N −N0 assets have exposure to it. Therefore, a subsequent

screening and PCA suffice to recover this factor.

Similarly in example (2.8), the second half of the assets will be eliminated in the first step

when using gt = v1t to screen test assets. The returns for the remaining (first half) assets

load on v1t+ v2t with a common loading matrix β11. Applying PCA to these assets thereby

finds (v1t + v2t)/
√
2 as the first factor (up to a sign, assuming v1t and v2t share the same

variance). Following Algorithm 6, we then obtain residuals from projections of rt and gt

onto this factor. It is easy to see that the residuals of the second half of rt and the residuals

of gt both load on a single strong factor (v1t − v2t)/
√
2 yet the first half of the residuals are

purely idiosyncratic. Applying screening plus PCA will successfully recover this factor, and

hence the span of the factor space.

To formally establish the consistency of this estimator, we introduce an assumption akin

to the single factor case. Specifically, we require that a subset of assets, indexed by I0,

satisfies that all factors are strong within this subset. In other words, λmin(β
⊺
[I0]

β[I0]) ≍ N0,

where N0 = |I0| → ∞. Because the number of factors, p, is finite, such a subset I0 always

exists as long as for each factor we can locate a sufficiently large subset, respectively, within
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which this factor can be extracted consistently.25 Proposition 13 of the appendix establishes

that test assets in such a subset suffice to serve as basis assets, building on which a mimicking

portfolio can approximate the risk premia of any observable factor. With this identification

assumption, along with moment conditions given in the appendix, the following theorem

establishes the consistency of the SPCA estimator:

Theorem 6. Suppose that test asset returns in rt follow (2.1), the factor proxies in gt satisfy

(2.4), and that Assumptions 7-14 hold. If log(NT )(N−1
0 + T−1) → 0 then for any tuning

parameters c and q that satisfy

c → 0, c−1(logNT )1/2(q−1/2N−1/2 + T−1/2) → 0, qN/N0 → 0, (2.11)

we have γ̂SPCA
g

P−→ ηγ.

The screening step in Algorithm 7 ensures that the selected test assets or their residuals

must encompass one strong factor, as they have high correlations with gt. As the SPCA

procedure unfolds, each iteration selects a distinct subset of test assets. By amalgamating

all such subsets, we obtain a subset of assets within which all factors are potentially strong,

given that the number of factors is finite. However, this procedure may not recover all factors

that drive returns. The number of factors that SPCA can recover depends on the interplay

between η and β as well as the tuning parameters in a complex manner.26 Some of the

factors that SPCA omits might even be strong! Intuitively, only factors correlated with gt

are guaranteed to be recovered. This is the trade-off that arises for using gt as a supervisory

signal.27 Nonetheless, missing any factors in the SDF that are uncorrelated with gt does

25. This assumption is weak in that it does not imply all factors should have identical strength with respect
to the entire cross-section of assets in rt. In addition, different groups of assets could be exposed to different
factors.

26. We explicitly characterize this number, denoted by p̃, given in the appendix following Assumption 13.

27. In the context of forecasting, Giglio et al. [2023] provide convergence rate of the estimated factor
space, spanned by the factors that are correlated with the variables used for supervision in a similar SPCA
procedure.
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not affect the consistency of the estimate of the risk premia of gt. This holds true because

such factors do not help price gt. Of course, this result will need to be strengthened if the

objective is to recover the entire SDF, a problem we tackle in Section 2.2.3.

The consistency result in Theorem 6 does not rely on Gaussian error assumptions nor on

an assumption that all factors have the same strength with respect to all test assets. The

assumption on the relative size of N and T is also quite flexible, in contrast with existing

results on factor models in the literature, where N cannot grow at a rate exceeding a certain

polynomial function of T .

2.2.2.4 Asymptotic Inference on Risk Premia

In this section we develop the asymptotic distribution of the risk premia estimator from

Algorithm 7. Naturally, deriving asymptotic inference requires stronger assumptions than

those required for consistency discussed above. To consistently estimate the risk premia of

gt, one only needs recover factors that are correlated with gt. Nonetheless, if SPCA misses

factors that are in the SDF but are not correlated with gt, consistency is maintained, but

inference is undermined, because the omitted factors may contribute a higher-order error

that invalidates the central limit result.

More specifically, the conditions in Theorem 6 do not guarantee that γ̂SPCA
g converges

to ηγ at the desirable rate T−1/2. The major obstacle lies in the recovery of factors not

strongly correlated with gt, which we can explain with the previous single-factor example.

Recall that we use the sample correlation/covariance between rt and gt to screen test

assets. Condition (2.11) necessitates two key considerations: First, it requires that c → 0,

allowing the iteration procedure to continue until the selected rt exhibit asymptotically

diminishing correlations with gt. Simultaneously, it demands that c
√
T → ∞ and c

√
qN →

∞. In other words, c must be sufficiently large to supersede the estimation error in covariance
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estimates during the screening step, which is of order T−1/2,28 and to dominate error in the

construction of residuals in the projection step when multiple steps are involved, an error of

order T−1/2+(qN)−1/2. However, for any given threshold, say, c = T−1/4, if it happens that

η ≍ T−1/3 < T−1/4, then screening based on gts’ correlation with rt will likely not select

any assets, which in turn leads to the termination of Algorithm 7 and no discovery of factors.

Our procedure thereby gives a risk premium estimate of 0, which is certainly consistent, but

the estimation error is of an order T−1/3 > T−1/2, so that the usual central limit theorem

(CLT) fails. In general, this problem arises due to the possibility of not identifying all factors

in the DGP. Once all factors are recovered, the CLT holds regardless of the magnitude of

η. To make correct inference, we thus need a stronger assumption that eliminates scenarios

like this.

It appears that if η ∈ Rd×p meets the condition λmin(η
⊺η) ≳ 1, we can rule out the

possibility of missing factors. This condition necessitates that each latent factor maintains a

correlation with at least one of the observable variables within gt. Consequently, this implies

that d must be greater than or equal to p, meaning we require gt to possess at least the same

number of variables as the true number of factors. Meanwhile, our algorithm will not select

more factors than needed, as we stop the iteration as soon as c(k)q is sufficiently small (below

c), at which points no common factors are left in the residuals of gt and rt. We thus obtain

the consistency result on the number of factors, which in turn leads to the CLT result on

risk premia. Formally, we have

Theorem 7. Under the same assumptions as Theorem 6, if we further have T−1/2N0 → ∞,

Assumption 15 and λmin(η
⊺η) ≳ 1, then for any tuning parameters c and q in (2.9) and

(2.10) satisfying

c → 0, c−1(logNT )1/2(q−1/2N−1/2 + T−1/2) → 0, qN/N0 → 0, q−1N−1T 1/2 → 0,

28. Even if gt is uncorrelated with the test assets, their sample covariances can be as large as T−1/2.
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we have that p̂ defined in Algorithm 7 satisfies P(p̂ = p)→1, and that the estimator con-

structed via Algorithm 7 satisfies γ̂SPCA
g − ηγ = OP(T

−1/2) +OP(q
−1N−1). Furthermore,

we obtain a CLT:

√
T
(
γ̂SPCA
g − ηγ

)
d→ N (0,Φ) ,

where Φ is given by

Φ =
(
γ⊺Σ−1

v ⊗ Id
)
Π11

(
Σ−1
v γ ⊗ Id

)
+
(
γ⊺Σ−1

v ⊗ Id
)
Π12η

⊺ + ηΠ
⊺
12

(
Σ−1
v γ ⊗ Id

)
+ ηΠ22η

⊺,

and Π11, Π12, and Π22 are dp× dp, dp× p, and p× p matrices, respectively, defined as:

Π11 = lim
T→∞

1

T
E (vec(ZV ⊺)vec(ZV ⊺)⊺) ,

Π12 = lim
T→∞

1

T
E
(
vec(ZV ⊺)ι

⊺
TV

⊺) ,
Π22 = lim

T→∞
1

T
E
(
V ιT ι

⊺
TV

⊺) .
In regard to our theoretical findings, several key points merit attention. Firstly, Theorem

7 hinges on the existence of a tuning parameter, q, which must satisfy two conditions:

q−1N−1T 1/2 → 0 and qN/N0 → 0. A necessary condition for the existence of such a q is

thus T 1/2/N0 → 0.

Secondly, the estimation error of γ̂SPCA
g − ηγ consists of two components. A portion of

this error stems from the error accumulation at each step of the iteration in Algorithm 7. This

accumulated error is compounded in each step k at most by a factor of
√
|Îk|/λ̂(k), where

λ̂(k) =

∥∥∥∥(R̄(k)

)
[Îk]

∥∥∥∥2 /T . Importantly, the assumption that there exists a subset within

which factors are pervasive ensures that λ̂(k) ≍P qN = |Îk|, implying that the accumulated

error is only magnified by a constant factor with each iteration of SPCA. Ultimately, our

proof establishes that this iterative process results in an overall estimation error in risk premia
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estimates, that is of the order OP(T
−1/2 + q−1N−1). The condition q−1N−1T 1/2 → 0 thus

guarantees that the OP(q
−1N−1) term does not influence the asymptotic distribution. The

derivation of the error rate for an iterative procedure is non-trivial, constituting our primary

contribution to the econometric literature on factor models.

Thirdly, the estimation error of the factor loading has no impact on the asymptotic

variance of risk premia, as the expression of Φ demonstrates. This stands in contrast to

the classical Fama-MacBeth regression setting, where Shanken’s adjustment term (Shanken

[1992]) is crucial. This difference is due to the fact that when dealing with a large cross-

sectional dimension (N → ∞), this adjustment term vanishes asymptotically.29 To make

inference feasible, we implement the same Newey-West-type estimator for Φ as in Section

4.5 of Giglio and Xiu [2021], since each component of Φ can be estimated from the outputs

of the SPCA algorithm. These estimates are consistent up to some rotation matrices which

will cancel each other and yield a consistent estimate of Φ.

Fourthly, Theorem 7 suggests that, with probability approaching one, we can expect

a perfect recovery of the number of factors p. Yet, in any finite sample, perfect recovery

remains challenging. Notably, the assumptions made here are considerably less stringent

compared to the prevalent factor assumptions found in the literature, see, e.g., Bai [2003]

and Bai and Ng [2002]. In these previous studies, inference theory for factor models also

relies on the perfect recovery of the count of (strong) factors. We explore the finite sample

behavior of SPCA through simulations in Section 2.3.

Lastly, in the special case when the returns of test assets are exclusively driven by strong

factors, SPCA is asymptotically equivalent to PCA, contingent upon the appropriate selec-

tion of the tuning parameters c and q. Otherwise, SPCA is less efficient – either due to an

excessively small choice of q to the extent that the OP(q
−1N−1) term plays a dominant role

in the estimation error in finite sample (note that PCA corresponds to the case of q = 1), or

29. For a more detailed discussion on this point, please refer to equation 45 of Giglio et al. [2022], and the
discussion that follows it.
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to the fact that some factors (specifically those uncorrelated with gt) may not be recovered

by SPCA. The former loss of efficiency can be mitigated through careful tuning parameter

selection; the latter typically hinges on the unknown values of β and η, which can be resolved

with a multivariate target satisfying λmin(η
⊺η) ≳ 1.

2.2.2.5 Tuning Parameter Selection

While the enhanced robustness to weak factors is an advantage, it comes at the expense of

introducing an additional tuning parameter. To employ the SPCA estimator, we need make

choices regarding two tuning parameters: q and c. The parameter q governs the subset size

employed in PCA construction, while c determines the stopping rule and consequently the

number of factors, p. In contrast, PCA (and other estimators like PLS) essentially require

the selection of only p. We have established in Theorem 7 that we can consistently recover

p, as long as certain conditions are met by q and c.

In theory, the textbook approach to choosing a tuning parameter for parameter estima-

tion revolves around the analytical minimization of the root-mean-squared error (RMSE) of

the estimator.30 This approach effectively balances the trade-off between bias and variance

inherent in the estimation. Regrettably, this method necessitates intricate finite sample an-

alytical calculations of the RMSE, often relying on strong assumptions regarding the DGP.

In our context, assumptions of normal distribution for returns and certain distributional

properties and sparsity conditions for betas are likely necessary. Complicating matters fur-

ther, our iterative SPCA procedure compounds the difficulty of this analysis, rendering it

practically infeasible. Additionally, this RMSE-based criterion primarily hinges on statistical

considerations, lacking economic relevance.

In lieu of this, we instead opt for the utilization of the R2 of the hedging portfolio for gt

30. Note that in the realm of machine learning, the prevailing approach involves leaning on the prediction
RMSE derived from a validation sample, where the actual values of the prediction target are available. This
stands in contrast to the estimation problem, where the true values are never known.
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built by SPCA as a criterion, which is both simpler to apply and justified from an economic

perspective. Recall that any estimator of risk premia for a nontradable factor explicitly or

implicitly builds a hedging portfolio, or a factor-mimicking portfolio, for gt, and computes

the risk premium as the average excess return of that portfolio. The empirical R2 obtained

by different estimators then has an economic meaning: it reveals the hedging efficacy of

the factor mimicking portfolios constructed (explicitly or implicitly) by any risk premia

estimators.31

Beyond the economic motivation, the R2 is a useful criterion from a statistical perspective,

because attaining an optimal R2 in a validation sample stands as a sufficient condition for

valid selection of tuning parameters, which in turn guarantees consistency of risk premia

estimates, see Proposition 14 in the appendix for a rigorous statement.

Furthermore, in practice we can consider directly tuning the parameter p instead of c,

as it offers greater interpretability, restricts itself to integer values, and is well-informed by

the scree plot, providing insights into reasonable ranges for p. Regarding the parameter q,

opting for larger values makes SPCA’s performance resemble that of PCA, thus reducing its

robustness against weak factors. Conversely, smaller values of q raise the risk of overfitting,

resulting in a high in-sample R2 but a low out-of-sample one. We suggest tuning ⌊qN⌋

instead of q, because the former can only take integer values, and that multiple choices of

the latter may lead to the same integer values of the former.

In our applications, we select tuning parameters based on cross-validation (CV) in a

training sample, that proceeds as follows. We split the sample into three folds. We then

use each of the three folds, in turn, for validation while the other two are used for training.

We select the optimal tuning parameters according to the average time series R2 in the

validation folds.

31. To be clear, while comparing R2s provides an insightful depiction of the empirical performance of the
hedging portfolios, this cannot be interpreted as proof of the superiority of one estimator over another (which
is instead established based on the theoretical properties, like consistency and efficiency, discussed in the
previous sections).
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2.2.3 Recovery of the Stochastic Discount Factor

The estimation of risk premia for observable factors gt, studied in Section 2.2.2, is a natural

application of the supervised PCA approach, since gt can be used to supervise the latent

factor extraction. In this section we explore another application in which observable factors

help extract latent factors: a diagnostic procedure for observable factor models.

The asset pricing literature has proposed a variety of models composed of a small number

of tradable factors gt: the CAPM, the Fama-French 3 or 5 factor models, etc. These models

are typically evaluated by computing the alphas of a universe of test assets, and testing

whether these alphas are different from zero. This is clearly a valid test for a model, but it

gives only limited insights about the reason why the model is (as is often the case) rejected

statistically. Specifically, it does not clarify if the model’s failure is due to the presence of

true alphas or the omission of priced factors. Our SPCA procedure helps shed light on this

by recovering strong and weak latent factors that drive the cross-section of returns, and

evaluating whether those factors are indeed spanned by the observable factor model gt. This

helps ascertain whether the model is lacking certain factors.

A last point relates to the universe of test assets. The asset pricing literature (e.g.

Lewellen et al. [2010]) has emphasized that using a large cross-section of test assets is im-

portant for evaluating asset pricing model, as it can improve the power of the tests. There

is, however, a downside in expanding the set of test assets: the possibility that many of the

added assets may have little exposure to some factors, introducing a weak factor problem.

The ability of SPCA to handle weak factors also frees the researcher from worrying about

adding assets to the universe, not only in risk premia estimation, but also in performing

diagnostic tests like the one we explore in this section.
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2.2.3.1 Consistency of the SDF Estimator

We first prove that, under certain conditions, SPCA does consistently recover the SDF even

in the presence of weak factors. Using the outputs of Algorithm 7, we can estimate the SDF

as:

m̂SPCA
t = 1− γ̂⊺v̂t, where v̂1, · · · , v̂T are the columns of V̂ . (2.12)

In the appendix, we prove the following theorem, which not only shows the consistency of

the recovery of the SDF, but also derives the rate at which the recovery occurs.

Theorem 8. Suppose the same assumptions as in Theorem 7 hold. In addition, we have

Assumption 16. Then the estimator (2.12) satisfies

1

T

T∑
t=1

|m̂SPCA
t −mt|2 ≲P

1

T
+

logN0

N0
. (2.13)

The theorem shows that consistent estimation of the entire SDF time-series is possible

in terms of average ℓ2-distance, but under specific conditions. Firstly, for every weak latent

factor in vt, there must be a sufficiently large subset of assets with exposure to that factor.

This condition, reflected in the requirement of a large N0, is also necessary for the consistent

estimation of risk premia.

In addition, for each latent factor in vt, there must be at least one observable factor in

gt that is correlated with that latent factor. This second assumption is not only needed for

asymptotic inference on risk premia but also for SDF recovery here. In cases where gt does

not correlate with a latent factor, that latent factor can potentially be missed by SPCA,

thereby hindering SDF recovery.
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2.2.3.2 Comparison with Alternative Procedures of SDF Estimation

There are a number of alternative approaches for SDF estimation with latent factors pro-

posed in the literature, e.g., the selection/shrinkage approach by Kozak et al. [2020] and the

risk premia PCA by Lettau and Pelger [2020]. In what follows, we provide a theoretical

comparison of Lasso- and Ridge-based estimators in our general framework where factors

can potentially be weak. The ridge estimator shares the spirit of PCA-based estimators

as shown by Giglio and Xiu [2021] and propositions in previous sections. Examining the

asymptotic behavior of these two approaches provides useful insights that may guide their

applications in practice. Developing the asymptotic guarantee of these estimators is yet

another contribution we make to the existing literature on SDF recovery.

Kozak et al. [2020] consider an SDF in the form of (2.3), whereas we represent it as in

(2.2). Prior to the asymptotic analysis of their estimators, we first establish the asymptotic

equivalence of these two definitions in our large-N setting:

Proposition 9. Suppose that test asset returns in rt follow (2.1), and Assumption 16 holds.

Then as N → ∞, we have

1

T

T∑
t=1

|mt − m̃t|2 ≲P
1

λmin(β
⊺β)

.

Effectively, Proposition 9 proves that there is no ambiguity with respect to the defi-

nition of the estimand, since the two estimands are asymptotically equivalent as long as

λmin(β
⊺β) → ∞. Given that this exact assumption is necessary for Theorem 8, and that

λmin(β
⊺β) ≳ N0, we can replace mt in the left-hand side of (2.13) by m̃t.

Kozak et al. [2020] suggest estimating the SDF by solving an optimization problem:

b̂ = argmin
b

{
(r̄ − Σ̂b)⊺Σ̂−1(r̄ − Σ̂b) + pµ(b)

}
, (2.14)
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with which the estimated SDF is given by

m̂t = 1− b̂⊺(rt − r̄). (2.15)

In the above, Σ̂ is the sample covariance matrix of rt and pµ(b) is a penalty term through

which economic priors are imposed. Depending on the penalty function, we will denote the

resulting estimator of m by m̂
Ridge
t or m̂Lasso

t .

The objective function in (2.14) appears to require the inverse of Σ̂, which is not well-

defined when N > T . Instead, we suggest optimizing an equivalent but different form of

(2.14):

b̂ = argmin
b

{
b⊺Σ̂b− 2b⊺r̄ + b⊺Σ̂b+ pµ(b)

}
, (2.16)

which avoids the calculation of Σ̂−1.

The following result sheds light on the asymptotic properties of this estimator in the

cases of pµ(b) = µ ∥b∥1 and pµ(b) = µ ∥b∥2, respectively.32

Theorem 9. We investigate two distinct scenarios.

(a) Suppose that rt is driven by p latent factors as in (2.1). With pµ(b) = µ ∥b∥2, if

(N + T )/(λpT ) → 0 and Assumptions 10-13, 16-18 hold, we have

1

T

T∑
t=1

|m̂Ridge
t −mt|2 ≲P

1

T
+

N + T

λpT
,

where λp is the p-th largest eigenvalue of βΣvβ
⊺. Since λp ≍ λmin(β

⊺β), we can replace

mt in the above equation by m̃t.

(b) Suppose that the true SDF satisfies E(m̃2
t ) ≲ 1. With pµ(b) = µ ∥b∥1, if Assumptions

32. We use ∥∥0, ∥∥1, and ∥∥ to denote the ℓ0-, ℓ1-, and ℓ2-norms of a vector, respectively.
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16, 17 hold, we have

1

T

T∑
t=1

|m̂Lasso
t − m̃t|2 ≲P ∥b∥1

√
logN

T
. (2.17)

If, in addition, it holds that λmin(Σ) ≳ 1, and ∥b∥20 logN/T → 0, then we have a

stronger result

1

T

T∑
t=1

|m̂Lasso
t − m̃t|2 ≲P ∥b∥0

logN

T
. (2.18)

Interestingly, both the Ridge and Lasso approaches deliver consistent estimates of the

SDF, albeit under distinct sets of assumptions.

In the case of Ridge, its convergence rate hinges significantly on the strength of the

weakest factor. If condition (2.6) is not met, the SDF consistency is compromised. The

failure of this condition is a clear symptom of weak factors, precisely the scenario for which

our SPCA estimator is designed.

In contrast, the Lasso approach replaces the explicit factor model assumption on rt with a

sparsity assumption on the vector b. This sparsity assumption dictates that the SDF should

be represented as a sparse linear combination of the test assets but imposes no explicit

assumptions on the DGP of these test assets. This implies that the Lasso estimator remains

consistent regardless of the strength of the factors but converges at a rather slow rate, as

indicated in (2.17), which is ∥b∥1
√
logN/T . Consequently, it is not as efficient as our SPCA

estimator, which leverages the factor structure to achieve faster convergence. Nevertheless,

under a much stronger sparsity assumption where ∥b∥20 logN/T → 0, the Lasso estimator

can attain a comparable convergence rate to that of the SPCA. This more stringent notion

of sparsity essentially asserts that the set of true factors must be part of the test assets. In

contrast, our SPCA estimator allows for the presence of idiosyncratic components in any of
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the test assets, enhancing its practicality in real-world applications.

We can adapt any SDF estimator to obtain an estimator of risk premia, because of

the relationship −Cov(mt, gt) = ηγ. In light of this, we have a Lasso-based risk premia

estimator:33

γ̂Lassog = − 1

T

T∑
t=1

m̂Lasso
t × (gt − ḡ).

Furthermore, the consistency of the SDF estimator translates to the consistency of the

resulting risk premia estimator.34 Deriving a valid inference procedure is possible for Lasso-

based risk premia estimator, if we employ an additional de-biasing step, see, Feng et al.

[2020], which is beyond the scope of the current paper.

2.2.3.3 Diagnosis of SDF Models using Sharpe Ratios

We now discuss the diagnosis of SDF models that consist of tradable factors exclusively.

Recall that the projection of the SDF on the space of returns achieves the highest possible

Sharpe ratio. Given that the factors recovered by SPCA are themselves portfolios, as long

as SPCA recovers the entire SDF these factors should achieve the maximal Sharpe ratio.

We can then diagnose a model gt by comparing its Sharpe ratio with that achieved by the

estimated SDF supervised by gt. If gt contains all the factors that drive the SDF, then the

maximal Sharpe ratio achieved by factors in gt should be on par with the Sharpe ratio of

the SDF. Otherwise, if gt achieves a lower Sharpe ratio, it is a sign that gt is missing some

factors; if gt’s Sharpe ratio is higher than that achieved by SPCA, it indicates that gt has

alpha relative to the entire cross-section of test asset returns.

33. The SDF-induced Ridge estimator is numerically equivalent to (2.21), so we do not introduce it again.

34. By Assumption 17(1), Cauchy-Schwartz and triangle inequalities, we have

∥∥γ̂Lasso
g − γg

∥∥
MAX

≲P

√√√√ 1

T

T∑
t=1

|m̂Lasso
t − m̃t|2 +

√
logN

T
.
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For this purpose, it is more convenient to rewrite our SPCA estimator of the SDF given by

equation (2.12) in the form of portfolio returns as in (2.15), so that we can directly evaluate

its Sharpe ratio. In other words, we need an SPCA based estimate of b in the definition of

SDF given by equation (2.3). Formally, we provide the following algorithm:35

Algorithm 8. The SPCA based procedure for estimating SDF loadings is as follows:

Inputs: R̄(1) := R̄, r̄(1) := r̄, and Ḡ(1) := Ḡ, a d× T vector.

S1. For k = 1, 2, . . . iterate the following steps using R̄(k), r̄(k), and Ḡ(k) and construct

an N × p matrix B:

a. Run S1.a of Algorithm 7 to obtain Îk

b. Run S1. - S3. of Algorithm 5 with selected return matrix
(
R̄(k)

)
[Îk]

and Ḡ(k).

Construct the kth column of B as: B
[Îk],k

= ς(k) and B
[Îck],k

= 0, where ς(k) is

the left singular vector of
(
R̄(k)

)
[Îk]

. Also, obtain V̂(k) and η̂(k).

c. Run S1.c of Algorithm 7 to obtain β̂(k).

d. Run S1.d of Algorithm 7 to obtain R̄(k+1) and Ḡ(k+1).

Stop at k = p̂, where p̂ is chosen based on some proper stopping rule.

S2. Estimate the SDF loading b as:

b̂SPCA = TB
(
B⊺R̄R̄⊺B

)−1
B⊺r̄. (2.19)

35. The effectiveness of this procedure stems from the fact that the SPCA estimates of V̂ can be written
as a rotation of B⊺R̄. Given that b is invariant to rotations of factors, we can exploit this invariance
property to construct a convenient estimator b̂. To elaborate, if we use B⊺R̄ as the factors, denoted by,
Ṽ , with their risk premia and covariance denoted as γ̃ and Σ̃ respectively, we can express the SDF as
mt = 1− γ̂⊺(Σ̂v)

−1v̂t = 1− γ̃⊺(Σ̃v)
−1ṽt = 1− γ̃⊺(Σ̃v)

−1B⊺(rt − r̄). Consequently, we can deduce that:

b̂ = B(Σ̃v)
−1γ̃ = B(

1

T
B⊺R̄R̄⊺B)−1B⊺r̄.
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Outputs: b̂SPCA

Similarly, we can construct estimates of b using PCA and PLS.36 With b̂ it is convenient

to build SDFs (optimal portfolios) and evaluate their Sharpe ratio.

Theorem 10. Under the same assumptions as Theorem 6, if Assumption 16 holds, the

Sharpe ratio of the optimal portfolio constructed by b̂SPCA in (2.19) satisfies

√
γ⊺Σ−1

v γ ≥ lim
N,T→∞

b̂SPCA⊺E(rt)√
b̂SPCA⊺Σb̂SPCA

≥
√

γ⊺η⊺(ηΣvη⊺)†ηγ, (2.20)

where † denotes the Moore–Penrose inverse of a matrix.

In the inequality (2.20), the upper bound corresponds to the optimal Sharpe ratio of

the SDF, while the middle term represents the optimal Sharpe ratio achieved by the SPCA

estimator. Meanwhile, the lower bound corresponds to the optimal Sharpe ratio achieved

by η(vt + γ). This lower bound also matches the bound attained by gt, except for any

undiversified idiosyncratic errors that may persist in gt. These errors would further reduce

the Sharpe ratio, but for the sake of our discussion exclusively on observable factor models

in the literature, we follow the convention and assume that gt comprises well-diversified

portfolios, so we can ignore this aspect in this section. A sufficient condition for the upper

and lower bounds to be equal is that λmin(η
⊺η) ≳ 1. In this case, the SPCA-based SDF

estimator also achieves the optimal Sharpe ratio. This result is not surprising, especially

considering the consistency result outlined in Theorem 8.

Theorem 10 serves as the basis for diagnosing SDF models. We do not observe the left side

of the equation (the true maximal Sharpe ratio), but can estimate and compare the middle

term (Sharpe ratio obtained by the SPCA-recovered SDF) and the right term (Sharpe ratio

of gt). If we find in the data that the Sharpe ratio from SPCA is higher, then we learn that

36. For PCA, the kth column of B can be chosen as the left singular vectors of R̄, then (2.19) yields the
standard PCA based SDF loadings. For PLS, B is a similar weight matrix given by the iterative procedure.
We compare these SDF estimators in simulations.
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gt must be missing a factor. If we instead find that the Sharpe ratio from gt is higher, it

means that there are factors in gt that are insufficiently represented in rt (for example, if

none of the assets in rt has exposure to those factors): this points to an insufficiently rich

set of test assets rt.37

2.3 Simulations

In this section, we study the finite sample performance of our SPCA procedure using simu-

lations.

2.3.1 Results on Risk Premia

We implement a number of risk premia estimators for comparison, some of which are robust

to omitted or weak factors, including PCA and its related estimators (Ridge, PLS, and

rpPCA), Lasso, as well as the four-split estimator by Anatolyev and Mikusheva [2021].38

Both the standard two-pass and four-split methods directly use gt as if they were the true

factors in their regressions. The PCA, rpPCA, Ridge, and Lasso effectively construct the

SDF first without knowledge of gt, then estimate the risk premia of gt factor by factor, using

the covariance between each factor and the resulting SDF. PLS and SPCA use all variables

in gt to supervise the estimation procedure.

To implement the SPCA estimator, we select the tuning parameters p and ⌊qN⌋ by CV

using the procedure detailed in Section 2.2.2.5. To ensure a conservative basis for comparison,

all methods, except for SPCA, use optimal (albeit infeasible) tuning parameters. Specifically,

for PCA, PLS and rpPCA, we make use of the true number of factors, p = 4, even though

37. Of course, it can also be that the two Sharpe ratios are the same. In that case, gt and the latent-factor
model recovered by SPCA are equivalent in terms of their pricing ability.

38. The four-split estimator, which does not rely on dimension reduction, selection, or shrinkage techniques,
is valid in the presence of weak observable factors and strong omitted factors that are not priced. However,
it does not have asymptotic guarantees against omitted and priced strong/weak factors, or measurement
error in the observed factors.

132



it is difficult to obtain a consistent estimator of p in the regime of weak factors. The tuning

parameter µ of the Ridge estimator is determined via maximum likelihood estimation, with

perfect knowledge of Σ = Cov(rt) and E(r). The second tuning parameter of rpPCA is

selected by maximizing the theoretical Sharpe ratio of the estimated SDF, using, again,

perfect knowledge of Σ and E(r). Due to limited sample size, estimating the sample mean

and sample covariances in a separate validation sample is rather challenging, which would

further deteriorate their performance.

To demonstrate and compare the performance of different estimators, we consider various

DGPs of returns and/or the observed variables in gt. We start with the benchmark case (a),

in which all factors are strong and observed. Specifically, we consider a 4-factor DGP as given

by equation (2.1), where the first three factors are calibrated to match the three Fama-French

factors (RmRf, SMB, HML) as in Giglio and Xiu [2021], and the last one is a potentially weak

factor, denoted by V . We calibrate the parameters such that the monthly Sharpe ratio for the

optimal portfolio out of these factors is about 0.256. The process generating ut is modeled

as a vector autoregressive process: ut = 0.8ut−1 + ϵt, where ϵt is drawn from a Gaussian

distribution with a diagonal covariance matrix.39 The standard deviation of ut is calibrated

at 0.04. For comparison, the standard deviations of the four factors are calibrated at 0.04,

0.03, 0.03, and 0.02. The loadings of RmRf are generated independently from N (1, 1) and

the loadings of SMB and HML are generated independently from N (0, 1). We generate the

exposure to the fourth factor V , βi,V , independently from a Gaussian mixture distribution,

with probability a from N (0, 1) and 1 − a from N (0, 0.12). Our calibration suggests that

a = 0.5 ensures the factor V is sufficiently strong with respect to the cross-section of assets

in simulations. gt includes exactly these four factors in the DGP (RmRF, SMB, HML, and

V ), and we set η = I4, and measurement error is absent.

In scenario b), we choose a = 0.1 so that V is weak in that for almost all test assets

39. Although it is conceivable to employ a more complex covariance matrix for ut, calibrating such a model
can be a challenging endeavor. We thereby simulate uts that are cross-sectionally uncorrelated for simplicity.
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their factor loadings to V are tiny: only 10% of the assets have nontrivial exposure to this

factor. In scenario c), the DGP is the same as that of the benchmark case, except that we

add Gaussian measurement error, zt, to each of the factors in gt. In scenario d), we simulate

β for V according to βi,V = −βi,HML + ei instead, where eis are generated independently

from the same mixture Gaussian distribution as above with a = 0.1. This nearly results in a

rank deficiency in the factor loading matrix due to their correlated exposures. The variable

gt contains all four factors with no measurement error. In scenario e), we consider the same

DGP of returns as in scenario d), but in gt we omit the HML factor. Finally, in scenario f),

we further add measurement error to scenario d).

For each of these six scenarios (including the benchmark), we plot in Figure 2.1 the

histograms of the estimated risk premium of V (one entry in gt) for all estimators. If an

estimator is consistent, then the histogram is expected to be centered around the true risk

premium of V , whose value is represented by a vertical dashed line. This is indeed the case for

SPCA in all scenarios. It is also the case for almost all estimators in the benchmark scenario,

a), when factors are strong (except for Lasso and Ridge, which have a large shrinkage bias).

This suggests that the latter two estimators are not suitable for inference on risk premia.

Furthermore, in scenario b), when weak factors are present, only SPCA and four-split are

consistent. The same is true for scenario d) in which a similar rank-deficiency issue arises.

In scenario c) the four-split estimator becomes inconsistent due to measurement error, and

it is also ill-behaved in scenario e) because the omitted variable, HML, is priced. The PCA

and PLS estimators are consistent in scenario c) but also fail in e), because they are robust

to measurement error but not to omitted weak factors. The standard two-pass estimator is

only consistent in the benchmark scenario. Overall, the simulation evidence is in agreement

with our theoretical predictions.

Next, we focus on the last scenario f), which includes the case of weak factors as well

as measurement error. For this case, we report in Table 2.1 the bias and the RMSE (root-
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(a) Benchmark (b) Weak factor

(c) Measurement error (d) Correlated exposures

(e) Weak + omitted factor
(f) Correlated exposures + measurement er-
ror

Figure 2.1: Histogram of Risk Premium Estimates of V

Note: The figure provides histograms of the risk premium estimates in six scenarios for eight estimators
we compare, including SPCA, PCA, PLS, rpPCA, Lasso, Ridge, four-split, and the standard two-pass
estimator. We simulate the models with N = 1, 000 and T = 240. The number of Monte Carlo repetitions
is 1,000. Values reported are percentages.

135



mean-square error) of all estimators for various sample size T . The four rows in each panel

provide the results of risk premia estimation for RmRf, SMB, HML, and the weak factor

V , respectively. We find that our SPCA approach has smaller biases for the weak factors,

whereas the remaining estimators have larger biases and RMSEs, which agrees with our

theoretical analysis and Figure 2.1. Notably, PLS ranks the second. All estimators perform

better in terms of RMSE as T increases.

In the appendix, we also report a scenario similar to c) except that the last factor is a

pure noise. In other words, the DGP is driven by the first three factors, but econometri-

cians, lacking knowledge of the true model, include these three factors alongside this pure

noise variable in their attempt to estimate risk premia. This scenario closely resembles the

one extensively discussed by Kan and Zhang [1999] and Kleibergen [2009]. For the sake of

comparison, PLS and SPCA incorporate this pure noise variable along with the aforemen-

tioned three factors into gt. The histograms corresponding to the risk premium estimates

associated with the noise factor suggest that SPCA, PCA, PLS, rpPCA, Lasso, and Ridge

remain consistent and cluster around zero. The consistency stems from the fact that none of

these methods involve a cross-sectional regression on the estimated beta for the noise factor.

In contrast, the four-split and two-pass methods seem to exhibit considerable variances.

We then investigate the finite sample performance of the inference result developed in

Theorem 7. Figure 2.2 plots histograms of the standardized risk premia estimators using

the estimated asymptotic standard errors for SPCA and PCA, respectively, using the DGP

in scenario f) as an example. The histograms of PCA deviate from the standard Gaussian

distribution for the two highly correlated factors, V and HML. In contrast, the histograms

corresponding to SPCA closely align with the standard Gaussian distribution, showcasing

significantly reduced bias for these two factors. A portion of this small bias stems from

the population-level approximation as demonstrated in (2.5) (see also Proposition 13). This

phenomenon thereby likely persists irrespective of the value of T . Finally, we also investigate
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SPCA PCA rpPCA PLS
T Param True Bias RMSE Bias RMSE Bias RMSE Bias RMSE

RmRf 53.7 0.2 39.2 0.4 38.9 1.8 66.4 0.2 39.1
120 SMB 21.7 -0.0 29.0 0.6 28.4 1.7 65.1 0.4 28.7

HML 25.4 -6.7 29.3 -38.0 43.9 114.6 205.8 -15.7 30.6
V 40.0 -6.6 20.9 -37.0 38.9 109.9 195.8 -15.7 22.6

RmRf 53.7 0.7 29.7 0.6 29.6 1.3 36.4 0.7 29.7
240 SMB 21.7 0.2 20.1 0.6 19.5 1.2 27.8 0.4 19.8

HML 25.4 -3.3 19.7 -36.3 39.3 64.1 111.9 -8.0 20.1
V 40.0 -3.4 14.6 -35.5 36.5 63.0 109.0 -8.2 15.4

RmRf 53.7 -0.1 20.2 0.0 20.2 0.2 20.7 0.0 20.2
480 SMB 21.7 -0.3 14.2 -0.2 14.0 -0.2 14.7 -0.2 14.1

HML 25.4 -2.6 14.6 -13.4 18.6 22.3 34.6 -4.1 14.5
V 40.0 -3.1 10.3 -13.7 16.1 20.7 32.7 -4.7 10.6

Lasso Ridge Four-split Two-pass
T Param True Bias RMSE Bias RMSE Bias RMSE Bias RMSE

RmRf 53.7 -27.6 37.0 -8.1 32.4 12.4 52.0 11.5 48.1
120 SMB 21.7 -12.6 16.5 -5.1 16.9 4.9 47.2 5.4 41.8

HML 25.4 -30.6 31.6 -33.4 36.2 12.9 50.5 -6.1 40.1
V 40.0 -38.3 38.6 -36.0 36.8 32.3 58.6 9.1 32.6

RmRf 53.7 -31.6 37.4 -4.2 25.8 13.4 40.1 12.4 37.9
240 SMB 21.7 -14.0 16.3 -3.0 13.9 6.1 33.3 5.9 29.5

HML 25.4 -29.9 30.7 -31.5 33.7 16.2 37.3 2.5 27.4
V 40.0 -37.6 37.9 -32.7 33.4 38.8 51.2 20.7 32.1

RmRf 53.7 -18.5 24.7 -1.7 19.1 12.6 29.5 11.9 27.3
480 SMB 21.7 -9.0 11.9 -1.5 12.0 4.3 24.0 4.7 20.9

HML 25.4 -32.8 33.5 -29.1 30.9 16.6 29.4 8.3 22.1
V 40.0 -36.8 37.1 -29.5 30.1 38.6 45.6 28.0 33.5

Table 2.1: Simulation Results for Risk Premia Estimators

Note: In this table, we report the bias (Column “Bias”) and the root-mean-square error (Column “RMSE”)
of the risk premia estimates using SPCA, PCA, rpPCA, Lasso, PLS, Ridge, four-split, and the standard
two-pass regression approaches, respectively. The true data-generating process, given by scenario f), has
four factors, driven by RmRf, SMB, HML, and V , whereas we estimate the risk premia for noisy versions
of these four factors. Their true risk premia are provided in Column “True.” We fix N = 1, 000 while
varying T = 120, 240, and 480 in this experiment. All values reported are in basis points.
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the statistical power of SPCA in strong and weak cases, respectively, and draw a comparative

analysis with PCA. We report these results in the appendix.
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Figure 2.2: Histogram of the Standardized Estimates in Simulations

Note: The left panels provide the histograms of the standardized SPCA estimates as in Algorithm 7 with
asymptotic standard errors given by Theorem 7, whereas the right panels provide those of the standardized
PCA-based risk premia estimates as in Algorithm 5. We simulate the model in scenario f) with N = 1, 000

and T = 240. The number of Monte Carlo repetitions is 1,000. These standardized statistics serve as
the basis for testing the null hypotheses that the risk premia are equal to their true values. The sizes of
these t-tests at 5% level are reported in the figure subtitles, allowing us to assess the tail behavior of our
asymptotic approximations.

2.3.2 Results on SDF recovery

Next, we study the finite sample behavior of the SDF estimators. We compare the per-

formance of SPCA, PCA, rpPCA, Lasso and Ridge estimators in scenario f). We report

in Table 2.2 the MSE of the SDF estimators where the true SDF is defined by equation

(2.3). We also include the tuned number of factors determined through our SPCA approach.

Additionally, we report in Table 2.3 the out-of-sample Sharpe ratios of different methods,
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SPCA PCA rpPCA PLS Lasso Ridge
T p̂ MSE MSE MSE MSE MSE MSE

120 4.186 0.044 0.074 9.200 0.050 0.056 0.054
(0.389) (0.030) (0.026) (11.332) (0.026) (0.010) (0.013)

240 4.011 0.021 0.058 1.901 0.025 0.055 0.045
(0.104) (0.014) (0.013) (3.313) (0.013) (0.009) (0.010)

480 4.004 0.010 0.018 0.087 0.012 0.050 0.036
(0.063) (0.007) (0.007) (0.083) (0.007) (0.007) (0.008)

Table 2.2: Simulation Results for SDF estimators

Note: In this table, we report the mean-squared errors (Column “MSE”) defined by 1
T

∑T
t=1 |m̂t − m̃t|2 for

various SDF estimates using SPCA, PCA, rpPCA, PLS, Lasso, and Ridge approaches, respectively. The
reported MSEs are the sample average over 1,000 Monte Carlo repetitions and their standard deviations
are reported in the brackets. We also report the mean and standard deviation of the estimated number
of factors p̂ using the SPCA approach. The true data-generating process, given by scenario f), has four
factors, driven by RmRf, SMB, HML, and a weak factor V , whereas we estimate the SDF using a vector
of factor proxies, gt, that includes noisy versions of the four factors. We compare three scenarios with
T = 120, 240, and 480, where N = 1, 000 is fixed.

T SPCA PCA rpPCA PLS Lasso Ridge Theoretical Value
120 0.193 0.084 0.134 0.164 0.113 0.109 0.256

(0.049) (0.046) (0.035) (0.051) (0.024) (0.046)
240 0.226 0.110 0.192 0.214 0.122 0.137 0.256

(0.026) (0.036) (0.033) (0.031) (0.019) (0.032)
480 0.241 0.227 0.242 0.238 0.127 0.162 0.256

(0.012) (0.019) (0.008) (0.015) (0.021) (0.019)

Table 2.3: Simulation Results for Out-of-Sample Sharpe Ratios of Optimal Portfolios

Note: In this table, we report the mean and standard deviation of the out-of-sample Sharpe ratios
for various optimal portfolios constructed by SPCA, PCA, rpPCA, PLS, Lasso, and Ridge approaches,
respectively. The true data-generating process, given by scenario f), has four factors, driven by RmRf,
SMB, HML, and a weak factor V , whereas we estimate the SDF using a vector of factor proxies, gt, that
includes noisy versions of the four factors. The reported Sharpe ratios are the sample average over 1,000
Monte Carlo repetitions and their standard errors are reported in the brackets. Column “‘Theoretical
Value” provides the benchmark Sharpe ratio calculated by b⊺E(r)/

√
b′Σb using true parameter values. We

compare three scenarios with T = 120, 240, and 480, where N = 1, 000 is fixed.
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given by b̂⊺E(r)/
√

b̂⊺Σb̂, where E(r) and Σ are the true mean and covariance of all test

assets and b̂ is the estimated SDF loading using each method. Overall, we find that SPCA

outperforms all other methods. PLS ranks second, while rpPCA performs the worst. rpPCA

is only competitive in terms of the out-of-sample Sharpe ratio. For risk premia estimation,

the disadvantage of rpPCA relative to other methods may not only stem from its inherent

bias but also from its tuning parameters being primarily oriented towards maximizing the

out-of-sample Sharpe ratio. Last but not least, the tuning parameter p̂ is found to be in

close proximity to the truth value of 4.
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Figure 2.3: Out-of-sample Sharpe Ratio Patterns with Different Models of gt

Note: Each panel reports the out-of-sample Sharpe ratios for PCA (blue) and SPCA (red) as a function
of number of factors, p, for a specific model of gt = ηvt + zt.
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Finally, we investigate the pattern of out-of-sample Sharpe ratios for various models gt

in Figure 2.3. The setting resembles scenario (f), except that we consider different models gt

to examine the role of gt in supervising the procedure. We report Sharpe ratios as a function

of number of factors p̂ used in the PCA and SPCA procedure. For SPCA, we select ⌊qN⌋

via CV using the time series R2 for each given p̂. The sample size T is fixed at 240. The

theoretical value of the optimal Sharpe ratio is 0.256, as shown in Table 2.3, though in finite

sample the maximum Sharpe ratio achieved by SPCA is around 0.226.

We consider four cases of gt = ηvt + zt here. In case (a), we set η = I4, so all factors

are included in gt to supervise the procedure. In case (b), only the factor V and HML are

included in gt. In case (c), we fix η = (1, 0, 0, 0), that is, gt only includes the (strong) market

factor. Finally, in case (d), we let η = γ⊺Σ−1
v , so that gt is a noisy measure of the SDF.

In light of Theorem 10, SPCA should achieve the maximal out-of-sample Sharpe ratio in

cases (a) and (d), provided appropriate tuning parameters. Figure 2.3 confirms this result.

In case (a), SPCA reaches its highest Sharpe ratio out-of-sample precisely at p̂ = 4, and the

Sharpe ratio declines slightly as p̂ increases beyond 4, since these additional factors only add

noise. Case (d) exhibits a similar pattern. In contrast, the PCA approach cannot achieve

the maximal Sharpe ratio, even as p̂ increases to 10, because PCA cannot recover the weak

factor, which contributes to the SDF. In case (b), SPCA is supervised by two factors with

highly correlated loadings, so it can recover the part of the SDF spanned by the weak factors.

With a large enough p, we force the procedure of SPCA to continue, then it will also extract

the strong factors and achieve the maximal Sharpe ratio. In case (c), however, SPCA and

PCA provide similar results — neither achieves the optimum — because gt only includes the

market factor, which does not help SPCA recover the missing weak factor.
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2.4 Conclusions

The choice of test assets plays a fundamental role in empirical asset pricing tests. The recent

explosion of anomaly discoveries and related characteristics in the empirical literature has

provided researchers with a large universe of potential test assets to choose from. On the

one hand, the availability of so many different characteristics gives us hope that the returns

of these portfolios can help us uncover and identify the pricing of various dimensions of risk,

including those that are not well captured by standard cross-sections. On the other hand,

the large dimensionality goes hand in hand with the weak factor issue: a factor may well

be captured by some assets within the large cross-section, but if most assets do not have

exposure to that factor, it will be weak and inference will be incorrect.

Traditional methodologies take the cross-section of assets as given. In this paper, we

present a new methodology, SPCA, that instead actively selects assets in order to estimate

risk premia of factors of interest, whether they are strong or weak, and at the same time

addresses the issue of potentially omitted factors, again regardless of whether they are strong

or weak. In addition, SPCA can exploit its ability to recover weak latent factors to help diag-

nose omitted factors in observable-factor models. The paper confirms the good performance

of SPCA for both of these tasks in a variety of simulations, and illustrates the application

of the methodology in various empirical contexts in Section 3.3.

While the road to a full understanding of risk and risk premia in financial markets is still

long, we believe that systematically tackling weak factors in empirical asset pricing is an

important step forward, that opens the door to the study of factors that, while important to

investors, may be not pervasive in either the standard cross-sections or the recently developed

large universes of test assets.

Two pressing issues on the debates related to the factor zoo are the economic interpretabil-

ity and the overwhelming amount of degrees of freedom in empirical asset pricing research.

The central issue we address in this paper is to evaluate factors motivated by economic the-
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ories. Our proposal eliminates two critical degrees of freedom altogether from this exercise:

the choice of control factors when estimating risk premia of economically motivated factors,

and the choice of test assets used for estimation and testing. Our study thereby contributes

to a promising agenda developing a fusion of asset pricing theory and machine learning. It

does so by using the factor structure as a main theoretical foundation, and applying to it

tools and results from machine learning, in order to exploit these statistical advances while

maintaining economic interpretability.

2.5 Appendix

2.5.1 Alternative Estimators and Their Asymptotic Behavior

While the literature has proposed several different estimators of the SDF and risk premia,

their properties in a general weak factor setting like ours have not been investigated. In this

section we revisit a number of estimation procedures, and show that they are inconsistent in

the presence of weak factors, using a simple model with a single weak factor.

We focus our discussion of alternative estimators on those that can be used when factors

are latent. In this setting, the researcher does not need to know the identities of all true

factors, which yields a risk premium estimator that is robust to potentially omitted factors.

PLS

As reviewed in the main text, Giglio and Xiu [2021] show that the PCA-based estimation

procedure effectively constructs a mimicking portfolio for gt via a principal component re-

gression (PCR) on rt, which amounts to a projection of gt onto the first few PCs of the sample

covariance matrix of rt. This is an unsupervised approach, in that the PCs are obtained

without any information from gt. Therefore, PCA might be misled by large idiosyncratic

errors in rt when the signal is not sufficiently strong. In contrast with PCA, partial least
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squares (PLS) is a supervised procedure, which has been shown to work better than PCA in

other settings, see, e.g., Kelly and Pruitt [2013]. In the same spirit, we propose a PLS-based

approach for risk premia estimation, exploiting variation of returns that is relevant to the

target factor of interest.

The key difference between the two approaches is that PCA seeks linear combinations

of rt that maximize variation, ignoring information from the target gt, whereas PLS seeks

linear combinations that have the largest covariance with gt. The PLS-based risk premia

estimator effectively uses PLS instead of PCA in the first step of Algorithm 5 described in

the main text.

We formulate a general PLS-based algorithm for a d× 1 vector of gt below:

Algorithm 9 (PLS-based Estimator of Risk Premia). The estimator proceeds as follows:

Inputs: R̄(1) := R̄, r̄(1) := r̄ and Ḡ, a d× T matrix.

S1. For k = 1, 2, · · · , p, repeat the following steps using R̄(k), r̄(k) and Ḡ.

a. Obtain the weight vector ŵ from the largest left singular vector of R̄(k)Ḡ
⊺.

b. Estimate the kth factor as V̂(k) =
√
Tŵ⊺R̄(k)/

∥∥∥ŵ⊺R̄(k)

∥∥∥.
c. Estimate the risk premium of V̂(k) by γ̂(k) =

√
Tŵ⊺r̄(k)/

∥∥∥ŵ⊺R̄(k)

∥∥∥.
d. Estimate the kth factor loading of rt by β̂(k) = T−1R̄(k)V̂

⊺
(k)

.

e. Remove V̂(k) to obtain residuals for the next step: R̄(k+1) = R̄(k) − β̂(k)V̂(k) and

r̄(k+1) = r̄(k) − β̂(k)γ̂(k).

S2. Estimate the factor loading of gt on vt by η̂ = T−1ḠV̂ ⊺, where V̂ = (V̂
⊺
(1)

, · · · , V̂ ⊺
(p)

)⊺,

and denote their risk premia estimated above as γ̂ = (γ̂(1), · · · , γ̂(p))⊺.

Output: γ̂PLS
g = η̂γ̂.
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The PLS estimator has a closed-form formula if Ḡ is a 1 × T vector and a single-factor

is extracted (p = 1):

γ̂PLS
g =

∥∥ḠR̄⊺R̄
∥∥−2

ḠR̄⊺R̄Ḡ⊺ḠR̄⊺r̄.

While the PLS procedure seems appealing, the next proposition shows that this approach

is asymptotically equivalent to the PCA-based procedure, hence it fails in exactly the same

weak factor setting as PCA.

Proposition 10. Suppose that test asset returns follow a single-factor model in the form

of (2.1) with p = 1, gt satisfies (2.4) with d = 1, ut and vt i.i.d. normally distributed and

independent from each other, and zt = 0. In addition, suppose that β satisfies N/(∥β∥2 T ) →

B ≥ 0 and ∥β∥ → ∞. Then we have γ̂PLS
g

P−→ (1 +B)−1ηγ.

Intuitively, the covariance information embedded in the objective function of PLS is

dominated by its variance component, hence PLS yields the same asymptotic behavior as

PCA with respect to estimating β, and therefore risk premia.

Ridge

Next, we consider an alternative, ridge-regression-based approach to the construction of

mimicking portfolios, which instead directly regularizes the projection of gt on the vector of

returns. The Ridge-based estimator can be written as:

γ̂
Ridge
g = ḠR̄⊺ (R̄R̄⊺ + µIN

)−1
r̄, (2.21)

where µ > 0 is some tuning parameter. In the case of pervasive factors, Giglio and Xiu

[2021] show that the ridge estimator yields a consistent estimate of ηγ. However, we show

that the ridge estimator also fails in the presence of weak factors:

145



Proposition 11. Suppose that test asset returns follow a single-factor model in the form

of (2.1) with p = 1, gt satisfies (2.4) with d = 1, ut and vt i.i.d. normally distributed and

independent from each other, and zt = 0. In addition, suppose that β satisfies N/(∥β∥2 T ) →

B ≥ 0 and ∥β∥ → ∞, and the tuning parameter µ satisfies µ/(∥β∥2 T ) → D for some

constant D ≥ 0 such that B +D > 0. Then we have γ̂
Ridge
g

P−→ (1 +B +D)−1ηγ.

Intuitively, the Ridge-based estimator fails because the tuning parameter µ in the ridge

procedure serves as a threshold that suppresses the influence of eigenvectors corresponding

to small eigenvalues, just like in PCA and PLS (which explains the appearance of B in the

limit). The presence of µ also leads to a shrinkage bias to the first few eigenvectors (i.e.,

factors), which is why an extra term D appears in the limit as well.

Risk Premium PCA

Finally, we consider an estimator based on the approach of Lettau and Pelger [2020]. This

approach was designed to estimate a latent-factor SDF, but can also be used to estimate the

risk premium of a factor gt, by replacing the PCA step of Algorithm 5 with the risk premia

PCA procedure of Lettau and Pelger [2020]:

Algorithm 10 (rpPCA-based Estimator of Risk Premia). The estimator proceeds as follows:

Inputs: R̄ and Ḡ.

S1. Apply PCA on T−1RR⊺ + µr̄r̄⊺, where µ is a tuning parameter, and write the first p

eigenvectors as ς̂. The estimated factors are given by V̂ = ς̂⊺R̄.

S2. Estimate the risk premia of V̂ by γ̂ = ς̂⊺r̄.

S3. Estimate the factor loading of gt on vt by η̂ = ḠV̂ ⊺(V̂ V̂ ⊺)−1.

Outputs: γ̂
rpPCA
g = η̂γ̂.
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Standard PCA is applied to the covariance matrix of returns, that is T−1RR⊺ − r̄r̄⊺.

Lettau and Pelger [2020] show that assigning a larger weight µ > −1 to the term related to

average returns (the second term) improves the Sharpe ratio of the estimated SDF. Lettau

and Pelger [2020] derive asymptotic properties of rpPCA in a setting where all factors are

weak and N and T increase to infinity at the same rate. The setting they analyze is one

where all factors are extremely weak, so that they cannot be recovered – specifically, the

strength of weak factors remains indistinguishable from that of idiosyncratic errors as N and

T increase. Under this assumption, consistent estimation of the SDF is impossible, including

by rpPCA, which, despite being more correlated with the SDF than PCA, is also inconsis-

tent. In contrast, we preclude this extreme case from our discussion because no estimators

under consideration could achieve consistency and a harmless modeling choice would be to

treat these extremely weak factors as noise: their risk premia cannot be distinguished from

alpha. The weak-factor setting we investigate permits consistency, and allows for asymptotic

comparison of different estimators. The following proposition shows that, like PCA, rpPCA

is also inconsistent for estimating risk premia.

Proposition 12. Suppose that test asset returns follow a single-factor model in the form

of (2.1) with p = 1, gt satisfies (2.4) with d = 1, ut and vt i.i.d. normally distributed and

independent from each other, and zt = 0. In addition, suppose that β satisfies N/(∥β∥2 T ) →

B ≥ 0 and ∥β∥ → ∞, that the factor has a non-zero risk premia, i.e., γ ̸= 0. Then for some

tuning parameter µ > −1, we have

γ̂
rpPCA
g

P−→ w(1 +B)−1ηγ + (1− w)η(γ + γ−1B),

where w is a constant that depends on B, µ, γ, explicitly given by equation (2.119) in the

proof.

Proposition 12 shows that this rpPCA estimator is inconsistent in the presence of a weak
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factor, with a more involved bias term compared to the above estimators. Like PCA and

PLS, this estimator is consistent when all factors are strong (B = 0). When B > 0, the

estimator is inconsistent.

Different asymptotic settings can affect the asymptotic behavior of rpPCA. For example,

if one assumes that the tuning parameter µ → ∞, the rpPCA estimator converges to η(γ +

γ−1B) (so it still displays a bias). If we further assume γ → ∞ (while keeping ηγ constant),

this estimator can be consistent as long as ηγ−1B
P→ 0. This suggests that rpPCA can be

robust to weak factors if the information about β from the expected return βγ dominates

the information from return covariances (when γ → ∞). But this is only the case if factors

have diverging Sharpe ratios, i.e., Σ−1/2
v γ → ∞.

2.5.2 Model Assumptions

To derive the asymptotic properties of the SPCA and alternative estimators, we need the

following high-level assumptions, which can be easily verified by standard and more primi-

tive assumptions. We start with assumptions that characterize the data generating process

(DGP) of returns and factor proxies.

Assumption 7. The factor innovation V satisfies:

∥v̄∥ ≲P T−1/2,
∥∥∥T−1V V ⊺ − Σv

∥∥∥ ≲P T−1/2, ∥V ∥MAX ≲P (log T )1/2,

where Σv ∈ Rp×p is a positive-definite matrix with λp (Σv) ≳ 1 and λ1 (Σv) ≲ 1.

Assumption 8. The residual innovation Z satisfies:

∥z̄∥ ≲P T−1/2,
∥∥∥T−1ZZ⊺ − Σz

∥∥∥ ≲P T−1/2, ∥Z∥MAX ≲P (log T )1/2,
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where Σz ∈ Rd×d is a positive-definite matrix with λd (Σz) ≳ 1 and λ1 (Σz) ≲ 1. In addition,

∥ZV ⊺∥ ≲P T 1/2.

Assumptions 7 and 8 impose rather weak conditions on the time series behavior of the

factors and measurement error. Since vt and zt have a finite cross-sectional dimension, both

assumptions hold if these processes are stationary, strong mixing, and satisfy some moment

conditions.

Assumption 9. The factor loading matrix β satisfies

∥β∥MAX ≲ 1, λp(β
⊺
[I0]

β[I0]) ≳ N0,

for some index set I0, where N0 = |I0|.

Assumption 9 implies that there exists a subset of test assets, within which all latent

factors are strong. It does not imply all factors should have identical strength with respect

to the entire cross-section of assets in rt.

Next, we need the following moment conditions.

Assumption 10. The idiosyncratic component U satisfies:

∥U∥MAX ≲P (log T )1/2 + (logN)1/2, ∥ū∥MAX ≲P T−1/2(logN)1/2.

In addition, for any non-random subset I ⊂ ⟨N⟩,

∥∥∥U[I]

∥∥∥ ≲P |I|1/2 + T 1/2,
∥∥∥ū[I]∥∥∥ ≲P |I|1/2T−1/2.

Assumption 10 imposes restrictions on the time-series dependence and heteroskedasticity

of ut. We do not necessarily need stationarity on ut. That said, the first two inequalities
149



can be shown by some large deviation theorem, see, e.g., Fan et al. [2011]; the last two

inequalities can be shown by random matrix theory, see Bai and Silverstein [2009], if ut is

i.i.d. both in time and in the cross-section.

Assumption 11. For any non-random subset I ⊂ ⟨N⟩, the factor loading β[I] and the

idiosyncratic error U[I] satisfy the following conditions:

(i)
∥∥∥(β⊺[I]β[I])−1/2β

⊺
[I]
U[I]

∥∥∥ ≲P T 1/2.

(ii)
∥∥∥(β⊺[I]β[I])−1/2β

⊺
[I]
U[I]ιT

∥∥∥ ≲P T 1/2.

If β⊺
[I]
β[I] is singular, we need replace the matrix inverse above by the Moore-Penrose inverse.

Assumption 12. The following conditions hold for U , V , β, and any non-random subset

I ⊂ ⟨N⟩:

(i)
∥∥∥U[I]V

⊺
∥∥∥ ≲P |I|1/2T 1/2,

∥∥∥U[I]V
⊺
∥∥∥
MAX

≲P (logN)1/2T 1/2.

(ii)
∥∥∥(β⊺[I]β[I])−1/2β

⊺
[I]
U[I]V

⊺
∥∥∥ ≲P T 1/2.

Assumption 13. The following conditions hold for U , Z, β, and any non-random subset

I ⊂ ⟨N⟩:

(i)
∥∥∥U[I]Z

⊺
∥∥∥ ≲P |I|1/2T 1/2,

∥∥∥U[I]Z
⊺
∥∥∥
MAX

≲P (logN)1/2T 1/2.

(ii)
∥∥∥(β⊺[I]β[I])−1/2β

⊺
[I]
U[I]Z

⊺
∥∥∥ ≲P T 1/2.

Assumptions 11 - 13 resemble Assumptions A.7, A.9, and A.10 of Giglio and Xiu [2021],

except that here we impose their stronger versions which hold for any non-random subset I ⊂

⟨N⟩. Of course, these two sets of assumptions are equivalent if ut is identically distributed

along the cross-sectional dimension.
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In the main text, we denote the selected subsets in the SPCA procedure as Îk, k = 1, 2, . . ..

We now define their population counterparts. Because SPCA is an iterative procedure, we

need these quantities to characterize the limiting behavior of the procedure.

Without loss of generality, we consider the case Σv = Ip here. In the general case, we

can simply replace β and η by β′ = βΣ
1/2
v and η′ = ηΣ

1/2
v in the following definitions. In

detail, we start with a
(1)
i :=

∥∥∥β[i]η⊺∥∥∥MAX
and define I1 := {a(1)i ≥ c

(1)
qN}, where c

(1)
qN is the

(qN)th largest value in
{
a
(1)
i

}
i=1,...,N

. Then, we denote the largest right singular vector of

β(1) := β[I1] by b1. For k > 1, we obtain a
(k)
i :=

∥∥∥β[i]∏j<k Mbjη
⊺
∥∥∥
MAX

, Ik := {a(k)i ≥ c
(k)
qN}

and bk is the largest right singular vector of β(k) := β[Ik]
∏

j<k Mbj . This procedure is

stopped at step p̃ (for some p̃ that is not necessarily equal to p) if c(p̃+1)
qN < c. In a nutshell,

Ik’s are what we will select if we do SPCA directly on β ∈ RN×p and η ∈ Rd×p, while Îk’s

are obtained by SPCA on R̄ ∈ RN×T and Ḡ ∈ Rd×T . We need the following assumption to

guarantee the selection consistency, that is, P(Îk = Ik) → 1 for any 1 ≤ k ≤ p̃.

Assumption 14. We assume that β(k), a
(k)
i and c in the above procedure satisfy:

(i) σ1(β(k)) and σ2(β(k)) are distinct in the sense that there exists a constant δ > 0 such

that

σ2(β(k)) ≤ (1 + δ)−1σ1(β(k)).

(ii) c
(k)
qN and c

(k)
qN+1 are distinct in the sense that there exists a constant δ > 0 such that

c
(k)
qN+1 ≤ (1 + δ)−1c

(k)
qN ,

where c
(k)
qN and c

(k)
qN+1 are the (qN)th and (qN + 1)th largest value in

{
a
(k)
i

}
i=1,...,N

,

respectively.

(iii) c
(p̃+1)
qN and c are distinct in the sense that there exists a constant δ > 0 such that

c
(p̃+1)
qN ≤ (1 + δ)−1c.
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Assumption 14 requires that these singular values are distinguishable, so that their (rel-

ative) differences will not vanish asymptotically. This assumption is rather mild, despite not

being very explicit.

Assumption 15. As T → ∞, the following joint central limit theorem holds:

T 1/2

T−1vec(ZV ⊺)

v̄

 d−→ N


0

0

 ,

Π11 Π12

Π
⊺
12 Π22


 ,

where Π11, Π12, Π22 are dp× dp, dp× p, and p× p matrices, respectively, defined as:

Π11 = lim
T→∞

1

T
E (vec(ZV ⊺)vec(ZV ⊺)⊺) ,

Π12 = lim
T→∞

1

T
E
(
vec(ZV ⊺)ι

⊺
TV

⊺) ,
Π22 = lim

T→∞
1

T
E
(
V ιT ι

⊺
TV

⊺) .
Assumption 15 characterizes the joint asymptotic distribution of ZV ⊺ and V ιT . Since

the dimensions of these random processes are finite, this CLT is a standard result of a central

limit theory for mixing processes.

Blow we introduce assumptions needed for the SDF estimation. Assumption 16 ensures

that the SDF concept is well defined. Assumption 17 again can be shown by some large

deviation result and certain central limit theorem.

Assumption 16. Suppose that vt and ut are stationary time series independent of β, and

that Σv = Cov(vt) and Σu = Cov(ut) satisfy λmin(Σv) ≳ 1 and λmax(Σu) ≲ 1. Conse-

quently, Σ = Cov(rt) = βΣvβ
⊺ + Σu.

Assumption 17. The time series rt and the SDF defined by mt = 1 − b⊺(rt − E(r)) with
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b = Σ−1E(rt) satisfy:

(1)

∥∥∥∥∥∥T−1
T∑
t=1

(rt − r̄t)(mt − m̄t)− Cov(rt,mt)

∥∥∥∥∥∥
MAX

≲P (logN)1/2T−1/2.

(2)

∥∥∥∥∥∥T−1
T∑
t=1

(rt − r̄t)(rt − r̄t)
⊺ − Cov(rt)

∥∥∥∥∥∥
MAX

≲P (logN)1/2T−1/2.

(3)

∣∣∣∣∣∣T−1
T∑
t=1

mt − E(mt)

∣∣∣∣∣∣ ≲P T−1/2.

(4)

∥∥∥∥∥∥T−1
T∑
t=1

rt − E(rt)

∥∥∥∥∥∥
MAX

≲P (logN)1/2T−1/2.

Finally, we need the following assumption for establishing the convergence of the ridge-

based SDF estimator. It ensures that all eigenvalues of βΣvβ
⊺ are well separated. This

assumption shares the spirit with Assumption 14. A similar assumption has been adopted

by, e.g., Wang and Fan [2017].

Assumption 18. The eigenvalues of βΣvβ
⊺ are separated in the sense that

(λj − λj+1)/λj ≥ δ

for some constant δ > 0, where λj := λj(βΣvβ
⊺) is the jth eigenvalue of βΣvβ

⊺.

2.5.3 Additional Theoretical Results

In this section, we present additional theoretical results.

2.5.3.1 Mimicking Portfolio Built From I0

Proposition 13 establishes that test assets in a subset I0 are adequate to serve as basis assets,

building on which a mimicking portfolio can approximate the risk premium of any observable
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factor in gt.

Proposition 13. Suppose that rt and gt follow (2.1) and (2.4), respectively, and that As-

sumption 16 holds. Then for any subset I0 ⊂ ⟨N⟩, we have

Cov(gt, rt,[I0])Cov(rt,[I0])
−1E(rt,[I0]) = ηγ +O

(
1/λmin(β

⊺
[I0]

β[I0])
)
.

Next, we provide a result that sheds light on the effectiveness of out-of-sample R2 as a

criterion for tuning parameter selection. In the main text, we partition the complete dataset

into two segments, one for training and the other for evaluation (testing). Within the training

sample, we employ cross-validation to determine the optimal tuning parameters. A more

detailed procedure is outlined in Appendix 2.5.5. For the sake of simplicity, our theoretical

analysis is based on a “validation” procedure instead of “cross-validation.” In this context,

the phrase “out of sample” specifically refers to the validation sample, used to select the

tuning parameters.

For each combination of tuning parameter values q̆ and p̆, the application of SPCA to

the in-sample data produces factor estimates, with each estimate representing a portfolio.

Consequently, this process gives rise to a mimicking portfolio for gt, characterized by weights

denoted as w(p̆, q̆) ∈ Rd×N . The expected return of this portfolio is thus estimated as

w(p̆, q̆)r̄. We also write the matrix forms of de-meaned rt and gt ouf of sample as R̄oos ∈

RN×Toos and Ḡoos ∈ Rd×Toos , where Toos represents the sample size of out of sample data.

The time series R2 of the ith factor’s hedging portfolio out of sample is thus given by

R2
i (p̆, q̆) = 1−

∥∥∥(Ḡoos)[i] − (w(p̆, q̆))[i]R̄oos

∥∥∥2∥∥∥(Ḡoos)[i]

∥∥∥2 .

To derive theoretical results for parameter tuning using these R2 values, we require

additional assumptions about the underlying DGP out of sample. In essence, the following
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assumption asserts that the DGP remains unchanged between the in-sample and out-of-

sample contexts.

Assumption 19. Assumptions 7, 8, and 10 hold when V , U , Z, and T are replaced by Voos,

Uoos, Zoos, and Toos, respectively.

Moreover, we need the following assumption regarding the relationship between in-sample

estimates and out-of-sample DGP.

Assumption 20. Uoos, Voos, Zoos, and w̆ = w(p̆, q̆) ∈ Rd×N constructed by in-sample data

satisfy:

∥∥∥w̆[i]Uoos

∥∥∥ ≍P

∥∥∥w̆[i]

∥∥∥T 1/2
oos ,

∥∥∥w̆[i]UoosA
⊺
∥∥∥ ≲P

∥∥∥w̆[i]

∥∥∥T 1/2
oos ,

for A = Voos, Zoos, ι
⊺
T and i ≤ d.

Assumption 20 shares the same spirit of Assumptions 11 - 13. However, the key distinc-

tion lies in the direct imposition of constraints on the relationship between w̆ and out-of-

sample data. Given that w̆ is constructed solely from in-sample data, these conditions can

be interpreted as restrictions on the dependence between in-sample and out-of-sample data.

It is important to note that the first equality effectively imposes both an upper bound

and a lower bound on
∥∥∥w̆[i]Uoos

∥∥∥. In the special case that Cov(uoos,t) = Σu and in-

sample data is independent of the out-of-sample data, each element in w̆[i]Uoos has variance

w̆[i]Σuw̆
⊺
[i]

, which is bounded within
∥∥∥w̆[i]

∥∥∥2 λmin(Σu) and
∥∥∥w̆[i]

∥∥∥2 λmax(Σu). Therefore, the

first equality becomes a standard concentration result under the restriction 1 ≲ λmin(Σu) ≤

λmax(Σu) ≲ 1.

The next proposition shows that selecting tuning parameters using out of sample R2

leads to consistent estimates of risk premia, both in sample and out of sample:
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Proposition 14. Suppose that the out-of-sample DGP also follows (2.1) and (2.4), and

satisfies Assumptions 19-20. In addition, let p∗ and q∗ be defined by

(p∗, q∗) = argmaxp̆≤pmax,q̆∈Q

d∑
i=1

R2
i (p̆, q̆),

where pmax is some finite upper bound on the number of factors, and Q = {N−αj |j =

1, · · · , nq}, 0 ≤ α1 ≤ α2 · · · < αnq < 1 is a finite grid of tuning parameter values. If

pmax ≥ p, N1−αnq /N0 → 0 and log T/N1−αnq → 0, under assumptions of Theorem 6,

as Toos → ∞, we have w∗ = w(p∗, q∗) satisfies ∥w∗r̄oos − ηγ∥ P−→ 0. In addition, if

q∗N logN = O(T ), we have
∥∥∥γ̂SPCA

g − ηγ
∥∥∥ = ∥w∗r̄ − ηγ∥ P−→ 0.

2.5.3.2 The Case of Observable Factors

The theoretical setup in this paper does not assume any knowledge of the identities of

the factors vt in (2.1). If vt corresponds to innovations of known and observable factors,

denoted by ft, say, the Fama-French five factors, our procedure can be greatly simplified.

It is meaningful to study this case, because it is common in the empirical literature, albeit

having perfect knowledge of the factor model is a rather strong assumption.

Suppose first that factors in ft are tradable. If the factor of interest gt is one of the

factors in ft (therefore also tradable), then we can estimate the risk premium of gt by simply

taking its time-series average. If gt is either spanned by ft or not tradable, then a simple

time series regression of gt onto the factors ft can recover its loading, η, which along with

the risk premia estimates of ft by their time-series averages yields the risk premium estimate

of gt. These scenarios are simple, and do not require cross-sectional regressions.

If some of the observed factors in ft are not tradable, say, GDP growth, then a cross-

sectional regression is necessary, which effectively constructs the mimicking portfolios for the

non-tradable factors. In this setting, a weak factor problem potentially arises as documented
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in the literature, see, e.g., Kan and Zhang [1999], Kleibergen [2009]. To tackle this issue, one

could adopt a simplified version of Algorithm 7, to supervise the construction of mimicking

portfolios for each of the observed non-tradable factors (in this case GDP growth), while

using residuals from the projection of test asset returns onto tradable factors as new test

assets.

2.5.3.3 The Case of Unknown Zero-beta Rate

In the theoretical setup, we focus on the case where the zero-beta rate is known. When it

is not known, we need to modify our SPCA procedure slightly. Suppose that the DGP of

returns follows

rt = γ0ι+ βγ + βvt + ut, (2.22)

where γ0 is the zero-beta rate, and ι is a vector of 1s.

To proceed, we multiply Mι = IN − N−1ιι⊺, from the left on both sides of equation

(2.22). This results in a similar form of (2.1):

r̃t = β̃γ + β̃vt + ũt,

where ãt = Mιat, for a = r, β, and u. Subsequently, we can readily apply Algorithm 7 to

the transformed returns, r̃t. To better grasp the reasoning behind this adjustment, let us

consider a one-factor scenario. Choosing assets with strong absolute correlations with r̃t

amounts to selecting assets characterized by large magnitudes of β̃. This choice, in turn,

leads to the selection of assets that exhibit high cross-sectional dispersion in their β values.
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2.5.4 Additional Simulation Results

In this section, we present a scenario akin to situation c) in the simulation setting of the

main text, with the key distinction being that the final factor in this scenario is purely

random noise. To elaborate, the DGP of rt is driven by the first three factors. However,

econometricians, who lack knowledge of the true model, include these three factors along with

a random noise variable in their attempt to estimate risk premia. This scenario resembles a

setting extensively discussed by Kan and Zhang [1999] and Kleibergen [2009].

For the sake of comparison, both PLS and SPCA incorporate this random noise variable

alongside the aforementioned three factors, considering them collectively as gt. The his-

tograms provided in Figure 2.4 depicting the estimated risk premiums associated with this

noise factor reveal that SPCA, PCA, PLS, rpPCA, Lasso, and Ridge methods produce esti-

mates around zero – the true value. The consistency arises because none of these methods

entail a cross-sectional regression on the estimated beta of the noise factor. In contrast, the

four-split and two-pass methods seem to display substantial variances in this context.

Finally, we investigate the statistical power of SPCA in strong and weak cases, respec-

tively, and draw a comparative analysis with PCA. We adopt the setting in scenario c) of

the main text, as the case of strong factors. To simulate a weak factor scenario, we simply

replace a = 0.5 in c) by a = 0.1. We consider a null hypothesis that the risk premium of

V is zero, whereas the true risk premium of V ranges from -0.01 to 0.01. In Figure 2.5,

we present the rejection rates for both SPCA and PCA. The left panel demonstrates that

when all factors are strong, SPCA and PCA yield almost identical results. However, the

right panel indicates that SPCA exhibits greater power than PCA across most ranges of risk

premium values. The rejection rate for SPCA is around 5% when the null hypothesis is true,

and it escalates to 100% as the actual risk premium value diverges from zero.
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Figure 2.4: Histogram of Risk Premium Estimates of the noise factor

Note: The figure provides histograms of the risk premium estimates of the noise variable for eight estima-
tors we compare, including SPCA, PCA, PLS, rpPCA, Lasso, Ridge, four-split, and the standard two-pass
estimator. We simulate a model of returns driven by three strong factors, whereas gt includes a pure noise
variable, in addition to these three factors. All estimators attempt to estimate risk premia for the three
factors and the noise variable altogether. We set N = 1, 000 and T = 240. The number of Monte Carlo
repetitions is 1,000.
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Figure 2.5: Rejection Rate

Note: We simulate the model in scenario c) of the main text, using two different values for the parameter
a: 0.5 for the strong factor case, and 0.1 for the weak factor case. We fix N = 1, 000 and T = 240. The null
hypothesis we test is that the risk premium of V is equal to zero, whereas its actual value varies between
-0.01 to 0.01. We conduct a total of 1,000 Monte Carlo repetitions.
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2.5.5 Implementation Details

In this section we detail the steps to compute the out-of-sample R2 used in tuning parameter

selection in the empirical analysis.

1. Inputs

(a) Training sample data: returns for the N assets and target factor gt, for the first

half of the sample

(b) Evaluation sample data: returns for the N assets and target factor gt, for the

second half of the sample

2. For each value of the number of factors p, execute the following steps:

(a) Run 100 times the following cross-validation steps:

i. Divide the training sample data into three folds (subsamples), chosen ran-

domly without replacement

ii. Choose the first of the three folds as validation (and the other two folds as

training)

iii. For each value of ⌊qN⌋ between 100 and the maximum number of assets in

the universe N in increments of 50:

A. Estimate SPCA in the two training folds using p and ⌊qN⌋

B. Compute the R2 of the mimicking portfolio in the validation fold

iv. Repeat steps ii and iii using folds 2 and then 3 as validation samples (with

the remaining two folds as training in each case)

v. Find the tuning parameter ⌊qN⌋ (and therefore the corresponding q) that

maximizes the average R2 in the validation samples across the three folds

(b) Choose ⌊qN⌋ as the median of the 100 tuning choices obtained across the cross-

validation runs in (a)
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(c) Estimate SPCA in the training sample using the tuning parameters p and the

choice of ⌊qN⌋ from (b).

(d) Compute the out-of-sample R2 achieved by the SPCA mimicking portfolio esti-

mated in (c) in the evaluation sample.

(e) Repeat (a)-(d) for every value of p.

2.6 Mathematical Proofs

2.6.1 Proofs from Section 2.2.2

2.6.1.1 Proof of Proposition 7

Proof. Note that for any orthogonal matrix Γ ∈ RN×N , the estimators based on PCA, PLS

and Ridge on R′ = ΓR are the same as those based on R. Thus, without loss of generality,

we can assume β = (λ1/2, 0, · · · , 0)⊺, where λ = ∥β∥2. The same simplifying assumption is

adopted in the proofs of Propositions 7, 10, and 11. Also, since zt = 0, Ḡ = ηV̄ .

We start with γ̂PCA
g . We write R̄ in the following form:

R̄ = βV̄ + Ū =

√
λV̄ + Ū1

Ū2

 , (2.23)

where Ū1 is the first row of Ū and Ū2 contains the remaining rows. Correspondingly, we

write the largest left singular vector of R̄ as ς̂ = (ς̂1, ς̂
⊺
2 )

⊺, where ς̂1 is the first element of ς̂

and ς̂2 is a vector of the remaining N − 1 entries of ς̂. Recall that in Algorithm 5, we denote

ξ̂ and ς̂ as the largest right and left singular vectors of R̄ with the singular value
√

T λ̂, so

that by simple algebra we have

ς̂1 =
(
√
λV̄ + Ū1)ξ̂√

T λ̂
, ς̂2 =

Ū2ξ̂√
T λ̂

. (2.24)
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Since the entries of U and V are i.i.d N (0, 1), we have

|T−1V̄ V̄ ⊺ − 1| = |T−1V (IT − T−1ιT ι
⊺
T )V

⊺ − 1| ≤ |T−1V V ⊺ − 1|+ |v̄|2 ≲P T−1/2,

where we use large deviation results |T−1V V ⊺ − 1| ≲P T−1/2 and |v̄| ≲P T−1/2 in the last

equation. This equation also implies that
∥∥V̄ ∥∥−√

T ≲P 1.

Similarly, we can get |T−1Ū1Ū
⊺
1 − 1| ≲P T−1/2 and

∥∥Ū1

∥∥−√
T ≲P 1.

In addition, by Lemma A.1 in Wang and Fan [2017], we have
∥∥N−1U⊺U − IT

∥∥ ≲P√
T/N , which leads to

∥∥∥N−1Ū⊺Ū − (IT − T−1ιT ι
⊺
T )
∥∥∥ =

∥∥∥(IT − T−1ιT ι
⊺
T )(N

−1U⊺U − IT )(IT − T−1ιT ι
⊺
T )
∥∥∥

≲P

√
T/N.

Next, by direct calculation using the above inequalities we obtain

∥∥∥∥∥ V̄ ⊺Ū1 + Ū
⊺
1 V̄

T
√
λ

+
Ū⊺Ū −N(IT − T−1ιT ι

⊺
T )

Tλ

∥∥∥∥∥ ≲P
1√
λ
+

√
NT

Tλ
≲P

1√
λ
.

Together with (2.23), we have

∥∥∥∥∥R̄⊺R̄

Tλ
− V̄ ⊺V̄

T
−

N(IT − T−1ιT ι
⊺
T )

Tλ

∥∥∥∥∥ ≲P
1√
λ
. (2.25)

Because of this result, to study the eigenstructure of R̄⊺R̄/(Tλ), we need analyze the eigen-

structure of

M :=
V̄ ⊺V̄

T
+

N(IT − T−1ιT ι
⊺
T )

Tλ
=

V̄ ⊺V̄

T
+ B̃(IT − T−1ιT ι

⊺
T ),

where B̃ = N/(Tλ) and the assumption of the proposition implies that B̃ → B for a constant

B.
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Note that V̄ ιT = 0, the eigenvalues of M can be explicitly given by:

λi =


T−1V̄ V̄ ⊺ + B̃ i = 1;

B̃ 2 ≤ i ≤ T − 1;

0 i = T.

, (2.26)

and the first eigenvector is V̄ ⊺/
∥∥V̄ ⊺

∥∥. Since the largest eigenvalue of R̄⊺R̄/(Tλ) is λ̂/λ with

its corresponding eigenvector ξ̂, Weyl’s theorem yields that

λ̂

λ
=

V̄ V̄ ⊺

T
+ B̃ +OP

(
1√
λ

)
= 1 + B̃ +OP

(
1√
λ
+

1√
T

)
, (2.27)

and the sin-theta theorem in Davis and Kahan [1970] implies that

∥∥∥PV̄ ⊺ − P
ξ̂

∥∥∥ =
∥∥∥V̄ ⊺(V̄ V̄ ⊺)−1V̄ − ξ̂ξ̂⊺

∥∥∥ ≲P
1√
λ
, (2.28)

which implies that (V̄ V̄ )−1(V̄ ξ̂)2 = ξ̂⊺V̄ ⊺(V̄ V̄ )−1V̄ ξ̂ = 1 + OP(λ
−1/2 + T−1/2). Together

with |T−1V̄ V̄ ⊺ − 1| ≲ T−1/2, we have

|V̄ ξ̂|√
T

= 1 +OP

(
1√
λ
+

1√
T

)
. (2.29)

It is easy to observe that the sign of ξ̂ plays no role in the estimator γ̂PCA
g , we can choose

ξ̂ such that

V̄ ξ̂√
T

= 1 +OP

(
1√
λ
+

1√
T

)
. (2.30)
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Recall that the risk premium estimator is γ̂PCA
g = η̂γ̂, where

η̂ =
Ḡξ̂√
T

and γ̂ =
ς̂⊺r̄√
λ̂
. (2.31)

Using Ḡ = ηV̄ and (2.30), we have

η̂ = η +OP

(
1√
λ
+

1√
T

)
. (2.32)

Write

γ̂ =
ς̂⊺r̄√
λ̂
=

ς̂⊺β(γ + v̄)√
λ̂

+
ς̂⊺ū√
λ̂
=

√
λς̂1√
λ̂
(γ + v̄) +

ς̂⊺ū√
λ̂
, (2.33)

where we use β = (
√
λ, 0, . . . , 0)⊺ in the last step. Now we analyze the two terms on the

right hand side of (2.33) one by one. For the first term, using (2.24), we have

√
λς̂1√
λ̂

=
λ

λ̂

(V̄ + λ−1/2Ū1)ξ̂√
T

=
λ

λ̂

(
V̄ ξ̂√
T

+
Ū1ξ̂√
Tλ

)
.

Using (2.27) and (2.30) and
∥∥Ū1

∥∥ ≲P

√
T , it follows that

√
λς̂1√
λ̂

=
1

1 + B̃
+OP

(
1√
λ
+

1√
T

)
. (2.34)

For the second term in (2.33), using (2.24) again, we can write

ς̂⊺ū√
λ̂
=

ς̂1U1ιT

T
√

λ̂
+

ς̂
⊺
2U2ιT

T
√

λ̂
=

ς̂1U1ιT

T
√

λ̂
+

ξ̂⊺(IT − T−1ιT ι
⊺
T )U

⊺
2U2ιT

T 3/2λ̂
. (2.35)

The condition that entries of U are independent N (0, 1) implies that ∥U1ιT ∥ ≲P

√
T , with

λ̂/λ
P−→ 1 + B as shown in (2.27), the first term in (2.35) is of order OP(T

−1/2λ−1/2). For
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the second term in (2.35), using
∥∥(N − 1)−1U

⊺
2U2 − IT

∥∥ ≲P

√
T/N , we have

|
ξ̂⊺(IT − T−1ιT ι

⊺
T )U

⊺
2U2ιT

T 3/2λ̂
|

≤|
(N − 1)ξ̂⊺(IT − T−1ιT ι

⊺
T )ιT

T 3/2λ̂
|+ N − 1

T λ̂

∥∥∥(N − 1)−1U
⊺
2U2 − IT

∥∥∥
=
N − 1

T λ̂

∥∥∥(N − 1)−1U
⊺
2U2 − IT

∥∥∥ ≲P
1√
λ
,

which leads to |λ̂−1/2ς̂⊺ū| ≲P λ−1/2. Plugging this and (2.34) into (2.33), we obtain

γ̂ =
ς̂⊺r̄√
λ̂
=

γ

1 + B̃
+OP

(
1√
λ
+

1√
T

)
, (2.36)

and thus γ̂PCA
g

P−→ (1 +B)−1ηγ by (2.32), (2.36) and B̃ → B.

2.6.1.2 Proof of Proposition 8

Proof. Consider the set I = {|β[i]| ≥ β{qN}}, where |β|{qN} is the (qN)th largest value in{
|β[i]|

}
i∈⟨N⟩

. Since

T−1R̄Ḡ⊺ − βη⊺ = β
(
T−1V̄ V̄ ⊺ − 1

)
η⊺ + T−1Ū V̄ ⊺η⊺ + T−1βV̄ Z̄⊺ + T−1Ū Z̄⊺,

we have

∥∥∥T−1R̄Ḡ⊺ − βη⊺
∥∥∥
MAX

≲ ∥β∥MAX |T−1V̄ V̄ ⊺ − 1| ∥η∥+ T−1
∥∥Ū V̄ ⊺∥∥

MAX ∥η∥

+ T−1 ∥β∥MAX

∥∥V̄ Z̄⊺∥∥+ T−1
∥∥Ū Z̄⊺∥∥

MAX ≲P (logN)1/2T−1/2.

In other words, the difference between T−1R̄Ḡ⊺ and βη⊺ for all test assets is bounded by

OP

(
(logN)1/2T−1/2

)
, which is oP(1) under our assumption.

On the other hand, with the assumption that ∥β∥MAX ≲ 1 and the definition of |β|{qN},
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we have
∥∥∥β[I0]∥∥∥2 ≲ qN +(N0− qN)|β|2{qN}. Together with the assumption that qN/N0 → 0

and
∥∥∥β[I0]∥∥∥ ≍

√
N0, it leads to |β|2{qN} ≳

∥∥βI0∥∥2 /N0 ≍ 1. Then, with the assumption that

|β|{qN+1} ≤ (1 + δ)−1|β|{qN}, we have that the difference between |β|{qN+1} and |β|{qN}

should be at the same rate as |β|{qN} ≳ 1, which is larger than the difference between

T−1R̄Ḡ⊺ and βη⊺. Therefore, with probability approaching one, we have Î = I. In what

follows, we only need consider the case of Î = I.

Since qN/N0 → 0, by the definition of I, we have
∥∥∥β[I]∥∥∥ /√|I| ≥

∥∥∥β[I0]∥∥∥ /√|I0|. Together

with the assumption that
∥∥∥β[I0]∥∥∥ ≍

√
N0,

∥∥∥β[I0]∥∥∥ → ∞ and |I| = qN → ∞, we have

|I|/(T
∥∥∥β[I]∥∥∥2) → 0 and

∥∥∥β[I]∥∥∥ → ∞. Now compared to the case with PCA, the expansion

on γ̂SPCA
g resembles that of (2.33), except for an extra term that depends on Z̄ and the

restriction of r̄ on I:

γ̂SPCA
g =

ηV̄ ξ̂√
T

ς̂⊺r̄[I]√
λ̂

+
Z̄ξ̂√
T

ς̂⊺r̄[I]√
λ̂

. (2.37)

In restriction to the smaller set I, the first term matches exactly the case of |I|/(T
∥∥∥β[I]∥∥∥2) →

0 = B in Proposition 7, which yields

ηV̄ ξ̂√
T

ς̂⊺r̄[I]√
λ̂

= ηγ + oP(1).

We now analyze the second term in (2.37). As shown in (2.36), we have

∥∥∥∥∥ ς̂
⊺r̄[I]√
λ̂

∥∥∥∥∥ ≲P 1,

so to prove that SPCA is consistent in this case, it is sufficient to show that T−1/2
∥∥∥Z̄ξ̂∥∥∥ P−→

0, where ξ̂ is the largest right singular vector of R̄[I]. Similar to the proof of (2.28) in

Proposition 7, we can show that the difference between projection matrices, P
ξ̂

and PV̄ ⊺ is
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small by sin-theta theorem. That is to say, we have
∥∥∥ξ̂ξ̂⊺ − V̄ ⊺(V̄ V̄ ⊺)−1V̄

∥∥∥ P−→ 0. Then,

with the fact that

∥∥∥Z̄V̄ ⊺(V̄ V̄ ⊺)−1V̄
∥∥∥ ≤

∥∥Z̄V̄ ⊺∥∥∥∥∥(V̄ V̄ ⊺)−1
∥∥∥∥∥V̄ ∥∥ ≲P T 1/2 × T−1 × T 1/2 ≲P 1,

we have T−1/2
∥∥∥Z̄ξ̂ξ̂⊺∥∥∥ P−→ 0. Consequently,

T−1/2
∥∥∥Z̄ξ̂∥∥∥ = T−1/2

∥∥∥Z̄ξ̂ξ̂⊺ξ̂∥∥∥ ≤ T−1/2
∥∥∥Z̄ξ̂ξ̂⊺∥∥∥∥∥∥ξ̂∥∥∥ P−→ 0.

Hence, zt does not affect the consistency of the SPCA estimator. This completes the proof.

2.6.1.3 Proof of Theorem 6

Proof. It is sufficient to consider the case Σv = Ip. Otherwise, we can do transformation

V ′ = Σ
−1

2
v V , β′

[I]
= β[I]Σ

1
2
v , η′ = ηΣ

1
2
v and γ′ = Σ

−1
2

v γ. All the Assumptions 7-14 still hold

for the new V ′, β′
[I]

. Therefore, we only need analyze the case of Σv = Ip.

For notation simplicity, throughout the proofs of Theorems 6-8, we use R̃(k) :=
(
R̄(k)

)
[Îk]

to denote the matrix on which we perform SVD in each step of Algorithm 7. Similarly, we

use r̃(k) :=
(
r̄(k)

)
[Îk]

. The first left and right singular vectors of R̃(k) are denoted by

ς̂(k) and ξ̂(k), while the largest singular value of R̃(k) is denoted by
√

T λ̂(k). As a result,

λ̂(k) = T−1
∥∥∥R̃(k)

∥∥∥2 and

ς̂(k) =
R̃(k)ξ̂(k)√

T λ̂(k)

, ξ̂(k) =
R̃
⊺
(k)

ς̂(k)√
T λ̂(k)

. (2.38)

Using the above notation, our estimated factor at k-th step is V̂(k) =
√
T ξ̂

⊺
(k)

∈ R1×T ,

the risk premium of this factor is given by γ̂(k) = λ̂
−1/2
(k)

ς̂
⊺
(k)

r̃(k), the loading matrix of R on
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this factor is β̂(k) = T−1/2R̄ξ̂(k), and the loading of G on this factor is η̂(k) = T−1/2Ḡξ̂(k).

By footnote 24, we can use Ḡ instead of Ḡ(k) in Algorithm 7 and throughout the proof.

We denote η̂ = (η̂(1), . . . , η̂(p̃)) and γ̂ = (γ̂(1), . . . , γ̂(p̃))
⊺, so the risk premium estimator is

γ̂SPCA
g = η̂γ̂.

To see more clear the relationship between R̃(k) and R̄, we define matrix D(k) ∈ R|Îk|×N

iteratively:

D(k) = I
[Îk]

−
k−1∑
i=1

R̄
[Îk]

ξ̂(i)

ς̂ ′
(i)
D(i)√
T λ̂(i)

with D(1) = I
[Î1]

. We can show by induction that R̃(k) = D(k)R̄. In fact, by Lemma 15, we

have ξ̂
⊺
(i)
ξ̂(j) = 0. With V̂(i) =

√
T ξ̂

⊺
(i)

and the definition of R̃(k), we have

R̃(k) :=
(
R̄(k)

)
[Îk]

= R̄
[Îk]

k−1∏
i=1

M
V̂

⊺
(i)

= R̄
[Îk]

IT −
k−1∑
i=1

ξ̂(i)ξ̂
⊺
(i)

 , (2.39)

for k > 1 and when k = 1, R̃(1) = R̄
[Î1]

= β
[Î1]

V̄ + Ū
[Î1]

. Using (2.38), if R̃(i) = D(i)R̄ for

i < k, we can write (2.39) as

R̃(k) = R̄
[Îk]

IT −
k−1∑
i=1

ξ̂(i)ξ̂
⊺
(i)

 =R̄
[Îk]

−
k−1∑
i=1

R̄
[Îk]

ξ̂(i)

ς̂
⊺
(i)
R̃(i)√
T λ̂(i)

= D(k)R̄ (2.40)

As R̃(1) = R̄
[Î1]

= D(1)R̄ holds immediately by the definition, we have R̃(k) = D(k)R̄ by

induction. If we further define β̃(k) = D(k)β and Ũ(k) = D(k)Ū , then R̃(k) can be written in

the form R̃(k) = β̃(k)V̄ + Ũ(k). Similarly, we can write

r̃(k) = β̃(k)(γ + v̄) + ũ(k), (2.41)

where r̃(k) = D(k)r̄ and ũ(k) = D(k)ū .
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We also create similar representations for G̃(k) := Ḡ
∏k−1

i=1 M
V̂ ⊺
(i)

. Specifically, we have

G̃(k) :=Ḡ

IT −
k−1∑
i=1

ξ̂(i)ξ̂
⊺
(i)


=Ḡ−

k−1∑
i=1

Ḡξ̂(i)

ς̂
⊺
(i)
R̃(i)√
T λ̂(i)

= ηV̄ + Z̄ −
k−1∑
i=1

Ḡξ̂(i)

ς̂
⊺
(i)
β̃(i)V̄√
T λ̂(i)

−
k−1∑
i=1

Ḡξ̂(i)

ς̂
⊺
(i)
Ũ(i)√
T λ̂(i)

=

η −
k−1∑
i=1

Ḡξ̂(i)

ς̂
⊺
(i)
β̃(i)√

T λ̂(i)

 V̄ +

Z̄ −
k−1∑
i=1

Ḡξ̂(i)

ς̂
⊺
(i)
Ũ(i)√
T λ̂(i)

 .

In light of this equation, if we define

η̃(k) := η −
k−1∑
i=1

Ḡξ̂(i)

ς̂
⊺
(i)
β̃(i)√

T λ̂(i)

, and Z̃(k) := Z̄ −
k−1∑
i=1

Ḡξ̂(i)

ς̂
⊺
(i)
Ũ(i)√
T λ̂(i)

, (2.42)

G̃(k) can be written as G̃(k) = η̃(k)V̄ + Z̃(k).

To sum up, we have defined R̃(k), r̃(k), β̃(k), Ũ(k), ũ(k), η̃(k) and Z̃(k) at the kth step of

the algorithm. Note that β̃(k) ∈ R|Ik|×p and η̃(k) ∈ Rd×p can be viewed as the loading of

R̃(k) and G̃(k) on V̄ , but they are not the same as the estimators defined in Algorithm 7,

β̂(k) ∈ RN×1 and η̂(k) ∈ Rd×1, which are the estimated loadings of R and G on the kth

factor.

By Lemma 17, we have P(Îk = Ik) → 1 for k ≤ p̃ and P(p̂ = p̃) → 1. Thus, we can

impose that Îk = Ik for any k and p̂ = p̃ in what follows. In addition, Lemma 16(ii) and

Lemma 17(iii) imply that λ̂(k) ≍ qN and that |Ik| = qN . Therefore, the assumptions of

Lemmas 19-22 hold.

Since our algorithm stops at p̃, it implies that at most qN − 1 test assets satisfy

T−1
∥∥∥G̃(p̃+1)R̄

⊺
[i]

∥∥∥
MAX

= T−1
∥∥∥∥(R̄(p̃+1)

)
[i]
Ḡ⊺
∥∥∥∥
MAX

≥ c.

169



Let S denote the set of these assets. For asset i ∈ S, we have

∥∥∥T−1G̃(p̃+1)R̄
⊺
[i]

∥∥∥2
F
≲
∥∥∥T−1G̃(p̃+1)R̄

⊺
[i]

∥∥∥2
MAX

≲ 1.

Consider the test assets in I0, we have

∑
i∈I0

∥∥∥T−1G̃(p̃+1)R̄
⊺
[i]

∥∥∥2
F
=

∑
i∈I0∩S

∥∥∥T−1G̃(p̃+1)R̄
⊺
[i]

∥∥∥2
F
+

∑
i∈I0∩Sc

∥∥∥T−1G̃(p̃+1)R̄
⊺
[i]

∥∥∥2
F

≲P qN + c2N0 = o (N0) , (2.43)

where we use the the assumptions c → 0 and qN/N0 → 0 in the last equation. Consequently,

(2.43) leads to
∥∥∥T−1G̃(p̃+1)R̄

⊺
[I0]

∥∥∥ = oP(N
1/2
0 ). Write

G̃(p̃+1)R̄
⊺
[I0]

= η̃(p̃+1)V̄ V̄ ⊺β[I0] + η̃(p̃+1)V̄ Ū
⊺
[I0]

+ Z̄(p̃+1)V̄
⊺β[I0] + Z̄(p̃+1)Ū

⊺
[I0]

. (2.44)

Using (2.43), (2.44) and Lemma 21(i)(ii), we have

∥∥∥η̃(p̃+1)

(
V̄ V̄ ⊺β[I0] + V̄ Ū

⊺
[I0]

)∥∥∥ = oP

(
N

1/2
0 T

)
. (2.45)

Also, using Assumption 12, Lemma 14(i) and Weyl’s theorem, we have

|σp(V̄ V̄ ⊺β[I0] + V̄ Ū
⊺
[I0]

)− σp(Tβ[I0])| ≤
∥∥∥V̄ Ū

⊺
[I0]

∥∥∥+ ∥∥∥T−1V̄ V̄ ⊺ − Ip
∥∥∥∥∥∥Tβ[I0]∥∥∥

≲PN
1/2
0 T 1/2.

Since Assumption 9 implies that σp(β[I0]) ≍ N
1/2
0 , we have σp(V̄ V̄ ⊺β[I0]+V̄ Ū

⊺
[I0]

) ≍P N
1/2
0 T .

Using this result, (2.45) and the inequality
∥∥∥η̃(p̃+1)

(
V̄ V̄ ⊺β[I0] + V̄ Ū

⊺
[I0]

)∥∥∥ ≥ σp(V̄ V̄ ⊺β[I0] +
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V̄ Ū
⊺
[I0]

)
∥∥∥η̃(p̃+1)

∥∥∥, we have
∥∥∥η̃(p̃+1)

∥∥∥ P−→ 0. That is, by definition of η̃(p̃+1) in (2.42),

∥∥∥∥∥∥η −
p̃∑

i=1

Ḡξ̂(i)

ς̂
⊺
(i)
β̃(i)√

T λ̂(i)

∥∥∥∥∥∥ = oP(1). (2.46)

Multiplying (2.46) by γ from the right-hand side, we have

∥∥∥∥∥∥ηγ −
p̃∑

i=1

Ḡξ̂(i)

ς̂
⊺
(i)
β̃(i)√

T λ̂(i)

γ

∥∥∥∥∥∥ = oP(1). (2.47)

Recall that our final estimator of γg is

γ̂SPCA
g =

p̃∑
i=1

η̂(i)γ̂(i) =

p̃∑
i=1

Ḡξ̂(i)

ς̂
⊺
(i)
r̃(i)√

T λ̂(i)

=

p̃∑
i=1

Ḡξ̂(i)

ς̂
⊺
(i)
β̃(i)√

T λ̂(i)

(γ + v̄) +

p̃∑
i=1

Ḡξ̂(i)

ς̂
⊺
(i)
ũ(i)√

T λ̂(i)

.

(2.48)

Combining (2.47) and (2.48), we have

∥ηγ − η̂γ̂∥ ≤
p̃∑

i=1

∥∥∥∥∥∥Ḡξ̂(i)

ς̂
⊺
(i)
β̃(i)√

T λ̂(i)

v̄

∥∥∥∥∥∥+
p̃∑

i=1

∥∥∥∥∥∥Ḡξ̂(i)

ς̂
⊺
(i)
ũ(i)√

T λ̂(i)

∥∥∥∥∥∥+ oP(1). (2.49)

Using
∥∥Ḡ∥∥ ≲P T 1/2, Lemma 20(ii), Lemma 22(i) and the assumptions that qN → ∞, we

have ∥∥∥∥∥∥Ḡξ̂(i)

ς̂
⊺
(i)
β̃(i)√

T λ̂(i)

v̄

∥∥∥∥∥∥ ≤
∥∥∥Ḡξ̂(i)

∥∥∥
∥∥∥∥∥∥
ς̂
⊺
(i)
β̃(i)√

T λ̂(i)

∥∥∥∥∥∥ ∥v̄∥ = oP(1),

and ∥∥∥∥∥∥Ḡξ̂(i)

ς̂
⊺
(i)
ũ(i)√

T λ̂(i)

∥∥∥∥∥∥ ≤
∥∥∥Ḡξ̂(i)

∥∥∥
∥∥∥∥∥∥
ς̂
⊺
(i)
ũ(i)√

T λ̂(i)

∥∥∥∥∥∥ = oP(1).
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Plugging them into (2.49) completes the proof.

2.6.1.4 Proof of Theorem 7

To derive the asymptotic distribution, we need a more intricate analysis. As in the proof

of Theorem 6, we impose that p̂ = p̃ and Îk = Ik, since Lemma 17 shows that both events

occur with probability approaching 1.

Recall that in Algorithm 7 the SPCA estimator is written as

γ̂SPCA
g = η̂γ̂ =

p̂∑
k=1

η̂(k)γ̂(k),

where p̂ is the number of factors selected and, with the notation defined in the proof of

Theorem 6,

η̂(k) =
Ḡξ̂(k)√

T
=

ηV̄ ξ̂(k)√
T

+
Z̄ξ̂(k)√

T
, γ̂(k) =

ς̂
⊺
(k)

r̃(k)√
λ̂(k)

=
ς̂
⊺
(k)

β̃(k)(γ + v̄)√
λ̂(k)

+
ς̂
⊺
(k)

ũ(k)√
λ̂(k)

. (2.50)

Denote H1 = (h11, . . . , hp̂1), H2 = (h12, . . . , hp̂2), where

hk1 = T−1/2V̄ ξ̂(k), hk2 = λ̂
−1/2
(k)

β̃
⊺
(k)

ς̂(k). (2.51)

Therefore, we can write (2.50) as

η̂(k) − ηhk1 =
Z̄ξ̂(k)√

T
, γ̂(k) − h

⊺
k2(γ + v̄) =

ς̂
⊺
(k)

ũ(k)√
λ̂(k)

. (2.52)

Since ξ̂(k) and ς̂(k) are the largest singular vectors of R̃(k) with the singular value
√

T λ̂(k),
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we have

ς̂(k) =
R̃(k)ξ̂(k)√

T λ̂(k)

, ξ̂(k) =
R̃
⊺
(k)

ς̂(k)√
T λ̂(k)

. (2.53)

From (2.53), we have

Z̄ξ̂(k)√
T

=
Z̄√
T

R̃
⊺
(k)

ς̂(k)√
T λ̂(k)

=
Z̄V̄ ⊺

T

β̃
⊺
(k)

ς̂(k)√
λ̂(k)

+
Z̄Ũ

⊺
(k)

ς̂(k)

T
√

λ̂(k)

=
Z̄V̄ ⊺

T
hk2 +

Z̄Ũ
⊺
(k)

ς̂(k)

T
√
λ̂(k)

.

Using Lemma 20(ii), we have

∥∥∥∥∥∥
Z̄Ũ

⊺
(k)

ς̂(k)

T
√
λ̂(k)

∥∥∥∥∥∥ ≲P
1

T
+

1

qN
,

∥∥∥∥∥∥
ς̂
⊺
(k)

ũ(k)√
λ̂(k)

∥∥∥∥∥∥ ≲P
1

T
+

1

qN
.

Then, along with (2.52) and Lemma 14(vi), the above equations lead to

∥∥∥∥η̂ − ηH1 −
ZV ⊺

T
H2

∥∥∥∥ ≲P
1

T
+

1

qN
, (2.54)

and

∥∥γ̂ −H
⊺
2 γ −H

⊺
2 v̄
∥∥ ≲P

1

T
+

1

qN
. (2.55)

Combining (2.54) and (2.55), with ∥H1∥ ≲P 1, ∥H2∥ ≲P 1 from Lemma 22 and Assumptions

7, 8, we have

∥∥∥∥η̂γ̂ − ηH1H
⊺
2 (γ + v̄)− ZV ⊺

T
H2H

⊺
2 γ

∥∥∥∥ ≲P
1

T
+

1

qN
. (2.56)

As shown in Lemma 16(iv), under the assumption that λp(η
⊺η) ≳ 1, we have p̃ = p.

Together with P(p̂ = p̃) → 1, we can impose that p̂ = p for derivations below. To analyze
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H1H
⊺
2 and H2H

⊺
2 in (2.56), using Lemma 22 and the assumptions on q, we have

∥∥H⊺
2H2 − Ip

∥∥ ≤
∥∥H⊺

1H2 − Ip
∥∥+ ∥H1 −H2∥ ∥H2∥ ≲P T−1/2. (2.57)

Then, for the term H2H
⊺
2 , we have

∥∥H2H
⊺
2 − Ip

∥∥ = max
1≤i≤p

|λi(H2H
⊺
2 )− 1| = max

1≤i≤p
|λi(H

⊺
2H2)− 1| =

∥∥H⊺
2H2 − Ip

∥∥ ≲P T−1/2

(2.58)

since H2 is a p× p matrix.

For the term H1H
⊺
2 , by Lemma 22, we have

∥∥H⊺
1H2 − Ip

∥∥ ≲P
1

T
+

1

qN
. (2.59)

In addition, we have

σp(H2)
∥∥H2H

⊺
1 − Ip

∥∥ ≤
∥∥(H2H

⊺
1 − Ip)H2

∥∥ =
∥∥H2(H

⊺
1H2 − Ip)

∥∥ ≤ ∥H2∥
∥∥H⊺

1H2 − Ip
∥∥ .

(2.60)

Since (2.57) implies that σ1(H2)/σp(H2) = λ1(H2H
⊺
2 )

1/2/λp(H2H
⊺
2 )

1/2 ≲P 1, (2.59) and

(2.60) give

∥∥H1H
⊺
2 − Ip

∥∥ =
∥∥H2H

⊺
1 − Ip

∥∥ ≤ σ1(H2)

σp(H2)

∥∥H⊺
1H2 − Ip

∥∥ ≲P
1

T
+

1

qN
. (2.61)

Combining (2.56), (2.58), (2.61) and the assumption q−1N−1T 1/2 → 0, we obtain

∥∥∥η̂γ̂ − η(γ + v̄)− T−1ZV ⊺γ
∥∥∥ ≲P

1

T
+

1

qN
. (2.62)

(2.62) implies that ∥η̂γ̂ − ηγ∥ ≲P T−1/2 + (qN)−1. In addition, with the assumption
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q−1N−1T 1/2 → 0, (2.62) becomes
∥∥η̂γ̂ − η(γ + v̄)− T−1ZV ⊺γ

∥∥ = oP(T
−1/2). Using Delta

method and Assumption 15, it is straightforward to obtain:
√
T (η̂γ̂ − ηγ)

d−→ N (0,Φ) ,

where Φ is as defined in Theorem 7.

2.6.2 Proofs from Section 2.2.3

2.6.2.1 Proof of Theorem 8

Proof. As shown in the proof of Theorem 7, we have P(p̂ = p) → 1 and P(Îk = Ik) → 1 for

k ≤ p. Thus, we impose p̂ = p̃ = p and Îk = Ik below. Using the same notation as in the

proof of Theorem 7 and (2.55), we have

1

T

T∑
t=1

|mt − m̂t|2 =
1

T

∥∥∥V̂ ⊺γ̂ − V ⊺γ
∥∥∥2 =

1

T

∥∥∥√T ξ̂(H
⊺
2 γ +OP(T

−1/2))− V ⊺γ
∥∥∥2

=
1

T

∥∥∥√T ξ̂H
⊺
2 γ − V̄ ⊺γ

∥∥∥2 +OP

(
T−1

)
, (2.63)

where ξ̂ = (ξ̂(1), . . . , ξ̂(p)).

Using (2.53), we can write

√
T ξ̂(k)h

⊺
k2 =

R̃
⊺
(k)

ς̂(k)√
λ̂(k)

h
⊺
k2 =

V̄ ⊺β̃
⊺
(k)

ς̂(k)√
λ̂(k)

h
⊺
k2 +

Ũ
⊺
(k)

ς̂(k)√
λ̂(k)

h
⊺
k2. (2.64)

Using Lemma 20(i), Lemma 22(i) and λ̂(k) ≍P |Ik|, |Ik| = qN , we can derive from (2.64)

that

√
T ξ̂(k)h

⊺
k2 = V̄ ⊺hk2h

⊺
k2 +OP

(
q−1/2N−1/2T 1/2 + T−1/2

)
.
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That is,

√
T ξ̂H

⊺
2 = V̄ ⊺H2H

⊺
2 +OP

(
q−1/2N−1/2T 1/2 + T−1/2

)
. (2.65)

Therefore, using (2.65), (2.58) and the assumptions on q, we have

T−1/2
∥∥∥√T ξ̂H

⊺
2 γ − V̄ ⊺γ

∥∥∥ ≲P T−1/2
∥∥V̄ ⊺H2H

⊺
2 − V̄ ⊺∥∥ ∥γ∥+ q−1/2N−1/2 + T−1

≲P T−1/2
∥∥V̄ ∥∥∥∥H2H

⊺
2 − Ip

∥∥+ q−1/2N−1/2 + T−1

≲P q−1/2N−1/2 + T−1/2.

Therefore, it follows from (2.63) that

1

T

T∑
t=1

|mt − m̂t|2 =
1

T

∥∥∥V̂ ⊺γ̂ − V ⊺γ
∥∥∥2 ≲P

1

T
+

1

qN
.

In light of the assumptions on q, we can choose q such that qN ≳ N0/ logN0, which leads to

1

T

T∑
t=1

|mt − m̂t|2 ≲P
1

T
+

logN0

N0
.

2.6.2.2 Proof of Proposition 9

Proof. Write β̃ = Σ
−1/2
u βΣ

1/2
v , then by definition m̃t can be written as

m̃t = 1− γ⊺β⊺Σ−1
r (βvt + ut) = 1− γ⊺Σ

−1/2
v β̃⊺

(
β̃β̃⊺ + IN

)−1
(β̃Σ

−1/2
v vt + Σ

−1/2
u ut),

(2.66)
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or in matrix form

M̃ = 1− γ⊺β⊺Σ−1
r (βV + U) = 1− γ⊺Σ

−1/2
v β̃⊺

(
β̃β̃⊺ + IN

)−1
(β̃Σ

−1/2
v V + Σ

−1/2
u U),

(2.67)

where M̃ = (m̃1, . . . , m̃T ), V = (v1, . . . , vT ) and U = (u1, . . . , ut). Suppose that the SVD

of β̃ can be written as β̃ = BΛ1/2Γ, where B ∈ RN×p and Γ ∈ Rp×p are matrices of left

and right singular vectors, Λ1/2 = diag(λ̃
1/2
1 , · · · , λ̃1/2p ) is a diagonal matrix and λ̃i is the

ith eigenvalue of β̃⊺β̃. Write B = (b1, · · · , bp), then b
⊺
i bj = 0 for i ̸= j. Using the SVD of β̃,

we have

β̃⊺
(
β̃β̃⊺ + IN

)−1
= Γ⊺Λ1/2(Λ + Ip)−1B⊺.

Hence, we have

∥∥∥∥β̃⊺ (β̃β̃⊺ + IN
)−1

β̃ − Ip
∥∥∥∥ =

∥∥∥Γ⊺Λ1/2(Λ + Ip)−1Λ1/2Γ− Ip
∥∥∥

=
∥∥∥Λ1/2(Λ + Ip)−1Λ1/2 − Ip

∥∥∥ ≲P λ̃−1
p ,

(2.68)

and

∥∥∥∥β̃⊺ (β̃β̃⊺ + IN
)−1

Σ
−1/2
u U

∥∥∥∥ =
∥∥∥Γ⊺Λ1/2(Λ + Ip)−1B⊺Σ

−1/2
u U

∥∥∥ ≲P λ̃
−1/2
p

∥∥∥B⊺Σ
−1/2
u U

∥∥∥ .
(2.69)

Since Cov(B⊺Σ
−1/2
u ut) = Ip, we have E

(∥∥∥B⊺Σ
−1/2
u U

∥∥∥2
F

)
= pT , which leads to

∥∥∥B⊺Σ
−1/2
u U

∥∥∥ ≤
∥∥∥B⊺Σ

−1/2
u U

∥∥∥
F
≲P T 1/2. (2.70)

177



For the same reason, we have
∥∥∥Σ−1/2

v V
∥∥∥ ≲P T 1/2. Then, with Assumption 16, (2.67), (2.68),

(2.69), and (2.70), we have

√√√√ T∑
t=1

|mt − m̃t|2

≤
∥∥∥∥γ⊺Σ−1/2

v

(
β̃⊺
(
β̃β̃⊺ + IN

)−1
β̃ − Ip

)
Σ
−1/2
v V

∥∥∥∥+ ∥∥∥∥γ⊺Σ−1
v β̃⊺

(
β̃β̃⊺ + IN

)−1
Σ
−1/2
u U

∥∥∥∥
≲

∥∥∥∥β̃⊺ (β̃β̃⊺ + IN
)−1

β̃ − Ip
∥∥∥∥∥∥∥Σ−1/2

v V
∥∥∥+ ∥∥∥∥β̃⊺ (β̃β̃⊺ + IN

)−1
Σ
−1/2
u U

∥∥∥∥
≲P T 1/2λ̃

−1/2
p ,

which in turn leads to

1

T

T∑
t=1

|mt − m̃t|2 ≲P λ̃−1
p ,

where

λ̃p = λp

(
Σ
1/2
v β⊺Σ−1

u βΣ
1/2
v

)
≥ λp(βΣvβ

⊺)λmin(Σ
−1
u ) ≍P λp(β

⊺β)λ−1
max(Σu) ≳ λp(β

⊺β),

which concludes the proof.

2.6.2.3 Proof of Theorem 9(a)

Proof. For Ridge SDF estimator m̂t, we have

1

T

T∑
t=1

|mt − m̂t|2 =
1

T

∥∥∥R̄⊺(Σ̂ + µIN )−1r̄ − V ⊺γ
∥∥∥2 . (2.71)
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Recall that in the proof of Proposition 11, we have a condensed form of SVD on R̄:

R̄ =
√
T ς̂Λ̂1/2ξ̂⊺ +

√
T ς̂∗Λ̂

1/2
∗ ξ̂

⊺
∗ ,

where Λ̂1/2 is the diagonal matrix of the first p singular values of T−1/2R̄ and ς̂, ξ̂ are the

corresponding left and right singular vectors. ς̂∗ ∈ RN×K , ξ̂∗ ∈ RT×K are the singular

vectors corresponding to the remaining K nonzero singular values in Λ̂
1/2
∗ ∈ RK×K , where

K = min{N, T − 1} − p. Using this representation, (2.71) becomes

√√√√ T∑
t=1

|mt − m̂t|2 =
∥∥∥(V̄ ⊺β⊺ + Ū⊺)ς̂(Λ̂ + µI)−1ς̂⊺r̄ − V ⊺γ + (V̄ ⊺β⊺ + Ū⊺)ς̂∗(Λ̂∗ + µI)−1ς̂

⊺
∗ r̄
∥∥∥

≤
∥∥∥V̄ ⊺β⊺ς̂(Λ̂ + µI)−1ς̂⊺βγ − V̄ ⊺γ

∥∥∥+ ∥∥∥V̄ ⊺β⊺ς̂(Λ̂ + µI)−1ς̂⊺(βv̄ + ū)
∥∥∥

+
∥∥∥Ū⊺ς̂(Λ̂ + µI)−1ς̂⊺r̄

∥∥∥+ ∥∥∥V̄ ⊺β⊺ς̂∗(Λ̂∗ + µI)−1ς̂
⊺
∗ r̄
∥∥∥

+
∥∥∥Ū⊺ς̂∗(Λ̂∗ + µI)−1ς̂

⊺
∗ r̄
∥∥∥+ ∥∥V ⊺γ − V̄ ⊺γ

∥∥ (2.72)

We analyze these terms one-by-one. Firstly, we consider the properties of ς̂ and ξ̂. Let ς̂k

and ξ̂k denote the kth columns of ς̂ and ξ̂, respectively. Note that ς̂k and ξ̂k can be regarded

as the ς̂(k) and ξ̂(k) in our SPCA procedure with Ik = ⟨N⟩, where ς̂k and ξ̂k are the singular

vectors at the kth stage. This means we can reuse some of the proofs without repeating

essentially the same arguments therein.

Similar to (2.51), we define

h̃k1 = T−1/2V̄ ξ̂k, h̃k2 = λ̂
−1/2
k β⊺ς̂k, (2.73)
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and H̃1 = (h̃11, . . . , h̃p1), H̃2 = (h12, . . . , h̃p2). Using Lemma 27, we can obtain

∥∥∥H̃1H̃
⊺
2 − Ip

∥∥∥ ≲P T−1 + λ−1
p (T−1N + 1),

∥∥∥H̃1 − H̃2

∥∥∥ ≲P T−1/2 + λ−1
p (T−1N + 1).

(2.74)

Using (2.74) and Lemma 27(i), we have
∥∥∥H̃2H̃

⊺
2 − Ip

∥∥∥ ≤
∥∥∥H̃1H̃

⊺
2 − Ip

∥∥∥+∥∥∥H̃1 − H̃2

∥∥∥∥∥∥H̃2

∥∥∥ ≲P

T−1/2 + λ−1
p (T−1N + 1), which, by (2.73), is equivalent to

∥∥∥β⊺ς̂Λ̂−1ς̂⊺β − Ip
∥∥∥ ≲P

1√
T

+
N + T

Tλp
. (2.75)

Consequently, with Lemma 24 and
∥∥∥β⊺ς̂Λ̂−1/2

∥∥∥ =
∥∥∥H̃2

∥∥∥ ≲P 1, we have

∥∥∥∥β⊺ς̂ (Λ̂ + µI
)−1

ς̂⊺β − Ip
∥∥∥∥

≤
∥∥∥∥β⊺ς̂Λ̂−1/2

(
Λ̂1/2

(
Λ̂ + µI

)−1
Λ̂1/2 − Ip

)
Λ̂−1/2ς̂⊺β

∥∥∥∥+ ∥∥∥β⊺ς̂Λ̂−1ς̂⊺β − Ip
∥∥∥

≤
∥∥∥β⊺ς̂Λ̂−1/2

∥∥∥2 ∥∥∥∥Λ̂1/2
(
Λ̂ + µI

)−1
Λ̂1/2 − Ip

∥∥∥∥+ ∥∥∥β⊺ς̂Λ̂−1ς̂⊺β − Ip
∥∥∥

≲P
1√
T

+
N + T

Tλp
+

µ

λp
,

(2.76)

where we use
∥∥∥∥Λ̂1/2

(
Λ̂ + µI

)−1
Λ̂1/2 − Ip

∥∥∥∥ = maxj≤p(λ̂j+µ)−1µ ≲P λ−1
p µ in the last step.

With
∥∥V̄ ∥∥ ≲P T 1/2 from Lemma 14, it implies from (2.76) that the first term in (2.72)

can be bounded:

∥∥∥V̄ ⊺β⊺ς̂(Λ̂ + µI)−1ς̂⊺βγ − V̄ ⊺γ
∥∥∥ ≲P 1 +

N + T√
Tλp

+
µ
√
T

λp
.
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For the second term in (2.72), using Lemma 24, we have

∥∥∥V̄ ⊺β⊺ς̂(Λ̂ + µI)−1ς̂⊺(βv̄ + ū)
∥∥∥ ≤

∥∥V̄ ∥∥∥∥∥β⊺ς̂Λ̂−1/2
∥∥∥∥∥∥Λ̂1/2(Λ̂ + µI)−1

∥∥∥ ∥βv̄ + ū∥ ≲P

√
N

λp
.

(2.77)

Next, recall that ς̂∗ and ξ̂∗ are singular vectors of R̄, we have

V̄ ⊺β⊺ς̂∗ + Ū⊺ς̂∗ = R̄⊺ς̂∗ =
√
T ξ̂∗Λ̂

1/2
∗ . (2.78)

By Weyl’s theorem and Assumption 10, we have

|σj(T−1/2R̄)− σj(T
−1/2βV̄ )| ≤ T−1/2

∥∥R̄− βV̄
∥∥ = T−1/2

∥∥Ū∥∥ ≲P

√
N

T
+ 1, (2.79)

for j ≤ min{N, T}. Since Rank(T−1/2βV̄ ) ≤ p, we have σj(T
−1/2βV̄ ) = 0 for j > p and

thus

∥∥∥Λ̂1/2
∗
∥∥∥ = σp+1(T

−1/2R̄) ≲P

√
N

T
+ 1. (2.80)

Left multiplying (2.78) by V̄ , we obtain

V̄ V̄ ⊺β⊺ς̂∗ =
√
T V̄ ξ̂∗Λ̂

1/2
∗ − V̄ Ū⊺ς̂∗. (2.81)

Together with (2.80) and Assumption 12, we have

∥β⊺ς̂∗∥ ≤
∥∥∥(V̄ V̄ ⊺)−1

∥∥∥(√T
∥∥V̄ ∥∥∥∥∥Λ̂1/2

∗
∥∥∥+ ∥∥V̄ Ū⊺∥∥) ≲P

√
N

T
+ 1, (2.82)
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and consequently,

∥∥ς̂⊺∗ r̄∥∥ ≤
∥∥ς̂⊺∗ β∥∥ ∥γ + v̄∥+

∥∥ς̂⊺∗ ū∥∥ ≲P

√
N

T
+ 1. (2.83)

Using (2.82), (2.83), Lemma 26(iv) and
∥∥Ū∥∥ ≲P N1/2 + T 1/2, we have

∥∥∥β⊺ς̂∗(Λ̂∗ + µI)−1ς̂
⊺
∗ r̄
∥∥∥ ≤ ∥β⊺ς̂∗∥

∥∥∥(Λ̂∗ + µI)−1
∥∥∥∥∥ς̂⊺∗ r̄∥∥ ≲P

N + T

µT
, (2.84)

and

∥∥∥Ū⊺ς̂∗(Λ̂∗ + µI)−1ς̂
⊺
∗ r̄
∥∥∥ ≤

∥∥Ū∥∥∥∥∥(Λ̂∗ + µI)−1
∥∥∥∥∥ς̂⊺∗ r̄∥∥ ≲P

N + T

µ
√
T

. (2.85)

Using Lemma 26(iii), we have

∥∥∥Λ̂−1/2ς̂⊺r̄
∥∥∥ ≲P

∥∥∥Λ̂−1/2ς̂⊺β
∥∥∥+ ∥∥∥Λ̂−1/2ς̂⊺ū

∥∥∥ ≲P 1 +
N + T

Tλp
≲P 1,

where we use
∥∥∥Λ̂−1/2ς̂⊺β

∥∥∥ =
∥∥∥H̃2

∥∥∥ ≲P 1. Then, with Lemma 26(iv), we have

∥∥∥Ū⊺ς̂(Λ̂ + µI)−1ς̂⊺r̄
∥∥∥ ≤

∥∥Ū⊺ς̂
∥∥∥∥∥(Λ̂ + µI)−1Λ̂1/2

∥∥∥∥∥∥Λ̂−1/2ς̂⊺r̄
∥∥∥ ≲P

√
T

λp
+

N + T√
Tλp

. (2.86)

Plugging (2.76), (2.77), (2.84), (2.85) and (2.86) into (2.72) and using
∥∥V̄ − V

∥∥ ≲P 1, we

obtain

1

T

T∑
t=1

|mt − m̂t|2 ≲P
µ2

λ2p
+

1

T
+

N + T

Tλp
+

N2 + T 2

µ2T 2
.
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With µ2 ≍ T−1λp(N + T ), we achieve the best rate from the above bound:

1

T

T∑
t=1

|mt − m̂t|2 ≲P
1

T
+

N + T

Tλp
.

2.6.2.4 Proof of Theorem 9(b)

Proof. i. (Slow rate) Note that (2.14) is equivalent to a constrained optimization problem:

b̂ = argmin
b

∥∥∥Σ̂−1/2r̄ − Σ̂1/2b
∥∥∥2 , subject to ∥b∥1 ≤ µ,

for some tuning parameter µ. This implies that the vector of the true SDF loadings, b,

satisfies that

∥∥∥Σ̂−1/2r̄ − Σ̂1/2b̂
∥∥∥2 ≤

∥∥∥Σ̂−1/2r̄ − Σ̂1/2b
∥∥∥2 and

∥∥∥b̂∥∥∥
1
≤ µ, for someµ ≥ s.

Equivalently, expanding the left- and right-hand sides of the above we have

b̂⊺Σ̂b̂− b⊺Σ̂b ≤ 2(̂b− b)⊺r̄,

which leads to

(̂b− b)⊺Σ̂(̂b− b) ≤ 2(̂b− b)⊺(r̄ − Σ̂b) ≤ 2
∥∥∥b̂− b

∥∥∥
1

∥∥∥r̄ − Σ̂b
∥∥∥
∞

.

With a tuning parameter µ ≍ s, we have

(̂b− b)⊺Σ̂(̂b− b) ≲ s
∥∥∥r̄ − Σ̂b

∥∥∥
∞

. (2.87)
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With Lemma 28, we have

∥∥∥Σ̂1/2(̂b− b)
∥∥∥2 ≲P s

√
logN

T
. (2.88)

Therefore, we have

1

T

T∑
t=1

∥m̂t − m̃t∥2 =
1

T

T∑
t=1

∥∥∥b̂⊺(rt − r̄)− b⊺(rt − E(rt))
∥∥∥2

≤ 2

T

T∑
t=1

∥∥∥(̂b− b)⊺(rt − r̄)
∥∥∥2 + 2

T

T∑
t=1

∥b⊺(r̄ − E(rt))∥2

≤2
∥∥∥Σ̂1/2(̂b− b)

∥∥∥2 + 2 ∥b∥21 ∥r̄ − E(rt)∥2∞ ≲P s

√
logN

T
+ s2

logN

T
.

Since s ≍ µ ≳ ∥b∥1, plugging in the optimal rate choice s ≍ ∥b∥1, we complete the proof.

ii. (Fast rate) Since b̂ is the optimal solution of the minimization problem, it implies that

b⊺Σ̂b− 2b⊺r̄ + b⊺Σ̂b+ µ ∥b∥1 ≥ b̂⊺Σ̂b̂− 2b̂⊺r̄ + b̂⊺Σ̂b̂+ µ∥b̂∥1. (2.89)

Rewrite (2.89) as

(̂b− b)⊺Σ̂(̂b− b) ≤ 2(̂b− b)⊺(r̄ − Σ̂b) + µ(∥b∥1 − ∥b̂∥1). (2.90)

If µ ≥ 4
∥∥∥r̄ − Σ̂b

∥∥∥
∞

, (2.90) becomes

∥∥∥Σ̂1/2(̂b− b)
∥∥∥2 ≤2

∥∥∥b̂− b
∥∥∥
1

∥∥∥r̄ − Σ̂b
∥∥∥
∞

+ µ(∥b∥1 − ∥b̂∥1)

≤1

2
µ
∥∥∥b̂− b

∥∥∥
1
+ µ(∥b∥1 − ∥b̂∥1). (2.91)
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Let J denote the support of b̂, then (2.91) can be written as

∥∥∥Σ̂1/2(̂b− b)
∥∥∥2 ≤1

2
µ
∥∥∥b̂J − bJ

∥∥∥
1
+

1

2
µ
∥∥∥b̂Jc

∥∥∥
1
+ µ

∥∥∥b̂J − bJ

∥∥∥
1
− µ

∥∥∥b̂Jc

∥∥∥
1

=
3

2
µ
∥∥∥b̂J − bJ

∥∥∥
1
− 1

2
µ
∥∥∥b̂Jc

∥∥∥
1
. (2.92)

Define b∗ = b̂− b, then (2.92) implies that 3
∥∥b∗J∥∥1 ≥

∥∥b∗Jc

∥∥
1, and we have

b∗⊺(Σ− Σ̂)b∗

∥b∗∥2
≤
∥∥∥Σ− Σ̂

∥∥∥
MAX

∥b∗∥21
∥b∗∥2

≲P

√
logN

T

(
4
∥∥b∗J∥∥1∥∥b∗J∥∥

)2

≲P |J |
√

logN

T
.

Consequently, with the assumption |J |
√
logN/T → 0 and λmin(Σ) ≳ 1, we have

b∗⊺Σ̂b∗

∥b∗∥2
=

b∗⊺Σb∗

∥b∗∥2
+

b∗⊺(Σ− Σ̂)b∗

∥b∗∥2
≳P 1.

Therefore, we have

∥∥∥Σ̂1/2(̂b− b)
∥∥∥2 = b∗⊺Σ̂b∗ ≳P ∥b∗∥2 ≥

∥∥b∗J∥∥2 ≥ |J |−1
∥∥b∗J∥∥21 = |J |−1

∥∥∥b̂J − bJ

∥∥∥2
1
. (2.93)

Plugging (2.93) into (2.92), we have

∥∥∥Σ̂1/2(̂b− b)
∥∥∥2 ≤ 3

2
µ
∥∥∥b̂J − bJ

∥∥∥
1
≲P µ|J |1/2

∥∥∥Σ̂1/2(̂b− b)
∥∥∥ .

Thus,

∥∥∥Σ̂1/2(̂b− b)
∥∥∥2 ≲P µ2|J |. (2.94)

Choosing µ = 4
∥∥∥r̄ − Σ̂b

∥∥∥
∞

and by Lemma 28, we obtain

∥∥∥Σ̂1/2(̂b− b)
∥∥∥2 ≲P |J | logN

T
. (2.95)
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Similar to the slow rate case, we have

1

T

T∑
t=1

∥m̂t − m̃t∥2 =
1

T

T∑
t=1

∥∥∥b̂⊺(rt − r̄)− b⊺(rt − E(rt))
∥∥∥2

≤ 2

T

T∑
t=1

∥∥∥(̂b− b)⊺(rt − r̄)
∥∥∥2 + 2

T

T∑
t=1

∥b⊺(r̄ − E(rt))∥2

≤2
∥∥∥Σ̂1/2(̂b− b)

∥∥∥2 + 2 ∥b⊺(r̄ − E(rt))∥2 ≲P ∥b∥0
logN

T
.

2.6.2.5 Proof of Theorem 10

Proof. To simplify the notation, we assume Σv = Ip without loss of generality and define a

function sr(·):

sr(xt) = argmax
0̸=b∈RN

E(b⊺xt)√
Var(b⊺xt)

.

In other words, sr(xt) is the optimal Sharpe ratio we can get from xt. It is well known

that sr(xt) =
√
E(xt)⊺Cov(xt)−1E(xt) and the optimal value can be achieved by b =

Cov(xt)
−1E(xt), where Cov(xt)

−1 can be replaced by the Moore–Penrose inverse if it is

singular.

Recall that our estimated factors are F̂(k) = ς̂
⊺
(k)

R̃(k)/
√
λ̂(k) = ς̂

⊺
(k)

D(k)R̄/
√

λ̂(k). Define

B = (b1, . . . , bp̃)
⊺ ∈ Rp̃×N , where bi = D

⊺
(k)

ς̂(k)/
√

λ̂(k). From Lemma 20(i), we have

∥B∥ = OP(1). With the notation of B, the estimated factors can be written as F̂(k) = BR̄

and the SDF loading we get from SPCA is γ̂⊺B. Therefore, the out-of-sample Sharpe ratio

for SPCA estimator is sr(γ̂⊺Brt). To prove that limN,T→∞ sr(γ̂⊺Brt) ≥
√

γ⊺Pη⊺γ, we first

show that limN,T→∞ sr(Brt) ≥ sr(η(vt + γ)) =
√

γ⊺Pη⊺γ.
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The definition of sr(Brt) implies that

sr(Brt) ≥
E(b⊺η̂Brt)√
Var(b⊺η̂Brt)

,

for any b ∈ Rd. Therefore, sr(Brt) ≥ sr(η̂Brt). Note that (2.46) can be written as

∥η̂Bβ − η∥ = oP(1) and

η̂Brt − η(vt + γ) = (η̂Bβ − η)(vt + γ) + η̂But,

with ∥B∥ = oP(1), we have ∥η̂Brt − η(vt + γ)∥ = oP(1). Consequently, for any b ∈ Rd,

E(b⊺η̂Brt) → E(b⊺η(vt + γ)) and Cov(b⊺η̂Brt) → Cov(b⊺η(vt + γ)). Therefore, sr(η̂Brt)
P→

sr(η(vt + γ)).

sr(η(vt + γ)) can be calculated by E(η(vt + γ)) = ηγ and Cov(η(vt + γ)) = ηη⊺ we have

sr(η(vt + γ)) =
√

E(η(vt + γ))⊺Cov(η(vt + γ))−1E(η(vt + γ))

=
√
γ⊺η⊺(ηη⊺)−1ηγ =

√
γ⊺Pη⊺γ

Again, (ηη⊺)−1 here will be the Moore-Perose inverse if it is singular. To sum up, we have

limN,T→∞ sr(Brt) ≥ sr(η(vt+γ)) =
√

γ⊺Pη⊺γ. Then, we will show that the optimal Sharpe

ratio from Brt can be achieved approximately by the portfolio γ̂⊺Brt.

Note that Bβ = H
⊺
2 from the definition of H2 in (2.51), we have E(Brt) = Bβγ = H

⊺
2 γ.

With (2.55), it leads to
∥∥γ̂ −H

⊺
2 γ
∥∥ = oP(1). For the covariance matrix, write

∥∥Cov(Brt)− Ip̃
∥∥ ≤

∥∥Bββ⊺B⊺ − Ip̃
∥∥+ ∥BΣuB

⊺∥ ≤
∥∥H⊺

2H2 − Ip̃
∥∥+ ∥B∥2 ∥Σu∥ = oP(1).

where we use Lemma 27(ii),(iii), ∥B∥ = oP(1) and the assumption ∥Σu∥ ≲ 1 in the last
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equation. Consequently, γ̂ P→ Cov(Brt)
−1E(Brt). With this equation, we have

sr(γ̂⊺Brt) =
E(γ̂⊺Brt)√
Cov(γ̂⊺Brt)

P→
√
E(Brt)⊺Cov(Brt)−1E(Brt) = sr(Brt).

The proof of the lower bound limN,T→∞ sr(γ̂⊺Brt) ≥
√

γ⊺Pη⊺γ is completed. For the

upper bound, for the same reason as sr(Brt) ≥ sr(η̂Brt), it is straightforward to obtain

sr(γ̂⊺Brt) ≤ sr(rt) ≤
√
γ⊺γ. In the general case that Σv ̸= Ip, replace η, γ by ηΣ

1/2
v ,

Σ
−1/2
v γ to obtain the results.

2.6.3 Proofs from Section 2.5.1

2.6.3.1 Proof of Proposition 10

Proof. Recall that in Section 2.5.1, we have

γ̂PLS
g =

∥∥ḠR̄⊺R̄
∥∥−2

ḠR̄⊺R̄Ḡ⊺ḠR̄⊺r̄. (2.96)

We analyze
∥∥ḠR̄⊺R̄

∥∥, ḠR̄⊺R̄Ḡ⊺ and ḠR̄⊺r̄ separately. Recall that from (2.25), we have

∥∥∥∥R̄⊺R̄

Tλ
− V̄ ⊺V̄

T
− B̃(IT − T−1ιT ι

⊺
T )

∥∥∥∥ ≲P
1√
λ
,

where B̃ = N/(Tλ) satisfies B̃ → B. Together with Ḡ = ηV̄ and
∥∥Ḡ∥∥ ≲P

√
T , we have

1

Tλ
√
T

∥∥ḠR̄⊺R̄
∥∥ =

1√
T

∥∥∥∥Ḡ( V̄ ⊺V̄

T
+ B̃(IT − T−1ιT ι

⊺
T )

)∥∥∥∥+OP

(
1√
λ

)
=

η√
T

∥∥∥∥ V̄ V̄ ⊺V̄

T
+ B̃V̄

∥∥∥∥+OP

(
1√
λ

)
P−→ η(1 +B), (2.97)
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where we use |T−1V̄ V̄ ⊺ − 1| ≲P T−1/2 and
∥∥V̄ ∥∥ −√

T ≲P 1 in the last equation. For the

same reason, by direct calculation we have

1

T 2λ
ḠR̄⊺R̄Ḡ⊺ =

1

T
Ḡ

(
V̄ ⊺V̄

T
+ B̃(IT − T−1ιT ι

⊺
T )

)
Ḡ⊺ +OP

(
1√
λ

)
= η2

V̄ V̄ ⊺V̄ V̄ ⊺

T 2
+ η2B̃

V̄ V̄ ⊺

T
+OP

(
1√
λ

)
P−→ η2(1 +B). (2.98)

Next, we write

1

Tλ
ḠR̄⊺r̄ =

1

Tλ
ḠR̄⊺β(γ + v̄) +

1

Tλ
ḠR̄⊺ū. (2.99)

We analyze these two terms in (2.99) separately. For the first term, we can write R̄ in the

form of (2.23) as in the proof of Proposition 7. Then, using
∥∥Ū1

∥∥ ≲P

√
T we have

1

Tλ
ḠR̄⊺β = η

V̄ V̄ ⊺

T
+ η

V̄ Ū
⊺
1

T
√
λ
= η

V̄ V̄ ⊺

T
+OP

(
1√
λ

)
. (2.100)

For the second term in (2.99), we have

1

Tλ
ḠR̄⊺ū = η

1

T 2
√
λ
V̄ V̄ ⊺Ū1ιT + η

1

T 2λ
V̄ Ū⊺UιT = η

1√
λ

V̄ V̄ ⊺

T

Ū1ιT
T

+ η
1

T 2λ
V̄ U⊺UιT

= OP

(
1√
Tλ

)
+ η

N

T 2λ
V̄
(
N−1U⊺U − IT

)
ιT + η

N

T 2λ
V̄ ιT

= OP

(
1√
Tλ

)
+OP

(
1√
λ

)
, (2.101)

where we use
∥∥N−1U⊺U − IT

∥∥ ≲P

√
T/N and V̄ ιT = 0 in the last equation. Plugging

(2.100) and (2.101) into (2.99), we have

1

Tλ
ḠR̄⊺r̄ = η

V̄ V̄ ⊺

T
(γ + v̄) +OP

(
1√
λ

)
P−→ ηγ. (2.102)
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Plug (2.97), (2.98), (2.102) into (2.96), we have

γ̂PLS
g

P−→ 1

η2(1 +B)2
η2(1 +B)ηγ =

1

1 +B
ηγ.

2.6.3.2 Proof of Proposition 11

Proof. Since Rank(R̄) ≤ min{N, T − 1}, and the assumptions of the proposition imply that

N/T → ∞, we thereby have a condensed SVD of R̄ as

R̄ =
√
T (ς̂ , ς̂∗)Λ̂1/2(ξ̂, ξ̂∗)⊺ =

√
T ς̂λ̂1/2ξ̂⊺ +

√
T ς̂∗Λ̂

1/2
∗ ξ̂

⊺
∗ ,

where Λ̂1/2 is the diagonal matrix of T −1 singular values, ς̂, ξ̂ are the left and right singular

vectors corresponding to the largest singular value of T−1/2R̄, which is denoted by λ̂1/2. In

addition, ς̂∗ ∈ RN×(T−2) and ξ̂∗ ∈ RT×(T−2) are the singular vectors corresponding to the

rest T − 2 nonzero singular values, Λ̂1/2
∗ ∈ R(T−2)×(T−2). By direct calculation, we have

√
TR̄⊺ (R̄R̄⊺ + µI

)−1
= (ξ̂, ξ̂∗)Λ̂1/2(Λ̂ + T−1µI)−1(ς̂ , ς̂∗)⊺

=
λ̂1/2

λ̂+ T−1µ
ξ̂ς̂⊺ + ξ̂∗Λ̂

1/2
∗
(
Λ̂∗ + T−1µI

)−1
ς̂
⊺
∗ ,

and thus, with Ḡ = ηV̄ , the Ridge estimator can be written as

γ̂
Ridge
g = ḠR̄⊺ (R̄R̄⊺ + µI

)−1
r̄ =

λ̂

λ̂+ T−1µ

ηV̄ ξ̂√
T

ς̂⊺r̄√
λ̂
+

ηV̄ ξ̂∗√
T

Λ̂
1/2
∗
(
Λ̂∗ + T−1µ

)−1
ς̂
⊺
∗ r̄

=
λ̂

λ̂+ T−1µ
γ̂PCA
g +

ηV̄ ξ̂∗√
T

Λ̂
1/2
∗
(
Λ̂∗ + T−1µ

)−1
ς̂
⊺
∗ r̄.

(2.103)
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Using (2.27) and the fact that T−1λ−1µ → D and Proposition 7, we can show that the first

term in (2.103) converges to (1 + B +D)−1ηγ. With respect to the second term, as shown

in (2.25), we have

∥∥∥∥∥R̄⊺R̄

Tλ
− V̄ ⊺V̄

T
−

N(IT − T−1ιT ι
⊺
T )

Tλ

∥∥∥∥∥ ≲P
1√
λ
,

and the eigenvalues of

M =
V̄ ⊺V̄

T
+

N(IT − T−1ιT ι
⊺
T )

Tλ

are given by (2.26), it then follows from Weyl’s theorem that λi(T
−1λ−1R̄⊺R̄) = B̃ +

OP(λ
−1/2) for 2 ≤ i ≤ T −1. Note that Λ̂1/2

∗
(
Λ̂∗ + T−1µ

)−1
is a (T −2)× (T −2) diagonal

matrix and the ith element on the diagonal is

λi+1(T
−1R̄⊺R̄)1/2

λi+1(T−1R̄⊺R̄) + T−1µ
=

1√
λ

λi+1(T
−1λ−1R̄⊺R̄)1/2

λi+1(T−1λ−1R̄⊺R̄) + T−1λ−1µ
.

Together with T−1λ−1µ → D, we have

∥∥∥∥Λ̂1/2
∗
(
Λ̂∗ + T−1µ

)−1
∥∥∥∥ = max

1≤i≤T−2

λi+1(T
−1R̄⊺R̄)1/2

λi+1(T−1R̄⊺R̄) + T−1µ
≲P

1√
λ
. (2.104)

Also, with ∥ū∥ ≲P

√
N/T , we have

∥∥ς̂⊺∗ r̄∥∥ ≤
∥∥ς̂⊺∗ β(γ + v̄)

∥∥+ ∥∥ς̂⊺∗ ū∥∥ ≤ ∥β(γ + v̄)∥+ ∥ū∥ ≲P

√
λ+

√
N/T ≲P

√
λ (2.105)

191



and

∥∥∥∥∥ V̄ ξ̂∗√
T

∥∥∥∥∥
2

=

∥∥∥∥∥ V̄ (ξ̂, ξ̂∗)√
T

∥∥∥∥∥
2

−

∥∥∥∥∥ V̄ ξ̂√
T

∥∥∥∥∥
2

≤
∥∥∥∥ V̄√

T

∥∥∥∥2 −
∥∥∥∥∥ V̄ ξ̂√

T

∥∥∥∥∥
2

=1 +OP

(
1√
T

)
−

∥∥∥∥∥ V̄ ξ̂√
T

∥∥∥∥∥
2

≲P
1√
λ
+

1√
T
,

(2.106)

where we use (2.30) in the last inequality. Consequently, using (2.104), (2.105) and (2.106),

we have

|ηV̄ ξ̂∗√
T

Λ̂
1/2
∗
(
Λ̂∗ + T−1µ

)−1
ς̂
⊺
∗ r̄| ≤

∥∥∥∥∥ηV̄ ξ̂∗√
T

∥∥∥∥∥
∥∥∥∥Λ̂1/2

∗
(
Λ̂∗ + T−1µ

)−1
∥∥∥∥∥∥ς̂⊺∗ r̄∥∥ ≲ T−1/4 + λ−1/4.

By comparing this with the limit of the first term in (2.103), we obtain

γ̂
Ridge
g

P−→ 1

1 +B +D
ηγ.

2.6.3.3 Proof of Proposition 12

Proof. By direct calculation, we can write

RR⊺ + Tµr̄r̄⊺ = R
(
IT +

µ

T
ιT ι

⊺
T

)
R⊺ = R

(
IT +

µ̃

T
ιT ι

⊺
T

)2

R⊺, (2.107)

where µ̃ =
√
µ+ 1 − 1. Hence, the eigenvectors of RR⊺ + Tµr̄r̄⊺ are equivalent to the left

singular vectors of R
(
IT + T−1µ̃ιT ι

⊺
T

)
. Let ς̂ and ξ̂ denote the largest left and right singular

vectors of R
(
IT + T−1µ̃ιT ι

⊺
T

)
. Note that ξ̂ can be viewed as the largest eigenvector of

(IT + T−1µ̃ιT ι
⊺
T )R

⊺R(IT + T−1µ̃ιT ι
⊺
T ),
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we analyze the eigenspace of this matrix first. Similar to (2.25) in the PCA case, we have

the following approximation of R⊺R

∥∥∥∥∥R⊺R

Tλ
− V̄ ⊺V̄

T
− γ

ιT V̄ + V̄ ⊺ι
⊺
T

T
− γ2

ιT ι
⊺
T

T
− N

Tλ
IT

∥∥∥∥∥ ≲P
1√
T

+
1√
λ
, (2.108)

by |T−1V̄ V̄ ⊺−1| ≲P T−1/2,
∥∥Ū1

∥∥ ≲P T 1/2 and
∥∥N−1Ū⊺Ū − (IT − T−1ιT ι

⊺
T )
∥∥ ≲P

√
T/N .

Then, with (2.108) and N/(Tλ) → B, we have

∥∥∥T−1λ−1(IT + T−1µ̃ιT ι
⊺
T )R

⊺R(IT + T−1µ̃ιT ι
⊺
T )−M∗

∥∥∥ = oP(1) (2.109)

where the matrix M∗ here is defined by

M∗ := BIT + T−1V̄ ⊺V̄ + T−1(1 + µ̃)γ(ιT V̄ + V̄ ⊺ι
⊺
T ) + T−1

(
(1 + µ̃)2γ2 + µ̃2B + 2µ̃B

)
ιT ι

⊺
T .

Recall that ξ̂ is the eigenvector of T−1λ−1(IT + T−1µ̃ιT ι
⊺
T )R

⊺R(IT + T−1µ̃ιT ι
⊺
T ), we can

analyze the eigenspace of M∗ first and then use sin-theta theorem to characterize ξ̂.

Firstly, the rank of M∗ − BIT is at most 2. Using the fact that V̄ ιT = 0, by direct

calculation, we have the two nozero eigenvalues of M∗−BIT are the solutions of the equation

(x− a1)(x− a3)− a22 = 0, (2.110)

where a1 = T−1
∥∥V̄ ∥∥2, a2 = T−1/2(1 + µ̃)γ

∥∥V̄ ∥∥ and a3 = (1 + µ̃)2γ2 + µ̃2B + 2µ̃B. Since

the larger solution of (2.110) is

a1 + a3 +
√

(a1 − a3)2 + 4a22

2
≥ a1 > 0 (2.111)

with probability 1, it is also the largest eigenvalue of M∗ − BIT . In addition, the second

largest eigenvalue of M∗ − BIT should be distinct with λ1(M
∗ − BIT ). To see this, if the
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second eigenvalue is the other solution of (2.110), we have λ1(M
∗−BIT )−λ2(M

∗−BIT ) =√
(a1 − a3)2 + 4a22 ≥ max{2a2, |a1 − a3|} > 0. If the second eigenvalue is 0 (in which case

the second solution of the above equation must be negative), we have shown in (2.111) that

λ1(M
∗ − BIT ) − λ2(M

∗ − BIT ) = λ1(M
∗ − BIT ) ≥ a1 > 0. In both cases, we have

λ1(M
∗ −BIT )− λ2(M

∗ −BIT ) ≥ δ for some constant δ > 0. Consequently,

λ1(M
∗)− λ2(M

∗) = λ1(M
∗ −BIT )− λ2(M

∗ −BIT ) ≥ δ, (2.112)

for some constant δ > 0. Now we calculate the first eigenvector of M∗, which should also be

the first eigenvector of M∗ − BIT . We use ξ̃ to denote this eigenvector. Since we already

know that the largest eigenvalue of λ1(M∗−BIT ) is a solution of (2.110), which means that ξ̃

should be in the space spanned by V̄ ⊺ and ιT . Writing ξ̃ = K1

∥∥V̄ ∥∥−1
V̄ ⊺+K2T

−1/2ιT and

plugging the largest eigenvalue of λ1(M∗−BIT ) of (2.111) into λ1(M−BIT )ξ̃ = (M−BIT )ξ̃,

we directly get

K2

K1
=

√
(a1 − a3)2 + 4a22 + a3 − a1

2a2
, (2.113)

which will pin down K1 and K2 because we also have
∥∥∥ξ̃∥∥∥ = 1.

Using
∥∥T−1λ−1(IT + T−1µ̃ιT ι

⊺
T )R

⊺R(IT + T−1µ̃ιT ι
⊺
T )−M

∥∥ = oP(1), (2.112) and sin-

theta theorem, we have

∥∥∥P
ξ̂
− P

ξ̃

∥∥∥ ≤ oP(1)

δ − oP(1)
= oP(1),

which implies that |ξ̃⊺ξ̂| P−→ 1 and consequently,

∥∥∥ξ̂ −K1

∥∥V̄ ∥∥−1
V̄ ⊺ −K2T

−1/2ιT

∥∥∥ = oP(1) or
∥∥∥ξ̂ +K1

∥∥V̄ ∥∥−1
V̄ ⊺ +K2T

−1/2ιT

∥∥∥ = oP(1).
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Since the sign of ξ̂ plays no role in the estimator γ̂rpPCA
g , we can simply assume the former

one.

Also, the relationship between singular vectors implies that

F̂ = ς̂⊺R =
∥∥∥R(IT + T−1µ̃ιT ι

⊺
T )
∥∥∥−1

ξ̂⊺(IT + T−1µ̃ιT ι
⊺
T )R

⊺R. (2.114)

With the approximation of R⊺R in (2.108), V̄ ιT = 0, T−1V̄ V̄ ⊺ = 1 + OP(T
−1/2) and

N/(Tλ) → B, by direct calculation, we have

∥∥∥∥∥V̄ ∥∥−1
V̄ (IT + T−1µ̃ιT ι

⊺
T )R

⊺R− λT 1/2
(
(1 +B)V̄ + γι

⊺
T

)∥∥∥ = oP(λT ), (2.115)

and

∥∥∥T−1/2ι
⊺
T (IT + T−1µ̃ιT ι

⊺
T )R

⊺R− λT 1/2(1 + µ̃)
(
γV̄ + (γ2 +B)ι

⊺
T

)∥∥∥ = oP(λT ). (2.116)

Plugging (2.115), (2.116) and
∥∥∥ξ̂ −K1

∥∥V̄ ∥∥−1
V̄ ⊺ +K2T

−1/2ιT

∥∥∥ = oP(1) into (2.114) we

have

∥∥∥∥∥∥R(IT + T−1µ̃ιT ι
⊺
T )
∥∥∥ F̂ − λT 1/2(L1V̄ + L2ι

⊺
T )
∥∥∥ = oP(λT ), (2.117)

where

L1 = K1(1 +B) +K2(1 + µ̃)γ, L2 = K1γ +K2(1 + µ̃)(γ2 +B). (2.118)

It is easy to observe that scalar plays no role in the estimator γ̂
rpPCA
g , we can redefine

F̂ ∗ = λ−1T−1/2L−1
1

∥∥∥R(IT + T−1µ̃ιT ι
⊺
T )
∥∥∥ F̂
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and use F̂ ∗ to create γ̂
rpPCA
g . Then, (2.117) becomes

∥∥∥F̂ ∗ − V̄ − L−1
1 L2ι

⊺
T

∥∥∥ = oP

(
T 1/2

)
.

Consequently,

∥∥∥V̂ − V̄
∥∥∥ =

∥∥∥F̂ ∗(IT − T−1ιT ι
⊺
T )− V̄

∥∥∥ = oP

(
T 1/2

)
, γ̂ = T−1F̂ ∗ιT = L−1

1 L2 + oP(1),

and

η̂ = ḠV̂ ⊺(V̂ V̂ ⊺)−1 = ηV̄ V̂ ⊺(V̂ V̂ ⊺)−1 = η
(
V̄ V̄ ⊺ + oP(T )

)(
V̄ V̄ ⊺ + oP(T )

)−1
= η + oP(1),

and the estimator γ̂
rpPCA
g = η̂γ̂

P−→ ηL−1
1 L2, where L1 and L2 are defined in (2.118).

In light of that a1
P−→ 1, a2

P−→ (1 + µ̃)γ, µ̃ =
√
1 + µ− 1, γ̂rpPCA

g
P−→ ηL2/L1, (2.113)

and the definitions of L1 and L2 in (2.118), we have

γ̂
rpPCA
g

P−→ w(1 +B)−1ηγ + (1− w)η(γ + γ−1B),

where

w =
2 + 2B

1 + 2B +
√

(1− a)2 + 4(1 + µ)γ + a
, a = (1 + µ)(γ2 +B)−B. (2.119)

2.6.4 Proofs from Section 2.5.3

2.6.4.1 Proof of Proposition 13

Proof. Using (2.1) and (2.4), we have

Cov(gt, rt,[I0])Cov(rt,[I0])
−1E(rt,[I0]) = ηΣvβ

⊺
[I0]

(β[I0]Σvβ
⊺
[I0]

+ Σu,[I0]
)−1β[I0]γ.
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Therefore, it is sufficient to show that

∥∥∥Σvβ
⊺
[I0]

(β[I0]Σvβ
⊺
[I0]

+ Σu,[I0]
)−1β[I0] − IN0

∥∥∥ = O
(
1/λmin(β

⊺
[I0]

β[I0])
)

(2.120)

with N0 = |I0|. Write β̃[I0] = Σ
−1/2
u,[I0]

β[I0]Σ
1/2
v , then (2.120) becomes

∥∥∥Σ1/2
v β̃

⊺
[I0]

(β̃[I0]β̃
⊺
[I0]

+ IN0
)−1β̃[I0]Σ

−1/2
v − IN0

∥∥∥ = O
(
1/λmin(β

⊺
[I0]

β[I0])
)

(2.121)

Suppose that the SVD of β̃[I0] can be written as β̃[I0] = BΛ1/2Γ, where B ∈ RN0×p and

Γ ∈ Rp×p are matrices of left and right singular vectors, Λ1/2 = diag(λ̃
1/2
1 , · · · , λ̃1/2p ) is a

diagonal matrix and λ̃i is the ith eigenvalue of β̃⊺
[I0]

β̃[I0]. Using the SVD of β̃[I0], we have

β̃
⊺
[I0]

(
β̃[I0]β̃

⊺
[I0]

+ IN
)−1

β̃[I0] = Γ⊺Λ1/2(Λ + Ip)−1Λ1/2Γ.

Consequently, with λmax(Σv) ≲ 1 and λmin(Σv) ≳ 1, the left hand side of (2.121) becomes

∥∥∥Σ1/2
v β̃

⊺
[I0]

(β̃[I0]β̃
⊺
[I0]

+ IN0
)−1β̃[I0]Σ

−1/2
v − IN0

∥∥∥
=
∥∥∥Σ1/2

v Γ⊺
(
Λ1/2(Λ + Ip)−1Λ1/2 − Ip

)
ΓΣ

−1/2
v

∥∥∥
≲
∥∥∥Λ1/2(Λ + Ip)−1Λ1/2 − Ip

∥∥∥ =
1

1 + λ̃p
.

Note that

λ̃p = λp

(
Σ
1/2
v β

⊺
[I0]

Σ−1
u β[I0]Σ

1/2
v

)
≥ λp(β[I0]Σvβ

⊺
[I0]

)λmin(Σ
−1
u ) ≍P λp(β

⊺
[I0]

β[I0])λ
−1
max(Σu)

≳ λp(β
⊺
[I0]

β[I0]) = λmin(β
⊺
[I0]

β[I0]),

we have obtained (2.121) and this concludes the proof.
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2.6.4.2 Proof of Proposition 14

Proof. We consider the case d = 1 first. Recall that (p̆, q̆) denotes an arbitrary pair of tuning

parameter values and that w̆ is a short-hand notation for w(p̆, q̆). By definition, maximizing

R2(p̆, q̆) is equivalent to minimizing

MSE(w̆) = T−1
oos

∥∥Ḡoos − w̆R̄oos
∥∥2 =

∥∥(w̆β − η)V̄oos + w̆Ūoos − Z̄oos
∥∥2 . (2.122)

As shown in the proof of Theorem 6, the estimated factor at the kth step is given by

V̂(k) =
√
T ξ̂

⊺
(k)

and the loading of G on V̂(k) is η̂(k) = T−1/2Ḡξ̂(k). Using (2.38) and (2.40),

we have

V̂(k) = λ
−1/2
(k)

ς̂
⊺
(k)

R̃(k) = λ
−1/2
(k)

ς̂
⊺
(k)

D(k)R(k). (2.123)

Thus, the mimicking portfolio of gt is given by
∑p̆

i=1 η̂(k)V̂(k) =: w̆R̄, where

w̆ =

p̆∑
i=1

Ḡξ̂(i)

ς̂
⊺
(i)
D(i)√
T λ̂(i)

. (2.124)

Next, we claim that there exists a pair of (c0, q0) that satisfy q0 ∈ Q and (2.11) in Theorem

6. This holds because we can set q0 = N−αnq , and the existence of c0 is guaranteed under

the assumptions that N1−αnq /N0 → 0 and log T/N1−αnq → 0. Given c0 and q0, let p0

denote the number of factors extracted. As shown in the proof of Theorem 6, we have

P(p0 = p̃) → 1 and p̃ ≤ p. Therefore, since pmax ≥ p, it implies that (p0, q0) ∈ ⟨pmax⟩ × Q

with probability approaching 1, and (p0, q0) corresponds to (c0, q0) mentioned above.

Denote w0 = w(p0, q0). Using (2.46) and the definition β̃(k) = D(k)β, we have

∥w0β − η∥ = oP(1). (2.125)
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Also, with
∥∥∥D(i)

∥∥∥ ≲P 1 from Lemma 20(i), we have

∥w0∥ ≤
p0∑
i=1

T−1/2λ̂
−1/2
(i)

∥∥Ḡ∥∥∥∥∥D(i)

∥∥∥ = oP(1). (2.126)

Next, we write (2.122) as

MSE(w0) = (w0β − η)

(
V̄oosV̄

⊺
oos

Toos

)
(w0β − η)⊺ +

w0Ūoos(w0Ūoos)
⊺

Toos
+

Z̄oosZ̄
⊺
oos

Toos

+ 2
w0ŪoosV̄

⊺
oos

Toos
(w0β − η)⊺ − 2(w0β − η)

V̄oosZ̄
⊺
oos

Toos
− 2

w0ŪoosZ̄
⊺
oos

Toos
,

(2.127)

and analyze these terms one by one. Under Assumptions 19 and 20, rewriting the proof of

Lemma 14 leads to

∥∥∥∥ V̄oosV̄ ⊺
oos

Toos
− Σv

∥∥∥∥ ≲P T
−1/2
oos ,

∥∥∥∥Z̄oosZ̄
⊺
oos

Toos
− Σz

∥∥∥∥ ≲P T
−1/2
oos ,

∥∥w0Ūoos
∥∥ ≲P ∥w0∥T

1/2
oos ,

(2.128)

and

∥∥w0ŪoosV̄
⊺
oos
∥∥ ≲P ∥w0∥T

1/2
oos ,

∥∥V̄oosZ̄⊺
oos
∥∥ ≲P T

1/2
oos ,

∥∥w0ŪoosZ̄
⊺
oos
∥∥ ≲P ∥w0∥T

1/2
oos .

(2.129)

Therefore, together with (2.125) and (2.126), (2.127) implies that

∥MSE(w0)− Σz∥ ≲P ∥w0β − η∥2 λmin(Σv) + ∥w0∥2 + T
−1/2
oos

+ ∥w0β − η∥ ∥w0∥T
−1/2
oos + ∥w0β − η∥T−1/2

oos + ∥w0∥T
−1/2
oos

=oP(1).

(2.130)

In other words, there exists (p0, q0) ∈ ⟨pmax⟩ × Q such that MSE(w(p0, q0))
P−→ Σz.

Given that (p∗, q∗) minimize MSE(w(p̆, q̆)), we have MSE(w∗) ≤ MSE(w0) = Σz+oP(1).
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Let δ1 and δ2 denote ∥w∗β − η∥ and ∥w∗∥, we will show that δ1 = oP(1) and δ2 = oP(1).

To see this, with (2.128) and the assumption λmin(Σv) ≳ 1, we have

(w∗β − η)

(
V̄oosV̄

⊺
oos

Toos

)
(w∗β − η)⊺ ≥ δ21λmin

(
V̄oosV̄

⊺
oos

Toos

)
≳P δ21, (2.131)

and

∥∥w∗Ū
∥∥

δ2T
1/2
oos

=

∥∥w∗Ū
∥∥

∥w∗∥T 1/2
oos

≥ min
p̆≤pmax,q̆∈Q

∥∥w(p̆, q̆)Ū∥∥
∥w(p̆, q̆)∥T 1/2

oos

≳P 1, (2.132)

where we use the assumption that pmax and |Q| = nq are finite and Assumption 20 to

construct the uniform bound. Combining (2.131) and (2.132), we have

(w∗β − η)

(
V̄oosV̄

⊺
oos

Toos

)
(w∗β − η)⊺ +

w∗Ūoos(w
∗Ūoos)

⊺

Toos

≥max

{
(w∗β − η)

(
V̄oosV̄

⊺
oos

Toos

)
(w∗β − η)⊺,

w∗Ūoos(w
∗Ūoos)

⊺

Toos

}
≳Pmax{δ21, δ

2
2} ≳ (δ1 + δ2)

2

(2.133)

where the first inequality stems from the fact that the two quadratic forms on the left-hand-

side are positive numbers. On the other hand, we have

∥∥w∗ŪoosĀ
⊺
oos
∥∥

∥w∗∥
≤ max

p̆≤pmax,q̆∈Q

∥∥w(p̆, q̆)ŪoosĀ
⊺
oos
∥∥

∥w(p̆, q̆)∥
≲P T

1/2
oos , (2.134)

for A = V and Z. The decomposition of MSE(w∗) also has the form (2.127) by replacing
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w0 by w∗. With the decomposition, (2.129) and (2.134), we have

(δ1 + δ2)
2 ≲P(w

∗β − η)

(
V̄oosV̄

⊺
oos

Toos

)
(w∗β − η)⊺ +

w∗Ūoos(w
∗Ūoos)

⊺

Toos

≤MSE(w∗)− Σz +OP(T
−1/2
oos δ1) +OP(T

−1/2
oos δ1δ2) +OP(T

−1/2
oos δ2) + oP(1)

≤oP
(
1 + (δ1 + δ2) + δ1δ2

)
= oP

(
1 + (δ1 + δ2)

2),
(2.135)

where we use δ1+ δ2 ≤ (1+ (δ1+ δ2)
2)/2 and δ1δ2 ≤ (δ1+ δ2)

2/4 in the last equation. This

leads to δ1 = oP(1) and δ2 = oP(1) as δ1 and δ2 are non-negative. Plugging them into the

second inequality of (2.135), we obtain MSE(w∗)−Σz ≥ oP(1). With MSE(w∗) ≤ MSE(w0)

and (2.130), we have

MSE(w∗)− Σz = oP(1). (2.136)

In addition, in out-of-sample data, the expected return of gt’s mimicking portfolio based on

w∗ satisfies

∥w∗r̄oos − ηγ∥ = ∥(w∗β − η)(γ + v̄oos) + ηv̄oos − w∗ūoos∥

≲P ∥w∗β − η∥ ∥γ + v̄oos∥+ T
−1/2
oos ∥η∥+ T−1

oos ∥w∗Uoos∥
∥∥ιToos∥∥

≲P δ1 + T
−1/2
oos + δ2 = oP(1),

(2.137)

where we use ∥w∗∥−1 ∥w∗Uoos∥ ≤ maxp̆≤pmax,q̆∈Q ∥w(p̆, q̆)∥−1 ∥w(p̆, q̆)Uoos∥ ≲P T
1/2
oos and∥∥ιToos∥∥ =

√
Toos in the second last inequality. This concludes the proof of the first part of

the theorem.

For in-sample data, as we only use q∗N assets at each step, ∥w∗∥0 is no larger than
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pmaxq
∗N . Let Sw∗ be the set {i|(w(p∗i , q

∗
i ))[i] ̸= 0}, we have

∥w∗ū∥ = |
∑

i∈Sw∗

(w(p∗i , q
∗
i ))[i]ūi| ≲P ∥w∗∥

∥∥∥ū[Sw∗ ]

∥∥∥ ≤ ∥w∗∥
√
|Sw∗| ∥ū∥MAX

= oP

(√
pmaxq∗N logN

T

)
.

(2.138)

With the assumption that q∗N logN = O(T ) and pmax is finite, we have ∥w∗ū∥ = oP(1)

and thus

∥∥γ̂g − ηγ
∥∥ = ∥w∗r̄ − ηγ∥ = ∥(w∗β − η)(γ + v̄) + ηv̄ − w∗ū∥

≲P ∥w∗β − η∥ ∥γ + v̄∥+ T−1/2 ∥η∥+ ∥w∗ū∥ = oP(1).

(2.139)

Finally, we consider the general case d ≥ 1. Note that in this case, w(p̆, q̆) ∈ Rd×N . We use

(w(p̆, q̆))[i] to denote the ith row of w(p̆, q̆). Suppose that R2
i s are maximized separately for

each i and denote

(p∗i , q
∗
i ) = argmin

p̆≤pmax,q̆∈Q
MSEi(w(p̆, q̆)),

where MSEi(w) = T−1
oos

∥∥∥(Ḡoos)[i] − w[i]R̄oos

∥∥∥2. Replacing w0 and w∗ by (w(p0, q0))[i] and

(w(p∗i , q
∗
i ))[i] in the above proof, (2.130) and (2.136) become

(Σz)ii + oP(1) = MSEi(w(p
∗
i , q

∗
i )) ≤ MSEi(w(p0, q0)) = (Σz)ii + oP(1). (2.140)

Recall that w∗ = w(p∗, q∗) is obtained by maximizing the sum of R2 and

(p∗, q∗) = argmax
p̆≤pmax,q̆∈Q

d∑
i=1

R2
i (p̆, q̆), (2.141)

we then show that MSEi(w
∗) = (Σz)ii + oP(1) also holds. To see this, using the definition
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of (p∗i , q
∗
i ) and (2.140), we have

MSEi(w
∗) = MSEi(w(p

∗, q∗)) ≥ MSEi(w(p
∗
i , q

∗
i )) = (Σz)ii + oP(1) = MSEi(w0) + oP(1).

(2.142)

Using the definition of (p∗, q∗) in (2.141), we have

0 ≤
d∑

i=1

R2
i (p

∗, q∗)−
d∑

i=1

R2
i (p0, q0) =

d∑
i=1

MSEi(w0)−MSEi(w
∗)

T−1
oos

∥∥∥Ḡ[i]

∥∥∥2 . (2.143)

Together with T−1
oos

∥∥∥Ḡ[i]

∥∥∥2 ≍P 1 and (2.142), we have

MSEi(w0)−MSEi(w
∗) ≥

∑
j ̸=i

∥∥∥Ḡ[i]

∥∥∥2∥∥∥Ḡ[j]

∥∥∥2
(
MSEj(w

∗)−MSEj(w0)
)
≥ oP(1). (2.144)

Combining (2.142) and (2.144), we have

MSEi(w
∗) = MSEi(w0) + oP(1) = (Σz)ii + oP(1). (2.145)

With this equation, replacing w∗, Σz by w∗
[i]

and (Σz)ii in (2.135) leads to
∥∥∥w∗

[i]
η − β

∥∥∥ =

oP(1) and
∥∥∥w∗

[i]

∥∥∥ = oP(1). Consequently, we have

∥∥∥w∗
[i]r̄oos − η[i]γ

∥∥∥ = oP(1) and
∥∥∥w∗

[i]r̄ − η[i]γ
∥∥∥ = oP(1),

which concludes the proof.
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2.6.5 Technical Lemmas and Their Proofs

Without loss of generality, we assume that Σv = Ip in the following lemmas. Also, except for

Lemma 17, we assume that p̂ = p̃ and Îk = Ik for k = 1, . . . , p̃, which hold with probability

approaching one as we will show in Lemma 17.

Lemma 14. Under Assumptions 7-13, for any I ⊂ ⟨N⟩, we have the following results:

(i)
∥∥T−1V̄ V̄ ⊺ − Σv

∥∥ ≲P T−1/2,
∥∥T−1Z̄Z̄⊺ − Σz

∥∥ ≲P T−1/2.

(ii)

∥∥∥∥∥(β⊺[I]β[I])−1
2
β
⊺
[I]
Ū[I]

∥∥∥∥∥ ≲P T 1/2.

(iii)

∥∥∥∥∥(β⊺[I]β[I])−1
2
β
⊺
[I]
Ū[I]V̄

⊺

∥∥∥∥∥ ≲P T 1/2,

∥∥∥∥∥(β⊺[I]β[I])−1
2
β
⊺
[I]
Ū[I]Z̄

⊺

∥∥∥∥∥ ≲P T 1/2.

(iv)
∥∥Ū∥∥MAX ≲P (logNT )1/2,

∥∥Ū V̄ ⊺
∥∥
MAX ≲P (logN)1/2T 1/2,∥∥Ū Z̄⊺

∥∥
MAX ≲P (logN)1/2T 1/2.

(v)
∥∥∥Ū[I]

∥∥∥ ≲P |I|1/2 + T 1/2,
∥∥∥Ū[I]V̄

⊺
∥∥∥ ≲P |I|1/2T 1/2,

∥∥∥Ū[I]Z̄
⊺
∥∥∥ ≲P |I|1/2T 1/2.

(vi)
∥∥V̄ ∥∥ ≲P T 1/2,

∥∥Z̄∥∥ ≲P T 1/2,
∥∥V̄ Z̄⊺

∥∥ ≲P T 1/2,
∥∥V̄ Z̄⊺ − V Z⊺

∥∥ ≲P 1

Proof. (i) Using Assumption 7, we have

∥∥∥∥ V̄ V̄ ⊺

T
− Σv

∥∥∥∥ ≤
∥∥∥∥V V ⊺

T
− Σv

∥∥∥∥+
∥∥∥∥∥V ιT ι

⊺
TV

⊺

T 2

∥∥∥∥∥ =

∥∥∥∥V V ⊺

T
− Ip

∥∥∥∥+ ∥v̄∥2 ≲P T−1/2.

Replacing V̄ by Z̄, we also have the second inequality.

(ii) Using Assumption 11, we have

∥∥∥∥∥(β⊺[I]β[I])−1
2
β
⊺
[I]
Ū[I]

∥∥∥∥∥ ≤

∥∥∥∥∥(β⊺[I]β[I])−1
2
β
⊺
[I]
U[I]

∥∥∥∥∥+ T−1

∥∥∥∥∥(β⊺[I]β[I])−1
2
β
⊺
[I]
U[I]ιT ι

⊺
T

∥∥∥∥∥
≲P T 1/2.

204



(iii) By Assumptions 7, 11 and 12, we have

∥∥∥∥∥(β⊺[I]β[I])−1
2
β
⊺
[I]
Ū[I]V̄

⊺

∥∥∥∥∥
≤

∥∥∥∥∥(β⊺[I]β[I])−1
2
β
⊺
[I]
U[I]V

⊺

∥∥∥∥∥+ T−1

∥∥∥∥∥(β⊺[I]β[I])−1
2
β
⊺
[I]
U[I]ιT ι

⊺
TV

∥∥∥∥∥
≤

∥∥∥∥∥(β⊺[I]β[I])−1
2
β
⊺
[I]
U[I]V

⊺

∥∥∥∥∥+
∥∥∥∥∥(β⊺[I]β[I])−1

2
β
⊺
[I]
U[I]ιT

∥∥∥∥∥ ∥v̄∥ ≲P T 1/2.

Replacing V̄ by Z̄ in the above proof, with Assumptions 8, 11 and 13, we also have

∥∥∥∥∥(β⊺[I]β[I])−1
2
β
⊺
[I]
Ū[I]Z̄

⊺

∥∥∥∥∥ ≲P T 1/2.

(iv) Using Assumption 10, we have

∥∥Ū∥∥MAX ≤ ∥U∥MAX + T−1
∥∥UιT ι

⊺
T

∥∥
MAX

≤ ∥U∥MAX + ∥ū∥MAX ∥ιT ∥

≲P (logN)1/2 + (log T )1/2.

Using Assumptions 7, 10, 12, we have

∥∥Ū V̄ ⊺∥∥
MAX ≤ ∥UV ⊺∥MAX + T−1

∥∥UιT ι
⊺
TV

⊺∥∥
MAX

≤ ∥UV ⊺∥MAX + T ∥ū∥MAX ∥v̄∥

≲P (logN)1/2T 1/2.

Replacing V̄ by Z̄ in the above proof, with Assumptions 8, 10 and 13, we also have

∥∥Ū Z̄⊺∥∥
MAX ≲P (logN)1/2T 1/2.
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(v) Using Assumption 10 , we have

∥∥∥Ū[I]

∥∥∥ ≤
∥∥∥U[I]

∥∥∥+ T−1
∥∥∥U[I]ιT ι

⊺
T

∥∥∥ ≤
∥∥∥U[I]

∥∥∥+ ∥∥∥ū[I]∥∥∥ ∥ιT ∥ ≲P |I|1/2 + T 1/2.

Using Assumptions 7, 10, 12, we have

∥∥∥Ū[I]V̄
⊺
∥∥∥ ≤

∥∥∥U[I]V
⊺
∥∥∥+ T−1

∥∥∥U[I]ιT ι
⊺
TV

⊺
∥∥∥ ≤

∥∥∥U[I]V
⊺
∥∥∥+ T

∥∥∥ū[I]∥∥∥ ∥v̄∥ ≲P |I|1/2T 1/2.

Replacing V̄ by Z̄ in the above proof, with Assumptions 8, 10 and 13, we also have

∥∥∥Ū[I]Z̄
⊺
∥∥∥ ≲P |I|1/2T 1/2.

(vi) Using Assumption 7, we have

∥∥V̄ ∥∥ ≤ ∥V ∥+ T−1
∥∥V ιT ι

⊺
T

∥∥ ≤ ∥V ∥+ ∥v̄∥ ∥ιT ∥ ≲P T 1/2.

Using Assumption 8, we have

∥∥Z̄∥∥ ≤ ∥Z∥+ T−1
∥∥ZιT ι⊺T∥∥ ≤ ∥Z∥+ ∥z̄∥ ∥ιT ∥ ≲P T 1/2.

Using Assumptions 7 and 8, we have

∥∥V̄ Z̄⊺∥∥ ≤ ∥V Z∥+ T−1
∥∥V ιT ι

⊺
TZ
∥∥ ≤ ∥V ∥+ T ∥v̄∥ ∥z̄∥ ≲P T 1/2,

and

∥∥V̄ Z̄⊺ − V Z⊺∥∥ =
∥∥∥T−1V ιT ι

⊺
TZ
∥∥∥ = T ∥v̄∥ ∥z̄∥ ≲P 1.
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Lemma 15. The singular vectors ξ̂(k)s we obtain from Algorithm 7 satisfy ξ̂
⊺
(j)

ξ̂(k) = δjk for

j, k ≤ p̂.

Proof. If j = k, this result holds from the definition of ξ̂(k). If j < k, recall that R̃(k) is

defined in (2.39) and ξ̂(k) is the first right singular vector of R̃(k), we have

R̃(k) = R̄[Ik]

∏
i<k

(
IT − ξ̂(i)ξ̂

⊺
(i)

)
and ξ̂(k) = argmax

α

∥∥∥R̃(k)α
∥∥∥

∥α∥
.

If ξ̂⊺
(k)

ξ̂(j) = c0 ̸= 0 for some j < k, then

∥∥∥R̃(k)(ξ̂(k) − c0ξ̂(j))
∥∥∥ =

∥∥∥R̃(k)ξ̂(k) − c0R̃(k)ξ̂(j)

∥∥∥ =
∥∥∥R̃(k)ξ̂(k)

∥∥∥ , (2.146)

since the definition of R̃(k) implies that R̃(k)ξ̂(j) = 0 for j < k.

On the other hand, since ξ̂
⊺
(k)

ξ̂(j) = c0 ̸= 0, we have (ξ̂(k) − c0ξ̂(j))
⊺ξ̂(j) = 0, and

consequently,

∥∥∥ξ̂(k)∥∥∥2 =
∥∥∥ξ̂(k) − c0ξ̂(j)

∥∥∥2 + ∥∥∥c0ξ̂(j)∥∥∥2 >
∥∥∥ξ̂(k) − c0ξ̂(j)

∥∥∥2 . (2.147)

Apparently, if
∥∥∥R̃(k)

∥∥∥ = 0, the process will stop so we have
∥∥∥R̃(k)

∥∥∥ > 0 for k ≤ p̂. Together

with (2.146) and (2.147), we have

∥∥∥R̃(k)

∥∥∥ =

∥∥∥R̃(k)ξ̂(k)

∥∥∥∥∥∥ξ̂(k)∥∥∥ ≤

∥∥∥R̃(k)(ξ̂(k) − c0ξ̂(j))
∥∥∥∥∥∥ξ̂(k) − c0ξ̂(j)

∥∥∥ ,

which contradicts with the definition of ξ̂(k). Therefore, ξ̂
⊺
(k)

ξ̂(j) = 0 for j < k. This

completes the proof.

Lemma 16. Under Assumption 9, if c → 0, qN/N0 → 0 then bk, β(k) and p̃ defined in

Section 2.5.2 satisfy
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(i) ⟨bj , bk⟩ = δjk for j ≤ k ≤ p̃.

(ii)
∥∥∥β(k)∥∥∥ ≍ q1/2N1/2.

(iii) p̃ ≤ p.

(iv) p̃ = p, if we further have λp(η
⊺η) ≳ 1.

Proof. (i) Recall that bk is the first right singular vector of β(k) and β(k) = β[Ik]
∏

j<k Mbj .

Using the same arguments as in the proof of Lemma 15, we have ⟨bj , bk⟩ = δjk for j ≤ k ≤ p̃.

(ii) The selection rule at kth step implies that

1

|Ik|
∑
i∈Ik

∥∥∥∥∥∥β[i]
∏
j<k

Mbjη
⊺

∥∥∥∥∥∥
2

MAX

≥ 1

N0

∑
i∈I0

∥∥∥∥∥∥β[i]
∏
j<k

Mbjη
⊺

∥∥∥∥∥∥
2

MAX

. (2.148)

For any matrix A ∈ RN×d and set I ⊂ ⟨N⟩, we have

∑
i∈I

∥∥∥A[i]

∥∥∥2
MAX

≤ ∥A∥2F ≤ d
∑
i∈I

∥∥∥A[i]

∥∥∥2
MAX

,

and

∥A∥2 ≤ ∥A∥2F ≤ d ∥A∥2 ,

we thereby have

∥A∥2 ≍
∑
i∈I

∥∥∥A[i]

∥∥∥2
MAX

. (2.149)

Using this result, (2.148) becomes

1

|Ik|

∥∥∥∥∥∥β[Ik]
∏
j<k

Mbjη
⊺

∥∥∥∥∥∥
2

≳
1

N0

∥∥∥∥∥∥β[I0]
∏
j<k

Mbjη
⊺

∥∥∥∥∥∥
2

.
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Then, we have

1√
|Ik|

∥∥∥β(k)∥∥∥
∥∥∥∥∥∥
∏
j<k

Mbjη
⊺

∥∥∥∥∥∥ ≥ 1√
|Ik|

∥∥∥∥∥∥β[Ik]
∏
j<k

Mbjη
⊺

∥∥∥∥∥∥
≳

1√
N0

∥∥∥∥∥∥β[I0]
∏
j<k

Mbjη
⊺

∥∥∥∥∥∥ ≥ 1√
N0

σp

(
β[I0]

)∥∥∥∥∥∥
∏
j<k

Mbjη
⊺

∥∥∥∥∥∥ ,
(2.150)

where we use β[Ik]
∏

j<k Mbjη
⊺ = β[Ik](

∏
j<k Mbj )

2η⊺ = β(k)
∏

j<k Mbjη
⊺ in the first in-

equality. With σp(β[I0]) ≳
√
N0 from Assumption 9, (2.150) leads to

∥∥∥β(k)∥∥∥ ≳ |Ik|1/2. In

addition, ∥β∥MAX ≲ 1 from Assumption 9 leads to
∥∥∥β(k)∥∥∥ ≲ |Ik|1/2. Therefore, we have∥∥∥β(k)∥∥∥ ≍ |Ik|1/2 ≍ q1/2N1/2.

(iii) From (i), we have shown that bk’s are pairwise orthogonal for k ≤ p̃. It is impossible

to have more than p pairwise orthogonal p dimensional vectors. Thus, p̃ ≤ p.

(iv) Recall that p̃ is defined in Section 2.5.2. Since the procedure in its definition stops

at p̃ + 1, we have at most qN − 1 rows of β satisfying
∥∥∥β[i]∏j≤p̃Mbjη

⊺
∥∥∥
MAX

≥ c, which

implies

∥∥∥∥∥∥β[I0]
∏
j≤p̃

Mbjη
⊺

∥∥∥∥∥∥
2

≲ qN + (N0 − qN)c2 = o(N0),

where we use (2.149) and the assumptions c → 0, qN/N0 → 0. With σp(β[I0]) ≳
√
N0 from

Assumption 9, we have

∥∥∥∥∥∥η
∏
j≤p̃

Mbj

∥∥∥∥∥∥ ≤ σp(β[I0])
−1

∥∥∥∥∥∥β[I0]
∏
j≤p̃

Mbjη
⊺

∥∥∥∥∥∥ = o(1). (2.151)
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If p̃ ≤ p− 1, using (i), we have

η
∏
j≤p̃

Mbj = η − η
∑
j≤p̃

bjb
⊺
j ,

which implies that

σp(η) ≤ σ1

η
∏
j≤p̃

Mbj

+ σp

η
∑
j≤p̃

bjb
⊺
j

 . (2.152)

Since

Rank

η
∑
j≤p̃

bjb
⊺
j

 ≤ p̃ ≤ p− 1, (2.153)

we have σp

(
η
∑

j≤p̃ bjb
⊺
j

)
≤ 0 and thus (2.152) and (2.151) lead to

σp(η) ≲ σ1

η
∏
j≤p̃

Mbj

−→0.

This contradicts with the assumption that λp(η⊺η) ≳ 1. Therefore, we have p̃ ≥ p. Together

with the result in (iii), we have p̃ = p.

Lemma 17. Suppose Assumptions 7-14 hold. If c−1 log(NT )1/2
(
q−1/2N−1/2 + T−1/2

)
→

0 and c → 0, then for k ≤ p̃ and for Ik, p̃ and β(k) defined in Section 2.5.2, we have

(i) P(Îk = Ik) → 1.

(ii)
∥∥∥R̃(k) − β(k)V̄

∥∥∥ ≲P q1/2N1/2 + T 1/2.

(iii) |λ̂1/2
(k)

/
∥∥∥β(k)∥∥∥− 1| ≲P q−1/2N−1/2 + T−1/2.

(iv)
∥∥∥∥PV̂ ⊺

(k)
− T−1V̄ ⊺Pbk V̄

∥∥∥∥ ≲P q−1/2N−1/2 + T−1/2.
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(v) P(p̂ = p̃) → 1.

Proof. We prove (i)-(iv) by induction. First, we show that (i)-(iv) hold when k = 1:

(i) Recall that Î1 is selected based on T−1R̄Ḡ⊺ and I1 based on βη⊺. With simple algebra,

we have

T−1R̄Ḡ⊺ − βη⊺ = β
(
T−1V̄ V̄ ⊺ − Ip

)
η⊺ + T−1Ū V̄ ⊺η⊺ + T−1βV̄ Z̄⊺ + T−1Ū Z̄⊺.

With Assumptions 7, 8, 9, 12 13, we have

∥∥∥T−1R̄Ḡ⊺ − βη⊺
∥∥∥
MAX

≲ ∥β∥MAX

∥∥∥T−1V̄ V̄ ⊺ − Ip
∥∥∥ ∥η∥+ T−1

∥∥Ū V̄ ⊺∥∥
MAX ∥η∥

+ T−1 ∥β∥MAX

∥∥V̄ Z̄⊺∥∥+ T−1
∥∥Ū Z̄⊺∥∥

MAX ≲P (logN)1/2T−1/2.

From Assumption 14, we have c
(1)
qN − c

(1)
qN+1 ≳ c

(1)
qN and the the definition of p̃ implies that

c
(k)
qN ≥ c for k ≤ p̃. Thus, we have c

(1)
qN − c

(1)
qN+1 ≳ c. Define the events

A1 : =
{ ∥∥∥T−1R̄[i]Ḡ

⊺
∥∥∥
MAX

> (c
(1)
qN + c

(1)
qN+1)/2 for all i ∈ I1

}
,

A2 : =
{ ∥∥∥T−1R̄[i]Ḡ

⊺
∥∥∥
MAX

< (c
(1)
qN + c

(1)
qN+1)/2 for all i ∈ Ic1

}
,

A3 : =
{ ∥∥∥T−1R̄[i]Ḡ

⊺ − β[i]η
⊺
∥∥∥
MAX

≥ (c
(1)
qN − c

(1)
qN+1)/2 for some i ∈ ⟨N⟩

}
. (2.154)

It is easy to observe that {Î1 = I1} ⊃ A1 ∩ A2. In addition, from the definition of I1, we

have
∥∥∥β[i]η⊺∥∥∥MAX

≥ c
(1)
qN for all i ∈ I1 and

∥∥∥β[i]η⊺∥∥∥MAX
≤ c

(1)
qN+1 for all i ∈ Ic1. Therefore,

if Ac
1 occurs, we have

∥∥∥T−1R̄[i]Ḡ
⊺ − β[i]η

⊺
∥∥∥
MAX

≥ (c
(1)
qN − c

(1)
qN+1)/2,

for some i ∈ I1, which implies Ac
1 ⊂ A3. Similarly, we have Ac

2 ⊂ A3. Using {Î1 = I1} ⊃
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A1 ∩ A2 and Ac
1 ∪ Ac

2 ⊂ A3, we have

P(Î1 = I1) ≥ P(A1 ∩ A2) = 1− P(Ac
1 ∪ Ac

2) ≥ 1− P(A3). (2.155)

Using c−1(logN)1/2T−1/2 → 0 and c
(1)
qN −c

(1)
qN+1 ≳ c, we have P(A3) → 0 and consequently,

P(Î1 = I1) → 1.

(ii) Since Î1 = I1 with high probability, we impose Î1 = I1 below. Then, we have

R̃(1) = R̄[I1]
and Assumption 18 gives

∥∥∥R̃(1) − β(1)V̄
∥∥∥ =

∥∥∥Ū[I1]

∥∥∥ ≲P q1/2N1/2 + T 1/2.

(iii) From Lemma 23, we have σj(β(1)V̄ )/σj(β1) = T 1/2 + OP(1). The result in (ii)

implies that

|
∥∥∥R̃(1)

∥∥∥− ∥∥∥β(1)V̄ ∥∥∥| ≤ ∥∥∥R̃(1) − β(1)V̄
∥∥∥ ≲P q1/2N1/2 + T 1/2.

Together with
∥∥∥β(1)∥∥∥ ≍ qN from Lemma 16, we have

|
λ̂
1/2
(1)∥∥∥β(k)∥∥∥ − 1| = |

∥∥∥R̃(1)

∥∥∥
T 1/2

∥∥∥β(1)∥∥∥ − 1| ≤
|
∥∥∥R̃(1)

∥∥∥− ∥∥∥β(1)V̄ ∥∥∥|
T 1/2

∥∥∥β(1)∥∥∥ +
|
∥∥∥β(1)V̄ ∥∥∥− T 1/2

∥∥∥β(1)∥∥∥|
T 1/2

∥∥∥β(1)∥∥∥
≲P q−1/2N−1/2 + T−1/2.

(iv) Let ξ̃(1) ∈ RT×1 denote the first right singular vector of β(1)V̄ . From Lemma 23, we

have

∥∥∥∥Pξ̃(1) − T−1V̄ ⊺Pbk V̄
∥∥∥∥ ≲P T−1/2 (2.156)
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and σj(β(1)V̄ )/σj(β(1)) = T 1/2 +OP(1) for j ≤ p, which leads to

σ1(β(1)V̄ )− σ2(β(1)V̄ ) = T 1/2(σ1(β(1))− σ2(β(1))) +OP(σ1(β(1))) ≍P T 1/2σ1(β(1)),

(2.157)

where we use the assumption that σ2(β(1)) ≤ (1 + δ)−1σ1(β(1)) in the last equation.

Using
∥∥∥R̃(1) − β(1)V̄

∥∥∥ ≲P q1/2N1/2 + T 1/2 as proved in (ii), (2.157), Lemma 16 and

Wedin’s sin-theta theorem for singular vectors in Wedin [1972], we have

∥∥∥∥PV̂ ⊺
(k)

− P
ξ̃(1)

∥∥∥∥ ≲P
q1/2N1/2 + T 1/2

σ1(β(1)V̄ )− σ2(β(1)V̄ )
≲P q−1/2N−1/2 + T−1/2, (2.158)

In light of (2.156) and (2.158), we have that (iv) holds for k = 1.

So far, we have proved that (i)-(iv) hold for k = 1. Now, assuming that (i)-(iv) hold for

j ≤ k − 1, we will show that (i)-(iv) continue to hold for j = k.

(i) Again, we show the difference between the sample covariances and their population

counterparts introduced in the SPCA procedure are tiny. At the kth step, the difference can

be written as∥∥∥∥∥∥β
k−1∏
j=1

Mbjη
⊺ − T−1(βV̄ + Ū)

k−1∏
j=1

M
V̂ ⊺
(j)
(ηV̄ + Z̄)⊺

∥∥∥∥∥∥
MAX

≤

∥∥∥∥∥∥β
k−1∏
j=1

Mbjη
⊺ − T−1βV̄

k−1∏
j=1

M
V̂ ⊺
(j)
V̄ ⊺η⊺

∥∥∥∥∥∥
MAX

+ T−1

∥∥∥∥∥∥βV̄
k−1∏
j=1

M
V̂ ⊺
(j)
Z̄⊺

∥∥∥∥∥∥
MAX

+ T−1

∥∥∥∥∥∥Ū
k−1∏
j=1

M
V̂ ⊺
(j)
V̄ ⊺η⊺

∥∥∥∥∥∥
MAX

+ T−1

∥∥∥∥∥∥Ū
k−1∏
j=1

M
V̂ ⊺
(j)
Z̄⊺

∥∥∥∥∥∥
MAX

(2.159)
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Since (iv) holds for j ≤ k − 1, we have

∥∥∥∥∥∥
k−1∑
j=1

P
V̂ ⊺
(j)

− T−1V̄ ⊺
k−1∑
j=1

Pbj V̄

∥∥∥∥∥∥ =

∥∥∥∥∥∥
k−1∑
j=1

(
P
V̂ ⊺
(j)

− T−1V̄ ⊺Pbj V̄
)∥∥∥∥∥∥ ≲P q−1/2N−1/2 + T−1/2.

(2.160)

Using Lemma 15 and Lemma 16(i), we have

k−1∏
j=1

Mbj = Ip −
k−1∑
j=1

Pbj , and
k−1∏
j=1

M
V̂(j)

= IT −
k−1∑
j=1

P
V̂(j)

.

Using the above equations, (2.160), and
∥∥T−1V̄ V̄ ⊺ − Ip

∥∥ ≲P T−1/2, we have

T−1/2

∥∥∥∥∥∥V̄
k−1∏
j=1

M
V̂ ⊺
(j)

−
k−1∏
j=1

Mbj V̄

∥∥∥∥∥∥ = T−1/2

∥∥∥∥∥∥V̄
k−1∑
j=1

P
V̂ ⊺
(j)

−
k−1∑
j=1

Pbj V̄

∥∥∥∥∥∥
≲P q−1/2N−1/2 + T−1/2.

(2.161)

Similarly, right multiplying V̄ ⊺ to the term inside the ∥·∥ of (2.161), we have

∥∥∥∥∥∥T−1V̄
k−1∏
j=1

M
V̂

⊺
(j)
V̄ ⊺ −

k−1∏
j=1

Mbj

∥∥∥∥∥∥ ≲P q−1/2N−1/2 + T−1/2. (2.162)

Then, we analyze these four terms in (2.159) one by one. For the first term, using (2.162)

and Assumption 9, we have

∥∥∥∥∥∥β
k−1∏
j=1

Mbjη
⊺ − T−1βV̄

k−1∏
j=1

M
V̂ ⊺
(j)
V̄ ⊺η⊺

∥∥∥∥∥∥
MAX

≲ ∥β∥MAX

∥∥∥∥∥∥
k−1∏
j=1

Mbj − T−1V̄
k−1∏
j=1

M
V̂ ⊺
(j)
V̄ ⊺

∥∥∥∥∥∥ ∥η∥
≲Pq

−1/2N−1/2 + T−1/2.
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For the second term, using (2.161), Lemma 14 and Assumptions 9 and 8, we have

T−1

∥∥∥∥∥∥βV̄
k−1∏
j=1

M
V̂ ⊺
(j)
Z̄⊺

∥∥∥∥∥∥
MAX

≲T−1 ∥β∥MAX

∥∥∥∥∥∥
k−1∏
j=1

Mbj

∥∥∥∥∥∥∥∥V̄ Z̄⊺∥∥
+ T−1 ∥β∥MAX

∥∥∥∥∥∥V̄
k−1∏
j=1

M
V̂

⊺
(j)

−
k−1∏
j=1

Mbj V̄

∥∥∥∥∥∥∥∥Z̄∥∥
≲Pq

−1/2N−1/2 + T−1/2.

For the third term, using (2.161) and Lemma 14, we have

T−1

∥∥∥∥∥∥Ū
k−1∏
j=1

M
V̂ ⊺
(j)
V̄ ⊺η⊺

∥∥∥∥∥∥
MAX

≲T−1
∥∥Ū V̄ ⊺∥∥

MAX

∥∥∥∥∥∥
k−1∏
j=1

Mbj

∥∥∥∥∥∥ ∥η∥
+ T−1

∥∥Ū∥∥MAX T 1/2

∥∥∥∥∥∥V̄
k−1∏
j=1

M
V̂ ⊺
(j)

−
k−1∏
j=1

Mbj V̄

∥∥∥∥∥∥ ∥η∥
≲P(logNT )1/2

(
q−1/2N−1/2 + T−1/2

)
.

For the forth term, using (2.160) and Lemma 14, we have

T−1

∥∥∥∥∥∥Ū
k−1∏
j=1

M
V̂ ⊺
(j)
Z̄⊺

∥∥∥∥∥∥
MAX

≲T−1
∥∥Ū Z̄⊺∥∥

MAX + T−2
∥∥Ū V̄ ⊺∥∥

MAX

∥∥∥∥∥∥
k−1∑
j=1

Pbj

∥∥∥∥∥∥∥∥V̄ Z̄⊺∥∥
+ T−1/2

∥∥Ū∥∥MAX

∥∥∥∥∥∥T−1V̄ ⊺
k−1∑
j=1

Pbj V̄ −
k−1∑
j=1

P
V̂ ⊺
(j)

∥∥∥∥∥∥∥∥Z̄∥∥
≲P(logNT )1/2

(
q−1/2N−1/2 + T−1/2

)
.
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Hence, we have

∥∥∥∥∥∥T−1R̄

k−1∏
j=1

M
V̂ ⊺
(j)
Ḡ⊺ − β

k−1∏
j=1

Mbjη
⊺

∥∥∥∥∥∥
MAX

≲P (logNT )1/2
(
q−1/2N−1/2 + T−1/2

)
.

(2.163)

As in the case of k = 1, from Assumption 14, we have c
(k)
qN − c

(k)
qN+1 ≳ c

(k)
qN . In addition,

since the stopping rule for the procedure in Section 2.5.2 is c
(p̃+1)
qN < c, we have c

(k)
qN ≥ c for

k ≤ p̃. With the assumption that

c−1(logNT )1/2
(
q−1/2N−1/2 + T−1/2

)
→ 0,

we can reuse the arguments for (2.154) and (2.155) in the case of k = 1 and obtain P(Îk =

Ik) → 1.

(ii) We impose Îk = Ik below. Then, we have R̃(k) = R̄[Ik]
∏k−1

j=1 MV̂ ⊺
(j)

and thus

R̃(k) − β(k)V̄ = R̄[Ik]

k−1∏
j=1

M
V̂

⊺
(j)

− β(k)V̄

= β̄[Ik]

V̄
k−1∏
j=1

M
V̂ ⊺
(j)

−
k−1∏
j=1

Mbj V̄

+ Ū[Ik]

k−1∏
j=1

M
V̂ ⊺
(j)
.

Hence, using Assumptions 9, Lemma 14, and (2.161), we have

∥∥∥R̃(k) − β(k)V̄
∥∥∥ ≤

∥∥∥β[Ik]∥∥∥
∥∥∥∥∥∥V̄

k−1∏
j=1

M
V̂

⊺
(j)

−
k−1∏
j=1

Mbj V̄

∥∥∥∥∥∥+
∥∥∥Ū[Ik]

∥∥∥
∥∥∥∥∥∥
k−1∏
j=1

M
V̂

⊺
(j)

∥∥∥∥∥∥
≲P q1/2N1/2 + T 1/2.

(iii) The proof of (iii) is analogous to the case k = 1. Rewrite the proof of the case k = 1 by

replacing R̃(1) and β(1) by R̃(k) and β(k). We have |λ̂1/2
(k)

/
∥∥∥β(k)∥∥∥−1| ≲P q−1/2N−1/2+T−1/2.
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(iv) The proof of (iv) is analogous to the case k = 1. Let ξ̃(k) denote the first right

singular vector of β(k)V̄ , then we have
∥∥∥∥Mξ̃(k)

− T−1V̄ ⊺Mbk V̄

∥∥∥∥ ≲P T−1/2 from Lemma 23.

Since we have
∥∥∥R̃(k) − β(k)V̄

∥∥∥ ≲P q−1/2N−1/2 + T−1/2 from (ii), using the same proof as

in the case k = 1, we have

∥∥∥∥MV̂ ⊺
(k)

−M
ξ̃(k)

∥∥∥∥ ≲P q−1/2N−1/2 + T−1/2,

by Wedin’s sin-theta theorem. Combining these two inequalities completes the proof.

To sum up, by induction, we have shown that (i)-(iv) hold for k ≤ p̃.

(v) Recall that p̃ is determined by

β[i]
∏
j<k

Mbjη
⊺

whereas p̂ is determined by T−1R̄[i]
∏

j<k MV̂ ⊺
(j)
Ḡ⊺. Since (iv) holds for j ≤ p̃ as shown

above, using the same proof for (2.163), we have

∥∥∥∥∥∥T−1R̄

p̃∏
j=1

M
V̂

⊺
(j)
Ḡ⊺ − β

p̃∏
j=1

Mbjη
⊺

∥∥∥∥∥∥
MAX

≲P (logNT )1/2
(
q−1/2N−1/2 + T−1/2

)
.

(2.164)

The assumption c
(p̃+1)
qN ≤ (1+ δ)−1c in Assumption 14 implies that c− c

(p̃+1)
qN ≍ c. Together

with

c−1(logNT )1/2
(
q−1/2N−1/2 + T−1/2

)
→ 0,
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we can reuse the arguments for (2.154) and (2.155) with events

B1 : =


∥∥∥∥∥∥T−1R̄[i]

p̃∏
j=1

M
V̂ ⊺
(j)
Ḡ⊺

∥∥∥∥∥∥
MAX

> (c+ c
(p̃+1)
qN )/2 for at most qN − 1 rows i ∈ ⟨N⟩

 ,

B2 : =


∥∥∥∥∥∥T−1R̄[i]

p̃∏
j=1

M
V̂

⊺
(j)
Ḡ⊺ − β[i]

p̃∏
j=1

Mbjη
⊺

∥∥∥∥∥∥
MAX

≥ (c− c
(p̃+1)
qN )/2 for some i ∈ ⟨N⟩

 ,

(2.165)

to obtain P(p̂ = p̃) ≥ P(B1) = 1− P(Bc
1) ≥ 1− P(B2) → 1.

Lemma 18. Suppose that Γ(k) ∈ R|Ik|×|Ik| is an orthogonal matrix with the first p rows

equals to
(
β
⊺
[Ik]

β[Ik]

)−1
2
β
⊺
[Ik]

and we define

s1
(k)

s2
(k)

 := Γ(k)ς̂(k) and

Ũ1
(k)

Ũ2
(k)

 := Γ(k)Ū[Ik]
,

where s1
(k)

∈ Rp×1 and Ũ1
(k)

∈ Rp×T are the first p rows of Γ(k)ς̂(k) and Γ(k)Ū[Ik]
, respec-

tively. Then, under Assumptions 7-14, we have

(i)
∥∥∥s2(k)∥∥∥ ≲P T−1/2λ̂

−1/2
(k)

(|Ik|1/2 + T 1/2).

(ii)
∥∥∥Ũ1

(k)

∥∥∥ ≲P T 1/2,
∥∥∥Ũ1

(k)
V̄ ⊺
∥∥∥ ≲P T 1/2,

∥∥∥Ũ1
(k)

Z̄⊺
∥∥∥ ≲P T 1/2.

Proof. (i) The assumption Îk = Ik and the definition (2.39) of R̃(k) together lead to

R̃(k) = R̄[Ik]

∏
i<k

(
IT − ξ̂(i)ξ̂

⊺
(i)

)
.

Then, with (2.53) and Lemma 15, we have ς̂(k) = R̄[Ik]
ξ̂(k)/

√
T λ̂(k). From the construction
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of Γ(k), we have

Γ(k)R̄(k) =


(
β
⊺
[Ik]

β[Ik]

)1
2
V̄ + Ũ1

(k)

Ũ2
(k)

 ,

which in turn gives

s1
(k)

s2
(k)

 = Γ(k)ς̂(k) =
1√
T λ̂(k)


(
β
⊺
[Ik]

β[Ik]

)1
2
V̄ + Ũ1

(k)

Ũ2
(k)

 ξ̂(k).

With Lemma 14(v), we have

∥∥∥s2(k)∥∥∥ =

∥∥∥∥∥∥
Ũ2
(k)√
T λ̂(k)

∥∥∥∥∥∥ ≤

∥∥∥∥∥∥ Ū[Ik]√
T λ̂(k)

∥∥∥∥∥∥ ≲P T−1/2λ̂
−1/2
(k)

(|Ik|1/2 + T 1/2).

(ii) With Lemma 14(ii)(iii) and the definition of Γ(k), these results follow immediately.

Lemma 19. Under Assumptions 7-14, if λ̂(k) ≍P |Ik| and |Ik| ≍ qN for k ≤ p̃, then we

have

(i)

∥∥∥∥∥ Ū
⊺
[Ik ]

ς̂(k)√
T λ̂(k)

∥∥∥∥∥ ≲P
1√
qN

+ 1
T .

(ii)

∥∥∥∥∥ V̄ Ū⊺
[Ik ]

ς̂(k)

T
√
λ̂(k)

∥∥∥∥∥ ≲P
1
qN + 1

T ,

∥∥∥∥∥ Z̄Ū⊺
[Ik ]

ς̂(k)

T
√

λ̂(k)

∥∥∥∥∥ ≲P
1
qN + 1

T , |
ς̂⊺
(k)

ū[Ik ]√
λ̂(k)

| ≲P
1
qN + 1

T .

Proof. (i) Using the equation ς̂
⊺
(k)

Ū[Ik]
= (s1

(k)
)⊺Ũ1

(k)
+ (s2

(k)
)⊺Ũ2

(k)
and Lemma 18, we have

∥∥∥ς̂⊺(k)Ū[Ik]

∥∥∥ ≤
∥∥∥s1(k)∥∥∥∥∥∥Ũ1

(k)

∥∥∥+ ∥∥∥s2(k)∥∥∥∥∥∥Ũ2
(k)

∥∥∥ ≤
∥∥∥s1(k)∥∥∥∥∥∥Ũ1

(k)

∥∥∥+ ∥∥∥s2(k)∥∥∥∥∥∥Ū[Ik]

∥∥∥
≲P

√
T +

|Ik|+ T√
T λ̂(k)

, (2.166)
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which leads to ∥∥∥∥∥∥
Ū
⊺
[Ik]

ς̂(k)√
T λ̂(k)

∥∥∥∥∥∥ ≲P
1√
λ̂(k)

+
|Ik|+ T

T λ̂(k)
≲P q−1/2N−1/2 + T−1.

(ii) From Lemmas 14 and 18, we have

∥∥∥V̄ Ū
⊺
[Ik]

ς̂(k)
∥∥∥ ≤

∥∥∥V̄ (Ũ1
(k)

)⊺
s1(k)

∥∥∥+ ∥∥∥V̄ (Ũ2
(k)

)⊺
s2(k)

∥∥∥ ≤
∥∥∥V̄ (Ũ1

(k)

)⊺∥∥∥+ ∥∥∥V̄ Ū
⊺
[Ik]

∥∥∥∥∥∥s2(k)∥∥∥
≲P

√
T +

|Ik|+ T√
λ̂(k)

,

which leads to ∥∥∥∥∥∥
V̄ Ū

⊺
[Ik]

ς̂(k)

T
√

λ̂(k)

∥∥∥∥∥∥ ≲P
1√
T λ̂(k)

+
|Ik|+ T

T λ̂(k)
≲P q−1N−1 + T−1.

Replacing V̄ by Z̄ and ι
⊺
T in the above proof and using Lemmas 14 and 18, we have similar

results:∥∥∥∥∥∥
Z̄Ū

⊺
[Ik]

ς̂(k)

T
√

λ̂(k)

∥∥∥∥∥∥ ≲P q−1N−1 + T−1, and |
ū
⊺
[Ik]

ς̂(k)√
λ̂(k)

| ≲P q−1N−1 + T−1. (2.167)

Lemma 20. Under Assumptions 7-14, if λ̂(j) ≍P |Ij | and |Ij | ≍ qN for j ≤ p̃, then for

k, l ≤ p̃, we have

(i)

∥∥∥∥∥ Ũ
⊺
(k)

ς̂(k)√
T λ̂(k)

∥∥∥∥∥ ≲P
1√
qN

+ 1
T ,

∥∥∥∥∥ Ũ(k)√
T λ̂(k)

∥∥∥∥∥ ≲P
1√
qN

+ 1√
T

,
∥∥∥D(k)

∥∥∥ ≲P 1.

(ii)

∥∥∥∥∥ V̄ Ũ⊺
(k)

ς̂(k)

T
√
λ̂(k)

∥∥∥∥∥ ≲P
1
qN + 1

T ,

∥∥∥∥∥ Z̄Ũ⊺
(k)

ς̂(k)

T
√

λ̂(k)

∥∥∥∥∥ ≲P
1
qN + 1

T , |
ς̂⊺
(k)

ũ(k)√
λ̂(k)

| ≲P
1
qN + 1

T .

(iii) |
ξ̂⊺
(l)
Ũ⊺
(k)

ς̂(k)√
T λ̂(k)

| ≲P
1
qN + 1

T .
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Proof. (i) Recall that the definition of U(k) is

Ũ(k) = Ū[Ik]
−

k−1∑
i=1

R̄[Ik]
ξ̂(i)√
T

ς̂
⊺
(i)
Ũ(i)√
λ̂(i)

. (2.168)

Then, a direct multiplication of ς̂⊺
(k)

/
√
T λ̂(k) from the left side of (2.168) leads to

ς̂
⊺
(k)

Ũ(k)√
T λ̂(k)

=
ς̂
⊺
(k)

Ū[Ik]√
T λ̂(k)

−
k−1∑
i=1

ς̂
⊺
(k)

R̄[Ik]
ξ̂(i)√

T λ̂(k)

ς̂
⊺
(i)
Ũ(i)√
T λ̂(i)

.

Consequently, with Lemma 19(i) we have

∥∥∥∥∥∥
ς̂
⊺
(k)

Ũ(k)√
T λ̂(k)

∥∥∥∥∥∥ ≤

∥∥∥∥∥∥
ς̂
⊺
(k)

Ū[Ik]√
T λ̂(k)

∥∥∥∥∥∥+
k−1∑
i=1

∥∥∥∥∥∥ R̄[Ik]√
T λ̂(k)

∥∥∥∥∥∥
∥∥∥∥∥∥
ς̂
⊺
(i)
Ũ(i)√
T λ̂(i)

∥∥∥∥∥∥
≲P

1√
λ̂(k)

+
|Ik|+ T

T λ̂(k)
+

√
|Ik|
λ̂(k)

k−1∑
i=1

∥∥∥∥∥∥
ς̂
⊺
(i)
Ũ(i)√
T λ̂(i)

∥∥∥∥∥∥
≲P q−1/2N−1/2 + T−1 +

k−1∑
i=1

∥∥∥∥∥∥
ς̂
⊺
(i)
Ũ(i)√
T λ̂(i)

∥∥∥∥∥∥ .
(2.169)

If
∥∥∥T−1/2λ̂

−1/2
(i)

ς̂
⊺
(i)
Ũ(i)

∥∥∥ ≲P q−1/2N−1/2+T−1 holds for i ≤ k−1, then (2.169) implies that

this inequality also holds for k. In addition, when k = 1, Ũ(1) = Ū[I1]
and this equation is

implied from Lemma 19(i). Therefore, we have
∥∥∥T−1/2λ̂

−1/2
(k)

ς̂
⊺
(k)

Ũ(k)

∥∥∥ ≲P q−1/2N−1/2+T−1

for k ≤ p̃ by induction.
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Using (2.168) again, with Assumption 10, we have

∥∥∥∥∥∥ Ũ(k)√
T λ̂(k)

∥∥∥∥∥∥ ≤

∥∥∥∥∥∥ Ū[Ik]√
T λ̂(k)

∥∥∥∥∥∥+
k−1∑
i=1

∥∥∥∥∥∥ R̄[Ik]√
T λ̂(k)

∥∥∥∥∥∥
∥∥∥∥∥∥ Ũ(i)√

T λ̂(i)

∥∥∥∥∥∥
≲P q−1/2N−1/2 + T−1/2 +

k−1∑
i=1

∥∥∥∥∥∥ Ũ(i)√
T λ̂(i)

∥∥∥∥∥∥ .
(2.170)

When k = 1, Assumption 10 implies that
∥∥∥T−1/2λ̂

−1/2
(k)

Ũ(k)

∥∥∥ ≲P q−1/2N−1/2 + T−1/2.

Then, using the same induction argument with (2.170), we have this ineqaulity holds for

k ≤ p̃.

Recall that D(k) is defined by

D(k) = I[Ik] −
k−1∑
i=1

R̄[Ik]
ξ̂(i)

ς̂ ′
(i)
D(i)√
T λ̂(i)

and D(1) = I[I1] ≲ 1, we have
∥∥∥D(k)

∥∥∥ ≲P 1 by induction as
∥∥∥T−1/2λ̂

−1/2
(i)

R̄[Ik]

∥∥∥ ≲P 1.

(ii) Similarly, by simple multiplication of V̄ ⊺ from the right side of (2.168), we have

ς̂
⊺
(k)

Ũ(k)V̄
⊺

T
√
λ̂(k)

=
ς̂
⊺
(k)

Ū[Ik]
V̄ ⊺

T
√

λ̂(k)

−
k−1∑
i=1

ς̂
⊺
(k)

R̄[Ik]
ξ̂(i)√

T λ̂(k)

ς̂
⊺
(i)
Ũ(i)V̄

⊺

T
√

λ̂(i)

.
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Consequently, we have

∥∥∥∥∥∥
ς̂
⊺
(k)

Ũ(k)V̄
⊺

T
√

λ̂(k)

∥∥∥∥∥∥ ≤

∥∥∥∥∥∥
ς̂
⊺
(k)

Ū[Ik]
V̄ ⊺

T
√

λ̂(k)

∥∥∥∥∥∥+
k−1∑
i=1

∥∥∥∥∥∥ R̄[Ik]√
T λ̂(k)

∥∥∥∥∥∥
∥∥∥∥∥∥
ς̂
⊺
(i)
Ũ(i)V̄

⊺

T
√

λ̂(i)

∥∥∥∥∥∥
≲P q−1N−1 + T−1 +

√
|Ik|
λ̂(k)

k−1∑
i=1

∥∥∥∥∥∥
ς̂
⊺
(i)
Ũ(i)V̄

⊺√
T λ̂(i)

∥∥∥∥∥∥
≲P q−1N−1 + T−1 +

k−1∑
i=1

∥∥∥∥∥∥
ς̂
⊺
(i)
Ũ(i)V̄

⊺√
T λ̂(i)

∥∥∥∥∥∥ . (2.171)

When k = 1,
∥∥∥T−1λ̂

−1/2
(k)

ς̂
⊺
(k)

Ũ(k)V̄
⊺
∥∥∥ ≲P q−1N−1 + T−1 is a result of Lemma 19(ii). Then,

a direct induction argument using (2.171) leads to this inequality for k ≤ p̃.

Replacing V̄ by Z̄ and ι
⊺
T in the above proof, and using Lemma 19(ii), we have the

following results:

∥∥∥∥∥∥
Z̄Ũ

⊺
(k)

ς̂(k)

T
√
λ̂(k)

∥∥∥∥∥∥ ≲P q−1N−1 + T−1 and |
ũ
⊺
(k)

ς̂(k)√
λ̂(k)

| ≲P q−1N−1 + T−1.

(iii) Recall that R̃(k) = β̃(k)V̄ + Ũ(k) as defined in (2.39), we have

|ς̂⊺
(l)
R̃(l)Ũ

⊺
(k)

ς̂(k)| ≤ |ς̂⊺
(l)
β̃(l)V̄ Ũ

⊺
(k)

ς̂(k)|+ |ς̂⊺
(l)
Ũ(l)Ũ

⊺
(k)

ς̂(k)|

≤
∥∥∥ς̂⊺(l)β̃(l)∥∥∥∥∥∥V̄ Ũ

⊺
(k)

ς̂(k)

∥∥∥+ ∥∥∥ς̂⊺(l)Ũ(l)

∥∥∥∥∥∥Ũ⊺
(k)

ς̂(k)

∥∥∥ .
Using (2.53), we have

|
ξ̂
⊺
(k)

Ũ
⊺
(k)

ς̂(k)√
T λ̂(k)

| = |
ς̂
⊺
(l)
R̃(l)Ũ

⊺
(k)

ς̂(k)

T
√

λ̂(k)λ̂(l)

| ≤

∥∥∥∥∥∥
ς̂
⊺
(l)
β̃(l)√
λ̂(l)

∥∥∥∥∥∥
∥∥∥∥∥∥
V̄ Ũ

⊺
(k)

ς̂(k)

T
√

λ̂(k)

∥∥∥∥∥∥+
∥∥∥∥∥∥
Ũ
⊺
(k)

ς̂(k)√
T λ̂(k)

∥∥∥∥∥∥
∥∥∥∥∥∥
Ũ
⊺
(l)
ς̂(l)√

T λ̂(l)

∥∥∥∥∥∥ .
(2.172)
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With Lemma 14 and (i), we have

T 1/2
∥∥∥β̃(k)∥∥∥ ≲P σp(V̄ )

∥∥∥β̃(k)∥∥∥ ≤
∥∥∥β̃(k)V̄ ∥∥∥ ≤

∥∥∥Ũ(k)

∥∥∥+ ∥∥∥R̃(k)

∥∥∥ ≤
∥∥∥Ũ(k)

∥∥∥+ ∥∥∥R̄[Ik]

∥∥∥
≲P T 1/2q1/2N1/2,

which leads to
∥∥∥λ̂−1/2

(k)
ς̂
⊺
(k)

β̃(k)

∥∥∥ ≲P q−1/2N−1/2
∥∥∥β̃(k)∥∥∥ ≲P 1. Using this inequality and

results of (i) and (ii) in (2.172) completes the proof.

Lemma 21. Under Assumptions 7-14, if λ̂(j) ≍P |Ij | and |Ij | ≍ qN for j ≤ p̃, then for

k ≤ p̃+ 1, we have

(i)
∥∥∥Z̃(k)V̄

⊺
∥∥∥ ≲P T 1/2 + Tq−1N−1.

(ii)
∥∥∥Z̃(k)Ū

⊺
[I0]

∥∥∥ ≲P N
1/2
0 T 1/2 + Tq−1/2N−1/2.

Proof. (i) From the definition (2.42) of Z̃(k), we have

Z̃(k)V̄
⊺ = Z̄V̄ ⊺ −

k−1∑
i=1

Ḡξ̂(i)

ς̂
⊺
(i)
Ũ(i)V̄

⊺√
T λ̂(i)

.

Then, with Lemma 20(ii), we have

∥∥∥Z̃(k)V̄
⊺
∥∥∥ ≤

∥∥Z̄V̄ ⊺∥∥+ k−1∑
i=1

∥∥∥Ḡξ̂(i)

∥∥∥
∥∥∥∥∥∥
ς̂
⊺
(i)
Ũ(i)V̄

⊺√
T λ̂(i)

∥∥∥∥∥∥ ≲PT
1/2 + T

(
q−1N−1 + T−1

)
≲PT

1/2 + Tq−1N−1.

(ii) With (2.42) again, we have

Z̃(k)Ū
⊺
[I0]

= Z̄Ū
⊺
[I0]

−
k−1∑
i=1

Ḡξ̂(i)

ς̂
⊺
(i)
Ũ(i)Ū

⊺
[I0]√

T λ̂(i)

,
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which, along with Lemma 20(i) and the assumptions on q, lead to

∥∥∥Z̃(k)Ū
⊺
[I0]

∥∥∥ ≤
∥∥∥Z̄Ū⊺

[I0]

∥∥∥+ k−1∑
i=1

∥∥∥Ḡξ̂(i)

∥∥∥
∥∥∥∥∥∥
ς̂
⊺
(i)
Ũ(i)√
T λ̂(i)

∥∥∥∥∥∥
∥∥∥Ū[I0]

∥∥∥
≲P N

1/2
0 T 1/2 +

(
q−1/2N−1/2 + T−1

)(
N

1/2
0 T 1/2 + T

)
≲P N

1/2
0 T 1/2 + Tq−1/2N−1/2.

Lemma 22. Suppose that Assumptions 7-14 hold. If λ̂(j) ≍P |Ij | and |Ij | ≍ qN for j ≤ p̃,

then H1, H2 defined by (2.51) satisfy

(i) ∥H1∥ ≲P 1, ∥H2∥ ≲P 1.

(ii)
∥∥H⊺

1H2 − Ip̃
∥∥ ≲P T−1 + q−1N−1.

(iii) ∥H1 −H2∥ ≲P T−1/2 + q−1N−1.

Proof. (i) Using the definition (2.51) of H1 and Lemma 14, we have

∥hk1∥ =

∥∥∥∥∥ V̄ ξ̂(k)√
T

∥∥∥∥∥ ≤ T−1/2
∥∥V̄ ∥∥ ≲P 1,

which leads to ∥H1∥ ≲P 1.

Using the definition (2.51) of H2, we have

∥hk2∥ =

∥∥∥∥∥∥
β̃
⊺
(k)

ς̂(k)√
λ̂(k)

∥∥∥∥∥∥ ≤ q−1/2N−1/2
∥∥∥β̃(k)∥∥∥ . (2.173)
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With Lemma 14 and Lemma 20(i), we have

T 1/2
∥∥∥β̃(k)∥∥∥ ≲P σp(V̄ )

∥∥∥β̃(k)∥∥∥ ≤
∥∥∥β̃(k)V̄ ∥∥∥ ≤

∥∥∥Ũ(k)

∥∥∥+ ∥∥∥R̃(k)

∥∥∥ ≤
∥∥∥Ũ(k)

∥∥∥+ ∥∥∥R̄[Ik]

∥∥∥
≲PT

1/2q1/2N1/2.

(2.174)

Combining (2.173) and (2.174), we have ∥hk2∥ ≲P 1 and thus ∥H2∥ ≲P 1.

(ii) By (2.53) and Lemma 15, we have

δlk = ξ̂
⊺
(l)
ξ̂(k) =

ξ̂
⊺
(l)
V̄ ⊺β̃

⊺
(k)

ς̂(k)√
T λ̂(k)

+
ξ̂
⊺
(l)
Ũ
⊺
(k)

ς̂(k)√
T λ̂(k)

= h
⊺
l1hk2 +

ξ̂
⊺
(l)
Ũ
⊺
(k)

ς̂(k)√
T λ̂(k)

.

By Lemma 20(iii), we have

|h⊺l1hk2 − δlk| ≲P q−1N−1 + T−1,

and thus
∥∥H⊺

1H2 − Ip̃
∥∥ ≲P q−1N−1 + T−1.

(iii) Using (2.53), we have

V̄ ξ̂(k) =
V̄ V̄ ⊺β̃

⊺
(k)√

T λ̂(k)

ς̂(k) +
V̄ Ũ

⊺
(k)

ς̂(k)√
T λ̂(k)

.

With the definition of hk1 and hk2, it becomes

hk1 =
V̄ V̄ ⊺

T
hk2 +

V̄ Ũ
⊺
(k)

ς̂(k)

T
√
λ̂(k)

. (2.175)

With ∥hk2∥ ≲P 1, Lemma 14 and Lemma 20(ii), (2.175) leads to

hk1 − hk2 ≲P T−1/2 + q−1N−1.
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This completes the proof.

Lemma 23. For any N × p matrix β, if
∥∥T−1V̄ V̄ ⊺ − Ip

∥∥ ≲P T−1/2, we have

(i) σj(βV̄ )/σj(β) = T 1/2 +OP(1) for j ≤ p.

(ii) If σ1(β)−σ2(β) ≍ σ1(β), then
∥∥∥Pξ̃ − T−1V̄ ⊺PbV̄

∥∥∥ ≲P T−1/2, where b is the first right

singular vector of β and ξ̃ is the first right singular vector of βV̄ .

Proof. (i) For j ≤ p, σj(βV̄ )2 = λj(βV̄ V̄ ⊺β⊺) = λj(β
⊺βV̄ V̄ ⊺) which implies

λj(β
⊺β)λp(V̄ V̄ ⊺) ≤ σj(βV̄ )2 ≤ λj(β

⊺β)λ1(V̄ V̄ ⊺).

With the assumption
∥∥T−1V̄ V̄ − Ip

∥∥ ≲P T−1/2, we have

T−1/2σj(βV̄ )/σj(β) = 1 +OP

(
T−1/2

)

by Weyl’s theorem.

(ii) Let ς̂ and ς̃ be the first left singular vectors of β and βV̄ , respectively. Equivalently,

ς̂ and ς̃ are the eigenvectors of ββ⊺ and T−1βV̄ V̄ ⊺β⊺. Since
∥∥ββ⊺ − T−1βV̄ V̄ ⊺β⊺

∥∥ ≤

∥β∥2
∥∥T−1V̄ V̄ ⊺ − Ip

∥∥ ≲P σ1(β)
2T−1/2 and σ1(β) − σ2(β) ≍ σ1(β), by sin-theta theorem

we have

∥ς̂ ς̂⊺ − ς̃ ς̃⊺∥ ≲

∥∥ββ⊺ − T−1βV̄ V̄ ⊺β⊺
∥∥

σ1(β)2 − σ2(β)2 −O(
∥∥ββ⊺ − T−1βV̄ V̄ ⊺β⊺

∥∥) ≲P T−1/2.

Using the relationship between left and right singular vectors, we have

b⊺ =
ς̂⊺β

σ1(β)
, ξ̃⊺ =

ς̃⊺βV̄∥∥βV̄ ∥∥ .
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Therefore,

∥∥∥∥∥Pξ̃ − σ1(β)
2∥∥βV̄ ∥∥2 V̄ ⊺PbV̄

∥∥∥∥∥ =

∥∥∥∥∥ξ̃ξ̃⊺ − V̄ ⊺β⊺ς̂ ς̂⊺βV̄∥∥βV̄ ∥∥2
∥∥∥∥∥ =

∥∥∥∥∥ V̄ ⊺β⊺ς̃ ς̃⊺βV̄∥∥βV̄ ∥∥2 − V̄ ⊺β⊺ς̂ ς̂⊺βV̄∥∥βV̄ ∥∥2
∥∥∥∥∥ ≲P T−1/2.

(2.176)

By Weyl’s inequality, we have

T−1
∥∥βV̄ ∥∥2 = λ1(T

−1βV̄ V̄ ⊺β⊺) = λ1(ββ
⊺)+OP(σ1(β)

2T−1/2) = σ1(β)
2+OP(σ1(β)

2T−1/2).

Plugging this result into (2.176), we have
∥∥∥Pξ̃ − T−1V̄ ⊺PbV̄

∥∥∥ ≲P T−1/2.

Lemmas 24-26 below are concerned with the singular values and singular vectors of

T−1/2R̄. We use ς̂j , ξ̂j and λ̂
1/2
j , j ≤ p to denote them throughout Lemmas 24-26.

Lemma 24. Under the assumptions of Theorem 9(a), we have

λ̂j
λj

− 1 ≲P λ
−1/2
j (T−1/2N1/2 + 1) + T−1/2,

where λj = λj(β
⊺β) and λ̂j = λj(T

−1R̄R̄⊺).

Proof. Since λj
(
βV̄ V̄ ⊺β⊺

)
= λj

(
β⊺βV̄ V̄ ⊺), we have

λj (β
⊺β)λp

(
V̄ V̄ ⊺

T

)
≤

λj
(
β⊺βV̄ V̄ ⊺)
T

≤ λj (β
⊺β)λ1

(
V̄ V̄ ⊺

T

)
. (2.177)

By Lemma 14(i) and Weyl’s inequality, we have λj
(
T−1V̄ V̄ ⊺) − 1 ≲P T−1/2 for j ≤ p.

Then, (2.177) becomes

λj
(
βV̄ V̄ ⊺β⊺

)
Tλj(β⊺β)

− 1 ≲P T−1/2,
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which is equivalent to

σj
(
βV̄
)

√
Tσj(β)

− 1 ≲P T−1/2. (2.178)

Using Weyl’s inequality again, we have |σj
(
R̄
)
− σj

(
βV̄
)
| ≤

∥∥Ū∥∥ ≲P N1/2 + T 1/2, which

is equivalent to

λ̂
1/2
j

λ
1/2
j

−
σj(βV̄ )
√
Tσj(β)

≲P
1√
T

+

√
N +

√
T√

Tλj
. (2.179)

Combine (2.178) and (2.179), we complete the proof.

Lemma 25. Suppose that the SVD of β is given by:

β = Γ⊺

Λ
1
2

0

H, (2.180)

where Γ ∈ RN×N , H ∈ Rp×p are orthogonal matrices, and Λ is a diagonal matrix of the

eigenvalues of β⊺β. If we write Γς̂j = (s
⊺
j1, s

⊺
j2)

⊺, where sj1 ∈ Rp, sj2 ∈ RN−p. Then under

the assumptions of Theorem 9(a), we have

(i)
∥∥∥(Λ/λj)1/2 (sj1 − ⟨sj1, ej1⟩ej1

)∥∥∥ ≲P λ
−1/2
j (T−1/2N1/2 + 1), where ei1 is a p × 1

unit vector with the ith entry being equal to 1.

(ii)
∥∥sj1 − ⟨sj1, ej1⟩ej1

∥∥ ≲P λ
−1/2
j (T−1/2N1/2 + 1).

(iii)
∥∥∥(Λ/λj)1/2 sj1∥∥∥ ≲P 1.

(iv)
∥∥sj2∥∥ ≲P λ

−1/2
j (T−1/2N1/2 + 1).
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Proof. With the orthogonal matrix Γ defined above, we can write

Ũ = ΓŪ =

 Ũ1p×T

Ũ2(N−p)×T

 , (2.181)

so that

ΓR̄ =

Λ
1
2

0

 V̄ + Ũ =

Λ
1
2 V̄ + Ũ1

Ũ2

 .

The relationship between singular vectors ς̂j and ξ̂j can be written as

Γς̂j =

(
ΓR̄
)
ξ̂j√

T λ̂j

, ξ̂j =

(
ΓR̄
)⊺ (

Γς̂j
)√

T λ̂j

. (2.182)

Specifically, we have

sj1 =

(
Λ

1
2 V̄ + Ũ1

)
ξ̂j√

T λ̂j

, sj2 =
Ũ2ξ̂j√
T λ̂j

, ξ̂j =

(
Λ

1
2 V̄ + Ũ1

)⊺
sj1 + Ũ

⊺
2 sj2√

T λ̂j

. (2.183)

From (2.183), we have

(
Λ

1
2 V̄ + Ũ1

)(
Λ

1
2 V̄ + Ũ1

)⊺
sj1 +

(
Λ

1
2 V̄ + Ũ1

)
Ũ
⊺
2 sj2 = T λ̂jsj1. (2.184)

We can rewrite (2.184) as

(
Ip −

Λ

λj

)
sj1 =

1

Tλj

(
Λ

1
2 V̄ + Ũ1

)
Ũ
⊺
2 sj2 +

1

λj
Λ

1
2

(
V̄ V̄ ⊺

T
− I

)
Λ

1
2 sj1 +

Λ
1
2 V̄ Ũ

⊺
1

Tλj
sj1

+
Ũ1V̄

⊺Λ
1
2

Tλj
sj1 +

Ũ1Ũ
⊺
1

Tλj
sj1 −

(
λ̂j
λj

− 1

)
sj1. (2.185)
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Define L = diag(l1, . . . , lp), where li is equal to λj/(λj − λi) if i ̸= j and 0 otherwise.

By left multiplying L to both sides of (2.185), we have

sj1 − ⟨sj1, ej1⟩ej1 =
1

Tλj
LΛ

1
2 V̄

Ũ
⊺
2 Ũ2√
T λ̂j

ξ̂j +
1

Tλj
LŨ1

Ũ
⊺
2 Ũ2√
T λ̂j

ξ̂j +
1

λj
LΛ

1
2

(
V̄ V̄ ⊺

T
− Ip

)
Λ

1
2 sj1

+
LΛ

1
2 V̄ Ũ

⊺
1

Tλj
sj1 + L

Ũ1V̄
⊺Λ

1
2

Tλj
sj1 + L

Ũ1Ũ
⊺
1

Tλj
sj1 −

(
λ̂j
λj

− 1

)
Lsj1.

(2.186)

Now left multiplying
(

Λ
λj

)1
2 again, we have

(
Λ

λj

)1
2 (

sj1 − ⟨sj1, ej1⟩ej1
)

(2.187)

=
1

Tλ
3/2
j

Λ
1
2LΛ

1
2 V̄

Ũ
⊺
2 Ũ2√
T λ̂j

ξ̂j +
1

Tλ
3/2
j

Λ
1
2LŨ1

Ũ
⊺
2 Ũ2√
T λ̂j

ξ̂j

+
1

λj
Λ

1
2LΛ

1
2

(
V̄ V̄ ⊺

T
− Ip

)(
Λ

λj

)1
2

sj1 + Λ
1
2LΛ

1
2
V̄ Ũ

⊺
1

Tλ
3/2
j

sj1

+ Λ
1
2L

Ũ1V̄
⊺

Tλj

(
Λ

λj

)1
2

sj1 + Λ
1
2L

Ũ1Ũ
⊺
1

Tλ
3/2
j

sj1 −

(
λ̂j
λj

− 1

)(
Λ

λj

)1
2

Lsj1

=K1 +K2 +K3 +K4 +K5 +K6 +K7. (2.188)

Before we analyze these seven terms in (2.187), we first analyze ∥L∥,
∥∥∥LΛ1/2

∥∥∥ and ∥LΛ∥.

Since L and Λ are diagonal matrices, by Assumption 18 we can easily show that

∥L∥ ≲ 1,
∥∥∥LΛ1/2

∥∥∥ ≲ λ
1/2
j , ∥LΛ∥ ≲ λj . (2.189)
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In addition, Lemma 14(ii)(iii)(v) imply that

∥∥∥Ũ1

∥∥∥ =
∥∥∥(β⊺β)−1/2β⊺Ū

∥∥∥ ≲P T 1/2,
∥∥∥Ũ1V̄

⊺
∥∥∥ =

∥∥∥(β⊺β)−1/2β⊺Ū V̄ ⊺
∥∥∥ ≲P T 1/2,∥∥∥Ũ2

∥∥∥ ≤
∥∥Ū∥∥ ≲P N1/2 + T 1/2.

(2.190)

Using Lemma 14(i)(vi), Lemma 24, (2.189) and (2.190), we analyze these seven terms in

(2.187) one by one. For the first term, we have

∥K1∥ ≤T−3/2λ
−3/2
j λ̂

−1/2
j ∥LΛ∥

∥∥V̄ ∥∥∥∥∥Ũ⊺
2 Ũ2

∥∥∥∥∥∥ξ̂j∥∥∥ ≲P λ−1
j (T−1N + 1),

where we also use
∥∥∥Ũ⊺

2 Ũ2

∥∥∥ ≤
∥∥Ū⊺Ū

∥∥ ≲P N + T in the last equation. For the second term,

we have

∥K2∥ ≤ T−3/2λ
−3/2
j λ̂

−1/2
j

∥∥∥Λ1/2L
∥∥∥∥∥∥Ũ1

∥∥∥∥∥∥Ũ⊺
2 Ũ2

∥∥∥∥∥∥ξ̂j∥∥∥ ≲P λ
−3/2
j (T−1N + 1).

For the third term, we have

∥K3∥ ≤ λ−1
j ∥LΛ∥

∥∥∥T−1V̄ V̄ ⊺ − Ip
∥∥∥∥∥∥(Λ/λj)1/2sj1∥∥∥ ≲P T−1/2

∥∥∥(Λ/λj)1/2sj1∥∥∥ .
For the forth term, we have

∥K4∥ ≤ T−1λ
−3/2
j ∥LΛ∥

∥∥∥V̄ Ũ
⊺
1

∥∥∥ ≲P λ
−1/2
j T−1/2,

where we use
∥∥∥V̄ Ũ

⊺
1

∥∥∥ ≲P T 1/2 from Lemma 14. For the fifth term, we have

∥K5∥ ≤ T−1λ−1
j

∥∥∥LΛ1/2
∥∥∥∥∥∥Ũ1V̄

⊺
∥∥∥∥∥∥(Λ/λj)1/2sj1∥∥∥ ≲P λ

−1/2
j T−1/2

∥∥∥(Λ/λj)1/2sj1∥∥∥ .
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For the sixth term, we have

∥K6∥ ≤ T−1λ
−3/2
j

∥∥∥LΛ1/2
∥∥∥∥∥∥Ũ1Ũ

⊺
1

∥∥∥ ≲P λ−1
j ,

where we use
∥∥∥Ũ1Ũ

⊺
1

∥∥∥ ≲P T as shown in Lemma 14. For the last term, we have

∥K7∥ ≤ λ−2
j |λ̂j − λj |

∥∥∥LΛ1/2
∥∥∥ ≲P λ

−1/2
j (T−1/2N1/2 + 1) + T−1/2.

To sum up, (2.187) gives

∥∥∥(Λ/λj)1/2 (sj1 − ⟨sj1, ej1⟩ej1
)∥∥∥

≲Pλ
−1/2
j (T−1/2N1/2 + 1) + T−1/2 + T−1/2

∥∥∥(Λ/λj)1/2sj1∥∥∥ . (2.191)

Note that

∥∥∥(Λ/λj)1/2sj1∥∥∥ ≤
∥∥∥(Λ/λj)1/2 (sj1 − ⟨sj1, ej1⟩ej1

)∥∥∥+ ∥∥∥(Λ/λj)1/2⟨sj1, ej1⟩ej1∥∥∥
≤
∥∥∥(Λ/λj)1/2 (sj1 − ⟨sj1, ej1⟩ej1

)∥∥∥+ |⟨sj1, ej1⟩|
√
λ−1
j e

⊺
j1Λej1

=
∥∥∥(Λ/λj)1/2 (sj1 − ⟨sj1, ej1⟩ej1

)∥∥∥+OP(1).

Plugging this into (2.191), we have

∥∥∥(Λ/λj)1/2 (sj1 − ⟨sj1, ej1⟩ej1
)∥∥∥ ≲P λ

−1/2
j (T−1/2N1/2 + 1) + T−1/2, (2.192)

which in turn leads to
∥∥∥(Λ/λj)1/2sj1∥∥∥ ≲P 1 as by assumption λ

−1/2
j (T−1/2N1/2 + 1) → 0.

Similarly, we can analyze corresponding terms in (2.186), and obtain

∥∥sj1 − ⟨sj1, ej1⟩ej1
∥∥ ≲P T−1/2

∥∥∥(Λ/λj)1/2sj1∥∥∥+ λ
−1/2
j (T−1/2N1/2 + 1)

≲P λ
−1/2
j (T−1/2N1/2 + 1) + T−1/2.
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From (2.183), we have

∥∥sj2∥∥ ≤

∥∥∥∥∥ Ũ2√
Tλj

∥∥∥∥∥
∥∥∥∥∥∥
(
λj

λ̂j

)1
2

∥∥∥∥∥∥
∥∥∥ξ̂j∥∥∥ ≲P λ

−1/2
j (T−1/2N1/2 + 1). (2.193)

This concludes the proof.

Lemma 26. Under the assumptions of Theorem 9(a), we have

(i)

∥∥∥∥∥ ξ̂⊺i Ū⊺ς̂j√
T λ̂j

∥∥∥∥∥ ≲P
1
T + N+T

Tλi
+ N+T

Tλj
.

(ii)

∥∥∥∥∥ V̄ Ū⊺ς̂i

T

√
λ̂i

∥∥∥∥∥ ≲P
1
T + N+T

Tλi
, | ς̂

⊺
i ū√
λ̂i

| ≲P
1
T + N+T

Tλi
.

(iv)

∥∥∥∥∥ ς̂
⊺
i Ū√
T λ̂i

∥∥∥∥∥ ≲P
1√
λi

+ N+T
Tλi

.

Proof. (i) From (2.182), we have

ξ̂
⊺
i Ū

⊺ς̂j√
T λ̂j

=
ς̂
⊺
i R̄Ū⊺ς̂j

T
√

λ̂iλ̂j

.

Using the orthogonal matrix Γ and the notations in Lemma 24 and Lemma 25, we have

ς̂
⊺
i R̄Ū⊺ς̂j = s

⊺
i

(
ΓβV̄ + Ũ

)
Ũ⊺sj =s

⊺
i1

(
Λ

1
2 V̄ + Ũ1

)
Ũ
⊺
1 sj1 + s

⊺
i2Ũ2Ũ

⊺
1 sj1

+ s
⊺
i1

(
Λ

1
2 V̄ + Ũ1

)
Ũ
⊺
2 sj2 + s

⊺
i2Ũ2Ũ

⊺
2 sj2

=K1 +K2 +K3 +K4.

Recall that from Lemma 25, we have
∥∥∥(Λ/λj)1/2sj1∥∥∥ ≲P 1. Using this result and Lemma

14, we analyze these four terms one by one. For the first term, we have

∥K1∥ ≤
∥∥∥s⊺i1Λ1

2

∥∥∥∥∥∥V̄ Ũ
⊺
1

∥∥∥∥∥sj1∥∥+ ∥si1∥
∥∥∥Ũ1Ũ

⊺
1

∥∥∥∥∥sj1∥∥ ≲P

√
λiT + T.
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For the second term, we have

∥K2∥ ≤ ∥si2∥
∥∥∥Ũ2

∥∥∥∥∥∥Ũ1

∥∥∥ ≲P

√
N + T

Tλi

(√
N +

√
T
)√

T ≲P λ
−1/2
i (N + T ).

For the third term, we have

∥K3∥ ≤
(∥∥∥s⊺i1Λ1

2

∥∥∥∥∥V̄ ∥∥+ ∥∥∥Ũ1

∥∥∥)∥∥∥Ũ2

∥∥∥∥∥sj2∥∥
≲P

√
λiT

(√
N +

√
T
)√N + T

Tλj
= λ

−1/2
j λ

1/2
i (N + T ).

For the last term, we have

∥K4∥ ≤
∥∥∥Ũ2Ũ

⊺
2

∥∥∥ ∥si2∥∥∥sj2∥∥ ≲P λ
−1/2
i λ

−1/2
j T−1(N + T )2.

Using above equations and Lemma 24, we get

∥∥∥∥∥∥ ξ̂
⊺
i Ū

⊺ς̂j√
T λ̂j

∥∥∥∥∥∥ =

∥∥∥∥∥∥ ς̂
⊺
i R̄Ū⊺ς̂j

T
√
λ̂iλ̂j

∥∥∥∥∥∥ ≲P
1

T
+

N + T

Tλi
+

N + T

Tλj
.

(ii) Using Ū⊺ς̂i = Ũ
⊺
1 si1 + Ũ

⊺
2 si2 and (2.190), we have

∥∥V̄ Ū⊺ς̂i
∥∥ ≤

∥∥∥V̄ Ũ
⊺
1 si1

∥∥∥+ ∥∥∥V̄ Ũ
⊺
2 si2

∥∥∥ ≤
∥∥∥V̄ Ũ

⊺
1

∥∥∥+ ∥∥V̄ ∥∥∥∥Ū∥∥ ∥si2∥ ≲P

√
T +

N + T√
λi

.

Then, with Lemma 24, we have
∥∥∥T−1λ̂

−1/2
i V̄ Ū⊺ς̂i

∥∥∥ ≲P T−1 + λ−1
i (T−1N + 1).

Replace V̄ in the above proof by ι
⊺
T , we can get

∥∥∥λ̂−1/2
i ū⊺ς̂i

∥∥∥ ≲P T−1+λ−1
i (T−1N +1).

(iii) Using Ū⊺ς̂i = Ũ
⊺
1 si1 + Ũ

⊺
2 si2 and (2.190), we have

∥∥ς̂⊺i Ū∥∥ ≤
∥∥∥s⊺i1Ũ1

∥∥∥+ ∥∥∥s⊺i2Ũ2

∥∥∥ ≤
∥∥∥Ũ1

∥∥∥+ ∥∥Ū∥∥ ≲P

√
T +

N + T√
Tλi

.
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Applying Lemma 24 again completes the proof.

Lemma 27. Under the assumptions of Theorem 9(a), H̃1, H̃2 defined by (2.73) satisfy

(i)
∥∥∥H̃1

∥∥∥ ≲P 1,
∥∥∥H̃2

∥∥∥ ≲P 1.

(ii)
∥∥∥H̃⊺

1 H̃2 − Ip̃
∥∥∥ ≲P T−1 + λ−1

p (T−1N + 1).

(iii)
∥∥∥H̃1 − H̃2

∥∥∥ ≲P T−1/2 + λ−1
p (T−1N + 1).

Proof. (i) Using the definition of H̃1 in (2.73) and Lemma 14, we have

∥∥∥h̃k1∥∥∥ =

∥∥∥∥∥ V̄ ξ̂k√
T

∥∥∥∥∥ ≤ T−1/2
∥∥V̄ ∥∥ ≲P 1,

which leads to
∥∥∥H̃1

∥∥∥ ≲P 1.

Using Γς̂k = (s
⊺
k1, s

⊺
k2)

⊺, the SVD of β in (2.180), the definition of H̃2 in (2.73), Lemma

24 and Lemma 25(iii), we have

∥∥∥h̃k2∥∥∥ =

∥∥∥∥∥∥β
⊺ς̂k√
λ̂k

∥∥∥∥∥∥ =

∥∥∥∥∥∥Λ
1/2sk1√
λ̂k

∥∥∥∥∥∥ ≲P 1, (2.194)

which leads to
∥∥∥H̃2

∥∥∥ ≲P 1.

(ii) By (2.182) and Lemma 15, for l, k ≤ p, we have

δlk = ξ̂
⊺
l ξ̂k =

ξ̂
⊺
l V̄

⊺β⊺ς̂k√
T λ̂k

+
ξ̂
⊺
l Ū

⊺ς̂k√
T λ̂k

= h̃
⊺
l1h̃k2 +

ξ̂
⊺
l Ū

⊺ς̂k√
T λ̂k

.

By Lemma 26(i), we have

|h̃⊺l1h̃k2 − δlk| ≲P
1

T
+

N + T

T min{λl, λk}
≤ 1

T
+

N + T

Tλp
,

and thus
∥∥∥H̃⊺

1 H̃2 − Ip
∥∥∥ ≲P T−1 + λ−1

p (T−1N + 1).
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(iii) Using (2.182), we have

V̄ ξ̂k =
V̄ V̄ ⊺β⊺√

T λ̂k

ς̂k +
V̄ Ū⊺ς̂k√

T λ̂k

.

With the definition of hk1 and hk2, it becomes

h̃k1 =
V̄ V̄ ⊺

T
h̃k2 +

V̄ Ū⊺ς̂k

T

√
λ̂k

. (2.195)

With
∥∥∥h̃k2∥∥∥ ≲P 1, Lemma 14 and Lemma 26(ii), (2.195) leads to

∥∥∥h̃k1 − h̃k2

∥∥∥ ≤
∥∥∥T−1V̄ V̄ ⊺ − Ip

∥∥∥∥∥∥h̃k2∥∥∥+
∥∥∥∥∥∥ V̄ Ū⊺ς̂k

T

√
λ̂k

∥∥∥∥∥∥ ≲P T−1/2 + λ−1
p (T−1N + 1),

which concludes the proof of (iii).

Lemma 28. Under Assumption 18, we have

∥∥∥r̄ − Σ̂b
∥∥∥
∞

≲P

√
logN

T
, ∥b⊺(r̄ − E(rt))∥ ≲P

1√
T
.

Proof. For the first inequality, we have

∥∥∥r̄ − Σ̂b
∥∥∥
∞

≤ ∥r̄ − E(r)∥∞ +
∥∥∥Σb− Σ̂b

∥∥∥
∞

≲P

√
logN

T
,

where we use large deviation inequalities in Assumption 17:

∥r̄ − E(rt)∥∞ ≲P

√
logN

T
and

∥∥∥Σb− Σ̂b
∥∥∥
∞

=

∥∥∥∥ 1T R̄R̄⊺b− Cov(rt, r
⊺
t b)

∥∥∥∥
∞

≲P

√
logN

T
.
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The second inequality follows immediately from Assumption 17:

∥b⊺(r̄ − E(rt))∥ = | 1
T

T∑
t=1

mt − E(mt)| ≲P
1√
T
.
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CHAPTER 3

EMPIRICAL ANALYSIS WITH SUPERVISED PRINCIPAL

COMPONENTS

3.1 Introduction

This chapter illustrates the use of SPCA with two empirical applications. In Section 3.2,

we explore its application to macroeconomic forecasting. For this purpose, we combine the

standard Fred-Md dataset of 127 macroeconomic and financial variables with the Blue Chip

Financial Forecasts dataset, that contains hundreds of forecasts of various variables (like

interest rates and inflation) from professional forecasters, thus obtaining a large dataset of

predictors. We then apply different prediction and dimension reduction methods to forecast

quarterly inflation, industrial production growth, and changes in unemployment. We com-

pare the results using SPCA to those obtained using PCA (as in Stock and Watson [2002a])

and PLS (as in Kelly and Pruitt [2013]). We show that in a setting with a large number of

(potentially noisy and/or redundant) predictors, SPCA performs well in forecasting macroe-

conomic quantities out of sample. We also investigate the selection that SPCA operates, and

find that it isolates, for each target, a different group of useful predictors; it also focuses on a

few financial forecasters, whose survey responses are selected particularly often. Finally, we

illustrate the use of SPCA with multiple targets at the same time (macroeconomic variables

forecasted at different horizons: 1, 2, 3, 6 and 12 months).

In Section 3.3, we illustrate the use of SPCA in estimating risk premia of a variety of

tradable and nontradable factors proposed in the asset pricing literature, and for diagnosing

observable factor models. We use the large cross-section of test portfolios produced by Chen

and Zimmermann [2020] and Hou et al. [2020], covering more than 900 and 1600 portfolios,

respectively, for the period 1976-2020. We apply SPCA to estimate factor risk premia, and

evaluate its out-of-sample performance. Almost none of the non-tradable factors are priced,
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except for the intermediary capital factor. We also explore the robustness of SPCA to the

weakness of factors, by artificially changing the set of test assets used in the estimation:

for example, we show that SPCA is able to recover the risk premium for momentum even

when momentum assets are removed from the original set of test assets (and therefore the

momentum factor is weak in the cross-section). Moreover, we illustrate empirically how

SPCA can be used to diagnose whether observable factor models are missing important

priced factors.

3.2 Macroeconomic Prediction

In this section we apply the SPCA methodology developed in Giglio et al. [2023] to a stan-

dard macroeconomic prediction exercise, using a large set of predictors to forecast inflation,

industrial production, and unemployment.

3.2.1 Empirical Context

Predicting macroeconomic variables like output and inflation is a central exercise in empir-

ical macroeconomics. The availability of large macroeconomic datasets that contain many

potentially useful predictors has spurred the application of a variety of methods of dimension

reduction to this objective. Some of these methods, like those based on principal component

analysis (PCA), reduce the dimensionality of the predictors universe without using infor-

mation in the target of the forecast (see Stock and Watson [2002b]). Others instead use

information from the target to help the dimension reduction focus on the most valuable

predictors; examples include partial least squares (PLS, Kelly and Pruitt [2015]), targeted

PCA (Bai and Ng [2008]), and scaled PCA (Huang et al. [2022]). SPCA belongs to the

latter group, as it employs an iterative screening step based on correlation with the target

to eliminate useless or noisy predictors.

Because the selection step is designed to eliminate irrelevant predictors (as opposed to
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downweight them as, for example, PLS does) we expect SPCA to perform best when faced

with a large number of predictors that are potentially irrelevant, noisy, or redundant. In

our empirical analysis, we therefore explore a context in which a large number of predictors

are available to be used for forecasting. Specifically, we include in our set of predictors not

only a standard panel of macroeconomic variables, but also a large dataset of individual

forecasts of different macroeconomic quantities by professional forecasters. Macroeconomic

forecasts have often been included in forecasting exercises, either by using the consensus

forecast as an additional predictor (Faust and Wright [2013]) or in the context of optimal

forecast combination (Genre et al. [2013]). In our context, we let SPCA decide if and which

individual forecasts to use to complement the macroeconomic predictors – so the forecast

combination will be decided automatically by SPCA.

3.2.2 Data

Our empirical exercise combines two datasets. First, we use the standard Fred-Md database

[McCracken and Ng, 2016] that contains 127 monthly macroeconomic and financial series.1

1. The series are grouped in the following categories: output and income; labor market; housing; con-
sumption, orders and inventories; money and credit; interest and exchange rates; prices; stock market. The
dataset applies a variety of transformations to the underlying series, which we follow in our analysis. We
however make a few adjustments to the series’ data transformations, to ensure that all series are stationary
and based on economic reasoning. For the Effective Federal Funds Rate (FEDFUNDS), we keep its level
(i.e., no transformation) instead of taking the first difference. We also compute the first difference of nat-
ural log instead of the second difference of natural log for the following series: M1 Money Stock (M1SL),
M2 Money Stock (M2SL), Board of Governors Monetary Base (BOGMBASE; note: starting from the Jan-
uary 2020 (2020-01) vintage, BOGMBASE replaced the St. Louis Adjusted Monetary Base (AMBSL)),
Total Reserves of Depository Institutions (TOTRESNS), Commercial and Industrial Loans (BUSLOANS),
Real Estate Loans at All Commercial Banks (REALLN), Total Nonrevolving Credit (NONREVSL), Fin-
ished Goods (WPSFD49207), Finished Consumer Goods (WPSFD49502), Processed Goods for Intermediate
Demand (WPSID61), Unprocessed Goods for Intermediate Demand (WPSID62; note: starting from the
March 2016 (2016-03) vintage, PPI: Finished Goods (PPIFGS), PPI: Finished Consumer Goods (PPIFCG),
PPI: Intermediate Materials (PPIITM), and PPI: Crude Materials (PPICRM) have been replaced with
WPSFD49207, WPSFD49502, WPSID61, and WPSID62 respectively), Crude Oil, spliced WTI and Cush-
ing (OILPRICEx), PPI: Metals and Metal Products (PPICMM), Consumer Price Index for All Urban
Consumers (CPIAUCSL), CPI: Apparel (CPIAPPSL), CPI: Transportation (CPITRNSL), CPI: Medical
Care (CPIMEDSL), CPI: Commodities (CUSR0000SAC), CPI: Durables (CUSR0000SAD), CPI: Services
(CUSR0000SAS), CPI: All Items Less Food (CPIULFSL), CPI: All Items Less Shelter (CUSR0000SA0L2)2,
CPI: All Items Less Medical Care (CUSR0000SA0L5), Personal Cons. Exp: Chain Index (PCEPI), Personal
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The Fred-Md data spans the period March 1959 to February 2022. Second, we use indi-

vidual forecasts from the Blue Chip Financial Forecasts data, which is a monthly survey

of experts from various major financial institutions3 and provides forecasts of interest rates

and many other macroeconomic quantities4 for each of the next six quarters (i.e., current

quarter t through t + 5), for a total of hundreds of forecasts every month. Our data covers

the period February 1993 to February 2022 and we use all forecasts available (for all possible

macroeconomic targets) as potential predictors. This gives us up to 18,053 different individ-

ual forecasts that could in theory be used as predictors (though, as discussed below, many

of these forecasts are available for only a small number of periods, so they are not used in

our analysis). Given that the Blue Chip forecast is only available since 1993, we conduct all

of our analysis for the period February 1993 to February 2022.

3.2.3 Out of Sample Forecast Evaluation

We forecast each of the three targets (inflation, industrial production growth, and change

in the unemployment rate) using a rolling out of sample procedure. We evaluate the out

of sample forecast of SPCA and compare it with two alternative forecasting methods, PCA

and PLS. We choose these alternatives because each is a prominent example of a class of

methods used in large-dimensional macroeconomic forecasting (respectively, unsupervised

and supervised dimension reduction). Each of the three methods we evaluate (SPCA, PCA,

PLS) is benchmarked to the forecast of an autoregressive model, whose number of lags is

Cons. Exp: Durable Goods (DDURRG3M086SBEA), Personal Cons. Exp: Nondurable Goods (DND-
GRG3M086SBEA), Personal Cons. Exp: Services (DSERRG3M086SBEA), Avg Hourly Earnings: Goods-
Producing (CES0600000008), Avg Hourly Earnings: Construction (CES2000000008), Avg Hourly Earnings:
Manufacturing (CES3000000008), Consumer Motor Vehicle Loans Outstanding (DTCOLNVHFNM), Total
Consumer Loans and Leases Outstanding (DTCTHFNM) and Securities in Bank Credit at All Commercial
Banks (INVEST).

3. For instance, Bank of America, Goldman Sachs & Co. and J.P. MorganChase.

4. For instance, the percentage changes in Real GDP, the GDP Chained Price Index, the Consumer Price
Index and a set of interest rates (e.g., Federal Funds, 3-month Treasury, Aaa as well as Baa Corporate
Bonds).
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selected by the BIC criterion with a maximum lag of 12 lags, using a direct projection

approach (Marcellino et al. [2006], Faust and Wright [2013]). We study forecast horizons of

1 to 12 months.

All of the analysis is performed using a rolling estimation on a 240-months window. At

every time t starting at the last month of the window, we predict the cumulated macroeco-

nomic variables from t to t + h, where h is the forecast horizon, as in Huang et al. [2022].

Within each window, we only keep predictors that have less than 10% missing data points.

For those series that are included but do have some missing data (mostly Blue Chip forecasts)

we forward fill the last non-missing value. About half of the total of around 40 forecasters

from BlueChip available in the average month have sufficiently long series of forecasts to

be included in our analysis. All predictors are standardized within each window. Then, a

forecast is made for t + 1 using the three different methods, and these forecasts are then

joined over time to compute the out-of-sample R2 (relative to the AR benchmark). When

we use the Blue Chip data, we also include dummies for month of the quarter, to account

for the fact that the Blue Chip data makes forecasts for calendar quarters irrespective of the

month.5

Recall that the SPCA procedure presented in Giglio et al. [2023] relies on two tuning

parameters, K and ⌊qN⌋, whereas PCA and PLS only rely on tuning K. To demonstrate

the effect of tuning parameters, we report three versions of the results. We first show

the performance of the forecasting methods for different (fixed) number of factors K and

different (fixed) choice of ⌊qN⌋. In this case, no tuning is needed for SPCA. We then show

the performance of SPCA for each K, with a single tuning parameter of SPCA that drives the

selection step ⌊qN⌋ chosen via 3-fold cross-validation (CV) separately in each time window.

Next, we show the results when both the number of factors K (for SPCA, PCA and PLS)

and the tuning parameter ⌊qN⌋ (for SPCA) are jointly chosen via CV. We consider a range

5. For example, in January, February and March, the “current quarter” forecast always refers to Q1.

243



of ⌊qN⌋ from 50 to 300.

3.2.4 Results

3.2.4.1 Forecasting Performance

We begin by focusing on prediction at the quarterly (3-month) horizon, which is a stan-

dard horizon studied in the literature. Figure 3.1 reports the out of sample R2 of different

forecasting methodologies relative to the AR benchmark, for inflation (left panel), industrial

production growth (center panel), and change in unemployment (right panel). In this figure,

the prediction exercise is performed by fixing the number of factors K. For PCA (red line)

and PLS (blue line), there are no tuning parameters beyond K. For SPCA, we report sepa-

rate results for each choice of the tuning parameter K (grey lines), as well as for the value

for ⌊qN⌋ chosen by CV (green line).

Figure 3.1: OOS Performance of SPCA, PCA and PLS (for different number of factors)
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Notes: Each panel reports the out-of-sample R2 relative to the AR model for a different target, aggregated over 3 months.
The three panels predict inflation, industrial production growth and change in unemployment rate, respectively. The green
dashed line shows the performance of SPCA with 3-fold cross validation for the tuning parameter ⌊qN⌋. The grey lines show
the performance of SPCA with fixed number of predictors, ⌊qN⌋. The blue dashed line uses PLS. The red dashed line uses
PCA. Rolling window of 240 months is used. Sample covers 1993-2022.
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The figure shows several interesting results. First, it is in general hard to predict inflation

beyond what an AR model predicts (see also Faust and Wright [2013]): the out of sample R2s

are close to zero or even negative. Only SPCA, among all methods, produces positive R2s,

and it does so using a small number of factors. Predictability beyond the AR model is much

higher for IP growth and change in unemployment. Second, the predictive performance

of SPCA is generally higher than that of PCA and PLS for most choices of the number

of factors. Third, the performance of PCA does depend on the tuning parameter, but in

different ways for different targets. For inflation, for example, a lower value of ⌊qN⌋ seems

to predict better; for industrial production and unemployment, higher values work better.

Finally, the performance of all these methods varies quite dramatically with the number

of factors, with substantial declines for the methods that use target information (PLS and

SPCA with a smaller ⌊qN⌋) as the number of factors increases, because of their overfitting

issue we explained earlier.

Given how important the number of factors is for the out-of-sample performance, in

what follows we choose the number of factors via cross-validation for all three methods (so

for SPCA both ⌊qN⌋ and K are jointly selected via CV). The left panel of Figure 3.2 shows

the results. Now all three targets (inflation, industrial production growth and change in

unemployment rate) appear in the same panel. The panel confirms that SPCA generally

performs well in predicting out of sample, doing better than the alternatives (in the case

of unemployment, several choices of the tuning parameter ⌊qN⌋ outperform PCA and PLS,

but not the one chosen by cross-validation). Overall, SPCA tends to do comparatively well

when choosing all parameters via cross-validation.

Given the way SPCA chooses the set of predictors, we would expect it to perform best in

contexts where there are a large number of predictors, that overall contain valuable informa-

tion, even if some predictors are redundant or noisy. The forecasting experiment we run here

falls in this category: it contains both macroeconomic and financial data (which are likely
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Figure 3.2: OOS Performance of SPCA, PCA and PLS (using CV to choose the number of
factors)
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Notes: The left panel of this figure repeats the analysis of Figure 3.1, but chooses the number of factors via CV. The right
panel performs the same analysis as the left panel, but using only Fred data.

to contain important individual predictors), as well as a large number of individual forecasts

that we would expect to be informative beyond macroeconomic quantities but where a large

part of the observed variation is likely dominated by noise. To better gauge the importance

of this additional data in the performance of SPCA, the right panel of Figure 3.2 shows the

results of running the same analysis (using the same sample) but with only the Fred data.

The figure shows that while the performance of SPCA remains broadly comparable with

the other predictors, it deteriorates compared to PCA and PLS (PLS itself has very mixed

performance, though, predicting well IP growth and unemployment, and failing to predict

inflation). So, on the one hand, this figure shows that individual expert forecasts are useful

for prediction of macroeconomic variables, confirming the results in Faust and Wright [2013];

on the other hand, it shows that SPCA does particularly well when working with this large

and informative, yet noisy, universe of individual forecasts.
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3.2.4.2 Predictors Selected by SPCA

Next, we study in detail how SPCA selects predictors. Figure 3.3 shows which variables are

chosen by SPCA to extract the first factor (focusing on the 50 with highest correlation with

the target, for reasons of readability). For the three targets (one per column), the graph

reports which variables were selected in each of the rolling windows in our sample. The

top part of the graph collects the 127 Fred variables, grouped according to the standard

Fred-Md categorization, in alternating blue and red colors. The bottom part corresponds to

the BlueChip surveys, grouped by the target of the individual forecast (therefore, each row

in this part of the graph is a forecast of a particular variable, at a particular horizon, by a

particular expert). A darker color in this graph means that the variable is selected in that

window.

Consider for example the inflation graph on the left. To extract a factor useful to predict

inflation, SPCA selects a large number of variables from a few groups: output, consump-

tion, rates, prices, and the stock market. Other groups are almost never selected. Rates are

selected more for IP growth, and labor variables are selected more when predicting unem-

ployment. Housing variables are rarely used for all three targets. Note that in many cases,

the same predictors from each group are used, indicating that the predictive power of these

macroeconomic variables is persistent.

To this macroeconomic set of predictors, SPCA adds a selection of individual forecasts

from the BlueChip data as additional predictors. For reasons of space, the greyscale part

of the graph shows a subset of these predictors: only those that are selected among the top

50 predictors at least in one window. The graph shows that different types of forecasts are

used at different points in time, with some exceptions. Not surprisingly, to predict inflation,

forecasts of the consumer price index are always included. To these forecasts, SPCA adds

forecasts of GDP in the first and last part of the sample, and interest rates in the intermediate

part of the sample. GDP forecasts are used throughout the sample to predict changes in
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Figure 3.3: Top 50 Predictors Selected by SPCA
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unemployment, and become more dominant for all target variables toward the end of the

sample, whereas inflation predictors tend to be more important beforehand. This switch is

perhaps due to the fact that in the later part of the sample the zero lower bound was close

or binding and inflation was low and not very volatile.

Finally, we note that not all Blue Chip forecasters are the same in terms of forecasting

ability. Among the institutions whose forecasts are included in our analysis because they

have a sufficiently long time series (each providing tens of forecasts, of different variables

at different horizons), we find significant heterogeneity in the frequency with which their

forecasts are selected by SPCA. For example, Nomura has its forecasts selected between

23% and 39% of the time at the first iteration (depending on the target). Swiss RE, on the

other hand, has its forecasts selected only 0.1% of the time, for each target. This distribution

is quite skewed: only 5 institutions have their forecasts selected more than 10% of the time

for each target, out of the 20 included in our sample. Similar results hold when looking at

selection at any iteration of SPCA.

3.2.4.3 Joint Forecasts using Many Targets

Next, one special feature of SPCA is that it can operate the selection using a set of multiple

targets jointly. In fact, using multiple targets is required by the theory (see Giglio et al.

[2023]) to do inference, as long as there are more than one factors in the true DGP. We

implement this here by predicting each target at horizons of 1, 2, 3, 6 and 12 months jointly.

Figure 3.4 reports the out of sample R2s on each horizon. There are two main results that

this figure highlights. First, SPCA tends to do on average well at longer horizons (3, 6 and

12 months), whereas its performance is more uneven at shorter horizons. Second, comparing

the middle panel (predicting one quarter ahead) with the left panel of Figure 3.2, which

focused on the 3-month horizon only, we see that the use of other horizons to help select

predictors has different effects for different targets. It significantly improves the forecasting
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ability for unemployment, but reduces the forecasting ability for IP growth (mildly) and

inflation (significantly so). Overall, the performance of SPCA remains on par with the other

predictors when using multiple targets, especially at longer horizons.

Figure 3.4: OOS Performances - Different Targeted Horizons
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Notes: Similar to Figure 3.2, but showing the out of sample R2s at different horizons, and using all the horizons concurrently
to estimate the factors in SPCA.

3.2.4.4 Time Series of the Forecasts

Finally, we study the time series of our out-of-sample forecasts at different horizons, using

the estimates obtained in Section 3.2.4.3, for horizons of 1, 2, 3, 6 and 12 months. Figure

3.5 reports SPCA’s forecasts with asymptotic forecast standard errors at each maturity.

In the figure, the blue dots represent the underlying time series that is the target of the

forecast: log CPI, log IP, and unemployment, all scaled to start from 0 at the beginning of

the sample. For readability, we show the forecasts every six months, each for horizons up

to 12 months. Standard errors are obtained using the asymptotic distributions derived in

Giglio et al. [2023], and are plotted in three shades (the 10th and 90th percentiles in the

darkest shade, 5th and 95th in the middle shade, and 1st and 99th in the lightest shade).

Overall, SPCA does a good job forecasting the three series, with the forecasts often

anticipating changes in the direction of the different variables. For example, IP forecasts

predicted the increase starting in 2016, and the decrease that started in 2018. Of course,

in other times the forecasts miss significantly, sometimes for several periods in the same
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direction. Two examples: first, forecasts do not fully anticipate the persistent decrease in

unemployment that occurred during 2013 and 2014. Second, all forecasts miss (as they

should have) the unexpected and extraordinary events of the Covid pandemic (both the

initial shock and the recovery). In that period, the point estimates change dramatically

over a short period of time, and standard errors increase noticeably, demonstrating the large

amount of uncertainty about the path of the economy during those times.

3.3 Risk Premia Estimation and Factor Model Diagnosis

In this section we apply SPCA to estimate the risk premia of a variety of observable factors,

and to diagnose observable factor models.

3.3.1 Data

Our main dataset is the Chen and Zimmermann [2020] data, which includes a large number

of equity portfolios sorted by characteristics. Specifically, we employ the April 2021 release

of the data. For each characteristic considered, Chen and Zimmermann [2020] construct a

variable number of portfolios (as many as are used in the original papers that introduced

the anomaly in the literature: typically 2, 5, or 10). Not all test assets are available for

the entire time period; for our analysis, we study the time period 1976m3 to 2020m12, for

which 901 test portfolios are available without missing values. To these sorted portfolios, we

add 49 industry portfolios from Ken French’s website. All of our results are at the monthly

frequency.6

We also consider an alternative dataset, proposed by Hou et al. [2020], that includes for

the same period 1672 portfolios sorted by characteristics without missing values. Hou et al.

[2020] classify their portfolios in six groups: momentum, value, investment, profitability,

6. The theory is silent on what the correct frequency of the data to study is. Here we follow the literature
and focus on monthly frequency; we leave for future work a more comprehensive study and comparison across
frequencies.

251



Figure 3.5: Fan Charts
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(b) IP Growth
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(c) Change in Unemployment
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intangibles, and frictions. These two datasets are similar and yield comparable results.

Rather than producing two versions of each result using the two datasets, we choose Chen

and Zimmermann [2020] to be our main dataset and report the robustness of the main results

using the Hou et al. [2020] data (see Section 3.3.2.6). What both datasets have in common

is that they capture a wide universe of anomaly equity portfolios discovered in the last four

decades of asset pricing research.

We consider both tradable and nontradable factors in our analysis, focusing on the best-

known ones from the literature. The tradable factors are: the market (in excess of the risk-

free rate); size (SMB); value (HML); profitability (RMW); investment (CMA); momentum

(MOM); betting-against-beta (BAB, from Frazzini and Pedersen [2014]); and quality-minus-

junk (QMJ, from Asness et al. [2013]). The nontradable factors are: the liquidity factor

from Pástor and Stambaugh [2003]; the intermediary capital factor from He et al. [2017];

AR(1) innovations in industrial production growth (IP); VAR(1) innovations in the first

three principal components of 279 macro-finance variables from Ludvigson and Ng [2010];

AR(1) innovations in the three uncertainty indexes of Jurado et al. [2015], representing

financial uncertainty, macroeconomic uncertainty, and real uncertainty; AR(1) innovations

in the term spread, the credit spread, and the unemployment rate; AR(1) innovations in two

sentiment indexes, one from Huang et al. [2015] and one from Baker and Wurgler [2006]; oil

price growth AR(1) innovations; and consumption growth AR(1) innovations.7

7. The market factor, SMB, HML, RMW, CMA and MOM are from Ken French’s website. BAB and
QMJ are from AQR’s website. The liquidity factor is from Lubos Pastor’s website. The intermediary capital
factor is from Asaf Manela’s website. The macro principal components and the uncertainty indexes are from
Sydney Ludvigson’s website. Industrial production, the credit spread, unemployment rate, the term spread,
and oil price are from Fred-MD. The Huang et al. [2015] sentiment index is from Huang’s webpage. The
Baker and Wurgler [2006] sentiment index is from Wurgler’s website. The consumption factor was built from
NIPA data using the methodology of Schorfheide et al. [2018].
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3.3.2 Estimation of Risk Premia using SPCA

In this section we estimate the risk premia of a variety of tradable and nontradable factors.

We begin by discussing some details of the implementation of the estimator.

3.3.2.1 Choice of Tuning Parameters and Implementation Details

To apply SPCA to the estimation of the risk premia and to evaluate its out-of-sample per-

formance, we split the sample period into two equal-sized subsamples. The first half of the

sample (training period) is used to choose the tuning parameters and produce the risk pre-

mium estimate. The second half of the sample (evaluation period) is used to evaluate the

out-of-sample performance of the estimator and the choice of the tuning parameter.

For ease of presentation, we choose to select only one tuning parameter, q (or, equiva-

lently, the number of assets selected ⌊qN⌋), for each plausible choice of p (the number of

factors) in our analysis. This approach reduces the number of tuning parameters to only one,

and also conveniently serves as a robustness check with respect to the number of factors.

To determine reasonable candidates for p, we examine the factor structure of the panel

of test asset returns. Figure 3.6 provides the scree plot of the log of the first 25 eigenvalues.

There appear to be at least three strong factors. In addition, it appears that factors 4-11

might also be relevant, but weak. Motivated by the scree plot, in the empirical study below

we highlight results for p equal to 3, 5, 7, and 11, therefore showing the robustness of our

results to a wide range of model dimensions.

To choose the tuning parameter q, we adopt the same R2 criterion as in simulations

to evaluate the estimator’s out-of-sample performance, namely, the hedging ability of the

portfolio built by SPCA for gt. Guided by this statistical justification, in our empirical work

we choose q by 3-fold CV(100 runs) within the training sample, maximizing the hedging R2

for gt. Appendix 2.5.5 describes in detail the steps for the cross-validation. Once we have

tuned q, we use it to compute the SPCA risk premium estimate for gt.
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Figure 3.6: Logarithm of the First 25 Eigenvalues in the Chen-Zimmerman data

Note: The figure plots the logarithm of the first 25 eigenvalues of the data, obtained from Chen and
Zimmermann [2020] plus 49 industry portfolios, covering the period 1976-2020.

3.3.2.2 Results: Estimation of Risk Premia and Out-of-sample Evaluation

We report the main empirical results in Table 3.1 and Figures 3.7 and 3.8. Each row of

Table 3.1 corresponds to one factor; the first 8 are tradable, the rest are nontradable. For

tradable factors, the first two columns show the average excess return of the factor, in the

training sample and in the evaluation sample, respectively; these numbers correspond to

model-free estimates of the risk premia of tradable factors, and can be directly compared

with the model-based estimate obtained from SPCA.

The next columns of the table show the SPCA results in 4 groups of columns, correspond-

ing to the number of latent factors p = 3, 5, 7, and 11, respectively. For each choice of p, we

report the risk-premium estimate (obtained in the training sample, in bp per month), the

number of assets selected by SPCA (determined by q), and the out-of-sample R2 obtained

in the evaluation period. These estimates are obtained factor by factor: that is, in each

case, gt contains one factor, and the asset selection is driven by that factor only. In the last

two columns of the table, we repeat the exercise (with p = 11) but estimate all risk premia

simultaneously: gt contains all the factors and the selection of the assets is based on all of

them simultaneously (so that d ≥ p as opposed to d = 1). In theory, both approaches are
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consistent. In practice, estimating risk premia factor by factor has the advantage that the

latent factors zoom in immediately on the assets relevant for each factor. On the other hand,

the joint estimation is required for the CLT of Section 2.2.2.4.

Consider first the market portfolio (first row of the table), a strong factor in this dataset.

The average return of the market in the training sample is 74bp per month, and 62bp

in the evaluation period. The SPCA estimates of the market risk premium, for the four

chosen values of p, are 68, 70, 72, and 74bp per month, respectively, all close to the average

excess return. To obtain these estimates, SPCA estimates the latent factors picking, in each

iteration, 100 assets out of the total of 950. Finally, the portfolio that SPCA builds to hedge

the market achieves, not surprisingly, a very high out-of-sample R2, above 0.98 for all p.

To better understand the performance of the estimator and the tuning parameter choice,

we can examine the heatmap in Figure 3.7, panel (a), which focuses on the market factor.

In the heatmap, the x axis reports the number of factors p; the y axis reports the number

of test assets selected by SPCA (in turn determined by q); for each combination of p and q,

the heatmap reports the out-of-sample R2 of the hedging portfolio built by SPCA.

Panel (a) shows that for all combinations of p and q, out-of-sample R2s are overall very

high for the market portfolio, above 85%. However, there appears to be a subset of the

parameter space where hedging performance is especially good: combinations with high p

and low q. The red marks in the heatmap correspond to the values of q chosen by CV in

the training sample (one for each value of p considered in the table: 3, 5, 7, 11). Ideally,

the values of q chosen by CV in the training sample would yield a hedging portfolio that

performs well out of sample: that is, the marks should lie in areas in the heatmap with high

out-of-sample R2s. This is indeed the case, as the figure shows, indicating good out-of-sample

performance of the tuning parameter selection procedure.

Consider now another tradable factor, CMA, in the 5th row of Table 3.1. Like for the

market, the estimated risk premium for CMA is not significantly different from the average
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Figure 3.7: Out-of-sample R2 Heatmaps, Tradable Factors

Note: Each panel reports the out-of-sample R2 heatmap for a different factor. X-axis reports p. Y-axis
reports the number of assets selected, governed by q. The colors in the heatmap correspond to the out-
of-sample R2 of the SPCA-implied hedging portfolio for the factor gt; this R2 is computed entirely in the
evaluation period. The red marks are the points chosen by CV within the training sample.
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Figure 3.8: Out-of-sample R2 Heatmaps, Nontradable Factors

Note: Same as Figure 3.7, but for a subset of nontradable factors.
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excess return of the factor. The number of assets selected by SPCA ranges between 100 and

350, and the out-of-sample R2 is above 50%, indicating that the hedge portfolio built by our

latent factor model is able to capture the majority of the variation on CMA out of sample.8

The heatmap of the out-of-sample R2 for the hedging portfolio of this factor is panel (e)

of Figure 3.7. The figure shows that for the case of CMA, different combinations of p and

q yield very different out-of-sample hedging performance, with R2s ranging from above 50%

to below 0. Ideally, if the tuning parameter were chosen properly, we would see the hedging

portfolio also does well out of sample. The red marks in the figure show that this is indeed

the case, especially for p = 5 and above.

These heatmaps also allow us to compare the results with the PCA-based estimator of

Giglio and Xiu [2021]. This is because the last row of the heatmap corresponds to the

case q = 1, that is, all assets are used to estimate the factors; so PCA corresponds to a

particular choice for the tuning parameter. Looking across the various panels of Figure 3.7,

it is clear that while for some factors (like the market) similar R2 can be obtained by PCA

and SPCA, for other factors (like CMA and RMW) the out-of-sample R2s obtained by SPCA

are substantially higher than those by PCA. This is not surprising given that the scree plot

has shown the presence of several weak factors in the data.

One additional advantage of SPCA that is clearly visible in the heatmaps is that SPCA

often manages to achieve the same (or better) R2 than PCA, while estimating a much smaller

number of factors. For example, consider the momentum factor in panel (f). The last row

of the heatmap shows that extracting factors via PCA achieves an R2 above 70% only once

at least 6 factors are included; SPCA gets there even with 3 factors. The reason is intuitive:

8. Given that the universe of test assets includes portfolios sorted by the same characteristics used to
construct the tradable factors like CMA, one may wonder why an out-of-sample R2 of 100% is not always
obtained for tradable factors. The reason is that SPCA attempts to build a hedging portfolio for the target
gt with factors that must also explain covariation among the universe of test assets. An advantage of our
approach is that the hedging portfolio is able to avoid fitting the “measurement error” component in gt,
which, as discussed above, can be thought of as non-diversified idiosyncratic error for tradable factors, or
more literally measurement error for nontradables.
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SPCA focuses on the test assets most informative about gt, and therefore can zoom in quickly

on the most relevant latent factors.

For nontradable factors, we cannot compare the risk premium estimate from SPCA with

the average excess return; beyond relying on the theory and simulations, we can look at the

out-of-sample R2 for suggestive evidence about the empirical performance of the estimator.

Note that it is well known in the literature that it is difficult to hedge nontradable factors,

like consumption or IP growth, in equity markets. We will however show that SPCA gives a

hedging portfolio that successfully hedges at least a part of the variation in many nontradable

factors.

Consider first the liquidity factor of Pástor and Stambaugh [2003], in row 9 of Table 3.1

and panel (a) of Figure 3.8. The out-of-sample R2 achieved by SPCA is above 0 (up to 4%),

and the estimated risk premium appears to be high (between 70 and 95bp per month). Panel

(a) of Figure 3.8 shows how strongly this R2 depends on p and q. Among all combinations

of parameters, a large fraction actually delivers a negative out-of-sample R2. This simply

stresses how difficult it is to hedge this factor (like most macro factors) using equity markets,

and indicates again the relatively good performance of SPCA as tuned in the training sample.

The remainder of the table and of the two figures shows the results for all the other

factors (for reasons of space, the heatmaps only report a subset of the factors, while the

table reports them all). A few interesting patterns emerge. First, for tradable factors, SPCA

gives risk premia estimates that are always close to the model-free estimates obtained from

average excess returns: the two are never statistically different at the 5% level (with the only

exception of QMJ with p = 3). Second, confirming the previous literature, nontradable fac-

tors are much harder to hedge than tradable factors; in fact, for several factors – like the first

two JLN macro factors – we do not get positive R2 at all. For those factors, there is so little

exposure in equity returns that SPCA cannot build a proper hedging portfolio. However,

SPCA is able to hedge out of sample at least a part of the variation of many factors, like the

261



third LN factor, the three uncertainty measures, the liquidity factor and the intermediary

capital factor (for which it achieves an R2 above 50%). Third, the risk premia estimated

by SPCA – for those factors where SPCA can actually hedge some of the variation – make

economic sense: for example, the liquidity and intermediary factors command significantly

positive risk premia, whereas the three uncertainty measures command negative risk premia.

3.3.2.3 Asset Selection

To better understand how SPCA estimates risk premia, we can study which assets are

selected when extracting the latent factors. Table 3.2 shows, for four representative factors

(two tradables, Momentum and RMW, and two nontradables, liquidity and intermediary

capital), the top 10 test assets (by absolute value of correlation) selected at each step. The

names of the portfolios follow Chen and Zimmermann [2020], with the numbers indicating

the quintile or decile of the characteristic.

Consider Momentum in the first set of rows. To extract the first factor, SPCA selects

the assets with the highest correlation with the momentum factor. The table indicates that

the highest correlation, at 0.44, is with IntMom09, an intermediate momentum portfolio.

The other assets with high correlation are all momentum-related, not surprisingly. In the

next columns, the table shows the assets selected at the second iteration of SPCA, after

orthogonalizing gt and the test assets to the first factor. Interestingly, the correlations among

these residuals are even higher, up to 0.79 for a different momentum sort (Mom12mOffSeason,

momentum without the seasonal component). This suggests that the first factor captures

some of the asset variation that is not exclusively specific to momentum (for example, part

of the market factor), which the projection step of SPCA removes.

The remainder of the table shows which assets are selected at the different iterations for

RMW, Liquidity, and Intermediary Capital. For RMW (a profitability factor), the assets

selected are often based on accounting measures, like asset growth, accruals, leverage, and
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Table 3.2: Assets Selected by SPCA

Factor #1 Factor #2 Factor #3

Asset | Corr | Asset | Corr | Asset | Corr |

Mom

IntMom09 0.44 Mom12mOffSeason02 0.79 Mom12m08 0.64
IntMom10 0.4 Mom12mOffSeason03 0.76 BMdec05 0.63
MomVol10 0.37 Size01 0.74 IntMom03 0.63
MomVol09 0.36 ResidualMomentum01 0.73 SP05 0.62
IntMom08 0.36 ResidualMomentum02 0.73 ShareIss5Y05 0.62
Mom12m10 0.36 NumEarnIncrease01 0.72 BookLeverage02 0.62
FirmAgeMom05 0.35 ShareIss5Y01 0.7 cfp05 0.61
Mom12mOffSeason10 0.34 MomVol03 0.69 BMdec04 0.61
Mom12mOffSeason09 0.33 CompEquIss01 0.68 ShareIss1Y05 0.6
Mom12m09 0.33 Mom12m03 0.68 LRreversal04 0.6

RMW

Industry:Gold 0.27 OperProf05 0.54 OperProfRD01 0.53
MomOffSeason10 0.27 OperProfRD09 0.53 RoE01 0.47
AccrualsBM02 0.27 CBOperProf09 0.5 GP01 0.45
DelEqu05 0.27 RoE05 0.49 CBOperProf02 0.45
LRreversal05 0.27 CBOperProf10 0.49 DolVol01 0.44
roaq01 0.26 Leverage02 0.49 OperProfRD02 0.44
AssetGrowth10 0.26 OperProfRD08 0.49 CBOperProf01 0.43
DolVol05 0.25 realestate03 0.49 OperProf01 0.41
ChEQ05 0.25 GP05 0.49 RoE02 0.4
Price05 0.25 GP04 0.48 VolMkt02 0.4

Liq.

InvGrowth06 0.47 InvGrowth06 0.28 InvGrowth06 0.3
NetPayoutYield07 0.47 BetaFP09 0.26 DolVol01 0.27
PayoutYield05 0.46 EntMult06 0.25 XFIN08 0.26
PayoutYield07 0.46 NetPayoutYield07 0.24 MeanRankRevGrowth01 0.26
BetaFP03 0.46 PayoutYield07 0.24 BetaFP03 0.25
DelLTI02 0.46 PayoutYield05 0.24 ShortInterest01 0.25
IntanBM03 0.46 cfp04 0.23 BetaFP09 0.24
EntMult06 0.46 BetaFP10 0.23 EntMult06 0.24
VolMkt04 0.46 XFIN08 0.23 PayoutYield07 0.24
PayoutYield06 0.46 ShortInterest01 0.22 ChEQ04 0.23

Interm.

Industry:Banks 0.9 Industry:banks 0.76 Industry:banks 0.7
Industry:Fin 0.84 Industry:Fin 0.56 Industry:Fin 0.47
IntMom05 0.8 DelEqu02 0.46 DebtIssuance02 0.38
EquityDuration04 0.8 grcapx3y02 0.44 NOA10 0.36
IdioVolAHT05 0.8 OScore02 0.43 ChAssetTurnover04 0.35
IdioVol3F05 0.79 GrLTNOA10 0.43 HerfAsset05 0.35
MaxRet08 0.79 ChAssetTurnover04 0.43 ShareRepurchase01 0.35
Illiquidity01 0.79 IntMom05 0.43 HerfBE05 0.35
IdioRisk05 0.79 IdioVolAHT05 0.42 DelEqu05 0.32
CBOperProf03 0.78 Tax01 0.42 Beta05 0.32

Note: For each factor (one per panel) the table shows the top-10 assets selected by SPCA in extracting
the latent factors. Assets are sorted by absolute value of the correlation. For each factor from 1 to 3,
the table reports the names of the portfolios selected, and the absolute value of the correlation with gt.
Naming convention for the portfolios follows Chen and Zimmermann [2020].

operating profits. For liquidity, portfolios sorted by payout yield and beta seem to play an

important role in hedging the risk. Finally, for intermediary capital, the portfolios selected
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by SPCA relate to idiosyncratic volatility, liquidity, as well as two industry portfolios (not

surprisingly, banking and financials).

The selection of particularly informative assets is the central mechanism through which

SPCA addresses the issue of weak factors. It is also responsible for the parsimony of SPCA

to the number of factors used, since SPCA zooms in on the most informative assets.

3.3.2.4 Strength of the Factors

We next report the strength of the factors extracted by SPCA at each step. To make the

results comparable across iterations of SPCA, and between SPCA and PCA, we compute the

strength of a latent factor as the eigenvalue of the factor normalized by the number of assets

used to extract it. Figure 3.9 reports, in each panel, the log normalized eigenvalues for the

factors extracted from PCA (dashed line) and for the factors extracted by SPCA, grouped

across panels for the various targets (since the factors extracted by SPCA are different

for different targets gt): panels (a) and (b) show the factors extracted when the targets are

tradable factors, panels (c) use a subset of nontradables, and (d) the remaining nontradables.

The figure shows eigenvalues corresponding to the first 5 factors.

As expected, the log eigenvalues for PCA decrease as lower-variance factors are extracted.

This is also mostly (but not always) the case for SPCA, where however we see a large

difference across factors. For some factors (like most nontradables, which, as discussed

above, are mostly noise factors), SPCA chooses a large number of assets, so the results look

very similar to PCA (e.g. see panel (d)). For factors where SPCA chooses a small number

of assets (e.g., intermediary capital and many tradables) we see that the strength of the

factor extracted is higher than with PCA. This effect is strongest for the first eigenvalue

(the log scale hides it somewhat), but is there for subsequent factors as well. In general, it

appears that SPCA indeed strengthens the factor extracted from the cross-section, compared

264



to PCA, and especially so when fewer assets are selected.9
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Figure 3.9: Strength of the Latent Factors

Note: Each panel of the figure shows the log eigenvalues extracted by PCA from the universe of all assets
in the training sample, as well as the log eigenvalues extracted by SPCA at each iteration (for the first 5
factors), for the tuning parameter selected by CV. All eigenvalues are normalized by the number of assets
used, which is a measure of strength of the factor that is directly comparable. Panels (a) and (b) study
two groups of tradable factors, panel (c) a selection of the nontradables, and panel (d) the remaining
nontradables.

3.3.2.5 SPCA and the Universe of Test Assets

The fact that SPCA estimates the latent factors using the most informative assets also makes

it particularly robust to the universe of test assets used in the estimation. We explore this

9. One caveat is that once the main factors are extracted, and mostly noise is left in the cross-section,
noise itself could lead to higher normalized eigenvalues. This is why the criterion for tuning the parameter
q of SPCA is the out-of-sample R2 of the hedging portfolio, and not this measure of factor strength.
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here in detail by considering three factors, value, momentum, and profitability, for which

we can easily identify test assets informative about them. Specifically, we consider (for

this section only) the dataset from Hou et al. [2020], which, as discussed in Section 3.3.1,

collects test portfolios by characteristics in six groups, among which one is labeled “value

vs. growth”, one “momentum”, and one “profitability.” We can then ask: how does SPCA

perform in estimating the value risk premium if we exclude the value and growth sorts from

the universe? Similarly, how does it perform in estimating the momentum and profitability

risk premia if momentum and profitability test assets, respectively, are removed? Once the

sorted portfolios are removed, the corresponding factors naturally become weaker. However,

we expect SPCA to still perform well, as long as sufficient exposure to the factor is present

in the remaining test assets. On the contrary, we expect PCA’s performance to deteriorate

more sharply.

We again look at the performance of SPCA through the lens of the hedging portfolio R2.

Figure 3.10 reports the out-of-sample time-series R2 heatmap for the three factors: value,

momentum and profitability. On the left of each row we can see the R2 obtained using all

assets from the Hou et al. [2020] dataset; on the right we can see the results excluding the

test assets corresponding to each factor. By looking at the last row of each heatmap, which

corresponds to the PCA estimate with no selection, it is clear that the hedging performance

of a portfolio built via PCA deteriorates significantly when the most informative assets are

removed. Consider for example the case p = 9. For value, the PCA hedging portfolio’s out-

of-sample R2 decreases from 64% to 47%, as value and growth assets are removed; SPCA’s

R2 decreases by substantially less, from 74% to 62%. In the case of momentum, the R2

decreases from 76% to 48% for PCA, but only from 86% to 77% for SPCA. Finally, for

profitability, the R2 decreases from 41% to 14% for PCA, but only from 71% to 60% for

SPCA. In all cases, the SPCA portfolio hedging ability deteriorates little when the relative

sorts are removed and the factor is made weaker, whereas the deterioration is much larger
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(c) Momentum
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(d) Momentum w/o momentum test assets
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(e) Profitability
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Figure 3.10: Varying the Universe of Test Assets

Note: For value, momentum and RMW (profitability), the figure shows the out-of-sample R2 heatmaps
when all the test assets from Hou et al. [2020] are used in the estimation (left), and when value portfolios,
momentum portfolios, or profitability portfolios, respectively, are excluded (right).

for PCA.

To sum up, these empirical results mirror the simulations in Section 2.3, which show that

SPCA performs well even when the factor of interest is weak in the universe of test assets

considered.

267



3.3.2.6 Robustness

We conclude by reporting in Table 3.3 a version of Table 3.1 obtained using the Hou et al.

[2020] dataset instead of the Chen and Zimmermann [2020] data. The results are qualitatively

similar to the ones obtained using the Chen and Zimmermann [2020] data, and, with a few

exceptions, not statistically different. This confirms that, broadly, the results do not depend

on using one particular universe of test assets. That said, the results also suggest some

differences between these two universes of test assets, which our analysis in the next section

sheds some light on.

3.3.3 Diagnosing Factor Models via SPCA

In the previous section we apply SPCA to the estimation of risk premia. In this section, we

illustrate the use of SPCA to diagnose missing factors in observable-factor models, applying

the theory developed in Section 2.2.3. Recall that given an observable-factor model gt, and a

set of test assets rt, we can use SPCA to recover the latent-factor SDF (using gt to supervise

the extraction of weak factors). If we find that the Sharpe ratio achieved by the latent factors

recovered by SPCA is higher than that achieved by gt, we can conclude that the factor model

using gt to span the SDF, is missing some factor. This is not just a test of whether gt explains

rt, as it instead focuses on shedding light on why a model may be rejected in the data.

We consider five observable factor models: the CAPM, the Fama-French 3-factor model

(FF3), the Fama-French 5-factor model (FF5), and finally two richer models: one with

the FF5 factors plus momentum, and one with FF5 plus momentum, BAB, and QMJ. We

diagnose these models using both the CZ and the HXZ datasets.

We divide the sample into two parts as in Section 2.2.2, and use the first half for training

(and selection of the tuning parameter) and the second half for out-of-sample evaluation.

Maximal Sharpe ratios achieved using the factors in gt and using the factors from SPCA are

calculated out of sample.
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(c) Model 3 (FF5)
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(d) Model 4 (FF5+Momentum)
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(e) Model 5 (FF5+Momentum+BAB+QMJ)

Figure 3.11: Out-of-sample Sharpe Ratios of Different Factor Models

Note: Each panel reports the out-of-sample Sharpe ratio of an observable-factor model gt (dashed line),
together with the out-of-sample Sharpe ratio obtained from the factors recovered using SPCA, in the HXZ
data (triangles) and in CZ (circles). The x axis corresponds to the number of factors used in SPCA (p).

Figure 3.11 reports the results. Each panel corresponds to a different model. The x axis

in each figure corresponds to the number of factors extracted via SPCA. The y axis is the

out-of-sample Sharpe ratio. The Sharpe ratio achieved by gt is represented by a dashed solid
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line, which naturally does not depend on the number of latent factors. In each graph, we

overlay the SPCA results with the HXZ and CZ data, respectively, using different markers

(blue triangles for HXZ and red circles for CZ). Not surprisingly, the out-of-sample Sharpe

ratios are somewhat noisy; we also plot fitted lines using raw estimates to help visualize the

trend.

Consider panel (a), in which gt is just the market. The market in our out-of-sample

period achieves a Sharpe ratio of 0.46 (dashed line). SPCA factors extracted using gt achieve

significantly higher Sharpe ratios, both in the HXZ and CZ data. The Sharpe ratio increases

with the number of factors, indicating that the CAPM misses several sources of risk. Results

for the FF3 and FF5 models (panels (b) and (c)) are similar: for both, once the number of

factors is sufficiently large, SPCA produces a Sharpe ratio that is superior to either model.

Once momentum is included (pane (d)), the model does perform as well as SPCA in the

HXZ data. This suggests that relative to the universe of test assets in the HXZ dataset, this

model (FF5+momentum) appears to be spanned by almost all sources of risk driving this

dataset (but not so in the CZ dataset).

As more observable factors are added to these models (panel (e) that includes BAB and

QMJ), we should expect the Sharpe ratio of the model to increase, as long as more latent

factors adds risk factors and not noise. We indeed find that this is the case. Overall, this

suggests that these richer models do a better job in capturing the fundamental sources of

risk in these dataset, although some amount of misspecification remains visible in the CZ

dataset.

The differences between the results using the HXZ and CZ datasets also emphasize the

importance of the choice of test assets. Ideally, to have as powerful tests as possible, we would

want to have a large and varied universe of test assets. The number of assets in a datasets

is, however, not a perfect proxy for the richness of the universe in terms of risk exposures. In

fact, as we have remarked in this paper, a universe with large N but low exposures to some
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factors can introduce a weak factor problem. Here we see another case in which the size

of the dataset does not necessarily translate into richer risk exposure: HXZ contains more

assets than CZ; yet, the results in this section show that using the test assets, rt, from CZ,

SPCA diagnoses additional factors compared to the ones diagnosed using HXZ (this could

reflect, for example, a different construction of the portfolios in the different datasets, or a

different selection of characteristics).

Overall, these results illustrate that the ability of SPCA to recover weak latent factors

can prove useful as a diagnostic tool for observable factor models, and once again highlight

the importance of the choice of test assets in performing asset pricing tests.

272



REFERENCES

Dong-Hyun Ahn, Jennifer Conrad, and Robert F. Dittmar. Basis assets. The Review of
Financial Studies, 22(12):5133–5174, 2009.

Seung C. Ahn and Juhee Bae. Forecasting with partial least squares when a large number
of predictors are available. Technical report, Arizona State University and University of
Glasgow, 2022.

Arash A. Amini and Martin J. Wainwright. High-dimensional analysis of semidefinite relax-
ations for sparse principal components. Annals of Statistics, 37(5B):2877–2921, October
2009.

Stanislav Anatolyev and Anna Mikusheva. Factor models with many assets: strong factors,
weak factors, and the two-pass procedure. Journal of Econometrics, forthcoming, 2021.

Andrew Ang, Robert Hodrick, Yuhang Xing, and Xiaoyan Zhang. The cross-section of
volatility and expected returns. Journal of Finance, 61:259–299, 2006.

Clifford S. Asness, Andrea Frazzini, and Lasse Heje Pedersen. Quality Minus Junk. Technical
report, AQR, 2013. URL http://papers.ssrn.com/abstract=2312432.

Jushan Bai. Inferential Theory for Factor Models of Large Dimensions. Econometrica, 71
(1):135–171, 2003. ISSN 0012-9682. doi:10.1111/1468-0262.00392.

Jushan Bai and Serena Ng. Determining the number of factors in approximate factor models.
Econometrica, 70:191–221, 2002.

Jushan Bai and Serena Ng. Forecasting economic time series using targeted predictors.
Journal of Econometrics, 146(2):304–317, 2008.

Jushan Bai and Serena Ng. Approximate factor models with weaker loading. Technical
report, Columbia University, 2021.

Zhidong Bai and Jack W. Silverstein. Spectral Analysis of Large Dimensional Random Ma-
trices. Springer, 2009.

Natalia Bailey, George Kapetanios, and M Hashem Pesaran. Measurement of factor strenght:
Theory and practice. 2020.

Eric Bair and Robert Tibshirani. Semi-supervised methods to predict patient survival from
gene expression data. PLoS Biology, 2(4):511–522, 2004.

Eric Bair, Trevor Hastie, Debashis Paul, and Robert Tibshirani. Prediction by supervised
principal components. Journal of the American Statistical Association, 101(473):119–137,
2006.

Malcolm Baker and Jeffrey Wurgler. Investor sentiment and the cross-section of stock returns.
The journal of Finance, 61(4):1645–1680, 2006.

273

http://papers.ssrn.com/abstract=2312432
https://doi.org/10.1111/1468-0262.00392


Svetlana Bryzgalova. Spurious Factors in Linear Asset Pricing Models. Technical report,
Stanford University, 2015.

Svetlana Bryzgalova, Jiantao Huang, and Christian Julliard. Bayesian solutions for the factor
zoo: We just ran two quadrillion models. Available at SSRN 3481736, 2019.

Svetlana Bryzgalova, Markus Pelger, and Jason Zhu. Forest through the trees: Building
cross-sections of asset returns. Technical report, London School of Business and Stanford
University, 2020.

T Tony Cai, Tiefeng Jiang, and Xiaoou Li. Asymptotic analysis for extreme eigenvalues of
principal minors of random matrices. The Annals of Applied Probability, 31(6):2953–2990,
2021.

Gary Chamberlain and Michael Rothschild. Arbitrage, factor structure, and mean-variance
analysis on large asset markets. Econometrica, 51:1281–1304, 1983.

John C. Chao and Norman R. Swanson. Consistent estimation, variable selection, and
forecasting in factor-augmented var models. Technical report, University of Maryland and
Rutgers University, 2022.

Andrew Y Chen and Tom Zimmermann. Open source cross-sectional asset pricing. Available
at SSRN, 2020.

Alexandre d’Aspremont, Laurent El Ghaoui, Michael I Jordan, and Gert R. G. Lanckriet.
A direct formulation for sparse PCA using semidefinite programming. SIAM Review, 49
(3):434–448, January 2007.

Chandler Davis and William Morton Kahan. The rotation of eigenvectors by a perturbation.
iii. SIAM Journal on Numerical Analysis, 7(1):1–46, 1970.

Eugene F. Fama and Kenneth R. French. Common risk factors in the returns on
stocks and bonds. Journal of Financial Economics, 33(1):3–56, 1993. ISSN 0304405X.
doi:10.1016/0304-405X(93)90023-5.

Jianqing Fan and Yingying Fan. High dimensional classification using features annealed
independence rules. The Annals of Statistics, 36:2605–2637, 2008.

Jianqing Fan and Yuan Liao. Learning latent factors from diversified projections and its
applications to over-estimated and weak factors. Journal of the American Statistical As-
sociation, 117(538):909–924, 2022.

Jianqing Fan and Jinchi Lv. Sure independence screening for ultrahigh dimensional feature
space. Journal of the Royal Statistical Society, B, 70(5):849–911, 2008.

Jianqing Fan, Yuan Liao, and Martina Mincheva. High-dimensional covariance matrix esti-
mation in approximate factor models. Annals of Statistics, 39(6):3320–3356, 2011.

274

https://doi.org/10.1016/0304-405X(93)90023-5


Jianqing Fan, Yuan Liao, and Martina Mincheva. Large covariance estimation by thresh-
olding principal orthogonal complements. Journal of the Royal Statistical Society, B, 75:
603–680, 2013.

Jianqing Fan, Yuan Ke, and Yuan Liao. Augmented factor models with applications to
validating market risk factors and forecasting bond risk premia. Journal of Econometrics,
222(1):269–294, 2021.

Jon Faust and Jonathan H Wright. Forecasting inflation. In Handbook of economic forecast-
ing, volume 2, pages 2–56. Elsevier, 2013.

Guanhao Feng, Stefano Giglio, and Dacheng Xiu. Taming the factor zoo: A test of new
factors. Journal of Finance, 75(3):1327–1370, 2020.

Mario Forni and Marco Lippi. The generalized dynamic factor model: Representation theory.
Econometric Theory, 17:1113–1141, 2001.

Mario Forni, Marc Hallin, Marco Lippi, and Lucrezia Reichlin. The generalized dynamic-
factor model: Identification and estimation. The Review of Economics and Statistics, 82:
540–554, 2000.

Mario Forni, Marc Hallin, Marco Lippi, and Lucrezia Reichlin. The generalized dynamic
factor model: Consistency and rates. Journal of Econometrics, 119(2):231–255, April
2004.

Mario Forni, Domenico Giannone, Marco Lippi, and Lucrezia Reichlin. Opening the black
box: Structural factor models with large cross sections. Econometric Theory, 25:1319–
1347, 2009.

Andrea Frazzini and Lasse Heje Pedersen. Betting against beta. Journal of Financial
Economics, 111(1):1–25, 2014. ISSN 0304405X. doi:10.1016/j.jfineco.2013.10.005. URL
http://dx.doi.org/10.1016/j.jfineco.2013.10.005.

Simon Freyaldenhoven. Factor models with local factors - determining the number of relevant
factors. Journal of Econometrics, 229(1):80–102, 2022.

Patrick Gagliardini, Elisa Ossola, and Olivier Scaillet. Time-varying risk premium in large
cross-sectional equity datasets. Econometrica, 84(3):985–1046, 2016.

Véronique Genre, Geoff Kenny, Aidan Meyler, and Allan Timmermann. Combining expert
forecasts: Can anything beat the simple average? International Journal of Forecasting,
29(1):108–121, 2013.

Stefano Giglio and Dacheng Xiu. Asset pricing with omitted factors. Journal of Political
Economy, 129(7):1947–1990, 2021.

Stefano Giglio, Dacheng Xiu, and Dake Zhang. Test assets and weak factors. Technical
report, National Bureau of Economic Research, 2021.

275

https://doi.org/10.1016/j.jfineco.2013.10.005
http://dx.doi.org/10.1016/j.jfineco.2013.10.005


Stefano Giglio, Bryan Kellly, and Dacheng Xiu. Factor models, machine learning, and asset
pricing. Annual Review of Financial Economics, 14:337–368, 2022.

Stefano Giglio, Dacheng Xiu, and Dake Zhang. Prediction when factors are weak. University
of Chicago, Becker Friedman Institute for Economics Working Paper, (2023-47), 2023.

Nikolay Gospodinov, Raymond Kan, and Cesare Robotti. Chi-squared tests for evaluation
and comparison of asset pricing models. Journal of Econometrics, 173(1):108–125, 2013.
ISSN 03044076. doi:10.1016/j.jeconom.2012.11.002. URL http://dx.doi.org/10.1016
/j.jeconom.2012.11.002.

Nikolay Gospodinov, Raymond Kan, and Cesare Robotti. Misspecification-Robust Inference
in Linear Asset-Pricing Models with Irrelevant Risk Factors. The Review of Financial
Studies, 27(7):2139–2170, 2014. ISSN 14657368. doi:10.1093/rfs/hht135.

Campbell R. Harvey, Yan Liu, and Heqing Zhu. ...and the Cross-Section of Ex-
pected Returns. The Review of Financial Studies, 29(1):5–68, 2016. ISSN 0893-9454.
doi:10.1093/rfs/hhv059.

Zhiguo He, Bryan Kelly, and Asaf Manela. Intermediary asset pricing: New evidence from
many asset classes. Journal of Financial Economics, 126(1):1–35, 2017.

Kewei Hou, Chen Xue, and Lu Zhang. Replicating anomalies. Review of Financial Studies,
33(5):2019–2133, 2020.

David C Hoyle and Magnus Rattray. Principal-component-analysis eigenvalue spectra from
data with symmetry-breaking structure. Physical Review E, 69(2):026124, 2004.

Dashan Huang, Fuwei Jiang, Jun Tu, and Guofu Zhou. Investor sentiment aligned: A
powerful predictor of stock returns. The Review of Financial Studies, 28(3):791–837, 2015.

Dashan Huang, Fuwei Jiang, Kunpeng Li, Guoshi Tong, and Guofu Zhou. Scaled pca: A
new approach to dimension reduction. Management Science, 68(3):1678–1695, 2022.

Iain M. Johnstone. On the distribution of the largest eigenvalue in principal components
analysis. Annals of Statistics, 29:295–327, 2001.

Iain M Johnstone and Arthur Yu Lu. On consistency and sparsity for principal components
analysis in high dimensions. Journal of the American Statistical Association, 104(486):
682–693, 2009.

Ian T. Jolliffe, Nickolay T. Trendafilov, and Mudassir Uddin. A modified principal component
technique based on the LASSO. Journal of Computational and Graphical Statistics, 12
(3):531–547, September 2003.

Kyle Jurado, Sydney C Ludvigson, and Serena Ng. Measuring uncertainty. The American
Economic Review, 105(3):1177–1216, 2015.

276

https://doi.org/10.1016/j.jeconom.2012.11.002
http://dx.doi.org/10.1016/j.jeconom.2012.11.002
http://dx.doi.org/10.1016/j.jeconom.2012.11.002
https://doi.org/10.1093/rfs/hht135
https://doi.org/10.1093/rfs/hhv059


Raymond Kan and Chu Zhang. Two-Pass Tests of Asset Pricing Models with Useless Factors.
The Journal of Finance, 54(1):203–235, 1999.

Bryan Kelly and Seth Pruitt. Market expectations in the cross-section of present values. The
Journal of Finance, 68(5):1721–1756, 2013.

Bryan Kelly and Seth Pruitt. The three-pass regression filter: A new approach to forecasting
using many predictors. Journal of Econometrics, 186(2):294–316, 2015.

Bryan Kelly, Seth Pruitt, and Yinan Su. Characteristics are covariances: A unified model of
risk and return. Journal of Financial Economics, 134(3):501–524, 2019.

Soohum Kim, Robert A. Korajczyk, and Andreas Neuhierl. Arbitrage portfolios. Review of
Financial Studies, Forthcoming, 2020.

Frank Kleibergen. Tests of risk premia in linear factor models. Journal of Econometrics,
149(2):149–173, 2009. ISSN 03044076. doi:10.1016/j.jeconom.2009.01.013. URL http:
//dx.doi.org/10.1016/j.jeconom.2009.01.013.

Serhiy Kozak, Stefan Nagel, and Shrihari Santosh. Shrinking the cross-section. Journal of
Financial Economics, 135(2):271–292, 2020.

Martin Lettau and Markus Pelger. Estimating latent asset-pricing factors. Journal of Econo-
metrics, 218:1–31, 2020.

Jonathan Lewellen, Stefan Nagel, and Jay Shanken. A skeptical appraisal of asset pric-
ing tests. Journal of Financial Economics, 96(2):175–194, 2010. ISSN 0304405X.
doi:10.1016/j.jfineco.2009.09.001. URL http://dx.doi.org/10.1016/j.jfineco.2
009.09.001.

Sydney C Ludvigson and Serena Ng. A factor analysis of bond risk premia. In Aman Ulah
and David E. A. Giles, editors, Handbook of empirical economics and finance, volume 1,
chapter 12, pages 313–372. Chapman and Hall, Boca Raton, FL, 2010.

Massimiliano Marcellino, James H Stock, and Mark W Watson. A comparison of direct
and iterated multistep ar methods for forecasting macroeconomic time series. Journal of
econometrics, 135(1-2):499–526, 2006.

Michael W. McCracken and Serena Ng. Fred-md: A monthly database for macroeconomic
research. Journal of Business & Economic Statistics, 34(4):574–589, 2016.

Hyungsik Roger Moon and Martin Weidner. Linear regression for panel with unknown
number of factors as interactive fixed effects. Econometrica, 83(4):1543–1579, 2015.

Alexei Onatski. Testing hypotheses about the number of factors in large factor models.
Econometrica, 77(5):1447–1479, 2009.

277

https://doi.org/10.1016/j.jeconom.2009.01.013
http://dx.doi.org/10.1016/j.jeconom.2009.01.013
http://dx.doi.org/10.1016/j.jeconom.2009.01.013
https://doi.org/10.1016/j.jfineco.2009.09.001
http://dx.doi.org/10.1016/j.jfineco.2009.09.001
http://dx.doi.org/10.1016/j.jfineco.2009.09.001


Alexei Onatski. Determining the number of factors from empirical distribution of eigenvalues.
Review of Economics and Statistics, 92:1004–1016, 2010.

Alexei Onatski. Asymptotics of the principal components estimator of large factor models
with weakly influential factors. Journal of Econometrics, 168:244–258, 2012.

Luboš Pástor and Robert F Stambaugh. Liquidity risk and expected stock returns. Journal
of Political Economy, 111(3):642–685, 2003.

Debashis Paul. Asymptotics of sample eigenstructure for a large dimensional spiked covari-
ance model. Statistical Sinica, 17:1617–1642, 2007.

M Hashem Pesaran and Ron Smith. The role of factor strength and pricing errors for
estimation and inference in asset pricing models. 2019.

Stephen A. Ross. The Arbitrage Theory of Capital Asset Pricing. Journal of Economics
Theory, 13:341–360, 1976.

Frank Schorfheide, Dongho Song, and Amir Yaron. Identifying long-run risks: A bayesian
mixed-frequency approach. Econometrica, 86(2):617–654, 2018.

Jay Shanken. On the Estimation of Beta Pricing Models. The Review of Financial Studies,
5(1):1–33, 1992. ISSN 1098-6596. doi:10.1017/CBO9781107415324.004.

James H Stock and Mark W Watson. Forecasting Using Principal Components from a Large
Number of Predictors. Journal of the American Statistical Association, 97(460):1167–1179,
2002a. ISSN 0162-1459. doi:10.1198/016214502388618960. URL http://www.jstor.or
g/stable/3085839.

James H Stock and Mark W Watson. Macroeconomic forecasting using diffusion indexes.
Journal of Business & Economic Statistics, 20(2):147–162, 2002b.

Yoshimasa Uematsu and Takashi Yamagata. Estimation of sparsity-induced weak factor
models. Journal of Business & Economic Statistics, 41(1):213–227, 2022a.

Yoshimasa Uematsu and Takashi Yamagata. Inference in sparsity-induced weak factor mod-
els. Journal of Business & Economic Statistics, 41(1):126–139, 2022b.

Yoshimasa Uematsu, Yingying Fan, Kun Chen, Jinchi Lv, and Wei Lin. Sofar: Large-scale
association network learning. IEEE transactions on information theory, 65(8):4924–4939,
2019.

Runzhe Wan, Yingying Li, Wenbin Lu, and Rui Song. Mining the factor zoo: Estimation of
latent factor models with sufficient proxies. Journal of Econometrics, 2023.

Weichen Wang and Jianqing Fan. Asymptotics of empirical eigenstructure for high di-
mensional spiked covariance. Ann. Statist., 45(3):1342–1374, 06 2017. doi:10.1214/16-
AOS1487. URL https://doi.org/10.1214/16-AOS1487.

278

https://doi.org/10.1017/CBO9781107415324.004
https://doi.org/10.1198/016214502388618960
http://www.jstor.org/stable/3085839
http://www.jstor.org/stable/3085839
https://doi.org/10.1214/16-AOS1487
https://doi.org/10.1214/16-AOS1487
https://doi.org/10.1214/16-AOS1487


Per-Åke Wedin. Perturbation bounds in connection with singular value decomposition. BIT
Numerical Mathematics, 12(1):99–111, 1972.

Hui Zou, Trevor Hastie, and Robert Tibshirani. Sparse principal component analysis. Journal
of Computational and Graphical Statistics, 15:265–286, 2006.

279


	List of Figures
	List of Tables
	Acknowledgments
	Abstract
	1 Prediction When Factors are Weak
	1.1 Introduction
	1.2 Methodology
	1.2.1 Notation
	1.2.2 Model Setup
	1.2.3 Prediction via Supervised Principal Components
	1.2.4 Iterative Screening and Projection

	1.3 Asymptotic Theory
	1.3.1 Consistency in Prediction
	1.3.2 Recovery of All Factors
	1.3.3 Inference on the Prediction Target
	1.3.4 Estimation of 1 and 2
	1.3.5 Alternative Procedures
	1.3.6 Tuning Parameter Selection

	1.4 Simulations
	1.5 Conclusions
	1.6 Mathematical Proofs
	1.6.1 Proof of Theorem 1
	1.6.2 Proof of Theorem 2
	1.6.3 Proof of Theorem 3
	1.6.4 Proof of Theorem 4
	1.6.5 Proof of Theorem 5
	1.6.6 Proofs from Section 1.3.5
	1.6.7 Technical Lemmas and Their Proofs


	2 Test Assets and Weak Factors
	2.1 Introduction
	2.2 Methodology
	2.2.1 Model Setup
	2.2.2 Estimating Risk Premia when Factors are Weak
	2.2.3 Recovery of the Stochastic Discount Factor

	2.3 Simulations
	2.3.1 Results on Risk Premia
	2.3.2 Results on SDF recovery

	2.4 Conclusions
	2.5 Appendix
	2.5.1 Alternative Estimators and Their Asymptotic Behavior
	2.5.2 Model Assumptions
	2.5.3 Additional Theoretical Results
	2.5.4 Additional Simulation Results
	2.5.5 Implementation Details

	2.6 Mathematical Proofs
	2.6.1 Proofs from Section 2.2.2
	2.6.2 Proofs from Section 2.2.3
	2.6.3 Proofs from Section 2.5.1
	2.6.4 Proofs from Section 2.5.3
	2.6.5 Technical Lemmas and Their Proofs


	3 Empirical Analysis with Supervised Principal Components
	3.1 Introduction
	3.2 Macroeconomic Prediction
	3.2.1 Empirical Context
	3.2.2 Data
	3.2.3 Out of Sample Forecast Evaluation
	3.2.4 Results

	3.3 Risk Premia Estimation and Factor Model Diagnosis
	3.3.1 Data
	3.3.2 Estimation of Risk Premia using SPCA
	3.3.3 Diagnosing Factor Models via SPCA


	References

