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1. Introduction

From a broad perspective, the topics of minimal surfaces, min-max theory, and mean

curvature flow (MCF) arise from studying the space of all hypersurfaces in any given

Riemannian manifold. Namely, on the space of all hypersurfaces, let us consider the

area functional A. Then a minimal surface can be viewed as a critical point of A, while

mean curvature flow can be viewed as the gradient flow of A. As for min-max theory, it

is a version of Morse theory for the infinite dimensional space of all hypersurfaces. By

equipping the space of hypersurfaces with a suitable topology, min-max theory allows one

to construct and study the critical points of A.

1.1. Genus one singularities in MCF. Results in this sections are joint works with

Ao Sun.

Mean curvature flow (MCF) is the fastest way to decrease the area of a surface. It

originated from applied science and has been attracting much attention recently because

of its potential to study the geometry and topology of surfaces in three-manifolds. As

a nonlinear geometric heat flow, MCF may have singularities, and the singularities may

result in changes in the geometry and topology of the surfaces.

The blow-up method developed by Huisken [Hui90], Ilmanen [Ilm95], and White [Whi97]

shows that the singularities are modeled by a special class of surfaces called self-shrinkers.

They satisfy the equation H⃗ + x⃗⊥/2 = 0.

It is a difficult question to determine what singularity models can show up in an

arbitrary MCF. With the convexity assumption, Huisken [Hui84] proved that the singu-

larities must be modeled by spheres, and with the mean convexity assumption, White

[Whi97, Whi00, Whi03] proved that the singularities must be modeled by spheres and

cylinders.

In this section, we find a condition to ensure the appearance of a singularity modeled by

a genus one self-shrinker. To our knowledge, this is the first result to ensure a self-shrinker

with non-zero genus shows up as the singularity model.
1



Figure 1. An interpolation argument to construct genus one singularities.

Let us first explain the heuristics, which involves an interpolation argument. In Figure

1, we have a one-parameter family {M s}s∈[0,1] of tori at the top row. Suppose that the

starting torus M0 has a thin “inward neck”, so that when we run MCF this neck will

pinch. On the other hand, the ending torus M1 has a thin “outward neck” at the middle,

which will pinch under MCF. Then, there should be a critical s0 ∈ [0, 1] such that for the

torus M s0 , both the inward neck and the outward neck will pinch under MCF, resulting

in a genus one singularity (see Figure 1).

The following is our main theorem. We will define what “inward (or outward) torus

neck will pinch” means precisely later (see Definition 1.1.8).

Theorem 1.1.1. Let {M s}s∈[0,1] be a smooth family of tori in R3 such that for the MCF

starting from M0 (resp. M1), the inward (resp. outward) torus neck will pinch. Then

there exists s0 ∈ [0, 1] such that the MCF starting from M s0 would develop a singularity

that is not multiplicity one cylindrical or multiplicity one spherical.
2



In particular, we can immediately rule out multiplicity if the entropy of each torus M s

is less than 2, i.e.

Ent(M s) := sup
x0∈R3,t0>0

(4πt0)
−1

∫
Ms

e
− |x−x0|

2

4t0 < 2.

Corollary 1.1.2. In the setting of Theorem 1.1.1, if each initial torus M s has entropy

less than 2, then at the singularity concerned, every tangent flow is given by a multiplicity

one, embedded, genus one self-shrinker.

Recall that the tangent flow is a specific blow-up limit of a MCF at a singularity, see

§2.1. Using Huisken’s monotonicity formula [Hui90], Ilmanen [Ilm95] and White [Whi97]

showed that the tangent flow must be a self-shrinker with multiplicity.

Let us explicitly provide such a family of tori as follow. Let T denote the rotationally

symmetric, genus one self-shrinker in R3 constructed by Drugan-Nguyen [DN18]. Note

that both T and the Angenent torus [Ang92] are called shrinking doughnuts, and it is

possible that they are the same. By [DN18], T has entropy strictly less than 2. Berchenko-

Kogan [BK21] showed that the Angenent torus has entropy approximated 1.85 using a

numerical method.

Theorem 1.1.3. Let {M s}s∈[0,1] be a smooth family of tori in R3 that are sufficiently

close in C∞ to the shrinking doughnut T, with M0 strictly inside T while M1 strictly

outside. Then there exists s0 ∈ [0, 1] such that the MCF starting from M s0 would develop

a singularity at which every tangent flow is given by a multiplicity one, embedded, genus

one self-shrinker.

The idea of Theorem 1.1.3 can be traced back to the work of Lin and the second author

in [LS22]. In earlier work, Colding-Ilmanen-Minicozzi-White [CIMIW13] observed that

one can perturb a closed embedded self-shrinker in R3 such that the MCF has only neck

and spherical singularities. Lin and the second author observed a bifurcation: inward

(resp. outward) perturbations make the MCF pinch from inside (resp. outside).
3



It is also interesting to compare our results with the recent development of generic MCF

[CM12, CCMS20, CCMS21, SX21a, SX21b, CCS23, Sun23]: One can perturb a single

MCF to avoid a singularity that is not spherical or cylindrical. In contrast, our results

imply that for a certain one-parameter family of MCFs, a singularity that is modeled by

a genus one shrinker is robust under perturbations.

It is natural to ask whether Theorem 1.1.1 would hold for surfaces with genus two or

above. Actually, it would not: See a counterexample in Remark 2.5.2. Nevertheless, we

believe a similar theory can be established for a multi-parameter family of higher genus

surfaces, see Question 1.1.10

Let us now give several applications of the above theorems.

Theorem 1.1.4. An embedded, genus one self-shrinker in R3 of the least entropy either

is non-compact or has index 5.

We remark that the existence of an entropy minimizer among all embedded, genus g

self-shrinkers in R3, with a fixed g, is given by Sun-Wang [SW20].

Theorem 1.1.5. There exists an ancient MCF through cylindrical and spherical singu-

larities {M(t)}t<0 in R3 such that:

• As t→ −∞, 1√
−t
M(t) → T smoothly.

• As t → 0, M(t) hits a singularity at which every tangent flow is given by a

multiplicity one, embedded, genus one self-shrinker.

In fact, Theorem 1.1.5 still holds with T replaced by any other closed, embedded,

rotationally symmetric, genus one shrinker (if they actually exist), and the exact same

proof will work.

Recalling that the rotationally symmetric shrinker T must have index at least 7 by Liu

[Liu16], we see that both Theorem 1.1.4 and 1.1.5 implies the following.

Corollary 1.1.6. There exists in R3 an embedded, genus one self-shrinker with entropy

lower than T.
4



The three self-shrinkers with the lowest entropy are the plane, the sphere, and the

cylinder ([CIMIW13, BW17]). All of them are rotationally symmetry. Kleene-Møller

[KMl14] showed that all other rotationally symmetric smooth embedded self-shrinkers

are closed with genus 1, for which we can apply Theorem 1.1.1.

It is known that the space of smooth embedded self-shrinkers in R3 with entropy less

than some constant δ < 2 is compact in C∞
loc topology (see [Lee21]). Together with the

rigidity of the cylinder as a self-shrinker by [CIM15], there exists a smooth embedded self-

shrinker minimizing entropy among all the smooth embedded self-shrinkers with entropy

larger than the cylinder.

Corollary 1.1.7. A smooth embedded self-shrinker in R3 with the fourth lowest entropy

is not rotationally symmetric.

Main ideas: Change in homology under MCF. The major challenge of this work is to

introduce some new concepts to rigorously state and prove the interpolation argument

we outlined in page 1 and Figure 1. Particularly, we need to describe the topological

change of the surfaces more precisely. Let M = {M(t)}t≥0 be a MCF in R3, where the

initial condition M(0) is a closed, smooth, embedded surface. Since we would allow M(t)

to have singularities and thus change its topology, M is, more precisely, a level set flow.

In this section, we often use the phrases MCF and level set flow interchangeably.

It is known that the topology of M(t) simplifies over time. In [Whi95], White focused

on describing the complement R3\M(t) (instead of M(t) itself), and how it changes

over time. For example, he showed rank(H1(R3\M(t))) is non-increasing in t, where H1

denotes the first homology group in Z-coefficients. Thus, heuristically, topology can only

be destroyed but not created.

In this work, we will further describe this phenomenon by keeping track of which el-

ements of the initial homology group H1(R3\M(0)) are destroyed, and how they are de-

stroyed. To illustrate, let us use the flow in Figure 2 as an example.
5



Figure 2. An example of MCF.

Heuristic observation. Let us first list some heuristic observations regarding Figure 2. We

will describe them more precisely in a moment. We fix four elements of H1(R3\M(0)) at

time t = 0, as shown in the figure. Note that a0 and a1 belong to the bounded region

inside the genus two surface M(0), while b0 and b1 belong to the region outside M(0).

(1) At time t = T1, a0 is “broken” by the cylindrical singularity x of the flow. As a

result, for later time t > T1, a0 no longer exists. Apparently, it “terminates” at

time T1.

(2) On the other hand, a1, b0, and b1 all can survive through time T1. For example,

for b0, we can clearly have a continuous family of loops, {βt}t≥0, where [β0] = b0

and each βt is a loop outside the surface M(t). In this sense, b0 will survive for

all time, although it becomes trivial after time T1.

(3) As for b1, although it survives through t = T1, it will terminate at t = T2, when

it is broken by the cylindrical singularity y.

Let us now make these observations precise.

Three new concepts. To our knowledge, these concepts are new, meanwhile, they seem

natural in the context of geometric flows. We think these concepts may have independent

interests.
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To set up, for any two times t1 < t2, let us consider the complement of the spacetime

track of the flow within the time interval [t1, t2]:

W [t1, t2] :=
⋃

t∈[t1,t2]

(R3\M(t)) × {t} ⊂ R3 × [t1, t2].

To discuss the “termination” of an element c0 ∈ H1(R3\M(0)) under the flow, we first

need to relate elements of H1(R3\M(0)) with elements of H1(R3\M(t)), at some later

time t > 0.

Homology descent. (Definition 2.3.1.) Given two elements c0 ∈ H1(R3\M(t0))

and c ∈ H1(R3\M(t)) with t > 0, we say that c descends from c0, and de-

note

c0 ≻ c,

if the following holds: For every representative γ0 ∈ c0 and γ ∈ c, if we

view them as subsets

γ0 ⊂ (R3\M(0)) × {0}, γ ⊂ (R3\M(t)) × {t},

then they bound some singular 2-chain Γ ⊂ W [0, t], i.e. γ0 − γ = ∂Γ. (See

Figure 3.)

Figure 3. Homology descent.

7



As we will prove, the above notion satisfies some nice properties. For example, given

a c0 ∈ H1(R3\M(0)), the element c ∈ H1(R3\M(t)) described above, if exists, turns out

to be unique: Thus we will denote this c by c0(t).

This enables us to further define:

Homology termination. (Definition 2.3.8.) Let c0 ∈ H1(R3\M(0)). If

t(c0) := sup{t ≥ 0 : c0 ≻ c for some c ∈ H1(R3\M(t))}

is finite, then we say that c0 terminates at time t(c0).

For example, in Figure 2, a0 terminates at time T1, and b1 terminates at time T2. On the

other hand, b0 never terminates even though b0(t) becomes trivial for t > T1. a1 also will

never terminate, even though a1(t) becomes trivial for t > T2.

Finally, we can describe what “a0 breaks at a cylindrical singularity x” means.

Homology breakage. (Definition 2.3.12.) Let c0 ∈ H1(R3\M(0)), T >

0, and x ∈M(T ). Suppose the following holds:

• For each t ∈ [0, T ), the element c0(t) ∈ H1(R3\M(t)) (such that

c0 ≻ c0(t)) exists.

• For every neighborhood U ⊂ R3 of x, for each t < T sufficiently close

to T , every element of c0(t) intersects U .

Then we say that c0 breaks at (x, T ). (See Figure 4.)

Figure 4. The picture at time t, for all t < T sufficiently close to T .

For example, in Figure 2, a0 breaks at (x, T1), while b1 breaks at (y, T2).

As we will see, these three new concepts are quite useful. They satisfy some nice

properties. To name a few:
8



• A homology class cannot break at a regular point, or a spherical singularity of the

flow (Proposition 2.3.14 and 2.3.15).

• If the initial condition M(0) is a closed surface, then some initial homology class

must terminate at finite time (Remark 2.4.10).

• Suppose {M(t)}t≥0 is a MCF with only spherical and cylindrical singularities. If a

homology class terminates at some time T , then it must break at (x, T ) for which

some cylindrical singularity x ∈M(T ) (Theorem 2.4.5).

These properties all are crucial in proving the main theorems.

Finally, let us now define precisely what “inward (or outward) torus neck will pinch”

means in Theorem 1.1.1.

Definition 1.1.8. Given a torus M in R3, let a0 (resp. b0) be a generator of the first

homology group of the interior (resp. exterior) region of M , which is isomorphic to Z

(see Figure 5). We say that the inward (resp. outward) torus neck of M will pinch if a0

(resp. b0) will terminate under MCF.

Figure 5. The loops a0 and b0.

Clearly, a0 (and b0) is unique up to a sign, and the above notion is independent of

which sign we choose.

Structure of cylindrical singularities. Once we establish the topological concepts to keep

track of the homology classes under the MCF, another challenge arises: we need to

understand what happens to these homology classes as the MCF passes the cylindrical

singularities.

Intuitively, a cylindrical singularity is just like a neck, and as we approach the singular

time, the neck pinches as in Figure 1. However, the real situation can be much more
9



complicated. For example, the MCF of the boundary of a tubular neighborhood of

a rotationally symmetric S1 in R3 will shrink to a singular set that is a rotationally

symmetric S1, where each singular point is cylindrical, but it does not look like a neck

pinching.

There are two theories that we use to study the structure of cylindrical singularities.

One is the partial regularity of the singular set of cylindrical singularities studied by White

[Whi97] and Colding-Minicozzi [CM15, CM16]. This allows us to control the singular set.

Most importantly, we obtain the compactness of the singular set of cylindrical singularities

that are inward (or outward), and they can only show up for a zero-measured set of time.

Another important theory is the mean convex neighborhood theory of cylindrical sin-

gularities by Choi-Haslhofer-Heshkovitz [CHH22], and a generalized version by Choi-

Haslhofer-Heshkovitz-White [CHHW22]. In [CHH22, CHHW22], they classified the pos-

sible limit flows at a cylindrical singularity. As a consequence, they obtain a canonical

neighborhood theorem at a cylindrical singularity, to describe the local behavior of MCF.

We study the local behavior of MCF at cylindrical singularities based on these two

theories. Nevertheless, the local behavior we need to understand does not come from

[CHH22, CHHW22] directly. We record these results in §2.2.

Outline of proofs.

Theorem 1.1.1. We will prove by contradiction. For each s ∈ [0, 1], let Ms = {M s(t)}t≥0

be the MCF (more precisely, level set flow) with M s(0) = M s as its initial condition.

Let a0 (resp. b0) be a generator of the first homology group of the inside (resp. outside)

region of each torus M s (recall Definition 1.1.8). Then, if Theorem 1.1.1 were false, Ms

would be a MCF through cylindrical and spherical singularities for each s. This flow is

unique and well-defined by Choi-Haslhofer-Hershkovits [CHH22]. Then, we show that

for each s, either a0 or b0 will terminate, but not both. This claim relies on the fact,

which we mentioned above, that if a homology class will terminate then it must break

at a neck singularity. This fact uses crucially the mean convex neighborhood theorem
10



and the canonical neighborhood theorem by Choi, Haslhofer, Hershkovits, and White

[CHH22, CHHW22].

Thus, we can partition [0, 1] into a disjoint union A ⊔ B, where A is the set of s for

which a0 will terminate, and B is the set of s for which b0 will terminate. And we will

show that A and B are both closed sets. Then, recall that we are given that 0 ∈ A and

1 ∈ B. Since [0, 1] is connected, a contradiction arises.

Theorem 1.1.3. We can apply Theorem 1.1.1 to prove Theorem 1.1.3, provided we know

that the inward torus neck will pinch (i.e. a0 will terminate, reusing the above notations)

for the starting flow (s = 0), and the outward torus neck will pinch (i.e. b0 will terminate)

for the ending flow (s = 1). To prove, say, a0 will terminate for the starting flow, we

recall that M0(0) lies strictly inside the shrinker Σ. Then we will run MCF to these two,

and use the avoidance principle, which says the distance between the two surfaces will

increase, to conclude that the a0 must terminate.

Theorem 1.1.4. Let Σ be an embedded, genus one shrinker with the least entropy. Sup-

pose by contradiction that it is compact with index at least 6. Then disregarding the four

(orthogonal) deformations induced by translation and scaling, there are still two others

that decrease the entropy, one of which is the one-sided deformation given by the first

eigenfunction of the Jacobi operator. Thus, we can construct a one-parameter family of

tori with entropy less than Σ, such that the starting torus is inside Σ and the ending torus

is outside Σ. Then, as in the proof of Theorem 1.1.3, we apply Theorem 1.1.1 to obtain

another genus one shrinker with less entropy than Σ. This contradicts the definition of

Σ.

Theorem 1.1.5. By Liu [Liu16], the shrinking doughnut T has index at least 7. Thus,

by the result of Choi-Mantoulidis [CM22], there exists a one-parameter family of ancient

rescaled MCF originating from T that decreases the entropy. As above, applying Theorem

1.1.1, we immediately obtain the desired genus one, self-shrinking tangent flow with lower

entropy.
11



Open questions. We propose several open problems. The first one is motivated by generic

MCF and min-max theory.

Conjecture 1.1.9. There exists in R3 an embedded, genus one, index 5 self-shrinker that

is the “second most generic”.

We say a self-shrinker Σ is the “second most generic”, after the generic ones (the

cylinder and the sphere), in the below sense: Suppose we have a one-parameter family of

embedded surfaces {M s}s∈[0,1] in R3. Then, we can perturb this family such that when

we run MCF to every M s, every singularity is either cylindrical, spherical, or modeled

by Σ.

Note that Theorem 1.1.4 and its proof can be viewed as a verification of a very “local”

version of this conjecture. Indeed, we can interpret Theorem 1.1.4 as the following: Any

closed embedded genus one self-shrinker with index at least 6 is not the second most

generic.

Now, we note that Theorem 1.1.1 does not hold for initial conditions with genus greater

than one: See Remark 2.5.2.

Question 1.1.10. Can Theorem 1.1.1 be generalized to the higher genus case?

To do the higher genus case, one might need to consider higher parameter families of

initial conditions.

Finally, we point out that many concepts that we introduce in this work highly rely on

the extrinsic structure of mean curvature flow.

Question 1.1.11. Can the concepts of homology descent, homology termination, and

homology breakage be adapted to the setting of Ricci flow?

Organizations. In §2.1, we will introduce the preliminary materials, which include a re-

fined canonical neighborhood theorem. In §2.3, we will define the concepts of homology

descent, homology termination, and homology breakage, and prove some relevant basic
12



propositions. In §2.4, we focus on the case of MCF through cylindrical and spherical

singularities, with torus as the initial condition. In §2.5, we prove the main theorems.

1.2. A strong multiplicity one theorem in min-max theory. Results in this section

are joint works with Yangyang Li.

For every closed smooth Riemannian manifold (M, g) of dimension at least 2, a non-

decreasing sequence of positive real numbers, {ωp(M, g)}p=1,2,..., is associated with it.

These numbers are referred to as the min-max p-widths of M and they can be heuristically

defined as follows:

Using geometric measure theory, we consider the flat cycle space Z, which consists of

“all boundaryless geometric objects in M of codimension 1”, with coefficients in Z2. F.

Almgren [Alm62] showed that this space Z is weakly homotopy equivalent to RP∞, and

consequently, its cohomology ring H∗(Z;Z2) is Z2[λ̄], which is generated by an order-2

element λ̄. Now, a continuous map Φ : X → Z, where X is a finite simplicial complex,

is called a p-sweepout if Φ∗(λ̄p) ̸= 0. The p-width of M is then defined as

ωp(M, g) := inf
p-sweepout
Φ:X→Z

sup
x∈X

area(Φ(x)) .

Note that sometimes the g in ωp(M, g) is omitted. Remarkably, these p-widths also follow

a Weyl law [LMN18], similar to the spectrum of the Laplace-Beltrami operator on M .

For the unit 3-sphere S3, it is well-known that

ω1(S
3) = ω2(S

3) = ω3(S
3) = ω4(S

3) = 4π .

Building upon the resolution of the Willmore conjecture by Marques-Neves [MN14], C.

Nurser [Nur16] showed that

ω5(S
3) = ω6(S

3) = ω7(S
3) = 2π2, 2π2 < ω9(S

3) < 8π, ω13(S
3) ≤ 8π .

Recently, F. Marques [Mar23] proved that ω8(S
3) is also equal to 2π2.

The following question was posed by Marques-Neves [MN17, §9].
13



Question. Which p-widths of S3 lie strictly between 2π2 and 8π?

In this work, we prove that the 10th to the 13th widths of S3 lie strictly between 2π2

and 8π, by establishing the following theorem:

Theorem 1.2.1. ω13(S
3) < 8π for the unit 3-sphere S3.

Note that it is still open whether the 14-width of S3 is also strictly less than 8π.

Our pursuit of this improvement from ω13(S
3) ≤ 8π to Theorem 1.2.1 is also mo-

tivated by recent developments. In recent years, the p-widths have played a crucial

role in constructing minimal hypersurfaces using the Almgren-Pitts min-max theory

[MN17, IMN18, Zho20, MN21, Li23b]. In particular, they are crucial in Song’s proof

[Son23] of Yau’s conjecture regarding the existence of infinitely many immersed closed

minimal surfaces in 3-manifolds [Yau82, p.689]. In min-max theory, one subtle feature

is that the minimal hypersurfaces obtained may have multiplicities. In a closed Rie-

mannian manifold (Mn+1, g) with 3 ≤ n+ 1 ≤ 7, the min-max theory yields a collection

{Σ1, . . . ,ΣN} of disjoint, closed, smooth, embedded, minimal hypersurfaces accompanied

by a set {m1, . . . ,mN} of positive integers. They constitute a varifold

(1.1) m1|Σ1| + · · · +mN |ΣN |

with a mass of ωp(M). Note that any varifold of the form (1.1) is called an embedded

minimal cycle.

Regarding the result ω13(S
3) ≤ 8π, C. Nurser constructed an explicit 13-sweepout such

that the supremum of the area is attained by multiplicity-two equatorial 2-spheres. In

our proof of Theorem 1.2.1, we show that such a sweepout cannot be optimal, thereby

leading to a strict inequality of the 13-width.

For other explicit computations of widths, it is worth noting that for the unit round

2-sphere,

• Aiex showed that the first three widths are 2π and the fourth to the eighth are

4π [Aie19];
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• Chodosh-Mantoulidis showed that the p-width is given by 2π⌊√p⌋ [CM23].

Readers interested can refer to [Lun19, BL22a, Chu22, Don22, BL23, Zhu23].

Furthermore, our techniques lead to a more general multiplicity one theorem, explained

in the following. When the ambient manifold has a bumpy metric or positive Ricci

curvature, X. Zhou [Zho20] proved the existence of a multiplicity-one, two-sided, minimal

hypersurface with area given by the p-width. However, it is important to note that this

does not hold for general metrics, as shown by Wang-Zhou [WZ22]. In our work, we

strengthen Zhou’s multiplicity one theorem as follows:

Theorem 1.2.2 (Strong multiplicity one theorem). Consider a closed Riemannian man-

ifold (Mn+1, g) (3 ≤ n + 1 ≤ 7) equipped with a bumpy metric or a metric of positive

Ricci curvature. Let p ∈ N+. Then there exists a pulled-tight minimizing sequence (Φi)i

for the p-width ωp(M, g) such that for every embedded minimal cycle V in the critical set

C((Φi)i), there exists some current T ∈ Zn(M ;Z2) with V = |T |.

Remark 1.2.3. In particular, the varifold V in Theorem 1.2.2 is two-sided and multi-

plicity one.

Precise definitions of the terminologies will be provided in §3.1.

It is worth highlighting that very recently, Wang-Zhou [WZ23] established a multiplicity

one theorem in the Simon-Smith min-max setting, which yielded four embedded, minimal

2-spheres in every S3 with a bumpy metric or positive Ricci curvature. Their work builds

on Sarnataro-Stryker’s work [SS23] on the regularity for minimizers of the prescribed

mean curvature functional.

Main ideas. In this work, we employ various variants of min-max theory. Instead of doing

min-max over the class of maps homotopic to a given sweepout, we will, for example,

consider the class of maps homologous to a given sweepout, or restrict the class of maps

by imposing an upper bound on mass (a technique previously developed by the second

author in [Li23b]). These novel min-max theorems are detailed in §3.3.

Let us outline their applications in the main theorems.
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Theorem 1.2.1. Let us sketch the proof that ω13(S
3) < 8π. By C. Nurser [Nur16], there

exists a 13-sweepout Φ0 such that M◦Φ0 ≤ 8π and its critical set consists of multiplicity

two equatorial 2-spheres. Suppose by contradiction that ω13(S
3) = 8π.

Let us take a sequence of bumpy metrics gi that tend to the round metric ḡ. Take

a sequence of positive numbers δi → 0. We will run for each i a restrictive homological

min-max with a mass upper bound 8π + δi under the metric gi. More precisely, for each

i, we will consider the class Hi of all maps that is homologous to Φ0 through some

“cobordism” (in the space of cycles) whose mass is bounded from above by 8π + δi, and

then do min-max in this class. The min-max width Li will tend to 8π.

By X. Zhou’s multiplicity one theorem, for each gi, the width Li corresponds to some

min-max minimal hypersurface Σi with multiplicity one. And by Marques-Neves [MN21],

we can assume that Σi is the only minimal hypersurface in (M, gi) that has area Li, even

if multiplicity is allowed. Since ḡ has positive Ricci curvature, by Sharp’s compactness

theorem we can assume Σi tends to some minimal hypersurface Σ smoothly, with multi-

plicity one.

Now, let C1 (resp. C>1) be the set of ḡ-minimal hypersurfaces with multiplicity one

(resp. greater than one) and area 8π. For some sufficiently large i, we choose an “optimal”

13-sweepout Φi in Hi, and an “optimal” cobordism Ψi between Φ0 and Φi, so that by

[MN21, Theorem 4.7] we would have, heuristically:

• If Φi(x) has high area (i.e. has area greater than Li − ϵ for some ϵ > 0), then

Φi(x) is close to Σi, and thus to Σ ∈ C1.

• If Ψi(x) has high area, then Ψi(x) is close to C1 ∪ C>1.

We will now derive a contradiction by constructing some Ξ ∈ Hi such that Mgi◦Ξ < Li.

For simplicity, let us suppose for now there is a Morse index upper bound for every element

C1 and C>1. Then, since ḡ has a positive Ricci curvature, the closure of C1 and C>1 are

separated from each other by Sharp’s compactness. Thus, viewing Φi,Ψi, C1, and C>1 all

as sets of currents by abuse of notation, we can choose a subset A ⊂ Ψi that is away from

C>1 and contains all elements of Ψi which are close to C1: See Figure 6. Now, we remove
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from Φi the part Φi ∩A, and glue back in a cap ∂A\Φi. The new sweepout is our Ξ: See

Figure 6. Now, Ξ is away from C1 and C>1. Thus, by the two bullet points in the last

paragraph, Mgi ◦ Ξ < Li. Contradiction arises.

Figure 6. Constructing the family Ψ.

In reality, we do not have an upper bound on Morse index for elements of C1 and C>1.

In fact, the sets C1 and C>1 will be defined in a different way, using Pitts’ notion of

almost-minimizing, and the fact that they are separated would be deduced by examining

properties of annular replacements.

Theorem 1.2.2. Let C1 (resp. C>1) be the set of ḡ-minimal hypersurfaces with multiplicity

one (resp. greater than one) and area ωp(M). As above, for simplicity, we assume these

two sets are separated. In the spirit of [MN21, Theorem 4.7], choose an “optimal” p-

sweepout Φ for ωp(M) such that if x is such that Φ(x) has high area, then Φ(x) is close

to C1 ∪ C>1. Let W be the set of x such that Φ(x) is in fact close to C>1. We will

do a relative, homological min-max process, by considering the set H of maps that is

homological to Φ|W relative to Φ|∂W .

To prove Theorem 1.2.2, it suffices to show that the min-max width for the relative,

homological min-max class H is less than ωp(M), because then we can “lower” Φ|W , and

thus Φ, away from C>1. Suppose the otherwise, so that Φ|W is an “optimal” sweepout for

H such that elements of high area are close to C>1. Then we are in a situation analogous

to the proof of Theorem 1.2.1, where the 13-sweepout Φ0 is an optimal sweepout whose

critical set lie in C>1. Thus, we can argue as in the proof of Theorem 1.2.1 to get a

contradiction.
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Organization. While Theorem 1.2.1 will be a direct consequence of Theorem 1.2.2, for the

sake of clarity in presentation, we choose to first prove Theorem 1.2.1, which is simpler,

and then prove Theorem 1.2.2.

In §3.1, we include some preliminary materials. In §3.2 we introduce the notion of

(m, r)-almost minimizing varifold. In §3.3, we prove some restrictive min-max theorems,

which include a homotopic and a homological version. In §3.4, we prove Theorem 1.2.1.

In §3.5, we prove some technical propositions used in the previous section. In §3.6, we

prove the strong multiplicity one theorem, Theorem 1.2.2.

1.3. A free boundary minimal surface via a 6-sweepout. Given a compact Rie-

mannian 3-manifold M , one can relate the topology of the space of all surfaces in M to

minimal surfaces in M via Morse theory. One may even obtain information about the

genus, Morse index, and area of the minimal surfaces. In this work, we will illustrate this

phenomenon by looking at surfaces with low genus and area in the compact Euclidean

unit 3-ball B3, via the Almgren-Pitts and the Simon-Smith min-max theory.

Let E denote the set of all surfaces, possibly with boundary, in B3 that are smooth and

properly embedded except possibly at finitely many points (see §4.1 for details). The rea-

son for allowing singularities is that we want to study the space of all surfaces, regardless

of their genus or number of connected components, as a whole. In fact, let us define on

E the following topology inspired by the Simon-Smith min-max theory: For each finite

set P ⊂ B3, we define on the subset

(1.2) {S ∈ E : S\P is smooth and properly embedded}

the topology induced by the graphical C∞-convergence within open sets U ⊂⊂ B3\P

(meaning U ⊂ B3\P ). Now, we collect all open sets in (1.2) for all possible P to form a

base, thereby defining a topology on E . Note that under this topology, one has continuous

paths in E of surfaces with different genus or number of connected components via neck-

pinching. Then our first main result is the following.
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Let Eg ⊂ E be the subset of smooth surfaces with genus g, and Ea ⊂ E the subset of

surfaces with area less than a for a ∈ (0,∞]. Note that E∞ ̸= E , since an element of E

can have an infinite area, concentrated near a singularity. And as in the Simon-Smith

min-max theory, the genus of a disconnected smooth surface is defined as the sum of the

genus of each of its connected components.

Theorem 1.3.1. The first to the sixth cohomology groups of

E0 ∪ E1 ∩ E2π

in Z2-coefficients are non-trivial: In fact, the cup-length of this space is at least 6. And

the same is true for any subspace of E∞ that contains E0 ∪ E1 ∩ E2π.

Note that E0 ∪ E1 denotes the closure of E0 ∪ E1 in E , and the cup-length of a space X

is defined as the maximum number of elements in the cohomology ring of X with degree

at least 1 such that their cup product is non-trivial. We remark that 2π is twice the area

of the equatorial disk in B3.

Let us mention the following results. In his celebrated work [Hat83], Hatcher proved the

Smale conjecture, implying that the space of smoothly embedded 2-spheres in the (round)

3-sphere deformation retracts to the subspace of great 2-spheres, which is homeomorphic

to RP3 and thus has cup-length 3. Moreover, based on Marques-Neves’ ground-breaking

resolution of the Willmore conjecture [MN14], Nurser showed that the space of flat 2-

cycles in the unit round 3-sphere with area at most 2π2 (which is the area of the Clifford

torus) has cup-length in Z2-coefficients at least 7 [Nur16].

Theorem 1.3.1 follows immediately from the result below, of which the terminologies

will be defined precisely in §4.1.
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Theorem 1.3.2. There exists in the Euclidean unit 3-ball a family Ψ of surfaces such

that:

(A) Ψ is a 6-sweepout in the sense of Almgren-Pitts min-max theory.

(B) Ψ is a smooth family of surfaces with genus at most 1, in the sense of Simon-Smith

min-max theory.

(C) The area of each element in Ψ is less than 2π.

Theorem 1.3.2 also gives the following result immediately.

Corollary 1.3.3. The Almgren-Pitts 6-width of the Euclidean unit 3-ball is less than 2π.

Currently, the Almgren-Pitts widths of B3 are not well-understood: While the first

three widths are π and are detected by the equatorial disk (since the collection of flat

disks in B3 is a 3-sweepout), the fourth already seems to be unknown. Regarding com-

putations of Almgren-Pitts widths of other manifolds, see also [Aie19, BL22b, CM21,

Don22, Zhu22].

Let us now turn to the other side of the story: Free boundary minimal surfaces in the

B3. In recent years, besides the two most basic examples, the equatorial disk and the

critical catenoid, an abundance of free boundary minimal surfaces in B3 were constructed.

For example, by solving extremal eigenvalue problems, Fraser-Schoen constructed exam-

ples with genus 0 and arbitrary number of boundary components [FS16]. Using gluing

techniques, Kapouleas-Li constructed embedded free boundary minimal surfaces of large

genus that desingularize the union of the equatorial disk and the critical catenoid [KL17].

(See [CFS20, CSW22, FPZ17, KM20, KZ21, Ket16a, Ket16b, KW17] for more examples.)

We will use min-max theory to produce a free boundary minimal surface. The ad-

vantage of this approach is that one can upper bound the Morse index of the minimal

surface because of the work of Marques-Neves [MN16]. In general, Morse index is difficult

to compute. For example, to our best knowledge, in B3 the only embedded free boundary

minimal surfaces whose index are known are the equatorial disk and the critical catenoid:
20



They have index 1 and 4 respectively [Dev19, SZ19, Tra20]. In addition, from the recent

resolution of the multiplicity one conjecture in the free boundary setting by Sun-Wang-

Zhou [SWZ20] based on the work of Zhou [Zho20], we know there exists a sequence {Σk}

of embedded free boundary minimal surfaces in B3 with area growth of order k1/3 and

index at most k. However, using the Almgren-Pitts min-max theory, one cannot control

the genus of the surfaces. In this work, we apply the Simon-Smith min-max theory to the

family Ψ in Theorem 1.3.2 to construct an example with index, genus, and area bound:

Theorem 1.3.4. There exists in the Euclidean unit 3-ball an embedded free boundary

minimal surface with genus 0 or 1, Morse index 4 or 5, and area in the range (π, 2π),

that is not the equatorial disk or the critical catenoid.

In fact, using the results of Sargent [Sar17] and Ambrozio-Carlotto-Sharp [ACS18b]

that lower bound the index of a free boundary minimal surface by its genus and number

of boundary components, we know that the surface in Theorem 1.3.4 has at most 16

boundary components. But we believe this bound is far from optimal (see §1.3 below).

We also note that, since we have to prove the index bound, we cannot use the equivariant

min-max theory of Ketover [Ket16a].

Remark 1.3.5. We remark that Carlotto-Franz-Schulz [CFS20] showed, using equivari-

ant min-max theory, there exists a free boundary minimal surface in B3 that has genus

1, area less than 3π, a connected boundary, and symmetry group D2, where D2 ⊂ SO(3)

denotes the dihedral group with four elements (see the Geometric Analysis Gallery by

Schulz [Sch]). In fact, as we will see in §4.2, Theorem 1.3.2 can reproduce their result

and slightly improve the area bound from 3π to 2π.

The family Ψ in Theorem 1.3.2 can be modified to become a desirable 6-sweepout in

R3 equipped with the Gaussian metric 1
4π
e−|x|2/4g0, in which g0 denotes the Euclidean

metric, allowing one to construct a self-shrinker with genus, index and Gaussian area

control. However, the Gaussian metric has a singularity at infinity, which poses some
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challenges in carrying out the min-max theory. We plan to address this in our upcoming

work.

Open questions. Regarding Theorem 1.3.1, it would be interesting to change the genus

0 and 1 constraint, the area bound 2π, or the ambient space B3 (to the round 3-sphere

for example), and investigate the topology of the corresponding space of surfaces. It will

be nice to have more examples of k-sweepouts for k > 6 that are smooth families. And

for each k, among k-sweepouts Φ that are smooth families, is there a non-trivial lower

bound for the maximum of the genus of elements in Φ?

We conjecture that the free boundary minimal surface in Theorem 1.3.4, denoted Σ,

has index 5. One can also ask if Σ has the third lowest area among all free boundary

minimal surfaces in B3, after the equatorial plane and the critical catenoid. Moreover,

we speculate that Σ is the same as the free boundary minimal surface constructed by

Carlotto-Franz-Schulz [CFS20] mentioned in Remark 1.3.5.

Concerning the Almgren-Pitts min-max theory in B3, we conjecture the 4-width is

detected by the critical catenoid K. In particular, showing the 4-width is at least area(K)

seems challenging, as it may depend on the conjecture that the second least area of an

immersed free boundary minimal surface in B3 is realized by the critical catenoid [Li19,

§7]. As for the 5-width and the 6-width, it will be interesting to know if they are detected

by the free boundary minimal surface of Theorem 1.3.4.

Overview of proofs. Let us outline the construction of the smooth family Ψ in Theorem

1.3.2. We first consider the saddle surface {x2 − y2 + z = 0} in R3, and then translate,

rescale, and rotate it arbitrarily: We even allow the scaling factor to be 0 or ±∞. Then

we collect all such surfaces, and it turns out this collection can be parametrized by a

7-dimensional quotient space of some D2-action on RP4 × SO(3). This is actually due

to the D2-symmetry of the saddle. However, this collection contains intersecting planes

like {x2 − y2 = 0}, the blow down of the saddle, which has a singular line and thus is

not allowed in the Simon-Smith setting. To resolve this, we desingularize the intersecting
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planes by adding a small z3 term to their defining equations (e.g. see Figure 16 and Table

1), so that only isolated singularities appear. Finally, we intersect all surfaces with B3 to

define Ψ.

Theorem 1.3.1 is an immediate consequence of Theorem 1.3.2: See §4.2.

Finally, for Theorem 1.3.4, we will use the smooth family Ψ in Theorem 1.3.2 as follows.

Let Ψ(5) denote the subfamily of Ψ parametrized by a 5-skeleton of the parameter space

of Ψ. By applying the Simon-Smith min-max theorem to Ψ(5), we obtain a free boundary

minimal surface Γ with genus at most 1, index at most 5, and area less than 2π. Note

that, although it is not known if the multiplicity one conjecture holds in the Simon-Smith

setting, we can guarantee that Γ has multiplicity one because area(Γ) < 2π and the least

possible area of a free boundary minimal surface in B3 is π. Then by the fact that Ψ

is a 6-sweepout and topological arguments of Lusternik-Schnirelmann, we show that the

method above, with some modifications, produces a free boundary minimal surface with

the desired properties that is not the equatorial disk or the critical catenoid.

Organization. We introduce some preliminaries in §4.1, and in §4.2 prove the main results.

The proofs of some propositions used in §4.2 will be postponed to §4.3.
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2. Genus one singularities in MCF

This section is from a joint work with Ao Sun.

2.1. Preliminaries. In §2.1 let us set up the language to define MCF through cylindrical

and spherical singularities.

Weak solutions of MCF. Throughout this work, we will be focused on two different types

of weak solutions of MCF. One is a set-theoretic weak solution defined by the level set

flow, and another one is a geometric measure theoretic weak solution called Brakke

flow. We refer the readers to [ES91, Ilm92] for detailed discussions of level set flows, and

we refer the readers to [Bra78, Ilm94] for detailed discussions of Brakke flow.

The level set flow equation is a degenerate parabolic equation

(2.1) ∂tu = ∆u−

(
D2u(Du,Du)

|Du|2

)
.

Suppose M(0) is a closed hypersurface in Rn+1, then if u(·, t) solves (2.1) with M(0) =

{x ∈ Rn+1 : u(·, 0) = 0}, then M(t) := {x ∈ Rn+1 : u(·, 0) = 0} can be viewed as a weak

solution to MCF. In particular, when M(t) is smooth, this weak solution coincides with

the classical solution of MCF.

The level set flow was introduced by Osher-Sethian in [OS88]. The solution to (2.1)

may not be smooth, but it suffices to use Lipschitz solutions to define weak MCF. Chen-

Giga-Goto [CGG91] and Evans-Spruck [ES91] introduced the viscosity solutions to (2.1),

and these solutions are Lipschitz. Throughout this work, when we say u is a level set

function or a solution to the level set flow equation, u is actually a viscosity solution to

(2.1).

The set-theoretic solution of a MCF will be called the level set flow or biggest flow.

These notions are used by Ilmanen [Ilm92] and White [Whi00, Whi03]. The term “biggest

flow” is used to avoid the ambiguity of the weak solution for noncompact flow.
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Brakke flow is defined using geometric measure theory. Let X be a complete manifold

without boundary. The Brakke flow is a family of Radon measures {µt}t≥0, such that for

any test function ϕ ∈ C2
c (X) with ϕ ≥ 0,

lim sup
s→t

µs(ϕ) − µt(ϕ)

s− t
≤
∫

(−ϕH2 + ∇⊥ · H⃗)dµt,

where H⃗ is the mean curvature vector of µt whenever µt is rectifiable and has L2-mean

curvature in the varifold sense. Otherwise, the right-hand side is defined to be −∞.

In general, the Brakke flow starting from a given initial data is not unique. We will be

interested in unit regular cyclic integral Brakke flows. We refer the readers to [Whi09]

for detailed discussions of these notions. The existence of such a flow starting from a

smooth surface is guaranteed by Ilmanen’s elliptic regularization, see [Ilm94]. Such flows

have good compactness theory.

Setting and notations. Let M(0) be a closed smooth n-dimensional hypersurface in Rn+1

that bounds a compact set Kin(0). Let Kout(0) = Rn+1\Kin(0). Now, denote by

{M(t)}t≥0, {Kin(t)}t≥0, and {Kout(t)}t≥0

respectively the level set flow (i.e. the biggest flow) with initial condition M(0), Kin(0),

and Kout(0). Then, define their spacetime tracks

M = {(x, t) : x ∈M(t), t ≥ 0},

Kin = {(x, t) : x ∈ Kin(t), t ≥ 0},

Kout = {(x, t) : x ∈ Kout(t), t ≥ 0}.

We then define the inner flow of M(0),

Min(t) = {x : (x, t) ∈ ∂Kin}
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and the outer flow of M(0),

Mout(t) = {x : (x, t) ∈ ∂Kout}.

Lemma 2.1.1. Let u : Rn+1 × [0,∞) → R be a level set function of M, with u(·, 0) ≤ 0

on Kin(0). Then

Rn+1\Kin(t) = {x : u(x, t) > 0}, Rn+1\Kout(t) = {x : u(x, t) < 0}.

Proof. For the first claim, we let Φ : R → R by Φ(x) = x if x > 0 and Φ(x) = 0

otherwise. By the relabelling lemma ([Ilm92, Lemma 3.2]), v := Φ ◦ u also satisfies the

level set equation. Noting v(·, 0) = 0 precisely on Kin(0), which is compact, we know by

the uniqueness of level set flow that v is a level set function of Kin. Hence,

Rn+1\Kin(t) = {x : u(x, t) > 0}.

The second claim is similar. We let Ψ : R → R by Ψ(x) = x if x < 0 and Ψ(x) = 0

otherwise. Then v = Ψ ◦ u satisfies the level set equation by the relabelling lemma, and

{x : u(x, t) ≥ 0} = {x : v(x, t) = 0}, which is non-compact. Nevertheless, by Ilmanen

[Ilm92], because any level sets other than Kout are compact, {x : v(x, t) = 0} is the

biggest flow, which is unique. Then the second claim will follow. □

Finally, we denote

Win(t) = Rn+1\Kout(t), Wout(t) = Rn+1\Kin(t), W (t) = Win(t) ∪Wout(t).

In fact, we will furthur define the spacetime track

Win[t0, t1] =
⋃

t∈[t0,t1]

Win(t) × {t},

and we can similarly define Wout[t0, t1] and W [t0, t1]. The reason we care above these sets

is that their topological changes are described by White [Whi95], which will be crucial for
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us later. We remark that, when we need to specify the flow M, we will add a superscript

M to the symbols: e.g. we will write WM
in (t) in place of Win(t).

Let (x, T ) be a singularity of M, and λj → ∞. Then any subsequential limit, in the

sense of Brakke flow (see [Ilm94, Section 7]), of the rescaled flows

{λj(M(λ−2
j t+ T ) − x)}−λ2

jT<t<0

is called a tangent flow at (x, T ). Presumably, the tangent flow need not be unique.

Nevertheless, Colding-Minicozzi [CM15] proved that if one tangent flow is the cylinder,

then the tangent flow is unique. And the convergence is in C∞
loc by Brakke’s regularity

theorem (see [Whi05]).

Now, following [CHHW22], we call (x, T ) an inward neck singularity of M if as λ→ ∞

the rescaled flows

{λ(Kin(λ−2t+ T ) − x)}−λ2T<t<0

converge locally smoothly with multiplicity one to the solid shrinking cylinder

{Bn(
√

−2(n− 1)t) × R}t<0

up to rotation and translation. Similarly, we can define an outward neck singularity. If,

instead, those rescaled flows converge with multiplicity one to the solid shrinking ball

{Bn+1(
√
−2nt)}t<0

up to translation, then we call (x, T ) an inward spherical singularity. We can again

similarly define an outward spherical singularity.

2.2. MCF through cylindrical and spherical singularities. If every singularity

of M is a neck or a spherical singularity, then we call M a MCF through cylindri-

cal and spherical singularities. In this case, building on Hershkovits-White [HW20],

Choi-Haslhofer-Hershkovits-White showed M(t),Min(t), and Mout(t) are all the same

[CHHW22, Theorem 1.19], i.e. fattening does not occur.
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Neck singularities are well-understood after the work of many [HS99a, HS99b, Whi00,

Whi03, SW09, Wan11, And12, Bre15, CM15, HK17, ADS19, ADS20, CHH22, CHHW22],

among others. We will first in Theorem 2.2.3 state the canonical neighborhood theorem

of Choi-Haslhofer-Hershkovits-White [CHHW22]. Using that, we obtain a more detailed

topological description of neck singularities in Theorem 2.2.4.

Definition 2.2.1. Let X = (x, T ) be a regular point in a level-set flow M. Let λ :=

|H(x)|. Suppose there exists an ancient MCF {Σ(t)} that is, up to spacetime translation

and parabolic rescaling, one of the following:

• the shrinking sphere,

• the shrinking cylinder with axis ℓ,

• the translating bowl with axis ℓ,

• the ancient oval with axis ℓ,

and furthermore satisfies that: For each t ∈ (−1/ϵ2, 0] and inside B1/ϵ(0) ⊂ Rn+1,

λ(M(λ−2t+ T ) − x) and Σ(t)

are ϵ-close in C⌊1/ϵ⌋. Then, we call

(
T − 1

λ2ϵ2
, T

]
×B 1

λϵ
(x)

an ϵ-canonical neighborhood of X with axis ℓ.

We will also have a weaker definition, for situations when we focus on a time-slice:

Definition 2.2.2. Let x be a regular point in a subset M . Let λ := |H(x)|. Suppose

there exists a hypersurface Σ that is, up to translation and rescaling, a time-slice of one

of the following:

• the shrinking sphere,

• the shrinking cylinder with axis ℓ,

• the translating bowl with axis ℓ,
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• the ancient oval with axis ℓ,

and furthermore satisfies that: Inside B1/ϵ(0) ⊂ Rn+1, λ(M − x) and Σ are ϵ-close in

C⌊1/ϵ⌋. Then, we call B 1
λϵ

(x) an ϵ-canonical neighborhood of x with axis ℓ.

One can compare the above with the notion of ϵ-canonical neighborhoods in 3-dimensional

Ricci flow [MF10, Lecture 2].

Theorem 2.2.3 (Canonical neighborhood). Let (x, T ) be a neck singularity of a MCF

through cylindrical and spherical singularities M, and ℓ be the axis of the cylindrical

tangent flow at (x, T ). Then for every ϵ > 0, there exists δ, δ̄ > 0 such that every regular

point of M in B2δ(x)× (T − δ̄, T + δ̄) has an ϵ-canonical neighborhood with axis ℓ in the

sense of Definition 2.2.1.

We used balls of radius 2δ (instead of δ): This is solely for the sake of notational

convenience, so that it can be directly quoted in Theorem 2.2.4.

Proof. This is from [CHHW22, Corollary 1.18]: Note that all limit flows at (x, T ) have

the same axis (see the end of §1 of their paper). □

In dimension n = 2 or 3. In the cases n = 2 or 3, at almost every time, the time-slice

of a MCF through cylindrical and spherical singularities is smooth, by Colding-Minicozzi

[CM16, Corollary 0.6]. Based on this, in items (3) - (6) of the following theorem, we will

obtain a topologically more refined picture of neck-pinches. The shapes of the surfaces

described in items (3) - (6) are illustrated in Figure 7.

Theorem 2.2.4. There exists a universal constant R0 = R0(n) with the following sig-

nificance. Let (x, T ) be an inward neck singularity of a MCF through cylindrical and

spherical singularities M in Rn+1, with n = 2 or 3, and ℓ be the axis of the cylindrical

tangent flow at (x, T ). For every δ0 > 0 and every R > R0, there exists δ ∈ (0, δ0) and

δ̄ > 0 such that:

(1) Let B = Bδ(x). Then the set M(T − δ̄) ∩B
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Figure 7. Possible topological pictures near a neck singularity.

• is up to scaling and translation 1
R
-close in C∞ to the cylinder (∼= Sn−1 × R)

in BR(0) with axis ℓ and radius 1,

• and as a topological cylinder has Kin(T − δ̄) ∩B on its inside.

(2) (Mean convex neighborhood) For every T − δ̄ < t1 < t2 < T + δ̄,

Kin(t2) ∩B ⊂ Kin(t1)\M(t1).

Moreover, there exists some countable dense set J ⊂ [T − δ̄, T + δ̄] with T − δ̄ ∈ J such

that we have for every t ∈ J :

(3) M(t) is smooth, and intersects ∂B transversely.

(4) Each connected component of Kin(t) ∩ ∂B is a convex n-ball in ∂B.

(5) Denote the two connected components of Kin(T − δ̄) ∩ ∂B by D1 and D2. Then

M(t) ∩Di has at most one connected component for i = 1, 2.

(6) Let K be a connected component of Kin(t) ∩ B. Then K satisfies one of the

following:

• ∂K is a connected component of M(t) ∩B that is a sphere.

• ∂K consists of a connected component of M(t) ∩ B that is an n-ball and

another ball on ∂B.
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• ∂K consists of a connected component of M(t) ∩ B that is a cylinder ∼=

Sn−1 × (0, 1) and two balls on ∂B.

And the case for outward neck singularities is analogous.

Proof. We will just do the case of inward neck singularity.

To obtain (1) and (2). Let us first arbitrarily pick some ϵ, R > 0, which we will further

specify later. Let δ, δ̄ > 0 be obtained from applying the canonical neighborhood theorem

(Theorem 2.2.3) to (x, T ) and ϵ. We can decrease δ̄ such that it lie in the range (0, δ0).

By possibly further decreasing δ, δ̄, we can guarantee (2) by the mean convex neigh-

borhood theorem of Choi-Haslhofer-Hershkovits-White [CHHW22, Theorem 1.17]. In

fact, further decreasing δ, δ̄, we can by the definition of neck singularity assume that

M(T − δ̄) ∩B2δ(x)

• is, up to scaling and translation, 1
R

-close in C∞ to the cylinder (∼= Sn−1 × R) in

B2R(0) with axis ℓ and radius 1,

• and as a topological cylinder has Kin(T − δ̄) ∩B2δ(x) on its inside.

In particular, (1) is fulfilled.

To define J and obtain (3). Note that using [CM16, Corollary 0.6], for some set I1 ⊂

[T − δ̄, T + δ̄] of full measure, M(t) is smooth for all t ∈ I1. Then (3) just follows from a

standard transversality argument. Namely, for each t ∈ I1, via the transversality theorem,

Br(x) intersects M(t) transversely for a.e. r ∈ (δ/2, δ). Hence, for some countable dense

subset J ⊂ I1 and some set I2 ⊂ (δ/2, δ) of full measure, for all (t, r) ∈ J × I2, Br(x)

intersects M(t) transversely. Hence, by slightly decreasing δ, (3) can be fulfilled.

To obtain (4). Let us first state a lemma, which gives us the constant R0 we need.

Lemma 2.2.5. There exist constants R0 > 2, and ϵ0, ϵ1 > 0, all depending only on n,

with the following significance.

• Consider some ball B2R0(x), and fix a diameter line ℓ. Let C ⊂ B2R0(x) be the

solid cylinder with radius 2 and axis ℓ.
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Figure 8. The cylinder C.

• Let x′ be a regular point of some time-slice M(t) of a level set flow in Rn+1, and

x′ has an ϵ0-canonical neighborhood with axis ℓ.

• Assume x′ ∈ BR0(x), M(t) ∩B2R0(x) ⊂ C.

• Let S be a smooth n-disc properly embedded in C, with ∂S lying on and transversely

intersecting the cylindrical part of ∂C, and x′ ∈ S, such that:

• S is ϵ1-close in C∞ to some planar n-disc perpendicular to ℓ. (See Figure 8.)

Then we have:

• IfM(t) intersects S transversely at x′, then the connected component D of Kin(t)∩

S that contains x′ is a convex n-disc in S, andM(t)∩D = ∂D with the intersection

being transverse.

• If M(t) does not intersect S transversely at x′, then D is just the point x′.

Proof. By an inspection of the geometry of the sphere, cylinder, bowl, and ancient oval,

for all sufficiently large R0 and small ϵ0, if M(t) ∩B2R0(x) ⊂ C then

M(t) ∩B2R0(x) ∩ (ϵ0-canonical neighborhood of x′)

has curvature |A| > 1/2. Thus, if the smooth n-disc S is sufficiently planar, the desired

claim follows easily. □
32



Now, we begin proving (4). Let us assume the R, ϵ we chose satisfy R > R0 and ϵ < ϵ0,

with R0, ϵ0 from the above lemma. By how we chose R in the proof of (1) above, we can

rescale M(T − δ̄) by some factor λ such that

λ(M(T − δ̄) − x) ∩B2R(0)

lies in the solid cylinder C ⊂ B2R(0) with axis ℓ and radius 2. Thus, by the mean convex

neighborhood property (2), for all t ∈ (T − δ̄, T + δ̄),

λ(M(t) − x) ∩B2R(0) ⊂ C.

Now, remember that we should focus on those t ∈ J ⊂ (T− δ̄, T+ δ̄). By Theorem 2.2.3

and ϵ < ϵ0, M(t) has an ϵ0-canonical neighborhood with ℓ, and thus so does λ(M(t)− x)

since the property is independent of scaling and translation. Let S be a connected

component of ∂BR(0) ∩ C. By increasing R, we can make S arbitrarily close to being

planar. Hence, we can apply Lemma 2.2.5. Then (4) follows immediately.

To obtain (5). We will just do the case for D1. Let

T1 := sup{t ∈ J : M(t) ∩D1 has only one connected component}.

Note that T1 > T − δ̄ by (1) and T − δ̄ ∈ J . To prove that M(t) ∩D1 has at most one

connected component for each t ∈ J , it suffices to prove that T1 = T + δ̄. Suppose the

otherwise, i.e. T1 < T + δ̄ so that there exists a sequence in J , t1, t2, ... ↓ T1, such that

M(ti) ∩D1 contains at least two components.

Now, let

K1 =
⋂

T−δ̄<t<T1

Kin(t) ∩D1, K2 = Kin(T1) ∩D1, K3 =
⋃
i

Kin(ti) ∩D1.

Note that K1 ⊃ K2 ⊃ K3 by the mean convex neighborhood property (2).

Proposition 2.2.6. K1 is a convex n-ball in ∂B, K1 = K2, and K3 is dense in K1.
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Proof. By the mean convex property,

K1 =
⋂

t∈J,t<T1

Kin(t) ∩D1.

Then by (4), K1 is a convex n-ball.

To prove K1 = K2, it suffices to prove K1 ⊂ K2. Note that by Lemma 2.1.1, for every

x ∈ K1 and t ∈ (T − δ̄, T1) we have u(x, t) ≤ 0, where u is a level set function for M.

Since u is continuous, u(x, T1) ≤ 0, implying x ∈ K2 by Lemma 2.1.1.

Finally, to prove K3 is dense in K1, it suffices to prove K1\K3 has empty interior (as

a subset of ∂B) since K1 is a convex n-ball. We claim that K2\K3 ⊂Min(T1). Indeed, if

x ∈ K2\K3, then for every spacetime neighborhood U of (x, T1) in Rn+1 × R, for each i,

U contains the point

(x, ti) ∈ (Rn+1 × R)\Kin.

Thus, (x, T1) ∈ ∂Kin, and so x ∈Min(T1).

As a result,

K1\K3 = K2\K3 ⊂Min(T1) ∩D1 = M(T1) ∩D1,

where the last equality is by the non-fattening of M [CHHW22, Theorem 1.19]. We will

prove that M(T1) ∩ D1 consists entirely of singularities (of M), and then immediately

we would know M(T1) ∩ D1 has empty interior using [CM16, Theorem 0.1], which says

that the singular set of M is contained in finitely many compact embedded Lipschitz

submanifolds each of dimension at most n− 1 together with a set of dimension n− 2.

Suppose by contradiction that M(T1) ∩D1 contains some regular point p. So around

some neighborhood of p in Rn+1, M(T1) is a smooth surface, with Kin(T1) on one side.

Thus, we have p ∈ ∂K2, with K2 a convex n-ball. Then we repeat the argument in the

above proof of (4) to apply Lemma 2.2.5 around the point p, and conclude:

• ∂K2 is a smooth (n− 1)-sphere and consists entirely of regular points.

• The interior of K2 does not intersects M(T1).

• M(T1) intersects D1 transversely along ∂K2.
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So, for some short amount of time after T1, M(T1)∩D1 would still have only one connected

component by pseudolocality of (locally) smooth MCF (see [INS19, Theorem 1.5]). This

contradicts the definition of T1. □

Let us continue the proof of (5). Now, for each i, Kin(ti) ∩ D1 has finitely many

connected components by transversality (3). Let Ei be the one with the maximal di-

ameter (measured inside ∂B), denoted di. Then by the canonical neighborhood prop-

erty Theorem 2.2.3, assuming ϵ small, for some geodesic ball Ẽi ⊂ ∂B of diameter 3di,

Ẽi ∩Kin(ti) = Ei.

Now, note di is increasing in i by the mean convex neighborhood property (2). Let

d = limi di. There are two cases: (a) d ≥ diam(K1)/2, and (b) d < diam(K1)/2. For case

(a), by the definition of ti, we know for sufficiently large i, the neighborhood Ẽi would

then need to contain a connected component of Kin(ti)∩D1 other than Ei, contradicting

the definition of Ẽi. So case (a) is impossible. Case (b) is also impossible since it, together

with the existence of Ẽi, violates Proposition 2.2.6 which says K3 is dense in K1. This

finishes the proof of (5).

To obtain (6). Choose a connected component K of Kin(t)∩Bδ(x). Let us foliate B2δ(x)

with planar n-discs that are perpendicular to the axis ℓ. Then as in the proof of (4), we

apply Lemma 2.2.5 to characterize the intersection of K with every such planar n-discs.

Namely, every such set of intersection consists of convex n-discs and isolated points.

Viewing these sets of intersection as level sets of some function defined on K, Morse

theory then immediately implies (6).

This finishes the proof of Theorem 2.2.4. □

Finally, we discuss some convergence theorems of MCF through cylindrical and spher-

ical singularities.

Proposition 2.2.7. Let Mi = {M i(t)}t≥0, with i = 1, 2, ..., and M = {M(t)}t≥0 be

MCF through neck and spherical singularities in Rn+1 with n = 2 or 3. Assume that each

M i(0) and M(0) are smooth, closed hypersurfaces, with M i(0) →M(0) in C∞. Then
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(1) For a.e. t, M i(t) →M(t) in C∞.

(2) The spacetime tracks Mi → M in the Hausdorff sense.

Proof. By Ilmanen’s elliptic regularization (see [Ilm94, Whi09]), for any closed smooth

hypersurface M i(0), there exists a unit regular cyclic Brakke flow {µi
t}t≥0 such that

µi
0 = M i(0)⌊Hn, where Hn is the n-dimensional Hausdorff measure. By the mean convex

neighborhood theorem [CHH22] and the nonfattening of level set flow with singulari-

ties that have mean convex neighborhood [HW20], {µi
t}t≥0 is supported on Mi. Then

the compactness of Brakke flows ([Ilm94, Whi09]) implies that {µi
t}t≥0 subsequentially

converges to a limit unit regular cyclic Brakke flow {µ∞
t }t≥0.

Because M i(0) → M(0) smoothly, µ∞
0 = µ0, and by the uniqueness of unit regular

cyclic Brakke flow, µ∞
t = µt a.e. for all t ≥ 0. In particular, the regular part of µ∞

t equals

the regular part of µt. Then by Brakke’s regularity theorem and a.e. time regularity of

Mi with neck and spherical singularities, we have for a.e. t, M i(t) →M(t).

The compactness of weak set flow shows that Mi subsequentially converges to a limit

weak set flow M∞ in Hausdorff distance. Because {µt}t≥0 is supported on M∞, we have

M ⊂ M∞. Meanwhile, M is the biggest flow, therefore M∞ ⊂ M. Thus, M∞ = M.

This also shows the uniqueness of the limit. Therefore, Mi converges to M in Hausdorff

distance.

□

2.3. Homology descent, homology termination, and homology breakage. In this

section, we consider general level set flows M = {M(t)}t≥0 in Rn+1, in which M(0) need

not be a closed hypersurface. We will develop three new concepts in this section. For a

heuristic description of them, see §1.1.

Let Hk(·) denotes the k-th homology group in Z-coefficients.

Definition 2.3.1 (Homology descent). We define a relation ≻ on the disjoint union

⊔
t≥0

Hn−1(W (t))
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as follows. Given two times T0 ≤ T1, and two homology classes c0 ∈ Hn−1(W (T0)) and

c1 ∈ Hn−1(W (T1)), we say that c1 descends from c0, and denote

c0 ≻ c1,

if every representative γ0 ∈ c0 and γ1 ∈ c1 together bound some n-chain Γ ⊂ W [T0, T1],

i.e. γ0 − γ1 = ∂Γ. (Recall Figure 3.)

Clearly, in the above definition, we can equivalently replace “every representative” with

“some representative”. Note that, we use singular homology, so that γ0, γ1, and Γ are

just singular chains.

Remark 2.3.2. The relation ≻ is a partial order. Indeed, let ci ∈ Hn−1(W (Ti)) for

i = 0, 1, 2. Clearly c0 ≻ c0. If c0 ≻ c1 and c1 ≻ c0, then T0 = T1 and thus c0 = c1. If

c0 ≻ c1 and c1 ≻ c2, then T0 ≤ T2 and it follows easily c0 ≻ c2.

It turns out this relation has some nice properties.

Proposition 2.3.3. Let c0 ∈ Hn−1(W (T0)) and T0 ≤ T1. Then there exists at most one

c1 ∈ Hn−1(W (T1)) such that c0 ≻ c1.

Proof. Suppose c1, c2 ∈ Hn−1(W (T1)) are such that c0 ≻ c1 and c0 ≻ c2. We wish to

show c1 = c2. Choose γi ∈ ci for i = 0, 1, 2. Then by definition, γ0 − γ1 = ∂A for some

A ⊂ W [T0, T1], and γ0 − γ2 = ∂B for some B ⊂ W [T0, T1]. Thus, γ1 and γ2 bounds

A−B ⊂ W [T0, T1]. Since the map

Hn−1(W (T1)) → Hn−1(W [T0, T1])

induced by the inclusion W (T1) → W [T0, T1] is injective by White [Whi95, Theorem 1

(iii)], we know γ1 and γ2 are homologous within W (T1). Hence, c1 = c2. □

Remark 2.3.4. Note that in the above it is possible that no c1 ∈ Hn−1(W (T1)) is such

that c0 ≻ c1: In Figure 9, after time T , no homology class c1 satisfies a0 ≻ c1.
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Figure 9. An inward neck pinch.

Remark 2.3.5. On the other hand, it is possible that there are multiple homology classes

c0 ∈ H1(W (T0)) such that c0 ≻ c1. For the flow in Figure 9, both b0 ∈ H1(Wout(0)) and

the trivial element of H1(Wout(0)) descend to the trivial element of H1(Wout(T1)).

In fact, precisely because of Proposition 2.3.3 and Remark 2.3.5, we chose the symbol

≻ (instead of ≺) to pictographically reflect that more than one homology classes may

descend into one, but not the other way around.

Proposition 2.3.6. We focus on the case n = 2: Let c1 ∈ H1(W (T1)) and T0 ≤ T1.

Then there exists at least one c0 ∈ H1(W (T0)) such that c0 ≻ c1.

Proof. Choose some γ ∈ c1. By White [Whi95, Theorem 1 (ii)], γ can be homotoped

through W [T0, T1] to some loop γ′ in W (T0). So c0 := [γ′] ≻ c1. □

The following proposition says that a homology class cannot disappear and then reap-

pear later.

Proposition 2.3.7. Let T0 < T1, c0 ∈ Hn−1(W (T0)), and c1 ∈ Hn−1(W (T1)) with c0 ≻

c1. Then for every t ∈ [T0, T1] there exists a unique c ∈ H1(W (t)) such that c0 ≻ c ≻ c1.

Proof. We just need to prove existence, as then uniqueness would follow from Proposition

2.3.3.

By our assumption, there exist γ0 ∈ c0 and γ1 ∈ c1 that together in W [T0, T1] bound

some n-chain C. Without loss of generality we can assume that βt := {x : (x, t) ∈ C}

is an (n − 1)-chain without boundary for each t ∈ [T0, T1] (?): This is because we can

tilt the faces to make them not lie in any slice R3 × {t}. Then [βt] ∈ Hn−1(W (t)) and

c0 ≻ [βt] ≻ c1. □
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Based on Proposition 2.3.7, the following definition is well-defined.

Definition 2.3.8 (Homology termination). Let c0 ∈ Hn−1(W (T0)).

• If

t(c0) := sup{t ≥ T0 : c0 ≻ c for some c ∈ Hn−1(W (t))}

is finite, then we say that c0 terminates at time t(c0), otherwise we say c0 never

terminates.

• And for each t ≥ T0, the unique c ∈ Hn−1(W (t)) such that c0 ≻ c, if exists, is

denoted c0(t).

If needed, we use tM in place of t to specify the flow.

Note that sinceW is open, if c0 terminates at time t(c0) then there is no c ∈ Hn−1(W (t(c0)))

such that c0 ≻ c, i.e. c0(t(c0)) is never well-defined. In particular, any c0 ∈ Hn−1(W (T0))

cannot terminate at time T0. Thus, one can think of the time interval [T0, t(c0)) as the

“maximal interval of existence” of c0.

Remark 2.3.9 (Trivial homology classes). Let us also elaborate on trivial homology

classes. For each time t, Hn−1(W (t)) has a unique trivial homology class 0t. This is true

even for situations like Figure 9 when the surfaces have inside and outside regions: The

trivial elements of H1(Win(t)) and H1(Wout(t)) are viewed as the same.

However, 0t are viewed as different for different t, because we used disjoint union in

Definition 2.3.1. Nonetheless, for any t1 < t2, it is vacuously true that 0t1 ≻ 0t2 . Thus, we

can as well write each 0t as 0(t), following the notation in Definition 2.3.8. In addition,

clearly, the trivial homology class never terminates.

Example 2.3.10. Let us revisit Figure 9. It can be easily seen that a0 terminates at

time T , while b0 does not. In fact, b0 will never terminate: b0(t) would just become trivial

for each t > T .
39



Example 2.3.11. Let us now instead consider the flow in Figure 10. At time T , b0

terminates while a0 does not. In fact, a0(t) becomes trivial after time T , and thus will

never terminate.

Figure 10. An outward neck pinch.

Now we define another concept. In Figure 9, a0 terminates at time T because, heuristi-

cally, it “breaks” at the cylindrical singularity x. And in Figure 10, b0 terminates at time

T because it “breaks” at the outward cylindrical singularity. The following definition

makes this phenomenon of breakage precise.

Definition 2.3.12 (Homology breakage). Let c0 ∈ Hn−1(W (T0)), T1 > T0, and K ⊂

M(T1) be a compact set. Suppose the following holds:

• For each T0 ≤ t < T1, there exists c0(t) ∈ Hn−1(W (t)) such that c0 ≻ c0(t).

• For every neighborhood U ⊂ Rn+1 of K, for each t < T1 sufficiently close to T1,

every element of c0(t) intersects U . (Recall Figure 4.)

Then we say that c0 breaks in (K,T1). We will often concern the case when K is just a

point x ∈M(T ), for which we say that c0 breaks at (x, T1).

One might wonder why Definition 2.3.12 does not require c0 to terminate at time T1.

This is because it is unnecessary:

Proposition 2.3.13. If a homology class c0 ∈ Hn−1(W (T0)) breaks in some (K,T1), then

c0 terminates at time T1.

Proof. Suppose the otherwise: There exists T2 > T1 and c2 ∈ Hn−1(W (T2)) such that

c0 ≻ c2. Then there exists γ0 ∈ c0 and γ2 ∈ c2 that together in W [T0, T2] bound some
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n-chain C. Without loss of generality we can assume that βt := {x : (x, t) ∈ C} is an

(n− 1)-chain without boundary for each t ∈ [T0, T2] (?). Then c0(t) = [βt] ∈ Hn−1(W [t])

satisfies c0 ≻ c0(t).

By assumption c0 breaks in some (K,T1) with K ⊂M(T1). So K ∩C = ∅. Then since

K is compact and C is closed, there exists some neighborhood of K in Rn+1 × R of the

form Br(K) × [T1 − δ, T1 + δ] that does not intersect C. So for all t ∈ [T1 − δ, T1 + δ], βt

avoids Br(K). This contradicts the assumption that c0 breaks at (K,T1). □

Note that, vacuously, the trivial homology class does not break in any (K,T ). More-

over, if a homology class breaks in (K1, T ) and K1 ⊂ K2 ⊂M(T ), then it also breaks in

(K2, T ).

On might wonder whether the converse of the above proposition is true. Actually, it

is true that for 2-dimensional MCF through cyindrical and spherical singularities, if a

homology class terminates at some time T , then it actually breaks at some cylindrical

singularity (x, T ). This is the statement of Theorem 2.4.5, which is one of the main result

in §2.4. However, we are unsure whether the converse is true in general.

Proposition 2.3.14. No homology class breaks at a regular point.

Proof. Suppose (x, T ) is a regular point. Then there exists a small ball B around x such

that for all t close to T , Mt ∩B is a smooth n-disk. Then it is clear every n-chain can be

homotoped to avoid B. So no homology class breaks at (x, T ). □

Proposition 2.3.15. No homology class breaks at a spherical singularity.

Proof. Suppose otherwise. Without loss of generality, suppose some c0 ∈ Hn−1(W (T0))

breaks at some spherical singularity (x, T ). Then there exists a small ball B around x

such that for all t < T close to T , M(t) ∩ B is a smooth sphere. For each such t, pick

some γ ∈ c0(t). By removing the components of γ inside the sphere M(t) ∩ B, we can

assume that γ lies outside the sphere. Thus clearly γ can be homotoped within W (t) to

avoid B. This again contradicts that c0 breaks at (x, T ). □
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Lastly, we conclude this section with the following proposition, which provides us a

scenario where we know the inside homology classes must terminate. Namely, if we take

a compact shrinker and push it inward, then all non-trivial inside homology classes will

terminate, while the outward ones will not. This proposition will be crucial for us when

we use Theorem 1.1.1 to prove other main theorems.

Proposition 2.3.16. The setting is as follows.

• Let Σ be a smooth, embedded, compact shrinker in R3.

• Let S0(−1) be a surface, lying strictly inside Σ, given by deforming Σ within the

inside region of Σ.

• Let S1(−1) be a surface, lying strictly outside Σ, given by deforming Σ within the

outside region of Σ.

• Note that the first homology groups of

R3\Σ, R3\S0(−1), and R3\S1(−1)

can be canonically identified.

• Let

S = {
√
−tΣ}−1≤t≤0, S0 = {S0(t)}t≥−1, and S1 = {S1(t)}t≥−1

be the associated level set flows.

Then there exist times T, T̃ ∈ (−1, 0) such that

(1) For each non-trivial element a0 ∈ H1(W
S0

in (−1)), t(a0) ≤ T̃ .

(2) For each element b0 ∈ H1(W
S0

out(−1)), b0(T̃ ) exists and is trivial.

(3) For each element a1 ∈ H1(W
S1

in (−1)), a1(T ) exists and is trivial.

(4) For each non-trivial element b1 ∈ H1(W
S1

out(−1)), t(b1) ≤ T .

Proof. For the first claim, note that:

• S0(−1) is inside Σ.
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• dist(
√
−tΣ, S0(t)) is non-decreasing in t by [ES91, Theorem 7.3].

• Σ shrinks self-similarly under the flow.

Thus, we know that there exists T̃ < 0 such that for every t ≥ T̃ , S0(t) is empty. Thus,

for any non-trivial element a0 ∈ H1(W
S0

in (−1)), either t(a0) ≤ T̃ , or a0(T̃ ) still exists but

is trivial. Suppose by contradiction that the latter holds. Then we can pick some α0 ∈ a0

such that α0 = ∂A for some

A ⊂ W S0

in ([−1, T̃ ]) ⊂ W S
in([−1, T̃ ]).

Thus, rescaling each time slice of A, we can have α0 bounding some

Ã ⊂ (interior region of Σ) × [−1, T̃ ].

Projecting Ã into the interior region of Σ, we have that α0 is homologically trivial,

contradicting the definition of α0. This finishes the proof of the first claim.

For the second claim, since Σ just shrinks self-similarly under the flow, we know b0 has

not terminated yet by time T̃ (< 0) for the flow {
√
−tΣ}. Then by the fact that S0(t) lies

inside
√
−tΣ for each t ∈ [−1, T̃ ], which comes from the avoidance principle, we know

b0(T̃ ) also still exists for the flow S0. But since S0(T̃ ) is empty, b0(T̃ ) must be trivial.

Let us prove the fourth claim before the third. We first let

ϵ = dist(Σ, S1(−1))}.

Pick some loop β1 ∈ b1. Let Bϵ(
√
−tΣ) be the ϵ-neighborhood of

√
−tΣ, and denote

Y (t) := R3\Bϵ(
√
−tΣ)

Y [t1, t2] :=
⋃

t∈[t1,t2]

(R3\Bϵ(
√
−tΣ)) × {t}.
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Now, to prove the fourth claim, it suffices to show for some −1 < T < 0, there does not

exist a 2-chain C ⊂ W S1

out[0, T ] such that ∂C = β1 − β2 for some closed 1-chain β2 outside

S1(T ). Noting S1(−1) is outside Σ, by the avoidance principle it suffices to show that:

Lemma 2.3.17. For some −1 < T < 0, there does not exists a 2-chain C ⊂ Y [−1, T ]

such that ∂C = β1 − β2 for some closed 1-chain β2 ⊂ Y (T ).

Proof. Fix a T sufficiently close to 0 such that

diam(
√
−TΣ) < ϵ,

thenBϵ(
√
−TΣ) is star-shaped (with respect to any point on

√
−TΣ). Hence, ∂Bϵ(

√
−TΣ)

has genus 0.

Suppose by contradiction that there exists a 2-chain C ⊂ Y [−1, T ] such that ∂C =

β1 − β2 for some closed 1-chain β2 ⊂ Y (T ). By rescaling C at each time slice t, we can

construct another 2-chain C̃ outside Σ such that ∂C̃ = β1 −
√
−Tβ2.

Since β1, which lies outside Σ, is homologically non-trivial, we can pick a non-trivial

loop α inside Σ such that

[β1] ∈ H1(R3\α)

is non-trivial. Then by the existence of C̃, we have [β2] ̸= 0 in H1(R3\α) too. However,

this is impossible because
√
−Tβ2 is outside Bϵ/

√
−T (Σ) while α is inside, and ∂Bϵ/

√
−T (Σ)

has genus 0 by the first paragraph of this proof. □

This finishes proving the fourth claim of Proposition 2.3.16.

Finally, for the third claim, since a1(T ) exists for the flow {
√
−tΣ}t≤0, by the avoidance

principle we know a1(T ) exists for S1. Moreover, since the inside of S1(T ) contains

Bϵ(
√
−TΣ), which is star-shaped, we know a1(T ) = 0 in H1(W

S1
(T )). □
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2.4. Homology breakage of MCF through cylindrical and spherical singulari-

ties.

MCF through cylindrical and spherical singularities. In this section, we focus on 2-

dimensional MCF M = {M(t)}t≥0 through cylindrical and spherical singularities in R3,

with M(0) a smooth closed surface.

Proposition 2.4.1. For any T0 ≥ 0, no element of H1(Wout(T0)) can break at an inward

neck singularity, and no element of H1(Win(T0)) can break at an outward neck singularity.

Proof. Let us just prove the first claim. Suppose by contradiction some c0 ∈ H1(Wout(T0))

breaks at an inward neck singularity (x, T ), with T > T0. Applying Theorem 2.2.4 to

(x, T ) with δ0 = 1 and any R > R0, we obtain constants δ, δ̄ > 0 and a dense subset

J ⊂ [T − δ̄, T + δ̄] satisfying the properties in Theorem 2.2.4. Let B = Bδ(x).

Pick a time t ∈ J ∩ [T − δ̄, T ). Since c0 breaks at T , c0(t) still exists. Pick a loop

γ ∈ c0(t). By Theorem 2.2.4 (6) (and recall Figure 7), we can homotope γ within Wout(t)

to avoid B. This can be done for all t in J ∩ [T − δ̄, T ), which is dense in [T − δ̄, T ). So

we obtain a contradiction to the fact that c0 breaks at (x, T ). □

Let us now in the following proposition describe more precisely the shape around a neck

pinch at which some homology class breaks. Namely, in this case, before the singular time,

only the last bullet point of Theorem 2.2.4 (6), i.e. M(t)∩B being a cylinder, can occur.

Proposition 2.4.2. There exists a universal constant R0 > 0 with the following signif-

icance. Suppose c0 ∈ H1(Win(T0)) breaks at some inward neck singularity (x, T ). Let

δ0 > 0. Then for each R > R0, there exists some constants δ ∈ (0, δ0), δ̄ > 0, and some

dense subset J ⊂ (T − δ̄, T + δ̄) with T − δ̄ ∈ J , such that:

(1) The first five items of Theorem 2.2.4 holds.

(2) For each t ∈ J∩ [T− δ̄, T ), Kin(t)∩Bδ(x) is a solid cylinder such that its boundary

consists of a connected component of M(t)∩Bδ(x) that is a cylinder and two disks

D1, D2 on ∂Bδ(x).
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(3) And for such t, every element γ ∈ c0(t) has a non-zero intersection number (in

Z-coefficient) with each Di.

And the outward case is analogous.

Proof. We will just prove the inward case. Let us apply Theorem 2.2.4 to (x, T ) to obtain

the constants δ, δ̄ and the subset J ⊂ [T − δ̄, T + δ̄]. Let B = Bδ(x). And then the first

five items of Theorem 2.2.4 will hold.

Then, we need to show that for each t ∈ J∩(T0, T ) sufficiently close to T , Kin(t)∩Bδ(x)

satisfies the description in (2): After that we could just shrink δ̄ and the set J to guarantee

(2). Suppose by contradiction that there exists a sequence in J , t1, t2, ... ↑ T , such that

Kin(ti)∩Bδ(x) violates the description in (2). Fix any ti. Note that Theorem 2.2.4 (5) and

(6) together imply that Kin(ti) ∩ B can have at most one cylindrical component. Thus,

in our case, Kin(ti) ∩ B actually has no cylindrical component. Hence, any connected

component K of Kin(ti) ∩B satisfies either one of the following by Theorem 2.2.4 (6):

• ∂K is a connected component of M(t) ∩B that is a sphere.

• ∂K consists of a connected component of M(t) ∩ B that is an disc and another

disc on ∂B.

In any case, it is clear that one perturb any element of c0(ti) to avoid B. Arguing for

each ti, this contradicts that c0 breaks at (x, T ).

Finally, to prove (3), it suffices to show that for each t ∈ J ∩ (T0, T ) sufficiently close

to T , c0(t) satisfies the description of (3): Then we could just shrink J , and we would

be done. Suppose the otherwise, so that there exists a sequence in J , t1, t2, ... ↑ T , such

that c0(ti) violates the description of (3). Then for each ti, we can find a loop γ ∈ c0(ti)

with intersection number zero with some connected component of Kin(ti) ∩ ∂B. In fact,

since Kin(ti)∩B is a cylinder by (2), γ has intersection number zero with both connected

components D1, D2 of Kin(ti)∩∂B (which are discs). To contradict the fact that c0 breaks

at (x, T ), it suffices to find another element of c0(ti) that avoids B.
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Indeed, this can be done: We can assume γ intersects ∂B transversely. Since γ has

intersection number zero with D1, we can pair up each positive intersection point of γ∩D1

with a negative one. Now fix a pair, and draw a line segment L on D1 to connect the

pair of points. Adding L and −L to γ, and slightly pushing the resulting curve away

from D1 around L,−L, we can obtain another representative of c0(ti) that avoids this

pair of intersection points. And we do this for each pair. Then at the end we get a curve

belonging to c0(ti) that avoids D1 completely. Then, we repeat this process with D2, to

get a the curve that avoids D2 too. Lastly we discard all connected components of the

curve that are in K, which are all trivial as K is a solid cylinder, to obtain an element of

c0(ti) that avoids B, as desired. □

Denote by S in
sphere the set of inward spherical singularities of M, and by S in

neck the set of

inward neck singularities of M. Similarly, we define Sout
sphere and Sout

neck. Then, we denote

by Sin
sphere(t) ⊂ R3 the slice of S in

sphere at time t, and proceed similarly for the other three

sets.

Lemma 2.4.3. Sin
neck(T ) and Sout

neck(T ) are compact sets.

Proof. We only show Sin
neck(T ) is compact and the proof for Sout

neck(T ) is the same. It suffices

to show Sin
neck(T ) = Sin

neck(T ). By the semi-continuity of the Gaussian density, a limit point

p of Sin
neck(T ) must be a neck singularity. Hence it suffices to show p ∈ Sin

neck(T ). We prove

by contradiction: suppose not, then p ∈ Sout
neck(T ), and by mean convex neighbourhood

theorem, there is a neighborhood U of p and δ > 0 such that the MCF {Mt}t∈[T−δ,T+δ] in

U moves outward. This contradicts the assumption that p is a limit point of Sin
neck(T ). □

Proposition 2.4.4. Suppose c0 ∈ H1(Win(T0)) terminates at some time T > T0. Then

c0 breaks in (Sin
neck(T ), T ).

And the outward case is analogous.
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Proof. We will just prove the inward case. Suppose the otherwise: There exist a neigh-

borhood U of Sin
neck(T ) in R3, an increasing sequence of times t1, t2, ... ↑ T , and elements

γi ∈ c0(ti) such that each γi is disjoint from U .

Now, by the mean convex neighborhood theorem and the compactness of Sin
neck(T ) and

Sout
neck(T ) from Lemma 2.4.3, we can further pick open neighborhoods Uin, Ũin with

Sin
neck(T ) ⊂ Uin ⊂⊂ Ũin ⊂⊂ U,

an open neighborhood Uout of Sout
neck(T ), and two times T1 < T < T2 such that:

• Ũin and Uout are disjoint.

• In the time interval (T1, T2), M(t) ∩ Ũin evolves inward (i.e.

Kin(t2) ∩ Ũin ⊂ Kin(t1)\M(t)

for every T1 < t1 < t2 < T2) while M(t) ∩ Uout evolves outward.

By Huisken’s analysis of spherical singularities (see also the special case of [CM16,

Theorem 4.6]), each spherical singularity is isolated in spacetime. Therefore, the limit

points of spherical singularities can only be cylindrical singularities.

We claim that after appropriately shrinking the time interval [T1, T2],

(R3\(Uin ∪ Uout)) × [T1, T2]

has only finitely many singular points, and we can thus assume such singular points all

are spherical singularities at time T . In fact, suppose not, there exists a sequence of

distinct singular points {pi}∞i=1 outside Uin ∪ Uout, with singular time ti → T . Then by

compactness of the singular set of M and the previous paragraph, there is a subsequence

converging to a cylindrical singularity in (Sin
neck(T ) ∪ Sout

neck(T )) × {T}. This contradicts

our choice of the pi’s.
48



As a consequence of the claim, by shrinking [T1, T2] and the neighborhoods Ũin and

Uout, we can assume

Ũin\Uin × [T1, T2]

consists only of smooth points. Furthermore, we can choose a neighborhood Vin of

Sin
sphere(T ) such that M(t) ∩ Vin is a finite union of convex smooth spheres for each

t ∈ [T1, T2]. Similarly, we can find a neighborhood Vout for Sout
sphere(T ) with analogous

properties. We can assume the closures of Ũin, Uout, Vin, Vout are all disjoint. Moreover,

M(t)\(Uin ∪ Uout ∪ Vin ∪ Vout) evolves smoothly for t ∈ [T1, T2].

To derive a contradiction to t(c0) = T , we are going to prove that for some ti, there

exists a smooth deformation of γi, {γt ⊂ Win(t)}t∈[ti,T ], with γti = γi, thereby letting γi

“survive” up to time T . Note that:

• By the smoothness of M(t) in Ũin\Uin for t ∈ [T1, T2],

C := sup
t∈[T1,T2], x∈M(t)∩Ũin\Uin

|A| <∞.

Thus, the velocity of the flow in this spacetime region is bounded by C. Thus,

since γi avoids Ũin, we can take a ti ∈ (T1, T ) sufficiently close to T such that

there is not enough time for any point of M(ti)\Ũin to be pushed into Uin by time

T .

• Note that M(t) evolves outward in Ũout for t ∈ [T1, T2].

• Since Vin and Vout consists of spheres, we can remove the components of γi inside

the spheres, so we may assume γi avoids Vin and Vout.

Combining the above observations, we can construct a smooth deformation of γi, {γt ⊂

Win(t)}t∈[ti,T ], using the evolution of MCF, with γti = γi. This contradicts that t(c0) =

T . □

Here comes a key theorem, which supports that our definition of homology termination

and breakage actually describes the heuristic phenomenon in Figure 9.
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Theorem 2.4.5. Suppose c0 ∈ H1(Win(T0)) terminates at some time T > T0. Then c0

breaks at some inward neck singularity (x, T ).

And the outward case is analogous.

Note that such x may be non-unique: Consider a flow that is a thin torus collapsing

into a closed curve consisting entirely of neck singularities.

Proof. Let us just do the inward case. We will prove by contradiction. Suppose the

theorem is false. Namely:

Assumption (*): For every inward neck singularity (x, T ), there is a neighborhood

Ux of x such that it is not true that “for every time t < T close enough to T , every

element of c0(t) intersects Ux”.

Applying Theorem 2.2.4 to each inward neck singularity (x, T ), with a constant δ0(x) >

0 such that Bδ0(x)(x) ⊂ Ux and an R > max{R0, 100}, we obtain constants δ(x), δ̄(x) > 0

and a set of full measure J(x) ⊂ [T − δ̄(x), T + δ̄(x)] satisfying the properties of Theorem

2.2.4.

Since Sin
neck(T ) is compact by Lemma 2.4.3, there exist x1, ..., xn ∈ Sin

neck(T ) such that

Bδ(x1)/2(x1), ..., Bδ(xn)/2(xn)

cover Sin
neck(T ). For simplicity, we denote those balls by 1

2
B1, ...,

1
2
Bn, while

B1 := Bδ(x1)(x1), ..., Bn := Bδ(xn)(xn)

Since c0 terminates at time T , we know c0 breaks in (Sin
neck(T ), T ) by Proposition 2.4.4.

Thus, by definition, there exists a time T1 with maxi T − δ̄(xi) < T1 < T such that for

each t ∈ [T1, T ), every element of c0(t) intersects ∪i
1
2
Bi. We can assume T1 ∈ ∩iJ(xi) so

that M(T1) is smooth and intersects each ∂Bi transversely by Theorem 2.2.4 (3).

Lemma 2.4.6. Let D be a connected component of Kin(T1)∩∂Bi (which there are at most

two by Theorem 2.2.4 (5)), and γ ∈ c0(T1). Then the linking number link(γ, ∂D) = 0
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Proof. Suppose the otherwise, that there exists some D as above and γ ∈ c0(t0) such

that link(γ, ∂D) ̸= 0. Now, pick any t1 ∈ [T1, T ) and γ1 ∈ c0(t1). By definition, γ1 is

homologous to γ within Win[T1, t1]. Thus, γ1 is homologous to γ within R3\∂D, since by

the mean convex neighborhood property Theorem 2.2.4 (2) we know ∂D ⊂ R3\Win(t)

for all t ∈ [T1, t1]. Therefore, link(γ1, ∂D) ̸= 0, meaning γ1 must intersect D. But

D ⊂ B̄i ⊂ Uxi
, so we have shown that for all t1 ∈ [T1, T ), any element of c0(t1) must

intersect Uxi
. This contradicts assumption (*). □

Let ϵ1 := mini δ(xi)/2. Let γ ∈ c0(T1) be such that

(2.2) length(γ) < inf
γ′∈c0(T1)

length(γ′) + ϵ1/100

Without loss of generality, we can assume γ intersects all ∂Bi transversely. To finish the

proof, it suffices to show that γ avoids ∪i
1
2
Bi: This would contradict the definition of T1.

Lemma 2.4.7. γ does not intersect ∪i
1
2
Bi.

Proof. We prove by contradiction. Suppose that γ intersects some 1
2
Bi. We will produce

an element of c0(T1) whose length is too small.

Without loss of generality, we can assume that no connected component of γ ∩Bi is a

closed loop. This is because we could just remove all such loops from γ, and the resulting

curve is still in c0(T1) by Theorem 2.2.4 (6). Hence, letting β be a connected component

of γ ∩Bi, we can assume that β is a line segment.

Now, by Theorem 2.2.4 (5) and our choice that T1 ∈ ∩iJ(xi), Win(T1) ∩ ∂Bi consists

of at most two disks. There are two cases: either (1) β starts and ends on the same disk,

say D1, or (2) β starts and ends on different disks, D1 and D2. We will show that both

are impossible.

For case (1), since β intersects 1
2
Bi, whose distance to ∂Bi is δ(xi)/2, we know that

length(β) is at least δ(xi). On the other hand, note that by Theorem 2.2.4 (1), (2), and

(4), D1 is a convex disc on ∂Bi with diameter less than δ(xi)/50 (recall R > 100). Thus,

we can join the end points of β, from β(1) to β(0), by a segment β1 on D1 of length less
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than δ(xi)/50: See Figure 11. Then, we consider the new loop γ− β− β′, which replaces

β ⊂ γ with β′. This loop lies in c0(T1), because β + β′ bounds a disc in Win(T1) ∩ B̄i by

Theorem 2.2.4 (6).

Figure 11. Shortening γ in case (1).

Moreover, this new loop is impossibly short:

length(γ − β − β′) ≤ length(γ) − δ(xi) + δ(xi)/50

< length(γ) − δ(xi)/2

≤ length(γ) − ϵ1

< inf
γ′∈c0(T1)

length(γ′),

in which the last inequality is from the definition of γ. Thus, a contradiction arises, and

case (1) is impossible.

For case (2), suppose the starting point β(0) is in D1 and the ending point β(1) is in

D2. We claim that there is another connected component β̂ of γ ∩ Bi such that starting

point β̂(0) is in D2 and ending point β̂(1) is in ∈ D1. This claim follows immediately

from:

• By Theorem 2.2.4 (6), M(T1) ∩ ∂Bi is a cylinder.

• By Lemma 2.4.6, link(γ, ∂D1) = link(γ, ∂D2) = 0.

• Case (1) was proven impossible.
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Finally, let β1 be a segment on D1 connecting β̂(1) to β(0), and β2 be a segment

on D2 connecting β̂(0) to β(1) (see Figure 12). As in case (1), we can guarantee

length(β1), length(β2) < δ(xi)/50. Hence, we consider the new loop γ − β − β̂ − β1 − β2,

which replaces β+β̂ ⊂ γ with −β1−β2. This new loop lies in c0(T1), because β+β̂+β1+β2

bounds a disc in Win(T1) ∩ B̄i by Theorem 2.2.4 (6). Moreover, as in case (1), we can

show that

length(γ − β − β̂ − β1 − β2) < inf
γ′∈c0(T1)

length(γ′),

which is a contradiction. So case (2) is impossible either.

Figure 12. Shortening γ in case (2).

Therefore, we have reached a contradiction. □

This finishes the proof of Theorem 2.4.5. □

MCF through cylindrical and spherical singularities from torus. In §2.4 , we will focus

on 2-dimensional MCF M = {M(t)}t≥0 through cylindrical and spherical singularities in

R3, where M(0) is a smooth torus. The main goal of §2.4 is to prove the following.

Theorem 2.4.8. The setting is as follows.
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• Let {M(t)}t≥0 be a MCF through cylindrical and spherical singularities with M(0)

a smooth torus in R3.

• Let a0 be a generator of H1(Win(0)) ∼= Z, and b0 be a generator of H1(Wout(0)) ∼=

Z.

• Let T = min{t(a0), t(b0)}.

Then T < ∞, and genus(M(t)) = 1 for a.e. t < T , while genus(M(t)) = 0 for a.e.

t > T .

Throughout §2.4, we will retain the notations in this theorem.

Let us first sketch the proof. By [CM16], M(t) is smooth for a.e. time. And by

[Whi95], genus(M(t)), when well-defined, is non-increasing in t. Thus, there exists some

time Tg such that genus(M(t)) = 1 for a.e. t < Tg, while genus(M(t)) = 0 or M(t) is

empty for a.e. t > Tg. Our goal is to show T = Tg.

The proof consists of proving the following six claims one-by-one:

• T <∞.

• Let t ≥ 0. If M(t) is a smooth torus and a0(t) exists, then a0(t) generates

H1(Win(t)). And the case for b0 is analogous.

• Tg ≥ T .

• t(a0) ̸= t(b0).

• If t(a0) < t(b0), then b0(t) is trivial for each t > t(a0). And if t(b0) < t(a0), then

a0(t) is trivial for each t > t(b0).

• Tg ≤ T .

We now begin the proof.

Proposition 2.4.9. T <∞.

Proof. Suppose otherwise, i.e. a0 and b0 both never terminate. Since M(0) is compact,

eventually Kout(t) = R3. So a0(T ) and b0(T ) both become trivial for some large T > 0. As

a result, if we pick some loops α0 ∈ a0 and β0 ∈ b0, then there exist 2-chain A ⊂ Win[0, T ]

and B ⊂ Wout[0, T ] such that ∂A = α0 and ∂B = β0.
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Now, denote by B̂ ⊂ R3 × [−T, 0] the reflection of B across R3 ×{0}. Let B̃ = B ∪ B̂,

which can be viewed as a closed 2-chain in R4. Then we view A ⊂ R4\B̃. Thus, to derive

a contradiction, it suffices to show that α0 is homologically non-trivial in R4\B̃.

Without loss of generality, we can assume B̃ is connected by discarding all those con-

nected components that do not contain β0. By Alexander duality,

H1(R4\B̃) ∼= H2(B̃) ∼= Z.

One can check that α0 ⊂ R4\B̃ actually generates Z as the linking number link(a0, b0) = 1

(?). This shows α0 is homologically non-trivial in R4\B̃, contradicting the existence of

A. □

Remark 2.4.10. Note that the above proof works also in the case when M(0) is a closed

surface of any genus with a0 ∈ H1(Win(0)) and b0 ∈ H1(Wout(0)) linked, and the flow

{M(t)}t≥0 is a general level set flow (whose singularities are not necessarily cylindrical

or spherical).

Proposition 2.4.11. Let t ≥ 0. If M(t) is a smooth torus and a0(t) exists, then a0(t)

generates H1(Win(t)). And the case for b0 is analogous.

Proof. We will just prove the case for a0. Let ā be a generator of H1(Win(t)) ∼= Z. It

suffices to show ā = a0(t) up to a sign.

By definition, there exists α0 ∈ a0, α1 ∈ a0(t) such that α0 − α1 = ∂A for some

A ⊂ W [0, t]. On the other hand, pick a loop ᾱ1 ∈ ā, then by [Whi95, Theorem 1 (ii)],

there exists a homotopy H in W [0, T ] joining ᾱ1 back to some loop ᾱ0 ⊂ W (0) (which

means ∂H = ᾱ1− ᾱ0). So [ᾱ0] = ka0 for some integer k, and so ᾱ0− kα0 = ∂A0 for some

A0 ⊂ W (0). If we manage to show a0 = [ᾱ0] or −[ᾱ0], then by the fact that a0 can only

descend into one class at time t (Proposition 2.3.3), we would know a0(t) = ā or −ā, as

desired. Hence, it suffices to show that k = ±1.
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Let us glue H,A0, and kA together, so that we have

ᾱ1 − kα1 = ∂(H + A0 + kA).

Thus, since the inclusion H1(Win(t)) → H1(Win[0, t]) is injective by [Whi95, Theorem

1 (iii)], ā = kα0(t) in H1(Win(t)). Since ā is a generator by definition, k = ±1, as

desired. □

Proposition 2.4.12. Tg ≥ T .

Proof. Let us assume T = t(a0), as the other case T = t(b0) is analogous. Recall that we

have shown T <∞. Since genus(M(t)), if well-defined, is non-increasing in t, it suffices to

prove that there exists T1 < T such that for a dense set of t ∈ (T1, T ), genus(M(t)) = 1.

By Theorem 2.4.5, T = t(a0) implies a0 breaks at some inward neck singularity (x, T ).

Then, applying Proposition 2.4.2 to (x, T ) with δ0 = 1 and an R > R0, we obtain

constants δ, δ̄ and a dense set J ⊂ [T − δ̄, T + δ̄] with T − δ̄ ∈ J . We let T1 = T − δ̄, and

B = Bδ(x).

Now, fix any t ∈ (T1, T ), and D let be one of the two connected component of Kin(t)∩

∂B: Recall that Kin(t)∩B is a solid cylinder by Proposition 2.4.2. By Proposition 2.4.2,

some element α ∈ a0(t) has a non-zero intersection number with D. Now, we push ∂D

slightly into Kout(t) ∩ B and call that loop β. Then the linking number link(β, α) is

non-zero, with α inside M(t) and β outside M(t). Hence, genus(M(t)) is non-zero, and

thus has to be one, as desired. □

Proposition 2.4.13. t(a0) ̸= t(b0).

Proof. If t(b0) < t(a0), we are done. So let us assume t(a0) ≤ t(b0) and aim to show

t(b0) > t(a0).

Let us focus at the time t = T1, with T1 := T − δ̄, as defined in the proof of Proposition

2.4.12. We know genus(M(T1)) = 1 from before. Now, consider the loops α ∈ a0(T1)

and β ⊂ Wout(T1) ∩ B defined in the previous proof. Then by Proposition 2.4.11, α is a
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generator of H1(Win(T1)), and from the construction of β it is clear link(β, α) = ±1. So β

actually generates H1(Wout(T1)). Then by Proposition 2.4.11 again and the assumption

t(b0) ≥ t(a0), we have [β] = b0(T1), possibly after changing the orientation of β.

Finally, by the mean convex neighborhood property, β ⊂ Wout(T1) ∩ B will survive

after time T . So t(b0) > t(a0). □

Proposition 2.4.14. If t(a0) < t(b0), then b0(t) exists and is trivial for each t > t(a0).

And if t(b0) < t(a0), then a0(t) exists and is trivial for each t > t(b0).

Proof. Let us just prove the first statement.

We will retain the notation from the previous proof. By Proposition 2.4.2, M(T1) ∩B

(recall T1 = T− δ̄) is close to a round cylinder. Now, enclose this cylinder by an Angenent

torus, and run the MCF. Note that:

• Since the time interval around T given by the mean convex neighborhood property

is independent of R (in Proposition 2.4.2), we can, by making R very large and

thus the Angenent torus very small, assume that the mean convex neighborhood

property still holds at the moment the Angenent torus vanishes.

• By the avoidance principle, the distance between the Angenent torus and M(t) is

non-decreasing.

Thus, at the moment the Angenent torus vanishes, the neck M(t) ∩ B has been “cut

into disconnected pieces” already. Therefore, the loop β, which stays disjoint from the

surface, would have become trivial at the moment the Angenent torus vanishes.

Finally, note that as R → ∞, by the definition of cylindrical singularity we know

T1 = T − δ̄ → T and M(T − δ̄) ∩ B tends to an actual round cylinder. This shows the

moment the Angenent torus vanishes will tend to T (?). Thus, b0(t) is trivial for each

t > T . □

Finally, since we have already proven Tg ≥ T , to finish the proof of Theorem 2.4.8, it

suffices to prove:

Proposition 2.4.15. Tg ≤ T .
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Proof. Suppose by contradiction Tg > T . Again, we assume the case t(a0) < t(b0).

By our last proposition, we can pick a time T2 ∈ (T, Tg) when M(T2) is a smooth torus

and b0(T2) exists and is trivial. This contradicts Proposition 2.4.11, which says b0(T2)

generates H1(Wout(T2)). □

This finishes the proof of Theorem 2.4.8.

Termination time of limit of MCF. Finally, in §2.4, let us mention a proposition that

describes a relationship between termination time and a convergent sequence of initial

conditions.

Proposition 2.4.16. The setting is as follows.

• Let Mi = {M i(t)}t≥0, i = 1, 2, ..., and M = {M(t)}t≥0 all be MCF through

cylindrical and spherical singularities, such that eachM i(0) andM(0) are smooth,

close hypersurfaces.

• For each i, assume M i(0) is sufficiently close in C∞ to M(0) such that each

H1(W
Mi

(0)) can be canonically identified with H1(W
M(0)). Moreover, M i(0) →

M(0) in C∞.

• Let c0 ∈ H1(W
M(0)). Note that c0 can be viewed as an element of H1(W

Mi
(0))

for each i too.

Then

lim inf
i

tM
i

(c0) ≥ tM(c0).

Proof. Let T = tM(c0), which may be infinite. Suppose by contradiction that there exists

a subsequence {ik}k and some T1 < T such that tM
ik (c0) ≤ T1 for each k. Pick some

element γ0 ⊂ WM(0) with [γ0] = c0, and γ1 ⊂ WM(T1+T
2

) with [γ1] = c0(
T1+T

2
). By

definition, γ0 and γ1 together bound some Γ ⊂ WM[0, T1+T
2

].

Now, recall that Mi → M in the Hausdorff sense by Proposition 2.2.7. Thus, since

Γ is compact, for all sufficiently large i, Γ ⊂ WMi
[0, T1+T

2
]. Moreover, γ0 represents

c0 ∈ H1(W
Mi

(0)) for such large i. This contradicts that tM
ik (c0) ≤ T1 for each k. □
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2.5. Proof of main theorems.

Proof of Theorem 1.1.1. Suppose by contradiction that for each s ∈ [0, 1], {M s(t)}t≥0 is

a MCF through cylindrical and spherical singularities. For each s ∈ [0, 1], let

T s = min{tMs

(a0), t
Ms

(b0)}.

Note that T s <∞ by Proposition 2.4.9. In fact, by Proposition 2.4.13 and 2.4.14, either

a0 or b0 will terminate, but not both. Thus, we can write [0, 1] as a disjoint union

A ⊔ B, where A is the set of s for which T s = tM
s
(a0) while B is the set of s for which

T s = tM
s
(b0). Note that by assumption, 0 ∈ A and 1 ∈ B. Hence, the following lemma

immediately gives a contradiction.

Lemma 2.5.1. The sets A and B are both closed.

Proof. We will just prove that A is closed. Let s ∈ [0, 1] be an accumulation point of A,

and pick a sequence si in A with si → s. Note that:

• For each i, by Theorem 2.4.8, genus(M si(t)) = 1 for a.e. t < T si and genus(M si(t)) =

0 for a.e. t > T si .

• Similarly, genus(M s(t)) = 1 for a.e. t < T s and genus(M s(t)) = 0 for a.e. t > T s.

Thus, together with Proposition 2.2.7, which says M s
i (t) → M s(t) in C∞ for a.e. t ≥ 0,

we know T si → T s. Hence,

T s = lim inf
i

T si = lim inf
i

tM
si (a0) ≥ tM

s

(a0).

Note that the second equality holds because si ∈ A, and the inequality holds by Proposi-

tion 2.4.16. Thus, we know T s = tM
s
(a0), which means for the flow Ms, a0 will terminate

but b0 will not. So s ∈ A. This shows A is closed. □

This finishes the proof of Theorem 1.1.1.

Remark 2.5.2. Let us explain why Theorem 1.1.1 would not hold if the initial conditions

have genus greater than one. For example, consider the genus two surface in Figure 13,
59



with a0 and b0 as shown, which are linked. Then, the MCF actually could develop an

inward cylindrical singularity and an outward cylindrical singularity at the same time,

with a0 breaking at the inward one and b0 breaking at the outward one. This phenom-

enon may prevent a genus one singularity to appear in any intermediate flow between

{M0(t)}t≥0 and {M1(t)}t≥0, in the setting of Theorem 1.1.1.

One might think if we choose a0 and b0 better, like in Figure 14, then the conclusion

of Theorem 1.1.1 may hold. However, Figure 13 and 14 are actually homotopic to each

other. In conclusion, in a genus two surface, we cannot force a genus one singularity to

appear just by topology: The geometry of the initial conditions must play a role.

Figure 13. Simultane-
ous inward and outward
neck pinches.

Figure 14. A topologi-
cal equivalent picture.

Proof of Corollary 1.1.2. Let Ms := {M s(t)}t≥0 be the level set flow starting from

M s(0) := M s. We can apply Theorem 1.1.1 to the flows Ms, s ∈ [0, 1], which shows

there exists s0 ∈ [0, 1] such that Ms0 has a singularity (x, T ) that is not (multiplicity

one) cylindrical or spherical. In other words, every tangent flow M′ at (x, T ) is not

the shrinking cylinder or sphere of multiplicity one. Recall that by [Ilm95], M′ is some

smooth, embedded, self-shrinking flow {
√
−tmΣ′}t<0 with genus at most one and possibly

have multiplicity m. But the multiplicity can only be 1 by the entropy bound Ent(M s0) <

2 and the monotonicity formula. Thus, Σ′ has genus 1.
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Proof of Theorem 1.1.3. Note that we have Ent(M s) < 2 for each s as M s is close to T,

which has entropy less than 2. To apply Corollary 1.1.2, it suffices to show that for the

MCF starting from M0 (resp. M1), the inward (resp. outward) torus neck will pinch.

But this is given by Proposition 2.3.16.

Proof of Theorem 1.1.4. Let Σ1 be a genus one embedded shrinker in R3 with the least

entropy. Recall that by [CM12] index(Σ1) ≥ 5. Hence, to prove Theorem 1.1.4, let us

suppose by contradiction that Σ1 is compact with index at least 6.

We first need a family of initial conditions to run MCF. That will be provided by the

following lemma.

Lemma 2.5.3. Let Σn by any smooth, embedded, compact, n-dimensional shrinker in

Rn+1 with index at least 6. Let ϵ > 0 be sufficiently small. Then there exists a one-

parameter family of smooth, compact, embedded surfaces {M s(0)}s∈[0,1] such that:

(1) The family varies continuous in the C∞-topology, and each M s(0) is ϵ-close to

C∞ to Σ.

(2) Each M s(0) has entropy less than that of Σ.

(3) M0(0),M1(0), and Σ are all disjoint, with M0(0) inside Σ and M1(0) outside.

Proof. Fix an outward unit normal vector field n to Σ. Since index(Σ) ≥ 6, the eigen-

functions of its Jacobi operator, with respect to the Gaussian metric, that have negative

eigenvalues include:

• three induced by translation in R3,

• one by scaling,

• the unique one-sided one which has the lowest eigenvalue, denoted ϕ0,

• and at least one more, denoted ϕ1,

all of which are orthonormal under the L2-inner product. We will choose ϕ0 > 0.

Let ϵ > 0, and define M s(0) to be the following perturbation of Σ:

M s(0) := Σ + ϵ(− cos(sπ)ϕ0 + sin(sπ)ϕ1)n.
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Thus, if ϵ > 0 is sufficiently small, clearly the family {M s(0)}s∈[0,1] is smooth. Item (3)

holds because ϕ0 > 0. Finally, (2) holds because ϕ0, ϕ1 are not induced by translation or

scaling (see Theorem 0.15 in [CM12]). □

Applying the above lemma to Σ1, we obtain a one-parameter family {M s(0)}s∈[0,1] of

tori. Then

Ent(M s(0)) < Ent(Σ1) ≤ Ent(T) < 2.

Thus, applying Corollary 1.1.2, and by the monotonicity formula, we obtain another

embedded genus one shrinker with entropy less than Σ1, which contradicts the definition

of Σ1.

Proof of Theorem 1.1.5. Since T is rotationally symmetric, by [Liu16], it has index at

least 7. Again, we need a family of MCF. We will apply [CM22, Theorem 1.6] of Choi-

Mantoulidis. Namely, since T is a minimal surface with index at least 6 under the Gauss-

ian metric, it has, as we saw in the proof of Lemma 2.5.3, two orthonormal eigenfunctions

ϕ0, ϕ1 to the Jacobi operator that

• have negative eigenvalues,

• and are both orthogonal to the other 4 eigenfunctions induced by translation and

scaling.

Now, pick an ϵ > 0. Applying [CM22, Theorem 1.6] to the 2-dimensional function space

spanned by ϕ0 and ϕ1, we obtain a one-parameter family of smooth ancient rescaled MCF

(i.e. MCF under the Gaussian metric) M̃s = {M̃ s(τ)}τ≤0, s ∈ [0, 1], such that:

• For each s, M̃ s(t) → T in C∞ as t→ −∞.

• M̃0(0) lies inside T while M̃1(0) lies outside.

• {M̃ s(0)}s∈[0,1] is a smooth family of tori, each being ϵ-close to T in C∞ (see [CM22,

Corollary 3.4]).

If ϵ is small enough, we can apply Theorem 1.1.3 to the family {M̃ s(0)}s∈[0,1] to obtain

an s0 ∈ [0, 1] such that the level set flow {M(t)}t≥0 with initial condition M(0) = M̃ s(0)
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would develop a singularity at which every tangent flow is given by a multiplicity one,

embedded, genus one self-shrinker.

Finally, we define an ancient smooth MCF {M(t)}t≤−1 by rescaling the rescaled MCF

{M̃ s0(τ)}τ≤0:

M(t) =
√
−tM̃(− log(−t)), t ≤ −1.

Note that M(−1) = M̃(0) = M(0). Hence, combining the two flows {M(t)}t≤−1 and

{M(t)}t≥0, we obtain an ancient MCF satisfying Theorem 1.1.5.

Proof of Corollary 1.1.7. Let Σ be an embedded shrinker with the fourth least entropy

in R3. Suppose by contradiction that Σ is rotationally symmetric. Then by Kleene-

Møller [KMl14], Σ is closed with genus one. Moreover, Σ has entropy less than 2 since

the shrinking doughnut T in [DN18] does, and by [Liu16], Σ has index at least 7. Thus,

Theorem 1.1.5 still holds with T replaced by Σ: The exact same proof will work. Thus, we

obtain a genus one shrinker with entropy strictly lower than Σ. However, the self-shrinkers

with the three lowest entropy are the plane, the sphere, and the cylinder ([CIMIW13,

BW17]). Contradiction arises.
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3. A strong multiplicity one theory in min-max theory

This section is from a joint work with Yangyang Li.

3.1. Preliminaries. Throughout this section, unless specified otherwise, the ambient

Riemannian manifolds (Mn+1, g) we consider will always be smooth and closed, with

3 ≤ n+ 1 ≤ 7.

Notations.

• Ik(M ;Z2): the set of integral k-dimensional currents in M with Z2-coefficients.

• Zk(M ;Z2) ⊂ Ik(M ;Z2): the subset that consists of elements T such that T = ∂Q

for some Q ∈ Ik+1(M ;Z2) (such T are also called flat k-cycles).

• Zk(M ; ν;Z2) with ν = F ,F,M: the set Zk(M ;Z2) equipped with the three com-

mon topologies given respectively by the flat metric F , the F-metric, and the

mass M (see, for example, the survey [MN20]).

• Vn(M) or V(M): the closure, in the varifold weak topology, of the space of n-

dimensional rectifiable varifolds in M .

• ∥V ∥: the Radon measure induced on M by V ∈ Vn(M).

• For any a, the varifold topology on {V ∈ Vn(M) : ∥V ∥(M) ≤ a} can be induced

by an F-metric defined by Pitts in [Pit81, p.66].

• |T | ∈ Vn(M): the varifold induced by a current T ∈ Zk(M ;Z2), or a submanifold

T .

• In the same spirit, given a map Φ into Zn(M ;Z2), the associated map into Vn(M)

is denoted |Φ|.

• spt(·): the support of a current or a varifold.

• Bν
ϵ (·): the open ϵ-neighborhood of an element or a subset in Zn(M ; ν;Z2).

• BF
ϵ (·): the open ϵ-neighborhood of an element or a subset of Vn(M) under the

F-metric.
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• I(1, j): the cubical complex on I := [0, 1] whose 1-cells and 0-cells are respectively

[0, 1/3j], [1/3j, 2/3j], . . . , [1 − 1/3j, 1] and [0], [1/3j], [2/3j], . . . , [1].

• I(m, j): the cubical complex structure

I(m, j) = I(1, j) ⊗ · · · ⊗ I(1, j) (m times)

on Im.

• Xq: the set of q-cells of X.

• X(q) for a cubical subcomplex of I(m, j): the subcomplex of I(m, j + q) with

support X.

• f(Φ): the fineness of a map Φ : X0 → Zn(M ;Z2),

sup{M(Φ(x) − Φ(y)) : x, y belong to some common cell}.

• n(i, j) : I(m, i)0 → I(m, j)0 for j ≤ i: the map such that n(i, j)(x) is the closest

vertex in I(m, j)0 to x.

• Γ∞(M): the set of smooth Riemannian metrics on M .

• Bg(p, r): the open r-neighborhood of a point p in metric g.

In the subsequent discussion, for the sake of simplicity, we consistently consider a

complex and its underlying space as identical.

p-width. By the Almgren isomorphism theorem [Alm62] (see also [LMN18, §2.5]), when

equipped with the flat topology, Zn(M ;Z2) is weakly homotopic equivalent to RP∞. Thus

we can denote its cohomology ring by Z2[λ̄].

Definition 3.1.1. Let Pp be the set of all F-continuous maps Φ : X → Z2(M ;Z2),

where X is a finite simplicial complex, such that Φ∗(λ̄p) ̸= 0. Elements of Pp are called

p-sweepouts.
65



Remark 3.1.2. Note that every finite cubical complex is homeomorphic to a finite sim-

plicial complex and vice versa (see [BP02, §4]). So when X is a finite cubical complex in

above, the notion of p-sweepout still makes sense.

Definition 3.1.3. Denoting by dmn(Φ) the domain of Φ, the p-width of (M, g) is defined

by

ωp(M, g) := inf
Φ∈Pp

sup
x∈dmn(Φ)

M(Φ(x)).

We may write ωp(M) for ωp(M, g) if no confusion is caused.

Definition 3.1.4. A sequence (Φi)i in Pp is called a minimizing sequence for Pp, or the

p-width ωp(M), if

lim sup
i→∞

max
x∈dmn(Φi)

M(Φi(x)) = ωp(M).

For a minimizing sequence (Φi)i, we define its critical set by

Cg((Φi)i) := {V = lim
j

|Φij(xj)| : {ij}j ⊂ N, xj ∈ dmn(Φij), ∥V ∥g(M) = ωp(M)} .

We will often omit the subscript g if no confusion is caused. This will also be the case for

other variants of min-max theory in §3.3. Now, a sequence is called pulled-tight if every

varifold in C((Φi)i) is stationary.

Remark 3.1.5. There is an equivalent definition of p-widths from [MN21, Remark 5.7]:

First, an F -continuous map Φ : X → Zn(M ;Z2) is said to have no concentration of mass

if

lim
r→0

sup
x∈X,p∈M

∥Φ(x)∥(Br(p)) = 0.

Then, when defining the p-width, instead of using the collection Pp, we use the collection

of all F -continuous maps Φ with no concentration of mass such that Φ∗(λ̄p) ̸= 0.

Interpolations. In this subsection, we collect some interpolation results in the literature.

Let (M, g) be a closed manifold and m be a positive integer.
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Proposition 3.1.6 ([MN17, Theorem 3.7]). There exist positive constants C3.1.6 = C3.1.6(M, g,m)

and δ3.1.6 = δ3.1.6(M, g,m) with the following property:

If X is a cubical subcomplex of I(m, l) for some l ∈ N+ and

ϕ : X0 → Zn(M ;Z2)

has f(ϕ) < δ3.1.6, then there exists a map (called the Almgren extension)

Φ : X → Zn(M ;Mg;Z2)

continuous in the mass norm and satisfying

(1) Φ(x) = ϕ(x) for all x ∈ X0;

(2) if α is some j-cell in Xj, then Φ restricted to α depends only on the values of ϕ

assumed on the vertices of α;

(3) sup{M(Φ(x) − Φ(y)) : x, y lie in a common cell of X} ≤ C3.1.6f(ϕ).

Proposition 3.1.7 ([MN21, Proposition 3.2]). There exist positive constants C3.1.7 =

C3.1.7(M, g,m) and δ3.1.7 = δ3.1.7(M, g,m) with the following property:

If X is a cubical subcomplex of I(m, l) for some l ∈ N+ and two continuous maps

Φ0,Φ1 : X → Zn(M ;Mg;Z2)

satisfy

sup
x∈X

Mg(Φ0(x) − Φ1(x)) < δ3.1.7 ,

then there exists a homotopy

H : [0, 1] ×X → Zn(M ;Mg;Z2)

with H(0, ·) = Φ0 and H(1, ·) = Φ1 and such that

sup
(t,x)∈[0,1]×X

Mg(H(t, x) − Φ0(x)) ≤ C3.1.7 sup
x∈X

Mg(Φ0(x) − Φ1(x)) .
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In particular, for all (t, x) ∈ [0, 1] ×X,

Mg(H(t, x)) ≤ Mg(Φ0(x)) + C3.1.7 sup
x∈X

Mg(Φ0(x) − Φ1(x)) .

Proposition 3.1.8 (Improved version of [MN17, Proposition 3.8]). There exist positive

constants η3.1.8 = η3.1.8(M, g,m) and C3.1.8 = C3.1.8(M, g,m) with the following property:

Suppose that X is a cubical subcomplex in I(m, q), and ϕ0 : X(l0)0 → Zn(M ;Z2) is

(X,Mg)-homotopic to ϕ1 : X(l1)0 → Zn(M ;Z1) through a discrete homotopy map

h : I(1, q + l)0 ×X(l)0 → Zn(M ;Z2)

with fineness f(h) < η3.1.8 and such that if i = 0, 1 and x ∈ X(l)0, then

h([i], x) = ϕi(n(q + l, q + li)(x)) .

Then the Almgren extensions

Φ0,Φ1 : X → Zn(M ;Mg;Z2)

of ϕ0, ϕ1, respectively, are homotopic through a Mg-continuous homotopy map

H : [0, 1] ×X → Zn(M ;Mg;Z2)

with H(0, ·) = Φ0 and H(1, ·) = Φ1. Furthermore, for all (t, x) ∈ [0, 1] ×X, there exists

(t0, x0) ∈ I(1, q + l)0 ×X(l)0 such that x and x0 are in the same cell of X(l), and

Mg(H(t, x)) ≤ h(t0, x0) + C3.1.8f(h) .

Proof. Set η3.1.8 = min
(

δ3.1.7
2C3.1.6

, δ3.1.6

)
and C3.1.8 = C3.1.6 + C3.1.7 · 2C3.1.6.

For i = 0, 1, let ϕ′
i : X(l)0 → Zn(M ;Z2) be given by ϕ′

i(x) = h([i], x). Since

f(ϕi), f(ϕ
′
i) ≤ f(h) < η3.1.8 ,
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by Proposition 3.1.6, for i = 0, 1, let Φi,Φ
′
i : X → Zn(M ;Mg;Z2) be the Almgren

extensions of ϕi, ϕ
′
i, respectly, and it follows that

Mg(Φi(x) − Φ′
i(x)) ≤ 2C3.1.6f(h) < 2C3.1.6η3.1.8 ≤ δ3.1.7 .

Hence, for i = 0, 1, by Proposition 3.1.7, there exists a Mg-continuous

H ′
i : [0, 1] ×X → Zn(M ;Mg;Z2) ,

with H ′
i(0, ·) = Φi and H ′

i(1, ·) = Φ′
i, and such that for all (t, x) ∈ (0, 1) ×X,

Mg(H
′
i(t, x)) ≤ Mg(Φ

′
i(x)) + C3.1.7 · 2C3.1.6f(h)

≤ Mg(ϕ
′
i(x0)) + C3.1.6f(ϕ

′
i) + C3.1.7 · 2C3.1.6f(h)

≤ h([i], x0) + (C3.1.6 + C3.1.7 · 2C3.1.6)f(h)

≤ h([i], x0) + C3.1.8f(h) .

as long as x0 ∈ X(l)0 and x are in the same cell of X(l).

By Proposition 3.1.6 again, the Almgren extension

H ′ : [0, 1] ×X → Zn(M ;Mg;Z2)

of h is a homotopy between Φ′
0 and Φ′

1 such that for all (t, x) ∈ (0, 1) ×X,

Mg(H
′(t, x)) ≤ Mg(h(t0, x0)) + C3.1.6f(h) ≤ Mg(h(t0, x0)) + C3.1.8f(h) ,

as long as (t0, x0) ∈ I(1, q+ l)0×X(l)0 and (t, x) are in the same cell of I(1, q+ l)×X(l).

Finally, concatenating H ′
0, H

′ and H ′
1(1 − t, x), we obtain a homotopy

H : [0, 1] ×X → Zn(M ;Mg;Z2)
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between Φ0 and Φ1. By the previous estimates, for all (t, x) ∈ [0, 1] ×X,

Mg(H(t, x)) ≤ Mgh(t0, x0) + C3.1.8f(h) .

for some (t0, x0) ∈ I(1, q + l)0 ×X(l)0 where x and x0 are in the same cell of X(l). □

Proposition 3.1.9 (Simplicial variant of [MN21, Proposition 3.7]). Let X be a finite

simplicial complex, and Φ : X → Zn(M ;Fg;Z2) be a continuous map. Then for every

ε > 0 there exists an Mg-continuous map

Φ′ : X → Zn(M ;Mg;Z2)

and an Fg-continuous homotopy H : [0, 1] × X → Zn(M ;Fg;Z2) with H(0, ·) = Φ and

H(1, ·) = Φ′, and such that

sup
(t,x)∈(0,1)×X

Fg(H(t, x),Φ(x)) < ε ,

sup
(t,x)∈(0,1)×X

Mg(H(t, x)) < sup
x∈X

Mg(Φ(x)) + ε .

Proof. By [BP02, Chapter 4], the finite simplicial complexX is homeomorphic to a cubical

subcomplex of some IN . It follows from that [MN21, Proposition 3.7] for every ε > 0, we

have a desired homotopy map H with

sup
(t,x)∈(0,1)×X

Fg(H(t, x),Φ(x)) < ε .

Furthermore, by the definition of Fg, for every ε′ > 0, we can select even smaller ε

ensuring that the aforementioned inequality leads to

sup
(t,x)∈(0,1)×X

|Mg(H(t, x)) −Mg(Φ(x))| < ε′ .

This concludes the proof. □
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3.2. (m, r)g-almost minimizing varifolds. Let Mn+1 (3 ≤ n + 1 ≤ 7) be a closed

smooth manifold, and Γ∞(M) be the set of all the Riemannian metrics on M . Let us

first recall the definitions of almost minimizing varifolds in [Pit81, MN21].

Definition 3.2.1. For each pair of positive numbers ε, δ, an open subset U ⊂ (Mn+1, g),

and T ∈ Zn(M ;Z2), an (ε, δ)-deformation of T in U is a finite sequence (Ti)
q
i=0 in

Zn(M ;Z2) with

(1) T0 = T and spt(T − Ti) ⊂ U for all i = 1, · · · , q;

(2) Mg(Ti − Ti−1) ≤ δ for all i = 1, · · · , q;

(3) Mg(Ti) ≤ Mg(T ) + δ for all i = 1, · · · , q;

(4) Mg(Tq) <Mg(T ) − ε.

We define ag(U ; ε, δ) to be the set of all flat cycles T ∈ Zn(M ;Z2) that do not admit

(ε, δ)-deformations in U .

Definition 3.2.2. For an open set U ⊂ (Mn+1, g), a varifold V ∈ Vn(M) is almost

minimizing if for every ε > 0, we can find δ > 0 and

T ∈ ag(U ; ε, δ)

with Fg(V, |T |) < ε.

In the following, for m ∈ N+, we set Im := 3m3m . We now define a quantitative almost

minimizing condition inspired by Pitts’ combinatorial arguments.

Definition 3.2.3. Let m ∈ N+ and r ∈ R+. A varifold V in (M, g) is (m, r)g-almost

minimizing if the following holds. For any point p ∈ M and any Im concentric annuli

{Ang(p, ri − si, ri + si)}Imi=1, where {ri} and {si} satisfy

ri − 2si > 2(ri+1 + 2si+1), i = 1, . . . , Im − 1,

rIm − 2sIm > 0,

r1 + s1 < r,
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V is almost minimizing [Pit81, Definition 3.1] in at least one of the annuli.

Remark 3.2.4. The definition presented here closely resembles the Property (m) in

[Li23a] with the added requirement of a radius bound assumption.

Theorem 3.2.5 ([SS81, Theorem 4]). In (Mn+1, g)(3 ≤ n+1 ≤ 7), if V is (m, r)g-almost

minimizing and stationary, then V is a stationary integral varifold whose support spt(V )

is a smooth, embedded, closed, minimal hypersurface.

When the metric g is obvious from the context, we might omit the subscript g for

simplicity.

In the subsequent subsections, we establish a set of technical lemmas concerning the

two essential concepts of the previous definitions: annular replacements and the almost

minimizing property.

Annular replacement.

Lemma 3.2.6. Let D,L ∈ R+, m ∈ N+, and K ⊂ Γ∞(M) be a compact set of C∞

Riemannian metrics on M . There exists η3.2.6 = η3.2.6(M,K,D,L,m) > 0 for which the

following hold.

If g, ḡ ∈ K and V0, V1, V2 ∈ Vn(M) satisfy

• ∥g − ḡ∥C∞,ḡ ≤ η3.2.6,

• ∥V0∥g(M), ∥V1∥g(M), ∥V2∥g(M) ≤ 2L,

• Fg(V0, V1) ≤ η3.2.6,

• V0 stationary in (M, ḡ),

• V1 = V2 onM\(Bg(p1, 2η3.2.6)∪· · ·∪Bg(pt, 2η3.2.6)) for some collection {p1, · · · , pt} ⊂

M, t ≤ 32m,

• ∥V1∥g(M) − η3.2.6 ≤ ∥V2∥g(M) ≤ ∥V1∥g(M) + η3.2.6,

then Fg(V1, V2) < D/2.

Proof. The proof is essentially the same as that of [MN21, Lemma 4.5].
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If this is false for any ηi = 1
i

(i = 1, 2, 3, · · · ), we obtain the existence of gi, ḡi ∈ K,

V i
0 , V

i
1 , V

i
2 ∈ Vn(M) satisfying all the conditions in the lemma with (ηi, gi, ḡi, V

i
0 , V

i
1 , V

i
2 )

in place of (η, g, ḡ, V0, V1, V2) but

Fg(V
i
1 , V

i
2 ) ≥ D/2 .

Up to a subsequence, by taking a limit, we obtain g′, ḡ′ ∈ K, V ′
0 , V

′
1 , V

′
2 ∈ Vn(M) and

{p1, · · · , pt′} ⊂M , t′ ≤ 32m, such that

i g′ = ḡ′;

ii V ′
1 = V ′

0 is stationary;

iii ∥V ′
0∥(M) = ∥V ′

2∥(M) and V ′
0 = V ′

2 on M \ (Bg′(p1, r) ∪ · · · ∪ Bg′(pt′ , r)) for all

r > 0;

iv Fg(V
′
0 , V

′
2) ≥ D/2.

It follows from the monotonicity formula for stationary varifolds that there exists C > 0

such that

∥V ′
0∥g′(Bg′(q, r)) ≤ Crn

for all r sufficiently small. Hence, (ii) implies that V ′
0 = V ′

2 , which contradicts (iii). □

Lemma 3.2.7. For any m ∈ N+ and g ∈ Γ∞(M), there exists a positive constant η3.2.7 =

η3.2.7(M, g,m) with the following property:

If V ∈ Vn(M) is a stationary varifold on (M, g), {pi}ti=1 ⊂ M with t ≤ 4 · 32m is a

collection of points, and {ri}ti=1 ⊂ (0, 4η3.2.7), then

spt(V ) \
t⋃

i=1

Bg(pi, ri) ̸= ∅ .

Proof. Using the monotonicity formula, we can find positive constants R > s > 0 which

only depend on M, g and m, such that for any p ∈M and for any stationary varifold V ,

∥V ∥g(Bg(p,R)) ≥ 8 · 32m∥V ∥g(Bg(p, s)) .
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We can set η3.2.7 := s/4.

Now, assume for the sake of contradiction that there exists a stationary varifold V such

that

spt(V ) ⊂
t⋃

i=1

Bg(pi, ri) .

Then, there must exist a ball Bg(pi0 , ri0) satisfying

∥V ∥g(Bg(pi0 , ri0)) >
∥V ∥g(M)

4 · 32m
.

Since ri0 < 4η3.2.7 ≤ s, it follows that

∥V ∥g(Bg(pi0 , R)) ≥ (8 · 32m)∥V ∥g(Bg(pi0 , ri0)) > ∥V ∥g(M) .

This leads to a contradiction. □

Lemma 3.2.8. For any m ∈ N+ and g ∈ Γ∞(M), there exists a positive constant η3.2.8 =

η3.2.8(M, g,m) with the following property:

For some k ∈ {0, 1, · · · , n}, let T, S ∈ Ik(M ;Z2) be two flat chains with ∂T = ∂S = 0,

{pi}ti=1 ⊂M with t ≤ 4 · 32m be a collection of points, and {ri}ti=1 ⊂ (0, 4η3.2.8). If T = S

on M \
⋃t

i=1Bg(pi, ri), then

T ∈ Zk(M ;Z2) ⇐⇒ S ∈ Zk(M ;Z2) .

Proof. Since (M, g) is closed, we can find a positive constant η1 = η1(M, g) such that for

every p ∈M and s ∈ (0, 4η1), Bg(p, s) is diffeomorphic to a ball.

Claim 3.2.9. If every ri < 4η1 and all the balls {Bg(pi, ri)}i are disjoint from each other,

then

T ∈ Zn(M ;Z2) ⇐⇒ S ∈ Zn(M ;Z2) .

Proof. If T ∈ Zn(M ;Z2), then there exists R ∈ Ik+1(M ;Z2) such that T = ∂R.
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Since T = S on M \
⋃t

i=1Bg(pi, ri), then

spt(T − S) ⊂
t⋃

i=1

Bg(pi, ri) .

In particular, since ∂(T − S) = 0 and the closed balls are disjoint from each other, for

each i, Pi = (T − S)⌞Bg(pi, ri) also satisfies

∂Pi = 0 .

As Bg(pi, ri) is contractible, we can find Ri ∈ Ik(M ;Z2) with ∂Ri = Pi.

Therefore, for R′ := R +
∑

iRi, we have

∂R′ = ∂R +
∑
i

∂Ri = T + (T − S) = S ,

i.e., S ∈ Zk(M ;Z2).

By symmetry, if S ∈ Zk(M ;Z2), then T ∈ Zk(M ;Z2) as well. This completes the

argument. □

In general, we have the following covering results.

Claim 3.2.10. There exists η2 = η2(M, g,m) > 0 such that if ri ∈ (0, 4η2), then any

collection of balls {Bg(pi, ri)}ti=1 with t ≤ 4 · 32m, can be covered by 4 · 32m many pairwise

disjoint closed balls of radius at most η1, {Bg(p
′
i, r

′
i)}t

′
i=1.

Proof. If false, we obtain a sequence of balls {Bg(p
j
i , r

j
i )}

tj
i=1 such that

(i) tj ≤ 4 · 32m;

(ii) limj supi r
j
i = 0;

(iii) {Bg(p
j
i , r

j
i )}

tj
i=1 cannot be covered by 4 · 32m disjoint closed balls of radius at most

r/2.
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Up to a subsequence, {Bg(p
j
i , r

j
i )}

tj
i=1 converges to a set of points {p′i}t

′
i=1 in the Hausdorff

sense and t′ ≤ 4 ·32m. Obviously, we can choose 4 ·32m pairwise disjoint closed balls of ra-

dius at most η1 whose interiors cover {p′i}t
′
i=1. Hence, these balls also cover {Bg(p

j
i , r

j
i )}

tj
i=1

for sufficiently large j. This contradicts our assumption (iii). □

Now, let η3.2.8 = min(η1, η2) defined above, and then {Bg(pi, ri)}ti=1 can be covered by

pairwise disjoint balls of radii no greater than η1,

{Bg(p
′
i, r

′
i)}t

′

i=1 .

Since T = S on M \
⋃t′

i=1Bg(p
′
i, r

′
i), it follows from Claim 3.2.9 that

T ∈ Zk(M ;Z2) ⇐⇒ S ∈ Zk(M ;Z2) .

□

We denote by ML
g ⊂ Vn(M) the set of all the embedded minimal cycles with total

measure L, i.e. all the stationary integral varifolds with total measure L, and supported

on a smooth, closed, embedded minimal hypersurface in (M, g).

Lemma 3.2.11. Let m ∈ N+, L ∈ R+ and g ∈ Γ∞(M) be a C∞ Riemannian metrics

on M . Let G ⊂ ML
g be a compact subset such that for every W ∈ G, there exists

T ∈ Zn(M ;Z2) such that W = |T |. Let r := min(η3.2.7(M, g,m), η3.2.8(M, g,m)) from

Lemmas 3.2.7 and 3.2.8. Then there exists η3.2.11 = η3.2.11(M, g,m,G) > 0 with the

following property.

If V1, V2 ⊂ Vn(M) satisfy

• V1 ∈ B
Fg
η3.2.11(G);

• V2 ∈ ML
g ;

• V2 = V1 on M \ (Bg(p1, 2r) ∪ · · · ∪Bg(pt, 2r)) for some collection

{p1, · · · , pt} ⊂M, t ≤ 32m;

Then there exists T2 ∈ Zn(M ;Z2) such that V2 = |T2|.
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Proof. The lemma follows from the following claim.

Claim 3.2.12. For every W ∈ G, there exists η1 = η1(M, g, r,W ) > 0 such that for any

V ∈ ML
g , any s ∈ [2r, 5r/2], and any collection {p1, · · · , pt} ⊂M, t ≤ 32m, if

(3.1) Fg,M\(Bg(p1,s)∪···∪Bg(pt,s))
(W,V ) < ηW,r ,

then there exists T ′ ∈ Zn(M ;Z2) such that V = |T ′|. In particular, since r depends on

M , g, and m, so η1 = η1(M, g,m,W ).

Proof. Let T ∈ Zn(M ;Z2) such that W = |T |. By Allard’s ε-regularity theorem [All72],

there exists an η1(M, g, r,W ) > 0 independent of the choice of balls, such that for any V

satsfying (3.1), we have

spt(V ) ∩M \ (Bg(p1, 3r) ∪ · · · ∪Bg(pt, 3r))

is a subset of a (multiplicity-one) minimal graph over W .

Hence, as r ≤ η3.2.7(M, g,m), by Lemma 3.2.7, V has multiplicity one and thus,

ML
g ∋ V = |T ′| ,

for some current T ′ ∈ In(M ;Z2) with ∂T ′ = 0.

Furthermore, the graphical property implies the existence of R ∈ In+1(M ;Z2) such

that

spt(∂R− T ′ − T ) ⊂ (Bg(p1, 7r/2) ∪ · · · ∪Bg(pt, 7r/2)) .

i.e., ∂R+ T = T ′ in M \ (Bg(p1, 7r/2)∪ · · · ∪Bg(pt, 7r/2)). It follows from Lemma 3.2.8

and r ≤ η3.2.8(M, g,m) that

T ′ ∈ Zn(M ;Z2) .

□
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Indeed, there exists s ∈ [2r, 5r/2] such that spt(W ) intersects every ∂Bg(pi, s) transver-

sally. Hence, there exists η′W > 0 such that for every V ′ ∈ Vn(M),

(3.2) Fg(W,V
′) < η′W =⇒ Fg,Ms(W,V

′) < ηW .

Since G is compact, there exists a finite subset {Wi}Ni=1 such that

G ⊂
N⋃
i=1

B
Fg

η′Wi

(Wi) ,

and furthermore, we can choose η3.2.11 such that

(3.3) BFg
η3.2.11

(G) ⊂
N⋃
i=1

B
Fg

η′Wi

(Wi) .

Now if V1 and V2 satisfies all the conditions in the lemma, then

V1 ∈ BFg
η3.2.11

(G) =⇒ ∃ Wi ∈ G, V1 ∈ B
Fg

η′Wi

(Wi) (by (3.3))

=⇒ ∃ s ∈ [2r, 5r/2], Fg,Ms(Wi, V1) < ηWi
(by (3.2))

=⇒ Fg,Ms(Wi, V2) < ηWi
(by the third bullet point)

=⇒ ∃ T2 ∈ Zn(M ;Z2), V2 = |T2| (by Claim 3.2.12) .

□

Lemma 3.2.13. Let m ∈ N+, L ∈ R+, g ∈ Γ∞(M) be a C∞ Riemannian metrics on M ,

r := min(η3.2.7(M, g,m), η3.2.8(M, g,m)) and G,B ⊂ ML
g be compact subsets such that

• For every V ∈ G, there exists T ∈ Zn(M ;Z2) such that V = |T |;

• For every V ∈ B, no T ∈ Zn(M ;Z2) such that V = |T |.

Then there exists η3.2.13 = η3.2.13(M, g,m,L,G,B) > 0 with the following property:

If g′, g′′ ∈ Γ∞(M), and {Vi}6i=1 ∪ {Wi}6i=1 ⊂ Vn(M) satisfy

• ∥g′ − g∥C∞,g < η3.2.13;

• ∥Vi∥g(M), ∥Wi∥g(M) < 2L for any i;
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• V1 ∈ B
Fg
η3.2.13(G),W1 ∈ B

Fg
η3.2.13(B);

• V2 = V1 on M \ (Bg′(p1, 2r) ∪ · · · ∪Bg′(pt, 2r)) for some collection

{p1, · · · , pt} ⊂M, t ≤ 32m;

• W2 = W1 on M \ (Bg′(p̄1, 2r) ∪ · · · ∪Bg′(p̄t̄, 2r)) for some collection

{p̄1, · · · , p̄t̄} ⊂M, t̄ ≤ 32m;

• Fg′(V3, V2) < η3.2.13;

• Fg′(W3,W2) < η3.2.13;

• Fg′(V4, V3) < η3.2.13;

• Fg′(W4,W3) < η3.2.13;

• V5 = V4 on M \ (Bg′′(p
′
1, 2r) ∪ · · · ∪Bg′′(p

′
t′ , 2r)) for some collection

{p′1, · · · , p′t′} ⊂M, t′ ≤ 32m;

• W5 = W4 on M \ (Bg′′(p̄
′
1, 2r) ∪ · · · ∪Bg′′(p̄

′
t̄′ , 2r)) for some collection

{p̄′1, · · · , p̄′t̄′} ⊂M, t̄′ ≤ 32m;

• Fg′′(V6, V5) < η3.2.13;

• Fg′′(W6,W5) < η3.2.13;

Then Fg(V6,W6) ≥ η3.2.13.

In particular, we have: Let G ′
3.2.13 = G ′

3.2.13(M, g,m,L,G,B) be the set of all V3, G ′′
3.2.13 =

G ′′
3.2.13(M, g,m,L,G,B) be the set of all V6, B′

3.2.13 = B′
3.2.13(M, g,m,L,G,B) be the set

of all W3, and B′′
3.2.13 = B′′

3.2.13(M, g,m,L,G,B) be the set of all W6, which satisfy the

conditions above. Then,

(1) G ′
3.2.13,G ′′

3.2.13,B′
3.2.13 and B′′

3.2.13 are open;

(2) G ⊂ G ′
3.2.13 ⊂ G ′′

3.2.13 and B ⊂ B′
3.2.13 ⊂ B′′

3.2.13;

(3) Fg(G ′′
3.2.13,B′′

3.2.13) ≥ Fg(G ′
3.2.13,B′

3.2.13) ≥ η3.2.13.

Remark 3.2.14. (1) This lemma essentially shows that through a finite number of

annular replacements and approximations, it is not possible for two elements from

sets G and B, respectively, to approach each other closely.
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(2) For every V ∈ B, either one connected component of spt(V ) has multiplicity, or

there exists T ′ ∈ In(M ;Z2) \ Zn(M ;Z2) such that V = |T ′| and ∂T ′ = 0.

Proof. If this is false, by compactness, there exists V1 ∈ G and W1 ∈ B such that

V1 = W1

on M \ (Bg(p1, 3r) ∪ · · · ∪Bg(pt, 3r)) for some collection {p1, · · · , pt} ⊂M, t ≤ 4 · 32m;

Suppose for the sake of contradiction that one connected component Σ̃ of spt(V2) has

multiplicity at least two, then by Lemma 3.2.7 and r ≤ η3.2.7(M, g,m),

Σ̃′ := Σ̃ \
t⋃

i=1

B̄g(pi, 3r) ̸= ∅ .

Therefore, V1⌞Σ̃′ = W1⌞Σ̃′, which contradicts the multiplicity one property of V1.

Hence, both V1 and W1 have multiplicity one. In particular, there exists T ∈ In(M ;Z2)

with ∂T = 0 and S ∈ Zn(M ;Z2) such that

V1 = |T |, W1 = |S| .

Since T = S on M \(Bg(p1, 3r)∪· · ·∪Bg(pt, 3r)), and r ≤ η3.2.8(M, g,m), S ∈ Zn(M ;Z2),

which contradicts the definition of B. □

Almost minimizing property.

Lemma 3.2.15. Let U ⊂ (M, g) be an open subset and L, ε > 0 be positive numbers.

There exists η3.2.15 = η3.2.15(M, g, L, U, ε) > 0 for which the following hold.

If g′ ∈ Γ∞(M) and V, V ′ ∈ Vn(M) satisfy

• ∥g′ − g∥C∞,g ≤ η3.2.15,

• ∥V ∥g(M) ≤ 2L,

• T /∈ ag(U ; 2ε, δ) for any δ > 0 and T ∈ Zn(M ;Z2) with Fg(V, |T |) < 2ε,

• Fg(V, V
′) ≤ η3.2.15,
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then for any δ > 0 and any T ′ ∈ Zn(M ;Z2) with Fg′(V
′, |T ′|) < ε,

T ′ /∈ ag′(U ; ε, δ)

Proof. If this is false for any ηi = 1
i
(i = 1, 2, 3, · · · ), we obtain the existence of g′i, Vi, V

′
i

satisfying all the conditions in the lemma with (ηi, g
′
i, Vi, V

′
i ) in place of (η, g′, V, V ′) but

T ′
i ∈ ag′i(U ; ε, δi)

for some δi > 0 and T ′
i ∈ Zn(M ;Z2) with Fg′i

(V ′
i , |T ′

i |) < ε.

For sufficiently large i, Fgi(Vi, |T ′
i |) < 2ε, so T ′

i /∈ agi(U ; 2ε, δi/2), i.e., there exists a

finite sequence (Tj)
q
j=0 in Zn(M ;Z2) with

(i) T0 = T ′
i and spt(T − Tj) ⊂ U for all j = 1, · · · , q;

(ii) Mg(Tj − Tj−1) ≤ δi/2 for all j = 1, · · · , q;

(iii) Mg(Tj) ≤ Mg(T ) + δi/2 for all j = 1, · · · , q;

(iv) Mg(Tq) <Mg(T ) − 2ε.

Hence, if i is sufficiently large, the above conditions induce the similar ones with respect

to g′i,

(i) T0 = T ′
i and spt(T − Tj) ⊂ U for all j = 1, · · · , q;

(ii) Mg′i
(Tj − Tj−1) ≤ δi for all j = 1, · · · , q;

(iii) Mg′i
(Tj) ≤ Mg′i

(T ) + δi for all j = 1, · · · , q;

(iv) Mg′i
(Tq) <Mg′i

(T ) − ε;

which contradicts T ′
i ∈ ag′i(U ; ε, δi). □

Lemma 3.2.16. Let m ∈ N+, r, d, L ∈ R+, SVL
g be the space of all stationary varifolds in

(Mn+1, g) (3 ≤ n+1 ≤ 7) with volume L, and WL
g ⊂ SVL

g be the subset of all the (m, r)g-

almost minimizing, stationary integral varifolds whose support is a smooth, closed minimal

hypersurface. There exist positive constants ε̄3.2.16 = ε̄3.2.16(M, g,m, r, d, L), s̄3.2.16 =

s̄3.2.16(M, g,m, r, d, L) and η3.2.16 = η3.2.16(M, g,m, r, d, L) for which the following hold.

If g′ ∈ Γ∞(M) and V ∈ Vn(M) satisfy
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• ∥g − g′∥C∞,g < η,

• V ∈ B
Fg
η (SVL

g ), and

• V /∈ B
Fg

d (WL
g ),

then there exists p ∈ M and Im concentric annuli {Ang′,i(V )}Imi=1 ≡ {Ang′(p, ri − si, ri +

si)}Imi=1 such that

(1) {ri} and {si} satisfy

ri − 2si > 2(ri+1 + 2si+1), i = 1, . . . , Im − 1,

rIm − 2sIm > 0,

r1 + s1 < r,

min
i
{si} > s̄3.2.16;

(2) For any i ∈ {1, · · · , Im}, δ > 0 and T ∈ Zn(M ;Z2), if Fg′(V, |T |) < ε̄3.2.16, then

T /∈ ag′(Ang′,i(V ), δ, ε̄).

Proof. Let K := V ∈ SVL
g \BFg

d (WL
g ).

For every V ∈ K, there exist εV > 0, pV ∈M , and Im concentric annuli {Ãng,i(V )}Imi=1 ≡

{Ang(pV , rV,i − sV,i, rV,i + sV,i)}Imi=1 such that

(i) {rV,i} and {sV,i} satisfy

rV,i − 2sV,i > 2(rV,i+1 + 2sV,i+1), i = 1, . . . , Im − 1 ,

rV,Im − 2sV,Im > 0 ,

rV,1 + sV,1 < r ;

(ii) For any i ∈ {1, · · · , Im}, δ > 0 and T ∈ Zn(M ;Z2), if Fg(V, |T |) < εV , then

T /∈ ag(Ãng,i(V ), δ, εV ) .
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Otherwise, V is both (m, r)g-almost minimizing and stationary, so by Theorem 3.2.5,

V ∈ WL
g , which contradicts V ̸∈ B

Fg

d (WL
g ).

Since K is compact, there exists a finite subset {Vj}Nj=1 ⊂ K such that

K ⊂
N⋃
j=1

B
Fg

εVj /2
(Vj) .

In other words, for every V ∈ K, there exists some j such that V ∈ B
Fg

εVj /2
(Vj), so for any

T ∈ Zn(M ;Z2) with Fg(V, |T |) < εVj
/2, any i ∈ {1, · · · , Im} and any δ > 0,

T /∈ ag(Ãng,i(Vj), δ, εVj
/2) .

Moreover, there exists a positive constant η′ such that for any g′ ∈ Γ∞(M) with

∥g′−g∥C∞,g < η′, and any j ∈ {1, · · · , N}, there exist concentric annuli {Ãng′,i(Vj)}Imi=1 ≡

{Ang′(pVj
, rg′,Vj ,i − sg′,Vj ,i, rg′,Vj ,i + sg′,Vj ,i)}Imi=1 in (M, g′) such that

(i) The radii {rg′,Vj ,i}Imi=1 and {sg′,Vj ,i}Imi=1 satisfy

rg′,Vj ,i − 2sg′,Vj ,i > 2(rg′,Vj ,i+1 + 2sg′,Vj ,i+1), i = 1, . . . , Im − 1 ,

rg′,Vj ,Im − 2sg′,Vj ,Im > 0 ,

rg′,Vj ,1 + sg′,Vj ,1 < r ;

(ii) mini(sg′,Vj ,i) > minj mini
sVj,i

2
;

(iii) Ãng′,i(Vj) ⊃ Ãng,i(Vj);

Now, we set

ε̄3.2.16 := min
j

εVj

10
,

s̄3.2.16 := min
j

min
i

sVj ,i

2
,

η3.2.16 := min{d,min
j

min
i
η3.2.15(M, g, L, Ãng,i(Vj), ε̄3.2.16)} .
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To see that these constants fulfill our requirements, let g′ ∈ Γ∞(M) and W ∈ Vn(M)

with ∥g − g′∥C∞,g < η, W ∈ B
Fg
η (SVL

g ), and W /∈ B
Fg

d (WL
g ). Therefore, there exists

V ∈ K and Vj such that

Fg(W,V ) < η3.2.16 ,

V ∈ B
Fg

εVj /2
(Vj) .

Since V satisfies that for any T ∈ Zn(M ;Z2) with Fg(V, |T |) < 2ε̄3.2.16, any i ∈ {1, · · · , Im}

and any δ > 0,

T /∈ ag(Ãng,i(Vj), δ, 2ε̄3.2.16) ,

it follows from Lemma 3.2.15 that for any T ′ ∈ Zn(M ;Z2) with Fg′(W, |T ′|) < ε̄3.2.16, any

i ∈ {1, · · · , Im} and any δ > 0 that

T ′ /∈ ag′(Ãng,i(Vj), δ, ε̄3.2.16) ,

and thus,

T ′ /∈ ag′(Ãng′,i(Vj), δ, ε̄3.2.16) ,

as Ãng′,i(Vj) ⊃ Ãng,i(Vj). Letting

Ang′,i(W ) := Ãng′,i(Vj) ,

for each i, the conclusions (1) and (2) follow immediately. □

Lemma 3.2.17. Let m ∈ N+, r ∈ R+, (Mn+1, g)(3 ≤ n + 1 ≤ 7) be a closed Rie-

mannian manifold, and (gi)
∞
i=1 be a sequence of metrics with gi → g in C∞. For each

i ∈ N+, let Σi be an (m, r)gi-almost minimizing minimal hypersurface in (M, gi). Then Σi

subsequentially converges graphically in C∞ to some (m, r)g-almost minimizing minimal

hypersurface Σ in (M, g).
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Furthermore, suppose that g is a metric with positive Ricci curvature or a bumpy metric.

If (Σi)
∞
i=1 is multiplicity-one, then Σ is also multiplicity-one; If (Σi)

∞
i=1 is two-sided, then

Σ is also two-sided.

Proof. By Allard’s compactness theorem [All72], Σi subsequentially converges, in the

varifold sense, to a stationary integral varifold V in (M, g). Without loss of generality,

by relabelling, we may assume that Σi converges to V in the varifold sense.

To see that V is (m, r)g almost-minimizing, we take any p ∈ M and Im concentric

annuli {Ang(p, rj − sj, rj + sj)} where {rj} and {sj} satisfy

rj − 2sj > 2(rj+1 + 2sj+1), j = 1, . . . , Im − 1,

rIm − 2sIm > 0,

r1 + s1 < r .

Since each Σi is almost minimizing in at least one of these finitely many annuli, there exist

a j0 ∈ {1, · · · , Im} and a subsequence (Σik)∞k=1 such that every Σik is almost minimizing

in Ang(p, rj0 − sj0 , rj0 + sj0). Consequentially, their limit V is also almost minimizing in

Ang(p, rj0 − sj0 , rj0 + sj0) by Lemma 3.2.15, so V is (m, r)g-almost minimizing and its

support is a smooth embedded minimal hypersurface, denoted by Σ, i.e., V = m|Σ| for

some m ∈ N+.

If m = 1, then by Allard’s regularity theorem, Σi subsequentially converges in C∞.

Therefore, it suffices to show that m ≥ 2 is impossible provided that g is a metric with

positive Ricci curvature or a bumpy metric.

Note that the almost minimizing property implies stability. By Schoen-Simon’s regu-

larity theory, the convergence above in Ang(p, rj0 − sj0 , rj0 + sj0) is locally smooth and

graphical.

Let S be the set of open subsets of M such that for each A ∈ S, there exists a

subsequence (Σik)∞k=1 converges locally smoothly and graphically in A. Clearly, every

non-empty totally ordered subset T of S has an upper bound (simply by taking the
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union of all the sets in T ), so by Zorn’s lemma, S has at least one maximal element. Let

us denote one of these maximal elements by R.

Now, we shall show that M \ R has at most finitely many points. Suppose not and

there exists a sequence of distinct points (pl)
∞
l=1 in M \R which converges to some p ∈M .

Let (Σik)∞k=1 be the subsequence which converges locally smoothly and graphically in R.

We can choose Im concentric annuli {Ang(p, rj − sj, rj + sj)} satisfying the relations as

above and further such that each annuli contains at least one pl. By the (m, r)g-almost

minimizing property at p, (Σik)∞k=1 has a subsequence (Σi′k
)∞k=1, each of which is also almost

minimizing in a concentric annulus, say, Ang(p, rj0−sj0 , rj0+sj0) containing pl0 . Therefore,

(Σi′k
)∞k=1 converges locally smoothly and graphically in R∪Ang(p, rj0 −sj0 , rj0 +sj0) ⊋ R,

contradicting the maximality of R.

It follows from [ACS18a, Theorem 5] that when m ≥ 2, Σ (or its double cover Σ̃ if

one-sided) is stable and has nullity 1, which is impossible since g is either bumpy or of

positive Ricci curvature. □

In [Li23a], it was shown that every p-width ω(M, g) can be realized by a varifold with

Property (2p + 1)g. An important ingredient of its proof is the following lemma, which

was established in Proposition 3.2 therein. For the sake of completeness, we present the

proof here.

Lemma 3.2.18. If X is a k-dimensional finite simplicial complex, there exists a cubical

subcomplex Y of I(2k + 1, l) for some l ∈ N+ for which the following hold.

(1) If we regard Y as a simplicial complex, X can be viewed as a subcomplex of some

refinement of Y . In particular, there exists an embedding

ι : X → Y ;

(2) There exists a retraction map

r : Y → X .
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Proof. Note that the underlying set of a finite simplicial complex is also a compact poly-

hedron (See [RS82, 1.8]). Applying the general position theorem for maps [RS82, Theo-

rem 5.4] with M = I2k+1 (endowed with the Euclidean metric), P = X, P0 = ∅, ε = 1/10

and the closed map f : X → I2k+1 defined by

f(p) ≡ c(I2k+1)

where c(I2k+1) is the center point of I2k+1, we obtain a piecewise-linear embedding

f ′ : X → I2k+1 .

f ′ is an embedding since it is nondegenrate and dim(S(f ′)) ≤ 2k − (2k + 1) < 0.

By [RS82, p.33], there exists a regular neighborhood U , and by [RS82, Corollary 3.30],

f ′(X) is a deformation retract of Z, i.e., there exists a retraction map

r̃ : U → f ′(X) .

Since d = dist(f ′(X), ∂U) > 0, we can find a large integer l = l(k, d) ∈ N+ such that for

every (closed) (2k + 1)-cell α of I(2k + 1, l), if |α| ∩ f ′(X) ̸= ∅, then |α| ⊂ U , and we set

Y to be the union of all such |α|. It is obvious that

f ′(X) ⊂ Y ⊂ U .

Therefore, f ′ and r̃ induce the embedding ι : X → Y and the retraction r := f ′−1◦ r̃|Y :

Y → X. □

3.3. Restrictive min-max theory. The concept of restrictive min-max theory was

originally introduced by the second author in [Li23b, Section 2.3] with the purpose of

generating CMC hypersurfaces. In this work, we extend and apply this theory to our

specific setting.

In the following, let X be a k-dimensional, finite, simplicial complex and Z be a

subcomplex of a refinement of X. Note that Z can be the empty set.
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Deformations. In this subsection, we adapt some crucial technical deformation construc-

tions from Pitts [Pit81] and Marques-Neves [MN21] to our setting. Later, we will apply

these constructions to improve sweepouts.

Lemma 3.3.1 (Pull-tight). Given c > 0, we define

V≤c := {V ∈ Vn(M) : ∥V ∥g(M) ≤ c} ,

SV≤c := {V ∈ V≤c : V is stationary in (M, g)} ,

Z≤c := Zn(M ;Fg;Z2) ∩ {T : |T | ∈ V≤c} .

Then there exist continuous maps,

F̄PT :[0, 1] × V≤c → V≤c ,

FPT :[0, 1] ×Z≤c → Z≤c ,

such that

(1) For all V ∈ V≤c, F̄PT(0, V ) = V ;

(2) For all t ∈ [0, 1], F̄PT(t, V ) = V if V ∈ SV≤c;

(3) For all t ∈ (0, 1], ∥F̄PT(t, V )∥g(M) < ∥V ∥g(M) if V /∈ SV≤c;

(4) Furthermore, for each t ∈ [0, 1] and each S ∈ Z≤c,

|FPT(t, S)| = F̄PT(t, |S|) .

Proof. The proof is essentially the same as that of [Pit81, Theorem 4.3] (see also Sect.

15 of [MN14]). □

Corollary 3.3.2 (Pulled-tight sequence). Given a constant c > 0 and a sequence of

finite simplicial complices (Xi)
∞
i=1, let (Φi : Xi → Zn(M ;Fg;Z2))

∞
i=1 be a sequence of

Fg-continuous maps such that

L = lim sup
i

sup
x∈Xi

Mg ◦ Φi(x) > 0 ,

sup
i

sup
x∈Xi

Mg ◦ Φi(x) ≤ c .
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Then there exists a sequence (Φ′
i : Xi → Zn(M ;Fg;Z2))

∞
i=1 such that

(1) For each i ∈ N+, there exists a homotopy map

HPT
i : [0, 1] ×Xi → Zn(M ;Fg;Z2)

with HPT
i (0, ·) = Φi(·), HPT

i (1, ·) = Φ′
i(·) satisfying that for each (t, x) ∈ [0, 1]×Xi,

Mg(H
PT
i (t, x)) ≤ Mg(Φi(x)) ;

(2) The set of varifolds

VL((Φ′
i)i) := {V = lim

j
|Φ′

ij
(xj)| : N+ ∋ ij ↗ ∞, xj ∈ Xij , ∥V ∥g(M) = L}

is a subset of

VL((Φi)i) := {V = lim
j

|Φij(xj)| : N+ ∋ ij ↗ ∞, xj ∈ Xij , ∥V ∥g(M) = L};

(3) VL((Φ′
i)i) ⊂ SV≤c, i.e., VL((Φ′

i)i) only contains stationary varifolds.

Proof. By Lemma 3.3.1, we can define HPT
i by

HPT
i (t, x) := FPT(t,Φi(x)) .

The properties of FPT and F̄PT immediately yield all the stated conclusions. □

The following is a continuous version of [MN21, Theorem 4.6].

Lemma 3.3.3 ((ε, δ)-deformation). Let R, ε̄, η, s > 0 be constants such that ε̄ < 2R, and

W ⊂ Vn(M). Let Φ : X → Zn(M ;Mg;Z2) be a continuous map and L = supx∈X Mg(Φ(x))

such that if x ∈ X satisfies

Mg(Φ(x)) ≥ L− ε̄, Fg(|Φ(x)|,W) ≥ R ,
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then Φ(x) satisfies annular (ε̄, δ)-deformation conditions, i.e., there exist p(x) ∈ M and

I2k+1 positive numbers

r1(x), · · · , rI2k+1
(x), s1(x), · · · , sI2k+1

(x)

satisfying

si(x) ≥ s, i = 1, · · · , I2k+1 − 1

ri(x) − 2si(x) > 2(ri+1(x) + 2si+1(x)), i = 1, · · · , I2k+1 − 1

r1(x) + 2s1(x) < η,

rI2k+1
(x) − 2sI2k+1

(x) > 0,

such that Φ(x) admits an (ε̄, δ)-deformation in each annulus

Ang(p(x), ri(x) − si(x), ri(x) + si(x)) ∩M,

i = 1, · · · , I2k+1, for every δ > 0.

Then for any δ̄ > 0, there exists a continuous map

Φ∗ : X → Zn(M ;Mg;Z2)

for which the following hold.

(1) There exists a homotopy map

HDEF : [0, 1] ×X → Zn(M ;Mg;Z2)

with HDEF(0, ·) = Φ and HDEF(1, ·) = Φ∗ satisfying that for each (t, x) ∈ [0, 1]×X,

Mg(H
DEF(t, x)) <Mg(Φ(x)) + δ̄ ;
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(2) For any x ∈ X and t ∈ [0, 1], there exist x̂ = x̂(x) ∈ X and Tt,x ∈ Zn(M ;Z2)

such that

Mg(H
DEF(t, x), Tt,x) < δ̄ ,

Mg(Φ(x̂),Φ(x)) < δ̄ ,

Mg(Φ(x̂)) >Mg(H
DEF(t, x)) − δ̄ ,

and

Tt,x⌞(M \ (Bg(p1, η) ∪ · · · ∪ (Bg(pm, η))) = Φ(x̂)⌞(M \ (Bg(p1, η) ∪ · · · ∪ (Bg(pm, η)))

for some collection {p1, · · · , pm} ⊂M , m ≤ 32k+1;

(3) If Mg(Φ
∗(x)) ≥ L− ε̄/10, then

Fg(|Φ(x̂)|,W) ≤ 2R ,

where x̂ is the same as that in (2).

Proof. Fix δ̄ > 0.

Since X is a k-dimensional finite simplicial complex, by 3.2.18, there exists a cubical

subcomplex Y of I(2k + 1, l) for some l ∈ N+ and a retraction map

r : Y → X .

Define Ψ : Y → Zn(M ;Mg;Z2) by Ψ = Φ ◦ r. It is easy to verify that Ψ also satisfies all

the assumptions for Φ in the lemma.

For each q ∈ N+, we define ψq : Y (q)0 → Zn(M ;Z2), by

ψq = Ψ|Y (q)0 .

Since Ψ is continuous in the Mg-topology, the fineness f(ψq) → 0 as q → ∞. In the

following, we shall subsequently choose q larger and larger so as to apply interpolation

propositions from the previous section.
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First, we choose N1 ∈ N+, such that for all q ≥ N1,

f(ψq) < min(δ3.1.6,min(δ3.1.7, δ̄/(5C3.1.7))/(2C3.1.6))

and for all x, y ∈ Y , if x and y lie in a common cell of Y (q),

Mg(Ψ(x),Ψ(y)) < min(δ3.1.7, δ̄/(5C3.1.7))/2 .

Then by Proposition 3.1.6, ψq has the Almgren extension Ψq and

sup
y∈Y

Mg(Ψ(y) − Ψq(y)) < min(δ3.1.7, δ̄/(5C3.1.7) .

It follows from Proposition 3.1.7, there exists a homotopy map

H(1)
q : [0, 1] × Y → Zn(M ;Mg;Z2)

with H
(1)
q (0, ·) = Ψ and H

(1)
q (1, ·) = Ψq, and for all t ∈ [0, 1] and y ∈ Y ,

Mg(H
(1)
q (t, y)) ≤ Mg(Ψ(y)) + C3.1.7 sup

y∈Y
Mg(Ψ(y) − Ψq(y))

<Mg(Ψ(y)) + δ̄/5 .

Secondly, we choose N2 ∈ N+ with N2 > N1, such that for all q ≥ N2, the following

condition from [MN21, Theorem 4.6] holds,

(2k + 1)f(ψq)(1 + 4(32k+1 − 1)s−1) < min{ ε̄

32(2k+1)8
, γiso} ,

Consequently, [MN21, Theorem 4.6] implies that there exists C = C(k, s) > 0, an integer

q′ > q, and a map

ψ∗
q : Y (q′)0 → Zn(M ;Z2)

such that
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(i) ψ∗
q is (Y,Mg)-homotopic to ψq, through a discrete homotopy

hq : I(1, l + q′)0 × Y (q′)0 → Zn(M ;Z2)

with fineness f(hq) ≤ Cf(ψq);

and for all (t, y) ∈ I(1, l + q′)0 × Y (q′)0, if ŷ = n(l + q′, l + q)(y), then

(ii) hq(t, y)(M \ (Bη(p1)∪ · · · ∪ (Bη(pm))) = ψq(ŷ)⌞(M \ (Bη(p1)∪ · · · ∪ (Bη(pm))) for

some collection {p1, · · · , pm} ⊂M , m ≤ 32k+1;

(iii) Mg(hq(t, y)) ≤ Mg(ψ(ŷ)) + 2 · 32(2k+1)(2k + 1)(1 + 4(32k+1 − 1)s−1)f(ψq) ;

(iv) if Mg(ψ
∗
q (y)) ≥ L− ε̄/5, then Fg(|ψq(ŷ)|,W) ≤ 2R.

Thirdly, we choose N3 ∈ N+ with N3 > N2, such that for all q ≥ N3,

f(hq) ≤ Cf(ψq) < min(η3.1.8, δ̄/(5C3.1.8)) ,

2 · 32(2k+1)(2k + 1)(1 + 4(32k+1 − 1)s−1)f(ψq) < δ̄/5 ,

and for all x and y which lie in the same cell of Y (q),

Mg(Ψ(x) − Ψ(y)) < δ̄/5 .

Applying Proposition 3.1.8 to (i) above, we obtain a Mg-continuous homotopy map

H(2)
q : [0, 1] × Y → Zn(M ;Mg;Z2)

with H
(2)
q (0, ·) = Ψq the Almgren extension of ψq, and H

(2)
q (1, ·) = Ψ∗

q the Almgren

extension of ψ∗
q . Furthermore, for all t ∈ [0, 1], y ∈ Y , there exists (t0, y0) ∈ I(1, l+ q′)0×
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Y (q′)0 such that y and y0 are in the same cell of Y (q′), and

Mg(H
(2)
q (t, y)) ≤ Mg(hq(t0, y0)) + C3.1.8f(hq)

≤ Mg(ψq(ŷ0)) + 2 · 32(2k+1)(2k + 1)(1 + 4(32k+1 − 1)s−1)f(ψq) + C3.1.8f(hq)

<Mg(ψq(ŷ0)) + 2δ̄/5

<Mg(Ψ(y)) + 3δ̄/5

where we use (iii) in the second line and the fact that y and ŷ0 are in the same cell of

Y (q) in the last line.

Now, concatenating H
(1)
q and H

(2)
q , we obtain a homotopy

Hq : [0, 1] × Y → Zn(M ;Mg;Z2)

between Ψ and Ψ∗
q, and for all (t, y) ∈ [0, 1] × Y ,

(3.4) Mg(Hq(t, y)) <M(Ψ(y)) + δ̄ .

Finally, we choose N4 ∈ N+ with N4 > N3 such that for all q ≥ N4,

f(hq) ≤ Cf(ψq) < min(ε̄, δ̄)/(10C3.1.6) ,

and for all x and y which lie in the same cell of Y (q),

Fg(|Ψ(x)|, |Ψ(y)|) < R .

Hence, we can fix a q ≥ N4, and set

HDEF := Hq|[0,1]×X , Φ∗ := Ψ∗
q|X .

The statement (1) follows immediately from (3.4).

To see (2), for any x ∈ X and t ∈ [0, 1], choose y0 ∈ Y (q′)0 such that x and y0 lie

in the same cell of Y (q′). If HDEF(x, t) = H
(1)
q (x, t1), then we set t0 := 0; Otherwise
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HDEF(x, t) = H
(2)
q (x, t2), and we choose t0 ∈ [0, 1](l + q′)0 such that t0 and t2 lie in the

same cell of [0, 1](1 + q′). We let Tt,x := hq(t0, y0). By Proposition 3.1.6 and Proposition

3.1.7,

Mg(H
DEF(t, x), Tt,x) = Mg(Hq(t, x), hq(t0, y0))

< max(C3.1.7 sup
y∈Y

Mg(Ψ(y) − Ψq(y)), C3.1.6f(hq))

< δ̄/5 .

It follows from (ii) above that

hq(t0, y0)(M \ (Bη(p1) ∪ · · · ∪ (Bη(pm))) = ψq(ŷ0)⌞(M \ (Bη(p1) ∪ · · · ∪ (Bη(pm)))

for some collection {p1, · · · , pm} ⊂ M , m ≤ 32k+1. Using the retraction map r, we let

x̂ = r(ŷ0), then we obtain

Tt,x⌞(M \ (Bη(p1) ∪ · · · ∪ (Bη(pm))) = Φ(x̂)⌞(M \ (Bη(p1) ∪ · · · ∪ (Bη(pm))) .

In addition, by (iii),

Mg(Φ(x̂)) = Mg(Ψ(ŷ0))

= Mg(ψq(ŷ0))

≥ Mg(hq(y0, t0)) − δ̄/5

>Mg(H
DEF(x, t)) − δ̄ .

Since x and y0 lie in the same cell of Y (q′)

Mg(Φ(x̂),Φ(x)) = Mg(Ψ(ŷ0),Ψ(x)) < barδ

95



As for (3), if Mg(Φ
∗(x)) ≥ L − ε̄/10, we choose y0 ∈ Y (q′)0 again such that x and y0

lie in the same cell of Y (q′). Since

Mg(ψ
∗
q (y0)) ≥ Mg(Ψ(x)) − C3.1.6f(hq)

≥ Mg(Φ(x)) − ε̄

10

≥ L− ε̄

5
,

by (iv) above, there exist ŷ0 ∈ Y (q)0, such that

Fg(|Φ(x̂)|,W) = Fg(|Ψ(ŷ0)|,W) ≤ 2R .

□

Corollary 3.3.4 ((ε, δ)-deformed sequence). For any c,D > 0, there exists a positive

constant η3.3.4 = η3.3.4(M, g,D, c) ∈ (0, D) with the following property.

Let W ⊂ Vn(M), (Xi)
∞
i=1 a sequence of k-dimensional finite simplicial complices and

(Φi : Xi → Zn(M ;Fg;Z2))
∞
i=1 be a sequence of Fg-continuous maps such that

• L = lim supi supx∈Xi
Mg ◦ Φi(x) ∈ (0, c);

• VL((Φi)i) ⊂ B
Fg
η3.3.4(SVL);

• No varifold in VL((Φi)i) \BFg
η3.3.4(W) is (2k + 1, η3.3.4)g-almost minimizing.

For any sequence (δi)
∞
i=1 > 0, there exists a sequence (Φ∗

i : Xi → Zn(M ;Fg;Z2))
∞
i=1

such that

(1) For each i ∈ N+, there exists a homotopy map

HDEF
i : [0, 1] ×Xi → Zn(M ;Fg;Z2)

with HDEF
i (0, ·) = Φi, H

DEF
i (1, ·) = Φ∗

i satisfying that for each (t, x) ∈ [0, 1] ×Xi,

Mg(H
DEF
i (t, x)) <Mg(Φi(x)) + δi ;

(2) VL((Φ∗
i )i) ⊂ B

Fg

D (W).
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Proof. By Proposition 3.1.9, for each i ∈ N+, there exists a Mg-continuous sequence

(Ψi : X → Zn(M ;Mg;Z2)
∞
i=1 such that Φi and Ψi are homotopic through a Fg-continuous

homotopy H̃i which satisfies

Mg(H̃i(x, t)) <Mg(Φi(x)) + min(δi, 1/i)

for all x and t. Clearly,

L = lim sup
i

sup
x∈Xi

Mg ◦ Ψi(x) ≡ lim sup
i

Li ,

and

VL((Φi)i) = VL((Ψi)i) .

We define

R ≡ η3.3.4 := min(D/6, η3.2.6(M, {g}, D, c, 2k + 1)) ,

ε̄1 := ε̄3.2.16(M, g, 2k + 1, r, r, c) ,

η := η3.2.16(M, g, 2k + 1, r, r, c) ,

s := s̄3.2.16 ,

from Lemma 3.2.6 and Lemma 3.2.16.

Since VL((Ψi)i) is compact and B
Fg
η3.3.4(SVL

n) is open, for sufficiently large i, there exists

ε̄ ∈ (0, ε̄1), such that if Mg(Ψi(x)) ≥ Li − ε̄, then

Ψi(x) ∈ BFg
η3.3.4

(SVL
n) .

By Lemma 3.2.16, Ψi satisfies the annular (ε̄, δ)-deformation assumptions of Lemma 3.3.3

with R, ε̄, η, s and W defined above.

Therefore, for each i, we can choose δ̄ ∈ (0, (δi, η3.3.4)), we obtain a homotopy map

H̃DEF
i : [0, 1] ×Xi → Zn(M ;Fg;Z2)
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with H̃DEF
i (0, ·) = Ψi, H̃

DEF
i (1, ·) = Ψ∗

i satisfying that for each (t, x) ∈ [0, 1] ×Xi,

Mg(H̃
DEF
i (t, x)) <Mg(Ψ(x)) + δ̄ <Mg(Ψ(x)) + δi .

Hence, concatenating H̃i and H̃DEF
i implies the conclusion (1).

Moreover, if Ψ∗
i (x) ≥ Li − ε̄/10, by Lemma 3.3.3, there exist x̂ ∈ Xi and T1,x ∈

Zn(M ;Z2) with the following properties:

(i) Mg(Ψ
∗
i (x), T1,x) < δ̄ < η3.3.4 and Fg(Ψ

∗
i (x), T1,x) < η3.3.4;

(ii) T1,x = Ψ∗
i (x) on M \

⋃m
i=1Bg(p1, η), m ≤ 2k + 1;

(iii) Mg(Ψi(x̂)) >Mg(Ψ
∗
i (x)) − d ≥ Li − ε̄;

(iv) Fg(|Ψi(x̂)|,W) ≤ 2R < D/3 .

By (iii), Ψi(x̂) ∈ B
Fg
η3.3.4(SVL

n). By (ii) and Lemma 3.2.6,

Fg(|Ψi(x̂)|, |T1,x|) < D/2 .

By definition of η3.3.4, we conclude that

|Ψ∗
i (x)| ⊂ B

Fg

D (W) .

which is the conclusion (2). □

Restrictive homotopic min-max theory.

Definition 3.3.5. In a closed Riemannian manifold (M, g), given δ > 0 and an Fg-

continuous map Φ0 : X → Zn(M ;Fg;Z2), we define the restrictive (X,Z)-homotopy

class of Φ0 with an upper bound δ, denoted by Πδ
g(Φ0), to be the set of Fg-continuous

maps Ψ : X → Zn(M ;Fg;Z2) satisfying the following conditions:

(1) Each Ψ is homotopic to Φ0 in the Fg-topology, and

(2) The homotopy map H : [0, 1] ×X → Zn(M ;Fg;Z2) satisfies

(3.5) sup
t∈[0,1],z∈Z

Mg(H(t, z)) < sup
z∈Z

Mg(Φ0(z)) + δ ,
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and

(3.6) sup
t∈[0,1],x∈X

Mg(H(t, x)) < sup
x∈X

Mg(Φ0(x)) + δ .

Definition 3.3.6. The restrictive min-max width of Πδ
g(Φ0) is defined as

L(Πδ
g(Φ0)) := inf

Ψ∈Πδ
g(Φ0)

sup
x∈X

Mg ◦ Ψ(x) .

Definition 3.3.7. A sequence of maps (Φi)
∞
i=1 in Πδ

g(Φ0) is called a minimizing sequence

for Πδ
g(Φ0) if

L(Πδ
g(Φ0)) = lim sup

i→∞
sup
x∈X

Mg ◦ Φi(x) .

For a minimizing sequence (Φi)
∞
i=1 for Πδ

g(Φ0), we define its critical set by

C((Φi)i) := {V = lim
j

|Φij(xj)| : N+ ∋ ij ↗ ∞, xj ∈ X, ∥V ∥g(M) = L(Πδ
g(Φ0))} .

Furthermore, the sequence is called pulled-tight if every varifold in C((Φi)i) is stationary.

Theorem 3.3.8 (Restrictive homotopic min-max Theorem for Πδ
g(Φ0)). Given a closed

Riemannian manifold (Mn+1, g) (2 ≤ n ≤ 6), δ > 0, D > 0, and Φ0 : X → Zn(M ;Fg;Z2),

if

L(Πδ
g(Φ0)) > max(0, sup

x∈Z
Mg(Φ0(x)) + δ) ,

then there exists some sequence (Φi)
∞
i=1 in Πδ

g(Φ0) such that:

(1) (Φi)
∞
i=1 is a pulled-tight minimizing sequence for Πδ

g(Φ0).

(2) The critical set C((Φi)i) contains a (2k+1, r)g-almost minimizing varifold V with

∥V ∥g(M) = L(Πδ
g(Φ0)) for some r > 0;

(3) spt(V ) is a smooth, embedded, minimal hypersurface.

(4) If WL is the set of all the embedded minimal cycles of area L, then

C((Φi)i) ⊂ B
Fg

D (WL) .
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Proof of Theorem 3.3.8. First, we pick a minimizing sequence (Φ′
i : X → Zn(M ;Fg;Z2))

∞
i=1

for Πδ
g(Φ0). since

L(Πδ
g(Φ0)) > 0 ,

we can apply Corollary 3.3.2 to (Φ′
i)i with c = supxMg(Φ0(x)) + δ, and then we obtain

(Φi : X → Zn(M ;Fg;Z2))i ⊂ Πδ
g(Φ0). Note that in this case, L = lim supi supx∈X Mg(Φ

′(x)) =

L(Πδ
g(Φ0)), and

lim sup
i

sup
x∈X

Mg(Φ(x)) ≤ lim sup
i

sup
x∈X

Mg(Φ
′(x)) = L(Πδ

g(Φ0)) .

The definition of restrictive min-max width implies L = lim supi supx∈X Mg(Φ(x)). There-

fore, VL
n ((Φi)i) = C((Φi)i) and VL

n ((Φ′
i)i) = C((Φ′

i)i) ⊂ SV≤c
n which implies that (Φi :

X → Zn(M ;Fg;Z2)) is a pulled-tight minimizing sequence.

We choose a sequence (δi)
∞
i=1 such that for each i ∈ N+,

δi < δ − max

(
sup
z∈Z

Mg(Φi(z)) − sup
z∈Z

Mg(Φ0(z)), sup
x∈X

Mg(Φi(x)) − sup
x∈X

Mg(Φ0(x))

)

and limi→∞ δi = 0. In addition, let c = 2L, η = η3.3.4(M, g,D, 2L) from Corollary 3.3.4,

W ′ be the set of all the (m, η)g almost-minimizing varifolds and

W = W ′ ∩C((Φ′
i)i) .

Hence, we can apply Corollary 3.3.4 to obtain a new sequence of sweepout (Ψi)
∞
i=1 for

Πδ
g(Φ0), such that

C((Ψi)i) ⊂ B
Fg

D (W) ⊂ B
Fg

D (WL) .

In particular, this also implies that W ′ ∩ C((Φ′
i)i) ̸= ∅, and analogously, by applying

Corollary 3.3.4 to (Ψi)i, we also have

W ′ ∩C((Φ′
i)i) ̸= ∅ ,

which concludes (2) and thus, by Theorem 3.2.5, (3).
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Finally, we apply Corollary 3.3.2 again to (Ψi)i to obtain a pulled-tight sequence (Ψ′
i)i

which satisfies (2), (3) and (4) as well. □

Restrictive homological min-max theory. Recall that in (Mn+1, g), for each p ∈ N+, the

min-max p-width is defined by

ωp(M, g) = inf
Φ∈Pp

sup
x∈dmn(Φ)

Mg ◦ Φ(x) ,

where Pp = {Φ : X → Zn(M ;F;Z2)|X is a finite simplicial complex and Φ∗(λ̄p) ̸= 0}.

The effectiveness of the homotopic min-max theory in producing minimal hypersurfaces

of p-width can be attributed to the following rationale. Given two continuous maps

Φ : X → Zn(M ;F;Z2) and Ψ : X → Zn(M ;F;Z2), by the homotopy theory, if there

exists a homotopy map H : [0, 1] × X → Zn(M ;F;Z2) such that H(0, ·) = Φ(·) and

H(1, ·) = Ψ(·), then

(3.7) Φ ∈ Pp ⇐⇒ Ψ ∈ Pp .

However, from the definition of the admissible set Pp, the condition Φ∗(λ̄p) ̸= 0 suggests

that we should appeal to a homology/cohomology theory. In particular, we have the

following two observations.

Lemma 3.3.9. Given p ∈ N+, let X be a finite simplicial (p+ 1)-chain such that ∂X =

Xα + Xω (with Z2 coefficients) where Xα and Xω are both simplicial p-cycles. Given a

continuous map Ψ : X → Zn(M ;F;Z2), we set Ψα := Ψ|Xα and Ψω := Ψ|Xω . Then we

have

Ψα ∈ Pp ⇐⇒ Ψω ∈ Pp .

Proof. Let A := Ψ(Xα), B := Ψ(Xω) and C := Ψ(X) be the corresponding singular

chains in C∗(Zn(M ;F;Z2);Z2). Since both Xα and Xω are cycles, ∂A = ∂B = 0 and we

obtain

a := [A], b := [B] ∈ Hp(Zn(M ;F;Z2);Z2) .
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Moreover, ∂X = Xα +Xω implies that

∂C = A+B ,

and thus,

a = b .

Hence, we have

Ψα ∈ Pp ⇐⇒ ⟨λ̄p, a⟩ ≠ 0 ⇐⇒ ⟨λ̄p, a⟩ ≠ 0 ⇐⇒ Ψω ∈ Pp .

□

Lemma 3.3.10. Given k ∈ N+, let W be a finite simplicial k-chain with boundary

Z = ∂W (possibly empty). Then X = [0, 1] × [0, 1] is a finite simplicial (k + 1)-chain

such that ∂X = Xα +Xω (with Z2 coefficients) where

Xα := {0} ×W

and

Xω := {1} ×W + [0, 1] × Z

are both finite simplicial k-chain with boundary {0} × Z.

Proof. This follows immediately from the definition. □

Definition 3.3.11. Given δ > 0 and an F-continuous map Φ0 : W → Zn(M ;Fg;Z2),

where X is a finite simplicial k-chain with boundary Z = ∂W (possibly empty), we define

H̃δ
g(Φ0) to be the set of all Fg-continuous maps Ψ : X → Zn(M ;Fg;Z2) such that:

• X is a finite simplicial (k+1)-chain such that ∂X = Xα+Xω (with Z2 coefficients)

where Xα = W and Xω is another finite, simplicial k-chain with ∂Xω = Z;

• Ψα := Ψ|Xα = Φ0, and Ψω := Ψ|Xω ;
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•

sup
x∈X

Mg ◦ Ψ(x) < sup
w∈W

Mg ◦ Φ0(w) + δ.

We define

Hδ
g(Φ0) := {Ψω : Ψ ∈ H̃δ

g(Φ0)}.

Remark 3.3.12. We should think of Ψ as a cobordism between “the beginning” Φ0 and

“the loose end” Ψ|Xω . The set Hδ
g(Φ0) may be viewed as the homology class represented

by Φ0.

Definition 3.3.13. The restrictive min-max width of Hδ(Φ0) is defined as

L(Hδ
g(Φ0)) := inf

Φ∈Hδ
g(Φ0)

supM ◦ Φ

(
= inf

Ψ∈H̃δ
g(Φ0)

supM ◦ Ψω

)
.

The previous lemma implies that this width is nontrivial provided that Φ0 is some

p-admissible sweepout.

Corollary 3.3.14. If Φ0 : W → Zn(M ;Fg;Z2) ∈ Pp with W a finite simplicial p-cycle,

every Φ ∈ Hδ
g(Φ0) is also inside Pp. In particular,

L(Hδ
g(Φ0)) ≥ ωp(M, g) .

Definition 3.3.15. A sequence of maps (Φi)
∞
i=1 in Hδ

g(Φ0) is called a minimizing sequence

for Hδ
g(Φ0) if

L(Hδ
g(Φ0)) = lim sup

i→∞
sup
x∈X

Mg ◦ Φi(x) .

For a minimizing sequence (Φi)
∞
i=1 for Hδ

g(Φ0), we define its critical set by

Cg((Φi)i) := {V = lim
j

|Φij(xj)| : {ij}j ⊂ N, xj ∈ dmn(Φij), ∥V ∥g(M) = L(Hδ
g(Φ0))} .

Furthermore, the sequence is called pulled-tight if every varifold in C((Φi)i) is stationary.

Theorem 3.3.16 (Restrictive homological min-max theorem). Given δ > 0, D > 0 and

an Fg-continuous map Φ0 : W → Zn(M ;Fg;Z2), where W is a finite simplicial k-chain
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with boundary Z = ∂W , suppose that

L := L(Hδ
g(Φ0)) > max(sup

x∈Z
Mg(Φ0(x)) + δ, 0) .

Then there exists a minimizing sequence

(Ψi : Xi → Zn(M ;Fg;Z2))
∞
i=1

in H̃δ
g(Φ0) such that:

(1) (Ψω
i )∞i=1 is a pulled-tight minimizing sequence for Hδ

g(Φ0).

(2) The critical set C((Ψω
i )i) contains a (2k + 1, r)g-almost minimizing varifold V

with ∥V ∥g(M) = L(Πδ
g(Φ0)) for some r > 0;

(3) spt(V ) is a smooth, embedded, minimal hypersurface.

(4) If WL is the set of all the embedded minimal cycles of area L, then

C((Ψω
i )i) ⊂ B

Fg

D (WL) .

Proof. First, we pick a sequence (Φi : Yi → Zn(M ;F;Z2))
∞
i=1 in H̃δ

g(Φ0) such that (Φω
i )i

is a minimizing sequence for Hδ
g(Φ0). Since

L := L(Hδ
g(Φ0)) > 0 ,

we can apply Corollary 3.3.2 to each Φω
i with c = supx∈X Mg ◦ Φ0(x) + δ, and we obtain

HPT
i : [0, 1] × Y ω

i → Zn(M ;Fg;Z2)

such that for all (t, y) × [0, 1] × Y ω
i ,

Mg(H
PT
i (t, y)) ≤ Mg(Φ

ω
i (y)) .

We define a space

Xi := Yi ∪ [0, 1] × Y ω
i ,
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by identifying Y ω
i and {0} × Y ω

i , and a Fg-continuous map in H̃δ
g(Φ0),

Ψi : Xi → Zn(M ;Fg;Z2)

by concatenating Φi and HPT
i . By Lemma 3.3.10, we have Xα

i = W and Xω
i = [0, 1] ×

Z ∪ {1} × Y ω
i . Again, (Ψω

i ) is pulled-tight minimizing sequence, since on Xω
i ,

sup
x∈[0,1]×Z

Mg(Ψ
ω
i (x)) = sup

x∈[0,1]×Z

Mg(H
PT
i (x))

≤ sup
z∈Z

Mg(Φ0(z))

< L− δ ,

For each i, we choose

δi ≤ min(max( sup
x∈Xω

i

Mg ◦ Ψω
i (x) − sup

w∈W
Mg ◦ Φ0(w), 0), δ/2) ,

such that limi δi = 0. As in the proof of Theorem 3.3, let c = 2L, η = η3.3.4(M, g,D, 2L)

from Corollary 3.3.4, W ′ be the set of all the (m, η)g-almost minimizing varifolds and

W = W ′ ∩C((Ψω
i )i) .

Hence, we can apply Corollary 3.3.4 to obtain a new sequence of sweepout (Ψ∗
i )

∞
i=1 and

homotopy maps HDEF
i such that

VL((Ψ∗
i )i) ⊂ B

Fg

D (W) ⊂ B
Fg

D (WL)

and

(3.8) Mg(H
DEF
i (t, x)) <Mg(Ψ

ω
i (x)) + δi ;

We define a space

X̃i := Xi ∪ [0, 1] ×Xω
i
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by identifying Xω
i and {0} ×Xω

i and a Fg-continuous map in H̃δ
g(Φ0),

Ψ̃i : X̃i → Zn(M ;Fg;Z2)

by concatenating Ψi and HDEF
i . By Lemma 3.3.10, we have X̃α

i = W and X̃ω
i = [0, 1] ×

Z ∪ {1} × Y ω
i .

It follow from (3.8) that (Ψ̃i) ∈ H̃δ
g(Φ0) is a minimizing sequence. Moreover,

C((Ψ̃ω
i )i) = VL((Ψ̃ω

i )i) = VL((Ψ∗
i )i) ⊂ B

Fg

D (W) ⊂ B
Fg

D (WL)

since

sup
x∈[0,1]×Z

Mg(Ψ
ω
i (x)) = sup

x∈[0,1]×Z

Mg(H
DEF
i (x))

≤ sup
z∈Z

Mg(Φ0(z)) + δi

< L− δ/2 .

In particular, this also implies that W ′ ∩C((Ψω
i )i) ̸= ∅, and analogously, by applying

Corollary 3.3.4 to (Ψ̃ω
i )i, we also have

W ′ ∩C((Ψ̃ω
i )i) ̸= ∅ ,

which concludes (2) and thus, by Theorem 3.2.5, (3).

Finally, we apply Corollary 3.3.2 again to (Ψ̃i)i as in the beginning to obtain a pulled-

tight sequence (
˜̃
Ψi)i which satisfies (2), (3) and (4) as well. □

3.4. Proof of Theorem 1.2.1. Let (S3, ḡ) be the unit 3-sphere.

Recall that C. Nurser [Nur16] showed the 13-width ω13(S
3, ḡ) is at most 8π. To prove

Theorem 1.2.1, we assume, for the sake of contradiction, that the 13-width is precisely

8π on (S3, ḡ). In fact, C. Nurser has constructed an F -continuous map Φ0 : RP13 →

Z2(S
3;Z2) with no concentration of mass, such that

sup
x∈RP13

Mḡ(Φ0(x)) = 8π .
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We define

r0 := min(η3.2.7(S
3, ḡ, 29), η3.2.8(S

3, ḡ, 29))

from Lemmas 3.2.7 and 3.2.8, and define the following sets of varifolds on (S3, ḡ).

• SV8π
ḡ ⊂ V2(S

3) is the set of all stationary n-varifolds on (S3, ḡ) with total measure

8π;

• M8π
ḡ ⊂ SV8π

ḡ is the subset consisting of all stationary integral varifolds whose

support is a smooth, embedded, closed minimal surface;

• Gḡ ⊂ M8π
ḡ is the (good) subset comprising all (29, r0)ḡ-almost minimizing varifolds

V for which there is T ∈ Z2(S
3;Z2) with V = |T |;

• Bḡ ⊂ M8π
ḡ is the (bad) subset comprising all (29, r0)ḡ-almost minimizing varifolds

V for which no T ∈ Z2(S
3;Z2) with V = |T |.

With these definitions, it follows that Gḡ ∪ Bḡ ⊂ M8π
ḡ is the subset consisting of all

(29, r0)ḡ-almost minimizing varifolds.

Additionally, in the case of (S3, ḡ) where every closed surface has separation property

and equators are the only smooth minimal surfaces with area 4π, it follows from Remark

3.2.14 that Bḡ is the set of all the multiplicity-two equators. Furthermore, for the 13-

sweepout Φ0, the set

{V = lim
j

|Φ0(xj)| : xj ∈ RP13, ∥V ∥g(S3) = 8π}

is exactly Bḡ. Then by Marques-Neves [MN17, Corollary 3.9], there exists a pulled-tight

sequence of Fḡ-continuous maps

(Φ0,i : RP13 → Z2(S
3;Fḡ;Z2))

∞
i=1

such that the critical set

(3.9) Cḡ((Φ0,i)
∞
i=1) ⊂ Bḡ .
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Since (S3, ḡ) has positive Ricci curvature, by Lemma 3.2.17, both Gḡ and Bḡ are com-

pact in the varifold topology. Therefore, we can define

d0 := η3.2.13(M, ḡ, 29, 8π,Gḡ,Bḡ)/10 ,

ε0 := ε̄3.2.16(M, g, 29, r0, d0, 8π) ,

s0 := s̄3.2.16(M, g, 29, r0, d0, 8π) ,

η0 := min(d0, ε0, η3.2.16(M, g, 29, r0, d0, 8π))/10 ,

G̃ḡ := BFḡ
η0

(Gḡ) ,

B̃ḡ := BFḡ
η0

(Bḡ) ,

Ĝḡ := G ′
3.2.13(M, ḡ, 29, 8π,Gḡ,Bḡ) ,

B̂ḡ := B′
3.2.13(M, ḡ, 29, 8π,Gḡ,Bḡ) ,

from Lemma 3.2.13 and Lemma 3.2.16. By (3.9), there exists ε̄0 > 0 such that for

sufficiently large i,

(3.10) Mḡ ◦ Φ0,i(x) ≥ 8π − ε̄0 =⇒ |Φ0,i(x)| ∈ B̃ḡ .

Metric perturbations. We begin with a proposition.

Proposition 3.4.1. Let Mn+1 be a smooth closed manifold with 3 ≤ n + 1 ≤ 7. Then

there exists a Baire residual set Γ∞
uniq of C∞ bumpy Riemannian metrics on M such that

for any g ∈ Γ∞
uniq and any L ∈ R+, there exists at most one combination of minimal

hypersurfaces (with multiplicities) whose total areas sum up to L.

Proof. For each metric g, let Mg be the set of closed, embedded, smooth, minimal hy-

persurfaces in (M, g). For each α > 0 and integer p > 0, let us denote by Up,α the set of

smooth metrics on M such that:

(1) Every element of Mg with index at most p and area at most α is nondegenerate.
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(2) For any p1, . . . , pN ∈ Z and Σ1, . . . ,ΣN ∈ Mg, where |mk| ≤ p, index(Σk) ≤ p,

and area(Σk) ≤ α for each k, if

p1areag(Σ1) + · · · + pNareag(ΣN) = 0,

then p1 = · · · = pN = 0.

By [MN21, Claim 8.6], for each p and α, the set Up,α is open and dense in the space of

all smooth metrics in M . Thus, we can let Γ∞
uniq := ∩n∈N+Un,n. □

Then, combined with X. Zhou’s multiplicity one theorem [Zho20], this proposition

implies that for each g ∈ Γ∞
uniq, every (restrictive) min-max width can be realized by a

unique combination of multiplicity-one two-sided minimal hypersurfaces, which is also

the boundary of a Caccioppoli set.

We choose a sequence (gi)
∞
i=1 in Γ∞

uniq such that ∥gi − ḡ∥C∞,ḡ < η0, and

lim
i→∞

gi = ḡ

in the C∞ topology. We define for each i ∈ N+,

Si := sup
x

Mgi ◦ Φ0,i(x) .

Let (δi)
∞
i=1 be a decreasing sequence in R+ such that

lim
i→∞

δi = 0 .

Restrictive homological min-max. We define

η2 := η0 .

For each i ∈ N+, we consider the restrictive homology class Hδi
gi

(Φ0,i) of Φ0,i. For

simplicity, we denote

H̃i = H̃δi
gi

(Φ0,i) and Hi = Hδi
gi

(Φ0,i) .
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Note that, since Φ0,i is a 13-sweepout, by Coroally 3.3.14,

lim
i→∞

L(Hi) = lim
i→∞

Si + δi = 8π .

Thus, applying the restrictive min-max theorem, Theorem 3.3.16, to each Hi, we obtain

for each i a pulled-tight minimizing sequence

(Ψj
i : Xj

i → Z2(S
3;Fgi ;Z2))

∞
j=1

in H̃i such that:

(i) limj→∞ supxMgi ◦ (Ψj
i )

ω(x) = L(Hi) .

(ii) There exists a constant ε2,i > 0 such that for all j large enough,

(3.11) Mgi((Ψ
j
i )

α(x)) ≥ L(Hi) − ε2,i =⇒ Mḡ((Ψ
j
i )

α(x)) ≥ 8π − ε̄0 ,

and

(3.12) Mgi((Ψ
j
i )

ω(x)) ≥ L(Hi) − ε2,i =⇒ |(Ψj
i )

ω(x)| ∈ B
Fgi

1/i (Σi),

where Σi is the unique multiplicity one two-sided minimal surface with area L(Hi),

and it is the boundary of a Caccioppoli set, as gi ∈ Γ∞
uniq.

(iii) |Σi| is (27, r0)gi-almost minimizing and thus, (29, r0)gi-almost minimizing.

Then by Proposition 3.2.17, after relabelling the i’s, Σi converges in C∞ (with multi-

plicity one) to some Σ ∈ Gḡ. Hence, we can assume for any i ∈ N+,

(3.13) Σi ∈ B
Fḡ

η2/2
(Gḡ) .

Furthermore, for each i we can take an j(i) ∈ N+ such that, by discarding finitely many

gi:

(i) (Ψ
j(i)
i )∞i=1 is a minimizing sequence for ω13(S

3, ḡ) = 8π.
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(ii) For all j ≥ j(i),

(3.14) Mgi((Ψ
j
i )

α(x)) ≥ L(Hi) − ε2,i =⇒ |(Ψj
i )

α(x)| ∈ B̃ḡ .

and

(3.15) Mgi((Ψ
j
i )

ω(x)) ≥ L(Hi) − ε2,i =⇒ |(Ψj
i )

ω(x)| ∈ G̃ḡ .

Note that the first item follows from δi → 0, while the second from (3.10), (3.11), (3.12)

and (3.13). For simplicity, we will denote

Ψi := Ψ
j(i)
i , Xi := X

j(i)
i .

Pull-tight. In this part, our goal is to construct for each i some Ψ̂i ∈ H̃i such that (Ψ̂i)i

is a minimizing sequence for the 13-width, and for some η3 ∈ (0, η0) the critical set

Cḡ((Ψ̂i)i) ⊂ BFḡ
η3

(SV8π
ḡ ) ,

while preserving conditions similar to (3.14) and (3.15).

We define

η3 := 3η2 .

Additionally, for any positive constant A, we introduce the set

V≤A := {V ∈ V2(S
3) | ∥V ∥ḡ(S3) ≤ A} .

We denote a subset of V≤Aḡ consisting of stationary varifolds with respect to ḡ as S≤Aḡ.

Further define

(3.16) U≤A := V≤A \BFḡ
η3

(S≤A) ,

111



which is a compact set. Similarly, for cycles, we define

Z≤A
2 := {T ∈ Z2(S

3;Fḡ;Z2) : Mḡ(T ) ≤ A} .

Following Pitt’s pull-tight construction [Pit81], we have the following proposition, with

its proof postponed to §3.5.

Proposition 3.4.2. After possibly discarding finitely many elements in the sequence (gi)i

of metrics, there exists an continuous deformation map

H : [0, 1] ×Z≤A
2 → Z≤A

2

satisfying the following properties:

(1) H(0, ·) = id.

(2) If |T | ∈ B
Fḡ

η3/2
(S≤A) then H(t, T ) = T for each t.

(3) For each i and (t, T ), Mḡ(H(t, T )) ≤ Mḡ(T ) and Mgi(H(t, T )) ≤ Mgi(T ). And

any of the equalities holds only if H(t, T ) = T .

(4) There exists ε3 > 0, such that for each i and T , if |H(1, T )| /∈ B
Fḡ
η3 (S≤A), then

Mḡ(H(1, T )) ≤ Mḡ(T ) − ε3 and Mgi(H(1, T )) ≤ Mgi(T ) − ε3.

We choose A := 8π+ 1 and, in accordance with the proposition above, discard finitely

many values of i. Without loss of generality, we can assume for each i,

sup
x

Mgi ◦ Φ0,i(x) + δi < A.

Next, we define for each i the space

X̂i := ([0, 1] × RP13) ∪Xi

where {1} × RP13 ⊂ [0, 1] × RP13 and RP13 ⊂ Xi are identified. Note that

∂X̂i = ({0} × RP13) ∪Xω
i .
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We can apply Proposition 3.4.2 to obtain a deformation map H, and define

Ψ̂i : X̂i → Z2(S
3;Fgi ;Z2)

by

Ψ̂i|[0,1]×RP13(t, x) := H(t,Φ0,i(x))

Ψ̂i|Xi
(x) := H(1,Ψi(x)).

Now, note that:

(i) Since (S3, gi) and (S3, ḡ) are diffeomorphic for each i, Fgi and Fḡ induces home-

omorphic topologies. Thus, Ψ̂i is still Fgi-continuous.

(ii) By definition, we have Ψ̂α
i = Φ0,i.

(iii) By Proposition 3.4.2 (3),

sup
x∈X̂i

Mgi ◦ Ψ̂i(x) ≤ sup
x∈Xi

Mgi ◦ Ψi(x) < sup
x∈RP13

Mgi ◦ Φ0,i(x) + δi.

Consequently, we can conclude that Ψ̂i ∈ H̃i. Moreover, by (ii) and (iii), since δi → 0,

(Ψ̂i)i is a minimizing sequence for the 13-width.

Additionally, we have the following lemma with proof postponed to §3.5.

Lemma 3.4.3. Cḡ((Ψ̂i)i) ⊂ B
Fḡ
η3 (SV8π

ḡ ) .

Hence, there exists an ε̄3 > 0 such that for every sufficiently large i and each x ∈ X̂i,

if |Ψ̂i(x)| /∈ B
Fḡ
η3 (SV8π

ḡ ), then

(3.17) Mḡ(Ψ̂i(x)) < 8π − ε̄3 , Mgi(Ψ̂i(x)) < L(Hi) − ε̄3 .

Additionally, let ε3,i := ε2,i and we observe that

(3.18) Mgi(Ψ̂
α
i (x)) ≥ L(Hi) − ε3,i =⇒ |Ψ̂α

i (x)| ∈ B̃ḡ ,
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and

(3.19) Mgi(Ψ̂
ω
i (x)) ≥ L(Hi) − ε3,i =⇒ |Ψ̂ω

i (x)| ∈ G̃ḡ .

Indeed, (3.18) trivially follows from (3.14) and the fact that Ψ̂α
i = Φ0,i. Regarding (3.19),

we can justify it step by step:

Mgi(Ψ̂
ω
i (x)) ≥ L(Hi) − ε3,i =⇒ Mgi(Ψ

ω
i (x)) ≥ L(Hi) − ε3,i (by Proposition 3.4.2(3))

=⇒ |Ψω
i (x)| ∈ G̃ḡ) ⊂ B

Fḡ

η3/2
(SV8π

ḡ ) (be (3.15))

=⇒ Ψω
i (x) = Ψ̂ω

i (x) (by Proposition 3.4.2 ((2)))

=⇒ |Ψ̂ω
i (x)| ∈ G̃ḡ) .

For simplicity, we discard finitely many i such that (3.17), (3.18) and (3.19) hold for

every i.

(ε, δ)-deformation. In this part, we aim to construct a sweepout
ˆ̂
Ψ : ˆ̂

X → Z2(S
3;Fgi ;Z2)

in H̃i such that for each x ∈ ˆ̂
X,

(3.20) Mgi(
ˆ̂
Ψ(x)) ≥ L(Hi) − ε4 =⇒ | ˆ̂Ψ(x)| ∈ Ĝḡ ⊔ B̂ḡ ,

where i is some positive integer, and ε4 > 0. Furthermore, similar to (3.18) and (3.19),

it also satisfies

(3.21) Mgi(
ˆ̂
Ψα(x)) ≥ L(Hi) − ε4 =⇒ | ˆ̂Ψα(x)| ∈ B̂ḡ ,

and

(3.22) Mgi(
ˆ̂
Ψω(x)) ≥ L(Hi) − ε4 =⇒ | ˆ̂Ψω(x)| ∈ Ĝḡ .
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For each i ∈ N+, we choose an arbitrary ε > 0, which we will specify later, and apply

Proposition 3.1.9 with this ε to Ψ̂i(x) to obtain a Mgi-continuous map

Ψ̂′
i(x) : X̂i → Z2(S

3;Mgi ;Z2) .

Ψ̂′
i(x) satisfies the conditions:

(i) There is an Fgi-continuous homotopy

Ĥi : [0, 1] × X̂i → Z2(S
3;Fgi ;Z2)

with Ĥi(0, ·) = Ψ̂i and Ĥi(1, ·) = Ψ̂′
i;

(ii) sup(t,x) Fgi(Ĥi(t, x), Ψ̂i(x)) < ε;

(iii) sup(t,x)Mgi(Ĥi(t, x)) < supx Mgi(Ψ̂i(x)) + ε.

We can take ε very small such that

(3.23) sup
(t,x)

Mgi(Ĥi(t, x)) < Si + δi ,

and for η4 := 2 · η3 ∈ (0,min(η0, ε0)), ε̄4 := ε̄3/2, and ε4,i := ε3,i/2,

∀x ∈ X̂i, Mgi(Ĥi(t, x)) ≥ L(Hi) − ε̄4 =⇒ |Ĥi(t, x)| ∈ BFḡ
η4

(SV8π
ḡ ) ,(3.24)

∀x ∈ X̂α
i , Mgi(Ĥi(t, x)) ≥ L(Hi) − ε4,i =⇒ |Ĥi(t, x)| ∈ B̃ḡ ,(3.25)

∀x ∈ X̂ω
i , Mgi(Ĥi(t, x)) ≥ L(Hi) − ε4,i =⇒ |Ĥi(t, x)| ∈ G̃ḡ ,(3.26)

for any t ∈ [0, 1]. These conditions are a direct result of (ii) and the previously established

(3.17), (3.18), and (3.19).

Given that limi(Si + δi) = limi L(Hi), for sufficiently large i, we have

L(Hi) − min(ε0, d0, ε̄4)/100 > Si + δi − min(ε0, d0, ε̄4)/10 .

We can fix such an i for our subsequent construction.
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Now, in (M, gi), we apply Lemma 3.3.3 to Ψ̂′
i with

R = d0 ,

ε̄ = min(ε0, d0, ε̄4) ,

η = r0 ,

s = s0 ,

W = Gḡ ∪ Bḡ .

To verify that Ψ̂′
i satisfies the assumptions of Lemma 3.3.3, let x ∈ X̂i satisfy

Mgi(Ψ̂
′
i(x)) ≥ L− ε̄ , Fgi(|Ψ̂′

i(x)|,W) ≥ R .

Since L = supx∈X̂i
Mg(Ψ̂

′
i(x)) ≥ L(Hi) and ε̄ ≥ ε̄4, we have

Mgi(Ψ̂
′
i(x)) ≥ L(Hi) − ε̄4 ,

and thus, by (3.24),

|Ψ̂′
i(x)| ∈ BFḡ

η4
(SV8π

ḡ ) ⊂ BFḡ
η0

(SV8π
ḡ ) .

By Lemma 3.2.16, given that

R = d0 < η3.2.13(M, ḡ, 29, 8π,Gḡ,Bḡ)

and

∥gi − ḡ∥C∞,ḡ < η0 ≤ d0 < η3.2.13(M, ḡ, 29, 8π,Gḡ,Bḡ) ,

|Ψ̂′
i(x)| satisfies the annular (ε̄, δ)-deformation conditions as required by Lemma 3.3.3.

Consequently, for an arbitrary δ̄ > 0, which will be specified later, we obtain a contin-

uous map

Ψ̂∗
i : X̂i → Zn(M ;Mg;Z2) ,
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and a homotopy map

ĤDEF
i : [0, 1] × X̂i → Zn(M ;Mg;Z2)

with ĤDEF
i (0, ·) = Ψ̂′

i and ĤDEF
i (1, ·) = Ψ̂∗

i .

We can indeed choose δ̄ to satisfy the following conditions:

(i) δ̄ < min(d0, ε4,i/10);

(ii)

(3.27) sup
t,x

Mgi ◦ ĤDEF
i (t, x) < Si + δi ,

(iii) For any T, S ∈ Zn(M ;Z2) with Mgi(T ),Mgi(S) ≤ Si + δi,

Mgi(T, S) < δ̄ =⇒ Fgi(T, S) < d0 .

Claim 3.4.4. For any x ∈ X̂i, if Mgi(Ψ̂
∗
i (x)) ≥ L(Hi) − ε̄/100, then |Ψ̂∗

i (x)| ∈ Ĝḡ ⊔ B̂ḡ

Proof. Mgi(Ψ̂
∗
i (x)) ≥ L(Hi) − ε̄/100 implies Mgi(Ψ̂

∗
i (x)) ≥ L− ε̄/10.

By (2) and (3) of Lemma 3.3.3, there exists T1,x ∈ Z2(S
3;Z2) and x̂ ∈ X̂i satisfying

(i) Mgi(Ψ̂
∗
i (x), T1,x) < δ̄, and thus, by Property (iii) of δ̄, Fgi(Ψ̂

∗
i (x), T1,x) < d0;

(ii)

T1,x⌞(M \ (Bgi(p1, η)∪ · · · ∪ (Bgi(pm, r0))) = Ψ̂′
i(x̂)⌞(M \ (Bgi(p1, r0)∪ · · · ∪ (Bgi(pm, r0)))

for some collection {p1, · · · , pm} ⊂M , m ≤ 329,

(iii) Fgi(|Ψ̂′
i(x̂)|,Bḡ ∪ Gḡ) ≤ 2d0.

Since d0 = η3.2.13(M, ḡ, 29, 8π,Gḡ,Bḡ)/10, by Lemma 3.2.13 with Vj = Ψ̂′
i(x̂), V ′

j = T1,x

and V ′′
j = Ψ̂∗

i (x) for j = 1 or 2, we have

|Ψ̂∗
i (x)| ∈ Ĝḡ ⊔ B̂ḡ .

□
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Claim 3.4.5. For any x ∈ X̂α
i and any t ∈ [0, 1], if Mgi(Ĥ

DEF
i (t, x)) ≥ L(Hi) − ε4,i/4,

then |ĤDEF
i (t, x)| ∈ B̂ḡ.

Proof. By (2) of Lemma 3.3.3, there exists Tt,x ∈ Z2(S
3;Z2) such that

(i) Mgi(Ψ̂
′
i(x), Ψ̂′

i(x̂)) < δ̄

(ii) Mgi(Ψ̂
′
i(x̂)) >Mgi(Ĥ

DEF
i (t, x)) − δ̄;

(iii) Mgi(Ĥ
DEF
i (t, x), Tt,x) < δ̄;

(iv)

Tt,x⌞(M \ (Bgi(p1, η)∪ · · · ∪ (Bgi(pm, r0))) = Ψ̂′
i(x̂)⌞(M \ (Bgi(p1, r0)∪ · · · ∪ (Bgi(pm, r0)))

for some collection {p1, · · · , pm} ⊂M , m ≤ 329.

By (i) and (ii), we have

Mgi(Ψ̂
′
i(x)) >Mgi(Ψ̂

′
i(x̂)) − δ̄ >Mgi(Ĥ

DEF
i (t, x)) − 2δ̄ > L(Hi) − ε4,i ,

and it follows from (3.25) that

|Ψ̂′
i(x)| ∈ B̃ḡ .

By Property (iii) of δ̄, (i) and (iii) above imply Fgi(Ψ̂
′
i(x), Ψ̂′

i(x̂)) < d0 and Fgi(Ĥ
DEF
i (t, x), Tt,x) <

d0. Consequently,

|Ψ̂′
i(x̂)| ∈ B

Fḡi
d0

(B̃ḡ) .

Since d0 = η3.2.13(M, ḡ, 29, 8π,Gḡ,Bḡ)/10, by Lemma 3.2.13 with V2 = Ψ̂′
i(x̂), V ′

2 = Tt,x

and V ′′
2 = ĤDEF

i (t, x), we conclude that

|ĤDEF
i (t, x)| ∈ B̂ḡ .

□

Claim 3.4.6. For any x ∈ X̂ω
i and any t ∈ [0, 1], if Mgi(Ψ̂

∗
i (x)) ≥ L(Hi) − ε4,i/4, then

|Ψ̂∗
i (x))| ∈ Ĝḡ.

118



Proof. By (2) of Lemma 3.3.3, there exists T1,x ∈ Z2(S
3;Z2) such that

(i) Mgi(Ψ̂
′
i(x), Ψ̂′

i(x̂)) < δ̄

(ii) Mgi(Ψ̂
′
i(x̂)) >Mgi(Ĥ

DEF
i (t, x)) − δ̄;

(iii) Mgi(Ψ̂
∗(x), T1,x) < δ̄;

(iv)

T1,x⌞(M \ (Bgi(p1, η)∪ · · · ∪ (Bgi(pm, r0))) = Ψ̂′
i(x̂)⌞(M \ (Bgi(p1, r0)∪ · · · ∪ (Bgi(pm, r0)))

for some collection {p1, · · · , pm} ⊂M , m ≤ 329.

By (i) and (ii), we have

Mgi(Ψ̂
′
i(x)) >Mgi(Ψ̂

′
i(x̂)) − δ̄ >Mgi(Ĥ

DEF
i (t, x)) − 2δ̄ > L(Hi) − ε4,i ,

and it follows from (3.26) that

|Ψ̂′
i(x)| ∈ G̃ḡ .

By Property (iii) of δ̄, (i) and (iii) above imply Fgi(Ψ̂
′
i(x), Ψ̂′

i(x̂)) < d0 and Fgi(Ψ̂
∗(x), T1,x) <

d0. Consequently,

|Ψ̂′
i(x̂)| ∈ B

Fḡi
d0

(G̃ḡ) .

Since d0 = η3.2.13(M, ḡ, 29, 8π,Gḡ,Bḡ)/10, by Lemma 3.2.13 with V1 = Ψ̂′
i(x̂), V ′

1 = Tt,x

and V ′′
1 = Ψ̂∗(x), we conclude that

|Ψ̂∗(x)| ∈ Ĝḡ .

□

We define the space

ˆ̂
X := ([0, 2] × RP13) ∪ X̂i

where {2} ×RP13 ⊂ [0, 2] ×RP13 and X̂α
i ⊂ X̂i are identified. On

ˆ̂
X, we define the map

ˆ̂
Ψ : ˆ̂

X → Z2(S
3;Fgi ;Z2)
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as follows

ˆ̂
Ψ|[0,1]×RP13(t, x) := Ĥi|[0,1]×X̂α

i
(t, x)

ˆ̂
Ψ|[1,2]×RP13(t, x) := ĤDEF

i |[0,1]×X̂α
i
(t− 1, x)

ˆ̂
Ψ|X̂i

:= Ψ∗
i .

Since
ˆ̂
Ψα = Ĥi|{0}×X̂α

i
= Ψ̂α

i = Φ0,i and supx Mgi ◦
ˆ̂
Ψ(x) < Si + δi by (3.23) and (3.27),

we can conclude that
ˆ̂
Ψ ∈ H̃ i.

Moreover, for ε4 := min(ε4,i/4, ε̄/100), the previous three claims imply (3.20), (3.21)

and (3.22).

Constructing a map Ξω homologous to (
ˆ̂
Ψ)ω. Finally, for the i we fixed in the last part,

we will now construct some map Ξ ∈ H̃i such that

Mgi ◦ Ξω < L(Hi),

thereby arriving at a contradiction.

First, we define two subsets

ˆ̂Gḡ := {V ∈ Ĝḡ : ∥V ∥gi(M) ≥ L(Hi) − ε4} , ˆ̂Bḡ := {V ∈ B̂ḡ : ∥V ∥gi(M) ≥ L(Hi) − ε4} .

Due to the fact that Fḡ(Ĝḡ, B̂ḡ) > η0, (3.20), (3.21), and (3.22), we can proceed by

subdividing the simplicial complex structure of
ˆ̂
X to ensure that the subcomplex

A :=
⋃

{14-cells α ⊂ ˆ̂
X : | ˆ̂Ψ|α| intersects

ˆ̂Gḡ}

of
ˆ̂
X satisfies (see Figure 15):

(i) A is disjoint from
ˆ̂
Xα.

(ii) | ˆ̂Ψ|A| is disjoint from
ˆ̂Bḡ.

(iii) For every x ∈ ∂A\ ˆ̂
Xω,

(3.28) Mgi ◦
ˆ̂
Ψ(x) < L(Hi) − ε4 ,
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and thus,

| ˆ̂Ψ|
∂A\ ˆ̂

Xω
| is disjoint from

ˆ̂Gḡ ∪ ˆ̂Bḡ.

Figure 15.
ˆ̂
Xω + ∂A

Next, we define a space

XA :=
ˆ̂
X\A ,

and a map

Ξ :=
ˆ̂
Ψ|XA

.

We will now show that Ξ leads to a contradiction. As A is disjoint from
ˆ̂
Xα ⊂ ˆ̂

X, we

know that ∂XA is a disjoint union of
ˆ̂
Xα and

ˆ̂
Xω + ∂A: Note that we used “+” in the

sense of adding simplicial subcomplexes with Z2-coefficients, such that the part
ˆ̂
Xω ∩ ∂A

cancels out. Consequently, we can conclude that Ξ ∈ H̃i.

Now, let us consider Ξω ∈ Hi. Its domain
ˆ̂
Xω + ∂A is a union of ∂A\ ˆ̂

Xω and
ˆ̂
Xω\A

(see Figure (15)). By (3.28),

sup
∂A\ ˆ̂

Xω

Mgi ◦ Ξ < L(Hi) − ε4 ,

and by (3.22),

sup
ˆ̂
Xω\∂A

Mgi ◦ Ξ < L(Hi) − ε4 .

In summary, we arrive at the conclusion

Mgi ◦ Ξω < L(Hi) − ε4,

leading to a contradiction. This completes the proof of Theorem 1.2.1.
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3.5. Technical ingredients.

Proof of Proposition 3.4.2. Since U≤A = V≤A \BFḡ
η3 (S≤A) (defined in (3.16)) is compact,

there exists ε̄3,1 > 0, such that

inf
V ∈U≤A

∥δḡV ∥ḡ > 4ε̄3,1 ,

where

∥δḡV ∥ḡ := sup{δḡV (Y ) : Y ∈ ΓTS3, ∥Y ∥C1,ḡ ≤ 1} ,

with ΓTS3 denoting the set of smooth vector fields on S3.

Furthermore, we can choose

• a positive integer q,

• varifolds {Vj}qj=1 ⊂ U≤A,

• radii {rj}qj=1 ⊂ (0, η3),

• smooth vector fields {Xj}qj=1 ⊂ ΓTS3 with ∥Xj∥C1,ḡ ≤ 1,

• open balls {Bj := B
Fḡ
rj (Vj)}qj=1 with rj < η3/2,

such that

U≤A ⊂ Ũ≤A :=

q⋃
j=1

Bj ,

∅ = B
Fḡ

η3/2
(S≤A) ∩ Ũ≤A ,

δḡV (Xj) ≤ −1

2
∥δḡVj∥ < −2ε̄3,1 < 0, ∀V ∈ Bj, and j = 1, 2, · · · , q .(3.29)

Hence, without loss of generality, by possibly discarding finitely many i’s, for each i ∈ N+

and each j = 1, 2, · · · , q, we have

(3.30) δgiV (Xj) < −ε̄3,1 < 0 ,

holds for all V ∈ Bj.
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For each j = 1, 2, · · · , q, we define a continuous function

ψj : Ũ≤A → [0,∞) ,

by defining ψj(V ) := Fḡ(V,V≤A \ Bj), the Fḡ-distance of V from V≤A \ Bj.

Now, we can define vector fields associated with each varifold in Ũ≤A, i.e.

X : Ũ≤A → ΓTS3 ,

V 7→
q∑

j=1

ψj(V )Xj .

Note that X is continuous, and by compactness, there exists ε̄3,2 > 0 such that for all

V ∈ U≤A,

(3.31) δḡV (X(V )) < −2ε̄3,2 < 0 .

Then, by discarding finitely many gi, for each i ∈ N+,

(3.32) δgiV (X(V )) < −ε̄3,2 < 0 ,

We can extend X such that X becomes a continuous map V≤A → ΓTS3 by putting X(V )

to be the zero vector field for each V outside Ũ≤A.

Now, we are ready to define the desired map

H : [0, 1] × {T ∈ Z2(S
3;Fḡ;Z2) : Mḡ(T ) ≤ A} → {T ∈ Z2(S

3;Fḡ;Z2) : Mḡ(T ) ≤ A}.

First we define a map

f : [0,∞) × V≤A → Diff(S3)

by letting {f(t, V )}t be the one-parameter family of diffeomorphisms on S3 generated by

the vector field X(V ). By (3.31) and (3.32), there exists a continuous function h : V≤A →

[0, 1] such that:

• h > 0 on Ũ≤A and h = 0 elsewhere.
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• If 0 ≤ t < s ≤ h(V ),

(3.33) ∥f(s, V )#(V )∥ḡ(S3) < ∥f(t, V )#(V )∥ḡ(S3).

• For each i, if 0 ≤ t < s ≤ h(V ),

(3.34) ∥f(s, V )#(V )∥gi(S3) < ∥f(t, V )#(V )∥gi(S3).

Now, define the desired map H by

H(t, T ) =


f(t, |T |)#(T ) if 0 ≤ t ≤ h(|T |),

f(h(|T |), |T |)#(T ) if h(|T |) ≤ t ≤ 1.

Clearly, H(0, ·) = id, so H satisfies Proposition 3.4.2 (1). And because h = 0 on

B
Fḡ

η3/2
(S≤A), H(t, ·) fixes T if |T | ∈ B

Fḡ

η3/2
(S≤A), so Proposition 3.4.2 (2) holds. Moreover,

by the three bullet points in the definition of h above, we know for each (t, T ),

Mḡ(H(t, T )) ≤ Mḡ(T ), Mgi(H(t, T )) ≤ Mgi(T ).

And any of the equalities hold only if t = 0 or h(|T |) = 0. So H satisfies Proposition

3.4.2 (3) too. Furthermore, we claim that there exists ε3 > 0, such that for each T , if

|H(1, T )| ∈ U≤A, then

Mḡ(H(1, T )) ≤ Mḡ(T ) − 2ε3.

Indeed, if not, then there exists a sequence (Tj)j such that |H(1, Tj)| ∈ U≤A and

(3.35) Mḡ(H(1, T )) ≥ Mḡ(T ) − 1/j.

Then, by compactness and relabeling the j’s, |Tj| converges to some V ′ ∈ V≤A. However,

note that:
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• Putting T = Tj into (3.35) and taking j → ∞, we have

∥f(h(V ′), V ′)(V ′)∥(S3) ≥ ∥V ′∥(S3),

which by (3.33) implies h(V ′) = 0. Thus, by the definition of h, V ′ /∈ Ũ≤A, so

V ′ /∈ U≤A.

• On the other hand, taking j → ∞ to |H(1, Tj)| ∈ U≤A, we know

f(h(V ′), V ′)#(V ′) ∈ U≤A.

But we have shown h(V ′) = 0, so V ′ ∈ U≤A.

Hence, contradiction arises. This proves our claim that if |H(1, T )| ∈ U≤A, then

Mḡ(H(1, T )) ≤ Mḡ(T ) − 2ε3.

Then, we also have

Mgi(H(1, T )) ≤ Mgi(T ) − ε3

by discarding finitely many gi. Therefore, H satisfies Proposition 3.4.2 (4).

This finishes the proof of Proposition 3.4.2.

Proof of Lemma 3.4.3. Note that:

• limi supMḡ ◦ Φ0,i = 8π, which by Proposition 3.4.2 (3) implies

lim
i

supMḡ ◦ Ψ̂i|[0,1]×RP13 = 8π.

• By L(Πi) → 8π, limi supMḡ ◦ Φ0,i + δi = 8π, and Proposition 3.4.2 (3), we know

lim
i

supMḡ ◦ Ψ̂i|Xi
= 8π.

Hence,

Cḡ((Ψ̂i)i) = Cḡ((Ψ̂i|[0,1]×RP13)i) ∪Cḡ((Ψ̂i|Xi
)i).
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(Note that (Ψ̂i|[0,1]×RP13)i and (Ψ̂i|Xi
)i can be viewed as minimizing sequences for the

13-width, so the notion of critical set does make sense.)

To see that Cḡ((Ψ̂i|[0,1]×RP13)i) ⊂ B
Fḡ
η3 (S0), take (ti, xi) ∈ [0, 1] × RP13 such that, after

passing to a subsequence,

|Ψ̂i|[0,1]×RP13(ti, xi)|

tends to some varifold V with mass 8π. Then by Proposition 3.4.2 (3) we know the mass

of

Ψ̂i|[0,1]×RP13(0, xi) = Φ0,i(xi)

tends to 8π. Since (Φ0,i)i is a pulled-tight minimizing sequence, we know Φ0,i(xi) sub-

sequentially converge to some stationary varifold of mass 8π. By Proposition 3.4.2 (2),

this stationary varifold is V . So Cḡ((Ψ̂i|[0,1]×RP13)i) ⊂ B
Fḡ
η3 (S0).

To see that C((Ψ̂i|Xi
)i) ⊂ B

Fḡ
η3 (S0), suppose by contradiction that, after passing to a

subsequence, |Ψ̂i|Xi
(xi)| converges to some V with mass 8π but V /∈ B

Fḡ
η3 (S0). Then for

every large i, by Proposition 3.4.2 (4), Mḡ(Ψ̂i(xi)) ≤ Mḡ(Ψ(xi)) − ε3. However, noting

lim
i

supMḡ ◦ Ψi = 8π,

contradiction arises. This finishes the proof.

3.6. Proof of Theorem 1.2.2. Let (Mn+1, ḡ) with 3 ≤ n+1 ≤ 7 be a closed Riemannian

manifold of positive Ricci curvature or bumpy metrics. Let p ∈ N+ and L0 := ωp(M, ḡ)

be the min-max p-width.

Analogously, we can define r0,SVL0
ḡ , ML0

ḡ , Gḡ and Bḡ as follows:

• r0 := min(η3.2.7(M, ḡ, 2p+ 3), η3.2.8(M, ḡ, 2p+ 3)) from Lemmas 3.2.7 and 3.2.8;

• SVL0
ḡ ⊂ Vn(M) is the set of all stationary n-varifolds on (M, ḡ) with total measure

L0;

• ML0
ḡ ⊂ SVL0

ḡ is the subset consisting of all stationary integral varifolds whose

support is a smooth, embedded, closed minimal surface;
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• Gḡ ⊂ ML0
ḡ is the (good) subset comprising all (2p + 3, r0)ḡ-almost minimizing

varifolds V for which there is T ∈ Zn(M ;Z2) with V = |T |;

• Bḡ ⊂ ML0
ḡ is the (bad) subset comprising all (2p + 3, r0)ḡ-almost minimizing

varifolds V for which no T ∈ Zn(M ;Z2) with V = |T |.

With these definitions, it follows that Gḡ ∪ Bḡ ⊂ ML0
ḡ is the subset consisting of all

(2p+ 3, r0)ḡ-almost minimizing varifolds.

Since (M, ḡ) has positive Ricci curvature or a bumpy metric, by Lemma 3.2.17, both

Gḡ and Bḡ are compact in the varifold topology. Similarly, we define

d0 := min(η3.2.11(M, ḡ, 2p+ 3,Gḡ), η3.2.13(M, ḡ, 2p+ 3, L0,Gḡ,Bḡ))/10 ,

ε0 := ε̄3.2.16(M, g, 2p+ 3, r0, d0, L0) ,

s0 := s̄3.2.16(M, g, 2p+ 3, r0, d0, L0) ,

η0 := min(d0, ε0, η3.2.16(M, g, 2p+ 3, r0, d0, L0))/10 ,

G̃ḡ := G ′
3.2.13(M, ḡ, 2p+ 3, L0,Gḡ,Bḡ) ,

B̃ḡ := B′
3.2.13(M, ḡ, 2p+ 3, L0,Gḡ,Bḡ) ,

Ĝḡ := G ′′
3.2.13(M, ḡ, 2p+ 3, L0,Gḡ,Bḡ) ,

B̂ḡ := B′′
3.2.13(M, ḡ, 2p+ 3, L0,Gḡ,Bḡ) ,

from Lemma 3.2.11, Lemma 3.2.13 and Lemma 3.2.16.

By Marques-Neves [MN21], there exists a pulled-tight minimizing sequence of Fḡ-

continuous p-admissible maps (Φi : W̄i → Zn(M ;Fḡ;Z2))
∞
i=1 such that

Cḡ((Φi)
∞
i=1) ⊂ SVL0

ḡ .

Therefore, by discarding finitely many i’s and after relabelling, there exists ε′0 ∈ (0, ε0/2)

such that for any i ∈ N+ and any x ∈ W̄i,

Mḡ ◦ Φi(x) ≥ L0 − ε′0 =⇒ |Φi(x)| ∈ BFḡ
η0

(SVL0
ḡ ) .
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In addition, by definition of Pp, for every i ∈ N+, there exists a finite simplicial p-chain

Ci of W̄i such that

⟨Φ∗
i (λ̄

p), [Ci]⟩ = 1 mod 2 .

Therefore, in the following, we may assume that the domain of each Φi, W̄i is a finite

simplicial p-chain.

Proposition 3.6.1. There exists a pulled-tight minimizing sequence of Fḡ-continuous

p-admissible maps (Φi : W̄i → Zn(M ;Fḡ;Z2))
∞
i=1, such that

Cḡ((Φi)
∞
i=1) ⊂ (G̃ḡ ∪ B̃ḡ) ∩ SVL0

ḡ .

In particular, there exists an positive constant ε̄0 > 0, such that

Mḡ ◦ Φi(x) ≥ L0 − ε̄0 =⇒ |Φi(x)| ∈ (G̃ḡ ∪ B̃ḡ) ∩BFḡ
η0

(SVL0
ḡ ) .

Proof. By discarding finitely many i’s, we may assume for every i,

Li := sup
x∈W̄i

Mḡ ◦ Φi(x) < L0 + ε′0/100 .

To see that we can apply Lemma 3.3.3 to each Φi with

R = d0 ,

ε̄ = ε′0 ,

η = r0 ,

s = s0 ,

W = Gḡ ∪ Bḡ ,

it suffices to verify that Φi satisfies the assumption of Lemma 3.3.3, let x ∈ W̄i satisfy

Mḡ(Φi(x)) ≥ Li − ε̄ , Fḡ(|Φi(x)|,W) ≥ R .
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. Then we have

Φi(x) ∈ BFḡ
η0

(SVL0
ḡ ) \BFḡ

d0
(W) .

By Lemma 3.2.16, |Φi(x)| satisfies the annular (ε̄, δ)-deformation conditions as required

by Lemma 3.3.3.

Consequently, for any δ̄i > 0, we obtain a new sweepout Φ∗
i homotopic to Φi in the Fḡ

topology such that

(i) Mḡ(Φ
∗
i (x)) <Mḡ(Φi(x)) + δ̄i;

(ii) There exists T1,x ∈ Zn(M ;Z2) and x̂ ∈ W̄i such that

Mḡ(Φ
∗
i (x), T1,x) < δ̄i ,

and T1,x = Φi(x̂) onM\
⋃m

i=1Bḡ(pi, η) for some collection {pi}mi=1 ⊂M , m ≤ 32p+1;

(iii) If Mḡ ◦ Φ∗
i (x) ≥ L0 − ε′0/100 > Li − ε′0/10,

Fḡ(|Φi(x̂)|,W) ≤ 2R ;

Then, let δ̄i < min(η0,
1
i
) and ε̄0 = ε′0/100. Then if Mḡ ◦ Φ∗

i (x) ≥ L0 − ε̄0, by (ii), (iii)

and Lemma 3.2.13, we have

Φ∗
i (x) ∈ G̃ḡ ∪ B̃ḡ .

In addition, (Φ∗
i )

∞
i=1 is a minimizing sequence.

Finally, applying Corollary 3.3.2, we obtain a pulled-tight minimzing sequence (Ψi)
∞
i=1

such that

Cḡ((Ψi)
∞
i=1) ⊂ (G̃ḡ ∪ B̃ḡ) ∩ SVL0

ḡ .

The second part follows from the compactness of the critical set and the openness of

G̃ḡ ∪ B̃ḡ. □

Let (Φi) be a pulled-tight minimizing sequence from the previous Proposition. Since

Fḡ(G̃ḡ, B̃ḡ) > 0, for each W̄i, we can refine W̄i to obtain two p-chains Wi and W ′
i with the

following properties.
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(i) W̄i = Wi +W ′
i ;

(ii) On Wi, Mḡ ◦ Φi(x) ≥ L0 − ε̄0 =⇒ |Φi(x)| ∈ B̃ḡ ∩B
Fḡ
η0 (SVL0

ḡ );

(iii) On W ′
i , Mḡ ◦ Φi(x) ≥ L0 − ε̄0 =⇒ |Φi(x)| ∈ G̃ḡ ∩B

Fḡ
η0 (SVL0

ḡ );

(iv) For all x ∈ ∂Wi,

Mḡ ◦ Φi(x) ≤ L0 − ε̄0 .

Define Φ0,i := Φi|Wi
and δ = ε̄0/10.

If there exists δ0 > 0 such that

lim sup
i

L(Hδ
ḡ(Φ0,i)) < L0 − δ0 ,

then for sufficiently large i, we obtain a Ψi ∈ H̃δ
ḡ(Φ0,i) with domain Xi such that

(3.36) sup
x∈Xω

i

Mg ◦ Ψω
i (x) < L0 − δ0 .

Therefore, we can define W̄ ′
i := W̄i + ∂Xi and

Φ′
i(x) :=


Φi(x) x ∈ W ′

i

Ψω
i (x) x ∈ Xω .

By Lemma 3.3.9, Φ′
i ∈ Pp. Moreover, by (3.36) and Property (iii) or Φi, for every x ∈ W̄ ′

i ,

Mḡ ◦ Φ′
i(x) ≥ L0 − ε̄0 =⇒ |Φ′

i(x)| ∈ G̃ḡ ,

and thus, C(Φ′
i) ⊂ G̃ḡ. By Lemma 3.2.11, it is a pulled-tight minimizing sequence such

that every embedded cycle in its critical set is associated with a flat cycle. This concludes

Theorem 1.2.2.

Otherwise, we have

(3.37) lim sup
i

L(Hδ
ḡ(Φ0,i)) ≡ L0 ,
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and we shall deduce a contradiction from this by proceeding with the proof of Theorem

1.2.1. It suffices to consider the boundary part

Zi := ∂Wi

when attaching a homotopy map. Fortunately, due to the small mass of cycles on the

boundary, they have no significant impact on the critical set. This will be elaborated

upon in the following.

Metric perturbations. We make use of the same Proposition 3.4.1 to choose a sequence

(gi)
∞
i=1 in Γ∞

uniq such that ∥gi − ḡ∥C∞,ḡ < η0, and

lim
i→∞

gi = ḡ

in the C∞ topology. We define for each i ∈ N+,

Si := sup
x∈Wi

Mgi ◦ Φ0,i(x) .

Let (δi)
∞
i=1 be a decreasing sequence in (0, ε̄0/2) such that

lim
i→∞

δi = 0 .

Restrictive homological min-max. We define

η2 := min(η0, ε0)/10 .

For each i ∈ N+, we consider the restrictive homology class

H̃i = H̃δi
gi

(Φ0,i) and Hi = Hδi
gi

(Φ0,i) .

By (3.37),

lim
i→∞

L(Hi) = lim
i→∞

Si + δi = L0 .
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Similarly, applying the restrictive min-max theorem, Theorem 3.3.16, to each Hi, for

each i, we obtain a sweepout Ψi : Xi → Zn(M ;Fgi ;Z2) in H̃i and ε2,i > 0, such that

Mgi((Ψi)
α(x)) ≥ L(Hi) − ε2,i =⇒ |(Ψi)

α(x)| ∈ B̃ḡ ∩BFḡ
η2

(SVL0
ḡ ) ,

and

Mgi((Ψi)
ω(x)) ≥ L(Hi) − ε2,i =⇒ |(Ψj

i )
ω(x)| ∈ G̃ḡ ∩BFḡ

η2
(SVL0

ḡ ) .

Pull-tight. We define

η3 := 3η2 .

For each i, after possibly discarding finitely many i, we define the space

X̂i := ([0, 1] ×Wi) ∪Xi ,

where {1} ×Wi ⊂ [0, 1] ×Wi and Xα
i ⊂ Xi are identified. Note that in this case,

(X̂i)
α = {0} ×Wi

∼= Wi, (X̂i)
ω = [0, 1] × Zi ∪Xω

i .

We can apply the same Proposition 3.4.2 with A = L0 + 1 to obtain a deformation map

H, and define

Ψ̂i : X̂i → Z2(S
3;Fgi ;Z2)

by

Ψ̂i|[0,1]×Wi
(t, x) := H(t,Φ0,i(x))

Ψ̂i|Xi
(x) := H(1,Ψi(x)).
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Then, there exists an ε̄3 ∈ R+ and (ε3,i)
∞
i=1 ⊂ R+ such that

Mgi(Ψ̂
α
i (x)) ≥ L(Hi) − ε̄3 =⇒ |Ψ̂α

i (x)| ∈ BFḡ
η3

(SVL0
ḡ ) ,

Mgi(Ψ̂
α
i (x)) ≥ L(Hi) − ε3,i =⇒ |Ψ̂α

i (x)| ∈ B̃ḡ ∩BFḡ
η2

(SVL0
ḡ ) ,

Mgi(Ψ̂
ω
i (x)) ≥ L(Hi) − ε3,i =⇒ |Ψ̂ω

i (x)| ∈ G̃ḡ ∩BFḡ
η2

(SVL0
ḡ ) .

Here, we use the inequality on X̂ω
i ,

sup
[0,1]×Zi

Mgi ◦ Ψ̂ω
i ≤ L(Hi) − ε̄0/2 .

(ε, δ)-deformation. Fix such a sufficiently large i. In (M, gi), we apply Lemma 3.1.9 to

Ψ̂i : X̂i → Zn(M ;Fgi ;Z2) and obtain a Mgi-continuous map Ψ̂′
i and a Fgi-continuous

homotopy map Ĥi.

Similar arguments imply that we can apply Lemma 3.3.3 to Ψ̂′
i to obtain

Ψ̂∗
i : X̂i → Zn(M ;Mg;Z2) ,

and a homotopy map

ĤDEF
i : [0, 1] × X̂i → Zn(M ;Mg;Z2) .

Analogously, We define the space

ˆ̂
X := ([0, 2] ×Wi) ∪ X̂i

where {2} ×Wi ⊂ [0, 2] ×Wi and X̂α
i ⊂ X̂i are identified. On

ˆ̂
X, we define the map

ˆ̂
Ψ : ˆ̂

X → Zn(M ;Fgi ;Z2)
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in H̃ i, as follows

ˆ̂
Ψ|[0,1]×Wi

(t, x) := Ĥi|[0,1]×X̂α
i
(t, x)

ˆ̂
Ψ|[1,2]×Wi

(t, x) := ĤDEF
i |[0,1]×X̂α

i
(t− 1, x)

ˆ̂
Ψ|X̂i

:= Ψ∗
i .

Note that
ˆ̂
Xα = Wi and

ˆ̂
Xω = [0, 2] × Zi ∪ X̂ω

i .

Moreover, there exists ε4 > 0 such that

∀x ∈ ˆ̂
X, Mgi(

ˆ̂
Ψ(x)) ≥ L(Hi) − ε4 =⇒ | ˆ̂Ψ(x)| ∈ Ĝḡ ∪ B̂ḡ ,

∀x ∈ ˆ̂
Xα, Mgi(

ˆ̂
Ψ(x)) ≥ L(Hi) − ε4 =⇒ | ˆ̂Ψ(x)| ∈ B̂ḡ ,

∀x ∈ ˆ̂
Xω, Mgi(

ˆ̂
Ψ(x)) ≥ L(Hi) − ε4 =⇒ | ˆ̂Ψ(x)| ∈ Ĝḡ ,

Here, we use the inequality on
ˆ̂
Xω,

sup
[0,2]×Zi

Mgi ◦
ˆ̂
Ψω ≤ L(Hi) − ε̄0/4 .

Constructing a map Ξω homologous to (
ˆ̂
Ψ)ω. Similarly, using the fact that Fgi(Ĝḡ, B̂ḡ) > 0,

we can construct a map Ξ ∈ H̃i from
ˆ̂
Ψ such that

Mgi ◦ Ξω < L(Hi),

thereby arriving at a contradiction. This completes the proof of Theorem 1.2.2.
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4. A free boundary minimal surface via a 6-sweepout

4.1. Preliminaries. In this section, we first discuss more about the space E introduced

in §1, and then state some preliminaries about min-max theory, in both the Almgren-Pitts

setting [Alm62, Alm65, Pit81] and the Simon-Smith setting [CDL03, Smi82].

About the space E. A smooth embedded surface S in B3 is said to be properly embedded

if ∂S = S ∩ ∂B3 and S meets ∂B3 transversely along ∂S. By definition, E consists of

closed sets S ⊂ B3 such that there exists a finite set P such that S\P is a smooth and

properly embedded surface. (Note that ∂(S\P ) does not include P .) Now, for any open

set U ⊂⊂ B3\P (meaning U ⊂ B3\P ), ϵ > 0, and non-negative integer k, denote by

BP,U,ϵ,k(S) ⊂ E the subset of all surface S ′ ∈ E such that S ′\P is smooth and properly

embedded and is ϵ-close to S in the graphical Ck-distance within U . Then the following

proposition tells us that the topology on E introduced in §1.3 is well-defined.

Proposition 4.1.1. The subsets BP,U,ϵ,k(S) ⊂ E form a base.

Proof. First, these subsets clearly cover E . So it suffices to show that if BP1,U1,ϵ1,k1(S1) ∩

BP2,U2,ϵ2,k2(S2) contains some element S, then it contains some subset BP,U,ϵ,k(S). Indeed,

one can just take P := P1∩P2, U := U1∪U2, k := max{k1, k2}, and ϵ > 0 to be sufficiently

small. □

We will mention some mostly obvious remarks. First, E contains disconnected surfaces,

and also the empty surface ∅ and any finite sets of points tautologically. Taking P = ∅

in (1.2), we know {∅} is an open subset of E . However, ∅ ∈ E is not an isolated point

as for any p ∈ B3, all open neighborhoods of {p} in E has ∅ as an element tautologically.

Similarly, for any distinct points p1, p2 ∈ B3, all open neighborhoods of {p1, p2} in E has

{p1} as an element, but not vice versa. Moreover, for any p ∈ B3, let Br(p) ⊂ B3 be

the ball centered at p with radius r. Then for n ≥ 2, ∂B1/n(p) ∈ E and converge to {p}

(not ∅) as n → ∞. Furthermore, the path r 7→ ∂Br(0) of spheres in E for r ∈ (0, 2) is

not well-defined at r = 1, but by perturbing the spheres to ellipsoids, the path becomes

well-defined and continuous.
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Simon-Smith min-max theory. Let M be a compact oriented Riemannian 3-manifold with

strictly mean convex boundary.

Definition 4.1.2. Let X be a compact k-dimensional cubical complex, called the pa-

rameter space. Suppose we have a map Φ assigning to each x ∈ X a closed subset Φ(x)

of M such that:

(1) There exists a dense subset Y ⊂ X of parameters such that:

• For each x ∈ Y , Φ(x) is an oriented, smooth, and properly embedded surface

with boundary.

• For each x ∈ X\Y , there exists a finite set P (x) such that Φ(x)\P (x) is a

smooth and properly embedded surface with boundary.

Moreover, we require that |P (x)| is bounded independent of x. (We can say

P (x) = ∅ for x ∈ Y for convenience.)

(2) Φ is continuous in the varifold topology.

(3) For any x0 ∈ X and open set U ⊂⊂M\P (x0) (i.e. U ⊂M\P (x0)), Φ(x) → Φ(x0)

in the graphical C∞-topology in U whenever x→ x0.

(4) Φ(x) has genus at most g for each x ∈ Y .

Then we call Φ a smooth family of surfaces with genus at most g, or in brief, a genus ≤ g

smooth family.

Note that when Φ(x) is disconnected, its genus is defined as the sum of the genus

of each of its connected components. For (3), Φ(x0) meets ∂B3 transversely in U , thus

the graphical convergence makes sense even near the boundary ∂Φ(x0). Moreover, we

required continuity in the varifold topology (see [CFS20, Fra21]) instead of the Hausdorff

topology because we want to allow a smooth family to contain empty sets: We will explain

more about the minor variations between our definition of a smooth family and others’

later in the proof of Theorem 4.1.3.

Two smooth families Φ and Φ′ parametrized by X are said to be homotopic if there

exists a map ψ ∈ C∞(X ×M,M) such that ψ(x, ·) ∈ Diff0(M) for each x (meaning each
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ψ(x, ·) is homotopic via diffeomorphisms to the identity map), and ψ(x,Φ(x)) = Φ′(x)

for each x. Given a homotopy class Λ, its width is defined by

LSS(Λ) := inf
Φ∈Λ

max
x∈X

area(Φ(x)).

A sequence {Φi} in Λ is said to be minimizing if

lim
i→∞

max
x∈X

area(Φi(x)) = LSS(Λ).

If {Φi} is a minimizing sequence and we pick xi such that

lim
i→∞

area(Φi(xi)) = LSS(Λ),

then {Φi(xi)} is called a min-max sequence. Furthermore, a minimizing sequence is pulled-

tight if all its min-max sequences approach the set of stationary varifolds in the varifold

topology.

Theorem 4.1.3. Let Λ be a homotopy class of genus ≤ g smooth families parametrized by

X. Then there exists a pulled-tight minimizing sequence in Λ, which contains a min-max

sequence converging in the varifold topology to some varifold V =
∑N

i=1 niΓ
i, in which Γi

are disjoint embedded free boundary minimal surfaces and ni are positive integers, such

that:

• ∥V ∥ = LSS(Λ).

• index(spt(V )) ≤ dim(X).

•
∑

Γi orientable

genus(Γi) +
1

2

∑
Γi non-orientable

(genus(Γi) − 1) ≤ g.

Proof. It suffices to prove the following statements:

(1) There exists in Λ a pulled-tight minimizing sequence {Φn}.

(2) There exists a function r : M → R>0 and a min-max sequence {Φn(xn)} of the

minimizing sequence above such that:
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• For every p ∈ M , in every annulus centered at p with outer radius at most

r(p), Φn(xn) is 1/n–almost minimizing (see [CDL03, Definition 3.2]) when n

is large enough.

• In any such annulus, Φn(xn) is smooth when n is large enough.

• Φn(xn) converges to a stationary varifold V .

(3) V has the desired form
∑N

i=1 niΓ
i mentioned above.

(4) The index bound.

(5) The genus bound.

Item (1) follows from the pull-tight procedure in [CDL03, §4] of Colding-De Lellis.

Item (2) follows from [CDL03, Proposition 5.1] and its multi-parameter version [CGK18,

Appendix] by Colding-Gabai-Ketover. For the adaptation to the case of manifold with

boundary, see [Li15] by Li and [Fra21] by Franz. Note the following differences between

our setting and previous ones. First, our parameter space X is a cubical complex instead

of a cube, but we can embed it into some cube of high dimension so that the same proofs

work. Second, even though unlike in [CDL03] we are doing non-relative min-max theory,

as we allow a homotopy to vary a smooth family on the boundary of its parameter space,

the same argument of [CDL03] is still applicable (in the Almgren-Pitts setting, the non-

relative version was carried out in [MN17]). Third, in our definition of a smooth family

Φ, we allow the set P (x) of singularities of Φ(x) to vary as x varies. However, we can still

ensure each Φn(xn) to be smooth in any small annulus described in (2). This is because,

by passing to a subsequence, we can assume that P (xn) converges as n → ∞ to some

finite set P in the Hausdorff topology, so that our claim follows immediately by choosing

r(p) to be small enough (see the last paragraph of [CDL03, §5]).

As for item (3), the regularity of V is due to [CDL03, Theorem 7.1] for the closed case

and [Li15, Proposition 4.11] for the free boundary case: Notice that we have assumed ∂M

to be strictly mean convex, which via the maximum principle guarantees that the interior

of V does not touch ∂M . As for the index bound, it was first proven in the Almgren-

Pitts setting, by Marques-Neves [MN16] in the closed case and Guang-Li-Wang-Zhou
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[GLWZ21] in the free boundary case, and then adapted to the Simon-Smith setting by

Franz [Fra21]. Finally, the genus bound is due to [Li15, Theorem 9.1] by Li, based on

[DLP10, Theorem 1.6] by De Lellis-Pellandini. We note that although the set X\Y

of parameters that give non-smooth surfaces may not be finite, the proof of the genus

bound (in [DLP10, §2.3]) using Simon’s lifting lemma [DLP10, Proposition 2.1] is still

valid using the fact that the complement (X\Y )c = Y is dense by assumption. (See also

[Ket16b, Ket19] by Ketover, which provide a stronger genus bound for limits of min-max

sequences of smooth surfaces.) □

Almgren-Pitts min-max theory. Let M be a compact (n + 1)-dimensional Riemannian

manifold with boundary. Let Rk(M ;Z2) (resp. Rk(∂M ;Z2)) be the set of k-dimensional

rectifiable currents in M (resp. ∂M) with Z2-coefficients. For any T ∈ Rk(M ;Z2) such

that its support lies in ∂M , we define an equivalence relation by T ∼ S if T − S ∈

Rk(∂M ;Z2), and then denote by Zk(M,∂M ;Z2) the set of such equivalence classes. The

three common topologies on Zk(M,∂M ;Z2) are given by the flat metric F , the F-metric,

and the mass M respectively: Since the definitions are standard, we refer the reader

to, for example, [GLWZ21, §3] for the details. Note that by [GLWZ21, §3.3], under the

metric F or M, Zk(M,∂M ;Z2) is homeomorphic and isometric to the space of relative

k-cycles considered in [LMN18, §2.2].

Then by the Almgren isomorphism theorem [Alm62] (see also [LMN18, §2.5]), ifHn(M,∂M ;Z2) =

0, then when equipped with the flat topology, Zn(M,∂M ;Z2) is connected and weakly

homotopic equivalent to RP∞. Thus we can denote its cohomology ring by Z2[λ̄]. Then

an F -continuous map Φ : X → Zn(M,∂M ;Z2), where X is some cubical complex, is

said to be a k-sweepout if Φ∗(λ̄k) ̸= 0. Let Pk be the set of all F-continuous k-sweepouts.

Then, denoting by dmn(Φ) the domain of Φ, the k-width of M is defined by

ωk(M) := inf
Φ∈Pk

max
x∈dmn(Φ)

M(Φ(x)).
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Remark 4.1.4. There is an equivalent characterization of k-sweepouts (see [MN17, Def-

inition 4.1]): An F -continuous map Φ : X → Zn(M,∂M ;Z2) is a k-sweepout if there

exists an λ ∈ H1(X;Z2) such that:

• λ detects the 1-sweepouts, i.e. for any cycle γ : S1 → X, we have λ(γ) ̸= 0 if and

only if Φ ◦ γ : S1 → Zn(M,∂M ;Z2) is a 1-sweepout.

• The cup product λk ∈ Hk(X;Z2) is non-zero.

4.2. Proofs of Main results. In this section, we prove the results stated in §1.3. From

now on, we denote by Z the space Z2(B3, ∂B3;Z2) with the flat topology.

Proof of Theorem 1.3.2. We will construct the desired family Ψ that satisfies condition

(A), (B), and (C) of Theorem 1.3.2 in two steps: In step 1 we construct a 6-sweepout

(condition (A)). Then in step 2, we modify it such that it becomes, in addition, a genus

≤ 1 smooth family (condition (B)) with maximal area less than 2π (condition (C)).

Step 1. We consider all scalings and translations of the saddle surface {x2− y2 + z = 0}

in R3, and then intersect them with B3. Namely, we define a map Φ4 : RP4 → Z by

assign to each a = [a0 : a1 : a2 : a3 : a4] ∈ RP4 the zero set of the polynomial

pa0,a1,a2,a3,a4(x, y, z) := a0(x
2 − y2) + a1x+ a2y + a3z + a4

in B3. And then we add in rotations. Namely, we define Φ̃7 : RP4 × SO(3) → Z by

assigning each (a,Q) to the surface “Φ4(a) rotated by Q−1”, i.e. the zero set of the

polynomial pa0,a1,a2,a3,a4(Q(x, y, z)) in B3.

However, a loop in the SO(3) factor does not produce a 1-sweepout (e.g. consider a

disk rotating for 360◦), and Φ̃7 is not yet a 6-sweepout. To get a 6-sweepout, one needs

to take a quotient on the space RP4 × SO(3) as follows.

We first observe {x2 − y2 + z = 0} has a dihedral symmetry: Let

g1 :=
(

0 1 0
1 0 0
0 0 −1

)
and g2 :=

(
0 −1 0
−1 0 0
0 0 −1

)
.
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They are the 180◦-rotation about the line {z = 0, x = y} and {z = 0, x = −y} respec-

tively. Then D2 := {id, g1, g2, g1g2} is a dihedral group, which preserves {x2−y2+z = 0}.

Motivated by this, we define a D2-action on RP4 by

g1[a0 : a1 : a2 : a3 : a4] := [−a0 : a2 : a1 : −a3 : a4],

g2[a0 : a1 : a2 : a3 : a4] := [−a0 : −a2 : −a1 : −a3 : a4],

and then a D2-action on RP4 × SO(3) by

g1(a,Q) := (g1a, g1Q),(4.1)

g2(a,Q) := (g2a, g2Q).

The whole reason we define the action by (4.1) is to ensure the following:

Proposition 4.2.1. For each g ∈ D2 and a ∈ RP4, g−1(Φ4(g(a))) = Φ4(a).

Proof. The proof is straightforward: Let a = [a0 : a1 : a2 : a3 : a4]. Then

g−1
1 (Φ4(g1(a))) = {−a0(y2 − x2) + a2y + a1x− a3(−z) + a4 = 0} ∩ B3,

g−1
2 (Φ4(g2(a))) = {−a0((−y)2 − (−x)2) − a2(−y) − a1(−x) − a3(−z) + a4 = 0} ∩ B3,

which are both the same as Φ4(a). □

As an immediate result, Φ̃7(g(a,Q)) = Φ̃7(a,Q) for all g, a, and Q, and hence one can

pass to the quotient space to define a new collection Φ7 : RP4×SO(3)
D2

→ Z. Note that Φ7 is

F -continuous clearly because it parametrizes the collection of all scalings, translations,

and rotations of the saddle surface {x2− y2 + z = 0}, intersected with B3. Then a crucial

fact is:

Proposition 4.2.2. Φ7 is a 6-sweepout.

The proof of Proposition 4.2.2 is a lengthy calculation of algebraic topology. We

postpone it to §4.3. Hence, Φ7 satisfies condition (A).
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Figure 16. The surface {a0(x2 − y2 + a5z
3) + a3z = 0} for various a0 and

a3, with a5 > 0 small and fixed.

Step 2. However, Φ7 is not a smooth family, as it contains intersecting disks of the form

{(x− x0)
2 − (y − y0)

2 = 0} ∩ B3. We are going to desingularize them.

For each fixed number a5 ≥ 0, let us define a collection Φa5
4 : RP4 → Z by assigning

[a0 : a1 : a2 : a3 : a4] to the zero set of the polynomial

(4.2) pa0,a1,a2,a3,a4,a5(x, y, z) := a0(x
2 − y2 + a5z

3) + a1x+ a2y + a3z + a4

in B3. So for small a5 > 0, Φa5
4 is slight modification of Φ4. In fact, as we will see, the

effect of the z3 term is three-fold: Desingularizing the intersecting disks, creating genus 1

surfaces (Figure 16), and lowering the area to strictly below 2π.

Remark 4.2.3. Let us geometrically describe the family Φa5
4 . We will focus on the cubic

surfaces, so without loss of generality we put a0 = 1. Since a1 and a2 just contribute to

translation, let us assume they are both 0. Now, fix some (a3, a4, a5) ∈ R2 × (0,∞), and
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let s > 0 varies. We claim that as s increases from 0, the surfaces

(4.3) Φa5s
4 ([1 : 0 : 0 : a3s : a4s]) = {x2 − y2 + s(a3z + a4 + a5z

3) = 0} ∩ B3

desingularize the intersecting disks {x2− y2 = 0}∩B3 along the singular line. Indeed, we

consider the three cases: a3z+a4+a5z
3 having 1, 2, or 3 roots; let zi’s be the roots. Then

in each case, as s increases from 0, the surfaces Φa5s
4 ([1 : 0 : 0 : a3s : a4s]) stay fixed on

the coordinate planes {z = zi}, and “open up” smoothly above, below, and in between.

This is because by (4.3), at each fixed height z ̸= zi, the cross-section of the surface is a

hyperbola, which dilates as s increases and has a distance of
√
s|a3z + a4 + a5z3| between

the two branches. In Table 1, we show some examples.

Moreover, we can study for which (a3, a4, a5) the surface Φa5
4 ([1 : 0 : 0 : a3 : a4]) has

singularities, and where they are: By solving
p1,0,0,a3,a4,a5 = x2 − y2 + a3z + a4 + a5z

3 = 0

∇p1,0,0,a3,a4,a5 = (2x,−2y, a3 + 3a5z
2) = (0, 0, 0)

we know when a3z + a4 + a5z
3 has some double or triple root z1, the surface has a

singularity at (0, 0, z1).

But our goal is to modify Φ7, not just Φ4. To do that, first notice by a straight-

forward calculation that Φa5
4 satisfies a property similar to Proposition 4.2.1, namely

g−1(Φa5
4 (g(a))) = Φa5

4 (a). The key idea behind is that the polynomial x2 − y2 + a5z
3

is invariant under the D2-action on (x, y, z). As a result, we can construct a map

Φa5
7 : RP4×SO(3)

D2
→ Z by rotating all elements in Φa5

4 , just like how we constructed Φ7

from Φ4 in step 1. Hence we have obtained a modification Φa5
7 of Φ7.

Now, from Remark 4.2.3, it follows easily that Φa5
7 is F-continuous and is homotopic

in the F -topology to Φ7, so that it is a 6-sweepout (condition (A)). Moreover, we show

that condition (B) can be satisfied:

Proposition 4.2.4. For almost every a5 ∈ [0, 1], Φa5
7 is a genus ≤ 1 smooth family.
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s
b3 0.1 −3 3

√
1

400
≈ 0.407 0.6

0.05

0.3

Table 1. The surface {x2 − y2 + s(b3z + 0.1 + z3) = 0} for various b3 and
s is shown above. They illustrate the three cases where the polynomial
a3z + a4 + a5z

3 has 1, 2, and 3 roots respectively.

Proof. By Remark 4.2.3, the subset of parameters a ∈ RP4×SO(3)
D2

such that Φa5
7 (a) has sin-

gularities is 1-codimensional, and all such surfaces have at most one singularity. Moreover,

it is straightforward to check that for all a, Φa5
7 (a) and ∂B3 touch (i.e. have coinciding

tangent planes) at finitely many points. Also, by the transversality theorem and Remark

4.2.3, for a.e. a5 ∈ [0, 1], the algebraic surfaces in R3 that define Φa5
7 (a) (i.e. the rotations

of the zero set of (4.2) in R3) intersect ∂B3 transversely for a.e. a ∈ RP4×SO(3)
D2

. So for

such a5, Φa5
7 satisfies Definition 4.1.2 (1).

Note that each smooth surface of Φa5
4 has genus 0 or 1 because they are obtained from

opening up the intersecting disks {x2 − y2 = 0} ∩ B3 above, below, and in between at

most three horizontal planes, by Remark 4.2.3. So each smooth surface of Φa5
7 has genus

0 or 1. Now, using Remark 4.2.3, one can show that Definition 4.1.2 (2) and (3) are also

satisfied by Φa5
7 . So Φa5

7 is a genus ≤ 1 smooth family for a.e. a5. □

Next, we claim that for small a5 > 0, Φa5
7 also satisfies condition (C), i.e. area ◦ Φa5

7 <

2π. Indeed, it suffices to show that area ◦ Φa5
4 < 2π for small a5 > 0, which follows

straightforwardly from the following two propositions:
144



Proposition 4.2.5. The area function area ◦ Φ4 : RP4 → R attains a strict global

maximum at [1 : 0 : 0 : 0 : 0].

Note that Φ4([1 : 0 : 0 : 0 : 0]) is {x2 − y2 = 0} ∩ B3, which has area 2π.

Proposition 4.2.6. Define Φ5 : RP4 × [0, 1] → Z by Φ5(a, a5) = Φa5
4 (a). Then the area

function area ◦ Φ5 attains a strict local maximum at ([1 : 0 : 0 : 0 : 0], 0).

The proof of Proposition 4.2.5 is due to the MathOverflow user fedja [Fed22]. We

include it in Appendix A. The proof of Proposition 4.2.6 is postponed to §4.3: It uses

mainly calculus but is quite technical. However, intuitively Proposition 4.2.6 makes

sense because Remark 4.2.3 tells us that Φ5 gives a desingularization of the intersecting

equatorial disks, and desingularization should lower the area as the sharp bend along the

singular line is smoothed.

Thus, for a.e. sufficiently small a5 > 0, by Proposition 4.2.5 and 4.2.6, Φa5
7 satisfies

condition (C) also. Defining Ψ as one such Φa5
7 , we finish the proof of Theorem 1.3.2.

Proof of Theorem 1.3.1. We will first do the case of E0 ∪ E1 ∩ E2π. By Theorem 1.3.2

(B) and (C), we can view the family Ψ in Theorem 1.3.2 as the composition of a map

Ψ′ : RP4×SO(3)
D2

→ E0 ∪ E1 ∩ E2π and the natural map i from E0 ∪ E1 ∩ E2π to the space

of 2-cycles Z2(B3, ∂B3;Z2) equipped with the flat topology (see §4.1). Note that Ψ′

is continuous (under the topology of E defined in §1.3) since Ψ is a smooth family by

Theorem 1.3.2 (B), and i is continuous by the fact that the smooth convergence of surfaces

is stronger than the flat convergence.

By Almgren isomorphism theorem (see §4.1), we denote the cohomology ring of Z2(B3, ∂B3;Z2)

in Z2-coefficients as Z2[λ̄]. To prove Theorem 1.3.1 for the space E0 ∪ E1 ∩ E2π, it suffices

to show that (i∗λ̄)6 ̸= 0. Thus, it suffices to show (i◦Ψ′)∗(λ̄6) ̸= 0, i.e. Ψ is a 6-sweepout,

which is true by Theorem 1.3.2.

Reusing the argument above with E0 ∪ E1 ∩ E2π replaced by any subspace of E∞ that

contains E0 ∪ E1 ∩ E2π, we finish the proof of Theorem 1.3.1. (Note that elements in E∞

have finite area and thus belong to Z2(B3, ∂B3;Z2).)
145



Proof of Corollary 1.3.3. Let Ψ be the smooth family in Theorem 1.3.2. Since area◦Ψ <

2π and Ψ is a 6-sweepout by Theorem 1.3.2, ω6(B3) < 2π.

Proof of Theorem 1.3.4. Let Ψ be the family satisfying condition (A), (B), and (C) of

Theorem 1.3.2, and Ψ(5) be the subfamily of Ψ parametrized by a 5-skeleton of the

parameter space of Ψ. Without loss of generality, we can assume that Ψ(5) is also a

smooth family. Now, since Ψ is a 5-sweepout by (A), so is Ψ(5) (see the proof of [MN21,

Proposition 7.1]). It follows that the width L := LSS(Λ(Ψ(5))) is positive.

Now, we apply the Simon-Smith min-max theory to Ψ(5). Let {Φi} be a pulled-tight

minimizing sequence of Λ(Ψ(5)). Denote by W the set of all stationary integral varifolds

in B3 whose support is a smooth embedded free boundary minimal hypersurface, and by

C({Φi}) the set of subsequential varifold limits of min-max sequences of {Φi}. Then by

Theorem 4.1.3, C({Φi}) ∩ W is non-empty. Now, there are three cases: C({Φi}) ∩ W

contains (1) some element Γ that is not the equatorial disk or the critical catenoid;

(2) only critical catenoids; or (3) only equatorial disks (note that critical catenoids and

equatorial disks cannot appear together in C({Φi})∩W as they have different area). We

will consider each case individually in the following.

Case (1). We will show that Γ has the desired property stated in Theorem 1.3.4:

Proposition 4.2.7. Γ has multiplicity 1, genus 0 or 1, Morse index 4 or 5, and area in

the range (π, 2π).

Proof. First, by Theorem 4.1.3, area(Γ) when counted with possible multiplicities is equal

to LSS(Λ(Ψ(5))), which is less than 2π by (C). Then, since the least possible area of a free

boundary minimal surface in B3 is π by a result of Fraser-Schoen [FS11, Theorem 5.4],

Γ must have multiplicity 1. Moreover, by Theorem 4.1.3, (B) implies genus(Γ) ≤ 1, and

index(Γ) ≤ 5 since the parameter space of Ψ(5) is 5-dimensional. Lastly, since Γ is not the

equatorial disk, we have area(Γ) > π again from [FS11] (and also [Bre12] by Brendle),

and index(Γ) ≥ 4 from [Dev19, §5] by Devyver or [Tra20, §3.1] by Tran. □
146



Hence, case (1) is done.

Case (2). Now we turn to case (2). We will use a technique called splitting of domains.

First, let C denote the set of critical catenoids: Note that C is homeomorphic to RP2.

Fixing a small ϵ > 0, and denoting by W the parameter space of Ψ(5), we consider the

set of parameters

{x ∈ W : F(Φi(x), C) ≤ ϵ}.

This subset, after a slight thickening, can be assumed to be a cubical complex; we will

denote it by Zi, and then W\Zi by Yi. Now, as we mentioned Ψ(5) is a 5-sweepout, hence

so is Φi. Then using a topological argument by Lusternik-Schnirelmann [LS47] (see also

[MN17, Claim 6.3]), we know that either Φi|Zi
is a 1-sweepout or Φi|Yi

is a 4-sweepout.

Now note that, if ϵ is small enough, Φi|Zi
lies near C and thus is homotopic in the F -

topology to some M-continuous map into C (using [Nur16, §3.3.6] by Nurser, together

with discretization and interpolation theorems in the free boundary setting by Li-Zhou

[LZ21, §4.2]). But no map into C can be a 1-sweepout as C can be contracted to just {∅},

by shrinking each critical catenoid to its axis, which has no mass. Hence, Φi|Zi
cannot

be a 1-sweepout, and so each Φi|Yi
must be a 4-sweepout.

Now, we claim that for some i, Φi|Yi
is homotopic (in the Simon-Smith setting) to

another smooth family Ψ̃ with maximal area less than L. Indeed, if not, then by standard

Simon-Smith min-max theory, there exists yi such that Φi|Yi
(yi) converges subsequentially

to some smooth embedded free boundary minimal surface V with mass L (see [CDL03, §5]

and [CGK18, Appendix]: Their arguments apply here because even though our parameter

spaces Yi depend on i, they can all be embedded into some RN with N independent of

i). Then note two facts: V cannot be the critical catenoid by the definition of Yi, and

V ∈ C({Φi}) ∩W clearly. However, these two facts are contradictory because we are in

case (2). Thus, the desired smooth family Ψ̃ exists.

We then apply the Theorem 4.1.3 to Λ(Ψ̃), and repeat the argument above. Namely,

letting {Φ̃i} be a pulled-tight minimizing sequence of Λ(Ψ̃), there are two cases: C({Φ̃i})∩
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W either contains (2a) some element Γ̃ that is not the equatorial disk or the critical

catenoid, or (2b) only equatorial disks. The critical catenoid, having area L, cannot

appear because area ◦ Ψ̃ < L.

If it is case (2a), one can reapply the proof of Proposition 4.2.7 to Γ̃ to show that Γ̃

has the desired properties in Theorem 1.3.4 (this time index(Γ̃) is actually 4), and we

are done. If it is case (2b), we split the domains again to arrive at a contradiction. This

time the key ideas are: There is no 3-sweepout near the set of equatorial disks, which is

merely an RP2; and there is no 1-sweepout with maximal area less than π, which is the

least possible area for a free boundary minimal surface. Therefore case (2b) is impossible.

Now case (2) is also done.

Case (3). Case (3) is entirely analogous to case (2b).

So we have finished the proof of Theorem 1.3.4.

Explanation of Remark 1.3.5. Letting a5 > 0 be sufficiently small, we define the family

Φ1 : RP1 → Z of D2-symmetric surfaces:

Φ1([a0 : a3]) := Φa5
4 ([a0 : 0 : 0 : a3 : 0]) = {a0(x2 − y2 + a5z

3) + a3z = 0} ∩ B3

(see Figure 16). Note that area ◦ Φ1 < 2 as area ◦ Φa5
4 < 2 by Theorem 1.3.2 (C).

Then applying the equivariant Simon-Smith min-max theorem to Φ1, we obtain a free

boundary minimal surface. To show it has the desired properties mentioned in Remark

1.3.5, we just proceed in a way similar to [CFS20, §4]. In particular, we can use the proof

of [CFS20, Lemma 4.1] to show that the number of boundary component of the minimal

surface obtained is one. Indeed, we first note that for each surface Φ1(a), the complement

of the three axes of rotations (the z-axis, {z = 0, x = y}, and {z = 0, x = −y}) in Φ1(a)

are topological disks. And this fact is what one need to carry out the proof of [CFS20,

Lemma 4.1].
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4.3. Technical Ingredients. In this section, we prove Proposition 4.2.2 and 4.2.6.

Proof of Proposition 4.2.2. Throughout §4.3, we write X := RP4×SO(3)
D2

. The proof has

four steps. In step 1 we compute H1(X;Z2), and understand which first homology classes

give 1-sweepouts under Φ7. In step 2 we find the cohomology class λ ∈ H1(X;Z2) that

detects the 1-sweepouts (as explained Remark 4.1.4), and understand its Poincaré dual.

In step 3 we show that λ6 ̸= 0. And in step 4, we prove a technical lemma used in step

3. By Remark 4.1.4, we immediately obtain the desired claim that Φ7 is a 6-sweepout.

Step 1. Let us first find π1(X). Let Q8 be the quaternion group {±1,±i,±j,±k},

contained in the group S3 of unit quaternions.

Lemma 4.3.1. π1(X) = Z2 ×Q8.

Proof. First, the universal cover of RP4 × SO(3) is S4 × S3; in fact, without loss of

generality one may assume the double covering S3 → SO(3) maps ±i to g1 and ±j to

g2, and thus Q8 to D2. Then to prove the lemma, it suffices to construct a Z2 × Q8-

action on S4 × S3 that descends, under the projections S4 × S3 → RP4 × SO(3) and

Z2 ×Q8 → 1 ×D2, to the D2-action on RP4 × SO(3) defining X.

First, we define a Q8-action on S4 × S3 by

(±i) · ((a0, a1, a2, a3, a4), q) := ((−a0, a2, a1,−a3, a4),±iq),

(±j) · ((a0, a1, a2, a3, a4), q) := ((−a0,−a2,−a1,−a3, a4),±jq).

Then, let Z2 act on S4 × S3 by acting antipodally on only the S4 factor. After checking

these two actions commute, we obtain a Z2×Q8-action on S4×S3, and it is straightforward

to check that this action has the desired property. □

Now, abelianizing π1(X) = Z2 ×Q8, we have H1(X;Z) = Z2 ×D2, which then by the

universal coefficient theorem gives H1(X;Z2) = Z2 × D2. In fact, some first homology

classes can be described explicitly as follows. Denote e0 := (1, 0, 0, 0, 0), and let x̃0 :=
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(e0, 1) be the base point in S4 × S3. Then consider the path

{((a0, 0, 0,
√

1 − a20, 0), 1) : −1 ≤ a0 ≤ 1}

in S4×S3 joining x̃0 to (−e0, 1), a path joining x̃0 to (e0, i), and a path joining x̃0 to (e0, j).

Call the projection of these three paths onto X, which are actually loops, c1, c2 and c3

respectively. Then [c1] = (1, id), [c2] = (0, g1), and [c3] = (0, g2) in H1(X;Z2) = Z2 ×D2,

and hence they form a base.

Lemma 4.3.2. (1, id), (0, g1), (0, g2), (1, g1g2) are exactly the homology classes that give

1-sweepouts under Φ7.

Proof. It suffices to show that (1, id), (0, g1), (0, g2) give 1-sweepouts. To show that (1, id)

gives a 1-sweepout, note that

Φ7 ◦ c1 = Φ4({[a0 : 0 : 0 : a3 : 0] : a20 + a23 = 1}).

But in RP4 the loop {a20 + a23 = 1} is homotopic to {a23 + a24 = 1}, which under Φ4 gives

the collection of all horizontal planes together with the empty set, and that certainly is

a 1-sweepout. So Φ7 ◦ c1 is a 1-sweepout.

To show that (0, g1) gives a 1-sweepout, note that Φ7 ◦ c2 gives the motion of rotating

the intersecting planes {x2 − y2 = 0} about the axis {z = 0, x = y} by 180◦. Let us call

{|y| > |x|} the inside region of {x2 − y2 = 0}, and {|y| < |x|} the outside. Then the

rotation switches the inside and the outside. So Φ7 ◦ c2 is a 1-sweepout.

The proof that (0, g2) gives a 1-sweepout is similar. □

Step 2. By the universal coefficient theorem, H1(X;Z2) = Hom(H1(X;Z2),Z2). Since

[c1], [c2], [c3] form a base of H1(X;Z2), we can define respectively their Hom-duals λi :=

[ci]
∗ ∈ H1(X;Z2) for i = 1, 2, 3. Let λ = λ1 + λ2 + λ3, then by Lemma 4.3.2, λ is the

cohomology class that detects exactly the 1-sweepouts. Hence, to prove Proposition 4.2.2,
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we need λ6 ̸= 0. We are going to prove this by considering the Poincaré dual of λ6, so let

us first understand the Poincaré dual PD(λi) ∈ H6(X;Z2) of λi.

In the remaining of §4.3, we will view X as an RP4-bundle over the base B :=

SO(3)/D2, and let p : X → B be the projection. Let A0 be the 6-dimensional sub-

bundle of X over B on which a0 = 0. Note that A0 is well-defined because the subset

{a0 = 0} of RP4 × SO(3) is D2-invariant.

Lemma 4.3.3. PD(λ1) = [A0] in H6(X;Z2).

Proof. This is because the loop c1 intersects A0 at only one point in X, D2 · ([0 : 0 : 0 :

1 : 0], id). □

To construct PD(λ2 + λ3), we will need to know the cohomology groups of B, which

is S3/Q8. We quote the result [TZ08, Theorem 2.2 (1)] of Tomoda-Zvengrowsk:

Proposition 4.3.4. The cohomology ring H∗(S3/Q8;Z2) is given by

Z2[α1, α
′
1, α2, α

′
2, α3]/ ∼,

in which the subscript of each generator denotes its degree, and ∼ denotes the following

equivalence:

α2
1 = α2 + α′

2, α1α
′
1 = α′

2, (α′
1)

2 = α2,

α1α2 = α1α
′
2 = α′

1α
′
2 = α3, α

′
1α2 = 0,

products of cohomology classes with total degree greater than 3 is 0.

Now, from the definition of c2 and c3, we know p ◦ c2 and p ◦ c3 form a base in

H1(B;Z2) ∼= Z2×Z2. Remembering ∗ denotes the Hom-dual, we let b2, b3 be 2-dimensional

submanifolds in B such that

[b2] = PD([p ◦ c2]∗), [b3] = PD([p ◦ c3]∗) ∈ H2(B;Z2).
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We moreover assume b2 and b3 intersect transversely, and define b := b2 ∪ b3. Let X|b2

be the restriction of the RP4-bundle X over the base b2, and similarly for X|b3 and X|b.

Note that they are 6-dimensional.

Lemma 4.3.5. In H6(X;Z2) we have:

(1) PD(λ2) = [X|b2 ].

(2) PD(λ3) = [X|b3 ].

(3) PD(λ2 + λ3) = [X|b].

Proof. Since λ2 is the Hom-dual of [c2], to show that [X|b2 ] = PD(λ2), it suffices to

show that the intersections number of X|b2 with c1, c2 and c3 respectively are 0, 1, and 0.

Indeed, this is true because, respectively, b2 can be perturbed to avoid the point p ◦ c1

(in B), the intersection number of b2 with p ◦ c2 is 1, and the intersection number of b2

with p ◦ c3 is 0.

Similarly, one can show PD(λ3) = [X|b3 ], and thus PD(λ2 + λ3) = [X|b2 ] + [X|b3 ] =

[X|b]. □

Step 3. Note that

λ6 = λ61 + λ41(λ2 + λ3)
2 + λ21(λ2 + λ3)

4 + (λ2 + λ3)
6.

To show λ6 ̸= 0, it suffices to show the following lemma.

Lemma 4.3.6. In the cohomology ring H∗(X;Z2) we have:

(1) (λ2 + λ3)
3 = 0.

(2) λ41(λ2 + λ3)
2 = 1.

(3) λ51 = 0.

Proof. To prove (1), it suffices to perturb three copies of X|b and show that their inter-

section is empty. To achieve this, we can just perturb three copies of the base b ⊂ B.

But their intersection number will be 0, because by Proposition 4.3.4 any element of

H1(B;Z2) cubes to 0. Hence we have proven (1).
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To prove (2) and (3), we need to find different representatives of [A0]. Let A1, A2, A3,

and A4 be the subbundle of X over B on which a1 = a2, a1 = −a2, a3 = 0, and a4 = 0

respectively.

Lemma 4.3.7. In H6(X;Z2) we have:

(1) [A1] = [A0] + [X|b3 ].

(2) [A2] = [A0] + [X|b2 ].

(3) [A3] = [A0].

(4) [A4] = [A0] + [X|b].

We postpone the proof of Lemma 4.3.7 to step 4.

To prove (2) of Lemma 4.3.6, first note that A0 ∩ A1 ∩ A2 ∩ A4 is the [0 : 0 : 0 : 1 : 0]-

bundle over B. Also, b can be perturbed to some b̃ such that b ∩ b̃ is non-trivial in

H1(B;Z2), because Proposition 4.3.4 says the square of any element in H1(B;Z2) is non-

trivial. As a result, A0 ∩ A1 ∩ A2 ∩ A4 ∩ X|b ∩ X |̃b is non-trivial in H1(X;Z2). Hence,

writing µ := λ2 + λ3 for simplicity, we have

1 = PD(A0)PD(A1)PD(A2)PD(A4)PD(X|b)2(4.4)

= λ1(λ1 + λ3)(λ1 + λ2)(λ1 + µ)µ2

= λ41µ
2 + λ31(λ2 + λ3 + µ)µ2 + λ21(λ2λ3 + λ2µ+ λ3µ)µ2 + λ1λ2λ3µ

3

= λ41µ
2.

The first equality above is from Lemma 4.3.7. The last equality holds because λ2 + λ3 +

µ, λ2λ3+λ2µ+λ3µ, and λ2λ3µ all are zero: This is straightforward to check by considering

how the bases b2, b3, and b intersect using Proposition 4.3.4. Hence, we have proven (2)

of Lemma 4.3.6.

To prove (3) of Lemma 4.3.6, one note that A0 ∩A1 ∩A2 ∩A3 ∩A4 is empty, and then

λ51 = 0 would follow from a calculation analogous to (4.4). □

Lemma 4.3.6 implies λ6 ̸= 0, finishing the proof of Proposition 4.2.2.
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Step 4. Finally, let us prove Lemma 4.3.7.

Proof of Lemma 4.3.7. For Lemma 4.3.7 (3): [A3] = [A0] because we can homotope A0

to A3 using the {(1 − s)a0 = sa3}-bundles over B, for 0 ≤ s ≤ 1. (Note that we cannot

prove, say, [A2] = [A0] this way because the {(1 − s)a0 = sa2}-bundles over B is not

well-defined.)

We now prove Lemma 4.3.7 (1), by acting on the basic elements [c1], [c2], and [c3] of

H1(X;Z2). More precisely, recall that λi is by definition the Hom-dual of ci. So by

Lemma 4.3.3 and 4.3.5, PD([A0]+ [X|b3 ]) acts on [c1], [c2], and [c3] to give 1+0, 0+0, and

0+1 respectively. Therefore, to prove (1) it suffices to show that

• PD([A1])[c1] = 1.

• PD([A1])[c2] = 0.

• PD([A1])[c3] = 1.

To show that PD([A1])[c1] = 1, just observe that we can homotope c1 to the loop

{[0 : a1 : 0 : 0 : a4] : a21 + a24 = 1} within the same fiber X|D2·id as π1(RP4) = Z2, and this

loop intersects A1 only once.

To show that PD([A1])[c2] = 0, we will perturb c2 to another loop c̃2 as follows. Let

d2 : [0, 1] → SO(3) be the path that lifts p ◦ c2 ⊂ B = SO(3)/D2, starts at id, and ends

at g1. Fix a small constant ϵ0 > 0. We define c̃2 : [0, 1] → X to be such that it is over

the same base p ◦ c2 as c2, but has different fibers:

c̃2(s) := D2 · ([1 : ϵ0 : −ϵ0 : 0 : 0], d2(s))(4.5)

Then one can check that c̃2(0) = c̃2(1) so that c̃2 is a loop, and c̃2 does not intersect A1.

Thus PD([A1])[c2] = 0.

To show that PD([A1])[c3] = 1, we will perturb c3 to c̃3 as follows. Let d3 : [0, 1] →

SO(3) be the path that lifts p ◦ c3, starts at id, and ends at g2. This time, we let ϵ be

a function from [0, 1] to R that strictly decreases from ϵ0 to −ϵ0, for some fixed small
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ϵ0 > 0. We define c̃3 : [0, 1] → X by:

c̃3(s) := D2 · ([1 : ϵ(s) : −ϵ(s) : 0 : 0], d3(s))(4.6)

One can again check c̃3 is indeed a loop, but c̃3 intersects A1 at one point: where ϵ(s) = 0.

Thus PD([A1])[c3] = 1. This finishes the proof of Lemma 4.3.7 (1).

The proof of Lemma 4.3.7 (2) is similar. We only state the modifications needed: To

prove PD([A2])[c2] = 1 and PD([A2])[c3] = 0, instead of (4.5) and (4.6), respectively, we

use

D2 · ([1 : ϵ(s) : ϵ(s) : 0 : 0], d2(s)) and D2 · ([1 : ϵ0 : ϵ0 : 0 : 0], d3(s)).

The proof of Lemma 4.3.7 (4) is also similar. We only state the modifications needed:

To prove PD([A4])[c2] = 1 and PD([A4])[c3] = 1, instead of (4.5) and (4.6), respectively,

we use

D2 · ([1 : 0 : 0 : 0 : ϵ(s)], d2(s)) and D2 · ([1 : 0 : 0 : 0 : ϵ(s)], d3(s)).

□

Proof of Proposition 4.2.6.

Step 1. For convenience, let us reparametrize the family Φ5 : RP4× [0, 1] → Z as follows.

First, we write RP4 as R4 ⊔ RP3 in which RP3 is where a0 = 0. Then on R4 × [0, 1], we

reparametrize the family Φ5 by

Φ5(b1, b2, b3, b4, b5) := {(x− b1)
2 − (y − b2)

2 + b3z + b4 + b5z
3 = 0} ∩ B3.

Throughout this section we will adopt this new parametrization. And then our goal is

to show that area ◦ Φ5 has a strict local maximum at (0, 0, 0, 0, 0). In fact, it suffices to

prove:
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Proposition 4.3.8. There exists ϵ1, ϵ2 > 0 such that for any (b1, b2) ∈ (−ϵ1, ϵ1)2,

(b3, b4, b5) ∈ R2 × [0, 1] such that b23 + b24 + b25 = 1, and t ∈ (0, ϵ2),

(4.7) area(Φ5(b1, b2, b3t, b4t, b5t)) < area(Φ5(0, 0, 0, 0, 0)).

Geometrically, t governs how much the surface opens up (see Remark 4.2.3). Namely,

it is elementary to show that the width of the hole opened up in Σt is at most
√

3t.

Step 2. We begin to prove Proposition 4.3.8. Let b1, b2, b3, b4, b5 satisfy the assumptions

— we will explain how small ϵ1, ϵ2 need to be later. For each t ∈ (0, ϵ2), denote Σ̃t :=

Φ5(b1, b2, b3t, b4t, b5t). Then by Lemma B.0.1,

d

dt
area(Σ̃t) = −

∫
Σ̃t

H · V −
∫
∂Σ̃t

n · w
ν · w

V · n,

which one would hope to show to be negative in order to prove Proposition 4.2.6. However,

the second integral is difficult to bound, since ν ·w can be zero on ∂B3. To prevent ν ·w = 0

on ∂B3, we will slightly enlarge B3 to some domain Ω, which we will soon define. Then

for each s ∈ (0, t], we let

(4.8) Σs := {(x− b1)
2 − (y − b2)

2 + s(b3z + b4 + b5z
3) = 0} ∩ Ω.

(Here Σs has a boundary, so the notation is different from Lemma B.0.1.) Then

area(Φ5(b1, b2, b3t, b4t, b5t)) − area(Φ5(0, 0, 0, 0, 0))

< area(Σt) − area(Φ5(0, 0, 0, 0, 0))

=
(
area(Σ0) − area(Φ5(0, 0, 0, 0, 0))

)
+

∫ t

0

d

ds
area(Σs)ds(4.9)

Therefore to prove Proposition 4.3.8, it suffices to show that expression (4.9) is negative.

We will achieve this by showing the initial area added by enlarging B3 to Ω, which is the

first term of (4.9), is dominated by the area decrease as s increases from 0 to t, which is

the second term of (4.9).
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Figure 17. A schematic picture of Ω.

But let us first define Ω. We now fix t ∈ (0, ϵ2) also. The new region Ω will depend on

t as follows. Let

(4.10) R := 20
√
t.

Let S1, S2, S3 be the solid cylinders in R3 with axis {x = b1, y = b2} and radius R, 2R, 1
4

respectively. By letting ϵ2 be small we can assume S2 ⊂ S3. Let Ω be the unit 3-ball with

a bump within S2, such that ∂Ω becomes horizontal in S1 (see Figure 17). Moreover, let us

view ∂B3∩S2 (resp. ∂Ω∩S2) as the 2-sheeted graph of some function ±f (resp. ±g) over

a disk D on the xy-plane. Then since dist(p, (0, 0)) < 2ϵ1 + 40
√
ϵ2 for all p ∈ D, we know

that |∇f | ≲ (2ϵ1 + 40
√
ϵ2)

2 (here ≲ means the inequality holds up to a multiplicative

constant that is universal), thus we can also assume |∇g| ≲ (2ϵ1+40
√
ϵ2)

2. As a result, if

we write the outward unit normal w of Ω as (w1, w2, w3), then for ϵ1, ϵ2 sufficiently small,

we have in S2

(4.11) |∇g|, |w1|, |w2| < C ′′(ϵ1 + ϵ2)

for some universal constant C ′′.
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Now we have defined Ω, it suffices to show that expression (4.9) is negative. The second

term of (4.9) can be computed using the first variation formula in Lemma B.0.1. In order

to estimate, let us derive some preliminary results in the next step.

Step 3. We are interested in surfaces Σs defined in (4.8), which is the zero set in Ω of

the polynomial

p(x, y, z) := (x− b1)
2 − (y − b2)

2 + b3sz + b4s+ b5sz
3,

for s increases from 0 to t, where t ∈ (0, ϵ2) is fixed. Note that

∂sp = b3z + b4 + b5z
3, ∇p = (2(x− b1),−2(y − b2), b3s+ 3b5sz

2),

Hess(p) =


2 0 0

0 −2 0

0 0 6b5sz

 , ∆p = 6b5sz.

Moreover, denoting H = Hn,

H =
∇p Hess(p)∇pT − |∇p|2∆p

|∇p|3

=
1

|∇p|3
[8(x− b1)

2 − 8(y − b2)
2 + 6b5sz(b3s+ 3b5sz

2)2

− (4(x− b1)
2 + 4(y − b2)

2 + (b3s+ 3b5sz
2)2)(6b5sz)]

=
1

|∇p|3
[−8s∂sp− 24b5sz((x− b1)

2 + (y − b2)
2)],(4.12)

in which in the third equality we used p = 0 on Σs. We can choose ∇p
|∇p| as the normal

vector field n, and V := − ∂sp
|∇p|2∇p as the deformation vector field of Σs (because by

differentiating p(s,x(s)) = 0 with respect to s, one has ∂sp + ∇p · x′ = 0). As a result,
158



by (4.12) and Lemma B.0.1,

d

ds
area(Σs) = −

∫
Σs

H · V −
∫
∂Σs

n · w
ν · w

V · n

=

∫
Σs

−8s(∂sp)
2

|∇p|4
− 24b5sz∂sp((x− b1)

2 + (y − b2)
2)

|∇p|4
(4.13)

−

(∫
∂Σs∩S1

+

∫
∂Σs∩(S2\S1)

+

∫
∂Σs∩(S3\S2)

+

∫
∂Σs∩(R3\S3)

)
n · w
ν · w

V · n.

We can write this as a sum of six integrals, which we will denote in the above order as

I1, I2, ..., I6.

Now, remember that to prove Proposition 4.3.8, it suffices to show that expression (4.9)

is negative. We claim that it suffices to prove:

Lemma 4.3.9. There exist some large universal constant C > 0 and small ϵ1, ϵ2 > 0

such that the following is true. For any (b1, b2) ∈ (−ϵ1, ϵ1)2, (b3, b4, b5) ∈ R2 × [0, 1] such

that b23 + b24 + b25 = 1, and 0 < s < t < ϵ2, we have:

• I1 < − 1
C
√
s
< 0.

• |I2|, |I3|, |I4|, |I6| < C.

• |I5| < −C log(400s).

• area(Σ0) − area(Φ5(0, 0, 0, 0, 0)) < Ct.

Indeed, from this lemma it follows that in (4.9), when ϵ1, ϵ2 are small, the dominating

term is
∫ t

0
I1ds, which is of order

√
t and is negative. Thus the expression (4.9) is negative,

as desired.

Step 4. We now begin to prove Lemma 4.3.9, by bounding the seven quantities listed

one by one.

First, I1 < 0 is clear, so we just need to lower bound |I1|. By Lemma C.0.1, there

exists a universal constant h > 0 and an interval [z0, z0 + 1
8
] ⊂ [−1

2
, 1
2
] on which ∂sp =

b3z + b4 + b5z
3 > h or ∂sp < −h.
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Figure 18. A projection onto the xz-plane.

Let us first tackle the case ∂sp > h. Namely, we have

|I1| =

∫
Σs

8s(∂sp)
2

|∇p|4
≥
∫
Σs∩{z0<z<z0+

1
8
}

8sh2

(8(x− b1)2 + 4s∂sp+ (b3 + 3b5z2)2s2)2

≥
∫
Σs∩{z0<z<z0+

1
8
}

∩{− 1
2
<x< 1

2
}

8sh2

(8(x− b1)2 + 13s)2
.

Note that in the first inequality we rewrote (y− b2)
2 in |∇p|4 using p = 0, and used that

∂sp > h for z ∈ [z0, z0 + 1
8
]; while the second inequality holds because |∂sp| ≤ 3 and

(b3 + 3b5z
2)2s2 < s if ϵ2 and thus s is small. Moreover, note that the domain of the last

integral is a two-sheeted graph over the rectangle [−1
2
, 1
2
] × [z0, z0 + 1

8
] on the xz-plane,

and clearly the graph has a larger area than the rectangle (see Figure 18). As a result,

|I1| > 2 · 1

8

∫ 1/2

−1/2

8sh2

(8(x− b1)2 + 13s)2
dx ≳

1√
s
.

This finishes proving I1 < − 1
C
√
s

for the case ∂sp > h. The second case ∂sp < −h is

similar: One would integrate with respect to y instead of x in the last step.

To bound I2, we observe that

(4.14) |∇p|2 ≥ 4(x− b1)
2 + 4(y − b2)

2 ≥ 4|(x− b1)
2 − (y − b2)

2| = 4s|∂sp|.
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Figure 19. This figure (not drawn to scale) shows ∂Ω intersecting the
cubic surface defining Σs. The three white circles are ∂Ω∩∂Si, for i = 1, 2,
and 3, which have radii R, 2R, and 1

4
respectively. The black thick segments

are ∂Σs ∩ (S3\S2).

So

|I2| ≤
∫
Σs

|24b5z|
|s∂sp|
|∇p|2

(x− b1)
2 + (y − b2)

2

|∇p|2
≤
∫
Σs

24 · 1 · 1.

Now, since when ϵ1, ϵ2 are small enough, Σs is close to Σ0, which is two disks, we can

assume area(Σs) < 3π. Hence, |I2| < 24 · 3π.

To bound I3, note that

(4.15)

(n · w)(V · n)

ν · w
=

(n · w)(V · n)√
1 − (n · w)2

=
(n · w)(−∂sp)

|∇p|
√

1 − (n · w)2
=

(∇p · w)(−∂sp)
|∇p|

√
|∇p|2 − (∇p · w)2

.

Now, inside S1, ∂Ω is horizontal by definition and so w = ±e3. Thus

∣∣∣∣(n · w)(V · n)

ν · w

∣∣∣∣ ≤ |∇p · w||∂sp|
|∇p|2 − (∇p · w)2

≤ |s(b3 + 3b5z
2)||∂sp|

4(x− b1)2 + 4(y − b2)2
≤ 4s|∂sp|

4s|∂sp|
≤ 1,

in which the third inequality used (4.14). Now by Remark 4.2.3, ∂Σs∩S1 is two hyperbolas

near respectively the north and the south pole (see Figure 19). Since the radius of S1 is

R, it is elementary to show that length(∂Σs ∩ S1) < C ′R for some universal constant C ′.

Hence, using (4.10), |I3| < C ′R < 20C ′√ϵ2, which is less than some universal constant,

assuming, say, ϵ2 < 1.
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To bound I4, using (4.11), we have

|n · w| ≤
∣∣2(x− b1)

∣∣
|∇p|

|w1| +

∣∣2(y − b2)
∣∣

|∇p|
|w2| +

∣∣s(b3 + 3b5z
2)
∣∣

|∇p|
|w3|(4.16)

≤ 1 · C ′′(ϵ1 + ϵ2) + 1 · C ′′(ϵ1 + ϵ2) +
4s√

4(x− b1)2 + 4(y − b2)2
· 1

≤ 2C ′′(ϵ1 + ϵ2) +
4(R/20)2

2R
<

1

10
.

Note that in the second inequality we used that s ≤ t = (R/20)2 by (4.10), and in the

last inequality assumed ϵ1, ϵ2 are small.

Then using (4.15),

∣∣∣∣(n · w)(V · n)

ν · w

∣∣∣∣ =
|n · w||∂sp|

|∇p|
√

1 − (n · w)2
≤ (1/10) · 4

2R
√

1 − (1/10)2
<

1

R
.

Again, it is elementary to show that the length of ∂Σs∩ (S2\S1) is less than CR for some

universal constant C. As a result, |I4| is less than CR · 1
R

= C.

To bound I5, using the fact that p = 0 we can rewrite

∇p · w = 2(x− b1)x− 2(y − b2)y + s(b3 + 3b5z
2)z

= 2(x− b1)b1 − 2(y − b2)b2 + s(−b3z − 2b4 + b5z
3).

Therefore, using (4.10) and that |∇p| > 2R, and assuming ϵ1, ϵ2 to be small,

|n · w| ≤
∣∣2(x− b1)

∣∣
|∇p|

|b1| +

∣∣2(y − b2)
∣∣

|∇p|
|b2| +

∣∣s(−b3z − 2b4 + b5z
3)
∣∣

|∇p|
(4.17)

≤ 1 · ϵ1 + 1 · ϵ1 +
4s

2R
≤ 2ϵ1 +

4(R/20)2

2R
<

1

10
.

Then

(4.18)

∣∣∣∣(n · w)(V · n)

ν · w

∣∣∣∣ =
|n · w||∂sp|

|∇p|
√

1 − (n · w)2
≤ (1/10) · 4√

4(x− b1)2
√

1 − (1/10)2
<

1

|x− b1|
.

Now, on Σs ∩ (S3\S2), it follows from the definition that |x − b1|, |y − b2| > R. From

this, it is elementary to estimate n and show that in S3\S2 the tangent planes of Σs are
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close to that of {(x− b1)
2 − (y − b2)

2 = 0} (see Figure 19). In this step, the dependence

of R on t, namely R = 20
√
t, is crucial: We choose 20

√
t because the width of the hole

opened up in Σs is at most
√

3s, which we want to be small compared to R. As a result,

∂Σs ∩ (S3\S2) consists of eight arcs such that if we let ρ be the orthogonal projection

map from ∂Σs ∩ (S3\S2) to the x-axis, then the norm of the derivative Dρ is lower

bounded by some universal constant C ′ > 0. In addition, the image J of ρ is contained

in [b1 − 1
4
, b1 −R]∪ [b1 +R, b1 + 1

4
], and the preimage of each x ∈ J has at most 4 points.

Therefore, by (4.18), for ϵ2 small,

|I5| ≤ 4

∫
[b1−

1
4
,b1−R]∪[b1+R,b1+

1
4
]

1

C ′|x− b1|
dx ≲ − log(R) ≲ − log(400s).

To bound I6, note that |∇p| > 1
2

outside S3. Then as in (4.17), we have n · w < 1
10

.

It follows easily that the expression (4.15) is bounded by some universal constant. Then

since length(∂Σs ∩ (B3\S3)) bounded, so is |I6|.

Finally, we prove the last item of Lemma 4.3.9. Note that the difference between Σ0

and Φ5(0, 0, 0, 0, 0) is {x2 − y2 = 0}∩ (Ω\B3), which is four small planar pieces (two near

the north pole and two near the south). Each piece can be contained in a rectangle of

width 4R and, by (4.11), height C ′′(ϵ1 + ϵ2)(4R). As a result, using (4.10),

area(Σ0) − area(Φ5(0, 0, 0, 0, 0)) ≤ 4(4R) · C ′′(ϵ1 + ϵ2)(4R) ≲ t.

This finishes the proof of Lemma 4.3.9. Hence, we have proven Proposition 4.3.8, and

thus Proposition 4.2.6.
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Appendix A. Proof of Proposition 4.2.5

The following proof is due to the MathOverflow user fedja [Fed22]. Let M denote the

saddle in R3 given by x2 − y2 + z = 0. Then to prove Proposition 4.2.5, it suffices, by

rescaling, to show that for any ball B with center (x0, y0, z0) and radius R > 0, the area

of M ∩B is less than 2πR2.

Recall that M is foliated by straight lines: It can be parametrized by x(s, t) = (s +

t, s− t, 4st). Then the Jacobian of x is 2
√

1 + 8s2 + 8t2. Thus we have

(A.1) area(M ∩B) <

∫∫
{(s,t):x(s,t)∈B}

(2
√

1 + 8s2 + 2
√

1 + 8t2)dsdt.

Now, for each fixed s, let Ls be the corresponding coordinate line segment in M ∩ B.

Letting d be the distance between Ls and the center of B, we have

(A.2) d2 ≥ min
t∈R

[(s+ t− x0)
2 + (s− t− y0)

2] = 2

(
s− x0 + y0

2

)2

.

Note that Ls is parameterized by a time interval of length

(A.3)
length(Ls)

∥∂tx∥
=

2
√

(R2 − d2)+√
2(1 + 8s2)

,

where + denotes the positive part. It follows that, using (A.2) and (A.3),

∫∫
{(s,t):x(s,t)∈B}

2
√

1 + 8s2dtds ≤
∫
s∈R

2
√

2

√√√√[R2 − 2

(
s− x0 + y0

2

)2
]+
ds = πR2.

The second integral in (A.1) can be similarly bounded, by integrating with respect to

s first. So area(M ∩B) < 2πR2, finishing the proof of Proposition 4.2.5.

Appendix B. First Variation Formula

Lemma B.0.1. Let Ω be a compact (n + 1)-dimensional region with smooth boundary

in Rn+1, {Σs} a 1-parameter family of hypersurfaces without boundary in R3, and V a
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deformation vector field of {Σs}. Then

d

ds
area(Σs ∩ Ω) = −

∫
Σs∩Ω

H · V −
∫
∂(Σs∩Ω)

n · w
ν · w

V · n,

where n is a chosen unit normal vector field of Σs, w the outward unit normal of ∂Ω,

and ν the outward unit conormal of Σs on ∂Ω.

Proof. We first smoothly extend w to a unit vector field on a neighborhood of ∂Ω in

Ω, and ν to a unit tangent vector field on a neighborhood of ∂Σs in Σs. Let ϵ > 0,

and Ωϵ ⊂ Ω be where the distance from ∂Ω is at least ϵ. Then by using the function

dist(·, ∂Ω) on Ω, with suitable smoothening, we can approximate the indicator function

χΩ by a smooth function χϵ
Ω that is 0 outside Ω and 1 on Ωϵ, with ∇χϵ

Ω = −|∇χϵ
Ω|w in

between.

Now, using the first variation formula (4.2) in [Eck12, p.49],

d

ds

∫
Σs

χϵ
Ω =

∫
Σs

−χϵ
ΩH · V + ∇χϵ

Ω · n V · n.

Note that

∇χϵ
Ω · n V · n = −|∇χϵ

Ω| w · n V · n = ∇χϵ
Ω · ν w · n

w · ν
V · n.

Denoting g := w·n
w·ν V · n, we then have

∫
Σs

∇χϵ
Ω ·n V ·n =

∫
Σs

∇χϵ
Ω · gν = −

∫
Σs

χϵ
Ωdiv(gν)

ϵ→0−−→ −
∫
Σs∩Ω

div(gν) = −
∫
∂(Σs∩Ω)

g,

in which the second and the third equality are due to divergence theorem. Hence,

d
ds

area(Σs ∩ Ω) is equal to

lim
ϵ→0

d

ds

∫
Σs

χϵ
Ω = lim

ϵ→0

∫
Σs

−χϵ
ΩH · V + ∇χϵ

Ω · n V · n = −
∫
Σs∩Ω

H · V −
∫
∂(Σs∩Ω)

g.

□
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Appendix C. A Lemma about Cubic Polynomials

Lemma C.0.1. There exists h > 0 such that the following is true. For any a, b, c such

that a2 + b2 + c2 = 1, define f : [−1
2
, 1
2
] → R by f(x) = ax3 + bx + c. Then there exists

some interval of length 1
8
in [−1

2
, 1
2
] on which |f | > h.

Proof. Assume, by contradiction, that for each positive integer n there exists a cubic

function fn(x) = anx
3 + bnx+ cn, with a2n + b2n + c2n = 1 such that there is no interval of

length 1
8

in [−1
2
, 1
2
] on which |f | > 1

n
. For each n, let xi, for i runs from 1 to at most 3, be

the roots of fn(x) = 0, and Ii ⊂ [−1
2
, 1
2
] be the maximal interval containing xi on which

|fn| < 1
n
. Then [−1

2
, 1
2
]\(I1 ∪ I2 ∪ I3) is a union of at most 4 intervals, each of which has

length at most 1
8
. Thus, I1 ∪ I2 ∪ I3 has length at least 1 − 4 · 1

8
= 1

2
, and on it |fn| < 1

n
.

Then it follows easily that supx∈[− 1
2
, 1
2
] |f ′

n(x)| → 0 as n → ∞. Since f ′
n(x) = 3anx

2 + bn,

we must have an → 0 and bn → 0 too, which forces cn → 1 since a2n + b2n + c2n = 1. But

then fn is very close to 1 on [−1
2
, 1
2
], contradicting that |fn| < 1

n
on a set of length at

least 1
2
. □
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tions mathématiques de l’IHÉS, 137(1):245–342, June 2023.

[CSW22] Alessandro Carlotto, Mario B Schulz, and David Wiygul. Infinitely many
pairs of free boundary minimal surfaces with the same topology and symme-
try group. arXiv preprint arXiv:2205.04861, 2022.

[Dev19] Baptiste Devyver. Index of the critical catenoid. Geometriae Dedicata,
199(1):355–371, 2019.

[DLP10] Camillo De Lellis and Filippo Pellandini. Genus bounds for minimal surfaces
arising from min-max constructions. Journal für die reine und angewandte
Mathematik (Crelles Journal), 2010(644):47–99, 2010.

[DN18] Gregory Drugan and Xuan Hien Nguyen. Shrinking doughnuts via variational
methods. The Journal of Geometric Analysis, 28:3725–3746, 2018.

[Don22] Sidney Donato. The first p-widths of the unit disk. The Journal of Geometric
Analysis, 32(6):1–38, 2022.

[Eck12] Klaus Ecker. Regularity theory for mean curvature flow, volume 57. Springer
Science & Business Media, 2012.

[ES91] Lawrence C Evans and Joel Spruck. Motion of level sets by mean curvature.
i. Journal of Differential Geometry, 33(3):635–681, 1991.

[Fed22] Fedja. (https://mathoverflow.net/users/1131/fedja). All sad-
dles in the unit ball have area < 2π? MathOverflow, 2022.
https://mathoverflow.net/q/423592 (version: 2022-05-30).

[FPZ17] Abigail Folha, Frank Pacard, and Tatiana Zolotareva. Free boundary minimal
surfaces in the unit 3-ball. manuscripta mathematica, 154(3):359–409, 2017.

[Fra21] Giada Franz. Equivariant index bound for min-max free boundary minimal
surfaces. arXiv preprint arXiv:2110.01020, 2021.

169



[FS11] Ailana Fraser and Richard Schoen. The first steklov eigenvalue, conformal
geometry, and minimal surfaces. Advances in Mathematics, 226(5):4011–
4030, 2011.

[FS16] Ailana Fraser and Richard Schoen. Sharp eigenvalue bounds and minimal
surfaces in the ball. Inventiones mathematicae, 203(3):823–890, 2016.

[GLWZ21] Qiang Guang, Martin Man-chun Li, Zhichao Wang, and Xin Zhou. Min-
max theory for free boundary minimal hypersurfaces ii: general morse index
bounds and applications. Mathematische Annalen, 379(3):1395–1424, 2021.

[Hat83] Allen Hatcher. A proof of the smale conjecture. Annals of Mathematics,
pages 553–607, 1983.

[HK17] Robert Haslhofer and Bruce Kleiner. Mean curvature flow of mean convex hy-
persurfaces. Communications on Pure and Applied Mathematics, 70(3):511–
546, 2017.

[HS99a] Gerhard Huisken and Carlo Sinestrari. Convexity estimates for mean cur-
vature flow and singularities of mean convex surfaces. Acta mathematica,
183(1):45–70, 1999.

[HS99b] Gerhard Huisken and Carlo Sinestrari. Mean curvature flow singularities
for mean convex surfaces. Calculus of Variations and Partial Differential
Equations, 8(1):1–14, 1999.

[Hui84] Gerhard Huisken. Flow by mean curvature of convex surfaces into spheres.
J. Differential Geom., 20(1):237–266, 1984.

[Hui90] Gerhard Huisken. Asymptotic behavior for singularities of the mean curva-
ture flow. Journal of Differential Geometry, 31(1):285–299, 1990.

[HW20] Or Hershkovits and Brian White. Nonfattening of mean curvature flow at
singularities of mean convex type. Communications on Pure and Applied
Mathematics, 73(3):558–580, 2020.

[Ilm92] Tom Ilmanen. Generalized flow of sets by mean curvature on a manifold.
Indiana University mathematics journal, pages 671–705, 1992.

[Ilm94] Tom Ilmanen. Elliptic regularization and partial regularity for motion by
mean curvature, volume 520. American Mathematical Soc., 1994.

[Ilm95] Tom Ilmanen. Singularities of mean curvature flow of surfaces. preprint,
1995.

[IMN18] Kei Irie, Fernando Marques, and André Neves. Density of minimal hyper-
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