
THE UNIVERSITY OF CHICAGO

ANALYSIS OF BIG HIGH-DIMENSIONAL DEPENDENT DATA: UNIT-ROOTS AND

DISTRIBUTED COMPUTATION

A DISSERTATION SUBMITTED TO

THE FACULTY OF THE UNIVERSITY OF CHICAGO

BOOTH SCHOOL OF BUSINESS

IN CANDIDACY FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

BY

SHUO-CHIEH HUANG

CHICAGO, ILLINOIS

JUNE 2024

Copyright © 2024 by Shuo-Chieh Huang

All Rights Reserved

To my parents, Shu-Fang Lin and Kuang-Hsien Huang

TABLE OF CONTENTS

LIST OF FIGURES . vi

LIST OF TABLES . vii

ACKNOWLEDGMENTS . viii

ABSTRACT . x

1 INTRODUCTION . 1

2 MODEL SELECTION FOR UNIT-ROOT TIME SERIES WITH MANY PREDIC-
TORS . 3
2.1 Introduction . 3
2.2 The FHTD algorithm . 7
2.3 Screening and selection consistency . 11

2.3.1 The sure screening property of FSR 11
2.3.2 Selection consistency . 16
2.3.3 Model assumptions . 20

2.4 Simulation studies . 24
2.5 Applications . 29

2.5.1 Housing starts in the U.S. 29
2.5.2 U.S. unemployment rate . 32

2.6 Concluding remarks . 33
2.7 Supplementary details . 34

2.7.1 Comments on Assumptions (A1)–(A6), (SSX), and (SS) 34
2.7.2 Key theoretical results and main proofs 39
2.7.3 Proofs of (2.75), (2.77), (2.78), (2.93)–(2.95), and (2.99) 54
2.7.4 Some technical details about Examples 2.3.1 and 2.3.2 in Section 2.3.1 64
2.7.5 Complementary simulation results . 68

3 SCALABLE HIGH-DIMENSIONAL MULTIVARIATE LINEAR REGRESSION FOR
FEATURE-DISTRIBUTED DATA . 71
3.1 Introduction . 71
3.2 Distributed framework and two-stage relaxed greedy algorithm 75

3.2.1 Model and distributed framework . 75
3.2.2 First-stage relaxed greedy algorithm and a just-in-time stopping criterion 76
3.2.3 Second-stage relaxed greedy algorithm 80
3.2.4 Related algorithms . 82

3.3 Communication complexity of TSRGA . 85
3.3.1 Assumptions . 85
3.3.2 Main results . 88

3.4 Simulation experiments . 94

iv

3.4.1 Statistical performance of TSRGA 94
3.4.2 Large-scale performance of TSRGA 102

3.5 Empirical application . 103
3.5.1 Financial data and 10-K reports . 104
3.5.2 Results . 106

3.6 Horizontal partition for big feature-distributed data 109
3.7 Conclusion . 113
3.8 Supplementary details . 114

3.8.1 Second-stage RGA with feature-distributed data 114
3.8.2 Proofs . 114
3.8.3 Further technical details . 130
3.8.4 TSRGA for high-dimensional generalized linear models 140
3.8.5 Complementary simulation results . 144

REFERENCES . 149

v

LIST OF FIGURES

2.1 Time plots of U.S. monthly housing starts and unemployment series 29
2.2 Time plots of logarithim of monthly U.S. Housting Starts, ht, of selected windows 31

3.1 Logarithm of parameter estimation errors of various methods under Specification
1, where n is the sample size and pn is the dimension of predictors. The results
are averages of 100 simulations. 97

3.2 Parameter estimation errors of various estimation methods under Specification 2,
where n is the sample size and pn is the number of predictors. The results are
averages of 100 simulations. 98

3.3 Logarithm of the average parameter estimation errors at each iteration of TSRGA,
plotted against the average time elapsed at the end of each iteration. Various
number of processes are employed for feature-distributed implementation. 10
simulations are used. 103

3.4 Logarithm of the estimation errors of TSRGA (running with 16 processes) and the
oracle least squares. The oracle least squares method is performed by applying the
second-stage RGA with exactly the relevant predictors and no rank constraints.
10 simulations are used. 104

3.5 Logarithm of parameter estimation errors of various methods against the elapsed
time under Specification 1, where n is the sample size and pn is the dimension of
predictors. The results are based on 100 simulations. 145

3.6 Logarithm of parameter estimation errors of various methods against the elapsed
time under Specification 2, where n is the sample size and pn is the dimension of
predictors. The results are based on 100 simulations. 146

3.7 Logarithm of out-of-sample prediction errors of various methods under Specifi-
cation 1, where n is the sample size and pn is the dimension of predictors. The
results are based on 100 simulations. 147

3.8 Logarithm of out-of-sample prediction errors of various methods under Specifi-
cation 2, where n is the sample size and pn is the dimension of predictors. The
results are based on 100 simulations. 148

vi

LIST OF TABLES

2.1 Values of E, SS, TP, and FP in Example 2.4.1, where E denotes selecting exactly
the relevant variables and SS including all relevant variables, and TP and FP are
the average numbers of true positives and false positives. Results are based on
1000 replications. 27

2.2 Values of E, SS, TP, and FP in Example 2.4.2, where E, SS, TP and FP are
defined similarly as thos of Table 2.1. Results are also based on 1000 replications. 28

2.3 Out-of-sample RMSEs and MAEs of competing methods applied to (2.48) and
(2.49) . 32

2.4 Out-of-sample RMSEs and MAEs of competing methods applied to (2.50) for
U.S. monthly unemployment rate series. 33

2.5 Values of E, SS, TP, and FP in Example 2.145 70

3.1 Parameter estimation and prediction errors of various methods under Specifica-
tion 3. We do not report the results for iRRR with sample sizes of 600 and 1200
since the computation required for these cases is excessively time-consuming. In
the table, n, dn, qn, pn, an and rn are the sample size, number of targeted variables,
dimension of predictors, number of predictors, number of non-zero coefficient ma-
trices, and rank of coefficient matrices, respectively. The results are based on 500
simulations. 101

3.2 Parameter estimation and prediction errors under Specification 4. We do not
report the results for iRRR with sample sizes of 600 and 1200 since the compu-
tation required for these sample sizes is excessively time-consuming. The same
notations as those of Table 3.1 are used. The results are based on 500 simulations.101

3.3 Root mean squared prediction errors on the test dataset. Entries in boldface are
at least 5% below gVAR; a means 10% below gVAR, and b means 10% below RR. 109

3.4 Simulation results for estimating high-dimensional GLMs. ℓ1-GLM is defined in
(3.76). The results are based on 500 simulations. 143

vii

ACKNOWLEDGMENTS

Gratitude fills my heart as I reflect on the completion of this thesis, which is only possible

because of the unwavering support of numerous individuals whose kindness and guidance

have brought this thesis to fruition.

First and foremost, my gratitude extends to my advisor, Ruey S. Tsay, for his timely

guidance and advice on the development of the research. I also thank him for being sup-

portive and thoughtful throughout my entire journey at Chicago Booth. His dedication to

scholarly pursuit and encouraging attitude towards colleagues have shaped my standards of

excellence for leading scholars, which is perhaps the most valuable takeaway in my Ph.D.

study.

I am equally indebted to Tengyuan Liang for the intellectual discussions and constant

encouragement. Attending his classes and reading group meetings was very enjoyable, and

I was inspired a lot by his acute thoughts on so many interesting topics. The keen insights

and genuine thoughts he had put in our discussion on my academic career development are

also invaluable. I have learned a great deal from his talent and character.

A special note of gratitude goes to my family. My wife, Meng-Yu Tsai, has been my

steadfast companion during my Ph.D. journey. Her unbounded patience and love have

sustained me through challenging times. My parents, Shu-Fan Lin and Kuang-Hsien Huang,

have nourished me with their unconditional love. In loving memory of my mother, whose

passing in 2021 during the Covid lockdown weighed heavily on my heart, I dedicate this

thesis as a tribute to her enduring influence and spirit.

I extend my heartfelt thanks to those who have provided indispensable assistance along

the way: Ching-Kang Ing at the National Tsing Hua University for his inspiring mentorship

since my master studies; Chien-Ming Chi at the Institute of Statistical Science, Academia

Sinica, for our delightful intellectual conversations; Yu-Chang Chen at the National Taiwan

University, for being an agreeable coauthor. I also thank Mladen Kolar, Yuexi Wang, Kai-Jie

viii

Wu, Kuan-Ming Chen, Sung-Ju Wu, and Tsu-En Wang for their generous help during my

job search and as dear friends. Finally, I thank all the wonderful assistance provided by the

Ph.D. program office that helped me navigate the journey.

ix

ABSTRACT

This dissertation consists of two parts that address problems arising frequently in the anal-

ysis of big, high-dimensional dependent data. The first part proposes a new approach for

model selection when the response variable contains unit roots with unknown multiplici-

ties at unknown locations. The proposed method, FHTD, is based on the forward stepwise

regression technique. Despite of unit roots, high-dimensional predictors, and conditionally

heteroscedastic errors, FHTD is shown to select exactly the correct model with probability

tending to one. Thus, our approach is applicable to a wide range of data without recourse

to any delicate unit-root tests.

The second part tackles the computational problem when the data are vertically parti-

tioned and stored across computing nodes. To jointly learn a multivariate linear model, we

propose a two-stage relaxed greedy algorithm so that communication between computing

nodes is minimized and hence the algorithm is computationally efficient. Throughout, we

supply simulation studies and real data examples to demonstrate the performance of the

proposed methods.

x

CHAPTER 1

INTRODUCTION

The analysis of big, high-dimensional dependent data has become central to many scientific

fields as the advancement in information technology has enabled unprecedented data collec-

tion and computational power. However, despite of the rich information that one can exploit

from the newly available data, whether it is more variables being monitored (high-dimension)

or longer periods of observations (sample size), big dependent data present unique challenges

in contrast to independent data.

First, in practice, long time series is often nonstationary, which has a very different

statistical nature compared to independent or stationary data. In particular, for many

statistics, the sample covariance matrix for example, the “population counterpart” is not

well-defined, and the sample statistic often lacks a deterministic limit. Hence, most existing

tools for estimating high-dimensional models are invalid in dealing with nonstationary data.

Second, to facilitate computation via distributed computing, it is more natural for high-

dimensional dependent data to partition the data vertically and store each part in distinct

computing nodes. That is, each node only owns some predictors of the whole data set.

While conceptually appealing and in some applications it is normal to deal with such data,

the vertical partition scheme means each node, on its own, is unable to learn the dependence

structure among the predictors. Therefore, carefully designed distributed algorithm is in

need to make use of such data for statistical analysis. In this dissertation, we tackle these

two challenges and propose novel methods to enhance the analysis of big dependent data.

In Chapter 2, we study the variable selection in the autoregressive model with exogenous

inputs (ARX) for general unit-root time series when many predictors are present. A new

model selection algorithm called FHTD that leverages the advantages of forward stepwise

regression (FSR), a high-dimensional information criterion (HDIC), a backward elimination

method based on HDIC, and a data-driven thresholding (DDT) approach, is proposed. By

1

applying a new functional central limit theorem for multivariate linear processes, along with

a uniform lower bound for the minimum eigenvalue of the sample covariance matrices of

the series under study, we establish the sure screening property of FSR and the selection

consistency of FHTD under some mild assumptions that allow for unknown locations and

multiplicities of the characteristic roots on the unit circle of the time series and conditional

heteroscedasticity in the predictors and errors. The method is applied to U.S. monthly

housing starts and unemployment data and it is found to be more preferable to commonly

used benchmarks.

In Chapter 3, we propose a two-stage relaxed greedy algorithm (TSRGA) for applying

multivariate linear regression to the feature-distributed data, referred to data partitioned by

features and stored across multiple computing nodes. The main advantage of TSRGA is that

its communication complexity does not depend on the feature dimension, making it highly

scalable to very large data sets. For multivariate response variables, TSRGA can be used to

yield low-rank coefficient estimates. In addition, we offer a simple modification of TSRGA

which can be used to estimate the generalized linear model (GLM) with high-dimensional

predictors. Finally, we apply the proposed TSRGA in a financial application that leverages

unstructured data from the 10-K reports, demonstrating its usefulness in applications with

many dense large-dimensional matrices.

2

CHAPTER 2

MODEL SELECTION FOR UNIT-ROOT TIME SERIES WITH

MANY PREDICTORS

2.1 Introduction

With the widespread availability of large-scale and fine-grained datasets, researchers analyz-

ing time series data now have a plethora of predictors available for constructing informative

and interpretable models. Regularization techniques (Tibshirani, 1996; Zou, 2006; Candes

and Tao, 2007; Zhang, 2010; Zheng et al., 2014), which select a few relevant features in a

sparse model for prediction, have thus been adapted from the independent framework to

time series data (Medeiros and Mendes, 2016; Han and Tsay, 2020). In addition, greedy

forward selection algorithms (Bühlmann, 2006; Wang, 2009; Fan and Lv, 2008; Ing and Lai,

2011) have also proved useful for a similar task involving dependent data (Ing, 2020).

However, the aforementioned methods are generally not applicable to unit-root nonsta-

tionary time series, prevalent in economics, finance, and environmental sciences. To apply

these methods to unit-root time series, one must carefully transform the series under study

into stationary ones. This step often involves multiple intricate unit-root tests since the

underlying unit-root structure is typically unknown. In addition, it becomes even more chal-

lenging to transform the series into stationary ones when the data are driven by complex unit

roots that exhibit persistent cyclic behavior. Diagnosing the order of integration and the

frequency at which the series is integrated are far from straightforward and are sometimes

sensitive to model specifications. Yet, persistent cyclic (or seasonal) time series are widely

encountered in applications, such as the unemployment rate (Bierens, 2001), spot exchange

rates (Al-Zoubi, 2008), entrepreneurship series (Faria et al., 2009), firms’ capital structure

(Al-Zoubi et al., 2018), sunspot numbers (Gil-Alana, 2009; Maddanu and Proietti, 2022),

oil prices (Gil-Alana and Gupta, 2014), tourist arrivals (del Barrio Castro et al., 2022), and

3

CO2 concentrations (Proietti and Maddanu, 2024), to name a few examples.

In this chapter, we study model selection for an autoregressive model with exogenous

variables, known as the ARX model, when the dependent variable is a general unit-root

nonstationary time series and the number of exogenous variables is large. The model con-

sidered is

(1−B)a(1 +B)b
l∏

k=1

(1− 2 cosϑkB +B2)dkψn(B)yt,n =

pn∑
j=1

r
(n)
j∑
l=1

β
(j)
l,nx

(n)
t−l,j + ϵt,n, (2.1)

t = 1, . . . , n, where n is the sample size, B denotes the back-shift operator, a, b, l, and

dk are unknown nonnegative integers, ϑk are unknown real numbers in (0, π), and ψn(z) =

1 +
∑ιn

s=1 as,nz
s ̸= 0 for all |z| ≤ 1, with as,n being unknown real numbers and ιn being an

unknown nonnegative integer. In model (2.1), {ϵt,n} denotes a sequence of random errors

with mean zero, {x(n)t−l,j} and {β(j)l,n}, 1 ≤ l ≤ r
(n)
j , 1 ≤ j ≤ pn, are observable exogenous

variables and their respective unknown coefficients, and pn and r(n)j are known nonnegative

integers. We adopt yt,n = 0 for t ≤ 0 as the initial conditions, which are widely used in the

literature for unit-root series (e.g. Chan and Wei, 1988). Let d = a + b + 2
∑l

k=1 dk. The

number of lags of yt,n, mn = ιn + d, is assumed to be smaller than n, whereas the number

of exogenous predictors, p∗n =
∑pn

j=1 r
(n)
j , can be much greater than n. Last but not least,

we allow {x(n)t,j , 1 ≤ t ≤ n}, for 1 ≤ j ≤ pn, and {ϵt,n} to be conditionally heteroscedastic.

Due to the practical importance of the ARX model (2.1), numerous authors have inves-

tigated its model selection for the special cases when d = 0 or p∗n = 0. When d = 0, yt,n

is stationary. In this case, under some strong sparsity conditions, the LASSO (Tibshirani,

1996) and the adaptive LASSO (Zou, 2006) have been shown to achieve model selection con-

sistency (Han and Tsay, 2020; Medeiros and Mendes, 2016). In addition, Ing (2020) proved

that the orthogonal greedy algorithm (OGA), used in conjunction with a high-dimensional

information criterion (HDIC), is rate-optimal adaptive to unknown sparsity patterns. When

4

p∗n = 0, model (2.1) reduces to a nonstationary AR model with unit roots. In this case,

traditional information criteria such as AIC, BIC, and Fisher information criterion (FIC)

can be employed to perform model selection (Ing et al., 2012; Tsay, 1984; Wei, 1992). More

recently, Kock (2016) applied the adaptive LASSO to the Dickey-Fuller regression of fixed

AR order under the specific case of a single unit root (i.e., a = 1, b = d1 = . . . = dl = 0, and

ιn is a fixed positive integer).

Although there are methods available for the special cases when d = 0 or p∗n = 0, applying

them to model (2.1) in a general context remains a challenging task. As pointed out earlier,

the existence of unknown ϑk makes it difficult to transform {yt,n} into an asymptotically

stationary time series. Even worse, when applied to nonstationary time series, LASSO

performs poorly due to its internal standardization of unit-root variables, which can “wash

out the dependence of the stationary part” (Han and Tsay, 2020). In fact, due to the near-

perfect correlation of some (or all) lagged variables in model (2.1) when d > 0, the strong

irrepresentable condition, which is almost necessary and sufficient for LASSO to achieve

selection consistency in high-dimensional regression models (Zhao and Yu, 2006), is no longer

valid. This issue also undermines the effectiveness of other correlation-based feature selection

methods, such as L2-Boosting and OGA. Indeed, in Sections 2.3.1 and 2.3.2, we prove that

both LASSO and OGA can fail to achieve variable selection consistency in the presence of

unit roots. While AIC, BIC, and FIC are reliable methods for selecting the AR order when

d > 0 and p∗n = 0, they involve subset selection and are therefore not suitable for selecting

exogenous variables when p∗n is large, especially when p∗n ≫ n.

We address these difficulties by combining the strengths of the least squares method in

unit-root AR models with forward stepwise regression (FSR, defined in Section 2.2) in high-

dimensional regression models, and work directly with the observed nonstationary series.

5

Our procedure starts by rewriting (2.1) as

yt =

qn∑
i=1

αiyt−i +

pn∑
j=1

r
(n)
j∑
l=1

β
(j)
l xt−l,j + ϵt, (2.2)

where qn < n is a prescribed upper bound for mn, 1−
∑qn

i=1 αiz
i = (1−z)a(1+z)b

∏l
k=1(1−

2 cosϑkz+z
2)dkψn(z), and the dependence of yt, αi, β

(j)
l , xt−l,j , and ϵt on n is suppressed for

simplicity in notation. Then, FSR is used to sequentially choose the exogenous predictors

after yt−1, . . . , yt−qn are coerced into the model. By fitting an AR(qn) model by least

squares in advance, this approach handles the nonstationarity of {yt} without recourse to

any tests for (complex) unit roots, thereby facilitating the implementation of FSR without

being encumbered by the highly correlated lagged dependent variables. Next, we use HDIC

to guide the stopping rule of FSR, and use a backward elimination method also based

on HDIC, which we call Trim, to remove redundant exogenous predictors that have been

previously included by FSR. Finally, we introduce a data-driven thresholding method referred

to as DDT to weed out irrelevant lagged dependent variables. Throughout the chapter, the

combined model selection procedure is called the FHTD algorithm. Under a strong sparsity

condition, which assumes that the number of relevant predictors in model (2.2) is smaller

than n, we establish the sure screening property of FSR and the selection consistency of

FHTD. Since complex unit roots, conditional heteroscedasticity, and high dimensionality

are allowed simultaneously, this is one of the most comprehensive results to date on model

selection consistency established for the ARX model.

The rest of this chapter is organized as follows. We detail the FSR and FHTD algorithms

in Section 2.2. The theoretical properties of these methods are given in Section 2.3; see

Theorems 2.3.1–2.3.3. The finite-sample performance of the proposed methods is illustrated

using simulated and two U.S. monthly macroeconomic datasets in Sections 2.4 and 2.5,

respectively. Section 2.6 concludes. We have moved the proofs and auxiliary results to

6

Section 2.7. Nevertheless, it is noteworthy that, to tackle the nonstationary series, we

employed a novel functional central limit theorem (FCLT) for linear processes driven by

{
∑pn

j=1

∑r
(n)
j

l=1 β
(j)
l xt−l,j + ϵt} and a uniform lower bound for the minimum eigenvalue of

the sample covariance matrices associated with model (2.2). These theoretical foundations,

crucial for Theorems 2.3.1–2.3.3, can be found in a recent paper (Huang et al., 2023).

The following notation is used throughout the chapter. For a matrix A, λmin(A),

λmax(A), ∥A∥, and A⊤ denote its minimum eigenvalue, maximum eigenvalue, operator

norm, and transpose, respectively. For a set J , ♯(J) is its cardinality. For two sequences of

positive numbers, {an} and {bn}, an ≍ bn means L < an/bn < U for some 0 < L ≤ U <∞.

For an event E, its complement and indicator function are denoted by Ec and IE , respec-

tively. For k ∈ {1, 2, . . .}, [k] = {1, 2, . . . , k}. For r ∈ R, ⌊r⌋ is the largest integer ≤ r.

For two real numbers a and b, a ∨ b = max{a, b} and a ∧ b = min{a, b}. For a vector v,

∥v∥ denotes its Euclidean norm. For a random variable X, ∥X∥q = (E |X|q)1/q. Generic

absolute constants are denoted by C whose value may vary at different places.

2.2 The FHTD algorithm

Let yn = (yn, yn−1, . . . , yr̄n+1)
⊤, where r̄n = {max1≤j≤p r

(n)
j } ∨ qn. Define

oi = (yn−i, yn−i−1, . . . , yr̄n−i+1)
⊤

for i = 1, 2, . . . , qn, and x
(j)
l = (xn−l,j , xn−l−1,j , . . . , xr̄n−l+1,j)

⊤, l = 1, 2, . . . , r
(n)
j , j =

1, 2, . . . , pn. Then, it follows from (2.2) that yn = Onα + Xnβ + εn := µn + εn, where

On = (o1, . . . ,oqn), Xn = (x
(1)
1 , . . . ,x

(1)

r
(n)
1

, . . . ,x
(pn)
1 , . . . ,x

(pn)

r
(n)
pn

), α = (α1, . . . , αqn)
⊤, εn =

(ϵn, . . . , ϵr̄n+1)
⊤, and β = (β

(1)
1 , . . . , β

(1)

r
(n)
1

, . . . , β
(pn)
1 , . . . , β

(pn)

r
(n)
pn

)⊤. Note that µn can be

7

expressed as (µn, . . . , µr̄n+1)
⊤, with µt =

∑qn
i=1 αiyt−i + vt,n and

vt,n =

pn∑
j=1

r
(n)
j∑
l=1

β
(j)
l xt−l,j . (2.3)

Let the candidate variable, xt−l,j , be indexed by (j, l). FSR is an iterative algorithm

that greedily chooses variables from J̄ := {(j, l) : j ∈ [pn], l ∈ [r
(n)
j]} after yt−1, . . . , yt−qn

are included in the regression model. Specifically, the algorithm begins with Ĵ0 = ∅ and

generates Ĵm ⊂ J̄ via Ĵm = Ĵm−1 ∪ {(ĵm, l̂m)}, where m ≥ 1 and

(ĵm, l̂m) = argmax
(j,l)∈J̄\Ĵm−1

n−1|y⊤n (I−H
[qn]⊕Ĵm−1

)x
(j)
l |

(n−1x
(j)⊤
l (I−H

[qn]⊕Ĵm−1
)x

(j)
l)1/2

, (2.4)

where HQ⊕J is the orthogonal projection matrix associated with the linear space spanned

by {ol : l ∈ Q ⊆ [qn]} ∪ {x(j)
l : (j, l) ∈ J ⊆ J̄}. In the sequel, we also use Q⊕ J to denote a

candidate model consisting of predictor variables {yt−i, i ∈ Q} and {xt−l,j , (j, l) ∈ J}.

When m reaches a prescribed upper bound Kn ≤ p∗n, the algorithm stops and outputs

the index set ĴKn
. Because the effects of the unit root have been neutralized by including the

lagged dependent variables yt−1, . . . , yt−qn beforehand, the algorithm is expected to exhibit

reliable performance in including the set of relevant exogenous variables

Jn = {(j, l) : β(j)l ̸= 0, l ∈ [r
(n)
j], j ∈ [pn]}.

However, [qn]⊕ ĴKn
may contain some irrelevant variables, in particular, when qn or Kn is

large compared to ♯(Qn) or ♯(Jn), where Qn = {q : αq ̸= 0, q ∈ [qn]} is the set of relevant

lagged dependent variables. To alleviate the overfitting problem with FSR, we propose

eliminating the irrelevant exogenous variables in ĴKn
using HDIC and Trim, followed by

DDT to remove the redundant lagged dependent variables in [qn]. Given a candidate model

8

Q⊕ J , its HDIC value is given by

HDIC(Q⊕ J) = n log σ̂2Q⊕J + [♯(J) + ♯(Q)]wn,pn , (2.5)

where σ̂2Q⊕J = n−1y⊤n (I−HQ⊕J)yn and wn,pn , penalty for the model complexity ♯(J) +

♯(Q), depends on the sample size n as well as the number of candidate exogenous variables

p∗n.

Our approach is to first find a “promising” subset Ĵ
k̂n

of ĴKn
that minimizes the HDIC

values along the FSR path {Ĵ1, . . . , ĴKn
}, where

k̂n = argmin1≤m≤Kn
HDIC([qn]⊕ Ĵm) (2.6)

is an early stopping rule in which wn,pn is an increasing function of p∗n. We then refine Ĵ
k̂n

by comparing the HDIC values of [qn]⊕ Ĵ
k̂n

and [qn]⊕ (Ĵ
k̂n

\ {(ĵi, l̂i)}), 1 ≤ i ≤ k̂n, to judge

whether the marginal contribution of (ĵi, l̂i) is significant enough to warrant its inclusion in

the final model. The resultant refinement of Ĵ
k̂n

is

Ĵn = {(ĵi, l̂i) : 1 ≤ i ≤ k̂n,HDIC([qn]⊕ (Ĵ
k̂n

\ {(ĵi, l̂i)})) > HDIC([qn]⊕ Ĵ
k̂n
)}, (2.7)

and the method is called “Trim.”

For J ∈ J̄ , define xt(J) = (xt−l,j : (j, l) ∈ J)⊤ and wt(J) = (yt−1, . . . , yt−qn ,x
⊤
t (J))

⊤.

Then the least squares estimates of the regression coefficients for model [qn]⊕ Ĵn is

(α̂1(Ĵn), . . . , α̂qn(Ĵn), β̂
⊤(Ĵn))

⊤ =

 n∑
t=r̄n+1

wt(Ĵn)w
⊤
t (Ĵn)

−1
n∑

t=r̄n+1

wt(Ĵn)yt.

With the estimated AR coefficients, α̂i(Ĵn), 1 ≤ i ≤ qn, we suggest using a data-driven

9

thresholding (DDT) method,

Q̂n = {1 ≤ q ≤ qn : |α̂q(Ĵn)| ≥ Ĥn}, (2.8)

to weed out redundant AR variables, where Ĥn is a data-driven thresholding value depending

on Ĵn and qn; see Section 2.3.2. Note that identifying Q̂n is crucial for accurate prediction

because an overfitted model tends to have a larger mean squared prediction error, especially

in tackling nonstationary time series where the cost of overfitting is more prominent (see

Example 2.3.3). The final estimated model is N̂n = Q̂n ⊕ Ĵn. The above procedure, which

combines FSR, HDIC, Trim, and DDT, is referred to as FHTD.

Some notable existing methods related to FHTD are worth mentioning. First, Chudik

et al. (2018) have also employed a forward selection method similar to (2.4) in the One

Covariate at a Time Multiple Testing (OCMT) procedure, which can control the false positive

rate and the false discovery rate in high-dimensional linear regression models. However, their

analysis of OCMT does not account for the scenario in which the pre-selected covariates

exhibit near-perfect correlations. Note also that (2.4) simplifies to the forward regression

algorithm in Wang (2009) when [qn] becomes an empty set, and it further simplifies to OGA

in Ing and Lai (2011) if the orthogonal projection matrix in the denominator is removed.

Second, HDIC becomes BIC if wn,pn = log n and AIC if wn,pn = 2. However, failing

to account for potential spuriousness of the greedily chosen variables among p∗n candidate

variables, AIC and BIC may result in serious overfitting in the case of p∗n ≫ n. Third, in

the context of independent observations, (2.5) and (2.7) have been employed by Ing and

Lai (2011) to eliminate the redundant variables introduced by OGA for high-dimensional

regression models. This combined technique is called OGA+HDIC+Trim by the authors.

Indeed, under an appropriate “beta-min" condition, it can be derived from an argument in

Ing (2020) that, with probability approaching 1, OGA+HDIC+Trim is capable of directly

selecting Jn and Qn in stationary ARX models without having to fit an AR(qn) model using

10

least squares beforehand. However, the effectiveness of OGA+HDIC+Trim in identifying

Jn and Qn is significantly compromised under model (2.1); see Examples 2.4.1 and 2.4.2 of

Section 2.4. This difficulty is also encountered by LASSO and adaptive LASSO, highlighting

the inherent challenges in model selection for high-dimensional nonstationary ARX models

with highly correlated lagged dependent variables.

Finally, it is important to point out that the distinctiveness of FHTD does not come

from the methods it uses, but rather from the innovative way in which these methods are

combined to tackle a highly challenging model selection problem outlined in Section 2.1. This

problem is notoriously difficult to overcome and poses a significant obstacle for most existing

high-dimensional methods. Furthermore, a comprehensive analysis of these methods in non-

standard scenarios is necessary to provide a theoretical justification for FHTD, particularly

when some predictors display near-perfect correlations and all of them are conditionally

heteroscedastic. In the next section, we show that FSR boasts the sure screening property

while N̂n consistently estimate Nn = Jn ⊕Qn.

2.3 Screening and selection consistency

In this section, we present the sure-screening property of FSR and the model selection

consistency of FHTD in Sections 2.3.1 and 2.3.2. To this end, we will consider in Section

2.3.3 Assumptions (A1)–(A6) concerning model (2.2). For a detailed discussion of (A1)–(A6),

see Section 2.3.3 and Section 2.7.1.

2.3.1 The sure screening property of FSR

In addition to (A1)–(A6), we require a strong sparsity condition (SSX) on {β(j)l } to ensure

the sure screening property of FSR. Note that (A1)–(A6) imply that for some η ≥ 2 and

11

q0 > 2,

sup
t

E |ϵt|2η < C, (2.9)

max
1≤s≤pn

sup
t

E |xt,s|2ηq0 < C, (2.10)

and p∗n ≍ nν , where ν ∈ [1, η/2], so that p∗n can be greater than n. Now we state (SSX).

(SSX) s0 = ♯(Jn) and min(j,l)∈Jn
|β(j)l | obey

s
1/2
0 p∗

θ̄

n

n1/2
= o(min

(j,l)∈Jn

|β(j)l |), (2.11)

where θ̄ = max{2/(q0η), (q0 + 1)/(2ηq0)}.

Note that Medeiros and Mendes (2016) used a similar condition to derive the selection

consistency of adaptive LASSO when {yt} is stationary. (SSX) is less stringent than their

strong sparsity condition. See the discussion of Section 2.7.1.

As the first step toward model selection consistency, Theorem 2.3.1 below shows that

FSR asymptotically screens all relevant variables.

Theorem 2.3.1. Assume that (A1)–(A6) and (SSX) hold. Then, for

Kn ≍ (n/p∗n
2θ̄)ς , (2.12)

where 1/3 < ς < 1/2,

lim
n→∞

P (Jn ⊆ ĴKn
) = 1. (2.13)

It is important to note that forcing the lagged dependent variables in FSR is essential

to the sure-screening property. As illustrated in the following example, the (conventional)

12

OGA fails to include all relevant variables when it is used to choose the lagged dependent

variables and exogenous variables simultaneously in the presence of unit-roots.

Example 2.3.1. Consider a special case of model (2.2),

yt = α1yt−1 + α2yt−2 +

pn∑
j=1

βjxt−1,j + ϵt, (2.14)

where α1 = 1 + a, α2 = −a, |a| < 1, βj = 0, 1 ≤ j ≤ pn, and {(xt,1, . . . , xt,pn , ϵt)⊤} is

a sequence of independent normal random vectors with mean zero and identity covariance

matrix. It is easy to see that (2.14) is an AR(2) model with a characteristic polynomial (1−

az)(1−z) which has a unit root of 1. In addition, all xt−1,j , 1 ≤ j ≤ pn, are redundant. Under

this model, when OGA is directly applied to the set of candidate variables {yt−1, yt−2, xt−1,j :

1 ≤ j ≤ pn}, one of the relevant variables {yt−1, yt−2} will not be included in the OGA

path.

To see this, let

F1,n = (y⊤n o1)
2/∥o1∥2, F2,n = (y⊤n o2)

2/∥o2∥2

and

Qj,n = (y⊤n x
(j))2/∥x(j)∥2, 1 ≤ j ≤ pn,

where, analogous to Section 2.2, we define yn = (yn, . . . , y3)
⊤, o1 = (yn−1, . . . , y2)

⊤, o2 =

(yn−2, . . . , y1)
⊤, x(j) = (xn−1,j , . . . , x2,j)

⊤, 1 ≤ j ≤ pn. It is not difficult to show that

F1,n

n2
⇒ (1− a)−2

∫ 1

0
w2(t)dt,

F2n
n2

⇒ (1− a)−2
∫ 1

0
w2(t)dt, (2.15)

where w(t) is the standard Brownian motion and ⇒ denotes convergence in law. Moreover,

13

we show in Section 2.7.4 that

1

n
(F1,n − F2,n) →

1 + 2a

1− a2
in probability. (2.16)

By Bernstein’s inequality, it can be shown that max1≤j≤pn Qj,n = Op(n log pn). Hence, if

a > −0.5, then (2.15)–(2.16) imply that with probability tending to 1, yt−1 will be selected

in the initial iteration of OGA, provided that log pn = o(n).

Assuming that yt−1 is already included by OGA, define ϵ = (I−o1o
⊤
1 /∥o1∥

2)yn, which is

the residual vector obtained by regressing yt on yt−1. It can be shown that (o⊤2 ϵ)
2/∥o2∥2 =

Op(1) and for some small c > 0, P (max1≤j≤pn [(x
(j))⊤ϵ]2/∥x(j)∥2 > c log pn) → 1. Hence,

the probability of choosing yt−2 in the second OGA iteration approaches 0 provided log pn →

∞. By a similar argument, yt−2 will not be selected by OGA in the first Kn iterations when

pn ≫ n ≫ Kn with probability approaching 1. Thus, while yt−1 will be selected by OGA

with probability tending to 1, it is very difficult for OGA to choose the other relevant lagged

dependent variable in the presence of unit roots. If a < −0.5, yt−2 will enter the model in

the first iteration and yt−1 will then be neglected by OGA due to the same argument.

The above example not only highlights the constraint of OGA in handling nonstationary

time series but also suggests that proving Theorem 3.1 requires a distinct skill set compared

to the methodologies employed by Bühlmann (2006), Ing and Lai (2011), and Ing (2020).

While these previous works have been instrumental in analyzing greedy-type methods in

high-dimensional stationary time series, they rely heavily on the convergence rates of the

“population" OGA and its “semi-population" version (see Section 6 of Bühlmann (2006),

Sections 2 and 3 of Ing and Lai (2011), or Section 2 and Appendix A of Ing (2020)). However,

the population OGA can hardly be defined for nonstationary time series due to the varying

covariances between the input variables and between the input and output variables over

time.

To resolve this dilemma, we introduce the “noiseless" FSR, which is FSR of (2.4) with yn

14

in the numerator replaced by its noiseless counterpart µn; see Section 2.7.2 for details. We

derive in Section 2.7.2 the rate of convergence of the corresponding “noiseless" mean squared

error

âm = n−1µ⊤
n (I−H[qn]⊕Jm)µn, (2.17)

as the number of iteration, m, increases, where Jm (defined in Eq. (24) of Section 2.7.2) is

the set of exogenous variables determined by the noiseless FSR after m iterations. The rate

of convergence of âm, together with a probability bound for

max
♯(J)≤K̄n

λ−1
min

n−1
n∑

t=r̄n+1

wt(J)w
⊤
t (J)

 , (2.18)

developed in Theorem 4.1 of Huang et al. (2023), leads to a convergence rate of âm’s “semi-

noiseless" counterpart,

ŝm = n−1µ⊤
n (I−H

[qn]⊕Ĵm
)µn, (2.19)

where K̄n in (2.18) satisfies K̄n = o(n1/2/p∗n
θ̄) and K̄n ≫ Kn + s0, and the sole distinction

between âm and ŝm is that the infeasible Jm in the former is replaced with the data-driven

Ĵm in the latter. As we will see later, the rate of convergence of ŝm serves as the key vehicle

for us to prove (2.13).

In sharp contrast to conventional high-dimensional models where the sample covariance

matrix of the explanatory variables can be accurately approximated by a non-random and

positive definite matrix, the sample covariance matrix, n−1∑n
t=r̄n+1wt(J)w

⊤
t (J), in (2.18)

lacks a non-random limit due to the presence of highly correlated lagged dependent vari-

ables. Therefore, our probability bound for (2.18) highlights another interesting aspect of

our analysis. This probability bound is based on an FCLT for linear processes driven by

15

δt = δt,n = vt,n+ ϵt and moment bounds for quadratic forms in linear processes driven by δt,

as detailed in Huang et al. (2023), where vt,n is defined in (2.3). It is noteworthy that despite

accounting for high dimensionality and general conditional heteroscedasticity, our findings

regarding (2.18) align with (3.10) of Lai and Wei (1982), where a finite-order nonstationary

AR model with a conditionally homogeneous error is considered.

2.3.2 Selection consistency

This section starts by establishing the selection consistency of Ĵn defined in (2.7), which is

a backward elimination method based on a refinement, Ĵ
k̂n

, of ĴKn
; see (2.5) and (2.6). To

this end, we impose a sparsity condition slightly stronger than (SSX).

(SS) There exists dn/ log n→ ∞ such that

s
1/2
0 p∗

θ̄

n d
1/2
n

n1/2
= o(min

(j,l)∈Jn

|β(j)l |). (2.20)

Note that the left-hand side in (2.20) is larger than that of (2.11) by a factor of about

(log n)1/2. Further discussion of (SS) is deferred to Section 2.7.1. Based on (SS), among

other conditions, Theorem 2.3.2 ensures the consistency of Trim in selecting the exogenous

variables.

Theorem 2.3.2. Assume that the assumptions of Theorem 2.3.1 hold with (SSX) replaced

by (SS). Let the wn,pn in (2.5) satisfy

wn,pn

p∗n
2θ̄

→ ∞ and
wn,pn

p∗n
2θ̄

= O((dn/ log n)
1−δ) for any 0 < δ < 1. (2.21)

Then, k̂n and Ĵn defined in (2.6) and (2.7) satisfy

lim
n→∞

P (Jn ⊆ Ĵ
k̂n
) = 1, (2.22)

16

lim
n→∞

P (Ĵn = Jn) = 1. (2.23)

As an early stopping rule for FSR, Ĵ
k̂n

not only preserves ĴKn
’s sure screening property

(see (2.22)), but also substantially suppresses the impact of spurious variables greedily chosen

by FSR, resulting in reliable performance of Trim. With the help of (2.23), we are now in a

position to develop the consistency of DDT in selecting the AR variables. Likewise, we rely

on a strong sparsity condition on the AR coefficients.

(SSA) minq∈Qn
|αq|, s0, and s0 obey

max{q3/2n /
√
n, [(s0 + qn)

1/2 ∧ (s
1/2
0 q

1/η
n)]}

n1/2
= o(min

q∈Qn

|αq|), (2.24)

where s0 = ♯(D0) and D0 = {j : (j, l) ∈ Jn}.

Compared with (SS) or (SSX), a distinct feature of (SSA) is that it allows for a smaller

lower bound for the non-zero coefficients, enabling detection of weaker signals. In particular,

since the spurious exogenous variables chosen by FSR from among p∗n candidates have been

(asymptotically) eliminated after the HDIC and Trim steps, p∗n is now removed from the

lower bound for minq∈Qn
|αq| in which the much smaller qn is used instead.

Theorem 2.3.3. Assume that the assumptions of Theorem 2.3.2, (2.21), and (SSA) hold.

Then, the DDT procedure, Q̂n, defined in (2.8), satisfies

lim
n→∞

P (Q̂n = Qn) = 1, (2.25)

provided that the data-driven threshold satisfies

Ĥn =
max{q3/2n /

√
n, [(qn + ŝ0)

1/2 ∧ (ŝ
1/2
0 q

1/η
n)]}

n1/2
d̃n, (2.26)

17

where d̃n diverges to ∞ at an arbitrarily slow rate, ŝ0 = ♯(Ĵn), and ŝ0 = ♯({i : (i, l) ∈ Ĵn}).

Note that if qn = o(n1/3), then the Ĥn in (2.26) simplifies to

[(qn + ŝ0)
1/2 ∧ (ŝ

1/2
0 q

1/η
n)]d̃n

n1/2
. (2.27)

We stress that the key to the success of DDT is to turn the infeasible thresholding value in

(SSA) into the feasible one, Ĥn, by replacing the unknown s0 and s0 with their consistent

estimates ŝ0 and ŝ0. Combining Theorems 2.3.2 and 2.3.3 yields that FHTD asymptotically

captures the relevant AR and exogenous covariates despite complex unit roots, conditional

heteroscedasticity, and a large pool of candidate variables, resolving the difficulties described

in the Introduction.

In Section 2.3.1, we have demonstrated that OGA overlooks certain relevant variables

when applied directly to model (2.2). The following example highlights the contributions of

Theorems 2.3.2 and 2.3.3 by illustrating that, regardless of the penalty sequence {λn}, the

LASSO method lacks selection consistency in the presence of a unit root.

Example 2.3.2. Consider the model yt = β∗1yt−1 + β∗2yt−2 + β∗3xt−1 + ϵt, t = 1, 2, . . . , n,

where (ϵt, xt)
⊤ are i.i.d. Gaussian with zero mean and an identity covariance matrix, and

β∗1 = β∗3 = 1 and β∗2 = 0. If LASSO is applied to estimate (β∗1 , β
∗
2 , β

∗
3), and β̂(λn) =

(β̂
(λn)
1 , β̂

(λn)
2 , β̂

(λn)
3)⊤ is its estimate corresponding to the penalty λn; namely,

β̂(λn) ∈ arg min
{βj}3j=1

n∑
t=3

(yt − β1yt−1 − β2yt−2 − β3xt−1)
2 + λn

3∑
j=1

|βj |,

then LASSO will not exhibit model selection consistency, as described in equations (2.23)

and (2.25). This lack of consistency holds true whether the sequence {λn} is chosen such

that (a) lim supn→∞ λn/n = ∞, (b) lim infn→∞ λn/n = 0, or (c) λn ≍ n. In fact, one can

18

demonstrate that for any sequence {λn} satisfying (a), (b), or (c), we always have

lim inf
n→∞

P (β̂
(λn)
1 ̸= 0, β̂

(λn)
2 = 0, β̂

(λn)
3 ̸= 0) ≤ 1

2
. (2.28)

The proof of (2.28) can be found in Section 2.7.4.

It is also worth noting that (2.25), achieving consistency for subset selection, is more

desirable for prediction than order selection consistency, whose corresponding model may

still contain redundant AR variables. To the best of our knowledge, this type of consistency

has not been reported elsewhere, even when qn is bounded, and vt,n (see (2.3)) is dropped

from model (2.2). In the following example, we elucidate why achieving consistency in

subset selection can offer significantly greater advantages compared to order selection from

a predictive standpoint.

Example 2.3.3. Consider the model

yt =
k∑

j=1

βjyt−j + ϵt, t = 1, . . . , n, (2.29)

where k ≥ 1 is an integer, β1 = · · · = βk−1 = 0, βk = 1, and ϵt are i.i.d. random

variables with a mean of zero and a constant variance of 0 < σ2 < ∞. It is evident that

model (2.29) is a nonstationary AR(k) model containing k unit roots. If k is known or

can be consistently estimated by an order selection criterion such as BIC, then it is natural

to predict yn+1 using the least squares predictor, ŷn+1(k) = y⊤n (k)β̂(k), where yt(k) =

(yt, . . . , yt−k+1)
⊤ and β̂(k) = (

∑n−1
t=k yt(k)y

⊤
t (k))

−1∑n−1
t=k yt(k)yt+1. The performance

of ŷn+1(k) can be evaluated using its mean squared prediction error (MSPE), defined as

MSPEk = E(yn+1 − ŷn+1(k))
2. Assume E |ϵ1|s < ∞ for some s > 4, and a smoothness

condition on ϵt described in Section 2 of Ing et al. (2010). Then, by extending an argument

19

used in Ing (2001), Ing et al. (2010), and Ing and Yang (2014), it can be shown that

lim
n→∞

n(MSPEk − σ2) = σ2plimn→∞
log det(

∑n−1
t=k yt(k)y

⊤
t (k))

log n
= 2kσ2, (2.30)

where the second equality is ensured by Theorem 5 of Wei (1987).

Alternatively, if a method can consistently select the non-zero coefficient βk while ex-

cluding the redundant ones, such as the FHTD, the least squares predictor,

ỹn+1(k) = yn+1−kβ̃k =
yn+1−k

∑n−1
t=k yt−k+1yt+1∑n−1

t=k y
2
t−k+1

,

would emerge as another appropriate predictor for yn+1, where β̃k is the least squares es-

timate of βk obtained from regressing yt on yt−k. By an argument similar to that used to

prove (2.30), it can be shown that M̃SPEk = E(yn+1 − ỹn+1(k))
2 obeys

lim
n→∞

n(M̃SPEk − σ2) = σ2plimn→∞
log det(

∑n−k
t=1 y

2
t)

log n
= 2σ2. (2.31)

Equations (2.30) and (2.31) reveal that the least squares predictor constructed from a con-

sistent order selection method could indeed lead to significantly higher MSPE than the one

derived from a consistent subset selection method, especially when the underlying unit-root

model contains many irrelevant lagged dependent variables. Moreover, in the stationary case

(0 < |βk| < 1), the constant 2 on the right-hand side of (2.30) and (2.31) reduces to 1; see

Ing (2003). Therefore, excessive fitting in a unit-root time series could result in a notably

larger MSPE than in a stationary series.

2.3.3 Model assumptions

Considering model (2.2), let xt,s for 1 ≤ s ≤ pn and ϵt be Ft-measurable random variables,

where {Ft} is an increasing sequence of σ-fields representing available information up to

20

time t. We impose the following assumptions.

(A1) {ϵt,Ft} is a martingale difference sequence (m.d.s.) with E ϵ2t = σ2 and

ϵ2t − σ2 =
∞∑
j=0

θ⊤j et−j , (2.32)

where θj are l0-dimensional real vectors such that

∞∑
j=0

∥θj∥ ≤ C, (2.33)

with l0 being a fixed positive integer, and {et,Ft} is an l0-dimensional m.d.s. with

sup
t

E ∥et∥η ≤ C, for some η ≥ 2. (2.34)

(A2) For each 1 ≤ s ≤ pn, {xt,s}−∞<t<∞ is a covariance stationary time series with mean

zero and admits a one-sided moving average representation,

xt,s =
∞∑
k=0

pk,sπt−k,s, (2.35)

where p0,s = 1, {πt,s,Ft} is an m.d.s. and

∞∑
k=0

max
1≤s≤pn

√
k|pk,s| ≤ C. (2.36)

Moreover, for 0 ≤ s1 ≤ s2 ≤ pn and s1 + s2 ≥ 1,

πt,s1πt,s2 − σs1,s2 =
∞∑
j=0

θ⊤j,s1,s2et−j,s1,s2 , (2.37)

where πt,0 = ϵt, σs1,s2 = E(πt,s1πt,s2), θj,s1,s2 are ls1,s2-dimensional real vectors, with

21

ls1,s2 being a fixed positive integer, such that

∞∑
j=0

∥θj,s1,s2∥ ≤ C, (2.38)

and {et,s1,s2 ,Ft} is a ls1,s2-dimensional m.d.s. satisfying for some q0 > 2,

sup
t

E ∥et,s1,s2∥
q0η ≤ C, if min{s1, s2} > 0, (2.39)

sup
t

E ∥et,s1,s2∥
2q0η/(1+q0) ≤ C, if min{s1, s2} = 0, (2.40)

where η is defined in (2.34). Note that C does not depend on s1, s2 in the above.

(A3) There exists a positive definite sequence, {γh}−∞<h<∞, of real numbers such that

lim
n→∞

∞∑
h=0

|γh,n − γh| = 0, (2.41)

where γh,n = E(δtδt+h) and δt = δt,n = vt,n + ϵt, noting that vt,n is defined in (2.3).

(A4)
∑pn

j=1

∑r
(n)
j

l=1 |β
(j)
l | ≤ C and

∑ιn
j=1 j|aj | ≤ C, where aj = aj,n is defined after (2.1).

(A5) max1≤j≤pn r
(n)
j = o(n1/2), p∗n ≍ nν , and qn = o(n1/2−θo), where ν ∈ [1, η/2] and

θo = ν(1 + q0)/(2ηq0).

Assumption (A1) implies that (2.9) holds and is satisfied by many conditionally het-

eroscedastic processes, such as the stationary GJR-GARCH model with a finite 2η-th mo-

ment. Assumption (A2) necessitates that {xt,s} follows an MA(∞) process driven by the

conditionally heteroscedastic innovations {πt,s}, while also requiring that the process pos-

sesses a finite 2ηq0-th moment; see (2.10). Furthermore, it accommodates the possibility

that (ϵt, πt,1 . . . , πt,pn)
⊤ constitutes a multivariate GARCH process, with the diagonal VEC

22

model introduced by Bollerslev et al. (1988) being a particular instance within this frame-

work. Assumption (A3) is used to derive the FCLT for the multivariate linear process driven

by {δt}, and Assumption (A4), known as the weak sparsity condition, frequently finds ap-

plication in high-dimensional data analysis literature. Finally, Assumption (A5) allows that

the covariate dimension is at least of the same order as n, and can be much larger than n if

η > 2. It also permits that qn, the prescribed upper bound of the number of AR variables,

increases to ∞ at a rate slower than n1/2. For a more detailed and comprehensive explo-

ration of (A1)–(A5), readers are referred to Section 2.7.1 and Section 2.1 of Huang et al.

(2023).

Apart from (A1)–(A5), we also require (A6), which assumes the covariance structures of

xt,j and the stationary component, zt = [ψ−1(B)ϕ(B)]yt, of yt, where

ϕ(z) = (1− z)a(1 + z)b
l∏

k=1

(1− 2 cosϑkz + z2)dkψ(z),

with ψ(z) = ψn(z) defined after (2.1). Since ψ(z) ̸= 0 for all |z| ≤ 1, by the second part

of (A4) and Theorem 3.8.4 of Brillinger (1975), zt can be expressed as zt =
∑t−1

j=0 bjδt−j ,

with b0 = 1,
∑∞

j=0 bjz
j ̸= 0, |z| ≤ 1, and

∑∞
j=0 |jbj | ≤ C. Define zt,∞ =

∑∞
j=0 bjδt−j ,

z⊤t,∞(k) = (zt−1,∞, . . . , zt−k,∞),

Γn(J) = E

zt,∞(qn − d)

xt(J)

(z⊤t,∞(qn − d), x⊤t (J)

) , J ⊆ J̄ ,

and for (i, l) /∈ J , g⊤J (i, l) = (E(z⊤t,∞(qn− d)xt−l,i),E(x⊤t (J)xt−l,i)). Now, (A6) is presented

as follows:

(A6)

max
♯(J)≤Kn

λ−1
min(Γn(J)) ≤ C, (2.42)

23

and

qn−d∑
s=1

max
♯(J)≤Kn,(i,l)/∈J

|as,J (i, l)|+ max
♯(J)≤Kn,(i,l)/∈J

∑
(i∗,l∗)∈J

|a(i∗,l∗)(i, l)| ≤ C, (2.43)

where (a1,J (i, l), . . . , aqn−d,J (i, l), (a(i∗,l∗)(i, l) : (i
∗, l∗) ∈ J))⊤ = Γ−1

n (J)gJ (i, l).

In Section 2.7.1, we provide illustrative examples to demonstrate the applicability of (A6).

Specifically, we establish that (2.43) remains valid, even when model (2.2) contains highly

correlated lag-dependent variables and exogenous variables with strong correlations.

2.4 Simulation studies

In this section, we examine the model selection performance of FHTD using data generated

from model (2.1), with coefficients, covariates, and error terms specified below. For the

purpose of comparison, we also employ several existing high-dimensional model selection

methods, such as LASSO, adaptive LASSO (ALasso), and OGA+HDIC+Trim (OGA-3),

where the names in the parentheses are shorthands used throughout the chapter. Since

FHTD first coerces all candidate AR variables into the model, we modify ALasso and OGA-

3 accordingly and consider the analogous methods, AR-ALasso and AR-OGA-3. For AR-

ALasso, the AR variables are not penalized in the first-stage LASSO and the resulting

coefficients are used as the initial weights (weighted inversely) for the second-stage LASSO.

AR-OGA-3 also forces the AR variables into the base model when implementing OGA-3.

According to Theorem 2.3.2, the penalty term, wn,pn , in HDIC can be taken to be tnp∗
2θ̄

n ,

where θ̄ is defined in (SSX) and {tn} diverges to ∞ arbitrarily slowly. Here, we approximate

2θ̄ using 1/η because the exogenous variables are often allowed to have finite higher-order

moments. On the other hand, we set η = 2 to include GARCH-type errors with relatively

24

heavy tails. As a result, for the FSR- and OGA-based methods,

HDIC(Q⊕ J) = n log σ̂2Q⊕J + cp∗
1/η

(♯(Q) + ♯(J)), η = 2, (2.44)

is used throughout all simulations, where c > 0 is a tuning parameter. Similarly, in view of

Theorem 2.3.3 and (2.27), the Ĥn in DDT is set to

[(qn + ŝ0)
1/2 ∧ (ŝ

1/2
0 q

1/2
n)]d

n1/2
, (2.45)

where d is also subject to fine-tuning. In practice, one may use a hold-out validation set to

determine c and d. To reduce the computational burden, we set c = d = 0.5 in all simulation

examples and leave the problem of tuning c and d to Section 2.5. The number of iterations,

Kn, of FSR and OGA is set to 40. The tuning parameters for LASSO-type methods are

selected using BIC as in Medeiros and Mendes (2016). Finally, qn and r
(n)
j are set to qn =

⌊2n0.25⌋ and r
(n)
j = r(n) for all 1 ≤ j ≤ pn, where (n, pn, r

(n)) = (200, 100, 4), (400, 200, 5),

and (800, 500, 6). Note that p∗n = pnr
(n) > n in all cases.

Let Q̃i and J̃i denote the sets of the AR and exogenous variables chosen by a model

selection method in the i-th simulation. Then its performance is measured by the frequencies

of selecting exactly the relevant variables (E) and including all relevant variables (SS) as well

as the average numbers of true positives (TP) and false positives (FP), namely,

E =
1000∑
i=1

I{Q̃i=Qn}I{J̃i=Jn}, SS =
1000∑
i=1

I{Qn⊆Q̃i}
I{Jn⊆J̃i}

,

TP =
1

1000

1000∑
i=1

(♯{Q̃i ∩Qn}+ ♯{J̃i ∩ Jn}),FP =
1

1000

1000∑
i=1

(♯{Q̃i ∩Qc
n}+ ♯{J̃i ∩ J c

n}),

where Qc = [qn] \Qn and J c
n = J̄ \ Jn. All simulation results are based on 1,000 replicates.

25

Example 2.4.1. In this example, we generate n observations from

(1− 0.45B4 − 0.45B5)(1−B)yt =
5∑

j=1

β
(j)
1 xt−1,j +

10∑
j=6

β
(j)
2 xt−2,j + ϵt, (2.46)

where ϵt is independently drawn from a t(6) distribution. The candidate covariates are gen-

erated according to the AR(1) model, xt,j = 0.8xt−1,j + 2wt + vt,j , j = 1, 2, . . . , pn, where

{wt} and {vt,j} are independent standard Gaussian white noise processes and are indepen-

dent of {ϵt}. The coefficients are given by (β
(1)
1 , β

(2)
1 , β

(3)
1 , β

(4)
1 , β

(5)
1) = (3, 3.75, 4.5, 5.25, 6),

and (β
(6)
2 , β

(7)
2 , β

(8)
2 , β

(9)
2 , β

(10)
2) = (6.75, 7.5, 8.25, 9, 9.25). Since a unit-root is introduced

in (2.46), {yt} is nonstationary and the model contains three lagged dependent variables,

yt−1, yt−4, yt−6, and ten exogenous variables. In addition, the candidates xt−l,j are highly

correlated because Corr(xt,i, xt,j) = 0.8, for i ̸= j.

Simulation results for Example 2.4.1 are summarized in Table 2.1. Clearly, the LASSO-

type methods fail to identify the correct model. Their TP values are only slightly larger than

1, meaning on average they detect only one relevant variable. A closer look at the results

reveals that yt−1 is always included by these methods. However, they include only another

one or two variables at most, which are usually irrelevant, resulting in a low FP value.

OGA-3 performs equally poorly in terms of TP values, and tends to select more irrelevant

variables. AR-OGA-3 has much higher TP values than OGA-3 though its performance in

variable screening and selection is unsatisfactory. This inferior performance of AR-OGA-3

is mainly ascribed to OGA’s relatively poor selection path, which falls short of including

all relevant exogenous variables after adding all candidate AR variables in the model. By

contrast, FSR successfully includes all relevant exogenous variables. Based on the reliable

selection path of FSR, HDIC, Trim, and DDT further remove all redundant variables and

identify the true ARX model over 90% of the time when n ≥ 400.

26

Table 2.1: Values of E, SS, TP, and FP in Example 2.4.1, where E denotes selecting exactly
the relevant variables and SS including all relevant variables, and TP and FP are the average
numbers of true positives and false positives. Results are based on 1000 replications.

LASSO ALasso OGA-3 AR-ALasso AR-OGA-3 FHTD
(n, p∗n, pn, r

(n), qn) = (200, 400, 100, 4, 7)

E 0 0 0 0 1 431
SS 0 0 0 0 1 1000
TP 1.02 1.02 1.16 1.12 6.67 13.00
FP 0.73 0.39 3.36 0.50 12.49 0.98
(n, p∗n, pn, r

(n), qn) = (400, 1000, 200, 5, 8)

E 0 0 0 0 78 919
SS 0 0 0 0 78 1000
TP 1.01 1.00 1.12 1.07 10.46 13.00
FP 0.22 0.09 4.39 0.63 11.12 0.09
(n, p∗n, pn, r

(n), qn) = (800, 3000, 500, 6, 10)

E 0 0 0 0 229 998
SS 0 0 0 0 229 1000
TP 1.03 1.00 1.32 1.06 11.87 13.00
FP 0.13 0.00 5.62 0.66 9.29 0.00

Example 2.4.2. In this example, we generate data from

(1− 0.3B)(1− 2 cos(0.1)B +B2)yt =
5∑

j=1

β
(j)
1 xt−1,j +

10∑
j=6

β
(j)
2 xt−2,j + ϵt, (2.47)

where {ϵt} is a GARCH(1,1) process satisfying

ϵt = σtZt, σ2t = 5× 10−2 + 0.05ϵ2t−1 + 0.9σ2t−1,

in which {Zt} is a sequence of i.i.d. standard Gaussian random variables. Using Theorem 2.2

of Ling and McAleer (2002), one can verify that ϵt has a finite sixth moment. Let wt = Aπt,

where A = (aij)1≤i,j≤pn , with aij = 0.6|i−j| if |i− j| ≤ 7 and aij = 0 otherwise, and {πt},

independent of {Zt}, is a sequence of i.i.d. random vectors whose entries are independently

drawn from a t(13) distribution. We then generate xt,j by (1 − 0.1B + 0.7B2)xt,j = (1 +

0.7B)wt,j , 1 ≤ j ≤ pn, where wt,j is the j-th component of wt. Note that {xt,j} is an

27

ARMA(2,1) process. Moreover, the relevant coefficients are (β
(1)
1 , β

(2)
1 , β

(3)
1 , β

(4)
1 , β

(5)
1) =

(0.82,−1.03, 1.92,−2.21, 2.42), and (β
(6)
2 , β

(7)
2 , β

(8)
2 , β

(9)
2 , β

(10)
2) = (−2.57, 3.28,−3.54, 3.72,

−3.90).

Table 2.2 reports the performance of the same methods as those in 2.4.1. In addition to

conditionally heteroscedastic errors, the major challenge in this example lies in the fact that

the AR component on the left-hand side of (2.47) contains complex unit roots; thus, {yt}

cannot be made stationary through simple difference transforms. As observed in Table 2.2,

this challenge hinders the performance of the OGA- and LASSO-type methods, all of which

have zero SS and E values and low TP values even when n = 800. In contrast, FHTD still

works well under the challenge. Specifically, it detects all relevant variables over 94% of the

time for n ≥ 200. In addition, its E value rapidly increases from 493 to over 840 when n

increases from 200 to 400 (or 800).

Table 2.2: Values of E, SS, TP, and FP in Example 2.4.2, where E, SS, TP and FP are
defined similarly as thos of Table 2.1. Results are also based on 1000 replications.

LASSO ALasso OGA-3 AR-ALasso AR-OGA-3 FHTD
(n, p∗n, pn, r

(n), qn) = (200, 400, 100, 4, 7)

E 0 0 0 0 0 493
SS 0 0 0 0 1 943
TP 1.45 1.24 1.33 1.19 5.40 12.93
FP 3.04 2.22 2.09 1.73 6.33 0.80
(n, p∗n, pn, r

(n), qn) = (400, 1000, 200, 5, 8)

E 0 0 0 0 0 845
SS 0 0 0 0 0 999
TP 1.21 1.10 1.83 1.05 5.63 13.00
FP 1.93 1.58 3.19 1.50 6.40 0.24
(n, p∗n, pn, r

(n), qn) = (800, 3000, 500, 6, 10)

E 0 0 0 0 0 850
SS 0 0 0 0 0 1000
TP 1.04 1.01 1.94 1.00 6.19 13.00
FP 1.32 1.18 3.34 1.18 6.66 0.33

We also considered another challenging example, where the error term and all candidate

exogenous variables are conditionally heteroscedastic in addition to two unit roots in the
28

AR component. FHTD still substantially outperforms the other methods in this example.

Details are deferred to Section 2.7.5.

2.5 Applications

In this section, we apply the proposed FHTD to the U.S. monthly housing starts and unem-

ployment series.

3.5

4.0

4.5

5.0

1991 1996 2001 2006 2011 2016 2021
Year

lo
g

ho
us

in
g

st
ar

ts

(a) Logarithm of housing starts.

5

7

9

11

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020

Year

U
ne

m
pl

oy
m

en
t r

at
e

(%
)

(b) Unemployment rates, seasonally adjusted.

Figure 2.1: Time plots of U.S. monthly housing starts and unemployment series

2.5.1 Housing starts in the U.S.

In this application, we are interested in modeling the logarithm of U.S. monthly housing

starts. As depicted in Figure 2.1a, the series exhibits an apparent seasonal pattern along

with a drastic level change around subprime financial crisis of 2008. For covariates, we

collect the monthly new private housing units authorized by building permits for each state1

and the 30-year fixed rate mortgage averages from the Economic Data of St. Louis Federal

Reserve2. After removing series with missing values, we have 49 housing permits series

1. For instance, data for Illinois are retrieved from https://fred.stlouisfed.org/series/ILBP1FH

2. Freddie Mac, 30-Year Fixed Rate Mortgage Average in the United States [MORTGAGE30US], retrieved
from FRED, Federal Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/MORTGAGE30US,
October 27, 2022.

29

https://fred.stlouisfed.org/series/ILBP1FH
https://fred.stlouisfed.org/series/MORTGAGE30US

{xt,j , j = 1, 2, . . . , 49} and the mortgage rate series rt from January 1988 through August

2022. We also remove the seasonality and unit root by taking x̃t,j = (1−B12)(1−B) log xt,j ,

j = 1, 2, . . . , 49, and r̃t = rt − rt−1. Consequently, we have 403 observations for each series.

Then we employ the following predictive model

ht =
18∑
l=1

αlht−l +
49∑
j=1

18∑
k=1

β
(j)
k x̃t−k,j +

18∑
k=1

β
(50)
k r̃t−k + ϵt, (2.48)

where ht denotes the logarithm of U.S. housing starts at month t. Note that there are 918

potential predictors. We also consider the model with a drift,

ht = β0 +
18∑
l=1

αlht−l +
49∑
j=1

18∑
k=1

β
(j)
k x̃t−k,j +

18∑
k=1

β
(50)
k r̃t−k + ϵt. (2.49)

In implementing FHTD, we estimate (2.49) via the following procedure. First, subtract from

each variable (including the dependent variable) its own sample average. Then, perform

model selection with the transformed data using FHTD. Finally, estimate (2.49) by OLS

with the selected variables and an intercept.

We perform rolling-window one-step-ahead prediction using FHTD as well as the other

methods described in Section 2.4. We reserve the last 18 years of data as the test set;

that is, there are W = 216 windows. Each window contains 169 observations as training

data. Figure 2.2 plots some selected windows. As shown in the figure, the methods are

challenged to forecast the sharp dip around 2008 and the following recovery. Since the true

model is unknown, the performance of the methods under consideration is measured by

the root mean squared prediction error (RMSE) and the median absolute prediction error

(MAE), where RMSE = {W−1∑W
w=1(hT−w+1 − ĥT−w+1)

2}1/2 and MAE is the median of

{|hT−w+1− ĥT−w+1| : w = 1, 2 . . . ,W}, in which T is the time index for the last data point

and ĥT−w+1 is the predicted value of hT−w+1. In implementing FHTD and AR-OGA-3, we

use HDIC in (2.44), Ĥn in (2.45), and choose c and d therein over a grid of values between

30

0.1 and 0.7 via a hold-out validation set consisting of the last 20% of the training data in

each window. The BIC is used to select the penalty parameters for LASSO-type methods.

4.
0

4.
2

4.
4

4.
6

4.
8

5.
0

5.
2

Rolling window: 1

4.
0

4.
2

4.
4

4.
6

4.
8

5.
0

5.
2

Rolling window: 24

4.
2

4.
4

4.
6

4.
8

5.
0

5.
2

Rolling window: 48

3.
5

4.
0

4.
5

5.
0

Rolling window: 72

3.
5

4.
0

4.
5

5.
0

Rolling window: 96

3.
5

4.
0

4.
5

5.
0

Rolling window: 120

3.
5

4.
0

4.
5

5.
0

Rolling window: 144

3.
5

4.
0

4.
5

5.
0

Rolling window: 168

3.
5

4.
0

4.
5

5.
0

Rolling window: 192

3.
5

4.
0

4.
5

5.
0

Rolling window: 216

Figure 2.2: Time plots of logarithim of monthly U.S. Housting Starts, ht, of selected windows

The prediction results are recorded in Table 2.3. We observe that LASSO-type methods

are highly sensitive to the specification of the intercept. They performed poorly when the

intercept is omitted. In view of Figure 2.2, fitting the drift term to the upward trend appeared

in the first few windows may help alleviate the unit-root property in the data in finite sample,

and without the drift, LASSO-type methods are unable to adapt to the unit-root behavior in

the data. On the contrary, FHTD remains stable whether or not an intercept is included, and

its prediction errors are substantially lower than the other methods. This example indicates

that the proposed method can reliably select relevant predictors in predicting unit-root time

series.

31

Table 2.3: Out-of-sample RMSEs and MAEs of competing methods applied to (2.48) and
(2.49)

FHTD OGA-3 AR-OGA-3 LASSO ALasso AR-ALasso
Model (2.48)
RMSE(×10) 1.08 1.34 1.32 2.14 2.13 1.43
MAE(×10) 0.72 0.82 0.82 1.21 1.17 0.97

Model (2.49)
RMSE(×10) 1.11 1.31 1.29 1.24 1.21 1.14
MAE(×10) 0.71 0.82 0.91 0.86 0.88 0.81

2.5.2 U.S. unemployment rate

Next, we consider the prediction of U.S. monthly unemployment rate {ut}, shown in Fig-

ure 2.1b. In some empirical studies, the unemployment rate is considered as difference-

stationary. Nevertheless, Bierens (2001) has found some evidence that the fluctuations may

be due to complex unit roots. In forecasting unemployment rate, Montgomery et al. (1998)

have also noted the possibility of complex unit roots. Regardless of such complications, we

can directly apply FHTD and the other methods discussed in the previous section to select

a model for {ut} and to predict its future values. The data used are from the FRED-MD

dataset3, which contains 128 U.S. monthly macroeconomic variables from January 1959 to

July 2019.

We use data from January 1973 to June 2019 and again consider rolling-window one-

step-ahead predictions. After discarding the series with missing values during the time span,

there remain 124 macroeconomic time series that can be used to forecast ut. Following

McCracken and Ng (2016), we transform some series by taking logs, differencing, or both, so

that all 124 series are considered stationary after the transformations. Denote these series

3. available on https://research.stlouisfed.org/econ/mccracken/fred-databases/

32

https://research.stlouisfed.org/econ/mccracken/fred-databases/

by {xt,j}, j = 1, . . . , 124. Then we apply FHTD to the following model,

ut =
6∑

i=1

αiut−i +
124∑
j=1

6∑
l=1

β
(j)
l xt−l,j + ϵt, (2.50)

which contains 750 candidate predictors. The last two years of data are reserved as test

samples, resulting in a window size of 310 observations.

The results are reported in Table 2.4. In both performance measures, FHTD outperforms

OGA-3, AR-OGA-3, AR-ALasso, and LASSO. Its RMSE improves by 6%, 7%, 12%, and

14% over OGA-3, LASSO, AR-OGA-3, and AR-ALasso, respectively. The results are similar

when comparing the MAEs. Note that for LASSO, ALasso, and AR-ALasso, we only report

their performance when an intercept is included, since, as observed in the previous appli-

cation, these methods performed poorly when the intercept is omitted. In this particular

application, without the intercept the RMSEs and MAEs of LASSO and ALasso can be more

than 14 times as large as their counterparts for the AR-AIC. These results, combined with

those in Table 2.3, show that FHTD is applicable to general unit-root time series, stable

across specifications, and makes best use of the available predictors. Finally, we remark that

the performance of ALasso (with intercept) is also quite competitive, implying that both are

the most recommendable approaches to forecast {ut}.

Table 2.4: Out-of-sample RMSEs and MAEs of competing methods applied to (2.50) for
U.S. monthly unemployment rate series.

FHTD OGA-3 AR-OGA-3 LASSO ALasso AR-ALasso
RMSE(×10) 1.34 1.42 1.50 1.44 1.38 1.52
MAE(×10) 0.88 0.91 0.95 0.96 0.88 1.00

2.6 Concluding remarks

This chapter proposed the FHTD algorithm for variable selection in high-dimensional non-

stationary ARX models with heteroscedastic covariates and errors. Under strong sparsity
33

conditions, we established its selection consistency, valid even when the lagged dependent

variables are highly correlated and sample covariance matrices lack deterministic limits. Fi-

nally, we point out some potential research directions. First, shifting from (SS) and (SSX)

to weak sparsity assumptions (where coefficients are mostly non-zero but only a few are sig-

nificant) may prioritize optimal forecasting over variable selection consistency. Addressing

this issue remains challenging, particularly in the presence of complex unit roots. Another

intriguing avenue is the model selection for cointegrated data, common in economics and

environmental studies, within the realm of high-dimensional data analysis.

2.7 Supplementary details

The supplemental material includes five subsections. Subsection 2.7.1 provides comments on

(A1)–(A6) and discusses the sparsity conditions (SSX) and (SS). Subsection 2.7.2 presents

the proofs for the main results, Theorems 2.3.1–2.3.3. Several theoretical results crucial to

the proofs are stated in the same section for completeness. Further details related to Sub-

section 2.7.2 can be found in Subsection 2.7.3. Subsection 2.7.4 contains specific information

regarding Examples 2.3.1 and 2.3.2. Finally, Subsection 2.7.5 offers additional simulation

results.

2.7.1 Comments on Assumptions (A1)–(A6), (SSX), and (SS)

In this subsection, we offer a few comments on assumptions (A1)–(A6). The reader is also re-

ferred to Huang et al. (2023) for related discussions on assumptions (A1)–(A4). Assumption

(A1) is fulfilled by many conditionally heteroscedastic processes, such as the GJR-GARCH

model (see Huang et al., 2023, 2022). Assumption (A2) requires that {xt,s} is an MA(∞)

process driven by the conditionally heteroscedastic innovations {πt,s}. This type of assump-

tion is broadly adopted in time series analysis. In fact, (A2) allows (ϵt, πt,1 . . . , πt,pn)
⊤ to be

a multivariate GARCH process. By the same argument used in Huang et al. (2022), it can

34

be shown that the diagonal VEC model of Bollerslev et al. (1988) is a special case of (2.37).

Moment conditions (2.39) and (2.40) are more stringent than (2.34). These stronger moment

assumptions ensure a reliable screening performance of FSR when the number of exogenous

covariates is larger than the sample size, as described in Assumption (A5). Furthermore,

in the notable special case where {πt,s} is a sequence of independent and identically dis-

tributed random variables with E(πt,s) = 0 and E(πt,s1πt,s2) = σs1,s2 , (2.37) remains valid,

with et,s1,s2 = πt,s1πt,s2 − σs1,s2 , θ0,s1,s2 = 1, and θj,s1,s2 = 0 for j > 0.

Assumption (A3) is used to derive the FCLT for the multivariate linear process driven by

{δt} (Theorem 2.1, Huang et al., 2023), leading to a uniform lower bound for the minimum

eigenvalues of the sample covariance matrices of dimensions less than or equal to qn +Kn;

see Theorem 4.1 of Huang et al. (2023). Assumption (A4), referred to as the weak sparsity

condition, is commonly used in the literature on high-dimensional data analysis. It follows

from (2.35), (2.36), and (A4) that

sup
n≥1

∞∑
h=−∞

|γh,n| ≤ C, (2.51)

which, together with (2.41), leads to

∞∑
h=−∞

|γh| ≤ C. (2.52)

Assumption (A5) allows that the covariate dimension to be at least of the same order as n,

and can be much larger than n if η > 2. It also permits that qn, the prescribed upper bound

of the number of AR variables, increases to ∞ at a rate slower than n1/2.

When the moment conditions are controlled, (A5) appears to be more flexible than the

assumptions on model dimensions in Medeiros and Mendes (2016), where {yt} is assumed

to be stationary, corresponding to the case of a = b = d1 = · · · = dl = 0. To see this, note

that (A1) and (A2) imply (2.9) and (2.10) respectively. Moreover, (A1), together with (A2),

35

yields

sup
t

E |yt|2η < C, (2.53)

provided a = b = d1 = · · · = dl = 0. By (2.9), (2.10), (2.53), and Hölder’s inequality,

sup
t

E |yt−iϵt|η < C and sup
t

E |xt−l,jϵt|2ηq0/(q0+1) < C,

for all 1 ≤ i ≤ qn, 1 ≤ l ≤ r
(n)
j , and 1 ≤ j ≤ pn. Therefore, the m in Assumption DGP(4)

of Medeiros and Mendes (2016) obeys

m = min{η, 2ηq0/(q0 + 1)} = η. (2.54)

Equation (2.54) and the discussion after Assumption (REG) of Medeiros and Mendes (2016)

lead to a restriction on the number of candidate variables such that

qn + p∗n = o(nαη(η−2)/(2η+4b)), (2.55)

where 0 < α < 1 and b > 0 are positive numbers defined therein. Equation (2.55) requires

p∗n to be much smaller than n unless η > 4. In contrast, (A5) allows p∗n > n even if η = 2.

We also make a few comments on (A6). For D ⊂ {1, . . . , pn}, let

πt(D) = (πt,s : s ∈ D)⊤, µt(D) = (ϵt,π
⊤
t (D))⊤,

Σn(D) = E(µt(D)µ⊤
t (D)).

(2.56)

Then, it can be shown that (2.42) holds if {xt,j} admits an infinite-order AR representation

36

with absolutely summable coefficients and

max
♯(D)≤Kn+s0

λ−1
min(Σn(D)) ≤ C, (2.57)

where s0 is defined in (SSA). When the AR components are deleted from model (2.2), (2.43)

reduces to (3.2) of Ing and Lai (2011), which is closely related to the “exact recovery condi-

tion” introduced by Tropp (2004) in the analysis of the orthogonal matching pursuit and plays

a role similar to the “restricted eigenvalue assumption” introduced by Bickel et al. (2009) in

the study of LASSO. Condition (2.43) is a natural generalization of (3.2) of Ing and Lai (2011)

when the (asymptotically) stationary AR component, zt(qn − d) = (zt−1, . . . , zt−qn+d)
⊤, is

taken into account.

We now present an example that illustrates the validity of (2.43) even when model (2.2)

includes highly correlated lagged dependent variables and highly correlated exogenous vari-

ables. Assume in model (2.2) that r(n)j = 1 for all 1 ≤ j ≤ pn and {(xt−1,1, . . . , xt−1,pn , ϵt)
⊤}

is a sequence of white noise vectors obeying E(ϵ2t) = E(x2t,j) = 1 for all 1 ≤ j ≤ pn and 0 ≤

E(xt,ixt,j) = E(xt,lϵt) = λ < 1 for all 1 ≤ i ̸= j ≤ pn and 1 ≤ l ≤ pn. In this model specifica-

tion, not only are yt−j , 1 ≤ j ≤ qn, highly correlated, but also xt−1,j , 1 ≤ j ≤ pn, especially

when λ is close to 1. Define G(qn − d) = [Gij]1≤i,j≤qn−d = E−1(zt,∞(qn − d)z⊤t,∞(qn − d))

and c2J = λ2♯(J)/(1− λ+ ♯(J)λ). Since 0 < c2J < λ and 0 < G11 ≤ 1, it holds that

max
♯(J)≤Kn,(i,1)/∈J

∑
(i∗,1)∈J

|ai∗,1(i, 1)| ≤ max
♯(J)≤Kn

(1− λG11)λ♯(J)

(1− c2JG11)(1− λ+ ♯(J)λ)
≤ 1. (2.58)

Moreover, one has

qn−d∑
s=1

max
♯(J)≤Kn,(i,1)/∈J

|as,J (i, 1)| ≤
qn−d∑
s=1

max
♯(J)≤Kn

λ− c2J
1− c2JG11

|Gs1| ≤
qn−d∑
s=1

|Gs1|. (2.59)

Define a2 = 1 + λ(
∑pn

j=1 β
(j)
1)2 + (1 − λ)

∑pn
j=1(β

(j)
1)2, b = λ

∑pn
j=1 β

(j)
1 , and h2 = (a2 +

37

(a4 − 4b2)1/2)/2, noting that |b| < a2/2 and

h2 > max{1, λ(
pn∑
j=1

β
(j)
1)2 + (1− λ)

pn∑
j=1

(β
(j)
1)2}. (2.60)

Then, it can be shown that {zt,∞} admits an infinite-order AR representation,

zt,∞ +
∞∑
j=1

ϕjzt−j,∞ = ηt, (2.61)

where 1+
∑∞

j=1 ϕjz
j ̸= 0, for |z| ≤ 1,

∑∞
j=0 |ϕj | ≤ C, and {ηt} is a white noise sequence with

variance h2. By using a modified Cholesky decomposition (e.g., Ing et al. (2016)), (2.60),

(2.61), and Baxter’s inequality (Baxter (1962)), one gets
∑qn−d

s=1 |Gs1| ≤ Ch−2∑∞
j=0 |ϕj | ≤

C, which, together with (2.58) and (2.59), leads to (2.43).

Before concluding this subsection, we provide a brief discussion of the strong sparsity

conditions (SSX) and (SS) in Sections 2.3.1 and 2.3.2. As mentioned earlier, a condition

similar to (SSX) has been utilized by Medeiros and Mendes (2016) to establish the selection

consistency of the adaptive LASSO when {yt} is stationary. Specifically, they assume

λs
1/2
0

n1−ξ/2ϕmin

= o(min
(j,l)∈Jn

|β(j)l |), (2.62)

where 0 < ξ < 1 is some constant defined in their Assumption (WEIGHTS) and 2ϕmin is

a lower bound for the minimum eigenvalue of the covariance matrix of the random vector

formed by all relevant predictors. Assuming that ϕmin is bounded away from 0 and choosing

λ to be the value suggested after Assumption (REG) of Medeiros and Mendes (2016), (2.62)

becomes

s
1/2
0 p∗

1/m

n nξ/m

n1/2
= o(min

(j,l)∈Jn

|β(j)l |). (2.63)

38

In view of (2.54) and the definitions of θ̄ and ξ, we conclude that (2.63) is more stringent

than (2.11) in (SSX). While the left-hand side of (2.20) in (SS) is larger than that of (2.11)

by a factor about (log n)1/2, it is still smaller than that of (2.63).

2.7.2 Key theoretical results and main proofs

In this subsection, we present the proofs of the main results in this chapter, namely Theorems

2.3.1–2.3.3. The proofs are proceeded by a few theoretical results developed in Huang et al.

(2023) that are key to the proofs. For the sake of completeness, we state the results relevant to

this chapter, and refer the readers to Huang et al. (2023) for proofs and detailed discussions.

To simplify the exposition and without loss of generality, we assume, in what follows, that

l0 and ls1,s2 in (A1) and (A2) are equal to 1.

Theoretical tools

In this subsection, we collect some useful theoretical apparatus, including a novel FCLT

for the multivariate linear processes, (2.64), driven by {δt} under a set of mild conditions

(Theorem 2.7.1) and the moment bounds for quadratic forms associated with model (2.2)

(Lemma 2.7.1). These results are used to bound from below the minimum eigenvalues of the

sample covariance matrices of the candidate models; see Theorem 2.7.2. For the proofs in

this subsection, we refer to the companion paper (Huang et al., 2023). Due to the presence of

vt,n =
∑pn

j=1

∑r
(n)
j

l=1 β
(j)
l xt−l,j in δt, the FCLT is quite different from the classical ones (see,

e.g., Chan and Wei (1988) and Ling and Li (1998)), where the linear processes are driven by

39

{ϵt} only. Let

Bn(t1, t2, . . . , t2l+2)

=
1√
n

⌊nt1⌋∑
k=1

δk,

⌊nt2⌋∑
k=1

(−1)kδk,

⌊nt3⌋∑
k=1

√
2 sin(kϑ1)δk,

⌊nt4⌋∑
k=1

√
2 cos(kϑ1)δk,

. . . ,

⌊nt2l+2⌋∑
k=1

√
2 cos(kϑl)δk

 .

(2.64)

Note that Bn is a random element in D2l+2, where D is the Skorohod space D = D[0, 1]

(Billingsley (1999)).

Theorem 2.7.1 (Huang et al., 2023, Theorem 2.1). Assume that (A1)–(A4) hold with η,

q0η, and 2q0η/(1 + q0) in (2.34), (2.39), and (2.40), respectively, replaced by η1 for some

η1 > 1. In addition, assume

max
1≤j≤pn

r
(n)
j = o(nκ), (2.65)

where κ = min{1/2, 1− η−1
1 }. Then

V−1/2Bn ⇒ W, (2.66)

where ⇒ denotes convergence in law, W is a (2l+2)-dimensional standard Brownian motion,

and V is a (2l + 2)-dimensional diagonal matrix with positive diagonal elements,

v21 =
∞∑

h=−∞
γh, v

2
2 =

∞∑
h=−∞

(−1)hγh, v
2
2k+1 = v22k+2 =

∞∑
h=−∞

cos(hϑk)γh,

k = 1, 2, . . . , l.

Theorem 2.7.1 is crucial for the uniform lower bound for the minimum eigenvalues of the

sample covariance matrices. To state this result, we need to introduce some notations.
40

Recall ϕ(B) in Section 2.3.3. Inspired by Chan and Wei (1988), we define

ut(j) = [(1−B)−jϕ(B)]yt,

vt(j) = [(1 +B)−jϕ(B)]yt,

gt(k, j) = [(1− 2 cosϑkB +B2)−jϕ(B)]yt,

(2.67)

where k = 1, . . . , l. For k = 1, . . . , l, it can be shown that

gt(k, 1) =
1

sinϑk

t∑
s=1

sin[(t− s+ 1)ϑk]δs

=
t−1∑
s=0

sin[(s+ 1)ϑk]

sinϑk
δt−s :=

t−1∑
s=0

κs(k, 1)δt−s,

where |κs(k, 1)| ≤ C for all s ≥ 0. By induction it follows that

gt(k, j) =
t−1∑
s=0

κs(k, j)δt−s,

where

|κs(k, j)| ≤ C(s+ 1)j−1, (2.68)

for all s ≥ 0, 1 ≤ k ≤ l, and 1 ≤ j ≤ dk. Similarly,

ut(j1) =
t−1∑
s=0

ιs(j1)δt−s, vt(j2) =
t−1∑
s=0

ϑs(j2)δt−s,

where

|ιs(j1)| ≤ C(s+ 1)j1−1, |ϑs(j)| ≤ C(s+ 1)j2−1, (2.69)

41

for all s ≥ 0, 1 ≤ j1 ≤ a, and 1 ≤ j2 ≤ b.

Let Qn be defined implicitly by

Qnwt(J) = (u⊤t ,v
⊤
t ,g

⊤
t (1), . . . ,g

⊤
t (l), z

⊤
t (qn − d),x⊤t (J))

⊤,

where

ut = (ut−1(a), . . . , ut−1(1))
⊤,

vt = (vt−1(b), . . . , vt−1(1))
⊤,

gt(k) = (gt−1(k, 1), gt−2(k, 1), . . . , gt−1(k, dk), gt−2(k, dk))
⊤, 1 ≤ k ≤ l,

and recall that wt(J) = (yt−1, . . . , yt−qn ,x
⊤
t (J))

⊤, xt(J) = (xt−l,j : (j, l) ∈ J)⊤, and

zt(k) = (zt−1, . . . , zt−k)
⊤. Consider a normalized version,

st(J) = (ỹt,1, . . . , ỹt,d, z
⊤
t (qn − d),x⊤t (J))

⊤ = GnQnwt(J),

of Qnwt(J), where

Gn = diag(Gn,u, Gn,v, Gn,g(1), . . . , Gn,g(l), Iqn+♯(J)−d) ∈ R(qn+♯(J))×(qn+♯(J)),

with

Gn,u = diag(n−a+1/2, . . . , n−1/2), Gn,v = diag(n−b+1/2, . . . , n−1/2),

Gn,g(k) = diag(n−1/2, n−1/2, n−3/2, n−3/2, . . . , n−dk+1/2, n−dk+1/2︸ ︷︷ ︸
2dk

), k = 1, . . . , l.

The following moment bounds imply useful concentration inequalities for quadratic forms

involving the covariates and the lagged dependent variables that lend a helping hand through-

out this chapter.

42

Lemma 2.7.1 (Huang et al., 2023, Corollary 3.1). Assume that (A1), (A2), and (A4) hold.

Then,

max
1≤j1,j2≤pn

1≤l1≤r
(n)
j1

, 1≤l2≤r
(n)
j2

E

∣∣∣∣∣∣n−1/2
n∑

t=r̄n+1

{
xt−l1,j1xt−l2,j2 − E(xt−l1,j1xt−l2,j2)

}∣∣∣∣∣∣
ηq0

= O (1) ,

max
1≤i,j≤qn−d

E

∣∣∣∣∣∣n−1/2
n∑

t=r̄n+1

{
zt−izt−j − E(zt−i,∞zt−j,∞)

}∣∣∣∣∣∣
η

= O (1) ,

max
1≤j≤pn,1≤l≤r

(n)
j

1≤k≤qn−d

E

∣∣∣∣∣∣n−1/2
n∑

t=r̄n+1

{
xt−l,jzt−k − E(xt−l,jzt−k,∞)

}∣∣∣∣∣∣
2ηq0
q0+1

= O (1) ,

max
1≤j≤pn,1≤l≤r

(n)
j

1≤i≤d

E

∣∣∣∣∣∣n−1/2
n∑

t=r̄n+1

xt−l,j ỹt,i

∣∣∣∣∣∣
2ηq0
q0+1

= O (1) ,

max
1≤k≤qn−d
1≤i≤d

E

∣∣∣∣∣∣n−1/2
n∑

t=r̄n+1

zt−kỹt,i

∣∣∣∣∣∣
η

= O (1) .

Now we can state the last piece of tools we need to prove our main results in the next

subsection.

Theorem 2.7.2 (Huang et al., 2023, Theorem 4.1). Assume (A1)–(A5) and (2.42). Then,

for

K̄n = o(n1/2/p∗n
θ̄), (2.70)

43

where θ̄ is defined in (SSX),

max
♯(J)≤K̄n

λ−1
min

n−1
n∑

t=r̄n+1

st(J)s
⊤
t (J)

 = Op(1). (2.71)

Moreover,

max
♯(J)≤K̄n

λ−1
min

n−1
n∑

t=r̄n+1

wt(J)w
⊤
t (J)

 = Op(1). (2.72)

Theorem 2.7.2 highlights one of the most intriguing subtleties of our analysis. Since

our predictors contain highly correlated lagged dependent variables, it is not known a priori

whether they lead to asymptotically ill-conditioned (or even singular) sample covariance

matrices. The delicacy lies in the fact that Pn := n−1∑n
t=r̄n+1 ỹtỹ

⊤
t does not converge

in probability to a deterministic limit, and hence the analysis of its minimum eigenvalue

is much more involved. The problem is resolved through a novel FCLT (Theorem 2.7.1)

that ensures Pn’s weak limit exists and is a.s. positive definite. Consequently, as long as

the size of a candidate model is equal to (or less than) K̄n + qn, Theorem 2.7.2 guarantees

that the corresponding sample covariance matrix is well-behaved. It also suggests that

model selection criteria based on least squares estimation can differentiate between candidate

predictors, albeit containing qn highly correlated AR variables. Equations (2.72) and (2.71),

respectively, are also aligned with (3.10) of Lai and Wei (1982) and (3.5.1) of Chan and Wei

(1988), in which model (2.2) is simplified to a finite-order nonstationary AR model with a

conditionally homogeneous error.

44

Proofs of Theorems 2.3.1–2.3.3

Define

ψJ,(i,l) =
n−1µ⊤

n (I−H[qn]⊕J)x
(i)
l

(n−1x
(i)
l

⊤
(I−H[qn]⊕J)x

(i)
l)1/2

and ψ̂J,(i,l) =
n−1y⊤n (I−H[qn]⊕J)x

(i)
l

(n−1x
(i)
l

⊤
(I−H[qn]⊕J)x

(i)
l)1/2

.

The main distinction between ψJ,(i,l) and ψ̂J,(i,l) is that the yn in the latter is substituted

with its noiseless counterpart µn in the former. Recalling that Ĵ0 = ∅, according to (2.4),

FSR chooses

(ĵm, l̂m) = argmax
(j,l)∈J̄\Ĵm−1

ψ̂
Ĵm−1,(i,l)

, m ≥ 1,

at the m-th iteration, and then updates Ĵm−1 by Ĵm = Ĵm−1 ∪ {(ĵm, l̂m)}. To analyze the

asymptotic performance of FSR, we introduce the weak noiseless FSR. This algorithm is

initialized with J0 = ∅ and selects (jm, lm) satisfying

|ψJm−1,(jm,lm)| ≥ ξ max
(j,l)∈J̄\Jm−1

|ψJm−1,(j,l)
|, m ≥ 1, (2.73)

where 0 < ξ ≤ 1 is a prescribed constant. It subsequently updates Jm−1 by Jm = Jm−1 ∪

{(jm, lm)}. Note that when ξ = 1, the algorithm is referred to as noiseless FSR.

The performance of the weak noiseless FSR is evaluated by the “noiseless" mean squared

error âm defined in (2.17). In (2.109) of Section 2.7.3, we derive a convergence rate of âm as

m increases. The convergence of âm, along with Theorem 2.7.2, enables us to establish in

(2.81) the convergence rate of âm’s semi-noiseless counterpart, ŝm, defined in (2.19). As we

will see later, (2.81) serves as the key vehicle for us to develop the surely screening property

of Ĵm.

45

proof of Theorem 2.3.1. By (2.11), there exists ln → ∞ such that

lns0p
∗2θ̄
n

nmin(j,l)∈Jn
β
(j)
l

2
= o(1).

Define

An(Kn) =

 max
♯(J)≤Kn−1

(i,l)/∈J

|ψJ,(i,l) − ψ̂J,(i,l)| ≤
l
1/2
n p∗

(q0+1)/(2ηq0)

n

n1/2

and

Bn(Kn) =

{
min

0≤m≤Kn−1
max

(j,l)/∈Ĵm
|ψ

Ĵm,(j,l)
| > ξ̃

l
1/2
n p∗

(q0+1)/(2ηq0)

n

n1/2

}
,

where ξ̃ > 2 is some constant. On An(Kn) ∩ Bn(Kn), it holds that for all 1 ≤ m ≤ Kn,

|ψ
Ĵm−1,(ĵm,l̂m)

| ≥ −|ψ̂
Ĵm−1,(ĵm,l̂m)

− ψ
Ĵm−1,(ĵm,l̂m)

|+ |ψ̂
Ĵm−1,(ĵm,l̂m)

|

≥ − max
♯(J)≤m−1
(j,l)/∈J

|ψ̂J,(j,l) − ψJ,(j,l)|+ max
(j,l)/∈Ĵm−1

|ψ̂
Ĵm−1,(j,l)

|

≥ −2l
1/2
n p∗

(q0+1)/(2ηq0)

n n−1/2 + max
(j,l)/∈Ĵm−1

|ψ
Ĵm−1,(j,l)

|

≥ ξ max
(j,l)/∈Ĵm−1

|ψ
Ĵm−1,(j,l)

|,

(2.74)

where 0 < ξ = 1− 2/ξ̃ < 1. By (2.74), we show in Section 2.7.3 that for all 1 ≤ m ≤ Kn,

ŝmIAn(Kn)∩Bn(Kn) ≤ Cnexp(−mξ2Dn/s0), (2.75)

46

where

Cn = n−1
n∑

t=r̄n+1

v2t,n,

Dn =
min1≤♯(J)≤Kn

λmin(n
−1∑n

t=r̄n+1wt(Jn ∪ J)w⊤
t (Jn ∪ J))

max(j,l)∈Jn
n−1∥x(j)

l ∥2
,

(2.76)

recalling that vt,n is defined in (2.3). We also show in Section 2.7.3 that for all 1 ≤ m ≤ Kn,

ŝmIBc
n(Kn) ≤

s0lnξ̃
2p∗

(q0+1)/(ηq0)

n

nDn
, (2.77)

and

lim
n→∞

P (Ac
n(Kn)) = 0. (2.78)

By (A4) and (2.20),

s0 = o((n/p∗
2θ̄

n)1/3), (2.79)

which, together with (2.12), yields s0un log n = o(Kn) for some un → ∞. It follows from

(2.72), (A2), (A4), and (2.79) that

Cn = Op(1) and D−1
n = Op(1). (2.80)

According to (2.75)–(2.78) and (2.80),

max
1≤m≤Kn

ŝm

exp(−mξ2Dn/s0) + (s0lnp∗
(q0+1)/(ηq0)

n /n)
= Op(1). (2.81)

47

Let m̃n = s0un log n. The second equation of (2.80) implies for any M̄ > 0,

exp(−m̃nξ
2Dn/s0) = Op(n

−M̄),

and hence (2.81) leads to

ŝm̃n
= Op(s0lnp

∗(q0+1)/(ηq0)

n /n). (2.82)

On the set {Jn ̸⊆ Ĵm̃n
}, one has

ŝm̃n
≥ λmin

n−1
n∑

t=r̄n+1

wt(Jn ∪ Ĵm̃n
)w⊤

t (Jn ∪ Ĵm̃n
)

 min
(j,l)∈Jn

|β(j)l |2

≥ min
♯(J)≤Kn

λmin

n−1
n∑

t=r̄n+1

wt(J)w
⊤
t (J)

 min
(j,l)∈Jn

|β(j)l |2.

(2.83)

Combining (2.83), (2.82), (2.72), and (2.20) leads to

P (Jn ̸⊆ ĴKn
) ≤ P (Jn ̸⊆ Ĵm̃n

) ≤ P

(
Op(s0lnp

∗(q0+1)/(ηq0)

n /n) ≥ min
(j,l)∈Jn

|β(j)l |2
)

= o(1).

(2.84)

Thus, the desired conclusion (2.13) follows.

proof of Theorem 2.3.2. Let k̃n = min{1 ≤ k ≤ Kn : Jn ⊆ Ĵk} if Jn ⊆ ĴKn
and

Kn if Jn ̸⊆ ĴKn
. We start by showing that

lim
n→∞

P (k̂n = k̃n) = 1. (2.85)

By Theorem 2.3.1, (2.22) is an immediate consequence of (2.85). In the rest of the proof,

we suppress the dependence on n and write k̂ and k̃ instead of k̂n and k̃n. Let m̃∗
n =

48

s0 log nmin{un, (dn/ log n)δ}, where un is defined after (2.79) and δ is defined in (2.21). By

an argument similar to that used to prove (2.84), it holds that

lim
n→∞

P (Dn) = 1, (2.86)

where Dn = {Jn ⊆ Ĵm̃∗
n
} = {k̃n ≤ m̃∗

n}. Therefore, (2.85) is ensured by

P (k̂ < k̃,Dn) = o(1) (2.87)

and

P (k̃ < k̂,Dn) = o(1). (2.88)

By the definition of HDIC,

σ̂2M
k̃−1

− σ̂2M
k̃
≤σ̂2M

k̃

{
exp

(
(k̃ − k̂)wn,pn

n

)
− 1

}
on {k̂ < k̃}, (2.89)

where Mk = [qn]⊕ Ĵk. Straightforward calculations give

σ̂2M
k̃−1

− σ̂2M
k̃

= n−1(β
(ĵ

k̃
)

l̂
k̃

x
(ĵ

k̃
)

l̂
k̃

+ εn)
⊤(HM

k̃
−HM

k̃−1
)(β

(ĵ
k̃
)

l̂
k̃

x
(ĵ

k̃
)

l̂
k̃

+ εn)

= β
(ĵ

k̃
)

l̂
k̃

2

Ân + 2β
(ĵ

k̃
)

l̂
k̃

B̂n + Â−1
n B̂2

n on Dn,

(2.90)

in which

Ân =n−1x
(ĵ

k̃
)

l̂
k̃

⊤
(HM

k̃
−HM

k̃−1
)x

(ĵ
k̃
)

l̂
k̃

,

B̂n =n−1x
(ĵ

k̃
)

l̂
k̃

⊤
(HM

k̃
−HM

k̃−1
)εn.

49

In view of (2.89), (2.90), and

wn,pnm̃
∗
n

n
= o(min

(j,l)∈Jn

(β
(j)
l)2) = o(1) (2.91)

(which is ensured by (2.20), the second part of (2.21), and the definition of m̃∗
n), we have

for all large n,

β
(ĵ

k̃
)

l̂
k̃

2

Ân + 2β
(ĵ

k̃
)

l̂
k̃

B̂n + Â−1
n B̂2

n ≤ (Ĉn + σ2)λ1m̃
∗
nwn,pn/n on Dn ∩ {k̂ < k̃}, (2.92)

where Ĉn = σ̂2M
k̃
− σ2 and λ1 > 1 is some constant. In addition, by making use of Theo-

rem 2.7.2 and Lemma 2.7.1, we show in Section 2.7.3 that

Â−1
n =Op(1), (2.93)

|B̂n| =Op

p∗

q0+1
2ηq0

n

n1/2

 , (2.94)

|Ĉn| =Op

n1/2 + qn + m̃∗
np

∗
q0+1
ηq0

n

n

 = op(1). (2.95)

As a result, (2.87) follows from (2.91)–(2.95).

On the other hand,

σ̂2M
k̃
− σ̂2M

k̂
≥ σ̂2M

k̃
{1− exp(n−1wn,pn(k̃ − k̂))} on {k̃ < k̂}. (2.96)

50

Let F
k̂,k̃

= (x
(j)
l : (j, l) ∈ Ĵ

k̂
∩ Ĵc

k̃
). Then on {k̃ < k̂} ∩ Dn,

σ̂2M
k̃
− σ̂2M

k̂
= n−1ε⊤n (HM

k̂
−HM

k̃
)εn

≤ 2

∥∥∥∥{n−1F⊤
k̂,k̃

(I−HM
k̃
)F

k̂,k̃

}−1
∥∥∥∥{∥∥∥n−1F⊤

k̂,k̃
εn

∥∥∥2 + ∥∥∥n−1F⊤
k̂,k̃

HM
k̃
εn

∥∥∥2}
≤ 2(k̂ − k̃)(ân + b̂n),

(2.97)

where

ân =λ−1
min

n−1
n∑

t=r̄n+1

wt(Ĵk̂)w
⊤
t (Ĵk̂)

 max
1≤j≤pn

1≤l≤r
(n)
j

∣∣∣∣∣∣n−1
n∑

t=r̄n+1

xt−l,jϵt

∣∣∣∣∣∣
2

,

b̂n =λ−1
min

n−1
n∑

t=r̄n+1

wt(Ĵk̂)w
⊤
t (Ĵk̂)

 max
♯(J)≤m̃∗

n
(j,l)/∈J

∣∣∣∣∣∣n−1
n∑

t=r̄n+1

x̂t−l,j;J ϵt

∣∣∣∣∣∣
2

,

with

x̂t−l,i;J := w⊤
t (J)

 n∑
t=r̄n+1

wt(J)w
⊤
t (J)

−1
n∑

t=r̄n+1

wt(J)xt−l,i

= s⊤t (J)

 n∑
t=r̄n+1

st(J)s
⊤
t (J)

−1
n∑

t=r̄n+1

st(J)xt−l,i.

Combining (2.96) and (2.97), we have

2(k̂ − k̃)(ân + b̂n) ≥ σ̂2M
k̃
{1− exp(n−1wn,pn(k̃ − k̂))} on {k̃ < k̂} ∩ Dn. (2.98)

With the help of the first part of (2.21) and Theorem 2.7.2, we also show in Section 2.7.3

that for any δ > 0,

P{(k̂ − k̃)(ân + b̂n) ≥δ[1− exp(n−1wn,pn(k̃ − k̂))], k̃ < k̂} = o(1). (2.99)

51

As a consequence of (2.96)–(2.99) and (2.95), (2.88) follows. Thus, the proof of (2.85) is

complete. Moreover, by an argument similar to that used to prove (2.85), it can be shown

that (2.23) holds true. The details are omitted here for brevity.

proof of Theorem 2.3.3 By Theorem 2.3.2,

lim
n→∞

P (ŝ0 = s0) = lim
n→∞

P (ŝ0 = s0) = 1. (2.100)

In view of (2.100), Theorem 2.3.2, and (SSA), it suffices for Theorem 2.3.3 to show that

lim
n→∞

P (max
1≤i≤qn

|α̂i(Jn)− αi| ≥ Hn) = 0, (2.101)

where Hn is Ĥn with ŝ0 and ŝ0 replaced by s0 and s0, respectively.

Straightforward calculations yield

max
1≤i≤qn

|α̂i(Jn)− αi| ≤ C(J1,n + J2,n + J3,n), (2.102)

where

J1,n = ∥(n−1
n∑

t=r̄n+1

st(Jn)s
⊤
t (Jn))

−1 − S−1
n (Jn))∥∥n−1

n∑
t=r̄n+1

st(Jn)ϵt∥,

J2,n = n−1/2∥(n−1
n∑

t=r̄n+1

ỹtỹ
⊤
t)

−1n−1
n∑

t=r̄n+1

ỹtϵt∥,

J3,n = max
1≤i≤qn−d

|ν⊤i n
−1

n∑
t=r̄n+1

(z⊤t (qn − d),x⊤t (Jn))
⊤ϵt|,

where νi is the i-th column (row) of Γ−1(Jn).

By Lemma 2.7.1, Theorem 2.7.2, (2.79), and (2.112) and (2.118) in Section 2.7.3, it can

52

be shown that

J1,n = Op

(
(s0 + qn)

3/2

n

)
= Op

(
n1/2 + q

3/2
n

n

)
and J2,n = Op(n

−1). (2.103)

Since (2.42) ensures

max
1≤i≤qn−d

∥νi∥ ≤ C, (2.104)

it follows from (2.112) that

J3,n ≤ C∥n−1
n∑

t=r̄n+1

(zt(qn − d),x⊤t (Jn))
⊤ϵt∥ = Op

(
(s0 + qn)

1/2

n1/2

)
. (2.105)

In addition, we write

ν⊤i (z⊤t (qn − d),x⊤t (Jn))
⊤ =

∞∑
m=0

(c
(i)
m)⊤µt−1−m(D0),

where D0 and µt(·) are defined in (SSA) and (2.56), respectively, and {c(i)m } is a sequence

of (s0 + 1)-dimensional vectors depending on νi, {pm,j}, 1 ≤ j ≤ pn, {bm}, and β
(l)
j , 1 ≤

j ≤ r
(n)
j , 1 ≤ j ≤ pn. By (2.42) and (2.104),

max
1≤i≤qn−d

∞∑
m=0

∥(c(i)m,1, . . . , c
(i)
m,s0+1)

⊤∥2 ≡ max
1≤i≤qn−d

∞∑
m=0

∥c(i)m ∥2 ≤ C,

53

which, together with Theorem 3.1 of Huang et al. (2023), gives,

max
1≤i≤qn−d

E

∣∣∣∣∣∣n−1/2
n∑

t=r̄n+1

[
∞∑

m=0

(c
(i)
m)⊤µt−1−m(D0)]ϵt

∣∣∣∣∣∣
η

≤ C max
1≤i≤qn−d

s0+1∑
j=1

(
∞∑

m=0

c
(i)
m,j

2
)1/2

η

≤ C(max
1≤i≤qn−d

∞∑
m=0

∥c(i)m ∥2)η/2(s0 + 1)η/2

≤ Cs
η/2
0 ,

yielding

J3,n ≤ max
1≤i≤qn−d

∣∣∣∣∣∣n−1
n∑

t=r̄n+1

[
∞∑

m=0

(c
(i)
m)⊤µt−1−m(D0)]ϵt

∣∣∣∣∣∣ = Op

q1/ηn s
1/2
0

n1/2

 . (2.106)

Consequently, (2.101) follows from (2.102), (2.103), (2.105), and (2.106). Thus, the proof of

Theorem 2.3.3 is complete.

2.7.3 Proofs of (2.75), (2.77), (2.78), (2.93)–(2.95), and (2.99)

proof of (2.75). Let’s recall âm as defined in (2.17). It follows from (2.73) that

âm = âm−1 − ψ2Jm−1,(jm,lm) ≤ âm−1 − ξ2 max
(j,l)/∈Jm−1

ψ2Jm−1,(j,l)
. (2.107)

Moreover, since for 1 ≤ m ≤ Kn,

âm−1 = n−1µ⊤
n (I−H[qn]⊕Jm−1

)µn

≥ (
∑

(j,l)∈Jn−Jm−1

β
(j)
l

2
) min
1≤♯(J)≤Kn

λmin(n
−1

n∑
t=r̄n+1

wt(Jn ∪ J)w⊤
t (Jn ∪ J)),

54

it holds that

âm−1 =
∑

(j,l)∈Jn

β
(j)
l n−1µ⊤

n (I−H[qn]⊕Jm−1
)x

(j)
l

≤ max
(j,l)∈Jn−Jm−1

n−1|µ⊤
n(I−H[qn]⊕Jm−1

)x
(j)
l |s1/20

(∑
(j,l)∈Jn−Jm−1

β
(j)
l

2)1/2
≤ max

(j,l)/∈Jm−1

|ψJm−1,(j,l)
|â1/2m−1s

1/2
0 D

−1/2
n ,

(2.108)

where Dn is defined in (2.76). Equations (2.107) and (2.108) imply for 1 ≤ m ≤ Kn,

âm ≤ âm−1

(
1− ξ2Dn

s0

)
,

noting that Dn is bounded by 1. Thus, as long as a selection path obeying (2.73) is chosen,

the resultant noiseless mean squared error satisfies

âm ≤ â0exp(−ξ2mDn/s0) ≤ Cnexp(−ξ2mDn/s0), 1 ≤ m ≤ Kn, (2.109)

where Cn is also defined (2.76).

Now since (2.74) ensures that on An(Kn) ∩ Bn(Kn), {Ĵ1, . . . , ĴKn
} obeys (2.73), with

0 < ξ < 1 defined after (2.74), we conclude that (2.109) holds with âm replaced by ŝm on

An(Kn) ∩ Bn(Kn). This completes the proof of (2.75).

proof of (2.77). By an argument similar to (2.108), one has for 1 ≤ m ≤ Kn,

n−1µ⊤
n (I−H

[qn]⊕Ĵm
)µn ≤ min

0≤k≤m−1
n−1µ⊤

n (I−H
[qn]⊕Ĵk

)µn

≤ min
0≤k≤m−1

max
(j,l)/∈Ĵk

ψ2
Ĵk,(j,l)

s0D
−1
n .

(2.110)

55

Consequently, (2.77) follows from (2.110) and

min
0≤k≤m−1

max
(j,l)/∈Ĵk

ψ2
Ĵk,(j,l)

≤ ξ̃2lnp
∗(q0+1)/(ηq0)

n

n

on Bc
n(m).

To prove (2.78), we need an auxiliary lemma.

Lemma 2.7.2. Assume that (A1), (A2), (A4), and (A5) hold. Then,

max
1≤l≤r

(n)
j ,1≤j≤pn

∣∣∣∣∣∣n−1
n∑

t=r̄n+1

ϵtxt−l,j

∣∣∣∣∣∣+ max
1≤k≤qn

∣∣∣∣∣∣n−1
n∑

t=r̄n+1

ϵtzt−k

∣∣∣∣∣∣
= Op

(
p∗n

(q0+1)/(2ηq0)

n1/2
+
q
1/η
n

n1/2

)
= Op

(
p∗n

(q0+1)/(2ηq0)

n1/2

)
.

(2.111)

proof. The first identity of (2.111) is ensured by

max
1≤l≤r

(n)
j ,1≤j≤pn

E

∣∣∣∣∣∣n−1/2
n∑

t=r̄n+1

ϵtxt−l,j

∣∣∣∣∣∣
2ηq0
q0+1

+ max
1≤k≤qn−d

E

∣∣∣∣∣∣n−1/2
n∑

t=r̄n+1

ϵtzt−k

∣∣∣∣∣∣
η

< C,

(2.112)

which can be proved using Burkholder’s inequality, Jensen’s inequality, Hölder’s inequality,

E|xt−l,j |2ηq0 < C, and E|zt−k|2η < C for all −∞ < t < ∞, 1 ≤ l ≤ r
(n)
j , 1 ≤ j ≤ pn, and

1 ≤ k ≤ qn − d. The second identity of (2.111) follows from qn = o(n1/2) and p∗n ≍ nν with

ν ≥ 1.

proof of (2.78). It suffices for (2.78) to show that

max
♯(J)≤Kn−1

(i,l)/∈J

|ψJ,(i,l) − ψ̂J,(i,l)| = max
♯(J)≤Kn−1

(i,l)/∈J

n−1|ε⊤n (I−H[qn]⊕J)x
(i)
l |

(n−1x
(i)
l

⊤
(I−H[qn]⊕J)x

(i)
l)1/2

= Op

(
p∗n

(q0+1)/(2ηq0)

n1/2

)
,

(2.113)

56

which is, in turn, ensured by

max
♯(J)≤Kn−1

(i,l)/∈J

n−1|ε⊤n (I−H[qn]⊕J)x
(i)
l | = Op

(
p∗n

(q0+1)/(2ηq0)

n1/2

)
(2.114)

and

max
♯(J)≤Kn−1

(i,l)/∈J

(n−1x
(i)
l

⊤
(I−H[qn]⊕J)x

(i)
l)−1/2 = Op(1). (2.115)

Note that (2.115) is an immediate consequence of

max
♯(J)≤Kn−1

(i,l)/∈J

|n−1x
(i)
l

⊤
(I−H[qn]⊕J)x

(i)
l |−1/2 ≤ max

♯(J)≤Kn

λ
−1/2
min

n−1
n∑

t=r̄n+1

wt(J)w
⊤
t (J)

and Theorem 2.7.2. Hence, it remains to prove (2.114). Since

max
♯(J)≤Kn−1

(i,l)/∈J

1

n
|ε⊤n (I−H[qn]⊕J)x

(i)
l | ≤ max

1≤i≤pn

1≤l≤r
(n)
i

∣∣∣∣∣∣ 1n
n∑

t=r̄n+1

ϵtxt−l,i

∣∣∣∣∣∣
+ max

♯(J)≤Kn−1
(i,j)/∈J

∣∣∣∣∣∣ 1n
n∑

t=r̄n+1

ϵtx̂t−l,i;J

∣∣∣∣∣∣ ,
(2.114) follows from

max
♯(J)≤Kn−1

(i,l)/∈J

∣∣∣∣∣∣ 1n
n∑

t=r̄n+1

ϵtx̂t−l,i;J

∣∣∣∣∣∣ = Op

(
p∗n

(q0+1)/(2ηq0)

n1/2

)
(2.116)

in light of Lemma 2.7.2.

57

For (i, l) /∈ J

∣∣∣∣∣∣n−1
n∑

t=r̄n+1

ϵtx̂t−l,i;J

∣∣∣∣∣∣ ≤
∥∥∥∥∥∥n−1

n∑
t=r̄n+1

ϵtst(J)

∥∥∥∥∥∥×∥∥∥∥∥∥∥
n−1

n∑
t=r̄n+1

st(J)s
⊤
t (J)

−1
∥∥∥∥∥∥∥
∥∥∥∥∥∥n−1

n∑
t=r̄n+1

st(J)x
⊥
t−l,i;J

∥∥∥∥∥∥
+

∣∣∣∣∣∣n−1
n∑

t=r̄n+1

ϵts
⊤
t (J)bJ (i, l)

∣∣∣∣∣∣ ,
(2.117)

where x⊥t−l,i;J = xt−l,i−s⊤t (J)bJ (i, l) and bJ (i, l) = (0, . . . , 0︸ ︷︷ ︸
d

,g⊤J (i, l)Γ
−1
n (J))⊤. By Lemma

2.7.2, (2.43), (2.112), and

max
1≤k≤d

E|n−1/2
n∑

t=r̄n+1

ϵtỹt,k|η < C, (2.118)

one obtains

max
♯(J)≤Kn−1

(i,j)/∈J

∣∣∣∣∣∣n−1
n∑

t=r̄n+1

ϵts
⊤
t (J)bJ (i, l)

∣∣∣∣∣∣ = Op

p∗n q0+1
2ηq0

n1/2

 (2.119)

and

max
♯(J)≤Kn−1

∥∥∥∥∥∥n−1
n∑

t=r̄n+1

ϵtst(J)

∥∥∥∥∥∥ = Op

K1/2
n p∗n

q0+1
2ηq0 + q

1/2
n

n1/2

 . (2.120)

58

Define

(I) =

∥∥∥∥∥∥n−1
n∑

t=r̄n+1

st(J)xt−l,i − (0, . . . , 0︸ ︷︷ ︸
d

,g⊤J (i, l))
⊤

∥∥∥∥∥∥ ,
(II) =

∥∥∥∥∥∥(n−1
n∑

t=r̄n+1

st(J)s
⊤
t (J)− Sn(J))bJ (i, l)

∥∥∥∥∥∥ .
Then,

∥∥∥∥∥∥n−1
n∑

t=r̄n+1

st(J)x
⊥
t−l,i;J

∥∥∥∥∥∥ ≤ (I) + (II). (2.121)

It follows from Lemma 2.7.1 that

max
♯(J)≤Kn−1,(i,l)/∈J

(I) ≤
√
d max

1≤l≤r
(n)
i

1≤i≤pn,1≤k≤d

|n−1
b∑

t=r̄n+1

ỹt,kxt−l,i|

+

qn−d∑
k=1

max
1≤l≤r

(n)
i ,1≤i≤pn

∣∣n−1
n∑

t=r̄n+1

{zt−kxt−l,i − E(zt−kxt−l,i)}
∣∣2

1/2

+

Kn max
1≤l1≤r

(n)
i1

,1≤l≤r
(n)
i

1≤i1,i≤pn

∣∣n−1
n∑

t=r̄n+1

{xt−l1,i1xt−l,i − E(xt−l1,i1xt−l,i)}
∣∣2

1/2

= Op

p∗
q0+1
2ηq0

n

n1/2

+Op

qnp∗
q0+1
2ηq0

n

n1/2

+Op

K1/2
n p∗

2
ηq0

n

n1/2

= Op

K1/2
n p∗

2
ηq0

n + qnp
∗
q0+1
2ηq0

n

n1/2

 .

(2.122)

59

By Lemma 2.7.1 and (2.43), we also show below that

max
♯(J)≤Kn−1,(i,l)/∈J

(II) = Op

K1/2
n p∗

2
ηq0

n + (K
1/2
n + q

1/2
n)p∗

q0+1
2ηq0

n

n1/2

 . (2.123)

According to (2.121)–(2.123),

max
♯(J)≤Kn−1,(i,l)/∈J

∥∥∥∥∥∥n−1
n∑

t=r̄n+1

st(J)x
⊥
t−l,i;J

∥∥∥∥∥∥
= Op

K1/2
n p∗

2
ηq0

n + (K
1/2
n + q

1/2
n)p∗

q0+1
2ηq0

n

n1/2

 .

(2.124)

Consequently, (2.117), (2.119), (2.120), (2.124), and (2.71) imply

max
♯(J)≤Kn−1,(i,l)/∈J

∣∣∣∣∣∣n−1
n∑

t=r̄n+1

ϵtx̂t−l,i;J

∣∣∣∣∣∣ = Op

K1/2
n p∗

2
ηq0

n + (K
1/2
n + q

1/2
n)p∗

q0+1
2ηq0

n

n1/2

×Op

K1/2
n p∗

q0+1
2ηq0

n + q
1/2
n

n1/2

 ,

which, together with (2.12) and (A5), leads to (2.116). Thus, the proof is complete.

60

Proof of (2.123). Note first that

max
♯(J)≤Kn−1,(i,l)/∈J

(II)

≤ max
♯(J)≤Kn−1,(i,l)/∈J

d∑

k=1

[qn−d∑
s=1

as,J (i, l)(n
−1

n∑
t=r̄n+1

ỹt,kzt−s)

+
∑

(i∗,l∗)∈J
a(i∗,l∗)(i, l)(n

−1
n∑

t=r̄n+1

ỹt,kxt−l∗,i∗)
]2

1/2

+ max
♯(J)≤Kn−1,(i,l)/∈J

qn−d∑
k=1

[qn−d∑
s=1

as,J (i, l)(n
−1

n∑
t=r̄n+1

zt−kzt−s − E(zt−kzt−s))

+
∑

(i∗,l∗)∈J
a(i∗,l∗)(i, l)(n

−1
n∑

t=r̄n+1

zt−kxt−l∗,i∗ − E(zt−kxt−l∗,i∗))
]2

1/2

+ max
♯(J)≤Kn−1,(i,l)/∈J

∑

(̃i,l̃)∈J

[qn−d∑
s=1

as,J (i, l)(n
−1

n∑
t=r̄n+1

x
t−l̃,̃i

zt−s − E(x
t−l̃,̃i

zt−s))

+
∑

(i∗,l∗)∈J
a(i∗,l∗)(i, l)(n

−1
n∑

t=r̄n+1

x
t−l̃,̃i

xt−l∗,i∗ − E(x
t−l̃,̃i

xt−l∗,i∗))
]2

1/2

≡ (III) + (IV) + (V).

(2.125)

By Lemma 2.7.1 and (2.43), it can be shown that

(III) = Op

p∗
q0+1
2ηq0

n

n1/2

 (2.126)

and

(IV) = Op

q2−1+η−1+δI{η=2}
n

n1/2
+
q
1/2
n p∗

q0+1
2ηq0

n

n1/2

 = Op

q1/2n p∗
q0+1
2ηq0

n

n1/2

 , (2.127)

61

where δ > 0 is arbitrarily small and the second equality is ensured by (A5). Moreover, it

follows that

(V)2 ≤ C(Kn − 1)

qn−d∑
s1=1

qn−d∑
s2=1

bs1bs2As1As2

+ C max
♯(J)≤Kn−1,(i,l)/∈J

∑
(i∗,l∗)∈J

|a(i∗,l∗)(i, l)|

× max
1≤ĩ,i∗≤pn

1≤l̃≤r
(n)

ĩ
, 1≤l∗≤r

(n)
i∗

∣∣∣∣∣∣n−1
n∑

t=r̄n+1

x
t−l̃,̃i

xt−l∗,i∗ − E(x
t−l̃,̃i

xt−l∗,i∗)

∣∣∣∣∣∣
2

= Op

Kn(p
∗
q0+1
ηq0

n + p∗
4

ηq0
n)

n

 ,

(2.128)

where

bs = max
♯(J)≤Kn−1,(i,l)/∈J

|as,J (i, l)|,

As = max
1≤i≤pn,1≤l≤r

(n)
i

|n−1
n∑

t=r̄n+1

xt−l,izt−s − E(xt−l,izt−s)|.

Combining (2.125)–(2.128) yields (2.123).

Proof of (2.93)–(2.95). Since

Â−1
n ≤ max

♯(J)≤Kn−1
(j,l)/∈J

{n−1x
(j)
l

⊤
(I−H[qn]⊕J)x

(j)
l }−1,

|B̂n| ≤ max
♯(J)≤Kn−1

(j,l)/∈J

|n−1x
(j)
l

⊤
(I−H[qn]⊕J)εn|,

(2.93) and (2.94) follow directly from (2.114) and (2.115), respectively. To show (2.95), note

62

first that

|Ĉn| ≤

∣∣∣∣∣∣n−1
n∑

t=r̄n+1

ϵ2t − σ2

∣∣∣∣∣∣+ n−1ε⊤n H
[qn]⊕Ĵ

k̃
εn. (2.129)

By Assumption (A1), it is easy to show that

|n−1
n∑

t=r̄n+1

ϵ2t − σ2| = Op(n
−1/2). (2.130)

In addition,

n−1ε⊤n H
[qn]⊕Ĵ

k̃
εn ≤ max

♯(J)≤m∗
n

λ−1
min

n−1
n∑

t=r̄n+1

st(J)s
⊤
t (J)

× max

♯(J)≤m∗
n

∥∥∥∥∥∥n−1
n∑

t=r̄n+1

ϵtst(J)

∥∥∥∥∥∥
2

on Dn,

which, together with (2.129), (2.130), (2.120), (2.71), and (2.86), gives (2.95).

Proof of (2.99). Note first that for some c1 > 0,

1− exp(−wn,pnn
−1(k̂ − k̃))

k̂ − k̃
≥ c1

{wn,pn

n
∧ 1

k̂ − k̃

}
≥ c1

{wn,pn

n
∧K−1

n

}
on {k̃ < k̂}.

Define Bn,pn = (wn,pn/n) ∧ K−1
n . Then, it follows from (2.12) and the first part of (2.21)

that

p∗
θ̄

n /n
1/2 = o(B

1/2
n,pn). (2.131)

63

Now, for any δ > 0,

P{(k̂ − k̃)(ân + b̂n) ≥ δ[1− exp(−n−1wn,pn(k̂ − k̃)]), k̃ < k̂}

≤P

λ−1
min

n−1
n∑

t=r̄n+1

st(Ĵk̂)s
⊤
t (Ĵk̂)

 max
1≤j≤pn

1≤l≤r
(n)
j

∣∣∣∣∣∣n−1
n∑

t=r̄n+1

xt−l,jϵt

∣∣∣∣∣∣
2

≥ c1δBn,pn

+ P

λ−1
min

n−1
n∑

t=r̄n+1

st(Ĵk̂)s
⊤
t (Ĵk̂)

 max
♯(J)≤Kn−1

(j,l)/∈J

∣∣∣∣∣∣n−1
n∑

t=r̄n+1

x̂t−l,j;J ϵt

∣∣∣∣∣∣
2

≥ c1δBn,pn

:=(I) + (II).

By (2.111), (2.116), Theorem 2.7.2, and (2.131), (I) + (II) = o(1). Thus (2.99) is proved.

2.7.4 Some technical details about Examples 2.3.1 and 2.3.2 in Section 2.3.1

Proof of (2.16) in Example 2.3.1

In this subsection, all summations are understood as summing from t = 3 to t = n. Let

zt = yt − yt−1. Clearly, zt = azt−1 + ϵt for t = 1, 2, . . . , n. Note that with some algebraic

manipulation and using the AR definition, we can express

F2,n =
(
∑
ytyt−1)

2∑
y2t−1

+
(
∑
ytyt−1)

2∑
y2t−1

(
2
∑
yt−2zt−1 +

∑
z2t−1∑

y2t−2

)

− 2(
∑
ytyt−1)(

∑
ytzt−1)∑

y2t−1

(
1 +

2
∑
yt−2zt−1 +

∑
z2t−1∑

y2t−2

)

+
(
∑
ytzt−1)

2∑
y2t−1

(
1 +

2
∑
yt−2zt−1 +

∑
z2t−1∑

y2t−2

)
.

64

By a similar argument used in Lemma 2.7.1 and Theorem 2.7.2, we have

1

n
(F1,n − F2,n) =−

∑
ytyt−1∑
y2t−1

∑
ytyt−1∑
y2t−2

(2n−1
∑

yt−2zt−1 + n−1
∑

z2t−1)

+ 2

∑
ytyt−1∑
y2t−1

(n−1
∑

ytzt−1)

(
1 +

2
∑
yt−2zt−1 +

∑
z2t−1∑

y2t−2

)

− (
∑
ytzt−1)

2∑
y2t−1

(
1

n
+

2
∑
yt−2zt−1 +

∑
z2t−1

n
∑
y2t−2

)

=(−1 +Op(n
−1))

(
2n−1

∑
yt−2zt−1 + n−1

∑
z2t−1

)
+ 2(n−1

∑
ytzt−1)(1 +Op(n

−1)) +Op(n
−1)

=n−1
∑

z2t−1 + 2n−1
∑

ztzt−1 +Op(n
−1),

which implies

1

n
(F1,n − F2,n) →

1

1− a2
+

2a

1− a2
in probability.

Proof of (2.28) in Example 2.3.2

Note that

An = {β̂(λn) selects the correct model } = {β̂(λn)1 ̸= 0, β̂
(λn)
3 ̸= 0, β̂

(λn)
2 = 0}

=
{
sn(1) = (sign(β̂(λn)1), sign(β̂(λn)3))⊤ ∈ {a1, . . . ,a4} and β̂

(λn)
2 = 0

}
,

(2.132)

65

where a⊤1 = (1, 1), a⊤2 = (1,−1), a⊤3 = (−1, 1), and a⊤4 = (−1,−1). Define

C11 =
n∑

t=3

yt−1

xt−1

(yt−1 xt−1

)
, c21 =

n∑
t=3

(
yt−1yt−2 xt−1yt−2

)
,

ûn =

β̂(λn)1 − 1

β̂
(λn)
3 − 1

 , wn(1) =
n∑

t=3

ϵt

yt−1

xt−1

 , wn(2) =
n∑

t=3

ϵtyt−2.

Then by an argument used in Zhao and Yu (2006),

An ⊆
4⋃

i=1

En(i), (2.133)

where

En(i) = {C11ûn −wn(1) = −λnai
2

, −λn
2

≤ c21ûn − wn(2) ≤
λn
2
, sn(1) = ai}.

In the following, we will show that regardless of whether {λn} satisfies (a’) λn/n→ ∞, (b’)

λn/n→ 0, or (c’) 0 < limn→∞ λn/n = d∗ <∞,

lim sup
n→∞

P (En(1)) ≤ 1/2, (2.134)

and

lim
n→∞

P (En(i)) = 0, i = 2, 3, 4. (2.135)

By (2.132)–(2.135), the desired conclusion (2.28) follows.

We commence by proving (2.134). Straightforward calculations give

En(1) ⊆
{
c21C

−1
11 wn(1)− wn(2) ≥ −λn

2

(
1− c21C

−1
11 a1

)}
, (2.136)

66

c21C
−1
11 =

(
1 +Op(n

−1) −n−1∑n
t=3 xt−1δt−1 +Op(n

−1)

)
,

where δt = xt−1 + ϵt,

c21C
−1
11 wn(1)− wn(2) =

n∑
t=3

δt−1ϵt +Op(1), (2.137)

1− c21C
−1
11 a1 =

1

n

n∑
t=3

xt−1δt−1 +Op(1/n), (2.138)

and 1√
n

∑n
t=3 δt−1ϵt

1√
n

∑n
t=3 xt−1δt−1

⇒

N1

N2

 , (2.139)

where N1 and N2 are two independent Gaussian random variables with mean zero and

variance 2. By (2.136)–(2.139), it holds that

P (En(1)) ≤ P

(
1√
n

n∑
t=3

δt−1xt−1 ≥ op(1)

)
→ 1/2 in case (a′),

P (En(1)) ≤ P

(
1√
n

n∑
t=3

δt−1ϵt ≥ op(1)

)
→ 1/2 in case (b′),

P (En(1)) ≤ P

(
1√
n

n∑
t=3

δt−1ϵt ≥
−λn
2n

1√
n

n∑
t=3

δt−1xt−1 + op(1)

)

→ P

(
N1 ≥ −d

∗

2
N2

)
= 1/2 in case (c′).

(2.140)

Thus, (2.134) follows.

67

For i = 2, 3, and 4,

En(i) ⊆ {ûn = C−1
11 [wn(1)− (λnai)/2], sn(1) = ai}

= {(β̂(λn)1 , β̂
(λn)
3)⊤ = (1, 1)⊤ +C−1

11 [wn(1)− (λnai)/2], sn(1) = ai}.
(2.141)

By an argument similar to that used to prove (2.137) and (2.138),

C−1
11 [wn(1)− (λnai)/2]

=

(
Op
(
n−1 +

λn
n2
)
, Op(n

−1/2) +
λn
2n

(I{i=2,4} − I{i=3})(1 + op(1)).

)⊤ (2.142)

Combining (2.141) and (2.142) yields that there exist an arbitrarily small positive constant

ε > 0 and an arbitrarily large positive constant M <∞ such that for all sufficiently large n,

P (En(j)) ≤ P (β̂
(λn)
3 > 1− ε, β̂

(λn)
3 < 0) + o(1)

= o(1) in all cases of (a′), (b′), and (c′),
(2.143)

where j = 2, 4, and

P (En(3)) ≤ P (β̂
(λn)
3 < −M, β̂

(λn)
3 > 0) + o(1) = o(1) in case (a′),

P (En(3)) ≤ P (β̂
(λn)
1 > 1− ε, β̂

(λn)
1 < 0) + o(1) = o(1) in cases (b′) and (c′).

(2.144)

Consequently, (2.135) is ensured by (2.143) and (2.144). This completes the proof of (2.28).

2.7.5 Complementary simulation results

We generate data from

(1 + 0.4B)(1−B)2yt =
2∑

j=1

4∑
l=1

β
(j)
l xt−l,j + ϵt, (2.145)

68

where {ϵt} is a GARCH(1,1) model,

ϵt =σtZt,

σ2t =5× 10−2 + 0.5ϵ2t−1 + 0.1σ2t−1,

in which {Zt} is a sequence of i.i.d. standard Gaussian random variables. Let {πt,1} and

{πt,2} be two independent ARCH(1) processes such that for j = 1 and 2,

πt,j =ht,jGt,j ,

h2t,j =1 + 0.2π2t−1,j ,

where {Gt,1} and {Gt,2} have the same probabilistic structure as that of {Zt} and these

three sequences are independent of each other. Also let vt,j , 1 ≤ t ≤ n, 1 ≤ j ≤ pn, be

independent standard Gaussian random variables and independent of {Gt,1}, {Gt,2}, and

{Zt}. Define wt,j = πt,1+vt,j if j is odd, wt,j = πt,2+vt,j if j is even. Then, xt,j are MA(2)

processes satisfying xt,j = 0.8wt,j + 0.1wt−1,j if j is odd and xt,j = 0.2wt,j + 0.6wt−1,j

otherwise. The coefficients are set to

(β
(1)
1 , β

(1)
2 , β

(1)
3 , β

(1)
4) =(−7.62, 6.72,−5.55, 3.77),

(β
(2)
1 , β

(2)
2 , β

(2)
3 , β

(2)
4) =(6.89,−6.18, 4.47,−3.10).

Using Theorem 2.2 of Ling and McAleer (2002) again, one can verify that ϵt only has a finite

fourth moment and xt,j has a finite twelfth moment. Moreover, it is easy to show that (A1)

and (A2) in Section 2.3.3 are fulfilled by the above model specification.

One distinct feature of this example is that the error term and all candidate covariates are

conditionally heteroscedastic. Table 2.5 records the performance of the methods introduced

in Section 2.4 based on 1000 replications and (n, pn, r
(n)) = (800, 250, 4), (1000, 275, 5), and

69

(1500, 300, 6). The table reveals that FHTD is the only method that efficiently identifies

the correct ARX model. More specifically, it successfully chooses the correct ARX model

over 89% of the time, in all cases of n considered in this example.

Table 2.5: Values of E, SS, TP, and FP in Example 2.145

LASSO ALasso OGA-3 AR-ALasso AR-OGA-3 FHTD
(n, p∗n, pn, r

(n), qn) = (800, 1000, 250, 4, 10)

E 0 0 0 0 137 926
SS 0 0 0 0 138 1000
TP 1.08 1.00 3.81 1.00 9.27 11.00
FP 0.13 0.00 0.17 0.00 5.39 0.09
(n, p∗n, pn, r

(n), qn) = (1000, 1375, 275, 5, 11)

E 0 0 0 0 181 891
SS 0 0 0 0 183 932
TP 1.05 1.00 3.56 1.00 9.32 10.83
FP 0.17 0.00 0.35 0.00 6.31 0.32
(n, p∗n, pn, r

(n), qn) = (1500, 1800, 300, 6, 12)

E 0 0 0 0 299 960
SS 0 0 0 0 301 989
TP 1.02 1.00 3.19 1.00 9.57 10.99
FP 0.19 0.01 0.24 0.00 5.83 0.08

70

CHAPTER 3

SCALABLE HIGH-DIMENSIONAL MULTIVARIATE LINEAR

REGRESSION FOR FEATURE-DISTRIBUTED DATA

3.1 Introduction

A computational strategy often adopted for tackling high-dimensional big data is to employ

feature-distributed analysis: to partition the data by features and to store them across

multiple computing nodes. For instance, when the data have an extremely large number

of features that do not fit in a single computer, this strategy is used to circumvent storage

constraints or to accelerate computation (Heinze et al., 2016; Wang et al., 2017; Richtárik and

Takáč, 2016; Gao and Tsay, 2023). In addition, feature-distributed data may be inevitable

when the data are collected and maintained by multiple parties. Because of bandwidth

or administrative reasons, merging them in a central computing node from those sources

might not be feasible (Hu et al., 2019). In some applications, data come naturally feature-

distributed, such as the wireless sensor networks (Bertrand and Moonen, 2010, 2014, 2015).

A challenge in estimating statistical models with feature-distributed data is to avoid the

high communication complexity, which is the amount of data that are transmitted across

the nodes. Indeed, because distributed computing systems typically operate under limited

bandwidth, sending voluminous data significantly slows down the algorithm. Unfortunately,

data transmission is often a necessary evil with feature-distributed data: each node by itself

is unable to learn about the parameters associated with the features it does not own. Thus,

algorithms that have lower communication complexities are preferred in practice.

Based on the rationale that the empirical minimizers of certain optimization problems

are desirable statistical estimators, prior works have proposed various optimization algo-

rithms with feature-distributed data. Richtárik and Takáč (2016) and Fercoq et al. (2014)

employed randomized coordinate descent to solve ℓ1-regularized problems and to exploit par-

71

allel computation from the distributed computing system. In addition, random projection

techniques were used in Wang et al. (2017) and Heinze et al. (2016) for ℓ2-regularized convex

problems. However, for estimating linear models, the existing approaches usually incur a

high communication complexity for very large data sets. To illustrate, consider the Lasso

problem. The Hydra algorithm of Richtárik and Takáč (2016) requires O(np log(1/ϵ)) bytes

of communication to reach ϵ-close to the optimal loss, where n is the sample size and p is the

number of features. For data with extremely large p and n that do not fit in a single mod-

ern computer, such communication complexity appears prohibitively expensive. Similarly,

the distributed iterative dual random projection (DIDRP) algorithm of Wang et al. (2017)

needs O(n2 + n log(1/ϵ)) bytes of total communication for estimating the ridge regression,

where the dominating n2 factor comes from each node sending the sketched data matrix to

a coordinator node. Thus it incurs not only a high communication cost but also a storage

bottleneck.

This chapter proposes a two-stage relaxed greedy algorithm (TSRGA) for feature-

distributed data to mitigate the high communication complexity. TSRGA first applies the

conventional relaxed greedy algorithm (RGA) to feature-distributed data. But we terminate

the RGA with the help of a just-in-time stopping criterion, which aims to save excessive

communication via reducing RGA iterations. In the second stage, we employ a modification

of RGA to estimate the coefficient matrices associated with the selected predictors from the

first stage. The modified second-stage RGA yields low-rank coefficient matrices, that exploit

information across tasks and improve statistical performance.

Instead of treating TSRGA as merely an optimization means, we directly analyze the

convergence of TSRGA to the unknown parameters, which in turn implies the communication

costs of TSRGA. The key insight of the proposed method is that the conventional RGA

often incurs a high communication cost because it takes many iterations to minimize its

loss function, but it tends to select relevant predictors in its early iterations. Therefore, one

72

should decide when the RGA has done screening the predictors before it iterates too many

steps. To this end, the just-in-time stopping criterion tracks the reduction in training error

in each step, and calls for halting the RGA as soon as the reduction becomes smaller than

some threshold. With the potential predictors narrowed down in the first stage, the second-

stage employs a modified RGA and focuses on the more amenable problem of estimating

the coefficient matrices of the screened predictors. The two-stage design enables TSRGA to

substantially cut down the communication costs and produce even more accurate estimates

than the original RGA.

Our theoretical results show that the proposed TSRGA enjoys a communication com-

plexity of Op(sn(n + dn)) bytes, up to a multiplicative term depending logarithmically on

the problem dimensions, where dn is the dimension of the response vector (or the number

of tasks), and sn is a sparsity parameter defined later. This communication complexity im-

proves that of Hydra by a factor of p/sn, and is much smaller than that of DIDRP and other

one-shot algorithms (for example, Wang et al. 2016 and Heinze et al. 2016) if sn ≪ n. The

RGA was also employed by Bellet et al. (2015) as a solver for ℓ1-constrained problems, but

it requires O(n/ϵ) communication since it only converges at a sub-linear rate (see also Jaggi,

2013 and Garber, 2020), where ϵ is again the optimization tolerance. Hence TSRGA offers

a substantial speedup for estimating sparse models compared to the conventional RGA.

To validate the performance of TSRGA, we apply it to both synthetic and real-world

data sets and show that TSRGA converges much faster than other existing methods. In the

simulation experiments, TSRGA achieved the smallest estimation error using the least num-

ber of iterations. It also outperforms other centralized iterative algorithms both in speed and

statistical accuracy. In a large-scale simulation experiment, TSRGA can effectively estimate

the high-dimensional multivariate linear regression model with more than 16 GB data in less

than 5 minutes. For an empirical application, we apply TSRGA to predict simultaneously

some financial outcomes (volatility, trading volume, market beta, and returns) of the S&P

73

500 component companies using textual features extracted from their 10-K reports. The re-

sults show that TSRGA efficiently utilizes the information provided by the texts and works

well with high dimensional feature matrices.

Finally, we propose some extensions of TSRGA. First, we also considered applying

TSRGA to big feature-distributed data which have not only many features but also a large

number of observations. Thus, in addition to separately storing each predictors in different

computing nodes, it is also necessary to partition the observations of each feature into chunks

that could fit in one node. In this case, the computing nodes shall coordinate both horizon-

tally and vertically, and we show that the communication cost to carry out TSRGA in this

setting is still free of p, but could be larger than that of the purely feature-distributed case.

Second, the idea of TSRGA can be extended beyond linear regression models. In Section

3.8.4, we show how TSRGA can be applied to the generalized linear models.

For ease in reading, we collect the notations used throughout the chapter here. The

transpose of a matrix A is denoted by A⊤ and that of a vector v is v⊤. The inner product

between two vectors u and v is denoted interchangeably as ⟨u,v⟩ = u⊤v. If A,B are

Rm×n, ⟨A,B⟩ = tr(A⊤B) denotes their trace inner product. The minimum and maximum

eigenvalues of a matrix A are denoted by λmin(A) and λmax(A), respectively. We also

denote by σl(A) the l-th singular value of A, in descending order. When the argument is

a vector, ∥ · ∥ denotes the usual Euclidean norm and ∥ · ∥p the ℓp norm. If the argument

is a matrix, ∥ · ∥F denotes the Frobenius norm, ∥ · ∥op the operator norm, and ∥ · ∥∗ the

nuclear norm. For a set J , ♯(J) denotes its cardinality. For an event E , its complement is

denoted as Ec and its associated indicator function is denoted as 1{E}. For two positive

(random) sequences {xn} and {yn}, we write xn = op(yn) if limn→∞ P(xn/yn < ϵ) = 1 for

any ϵ > 0 and write xn = Op(yn) if for any ϵ > 0 there exists some Mϵ < ∞ such that

lim supn→∞ P(xn/yn > Mϵ) < ϵ.

74

3.2 Distributed framework and two-stage relaxed greedy

algorithm

In this section, we first introduce the multivariate linear regression model considered in the

chapter and show how the data are distributed across the nodes. Then we lay out the imple-

mentation details of the proposed TSRGA, which consists of two different implementations

of the conventional RGA and a just-in-time stopping criterion to guide the termination of

the first-stage RGA. The case of needing horizontal partition will be discussed in Section 3.6.

3.2.1 Model and distributed framework

Consider the following multivariate linear regression model:

yt =

pn∑
j=1

B∗⊤
j xt,j + ϵt, t = 1, . . . , n, (3.1)

where yt ∈ Rdn is the response vector, xt,j ∈ Rqn,j a multivariate predictor, for j =

1, 2, . . . , pn, and B∗
j is the (qn,j × dn) unknown coefficient matrix, for j = 1, . . . , pn. In

particular, we are most interested in the case pn ≫ n and qn,j < n. Clearly, when

dn = qn,1 = . . . = qn,pn = 1, (3.1) reduces to the usual multiple linear regression model.

Without loss of generality, we assume yt, xt,j and ϵt are mean zero.

There are several motivations for considering general dn and qn,j ’s. First, imposing group-

sparsity can be advantageous when the predictors display a natural grouping structure (e.g.

Lounici et al. 2011). This advantage is inherited by (3.1) when only a limited number of

B∗
j ’s are non-zero. Second, it is not uncommon that we are interested in modeling more

than one response variable (dn > 1). In this case, one can gain statistical accuracy if the

prediction tasks are related, which is often embodied by the assumption that B∗
j ’s are of low

rank (see, e.g., Reinsel et al. 2022). In modern machine learning, some predictors may be

75

constructed from unstructured data sources. For instance, for functional data, xt,j ’s may

be the first few Fourier coefficients (Fan et al., 2015). On the other hand, for textual data,

xt,j ’s may be topic loading or outputs from some pre-trained neural networks (Kogan et al.,

2009; Yeh et al., 2020; Bybee et al., 2021). Finally, model (3.1) can also accommodate the

so-called multi-view of multi-modal data, which have also received considerable attention in

recent years.

Next, we specify how the data are distributed across computing nodes. In matrix nota-

tions, we can write (3.1) as

Y =

pn∑
j=1

XjB
∗
j + E, (3.2)

where Y = (y1, . . . ,yn)
⊤, Xj = (x1,j , . . . ,xn,j)

⊤ ∈ Rn×qn,j , for j = 1, 2, . . . , pn, and E =

(ϵ1, . . . , ϵn)
⊤. As discussed in the Introduction, since pooling the large matrices X1, . . . ,Xpn

in a central node may not be feasible, a common strategy is to store them across nodes. In

the following, we suppose that M nodes are available. Furthermore, the i-th node contains

the data {Y,Xj : j ∈ Ii}, for i = 1, 2, . . . ,M , where ∪M
i=1Ii = {1, 2, . . . , pn} := [pn]. For

ease in exposition, we assume a master node coordinates the other computing nodes. In

particular, each worker node is able to send and receive data from the master node.

3.2.2 First-stage relaxed greedy algorithm and a just-in-time stopping

criterion

We now introduce the first-stage RGA and describe how it can be applied to feature-

distributed data. First, initialize Ĝ(0) = 0 and Û(0) = Y. For iteration k = 1, 2, . . .,

76

RGA finds (ĵk, B̃ĵk
) such that

(ĵk, B̃ĵk
) ∈ arg max

1≤j≤pn
∥Bj∥∗≤Ln

⟨Û(k−1),XjBj⟩, (3.3)

where Ln = d
1/2
n L0 for some large constant L0 > 0. Then RGA constructs updates by

Ĝ(k) =(1− λ̂k)Ĝ
(k−1) + λ̂kXĵk

B̃
ĵk
,

Û(k) =Y − Ĝ(k),

(3.4)

where λ̂k is determined by

λ̂k ∈ arg min
0≤λ≤1

∥Y − (1− λ)Ĝ(k−1) − λX
ĵk
B̃
ĵk
∥F . (3.5)

RGA has important computational advantages that are attractive for big data computa-

tion. First, for a fixed j, the maximum in (3.3) is achieved at Bj = Lnuv
⊤, where (u,v)

is the leading pair of singular vectors (i.e., corresponding to the largest singular value) of

X⊤
j Û

(k−1). Since computing the leading singular vectors is much cheaper than full SVD,

RGA is computationally lighter than algorithms using singular value soft-thresholding, such

as the alternating direction method of multipliers (ADMM). This feature has already been

exploited in Zheng et al. (2018) and Zhuo et al. (2020) for nuclear-norm constrained optimiza-

tion. Second, λ̂k is easy to compute and has the closed-form λ̂k = max{min{λ̂k,uc, 1}, 0},

where

λ̂k,uc =
⟨Û(k−1),X

ĵk
B̃
ĵk

− Ĝ(k−1)⟩

∥X
ĵk
B̃
ĵk

− Ĝ(k−1)∥2F

is the unconstrained minimizer of (3.5).

When applied to feature-distributed data, we can leverage these advantages. Observe

77

from (3.3)-(3.5) that the history of RGA is encoded in Ĝ(k). That is, to construct Ĝ(k+1),

which predictors were chosen and the order in which they were chosen are irrelevant, provided

Ĝ(k) is known. In particular, each node only needs λ̂k+1 and X
ĵk+1

B̃
ĵk+1

to construct

Ĝ(k+1). As argued in the previous paragraph, X
ĵk+1

B̃
ĵk+1

is a rank-one matrix. Thus

transmitting this matrix only requires O(n + dn) bytes of communication, which are much

lighter than that of the full matrix with O(ndn) bytes. In addition, each node requires

only the extra memory to store Ĝ(k) throughout the training. This is less burdensome than

random projection techniques, which require at least one node to make extra room to store

the sketched matrix of size O(n2).

The above discussions are summarized in Algorithm 1, detailing how workers and the

master node communicate to implement RGA with feature-distributed data. Clearly, each

node sends and receives data of size O(n + dn) bytes (line 4 and 15) in each iteration. We

remark that Algorithm 1 asks each node to send the potential updates to the master (line

15). This is for reducing rounds of communications, which can be a bottleneck in practice.

If bandwidth limit is more stringent, one can instead first ask the workers to send ρc to the

master. After master decides c∗, it only asks the c∗-th node to send the update, so that only

one node is transmitting the data.

Although the per-iteration communication complexity is low for RGA, the total commu-

nication can still be costly if the required number of iteration is high. Indeed, RGA converges

to argmin∑pn
j=1 ∥Bj∥∗≤Ln

∥Y −
∑pn

j=1XjBj∥2F at the rate O(k−1), where k is the number

of iterations (Jaggi, 2013; Temlyakov, 2015). There are many attempts to design variants of

RGA that converge faster (see Jaggi and Lacoste-Julien, 2015; Lei et al., 2019; Garber, 2020

and references therein). Instead of adapting these increasingly sophisticated optimization

schemes with feature-distributed data, we propose to terminate RGA early with the help

of a just-in-time stopping criterion. The key insight, as to be shown in Theorem 3.3.1, is

that RGA is capable of screening relevant predictors in the early iterations. The stopping

78

Algorithm 1: Feature-distributed relaxed greedy algorithm (RGA)
Input: Number of maximum iterations Kn; Ln > 0.
Output: Each worker 1 ≤ c ≤M obtains the coefficient matrices {B̂j : j ∈ Ic}.
Initialization: B̂j = 0 for all j and Ĝ(0) = 0

1 for k = 1, 2, . . . , Kn do
2 Workers c = 1, 2, . . . ,M in parallel do
3 if k > 1 then
4 Receive (c∗, λ̂k−1, σĵk−1

,u
ĵk−1

,v
ĵk−1

) from the master.

5 Ĝ(k−1) = (1− λ̂k−1)Ĝ
(k−2) + λ̂k−1σĵk−1

u
ĵk−1

v⊤
ĵk−1

.

6 B̂j = (1− λ̂k−1)B̂j for j ∈ Ic.
7 if c = c∗ then
8 B̂

ĵ
(c)
k−1

= B̂
ĵ
(c)
k−1

+ λ̂k−1B̃ĵ
(c)
k−1

9 end
10 end
11 Û(k−1) = Y − Ĝ(k−1)

12 (ĵ
(c)
k , B̃

ĵ
(c)
k

) ∈ argmax j∈Ic
∥Bj∥∗≤Ln

|⟨Û(k−1),XjBj⟩|

13 ρc = |⟨Û(k−1),X
ĵ
(c)
k

B̃
ĵ
(c)
k

⟩|

14 Find the leading singular value decomposition: X
ĵ
(c)
k

B̃
ĵ
(c)
k

= σ
ĵ
(c)
k

u
ĵ
(c)
k

v⊤
ĵ
(c)
k

15 Send (σ
ĵ
(c)
k

,u
ĵ
(c)
k

,v
ĵ
(c)
k

, ρc) to the master.

16 end
17 Master do
18 Receives {(σ

ĵ
(c)
k

,u
ĵ
(c)
k

,v
ĵ
(c)
k

, ρc) : c = 1, 2, . . . ,M} from the workers.

19 c∗ = argmax1≤c≤N ρc
20 σ

ĵk
= σ

ĵ
(c∗)
k

,u
ĵk

= u
ĵ
(c∗)
k

,v
ĵk

= v
ĵ
(c∗)
k

21 Ĝ(k) = (1− λ̂k)Ĝ
(k−1) + λ̂kσĵk

u
ĵk
v⊤
ĵk

, where λ̂k is determined by

λ̂k ∈ arg min
0≤λ≤1

∥Y − (1− λ)Ĝ(k−1) − λσ
ĵk
u
ĵk
v⊤
ĵk
∥2F .

22 Broadcasts (c∗, λ̂k, σĵk
,u

ĵk
,v

ĵk
) to all workers.

23 end
24 end

criterion is defined as follows. Let σ̂2k = (ndn)
−1∥Y− Ĝ(k)∥2F . We terminate the first-stage

79

RGA at step k̂, defined as

k̂ = min

{
1 ≤ k ≤ Kn :

σ̂2k
σ̂2k−1

≥ 1− tn

}
, (3.6)

and k̂ = Kn if σ̂2k/σ̂
2
k−1 < 1−tn, for all 1 ≤ k ≤ Kn, where tn is some threshold specified later

and Kn is a prescribed maximum number of iterations. Intuitively, k̂ is determined based on

whether the current iteration provides sufficient improvement in reducing the training error.

Note that k̂ is determined just-in-time without fully iterating Kn steps. The algorithm is

halted once the criterion is triggered, thereby saving excessive communication costs. This is

in sharp contrast to the model selection criteria used in prior works to terminate greedy-type

algorithms that compare all Kn models, such as the information criteria (Ing and Lai, 2011;

Ing, 2020).

3.2.3 Second-stage relaxed greedy algorithm

After the first-stage RGA is terminated, the second-stage RGA focuses on estimation of the

coefficient matrices. In this stage, we implement a modified version of RGA so that the

coefficient estimates are of low rank.

For predictors with “large” coefficient matrices, failing to account for their low-rank struc-

ture may result in statistical inefficiency. To see this, let Ĵ := Ĵ
k̂

be the predictors selected by

the first-stage RGA, and let B̂j , j ∈ Ĵ , be the corresponding coefficient estimates produced

by the first-stage RGA. Assume for now qn,j = qn. If min{qn, dn} > r̂ =
∑

j∈Ĵ r̂j , where

r̂j = rank(B̂j), then estimating this coefficient matrix alone without regularization amounts

to estimating dnqn parameters. It will be shown later in Theorem 3.3.1 that r̂j ≥ rank(B∗
j)

with probability tending to one. Since dnqn ≍ min{dn, qn}(qn + dn) > r̂(qn + dn), estimat-

ing this coefficient matrix would cost us more than the best achievable degrees of freedom

(Reinsel et al., 2022).

80

To avoid loss in efficiency for these large coefficient estimators, we impose a constraint

on the space in which our final estimators reside. Suppose the j-th predictor, j ∈ Ĵ , satisfies

min{qn,j , dn} > r̂. We require its coefficient estimator to be of the form Σ̂−1
j UjSV

⊤
j , where

Σ̂j = n−1X⊤
j Xj ; Uj = (u1,j , . . . ,ur̂,j) and Vj = (v1,j , . . . ,vr̂,j) form the leading r̂ pairs

of singular vectors of X⊤
j Y, and S is an r̂ × r̂ matrix to be optimized.

The second-stage RGA proceeds as follows. Initialize again Ĝ(0) = 0 and Û(0) = Y. For

k = 1, 2, . . ., choose

(ĵk, Ŝk) ∈ arg max
j∈Ĵ

∥S∥∗≤Ln

⟨Û(k−1),XjΣ̂
−1
j UjSV

⊤
j ⟩, (3.7)

where the maximum is searching over S ∈ Rr̂×r̂ if r̂ < min{qn,j , dn}. For j such that

r̂ ≥ min{qn,j , dn}, we define Uj and Vj to be the full set of singular vectors and the

maximum is searching over S ∈ Rqn,j×dn . Next, we construct the update by

Ĝ(k) =(1− λ̂k)Ĝ
(k−1) + λ̂kXĵk

Σ̂−1
ĵk

U
ĵk
ŜkV

⊤
ĵk
,

Û(k) =Y − Ĝ(k),

(3.8)

where λ̂k is, again, determined by

λ̂k ∈ arg min
0≤λ≤1

∥Y − (1− λ)Ĝ(k−1) − λX
ĵk
Σ̂−1
ĵk

U
ĵk
ŜkV

⊤
ĵk
∥2F . (3.9)

At first glance, the updating scheme (3.7)-(3.9) may appear similar to those proposed by

Ding et al. (2021) or Ding et al. (2020), but we note one important difference here: the

matrices Uj and Vj are fixed at the onset of the second stage. Thus our estimators’ ranks

remain controlled, which is not the case in the aforementioned works. More comparisons

between TSRGA and these works will be made in Section 3.3.2.

We briefly comment on the computational aspects of the second-stage RGA. First, simi-

81

larly to the first-stage, for a fixed j the maximum in (3.7) is attained at S = Lnuv
⊤, where

(u,v) is the leading pair of singular vectors of U⊤
j Σ̂

−1
j X⊤

j Û
(k−1)Vj , which can be com-

puted locally by each node. As a result, the per-iteration communication is still O(n + dn)

for each node. For j ∈ Ĵ with r̂ ≥ min{qn,j , dn}, since Uj and Vj are non-singular, the

parameter space is not limited except for the bounded nuclear norm constraint. Indeed, it

is not difficult to see that for such j,

max
∥S∥∗≤Ln

⟨Û(k−1),XjΣ̂
−1
j UjSV

⊤
j ⟩

is equivalent to

max
∥B∥∗≤Ln

⟨Û(k−1),XjΣ̂
−1
j B⟩ (3.10)

with the correspondence B = UjSV
⊤
j . Thus, for such j, it is not necessary to compute the

singular vectors Uj and Vj . Instead, one can directly solve (3.10). Finally, it is straightfor-

ward to modify Algorithm 1 to implement the second-stage RGA with feature-distributed

data. We defer the details to Section 3.8.1.

It is worth mentioning that the idea of two-stage RGA can be employed beyond the linear

regression setup. For example, by replacing the squared loss with log likelihood function,

we can use TSRGA to estimate generalized linear models, which include logistic regression

for classification tasks and Poisson regression for modeling count data. The details of the

modified algorithm are deferred to Section 3.8.4, where we also examine its performance

through simulations.

3.2.4 Related algorithms

In this subsection, we consider TSRGA in several contexts and compare it with related

algorithms. By viewing TSRGA as either a novel feature-distributed algorithm, an improve-

82

ment over the Frank-Wolfe algorithm, a new method to estimate the integrative multi-view

regression (Li et al., 2019), or a close relative of the greedy-type algorithms (Temlyakov,

2000), we highlight both its computational ease in applying to feature-distributed data and

its theoretical applicability in estimating high-dimensional linear models.

Over the last decade, a few methods for estimating linear regression with feature-

distributed data have been proposed. For instance, Richtárik and Takáč (2016) and Fercoq

et al. (2014) use randomized coordinate descent to solve ℓ1-regularized optimization prob-

lem, and Hu et al. (2019) proposes an asynchronous stochastic gradient descent algorithm,

to name just a few. These methods either require a communication complexity that scales

with pn, or converge only at sub-linear rates, both of which translate to high communication

costs. The screen-and-clean approach of Yang et al. (2016), similar in spirit to TSRGA,

first applies sure independence screening (SIS, Fan and Lv, 2008) to identify a subset of

potentially relevant predictors. Then it uses an iterative procedure similar to the iterative

Hessian sketch (Pilanci and Wainwright, 2016) to estimate the associated coefficients. While

SIS does not require communication, it imposes stronger assumptions on the predictors and

the error term. In contrast, the proposed TSRGA can be applied at low communication

complexity without succumbing to those assumptions.

TSRGA also adds to the line of studies that attempt to modify the conventional Frank-

Wolfe algorithm (Frank and Wolfe, 1956). RGA, more often called the Frank-Wolfe algo-

rithm in the optimization literature, has been widely adopted in big data applications for

its computational simplicity. Recently, various modifications of the Frank-Wolfe algorithm

have been proposed to attain a linear convergence rate that does not depend on the feature

dimension pn (Lei et al., 2019; Garber, 2020; Ding et al., 2021, 2020). However, strong con-

vexity or quadratic growth of the loss function is typically assumed in these works, which

precludes high-dimensional data (n≪ pn). Frank-Wolfe algorithm has also been found use-

ful in distributed systems, though most prior works employed the horizontally-partitioned

83

data (Zheng et al., 2018; Zhuo et al., 2020). That is, data are partitioned and stored across

nodes by observations instead of by features. A notable exception is Bellet et al. (2015),

who found that Frank-Wolfe outperforms ADMM in communication and wall-clock time

for sparse scalar regression with feature-distributed data, despite that Frank-Wolfe still suf-

fers from sub-linear convergence. In this chapter, we neither assume strong convexity (or

quadratic growth) nor limit ourselves to scalar regression, and TSRGA demands much less

computation than the usual Frank-Wolfe algorithm.

Model (3.1) was also employed by Li et al. (2019), and they termed it the integra-

tive multi-view regression. They propose an ADMM-based algorithm, integrative reduced-

rank regression (iRRR), for optimization in a centralized computing framework. The ma-

jor drawback, as discussed earlier, is a computationally-expensive step of singular value

soft-thresholding. Thus, TSRGA can serve as a computationally attractive alternative. In

Section 3.4, we compare their empirical performance and find that TSRGA is much more

efficient.

Other closely related greedy algorithms such as the orthogonal greedy algorithm (OGA)

have also been applied to high-dimensional linear regression. OGA, when used in conjunction

with an information criterion, attains the optimal prediction error (Ing, 2020) under various

sparsity assumptions. However, it is computationally less adaptable to feature-distributed

data. To keep the per-iteration communication low, the sequential orthogonalization scheme

of Ing and Lai (2011) can be used with feature-distributed data, but the individual nodes

would not have the correct coefficients to use at the prediction time when new data, possibly

not orthogonalized, become available. Alternatively, one needs to allocate extra memory in

each node to store the history of the OGA path to compute the projection in each iteration.

84

3.3 Communication complexity of TSRGA

In this section, we derive theoretical guarantees on the communication complexity of TSRGA.

Specifically, we show that the communication complexity of TSRGA does not scale with the

feature dimension pn, but instead depends on the sparsity of the underlying problem.

3.3.1 Assumptions

For the theoretical analysis, we maintain the following mild assumptions of model (3.1).

(C1) There exists some µ <∞ such that with probability approaching one,

µ−1 ≤ min
1≤j≤pn

λmin(Σ̂j) ≤ max
1≤j≤pn

λmax(Σ̂j) ≤ µ,

where Σ̂j = n−1X⊤
j Xj with Xj being defined in (3.2).

(C2) Put ξE = max1≤j≤pn ∥X
⊤
j E∥op. There exists a sequence of Kn → ∞ such that

KnξE = Op(nd
1/2
n).

(C3)

lim
n→∞

P

(
min

♯(J)≤2Kn

λmin(n
−1X(J)⊤X(J)) > µ−1

)
= 1,

where X(J) = (Xj : j ∈ J) ∈ Rn×(
∑

j∈J qn,j).

(C4) There exists some large L < ∞ such that d−1/2
n

∑pn
j=1 ∥B

∗
j∥∗ ≤ L. Moreover, there

exists a non-decreasing {sn} such that s2n = o(Kn) and

min
j∈Jn

σ2r∗j

(
d
−1/2
n B∗

j

)
≥ s−1

n ,

85

where Jn = {1 ≤ j ≤ pn : B∗
j ̸= 0} is the set of indices corresponding the relevant

predictors, and r∗j = rank(B∗
j).

These assumptions are quite standard. (C1) requires the variances of the predictors to

be on the same order of magnitude, which is often the case if the predictors are normalized.

ξE in (C2) is typically regarded as the effect size of the noise. Through auxiliary concen-

tration inequalities in the literature, we will verify (C2) in the examples following the main

result. (C3) assumes a lower bound on the minimum eigenvalue of the covariance matrices

formed by small subsets of predictors. Note that (C3) could hold even when pn ≫ n and

the observations are dependent; we refer to Ing and Lai (2011) and Ing (2020) for related

discussions on (C3). sn in (C4) imposes a lower bound on the minimum non-zero singular

value of the (normalized) coefficient matrices d−1/2
n B∗

j . Since (C4) implies ♯(Jn) ≤ s
1/2
n L, it

can be interpreted as a measure of sparsity of the underlying model.

Next, we introduce two assumptions that are important to the feature-distributed prob-

lem. Let Ỹ =
∑pn

j=1XjB
∗
j be the noiseless part of Y.

(C5) Let r̄j = rank(X⊤
j Ỹ) and Jo = Jn ∩ {j : min{qn,j , dn} > r̄j}. There exists δn > 0

such that ξE = op(nδn) and with probability approaching one,

min
j∈Jo

σr̄j (X
⊤
j Ỹ) ≥ nδn.

(C6) (Local revelation) If the column vectors of Ũj ∈ Rqn,j×r̄j and Ṽj ∈ Rdn×r̄j are the

leading pairs of singular vectors corresponding to the non-zero singular values of X⊤
j Ỹ,

then with probability approaching one, there exists an r̄j × r̄j matrix Λj such that

Σ̂jB
∗
j = ŨjΛjṼ

⊤
j (3.11)

for all j ∈ Jo.

86

(C5) and (C6) are assumptions that endow the local nodes sufficient information in the

feature-distributed setting. Both assumptions concern relevant predictors that are “large”

such that their dimensions qn,j × dn satisfy min{qn,j , dn} > r̄j . Intuitively, (C5) requires,

for relevant predictors which are of large dimension, the marginal correlations between these

predictors and Ỹ are sufficiently large. The local revelation condition (C6) assumes each

node could use its local data to re-construct Σ̂jB
∗
j for j ∈ Jo. This would simplify infor-

mation sharing between the nodes. Although they are key assumptions used to derive a

fast convergence rate for the second-stage RGA, they are not needed for establishing the

sure-screening property of the just-in-time stopping criterion (see Theorem 3.3.1). In addi-

tion, these two assumptions are vacuous when all predictors are of small dimensions. For

instance, for scalar group-sparse linear regression, min{dn, qn,j} = min{1, qn,j} = 1 ≤ r̄j .

Hence Jo = ∅ and the two assumptions are immaterial.

To better understand (3.11), consider the following example.

yt = B∗⊤
1 xt,1 +B∗⊤

2 xt,2 + ϵt,

where B∗
1,B

∗
2 are rank-1 matrices such that B∗

1 = u∗1v
∗⊤
1 and B∗

2 = u∗2v
∗⊤
2 . In matrix

notation, we write Y = X1B
∗
1 +X2B

∗
2 + E. Suppose qn,1 = qn,2 > 2, and consider

X⊤
1 Ỹ =

(
X⊤

1 X1u
∗
1 X⊤

1 X2u
∗
2

)
︸ ︷︷ ︸

A

v∗⊤1

v∗⊤2

︸ ︷︷ ︸

B

.

It is not difficult to show that (3.11) holds (for j = 1) if A and B are of full rank. Since yt =

(x⊤t,1u
∗
1)v

∗
1 + (x⊤t,2u

∗
2)v

∗
2, one can interpret ft,j = x⊤t,ju

∗
j as the predictive factor associated

with predictor j, for j = 1, 2. ft,j has differential effects on each element of yt, which

are determined by v∗j . Hence, that B has full rank translates to that the two factors ft,1

and ft,2 have distinct impacts on yt. On the other hand, A has full rank if and only if

87

u∗1 ̸= α(X⊤
1 X1)

−1X⊤
1 X2u

∗
2 for any α ̸= 0. This implies the factor ft,1 must not be equal to

the projection of ft,2 onto the space spanned by X1. Therefore, (3.11) can be interpreted as

requiring the factors ft,1 and ft,2 are truly distinct and make distinguishable contributions

to the response vector. Moreover, if (3.11) fails, the marginal product X⊤
1 Ỹ may no longer

be useful, because the signals are contaminated by possible collinearity.

3.3.2 Main results

We now present some theoretical properties of TSRGA, with proofs relegated to Section

3.8.2. In the following, we assume Ln, the hyperparameter input to the TSRGA algorithm,

is chosen to be Ln = d
1/2
n L0 with L0 ≥ L/(1− ϵL), where 1− ϵL ≤ µ−2/4.

Our first result proves that RGA, coupled with the just-in-time stopping criterion, can

screen the relevant predictors. Moreover, it provides an upper bound on the rank of the

corresponding coefficient matrices.

Theorem 3.3.1. Assume (C1)-(C4) hold. Suppose there exists an Mo < ∞ such that

M−1
o ≤ (ndn)

−1∥E∥2F ≤ Mo with probability tending to one. Write Ĝ(k) =
∑pn

j=1XjB̂
(k)
j ,

k = 1, 2, . . . , Kn, for the iterates of the first-stage RGA. If k̂ is defined by (3.6) with tn =

Cs−2
n for some sufficiently small C > 0, then

lim
n→∞

P
(
rank(B∗

j) ≤ rank(B̂
(k̂)
j) for all j

)
= 1. (3.12)

Although Theorem 3.3.1 only provides an upper bound for the ranks of B∗
j ’s, it renders

a useful diagnosis for the rank of the coefficient matrices for model (3.1). When pn = 1,

Bunea et al. (2011) proposed a rank selection criterion (RSC) to select the optimal reduced

rank estimator, which is shown to be a consistent estimator of the effective rank. However,

rank selection for model (3.1) with pn > 1 is less investigated. Moreover, we can bound k̂

by the following lemma.

88

Lemma 3.3.1. Under the assumptions of Theorem 3.3.1, k̂ = Op(s
2
n).

Lemma 3.3.1 ensures the just-in-time stopping criterion is triggered in no more than

O(s2n) iterations, which is much smaller than O(Kn) by (C4). Thus compared to the model

selection rules using information criteria that iterate Kn steps in full, the proposed method

greatly reduces communication costs.

Next, we derive the required number of iterations for TSRGA to converge near the

unknown parameters, which translates to its communication costs. With a slight abuse of

notation, we also write the second-stage RGA iterates as Ĝ(k) =
∑

j∈Ĵ XjB̂
(k)
j .

Theorem 3.3.2. Assume the assumptions of Theorem 3.3.1 hold, and additionally (C5) and

(C6) also hold. If ξE = Op(ξn) and mn = ⌈ρκn log(n2dn/ξ2n)⌉ for some sequence {ξn} of

positive numbers, where ρ = 64µ5/τ2 with 0 < τ < 1 being arbitrary, and

κn = ♯(Ĵ)max

{
max

j∈Ĵ−Ĵo

(qn,j ∧ dn), r̂1{Ĵo ̸= ∅}

}
,

with a∧ b = min{a, b} and Ĵo = {j ∈ Ĵ : r̂ < min{qn,j , dn}}, then the proposed second-stage

RGA satisfies

sup
m≥mn

1

dn

pn∑
j=1

∥B∗
j − B̂

(m)
j ∥2F = Op

(
κnξ

2
n

n2dn
log

n2dn
ξ2n

+
ξ2n
n2δ2n

1{Jo ̸= ∅}
)
.

Since the per-iteration communication cost of TSRGA is O(n + dn), Theorem 3.3.2,

together with Lemma 3.3.1, directly imples the communication complexity of TSRGA, which

we state as the following corollary.

Corollary 3.3.1. If κn = Op(sn) for some sequence {sn} of positive numbers, then TSRGA

achieves an error of order

Op

(
snξ

2
n

n2dn
log

n2dn
ξ2n

+
ξ2n
n2δ2n

1{Jo ̸= ∅}
)
,

89

with a communication complexity of order

Op

(
(n+ dn)sn log

n2dn
ξ2n

)
.

Thus, the communication complexity, up to a logarithmic factor, scales mainly with sn.

In general, Lemma 3.3.1 implies sn = Op(s
4
n). Thus sn is also a measure of the sparsity

of the underlying model. Moreover, in the important special case when the response is a

scalar, sn = Op(s
2
n) since dn = 1 and Ĵo = ∅. To demonstrate this result more concretely,

we discuss the communication complexity of TSRGA when applied to several well-known

models below.

Example 3.3.1 (High-dimensional sparse linear regression). Consider the model

yt =
∑pn

j=1 βjxt,j + ϵt. Under suitable conditions, such as {ϵt} being i.i.d. sub-Gaussian

random variables, it can be shown that ξE = Op(
√
n log pn) (see, for example, Ing and Lai,

2011 and Ing, 2020). Then TSRGA achieves an error of order

pn∑
j=1

|βj − β̂j |2 = Op

(
s2n log pn

n

)
(3.13)

with a communication complexity of

Op

(
ns2n log

n

log pn

)
.

To reach ϵ-close to the minimizer of the Lasso problem, the communication complexity

of the Hydra algorithm (Richtárik and Takáč, 2016) is

O

(
npn
Mτ

log
1

ϵ

)
,

where M is the number of nodes and τ is the number of coordinates to update in each

90

iteration. Given limited computational resources, τM may still be of order smaller than

pn. Thus the communication complexity of TSRGA, which does not scale with pn, is more

favorable for large data sets with huge pn. In our simulation studies, we also observe that

TSRGA converges near (β1, . . . , βpn) much more faster than Hydra-type algorithms.

Example 3.3.2 (Multi-task linear regression with common relevant predictors). Suppose

we are interested in modeling T tasks simultaneously. Let y1,y2, . . . ,yT be the vectors of n

observations of the T responses, and X be the n× p design matrix consisting of p predictors.

Consider the system of linear regressions

yt =Xbt + et, t = 1, . . . , T, (3.14)

where bi = (βi,1, βi,2, . . . , βi,p)
T , for i = 1, 2, . . . , T , and ei, for 1 ≤ i ≤ T , are independent

standard Gaussian random vectors. Let xj be the j-th column vector of X. Then we may

rearrange (3.14) as

y1

y2
...

yT

=

p∑
j=1

XjBj +

e1

e2
...

eT

, (3.15)

where Bj = (β1,j , β2,j , . . . , βT,j)
T and Xj = IT ⊗ xj, where IT is the T × T identity

matrix and A ⊗ B denotes the Kronecker product of A and B. Now (3.15) falls un-

der our general model (3.1). Sparsity of the Bj’s promotes that each task is driven by

the same small set of predictors, or equivalently, bj’s in (3.14) have a common support.

By a similar argument used in Lemma 3.1 of Lounici et al. (2011), it can be shown that

ξE = Op(
√
nT (1 + T−1 log p)). Hence Corollary 3.3.1 implies that TSRGA applied to (3.15)

91

achieves an error of order

p∑
j=1

∥Bj − B̂j∥2 = Op

(
s2n
nT

(1 +
log p

T
)

)
(3.16)

with the communication complexity

Op

(
nTs2n log

nT

1 + T−1 log p

)
.

Notice again that the iteration complexity scales primarily with the strong sparsity pa-

rameter sn, not with p. As illustrated by Lounici et al. (2011), (3.14) can be motivated from

a variety of applications, such as the seemingly unrelated regressions (SUR) in econometrics

and the conjoint analysis in marketing research.

Example 3.3.3 (Integrative multi-view regression). Consider the general model (3.1), which

is called the integrative multi-view regression by Li et al. (2019). Assume E has i.i.d. Gaus-

sian entries, and for simplicity that qn,1 = qn,2 = . . . = qn,pn = qn. Then by a similar

argument used by Li et al. (2019) it follows that ξE = Op(
√
n log pn(

√
dn +

√
qn)). Suppose

the predictors Xj, for j = 1, 2, . . . , pn, are distributed across computing nodes. TSRGA

achieves

1

dn

pn∑
j=1

∥B∗
j − B̂j∥2F = Op

(
s4n(dn + qn) log pn

ndn
+

(dn + qn) log pn
nδn

)
(3.17)

with a communication complexity of

Op

(
(n+ dn)s

4
n log

ndn
(dn + qn) log pn

)
.

Although Li et al. (2019) did not consider the feature-distributed data, they offer an

ADMM-based algorithm, iRRR, for estimating (3.1). However, updating many parameters

92

in each iteration causes significant computational bottleneck. In our Monte Carlo simulation,

iRRR is unable to run efficiently with pn ≥ 50 even with centralized computing and a

moderate sample size, whereas TSRGA can handle such data sizes easily.

In general, the statistical errors of TSRGA in the above examples ((3.13), (3.16), and

(3.17)) are sub-optimal compared to the minimax rates unless sn = O(1), in which case

the model is strongly sparse with a fixed number of relevant predictors. One reason is

that Theorem 3.3.1 only guarantees sure-screening instead of predictor and rank selection

consistency. In Examples 1 and 2, the statistical error could be improved if one applies hard-

thresholding after the second-stage RGA, and then estimates the coefficients associated with

the survived predictors again. This would not hurt the communication complexity in terms

of the order of magnitude since this step takes even less number of iterations. Nevertheless,

in our simulation studies, TSRGA performs on par with and in many cases even outperforms

strong benchmarks in the finite-sample case.

Another reason for the sub-optimality comes from the dependence on δn in the error.

In the second-stage, TSRGA relies on the sample SVD of the (scaled) marginal covariance

X⊤
j Y to estimate the singular subspaces of the unknown coefficient matrices. How well these

sample singular vectors recover their noiseless counterparts depends on the strength of the

marginal covariance, which is controlled by δn in Assumption (C5). This is needed because

we try to avoid searching for the singular subspaces of the coefficient matrices, a challenging

task for greedy algorithms. Unlike the scalar case, for the multivariate linear regression the

dictionary for RGA contains all rank-one matrices and therefore the geometric structure is

more intricate to exploit. For example, the argument used in Ing (2020) will not work with

this dictionary.

Recently, Ding et al. (2020) and Ding et al. (2021) proposed new modifications of the

Frank-Wolfe algorithm that directly search within the nuclear norm ball, under the assump-

tions of strict complementarity and quadratic growth. These algorithms rely on solving more

93

complicated sub-problems. To illustrate one main difference between these modifications and

TSRGA, note that for the usual reduced rank regression where min{dn, qn,1} > 1 and pn = 1,

one of the leading examples in Ding et al. (2020) and Ding et al. (2021), our theoretical results

for TSRGA still hold (though in this case the data are not feature-distributed because pn is

only one). In this case, (C5) and (C6) automatically hold with δn ≤ d
1/2
n /(µs

1/2
n). Conse-

quently, Corollary 3.3.1 implies the error is of order Op(
s2nξ

2
n

n2dn
log n2dn

ξ2n
) using Op(s

2
n log

n2dn
ξ2n

)

iterations, regardless of whether strict complementarity holds. This advantage precisely

comes from that TSRGA uses the singular vectors of X⊤
1 Y in its updates in the second

stage instead of searching over the intricate space of nuclear norm ball in each iteration.

3.4 Simulation experiments

In this section, we apply TSRGA to synthetic data sets and compare its performance with

some existing distributed as well as centralized methods. We first examine how well TSRGA

and other algorithms estimate the unknown parameters. Then we apply TSRGA to a large-

scale feature-distributed data to measure its prowess in speed. In both experiments, TSRGA

delivered superior performance.

3.4.1 Statistical performance of TSRGA

In this subsection, we compare the effectiveness of TSRGA in estimating the parameters.

Specifically, it is applied to the well-known high-dimensional linear regression and the general

multi-view regression (3.2).

Consider first the high-dimensional linear regression model:

yt =

pn∑
j=1

β∗j xt,j + ϵt, t = 1, . . . , n,

which is sparse with only an = ⌊p1/3n ⌋ non-zero β∗j ’s, where ⌊x⌋ denotes the integer part of x.

94

We also generate {ϵt} as i.i.d. t-distributed random variables with five degrees of freedom.

To estimate this model, we employ the Hydra (Richtárik and Takáč, 2016) and Hydra2

(Fercoq et al., 2014) algorithms to solve the Lasso problem, namely,

min
{βj}

pn
j=1

 1

2n

n∑
t=1

yt − pn∑
j=1

βjxt,j

2

+ λ

pn∑
j=1

|βj |

 . (3.18)

The predictors are divided into 10 groups at random; each of the groups is owned by one

node in the Hydra-type algorithm. The step size of the Hydra-type algorithms is set to the

lowest value so that we observe convergence of the algorithms instead of divergence. As

a benchmark, we also solve the Lasso problem with 5-fold cross validation using glmnet

package in R. To further reduce the computational burden, we use the λ selected by the

cross-validated Lasso in implementing Hydra-type algorithms.

Choosing the hyperparameter for RGA-type methods is more straightforward, but there

is one subtlety. It is well-known that the Lasso problem corresponds to the constrained

minimization problem

min
{βj}

pn
j=1

1

2n

n∑
t=1

yt − pn∑
j=1

βjxt,j

2

subject to
pn∑
j=1

|βj | ≤ Ln.

Moreover, setting Ln to
∑pn

j=1 |β
∗
j |, which is nonetheless unknown in practice, would yield the

usual Lasso statistical guarantee (see, e.g., Theorem 10.6.1 of Vershynin, 2018). However,

our theoretical results in Section 3.3.2 recommend setting Ln to a larger value than this

conventionally recommended value. To illustrate the advantage of a larger Ln, we employ

two versions of RGA: one with Ln = 500 and the other with Ln =
∑pn

j=1 |β
∗
j |. For TSRGA,

we simply set Ln = 500 and tn = 1/(10 log n), and the performance is not too sensitive to

these choices.

For Specifications 1 and 2 below, we consider three cases with (n, pn) ∈ {(800, 1200),

95

(1200, 2000), (1500, 3000)}. In Specification 1, we simulate the predictors as independent,

t-distributed data. Together with the t-distributed errors, this specification simulates the

situation where heavy-tailed data are frequently observed.

Specification 1. In the first experiment, we generate xt,j as i.i.d. t(6) random variables,

for all t = 1, 2, . . . , n, and j = 1, 2, . . . , pn. Hence the predictors have heavy tails with only 6

finite moments. The nonzero coefficients are generated independently by β∗j = zjuj , where

zj is uniform over {−1,+1} and uj is uniform over [2.5, 5.5]. The coefficients are drawn at

the start of each of the 100 Monte Carlo simulations.

Figure 3.1 plots the logarithm of the parameter estimation error against the number of

iterations. The parameter estimation error is defined as
∑pn

j=1(β
∗
j − β̂j)

2, where {β̂j} are the

estimates made by the aforementioned methods. In the plot, the trajectories are averaged

across 100 simulations. TSRGA (black) converges using the least number of iterations. Since

the per-iteration communication costs of TSRGA and Hydra-type algorithms are similar

(O(n) bytes), this serves as a proxy for a smaller communication overhead of TSRGA. In

addition, the parameter estimation error of TSRGA is also the smallest among the employed

methods. RGA with Ln = 500 (dashed red) follows the same trajectories as TSRGA in

the first few iterations, but without the two-step design, it suffers from over-fitting in later

iterations and hence an increasing parameter estimation error. On the other hand, RGA with

oracle Ln =
∑pn

j=1 |β
∗
j | (solid red) converges much slower than TSRGA due to a sub-linear

convergence rate. For Hydra (blue lines) and Hydra2 (green lines) algorithms, we consider

two implementations: updating 25% of the coordinates in each node (solid), and updating

50% of the coordinates in each node (dashed). Hydra converges to the centralized Lasso

(dashed magenta) at a faster rate if 50% of the coordinates were updated in each iterations

than the 25% counterparts. However, Hydra2 converges much slower.

In the next specification, we generate the predictors so that they are correlated and the

correlations are the same between any two predictors. This simulates the situation where
96

−2

0

2

4

0 200 400 600
iteration

lo
g

es
tim

at
io

n
er

ro
r

(a) n = 800, pn = 1200

−2.5

0.0

2.5

5.0

0 200 400 600
iteration

lo
g

es
tim

at
io

n
er

ro
r

(b) n = 1200, pn = 2000

−2.5

0.0

2.5

5.0

0 200 400 600
iteration

lo
g

es
tim

at
io

n
er

ro
r

Methods

TSRGA

RGA (L=500)

RGA (oracle L)

Hydra (25%)

Hydra (50%)

Hydra2 (25%)

Hydra2 (50%)

Lasso

(c) n = 1500, pn = 3000

Figure 3.1: Logarithm of parameter estimation errors of various methods under Specification
1, where n is the sample size and pn is the dimension of predictors. The results are averages
of 100 simulations.

one cannot simply divide groups of variables that have weak inter-group dependence into

different computing nodes to alleviate the difficulties caused by feature-distributed data.

Specification 2. In this experiment, we generate the predictors by

xt,j = νt + wt,j , t = 1, . . . , n; j = 1, . . . , pn,

97

where {νt} and {wt,j} are independent N(0, 1) random variables. Consequently, Cor(xt,k,

xt,j) = 0.5, for k ̸= j. The coefficients are set to β∗j = 2.5 + 1.2(j − 1) for j = 1, 2, . . . , an =

⌊p1/3n ⌋. The rest of the specification is the same as that of Specification 1.

−2

0

2

4

6

0 200 400 600
iteration

lo
g

es
tim

at
io

n
er

ro
r

(a) n = 800, pn = 1200

0

5

0 200 400 600
iteration

lo
g

es
tim

at
io

n
er

ro
r

(b) n = 1200, pn = 2000

0

5

0 200 400 600
iteration

lo
g

es
tim

at
io

n
er

ro
r

Methods

TSRGA

RGA (L=500)

RGA (oracle L)

Hydra (25%)

Hydra (50%)

Hydra2 (25%)

Hydra2 (50%)

Lasso

(c) n = 1500, pn = 3000

Figure 3.2: Parameter estimation errors of various estimation methods under Specification
2, where n is the sample size and pn is the number of predictors. The results are averages
of 100 simulations.

Figure 3.2 plots the parameter estimation errors under Specification 2. TSRGA re-

mains the most effective method for estimating the unknown parameters, which converges

98

within 100 iterations in all cases. It is worth noting that the Hydra-type algorithms dis-

play a substantially deteriorated rate of convergence compared to the previous specification,

highlighting their sensitivity to the dependence between predictors, and potentially high

computational expenses in certain scenarios.

It is also important to study the performance of these methods in terms of elapsed time

and out-of-sample performance. To save space, we postpone the discussion to Section 3.8.5,

as most conclusions drawn above remain valid in examining the elapsed time and prediction

performance.

Next we consider the general model:

yt =

pn∑
j=1

B∗⊤
j xt,j + ϵt, t = 1, . . . , n, (3.19)

where yt ∈ Rdn and xt,j ∈ Rqn , for j = 1, 2, . . . , pn. We generate ϵt as i.i.d. random vectors

with each entry having independent t(5) distributions. In the following cases, the model is

sparse with an non-zero B∗
j ’s, each of which is only of rank rn. In particular, we generate

B∗
j , for j ≤ an, independently by

B∗
j =

rn∑
k=1

σk,nuk,jv
⊤
k,j , (3.20)

where {uk,j}
rn
k=1 and {vk,j}

rn
k=1 are independently drawn (qn- and dn-dimensional) orthonor-

mal vectors and {σk,n} are i.i.d. uniform over [7,15].

We employ the iRRR method (Li et al., 2019) to estimate (3.19). To select its tuning

parameter, we execute iRRR with a grid of tuning parameter values and opt for the one

with the lowest mean square prediction error on an independently generated validation set

of 500 observations. Although centralized computation is used to implement iRRR, it is too

computationally demanding to implement the algorithm for the two cases with n = 600 and

99

n = 1200. Therefore, we use the least squares estimator with only the relevant variables as

another benchmark. For TSRGA, Ln is set to 105, and we hold one third of the training

data as validation set to select the tuning parameter tn for TSRGA over a grid of values1.

Since iRRR is not a feature-distributed algorithm, we directly report their parameter

estimation errors (averaged across 500 Monte Carlo simulations) defined as

√√√√ pn∑
j=1

∥B∗
j − B̂j∥2F , (3.21)

where {B̂j} are the estimated coefficient matrices. Additionally, the out-of-sample predic-

tion performance of these methods are evaluated on an independent test sample of size

500, measured by (∥Y − Ŷ∥2F /(ndn))
1/2. We consider the cases (n, dn, qn, pn, an, rn) ∈

{(200, 10, 12, 20, 1, 2), (400, 15, 18, 50, 2, 2), (600, 20, 25, 400, 3, 2), (1200, 40, 45, 800, 3, 3)}.

Specification 3. In this specification, we consider (3.19) with the predictors generated as

in Specification 1. Note that {B∗
j : j ≤ an} are drawn at the start of each of the 500 Monte

Carlo simulations.

Table 3.1 reports the results of the methods averaged over 500 Monte Carlo simulations

of data generated under Specification 3. TSRGA achieved the lowest estimation error in all

constellations of problem sizes. On the other hand, iRRR yielded larger estimation error

than the least squares method using exactly the relevant predictors when n = 200, but when

n increases, iRRR outperforms the least squares method. However, the computational costs

of iRRR became so high that completing 500 simulations would require more than days, even

when parallelism with 15 cores is used. TSRGA circumvents such computational overhead

and delivers superior estimates. The prediction errors suggest the same conclusions even

though the difference is less significant.

1. tn is selected among t = (0.01, 0.07, 1.10, 1.39, 1.61, 1.79, 1.95, 2.08, 2.20, 2.30)/ log n.

100

Parameter estimation Prediction

(n, dn, qn, pn, an, rn) TSRGA iRRR Oracle LS TSRGA iRRR Oracle LS

(200, 10, 12, 20, 1, 2) 0.666 0.929 0.851 1.138 1.339 1.331
(400, 15, 18, 50, 2, 2) 0.858 1.245 1.287 1.322 1.351 1.355
(600, 20, 25, 400, 3, 2) 1.223 - 1.787 1.361 - 1.381
(1200, 40, 45, 800, 3, 3) 1.388 - 2.378 1.345 - 1.371

Table 3.1: Parameter estimation and prediction errors of various methods under Specification
3. We do not report the results for iRRR with sample sizes of 600 and 1200 since the com-
putation required for these cases is excessively time-consuming. In the table, n, dn, qn, pn, an
and rn are the sample size, number of targeted variables, dimension of predictors, number
of predictors, number of non-zero coefficient matrices, and rank of coefficient matrices, re-
spectively. The results are based on 500 simulations.

Specification 4. In this specification, we generalize (3.19) to group predictors as follows.

Let {νt : t = 1, 2, . . .} and {wt,j : t = 1, 2, . . . ; j = 1, 2, . . . , pn} be independent N(0, Iqn)

random vectors. The group predictors are then constructed as xt,j = 2νt +wt,j , 1 ≤ t ≤ n,

1 ≤ j ≤ pn. Hence E(xt,jx⊤t,i) = 4Iqn , for 1 ≤ i < j ≤ pn. Note that Corr(xt,i,l, xt,j,l) = 0.8

for i ̸= j, 1 ≤ l ≤ qn, where xt,i = (xt,i,1, . . . , xt,i,qn)
⊤. Hence, the l-th components in each

of the group predictors are highly correlated.

Parameter estimation Prediction

(n, dn, qn, pn, an, rn) TSRGA iRRR Oracle LS TSRGA iRRR Oracle LS

(200, 10, 12, 20, 1, 2) 0.401 0.616 0.460 1.324 1.337 1.330
(400, 15, 18, 50, 2, 2) 0.562 0.993 1.172 1.345 1.344 1.354
(600, 20, 25, 400, 3, 2) 0.812 - 1.817 1.362 - 1.379
(1200, 40, 45, 800, 3, 3) 0.751 - 2.419 1.310 - 1.371

Table 3.2: Parameter estimation and prediction errors under Specification 4. We do not
report the results for iRRR with sample sizes of 600 and 1200 since the computation required
for these sample sizes is excessively time-consuming. The same notations as those of Table 3.1
are used. The results are based on 500 simulations.

Table 3.2 reports the results for Specification 4. As in the previous specifications, TSRGA

continues to surpass the benchmarks. When n = 400, iRRR gains an advantage over the

least squares method, despite of a high computational cost. The results in Tables 3.1 and 3.2
101

suggest that TSRGA is both a fast and a statistically effective tool for parameter estimation

for model (3.19).

3.4.2 Large-scale performance of TSRGA

In this subsection, we apply TSRGA to large feature-distributed data. We have an MPI

implementation of TSRGA through OpenMPI and the Python binding mpi4py (Dalcín et al.,

2005; Dalcín and Fang, 2021). The algorithm runs on the high-performance computing

cluster of the university, which comprises multiple computing nodes equipped with Intel

Xeon Gold 6248R processors. We consider again Specification 4 in the previous subsection,

with (n, dn, qn, pn, an, rn) = (20000, 100, 100, 1024, 4, 4). In the following experiments we

employ M/4 nodes, each of which runs 4 processes and each process owns pn/M predictors,

with M varying from 16 to 64. When combined, the data are approximately over 16 GB of

size, exceeding the usual RAM capacity on most laptops.

There are two primary goals for the experiments. The first goal is to investigate the

wall-clock time required by TSRGA to estimate (3.19). The second goal is to examine the

effect of the number of nodes on the required wall-clock time. Each experiment is repeated

10 times, and we average the wall-clock time needed to complete the k-th iteration as well

as the parameter estimation error (3.21) at the k-th iteration.

Figure 3.3 plots the (log) estimation errors against the wall-clock time of TSRGA iter-

ations. When using 16 processes, TSRGA took about 16 minutes to estimate (3.19), and

the time reduced to less than 5 minutes when 64 processes were employed. The accelera-

tion primarily occurred in the first stage, because solving (3.3) becomes faster when each

process handles only a small number of predictors. After screening, there is a spike in es-

timation error due to re-initialization of the estimators but subsequent second-stage RGA

runs extremely fast in all cases and yields accurate estimates. Indeed, Figure 3.4 shows

that the estimation error of TSRGA quickly drops below that of the oracle least squares

102

0 200 400 600 800 1000
elapsed time (sec)

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

lo
g

es
tim

at
io

n
er

ro
rs

16 processes
32 processes
64 processes

Figure 3.3: Logarithm of the average parameter estimation errors at each iteration of
TSRGA, plotted against the average time elapsed at the end of each iteration. Various
number of processes are employed for feature-distributed implementation. 10 simulations
are used.

in the second stage. We remark that with more diligent programming, one can apply the

advanced protocols introduced in Section 6 of Richtárik and Takáč (2016) to TSRGA, using

both multi-process and multi-thread techniques. It is anticipated that the required time will

be further shortened.

3.5 Empirical application

This section showcases an application of TSRGA to financial data. In addition to the

conventional financial data, we further collect the annual 10-K reports of firms under study

to extract useful features for augmenting the predictors. Thus, in this application, both

the response and predictors are multivariate, and the predictors may consist of large dense

matrices, leading to potential computational challenges in practice.

103

0 200 400 600 800 1000
elapsed time (sec)

1.5

2.0

2.5

3.0

3.5

lo
g

es
tim

at
io

n
er

ro
rs

TSRGA
Oracle LS

Figure 3.4: Logarithm of the estimation errors of TSRGA (running with 16 processes) and the
oracle least squares. The oracle least squares method is performed by applying the second-
stage RGA with exactly the relevant predictors and no rank constraints. 10 simulations are
used.

3.5.1 Financial data and 10-K reports

We aim to predict four key financial outcomes for companies in the S&P 500 index: volatility,

trading volume, market beta, and return. We obtain daily return series for each company

from 2010 through 2019, calculate the sample variances of the daily returns in each month,

and transform them by taking the logarithm to get the volatility series {Vit(m) : m =

1, 2, . . . , 12} for the i-th company in the m-th month of year t ∈ {2010, . . . , 2019}. Next,

we regress each company’s daily returns on the daily returns of the S&P 500 index for each

month and use the slope estimates as market beta, {Bit(m) : m = 1, 2, . . . , 12}. Finally, we

also obtain data of the monthly returns series {Rit(m) : m = 1, 2, . . . , 12} and the logarithm

of the trading volumes {Mit(m) : m = 1, 2, . . . , 12}, for the ith company. All series are

obtained from Yahoo! Finance via the tidyquant package in R.

After obtaining these series, some data cleaning is performed to facilitate subsequent

analysis. First, the volume series exhibits a high degree of serial dependence, which could

be due to unit-roots caused by the persistence in trading activities. Therefore, we apply a

104

year-to-year difference, i.e., ∆Mit(m) = Mi,t(m) −Mi,t−1(m) for all i, 1 ≤ m ≤ 12, and

t = 2011, . . . , 2019. Additionally, we remove companies that have outlying values in these

series.

In addition to these financial time series, we also make use of the information from

a pertinent collection of textual data: 10-K reports. Publicly traded companies in the

U.S. are required to file these annual reports with the aim of increasing transparency and

satisfying the regulation of exchanges. The reports are maintained by the Securities and

Exchange Commission (SEC) in the Electronic Data Gathering, Analysis, and Retrieval

system (EDGAR), and provide information about a company’s risks, liabilities, and corporate

agreements and operations. Due to their significance in communicating information to the

public, the 10-K reports are an important corpus in finance, economics, and computational

social sciences studies (Hanley and Hoberg, 2019; Kogan et al., 2009; Gandhi et al., 2019;

Jegadeesh and Wu, 2013).

The corpus utilized in this application is sourced from the EDGAR-CORPUS, originally

prepared by Loukas et al. (2021). Our analysis specifically focuses on Section 7, titled “Man-

agement’s Discussion and Analysis.” To process the reports, we preprocess each document

using the default functionality in the gensim package in Python and discard the documents

that consist of fewer than 50 tokens. As a result, we have data of both the financial time

series and 10-K reports of 256 companies over the period from 2011 through 2019.

To extract features from the textual data, we employ a technique called Latent Semantic

Indexing (LSI, see, e.g., Deerwester et al., 1990). We first construct the term-document

matrix as follows. Suppose we have D documents in the training set, and there are V

distinct tokens in these documents. The term-document matrix Θ is a V ×D matrix, whose

105

entries are given by

Θij =(number of times the i-th token appears in document j)×

log
D

♯{1 ≤ k ≤ D : the i-th token appears in document k}
,

for 1 ≤ i ≤ V , 1 ≤ j ≤ D. The entries are known as one form of the term-frequency

inverse document frequency (TFIDF, see, e.g., Salton and Buckley, 1988). Then, to extract

K features from the text data, LSI uses the singular value decomposition,

Θ = UΘΣΘV⊤
Θ,

and the first K rows of ΣΘV⊤
Θ are used as the features in the training set. For a new

document in the test set, we compute its TFIDF representation θ ∈ RV , and then use

x = U⊤
Kθ as its textual features, where UK is the sub-matrix of the first K columns of UΘ.

3.5.2 Results

For each of the four financial response variables, we estimate the following model.

yit = β0 +A⊤
1 vi,t−1 +A⊤

2 mi,t−1 +A⊤
3 bi,t−1 +A⊤

4 ri,t−1 +A⊤
5 xi,t−1 + ϵit, (3.22)

where yit = (yit(1), . . . , yit(12))
⊤ is the response variable under study, vit = (Vit(1)

, . . . , Vit(12))
⊤, mit = (∆Mit(1), . . . ,∆Mit(12))

⊤, bit = (Bit(1), . . . , Bit(12))
⊤, rit =

(Rit(1), . . . , Rit(12))
⊤, xit ∈ RK is the extracted text features, and {β0,A1, . . . ,A5} are

unknown parameters. When predicting each of the four financial outcomes, we replace yit

in (3.22) with the corresponding vector (vit, mit, bit, or rit), while keeping the same model

structure. Since predicting next-year’s financial outcomes in one month is related to predict-

ing the same variable in other months, it is natural to expect low-rank coefficient matrices.

106

(3.22) can also be viewed as a multi-step ahead prediction model, since we are predicting

the next twelve months simultaneously.

When applying TSRGA to (3.22), we use a hold-out validation set from the training sam-

ple to select the just-in-time threshold tn from the grid (0.1, 0.2, . . . , 1.0)/ log n. In addition

to TSRGA, we employ several benchmark prediction methods, including the vector autore-

gression (VAR), reduced rank regression (RR; see, e.g., Chen et al., 2013), the integrative

reduced rank regression (iRRR, Li et al., 2019), and the Lasso. For VAR, we concatenate

all response variables and estimate the model

zit = A⊤zi,t−1 + eit,

where zit = (v⊤it ,m
⊤
it ,b

⊤
it , r

⊤
it)

⊤ ∈ R48. Alternatively, we can implement VAR in a group-

wise fashion (gVAR henceforth). Specifically, we separately estimate the model

yit = A⊤yi,t−1 + eit, (3.23)

for each response variable yit ∈ {vit,mit,bit, rit}. The reduced rank regression also es-

timates (3.23) with an intercept term and an additional rank constraint on the coefficient

matrix A in (3.23). We use the generalized cross validation (GCV, Golub et al., 1979) to

select the optimal rank. For Lasso, it is applied separately to each row of (3.22); namely, it

estimates

yit(m) = β0 +
12∑
j=1

αj,1Vi,t−1(j) +
12∑
j=1

αj,2∆Mi,t−1(j)

+
12∑
j=1

αj,3Bi,t−1(j) +
12∑
j=1

αj,4Ri,t−1(j) + ϵit,

for m = 1, 2, . . . , 12. Finally, we also apply the iRRR method of Li et al. (2019) to (3.22).

107

Table 3.3 presents the root mean squared prediction errors (RMSE) for different methods

on the test set, for which we reserved the last year of data. The results show that gVAR

consistently outperformed the usual VAR in all four financial variables, suggesting using

simple least squares could be harmful in prediction when including many financial series as

predictors. RR provides a slight improvement in predicting volatility, but performs similarly

as VAR and gVAR in predicting other targets. In the case of predicting volatility, the text

data proved to be quite useful, and TSRGA, iRRR, and Lasso have all outperformed gVAR

by more than 5% with different number of textual featuresK (except for Lasso withK = 50).

TSRGA and iRRR, utilizing both the text information and low-rank coefficient estimates,

yielded the smallest prediction errors. In some cases, they achieved 10% reduction in RMSE

compared with gVAR and RR. For the rest of the targets, the methods did not perform very

differently from gVAR and RR.

In addition to the prediction performance, we make two more remarks on the empirical

results. First, our finding that textual features are useful in predicting volatility is consistent

with previous studies. For instance, Kogan et al. (2009) reported that one-hot text features

are already effective in predicting volatility in a scalar linear regression, and Yeh et al. (2020)

also observed gains of using neural word embedding to predict volatility. Our results suggest

an alternative modeling choice: text data could explain each month’s volatility via a low-

rank channel. Second, low-rank models may not be suited for the trading volume series.

The RR selected a full-rank model and TSRGA iterated more steps before the just-in-time

stopping criterion was triggered.

The data set used in the application is relatively small, and can fit in most personal

computer’s memory. However, incorporating more sections of the 10-K reports or other

financial corpus may pose computational challenges due to the increased number of dense

text feature matrices. TSRGA can easily handle such cases when feature-distributed data

are inevitable.

108

Volatility Volume Beta Return
VAR 0.782 0.323 0.583 0.077
gVAR 0.750 0.319 0.556 0.073
RR 0.732 0.325 0.555 0.071

K = 50
Lasso 0.718 0.310 0.574 0.075
iRRR 0.688 0.318 0.568 0.072
TSRGA 0.702 0.345 0.572 0.072
K = 100

Lasso 0.700 0.308 0.574 0.074
iRRR 0.677 0.316 0.566 0.072
TSRGA 0.678 0.330 0.571 0.072
K = 150

Lasso 0.693 0.308 0.571 0.073
iRRR 0.667a 0.314 0.566 0.072
TSRGA 0.681 0.332 0.573 0.072
K = 200

Lasso 0.684 0.309 0.574 0.073
iRRR 0.663a 0.314 0.567 0.072
TSRGA 0.654a,b 0.345 0.574 0.072

Table 3.3: Root mean squared prediction errors on the test dataset. Entries in boldface are
at least 5% below gVAR; a means 10% below gVAR, and b means 10% below RR.

3.6 Horizontal partition for big feature-distributed data

In this section, we briefly discuss the usage of TSRGA when the sample size n, in addition

to the dimension pn, is also large so that storing (Y,Xj) in one machine is infeasible. In

this case, we also horizontally partition the (feature-distributed) data matrices and employ

more computing nodes.

To fix ideas, for h = 1, 2, . . . , H, let

Y(h) = (ymh−1+1, . . . ,ymh)
⊤, and Xj,(h) = (xmh−1+1,j , . . . ,xmh,j)

⊤

be horizontal partitions of Y and Xj , j = 1, . . . , pn, where 0 = m0 < m1 < . . . < mH = n.

In the distributed computing system, we label the nodes by (h, c), so that the (h, c)-th node

109

owns data Y(h) and {Xj,(h) : j ∈ Ic}, where h ∈ [H], c ∈ [M] and ∪c∈[M]Ic = [pn]. For

ease in illustration, we further assume {Ic : c ∈ [M]} forms a partition of [pn]. Therefore,

each computing node only owns a slice of the samples on a subset Ic of the predictors as

well as the same slice of the response variables. Moreover, let I(j) = {(h, c) : j ∈ Ic} be the

indices of the nodes that have some observations of predictor j.

We call the nodes that own the h-th slice of data “segment h”. That is, {(k, c) : k =

h}. Note that each segment is essentially the feature-distributed framework discussed in

the previous sections. In what follows, quantities computed at nodes in segment h carry

a subscript (h). For example, Σ̂j,(h) = n−1
h X⊤

j,(h)
Xj,(h), where nh = mh − mh−1. For

simplicity, we also assume n1 = . . . = nH in this section. Finally, we again assume there is

at least one master node to coordinate all the computing nodes {(h, c) : h ∈ [H], c ∈ [M]}.

To estimate (3.2) with the horizontally partitioned feature-distributed data described

above, we suggest the following procedure. First, we obtain a set of potentially relevant

predictors Ĵ and their respective upper bounds on the coefficient ranks r̂j by running the

first-stage RGA with the just-in-time stopping criterion. This can be done by applying

Algorithm 1 to one segment. Alternatively, one can apply it to multiple segments in parallel

and set Ĵ = ∩hĴ(h) and r̂j = minh r̂j,(h). In either case, Theorem 3.3.1 ensures the sure-

screening property as n1 → ∞ if (C1)-(C4) hold in each of the segments. By Lemma 3.3.1,

this step costs Op(s
2
n(n1+dn)) bytes of communication per node in the segment(s) involved.

Next, for each j ∈ Ĵ , each node (h, c) ∈ I(j) computes X⊤
j,(h)

Xj,(h) and, if qn,j ∧ dn >

r̂ =
∑

j r̂j , additionally computes X⊤
j,(h)

Y(h). Then, send these matrices to the master node.

The master node computes Σ̂−1
j = (

∑H
h=1X

⊤
j,(h)

Xj,(h))
−1 and the leading r̂ singular vectors

of
∑H

h=1X
⊤
j,(h)

Y(h), which form the column vectors of Uj and Vj . Then (Σ̂−1
j ,Uj ,Vj) (or

just Σ̂−1
j if qn,j ∧ dn ≤ r̂) are sent back to I(j). This step costs Op(

∑
j∈Ĵ{q

2
n,j + (qn,jdn +

r̂(qn,j + dn))1{qn,j ∧ dn > r̂}} bytes of communication per node.

Now we can start the second-stage RGA iterations. Initializing Ĝ
(0)
(h)

= 0 and Û
(0)
(h)

=

110

Y(h) for each computing nodes. At iteration k, for each j ∈ Ĵ , nodes in I(j) send

U⊤
j Σ̂

−1
j X⊤

j,(h)
Û

(k−1)
(h)

Vj to the master. The master aggregates the matrices

Pj =
H∑
h=1

U⊤
j Σ̂

−1
j X⊤

j,(h)Û
(k−1)
(h)

Vj : j ∈ Ĵ

 ,

and decides ĵk = argmax
j∈Ĵ σ1(Pj) and Ŝk = Lnuv

⊤, where (u,v) are the leading sin-

gular vectors of P
ĵk

. The master node sends Ŝk to the nodes in I(ĵk). Sending the ma-

trix U⊤
j Σ̂

−1
j X⊤

j,(h)
Û

(k−1)
(h)

Vj requires O(r̂2) bytes of communication if qn,j ∧ dn > r̂, and

O(qn,jdn) bytes otherwise. Each computing node also receives O(r̂) or O(qn,j + dn) bytes of

data from the master, depending on whether q
n,ĵk

∧ dn is greater than r̂.

To compute λ̂k, each node (h, c) ∈ I(ĵk) computes and sends to the master

Ah = Û
(k−1)⊤
(h)

X
ĵk,(h)

Σ̂−1
ĵk

U
ĵk
ŜkV

⊤
ĵk

− Û
(k−1)⊤
(h)

Ĝ
(k−1)
(h)

,

and

ah = ∥X
ĵk,(h)

Σ̂−1
ĵk

U
ĵk
ŜkV

⊤
ĵk

− Ĝ
(k−1)
(h)

∥2F .

The master then is able to compute λ̂k = max{min{λ̂k,uc, 1}, 0}, where

λ̂k,uc =
tr(
∑H

h=1Ah)∑H
h=1 ah

.

Subsequently, λ̂k is sent to all nodes. In this step, because Ĝ
(k−1)
h is of rank at most k − 1,

sending Ah costs O(dn(k ∧ dn)) bytes of communication.

111

Finally, each node (h, c) ∈ I(ĵk) updates

Ĝ
(k)
(h)

=(1− λ̂k)Ĝ
(k−1)
(h)

+ λ̂kXĵk,(h)
Σ̂−1
ĵk

U
ĵk
ŜkV

⊤
ĵk
,

Û
(k)
(h)

=Y(h) − Ĝ
(k)
(h)
,

B̂
(k)

ĵk
=(1− λ̂k)B̂

(k−1)

ĵk
+ λ̂kΣ̂

−1
ĵk

U
ĵk
ŜkV

⊤
ĵk
,

B̂
(k)
j =(1− λ̂k)B̂

(k−1)
j , j ∈ Ic − {ĵk},

and also sends (possibly via the master node) the matrix X
ĵk,(h)

Σ̂−1
ĵk

U
ĵk
ŜkV

⊤
ĵk

(which is of

rank one and costs O(n1+dn) bytes of communication) to the nodes {(h, c′) : c′ ̸= c}. Then

the node (h, c′) /∈ I(ĵk) is able to update Ĝ
(k)
(h)

, Û(k)
(h)

, and B̂
(k)
j as above.

It can be verified the above procedure implements the second-stage RGA. Moreover, the

communication cost for node (h, c) at the k-th iteration is at most

O

 ∑
j∈Ĵ∩Ic

(
r̂21{qn,j ∧ dn > r̂}+ qn,jdn1{qn,j ∧ dn ≤ r̂}

)
+ dnk + n1

 .

As a result, the above procedure to implement TSRGA has the following guarantee.

Corollary 3.6.1. Suppose Ĵ and {r̂j : j ∈ Ĵ} satisfy the sure-screening property (3.12) as

n1 → ∞, and assume (C1)-(C6). If max1≤j≤pn qn,j = O(nα1), then the above procedure

achieves an error of order

1

dn

pn∑
j=1

∥B∗
j − B̂j∥2F = Op

(
snξ

2
n

n2dn
log

n2dn
ξ2n

+
ξ2n
n2δ2n

1{Jo ̸= ∅}
)

with a communication complexity per computing node of order

Op

(
n
max{2α,1}
1 s2n + (s2nn

α
1 dn + n1) log

n2dn
ξ2n

+ s10n log
n2dn
ξ2n

+ dns
8
n

(
log

n2dn
ξ2n

)2
)
.

112

The proof of Corollary 3.6.1 is an accounting on the communication costs shown above,

whose details are relegated to Section 3.8.3. The communication complexity is still free

of the ambient dimension pn, but the dimension of the predictors max1≤j≤pn qn,j comes

into play, which was not a factor in the purely feature-distributed case. The additional

communication between segments could inflate the communication complexity compared

to the purely feature-distributed case. If α ≤ 0.5 and sn = O(1), the communication

complexity, up to poly-logarithmic factors, reduces to Op(n1+n
α
1 dn+dn), which is no larger

than the purely feature-distributed case Op(n1 + dn) if dn = O(n1−α
1). On the other hand,

if α > 0.5 and sn = O(1), the communication complexity becomes Op(n
2α
1 + nα1 dn) (again

ignoring poly-logarithmic terms), which is higher than the purely feature-distributed case.

These costs are incurred in the greedy search as well as in the determination of λ̂k. Finally,

we note that the above procedure is sequential, and certain improvements can be achieved

with some carefully designed communication protocol. However, methods or algorithms for

speeding up convergence or lowering communication of the proposed TSRGA with horizontal

partition is left for future research.

3.7 Conclusion

This chapter presented a two-stage relaxed greedy algorithm (TSRGA) for estimating high-

dimensional multivariate linear regression models with feature-distributed data. Our main

contribution is that the communication complexity of TSRGA is independent of the feature

dimension, which is often very large in feature-distributed data. Instead, the complexity

depends on the sparsity of the underlying model, making the proposed approach a highly

scalable and efficient method for analyzing large data sets. We also briefly discussed applying

TSRGA to huge data sets that require both vertical and horizontal partitions.

We would like to point out a possible future extension. In some applications, it is of

paramount importance to protect the privacy of each node’s data. Thus, modifying TSRGA

113

so that privacy can be guaranteed for feature-distributed data is an important direction for

future research.

3.8 Supplementary details

3.8.1 Second-stage RGA with feature-distributed data

The following algorithm presents the pseudo-code for the implementation of the second-stage

RGA with feature-distributed data.

3.8.2 Proofs

This section presents the essential elements of the proofs of our main results. Further tech-

nical details are relegated to Section 3.8.3.

The analysis of TSRGA relies on what we call the “noiseless updates,” a theoretical device

constructed as follows. Initialize G(0) = 0 and U(0) = Ỹ. For 1 ≤ k ≤ Kn, suppose (ĵk, B̃ĵk
)

is chosen according to (3.3) by the first-stage RGA. The noiseless updates are defined as

G(k) =(1− λk)Ĝ
(k−1) + λkXĵk

B̃
ĵk
, (3.24)

where

λk ∈ arg min
0≤λ≤1

∥Ỹ − (1− λ)Ĝ(k−1) − λX
ĵk
B̃
ĵk
∥2F . (3.25)

Recall that Ỹ =
∑pn

j=1XjB
∗
j is the noise-free part of the response. Thus G(k) is unattainable

in practice. Similarly, we can define the noiseless updates for the second-stage RGA, with

B̃
ĵk

replaced by Σ̂−1
ĵk

U
ĵk
ŜkV

⊤
ĵk

in (3.24) and (3.25). By definition of the updates, for first-

and second-stage RGA,

114

Algorithm 2: Feature-distributed second-stage RGA
Input: Number of required iterations Kn, Ln > 0, pre-selected Ĵ .
Output: Each worker 1 ≤ c ≤ M has the coefficient matrices {B̂j : j ∈ Ic} to use for

prediction.
Initialization: B̂j = 0, for all j, and Ĝ(0) = 0

1 for k = 1, 2, . . . ,Kn do
2 Workers c = 1, 2, . . . ,M in parallel do
3 if k > 1 then
4 Receive (c∗, λ̂k−1, σĵk−1

,uĵk−1
,vĵk−1

) from the master.

5 Ĝ(k−1) = (1− λ̂k−1)Ĝ
(k−2) + λ̂k−1σĵk−1

uĵk−1
v⊤
ĵk−1

.

6 B̂j = (1− λ̂k−1)B̂j for j ∈ Ic ∩ Ĵ .
7 if c = c∗ then
8 B̂

ĵ
(c)
k−1

= B̂ĵk−1
+ λ̂k−1Σ̂

−1

ĵ
(c)
k−1

U
ĵ
(c)
k−1

Ŝ
(c)
k−1V

⊤
ĵ
(c)
k−1

9 end
10 end
11 Û(k−1) = Y − Ĝ(k−1)

12 (ĵ
(c)
k , Ŝ

(c)
k) ∈ argmax j∈Ic∩Ĵ

∥Sk∥∗≤Ln

|⟨Û(k−1),XjΣ̂
−1
j UjSkV

⊤
j ⟩|

13 ρc = |⟨Û(k−1),X
ĵ
(c)
k

Σ̂−1

ĵ
(c)
k

U
ĵ
(c)
k

Ŝ
(c)
k V⊤

ĵ
(c)
k

⟩|

14 Find the leading singular value decomposition:

X
ĵ
(c)
k

Σ̂−1

ĵ
(c)
k

U
ĵ
(c)
k

Ŝk(c)V
⊤
ĵ
(c)
k

= σ
ĵ
(c)
k

u
ĵ
(c)
k

v⊤
ĵ
(c)
k

15 Send (σ
ĵ
(c)
k

,u
ĵ
(c)
k

,v
ĵ
(c)
k

, ρc) to the master.

16 end
17 Master do
18 Receives {(σ

ĵ
(c)
k

,u
ĵ
(c)
k

,v
ĵ
(c)
k

, ρc) : c = 1, 2, . . . ,M} from the workers.

19 c∗ = argmax1≤c≤M ρc
20 σĵk = σ

ĵ
(c∗)
k

,uĵk
= u

ĵ
(c∗)
k

,vĵk
= v

ĵ
(c∗)
k

21 Ĝ(k) = (1− λ̂k)Ĝ
(k−1) + λ̂kσĵkuĵk

v⊤
ĵk

, where λ̂k is determined by

λ̂k ∈ arg min
0≤λ≤1

∥Y − (1− λ)Ĝ(k−1) − λσĵkuĵk
v⊤
ĵk
∥2F .

22 Broadcast (c∗, λ̂k, σĵk ,uĵk
,vĵk

) to all workers.
23 end
24 end

115

∥Ỹ − Ĝ(k)∥2F ≤∥Ỹ −G(k)∥2F + 2⟨E, Ĝ(k) −G(k)⟩

≤∥Ỹ − Ĝ(k−1)∥2F + 2⟨E, Ĝ(k) −G(k)⟩ (3.26)

Recursively applying (3.26), we have for any 1 ≤ l ≤ k,

∥Ỹ − Ĝ(k)∥2F ≤∥Ỹ − Ĝ(k−l)∥2F + 2
l∑

j=1

⟨E, Ĝ(k−j+1) −G(k−j+1)⟩. (3.27)

(3.27) bounds the empirical prediction error at step k by the empirical prediction error at

step k − l and a remainder term involving the noise and the noiseless updates up to step l.

This will be handy in numerous places throughout the proofs.

Two other useful identities are

max
1≤j≤pn

∥Bj∥∗≤Ln

⟨A,XjBj⟩ = sup

Bj∈R
qn,j×dn ,j=1,2,...,,pn∑

j ∥Bj∥∗≤Ln

〈
A,

pn∑
j=1

XjBj

〉
(3.28)

and

max
j∈Ĵ

∥S∥∗≤Ln

⟨A,XjΣ̂
−1
j UjSV

⊤
j ⟩ = sup∑

j∈Ĵ ∥Sj∥∗≤Ln

〈
A,
∑
j∈Ĵ

XjΣ̂
−1
j UjSjV

⊤
j

〉
, (3.29)

where A ∈ Rn×dn is arbitrary. These identities hold because the maximum of the inner

product is attained at the extreme points in the ℓ1 ball. The proofs are omitted for brevity.

We first prove an auxiliary lemma which guarantees sub-linear convergence of the empir-

ical prediction error, whose proof makes use of the noiseless updates introduced above.

Lemma 3.8.1. Assume (C1)-(C2) and that
∑pn

j=1 ∥B
∗
j∥∗ ≤ d

1/2
n L. RGA has the following

116

uniform rate of convergence.

max
1≤k≤Kn

(ndn)
−1∥Ỹ − Ĝ(k)∥2F

k−1
= Op(1). (3.30)

Proof. Let 1 ≤ m ≤ Kn be arbitrary. Note that for any 1 ≤ k ≤ Kn,

⟨Ỹ − Ĝ(k−1),X
ĵk
B̃
ĵk

− Ĝ(k−1)⟩

=⟨Y − Ĝ(k−1),X
ĵk
B̃
ĵk

− Ĝ(k−1)⟩ − ⟨E,X
ĵk
B̃
ĵk

− Ĝ(k−1)⟩

≥ max
1≤j≤pn

∥Bj∥∗≤Ln

{⟨Y − Ĝ(k−1),XjBj − Ĝ(k−1)⟩} − 2LnξE

≥ max
1≤j≤pn

∥Bj∥∗≤Ln

{⟨Ỹ − Ĝ(k−1),XjBj − Ĝ(k−1)⟩} − 4LnξE . (3.31)

Put

En(m) =

 min
1≤l≤m

max
1≤j≤pn

∥Bj∥∗≤Ln

⟨Ỹ − Ĝ(l−1),XjBj − Ĝ(l−1)⟩ > τ̃d
1/2
n ξE

 , (3.32)

for some τ̃ > 4L0. It follows from (3.28) and (3.31) that on En(m), for all 1 ≤ k ≤ m,

⟨Ỹ − Ĝ(k−1),X
ĵk
B̃
ĵk

− Ĝ(k−1)⟩

≥(1− 4L0
τ̃

) max
1≤j≤pn
∥Bj∥∗≤L

{⟨Ỹ − Ĝ(k−1),XjBj − Ĝ(k−1)⟩}

≥(1− 4L0
τ̃

)∥Ỹ − Ĝ(k−1)∥2F

:=τ∥Ỹ − Ĝ(k−1)∥2F (3.33)

≥0,

117

where τ = 1− 4L0/τ̃ . This, together with Lemma 3.8.2(iii) in Section 3.8.3, implies

λk =
⟨Ỹ − Ĝ(k−1),X

ĵk
B̃
ĵk

− Ĝ(k−1)⟩

∥X
ĵk
B̃
ĵk

− Ĝ(k−1)∥2F

for 1 ≤ k ≤ m on En(m) except for a vanishing event. This, combined with (3.26) and

(3.33), yields

∥Ỹ − Ĝ(k)∥2F ≤∥Ỹ −G(k)∥2F + 2⟨E, Ĝ(k) −G(k)⟩

=∥Ỹ − Ĝ(k−1) − λk(Xĵk
B̃
ĵk

− Ĝ(k−1))∥2F + 2⟨E, Ĝ(k) −G(k)⟩

=∥Ỹ − Ĝ(k−1)∥2F −
⟨Ỹ − Ĝ(k−1),X

ĵk
B̃
ĵk

− Ĝ(k−1)⟩2

∥X
ĵk
B̃
ĵk

− Ĝ(k−1)∥2F
+ 2⟨E, Ĝ(k) −G(k)⟩

≤∥Ỹ − Ĝ(k−1)∥2F

1−
τ2∥Ỹ − Ĝ(k−1)∥2F

∥X
ĵk
B̃
ĵk

− Ĝ(k−1)∥2F

+ 2⟨E, Ĝ(k) −G(k)⟩

(3.34)

for all 1 ≤ k ≤ m on En(m) except for a vanishing event. By (C1), with probability tending

to one, ∥X
ĵk
B̃
ĵk

− Ĝ(k−1)∥2F ≤ 4L2nnµ and ∥Ỹ∥2F ≤ (1− ϵL)
2L2nnµ. Now by Lemma 3.8.3

and Lemma 3.8.2(ii) in Section 3.8.3, we have

1

ndn
∥Ỹ − Ĝ(m)∥2F ≤

4L20µ

1 +mτ2
+ 2

m∑
l=1

|⟨E, Ĝ(l) −G(l)⟩|
ndn

=
4L20µ

1 +mτ2
+ 2

m∑
l=1

|λ̂l − λl|
|⟨E,X

ĵl
B̃
ĵl
− Ĝ(l−1)⟩|

ndn

≤
4L20µ

1 +mτ2
+

8

1− ϵL

mξ2E
n2dn

, (3.35)

on En(m) except for a vanishing event. Note that by (C2), mξ2E/(n
2dn) ≤

m−1(KnξE/(nd
1/2
n))2 = Op(m

−1). Furthermore, it is shown in Section 3.8.3 that on Ecn(m)

118

except for a vanishing event,

1

ndn
∥Ỹ − Ĝ(m)∥2F ≤ τ̃ ξE

n
√
dn

+
8mξ2E

(1− ϵL)n
2dn

. (3.36)

Combining (3.35) and (3.36) yields the desired result.

Now we are ready to prove the main results.

Proof of Theorem 3.3.1. Since d
1/2
n L ≥

∑pn
j=1 ∥B

∗
j∥∗ ≥ ♯(Jn)minj∈Jn σr∗j (B

∗
j) and

sn = o(K2
n), it follows that ♯(Jn) = o(Kn), and by (C3), with probability tending to one,

λmin(X(Ĵk ∪ Jn)
⊤X(Ĵk ∪ Jn)) ≥ nµ−1, for all 1 ≤ k ≤ Kn, where Ĵk = {ĵ1, ĵ2, . . . , ĵk}.

Let Gn = {there exists some j such that rank(B∗
j) > rank(B̂

(k̂)
j)}. Then on Gn except for

a vanishing event, it follows from (3.28), (C3), Eckart-Young theorem and (C4) that

min
1≤m≤k̂

max
1≤j≤pn
∥Bj∥∗≤L

⟨Ỹ − Ĝ(m),XjBj − Ĝ(m)⟩ ≥ min
1≤m≤k̂

∥Ỹ − Ĝ(m)∥2F

≥nµ−1 min
1≤m≤k̂

∥B∗
j − B̂

(m)
j ∥2F

≥nµ−1 min
rank(B)<r∗j

∥B∗
j −B∥2F

≥ndn
µsn

. (3.37)

By (3.37), (C2) and (C4), we have limn→∞ P
(
Gn ∩ Ecn(k̂)

)
≤ limn→∞ P(nd1/2n ≤ τ̃µsnξE) =

0, where En(·) is defined in (3.32). Hence it suffices to show limn→∞ P(Gn ∩ En(k̂)) = 0. By

(3.37) and the same argument as in (3.34), on Gn ∩ En(k̂) except for a vanishing event,

∥Ỹ − Ĝ(k)∥2F ≤∥Ỹ − Ĝ(k−1)∥2F

1−
τ2∥Ỹ − Ĝ(k−1)∥2F

∥X
ĵk
B̃
ĵk

− Ĝ(k−1)∥2F

+ 2⟨E, Ĝ(k) −G(k)⟩

≤∥Ỹ − Ĝ(k−1)∥2F

{
1− τ2s−1

n

4L20µ
2

}
+ 2⟨E, Ĝ(k) −G(k)⟩,

119

and thus

ndnσ̂
2
k ≤ ∥Ỹ − Ĝ(k−1)∥2F

(
1− τ2s−1

n

4L20µ
2

)
+ ∥E∥2F + 2⟨E, Ỹ − Ĝ(k), ⟩

for 1 ≤ k ≤ k̂. It follows that

σ̂2k
σ̂2k−1

≤
(ndn)

−1∥Ỹ − Ĝ(k−1)∥2F + (ndn)
−1∥E∥2F + 4L0ξE/(nd

1/2
n)

(ndn)−1∥Ỹ − Ĝ(k−1)∥2F + (ndn)−1∥E∥2F − 4L0ξE/(nd
1/2
n)

− τ2s−1
n

4L20µ
2

(ndn)
−1∥Ỹ − Ĝ(k−1)∥2F

(ndn)−1∥Ỹ − Ĝ(k−1)∥2F + (ndn)−1∥E∥2F − 4L0ξE/(nd
1/2
n)

:=Ak −Bk, (3.38)

for 1 ≤ k ≤ k̂ on Gn ∩ En(k̂) except for a vanishing event. We show in Section 3.8.3 that on

Gn ∩ En(k̂) except for a vanishing event, for all 1 ≤ k ≤ k̂,

Ak ≤ 1 +
12ML0ξE

nd
1/2
n

, (3.39)

and

Bk ≥ τ2

4L20µ
2
s−1
n

1

1 + µMsn

(
1− 4ML0ξE

nd
1/2
n

)
. (3.40)

By (3.38)-(3.40), max
1≤k≤k̂

σ̂2k/σ̂
2
k−1 ≤ 1− s−2

n Cn, where

Cn =
τ2

4L20µ
2

1

µM + s−1
n

(
1− 4ML0ξE

nd
1/2
n

)
− 12ML0

s2nξE

nd
1/2
n

.

By (C2) and (C4), it can be shown that there exists some v > 0 such that Cn ≥ v with

120

probability tending to one. Therefore, by the definition of k̂,

P(Gn ∩ En(k̂)) ≤P(k̂ < Kn,Gn ∩ En(k̂)) + P(k̂ = Kn,Gn ∩ En(k̂))

≤P(max
1≤k≤k̂

σ̂2k/σ̂
2
k−1 ≤ 1− vs−2

n , k̂ < Kn) + P(k̂ = Kn,Gn ∩ En(k̂)) + o(1)

=P(k̂ = Kn,Gn ∩ En(k̂)) + o(1), (3.41)

if tn = Cs−2
n in (3.6) is chosen with C < v. In view of (3.41), it remains to show P(k̂ =

Kn,Gn ∩ En(k̂)) = o(1). Since sn = o(Kn) by (C4), it follows from (3.37) and Lemma 3.8.1

that

P(k̂ = Kn,Gn) ≤P
(

1

ndn
∥Ỹ − Ĝ(Kn)∥2F ≥ 1

µsn

)
+ o(1)

=P

(
(ndn)

−1∥Ỹ − Ĝ(Kn)∥2F
K−1
n

≥ Kn

µsn

)
+ o(1)

=o(1),

which completes the proof.

Proof of Lemma 3.3.1. Letting an = ⌊Ds2n⌋ for some arbitrary D > 0, we have

P(k̂ > an) ≤P

(
σ̂2an
σ̂2an−1

< 1− Cs2n

)

=P

(
Cs−2

n <
σ̂2an−1 − ζ2n − (σ̂2an − ζ2n)

ζ2n + σ̂2an−1 − ζ2n

)

≤P

(
Cs−2

n <
σ̂2an−1 − ζ2n

M−1 + σ̂2an−1 − ζ2n
+

4L0ξEn
−1d

−1/2
n

M−1 + σ̂2an−1 − ζ2n

)
+ o(1). (3.42)

121

Put An = {σ̂2an−1 − ζ2n > 0}. Then (3.42) implies

P(k̂ > an, An) ≤P

(
M−1 + σ̂2an−1 − ζ2n <

σ̂2an−1 − ζ2n

Cs−2
n

+
4L0s

2
nξE

Cnd
1/2
n

, An

)
+ o(1)

≤P

(
M−1 < Zn

s2n
C(an − 1)

+
4L0
C

s2nξE

nd
1/2
n

)
+ o(1),

where

Zn := max
1≤k≤Kn

|(ndn)−1∥Y − Ĝ(k)∥2F − ζ2n|
k−1

.

Since |(ndn)−1∥Y − Ĝ(k)∥2F − ζ2n| ≤ (ndn)
−1∥Ỹ − Ĝ(k)∥2F + 4L0ξEn

−1d
−1/2
n , where ζ2n =

(ndn)
−1∥E∥2F , it follows from Lemma 3.8.1 that Zn = Op(1). Thus lim supn→∞ P(k̂ >

an, An) → 0 as D → 0. On Ac
n, it is not difficult to show that

σ̂2an − ζ2n ≤ σ̂2an−1 − ζ2n ≤ 0

and

max

{
1

ndn
∥Ỹ − Ĝ(an−1)∥2F ,

1

ndn
∥Ỹ − Ĝ(an)∥2F

}
≤ 4L0ξE

nd
1/2
n

.

It follows that on Ac
n,

σ̂2an
σ̂2an−1

=1−
σ̂2an−1 − σ̂2an

σ̂2an−1

≥1−
σ̂2an−1 − ζ2n − (σ̂2an − ζ2n)

ζ2n − 4L0ξEn
−1d

−1/2
n

≥1− 1

ζ2n − 4L0ξEn
−1d

−1/2
n

16L0ξE

nd
1/2
n

.

122

By (C4), we have

P(k̂ > an, A
c
n) ≤P

(
Cs−2

n ≤ 1

ζ2n − 4L0ξEn
−1d

−1/2
n

16L0ξE

nd
1/2
n

)
= o(1),

which completes the proof.

Before proving Theorem 3.3.2, we introduce the following uniform convergence rate for

the second-stage RGA, which is also of independent interest.

Theorem 3.8.1. Assume the same as Theorem 3.3.1, and additionally (C5) and (C6) hold.

The second-stage RGA satisfies

max
1≤m≤Kn

(ndn)
−1∥Ỹ − Ĝ(m)∥2F(

1− τ2

64µ5κn

)m
+

(m+κn)ξ2E
n2dn

+
ξ2E
δ2nn

21{Jo ̸= ∅}
= Op(1), (3.43)

where τ < 1 is an absolute constant.

Proof. By Theorem 3.3.1, we can assume rank(B∗
j) ≤ r̂j holds for all j in the following

analysis. Let 1 ≤ m ≤ Kn be arbitrary. Observe that for the second-stage RGA, each Ĝ(k),

k = 1, 2, . . ., lies in the set

CL =

H =
∑
j∈Ĵ

XjΣ̂
−1
j UjDjV

⊤
j :
∑
j∈Ĵ

∥Dj∥∗ ≤ Ln

 . (3.44)

By (3.29) and a similar argument as (3.31)-(3.33), we have, for all 1 ≤ k ≤ m,

⟨Ỹ − Ĝ(k−1),X
ĵk
Σ̂−1
ĵk

U
ĵk
ŜkV

T
ĵk

− Ĝ(k−1)⟩

≥τ max
j∈Ĵ

k̂
∥S∥∗≤Ln

⟨Ỹ − Ĝ(k−1),XjΣ̂
−1
j UjSV

⊤
j − Ĝ(k−1)⟩

=τ sup
H∈CL

⟨Ỹ − Ĝ(k−1),H− Ĝ(k−1)⟩, (3.45)

123

where τ = 1− 4µL0/τ̃ and τ̃ > 4µL0 on the event

Fn(m) =

 min
1≤k≤m

max
j∈Ĵ

k̂
∥S∥∗≤Ln

⟨Ỹ − Ĝ(k−1),XjΣ̂
−1
j UjSV

⊤
j − Ĝ(k−1)⟩ > τ̃d

1/2
n ξE

 .

Define

B =

H =
∑
j∈Ĵ

k̂

XjΣ̂
−1
j UjDjV

⊤
j : ∥Ȳ −H∥2F ≤

9ndnL
2
0

16µ3κn

 ,

where

Ȳ =
∑
j∈Ĵo

XjΣ̂
−1
j UjLjΛjR

⊤
j V

⊤
j +

∑
j∈Ĵ−Ĵo

XjB
∗
j , (3.46)

in which Ĵo = {j ∈ Ĵ : r̂ < min{qn,j , dn}}, Λj are defined in (C6), and Lj , Rj are

r̂ × r̄j matrices such that LT
j Lj = Ir̄j = RT

j Rj to be specified later (recall that r̂ ≥ r̄j =

rank(X⊤
j Ỹ) because of Theorem 3.3.1). We claim that

lim
n→∞

P(B ⊆ CL) = 1, (3.47)

whose proof is relegated to Section 3.8.3. Now put H(l) = Ĝ(l) + (1 + αl)(Ȳ − Ĝ(l)) for

l = 1, 2, . . ., where

αl =
3
√
ndnL0

4µ3/2
√
κn∥Ȳ − Ĝ(l)∥F

≥ 0.

124

Then (3.47) implies that P(H(l) ∈ CL, l = 1, 2, . . .) → 1. Thus by (3.45),

⟨Ỹ − Ĝ(k−1),X
ĵk
Σ̂−1
ĵk

U
ĵk
ŜkV

⊤
ĵk

− Ĝ(k−1)⟩

≥ τ⟨Ỹ − Ĝ(k−1),H(k−1) − Ĝ(k−1)⟩ (3.48)

for all 1 ≤ k ≤ m on Fn(m) except for a vanishing event. Put Hn(m) = {∥Ỹ − Ȳ∥F <

2−1min1≤l≤m ∥Ȳ − Ĝ(l−1)∥F }. On Fn(m) ∩ Hn(m) except for a vanishing event, (3.48)

and Cauchy-Schwarz inequality yield

⟨Ỹ − Ĝ(k−1),X
ĵk
Σ̂−1
ĵk

U
ĵk
ŜkV

⊤
ĵk

− Ĝ(k−1)⟩

≥τ⟨Ỹ − Ĝ(k−1),H(k−1) − Ĝ(k−1)⟩

≥τ(1 + αk−1)
{
∥Ȳ − Ĝ(k−1)∥2F − ∥Ỹ − Ȳ∥F ∥Ȳ − Ĝ(k−1)∥F

}
≥
τ(1 + αk−1)

2
∥Ȳ − Ĝ(k−1)∥2F ≥ 0

for all 1 ≤ k ≤ m. Notice that ∥Ȳ − Ĝ(k−1)∥F ≥ (2/3)∥Ỹ − Ĝ(k−1)∥F for all 1 ≤ k ≤ m

125

on Hn(m). Hence, by Lemma 3.8.2(ii), (iii), and a similar argument used in (3.34),

∥Ỹ − Ĝ(k)∥2F ≤∥Ỹ − Ĝ(k−1)∥2F −
⟨Ỹ − Ĝ(k−1),X

ĵk
Σ̂−1
ĵk

U
ĵk
ŜkV

⊤
ĵk

− Ĝ(k−1)⟩2

∥X
ĵk
Σ̂−1
ĵk

U
ĵk
ŜkV

⊤
ĵk

− Ĝ(k−1)∥2F

+ 2⟨E, Ĝ(k) −G(k)⟩

≤∥Ỹ − Ĝ(k−1)∥2F − τ2⟨Ỹ − Ĝ(k−1),H(k−1) − Ĝ(k−1)⟩2

4nµL2n
+ 2⟨E, Ĝ(k) −G(k)⟩

≤∥Ỹ − Ĝ(k−1)∥2F −
τ2(1 + αk−1)

2

16nµL2n
∥Ȳ − Ĝ(k−1)∥4F + 2⟨E, Ĝ(k) −G(k)⟩

≤∥Ỹ − Ĝ(k−1)∥2F −
τ2∥Ỹ − Ĝ(k−1)∥2F

64µ4κn

+ 2(λ̂k − λk)⟨E,Xĵk
Σ̂−1
ĵk

U
ĵk
ŜkV

⊤
ĵk

− Ĝ(k−1)⟩

≤∥Ỹ − Ĝ(k−1)∥2F

(
1− τ2

64µ4κn

)
+

8µ

1− ϵL

ξ2E
n

for all 1 ≤ k ≤ m on Fn(m) ∩ Hn(m) except for a vanishing event. It follows that, on the

same event,

∥Ỹ − Ĝ(m)∥2F ≤ ∥Ỹ∥2F

(
1− τ2

64µ4κn

)m

+
8µ

1− ϵL

mξ2E
n

. (3.49)

By (3.29), on Fc
n(m) ∩Hn(m) there exists some 1 ≤ k ≤ m such that

τ̃ d
1/2
n ξE ≥⟨Ỹ − Ĝ(k−1),H(k−1) − Ĝ(k−1)⟩

≥(1 + αk−1)⟨Ỹ − Ĝ(k−1), Ȳ − Ĝ(k−1)⟩

≥1

2
(1 + αk−1)∥Ȳ − Ĝ(k−1)∥2F

≥ 3
√
ndnL0

8µ3/2
√
κn

∥Ȳ − Ĝ(k−1)∥F ,

126

which implies

∥Ỹ − Ĝ(m)∥2F ≤∥Ỹ − Ĝ(k−1)∥2F +
8µ

1− ϵL

(m− k)ξ2E
n

≤2∥Ỹ − Ȳ∥2F + 2∥Ȳ − Ĝ(k−1)∥2F +
8µ

1− ϵL

(m− k)ξ2E
n

≤5

2
∥Ȳ − Ĝ(k−1)∥2F +

8µ

1− ϵL

(m− k)ξ2E
n

≤
(
160τ̃2µ3

9L2
κn +

8µ

1− ϵL
(m− k)

)
ξ2E
n
. (3.50)

Next, on Hc
n(m), there exists some 1 ≤ k ≤ m such that ∥Ȳ − Ĝ(k−1)∥2F ≤ 4∥Ỹ − Ȳ∥2F .

By (3.27) and the parallelogram law,

∥Ỹ − Ĝ(m)∥2F ≤∥Ỹ − Ĝ(k−1)∥2F + 2
m∑
j=k

⟨E, Ĝ(j) −G(j)⟩

≤10∥Ỹ − Ȳ∥2F +
8µ

1− ϵL

(m− k)ξ2E
n

(3.51)

on Hc
n(m) except for a vanishing event. Finally, note that (3.49)-(3.51) are valid for any

choice of Lj and Rj so long as L⊤
j Lj = Ir̄j = R⊤

j Rj , j ∈ Ĵ . In Section 3.8.3, we show that

Lj , Rj , j ∈ Ĵo, can be chosen so that

1

ndn
∥Ỹ − Ȳ∥2F ≤ 8µL2

ξ2E
(nδn − ξE)

2
= Op

(
ξ2E
n2δ2n

)
. (3.52)

Hence, by (3.49)-(3.52), the desired result follows.

Now we are ready to prove our last main result.

Proof of Theorem 3.3.2. Note first that CL (defined in (3.44)) is a convex compact set

almost surely. Thus we can define Y∗ to be the orthogonal projection of Y onto CL. Since

127

Ĝ(m) ∈ CL and σ̂2m ≤ σ̂2mn
for m ≥ mn, it follows that for m ≥ mn,

∥Y∗ − Ĝ(m)∥2F =∥Y − Ĝ(m)∥2F − ∥Y −Y∗∥2F + 2⟨Y∗ −Y,Y∗ − Ĝ(m)⟩

≤∥Y − Ĝ(mn)∥2F − ∥Y −Y∗∥2F

=∥Y∗ − Ĝ(mn)∥2F − 2⟨Ỹ −Y∗, Ĝ(mn) −Y∗⟩ − 2⟨E, Ĝ(mn) −Y∗⟩

≤2∥Y∗ − Ĝ(mn)∥2F + ∥Y∗ − Ỹ∥2F − 2⟨E, Ĝ(mn) −Y∗⟩. (3.53)

Note that if H,G are in CL with H =
∑

j∈Ĵ XjΣ̂
−1
j UjS

H
j V⊤

j and G =
∑

j∈Ĵ XjΣ̂
−1
j UjS

G
j V

⊤
j ,

then by Proposition 1 and (C3) we have

∥H−G∥2F ≥ n

µ3κn

∑
j∈Ĵ

∥SHj − SGj ∥∗

2

.

Hence

|⟨E,H−G⟩| ≤ µξE
∑
j∈Ĵ

∥SHj − SGj ∥∗ ≤ ξE

√
µ5κn
n

∥H−G∥F . (3.54)

Combining (3.53) and (3.54) yields

∥Y∗ − Ĝ(m)∥2F ≤ 2∥Y∗ − Ĝ(mn)∥2F + ∥Y∗ − Ỹ∥2F + 2ξE

√
µ5κn
n

∥Y∗ − Ĝ(m)∥F .

Since x2 ≤ c+ bx (x, b, c ≥ 0) implies x ≤ (b+
√
b2 + 4c)/2, we have

∥Y∗ − Ĝ(m)∥2F ≤ 2∥Y∗ − Ỹ∥2F + 4∥Y∗ − Ĝ(mn)∥2F + 4µ5
κnξ

2
E

n
. (3.55)

128

By (3.55) and repeated applications of the parallelogram law, it is straightforward to show

1

ndn
∥Ỹ − Ĝ(m)∥2F ≤ C1

ndn

{
∥Ỹ −Y∗∥2F + ∥Ỹ − Ĝ(mn)∥2F +

µ5κnξ
2
E

n

}

for some absolute constant C1. The right-hand side does not depend on m, so the inequality

still holds if we take supremum over m ≥ mn on the left-hand side. Moreover, by (C3) and

Theorem 3.3.1, we have

sup
m≥mn

1

dn

pn∑
j=1

∥B∗
j − B̂

(m)
j ∥2F = Op

(
1

ndn

{
∥Ỹ −Y∗∥2F + ∥Ỹ − Ĝ(mn)∥2F +

µ5κnξ
2
E

n

})

(3.56)

By Theorem 3.8.1 and the choice of mn, we have

1

ndn
∥Ỹ − Ĝ(mn)∥2F = Op

(
κnξ

2
n

n2dn
log

n2dn
ξ2n

+
ξ2n
n2δ2n

)
. (3.57)

By (C6), it is not difficult to show Ȳ, defined in (3.46), is in CL. It follows from the definition

of Y∗ that

∥Ỹ −Y∗∥2F =∥Y −Y∗∥2F − ∥E∥2F − 2⟨E, Ỹ −Y∗⟩

≤∥Y − Ȳ∥2F − ∥E∥2F − 2⟨E, Ỹ −Y∗⟩

=∥Ỹ − Ȳ∥2F + 2⟨E,Y∗ − Ȳ⟩. (3.58)

By (3.54) again,

|⟨E,Y∗ − Ȳ⟩| ≤ ξE

(
µ5κn
n

)1/2

∥Ȳ −Y∗∥F . (3.59)

Now if ∥Ȳ −Y∗∥F ≥ 2∥Ỹ −Y∗∥F , then ∥Ȳ −Y∗∥F ≤ 2∥Ȳ − Ỹ∥F . This, together with

129

(3.58), (3.59), and (3.52), yields

∥Ỹ −Y∗∥2F ≤∥Ỹ − Ȳ∥2F + 4ξE

(
µ5κn
n

)1/2

∥Ȳ − Ỹ∥F

≤2∥Ỹ − Ȳ∥2F + 4µ5
κnξ

2
E

n

≤16µL20
ndnξ

2
E

(nδn − ξE)
2
+ 4µ5

κnξ
2
E

n
. (3.60)

On the other hand, if ∥Ȳ −Y∗∥F < 2∥Ỹ −Y∗∥F , then (3.58) and (3.59) imply

∥Ỹ −Y∗∥2F ≤∥Ỹ − Ȳ∥2F + 4ξE

(
µ5κn
n

)1/2

∥Ỹ −Y∗∥F .

By a similar argument used to obtain (3.55), this and (3.52) yield

∥Ỹ −Y∗∥2F ≤16µ5
κnξ

2
E

n
+ 2∥Ỹ − Ȳ∥2F

≤16µ5
κnξ

2
E

n
+ 16µL20

ndnξ
2
E

(nδn − ξE)
2
. (3.61)

In view of (3.56), (3.57), (3.60), (3.61) and (C5), the deisred result follows.

3.8.3 Further technical details

In this section, we present some additional auxiliary results along with the proofs of (3.36),

(3.39), (3.40), (3.47), (3.52). Some existing results that are useful in our proofs are also

stated here for completeness with the references to their proofs in the literature. These

results are stated in the forms that are most convenient for our use, which may not be in

full generality.

Proposition 1 (Ruhe, 1970). Let A,B be matrices with size m× n and n× p respectively.

130

Then

n∑
j=1

σ2j (A)σ2j (B) ≥ ∥AB∥2F ≥
n∑

j=1

σ2n−j+1(A)σ2j (B).

Remark 3.8.1. One consequence of this inequality we frequently use is σ21(A)∥B∥2F ≥

∥AB∥2F ≥ σ2n(A)∥B∥2F . Note also that by transposition the roles of A and B can be

interchanged on the left- and right-most expressions.

Lemma 3.8.2. Assume (C1)-(C2) and that
∑pn

j=1 ∥B
∗
j∥∗ ≤ L. Suppose Ln = d

1/2
n L0 is

chosen so that L0 ≥ L/(1 − ϵL) with 1 − ϵL ≤ 1/(4µ2). Then for first- and second-stage

RGA, with probability tending to one,

(i)

inf
k≥1

1

ndn
∥X

ĵk
B̃
ĵk

− Ĝ(k−1)∥2F ≥(1− ϵL)µL
2
0 (3.62)

inf
k≥1

1

ndn
∥X

ĵk
Σ̂−1
ĵk

U
ĵk
ŜkV

⊤
ĵk

− Ĝ(k−1)∥2F ≥(1− ϵL)µL
2
0 (3.63)

(ii)

sup
k≥1

|λk − λ̂k| ≤
2

(1− ϵL)L0

ξE
n
√
dn

(3.64)

(iii)

max
1≤k≤Kn

λk ≤ 1. (3.65)

Proof. We shall prove the results for the second-stage RGA. The corresponding proofs for

first-stage RGA follow similarly and thus are omitted. It is also sufficient to prove (i)-

(iii) assuming the condition described in (C1) holds almost surely because the event that

the condition holds has probability tending to one. It will greatly simplify the exposition

131

(without repeating that the inequalities holds except on a vanishing event). Note that

⟨X
ĵk
Σ̂−1
ĵk

U
ĵk
ŜkV

⊤
ĵk
, Ỹ − Ĝ(k−1)⟩

=⟨X
ĵk
Σ̂−1
ĵk

U
ĵk
ŜkV

⊤
ĵk
,Y − Ĝ(k−1)⟩ − ⟨X

ĵk
Σ̂−1
ĵk

U
ĵk
ŜkV

⊤
ĵk
,E⟩

≥ − |⟨X
ĵk
Σ̂−1
ĵk

U
ĵk
ŜkV

⊤
ĵk
,E⟩|

≥ − ∥Σ̂−1
ĵk

X⊤
ĵk
E∥op∥Uĵk

ŜkV
⊤
ĵk
∥∗

≥− µLnξE ,

where the first inequality follows because ⟨X
ĵk
Σ̂−1
ĵk

U
ĵk
ŜkV

T
ĵk
,Y − Ĝ(k−1)⟩ ≥ 0 with prob-

ability one and the second inequality follows because the dual norm of the nuclear norm is

the operator norm. By Proposition 1, we have

∥X
ĵk
Σ̂−1
ĵk

U
ĵk
ŜkV

⊤
ĵk

− Ĝ(k−1)∥2F

≥∥X
ĵk
Σ̂−1
ĵk

U
ĵk
ŜkV

⊤
ĵk
∥2F − 2⟨X

ĵk
Σ̂−1
ĵk

U
ĵk
ŜkV

⊤
ĵk
, Ĝ(k−1)⟩

≥nµ−1∥U
ĵk
ŜkV

⊤
ĵk
∥2F

+ 2⟨X
ĵk
Σ̂−1
ĵk

U
ĵk
ŜkV

⊤
ĵk
, Ỹ − Ĝ(k−1)⟩ − 2⟨X

ĵk
Σ̂−1
ĵk

U
ĵk
ŜkV

⊤
ĵk
, Ỹ⟩

≥nµ−1L2n − 2µLnξE − 2⟨X
ĵk
Σ̂−1
ĵk

U
ĵk
ŜkV

⊤
ĵk
, Ỹ⟩,

where the last inequality follows from the fact that Ŝk is rank-one with singular value

Ln. Thus, by writing Ŝk = Lnab
T for some unit vectors a,b, we have ∥U

ĵk
ŜkV

T
ĵk
∥2F =

132

L2n∥Uĵk
abTVT

ĵk
∥2F = L2n. Next, observe that

|⟨X
ĵk
Σ̂−1
ĵk

U
ĵk
ŜkV

⊤
ĵk
, Ỹ⟩| =

∣∣∣∣∣∣
pn∑
j=1

⟨X
ĵk
Σ̂−1
ĵk

U
ĵk
ŜkV

⊤
ĵk
,XjB

∗
j⟩

∣∣∣∣∣∣
≤

pn∑
j=1

∥B∗
j∥∗∥X

⊤
j Xĵk

Σ̂−1
ĵk

U
ĵk
ŜkV

⊤
ĵk
∥op

≤(1− ϵL)L
2
nnµ.

Therefore,

(ndn)
−1∥X

ĵk
Σ̂−1
ĵk

U
ĵk
ŜkV

⊤
ĵk

− Ĝ(k−1)∥2F ≥µ−1L20 − 2(1− ϵL)L
2
0µ− 2µL0

ξE
n
√
dn

≥2(1− ϵL)L
2
0µ− 2µL0

ξE
n
√
dn
.

Since ξE = op(n
√
dn) by (C2), (3.63) follows.

For (3.64), note first that if the solutions to the line search problems (3.9) and (3.25)

(with B̃
ĵk

replaced by Σ̂−1
ĵk

U
ĵk
ŜkV

⊤
ĵk

) for second-stage RGA are not constrained to be in

[0, 1], then they are given by

λ̂k,uc =
⟨Y − Ĝ(k−1),X

ĵk
Σ̂−1
ĵk

U
ĵk
ŜkV

⊤
ĵk

− Ĝ(k−1)⟩

∥X
ĵk
Σ̂−1
ĵk

U
ĵk
ŜkV

⊤
ĵk

− Ĝ(k−1)∥2F
,

λk,uc =
⟨Ỹ − Ĝ(k−1),X

ĵk
Σ̂−1
ĵk

U
ĵk
ŜkV

⊤
ĵk

− Ĝ(k−1)⟩

∥X
ĵk
Σ̂−1
ĵk

U
ĵk
ŜkV

⊤
ĵk

− Ĝ(k−1)∥2F
.

Since Ĝ(l) can always be expressed as Ĝ(l) =
∑

j∈Ĵ XjΣ̂
−1
j UjAjV

⊤
j with

∑
j∈Ĵ ∥Aj∥∗ ≤

133

Ln, it follows that

|λ̂k − λk| ≤ |λ̂k,uc − λk,uc| =
|⟨E,X

ĵk
Σ̂−1
ĵk

U
ĵk
ŜkV

⊤
ĵk

− Ĝ(k−1)⟩|

∥X
ĵk
Σ̂−1
ĵk

U
ĵk
ŜkV

⊤
ĵk

− Ĝ(k−1)∥2F

≤ 2LnµξE

∥X
ĵk
Σ̂−1
ĵk

U
ĵk
ŜkV

⊤
ĵk

− Ĝ(k−1)∥2F

≤ 2ξE

nd
1/2
n (1− ϵL)L0

,

with probability tending to one, where the last inequality follows from (3.63).

For (3.65), it suffices to prove that limn→∞ P(En) = 1, where En =
{
max1≤k≤Kn

λk,uc ≤ 1
}
.

On Ec
n, there exists some k such that, by Cauchy-Schwarz inequality and (3.27),

∥X
ĵk
Σ̂−1
ĵk

U
ĵk
ŜkV

T
ĵk

− Ĝ(k−1)∥2F ≤∥Ỹ − Ĝ(k−1)∥2F

≤∥Ỹ∥2F + 2
k−1∑
j=1

⟨E, Ĝ(k−j) −G(k−j)⟩

=∥Ỹ∥2F + 2
k−1∑
l=1

(λ̂l − λl)⟨E,Xĵl
Σ̂−1
ĵl

U
ĵl
ŜlV

⊤
ĵl
− Ĝ(l−1)⟩

≤∥Ỹ∥2F + 4KnLnµξE max
1≤l≤k

|λ̂l − λl|. (3.66)

It is easy to see that

∥Ỹ∥F =

∥∥∥∥∥∥
pn∑
j=1

XjB
∗
j

∥∥∥∥∥∥
F

≤ (1− ϵL)Ln
√
nµ. (3.67)

Thus, by (3.63), (3.64) and (3.66)-(3.67), we have

P(Ec
n) ≤ P

(
(1− ϵL)L

2
0µ{1− (1− ϵL)} ≤ 8µ

1− ϵL

Knξ
2
E

n2dn

)
+ o(1) = o(1),

where the last equality follows from (C2).

134

Lemma 3.8.3. Let {am} be a nonnegative sequence of reals. If

a0 ≤ A, and am ≤ am−1

(
1− ξ2am−1

A

)
+ bm,

for m = 1, 2, . . . , where bm ≥ 0 with b0 = 0, then for each m,

am ≤ A

1 +mξ2
+

m∑
k=0

bk. (3.68)

Proof. We prove by induction. When m = 0, (3.68) holds by assumption. Suppose now that

(3.68) holds for some m ≥ 1. Then

am+1 ≤am
(
1− ξ2am

A

)
+ bm+1

≤ 1

a−1
m + ξ2/A

+ bm+1

≤ 1(
A

1+mξ2
+
∑m

k=0 bk

)−1
+ ξ2/A

+ bm+1

=

A
1+mξ2

+
∑m

k=0 bk

1 + ξ2

A

(
A

1+mξ2
+
∑m

k=0 bk

) + bm+1

≤ A

1 + (m+ 1)ξ2
+

m+1∑
k=0

bk,

where the second inequality follows from 1− x ≤ 1/(1 + x) for x ≥ 0.

Remark 3.8.2. Lemma 3.8.3 is a slight modification of Lemma 3.1 of Temlyakov (2000).

Proof of (3.36). On Ecn(m), there exists some l ≤ m such that

τ̃ d
1/2
n ξE ≥ max

1≤j≤pn
∥Bj∥∗≤Ln

⟨Ỹ − Ĝ(l−1),XjBj − Ĝ(l−1)⟩ ≥ ∥Ỹ − Ĝ(l−1)∥2F .

135

By (3.27) and Lemma 3.8.2(ii), it follows that, on Ecn(m) except for a vanishing event,

∥Ỹ − Ĝ(m)∥2F ≤∥Ỹ − Ĝ(l−1)∥2F + 2
m∑
k=l

⟨E, Ĝ(k) −G(k)⟩

≤τ̃ d1/2n ξE + 2
m∑
k=l

(λ̂k − λk)⟨E,Xĵk
B̃
ĵk

− Ĝ(k−1)⟩

≤τ̃ d1/2n ξE +
8mξ2E

n(1− ϵL)
,

which is the desired result.

Proof of (3.39) and (3.40). Note first that for any D > 0, (D + x)/(D − x) ≤ 1 + 3x/D

for all 0 ≤ x ≤ (1−
√

2/3)D. It is not difficult to see that

P

{
4L0ξE

nd
1/2
n

≤ (1−
√

2

3
)
(
(ndn)

−1∥Ỹ − Ĝ(k)∥2F + (ndn)
−1∥E∥2F

)
, 1 ≤ k ≤ k̂,Gn

}

≥P

{
4L0ξE

nd
1/2
n

≤ (1−
√

2

3
)M−1

}
− o(1)

→1.

Thus, on Gn except for a vanishing event,

Ak ≤1 +
12L0ξE/(nd

1/2
n)

(ndn)−1∥Ỹ − Ĝ(k)∥2F + (ndn)−1∥E∥2F

≤1 + 12ML0
ξE

nd
1/2
n

,

for all 1 ≤ k ≤ k̂. This proves (3.39). We now turn to (3.40). Since for any positive A and

B, A/(B + x) ≥ A(1− x/B)/B for all x ≥ 0, it follows from (3.37) that on Gn except for a

136

vanishing event,

Bk ≥ τ2s−1
n

4L20µ
2

(ndn)
−1∥Ỹ − Ĝ(k−1)∥2F

(ndn)−1∥Ỹ − Ĝ(k−1)∥2F + (ndn)−1∥E∥2F

×

(
1− 4L0ξE/(nd

1/2
n)

(ndn)−1∥Ỹ − Ĝ(k−1)∥2F + (ndn)−1∥E∥2F

)

≥ τ2s−1
n

4L20µ
2

1

1 + µMsn

(
1− 4ML0ξE

nd
1/2
n

)

for 1 ≤ k ≤ k̂, which proves (3.40).

Proof of (3.47). Let

H =
∑
j∈Ĵ

XjΣ̂
−1
j UjDjV

⊤
j ∈ B.

Note that Proposition 1 and (C3) imply

∥Ȳ −H∥2F

≥nµ−1

∑
j∈Ĵo

∥Σ̂−1
j Uj(LjΛjR

⊤
j −Dj)V

⊤
j ∥

2
F +

∑
j∈Ĵ−Ĵo

∥Σ̂−1
j UjDjV

⊤
j −B∗

j∥
2
F

≥nµ−3

∑
j∈Ĵo

∥LjΛjR
⊤
j −Dj∥2F +

∑
j∈Ĵ−Ĵo

∥U⊤
j Σ̂jB

∗
jVj −Dj∥2F

≥ n

µ3κn

∑
j∈Ĵo

∥LjΛjR
⊤
j −Dj∥∗ +

∑
j∈Ĵ−Ĵo

∥U⊤
j Σ̂jB

∗
jVj −Dj∥∗

2

.

Since H ∈ B, we have

∑
j∈Ĵo

∥LjΛjR
⊤
j −Dj∥∗ +

∑
j∈Ĵ−Ĵo

∥U⊤
j Σ̂jB

∗
jVj −Dj∥∗

2

≤
9dnL

2
0

16
=

9L2n
16

.

137

By the triangle inequality, we have
∑

j∈Ĵ ∥Dj∥∗ ≤ 3Ln/4 +
∑

j∈Ĵo
∥Λj∥∗

+
∑

j∈Ĵ−Ĵo
∥Σ̂jB

∗
j∥∗. Because of (C6), and Ĵo ⊂ Jo (with probability tending to one),∑

j∈Ĵo
∥Λj∥∗+

∑
j∈Ĵ−Ĵo

∥Σ̂jB
∗
j∥∗ ≤

∑
j∈Ĵ ∥Σ̂jB

∗
j∥∗ ≤ µ(1− ϵL)Ln ≤ 4−1µ−1Ln ≤ Ln/4.

Hence
∑

j∈Ĵ
k̂
∥Dj∥∗ ≤ Ln, which proves H ∈ CL.

Proposition 2. Let A∗ be an m× n matrix and A = A∗ + E be its perturbed version. Let

U∗Σ∗V⊤
∗ and UΣV⊤ be their truncated SVD of rank r∗, respectively. If σr∗(A

∗) := σr∗ >

σr∗+1(A
∗) = 0, and if ∥E∥op < σr∗, then

max{dist(U∗,U), dist(V∗,V)} ≤
√
2max{∥E⊤U∗∥op, ∥EV∗∥op}

σr∗ − ∥E∥op
,

where dist(Q,Q∗) = minR ∥QR − Q∗∥op for any two orthogonal matrices Q, Q∗ with r

columns, where the minimum is taken over all r × r orthonormal matrices.

Remark 3.8.3. Proposition 2 is a consequence of the perturbation bounds for singular

values (Wedin, 1972). A proof can be found in Chen et al. (2021).

Proof of (3.52). Note first that

Ȳ − Ỹ =
∑
j∈Ĵo

XjΣ̂
−1
j (UjLj − Ũj)ΛjṼ

⊤
j

+
∑
j∈Ĵo

XjΣ̂
−1
j UjLjΛj(VjRj − Ṽj)

⊤.

By triangle inequality,

∥Ȳ − Ỹ∥F ≤√
nµ

∑
j∈Ĵo

∥Λj∥F

{max
j∈Ĵo

∥UjLj − Ũj∥op +max
j∈Ĵo

∥VjRj − Ṽj∥op

}
. (3.69)

Let Uj,r̄j and Vj,r̄j be sub-matrices of Uj and Vj consisting of column vectors that corre-

spond to the leading r̄j singular vectors. Write Uj = (Uj,r̄j ,Uj,−r̄j) and Vj = (Vj,r̄j ,Vj,−r̄j).
138

Since X⊤
j Ỹ = X⊤

j Y−X⊤
j E, it follows from Proposition 2 and (C5) that there exist r̄j × r̄j

orthonormal matrices L̃j and R̃j such that with probability tending to one,

max
{
∥Uj,r̄j L̃j − Ũj∥op, ∥Vj,r̄jR̃j − Ṽj∥op

}
≤

√
2max{∥E⊤XjŨj∥op, ∥X⊤

j EṼj∥op}

nδn − ∥X⊤
j E∥op

≤
√
2ξE

nδn − ξE
.

Set L⊤
j = (L̃⊤

j ,0r̄j×(r̂−r̄j)
) and R⊤

j = (R̃⊤
j ,0r̄j×(r̂−r̄j)

) for j ∈ Ĵo in (3.69). Then by (C4)

and (C6), it follows that

∥Ȳ − Ỹ∥2F ≤ nµ

∑
j∈Ĵo

∥Λj∥F

2(

2
√
2ξE

nδn − ξE

)2

≤ 8µL2ndn
ξ2E

(nδn − ξE)
2
.

Proof of Corollary 3.6.1. By Lemma 3.3.1, ♯(Ĵ) + r̂ = Op(s
2
n). Thus running the first-stage

RGA with the just-in-time stopping criterion costs

Op(s
2
n(n1 + dn)) (3.70)

bytes of communication per computing node. In addition, preparing {Σ̂−1
j : j ∈ Ĵ} and

(Uj ,Vj) for j ∈ Ĵ with qn,j ∧ dn > r̂ costs

Op

∑
j∈Ĵ

{q2n,j + (qn,jdn + r̂(qn,j + dn))1{qn,j ∧ dn > r̂}}

=Op(n

2α
1 s2n + nα1 dns

2
n + s4n(n

α
1 + dn)). (3.71)

Since the communication costs per node at the k-th iteration of the second-stage RGA is at

139

most

Op

∑
j∈Ĵ

(
r̂21{qn,j ∧ dn > r̂}+ qn,jdn1{qn,j ∧ dn ≤ r̂}

)
+ dnk + n1

=Op

(
s6n + nα1 dns

2
n + dnk + n1

)
,

running mn = Op(s
4
n log(n

2dn/ξ
2
n)) iterations (see Theorem 3.3.2 for the definition of mn)

costs

Op

(
(s6n + s2nn

α
1 dn + n1)s

4
n log

n2dn
ξ2n

+ dns
8
n

(
log

n2dn
ξ2n

)2
)
. (3.72)

Combining (3.70)-(3.72) yields the desired result.

3.8.4 TSRGA for high-dimensional generalized linear models

In this section, we apply the idea of TSRGA to and propose a modified algorithm for esti-

mating the generalized linear model (GLM). Focusing on the case of a scalar response yt,

the GLM postulates that the probability density function f of yt (or the probability mass

function if yt is discrete) belongs to the exponential family. In particular,

f(y; θ) = exp[yθ − r(θ) + h(y)],

and

E(yt|xt,1, . . . , xt,pn) = r′

 pn∑
j=1

β∗j xt,j

where θ is called the natural parameter; r, h are known functions, and r′ is the derivative

of r, which is also known as the inverse of the link function (see, e.g., Dunn and Smyth,

140

2018; Han et al., 2023). To maximize the log-likelihood function, scaled as yθ − r(θ), one

can minimize the following loss function

Ln(Xβ) =
1

n

n∑
t=1

−yt
 pn∑

j=1

βjxt,j

+ r

 pn∑
j=1

βjxt,j

 ,
where Ln(τ) = n−1∑n

t=1(ytτt − r(τt)) for τ = (τ1, . . . , τn)
⊤.

Interpreting yt−r′(
∑pn

j=1 βjxt,j) as the residual, we can implement RGA as follows. First

initialize Ĝ(0) = 0. Then for k = 1, 2, . . . , Kn, find

ĵk ∈ arg max
1≤j≤pn

∣∣∣∣∣ 1n
n∑

t=1

(
yt − r′(Ĝ(k−1)

t)
)
xt,j

∣∣∣∣∣ (3.73)

and update

Ĝ(k) = (1− λ̂k)Ĝ
(k−1) + λ̂kLskzĵk

, (3.74)

where Ĝ(k) = (Ĝ
(k)
1 , . . . , Ĝ

(k)
n)⊤, L > 0 is given, zj = (x1,j , . . . , xn,j)

⊤,

sk = sgn

(
1

n

n∑
t=1

(
yt − r′(Ĝ(k−1)

t)
)
x
t,ĵk

)
,

and λ̂k is determined by

λ̂k = arg min
λ∈[0,1]

Ln((1− λ)Ĝ(k−1) + λLskzĵk
).

It is not difficult to see that (3.73) can be easily solved for feature-distributed data and

constructing Ĝ(k) in each node requires a communication cost of O(n) bytes. The second-

stage RGA can be implemented similarly with the set of predictors considered in (3.73)

restricted to Ĵ , the set of predictors chosen by the first-stage when the just-in-time criterion

141

is met. Finally, since Ln could take negative values, we modify the just-in-time criterion

(3.6) as

k̂ = min

{
1 ≤ k ≤ Kn :

∣∣∣∣∣ Ln(Ĝ
(k))

Ln(Ĝ(k−1))
− 1

∣∣∣∣∣ < tn

}
. (3.75)

In the same spirit as (3.6), (3.75) terminates the first-stage RGA as soon as the improvement

in the loss function is below certain threshold, which would save some communication costs

and speed up the algorithm.

Next, we examine the performance of this version of TSRGA ((3.73)-(3.75)) using simu-

lations. In the following experiments, the predictors xt,j are generated as in Specification 2.

We consider the following two specifications.

Specification 5. (Logit model) The response yt takes only values in {0, 1} and is generated

via

P(yt = y, θt) = θ
y
t (1− θt)

1−y, θt =
1

1 + exp(−
∑pn

j=1 β
∗
j xt,j)

where (β∗1 , β
∗
2 , β

∗
3 , β

∗
4 , β

∗
5) = (−2.4, 1.8,−1.9, 2.8,−2.2), β∗j = 0 for j > 5. For this model, we

have r(θ) = log(1 + exp(θ)).

Specification 6. (Poisson model) The response yt takes values in {0, 1, 2, . . .} and is gen-

erated via

P(yt = y, θt) =
θ
y
t e

−θt

y!
, θt = exp(

pn∑
j=1

β∗j xt,j)

and (β∗1 , β
∗
2 , β

∗
3 , β

∗
4 , β

∗
5) = (0.15,−0.25, 0.35,−0.45, 0.55), β∗j = 0 for j > 5. For this model,

we have r(θ) = exp(θ).

142

Logit n = 800, p = 1200 n = 1200, p = 2000

TSRGA ℓ1-GLM TSRGA ℓ1-GLM
∥β̂ − β∗∥2 0.698 2.185 0.689 2.036
FP 0.018 82.808 0 105.070
FN 0 0 0 0
Accuracy 0.901 0.888 0.901 0.892

Poisson
∥β̂ − β∗∥2 0.135 0.190 0.060 0.144
FP 6.638 25.470 1.830 25.146
FN 0.114 0.008 0.020 0
RMSE 1.324 1.363 1.283 1.329

Table 3.4: Simulation results for estimating high-dimensional GLMs. ℓ1-GLM is defined in
(3.76). The results are based on 500 simulations.

As a benchmark, we compare with the ℓ1-regularized GLM which solves

min
β

Ln(Xβ) + λ∥β∥1 (3.76)

with λ selected by 5-fold cross validation. Table 3.4 reports the parameter estimation error

∥β̂ − β∗∥2, the number of irrelevant variables selected (false positives, FP) and the number

of relevant variables not selected (false negatives, FN). For the logit model, we additionally

report the out-of-sample prediction accuracy on a test set of size 500. For the Poisson model,

the out-of-sample prediction error is measured by RMSE. All these figures are averages over

500 independent simulations.

The results show that for both the logit and Poisson models, TSRGA yields parsimonious

and accurate coefficient estimates, with comparable out-of-sample prediction accuracy to the

ℓ1-GLM defined by (3.76). In particular, the low FP and FN values of TSRGA may be due

to its variable selection properties. Though we expect the general conclusions about TSRGA

in this chapter, such as the sure-screening property, to hold under the GLM framework, the

rigorous mathematical treatment is left for future work.

143

3.8.5 Complementary simulation results

In this section, we present some additional simulation results regarding Specifications 1 and

2. Figures 3.5 and 3.6 plot the parameter estimation error, as in Figures 3.1 and 3.2, against

the elapsed time. Clearly, TSRGA converges within the least amount of time. In particular,

its second-stage only takes a very short amount of time, thanks to the dimension reduction

after the just-in-time stopping criterion. Other methods behave similarly as those in Figures

3.1 and 3.2, as their implementation cost scales directly with the number of iterations.

Figures 3.7 and 3.8 plot the out-of-sample prediction error (measures by the root mean

square prediction error on an independent test sample) of the methods under Specifications

1 and 2. For Specification 1, the final prediction accuracy of TSRGA, cross-validated Lasso,

and Hydra are similar. However, for Specification 2, TSRGA clearly is the most desirable

prediction tool among the methods under consideration.

144

−2

0

2

4

0 1 2 3 4
elapsed time (sec)

lo
g

es
tim

at
io

n
er

ro
r

(a) n = 800, pn = 1200

−2.5

0.0

2.5

5.0

0.0 2.5 5.0 7.5 10.0
elapsed time (sec)

lo
g

es
tim

at
io

n
er

ro
r

(b) n = 1200, pn = 2000

−2.5

0.0

2.5

5.0

0 4 8 12
elapsed time (sec)

lo
g

es
tim

at
io

n
er

ro
r

group

Hydra (25%)

Hydra (50%)

Hydra2 (25%)

Hydra2 (50%)

RGA (L=500)

RGA (oracle L)

TSRGA

(c) n = 1500, pn = 3000

Figure 3.5: Logarithm of parameter estimation errors of various methods against the elapsed
time under Specification 1, where n is the sample size and pn is the dimension of predictors.
The results are based on 100 simulations.

145

−2

0

2

4

6

0 2 4
elapsed time (sec)

lo
g

es
tim

at
io

n
er

ro
r

(a) n = 800, pn = 1200

0

5

0 5 10
elapsed time (sec)

lo
g

es
tim

at
io

n
er

ro
r

(b) n = 1200, pn = 2000

0

5

0 5 10
elapsed time (sec)

lo
g

es
tim

at
io

n
er

ro
r

group

Hydra (25%)

Hydra (50%)

Hydra2 (25%)

Hydra2 (50%)

RGA (L=500)

RGA (oracle L)

TSRGA

(c) n = 1500, pn = 3000

Figure 3.6: Logarithm of parameter estimation errors of various methods against the elapsed
time under Specification 2, where n is the sample size and pn is the dimension of predictors.
The results are based on 100 simulations.

146

1

2

0 200 400 600
iteration

lo
g

R
M

SE

(a) n = 800, pn = 1200

1

2

3

0 200 400 600
iteration

lo
g

R
M

SE

(b) n = 1200, pn = 2000

1

2

3

0 200 400 600
iteration

lo
g

RM
SE

Methods

TSRGA

RGA (L=500)

RGA (oracle L)

Hydra (25%)

Hydra (50%)

Hydra2 (25%)

Hydra2 (50%)

Lasso

(c) n = 1500, pn = 3000

Figure 3.7: Logarithm of out-of-sample prediction errors of various methods under Specifi-
cation 1, where n is the sample size and pn is the dimension of predictors. The results are
based on 100 simulations.

147

1

2

3

4

0 200 400 600
iteration

lo
g

R
M

SE

(a) n = 800, pn = 1200

1

2

3

4

0 200 400 600
iteration

lo
g

R
M

SE

(b) n = 1200, pn = 2000

1

2

3

4

0 200 400 600
iteration

lo
g

RM
SE

Methods

TSRGA

RGA (L=500)

RGA (oracle L)

Hydra (25%)

Hydra (50%)

Hydra2 (25%)

Hydra2 (50%)

Lasso

(c) n = 1500, pn = 3000

Figure 3.8: Logarithm of out-of-sample prediction errors of various methods under Specifi-
cation 2, where n is the sample size and pn is the dimension of predictors. The results are
based on 100 simulations.

148

REFERENCES

Haitham A. Al-Zoubi. The long swings in the spot exchange rates and the complex unit
roots hypothesis. Journal of International Financial Markets, Institutions and Money, 18
(3):236–244, 2008. ISSN 1042–4431.

Haitham A. Al-Zoubi, Jennifer A. O’Sullivan, and Abdulaziz M. Alwathnani. Business cycles,
financial cycles and capital structure. Annals of Finance, 14(1):105–123, 2018.

Glen Baxter. An asymptotic result for the finite predictor. Mathematica Scandinavica, 10:
137–144, 1962.

Aurélien Bellet, Yingyu Liang, Alireza Bagheri Garakani, Maria-Florina Balcan, and Fei
Sha. A distributed frank-wolfe algorithm for communication-efficient sparse learning. In
Proceedings of the 2015 SIAM International Conference on Data Mining, pages 478–486,
2015.

A. Bertrand and M. Moonen. Distributed adaptive node-specific signal estimation in fully
connected sensor networks—part i: Sequential node updating. IEEE Transactions on
Signal Processing, 58(10):5277–5291, 2010.

A. Bertrand and M. Moonen. Distributed canonical correlation analysis in wireless sensor
networks with application to distributed blind source separation. IEEE Transactions on
Signal Processing, 63(18):4800–4813, 2015.

Alexander Bertrand and Marc Moonen. Distributed adaptive estimation of covariance ma-
trix eigenvectors in wireless sensor networks with application to distributed pca. Signal
Processing, 104:120–135, 2014.

Peter J. Bickel, Ya’acov Ritov, and Alexandre B. Tsybakov. Simultaneous analysis of Lasso
and Dantzig selector. The Annals of Statistics, 37(4):1705–1732, 2009.

Herman J. Bierens. Complex unit roots and business cycles: Are they real? Econometric
Theory, 17(5):962–983, 2001.

Patrick Billingsley. Convergence of Probability Measures. Wiley, 1999.

Tim Bollerslev, Robert F. Engle, and Jeffrey M. Wooldridge. A capital asset pricing model
with time-varying covariances. Journal of Political Economy, 96(1):116–131, 1988.

D.R. Brillinger. Time Series: Data Analysis and Theory. Holt, Rinehart, and Winston, New
York, 1975.

Peter Bühlmann. Boosting for high-dimensional linear models. The Annals of Statistics, 34
(2):559–583, 2006.

Florentina Bunea, Yiyuan She, and Marten H. Wegkamp. Optimal selection of reduced rank
estimators of high-dimensional matrices. The Annals of Statistics, 39(2):1282–1309, 2011.

149

Leland Bybee, Bryan T Kelly, Asaf Manela, and Dacheng Xiu. Business news and business
cycles. Working Paper 29344, National Bureau of Economic Research, October 2021.

Emmanuel Candes and Terence Tao. The dantzig selector: Statistical estimation when p is
much larger than n. The Annals of Statistics, 35(6):2313–2351, 2007.

N. H. Chan and C. Z. Wei. Limiting distributions of least squares estimates of unstable
autoregressive processes. The Annals of Statistics, 16(1):367–401, 03 1988.

Jiahua Chen and Zehua Chen. Extended bayesian information criteria for model selection
with large model spaces. Biometrika, 95(3):759–771, 2008.

Kun Chen, Hongbo Dong, and Kung-Sik Chan. Reduced rank regression via adaptive nuclear
norm penalization. Biometrika, 100(4):901–920, 09 2013.

Yuxin Chen, Yuejie Chi, Jianqing Fan, and Cong Ma. Spectral methods for data science:
A statistical perspective. Foundations and Trends®in Machine Learning, 14(5):566–806,
2021.

A. Chudik, G. Kapetanios, and M. Hashem Pesaran. A one covariate at a time, multi-
ple testing approach to variable selection in high-dimensional linear regression models.
Econometrica, 86(4):1479–1512, 2018.

Lisandro Dalcín and Yao-Lung L. Fang. mpi4py: Status update after 12 years of development.
Computing in Science and Engineering, 23(4):47–54, 2021.

Lisandro Dalcín, Rodrigo Paz, and Mario Storti. Mpi for python. Journal of Parallel and
Distributed Computing, 65(9):1108–1115, 2005.

Scott Deerwester, Susan T. Dumais, George W. Furnas, Thomas K. Landauer, and Richard
Harshman. Indexing by latent semantic analysis. Journal of the American Society for
Information Science, 41(6):391–407, 1990.

Tomás del Barrio Castro, Gianluca Cubadda, and Denise R. Osborn. On cointegration
for processes integrated at different frequencies. Journal of Time Series Analysis, 43(3):
412–435, 2022.

Lijun Ding, Yingjie Fei, Qiantong Xu, and Chengrun Yang. Spectral frank-wolfe algorithm:
Strict complementarity and linear convergence. In Proceedings of the 37th International
Conference on Machine Learning, volume 119, pages 2535–2544, 13–18 Jul 2020.

Lijun Ding, Jicong Fan, and Madeleine Udell. k fw: A frank-wolfe style algorithm with
stronger subproblem oracles. arXiv preprint arXiv:2006.16142, 2021.

P.K. Dunn and G.K. Smyth. Generalized Linear Models With Examples in R. Springer Texts
in Statistics. Springer New York, 2018.

150

Jianqing Fan and Jinchi Lv. Sure independence screening for ultrahigh dimensional feature
space. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 70(5):
849–911, 2008.

Yingying Fan, Gareth M. James, and Peter Radchenko. Functional additive regression. The
Annals of Statistics, 43(5):2296–2325, 2015.

João Ricardo Faria, Juan Carlos Cuestas, and Luis A. Gil-Alana. Unemployment and en-
trepreneurship: A cyclical relation? Economics Letters, 105(3):318–320, 2009.

Olivier Fercoq, Zheng Qu, Peter Richtárik, and Martin Takáč. Fast distributed coordinate
descent for non-strongly convex losses. In 2014 IEEE International Workshop on Machine
Learning for Signal Processing (MLSP), pages 1–6, 2014.

David F Findley and Ching-Zong Wei. Moment bounds for deriving time series CLT’s and
model selection procedures. Statistica Sinica, pages 453–480, 1993.

Marguerite Frank and Philip Wolfe. An algorithm for quadratic programming. Naval Re-
search Logistics Quarterly, 3:95–110, 1956.

Priyank Gandhi, Tim Loughran, and Bill McDonald. Using annual report sentiment as a
proxy for financial distress in u.s. banks. Journal of Behavioral Finance, 20(4):424–436,
2019.

Zhaoxing Gao and Ruey S. Tsay. Divide-and-conquer: A distributed hierarchical factor
approach to modeling large-scale time series data. Journal of the American Statistical
Association, 118(544):2698–2711, 2023.

Dan Garber. Revisiting frank-wolfe for polytopes: Strict complementarity and sparsity. In
Advances in Neural Information Processing Systems, volume 33, pages 18883–18893, 2020.

Luis A. Gil-Alana. Time series modeling of sunspot numbers using long-range cyclical de-
pendence. Solar Physics, 257:371–381, 2009.

Luis A. Gil-Alana and Rangan Gupta. Persistence and cycles in historical oil price data.
Energy Economics, 45:511–516, 2014.

Gene H. Golub, Michael Heath, and Grace Wahba. Generalized cross-validation as a method
for choosing a good ridge parameter. Technometrics, 21(2):215–223, 1979.

Yuefeng Han and Ruey S. Tsay. High-dimensional linear regression for dependent data with
applications to nowcasting. Statistica Sinica, 30(4):1797–1827, 2020.

Yuefeng Han, Ruey S. Tsay, and Wei Biao Wu. High dimensional generalized linear models
for temporal dependent data. Bernoulli, 29(1):105–131, 2023.

Kathleen Weiss Hanley and Gerard Hoberg. Dynamic interpretation of emerging risks in the
financial sector. The Review of Financial Studies, 32(12):4543–4603, 02 2019.

151

Christina Heinze, Brian McWilliams, and Nicolai Meinshausen. Dual-loco: Distributing
statistical estimation using random projections. In Proceedings of the 19th International
Conference on Artificial Intelligence and Statistics, volume 51, pages 875–883, Cadiz,
Spain, 2016.

Inge S Helland. Central limit theorems for martingales with discrete or continuous time.
Scandinavian Journal of Statistics, pages 79–94, 1982.

Yaochen Hu, Di Niu, Jianming Yang, and Shengping Zhou. Fdml: A collaborative machine
learning framework for distributed features. In Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, pages 2232–2240, 2019.

Hsueh-Han Huang, Ngai Hang Chan, Kun Chen, and Ching-Kang Ing. Consistent order
selection for arfima processes. The Annals of Statistics, 2022.

Shuo-Chieh Huang, Ching-Kang Ing, and Ruey S. Tsay. Asymptotic properties of nonsta-
tionary arx models with conditional heteroscedasticity. working paper, 2023.

C. K. Ing. A note on mean-squared prediction errors of the least squares predictors in random
walk models. Journal of Time Series Analysis, 22:711–724, 2001.

Ching Kang Ing. Multistep prediction in autoregressive processes. Econometric Theory, 19:
254–279, 4 2003.

Ching-Kang Ing. Model selection for high-dimensional linear regression with dependent
observations. The Annals of Statistics, 48(4):1959–1980, 2020.

Ching-Kang Ing and Tze Leung Lai. A stepwise regression method and consistent model
selection for high-dimensional sparse linear models. Statistica Sinica, pages 1473–1513,
2011.

Ching Kang Ing and Chiao Yi Yang. Predictor selection for positive autoregressive processes.
Journal of the American Statistical Association, 109:243–253, 2014.

Ching Kang Ing, Chor Yiu Sin, and Shu Hui Yu. Prediction errors in nonstationary autore-
gressions of infinite order. Econometric Theory, 26:774–803, 6 2010.

Ching-Kang Ing, Chor-Yiu Sin, and Shu-Hui Yu. Model selection for integrated autoregres-
sive processes of infinite order. Journal of Multivariate Analysis, 106:57–71, 4 2012. ISSN
0047259X.

Ching-Kang Ing, Hai-Tang Chiou, and Meihui Guo. Estimation of inverse autocovariance
matrices for long memory processes. Bernoulli, 22(3):1301–1330, 2016.

Martin Jaggi. Revisiting frank-wolfe: Projection-free sparse convex optimization. Proceedings
of the 30th International Conference on Machine Learning, 28(1):427–435, 2013.

152

Martin Jaggi and Simon Lacoste-Julien. On the global linear convergence of frank-wolfe
optimization variants. Advances in Neural Information Processing Systems, 28, 2015.

Narasimhan Jegadeesh and Di Wu. Word power: A new approach for content analysis.
Journal of Financial Economics, 110(3):712–729, 2013.

Anders Bredahl Kock. Consistent and conservative model selection with the adative lasso in
stationary and nonstationary autoregressions. Econometric Theory, 32(1):243–259, 2016.

Shimon Kogan, Dimitry Levin, Bryan R Routledge, Jacob S Sagi, and Noah A Smith. Pre-
dicting risk from financial reports with regression. In Proceedings of Human Language
Technologies: The 2009 Annual Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics, pages 272–280, 2009.

T. L. Lai and C. Z. Wei. Asymptotic properties of projections with applications to stochastic
regression problems. Journal of Multivariate Analysis, 12(3):346–370, 1982.

Qi Lei, Jiacheng Zhuo, Constantine Caramanis, Inderjit S Dhillon, and Alexandros G Di-
makis. Primal-dual block generalized frank-wolfe. In Advances in Neural Information
Processing Systems, volume 32, 2019.

Gen Li, Xiaokang Liu, and Kun Chen. Integrative multi-view regression: Bridging group-
sparse and low-rank models. Biometrics, 75(2):593–602, 2019.

Shiqing Ling and W. K. Li. Limiting distributions of maximum likelihood estimators for un-
stable autoregressive moving-average time series with general autoregressive heteroscedas-
tic errors. The Annals of Statistics, 26(1):84–125, 02 1998.

Shiqing Ling and Michael McAleer. Stationarity and the existence of moments of a family
of garch processes. Journal of Econometrics, 106(1):109–117, 2002. ISSN 0304-4076.

Lefteris Loukas, Manos Fergadiotis, Ion Androutsopoulos, and Prodromos Malakasiotis.
EDGAR-CORPUS: Billions of tokens make the world go round. In Proceedings of the
Third Workshop on Economics and Natural Language Processing, pages 13–18, Punta
Cana, Dominican Republic, 2021.

Karim Lounici, Massimiliano Pontil, Sara Van De Geer, and Alexandre B Tsybakov. Oracle
inequalities and optimal inference under group sparsity. The Annals of Statistics, 39(4):
2164–2204, 2011.

Federico Maddanu and Tommaso Proietti. Modelling persistent cycles in solar activity. Solar
Physics, 297(13), 2022.

Michael W. McCracken and Serena Ng. Fred-md: A monthly database for macroeconomic
research. Journal of Business and Economic Statistics, 34(4):574–589, 2016.

153

Marcelo C. Medeiros and Eduardo F. Mendes. ℓ1-regularization of high-dimensional time-
series models with non-gaussian and heteroskedastic errors. Journal of Econometrics, 191
(1):255–271, 2016.

Alan L. Montgomery, Victor Zarnowitz, Ruey S. Tsay, and George C. Tiao. Forecasting the
u.s. unemployment rate. Journal of the American Statistical Association, 93(442):478–493,
1998.

Mert Pilanci and Martin J Wainwright. Iterative hessian sketch: Fast and accurate solution
approximation for constrained least-squares. Journal of Machine Learning Research, 17
(1):1842–1879, 2016.

Tommaso Proietti and Federico Maddanu. Modelling cycles in climate series: The fractional
sinusoidal waveform process. Journal of Econometrics, 2024.

Gregory C. Reinsel, Raja P. Velu, and Kun Chen. Multivariate Reduced-Rank Regression.
Springer New York, NY, 2022.

Peter Richtárik and Martin Takáč. Distributed coordinate descent method for learning with
big data. Journal of Machine Learning Research, 17(75):1–25, 2016.

Axel Ruhe. Perturbation bounds for means of eigenvalues and invariant subspaces. BIT
Numerical Mathematics, 10:343–354, 1970.

Gerard Salton and Christopher Buckley. Term-weighting approaches in automatic text re-
trieval. Information Processing and Management, 24(5):513–523, 1988.

V. N. Temlyakov. Weak greedy algorithms. Advances in Computational Mathematics, 12(2):
213–227, 2000.

V. N. Temlyakov. Greedy approximation in convex optimization. Constructive Approxima-
tion, 41(2):269–296, 2015.

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society. Series B (Methodological), 58(1):267–288, 1996.

J.A. Tropp. Greed is good: Algorithmic results for sparse approximation. IEEE Transactions
on Information Theory, 50(10):2231–2242, 2004.

R.S. Tsay. Analysis of Financial Time Series. John Wiley: Hoboken, NJ., 3 edition, 2010.

Ruey S. Tsay. Order selection in nonstationary autoregressive models. The Annals of Statis-
tics, 12(4):1425–1433, 1984.

Roman Vershynin. High-Dimensional Probability: An Introduction with Applications in Data
Science. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge Uni-
versity Press, 2018.

154

Hansheng Wang. Forward regression for ultra-high dimensional variable screening. Journal
of the American Statistical Association, 104(488):1512–1524, 2009.

Jialei Wang, Jason D. Lee, Mehrdad Mahdavi, Mladen Kolar, and Nathan Srebro. Sketching
meets random projection in the dual: A provable recovery algorithm for big and high-
dimensional data. Electronic Journal of Statistics, 11(2):4896–4944, 2017.

Xiangyu Wang, David Dunson, and Chenlei Leng. Decorrelated feature space partitioning
for distributed sparse regression. In Proceedings of the 30th International Conference on
Neural Information Processing Systems, NIPS’16, pages 802–810, 2016.

Per-Åke Wedin. Perturbation bounds in connection with singular value decomposition. BIT
Numerical Mathematics, 12(1):99–111, 1972.

C. Z. Wei. Adaptive prediction by least squares predictors in stochastic regression models
with applications to time series. The Annals of Statistics, 15(4):1667–1682, 1987.

C. Z. Wei. On predictive least squares principles. The Annals of Statistics, 20(1):1–42, 1992.

Jiyan Yang, Michael W. Mahoney, Michael A. Saunders, and Yuekai Sun. Feature-distributed
sparse regression: A screen-and-clean approach. In Proceedings of the 30th International
Conference on Neural Information Processing Systems, NIPS’16, pages 2711–2719, 2016.

Hsiang-Yuan Yeh, Yu-Ching Yeh, and Da-Bai Shen. Word vector models approach to text
regression of financial risk prediction. Symmetry, 12(1), 2020.

Cun-Hui Zhang. Nearly unbiased variable selection under minimax concave penalty. The
Annals of Statistics, 38(2):894–942, 2010.

Peng Zhao and Bin Yu. On model selection consistency of lasso. Journal of Machine Learning
Research, 7(90):2541–2563, 2006.

Wenjie Zheng, Aurélien Bellet, and Patrick Gallinari. A distributed frank-wolfe framework
for learning low-rank matrices with the trace norm. Machine Learning, 107(8):1457–1475,
2018.

Zemin Zheng, Yingying Fan, and Jinchi Lv. High dimensional thresholded regression and
shrinkage effect. Journal of the Royal Statistical Society: Series B (Statistical Methodol-
ogy), 76(3):627–649, 2014.

Jiacheng Zhuo, Qi Lei, Alex Dimakis, and Constantine Caramanis. Communication-efficient
asynchronous stochastic frank-wolfe over nuclear-norm balls. In International Conference
on Artificial Intelligence and Statistics, pages 1464–1474, 2020.

Hui Zou. The adaptive lasso and its oracle properties. Journal of the American Statistical
Association, 101(476):1418–1429, 2006.

155

	List of Figures
	List of Tables
	Acknowledgments
	Abstract
	1 Introduction
	2 Model selection for unit-root time series with many predictors
	2.1 Introduction
	2.2 The FHTD algorithm
	2.3 Screening and selection consistency
	2.3.1 The sure screening property of FSR
	2.3.2 Selection consistency
	2.3.3 Model assumptions

	2.4 Simulation studies
	2.5 Applications
	2.5.1 Housing starts in the U.S.
	2.5.2 U.S. unemployment rate

	2.6 Concluding remarks
	2.7 Supplementary details
	2.7.1 Comments on Assumptions (A1)–(A6), (SSX), and (SS)
	2.7.2 Key theoretical results and main proofs
	2.7.3 Proofs of (2.75), (2.77), (2.78), (2.93)–(2.95), and (2.99)
	2.7.4 Some technical details about Examples 2.3.1 and 2.3.2 in Section 2.3.1
	2.7.5 Complementary simulation results

	3 Scalable high-dimensional multivariate linear regression for feature-distributed data
	3.1 Introduction
	3.2 Distributed framework and two-stage relaxed greedy algorithm
	3.2.1 Model and distributed framework
	3.2.2 First-stage relaxed greedy algorithm and a just-in-time stopping criterion
	3.2.3 Second-stage relaxed greedy algorithm
	3.2.4 Related algorithms

	3.3 Communication complexity of TSRGA
	3.3.1 Assumptions
	3.3.2 Main results

	3.4 Simulation experiments
	3.4.1 Statistical performance of TSRGA
	3.4.2 Large-scale performance of TSRGA

	3.5 Empirical application
	3.5.1 Financial data and 10-K reports
	3.5.2 Results

	3.6 Horizontal partition for big feature-distributed data
	3.7 Conclusion
	3.8 Supplementary details
	3.8.1 Second-stage RGA with feature-distributed data
	3.8.2 Proofs
	3.8.3 Further technical details
	3.8.4 TSRGA for high-dimensional generalized linear models
	3.8.5 Complementary simulation results

	References

