
THE UNIVERSITY OF CHICAGO

CLIMATE CHANGE IMPACTS ON CROP PRODUCTION:

ADVANCEMENTS IN FUTURE PROJECTIONS FOR U.S. CORN

A DISSERTATION SUBMITTED TO

THE FACULTY OF THE DIVISION OF THE PHYSICAL SCIENCES

IN CANDIDACY FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

DEPARTMENT OF THE GEOPHYSICAL SCIENCES

BY

HAYNES FOREST STEPHENS

CHICAGO, ILLINOIS

JUNE 2024



Copyright © 2024 by Haynes Forest Stephens

All Rights Reserved



This work is dedicated to Andrea Forest, William H. Stephens, and Amy L. Young



“Who you Move4?” — Nef The Pharoah



TABLE OF CONTENTS

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

STATEMENT OF ORIGINALITY AND COPYRIGHT ATTRIBUTION . . . . . . . xii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 STATISTICAL MODELS BASED ON HEAT STRESS OVERPROJECT FUTURE
CLIMATE DAMAGES TO CROP YIELDS . . . . . . . . . . . . . . . . . . . . . 4
2.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Data and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.2 Statistical crop models . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.1 Statistical models based on temperature and precipitation overproject

yield damages under climate change . . . . . . . . . . . . . . . . . . . 13
2.4.2 The association between yield losses and high temperatures shifts un-

der climate change . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.3 Statistical models based on atmospheric and soil moisture stresses

project yield losses more accurately under climate change . . . . . . . 16
2.5 Data Availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 VALIDATING MAIZE MATURITIES USED IN MODELS USING MULTIPLE OB-
SERVATIONAL DATA SETS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3 Data and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3.1 Crop Calendar Observations . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.2 Climate Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.3 Crop Model Output . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4.1 Planting and harvest dates from Sacks et al. (2010) align with multi-

year averages across the historical period . . . . . . . . . . . . . . . . 30
3.4.2 Maize models also show similar growing periods and maturities to

state-level observations . . . . . . . . . . . . . . . . . . . . . . . . . . 32

v



3.4.3 District-level crop calendars reveal in-state heterogeneity in growing
periods and cultivar maturities . . . . . . . . . . . . . . . . . . . . . 33

3.4.4 Observed maturities from crop calendars show similar range and spa-
tial pattern to maturity estimates from sales data . . . . . . . . . . . 37

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.6 Data Availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 GRIDDED MAIZE MODELS SHOW REALISTIC GROWING PERIOD RESPONSES
TO TEMPERATURE BUT UNCERTAINTY IN SUBSEQUENT YIELD IMPACTS 42
4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3 Data and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3.1 Climate Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3.2 Crop Calendar Observations . . . . . . . . . . . . . . . . . . . . . . . 46
4.3.3 Crop Model Output . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3.4 Partitioning Modeled Yield Impact Projections Under Warming . . . 48

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.4.1 Models show similar growing period response to temperature as obser-

vations after controlling for observed sowing date variation . . . . . . 49
4.4.2 Models attribute large portions of projected yield losses to accelerated

maturity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.6 Data Availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5 PHYSICAL DRIVERS OF U.S. PREVENTED PLANTING EVENTS DIAGNOSED
WITH INTERPRETABLE MACHINE LEARNING . . . . . . . . . . . . . . . . . 57
5.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.3 Data and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.3.1 Planted and Prevented Acreage Data . . . . . . . . . . . . . . . . . . 61
5.3.2 Soil and Weather Data . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.3.3 Machine Learning Model: Zero-inflated Regression . . . . . . . . . . . 63
5.3.4 U.S. Aquifer Maps and Groundwater Measurements . . . . . . . . . . 64

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.4.1 The zero-inflated regression model accurately predicts historical pre-

vented planting, 2019 data is key for capturing extreme values . . . . 65
5.4.2 Model interpretation highlights the effects of soil conditions and soil-

weather interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.4.3 High-damage prevented planting becomes more common under climate

change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.4.4 Groundwater conditions also likely influence extreme prevented plant-

ing events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.6 Data Availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

vi



6 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

APPENDIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
S1 Supplemental Materials for Chapter 2 . . . . . . . . . . . . . . . . . . . . . . 101

S1.1 Functional forms for statistical models used in Figure 2.4a . . . . . . 101
S2 Supplemental Materials for Chapter 3 . . . . . . . . . . . . . . . . . . . . . . 117
S3 Supplemental Materials for Chapter 4 . . . . . . . . . . . . . . . . . . . . . . 131
S4 Supplemental Materials for Chapter 5 . . . . . . . . . . . . . . . . . . . . . . 137

vii



LIST OF FIGURES

2.1 Target yield responses and statistical model yield projections under warming
scenarios. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Statistical yield responses to temperature under warming climate conditions. . . 17
2.3 Associations between yield, severe heat, and atmospheric moisture demand under

uniform warming scenarios. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4 The influence of water sensitivity on statistical model projection error. . . . . . 21

3.1 State-level planting and harvest dates between Sacks et al. (2010) and multi-year
observations in the U.S. Corn Belt . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Comparisons of multi-year growing periods between models and observations . . 34
3.3 Differences in growing periods and calendar-derived maturities between district-

and state-level observations in the Corn Belt . . . . . . . . . . . . . . . . . . . . 36
3.4 Average cultivar maturities derived from district-level crop calendars . . . . . . 39

4.1 Comparison of historical accelerated maturity behaviors between models and ob-
servations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 Projected yield impacts under warming in the Corn Belt . . . . . . . . . . . . . 53

5.1 Historical performance of the model across time and space . . . . . . . . . . . . 66
5.2 Feature importances for the RF classifier and regressor portions of the ZIR model. 69
5.3 One-dimensional partial dependence plots (PDPs) for the top features of the RF

classifier and regressor portions of the ZIR model. . . . . . . . . . . . . . . . . . 70
5.4 Two-dimensional partial dependence plots (PDPs) for the top features of the RF

classifier and regressor portions of the ZIR model. . . . . . . . . . . . . . . . . . 71
5.5 Future projections from the RF classifier and regressor portions of the model. . 73
5.6 Maps of Prevented Planting and U.S. Aquifers . . . . . . . . . . . . . . . . . . . 75
5.7 Groundwater anomalies from NASA GRACE . . . . . . . . . . . . . . . . . . . 76

S1 TP statistical model projections across all seven simulated yield datasets under
uniform warming scenarios. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

S2 TP statistical models with stepwise temperature responses. . . . . . . . . . . . . 105
S3 Spatial patterns of projection error for the TP statistical models along with re-

lated weather conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
S4 Projection error and temperature conditions for the TP statistical model trained

and tested on yields by LPJmL under uniform warming scenarios. . . . . . . . . 107
S5 Statistical model temperature responses for the stepwise TP model trained on

yields by LPJmL under uniform warming scenarios. . . . . . . . . . . . . . . . . 108
S6 Projections from TP statistical models trained across all climate states (historical,

+2 ◦C, +4 ◦C, +6 ◦C). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
S7 Temperature responses for TP statistical models across all seven simulated yield

datasets under uniform warming scenarios. . . . . . . . . . . . . . . . . . . . . . 110
S8 Yield-HDD associations across all seven simulated yield datasets under uniform

warming scenarios. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

viii



S9 Yield-VPD associations across uniform warming scenarios. . . . . . . . . . . . . 112
S10 VPD, HDD, and humidity associations under the ESM-based scenario. . . . . . 113
S11 Yield, HDD, and soil moisture supply associations under uniform warming scenarios.114
S12 Statistical model projections in the ESM-based scenario. . . . . . . . . . . . . . 115
S13 Comparisons of overestimated temperature damages and process-based-model

sensitivities to water supply and growing-period shortening. . . . . . . . . . . . 116
S14 A map of maize cultivation area in the Corn Belt . . . . . . . . . . . . . . . . . 117
S15 A diagram of growing period and its calculation . . . . . . . . . . . . . . . . . . 118
S16 Comparison growing periods and cultivar maturities between models and obser-

vations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
S17 Comparison of multi-year yield levels between models and observations . . . . . 120
S18 State- and district-level reports and observed maturity thresholds for Kansas . . 121
S19 State- and district-level reports and observed maturity thresholds for Illinois . . 122
S20 State- and district-level reports and observed maturity thresholds for Indiana . . 123
S21 State- and district-level reports and observed maturity thresholds for Iowa . . . 124
S22 State- and district-level reports and observed maturity thresholds for Missouri . 125
S23 State- and district-level reports and observed maturity thresholds for Wisconsin 126
S24 Spatial pattern of average historical growing periods in the Corn Belt . . . . . . 127
S25 The spatial pattern of average historical growing-season GDDs in the Corn Belt 128
S26 Comparison of differences in growing-degree days (GDDs) between Southern and

Northern states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
S27 Mean offsets between maturity and harvest dates in state-level USDA observa-

tions for the period 1981–2010 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
S28 A map of maize cultivation area in the Corn Belt . . . . . . . . . . . . . . . . . 131
S29 A diagram of growing period and its calculation . . . . . . . . . . . . . . . . . . 132
S30 Mean yield losses under high Corn Belt warming across the GGCMI models . . 133
S31 Growing period anomalies in the GGCMI models across warming scenarios . . . 134
S32 Mean growing period changes under high Corn Belt warming across the GGCMI

models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
S33 Comparing yield sensitivity to accelerated phenology against yield sensitivity to

water stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
S34 Comparison of historical predictions across various models . . . . . . . . . . . . 137
S35 Comparison between January air and soil temperatures . . . . . . . . . . . . . . 138
S36 Projected prevented planting damages under SSP585 shown by individual earth

system model scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

ix



LIST OF TABLES

2.1 Comparison of model historical performances and climate change projections. . . 20

5.1 Model score metrics for the RF classifier regressor, and overall model . . . . . . 65

S1 Legend of features used in statistical model functional forms. . . . . . . . . . . . 101
S2 Summary statistics for the TP statistical models in this work . . . . . . . . . . . 103
S3 Mean yield, growing period, and maturity statistics for models in the GGCMI

Phase 2 ensemble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
S4 USDA Risk Management Agency Stage Codes and Descriptions . . . . . . . . . 137

x



ACKNOWLEDGMENTS

This work was supported by:

• The University of Chicago Center for Robust Decision-making on Climate and Energy

Policy (RDCEP) which is funded by NSF grant SES-1463644 through the Decision

Making Under Uncertainty program

• The NSF National Research Traineeship program (grant DGE-1735359)

xi



STATEMENT OF ORIGINALITY AND COPYRIGHT

ATTRIBUTION

All text and analysis in Chapters 2, 3, 4, and 5 was produced in collaboration with the

authors listed at the beginning of each chapter with Haynes Stephens serving as the lead

author in each case.

In Chapter 2, Haynes Stephens collaborated in the conceptualization and design of the

research with co-authors James Franke and Elisabeth Moyer. Stephens led the performance

of the research, conducted the data analysis and project management, and led the writing

of the manuscript.

In Chapter 3, Haynes Stephens conceptualized, designed and performed of the research.

Stephens conducted the data analysis and project management, and led the writing of the

manuscript.

In Chapter 4, Haynes Stephens conceptualized, designed and performed of the research.

Stephens conducted the data analysis and project management, and led the writing of the

manuscript.

In Chapter 5, Haynes Stephens conceptualized the research. Stephens led the design and

performance of the research with co-author Sophia Horigan. Stephens conducted the data

analysis and project management, and led the writing of the manuscript.

All figures contained within were produced by Haynes Stephens using data from the

publicly available sources listed in each section.

xii



ABSTRACT

Importance: Climate change may put our ability to feed future populations at risk. The

prospects of those risks are limited by our understanding of how environmental factors impact

crop yields. Present-day correlations of yields with individual factors may involve confound-

ing variables whose relationships shift in future climates. Numerical models of crop yields

are built on untested assumptions, and their projected impacts under climate change are not

clearly attributed to underlying mechanisms. This dissertation aims to improve our under-

standing of climate impacts on agriculture through a series of studies that address (1) how

yield responses are driven by factors other than temperature, (2) whether assumptions about

crop maturities in models are consistent with observations, (3) how crop maturity rates fac-

tor into future yield responses, and (4) how changes to soil moisture in future climates affect

not only crop yields but the ability of farmers to plant at all.

Approach: This work extracts insight into maize crop production using creative combina-

tions of agricultural models and observational data. Process-based models simulate daily

crop growth based on numerical representations of physiological mechanisms, offering a di-

rect link between weather inputs and crop yields. This work both seeks to understand what

factors drive yield losses in models and uses those models as sources of synthetic data in

“perfect model” experiments to test statistical methods of crop yield prediction. This work

makes novel use of observational datasets to investigate whether modeled maturity parame-

ters and responses reflect real-world crop behaviors. Lastly, this work addresses agricultural

impacts disregarded in crop yield models, using a machine-learning approach to understand

how soil and weather conditions prevent farmers from planting their intended maize crops,

and whether prevented planting outcomes might become worse under climate change. This

work focuses on the U.S. Corn Belt, the most productive maize region in the world, but

results may generalize to other mid-latitude maize regions such as China.

Key Findings: We find that (1) commonly used statistical methods using temperature
xiii



variables overproject yield losses under climate change by a factor of two because they omit

the changing relationship of humidity and temperature under climate change. Methods

using moisture variables produce consistent responses over time, suggesting moisture stress

is more relevant than temperature stress in driving yield responses. Process-based models

accurately reflect both (2) observed historical maize maturities and (3) the acceleration of

maturity rates in warmer temperatures, but are inconsistent in how accelerated maturity

impacts yields. Lastly, we find that (4) prevented maize planting is strongly influenced by

winter and springtime soil moisture and drainage conditions, and is projected to become less

frequent but more severe on average under climate change. Findings from this dissertation

highlight the importance of agricultural models accurately reflecting the real-world drivers

of crop production and suggest that U.S. maize production may fare better under climate

change than previously suspected.
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CHAPTER 1

INTRODUCTION

Climate change may put society’s ability to feed future populations at risk. As the global

population increases to as much as 10.8 billion by 2050 and individual diets become more

meat-heavy, a substantial increase in crop production will be required to ensure food security

[1]. However, our ability to project future food security suffers from a limited understanding

of how future environmental conditions will influence crop production.

Researchers increasingly use agricultural models to better understand the environmental

drivers of maize production and future projections. Process-based models predict crop yield

outcomes from input weather and management conditions by simulating daily crop growth

processes, often tuned using lab or field experiments [2]. These models originated to run

crop growth and yield simulations for a single location [3, 4, 5], but advances over the past

decade have established parallelized models able to run global gridded simulations. Models

in the Agricultural Model Intercomparison and Improvement Project (AgMIP) [6] produced

the first ensemble outputs of global gridded crop yield outcomes under controlled climate

perturbations, through what is known as the Global Gridded Crop Model Intercomparison

(GGCMI) initiative [7]. These outputs are well-suited for comparing behaviors between

process-based models. Additionally, such harmonized outputs can be used as synthetic data

to train and test statistical methods of crop yield prediction, employing what is referred to as

the “perfect model” approach [8]. Statistical models primarily calibrate their yield responses

to selected weather variables (typically temperature and precipitation) [9, 10, 11, 12]—if

these selected variables do not reflect the underlying crop physiology, then the statistical

model’s historical responses may inaccurately project yield impacts under climate change

scenarios. Evaluating the accuracy of statistical yield projections through the “perfect model”

approach can reveal insight as to whether temperature and precipitation variables are directly

related to yield responses, or whether other weather variables may be better suited for future

1



projections.

While process-based models are valuable for numerically representing crop growth re-

sponses to environmental factors, they still face challenges in reflecting real-world crop be-

haviors [13, 14]. Uncertainty in historical and future simulations may be due in part to

errors in calibrated parameters related to cultivar maturity, which can significantly affect

absolute yield values [15, 16]. Validating the use of these parameters by comparing them

to observed crop maturities would help to assess whether model parameterizations reflect

real-world conditions.

In contrast to the numerous studies that project how climate change will impact future

crop yields, little is known about how it may impact the ability of farmers to plant crops

altogether. Since we currently lack a process-based understanding of how extreme moisture

conditions might prevent crop planting, two studies have attempted to model environmental

impacts on prevented planting through statistical methods [17, 18]. However, studies to

date disregard the effects of soil moisture conditions to prevent planting, which qualitative

literature suggests could be a key factor. Machine-learning techniques provide an approach

to understanding the likely complex and nonlinear effects of soil and weather on prevented

planting, akin to their recent momentum in comprehending crop yield responses [19, 20, 21].

They can also project whether climate change conditions may increase the risk to planting

practices compared to historical conditions.

The United States plays a key role in global agriculture, particularly for maize. The

U.S. is the largest maize producer in the world, growing roughly a third of the global supply

[22, 23]. Climate responses to increasing greenhouse gas emissions are projected to cause

substantial warming over maize farming regions in the U.S. through the end of the century

[24, 25, 26], likely affecting rain and soil conditions as well [27, 28, 29, 30, 31, 32]. Therefore,

it is particularly important to understand how such climate change could impact U.S. maize

production.
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Studying the environmental drivers of U.S. maize production is inherently a geoscience

research endeavor. U.S. maize farming spans nearly 40 million hectares [33], covering a range

of soil types and hydrological zones including underlying aquifer systems [34]. Maize crops

in these regions are directly influenced by environmental conditions, and changes in these

conditions under increased carbon levels are determined by geophysical mechanisms [35].

Additionally, just as agriculture is affected by the environment, crop and management pro-

cesses can also alter surrounding environmental conditions (e.g., soil makeup, temperature,

humidity) [36]. Consequently, advances in the understanding of interactions between climate

and large-scale agriculture require geoscientific expertise.

Pursuits to the aforementioned research opportunities would allow us to better under-

stand and project food security outcomes under climate change. Here, I conduct four research

projects aimed at better understanding how climate change may affect maize agriculture in

the U.S. In the first project, I evaluate the projections of statistical crop models using the

first ensemble-based “perfect model” approach. In the second project, I validate the use

single-year crop calendar to parameterize maize cultivar maturities in process-based models,

comparing them to newly available observations. In the third project, I use the newly avail-

able observations to evaluate the response of growing periods to temperature and process-

based models, assessing the efficacy of simulated growing-period adaptation strategies under

climate change. Finally, in the fourth project, I develop a novel machine-learning model to

understand how weather soil-hydrology conditions can prohibit farmers from planting maize

altogether, damaging food production beyond the metric of harvested yields. Altogether,

this dissertation improves the understanding of historical and future climate impacts on

U.S. maize production.
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CHAPTER 2

STATISTICAL MODELS BASED ON HEAT STRESS

OVERPROJECT FUTURE CLIMATE DAMAGES TO CROP

YIELDS

Haynes Stephens1,2, Jonathan Proctor3, Christoph Müller4, Katherine P. Dixon5, María D.

Hernández Limón1, Harshil Sahai6, James A. Franke7, Jonas Jägermeyr8,9, Alex C. Ruane8,

and Elisabeth Moyer1,2

1Department of Geophysical Sciences, University of Chicago, Chicago, IL, USA 2Center for Robust Decision-making on Climate

and Energy Policy (RDCEP), University of Chicago, Chicago, IL, USA 3University of British Columbia Faculty of Land and Food

Systems, Vancouver, BC, Canada 4Potsdam Institute for Climate Impacts Research (PIK), Member of the Leibniz Association,

Potsdam, Germany 5Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA 6Department of Economics,

University of Chicago, Chicago, IL, USA 7Toyota Technical Institute at Chicago, Chicago, IL, USA 8NASA Goddard Institute

for Space Studies, New York, NY, USA 9Columbia Climate School Center for Climate Systems Research, New York, NY, USA

2.1 Abstract

Training statistical models on historical yield and weather data and then applying them to

future climates is a popular approach for projecting how climate change will influence agri-

cultural productivity. However, future projections may inaccurate if the selected weather

variables do not directly relate to underlying crop yield responses, and evaluating the ac-

curacy of such projections is complicated by the fact that future yields are not observable.

Here, we evaluate the ability of such statistical models to project the impacts of climate

change on crop yields using a “perfect model” approach, whereby each model is trained on

historical yields simulated by a process-based crop model and then evaluated on its ability to

reproduce simulated future yields under climate change. Using an ensemble of process-based

crop models, we find that statistical models based temperature and precipitation, commonly

used in recent literature, overproject yield damages from climate change by roughly a factor

of two. Statistical models including features of temperature exposure conflate heat- and
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moisture-related damages due to a strong historical association between hot and dry con-

ditions. However, this association weakens as the climate warms, leading the historically

trained models to overstate damages from high-temperature under warmer climate states.

Statistical models based on moisture stresses (atmospheric or soil) show more accurate pro-

jections under climate warming, despite having lower historical goodness-of-fits relative to

temperature-precipitation models. Our results highlight the importance of understanding

and modeling the direct drivers of yields rather than their proxies for making accurate pro-

jections under climate change.

2.2 Introduction

Climate change may lead to large negative socio-economic impacts [37], with food security

a particular area of concern [38, 39, 40]. Statistical crop models have been increasingly

used, along with process-based models, to project climate change impacts on agricultural

productivity.

Statistical crop modeling originated in the early twentieth century with the development

of linear regressions to predict hindcasts of yield records based on changes in temperature

and precipitation [41, 42, 43, 44]. A hundred years later, linear models similar to their

predecessors were used to project future climate impacts in high-impact studies [45, 9].

Recent advances have allowed statistical models to capture nonlinear relationships be-

tween environmental variables and crop yield, uncovering a particularly strong and nonlin-

ear relationship for temperature that projects severe yield damages under climate change

[10, 46, 47, 48, 49, 50, 51, 52, 53, 54]. Statistical model development has also focused on

better capturing the physical drivers of crop yield by modeling soil moisture (SM) supply

[55, 56] and ‘vapor pressure deficit’ (VPD), a measure of atmospheric moisture demand based

on temperature and humidity [57, 20, 58]. Importantly, these moisture-based models tend

to project less yield damages from climate change than models based on temperature and
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precipitation, both in the U.S. [55] and globally [56]. However, it is unclear which model

projections are more accurate.

The differences in projected yield damages under climate change across statistical models

raise the question: how does one select which model to use for projecting future yield im-

pacts? A common approach is to select models based on their ability to reproduce historical

data, which is often implemented by evaluating predictions of yields in years or locations held

out during training [58, 56, 59]. However, it is possible that a model’s predictive performance

within historical climates may not indicate its accuracy in predicting yield impacts from cli-

matic changes [60, 61]. Some environmental variables may correlate well with historical yield

anomalies, serving as proxies for the true set of complex environmental determinants of yield.

However, if correlations between environmental variables shift under climate change [62, 63],

historically effective proxies may become ill-suited for future projections.

Because future yields under climate change are not observed, evaluating the accuracy of

a statistical crop model’s projections poses a serious challenge. To address this challenge,

Lobell & Burke (2010) proposed a “perfect model” approach [8] wherein a statistical model is

trained on historical yields simulated by a process-based model, and then tested on its ability

to reproduce future yields simulated by the same process-based model. Process-based models

provide a useful reference target because they are based on processes of crop growth that have

been developed and validated by field and laboratory experiments [2, 64, 12, 65]. Moreover,

the “perfect model” approach does not depend on the process-based model being exactly

perfect, so long as its underlying processes are reasonable and consistent between historical

and future contexts [8]. Inability of a statistical model to reproduce future target yields would

result in projection error, signifying the statistical model’s failure to capture the relevant yield

responses to climate change as represented in the process-based model. Importantly, the

“perfect model” approach is useful for identifying key environmental variables the statistical

models may be missing. More broadly, this approach is useful for analyzing the assumptions
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and limitations of both statistical and process-based models.

The “perfect model” approach in this context differs from studies that compare general

projections between process-based models and statistical models [12, 64, 66], as those sta-

tistical models are trained on observations and therefore lack known future yield targets

to evaluate projection accuracy. This approach also differs contextually from studies that

create statistical emulators of process-based models by training them on one ESM-based sce-

nario and testing them on another [67, 68]—these studies include both historical and future

simulated yields in their training sets.

Lobell & Burke (2010) used a “perfect model” approach to evaluate statistical models

based on growing-season aggregates of mean temperature and total precipitation, finding lit-

tle bias in model projections under a low uniform-warming (+2 ◦C) scenario [8]. In a follow-

up study, Holzkämper et al. (2012) evaluated statistical models using features of temper-

ature, precipitation, sunlight, and reference evapotranspiration, with different model varia-

tions aggregating features at different timescales (monthly to growing-season) [69]. Holzkäm-

per et al. (2012) found that the statistical models were able to provide good predictions of

impacts under a moderate uniform-warming (+4 ◦C) scenario based on Spearman’s rank

correlation metrics. However, limitations of these studies leave key gaps in the knowledge

of statistical model projections under climate change. First, neither study evaluated more

recent statistical model structures based on nonlinear responses to daily temperature and

precipitation exposure (hereafter referred to as TP models), nor did they evaluate moisture-

based models. Second, both studies drove their models using synthetic weather inputs and

uniform warming scenarios, possibly missing the yield impacts of coupled heat-moisture ex-

posure in observations and the potential shift in that coupling under emissions-driven climate

change. Third, each study looked at a single process-based model, which may be unrepre-

sentative of the emergent behavior across an ensemble of models. Advances in statistical and

process-based modeling practices today allow us to address these knowledge gaps.
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Here, use a “perfect model” approach to evaluate the abilities of TP and moisture-based

statistical models to project yield impacts under climate change. The TP model uses a piece-

wise linear response to daily temperature accumulation and a quadratic response to daily

precipitation, and the moisture-based models use various nonlinear and interacted responses

to daily atmospheric moisture stress and growing-season soil moisture supply [similar to ref.

58, further information and equations are shown in Methods]. We focus on rainfed maize

yields in the U.S. Corn Belt, a globally crucial agricultural region frequently studied through

statistical models [10, 12, 51] but not yet investigated using a “perfect model” approach. We

test each of the statistical models under uniform warming scenarios (up to +6 ◦C), as well as

under a high-greenhouse-gas emissions scenario (RCP8.5) simulated by the HadGEM2-ES

earth system model [ESM, 70]. Simulated yield datasets are taken from an ensemble of seven

process-based maize models in the Global Gridded Crop Model Intercomparison (GGCMI)

project [14], each with a unique and internally consistent representation of maize physiol-

ogy (e.g. phenology, photosynthesis, carbon allocation). Historical yield simulations in each

process-based model are driven by daily climate forcings from the AgMERRA (“agricultural”-

modified Modern-Era Retrospective analysis for Research and Applications) dataset, which

combines reanalysis data and weather observations.

The goal of this exercise is to address the following questions: 1) Do commonly used

TP models accurately project the influence of climate change on U.S. crop yield? 2) If not,

why? 3) Do moisture-based models produce more accurate projections? To answer these

questions, we train statistical models on historical simulations and evaluate their projections

under climate change scenarios. Collectively our findings inform projections of how climate

change will impact agricultural productivity, with important implications for food security..
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2.3 Data and Methods

2.3.1 Data

We use a dataset of gridded, process-based maize simulations from the GGCMI Phase 2

Experiment models [14]. Process-based models simulate daily and sub-daily growth processes

from planting to maturity on a 0.5◦ x 0.5◦ global grid. Simulations are run using inputs of

weather data, soil characteristics, and management parameters. We focus on rainfed maize

yields within the boundaries of twelve states of the U.S. Corn Belt (North Dakota, South

Dakota, Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Missouri, Nebraska, Ohio, and

Wisconsin). All simulations include a uniform Nitrogen application of 200 kg N/ha.

We exclude simulated yield outputs less than 0.1 ton/ha or that occur on grid cells with

less than 10% reported harvesting area for rainfed maize; gridded harvest areas are taken

from the MIRCA2000 (Monthly Irrigated and Rainfed Crop Areas around the year 2000)

dataset [71]. We further exclude any outputs with a reported planting date or maturation

length of 0, indicating an error in the simulated grid cell for a given year.

For the uniform warming scenarios, we select yield outputs from the seven process-based

models (CARAIB, EPIC-TAMU, GEPIC, LPJ-GUESS, LPJmL, pDSSAT, PEPIC) whose

historical simulations are driven by the same weather input, the AgMIP climate forcing data

set based on the NASA Modern-Era Retrospective Analysis for Research and Applications

[AgMERRA, 72]. Forcings include daily air temperature (maximum, minimum, average),

precipitation, relative humidity, wind speed, and solar radiation; the set of input forcings

considered varies by the specific data needs of each process-based crop model. Historical

simulations cover the period 1981–2010. Additional historical simulations are run under

fully irrigated conditions; we use these to determine water sensitivity in the process-based

models. Uniform warming scenarios are created by increasing each daily temperature value

by the indicated perturbation (+2, +4, or +6 ◦C) while holding all other weather conditions
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fixed. Additional simulations are ran under the +6 ◦C perturbation where maize cultivars

are adapted to counteract the shortening of growing periods under increased temperatures;

we use these to determine yield sensitivity to growing period in the process-based models.

We only include grid cells in the Corn Belt with 20+ years of valid yield outputs in the

historical scenario, as well as 20+ years of valid outputs in each uniform warming scenario.

To determine water sensitivity in the process-based models, we compare simulated yields

under historical conditions between rainfed and fully irrigated conditions. Fully irrigated

conditions in this context fulfills all water requirements for the crop regardless of local water

supply limitations [14], effectively eliminating water stress. For each process-based model,

we calculate the mean yield change when switching all crops in the region from rainfed to

fully irrigated conditions, serving as a measures of water sensitivity.

For the ESM-based climate scenario, simulated yields are only available by the LPJmL

process-based model. Historical and future daily weather conditions are simulated by the

HadGEM2-ES Earth System model [70], which is bias-adjusted to match observed mean

annual temperatures and interpolated to a 0.5◦ x 0.5◦ resolution by ISIMIP [73]. Historical

forcing exists for the period 1951–2014 and future conditions (2015–2099) are simulated

under a high-emissions scenario following the Representative Concentration Pathway (RCP)

8.5 forcing. We use the period 1981–2010 to train statisical models, and test projections on

the period 2011–2099, to be consistent with the approach under uniform warming scenarios.

We only include grid cells in the Corn Belt with 20+ years of valid yield outputs in each

thirty-year interval of the total period (i.e. 1981—2010, 2011–2040, 2041–2070, 2071–2099).

2.3.2 Statistical crop models

We use a statistical panel model based on temperature and precipitation, which we refer

to as the TP model. The model has a piecewise linear yield response to daily temperature

accumulation, based on the concept of growing-degree days (GDD) and high-degree days

10



(HDDs), two temperature ranges thought to have beneficial and harmful effects, respectively.

We construct the GDD and HDD features according to the standard approach of previous

literature [10, 12], with GDD defined as:

GDD =

∫ Aug. 31

Mar. 1
min{T − 10, 19}ϕ(T | T > 10)dT (2.1)

where ϕ(T |T > 10) is the estimated hourly time series of temperatures, conditional on T > 10

(ultimately measured in days). Hourly temperature time series are constructed analogously

to the literature [74, 10, 12, 51], where daily max and min temperatures are interpolated

into hourly sinusoidal shapes, with each day’s max temperature occurring at noon and min

temperature occurring at midnight. These hourly time series are then aggregated across the

defined growing seasons Mar. 1–Aug. 31 for each feature’s temperature range. The HDD

feature is defined as:

HDD =

∫ Aug. 31

Mar. 1
(T − 29)ϕ(T | T > 29)dT. (2.2)

The statistical model also has a quadratic response to daily precipitation values. In all, the

TP model can be written as:

log(Yi,t) = αi + βGDD ·GDDi,t + βHDD ·HDDi,t + βP · Pi,t + βP 2 · P 2
i,t + ϵi,t. (2.3)

We also consider a cross-sectional TP model that trains on spatial variations in yield and

weather conditions for the mean historical growing seasons.

We consider a cross-sectional version of the TP model, where independent and dependent

variables are calculated using the historical mean in each location, and can be written as:

log(Y i) = βGDD ·GDDi + βHDD ·HDDi + βP · P i + βP 2 · P 2
i + ϵi. (2.4)
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To consider the robustness of results across functional forms, we use a similar TP model

with a stepwise response to daily binned temperature exposure. We construct the binned

temperature features (ϕ) across three-degree intervals according to the standard approach

of previous literature [10, 51]. This model can be written as:

log(Yi,t) = αi +
39∑

h=0,3,6,...

βh[ϕi,t(h+ 3)− ϕi,t(h)] + βP · Pi,t + βP 2 · P 2
i,t + ϵi,t, (2.5)

where ϕ(h) is the cumulative distribution function of days during the growing season spent

at temperature h.

We also use multiple models based on features of atmospheric moisture demand and soil

moisture supply, which we refer to as moisture-based models. Daily vapor-pressure deficit

(VPD) is calculated from temperature and relative humidity conditions in the repsective

weather data according to the Clausius–Clapeyron relation,

V PD = e0 ∗ e((Lv/Rv)∗((1/T0)−(1/T ))) ∗ (1− (RH/100)), (2.6)

where e0 = 0.611 kPa, T0 = 273.15 K, Lv = 2.5e6 J/kg, and Rv = 461 J/(kg K), T is the

daily average air temperature, and RH is the daily average relative humidity. Soil moisture

supply (SM) is output by the LPJmL process-based model as growing-season totals, in units

of either mm/yr or kg/m3/yr. We use two separate statitical models with quadratic responses

to VPD and SM, respectively. Additionally, we use an interacted VPD-SM response inspired

by the literature [58], where VPD and SM values are binned by terciles of their respective

historical ranges in the region. This model can be written as

log(Yi,t) = αi +
3∑

j=1

3∑
k=1

βj,kV PDi,t(j) SMi,t(k) + ϵi,t, (2.7)

where V PDi,t(j) is the exposure in the jth VPD tercile and SMi,t(k) is the supply in the
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kth SM tercile.

For each process-based simulation, a separate statistical model is trained on the historical

scenario (1981-2010) of the corresponding uniform warming or ESM-based climate scenarios.

We exclude linear or quadratic time trends in all statistical models, unlike previous model

studies using real-world observations [10, 12, 75], because there are no apparent trends in the

simulated historical yields or their input weather conditions. Model training and prediction

is executed using the FIXEST R package [76].

2.4 Results

2.4.1 Statistical models based on temperature and precipitation overproject

yield damages under climate change

We find that statistical TP models overestimate climate impacts on maize in the U.S. Corn

Belt by roughly a factor of two (Figure 2.1). Under a uniform warming scenario of +6

◦C, these statistical models project yield losses of -59% on average, consistent with prior

analyses using models trained on county-level yield observations [10] The statistical models

also show high proficiency in predicting historical yield anomalies (within R2=0.49 for the

ensemble mean). However, target yield losses in the simulations are only -31% under the

+6 ◦C scenario. Over-projection of yield damages scales roughly proportionately with mean

temperature increases.

Our main finding is robust across the ensemble of process-based yield models used for

training and testing, with statistical TP models over-projecting yield losses by factors of

1.8–2.9 for five out of the seven simulated yield datasets (CARAIB, EPIC-TAMU, GEPIC,

LPJmL, PEPIC, Figure S1). For the other two simulated yield datasets (LPJ-GUESS,

pDSSAT), the statistical TP models project impacts accurately relative to the target losses;

we examine these cases further in the Discussion. We find the same results using a statistical
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model with a stepwise yield response to temperature (Figure S2). Our main finding also

holds when using weather data from climate model simulations following RCP 8.5 rather

than a uniform warming scenario (Figure 2.1b, simulated dataset only available for LPJmL),

indicating that the causes of projection-error under emissions-driven climate change are

similar to those in the uniform warming scenarios.

Going forward, we focus on results using a piecewise linear TP model trained and tested

on simulated yields for LPJmL. This statistical model accurately captures the ensemble mean

behavior in uniform warming scenarios (Figure 2.1a) and facilitates a consistent comparison

between uniform warming and ESM-based climate scenarios.

The spatial pattern of mean projection error under the +6 ◦C scenario (Figure 2.1a, inset)

resembles the corresponding increase in high-degree days (HDDs, Figure S4, r = −0.93,

p < 0.001). This suggests that the statistical model’s over-projected yield losses are related

to its treatment of high-temperature impacts—a hypothesis we explore further below. The

spatial similarity between projection error and HDD changes is less distinct in the ESM

climate scenario (Figure 2.1b, inset map), likely due to colder areas warming relatively more

and the inclusion of precipitation changes (Figure S3, bottom center).

2.4.2 The association between yield losses and high temperatures shifts

under climate change

For a statistical model to produce accurate long-term projections, its estimated response

to historical weather shocks must be consistent with how yields change under longer-term

climate change. We find that yield responses to temperature do not meet this criterion.

To illustrate how statistical yield responses to temperature change under different climate

states, we train separate statistical models on the simulated yields in each uniform warming

scenario (Figure 2.2).

The statistical TP model trained on simulated yield variation within the historical sce-
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Figure 2.1: Target yield responses and statistical model yield projections under warming scenarios.
(a) Line plots show mean yield change against increases in growing-season mean temperature under
uniform warming scenarios. The solid green line represents the target response of simulated yields
by the LPJmL process-based model. The solid blue line represents the projection of a TP statistical
model trained on historical weather and simulated yields, intended to reproduce the target response.
Dashed colored lines show the mean target response of simulated yields in the GGCMI ensemble
(including LPJmL) and the mean projection of the corresponding TP statistical models. The
inset map shows the spatial pattern of mean projection error (difference between projection and
target responses) under the +6 ◦C uniform warming scenario; grid cells colored light green or
brown indicate positive or negative error, respectively. (b) Mean yield changes in the same fashion
as (a) under the ESM-based scenario, where historical and future weather inputs are taken from
the HadGEM2-ES earth system model under a high-greenhouse-gas emissions scenario (RCP8.5).
Simulated yields are only available by the LPJmL process-based model. Vertical dotted lines denote
the warming at vicennial markers. The inset map, in the same fashion as the inset map of (a), shows
the spatial pattern of mean projection error in the period 2067–2096, when mean growing-season
temperatures increase by roughly +6 ◦C. TP statistical models trained on historical variations
overproject yield losses under climate warming by roughly double.

nario shows a similar response to prior analyses of county-level yield observations [10, Figure

2.2a], indicating yield losses of -6.7% under 24-hour exposure to 39 ◦C relative to 29 ◦C.

However, a statistical model trained on variation within the +6 ◦C scenario is notably less

sensitive to high temperatures, indicating yield losses of -3.4% for the same exposure. Fur-

thermore, a statistical model trained on variations across all warming scenarios (i.e., pooling

data from the +0 ◦C, +2 ◦C, +4 ◦C, and +6 ◦C experiments) indicates yield losses of -
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2.4% for the same exposure. We find similar results in the ensemble mean responses across

process-based crop models (Figure S7). These results demonstrate a type of Simpson’s Para-

dox, where the relationship between yields and HDDs across climate states is less sensitive

than the respective relationships within individual states (Figure 2.3a). This behavior ap-

pears in most of the simulated yield datasets in our study (Figure S8). The statistical model

trained pooling data across climate states can accurately project yield impacts under cli-

mate change (Figure S6); however, such a model cannot be estimated when limited to using

historical data.

While yield responses estimated from historic interannual temperature and precipitation

variations within locations lead to overprojected yield damages under climate warming, yield

responses estimated from variations in mean conditions across space can more accurately

project changes in yields under climate change (Figure 2.4a, cross-sectional model described

in Methods). A similar result is found for a cross-sectional model under the ESM-climate

scenario (Figure S12). However, cross-sectional models in both scenarios still show some error

in projections relative to the realized simulated yield losses. Though diminished sensitivity

to longer-run changes in temperature is often interpreted as evidence of farmer adaptation

[77], that cannot be the case in this setting because management practices are held fixed

across all scenarios. Rather, lesser yield sensitivity to temperature across changing climate

states indicates that temperature may not be a direct determinant of yields, but rather a

proxy thereof, whose effectiveness wanes as the climate warms.

2.4.3 Statistical models based on atmospheric and soil moisture stresses

project yield losses more accurately under climate change

Following the suggested importance of atmospheric moisture demand (i.e. vapor pressure

deficit, VPD) and soil moisture supply to crop yields in recent literature [57, 20, 58, 56], we

explore the associations between yields, HDDs, and moisture stresses across the warming
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Figure 2.2: Statistical yield responses to temperature under warming climate conditions. (a)
Line plots show the yield responses to 24-hour exposure at each one-degree temperature interval.
The solid blue line corresponds to the piecewise response of a TP statistical model trained on
simulated yield variations within the historical scenario (+0 ◦C). The dashed gray line corresponds
to the response of a similar TP statistical model from the literature trained on observed U.S. maize
yield variations within historical conditions [10], for comparison; note that this model is slightly
different in its flattened response for temperatures above 39 ◦C. Solid lines of yellow, orange, and
red correspond to the responses of TP statistical models trained on simulated yield variations within
the +2 ◦C, +4 ◦C, and +6 ◦C climate states, respectively. The solid black line corresponds to the
response of a TP statistical model trained on simulated yield variations across all climate states
(+0, +2, +4, and +6 ◦C). (b) Histograms show hourly temperature exposure during the growing
season, normalized to days, in the U.S. Corn Belt for historical (blue) and +6 ◦C uniform warming
(red) scenarios. The distribution of solid bars corresponds to severe heat exposure above 29 ◦C,
aligned with the hinge point of the piecewise linear response function. The historical yield responses
are similar between a model trained on observed yields and a model trained on simulated yields.
However, the yield response in the +6 ◦C scenario (for simulated yields) is notably less sensitive
to severe heat. The climatological response, needed to reproduce target yield losses under warming
(Figure S6), is less sensitive than the interannual response at any given warming level.

scenarios.

Similarly to crop yields, extreme VPD values are strongly associated with severe heat

exposure in the historical climate (Figure 2.3b). Also, this historical VPD-HDD association

is stronger than the association across climate states. As VPD is a function of temperature
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and relative humidity [78], this discrepancy results from a changing temperature-humidity

correlation, where HDDs in the warmer climate are associated with less VPD than historical

relationships suggest. This changing correlation occurs by design in a uniform warming

scenario (relative humidity is held fixed) but also occurs in the ESM climate scenario, where

future changes in humidity are proportionally small relative to HDD (SI Figure S10).

Unlike the yield-HDD relationship, the yield-VPD relationship within the historical cli-

mate is similar to the relationship across climate states (Figure 2.3c, see SI Figure S9 for

all ensemble members). These results suggest that VPD is a more mechanistically relevant

factor than temperature exposure for yield loss under climate warming in process-based crop

models. We find similar results for the yield relationship to soil moisture supply (Figure

S11).

Motivated by the similarities in yield-moisture relationships between historical and cli-

mate states, we test the performance of moisture-based models through the “perfect model”

approach. We find that moisture-based models consistently project yield impacts more ac-

curately than TP models relative to the target yield losses (Figure 2.4, functional forms

described in Methods and Section S1.1). A statistical model using an interactive yield re-

sponse to atmospheric moisture demand and soil moisture supply projects yield losses most

accurately under climate change (solid black line in Figure 2.4), consistent with recent em-

pirical findings highlighting the importance of these interactions [58]. Notably, statistical

models using a temperature response in tandem with features of VPD or soil moisture sup-

ply still overproject yield losses. This suggests that the inclusion of temperature features

dominates the statistical models’ historical yield responses and, consequently, their climate

change projections.

We find that moisture-based statistical models (excluding temperature responses) project

impacts under uniform warming scenarios more accurately than TP models despite having

less explanatory power within the historical climate (Table 2.1). Temperature features may
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(a) (b) (c)

Figure 2.3: Associations between yield, severe heat, and atmospheric moisture demand under
uniform warming scenarios. (a) Blue contours represent the historical distribution of annual sim-
ulated maize yields (by LPJmL) and growing-season HDDs in the U.S. Corn Belt; changing colors
indicate distributions for the +2 ◦C (yellow), +4 ◦C (orange), and +6 ◦C (red) warming scenarios.
Contour lines in each scenario indicate the 1%, 5%, 25%, 50%, 75%, 95%, and 99% probability
values based on a normalized kernel density estimate. Colored straight lines show the linear rela-
tionship within each warming scenario. Colored dots with black outlines show the mean yield and
HDD values in each scenario, with the solid black line connecting mean values as a representation
of the association across climate states. (b) Contour plots in the same format as (a) shown for
(b) distributions of annual HDD values and growing-season total VPD, a measure of atmospheric
moisture demand, and. (c) distributions of annual simulated maize yields and growing-season to-
tal VPD. The extrapolation of a historical yield-HDD association incorrectly projects how yields
change under warming, esimating that future hot years would have greater yield damages than they
actually do. This changing association suggests that high temperatures are not a primary driver of
yield losses under climate change, but a hisotrical proxy whose effectiveness wanes with warming.
Yield-VPD associations are similar between historical and climate states, indicating that VPD may
be a more direct driver, and subsequently more appropriate for future projections.

serve as a viable proxy for the complex interactions determining historical yield variations

due to the strong association of hot and dry conditions during years of minimal yields.

However, the viability of this proxy does not hold fixed into the future, suggesting that

historical proficiency is not always indicative of accurate projections under climate change

and emphasizing the importance of developing causal, rather than simply predictive, models

in situations where distributional shifts occur.

Consistent with our result that moisture-based models project more accurate yield losses

than TP models, we look across our ensemble and find that the overprojection of heat dam-
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ages under climate change is associated with the underlying process-based model’s water

sensitivity (Figure 2.4b). We assess water sensitivity by calculating the yield benefits be-

tween irrigated and rainfed conditions, and determine the overestimation of heat-related

yield damages by calculating the ratio of yield-HDD sensitivities (linear slopes) between his-

torical and climate states. This finding suggests that it is confounding of temperature and

moisture stress that is driving the overprojection by TP models.

Discussion

To project accurate climate change impacts, statistical crop models should use features rep-

resenting the direct environmental drivers of yields. However, what the direct drivers of

yield are remains an open question in the literature, making model selection a challenge.

Some features may serve as effective proxies of these drivers due to a strong historical cou-

pling. However, climate change may alter this coupling, rendering a historically strong proxy

ill-suited for future projections.

The “perfect model” approach is a promising way to evaluate the ability of statistical

crop models to project accurate climate change impacts. Models have been typically evalu-

Model Within R2 Yield change [%]
(historical) (+6 ◦C)

Simulation “ground truth” n/a -27
Temperature, precipitation (TP) 0.51 (± 0.00) -61
Soil moisture (SM) supply 0.30 (± 0.00) -35
VPD 0.28 (± 0.00) -25
SM, VPD (interacted) 0.28 (± 0.00) -28

Table 2.1: Comparison of model historical performances and climate change projections. Simulated
yields are used in effect as “ground truth“ to evaluate statistical model projections. TP corresponds
to the statistical model with piecewise linear yield response to temperature. SM corresponds to
the statistical model with quadratic yield response to growing-season total moisture supply. VPD
corresponds to the statistical model with quadratic yield response to daily atmospheric moisture
demand (VPD). SM, VPD corresponds to the statistical model with an interacted yield response to
binned SM and VPD exposure (terciles).
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Figure 2.4: Investigating the influence of water sensitivity on statistical model projection error.
(a) Line plots show the target yield projection for simulated yield by LPJmL under uniform warming
(green), along with projections for various statistical models. Line number 6 represents projections
from the historically trained TP statistical model, in the same fashion as Figure 2.1a. Line number
5 represents projections from a cross-sectional TP statistical model. Line number 3 represents
projections from a panel statistical model using an interactive SM-VPD response. All other lines
are described in the Supplement. (b) Scatter plot shows overstimated HDD damages, defined as
the ratio of linear associations between the historical and climatological timescales (taken from
Figure 2.3a), plotted against underlying water sensitivity in the simulated yields, defined as the
yield increase (%) due to switching from rainfed to irrigated crop management under historical
conditions. The dashed gray line shows a linear fit to the scatter points. Statistical models based on
atmospheric moisture demand and/or soil moisture supply project yield losses under warming more
accurately than TP-based models. However, this is dependent on the underlying water sensitivity
of the simulated yields, where greater water sensitivity is associated with greater projection error
by the TP statistical models.

ated and selected based on their historical goodness-of-fit [56, 58, 59]. The “perfect model”

approach can add additional insight. From our use of the approach, we find that com-

monly used statistical models based on temperature and precipitation have high historical

goodness-of-fits but substantially overproject yield damages under climate change. We also

find that models based on atmospheric moisture demand and/or soil moisture supply project

yield losses under climate change more accurately, despite having lower goodness-of-fits in
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historical data.

For two out of seven of the simulated yield datasets in our study—pDSSAT and LPJ-

GUESS—the corresponding statistical models project impacts accurately relative to the tar-

get losses. Upon further investigation, we find these two models to be particularly sensitive

to yield losses caused by accelerated maturity under warming (Figure S13). The sensitivity

of these two models to accelerated maturity dominates their yield changes under warming,

leaving them relatively insensitive to water stresses. Because the temperature responses of

TP models in our study are based on heat accumulation, they effectively serve as a proxy

for accelerated maturity. This difference across process-based crop models highlights the

importance—for both process-based and statistical crop modelling communities—of deter-

mining and modeling the true climatological drivers of yield. The efficacy of projecting future

yields with a TP statistical model may therefore depend on the extent to which climatic yield

losses in the real world are driven by accelerated maturity versus moisture stress.

Our finding that TP models overproject climate change damages to yields contrasts with

that of Lobell & Burke (2010) who find that statistical TP models based on growing-season

temperature and precipitation generally project accurate impacts under low-warming (+2

◦C) scenarios. However, Lobell & Burke used simulated yields from only a single process-

based model—CERES-Maize [3]—which is a predecessor to the pDSSAT maize model used

in our ensemble [79]. For the case of pDSSAT in our study, the simulated yield impacts

and corresponding statistical model projections under uniform warming of +2 ◦C are nearly

identical to results in Lobell & Burke (Figure S1). However, the results from pDSSAT are

an outlier in our ensemble of models, for the reasons discussed above. This difference in

findings highlights the value of our ensemble approach.

The “perfect model” approach evaluates how well statistical crop models capture the phys-

iological mechanisms in process-based models relevant to climate change [8]. Consequently,

the degree to which our results reflect statistical model accuracy in real-world future pro-
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jections depends on how well process-based models represent true crop physiology. While

process-based models have been designed to accurately represent crop physiology, they have

known issues, such as challenges reproducing historical yield records [13] and minimizing

adverse yield effects from excess precipitation [80, 81], and are also subject to uncertainty

in their climate change projections [81]. It is possible that a statistical crop could perform

better or worse in capturing process-based yield responses to climate change than it does in

capturing real-world yield responses.

Despite potential limitations, the “perfect model” approach still serves as a useful tool

when analyzing statistical crop models. Process-based crop models include detailed represen-

tations of crop growth and management processes, with physiological mechanisms founded

in agronomic experiments and management parameters (e.g. planting, harvesting, cultivar

choice) often tuned to real-world observations [82, 83]. Furthermore, the importance of

moisture stress to yield responses aligns with recent findings from the statistical modeling

literature [84, 58, 78, 85, 57, 56] rooted in real-world data, supporting the findings of our

study.

Further research to advance the “perfect model” approach could improve the evaluation

of statistical crop model projections under climate change by expanding the analysis of this

study to other key crops and agricultural regions [40, 86], shedding light on the consistency

of findings in our study. Additionally, evaluating the ability of other models to project

crop yields under climate change, such as a long-difference regression [77] or cutting-edge

machine-learning algorithms [19, 87, 88, 89, 48, 90] could be key to guiding the field forward.

Our study highlights the importance of considering moisture effects in physiological re-

sponses under climate change, with application beyond crop yield impacts. For example,

recent statistical modeling research highlights the effects of atmospheric moisture (i.e. hu-

midity) on mortality [91, 92, 93, 94]. Whereas crop heat stress is relatively greater under

dry conditions [50], human heat stress is greater under humid conditions, as the body be-
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comes less efficient at shedding heat through evaporative cooling [63]. Evaluating statistical

model projections of human mortality and other social outcomes through a “perfect model”

approach, with the use of physiologically based models [95], may improve our understanding

of societal concerns under future climate change.

2.5 Data Availability

All data used in this analysis are publicly available. Simulation outputs from GGCMI

phase 2 are available at https://zenodo.org/. AgMERRA weather data is available at

https://data.giss.nasa.gov/impacts/agmipcf/agmerra/. LPJmL RCP8.5 simulation outputs

are available upon request.
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MULTIPLE OBSERVATIONAL DATA SETS
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3.1 Abstract

Understanding the impacts of climate change on food production requires accurately mod-

eling crop yields in historical and future climates. Absolute yield levels in process-based

crop models can be significantly affected by parameterizations of cultivar maturity (total

heat accumulation needed to reach full crop development), indicating that the use of inac-

curate maturity parameterizations can lead to unrealistic model behavior. For models in

the Global Gridded Crop Model Intercomparison (GGCMI) Phase 2 Experiment, historical

cultivar maturities for U.S. maize are parameterized using state-level growing periods (days

from planting to maturity) derived from a single-year crop calendar (1996). However, it

is not yet understood how this crop calendar compares to calendars of increased temporal

or spatial resolution, nor is it understood how well calendar-derived maturities reflect the

maturities of real-world maize cultivars. Here, we evaluate the single-year, state-level crop

calendar against three observational data sources of increasing detail for maize cultivars in

the U.S. Corn Belt: a multi-year state-level crop calendar, a multi-year district-level crop

calendar, and county-level cultivar maturity estimates from maize sales data. At the state

level, planting and harvest dates in the single-year crop calendar agree with mean dates in
25



the multi-year calendar, indicating that the hand-picked 1996 dates reasonably represent

average historical farming schedules. However, observed durations between maturity and

harvest dates frequently exceed the 21 days assumed in the GGCMI Phase 2 protocol. In

the GGCMI models, the accuracy of tuning cultivar maturities based on input crop cal-

endars varies in execution, but models that follow the protocol ultimately show accurate

growing periods and cultivar maturities on average. District-level crop calendars reveal sub-

stantial in-state heterogeneity in planting and harvest dates, but district-level dates still

align on average with their respective state-level dates, suggesting little bias from the use of

state-level dates to tune maturity parameterizations. Comparing cultivar maturities derived

from the district-level crop calendar with county-level maturity estimates based on maize

sales data, we find that calendar-derived maturities agree with estimates in the northern

districts but exceed estimates in southern districts, indicating that current maturity-tuning

protocol may be not uniformly reflect observed maize cultivars throughout the Corn Belt.

While GGCMI models reasonably represent historical maize growing periods and cultivar

maturities in the Corn Belt, refining maturity parameterizations to higher spatiotemporal

resolutions and closer agreement with sales-data estimates may reduce noise in absolute

yield levels, clarifying the comparison of model responses to weather fluctuations and future

climate change.

3.2 Introduction

Process-based crop models are vital tools in understanding the impacts of climate change

on food production, simulating the effects of future weather conditions on daily crop devel-

opment and yields [2, 96]. Gridded crop models in the Agricultural Model Intercomparison

and Improvement Project (AgMIP) [97] project strong negative effects of climate change on

global maize production, but reducing uncertainty among projections remains a challenge

[6, 81].
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Diagnosing differences between maize model response to climate factors remains a chal-

lenge [13, 98], in part due to limited information on underlying crop management conditions

[15]. Information on cultivar maturities, defined as the heat accumulation needed for a

crop to reach full development, is particularly important for crop modeling, as maturity

parameterizations can significantly influence the resulting yield values [15, 16]. If maturity

parameterizations do not reflect real-world cultivars, then models may not accurately reflect

yield outcomes under historical and future climate conditions.

In the Global Gridded Crop Model Intercomparison (GGCMI) Initiative Phase 2 Exper-

iment [14], maize maturities in the U.S. Corn Belt are parameterized using a single year

of state-level crop calendars taken from Sacks et al. (2010) [99], which provide median

planting and harvesting dates for the 1996 growing season [100]. These crop calendars are

used to calculate growing periods (days from planting to maturity) by assuming that crops

reached maturity 21 days prior to harvest [7]; the intervening period is assumed for in-field

dry down. Cultivar maturities are finally derived at each grid location by calculating the

growing-degree days (GDDs) within each growing period, then holding that maturity con-

stant across all years in the historical period [101]. To date, it remains unclear whether

single-year crop calendars accurately represent average planting and harvesting practices in

the Corn Belt, or if their state-level values might obscure important information at finer

spatial scales. Furthermore, it is uncertain whether maturities derived from crop calendars

reflect the true physiological maturities of real-world cultivars.

Here, validate the single-year, state-level crop calendars used to parameterize maize ma-

turities in the GGCMI Phase 2 Experiment, comparing them to three observational data

sources: (1) multi-year state-level crop calendars, (2) multi-year district-level crop calen-

dars, and (3) county-level maturity estimates from cultivar sales data. We compare the

single-year and multi-year crop calendars at the state level to determine whether 1996 grow-

ing periods align with average values across the historical period. We compare the multi-year
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state-level crop calendars against a newly compiled dataset of multi-year calendars at the

agricultural district level, evaluating whether the disregard of in-state heterogeneity might

introduce bias of growing periods. Finally, we compare average cultivar maturities derived

from district-level crop calendars against county-level maturities estimates from sales data,

assessing how closely the data sets agree across the region. We aim to answer the question:

do current maturity parameterizations in the GGCMI models accurately represent real-world

maize cultivars in the U.S. Corn Belt?

3.3 Data and Methods

3.3.1 Crop Calendar Observations

The subject of our study is the dataset of state-level planting and harvest dates in Kansas,

Illinois, Indiana, Iowa, Missouri, and Wisconsin, as published in Sacks et al. (2010) [99].

Median planting and harvest dates are taken for the 1996 growing season [100]. These dates

are use to tune maize growing periods in the GGCMI Phase 2 Experiment, assuming crops

reached maturity 21 days prior to harvest.

We evaluate the single-year calendars used in Sacks et al. (2010) using two data sets

of crop calendars at increased spatial and temporal resolution. Weekly reports of maize

sowing and harvest progress (0 to 100%) were taken from the United States Department of

Agriculture (USDA) at the state level for the same states for the period 1981—2010 [102].

Additionally, weekly progress reports at the district level were taken from USDA regional

offices for the same states and period. Reports for two districts in Missouri—Western Central

and Eastern Central—were unavailable. Annual reports of total planted acreage, harvested

acreage, and harvested yields are also included for the available districts. Weekly progress

reports for each granularity (district or state) do not always cover progress from 0–100%.

Therefore we designate sowing, maturity, and harvest dates in each growing season as the
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first respective report to exceed 50% progress. Maturity dates at the district level were not

available, so we calculate district-level growing periods by applying maturity-harvest offsets

from the state level S15 to all districts, for a given state and year. Finally, we calculate annual

anomalies for sowing dates, maturity dates, harvest dates, growing periods, and detrended

yields.

3.3.2 Climate Data

Daily temperature data were obtained from the AgMERRA (“agricultural”-modified Modern

Era Retrospective analysis for Research and Applications) gridded reanalysis product [72]

at a resolution of 0.5◦ x 0.5◦ for the years 1981–2010. We calculate daily growing-degree

days (GDDs) for each gridcell using minimum and maximum temperatures, according to

common practice in the literature [103]. We aggregate daily gridcell values to district-level

means, weighted by maize harvest area (Figure S14 taken from the MIRCA2000 dataset [71]

at the same resolution as AgMERRA. Cumulative GDDs across the growing period (sowing

to maturity) are calculated in each district and year for both models and observations to

derive cultivar maturities.

3.3.3 Crop Model Output

Annual output of yields, planting dates, and maturity dates are taken from six maize models

(CARAIB, EPIC-TAMU, GEPIC, LPJ-GUESS, LPJmL, pDSSAT) in the GGCMI Phase

2 Experiment [14] at a resolution of 0.5◦ x 0.5◦ for the years 1981–2010. Each model is

driven by daily AgMERRA climate inputs (temperature, precipitation, solar radiation, in

some cases also relative humidity and wind speed). State-level sowing dates in the models

are held fixed at each location across all years. Modeling teams tune their cultivar maturities

independently, based on the respective maturity thermal time process in each model [101],

such that the results growing periods match or closely align with 1996 growing periods
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assuming the 21-day offset between maturity and harvest [7]. Cultivar maturities are then

held fixed at each location across all years the period 1981–2010. Models consider only

high-input systems with nitrogen fertilization levels of 200 kg N/ha and no other nutrient

limitations (e.g., Phosphorus and Potassium). We aggregate annual outputs of sowing date,

maturity date, growing period and yield to the district level using weighted means of harvest

area, and calculate annual anomalies.

3.4 Results

3.4.1 Planting and harvest dates from Sacks et al. (2010) align with

multi-year averages across the historical period

We find that single-year planting and harvest dates published by Sacks et al. (2010) align

with average dates in multi-year calendars (Figure 3.1). Within each state, the single-

year planting dates from Sacks et al. (2010) are within 5 days of their respective multi-

year averages, and single-year harvest dates are within 8 days of their respective multi-year

averages. Multi-year planting dates vary from year to year, with standard deviations ranging

from 6 to 14 days (1 sigma) across states. Planting-date variation in Wisconsin is less than

half the variation in Missouri, consistent with the understanding that northern planting

windows can be constrained by colder springtime temperatures. Harvest-date variations do

not show significant differences between states, ranging from 10–12 days across the region.

Inferred maturity dates used in the GGCMI Phase 2 Experiment protocol, on the other

hand, occur consistently later than multi-year observations suggest, with delays ranging from

4–20 days across states. Observed intervals between maturity and harvest range from 23 to

36 days across states, indicating that the assumed 21-day interval does not reflect historical

maize crops in the Corn Belt. Altogether, validation of the single-year planting and harvest

dates from Sacks et al. (2010) suggest they are suitable to represent average historical crop
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calendars in models, save for a slight bias in the assumed maturity-harvest intervals.

(a) (b)

(c)

(f)(d) (e)

Figure 3.1: State-level planting and harvest dates between Sacks et al. (2010) and multi-year
observations in the U.S. Corn Belt. (a) Line plots show annual state-level dates for planting (blue),
maturity (green), and harvest (orange) in Illinois. Dates from multi-year observations are shown by
solid lines. Single-year planting and harvest dates for the 1996 growing season, taken from Sacks
et al. (2010), are shown by circular markers with extended dashed lines. The tuned maturity date
used in the GGCMI protocol assumes a 21-day offset between maturity and harvest, and is shown
by a circular marker with an extended dotted line. Identical layouts are shown for (b) Indiana,
(c) Iowa, (d) Kansas, (e) Missouri, and (f) Wisconsin. Single-year planting and harvest dates
from 1996 reasonably represent average respective dates across the historical period. However,
tuned maturity dates occur later that most observed maturity dates, suggesting real-world intervals
between maturity and harvest are longer than the 21-day assumption.
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3.4.2 Maize models also show similar growing periods and maturities to

state-level observations

Even though single-year crop calendars from Sacks et al. (2010) reflect average calendars,

the efficacy of parameter tuning determines whether models show the same accuracy in their

resulting growing periods. For the GGCMI Phase 2 Experiment, we find that the resulting

model growing periods in the Corn Belt are similar to observed growing periods across the

historical period (Figure 3.2). Average observed growing periods are 126–137 days across

all districts, which is similar to the range for most of the ensemble. CARAIB stands as a

notable outlier with growing periods ranging from 100–110 calendar days, shorter than the

rest of the Phase 2 ensemble whose growing periods range from 127–148 calendar days. Since

CARAIB was the only model in the ensemble not tuned to match the input crop calendar

[7], its outlier behavior is expected. Excluding CARAIB, the rest of the ensemble growing

periods differ from observed values by -1–9% on average, with the slight bias toward longer

growing periods reflecting how assumed maturity-harvest intervals in the GGCMI protocol

[7] are shorter than observations suggest.

As a result of similar growing periods, parameterized cultivar maturities in models are

also similar to maturities inferred from state-level growing periods (Figure S16). Average

observed maturities in the state-level observations are 1220–1640 GDDs, which typically lies

within model ranges in the ensemble. Again, the CARAIB model has substantially earlier

maturities than the rest of the ensemble, with a range of 940–1400 GDDs. The rest of the

ensemble maturities range from 1160–1770 GDDs, ultimately differing from observed values

by -1–5% on average. Percentage differences between modeled and observed maturities are

slightly smaller than differences in growing periods due to low-GDD values for days at the

tail ends of the growing season (Figure S26).

Importantly, we find that calendar-derived cultivar maturities in maize models vary in

each district from year to year, despite the modeling protocol dictating that location-specific
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cultivars be held fixed across the historical period. We consider potential causes of this

finding in the Discussion section.

Our validation of modeled growing periods and maturities suggests that parameterized

growing periods and maturities in the GGCMI models agree with observed values at the

state level. In addition to maturity characteristics, we find that modeled yield values align

with observed yields on average (Figure S17). Average yields in both observations and the

ensemble (sans CARAIB) are 8.5 ton/ha. pDSSAT shows outlier behavior, however, with

an average historical yield of 13 ton/ha, substantially above observations and other model

values.

3.4.3 District-level crop calendars reveal in-state heterogeneity in growing

periods and cultivar maturities

To assess whether models may be able to accurately represent observations at increase spa-

tial resolution, we examine in-state heterogeneity in observed crop calendars. We find that

district-level observations of cultivar maturities and growing periods reveal substantial in-

state heterogeneity (Figure 3.3, individual states shown in Figures S18–S23)). Across the

Corn Belt, district-level mean growing periods typically vary within each state by approx-

imately two weeks (Figure S24). However, observed maturity characteristics vary by state

(Figures S18–S23).

We find that district-level growing periods can be shorter or longer than the state-level

records by as much as a month or more (Figure 3.3). 40% of district-level growing periods

differ from their respective state-level values by a week or more, and 13% differ by two weeks

or more. Most states have an average north-south difference ranging from 11–19 days, except

for Iowa and Wisconsin, the two northernmost states in the region. On average, however,

district-level growing periods are 1.5 days shorter than state-level values; this difference is

notably smaller than the weekly resolution at which state- and district-level values are both
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Figure 3.2: Comparisons of multi-year growing periods between models and observations. (a)
Map subplots show average historical maize growing periods for observations, calculated from state-
level crop calendars, and each process-based model considered in the ensemble. (b) Line plots
show the historical timeseries of average growing periods for observations and models. Ensemble
mean growing periods are calculated excluding values from CARAIB, which did not participate
in the protocol to tune historical growing periods. Model growing periods align with state-level
observations in the historical period, suggesting that the use of single-year crop calendars to tune
model growing periods is generally reasonable.

reported.

District-level cultivar maturities can differ their respective state-level values by >10%

(Figure 3.3). Cultivar maturities generally decrease with latitude, where northern districts

typically have the earliest maturities and southern districts have the latest (Figure 3.3).
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Cultivar maturities typically show greater agreement with the corresponding state-level val-

ues in northern districts relative to southern districts (see Figure S22 and Figure S23 for

comparison). The largest difference in cultivar maturities exists between district and state

levels in southern districts, where district values are roughly 270 ◦C days (14%) earlier.

Within each state, sowing and harvest dates in northern districts generally occur later

than the state value, while dates for southern districts occur earlier (Figures S18–S23).

However, this pattern is not apparent in Iowa, and perhaps inverted for Wisconsin, relative

to the rest of the Corn Belt states (Figures S21 and S23). This is likely due to these two

states having the least in-state heterogeneity for maturity durations (Figure S24) and may

be due, in part, to them containing the most northern districts in the domain. District-state

differences show similar patterns grouped by southwestern states and northeastern states,

respectively; this orientation is similar to the spatial pattern of historical GDDs (Figure

S25). Relative to other states in the region, Wisconsin has a combination of relatively lower

daily GDD values and smaller discrepancies between district- and state-level dates (Figure

S26). Thus, district-level maturities in Wisconsin are more similar to state values than in

any other state in the domain. District-level data in some states, such as Illinois, suggest

that sowing dates in northern districts sometimes precede those in southern districts (see

Supplemental Figures), counterintuitive to the expected spring warming pattern across the

state.

If future GGCMI experiments aim to reflect real-world maturity characteristics at finer-

than-state resolutions, they will have to incorporate new crop calendars, such as the district-

level calendars in this study, in future model parameterizations.
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Figure 3.3: Differences in growing periods and calendar-derived maturities between district- and
state-level observations in the Corn Belt. (a) Scatter plot shows growing periods based on district-
level reports against values based on state-level reports (the standard USDA resolution) for districts
in the Corn Belt. Data points are colored by the latitude of the corresponding district. Filled
circles represent values from 1996, the year used to tune maturity parameterizations in the GGCMI
models. The dashed one-to-one line denotes where state- and district-level values are equal. (b)
Scatter plot shows the same format as (a), but for cultivar maturities. (c) Stacked histogram shows
the difference in growing periods between district- and state-level observations. Bars are colored
by the latitude ranges of the corresponding districts. The black vertical dashed line marks the zero
point where state- and district-level values are equal. The gray vertical dashed line marks the mean
difference. (d) Scatter plot shows the same format as (c) but for differences in cultivar maturities.
State-level planting and harvest dates align with district-level dates on average. However, in-state
heterogeneity can lead to district-level growing periods that differ from state-level values by up to
a month or more, which is not captured in the GGCMI Phase 2 Experiment protocol.
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3.4.4 Observed maturities from crop calendars show similar range and

spatial pattern to maturity estimates from sales data

To assess whether crop calendars are reasonable for estimating cultivar maturity, we com-

pare observed maturities with maturity estimates from sales data, originally presented in

Abendroth et al. (2021) [104]. Since Abendroth et al. (2021) present average maturity esti-

mates for the period 2000–2016, we compare their data to observations for overlapping years

(2000–2010). Observed mean cultivar maturities (Figure 3.4) generally agree with maturity

estimates (Figure 1b of Abendroth et al., 2021) in states where data is available from both

sources. Observations and sales data show similar ranges of maturity values for districts in

Iowa, northern Illinois, and northern Indiana. However, observed maturities are generally

50–100 GDDs later than maturity estimates for districts in Missouri and southern Illinois.

Within the comparable agricultural districts, maturity estimates from sales data show in-

district heterogeneity and some missing counties. No commercial sales data was available to

compare with observations for districts in Kansas.

Observed mean maturities (Figure 3.4b) also show a similar relationship to latitude as

that of estimates from sales data (Figure 2b of Abendroth et al., 2021, [104]). Unable to

extract specific districts from the maturity estimates dataset, we compare the meridional

relationship of maturity estimates in all sales data (including North Dakota, South Dakota,

Minnesota, Michigan, and Ohio, excluding Kansas) to the relationship from mean maturities

from observations (including Kansas). We perform a bilinear regression of the mean observed

maturities in each district against the corresponding district latitude, with a hinge point at

41.5 ◦N, in the same fashion as Abendroth et al. (2021). Predictions from the bilinear

regression show a high correlation to observations (R2=0.84), although not as high as the

respective predictions to sales data (R2=0.92) [104].

Fitted slopes of cultivar maturity to latitude are consistently more negative in observa-

tions than in maturity estimates from sales data. The relationship between observed cultivar
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maturities and latitude for districts below 41.5 ◦N is -12.0 GDDs/◦ latitude, similar to the

relationship found from sales data (-13.7 GDDs/◦ latitude). However, the relationship be-

tween observed cultivar maturities and latitude for districts above 41.5 ◦N is -99.0 GDDs/◦

latitude, nearly twice as negative as the relationship found from sales data (-56.2 GDDs/◦

latitude). As expected, county-level sales data show substantially greater sampling for lati-

tudinal locations across the region. County-level sales data is also represented for numerous

latitudes up to 49 ◦N, whereas observations only contain six districts between 44–46 ◦N.

The difference in regions considered for the comparison between observations and sales data

likely influences the respective bilinear relationships to latitude. In all, spatial heterogene-

ity in agreement between calendar-derived maturity and sales data estimates suggests that

southern crop calendars may require additional adjustments to reflect the true crop maturi-

ties.

3.5 Discussion

Providing sound representations of crop behavior under historical and future conditions re-

quires process-based crop models to simulate accurate yield outputs for the right reasons.

Model accuracy can be influenced by error in both the input parameters and the underlying

crop growth processes [16, 98]. Validations of modeled growing periods and cultivar maturi-

ties in this study suggest that the input crop calendars of Sacks et al. (2010) are useful for

tuning maize maturities in the Corn Belt.

Our comparison of cultivar maturities derived from crop calendars to maturity estimates

from sales data suggest it is reasonable to drive cultivar maturities from observed crop calen-

dars in the northern districts of our study region (Figure 3.4). Observed cultivar maturities

in southern districts are slightly later than sales data estimates, suggesting that reported

growing periods may be slightly delayed relative to the true phenological development. Dis-

crepancies in cultivar maturities between the two sources might reveal errors in the use
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Figure 3.4: Average cultivar maturities derived from district-level crop calendars. (a) Map plot
shows the average cultivar maturity calculated from district-level reports, in the same format as
Figure 1b in Abendroth et al. (2021) [104], for comparison. (b) Scatter plot shows the same values
plotted against the corresponding district latitude, in the same format as Figure 2b in Abendroth
et al. (2021) for county-level sales data. The solid black line shows a bilinear fit with a hinge
point at latitude 41.5 ◦N. Cultivar maturities derived from crop calendars align with estimates
from sales data in northern districts, but typically exceed estimated values in southern districts.
Meridional relationships, however, are similar between the two data sources in southern districts,
while calendar-derived maturities show a more negative relationship to latitude in northern districts.
Differing spatial resolutions and reference periods likely affect these findings, as does the imposed
hinge-point of 41.5◦ N in meridional relationships.

of USDA observations, raising challenges for making accurate maturity parameterizations

in crop models. However, maturity estimates from sales data may slightly differ from the

realized physiological behavior of the farmed cultivars. Additionally, USDA observations

consider all maize cultivars within each district, while sales data exclusively correspond to

cultivars from Corteva Agriscience. Assuming the two sources are comparable, a possible ex-

planation for observed later maturities in southern districts is that farmers and agronomists

typically assign maturity in practice by the identification of a “black layer” at the base of

the maize kernels [105]. Black layers can develop up to two weeks after reaching physiolog-

ical maturity, which could lead to a difference between the phenological maturity date and

USDA reports (surveyed weekly). The greatest differences between phenological maturities
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and reported maturities would likely occur in southern districts, as they contain more GDDs

per day relative to northern districts (Figure S26). Further research is required to compare

data from USDA reports with sales data estimates over the same periods and spatial regions,

as well as for individual years.

Increasing the spatiotemporal resolution of input crop calendars may ultimately help

models to reproduce historical yield records with greater detail [101, 36, 106]. Particularly,

introducing district-level crop calendars would provide the opportunity for models to repre-

sent in-state heterogeneity in maturity paremeterizations that is not currently considered.

However, while this may be feasible at the state level in the U.S., annual crop calendars for

major crops are not widely available for many regions of the world. Efforts to systematize

annual crop calendars globally, similar to the practices of the Food and Agriculture Orga-

nization (FAO) for reporting country-level agricultural production, would greatly aid crop

modelers in tuning models to observations with greater spatial and temporal detail.

Our use of district-level crop calendars reveals that northern districts in some states plant

before the southern districts (Figure S19), counterintuitive to the expected spring warming

pattern across the state [107]. For some regions, earlier sowing dates in northern districts

can be associated with greater yield benefits relative to southern districts, as was found in a

study of optimal Iowa sowing dates [108] (we also find early sowing dates in northern Iowa,

Figure S21). Additionally, sowing dates in southern Illinois show a more positive historical

trend relative to northern Illinois [107], potentially contributing to southern districts sowing

later than northern districts in recent history. Additional research on in-state heterogeneity

in farming practices may help to diagnose this finding.

The primary caveat of our study is highlighted by the finding that model maize maturities

in each district vary across the historical time period (Figure S16), despite the fixed-maturity

protocol of the Phase 2 experiment [7, 14]. We outline five possible reasons for this result.

First, base temperatures, above which GDDs accumulate, vary across models in the ensemble
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[101] and may vary across real-world maize cultivars. To consistently compare between

models and observations, we use a base temperature of 10 ◦C that is commonly used in the

literature [103], but discrepancies between our assumed base temperature and those in the

models may lead to variation in the derived cultivar maturities. Second, derived cultivar

maturities may be earlier than model specifications during cooler growing seasons, as some

models impose hard limits on the number of days the plant can grow before it must be

harvested, independent of the GDDs accumulated. Third, and conversely, derived cultivar

maturities may be later than model specifications during hotter growing seasons, as some

models cap the GDDs that can be accumulated within a single day, regardless of how much

heat is available. Fourth, phenological development in some maize models is modified by

water stress or sunlight exposure, which may cause derived cultivar maturities to be later than

those realized in the models. Finally, some models separate their phenological development

into multiple stages (e.g. vegative, reproductive), which can have their own respective base

and maximum tempartures for accumulated GDDs, thus leading to discrepancies between

the realized GDDs in the model and our calculated GDDs using the 10 ◦C base temperature.

Further research examining these reasons would clarify the robustness of our findings with

respect to each model in the ensemble. Additionally, incorporating additional observations

and models into future validation exercises would clarify the robustness of our findings across

models, crops, and regions relevant to global agricultural production.

3.6 Data Availability

All data used in this analysis are publicly available. Simulation outputs from GGCMI

phase 2 are available at https://zenodo.org/. AgMERRA weather data is available at

https://data.giss.nasa.gov/impacts/agmipcf/agmerra/. State-level data from the USDA are

available at https://quickstats.nass.usda.gov/. District-level data from the USDA are avail-

able upon request.
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4.1 Abstract

Climate change conditions are projected to substantially reduce maize yields in the U.S. if

adaptation strategies are not implemented. Higher growing-season temperatures are thought

to impact maize yields primarily by accelerating crop development to maturity, subsequently

shortening the growing period (days from sowing to maturity). However, our understanding

of how accelerated maturity factors into total yield responses under climate change is lim-

ited. Maize modeling studies project that adapting maize cultivars to counteract accelerated

maturity could alleviate—even recover—yield losses under climate change, but these models

do not isolate yield impacts driven by accelerated maturity from other temperature-induced

damages. Moreover, studies examining the response of observed maize growing periods to

temperature indicate that models may overestimate accelerated maturity under warming,

yet these studies fail to consider confounding effects on growing periods from sowing date

variability. Here, we improve the understanding of how growing periods respond to temper-

ature, sowing date, and cultivar maturity, defined as the heat accumulation required for a
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cultivar to reach full development. We also develop a framework for attributing yield im-

pacts under warming to the mechanism of accelerated maturity, as well as to physiological

responses to temperature stresses. Results suggest that modeled growing period responses to

temperature are realistic after the effects of observed sowing date variability are accounted

for, supporting the projected shortening of growing periods under climate change. However,

models show a wide range of yield responses to accelerated maturity, with the mechanism

accounting for 40–100% of total yield losses across the ensemble under a uniform warming of

+6 ◦C. Nonetheless, accelerated maturity is consistently a major driver of warming-related

yield losses and will likely play a key role in future adaptation strategies.

4.2 Introduction

Climate change could jeopardize future food security by negatively impacting crop produc-

tion in key agricultural regions. One region of particular concern is the U.S. Corn Belt,

where maize production has increased dramatically over the past century and currently ac-

counts for a third of the world’s supply [109]. Earth-system models project climate change

to increase growing-season temperatures in the Corn Belt as much as 6 ◦C by the end of

the century [24, 25, 26]. Crop modeling studies project increased temperatures to decrease

maize yields in the Corn Belt as much as 80% by the same period [81, 10] 1 unless serious

adaptation measures to crop management and breeding are implemented [110, 111, 112].

Higher temperatures impact maize yields primarily by increasing the rate of heat accu-

mulation that drives crop development to maturity (i.e. accelerated maturity) [113, 114,

115, 116, 117, 118, 119], subsequently shortening the number of days allocated to the grain

fill period [112, 104]. accelerated maturity is considered one of the main mechanisms to

reduce yields under climate change [120, 121, 86]; other mechanisms of temperature-induced

1. Projected yield impacts vary across statistical and process-based modeling camps, as well as across
models within each camp.
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impacts include a reduction in carbon uptake under water deficits [122, 78] and a possible

deterioration in the quality of growth processes (biochemical, physiological, and metabolic)

under severe heat stress [123, 124].

In the face of accelerated maturity under warming, scientists propose using later maturity

maize cultivars to exploit the increased heat availability and gain additional days in the grain

fill period [125, 126, 127], referred to as cultivar adaptation. Cultivar adaptation has been

identified as one of the most effective strategies under climate change [128], with the potential

to alleviate or even reverse yield losses [129, 126]—later maturity cultivars in the Corn Belt

today are also associated with higher yields [130], offering more promise for adaptation

benefits. To quantify the benefits of cultivar adaptation under climate change, simulations

of future maize yields often consider scenarios that adapt cultivars under warming to restore

approximate historical growing periods (days from sowing to maturity) [119, 131, 101, 120,

132].

Simulated cultivar adaptation through process-based crop models suggest the strategy

could substantially boost yields under climate change relative to no-adaptation practices

[133, 132, 120]. Minoli et al. (2019) use crop models from the GGCMI Phase 2 ensemble

and find that cultivar adaptation reduces or fully compensates for the negative impacts of

warming on crop yields in most regions of the world [101]. Zabel et al. (2021) use emulators

based on the GGCMI Phase 2 models to and project that future cultivar adaptation can

outweigh climate-induced yield losses, increasing global crop production relatively by 17%,

dependent on the availability of suitably adapted cultivars [132]. Liu & Basso (2020) use

the SALUS model to simulate the impacts of adapting future crop maturities and sowing

dates, finding that such adaptations can boost yields under climate change above historical

levels in the U.S. Midwest [119]. Minoli et al. (2022) perform a similar analysis using

the gridded LPJmL model (a member of the GGCMI ensemble) and find that adapting

cultivar maturities and sowing dates increases maize yields in the Corn Belt by 10–30%
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under an RCP6.0 projection relative to a no-adaptation scenario, with the vast majority of

benefits attributed to cultivar adaptation [120]. Lv et al. (2020) find similar yield benefits of

maize cultivar and sowing data adaptations in China [134]. Potential effects of water-supply

limitations are implicitly considered under climate change projections from earth system

models (e.g. RCP, SSP), as well as benefits from greater carbon fertilization under inceased

CO2 concentrations.

While process-based model simulations suggest promise for adapting to counteract accel-

erated maturity, model representations of changing growing periods in response to temper-

ature have been called into questions by recent studies. Zhu et al. (2019) compare growing

period responses to temperature between gridded maize models and observations in the Corn

Belt and suggest that models overestimate the sensitivity of growing periods to temperature

[135]. Wu et al. (2019) suggest a similar finding for maize models in the North China Plain

[136]. The findings together indicate that the degree of growing period shortening may be

overstated in process-based models. Consequently, this may imply that the projected yield

losses due to accelerated maturity under climate change, as well as the respective adaptation

benefits, are also overstated, raising concern about the use of models in guiding adaptation

strategies.

Since model projections do not currently attribute portions of yield losses to accelerated

maturity versus other temperature-induced stresses, exact yield responses to the respective

mechanisms are obscured. A standardized framework of comparing specific yield response

functions, as has been called for by previous studies [98], would help clarify differences in

model behaviors.

Here, we validate growing period responses to temperature for maize models in the U.S.

Corn Belt. We also present a simple framework for attributing portions of yield changes

under warming to their respective causes, incorporating crop yield simulations across different

farming practices and environmental conditions. We focus again on the U.S. Corn Belt as
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a case study example for our proposed framework. Specifically, we pursue the following

questions for maize crops in the Corn Belt: (1) Do the modeled growing periods show

similar sensitivities to historical temperature anomalies as observed data? (2) What portion

of projected maize yield losses under warming can be attributed to accelerated maturity?

4.3 Data and Methods

4.3.1 Climate Data

Daily temperature data were obtained from the AgMERRA (“agricultural”-modified Modern

Era Retrospective analysis for Research and Applications) gridded reanalysis product [72]

at a resolution of 0.5◦ x 0.5◦ for the years 1981–2010. Uniform warming scenarios (+2 ◦C,

+4 ◦C, +6 ◦C) are executed by increasing the minimum, mean, and maximum temperature

of each day by the corresponding warming perturbation. We calculate daily growing-degree

days (GDDs) for each gridcell using minimum and maximum temperatures, according to

common practice in the literature [103]. We aggregate daily gridcell values to district-level

means, weighted by maize harvest area (Figure S28 taken from the MIRCA2000 dataset [71]

at the same resolution as AgMERRA. Cumulative GDDs across the growing period (sowing

to maturity) are calculated in each district and year for both models and observations to

derive cultivar maturities.

4.3.2 Crop Calendar Observations

Weekly reports of maize sowing and harvest progress were taken from the United States

Department of Agriculture (USDA) regional offices at the district level for six states (Kansas,

Illinois, Indiana, Iowa, Missouri, and Wisconsin) in the U.S. Corn Belt for the period 1981—

2010 [102]. Reports for two districts in Missouri—Western Central and Eastern Central—

were unavailable. Annual reports of total planted acreage, harvested acreage, and harvested
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yields are also included for the available districts; yield values are detrended within each

district. Weekly progress reports for each granularity (district or state) do not always cover

progress from 0–100%. Therefore we designate sowing, maturity, and harvest dates in each

year and district as the first respective report to exceed 50% progress. Maturity dates at

the district level were not available. To calculate district-level growing periods, we apply

maturity-harvest offsets from the state-level reports to all districts, for a given state and year

S29. Finally, we calculate annual anomalies for sowing dates, maturity dates, harvest dates,

growing periods, and detrended yields.

4.3.3 Crop Model Output

Annual output of yields, sowing dates, and maturity dates are taken from six maize models

(CARAIB, EPIC-TAMU, GEPIC, LPJ-GUESS, LPJmL, pDSSAT) in the GGCMI Phase 2

Experiment [14] at a resolution of 0.5◦ x 0.5◦ for the years 1981–2010. We use maize yield

outputs under rainfed and fully irrigate management scenarios. Each model is driven by

daily AgMERRA climate inputs (temperature, precipitation, solar radiation, in some cases

also relative humidity and wind speed). We include outputs for the same Corn Belt states as

observations. In this region, model crop calendars are tuned based on state-level sowing and

harvest dates from the year 1996 [100, 99, 7]; mean dates were taken for each state across

the sowing and harvest windows. Sowing dates in the models held fixed at each location

across all years. Maturity dates are determined assuming a 21-day offset between maturity

and harvest. The resulting state-level, single-year growing periods (sowing to maturity) are

used to tune cultivar maturity parameterizations based on the respective maturity thermal

time process in each model [101]. Cultivar maturities are then held fixed at each location

across all years in the historical scenario and in all non-adaptation scenarios under uniform

temperature perturbations (+2, +4, +6 ◦C).

In adaptation scenarios under warming, the parameter of cultivar maturity (heat accu-
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mulation requried to reach full development) are adjusted in each model so that average

growing periods (in days) under all warming scenarios are the same as the respective his-

torical averages. Modelers were asked to implement individual solutions to maintain the

1980—2010 mean growing period extent (e.g., precalculating changes in thermal time re-

quirements based on fixed temperature shifts or adjusting by iteration) [101]. For models

that separate crop development into multiple phenological stages (e.g., sowing-to-anthesis

and anthesis-to-maturity), modelers were asked to scale parameters of each stage equally, so

that the timing of intermediate stages such as anthesis stayed approximately the same.

Models consider only high-input systems with nitrogen fertilization levels of 200 kg N/ha

and no other nutrient limitations (e.g., Phosphorus and Potassium). We aggregate annual

outputs of sowing date, maturity date, growing period and yield to the district level using

weighted means of harvest area, and calculate annual anomalies.

4.3.4 Partitioning Modeled Yield Impact Projections Under Warming

We attribute maize yield losses under uniform warming scenarios to the following drivers:

accelerated maturity, temperature-induced physiological stress, and water-induced physio-

logical stress. Yield losses under warming due to accelerated maturity are calculated under

the +6 uniform warming scenario ◦C by taking the mean yield change (%) from adapted to

non-adapated management conditions (i.e. fixed temperature, changing growing periods).

Yield losses under warming due to temperature-induced physiological stress are calculated

by taking the mean yield change (%) from the historical scenario to the +6 ◦C scenario with

cultivar adaptation (i.e. changing temperature, fixed growing periods). For irrigated maize,

we can additionally calculate yield losses under warming due to water-induced physiological

stress by taking the mean yield change (%) when switching from fully irrigated to rainfed

conditions in the historical scenario. For rainfed maize, it is Yield losses under warming due

to water-induced physiological stress are unable to be calculated for initially rainfed maize,
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as historical rainfed maize crops already experience an undetermined amount of water stress.

4.4 Results

4.4.1 Models show similar growing period response to temperature as

observations after controlling for observed sowing date variation

We find that maize models show realistic growing period sensitivities to historical tempera-

ture variations after the effects of observed sowing date variability (Figure 4.1). We compare

modeled growing periods with district-level observations across the same period (1981–2010),

using a regression of district-level growing period anomalies against anomalies in temperature

and cutlivar maturity (GDDs). This regression can be written as:

∆GP = βT∆T + βGDD∆GDD + ϵi,t, (4.1)

where ∆GP is the growing period anomaly, ∆T is the temperature anomaly, and ∆GDD

is the anomaly in cultivar maturity. Based on this regression, the observed growing period

response to temperature appears less sensitive than GGCMI models by roughly a factor of 3.

However, the observed growing period response to temperature comes into agreement with

the GGCMI ensemble when we account for variable sowing dates in observations through an

additional covariate, with the regression written as:

∆GP = βT∆T + βGDD∆GDD ++βPl∆Pl + ϵi,t, (4.2)

where ∆Pl is the anomaly in sowing date. Observed growing periods shorten by about 5%

for every ten days that the sowing date is advanced relative to the local mean date. Sowing

dates and cultivar maturities are held fixed at each location in the GGCMI models across all

years and non-adaptation scenarios, per the Phase 2 Experiment protocol, and are therefore
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not included in anomaly-based regressions of modeled growing periods to temperature. Ro-

bustness checks reveal that including covariates of ∆GDD and ∆Pl in regressions on model

output does not significantly alter the growing period response to temperature.

Under higher warming scenarios, models show that growing period responses become less

sensitive to warming (Figure S31). For example, growing periods shorten by 12–16% under

a +2 ◦C perturbation, while they only shorten by 24–32% under a +6 ◦C perturbation

(warming triples while shortening doubles). The non-linear growing period response implies

that the yield benefits due to cultivar adaptation would be more impactful during the 21st

century relative to subsequent periods, where further warming under unmitigated climate

change would cause proportionally less accelerated maturity.

4.4.2 Models attribute large portions of projected yield losses to accelerated

maturity

Under +6 ◦C of warming in the Corn Belt, maize models in the Phase 2 ensemble project

mean yields to decrease by 24–57% (Figure 4.2). Most models project yield losses of 24–30%,

except for the pDSSAT model, which predicts losses twice as large as the rest of the ensemble

(57%). Anomalously large yield losses in the pDSSAT model are likely related to the model

having the highest baseline yield levels within the ensemble by over 5 ton/ha (Table S3),

which are drastically reduced under the warming perturbation. Individual models project

a range of spatial heterogeneity for yield losses in the region, with greater relative losses

in Illinois, Indiana, and Missouri, for example, than losses in Iowa and Wisconsin (Figure

S30). CARAIB projects the relatively largest losses of the ensemble for northern Wisconsin.

However, this is likely due to issues with model output, as evidenced by missing data in

northern Iowa.

Under +6 ◦C uniform warming, models consistently project growing periods to shorten

on average by about 30% (Table S3). Similar magnitudes and spatial patterns of growing
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Figure 4.1: Comparison growing period responses to temperature in the Corn Belt between models
and observations. Scatter plot shows regression coefficients for the historical response of growing
period anomalies to temperature anomalies. Anomalies are calculated relative to each agricultural
district. The small gray marker represents the coefficient for the observed growing period response
when ignoring the effects of variable sowing dates in observations. The large gray marker represents
the observed response when sowing dates are controlled for in the regression. Sowing dates are fixed
in GGCMI simulations for a given location. Modeled growing period responses to temperature are
in agreement with observations after controlling for the effects of variable sowing dates, suggesting
that projected growing period shortening under climate change may be realistic.

period shortening (i.e. accelerated maturity) suggest that phenological maize processes across

models in the ensemble are driven by similar processes of GDD accumulation (Figure S32).

For each model, we attribute portions of the total mean yield loss under +6 ◦C warming

to growing period shortening and other temperature effects. We determine total mean yield

losses under warming by calculating the percent yield change between the historical and
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warming scenarios with no adaptations. We determine growing-period-related losses by cal-

culating the percent yield change for the same warming scenario between fixed and adapted

cultivar conditions (i.e. same temperatures, different growing periods). We determine losses

from other temperature effects by calculating the percent yield change between historical

scenario and the warming scenario under adapted cultivar conditions (i.e. same growing

periods, different temperatures).

Across the ensemble, yield losses due to growing period shortening make up 28–100% of

total mean yield losses under warming (solid bars in Figure 4.2), with an ensemble mean

of 67%. These portions of growing-period-related yield losses are recovered through cultivar

adaptation. The range of growing-period-related losses across the ensemble indicates a vari-

ety of yield responses to accelerated maturity within the models, despite similar phenological

processes.

The LPJ-GUESS model stands out in the ensemble as the only model that projects

positive yield responses to increased heat stress under +6 ◦C (Figure 4.2), thus accelerated

maturity is the only contributor to yield losses (100% attribution). Combined with the heat

stress benefits, cultivar adaptation in LPJ-GUESS subsequently leads to yields that exceed

baseline levels.

Reconstructing total yield losses from growing-period and other-temperature attributions

justify our proposed framework. Total yield losses under warming in the ensemble range from

-57% to -24%. When we reconstruct yield losses under warming by adding our two attributed

portions, which were calculated separately, we end up with losses ranging from -64% to -23%.

Respective model differences range from -6.5% to 2.0%, showing that yield impacts under

warming can be broken down reasonably through our framework. Discrepancies between

total and reconstructed yield losses likely stem from minor weather effects during the portion

of the growing period that is regained under adapted cultivar conditions.

Across GGCMI the ensemble, models with greater yield sensitivity to growing period
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shortening are less sensitive to water stress (Figure S33). We determine sensitivity to water

stress by comparing yield levels between rainfed and irrigated maize crops in the historical

period. The roughly linear relationship between yield sensitivities to growing period short-

ening and yield sensitivities to increased water stress suggests that total yield responses to

warming can be partitioned into these two drivers. This suggests that yield responses to the

+6 ◦C perturbation may be broken down into changes caused by accelerated maturity and

changes caused by increased water stress.

Figure 4.2: Projected yield impacts for rainfed maize under warming. The solid black dots show
the average yield response under the +6 ◦C uniform warming scenario for each GGCMI model.
Colored bar plots show the breakdown of yield losses into portions caused accelerated maturity
(green) and portions caused by temperature-induced physiological stress (red), per the proposed
attribution framework. The open dashed circles show the addition of the two attributed portions.
Close agreement between the total yield response and the summed yield response, per our attribution
framework, suggest that the framework is valid for separating rainfed yield losses under warming.
The framework reveals large portions of yield losses under warming due to accelerated maturity,
which can be theoretically alleviated through cultivar adaptation.
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4.5 Discussion

In the absence of adaptation, increased temperatures under climate change are projected to

accelerate the development of rainfed maize yields in the U.S. Corn Belt, shortening growing

periods from sowing to maturity. Yield effects from accelerated maturity are considered to

by the main driver of yield reductions under warming [121, 86]. Adapting maize cultivars

to restore historical growing periods would effectively counteract this mechanism, with the

potential to alleviate a large portion of yield losses under climate change

Our finding that models show realistic growing period responses to historical tempera-

tures stands in contrast to previous studies that suggest models overestimate growing period

shortening under warmer temperatures [135, 136]. We argue that this difference is primarily

due to our control of variable sowing dates in observations through the multivariate regres-

sion; to our understanding, such technique was not performed in previous studies. Sowing

date shows a significant negative influence on the growing period for a given maize cultivar

maturity, with sowing dates in early spring associated with lower daily GDD values than

sowing dates in later spring, resulting in a relatively longer duration of the growing period

(in calendar days, Figure SX). Differences between our methodology and that of Zhu et al.

(2019), such as the functional form of statistical regressions, may also factor into our differ-

ent findings for Corn Belt maize [135]. A notable difference between our methods and those

of Wu et al. (2019) is our use of historical observations that encompass changing cultivar

maturities, while Wu et al. (2019) use field experiments where the same cultivars are used

over 15 years [136]. Differences in maize cultivars and management between the Corn Belt

and North China Plain may also play a role in this difference.

Our finding that yield responses induced by accelerated maturity drive two thirds of total

losses under warming, on average, highlights the potential benefits of adaptation suggested

by previous literature [101, 120, 132, 119, 134]. It is important to note, however, that many

of these studies use the same process-based models, motivating the use of additional models
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for simulated adaptation scenarios. Moreover, the substantial heterogeneity across model

yield responses to accelerated maturity merits further research.

A caveat of theoretical cultivar adaptation under severe warming is that will likely require

the breeding of cultivars with exceptionally late maturities. Zabel et al. (2021) find that

maize farmlands in the Corn Belt are under moderate–serious risk of requiring new cultivars

by 2100 to adapt successfully [132]. Analysis of our data corroborates their finding, where

average maize maturities in our region range from 944–1770 GDDs in the historical baseline,

but increase to 1440–2320 GDDs under the +6 ◦C adaptation scenario. Initial adaptation

measures could shift cultivars in the Corn Belt northward as warming progresses [26], or

potentially import cultivars currently bred for warmer pantropical climates. Developing new

cultivars for adoption, however, can take up to 30 years [137], and may cause adaptation

efforts to lag behind the related increases in Corn Belt warming.

An additional caveat to cultivar-adaptation studies, in general, is the assumption that

farmers prioritize their chosen maize cultivar based on the growing period. Evidence shows

that U.S. farmers have not historically chosen cultivars to maximize their maturities relative

to local heat availability [104]. In some regions, farmers may prioritize other traits over matu-

rity, such as drought tolerance. Under future conditions, Under concerns of extreme weather

impacts, which may become more frequent, farmers may choose earlier-maturity cultivars

to avoid the risk of potential negative impacts from delayed sowing or late-summer heat-

waves. Alternatively, increasing Corn Belt temperatures under climate change are expected

to lengthen the annual period of growth-promoting temperatures (i.e. growing seasons) [138],

which may provide opportunities for new double cropping systems [139], perhaps similar to

soybean-maize systems seen in Brazil [140].

Further research attributing yield response to specific mechanisms in greater depth and

scope will help to better evaluate models through functionality-based techniques [98]. Exam-

ining modeled adaptation impacts and maturity behaviors in other key agricultural regions,
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such as maize in the North China Plain [127, 136], could reveal whether findings in our study

generalize across global maize agriculture. Research should also consider additional crops

and breadbasket zones (e.g. soybean, wheat, rice) to better understand implications for

global food production. Additionally, going beyond fixed-period adaptation to consider rule-

based cultivars and shifting sowing dates may reveal greater opportunities for yield benefits

under climate change [120].

4.6 Data Availability

All data used in this analysis are publicly available. Simulation outputs from GGCMI

phase 2 are available at https://zenodo.org/. AgMERRA weather data is available at

https://data.giss.nasa.gov/impacts/agmipcf/agmerra/. State-level data from the USDA are

available at https://quickstats.nass.usda.gov/. District-level data from the USDA are avail-

able upon request.
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5.1 Abstract

Numerous studies project how climate change will impact future crop yields, but little is

known about how it may impact the ability of farmers to plant crops altogether. Extreme

weather in 2019 prevented U.S. farmers from planting crops on 19.4 million acres, more than

double the previous record. Insurance claims report that most prevented planting events are

caused by “excess moisture/precipitation,” but the environmental mechanisms underlying

these events are not well understood and likely complex. Recent research efforts used statis-

tical regressions to model the environmental drivers of prevented planting, but omitted the

effects of soil moisture and soil-weather interactions. Machine learning provides a promising

approach to capture potential nonlinear and interactive effects on prevented planting, and

leading-edge model interpretation techniques may shed light on key mechanisms at play.

Here, we develop a novel machine learning model to predict the occurrence and intensity of

prevented planting events based on monthly soil moisture, precipitation, and air tempera-

ture, and geospatial information on soil hydrology characteristics. Interpreting the model’s

historical predictions, we identify spring soil moisture, spring precipitation, and soil drainage
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class as primary environmental factors for prevented planting. Additionally, we highlight a

interactive effect of heavy spring precipitation following below-freezing January tempera-

tures, suggesting that thawing soils are at greater risk of experiencing prevented planting

than unfrozen soils. Insights from model interpretation could enhance the mechanistic un-

derstanding of prevented planting and even aid the development of rule-based planting pro-

tocols in agricultural models. Under projected climate change, the model predicts prevented

planting to become less frequent but more intense relative to the historical period, with high-

damage years (> 1m prevented hectares) occurring nearly twice as often. Complementary

analysis reveals that prevented planting events often occur on lands above or near uncon-

fined aquifers, and that the unprecedented prevented planting damages in 2019 correspond

with the peak of a seven-year rise in groundwater levels; these conditions likely rendered

such lands vulnerable to flooding under the year’s extreme precipitation. Comprehensively,

our findings suggest farmers and insurance providers should be mindful of planting windows

that follow cold winters and have heavy spring rainfall forecasts, particularly if groundwater

levels are high.

5.2 Introduction

Agricultural production must substantially increase into the future to ensure global food

security [141, 142]. However, future soil moisture and precipitation conditions may jeopardize

these increases by keeping crops out of the ground altogether.

Extreme weather events in 2019 prevented U.S. farmers from planting crops on over

19.4 million insured acres [143], more than double any year preceding, and resulted in record

prevent-planting insurance payouts totaling over $4.5 billion [144]. The majority of prevented

acres were planned for planting maize and prevented due to excess moisture or precipitation

[144]. Prevented maize planting is a major factor of agricultural production loss for spring-

planted crops in the U.S., with over $10 billion dollars in damages from 1996–2022 [144]—of
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the 98 million planned maize acres in 2019, nearly 12% (11.4m acres) were prevented from

planting, equivalent to a production loss of 129 million tonnes1

Saturated and flooded soil conditions can prevent planting by restricting the mobility of

farming machinery, where the use of heavy equipment would risk getting stuck or damaging

soil health through compaction zones [99]. If such conditions prolong up to the final planting

deadlines set by insurance company policies (typically in May–June)2 , farmers may be forced

to claim prevented planting damages.

Weather events and soil characteristics interact in complex ways to determine soil hydrol-

ogy conditions [145], and the underlying environmental mechanisms that lead to prevented

planting are not well understood. A deeper understanding of these mechanisms would en-

hance our ability to address risk factors for prevented planting and project whether high-

damage years (e.g. 2019) could become more common under climate change.

Miao et al. (2016) is, to the author’s knowledge, the first study to indirectly model

weather impacts on prevented maize planting, finding that heavy spring precipitation reduces

planted maize area (a proxy for increased prevented planting) [146]. Boyer et al. (2023) is

the first study to focus directly on modeling prevented planting, using a linear model to

predict U.S. prevented planting based on monthly temperature and precipitation, and select

soil characteristics [147]. Similar to Miao et al. (2016), Boyer et al. find late-spring rainfall

values to be positively related to prevented planting intensity; they find soil characteristics

to be insignificant. However, Boyer et al (2023) do not isolate areas prevented due to excess

moisture and precipitation, instead choosing to include prevented planting by all possible

causes. Lee et al. (2023) explore the impacts of monthly water surplus (precipitation minus

evaporative demand) on prevented planting due to excess moisture/precipitaiton [18], using

1. Production loss is calculated given the prevented acres would have yielded the average yield of 2019.

2. The final planting date is the last day a producer can plant the insured crop and be eligible for their
full crop insurance coverage. The late planting period begins the day after the final planting date for the
insured crop and ends 25 days after the final planting date. Final planting date and late planting periods
vary by crop and region.
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a Poisson pseudo-maximum likelihood estimator to predict prevented planting outcomes in

the U.S. Corn Belt—a collection of Midwestern and northern states that produce the vast

majority of U.S. maize [148]. They find that greater water surplus in the late spring is

associated with more intense prevented planting, and their model predicts prevented maize

planting to decrease by 12% under moderate-emissions climate change. These studies form

the basis for understanding the physical drivers of prevented planting. However, they do not

consider the impacts of soil hydrology conditions or soil-weather interactions, both of which

may have important and nonlinear effects.

Machine learning (ML) provides a promising approach to examine the environmental

mechanisms that lead to prevented planting. ML models are well-suited to capture nonlin-

ear and interactive effects, and have been previously used to model the complex responses

of crop yields [19, 89, 149]. Binary classification models, in particular, are well-suited to

identify conditions that lead to extreme weather occurrences [150], such as the infrequent

conditions where severe prevented planting occurs. Additionally, leading-edge ML interpre-

tation techniques can help extract physical intuitions from underlying model responses.

Here, we employ an originally developed machine-learning model to predict annual county-

level prevented maize area due to excess moisture or precipitation, using monthly weather

data and soil hydrology conditions. Due to the high portion of events with no prevented

planting (68% of observations), we create a zero-inflated regression (ZIR) model by com-

bining two random forest algorithms—a binary classifier and a regressor—in sequence. The

binary classifier predicts the occurrence of prevented planting for a given county, and the

regressor predicts the potential intensity of prevented planting as a fraction of the county’s

total planned maize area. We interpret the model’s historical predictions using Shapley val-

ues [151], examining what features show the greatest effects on the predicted occurrences

and intensities of prevented planting. We project changes in prevented planting under a

high-emissions climate change scenario out to the end of the century, using simulations from
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an ensemble of earth-system models. Finally, we conduct a supplemental analysis of aquifer

distributions and historical groundwater levels in the region, assessing their role in making

agricultural lands more or less vulnerable to prevented planting.

5.3 Data and Methods

5.3.1 Planted and Prevented Acreage Data

We use annual reports of county-level planned maize acreage from the U.S. Department

of Agriculture (USDA) Farm Service Agency [143] for the years 1996–2022. We filter this

data for county-years with over 100 acres of planned maize area. We use annual reports of

county-level prevented maize acreage from the USDA Risk Management Agency [144] for

the same time period. We filter the reports to include acres designated as prevented due to

“excess moisture/precipitation” (see Table S4 for a list of insurance codes). We calculate the

fraction of maize area prevented in each county-year by dividing the prevented maize area

by the total planned maize area. We include counties within states that lie on or east of the

100th meridian—an arid–humid divide in the physical climate of the U.S. [152]—where the

majority of national maize production occurs. This region contains the U.S. Corn Belt, the

main area of maize production in the U.S., as well as the Mississippi River Valley, where the

majority of prevented maize planting occurse outside of the Upper Midwest [153]. In all,

our resulting dataset provides annual prevented planting values for 2305 counties across 37

states. Over 68% of entries in the results dataset have no occurrence of prevented planting

(prevented fraction = 0), resulting in a zero-inflated historical sample.

5.3.2 Soil and Weather Data

We use data on natural soil drainage classes from the U.S. Geological Survey Gridded Soil

Survey Geographic [154], aggregated from the native 30m resolution to county-level aver-
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age values. Soil drainage classes, ranging from excessively drained soils (class=0) to very

poorly drained (class=6), are distinguished partly based on the color and presence of iron

compounds, which correspond to the frequency and duration of wet periods under natu-

ral conditions. We use additional soil hydrology characteristics for maize cropland in each

county from Li et al. (2019) [80], including saturated water content, hydraulic conductiv-

ity, clay percentage, and organic matter percentage. Additionally, we consider the fraction

of cropland in each county that has tile drainage, using cropland and tile drainage acres

from the 2017 USDA Census Survey [33] and use them to calculate the county tile-drainage

fractions. We assume soil hydrology and drainage characteristics to be fixed in time.

We use monthly historical weather conditions from the Famine Early Warning Systems

Network Land Data Assimilation System (FLDAS) [155, 156], produced at a resolution of

0.1◦ x 0.1◦. FLDAS, a product of the National Aeronautics and Space Administration

(NASA), is driven by monthly measurements of air temperature and precipitation from the

CHIRPS-final and MERRA-2 observations [157, 158], using modeling and data assimilation

methods to generate fields of land surface states and fluxes. We use features of monthly air

temperature, precipitation, and soil moisture aggregated to the county level for the months

January–June (final planting dates across the domain occur by June at the latest).

To project climate change impacts, we use simulated future monthly weather conditions

under the Shared Socioeconomic Pathway 8.5 W/m2 forcing (SSP-585) pathway from five

earth-system models in the Coupled Model Intercomparison Project Phase 6 (CMIP6) en-

semble (BCC-CSM2-MR, CNRM-CM6-1, CNRM-ESM2-1, IPSL-CM6A-LR, MRI-ESM2-0)

[159, 160, 161, 162, 163]. Monthly anomalies from the historical baseline (1996–2022) were

taken for years 2023–2100 and aggregated to county levels (in some cases, earth-system

model resolution was coarser than county level, and thus grid-cell outputs were dispersed

to multiple counties). Projected future conditions were calculated by applying anomalies to

historical average FLDAS conditions. We use absolute anomalies for air temperature and
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fractional anomalies for precipitation and soil moisture.

5.3.3 Machine Learning Model: Zero-inflated Regression

We design a ZIR model structure to exploit the zero-inflated distribution of historical pre-

vented planting values. Whereas ZIR models are commonly used with discrete count data

[164, 165], we create a novel model to deal with our continuous prevented fraction values (0.0–

1.0). The ZIR modeling concept is inspired by the framework of the sci-kit lego library

[166]. Our ZIR model consists of two layers, both using random forest (RF) algorithms. A

random forest is a supervised machine-learning algorithm consisting of many decision trees,

whose respective predictions are aggregated together into a single prediction [167]. The first

layer is an RF classifier that predicts whether prevented planting occurs (no=0, yes=1) for

a given county and year. The second layer is an RF regressor that predicts the fraction of

county cropland prevented (up to 1.0), given that prevented planting is predicted to occur.

Using the two layers in sequence allows the model to predict whether prevented planting will

occur, and if so, what the intensity will be. Each RF layer is trained using inputs of weather

and soil data. The classifier layer is trained on historical occurrences of prevented planting

in binary format (no=0, yes=1). The regressor layer is trained on the fraction of cropland

prevented (up to 1.0) for counties with non-zero prevented planting damages. Each layer’s

hyperparameters (number of estimators, minimum samples per leaf, maximum tree depth,

and maximum samples to train each tree) are tuned based on leave-one-out cross-validation

for each year in the historical sample. In other words, each fold of the cross-validation is

an individual year of the historical sample. For each layer and fold, 25 iterative random

searches of the hyperparameter space are performed. We select the best parameter set (out

of the 25 iterations) based on average performance across the held-out years.

For exercises related to predicting prevented planting events, we train the layers of the

ZIR model on 80% of their respective historical sample, with the remaining 20% held out for
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testing. We refer to this model as the predictive ZIR model and use it to predict historical

prevented planting events as well as to project future prevented planting events under the

SSP-585 emissions pathway.

For exercises related to interpreting model responses, we train the layers of a separate

ZIR model on their entire respective historical samples to maximize interpretive power across

predictions. We refer to this model as the interpretive ZIR model and use it to examine

the marginal effects of weather and soil features on historical predictions. We determine

marginal feature effects through Shapley values, a concept rooted in game theory, using

the SHAP Python package [151, 168]. The Shapley value for a given feature is defined as

the marginal effect of that feature on the final prediction, relative to the mean historical

prediction. The RF classifier mean prediction is the mean likelihood of a prevented planting

occurrence (approximately 30%). The RF regressor mean prediction is the mean fraction of

county cropland prevented for non-zero events (5%).

5.3.4 U.S. Aquifer Maps and Groundwater Measurements

We use a map of unconsolidated and semiconsolidated sand and gravel aquifers from the

United States Geological Survey to explore their spatial distributions within our region.

We also use satellite measurements of groundwater storage from the Gravity Recovery and

Climate Experiment (GRACE), a joint mission of the NASA and the German Aerospace

Center [169, 170, 171, 172]. Using GRACE satellite data to estimate groundwater storage

changes is a widely used practice [173]. We crop the gridded product to our study region and

calculate groundwater storage anomalies relative to the mission’s 2004–2009 baseline value

in units of liquid water equivalent thickness (cm) for a given surface area.
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5.4 Results

5.4.1 The zero-inflated regression model accurately predicts historical

prevented planting, 2019 data is key for capturing extreme values

The predictive ZIR model demonstrates skill in predicting historical prevented planting

events, achieving an overall historical RMSE of 0.042 in units of prevented fraction (Fig-

ure 5.1, Table 5.1). Training on data from 2019 is vital to capturing extreme damages, as a

model trained without 2019 data predicts the year’s total prevented area to be 2.02 million

hectares, only about half of the observed 3.80 million hectares (dashed orange line in Figure

5.1). However, by training on some 2019 data (∼80% of the year), the model predicts the

total prevented area for the year at 3.54 million hectares, just 7% below the observed value.

The model also captures geographical hotspots around the Dakotas and along the Mississippi

River Valley (Figure 5.1 inset map). The slight low bias of the model likely stems from its

regressor layer, which predicts a maximum historical prevented fraction of 0.64 (relative to

the observed maximum of 1.0); this not surprising given the rarity of observations above a

0.64 prevented fraction (n=97, less than 0.2% of the historical sample). Nonetheless, the

ZIR model achieves more accurate projections than OLS models of comparable feature sets

(Figure S34). Given the ZIR model’s accuracy, interpreting its historical predictions may

yield insight into the environmental mechanisms that underlie prevented planting events.

Table 5.1: Model score metrics for the RF classifier regressor, and overall model3

.

RF classifier RF regressor Overall model Overall model
Accuracy (%) RMSE (frac.) RMSE (frac.) R2

Training set (80%, incl. 2019) 95.4 0.062
Test set 84.2 0.075
Total historical sample 93.2 0.042 0.044 0.54

3. For the RF classifier and overall model, respective samples include both prevented and non-prevented
occurrences. For the RF regressor, respective samples only include prevented occurrences.
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Figure 5.1: Historical performance of the zero-inflated regression model across time and space.
The line plot shows historical prevented acres for corn due to excess moisture/precipitation. The
black line corresponds to observational data. The solid orange line shows predictions for the model
trained on data in all historical years. Inset maps show a comparison between observations and
predictions in 2019, with fraction-prevented values corresponding to the color bar below. The
dashed orange line shows predictions for a separate model trained without data from 2019. Despite
not having training data from 2019, the model still predicts prevented planting in that year to be
a record high. However, the predicted value is less than half its observed value, highlighting the
importance of 2019 data for the model to reproduce extreme values.

5.4.2 Model interpretation highlights the effects of soil conditions and

soil-weather interactions

To maximize the interpretation of non-zero events in a zero-inflated dataset, we train a

separate ZIR model on the entire historical sample, referring to this model as the interpretive

model.

We identify spring rain and soil moisture as the most important weather features to

predicting prevented maize planting events (Figure 5.2). May precipitation ranks as the

most important feature for predicting the occurrence of prevented planting, supporting the

intuition that precipitation immediately preceding final planting deadlines (typically late

66



May to early June) is a key factor in prevented planting outcomes. May precipitation shows

a nonlinear effect on the likelihood of prevented planting, where the effect is increasingly

positive beyond 100 mm but saturates at 250 mm and above (Figure 5.3a).

While precipitation in May, and April to an extent, is important to predicting prevented

planting occurrences, soil moisture conditions in April–June are the most important weather

features for predicting prevented planting intensities (Figure 5.2). This is also consistent with

the intuition that conditions close to the final planting deadlines are important to prevented

planting outcomes. Soil moisture values show strong nonlinear effects on the intensity of

prevented planting. For example, April soil moisture has little effect until it reaches 0.40

m3/m3, at which point the effect steeply increases (Figure 5.3b). Extreme April soil moisture

coincides with observations of high-damage prevented planting, supporting the validity of

this response in model predictions.

We highlight an interactive effect between between wintertime temperatures and spring

precipitation on the predicted likelihood of prevented planting (Figure 5.4a). April precip-

itation increases the likelihood of prevented planting particularly when following January

temperatures below approximately -4◦C. The turning point of the January air temperature

response around -4◦C suggests the model may have derived some understanding of air-soil

temperature differences, as -4◦C air temperature corresponds to when soils freeze in FLDAS

(Figure S35); the model has no explicit inputs of soil temperature4. This interactive effect’s

distinct change from negative to positive suggests that frozen soils may be more prone to

prevented planting damages from excess moisture. Cold temperatures may also indicate a

shorter upcoming planting window—farmers typically wait until soils reach a given tempera-

ture before planting their seed [174, 175, 176, 108]—which could be associated with a higher

probability of prevented planting claims. Nonetheless, the ZIR model may be capturing the

effects of soil properties implicitly through weather data.

4. We choose to use air temperature as it is more directly tied to observations, and the inclusion of soil
temperature does not improve model performance

67



Soil hydrology characteristics are also important for model predictions, with soil drainage

class being the most important characteristic for predicting both the occurrence and intensity

of prevented planting (Figure 5.2). The importance of a fixed soil characteristic suggests that

the spatial clustering of prevented planting events aligns with areas of poor drainage ability,

making them more susceptible to being flooded or saturated under water accumulation. We

highlight an interactive effect between soil drainage class and May soil moisture on predicted

prevented-planting intensity (Figure 5.4b): whereas well-drained soils (drainage class = 2)

require May soil moisture above 0.40 m3/m3 to increase prevented planting intensity by

≥0.05, poorly drained soils (drainage class = 5) can yield the same effect at a lower moisture

threshold (0.35 m3/m3). The characteristic of saturated water content (Sat. H2O %) is

also important to the predicted likelihood of prevented planting, possibly an indication of

its similar spatial pattern with drainage class.

Understanding historically important weather features provides valuable insights into

the underlying mechanisms of prevented planting, as well as a framework for understanding

future projections under climate change.

5.4.3 High-damage prevented planting becomes more common under climate

change

We return to the predictive ZIR model to project the changes in prevented planting occur-

rence and intensity under climate change. The model projects prevented planting to become

less frequent, with occurrences decreasing 37% by the end of the century (Figure 5.5). This

decrease in occurrences is likely due to rising temperatures, which consistently reduce the

likelihood of occurrence. On the other hand, projected prevented planting intensities become

intense under climate change relative to the historical period, increasing on average 28% by

the end of the century. The projected increase in average intensity is primarily due to the

reduction of low-intensity events, such that the overall average increases. Rare high-intensity
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(a) (b)Classifier Regressor
Feature importance plots

Figure 5.2: Feature importance plots for the (a) random forest classifier and (b) random forest
regressor submodels of the zero-inflated regression model. Each feature of the respective submodel is
shown along the y-axis. F or a given feature, each point corresponds to a single instance in the model.
A point’s color corresponds to the relative feature value, from low (blue) to high (red). The point’s
position on the x-axis corresponds to its SHAP value, i.e. the feature’s marginal effect on the ultimate
model prediction. The vertical range of points for a given feature shows the distribution of marginal
effects across the historical sample. Features are ranked based on their mean absolute effect, from
most important (top) to least important (bottom). Soil or spatial characteristics are marked in
boldface. Late-spring rainfall and soil moisture features are important to both submodels, backing
up physical intuition about prevented planting responses. Spatial features are also important to
both submodels. For the classifier, the most important air temperature feature is for the January
preceding the given year’s planting window.
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a) b)

Figure 5.3: Partial dependence plots for some of the most important features in the random forest
classifier and regressor submodels of the zero-inflated regression model. Scatter plot (a) shows May
rainfall values on the x-axis and their marginal effect on classifier predictions on the y-axis. Marginal
effects are relative to the mean historical classifier prediction, i.e. the mean probability of prevented
planting in the training set (≃30%). Dot colors correspond to historical instances where prevented
planting did occur (red) and did not occur (blue). Scatter plot (b) shows April soil moisture values
on the x-axis and their marginal effect on regressor predictions on the y-axis. Marginal effects are
relative to the mean historical regressor prediction, i.e. the mean intensity of prevented planting
cases in the training set (≃5%) of planned corn acreage in a county). Points are colored based on the
observed prevented fraction for a given county year. Model responses to important environmental
features show nonlinear behaviors, with extreme rain and soil moisture values increasing predictions
in the occurrence and intensity of prevented planting.

events, however, remain in future projections, likely due to extreme precipitation and soil

moisture distributions being maintained under future climate scenarios.

While the model does not project single-year damages under climate change to exceed

the 2019 record, it does project high-damage years (>1m hectares prevented) to happen

more frequently relative to the historical period (Figure S36). In the historical record, total
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a) b)

Figure 5.4: Two-dimensional partial dependence plots for some of the most important features in
the random forest classifier and regressor submodels of the zero-inflated regression model. Scatter
plot (a) shows historical instances of January air temperature on the x-axis and subsequent April
rain values on the y-axis. Point colors correspond to their combined effect on classifier predictions,
either decreasing (blue) or increasing (red) the predicted likelihood of prevented planting occur-
rences. Scatter plot (b) shows values of soil drainage class and May soil moisture, with point colors
corresponding to their combined effect on the regressor’s predicted intensity of prevented planting.
Note: color schemes correspond to classifier or regressor subplots. Model responses to environmental
features show interactive effects in the sequencing of weather conditions, as well as the combination
of weather and soil characteristics.

U.S. prevented planting exceeds 1 million hectares approximately once every nine years.

Under climate change, the model projects prevented planting to exceed 1 million hectares

approximately once every five years on average.

We consider a possible adaptation strategy to mitigate prevented planting by increasing

the tile drainage of counties in the region. Tile drainage within a given county shows some

large negative effects on the predicted likelihood of prevented planting (Figure 5.2), suggest-
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ing that areas with high tile drainage may be rendered less vulnerable to prevented planting.

Since this is the only feature that deals with farm management, increasing tile drainage could

be a potentially effective adaptation strategy to reduce future prevented planting. However,

we find limited benefits to this strategy, with a maximum increase in tile drainage (to 100%

in each county) leading to just a 10% decrease in total prevented planting area. Low sam-

pling of counties with high tile drainage likely influences these projections, as well as spatial

similarities between counties of no tile drainage and low prevented planting, which may cause

the model to underestimate the beneficial effects of increased drainage.

5.4.4 Groundwater conditions also likely influence extreme prevented

planting events

Areas of prevented planting have high spatial clustering (Figure 5.1 inset map). We see

hotspots of prevented planting in the Upper Midwest and along the Mississippi River Valley,

with relatively little prevented planting in the Eastern parts of the region. This clustering

is reflected by the importance of latitude and longitude in predicting the likelihood and

intensity of prevented planting (Figure 5.2), which may indicate that key spatial aspects are

omitted from the feature set. To examine this, we investigate the subterranean conditions

relevant to prevented planting by analyzing groundwater patterns in the historical period.

Prevented planting damages in 2019 show a spatial pattern similar to the distribution

of semiconsolidated, unconsolidated, and glacial deposit aquifers (Figure 5.6). Such aquifers

are unconfined, meaning they are open to the atmosphere and typically recharged by rainfall,

streamflow, and snowmelt. Unconfined conditions make these aquifers prone to groundwater

flooding under extreme rainfall [177] when the water table rises above the land surface. The

distribution of semiconsolidated, unconsolidated, and glacial deposit aquifers in the region

shares a similar spatial pattern to the total planned maize area, particularly with regards to

irrigated maize (Figure 5.6), as aquifers provide groundwater resources for irrigation [178,
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Figure 5.5: Future projections from the random forest classifier and regressor submodels of the
zero-inflated regression model. The orange line corresponds to the left y-axis and shows the annual
number of prevented planting events, as projected by the classifier, out to the end of the century.
The purple line corresponds to the right y-axis and shows the average intensity of prevented planting
that occurs, as predicted by the regressor. Colored lines and shaded windows show rolling ten-year
averages. Altogether, the zero-inflated regression model projects prevented planting events to be
less frequent, but more intense under high-emissions climate change.

179]. Altogether, unconfined aquifers may play a large role in making overlying farmlands

prime for agriculture, but they may also put those farmlands at risk of prevented planting.

We also find an temporal association between groundwater levels and years with extreme

prevented planting damages. We examine groundwater levels over the region using measure-

ments from the NASA GRACE mission for the period 2004–2023 (Figure 5.7). Groundwater

levels in the domain shows an annual cycle, reaching maxima in the spring and minima in the
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fall (around November). Following the year 2012 (a major drought year in the region), there

is an increasing trend in groundwater storage through the end of 2018, with groundwater

levels in November 2018 being the highest of any previous November on record. June levels

are likewise higher in 2019 than any previous year. The combination of high groundwater

levels and heavy spring rainfall in 2019 may have played a large role in the year’s record

prevented planting damages. The association between groundwater levels and prevented

planting is also present for the year 2020, which has the the second-highest total prevented

area on record.

5.5 Discussion

Prevented planting can cause substantial shocks to U.S. maize production. Because the

outcomes of prevented planting are determined through insurance claims, there is prime op-

portunity for developing practical scientific knowledge by deriving a physical understanding

of the phenomena. Understanding how soil and weather conditions affect the occurrence

and intensity of prevented planting is key to identify warning signs for future years and plan

accordingly.

Our results suggest that farmers and insurance providers should be mindful of planting

windows that follow cold winters and have heavy spring rainfall forecasts, particularly if

groundwater levels are high. A major benefit of our analysis is the identification of risk

factors that can be observed before planting windows begin. Testing for frozen soils in the

winter months can help actors asses the risk of flooding under heavy spring precipitation.

Additionally, timely monitoring of groundwater levels through in-situ techniques or remote

observations such as GRACE can provide an idea of how vulnerable agricultural lands may

be to prevented planting.

Literature on soil temperatures support the intuition that below-freezing winters increase

the likelihood of prevented planting occurrence. Frozen winter soils take longer into the
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a) b)

d)c)

Figure 5.6: Top left shows a map of the total prevented maize acres due to excess moisture in
2019. Map plots show (a) 2019 determined prevented maize planting area, (b) 2019 total planned
maize area, (c) maize irrigation area, and (d) unconsolidated and semiconsolidated aquifers in the
domain. Spatial similarities between prevented maize planting and aquifers suggest that aquifers’
groundwater storage may play a key role in making regions preferable for farming, particularly for
irrigation practices. However, these aquifers may also put the same regions at risk for prevented
planting under extreme precipitation.
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spring to thaw and can be more prone to spring floods [180, 181]. Additionally, numerous field

trials across the U.S. have resulted in robust recommendations for crop planting windows,

indicating that soil temperature needs to be above 50 ◦F for the seeds to germinate [174,

175, 176, 108, 182]. Thus, a late freeze in January could delay planting by keeping soils

colder into the planting window.

Incorporating aquifer and groundwater information effectively could aid future prevented

planting forecasts. Increasing trends in aquifer groundwater storage in our study region have

been identified before, and aquifer groundwater storage in the domain is shown to have a

strong association with extreme precipitation [183]. Monitoring future increases in ground-

Oct. 1, 2012: Historical low

Jan. 1, 2019: Before planting window

Jun. 1, 2019: Final planting deadlines

Figure 5.7: Historical records of groundwater storage in the domain. The line plot shows the
average groundwater storage anomaly from the NASA GRACE mission (2002–present) in units
of liquid water equivalent thickness (cm). Anomalies are relative to a 2004–2009 baseline value;
seasonal averages are not removed (typically spring highs and fall lows). Circles mark dates of
interest: record low storage in October 2012, as well as storage values in January and June 2019,
occurring before and after the maize planting windows, respectively. Groundwater storage in the
domain experienced an increasing trend before the 2019 extreme prevented planting outcomes,
reaching a record high around the 2019 final planting deadlines. High groundwater levels may
indicate years in the domain prone to extreme prevented planting, which could guide future warning
forecasts.
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water storage and improving seasonal precipitation forecasts may aid in identifying years

with potentially high prevented planting damages. Further research examining groundwater

levels and local flooding events related to prevented planting in greater detail, possibly using

monitoring data from the National Ground-Water Monitoring Network [184], would be useful

in guiding model advances. Additionally, the importance of latitude and longitude in both

the RF classifier and regressor suggests that the feature set would benefit from additional

geospatial information particular to each county, perhaps of higher-than-county resolution.

The importance of spring rainfall in our study aligns with the findings from Boyer et

al. (2023) [147] and Lee et al. (2023) [18], who identify April and May precipitation as

important features in their respective models. We also find that May air temperatures show

an inverse relationship to prevented planting, also in agreement with Boyer et al. (2023)

[147].

The importance of soil characteristics in our study is in contrast to the findings of Boyer et

al. (2023) [147], which found similar characteristics to be insignificant. Two key differences

may play roles in the discrepancy between the two studies. Boyer et al. (2023) model

prevented planting due to all possible causes, which may obscure the importance of soil

characteristics to acres prevented specifically by excess moisture/precipitation. Additionally,

Boyer et al. (2023) consider prevented planting across the continental U.S., including data

from the arid western half of the country [152]. Differing model architectures between the

studies (OLS model in Boyer et al., 2023) may also play a role. Lee et al. (2023) do not

consider soil characteristics in their study [18]. Our results suggest that information about

soil hydrology is key to understanding prevented planting.

Lee et al. (2023) project prevented planting to decrease slightly under climate change

[18]. Our projection of future prevented planting roughly agrees with this finding, with the

decadal average in total prevented area decreasing by roughly 10% and 20% by the middle

and end of the century, respectively. However, we project outcomes under a high-emissions
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climate scenario, whereas Lee et al. (2023) use a moderate-emissions scenario (RCP4.5).

Differences in the ensembles of earth-system models used for future projections may also

play a role in the differences between the respective studies.

Our study highlights the finding that high-damage years are projected to become more

frequent under climate change. Recurring high-acre damages might impact insurance policies

regarding the allowed frequency of farmers to submit prevented-planting claims, similar to

the 2021 revision requiring successful planting and harvest within the four most recent crop

years [185].

There are notable limitations to our modeling approach. The RF classifier and regressor

are both affected by an inability to extrapolate predictions when feature values go beyond

their historical sample. Specifically, the RF regressor cannot predict future prevented frac-

tions above its maximum historical prediction (0.67). Another limitation comes from our use

of soil moisture outputs by FLDAS, which are subject to the same assumptions and limita-

tions as the land surface model (Noah 3.6.1) that produced them [156]. Additionally, future

changes in the possible couplings between temperature, precipitation, and soil moisture, as

simulated by the CMIP6 models, may affect the ability of the ZIR model to project pre-

vented planting outcomes beyond the historical sample. Finally, our model does not account

for factors of farmer behavior, such as explicit final planting dates or economic considera-

tions in reporting prevented planting versus alternative measures (e.g. moral hazard) [17],

which may add noise or biases into the prevented planting observations and resulting model

responses.

Future work explicitly incorporating earliest and final planting dates into a machine-

learning model could allow for the exploration of adaptation toward prevented planting

through advanced planting windows under warming conditions. Additionally, future impact

projections could be improved with increased quality of soil moisture changes in the CMIP

ensemble, as well as the incorporation of aquifer and groundwater-storage information and
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the related changes under warming. We report our historical reproduction and highlight the

importance of 2019 data to the ability of our model in capturing extreme prevented planting

outcomes. Reports of these two analyses in future studies of prevented planting could aid in

model selection and in the interpretation of model predictions.

Our study demonstrates the promise of ML approaches to understanding and predicting

the societal impacts of extreme weather events. With the expected intensification of the

hydrological cycle under climate change [186], it is pivotal to improve our understanding of

these impacts as well as our confidence in accurate future predictions. Leading-edge ML

interpretation packages, such as SHAP, offer the opportunity to extract detailed insights into

historical outcome responses to environmental conditions. These insights, along with future

predictions, would be valuable to stakeholders and decision-makers in their strategies to

mitigate and adapt to ongoing climate change.

5.6 Data Availability

All data used in this analysis are publicly available. Planned and prevented acreage data can

be found at https://www.fsa.usda.gov/news-room/efoia/electronic-reading-room/frequently-

requested-information/crop-acreage-data/index and https://www.rma.usda.gov/en/Infor

mation-Tools/Summary-of-Business/Cause-of-Loss. Tile drainage data can be found at

https://quickstats.nass.usda.gov/. FLDAS data can be found at https://ldas.gsfc.nasa.gov/

fldas. Data for soil conditions on maize cropland can be found at Li et al. (2019) [80]. Data

for soil drainage classifications can be found at https://www.nrcs.usda.gov/resources/data-

and-reports/gridded-soil-survey-geographic-gssurgo-database. Shapefile maps of unconsoli-

dated and semi-consolidated aquifers are available at https://www.usgs.gov/mission-areas/

water-resources/science/unconsolidated-and-semiconsolidated-sand-and-gravel-aquifers.

GRACE/GRACE-FO Mascon data are available at http://grace.jpl.nasa.gov.
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CHAPTER 6

CONCLUSION

In this work, I present: a “perfect model” experiment evaluating the ability of degree-day-

based statistical models to project yield impacts under climate warming; an evaluation of

maturity acceleration responses in process-based models using a new observational dataset,

and; an original machine learning model that predicts prevented planting due to excess

moisture and precipitation, as well as impacts under projected climate change.

We conclude that statistical models that include features of heat stress or omit features

of moisture stress are prone to overproject yield losses under warming. In addition, we

determine that process-based models well represent the responses of changes in maturity

length to temperature based on evaluations from observations, suggesting that projected

yield losses due to accelerated maturity (and likewise gains from maturity adaptation) may be

reasonable. Finally, we find that the prevalence of prevented maize acres is impacted by soil

drainage, and springtime rain and soil moisture conditions, and frozen winter temperatures.

Under future climate change, prevented planting instances are predicted to decrease but

become more severe, with high-prevented years occurring more frequently relative to the

historical period.

There are limitations to the models and data I use in this research. Process-based model

outputs have known issues reproducing historical yield records [13, 14], which may limit the

efficacy of applying findings from “perfect model” experiments into practice. Additionally,

while we validate the growing period responses to warming in GGCMI models, the subsequen-

tial yield response to growing period changes varies widely among the models, a matter that

has not yet been explained. Finally, using machine learning models to predict agricultural

outcomes from environmental drivers is a recent and ongoing research topic [19, 187, 90].

Challenges to machine-learning models remain in extracting physical understanding from

model predictions and reducing uncertainties in future projections [57, 149, 89, 188].
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Nevertheless, these research chapters contribute valuable findings toward better under-

standing how environmental factors affect U.S. maize production and projections under fu-

ture climate change. Future research would benefit from advancing “perfect model” exper-

iments, using newer simulations and evaluating newer statistical models, such as machine

learning yield models. Additionally, higher-resolution maturity observations should be incor-

porated into the tuning of process-based model for historical simulations, rooting the models

further in ground truth data. Both process-based and statistical yield models could benefit

from incorporating effects of extreme precipitation and moisture, based on the findings of

our prevented planting model. Lastly, the expansion of the analyses used in these chapters

onto other crops and agricultural regions would result in wider advances in understanding

the impacts of climate change on global food security.
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APPENDIX

S1 Supplemental Materials for Chapter 2

S1.1 Functional forms for statistical models used in Figure 2.4a

Functional forms here correspond to the individual statistical model projections in Figure

2.4a, denoted by line number in the subplot. Table S1 provides a legend of the features used

in the functional forms.

Table S1: Legend of features used in statistical model functional forms.

Feature Definition
P Total growing-season precipitation
P 2 Total squared growing-season precipitation
V PD Total growing-season vapor-pressure deficit
V PD2 Total squared growing-season vapor-pressure deficit
SM Total growing-season soil moisture supply
SM2 Squared total growing-season soil moisture supply
GDD Total growing-season growing-degree days
HDD Total growing-season high-degree days

Line 1:

log(Yi,t) = αi + βP · Pi,t + βP 2 · P 2
i,t + βV PD · V PDi,t + βV PD2 · V PD2

i,t + ϵi,t. (6.1)

Line 2:

log(Yi,t) = αi + βV PD · V PDi,t + βV PD2 · V PD2
i,t + ϵi,t. (6.2)

Line 3: Equation 2.7

Line 4:

log(Yi,t) = αi + βSM · SMi,t + βSM2 · SM2
i,t + ϵi,t. (6.3)

Line 5: Equation 2.4

Line 6: Equation 2.3
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Line 7:

log(Yi,t) = αi + βGDD ·GDDi,t + βHDD ·HDDi,t+

βP · Pi,t + βP 2 · P 2
i,t+

βSM · SMi,t + βSM2 · SM2
i,t + ϵi,t. (6.4)

Line 8:

log(Yi,t) = αi + βGDD ·GDDi,t + βHDD ·HDDi,t+

βP · Pi,t + βP 2 · P 2
i,t+

βV PD · V PDi,t + βV PD2 · V PD2
i,t+

βSM · SMi,t + βSM2 · SM2
i,t + ϵi,t. (6.5)

Line 9:

log(Yi,t) = αi + βGDD ·GDDi,t + βHDD ·HDDi,t+

βP · Pi,t + βP 2 · P 2
i,t+

βV PD · V PDi,t + βV PD2 · V PD2
i,t + ϵi,t. (6.6)
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Process-based model Within R2 Scenario (◦C) Simulation (%/K) Model (%/K) Factor
CARAIB 0.67 (± 0.00) +2 -4.9 -8.8 1.8

+4 -4.94 -10.06 2.04
+6 -5.36 -11.43 2.13

EPIC-TAMU 0.53 (± 0.00) +2 -3.45 -11.69 3.39
+4 -4.51 -16.61 3.68
+6 -5.08 -21.95 4.32

GEPIC 0.60 (± 0.00) +2 -5.88 -12.72 2.16
+4 -5.64 -16.21 2.87
+6 -5.73 -20.05 3.5

LPJ-GUESS 0.26 (± 0.00) +2 -5.95 0.55 -0.09
+4 -4.88 -1.7 0.35
+6 -4.69 -4.29 0.91

LPJmL 0.51 (± 0.00) +2 -3.92 -7.57 1.93
+4 -4.85 -10.73 2.21
+6 -5.17 -14.18 2.75

LPJmL (ESM-based) 0.55 (± 0.00) +2 -4.42 -11.61 2.63
+4 -6.62 -12.72 1.92
+6 -6.28 -14.95 2.38

pDSSAT 0.34 (± 0.00) +2 -7.94 -6.17 0.78
+4 -10.53 -9.59 0.91
+6 -13.38 -13.32 1

PEPIC 0.50 (± 0.00) +2 -2.48 -9.42 3.8
+4 -3.64 -13.58 3.73
+6 -4.63 -18.16 3.92

Table S2: Summary statistics for the TP statistical models in this work trained and tested on
separate simulated yield datasets. Column 1 (leftmost) denotes the process-based maize model that
produced simulated yield train and test sets. Columns 2–3 show the historical withiin R2 values for
the TP statistical models with a piecewise linear temperature responses and stepwise temperature
response, respectively. Columns 4–7 columns correspond to tests at increasing warming levels noted
by the warming scenario in the fourth column. The fifth column shows the target yield change at
that warming level, given in units of %/K, assuming compounding percentage losses. The sixth
column shows the projected yield change at that warming level for the TP models, also through
units of compound %/K impacts. The seventh column shows the ratio of the projected to simulated
yield changes as a metric of the factor projection error. A factor of 1 indicates perfect projection
accuracy; a factor of 2 indicates overprojected impacts by double. The “LPJmL (ESM-based)” row
corresponds to tests under the ESM-based scenario, RCP8.5; warming levels are determined based
on the thirty-year running mean temperature in the Corn Belt.
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Figure S1: TP statistical model projections across all seven simulated yield datasets under uni-
form warming scenarios, as in Figure 2.1a. Green lines show target yield changes and purple lines
show projections of the respective TP statistical model trained under historical conditions. Titles
correspond to the process-based model used in each case to produce the simulated training set. Text
values in each panel show the fractional projection error under warming of 6 ◦C (bottom right of
each subplot). TP statistical models overproject target yield losses by factors of 1.8–2.9 in five of
the seven simulated yield datasets.
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Figure S2: As in Figure S1, but for TP statistical models with stepwise temperature responses
(equations shown in Methods). Results are similar to the piecewise linear TP model findings.
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Figure S3: Spatial patterns of projection error for the TP statistical models along with related
weather conditions. The top row corresponds to projections for a TP model trained and tested on
yields by LPJmL under uniform warming scenarios. Top left shows the average projection error
under warming of six degrees (same as inset map of Figure 2.1a). Top middle shows the average
baseline (1981–2010) growing-season temperature. Top right shows the average change in HDDs
under warming of +6 ◦C. The bottom row corresponds to projections for a TP model trained and
tested on yields by LPJmL under the ESM-based scenario (RCP8.5), analyzed at a mean growing-
season warming of +6 ◦C (2067–2096). Bottom left shows the average projection error (same as
inset map of Figure 2.1b). Bottom middle shows the average change in precipitation. Bottom
right shows the average change in HDDs. Projection error in the uniform warming scenario shows
a correlation to baseline temperatures and the change in HDDs. Precipitation changes appear to
influence projection error in the ESM-based scenario.
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Figure S4: Projection error and temperature conditions for the TP statistical model trained and
tested on yields by LPJmL under uniform warming scenarios. (a) Scatter plot shows the average
projection error in each gridcell against the respective average historical growing-season temperature.
(b) Scatter plot shows the average projection error in each gridcell against the respective average
increased in HDDs under +6 ◦C. Projection error under warming is strongly associated with HDD
increases, which correlates with baseline temperatures.
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Figure S5: Statistical model temperature responses, in the same fashion as Figure 2.2a, for the
stepwise TP model trained on yields by LPJmL under uniform warming scenarios. Lines show the
impact on yields of a day of at each temperature, for models trained on simulated yields under
historical weather (purple), +6 ◦C warming (orange), and all training data (+0, +2, +4, and +6
◦C, green). The grey line shows the response of a similar multi-bin model trained on U.S. maize
observations. As with the piecewise linear temperature response, the stepwise response also shows
decreasing sensitivity to high temperatures when trained on variations within the +6 ◦C climate
state, and even less sensivity when trained on variations across climate states.
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Figure S6: Same format as line plots in Figure 2.1, now for projections from TP statistical models
trained across all climate states (historical, +2 ◦C, +4 ◦C, +6 ◦C). (a) Line plots show yield changes
under uniform warming scenarios. The solid green line shows the target yield response and the solid
blue line shows the projection from a TP statistical model trained under historical conditions (same
as line plot in Figure 2.1a). The dashed blue line shows the projection from a TP model trained
on variations across all warming scenarios, referred to as the climatological TP model. (b) Same
format as (a) for results under the ESM-based scenario, with vertical dashed lines indicating the
mean warming at vicennial markers. Climatological TP models project more accurate yield changes
under warming relative to historically trained models. This is to be expected, however, as the
climatological models are trained on data across all warming levels, so their projections are all in-
sample.
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Figure S7: Temperature responses for TP statistical models across all seven simulated yield
datasets under uniform warming scenarios, in the same format as Figure 2.2 (which showed only
LPJmL). (a) Colored lines represent temperature responses for TP statistical models trained on dif-
ferent simulated yields (CARAIB, EPIC-TAMU, GEPIC, LPJ-GUESS, LPJmL, pDSSAT, PEPIC)
under historical conditions. The gray line The gray line corresponds to a similar temperature-
precipitation statistical model from the literature trained on observed U.S. maize yield variations
within historical conditions [10], for comparison; note that this model is slightly different in its flat-
tened response for temperatures above 39 ◦C. (b) Same layout as (a), now showing TP statistical
models trained on varitions across climate states. Nearly all TP statistical models show a weakening
sensitivity to high temperatures (i.e. HDDs) when trained across climate states relative to historical
responses; this misalignment contributes to statistical model projection error under warming.
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Figure S8: Yield-HDD associations across all seven simulated yield datasets under uniform warm-
ing scenarios, in the same format as Figure 2.3a (which showed only LPJmL). Each panel corre-
sponds to simulated yields by a different process-based model. Colored contours show the distri-
bution of growing-season cumulative HDDs and simulated yields under uniform warming scenarios.
Solid colored lines show the linear association within each scenario. Colored dots outlined in black
show the mean yield and HDD value in each scenario, with the connecting black line representing
the climatological relationship. Simulated yields generally show changing yield-HDD associations
under warming scenarios.
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Figure S9: As in Figure S8, but for yield-VPD associations. Yield relationships to VPDs are
generally roughly consistent between historical and climate states.
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Figure S10: VPD, HDD, and humidity associations under the ESM-based scenario. (a) Colored
contours show the distribution of growing-season cumulative VPD [kPa] and HDD values, separated
by the mean growing-season warming level (corresponding years shown in Figure 2.1). Solid colored
lines show the linear association within each warming level. Colored dots with black outlines show
the mean value in each warming level, with the connect solid black line representing association
across climate states. (b) Same format as (a), but not showing growing-season mean temperature
against growing-season mean relative humidity. Like the uniform warming scenarios, the realistic
warming scenario also shows changing heat-moisture associations as growing-season temperature
increases.
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Figure S11: Yield, HDD, and soil moisture supply associations under uniform warming scenarios,
in the same fashion as Figure 2.3. Like with VPD, associations between high temperatures and soil
moisture supply differ between historical and climate states. Yield associations with soil moisture
are less stable than the association with VPD. However, the relationship is roughly similar between
historical and climate states, causing statistical models based on soil moisture to project yield
changes more accurate than TP statistical models.
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Figure S12: Statistical model projections in the ESM-based scenario (RCP 8.5), in the same
fashion as Figure 2.4a.
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Figure S13: Comparisons of overestimated temperature damages and process-based-model sensi-
tivities to water supply and growing-period shortening. Scatter plot shows the overestimated HDD
damages for respective TP statitsical models trained on each of the simulated yield datasets under
uniform warming (+6 ◦C), plotted against the yield sensitivity to growing period shortening for
the underlying process-based models. Sensitivities to the growing period represent the percentage
portion of yield losses under the +6 ◦C that can be attributed to growing period shortening (i.e.
accelerated maturity). Overestimated HDD damages show a positive relationship to water sensitiv-
ity, which in turn shows a negative relationship to growing-period sensitivity. Thus, it appears yield
sensitivities under increased temperatures in the process-based models can be approximately broken
down into two responses: sensitivity to water stress and sensitivity to growing period shortening.
For water-sensitive models, the TP statistical model cannot capture the underlying behavior, and
thus overprojects yield damages based on historical hot-dry correlations. For GP-sensitive yields,
the TP statistical model can mostly capture target yield losses because the HDD feature acts as
a proxy for growing period shortening. An ideal statistical model with features related to water-
sensitive and growing-period responses may accurately project yield responses in warming scenarios
for all simulated yield datasets in the ensemble.
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Figure S14: A map showing rainfed maize cultivation areas across the Corn Belt, taken from
the MIRCA2000 product [71]. Bold borders outline the agricultural districts in our study. The six
states included (KS, IL, IN, IA, MO, and WI) account for 50% of U.S. Corn Production.
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Figure S15: A diagram displaying the definition of maturity duration and its calculation (not to
scale). Maturity duration is defined as the number of days from the sowing date to the approximate
maturity date. It is calculated by: (1) taking district-level durations between sowing and harvest
date (i.e. in-field duration), then (2) subtracting state-level offsets between harvest and maturity
dates. Process-based models that tune management and cultivars based on state-level records can
miss considerable in-state heterogeneity.
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Figure S16: Comparison of observed and modeled historical cultivar maturities. (a) Map subplots
show average historical maize cultivar maturities for observations, calculated from state-level crop
calendars, and each process-based model considered in the ensemble. (b) Line plots show the
historical timeseries of regional average cultivar maturities for observations and models. Models
show slightly later maturities than observations suggest, however to relatively smaller proportion
than growing periods, due in part to less heat accumulation in the differing growing-period segments.
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(a)

(b)

Figure S17: Comparisons of multi-year yield values between models and observations. (a) Map
subplots show average historical maize yields for observations, taken from state-level reports, and
each process-based model considered in the ensemble. (b) Line plots show the historical timeseries
of average yields for observations and models. Ensemble mean yield values are calculated excluding
values from CARAIB, which did not participate in the protocol to tune historical growing periods.
Model yields align with state-level observations on average.

120



State vs. District values: Kansas

a) Maturity duration [days]

c) Planting date [day of year] d) Harvest date [day of year]

b) Maturity threshold [°C days]

Zonal position

Figure S18: Comparison between district-level and state-level values for (a) maturity duration,
(b) calculated maturity threshold, (c) sowing date, and (d) harvest date for the state of Kansas.
Points are colored by the centroid latitude of their corresponding district and shaped according to
their zonal position within the state (Eastern, Western, and Central). The dashed black line shows
the 1:1 line.
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State vs. District values: Illinois
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Figure S19: Same as Figure S18, but for Illinois.
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State vs. District values: Indiana
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Zonal position

Figure S20: Same as Figure S18, but for Indiana.
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State vs. District values: Iowa

a) Maturity duration [days]

c) Planting date [day of year] d) Harvest date [day of year]

b) Maturity threshold [°C days]

Zonal position

Figure S21: Same as Figure S18, but for Iowa.
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State vs. District values: Missouri

a) Maturity duration [days]

c) Planting date [day of year] d) Harvest date [day of year]

b) Maturity threshold [°C days]
Zonal position

Figure S22: Same as Figure S18, but for Missouri.
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State vs. District values: Wisconsin

a) Maturity duration [days]

c) Planting date [day of year] d) Harvest date [day of year]

b) Maturity threshold [°C days]

Zonal position

Figure S23: Same as Figure S18, but for Wisconsin.
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Figure S24: Spatial pattern of average historical growing periods in the Corn Belt. 112 days
corresponds to 16 weeks, and 147 days corresponds to 21 weeks. Most states show a north-south
gradient spanning roughly two weeks, with more similar values among districts in Iowa and Wis-
consin.
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Figure S25: The spatial pattern of average historical growing-season GDDs in the Corn Belt.
Cumulative GDDs are calculated across a fixed growing season (Mar 1–Aug 31) for each district
and year. Heat availability in the Corn Belt shows a SW-NE gradient, with the largest availability
of heat units in Kansas and Missouri, and the smallest availability in Wisconsin.
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Figure S26: Comparison of differences in growing-degree days (GDDs) between Southern and
Northern states. Line plots show the time series of average daily GDDs, for the period 1981–2010,
within Kansas (KS, red) and Wisconsin (WI, blue). District-level sowing and maturity dates are
shown by vertical dashed lines, and state-level dates are shown by vertical dotted lines. The shaded
areas show the difference in accumulated GDDs between district- or state-level dates. Relative to
Kansas, Wisconsin experiences lower daily GDD values and smaller differences between district- and
state-level dates. Thus, Wisconsin has relatively smaller differences between calculated maturity
thresholds (total accumulated GDD to maturity) based on district- and state-level dates.
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Figure S27: Mean offsets between maturity and harvest dates in state-level USDA observations
for the period 1981–2010.
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Figure S28: A map showing rainfed maize cultivation areas across the Corn Belt, taken from
the MIRCA2000 product [71]. Bold borders outline the agricultural districts in our study. The six
states included (KS, IL, IN, IA, MO, and WI) account for 50% of U.S. Corn Production.
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Figure S29: A diagram displaying the definition of maturity duration and its calculation (not to
scale). Maturity duration is defined as the number of days from the sowing date to the approximate
maturity date. It is calculated by: (1) taking district-level durations between sowing and harvest
date (i.e. in-field duration), then (2) subtracting state-level offsets between harvest and maturity
dates. Process-based models that tune management and cultivars based on state-level records can
miss considerable in-state heterogeneity.
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Model Hist. mean yield MD change (+6 ◦C) Yield change (+6 ◦C) Maturity related impacts
[ton/ha] [%] [%] [% of total yield change]

CARAIB 5.5 24 27 75
EPIC-TAMU 6.9 32 29 33
GEPIC 7.3 30 30 53
LPJ-GUESS 8.1 28 25 100*
LPJmL 6.8 29 26 55
pDSSAT 13.2 29 55 87

Table S3: Mean yield, growing period, and maturity statistics for models in the GGCMI Phase
2 ensemble. * 100% of yield losses for LPJ-GUESS are due to growing period shortening based on
our calculations, as growing period adaptations boost yields above baseline levels.
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Figure S30: Mean yield losses under high Corn Belt warming across the GGCMI models. Maps
show the change in 30-year mean yields from the baseline historical scenario to a uniform +6 ◦C
perturbation scenario without cultivar adaptation. Losses in Illinois, Indiana, and Missouri, for
example, are generally greater than losses in Iowa and Wisconsin. CARAIB shows relatively largest
losses for northern Wisconsin. However, this is potentially due to issues with model output, as
evidenced by missing data in northern Iowa.
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Figure S31: Growing period anomalies in the GGCMI models across warming scenarios. Scat-
ter plots show maturity duration anomalies against growing-season temperature anomalies, both
relative to historical mean values. Colors indicate model outputs across warming scenarios, from
historical (blue), +2 ◦C (yellow), +4 ◦C (orange), and +6 ◦C (red) uniform warming. Solid
colored lines show the linear behavior within each warming scenario, and large colored dots show
the mean anomaly values within each scenario. GGCMI models show similar responses of maturity
duration to temperature, with nonlinear losses appearing under high-warming scenarios.
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Figure S32: Mean growing period changes under high Corn Belt warming across the GGCMI
models. Maps show the change in 30-year mean MD from the baseline historical scenario to a uniform
+6 ◦C perturbation scenario without cultivar adaptation. MD changes show similar magnitude
and spatial patterns across the ensemble, suggesting maturation processes are similarly rooted in
the concept of heat unit accumulation
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Figure S33: Comparing yield sensitivity to accelerated phenology against yield sensitivity to
water stress. Scatter plot shows the portion of total yield losses under warming attributed to accel-
erated phenology against yield sensitivity to water stress. Yield losses due to accelerated phenology
are determined by comparing yield changes under +6 ◦C perturbations between non-adaption and
cultivar-adaptation scenarios. Water stress sensitivity values are calculated by comparing historical
yield levels between rainfed and irrigated farming practices. Models with higher sensitivity to water
stress show smaller portions of yield losses due to accelerated phenology, suggesting model responses
to temperature increases can be roughly separated into causes of water stress and accelerated phe-
nology.
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S4 Supplemental Materials for Chapter 5

Table S4: USDA Risk Management Agency Stage Codes and Descriptions used to obtain prevented
planting data. The full list of all codes, descriptions, and years activated can be found at the USDA
RMA Cause of Loss website

RMA Stage Code Code Description

H3 Prevented Planting Option 3 - Harvested Acres
NP Prevented Planting - Insured Crop NOT Planted
P1 Prevented Planting Option 1
P2 Prevented Planting Option 2
P3 Prevented Planting Option 3
P4 Prevented Planting Option 4
PF Prevented Planting - Unplanted Acreage with 5% buyup option
PL Preliminary Loss Payment (GRP): Prevented Planting Endorsement (Qualifying Crop)
PT Prevented Planting - Insured Crop Planted (Unplanted Acreage with 10% buy up option 1998)
PU Prevented Planting - Uninsured Loss
U3 Prevented Planting Option 3 - Unharvested Acreage

Figure S34: Historical performance of different model formulations. The line plot shows ob-
served and predicted time series of total historical prevented acres for maize due to excess mois-
ture/precipitation. Observations are shown in black. Predictions from the ZIR model used in this
study are shown in orange. Predictions from a linear model, using the same feature set as the ZIR
model, are shown in purple. Predictions from a linear model using the Boyer et al. (2023) [147]
feature set are shown in green. The ZIR model can predict historical prevented planting acreage
with greater proficiency than more traditional linear model structures, particularly in predicting
the 2019 extreme.
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Figure S35: Mean January air and soil temperatures from FLDAS across the historical sample.
The scatter plot shows January air temperature values against their corresponding soil temperature
values for all county-year combinations in the historical sample. Points lying below zero on the Y-
axis correspond to theoretically frozen soils. The dotted line shows a 1:1 relationship. The vertical
dashed line denotes the inflection point of the Random Forest classifier’s response to January air
temperatures (approximately -4 ◦C). The model predicts air temperatures below this point to in-
crease the likelihood of prevented planting occurrences. This air temperature value also corresponds
to the freezing point for soil temperatures in FLDAS. Although the RF classifier does not take in
information about soil temperatures directly, it may be inferring the freezing point of soils through
its air-temperature response.
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Figure S36: Projections of annual prevented planting acreage under climate change. Line plots
show projections from the ZIR model for the total U.S. prevented planting area, assuming planned
maize acreage constant from the 2012–2022 mean value for each county. Thin colored lines show
projections corresponding to the SSP-585 scenario as modeled by each CMIP6 model. The thick
black line shows the ensemble mean. The horizontal dashed line shows the total prevented area
in 2019 for reference. No future projection meets or exceeds the 2019 extreme value. However,
projections exceed 1 million hectares of prevented planting more frequently than the historical
record.
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