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ABSTRACT

The overall goal of research was to analyze magnetic resonance imaging (MRI) radiomic fea-

tures of patients with autosomal dominant polycystic kidney disease (ADPKD) for genotype

and risk-stratified classification, temporal assessment of radiomic features for the prediction

of kidney function decline, and the analysis of radiomic-based differences from magnetic res-

onance fingerprinting (MRF)-acquired T1 and T2 maps between a healthy and an ADPKD

cohort.

Radiomics, the extraction and analysis of quantitative image features from medical im-

ages, has shown the ability to predict a patient’s future kidney function decline. However,

there has been limited research utilizing radiomics to address other research questions re-

lated to ADPKD. Longitudinal clinical studies have shown differences in disease progression

and patient outcomes in genetic variants in ADPKD, specifically PKD1 and PKD2, with

respect to cyst burden and age at onset of end-stage kidney disease (ESKD). In addition,

risk-stratified groups are clinically used to monitor disease progression using height-corrected

total kidney volume (htTKV) and age, assigning to patients a Mayo Imaging Classification

(MIC) class ranging from low-risk to high-risk of increase in htTKV growth and estimated

glomerular filtration rate (eGFR) decline. Delta radiomics, the assessment of temporal

change in image features, of longitudinal imaging studies will be used to investigate the

additive power of temporal imaging data in predicting future kidney function decline ver-

sus baseline texture alone. Radiomic features provided additive power in classification of

genetic variants, distinguished among risk-stratified MIC classes, captured cystogenesis, and

predicted patient outcomes.

A key component of the radiomics workflow before feature extraction is image pre-

processing, which is important for T1-weighted and T2-weighted MRI images due to ar-

bitrary signal intensities. Therefore, MR image normalization has been understood to be

an important step before feature extraction to standardize pixel intensities in an image and
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improve feature robustness. In addition to normalization, pixel resampling and gray-level

discretization are important steps in harmonizing images that come from different sites or

timepoints. ADPKD radiomic studies differ in pre-processing methods, and the impact of

these steps on radiomic features extracted from the kidney has not been investigated. This

work investigated the effect of pre-processing on radiomic features of ADPKD patients. The

results indicate that pre-processing parameters influenced the radiomic features extracted

from kidney MR images and their subsequent classification.

Quantitative MRI has allowed for anatomic and numeric image analyses, but acquisition

time can be long and susceptible to motion artifacts. Magnetic resonance fingerprinting

(MRF) allows for repeatable and simultaneous acquisitions (e.g., T1 and T2 quantitative

maps) in a single breath hold. Radiomic features were extracted from MRF-acquired T1

and T2 maps of ADPKD children and young adults and a healthy cohort. Radiomic fea-

tures extracted from MRF-derived quantitative maps distinguished ADPKD patients from

a healthy cohort using features extracted from both the entire kidney (including cysts) and

non-cystic kidney parenchyma. This work advances non-invasive imaging biomarkers for

characterizing the non-cystic kidney parenchyma, ultimately facilitating the identification of

ADPKD children at high risk for disease progression.

Specific aims of this thesis were (1) to investigate MRI radiomics analysis of non-cystic

kidney parenchyma to classify PKD1 and PKD2 genotypes, (2) to use MRI radiomics anal-

ysis of non-cystic kidney parenchyma to differentiate among MIC 1A through 1E patients,

(3) temporal assessment of MRI radiomic features to predict kidney function decline in pa-

tients with ADPKD, and (4) to investigate MRF radiomics analysis in healthy controls and

ADPKD patients using T1 and T2 quantitative maps.
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CHAPTER 1

INTRODUCTION

1.1 Autosomal Dominant Polycystic Kidney Disease (ADPKD)

Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary

kidney disorder and is responsible for 10% of patients with end-stage kidney disease (ESKD)

under the age of 65 [1, 2]. ADPKD results in gradual enlargement of the kidneys due to cyst

growth over decades prior to decline in kidney function and kidney failure [3]. It is common

for patients with ADPKD to have hypertension, acute and chronic pain, gross haematuria,

cyst infection, and nephrolithiasis and also manifestations beyond the kidney such as hepatic

and pancreatic cysts, intracranial aneurysms, abdominal hernias, and cardiac valvular lesions

[4]. The Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease (CRISP)

was a major longitudinal imaging study of patients with ADPKD, and the results showed

that total kidney volume (TKV) predicts the risk of developing kidney function decline in

patients with ADPKD [3]; the CRISP study also showed that cyst expansion accounts for

increased TKV and that increases in kidney size associate with loss of kidney function, with

TKV and total cyst volume (TCV) increasing exponentially. ADPKD is predominantly

caused by mutations in two genes, PKD1 and PKD2, that make up over 90% of cases [5].

There is currently no cure for ADPKD, and treatments are limited; the US Food and Drug

Administration approved tolvaptan, a vasopressin V2 receptor antagonist, as the first drug

treatment in 2018 to slow kidney function decline in adults at risk of rapidly progressing

ADPKD [6].

1.1.1 Risk-stratification

Due to the long asymptomatic phase and late age of onset of kidney dysfunction, typical

clinical outcome measures (e.g., time to ESKD, doubling of serum creatinine, and 30%
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reduction in glomerular filtration rate) are ineffective for identifying high-risk individuals

[2]. The long asymptomatic phase is due to hyperfiltration by surviving nephrons that mask

the true loss of functioning nephrons resulting from an increase in TKV due to the presence

and growth of cysts [7]. The Mayo Imaging Classification (MIC) provides a measure of the

rate of height-corrected TKV (htTKV) growth and is a validated risk stratification imaging

biomarker for progression to ESKD; MIC has been validated in major clinical studies [8, 9,

10]. MIC uses htTKV and age for classification and is validated for patients between 15-80

years of age; MIC aims to optimize patient selection for enrollment into clinical trials and for

available treatments [11]. Currently, there is no risk-stratification for children with ADPKD

under 15 years of age. MIC assumes exponential kidney growth, and typical classes range

from 1A and 1B (lowest and intermediate risk, respectively) to 1C, 1D, and 1E (highest risk).

However, MIC is a simple model used for patients with typical presentations of ADPKD

and does not always predict kidney function decline with patients who have a few large

or exophytic cysts. While MIC risk stratification was developed independent of genotype,

PKD1 disease severity is significantly different from PKD2 disease severity, with a difference

in age of ESKD onset of over 20 years. The CRISP study demonstrated larger increases in

TKV in those with a PKD1 genotype [3]. PKD2 patients demonstrated smaller TKV with

40% fewer kidney cysts, consistent with the known delayed onset of hypertension, longer

time to ESKD, and a 10-year longer life expectancy [3, 12]. Lavu et al. [13] completed a

univariate analysis and found that sex, genotype, baseline MIC, baseline eGFR, and baseline

body mass index (BMI) were associated with both a 50% decline in eGFR or ESKD. ADPKD

phenotype is heterogeneous across patients, and there is a need to understand characteristics

associated with disease severity to help better predict patient outcomes.
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1.2 Medical Imaging in ADPKD

Radiologic imaging is crucial for the assessment of ADPKD and risk stratification for pro-

gression to ESKD. Medical images are used to measure TKV, and the predominant methods

to measure TKV are manual segmentation of whole kidneys and stereology, which uses

grid points over the kidney but is not readily available [14]; while obtaining accurate and

precise measurements of TKV is important, these methods are time consuming and differ

in complexity due to the heterogeneous ADPKD phenotype. An ellipsoid equation (using

principal diameters) has been used to quicken the task of TKV measurement by choosing

the largest representative mid-slice of the kidney using three imaging views to measure the

length, width, and depth of the kidney [15, 16]:

TKV (mL) =
π

6
· (L ·W ·D), (1.1)

htTKV

(
mL

m

)
=

TKV (mL)

height(m)
. (1.2)

Computed tomography (CT), magnetic resonance imaging (MRI), and ultrasound (US) are

clinically used for measuring TKV and quantifying kidney disease progression in ADPKD.

TKV is most-often measured using MRI, which is advantageous because it is a non-ionizing

imaging modality with superior soft-tissue contrast and in this case without the need for

contrast agents [16]. The accuracy of the ellipsoid equation for TKV measurements using

CT and MRI was found to be 87% and US was 21%, and the ellipsoid method for mea-

suring TKV has shown varying reproducibility and variability compared with manual TKV

measurements; however, previous research showed that using the ellipsoid equation still ac-

curately determines an ADPKD patient MIC class [16, 17].
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1.2.1 Magnetic resonance imaging (MRI)

Nuclear magnetic resonance has been fundamental in its applications to physics, biology, and

medicine. MRI uses five major components that impact image quality and clinical utility:

(1) main magnet (typical field strength of magnet between 0.5-3.0 Tesla), (2) radio-frequency

(RF) transmitting and receiving coils and amplifiers, (3) magnetic field gradient coils and

amplifiers, (4) electronic racks controlling gradient and RF waveform generation and signal

acquisition, and (5) the computer [18]; MRI can generate images of the human body without

ionizing radiation.

The majority of MR imaging is based on the nucleus of hydrogen or the single proton,

which is abundant in the human body. The randomly oriented proton spins align parallel

to the applied main magnetic field of the scanner and produce a bulk magnetization that

precesses about the main magnetic field. RF pulses are applied perpendicular to the main

magnetic field at the Larmor frequency, i.e., the precessional frequency of protons, and

tilts the synchronous precession of spins away from the longitudinal magnetic field to the

transverse plane. Transverse magnetization is generated by an applied alternating magnetic

field, and induces a very small signal in sensitive coils tuned to the Larmor frequency. The

MR signal formed is spatially encoded using magnetic field gradients, which produce a non-

uniform magnetic field using small perturbations to the overall main magnetic field, and the

Larmor frequency at the spins location. The raw data is represented in k-space, the spatial

frequency domain of the signal, and the spatial frequencies correspond with the gradients in

the spatial domain. The center of k-space defines the contrast and basic structures in the

MR image and the periphery of k-space provides fine details. The inverse Fourier transform

of the signal in k-space produces the MR image.

The weighting of an image is complex but is dependent on the time for the longitudinal

magnetization vector of the magnetic moment of protons to return to alignment with the

main magnetic field (T1-weighted (T1W)), the time for the transverse magnetization to
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decay (T2-weighted (T2W)), and density of protons in the tissue (proton-density-weighted).

MRI pulse sequences consist of RF pulses and gradients for selective slice excitation and

phase and frequency encoding of the object’s signal in k-space. The repetition time (TR) is

time between successive gradients, and the time between the selective excitation pulse and

the peak of the MRI signal is the echo time (TE); the timing parameters of TR and TE

makes the contrast of an image, and the choice of TR is used to control T1W of the image

and the choice of TE is used to control the T2W of the image [19].

Qualitative MR images have different pulse-sequences with contrasts that describe how

energy is absorbed and dissipated within the body and returned to the RF coil. However, it is

important to note that the gray levels or signal intensities within T1W and T2W MR images

are not direct quantitative measurements of tissue properties, hence they are referred to as

qualitative MR images. The MR image intensity, depicted on a gray-scale, is determined by

the signal emitted from the hydrogen nuclei. T1W and T2W images are used in the imaging

of ADPKD patients to measure htTKV and evaluate cyst number (Figure 1.1).

Figure 1.1: Magnetic resonance imaging (MRI) of a coronal T1-weighted scan acquired using
3D VIBE/FMPSPGR/LAVA, without fat saturation, and 3 mm slice thickness (left), and
coronal T2-weighted scan acquired using SSFSE/HASTE, fat saturation, and a 3 mm fixed
slice thickness (right) from the same patient. Note the hyperintense hemorrhagic (blood-
filled) cyst in the T1-weighted MR image and the hypointense signal of the same cyst in the
T2-weighted MR image. The images shown here have cysts both in the kidneys and liver.
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Quantitative MRI captures physiological and functional characteristics of tissues, includ-

ing T1 maps, T2 maps, diffusion-weighted imaging (DWI), arterial-spin labeling (ASL), and

phase-contrast (PC): T1 and T2 maps provide tissue-specific relaxation times, DWI provides

information on tissue microstructure using the apparent diffusion coefficient (ADC) of water

molecules (i.e., measure of magnitude of diffusion within tissue using b-values of changing

gradient amplitudes for the degree of diffusion-weighting), fractional anisotropy (FA) uti-

lizes diffusion tensors obtained from DWI sequences to quantify the degree of directional

preference in molecular displacement by diffusion (0 represents isotropic diffusion, with no

preferred direction, while 1 signifies restricted anisotropic diffusion, typically occurring along

a single axis), ASL measures tissue perfusion using magnetically labelled water protons in

the blood, and PC measures the blood flow in the renal arteries [14]. Research utilizing

T2 quantitative mapping has demonstrated a significant increase in T2 values in early-stage

ADPKD patients (TKV <300 mL), with T2 values distinguishing them from healthy vol-

unteers when TKV could not, and the potential for T2 values to identify cystogenesis from

the very early disease stages [20]. Initial DWI research in ADPKD has revealed abnormally

increased ADC values and reduced FA in ADPKD patients with normal kidney function

compared to healthy subjects [21]; FA values were significantly lower in ADPKD patients

than in healthy controls, indicating a reduced anisotropy (directionality), which may be a

potential biomarker of micro-structural damage caused by cyst growth [21].

Utilizing qualitative and quantitative MRI in kidney imaging (multi-parametric MRI) has

the ability to capture blood flow and tissue perfusion, anatomic structures, and tissue proper-

ties such as inflammation and fibrosis. In summary, kidney MRI has the ability to provide a

non-invasive, radiation-free method to assess morphology, function, and microstructure [22].

For ADPKD patients, MRI biomarkers may help assess disease progression when changes

are indiscernible using clinical markers such as eGFR.
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1.2.2 Non-cystic kidney parenchyma characterization

The non-cystic kidney parenchyma (excluding the presence of macroscopic cysts) has been

suspected to be a potential biomarker of disease progression and stratification. In ADPKD,

increases in size of cysts did not associate with further kidney function decline, suggesting

that changes occurring on a smaller-scale are resulting in greater loss of kidney function

[14]. MRI could be used to further noninvasive markers of microscopic kidney tissue changes

during cystogenesis and also assess effects of tubular atrophy and interstitial fibrosis alongside

cyst development. Caroli et al. [23] used DWI to identify and characterize the non-cystic

kidney tissue component, showing its higher diffusivity, lower pseudo-diffusion, and lower

flowing fraction relative to healthy tissue; in addition, diffusivity significantly differed by

MIC class from both the whole kidney and non-cystic tissue [23]. With respect to T2

mapping, T2 values have a higher correlation with the kidney cyst fraction than htTKV

[24]. In summary, characterizing the non-cystic kidney parenchyma may be used for early

monitoring and prediction of disease progression; however, the quantitative methods by

which to characterize the non-cystic kidney parenchyma is an active area of research. The

work presented in this thesis used data extracted from non-cystic kidney parenchyma, but

it is important to note that non-cystic kidney parenchyma is not synonymous with healthy

kidney tissue.

1.2.3 Magnetic resonance fingerprinting (MRF)

Limitations of conventional quantitative MRI are that data is acquired sequentially on single

parameters, have long scan times, and are scanner dependent [25]. Magnetic resonance fin-

gerprinting (MRF) is the simultaneous non-invasive quantification of tissues and is a novel

approach with respect to data acquisition, post-processing, to visualization [25]. MRF uses

pseudorandom acquisition parameters (i.e, flip angle and phase of radio frequency pulses,

repetition time, echo time, sampling patterns) to cause tissues to have unique signal evo-
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lution known as "fingerprints," which differs from conventional methods of repeated, serial

acquisition of data. Acquisition schemes for MRF have been developed for brain, cardiac,

and kidney, and specific MRF parameters may differ across pulse sequences to best exploit

differential sensitivity of materials of interest [26]. An important step of this process to

create quantitative maps is the pattern-recognition algorithm to match these unique finger-

prints to a predefined dictionary of predicted signal evolutions using the Bloch equations

from combinations of materials and system-related parameters. Upon identifying the best

match to the unique fingerprint from the dictionary, the quantitative parameters of interest

(e.g., T1, T2) are provided on a per-voxel basis.

A rapid kidney MRF method for acquiring quantitative T1 and T2 maps at 3.0 T in

a single breath hold has been established and used for imaging patients with autosomal

recessive polycystic kidney disease (ARPKD) [27]; the work presented investigated the first

MRF-acquired T1 and T2 maps of ADPKD patients.

1.3 Artificial Intelligence in Medical Imaging

Artificial intelligence (AI) is a broad term that involves the mimicking of human intelligence

using computers or machines, and its application in medical imaging includes computer-

aided diagnosis (CAD) systems such as computer-aided detection (CADe) and diagnosis

(CADx) [28, 29]. CAD systems are to aid in the interpretation and final decision-making

process by a radiologist, and the first major breakthrough of CAD was in detecting lesions in

mammography and chest radiographs [29, 30]. Within the CAD system pipeline, quantitative

image analysis is used to extract mathematical descriptors, commonly known as radiomics, to

capture characteristics of disease; the final output of the CAD system includes quantitative

descriptions of the radiologists’ task (e.g., lesion vs. non-lesion).

Segmentation of the region of interest (ROI) (e.g., a diseased organ or a lesion) is an

important step in the CAD pipeline. AI applications in the task of segmentation in ADPKD
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research have been utilized for the kidney, total cyst volume, and other organs such as the

liver and spleen from imaging modalities such as CT, MRI, and US [31, 32, 33, 34, 35, 36].

A previous study implemented an AI algorithm in the clinic for kidney segmentation from

MR images to compute TKV, and the results show that the AI-measured TKV obtained

high levels of agreement with manual segmentations [34]. Shifting this segmentation task

to computers would reduce the time required (typically 60 to 90 minutes) to segment entire

kidneys and cysts to only a few minutes [34]. From automated kidney and cyst segmentation,

additional quantitative measurements that have the potential to complement and enhance

prognostication alongside TKV include total parenchymal volume, total cyst number, cyst

surface area, and cyst parenchyma surface area [36].

1.3.1 Radiomics

Radiomics transforms medical images into mineable, quantitative data through the calcula-

tion of image features that range from simple, first-order signal intensity statistics to more

complex spatial relationships of signal intensities, such as gray-level co-occurrence matrix

(GLCM) texture features, that differ in mathematical computational complexity. Radiomics

is an integral component of quantitative image analysis within the CAD pipeline, tasked with

generating quantitative descriptors and mathematical features (e.g., size, shape, texture, and

morphology) aimed at enhancing the diagnostic, prognostic, and predictive accuracy of the

CAD system [37, 38].

The radiomics workflow involves image acquisition, reconstruction, segmentation, image

pre-processing, feature computation, and statistical modeling [39]. Image pre-processing is a

step before feature extraction and includes denoising images, interpolation to isotropic voxel

spacing, and discretization (quantization) of image intensities inside the ROI (Figure 1.2)

[39].
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Figure 1.2: Flowchart of the general radiomics image processing scheme for computing
radiomics features. Adapted with permission from Zwanenburg et al. [39].

Normalization and pre-processing are necessary steps when extracting features from qual-

itative signal intensities from T1W and T2W MR images, and these steps have been shown to

improve feature robustness and repeatability [40]. There are two predominant discretization

methods, “fixed bin number” (FBN) and “fixed bin size” (FBS). FBN is a relative discretiza-

tion that considers the maximum and minimum gray level in the ROI using a specified bin

count and has an adaptive normalization in its implementation (Figure 1.3). FBS uses the

raw gray level in the ROI with a specified bin width. Currently, there is no consensus on

which discretization is the best for MRI, but literature suggests using a bin width that has

8-130 bin counts for feature extraction [41]; binary discretization is a method that discretizes

gray levels in powers of two and divides the number of gray levels in an image based on the
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number of bits used to represent each pixel’s intensity value. The ability to reproduce and

validate published studies has proven difficult due to factors such as pre-processing and uti-

lizing images from different sites and scanners [39]; although the impact of pre-processing

is currently an active area of research in radiomics, there are a number of previous studies

that do not state pre-processing parameters in their work. A limitation in the clinical use

of radiomics is standardization of image pre-processing, which has inspired collaborations

to standardize imaging biomarkers and metrics such as the radiomics quality score (RQS)

that breaks down radiomics studies in five phases: data selection, medical imaging, feature

extraction, exploratory analysis, and modelling [38, 39, 42].

Figure 1.3: An example of fixed bin number gray-level discretization using 8, 16, 32, 64,
128, and 256 gray-level bins. Gray-level discretization is a pre-processing step before feature
extraction. The image is a coronal T2-weighted fat-saturated magnetic resonance image of
an autosomal dominant polycystic kidney patient with varying number of gray-level bins.

Radiomic feature extraction has been utilized for various applications such as screening

for disease, predicting tumor prognosis, and associations with gene expression patterns and

imaging phenotypes (i.e., imaging genomics) [38, 43, 44, 45, 46]. Radiomic studies can take

advantage of multiple imaging timepoints versus one imaging timepoint alone for a given

task; the use of features across multiple imaging timepoints has been shown to improve

prediction tasks [47, 48]. Delta radiomics quantifies feature variation of longitudinal image
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data, which has shown additive power in assessing response to therapy and patient survival

and can also improve overall diagnosis and monitoring of disease [38, 49, 50, 51].

1.3.2 Radiomics in ADPKD

Radiomic features provide quantitative, objective measures of kidney texture that have clin-

ical utility in aiding clinical decision support systems for radiologists in a non-invasive,

personalized manner. Radiomics analyses of MRI and CT images to evaluate patients with

ADPKD has only recently been explored, and promising studies have shown the additive

power of texture in predicting future kidney function decline and classifying chronic kidney

disease (CKD) stage in ADPKD patients [52, 53, 54, 55].

The first published report of applying radiomics in ADPKD was by Kline et al. [52], and

the study extracted radiomic features (first-order entropy, GLCM correlation, and GLCM

energy) from T2W fat-saturated (T2W-FS) MR images from 122 patients who had eGFR

values >70 mL/min/1.73m2 at baseline and assessed the ability to predict kidney function

decline at eight-year follow-up; when incorporating texture with a traditional model with

baseline age, htTKV, and eGFR, the AUCs increased for CKD stage 3A from 0.86 to 0.94,

for CKD stage 3B from 0.90 to 0.96, and for a 30% or more reduction in eGFR from 0.75

to 0.85. Cong et al. [53] extracted radiomic features from T2W-FS MR images to classify

ADPKD patients in CKD 1-2 versus CKD stage 3A or greater, and investigated the clas-

sification performance using a clinical model, image model, and fused clinical-image model

across different machine learning classifiers; the combined clinical-image model outperformed

the image and clinical models with an AUC value of 0.89 [0.83, 0.95]. Li et al. [54] extracted

radiomic features from T1W fat suppression (T1W-FS) and T2W-FS MR images to clas-

sify CKD stage 1-2 versus CKD stage 3A or greater using radiomic features and combined

radiomics with clinical factors (gender, hypertension, urinary albumin, ellipsoid formula for

TKV measurement, urinary white blood cells, urinary red blood cells, maximum cyst length,
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and maximum bleeding cyst length); the results report an increase in AUC value from using

the radiomics model (AUC=0.75) to the combined radiomics-clinical model (AUC=0.84)

[54]. This was the first work to combine image texture features from multi-parametric MRI

for the task of classifying CKD stage of patients with ADPKD. Xie et al. [55] examined

340 ADPKD non-contrast CT images and assessed the predictive value of renal parenchyma

volume (RPV) (excluding cysts) and a combined model of RPV and radiomic features ex-

tracted from the RPV at a five-year follow-up; at the five-year follow-up, the non-impairment

group and the impairment group were defined as experiencing a reduction of 30% in base-

line eGFR. The AUC value of RPV alone was 0.752 in prediction to a 30% reduction in

eGFR [55]; incorporating RPV with radiomic features extracted from the RPV improved

the predictive power of a 30% reduction in eGFR versus radiomic features alone, with an

AUC value increasing from 0.849 to 0.902 [55].

Radiomics analyses of MRI images to evaluate patients with ADPKD has only re-

cently been explored, and texture-based differences between PKD genotypes and among

risk-stratified MIC patients have not been established. These texture differences have po-

tential to non-invasively classify patient genotype, predict disease progression, and monitor

treatment plans and patient outcomes. The majority of ADPKD is due to mutations in

the PKD1 and PKD2 genes, which associate with different patient and kidney outcomes

including the age of onset of ESKD. Establishing radiomic differences between PKD geno-

types could help better identify gene-specific texture features aiding in proper diagnosis and

risk stratification. Although PKD1 individuals demonstrate larger kidneys with more cysts

relative to age-matched PKD2 individuals, they exhibit similar rates of increase in TKV and

cyst growth and 40% fewer cysts [2]. These findings suggest that microscopic cysts not yet

detectable by traditional imaging techniques may account for differences in htTKV between

PKD1 and PKD2 individuals. Radiomics can examine non-cystic kidney compartments

(potentially indicative of microcysts) to determine genotype. To our knowledge, there has
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been no research evaluating radiomic feature differences between PKD1 and PKD2 patients

in the non-cystic kidney parenchyma.

In addition, MIC, an imaging risk-stratification tool for ESKD, consists of groups ranging

from slow-progressing disease (1A-1B) to fast-progressing disease (1C-1E) with respect to

the rate of increase in htTKV growth. MIC class associates with gender, mutation strength,

and mean age at ESKD, where MIC 1E patients have a mean age of onset ESKD of 43.4±7

years versus 65±6.8 years for MIC 1B patients [56]. Although PKD1 patients are more

frequently found to be in the MIC 1C-1E groups, there is significant overlap in MIC class

between PKD1 and PKD2 patients. Assessing differences among MIC classes using radiomic

features extracted from the non-cystic kidney parenchyma from MR images has yet to be

investigated; such features may associate with MIC independent of genotype and provide

significant prognostic information.

Previous ADPKD radiomic studies differed in their normalization methods before feature

extraction, with little mention of additional pre-processing steps: normalization with respect

to cerebral spinal fluid, z-score normalization, or image normalization method was not stated

[52, 53, 54, 55]. The lack of pre-processing standardization makes the reproducibility and

validation of kidney radiomics studies difficult. The effect of pre-processing on radiomic

features and ultimate subsequent classification is a research topic of substantial interest and

importance.

1.4 Research objectives and scope of work

The purpose of this dissertation was to investigate texture-based MRI biomarkers of ADPKD

(Figure 1.4). We developed radiomics-based quantitative models for genotype classification,

evaluation of texture-based differences of risk-stratified MIC classes, temporal assessment

of radiomic features for the prediction of kidney function decline of ADPKD patients, and
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assessment of texture differences of healthy and ADPKD cohorts based on MRF-acquired

quantitative maps. The specific aims of this thesis were to:

Aim 1- Investigate MRI radiomics analysis of non-cystic kidney parenchyma to classify

PKD1 and PKD2 genotypes (Chapter 2)

Aim 2- Use MRI radiomics analysis of non-cystic kidney parenchyma to differentiate

among Mayo Imaging Classifications (MIC) 1A through 1E (Chapter 3)

Aim 3- Assess temporal change in radiomic features and the additive power for the

prediction of kidney function decline in ADPKD patients (Chapter 4)

Aim 4- Investigate MRF radiomics analysis in healthy controls and ADPKD patients

(Chapter 5)

Radiomics analysis—the extraction of quantitative image features—can non-invasively

characterize disease and has shown predictive utility for ADPKD patient future decline

in kidney function. Although promising, current studies have not established texture-based

differences between PKD genotypes (PKD1 and PKD2 ) or among risk-stratified MIC groups

(1A-1E) that capture disease progression or patient outcomes. In addition, the non-cystic

kidney parenchyma (which may undergo microscopic cystogenesis) has been suggested as a

potential imaging biomarker. There is a need to investigate texture-based differences in the

non-cystic kidney parenchyma between genotypes and among risk-stratified groups because

features may quantify potential prognostic information. In addition, we examined how pre-

processing parameters affect radiomic features and subsequent performance in classifying

genotype and MIC groups.

Medical imaging is clinically indicated for ADPKD patients to monitor disease progres-

sion using htTKV. Delta radiomics was used to assess temporal imaging data to investigate

the additive power in prediction models of kidney function decline at 60-months follow-up.

Radiomic features of the non-cystic kidney parenchyma and the entire kidney were calculated
15



to determine whether texture features using machine learning provide additional informa-

tion regarding disease progression and prediction of patient prognosis. We hypothesize that

kidney texture features, that are extracted from longitudinal imaging studies, can accurately

predict disease progression.

Figure 1.4: Dissertation outline of aims.

Clinical utility of MRI radiomics is limited due to a lack of standardized pre-processing

steps prior to feature extraction. Specifically, T1W and T2W MR images require normal-

ization or intensity standardization because image units are arbitrary. Quantitative MRI,

specifically MRF, allows for direct quantitation of an image and provides absolute and re-

peatable measurements from tissues that are capable of characterizing underlying pathology.

We investigated radiomic features from MRF-acquired T1 and T2 maps that differentiate
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between healthy controls and children and young adults with ADPKD. This work advances

non-invasive imaging biomarkers for characterizing the non-cystic kidney parenchyma using

radiomic features, ultimately facilitating the identification of ADPKD children at high risk

for disease progression.

Aim 1 classified ADPKD genotype and quantified texture differences that have yet to be

shown in ADPKD radiomic studies. Aim 2 differentiated among risk-stratified MIC classes

(independent of genotype) and identified features associated with risk of ESKD. Aim 3

utilized temporal imaging data and delta radiomics to assess whether radiomic features from

24-month and 48-month timepoints provide additive power versus baseline texture alone

in predicting kidney function decline of patients with ADPKD. Aim 4 extracted features

from MRF-acquired T1 and T2 maps to investigate texture-based differences in healthy and

ADPKD cohorts.
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CHAPTER 2

MRI RADIOMICS ANALYSIS OF NON-CYSTIC KIDNEY

PARENCHYMA TO CLASSIFY PKD1 AND PKD2

GENOTYPES

2.1 Introduction

Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary

kidney disorder and is responsible for 10% of patients with end-stage kidney disease (ESKD)

under the age of 65 [1, 2]. ADPKD is predominantly due to mutations in two genes, PKD1

(85%) and PKD2 (15%). ADPKD results in gradual enlargement of the kidneys due to

cyst growth and enlargement over decades prior to decline in kidney function and kidney

failure. Increases in kidney size associate with loss of kidney function in ADPKD and height-

corrected total kidney volume (htTKV) is an imaging prognostic biomarker approved by the

U.S. Food and Drug Administration. Typically, PKD1 patients have greater htTKV than

PKD2 patients, and while PKD1 and PKD2 kidneys increase in size at the same rate, PKD1

patients have 40% more detectable kidney cysts [2]. These findings indicate that the rate of

cyst formation may account for the differences in htTKV observed between PKD genotypes.

This is consistent with the observation that PKD2 patients typically start dialysis 20 years

later and live 10 years longer than PKD1 patients. Understanding the nature of alterations

in the non-cystic parenchyma in PKD1 and PKD2 patients may help to understand genetic

differences in disease progression in ADPKD.

Radiomic features could capture textural alterations in the non-cystic compartments of

the kidney due to differences in cystogenesis or tissue response to injury and add value to

established kidney size differences. Although the power of radiomics enhances the under-

standing of a disease, the field lacks a standardized approach to extracting features. Imaging

and radiomics workflows involve image acquisition, reconstruction, segmentation, image pre-
18



processing, feature computation, and statistical modeling [39]. Image pre-processing is an

important part of the radiomics workflow to harmonize images before feature extraction

and includes operations such as image resizing, pixel resampling, gray-level discretization,

and filtering, which all have downstream effects on feature values [38, 57]. Qualitative MRI

sequences (e.g., T1-weighted and T2-weighted) require a normalization or signal intensity

standardization process for inter- and intra-patient radiomic comparisons due to arbitrary

signal intensities. In ADPKD imaging studies, T2-weighted fat saturated (T2W-FS) MR im-

ages are used due to their superior cyst-to-parenchyma contrast; however, previous ADPKD

radiomic studies differed in their pre-processing, specifically MR normalization and gray-

level discretization methods [52, 53, 54]. Disease-specific radiomic studies, such as brain and

prostate cancer, have investigated the effect of pre-processing on radiomic features; therefore,

this work explores the effect of pre-processing parameters on MRI radiomic features specific

to ADPKD.

The purpose of this work was two-fold: (1) to assess the impact of MRI pre-processing

on radiomic features and (2) to evaluate the ability of features extracted from the non-cystic

kidney parenchyma to classify PKD1 and PKD2 variants of ADPKD.

2.2 Methods

2.2.1 Databases for feature reproducibility and genotype classification

This work analyzed images that were obtained from two previously completed prospective

imaging studies: the Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease

(CRISP) study, a longitudinal study of cyst and kidney growth in a large cohort of patients

with ADPKD, and the HALT Progression of Polycystic Kidney Disease (HALTA-PKD)

randomized clinical trial (NCT00283686). T2W-FS MR images were acquired with the same

scanning protocol on 1.5T scanners using single-shot fast spin echo/half-Fourier acquisition
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single-shot turbo spin echo imaging (SSFSE/HASTE) with fat saturation and a 3-mm fixed

slice thickness. A single representative 2D MR images of the left and right kidney were

manually chosen based on the coronal MR image that maximized the longitudinal length for

each kidney individually.

The CRISP study was first used to evaluate the effect of pre-processing on radiomic

features. T2W-FS MR images from 15 subjects (7 with the PKD1 genotype and 8 with the

PKD2 genotype) were analyzed. The images had been acquired between 2001-2002 from a

single clinical site and were matched for age, sex, and htTKV. Image matrix sizes for all

CRISP images were 256x256 pixels, with pixel sizes ranging from 1.17-1.37 mm. Table 2.1

shows the subject characteristics of age, htTKV, and estimated glomerular filtration rate

(eGFR).

Table 2.1: Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease (CRISP)
PKD1 and PKD2 subject characteristics of age and height-corrected total kidney volume
(htTKV) with respect to Mayo Imaging Classification (MIC) class.

Clinical PKD1 PKD2

No. Patients 7 8

Mean age ±SD

Male (n=7) 23 ±7.79 27 ±6.80

Female (n=8) 25 ±9.42 24 ±7.76

Mean htTKV ±SD

MIC 1A (n=0) - -

MIC 1B (n=8) 358.12 ±55.94 283.28 ±67.45

MIC 1C (n=4) 274.71 ±2.34 358.23 ±74.86

MIC 1D (n=1) 320.09 -

MIC 1E (n=2) 451.74 428.29
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The HALTA-PKD randomized clinical trial was then subsequently used for genotype clas-

sification. A dataset of 136 age-, gender-, and Mayo Imaging Classification (MIC) matched

baseline MR images was analyzed [11]. Due to the low prevalence of PKD2 to PKD1, the

HALTA-PKD dataset had 68 PKD2 patients who had measured htTKV, baseline MR im-

ages, and the ability to match with 68 PKD1 patients for age, gender, and MIC. The MR

images had been acquired from 7 different sites between 2006-2009. All HALT MR image

matrix sizes ranged from 256x256-560x560 pixels, and pixel sizes ranged from 0.63-1.8 mm.

Table 2.2 shows the subject characteristics.

Table 2.2: HALT subject characteristics for classification. A p < 0.05 was significant using
Wilcoxon rank sum test. Asterisks indicate statistically significant differences.

Clinical PKD1 PKD2 p-value

No. Patients 68 68

Mean age ±SD

Male (n=64) 40 ±7.40 41 ±6.86 0.81

Female (n=72) 40 ±7.85 41 ±7.77 0.61

Mean htTKV ±SD

MIC 1A (n=10) 257.61 ±41.28 231.38 ±37.34 0.31

MIC 1B (n=60) 408.66 ±90.41 380.98 ±91.28 0.28

MIC 1C (n=48) 651.07 ±198.56 681.08 ±247.64 0.78

MIC 1D (n=14) 1075.01 ±258.18 1064.88 ±287.25 0.90

MIC 1E (n=4) 1453.34 ±22.68 1627.36 ±349.44 1.0

Mean eGFR ±SD 80.91±16.55 87.01 ±15.48 0.01*
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2.2.2 MR image pre-processing

For MRI pulse sequences with arbitrary signal intensities, normalization is employed to stan-

dardize images from different sites and scanners, mitigating large variations in signal inten-

sities. The image normalization methods chosen were (1) z-score method and (2) reference-

tissue normalization. Z-score normalization uses the mean and standard deviation of the

entire image to normalize signal intensities:

Xz−score =
Xi − µ

σ
, (2.1)

where the µ represents the mean pixel intensity of the entire image, σ represents the standard

deviation of pixel intensities of the entire image, Xi represents the pixel value of the pixel of

interest, and Xz−score is the corresponding normalized pixel value. Reference-tissue normal-

ization uses a healthy tissue to standardize the gray levels in an image. The reference-tissue

method chosen transformed a region of interest (ROI) mean and standard deviation ex-

tracted from the psoas muscle in each image to have a mean of 100 and a standard deviation

of 10:

Xreference−tissue =
Xi − µROI

σROI
, (2.2)

Xreference−tissue,transformed = (Xreference−tissue ∗ µROI,all) + σROI,all. (2.3)

Xreference−tissue is the z-score normalization of Xi, the pixel value of the pixel of interest,

using the mean pixel intensity of the psoas muscle, µROI , and the standard deviation of

the ROI, σROI . Xreference−tissue,transformed is the scaled and shifted pixel intensity of the

pixel of interest after transforming the ROI to have a mean, µROI,all, of 100 and standard
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deviation, σROI,all, of 10. Muscle is hypointense on T2-weighted MR images and has been

used in previous studies to standardize MR signal intensity [41, 58, 59]. The original images

were also used for feature extraction without any normalization applied.

All images were resized to 256x256 for feature extraction using nearest-neighbor inter-

polation. Additionally, pixel sizes were harmonized by up-sampling to 1.0x1.0 mm and

down-sampling to 2.0x2.0 mm using nearest-neighbor interpolation. According to the Imag-

ing Biomarker Standardization Initiative (IBSI), it is not known whether up-sampling or

down-sampling schemes are preferable [39].

3D Slicer, an open-source image-analysis software package, was used for segmentation

of the kidney and cysts [60]. Kidneys were segmented manually, and cysts were semi-

automatically segmented and removed from the resultant kidney segmentations to obtain

pixel intensities from the non-cystic kidney parenchyma.

2.2.3 Feature extraction

Pyradiomics [61] was used for feature extraction of the images. Features were extracted from

the non-cystic kidney parenchyma and the entire kidney parenchyma. Ninety-three features

were extracted per kidney: first-order (18), gray-level co-occurrence matrix (GLCM) (24),

gray-level run length matrix (GLRLM) (16), gray-level size zone matrix (GLSZM) (16),

neighboring gray-tone difference matrix (NGTDM) (5), and gray-level dependence matrix

(GLDM) (14). One of the discretization methods used in this work was fixed bin size (FBS)

as implemented in Pyradiomics [61]:

Xfbs,i = ⌊
Xgl,i

W
⌋ − ⌊

min(Xgl)

W
⌋+ 1 . (2.4)

Xgl,i and Xfbs,i are the gray level of voxel i before and after discretization, respectively,

with bins equally spaced from 0 and ⌊min(Xgl)
W ⌋ + 1 ensuring that the minimum gray level
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for feature extraction is always 1 after discretization. To analyze the impact of normalization

on radiomic features from images with different ranges of signal intensities, bin widths (W)

were calculated using mean signal intensity range of patient T2W-FS MR images:

W =
Rangemean

Nb
, (2.5)

where the Rangemean is the mean gray-level range across all patient MR images and Nb is

the number of gray levels or bins for feature calculation. The second discretization method

used was fixed bin number (FBN) as implemented in Pyradiomics [61]:

Xb,i =


⌊
Nb

(Xgl,i−min(Xgl))
max(Xgl)−min(Xgl)

⌋
+ 1 for Xgl,i < max(Xgl)

Nb for Xgl,i = max(Xgl)

. (2.6)

Nb is the number of bins used, Xgl,i is the gray level of the pixel of interest, and the maximum

and minimum Xgl is the maximum and minimum gray level of the pixels in the ROI. Xb,i is

the pixel value after discretization.

In this work six gray-level bins were analyzed for the non-cystic kidney parenchyma and

entire kidney: 8, 16, 32, 64, 128, and 256. A difference between Pyradiomics implementation

of FBS and IBSI is that Pyradiomics ensures that the minimum gray level starts at 1, while

IBSI starts at the minimum gray-level intensity in the ROI [39, 61]. Gray-level discretization

is used to suppress noise while retaining important biological variation in the ROI and

making the feature calculation time more efficient [39]. An accepted range in the literature

for the total number of bins for discretization is between 8-128, and this range is frequently

used in studies that have previously investigated the effect of gray-level discretization on

MRI radiomic feature repeatability and reproducibility in other disease cohorts [40, 62, 63].

Currently, there is no consensus on the best approach to discretizing gray levels of MR images

that have arbitrary signal intensities. For example, IBSI [39] suggests using the FBN method,
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but Pyradiomics [61] suggests normalizing MR images and using an FBS approach. FBN is

a relative discretizaton approach that normalizes gray levels to the maximum and minimum

of the ROI, and using this method on qualitative MR images to extract second-order texture

features without any normalization has been implemented in previous studies [40]. The

repeatability and reproducibility of radiomic features using FBN and FBS methods have

been investigated in other disease cohorts, with FBS producing more reproducible features

[63].

Figure 2.1 are example images of the original T2W-FS MR image, subsequent result of

applying the kidney mask to the original image, and finally the result of removing cysts

for feature extraction from the non-cystic kidney parenchyma. The pre-processing pipeline

presented in this chapter is shown in Figure 2.2.

Figure 2.1: From left to right: (a) representative MRI slice, (b) the result of kidney seg-
mentation, and (c) the result of cyst segmentation. These segmented regions were used for
feature extraction for a Mayo Imaging Classification (MIC) 1B PKD1 patient (top) and a
MIC 1B PKD2 patient (bottom).
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Figure 2.2: Established MRI pre-processing pipeline for investigation on radiomic feature
reproducibility and subsequent classification.

2.2.4 Feature reproducibility

To evaluate the reproducibility of features across normalization and gray levels for up-

sampling and down-sampling schemes, the intra-class correlation coefficient (ICC) was cal-

culated for each radiomic feature extracted from the images of the CRISP dataset. ICC

were calculated only on radiomic features using FBS discretization because FBN introduces

a normalization effect (based on the minimum and maximum pixel intensity of the ROI) in

its implementation, therefore the impact of normalization on the radiomic features would

not be captured using ICC. The ICC metric has been used in previous radiomics literature to

evaluate radiomic feature reproducibility based on test-retest, intrarater, and interrater anal-

yses [40, 64, 65]. This statistical metric combines information about the degree of correlation

and agreement between measurements. A two-way mixed effects, consistency, single-rater

model was used:

ICC =
MSR −MSE

MSR + (k − 1)MSE
, (2.7)

26



where MSR is the mean square for observations, MSE is the mean square for error, and k

represents the “raters of interest," which are the MR normalization methods used (z-score,

psoas muscle, and the original image). ICC can take values between 0 and 1, with values

closer to 1 representing stronger reproducibility; currently, there is no standard ICC value

for “acceptable" reproducibility of radiomic features, and this determination differs across

the radiomics literature. ICC values were calculated in MATLAB, and according to Koo

and Li [66], values less than 0.5 indicate poor reproducibility, 0.5-0.75 indicate moderate

reproducibility, 0.75-0.9 indicate good reproducibility, and greater than 0.9 indicate excellent

reproducibility [67]. In this work, good and excellent reproducibility were combined so that

ICC values on the range [0.75-1.0] were classified as good-excellent reproducibility.

2.2.5 Feature selection and classification

A logistic-regression classifier using 5-fold cross validation was utilized on the HALT dataset

only to classify genotype. For each training partition, the top-10 performing radiomic fea-

tures (Pearson correlation threshold of 0.7 with any other selected feature) from the 93 total

extracted features were determined using the area under the receiver operating characteris-

tic curve (AUC). This process used a repeated cross-validation (rCV) of 10 to account for

variance in 5-fold cross-validation.

2.3 Results

2.3.1 Reproducibility of radiomic features across pre-processing

Figure 2.3 shows the variability of ICC scores of CRISP-derived radiomic features across

normalizations and gray-level discretization using FBS discretization for both up-sampling

and down-sampling schemes. As the bin counts increase (smaller bin widths and an in-

crease in gray levels for feature computation), feature reproducibility across normalizations
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also increases. Up-sampling and down-sampling methods under 64 bins yielded poor repro-

ducibility for over 50% of the total features calculated. For both resampling methods, the

largest increase in the number of features with good-excellent reproducibility was over 20%

from 32 gray levels to 64 gray levels. Table 2.3 shows the mean ICC values across feature

families; an increase in reproducibility is shown with increasing gray levels, the highest being

features calculated with 256 gray levels. Increasing the gray levels of the ROI resulted in

larger mean ICC values across feature families except for first-order features.

Figure 2.3: Intra-class correlation coefficient (ICC) scores for radiomic features (poor, mod-
erate, good-excellent) across MRI normalizations. Radiomic features extracted from the
non-cystic kidney parenchyma were sensitive to pre-processing parameters, with varying re-
producibility depending on the parameter. The percentage of features with good-to-excellent
ICC scores ranged from 14%-58%, increasing as the number of gray levels available for feature
extraction increased.
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Table 2.3: Mean intra-class correlation coefficient (ICC) scores for radiomic features across
feature families using up-sampling and down-sampling methods.

Number of Gray Levels
8 16 32 64 128 256

1.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0

First-order (n=18) 0.33 0.33 0.33 0.33 0.33 0.33 0.36 0.36 0.38 0.38 0.38 0.38

GLCM (n=24) 0.60 0.61 0.62 0.61 0.62 0.60 0.65 0.63 0.72 0.72 0.77 0.76

GLDM (n=14) 0.55 0.59 0.58 0.59 0.65 0.64 0.76 0.75 0.84 0.84 0.86 0.85

GLRLM (n=16) 0.58 0.60 0.56 0.56 0.63 0.60 0.78 0.75 0.85 0.84 0.87 0.86

GLSZM (n=16) 0.56 0.56 0.50 0.58 0.66 0.60 0.77 0.74 0.85 0.85 0.87 0.87

NGTDM (n=5) 0.54 0.58 0.56 0.58 0.55 0.54 0.60 0.62 0.76 0.77 0.80 0.81

There were 7 features that exhibited good-excellent (ICC > 0.75) reproducibility across

all gray levels, up-sampling and down-sampling schemes, and MRI normalization: first-order

skewness and kurtosis, GLCM inverse difference matrix normalized (IDMN) and inverse

difference normalized (IDN), GLDM dependence non-uniformity, GLSZM gray-level non

uniformity, and NGTDM coarseness. Two features, GLCM maximum correlation coefficient

(MCC) and GLSZM small area emphasis, were reproducible across all gray levels for up-

sampling only.

Figure 2.4 contains the ICC values that were observed using pair-wise comparisons of

MRI normalization. ICC values of radiomic features using z-score normalization and psoas

muscle normalization had larger percentages of features with poor reproducibility, ranging

from 32%-68%, versus original and z-score, 15%-42%, and the original image and psoas

muscle normalization, 19%-41%. A similar trend for all pair-wise comparisons in Table

2.3 was that increasing the number of gray levels increased the percentage of features with

good-excellent reproducibility across normalization pair-wise comparisons. In general, there

were a larger percentage of radiomic features with poor ICC values when comparing between

normalization methods more so than comparing the original image and normalization method

(z-score and psoas muscle normalization), suggesting that the original signal intensities are
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greatly impacted depending on the normalization method used and that different methods

may result in varying signal intensities that impact downstream feature extraction.

Figure 2.4: Percentage (%) of total radiomic features for pairwise comparisons of MRI
normalizations and radiomic reproducibility categorized as poor, moderate, and good-to-
excellent.

2.3.2 PKD1 vs. PKD2 classification using radiomic features

Figure 2.5 shows the MRI signal intensity range for all patient data after normalization and

downsampling of pixel size; the non-cystic kidney parenchyma has a lower range of signal

intensity than the entire kidney parenchyma due to the exclusion of cysts.
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Figure 2.5: Box and whisker plot of the MRI signal intensity range in arbitrary units (a.u.)
across HALTA-PKD images for all patient data and normalization methods after down-
sampling. Images obtained were from 7 different sites. The box represents the interquartile
range, with the central line indicating the median value; the whiskers extend to the minimum
and maximum values, while outliers are represented as individual data points.

Tables 2.4-2.5 show the AUC values across pre-processing parameters using the original

image, z-score normalization, and psoas muscle normalization using features extracted from

the non-cystic kidney parenchyma. The range of AUC values was between 0.47-0.68. Across

normalizations, the range of AUC values for the original image, z-score normalization, and

psoas muscle normalization were 0.50-0.62, 0.47-0.68, and 0.50-0.61, respectively. Across

normalizations, FBS discretization, and up-sampling only, the range of AUC values for the

original image, z-score normalization, and psoas muscle normalization were 0.51-0.58, 0.47-

0.55, and 0.51-0.59, respectively; the range of AUC values for the down-sampling method
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for the original image, z-score normalization, and psoas muscle normalization were 0.55-0.62,

0.56-0.68, and 0.56-0.61, respectively. Across normalizations, FBN discretization, and up-

sampling only, the range of AUC values for the original image, z-score normalization, and

psoas muscle normalization were 0.52-0.61, 0.51-0.58, and 0.50-0.60, respectively; the range

of AUC values for the down-sampling method for the original image, z-score normalization,

and psoas muscle normalization were 0.50-0.58, 0.53-0.59, and 0.53-0.59, respectively.

Table 2.6-2.7 shows the AUC values across pre-processing parameters using the original

image, z-score normalization, and psoas muscle normalization using features extracted from

the entire kidney parenchyma. The range of AUC values was between 0.56-0.73. Across

normalizations, the range of AUC values for the original image, z-score normalization, and

psoas muscle normalization were 0.56-0.68, 0.57-0.68, and 0.57-0.73, respectively. Across

normalizations, FBS discretization, and up-sampling only, the range of AUC values for the

original image, z-score normalization, and psoas muscle normalization were 0.58-0.63, 0.58-

0.68, and 0.68-0.73, respectively; the range of AUC values for the down-sampling method

for the original image, z-score normalization, and psoas muscle normalization were 0.56-0.62,

0.58-0.64, and 0.65-0.70, respectively. Across normalizations, FBN discretization, and up-

sampling only, the range of AUC values for the original image, z-score normalization, and

psoas muscle normalization were 0.57-0.68, 0.57-0.68, and 0.57-0.68, respectively; the range

of AUC values for the down-sampling method for the original image, z-score normalization,

and psoas muscle normalization were 0.61-0.64, 0.61-0.65, and 0.61-0.65, respectively.
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Table 2.4: Area under the receiver operating characteristic curve (AUC) along with the 95%
confidence interval (CI) of AUC for features extracted from the non-cystic kidney parenchyma
using fixed bin size (FBS) discretization.

Number of Gray Levels

Normalization 8 16 32 64 128 256

Original

1.0x1.0 0.52

[0.49,0.55]

0.58

[0.54,0.61]

0.55

[0.51,0.58]

0.51

[0.48,0.54]

0.54

[0.51,0.56]

0.54

[0.51,0.55]

2.0x2.0 0.62

[0.59,0.65]

0.60

[0.57,0.63]

0.55

[0.52,0.58]

0.57

[0.54,0.60]

0.58

[0.55,0.61]

0.55

[0.52,0.58]

Psoas

1.0x1.0 0.59

[0.56,0.62]

0.57

[0.54,0.60]

0.53

[0.50,0.56]

0.52

[0.49,0.55]

0.55

[0.52,0.58]

0.51

[0.48,0.54]

2.0x2.0 0.60

[0.57,0.63]

0.56

[0.52,0.59]

0.61

[0.58,0.64]

0.60

[0.57,0.63]

0.58

[0.56,0.61]

0.58

[0.55,0.61]

Z-score

1.0x1.0 0.54

[0.51,0.57]

0.55

[0.52,0.58]

0.53

[0.50,0.56]

0.47

[0.44,0.50]

0.50

[0.47,0.53]

0.49

[0.46,0.52]

2.0x2.0 0.57

[0.54,0.60]

0.56

[0.53,0.59]

0.61

[0.58,0.64]

0.68

[0.65,0.71]

0.65

[0.62,0.68]

0.56

[0.53,0.60]
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Figure 2.6: Area under the receiver operating characteristic curve (AUC) values in classifying
genotype using radiomic features extracted from the non-cystic kidney parenchyma using
fixed bin size (FBS) discretization. The dotted line at an AUC of 0.5 is random guessing.
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Table 2.5: Area under the receiver operating characteristic curve (AUC) along with the 95%
confidence interval (CI) of AUC for features extracted from the non-cystic kidney parenchyma
using fixed bin number (FBN) discretization.

Number of Gray Levels

Normalization 8 16 32 64 128 256

Original

1.0x1.0 0.61

[0.58,0.63]

0.58

[0.55,0.61]

0.53

[0.50,0.56]

0.57

[0.54,0.60]

0.54

[0.51,0.57]

0.52

[0.49,0.55]

2.0x2.0 0.54

[0.51,0.57]

0.55

[0.52,0.58]

0.54

[0.50,0.57]

0.58

[0.55,0.61]

0.50

[0.47,0.53]

0.53

[0.50,0.56]

Psoas

1.0x1.0 0.60

[0.57,0.63]

0.54

[0.51,0.57]

0.52

[0.49,0.55]

0.57

[0.54,0.60]

0.55

[0.52,0.58]

0.50

[0.47,0.53]

2.0x2.0 0.53

[0.49,0.56]

0.53

[0.51,0.57]

0.57

[0.54,0.60]

0.57

[0.54,0.60]

0.57

[0.54,0.60]

0.59

[0.56,0.62]

Z-score

1.0x1.0 0.58

[0.55,0.61]

0.55

[0.52,0.58]

0.51

[0.47,0.54]

0.57

[0.54,0.60]

0.56

[0.53,0.59]

0.52

[0.48,0.54]

2.0x2.0 0.56

[0.53,0.60]

0.58

[0.54,0.61]

0.58

[0.55,0.61]

0.59

[0.56,0.62]

0.53

[0.51,0.57]

0.55

[0.52,0.58]
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Figure 2.7: Area under the receiver operating characteristic curve (AUC) values in classifying
genotype using radiomic features extracted from the non-cystic kidney parenchyma using
fixed bin number (FBN) discretization. The dotted line at an AUC of 0.5 is random guessing.
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Table 2.6: Area under the receiver operating characteristic curve (AUC) along with the 95%
confidence interval (CI) of AUC for features extracted from the entire kidney parenchyma
using fixed bin size (FBS) discretization.

Number of Gray Levels

Normalization 8 16 32 64 128 256

Original

1.0x1.0 0.63

[0.60,0.66]

0.61

[0.58,0.64]

0.60

[0.57,0.63]

0.58

[0.55,0.61]

0.58

[0.55,0.61]

0.59

[0.56,0.62]

2.0x2.0 0.62

[0.59,0.64]

0.62

[0.59,0.65]

0.56

[0.53,0.59]

0.58

[0.55,0.61]

0.57

[0.54,0.60]

0.58

[0.54,0.61]

Psoas

1.0x1.0 0.73

[0.70,0.76]

0.70

[0.67,0.72]

0.68

[0.65,0.70]

0.71

[0.68,0.74]

0.71

[0.68,0.73]

0.69

[0.66,0.72]

2.0x2.0 0.70

[0.68,0.73]

0.65

[0.62,0.68]

0.70

[0.67,0.73]

0.67

[0.64,0.70]

0.67

[0.64,0.69]

0.65

[0.62,0.68]

Z-score

1.0x1.0 0.68

[0.65,0.70]

0.65

[0.62,0.67]

0.58

[0.55,0.61]

0.63

[0.60,0.66]

0.66

[0.63,0.69]

0.65

[0.62,0.68]

2.0x2.0 0.62

[0.59,0.65]

0.64

[0.61,0.67]

0.59

[0.56,0.63]

0.61

[0.58,0.64]

0.62

[0.59,0.65]

0.58

[0.55,0.61]
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Figure 2.8: Area under the receiver operating characteristic curve (AUC) values in classifying
genotype using radiomic features extracted from the entire kidney using fixed bin size (FBS)
discretization. The dotted line at an AUC of 0.5 is random guessing.
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Table 2.7: Area under the receiver operating characteristic curve (AUC) along with the 95%
confidence interval (CI) of AUC for features extracted from the entire kidney parenchyma
using fixed bin number (FBN) discretization.

Number of Gray Levels

Normalization 8 16 32 64 128 256

Original

1.0x1.0 0.68

[0.65,0.71]

0.66

[0.63,0.69]

0.57

[0.54,0.60]

0.60

[0.57,0.63]

0.62

[0.59,0.65]

0.63

[0.61,0.66]

2.0x2.0 0.64

[0.60,0.66]

0.62

[0.59,0.64]

0.62

[0.59,0.65]

0.61

[0.58,0.64]

0.61

[0.58,0.64]

0.62

[0.58,0.65]

Psoas

1.0x1.0 0.68

[0.65,0.71]

0.66

[0.63,0.69]

0.57

[0.54,0.60]

0.62

[0.59,0.65]

0.61

[0.58,0.64]

0.68

[0.65,0.71]

2.0x2.0 0.64

[0.62,0.67]

0.62

[0.59,0.65]

0.64

[0.61,0.67]

0.61

[0.58,0.65]

0.65

[0.61,0.67]

0.65

[0.62,0.67]

Z-score

1.0x1.0 0.68

[0.65,0.71]

0.65

[0.62,0.68]

0.57

[0.54,0.60]

0.61

[0.58,0.64]

0.62

[0.59,0.65]

0.65

[0.61,0.67]

2.0x2.0 0.65

[0.62,0.68]

0.62

[0.59,0.64]

0.63

[0.61,0.66]

0.62

[0.58,0.65]

0.63

[0.60,0.66]

0.61

[0.58,0.64]
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Figure 2.9: Area under the receiver operating characteristic curve (AUC) values in classifying
genotype using radiomic features extracted from the entire kidney using fixed bin number
(FBN) discretization. The dotted line at an AUC of 0.5 is random guessing.

The top-performing radiomic features selected across training partitions of the 5-fold rCV

in the non-cystic kidney parenchyma and the entire kidney classification were explored of

a representative pre-processing parameter (Table 2.8); z-score normalization, pixel resam-

pling to 2.0x2.0 mm, and FBS discretization using 64 gray levels was the representative

pre-processing method chosen for the non-cystic kidney parenchyma, and psoas muscle nor-

malization, pixel resampling to 1.0x1.0 mm, and FBS discretization using 64 gray levels was
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Table 2.8: The radiomic features chosen in the training phase for any partition in the 5-fold
repeated cross-validation (rCV). For the non-cystic kidney parenchyma, the representative
pre-processing parameters of z-score normalization, pixel resampling to 2.0x2.0 mm, and
fixed bin size (FBS) discretization using 64 gray levels was employed. For the entire kidney,
the representative pre-processing parameters of psoas muscle normalization, pixel resampling
to 1.0x1.0 mm, and FBS discretization using 64 gray levels was employed.

Radiomic features Entire kidney (n=17) Union (n=20) Non-cystic kidney
(n=16)

First-order Robust Mean Absolute
Deviation

Energy, Interquartile
Range, Kurtosis, Me-
dian, Minimum

10th Percentile, 90th
Percentile, Maximum,
Skewness, Total Energy,
Uniformity

GLCM Inverse Difference,
Inverse Difference Mo-
ment, Inverse Variance

Cluster Prominence,
Cluster Shade, Inverse
Difference Moment
Normalized, Inverse
Difference Normalized,
Maximal Correlation
Coefficient, Maxi-
mum Probability, Sum
Squares

Informational Measure
of Correlation 1, Infor-
mational Measure of
Correlation 2

GLSZM Large Area High Gray-
Level Emphasis, Small
Area High Gray-Level
Emphasis, Zone En-
tropy, Zone Percentage,
Zone Variance

Gray-Level Non-
Uniformity, Low
Gray-Level Zone
Emphasis, Size-Zone
Non-Uniformity, Small
Area Low Gray-Level
Emphasis

Large Area Low Gray-
Level Emphasis, Size
Zone Non-Uniformity
Normalized, Small Area
Emphasis

GLRLM Run Length Non-
Uniformity, Run Per-
centage

NGTDM Coarseness, Strength Busyness Complexity, Contrast

GLDM Dependence Non-
Uniformity Normal-
ized, Gray-Level Non-
Uniformity, Small
Dependence Emphasis,
Small Dependence High
Gray-Level Emphasis

Dependence Entropy,
Dependence Non-
Uniformity, Large
Dependence Low Gray-
Level Emphasis

Large Dependence High
Gray-Level Emphasis,
Low Gray-Level Empha-
sis, Small Dependence
Low Gray-Level Empha-
sis
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the representative pre-processing method chosen for features from the entire kidney. For

feature extraction and classification from the non-cystic kidney parenchyma, there was a

total of 36 features selected in the training partitions of the rCV; from the entire kidney,

there was a total of 37 features selected in the training partitions of the rCV. There were 20

radiomic features that were used in both classification schemes, features from the non-cystic

kidney parenchyma and entire kidney, and those are found in the Union column of Table

2.8.

2.3.3 PKD1 vs. PKD2 using clinical and radiomic features

Since the cohorts were matched for age-, gender-, and MIC class, eGFR was explored as a

standalone clinical feature for classification of genotype. Between the cohorts, there was a

statistically significant difference with respect to eGFR, a measure of kidney function (Figure

2.10); the mean (standard deviation) of PKD1 was 80.91 (16.55) and PKD2 was 87.01

(15.48), showing PKD2 having a higher, preserved kidney function. Figure 2.11 shows the

calculated Pearson correlation coefficient between eGFR and htTKV for PKD1 and PKD2,

with PKD2 having a more negative correlation coefficient between eGFR and htTKV. When

using eGFR as a standalone feature for genotype classification, the AUC was 0.61, compared

to the highest AUC value using radiomic features of the non-cystic kidney parenchyma,

0.68, and the entire kidney parenchyma, 0.73. Combining eGFR with radiomics, the AUC

performance using radiomic features extracted from the entire kidney was 0.74 and 0.69

using radiomic features extracted from the non-cystic kidney parenchyma, both resulting in

minimally higher performance than radiomics alone.
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Table 2.9: Area under the receiver operating characteristic curve (AUC) along with the
95% confidence interval (CI) of AUC for genotype classification using estimated glomerular
filtration rate (eGFR), radiomic features, and combined clinical-radiomics model.

Features AUC [95% CI]

eGFR 0.61 [0.58, 0.64]

Radiomics model

Entire kidney 0.73 [0.70,0.76]

Non-cystic kidney 0.68 [0.65,0.71]

Clinical and radiomics model

Entire kidney+eGFR 0.74 [0.71,0.76]

Non-cystic kidney+eGFR 0.69 [0.67,0.72]

Figure 2.10: Box and whisker plot of PKD1 and PKD2 estimated glomerular filtration rate
(eGFR) values, showing a statistically significant difference using the Wilcoxon rank sum
test (p<0.05) [68]. The median eGFR [min eGFR, max eGFR] of PKD1 and PKD2 was
81.22 [37.01, 141.8] and 85.23 [57.85, 134.3], respectively. The box represents the interquartile
range, with the central line indicating the median value; the whiskers extend to the minimum
and maximum values, while outliers are represented as individual data points.
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Figure 2.11: Scatter plot showing the relationship between estimated glomerular filtration
rate (eGFR) and height-corrected total kidney volume (htTKV) for PKD1 (shown in red)
and PKD2 (shown in blue). Additionally, linear regression lines representing the Pearson
correlation coefficient (r) between eGFR and htTKV are plotted separately for PKD1 (red)
and PKD2 (blue).
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Figure 2.12: Fitted proper binormal receiver operating characteristic (ROC) curves for
genotype classification using eGFR, radiomics, and combined clinical-radiomics models using
radiomic features from the entire kidney or non-cystic kidney parenchyma. The legend
gives the area under the receiver operating characteristic curve (AUC) along with the 95%
confidence interval (CI) of AUC for each classifier.

2.4 Discussion

This work examined pre-processing of MR images and its effect on the reproducibility of

radiomic features extracted from the non-cystic kidney parenchyma from patients with

ADPKD. The ability of these radiomic features to classify patients with PKD1 or PKD2

genetic mutations was explored using both the non-cystic kidney parenchyma and the entire

kidney. The percentage of radiomic features extracted with good-to-excellent feature repro-

45



ducibility ranged from 17-58% and 15-58% across the number of gray levels used for feature

calculation for up-sampling and down-sampling, respectively. In examining the classification

performance of patients with either the PKD1 or PKD2 genetic variant across MR nor-

malizations and pre-processing parameters, the AUC values ranged between 0.47-0.68 and

0.56-0.73 for the non-cystic kidney parenchyma and entire kidney, respectively.

This study is the first to examine the non-cystic kidney parenchyma in MR images of

ADPKD patients. Xie et al. [55] recently used radiomic features extracted from the re-

nal parenchyma volume (RPV) on computed tomography (CT) to predict kidney function

decline. The results of this study showed improved predictive power using texture features

rather than TKV or RPV alone, suggesting that the non-cystic kidney parenchyma has prog-

nostic power of future kidney function decline in ADPKD [55]. In the work presented in this

chapter, two image normalization methods, z-score normalization and reference-tissue nor-

malization using the psoas muscle, and the original image were chosen for feature extraction

across different gray-level discretization and pixel resampling schemes. In the MRI ADPKD

radiomics literature, pre-processing parameters are either heterogeneous or not defined, and

the effect of pre-processing parameters on radiomic features extracted from the non-cystic

kidney parenchyma has not been appreciated.

There was an overall trend of increasing mean ICC scores for first-order, GLCM, GLDM,

GLRLM, GLSZM, and NGTDM features, and the percentage of total features with good-to-

excellent feature reproducibility when the number of gray levels was increased in the ROI. In

decreasing the number of gray levels for feature extraction, the impact of normalization on

the inherent pixel information was evident, showing that the chosen normalization method

dramatically affects the original pixel intensity information and downstream feature calcula-

tion for all feature families. A pair-wise comparison of z-score and psoas muscle normalization

obtained poor radiomic feature reproducibility for more than 50% of the radiomic features

using 32 gray levels or fewer; the lowest percentage of radiomic features with poor repro-
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ducibility obtained was 32% when discretizing the non-cystic kidney parenchyma gray levels

to 256. Carré et al. [40] investigated the impact of the MR normalization method and gray-

level discretization on radiomic feature stability from post-contrast 3D axial T1-weighted

and axial T2-weighted fluid attenuation inversion recovery images 1 month apart and found

that a higher number of bins was associated with a higher number of robust features for

both sequences. In the present study, among the 93 features extracted across gray levels

and resampling schemes there were 7 features that exhibited good-excellent feature ICC

scores; the up-sampling scheme resulted in 2 additional features, for a total of 9 features,

that exhibited good-to-excellent reproducibility. Among these features, GLSZM gray-level

non-uniformity and NGTDM coarseness have been identified in previous radiomics studies

as being correlated with ROI size or voxel number [59, 69]. The effect of pre-processing on

radiomic features from qualitative MR images has been investigated in the application of

brain and prostate diseases [40, 59, 63, 70, 71]. Conclusions from these studies differ with

respect to optimal pre-processing parameters, showing the unique parameters for a given

task, body site, and MR sequence. For example, in the task of brain cancer assessment,

radiomics studies have used z-score normalization of MR images and discretizing to 32 gray

levels when using FBS discretization and first- and second-order radiomic features, while

prostate cancer radiomics literature has used between 36-42 gray levels with FBS discretiza-

tion and z-score normalization, histogram matching, or reference-tissue normalization [40,

71]. The results of this study show that radiomics features extracted from the non-cystic

kidney parenchyma using different MR normalization and gray levels for discretization has

an effect on radiomic feature reproducibility. These results add to the literature in other

disease cohorts investigating the effect of MR pre-processing on radiomic features.

Extending these pre-processing parameters to a multi-site data set for the clinical task of

genotype classification, the highest AUC values across the number of gray levels for discretiza-

tion were 0.68, 0.61, and 0.62 for z-score normalization, psoas muscle normalization, and the
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original image, respectively, for features extracted from the non-cystic kidney parenchyma.

In addition to the non-cystic kidney parenchyma, the entire kidney was also used for feature

extraction. Among the pre-processing parameters, the highest AUC values were 0.68, 0.73,

and 0.63 for z-score normalization, psoas muscle normalization, and the original image, re-

spectively, for features extracted from the entire kidney parenchyma. Table 2.5 shows the

effect of normalization on the signal range across patients. The non-cystic kidney parenchyma

has an overall lower range of signal intensities compared with the entire kidney including

the cysts, which tend to be of higher signal intensity and, therefore, with a larger range of

values for discretization. Normalization of the MR images tended to improve AUC values

using non-cystic kidney parenchyma and entire kidney radiomic features for classification.

Z-score normalization uses the mean and standard deviation of the entire image and includes

signal intensities from cysts, while psoas muscle normalization used the mean and standard

deviation of the psoas-muscle that is hypointense in T2W-FS images. Z-score normaliza-

tion using the downsampling method and 64 gray levels for discretization resulted in the

highest AUC value for classification using features from the non-cystic kidney parenchyma.

When including textural information from cysts, the psoas muscle normalization resulted

in the highest AUC values across gray levels and pixel resampling methods. There was

not one pre-processing method that optimized the classification performance using the non-

cystic kidney parenchyma and the entire kidney. The AUC performance across radiomic

models and combined clinical-radiomic models using eGFR and features extracted from the

non-cystic kidney parenchyma and the entire kidney were between 0.68-0.74; the AUC in

classifying genotype using eGFR alone was 0.61, showing moderate increase in performance

and the added potential of texture features in capturing differences in genotype beyond a

traditional clinical measurement.

This study has a few limitations. With respect to pre-processing, there are additional

normalization methods such as histogram-matching and gray-level discretization methods.
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The results from this study raise an important trade-off in radiomics research of optimal

pre-processing parameters for a given task and the effect on feature reproducibility across

pre-processing parameters, as optimizing the pre-processing parameters to obtain the highest

feature reproducibility does not necessarily lead to the best classification.

With respect to the patient data investigated, the impact of mutation type either in

functional domains or in mutation strength was not taken into account in this analysis when

matching for age, gender, and MIC class. PKD1 patient outcomes differ for truncating

and non-truncating mutations, and this variability may impact genotype classification [13].

With respect to patient data, the number of available patients using the HALT dataset was

limited as the prevalence of PKD2 is lower than that of PKD1. The number of PKD2

subjects available to study was small, and a larger sample size would potentially confirm

texture differences with greater precision. In controlling for htTKV, this allowed for minimal

differences in cyst burden between PKD1 and PKD2 to impact the results. However, the

purpose here was to evaluate regions of the kidney without the influence of differences in cyst

burden. This study provided preliminary information about the potential impact of finding

textural changes that associate with genotype in ADPKD.

Future work will include incorporating more image slices, as this study included one

largest, representative, coronal slice of the kidney for analysis. Removing the cysts from

the kidney is a tedious process and would benefit from an automated approach. Recent

work has utilized semantic instance segmentation to segment kidneys and cysts within the

kidney, which may prove useful in providing a fast calculation of entire kidney and non-

cystic kidney parenchyma texture [72]. Utilizing multi-slice MR texture data of ADPKD

kidneys may provide more information of kidney texture rather than a single imaging slice.

Additionally, other MR imaging sequences such as T1-weighted, diffusion-weighted imaging,

and quantitative maps could be used to analyze textural differences in ADPKD genotype

with respect to mutation type and strength. Retrospective ADPKD MR datasets provide a
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wealth of imaging data to explore the use of radiomic features and provide valuable insight in

the prediction of future kidney function decline, texture differences in genetic mutation, and

assessing the longitudinal change in texture over time. However, this work emphasizes the

need for ADPKD radiomics studies to state the pre-processing parameters used for feature

extraction as they may have a dramatic effect on subsequent classification.

2.5 Conclusion

This study investigated the impact of pre-processing on radiomic features extracted from the

non-cystic kidney parenchyma on T2W-FS MR images of patients with ADPKD. Radiomic

features extracted from the non-cystic kidney parenchyma were sensitive to MRI normaliza-

tion, and the results show that feature reproducibility across MRI normalization is dependent

on the number of gray levels available for discretization. Classification performance in dis-

tinguishing PKD1 and PKD2 varied with respect to the pre-processing parameters. This

work revealed that there are texture features indicative of genotype expression in ADPKD

in both the non-cystic and entire kidney parenchyma regions. Additionally, there were pre-

ferred pre-processing parameters when using features extracted from the non-cystic kidney

parenchyma compared with those from the entire kidney, and there was not one method

that optimized features extracted from either region. The results of this study show the im-

portance of reporting pre-processing parameters used for feature extraction, as these affect

subsequent classification of ADPKD genotype.
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CHAPTER 3

MRI RADIOMICS ANALYSIS OF NON-CYSTIC KIDNEY

PARENCHYMA TO DIFFERENTIATE AMONG MAYO

IMAGING CLASSIFICATION CLASSES

3.1 Introduction

Mayo Imaging Classification (MIC) provides an estimate of annual growth rate of height-

corrected total kidney volume (htTKV) and serves as a prognostic biomarker for the pre-

diction of kidney function decline of patients with autosomal dominant polycystic kidney

disease (ADPKD) [11, 73]. MIC is currently the best prediction model for selecting rapid

progressors of patients with ADPKD and is used for patient enrollment into clinical trials.

The rate of increase in htTKV provided by MIC is also used to predict the time to end-stage

kidney disease (ESKD) or decline in estimated glomerular filtration rate (eGFR). Patients

with low/intermediate MIC classes have extended, preserved kidney function compared with

high MIC classes, which demonstrate steeper rates of kidney function decline [13]. The es-

timated yearly kidney growth rate for each class is <1.5% (1A), 1.5%–3% (1B), 3%–4.5%

(1C), 4.5%–6% (1D), or >6% (1E) [11]. Patients in the 1C-1E MIC classes have rapidly

progressing disease and are deemed most likely to benefit from therapy [11]; MIC 1A is con-

sidered to be low risk for kidney function decline, while MIC 1B patients are intermediate

risk and should be re-evaluated yearly for a more accurate risk of progression [11]. Lavu

et al. [13] found onset of ESKD at 45.1 years (1E), 55.6 years (1D), 62.8 years (1C), and

71.2 (1B) years across MIC classes 1B-1E, and less than 20% of MIC 1A patients reaching

ESKD. While MIC is a strong predictor for kidney function decline, there remains a need

to identify biomarkers that can quantify ADPKD-related kidney tissue damage at earlier

stages, thereby enhancing disease prognostication [14].
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Radiomic features may provide additional power in stratifying patients with ADPKD

early on providing power in risk-assessment models to identify those patients that are fast

progressors to kidney function decline, ultimately leading to ESKD. Specifically, character-

izing the non-cystic kidney tissue using radiomic features may associate and differentiate

among MIC classes.

Therefore, the work presented in this chapter was two-fold: (1) to determine whether

radiomic features can differentiate between low/intermediate- and high-risk MIC classes in

both the cystic and non-cystic components of the kidney and (2) investigate the effect of

pre-processing on subsequent classification.

Figure 3.1: Coronal MR images of the kidneys of an 18-year-old Mayo Imaging Classification
(MIC) class 1A patient (top left), 34-year-old MIC class 1B patient (top right), 17-year-old
MIC class 1C patient (bottom left), 23-year-old MIC class 1D patient (bottom center), and
43-year-old MIC class 1E patient (bottom right). MIC classes (based on age and height-
corrected total kidney volume (htTKV)) range from low risk (1A) to high risk (1E) for
kidney function decline.
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3.2 Methods

3.2.1 Database

T2-weighted fat saturated (T2W-FS) MRI images in this study had been acquired at base-

line from a longitudinal, multi-site randomized clinical trial, HALT Progression of Polycystic

Kidney Disease (HALTA-PKD) (NCT00283686). The cohort included 138 MIC 1A/1B pa-

tients and 324 MIC 1C/1D/1E patients for a total of 462 patients. Table 3.1 includes

patient demographic characteristics with respect to gender, age, and average htTKV of the

low/intermediate- and high-risk groups, and is differentiated by genetic mutation: PKD1,

PKD2, and no mutation detected (NMD).

Table 3.1: HALT subject characteristics for the differentiation among Mayo Imaging Classi-
fication (MIC) 1A-1E.

Clinical PKD1 PKD2 NMD

No. Patients 329 72 61

Mean age ±SD

Male (n=230) 35 ±7.34 (n=167) 40 ±7.84 (n=34) 35 ±8.76 (n=29)

Female (n=232) 36 ±8.51 (n=162) 40 ±7.91 (n=38) 37 ±8.94 (n=32)

Mean htTKV ±SD

MIC 1A (n=27) 235.07 ±40.29 (n=9) 220.02 ±34.58 (n=9) 237.18 ±44.38 (n=9)

MIC 1B (n=111) 400.28 ±97.28 (n=69) 380.98 ±91.28 (n=30) 378.20 ±138.72 (n=12)

MIC 1C (n=160) 587.57 ±167.79 (n=119) 659.54 ±229.07 (n=23) 586.59 ±166.01 (n=18)

MIC 1D (n=107) 909.41 ±316.91 (n=89) 1146.24 ±351.69 (n=8) 869.40 ±335.40 (n=10)

MIC 1E (n=57) 1218.37 ±468.70 (n=43) 1627.36 ±349.44 (n=2) 1174.01 ±509.60 (n=12)

T2W-FS MR images were acquired on 1.5T scanners using single-shot fast spin echo/half-

Fourier acquisition (SSFSE/HASTE) with fat saturation and a 3-mm fixed slice thickness.

All HALT MR image matrix sizes ranged from 256x256-560x560 pixels, and pixel sizes ranged

from 0.59-1.8 mm. Representative 2D MR images of the left and right kidney were chosen
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based on the coronal MR image that maximized the longitudinal length for each kidney

individually.

3.2.2 U-Net for segmentation

U-Net is a deep convolutional neural network (CNN) that is used for the task of segmenting

medical images with limited training images [74]. The U-Net architecture developed by

Ronneberger et al. [74] gets its name due to the u-shaped contracting path (capturing

context) and symmetric expanding path (precise localization) (Figure 3.2). The contracting

path captures image context using high-resolution feature maps and consists of repeated

convolutions, rectified linear unit (ReLU), and max pooling operations. The expanding

path consists of up-sampling, up-convolutions, concatenations (with the contracting path’s

corresponding cropped feature map), and ReLU operations that all work to combine image

context from the feature maps and spatial information for a localization of the predicted

pixel class label as either object or background.

Figure 3.2: U-net architecture (example for 32x32 pixels in the lowest resolution). Each
blue box corresponds to a multi-channel feature map. The number of channels is denoted
on top of the box. The x-y size is provided at the lower left edge of the box. White boxes
represent copied feature maps. The arrows denote the different operations. Reprinted from
Ronnebeger, et al. [74].
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The 2D U-Net implemented a 75% train, 10% validation, and 15% test scheme, by patient,

on a total of 227 left kidney and 226 right kidney manual segmentations of both kidney

and non-cystic kidney parenchyma (using one representative, largest coronal image slice

per kidney, per patient) from the HALTA-PKD dataset using T2W-FS MR images. All

images were resized to a 256x256 matrix size. In total, there were four U-Net models used

for segmentation: left kidney, left non-cystic kidney parenchyma, right kidney, and right

non-cystic kidney parenchyma (Figure 3.3). In removing the cysts from the kidney, the

U-Net model for segmenting the kidney was applied to the original image for a resultant

masked kidney image. Masked kidney T2W-FS images were used to train, validate, and test

the U-Net model instead of the original image (including anatomy other than the kidney).

Removing anatomy other than the kidney improved the segmentation performance. The

output of the U-Net models is a probability of a pixel belonging to the desired segmentation

task (object or background). The images were then subsequently binarized using Otsu’s

method of threshold selection from gray-level histograms [75]. The U-Net was used as a

semi-automated tool, and the output of the U-Net was reviewed and corrected if needed

using an in-house MATLAB segmentation tool [67]. The final segmentations were used

for feature extraction after pre-processing (MRI normalization, pixel resampling, gray-level

discretization).

The performance of the U-Net model was evaluated using the Dice similarity coefficient

(DSC) and Hausdorff distance (HD) (Table 3.2) [76, 77]; DSC evaluates the agreement or

overlap (0 being no overlap and 1 being perfect overlap) between manual segmentations and

the U-Net output, while HD measures how well the margins of the two segmentations agree.

There was a total of 35 patients from the HALT dataset for testing. Segmentations from

T2W-FS MR images of 15 patients from the CRISP dataset were used as an external test

set. Of the total 50 patients for testing of the U-Net models, 49 had measured htTKV; the

breakdown of MIC across the 49 patients were: 1A (3), 1B (21), 1C (13), 1D (5), 1E (7).
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Median DSC ranged from 0.922-0.957 across the left and right kidney segmentations

using CRISP and HALT datasets; the maximum and minimum values across DSC were

0.986 and 0.153, respectively. The median DSC ranged from 0.905-0.948 for the non-cystic

kidney parenchyma across the left and right kidney using the CRISP and HALT datasets;

the maximum and minimum values across DSC were 0.991 and 0.586, respectively.

Figure 3.3: Pipeline using the U-Net models (4 in total) to segment left kidney and left
non-cystic kidney parenchyma (the same process was done for the right kidney and right
non-cystic kidney parenchyma), first starting with the original T2-weighted fat saturated
(T2W-FS) MR image.
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Table 3.2: U-Net model performance. The images of the Consortium for Radiologic Imaging
Studies of Polycystic Kidney Disease (CRISP) dataset (n=14 patients) were used as an
external test set in addition to the test set from the HALT dataset (n=35 patients).

Kidney U-Net Segmentation Dataset Median DSC [95% CI] Median Average HD [95% CI] (mm)

Left Kidney HALT 0.948 [0.926, 0.960] 1.28 [0.872, 2.24]

Left Kidney CRISP 0.922 [0.886, 0.952] 2.17 [1.52, 3.37]

Left Non-cystic HALT 0.913 [0.898, 0.921] 1.82 [0.753, 3.99]

Left Non-cystic CRISP 0.948 [0.919, 0.973] 0.725 [0.427, 1.85]

Right Kidney HALT 0.957 [0.947, 0.963] 1.26 [0.875, 1.87]

Right Kidney CRISP 0.934 [0.902, 0.953] 1.92 [1.35, 2.54]

Right Non-cystic HALT 0.905 [0.889, 0.933] 3.36 [1.83, 7.27]

Right Non-cystic CRISP 0.933 [0.908, 0.946] 1.41 [0.528, 2.97]

3.2.3 MR image pre-processing and feature extraction

The established pre-processing pipeline in Chapter 2 (Figure 2.2) is continued for MIC

1A/1B vs. MIC 1C/1D/1E classification. This includes MR normalization of signal intensity

(original image, z-score normalization, reference-tissue normalization using the psoas mus-

cle), pixel resampling using either upsampling (1.0x1.0 mm) or downsampling (2.0x2.0 mm)

schemes, gray-level discretization method (fixed bin size (FBS), fixed bin number (FBN)),

and number of gray levels for discretization (8, 16, 32, 64, 128, 256).

3.2.4 Correlation of radiomic features with kidney size

Previous research has shown a dependency of potential imaging biomarkers for different

disease cohorts on voxel size, gray levels, and other imaging parameters [59, 69, 78]. The

dependency of feature values on kidney size (i.e., number of voxels inside the ROI) and

the impact of MRI normalization, pixel resampling, and gray-level discretization on this
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dependency has not been established. This dependency is of importance because high-risk

MIC (1C-1E) classes usually have significantly larger kidneys than low- and interemediate-

risk MIC (1A-1B) classes. Radiomic features incorporated in classification models should

capture actual texture-based differences rather than reflecting differences in the number of

voxels. Therefore, this work investigated the impact of radiomic features correlated with

kidney size on the radiomics-based assessment of MIC risk class. The Spearman rank cor-

relation coefficient, ρ, was calculated between feature values and the number of voxels in

the kidney; features with ρ < 0.5, 0.5 < ρ < 0.9, and ρ > 0.9 were considered to have low,

moderate, and high correlation with the number of voxels, respectively. This was calculated

across pre-processing parameters from the established pipeline in Chapter 2 (Figure 2.2).

The number of voxels after resampling voxel sizes, either up-sampling or down-sampling,

was used (calculated and provided by Pyradiomics [61]).

3.2.5 Feature selection and classification

Features were selected using least absolute shrinkage and selection operator (LASSO) as

implemented in Statistics and Machine Learning Toolbox using Matlab [67], and were merged

in a logistic regression (LR) classifier using 5-fold cross-validation [79]. LASSO trains and

fits least-squares regression coefficients that were used to train a linear regression model [67].

Features were standardized to have a zero mean and a variance of one, and a 10-fold cross-

validation was used to estimate the mean square error (MSE). Features from the training

data with a non-zero coefficient after the regularization process and those that minimized

the MSE were chosen. LASSO feature selection was implemented in each fold of the cross-

validation scheme, and a Pearson correlation threshold of 0.7 removed correlated features.

This process used a repeated cross-validation (rCV) of 10 to account for variance in 5-fold

cross-validation.
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3.2.6 MIC 1B (intermediate-risk) vs. MIC 1C (high-risk) classification

ADPKD has a heterogeneous phenotype, and although MIC classification remains stable in

most patients, there are some patients who can move to an immediate lower MIC class or

progress to a higher MIC class during follow-up imaging (more often patients progressing

to a higher-risk MIC class) [11, 13, 80]. Patients with an intermediate-risk (MIC 1B) are

suggested to be re-evaluated at yearly intervals to more accurately classify their risk for pro-

gression [11]. Investigating radiomic differences between intermediate-risk MIC 1B patients

and high-risk MIC 1C patients may provide additional insights on patients who are at higher

risk for kidney function decline.

In addition to using LASSO and the LR machine learning classifier, a supervised learning

algorithm with known truth labels, fuzzy c-means (FCM) clustering was utilized. FCM is an

unsupervised technique in which data was clustered into N clusters with a datapoint having

a certain probability of belonging to a particular cluster [67]. FCM clustering minimizes an

objective function over iterations to locate the cluster centers of each cluster:

Jm =
C∑
i=1

N∑
j=1

µmij (Dij)
2, (3.1)

where C is the number of clusters, N is the number of data points, m is the fuzzy partition

matrix that controls the degree of fuzzy overlap between the clusters, Dij is the distance from

the jth data point to the ith cluster, and µmij is the degree of membership of the jth data point

in the ith cluster (the sum of membership values for all clusters is one). The cluster centers

are first initiated randomly, the distance for each data point is calculated, membership

values are updated for each data point, the objective function Jm is calculated, and this

process is repeated until the minimum threshold is met. Default values for the exponent for

fuzzy partition matrix, maximum number of iterations, minimum improvement in objective

function, and distance metric (euclidean) in Matlab were implemented [67]. FCM clustering
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was applied to the MIC 1B and 1C patients using clinical features, radiomic features, and

combined clinical and radiomic features; ROC analysis was subsequently applied to the

output of FCM, which are class probabilities for each patient.

3.3 Results

3.3.1 Low- and intermediate-risk MIC (1A-1B) vs. high-risk MIC (1C-1E)

Figure 3.4 show shows the MRI signal intensity range for all patient data after normaliza-

tion and downsampling of pixel size; similar to that of Chapter 2, the non-cystic kidney

parenchyma has a lower range of signal intensity than the entire kidney parenchyma due to

the exclusion of cysts.

Tables 3.3-3.4 show the AUC values across pre-processing parameters using the original

image, z-score normalization, and psoas muscle normalization using features extracted from

the non-cystic kidney parenchyma. The range of AUC values was between 0.69-0.85. Across

normalizations, the range of AUC values for the original image, z-score normalization, and

psoas muscle normalization were 0.69-0.83, 0.75-0.85, and 0.74-0.84, respectively. Across

normalizations, FBS discretization, and up-sampling only, the range of AUC values for the

original image, z-score normalization, and psoas muscle normalization were 0.69-0.77, 0.77-

0.84, and 0.75-0.84, respectively (Figure 3.5); the range of AUC values for the down-sampling

method for the original image, z-score normalization, and psoas muscle normalization were

0.70-0.79, 0.75-0.85, and 0.74-0.82, respectively (Figure 3.5). Across normalizations, FBN

discretization, and up-sampling only, the range of AUC values for the original image, z-

score normalization, and psoas muscle normalization were 0.71-0.82, 0.78-0.83, and 0.77-

0.82, respectively (Figure 3.6); the range of AUC values for the down-sampling method for

the original image, z-score normalization, and psoas muscle normalization were 0.79-0.83,

0.75-0.84, and 0.76-0.84, respectively (Figure 3.6).
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Figure 3.4: Box and whisker plot of the MRI signal intensity range in arbitrary units (a.u.)
across HALTA-PKD MIC patient (1A-1E) images and normalization methods after down-
sampling. The non-cystic kidney parenchyma (left) had extreme outliers (n=4) with signal
intensities ranging between 4901-13540 using the original image; similarly using the origi-
nal image, the entire kidney range (right) had extreme outliers (n=5) with ranges between
4596-21805. The box represents the interquartile range, with the central line indicating the
median value; the whiskers extend to the minimum and maximum values, while outliers are
represented as individual data points. The extreme outliers mentioned are not included in
the figure.

Table 3.5-3.6 show the AUC values across pre-processing parameters using the original

image, z-score normalization, and psoas muscle normalization using features extracted from

the entire kidney parenchyma. The range of AUC values was between 0.86-0.90. Across

normalizations, the range of AUC values for the original image, z-score normalization, and

psoas muscle normalization were 0.86-0.90, 0.88-0.90, and 0.87-0.90, respectively. Across

61



normalizations, FBS discretization, and up-sampling only, the range of AUC values for the

original image, z-score normalization, and psoas muscle normalization were 0.87-0.88, 0.88-

0.90, and 0.87-0.90, respectively (Figure 3.7); the range of AUC values for the down-sampling

method for the original image, z-score normalization, and psoas muscle normalization were

0.86-0.89, 0.88-0.89, and 0.89-0.90, respectively (Figure 3.7). Across normalizations, FBN

discretization, and up-sampling only, the range of AUC values for the original image, z-

score normalization, and psoas muscle normalization were 0.88-0.89, 0.88-0.89, and 0.88-

0.89, respectively (Figure 3.8); the range of AUC values for the down-sampling method for

the original image, z-score normalization, and psoas muscle normalization were 0.88-0.90,

0.88-0.90, and 0.89-0.90, respectively (Figure 3.8).
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Table 3.3: Area under the receiver operating characteristic curve (AUC) along with the 95%
confidence interval (CI) of AUC for features extracted from the non-cystic kidney parenchyma
using fixed bin size (FBS) discretization for Mayo Imaging Classification (MIC) 1A-1B vs.
MIC 1C-1E classification.

Number of Gray Levels

Normalization 8 16 32 64 128 256

Original

1.0x1.0 0.77

[0.76,0.79]

0.75

[0.74,0.77]

0.69

[0.67,0.71]

0.70

[0.68,0.71]

0.71

[0.70,0.73]

0.74

[0.72,0.75]

2.0x2.0 0.79

[0.78,0.80]

0.77

[0.75,0.78]

0.72

[0.70,0.73]

0.71

[0.69,0.72]

0.71

[0.69,0.72]

0.70

[0.69,0.72]

Psoas

1.0x1.0 0.84

[0.83,0.85]

0.80

[0.78,0.81]

0.75

[0.73,0.76]

0.75

[0.74,0.77]

0.76

[0.74,0.77]

0.77

[0.75,0.78]

2.0x2.0 0.82

[0.81,0.83]

0.77

[0.75,0.78]

0.74

[0.72,0.76]

0.76

[0.75,0.78]

0.79

[0.78,0.80]

0.78

[0.77,0.80]

Z-score

1.0x1.0 0.84

[0.83,0.85]

0.83

[0.82,0.84]

0.79

[0.77,0.80]

0.77

[0.76,0.79]

0.80

[0.78,0.81]

0.78

[0.76,0.79]

2.0x2.0 0.85

[0.83,0.86]

0.81

[0.79,0.82]

0.82

[0.80,0.83]

0.80

[0.78,0.81]

0.75

[0.73,0.77]

0.77

[0.76,0.79]

63



Figure 3.5: Area under the receiver operating characteristic curve (AUC) values in classifying
Mayo Imaging Classification (MIC) using radiomic features extracted from the non-cystic
kidney parenchyma using fixed bin size (FBS) discretization. The dotted line at an AUC of
0.5 is random guessing.
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Table 3.4: Area under the receiver operating characteristic curve (AUC) along with the 95%
confidence interval (CI) of AUC for features extracted from the non-cystic kidney parenchyma
using fixed bin number (FBN) discretization for Mayo Imaging Classification (MIC) 1A-1B
vs. MIC 1C-1E classification.

Number of Gray Levels

Normalization 8 16 32 64 128 256

Original

1.0x1.0 0.82

[0.81,0.84]

0.75

[0.73,0.76]

0.74

[0.73,0.76]

0.71

[0.69,0.72]

0.74

[0.72,0.75]

0.78

[0.77,0.80]

2.0x2.0 0.83

[0.81,0.84]

0.80

[0.79,0.81]

0.79

[0.78,0.80]

0.79

[0.78,0.81]

0.82

[0.81,0.83]

0.75

[0.73,0.76]

Psoas

1.0x1.0 0.82

[0.81,0.83]

0.79

[0.77,0.80]

0.77

[0.76,0.79]

0.77

[0.75,0.78]

0.77

[0.75,0.78]

0.80

[0.79,0.81]

2.0x2.0 0.84

[0.82,0.85]

0.81

[0.79,0.82]

0.81

[0.79,0.82]

0.80

[0.79,0.81]

0.80

[0.79,0.82]

0.76

[0.74,0.77]

Z-score

1.0x1.0 0.83

[0.82,0.84]

0.80

[0.78,0.81]

0.78

[0.77,0.79]

0.78

[0.77,0.80]

0.78

[0.77,0.80]

0.81

[0.80,0.82]

2.0x2.0 0.84

[0.83,0.85]

0.82

[0.81,0.83]

0.81

[0.79,0.82]

0.80

[0.79,0.82]

0.82

[0.81,0.84]

0.75

[0.74,0.76]
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Figure 3.6: Area under the receiver operating characteristic curve (AUC) values in classifying
Mayo Imaging Classification (MIC) using radiomic features extracted from the non-cystic
kidney parenchyma using fixed bin number (FBN) discretization. The dotted line at an AUC
of 0.5 is random guessing.
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Table 3.5: Area under the receiver operating characteristic curve (AUC) along with the 95%
confidence interval (CI) of AUC for features extracted from the entire kidney parenchyma
using fixed bin size (FBS) discretization for Mayo Imaging Classification (MIC) 1A-1B vs.
MIC 1C-1E classification.

Number of Gray Levels

Normalization 8 16 32 64 128 256

Original

1.0x1.0 0.87

[0.86,0.88]

0.88

[0.87,0.89]

0.87

[0.85,0.88]

0.88

[0.87,0.89]

0.88

[0.86,0.89]

0.88

[0.87,0.89]

2.0x2.0 0.87

[0.86,0.88]

0.87

[0.86,0.88]

0.86

[0.85,0.88]

0.88

[0.87,0.89]

0.89

[0.88,0.90]

0.88

[0.87,0.89]

Psoas

1.0x1.0 0.90

[0.89,0.90]

0.87

[0.86,0.88]

0.89

[0.89,0.90]

0.89

[0.88,0.90]

0.88

[0.87,0.89]

0.88

[0.87,0.89]

2.0x2.0 0.89

[0.88,0.90]

0.89

[0.88,0.90]

0.90

[0.89,0.90]

0.90

[0.89,0.91]

0.89

[0.89,0.90]

0.89

[0.88,0.90]

Z-score

1.0x1.0 0.89

[0.88,0.90]

0.89

[0.88,0.89]

0.90

[0.89,0.90]

0.89

[0.88,0.89]

0.89

[0.88,0.89]

0.88

[0.87,0.89]

2.0x2.0 0.88

[0.87,0.89]

0.89

[0.88,0.90]

0.89

[0.88,0.90]

0.89

[0.88,0.90]

0.89

[0.88,0.90]

0.89

[0.88,0.90]
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Figure 3.7: Area under the receiver operating characteristic curve (AUC) values in classifying
Mayo Imaging Classification (MIC) using radiomic features extracted from the entire kidney
using fixed bin size (FBS) discretization. The dotted line at an AUC of 0.5 is random
guessing.
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Table 3.6: Area under the receiver operating characteristic curve (AUC) along with the 95%
confidence interval (CI) of AUC for features extracted from the entire kidney parenchyma
using fixed bin number (FBN) discretization for Mayo Imaging Classification (MIC) 1A-1B
vs. MIC 1C-1E classification.

Number of Gray Levels

Normalization 8 16 32 64 128 256

Original

1.0x1.0 0.88

[0.87,0.89]

0.88

[0.88,0.89]

0.89

[0.88,0.90]

0.89

[0.88,0.90]

0.88

[0.87,0.89]

0.88

[0.87,0.89]

2.0x2.0 0.89

[0.88,0.90]

0.90

[0.89,0.91]

0.89

[0.88,0.90]

0.89

[0.88,0.90]

0.88

[0.87,0.89]

0.89

[0.88,0.90]

Psoas

1.0x1.0 0.88

[0.87,0.89]

0.89

[0.88,0.90]

0.89

[0.88,0.90]

0.89

[0.88,0.90]

0.89

[0.88,0.90]

0.89

[0.88,0.90]

2.0x2.0 0.89

[0.88,0.90]

0.90

[0.89,0.91]

0.90

[0.89,0.90]

0.89

[0.88,0.90]

0.89

[0.88,0.90]

0.89

[0.88,0.90]

Z-score

1.0x1.0 0.88

[0.87,0.89]

0.88

[0.87,0.89]

0.89

[0.88,0.90]

0.89

[0.88,0.90]

0.89

[0.88,0.89]

0.89

[0.88,0.90]

2.0x2.0 0.88

[0.87,0.89]

0.90

[0.89,0.91]

0.90

[0.89,0.91]

0.89

[0.88,0.90]

0.89

[0.88,0.90]

0.89

[0.88,0.90]
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Figure 3.8: Area under the receiver operating characteristic curve (AUC) values in classifying
Mayo Imaging Classification (MIC) using radiomic features extracted from the entire kidney
using fixed bin number (FBN) discretization. The dotted line at an AUC of 0.5 is random
guessing.

To identify which radiomic features were being used for classification, radiomic features

chosen using LASSO feature selection in the training phase of the cross-validation was ex-

plored with a representative pre-processing method (psoas muscle normalization, pixel re-

sampling to 2.0x2.0 mm, and FBN discretization using 32 gray levels). Table 3.7 contains

the radiomic features used when features were extracted from the entire kidney, non-cystic

kidney parenchyma, and the radiomic features that were used in classification regardless of
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Table 3.7: The radiomic features chosen during the training phase of LASSO feature selection
across the 5-fold repeated cross-validation (rCV) in classifying low/intermediate- and high-
risk MIC class using a representative pre-processing method (psoas muscle normalization,
pixel resampling to 2.0x2.0 mm, and fixed bin number (FBN) discretization using 32 gray
levels).

Radiomic features Entire kidney (n=16) Union (n=26) Non-cystic kidney (n=16)

First-order Interquartile Range, Maxi-
mum, Median, Range

10 Percentile, Energy, Kur-
tosis, Minimum, Skewness

Entropy, Total Energy

GLCM Inverse Difference Moment
Normalized, Inverse Vari-
ance, Joint Entropy, Sum
Entropy, Sum Squares

Cluster Prominence, Clus-
ter Shade, Contrast, Cor-
relation, Difference Vari-
ance, Informational Mea-
sure of Correlation 2, Max-
imum Probability

Autocorrelation, Cluster
Tendency, Difference Av-
erage, Inverse Difference,
Inverse Difference Moment,
Informational Measure of
Correlation 1, Maximal
Correlation Coefficient

GLSZM Gray-Level Non-
Uniformity Normalized,
High-Gray Level Zone-
Emphasis, Zone Variance

Gray-Level Non-
Uniformity, Gray-Level
Variance, Large Area
High-Gray Level Empha-
sis, Large Area Low-Gray
Level Emphasis, Size-Zone
Non-Uniformity, Small
Area Emphasis, Small
Area High Gray-Level
Emphasis, Small Area
Low Gray-Level Emphasis,
Zone Entropy

Low-Gray Level Zone Em-
phasis

GLRLM Gray-Level Non-
Uniformity Normal-
ized, Run-Length Non-
Uniformity, Run Variance

Gray-Level Non-
Uniformity

NGTDM Complexity Busyness, Coarseness

GLDM Dependence Entropy, De-
pendence Non-Uniformity

Gray-Level Non-
Uniformity, Gray-Level
Variance, Large Depen-
dence High-Gray Level
Emphasis, Large Depen-
dence Low-Gray Level
Emphasis, Low Gray-Level
Emphasis, Small Depen-
dence Low-Gray Level
Emphasis

71



what part of the kidney was used for feature extraction. There were 26 radiomic features

that were used in both classification schemes (union column of Table 3.7).

3.3.2 Impact of feature correlation with kidney size across pre-processing

Figure 3.9 shows the box and whisker plot of the distribution of the number of voxels in the

kidney segmentations of MIC 1A-1B classes and MIC 1C-1E classes. The number of voxels

were statistically significantly different between MIC 1A-1B and MIC 1C-1E classes.

Figure 3.9: Box and whisker plot of the distribution of kidney size from the representative
coronal section (i.e., number of voxels) of low/intermediate- and high-risk Mayo Imaging
Classification (MIC) patients, showing a statistically significant difference using the Wilcoxon
rank sum test (p < 0.05). The box represents the interquartile range, with the central line
indicating the median value; the whiskers extend to the minimum and maximum values,
while outliers are represented as individual data points.

Four of the 93 features extracted exhibited a high correlation (ρ > 0.9) with number of

voxels across normalization, pixel resampling, and gray-level discretization: GLCM joint en-
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tropy, GLDM dependence non-uniformity, GLRLM run-length non-uniformity, and GLSZM

size-zone non-uniformity. Figures 3.10-3.13 show the Spearman rank correlation coefficient

between feature values and number of voxels across pre-processing for the four features using

both FBS and FBN discretization methods. As the gray levels available for discretization

increase, the correlation between the feature value and the voxel size increases, with the

exception of GLDM dependence non-uniformity that stayed relatively stable across gray lev-

els except for the original image using the downsampling method. Downsampling across

normalizations tended to have higher Spearman rank correlation values than upsampling.

For all features using FBN the Spearman rank correlation values were consistent across pre-

processing, with the downsampling method consistently higher in Spearman rank correlation

values than upsampling. There were 33 of the 93 features extracted that exhibited moderate

(0.5 < ρ < 0.9) correlation with number of voxels across pre-processing (Table 3.8).

Figure 3.10: GLCM joint entropy Spearman rank correlation values ranging from -0.10-
0.91 using FBS discretization and 0.29-0.95 using FBN discretization. The red dashed lines
represent the moderate (0.5 < ρ < 0.9) and high correlation (ρ > 0.9) thresholds.
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Figure 3.11: GLDM dependence non-uniformity Spearman rank correlation values ranging
from 0.60-0.97 using FBS discretization and 0.88-0.98 using FBN discretization. The red
dashed lines represent the moderate (0.5 < ρ < 0.9) and high correlation (ρ > 0.9) thresholds.

Figure 3.12: GLRLM run-length non-uniformity Spearman rank correlation values ranging
from 0.31-1.0 using FBS discretization and 0.77-1.0 using FBN discretization. The red dashed
lines represent the moderate (0.5 < ρ < 0.9) and high correlation (ρ > 0.9) thresholds.

74



Figure 3.13: GLSZM size-zone non-uniformity Spearman rank correlation values ranging
from 0.16-0.98 using FBS discretization and 0.49-0.98 using FBN discretization. The red
dashed lines represent the moderate (0.5 < ρ < 0.9) and high correlation (ρ > 0.9) thresholds.

Table 3.8: Radiomic features that exhibited moderate (0.5 < ρ < 0.9) Spearman rank
correlation values with number of voxels across pre-processing parameters.

Radiomic features Moderate (0.5 < ρ < 0.9) correlation (n=33)

First-order (n=5) Energy, Entropy, Skewness, Total Energy, Uniformity

GLCM (n=5) Cluster Shade, IMC 1, Joint Energy, Maximum Probability, Sum Entropy

GLSZM (n=7) Gray-Level Non-Uniformity, Gray-Level Non-Uniformity Normalized, Large Area High

Gray-Level Emphasis, Large Area Low Gray-Level Emphasis, Low Gray-Level Zone

Emphasis, Small Area Low Gray-Level Emphasis, Zone Entropy

GLRLM (n=7) Gray-Level Non-Uniformity, Gray-Level Non-Uniformity Normalized, Long Run High

Gray-Level Emphasis, Long Run Low Gray-Level Emphasis, Low Gray-Level Run Em-

phasis, Run Entropy, Short Run Low Gray-Level Emphasis

NGTDM (n=3) Busyness, Coarseness, Strength

GLDM (n=6) Dependence Entropy, Gray-Level Non-Uniformity, Large Dependence High Gray-Level

Emphasis, Large Dependence Low Gray-Level Emphasis, Low Gray-Level Emphasis,

Small Dependence Low Gray-Level Emphasis
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The impact on differentiating low/intermediate- vs. high-risk MIC classes using the

radiomic features from the entire kidney was investigated and the AUC values are listed in

Table 3.9, with significant differences assessed after Bonferroni-Holm correction [81]. The

representative pre-processing method for classification was psoas muscle normalization, pixel

resampling to 2.0x2.0 mm, and FBS discretization using 64 gray levels. A radiomic feature

that exhibited moderate (0.5 < ρ < 0.9) or high (ρ > 0.9) correlation across any of the pre-

processing parameters was classified as such for inclusion or exclusion in feature selection.

Classification of low-/intermediate- vs. high-risk patients yielded an AUC value of 0.90 [0.89,

0.91] using feature selection on all available 93 features. When feature selection was limited

to features with (1) low or moderate correlation and (2) only low correlation, the resulting

AUC values were 0.89 [0.88, 0.90] and 0.78 [0.76, 0.79], respectively.

Table 3.9: Area under the receiver operating characteristic curve (AUC) along with the 95%
confidence interval (CI) of AUC in the task of classifying patients between low/intermediate-
vs. high-risk Mayo Imaging Classification (MIC) classes using radiomic features with respect
to their correlation with number of voxels (i.e., kidney size). Asterisks denote significance
after accounting for multiple comparisons using Bonferroni-Holm corrections.

Features available for LASSO AUC [95% CI] Statistical significance

All Features (n=93) 0.90 [0.89,0.91]
ρ < 0.9: p = 0.061

ρ < 0.5: p =< 0.001*

Features with ρ < 0.9 (n=89) 0.89 [0.88,0.90] ρ < 0.5: p =< 0.001*

Features with ρ < 0.5 (n=56) 0.78 [0.76,0.79]

3.3.3 MIC 1B (intermediate-risk) vs. MIC 1C (high-risk) classification

There were a total of 271 MIC 1B (n=111) and MIC 1C (n=160) patients available for

classification (Table 3.10); there was a statistically significant difference in mean age and

mean htTKV, but not a statistically significant difference in eGFR. The AUC performances

across clinical, radiomics, and combined clinical-radiomics models can be found in Table
76



3.11. The pre-processing method chosen was the z-score normalization and 32 gray levels for

discretization using FBS for both the non-cystic kidney and entire kidney classification.

Table 3.10: HALT subject characteristics for Mayo Imaging Classification (MIC) 1B vs. MIC
1C classification. Asterisks indicate statistically significant differences (p < 0.05).

Clinical 1B 1C p-value

No. Patients 111 160

Mean age ±SD 40 ±7.15 37 ±7.67 <0.001*

Male (n=124) 38 ±7.43 (n=37) 37 ±7.08 (n=87) 0.516

Female (n=147) 41 ±6.79 (n=74) 36 ±8.35 (n=73) <0.001*

Mean htTKV ±SD 392.68 ±100.34 597.81 ±178.17 <0.001*

Male 356.044 ±81.55 616.42 ±183.13 <0.001*

Female 410.99 ±104.26 575.63 ±170.67 <0.001*

Mean eGFR ±SD 85.98 ±16.74 86.78 ±20.00 0.783

Male 89.12 ±15.60 86.74 ±21.14 0.181

Female 84.42 ±17.17 86.82 ±18.70 0.480

Figure 3.14: Heatmaps of the number of patients for MIC 1B (left) and MIC 1C (right) with
their baseline chronic kidney disease (CKD) stage (x-axis) and CKD stage at 60-months
follow-up (y-axis). The color intensity represents the number of patients, with darker shades
indicating a higher patient count.
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Table 3.11: Area under the receiver operating characteristic curve (AUC) along with the
95% confidence interval (CI) of AUC for 1B vs. 1C classification using age, sex, estimated
glomerular filtration rate (eGFR), radiomic features, and combined clinical-radiomics model.
The combined clinical features incorporate age, sex, and eGFR, but do not include height-
corrected total kidney volume (htTKV). Although Mayo Imaging Classification (MIC) clas-
sification considers htTKV and age, htTKV was investigated as a standalone feature.

Features AUC [95% CI]

htTKV 0.84 [0.83, 0.86]

Clinical

Age 0.62 [0.59, 0.64]

Sex 0.56 [0.54, 0.58]

eGFR 0.59 [0.57, 0.61]

Combined clinical 0.66 [0.64, 0.68]

Radiomics model

Entire kidney 0.79 [0.77, 0.80]

Non-cystic kidney 0.67 [0.65, 0.69]

Clinical and radiomics model

Entire kidney 0.89 [0.88, 0.90]

Non-cystic kidney 0.77 [0.76, 0.79]

FCM clustering using clinical features (age, sex, and eGFR), radiomic features from the

entire kidney, radiomic features from the non-cystic kidney, and combined clinical-radiomics

features were used to cluster MIC 1B and MIC 1C patients. Radiomic features identified

with LASSO feature selection in the classification of MIC 1B and MIC 1C were subsequently

input for FCM clustering: 20 features extracted from the entire kidney, and 42 features

extracted from the non-cystic kidney. ROC analysis was performed on the output of fuzzy

class membership, listed in Table 3.12. The AUC values of FCM clustering of MIC 1B and

MIC 1C using clinical features was 0.52, 0.62-0.63 using radiomic features, and 0.62-0.63
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using combined clinical and radiomic features. An example of FCM clustering in graphical

form using age and eGFR for simplicity can be found on Figure 3.15.

Table 3.12: Area under the receiver operating characteristic curve (AUC) along with the 95%
confidence interval (CI) of AUC for fuzzy c-means (FCM) clustering memberships of Mayo
Imaging Classification (MIC) 1B and MIC 1C patients using age, sex, estimated glomerular
filtration rate (eGFR), radiomic features, and combined clinical-radiomics model.

Features AUC [95% CI]

Clinical 0.52 [0.46, 0.59]

Radiomics features

Entire kidney 0.63 [0.56, 0.70]

Non-cystic kidney 0.62 [0.55, 0.69]

Clinical and radiomic features

Entire kidney 0.63 [0.57, 0.69]

Non-cystic kidney 0.62 [0.55, 0.69]

Figure 3.15: Fuzzy c-means (FCM) clustering using clinical features (age, sex, and eGFR).
For simplicity, the figure shows the age on the x-axis and eGFR on the y-axis. The cluster
center for 1B is (33.74, 104.71) and for 1C is (41.24, 74.75). The scatter plot shows the
cluster membership as well as the true class label of each patient (n=271).
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3.4 Discussion

The aim of this chapter was to determine whether radiomic features can differentiate patients

into low/intermediate- and high-risk MIC classes and to observe the effect of pre-processing

on subsequent classification. There is a need to investigate texture-based differences in the

non-cystic kidney parenchyma among risk-stratified groups because features may quantify

potential prognostic information. The results indicate that radiomic features extracted from

the non-cystic kidney parenchyma and the entire kidney have the potential to correctly

classify patients in low/intermediate- and high-risk MIC classes. The non-cystic parenchyma

AUC values ranged from 0.69-0.85 across pre-processing parameters, and the entire kidney

AUC values ranged from 0.86-0.90 across pre-processing parameters.

The range of AUC values using features extracted from the entire kidney across pre-

processing parameters was narrower than the range of features extracted from the non-

cystic parenchyma: 0.04 compared to 0.16. The impact of pre-processing on subsequent

classification reveals that features extracted from the non-cystic kidney parenchyma were

more sensitive to pre-processing than those from the entire kidney. The classification of

patients with low/intermediate-risk (low cyst burden) from those with high-risk (high cyst

burden with higher signal intensity) was unaffected by pre-processing parameters such as MR

normalization, gray-level discretization, and pixel resampling. This underscores the influence

of cysts on texture features, indicating that these imaging characteristics remain robust

indicators of disease severity and risk classification regardless of pre-processing variations.

Unlike those of the entire kidney, features extracted from the non-cystic kidney parenchyma

show an increase in sensitivity to pre-processing parameters. Figure 3.4 displays the box

and whisker plot of signal ranges from the non-cystic kidney parenchyma and entire kidney

across normalization methods, revealing that the median signal range of the non-cystic kidney

parenchyma is lower than that of the entire kidney (similar to results in Chapter 2). The

difference in sensitivity to pre-processing in subsequent classification between the non-cystic
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kidney parenchyma and the entire kidney may be attributed to the variance in signal range

of gray levels for discretization and the removal of cyst texture compared to that of the entire

kidney.

The classification task of distinguishing intermediate-risk (1B) MIC class and high-risk

(1C) MIC class patients proved to be a more difficult task than distinguishing low/intermediate-

risk (1A-1B) MIC classes from high-risk (1C-1E) MIC classes. Although MIC 1C patients

had statistically significant differences in age and htTKV compared to MIC 1B patients,

eGFR was not found to be statistically significantly different. Classification models using

clinical features, radiomics features, and combined clinical-radiomics models were investi-

gated. The AUC value for the clinical model (age, sex, and eGFR) was 0.66 [0.64, 0.68], and

for the radiomics model using the entire kidney and non-cystic kidney parenchyma was 0.79

[0.77, 0.80] and 0.67 [0.65, 0.69], respectively; in combining clinical and radiomics features,

there was an increase in both the entire kidney and non-cystic kidney parenchyma of 0.89

[0.88, 0.90] and 0.77 [0.76, 0.79], respectively. The performance of combining clinical features

with radiomic features versus clinical features alone demonstrates the potential benefit of

incorporating kidney texture, which is not captured by clinical features alone.

This study investigated the correlation between radiomic feature values and number of

voxels (i.e., kidney size) for feature extraction. High-risk MIC class patients have by defi-

nition larger kidney sizes than patients in low/intermediate-risk MIC classes, and radiomic

features that exhibited low (ρ < 0.5), moderate (0.5 < ρ < 0.9), or high (ρ > 0.9) correlation

with number of voxels (i.e., kidney size) across pre-processing parameters were identified.

There were four features that exhibited a high correlation with number of voxels across MR

normalization, pixel resampling, and gray-level discretization: GLCM joint entropy, GLDM

dependence non-uniformity, GLRLM run-length non-uniformity, and GLSZM size-zone non-

uniformity; GLDM dependence non-uniformity and GLRLM run-length non-uniformity have

been found to be important biomarkers in previous radiomics research [82, 83]. The cor-
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relation coefficient between the radiomic feature value and the number of voxels was found

to be dependent on the pre-processing parameters used. The inclusion of features based

on their correlation to kidney size in classification models impacted the performance in dis-

tinguishing between low/intermediate-risk and high-risk MIC classes. Pyradiomics [61] has

identified features that are volume-confounded, and Shafiq-ul-Hassan et al. [78] provided

normalization factors based on the number of voxels in an ROI/volume of interest (VOI),

pixel size, and slice thickness for radiomic features. Future research will explore the impact

of MRI pre-processing on radiomic feature values following correction and their dependence

on the number of voxels.

A limitation of this study is the use of a single representative coronal MRI image, and

future work could assess texture of the total kidney and total non-cystic kidney parenchyma.

Additionally, classification could extend to specific classes of MIC, beyond just intermediate-

risk (1B) and high-risk (1C) patients; this analysis is limited due to the small number of

patients, and future work could incorporate larger imaging datasets. Radiomic features that

associate across multi-class MIC classification could be compared to those of 1A/1B vs. 1C-

1E MIC classes. Although the work in this chapter is based on differentiating MIC classes,

this work could be extended to future kidney function decline using the radiomic features

associated with low/intermediate-risk and high-risk MIC classes.

3.5 Conclusion

Based on ROC performance, the data indicate the potential to distinguish between patients

based on low/intermediate- and high-risk MIC classification. Furthermore, the effect of

MRI pre-processing (MR normalization, gray-level discretization, and pixel resampling) was

investigated. The potential to correctly classify between low/intermediate- and high-risk

MIC classes was demonstrated across pre-processing parameters. Results reveal that features

extracted from the non-cystic kidney parenchyma were more sensitive to pre-processing than
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those from the entire kidney and that extracted features are associated with MIC risk-

stratified classes and may be used for patient prognosis. Ultimately, this work will pave the

way to extract radiomic features of the non-cystic kidney parenchyma to better identify low-

and high-risk patients for onset of ESKD and establish optimal pre-processing parameters

for feature extraction.
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CHAPTER 4

TEMPORAL ASSESSMENT OF MRI RADIOMIC FEATURES

TO PREDICT KIDNEY FUNCTION DECLINE IN PATIENTS

WITH ADPKD

4.1 Introduction

Autosomal dominant polycystic kidney disease (ADPKD) is a hereditary kidney disease with

gradual kidney cyst growth and expansion causing deterioration in kidney function and to-

tal kidney volume (TKV) growth, ultimately leading to end-stage kidney disease (ESKD).

Although TKV increases continuously during a patient’s life, kidney function may remain

intact for decades. ADPKD biomarkers are needed that may both detect current damage to

the kidneys while also predicting disease progression during the period of maintained kidney

function [14]. Radiomics analysis of the kidney has been shown to predict estimated glomeru-

lar filtration rate (eGFR) decline and classify chronic kidney disease (CKD) stage in ADPKD

and has been shown to provide additive power with clinical features such as age, baseline

height-corrected TKV (htTKV), and baseline eGFR [52, 53, 54, 55]. Incorporating radiomic

features in predictive models would provide quantitative information of kidney texture that

is not currently captured by standard clinical features. TKV is monitored throughout a

patient’s life, and magnetic resonance imaging (MRI) is the predominant imaging modality

to measure TKV because it does not use ionizing radiation, has excellent soft-tissue contrast,

and provides good delineation of kidney parenchyma and cysts. Previous ADPKD radiomics

studies used features from one imaging timepoint, although temporal imaging is clinically

indicated to monitor disease progression [53, 54, 55, 84, 85].

Delta radiomics captures feature variation at different acquisition timepoints and utilizes

longitudinal imaging data to assess intra-patient changes [86, 87]. Delta radiomics is used to

assess response to therapy and prediction of patient outcomes in breast, lung, and cervical
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cancers using imaging modalities such as computed tomography (CT), positron emission

tomography (PET)-CT systems, and MRI [88, 89, 90, 91]. The most common method to

calculate delta radiomics is the difference in the radiomic feature value between two imaging

timepoints divided by the radiomic feature value at the first timepoint [86]. Incorporating

radiomic features from different acquisition timepoints takes advantage of feature variation

in ADPKD patients and may provide insight in changes of kidney texture with disease

progression. Utilizing delta radiomics may provide additive power in predicting future kidney

function decline for patients with ADPKD rather than one timepoint alone.

Therefore, the purpose of this work was to determine whether radiomic features from

24-month and 48-month timepoints provide additive power versus baseline texture alone in

predicting kidney function decline to (1) CKD stage 3A or greater ("≥CKD stage 3A") or

(2) a greater than 30% reduction in eGFR ("≥30% reduction in eGFR") of 281 patients with

ADPKD at 60-months follow-up. Additionally, radiomic features extracted from the non-

cystic kidney parenchyma (excluding cysts) from CT images have shown predictive power

in future kidney function decline, suggesting that radiomic features from the non-cystic

kidney parenchyma may be a sensitive biomarker of kidney function decline [55]. The work

in this chapter investigated the ability of radiomic features extracted from the non-cystic

parenchyma from MR images to predict future kidney function decline. This is the first work

to investigate the utility of incorporating multiple imaging timepoints in ADPKD radiomics

prediction models using delta radiomics.

4.2 Methods

4.2.1 Database

T2-weighted fat saturated (T2W-FS) MRI images in this study had been acquired from a

longitudinal, multi-site randomized clinical trial, HALT Progression of Polycystic Kidney
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Disease (HALTA-PKD) (NCT00283686). T2W-FS MR images were acquired with the same

scanning protocol on 1.5T scanners using single-shot fast spin echo/half-Fourier acquisition

single-shot turbo spin echo imaging (SSFSE/HASTE) with fat saturation and a 3-mm fixed

slice thickness. Of this cohort, a subset of 281 patients was chosen who had baseline, 24-

month, 48-month, and 60-month follow-up imaging, measured htTKV, and measured eGFR.

CKD is defined by a presence of albuminuria (i.e., albumin in the urine) of at least 30

mg per 24 hours or markers of kidney damage persisting more than 3 months [92]. The

staging of CKD is classified as CKD stage 1 (GFR > 90mL/min/1.73 m2), CKD stage 2

(GFR 60− 89mL/min/1.73 m2), CKD stage 3A (45− 59mL/min/1.73 m2), CKD stage 3B

(30 − 44mL/min/1.73 m2), CKD stage 4 (15 − 29mL/min/1.73 m2), and CKD stage 5

(< 15mL/min/1.73 m2) [92, 93]. All 281 patients in this study were classified in CKD stage

1 or 2 at baseline, and the clinical stage at 60 months spanned all CKD stages (Table 4.1).

The subject characteristics were compared between those who did or did not progress to

≥CKD stage 3A and between those who did or did not experience a ≥30% reduction in

eGFR (Table 4.2).

Table 4.1: Subject characteristics based on baseline age, baseline sex, baseline estimated
glomerular filtration rate (eGFR), and baseline height-corrected total kidney volume (ht-
TKV) for 281 ADPKD patients. The chronic kidney disease (CKD) stage is the patient
stage at 60-months follow-up.

Clinical stage at 60 months Mean age ±SD Sex (M:F) Mean eGFR ±SD Mean htTKV ±SD

CKD stage 1 (n=60) 34 ±8.07 32:28 103.87 ±18.57 434.55 ±186.23

CKD stage 2 (n=141) 38 ±7.71 68:73 84.86 ±11.93 676.38 ±379.60

CKD stage 3A (n=57) 39 ±5.84 34:23 71.91 ±6.58 848.00 ±369.43

CKD stage 3B (n=20) 40 ±8.44 12:8 68.50 ±7.21 972.76 ±549.47

CKD stage 4 (n=1) 25 1:0 62.26 1751.16

CKD stage 5 (n=2) 37 ±8.73 1:1 76.50 ±19.55 1287.01 ±1038.54
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Table 4.2: A Wilcoxon rank sum test between the subject characteristics at baseline for those
who progressed or did not progress to ≥ CKD stage 3A and between those who experienced
or did not experience a ≥30% reduction in eGFR (p < 0.05 were significant). Asterisks
indicate statistically significant differences. The “≥30% reduction in eGFR” cohort contains
patients in CKD stages 1-5.

Clinical features

at baseline

<CKD stage 3A

(n=201)

≥CKD stage 3A

(n=80)
p-value

<30% reduction

in eGFR (n=236)

≥30% reduction

in eGFR (n=45)
p-value

Mean age ±SD 37 ±8.09 39 ±6.73 0.035* 38 ±7.58 36 ±8.79 0.450

Mean eGFR ±SD 90.53 ±16.66 71.05 ±7.21 ≤ 0.001* 86.09 ±15.98 79.21 ±21.06 ≤ 0.001*

Mean htTKV ±SD 604.19 ±351.29 901.46 ±446.39 ≤ 0.001* 647.57 ±373.91 905.18 ±479.51 ≤ 0.001*

4.2.2 MR image selection, segmentation, and pre-processing

For each patient, the largest coronal slice of both the left and right kidney was selected from

the baseline scan as the representative baseline image for each kidney. Subsequent images

at the 24-month, 48-month, and 60-month follow-up scan timepoints were matched to the

baseline left and right kidney representative images. A convolutional neural network (CNN)

U-Net architecture introduced in Chapter 3 was employed for the purpose of segmenting the

entire kidney parenchyma (including cysts) and non-cystic kidney parenchyma (excluding

cysts). The U-Net segmentations were visually examined to ensure quality of segmentation

and manually adjusted if necessary. All MR image matrix sizes ranged from 224x224-640x640

pixels, and pixel sizes ranged from 0.59-1.8 mm. All images matrix sizes were resized to

256x256 pixels for feature extraction using nearest-neighbor interpolation. All pixel sizes

were harmonized to 2.0x2.0 mm using nearest-neighbor interpolation, and all images had

the same slice thickness of 3 mm.

4.2.3 Feature extraction and predictive model

Image features from baseline and 24-month, 48-month, and 60-month timepoints were ex-

tracted using Pyradiomics [61]. Z-score normalization was used to standardize pixel in-
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tensities and a fixed bin number discretization method was implemented using 64 bins

for gray-level discretization. Ninety-three features were extracted per kidney: first-order

(18), gray-level co-occurrence matrix (GLCM) (24), gray-level run length matrix (GLRLM)

(16), gray-level size zone matrix (GLSZM) (16), neighboring gray-tone difference matrix

(NGTDM) (5), and gray-level dependence matrix (GLDM) (14) features. Three images an-

terior and three images posterior to the selected baseline and follow-up images were selected

for a total of seven images per kidney per timepoint for feature extraction. Radiomic features

extracted from the seven images were combined using a weighted average for the left and

right kidney individually:

RFweighted average =

∑
iRFslice,i · weightsi∑

i weightsi
. (4.1)

The weights were calculated by dividing the number of voxels in a kidney segmentation of a

given image by the total number of voxels across all of the kidney segmentations of the MRI

sections, i :

weightsi =
Number of voxelsseg,i∑
i Number of voxelsseg,i

. (4.2)

Finally, the left and right kidney features were averaged for a representative feature value

for each timepoint. Radiomic features were calculated from images at baseline, 24-month,

48-month, and 60-month timepoints of both the non-cystic kidney parenchyma and entire

kidney parenchyma for each patient. Delta radiomics to assess feature changes over time

was calculated using:

∆RFDelta =
RFFollow-up −RFBaseline

RFBaseline
. (4.3)

Predictive models using clinical features, radiomic features, and clinical-radiomic fea-

tures combined were investigated to assess whether a patient (1) progressed to ≥CKD stage

3A or (2) experienced a ≥30% reduction in eGFR at 60-month follow-up. The radiomics
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models used features extracted from the non-cystic kidney parenchyma and entire kidney:

(1) baseline, (2) 24-month delta radiomics, (3) 24-month timepoint, (4) 48-month delta ra-

diomics, (5) 48-month timepoint, (6) combined baseline and 24-month delta radiomics, (7)

combined baseline and 24-month radiomics, (8) combined baseline and 48-month delta ra-

diomics, (9) combined baseline and 48-month timepoint, (10) combined baseline, 24-month

delta radiomics, and 48-month delta radiomics, and (11) combined baseline, 24-month time-

point, and 48-month timepoint. Figure 4.1 shows the summary of workflow and analysis

methods.

A logistic-regression (LR) model using 5-fold cross validation was utilized for a total

of 20 different models: single timepoint radiomics models (3), delta radiomics models (2),

combined timepoint (including delta radiomics) radiomics models (6), clinical models (4),

and combined clinical-radiomics models (5). For each training partition of any radiomics

model, the top-10 uncorrelated (Pearson correlation threshold of 0.7 with any other selected

feature) performing features from the 93 total extracted features were determined using

the area under the receiver operating characteristic curve (AUC); for example, the top-10

performing, uncorrelated features from the baseline timepoint for the training partition were

merged with the top-10 performing, uncorrelated features from the 24-month timepoint of the

same training partition for a total of 20 features. The clinical model included baseline age,

baseline htTKV, and baseline eGFR. This process used a repeated cross-validation (rCV)

of 10 to account for variance in 5-fold cross-validation (50 iterations of feature selection),

and AUC was used to evaluate the predictive performance across these 50 iterations. This

process was performed separately for radiomic features extracted from the non-cystic kidney

parenchyma and the entire kidney parenchyma for prediction of progression to ≥CKD stage

3A and a ≥30% reduction in eGFR at 60-month follow-up (64 models in total).

The predictive performance (AUC) of single timepoint models, delta radiomics mod-

els, and combined radiomics models were compared with the predictive performance of the

89



baseline model alone using the DeLong test [94]. Predictive performances of the combined

clinical-radiomics models were compared with the predictive performance of the combined

clinical model of baseline age, baseline htTKV, and baseline eGFR also using the DeLong

test [94]. Bonferroni-Holm corrections were used to account for multiple comparisons [81].

A single representative radiomic feature that was frequently used in all single timepoint

models (baseline, 24-month timepoint, and 48-month timepoint) was investigated (4 features

in total): a feature from both the non-cystic kidney and entire kidney for prediction of

progression to ≥CKD stage 3A, and a feature from the non-cystic kidney and entire kidney

for prediction to a ≥30% reduction in eGFR. The Spearman rank correlation coefficient

was used to assess the relationship of the chosen radiomic feature between (1) baseline and

the 24-month timepoint, (2) baseline and the 48-month timepoint, and (3) baseline and the

60-month timepoint.
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Figure 4.1: Image selection and feature extraction pipeline used to predict kidney function
decline to ≥CKD stage 3A or ≥30% reduction in eGFR at 60 months using radiomic features
extracted from MR images at baseline (tbaseline), 24 months (t24-month), and 48 months
(t48-month). Features were extracted from the 60-month timepoint (t60-month) but were not
used in the logistic regression (LR) prediction models.
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4.3 Results

4.3.1 Prediction to ≥CKD Stage 3A and ≥30% reduction in eGFR

The model performances using radiomic features to predict kidney function decline to (1) ≥CKD

stage 3A or (2) ≥30% reduction in eGFR are presented in Table 4.3 and Table 4.4, re-

spectively. Delta-radiomic features alone yielded AUC values close to random guessing

(AUC=0.5) for both prediction models regardless of whether the features were extracted

from the non-cystic kidney parenchyma or the entire kidney; the AUC values using delta ra-

diomics ranged from 0.50-0.62 for prediction of progression to ≥CKD stage 3A and 0.50-0.56

for prediction of a ≥30% reduction in eGFR. The highest AUC value using delta-radiomics

features was 0.62 from the entire kidney at the 48-month timepoint for prediction of pro-

gression to ≥CKD stage 3A.

For prediction of progression to ≥CKD stage 3A, AUC values using radiomic features at

single timepoints (baseline, 24-month, and 48-month) from the non-cystic kidney parenchyma

ranged from 0.72-0.75, and radiomic features from the entire kidney ranged from 0.75-0.78

(Figure 4.2). For prediction of a ≥30% reduction in eGFR, AUC values using radiomic fea-

tures at single timepoints from the non-cystic kidney parenchyma ranged from 0.68-0.70, and

radiomic features from the entire kidney ranged from 0.68-0.69 (Figure 4.3). In combining

features, the combined-model of baseline and delta features did not result in an increase in

AUC values for features extracted from the non-cystic kidney parenchyma or entire kidney.

In combining features from timepoints, the largest increase in AUC to baseline was in com-

bining baseline, 24-month, and 48-month timepoint features from the entire kidney in the

prediction of progression to ≥CKD stage 3A, with an increase in AUC from 0.75 at baseline

to 0.81; this increase was statistically significant after applying Bonferroni-Holm for multiple

comparisons.
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Table 4.3: Area under the receiver operating characteristic curve (AUC) along with the 95%
confidence interval (CI) of AUC for radiomics-based models to predict progression to ≥CKD
stage 3A at 60-month timepoint using single timepoints, delta-radiomics features, and com-
bined timepoints using radiomic features extracted from the non-cystic kidney parenchyma
and entire kidney. Asterisks indicate statistically significant differences from baseline model
performance (after Bonferroni-Holm correction for 10 multiple comparisons).

Radiomics model Non-cystic kidney Entire kidney

Baseline 0.75 [0.72, 0.76] 0.75 [0.72, 0.77]

∆ 24-Months 0.50 [0.48, 0.53] (p ≤ 0.001)* 0.50 [0.48, 0.53] (p ≤ 0.001)*

24-Months 0.73 [0.71, 0.75] (p = 0.260) 0.78 [0.76, 0.79] (p = 0.047)

∆ 48-Months 0.56 [0.53, 0.58] (p ≤ 0.001)* 0.62 [0.60, 0.64] (p ≤ 0.001)*

48-Months 0.72 [0.70, 0.74] (p = 0.132) 0.77 [0.75, 0.79] (p = 0.471)

Baseline + ∆ 24-Months 0.73 [0.71, 0.75] (p = 0.265) 0.72 [0.70, 0.75] (p = 0.002)*

Baseline + 24-Months 0.76 [0.74, 0.78] (p = 0.695) 0.78 [0.76, 0.79] (p = 0.187)

Baseline + ∆ 48-Months 0.75 [0.73, 0.76] (p = 0.438) 0.73 [0.71, 0.75] (p = 0.012)

Baseline + 48-Months 0.76 [0.74, 0.78] (p = 0.893) 0.78 [0.76, 0.80] (p = 0.352)

Baseline + ∆ 24-Months +

∆ 48-Months

0.72 [0.70, 0.74] (p = 0.088) 0.71 [0.69, 0.73] (p ≤ 0.001)*

Baseline + 24-Months +

48-Months

0.75 [0.73, 0.77] (p = 0.613) 0.81 [0.79, 0.82] (p ≤ 0.001)*
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Figure 4.2: Area under the receiver operating characteristic curve (AUC) values for the
prediction of progression to ≥CKD stage 3A using radiomic features from the non-cystic
kidney parenchyma (blue) and the entire kidney (orange). The dotted line at an AUC
of 0.5 is random guessing. There were 11 radiomics models investigated using baseline
and follow-up timepoints: (1) baseline (B); (2) 24-month delta radiomics (∆24); (3) 24-
month timepoint (24); (4) 48-month delta radiomics (∆48); (5) 48-month timepoint (48);
(6) combined baseline and 24-month delta radiomics (B+∆24); (7) combined baseline and
24-month radiomics (B+24); (8) combined baseline and 48-month delta radiomics (B+∆48);
(9) combined baseline and 48-month timepoint (B+48); (10) combined baseline, 24-month
delta radiomics, and 48-month delta radiomics (B+∆24+∆48); and (11) combined baseline
24-month timepoint, and 48-month timepoint(B+24+48).
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Table 4.4: Area under the receiver operating characteristic curve (AUC) along with the
95% confidence interval (CI) of AUC for radiomics-based models to predict progression to
≥30% reduction in eGFR at 60-month timepoint using single timepoints, delta-radiomics
features, and combined timepoints using radiomic features extracted from the non-cystic
kidney parenchyma and entire kidney. Asterisks indicate statistically significant differences
from baseline model performance (after Bonferroni-Holm correction for 10 multiple compar-
isons).

Radiomics model Non-cystic kidney Entire kidney

Baseline 0.68 [0.65, 0.71] 0.68 [0.66, 0.71]

∆ 24-Months 0.52 [0.49, 0.55] (p ≤ 0.001)* 0.55 [0.52, 0.58] (p ≤ 0.001)*

24-Months 0.70 [0.68, 0.72] (p = 0.675) 0.68 [0.65, 0.71] (p = 0.932)

∆ 48-Months 0.50 [0.47, 0.53] (p ≤ 0.001)* 0.56 [0.53, 0.59] (p ≤ 0.001)*

48-Months 0.70 [0.67, 0.72] (p = 0.763) 0.69 [0.66, 0.71] (p = 0.606)

Baseline + ∆ 24-Months 0.66 [0.63, 0.69] (p = 0.133) 0.67 [0.64, 0.69] (p = 0.834)

Baseline + 24-Months 0.67 [0.64, 0.70] (p = 0.084) 0.67 [0.64, 0.70] (p = 0.355)

Baseline + ∆ 48-Months 0.66 [0.63, 0.69] (p = 0.038) 0.67 [0.64, 0.69] (p = 0.372)

Baseline + 48-Months 0.67 [0.65, 0.70] (p = 0.399) 0.67 [0.64, 0.69] (p = 0.918)

Baseline + ∆ 24-Months +

∆ 48-Months

0.66 [0.63, 0.68] (p = 0.052) 0.65 [0.62, 0.67] (p = 0.025)

Baseline + 24-Months +

48-Months

0.64 [0.61, 0.67] (p = 0.006)* 0.65 [0.62, 0.68] (p = 0.023)
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Figure 4.3: Area under the receiver operating characteristic curve (AUC) values for pre-
diction to a ≥30% reduction in eGFR using radiomic features from the non-cystic kidney
parenchyma (blue) and the entire kidney (orange). The dotted line at an AUC of 0.5 is
random guessing. There were 11 radiomics models investigated using baseline and follow-up
timepoints: (1) baseline (B); (2) 24-month delta radiomics (∆24); (3) 24-month timepoint
(24); (4) 48-month delta radiomics (∆48); (5) 48-month timepoint (48); (6) combined base-
line and 24-month delta radiomics (B+∆24); (7) combined baseline and 24-month radiomics
(B+24); (8) combined baseline and 48-month delta radiomics (B+∆48); (9) combined base-
line and 48-month timepoint (B+48); (10) combined baseline, 24-month delta radiomics, and
48-month delta radiomics (B+∆24+∆48); and (11) combined baseline 24-month timepoint,
and 48-month timepoint(B+24+48).
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The model performances for the clinical model and clinical-radiomics combined models

are presented in Table 4.5. Baseline age had an AUC value of 0.57 and 0.51 for prediction

of progression to ≥CKD stage 3A and a ≥30% reduction in eGFR, respectively. Baseline

htTKV had modest AUC values of 0.72 and 0.68 for prediction to ≥CKD stage 3A and

≥30% reduction in eGFR, respectively. Finally, baseline eGFR had the highest AUC value

for prediction of progression to ≥CKD stage 3A of 0.88 and an AUC value of 0.65 for a ≥30%

reduction in eGFR. The clinical model incorporating all clinical features had an AUC value of

0.88 for prediction of progression to ≥CKD stage 3A and an AUC value of 0.68 for a ≥30%

reduction in eGFR. The largest increase in AUC for prediction of progression to ≥CKD

stage 3A for the combined clinical-radiomics model was from 0.88 to 0.90, using features

extracted from the entire kidney at the 48-month timepoint. The largest increase in AUC

for prediction of a ≥30% reduction in eGFR was from 0.68 to 0.71 using features extracted

from the kidney at the 24-month timpeoint. In summary, the performance of combined

clinical-radiomics models did not show statistically significant differences, as determined by

the DeLong test, compared to the performance of combined clinical models.
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Table 4.5: Area under the receiver operating characteristic curve (AUC) along with the
95% confidence interval (CI) of AUC for the clinical and combined clinical-radiomics models
to predict kidney function decline at the 60-month timepoint. Asterisks on AUC results
indicate performance statistically significant to combined clinical model performance. As-
terisks indicate statistically significant differences from baseline model performance (after
Bonferroni-Holm correction for 5 multiple comparisons).

Model ≥CKD stage 3A ≥30% reduction in eGFR

Clinical

Age 0.57 [0.55, 0.60] 0.51 [0.48, 0.54]

htTKV 0.72 [0.70, 0.74] 0.68 [0.65, 0.70]

eGFR 0.88 [0.87, 0.89] 0.65 [0.62, 0.68]

Combined clinical 0.88 [0.87, 0.89] 0.68 [0.65, 0.70]

Clinical + Baseline

Non-cystic kidney 0.89 [0.88, 0.90] (p = 0.930) 0.69 [0.67, 0.72] (p = 0.650)

Entire kidney 0.88 [0.86, 0.89] (p = 0.287) 0.70 [0.67, 0.72] (p = 0.485)

Clinical + 24-Months

Non-cystic kidney 0.89 [0.88, 0.90] (p = 0.425) 0.69 [0.67, 0.72] (p = 0.654)

Entire kidney 0.89 [0.88, 0.90] (p = 0.511) 0.71 [0.69, 0.74] (p = 0.238)

Clinical + 48-Months

Non-cystic kidney 0.87 [0.86, 0.89] (p = 0.200) 0.68 [0.65, 0.71] (p = 0.649)

Entire kidney 0.90 [0.88, 0.91] (p = 0.276) 0.70 [0.67, 0.73] (p = 0.209)

Clinical + Baseline +

24-Months

Non-cystic kidney 0.88 [0.87, 0.90] (p = 0.623) 0.66 [0.63, 0.68] (p = 0.060)

Entire kidney 0.87 [0.86, 0.89] (p = 0.220) 0.67 [0.64, 0.70] (p = 0.505)

Clinical + Baseline +

24-Months + 48-Months

Non-cystic kidney 0.87 [0.86, 0.89] (p = 0.167) 0.61 [0.58, 0.64] (p = 0.027)

Entire kidney 0.88 [0.87, 0.89] (p = 0.956) 0.66 [0.64, 0.69] (p = 0.142)
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4.3.2 Radiomic features at timepoints

The Spearman rank correlation coefficient was calculated to assess the relationship of ra-

diomic features at baseline, 24-month, 48-month, and 60-month timepoints. The Spearman

correlation coefficient was calculated on a single representative radiomic feature chosen fre-

quently during feature selection and subsequently used in the four predictive tasks: non-cystic

kidney parenchyma and entire kidney for the prediction of progression to ≥CKD stage 3A

and from the non-cystic kidney parenchyma and entire kidney parenchyma for prediction to

a ≥30% reduction in eGFR; the same features were analyzed using their calculated delta

feature to assess the relationship with the baseline feature.

For the prediction of kidney function decline to ≥CKD stage 3A, top features include

GLSZM size-zone non-uniformity normalized (SZNN) from the non-cystic kidney parenchyma

and NGTDM strength from the entire kidney (Figure 4.4-Figure 4.5). GLSZM quantifies

gray level zones, or number of connected voxels that share the same gray-level intensity, in

an image; GLSZM SZNN measures the variability of size zones, with a lower value indicating

more homogeneity among zone size volumes in an image [61]. The AUC values of GLSZM

SZNN in predicting kidney function decline with all of the data at baseline, 24-month time-

point, 48-month timepoint, and 60-month timepoint was 0.75 [0.69, 0.81], 0.73 [0.66, 0.79],

0.70 [0.63, 0.77], and 0.68 [0.60, 0.75], respectively. NGTDM quantifies the sum of absolute

differences of the difference between a gray level and the average gray levels of its neighbors;

NGTDM strength measures primitives in an image, with high values indicating a slow change

in intensity with more large coarse differences in gray-level intensities [61]. The AUC values

of NGTDM strength in predicting kidney function decline with all of the data at baseline,

24-month timepoint, 48-month timepoint, and 60-month timepoint was 0.75 [0.70, 0.82],

0.74 [0.69, 0.80], 0.74 [0.68, 0.81], and 0.75 [0.68, 0.81], respectively. Table 4.6 and Table 4.8

contain the Spearman correlation coefficients between baseline and timepoint features for

the non-cystic kidney and entire kidney features, respectively. Table 4.7 and Table 4.9 are
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the comparison of feature values between baseline and timepoints and between progressors

and non-progressors at timepoints using the Wilcoxon rank sum test for the non-cystic kid-

ney and entire kidney features, respectively. Figure 4.7 and Figure 4.9 are the histograms

of feature values for progressors and non-progressors to ≥CKD stage 3A for the non-cystic

kidney and entire kidney features, respectively.

Figure 4.4: Histogram counts of radiomic features extracted from the non-cystic kidney
for prediction of progression to ≥CKD stage 3A. The radiomic features were selected in all
single timepoint models of baseline, 24-month, and 48-month timepoints.
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Figure 4.5: Histogram counts of radiomic features extracted from the entire kidney for
prediction of progression to ≥CKD stage 3A. The radiomic features were selected in all
single timepoint models of baseline, 24-month, and 48-month timepoints.

101



Table 4.6: The Spearman rank correlation coefficients between the baseline and timepoint
feature and between the baseline and delta feature of GLSZM SZNN, used in baseline, 24-
month timepoint, and 48-month timepoint models for prediction of progression to ≥CKD
stage 3A using the non-cystic kidney for feature extraction.

Timepoint
Timepoint Feature

vs. Baseline

Delta Feature

vs. Baseline

24-month 0.636 -0.336

48-month 0.625 -0.349

60-month 0.601 -0.368

Table 4.7: The p-values obtained from the Wilcoxon rank sum test using radiomic feature
GLSZM SZNN from the non-cystic kidney for prediction of progression to ≥CKD stage
3A. A corrected p < 0.05 was significant for comparisons with baseline feature values, and
asterisks denote statistical significance after multiple comparison corrections.

Timepoint
<CKD stage 3A vs.

Baseline

≥CKD stage 3A vs.

Baseline

≥CKD stage 3A vs.

<CKD stage 3A

Baseline - - <0.001*

24-month 0.837 0.771 <0.001*

48-month 0.041 0.711 <0.001*

60-month 0.015* 0.699 <0.001*
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Figure 4.6: Scatter plots of radiomic feature GLSZM SZNN from the non-cystic kidney used
for the prediction of progression to ≥CKD stage 3A at 24-month, 48-month, and 60-month
timepoints, and its corresponding delta-feature from baseline at these timepoints.
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Figure 4.7: Histograms of radiomic feature values of GLSZM SZNN from the non-cystic
kidney for the prediction of progression to ≥CKD stage 3A histogram at baseline, 24-month,
48-month, and 60-month timepoints. GLSZM SZNN measures the variability of size zones
with a lower value indicating more homogeneity among zone size volumes (i.e., number of
connected voxels that share the same gray-level intensity) in an image.
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Table 4.8: The Spearman rank correlation coefficient was computed between the baseline and
timepoint feature and between the baseline and delta feature of NGTDM strength, used in
baseline, 24-month timepoint, and 48-month timepoint models for prediction of progression
to ≥CKD stage 3A using the entire kidney for feature extraction.

Timepoint
Timepoint Feature

vs. Baseline

Delta Feature

vs. Baseline

24-month 0.869 -0.304

48-month 0.865 -0.291

60-month 0.868 -0.276

Table 4.9: The p-values obtained from the Wilcoxon rank sum test using radiomic feature
NGTDM strength from the entire kidney for prediction of progression to ≥CKD stage 3A. A
corrected p < 0.05 was significant for comparisons with baseline feature values, and asterisks
denote statistical significance after multiple comparison corrections.

Timepoint
<CKD stage 3A vs.

Baseline

≥CKD stage 3A vs.

Baseline

≥CKD stage 3A vs.

<CKD stage 3A

Baseline - - <0.001*

24-month 0.963 0.678 <0.001*

48-month 0.184 0.494 <0.001*

60-month 0.040 0.163 <0.001*
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Figure 4.8: Scatter plots of radiomic feature NGTDM strength from the entire kidney used
for the prediction of progression to ≥CKD stage 3A at 24-month, 48-month, and 60-month
timepoints, and its corresponding delta-feature from baseline at these timepoints.

106



Figure 4.9: Histograms of radiomic feature values of NGTDM strength from the entire
kidney for the prediction of progression to ≥CKD stage 3A histogram at baseline, 24-month,
48-month, and 60-month timepoints. NGTDM strength measures primitives in an image
with high values indicating a slow change in intensity with more large coarse differences in
gray-level intensities.
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For prediction to a ≥30% reduction in eGFR, top features include GLCM informational

measure of correlation (IMC) 2 from the non-cystic kidney parenchyma and GLCM joint

energy from the entire kidney (Figure 4.10-Figure 4.11). GLCM is the second-order joint

probability function of the number of times the combinations of two gray levels occur in two

pixels in an image, and this work computed the GLCM at a distance of 1 pixel from the

center voxel. GLCM IMC2 assesses the correlation between the probability distribution of

pixel pairs and describes the complexity of texture, with a maximal value representing two

fully dependent and uniform distributions that share maximal mutual information with a

value approaching one [61]. The AUC values of GLCM IMC2 in predicting kidney function

decline with all of the data at baseline, 24-month timepoint, 48-month timepoint, and 60-

month timepoint was 0.64 [0.55, 0.71], 0.68 [0.60, 0.75], 0.67 [0.58, 0.75], and 0.62 [0.52,

0.71], respectively. GLCM joint energy is a measure of homogeneous patterns in the image,

with a greater energy having more instances of intensity value pairs that neighbor each

other at higher frequencies in the image [61]. The AUC values of GLCM joint energy in

predicting kidney function decline with all of the data at baseline, 24-month timepoint, 48-

month timepoint, and 60-month timepoint was 0.73 [0.65, 0.81], 0.73 [0.65, 0.80], 0.70 [0.60,

0.77], and 0.68 [0.58, 0.75], respectively. Table 4.10 and Table 4.12 contain the Spearman

correlation coefficients between baseline and timepoint features for the non-cystic kidney

and entire kidney features, respectively. Table 4.11 and Table 4.13 are the comparison of

feature values between baseline and timepoints and between progessors and non-progressors

at timepoints using the Wilcoxon rank sum test for the non-cystic kidney and entire kidney

features, respectively. Figure 4.13 and Figure 4.15 are the histograms of feature values for

progressors and non-progressors to ≥30% reduction in eGFR for the non-cystic kidney and

entire kidney features, respectively.
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Figure 4.10: Histogram counts of radiomic features extracted from the non-cystic kidney for
prediction to a ≥30% reduction in eGFR. The radiomic features were selected in all single
timepoint models of baseline, 24-month, and 48-month timepoints.
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Figure 4.11: Histogram counts of radiomic features extracted from the entire kidney for
prediction to a ≥30% reduction in eGFR. The radiomic features were selected in all single
timepoint models of baseline, 24-month, and 48-month timepoints.
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Table 4.10: The Spearman rank correlation coefficient was computed between the baseline
and timepoint feature and between the baseline and delta feature of GLCM IMC2, used
in baseline, 24-month timepoint, and 48-month timepoint models for prediction to a ≥30%
reduction in eGFR using the non-cystic kidney for feature extraction.

Timepoint
Timepoint Feature

vs. Baseline

Delta Feature

vs. Baseline

24-month 0.634 -0.504

48-month 0.574 -0.491

60-month 0.524 -0.545

Table 4.11: The p-values obtained from the Wilcoxon rank sum test using radiomic feature
GLCM IMC2 from the non-cystic kidney for prediction to a ≥30% reduction in eGFR. A
corrected p < 0.05 was significant for comparisons with baseline feature values, and asterisks
denote statistical significance after multiple comparison corrections.

Timepoint
<30% reduction in eGFR

vs. Baseline

≥30% reduction in eGFR

vs. Baseline

<30% reduction in eGFR

vs. ≥30% reduction in eGFR

Baseline - - 0.004*

24-month <0.001* 0.012* <0.001*

48-month <0.001* <0.001* <0.001*

60-month <0.001* 0.002* 0.011*
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Figure 4.12: Scatter plots of radiomic feature GLCM IMC2 from the non-cystic kidney
used for the prediction to a ≥30% reduction in eGFR at 24-month, 48-month, and 60-month
timepoints, and its corresponding delta-feature from baseline at these timepoints.
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Figure 4.13: Histograms of radiomic feature values of GLCM IMC2 from the non-cystic
kidney for the prediction to a ≥30% reduction in eGFR at baseline, 24-month, 48-month,
and 60-month timepoints. GLCM IMC2 assesses the correlation between the probability
distribution of pixel pairs and describes the complexity of texture, with a value approaching
one representing two fully dependent and uniform distributions.
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Table 4.12: The Spearman rank correlation coefficient was computed between the baseline
and timepoint feature and between the baseline and delta feature of GLCM joint energy,
used in baseline, 24-month timepoint, and 48-month timepoint models for prediction to a
≥30% reduction in eGFR using the entire kidney for feature extraction.

Timepoint
Timepoint Feature

vs. Baseline

Delta Feature

vs. Baseline

24-month 0.807 -0.292

48-month 0.755 -0.388

60-month 0.738 -0.407

Table 4.13: The p-values obtained from the Wilcoxon rank sum test using radiomic feature
GLCM joint energy from the entire kidney for prediction to a ≥30% reduction in eGFR. A
corrected p < 0.05 was significant for comparisons with baseline feature values, and asterisks
denote statistical significance after multiple comparison corrections.

Timepoint
<30% reduction in eGFR

vs. Baseline

≥30% reduction in eGFR

vs. Baseline

<30% reduction in eGFR

vs. ≥30% reduction in eGFR

Baseline - - <0.001*

24-month 0.359 0.478 <0.001*

48-month 0.719 0.287 <0.001*

60-month 0.965 0.163 <0.001*
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Figure 4.14: Scatter plots of radiomic feature GLCM joint energy from the entire kidney
used for the prediction to a ≥30% reduction in eGFR at 24-month, 48-month, and 60-month
timepoints, and its corresponding delta-feature from baseline at these timepoints.
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Figure 4.15: Histograms of radiomic feature values of GLCM joint energy from the entire
kidney for the prediction to a ≥30% reduction in eGFR at baseline, 24-month, 48-month,
and 60-month timepoints. GLCM joint energy is a measure of homogeneous patterns in the
image, with a greater energy having more instances of intensity value pairs that neighbor
each other at higher frequencies in the image.
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4.4 Discussion

The purpose of this work was to determine whether radiomic features from 24-month and 48-

month timepoints provide additive power versus baseline texture alone in predicting kidney

function decline of patients with ADPKD. Utilizing delta radiomic features did not improve

the predictive power for progression to ≥CKD stage 3A or a ≥30% reduction in eGFR,

and delta radiomic features alone had close to random guessing performance (AUC=0.5).

Furthermore, it is interesting to note that the performance of single timepoint models were

not statistically significantly different from baseline performance in prediction for progression

to ≥CKD stage 3A and a >30% reduction in eGFR. In combining features from timepoints

versus baseline texture alone, the largest increase in AUC value was from 0.75 [0.72, 0.77] to

0.81 [0.79, 0.82] using baseline, 24-month, and 48-month texture from the entire kidney in

predicting progression to ≥CKD stage 3A, which was statistically significantly different from

baseline performance. Radiomic features extracted from the non-cystic kidney parenchyma

had moderate performance for the prediction of kidney function decline, and, unlike the

results from the entire kidney, there was no improvement in performance with the non-cystic

kidney parenchyma in either predictive task by combining timepoints.

The Spearman rank correlation coefficient was used to assess the relationship between

a single representative radiomic feature from each prediction model at baseline, 24-month,

and 48-month timepoints and also the relationship between the same feature at baseline

and its corresponding delta feature. In general, a strong, positive correlation coefficient

with baseline and timepoint features was observed and this relationship was lost using delta

radiomics. The relationship between the features at baseline and delta features had low

to moderate negative correlation coefficients. The positive correlation coefficients between

baseline and follow-up timepoints reflect the similar AUC values for prediction tasks at single

timepoints using the representative radiomic features. The radiomic features from baseline to

60 months were highly correlated and highlights their consistency over time. This consistency
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likely contributes to the lack of statistically significant differences in performance between

the 24-month and 48-month timepoints compared to baseline.

The feature values at 24-month, 48-month, and 60-month timepoints of patients who

did or did not progress to ≥CKD stage 3A were not statistically significantly different from

the corresponding baseline features, except for the GLSZM SZNN feature extracted from

non-cystic kidney parenchyma at the 60-month timepoint for patients who did not progress

to ≥CKD stage 3A. Patients who experienced a ≥30% reduction and patients who did not

experience a ≥30% reduction in eGFR had similar trends with the GLCM joint energy fea-

ture extracted from the entire kidney, but the GLCM IMC2 feature extracted from the the

non-cystic kidney at 24-month, 48-month, and 60-month timepoints were statistically sig-

nificantly different from baseline values. At baseline, 24-month, 48-month, and 60-month

timepoints, the feature values were statistically significantly different between those who did

or did not progress to ≥CKD stage 3A or experience a ≥30% reduction in eGFR. Exploring

single features and how they change over time within and between groups provided insights

as to why there was a poor predictive performance using delta radiomics. Regardless if

patients progressed or did not progress to either predictive tasks, features were not statis-

tically significantly different from baseline and the change in radiomic features at follow-up

timepoints was similar between patients who progressed or did not progress.

The performance of the combined clinical-radiomics models did not exhibit statistically

significant differences compared to that of the combined clinical model, which included base-

line age, baseline htTKV, and baseline eGFR. These results contrast with findings from pre-

vious ADPKD radiomics studies that utilized one imaging timepoint. The work presented in

this chapter differed from previous literature in a few ways. The first study utilizing radiomic

features for kidney function decline in patients with ADPKD was published by Kline et al.

[52], and this work extracted radiomic features from T2W-FS MR images from 122 patients

who had eGFR values > 70 mL/min/1.73m2 at baseline and assessed the ability to pre-
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dict kidney function decline at eight-year follow up; incorporating texture into a traditional

model with baseline age, htTKV, and eGFR, the AUC increased for CKD stage 3A patients

from 0.86 to 0.94, for CKD stage 3B patients from 0.90 to 0.96, and for a ≥30% reduction in

eGFR from 0.75 to 0.85. The previous work predicted kidney function decline at eight year

follow-up which allows for three more years of disease progression relative to the five years

presented in this work; additionally, the mean eGFR of the patients that progressed was

80.8-87.4 mL/min/1.73m2, and for the patients who did not progress the mean eGFR range

was 94.2-100 mL/min/1.73m2. The cohort of patients presented in this chapter that pro-

gressed to either prediction task had a lower baseline mean eGFR of 71.05 mL/min/1.73m2

(≥CKD stage 3A) and 79.21 mL/min/1.73m2 (≥30% reduction in eGFR), and for the pa-

tients who did not progress the baseline mean eGFR was 90.5 mL/min/1.73m2 (≥CKD

stage 3A) and 86.09 mL/min/1.73m2 (≥30% reduction in eGFR); the ability of eGFR alone

to predict kidney function in this study was higher than the study by Kline et al. [52]:

0.75-0.77 (≥CKD stage 3A) and 0.55 (≥30% reduction in eGFR) versus the eGFR predic-

tion in this work of 0.88 (≥CKD stage 3A) and 0.65 (≥30% reduction in eGFR). Xie et

al. [55] examined the non-contrast CT images of 340 ADPKD patients and assessed the

predictive value of radiomic features extracted from the renal (kidney) parenchyma volume

for ADPKD patients that had a reduction of 30% of baseline eGFR at five-year follow up.

When radiomics and renal parenchymal volume were combined, the predictive power im-

proved versus radiomic features alone from 0.85 to 0.90 and outperformed the performance

using TKV alone [55]; however, this study did not report the performance of baseline eGFR

in the prediction of kidney function decline. The patients from the previous work who expe-

rienced a ≥30% reduction in eGFR also had a higher baseline mean eGFR than the patient

cohort presented in this chapter: 86.9-87.1 mL/min/1.73m2 for patients who progressed and

97.3-98.3 mL/min/1.73m2 for the patients who did not progress. In summary, the baseline

subject characteristics (age, htTKV, and eGFR) and time from baseline to follow-up differed
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from previous published work in predicting kidney function decline of ADPKD patients using

radiomic features.

Although radiomic features showed predictive power, future work will investigate change

in texture of patients with either a stricter baseline eGFR >90 mL/min/1.73m2 or match

patients for baseline eGFR. In chapter 2, PKD1 and PKD2 patients were matched for age,

gender, and MIC to account for confounding clinical factors that would impact the ability

to capture texture differences that were associated with genotype in the non-cystic kidney

parenchyma. Additionally, as patient age there are age-related factors that contribute to dis-

ease progression that may impact texture features, versus capturing cyst growth in younger

patients who progress earlier and faster to ESKD [56]. This reiterates the complexity and

heterogeneity of ADPKD phenotype, and accounting for clinical characteristics in radiomics

studies is of utmost importance.

A limitation of this study was that only one MR pulse sequence was used for feature ex-

traction. Li et al. [54] combined radiomic features from T1-weighted fat suppression (T1W-

FS) MR images and T2W-FS MR images with clinical features, and the ability to classify

patients in CKD stage 1 and 2 versus ≥CKD stage 3A improved from using radiomic fea-

tures alone from 0.75 to 0.84. T2W-FS has high contrast between cyst and parenchyma and

T1W-FS shows hemorrhagic cyst and residual kidney parenchyma, and radiomic features ex-

tracted from different MR pulse sequences provide complementary quantitative information

that may associate with risk to kidney function decline [54]. Future work could investigate

multiparametric MRI texture across timepoints such as T1W-FS, T1 and T2 quantitative

maps, and diffusion-weighted imaging, all of which have shown importance in kidney imaging

[95, 96].

Since medical imaging is clinically indicated for ADPKD patients to monitor disease pro-

gression to measure TKV, investigating change in texture takes advantage of the wealth of

imaging information across timepoints for ADPKD patients. Delta radiomics is one method
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of utilizing change in texture features over time, but there are other methods that could be

of interest in ADPKD radiomics studies. For example, future work could investigate long

short-term memory (LSTM) recurrent neural networks that exploit long-term dependencies

between time steps of sequential data by incorporating distinctive features that are respon-

sible for retaining information [47, 97]. In using LSTM networks of temporal imaging of

ADPKD there may not be a need to calculate delta features. LSTM networks have been

used in breast cancer to incorporate temporal information to improve overall classification

performance to discriminate future lesions as malignant or benign, but its application in

ADPKD has not been investigated [47, 98].

4.5 Conclusion

Based on ROC performance, the data indicate that delta-radiomic features did not improve

the predictive power for progression to ≥CKD stage 3A or a ≥30% reduction in eGFR at

60-months follow-up. The performance using features from single timepoint models (24-

month and 48-month timepoints) were not statistically significantly different from baseline

performance. There was a statistically significant difference from baseline performance in

combining baseline, 24-month, and 48-month texture from the entire kidney in predicting

progression to ≥CKD stage 3A. MRI radiomic features extracted from the non-cystic kidney

parenchyma show prognostic power across baseline, 24-month, and 48-month timepoints,

revealing prognostic power in predicting kidney function decline without the presence of

cysts.
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CHAPTER 5

MAGNETIC RESONANCE FINGERPRINTING RADIOMICS

ANALYSIS IN HEALTHY CONTROLS AND ADPKD

PATIENTS: A PILOT STUDY

5.1 Introduction

Quantitative magnetic resonance imaging (MRI) of autosomal dominant polycystic kidney

disease (ADPKD) patients has the ability to characterize the non-cystic kidney tissue mi-

crostructure, stratify based on risk-class, and differentiate ADPKD cohorts from healthy

controls [20, 23, 24]. Quantitative MRI allows for direct quantitation of an image, thus

removing the variability of interpretation, and helps further personalized tracking of patho-

logical changes in tissue. Siedek et al. [24] proposed mean T2 of kidney parenchyma as

an imaging biomarker for ADPKD, since it showed strong correlation with cyst fraction

and served as a surrogate to differentiate between kidney cyst fraction groups. However,

limitations of conventional quantitative MRI techniques include speed of acquisition and

accurate quantitation. Magnetic resonance fingerprinting (MRF) is the simultaneous non-

invasive quantification of tissues using pseudorandom acquisition parameters (e.g., repetition

time and flip angle), that cause unique signal evolutions known as "fingerprints" [26]. MRF

has dramatically decreased the acquisition time of quantitative MRI maps by deliberately

varying acquisition parameters in a pseudo-random fashion, which differs from conventional

methods of repeated, serial acquisition of data. MRF allows for simultaneous calculation

of various MR contrasts, such as T1 and T2 relaxation times, in a single acquisition [25].

The MRF acquisition schemes were initially developed for brain imaging. However, a rapid

kidney MRF method has recently been established [27]. The high efficiency and accuracy of

MRF multiparametric mapping may provide personalized medicine opportunities and clinical

promise for patients with ADPKD.
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Mayo Imaging Classification (MIC) stratifies ADPKD patients from low and intermediate

risk (MIC 1A-1B) to high risk (1C-1E) for kidney function decline and serves as a prognostic

biomarker by incorporating a patient’s height-corrected total kidney volume (htTKV) and

age. Currently, there is no established risk-stratification method for children with ADPKD

because MIC classification has not been validated in ADPKD patients less than 15 years of

age. There is a need to better identify ADPKD children at higher risk of disease progression

to both improve clinical care and allow for their inclusion in clinical trials.

Radiomic features have been shown to predict kidney function decline in ADPKD pa-

tients, classify ADPKD genotype and MIC using texture analysis of the non-cystic kidney

parenchyma, and classify chronic kidney disease (CKD) stage [52, 54, 84, 85]. A recent

published study used radiomic features to predict risk of progression in young ADPKD pa-

tients from T2-weighted (T2W) MR images [99]; in predicting fast or slow progression in

htTKV growth (median annual change of ≥7.4%) at a 3-year follow-up, the AUC value in-

creased from 0.56 when baseline htTKV alone was used to 0.70 when baseline htTKV was

combined with kidney texture features [99]. In extracting radiomic features from T2W MR

and T1-weighted (T1W) MR images, a normalization of signal intensity is required for fea-

ture extraction; although normalization has shown to improve classification and prediction

performance, this step alters the original texture in an image, an effect that varies among

normalization methods [40, 84]. Quantitative MRI measures tissue-specific properties (e.g.,

T1 relaxation, T2 relaxation), thus removing the pre-processing step of image normalization

for feature extraction. Radiomic features from MRF-acquired T1 and T2 maps of ADPKD

children and young adults may provide the ability to characterize the non-cystic kidney tissue

and cystic tissue to better identify those at a high-risk for kidney function decline, without

the need for image normalization with the ability to acquire images in a clinically relevant

time-frame.
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This exploratory aim will (1) compare kidney segmentation between two segmenters

from different imaging sites and the effect on downstream non-cystic kidney parenchyma

segmentation using three cyst removal methods and (2) investigate radiomic features from

MRF-acquired T1 and T2 maps from a cohort of ADPKD children and young adults in

comparison to a cohort of healthy controls. The work in this aim furthers the use of radiomic

features extracted from the non-cystic kidney parenchyma of ADPKD children and young

adults to stratify risk and capture early cystogenesis.

5.2 Methods

5.2.1 Database

In this work there were a total of 25 individuals: 15 ADPKD children and young adults and 10

healthy adult controls (Table 5.1). The healthy controls cohort were not age matched to the

ADPKD cohort. A total of 15 ADPKD children and young adults were imaged at two sites:

Northshore Hospital and the University of Chicago (n=8) and Cleveland Clinic Hospital and

Case Western Reserve University (n=7). Completed measurements of the ADPKD cohort

include body surface area-total kidney volume (BSA-TKV) and htTKV; total kidney volume

(TKV) values are adjusted for body surface area (BSA) to account for the impact of somatic

kidney growth on both TKV and total cyst volume (TCV) [100].
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Table 5.1: ADPKD subject characteristics (n=14) based on mean age, sex, mean BSA-TKV,
and mean htTKV. There was one patient whose clinical information was not completed at
the time of this study.

Age group Mean age Sex Mean BSA-TKV (ml/m) Mean htTKV (ml/m)

[min, max] (M:F) [min, max] [min, max]

<15 years (n=7) 11.25 1:6 165.86 144.91

[8.50, 12.50] [137.37, 203.21] [117.20, 178.50]

>15 years (n=7)

MIC 1A (n=1) 18.17 0:1 150.58 141.40

MIC 1B (n=3) 20.19 3:0 227.42 252.50

[18.25, 23.83] [218.16, 239.95] [243.60, 270.20]

MIC 1C (n=3) 20.14 2:1 277.37 280.70

[17.25, 25.75] [245.28, 296.36] [249.50, 305.10]

Figure 5.1: T1 (top) and T2 (bottom) MRF maps of three ADPKD patients ranging from
the lowest cyst burden (left) to the highest cyst burden (right). The images shown are
cropped to the kidneys from the original image and are in units of milliseconds (ms).
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5.2.2 MRF acquisition and imaging parameters

The MRF images acquired are based on acquisition parameters published by MacAskill et. al

[27], a rapid kidney MRF technique at 3.0 T for rapid and simultaneous quantification of

multiple tissue parameters in a single scan. This 15-second kidney MRF acquisition was

designed with 12 acquisition segments, a range of low flip angles (5°–12°) to limit the impact

of B1 heterogeneities, multiple magnetization preparation schema (T1, T2, and fat suppres-

sion), and an undersampled spiral trajectory (Figure 5.2). Each of the 12 segments consisted

of different magnetization preparations, and a total of 144 consecutive MRF readouts were

acquired after each preparation module. The two-dimensional kidney MRF technique imple-

ments parameters from previous brain and heart MRF acquisition schemes [101, 102]. The

kidney MRF dictionary was generated using Bloch simulations with the MRF acquisition

parameters and incorporated T1 and T2 values; each image voxel of the T1 and T2 maps

was generated using the best-matching entry in the dictionary with the acquired MRF signal

evolution profile of the acquired MRF data.

Coronal T1 and T2 maps were acquired on 3.0 T MRI scanners. MRF imaging param-

eters were field of views between 400x400 mm-450x450 mm, matrix sizes between 256x256-

288x288, image slice thickness of 5.0 mm, and a pixel size of 1.5625x1.5625 mm. The MRF

data for the healthy controls were acquired on the central sections of the kidneys and did

not include full kidney volumes.
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Figure 5.2: Schematic of the MRF acquisition and postprocessing methodology. The kid-
ney MRF acquisition combines 12 acquisition segments with each having a magnetization
preparation (T1, T2, or no preparation), fat suppression (FS), and 144 fast imaging with
steady-state free precession (FISP) MRF imaging readouts. The flip angle pattern over the
1728 total MRF data points is shown at the bottom. Vertical dashed lines within the flip
angle profile indicate the 12 different segments. Reprinted with permission from MacAskill,
et al. [27].

5.2.3 Segmentation

Manual kidney segmentations were completed for both the ADPKD and healthy control

cohorts. For the ADPKD cohort, kidney segmentations were completed by two segmenters

from different imaging sites; the two segmenters were investigators familiar with kidney

anatomy. All kidneys were manually segmented from T1 maps; the same segmentations were

applied to T2 for downstream feature extraction because T1 and T2 maps are inherently co-

registered. To remove cysts from the ADPKD kidney, three methods were used: (1) a fixed

threshold of 2160 ms from T1 maps, (2) an adaptive manual threshold on a per-image basis

for each patient from their T1 maps, and (3) an open-source fuzzy c-means (FCM) clustering
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algorithm [103]. The fixed threshold of 2160 ms was based on previous work at Case Western

Reserve University. The FCM algorithm clustering process analyzes the histogram of image

intensities rather than on the raw image data [103].

This work used kidney and non-cystic kidney segmentations from (1) all available im-

ages and (2) ±1 from the largest coronal image of the left and right kidney (total of three

central kidney sections per kidney). The ability to differentiate ADPKD from a healthy

cohort using the central sections of the kidney will be investigated in comparison to using

all available images; this approach aims to reduce the time required for segmentation and

feature extraction. The Dice similarity coefficient (DSC) was used to (1) assess similarity

between the manual kidney segmentations from two segmenters from different imaging sites

(the University of Chicago and Case Western Reserve University) and (2) assess similarity

of the subsequent non-cystic kidney parenchyma masks from these manual kidney segmen-

tations using the three cyst removal methods: fixed threshold, adaptive manual threshold,

and FCM. DSC evaluates the agreement or overlap (0 being no overlap and 1 being perfect

overlap).

5.2.4 Feature extraction and classification

Pyradiomics [61] was used for feature extraction on the images, and a fixed bin number

discretization method was implemented using 64 bins for gray-level discretization. Features

were extracted from the non-cystic kidney parenchyma and the entire kidney of the ADPKD

cohort and from the entire kidney from the healthy controls cohort. Fourty-two features

were extracted per kidney: first-order (18) and gray-level co-occurrence matrix (GLCM)

(24). Radiomic features extracted from images, i, were combined using a weighted-average

for the left and right kidney individually (introduced in Chapter 4):

RFweighted average =

∑
iRFslice,i · weightsi∑

i weightsi
. (5.1)
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The weights were calculated by dividing the number of voxels in a kidney segmentation of a

given image by the total number of voxels across all of the kidney segmentations of the MRI

sections, i :

weightsi =
Number of voxelsseg,i∑
i Number of voxelsseg,i

. (5.2)

Finally, the left and right kidney features were averaged for a representative feature value.

Radiomic features were calculated from both the non-cystic kidney parenchyma and entire

kidney for each patient.

The first-order means of the T1 and T2 maps were first investigated as previous research

has proposed mean T2 as a potential imaging biomarker in ADPKD [20, 24]. The mean T1

and T2 of the ADPKD and healthy cohort was compared using the Wilcoxon rank sum test

for significance for both the non-cystic parenchyma and entire kidney (including cysts) [68].

The relationship of mean T1 and mean T2 values between the entire kidney and non-cystic

kidney parenchyma and the mean T1 and mean T2 with cyst fraction was assessed using

the Pearson correlation coefficient; additionally, the relationship between cyst fraction and

imaging biomarkers, BSA-TKV and htTKV, was investigated. The cyst fraction for each

ADPKD patient was determined as follows: (1) dividing the total number of voxels in the

non-cystic kidney segmentations by the total number of voxels in the kidney segmentations,

yielding the non-cystic kidney parenchyma fraction, and (2) subtracting this fraction from

one to derive the cyst fraction.

Two radiomic feature schemes were used to investigate the ability of features to classify

the ADPKD cohort from the healthy controls cohort: (1) using just the mean T1 and T2

and (2) merging radiomic features (first order and GLCM texture features) for classification.

A linear discriminant analysis (LDA) classifier using a leave-one-patient-out training/testing

approach was implemented. A leave-one-patient-out training/testing approach performs fea-

ture selection each iteration when one patient’s data is left out of the training partition (15

iterations total). For each training partition the top-two uncorrelated (Pearson correlation
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threshold of 0.7 with any other selected feature) performing features from the 42 total ex-

tracted features were determined using the area under the receiver operating characteristic

curve (AUC). Performance of the LDA was assessed using ROC analysis with the AUC used

as the figure of merit.

In comparing mean T1 and mean T2 values and using radiomic features for classification,

the adaptive manual threshold cyst removal method for the non-cystic kidney parenchyma

was used.

5.3 Results

5.3.1 Segmentation comparisons

The DSC calculated in comparing manual kidney segmentations and cyst removal methods

are listed in Table 5.2. The mean DSC increased when restricting the segmentations to the

central kidney sections. The mean DSC [95% CI] of the manual kidney segmentations for

all images was 0.857 [0.835, 0.880] versus 0.911 [0.901, 0.922] for the central kidney sections

(Figures 5.3-5.4).

Table 5.3 is the DSC of cyst removal methods of one imaging site (the University of

Chicago). The fixed and adaptive manual threshold methods had higher DSC than FCM:

0.969-0.975 and 0.836-0.855. Figure 5.5 show an example of the FCM cyst removal segmen-

tation for ADPKD patients with both a high and low cyst burden, as well as healthy control

kidneys; this example shows that when the cyst burden was low, the FCM method clustered

the signal intensities with respect to the kidney medulla and cortex.

In implementing the adaptive manual threshold for cyst removal, the mean T1 threshold

was 2218 ms with a minimum value of 1920 ms and a maximum value of 2820 ms (Figure

5.6). The percent difference between the mean T1 threshold value using the adaptive manual

threshold and the fixed threshold of 2160 ms was 2.65%.
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Table 5.2: Mean Dice similarity coefficient (DSC) [95% CI] of manual kidney segmenta-
tions and subsequent non-cystic kidney parenchyma segmentations between two different
segmenters.

Segmentation Method Mean DSC Mean DSC

All images Central images

Kidney Manual 0.857 [0.835, 0.880] 0.911 [0.901, 0.922]

Non-cystic Fixed threshold 0.856 [0.833, 0.879] 0.907 [0.896, 0.918]

Non-cystic Adaptive manual threshold 0.856 [0.833, 0.879] 0.909 [0.897, 0.920]

Non-cystic FCM 0.781 [0.753, 0.809] 0.853 [0.834, 0.872]

Table 5.3: Mean Dice similarity coefficient (DSC) [95% CI] of cyst removal methods to obtain
the non-cystic kidney parenchyma masks using kidney segmentations from one segmenter
(the University of Chicago).

Comparison Mean DSC Mean DSC

All images Central images

FCM vs. Fixed 0.842 [0.820, 0.863] 0.855 [0.834, 0.876]

FCM vs. Adaptive manual 0.836 [0.814, 0.858] 0.846 [0.823, 0.870]

Adaptive manual vs. Fixed 0.975 [0.971, 0.978] 0.969 [0.963, 0.976]
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Figure 5.3: Box and whisker plots of Dice similarity coefficient (DSC) between two seg-
menters using segmentations of all available images of the left and right kidney. The images
show the red and blue corresponding to the segmentations, and purple is the overlap be-
tween the two segmentations. The box represents the interquartile range, with the central
line indicating the median value; the whiskers extend to the minimum and maximum values,
while outliers are represented as individual data points.
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Figure 5.4: Box and whisker plots of Dice similarity coefficient (DSC) between two seg-
menters using three central sections of the left and right kidney. The images show the red
and blue corresponding to the segmentation, and purple is the overlap. The box represents
the interquartile range, with the central line indicating the median value; the whiskers ex-
tend to the minimum and maximum values, while outliers are represented as individual data
points.
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Figure 5.5: The fuzzy c-means (FCM) cyst removal from the entire kidney from an ADPKD
patient with a high total cyst burden (37.99%) (top), an ADPKD patient with a low total
cyst burden (1.98%) (middle), and a healthy control (bottom). Note that the FCM cyst
removal method segmented the kidney medulla and cortex of the ADPKD patient with a
low cyst burden and the healthy control. The colors represent the number of clusters (n=3)
in the FCM algorithm: background (red), kidney (green), and cyst (blue).
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Figure 5.6: Box and whisker plots of the adaptive manual T1 threshold value chosen on
a per image basis for each patient. The box and whisker plots of each patient are images
that presented macroscopic cysts and subsequently used for cyst removal. The red dashed
line represents the fixed threshold value of 2160 ms for cyst removal. The box represents the
interquartile range, with the central line indicating the median value; the whiskers extend to
the minimum and maximum values, while outliers are represented as individual data points.

5.3.2 Mean T1 and T2

Table 5.4 contains the mean T1 and T2 values of the segmented kidneys from the healthy

control cohort and of the kidney and non-cystic kidney parenchyma of the ADPKD cohort.

The mean T1 and mean T2 values of the kidney and non-cystic kidney segmentation methods

were significantly different from healthy controls, except for the FCM cyst removal method
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from the T1 maps. Figure 5.7 and Figure 5.8 contain the box and whisker plots of T1 and

T2 mean values, respectively, from using all of the images and the central kidney sections for

the ADPKD patients. Figure 5.9 and Figure 5.10 are the scatter plots of T2 values versus

T1 values for the healthy and ADPKD cohorts using all images and central kidney sections,

respectively; the scatter plots contain paired numbers that match the non-cystic values to

the entire kidney values from the same ADPKD patient.

Table 5.4: Mean T1 and T2 [95% CI] of manual kidney segmentations and non-cystic kidney
segmentations using the cyst removal methods. A p < 0.05 was significant from the healthy
control cohort using Wilcoxon rank sum test. Asterisks indicate statistically significant
differences (after Bonferroni-Holm correction for 8 multiple comparisons).

MRF Map
Healthy control

kidney

ADPKD

kidney

Fixed threshold

non-cystic

Adaptive manual threshold

non-cystic

FCM

non-cystic

T1 (All) - 1869.06 1663.48 1677.36 1633.12

[1770.26, 1967.87] [1619.07, 1707.89] [1629.82, 1724.91] [1555.99, 1710.26]

(p ≤ 0.001)* (p = 0.002)* (p = 0.001)* (p = 0.157)

T1 (Central) 1544.50 1909.41 1680.47 1699.74 1656.07

[1501.62, 1587.37] [1803.35, 2015.48] [1634.82, 1726.13] [1647.23, 1752.25] [1576.57, 1735.57]

(p ≤ 0.001)* (p = 0.002)* (p ≤ 0.001)* (p = 0.063)

T2 (All) - 89.72 77.83 78.07 78.64

[81.99, 97.44] [75.04, 80.62] [75.28, 80.87] [75.38, 81.90]

(p ≤ 0.001)* (p = 0.007)* (p = 0.004)* (p = 0.007)*

T2 (Central) 72.15 90.82 78.14 78.44 79.07

[68.93, 75.36] [83.37, 98.27] [75.34, 80.95] [75.61, 81.27] [75.77, 82.36]

(p ≤ 0.001)* (p = 0.005)* (p = 0.004)* (p = 0.005)*
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Figure 5.7: Box and whisker plots comparing the mean T1 values obtained from the entire
kidney and non-cystic (NC) kidney parenchyma of the ADPKD cohort, using all available
images and central kidney sections, alongside the healthy controls’ kidneys. The cyst removal
methods from the ADPKD kidney were (1) a fixed threshold of 2160 ms from T1 maps, (2)
an adaptive manual threshold on a per-image basis for each patient from their T1 maps, and
(3) a fuzzy c-means (FCM) clustering algorithm. The box represents the interquartile range,
with the central line indicating the median value; the whiskers extend to the minimum and
maximum values, while outliers are represented as individual data points.
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Figure 5.8: Box and whisker plots comparing the mean T2 values obtained from the entire
kidney and non-cystic (NC) kidney parenchyma of the ADPKD cohort, using all available
images and central kidney sections, alongside the healthy controls’ kidneys. The cyst removal
methods from the ADPKD kidney were (1) a fixed threshold of 2160 ms from T1 maps, (2)
an adaptive manual threshold on a per-image basis for each patient from their T1 maps, and
(3) a fuzzy c-means (FCM) clustering algorithm. The box represents the interquartile range,
with the central line indicating the median value; the whiskers extend to the minimum and
maximum values, while outliers are represented as individual data points.
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Figure 5.9: Mean T2 versus T1 of the entire kidney and non-cystic kidney parenchyma
compared with healthy controls using all the images from the ADPKD cohort. Each red
data point (kidney) corresponds with a green data point (non-cystic kidney parenchyma) of
the same patient.
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Figure 5.10: Mean T2 versus T1 of the entire kidney and non-cystic kidney parenchyma com-
pared with healthy controls using the central kidney sections from the ADPKD cohort. Each
red data point (kidney) corresponds with a green data point (non-cystic kidney parenchyma)
of the same patient.

Pearson correlation coefficient between the mean T1 values of the kidney and non-cystic

kidney parenchyma using all images and central kidney sections were 0.54 and 0.53, respec-

tively, and the the mean T2 of the kidney and non-cystic kidney parenchyma were 0.28 and

0.18, respectively (Figure 5.11-Figure 5.12). Pearson correlation coefficient between cyst

fraction and mean T1 values from the entire kidney using all images and central kidney sec-

tions were 0.91 and 0.84, respectively (Figure 5.13); Pearson correlation coefficient between
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cyst fraction and mean T1 values from the non-cystic kidney parenchyma using all images

and central kidney sections were 0.28 and 0.18, respectively (Figure 5.14). Pearson correla-

tion coefficient between cyst fraction and mean T2 values from the entire kidney using all

images and central kidney sections were 0.49 and 0.60, respectively (Figure 5.13); Pearson

correlation coefficient between cyst fraction and mean T2 values from the non-cystic kidney

parenchyma using all images and central kidney sections were 0.26 and 0.13, respectively

(Figure 5.14).

The Pearson correlation coefficient between cyst fraction and htTKV was 0.51, and the

Pearson correlation coefficient between cyst fraction and BSA-TKV was 0.61 (Figure 5.17-

Figure 5.18).
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Figure 5.11: Mean T1 (left) and mean T2 (right) of the non-cystic kidney parenchyma
versus the entire kidney using all the images from the ADPKD cohort, shown with the fitted
Pearson line and Pearson correlation coefficient.

Figure 5.12: Mean T1 (left) and mean T2 (right) of the non-cystic kidney parenchyma
versus the entire kidney using the central kidney sections from the ADPKD cohort, shown
with the fitted Pearson line and Pearson correlation coefficient.
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Figure 5.13: Mean T1 of the entire kidney (left) and non-cystic kidney parenchyma (right)
with respect to cyst volumes using all images from the ADPKD cohort, shown with the fitted
Pearson line and Pearson correlation coefficient. The legend contains the lowest to highest
cyst fractions values.

Figure 5.14: Mean T1 of the entire kidney (left) and non-cystic kidney parenchyma (right)
with respect to cyst volumes using the central kidney sections from the ADPKD cohort,
shown with the fitted Pearson line and Pearson correlation coefficient. The legend contains
the lowest to highest cyst fraction values.
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Figure 5.15: Mean T2 of the entire kidney (left) and non-cystic kidney parenchyma (right)
with respect to cyst volumes using all images from the ADPKD cohort, shown with the fitted
Pearson line and Pearson correlation coefficient. The legend contains the lowest to highest
cyst fraction values.

Figure 5.16: Mean T2 of the entire kidney (left) and non-cystic kidney parenchyma (right)
with respect to cyst volumes using the central kidney sections from the ADPKD cohort,
shown with the fitted Pearson line and Pearson correlation coefficient. The legend contains
the lowest to highest cyst fraction values.
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Figure 5.17: Height-corrected total kidney volume (htTKV) with respect to cyst volumes,
shown with the fitted Pearson line and Pearson correlation coefficient. 14 of the 15 patients
had htTKV data available. The legend contains the lowest to highest cyst fraction values.

Figure 5.18: Body surface area-total kidney volume (BSA-TKV) with respect to cyst vol-
umes, shown with the fitted Pearson line and Pearson correlation coefficient. 14 of the
15 patients had BSA-TKV data available. The legend contains the lowest to highest cyst
fraction values.
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5.3.3 Classification of ADPKD patients vs. a healthy cohort

Classification schemes employed an LDA classifier and a leave-one-patient-out training/testing

approach, incorporating two feature selection techniques for distinguishing ADPKD from the

healthy controls cohort: (1) using just mean T1 and T2 for classification (2) using the top-

two performing radiomics features for classification. The AUC values are listed in Table

5.5.

The AUC values for mean T1 for all images was 0.94 and for the central kidney sections

was 0.95; the AUC values for mean T2 for all images was 0.89 and for the central kidney

sections was 0.92. The AUC values across all segmentation methods of non-cystic kidney

parenchyma segmentation using mean T1 was 0.63-0.88 and for mean T2 was 0.73-0.80. The

FCM method for cyst removal from T1 maps resulted in lower AUC values (AUC=0.63-0.69)

than the fixed threshold and adaptive manual threshold methods (AUC=0.84-0.88).

There was an increase in AUC values in merging the top-two performing, uncorrelated

radiomic features extracted from the non-cystic kidney parenchyma of T1 maps versus mean

T1 alone; the AUC values ranged from 0.99 to 1.0 across segmentation methods. The 95%

confidence interval (CI) ranged from 0.84-1.0 using features extracted from the non-cystic

kidney parenchyma in separating ADPKD and healthy controls, which was smaller than

the 95% CI using the mean T1 value that ranged from 0.58-0.98. The AUC values using

the top-two performing, uncorrelated radiomic features extracted from the non-cystic kidney

parenchyma of T2 maps ranged from 0.69-0.86 across segmentation methods.

The radiomic features selected during feature selection of the training partition, which

were merged to form the top-two performing radiomic features for classification, were iden-

tified. The features selected from the entire kidney of T1 maps are listed in Figure 5.19,

and the features selected from the non-cystic kidney parenchyma of T1 maps are listed in

Figure 5.20; Figure 5.21 depicts two representative radiomic features selected from the list

of features for distinguishing the non-cystic kidney parenchyma of ADPKD patients from
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healthy controls using T1 maps. The features selected from the entire kidney of T2 maps

are listed in Figure 5.22, and the features extracted from the non-cystic kidney parenchyma

of T1 maps are listed in Figure 5.23.

Table 5.5: Area under the receiver operating characteristic curve (AUC) values for differ-
entiating ADPKD children and young adults from a healthy adult cohort using radiomic
features from the non-cystic kidney parenchyma and entire kidney from T1 and T2 quanti-
tative MRF maps. The mean T1 and mean T2 values and the top-two performing radiomic
features were used for classification.

MRF Map Entire kidney
Fixed threshold

non-cystic

Adaptive manual threshold

non-cystic

FCM

non-cystic

T1

Mean: All images 0.94 0.84 0.86 0.63

[0.78, 0.99] [0.58, 0.97] [0.61, 0.97] [0.35, 0.84]

Mean: Central images 0.95 0.87 0.88 0.69

[0.76, 1.0] [0.59, 0.98] [0.65, 0.97] [0.45, 0.89]

Top-2: All images 0.81 0.99 1.0 1.0

[0.57, 0.94] [0.84, 1.0]

Top-2: Central images 0.83 0.99 1.0 1.0

[0.61, 0.97] [0.87, 1.0]

T2

Mean: All images 0.89 0.73 0.73 0.77

[0.63, 0.99] [0.49, 0.90] [0.45, 0.90] [0.49, 0.92]

Mean: Central images 0.92 0.76 0.80 0.80

[0.63, 1.0] [0.51, 0.91] [0.54, 0.95] [0.55, 0.95]

Top-2: All images 0.84 0.72 0.73 0.86

[0.61, 0.96] [0.49, 0.91] [0.46, 0.92] [0.57, 1.0]

Top-2: Central images 0.81 0.69 0.77 0.85

[0.57, 0.98] [0.44, 0.89] [0.53, 0.93] [0.58, 1.0]
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Figure 5.19: The radiomic features extracted from the entire kidney of T1 maps that were
chosen during feature selection in merging radiomic features for classification. The counts
refer to the number of times the radiomic feature was selected across training partitions of
the leave-one-out approach.

Figure 5.20: The radiomic features extracted from the non-cystic kidney parenchyma of T1
maps that were chosen during feature selection in merging radiomic features for classification
across all segmentation methods. The counts refer to the number of times the radiomic
feature was selected across training partitions of the leave-one-out approach.
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Figure 5.21: Histogram of radiomic features extracted from the non-cystic kidney
parenchyma of the ADPKD cohort versus healthy controls using T1 maps (adaptive manual
threshold cyst removal). GLCM autocorrelation measures the coarseness of texture (top)
and entropy captures the randomness of signal intensities (bottom).
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Figure 5.22: The radiomic features extracted from the entire kidney of T2 maps that were
chosen during feature selection in merging radiomic features for classification. The counts
refer to the number of times the radiomic feature was selected across training partitions of
the leave-one-out approach.

Figure 5.23: The radiomic features extracted from the non-cystic kidney parenchyma of T2
maps that were chosen during feature selection in merging radiomic features for classification
across all segmentation methods. The counts refer to the number of times the radiomic
feature was selected across training partitions of the leave-one-out approach.
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5.4 Discussion

This exploratory aim investigated radiomic features extracted from MRF-acquired T1 and

T2 maps from a cohort of ADPKD children and young adults and healthy controls. This

is the first work to utilize radiomic features from MRF T1 and T2 maps to potentially

capture early cystogenesis in ADPKD children and young adults using the non-cystic kidney

parenchyma. Additionally, kidney segmentations were compared between two segmenters

from different imaging sites, and their impact on subsequent non-cystic kidney parenchyma

segmentation using three cyst removal methods was assessed.

There was a trend of higher DSC between two segmenters when restricting to the central

kidney sections for segmentation, increasing the DSC from 0.857 [0.835, 0.880] to 0.911 [0.901,

0.922]. The decrease in DSC observed when using all images was attributed to the partial

volume effects present in the anterior and posterior regions of the kidney in the T1 maps,

which present a more challenging segmentation task. DSC of subsequent non-cystic kidney

parenchyma segmentation using three cyst removal methods demonstrates the propagation

of discrepancies observed in the manual kidney segmentations, particularly evident in the

removal of cysts for the fixed and adaptive threshold methods. For the FCM method, the

ability to segment cysts from the parenchyma depended on the cyst burden present in the

image of the patient; the mean T1 from the non-cystic kidney parenchyma segmentation

using FCM failed to show a statistically significant difference with healthy controls compared

to the fixed and adaptive threshold methods. Future research could explore the correlation

between cyst fraction and the efficacy of FCM in accurately removing cysts from the kidney.

The mean T1 and T2 of the ADPKD cohort were statistically significantly different from

healthy controls in the entire kidney (including cysts) and non-cystic parenchyma using the

fixed and adaptive threshold cyst removal methods for all images and central kidney sections.

The correlation of mean T1, mean T2, htTKV, and BSA-TKV to cyst fraction is of interest

because patients at higher risk for end-stage kidney disease (ESKD) are associated with
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higher cyst fractions, and an inverse correlation between cyst volume and glomerular filtra-

tion rate (GFR) has been observed in adults with ADPKD [36, 100]. A strong correlation

was shown between the cyst fraction and mean T1 (0.91), which was higher than that of the

imaging biomarkers of htTKV (0.51) and BSA-TKV (0.61). Siedek et al. [24] analyzed T2

maps of ADPKD and healthy controls, and their findings indicate that the mean T2 value of

the non-cystic kidney parenchyma could potentially serve as a novel imaging biomarker for

ADPKD. The results presented in the study showed a strong correlation of mean T2 of the

non-cystic kidney parenchyma to cyst fraction (0.77), which was similar to that of the corre-

lation of the mean T2 of the entire kidney to cyst fraction (0.76) [24], and both the mean T2

of the non-cystic kidney parenchyma and entire kidney had stronger correlation coefficients

to cyst fraction than htTKV (0.48) [24]. The findings in this chapter contrast with those of

the previous study, as stronger correlation coefficients to cyst fraction were observed using

the mean T1 of the entire kidney and non-cystic kidney parenchyma, compared to the mean

T2 of the entire kidney and non-cystic kidney parenchyma.

The ability of radiomic features to classify the ADPKD cohort from the healthy controls

cohort was investigated using two feature selection schemes: (1) using just the mean T1 and

T2 and (2) merging the top-two performing radiomic features for classification. The AUC

values in classifying the ADPKD cohort from the healthy controls using mean T1 and mean

T2 of the entire kidney ranged between 0.94-0.95 and 0.89-0.92, respectively. There was an

increase in AUC values when merging the top-two performing radiomic features from the

non-cystic kidney parenchyma versus mean T1 alone. Two features extracted from the non-

cystic kidney parenchyma of T1 maps that were frequently selected across training partitions

were investigated; the ADPKD cohort had higher randomness in image values than that of

the healthy cohort (entropy), and also had higher coarseness of texture than that of the

healthy cohort (GLCM autocorrelation). Overall, the radiomic features from the non-cystic

kidney parenchyma from T1 maps show a stronger ability to classify the ADPKD cohort from
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healthy controls than radiomic features from T2 maps. Radiomic features extracted from

T1 maps may capture early signs of cyst growth in children and young adults with ADPKD,

which might not be captured solely by quantifying the mean T1 from the non-cystic kidney

parenchyma. There is potential benefit in characterizing the non-cystic kidney tissue using

texture features. The ability to quantify cyst growth using texture features would allow

for better risk-stratification of patients with ADPKD, as cyst growth is the predominant

mechanism in younger patients who progress earlier and faster to ESKD [56].

A limitation of this work is the small cohort of ADPKD children and young adults

(N=15) and healthy controls (N=10). The MRF maps of the healthy controls did not include

full volumes of the kidney. Future work could acquire full volumes of healthy kidneys to

accurately determine the mean T1, mean T2, and other radiomic features values to compare

with ADPKD kidneys. In addition, future work could incorporate additional clinical features

such as eGFR and the association of disease progression with change in T1 and T2 feature

values over time.

In using T1 and T2 maps to quantify mean T1 and T2 values as well as for feature

extraction, there may be change in values if hemorrhages in kidney cysts are present. There-

fore, hemorrhagic cysts represent a potential confounder in quantifying mean T1, mean T2,

and radiomic features. Hemorrhage in kidney cysts is typically observed during advanced

cystic degeneration rather than during initial cystogenesis stages [20]. Therefore, its impact

on feature extraction from T1 and T2 maps in pediatric ADPKD patients might be less

significant compared to adults with ADPKD.

Radiomic features extracted from MRF-acquired T1 maps and T2 maps have been used

to differentiate common adult brain tumors using 2D and 3D MRF data [104, 105]. Mul-

tiparametric PET-MRI and MRF research shows potential to serve as an alternative to

invasive tissue characterization, furthering imaging-based tumor decoding and phenotyping

[106]. Although the potential of using MRF is promising, recent research studied the effect
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on first- and second-order radiomic features extracted from MRF data reconstructed using

various dictionaries with different step sizes and evaluating intra-dictionary repeatability and

inter-dictionary reproducibility [107]. Radiomic features exhibited high repeatability with

intraclass correlation coefficients (ICCs) ranging from 0.86 to 0.95 across various dictionary

step sizes [107]. However, lower ICCs (ranging from 0.62 to 0.99) were observed when com-

paring features extracted from MRF data reconstructed from different dictionaries [107].

Future ADPKD studies should account for the impact of data reconstruction from different

dictionaries on the extracted radiomic features from MRF-acquired T1 and T2 maps.

5.5 Conclusion

MRF-derived mean T1 and T2 values of ADPKD patients were significantly different than

those of healthy controls when extracted from the entire kidney and non-cystic kidney

parenchyma. There was a higher correlation of cyst fraction with mean T1 values from

the kidney (including cysts) than that of cyst fraction and the biomarkers htTKV and

BSA-TKV, showing potential for mean T1 of the kidney to capture cyst growth. Trends

of increasing AUC values in classifying ADPKD from healthy controls were observed when

merging radiomic features extracted from the non-cystic kidney parenchyma compared to

quantifying the mean T1 alone from the non-cystic kidney parenchyma, indicating the po-

tential benefit of incorporating texture features in capturing cystogenesis. Radiomic features

extracted from the non-cystic kidney parenchyma revealed higher randomness of image val-

ues and coarser texture than those of healthy controls. The characterization of non-cystic

kidney parenchyma using radiomic features warrants further investigation in a larger cohort

of children and young adults in ADPKD.
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CHAPTER 6

SUMMARY AND FUTURE DIRECTIONS

In summary, this work investigated texture-based magnetic resonance imaging (MRI) biomark-

ers of autosomal dominant polycystic kidney disease (ADPKD). Radiomics-based quantita-

tive models were developed for classification of genotype and Mayo Imaging Classification

(MIC) class using features extracted from the non-cystic kidney parenchyma, the additive

power of temporal imaging for the prediction of kidney function decline, and the differen-

tiation of magnetic resonance fingerprinting (MRF)-acquired T1 and T2 maps of ADPKD

patients from those of a healthy cohort.

The field of radiomics lacks a standardized approach to extracting features, and previous

disease-specific radiomic studies investigated the effect of pre-processing on radiomic features.

In this work, the effect of pre-processing on radiomic features extracted from the kidney and

on subsequent classification of genotype (Chapter 2) and differentiation of risk-stratified MIC

class (Chapter 3) was established.

In Chapter 2, the aim of the presented work was to investigate radiomic features from

T2-weighted fat saturated (T2W-FS) MR images for the differentiation between PKD1 and

PKD2 patients in a cohort matched for age, gender, and MIC class. In addition, the impact

of MRI pre-processing (MR normalization, gray-level discretization, and pixel resampling) on

radiomic feature reproducibility was evaluated with the intra-class correlation coefficient, and

the effect of pre-processing parameters on subsequent genotype classification was assessed.

The results from this chapter identified texture features indicative of genotype expression in

ADPKD in both the non-cystic and entire kidney parenchyma regions. Reproducibility of

radiomic features extracted from the noncystic kidney parenchyma was dependent on the

pre-processing parameters used. Additionally, there was an increase in feature reproducibil-

ity across MR normalizations with the number of gray levels available for discretization.

The ability to classify PKD1 and PKD2 patients based on radiomic features extracted from
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either the non-cystic kidney parenchyma or entire kidney depended on the pre-processing

parameters used, and there was not one combination of pre-processing parameters that op-

timized classification when using features extracted from the non-cystic kidney parenchyma

or entire kidney. Future work building upon the ability of texture-based image features

to classify genotype include the investigation of PKD1 patients and textural differences of

truncating and non-truncating mutations, as the median age at onset of end-stage kidney

disease (ESKD) of patients with truncating mutations is less than that of patients with

non-truncating mutations [108]. Texture-based image features could identify patients with

non-truncating mutations that are associated with more severe kidney disease.

The effect of pre-processing on subsequent classification was continued into Chapter 3 for

differentiating among low/intermediate-risk (1A-1B) and high-risk (1C-1E) MIC classes us-

ing radiomic features; furthermore, the classification task was focused on just intermediate-

risk (1B) and high-risk (1C) MIC class. The results suggest the potential to distinguish

between patients based on low/intermediate- and high-risk MIC class; the impact of pre-

processing on subsequent classification reveals that features extracted from the non-cystic

kidney parenchyma were more sensitive to pre-processing than those from the entire kidney.

The classification of patients with low/intermediate-risk (low cyst burden) from those with

high-risk (high cyst burden with higher signal intensity) was unaffected by pre-processing

parameters such as MR normalization, gray-level discretization, and pixel resampling. This

underscores the influence of cysts on texture features, indicating that these imaging char-

acteristics remain robust indicators of disease severity and risk classification regardless of

pre-processing variations. High-risk MIC class patients have by definition larger kidney

sizes than patients in low/intermediate-risk MIC classes, and radiomic features that ex-

hibited low, moderate, or high correlation with number of voxels (i.e., kidney size) across

pre-processing parameters were identified; the incorporation of features based on their cor-

relation to kidney size into classification models affected the performance in distinguishing
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between low/intermediate-risk and high-risk MIC classes, and warrants further investiga-

tion. Radiomic features were able to distinguish intermediate-risk (1B) and high-risk (1C)

MIC class, with higher AUC values when combining clinical features (age, sex, and es-

timated glomerular filtration rate (eGFR)) with radiomic features versus clinical features

alone, showing the potential benefit of kidney texture not captured by clinical features.

Chapter 4 determined whether radiomic features from T2W-FS MR images from 24-

month and 48-month timepoints provide additive power versus baseline texture alone in

predicting kidney function decline to (1) chronic kidney disease (CKD) stage 3A or greater

or (2) a greater than 30% reduction in eGFR of ADPKD patients at 60-months follow-up.

Delta-radiomic features were calculated at 24-month and 48-month timepoints and exhibited

close to random guessing performance (AUC=0.5) for either prediction task. The 24-month

and 48-month timepoints were not statistically different from baseline performance for either

prediction task, but there was a statistically significant difference from baseline performance

using combined baseline, 24-month, and 48-month texture from the entire kidney for the pre-

diction of progression to CKD stage 3A or greater. Unlike for the entire kidney, there was no

improvement in performance using radiomic features extracted from the non-cystic kidney

parenchyma; however, features from the non-cystic kidney parenchyma did exhibit moderate

performance for either prediction task. Radiomic features from the 24-month, 48-month, and

60-month timepoints exhibited strong correlation coefficients with baseline feature values,

and radiomic features were generally not statistically significantly different from baseline, re-

gardless if patients progressed or did not progress in either prediction tasks. The relationship

between radiomic features at baseline and follow-up timepoints provided insight for why delta

radiomics failed to offer additive power in predicting kidney function decline. There was not

a statistically significant difference between performance using combined clinical-radiomics

models and performance from a combined-clinical model. Future studies could involve pa-

tient matching based on baseline characteristics such as height-corrected total kidney volume
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(htTKV), eGFR, and age. Additionally, implementing a more stringent minimum baseline

eGFR cutoff value may be beneficial, given that age, htTKV, and eGFR are recognized as

confounding factors in predicting kidney function decline.

Chapter 5 was an exploratory aim that analyzed the first MRF-derived T1 and T2 quanti-

tative coronal maps of an ADPKD cohort (children and young adults) and the texture-based

differences from that of a healthy cohort. Additionally, this aim compared kidney segmenta-

tions performed by two image segmenters familiar with kidney anatomy from different sites,

and assessed their impact on subsequent segmentation of the non-cystic kidney parenchyma

using three cyst removal methods. The results from this study show good agreement between

manual kidney segmentations, and there was a trend of lower Dice similarity coefficients

(DSC) between two segmenters of all image sections compared to the DSC when restricting

to the central kidney sections for segmentation. The decrease in DSC was attributed to the

partial volume effect observed in the anterior and posterior regions in the kidney of the T1

maps, which pose a more challenging segmentation task. MRF-derived mean T1 and T2

values of ADPKD patients were significantly different than those of healthy controls when

extracted from the entire kidney and non-cystic kidney parenchyma. Trends of increasing

AUC values in classifying ADPKD from healthy controls were observed when merging the

top-two performing radiomic features extracted from the non-cystic kidney parenchyma rel-

ative to the performance of mean T1 alone. Radiomic features extracted from T1 maps may

capture early signs of cyst growth, suggesting potential benefits in utilizing texture features

to characterize cystogenesis. This may provide insights not captured solely by quantifying

mean T1. Mean T1 values showed a strong correlation with cyst fraction, exhibiting a higher

correlation coefficient compared with the biomarkers htTKV (computed from image-based

measurements of kidney size) and body surface area total kidney volume (BSA-TKV). Fu-

ture work can extend the work to a larger cohort and investigate change in texture over time

with disease progression.
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Future directions to build upon the work presented in this thesis may include the effect

of pre-processing on other MR pulse sequences such as T1-weighted MRI and the effect on

subsequent ADPKD classification tasks. A limitation of Chapters 2 and 3 was that represen-

tative 2D coronal MR images were used, and future work could investigate radiomics analyses

of total kidney volume (TKV) texture-based differences in genotype and risk-stratified MIC

class.

The effect of normalization and gray levels for discretization impacts the original texture

of an image, but, in utilizing quantitative MR, one can remove the normalization step before

feature extraction to allow for better comparison of radiomic features for the longitudinal

assessment of ADPKD patients; future work could associate change in features extracted

from MRF-derived T1 and T2 maps with change in htTKV and eGFR, along with quantita-

tive measurements such as total parenchymal volume, total cyst number, cyst surface area,

and cyst parenchyma surface area using automatic segmentation AI algorithms (e.g., U-Net,

semantic segmentation).

In utilizing radiomic features as imaging biomarkers for ADPKD, ensuring radiomic fea-

tures are repeatable (e.g., features remain temporally stable with patients and image proto-

cols) and reproducible (e.g., features remain unchanged using different acquisition or process-

ing) is of the utmost importance; therefore, future work could quantify feature repeatability

and reproducibility under varying conditions such as day-to-day repeatability and the effect

of MRF dictionary matching on features extracted from the kidney.

Furthermore, deep-learning-based features and classification models have the ability to

complement or even replace traditional radiomic features ("human-engineered") and machine

learning models [109]; deep learning is a subarea of machine learning and uses neural net-

works that remove traditional feature extraction and feature selection processes and "learns"

directly from medical images, bypassing explicit feature definitions [109]. In general, AI has

and will continue to impact decision-making processes of clinicians; there is an interesting
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crossroads between "big data" (e.g., the mining of thousands of quantitative image features

or deep-learning-based features) and human interpretability and explainability. Nephrol-

ogists use explainable features such as change in htTKV and eGFR, but there is a "black

box" of AI in medicine that challenges the traditional methods of care. In fostering conversa-

tion between clinicians, medical physicists, data scientists, and other stakeholders in human

health, computer-aided diagnosis systems can be created to mine informative "big data"

while maintaining the human element of interpretable and explainable care in ADPKD.

In conclusion, the presented work will ultimately improve identification of low- and high-

risk individuals for progression to ESKD and advance personalized medicine using radiomics.

Radiomic feature extraction from MR images provides a non-invasive method to evaluate

ADPKD disease severity classification and disease progression to ultimately assist clinical

decision-making.
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