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ABSTRACT

The efficient treatment of strong correlation in molecules is the foremost challenge in the

accurate simulation of chemical systems at the quantum level. One of the most efficient

methods for treating strong correlation is the “complete active space self-consistent field”

(CASSCF) method, which places priors on the Hilbert space of electron configurations in

which to carry out the calculation through use of an “active space” of electrons an orbitals in

which to diagonalize the Hamiltonian. The problem of efficiently and automatically deter-

mining this active space, known as the “active space selection problem”, is the focus of this

thesis. Chapters 2, 3, and 4 principally concern the development of automated methods for

efficiently determining the active space, while chapters 5, 6, and 7 concern the applications

of these approaches.
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CHAPTER 1

INTRODUCTION

1.1 Electron Correlation

The treatment of electron correlation is the foremost goal of electronic structure theory,

and provides a foundation for all other areas of computational chemistry. While large,

comprehensive simulations of materials often take the spotlight in industrial applications,11

all of these methods ultimately rely on the understanding of electron behavior in various

environments. This thesis is concerned with advancing and facilitating the use of some of

the most accurate methods known for treating electron correlation in the hopes of ultimately

bringing higher accuracy and understanding to the entire field of molecular simulation.

In this introduction, we briefly introduce the problem of electron correlation from a his-

torical viewpoint, noting the central advances of (a) the treatment of exchange correlation by

use of a Slater determinant12 in 1929 and the development of Hartree-Fock theory in 1935,13

and (b) the treatment of local, dynamic correlation by Kohn-Sham density functional theory

beginning in 1965.14 This work concerns the efficient use of methods to treat the remaining,

non-local, multiconfigurational correlation, most prinicipally by the complete active space

self-consistent field (CASSCF) method, which is held back by the problem of active space

selection. The contributions of the following chapters to this problem are discussed, and

the applications of these contributions found in later chapters provides inspiration for future

work.

1.2 Exchange and Local Correlation

There are many ways to discuss the problem of electron correlation, and no rigorous sep-

aration of terms exists.15 However, the problem can often be usefully separated into three

different central contributions: (i) correlation that arises from symmetry (most profoundly
1



fermionic exchange symmetry), (ii) correlation that arises from the “dynamic”, ”short-range”,

or “local” avoidance of electrons from each other in real space, exemplified by the Coulomb

cusp, and (iii) the remaining “nonlocal”, “static”, “multiconfigurational”, or “multireference”

correlation not captured by the previous categories. Learning to treat these different cat-

egories of correlation have coincided with fundamental advances in and uses of electronic

structure theory.

Correlation arising from symmetry is generally the largest and most important term

among these three categories, and arises centrally from the antisymmetric exchange sym-

metry of the electrons, causing the wave function to go to zero when electrons of the same

spin occupy the same point in space. Efficiently treating the correlation that arises from

this symmetry was overcome in the early days of quantum mechanics by Slater,12 who pro-

posed that the fundamental unit of computation should be determinants of single-particle

functions:

ψ(x1,x2, . . . ,xN ) =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣

ϕ1(x1) ϕ2(x1) · · · ϕN (x1)

ϕ1(x2) ϕ2(x2) · · · ϕN (x2)

...
... . . . ...

ϕ1(xN ) ϕ2(xN ) · · · ϕN (xN )

∣∣∣∣∣∣∣∣∣∣∣∣∣
, (1.1)

’

This wave function ansatz evidently captures the antisymmetric exchange symmetry of elec-

tronic wave functions, as particle exchange results in exchanging rows of the determinant,

causing a change in sign. This ansatz was then adapted by Hartree, who variationally opti-

mized this form with his father in the first application of the Hartree-Fock method in 1935,

for the Beryllium atom.13 The correlation arising from antisymmetry separates naturally

out of the Hartree-Fock energy expression:
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EHF = Vnn +
∑
pq

hpqDpq +
1

2

∑
pqrs

gpqrsDpqDrs −
1

2

∑
pqrs

gpqrsDpsDrq (1.2)

where the last term, K = −1
2

∑
pqrs gpqrsDps, a function of the one-body reduced density

matrix (1-RDM) Dpq and two-electron integrals gpqrs, represents the so-called “exchange”

energy arising from this symmetry. One can immediately see from this expression that

exchange is a significant and stabilizing effect (generally of similar magnitude to the Coulomb

term J = 1
2

∑
pqrs gpqrsDpqDrs). While this term is evidently a “correlation”, in the sense

that it results in a lowering of the energy by means of electrons avoiding each other in space,

it is so fundamental to the field that it is generally referred to separately as simply the

“exchange” energy, with correlation reserved for the other categories. Treatment of this term

accurately by Hartree-Fock inarguably gave rise to the first revolution in quantum chemistry,

and nearly all methods begin from the starting point of the Hartree-Fock picture to this day.

It is probably fair to say that the second most important development in the field of elec-

tronic structure theory since Hartree-Fock has been the development of Kohn-Sham density

functional theory (KS-DFT), beginning in 1965.14 Starting from the famed Hohenberg-Kohn

theorems16 which reformulate quantum mechanics in terms of the electron density, Kohn-

Sham theory aims to capture electron correlation as a functional of the electron density.

However, despite this radical departure from standard quantum theory, the Kohn-Sham

method actually takes on a very similar energy expression to Hartree-Fock (equation 1.2):

EKS-DFT = Vnn +
∑
pq

hpqDpq +
1

2

∑
pqrs

gpqrsDpqDrs +

∫
r
ϵxc(r)ρ(r) (1.3)

This similarity arises from the fact that KS-DFT also employs a determinant ansatz identical

to equation 1.1 to model its density, most critically allowing it to utilize the same one-electron

term
∑

pq hpqDpq as HF for which there is not a good functional form purely in terms of

the electron density. The most critical difference is that KS-DFT moves the treatment of
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all correlation into an “exchange and correlation” (xc) functional (including the “exchange”

correlation) of the electron density, in practice computed by integrating a local exchange-

correlation energy, ϵxc(r), on a grid over the entire molecule. Thus, the central advance of

KS-DFT is not really a reformulation of quantum mechanics in terms of the density, but the

finding that a good part of the correlation energy can be treated locally, without reference

to the rest of the wave function.

This effective “near-sightedness” principle of KS-DFT17 is physically sound, and arises

from the concept of the “exchange-correlation hole” nxc(r, r’), which represents the function

of the missing electron from the rest of the surroundings as a function of r’ when an electron

is known to be at r:

nxc(r, r’) =
P2(r, r’)
ρ(r)

− ρ(r’) (1.4)

in which P2(r, r’) is the pair density, equal to the diagonal elements of the reduced two-body

density matrix (2-RDM, P2(r, r’) = d(r, r, r’, r’)). The exact exchange-correlation functional

can then be reformulated in terms of this local function from standard Coulombic physics:

ϵxc(r) =
1

2

∫
r’

nxc(r, r’)
|r − r’|

(1.5)

This idea has been the cornerstone of the modern successful functionals such as PBE18

and B3LYP,19 which take ideas most centrally from studies of the homogeneous electron

gas to derive local approximations of equation 1.5.20 The efficient treatment of the local

correlation well-treated by these approximations has arguably ushered in the second revolu-

tion of quantum chemistry, in which KS-DFT has become the standard approach for most

applications.
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1.3 Strong Correlation

The field has now solidly entered the phase of overcoming the third, most difficult category

of correlation, which is that of the remaining (strong) nonlocal correlation not captured

well by the correlation-hole picture assumed by KS-DFT functionals. Unfortunately, this

challenge appears to require moving outside of the DFT framework: despite two decades of

effort since the since the development of popular functionals such as PBE and B3LYP, little

fundamental progress has been made in the development of new functionals, with the most

notable developments being better-parameterized functionals such as M0621 and the ωB97

series,22 and the inclusion of force-field-like dispersion corrections (e.g. D3 corrections23).24

Additionally, when success has come, it has often come only through reference back to the

wave function picture, such as with the addition of exact exchange in hybrid functionals19

or energies from perturbation theory in double-hybrid functionals.25

The fundamental problem arises from the fact that – to the best of my knowledge – there

is no good way of engaging the concept of strong correlation from the density functional

theory picture. It is inherently a wave function concept. Strong correlation arises when

multiple electronic configurations contribute to the qualitative character of the quantum

state, resulting in non-local and inherently quantum mechanical effects. The conditions in

which this occurs are probably best viewed in the context of perturbation theory, in which

the 2nd-order correction takes the rough form of

E(2) =
∑
i̸=j

V 2
ij

Ej − Ei
(1.6)

in which Vij are the couplings between states i and j, and Ei and Ej their energies under the

zeroth-order Hamiltonian. Strong correlation arises precisely when this term grows large:

when (a) there is near-degeneracy between different electronic configurations, and (b) there

is large coupling between these configurations (i.e., local interaction and not symmetry-
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forbidden). Systems with these conditions are said to be “multiconfiguurational”, and are

generally ill-treated by KS-DFT.26

Figure 1.1: Left: Illustrative sketch of the active space concept, in which the number of de-
terminants, NDET, scales combinatorially with then number of electrons and orbitals chosen.
Right: key applications for muliconfigurational methods with near-degenerate orbitals, (a)
transition states, in which the bonding and antibonding configurations are near-degenerate,
and (b) transition metals, in which different occupations of the d orbitals are degenerate.

However, despite the inherently quantum mechanical nature of strong correlation, most

exemplary multiconfigurational systems are fairly intuitive to most chemists (Figure 1.1).

Transition states are perhaps the marquee examples of commonly occurring multiconfigu-

rational systems, in which the bonding and antibonding electronic configurations are very

close in energy, resulting in a wave function that is a linear combination of both these pos-

sibilities. Another archetypal example is that of transition metals, in which the energies of

the d-electrons are often weakly split, and thus multiple configurations of the electrons in

the d-orbitals are often needed to accurately describe the wave function. Given the relevance

of both these cases to modern chemistry, one can clearly see the importance of accurately

treating the problem of strong correlation.
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1.4 Treating Strong Correlation

Given the description of the problem, the solution to strong correlation in the wave function

picture is self-evident: simply include all the relevant configurations in the Hilbert space and

diagonalize. Unfortunately, identifying and including the relevant configurations a priori can

be quite challenging, due to the exponential scaling of the number determinants with number

of electrons and orbitals one considers (Figure 1.1). Including all electrons and orbitals in

the active space is referred to as “full configuration interaction” (FCI), which can be carried

out for only the smallest of systems (to about 20 electrons in 20 orbitals).26

Thankfully, research over the past 30 years has shown that the great majority of the pos-

sible electron configurations do not contribute to any one wave function – the configurations

relevant for any one quantum state can generally be captured through a judicial selection of

the Hilbert space. This observation has lead to two broad branches of development for effi-

ciently identifying the relevant configurations in the Hilbert space: the “posteriors” approach,

which aims to identify the Hilbert space through stochastic algorithms (e.g., Monte Carlo

configuration interaction27) or entanglement characteristics (e.g., density matrix renormal-

ization group (DMRG)28), and the “priors” approach, which aims to identify a subset of the

Hilbert space prior to carrying out any calculation. The archetypal method of the latter

category is the “complete active space self consistent field” (CASSCF) method, which takes

on the wave function ansatz29

|ψCAS⟩ =
∑

n1n2...nn

cn1n2...nn |22...n1n2...nn00...⟩ (1.7)

in which ni are the occupation numbers (0, ↑, ↓, or 2) of an “active space” of orbitals and

electrons treated multiconfigurationally (as in Figure 1.1).

This approach has proved to be a very efficent way of placing priors on the Hilbert space

for multiconfigurational calculations and has seen much application in the literature.26,30
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Although it may seem at first glance that the “priors” and “posteriors” methods are in conflict

with one another, in reality the posteriors methods simply serve as more efficient solvers for

the Hilbert spaces chosen through the priors methods. For example, DMRG allows active

spaces to be treated with qualitative acccuracy up to about 100 orbitals in size,31 rather

than the roughly 20-orbital limit imposed by CASSCF alone.26 An efficient combination

of the prior and posterior approaches is the most effective for treating large systems with

multiconfigurational approaches.

An additional point of concern is capturing the remaining dynamic correlation outside

of the chosen subspace treated multiconfigurationally. This has historically been addressed

by means of multireference perturbation theories (e.g., CASPT232,33 or NEVPT234,35) or

expansions (e.g. MRCI36,37 or MRCC38–40). However, these approaches all require fairly

dramatic amounts of additional computation on top of the multiconfigurational wave func-

tions and limit the size of the active spaces that can be treated with these methods.26 A

promising new approach appears to be multiconfiguration pair-density functional theory,41

in which the correlation energy is treated in real-space similar to KS-DFT:

EMC-PDFT = Vnn +
∑
pq

hpqDpq +
1

2

∑
pqrs

gpqrsDpqDrs +

∫
r
ϵot(r)ρ(r) (1.8)

with the only key differences being (a) the use of density matrices Dpq and density ρ from

a multiconfigurational wave function, and (b) the use of an “on-top” exchange-correlation

functional ϵot in place of ϵxc which takes as an argument the on-top density Π(r), equal

to the doubly diagonal elements of the two-body reduced density matrix (2-RDM, Π(r) =

P2(r, r) = d(r, r, r, r)).

Thus, the thesis of MC-PDFT is that the remaining dynamic correlation untreated by

the active space can be captured locally, similar to KS-DFT, with the important muticon-

figurational effects captured in the shape of the density ρ(r) and one-body density matrix

Dpq. One may argue that this is somewhat similar to how exchange is already treated in
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KS-DFT, as the “exact” exchange term arising from symmetry is thrown out in the energy

expression (equation 1.3) in place of a local functional, despite its implicit inclusion of ex-

change in the determinant form of the ansatz (equation 1.1). The importance of the 2-RDM

and its small contribution to the correlation functional in MC-PDFT is currently under de-

bate, with the multiconfigurational density coherence functional theory (MC-DFT)42 being

able to achieve good results in test cases without utilization of the 2-RDM. Calculating the

energies of CASSCF wave functions using MC-PDFT has proved to be a very successful

approach in many cases,43 and has generally reproduced the results of the perturbation

theories at significantly less expense.6

Nevertheless, despite the several successful applications of CASSCF in the literature and

the increasing facility of obtaining quantitative energies with methods such as MC-PDFT,

it has avoided large-scale application anywhere close to the use of popular methods such

as KS-DFT. This is principally due to the problem of active space selection in utilizing

CASSCF: how does one efficiently select the space of orbitals and electrons to treat at a high

level for any given problem? While progress has been made on a case-by-case basis through

selecting active spaces by-hand with trial and error,30 carrying out CASSCF calculations in

an automated and consistent fashion remains an open challenge. Overcoming this issue has

been a highly active area of research over the past decade (as will be discussed thoroughly

in the many chapters below), and concerns the principal contributions of this thesis.

1.5 Methods for Active Space Selection

The key contribution to the field of active space selection made in this thesis is the develop-

ment of the “approximate pair coefficient” (APC) approach for estimating the importance of

orbials for the active space prior to calculation.5 This scheme employs Hartree-Fock matrix

elements (nearly always calculated prior to initializing a multiconfigurational calculation) to

estimate the interactions between different of inactive orbitals i and virtual orbitals a:
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Cia =
0.5Kaa

Faa − Fii +
√

(0.5Kaa)2 + (Faa − Fii)2
(1.9)

in which Fii, Kii, Faa, and Kaa are the diagonal Fock and exchange matrix elements of the

orbitals, respectively. These “approximate pair coefficients” Cia are then used to estimate the

multiconfigurational character of different orbitals via their estimated Von-Neummann en-

tropies over the probability of these orbitals being occupied or unoccupied (with intermediate

normalization):

Si = − 1

1 +
∑

aC
2
ia

ln
1

1 +
∑

aC
2
ia

−
∑

aC
2
ia

1 +
∑

aC
2
ia

ln

∑
aC

2
ia

1 +
∑

aC
2
ia

(1.10)

Sa = − 1

1 +
∑

iC
2
ia

ln
1

1 +
∑

iC
2
ia

−
∑

iC
2
ia

1 +
∑

iC
2
ia

ln

∑
iC

2
ia

1 +
∑

iC
2
ia

(1.11)

This schema is derived from a simple (2,2) FCI model calculation (e.g. minimal basis H2),

in which case the relationship is exact. This method was first published in the JCTC article

“A Ranked-Orbital Approach to Selecting Active Spaces for High-Throughput Multireference

Computation”, which is reproduced here as chapter 2 of this thesis. This initial work tested

the APC method in selecting active spaces from different sets of orbitals on a small subset

of 20 test systems, for which it demonstrated good results.

The first large-scale test of the APC method took place in 2022 with the publication of

“Large-Scale Benchmarking of Multireference Vertical-excitation Calculations via Automated

Active-Space Selection” in JCTC,6 which tested APC on the large and diverse QUESTDB

database of vertical excitation energies gathered by Jacquemin, Loos, and coworkers.44,45

Here, APC was shown to select good active spaces for about 80% of vertical excitations,

depending on the active space and basis set size. This accuracy allowed for the first bench-

marking of post-CASSCF methods such as NEVPT2 and MC-PDFT using automated and

consistent active spaces, showing them to have errors of roughly 0.2 eV. These wave functions
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(with full orbitals and CI vectors in the PySCF format) are freely available on Zenodo46

and have already served as an excellent resource for the benchmarking of new post-CASSCF

methods such as linearized pair-density functional theory.47 This work is reproduced here in

chapter 3.

However, despite the overall success in APC in selecting good active spaces for these

excitations, a quantitative benchmarking was only possible by eliminating the 20% of poor

active spaces by careful thresholding of the CASSCF error. This final 20% of poor active

spaces was addressed in the 2023 publication “Variational Active Space Selection with Mul-

ticonfiguration Pair-Density Functional Theory”, which developed a variational scheme to

select between different active spaces based on energies from MC-PDFT. The variational

selection in this case was achieved by constructing different sets of virtual orbitals through

diagonalization of the operator F − λK with λ ∈ [0, 2] to target between valence and Ryd-

berg orbitals. This scheme in combination with DMRG solvers used to select larger active

spaces (in this case without orbital optimization) was able to select good active spaces for

100% of the QUESTDB excitations and reproduced the good results found in the previous

study.6 This work is reproduced here in chapter 4.

1.6 Applications of Active Space Selection

The second half of this thesis, chapters 5, 6, and 7, concern different facets of applications for

the automated multiconfigurational approaches developed in chapters 2, 3, and 4. The first

of these chapters, chapter 5, titled “Machine-Learned Energy Functionals for Multiconfigura-

tional Wave Functions” concerns the use of automated multiconfigurational data in machine

learning applications, and reproduces work published in JPCL.48 This work employed ver-

tical excitation calculations on carbenes automated with APC to train a new MC-PDFT

functional as a direct functional of the on-top density and pair-density.5 The use of data

from automated multiconfigurational calculations to train novel functionals and force fields
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remains a key area for future work, and may well be the most impactful long-term use of

these methods.

The second of these chapters, chapter 6, titled “Divergent Bimetallic Mechanisms in

Copper(II)-Mediated C–C, N–N, and O–O Oxidative Coupling Reactions”, reproduces work

recently published in JACS. This work presents a detailed computational study of the Cu(II)

imines in coupling together different substrates (imine, NH2, OH, CN, and CCH), and was

a collaboration with the group of Shannon Stahl at the University of Wisconsin. This work

employed a set of automated multiconfigurational calclulations to characterize key transition

states, which helped to distinguish between the biradical coupling mechanism found for

imine, NH2, OH, and a “diamond core” bimetallic coupling found for CN and CCH.

Finally, the last of these chapters, chapter 7, titled “Organic Reactivity Made Easy and

Accurate with Automated Multireference Calculations”, reproduces work recently published

in ACS Central Science. This work presents a fruitful collaboration with the group of Brett

Savoie at Purdue in which we undertook the automated characterization of hundreds of

algorithmically generated transition states for organic reactions. We showed that a majority

of these transition states possess significant multireference character, and that our automated

APC scheme was able to reproduce the results of KS-DFT in cases of weak correlation while

providing improvements over both KS-DFT and coupled cluster methods in cases of strong

correlation. I believe this study was a huge step forward for the field of treating reactivity

with multiconfigurational approaches, as we showed that a combination of automated active

space selection combined with MC-PDFT is able to significantly overcome the troublesome

“active space inconsistency error” in performing these types of calculations, to the point of

being predictive in most cases.
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1.7 Conclusions and Outlook

This introductory chapter has noted two “revolutions” in the treatment of correlation within

electronic structure theory: the first revolution, in which exchange correlation was efficiently

captured by the Hartree-Fock method, and the second revolution, in which correlation was

efficiently captured locally by use of an exchange-correlation functional. It is my belief that

we are now on the midst of a third revolution in electronic structure theory, in which we

are learning to efficiently capture the remaining static, non-local correlation. Methods such

as DMRG have proved efficient solvers for handling large and complex active spaces, and

MC-PDFT has proved a robust method for capturing the remaining correlation outside of

the active space. The work of active space selection presents what is perhaps the final barrier

to seeing this revolution take place at large scale, at least for several important applications.

With the remarkable success of even imperfect automated schemes such as shown in chapter

7 in providing accurate and predictive descriptions of chemical systems, we may be closer to

this revolution taking place than we think.

However, much work remains to be done. While the APC method has proved remarkably

successful for organic systems, transition metal complexes have proved to be more difficult

to model and less well-treated by APC. This likely follows naturally from the fact that

the minimal (2,2) orbital picture assumed by the derivation of the APC equation (1.9)

breaks down when moving to the transition metal picture in which there are more than two

localized near-degenerate orbitals. Different or new schemes will likely be necessary to treat

these cases; for example, the work presented here on Cu N–N coupling relied on the atomic

valence active space (AVAS) concept developed by Sayfutyarova and co-workers.49 Perhaps

combinations of this method with APC can play a role in extending selection to larger

complexes. However, it is not clear how to treat excitations of transition metal complexes

within the AVAS picture. My hope is that future developments may take inspiration from

the variational concepts developed in chapter 4.
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1.8 Other Works

I will conclude this introductory section by quickly touching on a few works accomplished

during my PhD but not in the scope of active space selection and thus not included in this

thesis. The largest project excluded from this thesis is a collaboration with experimentalists

at Argonne National Laboratory, in which we used high-throughput experimentation to

enhance the catalytic yield of metals deposited onto metal-organic frameworks. This was a

quite fruitful collaboration for which I was able to receive SCGSR funding to work closely

with experimental collaborators in integrating theory, and I was very thankful to be able

to work in this direction due to their support. This work was recently published in ACS

Central Science.50

Another project I would like to mention is a publication in J. Phys. Chem. C. titled

the “Challenge of Small Energy Differences in Metal–Organic Framework Reactivity”,51 on

which I was able to work with the talented undergraduate (now graduated) student Noah

Dohrmann on the sensitivity of density functionals for describing small trends in metal

organic framework reactivity. I believe this work complements the chapters included in this

dissertation in showing the need for more accurate and sensitive electronic structure theories.

A complete list of unincluded publications completed during my PhD can be found below.

I hope this chapter has served well as an introduction and motivation to the following

chapters, and I thank everyone who has read this far for their interest in my work.

1.9 Appendix: List of Publications

Included as chapters in this thesis:

• King, D.S.; Gagliardi, L. A Ranked-Orbital Approach to Select Active Spaces for

High-Throughput Multireference Computation. J. Chem. Theory Comput. 2021, 17,

2817-2831.
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CHAPTER 2

A RANKED-ORBITAL APPROACH TO SELECTING ACTIVE

SPACES FOR HIGH-THROUGHPUT MULTIREFERENCE

COMPUTATION

This chapter is reprinted with permissions from J. Chem. Theory Comput. 2021, 17, 5,

2817–2831

2.1 Abstract

The past decade has seen a great increase in the application of high-throughput computation

to a variety of important problems in chemistry. However, one area which has been resistant

to the high-throughput approach is multireference wave function methods, in large part due

to the technicalities of setting up these calculations and in particular the not always intuitive

challenge of active space selection. As we look towards a future of applying high-throughput

computation to all areas of chemistry, it is important to prepare these methods for large-scale

automation. Here, we propose a ranked-orbital approach to selecting active spaces with the

goal of standardizing multireference methods for high-throughput computation. This method

allows for the meaningful comparison of different active space selection schemes and orbital

localizations, and we demonstrate the utility of this approach across 1120 multireference

calculations for the excitation energies of small molecules; results reveal that it is helpful

to distinguish the method used to generate orbitals from the method of ranking orbitals in

terms of importance for the active space. Additionally, we propose our own active space

selection scheme that estimates the importance of an orbital for the active space through a

pair-interaction framework from orbital energies and features of the Hartree-Fock exchange

matrix. We call this new scheme the "Approximate Pair Coefficient" (APC) method and it

performs quite well for the test systems presented.
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2.2 Introduction

In the past decade, the explosion of computational resources has led to the ability of many

researchers to carry out high-throughput computational screenings of molecules and mate-

rials for several important applications in electrocatalysis,52 gas storage,53 and photochem-

istry.54–56 Currently, these approaches rely overwhelmingly on some combination of molecu-

lar mechanics, semiempirical theories, density functional theory (DFT), and single-reference

wave function theories (e.g. CCSD(T)) to calculate properties of interest.52–56 However,

one area where the high-throughput approach is poised to play a large role is in the de-

velopment of new transition metal catalysts,57,58 and these complexes are often strongly

correlated and thus poorly described by single-reference methods such as DFT.26,59–63 Fur-

thermore, DFT frequently suffers from an inability to describe open-shell systems without

resorting to broken-symmetry solutions,61 and this becomes particularly severe when mul-

tiple low-lying spin states are important to consider (e.g. in application to spin-crossover

complexes64,65). This feature also makes DFT difficult to use for the description of electronic

excited states, and particularly at geometries far from equilibrium where these structures

exhibit even stronger correlation.63

For these reasons, we expect that the expansion of reliable high-throughput computa-

tion to these problems will require the use of multireference approaches.26 In addition to

adding value in these cases, high-throughput multireference calculations have the poten-

tial to provide high-quality benchmarks and training data for new density functional and

machine-learned approximations. Looking towards this future, recent research has gone into

identifying chemical systems where multireference approaches would provide added value

over DFT,66 and here we have the goal of standardizing these calculations to run in an

automated and robust fashion.

To achieve this, we turn our focus towards a unique issue that stands in the way of the

most widely used multireference methods, which is the problem of active space selection.

18



In active space multireference computation the user must limit the size of the calculation

uniquely for each system by selecting an "active space" of orbitals in which to expand the

wave function configurationally, which is an approximation known as the "complete active

space" (CAS) ansatz:

|ψCAS⟩ =
∑

n1n2...nn

cn1n2...nn |22...n1n2...nn00...⟩ (2.1)

In the above, ni are the varying occupations (0, ↑, ↓, 2) of the active space orbitals, and

cn1n2...nn are the coefficients of each determinant |22...n1n2...nn00...⟩. Orbitals not in the ac-

tive space have either constant 2 (inactive) or constant 0 (virtual or secondary) occupation.26

The number of alpha and beta electrons in the active space is conserved in all determinants

in the expansion (equation 2.1), and this number of electrons is generally set by the num-

ber of electrons in the occupied orbitals selected. The size of the chosen active space is

commonly expressed as a number of electrons in a number of orbitals (Nelec,Norbs). For a

wave function of maximum spin component along the laboratory axis (S = Sz), the effective

degrees of freedom in equation 2.1 can be expressed through the number of "configuration

state functions" (CSFs) as67

NCSF =

(
L

α

)(
L

β

)
−
(

L

α + 1

)(
L

β − 1

)
(2.2)

where L is the number of orbitals and α and β the number of alpha and beta electrons in

the active space, respectively.

Today, there are many approaches for optimizing the CAS ansatz. Obtaining the coef-

ficients in equation 2.1 through exact diagonalization is known as CASCI, while optimizing

the orbitals and the coefficients simultaneously is known as CASSCF.68 Currently, the max-

imum active space that can be computed with these methods is about (20,20).26 To expand

beyond this limit, several methods exist for approximating the coefficients in equation 2.1,
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such as the density matrix renormalization group method (DMRG),69–71 full configuration

interaction quantum Monte Carlo (FCIQMC),27,72 and neural networks.73 These approxi-

mate methods can handle up to hundreds of orbitals in the active space.31 Often, the active

orbitals are variationally optimized in tandem with the coefficients in equation 2.1, which

spawns methods with the self-consistent field (SCF) suffix (e.g. CASSCF and DMRGSCF).

Additionally, results from CAS-type wave functions are often enhanced through the addi-

tion of dynamic correlation through multireference perturbation theory via CASPT274 or

n-electron valence perturbation theory (NEVPT2).35 The addition of dynamical correlation

through these methods limits calculations to only about 14 orbitals in the active space.26

Regardless of the method used to optimize or improve the CAS wave function, an active

space must be selected. Even if the orbitals are variationally optimized as in CASSCF, the

initial guess can greatly influence the quality of the result obtained due to the variety of

local minima on the optimization surface.30 If one selects an active space that is too large,

the calculation becomes exponentially more expensive and potentially unaffordable, while if

one selects an active space that is too small or that does not include the important orbitals,

the wave function can be qualitatively wrong. The past five years have seen a large amount

of research on the topic of automatically selecting the active space.1,31,49,75–84

A new approach for selecting active spaces that has gathered a lot of attention in recent

years goes by the name of AutoCAS,31,76 and is centered around the idea of choosing orbitals

that vary in occupation (0, ↑, ↓, 2) within a low-cost or even partially converged DMRG

calculation. This variance is measured through the single-orbital entropy, given for an orbital

i as85

Si = −
∑

j={0,↑,↓,2}
ρijj ln ρ

i
jj (2.3)

where ρi is the one-orbital reduced density matrix for orbital i, the configurational analogue

of the one-particle reduced density matrix obtained by tracing over all other configurational
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degrees of freedom:85

ρi =
∑

{n̸=ni}
⟨n|ψ⟩ ⟨ψ|n⟩ =

∑
kj

ckc
∗
j

 ∑
{n̸=ni}

⟨n|nk⟩
〈
nj
∣∣n〉
 ∣∣∣nik〉〈nij∣∣∣ (2.4)

where n ̸= ni are all possible occupations of the other orbitals (excluding orbital i). Note

that the orbital entropies are state, localization, and orbital-dependent.

Stein and Reiher have proposed two schemes for selecting the orbitals from the orbital

entropies above: one scheme based off a global threshold and a more complicated flowchart

scheme based off of identifying plateaus in threshold diagrams.76 In this work we investigate

the performance of the former scheme due to the difficulty of using the latter outside of the

software package they have released to run calculations in OpenMolcas and the similarity

of its results to the latter in several reported cases.31,67,76 To make things clearer, we refer

to this global threshold scheme as "EntropyCAS" and to the more complicated scheme as

"AutoCAS" to avoid confusion. The EntropyCAS procedure suggested by Stein and Reiher

is to choose all orbitals with orbital entropy Si > 0.1Smax, where Smax is the entropy of the

highest-entropy orbital in the ground state.31,76 When multiple states are considered, Stein

and Reiher suggest selecting the union of all orbitals with S > 0.1Smax in their respective

states,86 and we refer here to this extended and more expensive scheme as EntropyCAS+.

Here, we investigate the performance of the EntropyCAS and EntropyCAS+ procedures

for the problem of computing ground-state to first-excited-state singlet (S0 → S1) and

doublet (D0 → D1) excitation energies for twenty small molecules using state-averaged (SA)

CASSCF/ NEVPT2 calculations, as was recently investigated by Bao and Truhlar.1 We find

that while the EntropyCAS procedure excels at detecting good orbitals for the active space,

the threshold scheme proposed by Stein and Reiher is too unwieldy for high-throughput

computation.

To remedy this, a modified ranked-orbital procedure is proposed which provides consistently-
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sized active spaces and allows us to compare the quality of both active space orbitals and

orbital selection schemes for this problem. This ranked-orbital procedure is extended to two

other threshold selection schemes, high-spin UNO1,87 and AVAS,49 with similar results. To

demonstrate the robustness of this approach for high-throughput computation, we carry out

1120 SA-CASSCF/NEVPT2 calculations which serves to highlight trends in the application

of the CASSCF/NEVPT2 method.

Finally, with the goal of accelerating high-throughput computation with the ranked-

orbital EntropyCAS procedure, we attempt to approximate the orbital entropy from a pair-

coefficient framework by the readily available molecular orbital energies and elements of the

exchange matrix from Hartree-Fock. This new approximation is called the "Approximate

Pair Coefficient" (APC) method, and performs about equivalently to the modified Entropy-

CAS procedure for these simple systems. Taking inspiration from molecular-orbital based

machine learning (MOB-ML),88 we attempt to improve this approximation through a ma-

chine learning scheme using more information from the Hartree-Fock matrices. While we

find that this improvement has little effect on the performance of the active spaces for these

simple systems, we hope that the work here inspires future efforts in approximating the

orbital entropies for more complex cases.

2.3 Methods

Excitation Energies. Geometries and reference values for excitation energies were taken from

the previous work of Bao and coworkers.1,77 Here, we select a subset of these reference val-

ues consisting of S0 → S1 or D0 → D1 excitation energies of 12 singlet and 8 doublet

DFT-optimized structures, with singlet reference values taken from experiment and doublet

reference values obtained from high-quality multireference configuration interaction calcu-

lations with the Davidson correction (MRCI+Q). Although these systems are small, the

majority of their first excited states are thoroughly multiconfigurational (supporting infor-
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mation). After the active space is selected by various schemes, final SA-CASSCF/NEVPT2

calculations with the aug-cc-pVTZ basis89 were performed using PySCF,90 with state aver-

aging done over the five lowest-energy states with the same spin as the ground state. The

maximum number of macro cycles in the CASSCF optimization procedure was set to 200,

and the CASSCF orbitals were taken regardless of convergence after this limit was reached

(sloppy convergence, see supporting information).

EntropyCAS/EntropyCAS+. Orbital entropies for orbitals generated in PySCF were

calculated by interfacing with QCMaquis71 via the FCIDUMP91 file interface. DMRG

calculations were initialized using the CIDEAS initial guess,92 and information from this

initial calculation was used to employ an optimized Fiedler ordering93 of the DMRG orbitals

for a larger calculation with a bond order of M = 450. Then, to ensure convergence of the

orbital entropies, information from this M = 450 calculation was used to initialize a larger

M = 500 calculation with an updated Fiedler ordering and if necessary this process was

repeated increasing M by 50 until all orbital entropies were converged to within 0.01 units.

Entropies for the first excited state were calculated in tandem by enforcing orthogonality to

the ground state at each step (guess, M = 450, M = 500...). This process was continued

until convergence was met in both the ground and first excited state entropies.

Orbitals for this procedure were generated from ROHF solutions and several localiza-

tion schemes (canonical (HF), Boys,94 Pipek-Mezey with Löwdin charges (PM),95,96 and

Edmiston-Ruedenberg97 (ER)) implemented in PySCF. Orbitals were localized in a split-

localized procedure where the doubly-occupied orbitals were localized in a space of all doubly

occupied orbitals and the virtual orbitals were localized in a space of 40 virtual orbitals,

selected by two different schemes (supporting information); any singly-occupied orbitals re-

mained unchanged.

High-Spin Unrestricted Natural Orbitals (UNO(HS)). Selecting UHF natural orbitals

(UNOs) for the active space based on their occupation number is one of the oldest schemes
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for selecting active spaces,87 but as recently noted is still capable of selecting good active

spaces for many difficult systems.83 However, because all systems here are at equilibrium

geometry and weakly correlated, the standard UNO-CAS procedure is not viable as an un-

restricted UHF solution does not exist separately from the RHF solution at many of these

geometries. To amend this, we take inspiration from the work of Bao and Truhlar1 who used

high-spin UHF natural orbitals to construct active spaces for these systems. For singlet sys-

tems, we compute the UHF wave function with Sz = 2 and for doublet systems we compute

the UHF wave function with Sz = 5/2. The natural orbitals and occupation numbers are

then obtained by solving the relevant eigenvalue problem,87

S1/2(Dα +Dβ)S
1/2(S1/2C) = σ(S1/2C) (2.5)

where S is the atomic orbital overlap matrix, C is the molecular orbital coefficient matrix

of the UNOs to be obtained, σ is a diagonal matrix containing the occupation numbers, and

Dα and Dβ are the alpha and beta density matrices in the atomic orbital basis.

AVAS. The atomic valence active space (AVAS) method was published by Sayfutyarova

and coworkers in 2017 and is based on the insight that active spaces are generally selected by

thinking about atomic orbitals and not molecular ones.49 Once a single-determinant wave

function is acquired, the user selects a set of A atomic orbitals from a minimal basis, and

then the doubly occupied and virtual orbitals are localized separately to form a basis of

at most 2A molecular orbitals that completely embed the user-selected atomic orbitals. A

question remains for singly-occupied orbitals, and the authors suggest a few ways of dealing

with these. Here we calculate the wave function of all doublet structures using ROHF

determinants, and use the approach suggested by Sayfutyarova and coworkers of carrying

over all singly-occupied molecular orbitals into the active space without localization.

As described, AVAS is not strictly a fully automatic scheme as the user must select the

atomic orbitals to embed by hand. However, the singular values from the singular value
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decomposition used to embed the orbitals are suggested by the authors as a way to qualify

orbitals for the active space. To construct a fully automatic scheme we ask AVAS to embed

all the valence orbitals in a minimal basis for the system and use the provided singular

values as qualifiers in the ranked-orbital procedure described below. The AVAS orbitals and

singular values were obtained via its implementation within PySCF.

Figures. Most figures were generated with Seaborn,98 which calculates 95% confidence

intervals by bootstrapping the mean value over 1000 random samplings. Orbital isosurfaces

enclosing 80% of orbital electron density were generated using IboView.99

2.4 Results and Discussion

2.4.1 The Limitations of Threshold Schemes

As a simple first test of the viability of EntropyCAS and EntropyCAS+ as high-throughput

active space selection schemes, we chose to select active spaces for 20 excitation energies of

small systems investigated previously by Bao and Truhlar.1 To calculate the excited states

of ethylene, Stein and Reiher calculated entropies for and selected the active space from

12 valence and 12 Rydberg orbitals generated from a Hartree-Fock calculation in the large

ANO-RCC100–102 basis (8s8p4d3f2g for carbon and 6s4p3d1f for hydrogen).86 Here, we cal-

culate entropies for and select orbitals from the lowest 30 orbitals in energy for all twenty

systems investigated. To investigate the effect of orbital localization in the EntropyCAS and

EntropyCAS+ methods we used both canonical (HF) and Boys-localized orbitals (Entropy-

CAS/HF, EntropyCAS+/HF, EntropyCAS/Boys and EntropyCAS+/Boys).
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Figure 2.1: Comparison of the size of the active spaces selected by EntropyCAS/HF, En-
tropyCAS+/HF, EntropyCAS/Boys, and EntropyCAS+/Boys for the twenty different sys-
tems investigated, as plotted by the base-10 logarithm of the number of configurations in
the selected active space (log10NCSF ). No method selects spaces for all systems under the
affordable CASSCF/NEVPT2 limit of (15,14) (top horizontal dotted line).

The active space selections of EntropyCAS and EntropyCAS+ using the 0.1Smax thresh-

old suggested by Stein and Reiher are shown in figure 2.1, plotted against the log10NCSF of

configurations in the selected active space, with NCSF as calculated by equation 3.4. Dotted

red lines indicate the log10NCSF for a minimum active space of (2,2) and the maximum

affordable active space using CASSCF/NEVPT2 of (15,14).26 We find that for many sys-

tems the active spaces selected by the EntropyCAS and EntropyCAS+ procedures are larger

in size than the affordable (15,14) limit for CASSCF/NEVPT2 and that no method selects

an active space below this limit for all systems. Furthermore, because the orbital entropies

are localization dependent,103 the size of the selected active space varies heavily by system,

orbital localization, and selection method (EntropyCAS vs. EntropyCAS+). We use these

results to highlight what we believe to be limitations of threshold schemes:

• Threshold schemes have no regard for the affordability of the selected active space for

the CAS method being employed. This makes them difficult to adapt for the large

variety of CAS methods (exact diagonalization, DMRG, FCIQMC) that vary heavily

in their preferred active space size.
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• Threshold schemes are very hard to compare with one another. For example, if one

approach (e.g. EntropyCAS+) selects an active space with many orders of magnitude

more configurations than another scheme (e.g. EntropyCAS), it makes it very difficult

to meaningfully compare these results.

• Threshold schemes make it difficult to compare orbitals with one another, as in cases

where localizing the orbitals results in an active space with orders of magnitude less

configurations (e.g. C2H) or more configurations (e.g. C2H4).

• The variability of active space sizes selected by threshold schemes makes it hard to

automate. Spaces with orders of magnitude more configurations will require drastically

different amounts of computational resources than smaller ones.

While one may hope to remedy the issues above through more sophisticated selection

schemes such as AutoCAS or by reiterating the selection scheme on converged CASSCF

orbitals, this in principle does not avoid any of the criticisms above. Although more so-

phisticated schemes such as AutoCAS would likely choose much smaller spaces, any scheme

which determines the size of the active space from developer-set parameters retains its ag-

nostic nature towards the CAS solver the user would like to use and is thus prone to choose

a space that is too small or too large (indeed, the scheme of Stein and Reiher was devel-

oped in the context of DMRG).31,76 Similarly, due to the variety of CASSCF minima on

the orbital optimization surface, there is no reason to think that a reiterative scheme would

completely eliminate all variance in the final active space size with respect to the starting

basis employed.

Despite these issues, on physical grounds the orbital entropies used by the EntropyCAS

and EntropyCAS+ procedures stand on good terms; it is simply the procedural act of se-

lecting the active spaces via a threshold scheme that results in these unfavorable qualities.

These problems also apply to threshold occupation number schemes such as UNO-CAS.87
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Here, we modify these threshold schemes in order to select consistent, flexible, and affordable

active spaces for high-throughput computation.

2.4.2 The Ranked-Orbital Approach to Selecting Active Spaces

One will note that all the problems with threshold schemes mentioned above can be resolved

by simply requiring threshold schemes to select active spaces of a consistent size. How to go

about doing this in a flexible way, however (as opposed to, for example, simply limiting the

number of orbitals in the active space) is an open question. Here, we propose a ranked-orbital

approach to selecting active spaces that can easily be adapted to any threshold scheme:

1. The user specifies a maximum CAS space of max(Nelec, Norbs) and this space is con-

verted to a maximum NMAX
CSF via equation 3.4, with S = Sz = 0 for an even number

of electrons and S = Sz = 1/2 for an odd number of electrons.

2. The selection scheme ranks all candidate orbitals in order of importance

3. The lowest-importance orbital is repeatedly dropped from the active space untilNCSF ≤

NMAX
CSF

4. If an orbital is dropped that results in an unreasonable active space (with reasonability

here defined as having at least one occupied orbital and two unoccupied orbitals in the

active space, to ensure stability of the CASSCF solver), the next lowest orbital is

dropped instead.

We note that all that is strictly required by the above algorithm is the maximum number

of CSFs, NMAX
CSF . However, as computational chemists rarely discuss active spaces in this

language, we have the user set NMAX
CSF with reference to the size of a real active space:

max(7,6) (NMAX
CSF = 490), max(8,8) (NMAX

CSF = 1764), max(10,10) (NMAX
CSF = 19404), and

max(12,12) (NMAX
CSF = 226512), etc. Here we convert the following threshold schemes in this

way:
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• High-spin UNO-CAS (UNO(HS)), with natural orbitals ranked by the absolute devia-

tion of their occupation number from 0 or 2.

• EntropyCAS, with arbitrary candidate orbitals ranked by their orbital entropy from

DMRG

• EntropyCAS+, with arbitrary candidate orbitals ranked by their average, max-normalized

orbital entropy from DMRG in all relevant states (here the ground and first excited

state):

Si =
1

N

N∑
n

Sni
Smax
n

(2.6)

• AVAS, with SVD orbitals ranked by their singular values from embedding all valence

orbitals in a minimal basis

To illustrate the robustness of this approach for high-throughput computation, we now

evaluate the performance of the above schemes in the ranked-orbital procedure by having

them choose active spaces for the 20 small-molecule excitation energies mentioned previously

with maximum active space sizes of max(7,6) and max(10,10). At the max(7,6) level, good

results should be obtainable with a mean error of about 0.17 eV, as achieved by Bao and

Truhlar with spaces of about this size using jun-cc-pvTZ and CASPT2.1 The max(10,10)

level is chosen to demonstrate that the modified schemes are able to select active spaces

with roughly two orders of magnitude more configurations that correspondingly improve the

results obtained.
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Figure 2.2: Performance of six different threshold schemes that have been modified by the
ranked-orbital procedure at maximum active space sizes of (7,6) and (10,10). The ranked-
orbital scheme allows for a meaningful comparison between active space selection schemes,
orbital localization schemes, and active space sizes.

The results of six different threshold schemes that have been modified by the ranked-

orbital procedure over the 20 excitation energies in the test set are plotted in figure 2.2.

Because the selected active spaces are limited to a consistent size, the scheme allows for

a meaningful comparison between the quality of different methods. For example, the best

method at max(7,6) is EntropyCAS/Boys with a mean error of 0.13eV while the best method

at max(10,10) is EntropyCAS+/Boys with a mean error of 0.11eV. EntropyCAS/HF per-

forms quite poorly at the max(7,6) level, mostly due to a poor selection for CH2O (supporting

information).
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Figure 2.3: Performance of the modified ranked-orbital EntropyCAS scheme at max(7,6)
and max(12,12). The ranked-orbital procedure allows for flexibility in the chosen active
space while being able to select calculations of a consistent and managable size, by fixing
the maximum number of CSFs.

To illustrate the flexibility of the ranked-orbital procedure in selecting active spaces of

a consistent size while maintaining flexibility, the performance and selection of the ranked-

orbital EntropyCAS procedure using Boys orbitals at max(7,6) and max(12,12) is shown in

figure 2.3. It can be seen that limiting only the number of CSFs (and not the number of

orbitals or electrons) allows for different numbers of orbitals and electrons to be selected for

each system. For example, active spaces from (10,7) to (5,6) are selected at the max(7,6)

level and from (9,12) to (7,14) at the max(12,12) level.

Benefits and Drawbacks. The main benefits of the ranked-orbital scheme are that it

resolves all of the rather critical limitations of threshold schemes for high-throughput com-

putation and makes it easier to compare different approaches for selecting active spaces for

a given problem. The main drawback of this approach, however, is that the user must select

the maximum active space size (or equivalently, the maximum number of CSFs). While this

concession makes the schemes in some sense less "automatic", we believe this trade-off to be

inevitable and worthwhile given the large variety of active spaces demanded by the large vari-

ety of CAS solvers (exact diagonalization, DMRG, FCIQMC), and in line with other methods
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that require users to select the size of their approximation such as CISD/CISDT/CISDTQ.

Although one may wish to further automate the problem of choosing the maximum number of

CSFs (specifically to avoid drastically inadequate calculations for a given property/system),

this choice is inherently dependent on the property of interest and the CAS solver used;

while for specific applications this further automation may prove quite fruitful, the problem

of flagging any calculation as entirely inadequate is quite difficult and we suspect the frontier

of adequacy will evolve considerably as computational power increases and new methods are

developed.

2.4.3 A High-Throughput Examination: 1120 SA-CASSCF/NEVPT2

Calculations

To further demonstrate the robustness of the ranked-orbital approach for high-throughput

multireference computation and its utility for evaluating and comparing the effectiveness

of different orbitals and methods, we calculated excitation energies for the 20 small sys-

tems using SA-CASSCF/NEVPT2 and choosing from the lowest 30 orbitals in energy with

the EntropyCAS and EntropyCAS+ ranked-orbital approaches. Four different localization

methods were used to generate the initial orbitals for selection: Boys, Pipek-Mezey, and

Edmiston-Ruedenberg in addition to canonical orbitals. For each non-canonical method, the

virtual orbitals were localized over two different subsets of virtual canonical orbitals, either

the lowest 40 virtuals in energy or the lowest 20 and the highest 20 virtuals in energy, the

intuition behind the second scheme being to include Rydberg character in the final localized

orbitals. In addition, we investigated the effectiveness of the ranked-orbital approach at four

maximum active space sizes: max(7,6), max(8,8), max(10,10), and max(12,12), which differ

in their number of CSFs by roughly an order of magnitude each. In total, we calculated

excitation energies for 20 systems over seven localization schemes (cannonical orbitals + two

types of Boys, Pipek-Mezey, and Edmiston-Ruedenberg) at four different maximum active
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space sizes (max(7,6), max(8,8), max(10,10), and max(12,12)) using two different selection

methods (ranked-orbtial EntropyCAS and EntropyCAS+), for a total of 1120 calculations.

With the data from this study we hope to demonstrate the utility of the ranked-orbital

procedure by answering the following questions concerning the calculation of the first exci-

tation energies of small molecules:

• How does the maximum active space size and orbital localization affect the quality of

the results?

• Does the consideration of excited-state entropies through EntropyCAS+ affect the

quality of the results?

• How does the addition of dynamical correlation through NEVPT2 interact with the

maximum size of the active space and the ranked-orbital procedure?

To answer these questions, we will show the mean absolute error of the calculated ex-

citation energies with respect to the reference values calculated by Bao and Truhlar1 over

subsets of these calculations with given settings. For example, to analyze the effectiveness

of EntropyCAS+ we compare the mean absolute error of calculations using EntropyCAS vs.

calculations using EntropyCAS+. Mean values and confidence intervals are taken over the

complete subset of the 1120 calculations with the specified settings– for example, Entropy-

CAS calculations will account for 1120/2 = 560 calculations differing in system, maximum

size, and localization. Similarly, EntropyCAS calculations initialized with HF orbitals will

account for 560/7 = 80 calculations differing by system and maximum size, and EntropyCAS

calculations initialized with Boys orbitals will account for 560/7 ∗ 2 = 160 calculations, due

to the two types of non-canonical virtual localization schemes. Exactly what calculations

are being averaged over is specified in the captions of each figure below.
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Figure 2.4: Performance of the ranked EntropyCAS/EntropyCAS+ procedures over differ-
ent orbital localizations and maximum active space sizes, plotted by the error of their final
CASSCF/NEVPT2 excitation energies from reference values; bootstrapped 95% confidence
intervals are shown by vertical bars in black. The statistics of each bar are taken over 40
calculations for HF and over 80 calculations for localized schemes (due to the two types of
virtual localization) that differ in system and selection method (EntropyCAS vs. Entropy-
CAS+). Regardless of orbital localization, a convergent decrease in the mean absolute error
in the excitation energies is observed with increasing maximum active space size.

Active Space Size and Orbital Localization. The performances of the ranked-orbital En-

tropyCAS/EntropyCAS+ procedures are shown in figure 2.4. A convergent decrease in the

mean absolute error is observed for all localization schemes with increasing active space

size. Excepting the Pipek-Mezey scheme, which seems to have pathological behavior due to

its implementation with Lödwin charges in a triple-zeta basis,96 orbital localization greatly

increases the quality of the results obtained with respect to the canonical orbitals from

Hartree-Fock (HF). Boys-localized max(7,6) spaces generate results of roughly the same

quality as HF max(8,8) spaces, the latter of which has roughly an order of magnitude more

CSFs. We find Boys-localized orbitals to be the overall best in quality, with the best perfor-

mance at both (7,6) and (12,12) spaces, and also note that IBO localization104 is a promising
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localization scheme for this application but was not explored here.

Figure 2.5: Left: Comparison of the EntropyCAS and EntropyCAS+ procedures by orbital
localization. Statistics are taken over 80 calculations for HF and over 160 calculations for
localized schemes (due to the two types of virtual localization) that differ in system and
maximum active space size. Right: Comparison of the EntropyCAS and EntropyCAS+
procedures overall. Statistics are taken over 560 calculations in each bar that differ in
system, maximum active space size, and localization. Confidence intervals at 95% are shown
in black.

EntropyCAS vs. EntropyCAS+. Figure 2.5 shows the performance of the EntropyCAS

and EntropyCAS+ procedures over the entire dataset partitioned by orbital localization

and overall. Surprisingly, we find there to be no significant improvement when taking into

account the excited-state orbital entropies (EntropyCAS+), except in the case of the HF

orbitals, where errors are greatly reduced by almost 0.08 eV. One explanation for this is

that the localization scheme is able to produce orbitals that are better for both the ground

and excited states, and hence only using the orbital entropies from ground state performs

well in these cases. From these data, we highly recommend the EntropyCAS+ procedure

for S0 → S1 and D0 → D1 excitation energies when employing HF orbitals, but at least

for the systems studied here, when employing localized orbitals, only considering the ground
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state entropies is likely sufficient. Over the entire dataset we find no significant difference

between the EntropyCAS and EntropyCAS+ procedures (although it should be noted that

HF calculations make up only one out of every seven calculations). Interestingly, we find

that the excitation energies tend to be overestimated (about 78% of calculations) significantly

more than they are underestimated (about 22% of calculations), regardless of the selection

method used (supporting information).

Figure 2.6: Left: Comparison of CASSCF vs. CASSCF/NEVPT2 by maximum active
space size. The statistics of each bar are taken over 280 calculations that differ in system,
localization, and selection method (EntropyCAS vs. EntropyCAS+). Right: Comparison
of CASSCF vs. CASSCF/NEVPT2 by orbital localization. The statistics of each bar are
taken over 160 calculations for HF and over 320 calculations for localized schemes (due to the
two types of virtual localization) that differ in maximum active space size and and selection
method (EntropyCAS vs. EntropyCAS+).

CASSCF vs. CASSCF/NEVPT2. Figure 2.6 shows the performance of CASSCF vs.

CASSCF / NEVPT2 by maximum active space size and orbital localization. Expectantly, we

see that the improvement with the addition of NEVPT2 decreases in magnitude with active

space size, with excitation energies improved by an average of 0.31 eV at the max(7,6) level to

only 0.17 eV at the max(12,12) level. Interestingly, we observe no significant difference in the
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NEVPT2 improvement of the results by orbital localization, implying that the majority of

the improvement in using Boys and Edmiston-Ruedenberg orbitals comes from improvements

in the CASSCF wave function and not in their interaction with NEVPT2. Overall, we find,

as expected, the performance of the NEVPT2 correction to be quite impressive for this

problem, being able to consistently improve the CASSCF result up to errors of about 2 eV

(supporting information).

2.4.4 Error Estimators for CASSCF/NEVPT2

For high-throughput screenings utilizing multireference calculations, it is desirable to develop

estimators of the error of a given CASSCF/NEVPT2 result without the use of reference data.

Recently, several such error estimators have been proposed by authors developing active space

selection schemes:49,80,83

• Small singular values σi of the overlap matrix between the initial (selected) and final

(optimized) active spaces in the CASSCF procedure,49

Schange = (C
final
act )†SCinitial

act (2.7)

=
∑
i

σiuiv
T
i (2.8)

where S is the atomic orbital overlap matrix, Cfinal
act are the molecular orbital coeffi-

cients of the final active space, Cinitial
act are the coefficients of the initial active space,

and vi and ui are the singular vectors.

• Large differences in energy between CASSCF and CASCI,83,84 ECASSCF − ECASCI

or ∆ECASSCF
CASCI

• Large numbers of iterations/macro cycles undertaken by the CASSCF optimization

procedure, Niter.84
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• Large absolute differences between the CASSCF and NEVPT2 excitation energies,1

|∆ENEV PT2 −∆ECASSCF | or |∆∆ENEV PT2
CASSCF |

Through an analysis of the 1120 calculations above we hope to quantify the effectiveness

of these different methods for estimating the error of a given CASSCF/NEVPT2 result and

suggest good thresholds for utilizing these values.

Figure 2.7: Left: Absolute errors of all 1120 calculated excitation energies with respect to
the reference values of Bao and Truhlar,1 plotted against their state-averaged ∆ECASSCF

CASCI .
Right: Absolute errors of all 1120 calculated excitation energies with respect to the reference
values of Bao and Truhlar,1 plotted against the number of macro cycles in the CASSCF
procedure, Niter. Neither value has any significant correlation with the error of calculated
excitation energies.

∆ECASSCF
CASCI and Niter. Figure 2.7 shows the performance of the state-averaged ∆ECASSCF

CASCI

and Niter as error estimators of the CASSCF/NEVPT2 results. We find that both of these

values have no significant correlation with the absolute error of the calculated excitation en-

ergies. Interestingly, we find that calculations initialized with canonical (HF) orbitals change

in the state-averaged energy only about half as much on average than those initialized by lo-

calized orbitals, and that ∆ECASSCF
CASCI remains surprisingly consistent with maximum active

space size (supporting information).
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Figure 2.8: Left: Absolute errors of all 1120 calculated excitation energies with respect
to the reference values of Bao and Truhlar,1 plotted against the minimum singular value
σmin of their active space overlap matrix (equations 2.7 and 2.8). Right: Performance of
the suggested threshold of 1.1e-6, which demonstrates a statistically significant difference
between the two groups of calculations under Welch’s t-test.2

Active Space Overlap. Small singular values of the active space overlap matrix (equations

2.7 and 2.8) indicate that an orbital was rotated out completely during the CASSCF opti-

mization procedure, and has thus been proposed by Sayfutyarova and coworkers as a way

to judge the quality of a given active space.49 Figure 2.8 demonstrates the performance of

the minimum singular value of the active space overlap matrix, σmin, as an error estimator

of the CASSCF/NEVPT2 results. We find that σmin decreases with maximum active space

size in correspondence with larger Niter, implying that the starting orbitals are further away

from local minima on the larger CASSCF optimization surfaces; this is likely indicative of

additional orbitals capturing a vanishing amount of static correlation, as also supported by

the diminishing returns in absolute error with increasing maximum active space size (figure

2.4). While there appears to be merit to using σmin to judge the quality of a finalized active

space, we find the difference in error to only be significant at extremely low values of σmin.

The right of figure 2.8 demonstrates the performance of our suggested threshold of 1.1e-6,

which classifies a subset of 70 calculations (about 6%) that has a significantly higher mean
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error by about 0.08 eV.

Figure 2.9: Left: Absolute errors of all 1120 calculated excitation energies with respect
to the reference values of Bao and Truhlar,1 plotted against their |∆∆ENEV PT2

CASSCF |. Right:
Performance of the 1.1 eV threshold suggested by Bao and Truhlar, which demonstrates a
significant difference between the two groups of calculations under Welch’s t-test.2

|∆∆ENEV PT2
CASSCF |. Bao and Truhlar suggested classifying an excitation energy result as

"reliable" if |∆∆ENEV PT2
CASSCF | ≤ 1.1 eV.1 Figure 2.9 shows the performance of this test as an

error estimator of the CASSCF/NEVPT2 results, and indeed we find the 1.1 eV threshold

suggested by Bao and Truhlar to separate the calculations into significantly different groups,

classifying a subset of 75 calculations (about 7%) that has a significantly higher mean error

by about 0.34 eV. In the supporting information we suggest optimized thresholds for using

|∆∆ENEV PT2
CASSCF | as a weak error classifier, as well as further analyses of all estimators with

respect to orbital localization and active space size.

2.4.5 Approximations of the Orbital Entropy

To increase the viability of high-throughput multireference calculations, good active spaces

should be able to be selected at low cost. While the EntropyCAS and EntropyCAS+ schemes

can certainly select good active spaces in a physically motivated fashion, the computation
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of the DMRG orbital entropies requires a fair amount of computation, with the limiting

factor being high memory. In this section, we attempt to approximate the orbital entropy

by analyzing the multiconfigurational character of a two-configuration system (e.g. minimal-

basis H2). The wave function for this system may be written in intermediate normalization

as

|ψ⟩ = |20⟩+ c |02⟩ (2.9)

The multiconfigurational character of this system is determined entirely by the pair co-

efficient c. The approach here is to model the entire wave function expansion as a set of

doubly-occupied and virtual pairs, with each pair behaving like the two-configuration model

system. In other words, each doubly occupied orbital interacts in a pairwise fashion with

every virtual orbital, and every virtual orbital interacts in a pairwise fashion with each dou-

bly occupied orbital. Given a set of pair coefficients for a single doubly occupied orbital i

with virtual orbitals a, cia (with each cia as in equation 2.9), we can write the one-orbital

reduced density matrix of the doubly occupied orbital, ρi, as roughly

ρi ≈ 1

1 +
∑

a c
2
ia

(
|2⟩ ⟨2|+

∑
a

c2ia |0⟩ ⟨0|

)
(2.10)

where 1
1+
∑

a c
2
ia

is a leading normalization factor. Similarly, we can write the one-orbital

reduced density matrix for a virtual orbital a interacting in a pairwise fashion with doubly

occupied orbitals i through pair coefficients cia as roughly

ρa ≈ 1

1 +
∑

i c
2
ia

(
|0⟩ ⟨0|+

∑
i

c2ia |2⟩ ⟨2|

)
(2.11)

Then, the entropy of a doubly occupied orbital i is approximated via equation 2.3 as
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Si ≈ − 1

1 +
∑

a c
2
ia

ln
1

1 +
∑

a c
2
ia

−
∑

a c
2
ia

1 +
∑

a c
2
ia

ln

∑
a c

2
ia

1 +
∑

a c
2
ia

(2.12)

and for a virtual orbital a as

Sa ≈ − 1

1 +
∑

i c
2
ia

ln
1

1 +
∑

i c
2
ia

−
∑

i c
2
ia

1 +
∑

i c
2
ia

ln

∑
i c

2
ia

1 +
∑

i c
2
ia

(2.13)

Thus, if we can approximate the matrix of pair coefficients cia we can approximate the

orbital entropies Si and Sa. To approximate the pair coefficients, we turn back to our

model system (equation 2.9), in which c is given exactly by the solution to the CI eigenvalue

problem105

 0 (12|12)

(12|12) 2∆

 =

1

c

Ecorr

where (12|12) is the 2-electron exchange integral between orbitals 1 and 2, and ∆ is half

the difference in energy between |20⟩ and |02⟩. Solving this eigenvalue problem for c yields

an analytical expression in terms of the exchange integrals and ∆,

c = − (12|12)
∆ +

√
(12|12)2 +∆2

(2.14)

which brings the problem down to approximating the terms in this expansion for a given

doubly occupied orbital i and virtual orbital a in a real system. Fairly easily we can make

the approximation that ∆ia ≈ ϵa− ϵi, where ϵi are the orbital energies (or for non-canonical

orbitals, diagonal elements of the Fock matrix Fii). However, the exchange integrals (ia|ia)

are quite costly to compute when extrapolating to larger systems as they require a molec-

ular orbital integral transformation which scales as N5. To approximate these integrals we

examine two expressions for the orbital energy of the virtual molecular orbital in the model

system, the first given by the diagonal elements of the diagonalized Fock matrix,
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ϵ2 = h22 + J22 − 0.5K22 (2.15)

and the second given by Koopman’s theorem in terms of the molecular orbital integrals,

ϵ2 = (2|h|2) + 2(11|22)− (12|12) (2.16)

Comparing these expressions, we match up the exchange terms and make the approxi-

mation that

(12|12) ≈ 0.5K22 (2.17)

which turns out to be exact in the case of minimal basis H2. In the general case, for an

arbitrary doubly occupied orbital i and virtual orbital a we make the approximation that

(ia|ia) ≈ 0.5Kaa (2.18)

With these approximations in hand, we approximate the final pair coefficient between a

given doubly occupied orbital i and virtual orbital a as

cia = − 0.5Kaa

(ϵa − ϵi) +
√

(0.5Kaa)2 + (ϵa − ϵi)2
(2.19)

These coefficients are then gathered for each orbital and used in equations 3.2 and 3.3

to approximate the orbital entropies. We henceforth refer to this approximation as the

"approximate pair coefficient" (APC) approximation. The scheme makes no attempt to

approximate the entropies of or interactions with singly occupied orbitals, and instead assigns

them the maximum entropy value across all virtual and doubly occupied orbitals.

As a reference scheme, we also explore not making the approximation in equation 2.18

and using the exact exchange integrals; we call this much more expensive approximation
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"APCX". Finally, taking inspiration from the recent work of Welborn and co-workers,88 we

attempt to enhance this core approximation by using other elements of the HF Coulomb,

exchange, kinetic and potential energy matrices with machine learning (supporting informa-

tion). The model was trained on the entropies of the orbitals used in the 1120 calculations

of the previous section (for a total of 20 systems * 7 localizations * 30 orbitals each = 4200

points), and a full description of this scheme is available in the supporting information; we

refer to this scheme as "APCML".

Figure 2.10: Top: APC entropies vs. DMRG entropies. Bottom: APCX and APCML
entropies vs. DMRG entropies. The approximate pair coefficient (APC) approximation is a
surprisingly accurate approximation of the orbital entropy for these simple systems.

Figure 2.10 demonstrates the surprisingly good performance of the APC entropies as a

first-order approximation to the DMRG entropies for doubly occupied and virtual orbitals,
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with a Pearson’s R2 value of 0.76 and a mean absolute error of 0.0104 over all orbitals

(compared to a standard deviation of σ = 0.046). Errors tend to be higher for doubly

occupied orbitals (R2 = 0.64, MAE = 0.0240) and lower for virtual orbitals (R2 = 0.83,

MAE = 0.0064), with the main error being an overestimation of doubly occupied orbitals.

However, the standard deviation of the doubly occupied orbitals is twice as large (σ = 0.066

vs. σ = 0.033). Additionally, although performance in all three schemes is significantly

worse for higher-entropy orbitals (e.g. S > 0.05), this does not appear to affect the ranking

precision; we find all APC schemes to rank the orbitals with about 88% precision compared

to DMRG, and include a lesser number of important orbitals (S > 0.05) in their top 6

ranking in only 1.5-3% of cases (supporting information).

Surprisingly, we find that the APC approximation performs significantly better than

APCX in approximating the magnitude of the DMRG entropies, indicating a fortunate can-

cellation of error. One explanation is that APC overcorrelates pairs of orbitals by approxi-

mating the integrals as diagonal elements (equation 2.18), which cancels out the correlation

lost by only considering a pairwise framework. APCML performs slightly better with an R2

of 0.88 and MAE of 0.0064. Both APCX and APCML continue to perform worse for doubly

occupied orbitals and better for virtual orbitals.
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Figure 2.11: Error of different approximate methods for the DMRG entropy vs. the DMRG
values, normalized by the standard deviation of entropy values in that orbital type (sup-
porting information); bootstrapped 95% confidence intervals are shown by vertical bars in
black. Statistics are taken over a subset of 20 calculations for HF and 40 calculations for
localized schemes (due to the two different types of virtual localization) that differ by system.
Surprisingly, there is no significant drop of in the performance of the APC schemes when
applied to localized orbitals.

Since the APC approximation is centered on arguments considering HF canonical orbitals,

one might think that it would perform worse for localized orbitals. Figure 2.11 shows that we

find no significant difference in the performance of the APC approximation by orbital type,

except in the case of APCX which surprisingly performs significantly worse for HF orbitals;

this further implies a very fortunate cancellation of error in the APC approximation.

While the agreement with the DMRG orbital entropies is promising, a final evaluation

of a scheme should rely on the quality of the active spaces it selects for a specific problem.

To compare to DMRG values, the APC/APCX/APCML models analyzed interactions only

between the same lowest 30 orbitals in energy as were analyzed in the DMRG calculation.

To turn these into general schemes for systems of arbitrary size, we analyze the interactions

between all doubly occupied orbitals and the lowest 23 virtual orbitals in energy (HF, Boys,

AVAS) or the highest 23 virtual orbitals in occupation number (UNO(HS)).
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Figure 2.12: Left: Performance of APC/APCX/APCML selection on orbitals from different
active space selection schemes at the max(7,6) level. Right: Performance of APC selection
vs. non-APC selection at the max(7,6) level.

Figure 2.12 demonstrates the performance of the three APC schemes when choosing

active spaces for different types of orbitals (HF, Boys, AVAS, and high-spin unrestricted

natural orbitals (UNO(HS)), and the performance of the APC scheme in comparison to non-

APC schemes. Surprisingly, we find the cheap and understandable APC scheme to perform

the best overall, when compared to APCX and APCML. While APCML performs slightly

better than APC for the HF and Boys-localized orbitals, APCML performs quite poorly for

AVAS and UNO(HS) orbitals, and appears to be an example of overfitting and performing

poorly on orbital types not included in the training data.

We wish to highlight the performance of the APC scheme with high-spin UNO orbitals,

which is quite remarkable: the difference in performance between selecting the orbitals based

on their UHF occupation number (UNO) and selecting them by the APC scheme is almost

0.06 eV, which is an excellent example of how orbital ranking can have a large impact

on the quality of the results. Furthermore, the quality of the results obtained with the

APC/UNO(HS) scheme are the best at the max(7,6) level, and even comparable with active

space selections at the max(10,10) level; this would seem to imply that the UNO(HS) scheme

is quite good for producing the orbitals for calculating excitation energies (as supported by
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the work of Bao and Truhlar1), but rather poor at ranking them in terms of importance.

This brings forth the possibility that approaches that mix orbital construction and active

space selection could be ideal for certain types of problems.

As a final note, it appears that the concept of learning the orbital entropies has been

investigated concurrently by Golub and coworkers,80 who focused on learning the entropy

for transition metal systems in much more difficult cases. We note that the approach here

is much less expensive due to its featurization from solely the HF matrices and not from

molecular orbital integrals, but their results are quite promising and we hope that the model

employed here as well as the APC approximation helps to develop future work in this direc-

tion. We note that learning to rank algorithms106 have a strong use case for this problem,

but were not pursued here due to separate models for the doubly occupied and virtual or-

bitals. Additionally, the approach of using features of the HF exchange matrix to estimate

energies has been explored in several papers,88,107,108 and we hope that the APC framework

developed here helps to gain insight into these models. Finally, despite its successes here,

we note that the APC scheme is likely to perform worse in much larger systems and in cases

where the HF determinant is a drastically poor approximation to the true wave function.
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Case Study: Selecting Orbitals for Benzene

Figure 2.13: The APC, APCX, APCML, and DMRG entropies for all doubly occupied
orbitals and the first 23 ground-state virtual UNO orbitals highest in occupation number for
the benzene geometry of Bao and Truhlar,1 with orbitals indexed by decreasing occupation
number (the HOMO is orbital 21). All schemes select the chemically intuitive (6,6) active
space of the π system at the max(7,6) level, in agreement with orbital entropies from DMRG.
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Figure 2.14: The six unrestricted natural orbitals of benzene selected by all APC schemes
and EntropyCAS at the max(7,6) level. Top: Orbitals 19-21. Bottom: Orbitals 22-24.

To demonstrate the chemical utility of the APC schemes, we set out to test the APC predic-

tions for the chemically intuitive case of benzene. Figure 2.13 shows the predicted entropies

of the three different APC schemes for the ground-state UNO orbitals of the benzene ge-

ometry of Bao and Truhlar.1 This is a case in which the UNO scheme is well-known to be

able to select the chemically intuitive (6,6) space with its standard threshold of 0.02 (here,

the UNO orbitals are well defined due to the existence of a non-RHF solution).7,83 In figure

2.13, it is seen that APCX is able to identify the most important orbitals for the active space

quite strongly, and while APC and APCML appear to significantly overcorrelate the lower

doubly occupied and higher virtual orbitals compared to DMRG, all three schemes are able

to rank the same six orbitals as the most important for the active space. Delightfully, in line

with chemical intuition, all three APC schemes are able to choose the correct (6,6) space at

the max(7,6) level.
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2.4.6 Conclusions

In this work we have presented the ranked-orbital approach to selecting active spaces with

the goal of standardizing active space multireference methods for high-throughput compu-

tation. Through an application of this approach to 1120 multireference calculations for

the first excitation energies of small molecules, we showed how this method can be used

to compare the quality of different orbitals and selection schemes in a meaningful fashion.

Concerning selection with entropy-based procedures, we find that localized orbitals perform

better than non-localized orbitals for the problem of calculating excitation energies, and

that EntropyCAS is comparable to EntropyCAS+ in performance when localized orbitals

are employed. Additionally, we analyzed the effectiveness of methods for estimating the

error of CASSCF/NEVPT2 results, including active space overlap, Niter, ∆ECASSCF
CASCI , and

|∆∆ENEV PT2
CASSCF |. Among these, we find |∆∆ENEV PT2

CASSCF | to be the most robust.

Next, inspired by the performance of entropy-ranked methods for this problem but dis-

couraged by their computational cost, we attempted to estimate the entropy in a physically

motivated fashion from orbital energies and features of the HF exchange matrix in a pair-

interaction framework. We call this new scheme the "approximate pair coefficient" (APC)

method, and it performs quite well for the test systems presented, being able to select good

active spaces over many different types of orbitals. APC-selected high-spin UNO orbitals

appears to be a very effective approach for calculating the first excitation energies of small

molecules, indicating the utility of separating the steps of orbital generation and ranking the

orbitals in terms of importance for the active space. Future work will likely focus on testing

the APC scheme for more difficult cases and on the application of the ranked-orbital approach

to high-throughput multireference computation for important problems in chemistry.

As a final note, we expect a main criticism of this work to be that fixing the maximum ac-

tive space size in the ranked-orbital scheme allows the user to run calculations that necessarily

result in an inadequate zeroth-order description of the wave function. Broadly speaking, we
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respond to this criticism with two points: one, determining whether a calculation will give a

qualitatively accurate and/or "useful" result is a very fuzzy question, and two, this criticism

reflects a somewhat restrictive viewpoint of computational science in which the user must

be "warned" that they might be doing their calculations wrong. When one performs a DFT

calculation the user is generally not warned that “this functional was not parameterized for

this application”, they simply do the calculation and check against some reference to see if it

is good enough for what they want to investigate. We believe that computational scientists

should not be closely monitored to keep them from doing calculations “the wrong way”– it is

the responsibility of the scientist and not the computer to determine if their results are useful

by the metrics they wish to consider. In this vein, we see the computational affordability,

consistency, and comparability achieved by the ranked-orbital approach to be worthwhile

tradeoffs for allowing the user select a maximum active space size that may be insufficient.

The authors thank the Inorganometallic Catalyst Design Center (ICDC) under DOE

award DE-SC0012702. Additionally, the authors thank the Minnesota Supercomputing In-

stitute (MSI) for access to computational resources and Andrew Walker for help investigating

databases of molecular geometries.

52



CHAPTER 3

LARGE-SCALE BENCHMARKING OF MULTIREFERENCE

VERTICAL-EXCITATION CALCULATIONS VIA AUTOMATED

ACTIVE-SPACE SELECTION

This chapter is reprinted with permissions from J. Chem. Theory Comput. 2022, 18, 10,

6065-6076

3.1 Abstract

We have calculated state-averaged complete-active-space self-consistent-field (SA-CASSCF),

multiconfiguration pair-density functional theory (MC-PDFT), hybrid MC-PDFT (HMC-

PDFT), and n-electron valence state second-order perturbation theory (NEVPT2) excita-

tion energies with the approximate pair-coefficient (APC) automated active-space selection

scheme for the QUESTDB benchmark database of 542 vertical excitation energies. We elimi-

nated poor active spaces (20-30% of calculations) by applying a threshold to the SA-CASSCF

absolute error. With the remaining calculations, we find that NEVPT2 performance is sig-

nificantly impacted by the size of the basis set the wave functions are converged in regardless

of the quality of their description, which is a problem absent in MC-PDFT. Additionally, we

find that HMC-PDFT is a significant improvement over MC-PDFT with the tPBE density

functional, and that it performs about as well as NEVPT2 and second-order coupled cluster

(CC2) on a set of 373 excitations in the QUESTDB database. We optimized the percentage

of SA-CASSCF energy to include in HMC-PDFT when using the tPBE on-top functional,

and we find the 25% value used in tPBE0 to be optimal. This work is by far the largest

benchmarking of MC-PDFT and HMC-PDFT to date, and the data produced in this work

is useful as a validation of HMC-PDFT and of the APC active-space selection scheme. We

have made all the wave functions produced in this work (orbitals and CI vectors) available
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to the public and encourage the community to utilize this data as a tool in the development

of further multireference model chemistries.

3.2 Introduction

The accurate treatment of excited states is critical for understanding photochemical phenom-

ena,109–115 and it has been a long-standing goal of the electronic structure community.116–127

Although treating excited states is difficult in general, it is particularly challenging when

single-determinant methods such as Hartree-Fock or Kohn-Sham density functional theory

provide a poor reference state for predicting excited states. This can occur either because the

excited states vary greatly from the ground state (e.g., double excitations128) or because the

ground state itself is not well-described (e.g., strongly correlated systems129–132). One can

overcome these deficiencies by using multiple-determinant reference states, and the methods

that take this approach are called multireference methods.

The most popular multireference method is the complete active space self-consistent

field (CASSCF) method,68 which expresses approximate wave functions in the space of all

possible configurations of electrons in an "active space" of orbitals and electrons. These wave

functions can then serve as references for perturbation theories such as MC-QDPT,133,134

CASPT2,135,136 and NEVPT2.34,35 Alternatively, quantitative accuracy can be achieved

by using a nonclassical-energy functional applied to the the converged wave function in

multiconfiguration nonclassical functional theory (MC-NCFT).41,48,137–139 The total energy

is then a sum of the classical portion of the CASSCF energy and nonclassical energy from

the functional.

The most common form of MC-NCFT utilizes nonclassical-energy functionals obtained

by translating Kohn-Sham exchange-correlation functionals for use with multiconfigurational

wave functions via the on-top pair density and is called multiconfiguration pair-density func-

tional theory (MC-PDFT). The translated PBE functional (tPBE) has been used as the
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functional in the majority of MC-PDFT calculations to date. The nonclassical energy from

a density functional can be mixed with the nonclassical part of the CASSCF energy to

form a "hybrid" nonclassical functional, for example, using a 0.75:0.25 mixture of tPBE and

CASSCF nonclassical energies yields the tPBE0 functional.140

Difficulties encountered in all such post-CASSCF methods are making the active space

large enough and well-balanced enough to converge to a qualitatively accurate description of

the underlying wave function(s). The results can depend significantly on the size and nature

of the active space and the initial orbital guess.30 Moreover, in many occasions the orbitals

will change character during their optimization. For these reasons, such calculations often

require expert human guidance to carefully choose the active space size and composition and

monitor them during the calculations.

Although CASSCF has been used since the 1980s,68 the prospect of automated active

space selection has only received significant attention within the

last decade or so.1,3,7,31,49,75–79,81–84,86,87,103,141–143 Recently, we published the ranked-

orbital approach to select active spaces and the approximate pair coefficient (APC) approx-

imation for low-cost estimates of the orbital entropies used in the ranking.5 This automated

scheme, inspired by the entropy-driven approach of Stein and Reiher,76 allows for the flexible

selection of active space size with a hierarchy of levels (max(8,8), max(10,10), max(12,12)...)

reminiscent of the CI level sequence (CISD, CISDT, CISDTQ, ...).

Recently, Jacquemin and coworkers published the QUESTDB benchmark dataset of 542

vertical excitation energies on a diverse set of small and midsize main-group molecules,

calculated via a variety of high-level wave function methods in the aug-cc-pVTZ144,145

basis.44,45,128,146–148 In the present paper we have undertaken the automated calculation

of these excitation energies with SA-CASSCF, NEVPT2, and MC-PDFT using the APC-

ranked-orbital active space selection scheme. To benchmark and analyze the performance of

various multireference methods on this diverse set of excitations, we eliminate poor active
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spaces (20-30% of calculations) by setting an error threshold on the SA-CASSCF excitation

energy because that has previously been shown to be good way to judge the quality of the

active space.1

By analyzing results across different active space and basis set size choices, we find

different trends in the performance of MC-PDFT and NEVPT2 where the performance of

NEVPT2 is overly dependent on the basis set in which the underlying wave function is

converged. Additionally, we are able to produce the first large-scale and robust comparison

of MC-PDFT to other single-reference methods such as CC2, and find the CASSCF mixing

parameter of 0.25 used in tPBE0 to be optimal. We have made all the wave functions

converged in this work available to the public via publication of the converged orbitals and CI

vectors and encourage others to use these data in the development of further multireference

model chemistries.

3.3 Methods

Data Overview. The data we have examined can be found in the QUESTDB dataset,45 which

consists of 542 vertical excitations of small and midsize main-group molecules (molecules with

1-10 non-hydrogenic atoms). Of these excitations, 491 are from singlet ground states and 51

are from doublet ground states. Every excitation in the QUESTDB dataset is specified by

its spatial and spin symmetries, and benchmark values are reported as "theoretical best esti-

mates" (TBEs) calculated with a variety of high-level methods with the aug-cc-pVTZ144,145

basis. These TBEs have been used in this work to judge the errors of all computed excitation

energies, even those obtained with a different basis set.

Active Space Selection. To obtain orbitals for the active space selection scheme, we

started with a restricted Hartree-Fock singlet wave function for closed-shell molecules and a

restricted open-shell Hartree-Fock doublet wave function for doublet molecules, as calculated

using PySCF.90 The molecular point group was reduced to the highest available symmetry
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implemented for the PySCF SA-CASSCF solver: C2h, C2v, Cs, or D2h. The APC-ranked-

orbital active-space-selection scheme5,48 starts with a set of candidate localized orbitals,

ranks them by their approximated orbital entropies, and then eliminates orbitals starting

from the lowest-entropy orbitals (those with the highest entropies are considered to be the

most important) until the active space size reaches a predetermined maximum number of

configuration state functions. We next describe the generation of candidate orbitals, then

the ranking scheme, and finally the maximum-size criteria.

Following previous work,48 up to 23 lowest-energy virtual orbitals of the Hartree-Fock

calculation were selected, and orbitals within this subset were grouped by symmetry and

Boys-localized94 within each symmetry. Likewise, up to 23 highest-energy doubly occupied

orbitals were also grouped by symmetry and Boys-localized within each symmetry. These

two sets of localized orbitals (and the one singly occupied orbital, when present) were then

considered as candidates for the active space. Next we describe how we ranked the localized

orbitals.

In the originally published APC ranking scheme, given a set of doubly occupied candi-

date orbitals i and virtual orbitals a, one calculated the approximate-pair-coefficient (APC)

matrix Cia as

Cia =
−0.5Kaa

Faa − Fii +
√

(0.5Kaa)2 + (Faa − Fii)2
(3.1)

where Kaa is the diagonal virtual element of the exchange matrix and Faa and Fii are

diagonal virtual and doubly occupied elements of the Fock matrix in the MO basis. The

entropies of doubly occupied orbitals i are calculated as

Si ≈ − 1

1 +
∑

aC
2
ia

ln
1

1 +
∑

aC
2
ia

−
∑

aC
2
ia

1 +
∑

aC
2
ia

ln

∑
aC

2
ia

1 +
∑

aC
2
ia

(3.2)

and those of virtual orbitals a as
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Sa ≈ − 1
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(3.3)

Finally, any singly occupied orbitals are assigned the maximum entropy value from the set

of doubly occupied and virtual orbital entropies ({Si},{Sa}). Note that the removal of a

virtual orbital from consideration affects all doubly occupied entropies and vice-versa. This

method is inexpensive because it uses only easily calculated diagonal Hartree-Fock matrix

elements (supporting information).

However, in the present work we have found that in larger molecules (with >350 aug-cc-

pVTZ basis functions) the APC entropies tend to overestimate the interaction of some virtual

orbitals with the doubly occupied orbitals, artificially inflating the entropies of all doubly

occupied orbitals and causing the selection of highly imbalanced active spaces (spporting

information). To overcome this issue, we propose an algorithmic extension of APC in which

high-entropy virtual orbitals are removed from consideration when calculating entropies and

then assigned the maximum entropy value (i.e. treated in the same way as singly occupied

orbitals). The algorithm takes the following steps:

• Provide the sets of candidate doubly occupied/ singly occupied/virtual orbitals

({Li}, {Ls}, {La}).

• Calculate entropies ({Si}, {Ss}, {Sa}) = APC({Li}, {Ls}, {La}) and then remove the

highest-entropy virtual orbital from La and put it in Ls. Repeat N times.

• Return ({Si}, {Ss}, {Sa}).

The above algorithm has a single parameter N (APC-N) which is the number of times the

highest-entropy virtual orbital is removed. In this work we have found a good value ofN to be

2 (a scheme we refer to as APC-2), and we find that using APC-2 entropies results in more

balanced active spaces and lower SA-CASSCF error than APC (supporting information).
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The APC-2 entropies are then used to rank and select the orbitals for the active space by

dropping the lowest-entropy orbitals until the active space size is lower than some maximum

active space size. However, we note that the current scheme should be improved for the

treatment of orbitals with degenerate entropies (supporting information).

In more detail, the active space size for a given set of Norb active orbitals containing

Nelec active electrons is calculated via the equation:67

NCSF(Nelec, Norb) =

(
Norb

Nα

)(
Norb

Nβ

)
−
(
Norb

Nα + 1

)(
Norb

Nβ − 1

)
(3.4)

where Nα +Nβ = Nelec and Nα = Nβ for even Nelec and Nα = Nβ + 1 for odd Nelec. The

maximum active space size NMax
CSF is set via a specification of a maximum number of active

electrons and orbitals (NMax
elec ,NMax

orb ) whose size is calculated via equation 3.4; this maximum

active space choice is notated as max(NMax
elec ,NMax

orb ). In this work we calculate results at three

choices of max(NMax
elec ,NMax

orb ): max(8,8) (NMax
CSF = 1764), max(10,10) (NMax

CSF = 19404), and

max(12,12) (NMax
CSF = 226512). Following this specification, all orbitals are selected and then

the lowest-entropy orbital is successively dropped until the size of the active space calculated

via equation 3.4 is less than or equal to NMax
CSF .

As an example, we guide the reader through choosing a max(4,4) active space (NMax
CSF =

20) from a set of orbitals with occupancies and entropies {(nj , Sj)}:

{(2, 0.05), (2, 0.5), (2, 0.9), (1, 0.9), (0, 1.2), (0, 0.2), (0, 0.1)} (3.5)

In this case the active space is selected as:

• (2,0.05),(2,0.5),(2,0.9),(1,0.9),(0,1.2),(0,0.2),(0,0.1) | (7,7) NCSF = 784

• (2,0.5),(2,0.9),(1,0.9),(0,1.2),(0,0.2),(0,0.1) | (5,6) NCSF = 210

• (2,0.5),(2,0.9),(1,0.9),(0,1.2),(0,0.2) | (5,5) NCSF = 75
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• (2,0.5),(2,0.9),(1,0.9),(0,1.2) | (5,4) NCSF = 20

with a resulting selected (5,4) active space.

Calculation of the Excitation Energies. Calculations of excited-state wave functions were

carried out by state-averaged CASSCF, averaging over the ground state and the minimum

necessary number of excited states of the symmetry specified by QUESTDB. For example,

in a C2v molecule (e.g., water) if the symmetry of the excited state under consideration is

specified to be 1A2 with no lower 1A2 excitations present, then the state averaging was done

evenly over the 1A1 ground state and the 1A2 excited state. For higher 1A2 excitations,

however, the state averaging included an additional 1A2 state for each 1A2 excitation lower

in energy (again with weights for state averaging being the same for all states averaged).

Standard convergence parameters were employed, and for a few poor active space choices

(0.4% of cases) the calculations failed to converge.

Because the highest available point groups supported by the SA-CASSCF solver in

PySCF have lower symmetry than those specified by QUESTDB for single atoms and di-

atomics, the point groups sometimes had to be reduced to the highest-symmetry subgroup.

Additionally, the labeling of different irreps is sometimes a choice of axis convention, such

as between B1 and B2 in C2v or between B1g/B2g/B3g and B1u/B2u/B3u in D2h; we have

done our best to match the irrep we think was used in QUESTDB. Calculations were done

with the highest MS allowed by the spin symmetry (e.g., if an excited state has S = 1, then

for 8 electrons in the active space the active space would have 5 α and 3 β electrons).

The tPBE and NEVPT2 energies of the converged SA-CASSCF states were then calcu-

lated using the implementations of these methods in PySCF. Our implementation of MC-

PDFT within PySCF is currently available in the mrh repository.149 Additionally, tPBE0

energies were calculated by averaging the SA-CASSCF and tPBE energies:140

EtPBE0 = 0.25ESA−CASSCF + 0.75EtPBE (3.6)
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The only implementation of NEVPT2 currently in PySCF is strongly contracted NEVPT2

(SC-NEVPT2),35 and our NEVPT2 calculations use this.

In order to maintain a consistent labeling, the excited state to be compared to the

QUESTDB excitation energy was chosen to be the state highest in energy as judged by

tPBE. Although this is not a fail-proof scheme in terms of isolating the "same" QUESTDB

state of the specified symmetry due to root flipping, we have found it to be satisfactory for

our work as the converged QUESTDB wave functions are unavailable and labels such as

"n → π∗" are ambiguous non-observables. However, because the present work shows that

tPBE0 is more accurate than tPBE, we suggest ordering the states by tPBE0 in future work.

Method Timing. All converged CASSCF wave functions (orbitals and CI vectors) were

saved to disk at the end of the calculation. Timings for tPBE and NEVPT2 calculations

were achieved by loading in the converged CASSCF wave functions, computing the relevant

quantity (the tPBE nonclassical energy or the NEVPT2 perturbative correction) and then

saving the results. The amount of resources requested for each calculation was determined

by an empirically derived formula dependent on the number of aug-cc-pVTZ basis functions

in the underlying molecule (supporting information), and so timings between the tPBE and

NEVPT2 implementations available in PySCF can be fairly compared (although we note

that methodologies can always be further optimized).

Plotting. Figures were made in Python using matplotlib as enhanced by Pandas150,151

and Seaborn.98 Seaborn calculates 95% confidence intervals for the mean values reported

in plots by bootstrapping the mean value over 1000 random samplings of the underlying

data.152–154
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3.4 Results

3.4.1 Eliminating Poor Active Spaces

We calculated excitation energies for all 542 vertical excitations listed in the QUESTDB

database with six combinations of active space and basis set: four involving max(12,12)

APC-2 active spaces with decreasing basis size (aug-cc-pVTZ144,145, jun-cc-pVTZ,155 cc-

pVTZ,156,157 cc-pVDZ156,157) and two involving jun-cc-pVTZ with decreasing active space

size (max(10,10) and max(8,8)). We will refer to these combinations throughout the paper

as Aug(12,12), Jun(12,12), TZ(12,12), DZ(12,12), Jun(10,10), and Jun(8,8).

Figure 3.1: Comparison of the mean absolute errors of SA-CASSCF, tPBE, tPBE0, and
NEVPT2 across different active space and basis set sizes for all converged calculations. The
number of converged excitations with each combination of active space and basis is shown
below each column, and 95% confidence intervals for each mean are shown in black.

Figure 3.1 shows the mean absolute errors of SA-CASSCF, tPBE, tPBE0, and NEVPT2

that we obtain for all wave functions converged at each combination of active space and basis
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set tested in this work. Adding together the number of converged calculations at each active

space and basis set shown at the bottom of Figure 1 yields 3237 calculations. As expected,

we find that the SA-CASSCF error increases when we move from a larger to a smaller basis

set with a given active space scheme or when we move from a larger active space to a smaller

one with a given basis set. However, in order to reasonably evaluate the accuracies of these

methods, we need to eliminate results whose error is driven mainly by poorly chosen active

spaces. To analyze only cases with reasonable active spaces we set a threshold T on the

SA-CASSCF error of 1.1 eV (TSA−CASSCF = 1.1 eV). That is, we consider that the APC

scheme has produced a good active space if the error in the SA-CASSCF excitation energy

is less than 1.1 eV.

Figure 3.2: Comparison of the mean absolute errors of SA-CASSCF, tPBE, tPBE0,
and NEVPT2 excitations across different active space and basis set sizes included by
TSA-CASSCF = 1.1 eV. The number of excitations included in this analysis for each combi-
nation of active space and basis set is shown below each group of bars, and 95% confidence
intervals for each mean are shown in black.
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Figure 3.2 shows the performance of SA-CASSCF, tPBE, tPBE0, and NEVPT2 at dif-

ferent active space and basis set sizes after using the 1.1 eV SA-CASSCF error cutoff to

eliminate poor active space choices. As expected, instead of observing an increasingly poor

performance for SA-CASSCF excitations as active space and basis set size is decreased, we

instead see a consistent error of roughly 0.39 ± 0.03 eV with an increasing amount of ex-

citations excluded by TSA-CASSCF = 1.1 eV. The number of excluded excitations roughly

doubles from 19.2% at Aug(12,12) to 39.6 % at DZ(12,12) with decreasing basis size and to

32.4 % at Jun(8,8) with decreasing active space size. We note the very small increase of 8

excluded excitations upon moving from Jun(12,12) to Aug(12,12), highlighting the very effi-

cient nature of the jun basis set.155 Of course, with a better automatic active space selection

scheme one would observe an increased amount of excitations included at each active space

and basis set size, but the error will remain fairly consistent.

As we found for SA-CASSCF, we find that tPBE (0.25 ± 0.02 eV) and tPBE0 (0.20

± 0.02 eV) maintain relatively consistent errors across different active spaces and basis set

sizes when the 1.1 eV SA-CASSCF error threshold is applied. This is an intuitive result,

as the accuracy of MC-PDFT is primarily contingent on the quality of the SA-CASSCF

density and on-top density and on the quality of the on-top functional; if one eliminates

the poor active spaces, then the functional (correlation) error may dominate, and this is

approximately independent of the active space and basis set. In contrast, NEVPT2 shows

quantitatively worse results as the basis set is decreased even as the wave function remains

qualitatively well-described. This makes sense because the power of NEVPT2 to change the

SA-CASSCF energy stems from its perturber states, which are less capable of describing

dynamic correlation within a smaller basis because the smaller basis set cannot represent

the virtual-orbital space as well.32,33,158
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Figure 3.3: Mean absolute changes to the SA-CASSCF excitation energy made by tPBE0 and
NEVPT2 across different active space and basis set calculations included by TSA-CASSCF =
1.1 eV.

Figure 3.3 shows that the difference between the tPBE0 excitation energy and the SA-

CASSCF excitation energy remains fairly consistent across active spaces and basis sets,

but there is a significant drop in the NEVPT2 correction when moving from aug-cc-pVTZ

to cc-pVDZ, resulting in increased NEVPT2 error. Figure 3.3 combined with Figure 3.2

shows clearly how the NEVPT2 results degrade in quality with decreasing size of the basis

set, while the performance of tPBE0 remains consistent. As the basis set is decreased in

size, the mean absolute change to the SA-CASSCF excitation energy decreases for NEVPT2

while remaining constant for tPBE. These results provide a plausible explanation of the

discrepancy in mean absolute error found for SC-NEVPT2 between the study of Schapiro et.

al.159 (0.23 eV) and the more recent study of Sarkar et. al.160 (0.15 eV). They imply that

it is due to the fact that the Sarkar study used the aug-cc-pVTZ basis while the Schapiro

study employed the cc-pVTZ basis. However, our results point to this being caused by a

strictly poorer performance of NEVPT2 with the smaller basis set and not due to a poorer

zeroth-order description of the underlying wave functions.
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Further discussion of the error threshold is given in the Supporting Information, which

shows the 1.1 eV SA-CASSCF error threshold to be optimal (albeit imperfect) for isolating

subsets of automated wave function calculations that reproduce results curated by hand.160

Additionally, we analyze alternative error thresholds on the NEVPT2 and tPBE0 error. How-

ever, an error criterion cannot be used when a benchmark excitation energy or experimental

excitation energy is not available. Nevertheless, when an accurate value is not available, one

can still use this criterion (although with somewhat less reliably) by comparing to one’s best

estimate rather than to an accurate value. Clearly, if one’s best estimate is good, this will

work as well as comparing to an accurate value.

Finally, one might wonder what one can do to fix the active space if a calculation goes

poorly. Of course, increasing the size of the active space via NMax
CSF is a worthwhile option

to explore if affordable, and it is clearly seen in Figure 3.2 how this significantly increases

the success rate of the selection algorithm. However, following our previous work,5 we

also recommend experimenting with different orbital localization schemes for initializing the

ranked-orbital selection as this can be a low-cost way to converge to a reasonable result.

3.4.2 Comparison to Single-Reference Methods

Data Overview. In the QUESTDB database,45 excitations from many methods are only

reported for the 491 excitations from closed-shell (S0) molecules, and, due to double excita-

tions and strongly mixed states, results from most methods are only available for about 460

of these excitations (supporting information). Our Aug(12,12) results comprise of 436 exci-

tations included by TSA−CASSCF = 1.1 eV, 399 of which come from closed-shell molecules.

Combining all methods and leaving out STEOM-CCSD, CCSDR(3), and CCSDT-3 for which

there is significantly less available data (supporting information), there are a total of 373

excitations consistently available for comparison with SA-CASSCF, tPBE0, NEVPT2, and

12 other methods in the QUESTDB database. Unlike Jacquemin and coworkers, we have
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not limited ourselves to comparisons based on "safe"45,148 excitations, and this includes 29

excitations that would otherwise have been excluded (out of a total of 57 unsafe excitations

in the total set of 542).

Figure 3.4: Comparison of the mean signed and unsigned errors of various methods on the
373 Aug(12,12) excitations included by TSA−CASSCF = 1.1 eV error threshold. The 95%
confidence intervals are shown in black. Left: Mean absolute errors. Right: Mean signed
errors.

Figure 3.4 shows the mean absolute and signed errors of SA-CASSCF, tPBE, tPBE0,

and NEVPT2 in comparison with 12 other methods in the QUESTDB database on the set

of 373 excitations. First considering the mean absolute errors, we find that both NEVPT2

(0.18 eV) and tPBE0 (0.19 eV) have accuracy on par with CC2 (0.15 eV), with tPBE lagging

significantly behind (0.24 eV). However, we note that the errors we report here for tPBE,

tPBE0, and NEVPT2 are likely slightly overestimated, as our CASSCF error threshold is

imperfect and fails to eliminate all cases with poor active space choices (as discussed in

the Supporting Information). Furthermore, this consistently available data set excludes all

double excitations, for which the performance of the multireference methods is far superior

(as discussed below).

Nevertheless, Trends in the signed errors are particularly interesting, with all but four

methods (ADC(3), ADC(2.5), tPBE, and tPBE0) overestimating excitations; this implies
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biased relative overstabilization of the ground state for most of the methods. One can clearly

see how tPBE0 benefits from balancing the treatment of exchange and correlation, with SA-

CASSCF overestimating excitations by 0.18 eV and tPBE underestimating by 0.08 eV such

that tPBE0 has nearly zero mean signed error. We note that the same good balance seems

to occur in ADC(2.5),161 which averages ADC(3) and ADC(2).

Figure 3.5: Left: Comparison of the mean absolute error of different methods on the en-
tire subset of 23 double excitations in the QUESTDB dataset. The amount of excitations
available for each method (with SA-CASSCF, tPBE, tPBE0, and NEVPT2 included via
a 1.1 eV SA-CASSCF error threshold) is marked under each bar. Right: Comparison of
the mean absolute errors of various methods on the 165 Aug(12,12) excitations included by
TSA−CASSCF = 1.1 eV with high multireference character (Max[M(ψGS),M(ψES)] > 0.14)
and data available for every method shown, where M is the M diagnostic3 of the correspond-
ing wave function. 95% confidence intervals are shown in black.

The left of Figure 3.5 shows the mean absolute error of different methods on excitations

classified as double excitations for all methods with any calculated double excitations in the

QUESTDB database; our automated approach was able to converge results within the 1.1

eV SA-CASSCF error threshold for 16/23 (70%) of the double excitations that have TBEs

available, which is only slightly lower than the overall un-dropped-out fraction of 436/542

(80%) in the Aug(12,12) calculations. In keeping with the usual recommendation to use

multireference methods for this class of excitation, we find that multireference methods are
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the only methods that perform consistently well on double excitations.

However, double excitations are not the only category of excitations which are a challenge

for single-reference approaches. To quantify the multireference character of single excitations

we have calculated the M diagnostic3 of the ground and excited state Aug(12,12) wave

functions included by the 1.1 eV SA-CASSCF error threshold and use the maximum of

these values, MMax = Max[M(ψGS),M(ψES)]. Doing so, we find that the lowest MMax

calculated for a double excitation is 0.14 (supporting information), and use this threshold as

a classifier for identifying highly multireference single excitations; it happens to fall at slightly

above the 50th percentile in the MMax distribution (supporting information). The right of

figure 3.5 shows a comparison of the mean absolute errors of SA-CASSCF, tPBE, tPBE0,

and NEVPT2 to 12 single-reference methods on the 165 excitations with MMax > 0.14

included by TSA−CASSCF = 1.1 eV and data available for every method shown. Comparing

to Figure 3.5, we find that the performance of nearly all single-reference methods deteriorates

significantly by about 0.05-0.07 eV when we consider only this high-MMax subset; this brings

the performance of CCSD into line with tPBE0.

In summary, we find tPBE0 and NEVPT2 to perform competitively on single excitations

when compared to single-reference methods (Figure 3.4 and Figure 3.5) and to be the only

methods capable of reasonably describing double excitations (Figure 3.5). As such, we

recommend tPBE0 and NEVPT2 as robust methods for calculating all classes of vertical

excitations, although the active space selection scheme may sometimes fail.
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3.4.3 Performance by Excitation Type

Figure 3.6: Mean absolute errors (in eV) of tPBE, tPBE0, and NEVPT2 Aug(12,12) calcu-
lations on various types of S0 excitations included by the threshold TSA-CASSCF = 1.1 eV.

Figure 3.6 shows the errors classified by excitation type. In line with the Sarkar study,160 we

find that NEVPT2 is more accurate for triplet excitations than singlet excitations, and tPBE

and tPBE0 follow this same trend. The figure shows that, with the exception of Rydberg

states, tPBE0 has better performance than tPBE for every excitation category, and therefore

we recommend the use of tPBE0 rather then tPBE for calculating excitation energies of

valence excitations. We also recommend tPBE0 for calculating a spectrum containing both

valence and Rydberg excitations since the performance of the two methods is very similar

(on average) for Rydberg states.
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3.4.4 Method Timing : tPBE0 vs. NEVPT2

Figure 3.7: Comparison of the mean compute times for the post-SCF portion of tPBE calcu-
lations with various grid specifications and for the post-SCF portion of NEVPT2 calculations
with various active spaces and basis set sizes on the set of 533 excitations that were con-
verged with all active spaces and basis sets. The costs of the SA-CASSCF portions of the
calculations were removed from these comparisons by caching the converged wave functions.

Figure 3.7 shows the average time consumed by the calculation of the NEVPT2 perturbative

correction at different active space/basis set sizes and compares these timings to those for

the calculation of the tPBE on-top energy by the methodology in section 3.3. We find that

at the normal grid size (grids_level = 3 in PySCF), tPBE is on average 114× less expensive

than NEVPT2 for the large max(12,12) active spaces. This is because – as is well known

– the cost of NEVPT2 scales very poorly with the size of the active space, while the cost

of tPBE0 remains independent of that. Furthermore, the memory required for NEVPT2

also increases with active space size. It is around the max(12,12) active space size that

the compute time for the perturbative correction begins to exceed the compute time of the

underlying SA-CASSCF step, while the compute time of tPBE remains low.162 For smaller

active spaces such as max(8,8), the cost of NEVPT2 is comparable to that of tPBE and
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tPBE0.

Keeping the cost down is important in many applications. Figure 3.7 shows that the

dependence of MC-PDFT compute times on grid size is a significant consideration; we observe

a roughly 10× increase in cost from grids_level = 3 (3.4 s) to grids_level = 9 (30.8 s). Our

studies find that the standard grids_level = 3 in PySCF is sufficient for excitations such as

those we have calculated because we only see a significant change between the maximum and

default grid size for a single excitation (supporting information). Therefore we recommend

standard grid sizes for most applications involving state-averaged MC-PDFT.
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3.4.5 Method Timing : tPBE0 vs. CC2 and CCSD

Figure 3.8: Comparison of timings and accuracy between tPBE0 at the six active space/basis
set combinations explored in this work and CC2 and CCSD in the aug-cc-pVTZ basis. Tim-
ings for tPBE0 include the steps of RHF convergence, Boys orbital localization, active space
selection, CASSCF optimization, and computation of the tPBE0 nonclassical energy. Tim-
ings for CC2 and CCSD were computed in the aug-cc-pVTZ basis using their implementation
in Psi44 and were confirmed to reproduce the Jacquemin results.
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In an effort to give greater context to the standing of tPBE0 as a method for calculating ver-

tical excitations outside of cases where multireference methods are absolutely needed (such

as double excitations), we compare the timings of complete CASSCF+tPBE0 calculations

to those of CC2 and CCSD. Figure 3.8 shows the comparison of such timings for tPBE0

(including RHF convergence, Boys orbital localization, active space selection, CASSCF op-

timization, and computation of the tPBE0 nonclassical energy) and CC2 and CCSD as

computed in Psi44 for two excitations in QUESTDB. All calculations were given the same

amount of computational resources as outlined in the supporting information. We have cho-

sen to show timings and accuracies for both a "medium-sized" excitation (pyrazine-x2, with

368 aug-cc-pVTZ basis functions) and a "large-sized" excitation (aza-naphthalene-x1, with

552 aug-cc-pVTZ basis functions). Additionally, Figure 3.8 shows timings and accuracies for

tPBE0 and all 6 of the active space and basis set combinations explored in this work.

Focusing first on the aug-cc-pVTZ calculations, one can see that tPBE0 takes a compa-

rable amount of time compared to CC2 and CCSD, both for pyrazine and aza-naphthalene.

However, in both of these cases costs can be cut significantly while maintaining accuracy

by decreasing active space and basis set size. As demonstrated by Figure 3.8, through a

judicious choice of active space and basis set, tPBE0 has the potential to be much less ex-

pensive than comparative single-reference approaches while achieving similar accuracy or

better. For aza-naphthalene-x1, tPBE0 is about 16× as fast as CC2 at Jun(8,8) and about

72× as fast at DZ(12,12). The speedup one can obtain tends to be greater when considering

larger systems.

However, the idealized (albeit real) case shown for aza-naphthalene-x1 is far from general.

Firstly, one can only reduce basis set and active space size so far before one’s results become

highly inaccurate with tPBE0, and the point at which this happens is highly excitaiton

dependent and somewhat dependent on the active-space-selection scheme. Secondly, the

timing behavior of CASSCF+tPBE0 is not always as well behaved: CASSCF optimization
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relies on a highly nonconvex and nonlinear optimization process which may not conform

expected timing trends. An example of this can be seen in the pyrazine-x2 timings in

Figure 3.8, where tPBE0@DZ(12,12) takes significantly more time than tPBE0@TZ(12,12).

Further taking into account differences between implementations, we present Figure 3.8 only

to give readers a rough sense of timings for tPBE0 with respect to comparably accurate

single-reference methods on different system sizes.

Additionally, we attempted to compute timings for CC3 for these two excitations: the

pyrazine-x2 result was computed in 1765 min (29 hours) and aza-naphthalene-x1 was not

able to finish within the 36 hour time limit allowed by the resources available for these

calculations. Finally, we note that CCSD also includes an iterative step, but a study of the

convergence issues in CCSD is beyond our scope.

3.4.6 Optimizing the Mixing Parameter in Hybrid tPBE

A major motivation of this work was to generate data for benchmarking and improving MC-

PDFT. As a first use of our data to optimize MC-PDFT functionals, we have investigated

the optimal mixing parameter λ for hybrid tPBE (htPBE, for which the energy is given by

λESA−CASSCF + (1 − λ)EtPBE) over the Aug(12,12) database. We have chosen this set of

excitations because it is likely to have the smallest amount of poor active spaces erroneously

included by the TSA−CASSCF = 1.1 eV error threshold. In other words, we expect this set

of excitations to have the largest percentage of well-chosen active spaces.
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Figure 3.9: Mean absolute errors of different mixing parameters λ in energies computed by
htPBE for the 436 Aug(12,12) excitations included with TSA−CASSCF = 1.1 eV. The optimal
value of λ = 0.25 (the same as in tPBE0) is marked with a dashed green line.

Figure 3.9 shows the optimization of λ on the Aug(12,12) set of included excitations.

Delightfully, we find that λ = 0.25 – the same parameter used in tPBE0 – is optimal for

this set of excitations, in agreement with the much smaller study previously conducted on

the EE27 database.140 Therefore we recommend using tPBE0 for excitation energies in

the general case and especially for excitations similar to those in the QUESTDB dataset.

Optimizing the parameter over all active spaces and basis sets results in only a slightly shifted

value of λ = 0.3, which appears to be offset mostly by the greater number of poor active

spaces included in the Jun(8,8) excitation energies (supporting information); using the more

robust tPBE0 error threshold (discussed in the SI) removes this discrepancy (supporting

information). This suggests that a higher value of λ may be optimal for cases in which wave

function error dominates.
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3.5 Conclusion and Future Work

The work presented here is the largest application to date of automated multireference

calculations on a broad range of molecules. The generation of 3237 multireference excitation

energies has allowed us to gain insight into how to eliminate poorly chosen active spaces

and has identified trends in the performance of MC-PDFT and NEVPT2. This work has

been possible only through the careful work of Loos, Jacquemin, and coworkers in compiling

the QUESTDB dataset44,45,128,147,148,163 and the recent work of of Sarkar et. al.160 which

has enabled us to compare our automatically generated results to hand-selected active space

calculations.

We see this initial publication as laying the groundwork for several future applications

related to MC-PDFT and high-throughput multireference calculations including:

• Using the generated data to train and test novel functionals for MC-NCFT, repre-

senting a continuation of our initial work that used carbene singlet-triplet excitation

energies to train machine-learned functionals.48

• Improving the active space selection scheme. Our finding that error thresholds can

be used to determine the fraction of poor wave functions in the calculated excitation

energies can be used as a measure to benchmark the effectiveness of different active

space selection schemes.

• Determining if a selected active space is well-chosen without reference to the underlying

benchmark values. For specific active spaces and basis sets there appears to be promise

in looking at differences between different methods (supporting information), but a

method that is generalizable across active spaces and basis sets has yet to be found.

Additionally, we expect that the wave functions converged in this work will be of interest

for the development of different post-CASSCF methods such as multireference adiabatic
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connection (AC)164 and algebraic diagrammatic construction (ADC).165 For this reason, we

are making all 3237 converged wave functions freely available for public use. We hope that

this data will be useful to the electronic structure community both for comparing to the

results published here and for developing and testing their own methods.

In summary, we have carried out the largest benchmarking of SA-CASSCF and MC-

PDFT to date. This was accomplished by means of an automatic active-space selection

scheme and use of a SA-CASSCF error threshold to eliminate poor active-space choices. On

a set of 373 aug-cc-pVTZ excitation energies, we find that tPBE0 and NEVPT2 perform

with similar accuracy to CC2, while tPBE lags behind. However, the accuracy of NEVPT2

degrades with basis set size even as the quality of the underlying density and on-top pair

density appear to remain the same. As expected, we find that tPBE0 is orders of magnitude

less expensive than NEVPT2 for larger active spaces, and we recommend its use for the

calculation of a broad range of excitation energies, including double excitations.
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CHAPTER 4

VARIATIONAL ACTIVE SPACE SELECTION WITH

MULTICONFIGURATION PAIR-DENSITY FUNCTIONAL

THEORY

This chapter is reprinted with permissions from J. Chem. Theory Comput. 2023, 19, 22,

8118-8128

4.1 Abstract

The selection of an adequate set of active orbitals for modeling strongly correlated quantum

states is difficult to automate because it is highly dependent on the states and molecule

of interest. Although many approaches have shown some success, no single approach has

worked well in all cases. In light of this, we present the “discrete variational selection” (DVS)

approach to active space selection in which one generates multiple trial wave functions from

a diverse set of systematically constructed active spaces and then selects between these wave

functions variationally. We apply this DVS approach to 207 vertical excitations of small-

to-medium-sized organic and inorganic molecules (with 3 to 18 atoms) in the QUESTDB

database by (i) constructing various sets of active space orbitals through diagonalization of

parameterized operators and (ii) choosing the result with the lowest average energy among

the states of interest. This approach proves ineffective when variationally selecting between

wave functions using the DMRG/CASSCF energy, but is able to provide good results when

variationally selecting between wave functions using the energy of the tPBE functional from

multiconfiguration pair-density functional theory (MC-PDFT). Applying this DVS-tPBE ap-

proach to selection among state-averaged density matrix renormalization group (SA-DMRG)

wave functions, we obtain a mean unsigned error of only 0.17 eV using hybrid MC-PDFT.

This result matches that of our previous benchmark without the need to filter out poor
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active spaces, and with no further orbital optimization following active space selection of the

SA-DMRG wave functions. Furthermore, we find that DVS-tPBE is able to robustly and

effectively select between the new SA-DMRG wave functions and our previous SA-CASSCF

results.

4.2 Introduction

The accurate treatment of excited electronic states of molecules is a long-standing and active

area of research in computational chemistry.43,116–127,166–170 It is especially difficult when a

single-determinant ground state provides a poor reference for computing the excited states

(e.g., double excitations128,171 or strongly correlated systems129–132,172). A useful form

of wave function for overcoming such difficulties is the complete active space configuration

interaction (CASCI) trial function:

|ΨCASCI⟩ = |22...2⟩ ∧
∑

n1n2..nL

Cn1n2..nL |n1n2...nL⟩ (4.1)

in which |22...2⟩ is a single Slater determinant consisting of doubly occupied orbitals (called

inactive orbitals in the CASCI context), the Cn1n2..nL are coefficients, and the determinants

|n1n2...nL⟩ span the space of all possible configurations obtained by distributing a fixed

number Nelec of active electrons among L active orbitals. Each determinant |n1n2...nL⟩

is defined by its orbital occupation numbers ni ∈ {0, ↑, ↓, 2} of the active electrons in the

active orbitals, and diagonalization of the Hamiltonian in this space (and in the mean field

of |22...2⟩) is known as CASCI. However, because the size of the space scales exponentially

with the number of orbitals L, this approach is only feasible up to active space sizes of about

20 electrons in 20 orbitals.26

Many methods exist to approximate the solution for the coefficients Cn1n2..nL in equation

4.1.173 Among the most successful approaches in this regard is the density matrix renormal-
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ization group configuration interaction (DMRG) method,28,69,70,168,174–183 in which the

coefficients of equation 4.1 are approximated by the matrix product176

Cn1n2..nL =
∑

ij...(L−1)

An1
i An2

ij A
n3
jk ...A

nL
(L−1)

(4.2)

In equation 4.2, each possible occupation of each active orbital ni is given by its own matrix

or vector Ani . The maximum inner dimension of these matrices is called the bond order M

and is the number of states retained during the renormalization step. As M → ∞, results

obtained with this method approach those obtained with full diagonalization (although useful

results for well-chosen active spaces are generally obtainable with practical values of M).

Using this approach, it is possible to describe active spaces with up to about 100 orbitals.31

The success of CAS-based methods relies heavily on the construction and selection of the

orbitals defining the active space, because this selection affects both the convergence of self-

consistent-field iterations and the quality of the energetic results. Variationally optimizing

the active-space orbitals is known as CAS self-consistent field (CASSCF)68 when used with

a full-configuration-interaction solver or as DMRG-SCF184,185 when used with a density-

matrix-renormalization-group solver. To try to obtain a consistent treatment of multiple

states, one may optimize the state-averaged (SA) energy with respect to the active orbitals,

yielding SA-CASSCF186 or state-averaged DMRG-SCF (SA-DMRG-SCF).166,185,187 (If or-

bitals are predetermined rather than optimized, one may obtain state-averaged DMRG (SA-

DMRG)). We emphasize two difficulties with conventional methods of optimizing orbitals:

(i) the energetic optimization is prone to converging to local minima, and (ii) state-averaged

variational optimization of orbitals is not necessarily optimal for computing energy differ-

ences between states, especially when states with different characters are considered;188 the

latter of these difficulties is made worse by the fact that the CASSCF orbitals are generally

optimized without regard for post-CAS correlation generally included in the computation of
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excitation energies. Furthermore, orbital optimization significantly increases the cost of the

computation. Thus, although SCF generally helps improve the quality of the active space, it

does not eliminate the need to develop good active space construction and selection schemes

for excited-state calculations, and it comes at a computational cost.

Because of the above considerations, active-space construction and selection remains a

vigorous area of research, and several approaches have been proposed

to date.1,3,5,6,30,31,49,75–79,81,87,103,141–143,170,189–202 The most commonly applied method

method involves chemical intuition with trial and error.30,190 However, this approach is un-

systematic and difficult to apply in a high-throughput fashion. In recent years, there has

been much interest in developing more systematic methods for fashioning

active spaces.1,3,5,6,31,49,75–79,81,87,103,141–143,170,189,191–201 A tool called AVAS, developed

by Sayfutyarova and coworkers,49 allows one to semiautomatize the active-space construc-

tion by using molecular orbitals that overlap optimally with a user-selected set of atomic

orbitals. Other approaches involve some preliminary calculations, such as the natural orbital

occupancies of a unrestricted Hartree-Fock (UHF) calculation,7,83,87,189,191 entanglement

information from a large DMRG calculation,31,76,86,203 the quantitative accuracy of some

physical observable such as the dipole moment,201 machine learning predictive models,81,143

and physically motivated equations based on information such as HF matrix elements.5,6 An

assumption of all these approaches is that the key physics necessary to construct and select

the active space can be captured by a preliminary calculation (UHF, DMRG, etc.). How-

ever, as we will show, even when selecting large active spaces (e.g., with 40 orbitals) for

small molecules, it is difficult to make even qualitatively accurate active spaces for any given

excitation with a single method.

In recent work,5 we employed one such automated approach, approximate pair coefficient

(APC) active space selection, on the extensive QUESTDB database148 of accurate vertical

excitation energies for small-to-medium-sized organic systems. Through this, we were able to
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carry out extensive benchmarking of post-SA-CASSCF methods such as n-electron valence

perturbation theory (NEVPT2)34,35 and multiconfiguration pair-density functional theory

(MC-PDFT)41 using the translated PBE (tPBE) functional with active spaces generated by

the automated approach. However, to ensure accurate evaluation of the post-SA-CASSCF

methods and distinguish errors arising from poor active spaces, we considered only the

active spaces for which the SA-CASSCF result fell within 1.1 eV of the best estimate in

the QUESTDB database.5 This criterion was satisfied for 363–436 (68–82%) of the 532

excitations in the database, depending on the active-space size and basis set. Although

the APC scheme for these cases proved to be competitive with active spaces selected by

hand137,159,204, it was observed that the remaining active spaces (18–32% of the excitations)

exhibited very high errors, sometimes exceeding 5 eV. Consequently, the predictive utility of

these active spaces for our purposes was only partially acceptable.

In the present study our objective is to develop a new framework for active space selection

that is more broadly accurate for predicting vertical excitation energies. The key element of

the new method is the premise that no single active-space-selection scheme will be successful

in all cases. Therefore, we hypothesize that the important missing component of the current

schemes is the lack of a way to effectively choose between active spaces generated by differ-

ent methods or different parameters. To address this, we propose the “discrete variational

selection” (DVS) approach to active space selection in which (i) one generates trial wave

functions with a variety of active spaces constructed with different methods (e.g., any of

those mentioned or cited above) or different parameters, and then (ii) one chooses between

the generated active-space wave functions variationally.

In this work, we apply this DVS approach to the calculation of 207 vertical excitations

of small-to-medium sized main-group molecules in the QUESTDB database.148 These ex-

citations provide a rich variety of different types of excitations (e.g., Rydberg and valence

excitations of organic molecules, including both n → π∗ and π → π∗ excitations, and ex-
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citations of inorganic molecules) and thus present a demanding challenge to the systematic

prediction of their excitation energies. We find that the DVS scheme is unsuccessful when

variationally selecting between results using the CASSCF/DMRG energy, but performs well

when applied using the tPBE energy from MC-PDFT. Applying this DVS-tPBE approach to

selection among systematically constructed wave functions with SA-DMRG, we are able to

obtain a mean unsigned error of only 0.17 eV with hybrid MC-PDFT. This result reproduces

that of our previous benchmarks of hybrid MC-PDFT6 without the need to filter out poor

active spaces, and with no furhter orbital optimization following the active space selection

of the SA-DMRG wave functions. Furthermore, we find that DVS-tPBE is able to robustly

select between the newly generated SA-DMRG wave functions and our previously generated

SA-CASSCF results of our previous study.6

4.3 Theory and Methods

In this section, we provide an overview of MC-PDFT41 and hybrid MC-PDFT,140 and

provide a detailed descripion of the approach used in this work to systematically construct

the active spaces and SA-DMRG wave functions for DVS-tPBE. Finally we provide a detailed

description of the QUESTDB data used to judge the performance of this method.

4.3.1 Multiconfiguration Pair-Density Functional Theory

The energy expression of multiconfiguration pair-density functional theory may be written

as41

EMC-PDFT = Vnn +
∑
ij

hijγij +
1

2

∑
ijkl

gijklγijγkl + ENE (4.3)

where Vnn is the nuclear repulsion, i, j, k, and l are orbital indices, hij is a one-electron

integral, γij is the one-electron density matrix, gijkl is a two-electron integral, and ENE is

the nonclassical-energy functional. In most of our work, ENE is written as a function of the
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electron density ρ and the on-top pair density Π and is called an on-top density functional.

Recently, we have begun to explore different types of nonclassical-energy functionals derived

from machine learning48 or the density coherence,139 and we refer the reader to a recent

review.43 However, all practical applications so far have employed a translated version of

the PBE18 Kohn-Sham functional which is an on-top functional denoted as tPBE.

The on-top functional may also be combined with the wave function exchange-correlation

energy to form hybrid MC-PDFT,140 for which the energy expression becomes

EHMC-PDFT = XESA-CASSCF + (1−X)EMC-PDFT (4.4)

where ESA-CASSCF is the SA-CASSCF energy computed by wave function theory, and X is

a parameter. We have often found good results using tPBE with X = 0.25,6 which is called

tPBE0.

4.3.2 Systematically Constructed Active Spaces for DVS-tBPE

𝜆 = 0.25

𝜆 = 0.5

𝜆 = 0.75

SA-DMRG
40 orbitals

M=700

Result 1

Result 2

Result 3

… … …

RHF 
Wave Function

Orbital Candidates WFN Solver Results
APC

Selection 

APC
Selection 

APC
Selection 

𝐹 − 𝜆𝐾
𝐹 −

𝜆𝐾

𝐹 − 𝜆𝐾

Result 3

Lowest Average 
tPBE Energy

N

N

N

N

Figure 4.1: Schematic of the scheme used to systematically construct active spaces for DVS-
tPBE. Starting from an RHF or ROHF wave function, different sets of orbitals are generated
by diagonalizing F − λK in the space of virtual orbitals. Active spaces of 40 orbitals are
then selected from these orbital candidates using APC selection.5,6 Wave functions are then
generated using these selected active spaces by SA-DMRG. The final step represents the
DVS-tPBE approach in which the final result is chosen as the one with the lowest sum of
the tPBE energies between the two states of interest.
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The outline of the scheme used to systematically generate active spaces for DVS-tPBE

is shown in Figure 4.1. The approach consists of (i) calculation of initial Hartree-Fock

wave functions, (ii) virtual orbital construction via diagonalization of a parameterized op-

erator, (iii) selection of active spaces with the approximate-pair-coefficient selection (APC)

method,5,6 and (iv) generation of SA-DMRG wave functions in these active spaces using

Block2205. In the following we explain these components step-by-step.

Hartree-Fock Calculations. Hartree-Fock orbitals were generated for closed-shell singlet

ground states by restricted Hartree-Fock (RHF) theory206 and for doublet ground states by

restricted open-shell Hartree-Fock (ROHF) theory207 using the aug-cc-pVTZ basis208,209 as

was used for the theoretical best estimates listed in the QUESTDB database. (Note that

good results for these excitations are likely achievable with the smaller jun-cc-pVTZ155 basis

as was observed in our previous benchmark.6)

The definition of the Fock operator in ROHF theory is ambiguous, but the choice must be

specified as it affects the basis of orbitals from which we select to form the SA-DMRG wave

functions as well as the inputs into the APC theory5,6 used to select the active space from

these orbitals. For the present article, we employ Roothaan’s effective Fock operator207,210,

which is the default choice in PySCF.211,212

Orbital Construction. Starting from the set of canonical orbitals obtained from the RHF

or ROHF wave function, we index the doubly occupied orbitals with i and the virtual orbitals

with a. We then generate multiple trial orbital sets for a calculation by diagonalizing the

parameterized operator

G = F − λK (4.5)

in the space of the RHF or ROHF virtual orbitals, where F and K are the Fock and exchange

matrices generated from the RHF or ROHF density matrix, and λ is a tunable parameter used

to generate different sets of orbitals. Each of these trail orbital sets serves as a set of candidate

orbitals from which the active space will be selected for separate multiconfigurational wave
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function calculations; after their generation in this step they remain unchanged. The next

step serves to select 40 active orbitals and a set of inactive orbitals from each of these initial

sets of orbitals.

APC Active Space Selection. The approximate pair coefficient (APC) method is a method

for estimating the one-orbital reduced density matrix entropies of candidate orbitals for the

active space from HF matrix elements.5 Using this approach, it is possible to efficiently

estimate orbital importance for the active space (and thus rank the orbitals appropriately),

as higher orbital entropy is a measure of higher multireference character. For a doubly

occupied orbital i and virtual orbital a, the approximate pair coefficient between these two

orbitals is defined by5

Cia =
0.5Kaa

Faa − Fii +
√

(0.5Kaa)2 + (Faa − Fii)2
(4.6)

where F and K are again the Fock operator and exchange operator generated from the HF

density matrix. The entropies of doubly occupied orbitals and virtual orbitals are defined as
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where the sums over i includes all HF doubly occupied orbitals, and the sums over a initially

includes all virtual orbitals generated in the orbital construction step. We will eventually

select high-entropy orbitals for the active space, but in our previous work6 we have found the

entropies calculated with the full sums to be overly biased towards doubly occupied orbitals,

resulting in less-than-optimal active spaces. Therefore, we use a virtual-orbital removal step

in which the Cia involving the highest-entropy virtual orbital is removed from the sums in

equations 4.7, and the entropies are recalculated. After N such virtual-orbital removal steps
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are taken, the entropies of the removed virtual orbitals are set to the maximum entropy of

the remaining orbitals plus some small value, decreasing in order of removal; we have found

good results for small-to-medium-sized organic molecules with N = 2,6 which is used in this

work.

Having calculated orbital entropies for each trial set of doubly occupied orbitals i and

virtual orbitals a (constructed in step (ii)), the 40 highest-entropy orbitals are selected as the

active orbitals, and the other orbitals are dropped from the active space. Any dropped doubly

occupied orbitals become inactive, whereas dropped virtual orbitals become secondary. As

such, there are always 40 active orbitals in the active space of each subsequent SA-DMRG

calculation, and the number of inactive orbitals is the number of doubly occupied orbitals

dropped from the active space in the above selection stage. We note that although we do

not exclude core orbitals from selection, they are highly biased against by the APC scheme

(equation 4.6) and mostly harmless if added to the active space (generally when one has

exhausted all other orbitals). The number of active electrons in each calculation is set to

two times the number of doubly occupied orbitals remaining in the active set, and the number

of inactive electrons is equal to two times the number of inactive orbitals.

Computation of SA-DMRG Wave Functions. Having selected a 40-orbital active space

for each set of trial orbitals in step (iii) (one for each value of λ selected in step (ii)),

density matrix renormalization group calculations were carried out without re-optimization

of orbitals by using the state-averaged DMRG (SA-DMRG) in Block2205 as integrated

into PySCF.211,212 The maximum bond dimension of these calculations (i.e., the maximum

number of renormalized states) was fixed to M = 700. The choice of selecting 40-orbital

active spaces with a bond dimension ofM = 700 was made because it provided good accuracy

while still remaining computationally affordable (here defined as being able to run on 24 Intel

Cascade Lake cores with 96 GB of memory in less than a few hours for all systems). As in

our previous study,6 excited-state wave functions were calculated in a state-averaged fashion
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averaging over the ground state and the required number of excited states (for example, to

approximate the 2 1A2 state, we would include the ground state of symmetry 1A1 and two

states of symmetry 1A2, as in our previous work6).

We then select among the multiple wave function results generated for each excitation

via steps (i)-(iv) by variational selection with tPBE. In particular, we select the SA-DMRG

wave function that yields the lowest sum of tPBE absolute energies between the ground

state and the excited state of interest. Energies with tPBE were calculated using a version

of PySCF that incorporates the MRH code149 now available in PySCF-Forge.213 Grid

integration was carried out for evaluation of the on-top functional with fineness grids_level

= 3, as judged to be sufficient in our previous benchmark study.6

4.3.3 Benchmarking Data

We investigate the approach described above on a subset of theoretical best estimates in the

QUESTDB dataset148 for vertical excitation energies of small-to-medium-sized main-group

molecules. This set of excitations includes many of the most widely studied molecules of

the quantum chemistry community (e.g., water, ethylene, and naphthalene) as well as a rich

variety of different excited states (e.g., valence, Rydberg, n → π∗, and π → π∗ excitations

in many organic molecules with as many as 18 atoms plus excitations in H2S, HPO, HPS,

HSiF, and HNO). Thus, it presents a difficult challenge for any active space selection scheme

that hopes to be predictive in its calculations. We form a subset of these excitations by

applying the following constraints:

• Excitations must be labeled as "safe" in the original QUESTDB dataset (considered

by the authors of that work as chemically accurate or within 0.05 eV of the FCI limit

for the given geometry and basis set).148

• The full symmetry of the molecule must be supported in the CAS module of PySCF;

this limits us to molecules with symmetries Cs, C2v, C2h, and D2h.
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• The symmetry of the states must be unambiguously specified with regard to axis

convention. This excludes excitations involving the irreps B1 and B2 in C2v and B1g,

B2g, B3g, B1u, B2u, B3u in D2h.

These criteria exclude any possibility of the calculated excitations being inaccurate due to

unavailable symmetry or mislabeled symmetry. After eliminating data according to these

criteria, we are left with a set of 207 excitations for testing the present approach (199

excitations from singlet states and eight from doublet states).

The 2 1Ag State of Ethylene. Special attention is given to the theoretical best estimate

listed in QUESTDB for the 2 1Ag state of ethylene , which is characterized by Loos and and

coworkers as a valence (π,π) → (π*,π*) double excitation at roughly 12.15 eV, referencing

a 2004 study by Barbatti et al.128,214 However, in the comprehensive 2014 study on the

excited states of ethylene carried out by Feller et. al.,215 the 21Ag state of ethylene is

clearly characterized by both experiment and theory as a single (π,3p) Rydberg excitation

at about 8.45 eV. Although we have been able to converge to the double excitation in the

1Ag irrep described by Loos et. al. with some active space selections, it is clear that our best

estimates converge to the lower Rydberg excitation supported by the Feller et al.215 study.

Thus, we have changed the theoretical best estimate of this excitation in the QUESTDB

database to the value of 8.45 eV reported by Feller et al.215

4.4 Results

30-Excitation Tests. We first show the robustness of the new active space selection approach

by carrying out calculations for a set of 30 excitations for which APC selection in the aug-

cc-pVTZ basis6 had a SA-CASSCF tPBE0 error greater than 0.55 eV; these 30 excitations

involve a set of 17 molecules. We generated nine active spaces for each excitation by the

method explained in section 4.3.2, using λ equal to 0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, and

2.0 in step (ii).
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Figure 4.2: Left: Averaged squared distance from the centroid < rc · rc > over the selected
active orbitals for the 17 unique molecules of the 30-excitation test set. Right: Averaged
kinetic energy of the selected active orbitals for the 17 unique molecules of the 30-excitation
test set.

Figure 4.2 shows trends in the orbital character of the selected active orbitals as λ is

varied from 0 to 2 for the 17 molecules present in the 30-excitation test subset. The left

side of Figure 4.2 shows the averaged squared distance from the centroid (with the centroid

defined as the averaged coordinates of all nuclei in the molecule) over the selected active

orbitals. The figure shows that different values of λ lead to significantly different averaged

diffuse character of the selected orbitals, with the most diffuse character for λ = 0.75.

The right side of Figure 4.2 shows the average kinetic energy of the selected orbitals, and

illustrates the well-known quantum mechanical relation by which average kinetic energy in

inversely related to average spatial extent. Thus, modifications of λ provide an effective

means to explore active spaces targeting different kinds of states, e.g., Rydberg vs. valence

excitations. This is demonstrated clearly in the calculation of the 21Ag state of ethylene,

where λ = 0.25 selects an active space converging to the valence doubly excited 1Ag of Loos

and coworkers,128 while λ = 0.75 converges to the lower-energy singly excited Rydberg state
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(Supporting Information).215

We next examine the accuracy of excitation energies calculated from the selected active

spaces by tPBE0. To prevent confusion, we stress that although the DVS-tPBE selection

scheme employs the tPBE functional for variational selection, our calculations of excitation

energies are based on tPBE0. These choices simply reflect that tPBE performs better in

the selection scheme (as discussed below), whereas tPBE0 gives more accurate excitation

energies (as shown in previous work6 and discussed below.).

The left side of Figure 4.3 shows the absolute error of the tPBE0 calculations of the

excitation energies with active spaces generated by the nine values of λ. As can be seen,

no single value of λ yields accurate results for all 30 cases. For each value of λ, several

excitations have an error greater than 1 eV. Although the mean absolute error is lowest for

λ = 1 (0.56 eV), this is much larger than the mean absolute error of our previous benchmark

results (0.19 eV) when we excluded poor active spaces. However, for all 30 excitations, the

new scheme produces at least one value of λ that gives an absolute error less than 0.55 eV

(the threshold for qualitative accuracy found in our previous benchmark).6 This motivated

the use of a variational scheme to find the best value of λ for each case.
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Figure 4.3: Left: tPBE0 absolute error of 30 difficult vertical excitations using active spaces
selected with different values of λ. Right: Errors of these excitations with different values
of λ selected variationally by different energies: random selection, variational selection with
DMRG, tPBE0, and tPBE

As mentioned above, the criterion we use in DVS-tPBE is to choose the active space

that gives the lowest sum of the tPBE absolute energy for the ground state and the excited

state under investigation. To show the effectiveness of this approach, we compare this

selection rule to three other schemes: variational selection using the summed DMRG energy,

variational selection using the summed tPBE0 energy, and random selection. The right

side of Figure 4.3 compares these approaches in choosing among the active spaces generated

with different values of λ. The figure shows that tPBE distinguishes robustly between

qualitatively accurate and inaccurate complete-active-space wave functions (i.e., there are

no very large errors), while DMRG does little better than random chance, which does very

poorly. The mean absolute error of the tPBE0 excitation energies is 1.24 eV with DMRG

used for selection, as compared to 0.19 eV with tPBE used for selection. Furthermore, the

maximum absolute error decreases from 3.61 eV with DMRG selection to 0.63 eV with tPBE

selection. As a hybrid between tPBE and DMRG, selection with tPBE0 performs midway
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between these two approaches.

We also examined other ways to try to select the best active space from the trial set,

but none worked as well as the tPBE selection. For example, using as the sum of orbital

entropies in the active space31 or the sum of occupation number deviations from zero or 2

are unable to select well between the different values of λ (see the Supporting Information

for details of these tests).

207-Excitation Tests. We next consider the performance of DVS-tPBE on the entire set

of 207 excitations in the QUESTDB database that meet the selection criteria criteria of

section 4.3.3. For this larger test, we used only four values of λ to generate active spaces:

λ = 0.25, 0.5, 0.75, and 1.25. These values of λ were chosen based on their good performance

on the 30-excitation tests (see the Supporting Information for more discussion of this point).

The left panel of Figure 4.4 shows the mean absolute errors achieved by DMRG, tPBE,

and tPBE0 transition energy calculations with DVS-tPBE active-space selection for the full

set of 207 excitations. These results are compared to our previous benchmark for the subset

that excluded poor active spaces (those with with SA-CASSCF errors greater than 1.1 eV).

As can be seen, errors for all three of these methods are as good as or exceed the performance

of the previous benchmark. The comparison of mean unsigned errors is as follows:

• DMRG/CASSCF: 0.46 eV presently vs. 0.37 eV previously.

• tPBE: 0.20 eV presently vs. 0.21 eV previously.

• tPBE0: 0.17 eV presently vs. 0.18 eV previously.

We note that the performance using the wave function energy (DMRG/CASSCF) is slightly

worse, as might have been expected due to the bias of the previous benchmark in excluding

SA-CASSCF errors larger than 1.1 eV. However, we stress that here we achieved this com-

parable performance without excluding any cases, whereas previously the errors were only

for the better active spaces. The results of our previous benchmark without excluding poor
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active spaces are shown by the green bars in Figure 4.4; as can be seen inclusion of these

active spaces significantly diminishes the performance of the method and returns a tPBE0

mean absolute error of 0.39 eV.

Figure 4.4: Left: Mean absolute errors achieved by DMRG/CASSCF, tPBE, and tPBE0 on
the 207-excitation test set with active spaces selected by DVS-tPBE compared to the active
spaces used in our previous benchmark, both before (no exclusions) and after (167 excita-
tions) eliminating the poor active spaces. Right: Comparison of number of wave functions
variationally selected with tPBE vs. number of wave functions variationally selected with
DMRG at each value of λ.

The key to the success of tPBE selection as compared to DMRG selection seems to be that

it chooses lower values of λ. The right panel of Figure 4.4 shows the frequency with which

each value of λ was chosen in the tPBE selection compared to selection with DMRG. The

figure shows that the frequency decreases quickly as a function of λ for tPBE selection. In

contrast, this trend is reversed in the variational selection by DMRG, for which the selected

values of λ are instead clustered heavily around λ = 1.25. The same trend toward preferring

higher λ is also found in the tests on smaller 30-excitation dataset where we explored λ

values as high as λ = 2. In that case we found that the selections by DMRG are clustered

around λ = 2 (see Supporting Information).
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The key to the success of tPBE selection as compared to DMRG selection seems to be that

it chooses lower values of λ. The right panel of Figure 4.4 shows the frequency with which

each value of λ was chosen in the tPBE selection compared to selection with DMRG. The

figure shows that the frequency decreases quickly as a function of λ for tPBE selection. In

contrast, this trend is reversed in the variational selection by DMRG, for which the selected

values of λ are instead clustered heavily around λ = 1.25. The same trend toward preferring

higher λ is also found in the tests on smaller 30-excitation dataset where we explored λ

values as high as λ = 2. In that case we found that the selections by DMRG are clustered

around λ = 2 (see Supporting Information).

We next evaluate the usefulness of variational selection with tPBE for the problem of

comparing active spaces of vastly different sizes. To do this, we use the publicly available

SA-CASSCF wave functions of our previous benchmark study,6 but here not excluding any

wave functions due to poor active spaces. We then use tPBE to variationally select among

five active space results: the previous SA-CASSCF results (with active spaces of about 12

active orbitals) and the four new SA-DMRG results generated with the four values of λ (large

active spaces with 40 active orbitals and M = 700). We label this broader selection scheme

as DVS*-tPBE, and the left panel of Figure 4.5 shows the results of this scheme compared

to simply using the previous SA-CASSCF wave function results (again, not excluding any

active spaces due to poor selection). Although the performance of DVS*-tPBE is slightly

reduced compared to DVS-tPBE (0.20 eV tPBE0 error vs. 0.17 eV), variational selection

with tPBE is able to robustly discriminate against the outlier SA-CASSCF active spaces.
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Figure 4.5: Left: Violin plots comparing the distribution of errors for three kinds of energy
calculations (DMRG/CASSCF, tPBE, and tPBE0) on the 207-excitation test set when using
tPBE to select among the previous pair of SA-CASSCF wave functions and the four pairs
of SA-DMRG wave functions generated in this work to the the distribution of errors using
just the SA-CASSCF wave functions on the same test set (not excluding poor active spaces).
Right: Number of wave functions variationally selected from among the five trial wave func-
tions by using tPBE to select or DMRG/CASSCF to select. Note that the selection among
five trial pairs of wave functions is labeled in the plot as DVS*-tPBE, and the previously
generated SA-CASSCF wave functions are labeled as "Previous Benchmark."

The right panel of Figure 4.5 again compares the distribution of wave functions vari-

ationally selected (among these five trial wave functions) by tPBE to those selected by

DMRG/CASSCF. The figure shows that, although the active-space wave functions selected

by DVS*-tPBE have significantly smaller mean absolute errors (0.20 vs. 0.39 eV), most of

the wave functions variationally selected by tPBE come from the previous SA-CASSCF wave

functions. Thus, variational selection with tPBE mainly improves the results by avoiding

poor SA-CASSCF wave functions and replacing them with relatively good SA-DMRG wave

functions. In contrast, variational selection with DMRG/CASSCF yields mainly wave func-

tions generated with high values of λ and hardly any of the SA-CASSCF wave functions

from our previous work.6
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Although we have emphasized the excitation energies calculated by tPBE0, examination

of the above results shows that tPBE excitation energies are – on average – only slightly

worse. Another conclusion that can be drawn from the above comparisons is that tPBE and

tPBE0 excitation energy calculations are not overly sensitive to the nature of the multiconfig-

urational wave functions. We obtain good results both with the selection among four active

spaces for SA-DMRG calculations and with the selection among five trial active spaces, al-

though in the latter case a DMRG active space is not usually the one chosen. Therefore, for

the great majority of the excitations, we get good results with MC-PDFT and HMC-PDFT

with quite different kinds of multiconfigurational wave functions.

Finally, we performed some tests to evaluate the sensitivity of DVS-tPBE to the number

of active orbitals chosen. Keeping the bond dimension (700) and number of active spaces (4)

fixed, we find that increasing the number of orbitals to 40 is the point at which our tPBE

results start to replicate the accuracy of our previous study;6 selecting 30 orbitals signifi-

cantly decreases performance (Supporting Information). Thus, the success of the approach

in avoiding the expensive step of orbital optimization is largely enabled by the large active

spaces afforded by SA-DMRG.

4.5 Concluding Remarks

The goal of this work was to develop an automatized framework for selecting active spaces for

calculating vertical excitation energies with useful predictive accuracy. Towards this goal, we

have presented the discrete variational selection (DVS) approach to active space selection in

which one generates multiple trial wave functions from a set of constructed active spaces and

employs a variational selection scheme to choose the final result. To practically implement

this approach for vertical excitation energies in the QUESTDB database, we have presented

a scheme in which, for each excitation, (i) an RHF or ROHF wave function is calculated for

the ground state, (ii) different sets of candidate orbitals are generated by diagonalization
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of a parameterized operator, (iii) 40-orbital trial active spaces are chosen from these sets

using APC selection, (iv) ground and excited-state SA-DMRG wave functions are calculated

for each of these active spaces with a bond dimension of M = 700, and (v) the final result

is chosen from among the resulting wave functions as the one that gives the lowest sum of

absolute energies of the ground state and the excited state under consideration. We find

that this approach performs poorly when using the DMRG/CASSCF absolute energies to

select between wave functions, but robustly when using the absolute energy given by the

translated tPBE functional of MC-PDFT (DVS-tPBE).

We have tested this method on 207 vertical excitations in the QUESTDB dataset (199

excitations from singlet states and eight from doublet states). When choosing between only

four trial active spaces with no further orbital optimization, we are able to obtain equally

as accurate tPBE0 results as in our previous benchmark6 but now for all systems without

the need to filter out poor active spaces. The success of this approach in avoiding the

costly step of orbital optimization is largely enabled by the large active spaces afforded

by SA-DMRG, and it is consistent with the recent perspective that “CASCI is not merely

an approximation to CASSCF, in that it can be designed to have important qualitative

advantages over CASSCF.” 195 While the results in the article proper show that this approach

is successful for systems in QUESTDB,148 we show in Supporting Information that it can

also have success in the transition metal system MnO−
4 with only minor modification (using

larger N in the calculation of the APC entropies).216

Of course, application to different systems may require a greater number of orbitals and

larger bond dimension, or a different approach entirely to constructing the candidate active

space wave functions. Towards this end, we have shown that DVS-tPBE remains effective

even when choosing between the large SA-DMRG active spaces of this work and the smaller

SA-CASSCF active spaces of our previous benchmark.6 That is, if we enlarge the trial set

of active spaces to include both those from the SA-CASSCF calculations with small active
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spaces and the new large active spaces (with 40 active orbitals), and we choose among them

with variational selection by tPBE, we again obtain good results, even though we are now

comparing quite different kinds of wave functions. These results show that DVS-tPBE is able

to choose robustly between active spaces of vastly different sizes. This flexibility provides

the basis for the further development of DVS-tPBE to applications of more metal-containing

systems, extended organic systems, and adiabatic excitations.

In summary, we have proposed an approach for automatically selecting between active

spaces for vertical excitations variationally through use of the tPBE energy from MC-PDFT.

We have practically implemented this approach for the QUESTDB database through use of

a parameterized operator to generate different active spaces and large SA-DMRG wave func-

tions. Our results show that such an approach can potentially enable the application of

CAS-based approaches in a high-throughput and predictive fashion. Although one cannot

guarantee that any single active-space selection method will always work well, discrete vari-

ational selection with tPBE (DVS-tBPE) appears robust.

Converged density matrices of all 40-orbital DMRG calculations for the singlet and triplet

QUESTDB excitations are available on Zenodo.46 The code used for APC active space

selection is now available in PySCF.

We thank Matthew Hennefarth and Matthew Hermes for helpful discussions. This work
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CHAPTER 5

MACHINE-LEARNED ENERGY FUNCTIONALS FOR

MULTICONFIGURATIONAL WAVE FUNCTIONS

This chapter is reprinted with permissions from J. Phys. Chem. Lett. 2021, 12, 32,

7761–7767

5.1 Abstract

We introduce multiconfiguration data-driven functional methods (MC-DDFMs), a group of

methods which aim to correct the total or classical energy of a qualitatively accurate multi-

configurational wave function using a machine-learned functional of some featurization of the

wave function such as its density, on-top density, or both. On a dataset of carbene singlet-

triplet energy splittings, we show that MC-DDFMs are able to achieve near-benchmark per-

formance on systems not used for training with a robust degree of active-space independence.

Beyond demonstrating that the density and on-top density hold the information necessary

to correct the singlet-triplet energy splittings of multiconfigurational wave functions, this

approach shows great promise for the development of functionals for MC-PDFT because

corrections to the classical energy appear to be more transferable to types of molecules not

included in the training data than corrections to total energies such as yielded by CASSCF

or NEVPT2.

5.2 Results and Discussion

Although current Kohn-Sham density functional theory (KS-DFT) is highly accurate for

many interesting chemical systems, it is well-known to be less accurate for strongly corre-

lated systems than for systems well-described by a single Slater determinant.59,61,62,217–220

This has motivated interest in combining density functionals with multiconfigurational wave
101



function methods26,221–223 (e.g., CASSCF) that explicitly express the wave function as a

superposition of electronic configurations. However, because multiconfigurational wave func-

tion methods are generally limited to a set of configurations that is too small to yield quanti-

tatively accurate correlation energies, one must augment them by a post-MCSCF procedure

in order to obtain quantitative accuracy. The most widely used of these methods include

multireference perturbation theory (MRPT)26,32,35,224 (e.g., CASPT2 and NEVPT2) and

multireference configuration interaction (MRCI),225,226 which are both very expensive.

As an alternative to MRPT and MRCI, we have proposed multiconfiguration pair-density

functional theory (MC-PDFT)41 and multiconfiguration density-coherence functional theory

(MC-DCFT).139 These methods share the feature that they compute an energy by combining

wave function theory for the classical components (kinetic energy, electron-nuclear attraction,

and classical electron-electron interactions) with a functional for the nonclassical components

of the energy (exchange and correlation), and together they may be grouped as examples

of multiconfigurational nonclassical functional theory (MC-NCFT). The general MC-NCFT

energy expression is given by:

EMC-NCFT[ψ
MC] = EMC

class + Enc[f [ψ
MC]] (5.1)

where the classical energy EMC
class accounts for nucleus-nucleus repulsion, nucleus-electron at-

traction, classical electron-electron repulsion, and electron kinetic energy, and EMC
nc is a

nonclassical functional (NCF) dependent on a featurization f of the reference wave func-

tion ψMC, which may be the density, on-top density, density coherence, gradients of these

quantities, or any other featurization of the wave function.

Inspired by both the success of these methods and recent work that has used neural

networks to develop density functionals for KS-DFT,227–259 we introduce a broader class of

methods named "multiconfiguration data-driven functional methods" (MC-DDFMs) which

aim to correct the classical or total energy Eref of a multiconfigurational wave function
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method through the use of a machine-learned functional EML:

EMC-DDFM[ψMC] = EMC
ref + EML[f [ψ

MC]] (5.2)

in which EML plays the generalized role of Enc. In this work we introduce four new MC-

DDFMs which use functionals of ρMC and ΠMC trained to correct four different reference

energies Eref :

1) Data driven functional ’21 (DDF21), a MC-NCFT functional trained to correct the clas-

sical energy:

EDDF21 = EMC
class + EDDF21[ρ

MC,ΠMC] (5.3)

2) ∆tPBE-21, a functional trained to correct the translated PBE (tPBE) energy of MC-

PDFT:41

E∆tPBE-21 = EMC
tPBE + E∆tPBE-21[ρ

MC,ΠMC] (5.4)

3) ∆CASSCF-21, a functional trained to correct the CASSCF energy:

E∆CASSCF-21 = EMC
CASSCF + E∆tPBE-21[ρ

MC,ΠMC] (5.5)

4) ∆NEVPT2-21, a functional trained to correct the NEVPT2 energy:

E∆NEVPT2-21 = EMC
NEVPT2 + E∆NEVPT2-21[ρ

MC,ΠMC] (5.6)

Below, we present the development of these MC-DDFMs as well as three different tests of

their generalization to molecules outside of the training set: (i) test data similar to training

data; (ii) test data using other active spaces; and (iii) test data using aryl and biradical

systems. These results are encouraging, and we believe that further progress in this direc-
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tion – particularly towards designing new functionals for MC-NCFT – has the potential to

systematically achieve low-cost quantitative accuracy for a variety of different wave function

methods.

Training Geometries. We have taken our training geometries from the QMSpin database

of Schwilk et al.,260 which contains carbenes optimized in the singlet state using CASSCF(2,2)/cc-

pVDZ-F12 as well as benchmark-quality vertical singlet-triplet splittings obtained using

explicitly correlated multireference configuration interaction with single and double excita-

tions and the Davidson quadruples correction (MRCISD-F12+Q).261–264 In this work we

have used a subset of these carbenes that contain only carbon and hydrogen atoms.

Network Architecture. We have taken an approach very similar to the recent work of Dick

and Fernandez-Serra in their development of NeuralXC.253 Atomic feature vectors for atoms

I are obtained by projecting the density ρMC and on-top density ΠMC onto atom-centered

basis functions ϕnlm via quadrature:

c
I,ρ
nlm =

∫
r
ϕInlm(r)ρMC(r) c

I,Π
nlm =

∫
r
ϕInlm(r)ΠMC(r) (5.7)

and these features are then made rotationally invariant by the transformations:253,259

d
I,ρ
nl =

∑
m

(c
I,ρ
nlm)2 d

I,Π
nl =

∑
m

(c
I,ρ
nlm)2 (5.8)

In this work we used the 108 optimized basis functions developed by Chen et. al. for

featurization on each atom;265 this results in a total of 36 rotationally invariant features for

each atom I and density ζ (ρ or Π): 12 "s" features (l = 0, dI,ζ1,0 . . . d
I,ζ
12,0), 12 "p" features

(l = 1, dI,ζ2,1 . . . d
I,ζ
13,1), and 12 "d" features (l = 2, dI,ζ3,2 . . . d

I,ζ
14,2). We then input each atomic

feature vector vI = {dI,ρnl , d
I,Π
nl } into its respective element network, fλI to obtain the total

energy correction:
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E =
∑
I

fλI (vI) (5.9)

as in the work of Behler and Parrinello.266

Networks were implemented and developed in PyTorch267 from the starting point of

NeuralXC available on GitHub.268 Element networks consist of an input layer, nlayers fully

connected hidden layers each with nnodes, and a one-node output layer, with nlayers and

nnodes treated as hyperparameters. The GELU activation function269 was used for all nodes.

Although overfitting is a concern given the large amount of features used, scores on the test

set are not overly large compared to the training set, differing at most by 0.03 eV (see

Supporting Information).

Figure 5.1: Network training scheme. Given a starting reference energy Eref with output
∆Eref , the element networks {α, β, . . .} are regressed to minimize the mean squared devia-
tion between corrected energy differences ∆Eref + ∆EML and the target energy difference
∆Etarget.

Network Training. We focus our non-classical functionals on predicting benchmark-

quality energy differences between two states |ψ⟩1 and |ψ⟩2, in particular the singlet and

triplet state of a single geometry. Given a difference in energy between these states from

a reference method, ∆Eref , we train functionals to minimize the mean squared deviation
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between the corrected energy difference, ∆Eref + ∆EML, and a target energy difference,

∆Etarget (in this work, singlet-triplet energy splittings from MRCISD-F12+Q); this training

scheme is outlined in Figure 5.1. This centering of the loss function solely on relative energies

stands in contrast to previous work in NeuralXC,253 DeepKS,258 OrbNet,270 and KDFA,259

but it has three advantages: (i) it allows benchmark results to be obtained from a variety

of different sources (including experiment, which almost always yields relative energies); (ii)

relative energies are the quantities of most interest to chemists, since bond energies, energies

of reaction, and barrier heights are all relative energies; and (iii) theoretical data used for

training is almost always more accurate for relative energies than for absolute energies.

For optimization of parameters and hyperparameters, the 360 carbenes were split into a

training set of 287 carbenes, a validation set of 37 carbenes, and a test set of 36 carbenes.

All features were normalized using a StandardScaler fit on the training set,271 and networks

were optimized to reduce the mean squared error loss over the entire training set in Pytorch

using the Adam optimizer272 with a learning rate of 0.01 for a maximum of 20001 steps.

A PyTorch scheduler (torch.optim.lr_scheduler.ReduceLROnPlateau) was used to decrease

the learning rate over time upon an observed plateau in the loss to a minimum learning rate

of 1.1e-7, after which the training was stopped early. The hyperparameters considered were

the weight decay of the Adam optimizer and the number of nodes and layers in the element

networks, and these hyperparameters were optimized using Optuna273 by minimizing loss

on the validation set. The final hyperparameters of all networks and the ranges explored are

given in the Supporting Information.

Wave Function Generation. State-averaged (2,2)-CASSCF wave functions, along with

tPBE and NEVPT2 energies for the singlet and triplet states of each carbene, were obtained

using PySCF,90 as integrated with MC-PDFT capabilities using publicly available devel-

opment code.274 Atomic feature vector inputs (eq 5.7) were obtained via quadrature using

the highest grid quality (grid_level=9). During development it was found that these input
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features converge at significantly lower thresholds than the CASSCF energy, and therefore

more stringent CASSCF optimization parameters were used in obtaining the singlet and

triplet wave functions to insure consistency (mc.conv_tol = 1e-10, mc.conv_tol_grad =

1e-6, mc.ah_lindep = 1e-14, and mc.ah_conv_tol = 1e-12).

Active Space Selection. With the exception of benzene, all active spaces for CASSCF

calculations were chosen automatically using the ranked-orbital approach.5 The highest 23

doubly occupied orbitals and the lowest 23 virtual orbitals of an ROHF wave function were

individually Boys-localized94 and the approximate pair coefficient (APC) method5 was em-

ployed on all doubly occupied orbitals and the localized virtual orbitals to approximate

orbital entropies (the remaining virtual orbitals were not considered for the active space).

These entropies were then used to rank the orbitals in terms of importance, and the fi-

nal active space was selected by setting a maximum number of allowed CSFs in the wave

function expansion (e.g., max(2,2), max(4,4), and max(6,7)) and dropping orbitals from the

active space until the size of the active space satisfied the threshold. In the training data we

selected all active spaces at the max(6,7) level.

Active Space Error. Although the ranked-orbital approach above is imperfect at ranking

orbitals in importance for the active space, at the max(6,7) level our method failed to select

active spaces with qualitatively accurate CASSCF excitation energies (<1 eV in absolute

error) in only a small number of cases; these cases were rejected from the training, validation,

and test sets. However, in addition to the calculations at the max(6,7) level that were used to

train the functionals, we performed some tests with minimal active spaces generated at the

max(2,2) level, which requires a perfect ranking of the orbitals; in these tests we experienced

a much higher failure rate (33%), and therefore these tests were carried out on a test subset

of only 24 carbenes (listed in the Supporting Information).
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Figure 5.2: Mean absolute errors (MAEs) on MRCISD-F12+Q benchmark data for a test set
of 36 carbenes excluded from the training data. For each MC-DDFM (DDF21, ∆tPBE-21,
∆CASSCF-21, and ∆NEVPT2-21, shown in green), we show the performance of its reference
method (tPBE, CASSCF, and NEVPT2, shown in blue) as well as a one-parameter mean-
corrected method (Reference-µ) shown in orange. The MAE of the CASSCF classical energy
(1.1eV) is not shown due to scale.

Results. Figure 5.2 shows the performance of the four MC-DDFMs in comparison to their

respective reference methods on the test set of 36 carbene singlet-triplet energy splittings.

For comparison, we also show the performance of a simple one-parameter mean correction to

the singlet-triplet energy splittings, in which ∆Eref is corrected by its mean deviation from

MRCISD-F12+Q on the training data. Encouragingly, all four functionals are able to greatly

improve upon these one-parameter corrections, surpassing the mean absolute errors (MAEs)

of their reference methods by factors of 29 (DDF21), 16 (∆tPBE21), 3 (∆CASSCF-21),

and 2 (∆NEVPT2-21). Additionally, although all functionals presented in the article proper

depend on both the density and on-top density, additional results given in the Supporting

Information show that we obtain similarly high accuracy using only density features or only

108



on-top density features.

Figure 5.3: Mean absolute errors on MRCISD-F12+Q benchmark data from a test subset
of 24 carbenes for which our automated scheme chose a reasonable (2,2) active space, tested
with the cc-PVTZ basis at four different active space sizes: max(2,2), max(4,4), max(6,7),
and max(8,8).

We tested the active space dependence of our data-driven functional methods on 24

carbenes with four different active space sizes whose number of configurations vary by four

orders of magnitude: max(2,2), max(4,4), max(6,7), and max(8,8). Figure 3 shows that

all MC-DDFMs maintain their near-benchmark accuracy across this wide range of active

spaces, despite being trained on only max(6,7) active spaces. We note that this active space

robustness is likely a result of the sole dependence of our loss function on relative energies

rather than absolute ones. However, we find that one drawback of our approach is that the

parameters do not seem to be easily transferable to other basis sets; when switching to either

a cc-pVDZ or cc-pVQZ basis the errors of the MC-DDFMs tend to increase dramatically

(Supporting Information).
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Figure 5.4: Mean absolute error of reference and data-driven functional methods on three
difficult singlet triplet energy splittings, consisting of one aryl system (C6H6, using the stan-
dard minimal cc-pVTZ@UNO-(6,6) active space7) and two biradical systems (cyclobutadi-
ene, C4H4, and 1,3-bis(methylene)-cyclobutadiene (C4H2-(1,3)-(CH2)2), using automatically
selected max(10,10) active spaces).

As a final test of generalizability, we tested the MC-DDFMs on three difficult sin-

glet–triplet energy splittings quite different than any data in the training set: benzene and

two biradical systems; cyclobutadiene (C4H4) and 1,3-bis(methylene)cyclobutadiene (C4H2-

(1,3)-(CH2)2) (Figure 5.4). These systems were taken from previous benchmark studies on

translated functionals,275,276 with benchmarks for benzene taken from experiment277 and

benchmarks for the biradicals from theoretical results.278 While MC-DDFMs correcting to-

tal energies (∆tPBE-21, ∆CASSCF-21, and ∆CASSCF-21) all performed worse on average

than their respective reference methods, DDF21 maintains a large improvement upon the

CASSCF classical energy, reducing its MAE from 0.77 eV to only 0.25 eV. This suggests

that corrections to the classical energy – as is done in MC-NCFT – may be more transfer-

able to types of molecules not included in the training data than corrections to "complete"

methods such as CASSCF or NEVPT2. Similar generalizability in this regard is achieved
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by MC-DDFMs trained solely on the density or on-top density (Supporting Information).

Related Work. This work builds on the development of machine-learned density function-

als for KS-DFT,227–259 in addition to machine-learned density or density matrix function-

als developed to correct the energy of semiempirical methods (OrbNet)270 or Hartree-Fock

(MOB-ML).88,107,279 In addition, machine learning has also been used to predict the density

itself280–284 and even the on-top pair density;285 in principle these methods could be com-

bined with the energy functionals we have presented here to predict the energy directly from

a molecular geometry. Other related work is the application of machine learning or theory

to predict multireference character, which could help to identify when multiconfigurational

methods should be used.286–288 In addition, several previous studies have attempted to pre-

dict singlet-triplet energy splittings directly from the molecular geometry, often achieving

high accuracy with respect to their benchmark data.65,289–292 Given these works, there is no

reason to think that the prediction of singlet-triplet energy splittings could not be achieved

by a much simpler method, but we emphasize that the central contribution of this work is

not in predicting accurate singlet-triplet energy splittings at low cost but in demonstrating

the potential for data-driven improvement in MC-NCFT.

Conclusions. We have presented a data-driven approach to the development of energy

functionals for multiconfigurational wave functions utilizing neural networks parametrized

in terms of the density and on-top density. Using a dataset of carbene singlet-triplet energy

splittings taken from the QMSpin database,260 we find that the new multiconfiguraional

data-driven functional methods (MC-DDFMs) are able to achieve benchmark-quality ac-

curacy on carbenes not included in the training set and improve markedly on approaches

using translated MC-PDFT functionals even when extended to different active spaces. Be-

yond demonstrating that the density and on-top density hold the information necessary to

correct the singlet-triplet energy splittings of multiconfigurational wave functions, this ap-

proach shows great promise for multiconfigurational nonclassical functional theory, because
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corrections to the classical energy appear to be more transferable to types of molecules not

included in the training data than corrections to total energies such as yielded by CASSCF

or NEVPT2. It will be interesting to see if this good performance can be maintained when

the functionals are parameterized using larger and more diverse sets of training data.
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CHAPTER 6

DIVERGENT BIMETALLIC MECHANISMS IN

COPPER(II)-MEDIATED C–C, N–N, AND O–O OXIDATIVE

COUPLING REACTIONS

This chapter is reprinted with permissions from J. Am. Chem. Soc. 2024, 146, 5, 3521–3530

6.1 Abstract

Copper-catalyzed aerobic oxidative coupling of diaryl imines provides a route for conversion

of ammonia to hydrazine. The present study uses experimental and density functional the-

ory computational methods to investigate the mechanism of N–N bond formation, and the

data support a mechanism involving bimolecular coupling of Cu-coordinated iminyl radicals.

Computational analysis is extended to CuII-mediated C–C, N–N, and O–O coupling reac-

tions involved in the formation of cyanogen (NC–CN) from HCN, 1,3-butadiyne from ethyne

(i.e., Glaser coupling), hydrazine from ammonia, and hydrogen peroxide from water. The re-

sults reveal two different mechanistic pathways. Heteroatom ligands with an uncoordinated

lone pair (iminyl, NH2, OH) undergo charge transfer to CuII, generating ligand-centered

radicals that undergo facile bimolecular radical-radical coupling. Ligands lacking a lone pair

(CN and CCH) form bridged binuclear diamond-core structures that undergo C–C coupling.

This mechanistic bifurcation is rationalized by analysis of spin densities in key intermediates

and transition states, as well as multiconfigurational calculations. Radical-radical coupling

is especially favorable for N–N coupling owing to energetically favorable charge transfer in

the intermediate and thermodynamically favorable product formation.
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6.2 Introduction

Copper-mediated oxidative coupling of organic molecules was discovered more than 150

years ago, when Glaser demonstrated the oxidative coupling of phenylacetylene (Figure

6.1A).293–295 Cu-catalyzed reactions of this type continue to be the focus of extensive

study,296–299 and many are compatible with molecular oxygen as a stoichiometric oxidant.

Despite the extensive history of these reactions, their mechanisms remain poorly understood.

Complications arise from the likely participation of more than one copper species, the poten-

tial accessibility of three formal oxidation states (CuI, CuII, and CuIII), and the possibility

of both one- and two-electron redox steps in the mechanism.300–302 The mechanism of the

Glaser coupling has been the subject of extensive investigation,295 and several studies303–305

favor a binuclear reductive-elimination pathway involving a dimeric CuII intermediate with

bridging acetylides (Figure 6.1B), similar to that originally proposed by Bohlmann.306,307

Recent studies by some of us have been exploring Cu-catalyzed N–N coupling reactions that

share many features in common with the Glaser coupling.308–310 Both reaction classes fea-

ture Cu catalysts with imine ligands (i.e., pyridine or diaryl imine) and promote efficient

oxidative homocoupling with O2 as the terminal oxidant. The oxidative coupling of diaryl

imines to generate an azine product was introduced by Hayashi and coworkers as a key step

in the production of hydrazine (Figure 6.1C).311,312 The catalytic rate law for this reac-

tion features a second-order dependence on [Cu],309 which led to a mechanistic proposal for

an iminyl-bridged binuclear Cu intermediate that resembles the Glaser coupling mechanism

(Figure 6.1D). The present study was initiated to probe this mechanistic pathway and the

mechanistic relationship between Cu-catalyzed N–N and C–C coupling reactions.
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Figure 6.1: Prominent Cu-catalyzed aerobic oxidative coupling reactions and their proposed
mechanisms: Glaser homocoupling of alkynes (A) and proposed binuclear mechanism (B);
Hayashi homocoupling of diarylimines (C) and proposed binuclear mechanism (D).

The Glaser and Hayashi coupling reactions are prominent examples of a broader series of

related Cu-catalyzed oxidative reactions (Figure 6.2). Cu-mediated reversible oxygen-oxygen

bond cleavage/formation via diamond-core structures is well established in O2 activation

enzymes and model systems;313–316 however, these processes involve an oxo-bridged dimer

with a formal CuIII redox state. The diamond-core intermediates in Figures 1B and 1D are

formally assigned as CuII species. The latter proposal is consistent with observations that

CuII can mediate these reactions in the absence of a secondary oxidant, and the observation

that electrochemical N–N coupling operates at potentials close to the copper(II/I) potential.
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Thus, despite geometric similarities, the oxidative homocoupling reactions considered here

are electronically distinct (i.e., Cu(II) vs. Cu(III)) from Cu/O2 reactions that proceed via a

CuIII
2 (µ-O)2 intermediate.

Figure 6.2: Complementary Cu-catalyzed oxidative homocoupling reactions of alkynes (a),
diarylimines (b), hydrogen cyanide (c), ammonia (d), and water (e), each of which is con-
sidered in the present study.

Previous results obtained from Cu-catalyzed aerobic oxidative coupling of diaryl imines309,310

are supplemented here by additional structural, electrochemical, and stoichiometric reactiv-

ity studies of diarylimine-Cu species. These data provide experimental benchmarks for den-

sity functional theory (DFT) computational analysis of the N–N coupling mechanism. The

computational results show that the previously proposed N–N coupling pathway, featuring

a binuclear diamond-core intermediate (cf. Figure 6.1D), is energetically prohibitive. This

outcome contrasts with the facile C–C coupling via the analogous alkynyl-bridged binuclear

intermediate (cf. Figure 6.1B). A lower-energy pathway for N–N coupling is identified that

involves bimolecular radical-radical coupling between two iminyl-Cu complexes. Electronic-

structural analysis of this pathway shows that deprotonation of a coordinated imine ligand

triggers nitrogen-to-CuII charge transfer, forming a species that has significant CuI-iminyl

radical character. These two mechanistic pathways – (1) binuclear reductive-elimination via

a bridged diamond-core intermediate and (2) bimolecular radical-radical coupling – have

been analyzed for each of the C–C, N–N, and O–O coupling reactions in Figure 6.2. The

results reveal why C–C coupling favors binuclear reductive elimination, while heteroatom-
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heteroatom coupling favors radical-coupling.

6.3 Results and Discussion

Experimental and computational benchmarks. Experimental studies employed a di-

aryl imine with two p-fluoro substituents, 4,4’-difluorobenzophenone imine (1), to facilitate

product analysis by 19F NMR spectroscopy. Stoichiometric reactions of 1 with Cu(OTf)2

have been reported previously to form the N–N coupled azine product 2 at room temperature

in N,N -dimethylformamide.309 Similar reactivity was observed here in acetonitrile (MeCN)

(Figure 6.3A), complicating efforts to characterize CuII/diaryl imine complexes. This reac-

tivity could be slowed significantly at lower temperature, however. Addition of other solvents

to this solution, including CH2Cl2, toluene, THF, and EtOAc, led to formation of a brown

solid, with orange crystals also observed when adding CH2Cl2 and toluene. Crystals suit-

able for X-ray diffraction analysis were obtained by dissolving Cu(OTf)2 and 4 equiv of 1

in MeCN, and layering over CH2Cl2 at –45 °C. The X-ray crystal structure revealed the

formation of [Cu(1)4](OTf)2 (3) (Figure 6.3B and 6.3C). Consistent with the stoichiometric

reactivity of 1 and Cu(OTf)2 noted above, this complex is not stable when dissolved in

MeCN at room temperature, but undergoes spontaneous reaction to generate azine 2.

The X-ray crystal structure of 3 was used as a benchmark for DFT computational studies.

DFT geometries, frequencies, and energies were calculated using unrestricted Kohn-Sham

DFT using the M06 functional21 with ultrafine grid quality in Gaussian16,317 using the

def2-TZVPP basis for transition metals and the def2-SVP basis for all other atoms.318,319

The polarizable continuum model (PCM) was used to model the MeCN solvent (see Sup-

porting Information for additional details). A survey of 14 structural variations of CuII

complexes were evaluated by these methods. The structures differ in the number of imine

and acetonitrile ligands (3–5 each, see the Supporting Information for details). The most

stable structure has four imine and no acetonitrile ligands, closely resembling the structure
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obtained from X-ray diffraction analysis of 3 (Figure 6.3C). Good agreement is observed be-

tween the 4-coordinate complex predicted by theory and the experimental crystal structure.

For example, the experimental and computed Cu-N bond distance is 1.99 ± 0.01 Å in both

cases.

Figure 6.3: A) CuII-mediated imine coupling proceeds spontaneously at room temperature.
B) Low-temperature preparation of the tetraimine complex 3. C) Experimental and com-
putational structure of [CuII(1)4]2+ (left and right, respectively). The symmetry code for
the experimental structure is 1:1-X,1-Y,-Z. The experimental crystal structure includes two
triflate counterions (non-imine hydrogens are not shown for clarity), while the DFT opti-
mization of 3 was performed without the two triflate counterions.

Cyclic voltammetry analysis was performed with [CuI(MeCN)4]PF6 in the presence of a

series of diaryl imines with different substituents in the 4,4’-positions: X = MeO, H, F, Cl,

CF3 , and the CuII/I redox process is evident as a quasi-reversible wave in acetonitrile (Figure

6.4A). These results were complemented by computational analysis of the reduction poten-

tial of the different [CuII(imine)4]2+ species by evaluating the free energy of electron transfer

from ferrocene (Fc) to CuII (see the Supporting Information for details). The experimental

and computed redox potentials show good agreement (Figure 4B), with the absolute reduc-

tion potential for [Cu(1)4](OTf)2 (3) differing by only 0.06 eV. These differences between
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experimental and computational values are within the range expected from DFT calcula-

tions and likely incorporates experimental solvation effects not captured fully by the PCM

method.

Figure 6.4: Comparison of experimental (A) and DFT computational (B) redox potentials
for CuII/CuI vs. Fc/Fc+ as the para-substituents of the diaryl imine are changed.

Analysis of pathways for N–N bond formation. Previous kinetic studies of Cu-

catalyzed oxidative homocoupling of 1 revealed a second-order kinetic dependence on [Cu]309

and led to the proposed Glaser-like coupling mechanism, involving binuclear N–N reductive

elimination via a diamond-core intermediate (cf. Figure 6.1D). The energetics of this pathway

were probed by DFT methods, starting from [Cu(1)4](OTf)2 (3) (Figure 6.5A). A three-

coordinate Cu-iminyl complex Int-1 can be generated from 3 by using one of the imine

ligands as a Brønsted base to deprotonate another imine ligand. This step is calculated

to be endergonic by 14.0 kcal/mol, but Int-1 can undergo favorable dimerization to afford

the bis-iminyl diamond-core intermediate (dimer, ∆Go = 12.1 kcal/mol with respect to 1).

Efforts were made to identify a transition state for N–N bond formation from this dimer by

scanning the N–N distance; however, shorter N–N distances led to a monotonic increase in

energy, reaching >40 kcal/mol with respect to 3 at a bond length 2.0 Å (Figure 6.5B). The

origin of this behavior will be considered further below, but these results prompted us to

consider an alternative pathway.
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Figure 6.5: Free-energy diagram for a Glaser-like binuclear reductive elimination pathway
for CuII-mediated N–N bond formation from imines. (A) DFT-based energy diagram for
N–N bond formation, starting from [Cu(1)4](OTf)2 (3). (B) Free energy changes observed
upon scanning the N–N bond in the dimer from 2.2 to 2.0 Å, while maintaining the angle
between N–N and Cu–Cu. The data indicate that N–N bond formation from the diamond-
core intermediate is unfavorable.

Deprotonation of the imine ligand in the formation of Int-1 significantly changes the

electronic structure of the Cu complex. Analysis of the Hirshfeld spin8 distribution in 3 and

Int-1 reveals that the primary localization of spin shifts from predominantly Cu (0.66) in 3 to

predominantly N (0.56) in Int-1 (Figure 6.6), reflecting significant charge transfer from the

non-coordinated lone pair of the anionic iminyl ligand into the dxy orbital of CuII. Thus, Int-

1 is best described as a “CuI-(iminyl radical)” complex. This complex can dimerize to afford

the diamond-core structure, but the dimer does not provide a pathway for N–N coupling,

as shown in Figure 6.5. The N-centered radical character of Int-1, however, suggested the

possibility of a radical-radical coupling pathway via direct N–N bond formation between two

equivalents of Int-1. Transition state TS-1 was identified at 26.0 kcal/mol with respect

to 3, providing an energetically accessible pathway to the azine-CuI dimer Int-2. This

barrier is further reduced to 21.8 kcal/mol upon considering spin corrections (Supporting

Information). The significant spin density on the reacting N atoms (0.59) in TS-1 disappears

when the N–N bond is formed in Int-2. Overall, this radical-radical coupling pathway readily

rationalizes the experimental observations, including the bimolecular rate-law associated

with N–N coupling and increased yields for the stoichiometric reaction when using stronger
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Brønsted bases.309 The electronic structural analysis shows that CuII-mediated oxidation of

the imine substrate is triggered by deprotonation of the coordinated imine, prior to reaction

with a second equivalent of Cu.

Figure 6.6: Free-energy diagram for a bimolecular radical-radical coupling pathway for CuII-
mediated N–N bond formation from imines, and electronic structure of the key intermediates
and transition state showing Hirshfeld spin distribution (yellow = up spin, blue = down
spin).8 Deprotonation of an imine ligand in 3 generates Int-1, which has significant CuI-
(iminyl radical) character. Relevant bond lengths in TS-1 (all in Å): Cu – N = 1.91, N – N
= 2.38, N – Cu = 3.71.

Comparison of pathways for N–N, O–O, and C–C bond formation. Recognizing that the

radical-radical coupling mechanism in Figure 6.6 could be involved in other Cu-catalyzed

oxidative coupling reactions, we extended the DFT calculations to reactions with a series

of anionic ligands derived from small molecules: hydroxide (-OH), amide (-NH2), cyanide

(-CN), and ethyne (-CCH). The ancillary diaryl imine ligands were replaced with dimethyl

imines to facilitate the analysis. The viability of this substitution was confirmed by probing

radical-radical homocoupling of N=C(ArF)2 with the dimethyl imine ancillary ligands. The

computed free-energy barrier for conversion of Int-1 to TS-1 is ∆G† = 12.8 kcal/mol (Sup-
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porting Information), closely matching that obtained with full diaryl imine ancillary ligands

(∆G† = 12.0 kcal/mol, Figure 6.6).

The analysis of other substrates revealed a distinct bifurcation between the two reaction

pathways for substrates with and without lone pairs (NH2, OH versus CN, CCH). A radical-

radical coupling transition state was identified for the coupling of NH2 and OH, with free-

energy barriers of 18.1 kcal/mol (NH2) and 42.3 kcal/mol (OH) between structures analogous

to Int-1 and TS-1 (Figure 7; the much higher barrier for HO-OH coupling reflects uphill

thermodynamics associated with the formation of H2O2 from CuII). No transition state

could be found for NH2 or OH homocoupling via the binuclear reductive elimination pathway,

similar to the results obtained for imine homocoupling, shown in Figure 6.5. While diamond-

core dimer structures were identified, transition states could not be found. For example, a

constrained scan of the HO—OH bond distance from a Cu2(OH)2 diamond-core geometry

reaches energies higher than 100 kcal/mol as the O–O distance approaches that of H2O2 (see

Supporting Information). Scans were evaluated with and without fixing the angle between

the X–X and Cu–Cu bonds, but neither led to a transition state that formed the product

(see Supporting Information for additional details).

With carbon-based ligands, CN and CCH, the opposite outcome was observed. No transi-

tion states were identified for the radical-radical coupling pathway. Instead, the monomeric

CuII–CN and –CCH structures form dimeric diamond-core intermediates with low-energy

pathways for C–C bond formation via binuclear reductive elimination transition states: ∆G†

= 15.8 and 3.5 kcal/mol for CN and CCH, respectively (Figure 6.7). While these results

closely resemble previous studies of Glaser homocoupling of alkynes,303–305,307 we are not

aware of previous studies of CN homocoupling.320,321 The results show that the mechanis-

tic bifurcation correlates with the presence (OH, NH2, N=CAr2) or absence (CN, CCH) of

a substrate lone pair, with the former accessing a radical-radical coupling mechanism and

the latter a binuclear reductive elimination pathway. Within the two mechanistic classes,
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the calculated activation energies for these reactions correlated with the overall reaction

energies ∆Go, calculated by considering equilibrium CuI species formed in these reactions

(Figure 6.7; see xyz in the Supporting Information for details). We have found the triplet

solution to be higher in energy than the broken-symmetry solutions in all cases. However,

spin correction lowers the computed barrier of the radical-radical couplings and raises that

of the dimeric couplings, further demonstrating the bifurcation between these mechanisms

(Supporting Information).

Figure 6.7: Activation free energies (∆G†) and reaction free energies (∆Go) for Cu-mediated
oxidative homocoupling of OH, NH2, NC(ArF)2, CN and CCH ligands. Only one of the two
mechanisms, (1) radical-radical coupling or (2) binuclear reductive elimination, was found
to be accessible for each substrate, with the preferred pathway correlating with the presence
(OH, NH2, N=C(ArF)2) or absence (CN, CCH) of a lone pair on the substrate. Reaction
free energies are estimated with respect to the energy of the homocoupled X-groups (e.g.,
H2O2, N2H4) and the calculated CuI equilibrium species (see Supporting Information).

Electronic structural analysis of key intermediates and transition states. The

origin of the mechanistic bifurcation evident among the different substrates in Figure 6.7 is

illuminated by comparison of the different spin densities in Cu complexes involved in the

two mechanisms (Figure 6.8). For the heteroatom substrates, X = OH, NH2, N=CArF2,
123



Hirshfeld spin densities were calculated for the Int-1-like monomers (Figure 6.8A, left) and

the TS-1-like transition states (Figure 6.8A, right). For the carbon substrates, X = CN,

CCH, the transition states for C–C bond formation optimized to a closed shell structure

with no spin, so the monomeric Int-1-like structures (Figure 6.8B, left) were evaluated with

the corresponding binuclear dimer structures (Figure 6.8B, right).
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Figure 6.8: Calculated Hirshfeld spin densities of intermediates and transition states for
the reactions of (A) heteroatom (OH, NH2, N=CAr2) and (B) carbon-based (CN, CCH)
substrates. The monomeric [(Me2C=NH)2Cu–X]+ species are shown on the left for each
substrate, together with the transition-state structures for radical-radical coupling (A), and
the dimeric intermediate for binuclear reductive elimination (B). The transition state for
binuclear reductive elimination was calculated to be closed shell. The spin density maps
are show with up spin in yellow and down spin in light blue, while the line drawings show
up spin in dark blue and down spin in dark red. Relevant bond lengths in transition-state
structures (all in Å): imine coupling: Cu-N = 1.97, N-N = 2.41, N-Cu (far) = 3.57; OH
coupling: Cu-O = 2.32, O-O = 1.80, O-Cu = 3.27; CN coupling: Cu-C = 1.99, C-C = 1.79;
CC coupling: Cu-C = 1.96, C-C = 2.02.
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Several trends are evident in the calculated spin densities. Among the five monomeric

structures (Figure 6.8, left), the nitrogen-based substrates, N=C(ArF)2 and NH2, have sig-

nificant radical character, with spin densities of 0.56 and 0.46, respectively. At the other

extreme, the carbon-based substrates, CN and CCH, have negligible radical character, with

spin densities of only 0.06 and 0.07, respectively. OH represents an intermediate case, with

the majority of the spin density located in a Cu dxy orbital (0.62), while significant spin also

resides on oxygen, in an orbital with sp character (0.21).

Distinctions are also evident in the transition states/intermediates associated with each

of these substrates (Figure 6.8, right). The transition states for radical-radical coupling of

the nitrogen-based substrates show symmetrical structures, with the spin retained with an

equal distribution between the two nitrogen atoms undergoing bond formation. O–O bond

formation favors a radical-radical coupling pathway, but the transition-state structure has

an unsymmetrical distribution of spin. Relative to the monomeric Cu–O fragments, which

have most of the spin localized on Cu, one of the Cu–O fragments in the transition state

has increased spin density at oxygen (0.46, relative to 0.21 in the monomer), while the other

has a decreased spin density at oxygen (0.04). This mismatch in spin localization correlates

with a significantly higher barrier computed for O–O bond formation.

In the diamond-core intermediates leading to C–C bond formation, the spin density in the

dimer is almost entirely located on Cu (± 0.33–0.34) and the ancillary imine ligands (Figure

8B, right). The C–C bond-forming transition state for CN and CCH homocoupling has no

spin (both optimize to closed shell determinants), and the forming C–C bonding orbital is

heavily mixed with Cu-centered orbitals (see Supporting Information). These observations

may be compared to the diamond-core [Cu2[N=C(ArF)2]2 dimer intermediate, which does

not undergo N–N coupling (see Figure 6.5). This structure also shows negligible spin density

(0.01) at the bridging nitrogen atoms and significant spin on Cu (0.59) (see Supporting

Information). An important distinction between the carbon- and heteroatom N/O-bridged
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diamond-core structures is the C-atom uses a single lone pair to bridge the two Cu atoms,

while the O- and N-atoms use two orthogonal lone pairs to bridge the two Cu atoms. This

distinction has significant implications for the orbital interactions in the binuclear reductive

elimination transition state, which supports C–C, but not N–N or O–O bond formation.

We have further analyzed the electronic structure of the diamond-core and biradical

transition states through density matrix renormalization group (DMRG) calculations in

Block2205 through the PySCF90 interface. Atomic valence active spaces49 (AVAS) were

chosen from a Hartree-Fock determinant targeting the relevant C and N 2s and 2p and Cu

3d orbitals for the active space. Figure 6.9 shows the resulting bonding and antibonding

natural orbitals of these calculations: imine biradical coupling (left) shows an independent

bonding/antibonding interaction, whereas the antibonding σ∗ orbital of the forming C4H2

unit is hybridized with the Cu d orbitals. This difference in electronic structure clearly

distinguishes between the two mechanisms, and these differences are reproduced in the mul-

ticonfigurational natural orbitals of the corresponding transition-state structures involved in

OH, NH2, and CCH coupling (Supporting Information).
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Figure 6.9: Natural orbitals from AVAS-DMRG calculations of the structures for the biradical
imine coupling and diamond-core CCH coupling transition states. Left: σ and σ∗ orbitals
of the biradical imine coupling transition state, which are independent of the Cu d orbitals.
Right: σ and σ∗ orbitals of the CCH coupling transition state, in which the σ∗ orbital is
hybridized with the Cu dxy orbitals.

Relationship to other literature reports of Cu-catalyzed oxidative homocou-

pling reactions. The data reported here has several important connections to previous

data reported in the literature. The oxidative N–N coupling of diarylketimes to the corre-

sponding azines has been achieved under electrochemical conditions.310 This reaction may

be promoted by a Brønsted base (di-n-butyl phosphate) or with a pyridine-ligated copper

catalyst that resembles the system described here. The base-promoted reactions is pro-

posed to proceed via proton-coupled electron transfer from neutral imines, generating free

N-centered radicals that can undergo radical-radical coupling. The data outlined herein

suggest that the Cu catalyst mediates N–N bond formation via a different radical-radical

coupling pathway that features Cu-ligated N-centered radicals. Participation by the Cu

center significantly lowers the energy requirement for formation of the N-centered radical.

This lower barrier is manifested by the ca. 1 V lower overpotential required to promote

electrochemical N–N bond formation, reflecting the different potentials needed to oxidize
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CuI to CuII versus promoted electrochemical PCET from the substrate.310 These obser-

vations further reflect that imine coordination to CuII facilitates substrate deprotonation

(via Lewis-acid coordination-activation) and electron transfer (inner-sphere ligand-to-metal

charge transfer upon deprotonation).

The involvement of N-centered radicals in stoichiometric and catalytic N–N coupling re-

actions has been directly characterized in recent studies by the groups of Warren322,323 and

Peters.324 These efforts included the synthesis and structural, reactivity, and computational

analysis of CuII and NiIII complexes bearing well-defined ancillary ligands, β-diketiminates

for Cu and a tetrapodal (SiP2S) ligand for Ni. Warren and coworkers further showed that

a β-diketiminate-ligated Cu complex can serve as an electrocatalysts for ammonia oxidation

to dinitrogen,323 complementing the aforementioned aerobic and electrocatalytic coupling

of diarylimines.309,310 In both cases, the key N–N bond-forming step is proposed to involve

bimolecular reaction of two N-centered radicals coordinated to Cu. This ligand radical char-

acter and facile homocoupling reactivity is not matched by hydroxide, as shown in Figures 6.7

and 6.8. These observations align with literature reports showing that oxygen-radical char-

acter in mononuclear Cu–OH complexes does not arise until the complexes are increased

by one oxidation state relative to those presented here (i.e., formally CuII to CuIII, al-

though ligand-based redox negates this formal description325).326–329 Such complexes are

potential intermediates in electrocatalytic water oxidation mediated by homogeneous Cu-

complexes.330–332 Once the complexes reach this oxidation state, their electronic structure

introduces the possibility of O–O bond formation via the now-classic Cu2O2-diamond-core

structure, corresponding to the binuclear reductive elimination pathway that proved unten-

able at the lower oxidation state (cf. Figure 6.7).313–316,333,334
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6.4 Conclusion

This analysis of the CuII-catalyzed oxidative homocoupling of diaryl imines leads to a mech-

anistic conclusion different from that proposed previously. Specifically, this reaction does not

mimic Glaser-type alkyne coupling, but rather features a radical-radical coupling pathway.

Coordination of the neutral imine to Cu forms stable CuII complexes in solution. Upon

deprotonation, the imine ligand undergoes significant change in its electronic structure, gen-

erating a Cu-stabilized iminyl radical that is equipped to undergo facile N–N coupling. The

ability to access this reactivity from the CuII oxidation state enables catalytic turnover to

proceed with O2 as the stoichiometric oxidant or under modest electrochemical potentials.

More broadly, the results presented herein highlight two distinct pathways for homocou-

pling depending on whether the reacting groups are carbon (-CN, -CCH) or heteroatoms

(-N=CAr2, -NH2, and -OH) ligands. This study is the first to show this distinction among

these important historical and contemporary coupling reactions.
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CHAPTER 7

ORGANIC REACTIVITY MADE EASY AND ACCURATE

WITH AUTOMATED MULTIREFERENCE CALCULATIONS

This chapter is reprinted with permissions from ACS Cent. Sci. 2024 (Accepted)

7.1 Abstract

In organic reactivity studies, quantum chemical calculations play a pivotal role as the founda-

tion of understanding and machine learning model development. While prevalent black-box

methods like density functional theory (DFT) and coupled-cluster theory (e.g., CCSD(T))

have significantly advanced our understanding of chemical reactivity, they frequently fall

short in describing multiconfigurational transition states and intermediates. Achieving a

more accurate description necessitates the use of multireference methods. However, these

methods have not been used at scale due to their often-faulty predictions without expert

input. Here, we overcome this deficiency with automated multiconfigurational pair-density

functional theory (MC-PDFT) calculations. We apply this method to 908 automatically

generated organic reactions. We find 68% of these reactions present significant multiconfig-

urational character, in which the automated multiconfigurational approach often provides a

more accurate and/or efficient description than DFT and CCSD(T). This work presents the

first high-throughput application of automated multiconfigurational methods to reactivity,

enabled by automated active space selection algorithms and the computation of electronic

correlation with MC-PDFT on-top functionals. This approach can be used in a black-box

fashion, avoiding significant active space inconsistency error in both single- and multirefer-

ence cases and providing accurate multiconfigurational descriptions when needed.
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7.2 Introduction

In the past 20 years, quantum chemistry has made great strides in describing chemical

reactivity; widely-used methods such as density functional theory (DFT) and coupled-cluster

methods (e.g., CCSD(T)) have become a rich source of data for the understanding of chemical

reactions and the development of machine learning algorithms.335,336 However, despite their

black-box nature, these methods face limitations on systems poorly described by a single

electronic configuration, i.e. multiconfigurational or strongly correlated systems.337–341 A

key example of these systems is familiar to most chemists: that of the transition state, in

which the electronic character is often split between describing that of the reactant and

the product. Given the ubiquitous nature of transition states in chemistry, it may then

be a wonder how these approaches have proven successful in so many applications. The

answer is that for many important cases these methods are simply able to overcome this

difficulty despite the fundamental struggle with multiconfigurational character. Nevertheless,

in automated applications of quantum chemistry such as reaction network exploration,342

the poorer description of multiconfigurational species can rear its head in key places and

significantly impact results.

As such, describing strong correlation in transition states has long been poised as a

potential application for multiconfigurational approaches such as complete active space self-

consistent field (CASSCF) theory.26,343 This approach overcomes the difficulty of describing

multiconfigurational systems by describing the state as a superposition of the possible elec-

tronic configurations in an “active space” of orbitals and electrons:29

|ΨCASSCF⟩ =
∑

n1n2...nL

Cn1n2...nL |22...n1n2...nL00...⟩ (7.1)

in which n1n2...nL enumerates the possible occupations of the L active orbitals. With a

good choice of active space, all static correlation can be addressed with far fewer configu-
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rations than FCI and comparable expense to DFT.6 However, despite the many academic

applications of these approaches in the literature,344–350 the widespread adoption of these

methods for reactivity has been hindered by the challenge of choosing a consistent and ade-

quate active space along the reaction surface.86,351 The CASSCF energy expression is given

by

ECASSCF = VNN +
∑
pq

hpqDpq +
∑
pqrs

gpqrsdpqrs (7.2)

where Dpq and dpqrs are the CASSCF one- and two-body reduced density matrices. If the

active space is chosen inconsistently between two geometries, one will obtain an unphysical

“active space inconsistency error” (ASIE) resulting from the inconsistent treatment of cor-

relation in the density matrices of equation 7.2. This error generally remains present even

when addressing the remaining dynamic correlation perturbatively with methods such as

CASPT2352,353 or NEVPT2.34,35

The most common approach for reducing ASIE involves interpolating the active space

orbitals between geometries, providing a continuous set of orbitals along the reaction coor-

dinate.351 However, this approach is quite cumbersome: active orbitals often rotate in and

out of the active space randomly during this procedure, and the active space may change

size along a reaction coordinate, such as when moving from a fairly uncorrelated reactant to

a correlated transition state. Furthermore, this interpolation scheme dramatically increases

the cost of the calculation relative to approaches such as DFT, as CASSCF calculations

are necessary along several points between the reactant and product, whereas KS-DFT only

requires calculations at the individual end points.

In this light, we note the broad success of KS-DFT in modeling reactivity, which mod-

els all densities via a single determinant and calculates energies via use of an exchange-

correlation functional:
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EKS-DFT = VNN +
∑
pq

hpqDpq +
∑
pqrs

gpqrsDpqDrs + Exc[ρ] (7.3)

Despite the fact that the KS-DFT determinant inevitably describes the density matrices

of reactants and transition states with different accuracy (i.e., the exact two-body density

matrices dpqrs differ more or less from the single-determinant DpqDrs), KS-DFT is able to

obtain good results in reactivity through use of an exchange functional of the density Exc[ρ].

This statement also applies to the success of “density corrected” DFT (DC-DFT),354 in which

the densities used in the KS-DFT energy expression (eq. 7.3) come from HF determinants

(i.e., the functional has no input on the density, but only the energy calculation). This leads

to the hypothesis that the ASIE found in CASSCF and NEVPT2 may come in large part

from unequal contribution of the density cumulant between two geometries, dpqrs−DpqDrs.

A multiconfigurational approach that avoids use of the density cumulant by means of an

exchange-correlation functional may inherit much of the equal-footing properties of KS-DFT

and prove more robust against ASIE.

One such method that achieves this goal is called multiconfigurational pair-density func-

tional theory (MC-PDFT).41 This theory more-or-less shares an energy expression with

KS-DFT:

EMC-PDFT = VNN +
∑
pq

hpqDpq +
∑
pqrs

gpqrsDpqDrs + Eot[ρ,Π] (7.4)

with two key differences: (i) the exchange-correlation functional is replaced with an “on-top”

functional Eot which is a functional of both the density ρ and on-top density Π, and (ii) the

density argumentsDpq, ρ, and Π come from a multiconfigurational (generally CASSCF) wave

function. The on-top pair density, derived from the two-particle density matrix, describes

the probability of finding two electrons at the same point in space. In practice, the on-top

functional is a “translated” functional (most often translated PBE18, tPBE) in which the
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density and on-top density are used to manufacture effective spin densities for use in the KS-

DFT energy expression (eq. 7.3). Thus, as MC-PDFT more-or-less shares eq. 7.3 with KS-

DFT, MC-PDFT appears promising for attenuating part of the active space inconsistency

error, especially when paired with automated methods for choosing the active space in a

reliable and consistent fashion.5,6,31,76,86,351,355 While MC-PDFT has been tested on a wide

variety of systems and excitations,6,141,347,356 it has yet to be tested in a high-throughput

fashion for reactivity.

Here we provide the first such test by applying automated MC-PDFT to the calculation of

908 automatically generated organic reactions in the RGD1 database.357 These data present

a rich variety of organic reactivity and a challenging test for multiconfigurational approaches

that is germane to reaction network exploration. Our results highlight the robustness of

automated MC-PDFT in this domain compared to other perturbative multiconfigurational

approaches such as NEVPT234,35 and outline the opportunity and challenges for applying

multiconfigurational methods to high-throughput main-group reactivity. We find that com-

bining the approximate pair coefficient active space selection scheme (APC) with MC-PDFT

(referred to as APC-PDFT) generates robust results, with APC-PDFT reproducing DFT re-

sults for a set of single reference reactions. In addition, we show the deviation in relative

energies from single reference are correlated to level of multiconfigurational character, with

DFT and CCSD(T) becoming less reliable for strongly correlated systems (68% of reactions),

and APC-PDFT providing better results in many of these cases.

7.2.1 Methods

The main barrier to automating multiconfigurational approaches is automatically selecting

the active space in a robust fashion. Methods for automatically selecting active spaces con-

tinue to be an active research topic, and several approaches exist.31,49,76,86,87,351,355,356,358

Here, we employ approximate pair coefficient (APC) selection,5,6 in which candidate Hartree-
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Fock orbitals are ranked for the active space by means of their approximate pair coefficient

interaction with other orbitals. We note that APC is a ranked-orbital approach, where the

user defines a maximum active space size. This method allows the practitioner to prevent the

selection scheme from picking active spaces larger than are computationally feasible and it

also allows for flexibility towards solvers with different practical size limitations (i.e. CAS vs.

DMRG). The drawback is that the user has to define this maximum size manually which can

result in an unnecessarily large active space. Given doubly occupied orbitals i and virtual

orbitals a, approximate pair coefficients are calculated as

Cia =
0.5Kaa

Faa − Fii +
√

(0.5Kaa)2 + (Faa − Fii)2
(7.5)

where Fii, Faa, and Kaa are the respective diagonal elements of the Fock and exchange ma-

trices. The entropies of doubly occupied orbitals i and virtual orbitals a are then calculated

by summing over their approximated interactions (intermediate normalization):

Si = − 1

1 +
∑

aC
2
ia

ln
1

1 +
∑

aC
2
ia

−
∑

aC
2
ia

1 +
∑

aC
2
ia

ln

∑
aC

2
ia

1 +
∑

aC
2
ia

(7.6)

Sa = − 1

1 +
∑

iC
2
ia

ln
1

1 +
∑

iC
2
ia

−
∑

iC
2
ia

1 +
∑

iC
2
ia

ln

∑
iC

2
ia

1 +
∑

iC
2
ia

(7.7)

Interactions with singly occupied orbitals are left uncalculated, and singly occupied orbitals

are automatically given the highest possible entropy. As the pair coefficients are generated

from Fock and exchange matrix elements which change adiabatically with the molecular

geometry, the APC scheme aims to select moderately consistent (but not exactly consistent)

active spaces across the reaction coordinate.

Finally, due to the observed biasing of APC entropies towards doubly occupied orbitals5,6

a series of virtual orbital removal steps are employed N times in which the highest-entropy

virtual orbital is removed from the sums in equations 7.6 and 7.7 and the entropies are
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recalculated; these highest-entropy virtual orbitals are then assigned the highest entropy at

the end of the calculation. For small-to-medium sized organic systems we have found good

results with N = 2,6 which we have used here. However, this parameter appears to have

less impact due to the fixed active space size we employ here to enforce active space size

consistency between different geometries (described below). Implementation of APC is now

available in PySCF.359,360

Candidate HF orbitals are then ranked in importance by their orbital entropies, with this

ranking used to choose an active space meeting some user-defined size requirement (e.g., a

12 electron in 12 orbital or (12,12) active space). Here, to select consistent active space sizes

between geometries we employ a simple size requirement in which for an (A,B) active space,

where A and B are the number of active electrons and orbitals respectively, the A/2 highest-

entropy doubly occupied orbitals and the B−A/2 highest-entropy virtual orbitals are added

to the active space; we refer to these active spaces as APC-(A,B). CASSCF calculations

initialized from these active spaces in the cc-pVDZ basis361,362 were then carried out in

PySCF.359,360 These CASSCF wave functions were then used for the calculation of MC-

PDFT (tPBE) and NEVPT2 energies, also implemented in PySCF and PySCF-Forge.213

Multiconfigurational (or equivalently, multireference (MR)) character in the resulting

wave functions is calculated via the M -diagnostic,3 which measures multiconfigurational

character as a function of the natural orbital occupancies:

M =
1

2
(2− nHDOMO + nLUMO +

∑
jSOMO

|nj − 1|) (7.8)

Here nHDOMO, nLUMO, and nSOMO are the average occupations of the highest doubly

occupied, lowest unoccupied, and any singly occupied orbitals in the active space. An M

diagnostic less than 0.05 is considered minimally multiconfigurational, 0.05 < M < 0.1

moderately MR, and M > 0.1 substantially MR.
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7.2.2 Data

The reactions for this benchmark were taken from the Reaction Graph Depth 1 (RGD1)

dataset for CHON-containing molecules.357 In brief, these reactions were generated using

generic graph-based reaction rules applied to neutral closed-shell reactants sampled from

PubChem. Transition state, reactant, and product geometries for each reaction were opti-

mized at the B3LYP-D3/TZVP level. Three subsets of RGD1 were used for this work. These

are a random five percent (400) of the break two form one (B2F1) reactions, 400 break two

form two (B2F2) reactions, and a “small molecule” dataset of 108 reactions in RGD1 with <

5 non-hydrogen atoms. The B2F1 reactions, which break two bonds and form one bond as

the reaction progresses from reactant to product, have an increased likelihood of showing MR

character due to the uneven number of bonds formed and broken in the reaction, whereas

the B2F2 reactions, which have two bonds broken and two bonds formed throughout the

reaction, have closed-shell reactants and products (Supporting Information). To provide ref-

erence results for comparison to the automated multiconfigurational approach, CCSD(T) and

B3LYP-D3 (with zero damping) results were recalculated in the cc-pVDZ basis in PySCF

using the all-atom pre-associated reactants and products provided by RGD1.
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7.3 Results

Figure 7.1: Electronic energies of each state in the concerted transition state (CTS) and
biradical reaction pathways relative to the reactants. Four methods are shown: APC(6,6)-
tPBE (green, this work), hand-selected (6,6)-tPBE (black),9 HF-PBE (blue), and reference
MR-AQCC results (red).10 The structures of each transition state and intermediate are
displayed on the right.

As a first test of our methodology, we explore the performance of APC-tPBE on the Diels-

Alder reaction between butadiene and ethylene. This reaction presents a well-studied series

of transition states and intermediates9,10 that provide a clear challenge for automated multi-

configurational approaches, as all states contain a significant amount of multiconfigurational

character (M > 0.1). Figure 7.1 shows the tPBE results obtained with our automated

APC(6,6) active spaces compared to previous literature results using hand-selected (6,6)

active spaces,9 as well as reference multireference averaged quadratic coupled cluster (MR-

AQCC) calculations.10 The study from Lischka et al. showed the MR-AQCC results to be

in good agreement with experiment for the accepted reaction pathway.

As is seen, the automatically selected active spaces are able to reproduce the tPBE results
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(in good agreement with the MR-AQCC results) of the hand-selected active spaces in all

transition states, despite not directly enforcing any consistency between active spaces beyond

the size. For reference, we show the single-reference limit of MC-PDFT in which the CASSCF

wave function densities are replaced with HF densities (equivalent to so-called “density-

corrected” PBE354); here we refer to this approach as HF-PBE. Unlike APC(6,6)-tPBE,

HF-PBE dramatically overestimates the stability of the concerted transition state (CTS)

while greatly underestimating the stability of the TS-Anti transition state and intermediate.

Results with an APC(12,12) active space as well as KS-DFT and CCSD(T) are reported in

the Supporting Information. The larger active space results are in good agreement with the

APC(6,6) performance. Thus, our automated scheme successfully reproduces the important

multiconfigurational results.

Given the success of our methodology in reproducing Diels-Alder results, we turn to the

908-reaction subset of RGD1 reactions for further testing. Our calculations show that this

set of reactions shows a broad distribution of multiconfigurational character as measured

by the M -diagnostic (Supporting Information), with 32% of reaction energies and 63% of

activation energies demonstrating significant multiconfigurational character (M > 0.1), for

a total of 68% of reactions exhibiting such character in at least one state overall. To account

for the cases with the most multiconfigurational character, we have chosen large APC(12,12)

active spaces for each state in these reactions. This active space size is significantly larger

than necessary for most reactions in the dataset, resulting in inconsistent but unimportant

orbitals between the reactants and products of some reactions. These orbital inconsistencies

represent a second test of the robustness of MC-PDFT.
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Figure 7.2: Whisker plots of deviations from single-reference limits (right: ∆E left: Ea)
of APC-tPBE, APC-NEVPT2 and APC-CASSCF, stratified by the degree of multiconfig-
urational character as measured by the M diagnostic. The number of reactions in each M
diagnostic category are displayed below each label. Mean absolute deviations (MAD) in
systems with low multiconfigurational character (M < 0.05, in kcal/mol, ∆E /Ea): 1.8/2.8
(tPBE); 4.0/5.2 (NEVPT2); 6.8/9.8 (CASSCF). Mean absolute deviations (MAD) in sys-
tems with high multiconfigurational character (M > 0.1, in kcal/mol, ∆E /Ea): 3.1/4.6
(tPBE); 5.2/7.6 (NEVPT2); 12.3/19.0 (CASSCF).

Figure 7.2 shows the absolute deviation in the reaction energy, ∆E, and the activation

energy, Ea (both forward and backward), for all examined reactions from the single ref-

erence limit (SRL) for CASSCF (SRL: HF), tPBE (SRL: HF-PBE), and NEVPT2 (SRL:

MP2). This deviation is stratified by three degrees of multirference (MR) character (low

(M < 0.05), moderate (0.05 < M < 0.1), and high (0.1 < M). As shown clearly, both the

mean absolute deviation (MAD) from the SRL and overall spread of the data increases from

the low M to the high M categories. In the cases with low multiconfigurational character,

M < 0.05, tPBE successfully reproduces the single-reference limit with a mean deviation of

± 1.8 kcal/mol for ∆E and ± 2.8 kcal/mol for Ea, with an average between these two of ±

2.2 kcal/mol. In contrast, CASSCF and NEVPT2 reproduce these limits with a mean devi-

ation of ± 7.9 kcal/mol and 4.4 kcal/mol repectively, with much larger maximum deviations
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(as high as 20 kcal/mol). These results show that MC-PDFT is significantly more robust

in the single-reference limit towards active space inconsistency error (ASIE) than competing

multiconfigurational approaches, making it ideal for high-throughput application. Surpris-

ingly, we find that this robustness carries over to the performance of hybrid PDFT as well,

despite it being an admixture of CASSCF and tPBE; this point bears technical discussion

and is discussed in the Supporting Information. A similar analysis, using the square of the

coefficient of the leading configuration, C2
0 , as the multireference diagnostic can also be found

in the Supporting Information.

Figure 7.3: Reactions MR_3361_1 (rearrangement of trimethylamine) and MR_619998_2
(hemiacetal formation from methanol and glycinamide). Six methods are shown on each
plot: APC(12,12)-tPBE (light green), APC(12,12)-NEVPT2 (purple), APC(4,4)-tPBE (dark
green), APC(4,4)-NEVPT2 (silver), HF-PBE (black), MP2 (grey), B3LYP-D3 (pink), and
reference CCSD(T) (red). Energies shown are calculated relative to the lowest energy state
(right: reactants, left: products). Since the transition state of the trimethylamine rearrange-
ment reaction is reasonably multireference (M=0.49), it is excluded here.

Two examples where tPBE shows improved reliability for a single-reference reaction

are shown in Figure 7.3. The first is a trimethylamine rearrangement reaction, where the

APC(12,12)-CASSCF wave functions for the reactant and product are mostly well-described

by a single determinant, with M diagnostics below 0.03. Thus, the overall reaction energy

is expected to be similar between each MR approach and its single reference parallel. As

is seen, APC-tPBE successfully reproduces HF-PBE to within 3 kcal/mol, a result that is
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similarly in-line with B3LYP-D3 and CCSD(T). Though this deviation is slightly larger than

chemical accuracy, it presents a substantial improvement over APC(12,12)-NEVPT2, which

shows a clear deviation from all other methods, overestimating the energy of the reactant

by roughly 30 kcal/mol, despite using the same underlying APC-CASSCF wave functions as

APC-tPBE. This drastic difference from the single-reference result is emblematic of ASIE,

where orbital rotation between the product and reactant results in drastically unphysical

results. Since the reaction is known to be single-reference, this ASIE can be eliminated

through the selection of a smaller active space: APC(4,4)-NEVPT2 produces results in line

with CCSD(T) and density functional approaches, and the APC(4,4)-tPBE results come

closer in line with CCSD(T).

The second case presents the formation of a hemiacetal from methanol and glycinamide.

Here, all three states exhibit an M of less than 0.05, indicating both the reaction and ac-

tivation energies should be well described by a single-determinant wave function. Despite

this, both the forward and reverse barriers are predicted to be 20 kcal/mol lower with

APC(12,12)-NEVPT2 than MP2. By comparison, APC-tPBE agrees to within chemical ac-

curacy (1 kcal/mol) with the single-reference limit of HF-PBE and CCSD(T). Once again,

the smaller APC(4,4) active space largely remedies this unphysical error with NEVPT2,

demonstrating the error to be due to ASIE. An in-depth evaluation of the active space de-

pendence of tPBE and NEVPT2 for these two reactions, as well as CASSCF is included in

the Supporting Information.
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Figure 7.4: Reaction MR_186317_0 (ring-opening/ring-closing reaction of N4C4H10). The
APC(12,12)-tPBE (green), HF-PBE (black), B3LYP-D3 (pink), and CCSD(T) (red) energy
diagrams are displayed on the left. The transition state active orbitals and their occupations
are shown on the right.

We next show by example how multiconfigurational effects can result in important devi-

ations from DFT and CCSD(T) in the RGD1 dataset. The first example is shown in Figure

7.4, which highlights the most common type of deviation from single reference in which the

transition state exhibits the largest degree of multiconfigurational character (M = 0.767).

The transition state orbitals of this ring-opening/ring-closing reaction show significant mul-

ticonfigurational character in both the bond breaking of the 6-membered ring and the C-C

double bond rearranging to form the 3-membered ring. The concerted nature of this ring-

opening reaction makes this a difficult case for single-reference approaches, much like the

Diels-Alder reaction studied prior (Figure 7.1). As a result, B3LYP-D3 and HF-PBE overes-

timate the activation energy of the forward reaction by 12 kcal/mol relative to APC-tPBE.

In this case, the multiconfigurational character is able to be captured by CCSD(T), which

is largely in agreement the automated APC-tPBE results. The chosen orbitals and their

occupations for the transition state are shown alongside the energy diagram.
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Figure 7.5: Reaction MR_673407_0 (ring opening of 3-membered heterocycle). The
APC(12,12)-tPBE (green), HF-PBE (black), B3LYP-D3 (pink) and CCSD(T) (red) energy
diagrams are displayed. The product active orbitals and their occupations are shown on the
right.

Figure 7.5 presents a second case, in which the ring-opening of a 3-membered heterocycle

forms an oxygen diradical with significant multiconfigurational character. As is seen, the

HF determinant is completely incapable of describing this diradical product, predicting it

to lie overestimating the energy of this product relative to the reactant by 60 kcal/mol

– higher in energy than the transition state. Due to this terrible description given by HF,

CCSD(T) also dramatically overestimates the energy of the biradical relative to the transition

state. The unrestricted nature of B3LYP-D3 is able to account for the multiconfigurational

character of the biradical somewhat, predicting a shallow barrier of 8.5 kcal/mol relative to

the transition state. In contrast, APC-tPBE predicts a significantly more stable product,

with a barrier of 31.3 kcal/mol relative to the transition state, and in much better agreement

with the CCSD(T) reference values for the single-reference reactant and transition state. We

believe these APC-tPBE results give a much more accurate description than either DFT or

CCSD(T), and serve to highlight the necessity of multiconfigurational approaches for some

reactions containing significant multiconfigurational character.
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As a study of basis set dependence, we have investigated the behavior of B3LYP, APC-

tPBE, and CCSD(T) in the larger cc-pVTZ basis for the case studies presented in Figures

3-5 (Supporting Information). Overall, we find the APC-tPBE to be remarkably consistent

with respect to basis set size, with nearly all results in the cc-pVDZ basis set being well-

reproduced in the larger cc-pVTZ basis and qualitatively similar correlating orbitals being

chosen in all cases. However, a large discrepancy is found in the cc-pVTZ description of

MR_673407_0, in which the APC(12,12)-tPBE reaction energy changes from 31.3 kcal/mol

in the cc-pVDZ basis to 12.9 kcal/mol in the cc-pVTZ basis. We find that this discrepancy is

due to an abnormally large ASIE in the cc-pVTZ basis, which can be eliminated by executing

a CASCI in only the (4,4) active space of correlating orbitals (visually identical to those of

the cc-pVDZ basis), which largely reproduces the results shown in Figure 7.5. This process

of recomputing reaction energies using CASCI calculations in only the space of correlating

orbitals is promising for further reducing ASIE in APC-tPBE and will be explored in future

work.

7.4 Discussion/Conclusion

We have here presented the first large-scale automated multiconfigurational approach to

the modeling of organic reactivity, which provides a compelling alternative to DFT and

CCSD(T) for interrogating chemical space. These multiconfigurational methods have been

held back from high-throughput application for decades due to the problem of active space

inconsistency error (ASIE), which is here overcome through the increased robustness of the

MC-PDFT method to ASIE and automated active space selection with the approximate pair

coefficient (APC) approach. We have applied this automated APC-PDFT approach to the

calculation of 908 main group reactions from the RGD1 database, which successfully repro-

duces the single-reference limit with ASIE of ±2.2 kcal/mol (similar to deviations between

different density functionals) while providing more accurate multiconfigurational descriptions
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than DFT and CCSD(T) in many of the 68% of reactions containing multiconfigurational

character. Taken at face value, these results make it possible to for the first time envision the

high-throughput use of multiconfigurational methods in this domain, potentially increasing

the accuracy of predictions at significantly lower cost (and possibly higher accuracy) than

CCSD(T).

Of course, there are limitations. Firstly, there is no reason to expect good results if a

sufficient active space is not chosen for all geometries. In the best case, one will reproduce

HF-PBE, which may or may not be adequate.354 In the worst case, describing only some mul-

ticonfigurational states with good active spaces may result in an imbalanced treatment and

actively worse predictions. How can one be sure that this is not the case? The APC(12,12)

active spaces chosen in this work seem to have been sufficient for this application, but further

development will be needed for application to larger organic complexes and transition metal

systems. Ultimately, different approaches need to be tested on a wide variety of systems and

investigated on a case-by-case basis to be trusted.

Secondly, the active space dependence of MC-PDFT may be larger than is comfortable

in some sensitive systems. For example, previous work on H2 dissociation has shown that

the predicted dissociation energy of MC-PDFT can vary by over 10 kcal/mol increasing the

active space size from a minimal (2,2) to (2,28).363 Nevertheless, this work has shown that

cases such as this are more likely to be outliers than the norm; H2 dissociation is a well-known

failing of restricted HF and DFT, and thus the active space likely has an outsized impact on

the performance of MC-PDFT in this case. The generally active-space-independent nature

of APC-PDFT beyond a minimum size is further shown by recent studies calculating vertical

excitation energies.6

Regardless of these remaining challenges, the throughput, automation, and robustness

achieved here represent a milestone in applying multiconfigurational methods to main group

reactivity and suggest further general-use implementations are possible. The next frontier
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involves extending this approach to encompass full reaction networks and larger compounds,

promising a more comprehensive understanding of complex chemical processes.
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CHAPTER 8

CONCLUSION

This thesis has undertaken the study of models for determining the active space for multicon-

figurational calculations, most principally for the complete active space self-consistent field

(CASSCF) method. Despite the somewhat opaque nature of the problem, I hope to have

shown in the preceding chapters that progress in this field is possible, and that applications

of these methods are vital to advancing our understanding of quantum chemistry.

The first three chapters have concerned the development of methods for selecting the

active space, most principally the approximate pair coefficient (APC) method, which was

developed from a minimal (2,2) model of the active space to estimate the multiconfigurational

character of orbitals from Hartree-Fock matrix elements prior to calculation. Chapter 2 dis-

cussed the failures of prior schemes to select the active space, mainly the necessity of further

computations or the inflexibility of the active space size, and concluded with the develop-

ment of the APC method, which proved to be generalizable to a large number of different

types of orbitals. Chapter 3 showed the first large-scale application of the APC method,

in which vertical excitation energies were calculated for the large and diverse QUESTDB

dataset, allowing for the first automated large-scale benchmarking of multiconfigurational

approaches. Finally, chapter 4 proposed a variational extension of the APC appraoch in

which multiple active spaces are considered and chosen between depending on their energy

calculated from multiconfigurational pair-density functional theory (MC-PDFT).

The final three chapters have concerned the applications of automated multiconfigura-

tional methods. Chapter 5 discussed the development of what to the best of my knowledge

is the first machine-learned functional trained on automated multiconfigurational data, de-

veloping a new series of functionals for use in MC-PDFT. Chapter 6 discussed a detailed

computational study on the coupling of different substrates by Cu(II) imines, and employed

automated multiconfigurational calculations to elucidate differences in the two mechanisms.
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Finally, chapter 7 concerned the application of the APC method to a large dataset of al-

gorithmically generated transition states, showing that it can provide more accurate results

than standard approaches in many cases. I believe this last work is likely to be the most

impactful on the field and hope to see more studies in this direction in the near-future.

However, despite the remarkable success of the existing schemes, much remains to be

done. Future work will likely focus on developing better methods for the selection of active

spaces for transition metal systems, and integrating active space selection schemes with

non-single-point applications such as dynamics. I hope that this work can serve as good

inspiration for future efforts.
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