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ABSTRACT

Importance: Convective storms are one of the most costly natural hazards in the current

climate. These storms are expected to change with future climate warming and may bring

more devastating socioeconomic costs. Our understanding of these storms has substantially

improved with advancements in theoretical understanding, model physics representation,

and computational power. However, combining insights from simplified frameworks with

those from realistic representations of these storms at scale remains challenging. Large-scale

metrics for convective storms, like Convective Available Potential Energy (CAPE), could

help bridge the gap between these paths. This thesis aims: (1) to evaluate existing model

and reanalyses representation of CAPE distributions, (2) to understand the primary drivers

of CAPE changes between climate states, and (3) to connect weather and climate scale

variations with a full scaling of CAPE.

Approach: This work uses an array of observations and modeling datasets with varying

levels of authenticity and complexity. We approach the scientific questions by combining

these datasets with simple theoretical frameworks. In Chapter 2, we use a radiosonde ob-

servational dataset (IGRA), against which we evaluate reanalyses (ERA-Interim and ERA5)

and a convection-permitting model (WRF) in the current climate. In Chapter 3, we explain

the full distributional projection of CAPE from the convection-permitting WRF simulations

with CAPE-MSE surplus dependence and synthetic profiles. In Chapter 4, we propose and

evaluate the full scaling of CAPE with ERA5 reanalysis and 11 models from the CMIP6

inter-comparison project across space and different temporal scales.

Key Findings: We find that warming increases the occurrence of high CAPE conditions

substantially in all climate models. While CAPE distributions in coarse-resolution models

are not accurate, CAPE in a high-resolution convection-permitting model largely matches

observations other than in extreme CAPE conditions, whose occurrence is underestimated in

the current climate. The low biases arise from an underprediction of hot and humid condi-
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tions. Future projections of midlatitudes CAPE exhibit distributional shifts, so they cannot

be expressed as a simple mean change; they also cannot be sufficiently predicted by changes

in surface conditions alone. We find that the distributional shift can be captured with three

mean changes at both the surface (Ts, RHs) and mid-troposphere (Tm), highlighting the

importance of a lapse rate adjustment in mid-latitude summertime under climate change.

Furthermore, the minimal three state parameters can be reduced to a single parameter of

“MSE surplus”. CAPE dependence on MSE surplus remains consistent across climate states

in both the nudged convection-permitting model (WRF) and in 11 free-running CMIP6 mod-

els. On shorter timescales than climatological shifts, predicting CAPE variations requires at

least one additional input, the convective layer depth. We, therefore, derived a robust CAPE

scaling from entropy and buoyancy forms that effectively captures CAPE variations across

spatial and temporal scales, including diurnal, seasonal, and climatological variations. This

scaling provides key physical insights into how much and why CAPE changes, with strong

implications for societal impacts. It allows model biases to be diagnosed and may provide a

practical tool for weather analysis.
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CHAPTER 1

INTRODUCTION

Convective extremes are one of the most costly natural hazards, causing substantial socio-

economic damage across sectors [69, 9, 66, 39]. Among the 26 billion-dollar weather events

in the Contiguous United States, 19 are related to thunderstorms; these events take on forms

of heavy rainfall, lightning, hail, high wind, tornadoes, or a combination of them [120]. It is

critical to understand the characteristics of the convective population, especially their inten-

sity and occurrence, in both current and future climates [90, 19]. The most commonly used

large-scale metric for convective extreme is Convective Available Potential Energy (CAPE)

[86]. This thesis aims to improve our understanding of convective populations in current and

future climates with simple frameworks developed for CAPE.

CAPE is the vertically integrated buoyancy for an adiabatically rising parcel [86]. It

is directly linked to the maximum updraft velocity – strong updrafts are key to severe

convective storms. On synoptic time scales, CAPE is used to forecast convective extreme

events. CAPE is routinely reported in all major numerical weather prediction models (e.g.

GFS, NAM, HRRR) at a sub-daily time scale. The covariate of CAPE and vertical wind

shear is a key proxy for the occurrence of severe thunderstorms [14, 11]; the covariate of

CAPE and precipitation is used to predict the occurrence of lightning [111]. The predictive

power of these proxies has been consolidated in multiple papers for types of events including

hail, tornadoes, and waterspouts over Europe [e.g. 58, 102, 127, 126], North America [e.g.

13, 74, 110, 45], Australia [e.g. 3, 15] and other regions [e.g. 153, 113].

An important approach to understanding convective populations is with models. In low-

resolution models like global general circulation models, convection is parametrized due to

the insufficient resolution to resolve fine-scale dynamics. In these schemes, the intensity

and/or triggering of convection (especially deep convection) is usually parametrized based

on CAPE [94, 47]. Some of the most commonly used schemes determine convective mass-flux

1



based on CAPE-relaxing closure (CR closure), for example, Z–M scheme [149, 89], Tiedtke

scheme [131], and Bechtold scheme [6]. These schemes also adopt CAPE in their triggering

functions [145], and multiple works have shown that incorporating modified versions of CAPE

generation rate (dCAPE) as part of the triggering function improves the representation pre-

cipitation in models [e.g. 124, 121, 122]. In high-resolution (e.g., convection-permitting)

models, convection is more explicitly represented. CAPE is a key diagnostic of these mod-

els: how CAPE is accumulated and consumed has important implications for the model

representation of the hydrological cycles [e.g. 104, 112, 51].

CAPE is expected to change with warming, providing important socio-economical im-

plications. Modeling work has used the same covariate between CAPE and vertical wind

shear as a proxy of severe thunderstorm conditions for future projections and found a ro-

bust increase in the occurrence of these conditions [133, 21, 10]. The model uncertainties,

especially in how convective parametrization is treated in these low-resolution models, con-

tribute substantially to the projection uncertainties for the future climate [34, 33]. More

recent work leverages model ensembles (e.g. inter-comparison projects CMIP5 and CMIP6)

to provide better constraints for the projected future convective extremes [134, 35, 80].

Regional convection-permitting model runs suggest that CAPE changes 6–12%/K over the

tropical ocean or under RCE [108, 88, 117, 115], and 11%/K for three stations in the Eastern

U.S. [104].

Previous work has proposed simple models and theories for CAPE, which usually pro-

vides a fundamental understanding of the physical processes and adds value to the existing

model studies. These theoretical works fall under two major categories. One approach as-

sumes that the strong entrainment sets the environmental profile almost completely and thus

predicts CAPE based on entrainment and surface conditions alone using a “zero-buoyancy

model” [117] (later expanded by [154]). The model explains how CAPE responds to surface

temperature and RH in climatological mean profiles [115], and explains high CAPE clima-

2



tology beyond tropical ocean [116]. [109] proposes an analytical expression for CAPE and

finds that its increase follows C–C scaling under Radiative-Convective Equilibrium (RCE).

However, these theories have limitations when variations on smaller spatial and shorter time

scales are of interest. The other approach treats surface and mid-tropospheric conditions

as independent parameters. Early attempts model the convective atmosphere as a heat en-

gine, with entropy added at (or near) the surface through latent heat and removed aloft

through radiative cooling [46, 106]. Though concerns have been raised about the efficiency

term underestimating the role of dissipation as an entropy sink [109, 119], we believe treat-

ing mid-tropospheric conditions (or lapse rate) separately is necessary to capture CAPE

variations at full spatial and temporal scales.

There remains a gap between theories developed under climatological mean conditions

(e.g. RCE) and theories for CAPE variations on finer spatial and temporal scales. [2] first

proposed a simple model for the midlatitudes transient peak of CAPE by appending a cold

and dry air column onto a moist boundary layer. The simple model is further expanded to

a full scaling of CAPE and validates its ability to capture the diurnal and spatial variation

of CAPE over CONUS [82, LC21 hereafter]. However, the scaling in LC21 is framed around

dry static energy. It thus is a less direct path to approximating CAPE than one with moist

static energy (which is conserved for moist adiabatic ascent). The LC21 scaling requires

deriving average properties with the full tropospheric static energy profile. Therefore, its

time complexity is closer to raw CAPE calculation than a simplified scaling with only scalars.

A simple scaling for CAPE variations on all spatial and temporal scales is greatly needed.
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CHAPTER 2

REANALYSES AND A HIGH-RESOLUTION MODEL FAIL TO

CAPTURE THE “HIGH TAIL” OF CAPE DISTRIBUTIONS

Published in Journal of Climate in collaboration with:

James Franke1,2, Zhenqi Luo3 and Elisabeth Moyer1,2

1Department of the Geophysical Sciences, University of Chicago, Chicago, IL, USA 2Center for Robust

Decision-making on Climate and Energy Policy (RDCEP), University of Chicago, Chicago, IL, USA 3College

of Natural Resources, Faculty of Geographical Science, Beijing Normal University, Beijing, China

Convective available potential energy (CAPE) is of strong interest in climate modeling

because of its role in both severe weather and in model construction. Extreme levels of

CAPE (> 2000 J/kg) are associated with high-impact weather events, and CAPE is widely

used in convective parametrizations to help determine the strength and timing of convection.

However, to date, no study has systematically evaluated CAPE biases in models in a clima-

tological context in an assessment large enough to characterize the “high tail” of the CAPE

distribution. This work compares CAPE distributions in over 200,000 summertime proxim-

ity soundings from four sources: the observational radiosonde network (IGRA), 0.125-degree

reanalysis (ERA-Interim and ERA5), and a 4 km convection-permitting regional WRF sim-

ulation driven by ERA-Interim. Both reanalyses and models consistently show too-narrow

distributions of CAPE, with the “high tail” (> 95th percentile) systematically biased low by

up to 10% in surface-based CAPE and 20% at the most unstable layer. This “missing tail”

corresponds to the most impact-relevant conditions. CAPE bias in all datasets is driven

by bias in surface temperature and humidity: reanalyses and model undersample observed

cases of extreme heat and moisture. These results suggest that reducing inaccuracies in land

surface and boundary layer models is critical for accurately reproducing CAPE.

4



2.1 Introduction

Convective Available Potential Energy (CAPE) is an integral quantity of buoyancy in the

convective layer [86], and is considered as a key parameter in convection initiation and de-

velopment. Closely linked to updraft strength and storm intensity, CAPE provides a way to

understand the potential threat of some high-impact weather events such as thunderstorms,

hail, and tornadoes. [14] propose a combination of CAPE and bulk wind shear as a metric for

severe weather in reanalyses, with a 2000 J/kg as a threshold value for extreme events, and

multiple subsequent studies confirm this relationship in models and observations. Studies

relating high CAPE values to extreme precipitation or intense storms in observations [e.g.

58, 81, 36], and many others. In models, [93], for example, show that the number of extreme

precipitation events in general circulation models (GCMs) grows with the covariate between

CAPE and wind shear.

CAPE is also used as a key parameter in convective schemes in GCMs to determine

convective mass flux [149, 146, 5]. In CAPE-relaxing closure (CR closure) schemes, modelers

commonly rely on CAPE to trigger convection and to determine the total vertical mass flux so

that the magnitude of vertical mass flux is directly affected by an inaccurate representation of

CAPE [79, 27]. In some recently developed new schemes intended to reproduce the diurnal

cycle more realistically, convective triggering is directly dependent on CAPE generation

rate (dCAPE) [143, 136]. These schemes have been shown to improve model performance

for precipitation diurnal peak time compared to schemes using classic CR closure [121,

142]. However, it should be noted that these dynamical-based trigger functions introduce

additional sensitivity to CAPE biases, and [122] find that dCAPE trigger functions are highly

sensitive to model resolution.

CAPE is derived from vertical profiles of temperature, pressure, and humidity, which are

measured in situ only from a sparse network of specialized weather stations. Radiosondes

measure atmospheric profiles from weather balloons released twice a day from ∼ 1000 sta-
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tions globally. Because radiosonde measurements are both spatially and temporally sparse,

researchers linking measured CAPE to severe weather events have used “proximity sound-

ings”, estimating the severity of extreme weather events based on soundings taken within

a range of ∼200 km [e.g. 13, 103, 12]. More recent studies of CAPE and severe weather

use not soundings but reanalyses that assimilate in-situ and remote observations in global

models to provide information at higher resolution [14, 81, 36]. Global gridded reanalyses

also allow ready construction of climatologies: for example, [107] use the ERA40 reanalysis

to construct a 40-year climatology of CAPE, showing that the largest values and variability

are found over tropical land (mean ∼2000 J/kg), with a stronger dependence on specific

humidity than temperature.

To diagnose potential changes in CAPE under future higher CO2 conditions, studies must

rely on numerical simulations. With the growth of computational resources, the horizontal

resolution of models used for this purpose has increased. For example, [134] and [35] examine

changes in CAPE and wind shear in GCM projections (∼100 km) and infer a likely future

increase in the number of days with severe weather events. [116] use both GCMs and

super-parametrized GCMs (20 km) to study changes in the 95th percentile of CAPE in the

tropics and subtropics during heavy precipitation and find a 6–14% increase per K regional

temperature increase. (Note that CAPE values during heavy precipitation are low, [e.g.

1]; the 95th percentile in observations in [116] is under 2000 J/kg.) [104] examine changes

in CAPE and convective inhibition (CIN) in a 4 km dynamically downscaled simulation of

North America in a pseudo global warming scenario (driven by reanalysis or by reanalysis

with an applied offset in climate variables). They find that both CAPE and CIN generally

increase under warmer conditions and infer a future intensification of convective strength.

Such convection-permitting models, with their improvement in convective dynamics, have

been assumed to help improve the representation of CAPE.

Given the extent of the scientific use of reanalyses and model simulations, it is valuable
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to ask how well these products reproduce realistic CAPE values. Coarse-resolution general

circulation models reproduce large-scale spatial patterns in CAPE but can produce large

biases in individual locations [23]. While reanalyses and high-resolution forecast models

are generally assumed to be more accurate, assessments of their biases versus radiosonde

observations have been limited. Studies using restricted samples of soundings near severe

weather events have produced inconsistent results. For example, [130] evaluate surface-based

CAPE (SBCAPE) from the Rapid Update Cycle (RUC-2) weather prediction system 0-hour

analysis against radiosondes sampled near supercells (149 soundings from 1999–2001, in the

U.S. Central and Southern Plains) and find a low bias of ∼16% (mean bias of about -400

J/kg in mean conditions of ∼2500 J/kg). [25] compare SBCAPE in the RUC 0-hour analysis

with a different sample of soundings near supercell thunderstorms (582 soundings during the

VORTEX2 campaign in 2009–2010, also in the Central and Southern Plains) and find a small

high bias (∼150 J/kg) with a large spread. [4] compare mixed-layer CAPE (MLCAPE) in

the reanalysis product ERA-Interim (ERAI) and in the Australian MesoLAPS (Mesoscale

Limited Area Prediction System) weather model with radiosonde soundings near thunder-

storm events (3697 and 4988 soundings, respectively, from 2003–2010, from 16 stations in

Australia) and find slight high biases of 6 and 74 J/kg in conditions of 234 and 255 J/kg

mean non-zero MLCAPE.

To date, very few validation studies have systematically evaluated CAPE bias and errors

in a climatological context with a large enough scale to allow evaluation of the “high tail”

of the CAPE distribution. For convection-permitting models, it is widely assumed that

improved resolution also improves the representation of CAPE, but this assumption has not

been explicitly tested. For reanalyses, only a few studies have compared output to large

collections of soundings, and none assess distributional changes. [55] compare NARR (the

North American Regional Reanalysis) to all radiosondes over 11 years from 21 stations in

the Eastern U.S. (>100,000 soundings with nonzero SBCAPE from 2000–2011), but do not
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assess either mean bias or distributional differences. (They do find considerable spread in

SBCAPE errors, with RMSE ∼1400 J/kg.) [127] and [128] use even larger sample sizes

(>1 million profiles from 1979–2016, and >5 million profiles from 1980–2018, respectively,

predominantly over Europe and spanning all seasons) and compare CAPE under various

definitions between soundings and ERAI and ERA5 reanalyses. They examine mean biases

(in soundings with non-zero CAPE) and find them large relative to median CAPE, but

median values in both studies are small (∼68 and 100 J/kg for MLCAPE).

Even fewer studies have attempted to attribute bias in CAPE to specific model issues.

While one possible cause is error in free tropospheric profiles, multiple authors have noted

the potential role of incorrect temperature and humidity at the surface or boundary layer.

Several studies have explicitly tested this attribution by replacing surface values in models

and data products with observed ones and noting the improved match to radiosonde SB-

CAPE. [25] replaces surface values in RUC with those from the operational surface objective

analysis system (SFCOA) and finds a reduction in bias in 1-hour forecasts. [54] compare 10

years of SBCAPE from a single station, the Southern Great Plains Atmospheric Radiation

Measurement (ARM) site, and show that replacing surface values largely corrects CAPE

values in ERAI reanalysis and values derived from the AIRS satellite. Similarly, in a very

small sample (2 individual case studies), [7] find that replacing surface values of humidity

and temperature corrects a low bias in SBCAPE in a satellite-derived product.

This work seeks to address both needs for large-scale systematic assessment of CAPE

distributions in reanalyses and high-resolution simulations against those in radiosondes and

for attribution of the source of any bias. To focus on conditions that promote strong con-

vection, we examine summertime data over the contiguous United States, using a total of

nearly 200,000 soundings over 12 years of observations.
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2.2 Data Description

This study compares four datasets that allow calculation of CAPE over the contiguous United

States from January 2001 to December 2012: radiosonde observations from the Integrated

Global Radiosonde Archive (IGRA) version 2 [41, 42]; the reanalysis products ERA-Interim

(ERAI) and ERA5 [32, 65]; and simulation output from the Weather Research and Forecast-

ing model (WRF) at the convection-permitting resolution, forced by ERAI [105]. Because

our interest is in the “high tail” of the CAPE distribution, we focus on the summer months

when convection is most active and CAPE is largest. We define summer as May to August

(MJJA), following the convention of many studies [e.g. 125, 104], though some work on ex-

treme weather uses an earlier definition of April to July to include the late spring peak of

convection [e.g. 134]. With this definition, IGRA provides a total of 199,787 summertime

radiosonde profiles from U.S. stations with continuous records during 2001–2012. For con-

sistency, analyses shown here involve data matched to radiosonde stations and synchronized

in time, though when evaluating diurnal cycles we also show reanalysis and model output at

additional times of the day.

2.2.1 Radiosonde observations

IGRA is an archive of quality-controlled atmospheric sounding profiles from weather balloons

around the world collected by a standard protocol. The archive is operated by the U.S.

National Oceanic and Atmospheric Administration (NOAA) and profiles in the U.S. are

collected by NOAA’s National Weather Service. In this work we use profiles from all stations

in the contiguous United States that report continuous operation through the years 2001 to

2012, a total of 80 out of the 248 stations historically used. All stations have routine balloon

launches at 00 and 12 UTC each day, though some soundings are missing (17.4% of all

routine launches during this period). Many stations also include sporadic launches at 06

and 18 UTC; we include these profiles in the dataset considered here, though we generally
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disaggregate analyses by the time of day. Of the complete dataset of 199,787 soundings,

83,668 are from 00 UTC, 106,455 from 12 UTC, and 9,664 from additional times. All four

hours are used in our analysis unless otherwise stated. Of these profiles, 1496 (0.75%) are

excluded by our quality control criteria. (See Methods below.)

Variables acquired from IGRA include pressure, temperature, altitude, and vapor pres-

sure, all of which are standard reported values. We convert vapor pressure to specific hu-

midity and dew point temperature for consistency across all datasets. Vertical resolution

varies by station, but most stations report around 80 levels from the surface to 10 hPa pres-

sure. The data are available from https://www.ncdc.noaa.gov/data-access/weather-

balloon/integrated-global-radiosonde-archive.

2.2.2 Reanalysis products

ERAI and ERA5 are both reanalysis products maintained by the European Centre for

Medium-Range Weather Forecasts (ECMWF). Both products assimilate observations into

global models and are available from 1979 to the present. ERAI has a native horizontal

resolution of T255 (≈ 80km); it has been superseded by ERA5, which has significant im-

provements in spatial and temporal resolution with a native horizontal resolution of TL639

(0.28125◦, ≈ 31km) [17]. Because our analysis involves matching individual radiosonde sta-

tions, we acquire both reanalyses at a finer spatial resolution (0.125◦) produced by ECMWF

with bilinear interpolation for continuous fields. We use output at native model vertical

levels, preserving the highest possible vertical resolution for our CAPE calculation: 60 levels

for ERAI (L60), and 137 for ERA5 (L137). We download profiles of temperature and specific

humidity, and surface pressure; the pressure profile is then derived using surface pressure and

coefficients a and b that define the hybrid-sigma coordinates of L60 and L137. 2m temper-

ature and dew point temperature along with surface pressure are appended to the bottom

level of profiles. Although ERA5 provides hourly output, we use data at 00, 06, 12, and 18
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UTC to match with ERAI. Both products are available at https://www.ecmwf.int/en/.

Data assimilation is a key component of reanalysis products. Both ERAI and ERA5 as-

similate a homogenized version of IGRA radiosonde observations, the Radiosonde Observa-

tion Correction using Reanalyses (RAOBCORE) [61, 62]. Reanalyses and IGRA observations

are therefore not fully independent. ERAI uses a bias correction for radiosonde temperature

based on RAOBCORE T 1.3, which is further adjusted and implemented to the Continuous

Observation Processing Environment (COPE) framework in ERA5 [43]. The assimilation

process of ERAI uses the following exclusion criteria for radiosonde data: 1) any radiosonde

observation below the model surface, and radiosonde-observed specific humidity in either 2)

extreme cold conditions (T < 193 K for RS–90 sondes, T < 213 K for RS–80 sondes, T <

233 K otherwise), or 3) high altitude (p < 100 hPa for RS–80 and RS–90 sondes, p < 300

hPa for all other sonde types) [32].

2.2.3 High-resolution model simulation

The high-resolution model output we use is a 4-km resolution dynamically downscaled “ret-

rospective” simulation over North America first described by [83]. The simulation is created

as the control run of a pseudo-global-warming experiment and involves forcing the WRF

(Weather Research and Forecasting) 3.4.1 model with ERAI reanalysis. The WRF simula-

tion is run with 4 km grid spacing and 50 vertical levels up to 50 hPa, with parametrization

schemes including: Thompson aerosol-aware microphysics [129], the Yonsei University (YSU)

planetary boundary layer [68], the rapid radiative transfer model (RRTMG) [70], and the

improved Noah-MP land-surface model [91].

The model uses ERAI as initial and boundary conditions, with large-scale spectral nudg-

ing applied to geopotential, temperature, and horizontal wind. Nudging is applied through-

out the model domain, at all altitudes above the planetary boundary layer, and is intended

to remove known large-scale issues (such as summertime high-temperature bias over the
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central U.S. [87]) while still allowing smaller-scale processes to modify local profiles. Values

are nudged at a strength corresponding to an ‘e-folding’ time of 6 hours, using a wavenum-

ber truncation of 3 and 2 in the zonal and meridional directions, respectively. Because the

experiment is intended to reproduce observed snow cover over North America, some modifi-

cations are made to the land surface model, including representing the heat transport from

rainfall caused by the temperature difference between raindrops and land surface, and modi-

fying the snow cover/melt curve to produce more realistic surface snow coverage and reduce

wintertime low bias in temperature.

The WRF model output is acquired from the NCAR Research Data Archive ds612.0

[105]. We take the pressure, temperature, mixing ratio, height from the CTRL 3D subset,

and surface topography, surface pressure, 2m temperature, and mixing ratio from the CTRL

2D subset.

2.3 Methods

2.3.1 CAPE calculation

All CAPE values shown in this work are calculated with SHARPpy (the Sounding and Hodo-

graph Analysis and Research Program in Python) version 1.4.0a4, a widely used collection

of sounding and hodograph analysis routines designed to provide free and consistent analysis

tools for the atmospheric sciences community [https://github.com/sharppy/SHARPpy, 8].

SHARPpy is an extension of SHARP, which was first released in 1991 [63]. CAPE in the

SHARPpy package is calculated following the definition of [86] in which temperature is au-

tomatically corrected to virtual temperature [40]. The required variables are vertical profiles

of pressure, temperature, height, and dew point temperature. Wind speed and direction are

optional and we do not include them. The package can produce the CAPE of parcels either

at surface level (SBCAPE), at the “most unstable” level (MUCAPE), or using the averaged
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properties of “mixed layer” (MLCAPE). SHARPpy is the most commonly used package in

the CAPE literature [e.g. 54, 74], which provides a comprehensive list of convective indices

as output.

We evaluate CAPE for all summertime profiles corresponding to radiosonde soundings

other than those with the following exclusion criteria: 1) no surface-level measurements (7

soundings or 0.004% of the total); 2) fewer than 20 vertical levels of observations (0.74%

of soundings), or 3) excessive discrepancy of relative humidity between the surface and

one level above, i.e. RHsfc − RHlev1 > 65% (16 soundings or 0.008%). An excessive RH

gradient implies unphysical mixing; the exact threshold is somewhat arbitrary but is chosen

to exclude outliers where CAPE > 20,000 J/kg. In some cases, radiosonde profiles involve

missing values in the height variable, even though temperature, pressure, and humidity

are reported. In these cases, we interpolate height based on pressure using the SHARPpy

“INTERP” function.

2.3.2 Testing sensitivity to vertical interpolation

In the analysis here we interpolate only where data are missing in radiosonde profiles, using

the SHARPpy “INTERP” function. The number of vertical levels used is therefore inconsis-

tent across datasets. Other authors of CAPE comparison studies have chosen to interpolate

to produce consistent vertical sampling, for example, [54] who use 202 fixed levels (2 and 30

meters, followed by 75 m spacing from 75 m to 15 km). We test the robustness of derived

CAPE to this interpolation by considering mean errors in profiles binned by number of lev-

els, using observations from the year 2012. We find that mean absolute errors introduced

by interpolation are over 25 J/kg for profiles with <10 levels, but fall to ∼5 J/kg once the

number of levels exceeds 60. However, since profiles with more missing levels are more likely

to have low CAPE, the mean fractional error drops even more steeply (Figure S1): 14% for

<10 levels; 7% for 10–20 levels; and 0.8% for >20 levels, justifying our choice of 20 as a
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cutoff. (Note that the bias introduced by interpolation across these profiles is smaller, only

-0.3%. See [25] for similar conclusions.)

2.3.3 CAPE definitions

CAPE is the potential buoyancy of a parcel lifted to its level of free convection, but the

parcel considered may be located at the surface (SBCAPE), at the most unstable vertical

level (MUCAPE), or may be a hypothetical parcel initiated using the mean state of the mixed

layer (MLCAPE). All are standard outputs of SHARPpy, with the lowest 100 hPa used to

calculate MLCAPE. (See [16] for discussion of alternate choices). The appropriate CAPE

definition differs according to the scientific question addressed. Some authors argue that

MLCAPE is most appropriate for characterizing the average properties of the parcel being

initiated by convection, and MUCAPE may best capture convective extremes [28, 16, 14], but

we focus on SBCAPE in this work for several reasons. First, most prior CAPE comparison

studies have used either only SBCABE [e.g. 55, 54], or all three definitions [25, 127]. SBCAPE

is the most widely used in the climate community [107, 116], and several common CR-closure

convective parametrizations use SBCAPE [e.g. 149, 143, 136]. Finally, using SBCAPE allows

the most straightforward bias attribution, since it allows us to test the effect of errors in

surface properties alone.

To understand the implications of the different definitions, we compare surface-based

CAPE with that of the most unstable layer, MUCAPE, the maximum possible value for

each profile (Figure 2.1). Because our focus is on incidences of very high CAPE, we are

especially interested in whether different CAPE definitions lead to different understandings

of the “high tail” (defined as incidents above 90th percentile CAPE). In all datasets, the

higher the CAPE value, the more similar SBCAPE and MUCAPE become (Figure 2.1a). In

conditions conducive to extreme weather (> 4000 J/kg), SBCAPE and MUCAPE are essen-

tially identical in reanalyses and the WRF model output. Radiosondes show a slightly larger
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Figure 2.1: Comparison of SBCAPE and MUCAPE for all datasets, using all soundings
considered. Data is binned by SBCAPE value, and we exclude values under 200 J/kg. a)
Mean ratio of MUCAPE over SBCAPE, and b) mean of ratio of the most unstable pressure
level over surface pressure. Note that y axes are log scale. For both CAPE and pressure
level, the ratio approaches 1.0 as CAPE increases: in higher CAPE conditions, the most
unstable level is closer to the surface.

distinction between SBCAPE and MUCAPE in all conditions. Mathematically, this means

that model/radiosonde bias in MUCAPE must be more negative than those in SBCAPE.

The pressure difference of the most unstable layer from the surface follows a similar pattern

(Figure 2.1b). The higher the CAPE value, the more the most unstable layer approaches

the surface, though observations again show more distinction. In conditions with SBCAPE

∼1000 J/kg, the average most unstable parcel in radiosonde soundings lies ∼30 hPa above

the surface, but only ∼10 hPa in reanalyses and the WRF model. Above > 4000 J/kg, the

most unstable layer in reanalyses and model lies at the surface.

In the last decade, some authors have argued that CAPE in any definition is not the best

metric for diagnosing conditions conducive to severe weather. [59] propose using instead the

maximum updraft velocity calculated with parcel theory, WMAX, which arguably better

represents the intensity of updrafts. Several recent papers have followed that convention

15



[10, 102, 127]. Results here can translated to differences in WMAX distributions by using

the approximation WMAX ∼
√

2CAPE, since the calculation of WMAX assumes no initial

parcel vertical velocity.

2.4 Results – biases in CAPE distributions

2.4.1 CAPE distributions across datasets

Comparison of the distribution of CAPE in the datasets considered shows immediately that

reanalyses and the WRF model output underpredict incidences of very high CAPE. Table 2.1

shows the breakdown of SBCAPE above or below threshold values, and Table 2.2 the same for

MUCAPE. In all datasets, CAPE distributions are zero-peaked, i.e. a large fraction (∼40%)

of cases involve zero CAPE, even in the highly convective summertime. The frequency of zero

CAPE is broadly similar across datasets, but in reanalyses and the WRF model, incidences

of extreme CAPE drop off sharply, with values above 4000 J/kg substantially underpredicted

in both definitions. For SBCAPE, reanalyses and the WRF model produce 40–50% fewer

incidences of values > 4000 J/kg. For MUCAPE, the underprediction is even more severe,

with 65–75% of all incidences missed. (Biases in MLCAPE are intermediate between those

in SBCAPE and MUCAPE.)

These biases in the “high tail” are related to a too-narrow distribution of CAPE in the

WRF model and reanalyses. That is, reanalyses and the WRF model produce too few

incidences of both extremely low and extremely high CAPE and too many incidences of

intermediate CAPE. Figures 2.2 and 2.3 show distributions of non-zero CAPE values for

SBCAPE and MUCAPE, respectively. Because valid zero values make up a large fraction

of soundings, the choice whether to include them can potentially affect analysis, but in the

datasets here, zero incidences are similar (Tables 2.1–2.2). We use two methods to show

distributions: histograms (probability density functions, or PDFs) and quantile ratio plots.
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Figure 2.2: Probability density functions (top row) and quantile ratio plots (bottom row)
of CAPE from reanalysis (ERAI and ERA5), high-resolution model output (WRF), and
radiosonde observations (IGRA) for MJJA 2001-2012, with times and locations matched to
IGRA observations. Points with zero CAPE are excluded (36-40% of datasets, see Table
2.1). Left column shows full distribution and right column the “high tail” (90th percentile
and above). For IGRA, the 90th percentile is ∼2800 J/kg, the 95th ∼3200 J/kg, the 97.5th
∼4000 J/kg. In PDFs (top), plots are cut off at 6000 J/kg on the x-axis, omitting less than
0.1% of all points. In quantile ratio plots (bottom), a slope downward to the right indicates
a narrower distribution. The WRF model and reanalyses consistently underpredict CAPE
values in this “high tail”.
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Figure 2.3: As in Figure 2.2, but for MUCAPE instead of SBCAPE. Points with zero CAPE
are excluded from the analysis (23-35% of the datasets, see Table 2.2). We match the time
and locations of model output to IGRA observations. PDF x-axes are cut off at 6000 J/kg,
as less than 0.4% of all points lie above the limit. For IGRA, the 90th percentile is about
3370 J/kg, the 95th percentile ∼4010 J/kg, and the 97.5th percentile ∼4550 J/kg.

PDFs provide a basic sense of the CAPE distribution, and quantile ratio plots highlight dis-

tributional differences. Quantile ratio plots are constructed by taking the ratio of individual

quantiles of two distributions being compared (e.g. CAPE in reanalysis and radiosondes);

a value above 1 means that given quantile is overestimated. A simple multiplicative trans-

formation produces a horizontal line whose value is the ratio of means, and a too-narrow
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distribution produces a slope downward to the right.

Table 2.1: Fraction of observations of SBCAPE in each dataset that exceed threshold values,
or have zero value. Data used is the full 2001-2012 MJJA dataset, inclusive of zeroes, with
time/location matched to radiosonde observations. Parentheses show the ratio of incidences
observed for each model or reanalysis relative to IGRA radiosondes; a number smaller than
1 means underestimation. Note the large deficits in the most extreme SBCAPE category
(>4000 J/kg), with the number of incidences underestimated by ∼40–50%.

IGRA ERAI ERA5 WRF
Zeroes 36.1% 38.1% 35.0% 39.1%

> 2000 J/kg 13.0% 12.8% (0.98) 13.8% (1.06) 13.2% (1.02)
> 3000 J/kg 5.4% 4.0% (0.74) 4.9% (0.91) 4.6% (0.85)
> 4000 J/kg 1.6% 0.8% (0.50) 1.0% (0.63) 1.0% (0.63)

Table 2.2: As in Table 2.1 but here for MUCAPE. Deficits in the “high tail” are larger for
MUCAPE than SBCAPE, as expected based on Figure 2.1. Parentheses show the ratio of
incidences observed for each model or reanalysis relative to IGRA radiosondes. The number
of incidences of MUCAPE above the conventional severe-weather threshold (2000 J/kg) is
underestimated by ∼25–35% and that of extreme MUCAPE (> 4000 J/kg) by ∼65–75%.

IGRA ERAI ERA5 WRF
Zeroes 22.7% 30.3% 28.2% 32.8%

> 2000 J/kg 22.3% 16.3% (0.73) 17.5% (0.78) 14.8% (0.66)
> 3000 J/kg 10.9% 5.2% (0.48) 6.5% (0.60) 5.0% (0.46)
> 4000 J/kg 3.9% 1.0% (0.26) 1.3% (0.33) 1.0% (0.26)

Reanalyses and the WRF model output considered here show the downward and right-

ward slope characteristic of too-narrow distributions: values are too large in low quantiles

and too small in high quantiles. SBCAPE in the 20th–60th percentiles (50–1000J/kg) is

overestimated by 84–94%, but above the 95th percentile is underestimated by 6–10%. These

distributional errors occur even though mean SBCAPE values are similar in all datasets:

within +1 to +6% with zeroes included, i.e. slightly larger in reanalyses and the WRF

model than in radiosondes). This distinction highlights the need for distributional analy-

sis, since even severe distributional biases may not be reflected in mean values (shown in
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Appendix Table S1).

The too-narrow distributions in reanalyses and the WRF model are also seen when al-

ternate definitions of CAPE are used. (Figures 2.3 and S2 show MUCAPE and MLCAPE,

respectively). However, MUCAPE and MLCAPE also show significant low mean bias, with

mean values -20 to -28% for MUCAPE and -16 to -22% for MLCAPE. These low biases lead

to even stronger deficits in the “high tail”, with quantiles above the 95th underestimated by

∼18–20% in MUCAPE and ∼15–17% in MLCAPE.

2.4.2 Spatiotemporal structure

Biases might be expected to show spatiotemporal structure, since CAPE is strongly linked

to spatially complex fields of temperature and humidity. This relationship is illustrated in

Figure 2.4, which shows a summertime snapshot of surface values from the WRF simulation

(SBCAPE, temperature, and specific humidity), coincident with the radiosonde launch time

at which CAPE values are typically highest (00 UTC, late afternoon or early evening in

the contiguous U.S.). The time period shown is affected by a frontal system that brings

high humidity to the Southeast and high temperatures to the Central U.S. (See Appendix

Figure S3 for a weather map.) CAPE reaches extreme values only where both temperature

and specific humidity are high, resulting in strong spatial gradients and a narrow band of

extreme CAPE extending from southeastern Texas to northern Mississippi.

Two processes appear to drive the spatially correlated CAPE errors in Figure 2.4: large-

scale patterns of model bias, and mismatches in the location of fronts or other weather

features associated with strong gradients. The former is clearly evident in Figure 2.4. The

WRF model is too warm and too dry in the Central U.S., coincident with and likely causing a

large region of underestimated model CAPE. The warm-and-dry bias in this WRF simulation

is extensively documented [83, 87]. Error in front location, on the other hand, likely produces

overestimation of CAPE in stations in Tennessee and Alabama in Figure 2.4. Large-scale and
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Figure 2.4: Snapshot of WRF simulation output at 00 UTC, July 21st, 2012. Panel colors
show SBCAPE, 2 m temperature, and specific humidity. Ocean values are masked out.
Circles show IGRA stations, with circle area showing the magnitude of bias in each variable
and color indicating its sign (red = high, green = low). Note the low CAPE bias in the
Central U.S. associated with too hot and too dry model conditions. Sounding marked “X”
may also be affected by errors in the location of the warm front.

weather-related errors have different consequences for comparisons of CAPE in models and

observations. Large-scale biases should be persistent, and will affect the overall distribution
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of CAPE. Fine-scale weather-related errors, on the other hand, vary rapidly on timescales

of hours. While they can produce severe mismatch in individual soundings, and therefore

introduce scatter in a model-observation comparison, they should have minimal effect on

CAPE distributions.

2.4.3 Calibration with ground observations

Scatter in SBCAPE errors is in fact large in the WRF model and reanalysis products con-

sidered here, with correlation coefficients against radiosonde values of only R = 0.68–0.83.

Figure 2.5 shows the comparison of WRF and radiosondes (panel a, R = 0.68); see Appendix

Figures S4–S5 for ERAI and ERA5. Similar behavior is found in other studies, [e.g. 55] find

correlation coefficients of 0.36–0.71; [127] find 0.71; and [54] show that reanalysis and satellite

pseudo-soundings cannot reproduce radiosonde observed SBCAPE at individual timesteps.

Following [54], we test to see if these inaccuracies can be corrected by simply replacing

surface thermodynamics fields with those from radiosondes (Figure 2.5). That is, we test

whether errors in the WRF model and reanalysis SBCAPE are driven primarily by surface

conditions rather than by the structure of atmospheric profiles. Both factors can be im-

portant because CAPE is a function of the integrated buoyancy across the convective layer,

which is determined by both parcel and environmental temperature and moisture. In Figure

2.5, we successively replace surface values in WRF output, first temperature and pressure

(panel b), then specific humidity and pressure (panel c), then all surface fields (panel d).

Surface values do seem to govern SBCAPE bias almost entirely. For WRF, correcting the

surface specific humidity raises the correlation coefficient from 0.68 to 0.91, and replacing all

surface fields raises it to 0.99, removing scatter almost entirely. While correcting temperature

does not raise the correlation coefficient in WRF, and instead lowers it to 0.65, for other

datasets the temperature correction also contributes positively; see Appendix Table S2. We

also consider an alternate measure of correspondence, the percentage of points that fall
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Figure 2.5: Comparison of SBCAPE in WRF and radiosonde observations, for all points
during summer (MJJA) 2001-2012 when observations are available, inclusive of zeroes. Color
bar shows log density (midpoint color is 1% of all observations), and both axes are also log
scale. a) Raw data, showing wide scatter. Other panels: Recalculated WRF CAPE using b)
observed surface temperature, c) observed surface humidity, and d) all surface values from
observations. All recalculated CAPE values also involve a pressure correction whose effects
are small. For analogous figures for ERAI and ERA5, see Appendix Figures S4–S5.

within ±800 J/kg of the one-to-one line (the width of two cells in Figure 2.5). For raw WRF

data, the percentage is 78.6% (RMSE = 846 J/kg); correcting surface temperature raises

the percentage slightly to 79.3% (RMSE = 875 J/kg); correcting surface humidity raises it

to 90.2% (RMSE = 535 J/kg), and full calibration to 99.5% (RMSE = 162 J/kg). Results

for ERAI and ERA5 are similar. Adjustment of surface values also largely corrects the

distributional problems at high CAPE, so that for quantiles above 0.9, corrected SBCAPE

23



values in reanalyses and the WRF model match those from radiosondes to within -0.2% to

+2.0%. Correcting upper-tropospheric profiles has a minimal effect on CAPE values.

2.5 Results – CAPE in temperature & humidity space

The fact that reanalyses and modeled SBCAPE can be brought into agreement with ra-

diosondes by simply replacing surface values implies that thermodynamic fields at upper

levels are not important factors in SBCAPE biases. It may then be reasonable to consider

SBCAPE as a function of surface thermodynamic fields alone. We therefore examine SB-

CAPE in the 2D parameter space of temperature (T) and specific humidity (H) to ask: 1) Is

the density distribution of SBCAPE in T–H parameter space similar in reanalyses, model,

and radiosondes? 2) What surface conditions are related to the highest SBCAPE days? and

3) What factors drive model and reanalysis biases in SBCAPE?

2.5.1 Dependence on surface temperature and humidity

CAPE distributions in T–H parameter space are in fact highly robust across all datasets.

Figure 2.6 shows the heatmap of mean CAPE for radiosonde measurements, with data binned

in steps of 3 K and 1.35 g/kg. CAPE values show a smooth gradient from lowest values

at bottom left (warm and dry conditions) to highest at top right (hot and humid). This

dependence on surface T and H is similar for all datasets (Appendix Figure S7). Contour

lines at 2000 and 4000 J/kg for radiosonde observations are therefore nearly identical to those

for other datasets (overlain). This similarity means that surface T and H robustly determine

SBCAPE in all datasets. Of course, each T–H bin in Figure 2.6 involves an underlying

CAPE distribution, but distributions are nearly identical for all datasets; see Figure 2.7

for two examples. These results support the previous finding that bias in SBCAPE can be

explained by bias in surface measurements alone. (See Appendix Figure S8 for distributions

of reanalyses and model errors in T, RH and H for the profiles shown in Figure 2.7, and
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Figure 2.6: Mean radiosonde observed SBCAPE in surface temperature and specific humidity
parameter space, for the entire dataset: summer (MJJA) 2001–2012 over the contiguous U.S.,
inclusive of all launch times and of zero values. Only bins with at least 10 samples are colored.
Colors denote mean CAPE values averaged in bins of 3 K and 1.35 g/kg. Solid and dashed
lines mark contours of 100% and 50% relative humidity (RH) at p = 1013 hPa. Soundings
with lower surface p will be displaced up and left from these RH contours. Symbols ’+’ and
’x’ mark two cases (’warm’ and ’hot’) used in Figure 2.7. Contours show approximate limits
for 2000 and 4000 J/kg SBCAPE for all datasets with no surface corrections applied: IGRA
(black), ERAI (blue), ERA5 (green), and WRF (red). Similarity of contours means that
all datasets show similar bivariate distributions. See Appendix Figure S6 for the absolute
occurrence in each bin in IGRA and Figure S7 for analogous figures for all datasets.

Table S3 for summary statistics.)

Only a restricted set of conditions tend to produce the “high tail” of CAPE distributions

associated with extreme, high-impact weather. We show both 2000 J/kg and 4000 J/kg

contours to bracket prior definitions of extreme weather thresholds. For example, [14, 134],
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and [35] all use 2000 J/kg in MLCAPE, which corresponds to SBCAPE ∼3000 J/kg in our

dataset. The conditions producing mean SBCAPE above 2000 J/kg involve temperatures

above 297 K for 100% relative humidity (RH), or above 304 K for 50% RH. For mean

SBCAPE above 4000 J/kg, the required temperatures are 2–3 K warmer, i.e. 299 K at 100%

RH or 307 K at 50% RH. Significantly higher SBCAPE values are possible: in the most

extreme conditions regularly sampled by radiosondes, 308 K at 65% RH, the average observed

SBCAPE is over 7400 J/kg. Reanalyses and the WRF model rarely produce SBCAPE

values this high (8 out of a million incidences, while observed incidences are nearly 10x more

frequent at 60 out of a million), not because they differ in fundamental atmospheric physics

but because they rarely sample the appropriate surface conditions.

2.5.2 Identifying sources of CAPE bias

Because SBCABE is strongly determined by surface temperature and humidity, biases in

SBCAPE in reanalyses and the WRF model appear driven by biases in these surface ther-

modynamic values. We can therefore use the T–H diagram to identify the factors that lead to

underprediction of the “high tail” of CAPE. Figures 2.8 and 2.9 use the same T–H diagram

as in Figure 2.6, only now we show not the heatmap of CAPE but the density of observa-

tions of each T–H grid cell and the difference in that number between datasets. Because

the diurnal cycle strongly affects surface values, we show separate figures for 00 UTC (U.S.

late afternoon/evening) and 12 UTC (U.S. early morning), omitting the limited number of

samples at other times. Reanalyses and the WRF model all underpredict the extreme T–H

values associated with extreme CAPE.

Of the two times routinely sampled by radiosondes, the cooler 12 UTC launches – early

morning in the U.S. – do not generally involve conditions associated with high CAPE (Fig-

ure 2.8a). Conditions at this time are almost never warm enough to produce SBCAPE

>2000 J/kg, even though relative humidities are high, with a tight distribution centered
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Figure 2.7: Comparison of SBCAPE in all datasets for specified T–H grid cell: the ‘Warm’
example is centered at 298.5 K and 12.825 g/kg (63.4% RH), and has mean SBCAPE 791
J/kg; the ‘Hot’ example is at 307.5 K and 16.875 g/kg (48.7% RH) with mean SBCAPE
3308 J/kg. Each bin is 3 K in width, and 1.35 g/kg in height. Top row shows uncorrected
SBCAPE from reanalyses and the WRF model, and bottom corrected with IGRA surface
values. Note that since the correction involves adjusting surface T and H, the profiles sampled
in top and bottom rows are different. The ‘warm’ bin has 2438 profiles in the uncorrected
data and 2063 in the corrected, while ‘hot’ has 378 and 508, respectively. Tickmarks at panel
top show the mean of each distribution. Distributions are very similar; correcting surface
values only slightly adjusts means (from a maximum bias of -5% in uncorrected data to -2%
after correction).
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Figure 2.8: a) Density of observed surface conditions in temperature – specific humidity
parameter space at 12 UTC (early morning in the contiguous U.S.), again for 2001-2012
MJJA radiosonde observations. Contours are repeated from Figure 2.6 to mark conditions
associated with 2000 and 4000 J/kg SBCAPE. Darkest blue color shown is 5.6%–6.4% of
distribution; lightest is 0–0.8%. Grids with no more than ten samples are defined as out-
liers and removed (only 0.03% of all model or reanalysis samples). Nighttime and early
morning conditions are tightly distributed in relative humidity (RH ∼80%) and tend to be
relatively cool (T < 300 K), with almost no conditions sampled that would tend to produce
SBCAPE >2000 J/kg. b–d) – heatmaps of density differences between model/reanalysis
and observations for ERA5, WRF, and ERAI. Color scale shows fractional difference after
normalizing each bin by IGRA raw density. Orange = underpredicting and purple = over-
predicting. Reanalyses and the WRF model all underestimate relative humidities (orange
near the RH=100% contour) and WRF shows a strong warm dry bias (dark purple in lower
right).

28



Figure 2.9: As in Figure 2.8, but for 00 UTC (late afternoon / early evening in the contiguous
U.S.) a) Density of observed surface conditions in T–H diagram. At this time period the
density distribution peaks in conditions associated with 2000–4000 J/kg CAPE. Darkest
blue color shown is 2.1%–2.4% of distribution; lightest is 0–0.3%. b–d) Density differences
between reanalyses / model and radiosondes. ERA5 and ERAI underpredict both the highest
relative humidities and the highest temperatures (orange near the RH=100% contour and
on the right side), while WRF shows a warm dry bias (purple in lower right). Reanalyses
and model all severely underpredict the conditions associated with extreme CAPE (orange
in upper right).
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around ∼80%. Both reanalyses and WRF are biased dry, underpredicting incidences close

to saturation, and WRF is also biased warm (Figure 2.8b–d).

Most of the observed extreme CAPE values occur during the warmer late-afternoon 00

UTC launches (Figure 2.9a). Relative humidities are lower then because specific humidity

does not change much during daytime warming: the modal (most probable) 00 UTC surface

conditions are between 303–309 K and ∼50% RH, with mean SBCAPE of ∼3000 J/kg,

similar to the ‘hot’ example of Figure 2.7. Because reanalyses and WRF are dry biased,

they underpredict high RH conditions in general and especially the extreme hot and humid

conditions associated with the largest CAPE. On the other hand, reanalyses and WRF

overpredict hot and dry conditions, WRF especially so (Figure 2.9b–d). The combined warm

and dry bias explains why correcting WRF surface temperatures alone does not improve the

match to radiosonde CAPE measurements.

2.6 Results – diurnal cycles of CAPE and biases

As shown in Section 5, the largest CAPE biases in the WRF model and reanalyses occur

when conditions are most favorable to high CAPE, i.e. in daytime. This diurnal difference

could result from inherent nonlinearity, but could also reflect a bias in some aspect of the

diurnal cycle of surface thermodynamic fields. We therefore examine the diurnal cycle of

surface temperature and specific humidity in reanalyses, model, and radiosondes. As an

illustration, we show in Figure 2.10 a 5-day episode exhibiting large CAPE error, which

is broadly representative of problematic reanalyses and model pseudo-soundings, and in

Figure 2.11 we compare this episode to summertime climatological mean diurnal cycles for

all, low-CAPE, and high-CAPE conditions (10th/90th SBCAPE percentiles). The sequence

in Figure 2.10 runs from July 24–28, 2012 at a station in Wilmington, North Carolina.

On 3 occasions radiosonde profiles show extreme CAPE of nearly 5000 J/kg, but model

and reanalyses grossly underpredict these excursions, producing CAPE values ∼2500 J/kg
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too low. Since the temporal pattern of temperature evolution appears synchronous in all

datasets, these biases appear unrelated to any mismatch of frontal systems. (See Figure S9

for the WRF model output and bias structure, and Figure S10 for the July 26th weather

map.)

In the example episode of Figure 2.10, strong CAPE discrepancies result when models and

reanalyses fail to capture short-term increases in specific humidity associated with extreme

CAPE. Biases are driven by humidity, since throughout the 5-day period the WRF model

and reanalyses are slightly too warm, with a fairly accurate diurnal temperature cycle (∼5-

6K, with the WRF model exhibiting the largest amplitude). Comparison with climatological

means on the T–H diagram of Figure 2.11 suggests that the daytime humidity rise in the

example episode is extreme even for high-CAPE conditions, but the climatological biases are

otherwise broadly similar. Reanalyses and WRF have overall dry biases that are exacerbated

in WRF during the day (in the climatological case, by an actual daytime drop in specific

humidity). Diurnal cycles of temperature cycles are similar, though daytime warming is

slightly too weak in reanalyses, and WRF has an overall high temperature bias of ∼1.3 K.

In all cases, too-low surface-level humidity appears to be the driving factor that strongly

suppresses incidences of extreme CAPE.

CAPE biases in the example episode of Figure 2.10 differ in ERA reanalyses and the WRF

model, but both produce deficits in specific humidity. In all datasets, temperatures match

reasonably well in early morning (12 UTC), but daytime temperature rise is slightly too

small in ERA reanalyses and considerably too large in WRF. ERA RH is reasonably accurate

throughout, so its too-low temperatures are associated with a small specific humidity deficit.

In WRF, specific humidity actually falls during the day, something not seen in reanalyses or

radiosondes, contributing to erroneously low relative humidities. During the two “missed-

high-CAPE” episodes, WRF RH is ∼25 percentage points below that in radiosondes.

To demonstrate that biases during this single-station episode are typical for warm condi-
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Figure 2.10: An example episode of high CAPE and substantial CAPE error: 5 days from
July 24th to 28th, 2012 over Wilmington, North Carolina, color coded as before. Reanalyses
and the WRF model are shown every 6 hours; IGRA soundings are generally every 12 hours
(although note the irregular timing for radiosonde launching on the 26th, when daytime
sampling occurred 6 hours earlier than usual, at 18 UTC). Vertical lines mark the two
examples discussed in text. Over this entire period, reanalyses and WRF model show hot
and dry bias; when the bias in absolute humidity is large, the dry bias produces too-low
CAPE even despite too-high temperatures.
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Figure 2.11: The diurnal cycle in T–H space in all datasets. Thick lines connect 00 UTC
(right end, marked by ‘x’) and 12 UTC (left end, marked by ‘o’) values. Color code follows
the convention throughout this work. a) The average over the 5-day episode in Figure 2.10.
b) Mean summertime diurnal cycles over the entire domain, for all profiles (dot-dashed),
and for high-CAPE (solid) and low-CAPE (dashed) subsets, defined as 00 UTC SBCAPE
values above 90th / below 10th percentile in each dataset, and values 12 hours later. In all
cases, WRF and ERA are biased dry, and WRF is biased warm. In the example (a), daytime
observed specific humidity increases more than in WRF or ERA. In the climatological mean
(b), specific humidity is roughly constant in observations and ERA but erroneously decreases
in daytime in the WRF model, exacerbating mid-day bias.
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tions conducive of extreme CAPE formation, we compare its diurnal cycle to climatological

means across all stations. Figure 2.11 uses the temperature-humidity (T–H) diagram to

show mean diurnal cycles of the 5-day episode at station Wilmington (panel a) and across

the whole dataset (panel b), showing both the overall summertime average and also subsets

of days involving the highest and lowest radiosonde SBCAPE values (90th/10th percentiles).

The biases in the July 2012 example episode are similar to those generally experienced in

high-CAPE conditions. On average, the ERA reanalyses experience slightly too-weak day-

time warming (i.e. a too-small diurnal cycle in temperature) and are slightly too dry. WRF

has an overall high bias in temperature of ∼1.3 K and is substantially too dry. The warm

dry bias in WRF is exacerbated at mid-day by the fact that specific humidity erroneously

drops during the day. This daytime humidity loss strongly suppresses incidences of extreme

CAPE.

2.7 Conclusion and Discussion

Despite the importance of CAPE to both model construction and meteorology, few prior

studies have evaluated CAPE biases against radiosondes on a large enough scale to evalu-

ate climatological distributions. This study of nearly 200,000 proximity soundings in two

reanalyses and a convection-permitting model confirms consistent patterns of distributional

bias. CAPE distributions are too narrow in all cases, with underprediction of the most ex-

treme values that are associated with severe weather events. Values in the 95th percentile

and above are 6–10% too low in surface-based CAPE and even more severely underesti-

mated under alternative definitions, at 18–20% too low in MUCAPE and 15-17% too low in

MLCAPE.

In this study, both distributional biases and “mismatch error” in CAPE appear driven

by conditions at the surface and/or boundary layer. SBCAPE shows a tight and similar

dependence on surface temperature and humidity in all datasets; the dependence is so strong
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that CAPE distributions as a function of surface T,H are almost identical, even though

individual profiles may have inaccurate surface values. The underprediction of the “high

tail” of CAPE occurs simply because reanalyses and WRF runs underpredict the hot and

humid conditions associated with extreme CAPE values.

These results emphasize the importance of land and boundary layer treatment in the

performance of high-resolution models. Discussion of improving models has tended to focus

on increased resolution and its effect on the atmospheric profile [e.g. 52]. However, the

similarity of biases in model and reanalysis output with resolved and parametrized convection

suggests that surface biases are unrelated to the treatment of convection. Many authors have

noted that SBCAPE is strongly dependent on surface conditions [e.g. 84, 150, 37, 60], but

land surface feedbacks may be crudely treated even in state-of-the-art high-resolution models

[100].

Dry biases such as those seen here could be produced by misrepresentation of land-surface

evaporation, by excess vertical mixing of the boundary layer, or, for the Central U.S., by

too-weak advection of moisture from the Gulf of Mexico [50]. In this study, the greater bias

in MUCAPE than SBCAPE across all datasets points to boundary layer processes as the

problematic elements. It is well established that treatment of mixing in boundary layer (PBL)

schemes can modify the diurnal cycle of temperature and humidity [73, 53, 144]. Several

recent studies have evaluated the impacts of PBL treatment on CAPE, and consistently find

that “local” schemes tend to undermix and moisten the boundary layer while “non-local”

ones, like those used in the datasets shown here, overmix and dry it [26, 24, 48]. The YSU

scheme used in our WRF runs is especially prone to producing a dry bias [26, 83].

While prior studies evaluating the effect of boundary layer treatment on CAPE have

generally evaluated only mean values and have found only small biases, results here sug-

gest that the “high tails” can be much more strongly affected. This finding is consistent

with [48], who note in a small sample of soundings that dry biases produced by non-local
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PBL schemes appear larger when observed CAPE is larger. The dependence of biases on

underlying conditions means that even models and data products whose mean CAPE is

well-validated may be inaccurate in capturing the strong convective events that lead to large

socioeconomic losses. This problem cannot be assessed with studies that match soundings to

severe weather events, since model displacement of weather features means that “mismatch”

error is large and proximity soundings will not necessarily capture the same meteorological

context. On the flip side, the accuracy of relatively low CAPE is also critical for convective

parametrization schemes, since convective initiation thresholds are commonly set at only

65 J/kg. Subtle distributional biases can therefore affect convective triggering and total

mass flux, and indirectly affect precipitation diurnal timing and amplitude. Given the im-

portance of CAPE as a key meteorological parameter linking the large scale environment to

weather-scale events, and its sensitivity to details of boundary layer treatment, its evaluation

warrants careful distributional analysis.

2.8 Data Availability

The 4km high-resolution WRF simulations of the current and future climate of North Amer-

ica are available from NCAR Resaerch Data (https://doi.org/10.5065/D6V40SXP). The

radiosonde observations are obtained from NOAA Integrated Global Radiosonde Archive

(IGRA, https://www1.ncdc.noaa.gov/pub/data/igra/). The reanalysis output is avail-

able from ECMWF (https://www.ecmwf.int/en/forecasts/datasets/browse-reanalysis-

datasets).
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CHAPTER 3

ROBUST RELATIONSHIP BETWEEN MIDLATITUDES

CAPE AND MOIST STATIC ENERGY SURPLUS IN

PRESENT AND FUTURE SIMULATIONS

Published in Geophysical Research Letters in collaboration with:

Elisabeth Moyer1,2

1Department of the Geophysical Sciences, University of Chicago, Chicago, IL, USA 2Center for Robust

Decision-making on Climate and Energy Policy (RDCEP), University of Chicago, Chicago, IL, USA

Convective available potential energy (CAPE), a metric associated with severe weather,

is expected to increase with warming, but we have lacked a framework that describes its

changes in the populated midlatitudes. In the tropics, theory suggests mean CAPE should

rise following the Clausius–Clapeyron (C–C) relationship at ∼6%/K. In the heterogeneous

midlatitudes, where the mean change is less relevant, we show that CAPE changes are larger

and can be well-described by a simple framework based on moist static energy (MSE) surplus,

which is robust across climate states. This effect is highly general and holds across both

high-resolution nudged regional simulations and free-running global climate models. The

simplicity of this framework means that complex distributional changes in future CAPE can

be well-captured by a simple scaling of present-day data using only three parameters.
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3.1 Introduction

Convective Available Potential Energy (CAPE), loosely defined as the vertically integrated

buoyancy of a near-surface air parcel, is a metric closely associated with extreme convective

weather events that can cause substantial socioeconomic damages [e.g., 71]. CAPE is derived

from the difference between the temperature profile of a parcel rising pseudo-adiabatically

from the surface and that of the background environment [86], which determines the max-

imum possible updraft velocity during undiluted ascent. In meteorology, CAPE is used to

predict thunderstorm events and in particular hail [58, 76, 72]. Studies have also used the

covariate of CAPE and wind shear to explain differences in thunderstorm frequency across

locations [14, 11] or across climate states [134, 35].

Early efforts to understand CAPE in observations sought to characterize it as a function

of near-surface temperature and moisture [140, 147]. More recent studies of CAPE in ob-

servations have tended to focus on decadal-scale trends, often finding large increases. For

example, [56] found trends equivalent to ∼50%/K in 15 tropical radiosonde stations. Model

studies of CAPE under climate change have tended to produce smaller effects. Several recent

studies that simulate the tropics using convection-permitting models (0.2–4 km resolution)

without advection, i.e. approximating radiative-convective equilibrium, find CAPE increases

of 8%/K [88], 8%/K [108], 12%/K [117], 7%/K [115], and 6–7%/K from theory [109]. In the

midlatitudes, changes may be larger. [104] show 11%/K for 3 stations in the Eastern U.S.;

[35] and [23] show ∼10%/K over the Eastern U.S.; and [80] find 10–14%/K for the entire

U.S. These results are consistent across a wide range of model resolutions.

Theoretical frameworks to explain climatological CAPE fall into two groups. One ap-

proach assumes that background environmental profiles are fully determined by surface tem-

perature, and predicts them by considering the effects of convective entrainment. [117]

proposed a “zero-buoyancy model” based on the assumption that entrainment makes actual

buoyancy in an ascending convective plume small relative to CAPE (with column RH consid-
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ered fixed). [118] and [154] extended the work and validated the approach under radiative-

convective equilibrium (RCE). However, the theory is not expected to work for midlatitudes

land, which has strong spatial and temporal variations, even though its climatological mean

profile is close to RCE [85].

A second approach treats surface and mid-tropospheric conditions as independent vari-

ables. [46] (henceforth EB96) drew on heat engine theory and described the relationship

as

CAPE = A · (hs − hm) (3.1)

where hs and hm are moist static energy (MSE) near the surface (boundary layer) and in the

mid-troposphere, respectively. In this perspective, CAPE represents the maximum possible

kinetic energy that can be released given a heat transfer of (hs−hm), and CAPE is generated

only when surface MSE exceeds that of a mid-tropospheric threshold. [2], [82] (hereafter,

AE17 and LC21) modified the approach to use a different threshold term, dry static energy,

and showed that results captured aspects of CAPE variations in the midlatitudes.

We modify the framework based on [44] and use as the threshold term the minimum

“saturation MSE” h∗m in the mid-troposphere, the moist static energy a parcel would have

if saturated:

CAPE = A · (hs − h∗m) (3.2)

We term the difference hs−h∗m the “MSE surplus”. The integral form of this expression can

be derived from the definition of CAPE given the assumption that the effect of water vapor

on buoyancy is negligible. (See Appendix Text S2.1 and Figure S11.) We then simplify to

a linear dependence (as in e.g. AE17) by replacing the integral with a difference at a single

location. This assumption is valid as long as the shape of the environmental temperature

profile does not vary strongly with hs and can be folded into the slope A. The rationale for h∗m

as the threshold term can also be expressed intuitively: CAPE depends only on temperature

39



differences, and above the level of free convection, the rising parcel is saturated and conserves

h∗, so its difference with the environment should be taken with a comparable quantity. [152]

used h∗m as a threshold for convective instability over summertime mid-latitude land, but

Equation 3.2 has not yet been evaluated as a framework for CAPE.

A sufficiently general framework should explain not only average CAPE, or CAPE in

the average profile, but its variations across space and time in the highly heterogeneous

midlatitudes. This generality is required for any application to extreme weather, since only

the “high tail” of CAPE is associated with the severe thunderstorms that produce large

socioeconomic impacts. Although no prior work has addressed future changes in midlatitudes

CAPE distributions, studies suggest they may shift in complex ways. For example, [23] show

that spatial patterns of CAPE changes over North America differ from those of present-day

CAPE.

In this work, we use observations and model simulations to evaluate how CAPE changes

under CO2-induced warming, and to test whether the relationship of Equation 3.2 captures

these changes. That is, we ask whether it robustly applies to current and future CAPE

distributions across climate states. Furthermore, we ask whether robustness means that

complex distributional changes can be reproduced by as few as three parameters derived from

regional means. Our goal is to quantify changes in CAPE distributions in the midlatitudes

and to provide a simple framework that explains them.

3.2 Data and Methods

3.2.1 Model output

Most analysis here uses high-resolution model output: a paired set of present and future

dynamically downscaled simulations over continental North America from the Weather Re-

search and Forecasting model (WRF, version 3.4.1) run at 4 km resolution. Both runs
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are described in [83] and are acquired from NCAR RDA [105]. The present-day simulation

(CTRL) uses ERA-Interim reanalysis for initial and boundary conditions and for a large-scale

spectral nudging (scales >2000 km) applied to levels above the planetary boundary layer,

to match planetary-scale weather patterns. Small-scale processes can still evolve freely. The

future simulation is a pseudo-global-warming (PGW) scenario, treated identically but with

reanalysis adjusted by a spatially- and temporally- varying offset derived from the CMIP5

multi-model mean projection under RCP8.5, to reflect large-scale changes under increased

CO2. These runs have been validated against observations [137] and used in studies of future

CAPE changes [125, 104]. In this work, we use the years 2001–2012 and the equivalent future

period.

To test whether results apply generally to a diverse set of free-running models, we use 11

CMIP6 models, selected based on the availability of the 6-hourly output needed for CAPE

calculation. Model biases range from -60–+1700 J/kg, with the best performance (MPI-

ESM1-2-LR) comparable to WRF, at ∼30 vs. 14 J/kg [137, 22]. We use pairs of historical

(2005-2014) and ssp585 (2091-2100) simulations [49]. To allow comparison with observations,

we subset all model output to 80 grid points that match International Global Radiosonde

Archive (IGRA) weather stations in North America, as in [137]. For consistency, we calculate

surface-based CAPE in all runs using the same python package. For ‘paired’ comparisons,

we match each profile in CTRL/historical with its equivalent in PGW/ssp585. As in prior

studies, most analyses here use only the summertime (MJJA or JJA), when convection is

most active.

3.2.2 Methods: regressions and subsetting

All linear fits in this work are made using binned median data, to homogenize CAPE sam-

pling. All fits are computed using orthogonal distance regression (ODR), which is most

appropriate in conditions where errors in both dependent and independent variables matter.
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See [114] for discussion of ODR. When fitting to estimate the fractional change in CAPE

between climate states, we use the entire dataset, and we divide by the overall mean temper-

ature change (4.65 K in WRF runs) when giving values in %/K. However, many comparisons

focus on convective conditions and therefore involve a subset of the data. For regressions

of CAPE against MSE surplus, we impose an absolute cut at CAPE >1000 J/kg. In other

cases we compute values for profiles above the 73rd quantile in CAPE, which corresponds to

CAPE >1000 J/kg in the WRF CTRL run. When constructing synthetic profiles, we apply

a temperature offset derived from profiles with CAPE >73rd percentile in each climate state

(3.92 K in WRF runs), to best capture the change in convective conditions.

3.2.3 Synthetic profiles

To help understand the minimal information needed to reproduce future CAPE changes, we

construct three synthetic CAPE distributions based on the WRF CTRL profiles.

1. For Clausius-Clapeyron scaling, shown for illustrative purposes only, we simply mul-

tiply each CTRL CAPE value by 1.33 (= e0.061·4.65, where 6.1%/K is C–C for the

mean temperature of high-CAPE profiles, 301.8 K). We neglect several factors whose

systematic effects on CAPE would largely cancel: the projected rise in the Level of

Neutral Buoyancy (LNB) (+0.6%/K); the reduction in surface RH (-0.4%/K), and

treating profiles separately (-0.1%/K).

2. For the constant offset case, we add a fixed temperature offset of 3.92 K to each CTRL

profile at each level from surface to 200 hPa (near the LNB in the mean CTRL profile),

then linearly interpolate to zero change at 75 hPa. We show cases with and without

a surface RH adjustment of -0.9%, the mean change for profiles with CAPE >73rd

quantile.

3. For the lapse rate adjustment case, we modify the constant offset procedure to also
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include a change in lapse rate Γ = (Ts − T200)/z200. That is, we linearly interpolate

between a warming of 3.92 K at the surface and a similarly-derived 4.94 K at 200 hPa.

We also apply the -0.9% surface RH adjustment.

For context, we also show predictions of the SO13 theory under a 4.65 K temperature rise.

We derive entrainment rate parameters of 0.67 and 0.68 for the WRF CTRL and PGW runs,

and use true LNB values for each profile. ([117] used a fixed entrainment parameter of 0.75

and a fixed LNB temperature of 200 K.)

3.3 Results

3.3.1 Changes in CAPE distributions

We begin our analysis by asking: in midlatitudes model projections, how much and how does

CAPE change with warming? In the WRF model runs, average summertime CAPE rises

by 10% per degree of warming (a 61% increase, from 684 to 1103 J/kg with a mean surface

temperature rise of 4.65 K). However, an alternate approach that emphasizes changes in

higher-CAPE conditions may be more appropriate, and we use it throughout this work. We

perform an orthogonal regression on the density distributions of paired profiles in present

and future runs, which yields a clear shift upwards even though weather systems are not

identical in the two runs and the scatter is therefore large (Figure 3.1, left). The slope yields

a CAPE increase of 8.0%/K (45% total). With either method, the change is larger than

in Clausius Clapeyron (6.1%/K) or in the SO13 theory developed for the tropics (6.0%/K),

but smaller than would result from simply changing surface values while leaving atmospheric

profiles unchanged (11.7%/K in the constant offset synthetic, which adds a single ∆T to all

levels in all profiles; see Figure S12). Midlatitudes atmospheric lapse rates have therefore

lessened slightly in the future simulation, as expected.

Distributional effects in future CAPE changes can be readily seen by comparing values for
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Figure 3.1: (Left) Comparison of CAPE in present (CTRL) and future (PGW) model runs
as a density plot of paired profiles (see Methods), showing also the 1:1 line (dashed); the or-
thogonal regression (solid); and quantiles of the distribution (large dots, 1% increments from
0-0.99; small dots 0.1% increments above 0.99). (Right) Quantile ratio plot, constructed by
taking the ratio of future to present CAPE quantiles, showing WRF output (black, same dots
as L. panel), the synthetic datasets C-C scaling (light blue) and constant offset (green), and
for reference SO13 (purple, with changes computed relative to its own CTRL distribution).
Gray horizontal line marks the +45% mean change from the orthogonal regression. Four
vertical tick bars mark the percentiles matching 1000, 2000, 3000, and 4000 J/kg (73.2%,
86.5%, 95.1%, and 98.9%, respectively). The x-axis is truncated to omit quantiles where
CTRL CAPE is zero. Changes in WRF are smaller than those in constant offset, implying
some lapse rate adjustment.

individual quantiles to the overall regression line (Figure 3.1, left, dots). The lower quantiles

lie above the regression line and the extreme high-CAPE quantiles (>∼3000 J/kg) below it,

meaning the future CAPE distribution is narrower than that produced by a simple mean

shift. This relative narrowing manifests as a downward slope in a quantile regression plot,

which shows the ratio of individual quantiles of future vs. present-day CAPE (Figure 3.1,

right). The effect is a necessary result of the nonlinear CAPE - temperature relationship: a
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given temperature rise produces a greater effect in low-CAPE conditions. For this reason,

relative narrowing occurs even when surface temperature increases are uniform and environ-

mental profiles do not change (constant offset, green) or in a theoretical approach that does

not use observed environmental profiles (SO13, purple).

3.3.2 The effect of changes in environmental profiles

We found in section 3.1 that environmental adjustments appear to reduce future CAPE in-

creases. To isolate this effect, we examine mean CAPE in surface temperature and humidity

(T–H) space, following [137] (Figure 3.2). Since surface T and H uniquely define the moist

adiabat on which a parcel rises, a change in CAPE for a given T–H is due only to an altered

environmental profile. This approach effectively decomposes CAPE changes into a sampling

effect and a partially compensating lapse rate effect. In the WRF model runs used here,

increased sampling of hot and humid surface conditions in PGW would more than double

CAPE from its CTRL values if environmental profiles remained constant (Figure 3.2, top),

but environmental changes nearly halve that increase (Figure 3.2, bottom). This environ-

mental damping makes future CAPE smaller for each T–H bin, so that hotter or wetter

surface conditions are needed to achieve the same CAPE.

Most of this damping results from subtle changes in environmental profiles. Lapse rates

across the domain lessen by 3% between CTRL and PGW, from -6.56 to -6.35 K/km (for the

CAPE >73rd quantile subset). However, some damping also occurs even if the lapse rate

distribution remains fixed (Figure S13). Because lapse rates in our domain are correlated

with temperature – binned averages range from -5 K/km at 270 K to over -7 K/km at 320

K – then as the surface warms, each given temperature become associated with more stable

conditions (Figure S14). The combined result is that CAPE contours in T–H space shift

substantially between CTRL and PGW.

We can immediately make two inferences about CAPE changes in our model runs. First,
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Figure 3.2: Density heatmaps of (top) sampling of T–H bins and (bottom) mean CAPE in
each T–H bin, in CTRL (left) and PGW (right) WRF runs during summer (MJJA). Bins
shown are all those with 3 or more observations. Solid and dashed lines mark RH of 100 and
50%. In the bottom row, dashed/dotted lines mark CAPE contours at 2000 and 4000 J/kg,
with CTRL contours repeated in PGW panel as gray lines. Although conditions sampled in
PGW are hotter than in CTRL (top), each given T,H bin is associated with smaller CAPE
(bottom).
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because CAPE contours align with those of MSE (Figure S15), CAPE in our dataset must be

strongly related to surface MSE. Second, because CAPE contours in T–H space shift while

MSE by definition cannot, this relationship must shift in future simulations. Both effects

are consistent with Equation 3.2.

3.3.3 CAPE-MSE surplus framework

As predicted, the relationship between CAPE and surface MSE is reasonably linear in each

climate state and shifts as the climate warms (Figure 3.3, top left). That is, CAPE on average

does not develop unless surface MSE (hs) exceeds some threshold, which changes between

present and future simulations. This threshold, the x-intercept of the fitted regression,

matches the mean minimum saturation MSE (h∗m) in each climate state to within < 0.3%.

When CAPE is plotted against MSE surplus (hs − h∗m) instead, as in Equation 3.2, the

relationship becomes robust across climate states and the residual variance becomes smaller,

suggesting that this is a fundamental physical relationship (Figure 3.3, top right). On both

measures, variance and robustness, the CAPE-MSE surplus relationship of Equation 3.2

outperforms the expression based on dry static energy as in [2] and [82] (Figure S16, which

shows both WRF runs and observations). Fitted slopes are nearly identical in WRF CTRL

and PGW runs and in observations (0.27 in all), and intercepts are nearly zero (0.7, 1.1, and

1.6 kJ/kg for CTRL, PGW, and observations, respectively). In this perspective, the effects

of climate change reduce to a greater sampling of conditions with high MSE surplus.

The relationship described by Equation 3.2 applies across all models tested and appears

remarkably robust not only across climate states but across locations and times. It holds

in 11 free-running climate models from the CMIP6 archive (Figure 3.3, bottom), though

they differ strongly in their CAPE distributions and projected changes: mean values over

present-day summertime N. America range from 704 to over 2461 J/kg, and future changes

range from 5-10%/K. Their CAPE-MSE surplus relationships also differ, with slopes of 0.22
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Figure 3.3: Cont. (Top) Relationships between CAPE and surface MSE (left) and MSE
surplus (right), for WRF runs in N. America summertime (MJJA), showing all cases where
CAPE >1000 J/kg (CTRL = blue, dotted; PGW = red, solid). Lines are fitted orthogonal
regressions. Color shading increments are 1.5% for the left panel and 0.75% for the right.
The CAPE-MSE surplus relationship is robust across climate states. (Bottom) CAPE–
MSE surplus relationships in 11 free-running CMIP6 models and WRF for N. American
summertime (JJA), using all cases where CAPE >500 J/kg. Color shading increments are
0.5% for all models except EC-Earth3 (0.25%). The CAPE–MSE surplus relationship is
robust in all models, even those with with unrealistic CAPE.
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to 0.29. Nevertheless, in each model that relationship remains constant across climate states.

In the WRF model output, fitted slopes to CAPE vs. MSE surplus remain similar when the

dataset is divided by latitude (northern vs. southern stations), by time of day (daytime vs.

nighttime profiles), by interannual variations (anomalously warm vs. cold years), or even by

season (winter vs. summer) (Figure S17).

3.3.4 A 3-parameter transformation

Figure 3.4: Comparison of present and future CAPE in model output (black) and synthetics:
C–C scaling (light blue), constant offset including an RH adjustment (orange), and lapse rate
adjustment (green). (Left) Fitted regression lines of the future CAPE-MSE relationship as
in Figure 3.3. See Table S5 for slopes and x-intercepts. (Right) Future changes in CAPE as
quantile ratio plots, as in Figure 3.1. The simple lapse rate adjustment effectively reproduces
CAPE distributional changes.

The robustness of Equation 3.2 across climate states suggests that model-projected CAPE

changes result from relatively simple adjustments. The fitted slope for each model, A, is a

function of the shape of the environmental profile; for A to remain constant, that shape must

not alter much. Changes in CAPE in Equation 3.2 can then result only from changes in
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surface conditions (hs, which depends on surface temperature and humidity), or in a single

metric of temperature in the free troposphere (h∗m). While the quantile ratio plot in Figure

3.1 shows that transformations based on 1 or 2 parameters are insufficient for describing

CAPE distributional changes, it appears that 3 parameters may be sufficient.

To construct our scaling, we use the two effects that produce the shift in CAPE contours

in T–H space seen in Section 3.2 – an overall surface warming and a small decrease in mean

lapse rates – and add the small but significant change in surface relative humidity in our WRF

runs (-0.9%). As described in Methods, we calculate mean changes in these three parameters

across our domain and apply them to the CTRL profiles. This simple adjustment correctly

produces the shifting CAPE-MSE relationship, matching its slope and x-intercept (Figure

3.4, left). It also reproduces both the distributional narrowing and the magnitude of CAPE

change for the high-CAPE conditions of interest (Figure 3.4, right). While midlatitudes

CAPE is highly heterogeneous, a relatively straightforward transformation can capture its

full distributional change in a future warmer climate.

3.4 Discussion

Increases in severe weather events, which are associated with high CAPE, are a substantial

societal concern under global warming. Their understanding has been hindered by lack of

a widely accepted theory or framework to describe midlatitudes CAPE changes. Theories

developed for the convective tropics [e.g. 117] are not appropriate for midlatitudes land, where

advection and a strong diurnal cycle mean that the mid-troposphere is often decoupled from

the surface (Figure S19). In this work, we show that Equation 3.2, a modified version of

the heat-engine theory originally proposed in 1996 (EB96) and of its later extensions (AE17,

LC21), provides a compact representation of midlatitudes CAPE that is robust across space,

over diurnal and seasonal cycles, and across climate states.

We term the work developed here a framework rather than a theory because the trans-
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formation requires empirical values and we do not predict the slope A, which accounts for

the shape of the environmental profile and is empirically fit. Similarly, AE17 would require

an empirical correction to their slope for a realistic moist atmosphere. In EB96, by contrast,

A is based on thermodynamics and is effectively the Carnot efficiency of the atmosphere.

In our WRF runs, the empirical slope of the CAPE-MSE relationship is larger than Carnot

(0.24, vs. 0.14 for Carnot as defined by EB96), but this is not a violation of the 2nd Law

given our focus on highly convective conditions.

Any transformation that describes changes in midlatitudes CAPE will necessarily require

at least three parameters, one more than SO13 because the midlatitudes free troposphere

cannot be predicted from surface T and RH even on average. In this work, we find that only

three parameters are required: three regional mean values across our domain are sufficient

to capture the full distributional change in the CAPE >73rd quantile. This result may seem

counterintuitive since present-day North America encompasses a wide range of environmental

conditions, future climate changes are spatially variable, and the response of CAPE is highly

nonlinear. However, CAPE develops appreciably only in a relatively restricted subset of T–H

space, where changes are more uniform.

The CAPE changes projected in our WRF runs and in most CMIP6 models are higher

than Clausius-Clapeyron, the expectation under RCE. This difference matters for the occur-

rence of extreme conditions. Incidences of summertime CAPE >2000 J/kg, a commonly-used

threshold for severe weather, rise half again as much in our WRF projections as under C–C

scaling (14% in CTRL; >24% in PGW, 20% in C–C). Of course, predicting how this rise

in extreme CAPE will affect future severe weather requires also understanding how it will

map to a change in convective updraft velocities – but understanding CAPE changes under

CO2-induced warming is a necessary first step. The dependence of CAPE on MSE surplus

provides a simple but robust framework for predicting and understanding that response.
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3.5 Data Availability Statement

The 4-km WRF convection-permitting model output can be downloaded from NCAR RDA

(https://rda.ucar.edu/datasets/ds612.0/). The IGRA radiosonde data can be down-

loaded from NOAA (https://www.ncei.noaa.gov/products/weather-balloon/integrated-

global-radiosonde-archive). CMIP6 model output is available from the Earth System

Grid Federation (ESGF, https://esgf-node.llnl.gov/projects/cmip6/).
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CHAPTER 4

ROBUST CAPE SCALING ACROSS SPACE AND TIME

Prepared for publication in Geophysical Research Letters in collaboration with:

Daniel Chavas3, Tiffany Shaw1 and Elisabeth Moyer1,2

1Department of the Geophysical Sciences, University of Chicago, Chicago, IL, USA 2Center for Robust

Decision-making on Climate and Energy Policy (RDCEP), University of Chicago, Chicago, IL, USA

3Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, IN, USA

High values of Convective Available Potential Energy (CAPE) are often associated with

severe weather, and the occurrence of such conditions is expected to increase with warming.

Hence, it is important to understand how CAPE varies across space and different timescales

(diurnal, seasonal, and climatological). In this work, we derive a CAPE scaling framework as

a multiplicative combination of only a few physical parameters and show that the variations

at a given location are primarily driven by convective layer depth and MSE surplus. We

confirm the framework’s validity with 6-hourly ERA5 and 11 CMIP6 models and show

that the scaling reasonably captures full probability distributions, and spatial and temporal

variations in the current climate. The framework also holds for the SSP585 future climate

and predicts a 39% mean fractional increase in CAPE compared to a 42% modeled change

averaged across 11 models. Changes are dominated by different parameters on different time

scales: the MSE ratio dominates changes on climatological and diurnal time scales (>65%).

On the contrary, the convective layer depth contributes to about 80% of the seasonal CAPE

variations. The framework provides physical insights into how much and why CAPE changes

across different time scales.

53



4.1 Introduction

High values of Convective Available Potential Energy (CAPE) are associated with a variety of

severe weather events, e.g. severe thunderstorms, hail, and tornadoes [58, 76, 132]. Extreme

convective events are associated with 15 out of 18 billion-dollar weather and climate disasters

over the Contiguous United States in 2022 [120], resulting in huge socio-economic impacts

across agricultural, transportation, and real estate sectors [139, 69]. To better understand

the impact of convective extreme events, vast literature has attempted to understand the

current climatology of CAPE [107, 4, 137] and how it relates to convective populations

[14, 11].

Modeling studies have shown that CAPE is expected to increase as the climate warms [e.g.

80]. CAPE (in particular surface-based CAPE) is a strong function of surface temperature

and humidity [38, 67, 115]; thus, its increase with warming can be largely explained by

the fundamental physics of Clausius-Clapeyron scaling of atmospheric water vapor content,

given that the relative humidity remains relatively unchanged as a constraint by the energy

balance [64]. Furthermore, composite indicators for severe thunderstorm occurrence are

largely driven by the increase in CAPE over the continental U.S. in century-long projections

from CMIP5 ensemble [133, 35], and also shown to increase over Australia and Europe

[4, 101]. However, few have attempted to attribute CAPE changes to different contributors.

The closest attempt to our knowledge uses a set of convective parameters and state variables

[23]. Even these attempts end up at a technical level and fail to provide a clear decomposition

of actual CAPE changes across different scales. That is, a full scaling that works across all

temporal and spatial scales of interest is needed to understand better factors contributing

to CAPE changes.

Theoretical models for CAPE exist that provide insight into its variability, but all existing

theories have some limitations. The simple theories based on zero-buoyancy model provides

a useful prediction of CAPE for each climatological mean state and changes between climate
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states [117, 109], but the model ties mean temperature profile (thus CAPE) to entrainment

and free-tropospheric moisture, which varies strongly across small spatial scales and on short

(e.g., diurnal or synoptic) time scales. These assumptions are pertinent to all CAPE theories,

and strong assumptions about water vapor are needed in this work as well. A recent attempt

modeled the transient peaks over the mid-latitude continents, but its applicability to larger

domains has not been tested [2, hereafter AE17]. [82, hereafter LC21] first derives CAPE

scaling based on AE17 and confirms its applicability to spatial and diurnal variations for the

continental U.S. However, LC21 is phrased in terms of dry static energy, which results in a

less direct path to approximating CAPE than a framework based on moist static energy, as

presented in this work. Additionally, LC21 requires using the entire free tropospheric static

energy profile, whereas here, we seek to simplify the free troposphere further to use a single

representative level.

[138] developed a scaling based on the strong dependence of CAPE on MSE surplus

[∆h = hs − h∗min, see also 135] over Continental United States (CONUS) in summertime

and finds this dependence holds across climate states, across a convection-permitting model

and 11 CMIP6 models. This dependence is derived from Eq. (6.4.2) in [44], where CAPE

is rewritten as a function of saturated entropy.The only necessary assumption is that the

effect of water content on density is negligible. This assumption could lead to large errors

for places where the environmental profile is drier and further from saturation but works

reasonably well for convectively vigorous conditions. As in [2] and [138], we take out the

MSE integral with a “shape of profile” parameter k:

CAPE ∼ k
Γ

T
∆h∆z (4.1)

where ∆z(= zLNB − zLFC) is the convective layer depth, and ∆h(= hs − h∗min) is MSE

surplus (surface MSE subtracted by minimum environmental saturated MSE). Γ is mean

environmental lapse rate; T is mass-weighted free-tropospheric temperature. Using an aver-
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aged Γ and T is sufficient for each evaluation (spatial or a temporal scale, see Table S6 and

S7), suggesting that their variations have little contribution to the total CAPE variation at

these scales [for Γ’s effect, see 30]. The full derivation can be found in Text S3.1; an example

profile is given in Figure S20. Note that the only free parameter is the “shape of profile” k,

which partially compensates for the error in the assumption of negligible water vapor effect

on density.

In this work, we will first test the robustness of the CAPE scaling (Eq. 4.1) in terms

of full probability density function with ERA5 reanalyses and an array of CMIP6 models.

We will then demonstrate the applicability of the scaling to CAPE variations across space,

diurnal, seasonal, and climatological time scales. The simplicity of the scaling allows a linear

decomposition of CAPE changes, serving as a tool to understand the main drivers of CAPE

variations. The work aims to provide a robust and interpretable framework to understand

better variations of CAPE across all spatial and temporal scales in current climate and across

climate states.

4.2 Methods

4.2.1 Data description

We use General Circulation Models (GCM) runs from the 6th Coupled Model Intercom-

parison Project (CMIP6) [49] and ERA5 reanalysis data [65] for this work. The CMIP6

data used are 10 years of 6-hourly model-level output from historical (2005-2014) and ssp585

(2091-2100) simulations. Despite being a more extreme realization of future emission sce-

narios, ssp585 is used since it allows for the strongest forcing and is a stronger test for the

theory [99]. The variables used to calculate the thermodynamic parameters (e.g., CAPE and

MSE surplus) include temperature (ta) and specific humidity (hus). The manuscripts show

results from JJA, and results for other seasons are shown in Supplemental Information. A
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detailed description of the simulations being used is included in Table S4, and the mean

model biases for the full dataset are provided in Table S8. The ERA5 6-hourly output is

acquired at 1◦x 1◦ spatial resolution. ERA5 data matching the historical period used is used

as a baseline validation of the representation of the current climate in CMIP6 models.

4.2.2 CAPE calculation

We use surface-based CAPE since past literature has extensively evaluated the mean and dis-

tributional biases in models against observation and reanalyses data products [e.g. 137, 22].

We follow these conventions and look at surface-based CAPE in this work, but the gen-

eral methodology to construct such a framework should apply to mixed-layer and most-

unstable CAPE. With a goal to calculate CAPE from a large volume of data in a fast

and consistent way, we adapted the wrf-python (https://github.com/NCAR/wrf-python)

package for this work [78], which originates from NCL and Fortran codes in WRF calcula-

tion. The parcels follow pseudo-adiabatic ascent, and virtual temperature corrections are

implemented. The latent heat of freezing is not considered. We added functionalities called

sbcape 2d and mucape 2d to the wrf module, and the source code is available from GitHub

(https://github.com/zwang02/wrf-python).

4.2.3 Decomposition framework

Based on the CAPE scaling, we propose the decomposition of CAPE variations into two

terms: the MSE surplus (= hsurp) and convective layer depth (∆z). Assuming the two

terms are uncorrelated and that all other terms have little variation at the scales considered

(represented by an error term), we have:

dCAPE

CAPE
=
d∆h

∆h
+
d∆z

∆z
+ ε (4.2)
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Note that further decomposing the MSE ratio term without adding covariate terms is not

practically useful or valid. The decomposition procedure is consistent with that in [22].

The decomposition assumes that variations in other terms, including column mean tem-

perature (T ) and mean lapse rate (Γ), have a negligible contribution at the space and time

scales evaluated here. For simplicity, we only use a constant for each model, each state that

is considered in this work (e.g., MPI-ESM1-2-LR summer daytime in current climate T =

267 K, Γ = 6.61 K/km).

4.3 Results

4.3.1 Applicability to full probability density function

We begin our analysis by validating the full probability distribution of CAPE (Figure 4.1),

with 10-year (2005–2014) CAPE records in 11 CMIP6 models against ERA5 reanalysis

(Methods). Four models (ACCESS-ESM1-5, CanESM5, EC-Earth3, and NorESM2-MM)

perform reasonably well in capturing the distribution as in reanalysis data product (ERA5),

with low mean bias below 50 J/kg. However, some models overestimate mean CAPE (high-

lighted by overestimating the “high tail” >2000 J/kg), with GISS-E2-1-G severely biased

high (∼+480 J/kg relative to 400 J/kg mean CAPE in ERA5); in contrast, both MPI models

miss the “high tail” and are biased low (both ∼-150 J/kg). We see diverse model perfor-

mance in CAPE representation for the current climate (see Figure S21 for future climate),

posing a challenge to reproduce CAPE characteristics faithfully.

Despite the challenge of authentic CAPE representation in CMIP6 models, the scaling

(Eq. 4.1) captures the full distributions in each model and reanalysis product across the

globe. In fractional measures, all models have a fractional mean absolute bias below 30%,

with a few models (e.g., ACCESS-ESM1-5) performing very well in capturing the distribution

as in reanalysis data product (ERA5) and their fractional bias falling below 20%. In absolute
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Figure 4.1: Probability distribution of CAPE from 6-hourly model data for the globe. We
show ERA5 modeled (black) versus scaling (gray) in panel A and re-plot ERA5 as a baseline
comparison in other panels. Each model uses a constant “shape of profile” parameter k
fitted for the full distribution, with a spread from 0.52 to 0.61. We show the modeled CAPE
(red) versus scaling (orange) of each CMIP6 model in all 11 CMIP6 models used in these
panels and resample the dataset down to 6000 for each model and each variable. We use a
semi-logy axis to highlight differences in the “high tail”. The scaling consistently performs
well, yielding a much smaller bias against the modeled value than the model bias against
reanalysis (ERA5).

measures, we obtain mean absolute bias <100 J/kg for 6 out of 11 models with a constant

k fitted for each model (see Text S3.2 for regression methodology). The performance is

even better for the Contiguous U.S., with fractional mean absolute bias below 20% for all

models (see Figure S22); the scaling still works reasonably by arbitrarily choosing a constant

k = 0.5 for all models (see Figure S23). We also measure distributional differences with
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the 2-sample K–S test statistics (see Text S3.3 for details). 10 out of 11 models have a

smaller D between scaling and modeled CAPE (at 0.078 when averaged across models) than

that between models and reanalysis (at 0.183), suggesting our scaling can obtain a more

faithful representation of CAPE given modeled conditions regardless of whether the model

fails to represent the reanalysis authentically. The ability to reproduce modeled probability

distribution suggests the scaling captures fundamental physics governing CAPE variations.

4.3.2 Applicability across space

A valid scaling should apply across space in a given climate state. Here, we evaluate the

scaling against reanalysis or modeled spatial distribution of CAPE under the current climate

state. Since CAPE is a strong function of near-surface conditions, it naturally exhibits strong

spatial variation that, in turn, determines the occurrence and intensity of storms. Several

regions across the globe are known to have vigorous convection throughout the year, e.g.,

the tropical ocean and maritime islands; conversely, multiple regions over the mid-latitudes

land show strong seasonality, with average CAPE exceeding 500 J/kg in the summertime,

including the Great Plains, the Amazonian, and Western Africa [107, 141, 75]. We evaluate

the scaling with the correlation between scaling and modeled CAPE and mean bias for global

and subregions of interest.

We first show that our regional scaling captures the spatial variation of the ensemble

mean CAPE well (Figure 4.2, left). The need for regional scaling arises given the spatial

heterogeneity of the “shape of profile” due to the dryness over land, we expect k to have

a strong land-sea contrast but should be largely constant over the tropical ocean. That is,

aimed to capture variations across land and ocean, the spatial extent to which assuming a

constant k is acceptable needs to be determined. In this work, we show that k derived from

a 21◦x 21◦ box (see Text S3.4) sufficiently captures most of the spatial variability of CAPE

(see performance of scaling and corresponding k with different assumptions in Figure S24).
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Figure 4.2: Spatial evaluation of (A-E) mean and (F-J) 90th percentile CAPE, 2005–2014
JJA. Ensemble averaged spatial patterns of (top) modeled CAPE and (2nd row) regional
CAPE scaling are shown here. The regional CAPE scaling is obtained by deriving convoluted
k in 21 x 21 deg boxes (See Table S3.4 for details). The colored boxes correspond to different
sub-regions. The contours mark 40% mean bias in CAPE scaling for regions with at least 500
J/kg CAPE. (Last 3 rows) Mean (or 90th percentile) CAPE, spatial correlation, and mean
bias (scaling - modeled CAPE) for different regions, with global mean as a black triangle and
different sub-regions in different colored circles. Sub-regions are color-coded consistently in
all panels, and models are ordered by ascending mean bias in 90th percentile CAPE. Both
the magnitude and gradient of CAPE spatial patterns are well-captured by the regional
scaling.

The regional scaling captures spatial variations over locations with relatively vigorous

convective activities. Here we evaluate fractional biases in reanalysis and CMIP6 models,

with all cases where CAPE is larger than 100 J/kg and between 60 N/S. For ERA5, the

scaling captures global mean CAPE with a 14.6% overestimation; across CMIP6 models,
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the fractional bias ranges from 3 to 17% (both ensemble mean and median: 7%). Across

different subregions, the scaling works reasonably well and ranges from 7% to 15% for all

subregions other than EU (which has mean bias at 306 J/kg, fractional bias by 53%). The

scaling biases are substantially smaller compared to model biases (relative to ERA5): taking

Eastern U.S. as an example, scaling biases are 5% in ERA5 and 7% in CMIP6; In contrast, the

model bias averaged across ensemble members is 76% (ERA5: 794 J/kg, CMIP6 mean: 1401

J/kg). In terms of correlation, the scaling explains ∼95% of spatial variation globally; it also

explains more than 90% of regional variation for 55 out of 66 (83%) across all subregions

and models. The CNRM models has better correlation across subregions but results in

substantial biases for regions like Europe (Mediterranean); the MPI models has better overall

performance, striking a lower mean bias and good correlation at the same time. The similar

performance for both MPI models suggests that correctly capturing model physics might be

more important a factor than model resolution for accurately representing CAPE in models.

Furthermore, we highlight that in an extremely simple global scaling (a single k = 0.52),

its spatial pattern matches that of the modeled mean CAPE extremely well, explaining

more than 91% of total variances across the globe in ERA5 and 95% when averaged across

11 CMIP6 models; the only drawback is that it fails to reproduce the high CAPE events

over land (exceeding 40% fractional bias over regions of high CAPE >500 J/kg, contours

in Figure S25), which are critical for impact relevant studies. For sub-regions, the scaling

performance remains consistent and robust across models and sub-regions, with high spatial

correlations (R2 above 89%, excluding Europe).

The regional scaling performs similarly well for the 90th percentile CAPE (Figure 4.2,

right) – the patterns are retained even for regions with extreme levels of CAPE above 2000

J/kg (e.g., continental U.S., eastern China, and Northern Indian Ocean). The contours of

scaling largely follow that of modeled CAPE in all other regions. The scaling explains ∼92%

of spatial variation globally (affected by an outlier, otherwise 96%); it also explains more
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than 90% of regional variation for 60 out of 66 (91%) across all subregions and models. The

scaling preserves fundamental physics and preserves a highly consistent free parameter k

across mean and 90th percentile CAPE cases (0.52 and 0.56 for CMIP6 ensemble mean).

The consistency holds across models, ranging from 0.45 to 0.60 for mean CAPE and 0.49 to

0.64 for 90th percentile CAPE. The consistency suggests we could assume a fixed k for all

moderately and strongly convective profiles (e.g., > 100 J/kg CAPE), allowing a consistent

CAPE scaling across middle to high percentiles.

4.3.3 Applicability across time scales

A valid scaling should also apply across time scales. Therefore, we examine whether the

scaling captures these variations over the Eastern U.S. (Figure 4.3) in the MPI-ESM1-2-LR

model [selected following 22]. We assume the “shape of profile” k remains constant at a given

time scale; This assumption faces some challenges for the seasonal cycle, where k is larger

during the winter and smaller during summer. This is consistent with our understanding

that k is a function of dryness – k increases with decreased relative humidity. Fortunately,

wintertime means CAPE is much smaller, and the scaling with a constant k across seasons

works reasonably well.

The scaling works well for CAPE variations over the mid-latitudes (e.g., Eastern U.S.)

on seasonal and inter-annual time scales, with slight overestimation of the seasonal cycles as

787 J/kg versus 620 J/kg modeled and inter-annual variability as 99 versus 82 J/kg modeled

(both below ∼ 25% fractional bias). However, it severely overestimates the diurnal cycle as

269 J/kg versus 152 J/kg modeled (or a 37% increase from night to day instead of 19%).

This overestimation is driven by a compound effect of exaggerated diurnal variations in

MSE surplus by 24% and ∆z by 10% in the MPI-ESM1-2-LR model. For Western Pacific

(see Figure S26), the scaling misses the highs and lows and exhibits too little variation

(underestimation by 30%). A raw time series without any temporal averaging is shown in
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Figure 4.3: Time series and profiles across different time scales for Eastern U.S. in MPI-
ESM1-2-LR model: (A-B) climatology; (C-D) seasonal; (E-F) diurnal scales. The left column
shows the time series for CAPE (black) and CAPE scaling (limegreen) for each time scale.
The monthly mean is shown for climatological, and 6-hourly data are used for seasonal and
diurnal. The scaling captures the climatological states and synoptic scale weather episodes; it
overestimates the magnitude of diurnal variation. The right column shows averaged profiles
above 90th percentile CAPE for each subset. The lines are buoyancy based on (black) virtual
temperature and (limegreen) saturated MSE, corresponding to the raw definition of CAPE
and our scaling, respectively. The dashed and solid lines are (B) current and future climate,
(D) winter and summer, and (F) nighttime and daytime, respectively. The scaling matches
the mean profiles and their changes across different time scales.

64



Figure S27: the scaling performs almost perfectly for diurnal and episodal variations, with

R2 above 0.98 and fractional bias below 10% for all sub-regions evaluated over June 2005.

The scaling can also capture the high CAPE profiles (top 10th percentile) across time

scales. The integrated buoyancy profiles based on virtual temperature represent that of

raw CAPE, and saturated MSE represents that of our scaling. The mean CAPE from

them matches each other extremely well for climatological and diurnal time scales. For

summertime in climate states, we have 1145 J/kg for modeled CAPE and 1115 J/kg for

scaling; for the end-of-century ssp585 simulation, these values are 1723 and 1911 J/kg. We

find similarly good performance when applying the scaling across diurnal time scales: since

the high CAPE profiles come pre-dominantly from daytime, we obtain the same numbers for

day (1367 and 1371 J/kg); on contrast, we have 1045 and 943 J/kg for summertime night

(non-zero because we have substantial coverage of ocean surface; would have much strong

diurnal cycle from 493 to 1298 J/kg if restrict to land only). For example, the fractional

biases for summertime profiles in both climates are below 11%; the performance drops if we

evaluate the mean profile, at ∼20% fractional bias for the current climate.

The performance of scaling drops for wintertime when the atmosphere stability is high

(little MSE surplus or CAPE). The modeled CAPE is 65 J/kg, compared to the scaling of

137 J/kg. This difference in performance is mainly an error introduced by the assumption

that the “water vapor effect on density” is neglected. In reality, the environmental RH

variation is substantial from winter to summer.

4.3.4 Applicability across climate states

A useful and reliable scaling should work for current and future climate states and thus

should inform how CAPE would respond in a warmer climate. We quantify mean fractional

changes between climate states with the density heatmap and orthogonal distance regression

(see Methods and Figure 4.4). The variables are acquired from the model output of current
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Figure 4.4: Density heatmap of (A) CAPE scaling, (B) CAPE (C) MSE ratio and (D)
convective layer depth in current (x-axis) and future (y-axis) space, for MPI-ESM1-2-LR
model. The heatmap color bar uses a log10 scale to visualize the occurrence in current–future
space. The dashed lines are one-to-one lines, and the solid lines are orthogonal regression
lines. Panel (E) shows CAPE fractional changes from models, scaling, and decomposition
(contributed by MSE ratio and convective layer depth, respectively). The slopes of the
regressed lines represent the fractional changes between climate states, with 1.43 for the
CAPE scaling roughly matching 1.38 from the modeled CAPE.
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and future climates; these two runs are paired in space and time to create the density

heatmap. Mean fractional changes in each variable and the full CAPE scaling are acquired

from the slope of the regressions. We find that Eq. 4.1 captures the modeled mean fractional

changes well: the scaling increases by 38% in the MPI-ESM1-2-LR model output (39% across

all models), compared to the 43% increase in modeled CAPE (42% across all models). The

scaling works well in capturing the modeled CAPE changes, with a mean bias by -7.8%.

Note that the models diverge in their performance, with two models (ACCESS-ESM1-5 and

GISS-E2-1-G) overestimating the fractional change (7.3%) and others underestimating it

(-10.6%).

A distinct value of the scaling is its ability to decompose CAPE changes into domi-

nant factors (Figure 4.4E). In this section, we compared the representation of CAPE mean

fractional changes in our scaling with CAPE and then evaluated the applicability of the de-

composition framework (see Methods). The decomposition results in a 37% increase, derived

from a 23% increase in MSE surplus and a 14% increase in ∆z – the change predicted by the

two terms combined broadly matches that expected from both the modeled CAPE and scal-

ing. The decomposition inexplicitly assumes the terms are uncorrelated – this assumption is

acceptable but not perfect. The stacked bar roughly matches that of the modeled in many

models (e.g., MPI-ESM1-2-LR 36% instead of 43% modeled, or 38% in scaling), with others

having noticeable bias compared to the full scaling (e.g., EC-Earth3 51% instead of 73%).

The decomposition works extremely well when averaged across models, yielding the same

42% mean fractional change in CAPE; however, this is a result of canceling errors between

the diverging groups of models over- and under-estimating the fractional change, with some

members severely underestimating the change (e.g., EC-Earth3 by -16%) and others over-

estimating it (e.g., GISS-E2-1-G by +15%). Regardless, the scaling works well beyond the

current climate, reproducing the expected mean climatological shifts across different CMIP6

models and providing a useful tool to decompose drivers of CAPE changes.

67



4.3.5 Decomposition of dominant factors across time scales

The decomposition enables physical interpretation for drivers of CAPE changes across space

and different temporal scales (Figure S28 for mean and Figure S29 for the 90th percentile).

The primary drivers of CAPE can be reduced down to MSE surplus (∆h) and convective layer

depth (∆z): the two terms combined explain more than two-thirds of the total variations

across space across diurnal, seasonal, or interannual temporal scales. This is true for both

the regional evaluations (e.g. Eastern U.S., Table S6) and global evaluation (Table S7). The

covariance term between ∆h and ∆z contributes a substantial portion to the total variance,

but a decomposition could still help determine the relative importance of MSE surplus and

convective layer depth on CAPE fractional changes on given time scales.

On the climatological time scale, an increase in MSE surplus (surface MSE) following

C–C scaling drives the CAPE changes, contributing to 69% of total fractional change. This

agrees with the importance of moistening with warming on CAPE changes [35]. On the

diurnal time scale, the variations of CAPE are driven by strong temperature swings over the

land [29], and MSE surplus contributes to 65% of mean fractional change. On the seasonal

time scale, however, the fractional change is driven by convective layer depth changes with

insolation patterns, and MSE surplus only contributes to 23% of the total change. The

scaling framework provides an intuitive way to explain the underlying physical process of

CAPE variations across different time scales.

4.4 Discussion

In this work, we proposed a physical scaling framework of CAPE, explaining its variations

across space and diurnal, seasonal, and climatological time scales. The framework has three

distinct values compared to previous theoretical models: 1) Only a few physical parame-

ters are needed to construct the scaling, and most of the variation is explained by MSE

surplus and convective layer depth; both can be easily derived from vertical profiles with-
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out integration. 2) The mathematically constrained “shape of profile” parameter remains

highly consistent across CMIP6 models, and the spread holds between mean (0.45–0.60) and

90th percentile CAPE conditions (0.49–0.64) under the current climate; the averaged k also

remains constant between climate states (0.52 for current, 0.53 for future). This allows a

universally consistent representation of CAPE assuming a constant k ∼ 0.5. 3) The decom-

position makes the physical interpretation of CAPE variations concise and clear, unveiling

the physical processes driving CAPE changes across spatial and temporal scales.

This model is not intended to be a full theory of CAPE, in which case it should have a pre-

dictive power of CAPE with surface conditions alone and does not require any information on

vertical stratification (atmospheric profiles). Our scaling has the potential to become a full

theory, with the last piece of the puzzle being how to model MSE surplus with surface con-

ditions alone. That is an intrinsically hard problem since short-term and spatial variations

over mid-latitude land are strongly affected by diabatic processes. We think a feasible ap-

proach would use a simple energy balance model with lateral boundary conditions prescribed

to represent different latitudes and different climate states. The goal of the approach is to

understand how differences in MSE surplus and convective layer depth (and other physical

parameters) could be obtained given different local and lateral conditions. Nevertheless, our

framework provides a practical and straightforward way to understand convective storms

in current and future climates. The framework’s simplicity enables broader usage across

climate and social sciences, potentially fostering stronger connections and collaborations

between fields.

4.5 Data Availability Statement

ERA5 reanalysis is available from Copernicus Climate Change Service (C3S, https://

climate.copernicus.eu/climate-reanalysis). CMIP6 model output is available from

the Earth System Grid Federation (ESGF, https://esgf-node.llnl.gov/projects/cmip6/).
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CHAPTER 5

CONCLUSION

In this thesis, I evaluated CAPE representation in reanalysis and a high-resolution model

against radiosonde observations under the current climate. I then examine the minimum in-

formation required to project the distributional shift of CAPE under future climate. Finally,

I connect the pieces together with a full scaling of CAPE. The scaling works across space and

different temporal scales within each and between climate states, providing a straightforward

pathway for a better physical understanding of CAPE variations.

The model representation of the convective population and the large-scale parameter

CAPE is the foundation for impact attribution under the current climate. We identified low

biases in the “high tail” of CAPE distribution across reanalyses and a convection-permitting

WRF model with around 200,000 proximity soundings. The reanalyses and WRF CAPE

distributions are too narrow, underestimating the occurrence of extreme CAPE values that

are most relevant to severe weather events. The modeled SBCAPE is underestimated by 6–

10% in the “high tail” above the 95th percentile, while MLCAPE and MUCAPE experience

even more severe underestimation by 15–20%. We attribute the sources of these low biases

to the underprediction of hot and humid conditions across reanalyses and the WRF model

over the Contiguous United States (CONUS). These results emphasize the importance of

a realistic planetary boundary layer (PBL) treatment in the models [24, 26]. Beyond the

imperfect representation, these errors are likely a result of averaging physical variables, which

is pertinent to all model products. The WRF model improves the CAPE representation from

its nudging dataset (ERA-Interim) towards ERA5 (which has a higher native resolution),

providing the state-of-the-art regional climate simulations we continue our further analysis

with.

Convective extremes are expected to increase in intensity and occurrence in a warmer fu-

ture climate. Regional climate model simulations at convection-permitting scale [e.g., WRF
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simulations evaluated in the previous chapter, 105] are key to our advanced understanding

of these extreme events with climate change. We conclude that CAPE experiences a dis-

tributional shift, which is insufficient to be described as a mean fractional change. We find

that CAPE is a strong function of MSE surplus; this dependence does not change across cli-

mate states, and it also holds across a nudged regional WRF simulation and 11 free-running

CMIP6 models. This strong dependence suggests that the distributional shift of CAPE can

be readily captured by 3 mean parameter changes: surface T, RH, and mid-tropospheric T.

We built the 3-parameter synthetic profiles and confirmed its effectiveness in projecting the

full distributional shift. The framework enables a more accurate representation of CAPE

changes in the middle to high percentiles and, thus, allows a better understanding of the

societal impacts of the convective extremes under climate change.

The CAPE framework based on MSE surplus provides a robust and clear understanding

of its changes across climate states. However, our simple scaling shows less consistent de-

pendences on seasonal time scales (winter versus summer) and across latitude bands (within

CONUS), presenting limitations in its applicability on small spatial and short time scales –

a robust scaling is needed to explain CAPE variations more comprehensively. We derive the

full CAPE scaling from two forms, the buoyancy form and the entropy form. The scaling

takes only a few physical parameters, and most of the variation can be explained by MSE

surplus and convective layer depth. We validate the scaling and confirm its applicability to

the full probability density function across space and different temporal scales. In particular,

the scaling captures the climatological shifts almost perfectly, predicting a 39% mean CAPE

change versus 42% as CMIP6 ensemble mean change. The scaling allows CAPE changes

to be decomposed into different driving physical parameters on different time scales, thus

providing a straightforward way to understand physical processes driving CAPE variations

across space and time.

Although CAPE is a very useful and powerful large-scale parameter for convective ex-
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tremes, improper interpretation and inference based on CAPE could result in misleading sci-

entific insights into convective weather events. Several limitations should be noted. Firstly,

not all potential energy is turned into kinetic energy, and dissipation of moisture is a substan-

tial entropy sink that can’t be neglected [96, 95, 119]. Also, CAPE assumes adiabatic ascent;

but the entrainment and mixing of dry air from the environment plays a substantial role and

needs to be properly addressed [151, 31, 123]. [97] provides an expression to approximate the

maximum updraft velocity with entraining CAPE. Still, updraft velocity may be a less rele-

vant parameter than precipitation for societal impact quantification of these extreme events

[148]. Future work should map our understanding of large-scale thermodynamic parameters

(e.g. CAPE) and their changes to impact-relevant parameters (e.g. precipitation).

Extreme precipitation scaling requires a more accurate representation of thermodynamics

and dynamics components than a single condensed metric like CAPE [92, 98]. Furthermore,

the impact of these convective extremes is a composite effect of multiple factors, for example:

intensity, duration, and size [77, 57, 18]. These storm characteristics can be obtained using

storm tracking algorithms and observations or models [19, 20, 135]. Future work should

emphasize how large-scale parameters shed light on changes in storm characteristics on

synoptic and climatological time scales. The full scaling proposed in this thesis takes us

one step closer to a more comprehensive understanding of the societal impacts of convective

storms.
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ings of Severe and Nonsevere Thunderstorms in Central Europe. Monthly Weather
Review, 143(12):4805–4821, 2015.

[103] Erik N. Rasmussen and David O. Blanchard. A baseline climatology of sounding-
derived supercell and Tornado forecast parameters. Weather and Forecasting,
13(4):1148–1164, 1998.

[104] K. L. Rasmussen, A. F. Prein, R. M. Rasmussen, K. Ikeda, and C. Liu. Changes in
the convective population and thermodynamic environments in convection-permitting
regional climate simulations over the United States. Climate Dynamics, 2017.

[105] Roy Rasmussen and Changhai Liu. High Resolution WRF Simulations of the Current
and Future Climate of North America, 2017. Accessed Oct. 2019, https://doi.org/
10.5065/D6V40SXP.
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APPENDIX

S1 Supplemental Materials for Chapter 2

S1.1 CAPE distributions and biases

Table S1: Mean values of each type of CAPE (unit: J/kg) from the four datasets considered
in this study. Summertime summary statistics are shown and are not paired to IGRA.
We show averages both with and without zeroes included. The bottom row is corrected
SBCAPE, recomputed with surface values replaced with those measured by radiosondes.
Note that mean values of the WRF model and reanalysis CAPE are slightly larger than in
radiosondes, even though these data products substantially underpredict the “high tail” of
CAPE distributions. Overly narrow CAPE distributions may still show reasonable mean
values.

IGRA ERAI ERA5 WRF

SBCAPE
w/ zeroes 680 696 724 686

w/o zeroes 1064 1124 1128 1140

MUCAPE
w/ zeroes 1058 829 856 759

w/o zeroes 1368 1214 1225 1661

MLCAPE
w/ zeroes 562 446 473 441

w/o zeroes 912 839 848 834

Corrected SBCAPE
w/ zeroes 680 641 679 653

w/o zeroes 1064 1088 1089 1107
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Figure S1: (Top) Sensitivity of interpolation error to the number of levels in raw IGRA
profiles. Both absolute error (black, left axis) and fractional error (blue, right axis) are
shown. (Bottom) Mean CAPE across number of levels in raw profiles. The lower CAPE
from 50–80 levels is responsible to the concave shape of the absolute difference around those
levels.
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Figure S2: As in Figure 2.2, but for MLCAPE instead of SBCAPE. Points with zero CAPE
are excluded from the analysis (39–47% of the datasets). PDFs are cut off at 6000 J/kg on
the x-axis, as less than 0.02% of all points lie above the limit. For IGRA, the 90th percentile
is 2331 J/kg, the 95th is 2832 J/kg, and the 97.5th is about 3260 J/kg. Biases in the
distribution and mean of MLCAPE are midway between those in SBCAPE and MUCAPE.
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Figure S3: The example day of July 21, 2012, shown as (top) a weather map from the Na-
tional Weather Service (NWS), and (bottom) a satellite image from Terra MODIS visualized
by Zoom Earth. Compare to manuscript Figure 2.4. Images are available online at https :
//www.wpc.ncep.noaa.gov/archives/web pages/sfc/sfc archive maps.php?arcdate =
07/21/2012&selmap = 2012072100&maptype = namussfc, https : //zoom.earth/#view =
42.6,−103.6, 4.54z/date = 2012 − 07 − 21, am. In this time period a stationary front in
the Southeast U.S. brings high moisture and cloud cover to the region. Extreme SBCAPE
occurs at the edge of this zone, where moist air meets the high temperatures of the Central
U.S.
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Figure S4: As in manuscript Figure 2.5, but for ERAI instead of WRF.

Figure S5: As in manuscript Figure 2.5, but for ERA5 instead of WRF.
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Table S2: Improvement of the SBCAPE match to observations by correcting surface values:
table shows Pearson-r for the correlation of CAPE from different datasets against radioson-
des, using different surface level corrections. Top to bottom rows show values for raw data,
surface temperature and pressure corrected, surface humidity and pressure corrected, and
with all surface values corrected. All correlation coefficients pass the two-sided test at 0.1%
significance level.

ERAI ERA5 WRF

Raw 0.80 0.83 0.68

dT 0.81 0.84 0.65

dH 0.93 0.94 0.91

All 0.99 0.99 0.99

S1.2 CAPE as a function of surface T, H
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Figure S6: Occurrence of radiosonde records (IGRA) in T–H space. The total number of
profiles is 199,787. The colorbar is non-linear in order to highlight the bins with fewer
samples in it. Note that the density and absolute occurrence plots are identical other than
a scaling factor.
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Figure S7: As in manuscript Figure 2.6, but for all datasets. Panels a–d) are IGRA,
ERA5, WRF, and ERAI, respectively. Contours correspond to 2000 and 4000 J/kg. All
datasets show similar dependence of SBCAPE on surface temperature and humidity, but
IGRA radiosondes sample more extreme (hot, humid) conditions.
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Figure S8: Distributions of errors in reanalyses and the WRF model surface values for the
‘warm’ and ‘hot’ bins defined in main text Figure 2.7. Figure shows reanalyses and model
errors in profiles assigned to these T–H bins based on their radiosonde values. Mean biases
are relatively small, especially in reanalyses. As is the norm, reanalyses are slightly too
cold, and WRF is too hot and dry. The distributions of errors are, in most cases, reasonably
symmetrical, and mean biases are small relative to standard deviations: for example, ERA5
specific humidity in the ‘hot’ bin has a mean bias of .007 g/kg but an error standard
deviation of 2.3 g/kg. Mean biases, skew in distributions, and standard deviations are
largest in WRF. Complete values of mean and error standard deviations are given in Table S3.
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Table S3: Mean and standard deviation (in parentheses) of errors in reanalysis and the
WRF model in RH, temperature, and specific humidity, all computed against paired
radiosonde soundings as in Figure S18. Values are given for (top, middle) the ‘hot’ and
‘warm’ bins from Figure S8 and manuscript Figure 2.7 and (bottom) as averages over all
bins in the summertime. Standard deviations of profile errors are relatively constant in all
cases, presumably because the weather events that produce strong gradients occur in a wide
variety of environments. Biases are stronger in the ‘hot’ bin, which samples warm, humid
conditions associated with extreme CAPE.

ERAI ERA5 WRF

‘Hot’ bin

RH (%) 4.7 (11.8) 4.6 (11.1) -8.8 (16.0)

T (K) -1.4 (1.9) -1.3 (1.8) 0.9 (3.0)

H (g/kg) -0.06 (2.3) 0.005 (2.3) -2.5 (3.4)

‘Warm’ bin

RH (%) 0 (12.8) 1.1 (12.3) -5.7 (17.9)

T (K) -0.2 (2.5) -0.3 (2.4) 1.0 (3.4)

H (g/kg) -0.3 (1.9) -0.1 (1.8) -0.8 (2.7)

Average

RH (%) -1.3 (12.6) -0.8 (11.9) -6.8 (16.7)

T (K) -0.01 (2.7) 0.09 (2.3) 1.2 (2.9)

H (g/kg) -0.02 (1.7) 0.06 (1.6) -0.4 (2.3)
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Figure S9: As in manuscript Figure 2.4, but for July 26th, 2012 instead of July 21st, 2012.
Again, the hot and dry bias in the WRF model is manifested in Central U.S., which leads
to the underestimation in CAPE.
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Figure S10: The example day of July 26, 2012 shown as (top) a weather map from the
National Weather Service (NWS), and (bottom) a satellite image from Terra MODIS
visualized by Zoom Earth. Compare to Figure S9 Images are available online at https :
//www.wpc.ncep.noaa.gov/archives/web pages/sfc/sfc archive maps.php?arcdate =
07/26/2012&selmap = 2012072600&maptype = namussfc, https : //zoom.earth/#view =
39,−99.9, 4.54z/date = 2012− 07− 26, am. During this time period, a strong cold front in
the Midwest U.S. brings cloud system to the region.
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S2 Supplemental Materials for Chapter 3

S2.1 Derivation of CAPE-MSE surplus framework

In this section we show the background for the framework in our manuscript. We repeat the

derivation from Emanuel, Atmospheric Convection (1994) that restates CAPE as a function

of pseudo-entropy, show how this can be approximated as a linear dependence in pseudo-

enthalpy (moist static energy), and finally demonstrate that the error introduced by the

core assumption required in [44, hereafter E94] – that virtual temperature corrections can

be ignored – is relatively minor and considerably smaller than that in an alternative CAPE

framework.

Emanuel (1994) derivation

We start from the definition of CAPE in pressure coordinates:

CAPE =

∫ pi

pn
(αp − αa)dp (5.1)

where αp and αa are the volume per mass for air in the parcel and the environment, respec-

tively. Because CAPE is a positive quantity, the integration is from low to high pressure,

i.e. from the top of a convective event (pn) to the level of convective initiation (pi).

The rising parcel will be saturated, and changes in its volume per mass can be divided into

two terms, separating the effects of its saturation pseudo-entropy s∗ (which is independent

of moisture) and of its actual moisture content. That is:

∆α =
∂α

∂s∗

∣∣∣∣
r

∆s∗ +
∂α

∂r

∣∣∣∣
s∗

∆r (5.2)

If we treat the environment as also saturated – acceptable if the effect of moisture on
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density is small – then it can be similarly decomposed and CAPE can be written as:

CAPE =

∫ pi

pn

(
∂α

∂s∗
(s∗p − s∗a) +

∂α

∂r
(rp − ra)

)
· dp (5.3)

The volume per mass of dry air (αd) can be approximated as αd = α
1+r . where r is the

mass mixing ratio of water vapor, typically 0.01 or less. Emanuel then makes the further

assumption that the buoyancy effects of this water vapor r (the virtual temperature effect)

can be neglected entirely so that the second term in Equation 5.3 vanishes and in the first

term α is replaced by αd. This yields Eq. (6.4.2a) in Emanuel (1994):

CAPE ≈
∫ pi

pn

∂αd
∂s∗

(s∗p − s∗a) · dp (5.4)

The neglect of virtual temperature effects for both parcel and environment produces a

slight net underestimation of derived CAPE, but the distortion is smaller than in other

approximate CAPE frameworks and is compensated for by the empirical regression coeffi-

cient. See the discussion at the end of the section and Figure S11. The Maxwell relationship

(∂α∂s )p = (∂T∂p )s allows converting the integration coordinate in Equation 5.4 from pressure

to temperature:

CAPE =

∫ pi

pn

∂T

∂p
(s∗p − s∗a) · dp (5.5)

=

∫ Ti

Tn
(s∗p − s∗a) · dT (5.6)

which is Equation (6.4.2) in Emanuel (1994).

Because the integration is now over temperature, and the difference between environment

and parcel is taken at the same T , we can readily substitute saturated pseudo-enthalpy h∗
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for the saturated pseudo-entropy s∗ via:

∆h∗ = T∆s∗ (5.7)

Equation (5.6) then becomes:

CAPE =

∫ Ti

Tn

h∗p − h∗a
T

dT (5.8)

Here h∗p = hs is conserved for an adiabatically rising parcel, while the moist static energy

of the environment h∗a is a weak function of T in individual atmospheric profiles, reaching a

minimum in mid-troposphere that can be <15% below hs.

Approximating the integral as a simple difference

All simplified frameworks for CAPE must replace the integral with some kind of simple

difference. If the moist static energy difference between the parcel and the environment were

independent of T , we could write

CAPE = (hs − h∗) · ln
Ti
Tn

(5.9)

This assumption is not perfect, and in practice, the true shape of atmospheric profiles ne-

cessitates adding an empirical coefficient to the relationship. Since an empirical coefficient

is needed regardless, for convenience, we take the difference at the location of the minimum

tropospheric MSE, typically around 650 mb.

CAPE ≈ A · (hs − h∗m) (5.10)

which is the linear relationship used in this work; (hs − h∗m) is the “ MSE surplus”. The

coefficient A captures the shape of the profile, and, if virtual temperature corrections were
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indeed negligible, would be mathematically constrained to be between zero and ln TiTn
[see

also 2], at maximum ∼0.4 (for Ti = 300 K, Tn = 200 K). (In practice, compensating for

the neglected virtual temperature corrections raises A slightly.) For the same temperature

range, a larger A corresponds to a more uniform ∆h profile between the lifting condensation

level and the tropopause. For the dataset used in this work, the empirical slope A is 0.27.

Effect of assumptions in derivation

The derivation in E94 relies on two successive assumptions about the direct effect of

water on the density of the environment through which a parcel rises. We show here that

the effect of these assumptions is not prohibitive and is smaller than the effect of the core

assumption in the alternative CAPE framework of Eq. (5) in [82, LC21]. The assumptions

are:

• E94a: compute the virtual temperature effect for the environment assuming saturation

• E94b: neglect the virtual temperature effect for both parcel and environment

• LC21 Equation (5): assume all water vapor in the parcel condenses at the LCL

In reality, the mean environmental relative humidity in our high-CAPE midlatitudes sum-

mertime profiles is 0.44 (for all levels below 200 hPa). Both of the assumptions in E94 will

therefore produce an underestimation of CAPE (the parcel is less buoyant than in reality),

while that in LC21 will produce an overestimation (the parcel is more buoyant).

We illustrate the effects of these assumptions on an example atmospheric profile in Figure

S11. The example profile is chosen to match the location and time of Figure 3 in [82]:

Springfield, MO in early June. At 650 hPa, the true buoyancy g∆Tv
Tve

is 0.143 m/s2. The

assumptions in E94 underestimate buoyancy by 14% and 22% (0.123 and 0.111 m/s2), while

that in LC21 overestimates it by a factor of 6 (0.845 m/s2). The discrepancies are about half

as large when averaged over the parcel’s ascent but their relative sizes are unchanged: E94a,b

cause underestimations of 6% and 7% and LC21 causes an overestimation of a factor of 3. If
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we use instead an average summertime profile over the Southeastern U.S., the bias produced

by E94 remains below 13% while that in LC21 is a factor of eight. In both frameworks,

the bias is largely accounted for by an empirical regression coefficient, but the more modest

assumptions of E94 lead to a robust regression across climate states.

Figure S11: Illustration of the effect of assumptions in E94 and LC21, on (left) the virtual
temperatures of parcel and environment and (right) the virtual temperature difference be-
tween parcel and environment. The example profile is that for a 1 × 1 deg grid in ERA5
including Springfield, MO, at 18 UTC on June 6th, 2005, chosen to approximately match
the snapshot used in LC21 Figure 3 (0000 UTC June 07, 2011). E94a (green) raises the
environmental Tv; E94b (blue) lowers Tv in both environment and parcel; and LC21 (red)
raises Tv in the parcel by condensing all water at the LCL. The biases introduced by E94
are more modest than those in LC21, though all are ultimately accounted for by empirical
regression coefficients.
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S2.2 Model details

Table S4: List of CMIP6 Models included in the study. The outputs we use are 6-hourly
model-level data for both historical and ssp585 experiments. The data is available from
ESGF.

Model Variant label Horizontal grid Vertical levels
ACCESS-ESM1-5 r6i1p1f1 192 × 145 38

CanESM5 r1i1p2f1 128 × 64 49
CMCC-CM2-SR5 r1i1p1f1 288 × 192 30

CNRM-CM6-1 r1i1p1f2 256 × 128 91
CNRM-ESM2-1 r1i1p1f2 256 × 128 91

EC-Earth3 r1i1p1f1 512 × 256 91
GISS-E2-1-G r1i1p1f2 144 × 90 40
MIROC-ES2L r1i1p1f2 128 × 64 40

MPI-ESM1-2-LR r1i1p1f1 192 × 96 47
MPI-ESM1-2-HR r1i1p1f1 384 × 192 95

NorESM2-MM r1i1p1f1 288 × 192 32
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S2.3 Supporting Figures

Figure S12: Changes between present and future CAPE, as in main text Figure 3.1 left
panel, but for (left) constant-offset and (right) SO13, calculated as described in text. CAPE
changes are too large in constant offset and too small in SO13: dividing by 4.65 K produces
fractional changes of 12%/K and 6%/K, respectively, vs. the 8%/K derived from model
output. For constant offset in particular, the quantiles fall below the orthogonal distance
regression line above the 80th percentile. In both cases, however, the quantile regression
matches the orthogonal distance regression reasonably well.
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Figure S13: (Left and middle) Mean CAPE heatmap as in main text Figure 3.2 for present
and future model output and (right) for the constant offset synthetic representation of future
CAPE. Contours in black show CAPE of 2000 and 4000 J/kg in each panel, with CTRL
contours repeated in gray in middle and right panels. Contours shift in PGW model output
(center), meaning that warmer or wetter conditions are required to achieve the same CAPE.
The constant offset synthetic (right), which involves changes in surface conditions alone and
has no lapse rate adjustment, exhibits about half the shift of the PGW simulations.

Table S5: Evaluating synthetics: fitted slopes and intercepts of the future CAPE-MSE
framework as in main text Figure 3.4, for actual PGW model output and for three synthetic
datasets. C–C scaling produces too small a slope and constant offset too small an intercept.
Lapse rate adjustment performs well at both.

PGW C–C Constant offset Lapse rate adj.
slope 0.239 0.271 0.240 0.236

x-intercept (kJ/kg) 346.2 350.4 343.8 345.8
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Figure S14: Changes in (top) temperature and (bottom) lapse rate as a function of (left)
temperature bins and (right) latitudinal bins. The blue dashed lines are synthetics applying
a same 4.65 K offset to the CTRL climate (blue solid lines). The damping of CAPE under
a warmer climate can be explained by a more stable lapse rate associated with a given set
of surface conditions.
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Figure S15: Contours of CAPE and surface moist static energy (MSE) in model output for
simulations in present (CTRL, left) and future (PGW, middle) conditions. CAPE contours
follow those of moist static energy in the convection-promoting regime (CAPE > 1000 J/kg,
RH > 40%), The relationship differs between CTRL and PGW (right). Contours here are
cut off at RH=100%, as in main text Figure 3.2. CAPE contours aligns with those of surface
MSE in conditions with high CAPE, suggesting a strong dependence between CAPE and
surface MSE. Future changes in CAPE can be translated to a change in mapping between
surface MSE and CAPE.
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Figure S16: Comparison of the CAPE relationship with dry static energy (DSE) surplus (left)
and with MSE surplus (right). DSE surplus is defined as the difference between surface MSE
and mean mid-tropospheric DSE (virtual-temperature weighted free troposphere DSE). The
top rows show model output (WRF) versus observations (IGRA) under CTRL climate, and
the bottom rows show CTRL versus PGW in model output. Color shading increments are
1.5% for all panels, and the text shows the slopes for CTRL and IGRA/PGW. Conclusions
are 1) the WRF simulation realistically reproduces the observed joint distribution of CAPE
and MSE surplus and 2) a linear expression with MSE surplus outperforms that with DSE
surplus both in residual variance and in robustness.
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Figure S17: Tests of the robustness of the CAPE-MSE surplus relationship with different
subsets of the data. Top left: stations lower and higher latitude than 35N. Top right: daytime
versus nighttime (using only stations below 30N, to avoid biasing the sampling). Bottom
left: summertime (MJJA) versus wintertime (NDJF) (all other panels use summertime data
only; note that the month of February 2005 in the PGW run is removed due to missing
surface 2D fields). Bottom right: the hottest 3 years (2001, 2006, 2012) versus the coldest
3 years (2004, 2008, 2009). Figure uses only CAPE ≥ 1000 J/kg, and all panels besides
lower L. use summertime data only. MSE surplus is derived using the minimum saturation
MSE in each individual profile. Each color shading is a 1.5% increment in density, and the
orthogonal regression is fit using binned median values. The CAPE-MSE surplus framework
(including its intercepts and slopes) is highly consistent across all cases tested.
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Figure S18: Quantile ratio plots of future–present CAPE in model output (PGW vs. CTRL)
and in synthetic future distributions, showing also the effect of RH changes. For each syn-
thetic we show one version with constant surface RH and one with a uniform ∼1% reduction,
which lowers future CAPE changes by about 6% in both cases. (Left) Constant offset. Mean
fractional changes are 1.92 with fixed RH and 1.81 with the reduction. Values are derived
from the average quantile ratios for ≥ 73rd percentile. (Right) Lapse rate adjustment. Mean
fractional changes are 1.71 and 1.61.
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Figure S19: Comparison of probability distributions of midlatitudes summertime CAPE
under current CTRL climate in our WRF model output and in the SO13 zero-buoyancy
model driven by CTRL surface temperatures. (Left) full CAPE distribution and (right)
with y-axis truncated at 0.0005 to show detail. The zero-buoyancy model cannot reproduce
a realistic distribution, overestimating the occurrence of moderately high CAPE (between
1500 and 3500 J/kg). This peak occurs even though we modify the SO13 procedure to
force the integration to stop at the actual LNB of each profile. Without that modification,
SO13 cannot produce zero-CAPE values and the distribution is even more unimodal. SO13
is designed to reproduce climatological means in strongly convecting regions and is not
appropriate for midlatitudes land.
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S3 Supplemental Material for Chapter 4

S3.1 Derivation of full CAPE scaling

Here we show the full derivation of the CAPE scaling framework – the goal is to develop a

simple scaling for CAPE that works across space and different time scales without the need

to carry out integration.

Derivation based on entropy form

We start from the expression in Emanuel (1994) Eq. (6.4.2):

CAPE =

∫
(s∗pp − s∗pa)dT (5.11)

here we assume that the “effect of water content on density can be neglected”. We will

show the reasoning for the validity of such an assumption in the next section (“Derivation

based on buoyancy form”). We will denote the environment with subscript e instead a for

consistency.

Since we are integrating at the same temperature, we could convert the entropy to Moist

Static Energy (or MSE) with ∆s ≈ ∆h
T (assuming the temperature difference between the

parcel and the environment is negligible). Then we have:

CAPE =

∫
h∗p − h∗e

T
dT (5.12)

where hp = h∗p = hs is the surface MSE, conserved for parcel rising adiabatically. Approxi-

mating both lapse rate and environmental temperature by their mean values, we have:

CAPE =

∫
hp − h∗e

T
Γ dz (5.13)

Since the saturation MSE difference is a function of z (or T), and it is always below the
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MSE surplus (∆h, defined as the maximum difference between surface MSE and saturated

environmental MSE), we could replace the integral with a “shape of profile” parameter

(α(z) =
hp−h∗e

∆h ), which is always constrained between 0 and 1; we further define β as the

factor Γ
T .

Further simplifying β and α to a single scaling factor k̂ =
∫
βαdz
∆z , we have the final form

of CAPE scaling:

CAPE = k̂∆h∆z ≈ k
Γ

T
∆h∆z (5.14)

where ∆z (=zLNB−zLFC) is the convective layer depth. Throughout this work, we assume

that both lapse rate and column mean temperature could be approximated with their mean

value on the spatial and temporal scale evaluated.

Note that the “shape of profile” parameter α is mathematically constrained to a number

close to 0.5 for most models, moderate to high CAPE profiles. If the whole profile (weighted

by depth for each layer) is rectangular, α would be twice as large as a triangular-shaped

profile. This number is empirically fitted for every validation we carry out in the manuscript

and is found to be largely constant across different sub-regions, between climate states,

and between summer and winter. The assumption of a constant k starts to break down if

the dryness varies substantially across space and time scale of interest, and the buoyancy

factor contributes to a non-negligible deviation from a fixed constant. Nevertheless, with a

mathematically constrained free parameter, our scaling framework shows robustness across

almost all scales and all models evaluated.

Derivation based on buoyancy form

The scaling could also be derived from the buoyancy form, a more widely known CAPE

definition:

CAPE =

∫
g
Tvp − Tve

Tve
dz (5.15)
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To derive a full scaling, a strong assumption that the water vapor effect on density is

negligible has to be made. This is consistent with the assumption made by Emanuel (1994)

in the derivation of the entropy form of CAPE. With this assumption, we replace the virtual

temperature with the raw temperature in Eq. 5.15. It is noted in Emanuel (1994) that this

error could be as large as 100% for certain profiles in the deep tropics (dry environment but

very moist surface parcel). With this assumption, we approximate CAPE as:

CAPE =

∫
g
Tp − Te
Te

dz (5.16)

Given that we are evaluating buoyancy at the same height above the level of free con-

vection, the difference in the geopotential term disappears. Since the buoyancy is mainly a

function of temperature, the difference in T can be linearly mapped to the difference in satu-

ration MSE between the parcel and environment using the Clausius-Clapeyron relationship:

hp − h∗e = h∗p − h∗e = cp(Tp − Te) +
L2
v

RvT 2
e
q∗(Tp − Te) (5.17)

Substituting into the CAPE expression, we have:

CAPE =

∫
g

cp(1 +
L2
v

RvT 2
e cp

q∗e)

hp − h∗e
Te

dz (5.18)

Given that moist adiabatic lapse rate taking the form of Γm = g
cp

1+
Lvq∗e
RdTe

1+
L2vq

∗
e

RvT2cp

, we have:

CAPE =

∫
Γm

1 +
Lvq∗e
RdTe

hp − h∗e
Te

dz (5.19)

The second terms on the numerator and denominator are O(10−1) of the first term Te. If

we were to neglect variations in the scaling factor, we have a simplified buoyancy determined
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by T alone:

bT = Γm
hp − h∗e
Te

(5.20)

The remaining factor 1

1+
Lvq∗e
RdTe

directly modifies the buoyancy at each level:

b =
1

1 +
Lvq∗e
RdTe

bT (5.21)

The remaining factor reduces the buoyancy, and its effect is larger at hotter temperatures.

(This effect never exceeds 50%, even at a hot surface temperature of around 305 K.) But it

is a pure dependence on T, so for a given temperature, the factor remains largely unchanged.

This suggests that its integrated value will also remain relatively constant with a warming

of a few degrees (see Figure S30 for details).

To reduce the integration to a simplified scaling, we replace hp−h∗e with (hp−h∗e)max ≡

∆h.

CAPE =

∫
β(hp − h∗e)dz = ∆h

∫
βαdz (5.22)

where β is the buoyancy factor multiplied by Γm
Te

, and the “shape of profile” parameter

α(z) =
hp−h∗e

∆h .

Further reducing β to k̂ =
∫
βαdz
∆z , we have the final CAPE scaling:

CAPE = k̂∆h∆z ≈ k
Γ

T
∆h∆z (5.23)

Given that we only need a scalar for Γ for the analysis shown in the main text, here we

approximate Γm with column mean environmental lapse rate.

116



S3.2 Regression methodology

In this work, two types of regressions are carried out:

Ordinary Least Square (OLS) is used when fitting the “shape of profile” parameter k given

all other terms in main text Eq. (2). We use the simplest model without intercept because

CAPE should develop when the MSE surplus exceeds zero. Only cases with CAPE >100

J/kg are considered in these regressions to emphasize the moderate to high CAPE condi-

tions.

Orthogonal Distance Regression (ODR) is used when fitting the fractional changes between

the same variable across two states (current and future, night and day, or winter and sum-

mer). The regression is selected to minimize errors in both dependent and independent

variables. The slope is the ratio between the two states, i.e., a mean change that best

describes the shift in joint distribution space.

S3.3 2-sample K–S test

We use a two-sample Kolmogorov–Smirnov (KS) test to determine whether the distributions

of modeled CAPE and our scaling can be obtained by drawing from the same distribution.

The null hypothesis is that the distributions of the two samples are the same. We reject the

null hypothesis at confidence level (1− α)× 100% when the test statistic Dn,m satisfies

Dn,m > c(α)

√
n+m

n ·m
, c(α) =

√
−ln(

α

2
) · 1

2

where Dn,m is the maximum difference between the two empirical cumulative distribution

functions and n and m are the number of sample points in the two samples being compared

(e.g. n for ERA5 is ∼ 8 million). In this analysis, we have chosen α = 0.05 to test at the

95% confidence level.
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S3.4 Regional “shape of profile” parameter derivation

The “shape of profile” parameter k can be assumed as a constant on certain regional spatial

scales, but its variation can be significant for locations with substantially different humidity

(e.g., land-sea contrast). Therefore, we must derive regional k to construct our scaling across

space properly.

To construct the scaling, we use convoluted boxes of 21 x 21 degree sizes (see Figure S24

for performance), and calculate averages of all relevant physical parameters in these boxes. A

regional k could be obtained from main text Eq. (2) based on convoluted mean parameters,

and we reconstruct regional scaling by multiplying regional k to physical parameters at native

resolution.
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S3.5 Supporting Figures

Figure S20: Vertical profiles of continental U.S. for Dry Static Energy (DSE, gray solid),
Moist Static Energy (MSE, black dot-dashed), and saturation MSE (black solid), during
a high CAPE episode from June 6th–8th, 2005. The rising parcel conserves MSE (black
dashed) as it ascends adiabatically. The red line corresponds to MSE surplus, defined as
the maximum difference between saturation MSE (env.) and surface MSE (parcel), and
Area 1 (green shading) corresponds to the integrated difference between them. CAPE is
proportional to Area 1 under the assumptions stated in the derivation above.

Table S6: Percentage of total variance explained by each term and some combinations in
the full scaling in ERA5 in current climate, Eastern U.S.

Varying term ∆h ∆z T Γ ∆h+ ∆z T + Γ
Interannual 25% 16% 0.13% 1% 76% 2%

Seasonal 19% 20% 0.03% 0.2% 90% 0.3%
Diurnal 21% 25% 0.02% 0.3% 88% 0.4%
Spatial 57% 7% 0.03% 0.8% 106% 1%
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Table S7: Percentage of variance explained by each term and some combinations in the full
scaling in ERA5 in current climate across the globe.

Varying term ∆h ∆z T Γ ∆h+ ∆z T + Γ
Interannual 15% 29% 0.4% 5.4% 69% 8%

Seasonal 32% 23% 0.04% 0.4% 99.6% 0.7%
Diurnal 52% 17% 0% 0.09% 103% 0.1%
Spatial 15% 16% 0.03% 0.2% 83% 0.4%

Table S8: Summary of mean CAPE(J/kg), mean bias (J/kg) relative to ERA5, and “shape
of profile” parameter fitted for each model. The full dataset (6-hourly data) is used without
aggregation.

Model/Reanalysis Mean CAPE Mean bias Fitted k
ERA5 389 / 0.516

ACCESS-ESM1-5 406 17 0.524
CanESM5 363 -26 0.478

CMCC-CM2-SR5 519 130 0.508
CNRM-CM6-1 759 370 0.599
CNRM-ESM2-1 782 393 0.599

EC-Earth3 380 -9 0.501
GISS-E2-1-G 873 484 0.592
MIROC-ES2L 567 178 0.504

MPI-ESM1-2-LR 239 -150 0.466
MPI-ESM1-2-HR 235 -154 0.480

NorESM2-MM 429 40 0.497
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Figure S21: Probability density functions of CAPE (black/red) and scaling (gray/orange) in
ssp585 runs (2091–2100) against historical runs (2005–2014), for (top left) ERA5 historical
period and (other panels) 11 CMIP6 models. Color coding are the same as main text Figure
4.1; ERA5 historical period are shown with thick lines, and CMIP6 models with fainted
lines. The future CAPE distribution are well captured by the scaling across models.
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Figure S22: Probability density functions for reanalyses and all models as in main text
Figure 4.1, but for Contiguous U.S. The performance is even better for a mid-latitude land
sub-region in terms of fractional bias.
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Figure S23: Probability density functions for reanalyses and all models as in main text Figure
4.1, but for scaling based on a global constant k. The global scaling performs extremely well
in reproducing the modeled CAPE.
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Figure S24: (Left) Mean CAPE scaling and (right) “shape of profile” k derived at different
spatial grid resolutions. (Top) modeled CAPE and true k at native model resolution, (mid-
dle) regional scaling and k derived from 21 x 21 deg convolution means, (bottom) scaling
and k assuming a global constant k applies. The scaling is able to capture CAPE variations
over the tropical ocean with a global constant k, but performance over midlatitudes land has
substantially improved.
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Figure S25: Spatial evaluation as in Figure 4.2, but for scaling based on a global constant
k. Note the mean CAPE differs from Figure 4.2 because we are using raw CAPE from each
model and not implementing any convolutional mean or interpolation. The scaling with a
global constant k sufficiently captures spatial variations of CAPE over the tropical ocean,
but severely underestimate mean CAPE over midlatitudes land surface.
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Figure S26: Time series and profiles as in main text Figure 4.3, but for Tropical Pacific. The
diurnal variation magnitude is substantially smaller over tropical oceans, but the scaling still
captures most of the temporal variations and mean profiles.
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Figure S27: (A-F) Time series of CAPE and CAPE scaling across different sub-regions in
MPI-ESM1-2-LR in June 2005, and evaluation of (G) mean fractional bias and (H) mean
CAPE in the period shown above, across models (x-axis). Both the diurnal variation and
episodes of highs and lows in CAPE are well-captured by our scaling.
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Figure S28: CAPE fractional changes on (A, B) climatological (future/control, JJA), (C,
D) seasonal (summer/winter), and (E, F) diurnal (day/night, JJA) time scale, for MPI-
ESM1-2-LR model. (Left) Spatial pattern of decomposed contribution to CAPE fractional
changes from two parameters: A green-ish color means the majority of changes are attributed
to changes in MSE surplus (∆h), while a blue-ish color means changes are dominated by
convective layer depth (∆z). Only locations with CAPE > 100 J/kg in the reference state are
shown. (Right) Boxplots showing the spread of fractional change across space for modeled
CAPE, scaling, and contribution from two decomposed parameters. The decomposition into
MSE surplus and convective layer depth shows different parameters dominate over different
regions on different time scales; the scaling captures the spread of the modeled CAPE changes
pretty well. 128



Figure S29: Decomposition of CAPE variations and dominant factors for 90th percentile,
instead of mean as in Figure S28. The rows from the top are climatological, seasonal, and
diurnal time scales, respectively. The climatological and diurnal CAPE variations are driven
by MSE surplus, while the seasonal variations are driven by convective layer depth. These
findings hold for both mean and extreme levels of CAPE.
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Figure S30: Buoyancy factors in CAPE scaling using (left) dry adiabatic lapse rate or (right)
moist adiabatic lapse rate in derivation. We assume the vertical stratification follows a
constant lapse rate at 6.5 K/km, and the pressure follows an exponential falloff determined
by scale height. The blue and red lines correspond to surface temperatures of 295 and 305
K, respectively. Using a moist adiabatic lapse rate absorbs part of the T dependence and
results in a more constant buoyancy factor across different vertical levels. The integral of
the buoyancy factor remains largely unchanged with a few degrees of warming.
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