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ABSTRACT

Importance: Convective storms are one of the most costly natural hazards in the current
climate. These storms are expected to change with future climate warming and may bring
more devastating socioeconomic costs. Our understanding of these storms has substantially
improved with advancements in theoretical understanding, model physics representation,
and computational power. However, combining insights from simplified frameworks with
those from realistic representations of these storms at scale remains challenging. Large-scale
metrics for convective storms, like Convective Available Potential Energy (CAPE), could
help bridge the gap between these paths. This thesis aims: (1) to evaluate existing model
and reanalyses representation of CAPE distributions, (2) to understand the primary drivers
of CAPE changes between climate states, and (3) to connect weather and climate scale

variations with a full scaling of CAPE.

Approach: This work uses an array of observations and modeling datasets with varying
levels of authenticity and complexity. We approach the scientific questions by combining
these datasets with simple theoretical frameworks. In Chapter 2, we use a radiosonde ob-
servational dataset (IGRA), against which we evaluate reanalyses (ERA-Interim and ERA5)
and a convection-permitting model (WRF) in the current climate. In Chapter 3, we explain
the full distributional projection of CAPE from the convection-permitting WRF simulations
with CAPE-MSE surplus dependence and synthetic profiles. In Chapter 4, we propose and
evaluate the full scaling of CAPE with ERA5 reanalysis and 11 models from the CMIP6

inter-comparison project across space and different temporal scales.

Key Findings: We find that warming increases the occurrence of high CAPE conditions
substantially in all climate models. While CAPE distributions in coarse-resolution models
are not accurate, CAPE in a high-resolution convection-permitting model largely matches
observations other than in extreme CAPE conditions, whose occurrence is underestimated in

the current climate. The low biases arise from an underprediction of hot and humid condi-
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tions. Future projections of midlatitudes CAPE exhibit distributional shifts, so they cannot
be expressed as a simple mean change; they also cannot be sufficiently predicted by changes
in surface conditions alone. We find that the distributional shift can be captured with three
mean changes at both the surface (Ts, RHs) and mid-troposphere (7};,), highlighting the
importance of a lapse rate adjustment in mid-latitude summertime under climate change.
Furthermore, the minimal three state parameters can be reduced to a single parameter of
“MSE surplus”. CAPE dependence on MSE surplus remains consistent across climate states
in both the nudged convection-permitting model (WRF) and in 11 free-running CMIP6 mod-
els. On shorter timescales than climatological shifts, predicting CAPE variations requires at
least one additional input, the convective layer depth. We, therefore, derived a robust CAPE
scaling from entropy and buoyancy forms that effectively captures CAPE variations across
spatial and temporal scales, including diurnal, seasonal, and climatological variations. This
scaling provides key physical insights into how much and why CAPE changes, with strong
implications for societal impacts. It allows model biases to be diagnosed and may provide a

practical tool for weather analysis.
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CHAPTER 1
INTRODUCTION

Convective extremes are one of the most costly natural hazards, causing substantial socio-
economic damage across sectors [69, 9, 66, 39]. Among the 26 billion-dollar weather events
in the Contiguous United States, 19 are related to thunderstorms; these events take on forms
of heavy rainfall, lightning, hail, high wind, tornadoes, or a combination of them [120]. Tt is
critical to understand the characteristics of the convective population, especially their inten-
sity and occurrence, in both current and future climates [90, 19]. The most commonly used
large-scale metric for convective extreme is Convective Available Potential Energy (CAPE)
[86]. This thesis aims to improve our understanding of convective populations in current and
future climates with simple frameworks developed for CAPE.

CAPE is the vertically integrated buoyancy for an adiabatically rising parcel [86]. Tt
is directly linked to the maximum updraft velocity — strong updrafts are key to severe
convective storms. On synoptic time scales, CAPE is used to forecast convective extreme
events. CAPE is routinely reported in all major numerical weather prediction models (e.g.
GFS, NAM, HRRR) at a sub-daily time scale. The covariate of CAPE and vertical wind
shear is a key proxy for the occurrence of severe thunderstorms [14, 11]; the covariate of
CAPE and precipitation is used to predict the occurrence of lightning [111]. The predictive
power of these proxies has been consolidated in multiple papers for types of events including
hail, tornadoes, and waterspouts over Europe [e.g. 58, 102, 127, 126], North America [e.g.
13, 74, 110, 45], Australia [e.g. 3, 15] and other regions [e.g. 153, 113].

An important approach to understanding convective populations is with models. In low-
resolution models like global general circulation models, convection is parametrized due to
the insufficient resolution to resolve fine-scale dynamics. In these schemes, the intensity
and/or triggering of convection (especially deep convection) is usually parametrized based

on CAPE [94, 47]. Some of the most commonly used schemes determine convective mass-flux
1



based on CAPE-relaxing closure (CR closure), for example, Z-M scheme [149, 89], Tiedtke
scheme [131], and Bechtold scheme [6]. These schemes also adopt CAPE in their triggering
functions [145], and multiple works have shown that incorporating modified versions of CAPE
generation rate (ICAPE) as part of the triggering function improves the representation pre-
cipitation in models [e.g. 124, 121, 122]. In high-resolution (e.g., convection-permitting)
models, convection is more explicitly represented. CAPE is a key diagnostic of these mod-
els: how CAPE is accumulated and consumed has important implications for the model
representation of the hydrological cycles [e.g. 104, 112, 51].

CAPE is expected to change with warming, providing important socio-economical im-
plications. Modeling work has used the same covariate between CAPE and vertical wind
shear as a proxy of severe thunderstorm conditions for future projections and found a ro-
bust increase in the occurrence of these conditions [133, 21, 10]. The model uncertainties,
especially in how convective parametrization is treated in these low-resolution models, con-
tribute substantially to the projection uncertainties for the future climate [34, 33]. More
recent work leverages model ensembles (e.g. inter-comparison projects CMIP5 and CMIP6)
to provide better constraints for the projected future convective extremes [134, 35, 80].
Regional convection-permitting model runs suggest that CAPE changes 6-12% /K over the
tropical ocean or under RCE [108, 88, 117, 115], and 11%/K for three stations in the Eastern
U.S. [104].

Previous work has proposed simple models and theories for CAPE, which usually pro-
vides a fundamental understanding of the physical processes and adds value to the existing
model studies. These theoretical works fall under two major categories. One approach as-
sumes that the strong entrainment sets the environmental profile almost completely and thus
predicts CAPE based on entrainment and surface conditions alone using a “zero-buoyancy
model” [117] (later expanded by [154]). The model explains how CAPE responds to surface

temperature and RH in climatological mean profiles [115], and explains high CAPE clima-



tology beyond tropical ocean [116]. [109] proposes an analytical expression for CAPE and
finds that its increase follows C-C scaling under Radiative-Convective Equilibrium (RCE).
However, these theories have limitations when variations on smaller spatial and shorter time
scales are of interest. The other approach treats surface and mid-tropospheric conditions
as independent parameters. Early attempts model the convective atmosphere as a heat en-
gine, with entropy added at (or near) the surface through latent heat and removed aloft
through radiative cooling [46, 106]. Though concerns have been raised about the efficiency
term underestimating the role of dissipation as an entropy sink [109, 119], we believe treat-
ing mid-tropospheric conditions (or lapse rate) separately is necessary to capture CAPE
variations at full spatial and temporal scales.

There remains a gap between theories developed under climatological mean conditions
(e.g. RCE) and theories for CAPE variations on finer spatial and temporal scales. [2] first
proposed a simple model for the midlatitudes transient peak of CAPE by appending a cold
and dry air column onto a moist boundary layer. The simple model is further expanded to
a full scaling of CAPE and validates its ability to capture the diurnal and spatial variation
of CAPE over CONUS [82, LC21 hereafter]. However, the scaling in LC21 is framed around
dry static energy. It thus is a less direct path to approximating CAPE than one with moist
static energy (which is conserved for moist adiabatic ascent). The LC21 scaling requires
deriving average properties with the full tropospheric static energy profile. Therefore, its
time complexity is closer to raw CAPE calculation than a simplified scaling with only scalars.

A simple scaling for CAPE variations on all spatial and temporal scales is greatly needed.



CHAPTER 2
REANALYSES AND A HIGH-RESOLUTION MODEL FAIL TO
CAPTURE THE “HIGH TAIL” OF CAPE DISTRIBUTIONS

Published in Journal of Climate in collaboration with:
James Franke!'2, Zhenqi Luo® and Elisabeth Moyer!2

'Department of the Geophysical Sciences, University of Chicago, Chicago, IL, USA 2Center for Robust
Decision-making on Climate and Energy Policy (RDCEP), University of Chicago, Chicago, IL, USA 2College

of Natural Resources, Faculty of Geographical Science, Beijing Normal University, Beijing, China

Convective available potential energy (CAPE) is of strong interest in climate modeling
because of its role in both severe weather and in model construction. Extreme levels of
CAPE (> 2000 J/kg) are associated with high-impact weather events, and CAPE is widely
used in convective parametrizations to help determine the strength and timing of convection.
However, to date, no study has systematically evaluated CAPE biases in models in a clima-
tological context in an assessment large enough to characterize the “high tail” of the CAPE
distribution. This work compares CAPE distributions in over 200,000 summertime proxim-
ity soundings from four sources: the observational radiosonde network (IGRA), 0.125-degree
reanalysis (ERA-Interim and ERA5), and a 4 km convection-permitting regional WRF' sim-
ulation driven by ERA-Interim. Both reanalyses and models consistently show too-narrow
distributions of CAPE, with the “high tail” (> 95th percentile) systematically biased low by
up to 10% in surface-based CAPE and 20% at the most unstable layer. This “missing tail”
corresponds to the most impact-relevant conditions. CAPE bias in all datasets is driven
by bias in surface temperature and humidity: reanalyses and model undersample observed
cases of extreme heat and moisture. These results suggest that reducing inaccuracies in land

surface and boundary layer models is critical for accurately reproducing CAPE.



2.1 Introduction

Convective Available Potential Energy (CAPE) is an integral quantity of buoyancy in the
convective layer [86], and is considered as a key parameter in convection initiation and de-
velopment. Closely linked to updraft strength and storm intensity, CAPE provides a way to
understand the potential threat of some high-impact weather events such as thunderstorms,
hail, and tornadoes. [14] propose a combination of CAPE and bulk wind shear as a metric for
severe weather in reanalyses, with a 2000 J/kg as a threshold value for extreme events, and
multiple subsequent studies confirm this relationship in models and observations. Studies
relating high CAPE values to extreme precipitation or intense storms in observations [e.g.
58, 81, 36, and many others. In models, [93], for example, show that the number of extreme
precipitation events in general circulation models (GCMs) grows with the covariate between
CAPE and wind shear.

CAPE is also used as a key parameter in convective schemes in GCMs to determine
convective mass flux [149, 146, 5|. In CAPE-relaxing closure (CR closure) schemes, modelers
commonly rely on CAPE to trigger convection and to determine the total vertical mass flux so
that the magnitude of vertical mass flux is directly affected by an inaccurate representation of
CAPE [79, 27]. In some recently developed new schemes intended to reproduce the diurnal
cycle more realistically, convective triggering is directly dependent on CAPE generation
rate (ACAPE) [143, 136]. These schemes have been shown to improve model performance
for precipitation diurnal peak time compared to schemes using classic CR closure [121,
142]. However, it should be noted that these dynamical-based trigger functions introduce
additional sensitivity to CAPE biases, and [122] find that dCAPE trigger functions are highly
sensitive to model resolution.

CAPE is derived from vertical profiles of temperature, pressure, and humidity, which are
measured in situ only from a sparse network of specialized weather stations. Radiosondes

measure atmospheric profiles from weather balloons released twice a day from ~ 1000 sta-
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tions globally. Because radiosonde measurements are both spatially and temporally sparse,
researchers linking measured CAPE to severe weather events have used “proximity sound-
ings”, estimating the severity of extreme weather events based on soundings taken within
a range of ~200 km [e.g. 13, 103, 12]. More recent studies of CAPE and severe weather
use not soundings but reanalyses that assimilate in-situ and remote observations in global
models to provide information at higher resolution [14, 81, 36]. Global gridded reanalyses
also allow ready construction of climatologies: for example, [107] use the ERA40 reanalysis
to construct a 40-year climatology of CAPE, showing that the largest values and variability
are found over tropical land (mean ~2000 J/kg), with a stronger dependence on specific
humidity than temperature.

To diagnose potential changes in CAPE under future higher CO9 conditions, studies must
rely on numerical simulations. With the growth of computational resources, the horizontal
resolution of models used for this purpose has increased. For example, [134] and [35] examine
changes in CAPE and wind shear in GCM projections (~100 km) and infer a likely future
increase in the number of days with severe weather events. [116] use both GCMs and
super-parametrized GCMs (20 km) to study changes in the 95th percentile of CAPE in the
tropics and subtropics during heavy precipitation and find a 6-14% increase per K regional
temperature increase. (Note that CAPE values during heavy precipitation are low, [e.g.
1]; the 95th percentile in observations in [116] is under 2000 J/kg.) [104] examine changes
in CAPE and convective inhibition (CIN) in a 4 km dynamically downscaled simulation of
North America in a pseudo global warming scenario (driven by reanalysis or by reanalysis
with an applied offset in climate variables). They find that both CAPE and CIN generally
increase under warmer conditions and infer a future intensification of convective strength.
Such convection-permitting models, with their improvement in convective dynamics, have
been assumed to help improve the representation of CAPE.

Given the extent of the scientific use of reanalyses and model simulations, it is valuable



to ask how well these products reproduce realistic CAPE values. Coarse-resolution general
circulation models reproduce large-scale spatial patterns in CAPE but can produce large
biases in individual locations [23]. While reanalyses and high-resolution forecast models
are generally assumed to be more accurate, assessments of their biases versus radiosonde
observations have been limited. Studies using restricted samples of soundings near severe
weather events have produced inconsistent results. For example, [130] evaluate surface-based
CAPE (SBCAPE) from the Rapid Update Cycle (RUC-2) weather prediction system 0-hour
analysis against radiosondes sampled near supercells (149 soundings from 1999-2001, in the
U.S. Central and Southern Plains) and find a low bias of ~16% (mean bias of about -400
J/kg in mean conditions of ~2500 J/kg). [25] compare SBCAPE in the RUC 0-hour analysis
with a different sample of soundings near supercell thunderstorms (582 soundings during the
VORTEX2 campaign in 2009-2010, also in the Central and Southern Plains) and find a small
high bias (~150 J/kg) with a large spread. [4] compare mixed-layer CAPE (MLCAPE) in
the reanalysis product ERA-Interim (ERAI) and in the Australian MesoLAPS (Mesoscale
Limited Area Prediction System) weather model with radiosonde soundings near thunder-
storm events (3697 and 4988 soundings, respectively, from 2003-2010, from 16 stations in
Australia) and find slight high biases of 6 and 74 J/kg in conditions of 234 and 255 J/kg
mean non-zero MLCAPE.

To date, very few validation studies have systematically evaluated CAPE bias and errors
in a climatological context with a large enough scale to allow evaluation of the “high tail”
of the CAPE distribution. For convection-permitting models, it is widely assumed that
improved resolution also improves the representation of CAPE, but this assumption has not
been explicitly tested. For reanalyses, only a few studies have compared output to large
collections of soundings, and none assess distributional changes. [55] compare NARR (the
North American Regional Reanalysis) to all radiosondes over 11 years from 21 stations in

the Eastern U.S. (>100,000 soundings with nonzero SBCAPE from 2000-2011), but do not



assess either mean bias or distributional differences. (They do find considerable spread in
SBCAPE errors, with RMSE ~1400 J/kg.) [127] and [128] use even larger sample sizes
(>1 million profiles from 1979-2016, and >5 million profiles from 1980-2018, respectively,
predominantly over Europe and spanning all seasons) and compare CAPE under various
definitions between soundings and ERAI and ERA5 reanalyses. They examine mean biases
(in soundings with non-zero CAPE) and find them large relative to median CAPE, but
median values in both studies are small (~68 and 100 J/kg for MLCAPE).

Even fewer studies have attempted to attribute bias in CAPE to specific model issues.
While one possible cause is error in free tropospheric profiles, multiple authors have noted
the potential role of incorrect temperature and humidity at the surface or boundary layer.
Several studies have explicitly tested this attribution by replacing surface values in models
and data products with observed ones and noting the improved match to radiosonde SB-
CAPE. [25] replaces surface values in RUC with those from the operational surface objective
analysis system (SFCOA) and finds a reduction in bias in 1-hour forecasts. [54] compare 10
years of SBCAPE from a single station, the Southern Great Plains Atmospheric Radiation
Measurement (ARM) site, and show that replacing surface values largely corrects CAPE
values in ERAI reanalysis and values derived from the AIRS satellite. Similarly, in a very
small sample (2 individual case studies), [7] find that replacing surface values of humidity
and temperature corrects a low bias in SBCAPE in a satellite-derived product.

This work seeks to address both needs for large-scale systematic assessment of CAPE
distributions in reanalyses and high-resolution simulations against those in radiosondes and
for attribution of the source of any bias. To focus on conditions that promote strong con-
vection, we examine summertime data over the contiguous United States, using a total of

nearly 200,000 soundings over 12 years of observations.



2.2 Data Description

This study compares four datasets that allow calculation of CAPE over the contiguous United
States from January 2001 to December 2012: radiosonde observations from the Integrated
Global Radiosonde Archive (IGRA) version 2 [41, 42]; the reanalysis products ERA-Interim
(ERAI) and ERA5 [32, 65]; and simulation output from the Weather Research and Forecast-
ing model (WRF) at the convection-permitting resolution, forced by ERAI [105]. Because
our interest is in the “high tail” of the CAPE distribution, we focus on the summer months
when convection is most active and CAPE is largest. We define summer as May to August
(MJJA), following the convention of many studies [e.g. 125, 104], though some work on ex-
treme weather uses an earlier definition of April to July to include the late spring peak of
convection [e.g. 134]. With this definition, IGRA provides a total of 199,787 summertime
radiosonde profiles from U.S. stations with continuous records during 2001-2012. For con-
sistency, analyses shown here involve data matched to radiosonde stations and synchronized
in time, though when evaluating diurnal cycles we also show reanalysis and model output at

additional times of the day.

2.2.1 Radiosonde observations

IGRA is an archive of quality-controlled atmospheric sounding profiles from weather balloons
around the world collected by a standard protocol. The archive is operated by the U.S.
National Oceanic and Atmospheric Administration (NOAA) and profiles in the U.S. are
collected by NOAA’s National Weather Service. In this work we use profiles from all stations
in the contiguous United States that report continuous operation through the years 2001 to
2012, a total of 80 out of the 248 stations historically used. All stations have routine balloon
launches at 00 and 12 UTC each day, though some soundings are missing (17.4% of all
routine launches during this period). Many stations also include sporadic launches at 06

and 18 UTC; we include these profiles in the dataset considered here, though we generally
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disaggregate analyses by the time of day. Of the complete dataset of 199,787 soundings,
83,668 are from 00 UTC, 106,455 from 12 UTC, and 9,664 from additional times. All four
hours are used in our analysis unless otherwise stated. Of these profiles, 1496 (0.75%) are
excluded by our quality control criteria. (See Methods below.)

Variables acquired from IGRA include pressure, temperature, altitude, and vapor pres-
sure, all of which are standard reported values. We convert vapor pressure to specific hu-
midity and dew point temperature for consistency across all datasets. Vertical resolution
varies by station, but most stations report around 80 levels from the surface to 10 hPa pres-
sure. The data are available from https://www.ncdc.noaa.gov/data-access/weather-

balloon/integrated-global-radiosonde-archive.

2.2.2  Reanalysis products

ERAI and ERA5 are both reanalysis products maintained by the European Centre for
Medium-Range Weather Forecasts (ECMWF). Both products assimilate observations into
global models and are available from 1979 to the present. ERAI has a native horizontal
resolution of T255 (= 80km); it has been superseded by ERA5, which has significant im-
provements in spatial and temporal resolution with a native horizontal resolution of TL639
(0.28125°, ~ 31km) [17]. Because our analysis involves matching individual radiosonde sta-
tions, we acquire both reanalyses at a finer spatial resolution (0.125°) produced by ECMWF
with bilinear interpolation for continuous fields. We use output at native model vertical
levels, preserving the highest possible vertical resolution for our CAPE calculation: 60 levels
for ERAT (L.60), and 137 for ERA5 (L.137). We download profiles of temperature and specific
humidity, and surface pressure; the pressure profile is then derived using surface pressure and
coefficients a and b that define the hybrid-sigma coordinates of L.60 and L.137. 2m temper-
ature and dew point temperature along with surface pressure are appended to the bottom

level of profiles. Although ERA5 provides hourly output, we use data at 00, 06, 12, and 18
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UTC to match with ERAIL Both products are available at https://www.ecmwf.int/en/.
Data assimilation is a key component of reanalysis products. Both ERAI and ERA5 as-
similate a homogenized version of IGRA radiosonde observations, the Radiosonde Observa-
tion Correction using Reanalyses (RAOBCORE) [61, 62]. Reanalyses and IGRA observations
are therefore not fully independent. ERAI uses a bias correction for radiosonde temperature
based on RAOBCORE_T_1.3, which is further adjusted and implemented to the Continuous
Observation Processing Environment (COPE) framework in ERA5 [43]. The assimilation
process of ERAI uses the following exclusion criteria for radiosonde data: 1) any radiosonde
observation below the model surface, and radiosonde-observed specific humidity in either 2)
extreme cold conditions (T < 193 K for RS-90 sondes, T < 213 K for RS-80 sondes, T <
233 K otherwise), or 3) high altitude (p < 100 hPa for RS-80 and RS-90 sondes, p < 300

hPa for all other sonde types) [32].

2.2.83 High-resolution model simulation

The high-resolution model output we use is a 4-km resolution dynamically downscaled “ret-
rospective” simulation over North America first described by [83]. The simulation is created
as the control run of a pseudo-global-warming experiment and involves forcing the WRF
(Weather Research and Forecasting) 3.4.1 model with ERAI reanalysis. The WRF simula-
tion is run with 4 km grid spacing and 50 vertical levels up to 50 hPa, with parametrization
schemes including: Thompson aerosol-aware microphysics [129], the Yonsei University (YSU)
planetary boundary layer [68], the rapid radiative transfer model (RRTMG) [70], and the
improved Noah-MP land-surface model [91].

The model uses ERALI as initial and boundary conditions, with large-scale spectral nudg-
ing applied to geopotential, temperature, and horizontal wind. Nudging is applied through-
out the model domain, at all altitudes above the planetary boundary layer, and is intended

to remove known large-scale issues (such as summertime high-temperature bias over the
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central U.S. [87]) while still allowing smaller-scale processes to modify local profiles. Values
are nudged at a strength corresponding to an ‘e-folding’ time of 6 hours, using a wavenum-
ber truncation of 3 and 2 in the zonal and meridional directions, respectively. Because the
experiment is intended to reproduce observed snow cover over North America, some modifi-
cations are made to the land surface model, including representing the heat transport from
rainfall caused by the temperature difference between raindrops and land surface, and modi-
fying the snow cover/melt curve to produce more realistic surface snow coverage and reduce
wintertime low bias in temperature.

The WREF model output is acquired from the NCAR Research Data Archive ds612.0
[105]. We take the pressure, temperature, mixing ratio, height from the CTRL 3D subset,
and surface topography, surface pressure, 2m temperature, and mixing ratio from the CTRL

2D subset.

2.3 Methods

2.83.1 CAPFE calculation

All CAPE values shown in this work are calculated with SHARPpy (the Sounding and Hodo-
graph Analysis and Research Program in Python) version 1.4.0a4, a widely used collection
of sounding and hodograph analysis routines designed to provide free and consistent analysis
tools for the atmospheric sciences community [https://github.com/sharppy/SHARPpy, §|.
SHARPpy is an extension of SHARP, which was first released in 1991 [63]. CAPE in the
SHARPpy package is calculated following the definition of [86] in which temperature is au-
tomatically corrected to virtual temperature [40]. The required variables are vertical profiles
of pressure, temperature, height, and dew point temperature. Wind speed and direction are
optional and we do not include them. The package can produce the CAPE of parcels either
at surface level (SBCAPE), at the “most unstable” level (MUCAPE), or using the averaged

12



properties of “mixed layer” (MLCAPE). SHARPpy is the most commonly used package in
the CAPE literature [e.g. 54, 74], which provides a comprehensive list of convective indices
as output.

We evaluate CAPE for all summertime profiles corresponding to radiosonde soundings
other than those with the following exclusion criteria: 1) no surface-level measurements (7
soundings or 0.004% of the total); 2) fewer than 20 vertical levels of observations (0.74%
of soundings), or 3) excessive discrepancy of relative humidity between the surface and
one level above, i.e. RHg¢. — RHje,1 > 65% (16 soundings or 0.008%). An excessive RH
gradient implies unphysical mixing; the exact threshold is somewhat arbitrary but is chosen
to exclude outliers where CAPE > 20,000 J/kg. In some cases, radiosonde profiles involve
missing values in the height variable, even though temperature, pressure, and humidity
are reported. In these cases, we interpolate height based on pressure using the SHARPpy
“INTERP” function.

2.3.2  Testing sensitivity to vertical interpolation

In the analysis here we interpolate only where data are missing in radiosonde profiles, using
the SHARPpy “INTERP” function. The number of vertical levels used is therefore inconsis-
tent across datasets. Other authors of CAPE comparison studies have chosen to interpolate
to produce consistent vertical sampling, for example, [54] who use 202 fixed levels (2 and 30
meters, followed by 75 m spacing from 75 m to 15 km). We test the robustness of derived
CAPE to this interpolation by considering mean errors in profiles binned by number of lev-
els, using observations from the year 2012. We find that mean absolute errors introduced
by interpolation are over 25 J/kg for profiles with <10 levels, but fall to ~5 J/kg once the
number of levels exceeds 60. However, since profiles with more missing levels are more likely
to have low CAPE, the mean fractional error drops even more steeply (Figure S1): 14% for

<10 levels; 7% for 10-20 levels; and 0.8% for >20 levels, justifying our choice of 20 as a
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cutoff. (Note that the bias introduced by interpolation across these profiles is smaller, only

-0.3%. See [25] for similar conclusions.)

2.3.3 CAPEFE definitions

CAPE is the potential buoyancy of a parcel lifted to its level of free convection, but the
parcel considered may be located at the surface (SBCAPE), at the most unstable vertical
level (MUCAPE), or may be a hypothetical parcel initiated using the mean state of the mixed
layer (MLCAPE). All are standard outputs of SHARPpy, with the lowest 100 hPa used to
calculate MLCAPE. (See [16] for discussion of alternate choices). The appropriate CAPE
definition differs according to the scientific question addressed. Some authors argue that
MLCAPE is most appropriate for characterizing the average properties of the parcel being
initiated by convection, and MUCAPE may best capture convective extremes [28, 16, 14], but
we focus on SBCAPE in this work for several reasons. First, most prior CAPE comparison
studies have used either only SBCABE [e.g. 55, 54], or all three definitions [25, 127]. SBCAPE
is the most widely used in the climate community [107, 116], and several common CR-closure
convective parametrizations use SBCAPE [e.g. 149, 143, 136]. Finally, using SBCAPE allows
the most straightforward bias attribution, since it allows us to test the effect of errors in
surface properties alone.

To understand the implications of the different definitions, we compare surface-based
CAPE with that of the most unstable layer, MUCAPE, the maximum possible value for
each profile (Figure 2.1). Because our focus is on incidences of very high CAPE, we are
especially interested in whether different CAPE definitions lead to different understandings
of the “high tail” (defined as incidents above 90th percentile CAPE). In all datasets, the
higher the CAPE value, the more similar SBCAPE and MUCAPE become (Figure 2.1a). In
conditions conducive to extreme weather (> 4000 J/kg), SBCAPE and MUCAPE are essen-

tially identical in reanalyses and the WRF model output. Radiosondes show a slightly larger
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Figure 2.1: Comparison of SBCAPE and MUCAPE for all datasets, using all soundings
considered. Data is binned by SBCAPE value, and we exclude values under 200 J/kg. a)
Mean ratio of MUCAPE over SBCAPE, and b) mean of ratio of the most unstable pressure
level over surface pressure. Note that y axes are log scale. For both CAPE and pressure
level, the ratio approaches 1.0 as CAPE increases: in higher CAPE conditions, the most
unstable level is closer to the surface.

distinction between SBCAPE and MUCAPE in all conditions. Mathematically, this means
that model/radiosonde bias in MUCAPE must be more negative than those in SBCAPE.
The pressure difference of the most unstable layer from the surface follows a similar pattern
(Figure 2.1b). The higher the CAPE value, the more the most unstable layer approaches
the surface, though observations again show more distinction. In conditions with SBCAPE
~1000 J/kg, the average most unstable parcel in radiosonde soundings lies ~30 hPa above
the surface, but only ~10 hPa in reanalyses and the WRF model. Above > 4000 J/kg, the
most unstable layer in reanalyses and model lies at the surface.

In the last decade, some authors have argued that CAPE in any definition is not the best
metric for diagnosing conditions conducive to severe weather. [59] propose using instead the
maximum updraft velocity calculated with parcel theory, WMAX, which arguably better

represents the intensity of updrafts. Several recent papers have followed that convention
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[10, 102, 127]. Results here can translated to differences in WMAX distributions by using
the approximation WMAX ~ v2CAPFE, since the calculation of WMAX assumes no initial

parcel vertical velocity.

2.4 Results — biases in CAPE distributions

2.4.1 CAPEFE distributions across datasets

Comparison of the distribution of CAPE in the datasets considered shows immediately that
reanalyses and the WRF model output underpredict incidences of very high CAPE. Table 2.1
shows the breakdown of SBCAPE above or below threshold values, and Table 2.2 the same for
MUCAPE. In all datasets, CAPE distributions are zero-peaked, i.e. a large fraction (~40%)
of cases involve zero CAPE, even in the highly convective summertime. The frequency of zero
CAPE is broadly similar across datasets, but in reanalyses and the WRF model, incidences
of extreme CAPE drop off sharply, with values above 4000 J/kg substantially underpredicted
in both definitions. For SBCAPE, reanalyses and the WRF model produce 40-50% fewer
incidences of values > 4000 J/kg. For MUCAPE, the underprediction is even more severe,
with 65-75% of all incidences missed. (Biases in MLCAPE are intermediate between those
in SBCAPE and MUCAPE.)

These biases in the “high tail” are related to a too-narrow distribution of CAPE in the
WRF model and reanalyses. That is, reanalyses and the WRF model produce too few
incidences of both extremely low and extremely high CAPE and too many incidences of
intermediate CAPE. Figures 2.2 and 2.3 show distributions of non-zero CAPE values for
SBCAPE and MUCAPE, respectively. Because valid zero values make up a large fraction
of soundings, the choice whether to include them can potentially affect analysis, but in the
datasets here, zero incidences are similar (Tables 2.1-2.2). We use two methods to show

distributions: histograms (probability density functions, or PDFs) and quantile ratio plots.
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Figure 2.2: Probability density functions (top row) and quantile ratio plots (bottom row)
of CAPE from reanalysis (ERAI and ERAD5), high-resolution model output (WRF), and
radiosonde observations (IGRA) for MJJA 2001-2012, with times and locations matched to
IGRA observations. Points with zero CAPE are excluded (36-40% of datasets, see Table
2.1). Left column shows full distribution and right column the “high tail” (90th percentile
and above). For IGRA, the 90th percentile is ~2800 J/kg, the 95th ~3200 J/kg, the 97.5th
~4000 J/kg. In PDFs (top), plots are cut off at 6000 J/kg on the x-axis, omitting less than
0.1% of all points. In quantile ratio plots (bottom), a slope downward to the right indicates
a narrower distribution. The WRF model and reanalyses consistently underpredict CAPE
values in this “high tail”.
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Figure 2.3: As in Figure 2.2, but for MUCAPE instead of SBCAPE. Points with zero CAPE
are excluded from the analysis (23-35% of the datasets, see Table 2.2). We match the time
and locations of model output to IGRA observations. PDF x-axes are cut off at 6000 J/kg,
as less than 0.4% of all points lie above the limit. For IGRA, the 90th percentile is about
3370 J/kg, the 95th percentile ~4010 J/kg, and the 97.5th percentile ~4550 J/kg.

PDFs provide a basic sense of the CAPE distribution, and quantile ratio plots highlight dis-
tributional differences. Quantile ratio plots are constructed by taking the ratio of individual
quantiles of two distributions being compared (e.g. CAPE in reanalysis and radiosondes);

a value above 1 means that given quantile is overestimated. A simple multiplicative trans-

formation produces a horizontal line whose value is the ratio of means, and a too-narrow
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distribution produces a slope downward to the right.

Table 2.1: Fraction of observations of SBCAPE in each dataset that exceed threshold values,
or have zero value. Data used is the full 2001-2012 MJJA dataset, inclusive of zeroes, with
time /location matched to radiosonde observations. Parentheses show the ratio of incidences
observed for each model or reanalysis relative to IGRA radiosondes; a number smaller than
1 means underestimation. Note the large deficits in the most extreme SBCAPE category
(>4000 J/kg), with the number of incidences underestimated by ~40-50%.

IGRA ERAI ERA5 WRF

Zeroes 36.1% 38.1% 35.0% 39.1%
2000 J/kg | 13.0% | 12.8% (0.98) | 13.8% (1.06) | 13.2% (1.02)
~3000 J/ke | 54% | 4.0% (0.74) | 4.9% (0.91) | 4.6% (0.85)
> 4000 J/kg | 1.6% | 0.8% (0.50) | 1.0% (0.63) | 1.0% (0.63)

Table 2.2: As in Table 2.1 but here for MUCAPE. Deficits in the “high tail” are larger for
MUCAPE than SBCAPE, as expected based on Figure 2.1. Parentheses show the ratio of
incidences observed for each model or reanalysis relative to IGRA radiosondes. The number
of incidences of MUCAPE above the conventional severe-weather threshold (2000 J/kg) is
underestimated by ~25-35% and that of extreme MUCAPE (> 4000 J/kg) by ~65-75%.

IGRA ERAI ERAS WRF

Zeroes 22.7% 30.3% 28.2% 32.8%
> 2000 J/kg | 22.3% | 16.3% (0.73) | 17.5% (0.78) | 14.8% (0.66)
=~ 3000 J/ke | 10.9% | 5.2% (0.48) | 6.5% (0.60) | 5.0% (0.46)
> 2000 J/kg | 3.9% | 1.0% (0.26) | 1.3% (0.33) | 1.0% (0.26)

Reanalyses and the WRF model output considered here show the downward and right-
ward slope characteristic of too-narrow distributions: values are too large in low quantiles
and too small in high quantiles. SBCAPE in the 20th—60th percentiles (50-1000J/kg) is
overestimated by 84-94%, but above the 95th percentile is underestimated by 6-10%. These
distributional errors occur even though mean SBCAPE values are similar in all datasets:
within +1 to +6% with zeroes included, i.e. slightly larger in reanalyses and the WRF
model than in radiosondes). This distinction highlights the need for distributional analy-
sis, since even severe distributional biases may not be reflected in mean values (shown in
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Appendix Table S1).

The too-narrow distributions in reanalyses and the WRF model are also seen when al-
ternate definitions of CAPE are used. (Figures 2.3 and S2 show MUCAPE and MLCAPE,
respectively). However, MUCAPE and MLCAPE also show significant low mean bias, with
mean values -20 to -28% for MUCAPE and -16 to -22% for MLCAPE. These low biases lead
to even stronger deficits in the “high tail”, with quantiles above the 95th underestimated by
~18-20% in MUCAPE and ~15-17% in MLCAPE.

2.4.2  Spatiotemporal structure

Biases might be expected to show spatiotemporal structure, since CAPE is strongly linked
to spatially complex fields of temperature and humidity. This relationship is illustrated in
Figure 2.4, which shows a summertime snapshot of surface values from the WRF simulation
(SBCAPE, temperature, and specific humidity), coincident with the radiosonde launch time
at which CAPE values are typically highest (00 UTC, late afternoon or early evening in
the contiguous U.S.). The time period shown is affected by a frontal system that brings
high humidity to the Southeast and high temperatures to the Central U.S. (See Appendix
Figure S3 for a weather map.) CAPE reaches extreme values only where both temperature
and specific humidity are high, resulting in strong spatial gradients and a narrow band of
extreme CAPE extending from southeastern Texas to northern Mississippi.

Two processes appear to drive the spatially correlated CAPE errors in Figure 2.4: large-
scale patterns of model bias, and mismatches in the location of fronts or other weather
features associated with strong gradients. The former is clearly evident in Figure 2.4. The
WRF model is too warm and too dry in the Central U.S., coincident with and likely causing a
large region of underestimated model CAPE. The warm-and-dry bias in this WRF simulation
is extensively documented [83, 87]. Error in front location, on the other hand, likely produces

overestimation of CAPE in stations in Tennessee and Alabama in Figure 2.4. Large-scale and
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Figure 2.4: Snapshot of WRF simulation output at 00 UTC, July 21st, 2012. Panel colors
show SBCAPE, 2 m temperature, and specific humidity. Ocean values are masked out.
Circles show IGRA stations, with circle area showing the magnitude of bias in each variable
and color indicating its sign (red = high, green = low). Note the low CAPE bias in the
Central U.S. associated with too hot and too dry model conditions. Sounding marked “X”
may also be affected by errors in the location of the warm front.

weather-related errors have different consequences for comparisons of CAPE in models and

observations. Large-scale biases should be persistent, and will affect the overall distribution
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of CAPE. Fine-scale weather-related errors, on the other hand, vary rapidly on timescales
of hours. While they can produce severe mismatch in individual soundings, and therefore
introduce scatter in a model-observation comparison, they should have minimal effect on

CAPE distributions.

2.4.8 Calibration with ground observations

Scatter in SBCAPE errors is in fact large in the WRF model and reanalysis products con-
sidered here, with correlation coefficients against radiosonde values of only R = 0.68-0.83.
Figure 2.5 shows the comparison of WRF and radiosondes (panel a, R = 0.68); see Appendix
Figures S4-S5 for ERAI and ERA5. Similar behavior is found in other studies, [e.g. 55] find
correlation coefficients of 0.36-0.71; [127] find 0.71; and [54] show that reanalysis and satellite
pseudo-soundings cannot reproduce radiosonde observed SBCAPE at individual timesteps.
Following [54], we test to see if these inaccuracies can be corrected by simply replacing
surface thermodynamics fields with those from radiosondes (Figure 2.5). That is, we test
whether errors in the WRF model and reanalysis SBCAPE are driven primarily by surface
conditions rather than by the structure of atmospheric profiles. Both factors can be im-
portant because CAPE is a function of the integrated buoyancy across the convective layer,
which is determined by both parcel and environmental temperature and moisture. In Figure
2.5, we successively replace surface values in WREF output, first temperature and pressure
(panel b), then specific humidity and pressure (panel c), then all surface fields (panel d).
Surface values do seem to govern SBCAPE bias almost entirely. For WRF, correcting the
surface specific humidity raises the correlation coefficient from 0.68 to 0.91, and replacing all
surface fields raises it to 0.99, removing scatter almost entirely. While correcting temperature
does not raise the correlation coefficient in WRF, and instead lowers it to 0.65, for other
datasets the temperature correction also contributes positively; see Appendix Table S2. We

also consider an alternate measure of correspondence, the percentage of points that fall
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Figure 2.5: Comparison of SBCAPE in WRF and radiosonde observations, for all points
during summer (MJJA) 2001-2012 when observations are available, inclusive of zeroes. Color
bar shows log density (midpoint color is 1% of all observations), and both axes are also log
scale. a) Raw data, showing wide scatter. Other panels: Recalculated WRF CAPE using b)
observed surface temperature, c) observed surface humidity, and d) all surface values from
observations. All recalculated CAPE values also involve a pressure correction whose effects
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are small. For analogous figures for ERAI and ERAD5, see Appendix Figures S4-S5.

within +800 J/kg of the one-to-one line (the width of two cells in Figure 2.5). For raw WRF
data, the percentage is 78.6% (RMSE = 846 J/kg); correcting surface temperature raises
the percentage slightly to 79.3% (RMSE = 875 J/kg); correcting surface humidity raises it
to 90.2% (RMSE = 535 J/kg), and full calibration to 99.5% (RMSE = 162 J/kg). Results
for ERAI and ERA5 are similar. Adjustment of surface values also largely corrects the

distributional problems at high CAPE, so that for quantiles above 0.9, corrected SBCAPE
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values in reanalyses and the WRF model match those from radiosondes to within -0.2% to

+2.0%. Correcting upper-tropospheric profiles has a minimal effect on CAPE values.

2.5 Results — CAPE in temperature & humidity space

The fact that reanalyses and modeled SBCAPE can be brought into agreement with ra-
diosondes by simply replacing surface values implies that thermodynamic fields at upper
levels are not important factors in SBCAPE biases. It may then be reasonable to consider
SBCAPE as a function of surface thermodynamic fields alone. We therefore examine SB-
CAPE in the 2D parameter space of temperature (T) and specific humidity (H) to ask: 1) Is
the density distribution of SBCAPE in T-H parameter space similar in reanalyses, model,
and radiosondes? 2) What surface conditions are related to the highest SBCAPE days? and

3) What factors drive model and reanalysis biases in SBCAPE?

2.5.1 Dependence on surface temperature and humidity

CAPE distributions in T-H parameter space are in fact highly robust across all datasets.
Figure 2.6 shows the heatmap of mean CAPE for radiosonde measurements, with data binned
in steps of 3 K and 1.35 g/kg. CAPE values show a smooth gradient from lowest values
at bottom left (warm and dry conditions) to highest at top right (hot and humid). This
dependence on surface T and H is similar for all datasets (Appendix Figure S7). Contour
lines at 2000 and 4000 J/kg for radiosonde observations are therefore nearly identical to those
for other datasets (overlain). This similarity means that surface T and H robustly determine
SBCAPE in all datasets. Of course, each T-H bin in Figure 2.6 involves an underlying
CAPE distribution, but distributions are nearly identical for all datasets; see Figure 2.7
for two examples. These results support the previous finding that bias in SBCAPE can be
explained by bias in surface measurements alone. (See Appendix Figure S8 for distributions

of reanalyses and model errors in T, RH and H for the profiles shown in Figure 2.7, and
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Figure 2.6: Mean radiosonde observed SBCAPE in surface temperature and specific humidity
parameter space, for the entire dataset: summer (MJJA) 2001-2012 over the contiguous U.S.,
inclusive of all launch times and of zero values. Only bins with at least 10 samples are colored.
Colors denote mean CAPE values averaged in bins of 3 K and 1.35 g/kg. Solid and dashed
lines mark contours of 100% and 50% relative humidity (RH) at p = 1013 hPa. Soundings
with lower surface p will be displaced up and left from these RH contours. Symbols '+’ and
'x” mark two cases ('warm’ and "hot’) used in Figure 2.7. Contours show approximate limits
for 2000 and 4000 J/kg SBCAPE for all datasets with no surface corrections applied: IGRA
(black), ERAI (blue), ERA5 (green), and WRF (red). Similarity of contours means that
all datasets show similar bivariate distributions. See Appendix Figure S6 for the absolute
occurrence in each bin in IGRA and Figure S7 for analogous figures for all datasets.

Table S3 for summary statistics.)
Only a restricted set of conditions tend to produce the “high tail” of CAPE distributions
associated with extreme, high-impact weather. We show both 2000 J/kg and 4000 J/kg

contours to bracket prior definitions of extreme weather thresholds. For example, [14, 134],
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and [35] all use 2000 J/kg in MLCAPE, which corresponds to SBCAPE ~3000 J/kg in our
dataset. The conditions producing mean SBCAPE above 2000 J/kg involve temperatures
above 297 K for 100% relative humidity (RH), or above 304 K for 50% RH. For mean
SBCAPE above 4000 J/kg, the required temperatures are 2-3 K warmer, i.e. 299 K at 100%
RH or 307 K at 50% RH. Significantly higher SBCAPE values are possible: in the most
extreme conditions regularly sampled by radiosondes, 308 K at 65% RH, the average observed
SBCAPE is over 7400 J/kg. Reanalyses and the WRF model rarely produce SBCAPE
values this high (8 out of a million incidences, while observed incidences are nearly 10x more
frequent at 60 out of a million), not because they differ in fundamental atmospheric physics

but because they rarely sample the appropriate surface conditions.

2.5.2  Identifying sources of CAPFE bias

Because SBCABE is strongly determined by surface temperature and humidity, biases in
SBCAPE in reanalyses and the WRF model appear driven by biases in these surface ther-
modynamic values. We can therefore use the T-H diagram to identify the factors that lead to
underprediction of the “high tail” of CAPE. Figures 2.8 and 2.9 use the same T-H diagram
as in Figure 2.6, only now we show not the heatmap of CAPE but the density of observa-
tions of each T-H grid cell and the difference in that number between datasets. Because
the diurnal cycle strongly affects surface values, we show separate figures for 00 UTC (U.S.
late afternoon/evening) and 12 UTC (U.S. early morning), omitting the limited number of
samples at other times. Reanalyses and the WRF model all underpredict the extreme T-H
values associated with extreme CAPE.

Of the two times routinely sampled by radiosondes, the cooler 12 UTC launches — early
morning in the U.S. — do not generally involve conditions associated with high CAPE (Fig-
ure 2.8a). Conditions at this time are almost never warm enough to produce SBCAPE

>2000 J/kg, even though relative humidities are high, with a tight distribution centered
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Figure 2.7: Comparison of SBCAPE in all datasets for specified T-H grid cell: the ‘Warm’
example is centered at 298.5 K and 12.825 g/kg (63.4% RH), and has mean SBCAPE 791
J/kg; the ‘Hot’ example is at 307.5 K and 16.875 g/kg (48.7% RH) with mean SBCAPE
3308 J/kg. Each bin is 3 K in width, and 1.35 g/kg in height. Top row shows uncorrected
SBCAPE from reanalyses and the WRF model, and bottom corrected with IGRA surface
values. Note that since the correction involves adjusting surface T and H, the profiles sampled
in top and bottom rows are different. The ‘warm’ bin has 2438 profiles in the uncorrected
data and 2063 in the corrected, while ‘hot’ has 378 and 508, respectively. Tickmarks at panel
top show the mean of each distribution. Distributions are very similar; correcting surface

values only slightly adjusts means (from a maximum bias of -5% in uncorrected data to -2%
after correction).
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Figure 2.8: a) Density of observed surface conditions in temperature — specific humidity
parameter space at 12 UTC (early morning in the contiguous U.S.), again for 2001-2012
MJJA radiosonde observations. Contours are repeated from Figure 2.6 to mark conditions
associated with 2000 and 4000 J/kg SBCAPE. Darkest blue color shown is 5.6%—6.4% of
distribution; lightest is 0-0.8%. Grids with no more than ten samples are defined as out-
liers and removed (only 0.03% of all model or reanalysis samples). Nighttime and early
morning conditions are tightly distributed in relative humidity (RH ~80%) and tend to be
relatively cool (T < 300 K), with almost no conditions sampled that would tend to produce
SBCAPE >2000 J/kg. b—d) — heatmaps of density differences between model/reanalysis
and observations for ERA5, WRF, and ERAI. Color scale shows fractional difference after
normalizing each bin by IGRA raw density. Orange = underpredicting and purple = over-
predicting. Reanalyses and the WRF model all underestimate relative humidities (orange
near the RH=100% contour) and WRF shows a strong warm dry bias (dark purple in lower
right).
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Figure 2.9: As in Figure 2.8, but for 00 UTC (late afternoon / early evening in the contiguous
U.S.) a) Density of observed surface conditions in T-H diagram. At this time period the
density distribution peaks in conditions associated with 2000-4000 J/kg CAPE. Darkest
blue color shown is 2.1%-2.4% of distribution; lightest is 0-0.3%. b—d) Density differences
between reanalyses / model and radiosondes. ERA5 and ERAI underpredict both the highest
relative humidities and the highest temperatures (orange near the RH=100% contour and
on the right side), while WRF shows a warm dry bias (purple in lower right). Reanalyses
and model all severely underpredict the conditions associated with extreme CAPE (orange
in upper right).
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around ~80%. Both reanalyses and WRF are biased dry, underpredicting incidences close
to saturation, and WRF is also biased warm (Figure 2.8b—d).

Most of the observed extreme CAPE values occur during the warmer late-afternoon 00
UTC launches (Figure 2.9a). Relative humidities are lower then because specific humidity
does not change much during daytime warming: the modal (most probable) 00 UTC surface
conditions are between 303-309 K and ~50% RH, with mean SBCAPE of ~3000 J/kg,
similar to the ‘hot’ example of Figure 2.7. Because reanalyses and WREF are dry biased,
they underpredict high RH conditions in general and especially the extreme hot and humid
conditions associated with the largest CAPE. On the other hand, reanalyses and WRF
overpredict hot and dry conditions, WRF especially so (Figure 2.9b—d). The combined warm
and dry bias explains why correcting WREF surface temperatures alone does not improve the

match to radiosonde CAPE measurements.

2.6 Results — diurnal cycles of CAPE and biases

As shown in Section 5, the largest CAPE biases in the WRF model and reanalyses occur
when conditions are most favorable to high CAPE, i.e. in daytime. This diurnal difference
could result from inherent nonlinearity, but could also reflect a bias in some aspect of the
diurnal cycle of surface thermodynamic fields. We therefore examine the diurnal cycle of
surface temperature and specific humidity in reanalyses, model, and radiosondes. As an
illustration, we show in Figure 2.10 a 5-day episode exhibiting large CAPE error, which
is broadly representative of problematic reanalyses and model pseudo-soundings, and in
Figure 2.11 we compare this episode to summertime climatological mean diurnal cycles for
all, low-CAPE, and high-CAPE conditions (10th/90th SBCAPE percentiles). The sequence
in Figure 2.10 runs from July 24-28, 2012 at a station in Wilmington, North Carolina.
On 3 occasions radiosonde profiles show extreme CAPE of nearly 5000 J/kg, but model

and reanalyses grossly underpredict these excursions, producing CAPE values ~2500 J/kg
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too low. Since the temporal pattern of temperature evolution appears synchronous in all
datasets, these biases appear unrelated to any mismatch of frontal systems. (See Figure S9
for the WRF model output and bias structure, and Figure S10 for the July 26th weather
map.)

In the example episode of Figure 2.10, strong CAPE discrepancies result when models and
reanalyses fail to capture short-term increases in specific humidity associated with extreme
CAPE. Biases are driven by humidity, since throughout the 5-day period the WRF model
and reanalyses are slightly too warm, with a fairly accurate diurnal temperature cycle (~5-
6K, with the WRF model exhibiting the largest amplitude). Comparison with climatological
means on the T-H diagram of Figure 2.11 suggests that the daytime humidity rise in the
example episode is extreme even for high-CAPE conditions, but the climatological biases are
otherwise broadly similar. Reanalyses and WREF' have overall dry biases that are exacerbated
in WRF during the day (in the climatological case, by an actual daytime drop in specific
humidity). Diurnal cycles of temperature cycles are similar, though daytime warming is
slightly too weak in reanalyses, and WRF has an overall high temperature bias of ~1.3 K.
In all cases, too-low surface-level humidity appears to be the driving factor that strongly
suppresses incidences of extreme CAPE.

CAPE biases in the example episode of Figure 2.10 differ in ERA reanalyses and the WRF
model, but both produce deficits in specific humidity. In all datasets, temperatures match
reasonably well in early morning (12 UTC), but daytime temperature rise is slightly too
small in ERA reanalyses and considerably too large in WRF. ERA RH is reasonably accurate
throughout, so its too-low temperatures are associated with a small specific humidity deficit.
In WRF, specific humidity actually falls during the day, something not seen in reanalyses or
radiosondes, contributing to erroneously low relative humidities. During the two “missed-
high-CAPE” episodes, WRF RH is ~25 percentage points below that in radiosondes.

To demonstrate that biases during this single-station episode are typical for warm condi-
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Figure 2.10: An example episode of high CAPE and substantial CAPE error: 5 days from
July 24th to 28th, 2012 over Wilmington, North Carolina, color coded as before. Reanalyses
and the WRF model are shown every 6 hours; IGRA soundings are generally every 12 hours
(although note the irregular timing for radiosonde launching on the 26th, when daytime
sampling occurred 6 hours earlier than usual, at 18 UTC). Vertical lines mark the two
examples discussed in text. Over this entire period, reanalyses and WRF model show hot
and dry bias; when the bias in absolute humidity is large, the dry bias produces too-low
CAPE even despite too-high temperatures. 29
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Figure 2.11: The diurnal cycle in T-H space in all datasets. Thick lines connect 00 UTC
(right end, marked by ‘x’) and 12 UTC (left end, marked by ‘0’) values. Color code follows
the convention throughout this work. a) The average over the 5-day episode in Figure 2.10.
b) Mean summertime diurnal cycles over the entire domain, for all profiles (dot-dashed),
and for high-CAPE (solid) and low-CAPE (dashed) subsets, defined as 00 UTC SBCAPE
values above 90th / below 10th percentile in each dataset, and values 12 hours later. In all
cases, WRF and ERA are biased dry, and WRF is biased warm. In the example (a), daytime
observed specific humidity increases more than in WRF or ERA. In the climatological mean
(b), specific humidity is roughly constant in observations and ERA but erroneously decreases
in daytime in the WRF model, exacerbating mid-day bias.
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tions conducive of extreme CAPE formation, we compare its diurnal cycle to climatological
means across all stations. Figure 2.11 uses the temperature-humidity (T-H) diagram to
show mean diurnal cycles of the 5-day episode at station Wilmington (panel a) and across
the whole dataset (panel b), showing both the overall summertime average and also subsets
of days involving the highest and lowest radiosonde SBCAPE values (90th/10th percentiles).
The biases in the July 2012 example episode are similar to those generally experienced in
high-CAPE conditions. On average, the ERA reanalyses experience slightly too-weak day-
time warming (i.e. a too-small diurnal cycle in temperature) and are slightly too dry. WRF
has an overall high bias in temperature of ~1.3 K and is substantially too dry. The warm
dry bias in WRF is exacerbated at mid-day by the fact that specific humidity erroneously
drops during the day. This daytime humidity loss strongly suppresses incidences of extreme

CAPE.

2.7 Conclusion and Discussion

Despite the importance of CAPE to both model construction and meteorology, few prior
studies have evaluated CAPE biases against radiosondes on a large enough scale to evalu-
ate climatological distributions. This study of nearly 200,000 proximity soundings in two
reanalyses and a convection-permitting model confirms consistent patterns of distributional
bias. CAPE distributions are too narrow in all cases, with underprediction of the most ex-
treme values that are associated with severe weather events. Values in the 95th percentile
and above are 6-10% too low in surface-based CAPE and even more severely underesti-
mated under alternative definitions, at 18-20% too low in MUCAPE and 15-17% too low in
MLCAPE.

In this study, both distributional biases and “mismatch error” in CAPE appear driven
by conditions at the surface and/or boundary layer. SBCAPE shows a tight and similar

dependence on surface temperature and humidity in all datasets; the dependence is so strong
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that CAPE distributions as a function of surface T ,H are almost identical, even though
individual profiles may have inaccurate surface values. The underprediction of the “high
tail” of CAPE occurs simply because reanalyses and WRF runs underpredict the hot and
humid conditions associated with extreme CAPE values.

These results emphasize the importance of land and boundary layer treatment in the
performance of high-resolution models. Discussion of improving models has tended to focus
on increased resolution and its effect on the atmospheric profile [e.g. 52|. However, the
similarity of biases in model and reanalysis output with resolved and parametrized convection
suggests that surface biases are unrelated to the treatment of convection. Many authors have
noted that SBCAPE is strongly dependent on surface conditions [e.g. 84, 150, 37, 60], but
land surface feedbacks may be crudely treated even in state-of-the-art high-resolution models
[100].

Dry biases such as those seen here could be produced by misrepresentation of land-surface
evaporation, by excess vertical mixing of the boundary layer, or, for the Central U.S., by
too-weak advection of moisture from the Gulf of Mexico [50]. In this study, the greater bias
in MUCAPE than SBCAPE across all datasets points to boundary layer processes as the
problematic elements. It is well established that treatment of mixing in boundary layer (PBL)
schemes can modify the diurnal cycle of temperature and humidity [73, 53, 144]. Several
recent studies have evaluated the impacts of PBL treatment on CAPE, and consistently find
that “local” schemes tend to undermix and moisten the boundary layer while “non-local”
ones, like those used in the datasets shown here, overmix and dry it [26, 24, 48]. The YSU
scheme used in our WRF runs is especially prone to producing a dry bias [26, 83].

While prior studies evaluating the effect of boundary layer treatment on CAPE have
generally evaluated only mean values and have found only small biases, results here sug-
gest that the “high tails” can be much more strongly affected. This finding is consistent

with [48], who note in a small sample of soundings that dry biases produced by non-local
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PBL schemes appear larger when observed CAPE is larger. The dependence of biases on
underlying conditions means that even models and data products whose mean CAPE is
well-validated may be inaccurate in capturing the strong convective events that lead to large
socioeconomic losses. This problem cannot be assessed with studies that match soundings to
severe weather events, since model displacement of weather features means that “mismatch”
error is large and proximity soundings will not necessarily capture the same meteorological
context. On the flip side, the accuracy of relatively low CAPE is also critical for convective
parametrization schemes, since convective initiation thresholds are commonly set at only
65 J/kg. Subtle distributional biases can therefore affect convective triggering and total
mass flux, and indirectly affect precipitation diurnal timing and amplitude. Given the im-
portance of CAPE as a key meteorological parameter linking the large scale environment to
weather-scale events, and its sensitivity to details of boundary layer treatment, its evaluation

warrants careful distributional analysis.

2.8 Data Availability

The 4km high-resolution WRF simulations of the current and future climate of North Amer-
ica are available from NCAR Resaerch Data (https://doi.org/10.5065/D6V40SXP). The
radiosonde observations are obtained from NOAA Integrated Global Radiosonde Archive
(IGRA, https://wwwl.ncdc.noaa.gov/pub/data/igra/). The reanalysis output is avail-
able from ECMWF (https://www.ecmwf.int/en/forecasts/datasets/browse-reanalysis-

datasets).

36



CHAPTER 3
ROBUST RELATIONSHIP BETWEEN MIDLATITUDES
CAPE AND MOIST STATIC ENERGY SURPLUS IN
PRESENT AND FUTURE SIMULATIONS

Published in Geophysical Research Letters in collaboration with:

Elisabeth Moyer!:2

!Department of the Geophysical Sciences, University of Chicago, Chicago, IL, USA 2Center for Robust
Decision-making on Climate and Energy Policy (RDCEP), University of Chicago, Chicago, IL, USA

Convective available potential energy (CAPE), a metric associated with severe weather,
is expected to increase with warming, but we have lacked a framework that describes its
changes in the populated midlatitudes. In the tropics, theory suggests mean CAPE should
rise following the Clausius—Clapeyron (C-C) relationship at ~6% /K. In the heterogeneous
midlatitudes, where the mean change is less relevant, we show that CAPE changes are larger
and can be well-described by a simple framework based on moist static energy (MSE) surplus,
which is robust across climate states. This effect is highly general and holds across both
high-resolution nudged regional simulations and free-running global climate models. The
simplicity of this framework means that complex distributional changes in future CAPE can

be well-captured by a simple scaling of present-day data using only three parameters.
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3.1 Introduction

Convective Available Potential Energy (CAPE), loosely defined as the vertically integrated
buoyancy of a near-surface air parcel, is a metric closely associated with extreme convective
weather events that can cause substantial socioeconomic damages [e.g., 71]. CAPE is derived
from the difference between the temperature profile of a parcel rising pseudo-adiabatically
from the surface and that of the background environment [86], which determines the max-
imum possible updraft velocity during undiluted ascent. In meteorology, CAPE is used to
predict thunderstorm events and in particular hail [58, 76, 72]. Studies have also used the
covariate of CAPE and wind shear to explain differences in thunderstorm frequency across
locations [14, 11] or across climate states [134, 35].

Early efforts to understand CAPE in observations sought to characterize it as a function
of near-surface temperature and moisture [140, 147]. More recent studies of CAPE in ob-
servations have tended to focus on decadal-scale trends, often finding large increases. For
example, [56] found trends equivalent to ~50%/K in 15 tropical radiosonde stations. Model
studies of CAPE under climate change have tended to produce smaller effects. Several recent
studies that simulate the tropics using convection-permitting models (0.2-4 km resolution)
without advection, i.e. approximating radiative-convective equilibrium, find CAPE increases
of 8% /K [88], 8%/K [108], 12%/K [117], 7%/K [115], and 6-7%/K from theory [109]. In the
midlatitudes, changes may be larger. [104] show 11%/K for 3 stations in the Eastern U.S.;
[35] and [23] show ~10%/K over the Eastern U.S.; and [80] find 10-14%/K for the entire
U.S. These results are consistent across a wide range of model resolutions.

Theoretical frameworks to explain climatological CAPE fall into two groups. One ap-
proach assumes that background environmental profiles are fully determined by surface tem-
perature, and predicts them by considering the effects of convective entrainment. [117]
proposed a “zero-buoyancy model” based on the assumption that entrainment makes actual

buoyancy in an ascending convective plume small relative to CAPE (with column RH consid-
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ered fixed). [118] and [154] extended the work and validated the approach under radiative-
convective equilibrium (RCE). However, the theory is not expected to work for midlatitudes
land, which has strong spatial and temporal variations, even though its climatological mean
profile is close to RCE [85].

A second approach treats surface and mid-tropospheric conditions as independent vari-
ables. [46] (henceforth EB96) drew on heat engine theory and described the relationship
as

CAPE = A (hs — hm) (3.1)

where hg and hyy, are moist static energy (MSE) near the surface (boundary layer) and in the
mid-troposphere, respectively. In this perspective, CAPE represents the maximum possible
kinetic energy that can be released given a heat transfer of (hs—hyy,), and CAPE is generated
only when surface MSE exceeds that of a mid-tropospheric threshold. [2], [82] (hereafter,
AE17 and LC21) modified the approach to use a different threshold term, dry static energy,
and showed that results captured aspects of CAPE variations in the midlatitudes.

We modify the framework based on [44] and use as the threshold term the minimum
“saturation MSE” A}, in the mid-troposphere, the moist static energy a parcel would have
if saturated:

CAPE = A - (hg — %) (3.2)

We term the difference hs — hy, the “MSE surplus”. The integral form of this expression can
be derived from the definition of CAPE given the assumption that the effect of water vapor
on buoyancy is negligible. (See Appendix Text S2.1 and Figure S11.) We then simplify to
a linear dependence (as in e.g. AE17) by replacing the integral with a difference at a single
location. This assumption is valid as long as the shape of the environmental temperature
profile does not vary strongly with kg and can be folded into the slope A. The rationale for b},

as the threshold term can also be expressed intuitively: CAPE depends only on temperature
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differences, and above the level of free convection, the rising parcel is saturated and conserves
h*, so its difference with the environment should be taken with a comparable quantity. [152]
used h}, as a threshold for convective instability over summertime mid-latitude land, but
Equation 3.2 has not yet been evaluated as a framework for CAPE.

A sufficiently general framework should explain not only average CAPE, or CAPE in
the average profile, but its variations across space and time in the highly heterogeneous
midlatitudes. This generality is required for any application to extreme weather, since only
the “high tail” of CAPE is associated with the severe thunderstorms that produce large
socioeconomic impacts. Although no prior work has addressed future changes in midlatitudes
CAPE distributions, studies suggest they may shift in complex ways. For example, [23] show
that spatial patterns of CAPE changes over North America differ from those of present-day
CAPE.

In this work, we use observations and model simulations to evaluate how CAPE changes
under CO9-induced warming, and to test whether the relationship of Equation 3.2 captures
these changes. That is, we ask whether it robustly applies to current and future CAPE
distributions across climate states. Furthermore, we ask whether robustness means that
complex distributional changes can be reproduced by as few as three parameters derived from
regional means. Our goal is to quantify changes in CAPE distributions in the midlatitudes

and to provide a simple framework that explains them.

3.2 Data and Methods

3.2.1 Model output

Most analysis here uses high-resolution model output: a paired set of present and future
dynamically downscaled simulations over continental North America from the Weather Re-
search and Forecasting model (WRF, version 3.4.1) run at 4 km resolution. Both runs
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are described in [83] and are acquired from NCAR RDA [105]. The present-day simulation
(CTRL) uses ERA-Interim reanalysis for initial and boundary conditions and for a large-scale
spectral nudging (scales >2000 km) applied to levels above the planetary boundary layer,
to match planetary-scale weather patterns. Small-scale processes can still evolve freely. The
future simulation is a pseudo-global-warming (PGW) scenario, treated identically but with
reanalysis adjusted by a spatially- and temporally- varying offset derived from the CMIP5
multi-model mean projection under RCP8.5, to reflect large-scale changes under increased
COg. These runs have been validated against observations [137] and used in studies of future
CAPE changes [125, 104]. In this work, we use the years 2001-2012 and the equivalent future
period.

To test whether results apply generally to a diverse set of free-running models, we use 11
CMIP6 models, selected based on the availability of the 6-hourly output needed for CAPE
calculation. Model biases range from -60-+1700 J/kg, with the best performance (MPI-
ESM1-2-LR) comparable to WRF, at ~30 vs. 14 J/kg [137, 22]. We use pairs of historical
(2005-2014) and ssp585 (2091-2100) simulations [49]. To allow comparison with observations,
we subset all model output to 80 grid points that match International Global Radiosonde
Archive (IGRA) weather stations in North America, as in [137]. For consistency, we calculate
surface-based CAPE in all runs using the same python package. For ‘paired’ comparisons,
we match each profile in CTRL/historical with its equivalent in PGW /ssp585. As in prior
studies, most analyses here use only the summertime (MJJA or JJA), when convection is

most active.

3.2.2  Methods: regressions and subsetting

All linear fits in this work are made using binned median data, to homogenize CAPE sam-
pling. All fits are computed using orthogonal distance regression (ODR), which is most

appropriate in conditions where errors in both dependent and independent variables matter.
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See [114] for discussion of ODR. When fitting to estimate the fractional change in CAPE
between climate states, we use the entire dataset, and we divide by the overall mean temper-
ature change (4.65 K in WRF runs) when giving values in % /K. However, many comparisons
focus on convective conditions and therefore involve a subset of the data. For regressions
of CAPE against MSE surplus, we impose an absolute cut at CAPE >1000 J/kg. In other
cases we compute values for profiles above the 73rd quantile in CAPE, which corresponds to
CAPE >1000 J/kg in the WRF CTRL run. When constructing synthetic profiles, we apply
a temperature offset derived from profiles with CAPE >73rd percentile in each climate state

(3.92 K in WRF runs), to best capture the change in convective conditions.

3.2.8  Synthetic profiles

To help understand the minimal information needed to reproduce future CAPE changes, we

construct three synthetic CAPE distributions based on the WRF CTRL profiles.

1. For Clausius-Clapeyron scaling, shown for illustrative purposes only, we simply mul-
tiply each CTRL CAPE value by 1.33 (= 9061465 where 6.1%/K is C-C for the
mean temperature of high-CAPE profiles, 301.8 K). We neglect several factors whose
systematic effects on CAPE would largely cancel: the projected rise in the Level of
Neutral Buoyancy (LNB) (40.6%/K); the reduction in surface RH (-0.4%/K), and

treating profiles separately (-0.1%/K).

2. For the constant offset case, we add a fixed temperature offset of 3.92 K to each CTRL
profile at each level from surface to 200 hPa (near the LNB in the mean CTRL profile),
then linearly interpolate to zero change at 75 hPa. We show cases with and without
a surface RH adjustment of -0.9%, the mean change for profiles with CAPE >73rd

quantile.

3. For the lapse rate adjustment case, we modify the constant offset procedure to also
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include a change in lapse rate I' = (Ts — Togg)/2200- That is, we linearly interpolate
between a warming of 3.92 K at the surface and a similarly-derived 4.94 K at 200 hPa.

We also apply the -0.9% surface RH adjustment.

For context, we also show predictions of the SO13 theory under a 4.65 K temperature rise.
We derive entrainment rate parameters of 0.67 and 0.68 for the WRF CTRL and PGW runs,
and use true LNB values for each profile. ([117] used a fixed entrainment parameter of 0.75

and a fixed LNB temperature of 200 K.)

3.3 Results

3.3.1 Changes in CAPE distributions

We begin our analysis by asking: in midlatitudes model projections, how much and how does
CAPE change with warming? In the WRF model runs, average summertime CAPE rises
by 10% per degree of warming (a 61% increase, from 684 to 1103 J/kg with a mean surface
temperature rise of 4.65 K). However, an alternate approach that emphasizes changes in
higher-CAPE conditions may be more appropriate, and we use it throughout this work. We
perform an orthogonal regression on the density distributions of paired profiles in present
and future runs, which yields a clear shift upwards even though weather systems are not
identical in the two runs and the scatter is therefore large (Figure 3.1, left). The slope yields
a CAPE increase of 8.0%/K (45% total). With either method, the change is larger than
in Clausius Clapeyron (6.1%/K) or in the SO13 theory developed for the tropics (6.0%/K),
but smaller than would result from simply changing surface values while leaving atmospheric
profiles unchanged (11.7%/K in the constant offset synthetic, which adds a single AT to all
levels in all profiles; see Figure S12). Midlatitudes atmospheric lapse rates have therefore
lessened slightly in the future simulation, as expected.

Distributional effects in future CAPE changes can be readily seen by comparing values for
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Figure 3.1: (Left) Comparison of CAPE in present (CTRL) and future (PGW) model runs
as a density plot of paired profiles (see Methods), showing also the 1:1 line (dashed); the or-
thogonal regression (solid); and quantiles of the distribution (large dots, 1% increments from
0-0.99; small dots 0.1% increments above 0.99). (Right) Quantile ratio plot, constructed by
taking the ratio of future to present CAPE quantiles, showing WRF output (black, same dots
as L. panel), the synthetic datasets C-C scaling (light blue) and constant offset (green), and
for reference SO13 (purple, with changes computed relative to its own CTRL distribution).
Gray horizontal line marks the +45% mean change from the orthogonal regression. Four
vertical tick bars mark the percentiles matching 1000, 2000, 3000, and 4000 J/kg (73.2%,
86.5%, 95.1%, and 98.9%, respectively). The x-axis is truncated to omit quantiles where
CTRL CAPE is zero. Changes in WRF are smaller than those in constant offset, implying
some lapse rate adjustment.

individual quantiles to the overall regression line (Figure 3.1, left, dots). The lower quantiles
lie above the regression line and the extreme high-CAPE quantiles (>~3000 J/kg) below it,
meaning the future CAPE distribution is narrower than that produced by a simple mean
shift. This relative narrowing manifests as a downward slope in a quantile regression plot,

which shows the ratio of individual quantiles of future vs. present-day CAPE (Figure 3.1,

right). The effect is a necessary result of the nonlinear CAPE - temperature relationship: a
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given temperature rise produces a greater effect in low-CAPE conditions. For this reason,
relative narrowing occurs even when surface temperature increases are uniform and environ-
mental profiles do not change (constant offset, green) or in a theoretical approach that does

not use observed environmental profiles (SO13, purple).

3.3.2 The effect of changes in environmental profiles

We found in section 3.1 that environmental adjustments appear to reduce future CAPE in-
creases. To isolate this effect, we examine mean CAPE in surface temperature and humidity
(T-H) space, following [137] (Figure 3.2). Since surface T and H uniquely define the moist
adiabat on which a parcel rises, a change in CAPE for a given T-H is due only to an altered
environmental profile. This approach effectively decomposes CAPE changes into a sampling
effect and a partially compensating lapse rate effect. In the WRF model runs used here,
increased sampling of hot and humid surface conditions in PGW would more than double
CAPE from its CTRL values if environmental profiles remained constant (Figure 3.2, top),
but environmental changes nearly halve that increase (Figure 3.2, bottom). This environ-
mental damping makes future CAPE smaller for each T-H bin, so that hotter or wetter
surface conditions are needed to achieve the same CAPE.

Most of this damping results from subtle changes in environmental profiles. Lapse rates
across the domain lessen by 3% between CTRL and PGW, from -6.56 to -6.35 K/km (for the
CAPE >73rd quantile subset). However, some damping also occurs even if the lapse rate
distribution remains fixed (Figure S13). Because lapse rates in our domain are correlated
with temperature — binned averages range from -5 K/km at 270 K to over -7 K/km at 320
K — then as the surface warms, each given temperature become associated with more stable
conditions (Figure S14). The combined result is that CAPE contours in T-H space shift
substantially between CTRL and PGW.

We can immediately make two inferences about CAPE changes in our model runs. First,
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Figure 3.2: Density heatmaps of (top) sampling of T-H bins and (bottom) mean CAPE in
each T-H bin, in CTRL (left) and PGW (right) WRF runs during summer (MJJA). Bins
shown are all those with 3 or more observations. Solid and dashed lines mark RH of 100 and
50%. In the bottom row, dashed/dotted lines mark CAPE contours at 2000 and 4000 J/kg,
with CTRL contours repeated in PGW panel as gray lines. Although conditions sampled in
PGW are hotter than in CTRL (top), each given T,H bin is associated with smaller CAPE

(bottom).
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because CAPE contours align with those of MSE (Figure S15), CAPE in our dataset must be
strongly related to surface MSE. Second, because CAPE contours in T-H space shift while
MSE by definition cannot, this relationship must shift in future simulations. Both effects

are consistent with Equation 3.2.

3.3.8 CAPE-MSE surplus framework

As predicted, the relationship between CAPE and surface MSE is reasonably linear in each
climate state and shifts as the climate warms (Figure 3.3, top left). That is, CAPE on average
does not develop unless surface MSE (hg) exceeds some threshold, which changes between
present and future simulations. This threshold, the x-intercept of the fitted regression,
matches the mean minimum saturation MSE (A7) in each climate state to within < 0.3%.
When CAPE is plotted against MSE surplus (hs — hyy,) instead, as in Equation 3.2, the
relationship becomes robust across climate states and the residual variance becomes smaller,
suggesting that this is a fundamental physical relationship (Figure 3.3, top right). On both
measures, variance and robustness, the CAPE-MSE surplus relationship of Equation 3.2
outperforms the expression based on dry static energy as in [2] and [82] (Figure S16, which
shows both WRF runs and observations). Fitted slopes are nearly identical in WRF CTRL
and PGW runs and in observations (0.27 in all), and intercepts are nearly zero (0.7, 1.1, and
1.6 kJ/kg for CTRL, PGW, and observations, respectively). In this perspective, the effects
of climate change reduce to a greater sampling of conditions with high MSE surplus.

The relationship described by Equation 3.2 applies across all models tested and appears
remarkably robust not only across climate states but across locations and times. It holds
in 11 free-running climate models from the CMIP6 archive (Figure 3.3, bottom), though
they differ strongly in their CAPE distributions and projected changes: mean values over
present-day summertime N. America range from 704 to over 2461 J/kg, and future changes

range from 5-10% /K. Their CAPE-MSE surplus relationships also differ, with slopes of 0.22
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Figure 3.3: Cont. (Top) Relationships between CAPE and surface MSE (left) and MSE
surplus (right), for WRF runs in N. America summertime (MJJA), showing all cases where
CAPE >1000 J/kg (CTRL = blue, dotted; PGW = red, solid). Lines are fitted orthogonal
regressions. Color shading increments are 1.5% for the left panel and 0.75% for the right.
The CAPE-MSE surplus relationship is robust across climate states. (Bottom) CAPE-
MSE surplus relationships in 11 free-running CMIP6 models and WRF for N. American
summertime (JJA), using all cases where CAPE >500 J/kg. Color shading increments are
0.5% for all models except EC-Earth3 (0.25%). The CAPE-MSE surplus relationship is
robust in all models, even those with with unrealistic CAPE.
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to 0.29. Nevertheless, in each model that relationship remains constant across climate states.
In the WRF model output, fitted slopes to CAPE vs. MSE surplus remain similar when the
dataset is divided by latitude (northern vs. southern stations), by time of day (daytime vs.

nighttime profiles), by interannual variations (anomalously warm vs. cold years), or even by

season (winter vs. summer) (Figure S17).

3.8.4 A 3-parameter transformation
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Figure 3.4: Comparison of present and future CAPE in model output (black) and synthetics:
C-C scaling (light blue), constant offset including an RH adjustment (orange), and lapse rate
adjustment (green). (Left) Fitted regression lines of the future CAPE-MSE relationship as
in Figure 3.3. See Table S5 for slopes and x-intercepts. (Right) Future changes in CAPE as
quantile ratio plots, as in Figure 3.1. The simple lapse rate adjustment effectively reproduces

CAPE distributional changes.

The robustness of Equation 3.2 across climate states suggests that model-projected CAPE
changes result from relatively simple adjustments. The fitted slope for each model, A, is a
function of the shape of the environmental profile; for A to remain constant, that shape must

not alter much. Changes in CAPE in Equation 3.2 can then result only from changes in
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surface conditions (hg, which depends on surface temperature and humidity), or in a single
metric of temperature in the free troposphere (h},). While the quantile ratio plot in Figure
3.1 shows that transformations based on 1 or 2 parameters are insufficient for describing
CAPE distributional changes, it appears that 3 parameters may be sufficient.

To construct our scaling, we use the two effects that produce the shift in CAPE contours
in T-H space seen in Section 3.2 — an overall surface warming and a small decrease in mean
lapse rates — and add the small but significant change in surface relative humidity in our WRF
runs (-0.9%). As described in Methods, we calculate mean changes in these three parameters
across our domain and apply them to the CTRL profiles. This simple adjustment correctly
produces the shifting CAPE-MSE relationship, matching its slope and x-intercept (Figure
3.4, left). It also reproduces both the distributional narrowing and the magnitude of CAPE
change for the high-CAPE conditions of interest (Figure 3.4, right). While midlatitudes
CAPE is highly heterogeneous, a relatively straightforward transformation can capture its

full distributional change in a future warmer climate.

3.4 Discussion

Increases in severe weather events, which are associated with high CAPE, are a substantial
societal concern under global warming. Their understanding has been hindered by lack of
a widely accepted theory or framework to describe midlatitudes CAPE changes. Theories
developed for the convective tropics [e.g. 117] are not appropriate for midlatitudes land, where
advection and a strong diurnal cycle mean that the mid-troposphere is often decoupled from
the surface (Figure S19). In this work, we show that Equation 3.2, a modified version of
the heat-engine theory originally proposed in 1996 (EB96) and of its later extensions (AE17,
LC21), provides a compact representation of midlatitudes CAPE that is robust across space,
over diurnal and seasonal cycles, and across climate states.

We term the work developed here a framework rather than a theory because the trans-
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formation requires empirical values and we do not predict the slope A, which accounts for
the shape of the environmental profile and is empirically fit. Similarly, AE17 would require
an empirical correction to their slope for a realistic moist atmosphere. In EB96, by contrast,
A is based on thermodynamics and is effectively the Carnot efficiency of the atmosphere.
In our WRF runs, the empirical slope of the CAPE-MSE relationship is larger than Carnot
(0.24, vs. 0.14 for Carnot as defined by EB96), but this is not a violation of the 2nd Law
given our focus on highly convective conditions.

Any transformation that describes changes in midlatitudes CAPE will necessarily require
at least three parameters, one more than SO13 because the midlatitudes free troposphere
cannot be predicted from surface T and RH even on average. In this work, we find that only
three parameters are required: three regional mean values across our domain are sufficient
to capture the full distributional change in the CAPE >73rd quantile. This result may seem
counterintuitive since present-day North America encompasses a wide range of environmental
conditions, future climate changes are spatially variable, and the response of CAPE is highly
nonlinear. However, CAPE develops appreciably only in a relatively restricted subset of T-H
space, where changes are more uniform.

The CAPE changes projected in our WRF runs and in most CMIP6 models are higher
than Clausius-Clapeyron, the expectation under RCE. This difference matters for the occur-
rence of extreme conditions. Incidences of summertime CAPE >2000 J /kg, a commonly-used
threshold for severe weather, rise half again as much in our WRF projections as under C-C
scaling (14% in CTRL; >24% in PGW, 20% in C-C). Of course, predicting how this rise
in extreme CAPE will affect future severe weather requires also understanding how it will
map to a change in convective updraft velocities — but understanding CAPE changes under
CO9-induced warming is a necessary first step. The dependence of CAPE on MSE surplus

provides a simple but robust framework for predicting and understanding that response.
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3.5 Data Availability Statement

The 4-km WRF convection-permitting model output can be downloaded from NCAR RDA
(https://rda.ucar.edu/datasets/ds612.0/). The IGRA radiosonde data can be down-
loaded from NOAA (https://www.ncei.noaa.gov/products/weather-balloon/integrated-
global-radiosonde-archive). CMIP6 model output is available from the Earth System

Grid Federation (ESGF, https://esgf-node.1llnl.gov/projects/cmip6/).
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CHAPTER 4
ROBUST CAPE SCALING ACROSS SPACE AND TIME

Prepared for publication in Geophysical Research Letters in collaboration with:
Daniel Chavas3, Tiffany Shaw! and Elisabeth Moyer!»2

!Department of the Geophysical Sciences, University of Chicago, Chicago, IL, USA 2Center for Robust
Decision-making on Climate and Energy Policy (RDCEP), University of Chicago, Chicago, IL, USA

3Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, IN, USA

High values of Convective Available Potential Energy (CAPE) are often associated with
severe weather, and the occurrence of such conditions is expected to increase with warming.
Hence, it is important to understand how CAPE varies across space and different timescales
(diurnal, seasonal, and climatological). In this work, we derive a CAPE scaling framework as
a multiplicative combination of only a few physical parameters and show that the variations
at a given location are primarily driven by convective layer depth and MSE surplus. We
confirm the framework’s validity with 6-hourly ERA5 and 11 CMIP6 models and show
that the scaling reasonably captures full probability distributions, and spatial and temporal
variations in the current climate. The framework also holds for the SSP585 future climate
and predicts a 39% mean fractional increase in CAPE compared to a 42% modeled change
averaged across 11 models. Changes are dominated by different parameters on different time
scales: the MSE ratio dominates changes on climatological and diurnal time scales (>65%).
On the contrary, the convective layer depth contributes to about 80% of the seasonal CAPE
variations. The framework provides physical insights into how much and why CAPE changes

across different time scales.

93



4.1 Introduction

High values of Convective Available Potential Energy (CAPE) are associated with a variety of
severe weather events, e.g. severe thunderstorms, hail, and tornadoes [58, 76, 132]. Extreme
convective events are associated with 15 out of 18 billion-dollar weather and climate disasters
over the Contiguous United States in 2022 [120], resulting in huge socio-economic impacts
across agricultural, transportation, and real estate sectors [139, 69]. To better understand
the impact of convective extreme events, vast literature has attempted to understand the
current climatology of CAPE [107, 4, 137] and how it relates to convective populations
(14, 11].

Modeling studies have shown that CAPE is expected to increase as the climate warms [e.g.
80]. CAPE (in particular surface-based CAPE) is a strong function of surface temperature
and humidity [38, 67, 115]; thus, its increase with warming can be largely explained by
the fundamental physics of Clausius-Clapeyron scaling of atmospheric water vapor content,
given that the relative humidity remains relatively unchanged as a constraint by the energy
balance [64]. Furthermore, composite indicators for severe thunderstorm occurrence are
largely driven by the increase in CAPE over the continental U.S. in century-long projections
from CMIP5 ensemble [133, 35], and also shown to increase over Australia and Europe
[4, 101]. However, few have attempted to attribute CAPE changes to different contributors.
The closest attempt to our knowledge uses a set of convective parameters and state variables
[23]. Even these attempts end up at a technical level and fail to provide a clear decomposition
of actual CAPE changes across different scales. That is, a full scaling that works across all
temporal and spatial scales of interest is needed to understand better factors contributing
to CAPE changes.

Theoretical models for CAPE exist that provide insight into its variability, but all existing
theories have some limitations. The simple theories based on zero-buoyancy model provides

a useful prediction of CAPE for each climatological mean state and changes between climate
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states [117, 109], but the model ties mean temperature profile (thus CAPE) to entrainment
and free-tropospheric moisture, which varies strongly across small spatial scales and on short
(e.g., diurnal or synoptic) time scales. These assumptions are pertinent to all CAPE theories,
and strong assumptions about water vapor are needed in this work as well. A recent attempt
modeled the transient peaks over the mid-latitude continents, but its applicability to larger
domains has not been tested [2, hereafter AE17]. [82, hereafter LC21] first derives CAPE
scaling based on AE17 and confirms its applicability to spatial and diurnal variations for the
continental U.S. However, LC21 is phrased in terms of dry static energy, which results in a
less direct path to approximating CAPE than a framework based on moist static energy, as
presented in this work. Additionally, LC21 requires using the entire free tropospheric static
energy profile, whereas here, we seek to simplify the free troposphere further to use a single
representative level.

[138] developed a scaling based on the strong dependence of CAPE on MSE surplus
[Ah = hs — h? ., see also 135] over Continental United States (CONUS) in summertime
and finds this dependence holds across climate states, across a convection-permitting model
and 11 CMIP6 models. This dependence is derived from Eq. (6.4.2) in [44], where CAPE
is rewritten as a function of saturated entropy.The only necessary assumption is that the
effect of water content on density is negligible. This assumption could lead to large errors
for places where the environmental profile is drier and further from saturation but works
reasonably well for convectively vigorous conditions. As in [2] and [138], we take out the

MSE integral with a “shape of profile” parameter k:
r
CAPE ~ kj?AhAz (4.1)
where Az(= zrnyp — zLFc) is the convective layer depth, and Ah(= hs — hy ) is MSE
surplus (surface MSE subtracted by minimum environmental saturated MSE). T is mean

environmental lapse rate; T is mass-weighted free-tropospheric temperature. Using an aver-
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aged T and T is sufficient for each evaluation (spatial or a temporal scale, see Table S6 and
S7), suggesting that their variations have little contribution to the total CAPE variation at
these scales [for I'’s effect, see 30]. The full derivation can be found in Text S3.1; an example
profile is given in Figure S20. Note that the only free parameter is the “shape of profile” k,
which partially compensates for the error in the assumption of negligible water vapor effect
on density.

In this work, we will first test the robustness of the CAPE scaling (Eq. 4.1) in terms
of full probability density function with ERA5 reanalyses and an array of CMIP6 models.
We will then demonstrate the applicability of the scaling to CAPE variations across space,
diurnal, seasonal, and climatological time scales. The simplicity of the scaling allows a linear
decomposition of CAPE changes, serving as a tool to understand the main drivers of CAPE
variations. The work aims to provide a robust and interpretable framework to understand
better variations of CAPE across all spatial and temporal scales in current climate and across

climate states.

4.2 Methods

4.2.1 Data description

We use General Circulation Models (GCM) runs from the 6th Coupled Model Intercom-
parison Project (CMIP6) [49] and ERAb reanalysis data [65] for this work. The CMIP6
data used are 10 years of 6-hourly model-level output from historical (2005-2014) and ssp585
(2091-2100) simulations. Despite being a more extreme realization of future emission sce-
narios, ssp585 is used since it allows for the strongest forcing and is a stronger test for the
theory [99]. The variables used to calculate the thermodynamic parameters (e.g., CAPE and
MSE surplus) include temperature (ta) and specific humidity (hus). The manuscripts show

results from JJA, and results for other seasons are shown in Supplemental Information. A
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detailed description of the simulations being used is included in Table S4, and the mean
model biases for the full dataset are provided in Table S8. The ERA5 6-hourly output is
acquired at 1°x 1° spatial resolution. ERA5 data matching the historical period used is used

as a baseline validation of the representation of the current climate in CMIP6 models.

4.2.2 CAPFE calculation

We use surface-based CAPE since past literature has extensively evaluated the mean and dis-
tributional biases in models against observation and reanalyses data products [e.g. 137, 22].
We follow these conventions and look at surface-based CAPE in this work, but the gen-
eral methodology to construct such a framework should apply to mixed-layer and most-
unstable CAPE. With a goal to calculate CAPE from a large volume of data in a fast
and consistent way, we adapted the wrf-python (https://github.com/NCAR/wrf-python)
package for this work [78], which originates from NCL and Fortran codes in WRF calcula-
tion. The parcels follow pseudo-adiabatic ascent, and virtual temperature corrections are
implemented. The latent heat of freezing is not considered. We added functionalities called
sbcape_2d and mucape_2d to the wrf module, and the source code is available from GitHub

(https://github. com/zwang02/wrf-python).

4.2.83  Decomposition framework

Based on the CAPE scaling, we propose the decomposition of CAPE variations into two
terms: the MSE surplus (= hsyrp) and convective layer depth (Az). Assuming the two
terms are uncorrelated and that all other terms have little variation at the scales considered

(represented by an error term), we have:

dCAPE _ dAh N dAz
CAPE  Ah Az

+e€ (4.2)
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Note that further decomposing the MSE ratio term without adding covariate terms is not
practically useful or valid. The decomposition procedure is consistent with that in [22].
The decomposition assumes that variations in other terms, including column mean tem-
perature (T) and mean lapse rate (I'), have a negligible contribution at the space and time
scales evaluated here. For simplicity, we only use a constant for each model, each state that

is considered in this work (e.g., MPI-ESM1-2-LR summer daytime in current climate 7' =
267 K, I' = 6.61 K/km).

4.3 Results

4.3.1 Applicability to full probability density function

We begin our analysis by validating the full probability distribution of CAPE (Figure 4.1),
with 10-year (2005-2014) CAPE records in 11 CMIP6 models against ERA5 reanalysis
(Methods). Four models (ACCESS-ESM1-5, CanESM5, EC-Earth3, and NorESM2-MM)
perform reasonably well in capturing the distribution as in reanalysis data product (ERA5),
with low mean bias below 50 J/kg. However, some models overestimate mean CAPE (high-
lighted by overestimating the “high tail” >2000 J/kg), with GISS-E2-1-G severely biased
high (~+480 J/kg relative to 400 J/kg mean CAPE in ERA5); in contrast, both MPI models
miss the “high tail” and are biased low (both ~-150 J/kg). We see diverse model perfor-
mance in CAPE representation for the current climate (see Figure S21 for future climate),
posing a challenge to reproduce CAPE characteristics faithfully.

Despite the challenge of authentic CAPE representation in CMIP6 models, the scaling
(Eq. 4.1) captures the full distributions in each model and reanalysis product across the
globe. In fractional measures, all models have a fractional mean absolute bias below 30%,
with a few models (e.g., ACCESS-ESM1-5) performing very well in capturing the distribution

as in reanalysis data product (ERA5) and their fractional bias falling below 20%. In absolute
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Figure 4.1: Probability distribution of CAPE from 6-hourly model data for the globe. We
show ERAS modeled (black) versus scaling (gray) in panel A and re-plot ERA5 as a baseline
comparison in other panels. Each model uses a constant “shape of profile” parameter k
fitted for the full distribution, with a spread from 0.52 to 0.61. We show the modeled CAPE
(red) versus scaling (orange) of each CMIP6 model in all 11 CMIP6 models used in these
panels and resample the dataset down to 6000 for each model and each variable. We use a
semi-logy axis to highlight differences in the “high tail”. The scaling consistently performs
well, yielding a much smaller bias against the modeled value than the model bias against
reanalysis (ERAD).

measures, we obtain mean absolute bias <100 J/kg for 6 out of 11 models with a constant
k fitted for each model (see Text S3.2 for regression methodology). The performance is
even better for the Contiguous U.S., with fractional mean absolute bias below 20% for all

models (see Figure S22); the scaling still works reasonably by arbitrarily choosing a constant

k = 0.5 for all models (see Figure S23). We also measure distributional differences with
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the 2-sample K-S test statistics (see Text S3.3 for details). 10 out of 11 models have a
smaller D between scaling and modeled CAPE (at 0.078 when averaged across models) than
that between models and reanalysis (at 0.183), suggesting our scaling can obtain a more
faithful representation of CAPE given modeled conditions regardless of whether the model
fails to represent the reanalysis authentically. The ability to reproduce modeled probability

distribution suggests the scaling captures fundamental physics governing CAPE variations.

4.3.2  Applicability across space

A valid scaling should apply across space in a given climate state. Here, we evaluate the
scaling against reanalysis or modeled spatial distribution of CAPE under the current climate
state. Since CAPE is a strong function of near-surface conditions, it naturally exhibits strong
spatial variation that, in turn, determin<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>