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ABSTRACT

This thesis focuses on two pivotal subjects within the domain of Computer Vision: object

detection and panoptic segmentation. Fueled by deep neural networks, substantial advance-

ments have been witnessed in these fields in recent years. Many efforts in object detection

and panoptic segmentation rely on feed-forward approaches, lacking a probabilistic interpre-

tation. In response to this, the present thesis puts forth three innovative algorithms: the

Detection Selection Algorithm, the Detection Selection Algorithm with Mask, and the Max-

imizing the Posterior for Panoptic Segmentation Algorithm. The initial algorithm is tailored

for object detection, while the latter two are specifically devised for panoptic segmentation.

These three algorithms are rooted in three distinct probabilistic frameworks. Notwith-

standing, they still depend on feed-forward models like Faster R-CNN and Mask R-CNN to

generate raw object detections and instance segmentations. Given an image and a hypothe-

sis regarding object configuration and latent codes, the probabilistic frameworks define their

respective likelihoods. The primary objective of these algorithms is to identify a configu-

ration hypothesis that maximizes these likelihoods. They employ greedy search procedures

to mitigate computational complexity. These three algorithms differ in their approaches to

maximizing likelihoods, with some maximizing a log joint probability and another maximiz-

ing a posterior probability.

The computation of likelihoods necessitates auxiliary tools, including Deep Generative

Models that capture the distribution of object appearances. In the case of these three

algorithms, we employ the Variational Autoencoder, VAE with flow prior, and Generative

Latent Flow, respectively. To conduct inference on the distribution of latent codes, Single

Reconstruction Algorithms are designed. Additionally, Whole Reconstruction Algorithms are

introduced to amalgamate the probability model of individual objects into a comprehensive

probability model for the entire image. They necessitate occlusion relationship reasoning

methods to identify the visible components of objects. Experimental results demonstrate

ix



that our algorithms yield improvements in tasks such as object counting and enhancement of

Panoptic Quality scores. This thesis aims to showcase the potency of probabilistic modeling

in the world of contemporary machine learning.
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Overview

Within the realm of artificial intelligence, object detection and panoptic segmentation emerge

as two significant tasks that have attracted considerable attention. Object detection finds

wide-ranging applications in real-world scenarios, including medical image processing, ob-

ject tracking, facial recognition, and more. On the other hand, panoptic segmentation, a

relatively recent research field, offers a more comprehensive understanding of image scenes

compared to object detection and has demonstrated successful applications in autonomous

driving.

In the pre-deep-learning era of computer vision, probabilistic modeling approaches, such

as the POP model Amit and Trouvé [2007], enjoyed popularity in object detection and classi-

fication. However, with the advent of deep learning, mainstream research in object detection

and panoptic segmentation has shifted towards a more data-driven paradigm, providing

greater flexibility in modeling but sacrificing interpretability.

In contrast to many deep learning models characterized by pure feed-forward network

architectures, the algorithms proposed in this thesis incorporate online optimizations. These

algorithms are grounded in probabilistic frameworks with clear probability interpretations,

setting them apart from previous works. Despite the current lack of emphasis on probabilistic

modeling, our experiments in this thesis demonstrate its efficacy in the post-processing of

object detection and panoptic segmentation. Through the ensuing chapters, we aim to

elucidate the enhancements that probabilistic modeling can bring to machine learning tasks.

The rest of this chapter is structured as follows: Section 1.2 provides a comprehensive

review of various research fields pertinent to our algorithms, encompassing Deep Genera-

tive Models (DGMs), depth estimation, occlusion relationship reasoning, object detection,
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instance and semantic segmentation, and panoptic segmentation. Following this, Section 1.3

delineates the principal contributions made by this thesis.

Chapter 2 furnishes an in-depth examination of three baseline models: Faster R-CNN

Ren et al. [2015], Mask R-CNN He et al. [2017], and the POP model Amit and Trouvé [2007].

Faster R-CNN serves as the baseline for the Detection Selection Algorithm (DSA) introduced

in Chapter 3, within the context of the object detection task. Mask R-CNN, employed as

the baseline model for panoptic segmentation, is juxtaposed with our Detection Selection

Algorithm with Mask (DSAM) and Maximizing the Posterior for Panoptic Segmentation

Algorithm (MPPS), expounded upon in Chapters 4 and 5 respectively. The Patchwork of

Parts (POP) model, devoid of neural network training, motivates our probabilistic modeling

of images.

Detection Selection Algorithm (DSA), as elaborated in Chapter 3, serves as a post-

processing method tailored for object detection algorithms such as Faster R-CNN. The

chapter introduces Faster R-CNN-OC, which performs occlusion relationship reasoning but

lacks generalization ability. Additionally, this chapter introduces two auxiliary tools for

DSA: the Single Reconstruction Algorithm for DSA (DSASR) and the Whole Reconstruc-

tion Algorithm for DSA (DSAWR). The object detection problem is then formulated within

a probabilistic framework. Finally, it introduces DSA, the main algorithm in this chapter

and shows some related experiments.

Detection Selection Algorithm with Mask (DSAM), detailed in Chapter 4, functions

as a post-processing method for instance segmentation models like Mask R-CNN. DSAM is

designed to enhance the quality of panoptic segmentation, wherein everything apart from the

specifically addressed objects is denoted by a generic "background" semantic label. Chapter

4 establishes a distinct probabilistic framework to address potential visual clutter and colored

backgrounds that do not appear in the previous chapter. For occlusion relationship reasoning,

MiDaS Lasinger et al. [2019], a depth estimation tool, is employed. Two auxiliary algorithms,

2



DSAMSR and DSAMWR, are introduced, specifically tailored for the main algorithm DSAM.

Experimental results for DSAM are also presented in Chapter 4.

Maximizing the Posterior for Panoptic Segmentation Algorithm (MPPS), outlined in

Chapter 5, represents another post-processing method for instance segmentation models.

Operating within a probabilistic framework distinct from that of DSAM, MPPS utilizes a

different Deep Generative Model. Comparative experiments in Chapter 5 reveal that MPPS

demonstrates slightly superior performance to DSAM. The chapter also enumerates potential

directions for enhancing MPPS.

1.2 Related Works

1.2.1 Deep Generative Models

Most Deep Generative Models (DGMs) are crafted with the primary objective of acquiring

a probability distribution from input data while concurrently possessing the capacity to

generate novel samples based on the acquired distribution. Exemplary instances of DGMs

encompass Variational Auto-encoders (VAEs) Kingma and Welling [2013], Rezende et al.

[2014], Burda et al. [2015], Auto-regressive Models Larochelle and Murray [2011], Uria et al.

[2014], Van den Oord et al. [2016], Normalizing Flows Dinh et al. [2014, 2016], Kingma

and Dhariwal [2018], Deep Energy-based Models Du and Mordatch [2019], Welling and Teh

[2011], Generative Adversarial Networks (GANs) Goodfellow et al. [2014], Radford et al.

[2015], Arjovsky et al. [2017] and Diffusion Models Ho et al. [2020], Xu et al. [2023]. The

family of DGMs can be subdivided into two categories: explicit models and implicit models.

Explicit models explicitly formulate the likelihood function or provide an approximation of

the likelihood function for the given data. Conversely, implicit models refrain from explicitly

specifying the likelihood and instead focus on training a model to sample from it.

One of the most preeminent explicit models is the Variational Auto-encoders (VAEs)

3



Kingma and Welling [2013], which optimizes a variational lower bound to solve the compu-

tational intractability of the marginal likelihood. The encoder of VAE predicts a posterior

distribution within the latent space whereas the decoder maps latent code to the image

space. VAE with flow prior Huang et al. [2017] represents a more sophisticated iteration

of the conventional VAE framework, as they integrate a flow prior within the latent space.

Generative Latent Flow (GLF) Xiao et al. [2019] employs an auto-encoder to acquire la-

tent representations and adds an invertible flow model to map the latent representation to

gaussian noise. Notably, GLF Xiao et al. [2019] mitigates the over-regularization issue ob-

served in VAE Kingma and Welling [2013], Huang et al. [2017]. While VAE with flow prior

Huang et al. [2017] provides an estimate of the marginal likelihood, it is noteworthy that

GLF Xiao et al. [2019] does not offer such an approximation. Similar to GLF, Latent Dif-

fusion Models (LDMs) Rombach et al. [2022] employ diffusion models (DMs) to acquire the

latent representation subsequent to dimension reduction through pre-trained autoencoders.

This enhancement accelerates the training of DMs by a minimum factor of 2.7 and yields

noteworthy improvements in FID scores Heusel et al. [2017].

1.2.2 Monocular Depth Estimation

The technique of estimating depth from a single image, known as Monocular Depth Estima-

tion Ming et al. [2021], Eigen et al. [2014], Lasinger et al. [2019], Kim et al. [2022], yields

an estimated pixel-level depth map, proving valuable in diverse applications, including but

not limited to autonomous driving. Recent advancements Eigen et al. [2014], Lasinger et al.

[2019], Kim et al. [2022] facilitated by Convolutional Neural Networks (CNNs) have no-

tably improved the speed and accuracy of Monocular Depth Estimation. Global-Local Path

Networks Kim et al. [2022] incorporates self-attention Vaswani et al. [2023] in its encoder

and introduces a Selective Feature Fusion (SFF) module in the decoder to effectively merge

global and local features. MiDaS Lasinger et al. [2019] develops a training strategy involving
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multiple data sources and trained with a dataset derived from 3D movies. The outcomes

of MiDaS Lasinger et al. [2019] has been assessed through zero-shot cross-dataset transfer,

revealing its capacity for generalization to previously unseen data.

1.2.3 Object Detection

The application of neural networks in object detection has attracted much attention. Some

object detection algorithms rely on region proposal generation. For example, Fast R-CNN

Girshick [2015b] and Faster R-CNN Ren et al. [2015]. Some are single-stage methods, in-

cluding Single Shot MultiBox Detector (SSD) Liu et al. [2015] and You Only Look Once

(YOLO) Redmon et al. [2015]. All these object detection methods predict class probabilities

and bounding box locations. Faster R-CNN Ren et al. [2015] also predicts the objectness

score which represent the confidence of a detection.

Post-processing is an important step to remove false positive detections in all object

detection algorithms. One type of popular post-processing methods is Non-maximum Sup-

pression (NMS) and its variants. The paper Efficient Non-Maximum Suppression Neubeck

and Van Gool [2006] proposed several algorithms to accelerate NMS. A recent review paper

Gong et al. [2021] summarized five NMS techniques: Soft-NMS Bodla et al. [2017b], Softer-

NMS He et al. [2018], IOU-Guided NMS Jiang et al. [2018], Adaptive NMS Liu et al. [2019b]

and DIoU-NMS Zheng et al. [2020].

These five methods emphasize local information as opposed to optimizing a global ob-

jective function. Among them, Softer-NMS He et al. [2018], IOU-Guided NMS Jiang et al.

[2018] and Adaptive NMS Liu et al. [2019b] require modifying the detection model or adding

additional modules. Instead of setting a threshold to suppress highly overlapping bounding

boxes, in each step Soft-NMS Bodla et al. [2017b] decreases the detection score by a factor

that depends on the IoU. Distance-IoU (DIoU) Zheng et al. [2020] takes into account the

distance between the centers of bounding boxes. The idea of DIoU can be used in NMS and

5



in designing IoU-related loss functions.

Another type of post-processing method defines a global objective functions and uses

some search procedure to choose the final detections. Examples are a Bayesian model for

face detection Zaytseva and Vitrià [2012], HS-NMS Song et al. [2019] , probabilistic faster

R-CNN Yi et al. [2021] and Patchwork of Parts (POP) Models Amit and Trouvé [2007].

Probabilistic faster R-CNN Yi et al. [2021] trains Gaussian Mixture Models (GMM) on

heights and widths of region proposals Girshick [2015b] and uses GMM to calculate the

likelihood for each region proposal. The Bayesian model in Zaytseva and Vitrià [2012] first

uses a kernel smoother on the face hypotheses to estimate the prior distribution, then uses

face templates to estimate face likelihood, and use MCMC to get a stable face distribution

from the posterior distribution. The POP Model, as detailed in the work by Amit et al.

Amit and Trouvé [2007], acquires templates in the form of probability arrays grounded in

edge features. Subsequently, it establishes reference points to augment the initial rigid model

into a deformable model while retaining the capability to compute likelihood. The model

engages in detection and occlusion order reasoning by finding the highest posterior.

1.2.4 Occlusion Relationship Reasoning

Understanding the occlusion relationship between objects is called Occlusion Relationship

Reasoning. MT-ORL Feng et al. [2021] can predict object boundary maps and occlusion

orientation maps and requires corresponding ground truths in order to train. A recent work

Yuan et al. [2021] performs occlusion relationship reasoning by pixel-level competition for

conflict areas in segmentation.

1.2.5 Semantic and Instance Segmentation

Leveraging neural networks, both semantic segmentation Minaee et al. [2021], Long et al.

[2015], Noh et al. [2015] and instance segmentation Minaee et al. [2021], He et al. [2017],

6



Chen et al. [2019] have undergone substantial advancements in recent years. In the context of

semantic segmentation, the image serves as input and the model predicts a label for each pixel

within the image. Semantic segmentation involves the assignment of object labels at the pixel

level but lacks the concept of object instance identification. On the other hand, instance

segmentation is focused on the identification of object instances and their corresponding

segments, and it exclusively assigns labels to pixels located within the predicted object

masks. Notably, in contrast to object detection methods such as Faster R-CNN Ren et al.

[2015], instance segmentation He et al. [2017] not only provides object labels and locations

but also furnishes object masks.

A powerful model for instance segmentation is Mask R-CNN He et al. [2017]. Both Mask

R-CNN He et al. [2017] and Faster R-CNN Ren et al. [2015] are categorized as two-stage

detectors: The first stage employs a Region Proposal Network (RPN) to generate object

proposals. The RPN operates on the convolutional feature map by mapping each sliding

window into lower-dimensional features and predicts box-regression and box-classification

through two fully-connected layers. The box-regression layer predicts a rectangular region

boundary and the box-classification layer estimates the probability of an object’s presence

within the sliding window. To cater to diverse object sizes, RPN simultaneously predicts

box-regression and box-classification for several anchors with varying scales and aspect ratios.

The second stage of Faster R-CNN Ren et al. [2015] involves a Fast R-CNN Girshick [2015b]

module that conducts classification and a more precise box-regression. In the case of Mask

R-CNN He et al. [2017], the second stage extends beyond the Fast R-CNN Girshick [2015b]

module by incorporating a parallel mask branch dedicated to predicting the object mask.

Researchers have investigated the reconstruction of the invisible parts and the prediction

of the entire mask of an object including its invisible parts. The latter is often called

amodal instance segmentation. SeGAN Ehsani et al. [2018] jointly predicts invisible masks

and generates invisible parts of objects under the GAN Goodfellow et al. [2014] framework.
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One work Qi et al. [2019] uses Multi-Level Coding to guide invisible mask prediction by

multi-branch features.

In the realm of semantic segmentation, Fully Convolutional Networks (FCNs) Long et al.

[2015] have showcased the capability of end-to-end convolutional networks and devised a

methodology to integrate coarse and fine predictions. Models based on the encoder-decoder

architecture, such as DeConvNet Noh et al. [2015], also show promising outcomes.

1.2.6 Panoptic Segmentation

Panoptic Segmentation Kirillov et al. [2019b], Li and Chen [2022], Elharrouss et al. [2021],

Chuang et al. [2023] is a task wherein each pixel is assigned both a semantic label and an

instance ID. It diverges from semantic segmentation, which lacks the concept of instance

ID, and differs from instance segmentation, which allows for possible overlap between object

masks. Panoptic Quality (PQ) metric Kirillov et al. [2019b] stands as a widely used evalua-

tion measure. PQ is the product of segmentation quality (SQ) and recognition quality (RQ),

where SQ quantifies the average IoU in true positives, while RQ =
|TP |

|TP |+0.5|FP |+0.5|FN |

imposes penalties on false positives and false negatives. Within the context of Panoptic

Segmentation Kirillov et al. [2019b], thing class refers to a category encompassing countable

objects such as cars and people, while a stuff class comprises amorphous objects like sky

and road. For any given stuff class, there exists at most 1 segment corresponding to that

class within the image. In Panoptic Quality (PQ) metric Kirillov et al. [2019b], thing classes

and stuff classes are treated with equal weight. In contrast, a modified version of Panoptic

Quality Porzi et al. [2019] distinguishes between them by exempting the requirement of IoU

> 0.5 in the matching between predicted and ground truth stuff segments. To address the

issue of the possibly overlapping object masks in detections, a NMS-like fusion procedure was

used in early panoptic segmentation research Kirillov et al. [2019b]. This NMS-like fusion

procedure sorts instance proposals based on their objectness scores and subsequently assigns
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pixels to instance proposals in a greedy fashion.

OCFusion Lazarow et al. [2020] identifies the suboptimal nature of the previously men-

tioned NMS-like fusion procedure and enhances it by incorporating an "occlusion head"

into Mask R-CNN to perform binary classifications on occlusion relationships. The train-

ing of the occlusion head necessitates ground truth amodal instance masks and ground truth

panoptic segmentation. In addition to OCFusion, the development of novel network modules

for panoptic segmentation has garnered considerable attention. Panoptic FPN Kirillov et al.

[2019a] extends Mask R-CNN He et al. [2017] by adding a semantic segmentation branch sub-

sequent to a shared Feature Pyramid Network (FPN). EPSNet Chang et al. [2021] introduces

a protohead to generate prototype masks for the whole image and a cross-layer attention

(CLA) as fusion module. EfficientPS Mohan and Valada [2021] features a 2-way FPN as

backbone. The end-to-end Occlusion Aware Network (OANet) Liu et al. [2019a] proposes

a spatial ranking module that applies large kernel convolution to generate a ranking score

map for addressing occlusion challenges. Pixel Consensus Voting (PCV) Wang et al. [2020]

reformulates conventional offset regression as a classification problem and employs dilated

deconvolution before aggregating the results into a voting heatmap. A Query Filter is imple-

mented at peak regions of the voting heatmap so as to deduce object masks. Pixel Consensus

Voting (PCV) Wang et al. [2020] draws inspiration from Generalized Hough transform and

is not constructed within the dominant R-CNN framework Girshick et al. [2014], Girshick

[2015b], Ren et al. [2015], He et al. [2017].

1.3 Main Contributions

The primary contributions of this thesis encompass the three probabilistic frameworks and

their aforementioned algorithms: Detection Selection Algorithm (DSA), Detection Selection

Algorithm with Mask (DSAM), and Maximizing the Posterior for Panoptic Segmentation

Algorithm (MPPS). The conceptual novelty of this thesis arises from the integration of
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probabilistic frameworks, marking a departure from prior work. Furthermore, the three

probabilistic frameworks employed are distinctive in their individual characteristics.

An additional contribution lies in the formulation of auxiliary Whole Reconstruction Al-

gorithms accompanying DSA, DSAM, and MPPS. These algorithms are designed to amal-

gamate information pertaining to individual objects, thereby facilitating the computation of

probabilities for the entire image.
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CHAPTER 2

BASELINE MODELS

In this chapter, a detailed exposition of three baseline models is provided: Faster R-CNN Ren

et al. [2015], Mask R-CNN He et al. [2017], and POP model Amit and Trouvé [2007]. Serving

as a baseline model for the Detections Selection Algorithm (DSA) discussed in Chapter 3,

Faster R-CNN is expounded upon in Section 2.1. Mask R-CNN, delineated in Section 2.2,

serves as the baseline model for both the Chapter 4 and Chapter 5. The POP model,

discussed in Section 2.3, serves as the inspirational basis for our proposals in Chapter 3, 4

and 5. Although rooted in likelihood comparisons, notable distinctions exist between the

POP model and our proposed models.

2.1 Faster R-CNN

Faster R-CNN Ren et al. [2015] incorporates Fast R-CNN Girshick [2015b] as one of its con-

stituent elements, and Fast R-CNN, in turn, is founded on R-CNN Girshick et al. [2014]. The

acronym R-CNN denotes "Regions with CNN features". R-CNN employs selective search

Uijlings et al. [2013] to generate region proposals. These proposals, characterized by ar-

bitrary shapes, are then resized to 227 × 227 before being input into AlexNet Krizhevsky

et al. [2012] to yield 4096-dimensional feature vectors. Subsequently, R-CNN assesses these

feature vectors using category-specific linear Support Vector Machines (SVMs), thus facilitat-

ing classification. Notably, the implementation of R-CNN necessitates pre-training AlexNet

with image-level annotations and domain-specific fine-tuning on the designated dataset. Ad-

ditionally, R-CNN can be further augmented through bounding-box regression, enhancing

the accuracy of predictions regarding the location and scales of bounding boxes.

The Fast Region-based Convolutional Network (Fast R-CNN) Girshick [2015b] outper-

forms R-CNN in terms of both speed and detection accuracy. Fast R-CNN receives a convo-
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lutional feature map and object proposals as input, as depicted in Figure 2.1. The convolu-

tional feature map is derived from a deep detection network, such as VGG16 Simonyan and

Zisserman [2014]. For the generation of object proposals, Fast R-CNN utilizes traditional

object detectors like selective search Uijlings et al. [2013] or DPM Felzenszwalb et al. [2009].

The region of interest (RoI) associated with an object proposal, regardless of its size,

is partitioned into an H ×W grid of nearly uniformly-sized sub-windows, where H and W

represent predetermined hyperparameters. All RoIs take on rectangle shapes, facilitating

the division process. Standard max-pooling is executed for each sub-window and feature

channel, constituting the RoI pooling layer depicted in Figure 2.1. This layer ensures that

RoIs of arbitrary sizes are converted to the same size, enabling a fully connected (FC)

layer to transform the max-pooled RoIs into fixed-sized RoI feature vectors. The final stage

involves two tasks: classification and "bbox regression". In the classification task, softmax

probabilities are predicted for K object classes along with a "background" class. The term

"bbox regression" pertains to bounding box regression.

A predicted bounding box is defined by a tuple Pu = (Pu
x , P

u
y , P

u
w, P

u
h ), where (Pu

x , P
u
y )

denotes the coordinates of the bounding box center, and Pu
w and Pu

h represent the width

and height of the bounding box. These predicted bounding boxes are class-specific, with the

class label denoted as the variable u. In contrast, the ground truth bounding box is denoted

as G = (Gx, Gy, Gw, Gh) and does not require a class label. The bounding box regression

aims at predicting tu∗ = (tux, t
u
y , t

u
w, t

u
h), where

tux = (Gx − Pu
x )/P

u
w

tuy = (Gy − Pu
y )/P

u
h

tuw = log(Gw/P
u
w)

tuh = log(Gh/P
u
h ).
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Figure 2.1: Fast R-CNN network architecture.

While it is possible to establish bounding box regression targets for each object class, ex-

cluding the background, the loss of bounding box regression is exclusively assessed for the

true object class. This loss is then combined with the classification loss to formulate a multi-

task loss. The training process of Fast R-CNN is characterized by a single-stage approach

involving the utilization of the multi-task loss, making it considerably faster than R-CNN.

To elucidate the connections between Fast R-CNN and Faster R-CNN Ren et al. [2015],

we depict the network architectures of Faster R-CNN in Figure 2.2, wherein one of its compo-

nents is identical to Fast R-CNN. Faster R-CNN continues to generate softmax classification

probabilities and bounding box regression outputs for each object proposal. However, in con-

trast to Fast R-CNN, Faster R-CNN takes the raw image as input and employs its Region

Proposal Network (RPN) to generate object proposals. Within the entire Faster R-CNN

13



Backbone

input image

RPN

Fast

classification

bbox regression

R-CNN

convolutional
feature map

convolutional
feature map

Figure 2.2: Faster R-CNN network architecture.

framework, RPN can be conceptualized as the "attention mechanism", guiding the Fast R-

CNN component on where to focus. Notably, RPN and the Fast R-CNN component share

the same convolutional feature map produced by the common Backbone detection network.

The Region Proposal Network (RPN) is constructed based on sliding windows applied to

the convolutional feature map. At each position of the sliding window, there are, by default,

9 anchors consisting of 3 scales and 3 aspect ratios. RPN takes the content within the sliding

window as input and employs two parallel fully connected layers to generate two distinct

types of outputs:

• RPN predicts the objectness score, representing the probability of being an object

rather than background, for each anchor.

• For each anchor, RPN conducts bounding box regression for its 4 coordinates.

Owing to the substantial overlap among the sliding windows and their anchors, post-

processing is imperative to mitigate redundancy in the object proposals generated by RPN.

By default, non-maximum suppression (NMS) is employed for this purpose. NMS follows a
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greedy approach: iteratively selecting the object proposal with the highest objectness score

and discarding any other object proposal with Intersection-over-Union (IoU) greater than a

specified threshold (e.g., 0.7) concerning the previously selected object proposal. This process

repeats until all remaining object proposals are chosen. Subsequently, the remaining object

proposals are ranked based on their objectness scores, and only the top-N (e.g., N = 300)

proposals are input into the Fast R-CNN module for classification and more precise bounding

box regression. The superior performance of Faster R-CNN over Fast R-CNN, in terms of

both speed and accuracy, is predominantly attributed to its RPN module.

Detection benchmarks such as PASCAL VOC 2007 Everingham et al. [2007] and the

Microsoft COCO object detection dataset Lin et al. [2014] demonstrate the remarkable ca-

pability of Faster R-CNN. The PASCAL VOC 2007 dataset comprises approximately 5000

images for training and validation, along with an additional 5000 images for testing. This

dataset encompasses 20 diverse object classes, ranging from animals to vehicles. The Mi-

crosoft COCO dataset is substantially larger, consisting of 80k, 40k, and 20k images for

training, validation, and testing, respectively. Microsoft COCO includes 80 distinct object

classes. The backbone network incorporates VGG16 Simonyan and Zisserman [2014] and ZF

net Matthew Zeiler and Rob [2014], with the primary evaluation metric being mean Average

Precision (mAP).

2.2 Mask R-CNN

Mask R-CNN He et al. [2017] serves as an extension to Faster R-CNN, specifically tailored for

instance segmentation. In contrast to Faster R-CNN, Mask R-CNN employs the same RPN

for generating object proposals but incorporates an additional branch within its Fast R-CNN

module to predict object masks. Notably, for object mask prediction, fully convolutional

networks (FCN) Long et al. [2015] are utilized, diverging from the approach of employing

fully connected layers for classification and bounding box regression. The use of FCN ensures
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Figure 2.3: RoIAlign layer.

the preservation of spatial correspondence between Region of Interest (RoI) features and the

original image, a characteristic not maintained by fully connected layers.

An additional noteworthy improvement introduced by Mask R-CNN is its RoIAlign layer.

In the process of extracting RoI features from the convolutional feature map, Faster R-CNN

utilizes RoIPool Girshick [2015b]. However, as the coordinates of bounding boxes may not

be integers, RoIPool employs quantization on continuous coordinates. Quantization involves

rounding a continuous coordinate to its nearest integer, leading to potentially detrimental

small translations in the extracted feature map. In contrast, the RoIAlign layer, proposed

by Mask R-CNN, replaces quantization with bilinear interpolation Jaderberg et al. [2015].

Similar to RoIPool, the RoIAlign layer necessitates the conversion of arbitrary-sized RoIs

into fixed-sized m×m RoI bins before executing max-pooling.

Figure 2.3 illustrates the functioning of the RoIAlign layer. An RoI, represented by the

blue box, is subdivided into 2 × 2 RoI bins. The RoIAlign layer systematically samples

four points within each RoI bin, with the blue point being one of them. The feature value

for the blue point is determined through bilinear interpolation from the four surrounding

black points, which are all valid integer coordinates within the convolutional feature map.

Subsequently, the feature values for the four blue points within each RoI bin are aggregated

either by their maximum or their mean. By default, 7 × 7 RoI bins are employed. For

a given RoI, Mask R-CNN predicts object masks for each object class, yet only the loss
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corresponding to the ground truth class contributes to its training.

2.3 POP model

The Patchwork of Parts (POP) model Amit and Trouvé [2007] constitutes a deformable

template model designed for tasks such as classification, object detection, and multi-object

configurations, achieved through likelihood comparison. The POP model is constructed upon

coarse binary oriented edge features Amit and Geman [1999], chosen for their resilience to

intensity variations. Edges are detected across the 8 regular orientations and extended to

encompass their 3 × 3 neighborhoods, a strategy employed to enhance robustness against

local deformations.

A 2d lattice L is defined on the given image. For orientation e among those 8 orientations,

a binary random variable Xe(x), x ∈ L indicates if a edge of orientation e, or its 3 × 3

spread ones, is present at pixel x. The POP model first establishes a rigid model, which

assumes conditionally independence of Xe(x) across different pixel x given their marginal

probabilities. For an object class centered at the origin, a probability array (pe(y))y∈Z2 is

defined as pe(y) = P(Xe(y) = 1) within the object support

S(0) = {y ∈ Z2 : max
e

pe(y) ≥ ρ},

where ρ is a fixed constant. Here, the pixel y is defined on Z2, representing the infinite

2d plane. Outside the object support S(0), the rigid model still assumes P(Xe(y) = 1) =

pe,bgd > 0, where pe,bgd denotes a homogeneous "background probability". The rigid model

allows for a shift of the object, and during the inference phase, the rigid model is expressed

as follows:

P(Xe(x) = 1|r) = pe(x− r), x ∈ L, (2.1)

where the variable r represents the shift.
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The rigid model is generalized by a deformable model, where n reference points yi, i =

1, 2, ..., n are defined. Corresponding to reference point yi there is a shift vi. Considering the

overall translation r, the reference point yi is displaced to a new location zi = yi + r + vi.

Then the deformable model performs kernel smoothing around each zi

P(Xe(x) = 1|θ) =
∑n

i=1 pe(x− r − vi)K(x− zi)∑n
i=1K(x− zi)

, x ∈ L, (2.2)

where θ = (r, v1, v2, ..., vn) and K(·) is a non-negative kernel. By default, K(·) is selected

to be an indicator function 1W (·), where W represents a square centered around the origin.

Owing to this kernel choice, only a square neighborhood surrounding each reference point,

which is called a part, contributes to the right hand side of Equation 2.2. Consequently, the

deformable model, which amalgamates the parts around the reference points, is referred to

as the Patchwork of Parts (POP) model.

The deformable model maintains the assumption of conditional independence of Xe(x)

given their marginal probabilities and a background probability pe,bgd. When considering

the scenario where only one object is assumed to exist in the image, the probability of the

entire image X = {Xe(x)|x ∈ L, e = 1, 2, ..., 8} is computed as

P(X|θ) =
∏

x∈S(θ)

∏
e

P(Xe(x) = 1|θ)Xe(x)P(Xe(x) = 0|θ)1−Xe(x)

×
∏

x/∈S(θ)

∏
e

p
Xe(x)
e,bgd (1− pe,bgd)

1−Xe(x),

(2.3)

where S(θ) = {x ∈ L : maxe pe(x) ≥ ρ} is the instantiated object support. A "background

model" involves the assumption that every location in the image corresponds to the back-

ground. The likelihood ratio between the deformable model and the background model is
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expressed as

P(X|θ)
P(X|background)

=
∏

x∈S(θ)

∏
e

(
P(Xe(x) = 1|θ)

pe,bgd
)Xe(x) × (

1− P(Xe(x) = 1|θ)
1− pe,bgd

)1−Xe(x).

(2.4)

The overall shift r is assumed to follow a uniform prior distribution, and the prior on

v = (v1, v2, ..., vn) is a multivariate Gaussian with zero means. Additionally, the POP

model accommodates multiple subclasses within each class. For each class c = 1, 2, ..., C

and subclass m = 1, ...,Mc, the prior density of θ is denoted as fc,m(θ). Consequently, the

probability of the image X modeled under class c is given by

Pc(X) =

Mc∑
m=1

Pc(m)

∫
Pc,m(X|θ)fc,m(θ)dθ, (2.5)

where Pc(m) is the prior for subclass m and Pc,m(X|θ) is the probability defined in Equation

2.3 under class c and subclass m.

If there are k objects in the image, sorted based on their occlusion sequence from the

most visible to the least visible, they can be represented as

I = (ci,mi, θi)i=1,2,...,k.

For simplicity, let Si denote the object support of the i-th object, and Ti = ∪ij=1Sj . Then,

the visible part of the i-th object is given by Si \Ti−1, reflecting its occlusion sequence. The

likelihood ratio in Equation 2.4 can be extended to

P(X|I)
P(X|background)

=
k∏

i=1

∏
e

∏
x∈Si\Ti−1

(
Pci,mi(Xe(x) = 1|θi)

pe,bgd
)Xe(x)

× (
1− Pci,mi(Xe(x) = 1|θi)

1− pe,bgd
)1−Xe(x).

(2.6)

19



Assuming independence between r and v, the term fc,m(θ) = fc,m((r, v)) is proportional

to the prior on v due to the uniform distribution of r. In the context of the classification

task for an isolated object, the assumption is made that r = 0. The determination of the

class ĉ entails maximizing the posterior

ĉ = argmax
c

max
1≤m≤Mc

max
v

Pc,m(X|(0, v))fc,m((0, v)), (2.7)

where an approximate solution can be attained through iterative maximization with respect

to vi. Regarding detection, a declaration of detection at location r is made if the maximized

posterior at that location surpasses a predetermined threshold τc. The maximized posterior

is defined as

J (r) = max
1≤m≤Mc

max
v

Pc,m(X|(r, v))fc,m((r, v)). (2.8)

In the context of multi-object configurations, the POP model makes the assumption that

the number of objects, denoted as k, is known. The POP model maximize a posterior

P(I|X) ∝ h(r1, r2, ..., rk)
k∏

i=1

gci,mi(vi)
P(X|I)

P(X|background)
, (2.9)

where P(X|I)
P(X|background) is calculated in Equation 2.6, h(r1, r2, ..., rk) is the prior on the shifts

of the objects, and gci,mi(vi) is the prior on vi under class ci and subclass mi. To mitigate

computational complexity in this task, it is common to employ either greedy iterations or

dynamic programming. The POP model necessitates only minimal training sets and, in

contrast to numerous purely feed-forward methods, remains applicable even when the test

set significantly differs from the training set.
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CHAPTER 3

DETECTION SELECTION ALGORITHM FOR OBJECT

DETECTION

3.1 Motivation

Object detection Zou et al. [2023], Amit [2002] stands out as a paramount task within the

realm of computer vision. The majority of object detection algorithms yield predictions in

the form of bounding boxes, specifying the center, height, and width for each. Concurrently,

these algorithms engage in the classification of the object contained within each bounding

box. Certain object detection algorithms, such as Faster R-CNN Ren et al. [2015], go a

step further by furnishing an objectness score. This score quantifies the level of confidence

associated with the presence of an object within the corresponding bounding box.

Typically, object detection algorithms begin by generating excessive detections, subse-

quently employing post-processing techniques such as Non-maximum Suppression (NMS)

to curtail this surplus. NMS operates by retaining the most promising detections via local

comparisons. To execute NMS effectively, a NMS-threshold Nt ∈ [0, 1] is utilized, deter-

mining the point at which less promising neighboring bounding boxes should be suppressed.

However, following the NMS process, the remaining bounding boxes might not necessarily

exhibit high objectness scores, often resulting in a surplus of bounding boxes exceeding the

actual count of objects. In Faster R-CNN Ren et al. [2015], the top-N bounding boxes subse-

quent to NMS are designated as the final detections. Nevertheless, given that the number of

objects within an image is frequently unknown, the parameter N is generally set to a value

larger than the actual count of objects.

In contrast to Non-maximum Suppression (NMS), Soft-NMS Bodla et al. [2017b] does not

directly eliminate less promising neighboring bounding boxes. Instead, it diminishes their

objectness scores based on the Intersection-over-Union (IoU). Subsequent to the application
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of Soft-NMS, it remains necessary to impose constraints, such as a maximum allowable

number of boxes or a lower bound threshold on the objectness scores of detections. In the

context of the Soft-NMS Bodla et al. [2017b] paper, the practice involves utilizing the top

400 detections per image on MS-COCO.

To find the correct number of objects and labels in the image, one natural idea is to use a

threshold T on the objectness scores. Bounding boxes with scores surpassing the threshold T

are selected as the final detections. Ideally, the threshold T is established through validation

set analysis. However, the robustness of this approach is contingent upon the validation

set possessing a distribution comparable to that of the test set. A disparity in distribution

between the validation and test sets can render the outcome highly sensitive to the chosen

threshold T , potentially resulting in considerable degradation of model performance.

Our work proposes a novel post processing method for object detection algorithms build-

ing on the work in Amit and Trouvé [2007]. The core concept involves identifying the most

probable "interpretation" of an image, where an interpretation denotes an ordered subset of

detections organized by occlusion. Each object class is characterized by a generative model,

mapping a low-dimensional latent space to the image space. The pixel values are assumed

to be independently Gaussian conditioned on the latent variables. The generative model

serves to offer both a reconstruction of the object image and a region of object support. The

log-likelihood of the entire image conditional on the objects, their locations and the values of

the latent variables is the sum of the log-likelihoods of the individual objects on their visible

parts. This underscores the significance of occlusion ordering, given that objects positioned

behind are only visible outside the support regions of those in the forefront.

Optimizing over an ordered subset of detections proves computationally prohibitive, lead-

ing us to adopt a greedy search strategy. Leveraging the objectness scores provided by

Faster R-CNN facilitates this process. Additionally, we augment Faster R-CNN with an

extra branch, denoted Faster R-CNN-OC, which furnishes an occlusion score within the
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range of 0 to 1. A higher occlusion score indicates precedence for an object positioned in

front of another with a lower occlusion score. These outputs play a pivotal role in informing

the greedy search for the most plausible interpretation, as delineated below. In summary,

the Detections Selection Algorithm (DSA) entails a greedy search across ordered subsets of

detections to identify the subset with the highest likelihood, utilizing both objectness and

occlusion scores supplied by the Faster R-CNN-OC.

For the sake of simplicity, this chapter assumes that the image I is composed of objects

situated against a pure black background. The examination of real-life images featuring

diverse backgrounds is deferred to Chapter 4. The detection process involves the applica-

tion of an algorithm, such as Faster R-CNN-OC, to obtain detections. The detections are

represented by {deti = (scorei, bbi, occi, clsi)}Ni=1. For each detection deti, scorei is the

objectness score defined in Faster R-CNN Ren et al. [2015], bbi is the bounding box, clsi is

the classification result, and occi is the occlusion score obtained from the occlusion branch

of Faster R-CNN-OC. We denote by I[bbi] the image restricted to the bounding box bbi. If

the objects in deti and detj overlap, and occi < occj , the object in deti is predicted to be

occluded in the overlapping area by the object in detj . Typically there are false positive

detections among all detections {(scorei, bbi, clsi)}Ni=1 produced by the Faster R-CNN-OC.

In other words, only a subset of {(scorei, bbi, clsi)}Ni=1 is correct. Our goal is to find the

ordered subset {detij = (scoreij , bbij , occij , clsij )}
k
j=1 which yields the best interpretation

of the image, namely the lowest negative log likelihood (NLL). But, trying every possible or-

dered subset of {deti}Ni=1 is computational prohibitive. Our proposed Detections Selection

Algorithm (DSA) greedily selects the detections when processing them according to their

objectness scores from high to low, taking into account the occlusion scores to identify the

visible parts of each object.

The first component of our method is a Single Reconstruction Algorithm for DSA (DSASR)

tasked with reconstructing an entire object based on its visible components. This nomen-
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clature, DSASR, is assigned to this algorithm due to its specialized design for integration

into our Detection Selection Algorithm (DSA). In this context, we adopt a decoder archi-

tecture reminiscent of Variational Autoencoders (VAEs). Diverging from traditional VAEs,

the reconstruction process is optimized over latent variables rather than relying on variables

predicted by an encoder. This modification is crucial due to the inherent limitation of not

always observing the entirety of an object. The reconstruction loss during latent code op-

timization, quantified as the negative log-likelihood (NLL), is exclusively computed for the

visible portion. Adapting the encoder to varying visible inputs seems prohibitive to us. The

Single Reconstruction Algorithm for DSA takes a bounding box and its associated informa-

tion, as well as reconstructions of previous objects in the sequence as input, and returns

the whole appearance of the hypothesized object for that bounding box. A byproduct of

the Single Reconstruction Algorithm for DSA (DSASR) is that it performs amodal instance

segmentation using the reconstruction.

The second component of our method is the Whole Reconstruction Algorithm for DSA

(DSAWR). It consolidates outcomes from the DSASR applied to the current sequence of

selected objects. This amalgamation provides the negative log-likelihood (NLL) for the

entire image data given this sequence.

The final component - Detection Selection Algorithm (DSA), systematically explores de-

tections supplied by the Faster R-CNN-OC. The search operates in a greedy fashion, ordered

based on their objectness scores. At each iteration, a detection is added and reconstructed

from its visible part, computed as the complement within its bounding box, excluding the

union of supports of previously reconstructed detections with higher occlusion scores. If

our defined loss function of the complete reconstruction diminishes, the additional object is

incorporated; otherwise, it is omitted. Additionally, we conduct a one-step backward search

to assess the potential reduction in the loss by removing a previously incorporated object

while simultaneously introducing a new object. A fixed penalty term is introduced for each
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added object, equivalent to an exponential prior on the number of objects. Eventually, the

decrease in loss function attributable to an additional object is offset by the object penalty,

leading to termination of the search.

Our idea to evaluate the likelihoods of an image under various object hypotheses is in-

spired by the POP model Amit and Trouvé [2007]. However, it is essential to note distinctions

in our approach. While the POP model employs a deformable template for object modeling,

we utilize a more flexible decoder structure. Additionally, the POP model necessitates the

determination of occlusion ordering as part of its optimization process, whereas we leverage

the output of the Faster R-CNN-OC to acquire occlusion ordering. Furthermore, our algo-

rithm is applicable to images featuring 3D objects, in contrast to the POP model, which is

confined to 2D objects.

The main contribution of this chapter is the DSA, DSASR, DSAWR algorithms. Our

primary objective is to ascertain the precise count of objects and their corresponding labels

within an image, predicated on achieving the lowest loss through comprehensive reconstruc-

tion. Several ancillary outcomes emanate from this pursuit:

• The Faster R-CNN-OC incorporates an occlusion ordering mechanism. Remarkably,

our findings indicate that training the Faster R-CNN-OC solely on object pairs yields

outstanding detections for scenes featuring multiple objects, accompanied by highly

reliable occlusion scores.

• The Single Reconstruction Algorithm for DSA (DSASR) reconstructs imperceptible

portions of objects, thereby offering a straightforward solution for amodal instance

segmentation.

• The Whole Reconstruction Algorithm for DSA (DSAWR) furnishes a means to generate

an image based on several hypothesized objects and their respective locations.

The subsequent sections of this chapter are structured as follows: The introduction of
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Faster R-CNN-OC is presented in Section 3.2. The probabilistic framework and the de-

lineation of three algorithms are expounded upon in Section 3.3, 3.4, 3.5, and 3.6. Sec-

tion 3.7 provides an account of our dataset, while Section 3.8 details the experiments con-

ducted. Our code is accessible on the GitHub repository at the following URL: https:

//github.com/angzhifan/DSA_research

3.2 Faster R-CNN-OC

Faster R-CNN Ren et al. [2015] is a detection framework which uses a Region Proposal

Network (RPN) to generate region proposals. Subsequently, the Fast-RCNN Girshick [2015a]

module is employed for bounding box regression and classification for each region proposal.

The RPN yields an objectness score for each bounding box, where a higher score signifies a

more confident detection.

We introduce an additional branch named the occlusion branch to Faster R-CNN, situated

in parallel with the regression branch and the classification branch inside the Fast-RCNN

module. The resulting model, denoted as Faster R-CNN-OC, is illustrated in Figure 3.1.

The occlusion branch is composed of a fully-connected layer, and the output of this layer

undergoes a sigmoid function to yield an occlusion score ranging between 0 and 1. As

previously mentioned, when two objects overlap, the one with the higher occlusion score is

anticipated to be visible in the overlapping area. During the inference phase, the comparison

of occlusion scores is sufficient for determining the occlusion sequence. One approach to

training the occlusion branch involves providing pairs of overlapping objects and assigning

an occlusion score of 0 to the occluded object and 1 to the occluding object. Further details

will be expounded upon in Section 3.8.

The occlusion branch has demonstrated consistent and reliable outcomes in our experi-

ments. Its training was conducted on images featuring two objects, and we observed robust

generalization performance to images containing multiple objects. Additional experiments
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Figure 3.1: Faster R-CNN-OC network architecture.

pertaining to this aspect are detailed in Section 3.8.1.

3.3 Single Reconstruction Algorithm for DSA (DSASR)

Our Single Reconstruction Algorithm for DSA (DSASR) is based on a generative model

structured similarly to a decoder in a Variational Autoencoder (VAE) Kingma and Welling

[2013]. In the training phase of a complete VAE, the objective is to maximize the variational

evidence lower bound (ELBO) on the marginal likelihood

L(θ, ϕ;x) = Eqϕ(z|x)(log pθ(x|z))−DKL(qϕ(z|x)||p(z)) (3.1)
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where the symbols ϕ and θ represent the parameters of the encoder and decoder, respectively,

while x denotes the target image segment. For simplicity, assume z ∼ N (0, INz
), x|z ∼

N (mθ,z, σ
2I) and qϕ(z|x) is the density of N (µx,Γx), where mθ,z is the output of the

decoder given latent code z, µx is a vector, and Γx is a diagonal matrix

Γx =


τ2x,1

. . .

τ2x,Nz

 (3.2)

with τx,i > 0 for i = 1, 2, ..., Nz.

During the inference phase, when a portion of the object is potentially occluded, the

reconstruction process relies solely on the visible part. This circumstance poses challenges

for the encoder in predicting µx and Γx. To address this, both during training and inference,

we optimize over µx and Γx. Consequently, the VAE encoder is omitted from the training

process, and only the decoder is trained. Post-training, we can determine µx and Γx for an

incomplete object. Subsequently, by passing z = µx to the decoder, the complete appearance

of the object can be reconstructed.

In the initial part of this section, an assumption is made that the target bounding box

shares the same dimensions as the images used for training the decoder. However, in practice,

the target bounding boxes may vary in size. To address this discrepancy, we employ the

concept of the parameterised sampling grid of Spatial Transformer Networks Jaderberg et al.

[2015]. This approach is elaborated upon in the latter half of this section.

3.3.1 Fixed-size Reconstructions

The decoder is trained utilizing the methodology of stochastic variational inference (SVI)

Hoffman et al. [2013]. Instead of relying on the encoder to predict µx and Γx, these vari-

ables are updated through a fixed number of optimization steps employing gradient descent.
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Subsequently, µx and Γx are held constant while updating the decoder parameters θ. This

iterative process continues until convergence. Notably, our decoder is trained on fixed-size

images within the training dataset, where each image contains a singular object, and separate

models are trained for each class.

During the reconstruction process for a designated target bounding box x̃, with the visible

pixel set denoted as V , we perform optimization on µx̃ and Γx̃. This optimization aims to

maximize Equation 3.1 based on the visible segment, while maintaining a fixed decoder

configuration. To be more specific, Equation 3.1 becomes

L(θ, ϕ; x̃, V ) =Eqϕ(z|x̃)(log pθ,V (x̃|z))−DKL(qϕ(z|x̃)||p(z))

=EN (µx̃,Γx̃)
(log pθ,V (x̃|z))−DKL(N (µx̃,Γx̃)||N (0, INz

))

=EN (µx̃,Γx̃)
(−|V |

2
log(2πσ2)− 1

2σ2

∑
i∈V

(mθ,z,i − x̃i)
2)

− (

∥µx̃∥22 +
Nz∑
i=1

τ2x̃,i −Nz

2
−

Nz∑
i=1

log τx̃,i)

(3.3)

then we can get our reconstruction as

ˆ̃x = mθ,z∗x̃
(3.4)

where the variable z∗x̃ is set equal to µx̃, and the notation mθ,z is defined earlier in this

section. As the decoder is trained using complete objects, the resulting output encompasses

an entire object.

3.3.2 Arbitrary-size Reconstructions

Our target image corresponds to the visible segment of everything enclosed within the bound-

ing box. However, the dimensions of the bounding box typically do not align with the size
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Figure 3.2: Decoder architecture.

of the training images for the Variational Autoencoder (VAE). To address this misalign-

ment, we adopt the concept of the parameterized sampling grid by the Spatial Transformer

Network Jaderberg et al. [2015]. A similar concept is also presented in Gregor et al. [2015].

If our designated target image box is Iij , acquired by cropping the full image within the

bounding box region bbij , we presume the existence of an affine transformation between Iij

and the output of the decoder. For any coordinate (xb, yb) within our reconstruction of the

target image box, after the affine transformation we get

xd

yd

 =

sx 0 txsx

0 sy tysy



xb

yb

1

 (3.5)

and for each channel, the coordinate (xb, yb) in our reconstruction should have the same

image value as coordinate (xd, yd) in the decoder output. As shown in Figure 3.2, if our

reconstruction is IB and the decoder output is ID, IB(m,n, c) and ID(m,n, c) is the pixel

value at coordinate (m,n) and channel c in image IB and ID respectively, then

ID(xdi , y
d
i , c) = IB(xbi , y

b
i , c). (3.6)

For simplicity, and to avoid too much flexibility, we do not consider rotation in the affine
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transformation. The shearing parameters sx, sy represent scaling in the x and y axis. We

assume an isotropic scaling and fix sx = sy = d/L, where (d, d, 3) is the VAE training image

size and L is the maximum between the height Hbbij
and width Wbbij

of the target bounding

box bbij

L = max(Hbbij
,Wbbij

).

The tx, ty translation parameters are kept free. The coordinate (xb, yb) can be any

integer coordinate in our reconstruction. However, after the transformation, we get the

corresponding (xd, yd), which may not be integers. We utilize the bilinear sampling kernel

in the Spatial Transformer Network Jaderberg et al. [2015] to interpolate for coordinate

(xd, yd). The bilinear sampling kernel is formulated as

IB(x, y, c) =
d∑

m=1

d∑
n=1

ID(m,n, c)max(0, 1− |x−m|)max(0, 1− |y − n|) (3.7)

In this case, our reconstruction is an L×L× 3 image, so we need to crop a Hbbij
×Wbbij

× 3

region at the center of the L × L × 3 image to get our reconstruction for the target image

bounding box.

Given the presence of the affine transformation and bilinear sampling kernel, gradients

retain the ability to back-propagate from the target image to the latent code. Through this

process, we assess the disparity between the target image and our reconstruction for the

designated bounding box. Consequently, we obtain the latent codes along with tx and ty

using gradient descent.

In summary, for target image box Iij , we fix sx, sy but optimize µij , τij and (tx, ty), where

µij and τij are the variables in the posterior distribution z|Iij , Vij ∼ N (µij ,Γij ). Given µij ,

Γij , (tx, ty) and (sx, sy), we use z = µij , pass it to the decoder to get a d × d × 3 decoder

output, and use the affine transformation and bilinear sampling kernel to get a L × L × 3

reconstruction called Rij . This procedure from z, (tx, ty) and (sx, sy) to Rij is represented
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(c) (d)(a) (b)

Figure 3.3: Example of the DSASR. (a), (c) - target images with occluded parts in black,
(b), (d) - reconstructions Rij on the L× L grid.

by the function "Decoder(z, (tx, ty), (sx, sy))" in Algorithm 1.

In addition to Rij , Algorithm 1 also yields bb∗ij , a bounding box of dimensions L×L× 3

centered at the midpoint of the target bounding box bbij . Given that Rij has dimensions

L × L × 3, when situating Rij on the entire image domain, it should extend to the larger

bounding box bb∗ij rather than bbij . Our single reconstruction Rij represents an object on

a pure black background. The object’s support is defined as all pixels with magnitudes

exceeding a predefined threshold t0, referred to as the "occlusion threshold." As Algorithm

1 is designed to reconstruct a solitary object based on a single bounding box, it is aptly

termed the Single Reconstruction Algorithm.

An illustration of the Single Reconstruction Algorithm for DSA is presented in Figure 3.3,

with a chosen parameter d = 50. In Figure 3.3, image (a) depicts the cropped target image

box containing clutter. Image (b) represents the L×L×3 single reconstruction corresponding

to the target image in (a). Analogously, image (d) serves as the single reconstruction for the

target image in (c), with the distinction that (c) is now a partially occluded image.

3.4 Whole Reconstruction Algorithm for DSA (DSAWR)

The Whole Reconstruction Algorithm for DSA (DSAWR), see Algorithm 2, is employed to

amalgamate the single reconstructions of a sequentially ordered subset of detections on a

blank background called Canvas, identical in size to the image, in accordance with their
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Algorithm 1: Single Reconstruction Algorithm for DSA (DSASR)
Input: Cropped target image Iij = I[bbij ], Vij : the coordinates of the visible pixels

in Iij , the detection detij = (scoreij , bbij , occij , clsij ), VAE training image

size (d, d, 3), Niter, Nz and σ

L← max(HIij
,WIij

) ;

µij ← zeros(Nz) ; /* Nz is the dimension of the latent code */

(log τij ,1, log τij ,2, ..., log τij ,Nz
)← zeros(Nz) ; /* (τ2ij ,1, τ

2
ij ,2

, ..., τ2ij ,Nz
) is the

diagonal of covariance matrix Γij */

(tx, ty)← (0, 0) ; /* translation parameters */

(sx, sy)← (d/L, d/L) ; /* shearing parameters, fixed */

for j = 1 to Niter do

z ← sampled from N (µij ,Γij ) ;

Rij ← Decoder(z, (tx, ty), (sx, sy)) ; /* Rij has size (L,L, 3) */

R
(bb)
ij
← Cropped region of size (HIij

,WIij
, 3) at the center of Rij ;

Loss← DKL(N (µij ,Γij )||N (0, INz
)) + 1

2σ2
∑

x∈Vij
(R

(bb)
ij ,x
− Iij ,x)

2 ;

Update µij , (log τij ,1, log τij ,2, ..., log τij ,Nz
) and (tx, ty) based on gradients of

Loss ;

end

Rij ← Decoder(µij , (tx, ty), (sx, sy)) ;

bb∗ij ← an L× L× 3 bounding box which centers at the center of bounding box bbij ;

Output: Single reconstruction Rij , parameters µij ,Γij and the inferred bounding

box bb∗ij
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respective occlusion scores. As previously mentioned, if the support regions of two objects

intersect, the object visible in the overlapping area is determined by the one with the higher

occlusion score.

In Algorithm 2, we iterate through the ordered subset of detections. If the single re-

construction for the current detection has not been computed, the Single Reconstruction

Algorithm for DSA is implemented. This involves determining which pixels within the cur-

rent bounding box are visible, taking into account all pre-computed single reconstructions

with higher occlusion scores: Objects with superior occlusion scores are placed on the back-

ground. After that, the blank segment on the background is assumed to remain visible.

As mentioned in the Single Reconstruction Algorithm for DSA (DSASR) in Section 3.3,

a pre-determined threshold t0 is used to determine which pixels constitute the support of

the object in its single reconstruction. Only those pixels falling within the support region

adopt the values of the reconstruction; the remaining pixels remain blank.

Figure 3.4 illustrates an example of Algorithm 2. The original image featuring 5 objects is

presented in (a). Within (a), there are 6 detected bounding boxes labeled at their lower-right

corners from 0 to 5, arranged in descending order of their objectness scores. Images (b), (c),

and (d) portray the whole reconstruction canvases corresponding to the selected detections

{0, 1, 2}, {0, 1, 2, 3}, and {0, 1, 2, 3, 4} respectively. The single reconstructions from Figure

3.3 are utilized in this context. Moving from (b) to (c), the cylinder within bounding box 3

becomes occluded by the two cuboids in bounding boxes 1 and 2. Image (c) in Figure 3.3

represents an incomplete cylinder due to retaining only the visible portion.

It is noteworthy that the single reconstruction has dimensions (L,L, 3) and is typically

larger than the size of the target bounding box. Nevertheless, we do not confine the single

reconstruction within the boundaries of the target bounding box. In other words, if the

support region of the object extends beyond the target bounding box, we still include those

pixels in the canvas during the Whole Reconstruction Algorithm for DSA. Our rationale
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Algorithm 2: Whole Reconstruction Algorithm for DSA (DSAWR)

Input: A subset of detection results {detij = (scoreij , bbij , occij , clsij )}
k
j=1,

reconstructions hashmap ReconDict, occlusion threshold t0

Sort {detij}
k
j=1 according to occij from high to low;

Canvas← zeros(H,W, 3) ; /* (H,W, 3) is the image size */

for j = 1 to k do

if ReconDict[ij ] doesn’t exist then

Iij ← I[bbij ] ; /* I is the image and I[bbij ] is obtained by cropping

the image at bounding box bbij */

Vij ← The coordinates of blank pixels in Canvas[bbij ] ; /* "blank pixel"

is a pixel with value (0, 0, 0) */

(Rij , µij ,Γij , bb
∗
ij
)← DSASR(Iij , Vij ,detij );

ReconDict[ij ]← (Rij , µij ,Γij , bb
∗
ij
);

end

(Rij , µij ,Γij , bb
∗
ij
)← ReconDict[ij ];

lij , rij - coordinates of upper left hand corner of bb∗ij ;

for pixel x, y in Rij do
if Canvas[lij + x, rij + y] is (0, 0, 0) and the magnitude of Rij [x, y] is above

t0 then

Canvas[lij + x, rij + y]← Rij [x, y];

end

end

end

Output: Whole reconstruction Canvas, reconstructions hashmap ReconDict
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(a) (d)(c)(b)

Figure 3.4: Example of DSAWR.

for this approach is that if the reconstructed object genuinely exists, its portion outside the

target bounding box should also be considered.

3.5 Probabilistic Framework

In our approach, an effective interpretation of the image is expected to fulfill two primary

objectives. Firstly, we aim to achieve a high-quality reconstruction of the entire image based

on our chosen detections. Secondly, we seek to prevent the selection of redundant detections.

These twin objectives serve as the motivation for the ensuing probabilistic framework.

Suppose a detection algorithm yields detection results {deti = (scorei, bbi, occi, clsi)}Ni=1,

and {detij = (scoreij , bbij , occij , clsij )}
k
j=1 is a subset used to interpret the image. For the

quantity of detections k within the subset, we posit a prior distribution pK(k) ∝ e−λ0k for

k ≥ 0. For each detection deti, its latent code zi adheres to a Gaussian prior zi ∼ N (0, INz
).

We adopt a non-informative prior for each detection deti = (scorei, bbi, occi, clsi), rendering

the prior for objects {detij}
k
j=1 equal to the prior for the number of objects pK(k), or

equivalently, p({detij}
k
j=1) = pK(k).

Given {detij = (scoreij , bbij , occij , clsij )}
k
j=1 and {zij}

k
j=1, we assume the distribution

of the hypothesized image follows a Gaussian distribution with a uniform variance σ2 across

all pixels. Additionally, we assume pixel-level independence given the mean. The mean of

this Gaussian distribution is stipulated to be the reconstruction generated by the canvas of
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the Whole Reconstruction Algorithm for DSA (DSAWR).

Therefore, if the image is I, the log marginal likelihood of the interpretation is

log p(I, {detij}
k
j=1)

= log pK(k) + log p(I|{detij}
k
j=1)

= log pK(k) + log

∫ ∫
· · ·
∫

p(I|{zij}
k
j=1, {detij}

k
j=1)

k∏
j=1

p(zij )dzi1dzi2 · · · dzik ,

(3.8)

which is intractable in terms of computation. Using the well known variational approximation

log p(I|{detij}
k
j=1)

=Eqϕ({zij}
k
j=1|I,{detij}

k
j=1)

log
p(I, {zij}

k
j=1|{detij}

k
j=1)

qϕ({zij}
k
j=1|I, {detij}

k
j=1)

+DKL(qϕ({zij}
k
j=1|I, {detij}

k
j=1)||p({zij}

k
j=1|I, {detij}

k
j=1))

=Eqϕ({zij}
k
j=1|I,{detij}

k
j=1)

log p(I|{zij}
k
j=1, {detij}

k
j=1)

−DKL(qϕ({zij}
k
j=1|I, {detij}

k
j=1)||p({zij}

k
j=1|{detij}

k
j=1))

+DKL(qϕ({zij}
k
j=1|I, {detij}

k
j=1)||p({zij}

k
j=1|I, {detij}

k
j=1))

(3.9)

and

p({zij}
k
j=1|{detij}

k
j=1) = p({zij}

k
j=1), (3.10)

we drop the last Kullback–Leibler divergence term and use

Eqϕ({zij}
k
j=1|I,{detij}

k
j=1)

log p(I|{zij}
k
j=1, {detij}

k
j=1)

−DKL(qϕ({zij}
k
j=1|I, {detij}

k
j=1)||p({zij}

k
j=1)) (3.11)

to approximate log p(I|{detij}
k
j=1).

As in previous sections, Iij = I[bbij ] denotes the cropped image from I at bounding box
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bbij . Without loss of generality, we can assume {detij}
k
j=1 is sorted by occlusion scores from

high to low. Then we use the following approximation

qϕ({zij}
k
j=1|I, {detij}

k
j=1) ≈

k∏
j=1

qϕ(zij |Iij , Vij ,detij ) (3.12)

where Vij denotes the visible pixels in the bounding box of object ij taking into account

the union of supports of reconstructions ir, where r = 1, . . . , j − 1 (see Algorithm 2), and

qϕ(zij |Iij , Vij ,detij ) is the posterior distribution of zij given cropped image Iij , Vij and

detection detij . Using zij |Iij , Vij ,detij ∼ N (µij ,Γij ), equation 3.11 can be approximated

by

E∏k
j=1 qϕ(zij |Iij ,Vij ,detij )

log p(I|{zij}
k
j=1, {detij}

k
j=1)

−
k∑

j=1

DKL(qϕ(zij |Iij , Vij ,detij )||p(zij ))

=E∏k
j=1 qϕ(zij |Iij ,Vij ,detij )

log p(I|{zij}
k
j=1, {detij}

k
j=1)−

k∑
j=1

DKL(N (µij ,Γij )||N (0, INz
))

=E∏k
j=1 qϕ(zij |Iij ,Vij ,detij )

log p(I|{zij}
k
j=1, {detij}

k
j=1)

−
k∑

j=1

(

∥µij∥
2
2 +

Nz∑
t=1

τ2ij ,t −Nz

2
−

Nz∑
t=1

log τij ,t)

(3.13)
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In this way, we approximate the log marginal likelihood as

log p(I, {detij}
k
j=1)

≈ log pK(k) + E∏k
j=1 qϕ(zij |Iij ,Vij ,detij )

log p(I|{zij}
k
j=1, {detij}

k
j=1)

−
k∑

j=1

(

∥µij∥
2
2 +

Nz∑
t=1

τ2ij ,t −Nz

2
−

Nz∑
t=1

log τij ,t)

≈ log pK(k) + log p(I|{z∗ij}
k
j=1, {detij}

k
j=1)−

k∑
j=1

∥µij∥
2
2 +

Nz∑
t=1

τ2ij ,t −Nz

2
+

k∑
j=1

Nz∑
t=1

log τij ,t

(3.14)

where z∗ij is sampled from N (µij ,Γij ). In the Single Reconstruction Algorithm for DSA

(DSASR), minimizing the loss gives us µij , Γij and (tx, ty). If the whole reconstruction

using {z∗ij}
k
j=1 and {detij}

k
j=1 is I{i1,...,ik}, then

log p(I|{z∗ij}
k
j=1, {detij}

k
j=1) = −

|I|
2

log(2πσ2)− 1

2σ2
∥I − I{i1,...,ik}∥

2
vec,2 (3.15)

It is crucial to underscore that Equation (3.15) furnishes a log-likelihood for the entire

image. The output Canvas of the Whole Reconstruction Algorithm for DSA (DSAWR)

yields the union of the supports of the selected objects in the image as the collection of

all non-zero pixels. The complement of this set is regarded as the background, and the

hypothesized distribution at each background pixel, based on the aforementioned equations,

is simply N(0, σ2) in each channel.
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3.6 Detection Selection Algorithm (DSA)

By our assumptions, pK(k) = e−λ0k

eλ0/(eλ0−1) for k ≥ 0. Based on our probabilistic framework,

if {i1, ..., ik} are the indices of the selected detections, which are used as an interpretation

of the image, we have

log p(I, {detij}
k
j=1)

≈ log pK(k) + log p(I|{z∗ij}
k
j=1, {detij}

k
j=1)−

k∑
j=1

∥µij∥
2
2 +

Nz∑
t=1

τ2ij ,t −Nz

2
+

k∑
j=1

Nz∑
t=1

log τij ,t

= log
e−λ0k

eλ0/(eλ0 − 1)
− |I|

2
log(2πσ2)− 1

2σ2
∥I − I{i1,...,ik}∥

2
vec,2

−
k∑

j=1

∥µij∥
2
2 +

Nz∑
t=1

τ2ij ,t −Nz

2
+

k∑
j=1

Nz∑
t=1

log τij ,t

(3.16)

where I{i1,...,ik} is the whole reconstruction given by {z∗ij}
k
j=1 and {detij}

k
j=1, |I| is the

cardinality of image I. Dropping some constants in Equation 3.16, our loss function is

defined as

L = ∥I − I{i1,...,ik}∥
2
vec,2 + λk + σ2

k∑
j=1

[∥µij∥
2
2 +

Nz∑
t=1

τ2ij ,t − 2

Nz∑
t=1

log τij ,t], (3.17)

where λ = 2σ2λ0 can be regarded as a penalty on the number of selected boxes k.

If there are N detections in total, it is impossible to enumerate and evaluate all possible

ordered subsets {i1, ..., ik}. So we propose a Detection Selection Algorithm (DSA), see

Algorithm 3, to find a good subset in polynomial time.

In Algorithm 2 (DSAWR), we processed the selected detections based on their occlusion

scores to identify the visible pixels for each bounding box. However, it is possible for some
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detections of very low quality to exhibit high occlusion scores. As higher objectness scores

indicate more confident detections, and more confident detections are more likely to be

included in our final selection, in Algorithm 3 we process {detij}
k
j=1, the subset of detections,

according to their objectness scores arranged from high to low. At each step, when provided

with a subset of detections, we feed it into Algorithm 2, where the detections are reordered

based on occlusion scores to generate the whole reconstruction and calculate the loss function

defined in Equation 3.17.

We use S to represent the currently selected detections, which is ∅ in the beginning. If

selecting S∪{deti} yields smaller loss than with S, we prefer interpretation S∪{deti} to S.

But we also consider the case when there is a detj , j < i, which has significant overlap with

deti. It is possible that deti is the correct detection and detj isn’t. So we select the detection

j < i with highest intersection-over-union (IoU) with i, and consider the interpretation

(S \ {detj})∪ {deti}. Thus, we compare S, S ∪ {deti} and (S \ {detj})∪ {deti}, the one

which has the smallest loss is used as the new S. Then we move on to the next detection in

the objectness score ordering.

Therefore in Algorithm 3 (DSA), detj is chosen as the previously selected detection

which has the highest IoU with deti. If there is no previous selected detection, or if all

previously selected detections have zero IoU with deti, then detj doesn’t exist and we don’t

need to consider (S \ {detj}) ∪ {deti}. In this case we simply set Li,2 =∞ for that index

i in Algorithm 3 so that (S \ {detj}) ∪ {deti} can’t be selected.

Our Detections Selection Algorithm (DSA) greedily chooses subsets of detections to min-

imize Equation 3.17. The initial term in Equation 3.17 incentivizes DSA to opt for the

interpretation that yields superior reconstruction performance. Occasionally, selecting du-

plicated detections may result in nearly identical reconstruction loss. The penalty λ imposed

on the number of boxes is essential to steer DSA away from such scenarios. Once all detec-

tions have undergone processing, the final selected detections {deti}i∈SN are chosen as our
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Algorithm 3: Detection Selection Algorithm (DSA)

Input: Image I, detection results {deti = (scorei, bbi, occi, clsi)}Ni=1 sorted by
scorei from high to low, the penalty λ ≥ 0, assumed variance σ2 > 0, latent
dimension Nz

S0 ← ∅;
ReconDict← {};
L0 ←∞;
for i = 1 to N do

(Ii,1, ReconDict)← DSAWR(Si−1 ∪ {deti}, ReconDict);
Li,1 ← ∥I − Ii,1∥22 + λ|Si−1 ∪ {deti}|+

∑
ij :detij∈Si−1∪{deti}

σ2[∥µij∥
2
2 +

Nz∑
t=1

τ2ij ,t − 2

Nz∑
t=1

log τij ,t] ; /* | · | is the cardinality of the set */

if Si−1 = ∅ or max
detj1∈Si−1

IoU(detj1 ,deti) = 0 then

Li,2 ←∞;
else

detj = argmax
detj1∈Si−1

IoU(detj1 ,deti);

(Ii,2, ReconDict)← DSAWR((Si−1 \ {detj}) ∪ {deti}, ReconDict);
Li,2 ← ∥I − Ii,2∥22 + λ|(Si−1 \ {detj}) ∪ {deti}|+∑
ij :detij∈(Si−1\{detj})∪{deti}

σ2[∥µij∥
2
2 +

Nz∑
t=1

τ2ij ,t − 2

Nz∑
t=1

log τij ,t];

end
Li ← min(Li−1, Li,1, Li,2);
if Li = Li−1 then

Si ← Si−1;
else if Li = Li,1 then

Si ← Si−1 ∪ {deti};
else

Si ← (Si−1 \ {detj}) ∪ {deti};
end

end
Output: Selected detections SN
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(a) (d)(c)(b)

(e) (f) (g) (h)

Figure 3.5: Example of Detection Selection Algorithm (DSA).

interpretation for the image in Algorithm 3.

In Figure 3.5, in image (a) we show the original image with five actual objects and 6

detections indexed from 0 to 5, ordered according to their objectness score, same as in Figure

3.4. N = 6 and the last bounding box is redundant. As stated in Algorithm 3, we start from

S0 = ∅. In the first step, we only consider detection {0}, which has highest objectness score.

The loss is 1307.8, so we have S1 = {0}, as shown in (b). Next we move on to bounding

box 1 as the next highest objectness score. Because no bounding box has an intersection

with bounding box 1, in the second step we only consider the ordered set {0, 1}, (there is no

possible detection to omit). The loss is 982.5, which is better than 1307.8, so S2 = {0, 1}. Its

canvas is shown in (c). In the third step bounding box 0 has the largest IoU with bounding

box 2, so we compare both {0, 1, 2} and {1, 2} and select S3 = {0, 1, 2} in (d). Its loss is 713.9.

Similarly we compare {0, 1, 2, 3} and {0, 2, 3} and select S4 = {0, 1, 2, 3} in (e) which gives

us loss 356.3. In step 5, {0, 1, 2, 3, 4} and {0, 2, 3, 4} are compared and S5 = {0, 1, 2, 3, 4}

with loss 151.6 is selected. Finally, since bounding box 2 has the largest IoU with bounding

box 5, we process {0, 1, 2, 3, 4, 5} and {0, 1, 3, 4, 5}, which gives us losses 165.2 and 253.0
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Figure 3.6: 10 classes of objects.

respectively, and their canvases are shown in images (g) and (h). But neither {0, 1, 2, 3, 4, 5}

or {0, 1, 3, 4, 5} has a smaller loss than S5, so S6 = S5 = {0, 1, 2, 3, 4}. Therefore, ultimately

we interpret the image by bounding boxes {0, 1, 2, 3, 4}, which means there are 5 objects and

our predicted labels are the corresponding labels of the bounding boxes {0, 1, 2, 3, 4}. Some

more experiments about DSA are shown in Section 3.8.2.

3.7 Dataset

Our synthesized datasets encompass 10 object classes, denoted from class 1 through class 10.

The 10 classes include the following objects, as illustrated in Figure 3.6: sphere, ellipsoid,

torus, regular cube, lying thin cuboid, standing thin cuboid, regular cylinder, standing thin

cylinder, lying thin cylinder, and cone. Irrespective of the object classes, each image features

random colors (r, g, b) assigned to all objects, where 0 ≤ r, g, b ≤ 1 are uniformly chosen,

subject to the constraint r + g + b ≥ 1. Objects are set to have the same color to enhance

the difficulty of detection.

In all our datasets for this chapter, objects are randomly positioned on a pure black

background. We employ the Python package ’pyvista’ for image generation. Each image
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is illuminated by three lights with fixed directions and intensities set at 0.5, 0.5, 0.2 respec-

tively. The camera position and focus remain constant, while the objects are allowed to

rotate horizontally from 0 to 360 degrees. As depicted in Figure 3.6, classes 1, 3, 7, 8 exhibit

rotational invariance, whereas the others do not.

3.7.1 Training sets

To train the Faster R-CNN model or the Faster R-CNN-OC model in Section 3.2, we generate

paired occluded objects on a 200× 200 black background as our training set. These objects

are positioned on an invisible floor. Rejection sampling is employed to ensure that, despite

being occluded, the two objects won’t be in close proximity to each other, and each object

has at least 200 visible pixels. The classes of the two paired objects are selected from the 10

classes we have, ensuring that each class appears exactly 1000 times in the dataset. Thus,

we have a total of 1000× 10/2 = 5000 images for Faster R-CNN and Faster R-CNN-OC.

For the Single Reconstruction Algorithm for DSA (DSASR) mentioned in Section 3.3,

we train a VAE decoder. In generating pairs of objects for the Faster R-CNN and Faster R-

CNN-OC training images, we use the same individual objects as our decoder training data.

However, these objects are isolated, centered in 50 × 50 images, and re-scaled to maximize

their size within the 50 × 50 images. This resizing is achieved through the parameterized

sampling grid technique discussed in Section 3.3.2. In Figure 3.7, image (a) represents a

training image for Faster R-CNN and Faster R-CNN-OC, and the two images in (b) depict

the corresponding training data for the decoder. We have a total of 5000×2 = 10000 images

for the decoder.

3.7.2 Validation and test sets

To assess the performance of our post-processing method DSA, we utilize a validation set and

a test set. Both datasets consist of 200 × 200 images, with each image containing between
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(a) (b) (c) (d)

Figure 3.7: Datasets.

3 and 7 objects. The challenge of post-processing tends to increase with a higher number of

objects.

Both the validation set and test set for post-processing comprise 500 images each. We

ensure that every object has a minimum of 200 visible pixels, and the objects are sufficiently

spaced apart. For the validation set, there are 250 images with 3 objects and 250 images

with 4 objects. An example of a validation image is shown in image (c) of Figure 3.7. In the

test set, we have 150, 150, 200 images with 5, 6, 7 objects, respectively. Image (d) in Figure

3.7 is an example from the test set containing 6 objects.

3.8 Experiments

As elucidated in Section 3.7, both the Faster R-CNN and our Faster R-CNN-OC model are

trained using 5000 paired occluded objects, which are further split into 4000 training images

and 1000 validation images. Both models are trained with a batch size of 10, utilizing

default Faster R-CNN parameters and no pre-training. The training process halts upon

observing 10 consecutive epochs with no improvement in the validation loss. The Faster

R-CNN and Faster R-CNN-OC models completed training at epoch 79 and 64 respectively.

In the occlusion branch, during training, the "occlusion scores" of the upper object and the

lower object are set to be 1.0 and 0.0 respectively.
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For each class, a separate decoder is trained with a latent dimension of 10. The decoder

architecture comprises one hidden layer with 300 units fully connected to a layer with 7500

units corresponding to the 50×50×3 output. ReLU nonlinearity is applied after the hidden

layer, and a sigmoid nonlinearity is used after the final layer. The first 8000 images are

employed for training the decoder, while the remaining 2000 are reserved for testing. The

decoder undergoes 400 epochs of training, with decoder parameter updates occurring once

after every 10 optimization iterations of the latent code. Fixed values are set for σ (0.1) and

batch size (100). Adam optimizers are utilized, and the learning rates for updating decoder

parameters and latent code are 0.0001 and 0.01.

In the full Detection Selection Algorithm (DSA), detections with an objectness score less

than 0.25 are discarded, as such detections would ultimately likely be rejected by Algorithm

3, thereby avoiding unnecessary computational costs.

3.8.1 Occlusion Scores

The Faster R-CNN-OC model is trained on pairs of objects; however, it demonstrates ef-

fective generalization when tested on scenarios involving three or more overlapping objects.

Given that the primary emphasis of our work is not on occlusion relationship reasoning, we

present selected results in Figure 3.8. The predicted occlusion score is depicted at the lower

right corner for each bounding box. It is important to note that, for clarity, we only display

the top few bounding boxes following the application of Non-maximum Suppression (NMS)

by Faster R-CNN-OC.

3.8.2 DSA Accuracies

Frequently, the evaluation of detection quality involves the use of mAP (mean Average

Precision). However, when establishing the accurate count of objects is crucial, precision at

recall = 1 assumes utmost significance. In this work we use two types of accuracies as our
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Figure 3.8: Example of Predicted Occlusion Scores.

evaluation metrics:

• The precent of images where the correct number of boxes is chosen.

• The percent of images with the correct number of boxes and correct predicted labels.

As an illustration, consider an image containing one object of class-1 and two objects of

class-2. If our prediction comprises two objects of class-1 and one object of class-2, we

would be deemed correct according to the first evaluation metric but incorrect under the

second evaluation metric. Evidently, the second evaluation metric exhibits a more stringent

criterion.

In Table 3.1, we present a comparison of three post-processing methods applied to Faster

R-CNN: NMS, Soft-NMS, and DIoU-NMS. The parameters Tboxes and Tlabels are both

thresholds. In the first segment of the table, we determine the optimal threshold Tboxes

through a grid search over the range 0.01, 0.02, ..., 0.99 as a threshold on the validation set.

Detections above the chosen threshold for each method are considered final detections. Sim-

ilarly, Tlabels aims to maximize the accuracy of labels in the validation set. Notably, the

chosen Tboxes and Tlabels are quite close to each other. The thresholds for Soft-NMS are

lower because Soft-NMS decreases objectness scores. For comparison, in the second segment

of Table 3.1, we fix the thresholds to be 0.5. Due to these lower thresholds, the accuracies

of NMS decrease drastically.

The accuracies in Table 3.1 are calculated on the test set based on the thresholds es-
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Table 3.1: NMS, Soft-NMS and DIoU-NMS with Faster R-CNN

Methods Tboxes Tlabels Accuracy for Boxes Accuracy for Labels

NMS 0.91 0.91 0.962 (0.0086) 0.962 (0.0086)

Soft-NMS 0.69 0.69 0.950 (0.0097) 0.950 (0.0097)

DIoU-NMS 0.91 0.91 0.940 (0.0106) 0.940 (0.0106)

NMS 0.5 0.5 0.772 (0.0188) 0.772 (0.0188)

Soft-NMS 0.5 0.5 0.946 (0.0101) 0.946 (0.0101)

DIoU-NMS 0.5 0.5 0.934 (0.0111) 0.934 (0.0111)

timated from the validation set. Because the validation set and test set have different

distributions, the thresholds may not be optimal. The numbers in the parenthesis are the

estimated standard deviations using
√

p̂(1−p̂)
n , where p̂ is the average accuracy and n = 500

is the number of test samples. Accuracy for boxes and accuracy for labels represent the first

and second evaluation metrics mentioned earlier. It is observed that, for each method, the

accuracy for boxes and labels are the same, indicating that the predicted labels are typically

correct.

Given a set of detections generated by an object detection algorithm, the described

Detections Selection Algorithm (DSA) lacks the ability to reduce False Negatives but can

be employed to minimize False Positives. We apply DSA after Non-Maximum Suppression

(NMS) or DSA after Soft-NMS to refine the detections produced by the Faster R-CNN-OC.

The NMS threshold is set at 0.5. In Table 3.2, DSA after NMS is referred to as "NMS+DSA",

and DSA after Soft-NMS is denoted as "Soft-NMS+DSA".

The penalty parameters λboxes and λlabels are also chosen using the validation set to

maximize the two evaluation metrics, respectively. We experimented with values such as

10, 20, 30, 40, 50. In case of ties, the median value is selected. Table 3.2 demonstrates no-

ticeable improvements over the original NMS or Soft-NMS results presented in Table 3.1.
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Particularly, NMS+DSA exhibits significant performance improvement.

Table 3.2: NMS+DSA and Soft-NMS+DSA on Faster R-CNN-OC

Methods λboxes λlabels Accuracy for Boxes Accuracy for Labels

NMS+DSA 15 15 0.980 (0.0063) 0.980 (0.0063)

Soft-NMS+DSA 20 20 0.982 (0.0059) 0.980 (0.0063)

3.8.3 Recovering False Negatives

We conducted a simple experiment to see how DSA might be extended to recover missed

detections of NMS or soft-NMS. We rotated each test image by 10 degrees. This minor

perturbation significantly reduces the accuracy of the detection algorithms. For example

soft-NMS yields 0.90 for number of boxes and 0.652 for proportion of images with correct

labels. Just observing the results it is clear that the small rotation leads the faster R-CNN

to label many instances of class 8 - the upright cylinder as class 9. So we added a minor

hack in the code, where any time a box is labeled 9, we also run the Whole Reconstruction

Algorithm for DSA (DSAWR) on exactly the same input except that the new box is labeled 8

instead of 9 and then compare the NLL’s. Furthermore, we introduce a new variable α in the

decoder for rotation in addition to the translation variable so that the decoder optimization

is over µ,Γ, (tx, ty), α. This yielded a significant improvement of 0.906 proportion of images

with correct number of detected boxes and 0.856 proportion of images with all labels correct.

In Figure 3.9 we show the different whole reconstructions produced without and with the

likelihood comparison between class 9 and class 8. This experiment points to the possibility

of recovering from distribution shifts by extending the free parameters of the decoder as well

as entertaining more than one class label for each detected box.
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Figure 3.9: Left: Faster R-CNN output on rotated image, Middle: Whole reconstruction
without class 8 competition, Right: Whole reconstruction with class 8 competition.

3.8.4 Enlarged Objects

Another noteworthy experiment involves rescaling all objects in the test set by the same

proportion of 10
9 , while maintaining the training and validation sets unchanged. This is

achieved by cropping a 180× 180 region containing all the objects and enlarging it to create

a 200× 200 image.

Table 3.3: NMS, Soft-NMS and DIoU-NMS with Faster R-CNN on Enlarged Objects

Methods Tboxes Tlabels Accuracy for Boxes Accuracy for Labels

NMS 0.91 0.91 0.886 (0.0142) 0.880 (0.0145)

Soft-NMS 0.69 0.69 0.916 (0.0124) 0.908 (0.0129)

DIoU-NMS 0.91 0.91 0.886 (0.0142) 0.874 (0.0148)

Table 3.4: NMS+DSA and Soft-NMS+DSA on Enlarged Objects with Faster R-CNN-OC

Methods λboxes λlabels Accuracy for Boxes Accuracy for Labels

NMS+DSA 15 15 0.988 (0.0049) 0.982 (0.0059)

Soft-NMS+DSA 20 20 0.964 (0.0083) 0.960 (0.0088)

The outcomes are presented in Table 3.3 and Table 3.4. The results indicate that DSA

brings about highly significant enhancements. Notably, NMS+DSA demonstrates particu-
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Figure 3.10: Left: Faster R-CNN output , Middle: Whole reconstruction of top 5 bounding
boxes, Right: Whole reconstruction of top 4 and the 6th bounding boxes.

larly favorable performance. Transitioning from standard objects to the enlarged objects,

the accuracies of NMS decrease from 0.962, 0.962 to 0.886, 0.880, whereas the accuracies of

NMS+DSA don’t decrease.

Due to the introduction of objects with different sizes in the new images, the objectness

scores become less reliable for Faster R-CNN. Consequently, NMS, Soft-NMS, and DIoU-

NMS exhibit diminished performance. However, our Single Reconstruction Algorithm for

DSA (DSASR) demonstrates the capability to handle bounding boxes of various scales,

allowing our DSA to effectively operate on enlarged objects.

Figure 3.10 illustrates why we need to compare (S\{detj})∪{deti} with S and S∪{deti}

in the Detection Selection Algorithm (DSA). In Figure 3.10, an object of class 5 is predicted

in two different bounding boxes by Faster R-CNN as class 4 and class 5 with objectness

scores 0.89 and 0.82 respectively. Thus, the class 4 object is processed before the class 5

object in the DSA. The whole reconstruction by the top 5 detections in terms of objectness

scores yields loss 430.36. It selects the wrong bounding box of class 4. In the next step, DSA

considers dropping the bounding box of class 4 and adding the bounding box of class 5. The

loss decreases to 376.92, and it gives us the right interpretation.
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3.9 Conclusion

In this chapter, we have introduced the Detection Selection Algorithm (DSA) along with

several complementary algorithms designed to ascertain the precise number of objects and

their corresponding labels in an image. DSA is employed subsequent to NMS or similar

techniques. The framework is likelihood-based, involving comparisons among image inter-

pretations, specifically ordered sequences of instantiated objects. The probabilistic frame-

work offers a global evaluation of any interpretation and takes into account the relationships

between the different objects. Notable byproducts of DSA include determining the occlu-

sion sequence of objects, reconstructing the invisible parts of objects, and generating images

based on a given set of hypothesized objects.

We note that most network models used today in image processing are fully feed-forward.

The input passes through the network and produces the output. This works well when there

is ample training data and when the distribution of the test data is the same as that of

the training data, i.e. no distributional shift. However such methods are quite sensitive to

distributional shifts as demonstrated in the experiments above, and it appears to us that in

certain settings adjusting to such shifts without retraining necessitates an online optimization

procedure that can accommodate the modified distribution, and in particular using global

likelihood based reasoning. A full probabilistic model is the most principled way to achieve

this, albeit at a significant computational cost. Our greedy algorithm implements only one-

step back search, only inspecting the detection with highest overlap. More extensive searches

could be implemented exploring a wider range of ordered subsets of the detections, again,

at a higher computational cost.

To extend the DSA, DSASR and DSAWR to real-world images with colored background

and clutter leads to Chapter 4.
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CHAPTER 4

DETECTION SELECTION ALGORITHM WITH MASK FOR

PANOPTIC SEGMENTATION

4.1 Motivation

Panoptic segmentation, as explored in various studies Kirillov et al. [2019b], Li and Chen

[2022], Elharrouss et al. [2021], Chuang et al. [2023], has recently garnered significant at-

tention. This research field involves the assignment of semantic labels to pixels, along with

unique object instance IDs, thereby facilitating a comprehensive understanding of the image.

Diverging from instance segmentation, where predicted object masks may overlap, panop-

tic segmentation ensures a non-overlapping assignment of labels to every pixel. Therefore,

adaptation is required to apply instance segmentation to panoptic segmentation tasks Kir-

illov et al. [2019b]. The assessment of panoptic segmentation quality typically relies on

metrics such as Panoptic Quality (PQ) Kirillov et al. [2019b] or modified PQ Porzi et al.

[2019]. Images are partitioned into distinct categories, namely thing and stuff classes, where

the former comprises countable objects, and the latter encompasses amorphous elements

such as grass, road, and sky. Both thing and stuff classes contribute to Panoptic Quality

(PQ) scores. The Panoptic Quality score can be seen as the multiplication of two quantities,

one is the F1 score Van Rijsbergen [1979] and the other is the averaged IoU of those matched

pieces in panoptic segmentation.

Instance segmentation methods, exemplified by Mask R-CNN He et al. [2017], which

detects objects and predicts object masks, can be integrated into panoptic segmentation when

considering everything other than the objects as a stuff class. This panoptic segmentation

can be achieved with a NMS-like procedure Kirillov et al. [2019b] which greedily assign pixels

to detections according to their confidence scores from high to low. This NMS-like procedure

has been pointed out to be suboptimal Lazarow et al. [2020], because detections which
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have higher confidence scores don’t necessarily occlude less confident detections. Numerous

advancements in panoptic segmentation, as evidenced by studies such as Lazarow et al.

[2020], Kirillov et al. [2019a], Mohan and Valada [2021], Lazarow et al. [2020], have been

realized through innovative network architectures and novel training objectives. However,

the question arises: Is it possible to enhance panoptic segmentation quality without altering

the fundamental architecture of instance segmentation model?

Addressing this query affirmatively, in this chapter we introduce our Detection Selection

Algorithm with Mask (DSAM). DSAM enhances Panoptic Segmentation quality by leverag-

ing both a trained detection model and a trained deep generative model. As an illustrative

example in this chapter we use Mask R-CNN He et al. [2017] and VAE with flow prior Huang

et al. [2017] as our detection model and deep generative model. Notably, DSAM serves as an

extension of the Detection Selection Algorithm (DSA) Fan et al. [2023]. DSA, characterized

as a greedy algorithm, aims to select the optimal set of detections for interpreting the im-

age. Operating under the assumption of a pure black background, DSA exclusively involves

object detections without accompanying object masks. Its design aims to surpass tradi-

tional techniques like Non-maximum Suppression (NMS) and Soft-NMS Bodla et al. [2017a].

Executing DSA requires three essential tools: Faster R-CNN-OC, Single Reconstruction Al-

gorithm for DSA (DSASR), and Whole Reconstruction Algorithm for DSA (DSAWR). For

a more in-depth exploration of these concepts, refer to Chapter 3.

Diverging from the Detection Selection Algorithm (DSA), our Detection Selection Al-

gorithm with Mask (DSAM) is tailored to address real-life images characterized by colored

backgrounds populated with various clutters and irrelevant objects. In our approach, we

uniformly categorize all such stuff classes and irrelevant objects as a singular entity referred

to as the "background", and treat it as a stuff class. Much like DSA, DSAM incorpo-

rates an occlusion relationship reasoning algorithm, a single reconstruction algorithm, and

a whole reconstruction algorithm as incidental outcomes. However, in DSAM, the occlusion
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relationship reasoning algorithm relies on depth estimation rather than Faster R-CNN-OC.

Additionally, we have made slight modifications to enhance the efficiency of both the DSASR

in Section 3.3 and the DSAWR in Section 3.4 and call the modified algorithms DSAMSR

and DSAMWR respectively. In addition to the "selection" and "discarding" operations in

DSA, in DSAM we have another "designation as background" operation. This is needed in

DSAM because in many cases the detection algorithm recognizes clutters or non-objects as

objects. In DSA the image has no clutters so "designation as background" operation is less

important. The evaluation of our method is conducted using the Panoptic Quality (PQ)

metric. The primary contributions of this chapter encompass:

• We establish three operations for each detection: "selection", "discarding", and "desig-

nation as background". Following the implementation of DSAM, detections subjected

to the "selection" operation are retained and subsequently utilized in panoptic seg-

mentation.

• We formulate a likelihood optimization framework, elucidated in Section 4.2, to con-

struct a loss function employed within our Detection Selection Algorithm with Mask

(DSAM).

• We propose DSAM, a method that sequentially determines one of three operations for

each detection based on likelihood comparisons.

In the subsequent discussion, we delineate our likelihood framework, which is presented

in Section 4.2. Following this, in Section 4.3 we elaborate on our new occlusion relationship

reasoning method, founded on depth estimation as an alternative to an occlusion branch

in Faster R-CNN. Furthermore, Sections 4.4, 4.5, and 4.6 detail the Single Reconstruction

Algorithm for DSAM (DSAMSR), Whole Reconstruction Algorithm for DSAM (DSAMWR),

and DSAM, respectively. Section 4.7 presents the experimental results, and, ultimately, we

draw this chapter to a conclusion in Section 4.8.
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4.2 Probabilistic Framework

In contrast to the entirely black background utilized in DSA Fan et al. [2023], DSAM, in

its application, confronts real-world images characterized by diverse colored backgrounds,

encompassing various forms of visual clutter and miscellaneous object classes.

Assuming that our occlusion relationship reasoning algorithm and the Mask R-CNN He

et al. [2017] propose detections in the form of {deti = (scorei, occi, bbi,maski, clsi)}Ni=1,

where scorei, bbi, maski, clsi are objectness (confidence) score, predicted bounding box,

predicted object mask and predicted label by Mask R-CNN, and occi is the predicted occlu-

sion score detailed in Section 4.3. We execute one of the three operations on each detection:

either "selection", "discarding", or "designation as background". The sets S, D and B rep-

resent the indices of operations corresponding to "selection", "discarding", and "designation

as background" respectively. It is imperative to emphasize that henceforth in this chapter

we designate I∗ to be the original image and the variable I to represent the original image

constrained within the union of all predicted masks in the detections, denoted as ∪Ni=1maski.

The pixels subject to analysis by our algorithm encompass precisely the entirety enclosed

within the union ∪Ni=1maski. As an illustrative example, in Figure 4.1, image (a) represents

the original image denoted as I∗, whereas the non-zero segment of image (b) corresponds to

the variable I.

Diverging from the probabilistic framework in DSA Fan et al. [2023], our new proba-

bility model computes p(I, S,D,B, {deti}Ni=1), representing the joint probability of having

I, {deti}Ni=1, selected detections S, discarded detections D and detections designated as

backgrounds B. It is crucial to emphasize that our set I encompasses pixels within the com-

plete union ∪Ni=1maski, irrespective of the specific choice of D. In other words, we assign

detections into S,D,B to explain I but the choice of S,D,B doesn’t affect I itself. It is

stipulated that, by definition, S ∩D = D ∩ B = B ∩ S = ∅ and S ∪D ∪ B = {i}Ni=1. The
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(a)

(b)

Figure 4.1: (a)- the original image I∗, (b)- the original image constrained within the union
of all predicted masks, denoted as I.

logarithm of the joint likelihood can be computed as follows:

log p(I, S,D,B, {deti}Ni=1) = log p(S,D,B, {deti}Ni=1) + log p(I|S,D,B, {deti}Ni=1),

(4.1)

where

log p(I|S,D,B, {deti}Ni=1)

= log

∫
· · ·
∫

p(I|{zi}Ni=1, S,D,B, {deti}Ni=1)p({zi}
N
i=1|S,D,B, {deti}Ni=1)dz1 · · · dzN .

(4.2)

In the aforementioned formula, it is assumed that latent code zi corresponding to the object
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in detection deti follows a prior distribution. Additionally, a decoder maps zi to the image

space. For any given set {zi}Ni=1, S,D,B, the mean of the Gaussian conditional distribu-

tion I|{zi}Ni=1, S,D,B, {deti}Ni=1 is determined, and the observed pixels are conditionally

independent in the Gaussian conditional distribution I|{zi}Ni=1, S,D,B, {deti}Ni=1 with a

consistent variance denoted by σ2. This framework simplifies the computation of the likeli-

hood.

It is important to note that {zi}i∈D, the latent codes for the discarded detections, does

not impact the interpretation of the image, as the detections {deti}i∈D have been discarded.

In the probability p(I|S,D,B, {deti}Ni=1), latent codes for objects in sets S and B are used

to interpret the content of I. In instances where the pixels in I are not accounted for by

objects in sets S and B, a value of (0, 0, 0) is utilized for explanation. This approach mirrors

the scenario where detections in set D are disregarded, and only sets S and B are utilized

to explain I, denoted as p(I|S,B, {deti}Ni=1). Therefore, we make the assumption that

p(I|S,D,B, {deti}Ni=1) = p(I|S,B, {deti}Ni=1).

The proportion of pixels in image I unaccounted for by sets S and B is minimal, given

that explanations from sets S or B generally result in a more accurate alignment with the

image compared to (0, 0, 0). A more precise alignment with the image typically leads to

a reduced loss, which is subsequently defined in this section. Instances where a detection

is assigned to set D typically arise when pixels within its object mask have already been

accounted for by another detection. As a result, the DSAM outlined in Section 4.6 tends to

avoid leaving pixels unaccounted for by S and B.

Throughout this chapter, we use the symbol DKL to represent the Kullback–Leibler

divergence

DKL(p(·)||q(·)) =
∫

p(x) log
p(x)

q(x)
dx.
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In alignment with the methodology employed in DSA Fan et al. [2023], we employ the

subsequent variational approximation:

log p(I|S,D,B, {deti}Ni=1) = log p(I|S,B, {deti}Ni=1)

=Eqϕ({zi}i∈S∪B |I,S,B,{deti}Ni=1))
log

p(I, {zi}i∈S∪B |S,B, {deti}Ni=1)

qϕ({zi}i∈S∪B |I, S,B, {deti}Ni=1)

+DKL(qϕ({zi}i∈S∪B |I, S,B, {deti}Ni=1)||p({zi}i∈S∪B |I, S,B, {deti}Ni=1))

=Eqϕ({zi}i∈S∪B |I,S,B,{deti}Ni=1)
log p(I|{zi}i∈S∪B , S, B, {deti}Ni=1)

−DKL(qϕ({zi}i∈S∪B |I, S,B, {deti}Ni=1)||p({zi}i∈S∪B |S,B, {deti}Ni=1))

+DKL(qϕ({zi}i∈S∪B |I, S,B, {deti}Ni=1)||p({zi}i∈S∪B |I, S,B, {deti}Ni=1))

≈Eqϕ({zi}i∈S∪B |I,S,B,{deti}Ni=1)
log p(I|{zi}i∈S∪B , S, B, {deti}Ni=1)

−DKL(qϕ({zi}i∈S∪B |I, S,B, {deti}Ni=1)||p({zi}i∈S∪B |S,B, {deti}Ni=1)),

(4.3)

where qϕ({zi}i∈S∪B |I, S,B, {deti}Ni=1) represents the posterior distribution derived from

our generative models while p({zi}i∈S∪B |I, S,B, {deti}Ni=1) is the true posterior distribu-

tion. Specifically, we train separate generative models for each object class as well as for the

background. For clarity, we denote ϕc as the generative model trained on class c and ϕbg for

the generative model trained on background pieces. We additionally posit the independence

of the posterior distributions of zi across different detections

qϕ({zi}i∈S∪B |I, S,B, {deti}Ni=1) =
∏
i∈S

qϕclsi
(zi|Ii)

∏
i∈B

qϕbg(zi|Ii), (4.4)

where Ii denotes the "image context", which is the square image segment surrounding bbi.

In Figure 4.2, the predicted bounding boxes are represented by the blue boxes, and their

corresponding image contexts are depicted by the content of the yellow boxes.
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Figure 4.2: Example of 3 image contexts surrounding 3 bounding boxes.

Another assumption that we make is

p({zi}i∈S∪B |S,B, {deti}Ni=1) =
∏
i∈S

pθclsi
(zi)

∏
i∈B

pθbg(zi), (4.5)

which means zi’s are independent in their generation. In modeling each prior distribution,

we employ normalizing flows denoted as fθ : Z → E . Assume zi|Ii ∼ N (µi,Γi) for i ∈ S∪B,

where Γi is a Nz × Nz diagonal matrix with diagonal elements τ2i,t, t = 1, 2, ..., Nz, the KL

divergence can be derived as

DKL(qϕ(zi|Ii)||pθ(zi))

=− Nz

2
(1 + log(2π))−

Nz∑
t=1

log τi,t − Eqϕ(zi|Ii) log pE (fθ(z))− Eqϕ(zi|Ii) log |det
(
∂fθ(z)

∂z

)
|.

(4.6)
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The computational details are elucidated in Equation 4.16. Under the aforementioned as-

sumptions, Equation 4.3 can be further streamlined to

E∏
i∈S qϕclsi

(zi|Ii)
∏

i∈B qϕbg (zi|Ii)
log p(I|{zi}i∈S∪B , S, B, {deti}Ni=1)

−
∑
i∈S

DKL(qϕclsi
(zi|Ii)||pθclsi (zi))−

∑
i∈B

DKL(qϕbg(zi|Ii)||pθbg(zi))

=E∏
i∈S qϕclsi

(zi|Ii)
∏

i∈B qϕbg (zi|Ii)
log p(I|{zi}i∈S∪B , S, B, {deti}Ni=1)

+
∑

i∈S∪B
[
Nz

2
(1 + log(2π)) +

Nz∑
t=1

log τi,t]

+
∑
i∈S

[Eqϕclsi
(zi|Ii) log pE (fθclsi

(zi)) + Eqϕclsi
(zi|Ii) log |det

(
∂fθclsi

(zi)

∂zi

)
|]

+
∑
i∈B

[Eqϕbg (zi|Ii)
log pE (fθbg(zi)) + Eqϕbg (zi|Ii)

log |det

(
∂fθbg(zi)

∂zi

)
|].

(4.7)

The first term in equation 4.7 can be approximated as

E∏
i∈S qϕclsi

(zi|Ii)
∏

i∈B qϕbg (zi|Ii)
log p(I|{zi}i∈S∪B , S, B, {deti}Ni=1)

≈ log p(I|{z∗i }i∈S∪B , S, B, {deti}Ni=1),

(4.8)

where z∗i ’s are drawn from the predicted posterior distribution zi|Ii ∼ N (µi,Γi). The set

{z∗i }i∈S∪B , S, B, {deti}Ni=1 uniquely determines the distribution of pixels on the object

masks associated with each detection in S and B. Employing the occlusion ordering method

outlined in Section 4.3, we aggregate the means of the distributions pertaining to all detec-

tions in S and B to derive the whole reconstruction output Canvas, denoted as Canvas and

explicated in Section 4.5. Plugging in Canvas,

log p(I|{z∗i }i∈S∪B , S, B, {deti}Ni=1) = −
|I|
2

log(2πσ2)− 1

2σ2
∥I − Canvas∥2vec,2 (4.9)

where |I| signifies the aggregate count of pixels within I, equivalent to the total number of
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pixels encompassed by the union of all masks ∪Ni=1maski. According to equations 4.1, 4.3,

4.7, 4.8 and 4.9, and under the assumption of a uniform prior p(S,D,B, {deti}Ni=1), the task

of maximizing log p(I, S,D,B, {deti}Ni=1) is equivalently transformed into the minimization

of our defined loss function

L = ∥I − Canvas∥2vec,2 − 2σ2
∑

i∈S∪B
[
Nz

2
(1 + log(2π)) +

Nz∑
t=1

log τi,t]

− 2σ2
∑
i∈S

[Eqϕclsi
(zi|Ii) log pE (fθclsi

(zi)) + Eqϕclsi
(zi|Ii) log |det

(
∂fθclsi

(zi)

∂zi

)
|]

− 2σ2
∑
i∈B

[Eqϕbg (zi|Ii)
log pE (fθbg(zi)) + Eqϕbg (zi|Ii)

log |det

(
∂fθbg(zi)

∂zi

)
|].

(4.10)

The purpose of DSAM, as elucidated in Section 4.6, is to minimize the loss function L defined

in equation 4.10.

4.3 Occlusion Relationship Reasoning by MiDaS

Due to the potentially overlapping nature of object masks in instance segmentation He

et al. [2017], it becomes imperative to address the intricacies of reasoning about occlusion

relationships. Our approach involves a direct method for occlusion relationship reasoning:

initially, we execute a depth estimation algorithm MiDaS Lasinger et al. [2019] on the entire

image. Subsequently, we compute the "occlusion scores" by averaging the estimated values

over each predicted object mask.

The MiDaS models are retrieved from the "torch.hub". Three distinct MiDaS models are

available, namely "MiDaS_small", "DPT_Hybrid" and "DPT_Large". These models are

arranged in ascending order of accuracy, yet in descending order of inference speed. In the Mi-

DaS model dedicated to occlusion relationship reasoning, our selection is the "DPT_Hybrid"

model. The predictions generated by MiDaS are expected to possess identical height and

width dimensions as the original image, with the channel count reduced to 1. If the predic-
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tions of MiDaS are represented as MiDaS, the occlusion score occi is defined as follows:

occi =

∑
a∈maski

MiDaSa∑
a∈maski

1
.

Here, maski denotes the predicted object mask of deti, and the variable a in the equation

iterates through each pixel within maski. The notation MiDaSa signifies the predicted

value by MiDaS at pixel a. MiDaS predicts the relative inverse depth. In the course of

depth estimation by MiDaS, higher value indicates a closer region, therefore we operate

under the assumption that object masks with higher occlusion scores can effectively obscure

those with lower occlusion scores. Compared to the Faster R-CNN-OC described in Section

3.2, the occlusion relationship reasoning method based on MiDaS in this section is much

more flexible and has far better generalization abilities because Faster R-CNN-OC is only

trained with paired objects.

An illustrative instance is presented in Figure 4.3. Image (a), sized at (375, 1242, 3),

serves as our original image, with ground truth bounding boxes and predicted bounding

boxes depicted in red and blue, respectively. The stuff classes include road, trees and sky

etc., but we treat them as one stuff class called "background". Image (b) displays the results

of relative inverse depth estimation for image (a) by MiDaS, characterized by dimensions

(375, 1242, 1), where a lighter color signifies a higher predicted value. While acknowledging

that this relative inverse depth estimation may not be flawless, we consider it adequate for

our occlusion relationship reasoning. Image (c) portrays the computed occlusion scores for

each predicted object mask at the upper left corner, with ground truth object masks in red,

predicted ones in blue, and their overlapping areas in pink.
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(a)

(b)

(c)

Figure 4.3: Example of our occlusion relationship reasoning by MiDaS. (a) - original image
with predictions in blue boxes and ground truths in red boxes, (b) - relative inverse depth
estimation from MiDaS, (c) - predicted object masks in blue, ground truth object masks in
red, their overlaps in pink, and occlusion scores of object masks at the upper left corner of
corresponding object masks.

4.4 Single Reconstruction Algorithm for DSAM (DSAMSR)

Variational auto-encoders (VAEs) Kingma and Welling [2013] represent a category of Deep

Generative Models (DGMs) that postulate the existence of a latent code z within the la-

tent space and posit a conditional distribution x|z. Owing to the computational challenges

associated with the log marginal likelihood
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log p(x) = log

∫
pη(x|z)p(z)dz (4.11)

where η is the decoder parameters, VAEs instead maximize a variational evidence lower

bound objective (ELBO)

L(η, ϕ;x) = Eqϕ(z|x)(log pη(x|z))−DKL(qϕ(z|x)||p(z)). (4.12)

A full VAE comprises an encoder and a decoder, with their parameters represented as ϕ

and η in Equation 4.12. VAEs can undergo training using the reparameterization trick as

outlined in Rezende et al. [2014]. Following the training of a VAE, it becomes possible to

sample z from the prior distribution p(z) and transmit it to the decoder for the generation

of new samples. Due to the fact that

log p(x) = L(η, ϕ;x) +DKL(qϕ(z|x)||pη(z|x)), (4.13)

L(η, ϕ;x) can be a good approximation to log p(x) if DKL(qϕ(z|x)||pη(z|x)) is small.

During the maximization of Equation 4.12, it’s commonly assumed that pη(x|z) adheres

to a normal distribution N (mθ,z, σ
2I), where mθ,z signifies the output of the decoder when

provided with the latent code z, and I represents the identity matrix. Let the density

qϕ(z|x) of the posterior distribution z|x be Gaussian, specifically N (µx,Γx), where µx is a

Nz-dimensional vector and Γx is a Nz ×Nz diagonal matrix

Γx =


τ2x,1

. . .

τ2x,Nz

 (4.14)
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and τx,t > 0, t = 1, 2, ..., Nz. If the prior p(z) is N (0, INz
), then

DKL(qϕ(z|x)||p(z)) =

∥µx∥22 +
Nz∑
t=1

τ2x,t −Nz

2
−

Nz∑
t=1

log τx,t. (4.15)

If a normalizing flow fθ : Z → E is assumed as the prior pθ(z), it implies

log pθ(z) = log pE (fθ(z)) + log |det
(
∂fθ(z)

∂z

)
|,

where pE (·) is the probability density function of gaussian noise N (⃗0, INz
). Then

DKL(qϕ(z|x)||pθ(z)) = Eqϕ(z|x) log qϕ(z|x)− Eqϕ(z|x) log pθ(z)

=Eqϕ(z|x) log qϕ(z|x)− Eqϕ(z|x) log pE (fθ(z))− Eqϕ(z|x) log |det
(
∂fθ(z)

∂z

)
|

=− Nz

2
(1 + log(2π))−

Nz∑
t=1

log τx,t − Eqϕ(z|x) log pE (fθ(z))− Eqϕ(z|x) log |det
(
∂fθ(z)

∂z

)
|.

(4.16)

Deviating from the Single Reconstruction Algorithm for DSA (DSASR) discussed in

Chapter 3, the present section introduces our Single Reconstruction Algorithm for DSAM

(DSAMSR). Notably, our DSAMSR excludes the latent code optimization scheme, opting

instead for predictions from the encoder, primarily due to its significantly faster performance.

In Chapter 3, object reconstruction occasionally relies on incomplete pieces. It’s challenging

for the encoder to predict a reliable latent code if the input is incomplete. Consequently,

latent code optimization becomes a necessity in Chapter 3. To transition to encoder predic-

tions in the current chapter, we extract image contexts from the training images to facilitate

the training of our Deep Generative Model. Despite potential occlusions and the presence

of clutter from other objects and backgrounds within these image contexts, we still employ
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them in model training. This decision is rooted in the absence of an assumption that clean

object representations are available from unobstructed object images. To address issues re-

lated to clutter and occlusion, during training our encoder takes the entire image context

as input, while the reconstruction loss by the decoder is solely evaluated on the annotated

ground truth object masks. This training approach enables our Deep Generative Model to

concentrate on the object itself, disregarding extraneous clutter.

As outlined in Algorithm 4, for the detection deti = (scorei, occi, bbi,maski, clsi) our

DSAMSR utilizes the trained generative model to reconstruct the image context while simul-

taneously estimating Eqϕc(z|x) log pE (fθc(z)) and Eqϕc(z|x) log |det
(
∂fθc(z)

∂z

)
| through sample

averages. The estimation of the sample average is conducted through the drawing of 100

samples, a practice aimed at mitigating the variance of the estimation. It is pertinent to

note that the parameters ϕc and θc are specific to class label c. The class label c may take on

either the value of the predicted label clsi or bg. This distinction is crucial for determining

whether the image context represents a background segment during the execution of DSAM.

Further elaboration on this matter is provided in Section 4.6.

An illustrative example is presented in Figure 4.4. Image (a) represents the image context,

sized at (158, 158, 3), surrounding a target bounding box. Utilizing the generative model

trained with the category cars, the single reconstruction is depicted in image (b), exhibiting a

squared error loss of 777.1679 when compared to image (a), with estimated latentLL and logD

values in Algorithm 4 equal to −96.5977 and −87.3579 respectively. In contrast, the single

reconstruction using the generative model trained with background pieces is illustrated in

image (c), featuring a squared error loss of 984.1468 when compared to image (a), latentLL of

−102.5404, and logD of −94.3730. Evidently, the single reconstruction in image (b) surpasses

that in image (c) in terms of squared error loss, latentLL, and logD.

The generative model, trained with background pieces, undergoes training as if "back-

ground" were a distinct class label. Due to the occasional misidentification of background
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Algorithm 4: Single Reconstruction Algorithm for DSAM (DSAMSR)
Input: Image context Ii, the detection deti = (scorei, occi, bbi,maski, clsi),

generative model parameters η, ϕ, θ, generative model training image size

(d, d, 3) and Nz, type of operation ‘S’ or ‘B’

Ii ← resize Ii to (d, d, 3) ;

if operation = ‘S’ then
c = clsi

else
c = bg

end

N (µi,Γi)← posterior distribution predicted by the encoder of ϕc ; /* covariance

matrix Γi is diagonal with diagonal elements (τ2i,1, τ
2
i,2, ..., τ

2
i,Nz

) */

z∗i ← sampled from N (µi,Γi) ;

Ri ← output from the decoder of ηc using latent code z∗i ;

Ri ← resize Ri to the original image context size ;

latentLLi ← sample average of log pE (fθc(z)) by drawing 100 z’s from N (µi,Γi) ;

logDi ← sample average of log |det
(
∂fθc(z)

∂z

)
| by drawing 100 z’s from N (µi,Γi) ;

Output: Single reconstruction Ri, and µi,Γi, latentLLi, logDi, maski

69



(c)(a) (b)

Figure 4.4: Example of the DSAMSR. (a) - image context, (b) - single reconstruction using
the predicted label, (c) - single reconstruction by treating it as background.

pieces as objects by the base instance segmentation algorithm such as Mask R-CNN He et al.

[2017], our DSAM and DSAMWR involve a comparison of losses for the predicted class label

and "background" for each detection. In cases where the class label is accurately specified,

the predicted posterior distribution N (µi,Γi) typically aligns with the common regions in

the latent space for that class. Consequently, we anticipate obtaining a satisfactory single

reconstruction, along with latentLL and logD. If the class label is not correctly specified, we

may observe superior outcomes in terms of single reconstruction, latentLL, and logD for the

"background" class. Our defined loss aids in determining which scenario is more probable.

Further details are provided in Section 4.5 and 4.6.

4.5 Whole Reconstruction Algorithm for DSAM (DSAMWR)

Much like the Whole Reconstruction Algorithm for DSA (DSAWR) in Section 3.4, our new

Whole Reconstruction Algorithm for DSAM (DSAMWR), as summarized in Algorithm 5,

initiates with a pure black Canvas of the same dimensions as the original image. How-

ever, in the context of DSAM, the original image does not necessarily feature a pure black

background. To address this discrepancy, our algorithm permits the selection of certain de-

tections as background pieces, which is called "designation as background", and incorporates
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their single reconstructions as the "background" class (e.g., image (c) in Figure 4.4) onto

the Canvas.

Collectively, we have three operations on detections: "selection", "discarding", and "des-

ignation as background". During each processing step in DSAM, we opt for one of these

three operations for the designated detection. The guideline for determining the operations

is postponed to Section 4.6. The "discarding" operation entails the rejection of the detec-

tion. The "selection" operation implies that the detection is deemed accurate, and its single

reconstruction, using its predicted label (e.g., image (b) in Figure 4.4), is integrated into the

Canvas by our DSAMWR algorithm. The "designation as background" operation signifies

that the detection is considered incorrect, but its single reconstruction as the "background"

class (e.g., image (c) in Figure 4.4) is utilized in our DSAMWR. It is important to note

that the sets S and B represent all the detections under the "selection" and "designation as

background" operations, respectively. Our DSAMWR requires all the single reconstructions

of the detections in S and B, as illustrated in Algorithm 5.

It is worth noting that, irrespective of the specific content of sets S and B, the image

context for a detection deti = (scorei, occi, bbi,maski, clsi) remains constant. Consequently,

if a detection deti has undergone DSAMSR previously, we can store the outcomes of its

single reconstruction. This elucidates the presence of a "reconstructions hashmap" denoted

as ReconDict in Algorithm 5. The key of the ReconDict encompasses two components: the

index of the detection and the operation employed in that specific single reconstruction.

Examples of the single reconstructions are depicted in Figure 4.4. However, when incorpo-

rating a single reconstruction onto the Canvas in Algorithm 5, we confine the reconstruction

within its respective object mask maski. The predicted object mask maski, with values

ranging from 0 to 1 at each pixel across the entire image, is binarized by truncating it at

the threshold of 0.5. Following the binarization process, pixels with a value of 1 are con-

sidered to represent the object’s support. The consideration of occlusion sequences in the
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single reconstructions demands meticulous attention. To establish the occlusion sequence,

we employ the occlusion scores introduced in Section 4.3. Prior to placing single reconstruc-

tions on the Canvas, we arrange detections {deti}i∈S∪B in descending order based on their

occlusion scores. As outlined in Algorithm 5, we commence with those possessing higher

occlusion scores and fill in the remaining blank pixels using detections with lower occlusion

scores. This guarantees that objects with higher occlusion scores will occlude those with

lower occlusion scores.

For the purpose of likelihood comparison introduced in Section 4.2, DSAMWR also com-

putes the loss function. The loss function in DSAMWR aligns with the definition in Equa-

tion 4.10. Given any S and B, DSAMWR yields the loss and the reconstructions hashmap.

Since DSAM in Section 4.6 utilizes DSAMWR multiple times, retaining the reconstructions

hashmap and reusing the single reconstructions can assist in reducing computational costs.

Moreover, the loss function provided by DSAMWR is utilized in the comparison of those

three operations by DSAM.

Algorithm 4 (DSAMSR) mandates the target image context to be a perfect square. In

cases where this requirement is not met, Algorithm 5 (DSAMWR) automatically substitutes

µi = 0⃗, Γi = INz
, latentLLi = 0, and logDi = 0, using the target image context itself as the

single reconstruction. In such instances, the detection is automatically included in the set

S by the DSAM algorithm in Section 4.6. This offers a straightforward solution for image

contexts that are not perfect squares. However, for a more meticulous analysis, latent code

optimization similar to that described in Section 3.3 can be applied here.

Illustrated in Figure 4.5, Algorithm 5 positions single reconstructions on a blank Can-

vas, with each single reconstruction confined to the region outlined by its predicted object

mask. In the lower right corner of Figure 4.5, the single reconstruction for that detection

is created by directly applying the original image, as described earlier. The majority of the

Canvas remains blank because we only reconstruct and analyze the pixels within the union
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Algorithm 5: Whole Reconstruction Algorithm for DSAM (DSAMWR)
Input: The original image I∗, the image constrained within the union of all

predicted object masks I, detection results
{deti = (scorei, occi, bbi,maski, clsi)}Ni=1, the sets S,B, reconstructions
hashmap ReconDict, assumed variance σ2 > 0, latent dimension Nz

Sort {deti}i∈S∪B according to occi from high to low ;
Canvas← zeros(H,W, 3) ; /* (H,W, 3) is the image size */
L← 0 ; /* loss defined in equation 4.10 */
for i ∈ S ∪B do

if i ∈ S then
operation = ‘S’

else
operation = ‘B’

end
if ReconDict[i, operation] doesn’t exist then

l← maximum between the height and width of bbi ;
bb∗i ← the l × l square centered at the center of bbi ;
if bb∗i isn’t completely within the image borders then

ReconDict[i, operation]← (I∗[bbi], 0⃗, INz
, 0, 0) ; /* I∗[bbi] is obtained

by cropping the image at bounding box bbi */

else
Ii ← I∗[bb∗i ] ;
(Ri, µi,Γi, latentLLi, logDi)← DSAMSR(Ii,deti, operation) ;
Ri ← crop a box of size bbi at the center of Ri ;
ReconDict[i, operation]← (Ri, µi,Γi, latentLLi, logDi);

end
end
(Ri, µi,Γi, latentLLi, logDi)← ReconDict[i, operation] ;
L← L− 2σ2[Nz

2 (1 + log(2π)) +
∑Nz

t=1 log τi,t + latentLLi + logDi] ;
Fill in the blank pixels in Canvas[maski] by the corresponding values in Ri ;
/* "blank pixel" is a pixel with value (0, 0, 0) */

end
L← L+ ∥I − Canvas∥2vec,2 ;
Output: Loss L, reconstructions hashmap ReconDict
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(a)

(b)

Figure 4.5: Example of the DSAMWR. (a) - original image with bounding boxes, (b) - The
Canvas by the DSAMWR given a specific S and B.

∪Ni=1maski. The loss, as defined in Section 4.2, relies solely on the union ∪Ni=1maski.

4.6 Detection Selection Algorithm with Mask (DSAM)

4.6.1 DSAM

Our Detection Selection Algorithm with Mask (DSAM) operates as a greedy algorithm that

allocates detections to one of the three sets: S, D, or B, corresponding to three operations

"selection", "discarding", and "designation as background". As depicted in Algorithm 6, the

algorithm commences with empty sets S0, D0, B0, and an empty "reconstructions hashmap"

ReconDict. The processing of detection results adheres to objectness scores, arranged in
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descending order. When processing detection deti, the algorithm compares the losses asso-

ciated with the following three scenarios:

• Si, Di, Bi ← Si−1, Di−1 ∪ {i}, Bi−1

• Si, Di, Bi ← Si−1 ∪ {i}, Di−1, Bi−1

• Si, Di, Bi ← Si−1, Di−1, Bi−1 ∪ {i}

Among which the first case assumes that deti is discarded, the second case assumes that

deti is selected as an object with its predicted label, and the third case assumes that deti

represents a background piece. At each time, the sets Si, Di, Bi are input into the Whole

Reconstruction Algorithm for DSAM (DSAMWR), and DSAMWR assists in computing the

loss as defined in Equation 4.10. The set Si, Di, Bi is determined based on the scenario with

the smallest loss.

In Algorithm 6, three losses are compared for a detection deti: Li−1, Li,1 and Li,2.

Because the loss given by Algorithm 5 (DSAMWR) only depends on the detections in S

and B, the two cases Si, Di, Bi ← Si−1, Di−1∪{i}, Bi−1 and Si, Di, Bi ← Si−1, Di−1, Bi−1

yield exactly the same loss, and the latter is already computed as Li−1. The loss Li,1

represents the case Si, Di, Bi ← Si−1 ∪ {i}, Di−1, Bi−1 and the loss Li,2 is calculated under

Si, Di, Bi ← Si−1, Di−1, Bi−1 ∪ {i}. In the event of ties, we prioritize Li−1, followed by

Li,1, and lastly Li,2.

In contrast to the Detection Selection Algorithm (DSA) discussed in Chapter 3, DSAM

differs primarily by incorporating a "designation as background" operation. DSAM delegates

the majority of computational tasks to DSAMWR and, due to computational complexity

issues, does not involve a one-step back search.

An illustrative example is presented in Figure 4.6, where three detections are labeled as

boxes 1, 2, and 3. Since the image context of box 1 extends beyond the image boundary,

the image itself is employed as the single reconstruction, similar to the scenario depicted
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Algorithm 6: Detection Selection Algorithm with Mask (DSAM)

Input: Detection results {deti = (scorei, occi, bbi,maski, clsi)}Ni=1 sorted by scorei

from high to low, assumed variance σ2 > 0, latent dimension Nz

S0, D0, B0 ← ∅, ∅, ∅;

ReconDict← {};

L0 ←∞;

for i = 1 to N do

(Li,1, ReconDict)← DSAMWR(Si−1 ∪ {i}, Di−1, Bi−1, ReconDict) ;

(Li,2, ReconDict)← DSAMWR(Si−1, Di−1, Bi−1 ∪ {i}, ReconDict) ;

Li ← min(Li−1, Li,1, Li,2);

if Li = Li−1 then

Si, Di, Bi ← Si−1, Di−1 ∪ {i}, Bi−1 ;

else if Li = Li,1 then

Si, Di, Bi ← Si−1 ∪ {i}, Di−1, Bi−1 ;

else

Si, Di, Bi ← Si−1, Di−1, Bi−1 ∪ {i} ;

end

end

Output: SN , DN , BN
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in the lower right corner of Figure 4.5. DSAM starts with the detection in box 1. In

the first scenario, S1, D1, B1 ← {}, {1}, {}, resulting in a loss of 14515.563. In the second

scenario, S1, D1, B1 ← {1}, {}, {}, and the third scenario, S1, D1, B1 ← {}, {}, {1}, both

yield a loss of 87.9987, with Algorithm 6 selecting S1, D1, B1 ← {1}, {}, {}. Similarly, in the

second step, Algorithm 6 compares S2, D2, B2 ← {1}, {2}, {}, S2, D2, B2 ← {1, 2}, {}, {},

and S2, D2, B2 ← {1}, {}, {2}, ultimately selecting S2, D2, B2 ← {1, 2}, {}, {}. In the third

step, Algorithm 6 chooses S3, D3, B3 ← {1, 2}, {}, {3}. Consequently, after image processing,

boxes 1 and 2 are employed for panoptic segmentation. Despite boxes 2 and 3 being relatively

small, Algorithm 4 resizes their image context to a fixed scale, as demonstrated in images

(b) and (c) in Figure 4.6, enabling analysis on boxes 2 and 3.

4.6.2 from DSAM to Panoptic Segmentation

After the execution of DSAM, three sets, namely S, D, and B, are obtained. However, further

processing is necessary to generate panoptic segmentation results. Panoptic segmentation

involves the assignment of pixel-level semantic and instance ID labels. For each object

detected by Mask R-CNN He et al. [2017], the predicted object mask and predicted class

label are available. Once again, we apply binarization to the predicted object mask using

a threshold of 0.5. The detections within the set S determined by DSAM are retained

and utilized in panoptic segmentation. For instance, Figure 4.7 illustrates the panoptic

segmentation produced by DSAM for the image (b) in Figure 4.5, with distinct instance IDs

represented by different colors.

The objects in set S are arranged in descending order based on their occlusion scores.

Object masks with higher occlusion scores are assigned first, followed by objects with lower

occlusion scores. This process resembles an NMS-like procedure Kirillov et al. [2019b], with

the distinction that our objects are ordered according to occlusion, whereas their objects

are sorted by confidence scores. Once all the semantic and instance ID labels are assigned,
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(a) (b)

(c) (d)

Figure 4.6: Example of DSAM. (a) - original image with bounding boxes, (b) - The resized
image context of box 2, (c) - The resized image context of box 3, (d) - The Canvas of
DSAMWR by S3, D3, B3 ← {1, 2}, {}, {3}.

any remaining unlabeled pixels are designated as belonging to a stuff class referred to as

"background," as discussed in Section 4.1.

4.7 Dataset and Experiments

The KITTI INStance dataset (KINS) Qi et al. [2019] has been generated by annotating 14,991

KITTI images Geiger et al. [2012] with amodal instance masks, inmodal instance masks,

relative occlusion orderings, amodal bounding boxes, inmodal bounding boxes, and object

categories. These images, sourced from street scenes, exhibit dimensions approximately equal

to (375, 1242, 3). The selection of this dataset is predicated on its comprehensive annotations.

78



Figure 4.7: Example of Panoptic Segmentation by DSAM.

Comprising a total of 7,474 images allocated for training and 7,517 for testing, the dataset

encompasses eight distinct categories: ‘cyclist’, ‘pedestrian’, ‘person-sitting’, ‘car’, ‘tram’,

‘truck’, ‘van’, and ‘misc’. The first three categories fall under the general category ‘people’,

while the remaining five are classified as ‘vehicle’. The ‘misc’. class encompasses diverse

ambiguous vehicles that defy classification under other vehicle categories. On average, there

are 12.53 objects per image. Addressing the occlusion aspect, 53.6% of objects experience

partial occlusion, with an average occlusion ratio of 31.7%. Notably, these eight categories

demonstrate a marked imbalance, loosely adhering to Zipf’s law Piantadosi [2014], wherein

the ‘car’ and ‘truck’ classes emerge as the most and least frequent, respectively. For a more

in-depth exploration, please consult Qi et al. [2019].

The open sourced KINS dataset is available on https://github.com/qqlu/Amodal

-Instance-Segmentation-through-KINS-Dataset. It furnishes comprehensive data

for training instance segmentation models such as Mask R-CNN He et al. [2017]. Our

implementation of Mask R-CNN undergoes training using the KINS training set, initialized

with default weights pre-trained on the COCO dataset Lin et al. [2014]. Notably, we employ

a batch size of 1 and set the train-validation split ratio at 8:2. The optimization process

involves Stochastic Gradient Descent (SGD) with a learning rate of 0.005, momentum of

0.9, and weight decay set to 0.0005. Training ceases if no improvement in validation loss is
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observed for five consecutive epochs, resulting in termination at epoch 21.

In the context of training our Deep Generative Model, image contexts undergo cropping

when both dimensions of their inmodal bounding boxes measure at least 30 units in length.

Subsequently, we rescale all cropped contexts to dimensions of 48 × 48 × 3. Concurrently,

we collect the annotated inmodal object masks and their corresponding ground truth class

labels. This process results in a total of 49,594 samples, and the distribution of their classes

is summarized in Table 4.1. Notably, the class ‘person-sitting’ is not represented among

the samples, as there are no annotated bounding boxes for ‘person-sitting’ in either the

training or testing images within the aforementioned open-source dataset. These object

classes exhibit a pronounced imbalance, with the most prevalent category being ‘car’.

Table 4.1: Class distribution of DGM training set

cyclist pedestrian personsitting car tram truck van misc

number 1751 5433 0 30674 889 484 2878 7485

ratio(%) 3.53 10.95 0 61.85 1.79 0.98 5.80 15.09

Conversely, for the ‘background’ class, we acquire training images for the Deep Generative

Model (DGM) through random cropping. For an entire image with dimensions (H,W, 3),

we uniformly sample a size l from the range Uniform[10,min(H,W )], determining the di-

mensions of the bounding box as l × l. Subsequently, we ascertain the upper-left corner by

uniformly sampling integers x1 ∼ Uniform[0, H − l] and y1 ∼ Uniform[0,W − l]. The

original image is then cropped at the bounding box defined by its size and upper-left corner

to yield a background piece. Given that the total number of valid annotated boxes in the

KINS training set is 95,456, we sample an equivalent number of background pieces. The

count of sampled background pieces in each image corresponds to the number of annotated

boxes within that particular image.

As detailed in Table 4.1, certain object classes such as ’tram’ and ’truck’ exhibit a limited
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number of samples, potentially insufficient for training a large Deep Generative Model. Con-

sequently, we opt to implement a strategy wherein certain network architectures are shared

among classes, reducing the number of parameters that require training for each individual

object class. We propose a partially shared Deep Generative Model network architecture,

outlined in Figure 4.8. Within this illustration, qϕ(z|x) denotes the posterior distribution

of latent code z given an image x, and fθc represents the normalizing flow specific to class

c. This architecture is designed based on the Variational Autoencoder (VAE) with a flow

prior, as expounded upon in Section 4.4. Notably, the encoder and decoder components

are shared, whereas the normalizing flows are class-specific. We adhere to the assumptions

outlined in Section 4.4. Combining Equation 4.12 and 4.16, for each class c, we maximize

the variational evidence lower bound objective (ELBO)

L(η, ϕ, θc;x) =Eqϕ(z|x)(log pη(x|z)) + Eqϕ(z|x) log pE (fθc(z))

+ Eqϕ(z|x) log |det
(
∂fθc(z)

∂z

)
| − Eqϕ(z|x) log qϕ(z|x),

(4.17)

where ϕ, η, θc denotes the parameters for encoder, decoder and normalizing flow for class c

respectively. It is noteworthy that the computation of pη(x|z) is as follows:

log pη(x|z) = −
|x|
2

log(2πσ2)− 1

2σ2
×
|x|
∑

a∈mask ∥xa −Dη(z)a∥22∑
a∈mask 3

, (4.18)

where the symbol |x| denotes the cardinality of the image x, while σ2 represents the variance

as defined in Section 4.2. The decoding result of latent code z is denoted by Dη(z), and

the 3-dimensional value at pixel a is represented by xa or Dη(z)a. Additionally, the variable

mask corresponds to the ground truth mask. Equation 4.18 is tantamount to utilizing the

mean square error specifically at the object mask to characterize the mean square error

across the entire reconstruction. This approach enables our model to prioritize the accuracy

of object predictions while disregarding extraneous details or clutter.
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Figure 4.8: Our Deep Generative Model.

Similar to the approach adopted in Generative Latent Flow (GLF) Xiao et al. [2019], we

employ the generator from InfoGAN Chen et al. [2016], which encompasses deconvolution

layers, as our decoder. Correspondingly, the encoder utilizes a reversed network architecture

involving convolution layers. The combined parameters for our encoder and decoder amount

to 38,275,843 trainable parameters. For each class, our normalizing flow consists of four

flow blocks, collectively contributing 1,335,808 parameters. The properties of the flow block,

characterized by invertibility and computational efficiency, are delineated in Xiao et al.

[2019]. The latent space dimension is fixed at 64. Employing a batch size of 256 and setting

σ = 0.05, we utilize the Adam optimizer with a learning rate of 0.001 for training the encoder
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and decoder, while the normalizing flow is trained with a learning rate of 1e− 5. The model

undergoes training for a duration of 200 epochs.

To comprehensively assess our Deep Generative Model, we evaluate the variational evi-

dence lower bound (ELBO) and its constituent components for each object class, as detailed

in Table 4.2. These components, denoted as ‘recon_ll’, ‘gauss_ll’, ‘log_jacob’, and ‘entropy’,

correspond to the four terms on the right-hand side of Equation 4.17, arranged sequentially.

The values presented in Table 4.2 are estimates derived from a model trained 200 epochs,

calculated as averages across the training set.

The ELBOs are predominantly influenced by the ‘recon_ll’ term, a consequence of the

factors |x| = 6912 and 1
2σ2

= 200 in Equation 4.18. The ‘recon_ll’ exhibits considerable

variation across classes, reflecting diverse reconstruction challenges. While employing dis-

tinct σ2 values for various classes could potentially address this discrepancy, we opt for a

uniform σ2 to prioritize simplicity, considering that our primary focus lies beyond refining

the Deep Generative Model itself.

The combined influence of ‘gauss_ll’ and ‘log_jacob’ represents the log likelihood of

latent codes. Notably, higher likelihoods are assigned to classes with larger sample sizes. In

contrast, less frequent classes such as ‘tram’ and ‘truck’ exhibit the lowest ‘gauss_ll’ values.

To optimize the ELBO objective across all training samples, the model tends to allocate

popular classes to high probability regions.

Table 4.3 presents a summary of the variational evidence lower bounds (ELBOs) under

the assumption of potentially mis-specified labels. The image data for all object classes is

sourced from the KINS test set. The row names signify the specified labels, while the column

names denote the corresponding data categories. Notably, bold text emphasizes the highest

ELBO within each column. For conciseness, we exclude the ‘tram’ and ‘truck’ classes due

to their limited sample sizes.

The table reveals instances where the model misclassifies ‘cyclist’ and ‘van’ as the predom-
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Table 4.2: Four components of the ELBO

cyclist pedestrian car tram truck van misc

recon_ll -21955.9 -21141.3 -21783.1 -17036.5 -19893.6 -33794.0 -10139.5

gauss_ll -133.7 -92.0 -99.6 -198.6 -269.3 -111.4 -86.6

log_jacob -27.7 -51.5 -39.5 -16.7 -7.8 -52.6 -31.6

entropy -111.6 -116.8 -125.5 -122.4 -125.3 -130.1 -101.7

ELBO -22229.0 -21401.6 -22047.8 -17374.1 -20296.0 -34088.1 -10359.5

inant ‘car’ class, a trend observed in Table 4.2 where the ‘car’ class generally exhibits higher

‘gauss_ll’ plus ‘log_jacob’. However, the model demonstrates proficiency in distinguishing

between objects and background. Specifically, for object data, the background model yields

the lowest ELBO, while for background data, generative models trained on objects yield

notably low ELBO values.

Table 4.3: ELBO under mis-specified labels

cyclist pedestrian car van misc background

cyclist -67872.7 -67542.5 -52524.6 -79234.7 -31236.9 -98431.7

pedestrian -67952.1 -67489.3 -52467. -79205.8 -31188.3 -98049.5

car -67821.7 -67504.2 -52457.1 -79142.3 -31199. -98407.9

van -67885.5 -67501.9 -52489.1 -79181.5 -31179.8 -99836.1

misc -67849.8 -67497. -52479.5 -79159.4 -31202.1 -98973.6

background -70228.4 -86666.3 -67137.6 -82507.5 -51675.7 -24435.2

The results obtained from both the NMS-like procedure Kirillov et al. [2019b] and our

DSAM, assessed on KINS test images, are delineated in Table 4.4. Detections with objectness

scores exceeding 0.1 are preserved for analysis. In the context of the table, the ‘Baseline’ row

signifies the utilization of the NMS-like procedure independently with Mask R-CNN He et al.
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[2017] output. Conversely, the ‘with DSAM’ row denotes the application of our DSAM to

select a subset of detections from the same Mask R-CNN output, followed by the subsequent

execution of the NMS-like procedure to generate panoptic segmentation.

Performance evaluation is conducted across four scenarios:

• Using all ground truth and predicted objects.

• Employing only ground truth and predicted objects with annotated or predicted object

masks not less than 100 pixels.

• Similar to the previous scenario, with the threshold raised to 400 pixels.

• Similar to the previous scenario, with the threshold further raised to 900 pixels.

The progression from the first to the fourth scenario involves an increase in the average size

of objects, rendering the task less challenging. As evident in Table 4.4, DSAM consistently

enhances the Panoptic Quality (PQ) scores across all four scenarios. The improvement is

particularly noteworthy in more challenging scenarios, where the task complexity increases.

Table 4.4: DSAM PQ with Objectness Scores Ordering

PQ all objects ≥ 100 pixels ≥ 400 pixels ≥ 900 pixels

Baseline 0.411198 0.444078 0.582399 0.654408

with DSAM 0.479953 0.506556 0.607400 0.670859

The process, starting from our DSAM outcomes and leading to panoptic segmentation,

can be executed utilizing occlusion score ordering, as elucidated in Section 4.6.2, while keep-

ing the remaining configurations unchanged. The corresponding results are presented in

Table 4.5. Once more, our DSAM demonstrates substantial enhancements across all four

scenarios. The source code employed in our experiments has been made accessible at the

following URL: https://github.com/angzhifan/DSAM. Should we refrain from removing
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any objects, regardless of their sizes, in the absence of DSAM, the mean processing dura-

tion per image stands at approximately 3 seconds. Conversely, in the presence of DSAM,

this average processing time escalates to approximately 34 seconds. However, when restrict-

ing consideration to objects possessing a minimum of 900 pixels in their object masks, the

average processing time is at around 8 seconds without DSAM. In contrast, with DSAM,

the average processing time experiences a more modest increase, reaching approximately 16

seconds.

Table 4.5: DSAM PQ with Occlusion Ordering

PQ all objects ≥ 100 pixels ≥ 400 pixels ≥ 900 pixels

Baseline 0.388117 0.420399 0.560606 0.636605

with DSAM 0.471164 0.497567 0.597729 0.662387

4.8 Conclusion

In this chapter, the core algorithm under development is the Detection Selection Algorithm

with Mask (DSAM), expounded in Section 4.6. DSAM serves as a post-processing technique

designed for instance segmentation models such as Mask R-CNN He et al. [2017]. Analogous

to Chapter 3, there exist two supplementary algorithms for DSAM: the Single Reconstruc-

tion Algorithm for DSAM (DSAMSR) outlined in Section 4.4, and the Whole Reconstruction

Algorithm for DSAM (DSAMWR) detailed in Section 4.5. DSAM categorizes each detec-

tion into one of three operations: "selection", "discarding", or "designation as background".

Only the detections subjected to the "selection" operation are preserved for panoptic seg-

mentation purposes. The determination of these operations is contingent upon minimizing a

loss function derived from an approximated log joint probability, as elucidated in Section 4.2.

The post-processing outcomes of DSAM are subsequently applied to the panoptic segmenta-
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tion task and assessed through the Panoptic Quality (PQ) scores Kirillov et al. [2019b]. The

experiments conducted in Section 4.7 substantiate that DSAM yields significant improve-

ments in panoptic segmentation quality. The enhancements observed in DSAM results come

from the judicious selection and removal of detections, with the assignment of object labels

dependent upon the underlying baseline instance segmentation models. This phenomenon

is clearly illustrated in Table 4.3, wherein the VAE with flow prior encounters difficulty in

effectively distinguishing between various object classes.

In contrast to the Detection Selection Algorithm (DSA) and its associated methodologies

discussed in Chapter 3, DSAM operates within a significantly more intricate context, char-

acterized by a broader array of object appearances and organizational variations. Given the

constraints of the Faster-RCNN-OC outlined in Chapter 3 regarding occlusion relationship

reasoning, we opt for the MiDaS Lasinger et al. [2019] package, mentioned in Section 4.3,

as a more versatile depth estimation tool. DSAM distinguishes itself from other endeav-

ors aimed at enhancing panoptic segmentation quality by not necessitating alterations or

retraining of the instance segmentation model. Rather, it takes the instance segmentation

model’s output as input and applies post-processing to it. In contrast to much of the re-

lated research in panoptic segmentation that overlooks probabilistic interpretations, DSAM

is firmly grounded in a probabilistic framework. Its fundamental concept relies on likelihood

comparisons, with the learning of object distributions executed through Deep Generative

Models. DSAM enhances traditional likelihood reasoning methods, such as the POP model

Amit and Trouvé [2007], by integrating contemporary deep learning techniques.
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CHAPTER 5

MAXIMIZING THE POSTERIOR FOR PANOPTIC

SEGMENTATION

5.1 Motivation

In Chapter 4, our approach within the DSAM framework involves the utilization of Deep

Generative Models for modeling the probability distributions associated with objects. The

selection of these Deep Generative Models should adhere to the following constraints:

• Be able to calculate or approximate p(x), the likelihood of the image segment x.

• Process an encoder and a decoder, as there are instances where training involves loss

on incomplete images, such as image segments confined to an object mask.

• Ensure efficient and rapid evaluation of the likelihood or approximated likelihood, and

is fast to sample new images from the model.

The first and third constraints facilitates the computation of joint likelihood, as delineated

in the probabilistic framework given in Section 4.2. The second constraint allows the Deep

Generative Model to encode the entire image context while assessing the reconstruction

loss solely within the confines of the object mask. This methodology serves to improve the

modeling of the appearance of objects.

Among the Deep Generative Models deliberated upon in Section 1.2.1, Generative Ad-

versarial Networks (GANs) Goodfellow et al. [2014], Radford et al. [2015], Arjovsky et al.

[2017] fail to adhere to the first and third constraints, as they do not explicitly provide

likelihood. A majority of Auto-regressive Models Larochelle and Murray [2011], Uria et al.

[2014], Van den Oord et al. [2016], Normalizing Flows Tabak and Turner [2013], Dinh et al.

[2014, 2016], Kingma and Dhariwal [2018], and Deep Energy-based Models Du and Mordatch
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[2019], Welling and Teh [2011] do not satisfy the second constraint. While Diffusion Models

Ho et al. [2020], Xu et al. [2023] fulfill the first two constraints, they fall short of meeting

the third requirement due to their sluggish computational speed. Variational Auto-encoders

(VAEs) Kingma and Welling [2013], Rezende et al. [2014], Burda et al. [2015] emerge as the

most suitable choice for our objectives, as they satisfy all three specified constraints.

For a given input image x, the Variational Auto-encoder (VAE) utilizes an encoder to pre-

dict a posterior distribution qϕ(z|x) within the latent space, where ϕ denotes the parameters

of the encoder. The aggregated approximate posterior, expressed as

qϕ(z) = Ex∼pxqϕ(z|x),

captures the marginal distribution of the latent code z under px, and px represents the

distribution of the training images. Conversely, a decoder, parameterized by η, maps any

latent code z in the latent space to its corresponding image x in the image space. Following

the training of a VAE, the sampling procedure involves drawing a latent code z from a

predefined prior distribution p(z) and subsequently passing it to the decoder to generate an

image.

To align the distribution of generated images with that of training images, the Vari-

ational Auto-encoder (VAE) penalizes DKL(qϕ(z|x)||p(z)) within its variational evidence

lower bound objective (ELBO), as depicted in Equation 4.12. It has been established Hoff-

man and Johnson [2016] that the ELBO objective can be reformulated as the "average recon-

struction" minus index-code mutual information and further subtracting DKL(qϕ(z)||p(z)).

However, the enforced alignment between qϕ(z) and p(z) may compromise the "average

reconstruction" performance of the decoder, particularly when p(z) is assumed to be a sim-

plistic distribution like factorial Gaussians. Consequently, in Chapter 4, DSAM employs

VAE with a flow prior Huang et al. [2017], an enhanced version of VAE. This variant in-

corporates a learnable flow model Rezende and Mohamed [2015], Kingma et al. [2016] to
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parameterize the prior in VAE. With this enhancement, the prior is no longer constrained to

factorial Gaussians, and it possesses the capability to model complex distributions. As elab-

orated in Equation 4.12 and 4.16, the VAE with flow prior maximizes a variational evidence

lower bound objective (ELBO) defined as

L(η, ϕ, θ;x) =Eqϕ(z|x)(log pη(x|z)) + Eqϕ(z|x) log pE (fθ(z))

+ Eqϕ(z|x) log |det
(
∂fθ(z)

∂z

)
| − Eqϕ(z|x) log qϕ(z|x),

(5.1)

where fθ is the normalizing flow parameterized by θ and pE (·) is the density of standard

multivariate Gaussian.

In this chapter, we employ a distinct type of Deep Generative Model known as Generative

Latent Flow (GLF) Xiao et al. [2019]. GLF functions through a deterministic auto-encoder

(AE) combined with a normalizing flow Tabak and Turner [2013], Tabak and Vanden-Eijnden

[2010]. In contrast to the VAE encoder, which predicts a posterior distribution qϕ(z|x), the

AE encoder predicts a deterministic latent code z for the image x. The decoder component

of AE operates similarly to that of VAE, with AE serving as a mapping between the image

space and the latent space.

Similar to VAE with a flow prior, the normalizing flow in GLF also operates within the

latent space. The AE reduces the dimensionality from the image space to the latent space,

thereby reducing the computational complexity of the normalizing flow. GLF is trained to

maximize the following objective:

G(η, ϕ, θ) = Ex∼px(log p(x|Dη(Eϕ(x)))) + Ex∼px log pE (fθ(z)) + Ex∼px log |det
(
∂fθ(z)

∂z

)
|,

(5.2)

where Eϕ(x) is the encoding result of x and Dη(Eϕ(x)) is the decoding result of Eϕ(x).

The probability p(x|Dη(Eϕ(x))) represents the likelihood of x given the decoding result

Dη(Eϕ(x)), typically modeled as a Gaussian density conditioned on the mean Dη(Eϕ(x)).
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The latent code z = Eϕ(x). The training process for GLF involves a two-stage procedure

designed to prevent degeneracy in the latent codes, where we initially train the Auto-encoder

(AE) parameters η and ϕ using only the first term in Equation 5.2. Subsequently, we proceed

to train the normalizing flow parameters θ using Equation 5.2 with η and ϕ held fixed. A

single-stage training approach for GLF, on the other hand, would involve simultaneously

training η, ϕ, and θ using Equation 5.2. However, this simultaneous training is contingent

upon preventing gradients of log p(x|Dη(Eϕ(x))) from influencing the gradients on θ.

In comparison to the ELBO presented in Equation 5.1, the GLF objective outlined in

Equation 5.2 lacks the final entropy term, thereby circumventing over-regularization. Exper-

imental assessments, gauged by the Fréchet Inception Distance (FID) Heusel et al. [2017],

indicate that GLF outperforms the VAE with a flow prior significantly.

An illustrative example is presented in Figure 5.1, where images (b) and (c) depict com-

parisons of the reconstructions of the image context (a) by VAE with flow prior and GLF.

The training procedures for both models are detailed in Sections 4.7 and 5.4. Notably, in

images (b) and (c), only the reconstructions within the predicted object mask are displayed.

Within this delineated region, image (b) exhibits a squared error loss of 184.7, whereas image

(c) has a squared error loss of 159.1 in comparison to the corresponding region in image (a).

This observation aligns with the notion that the GLF model possesses a superior capacity

to reconstruct the appearance of objects.

The transition from the VAE with a flow prior to the Generative Latent Flow (GLF) ne-

cessitates the establishment of a new probabilistic framework. Specifically, we depart from

the utilization of a variational approximation of the marginal likelihood as described in Sec-

tion 4.2, opting instead for Maximum a Posteriori Probability (MAP) estimation explained

in Section 5.2. This also entails the development of algorithms tailored explicitly for GLF.

The ensuing discussions in this chapter will expound upon these aspects.
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(c)(a) (b)

Figure 5.1: Single Reconstructions. (a) - image context, (b) - single reconstruction by VAE
with flow prior, (c) - single reconstruction by GLF.

5.2 Probabilistic Framework

Similar to Chapter 4, this section initiates the establishment of our probabilistic framework

before introducing our methodology in Section 5.3. The foundational problem setups re-

main consistent: we address real-life images characterized by diverse colored backgrounds,

potential clutters, and the presence of irrelevant objects. Employing an instance segmenta-

tion algorithm such as Mask R-CNN He et al. [2017] results in the detection of objects for

all object classes and their associated predicted masks. A catch-all "background" class is

defined to encompass elements not included in any object classes. By combining the occlu-

sion scores defined in Section 4.3, we derive detections and their corresponding attributes

{deti = (scorei, occi, bbi,maski, clsi)}Ni=1 in the same manner as detailed in Chapter 4. Our

analysis is confined to I, representing the original image I∗ constrained to the union of

predicted object masks ∪Ni=1maski.

For each detection, one of three operations is executed: "selection", "discarding", and

"designation as background". The sets S, D, and B denote the indices of detections that

undergo these respective operations. Assuming a uniform prior p(S,D,B, {deti}Ni=1) on S,
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D, B and {deti}Ni=1, the posterior probability

p({zi}i∈S∪B , S,D,B|I, {deti}Ni=1)

=p(I, {zi}i∈S∪B , S,D,B, {deti}Ni=1)/p(I, {deti}Ni=1)

=p(S,D,B, {deti}Ni=1)× p({zi}i∈S∪B |S,D,B, {deti}Ni=1)

× p(I|{zi}i∈S∪B , S,D,B, {deti}Ni=1)/p(I, {deti}Ni=1)

∝p({zi}i∈S∪B |S,D,B, {deti}Ni=1)× p(I|{zi}i∈S∪B , S,D,B, {deti}Ni=1),

(5.3)

where the latent code zi dictates the appearance of the object within the object mask in

detection deti conditioned on its class label. The density p(I|{zi}i∈S∪B , S,D,B, {deti}Ni=1)

is assumed to follow a Gaussian distribution with isotropic variance and a mean determined

by {zi}i∈S∪B , S, D, B and {deti}Ni=1. Similar to the approach in Section 4.2, for pixels in

I not accounted for by objects in S ∪ B, we attribute a value of (0, 0, 0) to explain them.

This methodology ensures that {zi}i∈S∪B , S, B, {deti}Ni=1 determines the interpretation of

I, therefore

p(I|{zi}i∈S∪B , S,D,B, {deti}Ni=1) = p(I|{zi}i∈S∪B , S, B, {deti}Ni=1). (5.4)

Conditioned on S,D,B, {deti}Ni=1, independence between {zi}i∈S∪B is assumed, and

p({zi}i∈S∪B |S,D,B, {deti}Ni=1) =
∏
i∈S

p(zi|clsi)×
∏
i∈B

p(zi|bg), (5.5)

where p(zi|clsi) and p(zi|bg) are assessed by the Deep Generative Model associated with the

class label clsi and the "background" class, respectively. In the case of a discarded detection,

where its content is assumed not to exist, we do not evaluate its probability. If the chosen

Deep Generative Model is a traditional Variational Autoencoder (VAE), then p(zi|clsi) and

p(zi|bg) are the densities of the Gaussian prior evaluated at zi. However, given that our
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Deep Generative Model is GLF in this chapter, p(z|clsi) should be calculated as

p(z|clsi) = pE (fθclsi
(z))× |det

(
∂fθclsi

(z)

∂z

)
|,

where the parameterization of the normalizing flow model trained on class clsi is denoted by

θclsi , and pE (·) represents the density of standard Gaussian noise. The probability p(zi|bg)

can be computed in a similar manner.

With the set {deti}Ni=1 provided, the objective of this chapter is to identify an optimal set

of S,D,B that enhances panoptic segmentation. The determination of S,D,B involves an

approximate maximization of the posterior probability p({zi}i∈S∪B , S,D,B|I, {deti}Ni=1) as

discussed in Equation 5.3. Considering Equation 5.5, {zi}i∈S∪B given S, B and {deti}Ni=1

requires determination. However, the computational expense associated with optimizing

{zi}i∈S∪B to identify the set that maximizes the posterior is prohibitive. This limitation

motivates us to predict the optimal {zi}i∈S∪B using the encoder of our Deep Generative

Model. Taking GLF as an example, for any i ∈ S, we employ

ẑi = Eϕclsi
(xi),

where xi corresponds to the "image context", as defined in Section 4.2, and Eϕclsi
(xi) repre-

sents the encoding outcome generated by the encoder of the GLF specifically trained for class

clsi. Likewise, for i ∈ B, we utilize ẑi = Eϕbg(xi), denoting the encoding result produced

by the GLF trained on background pieces. Substituting {ẑi}i∈S∪B into Equations 5.3, 5.4,

and 5.5, the objective becomes finding S,D,B that maximizes

p(I|{ẑi}i∈S∪B , S, B, {deti}Ni=1)×
∏
i∈S

p(ẑi|clsi)×
∏
i∈B

p(ẑi|bg).

Following a similar approach to the DSAMWR presented in Section 4.5, we consolidate
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the appearances of objects determined by {ẑi}i∈S∪B onto a Canvas, with additional details

provided in Section 5.3. We make the assumption of an isotropic Gaussian density

log p(I|{ẑi}i∈S∪B , S, B, {deti}Ni=1) = −
|I|
2

log(2πσ2)− 1

2σ2
∥I − Canvas∥2vec,2, (5.6)

where the quantity |I| represents the number of pixels in I, and σ2 is a pre-defined pixel-level

variance. Utilizing the equation above, we can alternatively frame our problem as identifying

S,D,B that minimizes the defined loss, expressed as

L =∥I − Canvas∥2vec,2 − 2σ2
∑
i∈S

log p(ẑi|clsi)− 2σ2
∑
i∈B

log p(ẑi|bg)

=∥I − Canvas∥2vec,2 − 2σ2
∑
i∈S

(log pE (fθclsi
(ẑi)) + log | det

(
∂fθclsi

(z)

∂z

∣∣∣∣∣
z=ẑi

 |)
− 2σ2

∑
i∈B

(log pE (fθbg(ẑi)) + log | det

(
∂fθbg(z)

∂z

∣∣∣∣∣
z=ẑi

 |).
(5.7)

Given that our underlying concept behind this probabilistic framework is to maximize the

posterior probability p({zi}i∈S∪B , S,D,B|I, {deti}Ni=1), we henceforth refer to our method

in this chapter as Maximizing the Posterior for Panoptic Segmentation.

5.3 Method

The methodology pertaining to this chapter closely aligns with the principles underlying

DSAMSR, DSAMWR, and DSAM as detailed in Sections 4.4, 4.5, and 4.6. The distinction

between the methodologies elucidated in Chapter 4 and the current chapter lies in their

respective probabilistic frameworks. In Chapter 4, a variational approximation of the log

marginal likelihood is employed, whereas in this chapter, emphasis is placed on loosely

maximizing a posterior density.

Concomitant with the variations in probabilistic frameworks, Chapter 4 employs the
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Variational Autoencoder (VAE) with a flow prior Huang et al. [2017] for modeling object

distributions. Conversely, the present chapter adopts the Generative Latent Flow (GLF)

approach Xiao et al. [2019]. Consequently, disparities arise in the reconstruction of image

contexts and the formulation of associated losses. The loss function in this chapter, articu-

lated in Equation 5.7, diverges from the one presented in Chapter 4 (Equation 4.10), notably

by omitting the entropy term.

This section expounds upon the methodology tailored for the current probabilistic frame-

work, designed to accommodate the intricacies of the new generative model and the associ-

ated loss function.

Algorithm 7: Single Reconstruction Algorithm for MPPS (MPPSSR)
Input: Image context Ii, the detection deti = (scorei, occi, bbi,maski, clsi), GLF

parameters η, ϕ, θ, GLF training image size (d, d, 3) and Nz, type of

operation ‘S’ or ‘B’

Ii ← resize Ii to (d, d, 3) ;

if operation = ‘S’ then
c = clsi

else
c = bg

end

ẑi ← Eϕc(Ii), the encoding result of Ii by the encoder ϕc ;

Ri ← Dηc(ẑi), the decoding result of latent code ẑi by the decoder ηc ;

Ri ← resize Ri to the original image context size ;

latentLLi ← log pE (fθc(ẑi)) ;

logDi ← log | det
(
∂fθc(z)

∂z

∣∣∣
z=ẑi

)
| ;

Output: Single reconstruction Ri, and latentLLi, logDi, maski

In this chapter, a Single Reconstruction Algorithm for Maximizing the Posterior for

Panoptic Segmentation (MPPSSR) has been devised. This algorithm, outlined in detail in
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Algorithm 7, is responsible for computing both the reconstructions of image contexts and the

likelihood of latent codes. MPPSSR operates in a manner akin to the Single Reconstruction

Algorithm for DSAM (DSAMSR) elucidated in Section 4.4, where both algorithms perform

the reconstruction of image contexts and evaluate the log likelihood using the flow model.

Notably, MPPSSR distinguishes itself from DSAMSR in several aspects. In MPPSSR,

the sampling of latent code z∗i from the posterior distribution predicted by the encoder is

unnecessary, owing to the deterministic nature of the autoencoder employed by the Gener-

ative Latent Flow (GLF). The optimal maximization of the posterior density, as delineated

in Equation 5.3, necessitates the optimization of latent codes {zi}i∈S∪B . However, as ex-

plicated in Section 5.2, we adopt the encoding output from the GLF encoder as the latent

code in order to economize on computational time. Additionally, MPPSSR omits the need to

retain µi and Γi, as it no longer calculates the entropy of the posterior distribution of latent

codes. The variables µi and Γi correspond exactly to the definitions provided in Section 4.4.

Similarly, within this section, we introduce the Whole Reconstruction Algorithm for

Maximizing the Posterior for Panoptic Segmentation (MPPSWR) to replace DSAMWR as

outlined in Section 4.5. Two notable distinctions exist between MPPSWR and DSAMWR.

Firstly, MPPSWR relies on MPPSSR, as opposed to DSAMSR. Secondly, for each detection

in S ∪B, DSAMWR augments the loss L by

−2σ2[Nz

2
(1 + log(2π)) +

Nz∑
t=1

log τi,t + latentLLi + logDi]

, whereas MPPSWR adds

−2σ2(latentLLi + logDi)

to the loss L. The discrepancy

Nz

2
(1 + log(2π)) +

Nz∑
t=1

log τi,t = −
∫

pN (µi,Γi)
(x) log pN (µi,Γi)

(x)dx
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represents the entropy of N (µi,Γi). Despite the close resemblance between MPPSWR and

DSAMWR, we opt to explicate the specifics of MPPSWR in Algorithm 8 to prevent any

potential confusion.

Concluding this section, we introduce a greedy algorithm analogous to DSAM, denoted

as the Maximizing the Posterior for Panoptic Segmentation Algorithm (MPPS). The details

of this greedy algorithm are elucidated in Algorithm 9. Both the previously mentioned

MPPSSR and MPPSWR are specifically crafted to execute subtasks within the broader

framework of MPPS. The operational procedure of MPPS closely mirrors that of DSAM, with

the key distinction being that MPPS relies on MPPSWR instead of DSAMWR. Notably,

MPPS exhibits a notable computational advantage, being approximately 20% faster than

DSAM, attributed to its elimination of the need for latent code sampling.

5.4 Experiments

In this section, we replicate the experiments detailed in Section 4.7, with the modification

that we substitute MPPS and related methods in place of DSAM. Although the Generative

Latent Flow (GLF) model lacks a variational evidence lower bound (ELBO), we illustrate the

decomposition of its objective in Table 5.1. The objective of GLF is presented in Equation

5.2, and we denote the three terms in the equation, from left to right, as ‘recon_ll,’ ‘gauss_ll,’

and ‘log_jacob.’

Given the transition from the VAE with a flow prior in the preceding chapter to GLF

in the current chapter, it becomes imperative to train GLFs for various object classes. We

adopt a partially shared model architecture akin to the one illustrated in Figure 4.8. However,

in this case, the posterior distribution qϕ(z|x) in Figure 4.8 degenerates to a single latent

code within the latent space. The GLF models are collectively trained with a latent space

dimension set at 64, and the number of flow blocks in their normalizing flows is established at

one. The determination of the number of flow blocks is guided by the MPPS performance on
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Algorithm 8: Whole Reconstruction Algorithm for MPPS (MPPSWR)
Input: The original image I∗, the image constrained within the union of all

predicted object masks I, detection results
{deti = (scorei, occi, bbi,maski, clsi)}Ni=1, the sets S,B, reconstructions
hashmap ReconDict, assumed variance σ2 > 0, latent dimension Nz

Sort {deti}i∈S∪B according to occi from high to low ;
Canvas← zeros(H,W, 3) ; /* (H,W, 3) is the image size */
L← 0 ; /* loss defined in equation 4.10 */
for i ∈ S ∪B do

if i ∈ S then
operation = ‘S’

else
operation = ‘B’

end
if ReconDict[i, operation] doesn’t exist then

l← maximum between the height and width of bbi ;
bb∗i ← the l × l square centered at the center of bbi ;
if bb∗i isn’t completely within the image borders then

ReconDict[i, operation]← (I∗[bbi], 0, 0) ; /* I∗[bbi] is obtained by
cropping the image at bounding box bbi */

else
Ii ← I∗[bb∗i ] ;
(Ri, latentLLi, logDi)←MPPSSR(Ii,deti, operation) ;
Ri ← crop a box of size bbi at the center of Ri ;
ReconDict[i, operation]← (Ri, latentLLi, logDi);

end
end
(Ri, latentLLi, logDi)← ReconDict[i, operation] ;
L← L− 2σ2(latentLLi + logDi) ;
Fill in the blank pixels in Canvas[maski] by the corresponding values in Ri ;
/* "blank pixel" is a pixel with value (0, 0, 0) */

end
L← L+ ∥I − Canvas∥2vec,2 ;
Output: Loss L, reconstructions hashmap ReconDict
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Algorithm 9: Maximizing the Posterior for Panoptic Segmentation Algorithm
(MPPS)

Input: Detection results {deti = (scorei, occi, bbi,maski, clsi)}Ni=1 sorted by scorei

from high to low, assumed variance σ2 > 0, latent dimension Nz

S0, D0, B0 ← ∅, ∅, ∅;

ReconDict← {};

L0 ←∞;

for i = 1 to N do

(Li,1, ReconDict)←MPPSWR(Si−1 ∪ {i}, Di−1, Bi−1, ReconDict) ;

(Li,2, ReconDict)←MPPSWR(Si−1, Di−1, Bi−1 ∪ {i}, ReconDict) ;

Li ← min(Li−1, Li,1, Li,2);

if Li = Li−1 then

Si, Di, Bi ← Si−1, Di−1 ∪ {i}, Bi−1 ;

else if Li = Li,1 then

Si, Di, Bi ← Si−1 ∪ {i}, Di−1, Bi−1 ;

else

Si, Di, Bi ← Si−1, Di−1, Bi−1 ∪ {i} ;

end

end

Output: SN , DN , BN
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a small validation set extracted from the KINS training set. GLF employs a reduced number

of flow blocks due to the comparatively less chaotic nature of its latent codes, making them

more amenable to learning by the flow model. The avoidance of an excessively potent flow

model is crucial to mitigate potential overfitting issues. Consequently, the autoencoder

of GLF encompasses 38,210,243 parameters, while the normalizing flow comprises 333,952

parameters. The batch size, optimizer, and number of epochs remain consistent with the

specifications outlined in Section 4.7.

Table 5.1: GLF - Three components of its objective

cyclist pedestrian car tram truck van misc

recon_ll -19292.6 -18042.7 -18848.8 -14421.1 -16960.9 -28933.6 -8479.1

gauss_ll -243.1 -162.0 -100.0 -311.5 -327.0 -265.0 -110.4

log_jacob -7.3 -27.1 -49.5 -3.9 -3.2 -15.1 -32.8

objective -19543.1 -18231.9 -18998.2 -14736.5 -17291.2 -29213.8 -8622.3

As depicted in Table 5.1, the GLF objective is predominantly influenced by the term

‘recon_ll.’ Notably, the ‘gauss_ll’ for the ‘car’ category attains the highest value, a phe-

nomenon attributed to the widespread prevalence of the ‘car’ object class. A comparative

analysis between Table 4.2 and Table 5.1 reveals that the ‘recon_ll’ of GLF exhibits su-

perior performance, signifying enhanced reconstruction capabilities. This superiority can

be attributed to the less constrained nature of GLF, as opposed to the VAE with a flow

prior, which is subject to regulation by the entropy of the posterior distribution and the flow

likelihood. In contrast, GLF lacks these two regulatory factors.

As a parallel to Table 4.3, we present the GLF objective when subjected to potentially

mis-specified labels in Table 5.1. In comparison to Table 4.3, the values in Table 5.1 are

higher. It additionally demonstrates that the GLF trained on the ‘car’ category attains

comparatively high objectives. The table suggests that while discerning between various
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object classes may pose challenges for the trained GLFs, they do exhibit proficiency in

distinguishing between background images and object images.

Table 5.2: GLF objective under mis-specified labels

cyclist pedestrian car van misc background

cyclist -64760.1 -64905.9 -49991.3 -76837.6 -29711. -96769.7

pedestrian -64697.5 -64836.1 -49879.9 -76735. -29604.3 -97168.2

car -64615.6 -64796.9 -49856.4 -76649.5 -29563.6 -96952.1

van -64745.3 -64893. -49957.8 -76785.6 -29648.3 -95097.4

misc -64673.6 -64807.1 -49863.3 -76631.8 -29552. -97364.5

background -71169. -86457.4 -66696.4 -82606.8 -51913.3 -24074.

Finally, we apply our MPPS to the panoptic segmentation task and compare its per-

formance with that of the Detection Selection Algorithm with Mask (DSAM) and baseline

NMS-like procedure described in Kirillov et al. [2019b]. The Panoptic Quality (PQ) scores

for these approaches are presented in Tables 5.3 and 5.4. The panoptic segmentations in

Table 5.3 are derived by arranging the selected detections in descending order based on their

objectness scores, while in Table 5.4, the ordering is based on occlusion scores from high

to low. The row designated as "Baseline" pertains to the Panoptic Quality (PQ) scores at-

tained through the application of the NMS-like procedure on the output of Mask R-CNN He

et al. [2017]. These results align with those presented in Section 4.7. The row labeled "with

DSAM" corresponds to the PQ scores achieved by DSAM, same as the results reported in

Section 4.7. Conversely, the row labeled "with MPPS" encompasses the PQ scores obtained

using MPPS for post-processing. The results indicate a slight superiority of MPPS over

DSAM across all eight scenarios.
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Table 5.3: MPPS PQ with Objectness Scores Ordering

PQ all objects ≥ 100 pixels ≥ 400 pixels ≥ 900 pixels

Baseline 0.411198 0.444078 0.582399 0.654408

with DSAM 0.479953 0.506556 0.607400 0.670859

with MPPS 0.483950 0.510529 0.610217 0.672629

Table 5.4: MPPS PQ with Occlusion Ordering

PQ all objects ≥ 100 pixels ≥ 400 pixels ≥ 900 pixels

Baseline 0.388117 0.420399 0.560606 0.636605

with DSAM 0.471164 0.497567 0.597729 0.662387

with MPPS 0.474265 0.500368 0.599472 0.663313

5.5 Conclusion and Future Work

This chapter introduces the Maximizing the Posterior for Panoptic Segmentation Algorithm

(MPPS), which is showed to deliver slightly superior performance compared to the Detection

Selection Algorithm with Mask (DSAM) expounded upon in Chapter 4. Both MPPS and

DSAM are oriented towards enhancing panoptic segmentation quality. They share a common

objective of selecting a subset of detections generated by the instance segmentation model,

with only these chosen detections being utilized in panoptic segmentation. The selection

process for both algorithms involves opting for one of three operations: "selection", "dis-

carding", or "designation as background". Their decisions regarding the choice of operation

are guided by likelihood comparisons.

Nonetheless, MPPS deviates significantly from DSAM. The likelihood framework of

DSAM is derived from the maximization of log p(I, S,D,B, {deti}Ni=1), whereas that of

MPPS is constructed based on maximizing p({zi}i∈S∪B , S,D,B|I, {deti}Ni=1), a posterior

probability. The former necessitates an integration of latent codes zi, while the latter incorpo-
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rates latent codes as a part of its maximization, albeit both employ certain approximations

to facilitate computation. Discrepancies in their probabilistic frameworks necessitate the

utilization of distinct Deep Generative Models. DSAM employs the VAE with flow prior,

whereas MPPS opts for GLF. GLF, characterized by less regulation, demonstrates superior

reconstruction performance. This disparity is evident in our experiments detailed in Section

5.4, where MPPS exhibits slightly superior results compared to DSAM.

A future direction that may worth exploring involves the consideration of Latent Diffusion

Models (LDMs) Rombach et al. [2022] as a substitute for GLF within the MPPS framework.

LDM and GLF share similarities, employing a deterministic autoencoder to map from the

image space to a latent space of lower dimensions. While GLF incorporates a normalizing flow

model in the latent space, LDM employs Diffusion Models (DMs), which have demonstrated

exceptional capabilities in image synthesis and have attained state-of-the-art performance

across various tasks. By integrating a more potent generative model, there is potential to

enhance image reconstruction and likelihood estimation abilities, consequently improving

the overall performance of MPPS.

An intriguing avenue for enhancing MPPS involves the conversion of images to a con-

volutional feature space using pre-trained convolutional backbones. As exemplified in GLF

Xiao et al. [2019], training with perceptual loss Johnson et al. [2016] has yielded substantial

improvements in FID scores. The implementation of perceptual loss involves transforming

images into a feature space through convolutional networks and computing the loss within

that space. A similar strategy can be applied to MPPS, wherein MPPS operates on the trans-

formed feature space instead of the original image space. This adaptation enables MPPS

to harness the capabilities of powerful pre-trained backbone models such as VGG Simonyan

and Zisserman [2014], thereby mitigating visual clutter.
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