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ABSTRACT

With the advancement of computer-based technology, progress in computation has enabled

effective real-life application of sampling methods. This has led to the adoption of Bayesian

models in clinical trials. To this end, this dissertation comprises three papers that develop

and apply Bayesian parametric and nonparametric models for the planning and analysis of

clinical trials.

The first paper focuses on developing a statistical clustering method that clusters subjects

across multiple groups through Bayesian nonparametric modeling. This method, named the

Plaid Atoms Model (PAM), is built on the concept of “atom-skipping", which allows the

model to stochastically assign zero weights to atoms in an infinite mixture. By implement-

ing atom-skipping across different groups, PAM establishes a dependent clustering pattern,

identifying both common and unique clusters among these groups. This approach further

provides interpretable posterior inference such as the posterior probability of cluster being

unique to a single group or common across a subset of groups. The paper also discusses the

theoretical properties of the proposed and related models. Minor extensions of the model

for multivariate or count data are presented. Simulation studies and applications using real-

world datasets illustrate the performance of the new models with comparison to existing

models.

The second paper delves into leveraging information from external data to augment the

control arm of a current randomized clinical trial (RCT), aiming to borrow information

while addressing potential heterogeneity in subpopulations between the external data and

the current trial. To achieve this, we employ the PAM model introduced in the first paper.

This method is used to identify overlapping and unique subpopulations across datasets,

enabling us to limit information borrowing to those subpopulations common to both the

external data and the current trial. This strategy establishes a Hybrid Control (HC) that

results in a more precise estimation of treatment effects. Through simulation studies, we

xiv



validate the robustness of the proposed method. Additionally, its application to an Atopic

Dermatitis dataset shows the method’s improved treatment effect estimation.

The third paper introduces a Bayesian Estimator of Sample Size (BESS) method and its

application in oncology dose optimization clinical trials. BESS seeks a balance among three

factors: Sample size, Evidence from observed data, and Confidence in posterior inference.

It uses a simple logic of "given the evidence from data, with a specific sample size one

is guaranteed to achieve a degree of confidence in the posterior inference." This approach

contrasts with traditional sample size estimation (SSE), which typically relies on frequentist

inference: BESS assumes a possible outcome from the observed data rather than utilizing

the true parameters values in SSE method’s sample size calculation. As a result, BESS does

not calibration sample size based on type I or II error rates but on posterior probabilities,

offering a more interpretable statement for investigators. The proposed method can easily

accommodates sample size re-estimation and the incorporation of prior information. We

demonstrate its performance through case studies via oncology optimization trials. However,

BESS can be applied in general hypothesis tests which we discuss at the end.
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CHAPTER 1

INTRODUCTION

This collection of papers focuses on the development and application of Bayesian parametric

and nonparametric models in clinical trials. The first two papers explore the integration of

external data into current trials to enhance tral analysis through Bayesian nonparametric

(BNP) models. In contrast, the final paper introduces a Bayesian tool for sample size

estimation based on a parametric model, designed to assist practitioners in planning sample

sizes for dose-optimization trials, an essential phase in early phase trial stages. Here, we

provide a briefly overview of these three papers.

The first paper addresses a statistical clustering challenge in grouped data, aiming to

identity common and unique clusters of subjects within and across groups. The proposed

Plaid Atoms Model (PAM) is a Bayesian nonparametric (BNP) model that is capable of

generating flexible clustering patterns across groups a priori. Initially assuming all clusters to

be common across groups, PAM then selectively eliminates clusters from each group through

a novel “atom-skipping" mechanism, leading to a mix of overallping and distinct clusters.

PAM offers interpretable posterior inferences, such as reporting the posterior probability of

a cluster being exclusive to a single group or being common among a subset of groups. The

paper also discusses the theoretical properties of PAM and its related models. For detail,

refer to Chapter 2

The second paper develops a method to enhance the control arm of a Randomized Clinical

Trial (RCT) by borrowing information from external data such as real-world data (RWD)

or past trials. This approach, named PAM-HC, uses PAM method to cluster patients based

on covariates, identifying those similar enough to warrant information borrowing. This

targeted borrowing, facilitated by the power prior approach, aims to increase the accuracy

of treatment effect estimation while mitigating bias from heterogeneous external patient

subpopulations. The efficacy of PAM-HC is validated through simulations and a real-world
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case study. The detail is in Chapter 3.

The third paper introduces the Bayesian Estimator of Sample Size (BESS), a novel

method for estimating sample size in oncology dose optimization trial. Motivated by the cur-

rent ad-hoc approach to determining patient numbers and the desire to quantify treatment

effectiveness probabilistically, BESS seeks a balance between sample size, to-be-observed

data evidence, and confidence in posterior inference.Unlike traditional frequentist sample

size method calculations that rely on assumed true parameters values, BESS bases its sam-

ple size calibration on assumed evidence from data and the posterior probabilities, offering

a clear, more interpretable framework. BESS also can be easily extended to accommodate

sample size re-estimation strategies and to incorporate prior information. We dscribe the

method in detail in Chapter 4.
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CHAPTER 2

A CLASS OF DEPENDENT RANDOM DISTRIBUTIONS

BASED ON ATOM SKIPPING

2.1 Introduction

Clustering, or unsupervised learning, is a primary tool for data analysis and scientific ex-

ploration. Representative clustering methods include algorithmic approaches like K-Means

[MacQueen, 1967] and model-based clustering like MClust [Fraley and Raftery, 1998]. Alter-

natively, Bayesian nonparametric (BNP) models like the Dirichlet process (DP) [Ferguson,

1973] naturally induce clusters by allowing ties among observations. These “tied" values,

which are random locations in the random probability measure of the BNP models, are

also referred to as atoms in some literature, e.g., in Denti et al. [2021]. Hereafter, we use

“clusters" and “atoms" interchangeably.

For complex problems and data structures where multiple datasets are analyzed together

, dependent clustering is often necessary. For example, in linguistic research, it is of interest

to discover common themes across multiple documents [Teh et al., 2004], where the themes

are modeled as shared clusters. In drug development, oftentimes different studies and cor-

responding data are pooled to increase the precision of statistical inference. However, drug

effects might be heterogeneous and therefore subpopulations (clusters) of patients must be

identified to better characterize the treatment effects. A common question for many depen-

dent clustering problems is whether a clustering method can capture shared clusters across

all or some groups while also identify unique ones that belong to a single group.

Various dependent clustering approaches have been proposed in the BNP literature. Early

pioneering work of dependent Dirichlet process (DDP) is initiated in MacEachern [1999,

2000]. These BNP models generate different patterns of atoms a priori on a spectrum

that ranges from “common-atoms model" to “distinct-atoms model." Subsequently, common-
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atoms models, such as hierarchical DP (HDP) [Teh et al., 2004], Common Atoms Model

(CAM) [Denti et al., 2021], and hidden-HDP [Lijoi et al., 2022] assume all groups share the

same set of atoms a priori. In contrast, distinct-atoms models, such as the nested DP (NDP)

[Rodriguez et al., 2008], assume that groups with different distributions all have unique and

distinctive atoms. Other methods in literature like the hierarchical mixture of DP [Müller

et al., 2004b], the latent nested process (LNP) [Camerlenghi et al., 2019], and the semi-

HDP [Beraha et al., 2021] take the middle ground by mixing distinct- and common-atoms

processes. Consequently, a pattern of shared and unique clusters can be generated across

groups under these models.

We consider a new approach to generate dependent clustering structure using a simple

idea called atom skipping. Instead of mixing a distinct-atoms model with a common-atoms

model, we construct random distributions by removing atoms from a common-atoms model

in a group-specific fashion. This is realized by stochastically assigning the weight of an atom

to be zero for each group. This effectively skips (removes) the atom from the group. For

a single group or a single dataset, atom-skipping results in a new model called the Atom-

Skipping Process (ASP). For multiple groups, it leads to the main proposal of the paper,

the Plaid Atoms Model (PAM). When an atom is removed in all but one group, that atom

becomes a unique cluster for that group. On the other hand, if an atom is not removed in

any groups, it induces a common cluster shared for all groups. In-between is an atom that

is removed in a fraction of groups, and the corresponding cluster is only shared by a subset

of groups. The resulting dependent clustering pattern is slightly more flexible than some

existing models. For example, when there are three or more groups, the set of overlapping

clusters may vary between a pair of groups.

Furthermore, due to group-specific atom skipping, PAM defines a generative model that

explicitly defines overlapping (common) and non-overlapping (unique) clusters across groups,

which leads to more interpretable posterior inference. For example, PAM can perform infer-
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ence on whether a cluster is absent in a group by reporting the posterior probability that the

corresponding cluster has zero weight in the group. In contrast, common-atoms models like

HDP or CAM always produce a positive cluster weight for any cluster in any group. An in-

teresting by-product of atom-skipping is that the marginal mean of ASP and PAM follows a

stochastic process that is called the Fractional Stick-Breaking Process (FSBP). This process

is a simple modification of the stick-breaking representation of DP, and is linked to many

random probability measures (RPM) and processes in the literature.

The remainder of the article are organized as follows. In Section 2.2, we review BNP

models that are closely linked to PAM. In Section 2.3, we introduce three related new models,

ASP, PAM, and FSBP. We discuss theoretical properties of the three new processes in Section

2.4, highlighting their interconnections. In Section 2.5, we discuss posterior inference and

outline the slice sampler algorithm for PAM and FSBP. Section 2.6 presents comparative

simulation results of the proposed models and Section 2.7 describes application of PAM to

publicly available datasets. Lastly, Section 2.8 concludes the paper with some discussion.

2.2 Review of Some BNP Models for Clustering

2.2.1 Methods for Clustering a Single Study or Dataset

We review related BNP models to set the stage for the proposed new models. Figure 2.1

provides a graph illustrating the BNP models considered in our work. Specifically, nodes

are BNP models, directed edges describe the extension of the parent node to the child node,

black and red color represent existing and novel models respectively.

Consider a dataset with n observations of q-dimensional vectors (q ≥ 1), with the ith

observation denoted as yi = (yi1, . . . , yiq), i = 1, . . . , n. Denote the entire dataset y =

{y1, . . . ,yn}. Assume yi takes a value from a suitable Polish space X that is endowed with

the respective Borel σ-field X . The observations are assumed to arise from a nonparametric
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Figure 2.1: A graphic illustration of relationship of selected BNP models. A directed edge
connecting two processes implies that the child process is an extension of the parent process.
The red nodes and edges represent the contribution of this work. Section numbers of the
manuscript are placed on the red nodes.

mixture model indexed by parameter θi and a random distribution G as follows:

yi|θi ∼ F (yi|θi), θi|G ∼ G, i = 1, . . . , n, (2.1)

where F (.|θi) is a parametric distribution for yi with parameter θi, and G is assumed to

have a nonparametric prior.

Review of DP: The DP prior is denoted as G ∼ DP (γ,H), where γ > 0 is the concen-

tration parameter, and H is the base measure. Sethuraman [1994] shows that DP generates

random distributions with the stick-breaking representation:

G =
∑∞

k=1 πkδϕk
, πk ∼ GEM(γ), and ϕk ∼ H, (2.2)

where GEM is the Griffiths-Engen-McCloskey distribution [Pitman, 2002]. Specifically, πk ∼

GEM(γ) means that πk = π′k
∏k−1

l=1 (1 − π′l), π
′
k ∼ Beta(1, γ), where Beta(a, b) denotes the

beta distribution with mean a/(a+ b). This equivalent representation of DP is also referred
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to as the Stick-Breaking Process (SBP), denoted as SBP(γ,H).

When applied to clustering, DP is often known for its “rich-get-richer" characteristic in

that DP tends to produce few large clusters with many tiny ones or singletons. To address

this, an alternative model is proposed known as the PYP.

Review of PYP: PYP(a, b,H) extends and modifies DP by assuming the atom weight

follows

π′k ∼ Beta(1− b, a+ b · k),

where a > −b and b ∈ [0, 1). The construction of G and the distribution of ϕk remain the

same as in equation (2.2). PYP reduces to DP if b = 0 and a = γ. Compare to DP, PYP

has two desirable properties: 1) the expected number of clusters of PYP grows more rapidly

(with a rate of nb) than that of DP (which grows with a rate of log(n)), and 2) the rate

of decay in terms of cluster-size follows a power law for PYP, but has an exponential tail

in DP. However, due to non-i.i.d stick-breaking weights in PYP, many theoretical results of

PYP are not available in closed form. For example, while the mean of DP is known to be

the base-measure H in equation (2.2), PYP does not have a closed-form mean.

2.2.2 Methods for Clustering Multiple Studies or Datasets

Extend the previous setting to J > 1 studies or groups, each of which has a dataset of nj

observations. The ith observation in group j is denoted as a q-dimensional (q ≥ 1) vector

yij . Let yj = {yij ; i = 1, . . . , nj} represent the entire dataset for the jth group. Assume

yij |θij ∼ F (yij |θij), θij |Gj ∼ Gj , i = 1, . . . , nj ; j = 1, . . . , J, (2.3)

where F (·|θij) is a parametric distribution for yij . The models reviewed below assign priors

to Gj for j = 1, . . . , J . These models induce dependent partitions of yj ’s, allowing for
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information borrowing between groups. Most BNP models differ in their construction of

common or distinct atoms across groups. While one school chooses to build common-atoms

models that share a common set of atoms for all groups, another school allows groups to

have non-overlapping atoms known as distinct-atoms models. A third school mixes the two

ideas so that more flexible patterns of atoms can be modeled. Our work belongs to the third

school.

Review of HDP: HDP [Teh et al., 2004] is a common-atoms model. In this model, each

Gj is assigned a DP prior with a common base measure G0, which itself is an instance of

DP , i.e.,

Gj |α0, G0 ∼ DP(α0, G0), G0|γ,H ∼ DP(γ,H).

This model is denoted as HDP(α0, γ,H). Using the stick-breaking representation [Sethura-

man, 1994] of DP, HDP can be rewritten as

Gj =
∑∞

k=1 πjkδϕk
, πjk = π′jk

∏k−1
l=1 (1− π′jl)

π′jk ∼ Beta
(
α0βk, α0

(
1−

∑k
l=1 βl

))
ϕk ∼ H and βk ∼ GEM(γ)

(2.4)

where δ{·} is the indicator function. Note that although G0 is not shown in the stick-breaking

construction of HDP in equation (2.4), it can be reconstructed from β = {βk; k ≥ 1} and

Φ = {ϕk; k ≥ 1}, i.e., G0 =
∑∞

k=1 βkδϕk
. Appropriate prior distributions, like the gamma

distribution, can be specified for α0 and γ to complete HDP.

It is clear from equation (2.4) that HDP is a common-atoms model, because all groups

share the same set of atoms in Φ, and the atom weights πjk ̸= 0. While the atoms are shared,

their weights πj = {πjk; k ≥ 1} are distinct for different groups. Consequently, for Gj and

Gj′ where j ̸= j′, Gj ̸= Gj′ with probability 1.
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Review of NDP: Rodriguez et al. [2008] introduce the NDP, a model capable of clustering

both subjects and groups. In NDP, the group-level clusters are referred to as distributional

clusters, and the group-specific distribution Gj in NDP is defined as follows:

Gj |Q ∼ Q, Q = DP(α0,DP(γ,H)),

where the distribution of each group follows a DP with its base measure being another DP,

rather than being a realization of DP as in HDP. We use NDP(α0, γ,H) to denote this model.

NDP is a distinct-atoms model, which can be seen in its stick-breaking representation:

Gj =
∑∞

k=1 πkδG∗
k
, πk ∼ GEM(α0)

G∗
k =

∑∞
l=1 ωklδϕkl

, ωkl ∼ GEM(γ),

ϕkl ∼ H.

(2.5)

For j ̸= j′, if Gj and Gj′ are not equal to the same G∗
k, none of their atoms will be the

same. In contrast, if they are equal to the same G∗
k, meaning Gj and Gj′ are two identical

distributions, their atoms and atom weights will be identical. This phenomenon is known as

“degeneracy" [Camerlenghi et al., 2019], where if two groups share just one atom they share

all atoms and weights. Otherwise, the atoms and weights must all be distinct for these two

groups. This presents a challenge if we aim to find common clusters for two groups belonging

to different distributional clusters.

Review of CAM: Denti et al. [2021] extend NDP and introduce the Common Atoms

Model, abbreviated as CAM. By definition, CAM is a common-atoms model. Building upon

NDP, CAM provides distributional clustering similar to NDP. Specifically, CAM restricts

the atoms in all G∗
k, k ≥ 1 in NDP to a common set. In other words, rather than assuming

that for each group k there is a distinct set of atoms {ϕkl}, CAM instead assumes all the
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groups share a common set of atoms {ϕl}. Mathematically, the Gj ’s in CAM are defined as

follows:

Gj =
∑∞

k=1 πkδG∗
k
, πk ∼ GEM(α0)

G∗
k =

∑∞
l=1 ωklδϕl

, ωkl ∼ GEM(γ), ϕl ∼ H.

(2.6)

We use the notation CAM(α0, γ,H) to denote this model. Another recent development

building upon the modeling of common atoms can be found in hidden-HDP [Lijoi et al.,

2022]. Due to limited space, a review of this model is omitted.

Other BNP models: The aforementioned common-atoms and distinct-atoms models rep-

resent the two extremes of a spectrum of BNP priors for dependent random distributions.

In the literature, many other models target the space in between, where the prior is allowed

to contain both common and unique atoms a priori. Such models include the hierarchical

mixture of DP [Müller et al., 2004b], the latent nested process (LNP) [Camerlenghi et al.,

2019], and more recently, the semi-HDP [Beraha et al., 2021]. All these models construct

flexible priors by adding or mixing distinct-atoms and common-atoms models together, in a

nonparametric or semi-parametric fashion. For a comprehensive review, refer to Quintana

et al. [2022]. In this work, we take a different approach. We start from a common-atoms

model, and using an idea of atom skipping in a probabilistic fashion for each group. The

resulting model provides common and unique atoms a priori but with interesting theoretical

properties and behavior in statistical inference.

2.3 Proposed BNP Models

2.3.1 Atom-Skipping Process

The proposed models utilize a simple idea of atom skipping by probabilistically setting

the weight of an atom to be exactly zero. We first consider a model for a single random
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distribution (i.e., a single study or dataset). We denote such a model the ASP, standing

for the atom-skipping process. Using the HDP in (2.4) as an example, atom skipping is

implemented by assuming the prior for π′jk to be

f(π′jk) = p× fBeta

α0βk, α0

1−
k∑

l=1

βl


︸ ︷︷ ︸

(2.4)

+(1− p)× δ0︸︷︷︸
atom skipping

, (2.7)

where fBeta(a, b) is the probability density function (p.d.f) of the beta distribution, and δ0

is the indicator function at 0. Then we define the atom-skipping process (ASP) for a single

dataset as

G =
∑∞

k=1 πkδϕk
, πk = π′k

∏k−1
l=1 (1− π′l),

f(π′k|β, p, α0) = p× fBeta

(
α0βk, α0

(
1−

∑k
l=1 βl

))
+ (1− p)× δ0 ,

(2.8)

where βk and ϕk are assumed to be given. We let G0 =
∑∞

k=1 βkδϕk
and denote model (2.8)

as G|p, α0, G0 ∼ ASP(p, α0, G0). According to (2.8), since each π′k or πk has a probability

to be zero, the corresponding atom ϕk may be skipped when sampling from G.

2.3.2 Plaid Atoms Model

Adding back the DP prior on G0 and extending ASP to multiple datasets, we propose the

Plaid Atoms Model (PAM). Specifically, PAM is given in a hierarchical model as

Gj |pj , α0, G0 ∼ ASP(pj , α0, G0), G0|γ,H ∼ DP(γ,H). (2.9)
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Using a stick-breaking representation, PAM can be shown to be equivalent to

Gj =
∑∞

k=1 πjkδϕk
,

πjk = π′jk
∏k−1

l=1 (1− π′jl),

f(π′jk|β, p, α0) = pj × fBeta

(
α0βk, α0

(
1−

∑k
l=1 βl

))
+ (1− pj)× δ0 ,

ϕk ∼ H and βk ∼ GEM(γ).

(2.10)

The proof of the equivalence between (2.9) and (2.10) is omitted and follows the same

derivation in Teh et al. [2004]. Note that when pj = 1, ∀j, PAM is equivalent to HDP. This

can be trivially shown by comparing models (2.4) and (2.10).

Let p = {p1, . . . , pJ}. We denote this model as G1, . . . , GJ ∼ PAM(p, α0, γ,H). Addi-

tional pirors can be placed on the parameters of p, α0, and γ, for example,

pj |a, b ∼ Beta(a, b), α0 ∼ Gamma(aα, bα), γ ∼ Gamma(aγ , bγ). (2.11)

By construction, PAM is more versatile as a generative model. It allows different Gj ’s to

share some atoms but also possesses unique ones. A comparison of PAM and other dependent

random distributions like HDP and CAM is given in Supplement A.1 as a reference.

Continuous Data: PAM in (2.9) can be used as a prior for the random distribution in

model (2.3). If observations yij are continuous and univariate (q = 1), we use a Gaussian

kernel by setting ϕk = (µk, σ
2
k) and F (·|ϕk) = N(·|µk, σ2k). To complete model specification

for PAM(p, α0, γ,H), the base measure H is modeled as the conjugate prior of normal-

inverse-gamma (NIG), where H = NIG(µ0, κ0, α0, β0), i.e., µk|σ2k ∼ N(µ0, σ
2
k/κ0) and σ2k ∼

IG(α0, β0). For multivariate observations (q > 1), the related model components are changed

to multivariate normal and normal-inverse-Wishart distributions. The detail is ommitted for

simplicity.

12



Count Data: Following Denti et al. [2021], we extend the proposed PAM to count data

and refer to it as the Discrete Plaid Atoms Model (DPAM). We only consider univariate

count data and hence q = 1. Let xij ∈ N be the observed count data for observation

i = 1, . . . , nj in group j = 1, . . . , J , where N denotes the natural numbers. Thus the data

vector xj = (x1j , . . . , xnjj) is the set of counts observed for the jth group. We apply the

data augmentation framework in Canale and Dunson [2011] and introduce latent continuous

variables yij so that

Pr(xij = ω) =

∫ aω+1

aω
g(yi,j)dyij , ω = 0, 1, 2, · · · (2.12)

where a0 < a1 < · · · < a∞ is a fixed sequence of thresholds that take values {aω;ω ≥ 0} =

{−∞, 0, 1, 2, . . . ,+∞}, and g(yij) follows the PAM mixture model as in equations (2.3) and

(2.10). This construction allows posterior inference for yij since it is trivial to see that

xij |yij =
∞∑
ω=0

1ω(xij) · 1[aω,aω+1)
(yij),

where 1a(b) equals 1 if b = a or b ∈ a, and 0 otherwise.

2.3.3 Fractional Stick-Breaking Process

Taking expected value of πk in (2.8), we derive a new process for a single group called

the Fractional Stick-Breaking Process (FSBP). This new process gives an interesting and

new solution for modeling a random distribution, and induces a clustering structure that is

different from existing models like the DP or PYP.

Let p ∈ (0, 1), and a, b > 0 be fixed constants. The FSBP is an extension of the DP (or
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equivalently the SBP) and given by

G =
∑∞

k=1 πkδϕk
, πk = p · πk′

∏k−1
l=1 (1− p · πl′),

πk
′|γ ∼ Beta(a = 1, b = γ), ϕk|H ∼ H.

(2.13)

We denote this model as G ∼ FSBP(p, γ,H). When p = 1, FSBP(p, γ,H) reduces to

SBP(γ,H) or equivalently DP(γ,H). We show in Section 2.4 that the FSBP is the mean

of the ASP and has more expected number of clusters than that of DP with the same

concentration parameter γ.

2.4 Properties of ASP, PAM, and FSBP

2.4.1 Properties of ASP and PAM

We start by showing that the cluster weights in ASP and PAM sum to 1.

Proposition 1. Assume β = {βk; k ≥ 1}, βk ∼ GEM(γ), f(π′k|β, p, α0) is given in (2.8)

and f(π′jk|β, pj , α0) in (2.10). Furthermore, assume p, pj ∼ Beta(a, b). Then

1.
∑

k≥1 πk = 1,
∑

k≥1 πjk = 1,

2. E[πk|β, p] = p · β′k
∏k−1

l=1 (1− p · β′l), E[πjk|β, pj ] = pj · β′k
∏k−1

l=1 (1− pj · β′l), and

3. E[πk] = E[πjk] = 1
1+γ′

(
γ′

1+γ′

)k−1
where γ′ = 1+γ−p̄

p̄ , p̄ = a
a+b .

The proof is in Supplement A.2. This result shows that the random distributions G from

ASP and Gj from PAM are proper discrete random distributions. Next, we show that the

mean process of ASP is FSBP.

Theorem 1. For an arbitrary set A ⊆ X, let α0, γ > 0, H be a fixed probability measure,

G0 ∼ DP (γ,H), and G|G0, p ∼ ASP (p, α0, G0) as in (2.8). Then, conditional on G0 and
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p, the conditional mean of G is

E[G(A)|G0, p] = G∗(A),

where G∗ ∼ FSBP (p, γ,H).

The proof of Theorem 1 is in Supplement A.3. Combining the results of Theorem 1 and

Theorem 2, the following corollary gives the maginal mean of the ASP.

Corollary 1. If G0 ∼ DP (γ,H), p ∼ Beta(a, b), and G|G0, p ∼ ASP (p, α0, G0), then

E[G(A)] = E[E[G(A)|G0, p]] = E[G∗(A)] = H(A).

Lastly, we look at properties related to PAM. Since PAM is an extension of ASP to

multiple groups, the results in Theorem 1 apply to the group-specific random distribution

Gj of PAM as well. Corollary 1 also applies to a random distribution Gj from PAM.

Moreover, in the next proposition, we show that a priori, there is a positive probability for

two observations from two different groups to be clustered together in PAM.

Proposition 2. Let G1, . . . , GJ ∼ PAM(p, α0, γ,H). Without loss of generality, for two

groups G1 and G2, let θi1|G1 ∼ G1 and θi′2|G2 ∼ G2, then

Pr(θi1 = θi′2) > 0. (2.14)

The proof of Proposition 2 is given in Supplement A.4.

Unfortunately, closed-form results are unavailable for the variance, correlation structure,

and partition probability functions of PAM. The expected number of clusters for PAM is

not available in closed form either. Consequently, we investigate the clustering properties of

PAM through a small simulation and compare it to CAM and HDP.

We assume there are 500 groups (j = 1, . . . , 500) and within each group Gj , we generate

a random sample of 1, 000 observations from CAM, HDP, or PAM. This leads to a total of
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500, 000 observations for each process. When sampling an observation from these processes,

computationally it is not feasible to sample from an infinite mixture. Instead, we consider a

finite mixture of 1, 000 atoms, which are sampled from the base measure H: ϕk ∼ H for k =

1, . . . , 1, 000, where H = N(0, 1). We set the concentration parameters α0 = γ = 1 for CAM,

HDP, and PAM. Therefore, we use notation CAM(1, 1, H) and HDP(1, 1, H). We consider

two versions of PAM, with pj1 ∼ Beta(80, 20) or pj2 ∼ Beta(20, 80), for j = 1, . . . , 500.

This leads to PAM(p1, 1, 1, H) and PAM(p2, 1, 1, H), where p1 = {pj1; j = 1, . . . , 500} and

p2 = {pj2; j = 1, . . . , 500}. We sample the atom weights π’s in each group based on their

corresponding stick-breaking processes, model (2.4) for HDP, (2.6) for CAM, and (2.10) for

PAM. At the end, we obtain 1, 000 observations per group for 500 groups under each of the

four processes, CAM(1, 1, H), HDP(1, 1, H), PAM(p1, 1, 1, H) and PAM(p2, 1, 1, H), with

H = N(0, 1).

Figure 2.2 summarizes the number of clusters and the relative cluster size, either for a

single group or for the entire 500,000 observations across all 500 groups, under each of the

four processes. The processes exhibit quite different behavior. First, the average number

of clusters in a group is 7.62 (SD 2.56), 3.00 (SD 0.86), 2.49 (SD 0.92), and 1.24 (SD 0.47)

for CAM(1, 1, H), HDP(1, 1, H), PAM(p1, 1, 1, H) and PAM(p2, 1, 1, H), respectively. This

can be observed based on the average length of the grey lines in the subplots of Figure 2.2,

each grey line representing a group. However, aggregating all the observations, the total

number of clusters is 18, 10, 13, and 43, for the four processes, respectively, corresponding to

the length of the blue line in the figure. Therefore, HDP (top right) generates the smallest

number of clusters while PAM(p2, 1, 1, H) (bottom right) generates the largest number of

clusters. Interestingly, PAM(p2, 1, 1, H) (bottom right plot) also generates on average the

smallest number of clusters per group (shortest grey lines). This means that for PAM

many clusters across groups are unique, a feature that is different from the other three

processes. Lastly, PAM(p1, 1, 1, H) (bottom left) behaves similar to HDP (top right), which
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is expected, since when pj approaches 1, PAM is identical to HDP. Lastly, CAM (top left)

generates on average the largest number of clusters per group (longest grey lines) without

producing a large number of total clusters. This means CAM is inclined to generate more

and overlapping clusters across groups. Additional results comparing the clustering behavior

of the three models can be found in Supplement A.5.

Figure 2.2: Clustering pattern of CAM, HDP, and PAM. The four subplots present the
relative cluster size against the number of clusters for the four processes, CAM(1, 1, H),
HDP(1, 1, H), PAM(p1, 1, 1, H) and PAM(p2, 1, 1, H), with H = N(0, 1). The grey lines in
each subplot correspond to the observations within each group and the blue lines correspond
to the relative cluster size of all the observations aggregated across 500 groups.

2.4.2 Properties of FSBP

We first show that the mean and variance of FSBP are available in closed forms and is related

to DP.

Theorem 2. For an arbitrary set A ⊆ X, let p ∈ (0, 1), γ > 0 be fixed constants, and H

be a fixed probability measure. For G∗ ∼ FSBP(p, γ,H), the mean and variance of G∗ on A
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are

E[G∗(A)] = H(A), Var (G∗(A)) =
H(A){1−H(A)}

v
, where v =

1 + γ

p
+

1− p

p
.

The proof of the theorem is in Supplement A.6.

Remark 1. The mean and variance of G∗ match the mean and variance of a DP G′ ∼

DP (v − 1, H), respectively.

We next derive the exchangeable partition probability function (EPPF) of FSBP G∗.

Let z = {z1, . . . , zn} represent the vector of cluster memberships for n observations sampled

from G∗. Without loss of generality, suppose zi ∈ {1, . . . , K} which means there is a total of

K clusters indexed from 1 to K. Then z defines a partition of the n observations, denoted

as C(z) = {c1, . . . , cK} where ∪K
k=1ck = {1, . . . , n} and ck = {i; zi = k}. For any partition

C of {1, . . . , n}, the EPPF of G∗ is defined as Pr(C(z) = C) [Pitman, 1995]. Following the

work of Miller [2019], we derive the expression for the EPPF of G∗.

Theorem 3. Let p ∈ (0, 1) be a fixed constant, and let H be a fixed probability measure.

Suppose G∗ ∼ FSBP (p, γ,H) and that n observations are sampled from G∗. Without loss

of generality, denote C = {c1, . . . , cK} a partition of the n observations, with 1 ≤ K ≤ n.

Furthermore, let λ = {λ1, . . . , λK} be a permutation of {1, . . . , K} and SK denote the set of

all K! possible permutations of {1, . . . , K}. The EPPF of G∗ for n observations is given by

K∏
k=1

Γ(γ+1)p|ck|
Γ(|ck|+ 1)

Γ(γ + |ck|+ 1)
×

 ∑
λ∈SK

K∏
k=1

{
2F1(−αk+1(λ), |cλk |+ 1; γ + |cλk |+ 1; p)

1− 2F1(−αk+1(λ), |cλk |+ 1; γ + |cλk |+ 1; p)

}
where Γ(·) is the gamma function, |c| denotes the cardinality of the set c, 2F1(a, b; c; d) is the

hypergeometric function with parameters a, b, c and d, αk(λ) = |cλk |+ |cλk+1
|+ · · ·+ |cλK |,

and cλk is the λk’s component of C. When p → 1, the EPPF of G∗ converges to the EPPF
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of G0 ∼ DP (γ,H), which is given by

γ|C|Γ(γ)
Γ(n+ γ)

K∏
k=1

Γ(|ck|).

The proof of theorem 3 is given in Supplement A.7. Details of the hypergeometric function

can be found in Abramowitz et al. [1988].

We next explore the clustering property of the FSBP to show that the expected number

of clusters in G∗ is greater than the corresponding DP with G0 ∼ DP (γ,H). The first

lemma derives the probability of forming a new cluster under FSBP.

Lemma 1. Let p ∈ (0, 1) and γ > 0 be fixed constants, and let H be a fixed probability

measure. Let G∗ ∼ FSBP (p, γ,H), and let θ1, · · · ,θi|G∗ ∼ G∗. Denote wi as a binary

indicator for the ith sample θi, such that

wi =

1 if θi /∈ {θ1, · · · ,θi−1}

0 o.w.
.

Then, for i ≥ 2,

Pr(wi = 1|p, γ) = 1−
i∑

k=2

(−1)k
(
i− 1

k − 1

)
(k − 1)!∏k
l=1(l + γ)

(γ + 1)pk−1

2F1(1, 1− k; γ + 2; p)

where 2F1(a, b; c; d) is the hypergeometric function.

The proof of Lemma 1 is in Supplement A.8.

Lemma 2. It follows that

lim
p→1

Pr(wi = 1|p, γ) = γ

γ + i− 1
.

The proof of Lemma 2 is in Supplement A.9. Note that the right hand side of the equation
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in Lemma 2 is the probability of forming a new cluster under DP [Müller et al., 2015]. Based

on Lemma 1 and 2, we have the following theorem.

Theorem 4. Let p ∈ (0, 1), γ > 0 be fixed constants, and wi be defined as in Lemma 1.

Then

Pr(wi = 1|p, γ) > γ

γ + i− 1
.

The proof of Theorem 4 is shown in Supplement A.10. The following corollary follows directly

from Theorem 4.

Corollary 2. Let n∗ be the expected number of clusters of G∗ ∼ FSBP (p, γ,H) on n

samples. Then

E[n∗|p, γ] = 1 +
n∑

i=2

Pr(wi = 1|p, γ).

Let n0 be the expected number of clusters of G0 ∼ DP (γ,H) on n samples. Then

E[n0|γ] =
n∑

i=1

γ

γ + i− 1
.

Additionally, we have

E[n∗|p, γ] > E[n0|γ] ≈ γ log

(
γ + n

γ

)
.

Remark 2. The FSBP has a larger expected number of clusters than DP with the same

concentration parameter .

In summary, FSBP in (2.13) can be considered as a “truncated" DP with a factor of p.

When p = 1, FSBP is the same as DP.
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2.5 Posterior Inference

2.5.1 Overview

We develop computational algorithms for sampling PAM and FSBP. We do not consider

sampler for ASP since ASP can be viewed as PAM for a single group and thus can be

sampled similarly as PAM. For PAM, we modify an efficient slice sampler in Denti et al.

[2021] and illustrate the new algorithm using univariate data. The modified sampler can be

easily extended to accommodate multivariate observations (i.e., q > 1) and discrete data.

Alternative approaches like the Gibbs sampler based on the Chinese restaurant franchise

process Teh et al. [2004] or blocked-Gibbs sampler Rodriguez et al. [2008] by truncating

the infinity mixture in PAM are not considered, as they are either not feasible or prone to

inferential errors.

2.5.2 Slice Sampler for PAM and FSBP

To facilitate the development of the slice sampler for PAM, we adopt the parametrization

in Denti et al. [2021] and Teh et al. [2004], adding the sampling model for observation yij .

Specifically, the proposed PAM can be represented using a set of latent indicator variables

Z = {zij ; i ≥ 1, j = 1, . . . , J} as cluster memberships for the observations. In other words,

zij = k if observation i in group j is assigned to cluster k. Denoting πj = {πjk; k ≥ 1} and

adding the sampling model for yij , we consider a PAM mixture model as

yij |zij ,Φ ∼ F (yij |ϕzij ),

zij |πj ∼
∑∞

k=1 πjkδk(zij), πjk = π′jk
∏k−1

l=1 (1− π′jl),

f(π′jk|β, pj , α0) = pj × fBeta

(
α0βk, α0

(
1−

∑k
l=1 βl

))
+ (1− pj)× δ0.

(2.15)
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The other components of PAM are the same as (2.10) and (2.11). This reparameterization

is routinely used to facilitate posterior inference [Denti et al., 2021, Teh et al., 2004].

By integrating out zij in model (2.15), we can rewrite the density function for yij as an

infinite mixture as

f(yij |Φ,πj) =
∑
k≥1

πjk · p(yij |ϕk), (2.16)

where Φ = {ϕk; k ≥ 1}. Following Kalli et al. [2011], we use a set of uniformly dis-

tributed random variables u = {ui,j ; i = 1, . . . , nj , j = 1, . . . , J} to separate the “active"

mixture components from the other “inactive" components, which will become clear next.

By definition, each uij ∼ Unif(0, 1). Additionally, we consider J deterministic probabilities

ξj = {ξjk; k ≥ 1} for a fixed j, where ξjk ≡ ξk = (1− ζ)ζk−1, ζ ∈ (0, 1) is a fixed parameter

with a default value of 0.5, and ξj ≡ ξ = {ξk; k ≥ 1}. A more complicated construction

may allow different ζj for different groups j, which we do not consider here. As a result, the

augmented likelihood for observation yij can be expressed as:

fξ(yij , uij |Φ,πj) =
∑
k≥1

1{uij<ξk}
πjk
ξk

p(yij |ϕk), (2.17)

where 1{A} equals 1 if condition A is satisfied, and 0 otherwise. Integrating out uij in (2.17)

returns f(yij |Φ,πj) in (2.16). Now adding the cluster indicator zij in (2.15), we express

(2.17) as

fξ(yij , uij |zij ,Φ,πj) =
∑
k≥1

1{zij=k}1{uij<ξzij}
πjzij
ξzij

p(yij |ϕzij ) (2.18)

The proposed slice sampler follows a Gibbs-sampler style, in which it iteratively samples

the following parameters,

1. uij | · · · ∝ Unif(0, ξzij ),

2. the stick-breaking weights β′k, π
′
jk, and pj ,

3. the indicator zij with Pr(zij = k| · · · ) ∝ 1{uij<ξk}
πjk
ξk

p(yij |ϕk), and
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4. the atom location parameter ϕk| · · · ∝
∏

zij=k N(yij |ϕk)pH(ϕk).

In the last step, since ϕk ∼ H, pH(ϕk) denotes the prior density of H. The entire sampler

is presented in Algorithm 1. Below we describe the details of sampling π′jk in step 2 above.

The other details of the entire slice sampler are in Supplement A.11.

In each iteration of the slice sampler, due to the introduction of the latent uniform variate

uij and the truncation on ξk, the infinite summation in equation (2.17) can be reduced to

a finite sum through “stochastic truncation". To see this, first notice that {ξk; k ≥ 1} is a

descending sequence, and therefore only finitely many ξk’s can meet the condition uij < ξk.

In other words, given u, there exists a K ′ ≥ 1 such that when k ≥ K ′, min(uij) ≥ ξk, where

the min is taken over all i and j. This means that up to K ′ of the ξk’s will be larger than

uij . Let K∗ = K ′ − 1. Then, noticing that ξK∗ = (1− ζ)ζK
∗
, we can easily show that

K∗ =

⌊
log(min(u))− log(1− ζ)

log(ζ)

⌋
. (2.19)

Here, K∗ is called the “stochastic truncation" in the slice sampler. Given K∗, sampling β′k

is straightforward but requires a Metropolis-Hastings (MH) step (See Supplement A.11 for

details). To sample π′jk, again conditional on K∗, let

Zj = {zij ; i = 1, . . . , nj}, mjk =
∑nj

i=1 1(zij = k), and refer to the stick-breaking

representation. The full conditional distribution of π′jk is given by

p(π′jk| · · · ) = p(π′jk|Zj ,β, pj , α0) ∝
[
π′jk

mjk(1− π′jk)
∑K∗

s=k+1mjs

]
f(π′jk)

where f(π′jk) is defined in equation (2.7). When mjk > 0, it means cluster k in group j is

not empty, and therefore π′jk ̸= 0 (otherwise, it would not be possible to have a non-empty

23



cluster k in group j). Hence, the full conditional of π′jk is

p(π′jk| · · · ) = fBeta

α0βk +mjk, α0

1−
k∑

l=1

βl

+
K∗∑

s=k+1

mjs

 . (2.20)

Recall fBeta(, ) denotes a beta distribution density. When mjk = 0, which could mean

π′jk = 0 or π′jk ̸= 0 but the atom is not sampled, we have

p(π′jk| · · · ) ∝ (1− π′jk)
∑K∗

s=k+1mjsf(π′jk).

This can be expressed as

p(π′jk| · · · ) = p∗j × fBeta

α0βk, α0

1−
k∑

l=1

βl

+
K∗∑

s=k+1

mjs

+ (1− p∗j )× δ0 (2.21)

where

p∗j =
pj

pj + (1− pj)×
B
(
α0βk,α0

(
1−
∑k

l=1 βl

))
B
(
α0βk,α0

(
1−
∑k

l=1 βl

)
+
∑K∗

s=k+1mjs

)
and B(a, b) is the beta function.

Lastly, sampling pj and the concentration parameters follow standard MCMC simulation

[Escobar and West, 1995], details of which is provided in Supplement A.11.

Additional step for count data Finally, for DPAM an additional step is added to update

the latent continuous variable. Denote TN(µ, σ2; a, b) the truncated normal distribution with

mean µ, variance σ2, and boundaries a and b, the full conditional distribution of yij is

yij | · · · ∼ TN(µzij , σ
2
zij ; axij , axij+1). (2.22)
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Computation Algorithm Algorithm 1 introduces the proposed slice sampler. For multi-

variate observations, step 9 of Algorithm 1 can be replaced with a conjugate NIW prior, and

multivariate normal can be used for p(yij |ϕk) in step 8. On the other hand, the extension

to DPAM can be achieved by adding steps to sample the latent yij according to equation

(2.22) after step 7, and modifying the likelihood p(yij |ϕk) in step 8 with

p(xij |ϕk) = ∆Φ(axij |ϕk) = Φ(axij+1|ϕk)− Φ(axij |ϕk),

where Φ(·) denotes the cumulative distribution function (c.d.f) of the Gaussian distribution.

Algorithm 1 Slice-Efficient Sampler for PAM
1: for m = 1, . . . ,M do
2: Sample each uij from uij ∼ Unif(0, ξzij ) and find K∗ in (2.19).
3: Sample all β′k for k = 1, · · · , K∗ with MH step.
4: for each π′jk for j = 1, · · · , J and k = 1, · · · , K∗ do
5: if mjk > 0, sample π′jk from (2.20). otherwise, sample π′jk from (2.21).
6: end for
7: Sample p = {pj ; j = 1, . . . , J}: denote mj0 =

∑K∗
k=1 1(π

′
jk = 0),

pj | · · · ∼ Beta(a+K∗ −mj0, b+mj0)

8: Sample Z = {zij ; i = 1, . . . , nj , j = 1, . . . , J} from the following full condition:

p(zij = k| · · · ) ∝ 1{uij<ξk}
πjk
ξk

p(yij |ϕk)

9: Sample ϕk from a conjugate NIG.
10: end for

Label Switching As PAM involves an infinite mixture model, the issue of label switch-

ing can arise in MCMC samples [Papastamoulis, 2015]. To address the problem of label

switching, we use the Equivalence Classes Representatives (ECR) algorithm described in

Papastamoulis and Iliopoulos [2010]. Details of label-switching with the ECR method are in

Supplement A.11.
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Slice sampler for FSBP The slice sampler for FSBP follows the same flow as the one

for PAM above. We simply need to add the sampling model (2.1) and rewrite the FSBP in

(2.13) using latent indicator variables Z = {zi; i ≥ 1} in a mixture model given by

yi|zi,Φ ∼ F (ϕzi), zi|π ∼
∑

k≥1 πkδk,

πk = p · πk′
∏k−1

l=1 (1− p · πl′),

π′k ∼ Beta(1, γ), ϕk ∼ H,

where π = {πk; k ≥ 1}. The detail of the sampler is almost identical to PAM and left for

Supplement A.12.

2.5.3 Inference on Clusters

Like all BNP models, both PAM and FSBP produce random clusters and their associated

posterior distributions. The slice sampler in the previous section produces Markov chain

Monte Carlo (MCMC) samples that eventually converge to the true joint posterior dis-

tribution of all the parameters. These samples are used for posterior inference, including

estimating a single clustering outcome of the observations, even though the posterior distri-

bution of the clusters is available. We discuss the corresponding inference under PAM next.

We consider two approaches but only present one of them below, leaving the other approach

to the Supplement A.11.

First, for the mth MCMC sample, denote the matrix of cluster memberships of all the

observations as Z(m) = {z(m)
ij ; i = 1, . . . , nj , j = 1, . . . , J}, and the vector of observations

in the jth group as Z
(m)
j = {z(m)

1j , . . . , z
(m)
njj

}. These z values can be sampled in Step 8 of

Algorithm 1. Let t
(m)
j =

{
t
(m)
1 , . . . , t

(m)

K
(m)
j

}
denote the labels of these clusters, which are

the unique values of the cluster memberships in Z
(m)
j . Here K

(m)
j represents the number

of clusters in group j for the mth sample. Then the set and number of common clusters
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between groups j and j′ are given by t
(m)
j ∩ t

(m)
j′ and its cardinality, respectively, and the

set and number of unique clusters for group j are given by t
(m)
j mod Z(m)\Z(m)

j and its

cardinality, respectively. Here, operation A mod B for two sets A and B is redefined as

the unique elements in A but not B, and Z\Zj means the set after removing Zj from Z.

Through these operations, for every MCMC sample m we obtain clustering results for the

observations. Together, all the MCMC samples constitute an approximation of the posterior

distributions of the clusters.

To produce a point estimate of the clustering result, we follow the approach in Wade and

Ghahramani [2018] to estimate an optimal partition through a decision-theoretic approach

that minimizes the variation of information [Meilă, 2007]. This optimal partition is then

used as a “point estimate" of the random clusters obtained from PAM or FSBP posterior

inference.

2.6 Simulation Study

2.6.1 Simulation Setup

We assess the performance of PAM and FSBP via simulation. The ASP model is not

evaluated since it is simply a PAM for a single group. In the simulation, we generate

data from a Gaussian finite mixture model with specific clustering patterns, and apply

BNP models as a prior for data analysis. Posterior inference from the BNP models is then

compared to the simulation truth. We compare PAM with CAM and HDP in Scenarios 1

and 2, and FSBP with DP in Scenario 3. In all simulations, the variance is σ2 = 0.6 in the

Gaussian mixture.

Scenario 1 - PAM Univariate data We consider three cases under Scenario 1 to assess

the performance of PAM under various clustering patterns.

Case 1: Unique Clusters We generate data from groups that have non-overlapping clus-
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ters. This extreme case provides an evaluation of models’ performance to capture unique

clusters. We assume J = 2 groups, each with nj = n = 200 samples. Within each group,

the observations are generated from a mixture of four Gaussian distributions with distinct

means. In mathematical terms, we have

f(yij) ∝
4∑

k=1

1

4
N(mjk, σ

2), i = 1, . . . , n, j = 1, 2,

where mjk represents the cluster mean for Group j and cluster k. There is a total of 8

clusters across two groups. For Group 1, the cluster means are m1k ∈ {0, 4, 8, 12}, and for

Group 2, the cluster means are m2k ∈ {−16,−12,−8,−4}.

Case 2: A Single Common Cluster In this case, we assume the presence of one common

cluster between groups. Specifically, we consider J = 3 groups, each comprising nj = n = 100

samples. The observations in each group again follow a mixture of Gaussian distributions.

A common cluster with mean 0 is shared across all three groups, while each group possesses

its own unique clusters. Details regarding the cluster means and weights in each group can

be found in Table A.2 in Supplement A.13.

Case 3: Nested Clusters In this case, taken from Denti et al. [2021], nested clusters are

generated across groups. Specifically, let J = 6 groups. Ascending number and overlapping

clusters are generated via the mixture of Gaussian distributions given by

f(yij) ∝
j∑

k=1

1

j
N(mk, σ

2), i = 1, . . . , nj , j = 1, · · · , 6,

where the cluster means mk ∈ {0, 5, 10, 13, 16, 20} for j = 1, . . . , 6. Therefore, there are j

true clusters in group j and clusters in group j is nested in group (j+1), with only the first

cluster N(m1, σ
2) shared across all six groups. We test two sub-cases of Case 3 by setting

the number of observations in group nj = nA, where nA ∈ {50, 100, 150}, or by setting

nj = nB × j, where nB ∈ {10, 20, 40}.
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Scenario 2 - PAM Multivariate data In this scenario, each observation yij is assumed

to be a 3-dimensional vector. Additionally, we consider J = 3 groups, each with nj = n

subjects, where n ∈ {50, 100, 200}. The multivariate observations are generated from a

mixture of multivariate Gaussian distributions, with the cluster means and weights shown

in Table A.3 in Supplement A.13. The true covariance matrix is assumed to be the identity

matrix. There are a total of five clusters across all groups: Group 1 possesses all five clusters,

Group 2 has three clusters (clusters 1, 3 and 4), and Group 3 has two clusters (clusters 2

and 3). Note that cluster 3 is the only common cluster across all three groups.

In both scenarios, we compare the performance of PAM with HDP and CAM. We obtain

a point-estimate of clustering results based on the procedure in Wade and Ghahramani [2018]

and assess the models’ performance based on the following criteria.

1. The total number of clusters, number of common clusters, and number of unique

clusters based on the estimated clustering results.

2. The adjusted Rand index (ARI) [Hubert and Arabie, 1985] between the estimated

clustering results and the ground truth, with a value closer to 1 indicating better

performance.

3. The normalized Frobenius distance (NFD) [Horn and Johnson, 1990] between the es-

timated posterior pairwise co-clustering matrices and the true co-clustering structure,

with a value closer to 0 indicating better performance.

These metrics have been routinely adopted in the literature, e.g., in Denti et al. [2021].

Scenario 3 - FSBP Univariate data In this scenario, we evaluate the performance

of FSBP. We consider n = 300 observations, each following a mixture of five Gaussian
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distributions with distinct means, given by

f(yi) ∝
5∑

k=1

1

5
N(mk, σ

2), i = 1, . . . , n,

where mk ∈ {0, 3, 6, 9, 12}. FSBP is then compared to DP, and the performance is assessed

based on the estimated posterior density function, as well as the number of clusters inferred

with each method.

2.6.2 Simulation Results for PAM and FSBP

Scenario 1 We generate 30 datasets for each available sample size in each case. For each

simulated dataset, we adopt standard prior settings for the hyperparameters in model (2.10).

Specifically, we use the NIG distribution as the base measure H, with hyperparameters

µ0 = 0, κ0 = 0.1, α0 = 3 and β0 = 1. We use Jeffrey’s prior for pj ’s, i.e., a = b = 0.5.

Lastly, we set aα0 = bα0 = aγ = bγ = 3 for the gamma priors of the concentration parameters

α0 and γ. We collect an MCMC sample of 10,000 iterations after 10,000 iterations of burn-in.

The Markov chains mix well.

We present the simulation results for all three cases in Table 2.1. The winning perfor-

mance is highlighted in bold font. We use notation Gj to denote the group j. Full results

in terms of cluster numbers are presented for cases 1 and 2. For Case 3, results from one

sample size n = 150 is presented, and we selected clustering results for G5 and G6 as they

are representative of the models’ distinct behavior. Full results are reported in Supplement

A.13. Overall, PAM exhibits competitive performance in terms of identifying the correct

number of clusters and ARI/NFD scores. PAM also is the most stable method consistently

producing the smallest standard deviations. In Case 1, PAM is superior in capturing the

special clustering structure where no clusters are shared across groups. In contrast, HDP

seems to struggle in identifying the unique clusters in this case. These can be found in
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“Number of clusters" for “All groups" in the table. To further examine the model fitting in

Case 1, Figure A.6 in Supplement A.13 shows that HDP (middle panel) sometimes merge

two different clusters in the posterior inference, leading to under-estimated cluster numbers.

CAM and PAM appear to be able to avoid this and report mostly the correct clustering

structure. In Case 2, CAM and HDP are the better methods, both able to capture the sole

common cluster more often than PAM. These two cases seem to show distinct behavior of

PAM vs CAM and HDP. We confirm this in case 3. In particular, PAM is more likely to

identify the correct number of clusters across all groups as the average number of clusters

under PAM is 5.97 compared to 4.97 for CAM and 4.27 for HDP. However, CAM is better at

identifying common clusters, say between G5 and G6, while PAM is more capable of finding

the unique cluster in G6.

Since by definition PAM allows the weight πjk of cluster k in group j to be zero, it can

output Pr(πjk = 0|Data) which can be interpreted as cluster k is absent from group j. In

addition, Pr(πjk > 0|Data) describes the posterior probability that cluster k is present in

group j, and Pr(πjk > 0, πj′k > 0|Data) the posterior probability that cluster k is shared

between groups j and j′. More generally, a posterior probability of different configurations of

π’s can be used to estimate more complex clustering patterns. In contrast, common-atoms

models like HDP and CAM assign Pr(πjk = 0|Data) ≡ 0 and Pr(πjk > 0|Data) ≡ 1 by

definition. A work-around might be to report the frequency of a cluster sampled in the

MCMC iterations in a group, which can be used as an approximation to the probability a

cluster belongs to the group.

To illustrate our point, in Table 2.2, we present posterior summaries of PAM and CAM

using a simulated dataset under Case 1, in which clusters 1-4 belong to group 2 (G2) and 5-8

to group 1 (G1). Both PAM and CAM report small, < 0.01, but non-zero estimated cluster

weights (posterior mean). However, PAM reports large posterior probabilities of “Unique in

G1" for clusters 5-8 and of “Unique in G2" for clusters 1-4, while those posterior probabilities
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Case Metrics CAM HDP PAM Truth

Case 1

# of clusters
All groups 7.87 (0.35) 5.80 (0.66) 7.97 (0.18) 8

G1 4.07 (0.25) 3.37 (0.56) 3.97 (0.18) 4
G2 3.87 (0.35) 2.43 (0.50) 4.00 (0.00) 4

# of common clusters 0.07 (0.25) 0.00 (0.00) 0.00 (0.00) 0

# of unique clusters G1 4.00 (0.00) 3.37 (0.56) 3.97 (0.18) 4
G2 3.80 (0.48) 2.43 (0.50) 4.00 (0.00) 4
ARI 0.96 (0.04) 0.67 (0.09) 0.97 (0.02)
NFD 0.01 (0.01) 0.09 (0.03) 0.01 (0.01)

Case 2

# of clusters

All groups 5.00 (0.00) 5.03 (0.18) 5.07 (0.25) 5
G1 2.27 (0.91) 1.70 (0.47) 1.67 (0.48) 2
G2 3.80 (0.71) 2.83 (0.53) 2.60 (0.50) 3
G3 2.97 (0.76) 2.13 (0.35) 2.00 (0.00) 2

# of common clusters

All groups 1.20 (0.71) 0.47 (0.51) 0.30 (0.47) 1
G1 and G2 1.80 (0.96) 0.60 (0.56) 0.33 (0.48) 1
G1 and G3 1.40 (0.77) 0.80 (0.61) 0.63 (0.49) 1
G2 and G3 2.03 (0.93) 0.70 (0.47) 0.53 (0.51) 1

# of unique clusters

G1 0.27 (0.45) 0.77 (0.50) 1.00 (0.26) 1
G2 1.17 (0.65) 2.00 (0.00) 2.03 (0.18) 2
G3 0.73 (0.52) 1.10 (0.31) 1.13 (0.35) 1
ARI 0.85 (0.04) 0.87 (0.05) 0.87 (0.04)
NFD 0.04 (0.01) 0.03 (0.01) 0.03 (0.01)

Case 3
(nj = 150)

# of clusters

All groups 4.97 (0.49) 4.27 (0.58) 5.97 (0.62) 6
G5 4.43 (0.50) 3.33 (0.48) 4.13 (0.57) 5
G6 4.60 (0.62) 3.17 (0.46) 4.53 (0.68) 6

# of common clusters G5 and G6 4.43 (0.50) 3.13 (0.35) 3.47 (0.68) 5

# of unique clusters G5 0.00 (0.00) 0.00 (0.00) 0.53 (0.51) 0
G6 0.13 (0.35) 0.03 (0.18) 0.90 (0.40) 1
ARI 0.95 (0.02) 0.90 (0.04) 0.95 (0.03)
NFD 0.07 (0.02) 0.03 (0.01) 0.02 (0.01)

Table 2.1: Simulated univariate data in Scenario 1. Clustering performance of CAM, HDP,
and PAM is evaluated based on the following metrics: number of clusters across all and
individual groups, number of common clusters across all groups and pairwise groups, number
of unique clusters within each group, Adjusted Rand Index (ARI), and normalized Forbenius
distance (NFD). Entries represent the Mean (SD) over 30 datasets. Bold entries mean
the corresponding model performs the best with the corresponding metric. Note that the
notation G1 to G6 refers to Group 1 to Group 6, respectively.
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are 0’s for CAM. Therefore, PAM gives a more interpretable summary based on the posterior

probability of atom weights equal to or greater than 0.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster 8
True mean -16 -12 -8 -4 0 4 8 12

True weight G1 0.00 0.25 0.25 0.25 0.25
G2 0.25 0.25 0.25 0.25 0.00

PAM Estimates (CAM Estimates)
Mean -15.99 (-15.98) -11.81 (-11.81) -7.74 (-4.82) -4.07 (-3.74) 0.11 (0.13) 3.91 (3.92) 7.85 (7.84) 11.96 (11.93)

Weight G1 < 0.01(< 0.01) 0.19 (0.24) 0.24 (0.24) 0.23 (0.21) 0.25 (0.25)
G2 0.22 (0.22) 0.27 (0.26) 0.22 (0.12) 0.29 (0.22) < 0.01(< 0.01)

Unique in G1
P̂r(π1k > 0, π2k = 0|Data)

0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.75 (0.00) 0.84 (0.00) 0.81 (0.00) 0.86 (0.00)

Unique in G2
P̂r(π1k = 0, π2k > 0|Data)

0.78 (0.00) 0.78 (0.00) 0.68 (0.00) 0.79 (0.00) 0.02 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

Table 2.2: Posterior summaries of CAM and PAM for a randomly selected dataset in Case
1 of Scenario 1. Reported estimates for Mean and Weight are posterior means. The last two
rows correspond to MCMC-estimated posterior probabilities of a cluster has zero weight in
one group and positive in the other.

Scenario Two For the multivariate data scenario, we use the following prior settings for

the hyperparameters in (2.10). The NIW distribution (NIW(µ0, κ0, ν0,Ψ)) is used as the

base measure H, with hyperparameters µ0 = 0 = {0, 0, 0}, κ0 = 0.1, ν0 = 4 and Ψ = I3,

where I3 is the 3 × 3 identity matrix. Similar to Scenario 1 , we use Jeffrey’s prior for pj .

We also set aα0 = bα0 = aγ = bγ = 3 in the gamma priors for the concentration parameters

α0 and γ. For simplicity, we only report the model accuracy on the number of clusters, ARI,

and NFD for this simulation. We generate 30 datasets for each sample size, and summarize

the results in Table A.4 in Supplement A.13. The results indicate that all three methods

have high accuracy in the multivariate data simulation. PAM performs competitively with

the other two methods in terms of the ARI and NFD metrics when the sample size is large

(n ≥ 100).

Scenario 3 We generate 30 datasets for the simulation of FSBP, each with 300 obser-

vations. Standard priors are adopted for the hyperparameters. Specifically, we use NIG

distribution as the base measure H, set µ0 = 0, κ0 = 0.1, α0 = 3, β0 = 1, use Jeffrey’s prior

for p (p ∼ Beta(0.5, 0.5)), and use Gamma(3, 3) for the hyperparameter γ. We collect an
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MCMC sample of 5,000 iterations after 5,000 iterations of burn-in. The Markov chains mix

well. The results are presented in Figure A.7 in Supplement A.13. On average, both methods

successfully capture the five true clusters. However, FSBP provides more accurate posterior

inference on the cluster distributions (top panel) and cluster numbers (bottom panel).

2.7 Case Studies

We apply PAM to two real-life datasets, one from a microbiome project and the other related

to treatment of warts. The microbiome data demonstrate PAM’s performance for count data

and the warts data consists of multivariate observations.

2.7.1 Microbiome Dataset

The microbiome dataset, reported in O’Keefe et al. [2015], measures microbiota abundance

for 38 healthy middle-aged African Americans (AA) and rural Africans (AF). The study

aims to investigate the effect of diet swap between individuals of AF and AA, as traditional

foods for these populations differ. The 38 study participants are instructed to follow their

characteristic diet, such as a low-fat and high-fiber diet for AF and a high-fat and low-fiber

diet for AA, for two weeks, and then swap diets for another two weeks. We consider cluster

the subjects based on the measured microbiota abundance, in terms of counts of operational

taxonomic units (OTUs), which reflect the recurrences of the corresponding OTUs in a

particular ecosystem [Jovel et al., 2016, Kaul et al., 2017]. For more background, refer

to O’Keefe et al. [2015] and Section 4 of Denti et al. [2021]. Hereafter, we use the term

“expression" and “counts" interchangeably in this application.

To apply PAM, or more specifically DPAM (due to the discrete data of OTU counts),

we treat each subject as a group, and counts of different OTUs as observations within a

group. Following the same data-preprocessing steps as in Denti et al. [2021], we obtain 38

subjects (17 AF and 21 AA) with 119 OTUs. Note that all the OTUs are the same, and so a
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cluster here refers to a group of OTU counts, just like in Denti et al. [2021]. When applying

to demonstrate the CAM model, Denti et al. [2021] use the entire dataset with a goal to

generate nested clusters of subjects and OTU counts within subjects. The proposed PAM

cannot cluster subjects and therefore we randomly select four subjects from the dataset for

analysis. In a future work, we will consider extend PAM to allow nested clustering and will

apply the new model to the full dataset.

We randomly select four subjects as four groups, two AAs (individuals 5 and 22) and

two AFs (individuals 13 and 14), from the dataset. We remove the OTUs that had zero

expression in all four individuals from the selected data. In the end, we obtain a dataset

with J = 4 individuals (groups) and nj = 109 OTUs (observations). The histograms of the

microbiome populations of the four selected individuals are shown in Supplement A.14.

Let xij denote the observed OTU count for OTU i from individual j. For inference,

similar to Denti et al. [2021], we incorporate the average OTU frequencies for subject j,

denoted as ηj = 1
n

∑n
i=1 xij , as a scaling factor in the latent variable yij of the DPAM

model in (2.12). This leads to the following distribution for the change of variables:

yij |Z,µ,σ2 ∼ N(ηjµzij , η
2
jσ

2
zij ) ↔

yij
ηj

|Z,µ,σ2 ∼ N(µzij , σ
2
zij ) (2.23)

The prior hyperparameters follow the same settings as in Scenario 1 of the simulation study,

and we present the analysis results in Table 2.3.

PAM reports a total of eight estimated clusters across the four individuals: clusters

1 and 2 are shared by all four individuals (with posterior probabilities of 1.00 and 0.95,

respectively), cluster 7 is shared among individuals 5 (AF), 13 (AA), and 14 (AA) (with

posterior probability of 0.96), and cluster 8 is shared among individuals 5 and 22 (both from

AF, with posterior probability of 0.93). The other clusters are unique to a specific individual

(with posterior probabilities of 0.60, 0.60, 0.42, and 0.51, respectively, for clusters 3 to 6).

Based on the optimal partition of OTUs, we plot the taxa counts (TC) of OTUs grouped
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Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster 8
Mean 0.07(0.01) 0.53(0.04) 1.75(0.20) 1.50(0.26) 2.21(0.27) 3.73(0.36) 9.89(1.21) 74.21(8.99)

Weight

ID 5 0.56 0.26 0.11 < 0.01 < 0.01 < 0.01 0.05 0.02
ID 22 0.84 0.12 < 0.01 < 0.01 < 0.01 0.02 < 0.01 0.02
ID 13 0.77 0.11 < 0.01 < 0.01 0.10 < 0.01 0.02 < 0.01
ID 14 0.74 0.10 < 0.01 0.11 < 0.01 < 0.01 0.05 < 0.01

Unique in

ID 5 0.00 0.00 0.60 0.00 0.00 0.00 0.00 0.06
ID 22 0.00 0.00 0.00 0.00 0.00 0.51 0.00 0.00
ID 13 0.00 0.00 0.00 0.00 0.42 0.00 0.00 0.00
ID 14 0.00 0.00 0.00 0.60 0.00 0.00 0.00 0.00

Table 2.3: Estimated clusters based on Wade and Ghahramani [2018] using posterior samples
from PAM. A total of eight OTU count clusters is estimated. “Mean" and “Weight" are the
posterior mean estimates of the cluster mean and weight. Parantheses are the standard
deviations. An entry in a row corresponding to “Unique in" is the posterior probability that
a cluster (column) is only present in the individual (row) but not in other individuals (rows).

by all eight estimated clusters as well as by both clusters and individuals in Figure A.9 in

Supplement A.14. Note that for easy demonstration of clusters across individuals, we have

manually reordered the clusters in ascending order based on the cluster mean. The boxplots

illustrate the clusters and their distributions across individuals.

We report an interesting finding related to the PAM clustering of OTU counts. Specifi-

cally, the counts of the OTU Prevotella melaninogenica is in cluster 8, which has the highest

expression and is shared (both the cluster and the OTU counts) only by AF individuals 5

and 22. This finding is consistent with previous studies that have shown that the individuals

with a predominance of Prevotella spp. are more likely to consume fiber, which is a typical

component of an African diet [Graf et al., 2015, Preda et al., 2019].

2.7.2 Warts Dataset

In this example, we consider a publicly available dataset reporting treatment of patients with

warts. Two groups of patients are considered, treated with immunotherapy or cryotherapy.

Each treatment group contains medical records for 90 patients, and for each patient, six

baseline characteristics (covariates) are reported, including the patient’s gender, age (Age),

time elapsed before treatment (Time), the number of warts (NW), the type of warts, and the
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Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7

Mean

Age 18.53 31.66 23.68 27.36 19.64 24.51 16.55
Time 6.19 6.71 8.63 6.96 7.38 4.41 3.80
NW 2.44 7.13 8.44 2.75 7.98 7.54 4.28
Area 68.41 40.82 195.16 389.20 312.65 87.78 6.41

Weight Immunotherapy (G1) 0.15 0.68 0.02 0.12 0.03 < 0.01 < 0.01
Cryotherapy (G2) 0.31 0.17 0.06 < 0.01 < 0.01 0.36 0.10

P̂r(π1k > 0, π2k > 0|Data) 1.00 0.81 0.66 0.31 0.32 0.28 0.40
P̂r(π1k > 0, π2k = 0|Data) 0.00 0.19 0.00 0.69 0.68 0.00 0.00
P̂r(π1k = 0, π2k > 0|Data) 0.00 0.00 0.34 0.00 0.00 0.72 0.60

Table 2.4: Estimated clusters based on Wade and Ghahramani [2018] using posterior samples
from PAM. Reported are the cluster means, weights, probabilities of common, P̂r(π1k >
0, π2k > 0|Data), and unique clusters in either the immunotherapy (G1) or the cryotherapy
(G2), P̂r(πjk > 0, πj′k = 0|Data), for the inferred seven clusters. Observed data consist
of 4-dimensional covariate vectors for all the patients. The covarites are, “Age", “Time"
referring to the time elapsed before treatment, “NW" referring to number of warts, and
“Area" referring to the surface area of warts of the patient.

surface area of warts in mm2 (Area). Additionally, patients’ responses to the corresponding

treatments are also recorded.

To better understand potential differences between responders to the two treatments, we

use PAM to cluster the covariate values of the responders. The sets of responders contain 71

patients for the immunotherapy group and 48 for the cryotherapy group. We construct an

observation yij as q = 4 -dimensional vector including four continuous baseline covariates,

Age, Time (time of sickness before treatment) , NW (number of warts) , and Area (surface

area of warts) . We set the hyperparameters of the priors to be the same as in Scenario 2 of

the simulation and apply PAM to the dataset of two groups of warts patients.

Table 2.4 reports inference results. PAM identifies a total of seven clusters, three of

which are shared between the immunotherapy and cryotherapy groups, and the remaining

four unique to a group. The table reveals that, among all responders, individuals with

younger age, a short time elapsed from treatment (less than five months), and small surface

area of warts form unique clusters in the cryotherapy group. On the other hand, those who

were not treated for a longer time and had a large surface area of warts (over 300 mm2)

form distinct clusters in the immunotherapy group. Furthermore, it seems that the number
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of warts does not provide much information in determining a better treatment option for

warts patients.

These findings are consistent with results from previously published studies. For instance,

Khozeimeh et al. [2017b] found that patients younger than 24 years old showed a better

response to cryotherapy, and patients who received cryotherapy within six months had a

very high probability of being cured. This is consistent with the information implied by

clusters 6 and 7, which are unique to the cryotherapy group. Moreover, another study by

Khozeimeh et al. [2017a] developed an expert system with fuzzy rules, and one such rule

for immunotherapy is “If (types of wart is Plantar) and (time elapsed before treatment is

VeryLate) then (response to treatment is Yes)." In Khozeimeh et al. [2017a]’s expert system,

time elapsed before treatment longer than six months is considered “VeryLate". This rule

echoes the common and unique clusters for the immunotherapy group found by PAM. In the

unique clusters 4 and 5, and the common clusters 1 to 3, the time before treatment was 6.96,

7.38, 6.19, 6.71 and 8.63 months, respectively, all larger than six months. Additional results

are illustrated in Supplement A.15, which shows the cluster membership of each patient. The

figure indicates that patients with a large area of warts are unique to the immunotherapy

group, while those with a younger age are mostly from the cryotherapy group.

2.8 Discussion

We have introduced a novel BNP model constructed with a novel technique called Atom

Skipping. A stochastic process that uses atom-skipping on single datasest is ASP, which has

a mean process of FSBP, an extension of DP that has higher expected number of clusters

than DP with the same concentration parameter. Extending ASP to multiple groups forms

the proposed PAM, where the weights of clusters in PAM are allowed to be exactly zero in

some groups, effectively removing these clusters from those groups. Thus, PAM generates

an interpretable clustering structure. Additionally, PAM accommodates count data and
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multivariate observations. Efficient slice samplers are developed for PAM, with substantial

modifications due to atom-skipping. In simulation studies, PAM demonstrated its robustness

across different simulation scenarios. In particular, it performed the best when there are

many unique clusters with little or no common ones among the groups. In the case studies,

PAM also produces sensible results.

There are some limitations to our current work. Firstly, the model is unable to clus-

ter groups (i.e., distributional clusters), unlike NDP and CAM. However, we are currently

working on a separate model that extends PAM to cluster nested data at both group and

observational levels. Secondly, the model has not been applied to real datasets consisting of

different types of covariates, such as binary and multinomial covariates. Finally, longitudinal

data is another interesting direction for extending the model.
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CHAPTER 3

PAM-HC: A BAYESIAN NONPARAMETRIC CONSTRUCTION

OF HYBRID CONTROL FOR RANDOMIZED CLINICAL

TRIALS USING EXTERNAL DATA

3.1 Introduction

Randomized clinical trials (RCTs) are the gold standard to objectively assess the superiority

of a new drug over a control. It is widely acknowledged that RCTs with a 1:1 randomization

ratio yield the highest statistical power. Nevertheless, enrolling patients under such a design

can sometimes be challenging like in rare diseases, pediatric trials, or settings where an r:1

(r >1) randomization ratio is used to enhance patient enrollment. With the availability of

historical trial data or real-world data (RWD) like the electronic health records, statisti-

cal models have been proposed to borrow information in these data to estimate treatment

effects more accurately. For example, when a standard of care has been widely tested or

administered in a patient population, the available response data could be used to augment

the control arm in a clinical trial and form a hybrid control (HC). Due to the augmented

information in the HC, a more precise estimation of the treatment effect could be achieved.

In drug development, information borrowing from external data for an RCT is regulated.

The U.S. FDA recently has released a guidance document on the design and conduct of

external controlled trials for Drug and Biological products [FDA, 2023b]. The document

emphasizes the importance of ensuring that the trial eligibility criteria can be applied to

the external control arm in order to obtain a population comparable to that of the clinical

trial. Thus, it is critical to ensure the similarity of patient baseline characteristics between

the external data and the current RCT. Another issue discussed is the extent to which one

may borrow information [Chen et al., 2020]. Historical trial data and RWD can be larger

than the current RCT data, and one must be cautious not to let the borrowed information
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dominate the results of the current trial. Therefore, oftentimes information from external

data is discounted to avoid overwhelming the statistical inference of the current study.

In the literature, many statistical methods have been proposed to borrow information

from external data for RCTs. Bayesian models like the power prior (PP) [Ibrahim and Chen,

2000], commensurate prior (CP) [Hobbs et al., 2012], robust meta-analytic-predictive prior

(RMAP) [Schmidli et al., 2014], and the latent exchangeability prior (LEAP) [Alt et al., 2023]

all construct hierarchical models for external and current trial data. Specifically, the PP

method assumes that the treatment outcome parameters are the same between the current

trial and the external data. It utilizes a discounting factor to reflect the user’s prior belief

regarding the similarity between the historical data and the current trial, thereby discounting

the likelihood of the historical data. CP uses different parameters for the current trial and

the external data, but assuming the parameters of the trial follow a prior distribution with

a mean equal to the parameters for the external data. RMAP employs a mixture of a

meta-analytic-predictive (MAP) prior, which is an informative prior, and a vague prior

(robust component) to mitigate the potential issue of over-borrowing. However, these three

methods do not consider situations in which only a subset of patients in the external data are

comparable to the current study. Recently, Alt et al. [2023] propose the LEAP prior, which

dynamically borrows information from historical trials assuming a subset of individuals in

the historical data are exchangeable with the current study.

Another class of methods utilizes propensity scores (PS) to identify matched patients

between the external data and the current trial data. For example, Chen et al. [2020]

proposed the propensity-score integrated composite likelihood (PSCL) method to address

the situation where only a subset of patients in the external data are comparable to the

current trial. However, as noted by Chandra et al. [2023], King and Nielsen [2019], and

Zhao [2004], matching patients based on their PS does not necessarily imply matching of

covariates. In addition, PS-based methods are often sensitive to model specification for
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estimating the PS.

A recent study by Chandra et al. [2023] introduces a third class of methods that utilizes

Bayesian nonparametric models (BNP) to identify “common clusters" of patients across

the current trial and the external data. The BNP model has the ability to automatically

cluster patients in the current trial and the external data based on baseline covariates. Their

method, called CA-PPMx, assumes the external data consists of all the subpopulations that

are present in the current trial.

Motivated by CA-PPMx, we propose a BNP approach, called PAM-HC, for constructing

an HC arm for an RCT using external data. Here, PAM refers to a BNP model in Bi and Ji

[2023] that generates overlapping clusters. Different from Chandra et al. [2023], we assume

that the current RCT and external data may share common subpopulations of patients,

while each may consist of unique ones as well. In other words, PAM can identify common

and unique subpopulations across observations arranged in groups. Using PAM, the HC

is constructed by only borrowing information from the common subpopulations between

the external data and the control in the RCT. We employ a power prior to discount the

information borrowing. In addition, the BNP models in the proposed PAM-HC method

generate random clusters characterized by a posterior distribution. Therefore, the entire

statistical inference is model based and variabilities on the clustering and treatment effect

estimates are properly accounted for.

In the subsequent sections, we first review the PAM method in Section 3.2. We provide

a detailed description to the proposed PAM-HC method in Section 3.3. We present the

simulation setup and results in Section 3.4 comparing our method to the PSCL method and

a baseline method that does not involve information borrowing. In Section 3.5, we showcase

an application of PAM-HC to real-life trial data. Finally, we conclude our work in Section

3.6.
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3.2 Review Plaid Atoms Model (PAM)

We assume that there is an ongoing RCT with an r : 1 (r > 1) randomization ratio between

the treatment and control arms. In addition, assume there exists an external dataset com-

prising patients with the same disease that have been treated by the same control in the

current RCT. For example, the control arm in the RCT and external data could be a stan-

dard chemotherapy and the treatment arm in the RCT could be a new immunotherapy. We

denote the treatment arm of the current RCT as group 1 (j = 1), the control arm as group

2 (j = 2), and the external data as group 3 (j = 3). Assume there are nj patients in group

j, for j = 1, 2, and 3. Therefore, N = n1+ n2 is the sample size of the RCT, and n1/n2 ≈ r

due to the r : 1 randomization ratio. We denote yj = {yi,j}
nj
i=1 the patients outcome data

in group j, and xi,j = {xi,j,1, . . . , xi,j,p} a p-dimensional random vector consisting of the

patient i’s baseline covariates in group j.

We assume that the current trial and the external data consist of heterogeneous subpop-

ulations of patients based on their baseline characteristics (covarivates), with patients from

the same subpopulation forming a cluster. For the rest of the discussion, we use the terms

“cluster" and “subpopulation" of patients interchangeable. Lastly, we refer to overlapping

subpopoulations of patients that are present in multiple groups as “common clusters". Con-

versely, we use the term “unique cluster" to describe the subpopulation of patients that is

only present in one but not other groups.

To find patients clusters in the current RCT and the external data, we adopt PAM in Bi

and Ji [2023]. An example of the clustering structures identified by PAM is shown in Figure

3.1.
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Figure 3.1: An illustration of clustering pattern under PAM. Rows represent groups and
columns are patients within each group. The three groups correspond to the current RCT’s
treatment and control arms, and the external data. There are four homogeneous subpopou-
lations of patients (clusters) represented by colored smiley faces in blue, green, purple, and
yellow. The boxes represent the common or unique clusters. For example, the green cluster
is common and shared across all three groups, while purple is unique to group 3.

In this illustration, each color represents a cluster. The blue and green clusters are common

and the purple cluster is unique to group 3. If one knows the clustering pattern in Figure

3.1, one would only borrow information from the green and blue clusters in the external data

because they are shared with the trial data. However, one should not borrow information

from the purple cluster since it is unique to the external data.

A brief review of the statistical model is provided next. For more detail refer to Bi

and Ji [2023]. Denote Zi,j as the cluster membership indicator for patient i in group j,

where {Zi,j = k} indicates that patient i in group j is assigned to cluster k. The Bayesian
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nonparametrics model in PAM is given by a hierarchical structure as follows:

xi,j |Zi,j , {µk,Σk}∞k=1 ∼ MVN
(
µZi,j

,ΣZi,j

)
Zi,j |{πj,k}∞k=1 ∼

∑∞
k=1 πj,kδk(Zi,j), πj,k = π′j,k

∏k−1
l=1 (1− π′j,l)

f(π′j,k|β, α0, pj) = pj × fBeta

(
α0βk, α0

(
1−

∑k
l=1 βl

))
+ (1− pj)× I(π′j,k = 0)︸ ︷︷ ︸

(∗)

pj |a, b ∼ Beta(a, b), β|γ ∼ GEM(γ),

(µk,Σk)|µ0, λ,Ψ, ν ∼ NIW (µ0, λ,Ψ, ν),

(3.1)

where MVN stands for the multivariate normal distribution, δA(B) is the indicator function

(δA(B) = 1 if B ∈ A or B = A, and δA(B) = 0 otherwise), fBeta(a, b) is the density function

of the Beta(a,b) distribution with mean a/a+b, GEM(γ) represents the Griffths, Engen and

McCloskey distribution [Pitman, 2002], distribution NIW stands for to the normal-inverse-

Wishart distribution, parameter πj,k represents the cluster weights of cluster k in group j,

and parameters (µk,Σk) denote (mean, covaraince matrix) of the kth cluster. Additional

priors can be assigned to hyperparameters γ and α0. Model (3.1) in PAM largely resembles

the well known hierarchical Dirichlet Process (HDP) model [Teh et al., 2004], which induces

common clusters across groups. PAM adds a unique model component (∗), which allows

some common cluster to have zero weight in group j, thereby producing unique clusters.

Through (3.1), PAM generates a joint posterior distribution of all the parameters includ-

ing the cluster membership Z = {Zi,j}∀i,j . Through Z we can easily find the common and

unique clusters. Since a posterior distribution of Z is generated, the number of clusters and

clustering memberships themselves are random. In PAM-HC, we utilize the features of PAM

that identifies common and unique clusters, upon which we build models and inference for

constructing a hybrid control arm and estimating treatment effects.
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3.3 Methodology

3.3.1 Clustering of patients

In PAM, the cluster membership matrix Z = {Zi,j}∀i,j indicates which clusters are common

and which are unique. Since patients in the same cluster are believed to be “similar" in

their covariates, they are expected to react similarly to the control treatment, under the

assumption that the covariates have captured all the factors that are related to treatment

response. Of course, when unmeasured confounders are present, the proposed method will

be inadequate. Such investigation is beyond the scope of this paper and left for future work.

Let Aj,k = {i : Zi,j = k, i = 1, . . . , nj} represent the set of patients in the k-th cluster

in group j. Also denote the set of cluster labels in each group j as Oj = {k : Aj,k ̸= ∅}.

We define the set of common cluster labels between a pair of groups as Cj,j′ = {k : k ∈

Oj ∩ Oj′ for j ̸= j′, j, j′ ∈ {1, 2, 3}}. PAM clusters the treatment arm, control arm, as

well as the external data simultaneously, and our focus is on set C2,3, which consists of the

common cluster labels between the current trial control arm and the external data. The

proposed PAM-HC method augments A2,k by borrowing information from patients in A3,k

for cluster(s) k ∈ C2,3. Figure 3.2 provides a schematic overview of PAM-HC.
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Figure 3.2: A stylized illustration of PAM-HC. Numbers in the boxes denote cluster labels.
Boxes in red color represent patients in the RCT and those in blue represent patients in the
external data. Cluster 4 is unique to the external data and therefore is not used for forming
the HC. Cluster 3 is unique to the RCT and therefore is not augmented.

To further illustrate our idea, Consider a hypothetical cluster membership Z matrix

Z =


1 1 2 2 3 3

1 2 3

1 1 2 2 4 4

 ,

where the rows are groups and columns are patients. Based on Z, there are four clusters,

three (k = 1, 2, 3) for groups 1 and 2, and three (k = 1, 2, 4) for group 3. Clusters 1

and 2 are shared across groups 1 and 2, while cluster 4 is unique for group 3. Also, we

have for group 1: A1,1 = {1, 2}, A1,2 = {3, 4}, A1,3 = {5, 6}, and O1 = {1, 2, 3}; for

group 2: A2,1 = {1}, A2,2 = {2}, A2,3 = {3}, and O2 = {1, 2, 3}; and for group 3:

A3,1 = {1, 2}, A3,2 = {3, 4}, A3,4 = {5, 6}, and O3 = {1, 2, 4}. The set of common clusters
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are C1,2 = {1, 2, 3}, C1,3 = {1, 2}, and C2,3 = {1, 2} between the treatment and control

arms, between the treatment arm and the external data, and between the control arm and

the external data, respectively. We focus on the set C2,3 = {1, 2}, and for clusters k ∈ C2,3,

i.e., k = 1 and k = 2, construct an HC by borrowing information from patients in the

external data belonging to clusters 1 and 2, but not cluster 4. For illustrative purposes, the

stylized example assumes all the clustering memberships are fixed. In actual modeling, PAM-

HC generates random clustering memberships which allows for assessment of variabilities in

subsequent inference of treatment effects. This will be clear in Section 3.3.4 later.

3.3.2 Information borrowing across common clusters

We use the power prior to borrow information across the common clusters between the control

and external data in order to form an HC. Similar to Chandra et al. [2023], our approach

involves performing a regression analysis of the outcome variables yi,j on the corresponding

covariates xi,j through the clusters Aj,k, j = 1, 2, 3. Denote θ1,k and θ2,k the cluster-specific

response parameter in the treatment and control arms, respectively, for cluster k. We use

a simple hierarchical model for θ1,k for k ∈ O1, the clusters in the treatment group. Recall

y1 = {yi,1}
n1
i=1 are the observed patient responses in group 1, the treatment group. We

assume

yi,1|Zi,1 = k, θ1,k ∼ F (θ1,k),

θ1,k ∼ π0(θ1,k),

where F (·) denotes the likelihood of y. For continuous outcome, F (θ) = N(µ, σ2), and

θ1,k = (µ1,k, σ
2
1,k), and for binary outcome, F (θ) = Bern(q), with θ1,k = q1,k. In addition,

π0(θ1,k) is a vague prior for θ1,k. For θ2,k, the response parameter for group 2, the control

arm, we use

yi,2|Zi,2 = k, θ2,k ∼ F (θ2,k),
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and the power prior for θ2,k. Recall y2 = {yi,2}
n2
i=1 and y3 = {yi,3}

n3
i=1 are the observed

responses in groups 2 (the current control) and 3 (external data), respectively. We assume

the prior of θ2,k is given by

p(θ2,k|y3, A3,k, αk) ∝

 ∏
i∈A3,k

f(yi,3|θ2,k)

αk

π0(θ2,k)

where f(·|θ) is the p.d.f of F (θ), π0(θ2,k) is a vague prior for θ2,k, and αk ∈ [0, 1] is a discount

factor (or power parameter) for cluster k. We estimate αk as a deterministic function of

cluster weights πj,k and cluster membership Z. Specifically, when k ∈ O3 but k /∈ C2,3, we

set αk = 0. In words, for unique clusters in the external data, there is no borrowing and the

power parameter αk = 0. Otherwise, the cluster is shared between the external data and

control, and the discount factor αk is given by Chen et al. [2020]:

αk = min
(
π∗2,k · I, n3,k

)
/n3,k, (3.2)

where

I =
r − 1

r + 1
N,

is the total number of patients to be borrowed from external data so that the information in

the HC is of the same amount as the treatment arm. The value of I is easily derived based on

the r : 1 randomization ratio of the RCT and the desired 1:1 matching between the treatment

and HC. In addition, n3,k = |A3,k|, where |.| denotes the cardinality of the set, and π∗2,k is

the proportion with which we want to borrow from the I patients for cluster k. For example,

if N = 300 and r = 2, then I = 100 which means one would borrow information from up to

100 patients from the external data to form an HC so that the amount of information in the

HC matches that of information in the treatment arm. Within each cluster k, we use the

following steps to compute π∗2,k. Recall the current trial is randomized with a ratio of r : 1,
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r > 1, and πj,k is the probability (or weights) of cluster k in group j (PAM model (3.1)).

We want to augment the control to form an HC in which the information is worth the same

number of patients as the treatment arm in each cluster k. Mathematically, this means

N · π1,k ·
r

r + 1
= N · π2,k ·

1

r + 1
+ I · π∗2,k, where I =

r − 1

r + 1
N.

Solving for π∗2,k, we have

π∗2,k =
1

r − 1
(rπ1,k − π2,k). (3.3)

Equation (3.3) leads to a solution for (3.2), and hence a value for αk. In practice, to prevent

negative values of π∗2,k (when the control arm already has a larger number of patients in

cluster k than the treatment arm), we use π∗2,k+, i.e., π∗2,k+ = π∗2,k if π∗2,k > 0, and π∗2,k+ = 0

otherwise.

The construction of αk in (3.2) and π∗2,k in (3.3) adaptively borrows more or less informa-

tion for cluster k based on the imbalance in the patient assignment between the treatment

and control in cluster k. This is perhaps more clear in (3.3). Due to the r : 1 randomization,

the term (rπ1,k − π2,k) in (3.3) reflects the difference in the expected sample sizes between

treatment and control for cluster k. When the term has a larger value, there is a larger

difference (imbalance) of information between the two arms, which leads to a large π∗2,k, and

therefore larger αk. In other words, when the treatment arm has more patients than the

control arm, PAM-HC borrows more to augment the control.

3.3.3 Estimate treatment effects

Conditional on Z, the cluster membership, we assume treatment effects are cluster specific.

Due to randomization, we assume C1,2 = O1 = O2, i.e., the treatment and control arms

share all the clusters and there are no unique clusters in each of the two arms. Under this
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setting, denote ∆k the cluster-specific treatment effect, for k ∈ C1,2, given by

∆k = θ1,k − θ2,k.

In rare cases where there are unique clusters in the treatment or control arms, we use an

ad-hoc rule to merge the unique clusters to a common cluster in C1,2 that has the shortest

distance in terms of L2-norm between the cluster means. The overall treatment effect can

be computed as a weighted average of the cluster-specific treatment effects ∆k. Conditional

on Z, we let

∆(Z) =
∑
k∈O1

π1,k∆k =
∑
k∈O1

π1,k(θ1,k − θ2,k) (3.4)

be the conditional overall treatment effects. We could either use {π1,k} or {π2,k} as the

weights, which are in principle close to each other due to randomization. However, we decide

to use {π1,k} since the treatment arm (group j = 1) is expected to have more patients and

therefore lead to more stable estimates of clustering weights. The (unconditional) overall

treatment effect is given by ∆ = E[∆(Z)].

3.3.4 Inference

Bi and Ji [2023] develop a slice sampler to generate posterior samples via Markov chain

Monte Carlo (MCMC) simulations. We use m = 1, . . . ,M to index the M MCMC samples

and use a generic notation X̂(m) to denote the m-th sample for random variable X. Also, for

simplicity, let D = (y1,x1,y2,x2,y3,x3) denote the entire data, including the data from

the RCT and external source. Note that the posterior mean of overall treatment effect can
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be expressed as an integration of (3.4) over the posterior distributions of θ’s, π, and Z, i.e.,

E[∆|D] ≡ E[E[∆(Z)|Z,D]]

=
∫ {∫ ∑

k∈O1
π1,k(θ1,k − θ2,k)p(θ1,k|D,Z)p(θ2,k|D,Z)p(π1|D)dθdπ1

}
p(Z|D)dZ

(3.5)

where O1, π1,k and k are all functions of Z, θ = {(θ1,k, θ2,k) : k ∈ O1}, and π1 = {π1,k :

k ∈ O1}. Using the MCMC samples, the posterior mean (3.5) is estimated as follows. For

the m-th sample, let Ô
(m)
j be the cluster labels for group j. Let cluster k(m) ∈ Ô

(m)
1 , then

we compute the m-th posterior sample of the cluster-specific treatment effect as

∆̂
(m)

k(m) = θ̂
(m)

1,k(m) − θ̂
(m)

2,k(m) .

Finally, the overall treatment effect ∆̂(m) can be obtained with ∆̂
(m)

k(m) and the weights π̂(m)
1

using equation (3.4):

∆̂(m) =
∑

k(m)∈Ô(m)
1

π̂
(m)

1,k(m)∆̂
(m)

k(m) ,

and the posterior mean treatment effect is estimated as
∑M

m=1 ∆̂
(m)/M. Also, given the

posterior sample {∆̂(m), m = 1, . . . ,M}, we can easily compute various quantities of interest,

such as the standard deviation of the overall treatment effect. Additionally, it allows us to

determine the posterior probability of a significant treatment effect, denoted as

Pr(∆ > ϵ|Data),

for some minimal clinically meaningful treatment effect ϵ.
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3.4 Simulation Studies

3.4.1 Simulation Setup

We generate covariates values xi,1 and xi,2 for the current RCT by simulating from a mixture

of three multivariate normal distributions. Specifically,

xi,j ∼ 0.3×MVN(23, I) + 0.4×MVN(03, I) + 0.3×MVN(−23, I), j = 1, 2,

where notation a3 = [a, a, a]T and I is the 3 by 3 identity matrix. We generate the covariates

of the external data, denoted as xi,3, under three different scenarios:

• Scenario 1 (Superset): we introduce an additional cluster with a cluster mean of −43

and a covariance matrix of I. The weights assigned to the clusters are also different

from those used in the RCT:

xi,3 ∼ 0.2×MVN(23, I)+0.3×MVN(03, I)+0.3×MVN(−23, I)+0.2×MVN(−43, I)︸ ︷︷ ︸
unique

.

• Scenario 2 (Overlap): the external data shares some clusters with the current RCT

while also having a unique cluster. Specifically, we remove the cluster with mean

−23 from the RCT, and similar to Scenario 1, we add a cluster with mean −43 and

covariance I to the external data:

xi,3 ∼ 0.5×MVN(23, I)+0.3×MVN(03, I)+(((((((((((
0.3×MVN(−23, I)+0.2×MVN(−43, I)︸ ︷︷ ︸

unique

.

• Scenario 3 (Subset): In this scenario, the external data is a subset of the current RCT.

Similar to Scenario 2, we remove the cluster with mean −23 from the RCT, but do
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not add any clusters to the external data:

xi,3 ∼ 0.5×MVN(23, I) + 0.5×MVN(03, I) +(((((((((((
0.3×MVN(−23, I).

For outcomes y, we assume that they are associated with the baseline covariates. We consider

both continuous and binary outcomes.

For continuous outcomes, we simulate the outcome yi,j using a linear regression given

by:

yi,j ∼ β0,j + βTxi,j + ϵi,j , ϵi,j ∼ N(0, 1), j = 1, 2, 3.

For binary outcomes, we generate P (yi,j = 1|xi,j) using a logistic regression given by:

logit P (yi,j = 1|xi,j) = β0,j + βTxi,j ,

and then simulate yi,j from the Bernoulli distribution with the success probability P (yi,j =

1|xi,j). We fix β0,2 = β0,3 = 0, and set β = 13. We consider four cases β0,1 = 0, 1, 2, or 3,

which is the intercept (also treatment effect) in the outcome regression models in the treat-

ment arm. Furthermore, we assume that the current RCT uses a randomization ratio of

r = 2 : 1. We simulate the RCT data with two different sample sizes, N = {300, 450}. For

the case where N = 300, we place 200 patients in the treatment arm and 100 in the control.

We generate a total of 300 patients for the external data. For the case where N = 450, we

place 300, 150, and 450 patients in the treatment arm, control arm, and the external data,

respectively.

The parameter of interest is the treatment effect ∆, which represents the difference in

mean responses between the treatment and control arms. Consequently to β0,1 = 0, 1, 2, and 3,

the true values of ∆ are 0, 1, 2, and 3, respectively, for the continuous outcome, and 0.00%,

9.42%, 15.76%, and 19.52% , respectively, for the binary outcome.
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We compare the proposed PAM-HC method with two other methods. The first method,

referred to as the baseline method, estimates the treatment effect using only the RCT data

and does not borrow information from the external data. Inference of treatment effect

is based on the maximum likelihood estimation (MLE). The second method is the PSCL

method proposed by Chen et al. [2020]. We implement the PSCL method using three

different strategies, corresponding to the ways propensity scores are estimated. Namely, they

are PSCL 1, PSCL 2, and PSCL 3, referring to the PSCL method with propensity scores

estimated using a first-order logistic regression, random forest, and a logistic regression with

model selection, respectively. All three versions of PSCL are implemented in the R package

“PSRWE" [Wang and Chen, 2022]. Finally, for each scenario, we simulate 100 datasets.

We use the following priors and hyperparameters for the proposed PAM-HC method. For

PAM model (3.1), we set a = b = 0.5, and utilize a Gamma(3, 3) prior for the hyperparam-

eters γ and α0. Additionally, we set µ0 = 03, Ψ = I, λ = 0.1, and ν = 3. For the power

priors in PAM-HC, we adopt a normal distribution N(µ, σ2) for the continuous outcome and

a Bernoulli distribution Bern(p) for the binary outcome. Conjugate priors are chosen for

the parameters in the sampling model. Specifically, we use a normal-inverse-gamma prior

NIG(0, 0.1, 3, 3) for (µ, σ2) and Beta(0.5, 0.5) for p. These are standard priors that are not

informative and routinely applied in the literature. Lastly, we run an MCMC simulation of

10,000 iterations, with burn-in period of 5,000 iterations.

We summarize the posterior cluster membership using an optimal clustering method

[Meilă, 2007] to obtain a point estimate. To assess the clustering accuracy in comparison to

the ground truth cluster membership of each patient, we use the adjusted Rand index (ARI)

[Hubert and Arabie, 1985] and the normalized Frobenius distance (NFD) [Horn and Johnson,

1990]. More detail can be found in Bi and Ji [2023]. Lastly, we assess the performance of

PAM-HC in terms of the estimated overall treatment effect, including the mean, standard

deviation, bias, and mean squared error (MSE) across all simulated datasets.
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3.4.2 Simulation results

We assess similarity in the distributions of covariates between the treatment and HC. We first

check that under PAM-HC, if the distribution of covariates of the treatment arm is similar

to the distribution of the hybrid control arm. Specifically, within each estimated cluster, the

distributions of covariates should be similar between the two arms. We randomly selected one

dataset in each scenario with N = 300. We plot the density of the covariates by estimated

clusters in Figure 3.3 below for Scenario 1, and in Figures A.2.1 and A.2.2 in Appendix for

scenarios two and three, respectively.

Figure 3.3 shows that the distribution of each covaraite are indeed similar between the

treatment arm, control arm, and the external data, for each inferred cluster k. Furthermore,

the estimated cluster centers are shown in Table 3.1 below. In addition, the cluster-specific

treatment effects for the three selected datasets are reported in Tables A.2.1 and A.2.2 in

Appendix. In the selected examples, we see that PAM-HC is able to correctly identify the

number of clusters in these selected examples. The estimated cluster centers are also close to

the true values in their corresponding scenarios. In addition, Tables A.2.1 and A.2.2 suggest

that treatment effects for clusters are well estimated.
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Figure 3.3: The covariate density plots of one simulated data in Scenario 1. The rows
represent three clusters estimated by PAM-HC.
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Sc Cluster
Cluster mean

Groups (j)
x1 x2 x3

Sc 1

1 0.080.91 (0) 0.141.03 (0) 0.010.96 (0) 1,2,3 (1,2,3)

2 −1.890.95 (-2) −1.720.88 (-2) −2.030.90 (-2) 1,2,3 (1,2,3)

3 1.981.05 (2) 1.990.93 (2) 1.911.02 (2) 1,2,3 (1,2,3)

4 −4.130.96 (-4) −4.030.90 (-4) −4.150.96 (-4) 3 (3)

Sc 2

1 0.010.90 (0) 0.191.07 (0) −0.010.95 (0) 1,2,3 (1,2,3)

2 −1.880.97 (-2) −1.951.14 (-2) −1.960.81 (-2) 1,2 (1,2)

3 2.020.98 (2) 2.051.11 (2) 1.940.98 (2) 1,2,3 (1,2,3)

4 −3.851.05 (-4) −4.080.90 (-4) −3.880.85 (-4) 3 (3)

Sc 3

1 −0.090.92 (0) −0.660.75 (0) −0.380.93 (0) 1,2,3 (1,2,3)

2 −1.950.90 (-2) −2.001.12 (-2) −1.990.81 (-2) 1,2 (1,2)

3 1.291.38 (2) 1.611.10 (2) 1.331.28 (2) 1,2,3 (1,2,3)

Table 3.1: Cluster mean estimated by PAM-HC on selected examples from each of the
three scenarios. The entries for columns x1, x2, and x3 are posterior meanSD (truth), and
estimated clusters (truth) for the last column.

To further assess the similarity of covariate distributions between treatment and the

hybrid control arms, we follow the procedure outlined in Chandra et al. [2023] and apply the

Bayesian Additive Regression Tree (BART) model [Chipman et al., 2010]. For each estimated

cluster k, we aggregate data from all three groups and create a dummy variable Ti indicating

whether patient i belongs to the treatment arm (Ti = 1) or the hybrid control arm (Ti = 0).

We then carry out a 10-fold cross-validation, with 9-folds used as the training data and 1-fold

as the testing data. We apply BART to predict whether an observation in the testing data

belongs to the treatment arm or not. The results are reported as the Area Under the ROC

Curve (AUC). A value around 0.5 indicates no difference between the patients in the current

treatment arm and the patients in the hybrid control. We randomly select 10 datasets in
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each scenario, and the corresponding results show that across all scenarios, the range of mean

AUC values is between 0.525 and 0.544, all around 0.5. This indicates that the covariate

distributions for the treatment and hybrid control arms are similar and indistinguishable by

BART.

Next, we report the clustering results of PAM-HC for all simulated datasets. The true

number of clusters is four in Scenario 1 and Scenario 2, and three in Scenario 3. For ARI and

NFD, the closer the value of ARI is to 1 or the value of NFD to 0, the better the clustering

result of the method. Table A.2.3 in Appendix shows the estimated total number of clusters

across all groups, as well as the ARI and the NFD of the estimated clusters compared to the

true cluster membership. On average, the number of estimated cluster is accurate, close to

its truth in all cases. The ARI and NFD values are satisfactory, improving with increasing

sample size.

Lastly, we present the estimated treatment effect, its standard deviation, and the mean

squared error (MSE). We compare these results with the baseline method and PSCL 1-3.

Table A.2.4 in Appendix provides a summary of the results. In the case of a smaller sample

size (N = 300), PAM-HC shows the lowest MSE in Scenario 2 and lowest bias in Scenario

3, for all four values of ∆. The performance of the PAM-HC design improves further with a

larger sample size (N = 450). PAM-HC is also comparable to the PSCL methods in MSE

and much smaller than the baseline method in Scenarios 1 and 2. We also evaluate the

performance of PAM-HC with binary outcomes, and the results are shown in Table A.2.5 in

Appendix. Similar to the continuous outcome, PAM-HC exhibits desirable performance.

Scenario 2 is an interesting case in which some but not all clusters are shared across

groups. This is where PAM-HC excels in its performance. Since PAM-HC is designed to

capture the pattern of overlapping clusters, it leads to more precise information borrowing

and better performance. To see this, we assess the “inclusion probability", defined as the

probability of each patients in the external data being borrowed for HC. Mathematically, this
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is equal to Pr(Zi,3 /∈ C2,3 | D). In words, if a patient i in the external data group (j = 3)

is not in a common cluster with the control, the patient is not “borrowed" for forming the

HC. In Scenario 2, for patients in the unique cluster 4 in external data, the mean and SD

inclusion probability across the patients are 3.47% (SD = 0.17) and 2.51% (SD = 0.15) for

sample sizes N = 300 and 450, respectively. For patients in other common clusters in the

external data, the inclusion probability are all greater than 91%. These results demonstrate

that PAM-HC is able to adaptively borrow based on the overlapping status of each cluster.

3.5 Application

3.5.1 Background and Dataset

We consider clinical trials for patients with Atopic Dermatitis (AD). AD is a significant

contributor to skin-related disability globally, characterized by recurrent eczematous lesions

and intense itch [Simpson et al., 2022]. In this application, we analyze data from the control

arms (placebo) of three historical trials (with NCT numbers NCT03569293, NCT03607422

and NCT03568318) for AD. The treatment arms and their data are not available for analysis

due to confidentiality. Specifically, the three control arms of the three historical trials share

similar inclusion and exclusion criteria, and the patients in the three control arms all receive

a placebo. The control arms consist of 263, 265, and 306 patients.

Each trial reports several baseline characteristics of the patients, including their gender,

age, race, ethnicity, body mass index (BMI), baseline body surface area affected (BSA), and

baseline Eczema Area and Severity Index (EASI). Additionally, the trials record the EASI

score at the 16-week mark to assess the progression of the patients’ disease. The primary

outcome is the percent change in the EASI score from baseline to 16 weeks, denoted as:

EASIpc =
Baseline EASI − 16-week EASI

Baseline EASI
× 100%
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The binary response to the treatment is defined as EASIpc ≥ 75%. In other words, the

binary outcome, denoted as y, is defined as

y =

1, if EASIpc ≥ 75%;

0 otherwise.

To illustrate PAM-HC, we pretend the control arm of trial one is the treatment arm of a

hypothetical RCT and randomly select 131 patients from the control arm of trial two to

serve as the RCT control. Therefore, we construct a hypothetical RCT of 394 patients with

a randomization ratio of 2 : 1. We examine the distributions of the covaraites between the

hypothetical treatment and control arms and find no major differences (results not shown).

Lastly, we use the 306 patients of trial three as the external data with which we build a

hybrid control for the RCT. The observed response rates are of 25%, 21%, and 34%, for

trials one, two, and three, respectively. And the overall mean responses is roughly 28%

across all three trials. We use these data for PAM-HC in a null scenario.

Alternatively, to construct a trial with an actual treatment effect (the alternative case),

we follow the findings of Simpson et al. [2022] that reports a response rate of 80% under

the treatment arm. We spike in response data in trial one and use it as the treatment arm

in the hypothetical RCT. Specifically, we generate a treatment arm (consisting of the 263

patients from trial one) based on the following procedure. To make sure that the outcome is

related to the covariates, we first fit a logistic regression model with the original outcome of

trial one (yi,1) as the dependent variable and the four covariates (xi,1) as the independent

variables. We then fixed the estimated regression coefficients β̂ and conducted a grid search

to find a value of β̃0,1 = 2.33 that satisfied the condition

ỹi,1 ∼ Bern(pi), logit pi = β̂Txi,1 + β̃0,1,
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ỹ1 = {ỹi,1}263i=1, and Pr(ỹ1 = 1) ≈ 80%. The true treatment effect is roughly 80%− 28% ≈

52% after spike-in. These data form the alternative scenario.

3.5.2 Analysis Results

The posterior mean number of clusters by PAM-HC is 4.15 (SD = 0.36), and PAM-HC

generates a point-estimate of cluster structure that consists of four common clusters that

are shared across all three arms without a unique cluster. Table 3.2 below summarizes the

cluster means as well as the cluster-specific treatment effects of PAM-HC for the null and

alternative scenarios.

Cluster k
Weights Cluster mean Cluster-specific treatment effect

π1,k π2,k π3,k Age Baseline EASI BSA BMI Null Alternative

Cluster 1 0.14 0.18 0.16 19.860.70 18.550.46 24.561.07 22.780.50 0.0770.113 0.6590.102

Cluster 2 0.20 0.18 0.23 37.791.37 39.041.53 66.302.52 29.110.79 −0.0310.074 0.5610.076

Cluster 3 0.42 0.40 0.32 41.261.54 21.680.40 31.791.26 27.300.74 −0.0810.068 0.5000.065

Cluster 4 0.24 0.24 0.29 21.560.88 33.821.87 57.062.85 22.120.40 −0.0800.091 0.5190.091

Table 3.2: Estimated cluster mean and cluster-specific treatment effect using the data of the
AD trial. The entries are posterior meanSD.

We report the estimated treatment effects using the PAM-HC method as well as the

baseline and PSCL 1-3 methods. The results are shown in Table 3.3. We observe that

all methods report small treatment effects that are not statistically significant under the

null case. However, when borrowing information from external data, the PAM-HC and

PSCL methods report negative treatment effects as opposed to a positive treatment effect

reported by the baseline method which does not borrow information from external data.

This is expected since the response rate of the external data is 34%, higher than those of the

hypothetical treatment (25%) and control (21%) arms. For the alternative case, all methods

find non-zero treatment effects, although PAM-HC and the PSCL methods report a lower

treatment effect compared to the baseline. Again, this is expected since when borrowing
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from the external data with 34% response, the control response rate is expected to increase

from 21% in the hybrid control. Lastly, the proposed PAM-HC method reports an accurate

estimation of the treatment effect in the alternative case, which is around the ground true

of 52%.

Method ∆SD(∆) Significance

Null Case

Baseline 0.0260.044 P-value: 0.281

PSCL1 −0.0450.149 P-value: 0.618

PSCL2 −0.0340.149 P-value: 0.590

PSCL3 −0.0410.315 P-value: 0.551

PAM-HC −0.0490.037 Pr(∆ > 0|data) = 0.09

Alternative

Case

Baseline 0.6270.042 P-value: 0.000

PSCL1 0.5960.149 P-value: 8.4e-6

PSCL2 0.6060.139 P-value: 6.5e-6

PSCL3 0.5980.140 P-value: 1.0e-5

PAM-HC 0.5390.036 Pr(∆ > 0|data) = 1.00

Table 3.3: Estimated treatment effects for the AD trial, using the proposed PAM-HC method,
the baseline method, and three versions of PSCL method.

3.6 Discussion

In this study, we introduce the PAM-HC method to augment the control arm of an RCT

using external data and improve the estimation of treatment effects. A key innovation is

to identify common subpopulations of patients between the RCT and the external data and

allow information to be borrowed only across these common subpopulations. We find that

PAM-HC performs well when compared to existing methods in the simulation and case study,

especially when not all patient subpopulations are shared between RCT and external data.
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Thanks to the model-based inference on all the unknown parameters using BNP models,

PAM-HC is powerful in reporting posterior distributions of cluster-specific treatment effects,

overall treatment effects, and the random clusters themselves.

However, it is important to acknowledge the limitations of the current method. Firstly,

the assumption that covariates are continuous variables restricts the applicability of PAM to

handle binary and categorical variables. Another limitation lies in the underlying assumption

that the covariates used for clustering and inference includes all the relevant confounders.

Future work is ongoing to address these issues.

64



CHAPTER 4

A BAYESIAN ESTIMATOR OF SAMPLE SIZE

4.1 Introduction

4.1.1 Motivation

In novel drug development, the clinical objective is to establish the drug’s effectiveness and

safety. Randomized clinical trials (RCTs) are the gold standard to achieve the objective.

As it is usually impractical to include all patients from a disease population, RCTs take a

random sample of certain size to address the clinical question through statistical inference.

Due to the law of large numbers, the larger the sample size, the more precise the estimated

treatment effect is but the more costly the trial is as well. Therefore, in practice a sample

size estimation (SSE) approach is applied to compute an appropriate sample size for a trial

to balance the tradeoff between precision in statistical inference and its cost.

We consider a Bayesian framework for SSE. The research is motivated by the recent

change in early-phase oncology drug development that recommends randomized comparison

of multiple doses. In the past two decades, oncology drug development has benefited from bi-

ological and genomics breakthroughs and novel cancer drugs are no longer based on cytotoxic

one-size-fits-all mechanism like chemicals or radiations. Instead, targeted, immune, and gene

and cell therapies combat tumor cells by precisely altering oncogenic cellular or molecular

pathways. Consequently, the traditional monotonic dose-response relationship is no longer

valid for many novel cancer drugs. Instead, efficacy often plateaus or even decreases after

dose rises above certain level. To this end, US FDA launched Project Optimus [FDA, 2023a,

Shah et al., 2021, Blumenthal et al., 2021] aiming to transform the early-phase oncology drug

development. The main objective of the project is to identify an optimal dose, potentially

lower than the maximum tolerated dose (MTD) but with at least comparable anti-tumor

effect. The new dose optimization paradigm involves a randomized trial component com-
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paring two or more doses following an initial dose escalation. While randomized trial design

and SSE are routinely conducted in drug clinical trials, they are new in dose-optimization

trials, usually coupled with limited resources. Traditional sample size estimation (SSE) is

based on Frequentist Type I/II error rates, which is rarely the main objective in early-phase

of drug development. Instead, investigators are more concerned about the accuracy in the

trial decision making, such as selecting the right dose to start confirmatory studies which

may be very costly. Current practice for SSE in dose optimization trials is often based on

ad-hoc choices, such as using a small sample size of 20 patients per dose. This leads to a

question of how much is expected to learn from the 20 patients, or whatever the number

may be. Moreover, clinical trials that use human subjects for clinical research should always

provide a reasonable justification for the number of subjects to be enrolled. We attempt to

fill the gap by considering a Bayesian approach for sample size estimation.

4.1.2 Review of SSE Methods

In the literature, most SSE methods [Adcock, 1997, Wittes, 2002, Desu, 2012] are based on

Frequentist hypothesis testing. A comprehensive review can be found in Wang and Ji [2020].

Standard SSE methods determine the sample size by controlling the type I error rate α to

achieve a desirable power (1− β), assuming the true population parameters are known. For

example, a sample size statement for a two-arm RCT based on binary outcome is as follows:

Statement 1: At type I error rate of α, with a clinically minimum effect size θ∗, S

subjects are needed to achieve (1−β) power when the response rates for the treatment

and control arms are θ1 and θ0.

In addition, sample size may be determined based on hybrid Frequentist-Bayesian inference

as in Ciarleglio and Arendt [2017], Berry et al. [2010]. These methods use Bayesian models

but calibrate sample size based on type I error rate and power via simulation. In contrast,

some methods use Bayesian properties for sample size estimation such as the length and
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coverage of posterior credible intervals [Pham-Gia et al., 1993, Joseph and Bélisle, 1997,

M’Lan et al., 2008]. Another type of Bayesian SSE methods determines sample size through

Bayes factor with sampling and fitting priors [Lin et al., 2022], or loss functions like k ·

False Positive Rate + False Negative Rate [Müller et al., 2004a].

Several works in the literature attempt to bridge the SSE philosophies between Frequen-

tist and Bayesian methods. Notable contributions include Kunzmann et al. [2021], Inoue

et al. [2005], and Lee and Zelen [2000]. In particular, Lee and Zelen [2000] propose to link

posterior estimates with Type I/II error rates, and estimate sample size by providing poste-

rior probabilities rather than the Frequentist error rates. However, the sample size calcula-

tion still follows standard SSE approach. Notably the authors advocate defining “statistical

significance" as the trial outcome having a large posterior probability of being correct.

4.1.3 Main idea

To this end, we propose a new Bayesian estimator of sample size (BESS) based on a general

hierarchical modeling framework and posterior inference. Let y denote the observed data

and θ the unknown parameters as generic notation. We assume a Bayesian hierarchical

model is to be used for data analysis. Our main idea is originated from noticing a simple

trend between the sample size and observed effect size from data. Suppose in a two-arm

RCT with sample size n per arm and a binary outcome, we are interested in testing if the

effect size (difference in response rates), defined as θ = (θ1 − θ0) between the treatment (1)

and control (0) is greater than a clinically minimum effect size θ∗. This can be formulated

as testing the null hypothesis H0 : θ ≤ θ∗ versus the alternative H1 : θ > θ∗. Suppose the

observed response rates are ȳ1 and ȳ0 for the treatment and control arms, respectively. A

Frequentist z-test is used to test whether θ is greater than the minimum effect size θ∗, given

by

z∗ =
(ȳ1 − ȳ0)− θ∗√

[ȳ1(1− ȳ1) + ȳ0(1− ȳ0)]/n.
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If we assume, for the sake of argument, that ȳ1 = 0.3, we find in the table below the

relationship between the sample size n and (ȳ1− ȳ0), for reaching the same z∗ value of 1.64,

i.e., a one-sided p-value of 0.05. We call (ȳ1− ȳ0) the “Evidence." In order to reach the same

Frequentist statistical significance, sample size increases if Evidence decreases in order to

achieve z∗ = 1.64 (p-value = 0.05).

Sample size (n) 10 20 30 50 100 500 1000

Evidence (ȳ1 − ȳ0) 0.29 0.24 0.21 0.18 0.15 0.10 0.08

Instead of using a Frequentist inference like the z-test, we consider Bayesian hypothesis

testing based on posterior probability of the alternative hypothesis, which, in the setting

of clinical trials, refers to the treatment being more effective than the control. Decision

of accepting the alternative hypothesis is by thresholding the posterior probability of H1

at a relatively large value c ∈ (0, 1). Assume a Bayesian hierarchical model is given by

f(y | θ)π(θ | H)π(H), where H = H0 or H1 is a binary indicator of the null and alternative

hypotheses. The proposed BESS aims to find a balance between 1) “Sample size" S of the

clinical trial, 2) “Evidence" defined as the observed treatment effect e = (ȳ1 − ȳ0), and 3)

“Confidence" defined as the posterior probability of the alternative hypothesis.

Consider the previous example of testing if the treatment effect θ = (θ1 − θ0) is greater

than θ∗, a minimum effect size. BESS provides a sample size statement as follows:

Statement 2: Assuming the evidence is at least e, S subjects are needed to declare

with confidence c that the treatment effect is at least θ∗.

Note that “confidence" here refers to Pr(H1|y), the posterior probability of the alternative

hypothesis, i.e., the treatment effect is at least θ∗. Comparing Statement 1 and State-

ment 2, one can see that the two statements are based on different statistical properties,

Frequentist type I/II error rates for Statement 1 and Bayesian posterior probabilities for
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Statement 2. We will show that the BESS and associated Statement 2 is easier to inter-

pret in practice since it directly addresses the uncertainty in the decision to be made for the

trial at hand, measured by posterior probabilities.

The remainder of the article is organized as follows: Section 4.2 presents the proposed

probability model. Section 4.3 describes the BESS method. Section 4.4 illustrates some

of the proprieties of BESS, including the relationships among sample size, evidence, and

confidence, as well as the coherence between BESS and Bayesian inference. Section 4.5

reports the operating characteristics of BESS with comparison to the standard SSE method.

Section 4.6 illustrates the applications of BESS to a hypothetical dose optimization trial.

Finally, we conclude the article in Section 4.7.

4.2 Probability Model

We consider BESS for both one-arm and two-arm trials. Denote yij the outcome of patient

i in arm j, where i = 1, . . . , n, index the patients, and j = 0 and 1 index the control and

treatment arm, respectively. When needed, we drop index j and use yi for one-arm trials.

Let θ1 denote the true response parameter for the treatment arm, and let θ0 be the true

response parameter for the control arm in a two-arm trial or the reference response parameter

in a one-arm trial. Let θ = (θ1 − θ0) be the true treatment effect. Consider hypotheses

H0 : θ ≤ θ∗ vs. H1 : θ > θ∗, (4.1)

where θ∗ is a minimum size for treatment effect deemed clinically relevant. Let H be the

binary random variable taking H0 or H1 with probability (1− q) and q, respectively.
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We propose a Bayesian hierarchical model for testing the hypotheses (4.1). Let

yij |θj ∼ f(θj),

(θ0, θ1)|θ̃, H = Hj ∼ π(θ0, θ1|θ̃)I(θ ∈ Hj), (4.2)

Pr(H = H1) = q,

where f(.) represents the likelihood function, π(θ0, θ1|θ̃) is a joint prior distribution for

(θ0, θ1), θ̃ are hyper-parameters, and I(x ∈ A) is the indicator function which equals 1 if

x ∈ A and 0 otherwise. For simplicity, we consider π(θ0, θ1|θ̃) = π0(θ0|θ̃)π1(θ0|θ̃), where

π0 = π1. In this work, we consider three specific types of outcome yij : binary, continuous,

and count. A summary of the parameter θj , likelihood function f(.), and prior distribution

πj for θj is shown in Table 4.1. In all three cases, the observed sample mean for each arm j,

denoted as ȳj , is the sufficient statistics for θj . In Table 4.1 we consider conjugate prior for

simplicity and computational speed. In general, different priors can be considered. While it

is not the focus of this work to discuss choice of priors, we note the flexibility of BESS to

incorporate various priors in real-life applications. For example, when little prior information

is known vague priors like Jeffrey’s prior may be considered; in contrast, it is also possible to

use informative priors when prior information is available. For instance, assume a previous

trial with binary outcome has completed with a sample size of n0 patients of whom their

outcome data are available, denoted as y0 = {y0i ; i = 1, . . . , n0}. Then, one could consider

an informative prior π1(θ1) = Beta(a, b) and set a = a∗ +
∑n0

i=1 y
0
i , b = b∗ + n0 −

∑n0
i=1 y

0
i ,

where a∗ and b∗ are small (e.g., a∗ = b∗ = 0.5).
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Table 4.1: Summary of parameter, likelihood function, and prior distribution for different
outcome types.

Outcome type Parameter θj Likelihood f(·) Prior distribution πj(θ̃)
Binary Response rate Bern(θj) Beta(a, b)
Continuous Mean response N(θj , σ

2), σ known N(a, b)
Count-data Event rate Poi(θj) Gamma(a, b)

4.3 Confidence, Evidence, and Sample Size

4.3.1 Confidence

We introduce the three pillar of BESS, Confidence, Evidence, and Sample Size. We start

with “C", the confidence, which refers to the confidence of posterior inference expressed

mathematically as the posterior probability of the alternative hypothesis Pr(H = H1|yn),

where yn denotes the data with sample size n. The optimal decision rule under a variety

of loss functions [Müller et al., 2004a] is to reject the null H0 and accept H1 if Pr(H =

H1|yn) ≥ c for cutoff c ∈ (0, 1). The value of c measures the least confidence of the decision

to reject H0 and accept H1. The higher c is, the more confident is the decision. To see

this, one simply observes that (1− c) is the upper bound of posterior probability of a wrong

rejection since when H1 is rejected, Pr(H = H0|yn) < c.

According to model (4.2), it is straightforward to show that

Pr(H = H1|yn) =
q ·
∫
θ∈H1

f(θ|yn)dθ
1− q + [(2q − 1) ·

∫
θ∈H1

f(θ|yn)dθ]
. (4.3)

If we assume a priori, both hypotheses are equally likely, i.e., q = 0.5, then equation (4.3)
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may be further reduced to

Pr(H = H1|yn) =
∫
θ∈H1

f(θ|yn)dθ. (4.4)

If conjugate priors in Table 4.1 are used, f(θj |yjn) have closed-form solutions. Otherwise,

numerical evaluation of (4.3) or (4.4) is needed.

4.3.2 Evidence

Evidence is the main metric that differentiates BESS from a standard SSE. In short, we

define evidence as a function of data, e(yn), that reflects the strength of treatment effect.

In the settings listed in Table 4.1 we consider evidence defined as

e = ȳ − θ0 for one-arm trials, and e = ȳ1 − ȳ0 for two-arm trials. (4.5)

In simple words, evidence e is the observed effect size from the trial data before they are

observed. This means that in order to apply BESS, investigator needs to pre-specify (and

calibrate) the potential observed effect size before the trial is conducted. This is analogous

to the requirement of specifying the true parameter values in standard SSE, except BESS

assumes what might be observed rather than what might be true. We consider evidence e as

a function of the sufficient statistic in Table 4.1. For the three outcomes in one-arm trials,

(e+ θ0) is exactly the sufficient statistic. For two-arm trials, e is the difference between the

sufficient statistics (ȳ0, ȳ1) of the two arms. Being a function of sufficient statistics allows

for a search algorithm to find an appropriate sample size under BESS, which will be clear

next.
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4.3.3 Sample Size of BESS

We first briefly review the standard SSE based on Frequentist inference. Consider a z-test

for a two-arm trial with binary outcome, the standard sample size approach assumes true

values of θ1 and θ0, and solves for n based on desirable Type I/II error rates α/β given by

n =
(zα + zβ)

2

(θ − θ∗)2
[θ1(1− θ1) + θ0(1− θ0)]. (4.6)

In BESS, we find the sample size through a similar argument but using posterior inference

instead. Investigators specify the confidence c, so that

Pr(H = H1|yn) ≥ c, (4.7)

where Pr(H = H1|yn) is computed by equation (4.3). In Müller et al. [2004a] decision rule

(4.7) is shown to be optimal for a variety of common loss functions, such as the posterior

expected loss of k · FPR+ FNR, where FPR and FNR are false positive and negative rates,

respectively. Next, we provide three algorithms for sample size calculation based on BESS

and models in Table 4.1.

One-arm trial For one-arm trials, with the settings of likelihood and prior in Table 4.1, we

can show that Pr(H = H1|yn) = Pr(H = H1|e, n). See Appendix A.3.1 for detail. Therefore,

by fixing e and c, we can find the smallest sample size n that satisfies (4.7). This leads to

the proposed BESS Algorithm 1 and the corresponding sample size statement BESS 1.

BESS 1: Assuming the evidence is e, n subjects are needed to declare

with confidence c that the treatment effect is larger than θ∗.

Two-arm trial; Continuous data, known variance Second, for two-arm trials and con-

tinuous outcome with normal likelihood and known variance, we still have Pr(H = H1|yn) =
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Pr(H = H1|e, n). See Appendix A.3.2 for detail. Therefore, BESS Algorithm 1 applies. And

we have the sample size statement BESS 2.1.

BESS 2.1: Assuming the evidence is e, n subjects per arm are needed

to declare with confidence c that the treatment effect is larger than θ∗,

assuming a known variance of σ2 in each arm.

BESS Algorithm 1 One-Arm Trials; Two-Arm Trials with Continuous Data and Known
Variance

Input: The hierarchical models in Table 4.1.
Input: Clinically meaningful effect size θ∗, evidence e, confidence c, prior probability q,
reference response rate θ0 (for one-arm trials).
Set nmin and nmax (nmin < nmax) the smallest and largest candidate sample sizes.
Set n = nmin.
while n ≤ nmax do

Compute equation (4.3).
if condition (4.7) is true then

Stop and return the sample size n.
else

n = n+ 1
end if

end while
if n > nmax then

Return sample size is larger than nmax.
end if

Two-arm trial; Binary and Count data For binary and count data in two-arm trials,

Pr(H = H1|yn) = Pr(H = H1|ȳ1, ȳ0, n). See Appendix A.3.3 for detail. Since e = ȳ1 − ȳ0,

fixing evidence e does not uniquely define Pr(H = H1|yn). Hence, we propose to specify

evidence e and find all pairs of ȳ1 and ȳ0 that satisfies ȳ1 − ȳ0 = e. We then find the

minimum posterior probability of H1 among these pairs of ȳ1 and ȳ0, i.e.,

Pr(H = H1|e, n) = min
ȳ1,ȳ0

{Pr(H = H1|(ȳ1, ȳ0, n));∀ȳ1 − ȳ0 = e}. (4.8)

We propose BESS Algorithm 2 and the corresponding sample size statement BESS 2.2.
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BESS 2.2 Assuming the evidence is e, at least n subjects per arm are

needed to declare with confidence c that the treatment effect is larger

than θ∗.

BESS Algorithm 2 Two-Arm Trials; Binary or Count Data
1: Input: The hierarchical models in Table 4.1.
2: Input: Clinically meaningful effect size θ∗, evidence e, confidence c, prior probability q.
3: Set nmin and nmax (nmin < nmax) the smallest and largest candidate sample sizes.
4: Set n = nmin.
5: while n ≤ nmax do
6: Find all pairs of (ȳ1, ȳ0) where ȳ1 − ȳ0 = e.
7: for each pair of (ȳ1, ȳ0) do
8: Compute equation (4.3).
9: end for

10: Compute equation (4.8).
11: if Pr(H = H1|e, n) ≥ c then
12: Stop and return the sample size n.
13: else
14: n = n+1.
15: end if
16: end while
17: if n > nmax then
18: Return sample size is larger than nmax.
19: end if

Alternatively, one may wish to specify the values of ȳ1 and ȳ0 directly instead of their

difference e. Since (ȳ1, ȳ0) is sufficient, the sample size search algorithm becomes easier. To

this end, we propose a simple variation BESS Algorithm 2’ in Appendix A.3.4 and statement

BESS 2.2’ assuming (ȳ1, ȳ0) are given.

BESS 2.2’ Assuming the response parameters in treatment and control

arms are ȳ1 and ȳ0, respectively, n subjects per arm are needed to declare

with confidence c that the treatment effect is larger than θ∗.

Discrete Data Lastly, since binary and count data are integer-valued, not all specified

evidence value e can be achieved for a given sample size in the proposed BESS Algorithms
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1 and 2. For example, when the outcome is binary and sample size n = 10, it is impossible

to observe evidence e = 0.15 since this requires having n · e = 1.5 more responders in the

treatment arm than the control. The number of responders cannot be a fraction. To this

end, we propose to round down the specified e to the nearest possible value for a given n

by e′ = 1
n⌊n · e⌋, where ⌊.⌋ is the floor function. This gives a conservative estimate of the

sample size since even with smaller evidence, the sample size would still ensure the needed

confidence.

4.4 Properties of BESS

4.4.1 Correlation between sample size, evidence, and confidence

We explore the relationship of the three pillars of BESS, sample size, evidence, or confidence.

Specifically, we fix one and report the correlation of the remaining two using a two-arm trial

with binary outcome. Similar results can be achieved for other types of data or one-arm

trials.

Positive correlation between confidence and evidence, Figure 4.1(a) We compute

confidence using equation (4.3) for various values of evidence e, while keeping the sample

size n constant. Figure 4.1(a) presents a line plot of the posterior probability of H1 (the

confidence) against various values of evidence, when sample size is set at n = 10, 20, or 30,

assuming θ∗ = 0.05. This plot demonstrates that confidence increases monotonically from 0

to 1 as evidence shifts from -1 to 1. When evidence is negative, the data does not support

the alternative hypothesis and therefore the confidence (that the alternative is true) drops

to zero. When evidence is positive, the confidence improves. Interestingly, the order of

confidence across different sample sizes flips when evidence is near 0, giving smaller sample

size more confidence. This is expected since when evidence is small, a larger sample size

should imply less confidence of the alternative hypothesis.
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Figure 4.1: The line plots of (left) confidence vs. evidence when sample size is fixed to be
n = 10, 20, and 30, and (right) confidence vs. sample size when e = 0.1. The result assumes
binary outcome for two-arm trial, with θ∗ = 0.05.

Positive correlation between sample size and confidence, Figure 4.1(b) We again

compute confidence using equation (4.3), varying the sample size n while keeping the evidence

e constant. Figure 4.1(b) demonstrates the positive relationship between sample size and

confidence, when e = 0.1 and θ∗ = 0.05. This is expected when evidence is supportive of the

alternative hypothesis since the larger the sample size , the larger the posterior probability

of H1.

Negative correlation between evidence and sample size We next explore the cor-

relation between evidence and sample size, maintaining a fixed confidence level at Pr(H =

H1|e, n) = 0.6. For this demonstration, we calculate confidence using (4.3) across a range of

evidence and sample sizes. For example, with n = 10 patients per arm, the potential range

of evidence e - reflecting the difference in percent responders between the treatment and

control arms - spans from -1 to 1, with increments of 0.1.

Given the discrete nature of the outcomes, it’s not always possible to find an evidence
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level for each sample size n that exactly matches Pr(H = H1|e, n) = 0.6. Thus, we document

the smallest e for each n where Pr(H = H1|e, n) ≥ 0.6. In this case, for θ∗ = 0.05, we report

n(e), the different sample sizes n with their corresponding evidence e: 50(0.080), 100(0.070),

150(0.067), 200(0.065), and 1000(0.057). These values clearly show that as the sample size

increases, the evidence needed to maintain the confidence at 0.6 decreases, approaching

θ∗ = 0.05. Similar results can be obtained for continuous and count-data outcomes in two-

arm trial, also the three outcomes in one-arm trial.

4.4.2 Coherence between BESS and Bayesian Inference

In the proposed BESS approach, the evidence e(yn) is a function of the trial data yn. In

addition, the confidence, defined as the posterior probability Pr(H1|yn), is also a function

of yn. Let’s take a look at the BESS sample size statement again. It can be generalized as

For assumed evidence e, a sample size of n will provide confidence c that the

alternative hypothesis is true.

After the trial is conducted and data is observed, a Bayesian analysis of the observed

data using posterior probability will be coherent with the BESS statement. To explain this,

we first denote y⋆n the observed data after the trial is completed, e⋆ the observed evidence,

and c⋆ = Pr(H1|y⋆n) the posterior probability of H1 conditional on the observed data y⋆n.

Then the coherence between BESS and Bayesian inference means that if e⋆ > e, c⋆ > c.

This type of coherence is important for BESS to be adopted in practice since investigators

of clinical trials are usually not statisticians, and the coherence property of BESS allows them

to connect the design (i.e., sample size statement) of the trial with the statistical analysis of

the observed data once the trial is carried out.

To verify the coherence numerically, we perform a simple simulation. In Appendix Table

A.3.1 we set up the true parameters for data simulation for each type of clinical trials. For

example, for two-arm binary data, we assume the minimum treatment effect θ∗ = 0.05,
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Figure 4.2: Plots of observed confidence c⋆ vs. observed evidence e⋆ for binary, continuous,
and count-data outcomes with two-arm trial. The black vertical dashed line shows the
location of e⋆ = e, and the red horizontal dotted line shows the location of c⋆ = c.

evidence e = 0.1, confidence c = 0.8. Using a prior distribution θj ∼ Beta(0.5, 0.5) BESS

leads to a sample size of 150. We then repeatedly generate trial data assuming different true

values of θ1 and θ0 in Table A.1, and report the inference results of e⋆ and c⋆. Figure 4.2

summarizes the simulation results. In all three subplots (a)-(c), when e⋆ is larger than e (the

black vertical line), c⋆ is larger than c, the red horizontal line.

4.5 Comparison with Standard SSE

4.5.1 Simulation Setup

Through simulation, we compare BESS and standard SSE for a two-arm trial with binary

outcomes. For fair comparison, we match the Type I/II error rates for both methods.

The matching is realized by three steps. Step 1: we obtain sample size estimated via the

proposed BESS approach for a trial. Step 2: we repeatedly simulate trial data under the

null and alternative hypotheses, perform the Bayesian inference using the same model as

in BESS, and record the Type I and Type II error rates from the simulated trials. Step 3:

using the two error rates, we apply the standard SSE to arrive at a Frequentist sample size,
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and compare it with the BESS estimate. See Appendix Figure A.3.1 for an illustration.

Step 1: BESS sample size We consider a two-arm trial with binary outcome and let θ1

and θ0 be the response rates, and θ∗ the clinical minimum effect size. The trial aims to test

H0 : θ1 − θ0 ≤ θ∗ vs. H1 : θ1 − θ0 > θ∗. For BESS, we assume a binomial likelihood, an

improper prior (θ1, θ0)|Hj ∼ Beta(0, 0) · Beta(0, 0)I((θ1, θ0) ∈ Hj), and Pr(H = H1) ≡ q =

0.5. We apply BESS Algorithm 2 to obtain a sample size for a pair of desirable evidence e

and confidence cutoff c. We try several different pairs of e and c as well, listed in Table 4.2.

Step 2: Estimate Type I/II error rates Next, for each BESS sample size in Step 1, we

repeatedly simulate trials under the null H0 and the alternative H1 to numerically compute

the Type I/II error rates. Specifically, under the null we let θ1 = 0.3 and θ0 = 0.25, and

under the alternative, θ1 = 0.4 and θ0 = 0.25. We set θ∗ = 0.05.

Based on a set of θ1 and θ0 values, we generate the binary responses of 150 patients each

in the treatment arm and control arm. Denote the simulated outcomes yn = {yn1 and yn0},

ynj = {yij ; i = 1, . . . , n}, j = 0, 1. We generate yij ∼ Bern(θj) where Bern(θ) is a Bernoulli

distribution with mean θ. The null is rejected if Pr(H = H1|yn) > 0.8. Here, 0.8 is arbitrarily

selected without specific intention. A larger or smaller cutoff than 0.8 arbitrarily affects the

computed Type I/II error rates, which does not affect the objective of our simulation. We

simulate 10,000 trials, each under the null and alternative. A rejection of the null for a trial

simulated under the null is recorded as an incidence of Type I error and a non-rejection of the

null for a trial under the alternative is recorded as an incidence of Type II error. The Type

I/II error rates (α/β) are then computed as the frequencies of the corresponding incidences

over the 10,000 trials.

Step 3: Estimate Frequentist sample size and compare with BESS Based on the

computed Type I/II error rates (α/β) from Step 2, denoted as α and β, we estimate a
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sample size using a standard SSE approach. For example, we consider a superiority z-test

for comparing θ1 and θ0, and a sample size can be estiamted via (4.6). In the estimation,

we assume the true values for θ1 and θ0, which gives the standard approach an “oracle"

performance. In other words, the estimated sample size is guaranteed to achieve the target

Type I/II error rates α and β, since the assumed θ1 and θ0 in the sample size estimation

match the true values. Even though this is typically not achievable in reality, we decide to

compare the oracle Frequentist sample size with the BESS sample size nevertheless.

4.5.2 Simulation Result

Table 4.2 presents the simulation results. They are both surprising and reassuring that

BESS and the standard SSE produce similar sample sizes across a variety of settings. It is

surprising since the two approaches are based on different statistical metrics. For BESS, it’s

aiming to balance between the anticipated evidence in the observed data and the confidence

expressed as posterior probability; for the standard approach, it’s trading off among the

Type I/II error rates and assumed true parameter values. The results are reassuring since

despite using different metrics, when matching the Type I/II error rates, both approaches

produce highly similar sample size estimates.

Several trends are worth noting in Table 4.2. First, increase confidence cutoff c leads

to lower Type I error rate for fixed evidence e. This is because increase in cutoff c makes

it harder to reject the null for BESS under (4.7), and hence fewer simulated trials under

H0 will be rejected, i.e., decrease in the Type I error rate. Second, note that the true

effect size under H1 equals θ ≡ θ1 − θ0 = 0.4 − 0.25 = 0.15. We observe that 1) power

increases when the confidence cutoff c increases and evidence e is less than the the true

effect size, i.e., e = 0.1, 2) power stays the same if evidence e equals the true effect size,

and 3) power decreases when confidence increases and e is greater than the true effect size.

This complicated trend demonstrates an interaction between c and power conditional on
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whether e is greater than, equal to, or less than the true effect size θ. To understand this,

first recall in Section 4.4.2 we used notation e⋆ to denote the observed evidence after the

trial is completed and data observed. When c increases, the BESS-estimated sample size

also increases (see Section 4.4.1). Therefore, the observed e⋆ will be closer to θ due to large

number theory. Consequently, more simulated trials under the alternative will see e⋆ close to

θ. If the assumed evidence e is smaller than θ, more likely it will be smaller than e⋆ as well.

This means that the posterior probability Pr(H1|yn) will be higher (since there is stronger

evidence supporting H1), and hence more rejections, i.e., higher power. Therefore, when e

is smaller than θ, a larger c leads to higher power. Same logic applies to the case when e is

larger than θ, in which a larger c leads to lower power. Lastly, when e = θ, increasing sample

size (as a result of increasing c) makes e⋆ approach e, and therefore there is no obvious

impact on the power.

Results in Table 4.2 implies that if one wishes to have high power and a low Type I error

rate using BESS, one may want to specify an evidence that is smaller than the true effect

size and a high confidence cutoff c. As the true effect size is typically unknown, one may

either construct an informative prior of θ1 and θ0 for BESS if prior information is available,

or conduct interim analysis and sample size re-estimation to better plan and conduct a trial.

We will explore the latter option in the next section.

Finally, from a true Bayesian perspective, BESS is concerned about the trial at hand,

rather than hypothetical trials generated from the null or alternative. Therefore, while Table

4.2 illustrates a connection between BESS and standard SSE, it does not imply that BESS

needs to be calibrated based on Type I/II error rates in practice. On the contrary, BESS

focuses on the probability of making a right decision given the observed data, which can be

measured by the false positive rate (FPR) and false negative rate (FNR). In Table 4.2 the

reported FPR and FNR for BESS and standard SSE are the same since 1) the prevalence

of trials under the H0 and H1 is 50% and 2) the standard SSE is oracle since it assumes
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the true θ0 and θ1 values in its computation. In Appendix Table A.3.2 we show that when

the θ0 and θ1 are mis-specified in the standard SSE, the estimated sample sizes may be too

large or too small, leading to over- or under-power, and deflated or inflated FPR/FNR’s.

Table 4.2: Simulation results compare BESS with Standard SSE when the type I error rate
and power are matched between both methods in a two-arm trial with binary outcome. The
results show the estimated sample sizes, false positive rates (FPR), and false negative rates
(FNR) of the two methods across various levels of evidence e and confidence c.

Evidence Confidence type I power BESS Standard SSE
e c error rate α 1− β n FPR FNR n FPR FNR

0.10
0.7 0.31 0.76 60 0.29 0.26 62 0.29 0.26
0.8 0.20 0.84 150 0.19 0.17 145 0.19 0.17
0.9 0.10 0.94 340 0.10 0.07 344 0.10 0.07

0.15
0.7 0.29 0.56 20 0.34 0.38 22 0.34 0.38
0.8 0.21 0.56 40 0.27 0.36 40 0.27 0.36
0.9 0.10 0.56 87 0.16 0.33 88 0.16 0.33

0.20
0.7 0.44 0.57 5 0.43 0.43 5 0.43 0.43
0.8 0.24 0.46 15 0.34 0.41 16 0.34 0.41
0.9 0.11 0.38 35 0.23 0.41 36 0.23 0.41

Sensitivity of Prior We demonstrate the sensitivity of incorporating prior information

through simulation, assuming there exists prior data of n0 patients per arm. The simulation

details are presented in Appendix 4.5.1 , and the average sample size from the 1,000 simulated

trials is 31.42 with a standard deviation of 28. Recall with a Beta(0, 0) prior the BESS

sample size was 40 in Table 4.2 for e = 0.15 and c = 0.8. The results show that BESS is able

to properly borrow prior information for sample size estimation. In practice, one may use

different informative priors, e.g, power prior [Ibrahim and Chen, 2000] or commensurate prior

[Hobbs et al., 2011], for information borrowing. We leave these topics for future research.
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4.6 Demonstration of BESS with Dose Optimization Trial

4.6.1 Fixed Sample Size

Lastly, we consider a randomized comparison of two selected doses in an oncology phase

I trial as part of FDA’s Project Optimus initiative for dose optimization in oncology drug

development. Suppose two doses are compared via a 1 : 1 randomized design. We apply

BESS to estimate the sample size of the comparison. In dose optimization, the goal is to test

if the lower dose is no worse than the higher dose in terms of efficacy, i.e., non-inferiority.

Denoting θH and θL the response rates for the higher and lower doses, respectively, we want

to test the following non-inferiority hypotheses

H0 : θH − θL ≥ θ∗ vs. H1 : θH − θL < θ∗, (4.9)

where θ∗ ∈ (0, 1) is the non-inferiority margin. To fit the setting in (4.1), we rewrite the

hypotheses as H0 : θL− θH ≤ −θ∗ vs. H1 : θL− θH > −θ∗. We then apply BESS algorithm

2 to estimate the sample size for the dose-optimization trial. Assuming θ∗ = 0.05, we

consider two related objectives: 1) find sample size given evidence and confidence, and 2)

find evidences and the corresponding confidences for a fixed sample size.

Objective 1 BESS provides the following sample size statement: Assuming evidence

e = 0, a sample size of 57 patients per arm is needed to declare with 70% confidence that

the response rate of the higher dose is no higher than the lower dose by 0.05.

Objective 2 Assume 20 patients per dose are randomized and denote ȳL and ȳH the

observed response rates for the lower and higher doses, respectively. We compute the con-

fidence, Pr(θH − θL < θ∗|ȳL, ȳH , n), for various values of (ȳL − ȳH) and θ∗ = 0.05, shown

in Table 4.3. For example, if one observes the response rate of the lower dose is the same
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Table 4.3: List of various evidence and confidence for θ∗ = 0.05 with n = 20 patients per
arm.

Noninferiority margin θ∗ = 0.05, Sample size n = 20
Evidence ȳL − ȳH ≤ −0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20 ≥ 0.25

Confidence c < 0.05 0.12 0.28 0.50 0.62 0.74 0.84 0.90 0.94 > 0.95

as the higher dose, i.e., (ȳL − ȳH) = 0, with 20 patients per dose one gets about 62.49%

confidence to declare the lower dose response rate is within the non-inferiority margin 0.05

of the higher dose.

4.6.2 Sample Size for Adaptive Designs

Setup We further consider adaptive designs that allow interim analysis and early stopping

for the randomized dose comparison in the previous section. We set the non-inferiority

margin to θ∗ = 0.07 so that the standard SSE gives a sample size of 100 patients per dose.

We consider four different designs based on either the standard SSE or the BESS.

1. BESS SSR The first design is BESS with sample size re-estimation (SSR). BESS SSR

estimates a sample size n for the entire trial first using input of evidence e and confidence c.

Then when n/2 patients are enrolled at each dose, an interim analysis is performed to allow

trial stopping or SSR if the trial is not stopped. Denoting the interim patients outcome as

yn/2, the trial is stopped early if Pr(H1|yn/2) ≥ c or Pr(H1|yn/2) ≤ c∗, where c close to

1 and c∗ close to 0 are probability thresholds for early stopping due to success or failure,

respectively. If neither condition is met, the trial proceeds with an SSR as follows.

In the SSR, we again use BESS to re-estimate the sample size based on updated evidence

from the interim data, defined as eint = E[θL|yn/2]− E[θH |yn/2], which corresponds to the

difference of posterior means. We use the same cutoff c for the SSR. However, we use the

posterior distribution π(θL, θH |yn/2) as the prior in the SSR using the BESS algorithm 2.

Denote the additional sample size as n∗ based on SSR. At the end of the trial after n∗ more
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patients are randomized to each dose, BESS SSR rejects the null and accepts the alternative

if Pr(H1|yn/2+n∗) ≥ c. Otherwise, it accepts the null and rejects the alternative.

2. BESS SSR Cap The design is the same as BESS SSR, except when n∗ > n/2, we cap

n∗ = n/2. That is, we restrict the maximum sample size at n for the entire trial.

3. Standard SSE The standard SSE estimates a sample size n based on a z-test for (4.9),

with a significance level α, and a desired power (1 − β). The null hypothesis is rejected if

1− Φ(z) ≤ α. Formula (4.6) is used to compute n.

4. Standard SSE with interim This design follows the previous standard SSE to esti-

mate n, but at n/2 it stops the trial if Pr(H1|yn/2) ≥ c or Pr(H1|yn/2) ≤ c∗. This is the

same Bayesian interim analysis in design 1, BESS SSR. If the trial is not stopped at n/2,

the trial adds additional n/2 patients and use the z-test to make a final decision.

The four designs are compared through simulated trials. For each trial, we generate

the alternative and null hypotheses indicators H = 1 or 0 with probabilities q or (1 − q),

respectively. Then given H, we generate true model parameters θL and θH based on two

scenarios. In scenario 1, θL and θH are random variables under null or alternative, where

θH ∼ Unif(θ∗ = 0.07, 0.6), and

θL|θH , H ∼

 Unif(0, θH − θ∗) H = 0

Unif(θH − θ∗, 0.28)I(θH − θ∗ ≤ 0.28) + δθH I(θH − θ∗ > 0.28) H = 1

This setting ensures E(θL) = E(θH) = 0.335 when H = 1. In scenario 2, we assume

θH = 0.335 and θL = 0.265 under H0 or θL = 0.335 under H1, i.e., they are fixed. The

two scenarios reflect two different practical considerations. Scenario 1 aims to assess the

performance of the four designs assuming they are applied to different programs and trials

in which the true responses of the drugs and doses are different. Scenario 2 is a classical
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Frequentist setting to assess the Type I/II error rates of a design assuming true response

rates are fixed. Finally, given θL and θH , for each trial we simulate patients outcome data

based on Binomial distributions and the corresponding designs.

We assume q = 0.5. For Designs 1 & 2, we let e = 0.02, c = 0.7 and c∗ = 0.3. For

designs 3 & 4, we set α = 0.3 and β = 0.3, so that BESS and standard SSE produce

the same sample size for the trial in the beginning, which is n = 100. Lastly, we assume

(θL, θH) ∼ Beta(0.05, 0.05)Beta(0.05, 0.05)I(θ ∈ H), where Beta(0.05, 0.05) is chosen to

reduce the prior effective sample size. A total of 2,000 simulated trials are generated, 1,000

each under H0 or H1, for each design in each scenario. Four metrics are used to compare

the designs, Type I/II error rates, false positive rate (FPR) and false negative rate (FNR).

See Appendix A.3.7 for detail.

Results We first present the operating characteristics of the four designs by evaluating

their Type I and II error rates across each scenario. To facilitate the comparison of designs,

motivated by Kim and Choi [2021] we consider a combined error rate defined as

Combined Error Rate (CER) = Type I error rate + k · Type II error rate,

where the weight k ∈ [0,∞) is a pre-determined factor that quantifies the relative weight

between the Type I and Type II error rates. We let k ∈ {0.5, 1, 1.5}. A lower CER is more

desirable. Top two rows in Figure 4.3 reports the results for the four designs. Across all

designs, as the sample size increases, the rate at which CER declines, indicating potential

diminishing return when sample size gets larger. In other words, the gain in reduction of error

rates may lessen when sample size continues to increase. Considering the substantial costs

associated with patient enrollment, these findings suggest finding a “sweet spot" of sample

size that achieves a desirable tradeoff between cost and statistical properties. Comparing

across designs, we find that except for the Standard SSE design, the performance of the other
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designs are similar. Notably, the BESS SSR Cap design (design 2) seems to be in general

the best across most cases. In Scenario 2 when k = 0.5, the standard SSE is the winning

design. In contrast, it is the losing design in the same scenario but with k = 1.5. This

seems to suggest the standard SSE is a better design if the Frequentist Type I error rate is

of important consideration in design evaluation. However, in early-phase dose optimization

trials, Type I error rate is not the primary concern. In fact, one may argue it is of the

least concern. For example, one would be much more concerned if a “GO" decision that

recommend a wrong dose to further clinical development, or a “No Go" decision that fails to

recommend a promising dose. These are measured by the FPR and FNR in the bottom two

rows of Figure 4.3.

Following Müller et al. [2004a], we employ a loss function that integrates FPR and FNR

into a single metric given by

Combined False Rate (CFR) = k · FPR + FNR.

Again, k ∈ {0.5, 1, 1.5}. The results, shown in Figure 4.3, again suggest the BESS SSR

Cap design (design 2) is the overall most desirable method. Therefore, to summarize, we

recommend using the BESS with a sample size re-estimation capping the max sample size

for the dose optimization trial.

4.7 Discussion

In this work we propose BESS as a new and simple Bayesian sample size estimator. BESS

leads to a straightforward interpretation of estimated sample size: if the observed data

exhibits certain level of evidence e that supports the alternative hypothesis, with sample size

n one can conclude the alternative with confidence c, measured by posterior probability of the

alternative. The statement is coherent with a subsequent Bayesian analysis of the trial using
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Figure 4.3: Combined Error Rates (CER) and Combined False Rates (CFR) across various
sample sizes for the four designs under comparison. Different k values are used to illustrate
the importance of type I error rate over the Type II error rate in CER or FPR over FNR in
CFR.
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n as the sample size. If the observed trial data exhibits evidence e, the posterior probability

of alternative will be greater than c, corroborating with the sample size estimation. For dose

optimization trials, the BESS SSR Cap design shows a superior performance under both

Frequentist and Bayesian properties.

Simulation results show that for matched Type I/II error rates and using vague priors,

BESS produces similar sample size estimates as the standard Frequentist sample size esti-

mation, even though the two are based on different philosophies and metrics. In addition,

the preliminary comparison of various designs based on BESS suggests a slight advantage of

the Bayesian approach.

Many future directions may be considered to further develop BESS and corresponding

adaptive designs, such as sample size re-estimations, downgrade historical data in prior

construction, decision rules for futility stopping, etc.
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APPENDIX A

APPENDIX OF THREE PAPERS

A.1 Appendix to “A Class of Dependent Random Distributions

Based on Atom Skipping"

A.1.1 Features of BNP models

Table A.1.1 summarizes the features of some BNP models, along with the proposed PAM.

A feature is checked based on the definition of the model, not the posterior inference.

BNP Common Atoms / Common Atoms / Distinct Atoms / Plaid∗ Atoms /
Models Common Weights Distinct Weights Distinct Weights Distinct Weights
CAM ✓ ✓
HDP ✓
LNP ✓ ✓
NDP ✓ ✓
PAM ✓ ✓ ✓

∗ “Plaid" atoms means groups can share common atoms but can also possess unique atoms.

Table A.1.1: Features supported by various BNP models. A check-mark means the model
supports such feature.

A.1.2 Proof of Proposition 1

We show the results for π′jk as the result for π′k is the same, with index j removed. Conditional

on β = {βk; k ≥ 1} (which is equivalent as conditional on β′ = {β′k; k ≥ 1} because βk is

constructed from β′k deterministically), we have

E[π′jk|β, pj ] =
pjβk

1−
∑k−1

l=1 βl
. (A.1.1)

Then
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E[E[πjk|β, pj ]] = E

E
π′jk k−1∏

l=1

(1− π′jl)|β, pj



= E

 pjβk

1−
∑k−1

l=1 βl
(1− pjβ1)

k−1∏
l=2

(
1−

∑l−1
w=1 βw − pjβl

1−
∑l−1

w=1 βw

)

= E

pjβk k−1∏
l=1

(
1−

∑l−1
w=1 βw − pjβl

1−
∑l

w=1 βw

)

= E

pjβk k−1∏
l=1

(
1−

∑l
w=1 βw + βl − pjβl

1−
∑l

w=1 βw

)

= E

pjβk k−1∏
l=1

{∑∞
w=l+1 βw + (1− pj)βl∑∞

w=l+1 βw

}

= E

pjβk k−1∏
l=1

{
1 +

(1− pj)βl∑∞
w=l+1 βw

}
Expanding the term in the expectation, we have

pjβk

k−1∏
l=1

{
1 +

(1− pj)βl∑∞
w=l+1 βw

}

= pjβ
′
k

k−1∏
l=1

(1− β′l)
k−1∏
l=1

{
1 +

(1− pj)β
′
l

∏l−1
s=1(1− β′s)∑∞

w=l+1 β
′
w
∏w−1

s=1 (1− β′s)

}

= pjβ
′
k

k−1∏
l=1

(1− β′l)×

k−1∏
l=1

{
1 +

(1− pj)β
′
l

∏l−1
s=1(1− β′s)

β′l+1

∏l
s=1(1− β′s) + β′l+2

∏l+1
s=1(1− β′s) + β′l+3

∏l+2
s=1(1− β′s) + · · ·

}

= pjβ
′
k

k−1∏
l=1

(1− β′l)×
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k−1∏
l=1

{
1 +

(1− pj)β
′
l

β′l+1(1− β′l) + β′l+2

∏l+1
s=l(1− β′s) + β′l+3

∏l+2
s=l(1− β′s) + · · ·

}

= pjβ
′
k

k−1∏
l=1

(1− β′l)×

k−1∏
l=1

{
1 +

(1− pj)β
′
l

(1− β′l)
1

β′l+1 + β′l+2(1− β′l+1) + β′l+3

∏l+2
s=l+1(1− β′s) + · · ·

}

= pjβ
′
k

k−1∏
l=1

(1− β′l)
k−1∏
l=1

{
1 +

(1− pj)β
′
l

(1− β′l)
1∑∞

w=l+1 β
′
w
∏w−1

s=l+1(1− β′s)

}
(A.1.2)

Denote Γ =
∑∞

w=l+1 β
′
w
∏w−1

s=l+1(1− β′s) in (A.1.2). Then it follows

1− Γ = (1− β′l+1)(1− β′l+2) · · · =
∞∏

w=l+1

(1− β′w) = 0.

Therefore, Γ = 1 and the expectation of (A.1.2) becomes

E[E[πjk|β′, pj ]] = E

pjβ′k k−1∏
l=1

(1− β′l)
k−1∏
l=1

{
1− β′l + (1− pj)β

′
l

(1− β′l)

}

= E

pjβ′k k−1∏
l=1

(1− pjβ
′
l)

 = E[pj ]E[β′k]
k−1∏
l=1

(1− E[pj ]E[β′l]) (A.1.3)

Since β′k ∼ Beta(1, γ) and pj ∼ Beta(a, b), we have

E[πjk] =
p̄

1 + γ

(
1 + γ − p̄

1 + γ

)k−1

=
1

1 + γ′

(
γ′

1 + γ′

)k−1

where γ′ = 1+γ−p̄
p̄ , p̄ = a

a+b . This proves the second and third claims in Proposition 1.

To show the first claim, we first show E
[∑

k≥1 πjk
]
= 1. Notice that

E

∑
k≥1

πjk

 =
∑
k≥1

E[πjk] =
∑
k≥1

p̄

1 + γ

(
1 + γ − p̄

1 + γ

)k−1
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=
∑
k∗≥0

p̄

1 + γ

(
1− p̄

1 + γ

)k∗

=
p̄

1 + γ
× 1 + γ

p̄
= 1.

Next, we show 0 <
∑

k≥1 πjk ≤ 1. It is trivial to see that
∑

k≥1 πjk > 0. We now show∑
k≥1 πj,k ≤ 1. Notice

1−
∑
k≥1

πjk = 1− π′j1 − π′j2(1− π′j1)− π′j3(1− π′j1)(1− π′j2)− · · · =
∞∏
k=1

(1− π′jk) ≥ 0

since 0 ≤ π′jk < 1. Therefore,
∑

k≥1 πjk ≤ 1. Thus, we have shown 0 <
∑

k≥1 πjk ≤ 1

and E
[∑

k≥1 πjk
]
= 1, and we conclude

∑
k≥1 πjk = 1 almost surely. This proves the first

claim of Proposition 1.

A.1.3 Proof of Theorem 1

For G|G0, p ∼ ASP (p, α0, G0), we derive the mean of G. Recall G0 =
∑∞

k=1 βkδϕk
. Condi-

tional on G0 is equivalent as conditional on β′ = {β′k; k ≥ 1} and Φ = {ϕk; k ≥ 1}. From

equation (A.1.3) in subsection A.1.2, we have

E[G(A)|G0, p] = E[G(A)|β′,Φ, p] =
∞∑
k=1

E[πk|β′, p]δϕk
(A)

=
∞∑
k=1

pβ′k

k−1∏
l=1

(1− pβ′l)δϕk
(A) = G∗(A),

where G∗ =
∑∞

k=1 ωkδϕk , ωk = ω′k
∏k−1

l=1 (1 − ω′l), ω′k = p · β′k. As G0 ∼ DP (γ,H), we

have β′k ∼ Beta(1, γ), and ϕk ∼ H. Plugging in the priors for β′k and ϕk, we see that the

stick-breaking construction of G∗ is equal to that of FSBP in Section 3.3.
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A.1.4 Proof of Proposition 2

Let θi1|G1 ∼ G1 and θi′2|G2 ∼ G2, without loss of generality,

Pr(θi1 = θi′2) =

∫
Pr(θi1 = θi′2|G1, G2)p(G1)p(G2)dG1dG2 >

∫
0p(G1)p(G2)dG1dG2 = 0

if and only if Pr(θi1 = θi′2|G1, G2) > 0. We next show Pr(θi,1 = θi′2|G1, G2) > 0. Denote

the set As = {ϕk; πjk ̸= 0 and πj′k ̸= 0} and Aj = {ϕk; πjk ̸= 0} for j ̸= j′, j = 1, 2. Then

Pr(θi1 = θi′2|G1, G2) = Pr(θi1 = θi′2|θi1 ∈ As,θi′2 ∈ As)Pr(θi1 ∈ As,θi′2 ∈ As|G1, G2)

(A.1.4)

The second term in (A.1.4) is

Pr(θi1 ∈ As,θi′2 ∈ As|G1, G2)

= Pr(θi1 ∈ As,θi′2 ∈ As|As ̸= ∅, G1, G2)Pr(As ̸= ∅)+

Pr(θi1 ∈ As,θi′2 ∈ As|As = ∅, G1, G2)Pr(As = ∅)

= Pr(θi1 ∈ As,θi′2 ∈ As|As ̸= ∅, G1, G2)Pr(As ̸= ∅)

Then Pr(As ̸= ∅) = 1−Pr(As = ∅) = 1−
∏∞

k=1{p1(1−p2)+p2(1−p1)} = 1. This is because

at each atom k, G1 selects the atom with probability p1 and G2 does not select the atom,

with probability (1−p2), or vice versa. Denote Ks = {k;ϕk ∈ As} and Kj = {k;ϕk ∈ Aj}.

The term Pr(θi1 ∈ As,θi′2 ∈ As|As ̸= ∅, G1, G2) is evaluated as

Pr(θi1 ∈ As,θi′2 ∈ As|As ̸= ∅, G1, G2) =

 ∑
k∈Ks

π1k

 ∑
k∈Ks

π2k

 .
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Since Pr(As ̸= ∅) = 1, |Ks| ≥ 1, and since π1k > 0 and π2k > 0 for k ∈ Ks, for some

arbitrary k∗ ∈ Ks, we have

Pr(θi1 ∈ As,θi′2 ∈ As|As ̸= ∅, G1, G2) ≥ π1k∗π2k∗ > 0

Therefore,

Pr(θi1 ∈ As,θi′2 ∈ As|G1, G2) = Pr(θi1 ∈ As,θi′2 ∈ As|As ̸= ∅, G1, G2)× 1 > 0.

And the first term in (A.1.4) is

Pr(θi1 = θi′2|θi1 ∈ As,θi′2 ∈ As) = E[Pr(θi1 = θi′2|G1, G2,θi1 ∈ As,θi′2 ∈ As)]

= E

 ∑
ϕk∈As

I(θi1 = θi′2 = ϕk)p(ϕk)

 |G1, G2,θi1 ∈ As,θi′2 ∈ As



= E

 ∑
ϕk∈As

π1kπ2kp(ϕk)

 |G1, G2,θi1 ∈ As,θi′2 ∈ As


(a)
=
∑
k∈Ks

E[π1k]E[π2k] =
∑
k∈Ks

E

π′1k
∏

l∈K1,l<k

(1− π′1l)

E

π′2k
∏

l∈K2,l<k

(1− π′2,l)


≥
∑
k∈Ks

E
π′1k

∏
l∈K1,l<k

(1− π′1l)
∏

l∈K1c,l<k

(1− π′1l
∗
)


E

π′2k
∏

l∈K2,l<k

(1− π′2l)
∏

l∈K2c,l<k

(1− π′2l
∗
)




(b)
=
∑
k∈Ks

[E[βk]
2]

(c)
=
∑
k∈Ks

[
1

1 + γ

(
γ

1 + γ

)k−1
]2
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where I(A) is the indicator function that equals to 1 if condition A is satisfied, π′jl
∗ ∼

Beta
(
α0βk, α0

(
1−

∑k
l=1 βl

))
, and Kjcs are the complement sets of Kj , for j = 1, 2. In

addition, (a) is true because

p(ϕk|Gj) =

1 if ϕk ∈ Gj

0 o.w.
,

and (b) is true because the term π′jk
∏

l∈Kj ,l<k(1−π′jl)
∏

l∈Kjc,l<k(1−π′jl
∗
) = π′jk

∗∏
l<k(1−

π′jl
∗
) for k ∈ Ks (i.e., equation (4)), with conditional expectation (conditional on β) equals

to βk, and (c) is true because βk = β′k
∏

l<k(1− β′k), β
′
k ∼ Beta(1, γ).

Again since |Ks| ≥ 1, for some arbitrary k∗ ∈ Ks, we have

∑
k∈Ks

[
1

1 + γ

(
γ

1 + γ

)k−1
]2

≥

[
1

1 + γ

(
γ

1 + γ

)k∗−1
]2

> 0.

Thus, we have

Pr(θi,1 = θi′2|θi1 ∈ As,θi′2 ∈ As) > 0.

Combine with Pr(θi1 ∈ As,θi′2 ∈ As|As ̸= ∅, G1, G2) > 0, we have now shown that

Pr(θi1 = θi′2|G1, G2) > 0,

which completes the proof.
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A.1.5 Additional Simulation Plots of Expected Number of Clusters for CAM,

HDP, and PAM

Figure A.1.1: Plots of simulated Gj for 10 randomly selected samples (subplots with red
sticks) and the random distribution aggregating all 500 groups (bottom right subplot with
blue sticks) for CAM(1, 1, H), H = N(0, 1). In each plot, the text “Gj" represents group
j for j ∈ {1, . . . , 500}, “Cluster:Kj" represents the number of clusters K in group j, and
“Location:ϕk" represents the location that has the highest probability in the random discrete
distribution Gj .
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Figure A.1.2: Plots of simulated Gj for 10 randomly selected samples (subplots with red
sticks) and the random distribution aggregating all 500 groups (bottom right subplot with
blue sticks) for HDP(1, 1, H), H = N(0, 1). In each plot, the text “Gj" represents group
j for j ∈ {1, . . . , 500}, “Cluster:Kj" represents the number of clusters K in group j, and
“Location:ϕk" represents the location that has the highest probability in the random discrete
distribution Gj .
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Figure A.1.3: Plots of prior for p1 (top left subplot), simulated Gj for 10 randomly se-
lected samples (subplots with red sticks), and the random distribution aggregating all
500 groups (bottom right subplot with blue sticks) for PAM(p1, 1, 1, H), H = N(0, 1),
pj1 ∼ Beta(80, 20). In each plot, the text “Gj" represents group j for j ∈ {1, . . . , 500},
“Cluster:Kj" represents the number of clusters K in group j, and “Location:ϕk" represents
the location that has the highest probability in the random discrete distribution Gj .
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Figure A.1.4: Plots of prior for p2 (top left subplot), simulated Gj for 10 randomly se-
lected samples (subplots with red sticks), and the random distribution aggregating all
500 groups (bottom right subplot with blue sticks) for PAM(p2, 1, 1, H), H = N(0, 1),
pj2 ∼ Beta(20, 80). In each plot, the text “Gj" represents group j for j ∈ {1, . . . , 500},
“Cluster:Kj" represents the number of clusters K in group j, and “Location:ϕk" represents
the location that has the highest probability in the random discrete distribution Gj .
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A.1.6 Proof of Theorem 2

The FSBP is a special case of the kernel stick-breaking process of Dunson and Park [2008].

Using their notation, the kernel function K(x,Γk) = p, i.e., constant over k and independent

of covariates. Thus, their theoretical results are applicable in our case. From equation (4)

of Dunson and Park [2008], the mean of G∗ is immediate and given by

E[G∗(A)] = E
[
E[G∗(A)|β′, p]

]
= E[H(A)] = H(A),

where β′ = {β′k; k ≥ 1}, β′k ∼ Beta(1, γ). To find the variance of G∗, apply equation (7) of

Theorem 1 of Dunson and Park [2008]

Var(G∗(A)) =
µ(2)V arQ(A)

2µ− µ(2)
(A.1.5)

where

V arQ(A) = V arH{δϕk
(A)} = H(A)(1−H(A)),

µ = p · E[β′k] =
p

1 + γ
,

and

µ(2) = p2 · E[β′k
2
] =

2p2

(1 + γ)(2 + γ)
.

Substituting the expression for V arQ(A), µ(x), and µ(2)(x) into equation (A.1.5), we obtain

V ar(G∗(A)) =
H(A)(1−H(A))

1+γ
p + 1−p

p

.
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A.1.7 Proof of Theorem 3

Denote Φ = {ϕ1,ϕ2, . . .} the atoms in G∗. Consider n samples generated from G∗, Θ =

{θi; i = 1, . . . , n}, θi|G∗ ∼ G∗, and θi takes a value in Φ with a probability. Assume there are

K clusters, denote the atoms associated with the K clusters by ΦK = {ϕr1 , . . . ,ϕrK} where

each rk indexes the kth cluster and rk ∈ N, where N denotes the set of all natural numbers,

i.e., N = {1, 2, . . .}. Denote ∇ = {r1, . . . , rK} the index set in ascending order of the K

clusters, i.e., r1 < r2 < . . . < rK . Let z = {z1, . . . , zn} be the cluster label where {zi = k}

means observation θi belongs to cluster k, i.e., {θi = ϕrk}. Further, denote ck = {i; zi = k}

the indices of θi’s belonging to cluster k. It is important to note that the cluster label k’s

do not need to be consecutive integers. For example, K = 3 and ∇ = {1, 3, 5} or K = 5 and

∇ = {2, 5, 6, 20, 100}. Lastly, assume the unique value of the kth cluster is the atom ϕk, i.e.,

{θi = ϕk} if {zi = k}, for k ∈ ∇.

Let m = max(z1, · · · , zn). It follows that K ≤ m due to the fact that the cluster labels

do not need to be consecutive integers. A partition z of the n samples Θ is then denoted as

C(z) = {ck; k ∈ ∇}, the collection of ck’s, where ck ∩ ck′ = ∅ for k ̸= k′, |C(z)| = K, and

∪k∈∇ck = {1, . . . , n}. Here, |.| refers to the cardinality of a set. The EPPF of G∗ evaluated

at a specific partition C is given by

Pr(C(z) = C) =
∑

z∗∈Nn

Pr(C(z∗) = C|z = z∗)Pr(z = z∗) =
∑

z∗∈Nn

I(C(z∗) = C)Pr(z = z∗)

(A.1.6)

where Nn is the n−dimensional space of positive integers. The second equality is true since

given z = z∗, C(z∗) is fixed and is either equal to C or not.

We first find Pr(z = z∗). For a specific z∗ = {z∗1 , . . . , z
∗
n}, denote ek(z

∗) = |{i; z∗i = k}|,

fk(z
∗) = |{i; z∗i > k}|, and gk(z

∗) = |{i; z∗i ≥ k}|. Also let m(z∗) = max(z∗1 , . . . , z
∗
n). Recall
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the definition of FSBP in Section 3.3, with a = 1 and b = γ, π′k ∼ Beta(1, γ), and we have

Pr(z = z∗) =
∫

Pr(z∗|π′1, · · · , π
′
m(z∗))p(π

′
1) · · · p(π

′
m(z∗))dπ

′
1 · · · dπ

′
m(z∗)

=

∫ m(z∗)∏
k=1

pπ′k
∏
l<k

(1− pπ′l)


ek(z

∗)
 p(π′1) · · · p(π

′
m(z∗))dπ

′
1 · · · dπ

′
m(z∗)

=

∫ m(z∗)∏
k=1

(pπ′k)
ek(z

∗)(1− pπ′k)
fk(z

∗)

 p(π′1) · · · p(π
′
m(z∗))dπ

′
1 · · · dπ

′
m(z∗)

=

m(z∗)∏
k=1

{
pek(z

∗)

B(1, γ)

∫
π′k

ek(z
∗)
(1− pπ′k)

fk(z
∗)(1− π′k)

γ−1dπ′k

}

where B(a, b) is the Beta function with parameters a and b. If we re-write the integral of

the last step as the follows:

∫
π′k

(ek(z
∗)+1)−1

(1− pπ′k)
−(−fk(z

∗))(1− π′k)
(γ+ek(z

∗)+1)−(ek(z
∗)+1)−1dπ′k,

it is easy to see that this integration can be written as the Euler type hypergeometric function.

Thus, we have ∫
π′k

ek(z
∗)
(1− pπ′k)

fk(z
∗)(1− π′k)

γ−1dπ′k

= B(ek(z
∗) + 1, γ)2F1(−fk(z

∗), ek(z
∗) + 1; γ + ek(z

∗) + 1; p)

where 2F1(a, b; c; d) is the hypergeometric function with parameters a, b, c and d. Conse-

quently, we have

Pr(z = z∗) =
m(z∗)∏
k=1

{
pek(z

∗)

B(1, γ)
B(ek(z

∗) + 1, γ)2F1(−fk(z
∗), ek(z

∗) + 1; γ + ek(z
∗) + 1; p)

}
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=

m(z∗)∏
k=1

{
pek(z

∗)Γ(γ + 1)

Γ(γ)

Γ(ek(z
∗) + 1)Γ(γ)

Γ(γ + ek(z
∗) + 1) 2F1(−fk(z

∗), ek(z
∗) + 1; γ + ek(z

∗) + 1; p)

}

=

m(z∗)∏
k=1

{
pek(z

∗)Γ(γ + 1)Γ(ek(z
∗) + 1)

Γ(γ + ek(z
∗) + 1) 2F1(−fk(z

∗), ek(z
∗) + 1; γ + ek(z

∗) + 1; p)

}

=


m(z∗)∏
k=1

Γ(γ + 1)pek(z
∗) Γ(ek(z

∗) + 1)

Γ(γ + ek(z
∗) + 1)

×


m(z∗)∏
k=1

2F1(−fk(z
∗), ek(z

∗) + 1; γ + ek(z
∗) + 1; p)


=

 ∏
c∈C(z∗)

Γ(γ + 1)p|c|
Γ(|c|+ 1)

Γ(γ + |c|+ 1)

×


m(z∗)∏
k=1

2F1(−gk+1(z
∗), ek(z

∗) + 1; γ + ek(z
∗) + 1; p)

 (A.1.7)

where fk(z
∗) = gk+1(z

∗).

Back to equation (A.1.6) and substituting in equation (A.1.7), we have

Pr(C(z) = C) =

∏
c∈C

Γ(γ + 1)p|c|
Γ(|c|+ 1)

Γ(γ + |c|+ 1)

×

∑
z∗∈Nn

I(C(z∗) = C)


m(z∗)∏
k=1

2F1(−gk+1(z
∗), ek(z

∗) + 1; γ + ek(z
∗) + 1; p)︸ ︷︷ ︸

(A)

︸ ︷︷ ︸
(B)

. (A.1.8)

Now, recall K = |C| is the number of unique clusters in the n samples, and C =

{c1, . . . , cK}. Denote SK the set of all K! permutations of {1, . . . , K}, and denote λ =

{λ1, . . . , λK} ∈ SK a permutation of {1, . . . , K}. For any λ ∈ SK , define αk(λ) =
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|cλk |+ · · ·+ |cλK |. By definition, αK+1(λ) = 0. Consider a given z∗ such that C(z∗) = C,

recall that r1, . . . , rK are the distinct values of z∗ in ascending order, i.e., r1 < r2 < · · · <

rk < · · · < rK , rk ∈ N, we can rewrite the (A) term in (A.1.8) as

m(z∗)∏
k=1

2F1(−gk+1(z
∗), ek(z

∗) + 1; γ + ek(z
∗) + 1; p)

= [2F1(−gr2(z
∗), er1(z

∗) + 1; γ + er1(z
∗) + 1; p)]r1 ×

[2F1(−gr3(z
∗), er2(z

∗) + 1; γ + er2(z
∗) + 1; p)]r2−r1 × · · ·×

[
2F1(−grK+1(z

∗), erK (z∗) + 1; γ + erK (z∗) + 1; p)
]rK−rK−1

=
[
2F1(−α2(λ), |cλ1 |+ 1; γ + |cλ1|+ 1; p)

]d1 ×
[
2F1(−α3(λ), |cλ2|+ 1; γ + |cλ2|+ 1; p)

]d2 × · · ·×

[
2F1(−αK+1(λ), |cλK |+ 1; γ + |cλK |+ 1; p)

]dK
=

K∏
k=1

[
2F1(−αk+1(λ), |cλk |+ 1; γ + |cλk |+ 1; p)

]dk
where d = (d1, . . . , dK), d1 = rk, and dk = rk − rk−1 for k = 2, . . . , K. For any z∗ ∈ Nn,

note that the definition of d and λ sets up a one-to-one correspondence, which is a bijection,

between {z∗ ∈ Nn;C(z∗) = C} and {(λ,d);λ ∈ SK ,d ∈ NK}, and the expression in (B) in

(A.1.8) can then be rewritten as

∑
z∗∈Nn

I(C(z∗) = C)


m(z∗)∏
k=1

2F1(−gk+1(z
∗), ek(z

∗) + 1; γ + ek(z
∗) + 1; p)


=
∑

λ∈SK

∑
d∈NK

K∏
k=1

[
2F1(−αk+1(λ), |cλk |+ 1; γ + |cλk |+ 1; p)

]dk
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(a)
=

∑
λ∈SK

K∏
k=1

∑
dk∈N

[
2F1(−αk+1(λ), |cλk |+ 1; γ + |cλk |+ 1; p)

]dk
(b)
=

∑
λ∈SK

K∏
k=1

{
2F1(−αk+1(λ), |cλk |+ 1; γ + |cλk |+ 1; p)

1− 2F1(−αk+1(λ), |cλk |+ 1; γ + |cλk |+ 1; p)

}
(A.1.9)

where the second equality (a) can be shown as the follows: let f(αk(λ)) = 2F1(−αk+1(λ), |cλk |+

1; γ + |cλk |+ 1; p), then

∑
d∈NK

K∏
k=1

f(αk(λ))
dk =

∑
d1∈N

· · ·
∑
dK∈N

[
f(α1(λ))

d1 · · · f(αK(λ))dK
]

=
∑
d1∈N

· · ·
∑

dK−2∈N

 ∑
dK−1∈N

f(α1(λ))
d1 · · · f(αK−1(λ))

dK−1

 ∑
dK∈N

f(αK(λ))dK


=

 ∑
dK∈N

f(αK(λ))dK

∑
d1∈N

· · ·
∑

dK−2∈N

 ∑
dK−1∈N

f(α1(λ))
d1 · · · f(αK−1(λ))

dK−1




=

∑
d1∈N

f(α1(λ))
d1

× · · · ×

 ∑
dK∈N

f(αK(λ))dK

 =
K∏
k=1

∑
dk∈N

f(αk(λ))
dk .

And the last equality (b) of equation (A.1.9) is due to geometric series:
∑∞

d=1(r
d) = 1/(1−

r)− 1 = r/(1− r). Moreover, 2F1(−αk+1(λ), |cλk |+ 1; γ + |cλk |+ 1; p) is between 0 and 1.

This can be seen from the derivative of the hypergeometric function:

d

dp2
F1(−αk+1(λ), |cλk |+ 1; γ + |cλk |+ 1; p)

= −
αk+1(λ)(|cλk |+ 1)

(γ + |cλk |+ 1) 2F1(−αk+1(λ) + 1, |cλk |+ 2; γ + |cλk |+ 2; p)

= −
αk+1(λ)(|cλk |+ 1)

(γ + |cλk |+ 1)
(1− p)γ+αk+1(λ)

2F1(γ+ |cλk |+αk+1(λ)+ 1, γ; γ+ |cλk |+2; p) < 0.

Since the derivative is less than zero, the function monotonically decrease with p. For
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p ∈ (0, 1], the hypergeometric function 2F1(−αk+1(λ), |cλk | + 1; γ + |cλk | + 1; p) equals 1

when p = 0 and equals

0 <
(γ)αk+1(λ)

(γ + |cλk |+ 2)αk+1(λ)
< 1

when p = 1, where (a)b is the rising Pochhammer symbol defined as (a)b = 1 if b = 0 and

(a)b = a(a + 1) · · · (a + b − 1) if b > 0. Substituting (A.1.9) into (B) of (A.1.8), we have

proved the EPPF of Theorem 3.

Lastly, for the claim of the EPPF of G∗ converging to the EPPF of G0 ∼ DP (1, H) when

p → 1, the hypergeometric function

2F1(−fk(z
∗), ek(z

∗) + 1; γ + ek(z
∗) + 1; 1) =

Γ(γ + ek(z
∗) + 1)Γ(γ + fk(z

∗))
Γ(γ)Γ(γ + ek(z

∗) + fk(z
∗) + 1)

=
Γ(γ + ek(z

∗) + 1)Γ(γ + fk(z
∗))

Γ(γ)Γ(γ + gk(z
∗) + 1))

where gk(z
∗) = fk(z

∗) + ek(z
∗). And equation (A.1.7) becomes

m(z∗)∏
k=1

Γ(γ + 1)Γ(ek(z
∗) + 1)Γ(γ + ek(z

∗) + 1)Γ(γ + fk(z
∗))

Γ(γ + ek(z
∗) + 1)Γ(γ)Γ(γ + gk(z

∗) + 1)

=

m(z∗)∏
k=1

γΓ(ek(z
∗) + 1)Γ(fk(z

∗) + γ)

Γ(gk(z
∗) + γ + 1)

,

which then equals the right-hand side of the sixth equal sign of equation Pr(z = z) in the

proof of Lemma 2.2 in Miller [2019]. Then the author shows that (Proof of Theorem 2.1

therein) the EPPF of G0 ∼ DP (γ,H) can be written as

Pr(C(z) = C) =
γ|C|Γ(γ)
Γ(n+ γ)

∏
c∈C

Γ(|c|).
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A.1.8 Proof Lemma 1

Since G∗ ∼ FSBP (p, γ,H), consider the following prediction rule for samples θi|θ1, · · · ,θi−1,

where θ1, · · · ,θi|G∗ ∼ G∗:

Pr(θi|θ1, · · · ,θi−1) = WbaseiH +
i−1∑
l=1

Wilδθl

where Wbasei corresponds to the probability θi sampled from the base probability measure

H (and not equal to any θl ∈ {θ1, . . . ,θi−1}) when there are i samples, and Wil corresponds

to the probability of θi sampled from a previously seen θl for l = 1, . . . , i−1. Then, we have

Pr(wi = 1|p, γ) = Pr(θi /∈ {θ1, . . . ,θi−1}|G∗) = Wbasei .

Wbasei can be evaluated by (using the prediction rule in Theorem 2 of Dunson and Park

[2008])

Wbasei =

1−
i∑

k=2

(−1)k
∑

I∈N (k,i)
i

ωI

 ,

where N
(k,i)
i is a set contains all possible k-dimensional subsets of {1, · · · , i} that includes

index i, with I an element (a set) in the set, ωI = µI ·
(∑|I|

l=1(−1)l−1∑
m∈Il µm

)−1
,

µI = E[
∏

k∈I pπk
′], and Il the set of length-l subsets of the set I. The cardinality of

the sets N
(k,i)
i , I, and Il are |N (k,i)

i | =
( i−1
k−1

)
, |I| = k, and |Il| =

(k
l

)
, respectively. For

example, let i = 3, k = 2, and l = 1. N
(k=2,i=3)
i=3 = {I1, I2} = {{1, 3}, {2, 3}}, with

|N (k=2,i=3)
i=3 | = 2. Also, |I1| = |I2| = 2. And when I = I1, Il=1 = {{1}, {3}}, and when

I = I2, Il=2 = {{2}, {3}}. Both have cardinality |Il| = 2, l = 1, 2.

For G∗, recall π′k ∼ Beta(1, γ). For a set I, µI = E
[∏

k∈I pπ
′
k

]
, which can be shown to
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be

µI = p|I|
|I|∏
l=1

l

l + γ
.

Thus, µI depends on the cardinality of the set I only. Furthermore, for
∑

m∈Il µm in the

denominator of ωI , µm can be similarly computed, and the values are the same for all m ∈ Il

(since µm depends only on |m|, and all m ∈ Il are of the same cardinality that is equal to

l). Plugging in µI and
∑

m∈Il µm to the theorem, we have

ωI =
p|I|

∏|I|
l=1

l
l+γ∑|I|

l=1(−1)l−1
(|I|
l

)
pl
∏l

m=1
m

m+γ

,

which again only depends on the cardinality of the set I, i.e., |I|. Let |N (k,i)
i | =

( i−1
k−1

)
= B.

Further notice that the sets in N
(k,i)
i , denoted as I1, . . . , Ib′ , . . . , IB , have the same cardinality

for a given k, i.e., |Ib′| = k for all b′ ∈ {1, ..., B}. Thus, we have

Wbasei = 1−
i∑

k=2

(−1)k
∑

I∈N (k,i)
i

ωI = 1−
i∑

k=2

(−1)k
(
i− 1

k − 1

) pk
∏k

l=1
l

l+γ∑k
l=1(−1)l−1

(k
l

)
pl
∏l

m=1
m

m+γ

= 1−
i∑

k=2

(−1)k
(
i− 1

k − 1

)
k!∏k

l=1(l + γ)

pk−1∑k
l=1(−1)l−1

(k
l

)
pl−1 l!∏l

m=1(m+γ)

= 1−
i∑

k=2

(−1)k
(
i− 1

k − 1

)
k!∏k

l=1(l + γ)

(γ + 1)pk−1

k × 2F1(1, 1− k; γ + 2; p)

= 1−
i∑

k=2

(−1)k
(
i− 1

k − 1

)
(k − 1)!∏k
l=1(l + γ)

(γ + 1)pk−1

2F1(1, 1− k; γ + 2; p)
. (A.1.10)

where 2F1(a, b; c; z) is the hypergeometric function.
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Since FSBP is a special case of KSBP, and in KSBP, Wbasei ∈ (0, 1), we have

0 <

i∑
k=2

(−1)k
(
i− 1

k − 1

)
(k − 1)!∏k
l=1(l + γ)

(γ + 1)pk−1

2F1(1, 1− k; γ + 2; p)
< 1.

A.1.9 Proof Lemma 2

Setting let p → 1 in equation (A.1.10), we have

lim
p→1

Pr(wi = 1|p, γ) = 1−
i∑

k=2

(−1)k
(
i− 1

k − 1

)
(k − 1)!∏k
l=1(l + γ)

(γ + 1)

2F1(1, 1− k; γ + 2; 1)

(a)
= 1−

i∑
k=2

(−1)k
(
i− 1

k − 1

)
(k − 1)!∏k
l=1(l + γ)

(γ + 1)
γ+1
γ+k

= 1−
i∑

k=2

(−1)k
Γ(i)

Γ(i− k + 1)

Γ(γ + 1)

Γ(γ + k)
= 1− i− 1

γ + i− 1
=

γ

γ + i− 1
,

where the second equality (a) is because

2F1(1, 1− k; γ + 2; 1) =
Γ(γ + 2)Γ(γ + k)

Γ(γ + 1)Γ(γ + 1 + k)
=

(γ + 1)Γ(γ + 1)Γ(γ + k)

Γ(γ + 1)(γ + k)Γ(γ + k)
=

γ + 1

γ + k
.

Notice that γ
γ+i−1 is the probability of generating a new sample θi /∈ {θ1, · · · ,θi−1}, i.e.,

from the base measure, in DP.

A.1.10 Proof Theorem 4

To show Pr(wi = 1|p, γ) > γ
γ+i−1 , it is sufficient to show that 1− γ

γ+i−1 > 1−Pr(wi = 1|p, γ),

or
i− 1

γ + i− 1
>

i∑
k=2

(−1)k
(
i− 1

k − 1

)
(k − 1)!∏k
l=1(l + γ)

(γ + 1)pk−1

2F1(1, 1− k; γ + 2; p)
.
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First, notice that the hypergeometric function 2F1(1, 1 − k; γ + 2; p) is monotonically de-

creasing with respect to p since

d

dp2
F1(1, 1− k; γ + 2; p) = −(k − 1)2F1(2, 2− k; γ + 3; p)

γ + 2

= −(k − 1)(1− p)γ+k−1
2F1(γ + 1, γ + k + 1; γ + 3; p)

γ + 2
< 0,

with 2F1(1, 1−k; γ+2; 0) = 1 and 2F1(1, 1−k; γ+2; 1) = γ+1
γ+k . As a result, 1

2F1(1,1−k;γ+2;p)

is monotonically increasing with p, with maximum at p → 1, and

lim
p→1

1

2F1(1, 1− k; γ + 2; p)
=

γ + k

γ + 1
.

Next, when substituting this maximum for 2F1(1, 1− k; γ + 2; p), it can be shown that

i− 1

γ + i− 1
−

i∑
k=2

(−1)k
(
i− 1

k − 1

)
(k − 1)!∏k
l=1(l + γ)

(γ + 1)pk−1

2F1(1, 1− k; γ + 2; p)

>
i− 1

γ + i− 1
−

i∑
k=2

(−1)k
(
i− 1

k − 1

)
(k − 1)!∏k
l=1(l + γ)

(γ + 1)pk−1(γ + k)

γ + 1

=
i− 1

γ + i− 1
−

i∑
k=2

(−1)k
Γ(i)

Γ(i− k + 1)

Γ(γ + 1)

Γ(γ + k)
pk−1

=
i− 1

γ + i− 1
− (i− 1)2F1(1, 2− i; γ + 2; p)p

γ + 1
.

Now, for p · 2F1(1, 2− i; γ+2; p), from the property of hypergeometric function, we have

0 · 2F1(1, 2− i; γ +2; 0) = 0 · 1 = 0, and 1 · 2F1(1, 2− i; γ +2; 1) =
Γ(γ+2)Γ(γ+i−1)
Γ(γ+1)Γ(γ+i)

= γ+1
γ+i−1 .

In addition, we have

d

dp2
F1(1, 2− i; γ + 2; p)p = 2F1(2, 2− i; γ + 2; p)

112



= (1− p)γ+i−2
2F1(γ, γ + i; γ + 2; p) > 0,

and therefore, p · 2F1(1, 2− i; γ+2; p) monotonically increases with p, is equal to 0 if p → 0,

and is equal to γ+1
γ+i−1 if p → 1. Consequently, for p ∈ (0, 1), we have

i− 1

γ + i− 1
− (i− 1)2F1(1, 2− i; γ + 2; p)p

γ + 1
>

i− 1

γ + i− 1
− i− 1

γ + i− 1
= 0.

A.1.11 Additional Details on Posterior Inference

More details on the slice-efficient sampler To sample β′k conditional on the other

parameters and data, we use an Metropolis-Hastings (MH) step to sample from

p(β′k| · · · ) ∝
∏

{(j,l);j=1,...,J, l≥k, π′jl ̸=0}

[
π′jl

α0βl−1(1−π′jl)
α0(1−

∑l
s=1 βs)−1

B(α0βl,α0

(
1−
∑l

s=1 βs

) ]
× (1− β′k)

γ−1

(A.1.11)

where βk = β′k
∏k−1

l=1 (1 − β′l). In addition, we use a uniform distribution as the proposal

density function: β′kprop
∼ Unif(β′kcurr

−ϵ, β′kcurr
+ϵ), where β′kprop

is the proposal, β′kcurr
is the

β′k in current iteration, and ϵ ∈ (0, 1) is the step size. If β′kprop
< 0, we set β′kprop

= |β′kprop
|,

and if β′kprop
> 1, we set β′kprop

= 2 − β′kprop
. It can be shown the proposal density is

symmetric.

To sample pj with a prior of pj ∼ Beta(a, b), we have

p(pj | · · · ) ∝ p

∑
k 1(π

′
jk ̸=0)+a−1

j (1− pj)
∑

k I(π
′
jk=0)+b−1

.

Denoting mj0 =
∑K∗

k=1 I(π
′
jk = 0) the number of zero weights, we can sample pj as

pj | · · · ∼ Beta(a+K∗ −mj0, b+mj0)
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If we assume that the concentration parameters α0 and γ are random with gamma priors,

we can sample them using the procedure described in Escobar and West [1995] and Teh

et al. [2004].In Teh et al. [2004], the authors show that the full conditional of α0 and γ is

based on a matrix W = {wjk; j = 1, . . . , J, k ≥ 1} that records the number of tables in

restaurant j serving dish k according to the Chinese restaurant franchise process, and the

posterior of this matrix depends only on Z and β. We use equation (40) of Teh et al. [2004]

to construct a latent matrix W and then follow the same method as the HDP to sample

both concentration parameters.

Label switching As shown in the manuscript, we use the ECR algorithm of Papastamoulis

and Iliopoulos [2010] to resolve the issue of label switching. This algorithm post-processes the

MCMC samples using label permutations. The idea behind ECR is based on the invariance

of likelihood with respect to the permutation of component labels.

For each MCMC iteration with label matrix Z(m) = {z(m)
ij ; i = 1, . . . , nj , j = 1, . . . , J},

z
(m)
ij ∈ {1, · · · , K(m)}, where the superscript (m) denotes the mth MCMC iteration, we can

form a partition of the N =
∑J

j=1 nj observations based on Z(m). With slightly abuse of no-

tation, we denote the corresponding unique labels of Z(m) as t(m) = {t(m)
1 , · · · , t(m)

K(m)}, t
(m)
k ∈

{1, · · · , K(m)}. For example, suppose we have a sample of N = 7 observations across

J = 2 groups, y =

y11 y21 y31

y12 y22 y32 y42

, and two iterations of MCMC samples, i.e.,

m = 1 and m = 2. Assume in the MCMC samples, both partition the observations

into the same 3 clusters, i.e., K(1) = K(2) = 3, Cluster A = {y11, y12, y22},Cluster B =

{y21, y31}, and Cluster C = {y32, y42}, according to their corresponding Z(1) and Z(2).

However, in each of the two MCMC iterations, different labels of t(1) = {1, 2, 3}, with

Z(1) =

1 2 2

1 1 3 3

, and t(2) = {2, 1, 3}, with Z(2) =

2 1 1

2 2 3 3

 are assigned to the

observations. Thus, there is a switched label of Cluster A and Cluster B through m = 1
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and m = 2. To resolve the label-switching issue, the method finds a permutation of labels

at each MCMC iteration, denote as τ (m)(t(m)), such that, compare to a reference label, say

t(1), τ (2)(t(2)) = t(1) = {1, 2, 3}.

Specifically, the ECR method first picks an MCMC sample from one iteration (e.g.,

one close to MAP) as the reference label. Then, the method iterates over each MCMC

sample of parameters of interest to find a random permutation of labels corresponding to

the equivalent allocation of the reference label. We then switch the labels accordingly for all

model parameters related to the cluster labels, i.e., label matrix Z, MCMC samples of cluster

weights {πjk}, and cluster means {ϕk}. The ECR method is implemented in R package

label.switching [Papastamoulis, 2015]. We use ECR to relabel the MCMC samples of the

weights. After permuting the weights according to the result of ECR, we then explore the

MCMC samples of the permuted weights for all j groups to learn the common and unique

clusters in the groups.

Additional method to summarize common and unique clusters The second ap-

proach to summarize common and unique clusters is to use the posterior sample of the

group-specific weights π
(m)
j , j = 1, . . . , J . Specifically, in the mth MCMC iteration, de-

note the number of common clusters between groups j and j′ as ncomm({π(m)
j ,π

(m)
j′ }), and

denote the number of unique clusters in group j as nuniq(π
(m)
j ), we have

ncomm({π(m)
j ,π

(m)
j′ }) =

|π(m)
j |∑

k=1

1(π
(m)
jk ̸= 0 and π

(m)
j′k ̸= 0),

nuniq(π
(m)
j ) =

|π(m)
j |∑

k=1

1

π
(m)
jk ̸= 0 and

∑
j′∈{1,··· ,j−1,j+1,··· ,J}

π
(m)
j′k = 0


where | · | denotes the cardinality of the corresponding vector. Thus, the weight approach is

able to learn the same information as the Z matrix method.
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A.1.12 Slice Sampler for FSBP

Follow Kalli et al. [2011], we derive the slice sampler for PAM. From the model in manuscript,

the density function for observation yi can be rewritten as an infinite mixture

fξ(yi, ui|zi, {ϕk; k ≥ 1}, {πk; k ≥ 1}) =
∑
k≥1

1{zi=k}1{ui<ξk}
πzi
ξzi

p(yi|ϕzi),

where ui is the latent variable for observation i, and ξk is the same quantity as defined in the

slice sampler of PAM. Thus, stochastic truncation K∗ can be similarly computed following

that of PAM.

To sample from FSBP, we iteratively sample the following parameters:

1. ui ∼ Unif(0, ξzi),

2. stick-breaking weight π′k for k = 1, . . . , K∗,

3. the indicator zi with Pr(zi = k| . . .) ∝ 1{ui<ξk}
πk
ξk
p(yi|ϕk), and

4. the atom locations ϕk| · · · ∝
∏

{i;zi=k,i=1,...,n}N(yi|ϕk)pH(ϕk).

To sample π′k, we can use a MH step, where the full condition is

p(π′k| · · · ) ∝
[
(pπ′k)

mk(1− pπ′k)
∑K∗

s=k+1ms

]
f(π′k)

∝ (π′k)
mk+a−1(1− pπ′k)

∑K∗
s=k+1ms(1− π′k)

b−1.

Here, mk =
∑n

i=1 1(zi = k), and f(π′k) is the density function of the prior for π′k as defined

in Section 3.3. The same proposal density for β′k (discussed in subsection A.1.11) can be

used.

Lastly, if we place a Beta prior on p, then conditional on {π′k}, p can be similarly sampled

with another MH step and the same proposal. The other hyperparameter, γ, can also be
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straight-forwardly sampled as in PAM (discussed in subsection A.1.11). The entire sampler

is presented in Algorithm 2.

Algorithm 2 Slice Sampler for FSBP
1: for m = 1, · · · ,M do

2: Sample each ui from ui ∼ Unif(0, ξzi) and find K∗.

3: Sample all π′k for k = 1, · · · , K∗ with MH step.

4: Sample p with MH step.

5: Sample zi from the following full condition:

p(zi = k| · · · ) ∝ 1{ui<ξk}
πk
ξk

p(yi|ϕk)

6: Sample ϕk from a conjugate NIG.

7: end for

A.1.13 Additional Distributions of Simulated Data in Section 6

Additional simulation data and results Table A.1.2 shows the cluster mean and weight

in the simulation setup for Case 2 of Scenario 1.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Mean -4 -2 0 2 4

Weight

Group 1 0 0.8 0.2 0 0

Group 2 0.3 0 0.1 0.6 0

Group 3 0 0 0.2 0 0.8

Table A.1.2: Simulation truth of cluster means and weights for Case 2 of Scenario 1. Note
that cluster 3 is the common cluster among all groups, while the other clusters are unique
to their corresponding groups.

Figure A.1.5 shows the data distribution of one randomly selected sample, with a sample
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size of 150, in Case 3 of Scenario 1. Note that the titles G1 to G6 refer to Groups 1 to 6,

respectively.

Figure A.1.5: Histogram of data distribution for randomly selected sample with sample size
of 150 in Case 3 of Scenario 1. G1 to G6 means Groups 1 to 6, respectively.

Table A.1.3 shows the cluster means and weights in the simulation setup for the multi-

variate data in Scenario 2.
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Figure A.1.6: Posterior density estimation using CAM (first column), HDP (second column),
and PAM (third column) for a randomly selected dataset in Case 1 of Scenario 1. Each row
corresponds to a specific group. The red lines represent the truth, the grey lines indicate
the posterior density estimated in each MCMC iteration, and the black lines represent the
point-estimate of the posterior density.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Mean
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3
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

6

−4

−6
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Weight

Group 1 0.2 0.2 0.2 0.2 0.2

Group 2 0.3 0 0.5 0.2 0

Group 3 0 0.6 0.4 0 0

Table A.1.3: Simulation truth of cluster means and weights for Scenario 2 in simulation.
Here, cluster 3 is the common cluster shared among all groups.

Table A.1.6 shows the estiamted posterior density of a randomly selected sample for Case

1 in Scenario 1.

Table A.1.4 shows the performance of CAM, HDP, and PAM over 30 datasets for each

sample sizes of Case 3 in Scenario 1.
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Sample sizes Metrics CAM HDP PAM Truth

nA = 50

Number of clusters in all groups 4.03 (0.49) 3.93 (0.53) 4.93 (0.87) 6

ARI 0.90 (0.05) 0.87 (0.05) 0.87 (0.07)

NFD 0.07 (0.03) 0.04 (0.02) 0.06 (0.02)

nA = 100

Number of clusters in all groups 4.67 (0.61) 4.00 (0.59) 5.67 (0.71) 6

ARI 0.93 (0.04) 0.87 (0.05) 0.91 (0.04)

NFD 0.07 (0.02) 0.04 (0.02) 0.04 (0.02)

nA = 150

Number of clusters in all groups 4.97 (0.49) 4.27 (0.58) 5.97 (0.62) 6

ARI 0.95 (0.02) 0.90 (0.04) 0.95 (0.03)

NFD 0.07 (0.02) 0.03 (0.01) 0.02 (0.01)

nB = 10

Number of clusters in all groups 4.17 (0.75) 4.23 (0.50) 5.77 (0.82) 6

ARI 0.79 (0.08) 0.76 (0.08) 0.73 (0.06)

NFD 0.08 (0.02) 0.07 (0.03) 0.09 (0.02)

nB = 20

Number of clusters in all groups 4.40 (0.56) 4.30 (0.65) 6.00 (0.59) 6

ARI 0.83 (0.08) 0.78 (0.09) 0.82 (0.06)

NFD 0.08 (0.02) 0.06 (0.03) 0.06 (0.02)

nB = 40

Number of clusters in all groups 5.43 (0.50) 4.33 (0.61) 6.17 (0.38) 6

ARI 0.93 (0.05) 0.82 (0.07) 0.94 (0.05)

NFD 0.05 (0.02) 0.05 (0.02) 0.02 (0.01)

Table A.1.4: Simulated univariate data in Case 3 of Scenario 1. Clustering performance
for CAM, HDP, and PAM are evaluated according to the number of total estimated clusters
(truth = 6 clusters), the Adjusted Rand Index (ARI), and the normalized Frobenius distance
(NFD). Entries are Mean (SD) over 30 datasets.

Table A.1.5 shows the estimated number of clusters, common clusters, and unique clusters

for the sample size of nA = 150 in Case 3 of Scenario 1. For simplicity, except for all groups,

the common clusters reported use Group 6 as a reference group, and measures the common

clusters between Groups 1 to 5 with Group 6.
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Metrics CAM HDP PAM Truth

Number of clusters

G1 1.00 (0.00) 1.00 (0.00) 1.03 (0.18) 1

G2 2.00 (0.00) 2.00 (0.00) 2.00 (0.00) 2

G3 3.30 (0.47) 3.00 (0.00) 3.03 (0.18) 3

G4 4.00 (0.53) 3.33 (0.48) 3.93 (0.25) 4

G5 4.43 (0.50) 3.33 (0.48) 4.13 (0.57) 5

G6 4.60 (0.62) 3.17 (0.46) 4.53 (0.68) 6

Common clusters

All Groups 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1

G6 and G5 4.43 (0.50) 3.13 (0.35) 3.47 (0.68) 5

G6 and G4 3.70 (0.38) 3.00 (0.26) 3.10 (0.66) 4

G6 and G3 3.17 (0.38) 2.67 (0.48) 2.90 (0.31) 3

G6 and G2 2.00 (0.00) 2.00 (0.00) 1.96 (0.18) 2

G6 and G1 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1

Uniqe clusters

G1 0.00 (0.00) 0.00 (0.00) 0.03 (0.18) 0

G2 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0

G3 0.00 (0.00) 0.00 (0.00) 0.03 (0.18) 0

G4 0.17 (0.38) 0.00 (0.00) 0.63 (0.56) 0

G5 0.00 (0.00) 0.00 (0.00) 0.53 (0.51) 0

G6 0.13 (0.35) 0.03 (0.18) 0.90 (0.40) 1

Table A.1.5: The estimated number of clusters, common, and unique clusters for simulated
univariate data in Case 3 of Scenario 1, when the sample size is nA = 150. Note that except
all groups, the estimated number of common clusters use Group 6 as a reference. Entries
are Mean (SD) over 30 datasets.

Table A.1.6 shows the models’ performance on the multivariate data in Scenario 2.
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Sample sizes Metrics CAM HDP PAM Truth

nj = 50

Number of clusters in all groups 5.40 (1.13) 5.50 (0.97) 4.93 (0.64) 5

ARI 0.90 (0.06) 0.86 (0.11) 0.89 (0.08)

NFD 0.05 (0.03) 0.05 (0.02) 0.03 (0.03)

nj = 100

Number of clusters in all groups 5.37 (0.71) 4.90 (0.76) 5.07 (0.26) 5

ARI 0.95 (0.04) 0.91 (0.07) 0.96 (0.02)

NFD 0.04 (0.02) 0.04 (0.02) 0.01 (0.01)

nj = 200

Number of clusters in all groups 5.04 (0.19) 4.93 (0.47) 5.03 (0.18) 5

ARI 0.97 (0.01) 0.96 (0.02) 0.97 (0.01)

NFD 0.03 (0.02) 0.01 (0.01) 0.01 (0.00)

Table A.1.6: Simulated multivariate data in Scenario 2. Clustering performance for CAM,
HDP, and PAM evaluated according to the number of total estimated clusters (truth = 5
clusters), the Adjusted Rand Index (ARI), and the normalized Frobenius distance (NFD).
The entries are Mean (SD) over 30 datasets.

Table A.1.7 shows the performance of FSBP and DP on the univariate data in Scenario

3.

A.1.14 Additional Distributions and Results of Microbiome Population in

Section 7.1

Figure A.1.8 shows the histogram of OTU counts for the four randomly selected individuals

in the analysis of the microbiome dataset.
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Figure A.1.7: Estimated posterior density for DP (top-left) and FSBP (top-right), along
with histograms depicting the estimated number of clusters (bottom plots). FSBP estimates
are based on Wade and Ghahramani [2018] using posterior samples. Grey lines represent
the posterior mean for each simulated dataset, blue lines show the average of the posterior
means across the 30 simulated datasets, and the red dashed lines indicate the truth.

123



Figure A.1.8: Histograms of the microbiome population of the four selected individuals.

Figure A.1.9 shows barplots of the taxa counts (TC) of OTUs grouped by eight estiamted

clusters as well as by both cluster and individuals.

Figure A.1.9: Boxplots of microbiome abundance counts stratified by clusters (Left subplot)
and by both clusters and individuals (Four right subplots).

A.1.15 Additional Results of Warts Dataset Analysis in Section 7.2

Figure A.1.10 below shows the cluster membership of each patient of the warts dataset.
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Figure A.1.10: Estimated cluster membership of patients in the warts dataset. The cluster
labels are shown with different colors, across two groups indicated by the circles and triangles.
The clustering result is based on four covariates of area, age, number of warts, and time
elaspsed until treatment. We plot three of them: Area, Age, and number of warts (NW).
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A.2 Appendix to “PAM-HC: A Bayesian Nonparametric

Construction of Hybrid Control for Randomized Clinical

Trials Using External Data"

A.2.1 Additional Simulation Results

Figures A.2.1 and A.2.2 are the density plots of covariates for the randomly selected example

dataset from Scenarios 2 and 3, respectively. Each row represents a cluster, each column

represents a dimension of the multivariate covariate, and each color represent a different

treatment group (treatment arm, control arm, or the external data).

Tables A.2.1 and A.2.2 show the cluster-specific treatment effects for each scenario for

the continuous and binary outcomes, respectively.

Table A.2.3 shows the estimated number of clusters, the ARI, and the NFD by PAM for

each scenario in the simulation study.

Tables A.2.4 and A.2.5 show the estimated overall treatment effects with the baseline

model, PSCL, and PAM-HC for each simulation scenario for the continuous and binary

outcomes, respectively.

126



Figure A.2.1: The covariate density plots of one simulated data in Scenario 2. The rows
represent three clusters estimated by PAM-HC.
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Figure A.2.2: The covariate density plots of one simulated data in Scenario 3. The rows
represent three clusters estimated by PAM-HC.
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Sc Cluster specific treatment effect Overall
treatment effectCluster 1 Cluster 2 Cluster 3

Sc 1

0.180.18 (0.03) −0.090.21 (0.01) 0.230.18 (0.26) 0.120.11 (0)
1.270.18 (1.08) −0.020.22 (0.05) 2.220.18 (2.24) 1.220.12 (1)
1.990.18 (1.97) 0.810.21 (0.86) 2.620.19 (2.60) 1.870.12 (2)
3.140.17 (3.14) 2.040.21 (2.02) 4.170.19 (4.13) 3.170.12 (3)

Sc 2

−0.100.17 (-0.01) −0.160.23 (-0.19) −0.140.23 (-0.14) −0.130.11 (0)
0.950.18 (0.93) −0.080.24 (-0.22) 1.870.22 (1.82) 0.760.13 (1)
1.990.20 (1.83) 1.330.21 (1.28) 3.160.21 (3.10) 2.010.13 (2)
3.300.19 (3.24) 2.040.21 (1.91) 4.040.22 (3.94) 2.980.12 (3)

Sc 3

−0.110.23 (-0.12) −0.180.23 (-0.19) −0.110.17 (0.03) −0.130.11 (0)
0.740.24 (0.82) −0.200.23 (-0.22) 1.520.20 (1.99) 0.760.13 (1)
1.760.26 (1.92) 1.320.22 (1.28) 2.710.21 (3.06) 2.020.12 (2)
2.920.25 (3.12) 1.950.21 (1.91) 3.850.20 (4.08) 2.970.13 (3)

Table A.2.1: Estimated cluster-specific treatment effects for selected examples with different
values of true ∆ in each of the three scenarios using continuous outcome in the simulation.
The entries for the three columns, Cluster 1, Cluster 2, and Cluster 3, are posterior meanSD
(observed cluster-specific treatment effects). The entries for the last column are posterior
meanSD (truth).

Sc Cluster specific treatment effect Overall
treatment effectCluster 1 Cluster 2 Cluster 3

Sc 1

0.060.09 (0.07) −0.010.04 (0.00) 0.000.03 (0.00) 0.020.04 (0.00)
0.250.09 (0.23) 0.040.04 (0.03) 0.010.03 (0.01) 0.110.04 (0.09)
0.330.08 (0.35) 0.040.05 (0.05) 0.010.02 (0.00) 0.140.03 (0.16)
0.480.07 (0.50) 0.180.07 (0.12) 0.020.03 (0.01) 0.240.04 (0.20)

Sc 2

0.040.09 (0.01) −0.010.03 (0.00) 0.020.03 (0.01) 0.020.03 (0.00)
0.220.09 (0.19) 0.000.06 (0.01) 0.010.02 (0.02) 0.080.04 (0.09)
0.360.08 (0.33) 0.090.05 (0.08) 0.020.03 (0.01) 0.160.04 (0.16)
0.410.08 (0.39) 0.140.07 (0.12) 0.010.02 (0.02) 0.190.04 (0.20)

Sc 3

−0.090.11 (-0.10) −0.030.04 (-0.04) 0.080.08 (0.01) 0.000.04 (0.00)
0.150.12 (0.10) 0.000.03 (0.00) 0.120.08 (0.03) 0.080.04 (0.09)
0.360.11 (0.27) −0.010.05 (-0.01) 0.160.08 (0.01) 0.140.04 (0.16)
0.470.10 (0.36) 0.090.05 (0.03) 0.200.07 (0.10) 0.220.04 (0.20)

Table A.2.2: Estimated cluster-specific treatment effects for selected examples with different
values of true ∆ in each of the three scenarios using binary outcome in the simulation. The
entries for the three columns, Cluster 1, Cluster 2, and Cluster 3, are posterior meanSD
(observed cluster-specific treatment effects). The entries for the last column are posterior
meanSD (truth).
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N Sc Clusters ARI NFD

300
Sc 1 3.910.46 0.740.13 0.090.06
Sc 2 4.010.46 0.770.16 0.080.05
Sc 3 3.030.36 0.750.16 0.090.07

450
Sc 1 4.040.20 0.810.03 0.060.01
Sc 2 4.020.20 0.840.07 0.050.02
Sc 3 3.090.32 0.830.05 0.060.02

Table A.2.3: Clustering performance for PAM-HC evaluated according to the number of
total detected clusters (truth = 4 clusters for Sc 1 and Sc 2; 3 clusters for Sc 3) based on the
estimated optimal clustering, the adjusted Rand index (ARI), and the normalized Frobenius
distance (NFD). The entries are meanSD over 100 datasets.

N Sc Method True ∆ = 0 True ∆ = 1 True ∆ = 2 True ∆ = 3

∆̂ SD MSE ∆̂ SD MSE ∆̂ SD MSE ∆̂ SD MSE

300

Sc 1

Baseline -0.08 0.58 0.35 0.92 0.56 0.32 1.92 0.58 0.35 2.92 0.56 0.32
PSCL1 0.01 0.20 0.04 1.02 0.17 0.03 2.01 0.19 0.04 3.02 0.17 0.03
PSCL2 0.44 0.45 0.40 1.46 0.44 0.40 2.44 0.44 0.40 3.45 0.43 0.39
PSCL3 0.08 0.33 0.12 1.09 0.31 0.11 2.08 0.33 0.12 3.09 0.31 0.11

PAM-HC 0.03 0.31 0.10 1.04 0.30 0.10 2.03 0.31 0.10 3.03 0.31 0.10

Sc 2

Baseline -0.09 0.58 0.34 0.92 0.57 0.34 1.91 0.58 0.34 2.92 0.57 0.34
PSCL1 -0.04 0.36 0.13 0.97 0.34 0.12 1.96 0.36 0.13 2.97 0.34 0.12
PSCL2 -0.53 0.31 0.38 0.47 0.30 0.37 1.46 0.30 0.38 2.46 0.31 0.38
PSCL3 -0.45 0.35 0.33 0.55 0.35 0.32 1.56 0.35 0.33 2.55 0.35 0.32

PAM-HC -0.08 0.28 0.09 0.94 0.30 0.09 1.92 0.28 0.09 2.93 0.30 0.09

Sc 3

Baseline -0.09 0.58 0.34 0.91 0.56 0.32 1.91 0.58 0.34 2.91 0.56 0.32
PSCL1 -0.09 0.16 0.03 0.92 0.16 0.03 1.91 0.16 0.03 2.92 0.16 0.03
PSCL2 -0.49 0.31 0.33 0.54 0.29 0.30 1.51 0.32 0.34 2.53 0.29 0.31
PSCL3 -0.15 0.23 0.08 0.86 0.22 0.07 1.85 0.23 0.08 2.86 0.22 0.07

PAM-HC -0.03 0.22 0.05 0.98 0.22 0.05 1.97 0.22 0.05 2.98 0.22 0.05

450

Sc 1

Baseline -0.09 0.45 0.21 0.90 0.48 0.24 1.89 0.47 0.23 2.89 0.47 0.24
PSCL1 0.05 0.12 0.02 1.03 0.14 0.02 2.03 0.14 0.03 3.02 0.13 0.02
PSCL2 0.48 0.33 0.34 1.46 0.35 0.34 2.46 0.34 0.32 3.46 0.35 0.33
PSCL3 0.14 0.22 0.07 1.13 0.23 0.07 2.12 0.22 0.06 3.12 0.23 0.07

PAM-HC 0.02 0.14 0.02 1.00 0.16 0.02 2.00 0.14 0.02 2.99 0.15 0.02

Sc 2

Baseline -0.08 0.46 0.22 0.91 0.48 0.24 1.90 0.48 0.24 2.90 0.48 0.24
PSCL1 -0.04 0.24 0.06 0.95 0.25 0.07 1.94 0.25 0.07 2.94 0.26 0.07
PSCL2 -0.46 0.28 0.29 0.53 0.28 0.30 1.52 0.30 0.32 2.52 0.30 0.32
PSCL3 -0.40 0.28 0.24 0.58 0.30 0.26 1.58 0.30 0.27 2.57 0.30 0.27

PAM-HC -0.00 0.17 0.03 0.99 0.18 0.03 1.97 0.20 0.04 2.97 0.19 0.04

Sc 3

Baseline -0.09 0.49 0.25 0.90 0.50 0.27 1.88 0.50 0.27 2.89 0.51 0.27
PSCL1 -0.08 0.11 0.02 0.90 0.12 0.02 1.90 0.13 0.03 2.90 0.12 0.03
PSCL2 -0.44 0.28 0.25 0.55 0.28 0.26 1.54 0.31 0.27 2.54 0.27 0.27
PSCL3 -0.16 0.18 0.06 0.82 0.19 0.07 1.82 0.20 0.07 2.81 0.23 0.07

PAM-HC 0.02 0.24 0.07 1.00 0.23 0.07 1.99 0.24 0.08 2.99 0.23 0.06

Table A.2.4: Simulation results based on continuous outcome for PAM-HC, baseline method,
and three versions of PSCL methods. Here ∆̂ is the average posterior mean of the overall
treatment effect across 100 simulated trials.
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N Sc Method True ∆ = 0.00* True ∆ = 9.42* True ∆ = 15.67* True ∆ = 19.52*
∆̂* SD MSE* ∆̂* SD MSE* ∆̂* SD MSE* ∆̂* SD MSE*

300

Sc 1

Baseline -0.37 0.06 0.35 5.69 0.06 0.50 12.60 0.06 0.50 17.73 0.06 0.38
PSCL1 -0.24 0.02 0.05 6.18 0.03 0.20 12.77 0.03 0.16 18.25 0.03 0.11
PSCL2 3.15 0.04 0.26 9.57 0.05 0.22 16.13 0.04 0.19 21.57 0.04 0.23
PSCL3 0.41 0.03 0.11 6.90 0.04 0.20 13.48 0.03 0.17 19.02 0.03 0.12

PAM-HC 0.29 0.03 0.11 6.65 0.04 0.23 13.14 0.04 0.22 18.52 0.04 0.16

Sc 2

Baseline -0.34 0.06 0.37 5.85 0.06 0.49 12.72 0.06 0.48 18.04 0.06 0.39
PSCL1 -4.56 0.04 0.37 1.76 0.04 0.76 8.40 0.04 0.73 13.94 0.04 0.48
PSCL2 -4.54 0.04 0.32 1.78 0.03 0.68 8.50 0.03 0.64 13.84 0.03 0.42
PSCL3 -6.08 0.04 0.56 0.25 0.04 1.01 6.99 0.04 0.97 12.42 0.04 0.70

PAM-HC -0.61 0.03 0.12 5.67 0.03 0.26 12.25 0.03 0.26 17.69 0.03 0.16

Sc 3

Baseline -0.48 0.06 0.34 6.73 0.06 0.51 12.50 0.06 0.46 17.78 0.06 0.39
PSCL1 -0.34 0.02 0.06 6.17 0.03 0.18 12.68 0.03 0.16 18.23 0.03 0.09
PSCL2 -4.01 0.03 0.25 2.60 0.03 0.58 9.01 0.03 0.55 14.65 0.03 0.33
PSCL3 -0.50 0.02 0.06 6.08 0.03 0.18 12.51 0.03 0.17 18.14 0.03 0.08

PAM-HC -0.30 0.03 0.08 6.08 0.03 0.20 12.49 0.03 0.20 17.95 0.03 0.13

450

Sc 1

Baseline -0.51 0.05 0.23 5.93 0.05 0.37 12.68 0.05 0.31 17.89 0.05 0.28
PSCL1 -0.01 0.02 0.06 6.52 0.02 0.14 13.22 0.02 0.10 18.61 0.02 0.07
PSCL2 3.36 0.04 0.25 9.92 0.04 0.14 16.51 0.03 0.12 21.96 0.03 0.17
PSCL3 0.75 0.03 0.09 7.35 0.03 0.14 14.02 0.02 0.09 19.42 0.03 0.07

PAM-HC 0.32 0.03 0.08 6.86 0.02 0.13 13.41 0.02 0.10 18.73 0.03 0.07

Sc 2

Baseline -0.57 0.05 0.24 6.04 0.05 0.37 12.77 0.05 0.31 17.95 0.05 0.28
PSCL1 -4.33 0.04 0.31 2.26 0.03 0.62 9.06 0.03 0.56 14.23 0.04 0.41
PSCL2 -4.30 0.03 0.28 2.42 0.03 0.59 9.17 0.03 0.53 14.36 0.03 0.35
PSCL3 -6.20 0.04 0.52 0.49 0.04 0.92 7.36 0.04 0.85 12.39 0.04 0.64

PAM-HC -0.22 0.03 0.08 6.40 0.03 0.17 13.08 0.03 0.14 18.18 0.03 0.10

Sc 3

Baseline -0.40 0.05 0.26 5.70 0.05 0.41 12.58 0.05 0.35 17.85 0.05 0.31
PSCL1 -0.23 0.02 0.06 6.18 0.02 0.15 12.87 0.02 0.12 18.32 0.02 0.06
PSCL2 -3.73 0.03 0.23 2.65 0.03 0.54 9.33 0.02 0.47 14.82 0.03 0.29
PSCL3 -0.43 0.02 0.05 5.96 0.02 0.18 12.64 0.02 0.14 18.06 0.02 0.08

PAM-HC 0.16 0.03 0.10 6.49 0.03 0.20 13.18 0.02 0.15 18.49 0.03 0.11
* True ∆, ∆̂, and MSE values times 100.

Table A.2.5: Simulation results based on binary outcome for PAM-HC, baseline method,
and three versions of PSCL methods. Here ∆̂ is the average posterior mean of the overall
treatment effect across 100 simulated trials.
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A.3 Appendix to “A Bayesian Estimator of Sample Size"

A.3.1 Posterior Probability of H1 for One-arm Trial

In this subsection, we show for binary, continuous with known variance, and count-data

outcomes in one-arm trial, the posterior probability of H1 is a function of evidence e as

defined in equation (4.5) and sample size n, i.e., Pr(H = H1|yn) = Pr(H = H1|e, n).

Assume θ0 is a known constant, from Table (4.1) and equation (4.5), we have the posterior

f(θ1|yn) in equation (4.3) for the three outcomes as follows:

• Binary:

f(θ1|yn) =
θ
a+nȳ
1 (1− θ1)

b+n(1−ȳ)

B(a+ nȳ, b+ n(1− ȳ))
=

θ
a+n[e+θ0]
1 (1− θ1)

b+n(1−[e+θ0])

B(a+ n[e+ θ0], b+ n(1− [e+ θ0]))
= f(θ1|e, n),

where B(·, ·) is the beta function;

• Continuous with known σ2:
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• Count-data:

f(θ1|yn) =
(b+ n)a+nȳ

Γ(a+ nȳ)
θ
a+nȳ
1 exp {−(b+ n)θ1}

=
(b+ n)a+n[e+θ0]

Γ(a+ n[e+ θ0])
θ
a+n[e+θ0]
1 exp {−(b+ n)θ1} = f(θ1|e, n),

where Γ(·) is the gamma function.
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Hence, for all three outcomes in one-arm trial, we have f(θ1|yn) = f(θ1|e, n). As a result,

when both θ0 and θ∗ are given as fixed constants, we see that the integration term in equation

(4.3) becomes a function of e and n, i.e.,

g(e, n) =

∫
θ1−θ0>θ∗

f(θ1|e, n)dθ1.

Consequently, equation (4.3) is a function of e and n:

Pr(H = H1|yn) = Pr(H = H1|e, n).

Note that e here is the sufficient statistic for yn for the three outcome types specified in this

work.
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A.3.2 Posterior Probability of H1 for Two-arm Trial with Continuous

outcome and known variance

Let ydn = {ydi ; i = 1, . . . , n} where ydi = yi1− yi0. Since yij |θj ∼ N(θj , σ
2), j = 0, 1 in model

(4.2) for continuous outcome with known variance σ2, which is common between j = 0 and

j = 1, the likelihood of ydi follows a normal distribution index by the parameters θ and 2σ2:

ydi |θ ∼ N(θ, 2σ2), i = 1, . . . , n

Let π = N(a, b) for θ, we have:

θ|H = Hj ∼ N(a, b)I(θ ∈ Hj), j = 0, 1,

and we have Pr(H = H1) = q and Pr(H = H0) = 1− q as in model (4.2).

The posterior probability of H1 is again given by equation (4.3), which we have

f(θ|yn) = f(θ|ydn) ∝ f(ydn|θ)π(θ).

Since the variance is known, and both f(.) and π(.) follows normal distribution, we have

f(θ|ydn) follows a normal distribution and is similar to the continuous with known variance

outcome in one-arm trial. Let ȳd = 1
n

∑n
i=1 y

d
i = ȳ1 − ȳ2, we have

f(θ|ydn) =
1√
2π

1
b+

n
σ2

exp

−1

2

[
1

b
+

n

σ2

](
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1
1
b +

n
σ2

[
a

b
+

nȳd

σ2

])2

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1√
2π

1
b+

n
σ2

exp

−1

2
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ne

σ2

])2
 = f(θ1|e, n),
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where by equation (4.5), ȳd = e. With an argument similar to section A.3.1, we have

Pr(H = H1|yn) = Pr(H = H1|e, n)

for the continuous with known variance outcome for two-arm trial.
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A.3.3 Posterior Probability of H1 for Two-arm Trial with Binary and

Count-data Outcomes

From section A.3.1, we see that for θj , j = 0, 1, we have f(θj |yn) = f(θj |ȳj , n) for both the

binary and count-data outcomes. Hence, we have

f(θ|yn) = f(θ0|y0n)f(θ1|y1n) = f(θ0|ȳ0, n)f(θ1|ȳ1, n) = f(θ|ȳ1, ȳ0, n).
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A.3.4 BESS Algorithm 2’

Below is BESS Algorithm 2’, where ȳ1 and ȳ0 are provided instead of evidence e.

BESS Algorithm 2’ Two-Arm Trials; Binary or Count Data
1: Input: The hierarchical models in Table 4.1.
2: Input: Clinically meaningful effect size θ∗, response parameters for the treatment and

control ȳ1 and ȳ0, confidence c, prior probability q.
3: Set nmin and nmax (nmin < nmax) the smallest and largest candidate sample sizes.
4: Set n = nmin.
5: while n ≤ nmax do
6: Compute equation (4.3).
7: if condition (4.7) is true then
8: Stop and return the sample size n.
9: else

10: n = n+1
11: end if
12: end while
13: if n > nmax then
14: Return sample size is larger than nmax.
15: end if
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A.3.5 Simulation Parameters for Coherence in Section 4.4.2

Table A.3.1 shows the true parameters for data simulation in section 4.4.2 to demonstrate

coherence between BESS and Bayesian Inference.

Trial Outcome θ∗ σ2 e c n a b True θ1 True θ0

Two-arm
Binary 0.05 - 0.1 0.8 150 0.5 0.5 0.3 0.2

Continuous 0.1 0.5 0.2 0.8 71 0 10 0.8 0.6
Count-data 0.3 - 0.4 0.8 100 1 2 0.7 0.3

Table A.3.1: Parameters for BESS, estimated sample size, and simulation truth for two-arm
trial with all three outcome types. “-" means not applicable.
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A.3.6 Additional Simulation Setup and Results in Section 4.5.1

Additional simulation details and results Figure A.3.1 shows a flowchart for the sim-

ulation process in Section 4.5.1.

Figure A.3.1: Flowchart of simulation process to compare sample sizes estimated under BESS
and that of the Frequenitst method.

Table A.3.2 show the results when θ0 and θ1 are mis-specified in the standard SSE.

Evidence Confidence Planned Standard SSE Simulation
e c θ1 θ0 α 1− β sample size n α 1− β FPR FNR

0.1
0.7 0.35 0.25 0.31 0.76 240 0.31 0.96 0.25 0.05
0.8 0.35 0.25 0.20 0.84 560 0.20 1.00 0.17 0.00
0.9 0.35 0.25 0.10 0.94 1136 0.10 1.00 0.09 0.00

0.2
0.7 0.45 0.25 0.44 0.57 3 0.37 0.49 0.43 0.45
0.8 0.45 0.25 0.24 0.46 8 0.26 0.44 0.37 0.42
0.9 0.45 0.25 0.11 0.38 17 0.14 0.30 0.31 0.44

Table A.3.2: Standard SSE sample size and simulated Type I error rate, power, false positive
rate, and false negative rate when θ1−θ0 is mis-specified by the Frequentist method to match
e in BESS for two-arm trial with binary outcome.

Additional simulation details in sensitivity of prior In the previous simulation, we

assume a flat prior Beta(0, 0) for BESS. In particular, this prior is used to find the sample

size as well as to compute Pr(H = H1|yn) for each simulated trial. In Morita et al. [2008],

the authors show that the prior effective sample size of Beta(a, b) for a binomial likelihood
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is quantified as (a+ b). Therefore, Beta(0, 0) is considered noninformative in that it includes

no prior information for the posterior inference.

However, BESS can accommodate prior information, if available, as part of sample size

estimation. Assuming there exist n0 patients per arm as prior data, we demonstrate the

sensitivity of incorporating these prior information through simulation. First consider the

simulation process for a single trial with the following two steps: 1) generating the prior

data, 2) assume evidence e = 0.15 and c = 0.8, estimate the sample size via BESS using the

informative priors constructed from the prior data. For step 1, assuming there are n0 = 10

external patients data per arm that is available to be incorporated, we generate these prior

data similar to the simulation process in section 4.5.1 with θ1 = 0.4 and θ0 = 0.25. Denote

the generated data y0j = {y0ij ; i = 1, . . . , n0}, j = 1, 0 as the binary outcomes of these 10

patients’ external data for the treatment and the control arms, respectively. We consider an

informative prior for BESS as

(θ1, θ0)|H = Hj ∼
2∏

j=1

Beta

( n0∑
i=1

y0ij , n0 −
n0∑
i=1

y0ij

)
I{(θ1, θ0) ∈ Hj}.

We find sample size via BESS’s algorithm 2 with the informative prior, e, and c. Following

this process, we simulate 1,000 trials and compute the average sample size to compare to

BESS with vague prior.

140



A.3.7 Metrics Used in Section 4.6.2

The metrics include: 1) Type I error rate, 2) Type II error rate, 3) False positive rate, and

4) False negative rate. These rates are defined below:

Type I error rate: proportion of simulated trials in which the null is true but falsely

rejected:

Type I error rate =
# reject simulation trials in null

# simulation trials in null
.

Type II error rate: proportion of simulated trials in which the alternative is true but

falsely rejected:

Type II error rate =
# accept simulation trials in alternative

# simulation trials in alternative
.

False positive rate (FPR): proportion of simulated trials in which the null is rejected but

true:

FPR =
# reject simulation trials in null

# reject simulation trials
.

False negative rate (FNR): proportion of simulated trials in which the null is accepted

but not true:

FNR =
# accept simulation trials in alternative

# accept simulation trials
.
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