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“Deep in the human unconscious is a pervasive need for a logical universe that makes sense.

But the real universe is always one step beyond logic.”

– Frank Herbert
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ABSTRACT

In this work, we analyze the ability of an automated deep learning-based model to identify

the three-dimensional spatial extent of pleural mesothelioma (PM) as presented on computed

tomography (CT) scans, employ machine learning to classify an image-based biomarker for

PM, and evaluate another model’s generalizability in the task of classifying COVID-19 based

on patients’ chest radiographs (CXRs).

PM is an aggressive form of cancer present in the pleural lining of the lung. It is usually

the result of exposure to asbestos and has a very poor prognosis. Linear measurements are the

clinical standard used in evaluating tumor response to therapy, but these measurements are

only a surrogate for tumor volume. Tumor volume must be calculated to assess tumor burden

completely and quantitatively. Determining the volume of tumor, however, is complicated

and time consuming, since discerning PM tumor on a medical image is a challenge for human

and computer observers alike due to its complex and irregular morphology.

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), an RNA virus that can

impact mammals and birds, is the virus responsible for the COVID-19 global pandemic.

The primary mode of transmission among humans is through exposure to respiratory fluids

carrying infectious virus. Before widespread use of reverse transcription polymerase chain

reaction (RT-PCR) tests, CXRs were recommended for triage, disease monitoring, and as-

sessment of concomitant lung abnormalities (e.g., consolidation, ground-glass opacities, and

pulmonary nodules).

In recent years, there has been a substantial increase in the application of artificial intel-

ligence and machine learning techniques to medical imaging. Convolutional neural networks

(CNNs), specifically, have been successfully employed for various objectives performed on

medical images (e.g., the tasks of classification and segmentation). CNNs are capable of

learning both local and global patterns of an image, which is essential to identify nuanced

disease presentations. In this work, we utilized deep learning methods to assess a novel and

xvii



automated pipeline to segment PM. From the segmentations, we obtained tumor volume

efficiently and accurately, with the potential of future applications in assessment of tumor

extent and response to therapy. Analysis of pixels within the segmented tumor regions was

valuable in determining the underlying genetics of the tumor. For example, machine learning

techniques and texture analysis applied to the segmented regions determined the mutation

status of the BRCA1-associated protein-1 (BAP1 ) gene. The BAP1 gene is a prognostic

factor in PM and can directly impact treatment options for patients. Methods for address-

ing model generalizability were also assessed for the COVID-19 work, addressing robustness

when testing different and newer datasets.

The specific aims of this work were: (1) to implement and study a deep learning model

for the automatic segmentation of tumor volumetry in PM, (2) to investigate image texture

analysis for differentiation of BAP1 mutation status, and (3) to evaluate a deep learning

model for the generalizable classification of COVID-19. Aim 1 fully investigated the perfor-

mance of the deep learning model used for PM segmentation, which better informed us of

the generated outputs by the model. Aim 2 performed texture feature analysis to determine

the somatic BAP1 mutation status based on the segmented region on a CT scan. Aim 3

evaluated the performance of a deep learning model in the task of COVID-19 classification

in order to address and develop methods to achieve model generalizability. These results

provided a novel pipeline with potential impact on the future treatment of patients pre-

senting with mesothelioma or COVID-19, expediting many of the sequential steps a patient

must undergo and improving the individualized prognostication process, which can also be

implemented for other cancers and lung abnormalities.
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CHAPTER 1

INTRODUCTION

1.1 Artificial Intelligence

The field of artificial intelligence (AI) originated in the 1950s with early computer scientists

exploring the possibility of making computers “think” and perform intellectual tasks tradi-

tionally done by humans. AI encompasses various approaches, including machine learning

(ML) and deep learning (DL) (Figure 1.1), as well as methods that do not include any learn-

ing. Though, for nearly 30 years, AI researchers believed that human-level AI could only be

achieved by humans (i.e., programmers) manually creating explicit rules for the program to

follow. These rules would mimic human intelligence by implementing logic and if-then rules.

For example, early chess programs only involved hardcoded rules designed by programmers,

which served as an example of AI but not ML. This paradigm of AI was coined symbolic AI.

Symbolic AI, however, was deemed to be insufficient as it faced limitations in solving

complex problems. This included image classification, speech recognition, and language

translation (the United States Defense Advance Research Projects Agency [DARPA] initially

wanted AI to be used to create autonomous tanks and to automate the translation of Russian

to English for intelligence operations [1]). Therefore, these shortcomings led to machine

learning.
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Figure 1.1: Visual representation of AI, ML, and DL, where each field is a subset of the
prior.

1.2 Machine Learning

For a machine to go beyond the very explicit rules defined by humans, it must be able to

learn the patterns itself to perform a specified task. For instance, in the symbolic AI model,

the rules and data were input to the machine, and answers were output. In ML, the data and

answers are provided to the machine, and the rules are then “learned,” hence, the machine

learning, or training, on the input data. The rules are created through statistical measures,

relating the given data with the answers provided.

To assess the performance of the ML algorithm, a loss function is introduced to measure

the distance between the predicted output of the algorithm to the expected output, or

“truth.” This distance can then be used to adjust the algorithm (i.e., “weights”) to improve

the results and minimize the distance. This process is the “learning” of machine learning. We

can appreciate this by visualizing the linear least squares method, a common loss function,
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as shown in Figure 1.2, which assumes the following linear system:

y⃗ = Xw⃗. (1.1)

Figure 1.2: Geometry of least squares. The schema displays the columns of dataset X,
which span the blue hyperplane. The truth label vector is projected on this hyperplane.
The distance between the weights resulting from the projection (w⃗) and nonoptimal weights
( ˜⃗w) due to a residual is also shown.

As shown in Figure 1.2, y⃗ ∈ Rn is the truth label vector, X ∈ Rn×p is the ma-

trix of features, w⃗ ∈ Rp is the weights vector, and r⃗ is the residual vector defined as

r⃗i = r⃗i(w⃗) = yi − ⟨w⃗i, x⃗i⟩, where r⃗i is the residual for i-th equation of n linear equations.

For simplicity, the span of X is reduced to two columns (p = 2), where x⃗1 and x⃗2 are the

columns of the subspace X. The vector ˆ⃗y is the orthogonal projection of y⃗ onto the subspace.

Predictions ˜⃗y with residual ˜⃗r depict nonoptimal weights as ˜⃗r is not perpendicular to X.

This can be shown by using the Pythagorean theorem: ||˜⃗r||2 = ||r⃗||2 + ||d⃗||2 → ||˜⃗r|| > ||r⃗||

as d⃗ > 0, which indicates that the weights resulting in ˜⃗y cannot be optimal as the distance

between y⃗ and hyperplane X is not minimized and ||˜⃗r||2 is not as small as possible (i.e.,
3



there is no right angle with the hyperplane). Therefore, we aim to solve for the weights that

minimize the following residual:

||r⃗||2 =
n∑
i

|ri(wi)|2. (1.2)

This results in this unique, closed form solution for rank(X) = p (i.e., X has p linearly

independent columns):

ˆ⃗w = argmin
w⃗

||y⃗ −Xw⃗||22 (1.3a)

= (X⊤X)−1X⊤y⃗. (1.3b)

Therefore, the least squares example demonstrated how machine learning can be used to

train and learn the best weights given the input data and the answers. This example can also

be extended to implementing gradient descent, which is a method that can easily perform

convex optimization, or minimizing convex functions (Figure 1.3). Gradient descent is used

to analytically find the combination of weight values that yields the smallest possible loss

function [2]. For least squares, gradient descent is advantageous because it avoids calculating

the inverse of matrices. This can be shown by defining the convex function f(w⃗) = ||y⃗−Xw⃗||22
(Equation 1.3a) with solution w⃗∗ = (X⊤X−1)⊤y⃗ (Equation 1.3b). If f(w⃗) is expanded as:

f(w⃗) = y⃗⊤y⃗ − 2w⃗⊤X⊤y⃗ + w⃗⊤X⊤Xw⃗, (1.4)

then its gradient is easily shown to be:

∇w⃗f = 0− 2X⊤y⃗ + 2X⊤Xw⃗. (1.5)
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(a) Red dot in the center shows the intersection
of the convex function with the red hyperplane.

(b) Gradient descent starts with initial
guess w(1) and repeatedly takes steps in
the direction of the negative gradient.

Figure 1.3: Visualization of gradient descent with (a) displaying a 3D convex function that
intersects a hyperplane, where the intersection shows the lowest value the loss function can
take. The gradient descent process can be visualized in 2D in (b), with w∗ showing the
lowest value of the convex loss function f(w⃗).

Gradient descent is also favorable because of its generalizability as it is one of the most

used optimization algorithms for ML, and specifically, DL, with stochastic gradient descent

(SGD) often employed [3].

This least squares example also demonstrates how ML algorithms transform input data

to achieve the desired outputs. For example, recall the hyperplane in Figure 1.2 was the

subspace spanned by the columns of X, with ˆ⃗y as the orthogonal projection of y⃗ onto

the subspace. This displays how higher-dimensional data can have different, and often

lower-dimensional, representations. In other words, ML algorithms attempt to meaningfully

transform the data to achieve improved outputs closer to the truth. One popular method

for dimensionality reduction, i.e., representing the data into a lower dimensional subspace, is

principal component analysis (PCA). PCA creates an orthogonal projection, or transforma-

tion, of data such that the variance of the projected data is maximized along the principal

components. PCA, and dimensionality reduction in general, is an example of unsupervised

learning in ML. Unsupervised learning is the branch of ML that attempts to learn “inter-
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esting” properties of an underlying distribution of the data at hand. More formally, an

unsupervised algorithm observes several examples of random vector x⃗xx and aims to learn the

probability distribution p(x⃗xx) from which x⃗xx arose. In contrast, supervised learning also ob-

serves several examples of random vector x⃗xx, but takes into consideration the truth (or label)

vector y⃗, and learns to map the two. Therefore, the algorithm is able to predict y⃗ given

x⃗xx, p(y⃗|⃗xxx) [3]. Solving for the optimal weights in the least squares example is a display of

supervised learning.

1.2.1 Cross-validation

To validate how well a trained model performs on an unseen dataset (i.e., model generaliz-

ability) and to adjust any additional hyperparameters of the model, cross-validation (CV)

can be performed. In CV, which is a resampling procedure, the dataset is first split between

a training set and a validation (or test) set. The model then gets trained on the training

set and separately evaluated on the validation set. There are many different forms of CV.

The most common are: hold-out, k -fold, leave-one-out, stratified k -fold, and nested k -folds.

Nested k -fold CV, in particular, is done to adjust hyperparameters of the model that may

need tuning (e.g., number of estimators used by a model or number of features to select). A

visual representation of k -fold CV is shown in Figure 1.4. To address class imbalance, strat-

ified k -fold ensures that the same percentage of samples of each target class as the complete

set exists per fold. Lastly, k -fold CV and stratified k -fold CV can be performed iteratively,

where a random portion of the dataset is split for each k -fold, and that is performed for

a certain number of predefined iterations: this is called repeated k -fold. It is advised to

perform hold-out CV when there is a large dataset size, k -fold when there are few samples

for the validation to be reliable, and repeated k -fold to ensure robust performance of the

model when there is a small dataset size [2].
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Figure 1.4: Schema depicting k -fold CV. For leave-one-out CV, k would equal the number
of samples n, and n − 1 samples would be used for training, with the n-th sample used for
testing.

1.3 Deep Learning

The least squares example highlighted in Section 1.2 explained three things: 1) the idea

and importance of a loss function, 2) the versatility of gradient descent, and 3) the ability

to transform data into representations more interpretable by the model. It is imperative to

appreciate these same three concepts when discussing DL. Expounding on the third point, the

“deep” of deep learning simply refers to the number of successive layers that DL algorithms

utilize when training. Conceptually, these layers create and learn different representations

of the input data, with the number of layers on the order of tens to hundreds.

In DL, these layers learn the representations of the data through models called neural

networks. Neural networks consist of multiple layers of “nodes,” starting with an input layer,

hidden layers in the middle, and lastly, an output layer. Each node consists of a weight w⃗

multiplied with the input x⃗⊤ and summed with a “bias” factor b, which is all placed in an
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activation function σ. This output (y in Equation 1.6) becomes the input of the next layer:

y = σ(x⃗⊤w⃗ + b). (1.6)

A simple neural network is shown in Figure 1.5.

Figure 1.5: An example of a neural network with one hidden layer in blue. The values x0 = 1
and h0 = 1 are the bias terms used in the model. Of note, this figure depicts “fully connected
layers” as every input neuron is connected to every output neuron.

Without activation functions, models can only learn and represent the data in a linear

pattern, i.e., the dot product between the input and weights with an addition of the bias,

as shown in Equation 1.6. Therefore, activation functions are necessary as they expand the

ability of the layers in the model to represent the data in a nonlinear fashion. The most

common activation function in DL is the rectified linear unit (ReLU), which is used to zero

out negative values (see Figure 1.6a and Equation 1.7):

y = max(0, x). (1.7)
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The sigmoid activation function, often used for binary classification tasks (as it pertains to

the work presented in this dissertation), places arbitrary values into a [0, 1] interval (see

Figure 1.6b and Equation 1.8), outputting numbers that may be interpreted as a probability

(see Section 1.3.2):

y =
1

1 + e−x . (1.8)

(a) ReLU activation function. (b) Sigmoid activation function.

Figure 1.6: Common nonlinear activation functions used in DL algorithms.

To learn the optimal weights, DL models first undergo the “forward pass.” That is, the

neural network first makes predictions using randomly initialized weights and a set value for

the bias (typically 0) [4]. Then, the initialized weights and biases are evaluated using a loss

function (see Section 1.2). For binary classification, the network will attempt to minimize

the binary cross-entropy L:

L(yi, pi) = −(yi log(pi) + (1− yi) log(1− pi)), (1.9)

where yi is the binary indicator (0 or 1) denoting the class for the sample and pi is the

probability of the target class for that sample. In particular, SGD can be used to minimize
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the loss, similar to the gradient descent process of least squares. The SGD here is called the

optimizer. The gradients of the SGD are calculated using the backpropagation algorithm.

Collectively, the weights and biases of the model are constantly adjusted and updated to

minimize differences between predictions and truth.

1.3.1 Convolutional neural networks

Convolutions are powerful in computer vision tasks as they can capture spatial information

and local patterns presented in images. This is in contrast to Dense layers (Figure 1.5), which

only learn global patterns as inputs are reduced to flattened vectors. Because of their ability

to capture spatial information, convolutions 1) are translation invariant and 2) can capture

spatial hierarchies of patterns. In other words, once a pattern is learned by the network, it

will always recognize it. Further, spatial hierarchies are recognized through the consecutive

layers, with small local patterns such as edges being learned in the first layers, and larger

patterns made of features from the earlier layers are captured by deeper layers. Overall,

a convolutional neural network (CNN) is constructed of four types of layers: convolution,

activation function (Figure 1.6), pooling, and fully-connected (Figure 1.5).

Convolution filters are applied to images initially input to the network. These images (also

known as input feature maps) can be defined as 3D tensors, having dimensions of height by

width by depth. For RGB images, the depth corresponds to the three color channels. Medical

images only have one channel, by definition, as they are grayscale. A number of convolutions

can be applied per image, therefore, the output feature maps will no longer have depth that

corresponds to the number of color channels. Rather, the depth is arbitrary and will depend

on the number of convolution filters applied. These filters will become the weights of the

network and will learn patterns present in the image such as edges, or more complex shapes

in deeper layers, during backpropagation.
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The stride of the filter refers to how many pixels the filter slides over when applied to the

input feature maps. For example, a stride of 1 means the filters are applied in a pixel-wise

manner, as shown in Figure 1.7. A filter with stride 2 will be applied every two pixels. The

larger the stride, the smaller the output feature map becomes. (It is uncommon, however,

to have strides larger than 3 [5].) The size of the output feature map can be controlled by

zero-padding the input map, i.e., by adding a certain amount of rows and columns of zeros

around the edges of the input. Overall, the relationship between the input feature map size

(W ), convolution filter size (F ), stride (S), amount of zero-padding (P ), and the output

feature map size can be represented as: W−F+2P
S + 1. Between the sequential convolution

and activation function layers, pooling layers are typically applied on the feature maps to

reduce the dimensionality of the representations learned by the filters. Pooling layers are

usually 2×2 and can be either done using max (downsampling the feature maps by selecting

the largest value in the 2× 2 pools) or average (downsampling the feature maps by selecting

the average value in the 2× 2 pools) pooling. In contrast, “unpooling” can be performed to

upsample the feature maps to output an image of desired size.

CNNs have been used for image classification and segmentation tasks. Though, segmen-

tation can be thought of as pixel-wise classification (Figure 1.8). For semantic segmentation,

CNNs assign a prediction value per pixel for each class label in the image. For instance

segmentation, models are trained to assign prediction values for objects of the same class.

These predictions are made on the logit vectors, or the “raw” outputs, of the DL algorithm

before being input to a final activation function. The final activation functions are typically

sigmoid (Equation 1.8) or softmax. Interpretation of these prediction values is discussed

more in Section 1.3.2.
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Figure 1.7: Demonstration of a 2D vertical edge detection convolution filter operating on
an input feature map. The filter was applied with stride 1, as the second row in the figure
displays the movement across one pixel when compared to the top row. Further, no zero-
padding was applied to the input feature map, which resulted in a “valid” convolution. A
valid convolution is defined as a convolution only performed over pixels where the convolution
filter overlaps completely with the input feature map—values outside the filter have no effect
on the output feature map. The bottom row of the figure displays the output feature map
after the convolution filter is applied to the entirety of the input feature map.
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Figure 1.8: Probability maps for two potential classes (“tumor” and “no tumor”) in medical
image semantic segmentation tasks. These values would be the result of the logits input
to the final layer, i.e., activation function, of the model. Because this is a binary task, the
pixel-wise values across the two class channels will add to 1. The argmax function could be
used to return the final binary segmentation.

1.3.2 Model calibration

Model (or confidence) calibration addresses “the problem of predicting probability estimates

[that are not] representative of the true correctness likelihood” [6]. In other words, the prob-

ability associated with the predicted class label should reflect its true correctness likelihood

[6, 7]. Calibration is also important as the confidence estimates returned by the models can

be used for model interpretability. For instance, deep CNNs may be used by an autonomous

driving system to analyze real-time scenes captured by cameras [8]: the semantic segmen-

tation performed of street scenes should yield accurate detection of pedestrians and other

vehicles. It is equally crucial for the system to discern instances where these predictions

may lack reliability. Another example is the segmentation of brain tumors also using CNNs

[9]. If the CNN struggles to confidently delineate critical areas of the brain, it becomes
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imperative for a medical expert to intervene or be notified about these uncertain regions.

Therefore, semantic segmentation networks need to generate both accurate label predictions

and reliable confidence measures.

A common challenge for modern CNNs designed for semantic segmentation is that the

models often exhibit overconfidence in their predicted labels, which is due to overfitting

[6, 10, 11, 12]. However, classification models have exhibited the same behavior. Therefore,

many of the methods used for model calibration in classification tasks have translated over

for segmentation, the most popular being temperature scaling (TS), a post-hoc processing

technique [6, 13, 14]. Post-hoc processing is one methodology among many, such as regu-

larized training and Bayesian modeling [15]. A main difference between these techniques is

when the calibration is performed. For example, regularized training has calibration done

during training whereas post-hoc techniques have it performed during the validation phase,

after training, but prior to testing.

TS is an extension of Platt scaling [16], a method used for calibrating ML algorithms, not

solely deep nets. Platt scaling is a parametric approach to calibration: nonprobabilistic (i.e.,

uncalibrated) predictions of a classifier are used as features for a logistic regression model,

which is trained on the validation set to return probabilities. Specifically, Platt scaling learns

scalar parameters a, b ∈ R and outputs q̂i = σ(azi + b), where σ is the sigmoid activation

function, zi ∈ R is the model’s non-probabilistic output (known as the logit vector), and q̂i

is the calibrated probability. Parameters a and b can be optimized during a loss function,

typically the negative log-likelihood (NLL) loss, over the validation set. Of note, the learned

model weights are frozen during this stage as this calibration method is post-hoc.

Extending Platt scaling results in TS as it only uses a single scalar parameter T , the

temperature, where T > 0 for all classes. Given the logit vector zzzi for sample i, class k, and
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the softmax activation function σSM , the new confidence prediction is [6]:

q̂i = max
k

σSM(zzzi/T )
(k). (1.10)

The calculated temperature “softens” [6, 17] the output of the last activation layer with

T > 1 reducing model confidence (i.e., probability predictions), T = 1 indicating no change

to the original probability, and T < 1 increasing model confidence. Overall, as T → ∞, the

probability q̂i approaches 1/K, which indicates maximum uncertainty, and as T → 0, the

probability collapses to a “point mass” (q̂i = 1) [6]. As with Platt scaling, T is optimized

with respect to the NLL on the validation set. Importantly, since T does not change the

maximum of the softmax function (or sigmoid, as the two activation functions are equal

for binary cases), the calibrated class prediction for sample i, ŷ
′
i, is not impacted. In other

words, TS does not affect the model’s accuracy.

Translating TS for a segmentation task results in the following formulation [7]:

T ∗ = argmin
T

(
−

n∑
i=1

∑
x∈Ω

log
(
σSM (zzzi(x)/T )

(Si(x))
))

, (1.11)

where the optimal T is once more calculated by minimizing the NLL described in Equation

1.11 with respect to a hold-out validation set. The variable Ω denotes the image space, n the

number of training images, x is location, and Si(x) is the true predicted segmentation (“truth”

image) for image i at location x where x ∈ Ω. In this definition, however, temperature scaling

assumes that each image has the same temperature. Therefore, there are many different and

more advanced temperature scaling approaches, such as local TS (where Ti(x) ∈ R+ is

image and location dependent) [7], entropy-based TS (a method that scales the confidence

of a prediction according to its entropy) [14], selective TS (which introduces a binary classifier

as a selector to categorize correct and incorrect predictions for separate scaling) [15], and

attended TS (which works properly for small-size validation sets, highly accurate deep CNNs,
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and validation sets with noisy labels) [13]. The latter three methods are currently only used

for classification tasks.

1.4 Texture Feature Analysis

Medical images are highly quantitative mathematical constructs that allow for a range of

computer science and biomedical engineering investigations. The underlying numeric data

associated with pixels in an image may be explored through a variety of statistical measures

and quantitative features, which are collectively called radiomics. There are two methods to

produce quantitative features: the conventional method or with deep learning. Conventional

features—often related to the texture of an image—imply standard statistics of pixel values

such as the average gray level intensity. Conversely, deep learning quantitative features are

acquired from the convolutional layers of the deep network. This discussion will focus on

conventional methods.

While texture may be perceived qualitatively [18], it was initially quantified with pre-

defined rules certain algorithms follow (similar to rule-based algorithms used for chess, as

mentioned in Section 1.1) [19]. An early example of this rule-based implementation was used

to determine malignancy status in mammograms [20]. For example, a manual cutoff thresh-

old may be applied to a feature (e.g., spiculation), and if the feature value from a region of

interest (ROI) is lower than the threshold, the ROI is deemed benign [19, 20]. Radiologic

appearance of a tissue (e.g., dysplasia of breast parenchyma) also has been used to construct

a quantitative measure that could be used as a predictive marker for risk of malignant tumor

[21, 22, 23].

More recently, capturing texture has evolved into quantified features that are generated

using mathematical formulations. Some of these features are based on the gray level his-

togram (first-order), gray level co-occurrence matrix (GLCM), fractal analysis, Laws’ texture

energy measures, and power law spectrum [24, 25, 26, 27]. Overall, these features attempt
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to capture the coarseness, consistency, and arrangement of pixels within the image [28].

In practice, the pipeline for texture feature extraction from a medical image is as follows:

image acquisition, image preprocessing, drawing an ROI, feature extraction, feature anal-

ysis/classification, computer output [23]. Using feature values for classification follows the

same fundamental machine learning methods as discussed in Section 1.2. For instance, in

supervised learning, the extracted feature values are input to an ML algorithm with the

corresponding truth labels, and the algorithm will use the learned “rules” with which it

classifies the data. Common ML algorithms used for feature selection and classification in

medical image texture feature analysis include linear discriminant analysis (LDA), stepwise

linear regression, k -nearest neighbor, artificial neural networks (ANNs), and support vector

machines (SVMs) [19, 24, 29, 30].

As with other ML tasks, it is important to take model overfitting into consideration

[19, 31]. Since texture features can number in the hundreds [32] and thousands, which

may exceed the number of samples, the models may only optimize to the values of features

presented, reducing model generalizability (i.e., ability of the model to perform strongly on

an independent test set). This phenomenon is called the “curse of dimensionality.” Overall,

texture features have been extracted from many different imaging modalities, including chest

radiographs (CXRs), mammograms, ultrasound, and computed tomography (CT) scans.

Texture features have also been used to evaluate many different diseases. The usage of

texture analysis and/or AI on medical images to inform clinicians of pertinent information

is called computer-aided diagnosis (CADx).

1.5 The Role of AI in Medicine

AI has played a substantial role in helping radiologists in the context of diagnosis (CADx),

abnormality detection (CADe), triaging (CADt), and acquisition and optimization of images

(CADa/o) since the mid-1980s [23, 33]. While AI was first implemented to analyze lung
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and breast cancers, its reach has since been extended to include an array of diseases and

abnormalities, such as diabetic retinopathy, polycystic kidney disease, prostate cancer, and

head-and-neck cancers [34, 35]. With advancements in computer technology and processing

power, CNNs, the leading DL technique, were first introduced to medical imaging in the mid-

1990s, successfully identifying lung nodules on chest radiographs and microcalcifications on

mammograms [36, 37]. CNNs are desirable as they do not require hand-crafted features to

be calculated and recorded; CNNs learn from the inputs and truth labels provided to them

during training (Section 1.3.1), with the expectation that their performance will generalize

to novel cases. For older CADx systems, the quantitative rules were manually designed,

and image analysis was conducted. In contrast, by providing a CNN with the input data

and the expected output, the CNN constructs its own rules that help to transform the data

into meaningful results, hence the learning, as discussed in Sections 1.2 and 1.3. CNNs have

been applied to images acquired from different modalities and of different anatomic regions,

performing segmentation and classification tasks [38, 39, 40, 41]. For example, previous

studies have displayed the successful segmentation of pleural mesothelioma (PM) tumors as

displayed on CT scans [42, 43]. CNNs have also been involved with the COVID-19 pandemic,

providing diagnoses of the disease based on patients’ CXRs [44]. Accordingly, the application

of CNNs is an essential preliminary step in automated segmentation of PM, which can be used

to quickly assess tumor burden and evaluate a patient’s response to treatment. In addition,

with the abundance of medical images acquired during the pandemic, model generalizability

and robustness can be evaluated in the task of COVID-19 diagnosis.

1.6 Clinical Pipeline, Characterization, and Potential for AI in

the Assessment of Mesothelioma

Patients with PM typically first present with dyspnea and/or chest pain [45, 46]. Initial

diagnosis may involve visual assessment of CXRs, where the image often reveals a unilateral
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pleural effusion [46, 47, 48]. Diagnosis for PM is confirmed by a tumor biopsy through tho-

racoscopy [46, 49]. The biopsy also classifies the tumor histologic subtype (e.g., epithelioid,

sarcomatoid, or biphasic), as that is the most reliable prognostic factor for mesothelioma

[46, 49]. There is ongoing research toward biomarker evaluation in PM. For example, the

BRCA1-associated protein-1 (BAP1) is a deubiquitinase, controlling cell growth, cell pro-

liferation, and cell death. The BAP1 gene is of great interest in the field of mesothelioma

since it is the most mutated somatic gene in PM. BAP1 mutations can also be inherited,

and individuals with germline mutations in this gene have been widely recognized as being

predisposed to the disease and other cancers; though, studies have suggested that germline

mutations of BAP1 are associated with better prognosis for patients with mesothelioma

[50, 51].

Figure 1.9: Linear measurements made by a radiologist to quantify tumor burden. Using lon-
gitudinal summations of these measurements, patient response is evaluated and the efficacy
of treatment is assessed.

Recent clinical guidelines strongly recommend that initial staging be obtained using a

CT scan [51], as a CT scan is more sensitive and specific for imaging mesothelioma than
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a CXR [52]. Imaging studies are also essential when evaluating patients longitudinally, as

the efficacy of treatment can be determined by change in tumor burden as presented on the

images. In current clinical practice, tumor burden is captured through linear measurements

of PM, and the linear measurements are recorded on CT sections to evaluate tumor burden

(Figure 1.9). These measurements are a surrogate for tumor volume, which would offer a

more complete assessment of disease burden. Tumor volume could be calculated through

either manual or semi-automated analysis by a radiologist. For instance, the radiologist

tasked with manual analysis must segment the tumor, through manually delineating the

tumor boundary, throughout an entire CT scan (which may comprise over 200 sections). For

semi-automated analysis, the radiologist provides initial input to a computer algorithm or

modifies output produced by the computer or both.

Manual or semi-automated delineation of PM on CT scans, however, is an arduous task.

First, the morphology and presentation of mesothelioma tumor is irregular and difficult to

outline. Its appearance is also challenging to discern as there is low contrast between the

tumor and adjacent soft tissue and pleural effusion. Second, an observer must consistently

delineate the tumor across all CT scan timepoints to reliably measure change in tumor

burden, which leads to an appropriate assessment of response to therapy. Collectively, this

approach is too time-consuming and burdensome for use in the clinic. These difficulties can

be mitigated using DL, specifically CNNs. This is a crucial step in automating tumor volume

measurements as the laborious part is performed automatically, and simple pixel counting

remains for tumor volume calculations. Further, identification of the mutation status through

image analysis can help aid decision-making with regard to genetic testing, which in turn

can create a more customized plan for treatment and the preemptive assessment of family

members.
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1.7 Clinical Pipeline, Characterization, and Potential for AI in

the Assessment of COVID-19

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), an RNA virus that can

impact mammals and birds, is the virus responsible for the COVID-19 global pandemic.

The primary mode of transmission among humans is through exposure to respiratory fluids

carrying infectious virus. The virus is highly contagious and can rapidly mutate. Further,

infection with the virus has led to severe and/or fatal disease. Early detection of the dis-

ease can mitigate the symptoms, however, and patient prognosis can improve. Before the

widespread use of reverse transcription polymerase chain reaction (RT-PCR) tests, CXRs

were recommended for triage, disease monitoring, and assessment of concomitant lung ab-

normalities (e.g., consolidation, ground-glass opacities, and pulmonary nodules) [53, 54]. In

addition, CXRs are widely accessible, which makes them an ideal modality for an image-

based evaluation of the disease.

The pandemic has resulted in the acquisition of many medical images: this diversity

of images allows for a comprehensive evaluation of AI models as we are able to assess the

generalizability of the models when utilizing the various datasets available. The rapid abun-

dance of datasets, however, introduces new challenges for data curation and truth labeling.

Further, the various patient demographics and different imaging parameters should be in-

corporated when developing AI systems. Therefore, while the need for early and reliable

diagnosis of COVID-19 has been met with the use of RT-PCRs, DL can still be used for

the detection of COVID-19-related lung abnormalities as presented on CXRs. The images

also can be used to create a robust AI model, and a pipeline of data curation and model

evaluation can be established.
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1.8 Outline of Dissertation

This dissertation discusses the implementation and performance of machine and deep learn-

ing techniques in medical image analysis, as it pertains to CT scans of mesothelioma and

CXRs of COVID-19.

Chapter 2 investigates the usage of CNNs for the automated segmentation and volume

calculation of PM tumor as presented on CT scans. To evaluate the performance of the

DL model, two figures of merit are employed: percent difference of volume and the Dice

similarity coefficient. Using these two metrics, the segmentations are compared with a refer-

ence standard provided by an experienced radiologist. The segmentations produced by the

CNN are binarized at various probability thresholds to assess the impact of the thresholds.

The confidence of the CNN is also evaluated to determine whether the output probabilities

are properly calibrated. The implementation of a robust deep CNN for the segmentation of

PM tumor should result in a rapid calculation of tumor volume, which can improve patient

outcome as volume has been shown to be a more accurate metric for assessing tumor burden

and response.

Chapter 3 presents a novel methodology for the classification of somatic BAP1 mutation

based on texture features extracted from CT scans of PM patients. While the germline

BAP1 mutation has more clinical impact as patients with germline mutation have improved

survival, their family members have a 50% of inheriting the mutation, and the germline

mutation status may guide treatment decisions, this proof of concept work displays the

potential of image-based assessment of mutation status of the BAP1 gene. One study has

shown the potential of imaging genomics for somatic BAP1 mutation classification, but the

study presented in this chapter is the first to employ DL and ML algorithms in tandem,

using the former for the tumor segmentations and the latter for the classification task. The

translation of this research to germline BAP1 mutations has the potential to improve patient

prognostication and family member assessment.
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Chapter 4 assesses the performance of a separate CNN in the task of COVID-19 clas-

sification based on patient CXRs. The model had initial strong performance in predicting

COVID-19 status on the original dataset on which it trained. Though, when a larger, and

more current dataset from the same institution that provided the original data was tested,

performance significantly decreased. To investigate this discrepancy, several factors are con-

sidered to compare the two sets of data. These factors include patient demographics, clinical

factors, image acquisition dates, and quantifying model perception of the CXRs. This work

substantially contributes to the discussion of model robustness and generalizability as the

in-depth investigations provide invaluable insight on model performance.

Chapter 5 summarizes the main conclusions and potential future directions of the work

presented in this dissertation. As the common thread throughout this dissertation has been

the employment and evaluation of ML and DL algorithms for various medical imaging tasks,

possible additional research may be performed to improve the methods, especially in terms of

model generalizability and robustness to improve care for patients presenting with mesothe-

lioma and other lung abnormalities.
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CHAPTER 2

CONVOLUTIONAL NEURAL NETWORKS FOR

SEGMENTATION OF PLEURAL MESOTHELIOMA: ANALYSIS

OF PROBABILITY MAP THRESHOLDS

2.1 Introduction

Pleural mesothelioma (PM) is an aggressive form of cancer present in the pleural lining of the

lungs. It is often the result of exposure to asbestos and has a poor prognosis [55]. Computed

tomography (CT) is the most common imaging modality used to stage and assess patients

with PM [48, 56, 57, 58]. The current standard to evaluate tumor response to therapy is

the modified Response Evaluation Criteria in Solid Tumors (mRECIST) [59, 60]. Using this

protocol, clinicians obtain up to six measurements of “tumor thickness residing perpendicular

to the chest wall or mediastinum” as presented on a CT scan [59]. These guidelines were

more recently updated to mRECIST 1.1 [61] to better align with RECIST 1.1 [62].

In contrast to the linear measurements of mRECIST, manual volumetric analysis con-

ducted by radiologists can be used to better estimate tumor burden and can also be used

to obtain image-based biomarkers [63]. Further, tumor volume has displayed strong predic-

tive power in patient assessment in terms of overall and progression-free survival [64, 65];

however, acquisition of manual tumor volume is too time-consuming and burdensome to be

systematically used in routine clinical care [66].

Machine learning, and specifically deep learning, techniques have been implemented for

various medical image classification and segmentation tasks [38, 39, 40, 41]. Deep learning

has been used specifically for tasks in the PM setting, such as improvement of subsam-

pled magnetic resonance image quality, histologic subtype classification on hematoxylin and

eosin-stained slides, and prognosis based on 3D positron emission tomography-CT images

and clinical data [67, 68, 69]. Similarly, deep learning can be used to mitigate the difficulties
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of tumor volume calculations, in particular, using convolutional neural networks (CNNs).

Previous studies have successfully implemented CNNs in PM segmentation, which is a cru-

cial step in automating tumor volume measurements as the laborious part is performed

automatically, and simple pixel counting remains for the volume calculation [42, 43, 70].

For a CNN to properly segment PM tumor on CT sections, the network must be trained

and validated using a labeled set of images. Due to the fundamental statistical nature of

machine learning, the outputs of a CNN are probabilities. For instance, in identifying the

location of tumor on a CT scan, the CNN assigns each pixel a probability of being tumor.

Therefore, for each CT section input to the network, a probability map is generated that

displays the likelihood of tumor in a pixel-wise fashion. In practice, a threshold is set to

binarize these maps so that any pixel with probability equal to or greater than 0.5, for

example, is set to 1 (“tumor”), and all other pixels are set to 0 (“not tumor”). Given that

modern neural networks tend to be overconfident, and the output probabilities may not be

true estimates of the confidence of a model [6, 7, 71], the 0.5 probability might not generate

the most accurate segmentation for a disease as complicated as PM tumor. Therefore, the

purpose of the present study was (1) to better understand the probability values returned by

the CNN and (2) to investigate whether different probability thresholds could improve pixel-

wise class labeling in this complicated tumor. The tumor segmentations obtained using

different thresholds were evaluated against a reference standard using the Dice similarity

coefficient (DSC) and the percent difference of volume as the figures of merit. Therefore,

the impact that varying thresholds would have on the predicted tumor segmentation was

investigated, given the inherent complexities of this tumor. Further, preliminary work was

performed to assess the confidence of the model using standard temperature scaling (TS)

techniques.

Overall, the choice of threshold may have considerable impact on the final tumor segmen-

tation. In terms of PM tumor volumetry, a lower threshold applied to the probability maps
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would result in a larger volume as more pixels are now considered tumor; however, this may

result in an increase of pixels erroneously labeled as tumor, thus negatively impacting the

CNN accuracy of tumor segmentation. In contrast, increasing the threshold may produce a

segmentation that is too restrictive, substantially decreasing the tumor volume calculated.

Furthermore, the change in threshold alters the overlap of tumor identified by the CNN with

the reference standard (as determined by an experienced radiologist). Therefore, this study1

investigated the impact of probability thresholds on tumor volume and the overlap of tumor

contours by applying a broad range of thresholds, recording the volumes and the DSC, and

studying the resulting trends.

2.2 Methods

2.2.1 Patient population

The patient cohort was compiled from a previous study performed by the Cancer and

Leukemia Group B (CALGB 30901) [73]. CALGB is now part of the Alliance for Clin-

ical Trials in Oncology. The CALGB 30901 study evaluated 49 patients with confirmed

unresectable epithelioid, sarcomatoid, or mixed-type PM, and patients were without disease

progression after 4 to 6 cycles on first-line therapy with pemetrexed and cisplatin or car-

boplatin. Patients were randomly assigned to either the treatment arm (continued therapy

with pemetrexed alone) or the observation arm. The patients underwent CT scans at base-

line and then every 6 weeks for the first 6 months. Each participant signed an Institutional

Review Board (IRB)-approved, protocol-specific informed consent document in accordance

with federal and institutional guidelines.

The present study was retrospectively conducted on 186 baseline and follow-up CT scans

of 48 patients from the CALGB 30901 study. There was an average of 123 sections per scan

1. This chapter is based on a study reported in [72].
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(range: 39-696 sections). The most common section thickness was 5 mm (range: 0.625-5

mm). The scans had been acquired using 21 different scanner models.

CNN-derived contours

The CNN used in this study employed the U-Net deep CNN (2D) architecture. Specifi-

cally, the deep CNN architecture consisted of a downsampling and upsampling path. For

the downsampling path, a Visual Geometry Group 16 (VGG16) model was pre-trained on

the ImageNet database using scale-jittering [74, 75]. Layers of the downsampling path were

initialized using the weights acquired from the VGG16 training scheme. A 2×2 max pooling

operation with stride 2 was applied to the feature maps at each step of the downsampling

path. A dropout layer of probability 0.5 was used to prevent overfitting. During the upsam-

pling path, a 2D operation using nearest-neighbor interpolation was applied to the feature

maps. The network output a segmentation mask the same size as the input image size

(512×512 pixels). A rectified linear unit (ReLU) activation function was applied after each

convolutional layer, except for the last layer, which used a sigmoid activation function that

returned pixel-wise probabilities on the range [0,1] for the segmentation task, i.e., whether

a pixel contains tumor. A threshold value of 0.5 was applied to the output of the sigmoid

layer during the validation step so that any pixel with a probability 0.5 or greater was la-

beled “tumor.” During its training phase, the network minimized the binary cross-entropy,

which was averaged in a pixel-wise manner between each predicted segmentation and the

provided reference standard. Adam, an algorithm for first-order gradient-based stochastic

optimization, was used to optimize the network during training using a learning rate of 10−5.

The VGG16/U-Net deep CNN architecture had been previously trained on a completely

separate set of 126 PM patients, some presenting with pleural effusion [43]. In this earlier

study, the CNN was tested on 77 patients, some of whom presented with both tumor and

pleural effusion and some only with tumor; the median DSC and median average Hausdorff
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distance for that method were 0.690 and 5.1 mm, respectively, as previously reported [43].

More information about this original model can be found in Gudmundsson et al. [43]. For the

present study, tumor contours of the external CALGB dataset were automatically generated

and evaluated with no additional training or validation of the model.

Radiologist reference contours

A research radiologist was presented with the initial CNN contours (generated using a prob-

ability threshold value of 0.5, the conventional threshold for binary classification and seg-

mentation tasks) and was able to modify or redraw the contours using in-house software to

provide the reference standard. Due to the time-consuming nature of adjusting the contours,

however, the radiologist was presented with sections separated by approximately 5 mm. This

process resulted in an average of 52 reviewed sections per scan (range: 32-70 sections). Con-

tour comparisons and tumor volumes were performed only on sections that the radiologist

reviewed.

2.2.2 Model calibration

TS is a post-hoc probability calibration method used for multi-class classification. For medi-

cal image semantic segmentation tasks, the two classes would be “disease” or “no disease,” as

mentioned in Section 2.1. TS estimates a single scalar parameter temperature T > 0 using

the logit zzzi vector as input, where i is the i-th image. The temperature is typically optimized

only on the validation images and using the negative log-likelihood (NLL) cost function, as

was performed in this work.

The temperature was calculated for the four separate validation sets used to develop the

original VGG16/U-Net deep CNN: left or right hemithorax displaying either tumor only or

tumor plus effusion. For the left hemithorax, 275 sections displayed tumor only, and 97

28



sections displayed tumor plus effusion. For the right hemithorax, 216 sections displayed

tumor only, and 101 sections displayed tumor plus effusion.

2.2.3 Tumor volume and Dice similarity coefficient

Tumor volume calculation

Tumor volume was defined as:

Volume [mm3] =
∑

Number of pixels within a contour

× pixel dimension2 [mm2]× inter-section distance [mm], (2.1)

where the summation was over all sections containing a contour. The number of pixels within

a contour was equal to the number of nonzero pixels within the binary mask created after

applying a threshold to the probability maps generated by the CNN. Pixel dimension (in

units of mm2) was acquired from the Digital Imaging and Communications in Medicine (DI-

COM) image header. Inter-section distance corresponded to the difference in table position

between two sections on which the radiologist provided reference contours. Tumor volumes

were computed using the CNN-derived contours and the radiologist reference contours. The

absolute percent difference of volume was calculated by taking the absolute value of the

difference between the reference and the CNN-derived volumes divided by the average of

the two. All tumor volume computations were performed using MATLAB (Mathworks Inc.,

Natick, Massachusetts).

Dice similarity coefficient

Another metric used to compare the CNN tumor contours generated at the different thresh-

olds with the radiologist’s reference standard was the DSC [76]. The DSC was calculated for
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each individual CT section (using MATLAB’s “dice” function), and a final DSC was calcu-

lated per patient scan after averaging the DSC values across all sections. Figure 2.1 displays

the overall pipeline conducted in this study.

Figure 2.1: Schema demonstrating the methodology employed. Beginning from left to right:
(a) 2D CT sections of a patient were input to the (b) VGG16/U-Net, and (c) the probability
maps were generated. The probability maps were binarized using a range of thresholds,
where (d) the reference standard was provided by a radiologist by modifying the generated
segmentations at the 0.5 threshold. Lastly, the reference standard was compared to (e) the
probability maps binarized at the various thresholds, using the percent difference of volume
and DSC as the two figures of merit. U-Net figure reprinted, with permission, from [74].

2.2.4 Statistical methods

Comparison of the absolute percent difference of volumes and comparison of DSC values

across thresholds were first checked for normality using the one-sample Kolmogorov-Smirnov

test [77]. Since the null hypothesis was rejected, the data did not come from a standard

normal distribution. Therefore, the Wilcoxon signed-rank test was used to compare DSC or

absolute percent volume differences computed between the reference standard contours and

contours generated across a range of CNN probability map threshold values. The significance

of p-values was adjusted using the Bonferroni correction to account for 15 comparisons, and
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statistical significance was considered at p = 0.0033. Data collection was conducted by the

Alliance Statistics and Data Management Center. Data quality was ensured by review of

data by the Alliance Statistics and Data Management Center and by the study chairperson

following Alliance policies.

2.3 Results

2.3.1 Tumor volume and DSC

Figure 2.2 displays a visual representation of a change in the probability thresholds and its

impact on the tumor contour generated by the CNN. Pleural effusions present were difficult

for the CNN to fully capture as shown. Overall, the thresholds ranged from 0.001 to 0.9;

however, the CNN never assigned any pixel a probability of 0.75 or greater. Figure 2.3

shows boxplots of the DSC values comparing the reference contours to contours obtained

from the CNN-generated probability maps at six thresholds. Except for the 0.01 threshold,

the range of DSC values decreased with the incremental reduction of probability thresholds.

The median did not substantially change (see Table 2.1). In particular, the DSC values at

the 0.1 threshold did not achieve a significant difference with threshold values other than

0.01, as shown in Figure 2.4b.
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(a) CNN tumor segmentation at probability
threshold of 0.5.

(b) CNN tumor segmentation at probability
threshold of 0.001.

Figure 2.2: Differing contours on the same section of the same patient created with an
adjustment in the CNN probability threshold. Purple represents the radiologist reference
outline, and green represents the CNN pixel-wise segmentation prediction of tumor with (a)
a probability threshold of 0.5 (average DSC over all sections: 0.357) and (b) a probability
threshold of 0.001 (average DSC over all sections: 0.476).
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Figure 2.3: Boxplots showing the DSC values obtained for tumor comparisons acquired
between the radiologist and the deep CNN at six different thresholds. The solid red lines
display the median DSC value at each probability threshold. The dashed red line displays
an average human interobserver DSC of 0.74 achieved between radiologists in the task of
segmenting mesothelioma on CT scans from a separate dataset [42].

Table 2.1 shows that the average absolute percent difference of volume consistently de-

creased with a lower threshold, demonstrating the underestimation of the tumor by the CNN

at the conventional 0.5 threshold. The underestimation by the CNN is also demonstrated in

Figure 2.5. While there was strong linear correlation as determined by the Pearson correla-

tion coefficient (r = 0.89, p < 0.001), the volumes calculated from the radiologist reference

contours were larger than the volumes obtained from the CNN-derived contours at the 0.5

threshold. There was one outlier (not shown), which was a case presenting with severe dis-

ease. The underestimation was not as prominent at the 0.01 threshold (Figure 2.4a). The

average DSC peaked at the 0.2 threshold, while the median DSC reached its maximum at

the 0.3 threshold. Figure 2.4 displays all the relevant p-values for pairwise comparisons of

the percent difference of volume and DSC values. Both metrics were affected by changes in

threshold, though at different threshold comparisons.
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Table 2.1: Absolute percent difference (± standard deviation) of volume, average DSC, and
median DSC at six thresholds. (IQR = interquartile range.)

Threshold

0.5 0.4 0.3 0.2 0.1 0.01

Average absolute %

difference of volume
42.93 ± 32.99 36.75 ± 30.88 31.18 ± 28.17 26.01 ± 24.67 22.09 ± 19.11 26.60 ± 17.17

Average DSC 0.58 ± 0.17 0.59 ± 0.17 0.59 ± 0.16 0.59 ± 0.16 0.59 ± 0.15 0.56 ± 0.14

Median DSC (IQR) 0.58 (0.29) 0.59 (0.27) 0.59 (0.25) 0.59 (0.23) 0.59 (0.23) 0.57 (0.22)

Figure 2.5: Scatter plot displaying the correlation between the tumor volumes calculated
from the CNN contours obtained at the 0.5 threshold and the radiologist reference contours.
One outlier at (14.2×105 mm3, 33.1 ×105 mm3) is not shown. The dashed red line represents
the identity line.
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(a) P-values for the absolute percent difference of volume.

(b) P-values for the DSC values.

Figure 2.4: Matrix of p-values when comparing the absolute percent difference of volume
(a) and DSC (b) across thresholds. Red indicates a significant difference (p < 0.0033 after
Bonferroni correction), and green indicates a failure to achieve significance, as determined
by the Wilcoxon signed-rank test.
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Figure 2.6 is a Bland-Altman plot [78] displaying the relative percent difference of volume

as calculated using the radiologist and the CNN contours at the 0.5 threshold. The CNN

consistently underestimated the tumor at this threshold, which resulted in a mean percent

difference of 42.5% (range from -17.5% to 148.8%, median of 34.76%). Seventeen (9.14%)

scans were within ±5% of 0% difference as shown by the red band in Figure 2.6.

Figure 2.6: Bland-Altman plot of the relative differences between reference and CNN-based
tumor volumes at the 0.5 threshold. The red band highlights differences within 5% of 0.

Figure 2.7 shows the frequency of a threshold being chosen as “optimal,” ranging from

0.001 to 0.7. An optimal threshold differed based on the metric. For example, a certain

threshold being optimal for volume meant this was the threshold that resulted in the lowest

percent difference of tumor volume between the radiologist and CNN contours; similarly, an

optimal threshold for DSC indicated that it maximized DSC. Beside the substantial peak

present at a threshold of 0.5 for the DSC, there did not appear to be a distinct pattern of

“best” thresholds. When inspecting the average of each metric across all cases, maximum
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DSC occurred at a 0.2 threshold, while the lowest absolute percent difference occurred at a

0.06 threshold (Figure 2.8).

Figure 2.7: Histogram of the CNN output thresholds that maximize DSC and minimize
percent difference of volume.

Figure 2.8: The average absolute percent difference of volume (and its minimum) and the
average DSC (and its maximum) across all cases for the entire threshold range.

Figure 2.9 displays example images from four of the six scans (from four patients) that

were greater than the 95% agreement limits as presented in the Bland-Altman plot in Figure

2.6. The CNN was trained on cases that were applicable to mRECIST measurements and
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Figure 2.9: Example images from four of the six scans that exceeded the 95% agreement
limits as shown in the Bland-Altman plot (Figure 2.6). Yellow arrows point to regions where
the CNN predicted tumor at the 0.5 threshold. Purple outlines are the radiologist reference
contours.

was not designed to consider tumors present near the diaphragm, near the lung apices, or

invading other parts of thoracic anatomy. Therefore, the CNN may have been confounded by

cases with severe pleural effusion as well as disease superior to the aortic arch and inferior to

the pulmonary vein, where other anatomic structures complicate the morphology of PM. To

exclude such regions, the volume and DSC comparisons only considering CT sections inferior

to the aortic arch and superior to the pulmonary vein were performed. Figures 2.10-2.11

and Table 2.2 parallel Figures 2.3-2.4 and Table 2.1, showing DSC and volume values for

the subset analysis. Figure 2.10 displays the DSC across the same six thresholds analyzed
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in Figure 2.3, and Table 2.2 displays the average absolute percent difference of volume along

with average and median DSC values across the thresholds. While the range of DSC values

was slightly larger for the subset analysis (range from 0.17–0.93 versus 0.16–0.90), the highest

overall DSC achieved was for the subset analysis at a DSC of 0.93. DSC values were slightly

more robust for the subset analysis across thresholds, as fewer of the comparisons in Figure

2.4b resulted in statistically significant differences compared with those in Figure 2.11b. All

significant pairwise comparisons of percent volume differences were the same between Figures

2.4a and 2.11a.

Figure 2.10: Boxplots showing the DSC values obtained for the subset tumor comparisons
acquired between the radiologist and the deep CNN at six different thresholds. The solid
red lines display the median DSC value at each probability threshold. The dashed red line
displays an average human interobserver DSC of 0.74 achieved between radiologists in the
task of segmenting mesothelioma on CT scans from a separate dataset [42].
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Table 2.2: Absolute percent difference (± standard deviation) of volume, average DSC, and
median DSC at six thresholds for the subset analysis. (IQR = interquartile range.)

Threshold

0.5 0.4 0.3 0.2 0.1 0.01

Average absolute %

difference of volume
49.48 ± 35.10 42.17 ± 32.89 35.18 ± 30.26 28.70 ± 26.44 23.21 ± 20.32 26.93 ± 18.30

Average DSC 0.61 ± 0.18 0.61 ± 0.17 0.62 ± 0.17 0.62 ± 0.16 0.61 ± 0.15 0.58 ± 0.14

Median DSC (IQR) 0.63 (0.31) 0.64 (0.30) 0.63 (0.27) 0.63 (0.26) 0.62 (0.25) 0.57 (0.23)

Overall, the subset analysis displayed larger volume percent differences and larger stan-

dard deviations when compared with values in Table 2.1, although, the average and median

DSC values were consistently greater than those acquired when evaluating the entire scan.

Lastly, the DSC values achieved from the entire scan and those from the subset were statis-

tically different at the six thresholds evaluated (p < 0.001, Figure 2.12). The subset volume

was statistically different from the entire scan except for at the 0.2, 0.1, and 0.01 thresh-

olds. Interestingly, the differences between the percent volumes of the entire scan and the

subset were smaller at each respective threshold. For instance, the absolute percent differ-

ence of volume at the 0.5 threshold was 42.93% and 49.48% for the entire scan and subset,

respectively, for an absolute difference of 6.55%. The difference between the entire scan and

the subset decreased at the 0.01 threshold, as the entire scan and the subset had percent

differences of 26.60% and 26.93%, respectively, resulting in an absolute difference of 0.33%.
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(a) P-values for the absolute percent difference of volume.

(b) P-values for the DSC values.

Figure 2.11: Matrix of p-values when comparing the absolute percent difference of volume (a)
and DSC (b) across thresholds for the subset analysis. Red indicates a significant difference
(p < 0.0033 after Bonferroni correction), and green indicates a failure to achieve significance,
as determined by the Wilcoxon signed-rank test.
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Figure 2.12: P-values comparing the absolute percent difference of volume and DSC volumes
between the entire scan and the subset sections selected. Red indicates a significant differ-
ence, and green indicates a failure to achieve significance, as determined by the Wilcoxon
signed-rank test. Significance was achieved at p = 0.0083, after correcting for six compar-
isons.

2.3.2 Model calibration using TS

The calculated temperatures for the four validation sets are presented in Table 2.3 below. All

temperature values were greater than unity, which demonstrated the model’s overconfidence

prior to calibration. Figure 2.13 displays an example image during the various parts of the

temperature scaling process.

Table 2.3: Summary of the temperatures (which estimate confidence of the model) calculated
using the NLL for the four validation sets used in the training process of the model.

Validation set Temperature

Left tumor plus effusion 3.4

Right tumor plus effusion 2.1

Left tumor only 3.7

Right tumor only 2.3
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Figure 2.13: Example of a tumor plus effusion case in the left hemithorax at the various stages
of post-processing to calculate the temperature. The bottom right image is the calibrated
probability vector for the “disease” class, which is the output of the sigmoid activation
function of the logit vector zzzi scaled to temperature T = 3.4.

2.4 Discussion

At lower probability thresholds, more pixels were counted as tumor within a CT section, as

demonstrated in Figure 2.2. As a result of a lowered threshold, the computed tumor volume

increased (Equation 2.1). Furthermore, except for nine cases, the radiologist’s volumes were

consistently larger than those of the CNN (Figure 2.6), indicating that the CNN did not fully

capture the tumor included in the reference outlines of the radiologist. Lastly, as presented in

Table 2.1, the absolute percent difference in volume between the reference contours and the
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CNN-derived contours significantly decreased with a lower threshold (Figure 2.4a), indicating

an increase of calculated tumor volume using the CNN contours.

While the absolute percent difference decreased at smaller thresholds, the average and

median DSC remained within a small range of 0.56–0.59. These values are slightly higher

than in the current literature [70]. Therefore, the accuracy of contour overlap did not

greatly differ with the change of thresholds. In other words, the newly included pixels

at lower thresholds were not at arbitrary locations within the scan but were, on average, at

relevant anatomic regions that overlapped the reference contours; this trend demonstrated

the robustness of the CNN in identifying tumor, even for lower pixel probabilities. Overall,

when inspecting the average of the two figures of merit across all cases, the maximum DSC

occurred at a 0.2 threshold, while the lowest absolute percent difference occurred at a 0.06

threshold, as shown in Figure 2.8. A limitation in this analysis was the inherent bias present

for the DSC calculation: rather than delineating the tumor on the original CT scans, the

radiologist modified the contours generated by the CNN at a threshold of 0.5, which explains

the distinct peak at the 0.5 threshold (Figure 2.7).

Six scans from four patients exceeded the 95% limits of agreement (Figure 2.9), and all

were underestimates of tumor volume based on the predictions generated by the CNN. The

CNN failed to capture disease that surrounded organs such as the spleen, vertebral column,

and heart in those scans. For these cases, the radiologist who established the reference

standard provided new contours to capture regions of tumor excluded by the CNN at the

0.5 threshold instead of modifying the preexisting CNN output. Severe pleural effusion was

erroneously identified as tumor. Overall, these examples underlie major trends of where

the model underperformed. Upon closer examination of the images, the CNN had difficulty

contouring disease for the aforementioned reasons along with presence of metallic artifacts

and disease in the fissure. The underestimation of the CNN-based segmentations is also
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captured in Figure 2.5, which shows strong linear correlation with the volume calculated

from the reference standard but with a majority of the data above the identity line.

Poor performance was expected for regions that were at the level of the diaphragm or in

the lung apices because the model was not trained using such regions. Rather, the model

was evaluated using tumor contours applicable to mRECIST measurements. To account

for this discrepancy, a subset analysis on sections only between the aortic arch and the pul-

monary vein was performed. Contrary to expectation, the percent differences of volume were

consistently larger for the subset analysis than for the entire scan across the six thresholds

discussed, which warrants further investigation. The difference between the two analyses,

however, did decrease at smaller thresholds. Further, the average and median DSC were

consistently higher for the subset analysis, which indicate the accuracy of the model when

predicting pixels containing tumor. Specifically, the highest median DSC was achieved at

a threshold of 0.4 and the highest mean at a threshold of 0.2 for the subset analysis. It is

also important to note that the 0.01 threshold yielded the lowest DSC and increased the

percent volume difference for the entire scan along with the subset analysis. This indicated

that the delineations at low thresholds erroneously identified a substantial number of pixels

as tumor. Overall, for both the subset and entire scan, the percent difference of volume

decreased with a decrease in threshold, while the average and median DSCs were highest

at thresholds 0.2-0.4. Lastly, while volume and DSC distributions seem similar as displayed

by the means and medians in Tables 2.1 and 2.2, the values were statistically different as

the Wilcoxon signed-rank test calculates the differences of the paired values. Therefore, the

paired values changed substantially to yield statistically different results, as shown in Figures

2.4, 2.11, and 2.12.

This work also demonstrated the overconfidence of the initial model, as all calculated

temperatures were greater than one. This finding is consistent with the literature, since

modern neural networks have been reported to be overconfident in their predictions [6, 7,
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10, 13, 14, 15, 17]. With a correctly calibrated model, accurate probability maps can be

generated, thus streamlining automation of the mesothelioma segmentation task. Due to

the widespread use of neural networks for medical image classification and segmentation

tasks, there is a need to ensure that model outputs are properly calibrated so that the

resulting probabilities are indicative of the model’s true confidence.

There are some limitations that should be addressed in this work. First, as previously

mentioned, by displaying the contours that had been generated at the 0.5 threshold to the

radiologist, there was an inherent bias: this bias has been shown to impact the modified

outlines produced by observers [79]. The 0.5 threshold was chosen a priori as it is often

selected because it is an intuitive value to binarize output probability maps. The aim of this

study was to determine the impact of the probability threshold on the two figures of merit

studied and not to investigate the clinical implementation or the generalizability of a given

threshold; therefore, this study was not hindered by having a reference standard with only a

single radiologist. Though, the findings of this study could be expanded by using the same

two figures of merit to compare the generated outputs of the CNN with a reference standard

that is provided independently by multiple radiologists without any computational aid, as

that would eliminate this inherent bias. A second limitation was the performance of the

segmentation task using a 2D CNN architecture as opposed to more advanced techniques,

e.g., a 3D architecture. This will be explored in future work, as the current dataset size

may restrict model complexity and result in poor performance when implementing a 3D

architecture. Future work will train the CNN using cases for which this current model was

deficient, providing it with cases that displayed pleural effusion and disease surrounding the

various structures in the thorax.

Overall, the purpose of this work was to study the impact of CNN probability map thresh-

olds on the percent volume differences and DSC values when comparing CNN-generated

mesothelioma tumor outlines with radiologist tumor outlines. These results indicate that
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the investigation is slightly more nuanced, as lowering the probability threshold (1) pre-

dictably increased the resulting tumor volume (which was consistently smaller than that

of the radiologist) and lowered the percent difference but (2) only negligibly affected the

distribution of DSC values. It is important to make the distinction between CNN volume

measurement and DSC. Ensuring that the CNN acquires volume comparable to the reference

standard is critical, as volume can be used to capture tumor burden more completely for

response assessment. However, similar investigations must also be cognizant of the spatial

regions where the CNN identifies tumor; it is not sufficient only to match volumes with

the reference standard, but also to match the location of the contours for a more accurate

assessment. Thus, investigations concerned with the automated segmentation of PM tumor

through similar deep learning approaches need to carefully evaluate the thresholds imple-

mented on the output probability maps as this work has shown the significant differences in

tumor volume and spatial overlap with a reference standard as a function of probability map

threshold. Future directions of this work will also consider the impact that varied computed

tumor volumes have on the tumor response category assigned to patients, enhancing the

clinical relevance of this novel work.

2.5 Conclusion

This study explored the impact of changing the threshold applied to the probability maps

output by a CNN when segmenting PM tumors on CT scans. After investigating thresholds

from 0.001 to 0.9, a clear peak at the 0.5 threshold was found for DSC; however, there was no

definitive threshold value to minimize the percent difference of volume between the radiologist

and CNN outlines. The percent differences of volume decreased when lowering the probability

threshold, while the median DSC values were more robust to threshold changes. The CNN

performance was deficient on scans that contained severe pleural effusion and disease that

bordered other structures in the thorax. Therefore, a subset analysis was conducted, which
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yielded improved results for DSC. Overall, this pilot study highlighted the impact of varying

CNN-generated probability map thresholds on mesothelioma tumor outlines, using percent

difference of volume and the DSC as the figures of merit.
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CHAPTER 3

RADIOMICS FOR DIFFERENTIATION OF SOMATIC BAP1

MUTATION ON CT SCANS OF PATIENTS WITH PLEURAL

MESOTHELIOMA

3.1 Introduction

The use of radiomics, specifically texture analysis, has long been implemented in medicine

to help clinicians and researchers extract quantitative information from images [19, 21, 22,

23]. Advances in the field have linked imaging features with patients’ genetic profiles, i.e.,

“imaging genomics” [80, 81]. Imaging genomics has been applied to many different diseases

and anatomic regions [82]. For example, Velazquez et al. [83] were able to discriminate

between cases with and without a somatic mutation in the EGFR gene using radiomic

signatures acquired from computed tomography (CT) scans of adenocarcinoma patients.

Similarly, Yip et al. [84] performed the same task using positron emission tomography

(PET) images of patients presenting with non-small cell lung cancer.

The use of imaging genomics for pleural mesothelioma (PM) is rare in the literature. PM

is an aggressive form of cancer present in the pleural lining of the lung, resulting from expo-

sure to asbestos and has a very poor prognosis. The BRCA1-associated protein-1 (BAP1 )

gene encodes for the BAP1 protein, a deubiquitinase that influences cell growth, cell prolifer-

ation, and cell death [85, 86, 87]. It is of great interest since it accounts for the most common

somatic mutations in PM [87, 88]. BAP1 mutations can also be inherited, and individuals

with germline mutations in this gene have been widely recognized as being predisposed to

the disease, although patients with a germline BAP1 mutation are associated with better

prognosis [88, 89] than those without the germline mutation, with a 7-fold increase in long-

term survival regardless of sex and age [90]. By identifying suspected germline mutations

solely through radiomics, clinicians could be prompted to pursue genetic testing, which is
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not currently the standard of care [91], resulting in more streamlined patient prognostication

and assessment of family members, who have a 50% chance to inherit the same mutation

[89]. To determine the feasibility of future studies determining the germline mutation status

from medical images, this novel work1 first explored the use of radiomics on the CT scans

of PM patients with the more-prevalent somatic BAP1 mutations [90, 93, 94, 95].

3.2 Methods

The overall workflow for this work is presented in Figure 3.1.

Figure 3.1: Pipeline incorporated in this study, beginning with the patient cohort curated
and ending with the machine learning models used for the BAP1 classification task.

1. This chapter is based on a study reported in [92].
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3.2.1 Patient selection and sample collection

This study curated 149 patients diagnosed with PM from the University of Chicago Medicine

(UCM) under a Health Insurance Portability and Accountability Act (HIPAA)-compliant,

Institutional Review Board (IRB)-approved protocol from April 2016 to June 2022. Informed

consent was obtained from all participants. The protocol allowed for the collection and

biobanking of peripheral blood, saliva, and tumor samples. Tumor DNA was extracted from

fresh frozen, paraffin-embedded tumor tissue blocks. Somatic mutations were identified using

the UCM OncoPlus next-generation sequencing panel [96]. Patients with confirmed somatic

BAP1 mutations only (BAP1+, N = 68) were included in the study. The remaining 81

patients presented with the wild-type allele (BAP1 -). Immunohistochemical analysis of the

BAP1 protein was conducted in a Clinical Laboratory Improvement Amendments-certified

laboratory at UCM using the Santacrus C4 monoclonal antibody. Table 3.1 includes further

details about the patients of this study.

Table 3.1: Patient demographics categorizing patient sex and age characteristics.

Total (n=149) BAP1 [+] (n=68) BAP1 [-] (n=81)

Sex
Male 95 48 47
Female 54 20 34

Age
Median 69 69.5 69
Range 21 – 90 51 – 90 21 – 81

3.2.2 Image data curation and segmentation

Axial images from unenhanced chest CT scans of the patients were retrospectively collected

(Table 3.2) [97]. Scans were acquired with the assistance of the University of Chicago’s

Human Imaging Research Office (HIRO) [98, 99], which provided de-identified, compliant

images for evaluation. For each patient, the CT section displaying the largest area of tumor
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was selected by a radiologist. This section and the immediate superior and inferior sections

were used to create a 3D volume for analysis. A Visual Geometry Group 16 (VGG16)/U-

Net deep convolutional neural network architecture was utilized to segment the tumor within

this volume [43]. The 2D architecture employed a downsampling and upsampling path. The

downsampling path utilized a VGG16 model pre-trained on ImageNet with scale-jittering,

applying 2×2 max pooling with stride 2. Dropout layers of 0.5 probability were used to pre-

vent model overfitting. The upsampling path employed a 2D operation with nearest-neighbor

interpolation on the feature maps. The network generated 512×512-pixel probability maps,

which matched the input image size. Rectified linear unit (ReLU) and sigmoid activation

functions were applied after the convolutional layers and the final layer, respectively. Lastly,

the model was trained with a binary cross-entropy loss function using the Adam optimizer

with a learning rate of 10−5. More details regarding the architecture of the model and its

training scheme can be found in Gudmundsson et al. [43] and Chapter 2 of this dissertation.

For the present study, tumor contours were automatically generated and evaluated with no

additional training or validation of the model.

The resulting probability maps output by the network were thresholded at a value of 0.2;

this threshold was determined to have maximal overlap with human contours using the Dice

similarity coefficient (DSC) from prior work [72, 100]. The radiologist adjusted the resulting

segmentations to ensure the segmentations were highly specific to tumor pixels. The finalized

contours were defined as the region of interest (ROI) and used for feature extraction.

3.2.3 Image resampling and gray-level discretization

To mitigate the impact of different image acquisition parameters, all images were resampled

to the mean resolution of all scans, with pixel spacing of 0.75×0.75 mm and a slice thickness

of 3 mm (see Table 3.2 and Figure 3.2 for more details). Prior to texture feature extraction,

gray-level discretization was applied using a fixed bin number of 32 gray levels, as small
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or large gray-level quantizations have been shown to impact texture feature values due to

reduction of information that can be extracted from an image [101, 102].

Table 3.2: Image acquisition characteristics for the patient cohort analyzed in this study.

Total (n=149) BAP1 [+] (n=68) BAP1 [-] (n=81)

Pixel Size [mm]
Median 0.72 0.71 0.73
Range 0.56 – 1.07 0.57 – 1.07 0.56 – 0.95

Slice Thickness [mm]
Median 3 2.5 3
Range 1 – 5 1 – 5 1 – 5

kVp [kV]
Median 120 120 120
Range 80 – 140 100 – 120 80 – 140

Scanner Manufacturer
GE 73 35 38
Philips 45 21 24
Toshiba 13 5 8
Siemens 18 7 11

Reconstruction Kernel
GE: Standard 71 34 37
GE: Chest 2 1 1
Philips: B 44 21 23
Philips: C 1 0 1
Toshiba: FC13 6 1 5
Toshiba: FC14 2 1 1
Toshiba: FC18 5 3 2
Siemens: B30f 3 0 3
Siemens: B31f 1 0 1
Siemens: B40f 1 0 1
Siemens: B31s 1 0 1
Siemens: B35s 1 1 0
Siemens: Bf39f 2 1 1
Siemens: Bf37f 1 0 1
Siemens: Br36f 1 0 1
Siemens: Br40d 1 1 0
Siemens: I26f 1 0 1
Siemens: I31f 4 3 1
Siemens: I41f 1 1 0
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(a) Distribution of the pixel spacings. (b) Distribution of the slice thicknesses.

Figure 3.2: Histogram of the (a) pixel spacing and (b) slice thickness of CT sections of the
original 149 scans. The red vertical line depicts the mean value in each of the distributions
to which resampling was performed.

3.2.4 Feature extraction

Eighteen intensity-based and 123 texture features (111 second-order, six Laws’ texture en-

ergy, two Fourier, and four fractal dimension) were extracted from the original ROIs. The

123 texture features were also extracted from the ROIs after applying seven different filtering

operations on the images: two Laplacian of Gaussian (LoG) filters (σ = 0.75 mm, 1.5 mm),

four multi-channel wavelet decompositions (LH, LL, HL, HH), and a local binary pattern

operator (radius = 0.75 mm). With 18 intensity-based features and 123 texture features

extracted from the ROIs before the filtering operations and the 123 features extracted from

the ROIs after the seven filtering operations, a total of 1,002 features were computed from

each ROI (the finalized tumor contours). Intensity-based features were obtained from the

3D volume [103]. All other features were computed by averaging the 2D feature values over

the three CT sections. Features were calculated using the Python packages PyRadiomics

[104], PyFeats, and Nyxus.
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3.2.5 Data imbalance

Due to the imbalance of BAP1 mutation status among patients, a hybrid approach using the

Synthetic Minority Over-sampling Technique (SMOTE) coupled with the removal of Tomek

links was employed to over-sample the minority class and under-sample all classes [105],

respectively, prior to the feature selection. The SMOTE algorithm generates artificial data

in the feature space near existing feature values of cases from the minority class. Tomek

links are a pair of nearest neighbors of opposite classes with minimal distance between

them compared to other neighboring data. Removal of Tomek links decreases noisy data or

eliminates data near the decision boundary. Implementation of SMOTE-Tomek resulted in

equal mutation prevalence, per fold, during training.

3.2.6 Machine learning model and feature selection

The performance of 18 separate calibrated machine learning models (Table 3.3) was evaluated

using leave-one-out cross-validation (LOOCV), resulting in 149 iterations. Calibration was

performed using the “sigmoid” method, which corresponds to fitting a logistic regression

model to the scores of a classifier (Platt’s scaling). While “isotonic” calibration, which fits

a non-parametric isotonic regressor, could be performed, such calibration is recommended

only for large datasets as overfitting could result with too few samples (i.e., fewer than 1000

cases) [106, 107].

Feature selection was performed on the training set of each iteration of the LOOCV in

the following order (with empirically determined parameters): (1) features with variance

less than 0.01 were discarded, (2) features were Z-score normalized, and (3) features with a

Pearson correlation coefficient of 0.75 or greater with other features were removed. Lastly,

the top four features were selected using the calculated F-value of the analysis of variance

(ANOVA) test between the feature and the BAP1 status. These four features were then

extracted from the left-out test case, per iteration, for the classification task.
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Table 3.3: Types of models evaluated in the BAP1 classification task.

Linear
Logistic regression
Ridge
Stochastic gradient descent (SGD)
Passive aggressive

Neighbor
K neighbors

Tree
Decision tree
Extra tree

Support vector machine (SVM)
Linear SVM
Radial basis function SVM

Naive Bayes
Gaussian naive Bayes

Ensemble
AdaBoost
Bagging
Random forest
Extra trees
Gradient boosting

Gaussian process
Gaussian process

Discriminant Analysis (DA)
Linear (LDA)
Quadratic (QDA)

Other training schemes were assessed. In particular, different-sized folds for repeated

k -fold cross-validation were implemented as well as changing the number of top features

selected. Preliminary work was also performed to study the impact random state seeds had

on the classification task.
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3.2.7 Evaluation metric and statistical analysis

The receiver operating characteristic area under the curve (ROC AUC) was used as the fig-

ure of merit to assess the classification performances of the models to differentiate between

BAP1+/- patients. The Wilcoxon rank-sum test was used to assess differences in tumor

volume and age distributions between patients in the two classes and the DeLong [108] and

Wilcoxon signed-rank tests were used to evaluate differences in AUC values between models.

To assess the impact of human modifications on segmentation of the PM tumor, DSC values

were calculated between the CNN segmentations and radiologist-modified masks to deter-

mine the overlap between the two. Further, the classification task was performed employing

the same models (Table 3.3) and using feature values extracted from the unmodified CNN

probability maps thresholded at 0.2. Using the DeLong test, the AUC values computed from

the unmodified segmentations were compared to the AUC values achieved from the modified

segmentations. Due to the hypothesis-generating nature of this work, statistical significance

was obtained at p = 0.05.

3.3 Results

3.3.1 Tumor volume

Figure 3.3 shows the distributions of the tumor volume contoured across the three sections

selected per patient in the dataset; the median (range) volume of tumor contoured was

13,109 mm3 (1,630 – 108,331 mm3) across all patients, 11,615 mm3 (1,630 – 108,331 mm3)

for BAP1+ patients, and 15,949 mm3 (1,688 – 92,352 mm3) for BAP1 - patients. The

difference in median volume between the BAP1+/- patients failed to achieve statistical

significance (p = 0.15), which mitigated the impact of tumor size as a confounding factor

for the classification task. BAP1+ patients had the larger range of tumor volumes while
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BAP1 - patients had the larger median. Differences in age between the patient cohorts failed

to achieve statistical significance.

Figure 3.3: Histogram of the tumor volume categorized by BAP1 mutation status. The
difference in tumor volume between wild-type and mutated tumors failed to achieve statistical
significance.

3.3.2 Classification performance

In the task of differentiating between BAP1+ and BAP1 - patients, the top three models

(sorted by AUC values) were decision tree, Gaussian process, and SVM classifier with a

radial basis function kernel (Table 3.3). Figure 3.4a shows the ROC curves obtained from

the three models, along with their AUC values and the 95% confidence intervals (CIs).

The AUC values and 95% CIs were constructed from 2000 bootstrapped samples of the

prediction values during LOOCV. The decision tree classifier yielded an AUC value of 0.69

(95% CI: 0.60, 0.77). Figure 3.4b displays the distribution of scores obtained during the

cross-validation for the top-performing model, the decision tree. No scores were less than

0.32 or greater than 0.70 for either class. The DeLong test failed to achieve a statistically

significant difference in AUC values among the top three models as shown in Table 3.4.
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The four features selected most frequently through the 149 iterations of the cross-validation

are presented in Table 3.5. All the features were second-order (e.g., gray level co-occurrence

[GLCM] or gray level size zone matrices [GLSZM]) and were extracted from LoG-filtered or

wavelet-decomposed images.

(a) ROC curves for the top three models. (b) Distribution of prediction scores for the deci-
sion tree classifier.

Figure 3.4: (a) ROC curves depicting the true-positive and false-positive fractions of the
top-three performing classifiers in the task of differentiating somatic BAP1 mutation status
using feature values extracted from segmented regions. ROC curves were fitted using software
created by Metz et al. [109]. (b) Distributions of the decision tree classifier prediction scores
across all cases. The histograms were normalized to have equal area of one.

Table 3.4: Comparisons of the three best-performing classification models: decision tree,
Gaussian process, and support vector. The p-values comparing the differences in AUC values
were calculated using the DeLong test, with their corresponding confidence intervals (CIs).
Significance levels (α) and widths of the CIs were adjusted for multiple comparisons. None
of the comparisons achieved statistical significance after correcting for multiple comparisons
using Bonferroni-Holm corrections.

Comparison p-value for ∆AUC α CI of ∆AUC

Decision tree versus Gaussian process 0.4574 0.025 97.5% CI: [-0.060 0.12]
Decision tree versus support vector 0.3208 0.017 98.3% CI: [-0.051 0.12]
Gaussian process versus support vector 0.6478 0.050 95.0% CI: [-0.022 0.036]
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Table 3.5: The four texture features most often selected during the 149 LOOCV iterations
and the frequency each feature was chosen, i.e., the number of iterations in which a feature
was selected.

Transformation Class Feature Selection frequency

LoG (σ = 1.5 mm) GLCM Cluster Prominence 149
LoG (σ = 0.75 mm) GLSZM High Gray Level Zone Emphasis 141
Wavelet (bior1.1–LH) GLSZM High Gray Level Non Uniformity Normalized 87
LoG (σ = 0.75 mm) GLCM Correlation 70

3.3.3 Change of k-fold and number of features

Table 3.6 displays the AUC values achieved from the different number of folds used for the

repeated k -fold cross-validation and the different number of features selected by the final

ANOVA feature selection step: 200 repetitions were performed to ensure robust statistics

for the calculation of the 95% CI. As reported in Section 3.3.2, the decision tree classifier

resulted in the highest overall AUC value of 0.69 [0.60, 0.77]; however, this AUC value failed

to achieve a significant difference (p = 0.1) from the AUC value of the SGD classifier (0.63

[0.54, 0.72]) obtained when selecting the top 10 features, as determined using the DeLong

test for correlated ROC comparison and setting the alternative hypothesis to “greater.”

A selection of four features yielded a different distribution of AUC values than the dis-

tribution of AUC values calculated with a selection of 10 features (p < 0.05 as determined

by the Wilcoxon signed-rank test). There was a significant difference between 10- and 5-fold

cross-validation results when selecting four features (p < 0.05), however, this trend did not

occur for a selection of 10 features as there was a failure to achieve significance (p = 0.14).

Interestingly, the most-selected feature was the same across all cross-validation approaches:

GLCM cluster prominence with an LoG filter applied of size σ = 1.5 mm (LoG_sigma=2.0).

The top-performing models encompassed different types, including ensemble, naive Bayes,

discriminant analysis, neighbor, tree, and linear. Therefore, the classification schemes in-

cluded all but the SVMs and Gaussian processes.
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Table 3.6: Model performance using various cross-validation approaches. ROC AUC values in
the task of differentiating between BAP1+ and BAP1 - patients and 95% CIs for the LOOCV
were obtained using 2000 bootstrapped samples. For the 10-fold and 5-fold cross-validation,
AUC values were acquired by averaging the AUC values per repeat of the cross-validation
approach and 95% CIs were obtained by calculating the 2.5% and 97.5% percentile of the
distribution of AUC values.

Top model AUC value [95% CI] Most selected feature

200-repeat, 10-folds

Selecting top 4 features Extra trees classifier 0.58 [0.52, 0.67] LoG_sigma=2.0 GLCM
Cluster Prominence

Selecting top 10 features Gaussian naive Bayes 0.58 [0.53, 0.62] LoG_sigma=2.0 GLCM
ClusterProminence

200-repeat, 5-folds

Selecting top 4 features Quadratic discriminant
analysis 0.57 [0.50, 0.64] LoG_sigma=2.0 GLCM

Cluster Prominence

Selecting top 10 features K neighbors classifier 0.58 [0.51, 0.65] LoG_sigma=2.0 GLCM
Cluster Prominence

LOOCV

Selecting top 4 features Decision tree classifier 0.69 [0.60, 0.77] LoG_sigma=2.0 GLCM
Cluster Prominence

Selecting top 10 features SGD classifier 0.63 [0.54, 0.72] *LoG_sigma=2.0 GLCM
Cluster Prominence

*5 other features were selected during all 149 iterations.

To assess the impact of the random state seed on the performance of a model, AUC values

were recorded for 100 seeds of the decision tree classifier, resulting in a median AUC value of

0.66 [0.64, 0.68], with the 95% CI calculated using the percentiles for 2.5% and 97.5% of the

distribution of the 100 AUC values calculated; the reported value of 0.69 obtained during

LOOCV of the decision tree classifier was outside these boundaries of the CI constructed

from the AUC values calculated for the 100 random seeds.

3.3.4 DSC and classification performance of unmodified segmentations

When comparing the CNN segmentations to the radiologist-modified segmentations, an av-

erage DSC value of 0.79 with interquartile range of 0.21 was achieved. The same feature

extraction and selection was performed on the unmodified segmentations of tumor contours.
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The CNN failed to predict tumor for one case, therefore that case was discarded from the

analysis. Using LOOCV, the highest AUC value achieved across the 18 models was 0.61.

The decision tree classifier, the highest-performing model as aforementioned, yielded an

AUC value of 0.45 [0.36, 0.56], which was significantly different than 0.69 (p < 0.001) as

determined by the DeLong test.

3.4 Discussion

This proof-of-concept work explored the feasibility of differentiating between the mutation

status of somatic BAP1 patients based solely on the 2D radiomics features extracted from

patients’ CT scans. The approach in this study yielded a higher AUC value than currently

reported in the literature (0.65) [63]. To the best of our knowledge, Xie et al. [63] is the only

other publication discussing BAP1 differentiation using image analysis for mesothelioma;

however, the work presented here is novel as it is the first to synergistically implement a deep

learning model for tumor segmentation and machine learning models for BAP1 classification.

Prior to the feature extraction, there was careful consideration in the selection of the

“standard” reconstruction for all patient scans, attempting to choose this reconstruction

across the different scanner manufacturers and kernel nomenclature. In addition, differences

in pixel and axial dimension spacing due to variability of image acquisitions from different

institutions and different scanners were mitigated by image resampling, as resampling prior to

feature extraction has been shown to decrease variability of radiomic features [110]. Similarly,

to increase feature stability and reduce noise, gray-level discretization was performed with

32 gray levels [101, 110, 111]. This number of gray levels was chosen based on research

extracting features from liver tumor and muscle, but the authors noted that a moderately

sized value of gray-level discretization may be applicable to broader radiomic tasks [101].

Future work should consider the optimal discretization employed for this specific work.
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After the feature extraction, the classification task was performed through rigorous

methodology, employing different machine learning models and cross-validation strategies. It

is important to note that different models were evaluated in order to assess the feasibility of

this classification task. Further, different models were employed to consider how the different

underlying assumptions and parameters of the different models may impact performance. A

comparison across the models was also beneficial to ensure that no one model was overfit on

the data, resulting in dubiously high AUC values.

LOOCV is known to be a nearly unbiased procedure as the difference in size between the

training set in each iteration and the entire dataset is small. There is much discussion about

its variability and, more generally, the variance of k -fold cross-validation with different sizes

of k. While Efron [112] was one of the first to postulate LOOCV to be unbiased but with

high variance, that has since been brought in question [113]. Bengio et al. [114] have shown

that no unbiased estimators of the variance of k -fold cross-validation exist. The authors go

on to discuss that the variability of LOOCV is impacted by two conditions: (1) if the cross-

validation is averaging independent estimates, then LOOCV would return lower variance

because of similar reasoning to the low bias as mentioned previously, or (2) if training sets

are highly correlated, then LOOCV results in high variance. Overall, LOOCV was chosen a

priori because of the small dataset size.

As presented in Figure 3.4a and Table 3.6, the largest AUC value (0.69 [0.60, 0.77]) was

achieved using a decision tree classifier when selecting the top four features during LOOCV.

The selection of four features was based on preliminary analysis that resulted in moderate

performance for classification. However, the AUC value obtained with a selection of four

features failed to achieve a significant difference when comparing the AUC value achieved by

the SGD classifier and selecting the top 10 features. The 10-fold and 5-fold cross-validation

schemes were also implemented to assess the bias and variance of the BAP1 classification
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task. There was comparable performance across the different folds of the various cross-

validation methods and different numbers of features selected (Table 3.6).

The most-selected feature obtained using the methodology explained in Section 3.2.6 was

the GLCM cluster prominence obtained after application of an LoG filter with radius 1.5

mm. GLCM cluster prominence captures “a measure of the skewness and asymmetry of

the GLCM,” whereby larger values indicate asymmetry about the mean and smaller values

indicate a peak near the mean value and less variation about the mean [104]. The LoG filter

first applies a Gaussian kernel to an image, which blurs the image, followed by a convolution

with a Laplacian filter (the second derivative of the Gaussian kernel), which enhances the

edges in the image. This filter application demonstrated that blurring and enhancing the

edges of the ROIs resulted in an appreciable difference between BAP1+ and BAP1 - patients

that was reflected in the values of the GLCM cluster prominence feature. The other top

features (Table 3.5) were either of the GLCM or GLSZM class, both capturing second-order

gray-level information about an image. In addition, all four features were selected after

application of a filter, three of which were the LoG. It is noteworthy to mention that the

only other study that performed radiomics for the BAP1 classification task reported the

relevance of the GLCM cluster prominence feature, as well as the usefulness of other second-

order features for classification [63]. Further, the authors found that LoG features were the

most stable when extracted from 3D segmentations. Therefore, the findings in this current

study support their results.

A comparison between the CNN segmentations and the human-adjusted segmentations

was conducted to evaluate the impact human-modified contours had on the classification per-

formance. There was a statistically significant difference between the AUC value obtained

from the modified segmentations and the AUC value from the unmodified CNN segmenta-

tions. This demonstrated that while this work is the first to combine deep learning for the

segmentation task (which substantially reduces the time spent by a radiologist to delineate

64



the tumor), human input was still required to ensure proper capture of tumor. The increased

accuracy of tumor delineations resulted in the moderate performance achieved in classifying

BAP1+ from BAP1 - patients.

While this study yielded promising initial results, there are potential future directions in

addition to the aforementioned discussion. First, acquiring segmentations on more sections

for 3D texture analysis could result in stronger predictive performance by the classifiers as

has been reported [63]. Second, stability of the selected features could be assessed through

various measures. For example, the concordance correlation coefficient could be used to

reduce the number of features based on how well extracted feature values agree before and

after image perturbation operations, i.e., rotation or erosion. Initial exploration of stability

of features has shown that larger chains of perturbations including rotation and contour

randomization produced the most stable and robust feature sets [115, 116]. Third, CT

images from the entire history of the patients were visually assessed to identify the scan

displaying the largest tumor bulk. Therefore, the selection of scans did control for treatment

time point, which could have inherently biased the results, as some of the analyzed scans

were acquired either pretreatment or during treatment; the treatment could have potentially

affected image features that were extracted if the tissue presented differently. Some scans

also were acquired after talc pleurodesis, which could have had an impact on the tumor

tissue in a manner similar to that of treatment. Similarly, selecting the section from each

scan with the largest visible tumor could have potentially biased the results; as some of

these scans had been acquired during the course of treatment, the largest tumor could

have been more resilient to the treatment, and the texture features may have captured that

resilience as opposed to the mutation status. Future work will expand on this pilot study and

select patient scans with stricter criteria, minimizing confounding variables in the curation

process. Lastly, while this work demonstrated the ability to accurately detect somatic BAP1

mutations, the approach will be extended to detect germline BAP1 mutations in the future.
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3.5 Conclusion

The potential of radiomics for identifying BAP1 mutations from the CT scans of PM pa-

tients was demonstrated; 2D features extracted from tumor segmentations yielded an AUC

value of 0.69 [0.60, 0.77] when using a decision tree classifier. The novel use of radiomics,

machine learning, and deep learning techniques in this work showcased promising results

in differentiating between BAP1 -mutated and wild-type tumors, surpassing previously re-

ported AUC values. While this study showed encouraging outcomes, some future directions

are proposed, such as 3D texture analysis, different classification schemes, and assessment

of germline mutations.
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CHAPTER 4

ASSESSMENT OF A PRE-TRAINED DEEP LEARNING

MODEL FOR COVID-19 CLASSIFICATION ON CXRS

4.1 Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a ribonucelic acid virus

that can impact mammals and birds, is the virus responsible for the ongoing COVID-19

global pandemic. The primary mode of transmission among humans is through exposure to

respiratory fluids carrying infectious virus. The virus is highly contagious and can rapidly

mutate. Further, infection with the virus may lead to severe or fatal disease. Early detection

of the disease can mitigate the symptoms, however, and patient prognosis can improve.

Chest radiographs (CXRs) were recommended early in the pandemic for triage, disease

monitoring, and assessment of concomitant lung abnormalities (e.g., consolidation, ground-

glass opacities, and pulmonary nodules) [53, 54], which resulted in the acquisition of many

medical images worldwide. CXRs were also beneficial as they are widely accessible, which

makes them an ideal modality for an image-based evaluation of the disease.

With the onset of the COVID-19 pandemic, the artificial intelligence (AI) community

quickly joined in the effort to ease the burden on healthcare systems. Before widespread

access to reverse transcription polymerase chain reaction (RT-PCR) tests, machine and deep

learning (DL) models were developed to provide rapid COVID-19 diagnoses and prognoses

based on patients’ CXRs and computed tomography (CT) scans [117, 118, 119, 120, 121, 122].

While many DL models reported success in performing these tasks, translating this success to

a clinical environment has been difficult due to potential model overfitting or biases present

in the datasets [123]. These biases may result in a lack of reproducibility and generalizability

of the models developed, a common shortcoming recognized by the AI community [124]. The

diversity of images acquired throughout the pandemic, therefore, allows for a comprehensive
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evaluation of AI models to assess their generalizability when utilizing the various datasets

available.

To determine the robustness of a DL model, an independent dataset can be used along

with a performance assessment metric [e.g., area under the receiver operating characteristic

curve (ROC AUC)] [125]. If the performance on independent test sets is comparable to

the performance on the original test set, then the model is deemed robust. If the model’s

performance were to decrease, however, then further evaluation is warranted to determine

possible deficiencies. While CXRs are not considered a clinical standard for COVID-19

diagnosis, their value lies in their utility for AI assessment. Therefore, the implementation

of the DL models in this work is not intended for eventual clinical deployment but rather as

a means to thoroughly evaluate the fundamentals of AI as a diagnostic tool.

Overall, the purpose of this work1 was to validate a deep learning model, using COVID-19

diagnosis from CXRs as the radiologic task, and to compare performance on different datasets

while taking into consideration factors such as image-acquisition device (e.g., portable units

versus stationary dual-energy subtraction units), patient vaccination status, patient age, and

disease severity [127]. These analyses were meant to assess and quantify AI generalizabil-

ity in the differentiation of COVID-positive and COVID-negative patients based on chest

radiography.

4.2 Methods

4.2.1 Datasets

Original dataset

The original dataset consisted of 9,860 patients retrospectively collected from the University

of Chicago Medicine as part of an earlier published study [44]. This cohort was split at the

1. This chapter is based on a study reported in [126].
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patient level into 64% for training, 16% for validation, and 20% for testing using stratified

sampling. COVID-19 prevalence was held constant across the three subsets (15.5%). Only

the first CXR exam acquired within two days after a patient’s initial RT-PCR test for the

SARS-CoV-2 virus was input to the model; RT-PCR tests were used to establish a reliable

reference of presence of disease. CXRs had been acquired between January 30, 2020 and

February 3, 2021; both standard and soft-tissue images were collected from stationary dual-

energy subtraction (DES) radiography units and portable radiography units (these two units

define the “CXR exam type”). The portable units generated soft-tissue images using post-

processing algorithms. More information regarding this dataset can be found in Hu et al.

[44]; the test set from this study will be called the “original test set.”

Current test set

Images that comprised the “current test set” were retrospectively collected from 5,893 pa-

tients between March 15, 2020 and January 1, 2022 under a Health Insurance Portability

and Accountability Act (HIPAA)-compliant, Institutional Review Board-approved protocol.

Among these patients, 731 (12.4%) had tested positive and 5,162 (87.6%) had tested nega-

tive for the SARS-CoV-2 virus. The current test set served only to assess the performance of

the pre-trained model: no additional training or validation was performed. Patient images

from the previous study and the current study were acquired from the same institution and

were preprocessed in the same manner. Overall, the current test set followed the same cura-

tion process as the original dataset to minimize the impact of any confounding variables. A

summary of the datasets is presented in Tables 4.1 and 4.2, where Table 4.2 categorizes the

three manufacturers that had been used to acquire the standard CXR images for both test

sets: Canon Inc., GE Healthcare, and Fujifilm Corporation.
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Table 4.1: Summary of datasets used, categorized by various factors, including type of units
used to acquire the images.

Number of
patients

Average date of
acquisition

COVID
prevalence

Number of
portable scans (%)

Number of
DES scans (%)

Original training set 7,888 08-12-2020 15.4% 6,243 (79.1%) 1,645 (20.9%)

Original test set 1,972 08-13-2020 15.5% 1,595 (80.1%) 377 (19.1%)

Current test set 5,893 03-19-2021 12.4% 4,165 (71%) 1,728 (29%)

Table 4.2: Number of patients categorized by manufacturer and CXR exam type for the
original and current test set.

Original test set Current test

Portable DES Portable DES

Canon Inc. 1,595 12 4,163 43

GE Healthcare 0 359 2 1,596

Fujifilm Corporation 0 6 0 89

Total 1,595 377 4,165 1,728

4.2.2 Image preprocessing

The original Digital Imaging and Communications in Medicine (DICOM) images were gray-

scale normalized per image and converted to Portable Network Graphics (PNG) format.

Using the converted PNG images, an open-source U-Net-based model was used to segment

the lung region from the original dataset and the current test set [128]. The smallest rectan-

gular region that contained the resulting lung mask on a patient’s standard CXR image then

was cropped; the same mask was applied to a patient’s corresponding soft-tissue image. The

weights used for the segmentation task were calculated using a pre-pandemic public CXR

dataset [129] and further fine-tuned on another dataset of radiographs displaying COVID-

19 [44, 130]. Cropping was shown to improve results on the original dataset [44] and was,

therefore, performed on the current test set to be (1) consistent and (2) ensure the DL model
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would not consider areas outside the lungs (e.g., abdominal region, chest wall, shoulder, and

neck region).

The impact of the cropped lung region dimensions on the performance of the classification

task was explored on the standard CXRs of the original test set. The U-Net-based model used

for lung segmentation initially resized an entire image to 256 × 256 pixels and cropped the

rectangular region that enclosed the predicted lung mask, which will be called the “small lung

region.” This small lung region was then upsampled to 256 × 256 pixels by the DenseNet-121

model [131] prior to classification (top panel of Figure 4.1). To study the impact of image

resizing, two investigations were performed. First, the U-Net-based model was adjusted to

generate the segmented lung region in the same dimensional space as the original image.

The resultant “large lung region” image was then input to the DenseNet-121 model for

classification (bottom panel of Figure 4.1). The second investigation resized the large lung

region image in the bottom panel of Figure 4.1 to the size of the corresponding small lung

region image in the top panel of Figure 4.1 before the classification step. All image resizing

was performed using the Python PIL package “Image” module, which is also utilized by the

U-Net-based model.
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Figure 4.1: The image preprocessing pipeline used throughout this work. Top panel: a
patient’s standard CXR was resized to 256 × 256 pixels and the lung region was subsequently
segmented and cropped, which generated a rectangular region containing only the lung (the
small lung region). Bottom panel: after the segmentation task, the cropping was performed
in the same dimensional space as the original image. U-Net figure reprinted, with permission,
from [74]. DenseNet-121 figure copyright 2017 IEEE [131].

4.2.3 Model implemented

The basis for the present study was a model that was developed by Hu et al. [44] using

the original dataset. The model was based on a DenseNet-121 architecture because of its

previous success in diagnosing pneumonia and other pathologies on CXRs [132, 133]. Further,

it followed a curriculum learning methodology as discussed in Bengio et al. [134]. The

curriculum learning became more specialized at each phase, concentrating the model on

COVID-19 by the last step. The three phases were: (1) pre-train on ImageNet and fine-

tune on the National Institutes of Health (NIH) ChestX-ray14 [135, 136], (2) refine on the

Radiological Society of North America (RSNA) Pneumonia Detection Challenge dataset to

detect pneumonia [137], and (3) further train on an in-house COVID-19 dataset. Specifically,

phase 3 consisted of three classification algorithms developed by image type: standard, soft-
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tissue, and a combination of both image types via feature fusion, as presented by Hu et al.

[44]. Throughout this study, the algorithms were applied to their corresponding image type

(e.g., the algorithm developed with standard CXRs was tested only on standard CXRs). All

of the statistical analyses focused on the performance of the current test set when input to

the pre-trained model after phase 3, with no additional training or validation performed.

4.2.4 Statistical analysis

Current test set only

Performance of the three classification algorithms was assessed by using images acquired

from the different CXR exam types (portable versus DES) on the current test set.

Original test set versus current test set

Comparisons of model performance between the original and current test sets were performed

for standard CXRs when considering (1) the entirety of the two test sets (this comparison

was repeated for both the soft-tissue CXRs and fusion of the image types), (2) the original

test set and only CXRs from the current test set acquired within the date range of the

original test set (to control for the different virus strains), and (3) non-immunized patients

from both test sets (to control for the impact of disease severity due to vaccines).

The ability of the DL model to classify disease will depend on the severity of the disease

as presented on a medical image. Therefore, the COVID severity of the CXRs in the original

and current test sets was calculated, as studied by Li et al. [138]. Briefly, the COVID severity

model computed a pulmonary x-ray severity (PXS) score, which is defined as the median

Euclidean distance between the image of interest and “normal” images (i.e., absence of all

pathologies [139]). Specifically, the Euclidean distance, with respect to the imaging features
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on which the networks trained, was between the final two layers of twinned DenseNet-121

networks within a Siamese neural network.

The manual modified Radiographic Assessment of Lung Edema scores (mRALE, based

on the RALE score created by Warren et al. [140]) were determined by a radiologist with

over 20 years of experience on a subset of 50 cases chosen using stratified sampling from the

1,972 original test set standard CXR images (Figure 4.2). The PXS scores were assessed

using a Bland-Altman plot [78] to display the agreement between the computed PXS and

mRALE scores. Spearman’s rank correlation coefficient was calculated to assess the mono-

tonic relationship between the PXS and mRALE scores. Model performance based on PXS

score was evaluated after grouping the cases into four equally spaced PXS score bins. Due to

the small numbers in the fourth bin for each of the test sets, however, the cases for the third

and fourth bins were combined, resulting in three bins for analysis. The “obviousness” of

each case was also qualitatively assessed by plotting the DL prediction scores of the cropped

standard images from the original and current test sets, with more “obvious” true-negative

cases and more “obvious” true-positive cases assigned DL prediction scores closer to zero and

DL prediction scores closer to one, respectively.

Uniform manifold approximation projection (UMAP [141]) was used to visualize the

penultimate global average pooling layer of the classification algorithm using standard CXR

images to qualitatively evaluate the COVID-19 classification task and to visualize the con-

fusion matrix. A quantitative comparison of the two-dimensional UMAPs for the original

test set and current test set was performed using one-way multivariate analysis of vari-

ance (MANOVA) to test for a significant difference between the two bivariate means of

the UMAPs; specifically, the bivariate means were tested for statistical significance using

Pillai’s trace to calculate the F-statistic, which then resulted in its corresponding p-value.

In addition, a comparison of demographics (i.e., age and sex distributions) and Interna-

tional Classification of Diseases 10 (ICD-10) codes between patient cohorts was conducted.
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Figure 4.2: Box and whisker plot of the severity score distribution of all 1,972 cases of the
original test set. Ten cases were randomly chosen from each part of the box and whisker plot
to ensure an equal representation of cases from all possible PXS scores assigned, totaling
50 random cases selected from the original test set to determine the robustness of the PXS
scores.

The ICD-10 codes were analyzed to determine whether there were differences in suspected

diagnoses between the cohorts that would have resulted in different patient populations.

Therefore, varying populations could have explained differences on the CXRs, which would

impact model performance. Lastly, an analysis of the performance of the classification al-

gorithm using various standard CXR image dimensions previously described of the image

preprocessing steps in Section 4.2.2 was conducted on the original test set.

Overall, these investigations were designed to better understand potential confounding

factors that related to image acquisition, different strains of the COVID-19 virus, and patient

age. Furthermore, clinical factors, such as vaccination status and severity of COVID were

assessed. Performance was evaluated using area under the ROC curve as the figure of merit

(2000 bootstrapped samples to construct the 95% confidence intervals), with the DeLong

test used to compare the uncorrelated ROC curves [108].
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4.3 Results

4.3.1 Current test set only

Classification algorithm

The three classification algorithms corresponded to training the model with the original

dataset using (1) cropped standard images, (2) cropped soft-tissue images, (3) and a feature

fusion of the two image types. The pre-trained (i.e., no additional training or validation)

DL model then was applied to the current test set and achieved the AUC values presented

in Figure 4.3.

Figure 4.3: ROC curves for the classification of COVID-positive and COVID-negative pa-
tients based on CXRs using the current test set. No additional training or validation was
performed. ROC curves were fitted using software created by Metz et al. [109].
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Table 4.3: Comparisons of model performance for the three classification algorithms: stan-
dard images, soft-tissue images, and both types. The p-values comparing the differences
in AUC values were calculated using the DeLong test, with their corresponding confidence
intervals (CIs) [142]. Significance levels (α) and widths of the CIs were adjusted based on
multiple comparisons.

p-value for ∆AUC α CI of ∆AUC

Standard versus soft-tissue 0.0069∗ 0.017 98.3% CI = [0.0030, 0.050]

Standard versus fusion 0.42 0.050 95% CI = [-0.010, 0.025]

Soft-tissue versus fusion 0.031 0.025 97.5% CI = [-0.039, 0.00075]
∗Statistically significant difference after correcting for multiple comparisons (Bonferroni-Holm correction).

The AUC value obtained using the cropped standard CXR images (0.67 [0.65, 0.70])

was significantly higher than that obtained using soft-tissue CXRs (0.65 [0.63, 0.67]). AUC

values, however, failed to achieve statistical significance when comparing (1) cropped stan-

dard CXRs with both types of images (fusion) and (2) soft-tissue CXRs with both types of

images. The results are displayed in Table 4.3.

CXR exam type

When considering the CXR exam type (e.g., portable versus DES unit), the AUC values

achieved are shown in Table 4.4. AUC values failed to achieve statistical significance when

comparing across CXR exam type for each classification algorithm, i.e., the type of unit

did not appear to have an impact on the model’s performance in the task of classifying

COVID-19.
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Table 4.4: Performance of the image type-based classification algorithms for the CXR exam
types on the current test set. The 95% CIs are displayed in brackets. Majority of portable
images were acquired on Canon Inc. units, and majority of DES images were acquired on
GE Healthcare and Fujifilm Coporation units. AUC values failed to achieve a statistically
significant difference between exam types for each classification algorithm.

Portable = 4,165 (70.7%) DES = 1,728 (29.3%) Overall = 5,893

COVID-19 prevalence 471 (11.3%) 260 (15.0%) 731 (12.4%)

AUC [95%CI] Standard 0.68 [0.65, 0.71] 0.69 [0.65, 0.73] 0.67 [0.65, 0.70]

Soft-tissue 0.66 [0.63, 0.69] 0.64 [0.60, 0.68] 0.65 [0.63, 0.67]

Fusion 0.68 [0.65, 0.71] 0.68 [0.64, 0.72] 0.67 [0.65, 0.69]

4.3.2 Original test set versus current test set

Entirety of both test sets

All AUC values displayed in Figure 4.3 were lower than those obtained in Hu et al. [44]

(p < 0.001) as calculated using the DeLong test for uncorrelated ROC curves. Figure 4.4

shows the comparison of ROC curves and AUC values between the two test sets.

Date match

There were four main COVID-19 variants of concern (VOC) that underlie the datasets (as

defined by the City of Chicago Department of Public Health [143]): the original strain,

B.1.1.7 (Alpha) beginning in January 2021 until June 2021, Delta from July 2021 to Decem-

ber 2021, and Omicron from December 2021 onward. Therefore, the original dataset had

two VOC: the original variant and Alpha. The current test set had all four VOC. Table 4.5

displays the AUC values calculated when controlling for the variants.

The original and Alpha VOC were controlled for when the current test set was limited

to the image acquisition date range of the original test set. An AUC value of 0.66 [0.62,
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(a) ROC curves of the original test set for the
three classification algorithms.

(b) ROC curves of the current test set for the three
classification algorithms.

Figure 4.4: Comparison of ROC curves and AUC values between (a) original and (b) current
test sets. AUC values for the three classification algorithms were consistently lower for the
current test set compared with the original. Figure 4.4a is the same figure as Figure 6 in ref.
[44] (reprinted with permission) and Figure 4.4b is the same as Figure 4.3.

Table 4.5: AUC values calculated for each of the four variants underlying the two test sets.

Original variant
(start to 2020-12-31)

Alpha (2021-01-01 to
2021-06-30)

Delta (2021-07-01 to
2021-11-30)

Omicron (2021-12-01 to
present)

Original test set
AUC [95% CI] 0.77 [0.73, 0.80] 0.65 [0.52, 0.79] NA NA

Current test set
AUC [95% CI] 0.67 [0.62, 0.71] 0.68 [0.65, 0.72] 0.71 [0.66, 0.76] 0.63 [0.54, 0.71]

Number of patients
in original test
set (COVID prevalence)

N = 1,782 (15.9%) N = 190 (11.1%) N = 0 N = 0

Number of patients
in current test
set (COVID prevalence)

N = 1,552 (14.4%) N = 2,827 (10%) N = 1,320 (11.6%) N = 194 (36.6%)

AUC for variant 0.72 [0.70, 0.75] 0.68 [0.65, 0.72] NA NA

0.70] (significantly different from the AUC of the original test set, p < 0.001) was achieved

when considering cropped standard CXRs acquired within the same image acquisition dates

as the original test set. This date match corresponds to the overlap of the green histogram

bars with the blue as shown in Figure 4.5.
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Figure 4.5: Histogram of the imaging exam dates, categorized by the current test set, the
original training set, and the original test set. The current test set had a much larger date
range, spanning March 15, 2020 to January 1, 2022.

Immunization status

The current test set achieved an AUC value lower than that of the original test set when

comparing the cropped standard CXRs of non-immunized patients from the two patient

cohorts, as shown in Table 4.6. Further, to determine whether immunization status had

an impact on the DL model’s performance in classifying COVID-19 status, a comparison

between immunized and non-immunized patients in the current test set was performed;

differences in AUC values failed to achieve statistical significance (p = 0.60).
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Table 4.6: Summary of statistical analyses performed between the original test set and the
current test set. AUC comparisons were conducted using the unpaired DeLong test, and all
three comparisons between the test sets were statistically significantly different (p < 0.001).

Original test set Current test set

Total comparison
Date range 02-20-2020 to 02-03-2021 03-15-2020 to 01-01-2022
Number of patients 1,972 5,893
COVID prevalence 15.5% 12.4%
AUC [95% CI] 0.76 [0.73, 0.79] 0.67 [0.65, 0.70]

Date match
Date range 02-20-2020 to 02-03-2021 03-15-2020 to 02-02-2021
Number of patients (%) 1,972 (100%) 1,737 (29.5%)
COVID prevalence 15.5% 14.6%
AUC [95% CI] 0.76 [0.73, 0.79] 0.66 [0.62, 0.70]

Nonimmunized patients
Number of patients (%) 1,966 (99.7%) 4,436 (75.3%)
COVID prevalence 15.5% 14.4%
AUC [95% CI] 0.76 [0.73, 0.79] 0.67 [0.65, 0.70]

COVID severity

COVID severity was assessed for both patient cohorts; differences between the PXS scores

failed to achieve statistical significance (p = 0.17). PXS scores also failed to achieve a

statistically significant difference when matching the image acquisition dates between the

test sets (p = 0.06). The robustness of the severity score itself was evaluated based on the 50

cases selected in Figure 4.2 using Spearman’s rank correlation coefficient (ρ = 0.74, p <0.001)

as well as a Bland-Altman plot to display agreement (Figure 4.6). The Bland-Altman plot

showed that the PXS score (calculated using the standard CXRs) was on average lower than

the radiologist’s assessment (Figure 4.6b).

AUC values resulting from cases in the three PXS score bins for the test sets (details

presented in Table 4.7) are displayed in Figure 4.7. The highest AUC value for the original
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(a) Scatter plot between mRALE and PXS scores. (b) Bland-Altman plot between mRALE and PXS
scores.

Figure 4.6: (a) Scatter plot of a subset of images from the original test set that displays
the mRALE score determined by the radiologist and the COVID severity as determined by
the DL model described by Li et al. [138]. The regression line is shown in blue where the
shaded blue region is the 95% CI. (b) Bland-Altman plot displaying the agreement between
the methods of assessing COVID severity. The outlier outside the 95% limits of agreement
demonstrated a collapsed left lung with possible effusion [127].

Table 4.7: Definition of PXS score bins for the test sets.

Original test set Current test set

PXS score bin edges 0.77 / 4.12 / 7.46 0.76 / 5.12 / 9.48

Cases (N) 1538 / 343 / 91 4914 / 859 / 120

COVID prevalence (%) 11.31% / 26.24% / 45.05% 10.56% / 19.79% / 35.09%

test set was achieved for the third bin, which contained cases with the highest COVID

prevalence (45.05%). The highest AUC value for the current test set resulted from the

second bin, which contained cases with the second highest COVID prevalence (35.09%):

though, the 95% CIs increased with bin edges since the number of cases decreased. The

COVID prevalence increased with increasing bin edges, predictably, as higher PXS scores

indicate greater radiographic evidence of abnormality. Overall, the original test set yielded

AUC values consistently larger than those of the current test set. The distribution of severity

scores split according to positive and negative cases, per test set, are shown in Figure 4.8.
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Figure 4.7: Bar plot depicting the resulting AUC values when controlling for PXS scores using
the PXS score bin edges defined in Table 4.7. The 95% CIs were calculated by bootstrapping
the AUC values 2000 times.

(a) Severity scores of the original test set. (b) Severity scores of the current test set.

Figure 4.8: Histograms of the severity scores calculated from the original (a) and current
(b) test sets. Both distributions demonstrate a strong right skew with higher frequency of
positive cases having larger PXS scores.
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DL model predictions

Figure 4.9 presents histograms displaying the prediction scores assigned by the model for

both the original and current test sets. The distributions display a higher proportion of

images from the original test set at low (≤ 0.25) and high (≥ 0.75) prediction scores relative

to the images from the current test set, which resulted in the observed higher performance

on the original test set. There was a slightly higher count for the current test set at scores

in the middle of the plot, i.e., less certain predictions assigned by the DL model.

(a) Prediction scores for the date match.

(b) Predictions scores for the entire image acquisition dates.

Figure 4.9: Histogram of the prediction scores of the DL model for both test sets. The
distribution (a) before February 3, 2021, and (b) the entire data range. February 3, 2021
was chosen as the cutoff date as that is the last date which had an overlap of CXR acquisitions
between the two patient cohorts (see Figure 4.5). The histograms were normalized to have
equal area.
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UMAP visualization

UMAP visualizations indicated that the model perceived the two sets of CXRs nearly iden-

tically (Figure 4.10). This observation was supported by the MANOVA analysis, which

generated an F-statistic of 1.9014 and a p-value of 0.1494, failing to achieve a statistically

significant difference between the two bivariate means of the UMAPs generated for the orig-

inal test set and for the current test set. However, variation existed as the percentages of

true positives (TP) and false positives (FP) were different between the original test set (TP

= 8%, FP = 11.9%) and the current test set (TP = 4.8%, FP = 12.9%).

(a) 2D UMAP visualization of the global average
pooling layer for the original test set.

(b) 2D UMAP visualization of the global average
pooling layer for the current test set.

Figure 4.10: UMAP visualization of the confusion matrix for (a) the original test set and
(b) the current test set. A similar decision variable was chosen by the deep net for both
patient cohorts, classifying positive cases from negative cases (division between blue and
orange dots). Overall, the model returned a higher percentage of TPs and lower percentage
of FPs for the original test set than for the current test set [127].

Patient demographics

Despite the nearly identical mean and median ages between the two test sets (Table 4.8),

the distributions of age (Figure 4.11) yielded statistically significant differences based on

the Wilcoxon rank-sum test (p = 0.006). There was also a statistically significant difference

between ages when matching the image acquisition dates across the two test sets.
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Table 4.8: Statistics of the age distributions for the original dataset (which includes training,
validation, and test cases) and the current test set.

Original dataset Current test set

Mean age (± SD) 54.7 ± 18.9 55.9 ± 19.1

Median age (IQR) 56 (29) 59 (29)

Figure 4.11: Histogram of patient age from the original dataset (which includes training,
validation, and test cases) and current test set [127].

There were more men than women in both the original dataset [5088 men and 4772

women (52% male)] and current test set [2979 men and 2914 women (51% male)]. Table 4.9

summarizes AUC values obtained when dividing the test sets with respect to sex. Statistical

differences occurred (p < 0.05) when comparing the AUC values of each sex of the original

test set to the current test set. Differences between sex within each test set failed to achieve

a significant difference.

Lastly, ICD codes were compared between the original dataset and current test set, and

both sets shared the same top-three ICD-10 codes: (1) encounter for screening for other viral
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Table 4.9: Distributions of sex for the original and the current test set with their correspond-
ing AUC values and COVID prevalence.

AUC value COVID prevalence

A) Original test set — Male (N = 1051) 0.76 [0.71, 0.80] 14.0%

B) Original test set — Female (N = 921) 0.76 [0.71, 0.80] 17.2%

C) Current test set — Male (N = 2979) 0.65 [0.62, 0.69] 11.1%

D) Current test set — Female (N = 2914) 0.69 [0.67, 0.72] 13.7%

disease (Z11.59), (2) age-related osteoporosis (M81.0), and (3) unspecified osteoarthritis

(M19.90). The top three codes are consistent with older patients who were screened for

COVID-19. The Z11.59 code was designated for asymptomatic individuals with no known

exposure to the virus and either unknown or negative COVID-19 test results [144]. Since

the top-three codes were the same, this finding was used as a surrogate to conclude patient

diagnoses were unlikely to have accounted for the discrepancy in model performance.

Image dimensions

When using CXRs from the original test set that were resized by the U-Net-based model to

the large lung region dimensions (bottom panel in Figure 4.1), the performance of the DL

model decreased for all three classification algorithms relative to the published original test

set results (Figure 4.4a), obtaining AUC values of 0.74 [0.71, 0.77] for standard CXRs alone,

0.72 [0.69, 0.75] for soft-tissue CXRs alone, and 0.69 [0.66, 0.73] for both types of images.

The feature fusion algorithm experienced the largest decrease in AUC value.

To determine the impact of image resizing further, the large lung region images were

resized to the small lung region dimensions using the Image module from the PIL Python

package. This additional resizing resulted in AUC values closer to those obtained from the

original test set analysis: 0.76 [0.73, 0.79] for the standard CXRs alone, 0.72 [0.69, 0.76] for
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the soft-tissue CXRs alone, and 0.75 [0.72, 0.79] for both types of images. Once more, the

classification algorithm incorporating both types of images experienced the largest decrease

in classification performance compared to the 0.78 [0.74, 0.81] AUC value achieved on the

feature fusion of the original test set. While the images in this additional analysis were resized

to the smaller dimensions using the same Python packages as the U-Net-based model, the

pixel values of the cropped images were not identical to those of the original test set. The

value of U-Net cropping was demonstrated by using uncropped standard CXRs of the current

test set, for which the model achieved an AUC value of 0.58 [0.56, 0.61], substantially lower

than the 0.67 reported throughout this work.

4.4 Discussion

The novelty of this study involves its in-depth and exhaustive analysis of various factors that

may have contributed to the significant difference in performance by the DL model between

the original and current test sets. The results were explored in a variety of ways: perfor-

mance was assessed across classification algorithm, by CXR exam type, and during different

time periods to account for different strains of the COVID virus. Model performance was

also evaluated when controlling for equipment manufacturers and various VOC. Vaccination

status and disease severity were also considered to determine their impact on the classifica-

tion task. In addition, patient age and sex were taken into account, along with the model’s

perception of the radiographs (as captured in the UMAPs) for the two test sets. Influence

of the various cropped lung region dimensions was evaluated.

Similar to results obtained from the original test set, the cropped standard CXRs in

the current test set performed better when compared with the cropped soft-tissue images.

Differences in AUC values between the classification algorithm developed using standard im-

ages and the classification algorithm developed using both images (standard and soft-tissue),

failed to achieve statistical significance (Table 4.3). AUC values for the three classification
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algorithms on the current test set were all significantly lower than those of the original test

set.

Dividing the CXRs between portable and DES was performed to investigate whether

the type of radiography unit would have an impact on robustness of the DL model as the

two types generate images of different quality. A DES unit acquires a soft-tissue image by

generating two separate energies of x-rays, creating two images; the resultant soft-tissue

image is acquired by subtracting the two images from each other. Portable units generate

x-rays only at one energy followed by postprocessing algorithms, which create a synthetic

soft-tissue image. Patient geometry is different between the two types of units, as patients are

typically oriented in anterior-posterior positioning for portable units and posterior-anterior

for DES units. One must also be aware of the motion artifacts that arise from a CXR

acquired from a portable unit. Despite these factors, there were no significant differences

between CXR exam type AUC values as presented in Table 4.4, unlike the original test set

(Table 4 in ref. [44]).

CXR images of the original and current test sets were visually reviewed to ensure no

gross differences in imaged patient anatomy, patient positioning, or image artifacts were

present between the two test sets; this review did not provide any evidence of systematic

differences of this nature. In addition, Gradient-weighted Class Activation Mapping (Grad-

CAM) heatmaps were employed to visually assess the predictions of the model for both

negative and positive cases from the original and current test sets for high (> 10) and

low (< 1) severity as determined by the PXS score. This analysis also did not portray a

distinction between the two test sets.

Analysis of patient demographics for the two sets, i.e., age and sex distributions, did

not provide any further explanations regarding the discrepancy of performance. While there

was a significant difference between age distributions, the findings when matching for sex

were consistent with the other investigations: the model better classified COVID-19 status

89



of patients from the original test set than from the current test set. The ICD-10 codes were

also used to characterize potential differences between patient cohorts in terms of suspected

diagnoses, but the analysis returned the same top-three codes. Therefore, the CXRs acquired

were of similar patient populations.

The original test set had more “obvious” negative and positive cases than the current test

set (Figure 4.9), which may have impacted the differences in performance between the two

test sets. The “obviousness” of a case was suggested by the increased counts for the low (cases

the model perceived as negative) and high (cases the model perceived as positive) prediction

scores for the original test set when compared with the current test set (Figure 4.9b). This

trend was amplified when limiting the date range prior to February 3, 2021 (Figure 4.9a),

i.e., limiting the current test set to the image acquisition date range of the original test set

(Section 4.3.2), which likely explains why the date range-matching analysis did not increase

the AUC value to one comparable to that of the original test set. Immunization status also

did not provide an explanation for the discrepancy in decreased performance.

While the PXS score was designed to evaluate only COVID-positive patients, there was

merit in applying this technique to the CXRs of COVID-negative patients because patients

obtaining a CXR usually have suspicion of some abnormality in the lung. Therefore, the

PXS score, which is defined as the median Euclidean distance between the image of interest

and “normal” images, was still a useful metric to incorporate because many of the CXRs of

the COVID-negative patients were not “normal.”

The data-reduction capability offered by the UMAP was applied to the penultimate global

average pooling layer; a two-dimensional embedding was generated that helped visualize how

the DL model interpreted the CXRs, thus providing an interpretation of the perception of

the radiographs by the model. A nearly identical embedding for images acquired from both

cohorts was illustrated. False positive patients appeared to be less concentrated in the

embedding for the current test set, however, than for the original test set.
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While this work followed the same image preprocessing for the original dataset and cur-

rent test set, investigation in changes of the cropped lung region dimensions provided insight

on how small changes may lead to different results when using DL models. Overall, this

work demonstrated the complexity of attaining model robustness and generalizability: an

“off-the-shelf” deep net capable of performing classification tasks across different datasets

with minimal training remains an elusive task. Therefore, one explanation for the significant

difference in performance between the test sets used in this study is a lack of generalizability

of the model, which was unable to correctly classify COVID for a new test set (from the

same institution) as robustly as it did for the data on which it had been trained originally.

To address this lack of generalizability, future work will investigate (1) the impact of

patient demographics and clinical factors on the classifier, (2) whether there were differences

in the “obvious” negative or positive patients between the two cohorts, and (3) altering the

architecture of the model to make it more robust. First, while patient age and sex was

examined for both the original dataset and current test set, matching for age and sex on

the training set and test set could provide an explanation for the decrease in performance of

the model (e.g., investigate the higher AUC value obtained when considering female patients

on the current test set further). COVID severity could also be controlled for between the

training and test sets. Second, an analysis of the characteristics of only the positive patients

from both cohorts will be performed. For example, if the positive patients in the original

test set are older than the positive patients in the current test set, then disease presentation

across age may contribute to the performance decrease. Third, a weight regularizer can be

applied to the DenseNet layers (specifically, L2 regularization) to impose a penalty on the

calculated weights, which in turn will prevent model overfitting and possibly make it more

generalizable. This will be one approach in potential ablation studies. Repartitioning the

original dataset will also be done to determine whether favorable partitions were the reason
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for the observed difference in performance. Overall, the regularization could also mitigate

the impact of random data partitions, yielding more robust results.

While the the AI community joined in on the efforts early in the pandemic, the com-

munity also started recognizing the shortcomings of the methodologies employed, leading to

unreliable models [123, 145]. For example, training sets early in the pandemic suffered from

small sizes and class imbalances, which made it unlikely that the results of AI models would

generalize to broader populations. Goncalves et al. [146] reported that some models origi-

nally trained on small datasets from China were intended for use in European populations,

resulting in ineffective models due to differences in the three blood biomarkers evaluated

in the patient cohorts and the laboratory protocols used. Further, many public datasets of

COVID-19 patients comprised images obtained from journal articles without access to the

original DICOM images [147], raising concerns about image quality and whether “pictures

of pictures” provide the same quality data as original images [145, 148, 149]. What distin-

guishes this research, however, is the systematic analyses performed to compare datasets

that were acquired from the same institution, using the same machinery and imaging pro-

tocols; therefore, this novel work provides invaluable insight to how DL models may falter

even within the same institution, which in turn can reveal ways to mitigate the lack of model

robustness.

4.5 Conclusion

A larger and more current test set of CXRs was used to validate the performance of a pre-

trained DL model designed to differentiate COVID-positive from COVID-negative patients.

AUC values of 0.67 for cropped standard CXRs, 0.65 for cropped soft-tissue CXRs, and

0.67 for both types of cropped images were achieved, which were significantly lower than

performances of 0.76, 0.73, and 0.78, respectively, on the original test set. Several factors

were considered to determine their impact on the observed differences in model performance
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on the test sets, including time period of image acquisition, immunization status, age and sex

distributions, and disease severity. The underperformance of the model on the current test set

may be explained by a lack of model generalizability. Overall, this research highlighted the

importance of not only developing DL models but also rigorously testing their performance

across various scenarios to ensure robustness and generalizability.
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CHAPTER 5

CONCLUSIONS AND FUTURE DIRECTIONS

This dissertation extensively researched the implementation of deep learning (DL) methods

for the segmentation of pleural mesothelioma (PM) on computed tomography (CT) scans

and classification of COVID-19 on chest radiographs (CXRs). Further, machine learning

(ML) techniques were combined with DL to perform imaging genomics through the use of

radiomics and texture feature analysis.

Chapter 2 employed a DL algorithm, namely a Visual Geometry Group 16 (VGG16)/U-

Net model [74, 75], to automatically segment PM tumor as presented on CT scans acquired

as an independent and external dataset. The ability of the model to segment the tumor was

evaluated using two figures of merit: the percent difference of volume and the Dice similarity

coefficient (DSC). The two metrics were calculated between the predicted segmentations and

a reference standard. Tumor volume was quantified as it provides a more accurate assessment

of tumor extent and response to therapy [64, 65]. This work in particular aimed to quantify

the impact various probability thresholds of the generated segmentations have on the two

figures of merit. No single threshold for the CNN probability maps was optimal for both

tumor volume and DSC. This work, however, underscored the need to assess tumor volume

and spatial overlap when evaluating CNN performance. While automated segmentations

may yield comparable tumor volumes to that of a reference standard, the spatial region

delineated by the CNN at a specific threshold is equally important.

Chapter 3 presented the first investigation of the use of both DL and ML algorithms for

the automatic segmentation of PM and classification of somatic BAP1 mutation on CT scans,

respectively. The same DL model discussed in Chapter 2 was used to segment PM tumor on

three representative CT sections per patient. The generated segmentations were adjusted

to ensure high specificity of pixels depicting tumor. Texture features were then extracted

from the resultant segmentations and used for the classification task. Using ML models, a
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decision tree classifier was able to yield moderate performance in the task of differentiating

between BAP1+/- patients. The findings of this study can be leveraged for future germline

BAP1 mutation research; germline BAP1 mutations are more clinically relevant as family

members have a 50% chance to inherit the same mutation [89], and germline testing is not

commonly performed [91]. Therefore, identification of genetic information through image

analysis could lead to improved patient prognostication and family member assessment.

Chapter 4 continued the DL investigations by assessing the performance of a pre-trained

DenseNet-121 model [131] in the task of classifying patients as COVID+/- based on CXRs

while considering various image acquisition parameters, clinical factors, and patient demo-

graphics. Performance of the model trained using standard and soft-tissue CXRs of an

original dataset was compared to the performance of the same model on a larger more-

current test set. The current test set contained a larger span of dates, incorporated different

variants of the virus, and included different immunization statuses. Model performance on

the current test set was significantly lower than the performance of the model on the original

test set. Investigations that matched the acquisition dates between the original and current

test sets (i.e., controlling for virus variants), immunization status, disease severity, and age

and sex distributions did not fully explain the discrepancy in performance. Therefore, the

lower performance on the current test set may have occurred due to model overfitting and a

lack of generalizability.

Future work extending the research of this dissertation can address some of the limitations

posed. The following paragraphs will discuss the limitations and potential future directions

for the separate chapters presented.

While the VGG16/U-Net model used in Chapter 2 achieved initial strong performance

[42, 43], there are more recent and advanced models that have been developed for medical

image segmentation tasks [150, 151, 152]. One potential future direction to help improve the

mesothelioma segmentation task could be to implement a region-based fully convolutional
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network (R-FCN), which performs instance segmentation instead of semantic segmentation

(Section 1.3.1) [150, 152]. This approach can perform multi-region segmentation by lo-

calizing the regions of interest and subsequently performing binary classification for every

region separately. For the mesothelioma segmentation task, the regions of interest may be

mesothelioma tumor and adjacent atelectatic lung tissue. Identifying the two regions as sep-

arate tasks could improve performance as the regions have similar visual characteristics on

CT scans. R-FCNs can be implemented using cascaded FCNs, whereby one FCN is “stacked”

on another, with the former used to locate the region of interest and the second performs the

classification task [152]. Separately, U-Nets coupled with generative adversarial networks

(U-Net-GANs) can be used for probability map generation and discriminators, respectively.

Other possible future directions for the mesothelioma segmentation task would involve

implementation of the V-Net architecture, a 3D version of the U-Net architecture for medical

image segmentation [150, 151, 152]. The V-Net uses a loss function based on the DSC (instead

of binary cross-entropy loss), which is beneficial when there is an imbalance of pixels labeled

as tumor and those labeled as background. Unlike U-Nets, V-Nets use residual blocks as

short skip connections between shallower and deeper convolutional layers, which improves

the convergence when compared with U-Nets [152]. However, the disadvantage of using 3D

architectures is that the dataset size used for training is substantially reduced because model

training is now performed at the patient level rather than at the image level. One approach

in the literature to mitigate this limitation is to implement a 2.5D FCN segmentation [153].

In that work, the authors employed image patches consisting of several consecutive axial

slices, which were used as inputs to the FCN and used a “majority voting scheme” for

segmentation. The authors also note the importance of transfer learning, as their FCN

was able to achieve superior performance. Lastly, while mainly academic, model calibration

should be considered, in particular, when evaluating the generated segmentation maps and

the probabilities output by the DL algorithms.
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Chapter 3 demonstrated the ability of radiomics, specifically in the context of imaging

genomics, to distinguish between somatic BAP1 -positive and BAP1 -negative patients based

on the extracted texture features of the tumor regions of interest. Further, no prior study

has combined a DL model for segmentation and ML algorithms for the classification in this

particular task; however, there are limitations that hinder reaching a strong conclusion about

the feasibility of this task. For instance, the small dataset size, especially compared with the

number of features extracted, may have rendered the problem an underdetermined system.

Further, the stability and robustness of the features were reduced as features were extracted

from only three CT sections per patient, and the CT scans had been acquired across a wide

range of clinics, scanner manufacturers, and at different time points during the course of

treatment for the patients. Future investigation should benefit greatly from a larger patient

cohort to reach stronger conclusions. The methodology established in this work, however,

should translate over to the increased dataset size.

Chapter 4 provided a comprehensive evaluation of a DL model trained to classify COVID-

positive and COVID-negative patients based on their CXRs. While the work was extensive,

no real-world characteristics, such as age, sex, image acquisition dates, and COVID severity

were able to explain the discrepancy in model performance between the original dataset and

the current test set. Therefore, future work can pivot toward analyses of model retraining

and data partitioning instead of patient and clinical information. By examining the impact

of different training schemes and data partitions, these investigations may provide a more

complete assessment of this deep CNN, as well as DL algorithms in general. Having access

to two, in-house, independent datasets provides a more-controlled opportunity to examine

the data and the model. This is particularly beneficial as there are fewer confounding

factors to account for when investigating the discrepancy in model performance, in contrast

to using publicly available image repositories, for example. Overall, the concept of model
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generalizability is further addressed in the Appendix, as it compares performance of the

model on a sample (original dataset) and target (current test set) population.

This dissertation explored the application of DL and ML methods for the segmentation

of PM on CT scans, classification of BAP1 mutation using imaging genomics, and the classi-

fication of COVID-19 on CXRs. For the mesothelioma segmentation task, a VGG16/U-Net

model was used, and the impact of various probability thresholds on tumor volume and

DSC was evaluated. The work emphasized the importance of assessing both tumor vol-

umes and spatial overlap when evaluating DL model performance compared with a reference

standard. Using the same model, PM tumor was automatically segmented from another

patient dataset, and texture features were extracted and used to successfully classify so-

matic BAP1 mutation on the basis of CT scans. These initial findings suggest the potential

application of texture feature analysis to patients with germline BAP1 mutation, leading

to improved patient prognostication if successful. Lastly, for the COVID-19 work, a pre-

trained DenseNet-121 model was used for CXR classification, which resulted in a significant

decrease in performance on a more current test set, possibly due to model overfitting and

lack of generalizability. The findings of the COVID-19 study urge further exploration into

model retraining and data partitioning for the enhancement of model generalizability. Over-

all, this dissertation contributes valuable insights into medical image analysis using DL and

ML, paving the way for potential advancements in mesothelioma segmentation and BAP1

and COVID-19 classification through image analysis.
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APPENDIX A

IMPACT OF MODEL RETRAINING ON A DEEP LEARNING

MODEL IN THE TASK OF COVID-19 CLASSIFICATION ON

CXRS: A PILOT STUDY

A.1 Introduction

In the early stages of the coronavirus disease 2019 (COVID-19) pandemic, deep learning

(DL) algorithms emerged as potential tools for rapid diagnosis of the virus based on the

chest radiographs (CXRs) of patients. As the deployment of these algorithms progressed,

however, it became evident that their performance was not always consistent, and challenges

arose in ensuring their reliability in clinical settings. For example, some models were trained

on CXRs of pediatric patients but were then applied to an adult population, which resulted

in models predicting whether the patient was a child, not COVID-19 status [123]. Similarly,

a model trained on images of patients lying down and standing up was able to identify the

status of patient positions, instead of disease status, with the intuitive notion that patients

lying down were more likely to be ill [154]. Further, most models struggled with robustness

and generalizability, as there was poor truth labeling that sometimes relied on subjective

assessments by physicians rather than more objective metrics such as reverse transcription

polymerase chain reaction (RT-PCR) tests [123]. Data collection was also a hindrance,

as some available public datasets amalgamated data from various sources that may have

included duplicate images, resulting in some CXRs being used in both the training and test

sets, which yielded overly optimistic results [123, 154]. In all, a majority of models assessed

early in the pandemic were not ready for clinical deployment, as there were inherent biases

present [123, 155].

There were early efforts to combat data biases and lack of model generalizability. For ex-

ample, to structure data curation, the Medical Imaging and Data Resource Center (MIDRC)
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was created with an aim “to foster machine learning innovation through data sharing for rapid

and flexible collection, analysis, and dissemination of imaging and associated clinical data

by providing researchers with unparalleled resources in the fight against COVID-19” [156].

Further, MIDRC conducted a grand challenge to assess performance and generalizability of

DL models in the task of distinguishing between COVID-19 positive/negative CXRs [157].

Thus, the present study, along with previous work presented in Chapter 4 [126], was moti-

vated by examining model generalizability. Specifically, a previously published DenseNet-121

DL model obtained an area under the receiver operating characteristic curve (ROC AUC)

value of 0.76 in the task of COVID-19 classification [44]. When employing the same pre-

trained, original model on an independent test set from the same institution, a significantly

lower AUC value of 0.67 was achieved [126]. Therefore, the motivation of this work was to

investigate the discrepancy in performance, and lack of generalizability, of the original model

applied to the two test sets acquired from the same institution.

As DL algorithms become more widespread in healthcare tasks, it is imperative that

artificial intelligence (AI) scientists can understand and interpret the outputs of these models

to explain and mitigate potential inconsistencies in model performance. Overall, this current

study aimed to provide an interpretation for the outputs of the DL model in question,

addressing the discrepancies between these two datasets by examining data partitioning,

model architecture, and training, in an effort to understand the lack of model generalizability.

This research aimed to contribute to the ongoing efforts in improving machine learning

performance for COVID-19 diagnosis and other radiologic tasks, which could benefit from

AI deployment in a clinical setting.
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A.2 Methods

A.2.1 Datasets

Set A

Set A included 9,860 patients retrospectively collected from the University of Chicago Medicine

under a Health Insurance Portability and Accountability Act (HIPAA)-compliant, Institu-

tional Review Board (IRB)-approved protocol. The dataset was initially partitioned into 64%

for training, 16% for validation, and 20% for testing using stratified sampling to maintain a

consistent COVID-19 prevalence of 15.5% across the subsets. This training and validation

set will be termed Set Atr, and the test set will be termed Set Ate. Only the first CXR image

acquired within two days of a patient’s initial RT-PCR test for the SARS-CoV-2 virus was

used. CXRs were acquired between January 30, 2020 and February 3, 2021 using standard

images from stationary dual-energy subtraction radiography units and portable radiography

units. For further details on this dataset, refer to Hu et al. [44].

Set B

CXR exams collected from 5,893 patients constituted Set B and had been acquired between

March 15, 2020 and January 1, 2022, under the same HIPAA-compliant, IRB-approved

protocol. Within this cohort, 731 patients (12.4%) had tested positive, while 5,162 patients

(87.6%) had tested negative for the SARS-CoV-2 virus, as determined by RT-PCR tests.

Patient images from both Set A (the initial set used to develop and evaluate the published

model) and Set B (the newer set used to evaluate the published model) were obtained from

the same institution and underwent identical image preprocessing. The curation process for

Set B paralleled that of Set A to mitigate the impact of potential confounding variables.

For further details on this dataset, refer to Chapter 4 and Shenouda et al. [126]. Table A.1

provides an overview of the two datasets.
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Table A.1: Number of patients and COVID prevalence for Set A and Set B.

Number of patients COVID prevalence

Set Atr 7,888 15.4%
Set Ate 1,972 15.5%
Set B 5,893 12.4%

A.2.2 Image Preprocessing

Digital Imaging and Communications in Medicine (DICOM) images of the CXR exams were

gray-scale normalized and converted to Portable Network Graphics (PNG) format on a per-

image basis. Subsequently, an open-source U-Net-based model [128] was used to segment the

smallest rectangular region containing the lungs on the PNG images from both Set A and

Set B. The segmentation model weights were computed using a pre-pandemic public CXR

dataset [129] and fine-tuned on another dataset featuring COVID-19 radiographs [44, 130].

Cropping was performed as it was shown to be effective for the original model [44] and to

maintain a consistent methodology.

A.2.3 Model Training Scheme

The current study is based on a model described by Hu et al. [44], which used a single,

distinct partition of Set A: Set Atr for the training and validation sets and Set Ate for the test

sets. The model employed a DenseNet-121 architecture [131], chosen for its previous success

in diagnosing pneumonia and other pathologies on CXRs [132, 133]. Additionally, it adopted

a curriculum (transfer) learning approach [134], increasing the focus of the classification task

towards COVID-19 in the final phase. The curriculum comprised three phases: (1) fine-tune

the model pre-trained on ImageNet on the National Institutes of Health (NIH) ChestX-ray14

dataset [135, 136], (2) refine on images from a pneumonia detection challenge [137], and (3)

further fine-tune using the initial partition of Set A split into Set Atr and Set Ate[44].
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A.2.4 Analyses and Comparisons

Using Set Atr to train and validate, the original model yielded an AUC value of 0.76 [0.73,

0.79] (2000 bootstrapped samples to construct the 95% confidence intervals) on Set Ate in

the task of distinguishing COVID+/- patients from their cropped standard CXRs. Using

the same pre-trained model, Set B yielded an AUC value of 0.67 [0.65, 0.70] (also calculated

from 2000 bootstrapped samples), which was significantly lower than the results of Set A

(p < 0.001) as determined by the DeLong test comparing the uncorrelated ROC curves

(Figure A.1) [108]. To investigate the decrease in model performance from Set A to Set B,

the present study investigated different model retraining strategies, an ablation technique,

data partitioning, and model deployment on a grand challenge to assess model performance.
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Figure A.1: The comparisons performed between the initial partition of Set A and Set B.
The AUC value refers to the test set of Set A, Set Ate. The asterisk denotes the statistically
significant difference between Set Ate and Set B. The green and orange boxes indicate results
on Set Ate and Set B, respectively.

The first investigation, Experiment I, used Set B to retrain the model to calculate new

phase 3 weights by employing the same split ratios as Set A: Set B was split into 64% training

(3,771 patients), 16% validation (943 patients), and 20% testing (1,179 patients), using the

cropped standard CXRs and maintaining the COVID prevalence at 12.4% across partitions.

The combination of the Set B training and validation partitions will be termed Set Btr,I and

the Set B test set will be termed Set Bte,I .

The second investigation, Experiment II, independently fine-tuned the model after the

original phase 3 was conducted. Specifically, Set B was used to fine-tune the model after
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the original phase 3 weights by splitting the set into 40% training (2,356), 10% validation

(590 patients), and 50% testing (2,947 patients). The combination of the Set B training and

validation partitions will be termed Set Btr,II and the Set B test set will be termed Set

Bte,II .

An ablation study, Experiment III, was also performed by altering the architecture of

the original model for phase 3. Specifically, an L2 regularizer (with an L2 regularization

penalty of 0.0005) [158] was added to help mitigate overfitting, constraining the complexity

of the model by minimizing the values the learned weights can take during phase 3. This

was performed using the initial partition of Set A (Set Atr and Set Ate).

For Experiment IV, the phase 3 weights were recalculated for each of 200 repartitions of

Set Atr, and each of the resulting 200 models was evaluated on Set Ate and Set B to quantify

impact of data partitioning on performance. Specifically, the training and validation sets

that comprise Set Atr were separately resampled with replacement 200 times. These 200

partitions will be termed Set Atr,IV (200 instantiations of Set Atr,IV were generated).

Lastly, the original model was also evaluated during the validation phase of the Medical

Imaging and Data Resource Center (MIDRC) COVIDx Grand Challenge, which was con-

ducted in November 2022, to determine the performance of the model on a dataset outside

the institution on which the model was originally trained and tested. No additional training

or validation was performed for the evaluation on the images from the grand challenge. All

data partitions employed stratified sampling to maintain a consistent COVID-19 prevalence.

Comparisons of model performance between Sets A and B were performed for standard

CXRs when considering the four experiments: (1) recalculating the phase 3 weights using

Set Btr,I , (2) fine-tuning the phase 3 weights using Set Btr,II , (3) implementing the L2

regularizer on the original model and retraining the phase 3 weights, and (4) repartitioning

Set Atr 200 times and recalculating the phase 3 weights, thereby evaluating whether the
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initial Set A results on Set Ate were due to an initial chance favorable partitioning. Table

A.2 and Figure A.2 summarize the methods and comparisons performed.

Table A.2: Summary of the datasets used and comparisons performed. Of note, cases from
the MIDRC Grand Challenge were assessed using the original model, which was pre-trained
on the initial partition of Set A, Set Atr.

Experiment Strategy or application Training set Comparison

I Recalculating phase 3 weights Set Btr,I (N = 4,714) Set Ate (N = 1,972) and
Set Bte,I (N = 1,179)

II Fine-tuning phase 3 weights Set Btr,II (N = 2,946) Set Ate (N = 1,972) and
Set Bte,II (N = 2,947)

III L2 regularization applied during phase 3 Set Atr (N = 7,888) Set Ate (N = 1,972) and
Set B (N = 5,893)

IV 200 repartitions and
recalculating phase 3 weights Set Atr,IV (N = 7,888) Set Ate (N = 1,972) and

Set B (N = 5,893)

Figure A.2: Summary of the four experiments conducted in this study.
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A.3 Results

A.3.1 Experiment I: Recalculating phase 3 weights

After splitting Set B into a 64% training set, 16% validation set, and 20% test set while

maintaining the COVID prevalence, the phase 3 weights were recalculated on Set Btr,I and

a new AUC value of 0.61 [0.56, 0.66] was obtained on Set Bte,I in the task of distinguishing

COVID+/- when evaluating the cropped standard CXRs. This value is a significant decrease

from 0.67 [0.65, 0.70] (p = 0.029), which was obtained when applying the original model to

the entirety of Set B. Further, this value was significantly lower than the initial Set Ate AUC

value of 0.76 [0.73, 0.79] (p < 0.001); though, Set Btr,I resulted in fewer images used for

training (N = 4,714) when compared with Set Atr (N = 7,888), which could explain the

substantial decrease in the AUC values after recalculating the phase 3 weights using Set B.

A.3.2 Experiment II: Fine-tuning phase 3 weights

After fine-tuning the phase 3 weights by splitting the cropped standard CXR images of Set

B into 40% training, 10% validation, and 50% testing while maintaining COVID prevalence,

the AUC value calculated using Set Bte,II slightly improved to 0.70 [0.66, 0.73] but was

not significantly different from Set B without fine-tuning the phase 3 weights (AUC = 0.67,

p = 0.27); though, the 0.70 value was still significantly different from Set Ate (AUC = 0.76,

p = 0.007). A summary of the previous two comparisons is presented in Figure A.3 below.
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Figure A.3: Summary of the results when recalculating (left) and fine-tuning (right) the phase
3 weights of the model. AUC values calculated in the task of distinguishing COVID+/- CXRs
were significantly lower when comparing the partitioned Set B (Set Bte,I and Set Bte,II)
results with Set Ate, denoted by the asterisks. Green and orange boxes indicate results on
Set A and Set B, respectively.

A.3.3 Experiment III: L2 regularization

Regularization did not mitigate model overfitting as the AUC values obtained with the

regularized model failed to achieve a significantly higher AUC value than the corresponding

AUC values prior to regularization for both Set Ate (0.76 [0.72, 0.79]) and Set B (0.68 [0.66,

0.70]).

A.3.4 Experiment IV: Recalculating phase 3 weights after repartitioning

Retraining the model with the Set Atr,IV repartitions using the cropped standard CXR

images resulted in an average AUC value of 0.71 ± 0.013 on Set Ate and an average AUC

value of 0.66 ± 0.009 on Set B. There was a Gaussian-like distribution of AUC values for Set

B (skew of -0.14) but a slight left-tailed distribution (skew of -0.46) for Set Ate, as shown in

Figure A.4. There was also a significantly larger variance of AUC values for Set Ate than for

Set B (F-test, p < 0.01), demonstrating the larger impact different training partitions had

on Set Ate than Set B.
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The lowest AUC value achieved on Set Ate during the 200 partitions was 0.66 [0.62, 0.69].

Interestingly, the initial AUC value of Set B (0.67 [0.65, 0.70]) set was no longer significantly

less than the AUC value obtained with this repartition of Set Atr,IV (p = 0.46). Further,

this lowest AUC value was significantly less than the initial Set Ate AUC value of 0.76 [0.73,

0.79] (p < 0.001). The highest value achieved on Set Ate during the repartitions was 0.73

[0.70, 0.76], lower than the initial AUC value of 0.76, but this difference just failed to achieve

statistical significance (p = 0.069).

The lowest AUC value achieved on Set Ate from the aforementioned Set Atr,IV repartition

(0.66 [0.62, 0.69]) was compared to its corresponding Set B AUC value (0.64 [0.62, 0.66]) on

the exact same repartition and failed to achieve a significant difference (p = 0.43). Though,

the highest AUC value achieved on Set Ate from the repartitions (0.73 [0.70, 0.76]) was

significantly different from its corresponding Set B AUC value (0.65 [0.63, 0.68]) (p < 0.001).

Distributions of AUC values resulting from the 200 partitions are displayed below in

Figure A.4 and a summary of the previous two analyses is presented in Figure A.5. There

was a significant difference between the distributions of AUC values of Set Ate and Set B

(Wilcoxon rank-sum test, p < 0.001).
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Figure A.4: Distributions of the AUC values obtained when repartitioning Set Atr,IV 200
times and evaluating it on the test set of Set A, Set Ate, and the entirety of Set B.

Figure A.5: Summary of the results when implementing L2 regularization (left) and repar-
titioning Set Atr 200 times (right). The AUC value of Set B was significantly lower than
Set Ate for the L2 regularization, denoted by the asterisk. The distributions of the Set Ate
AUC values and Set B AUC values obtained using the repartitioned Set Atr,IV achieved a
significant difference, denoted by the asterisk. Green and orange boxes indicate results on
Set A and Set B, respectively.
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A.3.5 MIDRC Grand Challenge

The MIDRC COVIDx Grand Challenge comprised portable CXRs and was split in three

stages: training, validation, and test. The original DL model trained on Set Atr was applied

to the 197 cases in the challenge validation set and achieved an AUC value of 0.60. For

reference, the highest-performing AUC value during the validation stage was reported to

be 0.66. The winning model, i.e., the model that achieved the highest AUC value during

the test stage, obtained a value of 0.70 [159]. Table A.3 displays the AUC values of all the

different experiments conducted in this work.

Table A.3: Summary of the main strategies or applications and their corresponding AUC
values.

Experiment Strategy or application AUC values

I Recalculating phase 3 weights Set Bte,I : 0.61 [0.56, 0.66]

II Fine-tuning phase 3 weights Set Bte,II : 0.70 [0.66, 0.73]

III L2 regularization applied during phase 3 Set Ate: 0.76 [0.72, 0.79]
Set B: 0.68 [0.66, 0.70]

IV 200 repartitions and
recalculating phase 3 weights

Mean of Set Ate: 0.71 [0.70, 0.73]
Mean of Set B: 0.66 [0.65, 0.67]

— MIDRC Grand Challenge 0.60 (95% CI was not provided)

A.4 Discussion

The motivation for this study was to examine the potential reasons behind the significant

decrease of model performance between the initially partitioned Set A and Set B, which were

both acquired at the same institution. Prior work discussed in Chapter 4 and Shenouda et

al. [126] extensively investigated this discrepancy in performance of the model between the

test sets as it explored impact of age and sex, immunization status, COVID severity, type of

imaging equipment, and date matching of image acquisition [126]. None of these studies in
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Chapter 4, however, were able to explain the drop in performance. Therefore, this current

work examined the impact data partitioning and model retraining have on performance and

model generalizability.

Recalculating the phase 3 weights using Set Btr,I in Experiment I failed to improve

performance of the model, perhaps due to the smaller number of cases on which the model

trained compared with Set Atr, i.e., the original model trained on 6,310 patients from Set A,

while the recalculated phase 3 weights were trained on 3,771 patients from Set B. Fine-tuning

in Experiment II was performed to incorporate images from Set B in the training scheme

(Set Btr,II) in an attempt to improve model generalizability. Fine-tuning slightly improved

the AUC value from 0.67 on Set B to 0.70 on Set Bte,II for the cropped standard CXRs, but

that value remained significantly lower than that of the initial Set Ate AUC value (0.76).

The architecture of the model itself was altered in Experiment III in an attempt to create

a more generalizable model. Specifically, L2 regularization was implemented to control for

overfitting [160], though the regularization had a negligible impact on the performance of

the model. Lastly, when applying the original model to a completely external dataset during

the MIDRC Grand Challenge, i.e., not from the same institution as the CXRs used for

training and testing the model, it yielded an AUC value of 0.60. However, considering the

top-performing model achieved an AUC value of 0.66 during validation, the model of this

study did not substantially underperform.

AUC values for Set Ate had a larger span (range: 0.66–0.73) than those of Set B (range:

0.63–0.68) when repartitioning Set Atr 200 times during Experiment IV. Significant differ-

ences were achieved when comparing the highest AUC value calculated on Set Ate with its

corresponding AUC value on Set B. Further, the highest Set Ate AUC value (0.73) failed to

achieve a significant difference from the initial 0.76 AUC value, although it was lower. When

analyzing the lowest AUC values, the difference between Set Ate and its corresponding Set

B failed to achieve a significant difference. Differences between the lowest AUC value of Set
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Ate and the initial 0.67 AUC value of Set B also failed to achieve a significant difference. In

other words, these values demonstrate that different partitions of the same dataset will yield

significantly different results, returning variable performance. Therefore, while none of the

patient demographics and clinical factors of the former study in Chapter 4 could explain the

decreased performance of the original model, the repartitioned results here indicate that a

favorable, random partition may have been the reason for discrepancy in performance. This

work also emphasizes the “black box” nature of DL, as no discernible, real-world character-

istic could explain the discrepancy of the model outputs. Instead, multiple repartitionings

of the dataset demonstrated the large range of AUC values calculated, and consequently,

the breadth of model performance and lack of generalizability. Additionally, these results

suggest that DL studies should report on model performance across multiple repartitions of

the data, as that would provide a more reliable assessment of the model. Overall, this work

is novel as it provides an exhaustive and in-depth analysis investigating different training

strategies to explain the decreased model performance when evaluating datasets that were

acquired from the same institution.

Future work will explore further the creation of a generalizable model. This will include

various regularization and augmentation methods. For example, test-time augmentation

(TTA) could be employed by creating multiple augmented versions of the images in the test

set. The model then makes predictions on each of these augmented versions, returning an

ensemble of predictions, which can then be averaged. Specifically, test entropy minimization

can be used to perform the TTA, as the minimization has been shown to reduce generaliza-

tion error for image classification on corrupted ImageNet, ImageNet-C, and CIFAR-10/100

datasets [161]. In addition, analyses in finding an optimal ratio of the data split into train-

ing, validation, and test sets will be conducted. Multiple studies [162, 163, 164, 165] have

recommended a variety of splits, ranging from a 25% to a 50% split in creating the test

set. Therefore, an optimal ratio will be explored to ensure the model is not overfit, which
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may result in improved generalizability. Lastly, an analysis of patient-based performance

will be conducted. For instance, subset analyses (i.e., age or sex) can be performed on Set

Ate, and the classifier outputs, which varied with the different training repartitions, can be

studied using a metric such as sureness introduced by Whitney et al. [166] that evaluates the

repeatability of the outputs. The metric can be used across different categories and across

the two test sets, Set Ate and Set B.

A.5 Conclusion

This study examined a model trained to classify COVID-19 status based on patient CXRs

and investigated the discrepancy in performance when the model was applied to two separate

datasets acquired from the same institution, Set A and Set B. The model yielded significantly

different AUC values between the initial test set Set Ate (0.76) and newer Set B (0.67).

Methods and modifications of model architecture, model retraining, and model fine-tuning

were all performed in an attempt to explain the lower AUC value. The exploration of data

partitioning was able to provide an explanation for the decreased performance between the

datasets, as it underscored the variability introduced by different partitions.

Overall, this work contributes to the methods of explainable AI, as it attempted to

interpret the results of the DL algorithm used to classify COVID-19 status. These findings

emphasize the need for continued research in improving model training, fine-tuning, and

augmentation to address model generalizability before deployment in the clinic.
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