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“Deep in the human unconscious is a pervasive need for a logical universe that makes sense.
But the real universe is always one step beyond logic.”

— Frank Herbert
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ABSTRACT

In this work, we analyze the ability of an automated deep learning-based model to identify
the three-dimensional spatial extent of pleural mesothelioma (PM) as presented on computed
tomography (CT) scans, employ machine learning to classify an image-based biomarker for
PM, and evaluate another model’s generalizability in the task of classifying COVID-19 based
on patients’ chest radiographs (CXRs).

PM is an aggressive form of cancer present in the pleural lining of the lung. It is usually
the result of exposure to asbestos and has a very poor prognosis. Linear measurements are the
clinical standard used in evaluating tumor response to therapy, but these measurements are
only a surrogate for tumor volume. Tumor volume must be calculated to assess tumor burden
completely and quantitatively. Determining the volume of tumor, however, is complicated
and time consuming, since discerning PM tumor on a medical image is a challenge for human
and computer observers alike due to its complex and irregular morphology.

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), an RNA virus that can
impact mammals and birds, is the virus responsible for the COVID-19 global pandemic.
The primary mode of transmission among humans is through exposure to respiratory fluids
carrying infectious virus. Before widespread use of reverse transcription polymerase chain
reaction (RT-PCR) tests, CXRs were recommended for triage, disease monitoring, and as-
sessment of concomitant lung abnormalities (e.g., consolidation, ground-glass opacities, and
pulmonary nodules).

In recent years, there has been a substantial increase in the application of artificial intel-
ligence and machine learning techniques to medical imaging. Convolutional neural networks
(CNNs), specifically, have been successfully employed for various objectives performed on
medical images (e.g., the tasks of classification and segmentation). CNNs are capable of
learning both local and global patterns of an image, which is essential to identify nuanced
disease presentations. In this work, we utilized deep learning methods to assess a novel and

XVvil



automated pipeline to segment PM. From the segmentations, we obtained tumor volume
efficiently and accurately, with the potential of future applications in assessment of tumor
extent and response to therapy. Analysis of pixels within the segmented tumor regions was
valuable in determining the underlying genetics of the tumor. For example, machine learning
techniques and texture analysis applied to the segmented regions determined the mutation
status of the BRCAl-associated protein-1 (BAP1) gene. The BAP1 gene is a prognostic
factor in PM and can directly impact treatment options for patients. Methods for address-
ing model generalizability were also assessed for the COVID-19 work, addressing robustness
when testing different and newer datasets.

The specific aims of this work were: (1) to implement and study a deep learning model
for the automatic segmentation of tumor volumetry in PM, (2) to investigate image texture
analysis for differentiation of BAPI mutation status, and (3) to evaluate a deep learning
model for the generalizable classification of COVID-19. Aim 1 fully investigated the perfor-
mance of the deep learning model used for PM segmentation, which better informed us of
the generated outputs by the model. Aim 2 performed texture feature analysis to determine
the somatic BAPI mutation status based on the segmented region on a CT scan. Aim 3
evaluated the performance of a deep learning model in the task of COVID-19 classification
in order to address and develop methods to achieve model generalizability. These results
provided a novel pipeline with potential impact on the future treatment of patients pre-
senting with mesothelioma or COVID-19, expediting many of the sequential steps a patient
must undergo and improving the individualized prognostication process, which can also be

implemented for other cancers and lung abnormalities.
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CHAPTER 1
INTRODUCTION

1.1 Artificial Intelligence

The field of artificial intelligence (AI) originated in the 1950s with early computer scientists
exploring the possibility of making computers “think” and perform intellectual tasks tradi-
tionally done by humans. Al encompasses various approaches, including machine learning
(ML) and deep learning (DL) (Figure 1.1), as well as methods that do not include any learn-
ing. Though, for nearly 30 years, Al researchers believed that human-level Al could only be
achieved by humans (i.e., programmers) manually creating explicit rules for the program to
follow. These rules would mimic human intelligence by implementing logic and if-then rules.
For example, early chess programs only involved hardcoded rules designed by programmers,
which served as an example of Al but not ML. This paradigm of Al was coined symbolic Al

Symbolic Al, however, was deemed to be insufficient as it faced limitations in solving
complex problems. This included image classification, speech recognition, and language
translation (the United States Defense Advance Research Projects Agency [DARPA] initially
wanted Al to be used to create autonomous tanks and to automate the translation of Russian
to English for intelligence operations [1]). Therefore, these shortcomings led to machine

learning.



Deep Learning

Figure 1.1: Visual representation of AI, ML, and DL, where each field is a subset of the
prior.

1.2 Machine Learning

For a machine to go beyond the very explicit rules defined by humans, it must be able to
learn the patterns itself to perform a specified task. For instance, in the symbolic AT model,
the rules and data were input to the machine, and answers were output. In ML, the data and
answers are provided to the machine, and the rules are then “learned,” hence, the machine
learning, or training, on the input data. The rules are created through statistical measures,
relating the given data with the answers provided.

To assess the performance of the ML algorithm, a loss function is introduced to measure
the distance between the predicted output of the algorithm to the expected output, or
“truth.” This distance can then be used to adjust the algorithm (i.e., “weights”) to improve
the results and minimize the distance. This process is the “learning” of machine learning. We

can appreciate this by visualizing the linear least squares method, a common loss function,



as shown in Figure 1.2, which assumes the following linear system:

7= X0, (1.1)

y

Figure 1.2: Geometry of least squares. The schema displays the columns of dataset X,
which span the blue hyperplane. The truth label vector is projected on this hyperplane.
The distance between the weights resulting from the projection () and nonoptimal weights
() due to a residual is also shown.

As shown in Figure 1.2, ¥ € R" is the truth label vector, X € R"*P is the ma-
trix of features, W € RP is the weights vector, and 7 is the residual vector defined as
7; = 75 (W) = y; — (W;, Z;), where 7; is the residual for i-th equation of n linear equations.
For simplicity, the span of X is reduced to two columns (p = 2), where Z1 and ¥y are the
columns of the subspace X. The vector gj is the orthogonal projection of ¥ onto the subspace.

Predictions gj with residual 7 depict nonoptimal weights as 7 is not perpendicular to X.
This can be shown by using the Pythagorean theorem: ||7]|2 = [|7]|2 + ||d]|Z — ||7| > ||71|

as d > 0, which indicates that the weights resulting in g? cannot be optimal as the distance

between § and hyperplane X is not minimized and ||7]|? is not as small as possible (i.e.,
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there is no right angle with the hyperplane). Therefore, we aim to solve for the weights that

minimize the following residual:

n

1711 = > Iriwy) | (1.2)

7

This results in this unique, closed form solution for rank(X) = p (i.e., X has p linearly

independent columns):

W = arg min ||§ — X||3 (1.3a)
i
= (x"X)"'xTy (1.3b)

Therefore, the least squares example demonstrated how machine learning can be used to
train and learn the best weights given the input data and the answers. This example can also
be extended to implementing gradient descent, which is a method that can easily perform
convex optimization, or minimizing convex functions (Figure 1.3). Gradient descent is used
to analytically find the combination of weight values that yields the smallest possible loss
function [2]. For least squares, gradient descent is advantageous because it avoids calculating
the inverse of matrices. This can be shown by defining the convex function f(w) = ||g—X | |%

(Equation 1.3a) with solution @* = (X " X~1)T¢ (Equation 1.3b). If f(w) is expanded as:
f@) =gl g—20" X7+ @ X T X7, (1.4)
then its gradient is easily shown to be:

Vaf=0—2X"7+2XT X, (1.5)



fw)

w*

(b) Gradient descent starts with initial
(a) Red dot in the center shows the intersection guess w(!) and repeatedly takes steps in
of the convex function with the red hyperplane. the direction of the negative gradient.

Figure 1.3: Visualization of gradient descent with (a) displaying a 3D convex function that
intersects a hyperplane, where the intersection shows the lowest value the loss function can
take. The gradient descent process can be visualized in 2D in (b), with w* showing the
lowest value of the convex loss function f().

Gradient descent is also favorable because of its generalizability as it is one of the most
used optimization algorithms for ML, and specifically, DL, with stochastic gradient descent
(SGD) often employed |[3].

This least squares example also demonstrates how ML algorithms transform input data
to achieve the desired outputs. For example, recall the hyperplane in Figure 1.2 was the
subspace spanned by the columns of X, with g? as the orthogonal projection of ¢ onto
the subspace. This displays how higher-dimensional data can have different, and often
lower-dimensional, representations. In other words, ML algorithms attempt to meaningfully
transform the data to achieve improved outputs closer to the truth. One popular method
for dimensionality reduction, i.e., representing the data into a lower dimensional subspace, is
principal component analysis (PCA). PCA creates an orthogonal projection, or transforma-
tion, of data such that the variance of the projected data is maximized along the principal
components. PCA, and dimensionality reduction in general, is an example of unsupervised

learning in ML. Unsupervised learning is the branch of ML that attempts to learn “inter-
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esting” properties of an underlying distribution of the data at hand. More formally, an
unsupervised algorithm observes several examples of random vector £ and aims to learn the
probability distribution p(Z) from which Z arose. In contrast, supervised learning also ob-
serves several examples of random vector Z, but takes into consideration the truth (or label)
vector 7/, and learns to map the two. Therefore, the algorithm is able to predict i given
Z, p(yZ) [3]. Solving for the optimal weights in the least squares example is a display of

supervised learning.

1.2.1 Cross-validation

To validate how well a trained model performs on an unseen dataset (i.e., model generaliz-
ability) and to adjust any additional hyperparameters of the model, cross-validation (CV)
can be performed. In CV, which is a resampling procedure, the dataset is first split between
a training set and a validation (or test) set. The model then gets trained on the training
set and separately evaluated on the validation set. There are many different forms of CV.
The most common are: hold-out, k-fold, leave-one-out, stratified k-fold, and nested k-folds.
Nested k-fold CV, in particular, is done to adjust hyperparameters of the model that may
need tuning (e.g., number of estimators used by a model or number of features to select). A
visual representation of k-fold CV is shown in Figure 1.4. To address class imbalance, strat-
ified k-fold ensures that the same percentage of samples of each target class as the complete
set exists per fold. Lastly, k-fold CV and stratified k-fold CV can be performed iteratively,
where a random portion of the dataset is split for each k-fold, and that is performed for
a certain number of predefined iterations: this is called repeated k-fold. It is advised to
perform hold-out CV when there is a large dataset size, k-fold when there are few samples
for the validation to be reliable, and repeated k-fold to ensure robust performance of the

model when there is a small dataset size [2].
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Figure 1.4: Schema depicting k-fold CV. For leave-one-out CV, k would equal the number
of samples n, and n — 1 samples would be used for training, with the n-th sample used for
testing.

1.3 Deep Learning

The least squares example highlighted in Section 1.2 explained three things: 1) the idea
and importance of a loss function, 2) the versatility of gradient descent, and 3) the ability
to transform data into representations more interpretable by the model. It is imperative to
appreciate these same three concepts when discussing DL. Expounding on the third point, the
“deep” of deep learning simply refers to the number of successive layers that DL algorithms
utilize when training. Conceptually, these layers create and learn different representations
of the input data, with the number of layers on the order of tens to hundreds.

In DL, these layers learn the representations of the data through models called neural
networks. Neural networks consist of multiple layers of “nodes,” starting with an input layer,
hidden layers in the middle, and lastly, an output layer. Each node consists of a weight w

multiplied with the input ' and summed with a “bias” factor b, which is all placed in an



activation function . This output (y in Equation 1.6) becomes the input of the next layer:
R, g
y=o(Z' W+Db). (1.6)

A simple neural network is shown in Figure 1.5.

Hidden

Figure 1.5: An example of a neural network with one hidden layer in blue. The values xg = 1
and hg = 1 are the bias terms used in the model. Of note, this figure depicts “fully connected
layers” as every input neuron is connected to every output neuron.

Without activation functions, models can only learn and represent the data in a linear
pattern, i.e., the dot product between the input and weights with an addition of the bias,
as shown in Equation 1.6. Therefore, activation functions are necessary as they expand the
ability of the layers in the model to represent the data in a nonlinear fashion. The most
common activation function in DL is the rectified linear unit (ReLU), which is used to zero

out negative values (see Figure 1.6a and Equation 1.7):

y = max (0, x). (1.7)
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The sigmoid activation function, often used for binary classification tasks (as it pertains to
the work presented in this dissertation), places arbitrary values into a [0, 1| interval (see
Figure 1.6b and Equation 1.8), outputting numbers that may be interpreted as a probability

(see Section 1.3.2):

1
= —. 1.8
Y71 +e " (1.8)
154 154
1 1
N ) /
1 05 0 05 T3 1 0 1
05 05
V V
(a) ReLU activation function. (b) Sigmoid activation function.

Figure 1.6: Common nonlinear activation functions used in DL algorithms.

To learn the optimal weights, DL models first undergo the “forward pass.” That is, the
neural network first makes predictions using randomly initialized weights and a set value for
the bias (typically 0) [4]. Then, the initialized weights and biases are evaluated using a loss
function (see Section 1.2). For binary classification, the network will attempt to minimize

the binary cross-entropy L:

L(yi, pi) = —(y; log(p;) + (1 — y;) log(1 — p;)), (1.9)

where y; is the binary indicator (0 or 1) denoting the class for the sample and p; is the

probability of the target class for that sample. In particular, SGD can be used to minimize



the loss, similar to the gradient descent process of least squares. The SGD here is called the
optimizer. The gradients of the SGD are calculated using the backpropagation algorithm.
Collectively, the weights and biases of the model are constantly adjusted and updated to

minimize differences between predictions and truth.

1.3.1 Convolutional neural networks

Convolutions are powerful in computer vision tasks as they can capture spatial information
and local patterns presented in images. This is in contrast to Dense layers (Figure 1.5), which
only learn global patterns as inputs are reduced to flattened vectors. Because of their ability
to capture spatial information, convolutions 1) are translation invariant and 2) can capture
spatial hierarchies of patterns. In other words, once a pattern is learned by the network, it
will always recognize it. Further, spatial hierarchies are recognized through the consecutive
layers, with small local patterns such as edges being learned in the first layers, and larger
patterns made of features from the earlier layers are captured by deeper layers. Overall,
a convolutional neural network (CNN) is constructed of four types of layers: convolution,
activation function (Figure 1.6), pooling, and fully-connected (Figure 1.5).

Convolution filters are applied to images initially input to the network. These images (also
known as input feature maps) can be defined as 3D tensors, having dimensions of height by
width by depth. For RGB images, the depth corresponds to the three color channels. Medical
images only have one channel, by definition, as they are grayscale. A number of convolutions
can be applied per image, therefore, the output feature maps will no longer have depth that
corresponds to the number of color channels. Rather, the depth is arbitrary and will depend
on the number of convolution filters applied. These filters will become the weights of the
network and will learn patterns present in the image such as edges, or more complex shapes

in deeper layers, during backpropagation.
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The stride of the filter refers to how many pixels the filter slides over when applied to the
input feature maps. For example, a stride of 1 means the filters are applied in a pixel-wise
manner, as shown in Figure 1.7. A filter with stride 2 will be applied every two pixels. The
larger the stride, the smaller the output feature map becomes. (It is uncommon, however,
to have strides larger than 3 [5].) The size of the output feature map can be controlled by
zero-padding the input map, i.e., by adding a certain amount of rows and columns of zeros
around the edges of the input. Overall, the relationship between the input feature map size
(W), convolution filter size (F), stride (5), amount of zero-padding (P), and the output

TW_F +2P 1 1. Between the sequential convolution

feature map size can be represented as:
and activation function layers, pooling layers are typically applied on the feature maps to
reduce the dimensionality of the representations learned by the filters. Pooling layers are
usually 2 x 2 and can be either done using max (downsampling the feature maps by selecting
the largest value in the 2 x 2 pools) or average (downsampling the feature maps by selecting
the average value in the 2 x 2 pools) pooling. In contrast, “unpooling” can be performed to
upsample the feature maps to output an image of desired size.

CNNs have been used for image classification and segmentation tasks. Though, segmen-
tation can be thought of as pixel-wise classification (Figure 1.8). For semantic segmentation,
CNNs assign a prediction value per pixel for each class label in the image. For instance
segmentation, models are trained to assign prediction values for objects of the same class.
These predictions are made on the logit vectors, or the “raw” outputs, of the DL algorithm
before being input to a final activation function. The final activation functions are typically

sigmoid (Equation 1.8) or softmax. Interpretation of these prediction values is discussed

more in Section 1.3.2.
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Figure 1.7: Demonstration of a 2D vertical edge detection convolution filter operating on
an input feature map. The filter was applied with stride 1, as the second row in the figure
displays the movement across one pixel when compared to the top row. Further, no zero-
padding was applied to the input feature map, which resulted in a “valid” convolution. A
valid convolution is defined as a convolution only performed over pixels where the convolution
filter overlaps completely with the input feature map—values outside the filter have no effect
on the output feature map. The bottom row of the figure displays the output feature map
after the convolution filter is applied to the entirety of the input feature map.
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T No tumor class

Figure 1.8: Probability maps for two potential classes (“tumor” and “no tumor”) in medical
image semantic segmentation tasks. These values would be the result of the logits input
to the final layer, i.e., activation function, of the model. Because this is a binary task, the
pixel-wise values across the two class channels will add to 1. The argmax function could be
used to return the final binary segmentation.

1.5.2 Model calibration

Model (or confidence) calibration addresses “the problem of predicting probability estimates
[that are not| representative of the true correctness likelihood” [6]. In other words, the prob-
ability associated with the predicted class label should reflect its true correctness likelihood
[6, 7]. Calibration is also important as the confidence estimates returned by the models can
be used for model interpretability. For instance, deep CNNs may be used by an autonomous
driving system to analyze real-time scenes captured by cameras [8]: the semantic segmen-
tation performed of street scenes should yield accurate detection of pedestrians and other
vehicles. It is equally crucial for the system to discern instances where these predictions
may lack reliability. Another example is the segmentation of brain tumors also using CNNs

[9]. If the CNN struggles to confidently delineate critical areas of the brain, it becomes
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imperative for a medical expert to intervene or be notified about these uncertain regions.
Therefore, semantic segmentation networks need to generate both accurate label predictions
and reliable confidence measures.

A common challenge for modern CNNs designed for semantic segmentation is that the
models often exhibit overconfidence in their predicted labels, which is due to overfitting
[6, 10, 11, 12]. However, classification models have exhibited the same behavior. Therefore,
many of the methods used for model calibration in classification tasks have translated over
for segmentation, the most popular being temperature scaling (TS), a post-hoc processing
technique [6, 13, 14]. Post-hoc processing is one methodology among many, such as regu-
larized training and Bayesian modeling [15]. A main difference between these techniques is
when the calibration is performed. For example, regularized training has calibration done
during training whereas post-hoc techniques have it performed during the validation phase,
after training, but prior to testing.

TS is an extension of Platt scaling [16], a method used for calibrating ML algorithms, not
solely deep nets. Platt scaling is a parametric approach to calibration: nonprobabilistic (i.e.,
uncalibrated) predictions of a classifier are used as features for a logistic regression model,
which is trained on the validation set to return probabilities. Specifically, Platt scaling learns
scalar parameters a,b € R and outputs ¢; = o(az; + b), where o is the sigmoid activation
function, z; € R is the model’s non-probabilistic output (known as the logit vector), and ¢;
is the calibrated probability. Parameters a and b can be optimized during a loss function,
typically the negative log-likelihood (NLL) loss, over the validation set. Of note, the learned
model weights are frozen during this stage as this calibration method is post-hoc.

Extending Platt scaling results in TS as it only uses a single scalar parameter T, the

temperature, where T' > 0 for all classes. Given the logit vector z; for sample i, class k, and
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the softmax activation function og,y, the new confidence prediction is [6]:
5 ) (k)
di = max sy (2i/T) V. (1.10)

The calculated temperature “softens” [6, 17| the output of the last activation layer with
T > 1 reducing model confidence (i.e., probability predictions), 7" = 1 indicating no change
to the original probability, and T' < 1 increasing model confidence. Overall, as T" — o0, the
probability ¢; approaches 1/K, which indicates maximum uncertainty, and as " — 0, the
probability collapses to a “point mass” (¢; = 1) [6]. As with Platt scaling, T is optimized
with respect to the NLL on the validation set. Importantly, since 7" does not change the
maximum of the softmax function (or sigmoid, as the two activation functions are equal
for binary cases), the calibrated class prediction for sample i, Q;», is not impacted. In other
words, TS does not affect the model’s accuracy.

Translating TS for a segmentation task results in the following formulation [7|:

T* = argmin ( - Z Z log (aSM(zi(a:)/T)(Si(x)))>, (1.11)

T i=1 2e)

where the optimal 7" is once more calculated by minimizing the NLL described in Equation
1.11 with respect to a hold-out validation set. The variable {2 denotes the image space, n the
number of training images, x is location, and S;(z) is the true predicted segmentation (“truth”
image) for image 7 at location x where x € €). In this definition, however, temperature scaling
assumes that each image has the same temperature. Therefore, there are many different and
more advanced temperature scaling approaches, such as local TS (where T;(z) € RT is
image and location dependent) [7], entropy-based TS (a method that scales the confidence
of a prediction according to its entropy) [14], selective T'S (which introduces a binary classifier
as a selector to categorize correct and incorrect predictions for separate scaling) [15], and

attended T'S (which works properly for small-size validation sets, highly accurate deep CNNs,
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and validation sets with noisy labels) [13]. The latter three methods are currently only used

for classification tasks.

1.4 Texture Feature Analysis

Medical images are highly quantitative mathematical constructs that allow for a range of
computer science and biomedical engineering investigations. The underlying numeric data
associated with pixels in an image may be explored through a variety of statistical measures
and quantitative features, which are collectively called radiomics. There are two methods to
produce quantitative features: the conventional method or with deep learning. Conventional
features—often related to the texture of an image—imply standard statistics of pixel values
such as the average gray level intensity. Conversely, deep learning quantitative features are
acquired from the convolutional layers of the deep network. This discussion will focus on
conventional methods.

While texture may be perceived qualitatively [18], it was initially quantified with pre-
defined rules certain algorithms follow (similar to rule-based algorithms used for chess, as
mentioned in Section 1.1) [19]. An early example of this rule-based implementation was used
to determine malignancy status in mammograms [20]. For example, a manual cutoff thresh-
old may be applied to a feature (e.g., spiculation), and if the feature value from a region of
interest (ROI) is lower than the threshold, the ROI is deemed benign [19, 20]. Radiologic
appearance of a tissue (e.g., dysplasia of breast parenchyma) also has been used to construct
a quantitative measure that could be used as a predictive marker for risk of malignant tumor
[21, 22, 23].

More recently, capturing texture has evolved into quantified features that are generated
using mathematical formulations. Some of these features are based on the gray level his-
togram (first-order), gray level co-occurrence matrix (GLCM), fractal analysis, Laws’ texture

energy measures, and power law spectrum [24, 25, 26, 27|. Overall, these features attempt
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to capture the coarseness, consistency, and arrangement of pixels within the image [28|.
In practice, the pipeline for texture feature extraction from a medical image is as follows:
image acquisition, image preprocessing, drawing an ROI, feature extraction, feature anal-
ysis/classification, computer output [23|. Using feature values for classification follows the
same fundamental machine learning methods as discussed in Section 1.2. For instance, in
supervised learning, the extracted feature values are input to an ML algorithm with the
corresponding truth labels, and the algorithm will use the learned “rules” with which it
classifies the data. Common ML algorithms used for feature selection and classification in
medical image texture feature analysis include linear discriminant analysis (LDA), stepwise
linear regression, k-nearest neighbor, artificial neural networks (ANNs), and support vector
machines (SVMs) [19, 24, 29, 30].

As with other ML tasks, it is important to take model overfitting into consideration
[19, 31]. Since texture features can number in the hundreds [32] and thousands, which
may exceed the number of samples, the models may only optimize to the values of features
presented, reducing model generalizability (i.e., ability of the model to perform strongly on
an independent test set). This phenomenon is called the “curse of dimensionality.” Overall,
texture features have been extracted from many different imaging modalities, including chest
radiographs (CXRs), mammograms, ultrasound, and computed tomography (CT) scans.
Texture features have also been used to evaluate many different diseases. The usage of
texture analysis and/or Al on medical images to inform clinicians of pertinent information

is called computer-aided diagnosis (CADx).

1.5 The Role of AI in Medicine

AT has played a substantial role in helping radiologists in the context of diagnosis (CADx),
abnormality detection (CADe), triaging (CADt), and acquisition and optimization of images

(CADa/o) since the mid-1980s [23, 33]. While AI was first implemented to analyze lung
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and breast cancers, its reach has since been extended to include an array of diseases and
abnormalities, such as diabetic retinopathy, polycystic kidney disease, prostate cancer, and
head-and-neck cancers |34, 35]. With advancements in computer technology and processing
power, CNNs; the leading DL technique, were first introduced to medical imaging in the mid-
1990s, successfully identifying lung nodules on chest radiographs and microcalcifications on
mammograms [36, 37]. CNNs are desirable as they do not require hand-crafted features to
be calculated and recorded; CNNs learn from the inputs and truth labels provided to them
during training (Section 1.3.1), with the expectation that their performance will generalize
to novel cases. For older CADx systems, the quantitative rules were manually designed,
and image analysis was conducted. In contrast, by providing a CNN with the input data
and the expected output, the CNN constructs its own rules that help to transform the data
into meaningful results, hence the learning, as discussed in Sections 1.2 and 1.3. CNNs have
been applied to images acquired from different modalities and of different anatomic regions,
performing segmentation and classification tasks [38, 39, 40, 41|. For example, previous
studies have displayed the successful segmentation of pleural mesothelioma (PM) tumors as
displayed on CT scans [42, 43]. CNNs have also been involved with the COVID-19 pandemic,
providing diagnoses of the disease based on patients’ CXRs [44]. Accordingly, the application
of CNNs is an essential preliminary step in automated segmentation of PM, which can be used
to quickly assess tumor burden and evaluate a patient’s response to treatment. In addition,
with the abundance of medical images acquired during the pandemic, model generalizability

and robustness can be evaluated in the task of COVID-19 diagnosis.

1.6 Clinical Pipeline, Characterization, and Potential for AI in
the Assessment of Mesothelioma

Patients with PM typically first present with dyspnea and/or chest pain [45, 46]. Initial

diagnosis may involve visual assessment of CXRs, where the image often reveals a unilateral
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pleural effusion [46, 47, 48]. Diagnosis for PM is confirmed by a tumor biopsy through tho-
racoscopy [46, 49]. The biopsy also classifies the tumor histologic subtype (e.g., epithelioid,
sarcomatoid, or biphasic), as that is the most reliable prognostic factor for mesothelioma
[46, 49]. There is ongoing research toward biomarker evaluation in PM. For example, the
BRCA1-associated protein-1 (BAP1) is a deubiquitinase, controlling cell growth, cell pro-
liferation, and cell death. The BAP1 gene is of great interest in the field of mesothelioma
since it is the most mutated somatic gene in PM. BAPI mutations can also be inherited,
and individuals with germline mutations in this gene have been widely recognized as being
predisposed to the disease and other cancers; though, studies have suggested that germline

mutations of BAPI are associated with better prognosis for patients with mesothelioma

50, 51].

Figure 1.9: Linear measurements made by a radiologist to quantify tumor burden. Using lon-
gitudinal summations of these measurements, patient response is evaluated and the efficacy
of treatment is assessed.

Recent clinical guidelines strongly recommend that initial staging be obtained using a

CT scan [51], as a CT scan is more sensitive and specific for imaging mesothelioma than
19



a CXR [52]. Imaging studies are also essential when evaluating patients longitudinally, as
the efficacy of treatment can be determined by change in tumor burden as presented on the
images. In current clinical practice, tumor burden is captured through linear measurements
of PM, and the linear measurements are recorded on C'T sections to evaluate tumor burden
(Figure 1.9). These measurements are a surrogate for tumor volume, which would offer a
more complete assessment of disease burden. Tumor volume could be calculated through
either manual or semi-automated analysis by a radiologist. For instance, the radiologist
tasked with manual analysis must segment the tumor, through manually delineating the
tumor boundary, throughout an entire CT scan (which may comprise over 200 sections). For
semi-automated analysis, the radiologist provides initial input to a computer algorithm or
modifies output produced by the computer or both.

Manual or semi-automated delineation of PM on CT scans, however, is an arduous task.
First, the morphology and presentation of mesothelioma tumor is irregular and difficult to
outline. Its appearance is also challenging to discern as there is low contrast between the
tumor and adjacent soft tissue and pleural effusion. Second, an observer must consistently
delineate the tumor across all CT scan timepoints to reliably measure change in tumor
burden, which leads to an appropriate assessment of response to therapy. Collectively, this
approach is too time-consuming and burdensome for use in the clinic. These difficulties can
be mitigated using DL, specifically CNNs. This is a crucial step in automating tumor volume
measurements as the laborious part is performed automatically, and simple pixel counting
remains for tumor volume calculations. Further, identification of the mutation status through
image analysis can help aid decision-making with regard to genetic testing, which in turn
can create a more customized plan for treatment and the preemptive assessment of family

members.
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1.7 Clinical Pipeline, Characterization, and Potential for AI in

the Assessment of COVID-19

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), an RNA virus that can
impact mammals and birds, is the virus responsible for the COVID-19 global pandemic.
The primary mode of transmission among humans is through exposure to respiratory fluids
carrying infectious virus. The virus is highly contagious and can rapidly mutate. Further,
infection with the virus has led to severe and/or fatal disease. Early detection of the dis-
ease can mitigate the symptoms, however, and patient prognosis can improve. Before the
widespread use of reverse transcription polymerase chain reaction (RT-PCR) tests, CXRs
were recommended for triage, disease monitoring, and assessment of concomitant lung ab-
normalities (e.g., consolidation, ground-glass opacities, and pulmonary nodules) [53, 54]. In
addition, CXRs are widely accessible, which makes them an ideal modality for an image-
based evaluation of the disease.

The pandemic has resulted in the acquisition of many medical images: this diversity
of images allows for a comprehensive evaluation of AI models as we are able to assess the
generalizability of the models when utilizing the various datasets available. The rapid abun-
dance of datasets, however, introduces new challenges for data curation and truth labeling.
Further, the various patient demographics and different imaging parameters should be in-
corporated when developing Al systems. Therefore, while the need for early and reliable
diagnosis of COVID-19 has been met with the use of RT-PCRs, DL can still be used for
the detection of COVID-19-related lung abnormalities as presented on CXRs. The images
also can be used to create a robust AI model, and a pipeline of data curation and model

evaluation can be established.
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1.8 Outline of Dissertation

This dissertation discusses the implementation and performance of machine and deep learn-
ing techniques in medical image analysis, as it pertains to CT scans of mesothelioma and
CXRs of COVID-19.

Chapter 2 investigates the usage of CNNs for the automated segmentation and volume
calculation of PM tumor as presented on CT scans. To evaluate the performance of the
DL model, two figures of merit are employed: percent difference of volume and the Dice
similarity coefficient. Using these two metrics, the segmentations are compared with a refer-
ence standard provided by an experienced radiologist. The segmentations produced by the
CNN are binarized at various probability thresholds to assess the impact of the thresholds.
The confidence of the CNN is also evaluated to determine whether the output probabilities
are properly calibrated. The implementation of a robust deep CNN for the segmentation of
PM tumor should result in a rapid calculation of tumor volume, which can improve patient
outcome as volume has been shown to be a more accurate metric for assessing tumor burden
and response.

Chapter 3 presents a novel methodology for the classification of somatic BAP1 mutation
based on texture features extracted from CT scans of PM patients. While the germline
BAP1 mutation has more clinical impact as patients with germline mutation have improved
survival, their family members have a 50% of inheriting the mutation, and the germline
mutation status may guide treatment decisions, this proof of concept work displays the
potential of image-based assessment of mutation status of the BAP1 gene. One study has
shown the potential of imaging genomics for somatic BAP1 mutation classification, but the
study presented in this chapter is the first to employ DL and ML algorithms in tandem,
using the former for the tumor segmentations and the latter for the classification task. The
translation of this research to germline BAPI mutations has the potential to improve patient

prognostication and family member assessment.
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Chapter 4 assesses the performance of a separate CNN in the task of COVID-19 clas-
sification based on patient CXRs. The model had initial strong performance in predicting
COVID-19 status on the original dataset on which it trained. Though, when a larger, and
more current dataset from the same institution that provided the original data was tested,
performance significantly decreased. To investigate this discrepancy, several factors are con-
sidered to compare the two sets of data. These factors include patient demographics, clinical
factors, image acquisition dates, and quantifying model perception of the CXRs. This work
substantially contributes to the discussion of model robustness and generalizability as the
in-depth investigations provide invaluable insight on model performance.

Chapter 5 summarizes the main conclusions and potential future directions of the work
presented in this dissertation. As the common thread throughout this dissertation has been
the employment and evaluation of ML and DL algorithms for various medical imaging tasks,
possible additional research may be performed to improve the methods, especially in terms of
model generalizability and robustness to improve care for patients presenting with mesothe-

lioma and other lung abnormalities.
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CHAPTER 2
CONVOLUTIONAL NEURAL NETWORKS FOR
SEGMENTATION OF PLEURAL MESOTHELIOMA: ANALYSIS
OF PROBABILITY MAP THRESHOLDS

2.1 Introduction

Pleural mesothelioma (PM) is an aggressive form of cancer present in the pleural lining of the
lungs. It is often the result of exposure to asbestos and has a poor prognosis [55]. Computed
tomography (CT) is the most common imaging modality used to stage and assess patients
with PM [48, 56, 57, 58|. The current standard to evaluate tumor response to therapy is
the modified Response Evaluation Criteria in Solid Tumors (mRECIST) [59, 60|. Using this
protocol, clinicians obtain up to six measurements of “tumor thickness residing perpendicular
to the chest wall or mediastinum” as presented on a CT scan [59]. These guidelines were
more recently updated to mRECIST 1.1 [61] to better align with RECIST 1.1 [62].

In contrast to the linear measurements of mRECIST, manual volumetric analysis con-
ducted by radiologists can be used to better estimate tumor burden and can also be used
to obtain image-based biomarkers [63]. Further, tumor volume has displayed strong predic-
tive power in patient assessment in terms of overall and progression-free survival |64, 65];
however, acquisition of manual tumor volume is too time-consuming and burdensome to be
systematically used in routine clinical care [66].

Machine learning, and specifically deep learning, techniques have been implemented for
various medical image classification and segmentation tasks [38, 39, 40, 41|. Deep learning
has been used specifically for tasks in the PM setting, such as improvement of subsam-
pled magnetic resonance image quality, histologic subtype classification on hematoxylin and
eosin-stained slides, and prognosis based on 3D positron emission tomography-CT images

and clinical data [67, 68, 69]. Similarly, deep learning can be used to mitigate the difficulties
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of tumor volume calculations, in particular, using convolutional neural networks (CNNs).
Previous studies have successfully implemented CNNs in PM segmentation, which is a cru-
cial step in automating tumor volume measurements as the laborious part is performed
automatically, and simple pixel counting remains for the volume calculation [42, 43, 70].

For a CNN to properly segment PM tumor on CT sections, the network must be trained
and validated using a labeled set of images. Due to the fundamental statistical nature of
machine learning, the outputs of a CNN are probabilities. For instance, in identifying the
location of tumor on a CT scan, the CNN assigns each pixel a probability of being tumor.
Therefore, for each CT section input to the network, a probability map is generated that
displays the likelihood of tumor in a pixel-wise fashion. In practice, a threshold is set to
binarize these maps so that any pixel with probability equal to or greater than 0.5, for
example, is set to 1 (“tumor”), and all other pixels are set to 0 (“not tumor”). Given that
modern neural networks tend to be overconfident, and the output probabilities may not be
true estimates of the confidence of a model [6, 7, 71], the 0.5 probability might not generate
the most accurate segmentation for a disease as complicated as PM tumor. Therefore, the
purpose of the present study was (1) to better understand the probability values returned by
the CNN and (2) to investigate whether different probability thresholds could improve pixel-
wise class labeling in this complicated tumor. The tumor segmentations obtained using
different thresholds were evaluated against a reference standard using the Dice similarity
coefficient (DSC) and the percent difference of volume as the figures of merit. Therefore,
the impact that varying thresholds would have on the predicted tumor segmentation was
investigated, given the inherent complexities of this tumor. Further, preliminary work was
performed to assess the confidence of the model using standard temperature scaling (T'S)
techniques.

Overall, the choice of threshold may have considerable impact on the final tumor segmen-

tation. In terms of PM tumor volumetry, a lower threshold applied to the probability maps
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would result in a larger volume as more pixels are now considered tumor; however, this may
result in an increase of pixels erroneously labeled as tumor, thus negatively impacting the
CNN accuracy of tumor segmentation. In contrast, increasing the threshold may produce a
segmentation that is too restrictive, substantially decreasing the tumor volume calculated.
Furthermore, the change in threshold alters the overlap of tumor identified by the CNN with
the reference standard (as determined by an experienced radiologist). Therefore, this study?
investigated the impact of probability thresholds on tumor volume and the overlap of tumor
contours by applying a broad range of thresholds, recording the volumes and the DSC, and

studying the resulting trends.

2.2 Methods

2.2.1 Patient population

The patient cohort was compiled from a previous study performed by the Cancer and
Leukemia Group B (CALGB 30901) [73|. CALGB is now part of the Alliance for Clin-
ical Trials in Oncology. The CALGB 30901 study evaluated 49 patients with confirmed
unresectable epithelioid, sarcomatoid, or mixed-type PM, and patients were without disease
progression after 4 to 6 cycles on first-line therapy with pemetrexed and cisplatin or car-
boplatin. Patients were randomly assigned to either the treatment arm (continued therapy
with pemetrexed alone) or the observation arm. The patients underwent CT scans at base-
line and then every 6 weeks for the first 6 months. Each participant signed an Institutional
Review Board (IRB)-approved, protocol-specific informed consent document in accordance
with federal and institutional guidelines.

The present study was retrospectively conducted on 186 baseline and follow-up CT scans

of 48 patients from the CALGB 30901 study. There was an average of 123 sections per scan

1. This chapter is based on a study reported in [72].
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(range: 39-696 sections). The most common section thickness was 5 mm (range: 0.625-5

mm). The scans had been acquired using 21 different scanner models.

CNN-derived contours

The CNN used in this study employed the U-Net deep CNN (2D) architecture. Specifi-
cally, the deep CNN architecture consisted of a downsampling and upsampling path. For
the downsampling path, a Visual Geometry Group 16 (VGG16) model was pre-trained on
the ImageNet database using scale-jittering [74, 75]. Layers of the downsampling path were
initialized using the weights acquired from the VGG16 training scheme. A 2x2 max pooling
operation with stride 2 was applied to the feature maps at each step of the downsampling
path. A dropout layer of probability 0.5 was used to prevent overfitting. During the upsam-
pling path, a 2D operation using nearest-neighbor interpolation was applied to the feature
maps. The network output a segmentation mask the same size as the input image size
(512x512 pixels). A rectified linear unit (ReLU) activation function was applied after each
convolutional layer, except for the last layer, which used a sigmoid activation function that
returned pixel-wise probabilities on the range [0,1] for the segmentation task, i.e., whether
a pixel contains tumor. A threshold value of 0.5 was applied to the output of the sigmoid
layer during the validation step so that any pixel with a probability 0.5 or greater was la-
beled “tumor.” During its training phase, the network minimized the binary cross-entropy,
which was averaged in a pixel-wise manner between each predicted segmentation and the
provided reference standard. Adam, an algorithm for first-order gradient-based stochastic
optimization, was used to optimize the network during training using a learning rate of 1075.

The VGG16/U-Net deep CNN architecture had been previously trained on a completely
separate set of 126 PM patients, some presenting with pleural effusion [43]. In this earlier
study, the CNN was tested on 77 patients, some of whom presented with both tumor and

pleural effusion and some only with tumor; the median DSC and median average Hausdorff
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distance for that method were 0.690 and 5.1 mm, respectively, as previously reported [43].
More information about this original model can be found in Gudmundsson et al. [43|. For the
present study, tumor contours of the external CALGB dataset were automatically generated

and evaluated with no additional training or validation of the model.

Radiologist reference contours

A research radiologist was presented with the initial CNN contours (generated using a prob-
ability threshold value of 0.5, the conventional threshold for binary classification and seg-
mentation tasks) and was able to modify or redraw the contours using in-house software to
provide the reference standard. Due to the time-consuming nature of adjusting the contours,
however, the radiologist was presented with sections separated by approximately 5 mm. This
process resulted in an average of 52 reviewed sections per scan (range: 32-70 sections). Con-
tour comparisons and tumor volumes were performed only on sections that the radiologist

reviewed.

2.2.2 Model calibration

TS is a post-hoc probability calibration method used for multi-class classification. For medi-
cal image semantic segmentation tasks, the two classes would be “disease” or “no disease,” as
mentioned in Section 2.1. TS estimates a single scalar parameter temperature 7' > 0 using
the logit z; vector as input, where i is the ¢-th image. The temperature is typically optimized
only on the validation images and using the negative log-likelihood (NLL) cost function, as
was performed in this work.

The temperature was calculated for the four separate validation sets used to develop the
original VGG16/U-Net deep CNN: left or right hemithorax displaying either tumor only or

tumor plus effusion. For the left hemithorax, 275 sections displayed tumor only, and 97

28



sections displayed tumor plus effusion. For the right hemithorax, 216 sections displayed

tumor only, and 101 sections displayed tumor plus effusion.

2.2.3  Tumor volume and Dice similarity coefficient

Tumor volume calculation

Tumor volume was defined as:

Volume [mm?] = Z Number of pixels within a contour

x pixel dimension? [mm?] x inter-section distance [mm], (2.1)

where the summation was over all sections containing a contour. The number of pixels within
a contour was equal to the number of nonzero pixels within the binary mask created after
applying a threshold to the probability maps generated by the CNN. Pixel dimension (in
units of me) was acquired from the Digital Imaging and Communications in Medicine (DI-
COM) image header. Inter-section distance corresponded to the difference in table position
between two sections on which the radiologist provided reference contours. Tumor volumes
were computed using the CNN-derived contours and the radiologist reference contours. The
absolute percent difference of volume was calculated by taking the absolute value of the
difference between the reference and the CNN-derived volumes divided by the average of
the two. All tumor volume computations were performed using MATLAB (Mathworks Inc.,

Natick, Massachusetts).

Dice similarity coefficient

Another metric used to compare the CNN tumor contours generated at the different thresh-

olds with the radiologist’s reference standard was the DSC [76]. The DSC was calculated for
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each individual CT section (using MATLAB’s “dice” function), and a final DSC was calcu-
lated per patient scan after averaging the DSC values across all sections. Figure 2.1 displays

the overall pipeline conducted in this study.

& Compare and
Apply N compute
threshold percent

from 0.001 to difference of
0.9 volume and
DSC

Figure 2.1: Schema demonstrating the methodology employed. Beginning from left to right:
(a) 2D CT sections of a patient were input to the (b) VGG16/U-Net, and (c) the probability
maps were generated. The probability maps were binarized using a range of thresholds,
where (d) the reference standard was provided by a radiologist by modifying the generated
segmentations at the 0.5 threshold. Lastly, the reference standard was compared to (e) the
probability maps binarized at the various thresholds, using the percent difference of volume
and DSC as the two figures of merit. U-Net figure reprinted, with permission, from [74].

2.2.4 Statistical methods

Comparison of the absolute percent difference of volumes and comparison of DSC values
across thresholds were first checked for normality using the one-sample Kolmogorov-Smirnov
test [77]. Since the null hypothesis was rejected, the data did not come from a standard
normal distribution. Therefore, the Wilcoxon signed-rank test was used to compare DSC or
absolute percent volume differences computed between the reference standard contours and
contours generated across a range of CNN probability map threshold values. The significance

of p-values was adjusted using the Bonferroni correction to account for 15 comparisons, and
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statistical significance was considered at p = 0.0033. Data collection was conducted by the
Alliance Statistics and Data Management Center. Data quality was ensured by review of
data by the Alliance Statistics and Data Management Center and by the study chairperson

following Alliance policies.

2.3 Results

2.3.1  Tumor volume and DSC

Figure 2.2 displays a visual representation of a change in the probability thresholds and its
impact on the tumor contour generated by the CNN. Pleural effusions present were difficult
for the CNN to fully capture as shown. Overall, the thresholds ranged from 0.001 to 0.9;
however, the CNN never assigned any pixel a probability of 0.75 or greater. Figure 2.3
shows boxplots of the DSC values comparing the reference contours to contours obtained
from the CNN-generated probability maps at six thresholds. Except for the 0.01 threshold,
the range of DSC values decreased with the incremental reduction of probability thresholds.
The median did not substantially change (see Table 2.1). In particular, the DSC values at
the 0.1 threshold did not achieve a significant difference with threshold values other than

0.01, as shown in Figure 2.4b.
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(a) CNN tumor segmentation at probability(b) CNN tumor segmentation at probability
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