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ABSTRACT

The angular power spectra of the three types of two-point correlation functions obtained from

the cosmic microwave background (CMB) temperature and E-mode polarization anisotropies

(the TT/TE/EE spectra) encode information on the composition and evolution of the uni-

verse. Measurements of the spectra contributed to establishing the ΛCDM cosmological

model as the standard, and the satellite experiment Planck achieved subpercent-precision

constraints on parameters of ΛCDM by mainly using its TT/TE spectra at large angular

scales.

However, there are also challenges to ΛCDM , a major one being the Hubble tension.

Better measurements of the TE/EE spectra at small angular scales by other experiments like

the South Pole Telescope (SPT) can serve as a powerful consistency test of Planck ’s results

and provide new insights on the tension. Since 2019, we have been taking data consistently

with SPT-3G, the third-generation imaging instrument installed on the telescope in 2017.

My thesis project is about analyzing data from 2019 and 2020 to substantially improve

SPT-3G’s existing measurements of the TE/EE spectra and constraints on cosmological

parameters based on data from 2018 and to prepare for a future analysis based on the full

dataset from SPT-3G. The analysis comprises three major steps: making CMB anisotropy

maps from time series recorded by detectors, calculating the TT/TE/EE spectra from the

maps, and fitting cosmological models to the spectra. As of the writing of this thesis in Febru-

ary 2024, we have produced maps and spectra and are working on constraining cosmological

models. Uncertainties in the TE/EE spectra obtained from this new dataset are smaller

than those from the 2018 dataset by an order of magnitude at small angular scales, and we

are excited to significantly improve our existing constraints on cosmological parameters such

as the Hubble constant.

This thesis comprises four chapters. In chapter 1, I will discuss the origin of the three types

of spectra, current measurements of the spectra and constraints on ΛCDM parameters, and

ix



future directions in the field. After that, I will introduce SPT-3G in chapter 2 by discussing

important properties of the instrument and showing example raw data. Then, in chapter 3, I

will discuss the dataset used in the analysis and methods involved in each major step of the

analysis, In the final chapter, chapter 4, I will discuss further details of some of the methods

and report results from them, show our maps and spectra, and discuss tasks that remain to

be done.
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CHAPTER 1

COSMIC MICROWAVE BACKGROUND

Discovered by Penzias and Wilson in mid-1960s (Penzias and Wilson [1965]), the cosmic mi-

crowave background (CMB) has been an important subject of study in the field of cosmology

for decades.

The CMB is faint microwave radiation that fills the entire universe, and this radiation is

full of interesting properties. Its total intensity is remarkably isotropic, and its spectrum has

the best blackbody form ever seen in nature (Mather et al. [1990], figure 2). The correspond-

ing blackbody temperature is approximately 2.73 K (for example, Fixsen et al. [1996]). The

isotropy is not perfect, and there exists a small anisotropic component at the level of 100

µK (for example, Bennett et al. [1996], figure 4) on top of the isotropic component at 2.73

K. The dominant isotropy and the small anisotropy are visualized in figure 1.1.

The discovery of this nearly isotropic radiation with a blackbody spectrum provided

major evidence supporting that the universe was once in a much hotter state (Dicke et al.

[1965]), and the study of the small anisotropy made essential contributions to establishing

the ΛCDM cosmological model as the current standard model (for example, Bennett et al.

[2003]).

The CMB is also slightly linearly polarized (for example, Hu and White [1997]). Unlike

the total intensity, the polarization intensity does not have a dominant isotropic component.

However, it does have anisotropy at the level of 10 µK, approximately an order of magnitude

smaller than the anisotropy in the total intensity.

Here are a few notes related to some terms. Although the polarization anisotropy is also

expressed in the unit of temperature, I will use the term temperature anisotropy to mean the

anisotropy in the total intensity and the term polarization anisotropy to mean the anisotropy

in the polarization intensity. The term specific intensity means energy per unit time, unit
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area, unit frequency, and unit solid angle (some definitions may not include the solid angle),

and the term intensity means specific intensity integrated over a frequency interval.

The discovery of the polarization anisotropy (Kovac et al. [2002]) and subsequent re-

fined measurements (for example, Brown et al. [2009], Crites et al. [2015], Henning et al.

[2018], Choi et al. [2020], and Aghanim et al. [2020a]) strengthened what had been learned

from the temperature anisotropy, though there is much more the polarization anisotropy can

offer. An important goal of current and future CMB experiments is to measure the polariza-

tion anisotropy with greater accuracy and precision. Better measurements will provide new

insights into outstanding issues in ΛCDM and potential new physics.

In the following sections of this chapter, I will discuss what physical mechanisms created

the temperature and polarization anisotropies observed today, what current measurements

look like, and what future measurements will be important to make.
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COBE

WMAP

Planck

Monopole

Dipole

Figure 1.1. Isotropy and anisotropy of the CMB temperature. The top-left image
shows that the temperature has a dominant isotropic component, which is at 2.73 K.
The bottom-left image shows that the next dominant component is a dipole, which
is interpreted as the Doppler shift of the CMB caused by the motion of the solar
system relative to a special reference frame in which the CMB does not have such a
dipole. This reference frame is known as the CMB rest frame. The amplitude of the
dipole is approximately 3.4 mK. After the dipole is removed, there are temperature
fluctuations at the level of 100 µK, which have been measured with higher resolution
and lower noise by three generations of satellite experiments COBE, WMAP, and
Planck (shown in the right images) and multiple ground-based experiments. Image
sources: NASA LAMBDA Archive and BBC Sky at Night MAGAZINE.
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1.1 Temperature Anisotropy

A sky map of the temperature anisotropy can be represented as a function on the sphere.

I will use the symbol ∆T (n̂). At each location on the sphere, ∆T (n̂) gives the difference

between the temperature at that location and the mean value, 2.73 K. This function’s angular

power spectrum, CTTℓ , is calculated through a spherical harmonic transform as follows:

Tℓm =

∫
∆T (n̂)Y ∗

ℓm(n̂) dn̂ (1.1)

CTTℓ =
1

2ℓ+ 1

ℓ∑
m=−ℓ

T ∗
ℓm Tℓm. (1.2)

(Because the temperature anisotropy measured by an experiment is represented as an image

that has a set of pixels, equation 1.1 is replaced by a discrete spherical harmonic transform

in practice.)

This angular power spectrum is a statistical estimator of a theoretical spectrum that we

would like to know. At each ℓ, all the 2ℓ + 1 spherical harmonic coefficients are supposed

to be random draws from the same Gaussian probability density function. The mean of the

Gaussian is zero, and the variance is a fundamental, theoretical quantity that we would like

to know. I will call this quantity CTTℓ, th. Because CTTℓ is in the form of a sum of the squares of

2ℓ+ 1 Gaussian random variables at each ℓ, for an ensemble of universes based on the same

CTTℓ, th, the sums from the ensemble follow a χ2 distribution that has 2ℓ+1 degrees of freedom,

and the variance of the distribution is 2CTTℓ, th
2
/(2ℓ+ 1). Even if an experiment had no noise

and were perfect in every other way, CTTℓ determined by the experiment would still have an

irreducible variance as an estimator of CTTℓ, th because the number of spherical harmonic modes

at each ℓ that can be used to estimate the variance of the underlying Gaussian probability

density function is finite. This variance is known as the cosmic variance, and the uncertainty
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in CTTℓ as an estimator of CTTℓ, th has the following expression:

σ(CTTℓ ) =

√
2

2ℓ+ 1
CTTℓ . (1.3)

Refined versions of this equation will appear in discussions in later sections.

Figure 1.2 shows what CTTℓ, th might look like and what CTTℓ obtained by a perfect experi-

ment in one of the ensemble of universes based on that CTTℓ, th might look like. In fact, the figure

shows DTT
ℓ, th and DTT

ℓ , where DTT
ℓ, th = [ℓ(ℓ+ 1)/(2π)]CTTℓ, th, and DTT

ℓ = [ℓ(ℓ+ 1)/(2π)]CTTℓ .

While CTTℓ, th represents the average power in the temperature anisotropy possessed by each

of the 2ℓ + 1 modes belonging to a particular ℓ, DTT
ℓ, th represents the total power possessed

by all the modes per unit logarithmic interval of ℓ. According to a prediction of the theory

of cosmological inflation, DTT
ℓ, th should be approximately constant at ℓs below a few tens.

The spectrum indeed has a plateau at those ℓs, but the plateau is hard to see unless the

spectrum is plotted against ln ℓ. Even when a focus is not on the low ℓs, Dℓs are still used

commonly and often plotted against ℓ rather than ln ℓ in the literature. The values of DTT
ℓ, th

at different ℓs represent levels of temperature fluctuations at different angular scales. The

relation between an ℓ and the angular scale that it represents is approximately the following:

θ = 180/ℓ, where θ is expressed in degrees.

Nonzero values of DTT
ℓ, th mean that the CMB temperature has fluctuations/anisotropy.

According to the theory of cosmological inflation, the universe underwent an exponential

expansion for a small fraction of the first second of the history of the universe, and density

fluctuations in matter and radiation were created at the end of inflation. (Although there are

other theories of what happened at the very beginning of the universe, inflation is the current

leading theory.) These density fluctuations then caused fluctuations in the temperature of

the CMB.

Other than simply having nonzero values, DTT
ℓ, th has a series of peaks and troughs, which

are caused by oscillations of matter and radiations in early universe. After the density fluctu-
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Figure 1.2. Theoretical angular power spectrum of the temperature anisotropy.
One realization of this theoretical spectrum that might be measured by a perfect
experiment in one universe from an ensemble of universes based on the same theory
is also shown.

ations were created by inflation or possibly another mechanism, baryons, electrons, and pho-

tons tightly interacted with one another through Coulomb interactions between the baryons

and electrons and through Thomson scattering of the photons off the electrons. There were

also gravitational interactions among the constituents of this photon-baryon fluid and be-

tween the fluid and dark matter. Gravity caused the fluid to compress toward potential wells,

but at some point the radiation pressure of the fluid became high enough to cause the fluid

to expand. This interplay of the gravity and pressure caused the fluid to oscillate, and the

oscillations are known as the acoustic oscillations.

The acoustic oscillations can be decomposed into independent standing-wave oscillations

of individual Fourier components of the density fluctuations of the fluid. Each standing wave

was an oscillating fluctuation of the density and thus temperature of the fluid. The longer

the wavelength of a standing wave, the slower its oscillation. Measurements of DTT
ℓ, th have

indicated that the initial condition of the fluid was such that all the standing waves started

6



to oscillate at nearly the same phase and amplitude.

When the temperature of the universe became low enough for neutral hydrogen to form

(approximately 3000 K and 380 000 years after the big bang), the photons no longer had

free electrons to interact with and decoupled from the rest of the fluid, and the individual

standing waves stopped oscillating at different phases. The baryons and dark matter then

started to gravitationally collapse to form stars, galaxies, and other structures. The photons

have traveled mostly freely since then and reach us today, and they give us a view that

is a superposition of all the standing-wave oscillations that froze at different phases and

had different density and temperature fluctuations. The peaks of DTT
ℓ, th receive contributions

from those standing waves that froze when their amplitudes were at maxima, and the troughs

receive contributions from those waves that froze when their amplitudes were at zero. For

example, the first peak is associated with the waves that froze when the fluid achieved

maximal compression inside potential wells for the first time and was about to expand, and

the peaks at higher ℓs are associated with waves that had shorter wavelengths and had

oscillated more by the time they froze. Shorter wavelengths correspond to to smaller ℓs.

Figure 1.3 illustrates these situations.
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When waves started to oscillate

When waves froze

Figure 1.3. Standing-wave oscillations at two different times. The top image shows
two standing waves that had different wavelengths and started to oscillate at the
same phase near the beginning of the universe. The colors represent the density
fluctuations within the waves. The bottom image shows the two waves when they
froze. The left wave contributes more power to DTT

ℓ than the right one.
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1.2 E-mode Polarization Anisotropy

Polarization of the CMB was caused by Thomson scattering of CMB photons that had local

quadrupole variations in their temperatures. Figure 1.4 shows how a quadrupole variation

in the temperatures of photons surrounding an electron can create polarization in the radi-

ation scattered from the electron. Different physical mechanisms created local quadrupole

variations in the temperatures of the photons of the photon-baryon fluid in early universe,

and the standing-wave oscillations were the major mechanism. Figure 1.5 shows how flows of

photons, baryons, and electrons at different locations of one Fourier component of the fluid

created polarization when the standing-wave oscillation of that Fourier component froze and

how the polarization varies along the wave vector. As shown in that figure, the directions of

the polarization created by the flows are either parallel or perpendicular to the wave vector

of the oscillation. This type of polarization is called the E-mode polarization. (On the other

hand, a gravitational wave can create local quadrupoles by stretching and contracting space,

and the directions of polarization created in this case can be diagonal to the wave vector

when the wave is projected onto the sky in a certain way.) When multiple waves whose

wave vectors have the same magnitude but different directions are superposed (superposing

rotated versions of the figure), a radial or tangential polarization pattern shown in figure 1.6

can form around an underdense or overdense region. As a result, there are fluctuations in

the E-mode polarization as well as the temperature of the CMB.

While the temperature anisotropy observed today was caused by density fluctuations of

the photon-baryon fluid, the E-mode polarization anisotropy was caused by velocities of the

fluid. To be more specific, the temperature anisotropy is associated with the amplitudes of

the standing waves when the oscillations froze, and the polarization anisotropy is associated

with the time derivatives of the amplitudes of the waves when the oscillations froze.

Like a map of the temperature anisotropy, a map of the E-mode polarization anisotropy

9



can be constructed, which will be discussed in subsection 3.3.1, and the angular power spec-

trum of the map can be calculated. Figure 1.7 shows a theoretical angular power spectrum

of the E-mode polarization, DEE
ℓ, th. A shrunk version of DTT

ℓ, th is also shown. The peaks and

troughs in DEE
ℓ, th are out of phase with respect to the peaks and troughs in DTT

ℓ, th. This is be-

cause the standing wave oscillation of a Fourier mode of the fluid had a maximum amplitude

when the time derivative of the amplitude was zero, at which point there was no flows in that

mode to create polarization, while the amplitude was zero when the time derivative of the

amplitude had a maximum magnitude, at which point the flows were fastest. DEE
ℓ, th has less

power than DTT
ℓ, th and is more challenging to measure precisely. DEE

ℓ, th has less power because

the quadrupoles shown in figure 1.5 did not form easily. For example, for a quadrupole shown

in the left image to form, photons from an overdense region needed to travel some distance

to reach electrons located in the closest underdense region. However, some of the photons

were not able to reach the electrons in the underdense region because the photons were scat-

tered by other electrons during their travels. Although Thomson scattering of photons whose

temperatures had quadrupole variations around electrons created the E-mode polarization,

Thomson scattering also suppressed the formation of the quadrupoles.
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Figure 1.4. Polarization generated by a quadrupole variation in photon tempera-
tures. In this diagram, unpolarized radiation approaches an electron from both ±x-
and ±y-directions. The amplitudes of the electric fields along the two orthogonal
directions perpendicular to each propagation direction of radiation are represented
by the lengths of the two bars. The lengths are made to be the same to indicate
that the radiation is unpolarized. The radiation from the ±y-directions have higher
temperature/intensity, which is represented by the thicker bars. The electron is thus
surrounded by a quadrupole variation in photon intensities. When the electron scat-
ters the incoming radiation from these directions, an observer in the z-direction sees
polarized radiation that has higher intensity along the horizontal direction. This
diagram was adapted from figure 1 of Hu and White [1997].
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Flow
Pol.

Figure 1.5. Quadrupole variations in the context of the standing-wave oscilla-
tions. The phase of the standing-wave oscillation shown on the left is such that the
density fluctuations are not at extrema (no bright yellow and dark blue colors), but
the amplitude of the wave is changing, so there are flows of photons, baryons, and
electrons at different locations. The white arrows represent the flow directions at
some locations. The fluid constituents are moving away from underdense regions
and toward overdense regions. An electron located in an overdense region sees a
quadrupole variation in photon intensities because photons coming from top and
bottom have higher intensity than photons coming from left and right. The higher
intensity is caused by the Doppler shift associated with the flows. For example,
a photon coming from top is from a component of the fluid moving toward the
electron, so the photon’s intensity gets boosted. An electron located in an under-
dense region also sees a quadrupole variation, but the photons coming from top and
bottom have lower intensity in this case. If the oscillation freezes at this point, radi-
ation traveling out of the page that was scattered by electrons in overdense regions
has horizontal polarization to some degree, which is represented by the horizontal
red bars. For radiation coming from underdense regions, the polarization direction
is vertical. The right panel shows another standing wave. This wave has the same
density contrast as the one on the left, but its phase is such that the fluid con-
stituents are moving away from overdense regions and toward underdense regions
instead. Then, when the oscillation of this wave freezes at this point, the polariza-
tion direction from overdense regions is vertical and underdense regions horizontal.
This figure was adapted from figure 10 of Hu and White [1997].
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𝐸 < 0
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𝐸 < 0
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Overdense

Figure 1.6. Characteristic patterns of the E-mode polarization. These patterns
can arise when the rotated versions of the waves shown in 1.5 are superposed. For
the wave shown on the left panel of that figure, superposing rotated versions of it
creates a radial pattern around an overdense region and a tangential pattern around
an underdense region. This is shown in the left half of this figure. For the wave
shown on the right panel of 1.5, superposing rotated versions of it creates different
polarization patterns as shown in the right half of this figure. By convention, a
radial pattern is defined to have a negative E value, and a tangential pattern a
positive value. This figure was adapted from figure 12 of Hu and White [1997].
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Figure 1.7. Theoretical angular power spectrum of the E-mode polarization
anisotropy. A small copy (1%) of DTT

ℓ, th is also shown so that the two spectra can
be compared in the same figure.
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1.3 Correlation Between the Two Types of Anisotropies

Besides DTT
ℓ, th, which can be roughly regarded as the square of the amplitude of a frozen

standing-wave oscillation as a function of the wavelength, and DEE
ℓ, th, which can be regarded

as the square of the time derivative of the amplitude, there is a third spectrum DTE
ℓ, th, which

can be regarded as the product of the amplitude and its time derivative. DTE
ℓ, th is also the

spectrum of the cross-correlation between temperature and E-mode polarization anisotropy

maps, while the DTT
ℓ, th and DEE

ℓ, th are autocorrelation spectra of the respective maps.

Figure 1.8 shows DTE
ℓ, th along with DTT

ℓ, th and DEE
ℓ, th. At ℓs where either DTT

ℓ, th or DEE
ℓ, th has

a peak or trough, either the amplitude or its time derivative of a standing-wave oscillation

was close to zero when it froze, so DTE
ℓ, th is close to zero as well. Unlike DTT

ℓ, th and DEE
ℓ, th, D

TE
ℓ, th

has both positive and negative values. As shown in figure 1.6, an overdense region can have

either positive or negative E-mode polarization. An overdense region generally corresponds

to a high-temperature region, and an underdense region a low-temperature region, so the

arrangements shown in the left half of figure 1.6 represent a negative correlation between

the temperature and E-mode polarization, but the arrangements shown in the right half

represent a positive correlation. At very low ℓs, however, an overdense region corresponds to

a low-temperature region because of the Sachs-Wolfe effect, so the correlation is positive in

that case.

In this thesis, I will use the phrase the EE/TE/TT spectra of the anisotropies of the

CMB (or sometimes simply the EE/TE/TT spectra) to mean DEE
ℓ, th, D

TE
ℓ, th, and DTT

ℓ, th, of

which the anisotropies that we observe today are thought to be one random realization. Not

only do these spectra have the peaks and troughs, they also have nontrivial envelopes of the

peaks and troughs that are not simply constant. As one example, DTT
ℓ, th still has nonzero

power at its troughs. As another example, the first peak of DEE
ℓ, th is much smaller than later

peaks. Although very interesting and important, these effects will not be discussed here for
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Figure 1.8. Theoretical temperature-E-mode cross-correlation spectrum. DTT
ℓ, th

and DEE
ℓ, th are also shown so that the three spectra can be compared in the same

figure.

simplicity. These effects and more details of the acoustic oscillations can be readily found in

resources such as review papers (for example, Zyla et al. [2020], volume 1, chapter 29, and

Hu and Dodelson [2002]).

1.4 Cosmological Parameters

The ΛCDM model is the current standard model of cosmology. In this model, matter and

radiation were created at the beginning of the universe by some mechanism, which can be

inflation or something else, and the universe has expanded since then according to general

relativity with the FLRW metric (isotropic and homogeneous) that has Euclidean space.

The expansion rate is governed by the types and energy densities of the components of the

universe. The present age of the universe is 13.8 billion years, and dark energy (Λ) and cold

dark matter (CDM) occupy a vast majority of the energy density of the universe (68% and

27%, respectively), while standard model particles (photons, neutrinos, electrons, protons,
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and neutrons) occupy only 5%.

There are six basic parameters in the model, several derived parameters from the basic

ones, and additional parameters associated with extensions of ΛCDM . A set of two param-

eters called As and ns represent the amplitude and spectral index of the power spectrum

of the initial density fluctuations of matter and radiation. Another set of two parameters

called Ωch
2 and Ωbh

2 represent the current densities of cold dark matter and baryons in

the universe. Another parameter is called 100θMC , which is the ratio of two distances: the

distance which the acoustic oscillations traveled from the beginning of the universe to the

time when the CMB was formed (the standing waves discussed earlier can be regarded as

sums of traveling waves) and the distance which the CMB photons traveled from the time

when they were formed to the present day. The other parameter is called τ , which represents

the fraction of CMB photons that were scattered by free electrons during the photons’ trav-

els to us. The free electrons were formed when the universe was reionized by first stars. An

important parameter that can be derived from these six parameters is the Hubble constant,

H0, which is the current expansion rate of the universe. There also exist extension models

of ΛCDM , one of which allows additional species of relativistic particles in early universe or

other types of neutrinos by floating the effective number of types of neutrinos, Neff , instead

of fixing it at the value from the standard model.

The shapes of the EE/TE/TT spectra of the anisotropies of the CMB (positions of the

peaks and troughs, relative heights of the peaks, overall amplitudes and tilts of the spectra,

and so on) are affected by the parameters of ΛCDM and its extensions. Therefore, these

spectra can be used to constrain cosmological parameters. For example, figure 1.9 shows how

the EE/TE/TT spectra change as the dark matter density is decreased. Comprehensive

discussions on cosmological parameters and how they affect the EE/TE/TT spectra can be

found in various papers such as Aghanim et al. [2020b] (section 3).
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Figure 1.9. Dependence of the shapes of the spectra on the dark matter density.
This figure shows how the EE/TE/TT spectra change as the dark matter density
is gradually decreased from the current best estimate to the value that is 10%
lower than that. The total energy density of the universe and the density of dark
energy were fixed, and a decrease in the dark matter density was compensated by
an increase in the baryon density. The figure was created by adapting code from a
tutorial by Zhaodi Pan.
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1.5 Current Measurements

The EE/TE/TT spectra of the anisotropies of the CMB have been measured by a large

number of experiments, and the measurements have been fit well by ΛCDM . Figure 1.10

shows recent measurements by three experiments. One is the satellite Planck , and the other

two are the ground-based telescopes the Atacama Cosmology Telescope (ACT) in Chile and

the South Pole Telescope (SPT) in Antarctica. The measurements labeled as Planck were

published in Aghanim et al. [2020a] and based on all the data from the experiment. The

satellite collected data from 2009 to 2013. The measurements labeled as ACT DR4 were

published in Choi et al. [2020] and Aiola et al. [2020] and based on the fourth data release

from ACT, which included data from 2013 to 2016. New measurements based on data from

more years are expected to be available soon. ACT was decommissioned in 2022, and a new

telescope called Simons Observatory is being commissioned at the same site. The measure-

ments labeled as SPTpol were published in Henning et al. [2018], and the measurements

labeled as SPT-3G were published in Dutcher et al. [2021], Balkenhol et al. [2021], and

Balkenhol et al. [2023]. SPTpol was the second-generation imaging instrument on SPT and

was operated from 2012 to 2016. Henning et al. [2018] was based on data from three years,

and new measurements based on all the data from the four years are expected to be avail-

able soon. SPT-3G is the third-generation imaging instrument and has been operated since

2017. The measurements shown here are based on data from 2018, and new measurements

based on 2019 and 2020 are expected to be available soon. The figure also shows Planck ’s

best-fit theoretical spectra, which are based on a particular set of values for the six ΛCDM

parameters. All the measurements have been generally fit well by ΛCDM .

Figure 1.11 compares the sizes of the uncertainties shown in figure 1.10 with the theo-

retical spectra and the irreducible uncertainties caused by the cosmic variance. As for the

TT spectrum, Planck essentially reached the cosmic variance limit at ℓs below 1500 or so.
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At these ℓs, the noise fluctuations in Planck ’s temperature anisotropy map were small com-

pared with the temperature anisotropy signals, and the uncertainties in the measurements of

the TT spectrum were mostly from the cosmic variance. However, Planck ’s uncertainties in

its measurements of the TE spectrum were farther from the cosmic variance limit at those

ℓs, and the distance from the cosmic variance limit was even larger as for the EE spec-

trum. This is because the E-mode polarization anisotropy signals are much weaker than the

temperature anisotropy signals, and the noise fluctuations in Planck ’s E-mode polarization

anisotropy map were not negligible compared with the signals anymore, so the uncertainties

in the measurements of the TE and EE spectra had sizable contributions from the noise

fluctuations besides the cosmic variance. Nevertheless, Planck still achieved smaller uncer-

tainties than ACT and SPT at relatively low ℓs. At higher ℓs, ACT and SPT achieved lower

uncertainties than Planck because of higher-resolution and lower-noise maps produced by

the ground-based experiments. There will be more discussions on what factors determine an

experiment’s uncertainties in section 2.4.

A note on the uncertainties shown in this figure: as will be discussed in subsections 3.3.6

and 4.4.2, experimental groups typically report binned measurements of the EE/TE/TT

spectra rather than data points at individual ℓs. The wider a bin, the smaller the fractional

uncertainty in the binned measurement, Because different experiments used different bin

sizes, to compare the uncertainties fairly, I multiplied the uncertainties from ACT and SPT

by factors that account for the differences between their binning and Planck ’s. For example,

the size of each Planck bin is 30, but the size of each SPT-3G bin is 50 for ℓs below 2000 and

100 for ℓs above 2000. To take these differences into account, I multiplied the uncertainties

in the SPT-3G low-ℓ and high-ℓ bins by
√

50/30 and
√
100/30, respectively.

Currently, the most precise constraints on the ΛCDM parameters are from Planck . It

achieved fractional uncertainties at the level of subpercent in all the six parameters except

for τ (Aghanim et al. [2020b], table 1). Planck derived most of its constraining power on the
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parameters from its measurements of the TT and TE spectra at low ℓs. The uncertainties

in the parameters achieved by ACT and SPT are larger than those achieved by Planck by a

factor of a few (for example, Balkenhol et al. [2023], figure 7), but constraints from the two

experiments are expected to become much stronger once more data are added.
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Figure 1.10. Measurements of the spectra by three experiments. The data points
were taken from NASA LAMBDA Archive.
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Figure 1.11. Measurement uncertainties achieved by the three experiments.
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1.6 Future Directions

Although Planck achieved impressive constraints on the ΛCDM parameters, and ΛCDM has

been successful in describing CMB measurements and measurements of other cosmological

phenomena, there are also challenges to ΛCDM .

A major challenge is the so-called Hubble tension, which is the name for discrepancies

among measurements of the Hubble constant obtained in different ways. On the one hand,

the Hubble constant can be estimated by observing the conditions in the early universe

revealed by the CMB anisotropies, evolving the universe from that time to the present day

using ΛCDM , and predicting what the current expansion rate of the universe should be. On

the other hand, the Hubble constant can also be directly estimated by measuring how fast

nearby galaxies are receding. CMB experiments have typically obtained lower values for the

Hubble constant than the other class of experiments. For example, while Planck reported

67.4±0.5 km/s/Mpc, the SH0ES program, an experiment that observed supernovae in nearby

galaxies, reported 73.04± 1.04 km/s/Mpc (Riess et al. [2022]).

An important goal of current and future CMB experiments is to measure the E-mode po-

larization anisotropy with increasing accuracy and precision. As shown in figure 1.11, there is

still a lot of room for improvement in the measurements of the TE and EE spectra. If mea-

sured sufficiently precisely, the E-mode polarization anisotropy is expected to have stronger

constraining power of cosmological parameters than the temperature anisotropy (Galli et al.

[2014]). Better measurements of the polarization will serve as a powerful consistency test

of the existing constraints on the ΛCDM parameters and potentially provide hints of new

physics. Regarding the Hubble constant, CMB experiments have reported that values of the

Hubble constant determined by using only measurements of the EE spectrum were higher

than values obtained from the TE and TT spectra but not at statistically significant levels

(Dutcher et al. [2021], figure 13). Better measurements of the EE spectrum in the future
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should be able to shed more light on this interesting trend.

The CMB anisotropies discussed in this chapter were created by the acoustic oscillations

of the photon-baryon fluid. Any anisotropy that was created before the photons decoupled

from the fluid is called primary anisotropy. There also exist secondary anisotropies (the

Sunyaev-Zel’dovich effects, gravitational lensing of the CMB photons, and so on), which were

caused by interactions between the CMB photons and other components of the universe after

the photons decoupled from the fluid and started to travel toward us. Regarding primary

anisotropies, the B-mode polarization anisotropy is also very important. However, these

other important signals will not be discussed in this thesis, and I will use the phrase the

anisotropies of the CMB to mean only the primary anisotropies created by the acoustic

oscillations.
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CHAPTER 2

SPT-3G

The South Pole Telescope (SPT) is a CMB experiment and has been running since 2007. It

is located at the Amundsen-Scott South Pole Station, which is one of the best locations on

earth for CMB observations because of the extremely dry and stable atmosphere at the south

pole. One of the current goals of SPT is to make low-noise measurements of the E-mode

polarization anisotropy and thereby better constrain cosmological parameters.

The SPT-3G camera is the current imaging instrument on the telescope and has been

used to take data since 2017. I have worked on analyzing SPT-3G data throughout my

graduate career. I worked on low-level data analysis projects between late 2017 and early

2020 and started my thesis project in early 2020. The low-level data analysis projects will

not be discussed in this thesis, but I discussed some highlights during my thesis defense, and

I will be very happy to share slides and/or a recording of the presentation upon request. The

thesis project will be discussed in chapters 3 and 4.

In the following sections of this chapter, I will provide an overview of the telescope and

the camera, show example raw data from the camera, and discuss how SPT complements

Planck .

2.1 South Pole Telescope

Figure 2.1 is a photograph of the telescope and shows its notable primary mirror. The

diameter of the mirror is 10 m, which determines the angular resolution of the telescope to

be approximately one arc minute at 150 GHz, the frequency where the blackbody spectrum

of the CMB peaks. SPT has the largest primary mirror and highest resolution of all the

currently operating dedicated CMB telescopes.

As annotated in the figure, the telescope motions have two degrees of freedom: the az-
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imuth and elevation angles. Because of the unique location of the south pole, the two coor-

dinates of the equatorial coordinate system, right ascension and declination, map onto the

azimuth and elevation angles in simple ways. Declination is the negative of the elevation

angle. Right ascension is the same as the azimuth angle except that the former is fixed in

the celestial sphere, and the latter is fixed on the ground and rotates with respect to the

former.

Elevation

Azimuth

Receiver cabin

Primary mirror

Figure 2.1. Photograph of SPT taken during the 2017–2018 austral summer.
Photographers: Amy Bender and Brad Benson.

2.2 Third-Generation Camera

Three generations of imaging instruments have been housed inside the receiver cabin of the

telescope (annotated in figure 2.1), and the currently operating, third-generation instrument
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is called SPT-3G. SPT-3G was installed in the 2016–2017 austral summer, and it was a

significant upgrade from the second-generation instrument, SPTpol, by having 10 times more

detectors. The detector count increased from approximately 1500 to 16000. Much work was

done in 2017 to characterize the instrument. In 2018, we had a good start by taking high-

quality data during the first month of our observing season, but an unexpected mechanical

issue with the telescope caused a severe interruption. However, we were still able to resume

taking data later in the year. Since 2019, we have been taking data consistently without any

major issues, and we will continue taking data for at least a few more years.

Our general observing strategy is to focus on small areas of the sky and observe them

repeatedly to make low-noise measurements of the CMB anisotropies in those areas. Because

the CMB does not change on the timescale of human lives. as we observe the same areas of the

sky repeatedly and combine maps of the CMB made from different observations, the CMB

stays the same in a combined map, and the noise in the map decreases over time. Different

observations have uncorrelated noise, so the cumulative noise decreases as the inverse of the

square root of the number of observations. Given the unique location of the south pole, an

area of the sky that is visible at one time is always visible and does not rise or set. This is

advantageous to our observing strategy. The areas of the sky that we have mainly observed

for the past five years are shown in figure 2.2. Between late March and late November of

each year, we observed the blue patch, which we call the winter field. The winter field has

very low level of emission from the Milky Way. In other months, the sun was too close to

the winter field, so we observed different areas, which we call the summer fields.

Simplistically speaking, our detectors are very sensitive thermistors that convert chang-

ing intensity of incident radiation from the sky into changing electrical power dissipated on

the detectors. Radiation from the sky is reflected off the primary mirror and goes into a

cryogenic camera inside the receiver cabin. After passing through a series of lenses inside the

camera, the radiation couples to arrays of pairs of orthogonal antennae lithographed onto
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Figure 2.2. Winter and summer fields. The color map represents Planck ’s mea-
surements of the emission from the dust of the Milky Way.

silicon wafers. The two orthogonal antennae in a pair are for two orthogonal polarization

directions. Electromagnetic waves generated by each antenna are split into waves in three

frequency bands, delivered to three island structures through transmission lines, terminated

at the islands, and converted into heat. There are 10 wafers in total, and each wafer has

an array of 269 pairs of antennae. The three frequency bands are centered at 95, 150, and

220 GHz. There are approximately 16 000 sensors in total, and each one-third is for one

frequency band. Figure 2.3 has photographs of the antenna arrays and some of the island

structures. Each island structure contains a thin metal film called a transition-edge sensor.

The sensor is maintained at its superconducting-to-normal transition temperature (approx-

imately 500 mK), where its resistance changes sensitively in response to slight variations in

its temperature. We apply a constant voltage to each sensor. As the incident radiation from
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the sky changes, the heat delivered to an island also changes, which changes the resistance

of the sensor, which in turn changes the electrical current running through the sensor and

the electrical power dissipated on it. When the intensity of the radiation increases, the is-

land’s temperature increases. This then increases the resistance of the sensor and decreases

the electrical power dissipated on it. Similarly, a decrease in the intensity of the radiation

causes an increase in the electrical power. As we scan the telescope across an area of the

sky, we measure the electrical power dissipated on each sensor over time and thereby infer

the intensity of the incident radiation at different locations in the sky within the area. De-

tailed descriptions of components of the camera and operating principles of the sensors can

be found in Sobrin et al. [2022]. In later sections, I will use the word detector to mean an

antenna and one of the three sensors connected to it.
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Figure 2.3. Photographs of components of SPT-3G. The top left photograph shows
the outside of the cryogenic camera. The top right photograph shows the inside of
the camera when the optics tube shown in the top left photograph is removed.
Photographers of these images: Amy Bender and Brad Benson. Each wafer shown
in the top right image is covered by an array of small dome-shaped lenses. Beneath
the lenses is an array of antennae, which is shown in the bottom left photograph.
Photograph source: Dutcher et al. [2018]. The bottom right photograph shows one
pair of sinuous antennae that are sensitive to orthogonal polarization directions and
the six island structures (two polarization directions for each of the three frequency
bands) connected to them. Photograph source: Posada et al. [2016].
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2.3 Example Raw Data

Raw data from SPT-3G are time series of the electrical power dissipated in each detector and

time series of the telescope’s azimuth and elevation angles. We call a time series a timestream.

Figure 2.4 shows the timestream of one detector and the timestreams of the azimuth and

elevation angles of the telescope during the entirety of a calibration observation, in which we

scanned the telescope across an astrophysical source that has known brightness and recorded

each detector’s response to the source. Figure 2.5 shows the same timestreams from only a

short period of that observation. The bottom panel of figure 2.4 shows that the electrical

power dissipated on the detector had an increasing trend. This means that the detector

received less radiation from the sky over time. The main source of the radiation received

by a detector is the microwave emission from the atmosphere. As the telescope’s elevation

increased over time, the detector received the microwave emission from a thiner column of

the atmosphere. The decreased intensity of the incident radiation resulted in the increased

electrical power dissipated on the detector (a phenomenon discussed in section 2.2). However,

during one part of the observation, the timestream also had many downward spikes. These

spikes happened when the detector received the radiation from the astrophysical source and

can be seen more clearly in figure 2.5. Figure 2.5 also shows the scanning pattern of the

telescope, which is a raster. We scan the telescope back and forth in the azimuth while

maintaining the same elevation, increases the elevation by a step, conduct another pair of

scans in the azimuth, increases the elevation by another step, and so on.

Figure 2.6 shows timestreams from multiple detectors during one scan of an observation

of the winter field. A detector’s timestream during one scan is dominated by the atmospheric

emission. Within each frequency band, timestreams from different detectors are highly corre-

lated because the detectors observe common atmospheric fluctuation patterns. Furthermore,

there is a high degree of interfrequency correlation between timestreams in the 150 and 220
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Figure 2.4. Timestreams from a calibration observation (the full length).

GHz bands as well because the two frequency bands are adjacent to the two sides of an H2O

emission line at around 185 GHz.
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Figure 2.5. Timestreams from a calibration observation (a short period). The
downward spikes in the detector timestream formed pairs because the detector
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Figure 2.6. Detector timestreams from one scan of a field observation. For each
frequency band, five timestreams of randomly chosen detectors on different wafers
are shown. Each timestream’s mean was subtracted, and its unit was converted
from ∆Pelec to ∆T . As indicated in the y-axis label, the timestreams from each
frequency band were also divided by a different normalization factor so that the
timestreams from the different frequency bands could be shown on the same y-axis
scale easily.
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2.4 Complementarity

SPT-3G and Planck are complementary to each other. While Planck made more precise

measurements of the EE/TE/TT spectra of the anisotropies of the CMB at relatively low

ℓs (large angular scales) and derived their constraining power on cosmological parameters

from those ℓs, we are making more precise measurements at relatively high ℓs (small angular

scales) with SPT-3G. We expect to be able to constrain some cosmological parameters,

including the Hubble constant, with higher precision than Planck by eventually using all the

data from the camera.

A very useful formula called the Knox formula (Knox [1995], equation A11) can ap-

proximately predict uncertainties in measurements of the EE/TE/TT spectra that can be

achieved by an experiment given some basic properties of the experiment. As for the EE

spectrum, the formula is the following:

σ(CEEℓ ) =

√
2

(2ℓ+ 1) fsky
(CEEℓ +NEE

ℓ ), (2.1)

where fsky is the fraction of the full sky observed by the experiment, and NEE
ℓ is the

angular power spectrum of the noise fluctuations in the E-mode polarization map produced

by the experiment. Equation 2.1 is a modified version of equation 1.3 and incorporates two

additional effects. One effect is that the noise of an instrument worsens the uncertainties,

and the other effect is that observing a limited area of the sky decreases the effective number

of spherical harmonic modes observed and thus worsens the uncertainties. The number of

available modes would be 2ℓ + 1 at each ℓ if the CMB at every location in the sky could

be observed. In reality, the presence of the plane of the Milky Way and the strategy of

an experiment inevitably make fsky smaller than 1.0, and the effective number of observed

modes at each ℓ becomes (2ℓ + 1)fsky. This reduction in observed modes is another source

of sample variance besides the cosmic variance discussed in section 1.1.
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Figure 2.7 shows the predictions of equation 2.1 for two hypothetical experiments and

shows how the two experiments complement each other. Experiment A observes a small area

of the sky (fsky = 0.04) for a certain period of time to obtain low-noise measurements of the

CMB. The noise in its E-mode polarization map is assumed to be white noise, so NEE
ℓ is

simply a constant. (In the Dℓ convention, the noise spectrum increases as the square of ℓ.)

Experiment B has the identical instrument but observes a large area of the sky (fsky = 0.60)

within the same period of time, so it spends less time per unit area than A and obtains noisier

measurements per unit area. It has 15 times higher NEE
ℓ than the other experiment. At

relatively low ℓs, where both experiments’ noise spectra are lower than the signal spectrum,

observing more area is more effective in obtaining smaller uncertainties than having lower

noise. On the other hand, at relatively high ℓs, where the noise spectra are higher than the

signal spectrum, having lower noise is more effective than observing more area.

Experiment A in this example was meant to represent SPT-3G, and experiment B Planck .

While Planck was a satellite experiment with a small aperture (approximately 1.5 m) that

observed the full sky, SPT-3G is big ground-based experiment focusing on small areas of the

sky. The example above does not include the effect of the resolution of an experiment, which

is that lower resolution causes more worsening of the noise spectrum as ℓ increases. Making

high-resolution and low-noise maps of the CMB at small angular scales is a major strength

of SPT in the landscape of CMB experiments.
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Figure 2.7. Uncertainties predicted by the Knox formula for hypothetical exper-
iments. Both panels show the same theoretical EE spectrum as the gray curves.
The left panel shows two experiments’ noise spectra, and the right panel shows the
the expected uncertainties in their measurements of the EE spectrum. The cosmic
variance limit (a version of equation 1.3 for the EE spectrum) is also shown in the
right panel.
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CHAPTER 3

DATASET AND METHODS

The aims of my thesis project are to substantially improve SPT’s most recent measurements

of the EE/TE spectra of the anisotropies of the CMB and constraints on cosmological

parameters by analyzing the data that we took during the 2019 and 2020 winter observing

seasons with SPT-3G and to prepare for a future analysis that will use all the data from

SPT-3G. I have been co-leading this analysis since April 2020. In the following sections of

this chapter, I will introduce the 2019–2020 winter dataset and discuss the methods that we

used or will use in each major step of the analysis.

3.1 2019–2020 Dataset

SPT’s most recent measurements of the EE/TE/TT spectra of the anisotropies of the CMB

and constraints on cosmological parameters were based on the data taken during the 2018

winter observing season (Dutcher et al. [2021], Balkenhol et al. [2021], and Balkenhol et

al. [2023]), and the 2018 winter dataset is approximately 8 times smaller than the 2019–

2020 winter dataset. In 2018, we were able to take data for only half the season with only

approximately 6600 detectors. For each winter since 2019, we were able to take data for the

entire season with approximately 12 000 detectors, so the data volume from each winter since

2019 is approximately 4 times larger than the data volume from winter 2018. Therefore, the

2019–2020 winter dataset is approximately 8 times larger than the 2018 dataset.

The 2019–2020 winter dataset comprises many repeated observations of subareas of the

winter field. Figure 3.1 is another representation of the winter and summer fields introduced

in section 2.2. This figure shows how the winter and summer fields are divided into their

subfields. As for the winter field, it is divided into four subfields, each of which spans the

same range of right ascension as the full field but spans only one-fourth of the range of
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declination spanned by the full field. If we were to make a detector observe the entire field

without interruption, there would be too big of a change in the optical power incident

on the detector caused by too big of a change in declination and therefore the thickness

of the atmosphere seen by the detector. This would cause the detector to move out of

its normal-to-superconducting transition at some point during the observation and would

make the detector unusable. To avoid this issue, we observe only one subfield at a time and

readjust a detector’s position in the transition before we start observing another subfield.

One observation of a subfield lasts for approximately two hours and comprises 36 pairs of

increasing-azimuth and decreasing-azimuth scans. Each scan lasts for approximately 100

seconds and covers approximately 100 degrees in right ascension.

During the two seasons, in total we conducted 1047, 908, 788, and 591 observations of the

el0, el1, el2, and el3 subfields, respectively. Although the duration of one observation is the

same regardless of which subfield is observed, different subfields have different areas, so the

observation time per unit area is longer for a smaller subfield in one observation. To ensure

that the total observation time per unit area is uniform across the entire field, we conducted

more observations of the larger subfields.

The vast majority of the observations had good data quality. Out of the 3334 observations

that we conducted in total, we had to discard only 48 observations because of occasional

issues with our data acquisition system. For each good observation and each scan, we as-

sessed the quality of each detector’s timestream against several criteria: whether the detector

was operating in its normal-to-superconducting transition, whether the timestream had large

discontinuities, whether the detector showed good optical response during a calibration ob-

servation that preceded the subfield observation, and so on. We found that 10 729 detectors

passed these data quality cuts and that 831 detectors did not pass the cuts on average. All

the timestreams from these good detectors then formed the input of this analysis.
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Figure 3.1. Subfields of the winter and summer fields. The winter field covers
approximately 4% of the full sky (1650 deg2). The field approximately spans 100◦

in right ascension (from 20h40m0s to 3h30m0s) and 28◦ in declination (from −42◦ to
−70◦). It is split into four subfields called el0, el1, el2, and el3. Each subfield spans
the same range of right ascension as the full field but spans only approximately 7◦

in declination. Each of the summer fields is divided into subfields in similar ways
as shown by the color gradients.
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3.2 From Timestreams to Maps

This analysis can be roughly divided into the following three major steps: making maps

from the timestreams, calculating spectra from the maps, and constraining cosmological

parameters from the spectra. In the following sections, I discuss what methods we used in

the first two steps and what methods we plan to use in the third step.

In this section, I discuss a simplified maximum likelihood method of making maps from

timestreams. I discuss what the likelihood function is, what simplification we make to obtain

a solution, and how we processed all the timestreams in this dataset given that solution.

3.2.1 Likelihood Function

The parameters that we estimate from the simplified maximum likelihood method are the

I, Q, and U Stokes parameters in each pixel within a field and each frequency band. The I

parameter in one pixel and one frequency band represents the total intensity of the radiation

coming from that location in the sky in that frequency band, and the Q and U parameters

quantify the linear polarization intensity. Figure 3.2 shows how these Stokes parameters are

expressed in relation to the components of the electric field vector of the radiation in a

conventional coordinate system. The E-/B-mode polarization in a pixel are not quantities

directly measurable by our detectors; rather, first we measure the Q and U parameters, and

then we construct the E-/B-mode polarization from them.

One detector measures a linear combination of the three Stokes parameters in one fre-

quency band. If a hypothetical noiseless detector is designed to measure the intensity along

the direction that makes an angle ψα from north, then this intensity, Iα, can be expressed
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Figure 3.2. Expressions for the Stokes parameters. In this diagram, the thick gray
arrow represents the electric field vector (at one instant) of some radiation coming
from a certain location in the sky. The directions of the x-axis and y-axis used to
decompose the vector are conventionally taken to be north and east. The Q Stokes
parameter is the difference between the intensity along the north–south direction
and the intensity along the east–west direction averaged over many periods of the
oscillations of the field, so Q = Ey

2 − Ex
2. Here I omitted constants like c and

ϵ0 and the time average symbols for simplicity. The U Stokes parameter is the
difference between the intensity along the northeast–southwest direction and the
intensity along the northwest–southeast direction, so U = 2ExEy. The I Stokes
parameter is equal to Ey2 + Ex

2.

as follows:

Iα = (Ey cos ψα + Ex sinψα)
2

=
1

2
[Ey

2 + Ex
2 + (Ey

2 − Ex
2)(cos2ψα − sin2ψα) + 2Ey Ex · 2 cos ψα sinψα]

=
1

2
(T +Qcos 2ψα + U sin 2ψα).

(3.1)

Here, I used the symbol T instead of I because I have used the word temperature for the

total intensity of the CMB.

Once multiple detectors in the same frequency band with different angles measure the
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radiation coming from a pixel, pretending that other pixels and frequency bands do not exist

for a moment, we can construct a likelihood function for the Stokes parameters of that pixel

and find the maximum likelihood solution. The likelihood function, L, has the following form:

L ∝ exp [−(M − AS)T V −1 (M − AS) ], (3.2)

where

M =



Iα

Iβ

Iγ
...


, A =

1

2



1 cos 2ψα sin 2ψα

1 cos 2ψβ sin 2ψβ

1 cos 2ψγ sin 2ψγ
...

...
...


, S =


T

Q

U

 . (3.3)

The symbol V represents the covariance matrix of the measurements from the multiple detec-

tors, and Gaussian noise is assumed for every measurement. Given this likelihood function,

the values of the Stokes parameters that maximize the function are given by the following

equation:

S = (AT V −1A)
−1

(AT V −1M) (3.4)

(Couchot et al. [1999]).

3.2.2 Simplification

The likelihood function introduced above is in fact only a minute part of our complete

likelihood function because there are many pixels within a field and many multifrequency

measurements on each pixel. For this analysis, the number of pixels within the winter field

is O(107), and the number of measurements from all the detectors and all the observations

was O(1013), so the dimensions of M , A, S, and V can have similar orders of magnitude in

principle.
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Because with our large data volume it is computationally expensive, if not impossible,

to estimate all the elements of the covariance matrix, make sure that the matrix is invert-

ible, and actually invert it, we would like to make a simplification by assuming that the

matrix is diagonal. In other words, we would like the uncertainty on one measurement to

be uncorrelated with that of every other measurement. However, as shown in figure 2.6,

timestreams from different detectors are highly correlated because of the dominant, com-

mon, low-frequency atmospheric noise. This makes measurements taken on nearby pixels at

nearby times by different detectors have correlated uncertainties. At a lower level, detectors

also have uncorrelated 1/f noise, which is not caused by the atmosphere but by various com-

ponents of the instrument. (I use the term 1/f noise to simply mean a noise spectrum that

rises as the frequency decreases, and the spectrum may not exactly be inversely proportional

to the frequency.) The 1/f noise in a timestream makes measurements taken at nearby times

by one detector have correlated uncertainties. Regarding the atmospheric noise, in fact we do

not necessarily need to treat it as a source of noise as far as the simplification that we would

like to make is concerned. This is because the telescope scans fast enough (one degree per

second) so that atmospheric fluctuations appear static on a timescale of one scan. Therefore,

we can treat atmospheric noise as a slowly varying signal instead of a source of correlated

noise among detectors, so atmospheric noise does not need to contribute to non-diagonal

elements of the covariance matrix. Regarding the uncorrelated 1/f noise, we follow the idea

proposed in Hivon et al. [2002], which was to apply a high-pass filter to timestreams to

remove the noise. Doing so makes the assumption that the matrix is diagonal reasonable.

Making the simplification that the covariance matrix is diagonal, we can have an inde-

pendent likelihood function and an independent maximum likelihood solution for each pixel

and each frequency band. In this case, the elements of the matrices that form the solution
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(the matrices in equation 3.4) have the following forms:

V −1 =



wα 0 0 · · ·

0 wβ 0 · · ·

0 0 wγ · · ·
...

...
... . . .


, (3.5)

AT V −1A =
1

4


∑
wi

∑
wi cos 2ψi

∑
wi sin 2ψi∑

wi cos 2ψi
∑
wi cos

2 2ψi
∑
wi cos 2ψi sin 2ψi∑

wi sin 2ψi
∑
wi cos 2ψi sin 2ψi

∑
wi sin

2 2ψi

 , (3.6)

AT V −1M =
1

2


∑
wi Ii∑

wi Ii cos 2ψi∑
wi Ii sin 2ψi

 . (3.7)

In these expressions, i labels a detector (i = α, β, γ, . . .), wi represents the inverse variance

of the measurement from a detector (the weight of the measurement), and each summation

runs over i.

Estimating the Stokes parameters for each pixel and for each frequency band then be-

comes similar to calculating weighted means of only the measurements taken on that pixel

and in that frequency band. We construct the vector in equation 3.7 by adding the weighted

measurements from the detectors (including the appropriate factors of cos and sin), construct

the matrix in equation 3.6 by adding the weights (also including the appropriate factors of

cos and sin), and multiply the inverse of the matrix (the combined weights) by the vector

(the combined weighted measurements).

Here are expressions for the weighted means for two simplified situations. If multiple

detectors have similar weights, and their angles are evenly spaced in the range from 0 to

π, which are not far from the actual conditions of our measurements, then the off-diagonal
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elements of the matrix in equation 3.6 are close to 0, so S approximately has the following

form:

S =


T

Q

U

 ≈ 2


∑
wi Ii /

∑
wi∑

wi Ii cos 2ψi /
∑
wi cos

2 2ψi∑
wi Ii sin 2ψi /

∑
wi sin

2 2ψi

 . (3.8)

If there are only four detectors, α, β, γ, and δ, and the detectors have the same weight and

have 0◦, 45◦, 90◦, and 135◦ as their angles, then

S =


T

Q

U

 =


(Iα + Iβ + Iγ + Iδ)/2

Iα − Iγ

Iβ − Iδ

 , (3.9)

which reproduces the definitions of the Stokes parameters shown in figure 3.2.

3.2.3 Single-Observation and Coadded Maps

Following past power spectrum analyses from SPT, we continued using the mapmaking

method discussed in subsection 3.2.2 for this analysis. To process all the timestreams in the

dataset, first we made maps for individual subfield observations, and then we combined those

maps in different ways for different analysis tasks. Now I discuss these two steps.

The maps from one subfield observation comprises what we call weighted T , Q, and U

maps and weight maps for each of the three frequency bands. Weighted T , Q, and U maps

in one frequency band are represented as an array of vectors. Each vector is for one pixel,

and the vector is the one in equation 3.7 formed by all the measurements taken on that pixel

during that subfield observations by detectors in that frequency band. The weight maps in

that frequency band are represented as an array of matrices. Each matrix is connected to

one vector in the array of the vectors and is the matrix in equation 3.6 formed by the same
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set of measurements used for the vector.

We constructed the weighted T , Q, and U maps and weight maps for each subfield

observation and each frequency band by applying the same processing repeatedly to each

timestream from each scan of that observation. Here I discuss main steps in that processing.

For each scan, we converted the unit of the timestream of each detector from W to µK,

applied a high-pass filter and an anti-aliasing filter to the timestream, and assigned a weight

to the filtered timestream. As discussed in subsection 3.2.2, we needed to apply a high-

pass filter to use the simplified maximum likelihood method. In fact, there was another

purpose of applying a high-pass filter, which was to improve high-ℓ noise in our maps. This

point will be discussed in section 4.1. After we filtered each timestream, for each of its

samples, we identified which pixel of the subfield that sample belonged to and added that

sample’s contributions to the sums in equations 3.6 and 3.7 for that pixel and the appropriate

frequency band.

We combined weighted T , Q, and U maps and weight maps from multiple individual

subfield observations to create what we call coadded T , Q, and U maps, T , Q, and U coadds

for short, for each frequency band. The coadds in one frequency band from a group of

individual subfield observations were made by adding all the weighted T , Q, and U maps

from those observations together, adding all the weight maps together, and multiplying the

inverse of the added weight maps by the added weighted T , Q, and U maps.

We used this coadding procedure to make different types of coadds for each frequency

band. We made what we call the full-depth coadds, which were the results of combining the

maps from all the 3334 subfield observations. The full-depth coadds have the lowest possible

noise levels that we can achieve with our dataset. Our full-depth coadds will be shown in

section 4.3. We also divided all the subfield observations into two halves and made coadds for

each half. We call these coadds half-depth coadds. Furthermore, we divided all the subfield

observations into 30 groups and made coadds for those groups as well. We call these coadds
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bundles. A bundle comprises coadds from approximately 100 subfield observations (about

20–30 from each subfield). We used these different types of coadds for different analysis tasks.

After we made these coadds, we compared the full-depth and half-depth coadds with

publicly available Planck maps to check how well our maps were calibrated and obtained

calibration factors that we needed to multiply our coadds by from the comparison. We applied

these factors to the full-depth and half-depth coadds and the bundles. This calibration process

and another related topic will be discussed in section 4.2. Then, we used the bundles to

estimate the EE/TE/TT spectra of the anisotropies of the microwave sky, which is the

topic of the next subsection.

A few notes on some terms: I used the phrase the anisotropies of the microwave sky in

the previous sentence, and this phrase will appear again in later sections. I will also use

the phrase the anisotropies of the CMB in some places. The former encompasses the latter

because there are other astrophysical sources of microwave emission than the CMB. In some

discussions, both phrases seem equally appropriate. In other discussions, one phrase seems

more appropriate than the other, and I will use what I think is the better one in those cases.

The EE/TE/TT spectra of the latter are the same in different frequency bands when they

are all expressed in the unit of the equivalent CMB temperature fluctuation rather than

a unit of intensity. A temperature fluctuation at one location in the sky at one frequency

represents a fluctuation in the intensity of the radiation from that location. The temperature

and intensity are connected via a derivative of the blackbody spectrum as follows:

∆T (ν) = ∆I(ν) /
∂B(ν, T )

∂T
|T=2.73 K (3.10)

As for the CMB, ∆I(ν) at different frequencies are equivalent to the same ∆T (ν). That is not

quite true for the spectra of emission from other sources such as galaxies because the spectra

have different frequency dependence. When I mention the spectra from the other sources,

what I have in mind are the spectra in all the three frequency bands that we observe, but I
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will omit the words frequency bands for brevity.

3.3 From Maps to Spectra

In this section, first I discuss general mathematical relations between a set of T , Q, and U

maps and its EE/TE/TT spectra, and then I discuss the specific procedure that we used to

obtain unbiased estimates of the EE/TE/TT spectra of the anisotropies of the microwave

sky from the coadds made in the previous step.

3.3.1 From T , Q, and U to EE/TE/TT

Given a set of T , Q, and U maps, we can calculate its TT spectrum from the T map alone

through equations 1.1 and 1.2, and we can calculate its EE/TE spectra by constructing

an E-mode polarization map, or an E map for short, from the Q and U maps and using

equations similar to 1.1 and 1.2 on the E and T maps. The qualitative definition of the E-

mode polarization shown in figure 1.6 suggests that the value at a given location in the E map

is determined by the radial and tangential components of the polarization at surrounding

locations. These components can be calculated by combining the values in the Q and U maps

at those locations. Figure 3.3 shows that Q and U can be combined to form a new Stokes

parameters Qr, which quantifies the radial and tangential components of the polarization at

each surrounding location, n̂′, with respect to the originally given location, n̂. Then, Qr is

integrated over n̂′ to give the value in the E map at n̂ as follows:

E(n̂) =

∫
Qr(n̂

′)w(n̂ · n̂′) dn̂′, (3.11)

where w(n̂ · n̂′) is a weight function equal to the inverse of the square of the distance

between the two locations (Zaldarriaga [2001]). When n̂′ = n̂, the weight is chosen to

be zero. Incidentally, a B-mode polarization map can be obtained by a similar integral, in
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which Ur is integrated instead of Qr. (Because Q and U maps measured by an experiment are

images that have a set of pixels, a discrete version of the integral is needed in practice.) The

particular choice of the weight above is applicable to only a small patch of the sky where the

curvature of the sphere can be ignored, and the weight in a general case has a more complex

form (Rotti and Huffenberger [2019]). However, the idea of integrating radial and tangential

polarization remains the same. Once the E map is constructed, we can calculate its spherical

harmonic coefficients, Eℓm, and then combine Eℓm and Tℓm to obtain the EE/TE spectra

by using the following equations:

Eℓm =

∫
E(n̂)Y ∗

ℓm(n̂) dn̂ (3.12)

CEEℓ =
1

2ℓ+ 1

∑
m

E∗
ℓmEℓm (3.13)

CTEℓ =
1

2ℓ+ 1

∑
m

ℜ(T ∗
ℓmEℓm) (3.14)

(Because the E map is an image that has a set of pixels, the integral in equation 3.12 is

replaced by a discrete spherical harmonic transform in practice.)

In fact, we do not need to explicitly construct an E map to obtain Eℓm because Eℓm

can be directly calculated from spherical harmonic transforms of Q and U maps. These

transforms use spin-±2 spherical harmonics, ±2Y ℓm(n̂), and Eℓm can be obtained by the

following equation:

(Eℓm ∓ iBℓm) =

∫
(Q± iU)(n̂) ∓2Y

∗
ℓm(n̂) dn̂. (3.15)

(Bℓm represents the spherical harmonic coefficients of the B-mode polarization map.) Spin-

±2 spherical harmonics are obtained by applying certain differential operators involving ∂
∂θ

and ∂
∂ϕ to the usual spherical harmonics, Yℓm(n̂), and are used for multipole expansions of

spin-±2 functions on the sphere (Zaldarriaga and Seljak [1997]). A spin-s function, sf(n̂), is
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a function whose value at n̂ needs to be defined with respect to the directions of θ̂ and ϕ̂ at

that location and transforms in a particular way when θ̂ and ϕ̂ are rotated around n̂. Under

a right-handed rotation by an angle, ψ, the value acquires a multiplicative factor, e−isψ.

(sf(n̂) → e−isψ sf(n̂).) The transformation equations from Q and U to Qr and Ur shown in

figure 3.3 indicate that (Q± iU)(n̂) are spin-s functions where s = ∓2. The usual spherical

harmonics are spin-0 functions. For this analysis, we used publicly available programs called

HEALPix (Gorski et al. [1999]) and PolSpice (Chon et al. [2004]) to calculate discrete

versions of these transforms on our coadds.

A big difference between the 2018 EE/TE/TT analysis and this one is that we are no

longer using a flat-sky approximation, in which a small area of the sphere is projected onto

a plane, and two-dimensional Fourier transforms of images on the plane are used to estimate

angular power spectra instead of spherical harmonic transforms of the small area of the

sphere. We decided to make this change because we learned from the 2018 analysis that the

winter field occupied large enough of an area of the sphere to cause undesirable projection

effects, especially effects related to how values of a spectrum at different ℓs are correlated,

when the flat-sky approximation was used.
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Figure 3.3. Transformation from Q and U to E and B. This diagram shows how
the E-mode polarization in a given pixel can be calculated from the Q and U values
in surrounding pixels. The grid represents a group of pixels, and the Q and U values
in each pixel have been measured. The E-mode polarization in pixel p is a sum of
contributions from all surrounding pixels. For example, to obtain the contribution
from pixel pn′, the first step is to find the angle between the y-axis and the line
joining the centers of p and pn

′ and define a new set of axes xr and yr, where yr
is in the radial direction. The second step is to calculate the new Q and U values
in pn′ that are defined with respect to the new axes. The relation between the new
values, Qr(pn′) and Ur(pn

′), and the original values, Q(pn′) and U(pn
′), is shown

in the two equations. This process is repeated for every surrounding pixel, and the
E value in p is a weighted sum of all the Qr values.
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3.3.2 Pixel Mask

I have discussed the mathematical relations between a set of T , Q, and U maps and its

EE/TE/TT spectra, and now I discuss the procedure we used to obtain unbiased estimates

of the EE/TE/TT spectra of the anisotropies of the microwave sky from our coadds. In

particular, I discuss five elements of the procedure: designing a pixel mask, calculating cross-

correlation spectra between bundles, correcting for known biases in the cross-correlation

spectra, probing the spectra for potential systematic errors, and estimating the statistical

errors in the spectra. This procedure was mostly the same as what was used in past analyses.

Before calculating the spherical harmonic transforms of our coadds, we multiplied them

by a pixel mask to downweight certain pixels so that we could measure the EE/TE/TT

spectra of the anisotropies of the CMB with higher precision. A pixel mask is a map that

has the value 1.0 for most of its pixels but has values smaller than 1.0 and larger than or

equal to 0.0 for some of its pixels.

Our pixel mask had two components. One component was what we call a border mask,

which defined the extent of the winter field that we wanted to use. We did not want to

include every single pixel within the field because some pixels near the borders were very

noisy. Those pixels were observed by only a small number of detectors. However, we also

did not want to discard an unnecessarily large number of pixels because discarding pixels

meant decreasing the sky area and thus increasing the sample variance discussed in section

2.4. To find the optimal extent of the field, we tried different extents and used the option

that had the best balance between decreasing noise and increasing the sample variance. In

this option, we kept 96% of all the pixels that we ever observed.

Another component of our pixel mask was what we call a source mask. It had 2654 small

holes that covered pixels containing galaxies and galaxy clusters that we detected in our

maps with high signal-to-noise ratios. Finding galaxies and galaxy clusters was in itself a

large-scale analysis project. This was done by other teams within our collaboration, and we
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used a catalog produced by them, The total area that we lost to these holes was 1.4% of the

area of the border mask.

As is the case with multiplying a signal by a tapering function before calculating its

discrete Fourier transform to reduce spectral leakages, our border and source masks had

tapers near the borders and the edges of the holes.

3.3.3 Cross-Correlation Spectra

To estimate the EE/TE/TT spectra of the anisotropies of the microwave sky, we used not the

full-depth coadds but the bundles (partial-depth coadds) to avoid a potential additive bias

caused by noise in the full-depth coadds. For example, the spherical harmonic coefficients of

the full-depth T coadd in one frequency band, Tℓm, full, have two components: a component

associated with the signals, sℓm, and one associated with noise, nℓm. Then, the TT spectrum

of the coadd can be expressed in the following way:

CTTℓ, full =
1

2ℓ+ 1

∑
T ∗
ℓm, full Tℓm, full

=
1

2ℓ+ 1

∑
(sℓm + nℓm)∗ (sℓm + nℓm)

=
1

2ℓ+ 1

∑
(s∗ℓm sℓm + s∗ℓm nℓm + n∗ℓm sℓm + n∗ℓm nℓm).

(3.16)

On the last line, the first term inside the parentheses is an estimate of the signal spectrum

and is the only term that we would like to have ideally. The second and third terms do not

create biases because the signals and noise do not correlate with each other. However, the

fourth term, which is the spectrum of the noise, does create a bias in CTTℓ, full as an estimate of

the signal spectrum unless the noise spectrum is accurately estimated and subtracted from

CTTℓ, full. This means that a misestimation and then an improper subtraction of the noise

spectrum create an additive bias.

To avoid this potential issue, we calculated cross-correlation spectra between the bundles.
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Different bundles contain observations conducted during different periods, so noise in one

bundle does not correlate with that in another bundle (Polenta et al. [2005]). For example,

two T coadds from two bundles, i and j, in the same frequency band, contain the same

signals, sℓm, but different noise, nℓm, i and nℓm, j . Then, the TT cross-correlation spectrum

between the two bundle coadds (as opposed to the TT autocorrelation spectrum of the

full-depth coadd in the previous case) can be expressed in the following way:

CTTℓ, i×j =
1

2ℓ+ 1

∑
ℜ[(sℓm + nℓm, i)

∗ (sℓm + nℓm, j)]

=
1

2ℓ+ 1

∑
ℜ[(s∗ℓm sℓm + s∗ℓm nℓm, j + n∗ℓm, i sℓm + n∗ℓm, i nℓm, j)].

(3.17)

In this case, the fourth term does not create a bias in CTTℓ, i×j as an estimate of the signal

spectrum because the correlation represented by that term is also expected to be zero. When

there are n bundles, n(n−1)/2 cross-correlation spectra can be calculated, and the average of

the spectra can be used as the final estimate of the TT signal spectrum. Although this second

method is not subject to the bias that can affect the first method, estimates of signal spectra

obtained from the second method do have larger variances than those obtained from the first

method. However, the differences become negligible if there are several tens of bundles.

With our 30 bundles, we calculated 435 cross-correlation spectra and their average for

EE/TE/TT and for combinations of different frequency bands. Equation 3.18 represents all

the average cross-correlation spectra that we obtained:

C
AB, ν1×ν2
ℓ, avg =

2

n(n− 1)

n−1∑
i=1

n∑
j=i+1

1

2ℓ+ 1

ℓ∑
m=−ℓ

ℜ(A∗
ℓm, i, ν1

Bℓm, j, ν2), (3.18)

where A and B represent combinations of T and E, and ν1 and ν2 represent combinations

of two of the three frequency bands, and i and j represent bundle numbers.
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3.3.4 Known Biases

Although the average cross-correlation spectra that we calculated from the bundles did

not have the additive noise bias discussed above, they did still contain some multiplicative

biases that we needed to correct for. These multiplicative biases were associated with certain

features present in the maps.

One bias was caused by the high-pass filter that we applied to the timestreams during the

mapmaking. This introduced a multiplicative bias in the average cross-correlation spectra

because the filter removed not only low-frequency noise in the timestreams but also low-

frequency signals. We calculated this loss of signals through simulations, which we call mock

observations.

In general, in a mock observation, we prepare a set of simulated T , Q, and U maps in one

frequency band, extract the telescope pointing information from a real subfield observation,

generate a mock timestream for each detector and each scan by using the pixel values of the

simulated maps and the pointing information, filter the mock timestreams in the same way

as we filtered the real timestreams during the mapmaking, and make output T , Q, and U

maps from the mock timestreams. By dividing the EE/TE/TT spectra of the output maps

with those of the simulated maps, we can quantify the loss of signals caused by the filter. We

call these ratios filter transfer functions. To correct for the signal loss in EE/TE/TT spectra

calculated from real maps, we divide the spectra by the filter transfer functions. Filtering

timestreams biases signal spectra calculated from the maps, but the biases can be removed

from the spectra through simulations. When this approach was proposed by Hivon et al.

[2002], it was regarded as an innovative idea in the CMB community, and SPT has always

used this approach.

For this analysis, we created 500 sets of simulated noiseless T , Q, and U maps for each

frequency band, mock-observed each set of simulated maps using approximately 40 obser-

vations’ pointing information for each subfield, made a corresponding set of T , Q, and U
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coadds from the output maps of the mock subfield observations, and averaged the ratios of

the output spectra to the input ones over all the realizations to estimate the filter trans-

fer functions associated with our high-pass filter and correct the average cross-correlation

spectra.

Another bias was associated with the telescope’s finite resolution caused by diffraction

and other optical effects. The sky viewed through the telescope in one frequency band is a

smoothed version of the true sky in that frequency band. This smoothed sky can be mathe-

matically represented as the convolution of the true sky and the point spread function of the

telescope. We commonly call a point spread function a beam. Our beams are approximately

Gaussian. In harmonic space, an angular power spectrum of the sky viewed through the

telescope is the product of the true spectrum and the angular power spectrum of the beams

of our telescope. We estimated our beam in each frequency band by observing point-like

objects in the sky such as planets and galaxies, making maps of those objects, and calcu-

lating two-dimensional Fourier transforms of the maps. (Because these maps covered very

small areas of the sky, where the curvature of sky can be ignored, two-dimensional Fourier

transforms are accurate approximations of spherical harmonic transforms.) Then, we divided

the average cross-correlation spectra by the power spectra of the beams to correct for the

smoothing effect. Accurately estimating our beams is an analysis task extremely important

to not only this analysis but every other SPT analyses. However, because I was not closely

involved in that analysis task, I will not discuss the beams further in this thesis except for

simply showing what they look like in section 4.5.

One other bias was also a smoothing effect, which was caused by the pixelated nature of

our maps. After many scans from many observations, our detectors observed many slightly

different parts of each pixel, and the value of a pixel in a coadd is a weighted average of all

those measurements. This averaging is a smoothing effect. The sky represented by our coadds

is the convolution of the true sky and a kernel that has the shape of a pixel. Our pixels are
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not exactly rectangular but close, so the kernel is approximately a two-dimensional rectangle

function. In harmonic space, the smoothing effect multiplies an angular power spectrum of

the true sky by the angular power spectrum of the kernel. We calculated the power spectra

of our pixels (different pixels in our field have slightly different shapes) and used the average

spectrum to correct for this bias.

All the biases discussed in this section will be shown in section 4.5.

3.3.5 Unknown Systematic Errors

Besides correcting for the known biases in the average cross-correlation spectra, we also

probed and are still probing the spectra for potential systematic errors,

One probe is a series of what we call null tests. In general, in a null test, we split a full

dataset into two parts in a way that makes one part more sensitive to a potential systematic

error than the other part. For example, for a field that we observed during both dark months

of a year and bright months, we may want to confirm that the telescope did not receive

a significant amount of radiation during observations conducted during the bright months.

(The sun is typically at least a few tens of degrees far from any border of a field that we

observe during bright months of a year, but we still want to check whether the sun has a

nonnegligible effect.) In that case, we can use all the observations conducted when the sun

was above the horizon to form one part and all the observations conducted when the sun

was below the horizon to form the other part. For each frequency band, within each part,

we construct the same number of bundles. Then, we subtract the bundles within one part

from the bundles within the other part to form what we call null bundles. Ideally, the two

parts contain the same signals, and neither part contains the potential systematic error, so

the null bundles contain only noise. From the null bundles we calculate what we call null

spectra, which are similar to the average cross-correlation spectra discussed in subsection

3.3.3, and the only difference is that the null bundles are used in this case instead of bundles
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that contain signals. We check whether the null spectra are consistent with noise or contain

something significant beyond noise. If the latter is the case, that means we find a significant

level of a systematic error, and we need to add extra steps to our data processing to remove

that systematic error. For this analysis, we conducted null tests associated with six types

potential systematic errors. We did discover a systematic error through one of the tests and

incorporated a mitigation method into the way we calculated the cross-correlation spectra

from the signal bundles. These tests and their results will be discussed in section 4.4.

Other than the null tests for each frequency band, another probe is a series of consistency

tests between the average cross-correlation spectra in different frequency bands. Because the

EE/TE/TT spectra of the anisotropies of the CMB in all frequency bands are identical,

and the spectra of the anisotropies of other sources have reasonably well-known frequency

dependence, we can use our average cross-correlation spectra in one frequency band to predict

what we should obtain in another frequency band. If the prediction and what we actually

obtained agree within noise, we regard the spectra in the two frequency bands as consistent

measurements of the same physical phenomena. If there is a disagreement, it is possible that

the spectra in one frequency band contain a systematic error. For example, the cause of the

systematic error may be that we did not estimate the beam in one frequency band correctly

and therefore did not properly correct for the multiplicative bias in that frequency band.

As of the writing of this thesis, we have just started these tests and do not have results to

report yet.

3.3.6 Band Powers and Covariance

Once we corrected for the known biases in CAB, ν1×ν2ℓ, avg and removed a systematic error that

we found through null tests, we reduced the spectra to what we call band powers.

Although each spectrum had a value at every ℓ (within a range of ℓs that we measured

with our data), values at nearby ℓs were not independent measurements in that they had
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highly correlated uncertainties. One reason for this correlation is that the maps from which

the spectrum was obtained cover only a limited area of the sky. This is similar to the sit-

uation where the Fourier transform of a signal is calculated after that signal is multiplied

by a rectangular window function. In that case, the width of the rectangle determines the

frequency resolution of the spectrum of the signal.

Instead of keeping the values of a spectrum at every ℓ, we created intervals of ℓs, or what

we call ℓ bins, and averaged the values within each ℓ bin. This way, average values in nearby

bins were less correlated. We call these average values in different ℓ bins band powers and

will use the band powers to constrain cosmological parameters. For this analysis, the range

of ℓs we probe is [400, 4000], and the size of an ℓ bin is 50. Binning a spectrum is in fact

not a process that we use at only this stage. We bin spectra in other steps as well to better

interpret some results because a binned spectrum has less scatter in its data points.

For a binned spectrum, equation 2.1 is slightly modified. The factor in the front becomes

(2ℓ+1)∆ℓ fsky, where ∆ℓ is the width of a bin. In other words, binning a spectrum reduces

the number of data points but also reduces the uncertainty in each data point.

Before we can fit theoretical models to the band powers and constrain cosmological

parameters, we needed to estimate the statistical errors in our band powers. We needed to

construct a band power covariance matrix, which contains our estimates of the variance of

each band power and the covariance between different band powers.

The band powers represent our estimates of the underlying EE/TE/TT spectra from

which the anisotropies of the microwave sky that we observe were generated a random

realization, and multiple factors contribute to the variance and covariance. One factor is the

sample variance associated with signals that was discussed in section 2.4. Another factor is

noise in our data, which is caused by the atmosphere and our instrument. As suggested in

figure 2.7, the first factor is more important than the second one at relatively low ℓs, and

this relation reverses at higher ℓs. A third factor is the correlation between measurements at
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nearby ℓs caused by the small sky area that we observed.

In past SPT analyses, empirical approaches involving mock-observation output data and

bundles constructed from real data were used to build covariance matrices. To estimate the

sample variance associated with signals, we mock-observed a few hundred sets of simulated

noiseless T , Q, and U maps in each frequency band, calculated band powers from each set

of output T , Q, and U coadds, created an array of a few hundred values for each ℓ bin and

each type of band power (a type is specified by choices of A, B, ν1, and ν2 in equation 3.18),

and calculated the covariance matrix of these arrays by following the standard definition

of covariance. To estimate the noise variance, we used all the n(n − 1)/2 cross-correlation

spectra that we obtained by cross-correlating the bundles. We created an array of n(n−1)/2

values for each ℓ bin and each type of band power and calculated the covariance matrix of

these arrays. A common issue in these approaches has been that some matrix elements were

not estimated accurately because the numbers of simulated skies and bundles were finite, and

this caused difficulties in inverting those matrices. To address that issue, we had to put into

a significant amount of work to condition those matrices (Balkenhol and Reichardt [2022]).

For this analysis, besides these empirical approaches, we also adopted a recently developed

approach that uses analytical calculations (Camphuis et al. [2022]). After checking that the

empirical and analytical approached produced consistent results, we used the band power

covariance matrix produced by the analytical approach because the analytically calculated

matrix did not need conditioning. The analytical approximations did require our pixel mask

to have no holes because a mask that had many holes caused band powers in different ℓ bins

to correlate with each other in ways that were too difficult to calculate analytically. As a

result, we also adopted a procedure known as inpainting, in which we guessed what the CMB

anisotropies should look like in pixels contaminated by bright galaxies and galaxy clusters

by using values of surrounding pixels and use the guessed values in the contaminated pixels.

Like obtaining accurate beams, obtaining an accurate and well-behaved covariance matrix
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is another extremely important analysis task that required significant work. However, given

that I was not closely involved in this task, I will not discuss it further in this thesis.

Having band powers and a band power covariance matrix enables us to constrain cosmo-

logical parameters, which is the topic of the next section.

3.4 From Spectra to Parameters

In this subsection, first I discuss the Bayesian inference framework that we plan to use to

constrain cosmological parameters from the band powers obtained in the previous step, and

then I discuss the tests that we plan to run to probe the constraints for potential issues.

3.4.1 Bayesian Inference Framework

According to Bayes’ theorem,

p(θ|x) ∝ L(x|θ) π(θ), (3.19)

where π(θ) is a prior probability density function for a set of parameters, θ, that an ex-

perimenter wishes to constrain, L(x|θ) is a likelihood function for an experiment’s data, x,

given θ, and p(θ|x) is a posterior probability density function for θ given x. The posterior

probability density function represents constraints on the parameters given the data.

In our context, x is a set of band powers, and θ comprises cosmological parameters of

ΛCDM and its extensions and a set of parameters not relevant to cosmological models. The

non-cosmology parameters contain parameters that specify the amplitudes and shapes of the

EE/TE/TT spectra of the anisotropies of other sources than the CMB and parameters that

scale the band powers by constant factors to reflect our estimates of the statistical errors in

the overall amplitudes of the band powers. The number of these non-cosmology parameters

is around 30, and the number of the cosmological parameters is between 5 and 10.
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The quantities π(θ) and L(x|θ) are then based on the band powers and parameters.

Regarding π(θ), we use Gaussian priors for the non-cosmology parameters and a few cos-

mological parameters such as τ that we are not able to constrain well because we observe

only a small fraction of the sky. The mean and standard deviation of each Gaussian prior

are based on measurements of the corresponding parameter in the literature (except for the

parameters relevant to the band power amplitudes). For other cosmological parameters, we

use uniform priors within physically allowed ranges. Regarding L(x|θ), it has the following

form:

L(x|θ) ∝ exp{−[x−m(θ)]T V −1 [x−m(θ)]}, (3.20)

where V is a band power covariance matrix, and m(θ) is a set of theoretical band powers

predicted by θ. (In fact, x is also affected by θ through the scaling factors relevant to the

band power amplitudes.)

To obtain p(θ|x), we repeatedly draw particular values of the parameters from π(θ),

calculatem(θ) for those values by a multi-step process, and calculate L(x|θ) by using equation

3.20. The multi-step process to calculate m(θ) comprises using publicly available programs

such as CAMB (Lewis et al. [2000]) to theoretically calculate the EE/TE/TT spectra of the

anisotropies of the CMB for the chosen cosmological parameters, combining these spectra

with the EE/TE/TT spectra of the anisotropies of other sources specified by the chosen

non-cosmology parameters, incorporating a few effects such as the relativistic aberration of

the CMB caused by the motion of the earth relative to the rest frame of the CMB, and finally

reducing the combined spectra to band powers. The repeated drawing of samples from the

high-dimensional parameter space is based on Markov Chain Monte Carlo techniques through

publicly available programs such as Cobaya (Torrado and Lewis [2021]). In recent years,

we have incorporated machine learning and other new computational techniques through

programs such as CosmoPower (Spurio Mancini et al. [2022]) to make the sampling process
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more efficient.

3.4.2 Consistency Tests

I have discussed the Bayesian inference framework that we plan to use to constrain cosmo-

logical parameters from the band powers obtained in the second major analysis step, and

now I discuss the tests that we plan to run to probe the constraints for potential issues.

We will eventually use the full set of band powers to obtain the tightest possible con-

straints, but we need to test whether constraints obtained from different subsets of the

band powers are consistent with each other. These subsets can be based on frequency bands

(95/150/220 GHz), ℓ ranges (ℓ < 1500/ℓ > 1500, for example), and anisotropy combinations

(EE/TE/TT ). If we do not find statistically significant discrepancies, we can proceed to

another test.

The next test is to check whether the constraints from the full set of band powers are

robust against reasonable changes in the non-cosmology parameters. These changes can be

using different priors for those parameters, removing existing parameters, or introducing new

parameters. If we do not find statistically significant discrepancies again, we can be confident

that the constraints obtained from the full set of band powers are valid.

When we run these tests, we will blind ourselves to some extent by shifting constraints

obtained from different test configurations by an arbitrary constant for each parameter and

by not revealing these shifts to ourselves. This way, we can focus on only the relative difference

between two estimates of a parameter and the size of the difference compared with the two

uncertainties without having to contemplating the absolute value of each estimate. After

we complete these tests, we can unblind ourselves and compare our new constraints on

cosmological parameters with existing ones in the literature.

One other test, which is relevant to both this and the previous major analysis steps, is

what we call an alternate cosmology test. In some steps of this analysis, we used simulated sky

64



maps, which we generated by using the cosmological model that fitted Planck ’s band powers

the best. For example, to obtain the filter transfer functions, we mock-observed an ensemble

of simulated sky maps, and they were based on Planck ’s best-fit cosmological model. The

purpose of an alternate cosmology test is to check the dependence of our simulation-based

analysis results on the cosmological model used to generate the simulations. In this test, we

shift Planck ’s best-fit values of the ΛCDM parameters by five sigma in one direction in the

high-dimensional parameter space, generate simulated sky maps from that alternate cosmo-

logical model, mock-observe the maps and calculate band powers, correct the band powers

by using the filter transfer functions that we obtained earlier from the best-fit cosmological

model (not the alternate model), use (1) the covariance matrix that we constructed earlier,

which was also based on the best-fit model, and (2) the unbiased band powers to constrain

the cosmological parameters, and check whether we can recover the alternate parameter

values that we chose in the beginning.

As of the writing of this thesis, we have started an alternate cosmology test. We have not

started the other tests discussed in this section because we need to finish the interfrequency

consistency tests discussed in subsection 3.4.2 first.
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CHAPTER 4

RESULTS

In the previous chapter, I discussed the methods used in each of the three major steps of

this analysis. In this chapter, I will show important results from the first two major steps:

full-depth coadds and unbiased band powers (unbiased to our current best knowledge). I will

also discuss some of the analysis tasks from the first two major steps that I worked on with

much help from my collaborators. The discussions of those analysis tasks will include details

of some of the methods that were discussed briefly in the previous chapter and results that

we obtained from those methods. I will start by returning to the first major step, making

the individual observations’ maps and coadds from the timestreams.

4.1 Timestream High-Pass Filter

As discussed in subsection 3.2.2, we applied a high-pass filter to the timestreams so that we

could use the simplified maximum likelihood method of mapmaking, but there was another

purpose of removing low-frequency noise from the timestreams, which was to reduce high-ℓ

noise in the maps.

4.1.1 Low-Frequency and High-ℓ Noise

Low-frequency noise in timestreams can contribute to both low-ℓ and high-ℓ noise in maps.

In the spherical coordinate system that we established to calculate spherical harmonic trans-

forms of maps, the polar angle, θ, coincides with declination, and the azimuthal angle, ϕ,

coincides with right ascension. (Technically, θ = 90◦ − δ, where δ is declination.) Because

a scan and therefore a timestream traces a constant-θ arc on the sphere, a low-frequency

oscillation in a timestream is projected onto the sphere (onto a map) as a long-wavelength

oscillation along the ϕ direction, or a low-|m| oscillation, where m is from eimϕ. Given that
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Yℓm(θ, ϕ) ∝ Pmℓ (cos θ) eimϕ, where |m| ranges from 0 to ℓ for a given ℓ, both low-ℓ and high-ℓ

spherical harmonics contain low-|m| oscillations. Thus, low-frequency noise in timestreams

appear as low-|m| noise in maps, and low-|m| noise can contribute to both low-ℓ and high-ℓ

noise.

Because in this analysis we aim to measure high-ℓ anisotropies of the CMB as precisely as

possible, we wanted to prevent low-frequency noise in the timestreams from creating excess

high-ℓ noise in the maps, and applying a high-pass filter to the timestreams was useful for

this purpose. When we apply a high-pass filter to a timestream, we use a linear least-squares

method to remove sines and cosines up to a certain frequency. One question we needed to

answer was what value we should use for the cutoff frequency of the high-pass filter. Using

a higher cutoff frequency removes more contributions of low-|m| noise to high-ℓ noise, but

this applies to signals as well. We did not want to make the cutoff frequency unnecessarily

high and lose too many signals, so there was an optimization to be done.

4.1.2 Choice of the Cutoff Frequency

To decide what cutoff frequency we should use for the high-pass filter, we chose four candi-

date cutoff frequencies and a small but representative subset of the full dataset, made four

versions of coadds from the same small dataset, calculated noise spectra for each version,

and compared the spectra. The small dataset contained timestreams from 25 days’ worth of

subfield observations. The four cutoff frequencies were in fact four ranges of cutoff frequen-

cies, but each range of frequencies was equivalent to a single cutoff value in ℓ. Because the

scan speed of the telescope in right ascension is the same (one degree per second) regardless

of what declination a scan is at, when an oscillation at a fixed frequency in a timestream is

projected onto the sphere, the wavelength of the oscillation on the sphere subtends an angle

that changes as the declination of the scan changes. The relation between the frequency, fc,

and the equivalent ℓ of the subtended angle, ℓc, is the following: ℓc = 360×fc/(v cos δ), where
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v is one degree per second, and fc is in Hz. To achieve the same angular-scale cutoff across

the full range of declination of the field, we apply different cutoff frequencies to timestreams

from scans at different declination. For example, the cutoff in ℓ at 300 is equivalent to the

frequency range from 0.25 Hz (if a scan’s declination is −70◦) to 0.58 Hz (declination −42◦).

The four cutoffs in ℓ that we chose were 100, 200, 300, and 400. For each cutoff, we made the

full-depth coadds from the small dataset and visually inspected some of them. To estimate

the EE/TE/TT spectra of noise in the full-depth coadds, we used two sets of half-depth

coadds. We subtracted one set from the other to cancel the same signals in them and calcu-

lated the spectra of the difference coadds. Incidentally, the uncorrelated 1/f noise discussed

in subsection 3.2.2 have knees at around or below 0.05 Hz (Bender et al. [2020]), so the

lower bound of the frequency range equivalent to the cutoff in ℓ at 100 is still high enough to

remove the 1/f noise and make the simplified maximum likelihood method of mapmaking

valid.

Figure 4.1 shows the noise spectra of the difference coadds. Each TT noise spectrum has a

"1/ℓ" part and a flat part. While the former originates from the atmosphere, the latter orig-

inates from the instrument. Each EE noise spectrum is mostly flat because the atmosphere

is mostly unpolarized. Figure 4.2 shows the same spectra but has the multiplicative factor

ℓ(ℓ + 1)/(2π). The spectra in the second figure were also divided by 18, which is the ratio

of the number of subfield observations in the full dataset to the number in the small subset.

With the division, these spectra should roughly represent what we would have obtained if

we had used the full dataset for this investigations and make it easier to see at roughly what

ℓs the noise spectra intersect with expected signal spectra.

Given these noise spectra, we decided to use 300 as the cutoff for this analysis. Decreasing

the cutoff from 300 to 200 or 100 introduced the bumps in some of the noise spectra at ℓs near

1500, 2000, and 2500, and increasing the cutoff from 300 to 400 did not make a big difference

because the bumps were mostly removed when 300 was used. Similar bumps have been seen
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in past SPT analyses, but the locations and shapes of these bumps have varied. These bumps

are thought to be caused by some properties of the way in which the atmosphere is observed

through our scan pattern. Regardless of the exact mechanism causing these bumps, they are

indeed the excess high-ℓ noise that we wanted to reduce. My previous statements about how

low-frequency noise in a timestream is projected onto the sphere might have implied that

I was discussing excess high-ℓ noise that originates from the instrument, but the origin is

the atmosphere, which we observe with our detector array through the raster scan, and the

resultant timestreams are then projected back onto the sphere.

In hindsight, besides comparing the noise spectra, it might have been better to also con-

sider the sample variance. Although decreasing the cutoff from 300 to 200 or 100 introduced

the excess noise, the uncertainties in some of our band powers near the affected ℓs are dom-

inated by the sample variance. If we had used a lower cutoff, we could have retained more

signals and reduced the sample variance. This trade-off was not explored in my investigation

and may be useful to consider in future analyses.

In the 2018 analysis, besides a high-pass filter, we also applied what we call a common-

mode filter. We calculated the average timestream of the timestreams from all the good

detectors on each wafer and in each frequency band and subtracted the average from each

individual timestream. The common-mode filter acted as another kind of high-pass filter,

and the cutoff was approximately 500. The common-mode filter was necessary for the 2018

analysis because 2018 timestreams had worse low-frequency noise than 2019–2020 ones, which

we believe was caused by vibrations of a mechanical structure on which the wafers were

mounted. After the 2018 season, we installed a new mechanical structure that was much

more stable. Analyzing 2019–2020 timestreams, we decided that we no longer needed a

common-mode filter.

Other than the cutoff value of the high-pass filter, we optimized several other mapmaking

parameters by analyzing small portions of the full dataset. After that, we made the weighted
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T , Q, and U maps and weight maps for all the 3334 subfield observations, from which we then

made various coadds: the full-depth coadds, two sets of half-depth coadds, and 30 bundles.
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Figure 4.1. EE/TE/TT noise spectra (Cℓ) obtained from different high-pass
filters. Each of the nine panels shows four spectra associated with the four different
high-pass cutoff values (four colored curves) for one frequency band and one com-
bination of two anisotropy types (label in the top right corner)
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Figure 4.2. EE/TE/TT noise spectra (Dℓ) obtained from different high-pass
filters. The spectra shown in figure 4.1 were multiplied by ℓ(ℓ+1)/(2π) and divided
by 18. Planck ’s best-fit theoretical EE/TE/TT spectra of the anisotropies of the
CMB are shown as gray curves.
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4.2 Map Calibration

After we made the coadds, we needed to apply small corrections to them to reduce systematic

errors. These systematic errors were caused by our lack of accurate knowledge of certain

detector properties that we needed to specify during the mapmaking. The small corrections

included calibrating the T , Q, and U coadds by multiplying them by factors somewhat

different from unity and cleaning the Q and U coadds by subtracting small copies of T

coadds from them.

4.2.1 Gain

One of the detector properties of which we did not have accurate knowledge is what we call

the gain of a detector. It is the change in the electrical power dissipated on a detector in

response to a unit change in the temperature of the radiation incident on the detector. To be

more precise, the words temperature of the radiation mean the equivalent CMB temperature

fluctuation of the intensity of the radiation in the frequency band of the detector and along

the polarization direction of the detector. As discussed in subsection 3.2.3, an early step of

the timestream processing during the mapmaking was to use the gain of a detector to convert

its timestreams’ unit from W to µK.

We measured the gain of each detector regularly throughout an observing season by

scanning the detector across an astrophysical source that has a known equivalent CMB

temperature fluctuation and recording the change in the electrical power, but this known

temperature is in fact not very accurate. It is a value that we obtained by analyzing coadds

of the source made from SPT-SZ data, and this value is not necessarily accurate for the

purpose of measuring the gain of an SPT-3G detector because the SPT-SZ frequency bands

were similar but not identical to the SPT-3G frequency bands. SPT-SZ also had three fre-

quency bands centered at around 95, 150, and 220 GHz, but the two cameras have slightly
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different band center frequencies, widths, and shapes. As a result, the effective equivalent

CMB temperature fluctuation (the integral of the product of the right-hand side of equation

3.10 and a transmission spectrum) of the source in one frequency band of SPT-SZ is slightly

different from the source temperature in the corresponding frequency band of SPT-3G. In

addition, individual SPT-3G detectors within the same frequency band have slightly differ-

ent transmission spectra, so the source has slightly different equivalent CMB temperature

fluctuations for different SPT-3G detectors as well. Because we calculated the equivalent

CMB temperature fluctuation of the source from each SPT-SZ frequency band and used

that single temperature to estimate the gains of all the SPT-3G detectors in the correspond-

ing frequency band, we suspected that there was a gain misestimation factor (an estimated

gain divided by the true gain) associated with each detector.

Using misestimated gains when making maps can cause two systematic errors in the

maps. In a simple situation where there are only two orthogonal and noiseless detectors that

measure the T and Q parameters, if both detectors’ gains are correct, then they correctly

measure the two parameters, which may have the following expressions:

T = Tα + Tβ , Q = Tα − Tβ , (4.1)

where Tα and Tβ are the equivalent CMB temperature fluctuations of the intensities mea-

sured by the two detectors. If the two detectors’ gains are misestimated by factors ga + gd

and ga − gd, respectively, where ga is the average of the two misestimation factors, and 2gd

is the difference, then the misestimated Stokes parameters, T ′ and Q′, have the following

expressions:

T ′ = (ga + gd)Tα + (ga − gd)Tβ = ga(Tα + Tβ) + gd(Tα − Tβ) = gaT + gdQ, (4.2)

Q′ = (ga + gd)Tα − (ga − gd)Tβ = ga(Tα − Tβ) + gd(Tα + Tβ) = gaQ+ gdT. (4.3)
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Because the CMB is mostly unpolarized, and gd is expected to be small relative to unity,

T ′ ≈ gaT . Then, one systematic error caused by the misestimated gains is that both T ′ and

Q′ contain miscalibrated versions of the true values (T and Q) by the factor equal to the

average gain misestimation factor. The other error is that Q′ is also contaminated by a small

copy of the true temperature value (gdT ), and the size of the contamination is determined

by the difference between the two gain misestimation factors (Hu et al. [2003]). In a real

situation where there are many pairs of orthogonal detectors and many gain misestimation

factors, there are effective ga and gd associated with the entire detector array, and there still

exist the two types of systematic errors shown in the simple situation: a miscalibration of a

set of T , Q, and U coadds by the same factor and leakages of small copies of the T coadd

into the Q and U coadds. We checked both errors using our full-depth and half-depth coadds

and corrected for the errors in those coadds and the bundles.

4.2.2 Overall Calibration

Correcting for the overall miscalibrations of our T , Q, and U coadds comprised two steps,

First, we compared our T coadds with Planck ’s T coadds, which are known to have very

accurate calibration. Then, we multiplied our T , Q, and U coadds by numbers within 10%

of unity as the result of the comparisons.

The initial comparison was between our 150 GHz full-depth T coadd with Planck ’s 143

GHz full-depth T coadd. Planck has nine frequency bands, and its three bands that are close

to ours are centered at around 100, 143, and 217 GHz. The 143 GHz full-depth T coadd

has the lowest noise level of the three full-depth T coadds, so we compared the 143 GHz

coadd with the corresponding coadd of ours, our 150 GHz full-depth T coadd. Because both

coadds are expressed in the unit of the equivalent CMB temperature fluctuation, and the

anisotropies of the CMB is the same at all frequencies when expressed in this unit, directly

comparing two coadds in different frequency bands in this case does not have an issue similar
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to the one discussed above about the difference between SPT-3G and SPT-SZ. We wanted

to know what factor our 150 GHz coadd should be multiplied by so that it looks as close

as possible to the Planck coadd. The Planck coadd covers the full sky, but it was only the

small part of the coadd that coincides with our field that was relevant in this comparison.

The method that we used to estimate what factor we should multiply our coadd by was

to calculate a ratio of two cross-correlation spectra as follows:

Tcal, 150(ℓ) =
C
TT, SPT full×Planck full
ℓ

C
TT, SPT half1×SPT half2
ℓ

=

∑
mℜ(T ∗

ℓm, SPT full Tℓm, P lanck full)∑
mℜ(T ∗

ℓm, SPT half1 Tℓm, SPT half2)
, (4.4)

where the numerator is the cross-correlation spectrum between the SPT-3G 150 GHz and

Planck 143 GHz full-depth T coadds, and the denominator is the cross-correlation spec-

trum between a pair of SPT-3G 150 GHz half-depth T coadds. At each ℓ, this ratio can

essentially be regarded as a simple expression constructed from two numbers s and p, and

the expression is simply (sp)/(ss), or p/s. The two numbers represent measurements of the

CMB temperature anisotropy by the two experiments, so this ratio is the factor by which the

two measurements differ. In the denominator, we calculated the cross-correlation spectrum

of a pair of half-depth coadds rather than the autocorrelation spectrum of the full-depth

coadd to avoid the type of the bias discussed in subsection 3.3.3. After we corrected the

cross-correlation spectra for the multiplicative biases discussed in subsection 3.3.4 associ-

ated with both experiments’ coadds, we saw that Tcal, 150(ℓ) had small fluctuations around

a constant value in an ℓ range in which the CMB temperature anisotropy is measured with

high signal-to-noise rations and dominates the anisotropy of other sources (600 < ℓ < 1200,

for example). We estimated this constant value, which we called Tcal, 150, and multiplied

each of our 150 GHz full-depth T , Q, and U coadds by this calibration factor. The same

multiplication was applied to the half-depth coadds and bundles as well. In fact, instead of

estimating one calibration factor for the entire field, we estimated one factor for each of the

four subfields. Because we saw somewhat statistically significant differences between some
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of the subfields, we multiplied different areas of the coadds by different factors.

Once we calibrated the 150 GHz coadds, we compared our 95 and 220 GHz half-depth

T coadds with the 150 GHz half-depth T coadd to correct for the overall miscalibrations

in those two frequency bands. We did not use Planck 100 and 217 GHz coadds because

they have higher noise levels. For these comparisons, we calculated ratios similar to the one

shown in equation 4.4. For example, to obtain a calibration factor for the 220 GHz coadds,

we calculated the following ratio:

Tcal, 220(ℓ) =
C
TT, SPT 150half1×SPT 150half2
ℓ

C
TT, SPT 150half1×SPT 220half2
ℓ

. (4.5)

In the denominator, we did not use the full-depth coadd from each frequency band be-

cause there was correlated noise between different bands. As was the case with Tcal, 150(ℓ),

Tcal, 220(ℓ) and Tcal, 95(ℓ) also had small fluctuations around constant values. We estimated

these values, called them Tcal, 220 and Tcal, 95, and used them as factors to multiply our

coadds by. These calculations were also done on the subfield-by-subfield basis. Because we

again saw somewhat statistically significant differences between some of the subfields, we

multiplied different areas of the 95 and 220 GHz full-depth and half-depth T , Q, and U

coadds and bundles by different factors.

As the result of correcting for the overall miscalibrations of our T , Q, and U coadds, we

multiplied the 95, 150, and 220 GHz coadds by factors ranging from 1.06 to 1.08, from 1.00 to

1.03, and from 0.98 to 1.01, respectively. Our estimates of the uncertainties on these factors

ranged from 0.5% to 1.0% of the factors. The estimates were based on noise fluctuations in

the coadds used to calculate the ratios of the cross-correlation spectra, After creating these

corrected coadds, we proceeded to another step: removing the temperature-to-polarization

leakages from the corrected coadds.
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4.2.3 Temperature-to-Polarization Leakage Removal

Correcting for the temperature-to-polarization leakages also comprised two steps, First, we

calculated the sizes of copies of T coadds contained in Q and U coadds by cross-correlating

T coadds with Q and U coadds. Second, we subtracted approximately 1% of T coadds from

Q and U coadds as the result of the calculations.

We calculated the sizes of the leakages by using a linear least-squares method in which

the parameters to estimate included the sizes of the leakages. To calculate how much of T

coadds leaked into Q and U coadds in each frequency band, we constructed the following

model:

C
TP, half1×half2
ℓ = Pleak C

TT, half1×half2
ℓ + Pnon leak C

TP, non leak
ℓ . (4.6)

In this model, P denotes either of the two polarization Stokes parameters, Q and U . The

left-hand side is the cross-correlation spectrum between a half-depth T coadd and the half-

depth P coadd from the other half. Here, we can treat the P coadd as a spin-0 function and

calculate its spin-0 spherical harmonic coefficients (Qℓm =
∫
Q(n̂)Y ∗

ℓm(n̂) dn̂, for example).

This cross-correlation spectrum comprises two components. Assuming the P coadd contains

a small copy of the T coadd in the same half, CTP, half1×half2ℓ should contain a small copy of

the cross-correlation spectrum between the two half-depth T coadds, CTT, half1×half2ℓ . This

small copy is represented by the first term on the right-hand side, where Pleak is the size

of the leakage that we want to estimate. The second term on the right-hand side contains

an estimate of the TP spectrum of the anisotropies of the microwave sky, which I label

as CTP, non leakℓ . This is not caused by the T -to-P leakage and is an astrophysical signal.

We obtained an estimate of CTP, non leakℓ from mock-observation output maps. We do not

simulate T-to-P leakages in a mock observation, so we can calculate CTPℓ from a set of mock-

observation output T , Q, and U maps and use the spectrum to approximate CTP, non leakℓ
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contained in our real data. Because the P coadd still needed a further calibration at this

point (the topic of the next subsection), and the mock-observation output maps were based

on properly calibrated simulated skies, we introduced a free parameter that adjusts the

amplitude of CTP, non leakℓ to absorb the miscalibration of the P coadd. That parameter is

labeled as Pnon leak in the model.

Using this model and the three cross-correlation spectra, we estimated both Pleak and

Pnon leak in each frequency band with a linear least-squares method, and we used Pleak to

clean the leakages in the full-depth, half-depth, and bundle P coadds in this frequency band

by subtracting the product of Pleak and the corresponding T coadds from the P coadds. As

is the case with the overall miscalibrations, we found statistically significant differences in

the sizes of the leakages in different subfields and between Q and U , so we cleaned different

subfields and Stokes parameters by using different values for Pleak. The values ranged from

0.0025 to 0.0185, and our estimates of the uncertainties ranged from 0.0005 to 0.0010. After

creating the cleaned Q and U coadds, we proceeded to yet another step.

4.2.4 Polarization Efficiency

Besides the gain of a detector, another detector property that we did not have accurate

knowledge of was what we call the polarization efficiency of a detector. The polarization

efficiency of a detector represents the detector’s ability to couple to only the intensity along

the direction aligned with the detector’s angle, or the ability to reject the intensity along the

orthogonal direction. If the detector does not couple to the intensity along the orthogonal

direction at all, the detector has 100% polarization efficiency. The more the detector couples

to the intensity along the orthogonal direction, the lower its polarization efficiency.

The model in equation 3.1 has only the intensity along the direction aligned with the

detector’s angle and thus assumes that the detector has 100% polarization efficiency, but our

detectors do not have the perfect efficiency. A more realistic model includes the intensity
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along the orthogonal direction as well and has the following expression:

Iα = (Ey cos ψα + Ex sinψα)
2 + ϵα (Ey sinψα − Ex cos ψα)

2

=
1

2
[(1 + ϵα)T + (1− ϵα)Qcos 2ψα + (1− ϵα)U sin 2ψα],

(4.7)

where ϵα is a nonzero coefficient smaller than 1.0, and the polarization efficiency of this

detector is defined as 1 − ϵα. This model shows that the detector measures reduced Q and

U signals as a result of its imperfect polarization efficiency.

Although this model is more accurate, we did not adopt it and simply assumed that ϵ of

each detector was zero during the mapmaking because we did not have accurate measure-

ments of the quantities. As a result, even after we corrected for the overall miscalibrations

and temperature-to-polarization leakages, our Q and U coadds in each frequency band were

still miscalibrated.

4.2.5 Polarization Calibration

To correct for the miscalibrations of our Q and U coadds, we compared them with Planck ’s

Q and U coadds, and the procedure for these comparisons was almost the same as that used

for the T coadds (the procedure discussed in subsection 4.2.2). First, we cross-correlated our

150 GHz full-depth Q and U coadds with Planck ’s 143 GHz full-depth Q and U coadds to

obtain Qcal, 150 and Ucal, 150, which are the Q and U versions of Tcal, 150. In these cross-

correlation spectrum calculations, the Q and U coadds were treated as spin-0 functions. We

calculated Qcal, 150 and Ucal, 150 on the subfield-by-subfield basis but did not find statisti-

cally significant differences between the eight calibration factors (Q and U for each of the

four subfields). Therefore, we calculated a weighted average of the eight numbers, which we

called Pcal, 150, and applied it to all the 150 GHz Q and U coadds (full-depth, half-depth,

and bundles). Second, we cross-correlated our 95 and 220 GHz half-depth Q and U coadds
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with the calibrated 150 GHz half-depth Q and U coadds. For both 95 and 220 GHz, we

found statistically significant differences between the eight calibration factors. However, the

differences were still small relative to our estimate of the uncertainty in Pcal, 150, and we

decided to use only one calibration factor in each frequency band for simplicity.

As the result of correcting for the miscalibrations of our Q and U coadds, we multiplied

the 95, 150, and 220 GHz coadds by 1.07, 1.08, and 1.19, respectively. There is still an ongoing

discussion on the uncertainties in these numbers, but they are expected to be approximately

0.02. Our estimates of the uncertainties in the polarization and overall miscalibration factors

will be used in the prior probability density functions (of the parameters that modify the

band power amplitudes) discussed in subsection 3.4.1.

Besides the overall calibration, temperature-to-polarization leakage removal, and polar-

ization calibration, another correction that we applied was what we call polarization rotation.

The detector property relevant to this correction was the angle of a detector. The angle of

each detector is determined by two factors: the overall orientation of the collection of the 10

wafers and the orientation of the detector’s antenna on the wafer the to which the detector

belongs. The angles that we specified during the mapmaking were based on our knowledge

of how we installed the wafers and how the antennae were lithographed onto the wafers.

Because we did not measure and verify each detector’s angle after we installed the wafers,

there was the possibility that each angle that we specified had an offset from the true value.

If the average offset over all the detectors is zero, the variance of the offsets causes our Q and

U coadds to have reduced signals. Because this effect is degenerate with the effect caused by

not accurately specifying the polarization efficiency of a detector, the polarization calibration

discussed above corrected for the two effects at the same time. If the average offset over all

the detectors is nonzero, this global offset causes our Q coadds to contain small copies of U

signals, and U coadds Q signals. Because we measured the global offset to be about 0.5◦,

the mixing between Q and U coadds was negligible, and I will not discuss this further.
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After applying the four types of corrections, we considered our coadds to be reasonably

calibrated and cleaned. Some of the coadds are visualized in the next section.

4.3 Full-Depth Coadds

In this section, I show some of the calibrated and cleaned full-depth coadds that we produced

by following the steps discussed in section 4.2, and I explain notable features in the coadds.

Figures 4.3–4.5 show the full-depth T coadds in the three frequency bands. The three

coadds have different noise levels but generally look similar to one another. This similarity is

consistent with a statement made at the end of subsection 3.2.3: when expressed in the unit

of the equivalent CMB temperature fluctuation, the anisotropies of the CMB looks the same

in different frequency bands. A characteristic feature of these coadds is that a hot or cold

spot is not circular but elongated, and it is elongated along the direction perpendicular to the

constant-declination contour passing through the location of the blob. This feature is caused

by the high-pass filter that we applied to the timestreams. Because the scans and there-

fore the timestreams follow constant-declination contours, the high-pass filter preferentially

attenuates the components of the anisotropies of the CMB that have large-angular-scale os-

cillations along the contours. For reference, figure 4.6 shows the Planck 143 GHz full-depth

T coadd in the winter field. Because Planck coadds retain large angular-scale information,

this coadd looks quite different from the SPT-3G coadds.

Figure 4.7 shows the 150 GHz full-depth T , Q, and U coadds. Unlike the previous figure,

this figure shows only a small region of the field near its center so that characteristic patterns

in the Q and U coadds can be seen more easily. While the Q coadd has ridges that run in the

vertical direction, the U coadd has ridges that run in the diagonal directions. These patterns

exist because the polarization of the CMB is dominated by the E-mode polarization rather

than the B-mode. Figure 4.8 shows a simplistic model that explains this statement. Finally,
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Figure 4.3. 95 GHz full-depth T coadd. Finer details can be seen when the image
is enlarged.

figure 4.9 shows what the noise part of the full-depth T , Q, and U maps shown in figure

4.7 could look like. We made these maps by subtracting one set of half-depth T , Q, and

U coadds from the other. (Adding these two sets of half-depth coadds gives the full-depth

coadds.) These noise maps are spatial-domain representations of the types of noise spectra

discussed in section 4.1. A TT noise spectrum rises as ℓ decreases, so the T noise map shown

here has long-wavelength fluctuations. On the other hand, an EE noise spectrum is mostly

flat, so the Q and U noise maps shown here simply have white noise fluctuations.

Figure 4.10 compares the SPT-3G 150 GHz full-depth T , Q, and U coadds with mock-

observed Planck 143 GHz full-depth T , Q, and U coadds in a small area around the center

of the winter field. By mock-observing the original Planck coadds, we removed the large

angular-scale information in them that was absent from the SPT-3G coadds. This allowed
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Figure 4.4. 150 GHz full-depth T coadd.

us to compare the two sets of coadds in the same range of angular scales. The two T coadds

in the figure show that our maps have higher resolution than Planck ’s maps, and the two

sets of Q and U coadds show that our maps have lower noise levels than Planck ’s maps.

These differences make SPT-3G complement Planck .

We made nine full-depth coadds in total (three Stokes parameters and three frequency

bands). The total number of pixels in each coadd is approximately 3.66× 107. These coadds

form one major part of the final analysis products that we plan to release to the public.

84



3h20m 0h00m 20h40m

-40°

-50°

Right Ascension

D
ec

lin
at

io
n

220 GHz, T

100 75 50 25 0 25 50 75 100
T [ K]

Figure 4.5. 220 GHz full-depth T coadd.
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Figure 4.6. Planck 143 GHz full-depth T coadd in the winter field.
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150 GHz, T 9deg × 3deg

150 GHz, Q

150 GHz, U

Figure 4.7. 150 GHz full-depth T , Q, and U coadds in a small region. The top left
corner of each panel shows the relevant Stokes parameter. For the top panel, the
temperature range represented by the gray scale is from −200 µK to 200 µK. For
the other two panels, the range is from −20 µK to 20 µK. The width and height of
the small region are approximately nine and three degrees, respectively.
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Figure 4.8. Toy model for the ridges in the Q and U coadds. In this diagram, the
top square shows the polarization directions in a grid of pixels. These directions form
a characteristic pattern of the E-mode polarization. In some pixels, the polarization
direction is such that either the Stokes Q or U parameter is zero. This is shown in
the bottom two squares. The bottom left square shows the sign of Q in some of the
pixels, and the bottom right square is for U . The nonzero values in the Q map form
horizontal or vertical features, and the nonzero values in the U map form diagonal
features. Because the CMB has much more E-mode than B-mode polarization, we
see these features clearly in our Q and U coadds.
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Figure 4.9. Possible noise patterns in the 150 GHz full-depth T , Q, and U coadds.
This figure uses the same temperature ranges for the gray scales as figure 4.7.
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Figure 4.10. SPT-3G 150 GHz and Planck 143 GHz full-depth T ,Q, and U coadds.
The original Planck maps from which these mock-observed maps were made were
downloaded from the Planck Legacy Archive. For the top row, the temperature
range represented by the gray scale is from −100 µK to 100 µK. For the other two
rows, the range is from −10 µK to 10 µK.
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4.4 Null Tests

In the previous three sections, I discussed two analysis tasks closely relevant to the first

major step of this analysis, making the T , Q, and U coadds from the timestreams, and

showed some of the full-depth coadds.

In the following three sections, I will discuss two analysis tasks closely relevant to the sec-

ond major step of this analysis, calculating the EE/TE/TT band powers from the bundles,

and show some of the band powers. As discussed in subsections 3.3.3–3.3.5, we calculated the

average cross-correlation spectra from the properly calibrated bundles that we obtained from

the first major step, and we corrected for the known multiplicative biases and searched for

potential systematic errors in the spectra. Calculating the average cross-correlation spectra

was simply a matter of following equation 3.18, so I will focus on the latter in the following

two sections.

In this section, I further discuss the null tests introduced in subsection 3.3.5. As intro-

duced there, we conducted null tests to probe potential systematic errors in our data.

4.4.1 Types of Tests

For this analysis, we searched for systematic errors associated with six types of potential

causes. We gave the six types of null tests the following names: sun, moon, azimuth, year,

scan, and wafer null tests.

As discussed in subsection 3.3.5, the purpose of the sun test was to check whether our

data were contaminated by the sun’s radiation. For the 2019–2020 dataset, the maps from

the individual subfield observations taken between late September and the end of November

of the two years formed one of the two parts that we needed to create null bundles, and the

maps from the observations taken in the other months formed the other part.

The moon test was similar to the sun test. It was another test meant to check whether
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the presence of a very bright object in the sky contaminated our data even when it was

far from our field. For this test, one part comprised the maps from the observations taken

when the moon was above the horizon, and the other other part when the moon was below

the horizon. Each part had data from one half of each month of the two winter observing

seasons.

The azimuth test was used to check whether our data were contaminated by the radiation

from a few buildings at the South Pole station that are close to the telescope. These build-

ings are all approximately in the same direction from the telescope, and the corresponding

azimuth angle is 150◦. For each subfield observation, we assigned a representative azimuth

angle to it, which was the midpoint of the azimuth range that was covered by all the scans

of that observation. Then, we used all the observations whose representative azimuth angles

were within ±90◦ of 150◦ to form one part and all the other observations to form the other

part. Because we observed each subfield during different hours on different days, the obser-

vations of each subfield had various different azimuth angles. As a result, the two parts had

maps from approximately the same number of observations.

The year test was used to check whether anything was significantly different between the

data from the 2019 winter observing season and the data from 2020. We used the maps from

all the observations that we took in 2019 to form one part and all the observations in 2020

to form the other part.

The scan test was used to check whether one or the other of the telescope’s scanning direc-

tions (increasing-azimuth scans and decreasing-azimuth scans) introduced a systematic error

in our data. As discussed in section 3.1, each subfield observation had multiple pairs of scans

in the opposite directions. The two scans in a pair have not only the opposite directions but

also other differences in their motions. As one example, it is always the increasing-azimuth

scan that is preceded by a change in the elevation of the telescope. As another example, the

decreasing-azimuth scan moves slightly faster in the azimuth than the increasing-azimuth
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scan to counter the rotation of the earth and make the two scans have the same speed in

right ascension. We conducted the scan test to check whether differences like these affected

our coadds and band powers in some way. Although in subsection 3.2.3 it was stated that we

made one set of T , Q, and U maps for each frequency band from each subfield observation

during the mapmaking, that was not entirely accurate. We made one set of maps from the

timestreams of all the increasing-azimuth scans of an observation and another set of maps

from the timestreams of all the decreasing-azimuth scans. To conduct the scan null test, we

subtracted one set of maps from the other to create null maps from that observation, and

then we constructed null bundles from them. (For other analysis tasks, we combined the two

sets of maps.)

Finally, the wafer test was used to check whether data from detectors on some wafers

had significant systematic errors. Different wafers on the focal plane were made in different

batches of fabrication in a cleanroom and have somewhat different thermal and electronic

properties. For example, when we were checking data quality of timestreams, we noticed

that timestreams from detectors on two out of the ten wafers had spectral lines at 1.42 Hz.

One part of our cryogenic system compresses and expands helium gas at that frequency, and

it appears that some detectors responded to this through some mechanism. We conducted

the wafer null test to check whether differences like this introduced systematic errors in our

coadds and band powers. The procedure of creating null bundles in this case was similar to

the procedure used for the scan null test. First, we divided the ten wafers into two groups

of five wafers. Second, for each subfield observation, during the mapmaking, we split all the

timestreams by the group assignment as well as the scan direction, so in fact we made four

sets of T , Q, and U maps for each frequency band from each subfield observation. Third,

we combined the maps from the two scan directions for each group of wafers and then

created null maps, which were then used to construct null bundles. (For the scan null test,

we combined the maps from the two groups of wafers for each scan direction.)
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4.4.2 Passing Criteria

For each test, we obtained nine spectra and their uncertainties. The number of null bundles

created for each test was 25, and each bundle comprised a set of T , Q, and U maps in each

frequency band. From these bundles, we calculated 300 (25× 24/2) cross-correlation spectra

for each anisotropy combination (EE/TE/TT ) and each frequency band. Then, for each set

of 300 spectra, we binned all the spectra and calculated the average and standard deviation of

them. We called the binned average spectrum a null spectrum and used the binned standard-

error spectrum as the uncertainty in the null spectrum. This procedure gave us nine null

spectra (three anisotropy combinations and three frequency bands) for each test.

To decide whether a null spectrum was consistent with noise fluctuations, we calculated

a χ2 value from the spectrum and the corresponding P -value, and we compared the P -value

with a threshold that we agreed in advance to use to judge whether a given P -value is high

enough. We calculated the χ2 value of a null spectrum by using a standard definition:

χ2 =
∑
b

(
Nb −Nb, exp

σb
)
2

=
∑
b

(
Nb
σb

)
2
, (4.8)

where Nb represents a null spectrum, the sum is over all the ℓ bins of the spectrum, Nb, exp

is what we expect the spectrum to look like in the absence of any systematic errors, and σb

is the uncertainty in the spectrum. As for Nb, exp, we chose it to be simply zero as a starting

point.

What we used as σb to calculate the χ2 value of a null spectrum was in fact not simply

the standard-error spectrum discussed above but the quadrature sum of that and 1% of

the square root of the sample variance associated with the relevant signal spectrum. For

example, for a 150 GHz TT null spectrum from any test, the additional uncertainties were

1% of
√

2/nm, eff C
TT, 150×150
b, avg , where nm, eff is (2ℓb+1)∆ℓ fsky, an estimate of the effective

number of modes within an ℓ bin. I slightly changed equation 3.18 by using b instead of ℓ to
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represent ℓ bins, and ℓb represents the ℓ at the center of a bin. Compared with equation 2.1,

the expression for the effective number of modes used here has the additional factor ∆ℓ to

include all the modes within a bin. The idea for this additional term was that, even if we find

that a null spectrum contains some kind of systematic error larger than noise fluctuations,

this systematic error is not concerning at ℓs where uncertainties in our band powers are

dominated by the sample variance if the systematic error is small compared with the sample

variance. At those ℓs, even if some band powers have a systematic error added to them, as

long as the systematic error is small compared with the band power uncertainties, which are

dominated by the sample variance, the systematic error causes a negligible amount of bias on

our constraints on cosmological parameters. This statement was tested in the 2018 analysis

(Balkenhol et al. [2023]). By having this additional term, we gave ourselves a margin to help

us pass null tests in anticipation of finding some small systematics.

The threshold that we chose to judge whether a P -value was high enough was based

on (1) a value that we thought would have been reasonable to use if we had had only one

null spectrum and (2) the total number of null spectra that we calculated. If we conduct

only one null test in which we calculate only one null spectrum and its P -value, we think

0.05 is a reasonable threshold to use. However, if we conduct many null tests and many null

spectra and their P -values, even in the absence of any systematic errors, a large χ2 value

with a corresponding low P -value can arise by chance. Taking this look-elsewhere effect into

account, we decided to use 0.05/54 (0.00093) as the threshold, where 54 was the total number

of P -values that we calculated (6 tests and 9 null spectra for each test).

4.4.3 Test Results

All the sun, moon, azimuth, and year null spectra gave P -values that were higher than the

threshold. Some of the spectra had high enough P -values without the additional uncertain-

ties, and others needed the additional uncertainties to have high enough P -values.
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Figure 4.11 shows the nine null spectra from the sun test, the two sets of uncertainties

for each null spectrum (with and without the addition of 1% of the square root of the

sample variance), and the reduced χ2 values and P -values that are based on the two sets

of uncertainties. For each of the TT null spectra (except for the 150 GHz null spectrum at

relatively low ℓs), the first set of uncertainties (without the contribution from the sample

variance) is too small to clearly see. The second set of uncertainties for each null spectrum

is drawn with shallower colors, and it is most easily noticeable for the 95 GHz TT null

spectrum. In that case, using the second set of uncertainties decreased the reduced χ2 value

from 0.88 to 0.34. For some of the other spectra, the second set of uncertainties is not visible.

As for the 220 GHz TT null spectrum, for example, using the second set of uncertainties

decreased the reduced χ2 value from 0.74 to only 0.73. The 220 GHz spectra shown in the

figure are the actual spectra divided by 10. Without this factor, it would be hard to see these

spectra because they have much larger fluctuations For the sun test, all the nine null spectra

had high enough P -values without the help of the additional uncertainties. The moon test

had the same situation.

Figure 4.12 shows the nine null spectra from the azimuth test. Although the 95 and 150

GHz TT null spectra had P -values below the threshold when the additional uncertainties

were not included, which meant that we did detect some systematic errors from the azimuth

test, the P -values became high enough with the additional uncertainties, so we did not think

those small systematic errors were problematic. The 95 GHz TT null spectrum shows that

we detected an additive systematic error at the level of 0.1 (µK · rad)2 at relatively low

ℓs, but the uncertainties in our 95 GHz TT band powers caused by the sample variance

is at the level of 30 (µK · rad)2, so the systematic error is negligible. The year test had a

similar situation. Although two null spectra had P -values below the threshold without the

additional uncertainties, the values became high enough with the additional uncertainties.

However, most scan and wafer null spectra gave P -values that were too low even with
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the additional uncertainties. Figures 4.13 and 4.14 show that those null spectra had large

deviations from zero.
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Figure 4.11. Null spectra from the sun test. Each panel shows one of the nine
null spectra and the two sets of uncertainties discussed in subsection 4.4.2. The 220
GHz spectra shown here are the actual spectra divided by 10. The reduced χ2 and
the associated P -value for each set of uncertainties are also printed.
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Figure 4.12. Null spectra from the azimuth test. Unlike figure 4.11, two panels in
this figure have red P -values, which indicate that they are below the threshold.
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Figure 4.13. Null spectra from the scan test.
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Figure 4.14. Null spectra from the wafer test.
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4.4.4 Contamination Discovered in Scan and Wafer Tests

Almost all the scan and wafer null spectra revealed peaks at ℓs close to 600, and the excess

power responsible for the peaks was localized along the m-axis as well. Figure 4.15 shows

spherical harmonic coefficients of two 95 GHz T coadds. One coadd was a result of combining

all the 25 scan null bundles, and the other coadd was from all the wafer null bundles. In

both cases, the bright spots near the centers of the images were responsible for the peaks

in the TT null spectra. (The one-dimensional angular power spectrum of each coadd is the

result of collapsing each triangle along the vertical direction.)
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Figure 4.15. Harmonic space representation of the 95 GHz scan and wafer T null
coadds. The left image is for the scan null coadd, and the right image the wafer
null coadd. The square of the absolute value of each coefficient whose ℓ is smaller
than 1000 is shown. Because the coadds have real values, only the coefficients of
the modes that have positive m need to be shown.

Given the localization in m, we believe these peaks were caused by narrowband contam-
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ination in timestreams because the frequency of a sinusoidal component in a timestream is

mapped to a specific value of m as discussed in subsection 4.1.1. The relevant frequency

in this case is approximately 1.1 Hz. After some investigations, we noticed an interesting

property of this contamination: when we recalculated the null spectra by using a subarea of

the field that had a narrower extent in right ascension (from −35◦ to 35◦ instead of from

−50◦ to 50◦), these peaks were gone. This meant that the contamination was localized in

not only the harmonic domain but also the spatial domain. The contamination existed only

near the left and right edges of the survey area. One hypothesis is that the motion of the

telescope near the beginning and/or end of a scan was different from the motion during the

middle of a scan in some way, and this difference affected timestreams from some wafers

more than timestreams from other wafers. It is true that the telescope decelerates at the end

of a scan, turns around, and accelerates to start a new scan in the opposite direction, but

the timestreams that we recorded during the turnarounds were discarded from the dataset

to begin with, so this difference should be irrelevant to the contamination. Another inter-

esting property that we noticed was that this contamination was localized in not only right

ascension but also declination. When we recalculated the null spectra by using the full range

of right ascension but only the el2 and el3 subfields, the peaks were gone as well. This does

not necessarily invalidates the hypothesis but is another phenomenon that we have not un-

derstood. One other interesting finding was that we saw excess power at approximately 1.1

Hz in azimuth and elevation timestreams of the telescope. However, the excess power was

present throughout the entirety of a scan (not only the beginning and/or end) and for the full

elevation range. Currently, it is not clear how/if the 1.1 Hz power in azimuth and elevation

timestreams connects to the power in detector timestreams.

Rather than trying to have a full understanding of the exact mechanism of this contami-

nation, we decided to move forward with the analysis by simply removing the contaminated

region of the harmonics space when calculating all the null spectra from the scan and wafer
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null bundles and all the signal spectra from the 30 signal bundles. This means that, after

we calculated spherical harmonic coefficients of bundles, we set the coefficients of the con-

taminated spherical harmonics to zero before calculating one-dimensional cross-correlation

spectra. In the 2018 analysis, we did not notice any obvious 1.1 Hz contamination. It is

possible that the data were too noisy for this contamination to be detected. Or it is also

possible that something that we changed when we upgraded our instrument at the end of

2018 introduced this contamination.

4.4.5 Remaining Features in Scan and Wafer Null Spectra

After we removed the peaks in the scan and wafer null spectra, the TT spectra still had

features that were highly inconsistent with fluctuations around zero (and to a lesser extent

for EE and TE), but these remaining features are in fact not concerning. These features are

not caused by some contamination but caused by imperfect subtraction of signals in the null

bundles, and we do not believe the mechanisms responsible for the imperfect subtraction

bias our band powers.

As for the scan test, the imperfect subtraction occurred because the maps made from

the timestreams of the increasing-azimuth scans of an observation contained signals that

were slightly shifted in one direction, and the maps from the decreasing-azimuth scans in

the opposite direction. There are two reasons for these shifts. One reason is that our detec-

tors do not respond to changing optical power from the sky instantaneously. In other words,

they have finite time constants. Our mathematical model of this time constant effect is the

same as the model used to describe the charging and discharging of a capacitor connected

in series with a resistor and a square-wave voltage source, and most of our detectors’ time

constants are several milliseconds. This time constant effect roughly makes signals recorded

in a timestream delayed versions of the true signals, and scans in the opposite directions

create these delays in the opposite directions. Another reason for the shift is that our data
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acquisition system recorded a slightly wrong right ascension value for each timestream sam-

ple. The recorded coordinate was not the coordinate at which the detector was pointed

when the sample was taken. Rather, we recorded the coordinate at which the detector was

pointed several milliseconds prior to when the sample was taken. The second effect happened

to mostly negate the first one, but there was still a residual time constant effect, and this

caused the imperfect subtraction of signals in the scan null bundles.

These shifts caused the nonzero null spectra but did not introduce systematic errors

in our band powers because effectively we corrected for the shifts when we corrected our

band powers for the multiplicative bias caused by the beams. The signal bundles used to

calculate the band powers had combined maps from the two scan directions. Because the two

sets of maps had signals shifted in the opposite directions. combining the maps caused an

additional smearing of signals. Equivalently, we broadened our beams. However, because the

shifts were present in the maps of planets and galaxies that we used to measure our beams,

the broadening effect was included in our beams.

As for the wafer null test, the imperfect subtraction occurred because the high-pass filter

that we applied to timestreams from one wafer was slightly different from the high-pass filter

for another wafer. As discussed in subsection 4.1.2, the cutoff frequency of the high-pass filter

used for a given scan was a function of the elevation of the telescope during that scan so

that we could achieve the same angular-scale cutoff across the full field. To be more precise,

the elevation of the telescope was defined as the elevation at which a detector located in the

center of the focal plane was pointed. Using the desired cutoff in ℓ, which we chose to be

300, and this definition of the elevation during each scan, we calculated the corresponding

frequency cutoff and used that for all the detectors on the focal plane. However, the focal

plane has a finite size, and it spans about two degrees in elevation. This means that we

should use slightly different cutoff frequencies for different detectors on the focal plan to

remove signals above the same angular scale from timestreams of different detectors for each
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scan. Because that was not what we did during the mapmaking, different wafers had slightly

different filter transfer functions, so some signals were still present in the wafer null bundles.

However, having different filter transfer functions for different wafers did not introduce

systematic errors in our band powers because the differences were captured in our mock

observations. The signal bundles used to calculate the band powers had combined maps

from all the wafers, so the band powers calculated from the combined maps were biased by

wafer-averaged filter transfer functions. Because we used all the wafers’ pointing information

during mock observations, the filter transfer functions that we obtained from the mock

observations were also the wafer-average filter transfer functions.

We modeled the imperfect subtraction of signals by using analytical calculations and

simulations, and the models agreed with the remaining features in the null spectra well. For

example, figure 4.16 shows the models for the two 95 GHz TT null spectra.

After masking the contaminated region in harmonic space and creating models of the

residual signals, we calculated the P -values of all the scan and wafer null spectra again. The

values became high enough, so we succeeded in passing all the null tests and concluded this

analysis task.
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Figure 4.16. Models for the 95 GHz scan and wafer TT null spectra. The left
panel is similar to the top left panel in figure 4.13, and the right panel is similar to
the top left panel in figure 4.14. One difference between the null spectra shown in
this figure and the null spectra shown in those two figures is that the peaks are gone
because we masked the contaminated region in harmonic space. Another difference
is that this figure also shows our models (gray curves) for the remaining features in
the null spectra, and they agree well.

4.5 Multiplicative Biases

Another analysis task closely relevant to the second major step of this analysis is to correct

for the three types of known multiplicative biases discussed in subsection 3.3.4: the filter

transfer functions, beams, and pixel window function. After we calculated the average cross-

correlation spectra from the bundles (see subsection 3.3.3), we removed these multiplicative

biases from the spectra. The functions representing these biases that we divided our spectra

by are shown in this section.

Figure 4.17 shows two filter transfer functions associated with CTT, 150×150
ℓ, avg , the average

cross-correlation spectrum obtained by cross-correlating the 150 GHz T coadd from one

bundle with that from another bundle, and these functions quantify what fraction of the
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signals at each ℓ we retained as a result of the timestream high-pass filter discussed in

section 4.1 and the harmonic-space masking.discussed in section 4.4. For each of the 500

simulated skies in the 150 GHz band, we calculated its TT spectrum, mock-observed it,

calculated the TT spectrum of the output T coadd, and divided the latter spectrum by the

former. The average of the 500 ratios is the dashed curve shown in the figure. At ℓs below

300, the value of this filter transfer function is zero because we chose the high-pass filter’s

cutoff value in ℓ to be 300 as discussed in section 4.1. At ℓs above 300, the function gradually

approaches 1.0 as the ℓ increases. It does not abruptly reach 1.0 because the filter affects

both low-ℓ and high-ℓ signals. As shown in figure 4.15, the filter removes the low-m modes in

the horizontal strip in harmonic space. Because both low-ℓ and high-ℓ signals contain low-m

modes, high-ℓ signals are affected by the filter as well. The solid curve in the figure shows

the additional signal loss caused by the harmonic-space masking discussed in section 4.4.

The masking created a notch at ℓs around 600. After we calculated CTT, 150×150
ℓ, avg , we divided

it by the latter curve to remove the biases caused by the filtering and masking. The filter

transfer functions that we used to correct the other average cross-correlation (CEE, 95×150
ℓ, avg ,

for example) were similar to the one shown here.

Figure 4.18 shows the Fourier transforms of our beams in the three frequency bands,

which are labeled as Bνℓ , and these functions quantify what fraction of the signals at each

ℓ in each frequency band we retained as a result of finite resolutions of the telescope. The

telescope has a finer resolution and retains more signals at a higher frequency because there

is less diffraction. Our beams in the 95, 150, and 220 GHz bands in the spatial domain can

be approximated as Gaussians whose full widths at half maximum are 1.6, 1.2, and 1.0 arc

minutes, respectively. The larger this number, the more the smoothing effect. In the Fourier

domain, the 220 GHz beam is closer to 1.0 at large ℓs than the 150 GHz beam, and the 150

GHz beam than the 95 GHz beam. We divided each C
X1X2, ν1×ν2
ℓ, avg by the product of Bν1ℓ

and Bν2ℓ .
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Figure 4.17. Example filter transfer function. The function that rises smoothly
shows the effect of the high-pass filter, and the function with the notch has the
additional effect caused by the harmonic-space masking that we implemented to
remove the contamination that we found from the scan and wafer null tests. We
use the notation Fℓ to represent filter transfer functions.

Figure 4.19 shows the pixel window function associated with the pixelation scheme of

our maps, and this function quantifies what fraction of the signals at each ℓ we retained as a

result of averaging the signals within pixel areas. The values of this function is very close to

1.0 in the ℓ range relevant to this analysis because the resolution of our pixels is much finer

than strictly necessary. In a one-dimensional case, the Fourier transform of the rectangle

function whose width is equal to the interval between two adjacent samples of a time series

(the pixel size of the time series in some sense) is a sinc function, and the value of the sinc

function is 2/π at the Nyquist frequency corresponding to the sampling rate, the highest

frequency that can be contained in the time series. Similarly, the resolution of a map pixel

has a corresponding ℓ that we may call the Nyquist ℓ, and the value of the pixel window

function at that ℓ is 2/π. For this analysis, the maximum ℓ that we are interested in is 4000,

and the corresponding pixel resolution is approximately 2.6 arc minutes. However, we chose
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Figure 4.18. Fourier transforms of the beams.

our pixel resolution to be approximately 0.4 arc minute during the mapmaking to minimize

pixel effects such as the pixel window function. As a result, our Nyquist ℓ is much higher

than 4000, and the pixel window function is very close to 1.0 in the ℓ range that we are

interested in. Compared with the other two types of multiplicative biases, this bias is much

smaller.

After we divided the average cross-correlation spectra by these functions, we binned the

unbiased spectra to create band powers.
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Figure 4.19. Pixel window function. This is the angular power spectrum of the
average shape of our pixels. We use the notation Wℓ

2 to represent this quantity.

4.6 Band Powers

In this section, I show some of the band powers that we obtained from the 2019–2020 winter

dataset and compare their uncertainties with those from the 2018 dataset and Planck .

Figure 4.20 shows all the autofrequency EE/TE/TT band powers. The reason why the

220 GHz TT spectrum diverges from the other two TT spectra at relatively high ℓs is that

it has more power from galaxies. The 150 GHz TT spectrum also diverges from the 95 GHz

TT spectrum, but the difference is too small to see in this figure. The three EE spectra look

identical because polarized emission from galaxies is negligible. The three TE spectra are

expected to have no contributions from galaxies. This applies to the three TE spectra as well.

The data points at ℓs below 400 are in fact not from this analysis because the timestream

high-pass filter removed signals at those angular scales. These points are from an analysis

that is based on the same dataset but filtered timestreams less heavily to retain and analyze

low-ℓ polarization signals (Zebrowski et al., in prep.). In this analysis, 220 GHz maps are

used to clean low-ℓ noise in 150 GHz maps, and 220 GHz band powers are unavailable. We
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will possibly include those data points when constraining cosmological parameters.

Figure 4.21 compares the uncertainties in the 150 GHz EE/TE band powers shown in

the previous figure with the uncertainties in the corresponding band powers obtained from

the 2018 dataset. At relatively low ℓs, the uncertainties from both datasets are mostly caused

by the sample variance discussed in section 2.4. Therefore, the new dataset does not improve

much on the old one because the survey area has not changed. However, as ℓ becomes larger,

the uncertainties receive larger relative contributions from the noise variance. Because the

new dataset is nearly 10 times as large as the old one, the former improves on the latter by a

similar factor as ℓ increases. The uncertainties in the TT band powers from the two datasets

are not compared in the figure because we are limited by the sample variance in the entire

ℓ range.

Figure 4.22 is the same as figure 4.21 except that the SPT-3G 2018 uncertainties were

changed to Planck ’s uncertainties. These comparisons reinforce the point that was made

in section 2.4: SPT-3G complements Planck by making more precise measurements of the

EE/TE/TT spectra of the anisotropies of the CMB at high ℓs.

The total number of band powers that we obtained from this dataset was 936. As discussed

in subsection 3.3.6, the size of an ℓ bin is 50, and our ℓ range of interest is from 400 to 4000,

so there are 72 band powers for each of the 6 combinations of two frequency bands (95

GHz × 95 GHz, 95 GHz × 150 GHz, and so on) and for each of the 3 combinations of two

anisotropy types (E ×E, T ×E, and T × T ). In total, we have 1512 band powers. Like the

full-depth coadds, these band powers and the covariance matrix form another major part of

the final analysis products that we plan to release to the public.
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Figure 4.20. Autofrequency EE/TE/TT band powers. The EE/TE/TT band
powers from the three autofrequency combinations are shown here. The band powers
at ℓs below 400 are from another analysis.
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Figure 4.21. Band power uncertainties from the 2018 and 2019–2020 datasets.
The top panel compares the two sets of uncertainties for the 150 GHz EE spectra,
and the bottom panel is for the TE spectra. In the bottom, the absolute values of
the TE signals are shown.
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Figure 4.22. Band power uncertainties from the SPT-3G 2019–2020 dataset and
Planck . The Planck data points were downloaded from the Planck Legacy Archive.
They were obtained from maps in multiple frequency bands, while the SPT-3G data
points are from only the 150 GHz bundles. Our errors will decrease at relatively
high ℓs after we combine the band powers in all the frequency bands. Because the
size of each Planck ℓ bin is 30 as opposed to 50, the Planck data points were also
multiplied by

√
30/50 for fairer comparisons. This second set of Planck data points

are shown as the gray curves below the gray pluses.
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4.7 Future Steps

As of the writing of this thesis, we still have several analysis tasks to complete before we can

obtain constraints on cosmological parameters. Currently, we are conducting two types of

tests. First, we are conducting the interfrequency consistency tests discussed in subsection

3.3.5. We are testing whether our band powers in different frequency bands are consistent

with each other. Second, we are conducting an alternate cosmology test discussed in subsec-

tion 3.4.2. We are testing an alternate model that has a high value for the Hubble constant

and will possibly try more models. After we pass these tests, we will conduct the other test

discussed in subsection 3.4.2, which is to check whether different subsets of our band powers

yield consistent parameter constraints. I am very interested in seeing whether different sub-

sets will yield statistically significantly different constraints on the Hubble constant. From

the 2018 EE/TE/TT analysis, we obtained 68.3 ± 1.5 km/s/Mpc by using the full set of

band powers (EE/TE/TT from the six combinations of the three frequency bands). We

also obtained 65.1 ± 2.0 km/s/Mpc and 76.4 ± 3.8 km/s/Mpc by using the TE and EE

band powers (from all the frequency combinations), respectively. The differences between

these constraints and the constraint from the full set of band powers were not statistically

significant in that case, but I am interested in seeing whether we will see similar differences

at higher significance this time. If we find statistically significant differences, we will need to

carefully examine whether they are caused by systematic errors in our band powers.

Once we pass all these tests, we will unblind our parameter constraints, and we will

interpret them and compare them with existing results in the literature. Regarding the

Hubble constant, by using the full set of band powers from the data that we took during

the 2019–2020 winter observing seasons, we expect to be able to shrink the uncertainty to

0.9 km/s/Mpc. Furthermore, by combining these band powers with those from the data

that we took during the summer observing seasons of those two years, an analysis of which
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has been ongoing and is at a similar stage, we expect to be able to further shrink the

uncertainty to 0.7 km/s/Mpc and approach the uncertainty achieved by Planck , which was

0.54 km/s/Mpc (Aghanim et al. [2020a]). With future analyses that will include data from

additional years, we expect to be able to achieve smaller uncertainties than Planck . We are

very excited about producing measurements ofH0 and other parameters that are competitive

and complementary to Planck ’s measurements by using the data from the two years.

While several important analysis tasks still remain to be done, we hope to be able to

obtain parameter constraints in a few months.
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