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Dedicated to my family



Do not believe in something because it is reported. Do not believe in something because it

has been practiced by generations or becomes a tradition or part of a culture. Do not believe

in something because a scripture says it is so. Do not believe in something believing a god

has inspired it. Do not believe in something a teacher tells you to. Do not believe in

something because the authorities say it is so. Do not believe in hearsay, rumor, speculative

opinion, public opinion, or mere acceptance to logic and inference alone. Help yourself,

accept as completely true only that which is praised by the wise and which you test for

yourself and know to be good for yourself and others.

— The Buddha, The Kalama Sutta, Anguttara Nikaya 3.65
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ABSTRACT

Cloud Function-as-a-Service (FaaS) systems offer statistical guarantees and cannot meet the

deadlines of bursty, real-time applications. To address this limitation, we propose the Rate-

based Abstract Machine (RBAM), a performance abstraction for FaaS functions. RBAM

provides a guaranteed invocation rate for each FaaS function, enabling applications to meet

real-time requirements. In this dissertation, we address the generality, efficient realizability,

and applicability of the RBAM model.

First, we show that RBAM is complete as a primitive, able to realize the deadlines

of any rate-monotonic real-time workload at a bounded cost. We do so by constructing

an analytical framework based on rate-monotonic workloads and then proving that RBAM

effectively bounds FaaS invocation latency. This ensures the applications meet their real-time

deadlines. Additionally, we derive bounds on the required invocation rate and corresponding

resource overhead, showing how to realize any set of guarantees.

Second, we demonstrate that the RBAM performance abstraction can be efficiently real-

ized in today’s cloud environments. To do so, we propose new rate-based invocation schedul-

ing and resource management algorithms and show how they employ resource sharing and

exploit the underlying resource allocation statistics to enforce the rate guarantees. We doc-

ument their ability to achieve performance guarantees at a low resource cost and scale well

to large systems. Finally, we show that they are robust across varied application dynamics

and deployment environments.

Third, we demonstrate RBAM’s applicability by using it to implement a stream process-

ing engine called Storm-RTS and also a distributed real-time video analytics application.

These applications illustrate RBAM’s expressiveness in describing application performance

guarantees, how implementation can deliver robust performance against various workload

burstiness, and how its performance guarantees can enable application deployment flexibil-

xiv



ity. The latter is particularly useful as declarative policies can ensure performance stability

and optimized deployment for various objectives (e.g., cost or carbon).

In summary, RBAM is a performance abstraction that extends the FaaS model to ef-

ficiently and scalably support bursty, real-time applications across various scenarios. In

addition, RBAM simplifies the implementation and deployment of applications with real-

time guarantees. The rate guarantee can be used as a quality of service parameter to help

applications configure for specific performance needs.
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CHAPTER 1

INTRODUCTION

1.1 Bursty, Real-time Applications

Bursty real-time applications have become increasingly prevalent due to the growing demand

for real-time analytics, IoT data processing, and multimedia streaming services. In this

section, we will formally define bursty real-time applications, using motivating examples

from various domains, and discuss specific requirements for their software solutions.

1.1.1 The Rise of Bursty, Real-time Applications

We use “bursty, real-time applications” to refer to applications with occasional intensive

demand and timely requirements. Formally, they are defined as follows.

Definition 1 (Bursty, Real-time Applications). A bursty, real-time application possesses the

following characteristics:

• Bursty: Computation demand changes with occasional bursts that have

– Low duty factor: bursts are typically short and rarely happen. Their duty factor

(i.e., the ratio of burst periods over time) is typically less than 10%.

– High variance: Bursts create significantly higher computation demand than usual,

which could be 10× to 100× or even more.

• Real-time: The computation demand of bursts must be served within a strict deadline.

Bursty real-time workloads are emerging and expected to grow across various application do-

mains, exhibiting high diversity in burstiness, computation intensity, real-time requirements,

and scale.
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Internet of Things (IoT). IoT devices (e.g., sensing devices) play a crucial role in pro-

viding real-time information to offer high adaptability [10, 14], mobility [4, 7], compliance

[13, 5], and cost-effective solutions [6, 3] with improved insights. Due to the intermittent

nature of their working environment, these devices generate and transmit information with

burstiness, requiring timely processing to trigger appropriate reactions. Consequently, IoT

data processing applications are often bursty and real-time. The advancement of technology

has fueled the emergence of massive-scale deployments of Internet-of-Things (IoT) applica-

tions, such as Amazon’s intelligent assistants [75], large-scale monitoring systems [91, 184],

and expensive large equipment [120, 212]. By 2025, it is estimated that there will be over

55.7 billion IoT devices in use. This number is expected to increase further in the com-

ing years [156]. The trend suggests a rise in bursty, real-time IoT applications in quantity,

computation intensity, and scale.

Figure 1.1: HEP Event Filtering and Analysis System Workflow

Scientific Data Streaming. High data rate instruments, such as DNA sequencing and

advanced photon sources, produce high-bandwidth scientific data streams [248, 249]. These

streams rely increasingly on real-time processing capabilities and machine learning workflows

for filtering, analysis, and adaptive experiment control. In addition to high data rates,
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they require low-latency responses for real-time control. The scientific data streams are

generated by sampling internal physics processes, which are highly bursty depending on the

experiment process configuration. For example, in high energy physics (HEP), Figure 1.1,

finding evidence of new physical phenomena, such as new partial or dark matter, requires

Large Hadron Collider (LHC) systems to capture 40 million or more video frames for every

detected collision from occasional experiments, each within a 300ns time constraint [234].

This bursty, real-time workload demands extreme computational intensity and tight real-

time deadlines, often requiring specialized systems for handling.

(2) Apply action
      effect

(1) Participant
make action

Virtual world +
object manager

(3) Adjust state

(4) Identify participants
      affected by the action

(5) Send update

Figure 1.2: Simplified architecture of a distributed VR/AR application.

Distributed Virtual/Augment Reality (VR/AR). The application allows many geo-

graphically distributed participants to join and interact in a virtual world (Figure 1.2). The

application computation is driven by real-time interactions made by participants, which are

highly bursty and subjected to tight deadlines (tens of milliseconds). Pokemon Go [236] is

an excellent example of a massive distributed AR application. By 2020, Pokemon GO had

approximately 600 million active players worldwide [292], which can generate around 4.2 bil-

lion interactions a day [234], an average rate of 50,000 requests per second! This demand is
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not uniform but temporally and spatially skewed, with more than 50% of participants from

Pacific Asia [292]. In 2016, Pokemon GO received a never-seen-before demand increase of

50x their expected load, causing severe experience disruptions for days before it successfully

upgraded in Google Cloud and became one of their biggest services since then [73].

Apart from the mentioned domains, bursty, real-time applications are also arising from online

gaming [87, 215], video analysis [71, 329, 260, 97, 259, 190], and more. Thus, bursty, real-

time applications play an important role in the application landscape. Proposing solutions

to support them effectively is critical.

1.1.2 Challenges in Supporting Bursty, Real-time Applications

Time

Load

Abnormal traffic

Suspicious

persons detected

External Events

Block suspicious

traffic

Report a “wanted” person

Real-time Responses

Application

Demanding Computation

Deadline

Burst

Figure 1.3: Bursty, real-time application examples: External events, such as cyberattacks
and pedestrian appearance, trigger applications to start demanding computation with a strict
deadline. The application consumes significantly more resources than usual (i.e., burst) to
respond (e.g., block suspicious traffic and detect identities) in time.

The illustrative workloads described above reveal many difficulties in effectively supporting

bursty, real-time applications. Computation burst arrivals are driven by real-world events

that are hard to predict yet demand computation-intensive and immediate reactions. For
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instance, in Figure 1.3, a network administration application detects abnormal traffic, trig-

gering an in-depth analysis to determine if it is a cyber-attack. If so, the application must

swiftly take cybersecurity measures like blocking suspicious traffic and closing vulnerable

ports to protect internal systems. Another example is a crowd control application that col-

lects video streams to identify suspicious persons. The application conducts an in-depth

analysis whenever a person appears in the video. The application must notify authorities if

the analysis identifies a “wanted” person. In both cases, timely responses are crucial to pre-

vent adverse impacts (e.g., allowing a fugitive to escape or subjecting internal systems to a

Denial-of-Service attack). However, ensuring timely action necessitates significant resources,

leading to sudden surges in workload demand.

The computation quality of bursty, real-time applications depends on the processing

accuracy and speed. Failure to make a proper decision or deliver it before the deadline can

result in poor quality outcomes or system failures. While the application can control the

accuracy, it has to rely on resource availability (i.e., CPU and memory) for processing speed.

When a burst arrives, computation demand increases dramatically, requiring an equivalent

growth in resource availability to maintain the computation pace. If the application fails to

grow resource availability in time, it has to slow down or delay some activities, prolonging

computation time and may miss the deadline. Rapidly allocating a high quantity of resources

within a short duration for real-time deadlines is challenging. Worse, extreme workloads such

as those seen in LHC or Pokemon Go are beyond the capability of current general-purpose

systems (e.g., public cloud). To make such applications possible, developers must build

specialized systems [203, 204] or make an exclusive contract with infrastructure providers

[73].
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1.1.3 Solution Requirements

Given the growing emergence of bursty, real-time applications and their increasing impor-

tance and computation intensity, designing an appropriate solution to support their bursti-

ness and real-time requirements efficiently is critical. In this dissertation, we focus on finding

a general solution that has to meet the following requirements.

• Real-time Guarantee: the solution ensures bursty, real-time applications meet their

real-time deadlines.

• Efficiency : the solution is implemented with low overhead (i.e., the amount of resources

required in addition to the actual use is small).

• Applicability : the solution is usable by a broad spectrum of applications with differ-

ent burstiness properties and real-time requirements, and if possible, can open new

capabilities to use computation resources wisely.

While the real-time guarantee is a must-have, meeting the efficiency and applicability re-

quirements are also important. They ensure that the implementation cost is not too high

and that the solution is versatile enough to be used in any application.

Many bursty, real-time applications rely on cloud resources for computation [326, 256,

234]. However, cloud providers often have to sacrifice resource control for usability and vice

versa with limited performance guarantee support (See Section 2.1). As a result, meeting all

solution requirements is challenging.

• For real-time guarantee, applications need complete control over their resources to mini-

mize the impact of uncertain factors, such as VM preemption or resource contention with

other colocated applications, on their performance. However, complete control complicates

application deployment and operation, potentially reducing its applicability.
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• For applicability, on the other hand, the application needs a service with high usability,

such as Container-as-a-Service, but their resource control is limited, making real-time

guarantee challenging.

• For efficiency, the applications need the capability to adjust resource allocation according

to workload dynamics. However, there is no sweet spot for this along the usability versus

resource control spectrum. Applications either have to spend much effort on resource

adjustment (e.g., high controllable services), resulting in low applicability, or have their

performance suffer from uncontrollable factors (e.g., high usability services), resulting in

low real-time guarantee.

1.2 Approach

We address this challenge by introducing performance abstraction, which shifts resource con-

trol from the application space to the cloud provider. In return, the abstraction offers high-

level Software-level Agreements (SLAs) to allow applications to express their performance

needs, guiding the cloud provider in effectively managing resource control toward their goals.

This approach simplifies application performance configuration while still enhancing cloud

resource efficiency and usability.

1.2.1 Function-as-a-Service

We construct the performance abstraction based on Function-as-a-service (FaaS), also known

as Serverless1 [23, 25, 68]. FaaS is one of the latest computation services offered by the cloud

that aims to provide effortless application development and operation. In FaaS, computa-

tions are carried out inside invocations triggered by the application. Each invocation has a

resource configuration specifying how many resources it can utilize. Invocations do not share

1. We use the terms Serverless and FaaS interchangeably
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Compute

Time
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(a) FaaS

Compute
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(b) RBAM (A = Peak Rate)

Figure 1.4: Supporting bursty, real-time applications based on the ideas of performance
abstraction: (a) FaaS abstraction provides high applicability but fails to meet real-time
deadlines (b) RBAM resolves the issue with guaranteed invocation rate, versatilely enabling
real-time guarantees at low resource overhead.

resources and hold them until termination. By this scheme, an application can request more

resource allocations by executing more invocations. These properties allow FaaS resource

allocation to scale naturally with computation demand, giving an excellent efficiency poten-

tial to bursty real-time applications. When bursts arrive, the application simply invokes as

many invocations as required to match the bursting demand and then releases them once

the computation completes. This delivers sufficient resources for real-time guarantee and

significantly reduces the time, effort, and cost of application development and deployment,

thus improving their applicability.

Unfortunately, conventional (or regular2) FaaS systems invoke invocations in a best-

effort manner without any restriction on invocation latency. This scheme adds complexity

and uncertainty to application performance because resource allocation cannot be timed

correctly. For the case of bursty, real-time application, the surge of load at burst urges the

FaaS systems to aggressively seek a large number of additional resources for a timely response.

This creates heavy pressure on the underlying resource manager systems, and without any

2. We use the terms “regular FaaS ” and “conventional FaaS ” interchangeably, both to refer to the current
best-effort, heuristic-based implementation of FaaS systems.
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allocation restriction, that usually results in long allocation delays or even cancellations.

Consequently, as visualized in Figure 1.4a, the application fails to keep its computation up

with the load growth and misses the deadlines.

Worse, FaaS systems take over invocation scheduling and resource management yet pro-

vide very limited support for applications to participate in or even give “hints” to the schedul-

ing and resource management process to help them meet their performance needs. As a

result, satisfying real-time requirements using FaaS is challenging, if not impossible.

1.2.2 Rate-based Abstract Machine

We address the above limitations by extending the FaaS abstraction to introduce a Rate-

based Abstract Machine (RBAM), a novel performance abstraction that hides serverless

invocation scheduling and resource management behind a configurable performance param-

eter called the “guaranteed invocation rate.” This rate, treated as a Software-Level

Agreement (SLA), is associated with a serverless function deployment to ensure a minimum

function invocation starting rate defined as follows.

Definition 2 (Guaranteed Invocation Rate). Given a serverless function fi, a guaranteed

invocation rate Ai associates to fi ensures there will be at least one invocation available for

the function execution within any interval of length 1
Ai

.

By the definition, a guaranteed invocation rate Ai is equivalent the following two guarantees:

• Invocation Ramp-up Guarantee: for any interval of length t, at least ⌊Ait⌋ invoca-

tions are guaranteed to get started. Thus, the function can continuously scale up its

concurrency at a speed equal to Ai. For example, suppose a FaaS function fi has a

guaranteed invocation rate of Ai = 10 invocations per second. In that case, RBAM

will ensure that at least 10 invocations are available for every 1 second, 100 for every

10 second, and so on.
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• Bounded Invocation Latency: as long as the invocation request arrival rate is equal to or

smaller than Ai, the invocation latency is bounded by 1
Ai

. For example, function fi with

guaranteed invocation rate Ai = 10 is ensured to get at least one invocation for every 0.1

seconds. Thus, as long as the inter-arrival of the function invocation requests is smaller

than or equal to 0.1 second (i.e., arrival rate does not exceed ten invocation/sec),

all invocation requests are guaranteed to start within 0.1 sec, effectively bound their

invocation latency by 0.1 = 1
Ai

.

By specifying the guaranteed invocation rate, the application delegates the responsibility

of meeting this rate and the above guarantees to the cloud provider, freeing up time and

effort for other development tasks. The guaranteed invocation rate provides a high-level,

human-friendly interface to describe performance requirements. Converting application per-

formance needs, such as minimum throughput or maximum acceptable invocation latency,

into a guaranteed invocation rate is straightforward. With these features, RBAM offers a

highly applicable solution for bursty, real-time applications.

Furthermore, with proper guaranteed invocation rate configuration, the developer can

meet real-time deadlines cheaply. The bounded invocation latency guarantee ensures the

application can always find the appropriate guaranteed invocation rate to complete invoca-

tion executions before the deadline. For example, the rate guarantee can be calculated as the

inverse of the deadline minus the execution time, thus meeting real-time requirements. With

the invocation ramp-up guarantee, the application can specify the rate guarantee to match

the peak rate during bursts, ensuring that new invocations can be started at the same rate

as the burst without requiring extra resources, thus meeting efficiency requirements (Figure

1.4b).
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1.3 Thesis Statement

Current FaaS systems provide only statistical performance Service-Level Objectives (SLOs),

and thus cannot meet real-time deadlines. We propose RBAM – a new FaaS execution model

that pairs guaranteed invocation rates with each FaaS function deployment. RBAM allows

applications to meet real-time deadlines. Furthermore, RBAM can be implemented with low

overhead and can be generalized to other classes of applications.

Terms in italics are defined as follows.

• Statistical Performance Service-Level Objectives (SLOs): Performance SLOs are de-

fined in statistical terms. For example: “99-th of invocation latency is less than 1

second”.

• Real-time deadlines : the maximum allowable delay a task can tolerate. The delay is

measured from when the task emerges to when it completes. In the dissertation, unless

specifically mentioned, we consider real-time deadlines as hard deadlines: missing a

deadline is prohibited.

• Guaranteed invocation rate: FaaS function is guaranteed to get new invocations up to

a certain rate.

• Overhead: the gap between resources allocated to a FaaS function and resources con-

sumed by its outstanding invocations.

1.4 Dissertation Contributions

In this thesis, we propose the Rate-based Abstract Machine (RBAM), a novel performance

abstraction built on the foundation of the FaaS abstraction, to efficiently and scalably sup-

port bursty, real-time applications. RBAM simplifies application implementation and de-

ployment. It further helps applications configure and realize various performance needs.
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RBAM enables applications to meet real-time deadlines at a bounded cost. We build

an analytical framework connecting rate-monotonic real-time workloads with RBAM’s guar-

anteed invocation rate, allowing us to analyze the dynamic execution of the FaaS function

under real-time constraints. Our analysis demonstrates that RBAM’s guaranteed invoca-

tion rate effectively bounds the invocation latency of FaaS functions, ensuring real-time task

deadlines. Additionally, we develop a method to constrain the required rate guarantee and

the corresponding resource overhead to achieve any desired set of guarantees.

RBAM can be efficiently and scalably implemented on the cloud. We extend the conven-

tional FaaS system implementation to propose a new RBAM implementation architecture.

This new architecture incorporates rate-based invocation scheduling and resource manage-

ment algorithms, leveraging underlying resource allocation statistics to enable cost-effective

RBAM implementation. Through overallocation strategies, we further effectively utilize

shared resources, allowing the robust implementation of thousands of RBAM functions on

the cloud.

RBAM has broad applicability, demonstrated through implementing two different appli-

cations: distributed real-time video analytics and a stream processing engine called Storm-

RTS. We systematically conduct analytical and experimental evaluations on RBAM imple-

mentations of these applications. The results show that RBAM effectively enables these

applications to meet their real-time requirements across various workloads and deployment

scenarios. Furthermore, RBAM can derive new forms of guarantee, providing additional

capabilities such as performance transparency, predictability, and flexible deployment across

multiple data centers.

The scientific contributions of the dissertation include:

• Rate-based Abstract Machine (RBAM), a new performance abstraction extending the

FaaS abstraction to provide the guaranteed invocation rate. RBAM simplifies applica-
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tion implementation and deployment while providing the rate guarantee as a quality

of service parameter, enabling applications to configure for various performance needs.

• RBAM ensures real-time deadlines for all real-time applications with a minimum rate

guarantee equal to the total task release rate of the application at resource overhead

never exceeding 100% compared to actual use.

• By leveraging the underlying resource allocation distribution, appropriate resource

sharing, and overallocation strategies, we can reduce overhead for providing perfor-

mance guarantee by 10×. This efficiency remains robust across various workload dy-

namics and deployment environments. Even in extreme cases, up to 100,000× worse

than current practice, the resource cost required to fulfill the guarantee is less than

10× compared to practical settings.

• RBAM can be implemented scalably over the shared cloud resources. We can deploy

thousands of RBAM functions over large-scale shared resources at 99.9999% guarantee

availability with only 38% resource overhead.

• RBAM simplifies application implementation and greatly reduces the need for deploy-

ment reconfiguration for performance needs. The capability is applicable across a wide

range of applications with diverse real-time demands and remains robust against vary-

ing workload burstiness. Even with workload characteristics varying by 25×, RBAM

incurs only a 3× increase in rate requirement.

• RBAM’s guaranteed invocation rate serves as a building block for creating new capa-

bilities, including robust performance stability, high deployment flexibility, and simple

performance management across distributed resources.

13



1.5 Dissertation Organization

The rest of the dissertation is organized as follows. In Chapter 2, we cover the background of

the dissertation. We then present the research questions to be addressed in the dissertation

and our approach to answer them in Chapter 3. Chapters 4, 5, and 6 present the primary

content of the dissertation, including RBAM guarantee capability, how to implement it

efficiently, and how to use the model for various bursty, real-time applications, respectively.

We give a brief literature review of related work in Chapter 7 and summarize the dissertation

with potential future research directions in Chapter 8.
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CHAPTER 2

BACKGROUND

2.1 Cloud-Edge Continuum

The cloud-edge continuum is a seamless integration and coordination of computation re-

sources and services across the cloud and edge. The cloud-edge continuum plays a crucial

role in supporting bursty real-time applications, especially those with large-scale, distributed

deployment [236]. By distributing computing resources closer to the edge where data is gen-

erated, the continuum reduces latency and ensures the timely processing of real-time tasks.

Additionally, the continuum allows flexible resource allocation, enabling efficient utilization

of cloud and edge resources based on application requirements and burstiness characteris-

tics. In this section, we will briefly describe cloud and edge computing, including their key

infrastructure characteristics (Sections 2.1.1 and 2.1.2) and challenges (Section 2.1.3).

2.1.1 Cloud Computing

Cloud Computing captures a large portion of Internet and enterprise IT computing services

[138]. Cloud resources are shaped by virtualization technologies. Resources provided to users

are abstracted from their physical counterparts in the form of virtual machines, containers,

or serverless functions. Virtualization allows cloud providers to hide the complexity of un-

derlying physical resources for better resource utilization, usability, and productivity [63].

Further, virtualization provides performance isolation so that cloud providers can guarantee

customer resource quality.

Cloud resources often come from hyper-scale datacenters that consist of thousands to

hundreds of thousands of machines offered by giant cloud providers, such as Amazon Web

Service [54], Microsoft Azure [217], and Google Cloud Platform [144]. Conceptually, the

cloud has an unlimited amount of computation resources covering a wide variety of hardware,

15



including processing units (e.g., CPU, GPS, TPU), memory (Gigabytes to Terabytes of

memory per machine), storage (e.g., SSD, NVM, HDD), and network bandwidth. That

enables great scalability, allowing the applications to easily scale up for increasing demand

and eliminating the need for costly investment in on-premises infrastructure. With highly

elastic resources, computing resources can be provisioned and released on-demand, enabling

applications to rapidly scale up or down based on their workload dynamics, delivering highly

flexible and cost-effective computing solutions.
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Edge

Node
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Figure 2.1: Cloud Edge Continuum

2.1.2 Edge Computing

While cloud resources are centrally organized in highly available, well-connected data centers,

edge computing often comprises distributed resources that are close to the locations where

they are needed. In this computing paradigm, data are processed and analyzed locally on

edge devices, such as IoT devices, gateways, or edge data centers.

Edge computing is increasingly used as a complement to cloud computing due to its

remarkable advantages (Figure 2.1). By processing data locally on edge devices, edge com-
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puting bypasses the roundtrip time to send the data from and to the centralized cloud data

center, enabling ultra-fast processing and analysis. This also helps save network bandwidth

and improve reliability by allowing the applications to continue functioning even when con-

nectivity to the cloud is lost. Offloading processing from the cloud data centers also improves

scalability and reduces costs.

2.1.3 Challenges
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Figure 2.2: Timeline of existing Cloud computation models. Newer computing models offer
better resource efficiency yet reduce users’ control over cloud resources.

Lack of Performance Guarantee Support. Consider Figure 2.2; in the early days,

cloud and edge providers offered computation resources as virtual machines (VMs) in the

form of on-demand or reserved instances that give users control of the entire software devel-

opment stack, enabling them to employ sophisticated mechanisms for performance. However,

VMs’ coarse-grained resource allocations and the lack of adaptation to workload dynamics

lead to high resource waste that drives up costs and reduces resource utilization. Further,
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taking over the whole software stack requires much effort for application development, de-

ployment, and operations. Newer computation models limit user control over cloud resources

to reduce waste. For example, volatile instances [57, 146] increase resource utilization and

cost-effectiveness by offering unused resources to users at high discounts. However, this

comes with the risk of being preempted at any time, thereby losing control of their compu-

tation lifetime. More recent services such as Container-as-a-Service (CaaS) and Serverless

even take the computation scheduling and resource management out of application space

and implement them inside the cloud. This not only opens more opportunities for the cloud

to maximize resource utilization but also relieves the burden of application deployment and

operation from the application developer, thereby improving their productivity. However,

this shift also means that the application has to rely more on cloud provider resource man-

agement, which can adversely affect performance if the resource management decisions do

not align well with their needs. This highlights the practical implications of the trade-off for

cloud users, who must weigh the benefits of increased efficiency and reduced costs against

the potential loss of control over their resources.

Distributed Resources. When application deployments span over multiple cloud and

edge data centers, many issues associated with distributed resources arise, including

• Data consistency : Maintaining data consistency is challenging as it often comes with

replication for better reliability and availability, which, in turn, complicates the pro-

cessing pipeline, data synchronization, and bandwidth optimization.

• Resource Management : Optimizing resource allocation, computation placement, and

scaling strategies in response to bursty demand to meet real-time deadlines is a signif-

icant challenge.

• Distributed Orchestration: Ensuring applications are deployed efficiently and commu-

nicate seamlessly over distributed resources requires careful planning and management.
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Heterogeneous Resources. Data centers use different sets of hardware with different

capacities and even get managed under different policies and mechanisms, making it hard to

glue them together efficiently. Further, some data centers may be under the administration

of private parties, adding another layer of security and privacy restrictions on resource access

and usage.

Recent studies have proposed Function-as-a-Service (FaaS) as a potential solution to the

problems above [230, 94, 64]. FaaS removes resource heterogeneity by abstracting resources

under a uniform execution model of stateless functions. It also eliminates the burden of

resource management (hence its alternative name, Serverless), providing more freedom to

effectively exploit distributed resources. Further exploration of this topic will be provided in

the next section.

2.2 Function-as-a-Service

2.2.1 Overview

Function-as-a-Service (FaaS) or Serverless is a resource abstraction that enables dynamic

scalability with minimum effort and cost. The serverless abstraction lets applications exploit

the underlying resources through invocations. An invocation is a discrete execution unit

limited in time and resource use (e.g., timeout, CPU, memory). Applications associate

invocations to their logics in the form of stateless functions. Each function is typically a

specific task (e.g., read an image, resize an image, write an image to cloud storage, etc.)

having a unique identifier (usually a URL). A function can be called (or invoked) by sending

a request, along with required arguments, to this identifier (typically via HTTP POST). Call

requests are automatically handled by a serverless system running at the cloud provider side

(e.g., AWS Lambda [23], Azure Function [26], Google Cloud Function [25], etc.). For each

request, the serverless system allocates computing resources to launch an invocation, which
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Figure 2.3: Conventional FaaS architecture

executes the function logic on the given arguments to complete the task. The serverless

system is also responsible for cleaning up after the invocation terminates, keeping resource

allocation minimal.

Serverless systems allow multiple invocations to be executed simultaneously and also

implement an auto-scaling mechanism to automatically invoke up to thousands of function

executions at the same time. Such abilities enable dynamic scalability with minimum efforts

and cost, opening great opportunities for achieving cost-effective, scalable solutions [133, 51].

Given these advantages, FaaS is gaining popularity outside cloud data centers. There are

efforts to realize the FaaS ideas inside edge data centers [230] and for high-performance

computing workflows [289].

2.2.2 FaaS Architecture

Figure 2.3 depicts the architecture used by conventional FaaS systems [23, 68, 25, 180, 240, 20]

to handle FaaS invocation requests. Usually, the system consists of two key components:

• Best-effort resources: provide computation resources (e.g., CPU and memory) in isolated

environments called sandboxes to execute invocations. Sandboxes are typically imple-

mented as Virtual Machines [44, 27], containers [115, 116, 303], or Unikernel [206, 211].

For simplicity, we assume each sandbox executes only one invocation at a time. Sandboxes
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are managed by an autoscaler that collects FaaS execution information through a monitor

and then applies heuristic scaling strategies to (de)allocate sandboxes accordingly.

• Scheduler: dispatch invocation requests from the applications to appropriate sandboxes in

a best-effort manner. Invocations are started immediately as long as there is an available

sandbox. Otherwise, the scheduler has to queue them and report the situation to the

autoscaler for more sandboxes to drain the queue quickly.

2.2.3 FaaS Limitations

With the given architecture, conventional FaaS systems take over invocation execution and

resource management, enabling application developers to focus on their core activities. How-

ever, because the FaaS systems implement these functionalities in best-effort and heuristic-

based manners, the developers face new challenges, including (i) limited applicability and

(ii) counterproductive performance configuration.

Limited Applicability The current FaaS systems’ decisions are driven by collective per-

formance goals (e.g., minimizing the cold start [116, 44, 27] and its appearances [278]). How-

ever, the impact (and side-effect) of fulfilling these goals are different across applications.

For example, many FaaS systems use lightweight sandboxing mechanisms (e.g., [115, 206])

to reduce the cold start to a sub-second level. This dramatically reduces the end-to-end

latency of short invocations (last in a few hundred milliseconds) but virtually has no im-

pact on invocations that take several minutes to complete. These invocations may prefer

heavy-weight sandboxing isolation (e.g., [44]) to protect them from interference or resource

contention that could slow their execution. Further, current FaaS systems achieve these

goals through best-effort, heuristic-based approaches (See Section 7.2.1) and evaluate them

via statistical metrics (e.g., average or 99th percentile). This means the efficiency of their

invocation scheduling and resource management is uncertain and subjected to uncontrol-
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lable factors As a result, conventional FaaS systems have limited applicability. Applications

with strict performance requirements (e.g., real-time [117]) or characteristics not well sup-

ported by the best-effort, heuristic FaaS implementation (e.g., bursty, highly demanding

applications [234, 235]) will find it challenging to use FaaS in practice, if not impossible.

Counterproductive Performance Configuration Conventional FaaS systems provide

limited support to let applications configure their FaaS deployments for performance. There

is no way for the application developers to express their performance requirements and in-

struct the FaaS system to enforce them. Instead, they must manually tune FaaS deployment

and execution parameters to achieve the desired performance. Mitigating cold-start is a well-

known example in this regard. Currently, the most common and straightforward approach

to avoid cold-start is sacrificing cost-effectiveness. The application developer either has the

FaaS system to pre-allocate sandboxes or extend the lifetime of those used by terminated

invocations and recycle them for incoming invocation requests [65, 181]. The tricky part is

to find the correct number of pre-allocated sandboxes and a keep-alive period to minimize

unused resources. Unfortunately, there is no magic formula to the problem. It depends on

the workload dynamics, which are widely different across applications [278]. The application

developer may need much effort with many rounds of “try-and-error” to capture the dynamic

and find the optimal configuration. This contradicts the FaaS’s very first objective: to relieve

them from the burden of such concerns for productivity.

Addressing the Limitations These limitations restrict not only the deployment of real-

time bursty applications using FaaS, as discussed in Section 1.2.1 but also other demanding

application with strict performance requirement, such as stream processing (see Section

6.2). The main reason is the lack of support for applications to express their performance re-

quirements in a way that can inform FaaS scheduling and resource management/autoscaling

decisions. RBAM, on the other hand, allows applications to define their performance re-
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quirements in terms of a guaranteed invocation rate and use it as a quality of service (QoS)

parameter to configure and control their performance. This effectively resolves these limita-

tions, as discussed later in the next chapters.
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CHAPTER 3

RESEARCH QUESTIONS AND APPROACHES

The dissertation proves that the RBAM performance abstraction is a general solution for ef-

ficiently guaranteeing real-time performance on FaaS. To meet this goal, we evaluate RBAM

against the requirements outlined in Section 1.1.3. We seek to answer three research ques-

tions: (i) Can RBAM ensure real-time application deadlines? (ii) If yes, then can this be

done efficiently? and (iii) Can RBAM apply to a broad class of applications?

To answer these questions, we first consider whether RBAM enables bursty, real-time

workloads to meet their computation deadlines. Second, we propose an RBAM implemen-

tation architecture and associated algorithms to demonstrate its efficiency and scalability.

Third, we use RBAM to implement various applications with different burstiness properties

and real-time requirements to evaluate its applicability. The following sections will elaborate

on these three points in more detail.

3.1 Real-time Guarantee

3.1.1 Research Questions

The first part of the dissertation evaluates the capability of the RBAM performance ab-

stractions to support real-time guarantees. This includes showing that RBAM can support

any real-time deadline. Also, is it possible to derive a corresponding rate guarantee to meet

a specific deadline given its associated workload dynamics (e.g., execution time and arrival

rate)? Is the required rate guarantee feasible in practice? Can we bound the rate to make

it practical? We summarize these questions as follows.
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Real-time Guarantee Capability. Can RBAM ensure real-time deadlines for all real-

time applications?

Q.1.1 Can RBAM’s guarantee invocation rate enable applications to meet their real-

time deadlines?

Q.1.2 Can we show how to derive bounds on RBAM invocation rates for any set of

real-time workloads?

3.1.2 Approach

We construct the answers to these questions in two steps. First, we develop an analytical

framework based on rate-monotonic real-time workloads that are broad enough to cover

the majority of practical real-time applications. Second, by connecting the fundamental

properties of rate-monotonic real-time workloads with RBAM’s guaranteed invocation rate,

we answer each research question as follows.

• Can RBAM’s guarantee invocation rate enable applications to meet their real-time dead-

lines? (Q.1.1) We prove that RBAM’s guaranteed invocation rate can bound the start

time of any rate-monotonic real-time task, ensuring that it meets its deadline. Then, we

generalize this result to multiple rate-monotonic real-time tasks, proving that RBAM

can meet all deadlines.

• Can we show how to derive bounds on RBAM invocation rates for any set of real-time

workloads? (Q.1.2) We develop a method to derive RBAM’s guaranteed invocation

rate for specific rate-monotonic workload properties, showing that any real-time work-

load can meet its deadlines with a bounded RBAM guaranteed invocation rate and

corresponding resource overhead.

By proving the above statements, we show that RBAM can deliver real-time guarantees at

bounded resource cost for any rate-monotonic real-time applications. This makes RBAM a
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practical FaaS model for a wide range of real-time bursty applications, sufficiently demon-

strating its real-time guarantee capability.

We present the work following this approach in Chapter 4 with the analytical framework

described in Section 4.1. Next, we use the framework to answer questions Q.1.1 and Q.1.2

in Sections 4.2 and 4.3, respectively. Finally, we construct a case study based on practical

real-time applications to confirm the theoretical proofs in Section 4.4.

3.2 Efficient RBAM Implementation

3.2.1 Research Questions

The second part of the dissertation proposes an RBAM implementation architecture, includ-

ing both rate-based invocation scheduling and resource management algorithms. These ele-

ments are used to show that RBAM can be implemented efficiently (at a moderate overhead

as in Section 1.1.3) across a wide range of deployment and workload dynamics. Further, the

cloud expects to support multiple RBAM concurrently with broad rate-guarantee require-

ments, so the implementation must support a wide range of rate guarantees and scale up to

thousands and more functions. To sum up, we need to answer the following questions.

Implementation Efficiency. Can RBAM be implemented efficiently?

Q.2.1 Can RBAM be implemented with any finite guaranteed invocation rate?

Q.2.2 Can RBAM also be implemented with low overhead and is robust across various

scenarios?

Q.2.3 Can RBAM be implemented scalably?
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3.2.2 Approach

To answer these questions, we take three steps. First, we perform a statistical study to

understand the statistical structure of the workload dynamics and deployment environment.

We use these insights to identify RBAM implementation challenges. Second, we propose ideas

to address these challenges and then combine them to propose an RBAM implementation

architecture and design corresponding algorithms to leverage the architecture for efficient

RBAM implementation. Third, we use the implementation to answer the research questions

as follows.

• Can RBAM be implemented to support any finite guaranteed invocation rate? (Q.2.1)

We show that RBAM algorithms can support any finite rate guarantee with a bounded

resource quantity. Thus, the cloud, which has conceptually unlimited resources, can

host a full range of rates.

• Can RBAM also be implemented with low overhead and is robust across various sce-

narios? (Q.2.2) We design a set of experiments to examine the RBAM system against

different combinations of deployment environment settings and workload dynamics, in-

cluding both practical ones and extreme synthetic settings that could be far worse than

in practice. We record the overhead incurred by the system in implementing RBAM

in all these cases and use the results to demonstrate RBAM’s cost-effectiveness.

• Can RBAM be implemented scalably? (Q.2.3) Similar to answering Question Q.2.3,

we deploy RBAM functions at different scales with different RBAM requirements and

deployment settings. We then use the recorded overhead and guarantee capability to

illustrate RBAM scalability.

Chapter 5 presents the work following this approach to prove RBAM implementation

efficiency. We first prove RBAM implementation feasibility to answer question Q.2.1 in

Section 5.1. Next, we mention efficiency challenges based on statistical studies in Section
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5.2. Sections 5.3, 5.4, 5.5, and 5.6 present ideas to address the challenges and realize the

RBAM system. We use the experimental results in Section 5.7 to answer Questions Q.2.2

and Q.2.3.

3.3 RBAM Applicability

3.3.1 Research Questions

The third part of the dissertation addresses RBAM’s applicability. This consists of two parts.

First, we study the applicability of the RBAM performance abstraction across applications

with various burstiness structures and real-time requirements. Second, we address whether

RBAM can be used as a building block to realize more complicated requirements (e.g.,

performance transparency and predictability) and offer new capabilities for other application

classes, such as flexible deployment across distributed resources. These are equivalent to

answering the following research questions.

Applicability. Can an application’s real-time goals be effectively mapped onto RBAM’s

guaranteed invocation rates?

Q.3.1 Can RBAM be used to implement a specific, diverse set of demanding real-time

applications?

Q.3.2 Can RBAM be used to construct other real-time guarantees that capture a broad

class of applications with quality guarantee?

3.3.2 Approach

We use RBAM to implement two different classes of applications that represent a diverse set

of demanding applications with different real-time requirements:
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• Distributed Real-time Video Analytics : a popular application class with bursty demand

driven by highly unpredictable external events. The bursty demand can be either soft

or hard real-time.

• Distributed Stream Processing : a critical framework in many IoT and wide-area ap-

plications. Data are created as streams and processed on the fly. Stream processing

applications typically manage their execution through a stream processing engine with

many built-in supports, aiming for stable high throughput and low latency.

We conduct both analytical and experimental studies over RBAM implementations of these

applications to answer RBAM applicability research questions as follows.

• Can RBAM be used to implement a specific, diverse set of demanding real-time appli-

cations? (Q.3.1) Through the distributed real-time video analytics, we show that the

RBAM performance abstraction can guarantee a wide range of real-time requirements,

from loose soft deadlines of a few seconds to stringent hard deadlines at a microsecond

scale. Further, this capability is robust against different workload burstiness, from

periodic ones to highly unexpected burst loads with highly demanding computation.

• Can RBAM be used to construct other real-time guarantees that capture a broad class

of applications with quality guarantee? (Q.3.2) By implementing a stream processing

engine with RBAM, we demonstrate that the real-time guarantee delivered by RBAM

can be transformed into a real-time processing guarantee, which ensures stable stream

processing throughput with low latency independent from the execution environment.

That new form of guarantee even opens new capabilities, such as flexible deployment

across multiple data centers, that broaden the scope of RBAM usage to deliver more

computation value.

Chapter 6 presents the work following the approach to prove RBAM applicability. The

chapter consists of two sections. Section 6.1 presents the distributed video analytic imple-
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mentation using RBAM and experimental results to answer Question Q.3.1. Meanwhile,

Section 6.2 answers Question Q.3.2 with the case of stream processing.
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CHAPTER 4

RBAM REAL-TIME GUARANTEE CAPABILITY

In this chapter, we will prove that RBAM can ensure real-time deadlines for all real-time

applications. In Section 4.1, we propose an analytical framework by extending the rate-

monotonic real-time workload model to the case of dynamic task execution on FaaS resources.

By utilizing the widely studied, well-understood foundation of the rate-monotonic framework,

we perform execution analysis of real-time tasks and reveal that current FaaS systems cannot

support hard real-time applications due to the unbounded latency of regular FaaS resource

provisioning.

Section 4.2 considers the effect of RBAM’s invocation rate guarantees and shows that

the rate guarantee can bound their invocation latency, effectively ensuring hard real-time

deadlines. This is significant because it allows hard real-time guarantees to be achieved

without wasting application resources. Following this, in Section 4.3, we introduce an ap-

plication technique called pre-invocation, which reduces the required guaranteed invocation

rate by trading some resource waste. Finally, we apply insights from the analytical results

to illustrate how applications can use RBAM to meet hard real-time constraints through a

practical case study in distributed virtual/augmented reality in Section 4.4. We summarize

our findings in Section 4.5.

4.1 Analytical Framework

4.1.1 Real-time Execution Model

We construct an analytical framework that bridges real-time deadlines with FaaS serving by

mapping the execution of rate-monotonic workload onto FaaS dynamic allocation. Based on

this mapping, we develop theory and mathematical proofs around task execution analysis
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to characterize FaaS real-time support limitations and get insights into how a guaranteed

invocation rate could resolve the situation.

We aim to support periodic real-time applications, such as those described in a rate-

monotonic workload, but with dynamic allocation, so that minimum compute resources are

used.1 Consider a rate-monotonic real-time workload [198] with n periodic real-time tasks

T1, ..., Tn each characterized by

• Period (pi): the task recurs every pi time units. For simplicity, we assume tasks are

released at the beginning of each period, and have to finish by the end of that period

(i.e., the hard real-time deadline).

• Runtime or Execution time (ri): the time for task to run.

• Slack si = pi − ri: the time a task does not spend on execution within a period.

We consider two ways of implementing a task Ti:

• FaaS: stateless functions invocations serve each task at one invocation per task release.

• RBAM: similar to FaaS, except that for each function, invocation rates can be guar-

anteed (Ai), ensuring that the number of invocations provided must be at least equal

to 1 for any arbitrary period of length 1
Ai

.

Due to implementation overhead (e.g., initialization, resource allocation latency, etc.),

both FaaS and RBAM invocations have to wait for li time unit(s) (invocation latency) after

being requested to start execution. With RBAM, the guaranteed invocation rate promises at

least 1 invocation for any 1/Ai period, thus the invocation latency is bounded by li ≤ 1/Ai as

long as Ai ≥ 1
pi

(i.e., the rate of task release does not exceed the guaranteed invocation rate).

Based on the guaranteed invocation rate definition (See Section 1.2.2), FaaS is equivalent

1. we can also handle bursty versions of rate monotonic workloads where tasks conform to the rate
monotonic structure when they occur, but they often don’t appear in their periods.
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Figure 4.1: Supporting periodic tasks dynamically on FaaS compute model.

to RBAM with a guaranteed invocation rate of zero, which means its invocation latency is

unbounded.

Figure 4.1 shows two examples of timing diagrams for single periodic task execution.

Normally, an invocation is requested right at the time a task is released (Figure 4.1a), so the

response time for task Ti would be li + ri. To workaround invocation latency, invocations

can be requested in advance to make it available at the time a task is released for immediate

execution. We call this technique pre-invocation and use ρi to denote pre-invocation time as

shown in 4.1b. Note that pre-invocation shortens task response time at the cost of unused

resources (waste) when invocation gets ready before a task release (brown bar in Figure

4.1b). We summarize the framework notations in Table 4.1.
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Symbol Time Interval Note
pi Period pi ≥ ri
ri Runtime/Execution Time ri > 0

si Slack for task i = pi − ri
li Invocation latency for task Ti

ρi Pre-invocation time for task Ti

Table 4.1: Rate Monotonic Notation for each task Ti

4.1.2 Illustrative Example

Before applying the analytical framework to explore FaaS and RBAM real-time guarantee

capability, let us provide an illustrative example to explain and clarify the framework. This

example will demonstrate how to model a practical bursty, real-time application as a rate-

monotonic workload and analyze its real-time performance on the dynamic FaaS execution

model.

Figure 4.2a illustrates a simplified implementation of a VR/AR streaming application

comprising a streaming server and its end users. When an end-user selects video content

from the application interface on their device, the device connects to the streaming server,

requesting the selected video content. The server checks its database for the requested video

content and verifies the user’s authorization to access it. If the video exists and the user is

authorized, the server’s video streamer initiates streaming, delivering the video content to

the end user.

Streaming is a sequence of video frames continuously transferred from the server to the

end user. For a high-quality experience, the video streamer has to transfer the video frame

at the minimum speed of 30 frames per second (fps). Each video frame transfer must be

completed before the next one. The process can be modeled as a single rate-monotonic

periodic real-time task Ti, with a period ri =
1
30 seconds. At the beginning of each period,

one video frame is released, triggering the task execution. Suppose the task runtime time

(ri) is at most 10ms. The task runtime must be completed within 1
30 seconds before the

other video frame releases, given its slack si = 1/30− 0.01 ≈ 23ms.

34



Waiting Time Execution Time (𝑠𝑖)

Time

PeriodPeriod

Deadline Deadline

Slack (𝑠𝑖) Execution Time

End User

Video Streaming

(𝑝𝑖=1/30s) (𝑝𝑖=1/30s)

Release time Release time

(30 fps)

DB

Streaming Server

Video

Streamer

(a) Modeling the VR/AR streaming as a rate-monotonic, periodic real-time task

Deadline

Waiting time

= invocation latency (𝑙𝑖)

Release time

Application

Start

invocation
Execution

Compete and

terminate

the invocation

FaaS/Serverless System

Request an invocation

Return results

Execution Time

Time

Invocation latency ≤
𝟏

𝑨𝒊
Execution Time (𝑠𝑖)
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Figure 4.2: Illustrative Example of the Analytical Framework: VR/AR Streaming

Applying the FaaS/RBAM computing model, we can implement the task Ti as a single

FaaS function. Every time a video frame is released, the video streamer requests a new

invocation to transfer this frame (Figure 4.2b). This is done by sending an invocation

request to a FaaS system in the cloud. Once the request is received, the FaaS system

starts an invocation to handle the task. However, the invocation execution does not start

immediately but experiences a noticeable invocation latency li. Once the invocation starts,

the frame transfer is handled by the invocation until completion. By then, the FaaS system

terminates the invocation and returns the frame-transferring result to the streamer.
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To meet the user experience quality, the streamer has to receive the results before the

deadline. In other words, the end-to-end latency of the invocation execution—from the

moment the request is sent to the moment the streamer receives the results—must be shorter

than the task period. In the following sections, we will discuss the challenges associated with

achieving this goal using a regular FaaS system, and demonstrate how RBAM can configure

its rate guarantee based on deadlines (pi) and other workload dynamics (si, ri) to resolve

the challenges.

4.1.3 Limits of Regular FaaS

Based on the rate-monotonic workload model, we can easily prove that FaaS alone is unable

to guarantee that the periodic tasks will meet their deadlines as follows.

Theorem 1. Regular FaaS functions cannot guarantee that a single periodic task in a rate-

monotonic workload will meet its deadline.

Proof. Given a periodic task Ti, with invocation latency li and runtime ri, the time to

complete the task can be written as li + ri which, for the task to meet its deadline must be

li + ri ≤ pi =⇒ li ≤ pi − ri (4.1)

Let li = τ for a FaaS invocation and Prob(τ > x) be the probability that τ is greater than

x. Because the FaaS invocations are best effort, 0 < τ <∞, and for any given pi − ri, the

Prob(τ > pi − ri) > 0 (4.2)

This means that

Prob(li + ri > pi) > 0 (4.3)
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Figure 4.3: Google Cloud Functions invocation latency distribution [36]

that is the chance that the task misses its deadline is greater than zero – its real-time

performance is not guaranteed.

Figure 4.3 shows Prob(τ > x) estimated from invocation latency statistics of Google

Cloud Functions [145, 36], a commercial FaaS system. This is a long-tailed distribution.

Invocation latency can exceed 30 seconds, more than 10-100x longer than the expected

invocation latency [278]. This suggests that the unbounded invocation latency is a practical

issue, not purely theoretical. Also, the latency is widely distributed, leading to significant

delays. This makes realizing real-time applications on top of regular FaaS very challenging,

if not impossible.

FaaS is insufficient for even a single task, so we can easily show that it is unable to

support the entire rate-monotonic workload of multiple periodic tasks.

Theorem 2. Regular FaaS functions cannot guarantee that a set of periodic tasks in a rate-

monotonic workload will meet their deadlines.

Proof. Choose an arbitrary task Ti from the multiple periodic tasks. Theorem 1 shows that

FaaS cannot guarantee Ti will meet its deadline. Therefore, FaaS cannot guarantee that all

of the tasks in the rate monotonic workload meet their deadlines.
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Takeaway. (Limits of Regular FaaS) Regular FaaS has unbounded invocation latency

and thus fails to meet real-time deadlines.

4.2 RBAM Enables Real-time Performance

Unbounded invocation latency is the primary limitation that prevents regular FaaS from

meeting real-time deadlines. In contrast, RBAM can bound this latency with its guaranteed

invocation rate. We first prove that this bound can guarantee tasks meet their deadlines

as long as the tasks have non-zero slack. Later, we will show how this requirement can be

relaxed by using pre-invocation.

Theorem 3. RBAM can guarantee one periodic task Ti meets its deadline, if it has slack of

si = (pi − ri) > 0.

Proof. For Ti to meet its deadline, we must have

li + ri ≤ pi (4.4)

or

li ≤ (pi − ri) (4.5)

RBAM provides a guarantee of invocation rate, such that there is at least one invocation in

every period of length 1/Ai, where Ai is the guaranteed invocation rate chosen for RBAM.

This means that as long as Ai ≥ 1
pi

, li can be bounded as follows:

li ≤
1

Ai
(4.6)
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So, to meet the deadline, we must ensure that

1

Ai
≤ (pi − ri) (4.7)

Which we can assure for any slack si = (pi − ri) > 0, by picking a sufficiently large Ai ≥
1

pi−ri ≥
1
pi

and gives

li ≤
1

Ai
≤ (pi − ri) (4.8)

which is true because si > 0. So the deadline is met.

Applying the result to the illustrative example in Section 4.1.2: we only meet the deadline

if the end-to-end latency of frame transferring is shorter than the task period (pi = 1/30s).

Thus, if the FaaS function implementing the task is associated with an RBAM guaranteed

invocation rate Ai, by Equation 4.6, we need to configure

Ai ≥
1

li
=

1

pi − ri
=

1

si
≈ 1

0.023
≈ 44 invocation/sec (4.9)

Recall that the slack si = pi − ri = 1/30 − 10 ≈ 23ms. Let choose Ai = 50 > 44 invoca-

tion/sec, then we effectively bound the latency li by 1
50 = 20ms. Thus, every time a video

frame releases, its end-to-end latency is li + ri ≤ 20 + 10 = 30ms < 1/30 seconds, ensuring

the real-time performance for the streaming task.

Now, let us generalize Theorem 3, considering a workload with multiple periodic tasks

T1, ..., Tn.

Theorem 4. RBAM can guarantee that a set of n periodic tasks T1, ..., Tn meet their dead-

lines, if each has slack of (pi − ri) = si > 0.

Proof. Consider a task Ti, because it is served by a dedicated function, by Theorem 3, the

invocation rate of

Ai =
1

pi − ri
(4.10)
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Figure 4.4: Tasks with short slack require high invocation rate guarantees which can be
reduced by pre-invocation at a waste in resources.

is sufficient for Ti to guarantee meeting its deadline. We assume each single task Ti uses a

dedicated function with a finite guaranteed invocation rate Ai. From the application point

of view, there is no invocation contention between the tasks. So, we can repeat the argument

for each of the other tasks, then the theorem is proved.

Takeaway. (Real-time Guarantee) RBAM’s rate guarantee ensures that invocation

latencies are bounded, allowing rate-monotonic real-time workloads to meet their deadlines

with positive slack.

4.3 Efficient Real-time Guarantee on RBAM

Theorems presented in Section 4.2 prove RBAM’s capability of ensuring real-time deadlines

of rate monotonic applications. The one restriction was that the rate-monotonic tasks have

non-zero slacks. Further, as in Theorem 3, we can see that the required guaranteed invocation

rate can be high for small slack. For example, if a task has a period of 15 seconds and a slack

of only 1 second, the required guaranteed invocation rate would be 1/second, or 15× higher

than the task rate. While in many realistic settings, many applications have non-zero, or

better yet, a large slack for each task, the properties proved in Theorem 4 can be sufficient.
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However, to go further, in this section, we will relax this restriction, using pre-invocation,

and further show that pre-invocation can dramatically reduce the rate requirements.

Pre-invocation arises from the notion that RBAM depends exclusively on the dynamic

acquisition of resources from the underlying resource management system (as does FaaS).

This means the delay in acquiring such resources is critical in delivering real-time guarantees.

That connection is illustrated in Figure 4.4a for a single rate-monotonic task. The required

guaranteed invocation rate is determined by the slack and is much greater than 1
pi

– though

intuitively, that rate matches the average needs of the rate monotonic task.

Pre-invocation allocates resources early, anticipating the arrival of a task, as shown in

Figure 4.4b. Because the resources are acquired before they are needed, pre-invocation

wastes resources. However, as we will see, it can significantly reduce the invocation rate

guarantee requirement.

4.3.1 Efficient Real-time Guarantee for Single Task

First, we explore pre-invocation for a single task.

Theorem 5. With a finite pre-invocation of ρi, an application can use RBAM to guarantee

deadlines of one periodic task Ti with any zero or positive slack (i.e., si = pi− ri ≥ 0). This

loosens the requirement of Theorem 3.

Proof. Assume the task Ti employs pre-invocation of

ρi = ri (4.11)

Then by serving Ti with RBAM of rate

Ai =
1

pi
(4.12)
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Its invocation latency is bounded as

li ≤
1

Ai
= pi (4.13)

There are two possible cases

• li ≤ ρi meaning there is an invocation available at the time the task releases, so it

requires only ri to complete and

ri ≤ pi (4.14)

so the deadline is met.

• ρi < li ≤ pi meaning the task has to wait for its invocation, so it waits (li − ρi), and

completes in

(li − ρi) + ri (4.15)

which is equal to li, and li ≤ pi, so the deadline is met.

Thus, pre-invocation with RBAM can guarantee a single periodic task meeting its deadline,

even if the task has no slack.

With Theorem 5, RBAM is sufficient for any single periodic task to guarantee its dead-

lines. Now, let us consider the cost of achieving real-time guarantees. The cost has two

components: pre-invocation (wasted computation or overhead) and guaranteed invocation

rate (higher rate guarantee requires more implementation effort and hence more costly, See

Section 5). With our model, we study the interplay between these costs. First, given The-

orem 5 and a finite but very small pre-invocation, we will show that real-time guarantees

can be met with essentially no pre-invocation overhead and a guaranteed invocation rate of

Ai ≥ 1
pi

as follows.
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Theorem 6. A single periodic task Ti requires at least an invocation rate

Ai ≥
1

pi
(4.16)

to meet its deadline.

Proof. We will prove by contradiction. That is, assuming that Ti is guaranteed to meet its

deadlines at invocation rate of A′i <
1
pi

. Now, let

ϵ =
1

pi
− A′i > 0 (4.17)

Consider an interval of length m = 1
ϵ . Let Ii be the number of invocations needed to be

completed by Ti within this interval, then

Ii ≥ ⌊
m

pi
⌋ (4.18)

while the number of invocations we are guaranteed to have at the rate A′i is

Ni = ⌊m · A′i⌋ (4.19)

A necessary condition to guarantee that Ti does not miss any deadline over m is

Ni ≥ Ii (4.20)

However, because

(
m

pi
)− (m · A′i) = m(

1

pi
− A′i) =

1

ϵ
ϵ = 1

Then

Ii −Ni ≥ ⌊
m

pi
⌋ − ⌊m · A′i⌋ = 1 (4.21)
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This means that Ii > Ni so Ti is unable to guarantee its deadlines, contradicting the hy-

pothesis. Thus, the invocation rate must be at least 1
pi

. This proves the theorem.

More generally, let’s derive a precise expression for the required pre-invocation, given a

sufficient guaranteed invocation rate:

Theorem 7. Given task guaranteed invocation rate of Ai ≥ 1
pi

, we can ensure task Ti

meeting its deadline with a pre-invocation time of

ρi ≥
1

Ai
− (pi − ri) (4.22)

Proof. Let us consider two possible cases

• Case 1. ρi ≥ 1
Ai

, then

li ≤
1

Ai
≤ ρi (4.23)

then there is always an available invocation before the task releases, meaning it only

requires ri to complete and

ri ≤ pi (4.24)

so the deadline is met.

• Case 2. 1
Ai
− (pi − ri) ≤ ρi <

1
Ai

then li is no longer bounded by ρi. The invocation

may arrive before the task releases, then it falls back to Case 1, where Ti meets the

deadline. Otherwise, Ti has to wait for invocation after releasing, so it would take the
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Figure 4.5: Required pre-invocation to guarantee real-time deadlines of a single task Ti(pi =
10, ri = 7) varying guaranteed invocation rate Ai. The colored area shows (rate-guarantee,
pre-invocation) combinations that ensure the task’s real-time deadlines.

task RTi time unit(s) to complete, where RTi is determined as

RTi = li − ρi + ri

≤ 1

Ai
− ρi + ri

≤ 1

Ai
− [

1

Ai
− (pi − ri)] + ri

= pi

Thus, Ti also meets its deadline.

Therefore, ρi ≥ 1
Ai
− (pi − ri) ensures the task to guarantee meeting its deadline.

Theorem 7 shows that given a sufficient guaranteed invocation rate, we can choose the

minimum pre-invocation needed to enable a single task to ensure its real-time deadlines. This

is the most efficient (least resource waste), given a sufficient guaranteed invocation rate.

The pre-invocation and guaranteed invocation rate relationship is shown in Figure 4.5.

Realizing the lower invocation rate bound Ai =
1
pi

(green line) requires a pre-invocation of
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pi = ri (orange line). As Ai increases, the invocation latency bound gets tighter, then the

required pre-invocation decreases proportionally. Finally, at Ai =
1

pi−ri (red line), the slack

is large enough so no pre-invocation is needed.

Takeaway. (Efficient Real-time Guarantee for Single Task) Through pre-allocation,

RBAM ensures real-time deadlines of a single task with a rate guarantee equal to the task

release rate, while keeping overhead bounded by the task execution time.

4.3.2 Efficient Real-time Guarantee for Multiple Tasks

Now, let us generalize the results above to the case of multiple periodic tasks.

Theorem 8. Pre-invocation enables RBAM to guarantee many periodic tasks T1, ..., Tn meet-

ing their deadlines without the positive slack requirement (i.e., si = pi − ri ≥ 0).

Proof. Given a task Ti, let us request an invocation for each of its releases in ρi time unit

ahead, where

ρi = ri (4.25)

By Theorem 7, this pre-invocation enables Ti to achieve its real-time guarantee with a finite

invocation rate

Ai =
1

pi
(4.26)

Applying the same argument for other tasks then all the tasks are guaranteed to meet their

deadlines. This proved the theorem.

Similar to Theorem 5, Theorem 8 extends Theorem 4’s scope to tasks with no slack,

which finally, proves that RBAM is sufficient for any combination of multiple periodic tasks

to achieve real-time guarantee.

Next, we generalize theorems on the bound of the cost to multiple tasks. However,

representing the cost by a set of guaranteed invocation rates used by each task is complicated,
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hard to analyze, and make comparisons. Hence, we consider the invocation cost as the

invocation rate for the application as a whole. In particular, given multiple tasks T1, ..., Tn

served with invocation rates of A1, ..., An then the invocation cost for these tasks would be

the sum of the number of invocations created at rates A1, ..., An per time unit.

Theorem 9. An RBAM system can meet the deadlines for rate-monotonic workload with

periodic tasks T1, ..., Tn given a guaranteed invocation defined as

Atotal ≥
n∑

i=1

Ai =
n∑

i=1

1

pi
(4.27)

Proof. Consider the time interval of length M :

M =
n∏

j=1

pj (4.28)

Clearly, M is a common multiple of p1, ..., pn so if we are able to ensure T1, ..., Tn to meet

their deadline within this interval, they are guaranteed to meet deadlines in any interval.

Consider a task Ti, let Ni be the number of its releases within the interval, then

Ni =
M

pi
=

∏n
j=1 pj

pi
=

∏
j ̸=i

pj (4.29)

Thus, the total number of task releases is

Ntotal =
n∑

i=1

Ni =
n∑

i=1

∏
j ̸=i

pj (4.30)

Clearly, there would be Ntotal invocation requests within the interval so in order to ensure

that no task misses its deadline, the invocation rate must be fast enough to make at least

Ntotal invocations available. Therefore, the lower bound for the shared guaranteed invocation
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rate is

Atotal ≥
Ntotal

M
=

n∑
i=1

∏
j ̸=i pj

M
=

n∑
i=1

1

pi
=

n∑
i=1

Ai

Thus, the theorem is proved.

Note that Atotal =
∑n

i=1Ai is just a lower bound for invocation rate, stating how fast

the FaaS system should deliver their invocations, not when should they deliver invocations.

In fact, given Atotal , the FaaS system can even decompose it back to A1, ..., An where∑n
i=1Ai = Atotal to serve T1, ..., Tn individually.

Theorem 10. Invocations delivered at rate Atotal can be partitioned to form n different

invocation rates A1, ..., An where

Atotal =
n∑

i=1

Ai

Proof. Consider an arbitrary interval of length T , the number of invocations guaranteed to

be available within T at rate Ai is

Ni = ⌊T · Ai⌋

while the number of invocations delivered by Atotal is

Ntotal = ⌊T · Atotal⌋ = ⌊T ·
n∑

i=1

Ai⌋ ≥
n∑

i=1

⌊T · Ai⌋ =
n∑

i=1

Ni

Thus, at any interval, invocations given at rate Atotal is always greater than or equal to

the total number of invocations needed by Ai, ..., An. Therefore, by temporally shifting

invocations created at rate Atotal within the interval, we can form n guaranteed invocations.

This proves the theorem.

The theorem states that different real-time deadlines can be ensured simultaneously with

a single guaranteed invocation rate. Combined with Theorem 9, we provide important results

that allow us to ensure hard real-time deadlines with great flexibility that can be essential

48



to deal with different practical scenarios. For example, we can multiplex different tasks into

a single RBAM function to simplify function management given a large number of periodic

tasks. Or if the rate guarantee of a function is too high, making its deployment impracticable,

we can decompose it into identical ones with smaller rates. Finally, we use these theorems

to realize the lower pre-invocation bound for Atotal.

Theorem 11. The lower bound from Theorem 9 for guaranteed invocation rate of

Atotal =
n∑

i=1

Ai =
n∑

i=1

1

pi
(4.31)

can be achieved with total pre-invocation overhead (wasted compute) of

ρtotal =
n∑

i=1

ρi =
n∑

i=1

ri (4.32)

Proof. By applying Theorem 10, we can decompose Atotal into

Ai =
1

pi
(4.33)

By using Ai to serve Ti, Theorem 7 indicates that a pre-invocation of

ρi = ri (4.34)

is needed to achieve its real-time guarantee. Applying the argument for other tasks, then at

the invocation rate of

Atotal =
n∑

i=1

Ai =
n∑

i=1

1

pi
(4.35)

the real-time guarantees are met only with the total pre-invocation of

ρ =
n∑

i=1

ρi =
n∑

i=1

ri (4.36)
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This makes the pre-invocation overhead (wasted compute) bounded by
∑n

i=1 ri. Thus, the

theorem is proven.

Theorem 11 generalizes the conclusions of the Theorem 7, showing that pre-invocation

required to ensure no task misses its deadlines will never exceed the real computation cost.

In other words, a pre-invocation overhead of 100% is sufficient to reduce the guaranteed

invocation rate requirements to their minimum, Atotal =
∑N

i=1
1
pi

.

Takeaway. (Efficient Real-time Guarantee for Multiple Tasks) Through pre-

allocation, RBAM ensures deadlines for multiple tasks, with a rate guarantee equal to

their total release rate, while ensuring that the overhead never exceeds their actual re-

source usage.

4.4 Demonstration

In this section, we will demonstrate the implications of the above theoretical results by using

RBAM to serve a distributed real-time virtual/augmented reality (VR/AR) application. We

aim to demonstrate how the application design and deployment can be enhanced by utilizing

our theoretical findings, leading to improved user experience, simplified deployment, and

streamlined management.

4.4.1 Methodology

4.4.1.1 VR/AR Application and Workload

Distributed VR/AR has gained significant attention in recent years due to its innovative user

experience. Quality of experience (QoE), measured by the smoothness of user interaction,

is one of its critical requirements. Maintaining high QoE requires timely processing of many

tasks, such as rendering and synchronizing multi-player actions. We will show that by
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Figure 4.6: The VR/AR service. Requests come from various users creating corresponding
serverless function invocations.

specifying these tasks as hard real-time and enforcing their deadlines using RBAM, we can

unlock new, game-changing capabilities to these applications. These capabilities allow them

to control QoE and simplify their management in ever-changing workloads and deployment

environments.

We extend the illustrative example in Section 4.1.2 to model a more complicated VR/AR

application implemented as a cloud service that creates a virtual world serving as a common

place for hundreds or even thousands of users to interact with each other simultaneously (Fig-

ure 4.6). The virtual world state, including users’ locations, appearances, and movements,

etc., is maintained in global storage and is continuously updated to match users’ actions

(e.g., talk, move, make a purchase, etc.). We select three representative time-sensitive tasks

that are frequently executed by VR/AR applications and model them as a rate-monotonic

workload with parameters listed in Table 4.2:

• Stream: reads the virtual world state, generates render information, and then sends

it to the user’s end devices for constructing the world from their point of view. Since

30 fps is a standard for video streaming, we set the task period to 30ms and 15ms

execution time.

• Handle: triggers when a user takes actions that require an immediate reaction from

the application (e.g., talk, pick up an item, etc.). Based on in-game analysis [222],
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Task Period Runtime Slack
Stream (T1) p1 = 30 r1 = 15 s1 = 15 (50%)
Handle (T2) p2 = 50 r2 = 25 s2 = 25 (50%)
Sync (T3) p3 = 90 r3 = 50 s3 = 40 (44%)

Table 4.2: Rate monotonic tasks collected from VR/AR applications (milliseconds).

there can be up to 17 clicks per second in aggressive gaming situations, so we set the

task period to 50ms with 25ms runtime.

• Sync: Synchronizes the virtual world’s state, ensuring its consistency across users. We

assume the application synchronizes the state once for every 3 video frames, so the

task period is 90ms.

4.4.1.2 Approaches

We compare these task executions on regular FaaS, RBAM, and RBAM with pre-invocation

(RBAM+PreInvocation) via simulation. Every time a task is released, it needs an invocation

for execution. In the base case, the task requests a new invocation at the beginning of its

period. If pre-invocation is enabled, then the task makes invocation requests earlier than

the beginning of its periods. If the task requests a regular FaaS invocation, the invocation

latency is simulated based on Google Cloud Functions cold start latency statistics [36] (Figure

4.3). For RBAM invocations, we collect the invocation latency statistics from deploying and

executing functions with equivalent rate guarantees on a Real-time Serverless – an RBAM

prototype (See Section 6.1 and [235]).

Once a task gets an invocation, it starts the execution with a constant runtime (ri, Table

4.2). If an execution completes after the beginning of the next period, we count it as missing

the deadline. We report the percentage of executions missing the deadlines (i.e., miss rate)

as a QoE metric. The compute resource (or resource usage), calculated by aggregating the

invocation lifetime, including the pre-invocation overhead, is a cost metric.
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4.4.2 Experimental Results

4.4.2.1 Validating Theoretical Results
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Figure 4.7: Implementing event streaming (i.e., T1 – Stream) using RBAM ensuring the
task’s real-time deadlines at bounded resource cost.

Single Task. In Figure 4.7a, we plot the percentage of missed deadlines for a single task

“Stream” (T1) implemented by different approaches mentioned above. The regular FaaS

leaves invocation latency unbounded so many invocations fail to start within the task’s slack

– 15ms, leading to more than 85% miss rate (the red star at the top-left corner). RBAM

enables bounding the latency through the rate-guarantee A1 so the higher the rate, the tighter

the bound and thus, the lower the miss rate. Once A1 = 1
s1

= 66.67 invocations per second,

the task is guaranteed to meet its deadlines, validating Theorem 3. With pre-invocation, the

task uses pre-invocation of ρ1 = r1 = 15ms ahead, equal to the upper bound for efficiency.

Doing so adds extra time waiting for the new invocation, so T1 sees lower deadline misses

than RBAM alone (the orange line vs. the blue line). Pre-invocation eliminates the deadline

misses at a much lower guaranteed invocation rate, 33.33 = 1/p1 invocations per second,

confirming Theorem 6. By pre-invocation, however, applications have to hold invocations
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longer than usual if they arrive before the task is released. This increases resource usage

as shown in Figure 4.7b. Further, as the invocation rate increases, invocation arrives faster

and thus, creates more overhead yet it never exceeds 100% of the total runtime, as shown in

Theorem 7.
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Figure 4.8: Serving combinations of multi-tasks. RBAM ensures real-time guarantee for any
task combination with a finite rate-guarantee at a resource cost bounded by 2× of useful
computation.

Multiple Tasks. Next, we consider deploying all tasks in Table 4.2 simultaneously. The

theorem 10 indicates that we do not need to deploy each task with a separate RBAM

function. Instead, only one RBAM function with a rate-guarantee equal to the total per-

task rate requirement is sufficient. Figure 4.8a confirms this implication as at a guaranteed

invocation rate of A =
∑

i
1
si
≈ 132 invocation/sec, a single RBAM function reduces all

three tasks’ aggregated miss rate to zero (blue curve) – ensuring all real-time deadlines are

met. Further, Theorem 11 implies that we can even ensure real-time deadlines with an even

lower rate-guarantee through pre-invocation. Every time a task Ti releases, we pre-invoke a

new invocation ri seconds ahead. As a result, resources become available for the task sooner,

reducing the miss rate (the orange curve). And as proved in Theorem 11, A =
∑

i
1
pi
≈ 64
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invocations per second is already enough for guaranteeing real-time deadlines. Also similar

to the case of a single task, pre-invocation incurs high resource use, but by Theorem 11, the

overhead never exceeds 100% of useful resources (light blue area) as shown in Figure 4.8b.

Takeaway. (Experimental Validation) The experimental results validate our theoreti-

cal conclusions, confirming that RBAM’s guaranteed invocation rate ensures deadlines for

any rate-monotonic real-time workload.
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Figure 4.9: Rate-guarantee and resources requirement (normalized to useful computation)
varying number of active users.

4.4.2.2 Distributed Deployment

Finally, we consider the distributed deployment of the application where there can be thou-

sands of users simultaneously interacting at a time. Yet the number of active users may vary

widely, especially during special events, such as launch time, anniversary, etc., applications

expected to obtain a burst load of 10x or more active users than the average [234]. In tradi-

tional deployments, this requires careful preparation to make just enough room for the burst

to ensure the desired QoE at a reasonable cost.
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With RBAM, the solution is much simpler. All the application has to do is simply recon-

figure the guaranteed invocation rate to match the task release rate at burst, as demonstrated

in the previous experiments. Figure 4.9 shows the guaranteed invocation rate required for

a single RBAM function to meet the real-time deadlines of tasks released by different num-

bers of users, ranging from 0 to more than 8,000. Since guaranteed invocation rates are

combinable, the required rate-guarantee increases linearly with the number of active users

demonstrating good scalability. Further, with pre-invocation, we can reduce the rate by half

at the additional resource uses of at most 100% of the available resources.

It’s worth noting that the rate-guarantee is not only combinable but can also be de-

composed into smaller ones if needed. For instance, to serve 8,000 users, the required rate-

guarantee is over 1 million invocations per second, which may exceed the current capability

of FaaS technologies. The application can decompose the FaaS function into others with

lower rate-guarantees and distribute them across different cloud regions (e.g., 1000 functions

with 1000 invocation/sec, each serving users from a specific area across the globe). This ap-

proach not only works around current technology limitations but also leverages distributed

resources deployment (e.g., cloud+edge) to achieve better load balancing and cost efficiency.

Takeaway. (Distributed Deployment) RBAM’s guaranteed invocation rates can be

combined or decomposed without losing real-time guarantee capability, making application

deployment simpler and more flexible.

4.5 Summary

In this chapter, we constructed an analytical framework based on the rate-monotonic work-

load to analyze the real-time performance of real-time applications on the FaaS dynamic

execution model. Our theoretical analysis shows that regular FaaS has unbounded invoca-

tion latency, preventing real-time applications from guaranteeing their real-time deadlines.
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On the other hand, RBAM’s guaranteed invocation rate helps the applications bound their

invocation latency, ensuring any real-time deadline for any workload. This is done with a

finite rate-guarantee configuration, as minimal as the task release rate, with an overhead

bounded by the actual resource usage of the application.

We validate the theoretical results via an experimental evaluation based on practical

distributed VR/AR application deployment. The results confirmed our theoretical findings

and highlighted the great flexibility of RBAM’s rate guarantee configuration. This flexibility

provides a variety of deployment and rate configurations for applications to select for their

real-time performance and deployment objectives.

To conclude, let us revisit the research questions posed in Section 3.1 and use our analysis

results to answer them as follows.
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Real-time Guarantee Capability. Can RBAM ensure real-time deadlines for all real-

time applications?

Q.1.1 Can RBAM’s guarantee invocation rate enable applications to meet their real-

time deadlines?

• Answer: Yes, we theoretically prove it using Theorem 8 and have it con-

firmed by experimental results in Section 4.4.2

Q.1.2 Can we show how to derive bounds on RBAM invocation rates for any set of

real-time workloads?

• Answer: Yes, by Theorem 9, we prove that we can guarantee the real-

time deadlines of any real-time application with a minimum rate-guarantee

equal to the total release rate of the application. And by Theorem 11, we

further prove that the guarantee can be achieved at an overhead bounded

by the application resource usage. Both theorems and their application also

validated and demonstrated by experiments in Section 4.4.2

With these answers, we complete illustrating the RBAM real-time guarantee capability.
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CHAPTER 5

EFFICIENT RBAM IMPLEMENTATION

In this chapter, we will show that RBAM can be implemented efficiently. First, we prove

that RBAM implementation is feasible by showing that we can realize any finite guaranteed

invocation rate with a bounded quantity of resources (Section 5.1). Next, in Section 5.2, we

present a statistical study on FaaS workloads and sandbox allocation latency distribution,

showing that efficiently implementing RBAM is challenging but not impossible. In Sections

5.3 5.4, 5.5, and 5.6, we show how three new techniques: overallocation, multiple tries, and

resource sharing, can be integrated into a brand-new RBAM architecture. This architec-

ture achieves scalable, efficient RBAM deployment. Section 5.7 systematically evaluates the

RBAM system to demonstrate its efficiency, robustness, and scalability.

5.1 Implementation Feasibility

Figure 5.1 shows a performance abstraction implementation based on the conventional FaaS

architecture. The performance abstraction allows applications to declare their desired perfor-

mance through predefined SLAs (e.g., guaranteed invocation rates in RBAM). These SLAs

serve as input parameters for resource management to allocate sandboxes from cloud re-

sources. The scheduler maps invocation requests to these sandboxes, ensuring SLA-compliant
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Invocation Exec.
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Figure 5.1: FaaS Performance Abstraction Implementation
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execution. For the case of RBAM, the performance SLA is per-FaaS guaranteed invocation

rate. We will prove that it is feasible to enforce the FaaS resource management and schedul-

ing to generate invocation executions that comply any finite guaranteed invocation rate.

This is because the execution time of FaaS invocations is limited by a timeout requirement.

Even if a function ramps up very quickly and runs for a long time, its concurrency will

stop growing when invocations start reaching the timeout and get terminated, limiting the

function concurrency.

In the case of RBAM, the guaranteed invocation rate is the minimum ramp-up rate.

However, the cloud service provider is only responsible for ramping up function invocations

to meet this guaranteed rate. Although it would be beneficial if the cloud could ramp

up faster, it is not necessary. Thus, the cloud providers can throttle its ramp-up to the

guaranteed rate, allowing them to bound the RBAM implementation cost, as shown in the

following theorem.

Theorem 12. Given a FaaS function fi associated with a finite guaranteed invocation rate

Ai and maximum execution time Ei. Let ci(t) be the number of invocations guaranteed by Ai

(i.e., excessive invocations that arrive faster than the rate-guarantee are not counted) that

are still under execution at a time t, then

∀t : ci(t) ≤ ⌈AiEi⌉ (5.1)

Proof. Consider an arbitrary time t. By the definition of Ei, all invocation started before t−

Ei must be completed by t. Thus, ci(t) is bounded by the number of invocations guaranteed

by Ai that started between t− Ei and t. By definition of Ai

ci(t) ≤ ⌈Ai[t− (t− Ei)]⌉

= ⌈AiEi⌉
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Figure 5.2: Implementing RBAM rate-guarantee is challenging: (a) static pre-allocation
is costly while (b) naive dynamic allocation is inefficient due to the unbounded, widely
distributed sandbox allocation latency.

This proves the theorem.

By Theorem 12, the cloud provider can implement any function fi with finite guaranteed

invocation rate Ai and maximum execution time Ei with a straightforward pre-allocation

strategy: First, it allocates resources that are sufficient to handle ⌈AiEi⌉ concurrent invo-

cations to fi for its whole lifetime. Second, whenever the function receives an invocation

request, throttle the request execution rate to Ai. In that way, the cloud always ensures

sufficient resources to meet the function’s rate guarantee requirements, thereby proving the

feasibility of RBAM implementation.

Takeaway. (RBAM Implementation Feasibility) Any RBAM function with finite

guarantee invocation rate Ai and maximum execution time Ei can be implemented with

the resource cost bounded by ⌈AiEi⌉.

5.2 Efficient Implementation Challenges

Because the performance abstraction is implemented in the cloud, it must also meet the

cloud’s operational goals. This dissertation focuses on minimizing resource costs (or over-

head), aiming to align sandbox allocations closely with actual usage. Since resource alloca-
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tion and scheduling decisions depend on FaaS workload and cloud resources, achieving this

goal requires a thorough understanding of their characteristics.

High Workload Variability Recent studies reveal that FaaS workload is highly variable

[278, 346]. For example, Figure 5.2a shows the ratio of the tail arrival rates to the average

arrival rate of Azure Functions [278]. Most functions (75%) have their peak (i.e., “max”)

rate at least 10x higher than the average. One-third of these even witnessed a peak rate

exceeding 1000x. The ratio between the average and other tail latency is less extreme but

still very high. At the 99.95th percentile, more than 25% of FaaS functions have at least a

400x ratio. This number reduces significantly for the 99th percentile but is still as high as

10x.

Complicated Cloud Shared Environment Cloud resources are distributed across data

centers with high heterogeneity and are shared across multi-tenants with various behaviors.

Consequently, allocating sandboxes from these resources has highly variable and unpre-

dictable outcomes.

• Long-tail, Unbounded Allocation Latency. Figure 5.2b illustrates the allocation

latency distribution of a single sandbox estimated from the Google Borg VM allocation

latency [304] and Google Cloud Functions cold start [36]. Both distributions exhibit a

heavy tail, with the 99.95th percentile latency reaching about 30s, 50x longer than the

median. Worse, allocation requests are subjected to cancellation [323, 304], making

the latency practically unbounded.

• Allocation Correlation. The shared environment makes cloud events highly corre-

lated. For example, cloud management systems such as Borg [304, 313] and Kubernetes

[41] tend to provision sandboxes through shareable resource reservations. Sandboxes

within the same reservation experience similar allocation latencies. Thus, if a bad
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cloud event happens (e.g., slow reservation creation), it can spread across multiple

allocations, exacerbating its negative impact.

FaaS systems have to effectively manage the impact of workload variability and cloud

resource uncertainty to produce SLA-compliance invocation executions. Current mainstream

solutions address these issues by allocating more resources than needed [235, 65], using extra

resources to absorb unforeseen spikes in workload demand, and hiding the latency of sandbox

allocations affected by unexpected bad cloud events (see Section 7.2). The amount of extra

resources depends on the cloud’s desired SLA reliability, which is driven by a guarantee

availability defined below.

Definition 3 (Guarantee Availability). A Performance SLA is enforced with a guarantee

availability X (0 ≤ X ≤ 1) if there is at least an X probability for each invocation request

to comply with the SLA.

For example, conventional FaaS systems follow a guarantee availability of 99.95% [31, 42, 29],

meaning up to 99.95% of invocation requests are guaranteed to execute successfully.

The pre-allocation approach proposed in Section 5.1 assumes invocation requests always

arrive at a rate equal to the guaranteed rate and allocate resources for this rate in advance

at deployment time. In practice, however, the actual invocation arrival rate varies widely, as

we have shown previously in Figure 5.2a. An application that wants to use RBAM to ensure

the performance of their bursty periods will need to set A equal to their maximum arrival

rate, incurring the required sandbox allocation up to three orders of magnitude higher than

the average use, which is far from acceptable in practice. FaaS systems can reduce costs by

relaxing guarantee availability, yet the return is not worth the trade-off. For example, they

can support the SLAs up to the 99.95-th percentile arrival rate, willing to sacrifice 0.05%

guarantee availability, matching the current cloud availability SLA but costs at least 100x

for half of the functions (Figure 5.2a).
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Another alternative is dynamic (de)allocation. The FaaS system dynamically adjusts the

sandboxes allocated to a FaaS function according to the instantaneous arrival rate. The

approach, however, depends on resource allocation latency, which is practically unbounded

and widely distributed. Figure 5.2b shows the sandbox allocation latency distribution esti-

mated from the Google Borg VM allocation latency [304] and Google Cloud Functions cold

start [36]. Both distributions have a heavy tail where the 99.95-th percentile latency is more

than 100s, which is around 600x compared to the median. Thus, the FaaS system must

allocate resources for the invocation 100s in advance to ensure 99.95% of the invocations

meet the rate guarantee. In contrast, the invocation execution time is typically less than

one second [278], meaning the resource cost is potentially 100x compared to actual use, as

expensive as the pre-allocation. Worse, the allocation requests are subjected to cancellation

[323, 304], making the latency potentially unbounded and impossible for a FaaS system to

always ensure rate guarantee with dynamic allocation.

The main issue of both pre-allocation and naive dynamic allocation is that they use

extra sandbox resources to handle workload variability (e.g., unforeseen spikes) and cloud

resource uncertainty (e.g., slow allocations affected by unexpected bad cloud events). How-

ever, because both workload variability and cloud uncertainty are widespread, the required

overhead to make the approaches practical is huge. Even if we relax the guarantee availabil-

ity to X = 99%, which is already 20x less strict than the current commercial cloud standard

– 99.95%, both approaches incur an unacceptable cost of 10x to 30x higher than the actual

use. To resolve the problem, we propose an efficient guarantee-cost management solution

that allows the FaaS system to implement RBAM guaranteed invocation rates with ex-

tremely high availability (i.e., 99.95% and beyond) at reasonable resource cost. The solution

includes a new FaaS architecture (Section 5.4) that enables our new rate-based scheduling

(Section 5.5) and resource management (Section 5.6) algorithms to efficiently exploit the
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RBAM configurations and sandbox allocation statistics to enforce any set of deployed rate

guarantees.

Takeaway. (RBAM Implementation Challenges) Efficiently implementing RBAM

is challenging. Current approaches are too expensive, even when availability trade-offs are

made to reduce costs.

5.3 RBAM Implementation Ideas

The main challenge in RBAM implementation is the huge number of sandboxes to be pre-

pared in advance due to high workload variability and long-tail sandbox allocation latency

distribution. Our approach is to reduce the latency and variability of allocation statistically

by using three strategies: (i) overallocation, (ii) multiple tries, and (iii) sandbox sharing.
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Figure 5.3: Overallocation statistically shortens allocation latency

Over-allocation. We shorten the long-tail allocation latency statistically by proactively

sending more sandbox allocation requests than needed. In Figure 5.3a, for example, sup-

pose that we want three more sandboxes at tD (red line). If we naively allocate exactly 3

sandboxes, the overall latency is determined by the slowest one. But if we allocate two extra
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sandboxes (five in total), the latency is actually the third fastest one, which is much shorter

than the naive one. Figure 5.3b shows the latency distribution of the two approaches. The

overallocation (light green) latency is much shorter than the naive one (gray curve). Adding

more allocations (e.g., ten, dark green line) reduces the latency further. With shorter allo-

cation latency, we can allocate sandboxes at a closer time to when they are needed, wasting

fewer resources.

102 103 104

Latency (ms)

0.0

0.5

1.0

C
D

F

+4 Extra, =
+4 Extra, = .
+4 Extra, =
"Just enough"

(a) The benefit of overallocation diminishes
with the emergence of correlation.

𝑡𝐷
(+3 needed)

𝑡𝐷 − 𝑇𝐶
(Try #3)

Time

𝑡𝐷 − 2𝑇𝐶
(Try #2)

𝑡𝐷 − 3𝑇𝐶
(Try #1)

IndependentCorrelatedCorrelated

+0%

+30%

+60%

(b) Multiple Tries Example

Figure 5.4: Try to overallocation multiple times to reduce the impact of badly correlated
events.

Multiple Tries. Correlation between allocation requests hurts overallocation effectiveness.

As in the bottom of Figure 5.3a, we assume all five allocations are correlated to a bad cloud

event (e.g., slow reservation generation), prolonging all of them (red bars) and eliminating

the benefit of overallocation. Fortunately, these incidents last for a short period of time

[281, 264]. To work around this, we avoid allocating all sandboxes simultaneously but spread

them across different points in time. For example, suppose we need 3 sandboxes at a future

time tD. Instead of allocating five sandboxes only once, we can do it thrice: five sandboxes

at tD − TC , four at t− 2TC , and three at t− 3TC (Figure 5.4b) where TC is the minimum

distance between two allocations that make them independent. Note that the further from
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tD, the more time we get to wait for allocations, so we need fewer extra allocations to achieve

the same result (+60%, +30%, and 0% at tD−TC , tD−2TC and tD−3TC , respectively). In

this way, we temporally spread the risk of failing to allocate sandboxes in time. Thus, only

one successful try is sufficient to enforce defined SLAs, making the implementation robust

against the complicated cloud environment.
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ability

Figure 5.5: Sharing sandboxes across functions greatly reduces extra resources incurred by
multiple tries of overallocation and workload variability

Sandbox Sharing. Overallocation and multiple tries potentially leave many unused extra

sandboxes. For example, in Figure 5.4b, we have to allocate 12 sandboxes while only needing

3, leaving 9 sandboxes unused, 3x overhead. To reduce this cost, we share unused sandboxes

across (i) time and (ii) functions. Specifically, we consider extra sandboxes of past tries as

discounts to reduce the number of required allocations in future tries. For example, in Figure

5.5a, just before the second try, we already have two sandbox allocations from the first try

completed. Thus, we only need one more, then at the overallocation factor of 30%, we just

need to allocate two more sandboxes instead of four as in Figure 5.4b. Similarly, on the

third try, the two additional sandboxes and the leftover from the first try were completed,

so we have a surplus of two sandboxes, meeting the requirement at tD. Thus, no allocation
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is required for the third try. We further share the one surplus sandbox with the future

time, tD + TC , so no more allocation is needed in the future. We also share sandboxes

across functions. This is possible by enabling re-purposing a warm sandbox of a function for

another [192, 153, 325] and using zygote sandboxes [238, 191] to create shareable isolation

environments across functions. Doing so creates more chances to exploit surplus sandboxes

and helps reduce workload variability. In Figure 5.5b, we randomly combine Azure functions

into groups of 1, 10, 100, 1k, and 10k functions. Then, we calculate the aggregate arrival rates

of each group and report the ratio of tail arrival rates over the average one in the figure. Since

bursty requests are unlikely to appear concurrently among functions. The ratio decreases

significantly as we group more functions. This indicates that grouping functions together

greatly reduces their aggregate variability, making invocation demand less fluctuating. As a

result, serving them requires fewer dynamic sandbox allocations. Consequently, fewer extra

sandboxes are needed, reducing overhead.

Takeaway. (RBAM Implementation Ideas) We can implement RBAM efficiently by

statistically shortening allocation latency with multiple tries of overallocation and reducing

workload variability with resource sharing.

5.4 RBAM System Architecture

The new FaaS Architecture for efficient RBAM implementation (i.e., RBAM system) is

shown in Figure 5.6. The architecture inherits all existing components in the conventional

FaaS system (See Figure 2.3 in Section 2.2.2) and adds three extensions:

• Rate-based Scheduler (RS): find the right time and place to execute invocations, based

on RBAM configurations.
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Figure 5.6: RBAM System Architecture: Invocation executions are driven rate-based re-
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Symbol Name/Definition Unit Notes
fi RBAM function N/A
Ai Rate-guarantee invocation/second
Ei Maximum execution time second
X Guarantee Availability Target N/A 0 ≤ X ≤ 1

Table 5.1: RBAM Configurations Notations

• RBAM Resource Pool : contain shareable sandboxes used for enforcing guaranteed

invocation rates.

• Rate-based Resource Manager (RRM): manage the RBAM resource pool through scal-

ing up and down decisions driven by RBAM configurations (defined below).

The critical difference between the RBAM system and its conventional counterpart (pre-

sented in Section 2.2.2) is the addition of the RBAM resource pool managed based on

RBAM configurations provided by the applications, making the system decisions align with

its applications’ desired performance.

RBAM Configurations. The RBAM configurations consist of performance-related pa-

rameters of all serverless functions f1, ...fN deployed by the FaaS system (See Table 5.1).

Each function, fi, has two parameters

• Ei: Maximum invocation execution time (i.e., timeout).
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• Ai: Guaranteed invocation rate.

RBAM configurations also have a guarantee availability target X (defined in Definition

3) given by the cloud provider, indicating the minimum probability of meeting all rate-

guarantees A1, ..., AN for every invocation request. The guarantee availability target X

allows the cloud provider to balance their resource cost (by choosing small X) and service-

level agreement (SLA) with their customers (by choosing large X). We summarize the

notations in Table 5.1

Rate-guarantee Enforcement. The main objective of the proposed RBAM architecture

is to meet all rate-guarantee requirements A1, ..., AN with any given availability target X

at low resource cost. This is accomplished by enforcing:

• The rate-based scheduler to start at least one invocation, if any, in every 1
Ai

interval for

all fi.

• The Rate-based resource manager to ensure the sandboxes in the RBAM resource pool

are sufficient to immediately start any invocation once it is scheduled in the pool.

Once the two components fulfill their tasks, any function fi with rate-guarantee Ai is ensured

to get at least one invocation to start immediately within any 1
Ai

interval, thereby meeting

its guarantee requirement. We will discuss in more detail how the scheduler and resource

manager accomplish their task in the next two sections.

5.5 Efficient RBAM Scheduling

Algorithm 1 presents a rate-based invocation scheduling algorithm that we use to implement

the rate-based scheduler in the RBAM architecture (See Figure 5.6).

First, let us describe how the algorithm ensures the invocation scheduling rate required

by the rate guarantees A1, ..., AN . For each function fi, the scheduler keeps track of the
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Algorithm 1 RBAM Scheduling
1: for each fi do
2: last[fi]← −∞
3: end for
4: while true do
5: for each fi do
6: r ← getInvocationRequest()
7: if r ̸= null then
8: t← arrivalT ime(r)
9: if B(t) > 0 and t− last[fi] ≥ 1

Ai
then

10: RBAMSharedPool.exec(r)
11: last[fi]← currentT ime()
12: else
13: BestEffortPool.exec(r)
14: end if
15: end if
16: end for
17: end while

start time of the last invocation scheduled in the RBAM pool (last[fi]). Every time an

invocation request arrives (line #7), if its arrival time t is at least 1
Ai

seconds behind last[fi]

(i.e., t − last[fi] ≥ 1
Ai

, Line #9), the request will be scheduled immediately in the RBAM

resource pool (Line #10). The mechanism ensures that as long as the invocation request

rate is less than or equal to Ai, they will be scheduled at the rate guarantee Ai, and if the

resource manager does its job well, they will start execution at the same rate, meet the

rate-guarantee requirement.

If, however, the invocation request rate is higher than Ai or the resource manager fails to

prepare sandboxes in time (i,e., the number of free sandboxes in the RBAM pool B(t) = 0

at request arrival time t, Line #9) then the scheduler will fail over to the best-effort mode,

forwarding all invocation requests to the best-effort resources (Line #13), for two reasons.

First, this limits the schedule rate on the RBAM pool by
∑N

i=1Ai, making it easier to

manage the pool while still enabling the excessive requests to execute at a standard FaaS

quality. Second, redirecting requests out of the RBAM pool when it fails to offer sandboxes
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in time avoids creating a backlog in the pool that could exaggerate the situation and prolong

the pool recovery.

Takeaway. (RBAM Scheduling) The rate-based scheduler uses RBAM resources to

handle requests up to the rate guarantee, ensuring minimum rate guarantee requirements.

Excessive requests are served using best-effort resources, achieving a quality equivalent to

the current cloud standard.

5.6 Efficient RBAM Resource Management

Next, we will explain how the Rate-based Resource Manager (RRM) ensures immediate

invocation execution of scheduled requests in the RBAM pool given a guarantee availability

X. We begin with the high-level implementation ideas presented in Section 5.3. Following

this, we formally derive a smart dynamic algorithm and provide theoretical proof of its rate

guarantee capability and efficiency analysis (Sections 5.6.1 and 5.6.2).

5.6.1 Sandbox Allocation Modelling

Because sandbox allocation statistics are crucial, let us first model the sandbox allocation and

then use it to realize and analyze RRM implementation later in Section 5.6.2. Specifically,

when the RRM allocates sandboxes, their latency is governed by the following factors.

• Single sandbox allocation latency is a random variable (P) so Pr[P ≤ ∆t] is the proba-

bility of successfully completing a single sandbox allocation in ∆t seconds. (assuming

the allocation is independent from other).

• Allocation Correlation: sandbox allocations may have their latency correlated if they

share a common path (e.g., get resources from the same physical machine) during their

allocation processes. We assume the common path sharing is temporary and lasts for
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at most TC seconds (e.g., two allocations are correlated only if they are at most TC

seconds apart). We call TC correlation period and model allocation correlation by

dividing the time into fixed slots of length TC , each having a correlation probability

PC . If a sandbox is allocated in a correlated slot, its latency is at least equal to the

first sandbox allocation latency of that period. Otherwise, its latency will follow P .

The RRM, however, does not need to know these factors or their actual values. It just

needs to know their impact on the sandbox allocation latency to make proper decisions.

This is done by monitoring an empirical distribution P c
∆t(a) representing the probability

of obtaining at least c sandboxes in ∆t second(s) after sending a allocation requests. For

example, P 3
1 (5) = 90% means allocating 5 sandboxes will give us at least 3 in 1 second with

a 90% probability. We assume P c
t (a) is monotonic with the following characteristics

• P c
∆t(a) is a non-decreasing function of a (i.e., More allocation increases chances of

obtaining desired sandboxes).

∀a1 ≤ a2 ≤M : P c
∆t(a1) ≤ P c

∆t(a2) (5.2)

• P c
∆t(a) is a non-increasing function of c (i.e., overallocation is less effective if we desire

more without allocating more).

∀c1 ≤ c2 ≤ a ≤M : P c1
∆t(a) ≥ P c2

∆t(a) (5.3)

• P c
∆t(a) is a non-decreasing function of ∆t (i.e., the sooner allocating sandboxes, the

better chance of timely delivery).

∀∆t1 ≤ ∆t2 : P c
∆t1

(a) ≤ P c
∆t2

(a) (5.4)
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Symbol Name/Definition Notes
P Single sandbox allocation latency
TC Length of correlation Period Unit: sec
PC Correlation probability 0 ≤ PC ≤ 1
M Allocation limit in a single time slot of length TC
P c
∆t(a) Probability of getting c/a sandboxes in ∆t sec

Table 5.2: Sandbox Allocation Notations

where M is the maximum allocation requests the underlying sandbox allocator can han-

dle in each TC interval without losing the above monotonic properties. All notations are

summarized in Table 5.2.

5.6.2 Smart Dynamic Allocation Algorithm

The RRM aims to allocate just enough sandbox resources to ensure the guaranteed invocation

rate up to a guarantee availability target X. In other words, this is equivalent to solving the

following optimization problem:

∀t : minB(t)

s.t. Pr[u(t) ≥ 0] ≥ X

(5.5)

where

• u(t) is the difference between the RBAM pool capacity and the sandboxes required by

FaaS functions to meet their guaranteed invocation rate at a time t. Thus, u(t) ≥ 0

indicates that the RBAM pool has sufficient sandboxes to meet the demand of guaran-

teed invocation rates at time t. This means Pr[u(t) ≥ 0] indicates the probability for

all invocation requests arrived at t get executed immediately to comply with their rate-

guarantee so enforcing Pr[u(t) ≥ 0] ≥ X for all t will ensure provide rate guarantees

with a guarantee availability X, satisfying RRM’s objective.
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• B(t) = max[u(t), 0] is the number of free sandboxes at a time t, which is also the

resource overhead.

To achieve this goal, we propose a smart dynamic allocation algorithm (Algorithm 2) that

employs three techniques: overallocation, multiple tries, and sandbox sharing, as discussed

in Section 5.3.

Algorithm 2 Smart Dynamic Allocation (Simplified)
1: L← numTriesEst(X)

2: Prealloc(
∑N

i=1⌈Aimin(Ei, TCL)⌉)
3: for every TC seconds do
4: tk ← currentT ime()
5: a← scaleUpEst(tk, L,X)
6: if a > 0 then
7: Alloc(a)
8: else if t > ∆tL then
9: d← scaleDownEst(tk)

10: if d > 0 then
11: Dealloc(d)
12: end if
13: end if
14: end for

The algorithm includes three parts:

• Initialization. (Lines #1 and #2) RRM estimates the number of multiple tries L

for the multiple tries strategy (explained later). Multi-try scaling takes at least LTC

seconds to be fully effective. Thus, the algorithm pre-allocates the RBAM pool with∑N
i=1⌈Aimin(Ei,∆tL)⌉) sandboxes (Line #2) fully covering scheduled requests in the

first LTC seconds, giving enough time for the dynamic scaling to warm up and maintain

the guarantee for the rest of the time.

• Scaling up. (Lines #5 to #7) The RRM scales up the RBAM pool when it needs addi-

tional sandboxes to enforce guaranteed invocation rates with availability X over the time

(i.e., ∀t : Pr[u(t) ≥ 0] ≥ X). This is done by periodically trying to scale the RBAM
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pool in every TC seconds. The TC -second gap between tries ensures allocation requests

sent by scaling decisions at different times are independent of each other, avoiding the

allocation correlation effect. For each scaling decision at a time tk, the RRM relies

on RBAM configurations and the underlying sandbox allocation latency statistics to

estimate the number of sandbox allocations needed in the next LTC seconds, subject

to the guarantee availability objective (e.g., ∀tk ≤ t ≤ tk + LTC : Pr[u(t) ≥ 0] ≥ X,

Line #5, the scaleUpEst function described later in Section 5.6.2.1). Then, the RRM

sends corresponding sandbox allocation requests (Line #7) to the underlying cloud

allocator.

• Scaling down. (Lines #8 to #11) If no additional sandboxes are needed (Line #8),

then the RBAM pool must already have sufficient sandboxes to meet the guarantee

availability in the next LTC seconds. The RRM then checks for the surplus sandboxes

(Line #9, the scaleDownEst function described later in Section 5.6.2.2). If they are

more than enough (Line #10), it will deallocate them to minimize the overhead (Line

#11).

In the rest of this section, we will present how the algorithm estimates the number of sand-

boxes to be allocated (i.e., the implementation of the scaleUpEst(tk) function in Line #5)

and (de)allocated (i.e., the scaleDownEst(tk) function in Line #9) in more detail.

5.6.2.1 Scaling Up

The main objective of scaling up is to ensure there are always sufficient sandboxes in the

RBAM pool to meet the rate guarantees up to a guarantee availability of X. In other words,

∀t : Pr[u(t) ≥ 0] ≥ X (5.6)
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Figure 5.7: Overallocation and Multiple Tries (L = 2) Visualization

To achieve this objective, RRM divides the time into fixed slots δ0, δ1, ... of length TC and

periodically makes scaling decisions at each slot start time tk = kTC . This ensures separate

scaling decisions are not affected by the same correlation factor and thus have independent

latency.

Recall that L is the number of multiple tries. At a scaling time tk (See Figure 5.7),

the RRM presumes past decisions at tk−1, ..., tk−L already ensured scaling objective of the

current slot (i.e., the Equation 5.6 holds ∀t′ ∈ δk), so it just needs to allocate sandboxes for

future slots: δk+1, ..., δk+L, ensuring for the Equation 5.6 holds ∀t′ ∈ δk+j where 1 ≤ j ≤ L.

For each future time slot, δk+j , RRM first estimates additional sandboxes needed to meet

the guaranteed invocation rate requirements until the time slot ends (cj). Since the scheduler

limits the schedule rate for each function fi to Ai, the maximum sandboxes consumed by

the function from tk to δk+j is ⌈AiTC(j+1)⌉ capped by ⌈AiEi⌉ because once an invocation

completes, the RRM can reuse its sandbox for the new ones. Thus, the additional sandboxes
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required by the scheduler in δk+j is

cj = R(tk, j) =
N∑
i=1

⌈Aimin(TC(j + 1), Ei)⌉ −B(tk) (5.7)

recall B(tk) = max[u(tk), 0] is number of free sandboxes at tk. Note that this is a part of

the sandbox sharing strategy as B(t) contains both required and extra sandboxes allocated

successfully by t. The higher the B(t), the fewer additional sandboxes are required; thus,

fewer allocation requests. To meet the objective in δk+j , RRM has to ensure these additional

cj sandboxes are allocated successfully before tk+j , with probability X. Given the sandbox

allocation latency statistics P c
∆t(a), RRM needs to allocate aj sandboxes such that

P
cj
tk+j−tk(aj) = P

cj
jTC

(aj) ≥ X (5.8)

This implies

aj ≥ (P
cj
jTC

)−1(X) (5.9)

where (P
cj
jTC

)−1(X) is the inverse function of P cj
jTC

(aj). In special cases where cj ≤ 0, we let

(P
cj
jTC

)−1(X) = 0. The function indicates the number of allocation requests needed to get

at least cj sandboxes in jTC seconds. Thus, by allocating aj = (P
cj
jTC

)−1(X) sandboxes, the

RRM ensures to get the required sandboxes, cj , by tk+j with probability X, satisfying the

scaling up objective in Equation 5.6. However, due to the allocation limitation M , we cannot

allocate more than M sandboxes within a time slot. This means P c
∆t(a) is only defined for

a ≤M and its inverse function, (P c
∆t)
−1(X) may not exist for all X. We need to adjust aj

as follows.

aj = S(X, cj , jTC) =


(P

cj
jTC

)−1(X) if (P cj
jTC

)−1(X) exists

M otherwise
(5.10)
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The probability of obtaining cj sandboxes at tk+j becomes

pj = P
cj
jTC

(aj) =


X if (P cj

jTC
)−1(X) exists

P
cj
jTC

(M) otherwise
(5.11)

Note that pj is the probability of obtaining the required sandboxes in one try, and this try

alone is not sufficient if (P kj
∆t)
−1(X) does not exist. Thus, we need multiple tries, but how

many (i.e., L) are sufficient? We need a large L to ensure the guarantee even in the worst

case where there are no free sandboxes (i.e., B(t) = 0) and the sandbox allocation is too

slow that the RRM has to allocate aj = M sandboxes every time it scales up. In such case,

by Equation 5.7, cj =
∑N

i=1⌈Aimin(TC(j + 1), Ei)⌉ so by Equation 5.11, the worst case

probability of a single try is

pwj = P
∑N

i=1⌈Aimin(jTC ,Ei)⌉
jTC

(M) (5.12)

Since scaling tries are independent, we can consider them as a variant of the Bernoulli trials

with different success probabilities pw1 , ..., p
w
L . We want at least one try to succeed in meeting

the availability guarantee. Then L becomes

L = numTriesEst(X) = min {l : 1−
l∏

j=1

(1− pwj ) ≥ X} (5.13)

Algorithm 3 Scaling Up Estimation
1: function scaleUpEst(tk, L,X)
2: for j ← 1 to L do
3: cj ← R(tk, j) ▷ Sandbox Est. (Equ. 5.7)
4: aj ← S(X, cj , jTC) ▷ Overallocation (Equ. 5.10)
5: end for
6: return max(M,

∑L
i=1 aj) ▷ Multiple tries

7: end function
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We summarize the whole scaling-up process described above in the ScaleUpEst function

implementation as shown in the Algorithm 3. Given a scaling time tk, the function calculates

cj from Equation 5.7 (Line #3) to determine the required number of additional sandboxes

to meet all rate guarantees in each future time slots δk+j (1 ≤ j ≤ L). Then, it estimates

the number of sandboxes to be allocated, aj (from Equation 5.10, Line #4), so that the

pool will get cj ones in time with a probability at least equal to X, satisfying the guarantee

availability target X. Finally, the number of required allocations, aj ’s, are combined and

will be used by the smart dynamic allocation algorithm to scale up the pool (Line #5 and

#7 in Algorithm 2).

5.6.2.2 Scaling Down

RRM employs overallocation and multiple tries strategies for scaling up, incurring a lot

of potential resource waste. We try to minimize the waste by keeping the extra buffered

resources just enough for sharing by bounding them with a conservative deallocation strategy.

Specifically, at a given scaling time tk, the RRM will compute

d = scaleDownEst(tk) = − max
0≤j≤L

R(tk, j) (5.14)

Recall from equation 5.7, R(tk, j) is the number of sandboxes to be added at tk to ensure

the guarantee availability in δk+j . If d > 0, then the current buffer size B(t) is large enough

to support the rate-guarantee without allocating more sandboxes until δk+L. Further, d, in

this case, is an unnecessary waste, and the RRM will deallocate them.

5.6.2.3 The Complete Algorithm

We integrate the implementation of scaleUpEst (Algorithm 3), scaleDownEst (Equation

5.14) and numTriesEst (Equation 5.13) into the Algorithm 2 to create a complete version
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Algorithm 4 Smart Dynamic Allocation (Completed)

1: L← min {l : 1−
∏l

j=1(1− pwj ) ≥ X} ▷ Equ. 5.13

2: Prealloc(
∑N

i=1⌈Aimin(Ei, TCL)⌉)
3: for every TC seconds do
4: tk ← currentT ime()
5: for j ← 1 to L do
6: cj ← R(tk, j) ▷ Sandbox Est. (Equ. 5.7)
7: aj ← S(X, cj , jTC) ▷ Overallocation (Equ. 5.10)
8: end for
9: a← max(M,

∑L
i=1 aj) ▷ Multiple tries

10: if a > 0 then
11: Alloc(a) ▷ Scale-up
12: else if t > ∆tL then
13: d← max0≤j≤LR(tk, j) ▷ Detect waste (Equ. 5.14)
14: if d < 0 then
15: Dealloc(-d) ▷ Scale-down
16: end if
17: end if
18: end for

of the smart dynamic allocation algorithm in Algorithm 4. We will use the algorithm to

demonstrate that we can enforce RBAM guarantee with low cost in the rest of the chapter.

5.6.2.4 Guarantee Availability and Efficiency Analysis

Next, we will theoretically prove that the Algorithm 4 always allocates sufficient sandboxes

to meet guaranteed invocation rates at any given guarantee availability target X. Then, we

will derive a bound on the algorithm’s resource cost, analytically showing that the algorithm

is cost-effective and robust.

Theorem 13 (Rate-guarantee Availability). For all X < 1, the Algorithm 4 ensures

∀t : Pr[u(t) ≥ 0] ≥ X (5.15)
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Proof. We prove the theorem by showing that the algorithm ensures the guarantee availabil-

ity X for all time slot δk. That is:

∀k : ∀t ∈ δk : Pr[u(t) ≥ 0] ≥ X (5.16)

Consider δk, there are two possible cases:

• k ≤ L: the preallocation
∑N

i=1⌈Aimin(Ei, TCL)⌉ is sufficient to ensure all rate-guarantees

in the first LTC seconds, which also cover δk. Thus

∀t ≤ LTC : Pr[u(t) ≥ 0] = 1 ≥ X (5.17)

• k > L. Let td be the last time the RRM deallocates sandboxes before δk.

– If ∆k = k − d ≤ L then by the deallocation condition of the algorithm at Line #14,

R(td,∆k) ≤ 0, meaning the guarantee availability have been already ensured in δk

without additional sandboxes. Further, as td is the last deallocation, the pool size

will not decrease by δk. These guarantee ∀t ∈ δk : Pr[u(t) ≥ 0] ≥ X.

– Otherwise, resources at tk will be prepared by all allocations made at tk−1, ..., tk−L.

Let pj be the probability the allocation at tk−j gives the pool sufficient sandboxes

for the time slot δk. Since these allocations are independent, we can consider them as

Bernoulli trails with success probability pj . Thus, if at least one of the trails succeeds,

then u(t) ≥ 0:

Pr[u(t) ≥ 0] = 1−
L∏

j=1

(1− pj)
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Since pj is determined by allocations at tk−j , which are at least S(X, cj , jTC) sand-

boxes (Line #7, and #9). By the Equation 5.11:

pj ≥ P
cj
jTC

(aj) =


X if (P cj

jTC
)−1(X) exists

P
cj
jTC

(M) otherwise

If ∃j∗ ∈ {1, ..., L} : pj∗ = X, then

Pr[u(t) ≥ 0] ≥ 1−
L∏

j=1

(1− pj)

≥ 1− (1− pj∗)

= X

Otherwise, ∀j : pj = P
cj
jTC

(M) ≥ P
∑N

i=1⌈Aimin(TC(j+1),Ei)⌉
jTC

(M) (Equ. 5.3), thus

Pr[u(t) ≥ 0] ≥ 1−
L∏

j=1

(1− pj)

≥ 1−
L∏

j=1

(1− P
∑N

i=1⌈Aimin(TC(j+1),Ei)⌉
jTC

(M))

≥ X (Equ. 5.13)

Thus, all possibilities of δk imply ∀t ∈ δk : Pr[u(t) ≥ 0] ≥ X. This completes the proof.

The algorithm ensures ∀tk : max0≤j≤LR(tk, j) ≥ 0, By Equation 5.7, this implies

B(t) ≤
N∑
i=1

⌈Aimin(TC(L+ 1), Ei)⌉ (5.18)

Recall that B(t) is the number of free sandboxes. This is the upper bound of the algorithm’s

extra resource cost. The bound depends on RBAM configurations (Ai and Ei) and deploy-
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Figure 5.8: Smart Dynamic Allocation Algorithm is cost-effective at high guarantee avail-
ability targets

ment environment (TC). The only controllable factor is L which is adjustable by configuring

the guarantee availability X using Equ. 5.13. Note that by that equation, X (the right-

hand side) grows exponentially as L increases (the left-hand side). This means high X is

achievable with just a few allocation tries, as visualized in Figure 5.8. The figure considers

a simplified version of the model where we assume pj are identical. The required L grows

exponentially slowly compared to X. For example, with pj = 0.5, increasing X from two

9s to eight 9s (6 orders of magnitude better) requires only 4x more tries, demonstrating

excellent cost-effectiveness of the algorithm at a high availability target. We will elaborate

more on the experimental evaluation in the next section.

Takeaway. (RBAM Resource Management) The Rate-based Resource Manager al-

locates extra sandboxes multiple times to statistically reduce allocation latency and im-

plementation overhead. Additionally, sandboxes are shared across functions to reduce

overhead further and improve guarantee availability.
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5.7 Evaluation

5.7.1 Methodology and Experimental Setup

This section will evaluate the efficiency of the RBAM implementation by simulating the

scheduler and RRM under various settings. The objective is to answer the following ques-

tions:

1. Can RBAM be implemented efficiently?

2. Is the efficiency robust across different workloads and deployment scenarios?

3. Can RBAM be implemented scalably?

5.7.1.1 Metrics

We evaluate RBAM implementation efficiency through its guarantee availability and cost-

effectiveness measured through the following metrics:

• Guarantee Availability : The fraction of requests the RBAM pool successfully executes

scheduled invocations.

• Overhead : the ratio of resources allocated to unused and pending sandboxes to the

resources allocated to used sandboxes.

5.7.1.2 Sandbox Allocation Latency

We consider both practical and synthetic single sandbox latency distributions (P).

• Practical Distributions includes Google Cloud Functions cold start statistics [36] and

Google Borg instance schedule latency [304] (See Figure 5.2b).
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Figure 5.9: Synthetic latency distributions with configurable parameters (Pareto: a, Muti-
modal: (height, distance)).

• Synthetic Distributions two distribution families have a similar unbounded, long-tail struc-

ture to practical ones.

– Pareto: long-tail, monotonic decreasing distribution whose shape is configurable via

a real parameter a (Figure 5.9a).

– MultiModal : long-tail, non-monotonic decreasing distributions that have multiple

decreasing peaks with configurable height (magnitude of the peaks) and distance (gap

length between peaks) as shown in Figure 5.9b. The peaks are formed by multiple

Gaussian distributions N (µ1, σ1), N (µ2, σ2),... with the probability density function

(PDF) defined as follows.

fM (x) = S

n∑
i=1

fi(x) (5.19)

where fi(x) is the PDF of N (µi, σi), si is a weight defining how much each Gaussian

component contributes to the distribution, control by a height parameter h:

si(x) =
1

h · exp(xh)
(5.20)

and S =
∑n

i=1 siFi(X > 0) is a scaling factor which is calculated as the sum of the

Gaussian’s cumulative density functions (CDF) to ensure fM (x) is a proper density
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function. Each component distribution, N (µi, σi), has the mean µi and standard

deviation σ controlled by a distance parameter d defined as follows.

µi = µ0 + di and σi = 2i

We use various multimodal distributions shown in Figure 5.9b with n = 5 by varying

the height and distance parameters.

5.7.1.3 RBAM Resource Management Algorithms.

We consider four resource management algorithms

• Smart Dynamic Scaling : our proposed resource management algorithm as presented

in Algorithm 4 in Section 5.6.2.

• Overalloc Dynamic Scaling : Smart Dynamic Scaling without multiple tries (i.e., Algo-

rithm 4 with L = 1).

• Naive Dynamic Scaling : Smart Dynamic Scaling without multiple tries and overallo-

cation (i.e., Algorithm 4 with L = 1 and replace Line #7 of Algorithm 4 by aj = cj).

• Pre-allocation (i.e., the baseline approach) Maintain ⌈AiEi⌉ sandboxes for each func-

tion in the RBAM pool over its lifetime.

5.7.1.4 Workloads

We use 2 sets of workloads (Figure 5.10).

• Bursty (Production traces): FaaS arrival rate and execution time selected from the

Azure traces [279]. We configure the guaranteed invocation rate equal to each function’s

peak rate and execution time equal to their longest one to validate the system guarantee

enforcement capability.
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Figure 5.10: Synthetic (constants and spiky) and production (bursty) Workloads

• Synthetic: We modify the arrival of the 10000 FaaS functions in the production traces

to create two additional synthetic workloads: (i) constant with a fixed arrival rate

to capture stable workloads and (ii) spiky with periodic load spikes that experience

invocation requests at a rate of the rate-guarantee to capture the extreme case of

workload surges. Both workloads have an average invocation arrival rate equal to

bursty.

5.7.2 Experimental Results

We use the experimental evaluation results to prove that RBAM can be implemented ef-

ficiently. This consists of three parts. First, in Section 5.7.2.1, we will show the RBAM

implementation efficiency in practical settings. Second, we extend the study to consider

more extreme scenarios using synthetic data to show that the implementation efficiency

is robust against various workloads and deployment settings (Section 5.7.2.2). Third, we

demonstrate the system’s scalability by examining its efficiency under different scales, show-
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Figure 5.11: RBAM Implementation Efficiency

ing that we can implement thousands of RBAM functions efficiently under high correlation

in Section 5.7.2.3.

5.7.2.1 RBAM Implementation Efficiency

We evaluate RBAM implementation efficiency under realistic settings. We construct work-

loads by selecting 1000 random functions from the Azure traces. The new RBAM system

(Figure 5.6) serves workloads with the RBAM resource pool managed by one of the four re-

source management approaches mentioned in Section 5.7.1.3. Sandboxes are allocated with

latency following production traces (Figure 5.2b). We examine different correlation possi-

bilities (PC), from 0 (independent) to 1 (always correlated), with correlation period TC = 1

second (as a majority of allocations takes less than 1 sec).

Figure 5.11 shows the overhead required by the dynamic scaling normalized by the base-

line overhead (i.e., Pre-allocation) when the allocation latency follows the Borg (5.11a)

and GCF (5.11b) distributions. Naive scaling is inefficient as its overhead is close to pre-
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Figure 5.12: RBAM implementation is robust against various guarantee availability targets
(X)

allocation in all settings (brown columns). Overalloc, on the other hand, reduces the overhead

significantly (orange columns). At current cloud standard availability (i.e., 99.95%), employ-

ing overallocation alone reduces the overhead by at least 14x compared to pre-allocation.

However, overallocation alone becomes ineffective when aiming for higher availability (i.e.,

99.9999%), especially with correlation. Even at PC = 0.5, Overalloc is as bad as the Naive.

Smart scaling, in contrast, employs multiple tries to mitigate the correlation effect and thus

consistently meets availability targets with the overhead 10× smaller than pre-allocation in

all scenarios.

Takeaway. (Efficiency) Overallocation and Multiple tries enable efficient RBAM imple-

mentation, achieving high guarantee availability even under high correlation.

5.7.2.2 Robustness

We investigate RBAM implementation robustness by extending the efficiency evaluation

across a wide range of different settings using synthetic configurations. We start with a base

setting that is close to the practice settings used in the previous experiment. Then, we try
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Figure 5.13: RBAM implementation is robust against various workload arrival rates.

to push the Smart algorithm to work on more extreme deployment scenarios with higher

workload variability and more complicated cloud configurations. We report the correspond-

ing overhead while adjusting related parameters to evaluate how well the algorithm handles

difficult settings.

The base setting is chosen as follows: guarantee availability target X = 0.999999, corre-

lation period TC = 1s, with correlation probability PC = 0.5, and allocation latency follows

the Pareto distribution with α = 1 and M = 2× of the total rate-guarantee requirement.

In the rest of this section, we first represent the impact of the workload arrival rate and

guarantee availability target. Then, we evaluate the impact of the cloud environment by

varying the allocation latency, allocation limit, correlation period TC , and probability PC .

Impact of Guarantee Availability Targets Figure 5.12 shows the overhead needed

to achieve different guarantee availability targets (X) normalized to the case of X = 99%

with no correlation (e.g., the first green column). From 99% to 99.9999% availability, the

risk of failure rate guarantee is reduced by five orders of magnitude while the overhead

increases by less than 10x. Thus, RBAM can be implemented with high availability and a

diminishingly increasing overhead. This sublinear relationship proves the robustness of the
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Figure 5.14: RBAM implementation is robust against various single sandbox latency distri-
butions (P).

implementation against availability targets, allowing RBAM to become a reliable computing

model for applications with strict real-time and availability requirements.

Impact of Workload Arrival Rate Next, we adjust the average arrival rate of the three

workloads from 0.025 to 0.4 of the rate guarantee and report the required overhead to meet

the 99.9999% guarantee availability in Figure 5.13. From Section 5.6.2, we showed that the

RBAM pool’s number of free sandboxes necessary to maintain the rate guarantee remains

constant regardless of workload dynamics (Equation 5.18). This means that no matter

how users change the request arrivals, the buffer size remains unchanged. As a result, the

recorded overhead decreases as we increase the arrival rate, as confirmed in the figure. These

results underscore the reliability of RBAM in offering consistent performance, independent

of workload dynamics, at a reasonable resource cost.
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Figure 5.15: RBAM implementation is robust against various allocation limits (M).

Takeaway. (Robustness #1) RBAM implementation is robust against workload vari-

ability and availability targets.

Impact of Single Sandbox Allocation Latency Distribution In Figure 5.14, the

RBAM deployment overhead is normalized by the pre-allocation overhead when we vary

the sandbox allocation latency distribution. We consider eight distributions: three Pareto

variants (See Figure 5.9a) and five multimodal variants (varying height and distance, see

Figure 5.9b). Smart scaling is consistently more efficient than pre-allocation. Even in the

most extreme case (Multimodal (h=10k, d=10 ), it is still 2.3x more cost-effective. The

algorithm is also robust against the shape of distributions. For example, in the case of

Pareto variants, changing the α from 2 to 0.5 significantly reshapes the distribution (e.g.,

from 99% of request complete in less than 100ms to only 70%), but Smart could handle them

both with less than 2.3x resource difference

Also, note that some of these distributions have very long latency. For example, the

Pareto with α = 0.5 has a statistical average latency that is 100,000× longer than practice
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Figure 5.16: RBAM implementation is robust against various lengths of correlation period
(TC)

ones. Even under these unrealistic settings, the RBAM system can keep overhead low and

robust against correlation. Specifically, starting from PC = 0 (no correlation) to PC = 1

(correlation always appears), the algorithm only needs less than 2.5× more resources to meet

the required availability target across all latency distributions.

Impact of Allocation Limit Next, we vary the allocation limit M from 1× to 3× the

total rate-guarantee. Figure 5.15 reveals that the overhead in these cases is almost identical.

This is because sandboxes are usually allocated at a rate much lower than M (the average

is 3.4% of the peak), and even if it does, the high allocation rate does not last long because

the scheduler can reuse old resources for the new load. Consequently, the system is barely

affected by changing the parameter.

Impact of Length of Correlation Period Figure 5.16 reveals a sublinear relationship

between the overhead of ensuring 99.9999% guarantee availability and the length of the

correlation period (TC). Increasing the length from 100ms to 100s is equivalent to switching

to an underlying system with correlations that last three orders of magnitude longer, but this

requires less than 10x more resources. This is because the RBAM system uses a longer gap
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Figure 5.17: Resource Sharing Efficiency

between scaling decisions at longer correlated periods, giving us more chances to get needed

sandboxes within a time slot. This effectively reduces the number of multiple tries (L) needed

to satisfy guaranteed availability, making handling long, bad correlation events less costly.

This result and those in Figure 5.14 strengthen the robustness of RBAM implementation

efficiency against underlying resource allocations, allowing RBAM functions to be deployable

over a wide range of environments with insignificant cost changes.

Impact of Correlation Probability Across all experiment results shown from Figure

5.12 to Figure 5.16, we also vary correlation probability PC from 0 (no correlation) to 1

(allocations always correlated) yet there are consistently slight changes in the corresponding

overhead (most are less than 2× for PC = 0 to 1), demonstrating that the implementation

is highly robust against correlation occurrence frequency. This result further strengthens

the conclusion of RBAM implementation robustness against allocation correlation and un-

expected cloud events, as we have already shown in Figures 5.16 and 5.15.

Takeaway. (Robustness #2) RBAM implementation is robust against a wide range of

cloud environment settings, including many extreme cases that are very far from practice.
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5.7.2.3 Resource Sharing Efficiency

We evaluate resource sharing efficiency by varying the number of functions to be supported

by the RBAM system in the same setting as in Section 5.7.2.1 and report the overhead in

Figure 5.17.

The RBAM system significantly reduces the overhead when adding new function deploy-

ments. Specifically, in Figure 5.17a, increasing the pool size from 1 to 10k functions reduces

the overhead by four orders of magnitude, indicating at least a linear reduction rate. This

demonstrates the advantage of resource sharing, where extra sandbox allocations can be

shared among different function invocations to mitigate the impact of workload variability

and long allocations. They also get reserved to avoid extra future allocations and further

mitigate the side effects of overallocation and multiple tries. The overhead reduction is

saturated at 38% when the system serves up to 10k FaaS deployments.

Furthermore, RBAM implementation is robust and can tolerate a high degree of corre-

lation. Figure 5.17b shows that even when all allocations are correlated (i.e., we change PC

from zero to one), the overhead reduction pattern remains consistent, with a slight increase

in overhead by at most 40%.

Takeaway. (Resource Sharing Efficiency) RBAM implementation is highly scalable

and cost-effective in realistic settings.

5.8 Summary

In this chapter, we demonstrate that implementing an RBAM’s guaranteed invocation rate

is feasible with a resource cost that is bounded by the rate guarantee and the function’s

maximum execution time. However, reducing this cost below the upper limit is challenging
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due to the high variability of FaaS workloads and the complexity and uncertainty of the

cloud environment.

To address these challenges, we propose three performance abstraction techniques: over-

allocation, multiple tries, and resource sharing. These methods enable effective handling of

workload variability and cloud uncertainty with low overhead. Additionally, we introduce

a new RBAM implementation architecture to integrate these techniques into the FaaS sys-

tem, forming new scheduling and resource management algorithms to deliver performance

guarantees efficiently, robustly, and scalably.

We theoretically prove the new system ensures RBAM performance guarantee with

bounded cost that is robust against various workloads and deployment settings. We val-

idate our findings through extensive experiments, including both practical cloud settings

and synthetic scenarios that cover a wide range of challenging settings. We demonstrate

that RBAM can be implemented effectively with 500× higher availability than the current

cloud standard while reducing the resource cost by 10× compared to the implementation up-

per bound. The efficiency is consistent across various settings. Even in extreme cases, which

are 100,000 times worse than practical settings, the new RBAM system requires less than

10 times more resources to meet the desired guarantees. RBAM implementation also scales

well. We can implement up to 10k practical FaaS deployment with 99.9999% availability

but cost less than 40% extra resources.

To summarize, let us revisit the research questions related to RBAM implementation in

Section 3.2 and answer them as follows
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Implementation Efficiency. Can RBAM be implemented efficiently?

Q.2.1 Can RBAM be implemented to support any finite guaranteed invocation rate?

• Answer: Yes, by Theorem 12, we showed that any RBAM function fi with

finite guaranteed invocation rate Ai and execution time bounded by Ei can

be implemented with resource cost bounded by ⌈AiEi⌉.

Q.2.2 Can RBAM also be implemented with low overhead across various scenarios?

• Answer: Yes In Section 5.7.2, we systematically evaluate the new FaaS

system using both realistic and synthetic settings to show that we can im-

plement RBAM with 500× higher availability than the current cloud stan-

dard but cost 10× less than the implementation upper-bound. The efficiency

is consistent across various settings. Even in extreme cases that are up to

100,000× worse than the current practice, the resource cost required to fulfill

the guarantee is less than 10× compared to the practical setting.

Q.2.3 Can RBAM be implemented scalably?

• Answer: Yes Also in Section 5.7.2, we show that our RBAM system can

support up to 10k practical FaaS function deployments with 99.9999% avail-

ability but costs only 38% extra resources.

With these answers, we complete showing the RBAM can be implemented efficiently.

98



CHAPTER 6

RBAM APPLICABILITY

In this chapter, we will demonstrate RBAM applicability using the RBAM compute model

to implement two bursty, real-time applications with RBAM: distributed video analytics

(Section 6.1) and distributed real-time stream processing (Section 6.2). In each section,

we first briefly introduce each application and show why implementing them using current

solutions is challenging (Sections 6.1.1 and 6.2.1). Next, we show how the RBAM compute

model helps address these challenges and deliver corresponding RBAM implementations of

the applications in Sections 6.1.2 and 6.2.2. Finally, we systematically evaluate them with

different deployment and workload configurations to demonstrate RBAM applicability in

Sections 6.1.3 and 6.2.3.

6.1 Distributed Real-time Video Analytics

Distributed Real-time Video Analytics are popular representatives of bursty real-time ap-

plications [71, 329]. The application collects video recorded by multiple cameras installed

over a specific region to extract useful information or to take action when an event happens

[260, 97, 259, 190]. Both usually lead to a bursty demand that needs a real-time response.

One example is traffic monitoring, which continuously analyzes video streams of traffic

recorded by cameras installed at intersections (Figure 6.1). The application is interested in

unusual events such as car crashes, pedestrian falls, etc. Once such an event happens, it

triggers an in-depth analysis to understand the situation and make proper decisions (e.g.,

call the police, broadcast a warning signal, etc.). The in-depth analysis uses a sophisticated

Machine Learning (ML) model on high-resolution video streams, eventually creating signifi-

cant resource demand. Further, the analysis must be processed quickly because the event is
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Figure 6.1: Traffic Monitoring: An example of distributed real-time video analytics

Burst

Height

(H)

Burst 

duration (D)

Time

(frame-times)

Compute

Reqmt

(CPU)

…

Time between two consecutive bursts (1/𝜆)

Figure 6.2: Video Analytics Burstiness Modeling

crucial. Prolonged computation latency decreases application value/quality (e.g., a delay in

calling an emergency medical service after an accident may lead to severe consequences).

6.1.1 Challenges

We consider the in-depth analysis a single computation task, Video Analytics (VA),

and implement it considering two common approaches: pre-allocation and FaaS. But before

digging into the implementation, let us first formally model VA’s burstiness and real-time

requirements, which will help construct its implementations and evaluation.
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6.1.1.1 Analytical Model

Since in-depth analyses are only required by some unexpected events, when triggered, they

will have distributed cameras generate high-resolution video frames with a fixed release rate

equal to the video frame per second (fps). Assuming bursts appear with average frequency

λ. Consider an in-depth processing burst with D video frames F1, ..., FD ordered by arrival

time. For simplicity, we use frame-time, the interarrival between two video frames, as a time

unit instead of a second. We assume video frames take identical computation demand H to

complete within a frame-time. Since in-depth analysis is a computation-intensive task, we

use the CPU as the unit for computation demand. We visualize these parameters in Figure

6.2.
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Figure 6.3: Value decay as frame processing startup latency increases.

To capture the VA real-time requirement, we use value or quality to represent the satis-

faction of VA on resource availability in helping it deal with bursts. In particular, VA needs

fast computation, so there is a loss of value (or quality) when frame processing is delayed.

We model this as the value decays with frame processing delay. Specifically, we use an ex-

ponential decay with frame processing startup latency with τ as the critical time constant

for VA. That is, given a single burst frame Fi, delayed by δi frame-time, its value Vframe(i)
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Symbol Name Definition Unit
Burstiness Properties
λ Burst rate Burst average emergence frequency burst/frame-time
Fi Burst frame Frame/burst indexed by arrival order
D Burst duration Number of video frame per burst frame/burst
H Burst height burst frame computation demand compute/frame
Real-time Requirement Parameters
Vmax Max. Value Maximum value per frame
δi Startup Delay Time a frame Fi waits for processing frame-time
τ Value delay Characteristic time period
Vframe(i) Actual value Actual value for a frame Fi
BurstV alue Burst value Aggregated frame value per burst
Deployment Parameters
P Pre-allocation static allocation resources CPU
A Rate guarantee CPU guaranteed allocation/frame-time CPU/frame-time

Table 6.1: Video Analytics Notations

is defined as

Vframe(i) = Vmaxe
− δi

τ (6.1)

where Vmax is the maximum value the frame processing can achieve. For simplicity, Vmax =

1. The value decays as frame processing startup latency increases. The speed of the decay

depends on τ . The higher τ , the bigger Vframe(i) drops per time unit. In other words, VA

with high τ has a stricter deadline and requires a higher frame processing speed. Figure 6.3

shows how value decreases as latency increases. Here, τ is chosen to drop the value by half

per minute. Vframe(i) are aggregated to compute burst value:

BurstV alue =
D∑
i=1

Vframe(i) = Vmax

D∑
i=1

e−
l(i)
τ (6.2)

We use BurstV alue to evaluate the efficiency of VA implementations. Notations are sum-

marized in Table 6.1.
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Figure 6.4: Deploying VA with pre-allocation

6.1.1.2 Pre-allocation

Pre-allocation is the most simple yet common approach. The application developer estimates

the maximum resources needed when the in-depth analysis is triggered and allocates that

amount statically at deployment time.

Based on the analytical model, to maximize BurstV alue, we need the video processing

delay δi = 0 for all i. This is achieved if the pre-allocation is big enough that allows the

deep analysis on a single frame to complete just before the next frame releases. Based on

the burstiness model, let P be the amount of pre-allocation resources. Assume that VA

processes frames in FIFO fashion, then the processing startup latency for frame Fi can be

expressed as

δi =
i ·H
P
− i (6.3)

Clearly, the later Fi arrives (i.e., i is large), the longer it has to wait to be processed (i.e.,

δi gets larger). We visualize this effect in Figure 6.4 where P = 0.5H. We can see that

F7 arrives four frame-time after F3 and have its latency 3.5x longer (δ7 = 7 frame-time

while δ2 = 2 frame-time). This happens because the computation allocation P is fixed, but

during burst periods, computation demand keeps increasing as more burst frames arrive.

This means that once a frame processing is blocked by its preceded ones, such blocking
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will cascade to its succeeding ones. This makes the processing latency accumulate and get

worse as the burst lasts longer. However, we can eliminate this effect if we allocate sufficient

resources to completely absorb each burst frame before the next release. This can be done

by having δi = 0 for all i, which, by equation 6.3, gives us

P = H (6.4)

However, recall that burst frames do not always release. During non-burst periods, which last

for 1− λ ·D fraction of the time, the computation demand is zero, and the H pre-allocation

is wasted (Figure 6.4). That is the pre-allocation cost:

Costprealloc = H(1− λ ·D) (6.5)

6.1.1.3 FaaS

In the FaaS implementation, we realize the VA as a single FaaS function deployed by a best-

effort FaaS system in the cloud. When the in-depth analysis is triggered, distributed cameras

send high-resolution video frames to the cloud, each requesting a FaaS invocation to process

the video frame content (Figure 6.5). Since burst frames are processed by on-demand FaaS
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invocations, and these invocations are terminated right after completion, the cost incurred

by FaaS is the actual resource use of VA. Thus,

CostFaaS = 0 (6.6)

Meanwhile, the startup latency is determined by how fast the FaaS system starts new in-

vocations in response to their releases. Let A be the number of invocations started per

frame-time. We assume each invocation is allocated with 1 CPU; thus, A is also the resource

allocation rate, and each frame needs H frame time to complete once it gets started. Given

A, the frame processing startup latency, δi, becomes

δi = i ·min[0,
1

A
− 1] (6.7)

Different from pre-allocation, the latency δi is not accumulated because, in the FaaS model,

each invocation is treated independently. To maximize BurstV alue, we need A = 1; that

is, the invocation rate must be equal to the frame release rate (i.e., the frame-per-second).

However, because FaaS starts invocations in a best-effort manner, the invocation rate is not

guaranteed. Thus, in the worst case, A = 0 during burst period, and by Equation 6.7,

δi =∞ for all i resulting in BurstV alue = 0.

Takeaway. (VA Deployment Challenges) Current approaches are insufficient for VA

deployment. They are either costly (pre-allocation) or fail to guarantee real-time perfor-

mance (FaaS).
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6.1.2 RBAM-based Implementation

6.1.2.1 Video Analytics on RBAM

Now, let us use RBAM to resolve the challenges left by pre-allocation and FaaS. By definition,

RBAM is FaaS with a guaranteed invocation rate. Thus, by the analytical modeling, we

can deploy the VA on RBAM similarly to FaaS. The only difference is the rate guarantee

configuration. With RBAM, the invocation rate A is guaranteed, and from Equation 6.7,

by configuring the rate-guarantee A = 1, we ensure invocation will start at the same rate at

video frame releases, ensuring zero frame processing startup latency, and thus, maximizing

the BurstV alue. Further, because RBAM invocations are used on burst demand, it has a

similar cost to FaaS:

CostRBAM = 0 (6.8)

With these results, we can see that RBAM can ensure real-time performance at pay-as-you-

cost and successfully address all limitations of the current approach. This makes RBAM an

appropriate solution for VA deployment.
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6.1.2.2 Real-time Serverless

To demonstrate RBAM capabilities with practical workloads, we have built an RBAM pro-

totype named Real-time Serverless (RTS). RTS is implemented based on OpenFaaS – an

open-source FaaS system. The system design is depicted in Figure 6.6 following the pro-

posed RBAM architecture in Figure 5.6 (see Section 5.4) with many components inherited

from OpenFaaS [240].

Besides the rate-based scheduler and resource manager in the original RBAM architec-

ture, we also developed an admission control to support FaaS function deployment and

modification. All FaaS deployment submissions have to go through admission control before

being deployed and executed. The admission control can reject deployment requests if there

are insufficient resources to realize the rate guarantee. When the user submits an RBAM

function fi, RTS first extracts its guaranteed invocation rate Ai and maximum runtime Ei,

then triggers admission control to check if there are sufficient resources for deployment. The

admission control has the rate-based resource manager try allocating a quantity of resources

high enough to meet the rate guarantee. If the allocation succeeds, the rate-based resource

manager will hold the resources for the function fi, and the admission control returns de-

ployment success. If the invocation fails, the admission control lets the rate-based resource

manager roll back the allocation and rejects the deployment request.

Takeaway. (VA on RBAM) Implementing VA tasks with RBAM functions allows us

to maximize application value at minimum resource costs.

6.1.3 Evaluation

6.1.3.1 Methodology

Workloads We evaluate VA deployments using synthetic workloads generated with the

following burstiness configurations
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• Burst arrival rate follows a Poisson process with average rate λ = 0.3/hour.

• Burst duration D (e.g., number of video frames per burst) varies according to Gaussian

distribution with mean D = 2 min.

• Computation demand H: 30 CPUs

• τ = 2, 607 – value decays 1/2 per minute

Approaches We evaluate RBAM deployments with various guaranteed invocation rates

A. For the special case A = 0, RBAM is equivalent to best-effort FaaS, which gives the

application no guarantee to obtain additional invocations rather than those allocated at the

normal state (i.e., no in-depth analysis). Since the burst load is significantly higher than the

normal load, we assume 1 invocation is sufficient for the normal load, but this quantity is

not enough during a burst.
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Figure 6.7: Per-frame guaranteed value at various guaranteed invocation rates (A)

6.1.3.2 Real-time Processing Efficiency

Figure 6.7a shows the distribution of per-frame guaranteed value using RBAM at different

guaranteed invocation rates A. For the baseline, at A = 0 (i.e., equivalent to best-effort
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FaaS), the lack of rate guarantee forces the application to rely on invocation allocated at

normal state for value guarantee so only a tiny fraction of the maximum value is delivered

(the request values mostly at left). With A > 0, as the guaranteed invocation rate, A,

is increased, the application can service a burst by allocating invocations more and more

rapidly. Even a small A significantly increases the number of frames achieving close to

the maximum value (orange), and further increases in A (green, red) improve the situation

dramatically. For example, with A = 0.6, the application can ensure that all frames exceed

40% of the maximum value. As A increases towards 1 (i.e., the video frame release rate),

a growing frame value guarantee can be achieved, reaching 100%. This illustrates that the

guaranteed invocation rate helps applications improve computation value/quality.

Another way to think about application quality is to ask what fraction of requests achieve

a particular fraction of maximum value. We plot this metric versus the guaranteed invocation

rate in Figure 6.7b. To achieve 50% of the maximum value for even half of the frames, the

application needs to use the FaaS function with A equal to half of the burst frame release

rate. To achieve 50% of the maximum value for 100% of the frames, an A = 0.67 is needed.

At the high end, to achieve 90% of the maximum value, A = 0.85 is required for 50%

of the frames, and 0.9 for 100% of the requests. At A = 1, the application can deliver

100% of the maximum value. This illustrates that RBAM enables bursty applications to

provide a guarantee of high quality. The results are essential because they suggest that with

a proper choice of A, applications can meet any quality target. Such capability unlocks

rational designs that open more space for applications to operate and exploit resources more

efficiently.

The results show that the guaranteed invocation rate is the critical enabler of high value.

By configuring RBAM guaranteed invocation rate A to match burst demand, the application

is guaranteed to meet its computation deadline with zero value degradation. Furthermore,

even at A < 1, RBAM can still guarantee a fraction of application proportional to A. This
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enables rational design for quality where the application can utilize the guaranteed invocation

rate as a quality control parameter to balance quality with other factors, such as cost.

Takeaway. (Real-time Processing Efficiency) RBAM enables bursty, real-time ap-

plications to configure for high computation value.
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Figure 6.8: Burst value vs. Guaranteed Invocation Rate (A) with varied burst duration
standard deviation (σ)

6.1.3.3 Robustness

Next, we evaluate RBAM against workload burstiness by varying burstiness properties, one

by one. The goal is to demonstrate its applicability, showing that RBAM can be configured

for a wide range of workload burstiness, making it a good candidate for various applications

and workloads. Further, we will show that when reconfiguration is required, the changes

are insignificant compared to the changes in workload burstiness, making RBAM a stable,

reliable option for bursty, real-time applications.

Robustness against Burst Duration Variability we vary burst duration (D) by gen-

erating workloads at different duration standard deviations (σ). Figure 6.8 shows the achiev-

able guaranteed burst value at different guaranteed invocation rates normalized by the max-

imum burst value in three duty factor scenarios: high (DF = 0.25), medium (DF = 0.1),
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and low (DF = 0.01) where DF is burst duty factor, defined as

DF = λ ·D (6.9)

At low duty factor, changing σ does not cause many effects on guaranteed burst value (Figure

6.8a). However, as the duty factor increases, value deterioration becomes more severe, and

high variability bursts will experience a worse impact. At duty factor DF = 0.1, burst with

σ = 1x mean duration suffers 15% burst value loss at A = 1 (Figure 6.8b), and if duty

factor jumps to DF = 0.25, the loss increases to 19%. If σ is doubled to 2x duration, the

loss is 2.2x to around 42% (Figure 6.8c). However, value reduction can be solved by simply

increasing the guaranteed invocation rate. For example, A = 2 invocation/frame-time will let

the application achieve 100% burst value from bursts with σ = 1x duration. Even for highly

variable bursts of σ = 2x duration, a guaranteed invocation rate of A = 3 invocation/frame-

time is sufficient. Also, note that burst variability only takes effect at high duty factor, but

in response, only a small invocation rate increase is needed to saturate the impact. Even at

σ = 2x duration, rising duty factor from 0.01 to 0.25 (25x demand increase) only requires a

3x guarantee invocation rate increment (i.e., 3x resource commitment increase, See Section

5.6.2). This confirms the robustness of RBAM against burst variability.

Robustness against Burst Interference In practice, the application may need to pro-

cess data from multiple sources (e.g., video analytics receive video frames from multiple

cameras). This creates a chance for burst interference – multiple bursts happen concurrently

that dramatically increase demand for new FaaS invocations. We simulate this phenomenon

by varying the burst duty factor. At high duty factor, bursts arrive more frequently and last

longer, increasing the probability of two or more bursts occurring concurrently.

Figure 6.9a shows the probability of having one, two, and more bursts simultaneously

under different duty factors. There are two important observations from the figure. First,
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Figure 6.9: Burst interference probability and achievable guaranteed burst value at different
duty factor (varying λ)

the high duty factor increases the chance of burst interference, as we explained above. For

example, at duty factor DF = 1%, the probability of having a two-burst interference is only

0.005% while DF = 25% increases the chance to 2.5%. Second, varying the duty factor is also

equivalent to varying burst demand. Thus, we can consider increasing the duty factor from

0.1 to 0.25 as an increase in the workload demand by 25x. However, due to the burstiness

structure, this does not increase the bursty load by the same amount: at DF = 0.01, The

occurrence chance of more than three bursts at a time is extremely low, less than 0.00001%.

Increase demand by 25x, at DF = 0.25, more than six bursts at a time have the same chance

of occurrence. From the resource allocation point of view, this means at the same risk level,

we need only 3x more resources to handle 25x more loads. RBAM users can exploit this

property to configure the rate efficiently.

Figure 6.9b shows guaranteed burst value at various duty factors. Note that at burst

interference, demand is doubled, tripled, or more depending on the number of bursts involved.

This means to saturate double burst interference, the application needs to allocate resources

2x faster, for triple burst interference, 3x invocation rate is required, and so on. Thus, in the

figure, the breaks of curves at A = 1 and A = 2 indicate the value reduction effect of burst
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interference. However, due to low interference probability, the impact is manageable: 14% of

the burst value for DF = 0.1, and 30% of the burst value for DF = 0.25. Further, achieving

100% of burst value in the face of a 25x duty factor increase only requires a 3-fold increase

in guarantee invocation rate. Therefore, RBAM is robust against burst interference.

Concurrent Bursty Real-time Applications One can think of high duty factors as a

single application with many events or as a combination of multiple independent applications

with much lower duty factors sharing a single RBAM function. Thinking of the latter, we

explore how higher guaranteed invocation rates can increase burst value toward the potential

maximum.
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We examine the potential for multiple applications to share a single RBAM function

efficiently. Consider 10 applications, each accounting for DF = 0.01 summing to DF = 0.1

and 25 applications, each accounting for DF = 0.01 summing to DF = 0.25, and so on as

shown in Figure 6.10. For low burst value (< 0.5), there is little difference in the required A.

For moderate values, the difference grows but at a deeply sublinear rate. For example, for

the value of 80% potential maximum value, an increase from 1 to 25 applications requires a

2x increase in A, resulting in only 2x more cloud resource commitment.
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Frame i Frame i+1

Optical flow estimationFeature points

Figure 3: Extracting feature points on a road sign in
frame i, computing the optical flow for each of the
points, and locating the points in frame i+ 1.

Scheme Device-only Offload to Server (Wi-Fi)

Road sign recognition 11.32 J 0.54 J
Face recognition 5.16 J 0.44 J

Table 1: Energy consumption of the object recogni-
tion pipeline for a single frame on a Samsung Galaxy
Nexus.

uses the Lucas-Kanade tracking algorithm [35], which maps
the location of the object from one frame to the next in
two steps: (1) extract feature points representing the mov-
ing object [49], and (2) estimate where those feature points
could be in the second frame to locate the object. For the
first step, one can reuse the feature points and the bounding
box obtained in the feature extraction and detection stages.
Alternatively, one could apply algorithms such as good fea-
tures to track [49], SIFT [34], or SURF [7] to locate corners
and prominent points in the moving object. These features
points are then tracked across frames using optical flow tech-
niques [8, 24], which compute the velocity of points between
frames.

The result of the tracking stage is a set of successfully
tracked feature points in the second frame. Figure 3 shows
an example of extracted feature points on a road sign, and
the result of tracking. In general, object tracking is a faster
operation compared to the recognition pipeline.

2.3 Challenges and approach
We ran the various recognition and tracking tasks de-

scribed above on different platforms and measured their per-
formance. Table 2 shows the results for Google Glass, a
smartphone, and a server machine. We found that all stages
showed significant processing time differences between the
server and the mobile device. For example, running object
detection on the device can be 11-21× slower than running
it on a typical server machine; feature extraction can be 18×
slower, and recognition can be 14× slower.

The increased processing time also leads to increased en-
ergy consumption. Table 1 compares the energy consump-
tion for processing a single frame on the device and offload-
ing. The energy consumed by executing the entire pipeline
on the device is 12-21× more compared to energy consumed
when each frame is offloaded to the server.

The feature extraction and the recognition stage have a
large memory requirement. Beyond a point, the trained
model will be too big to fit in a mobile device’s memory.
In addition, maintaining and updating the database of la-
beled objects is best done on the server.

Recently, some mobile device manufacturers have incor-
porated face detection in hardware [1]. The facility signifi-
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Object	  labels,	  bounding	  boxes	  

Feature	  points	  
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bounding	  boxes	  
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Differencing	  
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Object	  labels,	  
bounding	  boxes	  Frames	  

Object	  
Detection	  
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Frame	  

Active	  
Cache	  	  

Figure 4: Glimpse Architecture. We explain active
cache in §3 and trigger frame in §4.

cantly reduces detection time by 6×, from 1129 ms to 175
ms (Table 2 rows 5 and 6). Feature extraction and recog-
nition, however, are still expensive operations that are best
executed on the server. Moreover, there are no hardware de-
tectors for other objects other than faces on devices today.

Finally, we note that object tracking is fast on the mobile
device (last row of Table 2).

These results demonstrate the importance of offloading
object recognition tasks to the servers. Offloading, however,
presents a key challenge: network delivery and server pro-
cessing latency, which could be several hundred milliseconds
(or more) for individual frames. Sending every frame to the
server would significantly degrade trackability (Figure 1).

Figure 4 shows the processing architecture of Glimpse.
The Glimpse client runs on the mobile device, receives and
stores frames captured by the device’s camera, and sends
trigger frames to the server. The server runs the stages of
the recognition pipeline on each frame it receives, producing
bounding boxes with labels as well as feature points for each
recognized object. The client uses the feature points in its
tracking phase through the active cache, processing only a
carefully selected subset of frames to track, adjusting the
bounding boxes to the current frame (§3), thereby hiding
the network latency from the user. It continuously annotates
the user display with the tracked bounding boxes and object
labels.

The key aspects of Glimpse are its active cache and trigger
frames, which are described in the next two sections.

3. ACTIVE CACHE
The active cache addresses the following problem: how to

locate moving object(s) on the mobile device when it takes
many frame-times to obtain information, which turns out to
be stale, about the object(s) from the server?

Our approach tracks objects on the mobile device by com-
puting the optical flow [8, 24] of features between the pro-
cessed frame for which results are obtained from the server
and the current frame viewed by the user. To aid this track-
ing, in addition to returning labels and bounding boxes, the
server also returns the feature points for recognized objects
in the processed frame. Tracking these feature points will al-
low us to move the bounding box to the correct location in
the current frame. Unfortunately, this solution only works if
the displacement of the object is small between the frames.

Figure 6.11: Glimpse System Architecture (from [97]).

The curves cover the guaranteed invocation rate needed for a wide range of duty factors

from 0.01 to 0.25, but they are very close to each other, indicating that only a small increment

of invocation rate is sufficient to deal with a significant increment of burst demand. At 90%

max guaranteed value, the multiple is even smaller, requiring a 1.6x guaranteed invocation

rate increase for a 25x increase in the number of applications. These results suggest that

RBAM scales well – supporting a growing number of bursty, real-time applications at high

quality with a slowly growing number of resources.

Takeaway. (Robustness) RBAM deployment is robust against burstiness properties and

requires sublinear cost in response to burstiness changes.

114



Burst Duration (frames) Burst Height
Mean StdDev Min Max Mean StdDev Min Max

Night 116 186 30 2,445 21 3 20 80
Day 120 216 30 2,323 20 3 20 80
Rush hours 917 1293 30 7,464 48 23 20 200
Overall 197 503 30 7,464 24 11 20 200

Table 6.2: Burst Statistics for Traffic Video

6.1.3.4 Case Study: Traffic Intersection Monitoring

Next, let us demonstrate the capability of RBAM mentioned above through a realistic appli-

cation using Real-time Serverless. We model a Glimpse-like pipeline with a client and server

(the cloud) that processes video frames considered interesting by the shallow processing at

the client [97] (see Figure 6.11). Glimpse uploads frames to the server for object detection.

Our empirical measurements characterized the server-side frame processing cost at 20x for

object detection, but this ratio could be much higher for richer analytics. We use a rush-hour

traffic video captured by a traffic camera in Southampton, NY, at the intersection of County

Rd. 39A and North Sea Rd. and available from [310]. The video is 30 frames per second at

a resolution of 1920 × 1080 color pixels per frame.

Because we are interested in analyzing complex behavior such as erratic driving, reckless

walking, or traffic incidents, we use an efficient model [160] with ResNet trained on KITTI

dataset[139]) to process the video and annotate it with object appearance and departure

intervals. These object intervals are combined and collectively create the bursts (see Table

6.2). To scale up to a full 24-hour from our short, rush-hour clip, we replicate it to create

two 60-minute segments (morning and afternoon rush hour). We scale the time base by

20x while holding object interval duration constant, creating an 8-hour segment of lower

traffic (daytime). Finally, we scale the time base by 40x while holding the object interval

duration constant, creating a 14-hour segment of the lowest traffic (nighttime). The total

number of bursts is 2,311, and the duty factor is 0.175 for the 24-hour period. The number
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Figure 6.12: Per-Frame Value achieved by Application varying Guaranteed Invocation Rate

of objects present in each frame multiplied by the server-side frame computation cost ratio

(20x) defines the burst height.

Quality Guarantee We first explore the basic characteristics of the traces, as shown

in Table 6.2. The burst durations are much shorter than those explored in the previous

experiments, with an average burst duration of 7 seconds (210 frame-times). Moreover, both

the burst duration and height are highly variable within each part of the day.

Figure 6.12 shows the value distribution of the video trace; while similar qualitatively to

Figures 6.7a the real burst trace is much noisier. The traffic analysis quality benefits from

increasing A are shown in Figure 6.12b. Three curved sections are visible and correspond to

the three different operating points – rush hour, daytime, and nighttime. At A as little as

0.25, all the nighttime value is captured. At A of 0.9, the daytime value is captured. Figure

6.12b shows flat curves and very little separation by a fraction of the per-request value. This

reflects a difficult workload for increases in A to improve application quality. To achieve full

quality on the intense activity during rush hour (10 objects in frame) requires A = 1.

Results from Figure 6.12 confirm that RBAM guarantees the traffic monitoring applica-

tion value. By increasing A, the application can improve the guaranteed quality, although
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Figure 6.13: Traffic Monitoring application cost for varied RTS cost scenarios (5-minute
sliding average)

compared to the synthetic data, quality increases much slower due to the extremely high

duty factor during rush hours. Furthermore, at A = 1, real-time serverless enables the ap-

plication to achieve the maximum target value. This confirms the robustness of RTS against

realistic workloads.

Rate Guarantee Realization Cost Figure 6.13 shows how the burst load varies over

the 24-hour period. To illuminate how the RTS system responds with time, we overlay the

application cost of both an RTS implementation at various cost ratios (k). The baseline is

Reservation FaaS (RF), which pre-allocates just enough invocations in advance to get 100%

value. The benefits of dynamic management are clear. Considering the full 24-hour day,

the RTS approach is 8.3x less expensive for k = 2, 4x less expensive fork = 4, and 2x less

expensive for k = 8x. In short, the RTS resources are 16x more valuable than pre-allocation.

Takeaway. (Case Study) The case study confirms the RBAM real-time guarantee ca-

pability and cost-effectiveness.
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6.2 Stream Processing

In recent years, the use of stream processing models (e.g., [339, 17, 22]) has increased [38].

This rise in popularity is driven by the need to analyze and act upon the ever-increasing

data in real-time, ensuring competitiveness in today’s fast-paced digital landscape [182,

135]. The stream processing model enables performing real-time analytical tasks efficiently

and scalably. The model treats input streams as flows of separate tuples and organizes

applications as Directed Acyclic Graphs (DAGs), called workflow, consisting of operators

placed on distributed computing nodes. Immediately after creation, tuples are taken through

the workflow and processed by their operators in an on-the-fly fashion, delivering analytical

results with low latency. Also, each operator can run multiple copies concurrently to exploit

the hardware parallelism capability, easing high-throughput computation [112, 324]. The

resulting capabilities make stream processing an essential paradigm for data analysis at

scales from smart homes [50] to large-scale industries [257].

Thus, many Stream Processing Engines (SPEs) have been proposed to automate workflow

description, deployments, and operation efficiently. Many are pure, general SPEs and act

as a building block for larger data analysis systems [22, 17, 269]. Meanwhile, others are

customized for specific infrastructures [98], applications [305], or workloads [237, 307, 214].

6.2.1 Challenges

Modern SPEs deploy stream processing workflows by mapping operators onto workers – a

computation abstraction provided by the underlying resource manager for efficient hardware

exploitation (Figure 6.14). Popular choices of worker abstraction are threads, processes,

and containers. With all computation handled by operators, operator-to-worker mapping

is crucial to workflow performance. To deal with varied operator complexity, SPE assigns

to each operator a parallelism configuration, essentially the number of the operator’s copies

that can execute concurrently. SPE allocates a corresponding number of workers, each to
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Figure 6.14: Worker-based SPE Architecture. Operators are mapped onto workers across
multiple machines. The parallelism configuration specifies high-cost operators mapped onto
multiple workers for efficiency.
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Figure 6.15: Worker-based SPEs have poor performance transparency as throughput greatly
varies across different resource configurations.

run an operator copy, and distributes them across its cloud resources. For example, in Figure

6.14, O2 and O3 are compute-intensive operators, so they have their parallelism set to two,

resulting in two copies and getting two workers, while O1 and O3 only have one. This

configuration creates six operators, which need an allocation of six workers distributed over

two machines. One hosts O1 and O2, and another hosts O3 and O4.
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Figure 6.16: Worker-based SPEs have poor predictability as throughput is interfered with a
competitive load.

6.2.1.1 Performance Transparency Challenges

Worker-based SPEs tie workflow performance to underlying worker resource configuration.

Because these details are not part of the application abstraction, performance is not trans-

parent. Figure 6.15 shows the maximum throughput of executing an ETL workflow on

a 4-core machine deployed by three worker-based SPEs: Storm [22], EdgeWise [136], and

Dhalion [131] (see Section 6.2.3). We try four machine configurations (Section 6.2.3): one is

bare metal while the others are VMs provisioned by different hypervisors while sticking with

only one parallelism configuration (Figure 6.20a). The throughput is extremely sensitive to

resource configurations, with performance varying as much as 3-fold. For example, Storm

running on KVM gets only 27% of bare metal throughput.

The results illustrate that workflow performance is not transparent yet strongly depends

on the hardware resource configurations to which workers have access. Hence, no one-size-

fits-all workflow configuration can be used for every deployment. Instead, the SPE has to

understand the underlying resource configurations and reconfigure workflow accordingly to

maintain good performance.
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6.2.1.2 Performance Predictability Challenges

Most distributed systems operate in shared environments (e.g., the cloud and edge). This

means that workers are often collocated with other applications, and the resources allocated

to them can vary significantly depending on these applications’ behaviors. This variability,

coupled with the transparency challenge, further complicates the performance predictability

for SPE applications. In Figure 6.16, we demonstrate this by plotting the throughput of an

ETL workflow normalized by its input rate when collocated with an aggressive competitive

load on a single Azure VM. As we gradually increase the computation demand of the com-

petitive load, we observe a significant drop in ETL’s throughput after the competitive load

exceeds 70%.

The results illustrate that workflow performance is tied to its collocated applications.

As a result, workflow performance is hard to predict. One deployment that works well

may become ineffective when some surrounding applications change. Unfortunately, these

changes are typically out of SPEs’ control, making performance predictability challenging.

6.2.1.3 Implications for Applications

Application developers compensate for poor performance transparency and predictabil-

ity by over-provisioning, wasting resources. A better approach is to repeatedly reconfigure

workflow for any significant change to the environment or application until performance

meets the desired level [269, 112, 131]. However, this only works if the SPE reacts properly

to the change. Failing to select an appropriate configuration would result in multiple rounds

of reconfiguration, causing performance instability or over-provisioning.

Another implication of poor performance transparency and predictability is difficulty in

changing workflow configuration (e.g., migrating workers from one machine to another). Such

application reconfiguration can be desirable to manage cost, adjust to load dynamically, or

move to other resources in response to outage, preemption, or perhaps power cost. For these
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Figure 6.17: The RBAM approach to stream-processing: Operators are wrapped by FaaS
functions, providing invocation-level dynamic resource management. One RBAM for each
FaaS function ensures its required tuple processing rate.

reasons, most SPEs do not even support multi-site execution. For example, the design of a

workflow deployment that spans two data centers or datacenter and the edge is a bespoke,

manual activity [214, 237].

More directly, the above challenges make deploying a workflow over multiple data centers

tricky; many manual efforts are required for each configuration. Worse, flexible reconfigu-

ration across cloud and edge – a signature challenge for many applications – is difficult. In

the edge’s dramatically more complex environment of heterogeneous resources and networks,

manual configuration and tuning may be impossible.

Takeaway. (Challenges) Worker-based SPEs rely on the underlying worker implemen-

tation for performance, which limits the performance transparency and predictability of

stream processing applications, making it difficult for them to configure for performance.
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Worker Model RBAM
Service Model Continuous Discrete (invocation)
Allocation Static Dynamic
Guarantee None Rate (invocations/sec)

Table 6.3: Worker-model and RBAM Comparison

6.2.2 RBAM-based Implementations

6.2.2.1 Stream Processing on RBAM

We resolve the performance challenges by replacing the worker model with FaaS invocations,

as shown in Figure 6.17. Operators are implemented as FaaS functions, and the topology is

encoded as FaaS invocation chains, with tuples passed as function arguments. For example,

operators O1, O2, O3, O4 becomes separate FaaS functions f1, f2, f3, and f4, respectively.

The SPE handles each arriving tuple by first invoking f1. After completion, f1 triggers

f2 and f3 with the output embedded inside their invocation requests. These invocations

extract f1’s output from the requests, process it, and then pass their results downstream

until reaching the sink operator.

Regular FaaS performance is best-effort. Invocation allocation may fail or get delayed,

degrading workflow performance. To workaround, we let application developers configure

per-operator rate requirements, specifying the expected processing rate of these operators

after deployment. Once a workflow is submitted, rate requirements are tied to their corre-

sponding FaaS functions; each provisioned in a Rate-based Abstraction Machine (RBAM).

As in Figure 6.17, f1’s rate requirement is λ, equal to the input rate of its operator, O1.

Rate configurations are equivalent to worker-based parallelism configurations yet are easier

to determine by measuring input rate and can be guaranteed through RBAM, enabling a

simpler, straightforward way to specify, configure, and evaluate workflow performance.

More precisely, The RBAM abstraction departs from workers in many important ways

(Table 6.3):
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• Invocation-level Resource Management : In contrast to worker abstraction’s continuous

resource access, RBAM lets applications access resources through invocations, a dis-

crete notion in time and resources. This model naturally matches the stream processing

workload, which is also determined by discrete tuple arrivals.

• Dynamic Allocation: RBAM scales invocation allocation dynamically to tuple arrival

and automatically releases them after finishing processing. This scheme supports both

dynamic scaling and low resource waste. In comparison, worker allocation is rather

static, as one worker often represents a fixed set of resources.

• Guaranteed Rate: while worker allocation offers no guarantee, RBAM allocation sup-

ports a guaranteed invocation rate that enables robust, simple QoS reasoning.

By setting each RBAM rate guarantee to match the operator processing rate, the SPE

guarantees the availability of resources to process tuples at the arrival rate, maintaining

the desired performance. This rate configuration is independent of any underlying resource

configuration, so the SPE application has full performance transparency.

RBAMs also support performance predictability: RBAM allocations ensure their opera-

tors perform well against any load whose input rate is smaller or equal to the rate guarantee.

Consequently, a workflow constructed from these operators also has a performance guaran-

teed up to a specific input rate. This performance predictability enables simple tuple rate

comparisons and negotiation with the underlying RBAM systems to determine if a new con-

figuration is feasible. This framework enables distributed SPE configuration management

for stable performance possible.

6.2.2.2 Storm-RTS: SPE for Distributed Stream Processing

We propose Storm-RTS, a new distributed SPE that translates workflow description into

RBAM to achieve performance transparency and predictability. This enables it to flexibly
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spread stream-processing applications over multiple machines across multi-datacenters from

Cloud to Edge. We describe the design of Storm-RTS to demonstrate this new capability.

Design Requirements Storm-RTS is derived from Storm and reuses its workflow models

to offer essential features of a modern SPE. However, mapping Storm’s workflow model

to RBAM abstraction is not straightforward. First, many essential FaaS configurations,

such as time limit, cannot be inferred directly from Storm workflow configurations. Second,

FaaS functions are highly modular and stateless. Storm, like other worker-based SPEs,

collocates workers for efficiency and maintains operators’ state for various functionalities,

such as consistency and fault recovery. Naively replacing Storm’s workflow executor with

FaaS invocations would reduce efficiency and leave some features infeasible (e.g., stateful

operators). We work around these issues by meeting the following requirements.

• Workflow performance stability : achieve desired throughput and latency across dis-

tributed configurations, reconfiguration (migration), and varied competitive loads.

• Predictable Resource Requirements : operators and workflows characterized for their

resource requirements.

• Modular resource management : can partition workflow across multiple sites/data cen-

ters. Individual site resource managers can independently decide if a workflow can be

placed and meet its performance requirements.

• Compatibility : support Storm workflows and features with similar efficiency and mod-

est change.

Storm-RTS Architecture The key elements of Storm-RTS are shown in Figure 6.18. At

the high level, Storm-RTS has four main components, each responsible for one of the design

requirements listed above.
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Figure 6.18: Storm-RTS Architecture: Operator Profiler, Workflow Coordinator, Executor,
and Rate-based Abstract Machine

• Workflow Coordinator: responsible for enforcing performance stability. It translates

workflow operators received from developers into FaaS functions and associates them with

appropriate configurations, allowing the workflow to sustain the desired load. It is also re-

sponsible for protecting workflow performance from disruptions such as competitive loads,

workflow reconfiguration, migration, etc.

• Operator Profiler: responsible for resource requirement predictability. The component

runs workflow operators offline to profile their computing and memory requirements. This

information configures FaaS functions’ resource requirements, ensuring their invocations

always have sufficient resources to execute their associate operators.

• Rate-based Abstract Machine (RBAM): responsible for enabling modular resource

management. FaaS functions created by the workflow coordinator are deployed sepa-

rately inside RBAM allocations. Once established, each RBAM allocation ensures new

invocations are executed at the configured rate independent of each other, underlying

resource configuration, and other competitive loads.
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• Workflow Executor: responsible for executing workflows and compatibility supports.

It collects tuples from data sources and then triggers corresponding FaaS invocations

to start workflow execution. The workflow executor also reuses Storm’s monitor and

orchestration modules to offer similar data processing support as Storm.

Next, let us describe how these components are glued to perform workflow deployment,

execution, and state management.

Workflow Deployment Workflow developers submit workflow descriptions directly to

the workflow compiler. The description includes workflow topology and rate configuration.

Rate configuration consists of a desired rate λ that developers expect the workflow to handle

and per-operator rate scales µi representing the ratio of each operator’s expected input

rate and the desired rate. The workflow compiler extracts operators’ logic from workflow

topology and then encapsulates them inside FaaS functions.

Each FaaS function fi has the Operator Profile determine its (i) per-invocation re-

source requirement si (mainly CPU and memory), (ii) time limit Ei (i.e., timeout), and

(iii) batch size bi (i.e., number of tuples processed per invocation). This is done by run-

ning operators offline with tuples sampled from historical input stream data. The running

environment is configured to be identical to the environment targeted to execute workflow

operators.

• Per-invocation resource (CPU and memory) requirement (si) and time limit (Ei): the

profiler executes operators starting with excess resource allocation and gradually re-

duces the allocation until observing a 20% execution time increase. This last allocation

configuration and the corresponding execution time are used to configure the FaaS

wrapping the operator.

• Batch size (bi): Since invocation overhead is typically much higher than tuple process-

ing latency (a couple of milliseconds vs. <1ms), Storm-RTS batches multiple tuples in
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one invocation to amortize the overhead. However, this prolongs per-tuple processing

latency. To mitigate this effect, the profiler compares naive operator execution versus

FaaS, varying the batch size, and considers the batch size leading to an efficiency of

70% is acceptable and used to determine the batch size for this operator.

With the information, the workflow coordinator configures per-function rate guarantee

Ai to the number of invocations expected to invoke per second if tuples are generated at the

desired rate λ:

Ai =
λ · µi
bi

(6.10)

This Ai guarantees at least one invocation available for the operator wrapped by the FaaS

function to process all incoming tuples sent at any rate less than or equal to λ, thereby

satisfying the performance stability requirement. After determining the above information

for all FaaS functions, the FaaS Configurator sends these functions and their configurations

to RBAM to check whether the underlying resource manager can support their guarantee

and wrap FaaS functions inside RBAMs with corresponding rate guarantees. If the process

completes successfully, the desired rate is guaranteed so the workflow executor is triggered

to begin execution, no further reconfiguration/profiling is needed.

RBAM Deployments We leverage the the RBAM prototype – Real-time Serverless

(RTS) – introduced in Section 6.1.2 to deploy every FaaS function deployments requested by

the workflow coordinator. For each FaaS deployment fi, the RTS collects its guaranteed

invocation rate Ai and time limit Ei calculated above and creates corresponding RBAM

deployment over the Kubernetes resource management.

Worfklow Execution and State Management For each successful workflow deploy-

ment, the workflow executor creates a set of tuple collectors realizing the workflow

source operators (“spout” in Storm terminologies) to continuously collect new tuples from
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data sources. New tuples are put into tuple queues by destination until their number is

sufficient to form a batch. A FaaS invoker retrieves a batch from the queue and requests a

new FaaS invocation for the appropriate workflow operator, passing tuples as an argument.

Each invocation processes one batch. After completion, to pass on output tuples, the in-

vocation calls the wrapper functions for the operators downstream, passing output tuples

in batch as an argument. This allows the downstream function, in response, to extract the

tuples, perform the operator computation, and call its downstream operator wrappers as

needed, and so on. This mechanism forms tuple processing as FaaS function chains which

are self-synchronized and do not need any dedicated messaging systems as in worker-based

SPEs (e.g., Storm [22] relies on Netty [35] for inter-node messaging).

Storm-RTS provides equivalent state management and functionalities to Storm, including

stateful supports, exactly-once processing, out-of-order events, etc. Since serverless invoca-

tions are stateless, we have to modify RTS to embed an in-memory store called operator

state inside each FaaS container to maintain operator state (e.g., join keys), consistency,

progress tracking, monitoring, and recovery. This information is updated every time a tuple

completes processing and periodically synchronized with a centric state manager. We reuse

Storm modules to implement both operator states and the state manager, ensuring the

state information is handled properly and tuples are sent to FaaS containers in a correct

order and meet users’ desired semantics.

6.2.2.3 Multi-site Deployment with Storm-RTS

Distributing workflow execution across multiple sites (e.g., cloud-cloud and cloud-edge) is

challenging because distributed resources are heterogeneous and can vary in availability.

The Storm-RTS design brings new capabilities to address both issues. First, Storm-RTS

accesses underlying resources through FaaS abstraction, so as long as underlying systems

support FaaS, Storm-RTS can mask heterogeneity via FaaS and assure performance via op-
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Figure 6.19: Storm-RTS for Multi-site Deployment: the application coordinator manages
multi-site deployment. As before, each site has admission control and performance monitor-
ing that implements the local RBAM guarantees.

erator profiling and RTS guarantee enforcement. Second, resources with varying availability

may require workflow reconfiguration. By leveraging the RBAM, Storm-RTS ensures that

such reconfiguration will not affect workflow performance, enabling applications to optimize

their deployments for cost, carbon, or other criteria. To illustrate this capability, we extend

Storm-RTS architecture as shown in Figure 6.19. Each cloud or edge data center runs Storm-

RTS as in Figure 6.18, but now the workflow coordinator is promoted to application

coordinator to orchestrate FaaS deployments across the data centers. Apart from the

original components, the application coordinator adds an operator distributor that

places the FaaS-encapsulated operators across data centers, implementing the desired appli-

cation policy.
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Typical policies include keeping operators close to data sources (often at the edge). If

multiple data centers can host an operator, the coordinator implements the application’s

deployment policy, which picks application configurations from among the candidates.

For example, if edge resources are zero-cost, when available, a policy that minimizes total

deployment cost would push operators to the edge when it is idle and pull them back to the

cloud when it is not. If sustainability is the objective, then the application coordinator

might push operators to the edge when solar panels create plentiful green power but back to

the cloud data center when the solar panels stop generating sufficient green power. Storm-

RTS implements policies by collecting and assessing two sources of information:

• Resource configuration (e.g., resource pricing, Carbon intensity information [37], etc.)

to give insights into resource properties for efficient exploitation.

• Resource availability : collected from resource managers in data centers. The application

coordinator also communicates with RTS systems to determine if an operator place-

ment is feasible at any particular site.

Takeaway. (RBAM Implementation) Replacing the worker model with FaaS invo-

cations backed by RBAM’s rate guarantees makes the SPE performance transparent and

predictable. This also enables flexible stream processing across cloud and edge environ-

ments.

6.2.3 Evaluation

In this section, we will evaluate Storm-RTS against state-of-the-art worker-based SPEs and

a FaaS-based SPE to illustrate how the RBAM’s rate guarantee helps stream processing

applications resolve performance transparency and predictability challenges. This enables

workflow deployment over heterogeneous and distributed resources, unlocking myriad appli-
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Figure 6.20: RIoTBench workflows. Operators are shown as green boxes with numbers
representing parallelism configurations.

cation flexibilities and opportunities for optimized management and simplifying distributed

stream processing.

6.2.3.1 Methodology

Workloads We use the RIoTBench benchmark suite [286], designed specifically for evalu-

ating SPE implementations. We select three workflows (Figure 6.20) capturing typical stream

processing activities over a real-world smart cities dataset [81]: PRED (make predictions on

streamed data), ETL (perform data extraction, transformation, and load), and STATS (ap-

ply statistical summarization). Their parallelism configurations are selected based on the

number of tuples each operator has to process per one input tuple.

Stream-processing Engines (SPEs) We compare five SPEs, representative implemen-

tations of workflow deployment approaches discussed in Section 6.2.1 and 6.2.2.

• Storm [22]: Evaluation baseline. Workers are implemented as threads in a Java Virtual

Machine. Worker allocation and mapping are static.
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• EdgeWise [136]: a Storm variation that replaces static worker mapping with a dynamic

one prioritizing operators experiencing long input queues for higher efficiency.

• Dhalion [131] a worker-based SPE with heuristic dynamic scaling. The SPE allocates

more resources if workflow throughput fails to match the input rate and frees unused

resources if the workflow is over-provisioned.

• Storm-Serverless implements the Storm API on FaaS. Its implementation is identical

to Storm-RTS, except the RBAM is replaced with OpenFaaS [240]. Thereby, operators

have no rate guarantee.

• Storm-RTS implements the Storm API with RBAM as described in Section 5.

In the following experiments, unless stated otherwise, worker-based SPEs use parallelism

configurations shown in Figure 6.20. Storm-RTS also sets operator scale factors µi identical

to these parallelism configurations and desired rate λ equal to the workflow input rate.

Hardware/Resource Configurations Experiments are conducted over three configura-

tions
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• Cloud VM : workflows are hosted by virtual machines in public clouds, including Amazon

EC2 (m5zn instances), Microsoft Azure (Dasv4 instances), and Google Cloud (e2-standard

instances) to evaluate SPE performance over realistic settings where they typically run over

a virtual, oversubscribed environment inside data centers.

• Bare Metal : for raw performance measurement (no sharing). The machine has 1 Intel

Xeon Gold 6138 (80 cores), 512GB RAM, and uses cgroup for resource control.

• Cloud-Edge We use Chameleon Cloud [19] to emulate the cloud-edge setting. We create

four clusters (Figure 6.21) where the cloud emulates the cloud side with an unlimited

number of machines, each having 92 cores and 192GB of memory. edge1, edge2, and

edge3 represent edge data centers. Each has 4 VMs (12 cores and 48GB memory). We

configure the network based on Amazon Cloud Infrastructure’s network performance [55].

All connections have 100Gbps bandwidth. Intercloud connections have 5.5ms latency while

Cloud-Edge latency is randomized with Gaussian distribution with 5.5ms mean and 2ms

standard deviation.

Metrics We evaluate SPEs based on throughput (measured at sink operators), end-to-end

processing latency, CPU utilization (100% per core), and cost, measured as CPU utilization

* cost-factor. The cost-factor is a dimensionless relative measure of resource cost, reflecting

resource location.

6.2.3.2 Resource Efficiency

Single Machine We deploy RIoTBench workflows separately over a single machine with

fixed CPUs (4, 8, and 16 cores). The workflows are fed tuples at a constant rate, and we

gradually increase the rate until saturation (i.e., the tuple processing latency rises sharply,

and the throughput fails to match the tuple input rate). We report the throughput just

before this point, calling it the maximum throughput. We plot the geometric mean of the
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Figure 6.22: Maximum throughput of RIoTBench workflows on a single machine. The
geometric mean of workflows’ throughput, each is normalized by Storm throughput on a
4-core machine.

normalized maximum throughputs of three RIoTbench workflows on four different machine

configurations in Figure 6.22. The performance of Storm, Edgewise, and Dhalion scales

poorly, falling slightly behind Storm-Serverless and Storm-RTS at eight cores and badly

behind at 16 cores. Both Storm-RTS and Storm-Serverless scale well with the system ca-

pacity, with workflow maximum throughput increasing almost linearly with the number of

cores. These results are consistent across all cloud VMs and the bare metal configuration,

confirming that FaaS-based SPEs can achieve equal or superior resource efficiency.

Multiple Machines We deploy workflow separately over multiple 4-core VMs and report

the geometric mean normalized throughput for each SPE on Azure in Figure 6.23a. The

135



01 02 04 08
Number of nodes

0

100

101

102

103

No
rm

al
ize

d 
Th

ro
ug

hp
ut

Storm
EdgeWise
Dhalion
Storm-Serverless
Storm-RTS

(a) Throughput

ETL PRED STAT
Topologies

0

20

40

60

80

100

120

Av
g 

La
te

nc
y 

(m
s)

Storm
EdgeWise
Dhalion
Storm-Serverless
Storm-RTS

(b) Average Latency

Figure 6.23: Storm-RTS achieves comparable throughput and latency versus worker-based
SPEs.

other resource configurations are omitted because their results are the same as we have

presented for Azure. All SPEs have comparable performance. Both Storm-Serverless and

Storm-RTS scale well, increasing throughput with more machines. This result confirms their

resource efficiency compared to worker-based SPEs in a distributed computing setting.

Processing Latency Figure 6.23b shows the average per-tuple end-to-end latency of RI-

oTBench workflows at the steady state when the load is at around 70% of available capacity

for all SPEs in Azure (we also omit other configurations due to similarity). Compared to

Storm and EdgeWise, Storm-RTS and Storm-Serverless experience higher latency due to

FaaS invocation overhead. However, by batching tuples into a single invocation request, the

overhead is amortized. Storm-RTS keeps the latency below 20ms, slightly above Storm and

EdgeWise while significantly better than Dhalion. The results demonstrate that Storm-RTS

is efficiently equivalent to other worker-based SPEs in terms of processing speed.

Takeaway. (Resource Efficiency) Storm-RTS achieves comparable performance with

state-of-the-art worker-based stream processing engines.
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(b) Performance Isolation

Figure 6.24: Storm-RTS flexibly reconfigures for various workloads and protects workflow
performance from collocated applications while other SPEs fail to do so. (Results are from
Azure VMs only; other configurations are omitted due to similarity).

6.2.3.3 Performance Stability

Scalable Workflow Performance We run each RIoTBench workflow separately in a

system with ample resources at varying input rates but keeping their parallelism and rate

configuration fixed. The results are presented in Figure 6.24a. The x-axis represents the input

rate normalized by Storm’s saturation rate (maximum throughput). The y-axis represents

the geometric mean of workflow throughputs normalized by input rate. A perfect system

would produce a flat line across the top – full performance with no saturation.

Our results show that all five SPE systems scale well up to Storm’s saturation rate (nor-

malized to 1.0). Beyond this point, among worker-based SPEs, only Dhalion with dynamic

scaling support can handle the load. Storm and EdgeWise static worker allocations are

both overwhelmed, causing their throughput to drop. At a saturation ratio of 1.5, both

throughputs are below 20% of the input rate, and at 2.0, their throughput drops further,

approaching 0%

The results above reveal the configuration inflexibility of the worker-based model. Any

changes in workflow and input tuple rate require configuration adjustment, either manual or
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automatic, to achieve the desired performance. On the other hand, FaaS-based SPEs do not

require any parameter tuning to meet performance goals. This eases the deployment effort.

Performance Isolation We consider the case of multiple workflows competing for shared

resources. This is common in production settings and can lead to performance interference.

To evaluate how well SPEs protect workflow from interference, we run each RIoTBench

workflow with SCAN. This single-bolt workflow performs expensive arithmetic operators on

input tuples, competing for CPU cycles with the foreground RIotBench workflows.

In Figure 6.24b, we report the geometric mean of the throughputs for the RIoTBench

workflows normalized by their saturation input rate. The x-axis values are normalized back-

ground load (SCAN), with 1.0 indicating the ability to consume 100% of the CPU capacity.

All worker-based SPEs fail to provide performance isolation, showing a throughput decrease

after the background load exceeds 50%. Due to relying on best-effort invocation alloca-

tion, Storm-Serverless sees its throughput drop from the introduction of very small levels

of resource competition. The decrease is severed, and nearly 100% loss of throughput with

about 30% competitive load. In contrast, the RBAM allocations enforce rate guarantees

with strong resource isolation, allowing Storm-RTS to provide good performance isolation

all the way up to 100% competitive load. This demonstrates the ability to deliver predictable

performance of RBAM SPEs as discussed in Section 6.2.2.1.

Supporting Bursty Workloads We consider a common load pattern in practice: bursty

workflows whose input rate varies over time. Workflow developers can configure Storm-RTS

to handle bursty loads by setting the desired input rate equal to the peak input rate when the

load bursts. We deploy a PRED workflow at around 35 thousand tuples/sec on Azure VMs.

However, after the 10th second, the input rate doubles and lasts for around 30 seconds (see

the first graph of Figure 6.25). We execute this load with different SPEs. The workflow’s

throughput and latency are shown in the second and third graphs of Figure 6.25, respectively.
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Figure 6.25: Storm-RTS guarantees the performance of bursty workloads while other SPEs
fail to do so. (The throughput is normalized to the input rate)

Storm and EdgeWise have their resource allocated statically. When the burst arrives,

they cannot process the excessive tuples in time, causing significant high processing latency

and a noticeable throughput drop. Dhalion and Storm-Serverless support dynamic allocation

to scale up during the burst. However, it takes time for both to detect the burst and scale

resource allocation accordingly. Thus, both see significant performance degradation for 10-

20s (35 to 65% of the burst period). Storm-RTS, on the other hand, has the desired rate

set to the burst peak (70 thousand tuples/sec), helping it maintain the desired throughput

and latency throughout the burst period. This demonstrates the robustness of performance

stability provided by Storm-RTS.

Takeaway. (Performance Stability) Storm-RTS provides stable performance with min-

imal tuning efforts.
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Figure 6.26: Storm-RTS, Storm-Dynamic, and Storm across cloud and edge. Storm-RTS has
well-defined performance guarantees, enabling it to respond to resource availability changes
and maintain desired throughput.

6.2.3.4 Flexible Cloud-Edge Reconfiguration

Most SPEs are designed for cloud deployment, but increasingly there are opportunities for

stream-processing at the edge in combination with the cloud. However, edge resources are

limited, and when there is competition for resources, they may be unavailable. To maintain

stable performance for stream processing workflows, ideally an SPE would be able to manage

response across the cloud and edge when resource availability changes.

We evaluate Storm-RTS running a single workflow (ETL, PRED, or STAT) across cloud

and edge. We vary edge resource availability from 50% (half of the workflow can deploy at

the edge) to 0% (i.e., no edge resources available); see Figure 6.26. In the first graph, when

the availability of edge resources decreases, Storm-RTS shifts operators from the edge to the

cloud. This confirms Storm-RTS’ ability to reconfigure workflow deployment in response to

resource availability change.
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Next, we evaluate Storm-RTS’s ability to maintain workflow performance under recon-

figuration. We use Storm as a baseline. However, Storm does not respond to resource

availability, statically spreading workers across available nodes in a round-robin manner.

This produces a deployment with half of the workflow in the edge and another half in the

cloud. To highlight the other capabilities that Storm lacks, we enhance it by modifying

the scheduler to be able to shift workers, calling it Storm-Dynamic. With Storm-Dynamic,

when operators on edge see performance degradation of 25%, Storm-Dynamic will rebalance

workers across cloud and edge as shown in the second graph in Figure 6.26. The geometric

mean of the three workflows’ throughput normalized by their desired throughputs shows that

Storm is unable to detect performance degradation or reconfigure workflow deployment to

restore performance (the roles of application coordinator and Real-time Serverless in Figure

6.19). Consequently, its normalized throughput remains under 0.3, far below the desired

throughput.

Storm-Dynamic addresses Storm’s limitations with its dynamic worker shifting and achieves

higher throughput. However, the throughput gets worse as more edge resources are available.

Workers in the cloud perform differently from those in the edge. Thus, shifting a worker

causes operator performance changes to cascade through the workflow. In contrast, Storm-

RTS sustains the normalized throughput close to 1 through all cases, stably maintaining the

desired throughput of the three workflows. Storm-RTS has workflow reconfiguration driven

by a specific understanding of performance needs – RBAM rate guarantee. When the rate

guarantee is violated due to edge resource availability change, the Real-time Serverless will

notify the application coordinator, precisely reconfiguring the workflow to restore the

guarantee.

Performance stability allows Storm-RTS to simplify application management for other

objectives. Consider a simple declarative policy MinCost: minimize resource cost of stream

processing workflows at any point in time. Storm-RTS (Figure 6.19) reduces the policy to
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Figure 6.27: Storm-RTS shifting workflows across edge data centers while maintaining stable
performance. The flexibility enabled by Storm-RTS enables simple optimization of cost.

placing operators in the data center with the lowest cost. If this data center is full, operators

will be placed in the data center with the next lowest cost, and so on. Consider a resource

environment shown in Figure 6.21, where the cost of edge1, edge2, and edge3 are equal to

25%, 50%, and 75% respectively relative to the cloud ’s 100%. On this testbed, we conduct

an experiment showing how Storm-RTS operates workflows stably at optimal cost.

The first graph of Figure 6.27a shows events during the experiment and decisions made

by Storm-RTS in response. At t = 0, Storm-RTS deploys three RIoTBench workflows in

cloud. At t = 150, three edge data centers become available. The MinCost policy dictates a

move to the cheapest data center, edge1, so the operator distributor shifts the operators
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for all three workflows to edge1. However, at t = 300, a SCAN workflow starts at edge1, con-

suming CPU resources. edge1 becomes oversubscribed, and the local RTS reports this situa-

tion to the application coordinator. The application coordinator has the operator

distributor move PRED, the most minor workflow, to maintain adequate performance. To

minimize resource cost, edge2 is selected. At t = 450, the SCAN load increases. edge1 ’s RTS

system notifies the application coordinator again, leading to a move of ETL to edge2.

And when SCAN expands to edge2 at t = 600, its resource consumption there causes the

RTS system on edge2 to notify the application coordinator that it cannot maintain its

guarantees. In response, Storm-RTS moves PRED to edge3, ensuring resource sufficiency for

all workflows. Through these many workflow reconfigurations, Storm-RTS maintains their

performance, ensuring all three workflows stably achieve the desired throughput (the second

graph of Figure 6.27a). And, as the application coordinator always moves workflows to

the data centers with the lowest cost available, the total cost is minimized (the last graph

in Figure 6.27a).

To understand the importance of Storm-RTS in implementing such declarative policy,

consider the same scenario with Storm-Serverless (Figure 6.27b). Since Storm-Serverless

allocates resources in a best-effort manner, it can neither detect a shortfall nor choose a

suitable destination for a migration (has enough resources available). This results in poor

workflow performance in these changing resource environments.

Takeaway. (Flexible Reconfiguration) Storm-RTS simplifies application management,

allowing applications to maintain performance stability while reconfiguring workflows for

cost minimization.

143



6.3 Summary

In this chapter, we use RBAM to implement two classes of applications: distributed real-time

video analytics and a stream processing engine called Storm-RTS. We evaluate their real-

time performance under different conditions, including varying workload burstiness, real-time

requirements, and deployment settings to demonstrate the RBAM applicability.

Our RBAM-based video analytics implementation demonstrates that RBAM maximizes

application value while minimizing resource costs. Additionally, RBAM can serve as a quality

of service parameter, allowing the application to adjust its deployment for optimal perfor-

mance and cost efficiency. The guaranteed invocation rate provided by RBAM is robust

against workload burstiness, requiring only sublinear cost increases in response to changes

in burstiness.

Storm-RTS showcases RBAM’s broad applicability by using it as a resource model within

the stream processing engine (SPE). This integration allows the SPE to configure FaaS de-

ployment and rate guarantees for performance transparency and predictability. Furthermore,

Storm-RTS provides stable performance with minimal tuning effort, simplifying application

management and maintaining desired performance levels while remaining flexible enough to

be reconfigured for other objectives.

In conclusion, let us revisit the applicability research questions raised in Section 3.3 and

answer them based on our evaluation results as follows.
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Applicability. Can an application’s real-time goals be effectively mapped onto RBAM’s

guaranteed invocation rates?

Q.3.1 Can RBAM be used to implement a specific, diverse set of demanding real-time

applications?

• Answer: Yes. As shown in the distributed video analytics evaluation (Sec-

tion 6.1.3), RBAM can support a wide range of real-time requirements, in-

cluding statistical and absolute guarantees, as well as soft and hard real-time

requirements, without incurring any additional cost for the application. The

real-time guarantee capability is also robust against various workload bursti-

ness properties.

Q.3.2 Can RBAM be used to construct other real-time guarantees that capture a broad

class of applications with quality guarantee?

• Answer: Yes. As shown in the real-time stream processing evaluation (Sec-

tion 6.2.3), RBAM’s rate guarantee enables performance stability and opens

new capabilities, including performance isolation, modularity, and flexible

deployment across multiple data centers, that broaden the scope of RBAM

usage to deliver more computation value.

With these answers, we complete the demonstration of the RBAM’s high applicability.
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CHAPTER 7

RELATED WORK

7.1 Supporting Bursty, Real-time Applications

7.1.1 Handling Workload Burstiness

Scalable internet services deal with bursty loads, managing yield and latency by dropping

requests [78]. For example, the WeChat microservice system has an elaborate system for

load shedding that orders drops to minimize wasted work [350]. In contrast, because we

assume the cloud has sufficient resources to service our bursty, real-time applications, we

take the approach of guaranteeing allocation rate to maintain quality for all of the received

requests.

Many state-of-the-art solutions for bursty workloads rely on dynamic allocation to mini-

mize resource waste. Instead of running the application over a fixed set of resources, applica-

tion developers try to dynamically adjust resources allocated to the application to resource

needs. This is typically an iterative control process with two main steps:

• Burst Detection: the application detects bursts through various methods, including

workload monitoring [199, 196] and real-time violation detection (soft real-time) [154,

152, 227]. Some applications avoid violations by trying to predict potential burst

arrivals and then proactively allocate resources in advance [70, 220].

• Allocation: the application allocates additional resources to absorb the burst. The

tricky part is to allocate just enough resources needed for real-time constraints. This

typically results in complicated prediction (e.g., inference from historical data) [152,

196]. There are also approaches combining different cloud services and using highly

flexible services, such as FaaS, to absorb the burst [199, 154].
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Dynamic allocation approaches, while offering potentially efficient solutions, are not with-

out their limitations. They are built upon heuristic methods, which means that any applica-

tion with burstiness properties or real-time constraints not covered by the heuristic solution

may experience misallocation. This can result in either real-time violation or resource waste,

highlighting the need for careful consideration and evaluation of these approaches. Unfor-

tunately, no magic formula exists to capture the application burstiness and their real-time

requirement. These factors and their combinations vary over a broad spectrum, often re-

quiring expertise to discover the burstiness structure and find a proper dynamic allocation

strategy to meet their real-time constraints. As a result, bursty, real-time applications have

to undergo a complicated refinement process to achieve high-performance, low-cost outcomes,

reducing their applicability. RBAM, on the other hand, rules out the need for refinement

by providing a human-friendly, high-level rate-guarantee configuration, allowing applications

to specify and enforce their performance guarantee without explicitly implementing it, sig-

nificantly improving application productivity and making the model highly applicable for

different classes of applications.

7.1.2 Satisfying Real-time Requirements

The most straightforward yet common approach for guaranteeing real-time performance

requirements is pre-allocation or resource reservation [130, 188, 347, 205, 65]. That is, the

application developer estimates the maximum resources required by the applications at their

burst and pre-allocates the corresponding amount of resources (e.g., reserved VMs) in the

cloud in advance. The approach is simple and can be applied to almost every application,

yet it becomes expensive if the workload is bursty. When bursts appear, these reserved VMs

offer sufficient computation requirements and meet real-time deadlines. When bursts are

absent, however, the VMs remain idle, and their resources are wasted. Because bursts have

a low duty factor and high variance, the amount of waste is enormous in terms of time and
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space. This makes the approach expensive. In contrast, applications using RBAM can scale

resources up to the rate specified in their guaranteed invocation configuration. Thus, no

pre-allocation is needed, significantly reducing their resource cost.

Many research efforts have been spent on task runtime prediction for efficient scheduling

and resource allocation. Some techniques are developed for repeating jobs [102, 110, 163]

while others use the job structure and characterize input to construct predicting models

[129, 253]. JamaisVu [308] and 3Sigma [246] extract tasks’ features from execution history,

use them for constructing runtime distributions, and apply a tournament prediction to esti-

mate task runtime. From runtime prediction, many scheduling such as backfilling [306, 345]

or packing [312, 309] can be applied to minimize real-time constraint violation while still

maximizing resource utilization.

There are also other approaches in the literature. For example, [90] uses the earliest-

deadline-first scheduling policy and explicitly handles the transient of dynamic real-time

workload to reduce deadline misses. [76] combines three techniques: reservation, semi-

partition scheduling, and period transformation with task-placement heuristics to achieve

near-optimal hard real-time scheduling. Satisfying real-time constraints under power limita-

tion is also a very active research area [95, 351].

However, all of the work mentioned above deals with real-time constraints in a best-

effort manner. They do not explicitly guarantee the deadline misses but try to minimize the

misses as much as possible. In contrast, through a guaranteed allocation rate, RBAM enables

applications to plan to achieve real-time guarantee and guarantee computation quality.

Summary. There are limited efforts tackling the problem of cost-effectively handling bursty

demands in a timely fashion. Many existing studies either consider real-time constraints or

bursty demand but not both, as RBAM did. Further, studies explicitly addressing bursty,

real-time applications find it hard to handle the resource control - usability trade-off of cloud

service and, thus, unable to meet all solution requirements as RBAM does.
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7.2 Improving FaaS-based Application Performance

7.2.1 Improving Best-effort FaaS Performance

Most FaaS systems, including commercial [23, 25, 68] and open-source [180, 240] follow the

same FaaS serving pattern in Section 2.2 where efficiency lie in the implementation of FaaS

sandboxes, schedulers, and resource management (i.e., autoscaler).

Sandbox implementation. FaaS sandbox implementation is an active research area with

three main concerns: isolation, flexibility, and low startup latency. Resolving these concerns

often comes with conflicting ideas that require careful balancing. Traditional sandboxing

mechanisms adopt Virtual Machine (VM) Manager [32, 16, 24] to provide strong isolation

but typically suffer from high startup latency. There are efforts to strip heavy-weight vir-

tualization features for startup acceleration, including gVisor [27], FireCracker [44], and

more [176, 187, 315]. Another workaround is to use containers and their customization for

high flexibility and performance [48, 238, 116, 303, 165, 293]. Unikernel [206], which pro-

vides enhanced security and performance [211, 276, 239], is also an increasingly attractive

alternative.

Autoscaling. FaaS autoscaling seeks to provision “just enough” sandboxes for perfor-

mance. This is typically done through an iterative process of monitoring, predicting resource

demand, and adjusting sandbox allocations accordingly. The process is heuristic-based [193]

and relies on dynamic (de)allocations driven by historical knowledge [96, 279], Machine

Learning training [349, 318, 336, 263, 262], or optimizers constructed from specialized work-

load and system modeling [52, 195, 159].

Scheduling. FaaS schedulers carefully dispatch invocations across shared resources for

high performance, utilization, and short end-to-end latency. Meanwhile, mainstream so-
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lutions for the FaaS scheduler try to balance requests across allocated sandboxes through

hash-based [298, 194] or objective-based methods leveraging resource monitoring informa-

tion [93, 173, 294, 149] and quality of service constraints [213, 178, 208] for one or multiple

scheduling objectives.

Efforts from Application Space. Since FaaS systems are best-effort, current FaaS ap-

plications have to implement their own performance solutions. A general approach is to

proactively reserve sandboxes for high-traffic loads beforehand [66, 197] but this is expen-

sive. Recent efforts tend to develop ad-hoc solutions that exploit domain-specific infor-

mation to create dedicated strategies for a narrow set of application classes such as scien-

tific [94, 209] real-time [297, 296], Machine Learning training [243, 242, 148] and serving

[341, 342, 143, 186], etc. Different from RBAM, these approaches attempt to modify the

application configuration for performance instead of the FaaS system. This is typically un-

productive and challenging due to the lack of performance support from the current FaaS

abstraction.

Multiple FaaS Invocations. While RBAM only guarantees performance for a single

function, there is a rich body of recent work that addresses the performance issue of FaaS

workflow, which consists of multiple FaaS functions to handle complicated tasks. This is

challenging because the application not only has to solve the problem of provisioning re-

sources for multiple FaaS invocation along the workflow [106, 290] but also has to find effi-

cient data exchange between serverless functions. The general approach includes leveraging

share storage [88, 132, 133, 179, 254, 258], integrating function code into storage [344, 275]

with various locality optimizations based on workflow structure and data exchange patterns

[225, 89, 165, 183, 207, 284].
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Summary. All of the mentioned approaches focus only on either improving conventional

FaaS implementation efficiency or workaround them by adding work for the application or a

third-party orchestration system. Different from RBAM, they do not add any new capability

to the existing FaaS system, leaving them behaving in a best-effort, heuristic-based manner,

resulting in limited applicability and productivity.

7.2.2 Performance Abstraction

Serverless Abstraction there are various performance abstractions based on FaaS have

been proposed for better applicability and productivity. Commercial clouds offer a concur-

rency guarantee abstraction that allows FaaS functions to declare a target concurrency C.

The FaaS system will guarantee the function can execute up to C concurrent invocation

at the same time with zero latency [65]. The abstraction ensures fast ramp-up time, en-

abling applications to effectively handle burst requests. However, figuring out the optimal

concurrency configuration can be tricky because the function concurrency depends on its

request arrival rate and execution time and both are highly dynamic. In contrast, RBAM’s

guaranteed invocation rate only requires the developer to know the peak request arrival rate

to use the abstraction effectively.

There is a large body of FaaS execution guarantees that try to statistically limit FaaS

execution time up to a certain percentage (e.g., “99% of invocation complete within 10s”).

These guarantees, however, are often tied to specific classes of applications with well-known

computation patterns and stable execution times (e.g., ML serving [341], Web service [152])

while RBAM can be applied for various different class of application with a wide range of

burstiness and real-time properties.

INFaaS [270] utilize FaaS to abstract away model management and resource configuration,

providing a model-less abstraction for efficient ML inferences. The abstraction only required

the developer to provide the desired ML inference latency, accuracy, cost, and a base model.
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The underlying implementation will automatically adjust the model configuration to generate

FaaS deployment that meets the desired requirements. Similar to the above abstraction,

INFaaS is applicable for a narrow class of applications (ML inference), opposite to RBAM,

which is applicable for various classes of applications.

Real-time Abstractions Besides RBAM, there are many efforts on abstraction for real-

time performance. Real-time ABS [168, 49, 167] provides an abstract behavioral specification

language to formally model and analyze cloud resource management for real-time perfor-

mance. The interface lets applications declare the desire soft deadline of real-time tasks and

use this parameter to drive the dynamic resource management to provide sufficient resources

to enforce the deadline, even under bursty demand. Besides the real-time deadlines, however,

the abstraction also requires many other configurations, such as task execution flow, making

it complicated to use the abstraction effectively and productively. In contrast, RBAM only

requires a guaranteed invocation rate configuration for performance, which is much simpler

to use.

Szalay et al. [296, 297] propose Real-time FaaS, abstracting FaaS resource management

and back-end services to enable real-time performance management. The abstraction al-

lows the application developer to realize real-time tasks as a FaaS function with predefined

deadlines. The underlying implementation will enforce that every invocation that performs

the real-time task will have end-to-end latency bounded by the provided deadline. This

abstraction, however, only focuses on real-time applications, making it lack the versatility

to support other classes of applications, such as RBAM.

7.2.3 Performance Abstraction Implementation

Commercial cloud implements the concurrency guarantee by pre-allocating resources needed

by the concurrency but letting the application developers pay for them, compromising the
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FaaS pay-as-you-go and scale-to-zero objective. This implementation, however, can be used

to implement other performance abstractions, such as RBAM, but incur very high resource

costs.

To enforce statistical latency guarantee, most of the current approaches still rely on best-

effort heuristics-based dynamic (de)allocation. The process is typically driven by priority-

based policies [272, 317, 152], historical knowledge [218, 302, 341] or optimizers constructed

from specialized workload and system modeling [121, 330, 335, 51]. Recent efforts leverage

ML achievement, such as Reinforcement Learning [262, 261, 150, 343], GNN [244, 245], and

more [200, 164, 252, 45], to improve efficiency. Unfortunately, the performance guarantees

implemented by these approaches are statistically different from RBAM’s rate guarantee,

which is a configurable SLA. Thus, most of them are not applicable to RBAM implementa-

tion. Also, these approaches are built on heuristic foundations. they mostly try to align with

the uncertainty of workload and cloud environment, so their efficiency is unpredictable and

sensitive to the changes in workload dynamics and deployment environment. In contrast,

RBAM implementation ideas are proposed to eliminate the impact of uncertainty in work-

load dynamics and deployment environment, making them robust against various workload

and deployment scenarios.

Real-time abstraction implementation is even more complicated since the end-to-end

latency is highly uncertain, especially in a complicated environment like the cloud. Szalay

et al. [296, 297] propose real-time abstraction implementation that adds many constraints

on backend databases and networks in the implementation. Some of the approaches are just

about the idea, not yet sufficiently supported by current infrastructure (e.g., ultra latency

offered by 6G). The implementation approaches are overkill to RBAM as the abstraction

mostly focuses on resource management and scheduling yet is flexible enough to enforce

real-time performance and other guarantees.
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7.3 Stream Processing

Our Storm-RTS work focuses on providing stable SPE performance across heterogeneous

resources with varying availability. The key to our approach is the higher-level resource

abstraction, the rate-based abstract machine. This section will discuss how our approach

is distinguished from other studies in terms of ensuring workflow performance stability,

exploiting FaaS abstraction, and multi-site deployments.

7.3.1 Stable Performance

For worker-based SPEs, stable performance is strongly tied to resolving their limitations in

performance transparency and isolation. In terms of performance transparency, worker-based

SPEs try to decouple workflow performance from the underlying system implementation by

carefully considering workflow topology and the underlying system details for every opera-

tor scheduling decision. Many SPEs dynamically map operators to workers via employing

heuristic scheduling strategies based on performance profiling [202, 79, 99, 214, 85] and/or

workflow characterization, including operator dependencies [99, 216], queue size [136] and

query context [328, 311]. In distribution settings, SPEs place workers among computing

nodes in traffic-aware [224, 327, 126] or topology-aware [224, 321, 223] fashion ensuring tu-

ple transmission is supported by the underlying network. On low-end systems, e.g., Edge,

resource heterogeneity and scarcity is quite common, great efforts on workload partitioning

[201, 229, 177, 320, 127] and task placement [83, 166, 177, 107, 228, 84, 103, 53] are needed.

To resolve performance isolation challenges, worker-based SPEs ensure workflow per-

formance by leveraging control mechanisms, which are typically full loops of two steps:

interference detection and interference resolution. In interference detection, the SPEs iden-

tify interference through monitoring stream traffic [189, 79] and workflow throughput [128].

Some approaches even use the monitor data for predicting potential resource contention

[128, 157, 158], proactively preventing interference beforehand. Detected interferences are
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resolved with heuristic algorithms, which either dynamically readjust resource sharing among

competitive workflows [221, 128, 157, 158] or migrate them to another set of computing nodes

[79].

All of the proposed approaches, however, are heuristic. They configure SPEs to behave

properly with popular workflow and resource configurations. Thus, any significant changes

in workflow dynamics or underlying resource configurations will lead to misbehavior, and

SPEs will fail to maintain stable performance. These issues are well addressed by Storm-

RTS: by leveraging FaaS, Storm-RTS can scale well to workflow dynamics, and through rate

guarantee enforcement, Storm-RTS provides strong isolation from resource configurations.

7.3.2 Stream Processing and FaaS

Leveraging FaaS for dynamic scalability has been proposed in many SPEs [100, 277, 230,

17, 72, 28]. However, these SPEs only outsource the processing logic to FaaS. Other parts

of operators, such as transmission and synchronization, are implemented through worker

abstraction, inheriting worker-based performance limitations. Storm-RTS uses FaaS as a

higher-level abstraction, wrapping whole operators inside FaaS deployments. This removes

worker abstraction from SPE implementation, eliminating its performance limitation lega-

cies.

Storm-RTS relies on RBAM for performance stability and isolation. The key idea of

RBAM is to ensure serverless performance with rate-guarantee. This is different from regular

serverless systems, which are best-effort [240, 20, 180, 26, 23, 25]. When these systems

fail to acquire needed resources, the performance of SPE relies on them degrades. Recent

years witnessed many attempts to minimize the chance of these failures, including optimizing

invocation resource consumption [119, 226], proactive pre-allocation, and reusing terminated

invocations [280, 137, 141]. There are also active studies on intelligent resource sharing and

function placement to improve resource efficiency and avoid interference [295, 118, 111, 210,
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346]. All of the mentioned approaches, however, do not provide performance stability. When

some factors, such as invocation request interarrival or resource availability, change, they

may become ineffective, leading to performance degradation. In contrast, by enforcing rate-

guarantee with resource reservation and admission control, Storm-RTS ensures sufficient

resources for serverless invocations to meet their rate guarantee, which not only achieves

workflows’ desired throughput but also provides strong protection from the surrounding

environment.

7.3.3 Stream Processing across Multiple Sites

With distributed data sources and growing numbers of edge-based applications, stream pro-

cessing across multiple sites is of growing interest. Several approaches have been proposed

(e.g., [77, 307, 82, 47]). Most of them adopt the worker abstraction or use worker-based

SPEs as a building block. Worker abstraction limitations combine with new challenges that

arise from distribution, posing many problems that require much effort to address. These

include reliability [348, 147, 161, 322, 352], communication latency and overhead [171, 332],

and managing limited, heterogeneous resource pools [108, 174], balancing task placement

and parallelism [109, 104, 283]. Storm-RTS simplifies SPE design and well addresses many

problems above. For example, by leveraging RBAM, Storm-RTS can stabilize workflow per-

formance across limited, variable, and heterogeneous resource pools. Storm-RTS’s ability to

implement declarative goals enables its users to optimize their deployment for latency (i.e.,

prioritize data centers with fast connections), reliability (i.e., automatic migration at power

shortage), and more.
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CHAPTER 8

SUMMARY

8.1 Conclusions

We propose Rate-based Abstract Machine (RBAM), a new performance abstraction built

on the foundation of Function-as-a-Service. RBAM allows application developers to deploy

FaaS functions with guaranteed invocation rates, enabling applications to meet real-time

requirements through timely invocations.

To demonstrate RBAM’s ability to guarantee real-time performance, we have developed

an analytical framework based on rate-monotonic real-time workloads. This framework veri-

fies RBAM’s capability to effectively bound FaaS invocation latency and ensure applications

meet their real-time deadlines. Additionally, we demonstrate that RBAM can guarantee all

real-time application deadlines with a minimum rate guarantee equal to the total task release

rate while keeping the overhead below 100% of the actual use.

Furthermore, we propose new rate-based invocation scheduling and resource management

algorithms integrated into a new FaaS architecture to implement RBAM efficiently. These

algorithms share resources among functions and leverage allocation statistics to find the

appropriate time and amount of resource allocation. Consequently, the rate guarantees can

be implemented with 10× resource cost reduction. RBAM implementation is also robust and

scalable across various application dynamics and deployment environments. We can deploy

thousands of RBAM functions over resources at 99.9999% guarantee availability with only

38% resource overhead.

To demonstrate the applicability of RBAM, we use the model to implement two real-time,

demanding applications: distributed real-time video analytics and Storm-RTS. Systematic

evaluations of these applications confirm that RBAM’s rate guarantee makes application
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performance highly robust against workload burstiness, offering stable performance with

solid transparency, predictability, and optimized deployment flexibility.

8.2 Future Work

This work opens up many promising research directions.

8.2.1 Configurable Service Abstraction

RBAM demonstrates that by abstracting cloud resource control with a configurable perfor-

mance parameter (i.e., the guaranteed invocation rate), we can significantly improve cloud

resource usability utilization while allowing applications to achieve their performance needs

at high-level configuration with minimal effort, thereby improving their productivity. Given

this success, can we apply the same idea to other non-functional application requirements

and get similar outcomes?

Hardware Abstraction Application developers have to select specific hardware for their

services and resources. Since the cloud is highly heterogeneous. There are many options,

yet mostly low-level, including processor types (e.g., GPU vs. CPU), architecture (e.g.,

ARM, x86), instance configuration (compute instances, storage instances), etc. This is typ-

ically unclear to the application developer if one option is better than the other. Worse,

even if the application developers want to configure the resource hardware to meet certain

requirements, it is challenging to translate these requirements into specific hardware con-

figurations. Thus, Can we abstract out the resource hardware configuration, replacing them

with higher level SLA specifications that let the cloud choose the right hardware configuration

for the application developer? There are a number of interesting SLAs the cloud can offer

to developers.
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• Carbon Emission Budget : the cloud can let the application declare a target Carbon

emission budget, limiting the operational Carbon emission generated by the application

hardware from their data center. The cloud provider can enforce the SLA by deploying

the application on high energy efficiency hardware in data centers fueled with low

carbon intensity power grids.

• Performance Abstraction: Hardware configuration can be abstracted under performance-

related SLAs. For example, ML inference services can simply declare their required

inference rate, the cloud will automatically compute the required GPU and related

configuration to meet the SLA. FaaS applications can declare their expected execution

time and let the cloud use this parameter to find the optimal per-invocation CPU and

memory configuration for them.

• Cost Budget : Similar to Carbon emission, the application developers can declare the

cost budget to limit the spending on cloud resources. The cloud can enforce the SLA

by dynamically deploying its applications on services (e.g., on-demand VM, volatile

VM, serverless, etc.) with appropriate hardware configuration and cost.

Multi-SLA Abstraction Can we integrate multiple SLAs into a single abstraction? There

are scenarios where having multiple SLAs is beneficial. For example, we can add the Carbon

emission budget to RBAM performance abstraction to enforce cloud provider execute invoca-

tion at low Carbon intensity regions, meeting both carbon and performance objectives. This

greatly improves the application deployment productivity while enabling the cloud to exploit

resource control more effectively. However, doing so leads to a multi-objective problem that

complicates the abstraction design and implementation. The more SLAs are added to an

abstraction, the more constraints the cloud providers have to satisfy, limiting their decision

space and making the implementation problem more challenging. These make designing and
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implementing Multi-SLA abstraction an appealing problem with many motivating research

questions

• How to define multiple SLAs in a single abstraction? A good abstraction design should

give a set of SLAs that is (i) application-friendly so that developers can easily figure

out the right configuration for their needs and (ii) consists of well-co-existing SLAs that

have no or little impact on the implementation of the other. While the former require-

ment ties to the application-specific constraints, the latter requires careful evaluation

of SLA combinations to ensure their enforcement is practically feasible.

• How to implement multiple SLAs efficiently? Finding ways to realize the abstraction

SLAs is tricky, strongly depending on the abstraction design. One can try to implement

each SLA separately and then combine them. Another approach is to divide their joint

configuration space into sub-regions and develop appropriate solutions for each sub-

region separately. For example, we can realize RBAM with Carbon emission budget

SLA together by splitting the RBAM rate guarantee and Carbon budget spectrum into

two parts, high and low, then develop four different solutions for each combination:

(high rate, high budget), (high rate, low budget), (low rate, high budget), and (low

rate, low budget).

8.2.2 RBAM Implementation Improvement

The RBAM implementation solution presented in Chapter 5 currently utilizes only the under-

lying sandbox allocation statistics to reduce overhead. However, there are many additional

factors related to invocation execution that can be leveraged to further improve RBAM

implementation.

Workload Dynamic Can we extract workload dynamic characteristics, such as invocation

arrival patterns, and use them together with the guaranteed invocation rate to drive resource
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management decisions for better efficiency? This is a promising direction as analysis on FaaS

production [11] reveals a noticeable faction of FaaS functions are periodic (16%), and many

are highly predictable [271]. This suggests precisely estimating the invocation request arrival

is highly feasible. Further, our preliminary studies in Section 5.2 show that the average arrival

rate of FaaS functions is typically 100× lower than their peak rate. If we can precisely predict

invocation request arrival and prepare sandboxes accordingly, RBAM implementation cost

can be reduced by a further 100×, close to the scale-to-actual-use objective of the FaaS

abstraction.

However, there are challenges to make the approach practical. First, workload dynamic

is an outcome of the application behavior, which is uncontrollable by the FaaS system. The

application behavior may change over time, making it difficult to maintain the prediction

accuracy and ensure the guarantee availability target. Second, the FaaS workload is highly

diverse. Besides periodic and predictable functions, there is also a considerable amount of

them that are highly unpredictable [278]. Thus, creating extremely high precision predictions

aiming for high guarantee availability is challenging.

There are several approaches the FaaS system can apply to address these issues. For

example, the system can group independent or anti-correlated functions together to stabi-

lize the aggregate workload, thereby mitigating variability and improving prediction accu-

racy. Additionally, it can allocate extra resources to compensate for inaccurate predictions,

thereby maintaining high guarantee availability even with poor-quality workload predictors

or difficult-to-predict workloads.

Distributed Resources Can we exploit distributed resources for better RBAM implemen-

tation efficiency and robustness? Cloud resources are distributed across multiple data centers

over a wide geographical area. This opens an opportunity the apply the idea of multiple

tries across independent data centers in combination with temporal independence for higher

efficiency. Distributed data centers also offer a richer set of underlying sandbox allocation
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statistics. We can, for example, prioritize allocating sandboxes from data centers with short

allocation latency and/or low correlation probability to further reduce the overhead. Ex-

panding the FaaS deployment into multiple data centers also increases the complexity of

resource management and scheduling, which requires a lot of effort in their design and im-

plementation. The RBAM system has to be upgraded for multiple data center deployments.

The scheduler and resource manager need to be extended in this process to handle concurrent

invocation requests and scaling decisions across multiple places. Additionally, capacity limi-

tation, hardware heterogeneity, and different resource usage policies can become a problem,

especially when the deployment expands across the cloud-edge continuum.

8.2.3 RBAM Performance Abstraction Extension

Reliable Invocation Execution Time Application responsiveness highly depends on

invocation latency and execution time. RBAM’s guaranteed invocation rate only bounds

the invocation latency. Can we extend the RBAM to provide a guarantee on execution time,

improving RBAM’s performance guarantee capability? This is a crucial yet challenging re-

search problem as invocation execution is determined by many complicated factors, such as

per-invocation resource allocation, sandbox isolation capability, and communication over-

head. Enforcing an invocation execution guarantee requires a thorough understanding of

their impact and effective approaches to handle them.

• Resource allocation: Configuring appropriate resource allocation for invocation is im-

portant. However, the current RBAM abstraction leaves resource configuration to the

application developer, whose have very little knowledge of the underlying cloud re-

sources. Thus, they can either end up with over-provisioning, wasting resources, or

under-provisioning, degrading invocation execution performance. To workaround, the

execution guarantee needs to abstract out resource configuration, outsourcing this part
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to the FaaS system space and proposing a new resource control algorithm to use the

execution guarantee abstraction to guide the configuration.

• Sandbox Isolation: sandbox implementation selection is typically a trade-off between

invocation latency and isolation effectiveness. Light-weight sandboxes have short in-

vocation latency yet provide weak isolation that could leave invocations suffering from

security threats or performance interference with colocated applications. This prob-

lem still persists in the context of RBAM. Selecting light-weighted sandboxes lets the

RBAM system be implemented with low overhead and can provide a high rate guar-

antee but could increase the execution time variability, making it more challenging

to enforce the execution guarantee. A straightforward solution is to use heavy-weight

sandboxes. Another workaround is to use lightweight sandboxes but carefully select

colocated applications with FaaS functions, minimizing the risk of interference.

• Communication overhead : Many FaaS functions are I/O intensive, such as uploading a

file, modifying a database record, etc. Their invocation involves many communications

with backend storage systems and other functions. Long, highly variable communica-

tion latency negatively impacts execution time predictability, making it hard to enforce

execution guarantees. Existing work attempted to resolve the challenges in many ways,

including proposing new communication control, opening new chances for communi-

cation optimization, or colocating FaaS sandboxes with storage engines to minimize

communication overhead. However, these methods are best-effort, focusing on mini-

mizing the communication overhead, ignoring other important factors, such as commu-

nication overhead variability and predictability with respect to data transmission size,

frequency, and so on. Thus, enforcing the execution guarantee with the appearance of

data communication is challenging and requires much attention to resolve.
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Rate-guarantee for FaaS Workflow As FaaS is gaining more popularity, its applica-

tions become more diverse and complicated. Many applications usually employ workflows

of multiple FaaS invocations to accomplish their tasks rather than a single one. Thus, can

we generalize the RBAM’s guaranteed invocation rate to the case of a workflow of multiple

functions? Answering this question opens many research opportunities

• How to define the rate-guarantee for a FaaS workflow? FaaS invocations within a work-

flow are connected in many ways: invocation chain (one function calls another), through

shared storage (one function updates data in a shared storage, which triggers the ex-

ecution of other functions), through an orchestration system, etc. These connection

patterns trigger invocation requests differently, thus requiring different rate-guarantee

abstractions. For example, in the function chain pattern, the execution is continu-

ous. Once an invocation completes, another one will start. Thus, we can consider

a whole workflow as a single big FaaS function, extending the guaranteed invocation

rate as workflow guaranteed execution rate. Meanwhile, if invocations are connected

through shared storage, workflow execution is no longer continuous but implicitly syn-

chronized by the storage. The RBAM’s rate-guarantee generalization should be tied

to the storage performance.

• How to implement the extended RBAM efficiently to meet the guarantee? Enforcing

workflow performance instead of each individual function actually opens more space for

efficiency optimization. The FaaS system can track the workflow topology to pre-warm

downstream function sandboxes, monitor the invocation resource usage to intelligently

partition resources among functions, give more to highly resource-intensive functions

to improve workflow efficiency, etc.
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8.2.4 Broadening RBAM Applicability

ML Inference ML inference plays an important role in many modern cloud applications.

Inference rate (i.e., the number of inferences processed per second) is one of the most impor-

tant performance metrics for ML inference services. The metric well aligns with RBAM’s

guarantee invocation rate. Application developers can implement ML inference tasks as

single FaaS functions and configure the guaranteed invocation rate to match their desired

inference rate. The RBAM abstraction ensures these ML tasks will get sufficient resources

at the same rate as the inference request, effectively meeting the desired inference rate.

Implementing such service, however, is challenging

• Big model size: practical ML models are getting larger over time for better applicability

and accuracy. Some models have even reached trillions of parameters (e.g., GPT-4

is estimated to have around 1.7 trillion parameters [314]). These models consume

thousands or more GB of memory, impossible to fit within a single invocation.

• Limited hardware supports : ML model typically requires GPU access for efficiency.

In contrast, current FaaS functions use the CPU for handling invocation computation

since it is easy to program and share the CPU across applications, maximizing resource

utilization. On the other hand, there is limited support to share GPU effectively,

especially among fine-grain allocations such as FaaS invocations.

Thus, can we propose an efficient implementation of RBAM to support ML inference service?

To answer the question, we must address the above issues effectively. One possible direction

is combining resource sharing and batching. The RBAM system deploys the model directly

over a specific set of GPUs and lets FaaS invocation share these GPUs. This resolves the large

model problem and minimizes memory footprint. To increase GPU utilization, interference

requests are batched by handling multiple inferences within an invocation and/or processing

multiple invocations concurrently per model/GPU. However, the approach could prolong
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interference latency and be expensive for a bursty workload. Workarounds to be considered

include dynamically adjusting the batch size to minimize the latency, sharing multiple models

across GPUs and dynamically swapping them based on workload dynamics.

Portable Serverless RBAM deployments are highly portable. The FaaS abstraction al-

lows application developers to easily move RBAM deployment across cloud data centers,

cloud and edge, or even across vendors. Even live migration is feasibly straightforward

as FaaS functions are stateless. Furthermore, the guaranteed invocation rate helps cloud

providers enforce the FaaS performance guarantee. Thus, developers can spend the mini-

mum effort to maintain the desired performance. These advantages make RBAM an excellent

choice for applications that require frequent service migration or spatial shifting for their

execution objectives, such as minimizing Carbon emission and resource costs or avoiding

overloaded data centers for performance stability.

However, because FaaS invocations are stateless, FaaS-based applications must rely on

a third-party stateful service to maintain their internal state and data (e.g., databases,

cache, etc.). Applications have to migrate these stateful services together with the RBAM

deployment as well. Maintaining RBAM guarantee during migration is challenging because

doing so requires the migration to be transparent to the end-user. Thus, data/state must be

moved under FaaS invocations, which poses many problems to be solved.

• State consistency and data integrity. The data migrated to the new location must

reflect their state at the old location. Thus, data losses, corruption, or out-of-order

delivery must be avoided/tolerated as much as possible.

• Availability. During migration, part of data/state can be inaccessible, hurting the

application availability.

• Migration Duration. The migration is affected by many factors, such as network band-

width, request rate, configuration differences between old and new locations, etc. All
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of these, together, can make the duration of migration highly unpredictable. In a bad

scenario, migration can be long and negatively affect the application performance and

availability.

• Security Risks Data breaches or unauthorized access can happen during the migration

process if there are insufficient proper security measures. Sensitive data might be

exposed if intercepted during transfer.

Resolving these issues requires carefully designing a stateful service that maintains the appli-

cation state and data. Multiple mechanisms can be employed to address the problem above.

For example, applications can replicate data over potential locations to improve application

availability and minimize data transmission during migration, reducing the risk of violating

data consistency and integrity. They can also implement a checksum mechanism to recover

from data losses or corruption. Furthermore, smart request redirection can be considered

to help the application drive the demand according to computation and data availability,

reducing the impact of migration on their performance.
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