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Abstract

Radiotherapy is a cancer treatment that uses high-energy X-rays to kill cancer cells. A ma-
jor challenge in treating cancer is the heterogeneity of the disease. Preclinical models are im-
portant translational tools to study this heterogeneity’s impact on treatment efficacy, but
there have been many challenges in scaling preclinical radiotherapy due to the scale of small
animals and lower orthovoltage energy range (100-500 kV) used for treatments. One ma-
jor challenge is accurate dose calculations. Monte Carlo (MC) methods, a repeated random
sampling technique, is a promising approach. Two computational approaches employing
theseMCmethods, high-performance computing (HPC-MC) and graphics processing unit
computing (GPU-MC), are studied for their applications in preclinical radiotherapy. HPC-
MC, running a full MC approach, will be a vital validation tool for faster dose calculation
algorithms, especially in higher order treatment planning and inverse planning. GPU-MC,
running a fast MC approach, will be an important tool for treatment planning software and
inverse planning optimization. Ultimately,HPU-MCandGPU-MCwill help usher amuch-
needed paradigm shift in preclinical radiotherapy fromdose to a patient to dose distributions
within a patient.
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1
Introduction

1.1 Background and Significance

Cancer is and will be a major health problem. Currently, there are over 9 million deaths

worldwide from cancer each year [1]. Over the next two decades, the number of people ex-

pected to be diagnosed with cancer will nearly double from 18.1 million to 29.5 million [2].
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In the US, one in three Americans will be diagnosed with an invasive cancer in their lifetime

[3]. Although the incidence of cancer seems to paint a bleak image, that is far from the truth.

In fact, the death rate from cancer has dropped by one-third since 1991—over 3million lives

saved largely due to advances in cancer treatments [4].

A B

Tungsten “Leaf”

Tumor

MLCs Shape X-ray Beam to Tumor

X-ray Passes X-ray Blocked

DNA

Unable to Repair?

DNA

Cancer Cell

Damaged

Dies

Irradiation

Figure 1.1: Radiotherapy Basics. A) illustrates how irradiation induces breaks in DNA within cells, and if these breaks are
not repaired, the cell dies, B) depicts multi‐leaf collimators (MLCs) used in clinical radiotherapy to shape the radiation beam
to the tumor and minimize damage to surrounding healthy tissue.

Radiotherapy is one such treatment that uses high-energy X-rays to kill cancer cells. The

main challenge of radiotherapy is precisely delivering theseX-rays to cancerous tissuewithout

damaging the surrounding healthy tissue. Advances in imaging, treatment planning, and de-

livery precision have addressed this challenge. Currently, radiotherapy can cure many early-

stage and locally-advanced tumors with minimal adverse side effects. For late-stage cases, pal-

liative radiotherapy can ease cancer-related symptoms [5]. Radiotherapy can treat cancer in

a variety of places in the body from brain tumors to colorectal cancers. Physicians can also

combine radiotherapy with other cancer therapies to improve treatment odds and minimize
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treatment risk [6]. In short, radiotherapy is and will be an indispensable tool to treat cancer.

A major challenge in treating cancer is the heterogeneity of the disease. Similarly present-

ing cancers can have different genetic profiles, physiologies, andmicroenvironments that vary

patient-to-patient and determine the success of a treatment [7]. For instance, hypoxia (low

oxygen concentration) in tumors has been shown to reduce the effectiveness of radiother-

apy, chemotherapy, and immunotherapy [8]. Advances in functional imaging, genetic pro-

filing, and biological categorization of tumors will only continue to provide clinicians with

more and more information about a patient’s cancer. As a consequence, the next frontier

in oncology—called precision oncology—is cancer treatment tailored to the patient. How

can we best treat a patient given the characteristics of their cancer? This fundamental ques-

tion can be divided into two interconnected aims: (1) optimize radiotherapy to the patient’s

tumor biology and (2) optimize the patient’s tumor biology for radiotherapy.

To elucidate these two aims, researchers turn to preclinical models such as mice. In these

models, they can provide evidence of a therapy’s potential for clinical trials and better test

research hypotheses. The ability to scale up preclinical research to humans is dependent on

howwell the preclinicalmodel and treatmentmimics the clinical protocols and realities. One

of the main challenges of research in radiotherapy is this lack of an analogous preclinical sys-

tem. When scaling down radiotherapy from humans to mice, researchers run into many

problems. For planning treatments, dose calculations in mice are more challenging due to

the lower energy range, which requires more information for accurate predictions [9]. For

delivering treatments, clinical systems usemulti-leaf collimators (MLCs), consisting ofmany

highly attenuating (typically tungsten) leaves, to shape radiation beams to avoid damage to

healthy tissue as shown in panel B of Figure 1.1. However, humans are roughly 3,000-fold
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larger than mice (and roughly 14-fold in a linear dimension), so scaling down these MLCs

for small animals has been challenging [10, 11].

In the followingwork, wewill address the challenges of preclinical treatment planning and

delivery. Then, wewill discuss the use ofMonteCarlomethods, a repeated random sampling

technique, to perform more accurate dose calculations at the orthovoltage scale (100-500

kV).Wewill explore two computational approaches employing theseMonte Carlomethods,

high-performance computing (HPC-based) and graphics processing unit computing (GPU-

based), for their potential applications in preclinical radiotherapy. We will conclude with a

summary of the work’s findings and future directions.

1.2 Preclinical Radiotherapy

Preclinical radiotherapy typically involves the treatment of small animals like mice to test

and validate a new experimental treatments prior to running clinical trials. Often, this ex-

plores how to integrate the increasing amount of imaging data about the tumor and its en-

vironment into optimizing radiotherapy plans. For instance, tumors can be characterized as

hypoxic when oxygen levels are not sufficient for proper maintenance of cellular processes

[12]. For over century, hypoxic tissue is known to be more resistant to radiotherapy [13].

When a subregion of a tumor tissue is hypoxic, this resistance can cause eventual treatment

failure in patients receiving radiotherapy. An important question is evaluating the benefit of

a locally increased (aka boost) dose to the hypoxic part of the tumor. Testing this question

in the patients is difficult because a boost dose could come with an increased collateral dose

to healthy tissues, which leads to a greater risk of side effects. Preclinical models enable the
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risk-to-reward of experimental treatments to be evaluated before clinical implementation.

For instance, recent boost dose to the hypoxic region has shown promise for three cancer

types in mice [14]. But the results have been mixed in clinical trials, suggesting there might

be particular use cases. Further, there several unknown variables for this form of adaptive

radiotherapy, such as the magnitude of the boost dose for effective and safe outcomes, po-

tential demographic or genetic contraindications, and the optimalmethodof synergizing this

treatment with other cancer treatments [15].

In addition to tailoring radiotherapy to the tumorbiology, the converse approach is equally

important—specifically howtumorbiology canbe altered to improve radiotherapyoutcomes.

For instance, polymerase theta (POLΘ) is an enzyme involved in DNA repair overexpressed

in cancers [16]. The repair pathway of the enzyme is vital to microhomology-mediated end-

joining, typically considered a backup to the two main DNA repair pathway for double-

stranded breaks (non-homologous end-joining and homologous recombination) in eukary-

otes [17]. A gene knockdown using small interfering RNA (siRNA) is a method to lower

protein expression by targeting a protein’smessengerRNA (mRNA) for degradation, which

prevents ribosomal translation of the mRNA into the protein. Through siRNA-mediated

knockdown screen of 200 genes coding for proteins involved in DNA repair in vitro, POLΘ

was identified as a potential inhibitor target to cause radiosensitization independent of the

presence of defects in repair pathways, especially viable due to the low expression in healthy

tissue [18]. After the discovery of two novel small molecule inhibitors for POLΘ, mice im-

planted with colon cancer cells (HCT116) were given the inhibitor orally and then treated

with a 2Gy fractionated radiotherapy regime over twoweeks (excludingweekends) for a total

of 20 Gy. The xenograft model demonstrated tumor growth delay from POLΘ inhibition,

5



corroborating in vitro irradiation results [19]. Radiosensitivity of a cell varies basedon the cell

cycle stage, typically with the most sensitivity during the mitotic phase and least sensitivity

during late S phase. So, a potential benefit with a fractionated regime is increasing the proba-

bility of irradiating cells while they are undergoing amore radiosensitive stage of the cell cycle

[20]. Further, cells were placed in anaerobic chamber to induce hypoxic conditions and then

irradiated under these same conditions to test the radiosensitization capability of POLΘ for

hypoxic tissue. The results demonstrate POLΘ inhibition can radiosensitize independent

of cellular oxygenation in vitro [19]. Note normal tissue could be already radiosensitive due

to their oxygenation, so the application would be for targeting stubborn radioresistant sub-

regions of the tumor like the hypoxic region to improve the therapeutic ratio of tumor cell

death to healthy cell death. The case of POLΘ illustrates the potential to exploit biological

machinery to approach current hurdles in radiotherapy treatment like a hypoxia.

Ideally, preclinical radiotherapy should be analogous to clinical radiotherapy in treatment

planning and execution. The further it deviates from clinical realities, the greater risk of pro-

ducing results that are not translatable. Traditionally, translational research requires testing

in an in vivo preclinical model after in vitro proof of concept to justify clinical trials and im-

plementation [21]. Currently, clinical radiotherapy has evolved towards highly non-uniform

and conformal dose distributions that cannot be accurately mimicked at the preclinical level.

Small animal irradiation technology lags behinds clinical innovations to improve tailoring

dose to patients. Many animal studies still remain quite crude, targeting the whole body or

employing partial shielding [22]. This is largely due to the significant challenges when scaling

down treatment planning and execution to the preclinical level [23].
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1.3 Challenges in Translational Radiotherapy

1.3.1 Treatment Planning

Ideally, preclinical treatment planning software would have all the functionality of clini-

cal treatment planning software. For instance, for more complex plans, there would be tools

for inputting and visualizing the spatial arrangement of radiation beams [24]. Further, there

would be tools for segmenting imaging data to delineate organs of risk from target tumor

regions, registering multiple sets of imaging data to allow for multimodal planning, and an-

alyze treatment plan quality with dose-volume histograms and dose difference plots [25].

Preclinical treatment planning systems would have to handle the small voxels from preclini-

cal multimodal imaging. For instance, voxel resolution of CBCT can be around 100microns

[9]. Additionally, clinical radiotherapy is performed over course of multiple sessions, called

treatment fractions, to improve sparing of healthy tissue; normal tissue has more robust re-

pair mechanisms than cancerous tissue, and due to this, healthy tissue repairs itself better

in that time. The accumulation over many fractions improves the differential between the

probability of healthy tissue and tumor tissue damage, also known as therapeutic ratio [26].

Although typical small animal radiotherapy experiments administer dose in single session to

an anesthetized animal, some biological studies would benefit from the capability to fraction-

ate treatment delivery, which would require tools such as deformable image registration, to

align imaging sets across treatment sessions to measure the total dose accumulation [25]. A

preclinical treatment system should offer comparable tools for the planning and execution

of fractionated radiotherapy experiments.
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The twomain vendors of small animal irradiators have provided these tools: SmART-Plan

from Precision X-Ray Inc. (Madison, CT, USA) and Muriplan from Xstrahl Ltd. (Sur-

rey, UK). Both software perform dose calculation using GPU-based Monte Carlo or super-

position/convolution algorithm [27]. Third-party treatment planning software such as μ-

RayStation and SmART-XPS has been recently developed for these preclinical irradiators as

well. A main limitation of most software currently is the ability for only forward planning,

or in other words, the inability to create a plan based on the optimization of an objective

function that weights different treatment goals. This technique, called inverse planning, is

a critical step in intensity-modulated radiotherapy [28]. Traditionally, most clinical treat-

ment systems use analytical or convolution/superposition algorithms for inverse planning

[29]. These algorithms do not scale well typically for kilovoltage beams used in preclinicial

radiotherapy due to way dose is computed. For instance, convolution/superposition can un-

derestimate dose up to 300% in high atomic number regions which the algorithm tradition-

ally cannot account for, although steps have been made to adapt it for these circumstances

[30, 31]. For the inverse planning to design 3D-printed compensators for small animal ra-

diotherapy, a modified open-source pencil beam algorithm was used but dose calculations

rely only upon electron density for its calculations, so dose calculation accuracy in heteroge-

neous regions, particularly those with high atomic numbers, is still a concern at the kilovolt-

age scale [11]. A fast Monte Carlo algorithm, which leverages variance reduction techniques

and optimized cutoff parameters in transport, could be promising for inverse planning due

its accuracy in heterogeneities for kilovoltage photons [25, 32].

Many clinical treatment planning systems often rely on bulk density overrides using tis-

sue segmentations for dose calculations which depend on accurate segmentation and over-
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shadowheterogeneous contributions to the actual dose delivered [23]. However, due to fun-

damental differences clinical and preclinical radiotherapy such as the energy range used, this

dose calculation approach can leadmuch greater error in preclinical treatment planning. For

dose calculations, themegavoltage energy range (commonly 6-18MV) used for clinical treat-

ments generally requires only the density of the material for accurate dose calculations dur-

ing planning. In contrast, the lower kilovoltage energy range used for preclinical treatments

requires atomic composition of the material in addition to density for accurate dose calcula-

tions for comparable levels of accuracy [9]. Part of the challenge is not only the scale of small

animals, but also the fact that ionizing photon radiation interactions change in probability of

occurrence based on the energy of the photon. This is also known as the energy-dependence

of cross sections for interaction types. For instance, the requirement for atomic composition

occurs due to an increased cross section of the photoelectric effect for kV photons relative to

Compton scatter. ForMV photons, the photoelectric effect is more negligible in occurrence

relative to Compton scatter.

There are four main ionizing interactions of photons with atoms: coherent scattering

(Rayleigh andThomson scattering), photoelectric absorption, Compton scattering, and pair

production. Coherent scattering is often negligible relative to other photon interactions and

pair production only becomes dominant after 25 MeV (Mega Electron Volt) [33]. Comp-

ton scattering increases in probability with greater photon energy up to a certain point and

thendecreases, but ismostly independent of thematerial’s atomicnumber (ComptonScatter

Probability∝∼
1
E after 0.1MeV). It is themost prominent interaction in typical clinical radio-

therapy MeV radiotherapy ranges (6-18 MeV). In contrast, the photoelectric effect is largely

dependent on atomic number and energy, mainly decreasing as photon energy increases ex-
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cluding the resonance peak (Photoelectric Probability ∝ Z3

E3 ). Although Compton scatter

becomes dominant (or more probable) around 0.1-0.15 MeV, the photoelectric effect does

not becomenegligible in the preclinical energy range (typically atmost 0.225MeVwith a 225

kVp X-ray tube) [34]. Furthermore, the cubic dependence on atomic number further com-

pounds the photoelectric effect’s salience at the kilovoltage scale in higher atomic number

materials.

A challenge then becomes to how to extract this extra information required for accurate

preclinical dose calculations. One method has been to deduce and assign the atomic compo-

sition to voxels based on the acquired imaging data. Further, one could segment the imaging

data and then assign a specific material to each of these segmentation rather than based on

voxel values. However, evidence suggests dose measurements could deviate up to 40% due to

misaligned tissue segmentation at the kilovoltage energy range, whereas these same segmenta-

tion errors deviate less than 10% at themegavoltage energy range [23, 35]. Another approach

would be to convert values of the imaging data intomaterial property assignments through a

function fitting empirical data. The approach has been adapted for the cone beam computed

tomography (CBCT) used in preclinical radiotherapy to decrease the dose error to around

4%, which improves upon bulk overrides of segmentations but still does not meet the clini-

cal threshold of 2% error [36]. Altogether, some current limitations in preclinical treatment

planning are the absence of inverse planning tools, limited accuracy of dose calculation algo-

rithms due to a trickier lower energy range, and the best way to extract material assignments

needed for accurate dose calculations from imaging data.
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1.3.2 Plan Delivery

For treatment execution, preclinical radiotherapy studies often use collimators ranging

from 1 mm to several centimeters. Smaller field sizes, especially field sizes smaller than the

focal spot of the X-ray tube (diameter of 3 mm for the larger focal spot used during treat-

ment), can cause the output of the irradiator to drop due to an obscuring and non-uniform

spatial distribution of the electron focal spot on the anode target. Further, these lower field

sizes lose the presence of scatter equilibrium in tissue. [32, 37]. Additionally, since the elec-

tron beam source collides into a metal anode target to produce an X-ray beam orthogonal

to the beam source, there also exists a non-uniform fluence and energy distribution of X-ray

emissions along the anode-cathode axis, known as the heel effect. In particular, X-ray emis-

sions at more acute angles, closer the cathode size, possess a greater fluence (or intensity) and

a lowermean radiation energy since atmore obtuse angles, the anode heel absorbs low-energy

photons [38]. Secondary collimation in preclinical irradiators helps correct for the heel effect

[32].

For execution of more complex treatments in the clinic, such as 3D-conformal, intensity-

modulated, and volumetric-modulated arc radiotherapy, beam shaping devices consisting of

dynamic, highly attenuating (tungsten) blades calledmultileaf collimators (MLCs) are essen-

tial. TheseMLCs are illustrated in panel B of Figure 1.1. MLCsmodulate dose, typically at a

resolution that scales to 1 cmwidth at isocenter, by positioning each of these individual leaves

to conform the radiation beam to the shape of the target region [39]. However, with current

technology, theminiaturizing of thesemultileaf collimator systems to the preclinical scale has

been difficult [40]. Some alternative approaches for dose modulation at the preclinical level
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include sparse orthogonal collimators, rastered pencil beams, and 3D-printed compensators

[11]. However, all of these approaches have certain problems such as long treatment times,

costly engineering and implementation, poor treatment resolution, or adding additional fab-

rication steps.

1.4 Monte Carlo

Some challenges with modeling radiotherapy is scale of particle of interest relative to dis-

tance traveled by it, the probabilistic nature of interactions along this distance, and the num-

ber of particles that contribute to the overall macroscopic property of dose. For instance, the

wavelength of an X-ray photon is about 0.01 to 10 nm. Although a photon does not have a

volume in the traditional sense, treating a photon as a particle, an expression of a photon’s

volume can be calculated as

photon’s volume(λ) := cλ3 (1.1)

where c = 7.394× 10−4 (fine structure constant divided by π2) and λ equals the wavelength

[41]. From this equation and assuming the billiard ball is an ideal sphere (with a diameter of

57mm) and the largest X-ray photon of 10 nm, one could fit more than 2× 1026 photons in

a single billiard ball! That is more than all the human cells of every human put together on

this planet currently (assuming the overestimate of 724 trillion human cells per human). To

generate these X-rays, an irradiation for 60 seconds at a current of 13mA, roughly 4.9× 1018

electrons run across the X-ray tube. To run a full Monte Carlo simulation of 90 billion elec-

trons using high-performance computing took about 1 week, thus to simulate the electrons

across the X-ray tube for a mere 60 second irradiation would require roughly a million years!
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1.4.1 Basics

Modeling any phenomenon can be divided to into two fundamental approaches: deter-

ministic and stochastic. A deterministic model can predict a phenomenon without the in-

troduction of a randomness. For instance, suppose one wanted to predict the area under the

curve of a integrable positive function f : R → R+ over an interval [a, b] where a, b ∈ R

and a < b. A deterministic model F would take two inputs (a, b) and integrate from the

function f over the the interval [a, b] as such

F(a, b) :=
∫ b

a
f(x) dx = exact area under the curve between two points (1.2)

In contrast, a stochastic model predicts a phenomenon by introducing randomness. An-

other way to approach the same problem would be to sample a random point r1 ∈ [a, b].

Then an estimate for the area under the curve would be

A1 = f(r1)(b− a) = estimated area under the curve between two points (1.3)

Tofind an accurate estimate, onewould need to sample enough randompoints ri and average

the areas Ai as such

FN(a, b) :=
1
N

N∑
i=1

Ai =
1
N

N∑
i=1

f(ri)(b− a) (1.4)

Thus, a stochastic model FN will approach the true value for a sufficiently large sample

F(a, b) = lim
N→∞

FN(a, b) (1.5)

For a function with a known integral in this case, a stochastic approach would take more

time to approach the exact answer supplied by a deterministicmodel. However, when a func-

tion does not have a known integral, a stochastic approach could be quicker depending on

theproblem. For coupled transport problemsof radiotherapyused indose calculation,where
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photons, electrons, and other particles are being transported in a user-defined space and each

influence the transport of other particles,multidimensional numerical integration is required

to solve the system. Here, a stochastic Monte Carlo approach can be faster. In fact, a math-

ematical proof can demonstrate Monte Carlo is more efficient than first-order deterministic

models for transport problems with greater than four dimensions given some assumptions

about the calculation and computation technique, but independent of the physics used to

model the system. Typically, transport problems for radiotherapy are of dimension 6.ε or

7.ε, where the first six dimensions are the position x⃗ and momentum p⃗ vectors in 3D Carte-

sian space, the optional seventh dimension is for time, which cannot be ignored for nonlinear

problems, and the ε is the discrete dimension of particle species, charge, or intrinsic spin [42].

1.4.2 Photon Transport

The probability a photon interacts P(x) over a distance x travelled in a homogeneous ma-

terial is given by the attenuation law

P(x) :=
∫ x

0
μe−μx′ dx′ (1.6)

whereμ is the linear attenuation coefficient thatwill dependon themediumand energy. Note

if x → ∞, then P(x) → 1, or in other words, the probability of the photon will interact will

be equal to 1. From this equation, the mean free path length λ is calculated as

λ =

∫ ∞

0
x
[
μe−μx

]
dx =

1
μ

(1.7)

For a given distance x, it will be convenient to think of distance travelled before an interaction

in terms of the number of mean free path lengths λn

λn(x) :=
x
λ
= xμ (1.8)
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Then, the first equation can be integratedwith the boundary conditionP(0) = 0 and rewrit-

ten as

P(λn) =
∫ λn

0
e−λ′n dλ′n = 1− e−λn (1.9)

Then, the inverse of this function can be determined such that given a uniform selection of

a random number r1 ∈ [0, 1), the number of mean path lengths travelled by the photon in a

given medium and energy will be

P−1(r1) = − ln (1− r1) = λn (1.10)

and thus, for a randompropagation of a photon, the distance travelled till the first interaction

will be

x(r1) := − 1
μ
ln (1− r1) = − 1

μ
ln (r∗1 ) (1.11)

Note here r∗1 is an complementary random value of r1 where r∗1 = 1− r1 and r∗1 ∈ (0, 1]. For

a photon trajectory that changes mediumsN times before a point where an interactionmust

happen, the number of mean free path lengths travelled can be defined as

λ∗n :=
N∑
i=0

μ(mi)x(mi) (1.12)

where μ(mi) and x(mi) are respectively the linear attenuation coefficient and linear distance

travelled in the medium during the ith change, where the zeroth is the initial medium.

Once the distance travelled till the first interaction is computed, the next step is to calculate

the type of interaction experienced by the particle. For a photon, four interactions are possi-

ble: (1) coherent scattering, (2) photoelectric absorption, (3) Compton scatter, and (4) pair

production. The linear attenuation coefficient can be decomposed into these constituent re-

actions as μ = μ1+μ2+μ3+μ4. Note like μ, every μi will be dependent on themedium and

energy of the photon. Then, given a uniform random number r2 ∈ [0, 1), the interaction
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type i(r2)will be the probability
μi
μ as such

i(r2) :=



coherent scattering r2 ∈
[
0, μ1μ

)
photoelectric absorption r2 ∈

[ μ1
μ ,

μ1+μ2
μ

)
Compton scatter r2 ∈

[ μ1+μ2
μ ,

μ1+μ2+μ3
μ

)
pair production r2 ∈

[ μ1+μ2+μ3
μ , 1

)
Once a interaction has been sampled, the secondary particle parameters must be deter-

mined. For instance, in the case of Compton scatter, a photon interacts with a single elec-

tron. The energy of this electron released and the angle of scatter must also then be sampled,

typically through a probability distribution function of a differential cross section dσ/ dΩ

dependent on the material and photon energy. A differential cross section represents the

probability that particle passing through an area dσ before scattering will pass through the

solid angle dΩ after scattering. For any sampled secondary particle parameters, both parti-

cles must follow kinematic conservation laws.

The steps of distance traveled till an interaction, sampling from possible interactions,

and then adjusting the simulation based on the selected interaction is repeatedmany times to

decrease noise. The central limit theorem can estimate this noise. In this case, the noise is the

standard deviation of the sample distribution σs from the mean μs of this same distribution,

which depends on the number of samples run N and the standard deviation of the actual

distribution σa as σs = σa/
√
N. Due to the fact standard deviation decreases proportional

to the square root of histories, a large number of histories is generally needed for acceptable

results. Typically for a simulation to end, all these primary and secondary particles must all

either fall below some threshold energy typically defined based on the particle type or exit the
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space of interest. An analogous approach can also be approached for charged particles like

electrons and protons [42].

1.4.3 Application

Radiotherapy dose calculation algorithms estimate the amount of energy deposited by

the X-ray beam in a given volume, typically voxels of a dose grid covering structures of inter-

est within the patient. Dose calculation algorithms can be broadly divided into three types:

factor-based, model-based, and principle-based. Broadly, factor-based fit empirical measure-

ments, model-based simplify physical processes by dividing beam fluence into kernels, and

principle-based attempt to simulate all physical interactions [43]. These three algorithm

types are listed in increasing order of typical calculation accuracy and computational cost.

Monte Carlo employs randomness to determine the interactions experienced by a particle

along a given trajectory as shown in Subsection 1.4.2, so it falls under the principle-based

category. Moreover, Monte Carlo dose calculation algorithms are considered the gold stan-

dard for radiotherapy simulations because of its attempt to model all possible interactions

[44].

The accuracy of a dose calculation algorithm is inherently tied to how well it models the

transport and interaction of photons, which increases in complexity and importance in het-

erogeneous realities of radiotherapy. For commissioning of these algorithms to irradiation

systems, dose profiles are measured in homogeneous water phantoms, which represent ideal

circumstances. In reality, the patient’s tissue can vary largely in density and atomic com-

position (e.g. cortical bone versus adipose tissue). Since patient tissue is heterogeneous, al-

gorithms should account for variations. Tissue density corrections can be classified as local
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energy deposition or non-local energy deposition depending on whether they account for

electron transport [45].

Principle-based typically fall under local energy deposition. To understand this, consider

a point r on a 1D line which represents the photon beam’s trajectory to that point. Then,

the Batho power law correction factor at the point r can be performed as such where forN

different materials above the point r

CF(r) =
N∏
i=1

Ri × TAR(xi)(ρi−ρi−1/ρ0) (1.13)

where CF(r) represents the constant to convert dose known in a homogeneous medium

to the dose in a heterogeneous medium, Ri represents the ratio of mass energy absorption

coefficients of the ith material and water, TAR represents the tissue-air ratio, xi the distance

in the ith material, and ρi the electron densities with ρ0 being the electron density of water

[46]. In the above equation, only the primary photon path is considered, whereas scattered

photons and recoil electrons are not considered, so the correction is only basedon local energy

deposition.

In contrast, somemodel-based algorithms can calculate non-local energy deposition. Con-

sider two vectors r⃗D and r⃗P that originate at the x-ray source and represent two points in the

irradiated volume, where r⃗D represents the point of dose calculation, r⃗P represents the point

where a primary photon interacts, and (r⃗D − r⃗P) represents a vector starting at point of the

primary photon interaction and ending at the point of dose calculation (whichwill represent

the contribution of secondary particles to dose at the point of calculation). Then, the dose

predicted a general convolution/superposition method can be calculated as

D(r⃗D) =
∫
V
TERMA(r⃗P)× K(r⃗D − r⃗P) d3r⃗P (1.14)
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whereD(r⃗D) represents thedose at point r⃗D,V represents the irradiated volume,TERMA(r⃗P)

represents the total energy released per unit mass at the point r⃗P by primary photon interac-

tions, K(r⃗D − r⃗P) represents the fraction of energy deposited at the dose point r⃗D through

secondary particles that originate at primary photon interaction point r⃗P (also called the dose

spread kernel). The convolution part represents the combining of TERMA andK functions

to calculate dose and superposition normally scales K based on physical density at the two

points [47]. Together, convolution/superposition algorithms can account for the secondary

particles, scattered photons and recoil electrons, that contribute to dose, so non-local energy

deposition is considered.

Despite this, convolution/superposition algorithms that only account for physical den-

sity can lead to high discrepancies in heterogeneities for kilovoltage beams used in preclin-

ical radiotherapy due to a more pronounced photoelectric effect which has greater depen-

dence on atomic number as discussed in Subsection 1.3.1. This has led to development

of Monte Carlo algorithms for more robust preclinical dose calculations. In 2009, a Monte

Carlo model of the SARRP small animal irradiator was developed using BEAMnrc Monte

Carlo simulation system based on EGSnrc Monte Carlo transport code and validated using

EBT film dosimetry with mean absolute percent dose difference of 3.4% along the central

beam axis for two collimators (3 mm and 5 mm field sizes) [48]. In 2012, a Monte Carlo

model of the X-RAD 225Cx small animal irradiator (discussed in Subsection 2.1.1) was

developed also using the BEAMnrc. Themodeling of the system’s energy spectrumwas vali-

dated to analytical calculations and 11 collimator geometries (ranging from 1mm to 40 mm

field sizes) to EBTfilmmeasurements with amean absolute percent dose difference of 1-3.2%

along the central beam axis (typically increasing at lower field sizes). Then, a cone beam CT
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imaging (CBCT) data, which is used for image-guided preclinical irradiations, was interpo-

lated to convert values to material assignment for dose calculations on actual mouse CBCT

data [49]. In 2016, a Monte Carlo model of the X-RAD 225Cx was developed using GATE

simulation platformbased onGeant4MonteCarlo transport code. The systemwas validated

to film measurements for seven collimators (1-20 mm field sizes) with a mean absolute per-

cent dose different of 1.6% along the central beam axis. Using a variance reduction technique

called split exponential track length estimator method, a fast Monte Carlo dose calculation

algorithm was developed that reported a speed up factor on the order of 103 compared to a

full Monte Carlo approach, enabling 3D dose distribution calculations on the timescale of

minutes instead of days [32]. A limitation of the study was the focus of dose calculations in

homogeneous medium.

These full Monte Carlo models are important for validating faster approaches that could

be implemented in preclinical treatment planning software and used for inverse planning.

In 2020, this GATEMonte Carlo model was used to validate μ-RayStation (discussed in de-

tail in Section 3.1) which adapted the VMC++Monte Carlo dose engine used for electron

dose calculations for low energy photon dose calculations and smaller voxels. Both models

showed good agreement in slab phantom and two murine CBCT cases (thoracic and ab-

domen) with mean absolute percent dose difference less than 2% in these dose distributions

[25]. μ-RayStation can run this VMC++ Monte Carlo dose engine on a GPU to improve

computational times. Another GPU-accelerated Monte Carlo dose engine, GARDEN, was

validated to Geant4 model of an image-guided small animal irradiator with a mean absolute

percent dose difference of around 1% in heterogeneous phantoms and less than 3% inmurine

twoCBCT cases (also thoracic and abdomen) [50]. Further,MonteCarlomodels can be im-
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portant to understand the dose distributions of more spatially complex radiotherapy treat-

ments such as intensity-modulated radiotherapy and spatially-fractionated radiotherapy. Us-

ing a EGSnrc C++Monte Carlo, grid collimators for the X-RADSmARTwith radius of 0.7

mmandcenter-to-center spacingof 2.4mmweremodeled to simulate preclinical photongrid

therapy and validated to filmmeasurements with amean absolute percent dose difference less

than 2% from 0.25 to 3 cm depth in a water phantom [51].

In summary, Monte Carlo is a valuable dose calculation tool for preclinical radiotherapy.

Full Monte Carlo dose calculation algorithms act as the gold standard to benchmark other

dose calculation algorithms and are incredibly adaptable to any arbitrary geometry setup.

FastMonteCarlo dose calculation algorithms open the door for accurate treatment planning

for preclinical radiotherapy experiments. Together, these tools will be valuable in improving

translational radiotherapy, and ultimately, the effectiveness of radiotherapy treatments to

treat cancer.

1.5 Thesis Goal

The main goal of this work was to evaluate the applications of high-performance com-

puting Monte Carlo (HPC-MC) and GPU-based Monte Carlo (GPU-MC) for preclinical

radiotherapy applications, whereHPC-MC ran a full Monte Carlo approach andGPU-MC

used a fast Monte Carlo approach. The applications explored are discussed below:
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1.5.1 HPC-MC

1. Subsection 2.4.1: Absolute dosimetry by scaling simulated dose measured by an

empirical factor that normalizes dose based on the electronic charge used to generate

the primary photon beam in the X-ray tube

2. Subsection 2.4.2: Comparative dosimetry by acting as a validation test for other

dose calculation algorithms, especially in slab phantoms andCBCT imagingwith het-

erogeneities

3. Subsection 2.4.3: Commissioning dosimetry for treatment planning software by

importing the energy spectrum, beam modeling, machine geometries, percent depth

curves, and lateral beam profiles

4. Subsection 2.5.1: Modeling more spatially complex radiotherapy techniques like

3D-conformal and intensity-modulated radiotherapy using 3D-printed objects

5. Subsection 2.5.2: Simulating sub-cellular energy deposition to study radiobiologi-

cal effects

1.5.2 GPU-MC

6. Section 3.2: Retrospective treatment planning of preclinical radiotherapy experi-

ments, including those with multimodal imaging and field shaping

7. Section3.3: Comparisonof treatmentplanning techniques includingparallel-opposed,

static arc, 3D-conformal, and intensity-modulated radiotherapy for image-guided ra-

diotherapy
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2
HPCMonte Carlo

2.1 Setup

HPC stands for high-performance computing, which in this case, represents the use of a

computing cluster (more precisely, a non-uniform memory access system) to perform rigor-

ousMonteCarlo (MC) simulations using pooled computational resources. The chapter will
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cover the development, validation, and application of HPC Monte Carlo (HPC-MC) for

preclinical radiotherapy. However first, the geometry and physics of the small animal irradi-

ator modeled for the MC simulation (the X-RAD 225Cx) will be discussed. Then the sim-

ulation environment, which used the particle simulator Geant4 and code wrapper TOPAS

will be covered.

2.1.1 X-RAD 225Cx

Designed by Precision X-Ray, the X-RAD 225Cx is a fully-shielded cabinet irradiator

capable of delivering image-guided and isocentric radiotherapy plans to small animals. The

irradiator has a 225 kVpX-ray source and a pixelatedCsI detector. Themachine can perform

cone beam CT imaging and fluoroscopy. For imaging, the machine uses a small focal spot

and a 2 mm aluminum beam filter. Using the CT imaging for alignment of the couch, the

machine can perform precise treatments to small animals. Generally, collimators can shape

the radiation beam on the scale of millimeters at the isocenter, which is the point around

which the machine can rotate around for treatments at different gantry angles [52].

At the University of Chicago, five cones are currently commissioned for radiotherapy use

ranging from 5 mm to 35 mm nominal field sizes, which represents the beam diameter at

isocenter. The interchangeability of the components has allowed for development of a com-

pensator holder that can allow for the insertion of 3D-printed objects to further modulate

the beam. Through these 3D-printed compensators, more advanced treatment techniques

such as conformal and intensity-modulated treatments can be delivered in a preclinical set-

ting [11, 13]. The ability to perform more advanced radiotherapy in preclinical models will

allow researchers to better mimic clinical radiotherapy, and ultimately, the consistency when
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transitioning from preclinical to clinical trials is crucial for the success of any translational

study.

A B

Figure 2.1: X‐RAD 225Cx Cabinet Irradiator. The machine is a cabinet irradiator and A) shows the machine with cabinet
doors closed during an irradiation while B) shows inside of the machine while the cabinet doors are open during the setup
of the irradiation.

2.1.2 Simulation Environment

Geant4 is a toolkit to performMC simulations of particles through matter developed at

CERN [53–55]. Building upon the Geant4 Simulation Toolkit, TOPAS is a code wrapper

designed for medical physicists to streamline the use of Geant4 for radiotherapy purposes

[56, 57]. The idea was to model all the geometric components of the X-RAD 225Cx that

influenced photon generation, collimation, and delivery—starting at the electrons acceler-
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ated from the cathode-ray tube. The University of Chicago’s X-RAD 225Cx was modeled

into geometric components through TOPAS code based on measurements and mechanical

drawings where available:

1 1

2 2

3 3

a
a

b
b

c

c

Pre-Cone (Photon Generation) Cone (Photon Collimation) Post-Cone (Photon Delivery)

Cone
Cone

A B

Figure 2.2: HPC‐MCModel of X‐RAD 225Cx. A) illustrates the delivery of a circular cone to film placed at various depths
of a water‐equivalent plastic. B) demonstrates an analogous set up in Geant4‐TOPAS with a small run of 1000 electrons
(in yellow) for visualization purposes colliding into a tungsten target during the pre‐cone step. Some components pointed
out in both models include a) copper filter, b) cone nut flange, and c) water phantom.

Then, theTOPAS code could be used to runGeant4MC simulations on theUniversity of

Chicago’s Radiomics Machine Learning Facility (also known asMEL)—aHPE Superdome

FlexNUMA computation server. All simulations performed on this computing cluster used

128 threads from Xeon Gold 6130 CPUs and the most accurate, standard electromagnetic
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physics environment from Geant4 (option 4). The scripts developed and used are publicly

available on Github.

Instead of creating a single simulation for the entire irradiator, the process was divided

into three steps—pre-cone, cone, and post-cone. After each step, only the photons crossing

a designated surface were recorded for energy, momentum, and position. The generated file

was saved as phase space (.phsp), which then could be imported into future simulations. The

modularity helps save computational time. For the propagation through different collima-

tors, the same phase space from the treatment head simulation (step 1 in Figure 2.2) could

be used. For the delivery to different phantoms, the same phase space from a collimator sim-

ulation (step 2 in Figure 2.2) could be used. Leveraging the hierarchical control of TOPAS,

the “Objects” folder stored all the TOPAS code for the geometric components which were

called then by an “init” file to set up the simulation. Then, a “submit” file streamlined ad-

justable parameters such as seed, sequential times, input phase space, electron beam energy,

gantry angle, etc. One potential pitfall of a modular setup is the number of files created to

run a complete simulation. To document simulations, a shell script “track-submit” recorded

the “submit” and “init” TOPAS files along with other salient information like run time and

input phase space for any simulation that required an input phase space. Bash scripting was

used to automate multiple runs for different cones, phantoms, and gantry angles.

2.2 Propagation

The general physics of the system can naturally be divided into three steps: (1) photon

generation, (2) photon collimation, and (3) photon delivery as shown in Figure 2.2. The first

step primarily occurs within the X-ray tube, a Comet-MXR 225/22, of the X-RAD 225Cx.
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Here, a voltage difference accelerates a beam of electrons to a given energy to collide with an

anode target, typicallymade of some high atomic numbermaterial like tungsten. The electri-

cal field of the positive nuclei in the target can decelerate the electrons leading to the release of

photons called bremsstrahlung radiation. The photons pass through a circular Beryllium exit

window of the x-ray tube, then an opening in the steel house, and a lead primary collimator.

Then the beam passes through a metal filter to remove low energy photons that would con-

tribute to scatter and effective dose only in superficial structures of the patient. The X-RAD

225Cx uses 2 mm aluminum filter for imaging and 0.3 mm copper filter for treatment.

In the second step, these filtered beam of photons then pass through a cone (a cylindrical

brass component) that does the bulk of the beam collimation. After the filter, the photons

first pass through the larger entrance or secondary collimator of the conemade of lead. Then,

photons must travel the length of the cone and exit through a narrow final lead aperture,

whose dimensions determine the final size of the resulting photon beam at isocenter during

treatment (e.g. the nominal 35 mm cone has final lead aperture of 1.295 cm radius). Since

the photon beam is diverging, as the distance from the aperture increases, the size of the beam

will also increase proportionally. The factor by which the size of beam increases is given by

the ratio of the distance from the source to isocenter (SAD) over the distance from source

to collimator (SCD). For the X-RAD 225Cx, the proportionality is roughly 1.3 (309 cm /

233.7 cm), thus the nominal 35 mm cone has a diameter of roughly 3.4 cm (1.295 cm radius

at 233.7 cm becomes roughly 1.7 cm radius at 309 cm).

Finally, in the third step, the rotational C-arm gantry can deliver the collimated photon

beam at any angle converging at a point called the isocenter. The isocenter can be set based

on the CT image-guidance and couch translation in all three directions.
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The three fundamental physics steps—(1) photon generation, (2) photon collimation, and

(3) photondelivery—of the small animal irradiatorwere respectivelymapped into threeprop-

agation steps in the simulation named relative to the collimation of the photon beam: (1)

pre-cone, (2) cone, and (3) post-cone. These steps for the X-RAD 225Cx and HPC-MC

model are juxtaposed in Figure 2.2.

2.2.1 Pre-Cone

The pre-cone step corresponded to photon generation by an electron beam collidingwith

a high Z anode target to release Bremsstrahlung radiation.

A

Photons 
Recorded

B

Figure 2.3: Energy Spectrum after HPC‐MC Pre‐Cone Step. A) illustrates the pre‐cone components in HPC‐MC model, B)
the energy spectrum of 70 million photons that reached the magenta plane at the bottom and were saved in phase space
file after a propagation 5 billion electrons.

The Comet X-ray tube was modeled by a square 0.3 mm x 0.3 mm electron beam with a

uniform position distribution and beam energy of 0.225MeV with no beam energy spread.

These electrons traveled in a vacuum before colliding with a target anode with an angle of
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20 degrees modeled as tungsten right angular wedge trapezoid. The beryllium exit window

and opening of the steel house were modeled as cylinders with circular apertures. The lead

primary collimator was modeled as a hollow polycone. The filters, 0.3 mm copper and 2

mm aluminum, were modeled as cylinders and were easily interchangeable in the model. A

thin cylinder was placed below the filter to record and score the particles that had made it

through the pre-cone step. A simulation ran for roughly one week with 90 billion electrons

(9e10) and resulted in roughly 951 million photons (9.51e8) with a kinetic energy ranging

from 5 to 225 keV. The energy spectrum for 70 million photons from a smaller simulation

of 5 billion electrons (9e9) is shown in panel B of Figure 2.3. It would be interesting in the

future to model the focal spot’s heterogeneous fluence based on the manufacturer’s focal

spot image provided as done in Chiavassa et al. 2020 [25]. Further, other starting irradiation

conditions, such as a 100 kV tube potentialwithout a filter, should be tested to validateHPC-

MCmodel for other energy spectrums and the absolute dosimetry empirical constant derived

in Subsection 2.4.1.

2.2.2 Cone

The cone-step corresponded to collimation of photons that were recorded in the pre-cone

step phase space. To accomplish this, the phase space produced in the pre-cone simulation,

which only contained photons that had reached the surface after filtration and preliminary

collimation, was imported as a particle source. The lead entrance aperture (also called sec-

ondary collimator), the brass tube of the cone, and a final lead aperture were modeled as

cylinders with circular apertures. The photons were collected into another phase space af-

ter passing through this final aperture. Five cones commissioned for use at the University of
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Chicago’s X-RAD 225Cx with nominal field sizes 5 mm, 7.5 mm, 15 mm, 25 mm, and 35

mm were modeled. The fluence after this step of these five cones can be seen in panel B of

Figure 2.4.

A B

35 mm 25 mm 15 mm 7.5 mm 5 mm
Phase Space 

Surface

Photon Intensity After Collimation

Nominal Field Size

Figure 2.4: FluenceMap afterHPC‐MCCone Propagation. A fluencemap represents the 2D histogram of photon intensity
based on position. A) depicts the simulation of photons through a collimator and then recorded at themagenta phase space
surface. B) plots the photon intensity spatially based on a weighted cumulative sum of all the photons in the phase space
after propagation through one of the five cones. Note nominal field size is the beam size at isocenter, not at the phase
space surface recorded in this figure. Here, the diameters are smaller due to beam divergence.

The35mmcone is themain collimatorused for preclinical treatments, which is a large field

relative to the irradiated tumors. The lead aperture or exit collimator of the 35 mm cone can

be swapped with a smaller lead aperture to create a 25 mm cone. For the compensator based

deliveries, a compensator holder can be added instead of an aperture. This holder was also

modeled in the simulation to enable compensator-based plans in the simulation, as shown

in Figure 2.14. A square aperture of 24 mm field size based on an aperture not currently

in use was also modeled for the commissioning of GPU-MC, as shown in Figure 2.11. The

square aperture was modeled as a TOPAS aperture geometry component, whereas all other

circular apertures were modeled as hollow cylinder geometry components native to Geant4.

In the future, since the apertures used are not pure lead, theCerrosafe alloy could bemodeled

as a new material based on its atomic fraction by weight (Bi = .425, Pb = .377, Sn =

.113,Cd = .085) and density (9.4 g/cm3) [58]. Further, it would be interesting to test the
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influence of a slanted aperture, which could bemodeled as a hollow polycone, to account for

beam divergence.

Similar to the pre-cone step, a thin cylinder was placed below the cone and the final lead

aperture to record collimated photons that had reached the top of its surface, which is shown

in panel A of Figure 2.4. A single propagation of 951 million photons from pre-cone phase

space through any of the cones typically took 5-7 hours, and running multiple propagations

scaled proportionally. The number of captured photons at the end of the cone increased as

expected based on field size (e.g. 21.6 million photons for the 15 mm cone and 98 million

photons for the 35 mm cone).

2.2.3 Post-Cone

For this step, the isocentric delivery of the X-RAD 225Cx was modeled by performing

three transformations to the phase space produced by the cone step. First, the y-coordinates

of the photons, whichwere all the same since the surface the photonswere collected fromwas

orthogonal to the y-axis, were reset by multiplying by zero. Then, they were shifted up such

that the isocenter became the center of the simulation (with the x, y, and z coordinates being

zero at this point). To account for the capability of rotation by the C-arm for deliveries, a last

rotation along the Z-axis axis allowed for a gantry angle to be set for subsequent delivery. A

larger 5 cm cube with 0.05 cm cubic voxels was used tomodel the water-equivalent phantom

used in commissioning and measuring of percent depth dose curves. Another smaller 2 cm

with .02 cm cubic voxels was used to model the quality assurance phantom used for film

measurement of beammodulation treatments.

For the validation of compensator and aperture materials (typically a mixture of metal
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Photon Source

Phantom

Isocenter 
Plane

C

Gantry Angle Change CT Phantom + Bed Shift

D

Default Setup

Figure 2.5: HPC‐MC Post‐Cone Setup. A) represents a simplified diagram of the isocentric post‐cone setup, B) illustrates
the default setupwith awater phantom at 0° gantry angle andwithout any translation, C) demonstrates the ability to rotate
the photon source for deliveries at different angles, and D) depicts the import of CT and conversion to tissue materials
given Hounsfield units along with a bed shift and gantry angle change, note photon source and isocenter is respectively
shown in transparent gray and as the intersection of the three axes.

and 3D-print plastic) in the simulation, the Radcal Accu-Dose with 10x6-0.6 Ion Cham-

ber with Buildup Cap was modeled. The ionization chamber in the physical and HPC-MC

setup is shown in panels A-A’ of Figure 2.7 and described in Subsection 2.3.2. Further,

the ability to tag different voxels with different materials in TOPAS was leveraged to create

heterogeneous slab phantoms. Using a MATLAB script, the size and material of the slab

insert could be designed, exported as a .txt file, and then used in the simulation. The slab

phantomwas used to evaluate another dose calculation algorithm’s accuracy in the presence

of heterogeneities, which is shown in Figure 2.10. One could also utilize this to create a het-

erogeneous phantom based on CT volume. A more direct and robust implementation of

the CT volumes, but more time-intensive, was performed by the import of DICOMfiles di-

rectly. For dose calculations with a CT volume, two approaches could be performed. One

involved the conversion of Hounsfield units to atomic compositions. Another was the use

of an RT structure file to map segmentations to a given material. For better comparisons

with treatment planning software that might score a dose grid rather than a whole CT, the
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RT treatment file could be imported to score only within the dose grid. This could then be

saved as another RT treatment file and imported back into the treatment planning system for

comparison. Lastly, deliveries may not have rotated on the center of a CT, so the ability to

insert bed shifts thatmove theCT volume in the simulationwas added. The set up and some

capabilities are shown in Figure 2.5.

2.3 Validation

To ensure the accuracy of the MC model for radiotherapy simulations, two validation

tests were performed using (1) film and (2) an ion chamber. Film measurements was used

to verify proper modeling of the physical geometries in the HPC-MC model. Ion cham-

ber measurements was used to verify proper material modeling for composite materials not

defined elsewhere, such as copper polylactic acid (CuPLA) used in the fabrication of 3D-

printed compensators for beammodulation.

2.3.1 FilmMeasurements

For the first test, filmmeasurements taken at different depths of a water-equivalent phan-

tom in the X-RAD 225Cx were compared to dose-to-medium measurements at the same

depths in a water phantom in HPC-MCmodel for the five commissioned collimators. The

results are shown in panel A of Figure 2.6 as percent depth dose curves with dose normalized

based on the maximum value.

The beam profiles from the simulation were also compared to the cone’s nominal field

size, as shown in panel B of Figure 2.6. For the simulation, a 5 cm cubic water phantom
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B

Figure 2.6: HPC‐MC Validation to Film Measurements. A) represents the percent depth dose curves along the central
beam axis for film measurements and HPC‐MC simulations, B) shows the lateral beam profile at isocenter the water cube
at a depth of 2.5 cm along the off‐center axis and the gray lines represent the nominal field sizes. All valueswere normalized
based on the maximum dose.

was divided into 10,000 of 0.05 cm cube bins using dividable TsBox component. For the

percent depth dose curve, the dose at a given depth in the water phantom represented the

average of the center four voxels in the cube, which was then divided by maximum of this

calculation along the depth of the cube. For the lateral beam profile, a voxel above and below

was averaged along an axis at a given depth. The mean percent dose difference of the depth

dose profiles for all five cones between HPC-MC and measured data was 2.0% ±0.7%. For

the lateral beam profile, the calculated fields sizes (50% of isodose) were on average within

8.30% ±4.76% of nominal field sizes. Some discrepancies were noted before the simulation

between the aperture sizes in the blueprints and theoreticalmagnification factors as discussed

in Section 2.2.

2.3.2 Beam Attenuation

For the second test, discs of known elemental material (copper and aluminium) were

stackedbelow thefinal lead aperture of the25mmcone at varying increments and the amount
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of dose delivered to ion chamber was measured. The stacked material and ionization cham-

ber is respectively shown by the blue and red box in panel A-A’ of Figure 2.7. This served to

verify proper modeling of the ion chamber since copper and aluminum had accepted mate-

rial definitions in Geant4. Accurate results were achieved with a simple three layer geometry

of TsCylinder components. The cylinder was a height of 18 mm. From the center to 3.25

mm radially represented the scored volume of ionization chamber (thematerial G4_AIRwas

used). From 3.25 mm to 4.5 mm represented the unscored volume of the ionization cham-

ber (again G4_AIRwas used). Finally, from 4.5 mm to 7.5 mmwas the polyacetal (CH2O)n

build up cap which used a custom material defined by the known atomic composition of

polyacetal by weight (C = 0.4, H = 0.067, O = 0.533) and cited density (1.42 g/cm3) [59].

The first half-value layer for Cu was 1.04 mmmeasured and 1.03 mm simulated.

Then, 3D-printed discs of copper polylactic acid (CuPLA) were stacked and measured

in a similar manner. For accurate modeling of CuPLA in the HPC-MC model, first poly-

lactic acid (PLA), atomically defined as (C3H4O2 )n, was modeled based on cited density

(1.25 g/cm3) and known atomic composition by weight (C = 0.50, H = 0.056, O = 0.444)

[60]. Then, CuPLA was modeled as a 4:1 mixture of copper to PLA. Finally, the density of

this CuPLAmaterial was set to 3.4 g/cm3, which was based on the manufacturer’s technical

datasheet (MetalFil Classic Copper, Formfutura) and empirical corroboration of this value

in 3D-prints. This empirical data was used to verify accurate modeling of the compensator

material in the simulation. Themean difference in percent beam transmission betweenmea-

sured and simulated forCu, Al, andCuPLAwere respectively 3.39%±1.12%, 2.09%±0.80%,

and 2.10% ±1.14%. In the future, other materials used to 3D-print beammodulating objects

should also be modeled, including the tungsten PLA for conformal apertures.
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A

B

A’

B’

C
CuPLA

AlCu

Figure 2.7: HPC‐MC Material Modeling Validation. A‐A’) illustrates the beam attenuation set up where the attenuation
material (in blue) and ionization chamber (in red) are highlighted between the two analogous setups, B‐B’) depicts the beam
transmission curve as the thickness of the attenuating material varies for copper and aluminum, which were defined using
G4 elemental materials, C) represents the beam transmission curve as 3D‐printed discs of copper polylactic acid (CuPLA)
used in the fabrication of 3D‐printed compensators were stacked below the below final collimator aperture and modeled
as a novel material in the simulation. Note the thickness of the attenuating material between A and A’ are different in the
setups.

2.4 Application

The application of this developedMCmodel for absolute, comparative, and commission-

ing dosimetry purposes will be discussed.
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2.4.1 Absolute Dosimetry

The absolute doses observed in the model chamber were eight to ten orders of magni-

tude smaller than that observed in the ion chamber. This was expected since the real system

involves a much larger number of particles than the model can reasonably simulate. In the

current setup, the energy of the photons produced is determined by the voltage of cathode-

ray tube,measured as the kilovoltage peak (kVp), and the intensity of the photons produced is

determined by the tube current, measured inmiliamps (mA). For preclinical treatments, 225

kVp and 13mA is typically used for the X-RAD225Cx. The exposure time, or how long the

machine operates at these settings, determines the total dose to the specimen or ion chamber.

For a minute long exposure, the following is true about the electrons passing through tube:

cumulative electronic charge = 13mA× 60sec = 780mC (2.1)

Given Faraday’s constant (F = 96485C/mol) and Avogadro’s constant (NA = 6.022 ·

1023particles/mol):

total number of electrons =
780mC×NA

F
≈ 4.9 · 1018electrons (2.2)

For scale, the MC simulation running for roughly one week with 128 threads on the com-

puting cluster simulated “only” 90 billion electrons (9e10) across the tube. Hence, such a

low dose is reported in the simulation.

However, tracking the number of electrons that contribute to the end dose by track-

ing dose in terms of gray per coulomb (Gy/C) instead of simply gray can still be beneficial.

The feature allows for comparisons between simulations with different number of histories,

which will also have intrinsic differences due to noisiness of the simulation. Further, using

gray per coulombwill allow for a more meaningful scaling of results to real irradiations. The
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observed dose per electronic charge (Θ) wasmeasured for the 25mm and 35mm cone at 225

kVp and 13 mAwith the 0.3 mmCu treatment filter and an exposure time of one minute:

dose per electronic charge Θ =
absolute dose to ion chamber (Gy)
current (A)× exposure time (s)

(2.3)

Θ(25 mmmeasured) =
2.414Gy

0.013A× 60s
= 3.095Gy/C (2.4)

Θ(35 mmmeasured) =
2.479Gy

0.013A× 60s
= 3.178Gy/C (2.5)

For calculating the dose per electronic charge, the number of electrons simulated in the pre-

cone step was recorded. Prior to the 90 billion electron pre-cone simulation, a 100 billion

electron pre-cone simulation was used for certain simulations. The phase spaces were iden-

tical in their energy spectrum. A challenge however with using this 100 billion electron gen-

erated phase space is that the number of photons generated exceeded one billion, which was

the limit placed number of particles able to be simulated by Geant4-TOPAS in a single run,

so an extra correction factor (ζ) was required since not all produced photons could be used

in subsequent propagation steps. Note these calculations were performed on a larger, older

phase space than 951 photon phase space discussed in Subsection 2.2.1. This phase space

was also validated in the same manner as done in Subsection 2.3.1, but is no longer in use

due to the one billion photon simulation cap. The derivation here will include this extra step

of a correction factor as a large amount of simulations scoring dose to ion chamber used this

larger phase space:

correction factor ζ =
usable photons
total photons

=
109 photons

1461748775 photons
= 0.684 (2.6)

adjusted electronic charge = 1011e− × 1.602 · 10−19 C
e−

× ζ = 10.959nC (2.7)

For the simulated ion chamber measurements, the dose per billion photon histories for the

25mmand 35mmconewas respectively 37.569 nGy and 38.238 nGy. The 25mmcone dose
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per billion photonswas the average over 7 billion photons. The dose per electronic charge for

the simulationwas the dose per billionphotons dividedby the electron charge of the pre-cone

step:

Θ(simulated) =
dose per billion photons (nGy)
adjusted electronic charge (nC)

(2.8)

Θ(25 mm simulated) =
37.569nGy
10.959nC

= 3.428Gy/C (2.9)

Θ(35 mm simulated) =
38.238nGy
10.959nC

= 3.489Gy/C (2.10)

Then, the empirical factor (κ) to scale simulated dose results to measured dose results is the

measured dose per charge divided the simulated dose per charge:

empirical factor κ =
Θ(measured)
Θ(simulated)

(2.11)

κ(25 mm) =
3.095Gy/C
3.428Gy/C

= 0.903 (2.12)

κ(35 mm) =
3.178Gy/C
3.489Gy/C

= 0.911 (2.13)

For another experiment, the same setup of the tube potential, tube current, copper filtration,

and ion chamber was performed at larger exposure times for absolute dose measurements

with the 35mm cone. For longer exposure times (> 300 seconds), the dose rate converged to

3.141 Gy/C, a slightly lower value than measured at 60 seconds. Recalculating the empirical

factor for the 35 mm cone yields

κ∗(35 mm) =
3.141Gy/C
3.489Gy/C

= 0.900 (2.14)

This suggests κ ≈ 0.9 in general, though lower field sizes would have to be tested to con-

firm this. Further, there is on average a 10% percent error between the measured and simu-

lated dose per charge. Despite the low conversion of photon energy into deposited dose in

air leading to high noise in simulated ion chamber measurements, the similarity across trials
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with a large number of histories pointed away from noise, particularly in the dose scoring of

the air volume in the post-cone step. Although some of the error may be explicable to the

modeling of ion chamber in the simulation, another possible explanation could be the ide-

ality of simulation in the pre-cone step. In the MC model, electrons are accounted for and

precisely slammed in the focal spot for the generation of photons. In reality, the tube has a

focused electron beamwith an electric field, but some will stray off focus and not contribute

equally to the photons generated. The measurement of tube current is also more difficult

than counting simulated electrons and can very slightly over the duration of the delivery.

Further, the tube must ramp in and there is known correction factor to account for the

system’s response time, known as the end-effect. To evaluate the contribution of this effect,

exposure time was varied at ten points from 1 s to 600 s and absolute dose delivered to an ion

chamber was measured. The exposure time versus absolute dose was fit linearly to assess for

non-linearity:

exposure time (s) = a · [absolute dose to ion chamber (Gy)] + b s (2.15)

f(x) = ax+ b = 24.5
s
Gy

· x− 1.05s (2.16)

Ideally, dose should be linearly proportional to exposure time. So, the end-effect repre-

sented the contribution of the constant term b in a linear equation. In this case, this con-

tribution was -1.05 seconds. Dose rate strictly decreased as exposure time increased before

converging to 2.45 Gy/min after 300 seconds. Dose rate per second by linear fit was 0.0407

Gy/s, so a discrepancy of 1 second is negligible, especially for deliveries over the time scale

of minutes. In 60s exposure, a 1 second discrepancy could account for 1.6% difference, but

given the the contribution of the end-effect was a negative time, this would move the em-

pirical factor away from 1. A potential flaw could be the accuracy of the ion chamber at low
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exposure times of 1, 3, 5, and 15 seconds which seems to overestimate dose, but recomputing

the linear fit omitting those values yields -1.01 seconds. Calculated dose rate per minute for

times 30 seconds and greater varied by less than 4%. Given this data, it seems a large part of

the discrepancy between dose per electronic charge measured versus simulated could be due

to a non-ideal focus of the electron beam in the cathode tube onto the target. Empirical ion

chamber measurements on the X-RAD 225Cx based on varying irradiation time and tube

current are summarized in Figure 2.8.

A B

C D

Figure 2.8: X‐RAD225Cx Ion ChamberMeasurements. A) depicts the dose rate per electronic charge over irradiation time,
B) shows the irradiation time as a function of dose where the x‐intercept of the fit represents the end‐effect correction,
C) illustrates dose rate per minute as a function of current, D) depicts the equality of dose rate between different currents
when normalized into dose per electronic charge.
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2.4.2 Comparative Dosimetry

For the fabrication of apertures and compensators used inmore complex treatment plans,

dose calculation algorithms need to minimize computational speed to be preclinically feasi-

ble. After only all the imaging of the mouse is completed, can these components be fabri-

cated. The isocenter is aligned by the CT imaging in the X-RAD 225Cx while the mouse

anesthetized, and the goal is to fabricate these beam-modulating components as rapidly as

possible after this imaging. For this purpose, the long computational times of a full MC

approach limit its application for designing these components. Typically, simulations are re-

peated to perform inverse treatment planning that optimizes a treatment given an objective

function. However, faster dose calculation algorithms require approximations to achieve

the desirable computational speed, so theMCmodel can be used as an accuracy test for these

faster algorithms.

At the University of Chicago, the fabrication of compensators for small animal intensity-

modulated radiotherapy uses an open-source pencil beam dose calculation algorithm Ma-

tRad for inverse treatment planning [11, 61]. The version has been modified to use MC-

generated dose kernels for a 225 kVp treatment beam, but the treatment planning system

uses a pencil beam algorithm to determine final doses in CT voxels. The pencil beam al-

gorithm accounts for the density-dependence of photon attenuation and dose absorption

through converting the Hounsfield units of the CT volume into electron density based on a

lookup table.

A problem with this approach, especially at lower energy levels, is the introduction of the

photoelectric absorption as a competing ionizing radiation interaction to Compton scatter-
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ing discussed in detail in Subsection 1.3.1. The probability of Compton scatter is depen-

dent on photon energy, but nearly independent of effective atomic number, thus electron

density alone can accurately approximate the cross section of Compton interactions. In con-

trast, the probability of the photoelectric effect is dependent on both photon energy and

effective atomic number to the third power. Thus, a pencil beam algorithm often suffers in

accuracy around heterogeneous regions even after density adjustments, and this inaccuracy

would be particularly exacerbated in the presence of higherZmaterials at lower energy ranges.

A

B

Figure 2.9: MatRad Validation to FilmMeasurements and HPC‐MC. A) illustrates the percent depth dose curve of MatRad
(red), HPC‐MC (blue), and film (black), B) represents the lateral beam profile of MatRad (red), HPC‐MC (blue), and nominal
field size (grey). Depth dose curves were normalized to dose at 2 cm depth and lateral beam profiles were normalized to
integral of depth dose profiles and logarithmically scaled.

To assess the level of inaccuracy around heterogeneities, identical treatments to slab phan-

toms were setup between the pencil beam (PB) and the Monte Carlo (MC). But first, the

pencil beam simulation was compared to film measurements and HPC-MC simulation for

accuracy of dose calculation in awater phantomanalogous to the validationof theMCmodel

in Subsection 2.3.1. The mean percent dose difference between film and the pencil beam

was 2.9%± 1.1%. Cone sizes were not based onmodeling of collimators but instead a filter-
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ing of photons within a radius that represented the nominal field size. The results are shown

in Figure 2.9.

For the slab phantom design, a 5 cm cube was divided into three layers with the top and

bottom layer being tissue and the middle layer (the insert) being 5 mm insert of a material of

choice as shown in panels A and B of Figure 2.10. A solid tissue phantom without an insert

acted as a control. Material of air, bone, and cortical bone were used as an insert. For the

MC simulation, a material definition required an atomic composition and physical density

(g/cm3). For the pencil beam simulation, a material definition required the electron density

(e-/cm3). Since the two simulations required different parameters to define materials, careful

attention was made to ensure both treated a given material as similarly as possible. The end

definitions are shown in table below:

Materials g/cm3 Monte Carlo (NIST-defined) Pencil Beam
Tissue 1.127 G4_A-150_TISSUE 1.12
Air 0.0012† G4_AIR 0†
Bone 1.45 G4_B-100_BONE 1.38

Cortical Bone 1.92 G4_BONE_CORTICAL_ICRP 1.78

Table 2.1: Material Definitions for Slab Phantom. NIST‐defined materials can be identified on the Geant4 Material
Database for the exact atomic composition [62]. Relative electron density to water was for these selected materials was
determined based on the conversion from density using the lookup table. †Note for air the physical density is rounded
here but not in the simulations and the electron density was based on the lookup table conversion of ‐1000 HU to electron
density.

First,materialswere selected fromtheGeant4Database ofNISTcompounds. Thesemate-

rials had known densities and atomic compositions. A-150 and B-100 represent respectively

a tissue-equivalent and bone-equivalent plastic. Cortical bonewas defined as suggested based

on ICRPguidelines [62]. The relative electrondensities towater for thesematerialswas based

on the conversion from density using the lookup table.
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To construct the phantom in for the pencil beam simulation, a 3D array in Matlab was

modifiedwith desired values. For theMCsimulation, individual voxelswere set to the desired

material using a text file generated from the conversion of Matlab 3D array into the format

specified by TOPAS Ge/.../VoxelMaterials parameter. A Matlab script was developed

to automate the creation of this text file such that slab phantoms of different thicknesses and

materials could be developed by inputting the desired parameters. There was agreement in

the tissue with a mean dose difference within 2%, whereas the mean dose difference after the

insert was -1.3%, 9.7%, and 17.7% for air, bone, and cortical bone respectively. The results

suggest the pencil beam simulation has good agreement in water and soft tissue but substan-

tial differences arose in bone inserts, especially in the denser cortical bone, as shown in panel

E of Figure 2.10.

A B

Tissue 50 mm

Tissue

Insert

Tissue

10 mm

5 mm

35 mm

C D D’ D’’

E

Control Phantom Heterogeneous Phantom

E

Figure 2.10: HPC‐MC and MatRad Slab Phantom Comparison. A) shows the control homogeneous phantom without any
insert, B) shows the heterogeneous phantom with a 5 mm insert at 1 cm depth, C) depicts the depth dose curve in the
control phantom, D‐D”) depicts the dose curve in the slab phantoms with the insert material region shaded, E) illustrates
the dose difference betweenMatRad andHPC‐MC after the insert. Note dose differencewas always calculated asMatRad
dose subtracted by HPC‐MC dose after normalization.
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2.4.3 Commissioning Dosimetry

μ-RayStation (Micro-RayStation) is a preclinical treatment software built upon the clin-

ical treatment software RayStation 8B, developed by RaySearch Laboratories (Stockholm,

Sweden) discussed in detail Section 3.1. The system uses a fast GPU-based MC approach

which makes a couple approximations to achieve dose calculations on the timescale of min-

utes rather than hours or days as required forHPC-MC inGeant4-TOPAS. For the commis-

sioning of the system, a percent depth dose of a square reference fieldmust be used. However,

at the University of Chicago, only circular collimators are used. So, an old square reference

field not currently commissioned was found and film measurements were taken in a water

phantom. However, there was some problems encountered with film measurements due to

potentially different batches films being used and/or a previously undocumented contami-

nation of the film used.

So instead, the aperture of the square reference field was modeled the MC simulation us-

ing a TsAperture geometry, a specialized component in TOPASwhich allows for a polygonic

aperture based on inputted (x, y) coordinates. A fluence map of the phase space right be-

low the square aperture was calculated to verify proper field shaping. MC simulation of the

square field into a water phantom was performed identical to Subsection 2.3.1. In total,

over three billion photons (3.275e9) were scored in a 5 cm water cube divided into 10,000

voxels for the percent depth dose and lateral beam profile curves. The dose plane at isocenter

orthogonal to the beamwas calculated to further confirm a square field was delivered. Then,

all the machine parameters were set based on the same data used to build the (HPC-MC)

model.
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A B C Photon Fluence Map

Figure 2.11: Square Aperture for μ‐RayStation Reference Field. A) a square aperture was modeled using a TsAperture
specialized component, B) photons were propagated through the cone with this aperture, C) a fluence of the photons
passing through the magenta plane verified the rectangular field shaping.

For beammodeling, the primary electron beam sourcematched theHPC-MCmodel elec-

tron beam in size and distribution. An energy spectrumbased on roughly 70million photons

(7.07e7) was also imported from theHPC-MCmodel based on the phase space produced in

the pre-cone step. This was a smaller than the pre-cone phase space used for propagation

since processing the larger phase space was too computationally expensive for Jupyter Note-

book run on the computing cluster. Since the electron beam was orthogonal to the photon

beam axis, the flattening filter weight was set to 0. To determine the monitor units per sec-

ond (MU/s) of themachine, the dose rate at 13mA and 225 kVpwith a 0.3mmCufilter was

found to be 2.45 Gy/min, which was 4.08 cGy/s. The absolute dose calibration point was

set such that dose per monitor unit was 1 cGy per 1 MU, thus the steady dose rate was 4.08

MU/s. The output factor when importing the 35mm cone data was calculated to be 1.0244

based on the following equation:
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Output Factor for 35 mmCone =
Dose at 1cm for 35 mmCone

Dose at 1cm for 24 mmReference Field
(2.17)

= 1.0244

All the following salient machine parameters modified to commission the University of

Chicago’s X-RAD 225Cx in μ-RayStation are listed below:

Machine Parameter Value
Source-Axis Distance (SAD) 30.7 cm

Reference Field Size 2.4 cm× 2.4 cm
Block Tray Position 23.6 cm

Entrance Collimator Position 9.2 cm
Secondary Collimator Position 22.8 cm to 23.6 cm

Electron Beam Size 0.4 cm× 0.4 cm
Electron BeamDistribution Uniform

Dose Rate 4.08MU/s
Output Factor (for 35 mm) 1.0244

Table 2.2: Machine Parameters for GPU‐Based Monte Carlo Model. Source‐Axis Distance (SAD) represents the distance
separating the radiation source and the isocenter axis. The reference field was chosen based on the size of the old
aperture found and modeled in the HPC‐MC model. The block tray distance was the distance from the source to the
compensator/aperture holder insert. The entrance collimator and secondary collimator corresponded respectively to the
collimator for photons entering the cone and the final aperture of the cone that determined field size.

The percent depth dose and lateral beam profile in a water phantom was compared be-

tween the HPC-MC model and μ-RayStation in analogous setups for the 2.4 cm× 2.4 cm

reference field and 35 mm cone. The results for the reference field are shown in Figure 2.12.

For both collimators, the mean dose difference for the percent depth dose curves was within

1%. The lateral beam profile of the reference field matched within 2%. The 35 mm cone lat-

eral beam profile from the HPC-MCmodel was slightly smaller than the μ-RayStation, but

it noted that the nominal 35mmconewas slightly small in diameter, thus the small deviation

around the edge of the field between the two models was expected.

In the future, the 35mm cone will be adjusted to 34mm in μ-RayStation for better agree-
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Figure 2.12: μ‐RayStation Validation in Water Phantom. A) represents a simplified diagram of the irradiation setup, B‐
B’) shows the 2D dose distribution along central beam axis and off‐center beam axis, C‐C’) demonstrates the agreement
between the HPC‐MC (red) and Micro‐RayStation (blue) in both axes.

ment with the HPC-MC model, but since the 35 mm cone was used for large field irradia-

tions for coverage with no targeting (for scale, the treatment volume taken in the CT step is

also about 35mm), the following deviation would be negligible for the retrospective analysis

discussed in the next chapter. Additionally, the other four coneswill also bemodeled and val-

idated in an analogous fashion. Python scripts were used to automate import of HPC-MC

data into the RayPhysics module of μ-RayStation.
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2.5 Future

2.5.1 BeamModulation Treatments

Through the material modeling of CuPLA in Subsection 2.3.2, more complex treat-

ment plans beyond circular cones could be simulated. CuPLA is the material used to 3D-

print compensators, which can be used to deliver intensity-modulated radiotherapy treat-

ments in small animals [11]. The open-source pencil beam dose calculation algorithm Ma-

3D Intensity Map 2D Intensity Map 2D Thickness Map 3D Thickness Map
3D-Printed CuPLA 

Compensator
B

Compensator Thickness [mm]Bixel Intensity [0,1]

Compensator Thickness [mm]Bixel Intensity [0,1]

3D Intensity Map 2D Intensity Map 2D Thickness Map 3D Thickness Map
3D-Printed WPLA 

Aperture

A

3D
-C
R
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X-ray Blocked
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More X-rays Passes
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Figure 2.13: Compensator‐Based Treatments in HPC‐MC. A) demonstrates the intention of binary passing or blocking
of 3D‐printed tungsten PLA apertures, B) illustrates the intention of modulation of X‐ray intensity across a grid using
3D‐printed copper PLA compensators.

tRad evaluated in Subsection 2.4.2 designs these compensators by inverse planning opti-

mizing of bixel intensity weights. WPLA (tungsten PLA) is also used to 3D-print apertures
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for conformal radiotherapy [13]. Beam modulation treatments using these 3D-printed ob-

jects is shown in Figure 2.13.

Touse 3D-printed objects, the final aperture in the conewas replacedwith a tungsten PLA

compensator holder as shown in the top of panel A of Figure 2.14. The holder was first im-

ported as an STL, but due to performance and step error issues, it wasmodeled with TOPAS

cylinder primitives. Then, the 3D-printed compensator could be imported as an STL object

in the simulation. Beam modulation was verified by a fluence map after a cone propagation

through the compensator-holder geometry and then a post-cone propagation into a water

phantom. For multi-angle treatments, bash scripts were developed to automate gantry an-

gle and compensator changes. Current work is underway to use the HPC-MC to validate

the compensator designs developed using MatRad by comparing 3D dose distributions in

a water phantom and murine CT cases. A 3D-conformal dose distribution can be seen in

Figure 3.1 of the GPU-MC chapter.

A B C
HPC-MC Fluence Map

Photons After Cone Step

Figure 2.14: Compensator‐Based Treatments in HPC‐MC. A) demonstrates the tungsten PLA compensator holder (in blue)
and copper PLA compensator (in red) in the X‐RAD225 Cx (top) and in HPC‐MC model (bottom) with photons shown as
magenta, B) illustrates the fluence of the phase space after beam modulation through the cone, and C) demonstrates the
dose distribution at isocenter orthogonal to the beam axis in a water phantom.
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2.5.2 Multiscale Treatments

The main purpose of radiotherapy is to treat and kill cancerous tissue. Thus, it is impor-

tant tonotonly study radiotherapy at themacroscopic level of dosedistributions in structures

but also the radiobiological consequences at a sub-cellular level. Cell death from radiation

exposure occurs primarily through DNA double-stranded breaks. Further, exposure to ion-

ization radiation causes the activation of certain genetic pathways involved in DNA repair

[63]. Fundamentally, ionizing radiation induces cellular and sub-cellular response, and cell

death becomes a consequence of these biological mechanisms. The ability to connect these

cellular mechanisms to macroscopic observations is important for understanding the inter-

play of oxygenation, radiosensitization, genetic pathways, and other biological factors with

radiotherapy. TOPAS-nBio, an extension of TOPAS, enables radiotherapy simulations at

the nanometer scale on sub-cellular components like DNA, mitochondria, chromatin fiber,

and other biologically salient structures [64]. Currently, work is being done to scale down

fluence of the phase spaces from macroscopic MCmodels of the two major cabinet systems

down to the cellular level. Using this scaled down phase space, future work is looking at

delivering these photons to an ellipsoid cell within a MOBY mouse phantom, modeled in

TOPAS-nBio, to calculate DNA damage.
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3
GPUMonte Carlo

3.1 μ-RayStation

μ-RayStation is clinical treatment planning software adapted for preclinical radiotherapy.

The software is able to perform fast GPU Monte Carlo (GPU-MC) calculations to calcu-

late dose distributions within minutes rather than on the order hours and days required for
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full Monte Carlo models. The commissioning of the system to the University of Chicago’s

X-RAD 225Cx small animal irradiator is discussed in Subsection 2.4.3. The GPU-MC

simulations were run with a NVIDIA Titan X Pascal 12 GB GPU.

3.1.1 Background

RayStation 8B is a clinical treatment planning software developed by RaySearch Lab-

oratories (Stockholm, Sweden) with the capability to perform photon, electron, and pro-

ton therapy and plan state of the art radiotherapy techniques like volumetric modulated arc,

intensity-modulated, and 3D-conformal radiotherapy. The software has all features expected

of clinical treatment planning software such as multi-criteria plan optimization, deformable

registration, segmentation tools, and efficient dose computations. μ-RayStation adapts this

clinical software for a lower energy and sub-millimeter voxel sizes required for preclinical ra-

diotherapy. μ-RayStation leverages the VMC++Monte Dose engine used for electron dose

calculation in the clinical software, and repurposes this for low energy photon beams used

in small animal radiotherapy [25]. VMC++ is a fast and accurate voxel-based Monte Carlo

approach which had been redeveloped in C++ with some improvements for variance reduc-

tion andmodeling of physics [65]. The approach has been validated for photon beams from

20 to 1000 keV, thus it has been validated at preclinically relevant energy ranges [66].

3.1.2 Approach

For μ-RayStation, three assumptions were made in the model: (1) a photon with a path

intersecting a collimator is completely absorbed, (2) irradiator-generated scatter is negligible,

and (3) the heel effect along with other factors that might cause energy or fluence hetero-
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geneity due to source direction is negligible. The three main components of the model then

became the source, entrance collimator, and exit collimator. Threemain parameters required

to model a photon were the energy, position, and direction. Using the source probability

distribution, a photon’s initial position was sampled. Then, given the geometry of the exit

collimator, the photon’s final position was sampled. These two points are connected and

only if it does not intersect the entrance collimator is the photon considered viable and in-

cluded in the simulation. The approach was validated to film and a full Monte Carlo model

built in GATE running Geant4 Monte Carlo transport code in a water phantom. Further

validation to the GATE approach was done in slab phantom and a murine CBCT volume.

To improve calculation time, a validated split exponential track length estimatormethodwas

employed, decreasing computational on the order of 10 to 100-fold to the full Monte Carlo

model with a maximal dose difference of 2% in the tumor of the murine CBCT case. The

Chiavassa et al. 2020 paper can be referred to for a more detailed overview of the setup of

the software and validation of the dose calculation algorithm [25]. In the following chapter,

μ-RayStation will be used to perform a retrospective planning of a preclincal radiotherapy

experiment and evaluate prospective treatment techniques.

3.2 Retrospective Planning

Using μ-RayStation’s GPU-MC, five cases in an oxygen-guided preclinical radiotherapy

experiment was retrospectively planned. The goal of the experiment was to assess the benefit

a targeted increased dose to the hypoxic region of the tumor in a preclinical model. Tungsten

PLA apertures were 3D-printed based on imaging of tumor using magnetic resonance imag-
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ing (MRI) and of oxygenation levels using electron paramagnetic resonance oxygen imaging

(EPROI). These apertures were used to perform 3D-conformal radiotherapy that delivered

an equivalent boosted dose to either the hypoxic or oxygenated (non-hypoxic) region of the

tumor. Survival outcomes of the mice were measured over the course of 180 days. Gertsen-

shteyn et al. 2023 paper can be referred to more comprehensive details of the experiment

[14]. The purpose of the work here was to evaluate GPU-MC treatment planning software

to plan, deliver, and retrospectively analyze 3D-conformal treatments in mice.

The first step was to import the imaging data into μ-RayStation. Imaging data, includ-

ing registered CBCT, MRI, and EPROI for 5 mice with SCC7 squamous carcinoma leg

tumors were imported using 3D Slicer. For the export of imaging from 3D Slicer, the open-

source extension SlicerRTwas used [67]. TheMRI and EPROI were exported as a DICOM

scalar volume from 3D Slicer. The CBCT was exported with the segmentations, which in-

cluded the tumor and hypoxia contours, as a DICOM-RTpatient. Then, the treatment data

was imported into μ-RayStation. Treatment data included gantry angles, irradiation times,

bed shifts, and conformal apertures. For import of apertures, a magnification factor was ap-

plied to scale the contour for import. Python scripts using a CPython 3.6 interpreter in μ-

RayStation were created to automate the import of imaging and treatment data.

Experimental treatment plans were designed to deliver 48 Gy whole tumor (base) dose

and 13 Gy boost dose. The 13 Gy boost dose was delivered by parallel opposed 3D-printed

tungstenPLAconformal apertures. The five cases analyzed treated hypoxic regions (pO2≤10

torr) as the boosted volume. Experimental apertures were derived from a 1.2mm expansion

of hypoxic segmentation in the beam’s eye view (BEV). Boost beam angles were optimized

for hypoxic area compactness in BEV based on sampling of 5 equiangular beams. For the
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Figure 3.1: Import and Delivery of Conformal Aperture Contours. A) plots the tumor thickness in the beam’s eye view
(BEV) with the conformal aperture contour (in red) and hypoxia contour (in blue), B) illustrates the BEV in μ‐RayStation
after importing the conformal aperture contour, C) depicts the dose distribution on a slice after delivery of the conformal
aperture (which was at an angle, hence the horizontally stretched aperture shape in the dose distribution), D) illustrates
the 3D beam arrangement of the parallel opposed 3D‐conformal treatment, E) represents the dose distribution on a slice
orthogonal to panel C. Note the red asterisk marks segmentations that were thresholded out to remove high HU regions
that overlapped onto high‐density immobilization material around the leg but no changes were made to imported confor‐
mal apertures. Further, the aperture contour imported contained the 1.2 mm margin added to the hypoxic boost aperture
around the hypoxic region, as stated in Gertsenshteyn et al. 2023 [14].

base dose, 35mmparallel opposed circular beamswere delivered, however, experimental lead

shielding commonly used to protect non-target regions was not modeled.

On average, the hypoxic target volume (HTV) was 49 mm3 and 10% of the tumor vol-
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Figure 3.2: Parallel Opposed 3D‐Conformal Beams with Irradiation Times. A) illustrates the dose distribution for the
top beam at 144 degrees with an irradiation time of 169.76 seconds (692.62 MU/fx), B) shows the dose distribution
for the bottom beam at 324 degrees with an irradiation time of 198.07 seconds (808.13 MU/fx), C) represents the dose
difference in percent between the top and bottom beam, D) presents the dose‐to‐volume histogram for top (solid) and
bottom (dashed) beams in the hypoxic (blue) and oxygenated (red) structures.

ume. The HTV V61Gy (the percent of the volume receiving 61 Gy) and D98% (the mini-

mum dose that 98% volume received) were respectively 87.2%±8.2% and 59.4 Gy±1.3 Gy.

The D98% difference between the HTV and non-HTV was 10.5 Gy±1.4 Gy. Total tumor

volume receiving the total base+boost dose (61 Gy) was 69.1% ± 12.4%. Preliminary re-

sults suggest integration of µ-Raystation, and more generally 3D treatment planning soft-
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ware, into the workflow of preclinical radiotherapy experiments could be useful, especially

for image-guided and beammodulation treatments. A larger 31 case cohort with boost dose

to the hypoxic region in 16 cases or oxygenated (non-hypoxic) in 15 cases has been performed.

The next step is to analyze the dose distributions, dosemetrics, dose-volume histograms, and

hopefully began connecting this information to the treatment outcomes of thesemice. Con-

currently, it would be interesting to compare the 3D-conformal deliveries between theHPC-

MC andGPU-MCmodels to assess the accuracy of the fast GPU dose calculation algorithm

for beammodulation treatments, which has yet to be done.

3.3 Treatment Comparison

Small animal intensity-modulated radiation therapy (IMRT) has been a recent advance in

preclinical radiotherapy with the potential for more precise treatments than 3D conformal

radiation therapy (3D-CRT) and static arc therapy (SAT). The purpose of this work was to

analyze the plan quality metrics between the three techniques to assess the potential benefit

of IMRT in an actual preclinical case. The treatment objective was to deliver a boost dose to

a tumor subregion identified as being hypoxic. 3D-CRT has allowed this to be tested more

precisely than typical cone deliveries and recent experiments using 3D-CRT inmousemodels

have been promising [13, 14]. More precise treatments in mice to the hypoxic region could

provide stronger evidence of the need for oxygen-guided radiotherapy.

A murine CT volume with fibrosarcoma leg tumor had hypoxic regions (pO2≤10 torr)

and normoxic regions (normal oxygen levels) determined by EPR (electron paramagnetic

resonance) pO2 imaging. The hypoxic region was .072cc and 21% of the total tumor vol-
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Figure 3.3: IMRT and 3D‐CRT over 2, 3, and 5 Angles. A‐C) illustrates the 3D visualization of the treatment plan with the
tumor (red), healthy leg tissue (green), and polyvinyl siloxane cast for leg immobilization (cyan), and SLA resin bed (purple)
segmented volumes shown, A’‐C’) show the dose distributions at isocenter for 3D‐CRTwith 2, 3, and 5 angles, A”‐C”) show
the dose distributions at isocenter for IMRT with 2, 3, and 5 angles. Note all plans were normalized such that 95% of the
hypoxic volume received 35.5 Gy and the dose color scale is the same between techniques and angles.

ume with 2 disconnected parts. The plan objective was to deliver a base 22.5 Gy to the entire

tumor (PTV) and an extra 13 Gy to only the hypoxic target volume (HTV) while avoiding

the normoxic target volume (NTV). Each plan was normalized so that 95% of the HTV re-

ceived 35.5 Gy. IMRT and 3D-CRT plans with 2, 3, and 5 uniformly spaced angles were

calculated. IMRT plans used an objective function to optimize fluence grid, while 3D-CRT
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used a function to optimize conformal apertures based on segmentations in beam’s eye view

(BEV). Note the irradiator machine in μ-RayStation for the IMRT optimization was a tem-

platemachine of theX-RAD225Cx able to do fluence optimization for 1mmbixels by using

MLCs with 20 leaves of 2 mm width. This irradiator machine was provided by RaySearch

Laboratories. For 3D-CRT, if multiple disjoint hypoxia contours were present in the BEV,

then the disconnect segmentation tool was used to separate the hypoxic region into a contour

for each disjoint hypoxic region. This was required for the automatic generation of confor-

mal apertures.

For SAT, full arcs were done with the smallest possible cones given plan constraints. Plan

metrics were calculated to assess plan quality. Paddick conformity index (CI) was the target

volume in prescription isodose squared (22.5 or 35.5 Gy) divided by the total target volume

times the total volume in prescription isodose. Dose spill around the hypoxic region (R83%)

was the total volume in 29Gy isodose (half-way between base and boost) divided by the total

hypoxic volume.

D95 [Gy] Paddick CI [Gy]
Treatment Type NTV HTV† NTV HTV R83%

Cone Parallel Opposed 23.3 35.5 .42 .14 7.4
Static Arc 23.3 35.5 .48 .26 5.4

3D-CRT
2 Angle 23.6 35.5 .50 .29 3.9
3 Angle 24.3 35.5 .56 .50 4.0
5 Angle 24.3 35.5 .57 .49 4.1

IMRT
2 Angle 22.5 35.5 .50 .30 4.6
3 Angle 22.4 35.5 .60 .52 3.3
5 Angle 22.5 35.5 .63 .57 3.0

Table 3.1: Conformity and Dose Spill Across Treatment Types . The table illustrates dose metrics for conformity and dose
spillage for a single murine case. Treatment objective was to deliver a base dose of 22.5 Gy to the entire tumor and boost
dose of 13 Gy to the hypoxic. †Note all treatment types were normalized so that 95% of the hypoxic volume received
35.5 Gy (base + boost dose).
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Based on the data, IMRT had the highest NTV and HTV conformity with the lowest

dose spillage around boostedHTV compared to 3D-CRT and SAT. In the future, more seg-

mentedmurine cases need to be imported into μ-RayStation. Further, itwould be interesting

to test how different parameters and characteristics such as gantry angle and tumor com-

pactness influence the performance of treatment techniques. Additionally, optimization of

beamweights for the 3D-CRT techniquemust be implemented for a fairer comparison to the

IMRTapproach. Lastly, the implementation of volumetricmodulated arc therapy (VMAT),

which is a radiotherapy technique that combines static arc with IMRT, would be interesting

to model in μ-RayStation.
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4
Conclusion

4.1 Summary ofWork

The work demonstrates the applications of HPC-MC and GPU-MC for preclinical ra-

diotherapy applications:

1. Section 2.3: A high-performance computing Monte Carlo Model (HPC-MC) for
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theUniversity of Chicago’s X-RAD225Cx small animal irradiator was developed and

validated to film and ionization chamber measurements. The absolute mean dose dif-

ference between HPC-MC and film for the five commissioned collimators was 2%

along the central beam axis in a water phantom. Beam attenuation measured with an

ionization chamber found the half-value layer for Cuwas 1.04mmmeasured and 1.03

mm simulated. Additionally, a novel 3D-printed material copper polylactic acid (Cu-

PLA), used in preclinical beammodulation, was modeled in HPC-MCwith only 2%

deviation to measurements.

2. Subsection 2.4.1: An empirical factor of 0.9 was determined to scale HPC-MC

simulated dose calculations to real world irradiations. Scaling was normalized to the

electronic charge used to generate the primary photon beam in the X-ray tube.

3. Subsection 2.4.2: An open-source pencil beam algorithmMatRadwas validated to

film measurements with a 3% absolute mean dose difference along the central beam

axis in awater phantom. In the presence of 5mmcortical bone insert at a depth of 1 cm

in a tissue phantom, the absolute mean dose difference after the insert betweenHPC-

MC andMatRadwas 18% along the central beam axis, but only 2% in a homogeneous

tissue phantom.

4. Subsection 2.4.3: An irradiation machine in μ-RayStation was commissioned us-

ing HPC-MC data with an absolute mean dose difference of 1% in the percent depth

dose curve and 2% in the lateral beam profiles in a water phantom for the 2.4cm ×

2.4cm reference field. The fast GPU Monte Carlo dose calculation approach of μ-

RayStation was used as the GPU-MC in Chapter 3.
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5. Subsection 2.5.1: Import of 3D-printed objects into HPC-MC for beammodula-

tion was demonstrated with a photon fluence map after modulation and dose distri-

bution at isocenter in a water phantom after delivery.

6. Section 3.2: GPU-MC retrospective treatment planning of oxygen-guided radio-

therapy in five mice with SCC7 squamous carcinoma leg tumors with CBCT, MRI,

and EPROI imaging was performed. Treatment plans used the 3D-conformal aper-

tures, irradiation times, gantry angles, and bed shifts in the actual delivery.

7. Section 3.3: Parallel-opposed, static arc, 3D-conformal, and intensity-modulated

radiotherapy were assessed in a murine CT volume with a fibrosarcoma leg tumor for

oxygen-guided radiotherapy applications using GPU-MC.

4.2 Future Directions

Ultimately, HPU-MC and GPU-MC will help usher a much-needed paradigm shift in

preclinical radiotherapy fromdose to a patient to dose distributionswithin a patient. In other

words, a more clinically analogous consideration of dose heterogeneities within preclinical

models will be possible during preclinical radiotherapy experiments, especially through fast

GPU-MC calculations. Some next steps are outlined below:

1. Beam modulation treatments like 3D-conformal and intensity-modulated radiother-

apy in small animals should be validated in HPC-MC to filmmeasurements.

2. The sub-cellular and cellular consequences of radiotherapy need to be studied using

HPU-MC and TOPAS-nBio.
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3. Integration ofHPC-MC andGPU-MC throughDICOMRT import and export will

be vital for the validation of higher order preclinical treatment planning amd inverse

planning optimization.

4. Results fromGPU-MCretrospective treatmentplanningof apreclinical oxygen-guided

radiotherapy experiment will need to be connected to survival outcomes.

5. Beam weighting in 3D-CRT GPU-MC of μ-RayStation will need to implemented

along with a more rigorous investigation of inverse planning to optimize radiother-

apy treatment plans.

6. Other preclinical radiotherapy experiments in different regions such as the brain, dif-

ferent irradiation setups like fully-shielded leg flank tumor models, and in general,

more orthotopic/heterotopic tumor preclinical models will need to be studied using

GPU-MC and HPC-MC.

In short, Monte Carlo will be vital for preclinical radiotherapy going forward.
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