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ABSTRACT

Matrix factorization methods are widely used to uncover hidden structures within data

represented by matrices. The choice of method depends on the desired data representation,

such as sparsity, orthogonality, and nonnegativity. The Bayesian approach can effectively

model these desired representations. Specifically, the empirical Bayes approach avoids the

need to manually specify hyperparameters for each column of factor and/or loading in the

model.

The first chapter develops an alternative algorithm for fitting the Empirical Bayes Matrix

Factorization model. The existing ‘flash’ algorithm updates a single factor-loading vector

pair at a time while holding others fixed. Instead, our alternating least squares-type algo-

rithm updates the entire factor matrix (or loading matrix) at once while fixing the entire

loading matrix (or factor matrix). This update allows for efficient parallel implementation

as it can be interpreted as solving multiple independent regression problems. The second

chapter introduces a flexible class of empirical Bayes matrix factorization methods, in which

a data matrix is approximated by a product of an orthogonal factor matrix and a loading

matrix with column-specific priors. We demonstrate that using sparsity-inducing priors on

the loading matrix leads to a sparse PCA method. Importantly, our method avoids the

“multiple tuning problem” commonly encountered in sparse PCA. The final chapter presents

a matrix factorization method, motivated by population genetics. The method factorizes

a genotype matrix into a drift factor matrix and a drift membership matrix by combining

a STRUCTURE-type method and a drift estimation method. Unlike previous approaches

that represent individuals’ genotypes using populations, our method emphasizes shared ge-

netic variation across individuals by representing individuals’ genotypes using genetic drifts,

which are shared across populations. To estimate the drift factors and memberships, we pro-

pose a symmetric nonnegative matrix factorization method that penalizes deviations from a

tree-based initial estimate.
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INTRODUCTION

Statisticians discern signal from noise, but what precisely is signal? Essentially, signal em-

bodies a meaningful representation of the data. This dissertation documents the findings of

an exploration into the most effective methods for representing data meaningfully. To make

this inquiry more tangible, I investigated the optimal ways to depict the shared genetic

makeup of individuals, based on their genotype data. Through this journey, an intriguing

yet somewhat disappointing truth emerged: there is no single definitive method for captur-

ing the signal. Instead, I uncovered several compelling approaches to achieving meaningful

representation of complex data. This dissertation introduces three of these methods.

Background The overarching theme of the three methods is the pursuit of the “drift

factorization”. The drift factorization is an idea that has been proposed to improve upon

the STRUCTURE-type methods that represent individuals as mixtures of populations. This

population-based representation of individuals has an intuitive appeal, which is evidenced

by the commercial success of 23andMe, Ancestry, and the like. The STRUCTURE paper

[Pritchard et al., 2000] is highly influential with over 38,000 citations on Google Scholar (as of

April 3, 2024). Similarly, the ADMIXTURE [Alexander et al., 2009] and fastSTRUCTURE

[Raj et al., 2014] papers have also garnered significant attention.

However, a limitation of the STRUCTURE-type methods is that the genetic similarity

across populations is obscured in its usual visualization of the “STRUCTURE bar plot”, in

which individuals are positioned along the x-axis and each individual’s population member-

ships are stacked along the y-axis. To address this limitation, the concept of drift factor-

ization has been proposed, aiming to represent individuals using genetic drifts rather than

populations.

We can interpret these two types of methods, one population-based and the other drift-

based, as matrix factorization methods. Suppose we have a genotype matrix G ∈ {0, 1, 2}S×N

1



from N individuals measured at S SNPs. The STRUCTURE-type method finds a population-

based decomposition of the form

G ≈ 2PQT (1)

where P ∈ [0, 1]S×K is the population allele matrix of the K estimated latent popula-

tions and Q ∈ [0, 1]N×K is the individuals’ population membership matrix. Based on this

population-based decomposition, each individual can be represented as a mixture of the K

populations, with membership ratio Qn,k. This representation is effectively visualized in

the STRUCTURE bar plot (where stacked bars indicate the proportion of an individual’s

ancestry belonging to each population).

In contrast, the drift-based method finds a genetic drift-based decomposition of the form

G ≈ 2ZMT (2)

where Z ∈ RS×J is the genetic drift factor matrix encoding the allele frequency changes due

to the J genetic drifts and M ∈ [0, 1]N×J is the individuals’ drift membership matrix. In

the drift-based decomposition, each individual is represented as a mixture of J genetic drifts.

The drift factorization idea is not new. It has been explored in the work “Emphasiz-

ing shared evolutionary histories when inferring representations of population structure” by

Joseph H. Marcus, Jason Willwerscheid, Peter Carbonetto, John Novembre, and Matthew

Stephens, which was published as a Chapter in Joseph H. Marcus’s thesis [Marcus, 2020].

They introduced the concept of the drift factorization and implemented it using the

Empirical Bayes Matrix Factorization (EBMF) framework [Wang, 2017, Wang and Stephens,

2021]:

2



G = ZMT + E (3)

Zs,j ∼ g
(j)
z ∈ G(j)z (4)

Mn,j ∼ g
(j)
m ∈ G(j)m (5)

Es,n ∼ N(·; 0, σ2s,n) (6)

where g
(j)
z is the prior for the j-th column of Z, which is estimated within the prior family

G(j)z ; g(j)m is the prior for the j-th column of M, which is estimated within the prior family

G(j)m ; and we ignore the constant 2, meaning that humans are diploid, in the general EBMF

framework. Specifically, they estimated the drift factorization by putting column-wise cen-

tered Gaussian priors {g(j)z }Jj=1 on the columns of Z (the genetic drift factor matrix) and

column-wise bimodal priors {g(j)m }Jj=1 on the columns of M (the individuals’ drift member-

ship matrix). This investigation was made possible due to the improved implementation of

the EBMF and Empirical Bayes Normal Means (EBNM), which allowed the specification

of flexible prior families and enabled scalable inferences [Willwerscheid, 2021, Willwerscheid

and Stephens, 2021].

However, simulations revealed that their method struggles to reliably estimate drift mem-

berships. We needed an improvement in modeling and implementation to find a path to

robust drift factorization.1

Chapter 1: altflash The first approach was to develop an alternative algorithm to fit

an EBMF model. The existing EBMF-fitting algorithm, called “flash” (developed in Wang

and Stephens [2021]; R implementation “flashr”)2, updates a single factor-loading vector pair

1. Willwerscheid [2021] developed a method for “divergence factorization”, which is claimed to be easier
to identify and estimate than drift factorization.

2. An improved R implementation “flashier” was introduced by Willwerscheid [2021].
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(zj ,mj) at a time while holding others fixed. Our alternative approach, called “altflash”,

is based on the alternating least squares-type updates. The altflash updates the entire Z

matrix (or the entire M matrix) at once while holding the other matrix M (or Z) fixed.

This alternative way of updating can lead to a higher objective function value of the

same underlying EBMF model, by escaping bad local optima. Another important benefit of

the altflash algorithm is its potential for even larger-scale inference due to its embarrassingly

parallel structure. We show that each update of the entire Z matrix (or the entire M

matrix) is equivalent to solving S (or N) independent regression problems, allowing for

efficient parallel implementation. We also provide an interpretation of the altflash algorithm

as a denoising version of orthogonal iteration or accelerated hierarchical alternating least

squares method, depending on the support of specified prior families.

Chapter 2: EBCD The second approach to the drift factorization involved tweaking the

EBMF model, by directly encoding desired properties into model assumptions. In the drift

factorization, the genetic drift factors zj ’s are expected to be mutually orthogonal. Thus, we

developed another matrix factorization framework that incorporates this assumption. We

call our method the Empirical Bayes Covariance Decomposition (EBCD), based on the equiv-

alence property where the covariance matrix (or the Gram matrix) GTG is approximated

by the symmetric matrix MMT . The EBCD model can be specified as

G = ZMT + E (7)

Mn,j ∼ g
(j)
m ∈ G(j)m (8)

Es,n ∼ N(·; 0, σ2) (9)

where Z satisfies ZTZ = I. By baking the desired orthogonality property directly into the

model, we can force the orthogonality in the genetic drift factors, which reduces the search

space and enables efficient computation.

4



We demonstrate that the EBCD method can serve as a sparse PCA method effectively by

specifying the prior families (G(j)m ) as sparsity-inducing. Additionally, we present a unified

framework that extends existing sparse PCA methods as specific instances, enhancing our

understanding of these methods. Of particular importance, we highlight the computational

challenge posed by cross-validation for multiple tuning parameters in sparse PCA methods,

which we term the ’Multiple Tuning Problem.’ We argue that the EBCD method offers a

solution to this problem

Chapter 3: DRIFT The most successful approach to obtain the drift factorization was to

go back to the roots of the problem. Drift factorization aims to clarify the obscured genetic

similarity across populations in the good old STRUCTURE-type methods: G ≈ 2PQT .

Individuals’ population-based representation is encoded in the Q matrix; the STRUCTURE

bar plot is essentially visualizing the Q matrix. The genetic similarity across populations,

in fact, is readily available in the P matrix of populations’ allele frequencies. For exam-

ple, the problem of reconstructing a bifurcating tree from population allele frequencies has

been extensively studied in Cavalli-Sforza et al. [1964], Cavalli-Sforza and Edwards [1967],

Felsenstein [1973, 1981], Pickrell and Pritchard [2012].

Building on these previous works, we framed the task of finding the drift factorization as a

two-step modular approach combining a STRUCTURE-type method that finds G ≈ 2PQT

and a P-factorization method that finds P ≈ ZLT where Z is the genetic drift factor matrix

and L is the populations’ drift membership matrix. By setting individuals’ drift member-

ship as M := QL, we obtain the drift factorization G ≈ 2ZMT . For the P-factorization

method, we consider the tree estimation method and its variation that incorporates migra-

tion events; and develop a symmetric nonnegative matrix factorization method that allows

for deviations from a tree-based initial estimate, relaxing the strict tree assumption. This

modular approach significantly reduces the complexity of the problem by replacing a G-

factorization problem with a much simpler P-factorization problem (where PTP ∈ RK×K

5



is the sufficient statistics), while achieving improved interpretability by connecting back to

its root, the STRUCTURE method. Hence, this approach has conceptual appeals that the

concept of genetic drift is applicable to populations rather than individuals and, therefore,

first-assuming-and-then-relaxing a tree structure is more consistent with populations’ data

rather than individuals’ data.

Signal is in the eye of the beholder The three projects tackle a single drift factorization

problem, yet they arrive at different conclusions on how to capture the signal lurking in the

data. Depending on your objective, you may obtain an algorithmic improvement to an

existing model, an orthogonal factor restriction, or an interpretable simplified model. So, be

careful what you wish for.
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CHAPTER 1

SCALABLE EMPIRICAL BAYES MATRIX FACTORIZATION

VIA ALTERNATING LEAST SQUARES-TYPE UPDATES

1.1 Introduction

Matrix factorization methods are widely used to uncover structures from a matrix-variate

data. Classical examples include the principal components analysis (PCA) and factor anal-

ysis. Modern matrix factorization methods aim to find structured signals from data, such

as sparsity and nonnegativity, by imposing penalties or assigning priors to promote such

structures. For example, sparse PCA [Zou et al., 2006, Witten et al., 2009, Journée et al.,

2010, Ma, 2013] finds a modified version of PCA that has sparse loadings or sparse factors,

and nonnegative matrix factorization [Lee and Seung, 1999, Gillis, 2021] approximates a

nonnegative matrix using a nonnegative loading and a nonnegative factor matrix.

On the Bayesian side, Bayesian matrix factorization models have been developed [Tipping

and Bishop, 1999, Bishop, 1999, Lim and Teh, 2007, Salakhutdinov and Mnih, 2008]. The

desired structural property such as sparsity and nonnegativity can be easily baked into prior

structures. The empirical Bayes matrix factorization (EBMF; Wang and Stephens [2021])

model establishes a general framework for Bayesian matrix factorization, in which the priors

can be flexibly defined. The EBMF models a data matrix X ∈ Rn×p as the sum of a rank

K signal and the error:

X = LFT + E =
K∑
k=1

lkf
T
k + E (1.1)

where L ∈ Rn×K is the loading matrix, F ∈ Rp×K is the factor matrix, and E ∈ Rn×p is

the error matrix. We use lk (or fk) to denote the k-th column of L (or F). A scalar Li,k (or

Fj,k) denotes the (i, k)-th element of L (or the (j, k)-th element of F). The entries of lk (or

7



fk) is modeled to be drawn iid from a prior gl,k ∈ Gl,k (or gf,k ∈ Gf,k):

Li,k, . . . , Ln,k ∼iid gl,k, gl,k ∈ Gl,k (1.2)

Fj,k, . . . , Fp,k ∼iid gf,k, gf,k ∈ Gf,k (1.3)

where {(Gl,k,Gf,k)}Kk=1 are user-specified prior families, such as the point-Gaussian prior

family or the point-Laplace prior family; the priors {(gl,k, gf,k)}Kk=1 are estimated within the

specified prior families. While the error term is originally modeled with a general structure

(Eij ∼iid N(0, 1/τi,j), τ := (τi,j) ∈ T ), in this chapter we add a simplifying assumption that

τi,j = τ for some τ > 0.

To estimate the EBMF model, Wang and Stephens [2021] propose imposing the varia-

tional approximation of the form

q(l1, . . . , lK , f1, . . . , fK) =

(∏
k

ql,k(lk)

)(∏
k

qf,k(fk)

)
(1.4)

where q denotes the variational posterior. With the variational approximation, the evidence

lower bound (ELBO) of the model can be simplified as

F (q, gl, gf , τ) = Eql,qf [log p(X|L,F; τ)] +
∑
k

Eql,k

[
log

gl,k(lk)

ql,k(lk)

]
+
∑
k

Eqf,k

[
log

gf,k(fk)

qf,k(fk)

]
.

(1.5)

Henceforth, we drop the subscripts (ql, ql,k, qf , qf,k) from the expectation operator unless it

could be confusing.

To solve the ELBO maximization problem, Wang and Stephens [2021] develop the “flash”

algorithm that iteratively updates the prior (gl,k, gf,k) and the variational posterior (ql,k, qf,k)

corresponding to one column of L and F at a time, and implemented it as the flashr software

8



in R.1 Willwerscheid [2021] develops an improved implementation of the flash algorithm as

the flashier software in R.

Note that the EBMF is a model, flash is an algorithm to fit the EBMF model, and flashr

and flashier are software implementations of the flash algorithm.

To make the estimation of an EBMF model more scalable, we propose an alternative

algorithm to fit the EBMF model (by maximizing the ELBO (1.5) under the variational

approximation (1.4)). Our algorithm, “altflash”, is an algorithm that utilizes alternating least

squares-type updates, based on the observation that the core part of the ELBO maximization

can be reduced into regression problems.

1.2 Updating ql given (gl, qf , τ): n independent regression problems

In this section, we derive an algorithm that updates ql given (gl, qf , τ). Once we obtain the

update rule for ql, the update rule for qf given (gf , ql, τ) can be easily obtained due to the

symmetry in L and F.

The ELBO (1.5) maximization problem with respect to ql can be written as

max
ql,1,...,ql,K

(
τ
∑
k

(
E[lk]TXE[fk]−

1

2
E[fTk fk]E[lTk lk]

)
(1.6)

− τ
∑

1≤j<k≤K
E[fk]TE[fj ]E[lj ]TE[lk] +

∑
k

E

[
log

gl,k(lk)

ql,k(lk)

])
;

the derivation is shown in Appendix 1.6.1.

Under the variational approximation framework (1.4), the variational posterior ql factors

into ql,1, . . . , ql,K . The subproblem of optimizing over ql,k given {ql,j}j ̸=k can be simplified

1. The flash algorithm includes two subalgorithms: a “greedy” and a “backfitting” [Breiman and Friedman,
1985] algorithm. The greedy algorithm is used to add an additional factor to the model, and the backfitting
algorithm is used to iteratively refine each factor with the other factors fixed. Both of these subalgorithms
refine each factor (lk, fk) at a time, whether it is a part of adding a new factor or refining all the existing
factors.
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as

max
ql,k

E
[ n∑
i=1

(
τE[fk]T

XT
i,: −

∑
j ̸=k

E[fj ]E[Li,j ]

Li,k −
τE[fTk fk]

2
L2
i,k + log gl,k(Li,k)

)
− log ql,k(lk)

]
.

(1.7)

where Li,k is the i-th coordinate of lk (equivalently, the (i, k)-th entry of L); Xi,: =

(Xi,1, . . . , Xi,p) is a row vector and XT
i,: is a column vector. Therefore, the solution to

the ELBO optimization problem with respect to ql,k is obtained as

ql,k(lk) =
n∏

i=1

ql,i,k(Li,k) (1.8)

∝
∏
i

gl,k(Li,k) exp

τE[fk]T
XT

i,: −
∑
j ̸=k

E[fj ]E[Li,j ]

Li,k −
τE[fTk fk]

2
L2
i,k

 .

The solution for ql,k reveals two interesting facts.

Fact 1. The solution for ql,k factorizes over i. That is, ql,k(lk) =
∏

i ql,i,k(Li,k) for coordinate-

wise posteriors. Hence, ql(L) fully factorizes as ql(L) =
∏

k

∏
i ql,i,k(Li,k). Note that

after assuming that ql(L) factorizes into
∏

k ql,k(lk), we have the full coordinate-wise

factorization for free.

Fact 2. The solution for the coordinate-wise posterior ql,i,k (1.8) depends on {ql,j}j ̸=k only

through {E[Li,j ]}j ̸=k, the posterior mean of Li,−k that shares the same row index

i. This means that the ELBO maximization problem with respect to ql can be

solved by solving n independent subproblems (one subproblem for each row i), when

(gl, qf , τ) are fixed.

These facts motivate the strategy to solve the n subproblems in parallel. Particularly, we

show that each subproblem can be seen as s regression problem (Section 1.2.1) and provide

the solution to the regression problem (Section 1.2.2). The algorithm to compute the solution
10



for ql is formally introduced (Section 1.2.3), with a discussion on the potential joint update

of the posterior ql and the prior gl (Section 1.2.4).

1.2.1 Interpreting a subproblem as a regression problem

The i-th subproblem Using the observation that ql(L) factorizes into ql(L) =
∏

k

∏
i ql,i,k(Li,k),

the ELBO maximization problem with respect to ql (1.6) can be written coordinate-wise as

max
{ql,i,k}i∈[n],k∈[K]

∑
i

(
τ
∑
k

(
E[fk]TXT

i,:E[Li,k]−
1

2
E[fTk fk]E[L2

i,k]

)
(1.9)

− τ
∑

1≤j<k≤K
E[fk]TE[fj ]E[Li,j ]E[Li,k] +

∑
k

E

[
log

gl,k(Li,k)

ql,i,k(Li,k)

])

and the i-th subproblem (the ELBO maximization problem with respect to {ql,i,k}k∈[K]) as

max
{ql,i,k}k∈[K]

(
τXi,:E[F]


E[Li,1]

. . .

E[Li,K ]

 (1.10)

− τ

2

∑
k

E[fTk fk]E[L2
i,k] + 2

∑
1≤j<k≤K

E[fk]TE[fj ]E[Li,j ]E[Li,k]

+
∑
k

E

[
log

gl,k(Li,k)

ql,i,k(Li,k)

])
.

An equivalent regression problem Consider the following variational Bayes regression

problem:

y = Zβ + ϵ (1.11)

where y ∈ Rp is the dependent variable, Z ∈ Rp×K is the independent variable, β ∈ RK is

the unknown parameter with a prior g(β) =
∏

k gk(βk), the errors ϵ ∈ Rp are distributed

as ϵi ∼iid N(0, 1/τ), and the variational approximation of the form q(β) =
∏

k qk(βk) is

applied.
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The ELBO maximization problem for the variational Bayes regression model (1.11) can

be written as finding the variational posteriors that are solution to the following problems.

max
{qk}k∈[K]

(
Eq

[
τ

(
yTZβ − 1

2
βTZTZβ

)]
+ Eq

[
log

g(β)

q(β)

])
(1.12)

= max
{qk}k∈[K]

(
τyTZ


E[β1]

. . .

E[βK ]

 (1.13)

− τ

2

∑
k

zTk zkE[β
2
k] + 2

∑
1≤j<k≤K

zTk zjE[βj ]E[βk]

+
∑
k

E
[
log

gk(βk)

qk(βk)

])
.

Proposition 1.1. The i-th subproblem is almost equivalent to a regression problem in the

sense that if we define
(
y,Z, {gk}Kk=1, τ

)
as
(
XT

i,·,E[F], {gl,k}
K
k=1, τ

)
and interpret β as

[Li,1, . . . , Li,K ]T , the two resulting optimization problems (1.10) and (1.13) are almost iden-

tical. If we replace the term zTk zk in (1.13) with E[fTk fk] instead of E[fk]TE[fk], the two

problems are exactly identical.

The subproblem is slightly different from the regression problem because E[FTF] ̸=

E[FT ]E[F] and hence, their diagonal terms E[fTk fk] ̸= E[fk]TE[fk]. This difference comes

from taking expectation with respect to qf when computing ELBO.

1.2.2 solREG: coordinate descent algorithm for the regression problem

Replacing (Z,ZTZ) with (E[F],E[FTF]) in the regression problem (1.12), we get the follow-

ing optimization problem that is equivalent to the i-th subproblem (1.10)).

max
qβ

(
Eqβ

[
τ

(
yTE[F]β − 1

2
βTE[FTF]β

)]
+ Eqβ

[
log

g(β)

qβ(β)

])
. (1.14)

Variational Bayes regression problems have been widely studied, including the recent
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work by Kim et al. [2022]. Compared to the regression problem in Kim et al. [2022], our

regression problem (1.14) puts a different prior gk on each coordinate of β and the priors

are not necessarily the “adaptive shrinkage” prior in Stephens [2017].

Following Kim et al. [2022], we take the coordinate descent approach in which we itera-

tively solve for each qk until a convergence criterion is satisfied.

Definition 1.1. We define a univariate distribution-valued function solC as

solC : (a,u,v, c, t, g) (1.15)

→
g(x) exp

(
t
(
a− uTv

)
x− t

2cx
2
)

∫
g(x′) exp

(
t
(
a− uTv

)
x′ − t

2cx
′2
)
dx′

.

Then, solC(a = yTE[F·,k],u = E[FTF]−k,k,v = b−k, c = E[FTF]k,k, t = τ, g = gk) returns

the coordinate-wise solution for qk where b−k denotes the posterior mean of β except for

the βk.

Example 1.1. If g is a centered Gaussian prior N(·; 0, 1/τ) for some error precision τ > 0,

the function solC has a closed-form solution as

solC(a,u,v, c, t, g) = N

(
·; a− uTv

τ/t+ c
,

1

τ + tc

)
. (1.16)

For a broader class of prior families, such as point-Gaussian distributions and point-

Laplace distributions, we can utilize the empirical Bayes normal means (EBNM) solver de-

veloped by Willwerscheid and Stephens [2021]. The EBNM problem is estimating a common

prior g and a posterior of the signal θ when we observe a signal that is drawn iid from a

prior, with an additive Gausian noise: θi ∼iid g and xi|θi ∼ N(·; θi, s2i ). In solC, we have a

fixed prior gk, thus we do not need to estimate the prior and the EBNM solver is used to

denoise the Gaussian noise from the observation.

With a fixed prior g, the posterior q(θi) is proportional to g(θi) exp(−
θ2i−2xiθi

2s2i
). By
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comparing this with the solC formulation (1.15), we get the following correspondence.

Definition 1.2. We define EBNM : (g_init, fix_g,x, s) → (g, q) as an EBNM solver that

takes an initial value g_init for a prior, a Boolean value fix_g of whether to fix or estimate

the prior, a vector of observations x, and a vector of standard errors s; and returns the

estimated prior g and posterior q.

Proposition 1.2. The distribution from solC(a,u,v, c, t, g) is identical to the posterior from

EBNM

(
g_init = g, fix_g = TRUE, x =

a− uTv

c
, s =

1√
tc

)
. (1.17)

Remark 1.1. The posterior mean of the signal from the EBNM solution, Eq[θk], can be

interpreted as applying a shrinkage operator to the observed value xk = (a − uTv)/c =

(yTE[F:,k] −
∑

j ̸=k E[fTj fk]bj)/(E[fTk fk]). Discussions on the shrinkage operator and the

connection between variational empirical Bayes regression and the penalized linear regression

are available in Kim et al. [2022].

Running the function solC (returning the coordinate-wise solution for a single coordinate

qk) as a subroutine, we define the algorithm solREG (Algorithm 1.1) that returns a coordi-

nate descent solution for the regression problem (1.14) when (X,W, t) = (E[F],E[FTF], τ).

In the algorithm, M1 (or M2) denotes a function that returns the mean (or the second

moment) of a probability distribution given as an argument (i.e., M1(p) := Ep(x)[X] and

M2(p) := Ep(x)[X
2]). The iterative updates of the coordinate descent involve only the first

moments {Eqk [βk]}
K
k=1. Therefore, we only need to compute and store the first moments,

not the whole distribution qβ,k until convergence, only after which we compute and store

the second moments {Eqk [β
2
k]}

K
k=1.

The algorithm solREG may have a closed-form solution or not, depending on the priors

{gk}Kk=1. When all the priors are centered Gaussian distributions, a closed-form solution for

solREG is given as follows.
14



Algorithm 1.1 solREG: Coordinate descent algorithm for the regression problem (1.14)
Require: y,X,W,b, t,g.

K ← length(g)
a← XTy ▷ Compute XTy once and reuse it for ak = yTxk
repeat

for k in 1, . . . , K do
qk ← solC(a = ak,u = W−k,k,v = b−k, c = Wk,k, t = t, g = gk)
bk ← M1(qk)

end for
until convergence criterion satisfied
b2← M2(q1, . . . , 1K)
return (b,b2)

Example 1.2. If all the priors {gk}Kk=1 are centered Gaussians N(·; 0, 1/τk) (τk’s do not

have to be identical), the function solREG has a closed-form solution as

solREG(y,X,W,b, t,g) =

(
b̃, b̃⊙2 +

(
1

τ1 + tW1,1
, . . . ,

1

τK + tWK,K

))

where the posterior mean b̃ is defined as b̃ :=
(
W + 1

t diag(τ1, τ2, . . . , τK)
)−1

XTy and ⊙

denotes the Hadamard power, i.e., [b⊙2]i = b2i .

Remark 1.2. If the priors {gl,k}Kk=1 are all equal, then computing the first moments can

be interpreted as applying a same shrinkage operator across all K indices from the EBNM

perspective. Hence, if E[fTk fk] = 1 for k ∈ [K] additionally holds, then the posterior mean-

computing part of the coordinate descent algorithm (solREG; Algorithm 1.1) simplifies to

the Algorithm 3 of Kim et al. [2022]. Note that we do not put such constraints on priors or

E[FTF].

Remark 1.3. To solve the i-th subproblem (1.10),
(
E[F]TXT

i,·,E[F
TF], {gl,k}Kk=1, τ

)
is the

sufficient statistics where E[F]TXT
i,· is a vector of length K and E[FTF] is a matrix of size

K × K. The communication cost and memory requirement for parallelization are expected

to be small.
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Remark 1.4. The same matrix E[FTF] are used for all n subproblems. We can speed up the

computation by computing E[FTF] once and using it when solving n subproblems in parallel.

(The matrix E[F] is the first moment of qf , so it should have been computed and stored

already.) This would be particularly helpful since the size of factors (K) would be much

smaller compared to n or p; E[FTF] ∈ RK×K is a small matrix. Once we have computed

E[FTF], each of the n subproblem could be easily parallelized.

1.2.3 solQ: coordinate descent algorithm for updating ql

In the previous section, we introduced the algorithm solREG that solves one regression

problem using coordinate descent. It is straightforward to apply solREG to each of the n

independent regression problem to update ql. solQ, the coordinate descengt algorithm for

updating ql, is formally stated in Algorithm 1.2.

Algorithm 1.2 solQ: Coordinate descent algorithm for updating ql

Require: X,E[L],E[F],E[FTF], τ,gl.

n← nrow(X)
K ← length(gl)
for i in 1, . . . , n do

(E[Li,·],E[L⊙2i,· ])← solREG(y = XT
i,·,X = E[F],W = E[FTF],b = E[LT

i,·],
t = τ,g = gl)

end for
E[LTL]← E[LT ]E[L]; diag(E[LTL])← colSums(E[L⊙2])
return (E[L],E[LTL])

Example 1.3. If all the priors {gl,k}Kk=1 are centered Gaussians N(·; 0, 1/τl,k), the n re-

gression problems in the function solQ has a closed-form solution as

E[L]← XE[F]
(
E[FTF] +

1

τ
diag(τl,1, τl,2, . . . , τl,K)

)−1
(1.18)

E[L⊙2]← E[L]⊙2 + 1

(
1

τl,1 + τE[fT1 f1]
,

1

τl,2 + τE[fT2 f2]
, . . . ,

1

τl,K + τE[fTKfK ]

)
(1.19)
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where 1 is a column vector of 1’s.

1.2.4 solQb: block coordinate descent algorithm for jointly updating ql and gl

Vectorization is a type of parallelization that accelerates computations by performing similar

operations on multiple data elements simultaneously using vectorized instructions. The

concept of vectorization can be applied to develop an alternative algorithms for updating ql.

In the solQ algorithm, its subroutine solREG solves each regression problem by iterating

the solC operations over the K coordinates; and we have shown that the solC operation can

be replaced with the EBNM function (Proposition 1.2). From the perspective of the EBNM

framework, solving the EBNM problems for the observations with a same prior is considered

a set of similar problems, which can be vectorized. The EBNM function [Willwerscheid

and Stephens, 2021], implemented in R, suports such verctorization: it takes a vector of

observations x and a vector of standard errors s (or a scalar if they are identical) as arguments

while taking a single prior as an argument.

This alternative algorithm, leveraging the vectorizated operations, is a block coordinate

descent algorithm since it solves the ql update by updating the posteriors in blocks where

each block consists of the n factorized posteriors {ql,i,k}ni=1 sharing a same index k. The

algorithm, solQb, is shown in Algorithm 1.3.

In solQb, we are jointly updating the prior gl and the posterior ql, by fully solving

the EBNM problem. For each EBNM solve, an optimal prior gl,k and optimal posteriors

{ql,i,k}ni=1 that maximize the ELBO are estimated; ELBO is monotonically increasing after

each EBNM solve. This joint update of gl and ql is an additional benefit of taking the

vectorized approach.
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Algorithm 1.3 solQb: block coordinate descent algorithm for jointly updating (gl, ql)

Require: X,E[L],E[F],E[FTF], τ,gl.

n← nrow(X)
K ← length(gl)
repeat

for k in 1, . . . , K do

(gl,k, {ql,i,k}ni=1)← EBNM

(
g_init = gl,k, fix_g=FALSE,

x =
XE[fk]−E[L·,−k]E[(FTF)−k,k]

E[fTk fk]
, s = 1√

τE[fTk fk]

)
(E[L·,k],E[L⊙2·,k ])←

(
M1({ql,i,k}ni=1),M2({ql,i,k}ni=1)

)
end for

until convergence criterion satisfied
E[LTL]← E[LT ]E[L]; diag(E[LTL])← colSums(E[L⊙2])
return (gl,E[L],E[LTL])

1.3 The altflash Algorithm

In the previous section, we developed two algorithms: solQ (Algorithm 1.2) and solQb (Al-

gorithm 1.3). The solQ is a coordinate descent algorithm for the ELBO (1.5) maximization

problem with respect to ql, and the solQb is a block coordinate descent algorithm for the

problem with respect to (ql, gl).

The ELBO is a function of (ql, qf , gl, gf , τ). The solQb algorithm (or the solQ algorithm)

used to update (ql, gl) can also be used to update (qf , gf ) with minimal notational changes,

thanks to the symmetry in L and F in the EBMF model. The last piece of the algorithm

is updating the error precision τ ; the ELBO-maximizing update for τ is provided in the

following Proposition.

Proposition 1.3. The function solTAU defined as

solTAU : (X,E[L],E[LTL],E[F],E[FTF])→
(

1

np
E
[
∥X− LFT ∥2F

])−1
(1.20)

returns the value of τ that maximizes the ELBO (1.5). An efficient way to compute its value
18



is shown in (1.26).

For completeness, we state the altflash algorithm in Algorithm 1.4, using the solQb

algorithm as a subroutine.2

Algorithm 1.4 altflash

Require: X,E[L],E[LTL],E[F],E[FTF], τ,gl,gf .

repeat
(gl,E[L],E[LTL])← solQb(X,E[L],E[F],E[FTF], τ,gl)
(gf ,E[F],E[FTF])← solQb(XT ,E[F],E[L],E[LTL], τ,gf )

τ ← solTAU(X,E[L],E[LTL],E[F],E[FTF])
until convergence criterion satisfied
return (E[L],E[LTL],E[F],E[FTF], τ,gl,gf )

1.3.1 altflash: a denoising approach for matrix factorization

The altflash algorithm is an algorithm to fit the EBMF model by maximizing its ELBO (1.5).

To better understand the altflash, we can compare altflash with existing matrix factorization

methods, by comparing the ELBO-maximization problem with a likelihood maximization

problem. If we fix the error precision parameter τ at a large value, the ELBO becomes

dominated by the likelihood term. In other words, the maximum likelihood estimator can

be seen as a special case of the ELBO-maximizing estimator.

As noted in Proposition 1.2, the coordinate-wise solution solC can be obtained using

the EBNM solver with the observation value x = (yTE[fk]−
∑

j ̸=k E[fTj fk]bj)/E[fTk fk], the

standard error s = 1/
√

τE[fTk fk], and the prior g. When the error precision τ tends to

infinity, the standard error of the EBNM problem tends to zero, meaning that the observed

value is noiseless. Hence, the EBNM solver returns the posterior distribution as a point mass

localized at the observed value x, as long as the value has a nonzero probability in the prior

g.

2. When the solQ is used instead, we need to add a step that updates the priors gl and gf .
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Therefore, what the MLE counterpart of the altflash algorithm is depends on the support

of the prior families {(Gl,k,Gf,k)}Kk=1 that the priors {(gl,k, gf,k)}Kk=1 belong to.

When {(Gl,k,Gf,k)}Kk=1 are supported on the real line: altflash as a denoising

version of orthogonal iteration

When all the prior families {(Gl,k,Gf,k)}Kk=1 include a distribution that is supported on the

real line and the error precision τ tends to infinity, the EBNM solver returns the posterior

distribution as the point mass at the observed value x = (yTE[fk]−
∑

j ̸=k E[fTj fk]bj)/E[fTk fk].

Then, the solQb function has a closed-form solution

L← XF(FTF)−1 (1.21)

and, similarly, F← XTL(LTL)−1, where we drop the expectation notation E[·] because the

quantities L and F are now point estimates. Note that these updates can also be obtained

from setting the precision parameter tend to infinity in Example 1.3 (the centered Gaussian

prior family in the Example is an example of the class of prior families supported on the real

line).

If we were to add an orthogonalization step after each solQb run, this algorithm is iden-

tical to the “orthogonal iteration” method [Wilkinson, 1965, Golub and Van Loan, 2013],

used to obtain the truncated SVD which is the solution to the rank-K matrix approximation

problem in the Frobenius norm and the spectral norm [Eckart and Young, 1936]. There-

fore, the altflash method can be interpreted as applying a column-wise denoising instead of

the orthogonalization where the precision paramter τ (capturing the global signal strength)

and the column-wise priors gl,k or gf,k (capturing the column-wise signal strength) jointly

determine the denoising operator applied to each column.
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When {(Gl,k,Gf,k)}Kk=1 are supported on the nonnegative real numbers: altflash

as a denoising version of accelerated HALS

When all the prior families {(Gl,k,Gf,k)}Kk=1 include a distribution that is supported on the

nonnegative real line and do not include any distribution whose support is greater than

the nonnegative real line and the error precision τ tends to infinity, the EBNM solver re-

turns the posterior distribution as the point mass at the observed value x = (yTE[fk] −∑
j ̸=k E[fTj fk]bj)/E[fTk fk] if the value is nonnegative, and as the point mass at 0 otherwise.

Then, the each solQb update can be characterized as iterating

lk ← max

(
0,

Xfk −
∑

j ̸=k ljf
T
j fk

∥fk∥2

)
(1.22)

for each k ∈ [K] until convergence; similarly, the solQb udpate for the F side is characterized

as iterating fk ← max

(
0,

XT lk−
∑

j ̸=k fj l
T
j lk

∥lk∥2

)
. This algorithm that iterates the L update and

the F update is called the “accelerated HALS” method [Gillis and Glineur, 2012], used to

find a solution in the nonnegative matrix factorization problems: max
L∈Rn×K

+ ,F∈Rp×K
+
∥X−

LFT ∥2F . The classical hierarchical alternating least squares (HALS; Cichocki et al. [2008])

is an algorithm that iterates a single pass of the L update and a single pass of the F

update. HALS update can be obtained by declaring that the convergence criterion is always

satisfied in the solQb (Algorithm 1.3). The flash backfit algorithm can also be interpreted

as a variation of HALS: the algorithm iterates updates of (l1, f1, l2, f2, . . . , lK , fK) instead

of (l1, l2, . . . , lK , f1, f2, . . . , fK). The accelerated HALS is known to outperform the classical

HALS. In this setup, the altflash algorithm can be interpreted as iterating a denoising version

of the accelerated HALS updates.
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1.3.2 Initialization

The altflash algorithm requires (E[L],E[LTL],E[F],E[FTF], τ, gl, gf ) as an input in addition

to the data matrix X. The initialization can be made using a point estimate of L and F,

based on which the other quantities can be computed accordingly. As the point estimate

of (L,F), depending on the scientific context, a user could consider methods, such as the

random initialization, (rotated versions of) truncated SVD, (accelerated) HALS, or the good

old flash.

1.4 Results

Since altflash and flashier are two algorithms solving the same optimization problem, we can

readily compare their performance using their objective function value (ELBO) and runtime.

To ensure a fair comparison, we initialize both algorithms identically, using the initialization

obtained by the flashier greedy algorithm.

We compare the methods on the Genotype Tissue Expression (GTEx) project data [Lons-

dale et al., 2013], processed by Urbut et al. [2019]. The data contains z-scores corresponding

to each SNP-tissue pair for 16,069 SNPs and 44 tissues (N = 16, 069 and P = 44). This

dataset was also used in the illustration of flashr [Wang and Stephens, 2021] and flashier

[Willwerscheid, 2021].

We consider the following three prior family settings, in which we use a common prior

family for all columns of L (or F):

1. (Gl,Gf )= (‘normal’, ‘normal’)

2. (Gl,Gf )= (‘point_normal’, ‘point_normal’)

3. (Gl,Gf )=(‘point_normal’, ‘point_exponential’)

For a detailed comparison of altflash and flashier, we consider both the ‘sequential’ version

and the ‘extrapolation’ version of flashier backfit algorithm. The extrapolation version adopts
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the scheme from [Ang and Gillis, 2019] to achieve a speed-up. For details, see Section 2.2.2

of Willwerscheid [2021].

For altflash, we utilize the closed-form solution for Setting 1, the Normal-Normal case.

For the other settings, we implement Algorithm 1.4 with solQb. In solQb, we can define

how many passes of the L (or F) update are made in each iteration. Multiple passes of the

update correspond to the ‘acceleration’ as in the accelerated HALS. We consider one to five

passes per solQb iteration in the following analysis.

Code for the altflash implementation and subsequent analysis is available at https:

//doi.org/10.5281/zenodo.11224831.

1.4.1 Setting 1: Normal-Normal

When the prior family is the class of Gaussian distributions, altflash can utilize a closed-form

solution, enabling faster convergence. Figure 1.1 shows the results. The Normal-Normal set-

ting has a simple optimization landscape, allowing all three methods to converge to similar

ELBO values with relatively short runtimes. Compared to the ‘flashier:sequential’ method,

‘flashier:extrapolate’ achieves a slight improvement in speed, while ‘altflash:closedform’ achieves

a 5-fold speed-up.

1.4.2 Setting 2: PointNormal-PointNormal

The results for Setting 2 are shown in the left panel of Figure 1.2 and Figure 1.3. When

the prior families are set as point-normal distributions, ‘flashier:extrapolate’ converges to

the highest ELBO with the smallest runtime. The altflash results, with one to five passes

per solQb iteration (labeled as ‘altflash:nupdates=1’ to ‘altflash:nupdates=5’), converge to

similar ELBO values but with varying runtimes. For this data and setting, multiple updates

do not seem to improve either the objective value or runtime. ‘altflash:nupdates=1’ is the

fastest, while ‘altflash:nupdates=5’ is the slowest among the five altflash variations. The
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Setting 1: Normal−Normal
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Figure 1.1: Comparison of ELBO between altflash and flashier, under the setting (Gl,Gf )
= (‘normal’, ‘normal’). The y-axis represents the logarithmic difference from the maximum
ELBO, while the x-axis corresponds to the respective time points

‘flashier:sequential’ result is comparable to ‘altflash:nupdates=3’ and ‘altflash:nupdates=4’;

thus, the single-pass version (‘altflash:nupdates=1’) provides an improvement over the base-

line ‘flashier:sequential’.

1.4.3 Setting 3: PointNormal-PointExponential

In this setting, the task changes fundamentally from the previous experiments because the

estimated L is a mixed-sign matrix and the estimated F is a non-negative matrix, making the

estimation a semi-nonnegative matrix factorization task. In this more complex optimization

task, altflash methods outperform flashier methods. The results for Setting 3 are shown in

the right panel of Figure 1.2 and Figure 1.3.

The ‘flashier:extrapolate’ algorithm terminates with the shortest runtime, but the result-

ing ELBO is significantly lower (approximately −1, 300) compared to the other methods.
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Setting 2: PointNormal−PointNormal Setting 3: PointNormal−PointExponential
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Figure 1.2: Comparison of ELBO between altflash and flashier, under the setting (Gl,Gf )
= (‘point_normal’, ‘point_normal’) and (Gl,Gf ) = (‘point_normal’, ‘point_exponential’).
The y-axis represents the logarithmic difference from the maximum ELBO, while the x-axis
corresponds to the respective time points.

Additionally, the algorithm does not perform the best even before it is terminated.

All five altflash results outperform ‘flashier:sequential’ in terms of both ELBO and run-

time. Although ‘flashier:sequential’ achieves the highest ELBO, its ELBO is comparable to

the altflash results but with a significantly longer runtime.

The runtimes across the five altflash results are more similar than in Setting 2. This

convergence in runtime might be due to the fact that solving point-normal EBNM problems

is easier and faster, thereby increasing the relative advantage of acceleration with multiple

passes.
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Setting 2: PointNormal−PointNormal Setting 3: PointNormal−PointExponential

0 50 100 150 200 0 50 100 150

0

5

10

−5

0

5

10

Iteration

Lo
g 

di
ffe

re
nc

e 
fr

om
 m

ax
im

um
 E

LB
O

method

altflash:nupdates=1

altflash:nupdates=2

altflash:nupdates=3

altflash:nupdates=4

altflash:nupdates=5

flashier:extrapolate

flashier:sequential

GTEx: Log Difference from maximum ELBO

Figure 1.3: Comparison of ELBO between altflash and flashier, under the setting (Gl,Gf )
= (‘point_normal’, ‘point_normal’) and (Gl,Gf ) = (‘point_normal’, ‘point_exponential’).
The y-axis represents the logarithmic difference from the maximum ELBO, while the x-axis
corresponds to the number of iterations.

1.5 Discussion

The results reported in the previous section demonstrate the promise of the altflash algo-

rithm. First, as shown in Setting 1, we can fully utilize the advantage of altflash by using

closed-form solutions for regression problems. Expanding implementations to include diverse

closed-form solutions will be beneficial.

Second, altflash outperformed flashier in the semi-nonnegative task in Setting 3. This

suggests that altflash may be better equipped to solve complex optimization problems, such

as semi-nonnegative and non-negative matrix factorization problems. Further investigation
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into the performance of altflash compared to flashier in these settings is promising.

Third, the acceleration is expected to speed up the altflash algorithm for large datasets.

The advantage of acceleration comes from computing XE[F] (or XTE[L]) once and reusing

it in multiple passes of solQb updates. Studying the trade-off between the computational

savings and the potential disadvantage of over-polishing parts of the optimization problem

could yield valuable insights.

Lastly, the full potential of altflash could be realized with a coordinate descent-based

solQ algorithm that can be fully parallelized, rather than the block coordinate descent-based

solQb algorithm. In CPU multithreading, the benefit of parallelization can be overshadowed

by its overhead cost, partly due to the relatively efficient vectorized implementation of the

EBNM solver. For very large problems, a GPU implementation of the solQ algorithm could

provide significant improvements over the flashier algorithm in estimating an EBMF model.

1.6 Appendix

1.6.1 Rearranging the core computation of the evidence lower bound

The log likelihood of the EBMF model is defined as

log p(X|L,F; τ) = −np

2
log(2π) +

np

2
log(τ)−

τ∥X− LFT ∥2F
2

(1.23)

where the expectation of the Frobenius norm squared can be rearranged as

E
[
∥X− LFT ∥2F

]
= E

[
tr(XTX)− 2tr(XTLFT ) + tr(FLTLFT )

]
(1.24)

= tr(XTX)− 2
∑
k

E[lk]TXE[fk] +
∑
k

E[fTk fk]E[lTk lk] + 2
∑

1≤j<k≤K
E[fj ]TE[fk]E[lj ]TE[lk].
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Therefore, the expectation E [log p(X|L,F; τ)] can be expressed as

E [log p(X|L,F; τ)] (1.25)

= −np

2
log(2π) +

np

2
log(τ)− τ

2
tr(XTX) + τ

∑
k

(
E[lk]TXE[fk]−

1

2
E[fTk fk]E[lTk lk]

)
− τ

∑
1≤j<k≤K

E[fk]TE[fj ]E[lj ]TE[lk].

Alternatively, an equivalent representation for vectorized operations is

E
[
∥X− LFT ∥2F

]
=tr(XTX)− 2tr(XTE[L]E[F]T ) + 1T (E[LTL]⊙ E[FTF])1, (1.26)

E [log p(X|L,F; τ)] =− np

2
log(2π) +

np

2
log(τ) (1.27)

− τ

2

(
tr(XTX)− 2tr(XTE[L]E[F]T ) + 1T (E[LTL]⊙ E[FTF])1

)
.

where 1 ∈ RK is a column vector of 1’s, and ⊙ is the Hadamard product.

1.6.2 Adding a scaling matrix D: X ≈ LTDF

The solution (gl, gf , ql, qf , τ) to the ELBO maximization problem may not be unique due to

scaling ambiguity. When the prior family Gl and Gf are closed under scaling, (gl, gf , ql, qf , τ)

and (cgl, gf/c, cql, qf/c, τ) would attain a same ELBO. One way to deal with the scaling

ambiguity is to let the algorithm find one of the equivalent solutions. Another is to fix the

scaling of either L or F.

Alternatively, we could fix the scaling of both L and F and introduce another scaling

parameters. That is, we could write X =
∑

k dklkf
T
k + E = LDFT + E where D =

diag(d1, . . . , dK). Only a minor modification to the altflash algorithm is enough to add

this functionality. When updating ql (i.e., E[L] and E[LTL]), we can think of (DFT ) as

our new FT , thus replacing E[F] by E[F]D and E[FTF] by DE[FTF]D; the update for
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qf can be done analogously. When updating τ , we split LDFT as (L
√
D)(F

√
D)T where

√
D = diag(

√
d1, . . . ,

√
dK).

And the last component is adding an update for D. We put a uniform prior over RK
+ on

diag(d1, . . . , dK), and take a point-estimate posterior on D̂. Using the results from ELBO

computation (1.6.1), the ELBO-maximizing d = diag(D) ∈ RK can be obtained by solving

a quadratic programming:

argmin
d≥0

−2tr(XTE[L]D(E[F])T ) +
∑

1≤j≤K,1≤k≤K
(DE[LTL]D)j,kE[fTj fk]


= argmin

d≥0

(
1

2
dT (E[LTL]⊙ E[FTF])d− cTd

)
(1.28)

where cT = (E[l1]TXE[f1], . . . ,E[lK ]TXE[fK ]) = diag(E[L]TXF). Introducing a function

solD that returns a diagonal matrix with the diagonal entries from the solution to the

quadratic programming (1.28), the complete altflash algorithm with a scaling matrix D

can be written as follows.

Algorithm 1.5 altflash with a scaling matrix D

Require: X,E[L],E[LTL],E[F],E[FTF],D, τ,gl,gf .

repeat
(gl,E[L],E[LTL])← solQb(X,E[L],E[F]D,DE[FTF]D, τ,gl)
(gf ,E[F],E[FTF])← solQb(XT ,E[F],E[L]D,DE[LTL]D, τ,gf )

D← solD(X,E[L],E[LTL],E[F],E[FTF])
τ ← solTAU(X,E[L]

√
D,
√
DE[LTL]

√
D,E[F]

√
D,
√
DE[FTF]

√
D)

until convergence criterion satisfied
return (E[L],E[LTL],E[F],E[FTF],D, τ,gl,gf )

It is easy to see that this algorithm can be seen as a generalization of the previous

algorithm in that when we fix D = IK and do not update it, the algorithm is equal to the

altflash algorithm in Algorithm 1.4.
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CHAPTER 2

EMPIRICAL BAYES COVARIANCE DECOMPOSITION, AND

A SOLUTION TO THE MULTIPLE TUNING PROBLEM IN

SPARSE PCA

2.1 Introduction

Principal components analysis (PCA, Pearson, 1901) is a popular dimension reduction tech-

nique for revealing structure in data. However, when applied to large data sets, PCA results

are often difficult to interpret. To address this, many authors have considered modifications

of PCA that use sparsity, in some way, to help produce more interpretable results. Early

versions of this idea arose in the literature on Factor analysis, where practitioners applied

rotations to post-process results from PCA, or related techniques, to obtain sparse solutions;

see Rohe and Zeng [2023] for interesting background and discussion. More recently, many

authors have introduced “sparse PCA" (sPCA) methods that directly incorporate notions of

sparsity into the inference problem [e.g. d’Aspremont et al., 2004, Zou et al., 2006, Witten

et al., 2009, Journée et al., 2010, Ma, 2013].

While many different sPCA methods exist, they can generally be categorized into two

types: “single-unit" methods that sequentially estimate one PC at a time, and “block" meth-

ods that estimate multiple PCs jointly. In single-unit methods, hyperparameter(s) that

control the sparsity of each PC can be tuned via cross-validation (CV) as each PC is added.

However, in contrast to standard PCA, sequentially estimating multiple sparse PCs is not

equivalent to jointly estimating multiple sparse PCs, and can lead to sub-optimal results

(Mackey, 2008). Block sPCA methods therefore have the potential, in principle, to produce

better results, but using CV to simultaneously tune separate hyperparameters for multiple

PCs presents a severe computational challenge. We call this the “Multiple Tuning Problem”

(MTP), and its importance was emphasized in Zou and Xue [2018] which notes
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A very important issue to be investigated further is automated SPCA (sparse

PCA). By “automated” we mean that there is a principled but not overly com-

plicated procedure to set these sparse parameters in SPCA. This question is par-

ticularly challenging when we solve several sparse principal components jointly.

The MTP means that, in practice, block methods require users to specify hyperparameter

values as model input, rather than tuning them. This may help explain why the potential of

block sPCA methods in principle has not yet been realized in practice; for example, Journée

et al. [2010] report that their single-unit sPCA method outperforms their block sPCA method

in a simulation study (see their Table 5).

Here we present a novel block sPCA method that solves the MTP by leveraging the

empirical Bayes (EB) framework. Within the EB framework, penalties come from priors,

whose hyperparameters are learned from data. This approach, which seamlessly integrates

hyperparameter tuning into the fitting algorithm, offers a compelling alternative to the

“hyperparameters as inputs” approach.

The structure of this chapter is as follows. In Section 2.3 we introduce a simple and gen-

eral (block) penalized PCA criterion, which includes some previous sPCA methods [Witten

et al., 2009, Journée et al., 2010] as special cases. We present a simple (block) algorithm

for optimizing this criterion when the penalty is fully specified. This algorithm is a natural

extension of the “orthogonal iteration" method [Wilkinson, 1965] for regular PCA, and we

highlight connections and differences with previous algorithms for sPCA. Section 2.4 shows

that our penalized PCA criterion can also be interpreted as a ‘penalized covariance decom-

position’ criterion, and that, as with regular PCA, our algorithms for penalized PCA can

be applied directly to the covariance (or Gram) matrix XTX, as well as to the original

data matrix X. Section 2.5 introduces empirical Bayes versions of these penalized problems,

in which the penalties are determined by prior distributions that are estimated from the

data by maximum likelihood rather than cross-validation. This provides a principled and
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efficient solution to the MTP in sPCA, and one that can be immediately extended to incor-

porate other structural assumptions (e.g. non-negative PCA). After briefly discussing some

practical issues (Section 2.6) we show numerical results illustrating the effectiveness of our

methods, using sparse point-Laplace priors, in Section 2.7. The chapter concludes with a

discussion of generalizations beyond sparsity.

2.2 Notation

We use bold capital letters, A, to denote matrices, bold lowercase letters, a, to denote column

vectors, and non-bold lowercase letters, a, to denote scalars. We use the convention that ak is

the kth column of the matrix A, and ai,k is the (i, k)th element of A. We letM(N,K) denote

the set of N -by-K real matrices, and S(P,K) = {M ∈ M(P,K) : MTM = IK} denote

the set of P -by-K orthonormal matrices, i.e., the Stiefel manifold embedded in M(P,K).

∥A∥F denotes the Frobenius norm of the matrix A, ∥A∥F =
∑

i,k a
2
i,k, and ∥A∥∗ denotes

the nuclear norm of A, which is the sum of its singular values.

2.3 A Penalized PCA Criterion

2.3.1 A Penalized PCA Criterion

There exist several different characterizations of PCA, which are equivalent, but lead to dif-

ferent sparse versions [Zou and Xue, 2018, Guerra-Urzola et al., 2021]. One characterization

of PCA [Jolliffe, 2002, section 3.5] is that PCA finds the best rank-K approximation of a
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data matrix X ∈M(N,P ) in the sense that it solves the following optimization problem1:

min
Z∈S(N,K),
L∈M(P,K)

1

2
∥X− ZLT ∥2F subject to LTL is diagonal. (2.1)

The matrices Z and L are sometimes called the component score and component loading

matrices respectively.

Based on (2.1), we propose the following penalized PCA criterion, obtained by replacing

the orthogonality restriction on L with a penalty term, which might for example encourage

L to be sparse2:

min
Z∈S(N,K),
L∈M(P,K)

hP,λ(L,Z;X) :=

1

2
∥X− ZLT ∥2F +

K∑
k=1

P (lk;λk)

 (2.2)

where P (·;λ) is a penalty function with hyperparameter λ whose value determines the

strength of the penalty.

The problem (2.2) has K hyperparameters, λ = (λ1, . . . , λK), and the value of λk (which

may be a vector) determines the strength of the penalty on the kth column of L. If we do

not have a prior expectation of uniform sparsity or any other structural properties across

all columns, we must specify K penalty hyperparameters, each corresponding to a specific

column. The proper tuning of these hyperparameters in a K-dimensional space can pose

computational challenges, which we refer to as the “multiple tuning problem" (MTP). A

primary focus of our work is to develop automated methods for selecting these hyperparam-

eters.

1. Typical PCA formulations assume that ZTZ is diagonal, and LTL = IK , but we use the formulation
in eq (2.1) because it leads to closer connections with existing sPCA formulations.

2. Although one could consider formulations in which L is both orthogonal and sparse, some previous
authors have argued against it [Witten et al., 2009, Journée et al., 2010], and we follow their advice here.
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2.3.2 Uniting Previous Sparse PCA Methods

Although (2.2) seems, to us, a natural way to formulate sPCA, most previous sPCA methods

have not been explicitly framed as optimizing a criterion of this form; see Van Deun et al.

[2011] for an exception. Nonetheless, several previous sPCA methods are either equivalent

to, or closely-related to, solving (2.2) with some choice of penalty. In this subsection, we

discuss some of these connections.

The sparse principal components (SPC) method of Witten et al. [2009] is a single-unit

sPCA method that can be interpreted as a greedy algorithm for optimizing the L1-penalized

version of our penalized PCA criterion (i.e. with penalty P (lk;λk) = λk∥lk∥1). Specifically,

SPC (their Algorithm 2) starts by solving a rank-one version (K = 1) of (2.2) and then

repeatedly solves the following problem:

min
zk,lk

(
1

2
∥Rk − zkl

T
k ∥

2
F + λk∥lk∥1

)
subject to ∥zk∥ = 1, zk ⊥ z1, . . . , zk−1, (2.3)

where Rk = X −
∑k−1

k′=1 zk′l
T
k′ for k > 1 is the residual matrix. (Witten et al. [2009] treat

the orthonormality restriction on Z as optional, but here we treat it as an integral feature

of our penalized PCA criterion; see Section 2.5 for discussion. Without the orthonormality

restriction on Z, a single-unit method similar to SPC was also proposed by Shen and Huang

[2008].)

The generalized power (GPower) method of Journée et al. [2010] is a block sPCA method3

that can be interpreted as solving a restricted version of our penalized PCA criterion with

an Elastic Net penalty [Zou and Hastie, 2005], P (lk;λk) = λk,1∥lk∥1 + λk,2∥lk∥22.

3. The GPower method introduced in Journée et al. [2010] includes both single-unit sPCA methods and
block sPCA methods, but in this article we will only refer to their block sPCA method as GPower.
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To make this precise, we rearrange the penalized criterion as

max
{µ1,...,µK}

 max
Z:ZTZ=IK ,
L:∥lk∥=µk

tr
(
XTZLT

)
−

K∑
k=1

λk,1∥lk∥1

− K∑
k=1

(
1

2
+ λk,2

)
µ2k

 , (2.4)

and note that the GPower criterion coincides with the inner maximization (over Z and L

under the restriction ZTZ = IK , ∥lk∥ = µk). In GPower the column-wise vector norms

{µ1, . . . , µK} are considered as hyperparameters that must be pre-specified, whereas our

formulation suggests an alternative approach where λk,2 are pre-specified and the µk are

maximized over.

Finally, the USLPCA method of Adachi and Trendafilov [2016] is closely related to (2.2)

with L0 penalty (i.e. P (lk;λ) = λ∥lk∥0) and using the same hyperparameter λ for all

columns, the difference being that they frame the problem using an L0 constraint on L

rather than a penalty.

2.3.3 BISPCA, a “block" algorithm for penalized PCA with separable

penalties

A natural strategy for optimizing the penalized PCA criterion (2.2) is block coordinate

descent: that is, alternate between minimizing hP,λ(L,Z;X) over Z (with L fixed) and over

L (with Z fixed). We now detail this general algorithm, which we call the Block-Iterative-

Shrinkage PCA (BISPCA).

Optimizing over Z: the Rotation Step

The optimization of hP,λ(L,Z;X) over Z does not depend on the penalty, and so is the

same as the unpenalized case. It has a well-known solution [e.g. Zou et al., 2006], which we

summarize here.
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Definition 2.1 (U factor of Polar decomposition). For M any real-valued matrix, with SVD

M = UDVT , define Polar.U(M) := UVT . [Note: Polar.U(M) denotes the so-called “U

factor" of the polar decomposition of M.]

Fact 2.1 (Reduced-rank Procrustes rotation problem). Given L, the minimum

min
Z∈S(N,K)

∥X− ZLT ∥2F

is achieved by Ẑ(L,X) := Polar.U(XL).

Optimizing over L: the Shrinkage Step

Due to the orthogonality constraint on Z, the part of the fidelity term in (2.2) that depends

on L decomposes as a sum, with one term for each entry in L:

||X− ZLT ||2F = tr(X− ZLT )T (X− ZLT ) (2.5)

= tr(XTX) + tr(LLT )− 2tr(XTZLT ) (2.6)

= tr(XTX) +
∑
p,k

[l2p,k − 2(xTp zk)lp,k] (2.7)

=
∑
p,k

[lp,k − xTp zk]
2 + const (2.8)

where the third line follows from the fact that if A and B are matrices of the same dimension

then tr(ABT ) =
∑

ij aijbij .

Thus, if the penalty term decomposes similarly,
∑

k P (lk;λk) =
∑

p,k ρ(lp,k;λk) for some

1-dimensional penalty function ρ, then the optimization over L splits into PK independent

problems, and

l̂p,k = argmin
l

(
1

2
(l − θp,k)

2 + ρ(l;λk)

)
, (2.9)
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where θp,k := xTp zk. The solution to this problem, Sρ(θp,k;λk), depends on the penalty

function ρ(·;λk), and is referred to as the “proximal operator" of ρ(·;λk). It has a closed-

form solution for some widely-used penalties. For the L1 penalty, the solution is the “soft

thresholding" operator S1(a;λ) := sign(a)(|a| − λ)+; and for the L0 penalty, the solution

is the “hard thresholding" operator S0(a;λ) := aI(|a| > λ). (Note: I(b) is the indicator

function, with value 1 if b is true and 0 otherwise; and (x)+ := xI(x > 0).) Parikh and Boyd

[2014] give proximal operators for several other penalties.

2.3.4 Connections with other algorithms

Table 2.1 summarizes the BISPCA algorithm, as well as the sPCA algorithms from Witten

et al. [2009], Journée et al. [2010], and Ma [2013]. Here we briefly discuss the connections and

differences between these algorithms, as well as the connection with algorithms for standard

PCA, which corresponds to the case where the penalty function is constant.

When the penalty function is an L1 penalty, the proximal operator S is the soft shrinkage

operator, and the BISPCA algorithm is closely connected with the SPC and GPower algo-

rithms, which also alternate shrinkage and rotation steps. (The single-unit sPCA method

SPC has an additional deflation step; see Table 2.1). Thus, in this special case BISPCA

provides a non-greedy alternative to the greedy algorithm in Witten et al. [2009] (and non-

greedy methods are generally preferred to greedy methods, because the latter are more prone

to yield poor local optima). With L1 penalty the BISPCA algorithm is also very similar

to GPower, but omits a normalization step (lk ← µklk/∥lk∥2), and hence avoids the need

to specify the µk. (This simplification can be thought of as coming from replacing the

elastic-net penalty with the L1 penalty.)

When the penalty function is constant, the proximal operator S is the identity function,

and the BISPCA updates for Z simplify to Z← Polar.U(XXTZ). This is a simple variation

on the standard “orthogonal iteration" method [Wilkinson, 1965, Golub and Van Loan, 2013]
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Method Shrinkage Step Rotation Step Deflation Step
BISPCA
(this chapter) lk ← Sρ(X

T zk;λk) Z← Polar.U(XL) NA

[equivalently, L← Sρ(X
TPolar.U(XL);λ)]

SPC
(Witten et al., 2009) lk ← S1(R

T
k zk;λk)

θk ←
Z⊥T
k−1Rklk

∥Z⊥T
k−1Rklk∥2

zk ← Z⊥k−1θk

Rk = X−
∑k−1

k′=1 Zk′l
T
k′

GPower
(Journée et al., 2010)

{
lk ← S1(X

T zk;λk,1)

lk ← µklk/∥lk∥2
Z← Polar.U(XL) NA

ITSPCA
[Ma, 2013] L← QR.Q(Sρ(X

TXL;λ)) NA

EBCD-MM
(this chapter)

{
gk ← G(XT zk, 1/τ,G)
l̄k ← S(XT zk, 1/τ, gk)

Z← Polar.U(XL) NA

Table 2.1: Sparse PCA Algorithms. Sρ(·;λk) denotes the proximal operator of the penalty
function ρ(·;λk), and S1 denotes the soft thresholding operator, which is the proximal opera-
tor of the L1 penalty. We use Sρ(A;λ) to denote the vector whose kth element is Sρ(ak;λk).
The U factor of the polar decomposition is denoted as Polar.U, and the Q factor of the QR
decomposition is denoted as QR.Q. Z⊥ represents an orthonormal basis that is orthogonal
to Z. The function G calculates the estimated prior from the empirical Bayes normal means
model, and the function S returns the corresponding posterior mean vector (see Definition
2.2 and Remark 2.2).

for PCA, which iterates Z← QR.Q(XXTZ) where QR.Q denotes the orthogonal Q factor of

the QR decomposition; BISPCA simply uses Polar.U as an alternative orthogonalization to

QR.Q. Under mild conditions, under either of these iterates, the range of Z converges to the

leading eigenspace of XXT. (The ranges of XXTZ, QR.Q(XXTZ) and Polar.U(XXTZ) are

identical, but the orthogonalizations QR.Q or Polar.U are required for numerical stability4.)

Finally, we contrast BISPCA with the iterative thresholding sparse PCA (ITSPCA) al-

gorithm from Ma [2013]. Whereas ITSPCA iterates L ← QR.Q(Sρ(X
TXL;λ)), BISPCA

iterates L ← Sρ(X
TPolar.U(XL);λ) where Sρ(M;λ) denotes applying the proximal oper-

ator to each column of the matrix M, that is, Sρ(M;λ) = [Sρ(m1;λ1), . . . , Sρ(mK ;λK)].

4. Strictly speaking orthogonalization is not necessarily required; for example, treppen iteration [Bauer,
1957], which precedes orthogonal iteration, iterates Z ← LU.L(XXTZ) where LU.L denotes the lower
triangular L factor of the LU decomposition.
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Written this way, the updates appear similar, but with a different order of the shrinkage and

orthogonalization steps, and with different orthogonalization approaches (QR.Q vs Polar.U).

A conceptual advantage of BISPCA is that it is designed to optimize a specific objective func-

tion (2.2); in contrast ITSPCA is simply an algorithmic modification of orthogonal iteration,

and it is unclear what objective function (if any) the ITSPCA algorithm optimizes, and in-

deed, in general, it is unclear whether ITSPCA is guaranteed to converge. Furthermore,

because ITSPCA enforces orthogonality after the shrinkage step, it is unclear that the final

L will be sparse.

2.4 A Penalized Covariance Decomposition Criterion

The constraint Z ∈ S(N,K) in our penalized PCA criterion (2.2) has the following im-

portant consequence: not only does ZLT approximate the data matrix X, but also LLT

approximates the Gram matrix XTX (which is proportional to the covariance matrix if X

has centered columns). Intuitively, this is simply because XTX ≈ LZTZLT = LLT . In this

section we formalize this, and discuss the implications for both interpretation and compu-

tation. (Providing an approximation to both XTX and X could be seen as a fundamental

characteristic of PCA that is not generally shared by other matrix factorization methods, and

we prefer to reserve the term sparse PCA for methods that have this feature, using “Matrix

Factorization" [Wang and Stephens, 2021] or “Matrix Decomposition" [Witten et al., 2009]

for the more general class of methods that may not have this feature. However, not all meth-

ods previously labeled as PCA have this feature: e.g. the EB-PCA method of Zhong et al.

[2022] does not include the orthogonality assumption, and in their sPCA method Witten

et al. [2009] describe the orthogonality assumption as “optional".)

The key result is the following lemma, which we prove in Appendix 2.10.1:
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Lemma 2.1. Let X ∈M(N,P ) and K be a positive integer with K ≤ min(N,P ). Then

min
Z∈S(N,K)

∥X− ZLT ∥2F = d∗(XTX,LLT )2 (2.10)

where

d∗(A,B) :=

(
tr(A)− 2tr(

√√
AB
√
A) + tr(B)

)1/2

(2.11)

is the Bures-Wasserstein distance between matrices A and B, which is a metric on the space

of positive semi-definite matrices [Bhatia et al., 2019].

The following Theorem follows as a direct corollary of Lemma 2.1

Theorem 2.1. Let X ∈M(N,P ) and K be a positive integer less than or equal to min(N,P ).

Consider the penalized PCA criterion

min
Z∈S(N,K),
L∈M(P,K)

1

2
∥X− ZLT ∥2F +

K∑
k=1

P (lk;λk)

 (2.12)

where P (lk;λk) is an arbitrary penalty term on lk with hyperparameter λk. Let (Ẑ, L̂) denote

a solution to (2.12). Then L̂ also solves the following criterion:

L̂ ∈ argmin
L∈M(P,K)

1

2
d∗(XTX,LLT )2 +

K∑
k=1

P (lk;λk)

 (2.13)

where d∗ denotes the Bures-Wasserstein distance. Further, solving (2.13) and then setting

Ẑ = Polar.U(XL̂) yields a solution to (2.12).

Note 2.1. The distance d∗(A,B) is equal to the 2-Wasserstein distance between two Gaus-

sian measures with common mean and covariance matrices A and B. For a recent review

on the Bures-Wasserstein distance, including the proof that d∗ is a metric, see Bhatia et al.

[2019].
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The objective function in (2.13) combines the penalty term with a fidelity term that

measures the squared (Bures-Wasserstein) distance between the matrices XTX and LLT .

If the matrix X has centered columns then (1/N)XTX is the covariance matrix, in which

case (2.13) can be interpreted as finding an (approximate) decomposition of the covariance

matrix of the form (1/N)XTX ≈ (1/N)
∑

k lkl
T
k with a penalty term to regularize and/or

sparsify the lk. For this reason we refer to (2.13) as the “penalized covariance decomposition"

criterion. (If X does not have centered columns then XTX is the Gram matrix and (2.13)

would be more properly referred to as a “penalized Gram matrix decomposition").

2.4.1 Sufficient Statistic and Efficient Computation

Theorem 2.1 implies that the Gram matrix XTX is sufficient to estimate L. This suggests

an alternative computational approach to computing L. In brief, the idea is to first compute

the solution L̂ using a compact version of the data matrix C ∈ M(P, P ) that satisfies

CTC = XTX, and then use the original matrix X to compute the corresponding Ẑ. The

following theorem formalizes this approach.

Theorem 2.2. Suppose that a data matrix X ∈M(N,P ) has the thin singular value decom-

position UXDXVT
X with P < N and K is a positive integer with K ≤ P . Let C ∈M(P, P )

satisfy CTC = XTX (eg, one such matrix is C = VXDXVT
X). The following four problems
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are equivalent:

(a) L̂, Ẑ ∈ argmin
Z∈S(N,K),
L∈M(P,K)

1

2
∥X− ZLT ∥2F +

K∑
k=1

P (lk;λk)



(b) L̂ ∈ argmin
L∈M(P,K)

1

2
d∗(XTX,LLT )2 +

K∑
k=1

P (lk;λk)

 and set Ẑ = Polar.U(XL̂)

(c) L̂ ∈ argmin
L∈M(P,K)

1

2
d∗(CTC,LLT )2 +

K∑
k=1

P (lk;λk)

 and set ˆ̃Z = Polar.U(CL̂), Ẑ = UXVT
X
ˆ̃Z

(d) L̂, ˆ̃Z ∈ argmin
Z̃∈S(P,K),
L∈M(P,K)

1

2
∥C− Z̃LT ∥2F +

K∑
k=1

P (lk;λk)

 and set Ẑ = UXVT
X
ˆ̃Z.

where
∑K

k=1 P (lk;λk) is an arbitrary penalty term on lk with parameter λk.

Proof. The equivalence of (a) and (b) follows from Theorem 2.1. (b) and (c) are equivalent

because XTX = CTC and Polar.U(QUDVT ) = QUVT = QPolar.U(UDVT ) for any Q

that satisfies QTQ = I. And the equivalence of (c) and (d) again follows from Theorem

2.1.

From Theorem 2.2, any penalized PCA criterion (a) can be reformulated in the form (d),

in which the target matrix X ∈ M(N,P ) is replaced by a compact version C ∈ M(P, P ).

This can then be solved by applying the BISPCA algorithm to C. If the component score

matrix Z is not a parameter of interest then no additional step is needed; otherwise, Z can

be easily recovered using the singular vectors of X. If P ≪ N then this approach may be

computationally more efficient than directly applying the BISPCA algorithm to X.

The sufficiency of the Gram matrix, and the potential to exploit this for efficient com-

putation, has been previously stated in the context of specific sPCA models, for example

in Journée et al. [2010]. Our contribution is to provide a general result that applies to any

penalty function, which enables applications to not-so-straightforward problems (e.g. EBCD
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in Section 2.5).

2.5 EBCD: An Empirical Bayes Solution to the Multiple Tuning

Problem

To summarize the previous sections: the penalized PCA criterion (2.2) provides a family

of objective functions that unifies several existing sparse PCA methods, and the BISPCA

algorithm provides a convenient general recipe for optimizing this objective. Further, the

penalized PCA criterion also has an attractive interpretation in terms of a penalized covari-

ance decomposition (2.13). However, an important problem remains: the choice of suitable

penalty function, and particularly the problem of tuning hyper-parameters of the penalty,

which we refer to as the “multiple tuning problem" (MTP). In this section we suggest an

Empirical Bayes solution to the MTP, in which the penalty is determined by a prior dis-

tribution, and the “tuning" takes place by estimating the prior distribution from the data.

This is accomplished by a simple modification of the iterative BISPCA algorithm.

2.5.1 The EBCD Model

Motivated by the criterion (2.2) we consider the following empirical Bayes (EB) model:

X = ZLT + E (2.14)

lp,k ∼indep gk ∈ G (2.15)

en,p ∼iid N(·; 0, 1/τ) (2.16)

where Z ∈ S(N,K), and L is independent of E. We refer to this as an EB model because

the column-wise prior distributions g := {gk}Kk=1 are to be estimated from the data (subject

to the constraint that they come from some prespecified prior family G, which may be

parametric or nonparametric). We use the notation g(L) to denote the prior on L, g(L) =
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∏
p,k gk(lp,k).

The model (2.14)-(2.16) is closely related to the EBMF model of Wang and Stephens

[2021], and the EB-PCA model of Zhong et al. [2022]. The key difference is that our model

replaces a prior on Z with an orthonormality restriction on Z. We will show that fitting

this model is equivalent to optimizing a penalized criterion (2.2) with a penalty whose form

is estimated from the data. Consequently, it is also equivalent to optimizing a penalized

covariance decomposition criterion (2.13). This latter property distinguishes it from the

EBMF model5, and so we refer to the model (2.14)-(2.16) as the “Empirical Bayes Covariance

Decomposition" (EBCD) model. (The model might also be reasonably referred to as the EB-

PCA model, but the name EB-PCA was used by Zhong et al. [2022] for a different model, so

we use EBCD to avoid confusion and to emphasize the covariance decomposition property.)

Fitting the EBCD model

A standard EB approach to fitting (2.14)-(2.16) would usually be phrased as a two-step

procedure: i) estimate (ĝ, Ẑ, τ̂) by maximizing marginal log-likelihood

(ĝ, Ẑ, τ̂) := argmax
g,Z,τ

log

∫
p(X|Z,L, τ)p(L|g)dL (2.17)

and ii) compute the conditional posterior for L,

q̂(L) := p(L|ĝ, Ẑ, τ̂) ∝ ĝ(L)p(X|Ẑ,L, τ̂). (2.18)

One might typically report the mean of q̂, L̂ := Eq̂(L) as a point estimate for L.

The two-step procedure (2.17)-(2.18) can be usefully rephrased as solving a single opti-

5. Willwerscheid [2021] considers fitting an EBMF model to a covariance matrix, which shows impressive
results despite the inconsistency between the EBMF modeling assumption (a low-rank signal plus additive
iid Gaussian errors) and the property of a covariance matrix (a symmetric positive semi-definite matrix).
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mization problem (e.g. see Appendix B.1.1 in Wang et al. [2020]):

(ĝ, Ẑ, τ̂ , q̂) = argmax
g∈G,Z,τ,q

F (g,Z, τ,q) (2.19)

where

F (g,Z, τ,q) := Eq log p(X|Z,L, τ)−KL(q||g). (2.20)

Here, q can be any distribution on L, Eq denotes expectation over L having distribution

q, and KL(q||g) = Eq[log
q(L)
g(L)

] denotes the KL divergence from g to q. The function F is

often referred to as the “evidence lower bound". Note: this formulation of the EB approach is

often introduced together with imposing an additional constraint on q to make computations

easier, in which case optimizing F can be considered a “variational approximation" to the two-

step procedure (2.17)-(2.18), sometimes referred to as “variational empirical Bayes" (VEB).

Here we do not impose any additional constraint on q, so optimizing F is equivalent to the

two-step EB procedure (2.17)-(2.18); there is no variational approximation here.

Similarly to Wang and Stephens [2021], optimizing F over g,q ends up requiring the

solution to a simpler EB problem known as the “empirical Bayes normal means" problem.

That is, one needs a function, EBNM, defined as follows.

Definition 2.2. Let EBNM(x, s2,G) denote a function that returns the EB solution to the

following normal means model:

xp|ηp, s2 ∼indep N(xp; ηp, s
2) (2.21)

ηp ∼iid g ∈ G, (2.22)

for p = 1, . . . , P . More precisely,

EBNM(x, s2,G) := argmax
g∈G,q

Eq log p(x|η, s2)−KL(q||g) (2.23)
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where the optimization of q is over all possible distributions on η = (η1, . . . , ηP ).

Efficient methods and software exist for solving the EBNM problem for a wide range of

prior families G; see Willwerscheid [2021] for example.

With the EBNM function in hand, F can be optimized as in the following Proposition

(see Appendix 2.10.2 for proof).

Proposition 2.3. Maximizing the evidence lower bound F (g,Z, τ,q) (2.20) subject to ZTZ =

IK can be achieved by iteratively updating (g,q), updating Z, and updating τ , as follows:

EBNM step: for each k ∈ [K], (gk, qk)← EBNM(XT zk, 1/τ,G), (2.24)

Rotation step: Z← Polar.U(XL̄), (2.25)

Precision step: τ ← NP/(∥X− ZL̄T ∥2F + ∥V∥1,1). (2.26)

Here L̄ = Eq(L), V is the matrix with vp,k = Varqk(lp,k), and ∥V∥1,1 =
∑P

p=1

∑K
k=1 vp,k.

Remark 2.1. The EBNM step above is similar to the EBNM step used to fit the EBMF model

in Wang and Stephens [2021]. However, a key difference is that, due to the orthogonality of

Z, here the updates for l1, . . . , lK separate into K independent updates. That is, whereas in

EBMF the l1, . . . , lK must be updated one at a time, in EBCD they can be updated jointly.

Remark 2.2. We can make the connection with BISPCA clearer by fixing τ , and separating

the solution of the EBNM problem into a part that estimates g, and a part that computes

the posterior mean of η for a given prior. That is, let G(x, s2,G) denote the optimal prior

returned by EBNM(x, s2,G), let S(x, s2, g) := E(η|x, s2, g) (i.e. S returns the posterior

mean of η under the EBNM model with prior g). Then the updates (2.24)-(2.25) can be

46



rewritten as

gk ← G(XT zk, 1/τ,G) (2.27)

l̄k ← S(XT zk, 1/τ, gk) (2.28)

Z← Polar.U(XL). (2.29)

The resulting algorithm is shown in Table 2.1 along with other sPCA methods to highlight its

algorithmic similarity to other sPCA methods. We call this algorithm EBCD-MM because

it can be framed as a “minorization-maximization" (MM) algorithm to optimize the EBCD

criterion, the minorization being given by F in (2.20).

Remark 2.3. Comparing EBCD-MM with BISPCA we see that in EBCD-MM S(x, s2, g)

plays the same role as the proximal operator in BISPCA. For certain classes of prior G, in-

cluding the point-Laplace prior we use later, S is a shrinkage operator, in that |S(x, s2, g)| ≤

|x| holds point-wise for any x ∈ RP , s2 > 0, and g ∈ G. The shape and strength of shrink-

age applied to XT zk depends on the column-wise prior distributions ĝk and τ , which are

estimated from the data. Estimating gk, τ in EBCD is thus analogous to tuning the hyperpa-

rameters of the penalty function in penalized PCA, and in this way EBCD solves the multiple

tuning problem.

2.5.2 Connecting EBCD and the penalized PCA criterion

The similarity of the algorithms for EBCD and penalized PCA approaches suggests that the

two approaches are closely linked. Here we formally establish this link. To do so we define

F̃ (g,Z, τ, L̄) := max
q:Eq(L)=L̄

F (g,Z, τ,q). (2.30)
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From this definition and (2.19) it follows that

(ĝ, Ẑ, τ̂ , L̂) = argmax
g,Z,τ,L̄

F̃ (g,Z, τ, L̄), (2.31)

and so L̂ = argmaxL̄ F̃ (ĝ, Ẑ, τ̂ , L̄). The following proposition connects F̃ with the penalized

PCA objective function (2.2).

Proposition 2.4.

F̃ (g,Z, τ, L̄) = −

1

2
∥X− ZLT ∥2F +

∑
k,p

Pτ,gk(l̄pk)

 τ (2.32)

where the penalty terms are given by

Pτ,g(l̄) =
N

2Kτ
log

2π

τ
+

1

2
min

q:Eq[l]=l̄

(
varq(l) +

2

τ
KL(q||g)

)
. (2.33)

The proposition establishes that, for fixed g, τ , EBCD is a penalized PCA approach, with

a penalty that depends on g, τ . Again, by estimating g, τ EBCD automatically tunes the

penalties, and so solves the multiple tuning problem.

Although the penalty Pτ,g does not, in general, have a closed form, it does have some

convenient properties; for example, its proximal operator S is the posterior mean from a

normal means problem, which has a closed form for many choices of prior g. See Kim et al.

[2022] for some other relevant results.

2.5.3 Efficient Computation

Since EBCD is a penalized PCA method, the ideas from Section 2.4.1 apply, and the solution

can be computed from the Gram matrix XTX, or a compact version of the data matrix, C.

Indeed, suppose we fix g, τ and let L̂(X;g, τ) denote the result of the EBCD algorithm when
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applied to data matrix X given fixed g, τ . Then Proposition 2.4, combined with Theorem

2.2, implies that L̂(X;g, τ) = L̂(C;g, τ), where C is any matrix such that XTX = CTC.

It is straightforward to extend this result to the case where g, τ are estimated. That is,

one can maximize the ELBO F by iterating the steps (2.24)-(2.26) with C in place of X,

and then transforming Z as in Theorem 2.2(d). Note that step (2.26) requires knowledge of

N (the number of rows of X), in addition to C, and that the resulting algorithm is different

than if C were the actual data matrix (since C has P rows).

2.5.4 Extensions and variations

One slightly unnatural feature of the formulations presented thus far is that they place

a penalty (or prior) on a parameter, L, that is not a “population quantity", and whose

interpretation changes with the number of samples N . For example, in Section 2.5 we

saw that the fidelity term encourages LLT ≈ XTX, whose magnitude grows with N ; it

would seem more natural to combine a penalty on L with a fidelity term that encourages

LLT ≈ (1/N)XTX since the latter has a natural limit as N →∞ (with P fixed). This can be

achieved simply by replacing the constraint ZTZ = IK with the scaled version ZTZ = NIK ,

or equivalently Z/
√
N ∈ S(N,K). All our results and algorithms are easily modified for this

rescaled version; the details are given in Appendix 2.10.4.

It is also straightforward to extend our models to allow column-wise variances, although

this loses the interpretation of the methods as a covariance decomposition. See Appendix

2.10.5 for details.
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2.6 Practical Issues

2.6.1 Initialization

Both the penalized PCA criterion and the EBCD criterion are non-convex optimization

problems. Consequently solutions may depend on initialization. One simple initialization

strategy is to use a “greedy" algorithm, which iteratively adds columns to L and Z, with each

greedy step being initialized by a rank 1 (unpenalized) truncated SVD. To enforce that the

newly added column zk is orthogonal to the existing columns of Zk−1, we use the rotation

step of SPC [Witten et al., 2009] (see Table 2.1) as our ‘greedy rotation step’:

Greedy Rotation Step: zk ← greedyrotation (Zk−1,Rk, lk) :=
√
N
Z⊥k−1Z

⊥T
k−1Rklk

∥Z⊥Tk−1Rklk∥2
. (2.34)

The initialization is complete after K columns have been added, at which point the crite-

rion can be further optimized by applying EBCD-MM, a process referred to as “backfitting"

in Wang and Stephens [2021]. For completeness we give the full procedure in Algorithm 2.1.

2.6.2 Choice of K

As noted in Wang and Stephens [2021], the EB approach provides a way to automatically

select K. Provided the prior family G includes the distribution δ0, a point mass at 0, then

the EBCD criterion may be optimized with some gk = δ0, and hence l̄k = 0. Algorithmically,

the greedy procedure in Algorithm 2.1 can be terminated the first time that l̄0 = 0, providing

an automatic way to stop adding factors. Alternatively the algorithm can, of course, be run

with a user-specified choice of K.
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Algorithm 2.1 EBCD-MM (greedy + backfit)
Require: data X; maximum number of PCs Kmax; function svd1(A) → (u, d,v) that

returns the leading singular vectors and singular value; function ebnm(x, s2,G) →
(Eppost [η], varppost(η)) that solves an empirical Bayes normal means problem and re-
turns posterior mean and variance (see Definition 2.2 and Remark 2.2); function
greedyrotation(Z,R, l) → z that returns the updated column z0 that is orthogonal to
the existing columns of Z (see (2.34)).

Z← [ ]; L̄← [ ]; τ ← NP/∥X∥2F ▷ Initialize (Z, L̄, τ)
for r in 1, . . . ,Kmax do ▷ Greedily add components up to Kmax

R← X− ZL̄T

(u, d,v)← svd1(R)
l̄0 ← dv/

√
N

z0 ← greedyrotation(Z,R, l̄0)
repeat

(̄l0,v0)← ebnm(RT z0/N, 1/Nτ,GL) ▷ Shrinkage Step
z0 ← greedyrotation(Z,R, l̄0) ▷ Greedy Rotation Step
τ ← NP/(∥R− z0l̄

T
0 ∥

2
F +N∥v0∥1) ▷ Precision Step

until convergence criterion satisfied
L̄← [L̄, l̄0]
Z←

√
NPolar.U(XL̄)

end for
repeat ▷ Backfit

for k in 1, . . . ,Kmax do ▷ Shrinkage Step
(̄lk,vk)← ebnm(XT zk/N, 1/Nτ,GL)

end for
Z←

√
NPolar.U(XL̄) ▷ Rotation Step

τ ← NP/(∥X− ZL̄T ∥2F +N∥V∥1,1) ▷ Precision Step
until convergence criterion satisfied
return (Z, L̄, V, τ)

2.6.3 Choice of prior

The specific form of the posterior mean shrinkage operator S in EBCD depends on the

prior g, thus on the choice of the prior family G. For sparse PCA one would choose a

sparsity-inducing prior family; one could alternatively use non-negative prior families to

induce non-negative PCA, or fully nonparametric prior families (as in Zhong et al. [2022])

for a more flexible regularized PCA, although we do not explore these options further here.

While several choices of sparse family are possible, here we use the “point Laplace" prior,
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a spike and slab prior with Laplace slab:

G = {g : g(x) = (1− π)δ0(x) + πLaplace(x; 0, b) for some π ∈ [0, 1], b > 0} (2.35)

where Laplace(·;µ, b) denotes the probability density function of the Laplace distribution

with a location parameter µ and a scale parameter b. Varying the prior parameters (π, b)

of this prior allows for a wide range of possible shrinkage behaviors, as illustrated in Figure

2.1. We refer to EBCD with this specific prior as EBCD-pl (“empirical Bayes covariance

decomposition with point Laplace prior family").

pi: 0.1 pi: 0.3 pi: 0.5 pi: 0.7 pi: 0.9

−5.0 −2.5 0.0 2.5 5.0−5.0 −2.5 0.0 2.5 5.0−5.0 −2.5 0.0 2.5 5.0−5.0 −2.5 0.0 2.5 5.0−5.0 −2.5 0.0 2.5 5.0
−5.0

−2.5

0.0

2.5

5.0

x

pm

scale

1

2
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Figure 2.1: Examples of posterior mean shrinkage operator S(x, s2 = 1, g = g(·; π, b)) in-
duced by Laplace slab priors g(x; π, b) = (1−π)δ0(x)+πLaplace(x; 0, b). Note how π controls
shrinkage near 0 (small π yielding more shrinkage), while the scale parameter controls shrink-
age further away from 0.

2.7 Empirical Results

2.7.1 Simulation

To illustrate the performance of EBCD-pl, we compare it with PCA, L1-penalized PCA

(our penalized PCA criterion (2.2) with an L1 penalty), SPC, and GPower. To handle the

multiple tuning problem, the block methods (L1-penalized PCA and GPower) are used with

an equality restriction, and the single-unit method (SPC) is used with a deflation scheme

and a greedy hyperparameter optimization. We use the R package PMA for SPC, and the
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MATLAB implementation available at http://www.montefiore.ulg.ac.be/~journee/G

Power.zip for GPower. We only consider the GPower with an equality restriction because

Journée et al. [2010] report that GPower with a random search for hyperparameter tuning

is unsatisfactory under their simulation setting (which is the same as our Simulation 1).

For L1-penalized PCA and SPC, we use cross-validation to choose the penalty param-

eter6; for GPower, which lacks a built-in cross-validation functionality, we report the best

result (in terms of average dcov measure, defined below). This approach evaluates the hy-

perparameter values using the true data generating process; performance using CV should

be expected to be worse. Following Journée et al. [2010] we fix the GPower hyperparameters

(µ1, µ2) = (1, 0.5).

We also compare with empirical Bayes PCA (EB-PCA; Zhong et al., 2022). While EB-

PCA shares the empirical Bayes part of EBCD, it does not assume and exploit sparsity of

L, and does not assume orthogonality of Z. We use the Python implementation of EB-PCA

available on https://github.com/TraceyZhong/EBPCA.

We consider two simulation settings, each with x1, . . . ,x50 ∼ N500(0,Σ), where the

500× 500 covariance matrix Σ is given by:

1)

Σ = 399v1v
T
1 + 299v2v

T
2 + I500 (2.36)

where the PCs v1,v2 are given by

v1,j = 1j∈[1,10]/
√
10, v2,j = 1j∈[11,20]/

√
10. (2.37)

This setting comes from Shen and Huang [2008] and Journée et al. [2010].

6. The CV for the L1-penalized PCA is based on the mean squared projection error. This error is
calculated by projecting test data onto the subspace spanned by the columns of L̂ estimated using training
data. The CV method is a multi-PC extension of the single-PC CV idea presented in Algorithm 2 by Shen
and Huang [2008].
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2)

Σ = 9v1v
T
1 + 7v2v

T
2 + 4v3v

T
3 + I500 (2.38)

where

v1,j = 1j∈[1,10]/
√
10, v2,j = 1j∈[11,50]/

√
40, v3,j = 1j∈[51,150]/

√
100. (2.39)

This setting illustrates the effect of non-equal sparsity level in the PCs.

For each setting we simulate 50 datasets and measure performance by three measures: i) the

angle between the true PC and its estimate: for each PC i, the angle is defined as

di = ∠(vi, l̂i)/
π

2
(2.40)

where ∠(·, ·) denotes the angle between two vectors; ii) the difference between the population

covariance matrix and the estimated 1
N L̂L̂T :

dcov = ∥Σ− 1

N
L̂L̂T ∥F ; (2.41)

iii) the distance with optimal rotation, which measures the proximity of two subspaces:

dor = min
R∈OK×K

∥L̃R−V∥F (2.42)

where OK×K is the set of K-by-K orthonormal matrices, V is [v1,v2] in Simulation 1

and [v1,v2,v3] in Simulation 2, and L̃ is an orthonormal basis of the subspace spanned

by estimated loading L̂. This measure can be shown to be nearly equivalent to other sub-

space proximity measures, such as the distance between projection matrices and the norm

of principal angles (for example, see Chen et al., 2021).

The run-time for EBCD-pl was comparable in magnitude to that of other sPCA meth-
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ods.In Simulation 1, the average run-times for each dataset were as follows: EBCD-pl took

2.62s, SPC 1.49s, GPower 0.11s, L1-penalized PCA 0.47s, EB-PCA 0.28s, and PCA 0.01s.

For Simulation 2, the average run-times were EBCD-pl 2.19s, SPC 2.79s, L1-penalized PCA

1.62s, EB-PCA 0.64s, and PCA 0.01s. It is important to note that L1-penalized PCA

and GPower with equality restriction were optimized over a one-dimensional hyperparam-

eter grid, not over a two-dimensional or three-dimensional grid, which could increase the

run-time substantially. Additionally, GPower was executed in MATLAB and EB-PCA in

Python, making direct comparisons with the R-based methods challenging. All experiments

were conducted on a 2020 MacBook Air with an Apple M1 chip and 16 GB RAM.
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Figure 2.2: Simulation results comparing the performance of different methods in terms of
three measures: angle between true and estimated principal components (PCs), difference
between population covariance matrix and estimated covariance matrix, and distance with
optimal rotation.

Results (Figure 2.2) show that EBCD-pl outperforms other methods, with L1-penalized
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PCA second. The benefits of EBCD-pl over L1-penalized PCA are greatest in Simulation

2, where the sparsity levels in true PCs are different. However, even here the performance

of L1-penalized PCA is impressive despite the equality restriction on the penalty. The

superiority of L1-penalized PCA over SPC is presumably due in part to its use of a block

optimization scheme, rather than simple deflation. Its superiority compared with the (block-

based) GPower method may reflect difficulty in selecting the hyperparameter µ in GPower.

(Indeed, we excluded GPower results in Simulation 2 as we found it hard to specify this

parameter.)

2.7.2 Stock Market Data

To illustrate our method’s effectiveness in producing interpretable results, we applied EBCD-pl

to stock market data.

In the article “America’s best firms...and the rest: New winners and losers are emerging

after three turbulent years”, The Economist [Economist, 2022] reported on the stock market

performance of S&P500 firms over an (almost) three-year period covering the COVID pan-

demic, January 1st, 2020, to November 29, 2022. The article examines the returns of firms

subdivided into eleven Global Industry Classification Standard (GICS) sectors, both overall

and separately for three phases, ‘working from home’ (January 1st, 2020, to November 8th,

2020, which is “the day before the test results of the Pfizer vaccine were announced”), ‘re-

opening’ (November 9th, 2020, to December 31st, 2021) and ‘inflation’ (January 1st, 2022

to November 29th, 2022).

We obtained data on sector-level daily returns covering the same time period from Re-

finitiv Datastream via Wharton Research Data Services; the data matrix contains daily log

returns for 734 trading days and 11 sectors. Using these data we reproduced the main trends

reported in the Economist article (Figure 2.3). Overall, during the three year period, en-

ergy and information technology sectors performed the best, and communication services the
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worst. However, dividing the period into three distinct phases highlights temporal variation

in different sectors’ performances. Indeed, during the ‘working from home’ phase the energy

sector performed the worst, while information technology sector performed the best along

with consumer discretionary and communication services. During ‘reopening’ the energy

sector turned into the biggest winner, and all eleven sectors reported gains. In the ‘inflation’

phase only the energy sector reported gains.

Overall I. Working from home II. Reopening III. Inflation

0% 40% −40% 0% 0% 40% −40% 0% 40%

Communication Services

Real Estate

Utilities

Consumer Discretionary

Financials

Consumer Staples

Industrials

Materials

Health Care

Information Technology

Energy

Figure 2.3: Holding period returns by sectors during three phases: “Working from home”
(Jan 2020 - Nov 2020), “Reopening” (Nov 2020 - Dec 2021), and “Inflation” (Jan 2022 - Nov
2022).

We applied EBCD-pl, SPC and classical PCA to these data. The first three classical PCs

explain 90.54% of total variance, with a sharp drop-off in signal after this point (the first

five PCs explain 72.49%, 11.91%, 6.14%, 2.40%, and 1.66%) and so we focus comparisons

on the first three PCs. The SPC result is almost identical to the PCA result (not shown).

In contrast the three PCs estimated by EBCD-pl differ from classical PCA, both in their

PVEs (66.99%, 16.35%, and 7.13%) and in the qualitative features of their loadings after

the first PC (Figure 2.4). We attribute this difference in behavior between EBCD-pl and

SPC as primarily due to the block vs single-unit behaviour. When signal is strong, greedily

estimated sparse PCs may not deviate much from classical PCs. In contrast, the block

optimization in the EBCD-pl algorithm (backfitting stage in Algorithm 2.1) allows EBCD-pl

57



to move some of the explanatory power of the first PC to other PCs in order to increase

sparsity. Interestingly this is done at almost no expense of total PVE explained by the first

three PCs: cumulatively, the three EBCD-pl PCs explain 90.47% of the variation, very similar

to the 90.54% of classical PCA. This highlights a benefit of block optimization methods for

sparse PCA, compared with the widely-used single-unit and deflation schemes.
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Figure 2.4: Comparison of PCA loadings and estimated posterior mean loadings from
EBCD-pl. (To facilitate comparisons we post-processed posterior mean loadings to have unit
norm.)

The first PC (both classical and EBCD-pl) loads roughly equally on all sectors, and so

captures the tendency of sectors to move together as the market varies. To describe the

loadings on the second and the third EBCD-pl PCs, we group the sectors into four groups:

energy, materials, industrials, and financials (EMIF); consumer staples, utilities, real estate

(SUR); information technology, consumer discretionary, and communication services (TDC);

and health care. The second EBCD-pl PC captures the EMIF sector, and the third EBCD-pl

PC captures the contrast between SUR and TDC.

These EBCD-pl results can be interpreted in the context of the Fama-French three-factor

model [Fama and French, 1993], which is the standard model in finance that explains varia-

tion in stock prices by three factors: the market factor (roughly, overall average performance

of all stocks), the size factor (SMB, for small minus big, contrasting stocks with small vs big
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market capitalization), and the growth/value factor (HML, for high minus low, contrasting

high value stocks, which have high book-to-market value ratio, with growth stocks which

have low book-to-market ratio). The first EBCD-pl PC captures the market factor, whereas

the second and third PCs partition the sectors into three groups: the TDC group contains

the growth sectors; the EMIF group contains the strong value sectors with smaller sizes

and the SUR group contains the moderately value sectors with larger sizes. This is illus-

trated graphically in Figure 2.5, which shows each sector in the Fama-French SMB-HML

plane (data from the Data Library maintained by Kenneth R. French), colored according

to loading on the second and third PCs. The colorings for EBCD-pl PCs clearly capture

contiguous regions of the plane. (In contrast the classic PCs do not align so closely with the

Fama-French factors; in particular the third PC groups the energy sector with TDC, which

do not fall together in the SMB-HML plane.)

2.8 Discussion

We introduced a simple penalized PCA criterion, (2.2) that unites some existing sparse PCA

methods (SPC and GPower). We showed that this criterion has the property of simulta-

neously providing a decomposition of both the data matrix and the covariance, or Gram,

matrix. To address the challenge of tuning multiple hyperparameters, we proposed an em-

pirical Bayes approach that integrates hyperparameter tuning directly within the algorithm.

The result is an empirical Bayes approach to covariance decomposition (EBCD), which we

found in simulations can outperform existing methods for sparse PCA.

While we have focused here on sparsity, our EBCD approach is quite general, and other

structures can be easily incorporated simply by changing the prior family used. For example,

replacing the point-Laplace prior family we used here with a point-Exponential prior family

immediately leads to a new EB method for sparse, non-negative PCA [Zass and Shashua,

2006] (and, simultaneously, a version of semi-nonnegative matrix factorization [Ding et al.,
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Figure 2.5: Sectors projected on the SMB-HML plane. Each sector is positioned according to
its loadings on the Fama-French SMB and HML factors, and is colored based on its loadings
on the second and third principal components (PCs) from the EBCD-pl method (or PCA).

2010]). The non-negative constraint may provide more interpretable covariance decomposi-

tions in many applications; see Li et al. [2021] for interesting recent work in this direction.

Another interesting possibility to improve interpretation is to use binary or near-binary pri-

ors, which would lead to empirical Bayes versions of additive clustering [Shepard and Arabie,

1979]; see also Kueng and Tropp [2021], Sørensen et al. [2022], Kolomvakis and Gillis [2023],

Liu et al. [2023]. Similarly, one could obtain an EB version of “functional PCA" [Ramsay

and Silverman, 2005] by replacing the sparse prior with a “spatial" prior that encourages

|ηi − ηi+1| (in Definition 2.2) to be typically small. EBNM solvers for a range of priors

are implemented in the EBNM package [Willwerscheid and Stephens, 2021], and an EBNM

solver for a spatial prior is implemented using wavelet methods in Xing et al. [2021], and

any of these could be immediately plugged into Algorithm 2.1. It is, however, possible that
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some prior families may require careful attention to initialization to yield good performance.

2.9 Data and Resources

EBCD-pl is implemented in the R package ebcd that is available from https://github

.com/joonsukkang/ebcd. Source code for the empirical results is available from https:

//github.com/joonsukkang/ebcd-paper.

The sector-level daily returns data was provided by Refinitiv via Wharton Research Data

Services. Data will be shared on request to the corresponding author with permission of Re-

finitiv. The Fama-French 3 Factor Returns data is available in the Data Library maintained

by Kenneth R. French: https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/

data_library.html.

2.10 Appendix

2.10.1 Proof of Theorem 2.1

To prove Theorem 2.1 we first prove Lemma 2.1; and to prove Lemma 2.1 we use the following

Lemma summarizing some properties of the nuclear norm ∥ · ∥∗.

Lemma 2.2. For any real-valued matrices A ∈M(N1, N2) and B ∈M(N2, N3),

(a) ∥A∥∗ = tr(ATPolar.U(A)).

(b) ∥A∥∗ = tr(
√
AAT ).

(c) ∥AB∥∗ = ∥
√
ATA

√
BBT ∥∗.

Proof. Let UADAV
T
A and UBDBV

T
B denote the SVDs of A and B respectively. (a)

From Definition 2.1, Polar.U(A) = UAV
T
A; tr(ATPolar.U(A)) = tr(VADAU

T
AUAV

T
A) =

tr(DA) = ∥A∥∗. (b) tr(
√
AAT ) = tr(

√
UADAV

T
AVADAU

T
A) = tr(UADAU

T
A) = tr(DA) =

∥A∥∗. (c) Since the nuclear norm is unitarily invariant, we have ∥AB∥∗ = ∥UADAV
T
AUBDBV

T
B∥∗ =

∥DAV
T
AUBDB∥∗ = ∥VADAV

T
AUBDBU

T
B∥∗ = ∥

√
ATA

√
BBT ∥∗.
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Proof of Lemma 2.1

Proof. From Fact 2.1 that Ẑ(L,X) = Polar.U(XL), we have h(X,L) = tr(XTX)+tr(LLT )−

2tr(LTXTPolar.U(XL)). The last term is equal to −2∥XL∥∗ from Lemma 2.2(a), to

−2∥
√
XTX

√
LLT ∥∗ from Lemma 2.2(c), and to −2tr(

√√
XTXLLT

√
XTX) from Lemma

2.2(b). Therefore, h(X,L) = tr(XTX)+tr(LLT )−2tr(
√√

XTXLLT
√
XTX) = d∗(XTX,LLT )2.

Proof of Theorem 2.1

Proof. Let (Ẑ, L̂) denote a solution to the penalized PCA criterion (2.12). That is,

1

2
∥X− ẐL̂T ∥2F +

K∑
k=1

P (̂lk;λk) = min
Z∈S(N,K),
L∈M(P,K)

1

2
∥X− ZLT ∥2F +

K∑
k=1

P (lk;λk)

 . (2.43)

Since Ẑ is the minimizer of ∥X− ZL̂T ∥2F by construction, the LHS of (2.43) is equal to

1

2
min

Z∈S(N,K)
∥X− ZL̂T ∥2F +

K∑
k=1

P (̂lk;λk) =
1

2
d∗(XTX, L̂L̂T )2 +

K∑
k=1

P (̂lk;λk) (2.44)

by Lemma 2.1. Similarly, by Lemma 2.1, the RHS of (2.43) is equal to

min
L∈M(P,K)

1

2
min

Z∈S(N,K)
∥X− ZLT ∥2F +

K∑
k=1

P (lk;λk)


= min

L∈M(P,K)

1

2
d∗(XTX,LLT )2 +

K∑
k=1

P (lk;λk)

 . (2.45)

Equating the right-hand-sides of (2.44) and (2.45) shows that L̂ is a solution to the penalized

covariance decomposition criterion (2.13).

62



2.10.2 Proof of Proposition 2.3

Proof. The evidence lower bound (ELBO) of the model, F (g,Z, τ,q), can be written as

F (g,Z, τ,q) = −NP

2
log(2π) +

NP

2
log(τ)− τ

2
Eq

[
∥X− ZLT ∥2F

]
+ Eq

[
log

g(L)

q(L)

]
,

(2.46)

and the three steps iteratively maximizing the ELBO can be shown as follows. (a) EBNM

step: maximizing ELBO with respect to (g,q) factorizes into K subproblems of the form

max(gk,qk) Eqk

[
log

gk(lk)
∏

p exp(−
τ
2 (lp,k−(X

TZ)p,k)
2)

qk(lk)

]
, which corresponds to the EBNM prob-

lem EBNM(XT zk, 1/τ,G). (b) Rotation step: maximizing ELBO with respect to Z reduces

to a reduced-rank Procrustes rotation problem, minZ ∥X− ZL̄T ∥2F , which has the solution

Polar.U(XL̄). (c) Precision step: maximizing ELBO with respect to τ has the closed form

solution τ = NP/Eq

[
∥X− ZLT ∥2F

]
= NP/(∥X− ZL̄T ∥2F + ∥V∥1,1).

2.10.3 Proof of Proposition 2.4

Proof. The evidence lower bound (ELBO) of the model, F (g,Z, τ,q) in (2.46), can be rear-

ranged as

−τ

2
∥X− ZL̄∥2F − τ

∑
p,k

(
N

2Kτ
log

(
2π

τ

)
+

1

2

(
varqp,k(lp,k) +

2

τ
KL(qp,k||gk)

))
, (2.47)

and after taking the maximum over q : E[L] = L̄, we get the expression (2.33).

2.10.4 Extension 1. Scaled versions of the sparse PCA criterion

One slightly unnatural feature of the formulations presented in the main text is that they

place a penalty (or prior) on a parameter, L, that is not a “population quantity", and

whose interpretation changes with the number of samples N . For example, in Section 2.5
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we saw that the fidelity term encourages LLT ≈ XTX, whose magnitude grows with N ; it

would seem more natural to combine a penalty on L with a fidelity term that encourages

LLT ≈ (1/N)XTX since the latter has a natural limit as N →∞ (with P fixed). This can be

achieved simply by replacing the constraint ZTZ = IK with the scaled version ZTZ = NIK ,

or equivalently Z/
√
N ∈ S(N,K). All our results and algorithms are easily modified for this

rescaled version. For example, the sparse PCA criterion (2.2) becomes

min
Z/
√
N∈S(N,K),

L∈M(P,K)

1

2
∥X− ZLT ∥2F +

K∑
k=1

P (lk;λk)

 ; (2.48)

the equivalent covariance formulation ((2.13) and (b) in Theorem 2.2) becomes

min
L∈M(P,K)

N

2
d∗(XTX/N,LLT )2 +

K∑
k=1

P (lk;λk)

 ; (2.49)

the equivalent compact matrix formulation ((d) in Theorem 2.2) becomes

argmin
Z̃/
√
N∈S(P,K),

L∈M(P,K)

1

2
∥C− Z̃LT ∥2F +

K∑
k=1

P (lk;λk)

 ; (2.50)

and the penalty term (2.33) becomes

Pτ,g(l̄) =
N

2Kτ
log

2π

τ
+

1

2
min

q:Eq[l]=l̄

(
Nvarq(l) +

2

τ
KL(q||g)

)
. (2.51)

The BISPCA updates become

lk ← Sρ/N (XT zk/N ;λk); Z←
√
NPolar.U(XL); (2.52)
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and the EBCD updates (2.24)-(2.26) become

EBNM step: for each k ∈ [K], (gk, qk)← EBNM(XT zk/N, 1/Nτ,G) (2.53)

Rotation step: Z←
√
NPolar.U(XL̄) (2.54)

Precision step: τ ← NP/(∥X− ZL̄T ∥2F +N∥V∥1,1)
[
= P/(d∗(XTX/N,LLT )2 + ∥V∥1,1)

]
.

(2.55)

And, just as before, one can apply these updates to a compact version of the data matrix to

solve the same problem.

This modification to the methods makes it easier to reason about their behavior in the

regime N →∞ with P fixed, where we can assume limN→∞XTX/N = S say. For example,

(2.49) shows that for a fixed penalty (not depending on N) the influence of the penalty

will decrease as N increases, and the limiting estimate of L will be ∈ argmin d∗(S,LLT )

independent of the penalty. And because the part of the penalty (2.51) depending on g does

not scale with N , the effect of the prior g diminishes as N →∞ as one might expect (indeed,

in the limit as N → ∞ the EBCD optimum L will be ∈ argmin d∗(S,LLT ) whether g is

fixed or estimated from the data).

2.10.5 Extension 2. Column-wise variances

We can extend the EBCD model (2.14)-(2.16) to allow different variables to have different

variances/precisions:

X = ZLT + E (2.56)

lp,k ∼iid gk ∈ G (2.57)

en,p ∼iid N(·; 0, 1/τp) (2.58)
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where Z ∈ S(N,K). Fitting this heteroskedastic model requires solutions for the het-

eroskedastic versions of the reduced-rank Procrustes rotation problem and the EBNM prob-

lem, as we now detail.

Fact 2.2 (Heteroskedastic Reduced-rank Procrustes rotation problem). Given L, the mini-

mum

min
Z∈S(N,K)

∑
n,p

τp(xn,p − (ZLT )n,p)
2

is achieved by Ẑ(L,X,T) := Polar.U(XTL) where T is the P × P diagonal matrix with

Tp,p = τp.

Proof. The minimization problem is equivalent to minZ∈S(N,K) ∥(X−ZLT )
√
T∥2F = minZ∈S(N,K)

∥X
√
T−Z(

√
TL)T ∥2F , which reduces to a (homoskedastic) reduced-rank Procrustes rotation

problem in Fact 2.1 and has a solution Polar.U(X
√
T
√
TL) = Polar.U(XTL), where

√
T is

the P × P diagonal matrix with diagonal entries √τp.

Definition 2.3. Let EBNM(x, s2,G) denote a function that returns the EB solution to the

following heteroskedastic normal means model:

xp|ηp, s2p ∼indep N(xp; ηp, s
2
p) (2.59)

ηp ∼iid g ∈ G, (2.60)

for p = 1, . . . , P .

Proposition 2.5. Maximizing the evidence lower bound F (g,Z,T,q) ( (2.20) but with τ

replaced by T) subject to ZTZ = IK can be achieved by iteratively updating (g,q), updating
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Z, and updating T, as follows:

EBNM step: for each k ∈ [K], (gk, qk)← EBNM(XT zk, (1/τ1, . . . , 1/τP ),G) (2.61)

Rotation step: Z← Polar.U(XTL̄) (2.62)

Precision step: τp ← N/

(∑
n

(xn,p − (ZL̄)n,p)
2 +

∑
k

vp,k

)
, p = 1, . . . , P. (2.63)

Here L̄ = Eq(L) and vp,k = Varqk(lp,k).

Note that in practice, one would need to apply some regularization when estimating τp

to prevent solutions with τp →∞.
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CHAPTER 3

GENETIC DRIFT-BASED INFERENCE OF POPULATION

STRUCTURE

3.1 Introduction

Admixture-based clustering methods [Pritchard et al., 2000, Alexander et al., 2009, Raj et al.,

2014] are widely used to infer population structure from genotype data. Given a matrix G ∈

{0, 1, 2}S×N of genotype data from S SNPs and N individuals, these methods simultaneously

estimate K latent populations parameterized by their population allele frequencies and each

individual’s memberships in the K populations.

In terms of matrix decomposition, these methods find a decomposition of G such that

G ≈ 2PQT holds where P ∈ [0, 1]S×K is the matrix of population allele frequencies and

Q ∈ [0, 1]N×K is the matrix of individuals’ population memberships. Each row of Q,

corresponding to one individual’s memberships in K populations, is nonnegative and sums to

one. Once the admixture-based clustering method is estimated, the individuals’ population

membership matrix Q is used to visualize the result in the form of the popular ‘STRUCTURE

bar plot’, in which each individual’s population memberships are stacked along the y-axis

and individuals are positioned along the x-axis. An example of the STRUCTURE bar plot,

replicated from The 1000 Genomes Project Consortium [2015], is shown in Figure 3.1a.

While the STRUCTURE bar plot contains information on the genetic similarities of sam-

pled individuals, it does not contain all of this information. This is because the bar plot

shows only the inferred Q matrix, which represents admixture proportions, and not the

inferred P matrix, which represents population allele frequencies, and much of the genetic

similarity between individuals depends on this. For example, from the plot it is impossible

to say whether FIN individuals are more similar to CDX individuals or to GWD individuals,

because this depends on how similar P4 is to P6 and P1, which is information in the P matrix
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Figure 3.1: An illustration of (a) STRUCTURE bar plot, (b) tree-based genetic drift estima-
tion, and (c) tree-based individual DRIFT bar plot, using the 1000 Genomes Project data.

not information conveyed in the plot. More generally, STRUCTURE plots, by simply color-

ing each (inferred) population a different color without regard to their genetic similarities,

may give misleading impressions of genetic variation among individuals: genetically similar

individuals may be assigned to different (but genetically-similar) populations, and so appear

very different on the barplot.

In this chapter, we address this problem by introducing an alternative barplot representa-

tion that combines relevant information in both the inferred admixture proportions (Q) and

the population allele frequencies (P). In brief, the idea is to decompose the population allele

frequencies into independent “drift" components, and then to plot a barplot of the implied

memberships of each individual in these drift components, rather than their memberships

in populations. We consider two approaches to inferring drift components, one based on

inferring an evolutionary tree relating the inferred populations inferred from STRUCTURE,

and a second, which we call Treelax, that is based on a matrix factorization approach that

relaxes the assumption of a strict evolutionary tree relating the populations. Because the
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drift components are independent, the resulting barplot representation provides a faithful

representation of the genetic similarities among individuals in the sample, while maintaining

many of the appealing visual features of the STRUCTURE barplot that have made it such

a popular tool in practice.

3.2 Description of the method

3.2.1 The DRIFT method

In brief, whereas STRUCTURE represents the genotype matrix as G ≈ 2PQ where P and

Q are non-negative, we instead seek a representation of the form

G ≈ 2ZMT where ZTZ = SI and M non-negative, (3.1)

which in turn implies

(1/S)GTG ≈ 4MMT where M is non-negative. (3.2)

For reasons we describe later, we refer to Z as the drift matrix, and M as the (individual)

drift membership matrix.

Note that the matrix (1/S)GTG contains all the information about the genetic distance

between individuals i and j. Indeed, the (squared) genetic distances between individuals i

and j is

Dij =
1

S

S∑
s=1

(Gs,i −Gs,j)
2 (3.3)

so in matrix notation

D = α1T + 1αT − 2

S
GTG (3.4)
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Figure 3.2: Overview of the DRIFT method’s three-step process.
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where α = diag( 1SG
TG). Thus, the approximation (3.2) implies that the matrix M contains

(approximately) the information on genetic distances. Indeed, simple algebra yields

Dij ≈ 4
K∑
k=1

(Mi,k −Mj,k)
2. (3.5)

As a result, a barplot of elements of M captures the information on genetic similarities

between individuals, whereas the STRUCTURE barplot of the elements of the matrix Q

does not.

There may be many ways to obtain a factorization of the form (3.1), and we present here

one approach, with two variations, that we believe is useful; future work may provide other

approaches. Figure 3.2 presents an outline of our approach, which consists of three steps:

Step 1. Run a STRUCTURE-type method on genotype data (G) to obtain population al-

lele frequencies (P) and individuals’ population memberships (Q) such that G ≈

2PQT .1

Step 2. Decompose P as P ≈ ZLT , where ZTZ = SI (which implies that (1/S)PTP ≈

LLT ). We describe two ways to achieve this decomposition – one using a tree-based

method and another based on a matrix factorization that relaxes the tree assumption

– in more detail below. We refer to Z as the drift matrix, and L as the matrix of

population drift memberships.

Step 3. Combining the above, we get G ≈ 2ZMT where M := QL and ZTZ = SI, as

desired.

Although throughout we have used G ≈ 2ZMT as a device to draw connections with

STRUCTURE, in practice we do not actually need the matrix Z to produce our proposed

plot. Indeed the approach can be alternatively described as seeking the decomposition (3.2)

1. For potential limitations of STRUCTURE-type methods, including sensitivity to the sampling scheme
and difficulty in choosing the number of ancestral populations (K), see Lawson et al. [2018].
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without ever introducing or estimating Z, and this can be achieved as follows: 1. Decompose

G ≈ 2PQT ; 2. Decompose (1/S)PTP ≈ LLT ; 3. Form M = QL, which will satisfy

(1/S)GTG ≈ 4MMT .

3.2.2 Tree-based estimation of genetic drifts

One way to approximate P ≈ ZLT is to use tree-based methods [Cavalli-Sforza et al., 1964,

Cavalli-Sforza and Edwards, 1967, Felsenstein, 1973, 1981, Pickrell and Pritchard, 2012] to

model the evolutionary relationships between the allele frequencies of different populations,

and then to translate the inferred tree into a matrix representation. In this approach, the

matrix L is obtained from information on the tree topology (including location of the root)

and the length of each branch in the tree, and the matrix Z contains the information on

the change in allele frequencies that occur along each branch, often known as the “genetic

drift" (drift refers to the random fluctuations in the frequencies of neutral genetic variants

resulting from gene sampling during reproduction, but here we use it to refer to the changes

that occur whether or not they are neutral).

The idea is illustrated in Figure 3.1. Figure 3.1b illustrates an evolutionary tree recon-

structed from the estimated population allele frequencies of eight populations, with the drifts

color-coded and numbered from one to fourteen. The tree is estimated using the TreeMix

method [Pickrell and Pritchard, 2012] with zero admixture events and is rooted using an

ancestral population with ancestral alleles as an outgroup. For example, the predominantly

South Asian population P5 is estimated to have experienced the Out-of-Africa drift D2,

the pan-Asian drift D6 (shared across South Asians, East Asians, and Americans), and the

P5-specific drift D9.

To translate the inferred tree into the corresponding L matrix encoding populations’ drift

memberships, we utilize the tree topology to determine binary population-drift memberships,

while the branch lengths provide information about the size of these drifts. The left plot of
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Figure 3.9c shows the corresponding elements of the matrix L. In this plot, each popula-

tion’s scaled binary memberships in drifts D1 through D14 are stacked along the y-axis, and

populations are positioned along the x-axis. We call it the ‘population DRIFT bar plot’. For

example, P5’s memberships in D2, D6, and D9 are stacked, with the bar heights representing

drift sizes determined by the tree branch lengths. Intuitively, a population DRIFT bar plot

can be obtained by rotating a tree plot 90 degrees counterclock-wise.

3.2.3 Treelax: Matrix decomposition-based estimation of genetic drifts

While approximating the relationships among populations as a bifurcating tree is a simple

and intuitive approach, the adequacy of the assumed tree structure remains an empirical

question. When a tree method applied to data suggests a lack of fit, we can improve the

model by relaxing the tree assumption. Here we propose to relax the tree assumptioon using

a matrix decomposition-based method that penalizes deviations from the initial tree-based

estimate. We call our method “Treelax”, reflecting its ability to relax the tree assumption.

To describe Treelax, let L̃ denote an estimate of L obtained by a tree-based method.

Treelax seeks an L such that (1/S)PTP ≈ LLT while L is also close to L̃. It does so by

optimizing the following objective function:

L(L;∆, L̃, λ) = ∥∆−
(
β1T + 1βT − 2LLT

)
∥2F + λ∥L− L̃∥1 (3.6)

where β := diag(LLT ), ∆ is the matrix of pairwise squared genetic distances between

populations based on their allele frequencies:

∆k,k′ =
1

S

S∑
s=1

(Ps,k − Ps,k′)
2 (3.7)

and λ ≥ 0 is a tuning parameter that controls the strength of the L1 penalty. Note that the
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matrix
(
β1T + 1βT − 2LLT

)
is the matrix of (squared) pairwise distances implied by L, so

the objective function is a combination of a fidelity term (that makes the distances implied

by L close to the observed distances ∆) and a penalty term that makes L close to L̃.2 As

λ decreases towards zero, the solution approaches L∗ that minimizes the fidelity term. As λ

increases, the solution approaches the tree-based reference matrix L̃.

Treelax algorithm We minimize the Treelax objective function (3.6) using the proximal

gradient method. Before we describe the proximal gradient updates, we introduce a couple

of notations. Let ∇g(L(t)) denote the gradient of the smooth part of the objective (∥∆ −(
β1T + 1βT − 2LLT

)
∥2F ) evaluated at L = L(t). It can be shown that

∇g(L) = 8 (C− diag (C1))L (3.8)

where C = ∆− (β1T + 1βT − 2LLT ). And let h denote the sum of the convex non-smooth

part of the objective and the non-negativity restriction:

h(L) = λ∥L− L̃∥1 +∞(L/∈RK×J
+ )

. (3.9)

The soft thresholding operator, SoftThreshold(M;λ), applies the entry-wise soft thresholding

to each entry Mi,j with parameter λ, such that [SoftThreshold(M;λ)]i,j = sign(Mi,j)(|Mi,j |−

λ)+. Lastly, we define the proximal operator proxh as

proxh(X) = argmin
U

(
1

2
∥U−X∥2F + h(U)

)
(3.10)

=
(
SoftThreshold(X− L̃;λ) + L̃

)
+
. (3.11)

2. From the fact that ∆ can be written as ∆ = γ1T +1γT − 2
SP

TP where γ = diag( 1
SP

TP), the fidelity
term can be interpreted as finding an approximation (1/S)PTP ≈ LLT , though making the approximation
tight in terms of the distances implied by (1/S)PTP and LLT .
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The proximal gradient method iterates the following update

L(t+1)(η) = proxηh
(
L(t) − η∇g(L(t))

)
. (3.12)

The function h in the proximal operator is scaled by the step size η(t) so that, effectively,

the tuning parameter λ is scaled by η(t). Therefore, the update can be written as

L(t+1)(η) =
(
SoftThreshold

(
L(t) − η∇g(L(t))− L̃; ηλ

)
+ L̃

)
+

(3.13)

where η(t), the step size at the t-th iteration, is chosen to minimize the objective function

at the next iteration L(t+1)

min
η(t)
L
(
L(t+1)(η(t));∆, L̃, λ

)
. (3.14)

We select L̃ we first estimate a tree topology using the TreeMix method (without any

migration events) and then adjust its branch lengths to optimize the fidelity term in (3.6)

(with no penalty).

We use cross-validation to choose the optimal penalty parameter that minimizes the mean

squared error. Our objective function (3.6) is defined as the sum of the data fidelity term

(∥∆ −
(
β1T + 1βT − 2LLT

)
∥2F ) and the regularization term (λ∥L − L̃∥1). To evaluate

the performance of the estimated L̂, we use its data fidelity on the test data. Given a

specific value of λ, we obtain the estimate L̂ by minimizing the objective function on the

training set L(L;∆train, L̃train, λ) and compute the mean squared error on the test set as

∥∆test −
(
β̂1T + 1β̂T − 2L̂L̂T

)
∥2F .

For each training set, we need to compute the solution path {L̂(i)}Ii=1 for the penalty

parameters {λi}Ii=1. We use the solution L̂(i) as a warm start in the next problem with the

penalty parameter λi+1.
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To account for potential linkage disequilibrium that introduces correlation across nearby

loci, we do not randomly partition the rows of the observed allele frequency matrix P.

Instead, we split P into B blocks, denoted as PT = [PT
1 , . . . ,P

T
B ]

T , assuming the SNPs are

ordered according to their positions in the genome. For each training and test dataset, we

compute the corresponding target matrices using equation (3.4).

3.2.4 Adding a shared drift component

Given any matrix L such that 1
SP

TP ≈ LLT a simple way to consider improving the

approximation is by adding a column to L that is constant; that is, by updating L← [µ01,L]

for some scalar µ0. The optimal approximation is given by setting

µ0 := argmin
µ0
∥ 1
S
PTP− µ2011

T − LLT ∥2F = max(0,

√
mean(

1

S
PTP− LLT )). (3.15)

When L is derived from a tree, adding this constant column to L can be thought of as

adding a branch of length µ0 at the top of the tree (joining to the root) that is ancestral to

all populations.

Note that adding this constant column to L results in a similar update to M: M ←

Q[µ01,L] = [µ01,QL] (because Q1 = 1). Adding this constant column does not change

the pairwise distances implied by M (right hand side of (3.5)), and so does not help explain

any genetic differences among individuals; however, it may be helpful for providing context

for the sizes of genetic differences in the sample relative to the shared component (e.g. see

Figure 3.9).
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3.2.5 Computing individual-specific drift components

The strategies above yields a matrix M that satisfies (1/S)GTG ≈ 4MMT . Focusing on

the diagonal elements of these matrices we can write

1

S
∥gi∥2 =

J∑
j=0

4M2
i,j + ei (3.16)

where ei :=
1
S∥gi∥

2 −
∑J

j=0 4M
2
i,j , and j = 0 is used to index the constant column added

to M above (ie Mi,0 = µ0).

3.2.6 A decomposition of genetic distance

Up to now we have made no assumptions about how genotypes are coded. However, if

we assume that genotypes are coded with 0 representing the ancestral allele at each site

then (3.16) has a particularly nice interpretation. In the case of this encoding, 1
S∥gi∥

2 is

the squared genetic distance of individual i’s genotype to the ancestral genotype (0). Thus

Equation (3.16) provides a decomposition of individual i’s (squared) genetic distance from

the ancestor into a sum of components that are shared with others in the sample, plus a

residual component ei that is specific to individual i. (Although, as far as we are aware,

there is no mathematical guarantee that ei is non-negative, in practical applications we have

looked at this is always the case.)

3.2.7 Contrast with Tree-and-migrations-based estimation of genetic drifts

One widely studied approach to relaxing the tree assumption is to explicitly model migration

events by adding migration edges on top of a tree structure. Examples of such methods

include TreeMix [Pickrell and Pritchard, 2012], ADMIXTOOLS [Patterson et al., 2012], and

MixMapper [Lipson et al., 2013]. These methods take individuals’ genotypes and pre-defined
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population labels as input and model the allele frequencies of these populations using a tree-

like structure with additional migration events.

This contrasts with STRUCTURE-type methods, which require only individual geno-

types and infer their (potentially admixed) population memberships. Since STRUCTURE

addresses admixture through a separate step of inferring population memberships (the op-

timal number of ancestral populations being a well-studied problem), the DRIFT approach

doesn’t necessarily benefit from the tree-and-migration type relaxation of the treeness as-

sumption in the genetic drift estimation step.

In other words, when the true underlying population history involves an approximate

tree structure with gene flow between populations, the tree-and-migration-type methods are

not well-suited to represent these scenarios, as we demonstrate in our simulation studies.

3.3 Verification and comparison

3.3.1 Four populations out of Africa simulation using stdpopsim

We use simulation studies to compare our Treelax method with the tree estimation method

and the TreeMix method [Pickrell and Pritchard, 2012]. These methods are compared in the

setting where they are used jointly with the ADMIXTURE method [Alexander et al., 2009]

in the DRIFT framework.

For the simulation setting, we follow the four populations out of Africa demographic

model [Jouganous et al., 2017], implemented as a part of the stdpopsim [Adrion et al., 2020,

Lauterbur et al., 2023] catalog3. In this model, there are four populations: YRI (Yoruba),

CEU (Utah Residents with Northern and Western European Ancestry), CHB (Han Chinese

in Beijing, China), and JPT (Japanese in Tokyo, Japan). The Out-of-Africa (OOA) event is

modeled at 119 thousand years ago (kya), the CEU-CHB split at 46 kya, and the CHB-JPT

3. https://popsim-consortium.github.io/stdpopsim-docs/stable/catalog.html.
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split at 9 kya. The model is illustrated in Figure 3.3, which is obtained from the stdpopsim

catalog.

Figure 3.3: An illustration of the ‘four populations out of Africa’ model [Jouganous et al.,
2017], obtained from the stdpopsim catalog.

After the Out-of-Africa event, there is a continuous migration between YRI and OOA

with the migration rate 16.8e-5 (fraction per generation), which lasts for 73 thousand years.

After the CEU-CHB split, the YRI-CEU migration rate falls to 1.14e-5 and the YRI-CHB

migration rate to 0.56e-5; the CEU-CHB migration rate is set as 4.75e-5. Lastly, after

the CHB-JPT split, the CHB-JPT migration rate is set as 3.3e-5. Note that within this

demographic model, JPT interacts only with CHB after formation, not CEU or YRI.

Our sample consists of 400 individuals: 100 each from YRI, CEU, CHB, and JPT popu-

lations. All individuals are sampled at time = 0. For this sample, we simulate chromosome

1 (248,956,422 bps per GRCh38) with recombination rate 1.15e-8. The mutation rate is

1.44e-8 per base per generation where a generation is taken to be 29 years.

The simulated data set contains 2,792,638 variants. We use plink2.0 [Chang et al., 2015]
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to filter genetic variants to be biallelic, at least 2 kilobases (kb) apart, and with a minor

allele frequency (MAF) greater than or equal to 0.01. The filtered dataset contains 108,963

SNPs.

3.3.2 Simulation results

STRUCTURE bar plot We first run ADMIXTURE [Alexander et al., 2009] on the fil-

tered dataset, specifying four ancestral populations (K = 4). The estimated population

membership of individuals is shown as a STRUCTURE bar plot in Figure 3.4. The ADMIX-

TURE successfully recovers the population membership of the individuals: four estimated

latent populations P1, P2, P3, and P4 almost exactly correspond to the true populations

YRI, CEU, CHB, and JPT. There are some individuals from CHB (or JPT) that also have a

partial membership in the JPT-majority latent population P4 (or the CHB-majority latent

population P3), reflecting the relatively small genetic difference between the two populations.

Figure 3.4: (a) STRUCTURE bar plot and (b) estimated tree in simulation.

Tree From the population allele frequencies (the P matrix obtained from the ADMIX-

TURE step), we estimate the tree structure. We first use the TreeMix method with no

migration edges to estimate a tree. To root the tree, we use an outgroup population – a

population assumed to have no derived alleles. Then, we adjust the branch lengths to make

the distance approximation tight by minimizing (3.6) with penalty parameter λ = 0.
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The topology of the estimated tree (Figure 3.4b) correctly reflects the order of found-

ing events in the simulations. Further, the lengths of the inferred tree branches (which

correspond to sizes of drift components) are consistent the effective population sizes in the

simulations: for example, the drift component D1 experienced by YRI is much smaller than

the ‘Out-of-Africa’ drift, D2, as expected from the simulation setting in which the YRI

population size (23,721) is substantially larger than the OOA population size (2,831).

Tree as genetic distance decomposition The six drifts, estimated from the tree method,

can be interpreted as six additive explained genetic distances. Each drift divides the pop-

ulations into two groups: one with the drift and the other without the drift. And the drift

size squared is the induced distance between the two groups. These explained distances are

additive in the sense that the total explained distance between two populations is the sum

of the explained distances between the two population for all drifts. Figure 3.5 illustrates

the decomposition of the genetic distance, based on the tree-based drifts. For example, the

distance between P1 and P2, 0.032660 is decomposed as 0.002004 (D1) + 0.023083 (D2) +

0.007573 (D3) = 0.032660 in the estimated tree.

Figure 3.5: Genetic distance, its decomposition, and residual by tree method, in simulation.

Treeness violations: Residual distances Since a tree can be interpreted as providing

a decomposition of genetic distance, the residual distances, left unexplained by the tree, can
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be interpreted as the treeness violation of the given genetic distance. In Figure 3.5, we can

see that P1-P3 and P2-P4 distances are under-predicted (i.e., predicted to be closer than

is observed), in the estimated tree, whereas P1-P4 and P2-P3 distances are over-predicted

(i.e., predicted to be farther than is observed).

This observed pattern is consistent with the pattern of continuous gene flow under the

simulation setting. After the CHB-JPT split (now the four populations are formed), CHB-

CEU migration rate is 4.75e-5 and CHB-YRI migration rate is 0.56e-5 whereas JPT do

not have any migration with CEU or YRI. As a result, CHB is closer to CEU than what

is expected in a tree structure without any migration and, to a much lesser extent, closer

to YRI. To accommodate this treeness deviation, the size of drift D4, corresponding to

the P1/P2 vs P3/P4(YRI/CEU vs CHB/JPT) divergence, is adjusted to be shorter; the

size of drifts D1 and D2, corresponding to the P1 vs P2/P3/P4 (YRI vs CEU/CHB/JPT)

divergence, is adjusted to be longer and the size of drift D3, corresponding to the P2 vs

P1/P3/P4 (CEU vs YRI/CHB/JPT) divergence, shorter; the size of drift D5, corresponding

to the P3 vs P1/P2/P4 (CHB vs YRI/CEU/JPT) divergence, is adjusted to be shorter

and the size of drift D6, corresponding to the P4 vs P1/P2/P3 (JPT vs YRI/CEU/CHB)

divergence, longer. These adjustments result in the residual pattern observed in Figure 3.5.

Further detailed explanation of these adjustments is provided in Appendix 3.6.

Treelax The Treelax method relaxes the strict assumption that the data follows a perfect

tree-like structure. It achieves this by allowing for deviations from this structure, adjusting

the level of deviation adaptively using cross validation.

Table 3.1 reports the populations’ drift memberships estimated from the tree method and

the Treelax method. The differences due to the tree relaxation is also reported. Population

P2’s D2 membership increased by 0.2% and P3’s D2 membership decreased by 0.4%; P3

added a 0.6% of D3 membership; P4’s D4 membership increased by 0.4%.

For P3, its increased D2 membership increases the fitted P1-P3 and P2-P3 distances,
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Table 3.1: Populations’ drift memberships in (A) tree method and (B) Treelax method, and
(C) membership differences in the two methods, in simulation.

(A) Tree
D1 D2 D3 D4 D5 D6

P1 0.044764 0 0 0 0 0
P2 0 0.151930 0.087024 0 0 0
P3 0 0.151930 0 0.108301 0.021402 0
P4 0 0.151930 0 0.108301 0 0.036104

(B) Treelax
D1 D2 D3 D4 D5 D6

P1 0.044764 0 0 0 0 0
P2 0 0.151930 0.087024 0 0 0
P3 0 0.152228 0.000504 0.108301 0.021402 0
P4 0 0.151354 0 0.108688 0 0.036104

(C) Difference (Treelax - Tree)
D1 D2 D3 D4 D5 D6

P1 0 0 0 0 0 0
P2 0 0 0 0 0 0
P3 0 0.000298 0.000504 0 0 0
P4 0 -0.000576 0 0.000387 0 0

and its nonzero D3 membership increases the fitted P1-P3 distance and decreases the fitted

P2-P3 distance. With these two effects combined, the P1-P3 distance becomes much less

under-predicted (from 0.000095 to 0.000005) and the P2-P3 distance becomes much less

over-predicted (from −0.000096 to −0.000008).

Similarly, for P4, its decreased D2 membership decreases the fitted P1-P4 distance and

increases the fitted P2-P4 distance, and its increased D4 membership increases the fitted

P1-P4 and P2-P4 distances. With these two effects combined, the P1-P4 distance becomes

much less over-predicted (from −0.000095 to −0.000005) and the P2-P4 distance becomes

much less under-predicted (from 0.000096 to 0.000011).

The Treelax-based decomposition of the genetic distances and the residual distances are

shown in Figure 3.6. The Frobenius norm of the residual distance matrix decreased 92%,

from 0.000270 to 0.000022.
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Figure 3.6: Genetic distance, its decomposition, and residual by Treelax method, in simula-
tion.

TreeMix The TreeMix results with zero, one, and two migration events are given in Figure

3.7. The estimated tree is almost identical to the one previously shown in Figure 3.4. (The

“drift parameter” in the TreeMix graph corresponds to the squared value of our drift size sj ,

making the drift sizes appear more extreme.)

Figure 3.7: TreeMix results with (a) no migration (tree), (b) one migration, and (c) two
migrations, in simulation.

When estimating one migration, the TreeMix identifies a migration event from a pop-

ulation between the P2/P3/P4-common ancestor and the population P2 to the population

P3. This migration is capturing the most noticeable feature of the treeness violation that

the P2-P3 distance is closer than expected from a tree structure.

When we allow TreeMix to estimate two migration edges, it adds a second migration
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edge from P3 to the outgroup. This seems not to be easily interpretable in terms of the

simulation truth.

DRIFT bar plots We visualize populations’ drift memberships and individuals’ drift

memberships as stacked bar plots in Figure 3.8. The upper panel shows the result for tree-

based estimation and the lower panel for Treelax-based estimation; the two are visually

almost identical, reflecting the fact that in this simulation Treelax results in only very small

changes in L (changes ranged from 0.2% to 0.6%).

Figure 3.8: (a) Tree-based and (b) Treelax-based DRIFT bar plots in simulation.

In the population DRIFT bar plots (left plots of Figure 3.8), each population’s drift

memberships are stacked along the y-axis and populations are positioned along the x-axis.
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In the individual DRIFT bar plots (center plots of Figure 3.8), each individual’s drift mem-

berships are stacked along the y-axis and individuals are positioned along the x-axis. Since

all YRI (or CEU) individuals have memberships only in the latent population P1 (or P2),

their stacked drift memberships are almost identical to the stacked drift memberships of P1

(or P2). In contrast, there are some CHB and JPT individuals who have admixed population

memberships in P3 and P4, who thus have admixed drift memberships in D5 and D6.

To gain insight into the amount of genetic variation that is explained by the drift com-

ponents, we show stacked bar plots that include both the shared drift component and the

individual-specific residual components (rightmost plots of Figure 3.8). The drift compo-

nent ‘D0’ is the shared component of genetic drift, , and the drift components ‘DX’ are

the individual-specific drift components, or residuals (ei’s), that are left unexplained by

the model. In these plots we use the squared drift memberships ({4M2
i,j}

J
j=0) for the bar

heights, so that the total height of individual i’s stacked bars is 1
S∥gi∥

2 (by (3.16)). Further,

we coded genotypes with 0 representing the ancestral allele, so that 1
S∥gi∥

2 is the squared

genetic distance of individual i’s genotype to the ancestral genotype (0).

More than half of individuals’ genetic variations are shared across all individuals in the

sample, through the common drift D0. Of the remaining genetic variations, less than half is

explained by the drift-based shared genetic variations (D1 through D6); individuals’ unique-

ness (DX) plays a greater role.

The total bar heights for each individual (which are 1
S∥gi∥

2) are similar within each

population but differ somewhat across populations. Two main reasons are squared L2 norm

measurement and SNP filtering. Based on the fact that individuals are the same distance

from the common ancestor, we expect each individual to hold roughly same number of derived

alleles. However, the squared L2 norm measurement of genetic variation assigns a higher

number to individuals whose genotype has more 2s, than individuals whose genotype has

fewer 2s and more 1s. For example, an individual with genotype (2,0,1) at three SNPs has
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squared L2 norm 5, whereas another individual with genotype (1,1,1) has squared L2 norm 3,

while they both have three derived alleles. Our simulation shows YRI experiencing the least

genetic drift, resulting in the greatest genetic diversity. Consequently, two chromosomes in

YRI are less likely to share a derived allele compared to CEU, CHB, or JPT. Therefore,

YRI individuals are expected to have more 1 derived alleles and less 2 derived alleles, hence

smaller L2 norm measurement of genetic variation.

The second reason is filtering SNP with minor allele frequency thresholding. Since YRI

is more genetically diverse than the other populations, YRI’s minor allele frequencies are

expected to be concentrated on smaller values, which are more likely to be filtered out. Also,

YRI sample size (100) is small compared to the OOA sample size (300). Therefore, the

filtering can understate YRI’s genetic variability.

3.4 Applications

3.4.1 Homo Sapiens: The 1000 Genomes Project data

Data The 1000 Genomes Project [The 1000 Genomes Project Consortium, 2010, 2015] is a

global collaboration aimed at creating a comprehensive public catalog of human genetic vari-

ation across populations, which plays a foundational role in studying the genotype-phenotype

relationship. The Project’s data includes 2,504 individuals sampled from 26 populations, rep-

resenting five super populations: Africa, Europe, South Asia, East Asia, and the Americas4.

Each individual was sequenced using low-coverage whole-genome sequencing, deep exome

sequencing, and dense microarray genotyping. In total, the Consortium reported over 88

million genetic variants, including 84.7 million single nucleotide polymorphisms (SNPs).

Genetic variants are not distributed randomly among individuals and populations. For

4. The super population and population definitions are provided by The 1000 Genomes Project. The
purpose of this work is to study and interpret patterns of population structure, and as such, descriptors
based on ethnicity and geography are used.
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example, the Consortium found that “rarer variants are typically restricted to closely related

populations” whereas “most common variants are shared across the world”. Even the common

variants, though shared across the world, can exhibit varying frequencies across populations.

To illustrate the pattern of genetic variant sharing across individuals, the Consortium es-

timated population structure based on data after filtering out variants with a minor allele

frequency of less than 0.05. The result is reported as a STRUCTURE bar plot, as shown in

Figure 3.1a. The estimated population structure, using only common variants, successfully

reveals genetic similarities across individuals and populations.

To focus on the methods for genetic drift estimation, we make use of the post-filtering

dataset, which includes 193,634 SNPs and 2,504 individuals, and the ADMIXTURE [Alexan-

der et al., 2009] outputs, provided by the Consortium. We analyze the 185, 116 SNPs after

dropping the SNPs without the ancestral allele information in the data5. Using the ancestral

allele, we change the coding of the genotype matrix so that the allele counts are coded as

the count of derived alleles.

Results The STRUCTURE bar plot with eight latent populations in The 1000 Genomes

Project Consortium [2015] is replicated in Figure 3.9a.6 The African populations have high

memberships in the populations P1 and P2, the European populations in P3 and P4, the

South Asian populations in P5, the East Asian populations in P6 and P7, and the American

populations in P1, P3, and P8.

Figure 3.9b shows the estimated tree structure of the eight latent populations based on

their population allele frequencies. We used an ancestral population with ancestral alleles as

5. The ancestral allele entry in the data is derived from the EPO alignments, which infer ancestral alleles
using human, chimp, orangutan, rhesus macaque sequences. For a more comprehensive discussion of ancestral
allele inference, refer to Section 8.3 of the supplementary materials in The 1000 Genomes Project Consortium
[2015].

6. For a comprehensive overview, Figure 3.9 replicates previous results: (a) STRUCTURE bar plot (identi-
cal to Figure 3.1a), (b) tree-based genetic drift estimation (identical to Figure 3.1b), (c) tree-based individual
DRIFT bar plot (identical to Figure 3.1c).
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Figure 3.9: Analysis of the 1000 Genomes Project Data. (a) STRUCTURE bar plot, (b)
tree-based genetic drift estimation, and (c) tree-based and (d) Treelax-based DRIFT bar
plots.

the outgroup to find the root of the tree. Each branch has a label that corresponds to the

drift factor. The majorly African populations P1 and P2 have the smallest drift from the root

of the tree; majorly South Asian population P5, the majorly European populations P3 and

P4, the majorly East Asian populations P6 and P7, and the majorly American population
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P8 have increasingly larger drift sizes. This increasing drift size pattern is consistent with

the pattern reported in Li et al. [2008] and Pickrell and Pritchard [2012] who analyzed inde-

pendent data of 938 individuals from 51 populations (Human Genome Diversity Panel). The

larger drift in non-African populations is evidence of the bottleneck effect that these pop-

ulations went through, which reduced the genetic diversity within non-African populations

(more shared genetic components which are identified as a greater drift size). The effective

population size inferred using PSMC, reported in the original publication of the data [The

1000 Genomes Project Consortium, 2015] confirms the bottleneck effect hypothesis.

Figure 3.9c illustrates populations’ and individuals’ drift memberships, based on the

tree-based method. In the leftmost plot, the population DRIFT bar plot, populations are

aligned along the x-axis and their drift memberships are stacked along the y-axis. The drift

memberships are color-coded and labeled. In the middle plot, the individual DRIFT bar

plot, individuals are aligned along the x-axis and their drift memberships, computed by

taking weighted averages of populations’ drift memberships, are stacked along the y-axis.

A key feature of the DRIFT representation is that it provides a detailed multi-resolution

representation of population structure, which highlights the shared evolutionary history of

the human genome. For example, the pan-African drift factor D1 is shared across all the

African individuals and the ‘out-of-Africa’ drift factor D2 across all the non-African indi-

viduals. Furthermore, individuals in Southern Europe (TSI and IBS) and the Americas are

estimated to have partial memberships in the pan-African drift D1 (via their P1 member-

ship), and individuals in African American populations (ACB, ASW) are estimated to have

partial memberships in the Out-of-Africa drift D2 (via their P3 membership). This scope of

shared components is much greater than the scope of population-based genetic sharing in the

STRUCTURE representation, which is typically restricted to a subset of super populations.

At a finer level, there are population-specific factors, such as the ‘South Asian’ drift factor

D9, which is specific to the latent population P5, and thus almost exclusively found in South

91



Asian individuals.

In the rightmost plot in Figure 3.9c, the squared individual DRIFT bar plot, individuals

are aligned along the x-axis and their squared drift memberships are stacked along the y-

axis. Similar to the results reported in the simulation, more than half of the total genetic

variation is explained by the common genetic drift D0 and more than half of the remaining

genetic variation is attributable to individual-specific residuals (DX).

Alternatively, we can relax the treeness assumption to obtain a better fit. Treelax-based

populations’ drift memberships and DRIFT bar plots are provided in Table 3.2 and Figure

3.9d.

Table 3.2: Populations’ drift memberships in (A) tree method and (B) Treelax method, and
(C) membership differences in the two methods, in the 1000 Genomes Project data analysis.

(A) Tree
D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14

P1 0.0495 0 0.0488 0 0 0 0 0 0 0 0 0 0 0
P2 0.0495 0 0 0.0518 0 0 0 0 0 0 0 0 0 0
P3 0 0.1981 0 0 0.0956 0 0.0535 0 0 0 0 0 0 0
P4 0 0.1981 0 0 0.0956 0 0 0.0547 0 0 0 0 0 0
P5 0 0.1981 0 0 0 0.0387 0 0 0.0624 0 0 0 0 0
P6 0 0.1981 0 0 0 0.0387 0 0 0 0.0998 0.0919 0 0 0.0566
P7 0 0.1981 0 0 0 0.0387 0 0 0 0.0998 0.0919 0 0.0524 0
P8 0 0.1981 0 0 0 0.0387 0 0 0 0.0998 0 0.1437 0 0

(B) Treelax
D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14

P1 0.0495 0.0007 0.0488 0 0.0011 0 0 0 0 0 0 0 0 0
P2 0.0495 0.0007 0 0.0518 0 0 0 0 0 0.0003 0.0007 0 0 0
P3 0 0.1914 0 0 0.1018 0 0.0535 0.0021 0.0095 0 0 0.0035 0 0
P4 0 0.2031 0 0 0.0956 0 0.0008 0.0547 0 0.0039 0 0.0090 0.0008 0
P5 0 0.2010 0 0 0.0056 0.0387 0.0087 0 0.0625 0 0.0129 0 0 0.0008
P6 0 0.1918 0 0 0 0.0406 0 0 0.0004 0.1013 0.0962 0 0 0.0566
P7 0 0.1936 0 0 0 0.0387 0 0.0007 0 0.1064 0.0919 0.0041 0.0524 0.0006
P8 0 0.1981 0 0 0.0115 0.0387 0 0 0 0.1069 0 0.1437 0 0

(C) Difference (Treelax - Tree)
D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14

P1 0 0.0007 0 0 0.0011 0 0 0 0 0 0 0 0 0
P2 0 0.0007 0 0 0 0 0 0 0 0.0003 0.0007 0 0 0
P3 0 -0.0068 0 0 0.0062 0 0 0.0021 0.0095 0 0 0.0035 0 0
P4 0 0.0050 0 0 0 0 0.0008 0 0 0.0039 0 0.0090 0.0008 0
P5 0 0.0028 0 0 0.0056 0 0.0087 0 0.0001 0 0.0129 0 0 0.0008
P6 0 -0.0064 0 0 0 0.0019 0 0 0.0004 0.0015 0.0043 0 0 0
P7 0 -0.0046 0 0 0 0 0 0.0007 0 0.0066 0 0.0041 0 0.0006
P8 0 0 0 0 0.0115 0 0 0 0 0.0071 0 0 0 0

The five largest differences in the Treelax-based versus tree-based populations’ drift mem-
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berships are:

• P5’s D11 membership (+0.0129; South Asian-East Asian gene flow),

• P8’s D5 membership (+0.0115; American-European gene flow),

• P3’s D9 membership (+0.0095; Southern/Central European-South Asian gene flow),

• P4’s D12 membership (+0.0090; Northern European-American gene flow),

• P5’s D7 membership (+0.0087; South Asian-Southern/Central European gene flow).

These gene flows can be explained by geographical closeness (South Asian-East Asian pop-

ulations) or historical connections (American-European populations and Southern/Central

European-South Asian populations).

The gene flow between Northern Europeans and Americans is particularly notable. La-

tent population P4, genetically closest to the Finnish population, exhibits membership in the

American-specific drift component (D12). This finding implies a historical gene flow, consis-

tent with previous studies highlighting the genetic similarities between Northern Eurasians

and Americans [Zerjal et al., 1997, Huyghe et al., 2011, Lamnidis et al., 2018].

The Frobenius norm of the populations’ residual distance matrix decreased by 99.4%,

from 0.011286 to 0.000065. This substantial reduction suggests a much better fit of the

Treelax model to the data compared to the tree-based approach (although we do not have a

formal approach to assessing this).

Treelax-based populations’ drift memberships are visualized as the population DRIFT

bar plot in the left plot of Figure 3.9d. Treelax-based individual DRIFT bar plot, shown

in the middle plot of Figure 3.9d, illustrates the effect of relaxing the treeness assumption

at individual level. The corresponding squared individual DRIFT bar plot is shown in the

right plot of Figure 3.9d.
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3.5 Discussion

3.5.1 Benefits of a modular approach

We adopted a three-step modular approach to obtain a DRIFT representation, which involves

combining a STRUCTURE-type method with a genetic drift estimation method, instead of

directly estimating a DRIFT representation. This modularity offers the following three

benefits.

Firstly, it provides flexibility, allowing users to combine any existing methods to obtain

a drift-based representation. For instance, users can use a STRUCTURE-type method de-

signed for large-scale studies (such as SCOPE [Chiu et al., 2022]) to achieve scalability. (The

genetic drift estimation step tends to be computationally cheaper than the STRUCTURE

step since the population allele frequency matrix has only K columns, which is much smaller

than the number of individuals in the sample.)

Secondly, there is a reduction in the complexity of individuals’ drift memberships. Indi-

viduals are limited to certain combinations of drift memberships, resulting in a rank-deficient

M matrix (of individuals’ drift memberships) since the number of populations is smaller than

the number of drifts.

Lastly, this approach offers modeling advantages. The STRUCTURE step effectively

denoises the data by soft-clustering individuals, thereby facilitating accurate estimation of

genetic drifts. Additionally, it could be easier to model the population allele frequency

matrix (with entries ranging from 0 to 1) rather than the genotype matrix (with entries

taking discrete values of 0, 1, or 2).

3.5.2 Role of ancestral alleles and outgroup

Ancestral allele information serves two key purposes in our analysis: (i) it allows us to

establish an outgroup for rooting the evolutionary tree, and (ii) it enables the decomposition
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of individuals’ total genetic variation by comparing them to the ancestral state. In cases

where ancestral allele information is unavailable or its utilization results in the exclusion of

a significant portion of the data, alternative approaches may be employed.

Even in instances where ancestral allele information and outgroup data are unavailable,

the DRIFT method remains applicable. However, this method loses information regarding

the directionality of genetic drift events, and it precludes the construction of squared indi-

vidual DRIFT bar plots. Instead, this alternative approach involves estimating an unrooted

tree structure using a tree estimation technique. Subsequently, the determination of the root

location becomes necessary through external information or an ad-hoc approach.

For instance, in Figure 3.1b, estimating an unrooted tree would combine drift factors D1

and D2 (representing the genetic divergence between African and non-African populations)

into a single long branch. This necessitates subsequently determining the root location,

which represents the point of divergence. While this approach loses information about the

precise direction of divergence, it may suffice for analyses aimed at understanding the overall

genetic similarity within the studied samples.

With outgroup information, we can estimate a rooted tree, revealing the directionality of

evolutionary changes. However, the absence of ancestral allele information prevents us from

quantifying the extent to which each individual’s genetic makeup diverges from the ancestral

state. This deficiency arises because we are unable to distinguish between ancestral and

derived alleles, a prerequisite for decomposing individuals’ total genetic variation from the

ancestral state.
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3.6 Appendix: Branch length adjustments for treeness violations

3.6.1 Problem setup

Suppose there are four populations P1, P2, P3, and P4, structured as in the Figure 3.4 panel

b. Considering an unrooted tree, the combined size of drifts D1 and D2 is identifiable, but

not the separate size of D1 and D2; therefore, we combine the branches and call it D1/2.

We add a simplifying assumption that the sum of the sizes of D1/2 and D3 is fixed to the

observed distance between P1 and P2, and that the sum of the sizes of D5 and D6 is fixed

to the observed distance between P3 and P4. Note that this simplifying assumption is not

enforced in the tree estimation process that produced the estimate illustrated in Figure 3.4,

but is consistent with the estimated result illustrated in Figure 3.5.

The problem is to minimize the Frobenius norm of the residual distance matrix R ∈ R2×2

where its four entries are the pairwise distances between [P1,P2] × [P3, P4]:

R =

d(P1, P3) d(P1, P4)

d(P2, P3) d(P2, P4)


Note that the problem of minimizing the Frobenius norm of the full 4 × 4 residual matrix

can be reduced to the above problem because i) the diagonal entries are zero, ii) the matrix

is symmetric, and iii) d(P1, P2) = 0 and d(P3, P4) = 0 due to the simplifying assumption.

To reflect the simulation setting in which P3 has a migration with P2 and with P1 to a

lesser degree, we set the initial value of the residual distance matrix as

R(0) =

 −20 0

−100 0


meaning that the P1-P3 distance is overestimated by 20 and the P2-P3 distance by 100.
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3.6.2 Allowed operations

We define three operations that can be used to solve the residual minimization problem. The

first operation O1 is to shorten the size of D4 by α so that all the residuals increase by α.

R→ R+

+α +α

+α +α


The second operations O2 is to shorten the size of D1/2 and lengthen the size of D3 by β

R→ R+

+β +β

−β −β


and the third operations O3 is to shorten the size of D5 and lengthen the size of D6 by γ

R→ R+

+γ −γ

+γ −γ


3.6.3 Solution

We can obtain the closed-form solution by considering optimal operations sequentially. First,

the optimal O1 operation is to set α∗ = +30. In a general case, the solution to the problem

minα
∑n

i=1(xi+α)2 can be obtained using its first order condition:
∑n

i=1(xi+α∗) = 0, which

ensures that the post-shifting mean ( 1n
∑n

i=1(xi + α∗)) is zero. Combine this observation

with the property of O2 and O3 that they do not change the sum of four distances, we get

the optimal O1 operation as α∗ = −1
4(−20−100+0+0) = +30. Let’s call the mean-shifted

residual distance matrix as

R(1) =

+10 +30

−70 +30

 .
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Next, we consider applying operations O2 and O3 to R(1). We can use the property of

O2 and O3 that d(P1, P3) + d(P2, P4) and d(P2, P3) + d(P1, P4) are invariant to these

operations. Again, this problem can be readily solved by considering a general case: the

solution to the problem minx x
2 + (C − x)2 is obtained as x = C/2, which makes x =

C−x = C/2. Applying this idea to our problem, we have d(P1, P3) = d(P2, P4) = +20 and

d(P2, P3) = d(P1, P4) = −20, which can be obtained by setting β∗ = −20 and γ∗ = +30

for operations O2 and O3.

To summarize, our solution to the problem is

R∗ =

+20 −20

−20 +20

 ,

which is consistent with the pattern observed in the residual distance matrix in Figure 3.5.

This solution can be obtained by setting α∗ = +30 (shortening the size of D4), β∗ = −20

(lengthen D1/2 and shorten D3), and γ∗ = +30 (shorten D5 and lengthen D6).
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