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We consider theories with fermionic degrees of freedom that have a fixed point of Wilson–Fisher type in
noninteger dimension d ¼ 4 − 2ϵ. Due to the presence of evanescent operators, i.e., operators that vanish in
integer dimensions, these theories contain families of infinitely many operators that can mix with each other
under renormalization. We clarify the dependence of the corresponding anomalous-dimension matrix on
the choice of renormalization scheme beyond leading order in ϵ-expansion. In standard choices of scheme,
we find that eigenvalues at the fixed point cannot be extracted from a finite-dimensional block. We illustrate
in examples a truncation approach to compute the eigenvalues. These are observable scaling dimensions,
and, indeed, we find that the dependence on the choice of scheme cancels. As an application, we obtain the
IR scaling dimension of four-fermion operators in QED in d ¼ 4 − 2ϵ at order Oðϵ2Þ.
DOI: 10.1103/PhysRevD.97.065007

I. INTRODUCTION

One of the tools to study conformal field theories (CFTs)
is to realize them as the endpoint of a renormalization group
(RG) flow. Starting from a description in terms of a weakly-
coupled UV Lagrangian deformed by a relevant coupling,
the dimension d of space(-time) can be continued close to
the upper-critical value dc, in which the IR and the free UV
fixed points coalesce. When d ¼ dc − 2ϵ with ϵ ≪ 1, the
observables of the IR CFT admit a systematic expansion in
the parameter ϵ [1,2]. Eventually, an extrapolation to ϵ of
Oð1Þ is attempted in order to estimate observables of the
original strongly-coupled CFT [3].
A known property of the dimensional continuation is that

the spectrum of operators is enlarged, i.e., in d ¼ dc − 2ϵ
there exist so-called evanescent operators that become
redundant when ϵ → 0. These operators are more than a
mere curiosity: as a consequence of their existence, the
fixed points in noninteger d have qualitatively new features
compared to the standard, integer-dimensional CFTs that
they continue. For instance, it was shown in Refs. [9,10]
that in theories of free bosons and ϕ4-theories evanescent

operators lead to negative-norm states in radial quantiza-
tion, implying that the fixed point in noninteger dimension
is not unitary. These negative norm states have large scaling
dimensions, so in the example considered in Refs. [9,10]
the evanescent operators do not affect the properties of the
light spectrum.
The departure from standard CFTs is even more pro-

nounced in theories with fermionic degrees of freedom, due
to the fact that theories with free fermions in noninteger
dimension contain infinitely many evanescent operators
with the same scaling dimension and spin. One way to
construct them is by antisymmetrizing n gamma matrices,
where n runs over the positive integers, such that they
vanish in integer d < n. The simplest example is that of the
scalar four-fermion operators

On ¼ ðΨ̄Γn
μ1…μnΨÞ2; with Γn

μ1…μn ≡ γ½μ1…γμn�; ð1Þ

where the square brackets denote antisymmetrization.
When interactions are turned on, all these operators can
mix with each other. These mixings result in an anomalous-
dimension matrix (ADM) of infinite size, which makes the
computation of the eigenvalues a considerably more
involved problem than in the bosonic case.
At leading order (LO), there is a drastic simplification,

because the operators that are not evanescent—the so-
called physical operators [11]—form a finite-dimensional
invariant subspace under mixing, i.e., the evanescent–
physical entries of the LO ADM vanish. Therefore, the
IR scaling dimensions of the physical operators at LO in ϵ

*ldipietro@perimeterinstitute.ca
†estamou@uchicago.edu

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 97, 065007 (2018)

2470-0010=2018=97(6)=065007(19) 065007-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.97.065007&domain=pdf&date_stamp=2018-03-12
https://doi.org/10.1103/PhysRevD.97.065007
https://doi.org/10.1103/PhysRevD.97.065007
https://doi.org/10.1103/PhysRevD.97.065007
https://doi.org/10.1103/PhysRevD.97.065007
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


can be obtained by diagonalizing a finite-size matrix. At
next-to-leading order (NLO) and beyond, the ADM is
scheme-dependent. In the context of d ¼ 4 computations
within dimensional regularization, Refs. [12,13] introduced
a scheme choice with the attractive property that the block
form of the LO ADM is preserved at all orders. The same
scheme was proposed in Refs. [14,15] in the context of
d ¼ 2 Gross–Neveu/Thirring models, though formulated in
a different language.
In this paper we investigate the problem of obtaining the

IR scaling dimension of physical operators beyond LO in ϵ.
These correspond to eigenvalues of the ADM evaluated at
the fixed point of the theory and they are observables of the
4 − 2ϵ dimensional theory. They must thus be independent
of the renormalization scheme and of the operator basis in
which the ADM is written. Naively, the scheme choice of
Refs. [12–15] seems to trivialize the computation, because
the eigenvalue problem appears to be reduced to the finite-
dimensional invariant subspace spanned by physical oper-
ators. However, this leads to an apparent paradox, because
both the individual entries as well as the eigenvalues of the
finite-size block of the ADM do not transform properly
under a change of basis. For instance, they depend on
arbitrary redefinitions of the evanescent operators by a
multiple of ϵ× the physical operators [16], i.e.,

E → E0 ≡ E þ ϵaiQi;

where Eð0Þ denotes evanescent operators, Qi physical
operators, and ai are arbitrary coefficients. The fact that
the eigenvalues of the finite-dimensional invariant subspace
spanned by physical operators explicitly depend on the ai’s,
can be interpreted as a sign of renormalization-scheme
dependence. We will show that employing the scheme of
Refs. [12–15] and considering only the finite-size invariant
block is indeed not sufficient to obtain the scaling dimen-
sions in the 4 − 2ϵ dimensional theory.
This issue does not invalidate the application of the

scheme [12–15] to the original problem for which it was
devised. In the original applications, in which ϵ is set to
zero at the end of the calculation, the scheme dependence of
the physical ADM is in fact not an obstacle to obtain
scheme-independent observables [16]. More precisely, the
scheme dependence of the ADM cancels with the scheme
dependence of the couplings of the operators, and it is
always sufficient to consider only a finite number of
evanescent operators at each order in perturbation theory.
In the present setup, instead, this scheme dependence
implies that we cannot obtain the scaling dimensions solely
from the finite-size physical block of the ADM, suggesting
that the block structure is spoiled when ϵ ≠ 0.
In the present work, we resolve this issue by studying the

transformation rules of the ADM under a change of
scheme, keeping ϵ ≠ 0. The general transformation rule
turns out to depend on ϵ. We demonstrate how this ϵ

dependence is important to ensure that the eigenvalues at
the fixed point are invariant under a change of scheme. In
particular, we show that going from the minimal subtrac-
tion (MS) scheme to the scheme used for evanescent
operators in Ref. [12–15] introduces terms of order ϵ in
the one-loop ADM, [17] namely

γðα; ϵÞ ¼ αðγð1;0Þ þ ϵγð1;−1ÞÞ þ α2γð2;0Þ þ � � � ; ð2Þ

where α denotes the coupling constant. The nonminimal
choice of scheme [12–15] ensures that the matrices γð1;0Þ

and γð2;0Þ have an invariant finite-dimensional block
spanned by the physical operators, but it also introduces
the additional term γð1;−1Þ, which does not have this block
structure.
At the fixed point, in which we set α ¼ α� ∼ ϵ, the

additional term γð1;−1Þ spoils the block structure of the
ADM at Oðϵ2Þ. Therefore, the finite-size physical block of
the two-loop ADM γð2;0Þ is not sufficient by itself to extract
the scaling dimensions at NLO. The additional input
required is the matrix γð1;−1Þ, which in turn is determined
by the full one-loop mixing of the infinite tower of
evanescent operators into the physical operators. Once this
is known, one can finally compute the finitely many
eigenvalues associated to the physical operators. This
requires a rotation or, equivalently, a further change of
scheme that completely fixes the aforementioned ambiguity
in the choice of basis for the evanescent operators. We
illustrate the procedure by carrying it out explicitly in the
example of four-fermion operators in QED in d ¼ 4 − 2ϵ.
After computing all the relevant entries of the ADM up to
order ϵ2, we approximate the first two eigenvalues by
truncating to a finite number of evanescent operators. We
test that the approximations converge as we increase the
truncation and demonstrate that the scaling dimensions
indeed do not depend on arbitrary redefinitions of the
operators.
There are several examples of CFTs with fermionic

degrees of freedom that can be studied in ϵ-expansion and
to which the method we describe here is applicable, see for
instance the recent works [18–30] and references therein. In
our companion paper [31], we focus on 3d QED and use
the NLO eigenvalues obtained here to estimate the scaling
dimensions of four-fermion operators in d ¼ 3.
The rest of the paper is organized as follows: in Sec. II

we review the general setup of the ϵ-expansion, fix our
notation, and relate the CFT scaling dimensions at NLO to
renormalization constants; in Sec. III we discuss the
transformation rules of the beta function and the ADM
under a change of renormalization scheme, first to all
orders in perturbation theory and then more explicitly at the
two-loop order, illustrating the scheme-independence of the
scaling dimensions; in Sec. IV we explain the block
structure of the mixing between evanescent and physical

LORENZO DI PIETRO and EMMANUEL STAMOU PHYS. REV. D 97, 065007 (2018)

065007-2



operators and show that neither in MS nor in the scheme of
Refs. [12–15] does the ADM at the fixed point have an
invariant subspace at NLO; in Sec. V we work out the
example of four-fermion operators in QED and introduce
the truncation algorithm that allows us to compute the
scaling dimensions at the fixed point. Supplementary
material and formulas for the anomalous dimensions
computed in Ref. [31] are collected in the Appendices.

II. FIXED POINTS AND SCALING
DIMENSIONS IN d = 4− 2ϵ

Consider a theory in d ¼ 4 that admits a perturbative
expansion in a classically marginal coupling α. For α ¼ 0
the theory is free; its local operators are products of the
fields and their derivatives, and their correlators are given
by Wick contractions. When the interaction is turned on,
we can compute corrections to the correlators in a pertur-
bative expansion in α. Each order in this expansion can be
continued to a noninteger value of the dimension d [2,32].
Upon continuation to d ≠ 4, the coupling acquires a non-
zero mass dimension. For definiteness we keep in mind the

example of gauge theories, where α ¼ g2

16π2
, and take this

acquired mass dimension to be 4 − d≡ 2ϵ.
Correlators of local operators have poles at ϵ ¼ 0, which

can be subtracted by defining the renormalized coupling
and the renormalized operators as

α0 ¼ ZααðμÞμ2ϵ; ð3Þ

ðO0Þi ¼ ðZ−1ÞijOj: ð4Þ

The subscript “0” labels bare quantities. Zα and ðZ−1Þij are
the renormalization constants that subtract the divergences.
[33] We stress that here we are interested in the dynamics
for ϵ ≠ 0. Therefore, the procedure of absorbing the
divergences in Zα and ðZ−1Þij is just an efficient way to
keep track of the leading behavior of correlators for ϵ ≪ 1.
This observation also appeared recently in Ref. [34], see
also Sec. 1.35 of Ref. [35].
In the perturbative expansion of the renormalization

constants in α, each term admits an additional Laurent
expansion in ϵ, i.e.,

Zαðα; ϵÞ ¼ 1þ
X∞
L¼1

αL
X∞
M¼−L

ϵMZðL;−MÞ
α ; ð5Þ

Zðα; ϵÞ ¼ 1þ
X∞
L¼1

αL
X∞
M¼−L

ϵMZðL;−MÞ: ð6Þ

Different choices of the terms that are finite for ϵ → 0
correspond to different (mass-independent) renormaliza-
tion schemes. A standard choice is the MS scheme, [36] in
which these finite terms are set to zero. When evanescent

operators are present, it is more convenient to use a
different scheme that includes some specific finite terms
ZðL;0Þ We discuss this in detail below. For the moment, we
keep the scheme generic.
From the renormalization constants one obtains the RG

functions, namely the beta function and the ADM. The beta
function determines the running of the coupling α

dα
d log μ

¼ −2ϵαþ βðα; ϵÞ: ð7Þ

A convenient way to define the ADM is to consider the
theory deformed by adding new couplings proportional to
composite operators

L → Lþ ðC0ÞiðO0Þi: ð8Þ

The ADM, γ, is defined as the running of the couplings Ci

to linear order in them, namely

γðα; ϵÞij ≡ ∂
∂Cj

�
dCi

d log μ

�����
C¼0

: ð9Þ

It then follows from Eq. (4) that the renormalized couplings
Ci are related to the bare ones via

ðC0Þj ¼ CiZi
j: ð10Þ

From the fact that bare quantities do not depend on the
renormalization scale μ, we obtain via Eqs. (7) and (9) the
standard formulas

βðα; ϵÞ ¼ −α
d logZα

d log μ
≡ −2α

X∞
L¼1

αLβðLÞ; ð11Þ

γðα; ϵÞ ¼ −
d logZ
d log μ

≡X∞
L¼1

αLγðLÞ: ð12Þ

In schemes in which finite terms ZðL;MÞ
α and ZðL;MÞ with

M ≤ 0 are present in the renormalization constants, β and γ
contain terms with positive powers of ϵ. We shall keep track
of them in order to discuss the scheme independence of
observables in the next section. We define them via the
expansions

βðLÞ ¼
X∞
M¼0

βðL;−MÞϵM; ð13Þ

γðLÞ ¼
X∞
M¼0

γðL;−MÞϵM: ð14Þ

We are interested in studying non-trivial fixed points of
the RG in d ¼ 4 − 2ϵ with ϵ > 0. These are defined by the
condition
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dα
d log μ

����
α�
¼ −2ϵα� þ βðα�; ϵÞ ¼ 0: ð15Þ

The solution of the above condition for ϵ ≪ 1, up to second
order in ϵ is

α� ¼ −ϵ
1

βð1;0Þ
− ϵ2

βð2;0Þ − βð1;0Þβð1;−1Þ

βð1;0Þ3
þOðϵ3Þ: ð16Þ

By requiring α� > 0, we find that an IR fixed point exists
only if βð1;0Þ < 0, i.e., when the coupling is marginally
irrelevant in d ¼ 4. (This is, of course, because we assumed
the mass dimension of α to be positive in d < 4; alter-
natively, one could have a marginally relevant coupling,
which acquires a negative mass dimension, and find a
perturbative UV fixed point.)
In the free UV theory, the scaling dimensions of

operators are just the sum of the canonical dimensions
of the free fields that compose them; we denote these UV
scaling dimensions by ΔUV. The ADM has a block form, in
the sense that only operators with the same spin and the
same value of ΔUV can mix. Within each block, the scaling
dimensions of operators at the IR fixed point are given by
the eigenvalues of

ΔUV1þ γ�; ð17Þ

where γ� is the ADM evaluated at the fixed point. This can
be derived by applying the RG equation to the two-point
correlation function [38–40]. See Appendix A for a
derivation. Up to second order in ϵ we have that

γ� ≡ γðα�; ϵÞ ¼ ϵγ�1 þ ϵ2γ�2 þOðϵ3Þ; ð18Þ

where

γ�1 ¼ −
γð1;0Þ

βð1;0Þ
; ð19Þ

γ�2 ¼
βð1;0Þγð2;0Þ − βð2;0Þγð1;0Þ

βð1;0Þ3

þ βð1;−1Þγð1;0Þ − βð1;0Þγð1;−1Þ

βð1;0Þ2
: ð20Þ

All terms on the right-hand side of Eqs. (19) and (20) are
fixed in terms of renormalization constants. We collect
these relations in Appendix B. The relevant aspect is that,
while γ�1 does not depend on finite renormalization con-
stants, i.e., it is scheme independent, both terms of γ�2 do
depend on such finite constants.
ΔUV is just a constant shift within each block, so to

obtain the IR scaling dimension up to Oðϵ2Þ it is sufficient
to perturbatively diagonalize 1

ϵ γ� ¼ γ�1 þ ϵγ�2 þOðϵ2Þ. At
this order, the corresponding set of eigenvalues are

ðγ�1Þi þ ϵðUγ�2U
−1Þii þOðϵ2Þ; ð21Þ

where ðγ�1Þi denotes the ith eigenvalue of γ�1, U is the
rotation to the basis of eigenvectors of γ�1, i.e.,
Uγ�1U

−1 ¼ diag½ðγ�1Þi�, and ðUγ�2U
−1Þii is the ith diagonal

matrix element of γ�2 in the rotated basis. The IR scaling
dimension of the ith operator with UV dimension ΔUV then
equals

ðΔIRÞi ¼ ΔUV þ ϵðΔ1Þi þ ϵ2ðΔ2Þi þOðϵ3Þ; ð22Þ

with the definitions

ðΔ1Þi ≡ ðγ�1Þi and ðΔ2Þi ≡ ðUγ�2U
−1Þii: ð23Þ

III. SCHEME INDEPENDENCE OF
SCALING DIMENSIONS

The scaling dimensions are observables. Therefore, they
cannot depend on the subtraction scheme that we use to
compute the renormalization constants. This is not evident
from Eqs. (22) and (23), because both the ADM and the
beta function, which are used to define γ�, do depend on the
scheme. We now explain how the scheme dependence
cancels in the eigenvalues. Even though this is a well-
known result (see for instance Sec. 1.40 of Ref. [35]), it is
useful for us to review it here, because we shall make use of
it later to identify a convenient scheme for the case in which
evanescent operators are present. We first review the
general argument at all orders in perturbation theory and
then present the explicit formulas for the change of scheme
up to two-loop order.
Renormalization schemes are parametrized by the coef-

ficients of the finite terms, ZðL;MÞ
α and ZðL;MÞ with M ≤ 0.

We denote the renormalization constants of a new scheme
by ~Zα and ~Z. The definitions in Eqs. (3) and (10) imply that

~α ~Zαð ~α; ϵÞ ¼ αZαðα; ϵÞ; ð24Þ

~Ci ~Zi
jð ~α; ϵÞ ¼ CiZi

jðα; ϵÞ: ð25Þ

The first line defines the renormalized coupling in the new
scheme, ~α, as a function of α and ϵ. Since the divergent

terms agree, i.e., ZðL;MÞ
α ¼ ~ZðL;MÞ

α for M > 0, the Laurent
expansion of ~α ¼ ~αðα; ϵÞ cannot contain negative powers
of ϵ. We can then define the change of scheme to all orders
in perturbation theory via functions that depend solely on ϵ
and α, i.e.,

~α ¼ fðα; ϵÞα and ~Ci ¼ CjFj
iðα; ϵÞ; ð26Þ

where
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Fðα; ϵÞ≡ Zðα; ϵÞ ~Z−1ð ~αðαÞ; ϵÞ; ð27Þ

with the normalizations fð0; ϵÞ ¼ 1, and Fð0; ϵÞ ¼ 1 and
both functions regular at ϵ ¼ 0.
Since

d ~α
d log μ

¼ ∂αðfðα; ϵÞαÞ
dα

d log μ
; ð28Þ

the fixed point in α gets mapped to the fixed point in ~α,
i.e., ~α� ¼ fðα�; ϵÞα�.
As for the anomalous dimension, we have that

~γj
i ¼

�
ðF−1Þjk

∂
∂Ck

dCl

d log μ
Fl

i

�����
C¼0

þ ðF−1Þjk∂αFk
i dα
d log μ

¼ ððF−1ÞjkγklFl
iÞ þ ðF−1Þjk∂αFk

i dα
d log μ

: ð29Þ

In the evaluation of Eq. (29) at ~α�, the second term drops
out, and we see that the matrix at the fixed point is affected
by the change of scheme only through a similarity trans-
formation with the matrix F. This does not affect the
eigenvalues, thus proving that the scaling dimensions are
scheme-independent.
Next, we show which terms enter the cancellation of the

scheme dependence in perturbation theory, up to two-loop
order. To this end, we must first relate the one- and two-
loop coefficients of the beta function and ADM in the two
schemes; we list these relations in Appendix B. Using
them, we evaluate the anomalous dimensions at the fixed
point via Eqs. (19) and (20) to obtain

~γ�1 ¼ γ�1; ð30Þ

~γ�2 ¼ γ�2−
1

βð1;0Þ
½γ�1;Zð1;0Þ − ~Zð1;0Þ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

≡δγ�
2

: ð31Þ

These equations can be understood as the perturbative
expansion of the result in Eq. (29) evaluated at the fixed
point. Since the difference, δγ�2, is a commutator with γ�1,
one readily derives that ðUδγ�2U

−1Þii ¼ 0, which means
that the IR scaling dimension of Eq. (22) does not change
with the scheme shift. This is the NLO manifestation of the
scheme independence of the scaling dimensions.
We stress that the NLO scheme independence of the

scaling dimension requires that we include the term γð1;−1Þ

in γ�2, see Eq. (20). γ
ð1;−1Þ is the coefficient of the term linear

in ϵ in the one-loop anomalous dimension and depends on
the scheme as shown in Eq. (B6). Clearly such a OðϵÞ term
would be disregarded in the computation of the anomalous
dimension in d ¼ 4, but we must retain it when we

compute observables at the fixed point in d ¼ 4 − 2ϵ.
More generally, this applies at higher orders to all the
terms with positive powers of ϵ that appear in the beta
function and the anomalous dimensions in a generic
scheme.

IV. EVANESCENT OPERATORS

In the free theory at α ¼ 0 local operators can be defined
by (gauge-invariant) products of the free fields and their
derivatives. These composite operators often satisfy linear
relations that reduce the number of independent monomials
in the fields. However, many relations (in fact, infinitely
many) are satisfied when ϵ ¼ 0 but are violated by positive
powers of ϵ. More generally, many relations hold only if d
is integer. This implies that in noninteger dimension there
are additional independent operators, which are called
evanescent operators because they vanish when ϵ → 0.
For instance, any operator defined through the antisym-

metrization of n indices, such as the four-fermion operator

On ¼ ðΨ̄Γn
μ1…μnΨÞ2; with Γn

μ1…μn ≡ γ½μ1…γμn�; ð32Þ

is equal to zero for all integer values of n > d, because
there are not enough possible values for the indices
to antisymmetrize n of them. (The square brackets
denote antisymmetrization normalized as γ½μ1…γμn� ≡
1
n!

P
σð−1Þσγμσð1Þ…γμσðnÞ .) However, On is a nontrivial oper-

ator when d is noninteger, as can be seen by considering
the associated Feynman rule, i.e., the contraction with two
Ψ and two Ψ̄ fields, which reads

Snαβγδ ∝ ðΓnμ1…μnÞαβðΓn
μ1…μnÞγδ: ð33Þ

Using the standard rules for the Clifford algebra in d
dimensions

fγμ; γνg ¼ 2ημν1; ð34Þ

with δμμ ¼ d, we obtain that [41]

Snαββα ∝ Tr½Γnμ1…μnΓn
μ1…μn �

¼ Tr½1�ð−1Þnðn−1Þ2
Γðdþ 1Þ

Γðdþ 1 − nÞ ; ð35Þ

which is nonzero except if d is an integer smaller than n.
This demonstrates that, in general, also the structure in
Eq. (33) is nontrivial. For our purposes we consider an
expansion around d ¼ 4 and thus we call evanescent the
operators in d ¼ 4 − 2ϵ that vanish when ϵ → 0, such as
On for n ≥ 5. Similarly, one can define evanescent oper-
ators relative to other integer values of d .
When interactions are turned on, physical and evanes-

cent operators can mix. In fact, evanescent operators
were first introduced for the computation of anomalous
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dimensions in d ¼ 4 in dimensional regularization in
Refs. [12,13], because this mixing affects the result for
the physical operators. (Here, by mixing between operators
we mean a corresponding nonzero entry in the renormal-
ization constant Z. In particular, the expression “Oi mixes
into Oj” means that Zj

i ≠ 0.)
Due to this mixing, as we flow to the IR fixed point in

d < 4, the eigenoperators, i.e., operators with definite
scaling dimensions, become linear combinations of physi-
cal and evanescent operators. Evanescent operators at the
Wilson–Fisher fixed point of a scalar field theory in d < 4
dimensions were recently studied in Ref. [10], where it was
shown that, in general, they lead to loss of unitarity if d is
not integer. There is an important difference between the
scalar theory considered in Ref. [10] and a theory with
fermions. In the scalar theory, for any fixed ΔUV, there is a
finite number of evanescent operators with this value of
ΔUV. In the fermionic theory, an infinite number of them
may be present, as illustrated by the operators fOðnÞgn∈N
that all have ΔUV ¼ 2ðd − 1Þ for α ¼ 0.

A. Block structure of the anomalous-dimension matrix

Even before specifying the interactions, it is possible to
draw some general conclusions on the form of the mixing
between physical and evanescent operators. Consider a set
of operators with the same UV dimension, and let us split
them into physical and evanescent components, denoted
collectively by Q and E, respectively, i.e.,

O ¼
�
Q

E

�
: ð36Þ

We add these operators to the Lagrangian with bare
couplings ððC0ÞiQ; ðC0ÞaEÞ

L → Lþ
X
i

ðC0ÞiQQi þ
X
a

ðC0ÞaEEa ð37Þ

and compute the mixing matrix Z by renormalizing these
couplings.
To this end, consider the interaction vertices between the

elementary fields that are proportional to ððC0ÞiQ; ðC0ÞaEÞ.
Each coupling has a particular vertex structure associated to
it at the tree level

Vð0Þ ¼
X
i

ðC0ÞiQSQi
þ
X
a

ðC0ÞaESEa : ð38Þ

The structures SEa
vanish in the limit ϵ → 0. For instance, in

a theory of a Dirac fermion, the four-fermion operators in
Eq. (32) give rise to the four-fermion vertices

ðVð0Þ
ΨΨ̄ΨΨ̄Þαβγδ ¼

X4
n¼0

ðC0ÞnQSnαβγδ þ
X∞
n¼5

ðC0ÞnESnαβγδ; ð39Þ

where Snαβγδ ∝ ðΓnμ1…μnÞαβðΓn
μ1…μnÞγδ.

Perturbative corrections to the vertex, order by order in
the coupling α, can again be expressed as a linear
combination of the structures ðSQi

; SEaÞ. For this step, it
is important that ðSQi

; SEaÞ form a complete basis of
structures. The L-loop correction to the vertex then is

VðLÞ ¼ αL
X
i

ðC0ÞiQ
�X

j

ðAðLÞ
QQÞijSQj

þ
X
b

ðAðLÞ
QEÞibSEb

�

þαL
X
a

ðC0ÞaE
�X

j

ðAðLÞ
EQÞajSQj

þ
X
b

ðAðLÞ
EE ÞabSEb

�
;

ð40Þ

where the coefficients AðLÞ contain poles when ϵ → 0. [42]
These are subtracted by the renormalization constants Z
that define the renormalized couplings via Eq. (10).
Typically, the L-loop coefficients AðLÞ have a leading
ϵ−L pole and also subleading ones. However, in the
corrections to the evanescent vertices, i.e., the terms
proportional to ðC0ÞaE , the projection to the physical
structures SQj

are always accompanied with additional
positive powers of ϵ [13,16]. This has important conse-
quences for the structure of the matrix Z.

At one-loop, Að1Þ
QQ, A

ð1Þ
QE , and A

ð1Þ
EE have 1

ϵ poles, while A
ð1Þ
EQ

is finite due to the additional factor of ϵ coming from the
projection. This results in a block form for the one-loop
renormalization constant Zð1;1Þ and consequently for the
one-loop ADM, with zero entries in the EQ block

γð1;0Þ ¼ 2Zð1;1Þ ¼ 2

"
Zð1;1Þ

QQ Zð1;1Þ
QE

0 Zð1;1Þ
EE

#
: ð41Þ

At two-loop order, the choice of scheme begins to affect the
mixing constants and thus the ADM. A convenient choice
is to use a slightly modified MS prescription that subtracts
the finite terms in the EQ block [13]. In this scheme, the
mixing constant ZEQ is chosen to cancel the finite term

Að1Þ
EQ. The finite, one-loop terms then are

Zð1;0Þ
α ¼ 0; ð42Þ

Zð1;0Þ ¼
�

0 0

Zð1;0Þ
EQ 0

�
: ð43Þ

The motivation for choosing this scheme is that it sim-
plifies the structure of the two-loop ADM, as we shall
explain next.
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At two-loop order, Að2Þ
QQ, A

ð2Þ
QE , and Að2Þ

EE can contain both
1
ϵ2
and 1

ϵ poles. The coefficient of the
1
ϵ2
divergence is fixed

by the one-loop result, i.e., the renormalization constants
satisfy the RG identity

Zð2;2Þ ¼ 1

2
Zð1;1ÞZð1;1Þ −

1

2
βð1;0ÞZð1;1Þ; ð44Þ

which ensures that the ADM is free of divergences. The
subleading 1

ϵ divergences, Zð2;1Þ, determine the two-loop

ADM. In the Að2Þ
EQ block, the divergences are still down by a

factor of ϵ due to the projection, but now this does not mean
that the mixing constant is finite, because a 1

ϵ2
divergence

from a loop integral can be multiplied with an ϵ from the
projection resulting in 1

ϵ poles. Therefore, in the Zð2;1Þ

mixing matrix all the blocks are non-trivial

Zð2;1Þ ¼
"
Zð2;1Þ

QQ Zð2;1Þ
QE

Zð2;1Þ
EQ Zð2;1Þ

EE

#
: ð45Þ

It is precisely becauseZð2;1Þ
EQ andZð1;0Þ

EQ originate from 1
ϵ2
and

1
ϵ loop-integral divergences, respectively, that these con-
stants are related by an analogue of the RG identity of
Eq. (44), namely,

Zð2;1Þ
EQ ¼ 1

2
Zð1;0Þ

EQ Zð1;1Þ
QQ þ 1

2
Zð1;1Þ

EE Zð1;0Þ
EQ −

1

2
βð1;0ÞZð1;0Þ

EQ :

ð46Þ

A relation of this form holds in any scheme, if we replace

Zð1;0Þ
EQ with ð−1Þ× the finite term Að1Þ

EQ in the one-loop
correction to the vertex. In the scheme we are adopting,

Zð1;0Þ
EQ is chosen to cancel Að1Þ

EQ, and for this reason we can
write the above identity solely in terms of renormalization
constants.
We can now appreciate the motivation for this choice of

finite terms: by inspection of formula (B2) for the two-loop
anomalous dimension, we see that Eq. (46) implies that

γð2;0ÞEQ ¼ 0! Therefore, in this scheme the block structure of
the one-loop ADM [Eq. (41)] persists also at two-loop
order, i.e.,

γð2;0Þ ¼
"
γð2;0ÞQQ γð2;0ÞQE

0 γð2;0ÞEE

#
: ð47Þ

For applications to d ¼ 4 physics, this scheme has the
advantage of enabling us to solve the RG flow without
specifying the actual values of CE when d → 4 [16].
Indeed, the finite subtraction in Eq. (43) was first intro-
duced for the calculation of the QCD NLO anomalous
dimension of four-fermion operators in Refs. [12,13], and

in a different but equivalent language in the context of
d ¼ 2 Gross–Neveu/Thirring models in Refs. [14,15]. In
the following, we shall refer to this scheme as the “flavor
scheme.”
In d ¼ 4 − 2ϵ on the other hand, the one-loop finite

renormalization introduces an additional term linear in ϵ in
the one-loop ADM, namely

γð1Þ ¼ γð1;0Þ þ ϵγð1;−1Þ; ð48Þ

with

γð1;−1Þ ¼ 2Zð1;0Þ ¼ 2

�
0 0

Zð1;0Þ
EQ 0

�
: ð49Þ

As we discussed in the previous section, the term γð1;−1Þ
plays a role in cancelling the scheme dependence of
the scaling dimension at the fixed point. Recall from
Eq. (18) that γ�2 depends also on γð1;−1Þ, and it thus inherits
a non-zero off-diagonal EQ block. Therefore, as far as
scaling dimensions are concerned the simplified block
structure of Eq. (47) in γð2;0Þ is not particularly helpful
because it does not persist in γ�2. Had we, instead, adopted
the pure MS scheme, i.e., Zð1;0Þ ¼ 0, γð1;−1Þ would be zero,
but the two-loop ADM γð2;0Þ would itself have a nonzero
EQ block.
Summarizing, we have shown that in d ¼ 4 − 2ϵ the

ADM at the fixed point has an invariant QQ block at order
ϵ, i.e., ðγ�1ÞEQ ¼ 0, but the block is no longer invariant when
we include also ϵ2 terms, i.e., ðγ�2ÞEQ ≠ 0, neither in pure
MS nor in the flavor scheme. As such, the Oðϵ2Þ correc-
tions of the scaling dimensions cannot be computed solely
from the QQ entries. This is particularly problematic in
cases with infinitely many evanescent operators, as in the
example of four-fermion operators in Eq. (32). The com-
putation of the eigenvalues in this case is the topic of the
next section.

V. THE EVANESCENT TOWER

In this section, we show how to obtain the NLO IR
scaling dimensions of physical operators in the presence of
mixing with an infinite tower of evanescent operators.
Physical and evanescent operators are equally interesting
from the point of view of the fixed point in d ¼ 4 − 2ϵ.
Here however we focus on the physical operators because it
is much simpler to obtain the corresponding eigenvalues at
NLO, thanks to the LO block structure. Our main objec-
tives are (i) to stress that such NLO physical eigenvalues are
affected by the mixing with the evanescent operators, in a
precise sense that we explain, and (ii) to provide a method
to compute them. For concreteness, we demonstrate the
method for a specific example, which, however, should
make clear how to apply it more generally.
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We consider the example of four-fermion operators in
QED in d ¼ 4 − 2ϵ, with Nf flavors of four-component
Dirac fermions Ψa, a ¼ 1;…; Nf, namely

Q1 ¼ Tac
bdðΨ̄aγμΨbÞðΨ̄cγ

μΨdÞ; ð50Þ

Q3 ¼ Tac
bdðΨ̄aΓ3

μ1μ2μ3Ψ
bÞðΨ̄cΓ3μ1μ2μ3ΨdÞ; ð51Þ

where the sum over repeated flavor indices is implicit. For
the application of this example to the dynamics of QED in
d ¼ 3, see Ref. [31]. The tensor Tac

bd ¼ Tca
db specifies the

flavor structure. In particular, we consider the “flavor-
nonsinglet” case, for which Tac

ad ¼ 0 and Tab
bd ¼ 0, and the

“flavor-singlet” case, for which Tac
bd ¼ δabδ

c
d. Since the

interaction is flavor blind, mixing does not spoil neither
conditions on Tac

bd.
The gauge coupling α ¼ e2

16π2
induces a mixing of the

physical operators ðQ1;Q3Þ with the evanescent operators

En ¼ Tac
bdðΨ̄aΓn

μ1…μnΨ
bÞðΨ̄cΓnμ1…μnΨdÞ þ anϵQ1 þ bnϵQ3;

ð52Þ

with n running over all odd positive integers ≥5. The
evanescent operators with n even do not mix with the
physical operators, therefore they do not need to be
considered in this context. We have included terms propor-
tional to ϵ with arbitrary coefficients an, bn as in Ref. [16].
These terms reflect an intrinsic ambiguity in the definition
of the evanescent operators. The final result for the scaling
dimensions should not depend on these coefficients. We
shall use this as a check of our computation. We do not
include pieces of the form ϵ2× a physical operator because
they have no effect in the two-loop computation presented
here. Since the expressions for the mixing matrices in this
general basis are rather involved we set an ¼ bn ¼ 0 in the
rest of this section. We give the results in the more general
basis in Appendix C. In the following we use pairs of odd
integers ðn;mÞ as indices for matrices: the indices 1 and 3
refer to the physical operators Q1 and Q3, respectively,
while indices n ≥ 5 refer to the associated evanescent
operators En.

A. Flavor-nonsinglet operators

Let us consider first the flavor-nonsinglet case, i.e.
Tac
ad ¼ 0 ¼ Tab

bd. First, we present the results in the flavor
scheme and subsequently perform a change of scheme. The
one- and two-loop ADM are given in Appendix C.
Furthermore, for QED we have that βð1;0Þ ¼ − 4

3
Nf and

βð2;0Þ ¼ −4Nf. Using Eq. (19) we obtain that the OðϵÞ
anomalous dimension at the fixed point is

ðγ�1Þnm ¼ 3

2Nf
×

8>>><
>>>:

nðn− 1Þðn− 5Þðn− 6Þ for m ¼ n− 2

−2ðn− 1Þðn− 3Þ for m ¼ n

1 for m ¼ nþ 2

0 otherwise:

ð53Þ

The result of the one-loop ADM for this nonsinglet case is
also found in Ref. [13]. All the EQ entries in γ�1 vanish,
in agreement with the argument of the previous section.
This means that we can compute the first two eigenvalues
of γ�1, corresponding to the physical operators, just by
diagonalizing the two-by-two matrix given by the entries
with 1 ≤ n;m ≤ 3. Note that there is no analogous sim-
plification for any of the evanescent operators, i.e. there is
no finite-dimensional invariant block that contains oper-
ators with n ≥ 5. This means that to obtain the LO IR
dimension of the evanescent operators, one faces an
infinite-dimensional problem. We leave this problem for
the future and concentrate here on the physical operators.
At NLO in ϵ, we obtain via Eq. (20) that theQQ block of

the anomalous dimension at the fixed point is

ðγ�2ÞQQ ¼ −
1

8N2
f

�
729 153þ 2Nf

324þ 792Nf −351þ 96Nf

�
: ð54Þ

This result derives from a two-loop computation of the
corresponding renormalization constants. For details on the
computation we refer to Ref. [31]. In the EQ block there is
a single nonvanishing entry in the finite renormalization

Zð1;0Þ
EQ , namely

Zð1;0Þ
53 ¼ −40: ð55Þ

It leads to a corresponding nonvanishing entry in the NLO
ADM at the fixed point

ðγ�2Þ53 ¼ −
60

Nf
; ð56Þ

which, as we explained, hinders us from extracting the
scaling dimensions of physical operators solely from the
QQ block.
To reduce the problem to a finite-dimensional one, we

need to set the EQ entries of the ADM to zero at NLO. This
can be achieved either by a change of basis or equivalently
by a change of scheme. We adopt the latter approach. We
denote the finite renormalization in the new scheme by
~Zð1;0Þ
EQ ¼ ð ~Zð1;0Þ

n1 ; ~Zð1;0Þ
n3 Þ. From the scheme shift in Eq. (31)

we obtain the expression for the EQ entries of γ�2 in the new
scheme. Requiring

ð~γ�2ÞEQ ¼ 0; ð57Þ
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we find a recurrence relation

~Zð1;0Þ
ðnþ2Þ1 − 2ðn − 1Þðn − 3Þ ~Zð1;0Þ

n1 þ nðn − 1Þðn − 5Þðn − 6Þ ~Zð1;0Þ
ðn−2Þ1 − 36 ~Zð1;0Þ

n3 ¼ 1440δn5; ð58Þ

~Zð1;0Þ
ðnþ2Þ3 − 2ðn − 1Þðn − 3Þ ~Zð1;0Þ

n3 þ nðn − 1Þðn − 5Þðn − 6Þ ~Zð1;0Þ
ðn−2Þ3 − ~Zð1;0Þ

n1 ¼ 160

3
ð12 − NfÞδn5 − 3360δn7; ð59Þ

which we need to solve to find the value of the new constants ð ~Zð1;0Þ
n1 ; ~Zð1;0Þ

n3 Þ. The index n in the equations runs over the odd
integers ≥5. Since the recurrence relation is of second order, two boundary conditions are required. The first boundary

condition is ~Zð1;0Þ
31 ¼ ~Zð1;0Þ

33 ¼ 0, which means that we do not introduce any finite renormalization in the QQ block. As a

second boundary condition, we require that ð ~Zð1;0Þ
n1 ; ~Zð1;0Þ

n3 Þ do not grow too fast as n → ∞, where “too fast”will be specified
in a moment.
In the new scheme, the computation of the physical eigenvalues is reduced to the diagonalization of the invariant QQ

block. The NLO QQ block reads

ð~γ�2ÞQQ ¼ ðγ�2ÞQQ −
9

8N2
f

"
0 0

~Zð1;0Þ
51

~Zð1;0Þ
53 þ 40

#
: ð60Þ

From Eqs. (22) and (23) we then find the IR scaling dimension of the Q operators to equal

ðΔIRÞi ¼ 2ðd − 1Þ þ ϵðΔ1Þi þ ϵ2ðΔ2Þi þOðϵ3Þ; ð61Þ

with

ðΔ1Þ1 ¼ −
9

Nf
; ðΔ2Þ1 ¼ þ 3

32N2
f

ð32Nf þ 156þ ~Zð1;0Þ
51 − 6 ~Zð1;0Þ

53 Þ; ð62Þ

ðΔ1Þ2 ¼ þ 9

Nf
; ðΔ2Þ2 ¼ −

3

32N2
f

ð160Nf þ 1140þ ~Zð1;0Þ
51 þ 6 ~Zð1;0Þ

53 Þ: ð63Þ

By substituting the values of ð ~Zð1;0Þ
51 ; ~Zð1;0Þ

53 Þ that solve
the recurrence relation, we determine the value of the
scaling dimension at NLO.
In practice, we use the following algorithm to solve the

recurrence relation:
(1) We truncate the recurrence relation by setting an

upper cutoff ntr to the index n, i.e., we only consider
the equations with n < ntr;

(2) We solve the resulting system of linear equations,

treating ð ~Zð1;0Þ
ntr1

; ~Zð1;0Þ
ntr3

Þ as free parameters. The
solution depends linearly on them. Let us denote

the solution for ð ~Zð1;0Þ
51 ; ~Zð1;0Þ

53 Þ as

"
~Zð1;0Þ
51

~Zð1;0Þ
53

#
¼
�
A51ðntrÞ
A53ðntrÞ

�
þBðntrÞ ·

"
~Zð1;0Þ
ntr1

~Zð1;0Þ
ntr3

#
; ð64Þ

where A51ðntrÞ and A53ðntrÞ are constants that
depend on the truncation point ntr but not

on ~Zð1;0Þ
ntr1

or ~Zð1;0Þ
ntr3

, and BðntrÞ is an ntr-dependent
2 × 2 matrix;

(3) We impose the boundary condition

lim
ntr→∞

BðntrÞ ·
"

~Zð1;0Þ
ntr1

~Zð1;0Þ
ntr3

#
¼ 0: ð65Þ

This is the precise sense in which we require
~Zð1;0Þ
ntr1

not to grow “too fast.” It follows from this
condition that

"
~Zð1;0Þ
51

~Zð1;0Þ
53

#
¼ lim

ntr→∞

�
A51ðntrÞ
A53ðntrÞ

�
: ð66Þ

It is necessary for the consistency of the algorithm
and in particular for the consistency of the boundary
condition of Eq. (65), that this limit exists and is
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finite. Note that BðntrÞ and ð ~Zð1;0Þ
ntr1

; ~Zð1;0Þ
ntr3

Þ depend
on the normalization of the evanescent operators,
but this normalization dependence drops in the
product of Eq. (65). In what follows, we shall refer
to the ntr approximation, ðΔ2Þi½ntr�, as the value

of ðΔ2Þi obtained substituting ð ~Zð1;0Þ
51 ; ~Zð1;0Þ

53 Þ with
ðA51½ntr�; A53½ntr�Þ. We verify the existence of the
limit in Eq. (66) by testing the convergence
of ðΔ2Þi½ntr�.

In a nutshell, this algorithm simply consists in truncating
the infinite-dimensional matrix to a finite size, finding the
first two eigenvalues for the truncated matrix, and then
taking the limit in which the truncation is removed.
We implemented this algorithm for different values of

the parameter Nf. Figure 1 shows how the NLO contri-
bution to the scaling dimension ðΔ2Þi relaxes as we
increase the point of truncation. To demonstrate this we
plot the change in the approximation of ðΔ2Þi when the ntr
is increased by 2, i.e., 1 − ðΔ2Þi½ntr�

ðΔ2Þi½ntrþ2�, as a function of ntr for

the case of Nf ¼ 1. The behavior for larger Nf is
analogous. The plots show that as ntr increases the solution
approaches a constant value, indicating that the limit in
Eq. (66) indeed exists. In Table I we list the values of
ðΔ2Þ1;2 for Nf ¼ 1;…; 10 for a truncation point so large
that the significant digits displayed are stable. For com-
parison, we also show the LO values ðΔ1Þ1;2. Note, that
with this choice of basis, i.e., an ¼ bn ¼ 0, diagonalizing

only the physical–physical block in the flavor scheme, i.e.,
not accounting for evanescent operators, amounts to a
sizable numerical error. For instance, for Nf ¼ 1 we find

that 1 − ðΔ2Þi½ntr¼5�
ðΔ2Þi ¼ 51%;−21% for i ¼ 1, 2, respectively.

In Appendix D we also include the arbitrary coefficients
an and bn of Eq. (52). While the truncated solutions depend
linearly on an and bn, we show that the coefficients of the
terms proportional to an and bn decrease to zero as we
increase ntr. This is an important check that the answer we
obtain is indeed a physical observable, independent of the
choice of basis and renormalization scheme.

B. Flavor-singlet operators

We use the same approach to compute the NLO scaling
dimensions for the flavor-singlet four-fermion operators for
which Tac

bd ¼ δabδ
c
d, i.e.,

Q1 ¼ ðΨ̄aγμΨaÞ2; ð67Þ

Q3 ¼ ðΨ̄aΓ3
μ1μ2μ3Ψ

aÞ2: ð68Þ

Since the traces of Tac
bd are not zero, there are more

diagrams contributing. As a result the ADM is not the
same as in the flavor-nonsinglet case, and there more
nonzero entries of the mixing matrix compared to the
flavor-nonsinglet case. In particular, while the flavor-
nonsinglet case had a single nonzero EQ entry at NLO

FIG. 1. For the flavor-nonsinglet four-fermion operators we compute the ntr and the ntr þ 2 approximation to the two ðΔ2Þi’s. We plot

the change between two neighboring approximations, i.e., 1 − ðΔ2Þi½ntr �
ðΔ2Þi½ntrþ2�, as function of the truncation point ntr for the case Nf ¼ 1. The

left, right figure shows the truncation dependence of ðΔ2Þ1 and ðΔ2Þ2, respectively.

TABLE I. Three significant digits of the one-loop, ðΔ1Þi, and the two-loop, ðΔ2Þi, contributions to the scaling dimension of the flavor-
nonsinglet operators for various cases of Nf . To obtain the two-loop ðΔ2Þi values we implemented the algorithm to include the effect of
evanescent operators. Higher truncation of the procedure does not affect the three significant digits displayed here.

Nf 1 2 3 4 5 6 7 8 9 10

ðΔ1Þ1 −9.00 −4.50 −3.00 −2.25 −1.80 −1.50 −1.29 −1.12 −1.00 −0.900
ðΔ2Þ1 35.6 8.53 3.63 1.95 1.19 0.782 0.544 0.393 0.292 0.221
ðΔ1Þ2 9.00 4.50 3.00 2.25 1.80 1.50 1.29 1.12 1.00 0.900
ðΔ2Þ2 −101 −29.3 −14.9 −9.40 −6.67 −5.09 −4.08 −3.38 −2.87 −2.49
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[see Eq. (56)], there are infinitely many nonzero entries in
the flavor-singlet case. In addition to the (5,3) entry of
Eq. (56), we find that

ðγ�2Þn1 ¼
24

Nf
ð−1Þnðn−1Þ2 ðn − 2Þðn − 5Þ!; ð69Þ

where n runs over all odd positive integers ≥5. In
terms of the general flavor tensor, this contribution is
proportional to Tab

bd, which explains why it vanishes in the
flavor-nonsinglet case. To compute Eq. (69) we use the
identity [41]

Γn
μ1…μnγ

νΓnμ1…μn

¼ ð−1Þnðn−1Þ2
ΓðdÞ

Γðd − nþ 1Þ ð−1Þ
nðd − 2nÞγν

¼ϵ→0−ð−1Þnðn−1Þ2 24ðn − 2Þðn − 5Þ!ϵγν þOðϵ2Þ: ð70Þ

We collect the results for the ADM in Appendix C. The
LO ADM at the fixed point then follows from them; it
reads

ðγ�1Þnm ¼ 3

2Nf
×

8>>><
>>>:

8δn3 þ nðn − 1Þðn − 5Þðn − 6Þ for m ¼ n − 2

4
3
ð2Nf þ 1Þδn1 − 2ðn − 1Þðn − 3Þ for m ¼ n

1 for m ¼ nþ 2

0 otherwise

ð71Þ

and the physical–physical block of the NLO ADM at the fixed point is

ðγ�2ÞQQ ¼ −
1

24N2
f

�
2383þ 224Nf 375þ 18Nf

−1212 − 2568Nf −1485 − 360Nf

�
: ð72Þ

Analogously to the previous section we perform a
change of scheme and fix the finite renormalization
constants by requiring that the EQ entries of γ�2 vanish
in the new scheme. This requirement defines a recurrence
relation analogous to the one of Eqs. (58) and (59), which
we solve with the same algorithm as above. Note that the
presence of infinitely many off-diagonal entries does not
change qualitatively the procedure. Also in this case we see
that the solution converges to a constant as we increase
the size of the truncation, as shown in Fig. 2, which is the
analogue of Fig. 1 for the flavor-singlet case. We list the
values of the Oðϵ2Þ corrections, ðΔ2Þi, for Nf ¼ 1;…; 10
in Table II. For comparison we also list the LO values,

ðΔ1Þi, for the respective Nf values. Note that with this
choice of basis, i.e., an ¼ bn ¼ 0, diagonalizing only the
physical–physical block, amounts for Nf ¼ 1 to a numeri-

cal error of 1 − ðΔ2Þi½ntr¼5�
ðΔ2Þi ¼ −14%; 140% for i ¼ 1, 2,

respectively. Also for this flavor-singlet case, we demon-
strate in Appendix D the independence of the scaling
dimension on the parameters an and bn from Eq. (52).

VI. CONCLUSIONS AND FUTURE DIRECTIONS

We studied operator mixing involving an infinite family
of evanescent operators in a d-dimensional theory, showing
how to extract the scaling dimensions at the fixed point

FIG. 2. For the flavor-singlet four-fermion operators we compute the ntr and the ntr þ 2 approximation to the two ðΔ2Þi’s. We plot the

change between two neighbouring approximations, i.e., 1 − ðΔ2Þi½ntr �
ðΔ2Þi½ntrþ2�, as function of the truncation point ntr for the case Nf ¼ 1. The

left, right figure shows the truncation dependence of ðΔ2Þ1 and ðΔ2Þ2, respectively.
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beyond leading order in ϵ. At Oðϵ2Þ, the scaling dimension
is sensitive to the one-loop mixing of the whole tower of
operators. We demonstrated the independence of scaling
dimensions on the choice of basis and renormalization
scheme. We explicitly computed the Oðϵ2Þ corrections in
the example of four-fermion operators in QED.
In light of our findings, it would be interesting to revisit the

Oðϵ4Þ computation of the scaling dimension of the four-
fermion interaction in the Gross–Neveu model from
Ref. [18]. Since in this case the evanescent operators are
first generated at three loops,we expect thewhole evanescent
tower to affect the Oðϵ4Þ term of the scaling dimension.
In the present work we only applied our method to extract

the first few eigenvalues of the ADM, whose eigenoperators
approach the physical operators for ϵ → 0. The computation
of the eigenvalues corresponding to the evanescent oper-
ators requires more work, because the mixing matrix is
infinite-dimensional already at the LO in ϵ. Besides com-
puting the eigenvalues, it would be interesting to study
whether the additional eigenoperators also approach the
physical operators as ϵ → 0, or whether they are evanescent.
The first case would mean that there exist multiple contin-
uations of the physical operators to noninteger dimension
and correspondingly multiple functions that continue their
scaling dimensions. Another aspect that we have not
addressed in this work and that deserves further investiga-
tion is the loss of unitarity of the d-dimensional CFT. In
analogy to Refs. [9,10], we expect that among the tower of
evanescent operators one may find states of negative norm,
and operators of complex scaling dimensions.
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APPENDIX A: RG EQUATIONS AND SCALING
DIMENSIONS IN d = 4− 2ϵ

In this Appendix we review how to derive the expression
for the scaling dimensions in terms of the ADM at the fixed
point. This is usually done by solving the RG equation for
the renormalized two-point function [38–40]. The present
derivation will emphasize the viewpoint that the renorm-
alization constants are resumming the leading contributions
for small ϵ. We use this to take the IR limit of the “bare”
two-point function.
Consider a set of operators ðO0Þi that mix under the RG.

We use the subscript “0” to distinguish them from the
renormalized operators, whose correlators have a smooth
ϵ → 0 limit. Recall that in d ¼ 4 − 2ϵ we have a dimen-
sionful coupling α0 of dimension 2ϵ. When jkj2ϵ ≪ α0 with
k the momentum of the operator insertion, we can expand
the bare two-point function as

hðO0Þið−kÞðO0ÞjðkÞi

¼ jkj2ΔUV−d
X∞
L¼0

ðα0jkj−2ϵÞL
X∞
M¼−L

ρðL;−MÞ
0ij ϵM: ðA1Þ

We are interested in the IR limit of this two-point
function, namely the limit of large α0jkj−2ϵ. We keep
ϵ ≪ 1 and fixed.
To constrain the two-point function we use input from

the renormalized theory. More precisely, we use the fact
that there exist renormalized variables α and Oj defined as

α0 ¼ ZααðμÞμ2ϵ; ðA2Þ

ðO0Þi ¼
X
j

ðZ−1ÞijOj; ðA3Þ

such that the renormalized two-point function, as a function
of the renormalized coupling, has a smooth ϵ → 0 limit.
The renormalized two-point function also has a perturba-
tive expansion, i.e.,

hOið−kÞOjðkÞi

¼ jkj2ΔUV−d
X∞
L¼0

αðμÞL
XL
M¼0

ρðL;MÞ
ij logðk2=μ2ÞM; ðA4Þ

TABLE II. Three significant digits of the one-loop, ðΔ1Þi, and the two-loop, ðΔ2Þi, contributions to the scaling dimension of the
flavor-singlet operators for various cases of Nf . To obtain the two-loop ðΔ2Þi values we implemented the algorithm to include the effect
of evanescent operators. Higher truncation of the procedure does not affect the three significant digits displayed here.

Nf 1 2 3 4 5 6 7 8 9 10

ðΔ1Þ1 −7.39 −3.07 −1.72 −1.10 −0.766 −0.562 −0.429 −0.337 −0.272 −0.224
ðΔ2Þ1 46.1 14.1 7.43 4.84 3.51 2.73 2.21 1.86 1.59 1.39
ðΔ1Þ2 13.4 8.07 6.39 5.60 5.17 4.90 4.71 4.59 4.49 4.42
ðΔ2Þ2 −84.0 −23.5 −11.6 −7.12 −4.94 −3.70 −2.91 −2.37 −1.99 −1.70
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where αðμÞ is the renormalized coupling, and μ the
arbitrary renormalization scale. The negative powers of ϵ
in Eq. (A1) were chosen to match the powers of logðk2=μ2Þ
in Eq. (A4) as we take ϵ → 0.
From Eqs. (11) and (12) we have that

−Zα
βðα;ϵÞ

α
¼ dZα

d logμ
¼ð∂αZαÞð−2ϵαþβðα;ϵÞÞ; ðA5Þ

−Zi
kγðα; ϵÞkj ¼

dZi
j

d log μ
¼ ð∂αZi

jÞð−2ϵαþ βðα; ϵÞÞ:

ðA6Þ

The solution to these equations with boundary conditions
Zαðα ¼ 0Þ ¼ 1, Zi

jðα ¼ 0Þ ¼ 1 is

Zαðα; ϵÞ ¼ exp

�Z
α

0

dα0
βðα0; ϵÞ=α0

2ϵα0 − βðα0; ϵÞ
�
; ðA7Þ

Zðα; ϵÞ ¼ P̄ exp

�Z
α

0

dα0
γðα0; ϵÞ

2ϵα0 − βðα0; ϵÞ
�
; ðA8Þ

up to the addition of functions of the variable ϵ alone, which
are not important in what follows. P̄ denotes anti-path
ordering. Note that the integral in the exponent of Eq. (A7)
is finite near the lower end α ¼ 0, because in this
region βðα; ϵÞ ¼ −2βð1;0Þα2 þOðα3Þ.
The dimensionless parameter that becomes large in the

IR limit is

α0jkj−2ϵ ¼ ZααðμÞ
�
μ

jkj
�

2ϵ

: ðA9Þ

Therefore, taking this IR limit while maintaining μ ¼ jkj,
implies that on the right-hand side ZααðμÞ must become
large. As α grows continuously on the positive real axis,
starting from the UV value α ¼ 0, the constant Zα can
become large if α approaches a pole of the integrand
of Eq. (A7), i.e., a nontrivial fixed point α�. Close to
the solution we expand −2ϵαþ βðα; ϵÞ ∼ Cðα − α�Þ.
Substituting this in the integral, we find the leading
behavior of α0jkj−2ϵ as α approaches the fixed point

α0jkj−2ϵ ∼ α�jα − α�j−2ϵ
C : ðA10Þ

Given that ϵ ≪ 1 we can see perturbatively that the fixed
point exists when βð1;0Þ < 0 and that C > 0. The latter
inequality ensures that indeed α0jkj−2ϵ grows as we
approach the fixed point.
Similarly to Zα, Eq. (A8) implies that as α → α� the

leading behavior of Zi
j is

Zi
j ∼ jα − α�j−γðα� ;ϵÞ

C : ðA11Þ
Using Eq. (A10), we find that in the IR limit Zi

j becomes a
power-law in jkj, namely

Zi
j ∼

�jkj
Λ

�
−γðα�;ϵÞ

; ðA12Þ

where we introduced the crossover scale Λ, whose leading
behavior as a function of ϵ for ϵ ≪ 1 is

Λ ∼
�
−βð1;0Þ

α0
ϵ

� 1
2ϵ

: ðA13Þ

Recalling that

hðO0Þið−kÞðO0ÞjðkÞi ¼ ðZ−1ÞikðZ−1ÞjlhOkð−kÞOlðkÞi;
ðA14Þ

and using Eqs. (A12) and (A4) for μ ¼ jkjwe see that in the
IR limit a new scaling behavior emerges, i.e.,

hðO0Þið−kÞðO0ÞjðkÞi ∼
jkj≪Λ

jkj2ðΔUVþγðα�;ϵÞÞ−d; ðA15Þ

corresponding to the IR scaling dimension ΔIR ¼
ΔUV þ γðα�; ϵÞ. We also see that more precisely the cross-
over to the IR scaling happens when jkj ∼ Λ, with Λ given
in Eq. (A13). As observed in Ref. [19], Λ is exponentially
enhanced for ϵ ≪ 1 compared to the naive crossover

scale α
1
2ϵ
0 .

APPENDIX B: BETA FUNCTIONS AND
ANOMALOUS DIMENSIONS

In this Appendix we collect:
(i) the one- and two-loop formulas for the beta function

and ADM from Eqs. (11) and (12), respectively. In
terms of the renormalization-constant expansions
from Eqs. (5) and (6) they read

βð1;0Þ ¼ −Zð1;1Þ
α ; βð1;−1Þ ¼ −Zð1;0Þ

α ;

βð2;0Þ ¼ −2Zð2;1Þ
α þ 4Zð1;0Þ

α Zð1;1Þ
α ; ðB1Þ

γð1;0Þ ¼ 2Zð1;1Þ; γð1;−1Þ ¼ 2Zð1;0Þ;

γð2;0Þ ¼ 4Zð2;1Þ − 2Zð1;1ÞZð1;0Þ − 2Zð1;0ÞZð1;1Þ þ 2βð1;0ÞZð1;0Þ þ 2βð1;−1ÞZð1;1Þ: ðB2Þ
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(ii) the relations between the one- and two-loop beta function and ADM in two different, mass-independent schemes
distinguished by the superscript “ ~”. Substituting the expansion of Eqs. (11) and (13) in Eq. (28) we find that

~βð1;0Þ ¼ βð1;0Þ; ~βð1;−1Þ ¼ βð1;−1Þ þ Zð1;0Þ − ~Zð1;0Þ;

~βð2;0Þ ¼ βð2;0Þ; ~βð2;−1Þ ¼ βð2;−1Þ þ 2ðZð2;0Þ − ~Zð2;0Þ − ðZð1;0ÞÞ2 þ ð ~Zð1;0ÞÞ2Þ: ðB3Þ

Similarly, the expansion of Eqs. (12) and (14) in Eq. (29) leads to

~γð1;0Þ ¼ γð1;0Þ; ðB4Þ

~γð1;−1Þ ¼ γð1;−1Þ − 2ðZð1;0Þ − ~Zð1;0ÞÞ ðB5Þ

~γð2;0Þ ¼ γð2;0Þ þ ½γð1;0Þ;Zð1;0Þ − ~Zð1;0Þ� − 2βð1;0ÞðZð1;0Þ − ~Zð1;0ÞÞ: ðB6Þ

APPENDIX C: ANOMALOUS DIMENSIONS OF FOUR-FERMION OPERATORS IN QED

1. Flavor-nonsinglet operators

The results for the one-loop anomalous dimension, and the one-loop finite renormalization in the flavor scheme can be
found in Ref. [13]. Including also the dependence on an, bn the result is

γð1;0Þnm ¼

8>>><
>>>:

2nðn − 1Þðn − 5Þðn − 6Þ for m ¼ n − 2

−4ðn − 1Þðn − 3Þ for m ¼ n

2 for m ¼ nþ 2

0 otherwise;

ðC1Þ

γð1;−1Þnm ¼

8>>>>>>>><
>>>>>>>>:

−2nðn − 1Þðn − 5Þðn − 6Þan−2
þ4ðn − 1Þðn − 3Þan − 2anþ2 þ 72bn for m ¼ 1; n ≥ 5

−80δn5
−2nðn − 1Þðn − 5Þðn − 6Þbn−2
þ4ðn − 1Þðn − 3Þbn − 2bnþ2 þ 2an for m ¼ 3; n ≥ 5

0 otherwise:

ðC2Þ

We computed also the ðQ1;Q3Þ entries of the two-loop anomalous dimension in the same scheme, finding

γð2;0ÞQQ ¼
� −162 −28 − 4

9
Nf

144 − 176Nf 78 − 64
3
Nf

�
þ a5

� −2 0

− 8
3
Nf 2

�
þ b5

�
0 −2
72 − 8

3
Nf

�
: ðC3Þ

Moreover, as explained in Sec. IV, in this scheme γð1;0ÞEQ ¼ γð2;0ÞEQ ¼ 0.
Using Eqs. (19) and (20) we obtain the ADM at the fixed point

ðγ�1Þnm ¼ 3

2Nf
×

8>>><
>>>:

nðn − 1Þðn − 5Þðn − 6Þ for m ¼ n − 2

−2ðn − 1Þðn − 3Þ for m ¼ n

1 for m ¼ nþ 2

0 otherwise:

ðC4Þ
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ðγ�2Þnm ¼

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

− 1
8N2

f

�
729 153þ 2Nf

324þ 792Nf −351þ 96Nf

�

þ 3
8N2

f
a5

� −3 0

−4Nf 3

�
þ 3

8N2
f
b5

�
0 −3

108 −4Nf

�
for n;m ¼ 1; 3;

3
2Nf

ð−nðn − 1Þðn − 5Þðn − 6Þan−2
þ2ðn − 1Þðn − 3Þan − anþ2 þ 36bnÞ for m ¼ 1; n ≥ 5;

− 60
Nf

δn5

þ 3
2Nf

ð−nðn − 1Þðn − 5Þðn − 6Þbn−2
þ2ðn − 1Þðn − 3Þbn − bnþ2 þ anÞ for m ¼ 3; n ≥ 5;

not required otherwise:

ðC5Þ

2. Flavor-singlet operators

The one-loop anomalous dimension in the physical sector can be found in Refs. [19,43]. The one-loop EQ finite terms
and the two-loop QQ ADM in the flavor scheme are computed in Ref. [31]. The results are

γð1;0Þnm ¼

8>>><
>>>:

16δn3 þ 2nðn − 1Þðn − 5Þðn − 6Þ for m ¼ n − 2

8
3
ð2Nf þ 1Þδn1 − 4ðn − 1Þðn − 3Þ for m ¼ n

2 for m ¼ nþ 2

0 otherwise;

ðC6Þ

γð1;−1Þnm ¼

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

32ð−1Þnðn−1Þ2 ðn − 2Þðn − 5Þ!
−2nðn − 1Þðn − 5Þðn − 6Þan−2
þ
�
8
3
ð2Nf þ 1Þ þ 4ðn − 1Þðn − 3Þ

	
an

−2anþ2 þ 88bn for m ¼ 1; n ≥ 5

−80δn5
−2nðn − 1Þðn − 5Þðn − 6Þbn−2
þ4ðn − 1Þðn − 3Þbn − 2bnþ2 þ 2an for m ¼ 3; n ≥ 5

0 otherwise;

ðC7Þ

and

γð2;0ÞQQ ¼
�− 2

27
ð2275þ 8NfÞ − 4

9
ð49þ 3NfÞ

16
9
ð199þ 107NfÞ 110þ 80Nf

3

�
þ a5

� −2 0
8
3
ð1þ NfÞ 2

�
þ b5

�
0 −2
88 − 8

3
Nf

�
: ðC8Þ

Also in this case γð1;0ÞEQ ¼ γð2;0ÞEQ ¼ 0 in agreement with the general results of Sec. IV.
Using Eqs. (19) and (20) we obtain the ADM at the fixed point

ðγ�1Þnm ¼ 3

2Nf
×

8>>><
>>>:

8δn3 þ nðn − 1Þðn − 5Þðn − 6Þ for m ¼ n − 2

4
3
ð2Nf þ 1Þδn1 − 2ðn − 1Þðn − 3Þ for m ¼ n

1 for m ¼ nþ 2

0 otherwise;

ðC9Þ
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ðγ�2Þnm ¼

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

− 1
24N2

f

�
2383þ 224Nf 375þ 18Nf

−1212 − 2568Nf −1485 − 360Nf

�

þ 3
8N2

f
a5

� −3 0

4Nf þ 4 3

�
þ 3

8N2
f
b5

�
0 −3
132 −4Nf

�
for n;m ¼ 1; 3;

24
Nf

ð−1Þnðn−1Þ2 ðn − 2Þðn − 5Þ!
þ 3

2Nf
ð−nðn − 1Þðn − 5Þðn − 6Þan−2

þ
�

4
3
ð2Nf þ 1Þ þ 2ðn − 1Þðn − 3Þ

�
an

−anþ2 þ 44bnÞ for m ¼ 1; n ≥ 5;

− 60
Nf

δn5

þ 3
2Nf

ð−nðn − 1Þðn − 5Þðn − 6Þbn−2
þ2ðn − 1Þðn − 3Þbn − bnþ2 þ anÞ for m ¼ 3; n ≥ 5;

not required otherwise:

ðC10Þ

APPENDIX D: an AND bn INDEPENDENCE

In Appendix C we collected the results for the ADM for
both the flavor-singlet and flavor-nonsinglet operators
computed in the generic basis of Eq. (52). We observe
that both the EQ finite one-loop mixing and the two-loop
QQ mixing depends linearly on the coefficients an and bn.
As a result, in this generic basis, the entries of γ�2, which we
use to compute the NLO scaling dimension, also depend on
an and bn. However, the parameters an and bn are just a
parametrization of our freedom to choose the basis of

operators. Therefore, the observables, i.e., the scaling
dimensions, cannot depend on them. In this Appendix,
we demonstrate using the algorithm from Sec. V how this
unphysical dependence indeed cancels in the observables.
This has to be contrasted with the wrong procedure of
naively diagonalizing the QQ block of the two-loop ADM
in the flavor scheme, which would lead to eigenvalues that
depend on an and bn.
To this end, we first generalize Eqs. (62) and (63) to the

case in which the basis includes an and bn. The general-
izations for the two considered cases follow:

Flavor-nonsinglet case:

ðΔ2Þ1 ¼
3

32N2
f

�
156þ 32Nf −

�
10 −

4

3
Nf

�
a5 þ a7 þ ð60 − 8NfÞb5 − 6b7 þ ~Zð1;0Þ

51 − 6 ~Zð1;0Þ
53

�
; ðD1Þ

ðΔ2Þ2 ¼
3

32N2
f

�
−1140 − 160Nf þ

�
22 −

4

3
Nf

�
a5 − a7 þ ð132 − 8NfÞb5 − 6b7 − ~Zð1;0Þ

51 − 6 ~Zð1;0Þ
53

�
: ðD2Þ

Flavor-singlet case:

ðΔ2Þ1 ¼
1

192N2
fκ

ðþ47552 − 7912κ þ ð6992þ 544κÞNf þ 2336N2
f − ð1350 − 108κÞa5 þ 81a7

− ð2700 − 1728κ − ð1656 − 144κÞNf þ 144N2
fÞb5 − ð54þ 108κ þ 108NfÞb7

þ 81 ~Zð1;0Þ
51 − ð54þ 108κ þ 108NfÞ ~Zð1;0Þ

53 Þ; ðD3Þ

ðΔ2Þ2 ¼
1

192N2
fκ

ð−47552 − 7912κ þ ð−6992þ 544κÞNf − 2336N2
f þ ð1350þ 108κÞa5 − 81a7

þ ð2700þ 1728κ − ð1656þ 144κÞNf þ 144N2
fÞb5 þ ð54 − 108κ þ 108NfÞb7

− 81 ~Zð1;0Þ
51 þ ð54 − 108κ þ 108NfÞ ~Zð1;0Þ

53 Þ; ðD4Þ
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where we introduced

κ ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2

f þ Nf þ 25
q

: ðD5Þ

We see that in both cases ðΔ2Þi depend linearly on an, bn
with n ¼ 5, 7 and on the finite renormalization constants
~Zð1;0Þ
51 and ~Zð1;0Þ

53 . By setting the EQ entries of ~γ�2 in
Eqs. (C5) and (C10) to zero, we obtain a generalization
of the recurrence relation in Eqs. (58) and (59) for ~Zð1;0Þ,
with additional terms linear in an, bn. After solving the
truncated system of equations with n < ntr and substituting

back the solution for ~Zð1;0Þ
51 and ~Zð1;0Þ

53 in terms of ~Zð1;0Þ
ntr1

and
~Zð1;0Þ
ntr3

, we find that the dependence on an and bn for n <
ntr − 2 cancels. The ntr approximation to the observable,
Δ2½ntr�, defined by

Δ2 ¼ Δ2½ntr� þ xZ1 ½ntr� ~Zð1;0Þ
ntr1

þ xZ3 ½ntr� ~Zð1;0Þ
ntr3

; ðD6Þ

depends solely on higher an’s and bn’s, namely

Δ2½ntr� ¼ Δ2½ntr�jan¼bn¼0 þ xantr−2½ntr�antr−2
þ xantr ½ntr�antr þ xantrþ2½ntr�antrþ2

þ xbntr−2½ntr�bntr−2 þ xbntr ½ntr�bntr
þ xbntrþ2½ntr�bntrþ2: ðD7Þ

Here, we have suppressed for brevity the subscript i
labelling the eigenvalue. Therefore, as a final check
of the basis independence of the observable we show that
the coefficients of the terms proportional to antr−2, antr ,
antrþ2, bntr−2, bntr , and bntrþ2 all relax to zero as ntr → ∞,
i.e., that

lim
ntr→∞

xa;bntr−3½ntr� ¼ 0; ðD8Þ

lim
ntr→∞

xa;bntr ½ntr� ¼ 0; ðD9Þ

lim
ntr→∞

xa;bntrþ2½ntr� ¼ 0: ðD10Þ

FIG. 3. For the case of flavor-nonsinglet operators, we plot the coefficient of the basis-dependent parameters an and bn in the truncated
result for the NLO scaling dimension, as a function of the truncation number ntr, for Nf ¼ 1. We see that as we increase the number of
evanescent operators included, the dependence drops from the observable. See Eq. (D7) for more details.

FIG. 4. For the case of flavor-singlet operators, we plot the coefficient of the basis-dependent parameters an and bn in the truncated
result for the NLO scaling dimension, as a function of the truncation number ntr, for Nf ¼ 1. We see that as we increase the number of
evanescent operators included, the dependence drops from the observable. See Eq. (D7) for more details.
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We demonstrate this in Figs. 3 and 4 for the flavor-nonsinglet
and flavor-singlet case, respectively, in which we plot the
absolute value of these coefficients as a function of ntr for the

case Nf ¼ 1. In both cases, we observe that even after a few
steps of the algorithm the coefficients have already relaxed to
small values.Thebehavior for larger values ofNf is analogous.
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