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“Dark quark nuggets,” a lump of dark quark matter, can be produced in the early universe for a wide
range of confining gauge theories and serve as a macroscopic dark matter candidate. The two necessary
conditions, a nonzero dark baryon number asymmetry and a first-order phase transition, can easily be
satisfied for many asymmetric dark matter models and QCD-like gauge theories with a few massless
flavors. For confinement scales from 10 keV to 100 TeV, these dark quark nuggets with a huge dark baryon
number have their masses vary from 1023 g to 10−7 g and their radii from 108 cm to 10−15 cm. Such
macroscopic dark matter candidates can be searched for by a broad scope of experiments and even new
detection strategies. Specifically, we have found that the gravitational microlensing experiments can probe
heavier dark quark nuggets or smaller confinement scales around 10 keV; collision of dark quark nuggets
can generate detectable and transient electromagnetic radiation signals; the stochastic gravitational wave
signals from the first-order phase transition can be probed by the pulsar timing array observations and other
space-based interferometry experiments; the approximately massless dark mesons can behave as dark
radiation to be tested by the next-generation cosmic microwave background experiments; the free dark
baryons, as a subcomponent of dark matter, can have direct detection signals for a sufficiently strong
interaction strength with the visible sector.
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I. INTRODUCTION

The theory of quantum chromodynamics (QCD) is an
integral part of the Standard Model (SM) of elementary
particles as it successfully explains hadron properties,
nuclear structure, and phenomena. While QCD predicts
that most matter in the current universe is in the form of
hadrons, the theory also admits an exotic phase of “quark
matter” at high baryon-number density and low temper-
ature [1]. In his seminal work, Witten [2] proposed that
“nuggets” of quark matter could have formed in the early
universe at the epoch of quark confinement, and that these
nuggets could survive in the universe today as a dark matter
candidate. One can understand Witten’s quark nuggets as
macroscopic nucleons (not nuclei) with a very large baryon
number, NB > 1030. Whereas Witten assumed that our
QCD confining phase transition was a first-order one,
numerical lattice studies later revealed that the transition
is predicted to be a continuous crossover instead (see, e.g.,

Ref. [3]), and therefore quark nugget production is not
viable in the SM.
Nevertheless, the requirements for quark nugget pro-

duction are generic, and although SM QCD does not have
all the right ingredients, it is not hard to find new physics,
beyond the Standard Model (BSM), that facilitates the
formation of these objects. In particular, the formation of
nuggets needs (i) a first-order phase transition to have (at
least) two phases with different vacuum energies; (ii) a
conserved global charge for a small pocket of space to build
up a large global charge; (iii) a cosmological excess of
matter over antimatter, corresponding to a nonzero density
of a conserved global charge. The SM QCD satisfies the
last two conditions but not the first one. Regarding the first
condition, the literature on BSM physics is replete with
confining gauge theories including the UV completion of a
composite Higgs model [4,5], supersymmetric models
[6,7], twin Higgs models [8], dark QCD [9–16], and
Nnaturalness models [17]. As we will discuss further in
Sec. II, the condition of a first-order phase transition is
easily satisfied as long as the number of light vectorlike
fermions obeys Nf ≥ 3 for an SUðNÞ gauge theory. (In SM
QCD the up and down quarks are light compared to the
confinement scale, but the strange quark is marginal, and
consequently the QCD phase transition is not first order).
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For the second condition and similar to the U(1) baryon
number in the SM, it is natural to have (approximately)
good symmetry in the new strong-dynamics sector such as
technibaryon, twin baryon, and dark baryon number
symmetries. Finally, for the third condition it is natural
to expect that a matter-antimatter asymmetry may be shared
between the dark and visible sectors [18–26].
It is interesting to remark here that, based on the

conditions above, the presence of dark quark nuggets
may be unavoidable in some models of dark baryon dark
matter [5]. As we will discuss in Sec. II, for models with
three or greater flavors of light dark quarks, the confining
phase transition is expected to be a first-order one, and dark
quark nuggets can be formed. The dark baryon number
could be mainly in the dark quark nugget states, similar to
the QCD nuggets in Ref. [2]. This observation motivates a
reevaluation of earlier studies of dark baryon dark matter to
assess whether those models also predict a relic abundance
of dark quark nuggets.
In this work we consider a class of BSM confining gauge

theories, collectively denoted as “dark QCD,” which are
parametrized by the number of colors, the number of
flavors of light vectorlike fermions, and the confinement
scale. We study the properties of “dark quark matter” and
the conditions under which stable “dark quark nuggets”
(dQN) can form through a cosmological phase transition in
the early universe. Depending on the confinement scale, the
typical nugget’s mass and radius can reach as large as
MdQN ∼ 1023 g and RdQN ∼ 108 cm. We argue that these
nuggets can survive in the universe today where they
provide a candidate for the dark matter, and we explore
various observational prospects for their detection.
Dark quark nuggets are examples of macroscopic dark

matter; for a recent review see Ref. [27]. Given the null
results of searching for a weakly interacting massive
particle with a mass of Oð100 GeVÞ [28], it is natural to
explore other well-motivated dark matter models with
different masses. Since the past several years have seen
renewed interest in these dark matter candidates, let us
briefly note some of the recent developments and clarify
their connection to our own work. To our knowledge the
author of Ref. [2] was the first to propose that the dark
matter could consist of macroscopic objects with nuclear
densities, and he called these objects quark nuggets since
they were made up of Standard Model quark matter.
Subsequent work introduced a coupling to the QCD axion,
which led to axion quark nuggets, where quark nuggets are
formed through CP-violating domain walls with modified
properties and enhanced stability [29–31]. Other authors
proposed that six-flavor quark nuggets could form if the
electroweak phase transition were supercooled to the QCD
scale [32]. The nuggets that are made of techniquarks have
also been studied in technicolor models [33].
The more recent interest in macro dark matter is

motivated by the idea that dark matter’s self-interactions

can allow composite objects to form by aggregation.
Several authors have considered that the dark sector could
undergo a period of dark nucleosynthesis to form com-
posite objects with Oð1Þ constituents [34–37]. The authors
of Refs. [38,39] studied a model of asymmetric dark matter
in which Oð≫1Þ Dirac fermions become bounded together
through a Yukawa interaction via a light scalar mediator
and form a nonrelativistic degenerate Fermi gas; they called
these objects dark matter nuggets. In work by other
authors, the properties and production mechanism of these
asymmetric dark matter nuggets was clarified and refined
[40,41]. The authors of Ref. [42] considered composite
objects, which they called dark blobs, that can be formed
from either bosonic or fermionic constituent particles, and
they study the associated detection strategies.
The remainder of this article is organized as follows.

In this work we study a class of BSM confining gauge
theories, collectively denoted as “dark QCD,” that are
introduced in Sec. II. We discuss the conditions under which
the confining phase transition is a first-order one, which is a
necessary condition for the formation of dark quark nuggets.
In Sec. III we analyze the properties of dark quark matter and
discuss how the Fermi degeneracy pressure provided by the
(conserved) dark baryon number supports the dark quark
nugget against collapse. Section IV addresses the cosmo-
logical production of dark quark nuggets and contains esti-
mates for their mass, size, and cosmological relic abundance.
In Sec. V we discuss various observational signatures
including gravitational wave radiation, dark radiation, col-
liding and merging signatures, and prospects for direct
detection. We conclude in Sec. VI. In Appendix A, we
provide a calculation of the phase transition based on the
effective sigma model for the dark chiral symmetry breaking.

II. DARK QUANTUM CHOROMODYNAMICS

In this section we introduce the model being considered
in the remainder of the article. In particular we are
interested in “dark QCD” with Nd colors and Nf flavors
of (approximately massless) vectorlike fermions. In our
model, we will assume that there is no dark electroweak
gauge group or dark neutrino. More or less, the dark QCD
is anticipated to have a similar asymptotic-free dynamics as
our SM QCD. In an ultraviolet energy range, the dark
SUðNdÞ QCD has a perturbative gauge coupling and with
the particle content composed of N2

d − 1 dark gluons, Nf

dark quarks, and Nf dark antiquarks. The gauge coupling
becomes strong in an infrared scale Λd, and both confine-
ment and chiral symmetry breaking happen below the dark
QCD scale Λd with N2

f − 1 dark mesons in the low-energy
theory.1 Different from the SM QCD, where the phase

1This counting of dark mesons works for Nd ≥ 3. For Nd ¼ 2,
the chiral symmetry breaking is SUð2NfÞ → SPð2NfÞ with
2N2

f − Nf − 1 dark mesons [43].
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transition is a crossover one [3], there is a wide range of
model parameter space for the dark QCD phase transition
to be first order.

A. The model

Let ψ iðxÞ for i ∈ f1; 2;…; Nfg be a collection of
Dirac spinor fields or dark quark, and let Ga

μðxÞ for a ∈
f1; 2;…; N2

d − 1g be the dark gluon fields and a collec-
tion of real vector fields that form the connection of an
SUðNdÞ gauge group under which the ψ i transform in the
fundamental representation. The properties of these par-
ticles and their interactions are given by the following
Lagrangian:

L ¼
XNf

i¼1

½ψ̄ iiγμDμψ i −miψ̄ iψ i� −
1

4
Ga

μνGμνa

−
1

4

θd
2π

g2d
4π

Ga
μνG̃

μνa; ð2:1Þ

where

Dμψ i ¼ ∂μψ i − igdGa
μTaψ i;

Ga
μν ¼ ∂μGa

ν − ∂νGa
μ þ gdfabcGb

μGc
ν;

G̃μνa ¼ 1

2
ϵμνρσGa

ρσ: ð2:2Þ

The generators of SUðNdÞ are denoted as Ta, and the
structure constants are denoted by fabc.
The model parameters are the number of colors Nd ∈

f2; 3; 4;…g, the number of flavors Nf ∈ f1; 2; 3;…g, the
dark gauge coupling gd ∈ ½0;∞Þ, the mass parameters
mi ∈ ½0;∞Þ, and the theta parameter θd ∈ ½0; 2πÞ. We will
consider both the case of massless quarks, mi ¼ 0, and
massive quarks, mi ≠ 0. For simplicity, we assume that the
model is CP conserving with θd ¼ 0. There could exist
nonrenormalizable operators for the SM sector interacting
with the dark QCD sector, which will be introduced and
discussed in a later section.
The fermion mass term in Eq. (2.1) can be written more

generally as mijψ̄ iψ j for mij ∈ C, but we have performed a
field redefinition to write it as miψ̄ iψ i with mi being real
and non-negative. For mi ¼ 0 the theory respects a chiral
flavor symmetry, SUðNfÞV × Uð1ÞV × SUðNfÞA × Uð1ÞA.
The symmetry group Uð1ÞV has an associated conserved
charge, which is the dark baryon number, Uð1ÞBd

; the dark
gluons, dark quarks, and dark antiquarks have charges
QBd

ðGaÞ ¼ 0, QBd
ðψ iÞ ¼ 1=Nd, and QBd

ðψ̄ iÞ ¼ −1=Nd,
respectively. The axial Uð1ÞA symmetry is anomalous
under the dark QCD gauge interactions and does not lead
to a light Nambu-Goldstone boson after spontaneous chiral
symmetry breaking. For mi ≠ 0 the subgroup SUðNfÞA ×
Uð1ÞA is explicitly broken.

B. Color confinement

Quantum effects lead to the renormalization group (RG)
flow of the coupling gd. Let ĝdðμÞ be the running coupling,
and let μ be the renormalization scale. The RG flow
equation is

μ
dĝd
dμ

¼ βgd ¼
ĝ3d

16π2
bgd þOðĝ5dÞ; ð2:3Þ

and the leading-order term given by [44,45]

bgd ¼ −
11

3
Nd þ

2

3
Nf; ð2:4Þ

which can be negative.
We are interested in models with Nf < 11Nd=2 for

which bgd < 0, and the theory becomes more strongly
coupled in the IR (smaller μ). If we take ĝdðμUVÞ ¼ gUV as
a reference point where the theory is weakly coupled,
gUV ≪ 4π, then by solving the RG flow equation we
observe that ĝdðμÞ diverges at μ ¼ μ�. As the gauge
coupling becomes larger, the interactions among quarks
and gluons become stronger, leading to a color-confining/
chiral-symmetry-breaking phase of the theory. The value of
μ� provides a rough (one-loop perturbative) estimate of the
confinement scale, Λd ≈ μ�, which gives

Λd ≈ μUV exp½−8π2=ðjbgd jg2UVÞ�; ð2:5Þ

assuming that bgd < 0.
Around the confinement scale, the fermion-antifermion

operator also develops a nonzero expectation value with
hψ̄ψi ∼ Λ3

d, which spontaneously breaks the SUðNfÞA
flavor symmetry and provides dark mesons as IR degrees
of freedom (d.o.f.). The dark meson decay constant is
fπd ∼ Λd, while their masses are related to the dark quark
masses by m2

πdf
2
πd ∼miΛ3

d. The dark baryon masses have
mBd

∼ 4πΛd and are heavier. The temperature of the
confining/chiral-symmetry-breaking phase transition hap-
pens at Tc ∼ Λd. Some of our later calculations will be
sensitive to some ratios of quantities like mBd

=Tc, which
requires a nonperturbative tool like lattice QCD to obtain a
precise value.

C. Confining phase transition

Let us now consider the behavior of this theory in a
finite-temperature system, and specifically we are inter-
ested in a system whose temperature is close to the critical
temperature of the confining phase transition, T ∼ Tc. The
order of magnitude of the critical temperature is set by the
confinement scale, Tc ∼ Λd. Suppose that the system is
heated to a temperature T > Tc and allowed to cool
adiabatically to T ∼ Tc. Since the temperature sets the
typical momentum transfer jΔpj of particles in the plasma,
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the system will be in the unconfined phase for T > Tc ∼ Λd
where jΔpj ∼ T > Λd. However, as the temperature reaches
close to Λd the system will pass into the confined phase.
At the same time a chiral condensate forms, hψ̄ψi ≠ 0,
signaling that the chiral symmetry is spontaneously
broken.2 We are interested in whether the corresponding
phase transition is a first-order one, which is one of the
necessary conditions to form the dark quark nuggets.
The order of this phase transition has been studied on

general grounds by Pisarski and Wilczek (PW) [46] for
Nd ≥ 3 (see Ref. [47] for the Nd ¼ 2 case). Using a
perturbative ϵ expansion, they argue that the chiral phase
transition will be first order if the number of light vectorlike
fermion flavors is greater than or equal to three; in our
notation, this corresponds to

PWargument∶ Nf ≥ 3 for mi ≪ Λd

⇒ first-order phase transition: ð2:6Þ

The essence of the argument is to write down an effective
field theory describing the self-interactions of the chiral
condensate, Σij ∼ hψ̄ ið1þ γ5Þψ ji with i; j ¼ 1; 2;…; Nf.
Besides the instanton-generated Uð1ÞA-breaking term that
is suppressed in the large Nd limit, there are two couplings
associated with the self-interaction operators, ðTrΣ†ΣÞ2 and
TrðΣ†ΣÞ2. PW calculate the beta functions for these
couplings and argue that for Nf ≥ 3 the RG flow equations
do not have an IR stable fixed point. In the absence of an IR
stable fixed point, the theory cannot be smoothly evolved to
arbitrarily low scales (temperatures), but instead some
critical behavior must arise in the form of a first-order
phase transition.
Whereas the PW argument infers the existence of a first-

order phase transition indirectly from RG flow trajectories
in the chiral effective theory, one can also study the phase
transition directly by evaluating the thermal effective
potential for the chiral condensate and calculating the
thermal transition rate between coexistent phases. To justify
a perturbative calculation of the effective potential, this
approach is reliable only when the couplings are small, but
nevertheless we can infer the behavior at a strong coupling
by studying the trending behavior as the coupling is
increased toward the nonperturbative regime. The results
of this analysis are detailed in Appendix A; in particular, we
confirm that the chiral effective theory admits a first-order
phase transition in the regime consistent with the PW
argument.
Since the PW argument is inherently perturbative in

nature, one might worry that its conclusions do not apply
for a strongly coupled system. Thus it is important to “test”
the PW argument against numerical lattice studies of the

chiral phase transition. In Fig. 1 we summarize the results
of several lattice studies for different values of Nd and Nf
(assuming massless quarks/antiquarks) for Nd ¼ 3, 4
[48–52]. We conclude that the PW argument is supported
by numerical lattice simulations, which take all nonper-
turbative effects into account. For Nd ¼ 2, more lattice
QCD simulations are required to determine the order of
phase transition [53,54].
In Fig. 1, we also indicate the parameter region where the

leading-order beta function is positive and the theory is
“IR-free” rather than exhibiting confinement or chiral
symmetry breaking at low energies. For smaller values
of Nf, the “conformal window” corresponds to a range of
parameters in which the theory goes to a nontrivial fixed
point in the IR, and there is neither confinement nor chiral
symmetry breaking. The boundary between the conformal
window and models with chiral symmetry breaking (at
smaller Nf) is an active subject of research for both lattice
QCD or other semianalytic approaches. In our plot, we take
the point of view based on the review paper in Ref. [55]: the

FIG. 1. The nature of the chiral phase transition in dark QCD is
controlled by the number of colors, Nd, and the number of
massless, vectorlike flavors of fermions,Nf . Points labeled by 1st,
2nd, and “cross” are known from lattice studies [48–52] to exhibit
a first-order phase transition, a second order phase transition, and
a continuous crossover, respectively. Analytical arguments
[46,47] imply that points falling into the unshaded (white) region
will exhibit a first-order phase transition. The theory is not
confining in the orange shaded regions: above the dotted line the
beta function remains positive, and between the dotted and dot-
dashed lines, the theory becomes conformal at low energies. The
precise location of the conformal window’s boundaries is a matter
of active debate [55].

2We assume that both chiral symmetry breaking and color
confinement occur at around the same time during the phase
transition at T ¼ Tc ∼ Λd.
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conformal window line is determined by Nd ¼ 2 and
Nf ≳ 8 [56,57] and Nd ¼ 3 and Nf ≳ 10 [58,59]. In the
dot-dashed line of Fig. 1, we simply use the information at
Nd ¼ 2, 3 to obtain the conformal window boundary line
as Nf ≈ 2Nd þ 4.
Finally let us remark on the range of interest for the

model parameters. We will take Nf ≥ 3 to ensure a first-
order chiral phase transition, and we will take Nf ≲ 2Nd þ
4 to ensure that confinement occurs. Then the parameter
range of interest is

3 ≤ Nf ≲ 2Nd þ 4 with mi ≪ Λd: ð2:7Þ
We want to stress that there is a wide range of parameter
space in ðNd; NfÞ for the dark QCD phase transition to be a
first-order one.

D. Differential vacuum pressure: B

During the confining/chiral-symmetry phase transition,
the system passes from a phase in which color is uncon-
fined and the chiral symmetry is unbroken into a second
phase in which color is confined and the chiral symmetry is
broken. In general the vacuum energy of these two phases
will differ, and it is the lower vacuum energy of the
confined phase that makes the phase transition energeti-
cally favorable at low temperature. Since the vacuum has an
equation of state, ρ ¼ −P, we can equally well talk about
the differential vacuum pressure between the two phases.
Following the notation of the MIT bag model of SM
nuclear structure [60], we denote this differential vacuum
pressure as B, which has a mass dimension equal to 4. In
principle B can be expressed in terms of the model
parameters: Λd, Nd, Nf, and mi. However, a robust
calculation of B requires nonperturbative methods, such
as numerical lattice techniques. Therefore we will generally
take B as a free parameter, while keeping in mind that it is
roughly set by the confinement scale:

B ¼ ΔPvacuum ¼ Pconfined − Punconfined ∼ Λ4
d: ð2:8Þ

In Sec. III we will see that B controls the density and energy
of the dark quark matter that resides inside of dark quark
nuggets. Consequently in Sec. IV C we will find that B also
sets the mass scale and radius of cosmologically produced
dark quark nuggets.

III. DARK QUARK MATTER

The theory discussed in Sec. II admits a state of “dark
quark matter” (dQM) at zero temperature and finite dark-
baryon-number density. In this section we calculate the
thermodynamic properties of dQM by adapting a similar
calculation from Ref. [2]. The main results of this section
appear in Eqs. (3.4) and (3.5), which give energy density
and the dark-baryon-number density of the dark quark
matter contained within a stable dark quark nugget.

A. Modeling dQM as a relativistic
degenerate Fermi gas

We suppose that the model from Sec. II is brought to a
finite temperature T where the dark gluons, dark quarks,
and dark antiquarks are allowed to reach thermal equilib-
rium. We further suppose that the system is prepared with a
nonzero dark baryon number.
Dark QCD mediates interactions among the dark gluons

and the dark quarks/antiquarks. If reactions such as ψ iψ̄ i ↔
GaGb and ψ iψ̄ i ↔ GaGbGc are in thermal equilibrium,
i.e., the thermally averaged rate exceeds the Hubble
expansion rate at the time of interest, then chemical
equilibrium imposes μGa

¼ 0 and μψ̄ i
¼ −μψ i

, where μ is
the chemical potential of the species. For simplicity, we
further suppose that the dark baryon number is shared
equally by all of the quark and antiquark flavors, which
implies that the chemical potentials are equal, μψ i

¼ μ, and
we also assume that the Nf flavors of dark quarks and
antiquarks are degenerate, which lets us write mi ¼ m;
these assumptions do not qualitatively impact our results.
We are interested in this system at a temperature mi ≪

T ≪ μ such that the quarks and antiquarks form a relativ-
istic degenerate Fermi gas [61]. Let n ¼ nψ − nψ̄ be the
ψ-number density, which contains an implicit sum over the
Nf flavors; let ρ ¼ ρψ þ ρψ̄ þ ρvacuum be the energy density
of quarks, antiquarks, and the dark quark matter vacuum;
and let P ¼ Pψ þ Pψ̄ þ Pvacuum be the corresponding
pressure. For a relativistic degenerate Fermi gas, and
neglecting the perturbative interactions among dark quarks
and gluons, these quantities are given by [61]

n ¼ g
μ3

6π2
; ρ ¼ g

μ4

8π2
þ B; and P ¼ g

μ4

24π2
− B;

ð3:1Þ

where B is the differential vacuum pressure from Eq. (2.8)
(normalized such that pressure vanishes in the hadronic
phase) and where g ¼ 2NdNf accounts for a sum over
identically distributed particles that differ in their spin,
color, and flavor. The number density of a dark baryon
number is given by

nBd
¼ 1

Nd
n ¼ Nf

μ3

3π2
; ð3:2Þ

since each dark quark carries a baryon number of 1=Nd and
each antiquark has −1=Nd. Note that nBd

is independent of
Nd; raising Nd means that there are more species of dark
quarks/antiquarks in the system, but that each one carries a
smaller dark baryon number.

B. Dark quark matter inside of nuggets

Now we suppose that the conserved dark baryon number
is localized in a region of space with finite volume. If the
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volume is allowed to vary, such as during the formation of a
dark quark nugget, then the system will evolve to an
equilibrium configuration in which the differential vacuum
pressure at the phase boundary is balanced against the
differential pressure arising from the particles, ΔPvacuum ¼
ΔPparticles.

3 Here we assume that the plasma temperature is
small compared to the phase transition temperature, which
lets us write ΔPvacuum ≈ B where B is the differential
vacuum pressure at zero temperature. We also continue
to assume that T ≪ μ, which lets us neglect the radiation
pressure that would arise from particles outside of the
nugget and instead write ΔPparticles ≈ gμ4=24π2. A cartoon
of this situation is illustrated in Fig. 2. Thus the equilibrium
condition is expressed as

Pjμ¼μeq
¼ g

μ4eq
24π2

− B ¼ 0; ð3:3Þ

and its solution is μeq ≈ ½12π2=ðNdNfÞ�1=4B1=4. For in-
stance Nd ¼ Nf ¼ 3 gives μeq ≃ 1.9B1=4.
Now we are equipped to calculate the properties of the

dark quark matter that resides inside of a stable dark quark
nugget. The energy density of the dark quark matter inside
of a dark quark nugget is calculated using ρ from Eq. (3.1)
and μ ¼ μeq from Eq. (3.3), which gives

ρdQM ¼ 4B; ð3:4Þ
and the density of the dark baryon number is evaluated with
nBd

from Eq. (3.2), which gives

nBd;dQM ¼
�
64Nf

3π2N3
d

�
1=4

B3=4: ð3:5Þ

Thus the energy per baryon of dark quark matter in dark
quark nuggets is found to be

ρdQM
nBd;dQM

¼
�
12π2N3

d

Nf

�
1=4

B1=4 ≃ 3.3
N3=4

d

N1=4
f

B1=4: ð3:6Þ

For instance Nd ¼ Nf ¼ 3 gives 5.7B1=4.
Looking back over these results, we observe that the

differential vacuum pressure between the confined and
unconfined phases, ΔPvacuum ¼ B from Eq. (2.8), is the
only scale that sets the density and energy of the dark quark
matter that resides inside of dark quark nuggets. We will
use Eqs. (3.4) and (3.5) in Sec. IV C to estimate the size and
mass of a typical dark quark nugget, and we will use
Eq. (3.6) in the subsection below to discuss the stability of
dark quark matter.

C. Stability of dark quark matter

The quantity ρdQM=nBd;dQM is used to assess whether the
state of dark quark matter is more or less stable than the state
of dark hadronic matter. Suppose that the lightest stable dark
baryons are all degenerate, and let their mass be denoted by
mBd

. In the dark hadronic state and for a volume of V, a state
with nBd

V units of a dark baryon number can have an energy
that is as low as mBd

nBd
V (if all the dark baryons are at rest

with negligible interactions and no additional particles are
present). Thus the state of dark quark matter is absolutely
stable provided that ρV < mBd

nBd
V. Using the expression

FIG. 2. This cartoon illustrates the localized nugget of dark quark matter, which is supported against collapse by the Fermi degeneracy
pressure arising from its conserved dark baryon number.

3The gravitational pressure is negligible for the range of dQN
masses considered in this paper.
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for ρ=nBd
from Eq. (3.6), the stability of dark quark matter

requires

B1=4

mBd

< 0.175

�
Nf=Nd

1

�
1=4

�
Nd

3

�
−1=2

: ð3:7Þ

Recall that we need Nf=Nd ≳ 1 for a first-order phase
transition. Both the differential vacuum energy, B, and the
dark baryon mass, mBd

, are controlled by the confinement
scale of the dark QCD, Λd. In SM QCD we have B1=4 ≃
150 MeV and mBd

≃ 938 MeV to give B1=4=mBd
≃ 0.160

[62]. For a generic dark QCD model, a nonperturbative tool
like lattice QCD is needed to estimate this ratio precisely. For
a fixed value of Nd, there is a critical value of the number of
flavors, Nf ¼ Nc

f, above which the infrared theory of dark
QCD becomes conformal instead of chiral symmetry break-
ing. When the number of flavor is close to the critical value,
we anticipate that this ratio is further suppressed and scales
like B1=4=mBd

∝ ðNc
f − NfÞ=Nf [32]. So, the dark quark

matter state becomes more stable for a larger value of Nf.
In Eq. (3.7), we have only compared the quark matter

state with a free baryon state. In the SM QCD, the most
stable state per baryon is the iron nucleus, which has the
energy per baryon slightly smaller (≈1%) than a free proton
and neutron. So, if the value of B1=4=mBd

is so close to the
upper bound in Eq. (3.7), one may need to check the
additional heavy-dark-nuclei evaporation processes, which
will depend on more detailed properties of the model like
the dark-meson-induced binding energy. For the massless
dark meson case or the chiral limit, the internucleon
binding energy is anticipated to be larger by only a factor
of around 2 than the SMQCD case [63], so for a wide range
of model parameters not saturating the bound in Eq. (3.7),
one does not need to worry about evaporation to heavy dark
nuclei.
Similar to the SM QCD nugget scenario, the equilibrium

between the two phases at a temperature below Tc is
maintained by surface evaporation and emission of light
particles. The detailed calculation on the establishment of
the equilibrium is complicated. Here we would only
provide simple pictures and argue that the nuggets may
survive the evaporation and meanwhile stay thermalized
with the plasma. In surface evaporation, the nugget emits a
dark baryon and undergoes ðNB þ 1Þ → NB þ 1 [64].
However, such processes require addition energy input
from the environment, as argued above. In SM QCD the
energy is dumped into the nuggets by neutrinos, which has
a long free-streaming length ofOð0.1 mÞ at the QCD scale.
As we have no dark neutrinos in our model, the energy
carrier in the dark quark nugget scenario will be the
massless dark pions. However, because of the strong
interactions of dark mesons with other hadrons, their
free-streaming length is very short at the order of
102=Tc and around 100 fm for Tc ¼ 0.1 GeV and

mBd
=Tc ≈ 7. This much shorter length compared to the

neutrino one can lead a dramatical reduction on the energy
injection and hence the evaporation rate, and make the dark
quark nugget more stable against the evaporation process.
In addition, it has been argued that the reabsorption effect
will further enhance the stability of nuggets against
evaporation [65]. Therefore, we would ignore the dark
baryon dissipation from evaporation in the following
analysis.
Since there is no dark neutrino in our model, one may

wonder whether the dark quark nuggets will stay “hot” after
their formation below the phase transition. Wewant to point
out that the dark mesons can efficiently thermalize the dark
quark nuggets with the surrounding medium and make
nuggets cool as the universe cools down. Because dark
mesons have a short free-streaming length, the cooling of
nuggets is mainly through surface evaporation of dark
mesons from black-body radiation. To simplify our dis-
cussion, we keep the chemical potential and radius of the
nuggets fixed, which is reasonable within a Hubble time-
scale. We will check the cooling timescales for both an
earlier time with a tiny chemical potential and a later time
with a large chemical potential.
Using the Stefan-Boltzmann law of blackbody radiation,

we have the cooling rate given by

LðTÞ ¼ π3

30
gdπR2T4; with gdπ ¼ N2

f − 1: ð3:8Þ

The total energy inside has EðTÞ ¼ 4
3
πR3ρðTÞ with ρ ¼

gdQπ2T4=30when μ ≪ T and ρ ¼ gdQðμ4 þ 2π2μ2T2Þ=8π2
for T ≪ μ. Here, we take the d.o.f. as gdQ ¼ ð2NdNfÞ ×
7=8 for a temperature after the dark quark and dark
antiquark annihilation. Using the energy conservation
dEðTÞ=dt ¼ −LðTÞ, we can derive a differential equation
for the temperature change as a function of time and have
the cooling timescale (the time for the temperature
decreases from T to T=2) estimated as

τcool ¼
8<
:

16 ln 2
3

gdQ
gdπ

R; μ ≪ T;

10
π2

μ2

T2

gdQ
gdπ

R; μ ≫ T:
ð3:9Þ

When the temperature is high, the nugget radius is smaller
than the Hubble scale R ∼ 10−5dH because there are around
1014 nucleation sits within one Hubble volume (see
Appendix A). So the cooling time is shorter than the
Hubble expansion time. When the chemical potential is
high or the temperature is low, one has τcool=tH ∝
μ2R=Mpl ∼ 10−8 for the benchmark point with μ ∼ Tc ¼
100 MeV and R ∼ 0.1 cm from Eq. (4.10). The cooling
time has a mild Tc dependence: τcool ∼ T−1=3

c , so we have a
sufficiently fast thermalization for the nuggets with the
surrounding medium for the model parameter space in
this paper.
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IV. COSMOLOGICAL PRODUCTION
OF DARK QUARK NUGGETS

In this section we discuss how dark quark nuggets can
form in the early universe, we calculate their properties, and
we estimate their relic abundance.

A. Overview of dark quark nugget production

Dark quark nuggets may form at a first-order phase
transition during which dark color is confined and the chiral
symmetry is spontaneously broken. The production mecha-
nism for dark quark nuggets is very similar to the more-
familiar QCD quark nugget scenario [2]. Here we briefly
summarize the physical processes that lead to creation of
dark quark nuggets in the early universe. The production
process is also illustrated in Fig. 3 that shows a schematic
phase diagram for dark QCD.
(1) The dark sector and the SM sector remain thermal-

ized with each other until they decouple at a
temperature Tdec. Afterward the temperatures of
the two sectors evolve independently, decreasing
with the adiabatic expansion of the universe.

(2) As the temperature of the dark sector cools down to a
temperature T� slightly below the critical temperature
Tc, the bubbles of dark hadrons start to nucleate
out of the dark quark-gluon plasma. The pressure
differenceΔP ¼ B between the two phases drives the

growth of the bubbles, while the scattering of the
particles in the dark plasma on the bubble wall
induces a drag force on the bubble wall. A balance
between vacuum pressure and thermal pressure is
reached, and the bubble’s radius grows at a non-
relativistic terminal speed.

(3) It is energetically preferable for the dark baryon
number to remain in the unconfined phase, where
dark quarks are light, rather than entering the
confined phase, where dark baryons are heavy. Thus,
the dark baryon number accumulates in front of the
advancing bubble walls.

(4) The bubbles collide and coalescence with each other.
At the end of the phase transition, the dark hadron
phase occupies the majority of the Hubble volume,
with the remaining dark quark-gluon plasma left in
isolated regions that form dark quark nuggets. Most
of the dark baryon number is stored in dQN with the
remainder carried by free dark baryons.

(5) After the phase transition, the cosmological plasma
continues to cool and the remaining regions of dark
quark-gluon plasma shrink as the thermal pressure
decreases. When the temperature decreases below
the chemical potential in these regions, they become
dark quark nuggets, supported by degeneracy Fermi
pressure.

B. Dark baryon number accumulates
in the quark nuggets

Particles in the plasma scatter from the passing bubble
wall, and this causes the dark baryon number to accumulate
in the unbroken phase. In front of the wall, the baryon
number is carried by the dark quarks and antiquarks, which
are approximately massless. However, behind the wall the
dark baryon number is carried by dark baryons and anti-
baryons, which acquire a mass mBd

. If mBd
is much larger

than the temperature of the phase transition, Tc, then the
amount of baryon number entering the bubble will be
Boltzmann suppressed.
The authors of Ref. [66] have studied the kinematics of a

particle scattering from a bubble wall where the particle’s
mass changes. By applying that analysis to the problem of
dQN formation, we find that the dark baryon number will
be kinematically blocked from entering the confined-phase
bubbles if the dark baryon mass is sufficiently large:

mBd
> 2γwpz with pz ∼ prms ≃ 3.6Tc: ð4:1Þ

The factor of 3.6 in the root-mean-square momentum
follows from the Fermi-Dirac distribution. Here γw ¼
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2w

p
is the wall’s boost factor, and vw is its speed.

It is challenging to calculate the wall’s speed from first
principles [67]. (See also Ref. [68], which estimates the
maximum deflagration velocity allowed by entropy
increase and argues that vw is nonrelativistic.) However,

FIG. 3. A schematic phase diagram of the dark QCD sector is
shown here along with the trajectory through phase space during
the formation of dark quark nuggets. The entire system is initially
in the unconfined phase at high temperature and small chemical
potential (corresponding to the nonzero dark baryon asymmetry).
The system cools due to cosmological expansion, which triggers
a first-order phase transition. Some regions of space enter the
confined phase where the dark baryon asymmetry is eventually
carried by free dark baryons and antibaryons, but most of the dark
baryon asymmetry is collected into pockets of space that cool to
form dark quark nuggets. If the chemical potential is large, there
may be exotic phases, similar to the color superconductivity and
the color-flavor-locking phase of QCD [1], but we neglect this
possibility.
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due to the strongly coupled nature of the dark QCD
interactions, we think it is reasonable to expect that
particles in the plasma will induce a large drag force on
the wall and lead to a nonrelativistic terminal velocity with
γw ≈ 1. If that is the case, then Eq. (4.1) imposes a weak
constraint, mBd

≳ 7Tc. For the model parameters satisfying
this constraint, the dark baryon number is kinematically
preferred to stay in the unbroken phase. Otherwise, if
γw ≫ 1, effectively all particles in the plasma will have
enough energy to enter the bubble, and the dark baryon
number will hardly remain in the unbroken phase.

C. Dark quark nuggets: Mass, size,
and relic abundance

Let us now estimate the typical mass, size, and relic
abundance of the dark quark nuggets. The notation used in
this section is summarized in Table I. Already in Sec. III
we have studied the dark quark matter that resides inside of a
dark quark nugget, andwe have calculated its energy density,
ρdQM, and number density of the dark baryon number,
nBd;dQM. Now all that remains is to estimate the typical
amount of dark baryon number per nugget, NBd;dQN, and
then the nugget’s radius and mass are given by ð4π=3Þ×
R3
dQNnBd;dQM¼NBd;dQN and ð4π=3ÞR3

dQNρdQM¼MdQN.
We assume that all the nuggets have a comparable

amount of the dark baryon number, and that this quantity
is approximately conserved from the time of nugget
formation until today. Thus we can write NBd;dQN ¼
fnugnHubBd

ðtcÞ=ndQNðtcÞ where nHubBd
ðtcÞ is the cosmological

density of the dark baryon number at the time of the phase

transition, ndQNðtcÞ is the cosmological density of dark
quark nuggets at the time of the phase transition, and fnug is
the fraction of the dark baryon number that gets stored in
the dark quark nuggets (leaving a fraction ffree ¼ 1 − fnug
to be stored in free dark baryons).
The cosmological density of the dark baryon number can

be written as nHubBd
¼ YBd

s where YBd
is the cosmological

dark baryon number yield, and s is the cosmological
entropy density. We take the yield, YBd

, as a free parameter
and note for reference that the cosmological yield of the SM
baryon number is measured to be YB ≃ 10−10 [69]. The
entropy density can be written as s ¼ ð2π2=45Þg�ST3

γ;c

where g�S ¼ g�S;γ þ g�S;dðTc=Tγ;cÞ3 counts the effective
number of relativistic d.o.f. in the plasma at the phase
transition. Here, Tγ;c is the temperature of the visible sector
during the phase transition.
We estimate the density of dark quark nuggets at the phase

transition, ndQNðtcÞ, by adopting the results of Appendix A.
In the Appendix we study the dark QCD chiral phase tran-
sition using a chiral effective theory. The main result appears
in Eq. (A19), which gives nnucleations, the average number
density of chiral-broken-phase bubbles that are nucleated
over the course of the phase transition. We estimate that after
the phase transition is completed, there is roughly one nugget
produced for each nucleation, i.e., ndQNðtcÞ ≈ nnucleations.
This lets us infer the density of dark quark nuggets at the
end of the dark QCD phase transition to be

ndQNðtcÞ ≃ ð2.1 × 1014Þ
�

σ̃

0.1

�
−9=2

HðtcÞ3: ð4:2Þ

TABLE I. Notation used in this section.

Symbol Definition Equation

MdQN Mass of a typical dark quark nugget Eqs. (4.8), (4.11)
RdQN Radius of a typical dark quark nugget Eqs. (4.7), (4.10)
NBd;dQN Amount of dark baryon number in a typical dark quark nugget Eq. (4.6)

ndQNðtÞ Cosmological number density of dark quark nuggets at time t Eq. (4.2)
ΩdQNh2 Cosmological relic abundance of dark quark nuggets today Eq. (4.9)
Dinit Typical inter-nugget separation distance at the phase transition Eq. (4.3)

nBd;dQM Density of dark baryon number of the dQM inside of a dQN Eq. (3.5)
ρdQM Energy density of the dQM inside of a dQN Eq. (3.4)

YBd
Cosmological yield of dark baryon number (conserved)

nHubBd
ðtÞ Cosmological density of dark baryon number at time t

Nbary Dimension of the quasi-degenerate dark baryon multiplet Eq. (4.5)
mBd

Mass of the quasi-degenerate dark baryon multiplet
fnug ¼ 1 − ffree Fraction of dark baryon number stored in dark quark nuggets Eq. (4.4)

TdðtÞ & TγðtÞ Temperature of the dark and visible sectors at time t
g�;dðtÞ ≈ g�S;dðtÞ Effective number of relativistic dark-sector species at time t
g�;γðtÞ ≈ g�S;γðtÞ Effective number of relativistic visible-sector species at time t
Tc ¼ TdðtcÞ Temperature of the dark sector during the phase transition
Tγ;c ¼ TγðtcÞ Temperature of the visible sector during the phase transition
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We have defined the dimensionless parameter σ̃ ¼ σ=
ðB2=3T1=3

c Þ, and we have introduced σ, which represents
the surface tension of a critical bubble at the time of
nucleation; a larger value of σ implies less efficient bubble
nucleation, fewer nucleation sites, and more dark baryon
numbers per nugget. The Hubble parameter is given by
3M2

plHðtcÞ2 ¼ ðπ2=30Þg�ðtcÞT4
γ;c where g�ðtcÞ ¼ g�;γ þ

g�;d½TdðtcÞ=Tγ;c�4. The relation in Eq. (4.2) reveals that
there are typically ∼1014ðσ̃=0.1Þ−9=2 dark quark nuggets per
Hubble volume, regardless of the temperature of the con-
fining phase transition. The typical internugget separation
distance, Dinit, is then estimated as Dinit ¼ n−1=3dQN to obtain

Dinit ≃ ð77 cmÞ
�
g�ðtcÞ
10

�
−1=2

�
Tγ;c

0.1 GeV

�
−2
�

σ̃

0.1

�
3=2

;

ð4:3Þ

and for comparison the Hubble radius is dH≃4.6×106 cm.
We estimate fnug as follows. If the bubble wall expands

sufficiently slowly, then thermal and chemical equilibrium
is maintained at the phase boundary [2]. It is energetically
preferable for the dark baryon number to remain in the
unconfined phase where the dark quarks are massless,
rather than enter the confined phase where the dark baryons
acquire a mass mBd

≫ Tc. From these considerations (for
more details4 see Ref. [32]) one can estimate the fraction of
dark baryon number that goes into the dark quark nuggets
to be

fnug ¼ 1 − ffree ≈ 1 −
NbaryNd

Nf

ffiffiffiffiffiffi
2π

p

3ζð3Þ
�
mBd

Tc

�
3=2

e−mBd
=Tc :

ð4:4Þ

Here Nbary represents the number of quasidegenerate
baryons with mass mBd

in the confined phase (behind
the bubble wall) for the lowest-spin and color-singlet state
as a representation of the unbroken flavor symmetry
SUðNfÞV . Using a simple group theory calculation,5

one has

Nbary ¼
8<
:

ðNfþNd=2−1Þ!ðNfþNd=2−2Þ!
ðNf−1Þ!ðNf−2Þ!ðNd=2þ1Þ!ðNd=2Þ! ; Nd is even

2ðNfþNd=2−1=2Þ!ðNfþNd=2−5=2Þ!
ðNf−1Þ!ðNf−2Þ!ðNd=2þ3=2Þ!ðNd=2−1=2Þ! ; Nd is odd

:

ð4:5Þ

Taking Nd ¼ Nf ¼ 3 and mBd
=Tc ¼ 10 gives fnug ≃

99.2% and ffree ≃ 0.8%, meaning that most of the dark
baryon number is stored in the dark quark nuggets.
By combining the formulas for nHubBd

ðtcÞ and ndQNðtcÞ,
we estimate the amount of dark baryon number inside of a
dark quark nugget to be

NBd;dQN ≈
fnugnHubBd

ðtcÞ
ndQNðtcÞ

≃ ð2.6 × 1035Þ
�
fnug
1

��
YBd

10−9

�

×

�
Tγ;c

0.1 GeV

�
−3
�

σ̃

0.1

�
9=2

; ð4:6Þ

where we have used g�S ≈ g� ≃ 10. Here we have taken a
fiducial value of fnug ¼ 1, which corresponds to putting all
of the dark baryon number into the dark quark nuggets (and
leaving no dark baryon number for free dark baryons), but
more generally the parameter fnug can be related to the
confinement scale and phase transition temperature
through Eq. (4.4).
Using the estimate for NBd

, it is now straightforward to
estimate the radius and the mass of a typical dark quark
nugget. The radius of the dark quark nugget satisfies
ð4π=3ÞR3

dQNnBd;dQM ¼ NBd
where the density of the dark

baryon number in the dark quark matter state is given by
Eq. (3.5). Solving for RdQN gives the typical radius of a
dark quark nugget to be

RdQN ≃ ð0.073 cmÞ
�
N1=4

d

N1=12
f

��
B

ð0.1 GeVÞ4
�

−1=4

×

�
fnug
1

�
1=3

�
YBd

10−9

�
1=3

�
Tγ;c

0.1 GeV

�
−1
�

σ̃

0.1

�
3=2

:

ð4:7Þ

Similarly the mass of the dark quark nugget satisfies
ð4π=3ÞR3

dQNρdQM ¼ MdQN where the energy density of
the dark quark matter is given by Eq. (3.4). This lets us
estimate the typical nugget mass as

MdQN ≃ ð1.5 × 1011 gÞ
�
N3=4

d

N1=4
f

��
B

ð0.1 GeVÞ4
�

1=4
�
fnug
1

�

×

�
YBd

10−9

��
Tγ;c

0.1 GeV

�
−3
�

σ̃

0.1

�
9=2

: ð4:8Þ

Recall that 1 × 1011 g ≃ 5 × 10−23 M⊙.

4Note that there is a typo in Eq. (3.15) of the journal version of
Ref. [32]; the value of r is too large by a factor of 8. Upon
correcting the error, the quark nugget relic abundance,
ΩQN ∼ 1=r, is increased by a factor of 8, and Fig. 5 of Ref. [32]
is modified accordingly.

5These expressions are equal to the dimension of the repre-
sentation of the baryon multiplet. The dimension is calculated
with the aid of a Young tableau having two rows of Nd=2 boxes
for even Nd, or two rows with ðNd þ 1Þ=2 and ðNd − 1Þ=2 boxes
for odd Nd [14]. For example, Nbary ¼ 8 for Nd ¼ Nf ¼ 3,
reproducing the SM baryon octet.
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Finally we estimate the relic abundance of dark quark
nuggets in the universe today. Let ΩdQN ¼ ρdQNðt0Þ=
ð3M2

plH
2
0Þ where ρdQNðt0Þ is the cosmological energy

density of dark quark nuggets in the universe today and
H0 ¼ 100h km=sec=Mpc with h ≃ 0.674 [69]. Since the
dark quark nuggets are nonrelativistic, we can write
ρdQNðt0Þ ¼ MdQNndQNðt0Þ where ndQNðt0Þ is their cosmo-
logical number density today. If the nuggets do not merge
or evaporate (see Sec. V D), then their comoving number
density, ndQNðtÞaðtÞ3, is conserved; here aðtÞ is the
Friedmann-Robertson-Walker (FRW) scale factor at
time t. While the universe expands adiabatically, the
comoving entropy density, sðtÞaðtÞ3, is conserved.
Combining these formulas gives the relic abundance of
dark quark nuggets today to be

ΩdQNh2 ¼
MdQNndQNðtcÞ
3M2

plðH0=hÞ2
�
g�Sðt0ÞTγðt0Þ3
g�SðtcÞT3

γ;c

�

≃ ð0.090Þ
�
N3=4

d

N1=4
f

��
B

ð0.1 GeVÞ4
�

1=4

×

�
fnug
1

��
YBd

10−9

�
: ð4:9Þ

For reference, the relic abundance of dark matter is
measured to be ΩDMh2 ≃ 0.12 [69]. Thus the nuggets
can make up all of the dark matter (ΩdQNh2 ≃ 0.12) if
the differential vacuum pressure is at the nuclear energy
scale, B ≃ ð0.1 GeVÞ4, and if the dark baryon asymmetry is
around YBd

≃ 10−9. This result illustrates the same “coinci-
dence” that comes up in models of asymmetric dark matter

[5,70] where the dark matter’s mass and asymmetry are
comparable to the baryon’s mass and asymmetry.
Solving Eq. (4.9) for YBd

lets us write Eqs. (4.7) and
(4.8) as

RdQN ≃ ð0.081 cmÞ
�
ΩdQNh2

0.12

�
1=3� B

ð0.1 GeVÞ4
�
−1=3

×

�
Tγ;c

0.1 GeV

�
−1
�

σ̃

0.1

�
3=2

; ð4:10Þ

MdQN ≃ ð2.1 × 1011 gÞ
�
ΩdQNh2

0.12

��
Tγ;c

0.1 GeV

�
−3
�

σ̃

0.1

�
9=2

ð4:11Þ

In Fig. 4 we show the dark quark nugget’s mass and radius
for the interesting range of phase transition temperatures
from Tγ;c ¼ 1 keV to 1 PeV.

V. SIGNATURES AND TESTABLE
PREDICTIONS

In this section we discuss various observational signa-
tures of the theory that we have presented above. Some of
these observables directly test for the presence of dark
quark nuggets in our universe while other indirectly probe
the dark QCD model.

A. Dark radiation

In addition to a dark matter candidate, the dark QCD
model also admits a dark radiation candidate. The presence
of dark radiation in the universe is felt through its
gravitational influence, particularly during the formation
of the cosmic microwave background (CMB). In this

FIG. 4. The typical mass (left panel) and radius (right panel) of a dark quark nugget are shown here as functions of the critical
temperature of the confining phase transition. We assume TγðtcÞ ¼ TdðtcÞ≡ Tc, but if the dark sector is colder, then the mass and radius
are reduced according to Eqs. (4.10) and (4.11). The dimensionless parameter σ̃ ≡ σ=ðB2=3T1=3

c Þ measures the surface tension of the
confined-phase bubbles at the time of formation, which affects the initial dQN density through Eq. (4.2). The dark quark nuggets are
assumed to occupy the majority of dark matter energy density. If the scale of the confining phase transition is larger than ∼10 TeV, then
free dark baryons overclose the universe; see the discussion in Sec. V B. Also shown is the Subaru-HSC microlensing constraint after
taking the wave effects into account [71,72].
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section we discuss how CMB observations lead to con-
straints on the dark QCD model and its dark radiation.
In general we can write the energy density of particles in

the dark sector as

ρd ¼ ρd;rad þ ρd;mat; ð5:1Þ

where ρd;rad is the energy density of (relativistic) dark
radiation and ρd;mat is the energy density of (nonrelativistic)
dark matter. The various particle species in the dark
sector—quark and gluons in the unconfined phase and
mesons and baryons in the confined phase—are distributed
between radiation and matter.
In the following discussion we consider the model with

mi ¼ 0 in Eq. (2.1), which corresponds to massless dark
quarks in the unconfined phase and massless dark mesons
(Goldstone bosons) in the confined phase.6 If all species of
particles in the dark sector are in thermal equilibrium at a
common temperature Td, then the energy densities in the
dark sector are given by7

ρd;rad¼
π2

30
g�;dT4

d;

g�;d¼

8>><
>>:
2ðN2

d−1Þþ 7
8
ð4NdNfÞ; unconfined phase�ðN2

f−1Þ forNd≥3; confined phase;

ð2N2
f−Nf−1Þ forNd¼2; confined phase

ð5:2Þ

ρd;mat ¼
�
0; unconfined phase

ρBd
þ ρBd

þ ρdQN; confined phase
: ð5:3Þ

The first equality also defines the effective number of
relativistic species in the dark sector, denoted by g�;d. The
terms in ρd;mat count the energy density of nonrelativistic
species carrying a dark baryon number, which includes
dark baryons, dark antibaryons, and dark quark nuggets.
When placing constraints on dark radiation, it is custom-

ary to compare the dark radiation energy density against the
energy density of a single, massless neutrino/antineutrino
pair, ρν1 ¼ ð2Þð7=8Þðπ2=30ÞT4

ν where Tν ¼ ð4=11Þ1=3Tγ at
the CMB epoch [73]. Thus the dark radiation is para-
metrized by ΔNeff ≡ ρd;rad=ρν1jtcmb

, which evaluates to

ΔNeff ¼
�
11

4

�
4=3

�
4

7

�
g�;dðtcmbÞ

TdðtcmbÞ4
TγðtcmbÞ4

: ð5:4Þ

In general the dark and visible sectors may have different
temperatures. The parameter ΔNeff is already strongly
constrained [69], due to the absence of evidence for dark
radiation at the CMB epoch, and next-generation observa-
tions [74] are projected to improve the sensitivity by an
order of magnitude:

ΔNeff < 0.2 at 95%C:L:; current limit-Planck 2018;

σðΔNeffÞ ¼ 0.03; projected sensitivity-CMB-S4:

ð5:5Þ
The presence of dark radiation at the epoch of nucleo-
synthesis is more weakly constrained, ΔNeff < 1 at
95% C.L. [75].
To make a prediction for ΔNeff we must estimate Td=Tγ ,

but this ratio depends on the history of interactions between
the dark and visible sectors. Without loss of generality, we
identify three scenarios.
(1) The dark and visible sectors are thermalized at the

CMB epoch. If the dark sector remains in thermal
equilibrium with the visible sector at the CMB
epoch, then we take Td ¼ Tγ in Eq. (5.4) to evaluate
ΔNeff . We can distinguish two cases, either (1a) the
dark sector is still in the unconfined phase at tcmb or
(1b) it is in the confined phase. For case (1a) we find
ΔNeff ≫ 1 for any Nd ≥ 2 and Nf ≥ 1. For case
(1b) we haveΔNeff ≫ 1 for anyNd ≥ 2 andNf ≥ 2,
but ΔNeff ¼ 0 if Nf ¼ 1, because there is no Gold-
stone boson. Nevertheless, a model with Nf ¼ 1 is
not expected to have a first-order phase transition
[46] or allow for the formation of dQNs. In light of
the constraints on ΔNeff in Eq. (5.5), this first
scenario is not viable.

(2) The dark and visible sectors decouple prior to the
CMB epoch. The ΔNeff constraints are relaxed if
the dark sector decoupled from the Standard Model
at a time tdec < tcmb, before the CMB epoch. If we
assume that the cosmological expansion causes the
two sectors to cool adiabatically,8 then the comoving
entropy density is separately conserved in the two
sectors, and we can write

aðtÞ3g�;dðtÞTdðtÞ3 ¼ aðtdecÞ3g�;dðtdecÞTdðtdecÞ3;
ð5:6aÞ

aðtÞ3g�;γðtÞTγðtÞ3 ¼ aðtdecÞ3g�;γðtdecÞTγðtdecÞ3:
ð5:6bÞ

6If these masses were nonzero, it may be possible to evade
the constraints on dark radiation by allowing the dark
mesons to decay to visible-sector particles. However, relaxing
the assumption mi ¼ 0 opens an additional layer of model
building that we do not seek to address at this time.

7The factor 2ðN2
d − 1Þ counts the two spin states of the

ðN2
d − 1Þ species of dark gluons; the factor 4NdNf counts the

two spin states of the NdNf species of dark quarks and
antiquarks; and the factor ðN2

f − 1Þ or ð2N2
f − Nf − 1Þ counts

the flavors of massless dark mesons.

8The adiabatic cooling assumption breaks down if the dark
QCD phase transition occurs abruptly, because the liberated latent
heat will heat the dark plasma. We neglect this effect for these
estimates.
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Here g�;dðtÞ denotes the effective number of relativistic
species in the dark sector at time t, and it is given by
Eq. (5.2). Similarly g�;γðtÞ denotes the effective number of
relativistic species in the visible sector (Standard Model
d.o.f.). Assuming no new light d.o.f. beyond the Standard
Model and the dark QCD, then this factor is as large as
g�;γ ¼ 106.75 for Tγ ≳ 160 GeV before electroweak sym-
metry breaking, and it decreases to g�;γ ¼ 3.91 for Tγ ≲
0.2 MeV after neutrino scattering and electron-positron
annihilations have frozen out. At the time of decoupling
TdðtdecÞ ¼ TγðtdecÞ, but as particle species go out of
equilibrium the temperatures will begin to differ. Solving
Eq. (5.6) for tdec < t gives

TdðtÞ
TγðtÞ

¼
�

g�;γðtÞ
g�;γðtdecÞ

�
1=3

�
g�;dðtÞ

g�;dðtdecÞ
�
−1=3

; ð5:7Þ

and Eq. (5.4) becomes

ΔNeff ≃ ð0.027Þ½g�;dðtcmbÞ�−1=3½g�;dðtdecÞ�4=3

×

�
g�;γðtcmbÞ
3.91

�
4=3

�
g�;γðtdecÞ
106.75

�−4=3
: ð5:8Þ

Formulas for g�;d appear in Eq. (5.2).
One can now distinguish three different cases: (2a) the

dark sector is thermally decoupled while in the unconfined
phase, and it remains in the unconfined phase at the CMB
epoch; (2b) the dark sector is thermally decoupled while in
the unconfined phase, and it passed into the confined phase
prior to the CMB epoch; and (2c) the dark sector is
thermally decoupled while in the confined phase, and it

remains in the confined phase at the CMB epoch. These
cases are illustrated in Fig. 5. For each of these three cases,
the predicted ΔNeff is given by

ΔNeff ¼

8>>>>>>>>>>><
>>>>>>>>>>>:

0.027½2ðN2
d − 1Þ þ 7

8
ð4NdNfÞ�; ð2aÞ8>><

>>:
0.027

½2ðN2
d−1Þþ7

8
ð4NdNfÞ�4=3

½N2
f−1�1=3

; Nd ≥ 3

0.027
½2ðN2

d−1Þþ7
8
ð4NdNfÞ�4=3

½2N2
f−Nf−1�1=3 ; Nd ¼ 2

; ð2bÞ

(
0.027½N2

f − 1�; Nd ≥ 3

0.027½2N2
f − Nf − 1�; Nd ¼ 2

; ð2cÞ

:

ð5:9Þ
Here we have chosen g�;γðtdecÞ ¼ 106.75, but if decoupling
occurs after the electroweak epoch (Tew) instead, then the
value of g�;γðtdecÞ is smaller and ΔNeff is even larger, as can
be seen from Eq. (5.8). For cases (2a) and (2b), the predicted
ΔNeff is always larger than the level of the observational
constraints (5.5), mostly due to the large number of gluon
d.o.f., i.e., the 2ðN2

d − 1Þ term with Nd ≥ 3. However, for
case (2c), in which the dark sector is already confined when
it decouples from the visible sector, we predict an acceptable
level of dark radiation for the model with Nd ¼ Nf ¼ 2 and
for the models with Nd ≥ 3 and Nf ¼ 2 or 3. Since we also
need Nf ≥ 3 to ensure a first-order phase transition (see the
discussion in Sec. III), the only viable models are

Nd ≥ 3; Nf ¼ 3; Tew < Tdec < Tc; ΔNeff ≃ 0.21;

ð5:10Þ

FIG. 5. The predicted dark radiation, parametrized byΔNeff, is shown for the three cases depending on whether the dark sector is in the
unconfined or the confined phase at the time when it thermally decouples from the visible sector (tdec) and the time when the CMB is
generated (tcmb). Observational constraints (5.5) strongly prefer case (2c) in which the confining phase transition occurs while the dark
and visible sectors are still in thermal equilibrium. We assume that decoupling occurs before the electroweak epoch with g�;γ ¼ 106.75,
and otherwiseΔNeff is larger according to Eq. (5.8). We also assume massless dark mesons, but if the dark mesons are instead allowed to
decay to SM particles before tcmb, then the predicted ΔNeff is smaller. For Nf ¼ 1 there is no dark radiation for cases (2b) and (2c).
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in order to generate quark nuggets while avoiding constraints
from dark radiation. Alternatively, it may be possible to open
up the parameter space by lifting the dark meson mass and
allowing it to decay to Standard Model particles before the
CMB epoch.
3. The dark and visible sectors never thermalize. If the

dark sector never reaches thermal equilibrium with the
Standard Model, and if the freeze-in population is negli-
gible (see also Ref. [76]), then the ratio Td=Tγ is controlled
by the physics that populated the dark and visible sectors
initially. For instance, if both sectors are populated directly
from decay of the inflaton field ϕ after cosmological
inflation has evacuated the observable universe [77–79],
then Td=Tγ is proportional to a ratio of branching fractions
BFðϕ → darkÞ=BFðϕ → SMÞ. The ratio Td=Tγ can be
made arbitrarily small in a model in which the inflaton
decays predominantly to the visible sector, and the con-
straints from ΔNeff can be avoided. In Fig. 6, we show the
predicted dark radiation as a function of the temperature
ratio Td=Tγ . Even a small splitting, Td=Tγ ∼ 1=3, is enough
to evade existing constraints, but still provide a target for
next-generation surveys. However, if the two sectors do not
thermalize, then the dark and visible baryon asymmetries
may either arise directly from the inflaton decay (if it is CP-
and baryon-number violating), or baryogenesis may occur
separately in the two sectors.

B. Free dark baryons and antibaryons

After the confining phase transition occurs, the dark
baryon number is carried by the dark baryons (Bd), the dark

antibaryons (B̄d), and the dark quark nuggets (dQN).9 In
this section we estimate the relic abundances of the dark
baryons and antibaryons. We assume that the dark baryon
number is conserved, which forbids the dark baryons/
antibaryons from decaying, and instead they contribute to
the dark matter.
The dark baryons and antibaryons are kept in thermal

equilibrium with the dark mesons, such as the dark pions
πd, through annihilation reactions such as Bd þ B̄d ↔
πd þ πd and multimeson final states. Let hσvi denote the
thermally averaged cross section for this annihilation
reaction. At temperatures below the mass of the dark
baryon/antibaryon, T ≪ mBd

, the thermally averaged cross
section is well approximated by

hσvi ≈ ð50 mb · cÞ
�
1 GeV
mBd

�
2

; ð5:11Þ

where we have used the low-β p̄p annihilation rates [80].
This is roughly hσvi ≃ 130=m2

Bd
.

If the dark baryon asymmetry is negligibly small, then
the relic abundances of dark baryons and antibaryons, ΩBd

andΩB̄d
, are controlled by thermal freeze-out, which occurs

when the plasma temperature in the dark sector is approx-
imately TdðtfoÞ ≃mBd

=20. The standard freeze-out calcu-
lation [73] gives the relic abundances to be

ΩBd
h2 ¼ ΩB̄d

h2 ≃ ð0.052Þ
� hσvi
130m−2

Bd

�
−1
�

mBd

200 TeV

�
2

×

�
mBd

=TdðtfoÞ
20

��
TdðtfoÞ
TγðtfoÞ

��
g�
100

�
−1=2

: ð5:12Þ

The factor of TdðtfoÞ=TγðfoÞ ≤ 1 arises because the dark
and visible sectors may be thermally decoupled at the time
of dark baryon freeze-out. However, as we have already
discussed in Sec. IV C, a dark-baryon-number asymmetry
is required for the formation of dark quark nuggets, and this
asymmetry may affect the relic abundance of free dark
baryons and antibaryons as well (as we encounter in models
of asymmetric dark matter [5,70]). Recall from Eq. (4.4)
that the fraction of the dark baryon number carried by the
free dark baryons is ffreeYBd

where ffree ¼ 1 − fnug ≪ 1 is
desirable for the formation of nuggets. If the dark baryon
asymmetry is large enough, then the relic abundances are
given by

FIG. 6. Here we show the predicted dark radiation, parame-
trized by ΔNeff, for case (3) in which the dark sector is never
thermalized with the SM and the temperature ratio, Td=Tγ , is
determined by initial conditions. Several values of Nd and Nf are
shown, and we consider two cases depending on whether the dark
sector is confined at the CMB epoch. Provided that Td ≲ Tγ=3 the
dark radiation is small enough to evade existing limits, and if
Td ≳ Tγ=10, then the next-generation CMB-S4 program may
uncover evidence for dark radiation.

9The free dark baryons may undergo dark nucleosynthesis to
form dark nuclei, and this idea has been explored recently by
several authors [34,36,38,39,41]. Since the dark baryons typically
make up a subdominant population of the dark matter, the total
dark matter relic abundance is approximately not affected. Also,
the dark baryon number for the dark nucleus coagulation is
dramatically smaller than the one in nuggets, and their detection
potential could be dramatically different from nuggets.
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ΩBd
h2 ≃ ð0.14Þ

�
mBd

50 GeV

��
1 − fnug
0.01

��
YBd

10−9

�
and ΩB̄d

h2 ≈ 0; ð5:13Þ

which is insensitive to hσvi. If YBd
< 0, then the expres-

sions for ΩBd
and ΩB̄d

are exchanged. For sure, since dark
quark nuggets have the energy density with a factor of
around fnug=ð1 − fnugÞ larger than that from free dark
baryons, the specific parameter choice of mBd

¼ 50 GeV
and YBd

¼ 10−9 will have dark matter overclose the
universe.
The relic abundance of free dark baryons is shown in

Fig. 7 as a function of the dark baryon mass scale and
the dark baryon asymmetry. Requiring the relic abundance
of dark baryons to be smaller than the observed density of
dark matter, ΩDMh2 ≃ 0.12, yields an upper bound [81]
of mBd

≲ 200 TeV. Recall from Eq. (4.1) that we need
Tc ≲mBd

=7 to ensure that nuggets are able to form, and
therefore the overclosure condition implies an upper bound
on the dark-sector temperature at the phase transition:

ΩBd
þ ΩB̄d

< ΩDM ⇒ Tc ≲ 30 TeV: ð5:14Þ

However, the temperature in the dark sector may be smaller
than the temperature in the visible sector, Tc ≤ Tγ;c, which
affects the corresponding lower bounds on the dQN mass
and radius through Eqs. (4.10) and (4.11).
For comparison Fig. 7 also shows the relic abundance of

dark quark nuggets (4.9). For mBd
≲ 200 TeV the relative

abundances are given by

free dark baryons
dark quark nuggets

∶
ΩBd

þ ΩB̄d

ΩdQN
≃ ð0.031Þ

�
N1=4

f

N3=4
d

�

×

�
mBd

=B1=4

10

��
ffree=fnug

0.01

�
:

ð5:15Þ
Note that the free dark baryons are a subdominant pop-
ulation of the dark matter provided that

fnug ¼ 1 − ffree >

�
1þ 3.3

N3=4
d B1=4

N1=4
f mBd

�−1
; ð5:16Þ

which evaluates to fnug > 0.636 for Nd ¼ Nf ¼ 3 and
mBd

¼ 10B1=4. An expression for fnug appears in Eq. (4.4),
and by comparing with the limit above, we find that free
dark baryons typically make up a subdominant component
of the dark matter, which is predominantly composed of
dark quark nuggets.
Since the free dark baryons and antibaryons are very

abundant, it may be possible to detect their presence with
direct detection experiments on Earth. Their gravitational
influence is expected to be exceedingly weak, and therefore
an additional, direct coupling between the dark sector and
the SM is required. The nature of this interaction depends
on (as yet unspecified) UV physics. As an example we will
use the vector-vector interactions, ψ̄d;Lγμψd;Ld̄RγμdR=Λ2

UV,
which could be generated by integrating out a heavy scalar
coupling to both a dark quark and an ordinary quark and
using the Fierz transformation. Then the matrix element
for spin-independent (SI) scattering of a dark baryon
off a proton or neutron is written as Mp;n ¼ J0ψd

J0p;n=
ð4Λ2

UVÞ where J0ψd
¼ hBdjψ̄dγ

0ψdjBdi ≈ Nd and J0p;n ¼
hp; njd̄γ0djp; ni ≈ 1; 2. For a Fermionic dark baryon, the
SI scattering cross section for a neutron is

σSIBd−n ¼
N2

dμ
2
Bd−n

4πΛ4
UV

≃ ð2.5×10−44 cm2Þ
�

ΛUV

10 TeV

�
−4
�
Nd

3

�
2

;

ð5:17Þ
where μBd−n ¼ mBd

mn=ðmBd
þmnÞ ≈mn is the reduced

mass for mBd
≫ mn. Recent null results from the one

tonne-year exposure of XENON1T [28] imply an upper
bound on the dark baryon scattering cross section at the
level of σSIBd−n ≲ ð4.1 × 10−47 cm2ÞðmBd

=30 GeVÞ½ΩdQN=
ðΩBd

þ ΩB̄d
Þ�, where the Ω factor arises because dark

baryons are only a subdominant component of the dark
matter. Thus the nonobservation of free dark baryons by
XENON1T imposes

ΛUV ≳ ð42 TeVÞ
�
Nd

3

�
5=16

�
Nf

3

�
1=16

�
B

ð0.1 GeVÞ4
�

−1=16

×

�
ffree=fnug

0.01

�
1=4

: ð5:18Þ

FIG. 7. The relic abundances of free dark baryons and anti-
baryons are shown here in comparison with the relic abundance
of dark quark nuggets. Note that the curve for free dark baryons
(5.13) scales as ffree ¼ 1 − fnug, whereas the curve for dark quark
nuggets scales as fnug; we have taken fnug ¼ 0.99 for illustration,
but this value may vary greatly across models. For the free dark
baryon thermal relic abundance, we have used TdðtfoÞ ¼ TγðtfoÞ.
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This limit also means that if the cutoff scale is not too far
from 40 TeV, the future results from direct detection
experiments could have a chance to discover the dark
baryon.

C. Stochastic gravitational wave background

It is well known that cosmological phase transitions can
generate a stochastic background of gravitational waves
(GW) if the transition is first order [82]. First-order phase
transitions in dark sectors have also been studied specifi-
cally; see, e.g., Refs. [83–90]. In general three processes
contribute to the stochastic GW background during a first-
order phase transition: the collision of the scalar field
bubbles, sound waves in the plasma, and the magneto-
hydrodynamic (MHD) turbulence. The total GW spectrum
is then well approximated by the linear sum of these three
contributions:

Ωgwh2 ≈Ωϕh2 þ Ωswh2 þ Ωturbh2: ð5:19Þ

The spectra of these three sources are determined by several
key parameters from the bubble nucleation process. The
parameter β−1 measures the duration of the phase tran-
sition, and it is customary to write the dimensionless ratio
β=H where H is the Hubble parameter at the time when
GWs are generated; see also Eq. (A12). We assume that the
universe is radiation dominated during the phase transition
with the dominant energy component having a temperature
T� ≈ Tγ;c. The dimensionless parameter α measures the
released vacuum energy as compared to the radiation
energy of the plasma after the phase transition is completed;
see also Eq. (A20). The parameter α also controls the
efficiency with which energy is transferred into the bulk
motion of the fluid; this efficiency is parametrized by κf,
and an explicit expression appears below. The parameter vw
measures the speed of the bubble wall in the rest frame of
the plasma.
For bubbles that reach a terminal velocity (rather than

“running away”), the contribution to gravitational waves
from the bubble collisions themselves has been shown by
recent numeric study to be negligible [91]. The GW signal
fromMHD turbulence also turns out to be negligible for the
parameter range we are considering. Therefore we only
present the formula for the sound wave contribution, which
fits to [91]

Ωswh2 ¼ ð8.5 × 10−6Þ
�

g�
100

�
−1=3

Γ2Ū4
f

�
β

H

�
−1
vw

�
f
fsw

�
3

×

�
7

4þ 3ðf=fswÞ2
�

7=2
: ð5:20Þ

Here Γ ≈ 4=3 is the adiabatic index, and Ūf ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið3=4Þκfα

p
is the root-mean-squared fluid velocity. The peak fre-
quency, fsw, is given by

fsw ¼ ð8.9μHzÞ 1

vw

�
β

H

��
zp
10

��
Tγ;c

100 GeV

��
g�
100

�
1=6

;

ð5:21Þ

where zp ≃ 10 is a simulation-derived factor and g� is the
effective number of relativistic species. Using Eqs. (5.3)
and (5.7) we can write g� ¼ g�;γ þ g�;dðTd=TγÞ4. The
efficiency coefficient κf is in general a function of vw
and α, and a numerical fit of κfðvw;αÞ is done in Ref. [67]
for four different scenarios of wall velocity. In our
calculation we use

κf ¼
α2=5

0.017þ ð0.997þ αÞ2=5 ; ð5:22Þ

which corresponds to a subsonic wall velocity.
Using the formulas above we have calculated the

predicted spectrum of gravitational wave radiation, and
we present our results in Fig. 8. For comparison we also
show the projected sensitivities of various GW interferom-
eter observatories and several pulsar timing array experi-
ments. In calculating Ωgwh2 we fix vw ¼ cs ¼ 1=

ffiffiffi
3

p
, we

assume Tγ;c ≡ TγðtcÞ ¼ TdðtcÞ≡ Tc, we vary Tc from
10 keV to 100 TeV (corresponding to the different colors),
and we choose two combinations of α and β: ðα; β=HÞ ¼
ð0.1; 104Þ (solid lines) and ð1; 103Þ (dashed lines). We also
choose Nd ¼ Nf ¼ 3, which determines g� ¼ g�;γ þ g�;d
through Eq. (5.2) to be g� ¼ 3.8, 13.0, 154.25, and 154.25
for Tc ¼ 10 keV, 100 MeV, 100 GeV, and 100 TeV.

FIG. 8. We show the GW spectrum that is predicted to arise
from a first-order confining phase transition in dQCD along with
the projected sensitivities of various future GW interferometer
and pulsar timing array experiments [92–100]. We vary the phase
transition temperature from Tγ;c ¼ 10 keV to 100 TeV, and we
show ðα; β=HÞ ¼ ð0.1; 104Þ (solid lines) and ð1; 103Þ (dashed
lines). The interferometer sensitivities are calculated using
Ωgw ¼ ð2π2f3=3H2

0ÞSn where S1=2n is the noise amplitude spec-
tral density; often the power-law integrated sensitivity is shown
instead, which can be 1 or 2 orders of magnitude stronger.
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A robust calculation of α and β in dQCD is challenging,
since the theory becomes strongly coupled at the phase
transition. Using a low-energy chiral effective descrip-
tion of the phase transition in Appendix, we find that
ðα; β=HÞ ¼ ð0.1; 104Þ may be typical values; see Fig. 12.
We also present the GW spectrum for ðα; β=HÞ ¼ ð1; 103Þ,
which is more favorable for detection, to allow for the
possibility that the transition is more strongly first order
than the chiral effective theory would suggest. If the
confinement scale is on the lower end, corresponding to
Tc ∼ 10 keV, then the GW signal will be probed by pulsar
timing array observations such as EPTA [92], IPTA [93],
and SKA [94]. Alternatively if Tc ∼ 100 MeV to 100 GeV,
then the GW signal could be accessible to future space-
based gravitational wave interferometer experiments such
as LISA [95], Taiji [96,97], DECIGO [98], BBO [98],
and ET [99].

D. Cosmic rays from colliding and
merging dark quark nuggets

Let us now turn our attention to astroparticle probes of
dark quark nuggets in the universe today. If a pair of dark
quark nuggets were to collide today, some fraction of the
initial energy would be liberated as dark radiation (mostly
dark mesons), and a new dQN would be formed from the
merger. If the dark sector has a direct coupling to the
Standard Model, the dark mesons may decay into ultrahigh
energy SM particles, and the observation of these cosmic
rays thereby provides a new channel for the indirect
detection of dark quark nuggets.

1. Collisions of dark quark nuggets near the Sun

Let us begin by estimating the rate of dQN collisions
nearby to the Sun. Here we assume that dark quark
nuggets make up all of the dark matter, ρdQN ≈ ρDM ≃
0.3 GeV=cm3, and that all nuggets have the same mass and
radius: MdQN given by Eq. (4.11) and RdQN given by
Eq. (4.10). The rate of dQN collisions per unit volume is
estimated as γcollide ≈ n2dQNvdQNAdQN where ndQN ¼
ρDM=MdQN is the number density of dQNs near the Sun,
vdQN ¼ vDM ≃ 10−3 is the typical speed of a dQN in the
Milky Way, and AdQN ¼ πR2

dQN is the geometrical cross
section of a dark quark nugget. (The gravitational enhance-
ment to AdQN is negligible.) Now consider a spherical
region of radius d centered at the Sun. The rate of dQN
collisions within this region is roughly ΓcollideðdÞ≈
γcollide4πd3=3, which evaluates to

Γcollide ≃ ð16 yr−1Þ
�

B
ð0.1 GeVÞ4

�
−2=3

�
Tγ;c

0.1 GeV

�
4

×

�
σ̃

0.1

�
−6
�

d
10 pc

�
3

: ð5:23Þ

Similarly we can define a distance dyr such that
Γcollide ¼ 1 yr−1, which gives

dyr ≃ ð4.0 pcÞ
�

B
ð0.1 GeVÞ4

�
2=9

�
Tγ;c

0.1 GeV

�
−4=3

�
σ̃

0.1

�
2

:

ð5:24Þ

We estimate the amount of energy liberated during a
collision as 2 ×MdQNv2dQN=2, which is just the kinetic
energy of the two incident dQNs. Suppose that a fraction
frad of this energy goes into visible, SM radiation. If
the collision takes a time Δt to complete, then the
corresponding power output is estimated as Pcollide ≈
fradMdQNv2dQN=Δt, which evaluates to

Pcollide ≃ ð4.8 × 10−11L⊙Þ
�
frad
0.01

��
Δt
10 s

�
−1
�

Tγ;c

0.1 GeV

�
−3

×

�
σ̃

0.1

�
9=2

; ð5:25Þ

where L⊙ ≃ 3.8 × 1026 W is the luminosity of the Sun. To
assess whether a telescope on Earth could detect this
radiation, we assume an angular resolution of δΩ ¼ 1° ×
1° ¼ ðπ=180Þ2 sr. Then the frequency-weighted spectral
density is estimated as νIν ¼ Pcollide=ðd2yrδΩÞ, which
evaluates to

νIν ≃
�
4.1 × 10−15

W
m2 sr

��
frad
0.01

��
B

ð0.1 GeVÞ4
�

−4=9

×

�
Tγ;c

0.1 GeV

�
−1=3

�
σ̃

0.1

�
1=2

: ð5:26Þ

For comparison, the observed cosmic backgrounds of
x rays and gamma rays run from νIν¼10−10Wm−2sr−1

at Eγ ¼ 10 keV down to νIν ¼ 10−13 Wm−2 sr−1 at Eγ ¼
10 GeV [101]. If a dQN collision produces photons with
energies in this range, then the signal could be detectable
for B1=4 ∼ Tγ;c ≲ 10 MeV. This is represented in Fig. 9
where we plot νIν for different phase transition temper-
atures. The radiation energy is related to the Fermi
momentum of the dark quark matter or the phase transition
temperature, Tc. This is similar to a neutron-star merge
event, where semirelativistic neutrons collide with each
other to generate energetic photons up to the neutron’s
kinetic energy. For Tc ≳ 10 keV, dQN collisions will
produce energetic x rays and gamma rays, which provide
transient signals that telescopes can seek out.

2. Visible radiation from dQN collisions

We expect that the collisions of dark quark nuggets will
release an enormous number of dark mesons, which may
decay into SM-sector particles that could be detected from
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Earth. In this way a dQN collision event may resemble the
(less energetic) cousin of a binary neutron star merger. The
coupling of the dark meson to SM particles depends on
unknown UV physics, which we parametrize with the
dimension-six operator, ψ̄dγ

5ψdψ̄γ
5ψ=Λ2

UV, that explicitly
breaks the chiral symmetries of the dark quarks, ψd, and the
SM quarks, ψ . This operator is motivated in Ref. [10] by
efforts to relate the dark and visible baryon asymmetries. To
identify the coupling of the dark mesons, πd, we use the
relation ψ̄dγ

5ψd ≈ iπdhψ̄dψdi=fπd ≈ iπdΛ3
d=fπd , which

gives Λ3
d=ðfπdΛ2

UVÞπdiψ̄γ5ψ . When the dark meson mass,
mπd , is far above the SM fermion masses, the two-body
decay width is approximated as

Γπd ≈
1

8π

�
Λ3
d

fπdΛ
2
UV

�
2

mπd : ð5:27Þ

We take Λd ∼ fπd to estimate the dark meson lifetime,
which is found to be

τπd ≈ ð165 sÞ
�

ΛUV

1000 TeV

�
4
�

fπd
1 GeV

�
−4
�

mπd

0.1 GeV

�
−1
:

ð5:28Þ
If the dark meson decays into SM particles very quickly, it
may allow dQN collisions to provide a visible signal. By
comparing the mean free path of the dark meson against the
typical distance to the source, we find that cτπd < dyr for
Λd > ð0.115 MeVÞðΛUV=TeVÞ36=41; here we have taken
mπd ¼ Λd=10, fπd ¼ Λd, B ¼ Λ4

d, and Tγ;c ¼ Λd. Similar
considerations can yield an estimate of frad in Eq. (5.26).

3. Mergers of gravitationally bound dQN systems

The preceding calculation only accounts for head-on
collisions, but a pair of dark quark nuggets may also form a

gravitationally bound system, which allows them to merge
after radiating away excess kinetic energy. A pair of dark
quark nuggets can form a gravitationally bound binary
system if their relative speed is smaller than their escape
speed, vrel < vesc. For a pair of nuggets with mass MdQN,
their relative speed at time t is estimated as vrelðtÞ≈ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3TγðtÞ=MdQN

p
, which assumes that the nuggets are in

kinetic equilibrium with the SM thermal bath. If the
nuggets are separated by a distance DðtÞ at time t, then
their escape speed at time t is vescðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2GNMdQN=DðtÞp

,
where GN is Newton’s constant. From Eq. (4.3) we recall
that the initial nugget separation distance is DðtcÞ ¼ Dinit,
and for a nonbounded system this distance grows due
to cosmological expansion as DðtÞ ¼ Dinit½aðtÞ=aðtcÞ� ¼
Dinit½TγðtÞ=Tγ;c�−1½g�SðtÞ=g�SðtcÞ�−1=3. In comparing
vrelðtÞ < vescðtÞ the time dependence drops out, and we
find that a pair of nuggets can be gravitationally bounded if

Tγ;c < T two
c ≃ ð273 GeVÞ

�
σ̃

0.1

�
3=2

: ð5:29Þ

For larger values of Tγ;c the nuggets have too much kinetic
energy and too little mass to become gravitationally
bounded.
Let us suppose that a pair of nuggets has formed a

gravitationally bound binary system, and we estimate
the time τ that elapses before they merge. The orbital
radius rðtÞ decays as the nuggets radiate away energy,
according to

dEgrav

dt
¼ GNM2

dQN

r2
dr
dt

¼ Pradiationðt; rÞ; ð5:30Þ

and it reaches zero after a time τ. Following Ref. [102] we
first estimate the binary system’s lifetime that results from
gravitational wave emission,10

τGW ≃ ð3.2 × 1045 sÞ
�

Tγ;c

0.1 GeV

��
σ̃

0.1

�
−15=2

; ð5:31Þ

which is much larger than even the current age of the
universe, t0 ≃ 4.32 × 1017 s.
Next we consider the orbital decay due to the emission of

massless dark gluons, which hadronize to form massless
dark mesons. Since we are not aware of an analytical
expression for the double-dark-gluon radiation power, we
adapt the corresponding expression for electromagnetic
radiation as a rough estimate. The power output by
a charged particle moving in a circle of radius r is

FIG. 9. The frequency-weighted spectral density is shown here
for colliding dQNs nearby to the Sun. An angular resolution of
1° × 1° is assumed. The amplitudes of the cosmic x-ray and γ-ray
backgrounds are shown for comparison; a prediction of νIν above
this level may be detectable, which corresponds to Tc ≲ 10 MeV.

10More generally, the merger time for a pair of masses m1 and
m2 is given by tGW ¼ ð5=256ÞG−3

N D4ð1 − e2Þ7=2½m1m2ðm1 þ
m2Þ�−1 if the orbital radius and eccentricity are D and e,
respectively. To obtain Eq. (5.31) we take e ¼ 0, D ¼ Dinit,
and m1 ¼ m2 ¼ MdQN.
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Pem ¼ 2αγ4=ð3r2Þ where γ is the boost factor. This
motivates us to estimate the two-dark-gluon-radiation
power as P2dg ∼ α2d=r

2 for nonrelativistic motion. Using
this expression in Eq. (5.30) gives dr=dt ∼ α2d=ðGNM2

dQNÞ,
and we estimate the merger timescale as τmerge ∼
DinitGNM2

dQN=α
2
d, which gives

τmerge ≃ ð2.3 × 1023 sÞ
�

σ̃

0.1

�
21=2

�
Tγ;c

0.1 GeV

�
−8
�
αd
1

�
−2
:

ð5:32Þ

This merger timescale is longer than the age of the universe
today for

Tγ;c < Tmerge
c ≃ ð0.52 GeVÞ

�
σ̃

0.1

�
21=16

�
αd
1

�
−1=4

: ð5:33Þ

Thus we have developed the following understanding of
dQN mergers. For models with a high confinement scale,
T two
c < Tγ;c, the dQNs do not form gravitationally bound

systems, because they have too much kinetic energy and
too little mass; consequently, they do not merge. For the
low confinement scale, Tγ;c < Tmerge

c , the nuggets do form
gravitationally bound systems, but their masses are too
large to efficiently radiate away gravitational energy by
dark gluon emission and too low to radiate energy by GW
emission; again, they do not merge. However, for the
intermediate confinement scale, Tmerge

c < Tγ;c < T two
c , the

nuggets form gravitationally bound systems soon after they
are produced, and our estimates suggest that they merge on
a timescale that is short compared to the age of the universe
today. In this intermediate case the distribution of nugget
masses and sizes may be different from the estimates in
Sec. IV C due to successive mergers. One can study the
evolution of the mass distribution, and calculate the mass
distribution in the universe today, by solving the coagula-
tion equations [103]. For instance, if the merger time were
mass independent and much shorter than the age of the
universe [104], then the solution is a flat mass distribution
up to t0=τmerge ×MdQN. A more precise determination of
the mass spectrum after mergers require numerical simu-
lations and will not be explored here.

E. Directly detecting dark quark nuggets on Earth

In this section we briefly discuss the possibility of
detecting dQN dark matter in terrestrial experiments
on Earth. If dark quark nuggets make up all of the dark
matter, then their flux at a detector on Earth is given by
F dQN ¼ ndQNvdQN where ndQN ¼ ρDM=MdQN with ρDM ≃
0.3 GeV=cm3 and vdQN ¼ vDM ≃ 10−3. If the scale of
the detector is L and it operates for a time Δt, then the
expected number of dQN to pass through the detector is
estimated as

F dQNL2Δt ≃ ð2.5 × 10−15Þ
�

Tγ;c

0.1 GeV

�
3
�

σ̃

0.1

�
−9=2

×

�
L

10 m

�
2
�

Δt
1 yr

�
: ð5:34Þ

Imposing 1 < F dQNL2Δt leads to a lower bound on the
confinement temperature,

Tγ;c > ð7.4 TeVÞ
�

σ̃

0.1

�
3=2

�
L

10 m

�
−2=3

�
Δt
1 yr

�
−1=3

:

ð5:35Þ

From Eq. (4.11) we recall that Tγ;c > 10 TeV implies
MdQN < 1 × 1020 GeV ≃ 2 × 10−4 g. For 10 TeV≲ Tγ;c

the flux of dQNs through a terrestrial detector can be
large, which opens up the possibility of discovering dQN
dark matter with future observations (see also Ref. [42]). Of
course, the detection of dQNs requires a direct coupling
between the dark and visible sectors, which introduces
additional model dependence.

VI. CONCLUSIONS

Whereas many studies of macroscopic dark matter are
phenomenological in nature, in this article we have en-
deavored to provide a compelling theoretical framework in
which a macroscopic dark matter candidate arises naturally
and its properties and interactions may be calculated from
first principles. We have argued that the formation of dark
quark nuggets is expected in confining gauge theories that
generically admit a first-order phase transition and a dark
baryon asymmetry.
Depending on the confinement scale and the magnitude

of the dark baryon asymmetry, a nugget’s mass and
radius may span several orders of magnitude, MdQN ∼
10−7–1023 g and RdQN ∼ 10−15–108 cm, and their cosmo-
logical abundance can match that of the dark matter. Thus
dQN dark matter populates a wide swath of the macro-
scopic dark matter parameter space.
Depending on their mass scale, dark quark nuggets are

accessible to a variety of probes, which include gravita-
tional wave radiation, gravitational lensing, cosmic rays,
and direct detection on Earth. We summarize the probes of
dQN dark matter in Fig. 10. In addition, the model of
SUðNdÞ dark QCD, which gives rise to the dQN studied
here, also predicts additional signatures that provide an
indirect handle on the physics of dark quark nuggets. The
formation of dark quark nuggets requires the theory to
contain Nf ≥ 3 flavors of light dark quarks, which become
light (and possibly massless) dark mesons after confine-
ment and chiral symmetry breaking. If the mass scale of
these mesons is below ∼1 eV, then their presence in the
universe is strongly constrained by CMB probes of dark
radiation. For instance, if Nd ¼ Nf ¼ 3, then the predicted
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dark radiation is at the level of ΔNeff ≃ 0.21, which runs
into CMB constraints that impose ΔNeff ≲ 0.2 at 95% con-
fidence level, and which can be tested definitively with
next-generation CMB-S4 instruments. Whereas the dark
radiation constraints only rely upon the dark mesons’
gravitational influence, a direct coupling between the dark
and visible sectors opens the possibility to find evidence for
free dark baryons and antibaryons at direct detection
experiments on Earth. Assuming a vector-vector interaction
between dark quarks and SM quarks, we estimate the
interaction cross section in Eq. (5.17), and we find σSIBd−n ∼
10−44 cm2 if the scale of new physics is 10 TeV. The
sensitivities of current dark matter direct detection experi-
ments like XENON1T are more than adequate to probe
these interactions, even if the dark baryons are only a
subdominant population of the dark matter. Thus the
detections of dark radiation and free dark baryons may
provide the first clues for the physics of dark QCD and dark
quark nugget dark matter.

Regarding directions for future work, there are several
places at which our analysis could be extended and our
calculations could be refined. (1) We have taken the dark
baryon asymmetry to be a free parameter, which may differ
from the baryon asymmetry in the visible sector, and it
would be useful to investigate how these asymmetries are
generated initially in the early universe. (2) While the dark
and visible sectors may be thermalized in the early
universe, this scenario is becoming tightly constrained
by CMB limits on dark radiation. We also consider a
scenario in which the two sectors are thermally decoupled,
and it would be interesting to study how the two sectors are
populated and what interactions control their relative
temperatures, which we have taken as a free parameter.
(3) We have argued that dQN mergers may be frequent for
an intermediate mass range, and it would be very interest-
ing to study the effect of these mergers on the dQN mass
distribution and the associated observables. (4) Our analy-
sis of the observational prospects for colliding dQNs in the
Milky Way halo compares the predicted luminosity against
the observed diffuse background, but one would like to
explore how these transient signals could appear in a
specific detector. (5) Finally, the QCD-like gauge theory
studied in this paper provides just one example in which
macroscopic dark matter can arise from a first-order phase
transition in the early universe. It is worthwhile to explore
similar early-universe relics that could be produced in other
(supersymmetric) gauge theories or even nongauge theo-
ries. Overall, we trust that the theory and phenomenology
of dark quark nuggets will provide a rich research program
in the era of macroscopic dark matter.
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APPENDIX: LOW-ENERGY DESCRIPTION OF
THE PHASE TRANSITION

We can study the phase transition from the low-energy
perspective by using a chiral effective theory. To describe
the phase of broken chiral symmetry, the appropriate

FIG. 10. The predictions and signatures of dark quark nugget
dark matter are summarized here. The predicted dQN mass and
radius fall within a couple decades of the brown line (depending
on specic choices for model parameters; see also Fig. 4). Very
high-mass nuggets are excluded by searches for microlensing,
and we do not expect very low-mass nuggets, because the dQCD
model in which they arise also predicts a population of free dark
baryons in excess of the dark matter relic abundance. The rst
order phase transition, which gives rise to the dQNs, creates a
stochastic background of gravitational waves that can be probed
by GW interferometry and pulsar timing array observations. If the
theory also admits a direct coupling between the dark and visible
sectors, then low-mass nuggets can be probed in laboratories on
Earth, while the collisions of high-mass nuggets in the MilkyWay
halo could be probed through cosmic ray observations.
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dynamical variable is the quark condensate, Σij ∼
hψ̄ ið1þ γ5Þψ ji, which transforms as a bifundamental
under the flavor symmetry group, UðNfÞL × UðNfÞR.
We also now specify to Nf ¼ 3 flavors for which detΣ
is cubic in the field and a renormalizable operator. The
effective theory can be written as [105]

Leff ¼ gμνTrð∂μΣ∂νΣ†Þ

−
�
B −m2

ΣTrðΣΣ†Þ − ðμΣ detΣþ μ�Σ detΣ†Þ

þ λ

2
½TrðΣΣ†Þ�2 þ κ

2
TrðΣΣ†ΣΣ†Þ

�
; ðA1Þ

where gμν is the inverse of the metric. The five model
parameters are the vacuum energy density B, the squared
mass parameter m2

Σ, the dimensionless couplings λ and κ,
and the complex mass parameter μΣ. Without loss of
generality, it is possible to perform a field redefinition
(global phase rotation) that makes μΣ real and non-negative.
The symmetry structure of this theory is discussed at

length in Refs. [46,105]. In the vacuum where hΣiji ¼ 0,
the symmetry group is SUðNfÞL × SUðNfÞR ×Uð1ÞV . In
the vacuum where hΣiji ¼ ðfΣ=

ffiffiffi
6

p Þδij, the symmetry is
spontaneously broken to SUðNfÞV × Uð1ÞV , and the spec-
trum contains N2

f − 1 massless Goldstone bosons corre-
sponding to the broken symmetry generators of SUðNfÞA.
To study the phase transition between the symmetric and

broken phases, it is convenient to write Σij ¼ ðφ= ffiffiffi
6

p Þδij.
Thus the effective Lagrangian reduces to

Leff ¼
1

2
ð∂μφÞ2 −

�
B −

1

2
m2

Σφ
2 −

μΣ
3

ffiffiffi
6

p φ3

þ 1

4

�
λ

2
þ κ

6

�
φ4

�
: ðA2Þ

For models with m2
Σ > 0, μΣ > 0, λ > 0, and κ > 0, the

scalar potential has its global minimum at φ ¼ fΣ where
the vacuum expectation value is given by

fΣ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
Σ

λ=2þ κ=6

s 	
γ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 þ 1

q 

; ðA3Þ

and the dimensionless parameter γ > 0 is defined by
γ ≡ μΣ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24ðλ=2þ κ=6Þm2

Σ

p
. We choose

B ¼ ðγ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 þ 1

p
Þ2 þ 2

12
m2

Σf
2
Σ; ðA4Þ

such that the potential vanishes at φ ¼ fΣ, and therefore B
corresponds to the differential vacuum energy (or pressure)
between the phases at φ ¼ 0 and φ ¼ fΣ.

To study the chiral symmetry breaking phase transition
in this model, we calculate the thermal effective potential,
Veffðφ; TÞ, which is the Helmholtz free energy or equiv-
alently the negative pressure of the system. In total ΣðxÞ
represents 2N2

f ¼ 18 d.o.f., which is made transparent by
the following parametrization:

Σij ¼
φþ iϕIffiffiffi

6
p δij þ Θa

RðTaÞij þ iΘa
I ðTaÞij: ðA5Þ

The matrices denoted by Ta are the N2
f − 1 ¼ 8 generators

of SUðNfÞ ¼ SUð3Þ. The fields ϕIðxÞ, Θa
RðxÞ, and Θa

I ðxÞ
couple to the field φðxÞ and contribute to the effective
potential. The one-loop thermal effective potential can be
calculated using standard techniques [106], and by doing so
we find

Veffðφ; TÞ ¼ B −
1

2
m2

Σφ
2 −

μΣ
3

ffiffiffi
6

p φ3 þ 1

4

�
λ

2
þ κ

6

�
φ4

þ
X

i¼φ;ϕI ;ΘR;ΘI

νi
T4

2π2
JB½m2

i ðφ; TÞ=T2�: ðA6Þ

We have neglected the (zero-temperature, one-loop)
Coleman-Weinberg correction [107], which primarily
serves to renormalize the tree-level couplings. The thermal
correction is expressed as a sum over species that couple to
φ; the multiplicities are νφ ¼ νϕI

¼ 1 and νΘR
¼ νΘI

¼ 8;
the background-dependent masses are

m2
φ ¼

�
5λ

6
þ κ

2

�
T2 −m2

Σ −
2ffiffiffi
6

p μΣφþ 3

�
λ

2
þ κ

6

�
φ2;

m2
ϕI

¼
�
5λ

6
þ κ

2

�
T2 −m2

Σ þ
2ffiffiffi
6

p μΣφþ
�
λ

2
þ κ

6

�
φ2;

m2
ΘR

¼
�
5λ

6
þ κ

2

�
T2 −m2

Σ þ
1ffiffiffi
6

p μΣφþ
�
λ

2
þ κ

2

�
φ2;

m2
ΘI

¼
�
5λ

6
þ κ

2

�
T2 −m2

Σ −
1ffiffiffi
6

p μΣφþ
�
λ

2
þ κ

6

�
φ2;

ðA7Þ
and the bosonic thermal function is defined by the integral

JBðyÞ¼
R
∞
0 dxx2 logð1−e−

ffiffiffiffiffiffiffiffi
x2þy

p
Þ. In the dark QCD model

under consideration here, we only keep the contribution to
φ from light d.o.f. and ignore the heavy field (e.g., dark
baryons) contributions, which are Boltzmann suppressed.
Around the temperature of the chiral phase transition, the

thermal effective potential admits a pair of local minima at
φ ¼ 0 and φ ¼ vφðTÞ, which correspond to the phases of
unbroken and broken chiral symmetry, respectively. The
degeneracy condition,

Veffð0; TcÞ ¼ Veff ½vφðTcÞ; Tc� ðcritical temperatureÞ;
ðA8Þ
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defines the critical temperature Tc at which the two phases
have equal pressure. For T > Tc the system is completely
in the chiral-unbroken phase, and for T < Tc there is a
nonzero probability to nucleate bubbles of the chiral-
broken phase. Let S3ðTÞ denote the energy of the static,
SO(3)-symmetric critical bubble solution (bounce solu-
tion), which can be calculated from Veffðφ; TÞ using
standard techniques [108], and we provide an analytical
approximation below. The bubble nucleation rate per unit
volume, γðTÞ ¼ Γ=V, is written as [108]

γ ≈ ωT4

�
S3
2πT

�
3=2

e−S3=T; ðA9Þ

where ω is an order-one, temperature-independent number.
Nucleated bubbles expand due to the differential vacuum
pressure across the phase boundary, but their growth is
retarded due to “friction” from the plasma [67,109]. We
assume that the wall quickly reaches a nonrelativistic
terminal velocity vw, and that the wall is preceded by a
shock front that moves at the speed of sound, vsh ≈ cs ≃
1=

ffiffiffi
3

p
[68]. In order to estimate how much time elapses

until the shock fronts begin to collide, we let hðtÞ be the
fraction of space that remains in the (unstable) chiral-
unbroken phase and outside of a shock front at time t. This
fraction is given by [110]

hðtÞ ¼ exp

�
−
4π

3

Z
t

tc

dt0v3shðt − t0Þ3γðt0Þ
�
; ðA10Þ

where tc is the time at which the plasma temperature equals
Tc. We define the fiducial bubble nucleation time tn by the
condition hðtnÞ ¼ 1=e. The integrand is dominated by
t0 ¼ tn, and we can use the saddle-point approximation
to evaluate the integral. We first write γðt0Þ ¼ exp ½ln γðt0Þ�
and then approximate ln γðt0Þ ≈ ln γðtnÞ þ ðt0 − tnÞξ where

ξ≡ d
dt

ln γjtn ¼ β −
3

2

β

ðS3=TÞjtn
þ 4

_T
T

����
tn

; ðA11Þ

and where

β≡ −
dðS3=TÞ

dt

����
t¼tn

¼
�
_T=T
−H

��
T
dðS3=TÞ

dT

�
H

����
t¼tn

:

ðA12Þ

If the plasma cools due to adiabatic cosmological expan-
sion, then _T=T ¼ −H − _g�S=3g�S ≈ −H. Moreover, typi-
cally ðS3=TÞjtn ≫ 1 and β ≫ H such that ξ ≈ β. Then
hðtnÞ ¼ 1=e gives

1 ≈
4π

3

Z
tn

tc

dt0v3shðtn − t0Þ3γðtnÞeðt0−tnÞβ ≈ 8πv3shγðtnÞβ−4;

ðA13Þ

which determines the fiducial bubble nucleation time tn.
The parameter β also provides a fiducial measure of the
phase transition duration, since the bubble nucleation rate
γ ∼ e−S3=T grows by a factor of e on a timescale set by
Δt ∼ β−1. Let nnucleations be the average density of bubble
nucleation sites (coarse grained on a scale that is much
bigger than the typical intersite separation) that occur
before the phase transition finishes. We can estimate the
nucleation density as [110]

nnucleations ¼
Z

∞

tc

dt0γðt0Þhðt0Þ ≈ ð8πv3shβ−3Þ−1; ðA14Þ

where we have used the saddle-point approximation to
evaluate the integrals. Now all that remains is to calculate
the bounce energy, S3ðTÞ, and evaluate β with Eq. (A12).
Using direct numerical evaluation, we have calculated

the bounce solution for the thermal effective potential in
Eq. (A6). As we raise the size of the couplings, λ and κ,
we find that the bounce solution takes the form of a
thin-walled bubble. This result is illustrated in Fig. 11. We
have studied a slice of parameter space along which
B ¼ ð0.1 GeVÞ4, γ ¼ 1.0, and λ ¼ κ vary from 0.25 to
1.0. Thin-walled bubbles result when Tn ≲ Tc, and this
occurs for large couplings because the effective potential
responds “rapidly” to changes in temperature. For
instance, the thermal mass terms in Eq. (A7) imply that
Veff ∼ ð5λ=6þ κ=2ÞT2φ2.
For a thin-wall bubble the bounce action can be

approximated as [108,109]

S3
T

≈
16π

3

Tcσ
3

L2ðTc − TÞ2 ðT < TcÞ; ðA15Þ

FIG. 11. We show the bubble solution’s profile functions for
various values of the dimensionless, quartic couplings (λ and κ) in
the chiral effective theory of Eq. (A1). As we consider more
strongly coupled theories, larger λ and κ, we find that the bubble
solution becomes thin walled. The profile function is scaled by
Δϕ ¼ vφðTnÞ and ΔV ¼ Veffð0; TnÞ − Veff ½vφðTnÞ; Tn�.
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where L is the latent heat of the phase transition and σ is the
bubble’s surface tension at the time of its nucleation.
Parametrically the latent heat is set by the differential
vacuum pressure, B, and Ref. [109] estimates L ≈ 4B,
which we will now adopt as a fiducial reference point.
Using Eq. (A15) we evaluate the bubble nucleation rate,
given by Eq. (A9), and the parameter β, defined in
Eq. (A12). Then by solving Eq. (A13) we obtain the
fiducial bubble nucleation temperature, Tn, and we
calculate the dimensionless supercooling parameter,
ηn ≡ ðTc − TnÞ=Tc, which is found to be

ηn ≈
ffiffiffi
π

3

r
σ̃3=2

�
log

�
9

ffiffiffi
3

p

4
ffiffiffi
2

p
π3

ωT4
cv3sh

H4
nσ̃

15=2 η
9
n

��−1=2
: ðA16Þ

Here we have introduced the dimensionless tension param-
eter, σ̃ ≡ σ=ðB2=3T1=3

c Þ, which affects the rate of bubble
nucleation through Eq. (A15) and controls the amount of
supercooling through Eq. (A16). The Hubble parameter at
the fiducial bubble nucleation time, Hn ¼ HðtnÞ, depends
on the dominant energy component of the universe at this
time. To be general, we allow that the temperature of the
plasma in the (dark) sector undergoing the phase transition
may be different from the temperature in the (visible)
sector. By writing the energy densities of radiation in the
dark and visible sectors as ρdðtÞ ¼ ðπ2=30Þg�;dðtÞTdðtÞ4
and ργðtÞ ¼ ðπ2=30Þg�;γðtÞTγðtÞ4, the Hubble parameter is
given by 3M2

plH
2
n¼ρdðtnÞþργðtnÞ¼ðπ2=30Þg�ðtnÞTγðtnÞ4

where g�ðtÞ ¼ g�;γðtÞ þ g�;dðtÞðTd=TγÞ4. Using this
expression, the supercooling factor in Eq. (A16) becomes

ηn ≃ 0.0028
�

σ̃

0.1

�
3=2

�
1þ 0.027 log

σ̃

0.1

þ 0.014 log
Tc

0.1 GeV
þ 0.029 log

TγðtnÞ
Tc

− 0.033 log
ηn

0.0028

�
: ðA17Þ

For the numerical estimate we have fixed vsh ¼ 1=
ffiffiffi
3

p
,

ω ¼ 1, and g�ðtnÞ ¼ 10. A value of ηn ≪ 1 implies that the
phase transition occurs after little supercooling, and Tn is
just slightly below Tc. The parameter β is given by
Eq. (A12), which evaluates to

β=Hn ¼
2π

3

1 − ηn
η3n

σ̃3 ≃ ð1.0 × 105Þ
�

σ̃

0.1

�
−3=2

�
ηn

0.0028ð σ̃
0.1Þ3=2

�
−3
: ðA18Þ

The density of bubble nucleation sites is given by
Eq. (A14), which evaluates to

nnucleationsH−3
n ¼ð2.1×1014Þ

�
σ̃

0.1

�
−9=2

�
ηn

0.0028ð σ̃
0.1Þ3=2

�
−9
:

ðA19Þ

This corresponds to roughly 1014 nucleation sites per
Hubble volume, VH ∼H−3

n . Note that nnucleations is very
sensitive to the amount of supercooling, ηn, and to the
model parameters through σ̃. If the dark sector radiation
energy density is subdominant to the visible sector radi-
ation, then nnucleations is insensitive to the temperature in the
dark sector, but instead nnucleations ∼H3

n ∼ T6
γ=M3

pl.
Finally it is useful to define a dimensionless parameter,

α≡ Veffðφ ¼ 0; T ¼ 0Þ − Veff ½vφðTnÞ; T ¼ 0�
ðπ2=30Þg�ðtnÞTγðtnÞ4

; ðA20Þ

that measures the vacuum energy released during the phase
transition and controls the strength of the resulting sto-
chastic gravitational wave background. The numerator of
Eq. (A20) is the difference in the vacuum energies between
the symmetric (φ ¼ 0) and broken phases [φ ¼ vφðTnÞ] at
the fiducial bubble nucleation temperature, Tn; its value is

FIG. 12. The parameters α and β=H that feed into the gravitational wave spectrum are shown here as a function of the dimensionless
couplings λ ¼ κ.
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bounded from above by B, the differential vacuum pressure
at zero temperature. Using the thermal effective potential
described above, we have numerically evaluated α and β,

and the results are shown in Fig. 12. In evaluating α we
assume that the dark and visible sectors are at the same
temperature, TγðtnÞ ¼ TdðtnÞ.
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