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Scattering amplitudes of massless particles in Minkowski space can be expressed in a conformal basis by
Mellin transforming the momentum space amplitudes to correlation functions on the celestial sphere at null
infinity. In this paper, we study celestial amplitudes of loop-level gluons and gravitons. We focus on the
rational amplitudes that carry all-plus and single-minus external helicities. Because these amplitudes are
finite, they provide a concrete example of celestial amplitudes of Yang- Mills and gravity theory beyond
tree level. We give explicit examples of four- and five-point functions and comment on higher point

amplitudes.
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I. INTRODUCTION

The scattering amplitudes in Minkowski space can be
mapped to the celestial sphere at lightlike infinity, where
they are encoded in terms of conformal correlators [1].
These correlation functions go by the ethereal name of
celestial amplitudes and they exhibit conformal symmetry
at the boundary for bulk observables. This observation
provides a complementary representation of scattering
amplitudes where they are beheld as a holographically
dual conformal field theory residing in the celestial sphere.
Thus, the holographic nature of celestial amplitudes in
principle can shine light on an outstanding problem,
i.e., what is a concrete holographic formulation for flat
spacetime?’ More terrestrially, one can view celestial
amplitude much in the same way as twistors, momentum
twistors, and scattering equations, which may help in
illuminating hidden mathematical structures in quantum
field theory that were not previously accessible from
traditional calculations [11].

In the last couple years, celestial amplitudes have gar-
nered a lot of interest. Conformal primary wave function
bases for various spins in different dimensions were con-
structed by Pasterski and Shao in [12]. Soft theorems were

'Flat space holography was already proposed in [2] where
Minkowski space was foliated along the Euclidean anti—de Sitter
and de Sitter slices. For other related approach, please refer to
[3-10].
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connected to the conserved currents on the celestial sphere in
[13,14]. Explicit examples of tree-level celestial amplitudes
of gluons were computed in [15,16]. Examples of scalar
scattering have been shown in [17-19]. Other variant maps
have been constructed recently in [20-22]. The investigation
of the factorization singularities of celestial amplitudes was
done in [23]. Progress has also been made in the celestial
four-point superstring amplitudes as well as graviton tree
amplitudes [24-26]. Recently, conformal soft theorems have
been studied in [19,25-32]. The authors in [33] construct the
generators of Poincaré and conformal groups in the celestial
representation. Translating an optical theorem in the con-
formal basis was addressed in [17] and this work was
followed by [19] where conformal partial wave decom-
position of celestial amplitudes was further discussed. The
operator product expansion of the celestial sphere has been
carried out in [34-38].

While scalar loops have been studied in [18], most
construction of celestial amplitudes have occurred at tree
level. In this work, we provide the first explicit construction
of loop-level celestial transform for external gluons and
gravitons. More concretely, we focus on loop amplitudes
where all external gluons and gravitons carry positive
helicity (all-plus) and the ones where all but one external
particles carry positive helicity (one-minus). These loop
amplitudes are interesting for many reasons. It is a well
known result that gluon as well as graviton amplitudes at tree
level vanish for all-positive and one-minus external states
[39]. This statement can be proved using supersymmetric
Ward identity, but nonetheless holds for quantum field
theory with or without supersymmetry at tree level.
However, the story of loops is different and very interesting:
for supersymmetric field theories, such vanishing occurs for
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all-plus and one-minus amplitudes at any loop order; in
contrast, for pure Yang-Mills and Einstein gravity, such
amplitudes receive leading contributions at one loop (for
gluons see [40—42] and gravitons [43—48]).2 Similarly, for
one loop, one cannot construct such amplitudes using
unitarity cuts in four dimensions as a two particle cut leads
to tree-level expressions with at least one vanishing piece.
Furthermore, these one-loop amplitudes when integrated are
relatively simple rational functions and contain no loga-
rithmic divergences in four dimensions.’ The simplicity and
subtleties of these amplitudes make them ideal candidates to
study spinning celestial amplitudes beyond tree level.

We have organized this paper in the following way. In
Sec. II we present a detailed review of conformal primary
wave functions and celestial amplitudes, which is followed
by the rederivation of tree-level celestial amplitudes in our
conventions. Thereafter, we switch to computation of loop-
level amplitudes in Sec. III where we considered explicit
four- and five-point results and discussed the structure of
the higher point amplitudes. We end with future directions
and a conclusion, and collected several technical details in
the Appendix A.

II. REVIEW

A. Conformal primary wave functions
and celestial amplitudes

We know that scattering amplitudes in 4d have the
Poincaré symmetry ISO(1,3) which can be written as the
semidirect product of translation and special orthogonal
groups: ISO(1,3) =T(1,3) ®, SO(1,3). The standard
momentum space enables us to work with irreducible
representations of the translation group, which means
translations act only by phases. SO(1, 3) on the other hand
acts in a quite complicated manner.

We can try to relate the 4d momentum space to some
basis of SO(1, 3), or its universal covering group SL(2, C).
As SL(2, C) is isomorphic to the global conformal group in
2d, it is intriguing to expand the 4d amplitudes in terms of
conformal primary wave functions, objects that transform
covariantly as 2d conformal primary operators and satisfy
relevant 4d equations of motion.

Before analyzing conformal primary wave functions in
more detail, let us first set our notations. We will use the
standard coordinates z, Z with z = z* to parametrize R2,
and the 2d conformal field theories (CFT) lives at the
compactification of this space, i.e., the Riemann sphere

2While we will restrict ourselves to one loop in this work, there
has been a number of works on higher loops for the external states
we are considering. Please see [49-56].

Moreover, these loop amplitudes have interesting factoriza-
tion properties and have been studied using Britto-Cachazo-
Feng-Witten (BCFW) recursion relation [40,57,58] and using a
Berends-Giele type of recursion [59] and more recently con-
formally invariant structure was investigated in [60].

C- We can then view this Riemann sphere as the boundary
of a hyperbolic space H®> via AdS holography. We para-
metrize H®> with the coordinates y; with i =0, 1, 2 for
yo > 0 where the H? metric is

dy? + dy? + dy?

ds, = DT DTN (2.1)

Yo

We can then embed H? as the upper branch of the unit

hyperboloid in R'3 for which we will use lightcone
coordinates x* = (x*,x~,x', x?) with the metric

0100
1
9 = 2 000 (22)
0 0 1 0
0 0 0 1

where we define the lightcone coordinates in terms of the
Cartesian ones as x* = x> 4= x°. We then embed y; € H? in
y e R as

1
W= y—(L —YiVi» Y1 Y2) (2.3)

0

where y;y; = y3 + y? + y3 and where we see that Y=
—1 as required.

Just as we embedded y; — y#, we can embed z — x*(z)
because d-dimensional conformal groups can be param-
terized with the null rays in d + 2 dimensions.* In other
words, the celestial sphere can be parametrized in R!? as
{x(z) € R |x#(2)x,(z) = 0,x(z) ~ Ax*(z), 2 € R'}
where we choose

_z+7Z z—Z) (2.4)

x"(z)z2<1,—zz, T

for later convenience.

Below, we will write y* to denote a point in R!3
constrained to lie on the upper branch of the unit hyper-
boloid, and x*(z) to denote a null vector in R!* whereas x*
denotes any point in R'. In summary, y,* = -1,
x,(2)x*(z) = 0 with x*(z) = 2, and x,x* € R.

With our notations set, we can view conformal primary
wave functions as maps from x* € R!? to z € C,, where
these particular maps satisfy two conditions:

(i) They satisfy the equation of motion in R!3

(i) They transform as conformal primary operators
under the action of SL(2,C)

*The idea goes back to Dirac who realized that a conformal
group in R”9 dimensions being SO(¢+ 1,g + 1) can most
naturally be described in the embedding R”+1-4*! space [61].

126020-2



LOOP CELESTIAL AMPLITUDES FOR GAUGE THEORY AND ...

PHYS. REV. D 102, 126020 (2020)

A particularly transparent way to construct these objects
for massive scalars can be roughly described as follows:
we decompose the map R} — C_, into R — H? and
H? — C,, compose these maps, and integrate over whole
H>. Indeed, the necessary ingredients for each map are
relatively straightforward: the first map is simply a restric-
tion to the paraboloid whereas the second map is the
familiar bulk to the boundary propagator in H?. Hence, we
can immediately define the massive scalar conformal
primary wave function ¢% ,, (¥*,z) as

it 2) = A [dyIGalyn )etime . (25)

Here, et makes sure that the equation of motion
is satisfied, ie., (9,0¢—m?)¢x, (x*,z) =0, whereas
G(vi,z) ensures the correct transformation under the
SL(2,C) action [note that e**>" is invariant under
SL(2,C)1.

The closed form expression for ¢y , (¥, z) in R4
reads as

d+2 d
27 2

(VR

(im)? (—x,x"(2) F i€)*

¢§,m(x'u7 Z) = A_til(m xﬂx”).

(2.6)

One can similarly write down the massless spin-0,1,2

conformal primary wave functions ¢ (x*, z), AL (x*,2)
At

and hlllvﬂzvﬂlﬂ2 (xw Z) as

AA
oy FOTQ) .
dE(x*,2) EeTEE—— (2.7a)
1
At -
A 02 = g agat e BT
u
hﬁl.izﬂlﬂz (X”, Z)
80) 802 = 4 84,4, M7
_ la a 142 + =\ T+
B (—xyx"(Z) + ie)A—Z Tﬂl'bl(xM’Z’Z>Tﬂz~b2 (XM,Z)
(2.7¢)
for
+ 9 .
Tya(X, z) = log (—x,x"(z) F ie) (2.8)

O+ Dz,

where z, =z, for z; =4 and 7, =52

Conformal primary wave functions, as interesting as they
may be, would not be so much of usage if they did not form
a complete basis for on-shell wave functions in R!4*1,
Indeed, as shown in [12], we can identify on-shell momenta
Py as p, = my, which satisfies p,p* = —m? as required.
With this identification, we can rewrite Eq. (2.5) as

Py p(¥.2.2) = /z [dyi]Ga(yi,z.2)e= 5" (2.9)
o
which can be seen as a basis transformation from momen-
tum space spanned by {e*™”"} to a new basis spanned
by ¢% ,.(x*.z). The original basis was labeled with {p, €
R!'3|p,p* = —m?} whereas the new basis is labeled
with {(A,z) € (C,Cy)|A =1 +iR}.>®

The basis transformation for massless scalars is far more
intuitive. To see that, we first write the momentum vector as

P = ewx*(z) (2.10)
where € = 1(—1) for outgoing (incoming) momentum. We
can interpret the z coordinate trivially: it just parametrizes the
direction of the momentum vector on the celestial sphere.
Now, we only need to relate the magnitude of the momentum,
w, to the scaling dimension of the conformal primary wave
function, 1.e., A. We can see this relation between the basis
vectors in the form of a Mellin transformation

dx (¥, 2,2) = /oo dww?~leFiur'Eie) (2 11)
0

which follows from Eq. (2.7a) and p# = wx*(z). Physically,
this means that the Lorentz boosts, which act as
x,p* — Ax, p*, become the dilatation in conformal primary
wave function bases, i.e., ¢% (¥, z) = 1725 (¢, 7).

We can see that the relation between plane waves and
massless conformal primary wave functions is imple-
mented by a Mellin transformation for spin 1 and 2 cases
as well, though there are subtleties of gauge and diffeo-
morphism invariances.” We refer the reader to [12] for
further details.

With the bases of conformal primary wave functions set
up, we can now construct celestial amplitudes. The tradi-
tional amplitudes with external particles being momentum
eigenstates can be cast into the form

>The restriction of A to principal series, i.e., A =4+ iR, is a
necessary condition for the conformal quadratic Casimir operator
to be self-adjoint, which ensures by the spectral theorem that it
has an orthonormal basis of eigenvectors; thus ¢, ;5 ,, form an
orthonormal basis. For m # 0, shadow symmetry6 makes ‘%:I: iv
linearly dependent, hence we only take half of the principal
series, i.e., A =4+ iRy.

®Shadow transformation is an interwining map from an
operator in representation (A, p) to another operator in repre-
sentation (d — A, p®) where p is an SO(d) irrep and where p®
denotes the reflected representation. In odd dimensions, one can
take p® ~ p hence shadow transformation amounts to A — d — A
which relates the principal series representations A = g + iv.

"For example, Aﬁ_’f (x*, z,Z) can be related to plane waves with
a Mellin transformation only if A # 1 in d = 4. This follows from
the fact that A}z (x*, z, Z) is simply a pure gauge term in d = 4,
hence it cannot be related to the physical plane wave solution.

126020-3
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A(pis--spy) = / Hd“xiei(”f)ﬂx?a(xl, X)) (2.12)
i=1

where p; are outgoing momenta of external scalars and where a(xy,...x,) is the rest of the amplitude. The celestial
amplitude A requires all external wave functions to be conformal primary wave functions instead, hence

ABrba(z L z,) = Hd“xigbz_(xf,zi)a(x], X)) (2.13)

i=1

For example, for cubic vertex interaction £ ~ A¢;p,¢3, we can compare the three-point scattering amplitudes as follows:
3 .
A(p1. P2, p3) = / Hd4xi€'(p")"x};(i/1) = id(27)*6*(p1 + P2 + Pa), (2.14a)
i=1

A
|212| 4122 | 293|421 231 | Ao12

3
Alr-habs (z1,22,23) = /Hd“xirﬁl (7 2;)(i4) ~ (2.14b)
i=1

for z;;=z;—z; and A =A; + Aj — Ay, As expected by the conformal covariance of A, the three-point celestial
amplitude in 4d takes the form of the three-point CFT correlator in 2d.
By using the basis change in Eq. (2.9) for massive scalars or Eq. (2.11) for massless scalars, we can relate A(p;) and

JZlAi(Zl‘). In fact, for all massless spin-0,1,2 external particles, the transition from A to A takes the form of a Mellin
transformation, which implements the map from momentum eigenstates to boost eigenstates:

JZ“?,I,’,.,.J.;A" (Zl’ P Zn) = (H/O dwiwiAi_l>Aj|...jn (CU], (S TREEY Zn) (215)
i=1

where we used p¥ = wx*(z,7) = (2, -2zZ,z + Z, —i(z — Z)) and where 2d spin J; is identified with 4d helicity j;: J; = j;.
n-successive Mellin transforms are relatively straightforward; however, we can simplify it further via the exploitation of
the covariance of A under boosts (dilations in the celestial sphere) by switching to simplex variables

N

s = Zwi, o, = @i (2.16)
i1

under which Eq. (2.15) becomes

“Zlﬁ,l.’.'.AJ';,A” (210 2p) = 2ﬂ5<i(1< —-n)+ le,) H (/1 dakgjfk)& (Z qé{oi)é(z o; — 1>-Aj1...j,, [61'”%] (2.17)
i=1 0 i—1 :

k=1 i=1 2---Zn

where we wrote down A on the principal series as

A=1+il J€R (2.18)
and where we define the stripped amplitude A; [‘2?] as
01...0, L
Aj (@032, .0,2,) = ST5A; { ! ]54< qﬁ‘ai>. (2.19)
Z]-.-Zn i=1

Here « is the overall momentum scaling of the amplitude,8 ie.,

¥For example, for tree-level Maximal-Helicity-Violating (MHV) amplitudes, k = n as we can easily see from Eq. (2.32).

126020-4
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Aj Aoy Ay 2 2,) = ATFAG (01, @032 000 2,) (2.20)

and we defined
%l = €;x"(z;) (2.21)

for brevity.
One can leverage the covariance of celestial amplitudes under the conformal group by going to a conformal frame where

9

we choose

z; =0, 7y = 00, 73 = 1. (2.22)
As the dilation acts inversely at infinity, a correct procedure to put an operator at 7 = oo is by the limit

O(o0) = lim L2 O(L), (2.23)

L—oo

hence we define the celestial amplitude in this conformal frame as'”

~ n n n il
Af]"'_'_'j"nA” (0,00,1,24,...,2,) = gé(i(lc -n)+ Zli) (/ dakdl/lk> <1 - ZQ‘) 1
P s /
( Zezea (14 2zz ) <Z€ioizi)5<§:eiaizi>
i=3 i=3
1= 50;, L2370 i0i(1 +2iZ;),03,....0,
x5<1+2(€16,~—16,> 1mA /[ = iacaoll a0 ’
i=3

0,L,1,24,...,2,
(2.25)

where delta functions of momentum conservation along the lightcone coordinates were immediately employed to remove
01, integrations via the use of Eq. (2.4) in Eq. (2.17), hence the delta functions above are due to the momentum
conservation along transverse directions and due to the normalization condition of the simplex variables, i.e., > 7 o; = 1.

Given any three points, we can first use translations to fix z; = 0, then special conformal transformation to take z, — oo, then
dilation to bring z3 to a unit circle, and finally rotation to get z; = 1. As this exhausts all conformal transformations, z,.; remains

unfixed. By applying these transformations in reverse, we can get any amplitude .;l(z 15295235 24y ++-» Zy) from fl(O o, 1,2, ..., 2)).
See Appendix A 1 for further details.

e use
n n n
1 4 . — - .
Lll_)rr;()ki1 </ do'k> (;q 6)5(;6, 1)f(0'1,62,0'3,...,6n,z,)

n 1 n
:H(/ d6k>5<1+ (elei—l)oi>
k=3 \/O i=3
x 6<;€i6iz,-)5<i3 €0 > lim 4L2f( Za,,—LZZezs oi(1+2,Zj),03,...,0,32 ,) (2.24)

which follows from the conformal frame we choose and ¢ = €;x*(z;) with our choice of x*(z) in Eq. (2.4).

126020-5
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By using Eq. (A13), we can rewrite this equation as

AR 80,00, 1,241 ...2,)

ﬂu(ﬂl) < - > . </ l/l) iA3 pidy pid
=— Oli(k—n)+ Y 4 doo.* |\ BB By
2|M, 55| ( ) 1 kl:[s o
3 n Ml 3 Mz
< (1-8-Y0) " (- L el 47 - Y esan(1 +23)
i=1 i=6 i=1 i=6
. 1= pi=> g0, —L72 (Z?1€2€i+2ﬁi(1+Zi+22i+2)+2?66261'61'(1+Zizi))vﬁlaﬂ2vﬂ3va67~--7‘7n
x lim Ajl"'jn
0,L,1,24,...,2,
(2.26a)
for n > 4; in particular, we do not have any integrals left for n = 5:
Ap85(0, 00, 1. 24, 25)
n u(ﬂi) ( > il m m ( )
- + A ﬁ 3 4 51— ﬂ
2|M 5] Z Z
3 Z = Y3 B —L 2 L eseraafi(1 + 2iaaZinn). B oo
x| — €€ 25i(1 + z;10%; limA; =1 =1 P22l %2 P P2 3].
< ; 2 +2ﬂ( +2 +2>> LS00 jl...j,,|: O,L, 1,24,25
(2.26b)

For n = 4, we instead use Eq. (A18), with which Eq. (2.25) becomes

2 il 2 it
Ar2(0,01,2) = 59 = 200 i 4) +Zﬂ>ﬂ”3 (1-300) (-R et +aana)
i=1

p

[ =Y B LY ereinfi(1 + Zi+2zi+2)7ﬁ1vﬂ2:|

voda .
03L7 17 Z4

x lim A;

L—oo

(2.26¢)

For details regarding the coefficients , M, 3, and the function ¢/ in Eq. (2.26), please see Appendix A 2. One curious
observation regarding Eq. (2.26) is that the celestial amplitudes are on the principal series (i.e., 4 € R) only if x = n; in
other words, we need to analytically continue off the principal series if the amplitude A; ; (p;) does not have the mass

dimension —n. The celestial amplitude A being off the principal series means that the CFT operators are no longer in the
unitary representation of the group“; and in particular, it means that the conformal primary wave functions would not
constitute an orthonormal basis for these amplitudes.'> Nevertheless, the procedure of doing harmonic analysis for the CFT
correlators on the principal series and then analytically continuing them to the regions of interest is relatively well known
and has been extensively used to extract CFT data through a Euclidean inversion formula [63—66].13 ‘We should also note
that the generalized soft limit on a celestial sphere may relate amplitudes on principal series to amplitudes off principal
series as we have

""One should not confuse the unitarity of the group representation, which has to do with the self-adjointness of the Casimir operator,
with the unitarity of the field theory, which is the requirement that norms of the states in Hilbert space are non-negative. Indeed, unitarity
of the CFT actually requires other conditions for A than it being on the principal series (i.e., A = 1 + iR); for example, we need
A > [+d-1- —610 for a CFT, operator in symmetric traceless tensor representation for the CFT to be unitary.

Pr1n01pal series representations are actually not the only unitary representations for conformal groups, but they are the only tempered
umtary representation that appears in 2d [62].
PFor possible subtleties regarding the analytic continuation, see [67] and references therein.

126020-6
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..........

. A A, . ) =AW YA S ,1
hI_I}Oj'mAJII,,.Jn (Zl RS Zn) = _212f205tm (Zi)Ajll Jm_l,]lerl o J, (Z] seves Zm—1sZmtls ooes Zn) (2273)
a

for
_ : (a) _ ; (a).
Ay =1+id.,  AY =1+ +n?; (2.27b)
thus in the rest of the paper we will not dwell on the appearance of &(i(k —n) + 3.7, 4;) in Eq. (2.26)."

B. Tree-level gluon celestial amplitudes

In this section, we will review some tree-level results before we move on to computing loop-level gluon celestial
amplitudes in the body.

One of the simplest tree-level examples that we can consider is a color-ordered MHV amplitude, which in spinor helicity
notation takes the form

(12)° < -
M (pi) = 5 A (2.30)
A (23)...(n1) ;
where we are following the notation of [15] for spinor helicity formalism. In particular,

[l.]} = 21/601'(1)1'2,']', <lJ> = —2€[€j,/w,~a)jz,~j, (231)

hence

MHV 4- Zh w3 WaS
A (01, @32 e 2) = (2) oM D eiwi(z) ). (232)
2123223 --:3p1 W1y ...0, =1

Clearly, « = n for this amplitude and we can write down

4 2.2
01...0 Z o050
MH__L.+[ } = (=2)*™" 12 12 (2.33)
Z1-+-2p Z12%23--.2,1 0102...0,

for which we have

"“We can take the soft limit in momentum space as

. (a)
i Ay, (@1s oo @321 s 2) = (foﬁ:,@» I (@ )
a n

Om= k=1,...m—1am+1....,

X AL Tt (@11 s Oy D15 oo O3 T oo Tyt T 15 o0 Zn) (2.28)

for the soft factor f’ if’ﬁ‘ (z;) and the coefficients n,@ which depend on the amplitude under consideration. We can then derive Eq. (2.27)

with this equation and the representation of delta distribution as

i, i —
8(x) = 5 lim 4, (2.29)
For example, in the case of an n point graviton amplitude with the choice of m = n, we have 3% _ (z;) = #% and n,((”) = &¢ for
a=1,...,n—1 where x and y are properly chosen reference points [25].

126020-7
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lim AM2Y
L—oo +ot

MHY |:1 — ?:lﬂi_Z;Z:GJi’_L_Q <Z?1 €2€i+2ﬂi(1+2[+22i+2)+2?6626,‘5,‘(1+ZiZi)>’ﬂl’ﬁ27ﬂ3,6(,,...,Gn
0,L,1,24,...,2,

KR (2 )
=2 (n=1)nZn P1P2f3 06 Zﬁl Z ’

(1 - Z4)Z4SZ56 P

3 n
X (Z €26 2Bi(1 + 2i2Zi40) + Z€z€i6i(1 + ZiZ‘)) : (2.34)

i=1 i=6

Therefore, Eq. (2.26a) becomes

(AMV)ALB0(0, 00,1, 24, .0 2)

e N D
(1 = 24) 245256+ -Z(n-1)nZn [M123] \ 45 l e \Jo
id—1 pidg—1 1,15-1 i+1 3 B n O\ it
1P Zﬁz Z o - Z 26i40Pi(1 + 2i12Zi42) — Z e6;0;(1 + 2;Z;) (2.35)
i=6

i=6 i=1

where n = 5 case can be straightforwardly written as

5
V3 1 _
(AMHV) ,++(0 o0, 1,24,25) <§ : ) il3—1 14 1 1325 1

4(1 = z4) 24525 |M1 23|

ih+1 i+
X <1 - Zﬁi) (— Z e2€2fi(1 + Zi+2zi+2)> . (2.36)
i-1

i=1

By using the prescription detailed in Appendix A 2, we can compute f; and write down the explicit expression for any
given momenta; for example, we have

(AMHV)AI ..... (0 o0, 1, Z4, ey Zl’l)| P23 incoming

P1 k>4 outgoing

m(=2)3" < )
N A;
(1 _Z4)Z45256.. Z(n=1)nZn |)(45| Z
X H </ mk—1> ()(34 + 53 +xas(1 =230 gor) =23 0o (rar —)(Sk)gk)u,H

X4s
x <)(34J(5 + 11503 — 23 k6 XkO%) +)(53)(4) ot <)(53 +2 Ez_ts%k”k) et (X‘B +2 22—6){4](61{) ! (2.37)
Xs4 Xs4 X4s
for
xi=1+27;, Xij =22 — 22 forzz =273 =1 (2.38)

where U(f3;) = 0, 1 and it should be understood as a reminder that the expression is nonzero only for certain regions of z;,
regions whose explicit description we will not provide for the most generic case.
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For n =5, the expression significantly simplifies; in particular,

P 4 5 : outgoing

aU( ﬁ,

- (Z’l ) X (a3 +a3s +250) ' Orsars +otaska +xsaxa) ™ (rsa) 7 (rs3) 7 (raa) 71 (2.39)
i—1

4(1 Z4 24535

if we restrict to ys, € RT.

Of course, there is nothing specific about choosing second and third momenta to be outgoing and the rest incoming;

for example,

P1, 2 3 outgoing

T T4 = 2)) 2 ze <Z’1 ) a3 = Xas = X54)" T Qraas + Hasks + xsaxa) T (rsa) 7 (rsa) M (raa) T (2.40)
4(1 - Z4 24535 P

if we restrict to ys3 + y34 € RT.

III. LOOP AMPLITUDES ON THE
CELESTIAL SPHERE

In this section, we will consider gluon and graviton
loop amplitudes with all-plus helicity (all external particles
have positive helicity) and one-minus helicity (all but one
external particles have positive helicity). These helicity
configurations are particularly interesting choices as their
tree-level counterparts vanish as shown in [39]. These
rational amplitudes are also interesting for other reasons;
for instance, they are not cut-constructible through unitarity
|

4

(O o0, 1,Z4)
i—1

z4(z4—2)+ 1

S =203 it =) + 3,

cuts in four dimensions. In addition their expressions take
surprisingly compact forms, reminiscent of tree-level
amplitudes. Finally, they are free of logarithmic divergen-
ces, which make them ideal candidates for celestial
amplitudes beyond tree level.

A. Four-point amplitudes

Let us start with the four-point celestial amplitudes for
gluons and gravitons. We have seen that a generic four-
point celestial amplitude can be computed from
Eq. (2.26¢), which becomes

J i)
ez —1)+eq—1

X(‘(

>1ﬂz< 2 >tﬂ;( 1 )lﬂ4
2—1)e1 0 — 24625 + €24 2u(—€13) ter3—€34+ 2 (za=1)e1a— 24634+ 1

| (e s =D Fe—1
X hm.Aj1 14[

where we defined the shorthand notation

€:

iy, = €i€i

L)

24—1 -2 24(24=2)+1 24 1
(=) a=z4€23 €24 " 24(—€13) €1 3—€34+24° (24—1)61,4—2463,4+1:| (3 1)
0’ La 19 Z4
€, (3.2) TABLE 1. The breakdown of the support of the four-point

and where we have used the prescription detailed in
Appendix A 2 to compute ;. With f3;, we can also compute
U(B;) explicitly as can be seen in Table I.

The computation of the last term in Eq. (3.1) is
straightforward, but we can simplify it even further with
the following prescription. Given any four-point amplitude
of the form

celestial amplitude on R depending on which momenta lie on
future lightcone (¢ = 1) and which momenta lie on past lightcone

(e = —1).

Case Region U(p;) is 1
€] = €4 = —€3 Z4>%

€] = €3 = —€4 22Z4ZO
€3 = €4 = —€ 0>z
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Ap)= 3 Gymijs (Z p’Z) (3.3)
i=1

I<i<j<4

we can immediately write

24—1 — L2 24(24=2)+1 24 1
lim A, —z(e3—)+e =17 (za=1)era—z4€23 €24 " za(—€13) €1 3—€34+24 7 (za—1)er 4—24€34+1
Looco Jieeoda 0L 1 2
m;; 4)\mij+ni;
= Y (=ep)mi(2ay))" (3:4)
1<i<j<4
for
(z4 = 1)%€1 (24 = 1)z4e13
( 4= D)egys— 2464 +63)7 ( 4 — D)eg1s — 2464 + €63)%
49— (za = 1)’z4€23 O — (z4— ey
» ((z4 = 1)eg 13 — 2464 + €3)% 1 ((z4 — 1)eq 13 — 2464 + €3)°
(4) (z4 = 1)€r4 () \/ 24€34
ay] = /- , ay, = (1—z4),/— . (3.5)
24 \/ ((za = 1)ear 3 — 2264 + €3)° H ((z4 = 1)eg 13 — 2464 + €3)?

This prescription is valid for any amplitude as it simply follows from the kinematics. For example, the color-ordered
gluon four-point one-loop amplitudes for all-plus and single-minus helicities in pure Yang-Mills theory can be written as

gluon [23][41] 4 - U gluon <24 4
AT (i) = _Cmé (;Pz)’ AT (pi) = [12]<2 4)[41] P Y IV EIEd (ZP) (3.6)

as seen in [40-42]."> With the prescription above, we get

74—1 —L2 24(24=2)+1 24 1 ¢
lim Ai]ifi |:—Z4(€1.3—1)+€1,4—1 ’ (za=1)era=zae23+€24 * 2a(—€13)+€13—€34+24 (14—1)51.4—1463,4+1:| ) (373)
oo 0.L,1,24 €1234
24—1 72 74(24=2)+1 24 1 _
hm Agﬁ}fn |:—Z4(él 3—1) e 4—1° (za—1)€e12—24625F€24 " 2a(—€13)F€13—€34+24 > (a—1)€1 4—2a€34F1 :| — ¢ sgn(z4§1 Z4)) . (3.7b)
0, L, 1, 24 Z4

We can also consider one-loop gravity amplitudes for both all-positive and one-minus cases. These amplitudes have been
computed using string based methods [43—45]. Also, it is interesting to note that the four-point all-plus one-loop gravity
amplitude can be calculated using the Bern-Carrasco-Johansson (BCJ) double copy construction and we refer the readers to
[48] for more details. In spinor helicity formalism, they can be written in a compact form [46,48]"°:

i s+ 40t

o (e ) (7))
o =4(3) (Vo) (e ) * (570) )

With the prescription above, we get

AFE () = -

Here the coefficient ¢ =i Nﬂ? where N, is the net number of states circulating in the loop.
"®The parameters s, ¢, and u are the standard Mandelstam variables, e.g., s = (12)[12].
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] 71 —[2 24(24=2)+1 % 1
lim A?r]friton |:_Z4(€1-3_1)+€1,4—1 ’ (z4=1)e1n—24€23 €24 z4(—€)3) €1 3—€34+24 (24—1)€1<4—Z4€3.4+1]
L=eo 07 La 17 Z4
2 (2= 1)(2a(24(2(zs = 2)2a +7) = 4) + 1) (3.92)
15(4x)? 75((z4 = 1)e134 — 2464 + €3)°* 7 '
) z4—1 _L—2 24(24—2)+1 24 1
lim Agia:iton |:_Z4(€1.3—1)+€1.4—1 ’ (z4=1)e1a—24€23 €24 z4(—€)3) €1 3—€34+24 (24—1)€1<4—Z4€3.4+1:|
L 07 Lv 17 Z4
_ 25 (2 - 1)*((z4 = 1)%€25lza] + 24((zs =3z +H(za = 1) + 1) (3.9b)
60* Zg((Z4 —1)ey34 — 2464 + )t ' .
We obtain the full celestial amplitudes by inserting Eq. (3.7) and Eq. (3.9) into Eq. (3.1). For example,
(A0 2840, 00, 1, 24) = =5 —U(B))8(2s = 24) (Zﬂ )
i €1234
X ( 24— 1 )M‘( 24(z4—2) +1 >M2
—z4(e13— 1) +ea—1 (za = D)e1a — 24623 + €24
il il
x< & > 3( ! ) " (3.10)
z(—€13) ter3—€4+ 2 (24— 1)€14 — 24634 + 1
For specific choices of incoming/outgoing momenta, the expression simplifies significantly; i.e.,

. — % (24 = 1)/ +2) 2085z, — 24)5(2?:1 /11') 7421

(Agluon)ﬁi;:; (0 o0, ], Z4)|F23 incoming — ) . (31 1)
P14 outgoing _%c <Z4 _ 1)1(/11+2AZ)Z2135(24 _ Z4)5( ?:1 /’li)eZE/lz 1> 2 Z %

We would like to remind the reader that one can get the standard form of the amplitude, i.e., (Agluon)Jr;;;L X2 X3 X4)s
from its form in the conformal frame using Eq. (A6).

B. Five-point amplitudes

After considering four points, we would like to extend the computation of celestial amplitudes to five points. Again, we
will focus our attention to all-plus and single-minus results. We have seen that a generic five-point celestial amplitude can be
computed from Eq. (2.26b), which becomes

AP0, 00,1, 24, 25)
_ gu(ﬂi) 6(i(1< _5)+ 25:/11) ((—Z524 +Z+(z—DZs—z+ Z5)'91,3.,4,5>"’1‘
i-1

9| @
x <(Z4 +25(24(Z5 = 2) + 1) = Zs + 24(2524 — (24 + 25 — 2)Z5 — 1))62,3.4,5) i ((Z524 - 2425)64,5>i’13
@ @
o ((Zs - Zs)?z,s)”‘ <(Z —Z4)€3, 4) lim A {1 =3 B —L2 Y e i1+ Zi+22i+2)sﬂlvﬁ27ﬁ3:|
@ @ L™ It 0,L,1,24,25

(3.12)

for

@ =(Zs —25)(e35 — €1345) + Za(2s€45 — (25 = 1)€1345 — €34) + 24(—Z5€45 + (Ts — 1)er 345 +€34)  (3.13)
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TABLEIL.  The breakdown of the support of the five-point celestial amplitude on {(x4, y4, X5, y,) € R*|z4 = x4 + iy4, 25 = X5 + iys5}

depending on which momenta lie on future lightcone (¢ = 1) and which momenta lie on past lightcone (¢ = —1).
Case Region U(f;) is 1
€] = €3 = €4 = —€5 x4<x‘”A( 5 20 <y A ((2ys < y5 A ys < 0)V(2y, > y5 A ys > 0))
€1 = €3 = —€4 = €5 B <X Axg <EEH2A (04> 0 A ys <2y5)V (v <0 A 2y5 <yy))
€] = €3 = —€4 = —€5 x4<( )”—|—2AX’”<x4/\((y5 >0AY <0)V(y,>0Ays <0))
€] = —€3 = €4 = €5 (x4 >X5M+ A (s >0AY+ys S0)V(ys <O A s +y520)))

(ys( 2955)’4 +2x45 +y4) > 0A ((y4+ 95 >0 A ys <0)V(ys > 0 Ay +ys5 <0)))
1= 76 =6 =76 ((v4 < 0V2y4 < ys) A xy > ol )V”F A (4 > 0V2y4 > ys5))

V((ys < OV2y > ys) A xy > X‘? A (2y4 < ys5vys > 0))
€] = —€3 = —€4 = €5 (g <BEA((va >0 A ys <2y5)V(ya <0 A2y5 < 4)))

V(x4 < (2x5 D 1A ((v5> 0 A vy 2 2y5)V(ps < 0 A 4 <2y5)))

€] = —€3 = —€4 = —€;5 Xy < x;? A (()’5 >0Ay, <0)V(ya>0Ays <0))

where we have used the prescription detailed in Appendix A 2 to compute f3;. With 3;, we can also compute U(3;) explicitly
as can be seen in Table II.

We can provide a prescription to compute the last term in Eq. (3.12), similar to what we did for four-point amplitudes in
Eq. (3.5). Given any five-point amplitude of the form

Aoy = 3 timalijpes (Z p’Z) (3.14)

1<i<j<s

we have

‘ > 3.15
]l . 05 L7 19 Z4, ZS Zl] ) ( )

lim A 1- ?:1 pi—L7? ZL e2€i12Bi(1 + 2i12Ziy2). B, Po. B } _ (_ €i,jZij) m"f'(za(s))m;ﬁn,;/
L=eo 1<i<j<5
for the coefficients a( ) given in Eq. (A20).

By inserting th_,ooAj1 i, [] into Eq. (3.12), we can obtain the celestial form of any amplitude. As an example, we
know that the color-ordered gluon five-point amplitude in pure Yang-Mills theory reads in spinor helicity variables as

gluon ¢ Zl<z</<k<l<5<lj> ,]k <kl A
AL (pi) = (12)(23) (34) (45) (51 5(217!)

e (PSP (47sEs) (13732 (g
4200 = e (i (e~ (1o 54 657)° (Z”> (316

where ¢ is given in footnote 15. With the prescription above, we can find the full expression as given in Eq. (A21).
For special configurations, the expressions simplify; for example,

lim Agtuon LB LY 00 e€iofi(1 + 2i40Zi42) i Ban Ba
L—oco —tt 0, L’ ]’ Z4’ ZS P12t incomif)g
p3‘4‘5: 0u\gomg
25%4—2425

(24=24) (Z4(25—2) 25 +25+24 =25+ 24 (25 (24—25)—(24—2)Z5—1)) ’

B 2724274 (—Zazstzs+Zat+2a(z5—1)-25)*
<5 (Zs - Z4) Zs
_ 3/= 5 25_Z5
(ZS 1)Z4<Z4 ZS) 24(25—2)15+Zs+24—25+14(15(54—55)—(24—2)25—1)’

- = 2s)? (3.17)

with which the full result in Eq. (3.12) becomes
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(Agluon)Ai;r-err (O 0, 1 ) 240 ZS) | pla: incoming

P345° outgoing

Upi)
T Al - D) — 2 - 2@ — 1) 2| (Zl)

%+ 25(Za(35 = 2) + 1) = 25 + 24(2524 — (24 + 25 — 2)Z5 — 1)) it ( 2425 — 2524 >M3
—Z5Z4 +z 74+ (Z4 - 1)25 — 24+ 25 —Z524 + 24 + (Z4 - 1)25 — 24+ 25

:,\

X

2| 2574—24%5 | (24=74)(24(Z5=2) 25 +25+74—Z5+24(25 (24 =Z5)—(24=2)Z5—1)) |
(—Zazs+zs+2at+z(zs—1)-2s)°

25(25 = 24) Zs

274-27
X 24 24

< 75 — Zs >‘14< 74— >’ﬂs
—2524+ 24+ (za — 1)Zs — 24 + 25 —25%4+Za+ (2 —1)Zs — 24 + 25

Z5—2
(ZS B 1)Z4(Z4 B ZS)| 24(25—2)15+15+Z4—25+524(25(24—25)—(24—2)25—l) |> ] (318)

(z4 = Zs>2

As another explicit example, we can consider a five-point graviton amplitude. For the all-plus rational-loop amplitude,
we have

AT ()

- 960(47)? (12)2(23)%(45)(34)(41)(35)(51)

x &* <Z; p';) (3.19)

where there are 30 distinct permutations in total. Below, we will consider this term alone; one can analogously repeat the
computation for permuted terms; for details of the derivation of Eq. (3.19) and for further information on the other
permutations, see Eq. (4.23) of [46].

For generic ¢;, the expression lim; _, .. AS"725°"[] takes a rather complicated form; however, it becomes manageable if
we switch to real parameters {(xy, yr) € R?|z; = x; + iy}

ws(wmipap-e oy +eonrues-(303)(GI)

+ permutations

B =LY e oi(1 4 xEy 4 ). Br Ba

Jim AT
0,L, 1, x4 4 iy4, x5 + iys
_ 128e45(xq = x5 = i(ya = ¥5)) (Vs (xa(€as — €1345) = €35 + €1345) + yalxs(€1545 —€a5) + €34 —€1345))°
[Vays|(es + s = 1)(x4 + ia) (xg = x5 + i(ys = ¥5)) (65 + ivs = 1)(xs + iys) (x5 = 1)ys = (x4 = 1)ys)* (X594 — x4¥5)*
(51.2.3.4(Xi—hﬁvi)\k((«\’s—]))’4—(X4—]))‘5)(*‘5)‘4‘«‘4)’5)()’5(X4—1)2+Y§)'5—)'4(X§—2X5+,V§+|))\ 482 23,5 (3 =5 +y3)|ya (x5 =1)y4=(xa=1)ys) (xsya=x4ys) (vs (x4 =1)> +33ys —ys (¥ =2x5+3 +1))|)
x (5 (x4 (es5—€1345)=€351€13.45) TV (¥ (€1345—€45) T€34—€1345))* (s (x4 (€s5—€1345)—€35+H€1345)TVa(xs(€1345—€45)Te34—€1345))"
((xg = 1)%ys — v (x5 = 2x5 + y3 + 1) + ¥3ys)°
+ contributions due to permuted terms. (3.20)

If we consider a specific configuration of incoming/outgoing momenta, the expression simplifies enough so that we can
write it again in terms of z; and Z;; for instance,

B =LY ereinfi(l 4 2i0%i40) i o B3

. graviton
LILIEOA—++++
0.L,1,24,25

(Zs = 2| =y |
(24 = V)za(zg — 25) (25 — )25 (25(—24) + 24 +24(Z5s — 1) — 25 + 25)° (2524 — 24%5)*(2524(Z5s = 2) + %4 — 25 + 24(25(24 — 25) — (24 —2)%5 — 1) + 25)?
% ((24(224 = 1) = Z4)[(z5 — Z5) (2524 — 2475) (24 (%5 — 2)25 + 25 + 24 — Zs + 24(25(24 — Z5) — (24 = 2)Z5 — 1))
+(25(225 = 1) = Z5)| (24 — Za) (2524 — 2475 (24(Zs = 2)25 + 25 + 24 = 25 + 2a(25(20 = Z5) = (2 = 2)z5 — D))’

+ contributions due to permuted terms (3.21)
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with which the celestial amplitude becomes

(Asravitomyhi 85 () o0 1, z,, 25)] 1.2 momie
P345" outgoing
z Upi) (Z}‘)( 5 =35 >M‘
S Azs(z— 1) — 2y — 23— 1) + 7 “25Z4t+ (-1 —utzs
x <Z4+Z5(Z4( 5—2) 1) — %5+ 24(25% — (% +Zs—2)15—1)>”12< %4Z5 — 2574 )’%< T — 24 )MS
—25Z4 + 24 + (24 — 1)Z5 — 24 + 25 —25Z4 + 24 + (24 — 1)Z5 — 24 + 25 —2574 + 24 + (24 — 1)Z5 — 24 + 25

(2~ %) e
X
(24 = V)za(za — 25) (25 — 1)z5(25(—2a) + 24 + 2435 — 1) = Zs + 25) (2524 — 24%5) (2524 (35 — 2) + 24 — Zs + 24(25(24 — Z5) — (24 — 2)25 — 1) + z5)°

% ((z4(224 = 1) = Z4)(z5 — Z5)(25%4 — 24%5)(Za(Z5 = 2)25 + 25 + 24 = Zs + 2u(z5(Za — Z5) = (24 —2)Z5 = 1))]

+ (25225 — 1) — Z5)|(24 — Z4) (2524 — 24Z5)(Za(Z5 — 2)25 + 25 + Za — Z5 + 24(25(2 — Z5) — (24 — 2)Z5 — 1))|)?

+ contributions due to permuted terms. (3.22)

With Eq. (3.22), we have concluded our series of explicit gluon and graviton celestial amplitude results. As we can see in
Eq. (2.26a), there are complicated integrations that need to be carried out beyond five points, hence it is not practical to
provide the full explicit answers for higher point amplitudes. Nevertheless, in the next section, we will discuss their generic
forms and provide an explicit integrand for an all-plus one-loop gluon amplitude.

C. Higher point amplitudes

We have seen that a generic higher point celestial amplitude can be computed from Eq. (2.26a), which becomes
A,l T "(0, 0, 1,24, ...,2,)

:fu(ﬂi) ( B - > . < ! mk) ihs pid nils
2 1ol 5( ik n)+Zl, 11 /0 doyo* | B\° By B3

i=1

il 3
< Zﬂz Z > < €2€l+2ﬂl( + Zl+2zt+2 2626 ;O + Z; Z >
i=1

i=6

il

X hm AJ[ Jn

[1 -2 =Y tgon—L7 <Z?1 €26i2Bi(1 4 2i42Zi42) + D1 g €260 (1 + Zﬁi)) Bis P2 B3s 06, -, 0
0,L,1, L4y -eslp
(3.23)

where ¢ is defined in Eq. (3.13). One can also compute f; straightforwardly as explained in Appendix A 2; for the reader’s
convenience, we provide the explicit results:

@B = (2524 — 24%5)€45 + Z (Zi(€4i — €145.0) T Zs(€1a5: — €45)) + zi(Zs(€5; — €145.)
i=6
+Za(€1a5;—€4;)) +25(Za(€ss — €145:) + Zi(€145: —€5,))), (3.24a)

n
@By = (25 — z5)€35 + Zf’i(zs(%j —€1350) +Zil€135: —€3;) + 25(Ziles; —€135:) + €135 —€35)
i=6

+ zi(Zs(€135 — €54) + €35 — €135.)), (3.24b)

n
PP = (24 — Za)€34 + Zgi(zi(eli —€1340) +Za(€134; — €34) + 2i(Zaleq; — €134:) — €3+ €1344)
i=6
+ 24(Zi(€13.40 — €44) — €134 + €34)). (3.24¢)

By inserting these into Eq. (3.23), we obtain the most generic form with the kinematic constraints applied.
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As the most generic form is rather complicated, let us specialize into the situation where the first two momenta are
incoming and the rest are outgoing. Indeed, we can show that

A?],J (O 00, 1 4 - ~7Zn)| py: incoming

P3....p ¢ outgoing

_r Up;) 5(i(K—n)+ii»)
2= 2(zs(-24) + 2 + 24(z5s — 1) — 25 + 25)| i
n </ MA) (ZSZ4 — 2475 + 2?26 26,’((25 - Z4)Zi + (24 - ZS)Zi + 2574 — 2425))1'/13
de > - - hd

k=6 \/0 2(z5(za = 1) =24 — 24(Z5s — 1) + Z5)

(Zs — 25+ > " e20(—Zszi + (zs — 1)+ 25 + 2z — zS))l'AA <_ Ltz e20i(za(-7) + (T — Dz + 27— 2 + Z4)>M5
2es(@— 1)~ 2 =2~ 1)+ %) 2es(—20) + 2+ 2= D =2+ 35)

(1 E?:64(Z5(_Z4) + 74+ Z4(25 - 1) - 25+ Z5)0i>541

X

27 2as(=2a) £ 2t aa(Es — 1) — 25 +25)
X(z(ZS<Z4—1>—Z41—Z4( “1 ){_Z“_“(mz“_z”I)HSH“(_ZSM(24“5_2)25“)
+ZZ¢71 s = D2+ (25(Z = 1) = 2aZa + 1)35)7 + (35(25 = 1) + 2a((35 = 1)Za = 2575 + )%

ity
— 274 + 275 + zS(Z§ — 2525 + 24((25 - 2)25 + 3) - 2) + Z4((Z4 - 3)25 - ZS(Z4 + (ZS - 2)25) + 2))})

X hm AJ] s

[1 -l i eon—L? (Z?:I €268 (1 + 2i12Zi42) + D16 €26i0;(1 + ZiZ‘)) B, B2 B3y o6, .0,

0,L, 1,Z4, sy
(3.25)

With the equation above, we can consider several higher point amplitudes for this momentum configuration. Below, we
will only focus on one simple case: all-plus gluon rational amplitude:

gluon _ lei<j< < §n<l.]> []k} <kl> [ll} 4 - u
A ) =~ TR 2 e () 520

where c is given in footnote 15 [40]. This leads to

= = n
1 _ Zl§i<‘<k<1§n€i,j,k,lzijijzklzliwiijkwl
AT @1, ey @325 o0y 2,) = —c(=2)% / 5* E 2 (3.27)
212223 "1 ip1 W13 ... Wy, ;

for which we can immediately write

Agluon[ 1---%] — (<)t D i<icj<k<i<n€ijkiZijZjk k2100 0k (3.28)
Z1---2n 212223 " " 2p10103-- .0y,

where we also see that k = n.
Let us focus on the first term, i.e.,

Agluon {01...0,1

} = —61.2_3,4(:(—2)4‘”&1_[0 !+ other terms. (3.29)
Zl...Zn '

223245 """ Znl 5

We can immediately insert this into Eq. (3.30) and obtain
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(Agluon)Al ,,,,,

”(0 00, 1’Z47 . wZn)

P12 incoming

P3,...p: outgoing

U

23n

= mc(=2)%"

| = 2(z5(=Z4) + 24+ 24(Z5 = 1) =25 + 25)| 203245

Znl

oSS 1 [

i/lk—1> <2524 — 2425 + Z?:G 251’((25
kO

2z5(za— 1) —Z4 —z24(35— 1) + Z5)

—Z4)2i + (24 — 25)%; + 2524 — Z@s)) it

2(z5(Za = 1) =24 — 24(Z5 = 1) + Z5)

s =25+ 1 620i(=Zsz; + (25 — )2 + 25 + 2 — Zs))”“

(z5(=Z4) + 24 +24(Z5 = 1) = Z5 + 25)
1 ”_ (—Z) + 2+ 24(z5s — 1) = 25 + 25)0;

X

l\)

2 Z4)+Z4+Z4(Zs—1)—25 + 25)
1

X
—1 —Z4—Z4( 1)

X X
/\/\/—\/—\

2(Z5

—&—iZo,

i=

4= 124+ (25(24

— 224 4 225 + 25(25 — 2525 + Za((z5s —2)Z5 + 3) = 2) + 24((Z4 — 3)Z5 — 25(24 + (35 — 2)25) + 2))])

+ other terms.

As we can see, insertion of the first term in Eq. (3.29) into
Eq. (3.30) simply shifted 4;-5 by i and included an overall
prefactor f(z, 7). The other terms in the final result have the
same property: all but four of A, are shifted by i and they have
relative factors f(z,z) which can be read from Eq. (3.29).
Therefore, for all-plus one-loop gluon amplitudes, we have a
summation of W—!“)! terms where the first term is given
above and the others are almost the same, the difference
being shifts in different A, and the overall factor of z; ’s in the
first line which can be extracted from Eq. (3.29).

IV. CONCLUSION

In this paper, we have provided explicit construction of
loop-level celestial amplitudes for gluons and gravitons.
We believe examples of celestial scattering amplitudes at
loop level is of deep theoretical interest.

As they are rational and without any divergences, the
one-loop all-plus and single-minus amplitudes for Yang-
Mills and gravity are natural candidates that will help in
understanding the holographic properties of scattering
amplitudes beyond tree level. The simplicity and subtleties
of these amplitudes made them excellent candidates to
study spinning celestial amplitudes beyond tree level. We
computed explicit examples of four and five points of
such amplitudes, and provided the integrand for a particular
n-point amplitude.

There are many interesting future directions that one can
consider. The study of pure Yang-Mills and gravity theory

—1) —24%4 + 1)Z5)z; + (25(35

Tt + Dot6200(z4(=Z) + (Za—1)z; +Z,— % + z4)>"'15—1

oy

) [—24 —25(24(Z5s —=2) + 1) + Zs + za(~2524 + (Za + 25— 2)Z5 + 1)

= 1)+ z4((z5 = 1)Z4 — 2525 + 1))z

ily

(3.30)

|

at one loop may have interesting implications for ' = 4
Yang-Mills and N = 8 supergravity theories. In particular,
all positive helicity amplitudes that we considered in pure
Yang-Mills is related to MHV amplitude in A/ = 4 super-
Yang-Mills and similarly, all positive helicity amplitudes in
Einstein gravity is related to N = 8 supergravity theories
[68]. It would be interesting to investigate these connec-
tions with the usage of celestial amplitudes technology. On
arelated note, it is known that there are interesting relations
between scattering amplitudes of gravity and of gauge
theories (see [69]). Such dualities have been checked for
many cases but a fundamental origin of this relation is still
lacking. From a practical point of view, such dualities’ most
powerful applications are expected at loop-level computa-
tions and it is intriguing to study such relations using
celestial technology.

Another specific goal is to generalize our one-loop
amplitudes in pure Yang-Mills theory and gravity beyond
the cases we have considered in this paper to provide more
concrete examples of the celestial CFTs. We leave all of
these exciting investigations to future work.
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APPENDIX A: TECHNICAL DETAILS

1. Conventions for conformal frame

It is well known that a conformal correlator can be
rewritten in terms of conformally invariant cross ratios; for
example, one can write the four-point correlator as'’

(O1(x1) O3 (x2) O3(x3) O4(x4))

(xiz)A“JrA“ (x%3)A12—(A3+A4)/2 (x§1 )Bart+is

= g(u, v)

(xgq) %

(Ala)

where A; are the scaling dimensions of the operators O; and
where the conformal cross ratios are given as

2.2 2.2
_ X12X5 _ X14%73
=2 .2 =

X13X24

(A1b)
x%3x%4

for x;; =x; —x; and 2A;; = A; — A;. Here, the functlon
g(u, v) is not flxed by the conformal symmetry."®

For higher point correlators there are multiple cross
ratios; the conformal moduli space of n points in d
dimensions is given as

-3
# of cross ratios = % +d(n—m)
for m = min(n,d + 2) (A2)
which becomes
# of cross ratios for A by A” =2(n-3) (A3)

as we are interested in celestial amplitudes of n > 4 gluons.
We can intuitively understand this by the following argu-
ment: given any three points, we can first use translations to
fix z; = 0, then special conformal transformation to take
Z, — oo, then dilation to bring z; to unit circle, and finally
rotation to get z3 = 1. As this exhausts all conformal
transformations, z,.3 remains unfixed, hence we have
2(n —3) real degrees of freedom."

For higher point correlators,
Eq. (Al) as

we can generalize

"This follows from the homogeneity of the correlator in
the embedding space, i.e., (O;(X;) - O (AX}) - O0,(X,)) =
/TAI;<01(X1) Op(Xi) - O0,(X,))-

Other information about the theory or general assumptions
does constrain g(u, v); for example, the whole program of
conformal bootstrap is based on determining/constraining this
function using (among other ingredients) operator product ex-
pansion associativity and unitarity [70].

To understand where Eq. (A2) comes from, we recommend
the nice discussion in [71].

<(91(x1)02(x2) T On(xn)>
(xf,) 72 (x33) 7 (x3,) ™
= g(ug, va3us, vs5 ..U, 0,)
[Tiy (xF)™ e
(Ada)
for
1 n
on=5 —A —A2+;Al )
1 n
0'23 EE <A1 —ZAi>,
i=2
1 n
o3 E§<-Al +A2—A3+;A,> (Adb)
where the conformal cross ratios are given as
x%kx%f'a — x%?x%k (A4C)
2 2 =22
xl%xzk X13X%k

We note that, for n =4, we get back Eq. (Al) from
Eq. (A4) with the identification u, = v and vy = u’?

As we mentioned above, conformal transformations
allow us to fix {x;,x,,x3} — {0, 00, 1}. In higher dimen-
sions, we can further constrain remaining points; in 2d,
they remain as unfixed variables. Thus Eq. (A4a) becomes

(01(0)05(0)O5(1)O4(y) - - - Op(@y))
- H|a)k|_2A"g(M4,114;”5»“5;---;”;1;%) (AS)
k=4

where we implicitly used Eq. (2.23). Extracting the
function g from the equation above and inserting it back
into Eq. (A4a) we obtain

(01(21)0x(z2) - Oy (z0))

= |212]2712| 20327 | 231 |27

for

The reason for this inverted notation is our choice of
conformal frame: as we will see below, we put the second
operator at infinity whereas the fourth operator is put at infinity
for the standard conformal frame of four points. Our choice of u,,
v, in our conformal frame matches the form of u, v in the
standard conformal frame.
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% _ |Zlk|2|Z23|2

£\ |212|2|Z3k|2
W) = D= e

B |Z13|2|Z2k|2'
(A7)

(1 —ay)(1 -

2. Generalized Cramer’s rule

In this section, we will review the generalized Cramer’s
rule as derived in [72]. Let us consider a system of
equations of the form

n n
{ E ayiXi = Ay pyls E Az iXi = A pg 1y --»
i=1 i=1
n
E am,ixi = Ay n+1 }’ nzm (Ag)
i=1

for which we can define the order-m minors of the
augmented matrix as

arj,  Aij At j,
aj aj ; aj ;i
_ »J1 5J2 Jm
Mjl-Jz ~~~~~ Jm = det (A9)
Amj,  Amj, <+ Qmj,

< /dak>5<ln e,a,zi>5<i§:;€,~0,~2> < +Z €€ —

..... nm 1N terms of a;; and

X; = Q41+ Z a;;x;, 1<i<m (AlO)
j=m+1
for
M i1 _
ai,] = 1~2‘].‘.4.1 1.j,i+1,....m—1,m (All)
1.2,....m—1,m
We hence have
H5<Z ApiXi — ak,n+l>
k=1 i=1
_ [T 60k — dipyr — Z;‘l:m—H ai.jxj) . (A12)

|M1,2 ,,,, m|

With Eq. (2.25) in mind, we can use the equation above

to write down
) (63,...,0,)

n 1
l < / dak)f(ﬂl’ﬂ27ﬁ37669""Un) (A13)
|M1,2,3| k=60
for
Ao +Y 26, n>6
B = { et 2054 (A14)
ak,n_l 5 Z n Z 3
and
0<p: <1
Uup;) = Al5
) { 0 otherwise ( )
where o and M are given in Eqgs. (A11) and (A9) for
ay; = €19%i42, Qo; = €i12Zitn, a3; = (€1€i4n—1) for1 <i<n-2
1 +24i42 2, +24i+2 3, ( 1€i42 ) . >4 (A16)
ap-1 =0, a1 =0, az 1 =—1
When n =5 all integrals are taken care of by the Dirac-delta functions, so Eq. (A13) becomes quite simple:
5 1 5 5 5 u(ﬁ,)
(H/ d”k)5<z €i0"iZi)5<Z €i0'izi>5<1 + Z (e16: — 1)0i>f(63’ e Oy) = FBr. P2 B3).  (ALT)
k=370 i=3 i=3 i=3 M) 23]
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Fo n = 4, we cannot exhaust all delta functions hence we cannot use Eq. (A13).21 We instead have
4 I 4 4 4
<HA d0k>5<z €i0iZi>5<Z €i0izz> ( Z €1€; — ) (03,04) =U(B;)0(23Z4 — 24Z3)f (B1, f2)  (ALB)
k=3 i=3 i=3 i=3

where o and M are given in Eqgs. (A11) and (A9) for

ay; = €;49Zi42, p; = (€1€j40—1) for 1 <i<?2
{ 1. 12Ziv2s ag; = (1642 — 1) } —_— (A19)

(l1’3 = 0, 02’3 = —1

3. Details for the five-point amplitudes
The coefficients of the prescription given in Eq. (3.15) read as

a(S) _ (_2524 + 74+ (Z4 - 1)25 — 24+ 25)@4 + 25(24(25 - 2) + 1) —Z5+ Z4(Z524 - (24 + 25 — 2)25 - 1))61,2
2 (es(ea((—25(2a = 1) + 24 + (24 — 1)Z5)€1 5 — 24(Z5 + €13) + 2524) + €3(Z5 — 25)) + (24 — Za)€34)*

PRI (25(24 = 1) = Z4 — 24(Z5 — 1) + Z5)(25%4 — 24Z5)€1 3

" (es(ea((—25(2a = 1) + 24 + (24 — 1)Z5)e15 — 24(Z5 + €13) + 2524) + €3(Z5 — 25)) + (24 — Z4)€34)%
a® — (2524 —24%5)(Za + 25(24(Z5s = 2) + 1) = Z5 + 24(2520 — (B4 + 25 = 2)Z5 — 1))ens

> (es(ea((—25(2a = 1) + 24 + (24 — 1)Z5)€1 5 — 24(Z5 + €13) + 2524) + €3(Z5 — 25)) + (24 — Z4)€34)*

5 s \/ (25 = 2)(zs(za = 1) = 2= 225 = D) + Z5)ens
H \ (es(ea((=25(za = 1) + 24 + (24 = 1)zs)er 3 — 24(Zs + €13) +2524) + €3(35 — 25)) + (24 — Za)e3 )

% — (25 =25)(-Za —25(Za(Z5s = 2) + 1) + Zs + za(—25Z4 + (Za + 25 — 2)Zs + 1))ery
24 (es(eq((—25(24 = 1) + 24 + (24 — 1)Z5)€13 — 24(Z5 + €13) + 2524) + €3(25 — 25)) + (24 — Za)e34)

a — _(Z _ 1)\/_ (ZS - 25)(Z524 - Z425)€3’4
34 4 (es(eq((—25(Za = 1) + 24 + (24 — 1)Zs)e13 — 24(Zs + €13) + 2524) + €3(Z5 — 25)) + (24 — Z4)€34)*

a\Y = —z; (Z4 - 24)(—2524 + 24 + (Z4 - 1)25 — 24+ Z5)€1.5
b (es(ea((—25(2a = 1) + 24 + (24 — 1)Z5)€1 3 — 24(Z5 + €13) + 2524) + €3(Z5 — 25)) + (24 — Za)€34)*

) — \/ (24 —Z4)(Z4 +25(24(35 —2) + 1) = Z5 + z4(25%4 — (2 + 25 —2)Z5s — 1))ens
’ (es(ea((

’

—25(24 = 1)+ 24 + (24 — 1)Z5)€13 — 24(Zs + €13) + 2574) + €3(Z5 — 25)) + (24 — Z4)€34)?

al) = —(z5 - 1)\/_ (24 = Z4)(24%5 — 2524)€35
» ’ (es(ea((=25(2a = 1) + 24 + (24 — 1)Z5)e15 — 24(Z5 + €13) + 2524) + €3(Z5 — 25)) + (24 — Z4)€34)"

al) = (2, -25)/ - (24 = 24)(z5 — Z5)€as
® e (es(€a((—25(Za = 1) + 24 + (24 — 1)Z5)€1 3—24(Zs +€13) +25%) +€3(2s — z5)) + (24 — 24)53’4)2'
(A20)

*'The situation is similar in the n = 3 case; however it needs to be treated separately due to kinematics of massless scattering. As
pi - p; = 0, which follows from (p; + p;)*> = p7 and p? = 0 for i # j # k € {1,2,3}, we get (ij)[ij] = 2p; - p; = 0. In the standard
(=, +.+.+) metric with real momenta, [ij] and (ij) are related to each other by complex conjugation as [ij]  Z;; and (ij)  z;;;
therefore the only consistent solution is if (ij) = [ij] = 0. To circumvent this issue, one either complexifies the momenta or uses the
metric (—, +, —, +) for which z and 7 are real and independent variables, allowing a nontrivial solution for (ij)[ij] = 0. In this paper, we
focus on n > 3 amplitudes and do not deal with such subtleties.
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By using these coefficients in the prescription of Eq. (3.15) for the five-point gluon amplitudes given in Eq. (3.16),

we obtain
3 -2 3 =
im Agtuon 1=3700 P —L72 300 €a€iafi(l + 2inaZiva). Bu. o B3
A At
0 0, Ls 1 » 245 Z5
Z4€ | (Za—z4)(er15—1)€34+(25=25) (€ra—1ess+(2aZs—25%) (€15~ Deas |
. 4€1,2,34 74—74
22425 — 222

(Z _ 1)€ | (25=Zs)(€35—€1345)+2a(—€34+75(€a5—€1345)+€1345)+Za(€3a—€1345F25(€1345—€45)) |

4 2345 ~Z4z5 25124+ 2 (Zs—1)~Zs
2(24 - 1)25

(Z _ I)Z ¢ | (25—Z5)(€35—€13.4.5) F2a(=€34+Z5(€45—€13455) T€1345) H2a(€34—€1 345125 (€1345—€45)) |

4 5€1345 24(Z5=2)zs+25+2a—Z5+2a(25(2a—Z5) = (24 =2)Z5—1)
2(z4 = 1)zs
1)z (Za=z4)(€15—1)e3a+(25=Z5) (era—1)es35+(24Z5—25%4) (13— ey
(zs = 1)Zs€1235] 5% |
2(z4 = 1)(24 — 25)25

e | (Za=z4)(e15—1)e34+(25=Z5) (€ra—1ess+(2aZs—25%) (€15~ Deas |

5€1245 5%4—2%s (A21a)
225 — 2Z4Z5
and

1-3 B, —L7?
: luon =1
lim .A?

—

L eeiofi(1+2i0%00). 1. Ba. B3

L= 0,L,1,24,25
2¢ | (25(Z4—1)—24—24(25—1)425) (2524 —24%5) |
_ 2,31 (24=24)((Fs—25)(€35—€13.45)F2a(—€3.4+ 25 (€45—€13.45) €1 3.45)T2a(€34—€1 345125 (€1345—€45)))
zs(zs — Z4)
| (24—24)(24(25—2)25+25 42475 +24(25 (24 =25)—(24—-2) 25— 1)) |
(=Zazs+zs+Za+24(Z5—1)=Z5)((z5—Zs5) (e35—€1345) +2a(=e34+ 25 (ca5—€1345) H€1345) +2a(€3a—€1 34525 (€1345—€45)))
Zs
3 - 5, —% (25—25)(25(2a=1)~Z4 =24 (25— 1) +Z5)
_ 2Z4(Z5 1)(24 Z5)€4‘5| (24 (E5—2)zstas+2a—Z5 24 (25(Ea—35) —(2a—2)Z5— D)) ((z5=%5) (e35—€1345) 2a (€34 35 (a5 —€13a5) Fe1345) HEa(e3a—€1345 25 (€1345—€a5))) |
3 .
(74 = 25)

(A21b)

One can insert these expressions into Eq. (3.12) to get the full celestial amplitude.
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