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Sub-GeV dark matter (DM) which interacts with electrons can excite electrons occupying molecular
orbitals in a scattering event. In particular, aromatic compounds such as benzene or xylene have an
electronic excitation energy of a few eV, making them sensitive to DM as light as a few MeV. These
compounds are often used as solvents in organic scintillators, where the deexcitation process leads to a
photon which propagates until it is absorbed and reemitted by a dilute fluor. The fluor photoemission is not
absorbed by the bulk, but is instead detected by a photon detector such as a photomultiplier tube. We
develop the formalism for DM–electron scattering in aromatic organic molecules, calculate the expected
rate in p-xylene, and apply this calculation to an existing measurement of the single photo-electron
emission rate in a low-background EJ-301 scintillator cell. Despite the fact that this measurement was
performed in a shallow underground laboratory under minimal overburden, the DM–electron scattering
limits extracted from these data are already approaching leading constraints in the 3–100 MeV DM
mass range. We discuss possible next steps in the evolution of this direct detection technique, in which
scalable organic scintillators are used in solid or liquid crystal phases and in conjunction with
semiconductor photodetectors to improve sensitivity through directional signal information and potentially
lower dark rates.
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I. INTRODUCTION

Dark matter (DM) can interact with electrons in a wide
variety of systems, leading to a rich phenomenology of
detector signatures and an active research program for
development of new experiments [1–30]. In particular, the
formalism for DM–electron scattering in atoms [1] and
solid-state systems [6,29] has been well studied, but rather
less attention has been devoted to DM–electron scattering
in molecules.1 In principle, molecules are promising
detector candidates because covalent molecular excitation
energies can be comparable to semiconductor band gaps,
OðeVÞ, allowing sensitivity to DM down to the MeV scale.
Furthermore, achieving a large target mass (tens or

hundreds of kg) of high-purity solvent such as benzene
is somewhat easier than achieving a similar target mass of
high-purity silicon, and when these molecules are used as
solvents in a scintillating compound, the total background
rate is quite competitive compared with the state-of-the-art
in silicon achieved by SENSEI [16,20,23], CDMS-HVeV
[21], and DAMIC at SNOLAB [24]. Finally, because the
scintillation signal is decoupled from the primary DM–
electron scattering event, any photodetector sensitive to the
wavelength of scintillation light may be used to read out the
signal. This is in marked contrast with many DM–electron
scattering proposals to date, including silicon CCD’s,
where the target material itself serves as the detector.
In this paper we set the first limits on DM–electron

scattering from an organic scintillator target, specifically
EJ-301 [33], a ternary scintillator composed of 95%
p-xylene (1,4 dimethylbenzene) by mass, the rest being
naphthalene and a proprietary fluor. We develop the
theoretical formalism for DM–electron scattering in aro-
matic molecules (i.e., conjugated π-electron systems),
exploiting the fact that semianalytic parametrizations of
the electronic states can be found using a linear combina-
tion of atomic orbitals (LCAO) model. We then apply this
formalism to the specific case of EJ-301, using exper-
imental data from [34], where a low-background 1.3 kg
scintillator cell was operated in a dedicated shield under
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1See [31], however, for detailed studies of DM absorption in
molecules, and [32] for DM–nucleus scattering which excites
rotational energy levels.
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minimal overburden. The method described in [34] allows
the dark count rate of the photomultiplier tube (PMT) to be
subtracted from the readout, resulting in a residual single
photoelectron (SPE) rate of 3.8 Hz. As this background
subtraction is only statistical in nature, and not event-by-
event, it cannot be used to claim discovery, but nonetheless
the residual rate is low enough to allow us to set an upper
limit on the DM–electron cross section of about 10−34 cm2

for 10 MeV DM scattering through a heavy mediator,
within an order of magnitude of the world-leading limits set
by DAMIC in this mass range. We note that our work is
complementary to previous work on DM–electron scatter-
ing in scintillating targets [10], which focused on solid-state
systems as opposed to molecular solvents.
This paper is organized as follows. In Sec. II, we define

our molecular model for aromatic compounds and deter-
mine the relevant electronic wave functions and excitation
energies. In Sec. III, we use these wavefunctions to
compute the expected event rate for a given target mass.
We present our results in Sec. IV. In Sec. V, we discuss
potential next steps in the development of organic scintil-
lator targets and photodetector readout to achieve superior
limits. We conclude in Sec. VI. Some technical details of
the wave functions and molecular form factors can be found
in Appendix.

II. MOLECULAR ORBITAL MODEL

Dark matter can produce a detectable signal in a liquid
scintillator by exciting an electron from the ground state
into one of several low-lying unoccupied molecular orbi-
tals, which fluoresce upon deexcitation. The emission lines
are broadened by rotovibrational energy sublevels, thermal
motion, and solvent effects. Therefore, the emission spectra
of a liquid scintillator will be a continuum with peaks
corresponding to the electronic transitions to be discussed
in this section. The emission spectrum for EJ-301 is
presented in ref. [35].
A prediction for the scattering rate requires knowledge of

the momentum space wavefunctions of the bound state
electrons in the molecule. In this section we find analytic
expressions for these wavefunctions using a linear combi-
nation of atomic orbitals (LCAO). We then include

configurational interactions (i.e., electron-electron repul-
sion) to obtain experimentally accurate descriptions of
these electronic states.
In EJ-301, the primary target which initiates the scin-

tillation process is p-xylene, a substituted benzene deriva-
tive with a chemical structure shown in Fig. 1 (right). In
molecules such as benzene, the ring contains alternant
double bonds. The electrons which occupy the π-orbitals in
these bonds are essentially delocalized and are free to move
along the so-called aromatic ring made up of the con-
jugated π-bonds.2 In six-membered aromatic rings there are
six electrons associated with the conjugated π-electron
system.
The electronic transitions responsible for scintillation are

those in which electrons in the conjugated π-bonds of the
aromatic ring are excited into higher energy molecular
orbitals. Thus, we will restrict our characterization to the
π-conjugated system whose Hückel molecular orbitals are
linear combinations of six 2pz atomic orbitals, one from
each carbon in the ring. Each such carbon contributes one
electron into the system. Following the well-known LCAO
method [36], the Hückel molecular orbitals (HMO’s), ψ i,
are given by

Ψi ¼
X6
j¼1

cjiϕ2pz
ðr −RjÞ; ð1Þ

where ci are the coefficients to be determined and
ϕ2pz

ðr −RiÞ are atomic orbitals of the Slater type and
Ri are the equilibrium locations of the carbon nuclei. The
2pz Slater atomic orbital is given by

ϕ2pz
ðrÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
Z3
eff

25πa30

s
r cos θ
a0

exp

�
−Zeffr
2a0

�
; ð2Þ

where a0 is the Bohr radius, and Zeff ¼ 3.15 is the effective
nuclear charge of the carbon 2pz orbital [37].
The HMOs can be determined by diagonalizing the six-

by-six Hamiltonian, which reduces to solving the following
linear system,

X6
l¼1

½ðHlm−ElδlmÞcli� ¼ 0; form¼ 1;2;…;6 ð3Þ

where Hlm ¼ hϕljHcorejϕmi are the Hamiltonian matrix
elements. We follow a type of Hückel model in which only

FIG. 1. The chemical structure of benzene (left) and p-xylene
(right). Following the convention common in organic chemistry,
vertices are taken to be carbon atoms, single lines are carbon–
carbon single bonds, and double lines are carbon–carbon double
bonds. The additional horizontal lines in p-xyelene represent two
CH3 methyl groups. In this case only one of the resonant Kekulé
forms are shown for each molecule, but the rings should be
understood to be entirely conjugated π-systems.

2Single covalent bonds between carbon are formed when two
electrons occupy the σ-bonding orbital between two sp3-hybrid-
ized carbon atoms. The σ-orbital lies along the axis between
the nuclei. In a carbon double bond, the carbons atoms are in an
sp2-hybridized state where both the σ-bonding orbital and the
π-orbital are occupied. The π-orbital is lobed above and below the
molecular plane, and is less tightly bound than the σ orbital.
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nearest-neighbor interactions are considered. The
Hamiltonian is then comprised of two types of matrix
elements, one diagonal and one off-diagonal energy. The
diagonal elements, i.e., the onsite energy, is an empirical
quantity which varies by elemental atom. The off-diagonal
resonance integral is a measure of the nearest-neighbor
nuclear interactions. Thevalues for the coefficients are given
in Appendix A 1.
Following the notation of [36], we label the six HMOs in

order of increasing energy as Ψ2, Ψ1, Ψ10 , Ψ−1, Ψ−10 , and
Ψ−2, where in the ground state of the molecule the first
three are occupied and the last three are unoccupied (see
Fig. 2). The minimum electronic excitation energy is from
the highest occupied molecular orbital (HOMO) to the
lowest unoccupied molecular orbital (LUMO), analogous
to the valence–conduction gap in a semiconductor. The
coefficients for these Hückel eigenstates are given in
Appendix A 1. In this construction, (Ψ1, Ψ10) and (Ψ−1,
Ψ−10) are degenerate pairs. However, since the multielec-
tron wave function must be antisymmetric, it is given by
linear combinations of Slater determinants, i.e., the nor-
malized and antisymmetrized products of six HMO’s. The
ground state for benzene is then given by:

ψG ¼ jΨ2Ψ̄2Ψ1Ψ̄1Ψ10Ψ̄10j; ð4Þ
where jΨ1;…;Ψnj is the antisymmetrized product of the
HMOs Ψ1;…;Ψn, and Ψ̄ is the opposite spin state as Ψ.
In these products, the order specifies the identical
electron indexing which implies jΨ0Ψ̄0j ¼ jΨ0ð1ÞΨ̄0ð2Þj ¼
−jΨ̄0ð1ÞΨ0ð2Þj.
Following the method of Pariser, Pople, and Parr

[37–40], we now include the electron repulsion term in
the Hamiltonian, which becomes:

Hppp ¼ Hcore þ
X
ij

e2

rij
; ð5Þ

where Hcore is the core Hamiltonian which gave us the
HMOs and the second term is the two-electron repulsion
operator responsible for the configurational energy of the
electrons. In order to obtain the energies of each transition,
the electron repulsion integrals must be calculated using the
many-body wave functions [37,41]. Here, we adopt a
semiempirical model in which the first singlet excitation
energies are tuned to the experimental values for p-xylene
[42], and the second and third singlet excitation energies
are calculated from the parameters derived in the literature
[37]. Note that since the sensitivity reach of the scintillator
is dominated by the lowest-lying excitations it is not
particularly sensitive to large uncertainties in ΔEs2 and
ΔEs3 . The molecular orbitals for the first singly excited
singlet states are given by the following [36,43],

ψ s1
1 ¼ 1=

ffiffiffi
2

p
ðψ10

−1 − ψ1
−10Þ;ΔEs1

1 ¼ 4.5 eV

ψ s1
2 ¼ 1=

ffiffiffi
2

p
ðψ10

−10 þ ψ1
−1Þ;ΔEs1

2 ¼ 5.6 eV

ψ s1
3 ¼ 1=

ffiffiffi
2

p
ðψ10

−1 þ ψ1
−10Þ;ΔEs1

3 ¼ 6.4 eV

ψ s1
4 ¼ 1=

ffiffiffi
2

p
ðψ10

−10 − ψ1
−1Þ;ΔEs1

3 ¼ 6.4 eV; ð6Þ

where

ψ j
i ¼

1ffiffiffi
2

p ðjΨ1Ψ̄1…ΨiΨ̄j…ΨNΨ̄N j

− jΨ1Ψ̄1…ΨjΨ̄i…ΨNΨ̄N jÞ; ð7Þ

are single electron singlet excitations with respect to the
ground state. The second and third singly excited singlet
excitation wave functions and energies are given in
Appendix A 2. Following the notation of [36,38,42], the
ψ s1
1 and ψ s1

2 orbitals transform in the B1u and B2u repre-
sentations of the point symmetry group, while the degen-
erate ψ s1

3 and ψ s1
4 transform as E1u.

The rate of dark matter–electron scattering depends on
the molecular form factor,

fijðqÞ ¼
Z

d3pψ̃ iðpÞψ̃⋆
j ðpþ qÞ ð8Þ

¼ hψ jðrÞjeiq · rjψ iðrÞi; ð9Þ

which specifies the probability of transferring momentum q
to the molecule while exciting an electron from the initial
state ψ i to the final state ψf (here ψ̃ðkÞ are the momentum
space wave functions). Since the molecular form factor is
an inner product of single-electron operators, the molecular
form factors between the ground state and the excited states
is evaluated via

hψ j
iðrÞjeiq · rjψGðrÞi ¼

ffiffiffi
2

p
hΨjðrÞjeiq · rjΨiðrÞi; ð10Þ

FIG. 2. (Left) A schematic diagram of the energies of the
HMO’s of benzene following the notation of [36]. Six electrons
occupy the three lowest orbitals up to the highest occupied
molecular orbitals (HOMO). The lowest energy transitions are
from a HOMO state to one of the lowest unoccupied molecular
orbitals (LUMO). (Right) A schematic of the energy splitting
brought about by the configurational interaction between elec-
trons in the antisymmetrized MO’s.
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allowing form factors over many-body wave functions, ψ ,
to be computed in terms of the single electron HMO’s, Ψ.
Since the methyl substituents in p-xylene are σ-bonded,

they do not affect the π-electron system to first order in our
model, and so the predicted wave functions for the
conjugated π-electrons in p-xylene are equivalent to those
derived for benzene. We account for the presence of
p-xylene in the scintillator by tuning the excitation energies
to those listed in Eq. (6). Note that the procedure described
in this section for obtaining the many-body wave functions
of electrons in benzene can be used to describe any
molecule with a conjugated π-electron system, including
the aromatic compounds used in other types of scintillators.

III. RATE CALCULATION

Dark matter with sufficient kinetic energy can induce a
transition from the ground state to one of the excited bound
states of Eq. (6) (or Appendix A 2) with a scattering rate
determined in part by the momentum space wave functions
of the initial and final electronic states. Conveniently, the
details of molecular physics factorize into the form factor
fijðqÞ of Eq. (9), so that the scattering cross section ðσvÞi→j

for any of the possible transitions reduces to [6]

ðσvÞi→j ¼
Z

d3q
ð2πÞ3 ð2πÞδðΔEij − ωÞ jMfreej2jfijðqÞj2

16m2
χm2

e
;

ð11Þ

where Mfree is the amplitude for dark matter scattering on
free electrons; q is the momentum transferred from the dark
matter; mχ and me are the dark matter and electron masses;
i and j label the initial and final states, with a difference in
energy of ΔEij; and

ω ¼ q2

2mχ
− q · v ð12Þ

is the energy transferred from the DM to the p-xylene
molecule for an incoming DM velocity v (we have
approximated the reduced mass of the DM–xylene system
as just mχ which is appropriate for sub-GeV DM). It is
conventional to separate the momentum dependence of
Mfree into a model-dependent form factor FDMðqÞ,

jMfreej2
16m2

χm2
e
≡ πσ̄e

μ2χe
F2
DMðqÞ ð13Þ

written in terms of the reduced mass of the DM–electron
system, μχe, and the cross section σ̄e evaluated at a specific
value of the momentum conventionally taken to be q ¼
αme where α is the fine-structure constant. FDM ¼ 1
corresponds to a heavy particle mediating the DM–electron

interaction, while FDMðqÞ ¼ ðαmeÞ2=q2 corresponds to a
light mediator.
A shift in the coordinate of a function r → r −R, as in

Eq. (1), simply adds a phase e−ik ·R to its Fourier transform.
This property makes the LCAO model an especially
powerful tool for obtaining approximate analytic expres-
sions for the molecular form factor. In the case of benzene
or xylene, the linear combination of atomic orbitals
produces

Ψ̃ðkÞ ¼
�X6

i¼1

cψi e
−ik ·Ri

�
ϕ̃ðkÞ≡ BψðkÞϕ̃ðkÞ; ð14Þ

where ϕ̃ðkÞ is the Fourier transform of the 2pz Slater type
atomic orbital Eq. (2),

ϕ̃2pz
ðkÞ ¼ a3=20

ffiffiffi
2

p

π
Z7=2
eff

a0kz
ða20k2 þ ðZeff=2Þ2Þ3

; ð15Þ

and where Bψ is a prefactor defined in terms of the
coefficients cψi for each of the six HMO’s Ψi, the expres-
sions for which are given in Appendix A 1 [44,45].
The total scattering rate R expected in the detector

depends on details of the dark matter velocity distribution,
gχðvÞ:

R ¼
X
i;j

NB
ρχ
mχ

Z
d3vgχðvÞðσvÞij; ð16Þ

where ρχ is the local dark matter density, and NB is the
number of p-xylene molecules in the scintillator. We
approximate gχðvÞ as a spherically symmetric speed dis-
tribution, and upon defining

ηðvijminÞ ¼
Z

4πv2dv
v

gχðvÞΘðv − vijminðqÞÞ; ð17Þ

vijminðqÞ ¼
ΔEij

q
þ q
2mχ

; ð18Þ

the expected rate of scintillation photons in the detector is

R ¼ ξ
NBρχσ̄e
8πmχμ

2
χe

X
i;j

Z
d3q
q

ηðvijminðqÞÞF2
DMðqÞjfijðqÞj2;

ð19Þ

where we have inserted an efficiency factor ξ, which is the
product of the radiative quantum yield of the scintillator
(that is, the probability of a primary excitation yielding a
scintillation photon which escapes the liquid) and the
quantum efficiency of the photodetector. A measurement
of R puts an upper bound on σ̄e, after assuming a particular
form for FDMðqÞ and integrating Eq. (19). Note that this
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rate does not include a contribution from electron ioniza-
tion (as opposed to excitation to a bound state); while
including ionization would only increase our rate estimates,
the dynamics of free electrons in liquid scintillators and the
corresponding scintillation rate estimate are much more
involved than our simple treatment here, so to be
conservative we neglect this contribution entirely.
Taking advantage of the fact that the six carbon atoms in

the benzene and xylene rings are coplanar, every Bψ ðkÞ can
bewritten as a function only of some kx and ky, allowing the
pz integral in Eq. (9) to be evaluated analytically. We
perform the remaining integrals in Eq. (9) and Eq. (19)
numerically using a PYTHON implementation of the VEGAS
adaptive Monte Carlo algorithm [46]. Upon expanding
jfijðqÞj2 as the product of two independent integrands,
the rate R from Eq. (19) can be calculated relatively quickly
from the resulting seven-dimensional integral.3

In Fig. 3, we plot the angular integral of the absolute
squares of the molecular form factors for each of the nine
electronic transitions, i.e.,

R
dΩqq2jfijðqÞj2. We note two

important features: (a) the form factors peak at a momen-
tum transfer, q ∼ 1=a0 ≈ 2.5 keV, as expected for atomic
systems, and (b) perhaps surprisingly, the lowest-energy
4.5 eV transition is strongly suppressed, such that the
effective gap is closer to 5.6 eV. As we show in
Appendix A 3, the form factors exhibit strong direction-
ality, which is washed out under the assumption of a
spherically-symmetric DM distribution but would be rel-
evant for the true DM velocity distribution in the Earth

frame, for which the DM “wind” exhibits diurnal and
annual modulation. This suggests the possibility, which we
discuss further in Sec. V, of using benezene as a directional
DM detector: indeed, organic molecules including one or
more benzene rings can exhibit a liquid crystal phase, and by
applying suitable electric fields, nematic liquid crystals can
have the constituent molecules aligned along a particular
direction over large distances.We leave a dedicated analysis
of the possibilities of such a liquid crystal scintillator for
directional DM detection to future work.

IV. RESULTS

In a previously reported measurement [34], a 1.5 liter
(1.3 kg) cell of EJ-301 scintillator, specially developed
to minimize internal radioactive backgrounds, was operated
in a dedicated shield under a modest overburden of
6.25 meters water-equivalent (m.w.e). By reducing the
temperature of the PMT photocathode it was possible to
subtract the contribution from the PMT dark current to the
SPE rate, generating in the process new limits on proton
scattering by few-GeV DM candidates [34,47]. An irre-
ducible SPE rate of 3.8� 0.1 Hz was obtained. Note that
since this measurement was achieved over 14 days of data
taking, comprising 4.6 × 106 events, the Poisson uncer-
tainty of ∼2100 events¼ 0.0018 Hz is far below the 0.1 Hz
uncertainty coming from other sources such as temperature
control. Thus, we set limits by simply scaling the 3.8 Hz
rate. This setup was recently upgraded to include an
improved temperature control and discrimination against
delayed PMT afterpulses [34]. The SPE background
nevertheless remained unaltered, strongly suggesting that
the present reach of the method is already limited by the
environmental backgrounds associated to shallow under-
ground operation.
To facilitate comparison with recent DM–electron scat-

tering results, we take ρχ ¼ 0.3 GeV=cm3 and evaluate the
expected rate using Eq. (19) taking the speed distribution to
be Maxwellian with a sharp cutoff at the escape velocity of
the galaxy,

gχðvÞ ¼
1

K
exp

�
−
jv þ vEj2

v20

�
Θðvesc − jv þ vEjÞ ð20Þ

where we take the typical velocity of the Earth to be
vE ¼ 232 km=s, local mean speed v0 ¼ 220 km=s, and
escape velocity vesc ¼ 544 km=s [48].4 The quantum
efficiency of the PMT photocathode [50], integrated over
the EJ-301 emission wavelengths [35] is 21.5%, and we
calculate the radiative quantum yield of the scintillator to be

E 4.5 eV

E 5.6 eV

E 6.4 eV

0 5 10 15 20
0

50

100

150

200

q keV

q
2

f ij
2

ke
V

2

q 2 fij
2

FIG. 3. Form factors squared q2jfijðqÞj2 for benzene integrated
over angular variables, as a function of the magnitude of
momentum transfer jqj ¼ q for the three dominant transitions.
Note that the lowest-energy transition at 4.5 eV (dashed) is
strongly suppressed.

3In Appendix A 5, we discuss how the molecular form factor
can be evaluated as an infinite series involving a generalization of
the hypergeometric function.

4We note that more sophisticated models of the halo exist
which take into account updated measurements of the escape
velocity and recent stellar data showing a radial anisotropy [49],
but to perform an unbiased comparison we make the same
choices as SENSEI, CDMS-HVeV, DAMIC, and XENON.
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77% (see Appendix A 4), which gives ξ ≈ 0.166. As
discussed in [34], the light collection efficiency of the
EJ-301 cell is compatible with 100%.
Figure 4 shows the DM–electron scattering limit from

EJ-301, conservatively assuming that 100% of the irreduc-
ible 3.8 Hz rate is due to DM interactions. Factoring out the
21.5% quantum efficiency of the PMT, the input-referred
background rate is 17.7 Hz. Despite the large background,
the limit for both FDM ¼ 1 and FDM ¼ α2m2

e=q2 is quite
competitive with the recent DAMIC [51] and SENSEI [23]

constraints, even exceeding the limits from XENON 10
[13] and XENON1T [25] below 5 MeV due to the lower
threshold (5.6 eV for the lowest unsuppressed excited
state in EJ-301 versus the 13 eV ionization energy of Xe)
and surpassing the prototype CDMS-HVeV run [21] for
mχ > 3 MeV. A modest improvement in the background
rate, which could potentially be achieved either with
additional overburden to reduce the cosmic rate or by
using a photodetector with a lower dark rate, could set
world-leading limits on DM–electron scattering in the mass
range 2–7 MeV. We illustrate this in Fig. 4 by assuming a
hypothetical background rate reduction to 0.1 Hz, giving
the dashed black curve.

V. FUTURE PROSPECTS WITH ORGANIC
SCINTILLATORS

Looking forward to future experiments, we note that for
equal exposures, EJ-301 outperforms silicon for DM
masses above about 10 MeV. We illustrate this in Fig. 5,
which compares the theoretical reach for 1 kg–yr of each
material assuming a 100% quantum efficiency for signal
detection (we still take a 77% radiative efficiency for
EJ-301). We note that we cannot directly compare the
form factors for p-xylene and silicon because the former
consists only of discrete transitions, while the latter has a
continuous band structure, so instead we integrate over the
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FIG. 4. Limits on sub-GeV DM–electron scattering, for dark
matter form factors FDM ¼ 1 (top) and FDM ∼ 1=q2 (bottom).
The solid black curve shows the limit derived from the 3.8 Hz
residual background of 1.3 kg of EJ-301 scintillator operated in a
shallow (6.25 m.w.e.) laboratory [34], and the dashed black curve
shows the potential improvements from a background rate of
0.1 Hz. Shaded regions show existing exclusions from DAMIC
[51], SENSEI [16,20,23], CDMS-HVeV [21], XENON10=100
[2], and XENON1T [25], rescaled as needed to a common DM
density of ρχ ¼ 0.3 GeV=cm3. In the bottom panel we show the
stronger limit for XENON10 following the analysis of [13].
While other constraints in this parameter space exist (e.g., [52]),
we restrict our comparison to direct detection constraints with no
additional astrophysical assumptions.
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FIG. 5. Comparison of EJ-301 and silicon reach with equal
exposures. The 95% C.L. exclusion reach for a hypothetical
detector with 1 kg–yr exposure and zero background events for
both materials is shown in solid lines for FDM ¼ 1 and dashed
lines for FDM ¼ α2m2

e=q2. For the silicon σ̄e we use the 1e−

example from [6]. With equal exposures, EJ-301 is comparable to
silicon for FDM ∼ 1=q2 for DM heavier than 10 MeV, and for
FDM ¼ 1 performs somewhat better for mχ ≳ 5 MeV.
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form factor and the DM velocity distribution, which is
effectively a calculation of the rate per unit mass.5 Building
on this observation, in this section we propose several
modifications to the EJ-301 setup which could further
improve the DM-electron scattering limits.

A. Molecular targets

Organic scintillators with lower thresholds and aniso-
tropic responses are clear steps forward for the next
iteration of this technology. Polycyclic aromatic com-
pounds such as polyacenes are promising target candidates
since their electronic structures are well described by the
formalism described herein [36], and their properties as
scintillators are well studied as is the case for naphthalene
and anthracene [53,54]. It should also be noted that as the
excitation threshold decreases, one can expect the form
factor to have the bulk of its support at lower momentum
since the excitation energy and location of form factor
peaks are both inversely propositional to the characteristic
length between nodes in the wave functions, which increase
for polyacenes with increasing numbers of rings. Both of
these factors would increase sensitivity to lighter DM.
Since the first transition in our idealized benzene model is
suppressed by symmetry, one should expect this suppres-
sion to be lifted for larger and more complex (less
symmetric) molecules, which would further lower the
effective threshold and improve sensitivity to light DM.
The variety of aromatic molecules such as polyacenes,

trans-stilbene, substituted benzenes, and oligophenyl chro-
mophores, which are known to be good scintillators,
provides a wealth of options in selecting possible detector
targets. By running more than one experiment with differ-
ent targets it may also be possible to discriminate back-
grounds inherent in the main scintillator target since the
expected rate for a given DMmass and cross section will be
different for each molecule. Since these organic compounds
are relatively inexpensive and the target is distinct from the
photodetector, using several targets is only a marginal
extension to using a single target.
Furthermore, the anisotropic nature of the crystal phases

of these aromatic compounds can be used to look for
directional modulation of the DM flux, further improving
sensitivity to the DM–electron cross section and back-
ground rejection capabilities. In the solid state, large single
crystals of polyacenes can be synthesized readily for pure
compounds and binary/mixed scintillators [55–57]. These
binary solid state targets maintain very high light yields
while the crystal structure is known to produce anisotropic
scintillation responses [58–60]. Aromatic liquid crystals
based on anthracene core moieties, which can be aligned
dynamically with electric fields while maintaining

fluorescence quantum yield above 40% and threshold
around 2.5 eV, can also be made in the laboratory [61].
Using this technology, one could imagine constructing a
detector which tracks the DM wind by a continuous
modulation of the electric field rather than a physical
rotation of a crystal.

B. Photodetectors

By reading out the scintillation signal with a low-back-
ground silicon photodetector, either the phonon-based
sensor used in CDMS-HVeV or the skipper CCD used
in SENSEI, we can take advantage of the best aspects of
both setups: the large target mass (and low cost) of liquid
scintillator, coupled to the low dark rate of the photo-
sensor.6 Indeed, the reason our limits are competitive with
the small-scale silicon experiments is that the effective
background rate per kg of target material is very similar; the
two-electron rate in SENSEI of 4.27 × 10−5=pixel=day
with an active mass of 0.0947 g is equivalent to
4.7 Hz=kg, which is comparable to the 13.6 Hz=kg intrin-
sic background rate per unit mass of the EJ-301 (i.e., before
accounting for the 21.5% efficiency of the PMT). The
SENSEI sensitivity can obviously be improved by increas-
ing the active mass, but assuming our background is not
intrinsic to the scintillator itself, we could achieve similar
limits by coupling the existing SENSEI detector to a kg
scintillator cell, without the necessity of scaling up to a kg-
scale mass of CCDs.7 Further improvements would be
possible by multiplexing several scintillator cells to achieve
10 kg of target mass, which, with zero background, would
already be sensitive to a variety of thermal and non-thermal
production mechanisms for sub-GeV DM [62]. In future
work, we plan to measure the intrinsic background of low-
background EJ-301 (processed with ion-exchange resins
for uranium and thorium removal) with silicon photo-
detectors in the NEXUS facility in the MINOS cavern at
Fermilab [63], which has 300 m.w.e. overburden and a
15 mK dilution refrigerator which allows the readout stage
to be at cryogenic temperatures to reduce the dark rate.

5We note again that including electron ionization and asso-
ciated secondary scintillation would increase the EJ-301 rate,
bring it closer to silicon.

6We are grateful to Noah Kurinsky for suggesting the improve-
ments we propose here.

7A potential concern with using silicon CCDs is that, since
every scintillation photon will generate a single charge in a CCD
pixel, high-energy background events producing many scintilla-
tion photons would appear as simultaneous single-electron events
in multiple CCD pixels. This could be mistaken for a large single-
electron rate, if the CCD charge integration time is too long.
However, this can be avoided with a sufficiently high CCD
readout rate. In SENSEI, the continuous readout integration time
is 20 ms for 800 samples with an RMS noise of 0.14 electrons
[20]. In shielded, low-background conditions, a majority of CCD
frames would not contain signals from high-energy backgrounds
in the scintillator, avoiding this concern at the expense of a
modest dead time.
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VI. CONCLUSIONS

In this paper, we have shown that organic scintillators are
appealing targets for DM–electron scattering. The impressive
reach, even for a nonoptimized experiment, is due to twomain
factors. First, kilogram for kilogram, light DM scattering in
aromatic hydrocarbons is as efficient as scattering in silicon for
DM heavier than 10MeV, even exceeding its sensitivity in the
caseof theFDM ¼ 1 formfactor,asshowninFig.5.Second, the
scintillation process separates the primary scattering event
(electron excitation) from the detected signal (a propagating
scintillation photon), allowing for a separation of the target
material fromthedetector.Thescintillationphoton,withenergy
of 2.9 eV, is in the near UVand can easily be transmitted across
an interface (for example, an optical window) from the
scintillator cell to any chosen photodetector. Other signals,
such as electron/hole pairs and phonons, involve considerably
more engineering at the interface in order to transmit the signal
efficiently. The only requirement is that the area of the
photodetector be comparable to the area of the optical window
in the scintillator cell, for maximum light collection efficiency.
In conclusion, we believe that aromatic organic scintil-

lators are a promising addition to the panoply of novel
condensed matter systems suitable for DM–electron scat-
tering. By leveraging the advances in low-background
photodetectors and reducing the intrinsic background in
the scintillator as much as possible, we propose that a large-
exposure experiment with directional detection capabilities
sensitive to well-motivated DM parameter space can be
achieved with organic scintillators coupled to large-area,
rather than large-mass, photodetectors.
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APPENDIX: WAVE FUNCTION AND RADIATIVE
EFFICIENCY CALCULATIONS

1. Benzene wave function coefficients

When the core hamiltonian, Hcore, is diagonalized, the
LCAOcoefficients in Eq. (3) are given by the following [36],

cj2¼
ð1;1;1;1;1;1Þffiffiffi

6
p cj−2¼

ð−1;1;−1;1;−1;1Þffiffiffi
6

p

cj1¼
ð1;0;−1;−1;0;1Þ

2
cj−10 ¼

ð−1;2;−1;−1;2;−1Þffiffiffiffiffi
12

p

cj−1¼
ð−1;0;1;−1;0;1Þ

2
cjð10Þ ¼

ð1;2;1;−1;−2;−1Þffiffiffiffiffi
12

p ;

ðA1Þ

where each cj is a collection of coefficients which gives an
LCAO eigenstate. The normalization of these coefficients is
such that each HMO is normalized to unity.
When these HMOs are transformed into momentum

space, the phase prefactors in Eq. (14) are given by the
following:

B2 ¼
ffiffiffi
2

3

r �
2 cos

� ffiffiffi
3

p
akx
2

�
cos

�
aky
2

�
þ cosðakyÞ

�

B1 ¼ −2i
�
sin

� ffiffiffi
3

p
akx
2

�
cos

�
aky
2

��

B10 ¼ −i
2ffiffiffi
3

p
�
cos
� ffiffiffi

3
p

akx
2

�
sin
�
aky
2

�
þ sinðakyÞ

�

B−1 ¼ 2

�
sin
� ffiffiffi

3
p

akx
2

�
sin
�
aky
2

��

B−10 ¼
2ffiffiffi
3

p
�
cosðakyÞ − cos

� ffiffiffi
3

p
akx
2

�
cos
�
aky
2

��

B−2 ¼ i

ffiffiffi
2

3

r �
2 cos

� ffiffiffi
3

p
akx
2

�
sin

�
aky
2

�
− sinðakyÞ

�
;

ðA2Þ

where a ¼ 0.14 nm is the bond length of the aromatic
carbon–carbon bond in benzene and p-xylene.

2. Second and third singlet excitations

The second singlet excitations, in which a single electron
is excited across the second lowest energy gap, are given by
the following:

ψ s2
1 ¼ 1=

ffiffiffi
2

p
ðψ2

−1 þ ψ1
−2Þ; ΔEs2

1 ¼ 8.18 eV

ψ s2
2 ¼ 1=

ffiffiffi
2

p
ðψ10

−2 þ ψ2
−10Þ; ΔEs2

1 ¼ 8.18 eV

ψ s2
3 ¼ 1=

ffiffiffi
2

p
ðψ10

−2 − ψ2
−10Þ; ΔEs2

2 ¼ 8.89 eV

ψ s2
4 ¼ 1=

ffiffiffi
2

p
ðψ2

−1 − ψ1
−2Þ; ΔEs2

2 ¼ 8.89 eV: ðA3Þ

Notice that the mixing of configurational excited states
results in an energy splitting around the quadruple degen-
erate second energy gap. It is found that these are the only
linear combinations that give such a splitting.
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Finally, the third singlet excitation is given by

ψ s3 ¼ ψ2
−2; ΔEs3 ¼ 9.8 eV: ðA4Þ

3. Form factor details

In this section we discuss the momentum dependence of
the molecular form factors, including their angular profiles.
Although the angular dependence of the scattering rate
is washed out for a detector in the liquid phase, a crystalline
scintillator would provide an opportunity to use direc-
tionality to discriminate a dark matter signal from the
background.
The nine lowest-lying transitions described in Eqs. (6),

(A3) and (A4) share a common feature: their form factors
vanish when the imparted momentum q is orthogonal to the
plane of the benzene ring. Adjusting the orientation of the
molecule with respect to the dark matter wind can thus have
a strong effect on the total scattering rate.
For concreteness, we use a coordinate system where the

six carbon nuclei in the benzene ring are located in the
z ¼ 0 plane at:

Rj ¼ a cos

�
j
π

3
−
π

6

�
x̂þ a sin

�
j
π

3
−
π

6

�
ŷ ðA5Þ

for j ¼ 1; 2;…6, where a ¼ 0.14 nm is the bond length of
the aromatic ring in both benzene and p-xylene. All nine
form factors exhibit the ϕ → ϕþ nπ

3
and ϕ → −ϕ sym-

metries of the benzene ring.
For mχ < 20 MeV the scattering rate is driven almost

exclusively by the 5.6 eV and 6.4 eV transitions, and in
Fig. 6 we show how their respective molecular form factors
vary with the polar angle θq for fixed azimuthal angle
ϕq ¼ π

6
. The 5.6 eV form factor is maximized at θq ¼ π

2
and

ϕq ¼ n π
6
for integer n, where the momentum transfer q is

parallel to the displacement between neighboring carbon
nuclei: q ∝ Ri −Ri�1.
While the 5.6 eV transition is driven mostly by in-plane

scattering with q ≈ 6 keV, the 6.4 eV transition is weighted
toward lower momenta, peaked around q ≈ 3 keV for most
values of θq. The 6.4 eV transition is also responsive to a
broad range of larger momenta 8 keV≲ q ≲ 15 keV, but
only if the polar angle is relatively steep, with θq ≈ 13° as
shown in the second panel of Fig. 6. Although the 5.6 eV
transition does exhibit some higher-momentum response at
this θq ≈ 15° angle, for a broad range of momenta centered
around q ≈ 16 keV, it affects the scattering rate to a lesser
degree.
Individual form factors also show strong directionality in

the ϕq direction, but often in complementary ways that tend
to average out. For example, adding together the jfijðqÞj2
form factors for the two degenerate single-electron exci-
tations that contribute to the 6.4 eV transition, we find a

nearly rotationally invariant form factor. However, the
single 5.6 eV transition retains its directionality, vanishing
for ϕq ¼ n π

3
for integer n, and reaching sharp maxima at

ϕq ¼ π
6
þ n π

3
. Figure 7 shows these two form factors along

a particular conical slice at θ ¼ π
2
, where the momentum q

lies in the plane of the benzene ring.
As demonstrated in Fig. 3, the presence of the

4.5 eV transition is essentially irrelevant for DM–electron
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FIG. 6. Angular profiles of the 5.6 eV (top) and 6.4 eV (bottom)
form factors q2jfijðqÞj2 for various values of the polar angle θq.
The azimuthal angle is fixed at ϕq ¼ 30°, which in our coordinate
system is parallel to the edges of the hexagonal ring. Both form
factors reach maxima at θ ¼ π

2
where qz ¼ 0, and vanish in the

θ → 0 (q → qzẑ) limit. The 6.4 eV transition has an additional
peak at higher momenta when 10° ≲ θq ≲ 20°. Neglecting the
perturbation from the methyl groups in para-xylene, the form
factors inherit the ϕ → ϕþ π

3
shift symmetry of the benzene ring.
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scattering, due to the strong suppression of its form
factor. For completeness, it is worth commenting that its
angular profile is complementary to that of the 5.6 eV
transition; that is, for integer n its maxima occur at
ϕq ¼ n π

3
, and its form factor vanishes along ϕq ¼ π

6
þ

n π
3
for all values of θq.
If the dark matter mass mχ is large enough to probe the

higher momentum behavior of the form factor, then the
presence of the secondary peak around θq ≈ 13° for
momenta q≳ 8 keV has potentially beneficial implications
for directional detection of dark matter. In addition to the
primary response around θ ≈ 90°, an observation of the
relatively sharp secondary peak at θ ≈ 13° could serve to

confirm that a modulating signal originates from the
scintillator and not some other source. Furthermore, the
location of the secondary peak in θq is a signature of
benzene and its derivatives: scintillators based on com-
pounds with fundamentally different structures will gen-
erally have their own unique angular profile.

4. Radiative efficiency calculation

The radiative quantum yield of the scintillator is given by
the following expression [64],

Q ¼ S
ω

PCϵem
¼
�
Yϵem
Eabs

�
ω

PCϵem
ðA6Þ

¼ Yω
PCEabs

ðA7Þ

where S is the total scintillation efficiency, P is the primary
excitation efficiency, C is the energy efficiency (taken to be
2=3 for organic scintillators), ϵem is the energy of the
emitted scintillation photon, ω is the energy gap of the
excitation, Y is the experimentally measured light yield of
the scintillator, and Eabs is the total absorbed energy from
an incoming particle (standardized to 1 MeV by light yield
measurements). EJ-301 is measured by the manufacturer to
have a light yield, Y301, which is 78% that of anthracene,
Yanth ¼ 1.74 × 104 photons=MeV [64], and an excitation
energy, ω301 of 4.5 eV. Note that using the lowest excitation
in EJ-301 keeps our estimate conservative. Anthracene has
an excitation energy of ωanth ¼ 3.15 eV [53]. The excita-
tion efficiency of organic molecules with aromatic rings is,
P ≈ 2

3
Fπ , where Fπ is the fraction of π-electron in the

molecule [64]. Here, we adopt values of the excitation
efficiencies for EJ-301 and anthracene of P301 ¼ 0.098 and
Panth ¼ 0.01, respectively [64,65]. We can now calculate
the radiative quantum yield of EJ-301,Q301 as a function of
the documented radiative quantum yield of anthracene,
Qanth ¼ 0.68 [53,64],

Q301 ¼
Panth ω301 Y301

P301 ωanth Yanth
Qanth ¼ 0.77: ðA8Þ

5. Molecular form factor: Analytic calculation

The task of evaluating Eq. (19) with the molecular
orbitals defined in Eq. (14) is simplified by the fact that
the benzene ring lies in a plane, allowing the dpz integral in
Eq. (9) to be completed by contour integration. In this
section we list the result, as well as the outline for an
analytic method capable of providing jfijðqÞj for an
arbitrary arrangement of conjugated 2pz orbitals aligned
with the same ẑ axis.
As described in Sec. III, the LCAO momentum space

molecular orbitals can be factored into a common ϕ̃ðkÞ,

FIG. 7. Azimuthal profiles of the 5.6 eV (top) and 6.4 eV
(bottom) form factors jfijðqÞj2, for momenta in the qz ¼ 0 plane.
While the 5.6 eV transition shows strong directionality in ϕ,
vanishing at ϕ ¼ n · 60° for integer n, the sum of the two 6.4 eV
transitions is approximately rotationally invariant.
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which is the Fourier transform of the 2pz atomic orbital,
and an orbital-specific prefactor BψðkÞ, which depends on
the geometry of the molecule and the coefficients cψi . In
terms of these two ingredients, the molecular form factor
fijðqÞ is described by

fifðqÞ¼
Z

dpxdpyBiðpx;pyÞB⋆
fðpxþqx;pyþqyÞ×I z;

ðA9Þ

where the newly defined I z contains the pz dependence:

I z ¼
Z

dpzϕ̃ðpÞϕ̃⋆ðpþ qÞ ¼ 2

π2

Z
∞

−∞

dpzpzðpz þ qzÞ
ðp2

z þ p2
x þ p2

y þ 1
4
Þ3ððpz þ qzÞ2 þ ðpx þ qxÞ2 þ ðpy þ qyÞ2 þ 1

4
Þ3 ; ðA10Þ

where we have absorbed the factors of a0 and Zeff into q ¼ ðqxZeffa−10 ; qyZeffa−10 ; qzZeffa−10 Þ and likewise for p.
Introducing

f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
x þ p2

y þ
1

4

r
g ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpx þ qxÞ2 þ ðpy þ qyÞ2 þ

1

4

r
ðA11Þ

as a convenient way to describe the locations of the poles in the complex plane, contour integration in dpz produces

I z ¼
ðf þ gÞ½ðf þ gÞ4ðf2 þ 5fgþ g2Þ − 2q2zðf þ gÞ2ð2f2 þ 19fgþ 2g2Þ − 5q4zðf2 − fgþ g2Þ�

4πf3g3ðq2z þ ðf þ gÞ2Þ5 : ðA12Þ

This analytic result significantly reduces the effort needed
for the numeric integration, which can now be done over a
smaller-dimensional volume. With additional work, the
remaining dpxdpy integrals can be expressed instead in
terms of generalized hypergeometric functions, based on the
series expansion of Iz in the azimuthal direction defined by
the coordinate transformation px ¼ ρ cosϕ, py ¼ ρ sinϕ.
For greater generality, for the remainder of this section we

take the locations of the nucleiRi and the coefficients c
j
ψ in

the LCAO molecular orbitals to be generic: we require only
that everyRi lies in the z ¼ 0 plane. As we did for p, we use
cylindrical coordinates qz, qσ and qϕ for the momentum
transfer q, with qx ¼ qσ cos qϕ and qy ¼ qσ sin qϕ.
Given the coefficients Zk of the series expansion

Iz ¼
X
k¼0

Zk

k!
cosk ðϕ − qϕÞ; ðA13Þ

we proceed to derive a general expression for the molecular
form factor in terms of the Kampé de Feriét hypergeometric
function.
With this coordinate choice, fijðqÞ has the generic form

fijðqÞ ¼
X
mn

cðiÞm cðjÞn eiq ·Rj

Z
ρdρ

Z
π

−π
dφeiρRmn sinφI z;

ðA14Þ

where for each pair (m; n) we define Rmn ¼ Z−1
effa0jRm −

Rnj as the dimensionless distance between the mth and nth
nuclei, taking the angular separation of the two nuclei with

respect to the center of the ring to be ϕmn. A benzenelike
ring with uniform radius jRj satisfies

jRm −Rnj ¼ R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − 2 cosϕmn

p
: ðA15Þ

Lastly we have defined

φ≡ ϕ − ϕmn þ
π

2
ðA16Þ

so that Eq. (A14) reduces to the integral form of a Bessel
function when I z is replaced by its series expansion.
Defining

Iϕ ¼ 1

2π

Z
π

−π
dφeiρRmn sinφI z; ðA17Þ

the resulting expression for the dφ integral can be sim-
plified to

Iϕ ¼
X∞
γ¼0

½2 − sin cðγπÞ�
�
i
2

�
γ

JγðxÞ cosðγðϕmn − qϕÞÞ

×
X∞
k0¼0

2−2k
0
Zγþ2k0

ðk0Þ!ðk0 þ γÞ! ; ðA18Þ

after some manipulation of the indices in the series
expansions. The appearance of the sin cðγπÞ is simply to
avoid double-counting the γ ¼ 0 case.
The remaining dρ integration depends on the functional

form of Zn. Rather than tackling the most generic case,
where ϕ̃ðkÞ is an arbitrary momentum space atomic wave
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function expressed in terms of a Gegenbauer polynomial
and spherical harmonics, we continue to specialize to the
2pz orbital and we evaluate Zn from Eq. (A12) using a
Taylor series.
As f ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ 1=4

p
is constant with respect to

cosðϕ − qϕÞ, the Zn can be determined from derivatives

with respect to g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2 þ 2ρqσ cosðϕ − qϕÞ

q
:

Zn ¼ ðρqσÞn
�
1

g
d
dg

�
n
Izj

g→f
: ðA19Þ

Furthermore, even for relatively large n the coefficients Zn
can be calculated recursively with relatively good effi-
ciency by noting that I z and its nth derivative follow the
general form

ZnðgÞ ∼ gl
�

1

q2z þ ðf þ gÞ2
�

5þα

ðA20Þ

for integers α ≥ 0 and l. Each term in Zn has an integer-
valued coefficient Mlα, such that

Zn ¼
X
k

ρn

4π
ðqσÞnðq2zÞkMnkf

�
1

f2

�
k
�

1

q2z þ4f2

�
5þn

:

ðA21Þ
To perform the dρ integral in Eq. (A14), it is sufficient to

calculate integrals of the form:

I γlk ¼
Z

∞

0

ρdρ ργþ2lJγðρRmnÞ
Rγþ2lþ2kþ7
mn

�
1

ρ2 þ 1
4

�
k−1=2

×

�
4

q2z þ 4ρ2 þ 1

�
5þγþ2l

; ðA22Þ

where the factor of Rmn has been added to make I γlk. In a
moment we discuss our analytic result for I γlk; first, we
show how I γlk appears in the molecular form factor:

fijðqÞ ¼
X
mn

cðiÞm cðjÞn eiq ·Rn

X∞
γ¼0

�
1 −

sin cðγπÞ
2

��
i
2

�
γ

cosðγðϕmn − qϕÞÞ
X∞
l;k¼0

ðqσÞγþ2lðq2zÞkMγþ2l;k

l!ðγ þ lÞ!
ðRmnÞγþ2lþ2kþ7I γlk

4γþ3lþ5
:

ðA23Þ

The coefficients Mn;k can be calculated directly from a tensor product. From the derivatives of Iz, we define a

BðαÞljmn ¼ δlmδ
j
nðl − 13 − 2αÞ þ δl−1m δjnð2l − 16 − 2αÞ þ δl−2m δjnðl − 3Þ þ δl−2m δjþ1

n ðl − 3Þ ðA24Þ

such that

Zn ¼
ðρqσÞn
4πf9f2n

f3

g3

�
f2

q2z þ ðf þ gÞ2
�

5þn
��

g
f

�
m
½BðnÞ�ljmkβlj

��
q2z
f2

�
k
				
g→f

; ðA25Þ

where BðnÞ indicates the product Bðn − 1Þ · …Bð1Þ · Bð0Þ, and where βlj encodes the coefficients in the polynomial in the
numerator of Eq. (A12):

βlj

�
g
f

�
l
�
q2z
f2

�
j

¼ f þ g
f7

½ðf þ gÞ4ðf2 þ 5fgþ g2Þ − 2q2zðf þ gÞ2ð2f2 þ 19fgþ 2g2Þ − 5q4zðf2 − fgþ g2Þ�: ðA26Þ

Inserting these particular values for βlj, M is simply the g → f limit of the tensor product

Mn;k ¼
�
g
f

�
m
½Bðn − 1Þ�lnjn

mk ½Bðn − 2Þ�ln−1jn−1lnjn
…½Bð1Þ�l1j1l2j2

½Bð0Þ�ljl1j1
βljj

g→f
: ðA27Þ

Finally, we turn our attention to evaluating I γlk. First we rearrange the integral of Eq. (A22) using a Feynman parameter:

1

AaBb ¼
Z

1

0

dx
xa−1ð1 − xÞb−1

½xAþ ð1 − xÞB�aþb

Γðaþ bÞ
ΓðaÞΓðbÞ ðA28Þ

where we take

A ¼ R2
mnðρ2 þ 1=4Þ; a ¼ k − 1=2 ðA29Þ
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B ¼ R2
mnðρ2 þ 1=4þ q2z=4Þ; b ¼ nþ 5: ðA30Þ

Defining the parameter u ¼ Rmnρ, Eq. (A22) can be rewritten as

I γlk ¼
Z

1

0

dx
Γðkþ γ þ 2lþ 9=2Þ

Γðk − 1=2ÞΓðγ þ 2lþ 5Þ ð1 − xÞγþ2lþ4xk−3=2
Z

∞

0

du
uγþ2lþ1JγðuÞ

½u2 þ Δ2�kþγþ2lþ9=2 ; ðA31Þ

where

Δ2ðxÞ ¼ R2
mn

4
þ ð1 − xÞR

2
mnq2z
4

: ðA32Þ

By replacing JγðuÞ with its equivalent hypergeometric function 0F1ð−u2=4Þ, the du integral can be completed:

Z
∞

0

du
uγþ2lþ1JγðuÞ

½u2 þ Δ2�kþγþ2lþ9=2 ¼
ðΔ2Þ−k−l−7=2

2γþ1

Γðlþ γ þ 1ÞΓðkþ lþ 7=2Þ
Γðγ þ 1ÞΓðkþ γ þ 2lþ 9=2Þ 1F2

�
lþ γ þ 1

γ þ 1 −k − l − 5
2

				Δ2

4

�
; ðA33Þ

where 1F2 is the hypergeometric function defined by the series

1F2

�
a1
b1 b2

; x

�
¼
X∞
n¼0

ða1Þn
ðb1Þnðb2Þn

xn

n!
ðA34Þ

using the standard notation where ðcÞn is the rising factorial

ðcÞn ¼ 1 ·
Yn−1
j¼0

ðcþ jÞ ¼ Γðcþ nÞ
ΓðcÞ : ðA35Þ

Factoring out the remaining dx integral as

I γlk ¼
2−γ−2l−2k−8Γðlþ γ þ 1ÞΓðkþ lþ 7=2Þ

Γðk − 1=2ÞΓðγ þ 2lþ 5ÞΓðγ þ 1Þ Ix; ðA36Þ

Ix ¼
Z

1

0

dxð1 − xÞγþ2lþ4xk−3=2
�
Δ2

4

�−k−l−7=2

1F2

�
lþ γ þ 1

γ þ 1 −k − l − 5
2

				Δ2

4

�
; ðA37Þ

we evaluate Ix by expanding the 1F2 function and Δ in powers of x, defining an x0 and ω such that

Δ2

4
¼ x0ð1 − ωxÞ: ðA38Þ

Each term in the resulting series expansion is an Euler-type integral, which can be evaluated to produce

Ix ¼ x
−k−l−7

2

0

Γðk − 1
2
ÞΓðγ þ 2lþ 5Þ

Γðkþ γ þ 2lþ 9
2
Þ

X∞
m;j¼0

�ðlþ γ þ 1Þm
ðγ þ 1Þm

ðk − 1
2
Þj

ðkþ γ þ 2lþ 9
2
Þj

1

ð−k − l − 5
2
Þm−j

xm0
m!

ωj

j!

�
: ðA39Þ

To return this infinite series as a closed form expression, we invoke the Kampé de Feriét function—a two-argument
generalization of the generalized hypergeometric function, which following the notation of [66] has the series expansion

FA∶B;B0
C∶D;D0

�
a1…aA
c1…cC

				 b1…bB
d1…dD

				 b
0
1…b0B0

d01…d0D0

				x; y
�

¼
X∞
m;n¼0

ðaÞmþn

ðcÞmþn

ðbÞm
ðdÞm

ðb0Þn
ðd0Þn

xmyn

m!n!
; ðA40Þ

using the shorthand notation ðeÞr ¼
Q

E
i ðeiÞr. To match Eq. (A39) to the Kampé de Feriét function requires that we reindex

the sum overm and j. We split the double series into three regions:m ≥ j; m ≤ j; andm ¼ j, so that to remove the double-
counted m ¼ j entries we take
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X∞
m;j¼0

¼
X
m≥j

þ
X
j≥m

−
X
m¼j

: ðA41Þ

Our result for Ix is

Ix ¼
�
1

x0

�
kþlþ7

2 Γðk − 1
2
ÞΓðγ þ 2lþ 5Þ

Γðkþ γ þ 2lþ 9
2
Þ ðIm≥j þ I j≥m − Im¼jÞ; ðA42Þ

defining the three functions as

Im≥j ¼ F1∶1;1
2∶1;1

 
lþ γ þ 1

γ þ 1 1

				 1

−k − l − 5
2

				 k − 1
2

kþ γ þ 2lþ 9
2

				x0; x0ω
!

ðA43Þ

I j≥m ¼ F1∶1;2
2∶1;0

 
k − 1

2

kþ γ þ 2lþ 9
2

1

				lþ γ þ 1

γ þ 1

				 kþ lþ 7
2

1

—

				x0ω;−ω
!

ðA44Þ

I j¼m ¼ 2F3

 
lþ γ þ 1 k − 1

2

γ þ 1 kþ γ þ 2lþ 9
2

1

				x0ω
!
: ðA45Þ

In certain special cases such as l ¼ 0, or more generally when a pair of coefficients in the numerator and denominator
match, these functions simplify to lower-order hypergeometric functions.
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