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Experimental probes of the recently discovered Higgs boson show that its behavior is close to that of the
Standard Model (SM) Higgs particle. Extensions of the SM which include extra Higgs bosons are
constrained by these observations, implying either the decoupling of the heavy nonstandard Higgs particles
or the realization of alignment, associated with vanishing mixing of the SM-like Higgs boson with the
nonstandard ones. Quite generally, alignment is not enforced by symmetry considerations and hence it is
interesting to look for dynamical ways in which this condition can be realized. We show that this is possible
in the Next-to-Minimal Supersymmetric Standard Model (NMSSM), in which alignment is achieved for
values of the coupling of the Higgs fields to the singlet field that become large close to the Grand
Unification (GUT) scale. This, in turn, can be explained by the composite nature of the Higgs fields, with a
compositeness scale close to the GUT scale. In this article we present this dynamical scenario and discuss
its phenomenological properties.
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I. INTRODUCTION

With the discovery of the Higgs boson in 2012, the
Standard Model (SM) is complete and the theory of
electroweak symmetry breaking confirmed [1,2]. The
primary focus of the Large Hadron Collider (LHC) since
this discovery has been measurements of the precise
properties of the Higgs boson [3], as well as searches
for new physics. However, no evidence of new physics
beyond the SM has yet been found, and the LHC Higgs
boson so far appears to be SM-like.
In light of these results, extensions of the SM have

become further constrained, and an interesting area of study
is the examination of how extended Higgs theories may
include a SM-like Higgs boson [4]. This can be achieved in
two ways: either by decoupling of the nonstandard physics,
rendering the SM as the effective low energy theory, or by
the condition of alignment, associated with the cancellation
of the mixing of the nonstandard Higgs bosons with the
SM-like one. The condition of alignment has been studied
in several extensions of the SM, including two Higgs
doublet models, the Minimal Supersymmetric Standard
Model extension (MSSM) and the next-to-minimal one
(NMSSM) [4–11]. While the necessary parameter spaces

have been identified and studied in the past, of further
interest is the manner through which these parameter
spaces may be obtained. Although in certain cases align-
ment may be associated with symmetry properties [12–16],
this is not the case in most extensions of the SM. It is
therefore of interest to study whether alignment could be
achieved dynamically.
In this paper, we focus on the NMSSM and investigate

how one may dynamically obtain Higgs alignment in this
theory. We concentrate on the running of the NMSSM
parameters up to the Grand Unification (GUT) scale, and
examine general implementations of the high-energy the-
ories suggested by such running. Particular focus is placed
on Fat Higgs models, which we showmay naturally include
the elements necessary to satisfy the alignment limit for the
doublet sector as well as limited mixing with the singlet.
For this to happen, the compositeness scale must be close to
the GUT scale. We therefore also examine the interesting
coincidence of bottom and tau Yukawa unification at the
GUT scale, which may be realized for the same parameter
space as the one associated with Higgs alignment. We also
consider the possibility of including a well behaved dark
matter candidate within this scenario.
This paper is structured as follows. In Sec. II, we review

the alignment limit of the NMSSM and the relevant
conditions on the parameters necessary for alignment. In
Sec. III, we present results from the running of the NMSSM
parameters and examine the range of GUT-scale parameter
values for which alignment is obtained in the doublet and
singlet sectors. We then present an implementation of a Fat
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Higgs theory which runs down to alignment at the weak
scale in Sec. IV. In Sec. V, we examine the bottom- and tau-
Yukawa unification for our set of low-energy parameters.
Finally, in Sec. VI we present our conclusions.

II. THE ALIGNMENT LIMIT OF THE NMSSM

Within the NMSSM Higgs sector, which contains two
doublets and a singlet, there are two methods through
which one may obtain a SM-like Higgs of 125 GeV:
decoupling and alignment. In the decoupling case, the
heavier nonstandard Higgs bosons are pushed to high
masses, such that the mixing with the SM-like Higgs
boson is suppressed. In the case of alignment, the param-
eters of the Higgs sector are such that the mixing terms of
the squared-mass matrix between the SM-like Higgs boson
and the neutral, non-SM-like one and singlet are small.
More specifically, if we work in the Higgs basis [17,18] in
which only one of the doublets acquires a vacuum expect-
ation value and hence is aligned with the SM Higgs
doublet, here denoted by the subscript 1, the symmetric
CP-even Higgs mass-squared matrix is given generally by

M2 ¼

0
B@

M2
11 M2

12 M2
13

M2
22 M2

23

M2
33

1
CA ð1Þ

and the alignment condition is

M2
12;M

2
13 ≪ Oðv2Þ: ð2Þ

With minimal mixing, we also therefore have that

m2
h ≈M2

11 ¼ ð125 GeVÞ2: ð3Þ

The alignment limit of the NMSSM and its phenomeno-
logical properties have previously been thoroughly inves-
tigated in Ref. [9]. Here we give a brief review of the
relevant properties.
We define the relevant couplings defining the interaction

of the Higgs fields through the superpotential

W ¼ λSHuHd þ
κ

3
S3 þ huQHuUc

R þ hdHdQDc
R; ð4Þ

where the Higgsino mass parameter is proportional to the
vacuum expectation value of the singlet field μ ¼ λvs. We
shall follow the conventions of Refs. [9,19].
In the Higgs basis fHSM; HNSM;HSg, where HSM

denotes the SM-like Higgs, HNSM the nonstandard Higgs
doublet contribution and HS the singlet contribution, the
CP-even Higgs tree-level squared-mass matrix can be
explicitly written as

0
BBBBB@

M̄2
Zc

2
2β þ 1

2
λ2v2 −M̄2

Zs2βc2β
ffiffiffi
2

p
λvμ

�
1 − M2

A
4μ2

s22β −
κ
2λ s2β

�

M2
A þ M̄2

Zs
2
2β − 1ffiffi

2
p λvμc2β

�
M2

A
2μ2

s2β þ κ
λ

�

1
4
λ2v2s2β

�
M2

A
2μ2

s2β − κ
λ

�
þ κμ

λ

�
Aκ þ 4κμ

λ

�

1
CCCCCA

ð5Þ

where s2β ¼ sin 2β, etc. and we have defined

M̄2
Z ≡m2

Z −
1

2
λ2v2: ð6Þ

Including up to the first order stop loop corrections [20–27], the entries involving the doublets are given by

M2
11 ¼ M̄2

Zc
2
2β þ

1

2
λ2v2 þ 3v2s4βh

4
t

8π2

�
ln

�
M2

S

m2
t

�
þ Xt

M2
S

�
1 −

X2
t

12M2
S

��
ð7Þ

M2
22 ¼ M2

A þ s22β

�
M̄2

Z þ 3v2h4t
32π2

�
ln

�
M2

S

m2
t

�
þ XtYt

M2
S

�
1 −

XtYt

12M2
S

���
ð8Þ

M2
12 ¼ −s2β

�
M̄2

Zc2β −
3v2s2βh

2
t

16π2

�
ln

�
M2

S

m2
t

�
þ XtðXt þ YtÞ

2M2
S

−
X3
t Yt

12M4
S

��
ð9Þ

where Xt ¼ At − μ cot β, Yt ¼ At þ μ tan β, At is the stop mixing mass parameter andMS is the geometric mean of the two
stop mass eigenstates.
One may rewrite the expression forM2

12 in terms ofM2
11 by relating the first-order stop loop correction terms, in which

case the conditions for exact alignment up to first-order stop loop corrections become
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M2
12 ¼

1

tan β
½M2

11 − c2βm2
Z − λ2v2s2β� þ

3v2s2βh
4
t μXt

16π2M2
S

�
1 −

X2
t

6M2
S

�
¼ 0; ð10Þ

M2
13 ¼

ffiffiffi
2

p
λvμ

�
1 −

M2
As

2
2β

4μ2
−
κs2β
2λ

�
¼ 0: ð11Þ

Values of the μ parameter close to the weak scale and
therefore much lower than the stop masses are preferred
in order to obtain a mostly bino or singlino dark matter
(DM) candidate and to reduce the fine tuning associated
with electroweak symmetry breaking [28,29]. As shown in
Eq. (10), the stop loop corrections to M2

12 not included in
M2

11 are suppressed by μ=MS ≪ 1, and one may therefore
neglect the stop corrections to find an approximate relation
between the values of λ and tan β which satisfy exact
alignment. Taking M2

11 ¼ m2
h, Eq. (10) gives [9]

ðλAÞ2 ¼ m2
h −m2

Zc2β
v2s2β

: ð12Þ

Figure 1 shows the λ vs tan β curves given by Eq. (12) for
mh ¼ ð125� 3Þ GeV, where we have included an uncer-
tainty of 3 GeV characterizing the theoretical uncertainties
in the determination of the Higgs mass. Points within this
region will be close to fulfilling exact alignment, while
points close to this region should have small mixing
between the two doublets. We will better define “small”
mixing quantitatively in our later analyses. In order to
analyze a possible dynamical origin of these parameters,
we are interested in identifying the high energy-scale values

of NMSSM parameters which naturally run down to this
alignment limit at low energies.
Although the above conditions of alignment have been

derived by performing an analysis by including only
one loop corrections, models that lead to an appropriate
phenomenology at low energies tend to be consistent
with those conditions, as shown by the similarity of the
phenomenological properties of the benchmark scenarios
derived in Ref. [9] compared with more complete numeri-
cal analysis as those performed in Refs. [30–44].

III. RUNNING OF NMSSM COUPLINGS
TO ALIGNMENT

A. Results of running GUT-scale parameters
to weak scale

As is well known, in minimal low energy supersym-
metric models the values of the gauge couplings tend to
evolve at a common value at a large energy scale denoted as
the Grand Unification scale,MGUT, of about 2 × 1016 GeV
[45–47]. The values of λ and tan β shown in the previous
section naturally lead to large values of λðMGUTÞ and
htðMGUTÞ under the NMSSM renormalization group
equations (RGE) [19]. This running seems to suggest a
composite nature for the Higgs bosons, for which the
relevant couplings, in this case λ and ht, become large near
the compositeness scale. In particular, if the compositeness
scale is of the order of MGUT, it appears that one naturally
obtains the NMSSM alignment condition M2

12 ¼ 0 at the
weak scale. Figure 2 shows the general behavior of the
running of λ and ht up to the GUT scale. In this plot, we
have chosen three different points within the exact align-
ment region, with a low value of the nonstandard Higgs
bosons masses, MA ¼ 300 GeV and a characteristic stop
mass scale MSUSY ¼ 1 TeV. Since ignoring decoupling
effects htðmtÞ ∼mtðmtÞ=ðvsβÞ, wheremt is the running top
quark mass, the value of ht becomes weaker at larger values
of tan β. On the other hand, taking into account decoupling
effects, increases in the heavy Higgs boson scale tend to
lead to somewhat lower values of ht at the GUT-scale.
In order to thoroughly examine the range of GUT-scale

parameter values for which one obtains Higgs alignment,
and to identify the stability of this running to the alignment
limit, we begin with a range of values for λðMGUTÞ and
htðMGUTÞ and run each pair downward in energy. There are
three primary regions between MZ and MGUT: the low-
energy effective SM theory below MA, the 2HDM region
between approximately MA and MSUSY, and the NMSSM

FIG. 1. λ vs tan β curves which gives M2
12 ¼ 0. The solid

black line shows exact alignment for mh ¼ 125 GeV. The
shaded region covers mh ¼ 125� 3 GeV, with the upper
edge corresponding to mh ¼ 128 GeV and the lower edge to
mh ¼ 122 GeV.
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region above MSUSY. We employ the relevant RGE equa-
tions within each region; the equations for each region are
listed in Appendix A. At the boundary between the SM and
2HDM running at MA, we relate the single effective Higgs
field in the SM to the two Higgs doublets by ϕ ¼
Hd cos β þ iτH�

u sin β. This relation gives hefft ¼ ht sin β.

We approximately identify the scale of the singlet with
MSUSY, and therefore run the parameter λ between MGUT
andMSUSY, stopping its running below this scale. The value
of tan β is determined by requiring that the running top
mass is equal to approximately mtðMtÞ ≃ 163 GeV, lead-
ing to a pole top quark mass of approximately the observed
value, Mt ≃ 173 GeV.
Figure 3 shows the results of running down from MGUT

toMZ, with initial values of λ between 1 and 5 and values of
ht between 0.75 and 3.0 at the GUT scale. The value of κ is
set to 0. We find that the results are stable under TeV-scale
variations in the value of the running boundary MSUSY,
and thus ignore the small thresholds arising from the
decoupling of the supersymmetric particles. We display
the results for MSUSY ¼ 1 TeV. The value of MA is chosen
to be 300 GeV. Significantly larger values of MA, on the
order of MSUSY, push the htðMGUTÞ ≤ 1 curves toward
large values of tan β. For values of MA ≲ 500 GeV, the
results have little variation.
The obtention of mh ¼ 125 GeV comes into tension

with existing stop mass constraints for small values of tan β
and large values of λðMZÞ, for which the tree level
contribution to mh becomes large. Tree-level contributions
close to the observed Higgs mass result in the need for
small stop loop corrections and hence small values of the
stop masses [see Eq. (9)]. Based on recent results from
stop searches [48–51], we use a stop mass bound of
MS > 800 GeV. We employ a lower bound than some
of the quoted values after noting that the bounds may be
relaxed depending on the specific stop decay paths and
neutralino and chargino masses within the model. The
scenario presented in Fig. 12 of Ref. [48] most closely
aligns with the neutralino/chargino spectrum we obtain in
scenarios with a realistic Dark Matter candidate, which are
further discussed in Sec. IVA. Splittings between the right-
and left-handed stops, multiple decay modes mediated by
neutralinos and charginos, and decays through heavier
Higgsinos may further relax the 800 GeV bound. In
particular, we note that for lightest neutralino masses of
order mχ̃0

1
≳ 200 GeV the bounds may be relaxed signifi-

cantly, and in fact no meaningful bounds are placed for
mχ̃0

1
≳ 300 GeV in that particular analysis.

Moreover, for small stop mixing, a bound on MS is
approximately equivalent from the point of view of the
radiative corrections to the Higgs mass to a bound on the
geometric average of the two stop masses. Hence, when
comparing with experimental results one should recall that
a bound MS > 800 GeV is approximately equivalent to a
bound on the right handed stop mass mt̃R > 600 GeV and
on the left handed stop mass (which is close in mass to the
left handed sbottom) mt̃L > 1.1 TeV.
From the results in Fig. 3, we see that lower values of ht

at the GUT scale tend to push tan β and λðMZÞ to larger
values, while lower values of λðMGUTÞ lead to lower values

FIG. 3. Plot showing the (tan β, λðMZÞ) points obtained by
running down from MGUT with large λðMGUTÞ and moderate
htðMGUTÞ. The different contours arise from varying htðMGUTÞ,
while the colorbar indicates the value of λðMGUTÞ. Results are
displayed for MSUSY ¼ 1 TeV. The solid and dashed black lines
indicate the region of exact alignment for mh ¼ 125� 3 GeV.
The shaded grey region indicates the region in which it is difficult
to obtain a lighter Higgs mass of 125 GeV without tension with
existing stop mass limits.

FIG. 2. Running of λ (solid lines) and ht (dashed lines) from

the weak scale to higher energies, with t ¼ lnðQ2

M2
Z
Þ. We display

the running for initial values of ðλðMZÞ; tan βÞ ¼ ð0.67; 1.5Þ;
ð0.66; 1.7Þ, and (0.65, 2.0), which lie within the alignment region
shown in the previous section.
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of λðMZÞ, as might be expected. Our points fall mostly
within a range of λðMZÞ ∈ ð0.5; 0.8Þ with moderate tan β.

B. Alignment in the doublet sector

The points obtained from running down from large
values of λðMGUTÞ, as required for a composite Higgs
theory with a compositeness scale close toMGUT, fall close
to the region required for exact alignment. To start with, we
reduce the problem to an effective two Higgs doublet model
by assuming heavy singlets and examine the mixing in the
doublet sector; the suppression of the singlet mixing will be
examined in the next section. To quantify how well the
points fall within the alignment limit, we vary along MS
and Xt curves to examine the quantity

cosðβ − αÞ ¼ −M2
12ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðm2
H −m2

hÞðm2
H −M2

11Þ
p ð13Þ

which reflects the mixing between the two doublets and
reduces to −M2

12=ðM2
22 −M2

11Þ with m2
H ≈M2

22 and
m2

h ≈M2
11. The MS vs Xt curve for each ðtan β; λðMZÞÞ

point is determined by requiring that M2
11 ¼ ð125 GeVÞ2

up to the dominant two-loop terms. For low values of tan β,
the stop loop corrections tend to be smaller than the tree
level values, and there is therefore little variation about
the average value along each curve. As required from the
choices made in the running, we useMA ¼ 300 GeV in the
calculation of M2

22. Larger values of MA increase M2
22 and

therefore decrease the mixing.
In the effective 2HDM, the deviations of the SM-like

coupling may be parametrized by [7,8]

ghbb̄ ¼ gSM
hbb̄

ð1 − ηÞ ð14Þ

ghtt̄ ¼ gSMhtt̄

�
1þ η

tan2 β

�
ð15Þ

ghVV ¼ gSMhVV

�
1 −

η2

2 tan2 β

�
ð16Þ

where

η ≃ − tan β
M2

12

M2
22 −M2

11

: ð17Þ

From Eqs. (14)–(16) we see that for tan β > 1, the tree-level
bottom coupling is the one mostly affected by mixing with
the nonstandard states and, due to the relevant decay
branching ratio of the SM-like Higgs to bottom quarks,
it has a relevant effect on all Higgs branching ratios. We
plot the quantity jηj, which parametrizes the variation of the
bottom coupling, for our weak-scale points in Fig. 4.

Inspection of Fig. 4 shows that the deviation of the
parameter jηj is below 0.1 for the majority of points,
restricting the deviations of all couplings to values below
ten percent, in agreement with current experimental obser-
vations [52–54] (in this work, we shall not consider the
region in which the bottom Yukawa coupling acquires
a wrong sign, η ≃ 2, which can also be achieved within
the NMSSM for heavy singlets [55]). The points on the
extreme ends of the tan β region reach larger values of jηj,
but do not exceed a deviation of 0.16. Following the same
analysis with a value of MA ¼ 400 GeV, we find a
maximum value of jηj ¼ 0.08, which follows the expected
scaling of approximately 1=M2

A. We therefore find that a
composite Higgs model with a compositeness scale near
the GUT scale may naturally lead to the alignment limit for
the doublet sector at low energies. In Sec. IV, we will
describe a general implementation of an NMSSM Fat
Higgs model with a scale Λ of the order of MGUT.

C. Alignment condition

As discussed above, the alignment condition in the
NMSSM does not arise from a symmetry condition. To
further investigate the origin of the alignment in the doublet
sector, one can write the effective two Higgs doublet
potential

FIG. 4. Values of the quantity jηj for the points obtained from
running down from MGUT. We plot only the points which
can obtain the correct Higgs mass at the 2-loop level. Points
in the larger tan β region tend to have lower values of
M2

12=ðM2
22 −M2

11Þ, but due to the larger values of tan β they
obtain larger values of jηj than those points at low tan β and λ.
The shaded grey region indicates the region in which it is difficult
to obtain a lighter Higgs mass of 125 GeV without tension with
existing stop mass limits.
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V ¼ m2
11Φ

†
1Φ1 þm2

22Φ
†
2Φ2 −m2

12ðΦ†
1Φ2 þ H:c:Þ þ 1

2
λ1ðΦ†

1Φ1Þ2 þ
1

2
λ2ðΦ†

2Φ2Þ2

þ λ3ðΦ†
1Φ1ÞðΦ†

2Φ2Þ þ λ4ðΦ†
1Φ2ÞðΦ†

2Φ1Þ þ
	
1

2
λ5ðΦ†

1Φ2Þ2 þ ½λ6ðΦ†
1Φ1Þ þ λ7ðΦ†

2Φ2Þ�Φ†
1Φ2 þ H:c:



: ð18Þ

For small values of the Higgsino mass parameter compared
to the stop mass scale μ=MS ≪ 1—the dependence of the
quartic couplings on the stop mass parameters is given, for
instance, in Refs. [56,57]—one may take λ6 ≃ λ7 ∼ 0 as a
good approximation. The condition of alignment can then
be rewritten as [7]

m2
h ¼ ðλ1cos4β þ 2λ̃3sin2βcos2β þ λ2sin4βÞ

m2
h ¼ ðλ1cos2β þ λ̃3sin2βÞv2; ð19Þ

where λ̃3 ¼ λ3 þ λ4 þ λ5.
In the literature, symmetry considerations have been

invoked to relate the quartic couplings [12–16]. In par-
ticular, the condition λ1 ¼ λ2 ¼ λ̃3 ensures alignment
whenever m2

h ¼ λ2v2. In the NMSSM, however, the cou-
plings λ1 and λ2 differ by the sizable stop loop corrections
and these conditions cannot be fulfilled. For moderate or
large values of tan β ≳ 2.5, however, the alignment con-
ditions reduce approximately to λ2 ≃ λ̃3, with m2

h ¼ λ2v2.
Taking into account that

λ̃3 ≃ −
g21 þ g22

4
þ λ2; ð20Þ

one recovers the previously obtained relation, Eq. (12),
which in this regime of tan β reads

λ2 ≃
M2

Z þm2
h

v2
: ð21Þ

Moreover, as said above, λ2v2 differs from its tree-level
value M2

Z ≃ λ1v2 due to the sizable stop radiative
corrections.
The relation λ2 ≃ λ̃3 ≃m2

h=v
2 is therefore an emergent

condition arising dynamically in the infrared limit, and it is
not coming from any fundamental symmetry. Alignment
for smaller values of tan β emerges in a similar way in the
infrared limit.

D. Alignment in the singlet sector

We must additionally examine how the mixing with the
singlet Higgs might be naturally limited or suppressed
due to the high-energy behavior of the theory. A similar
analysis to the one performed for the doublet sector gives
the exact alignment condition involving M2

13 as

M2
As

2
2β

4μ2
−
κs2β
2λ

¼ 1: ð22Þ

For the region of λ and tan β obtained by running
down from the GUT scale, the value of sinð2βÞ is
approximately 1. We may thusly reduce the singlet-sector
alignment condition to the approximate relation

M2
A

4μ2
≈ 1; ð23Þ

where we have assumed that κ=2λ is significantly lower
than one, as necessary to obtain a singlino state lighter than
the Higgsino one, 2κ=λ < 1, for which a natural dark matter
candidate may be obtained [29]. Alignment for the singlet
therefore additionally depends on the relationship between
the parameters MA and μ, which is not determined by the
running down from MGUT performed above. We therefore
conclude that this alignment condition cannot obviously be
imposed through choices in the high-energy theory.
We thusly examine whether one may effectively decou-

ple the singlet due to aspects of the high-energy theory. We
note that the addition of a tadpole term can effectively
decouple the singlet from the doublet sector by increasing
the singlet mass. In particular, the general form for M2

33 is
given by [19]

M2
33 ¼

1

4
λ2v2s2β

�
M2

A

2μ2
−
κ

λ

�
þ κμ

λ

�
Aκ þ

4κμ

λ

�
−
λ

μ
ξS

ð24Þ

where ξS is the constant in a tadpole term in the Higgs
potential of the form ξSS ⊂ VH. A large value of ξS can lead
to large M2

33, thereby decoupling the singlet and limiting
the mixing with the doublet sector. If the high-energy
theory produces a singlet tadpole term in the Higgs
potential, as we will examine in the next section, then
the singlet mixing may be efficiently suppressed.

IV. FAT HIGGS MODELS

Here we focus on the possible composite nature of the
Higgs, and present an example of an NMSSM Fat Higgs
model [58–60] which may run down to alignment at the
weak scale as examined in the previous section. The pri-
mary traits we require are large values of λ at the GUT scale
and a singlet tadpole term which may decouple the singlet
from mixing with the doublet sector. We therefore choose a
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compositeness scale of ΛH ≈MGUT ≈ 1016 GeV, and
include a supersymmetric mass term for the two new
superfields which form the singlet at low energies, thereby
generating a tadpole term for S.
We specifically follow the construction set forth by

Harnik et al. in Ref. [58], which presents an NMSSM
Fat Higgs model. A new gauge symmetry SUð2ÞH is
introduced, which becomes strong at a scale ΛH, and six
new superfields T1;…6 are introduced which are doublets
under SUð2ÞH. ðT1; T2Þ also transform as a doublet under
SUð2ÞL, while ðT3; T4Þ and ðT5; T6Þ transform as singlets
under SUð2ÞL. The tree-level superpotential is given by

W ¼ yS0T1T2 þ yS00T3T4 −mT5T6 þ � � � ð25Þ

where S0 and S00 are new singlet superfields included to
ensure dynamic electroweak symmetry breaking. Making
the identifications

S ∝ T5T6;

�
Hþ

u

H0
u

�
∝
�
T1T3

T2T3

�
;

�
H0

d

H−
d

�
∝
�
T1T4

T2T4

�

ð26Þ

one obtains a dynamically generated superpotential of

W ¼ λSðHuHd − v20Þ: ð27Þ

Using naive dimensional analysis [61–64], one expects that

v20 ∼
mΛH

ð4πÞ2 ð28Þ

λðΛHÞ ∼ 4π: ð29Þ

Of particular interest in our case is the very small value of
m required to obtain v0 ≈Oð100Þ GeV for a composite-
ness scale of ΛH ≈ 1016 GeV; in particular, m must be on
the order of 10−1 eV.
We note that a term of the form mT5T6 may arise from

the vev of a scalar superfield, in which case one would have
a term of the form gΦT5T6, where g is a dimensionless
coupling. As a scalar superfield, Φ may have the form
Φ ¼ φþ θθF, where φ and F have some vacuum expect-
ation values. When integrating to obtain the potential, one
therefore finds an additional term linear in the Higgs singlet
S arising from the F-term. Thus, the presence of a tadpole
term of the form ξFŜ in the superpotential may naturally
give rise to a tadpole term in the potential of the form ξSS.
The necessary scales can be estimated based on the

values of m we require due to the compositeness scale, as
well as the scale of ξS required to decouple the singlet from
the doublet sector. We write the Higgs singlet terms with
the vev of hΦi ¼ hφi þ θθhFϕi by

gðhφi þ θθhFφiÞT5T6 ð30Þ

where the first term generates the supersymmetric mass
term mT5T6 while the second term generates the tadpole
term in the potential. We estimate that hφi and

ffiffiffiffiffiffiffiffiffiffijhFijp
should both be on the order of a TeV. In order to obtain
m ∼Oð10−1Þ eV, we therefore require g ∼Oð10−13Þ. The
scalar part of Ŝ then acquires a tadpole term in the potential

with ξS ¼ ΛHghFi
4π ; we require ξS on the order of 109 GeV3

for decoupling, which indicates that ΛH is around
1015 GeV. We thus obtain a similar compositeness scale
to the one that matches the NMSSM running, as described
in Sec. III.
The problem now reduces to the generation of the small

coupling g. Such a small coupling may be explained by
using a seesaw mechanism, similar to the one associated
with the Majorana neutrino mass models. In order to
propose such a model, let us follow Ref. [58] and introduce
two additional SUð2ÞH doublets T7 and T8. We shall
assume the presence of certain flavor symmetries which
forbid an explicit T5T6 mass term, but allow mixing
between these states and the T7 and T8 term via the
analogue of a Giudice Masiero mechanism [65] and a T7T8

mass term via the interaction with an additional superfield,
Ψ. Under these assumptions, the superpotential reads

W ¼ ΨT7T8 þmSUSYT5T8 þmSUSYT6T7 ð31Þ

where the mSUSY term comes from the Giudice Masiero
relation between the effective bilinear superfield term and
the supersymmetry breaking scale. We shall assume that

hΨi ≃M þ Fθ2 ð32Þ

where F is proportional to the square of the supersym-
metry breaking scale, such that the superpartner masses
mSUSY ≃ F=MGUT, andM is of the order of the GUT scale.
Integrating out the heavy superfields T7 and T8, one can
identify the supersymmetry conserving and breaking terms
that appear at low energies. This can be done diagram-
matically. For instance, the supersymmetry breaking tad-
pole term may be obtained by considering the presence of
the scalar mixing terms in the scalar potential,

V ≃M2ðT7T�
7 þ T8T�

8Þ þmSUSYMðT5T�
7 þ T6T�

8Þ
þ FT7T8 þ H:c:; ð33Þ

where the first four terms arise from F terms in the
superpotential, of the form j∂W=∂T7j2 and j∂W=∂T8j2,
and we replace Ψ by its vacuum expectation value. After
integrating out the heavy fields, the above terms lead to a
supersymmetry breaking term
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V ≃m2
SUSY

F
M2

T5T6 þ H:c: ð34Þ

This induces a tadpole of the right size for the scalar
component of S.
Alternatively, one can also obtain the same result by

doing a simple expansion considering the supersymmetry
breaking terms like a perturbation of the values obtained
in the supersymmetric limit. Let us start with the super-
symmetric case, with superpotential

W ¼ MT7T8 þmSUSYT5T8 þmSUSYT6T7: ð35Þ

Integrating out the heavy superfields, we get the effective
superpotential

W ¼ −
m2

SUSY

M
T5T6: ð36Þ

This term, together with the supersymmetry breaking
term, Eq. (34), leads to the supersymmetric and non-
supersymmetric tadpole contributions of the singlet S.
We can then formally identify the spectator field Φ
introduced in Eq. (30) with

ghΦi ≃ −
m2

SUSY

hΨi ; ð37Þ

where the above expression acquires meaning after decou-
pling the heavy superfields T7, T8 and performing the
above mentioned expansion [66], from which we obtain

g ≃ −
mSUSY

M
;

hΦi ¼ mSUSY −
mSUSYF

M
θ2 ∼mSUSY −m2

SUSYθ
2: ð38Þ

Hence, we reproduce the diagrammatic result for the
supersymmetry breaking tadpole and obtain the required
values of the coupling and the effective superfield Φ
vacuum expectation values in a natural way.
While the interactions of the singlet field S with the

Higgs field have the required structure to obtain align-
ment, the self interactions of S are not determined in a
clear way from our discussion above. We shall assume
that the flavor symmetries forbid a superpotential mass
term for S but allow the presence of a cubic term in S,
induced by strong interactions at the scale M and
characterized by the usual κ term at low energies. As
shown in Appendix B, provided κ acquires moderate
values there is no modification of the range of values of λ
obtained in the running.

A. Phenomenological properties

The low energy limit of the model presented above is
equivalent to the Z3 invariant NMSSM, with the addition

of tadpole terms that lift the scalar components of the
singlet fields to values larger than the weak scale,
implying the suppression of the mixing of the singlet
with the SM Higgs bosons. Moreover, the values of λ
ensure approximate alignment in the doublet Higgs
sector. The combination of alignment in the doublet
Higgs sector with the decoupling of the singlet scalar
fields imply that the observed Higgs boson has approxi-
mate Standard Model-like properties, in agreement with
experiments.
This model does not predict the exact value of the

nonstandard Higgs boson masses, but the moderate
values of tan β imply that the production cross section
is governed by top-Yukawa induced processes. Due to the
alignment condition, which suppresses the decay into
pairs of weak gauge bosons or SM-like Higgs bosons [9],
and the absence of light singlets, the nonstandard Higgs
bosons decay mostly into fermion states. Therefore, the
decay branching ratio depends on whether the decay into
pairs of top-quarks and electroweakinos is allowed. If
top-quark decay is dominant, searches for the heavy
Higgs doublets become difficult due to interference
effects with the large top-quark production background
[67–71]. Therefore, the only region that is currently
constrained is for low values of tan β < 2 and values
of the heavy Higgs mass below about 350 GeV, where
the top-quark decay process is absent. The main con-
straint comes from the decay of the heavy Higgs bosons
into τ pairs [72,73] which, however, can be efficiently
suppressed if the electroweakinos are light [74].
Regarding the chargino and neutralino sectors, the model

provides an acceptable dark matter candidate in terms of
the lightest neutralino [19]. Assuming this particle to be
either predominantly bino or singlino, spin independent
direct detection bounds may be efficiently suppressed
provided [29]

mχ ∼�μ sin 2β; ð39Þ

where the plus sign corresponds to the singlino case,
while the minus sign corresponds to the bino case.
However, the suppression of the direct detection cross
section in the singlino case relies on the interference
between the SM-like and singlet scalar Higgs contribu-
tions, which requires a light scalar singlet. In the case of
singlet decoupling, it is difficult to obtain a small direct
detection cross section. However, the bino case remains
viable under direct detection limits. Moreover, values of
the singlino mass close to the bino mass and somewhat
lower than the Higgsino mass μ ensure the obtention of
the proper relic density via co-annihilation of the bino
with the singlino. An acceptable relic density may
therefore be obtained consistently with the condition of
avoiding the direct detection bounds in this model. Using
NMSSMTools [75] we have verified that one may indeed
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obtain approximate alignment with an acceptable dark
matter candidate, for instance for tan β ≃ 2.5 and λðMZÞ≃
0.69 with values of M1¼240GeV, MA≃400GeV and
μ ¼ −300 GeV, κ ≃ 0.33 and MS ≃ 800 GeV (or equiv-
alently mt̃R ≃ 600 GeV and mt̃L ≃ 1.1 TeV).
A further phenomenological consideration is the charged

Higgs contribution to the b → sγ rate. Within a basic
Type II 2HDMmodel, a light charged Higgs on the order of
a few hundred GeV enhances b → sγ rates and therefore
becomes constrained by experimental measurements
[76–79]. However, within supersymmetric theories these
flavor rates also depend strongly on the contributions from
other supersymmetric particles; these include charginos and
stops, which can exactly cancel the SM contributions to the
b → sγ transition in the limit of exact supersymmetry [80–
83]. Furthermore, there are contributions arising from
possible flavor violation in the scalar fermion sector; these
can be large corrections arising from gluino-squark loops.
This can occur when there is a misalignment between the
bases in which the quark and squark mass matrices are
diagonalized [84]. In light of this, we do not further
consider flavor constraints; however, we have confirmed
using NMSSMTools that the models described above can be in
agreement with flavor constraints up to the SUSY con-
tributions included in NMSSMTools.

V. UNIFICATION OF hb AND hτ

Although it is not directly related to the alignment in the
Higgs sector, another intriguing aspect of the running of the
RG evolution from the alignment limit is the unification of
hb and hτ at the GUT scale. Figure 5 shows the values of
hbðMGUTÞ and hτðMGUTÞ obtained by running the weak-

scale points in Fig. 3 upward to the GUT scale. As expected
from previous work [85–96], for such large values of
htðMGUTÞ the values approach the hbðMGUTÞ ¼ hτðMGUTÞ
line as ht increases. The values of ht approach an infrared
fixed point [87], which is also a feature of top condensate
models [97–99], which is a different realization of com-
positeness in the Higgs doublet sector.
The unification of the bottom and tau Yukawa couplings

suggests that the bottom-quark and τ-lepton share the same
representations of the high-energy theory, as would happen
in an effective SUð5Þ theory at the GUT scale. However,
GUT scenarios tend to encounter a number of phenom-
enological issues (see, for example, Refs. [100–104]), and
an examination of how one may build a successful Grand
Unification theory with the NMSSM as the low-energy
theory, along with composite Higgs bosons, is beyond the
scope of this paper.

VI. CONCLUSION

The condition of alignment in the Higgs sector allows
for the possibility of obtaining a relatively light Higgs
spectrum without being in conflict with the LHC Higgs
precision measurements. Quite generally, alignment is not
dictated by any symmetry consideration and, barring the
possibility of being an accidental condition, requires a
dynamical explanation. In this article we concentrated on
the NMSSM, in which the alignment condition is
associated with a narrow range of values of the super-
potential coupling λ, which governs the interactions of
the singlet to doublet Higgs states. For low values of
tan β ≲ 3, this range of values of λ leads to the observed
value of the Higgs mass without requiring a very large
stop spectrum. Moreover, as shown in this article, the
renormalization group evolution of the coupling λ shows
that for low energy values which lead to alignment in the
Higgs sector, λ tends to become strong at scales of the
order of the GUT scale. Furthermore, the top Yukawa
coupling also tends to large values at similar large energy
scales.
In this article we interpret the large values of λ at the

GUT scale as a signal of compositeness of the Higgs
states. Following this idea, we construct a Fat Higgs
model with a compositeness scale that is close to the
GUT scale, which leads to the desired Higgs spectrum
and allows for the presence of a tadpole contribution that
leads to the natural decoupling of the singlet scalar states
in the low energy theory. This implies that the alignment
in the doublet sector, governed by λ, ensures the SM-like
properties of the lightest Higgs, as required by the LHC
precision measurements.
In addition to obtaining a Higgs sector which is con-

sistent with current experimental constraints, the model
also includes a dark matter candidate, which is mostly
binolike and obtains the correct relic density through
coannihilation with light singlinos. Moreover, for values

FIG. 5. Plot of the values of hτðMGUTÞ and hbðMGUTÞ obtained
from running the weak-scale points shown in Fig. 3 up to the
GUT scale. The color bar indicates the value of htðMGUTÞ, for
which larger values push the values of hτ and hb closer to
unification at the GUT scale.
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of the dark matter mass close to −μ sin 2β, direct detection
constraints can be avoided in the bino case. All these
conditions may be simultaneously satisfied within these
models.
Finally, we stress that the relatively strong values of the

top Yukawa coupling lead to the unification of the bottom
and tau Yukawa couplings at the GUT scale. This suggests
the possible embedding of this theory within a GUT
scenario, like SUð5Þ, in which the bottom-quark and
tau-lepton share the same multiplets. We reserve for future
work the construction of such a theory.
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APPENDIX A: RGE EQUATIONS

We list here the RGE equations used for the running of
the couplings presented in Sec. III.

1. SM and 2HDM

The equations used for the Standard Model and 2HDM
running are given by [105]

dα3
dt

¼ 7
α23
4π

dα2
dt

¼ β2
α22
4π

dα1
dt

¼ −β1
α21
4π

dYt

dt
¼ Yt

�
8α̃3 þ

9

4
α̃2 þ

17

12
α̃1 −

9

2
Yt −

αb
2
Yb − ατYτ

�

dYb

dt
¼ Yb

�
8α̃3 þ

9

4
α̃2 þ

5

12
α̃1 −

9

2
Yb −

αt
2
Yt − Yτ

�

dYτ

dt
¼ Yτ

�
9

4
α̃2 þ

15

4
α̃1 −

5

2
Yτ − 3Yb − α0tYt

�
ðA1Þ

where αi ¼ g2i =4π, α̃i ¼ αi=4π, Yt;b ¼ h2t;b=16π
2, and

t ¼ logðM2
GUT=μ

2Þ. The parameters ðβ2; β1; αb; αt; α0t; ατÞ
are equal to (3,7,1,1,0,0) for the 2HDM and ð19=6;
41=6; 3; 3; 3; 1Þ for the SM running.

2. NMSSM

The 2-loop RGE [19] used for the NMSSM running are
listed below; we employ the SM normalization of g1. The
running parameter t is defined here as t ¼ ln ðQ2=M2

ZÞ.

FIG. 6. Plots showing the points obtained from running down from the GUT scale with different values of κðMGUTÞ. All other
parameter choices, including the ranges of λðMGUTÞ and htðMGUTÞ, are the same as for Fig. 3.
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16π2
dg21
dt

¼ 11g41 þ
g41

16π2

�
199

9
g21 þ 9g22 þ

88

3
g23 −

26

3
h2t −

14

3
h2b − 6h2τ − 2λ2

�

16π2
dg22
dt

¼ g42 þ
g42

16π2
ð3g21 þ 25g22 þ 24g23 − 6h2t − 6h2b − 2h2τ − 2λ2Þ

16π2
dg23
dt

¼ −3g43 þ
g43

16π2

�
11

3
g21 þ 9g22 þ 14g23 − 4h2t − 4h2b

�

16π2
dh2t
dt

¼ h2t

�
6h2t þ h2b þ λ2 −

13

9
g21 − 3g22 −

16

3
g23

�

þ h2t
16π2

�
−22h4t − 5h4b − 3λ4 − 5h2t h2b − 3h2t λ2 − h2bh

2
τ − 4h2bλ

2

− h2τ λ2 − 2λ2κ2 þ 2g21h
2
t þ

2

3
g21h

2
b þ 6g22h

2
t þ 16g23h

2
t

þ 2743

162
g41 þ

15

2
g42 −

16

9
g43 þ

5

3
g21g

2
2 þ

136

27
g21g

2
3 þ 8g22g

2
3

�

16π2
dh2b
dt

¼ h2b

�
6h2b þ h2t þ h2τ þ λ2 −

7

9
g21 − 3g22 −

16

3
g23

�

þ h2b
16π2

�
−22h4b − 5h4t − 3h4τ − 3λ4 − 5h2bh

2
t − 3h2bh

2
τ − 3h2bλ

2

− 4h2t λ2 − 2λ2κ2 þ 2

3
g21h

2
b þ

4

3
g21h

2
t þ 2g21h

2
τ þ 6g22h

2
b þ 16g23h

2
b

þ 1435

162
g41 þ

15

2
g42 −

16

9
g43 þ

5

3
g21g

2
2 þ

40

27
g21g

2
3 þ 8g22g

2
3

�

16π2
dh2τ
dt

¼ h2τð4h2τ þ 3h2b þ λ2 − 3g21 − 3g22Þ

þ h2τ
16π2

�
−10h4τ − 9h4b − 3λ4 − 9h2τh2b − 3h2τ λ2 − 3h2t h2b − 3h2t λ2

− 2λ2κ2 þ 2g21h
2
τ −

2

3
g21h

2
b þ 6g22h

2
τ þ 16g23h

2
b þ

75

2
g41 þ

15

2
g42 þ 3g21g

2
2

�

16π2
dλ2

dt
¼ λ2ð3h2t þ 3h2b þ h2τ þ 4λ2 þ 2κ2 − g21 − 3g22Þ

þ λ2

16π2

�
−10λ4 − 9h4t − 9h4b − 3h4τ − 8κ4 − 9λ2h2t − 9λ2h2b

− 3λ2h2τ − 12λ2κ2 − 6h2t h2b þ 2g21λ
2 þ 4

3
g21h

2
t −

2

3
g21h

2
b þ 2g21h

2
τ

þ 6g22λ
2 þ 16g23h

2
t þ 16g23h

2
b þ

23

2
g41 þ

15

2
g42 þ 3g21g

2
2

�

16π2
dκ2

dt
¼ κ2ð6λ2 þ 6κ2Þ þ κ2

16π2
ð−24κ4 − 12λ4 − 24κ2λ2

− 18h2t λ2 − 18h2bλ
2 − 6h2τ λ2 þ 6g21λ

2 þ 18g22λ
2Þ

APPENDIX B: RESULTS FOR NONZERO κ

In the main analysis of this paper, we set κ ¼ 0; in this section we present results for different values of κ at the GUT scale

to quantify the effect of a nonzero value of κ on the results of the running. In Fig. 6 we plot the results of running downward

for κðMGUTÞ ¼ 1; 2 with MSUSY ¼ 1 TeV.
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The large values of κðMGUTÞ do not significantly affect the weak-scale parameter values, which remain near the
alignment region. The primary effect of increased κ is a lower value of λðMZÞ, which tends to be reduced by up to about 0.05
relative to the κ ¼ 0 case. Based on the low variation in the results with large κ, we conclude that setting κ ¼ 0 provides a
representative analysis.

[1] G. Aad et al. (ATLAS Collaboration), Phys. Lett. B 716, 1
(2012).

[2] S. Chatrchyan et al. (CMS Collaboration), Phys. Lett. B
716, 30 (2012).

[3] G. Aad et al. (ATLAS and CMS Collaborations), Phys.
Rev. Lett. 114, 191803 (2015).

[4] J. F. Gunion and H. E. Haber, Phys. Rev. D 67, 075019
(2003).

[5] A. Delgado, G. Nardini, and M. Quiros, J. High Energy
Phys. 07 (2013) 054.

[6] N. Craig, J. Galloway, and S. Thomas, arXiv:1305.2424.
[7] M. Carena, I. Low, N. R. Shah, and C. E. M. Wagner,

J. High Energy Phys. 04 (2014) 015.
[8] M. Carena, H. E. Haber, I. Low, N. R. Shah, and C. E. M.

Wagner, Phys. Rev. D 91, 035003 (2015).
[9] M. Carena, H. E. Haber, I. Low, N. R. Shah, and C. E. M.

Wagner, Phys. Rev. D 93, 035013 (2016).
[10] J. Bernon, J. F. Gunion, H. E. Haber, Y. Jiang, and S.

Kraml, Phys. Rev. D 92, 075004 (2015).
[11] H. E. Haber, S. Heinemeyer, and T. Stefaniak, Eur. Phys.

J. C 77, 742 (2017).
[12] P. S. B. Dev and A. Pilaftsis, J. High Energy Phys. 12

(2014) 024.
[13] P. S. Bhupal Dev and A. Pilaftsis, J. Phys. Conf. Ser. 873,

012008 (2017).
[14] K. Benakli, M. D. Goodsell, and S. L. Williamson, Eur.

Phys. J. C 78, 658 (2018).
[15] K. Benakli, Y. Chen, and G. Lafforgue-Marmet, Eur. Phys.

J. C 79, 172 (2019).
[16] N. Darvishi and A. Pilaftsis, Phys. Rev. D 99, 115014

(2019).
[17] H. Georgi and D. V. Nanopoulos, Phys. Lett. B 82, 95

(1979); J. F. Donoghue and L. F. Li, Phys. Rev. D 19, 945
(1979); L. Lavoura and J. P. Silva, Phys. Rev. D 50, 4619
(1994); L. Lavoura, Phys. Rev. D 50, 7089 (1994); F. J.
Botella and J. P. Silva, Phys. Rev. D 51, 3870 (1995).

[18] See Chapter 22 of G. C. Branco, L. Lavoura, and J. P.
Silva, CP Violation (Oxford University Press, Oxford,
1999).

[19] U. Ellwanger, C. Hugonie, and A. M. Teixeira, Phys. Rep.
496, 1 (2010).

[20] H. E. Haber and R. Hempfling, Phys. Rev. Lett. 66, 1815
(1991); Y. Okada, M. Yamaguchi, and T. Yanagida, Prog.
Theor. Phys. 85, 1 (1991); J. R. Ellis, G. Ridolfi, and F.
Zwirner, Phys. Lett. B 257, 83 (1991).

[21] H. E. Haber and R. Hempfling, Phys. Rev. D 48, 4280
(1993).

[22] See e.g., M. Carena, H. E. Haber, S. Heinemeyer, W.
Hollik, C. E. M. Wagner, and G. Weiglein, Nucl. Phys.

B580, 29 (2000); G. Degrassi, S. Heinemeyer, W. Hollik,
P. Slavich, and G. Weiglein, Eur. Phys. J. C 28, 133 (2003).

[23] G. F. Giudice and A. Strumia, Nucl. Phys. B858, 63
(2012).

[24] E. Bagnaschi, G. F. Giudice, P. Slavich, and A. Strumia,
J. High Energy Phys. 09 (2014) 092.

[25] P. Draper, G. Lee, and C. E. M. Wagner, Phys. Rev. D 89,
055023 (2014).

[26] J. P. Vega and G. Villadoro, J. High Energy Phys. 07
(2015) 159.

[27] G. Lee and C. E. M. Wagner, Phys. Rev. D 92, 075032
(2015).

[28] C. Brust, A. Katz, S. Lawrence, and R. Sundrum, J. High
Energy Phys. 03 (2012) 103.

[29] S. Baum, M. Carena, N. R. Shah, and C. E. M. Wagner,
J. High Energy Phys. 04 (2018) 069.

[30] U. Ellwanger, J. High Energy Phys. 03 (2012) 044.
[31] J. F. Gunion, Y. Jiang, and S. Kraml, Phys. Lett. B 710, 454

(2012).
[32] S. F. King, M. Muhlleitner, and R. Nevzorov, Nucl. Phys.

B860, 207 (2012).
[33] J. J. Cao, Z. X. Heng, J. M. Yang, Y. M. Zhang, and J. Y.

Zhu, J. High Energy Phys. 03 (2012) 086.
[34] D. A. Vasquez, G. Belanger, C. Boehm, J. Da Silva, P.

Richardson, and C. Wymant, Phys. Rev. D 86, 035023
(2012).

[35] U. Ellwanger and C. Hugonie, Adv. High Energy Phys.
2012, 625389 (2012).

[36] K. Agashe, Y. Cui, and R. Franceschini, J. High Energy
Phys. 02 (2013) 031.

[37] K. Kowalska, S. Munir, L. Roszkowski, E. M. Sessolo, S.
Trojanowski, and Y. L. S. Tsai, Phys. Rev. D 87, 115010
(2013).

[38] S. F. King, M. Mhlleitner, R. Nevzorov, and K. Walz, Nucl.
Phys. B870, 323 (2013).

[39] T. Gherghetta, B. von Harling, A. D. Medina, and M. A.
Schmidt, J. High Energy Phys. 02 (2013) 032.

[40] R. Barbieri, D. Buttazzo, K. Kannike, F. Sala, and A. Tesi,
Phys. Rev. D 87, 115018 (2013).

[41] M. Badziak, M. Olechowski, and S. Pokorski, J. High
Energy Phys. 06 (2013) 043.

[42] U. Ellwanger, J. High Energy Phys. 08 (2013) 077.
[43] F. Domingo and G. Weiglein, J. High Energy Phys. 04

(2016) 095.
[44] S. F. King, M. Mühlleitner, R. Nevzorov, and K. Walz,

Phys. Rev. D 90, 095014 (2014).
[45] J. R. Ellis, S. Kelley, and D. V. Nanopoulos, Phys. Lett. B

260, 131 (1991).
[46] P. Langacker and M. x. Luo, Phys. Rev. D 44, 817 (1991).

NINA M. COYLE and CARLOS E.M. WAGNER PHYS. REV. D 101, 055037 (2020)

055037-12

https://doi.org/10.1016/j.physletb.2012.08.020
https://doi.org/10.1016/j.physletb.2012.08.020
https://doi.org/10.1016/j.physletb.2012.08.021
https://doi.org/10.1016/j.physletb.2012.08.021
https://doi.org/10.1103/PhysRevLett.114.191803
https://doi.org/10.1103/PhysRevLett.114.191803
https://doi.org/10.1103/PhysRevD.67.075019
https://doi.org/10.1103/PhysRevD.67.075019
https://doi.org/10.1007/JHEP07(2013)054
https://doi.org/10.1007/JHEP07(2013)054
https://arXiv.org/abs/1305.2424
https://doi.org/10.1007/JHEP04(2014)015
https://doi.org/10.1103/PhysRevD.91.035003
https://doi.org/10.1103/PhysRevD.93.035013
https://doi.org/10.1103/PhysRevD.92.075004
https://doi.org/10.1140/epjc/s10052-017-5243-5
https://doi.org/10.1140/epjc/s10052-017-5243-5
https://doi.org/10.1007/JHEP12(2014)024
https://doi.org/10.1007/JHEP12(2014)024
https://doi.org/10.1088/1742-6596/873/1/012008
https://doi.org/10.1088/1742-6596/873/1/012008
https://doi.org/10.1140/epjc/s10052-018-6125-1
https://doi.org/10.1140/epjc/s10052-018-6125-1
https://doi.org/10.1140/epjc/s10052-019-6676-9
https://doi.org/10.1140/epjc/s10052-019-6676-9
https://doi.org/10.1103/PhysRevD.99.115014
https://doi.org/10.1103/PhysRevD.99.115014
https://doi.org/10.1016/0370-2693(79)90433-7
https://doi.org/10.1016/0370-2693(79)90433-7
https://doi.org/10.1103/PhysRevD.19.945
https://doi.org/10.1103/PhysRevD.19.945
https://doi.org/10.1103/PhysRevD.50.4619
https://doi.org/10.1103/PhysRevD.50.4619
https://doi.org/10.1103/PhysRevD.50.7089
https://doi.org/10.1103/PhysRevD.51.3870
https://doi.org/10.1016/j.physrep.2010.07.001
https://doi.org/10.1016/j.physrep.2010.07.001
https://doi.org/10.1103/PhysRevLett.66.1815
https://doi.org/10.1103/PhysRevLett.66.1815
https://doi.org/10.1143/ptp/85.1.1
https://doi.org/10.1143/ptp/85.1.1
https://doi.org/10.1016/0370-2693(91)90863-L
https://doi.org/10.1103/PhysRevD.48.4280
https://doi.org/10.1103/PhysRevD.48.4280
https://doi.org/10.1016/S0550-3213(00)00212-1
https://doi.org/10.1016/S0550-3213(00)00212-1
https://doi.org/10.1140/epjc/s2003-01152-2
https://doi.org/10.1016/j.nuclphysb.2012.01.001
https://doi.org/10.1016/j.nuclphysb.2012.01.001
https://doi.org/10.1007/JHEP09(2014)092
https://doi.org/10.1103/PhysRevD.89.055023
https://doi.org/10.1103/PhysRevD.89.055023
https://doi.org/10.1007/JHEP07(2015)159
https://doi.org/10.1007/JHEP07(2015)159
https://doi.org/10.1103/PhysRevD.92.075032
https://doi.org/10.1103/PhysRevD.92.075032
https://doi.org/10.1007/JHEP03(2012)103
https://doi.org/10.1007/JHEP03(2012)103
https://doi.org/10.1007/JHEP04(2018)069
https://doi.org/10.1007/JHEP03(2012)044
https://doi.org/10.1016/j.physletb.2012.03.027
https://doi.org/10.1016/j.physletb.2012.03.027
https://doi.org/10.1016/j.nuclphysb.2012.02.010
https://doi.org/10.1016/j.nuclphysb.2012.02.010
https://doi.org/10.1007/JHEP03(2012)086
https://doi.org/10.1103/PhysRevD.86.035023
https://doi.org/10.1103/PhysRevD.86.035023
https://doi.org/10.1155/2012/625389
https://doi.org/10.1155/2012/625389
https://doi.org/10.1007/JHEP02(2013)031
https://doi.org/10.1007/JHEP02(2013)031
https://doi.org/10.1103/PhysRevD.87.115010
https://doi.org/10.1103/PhysRevD.87.115010
https://doi.org/10.1016/j.nuclphysb.2013.01.020
https://doi.org/10.1016/j.nuclphysb.2013.01.020
https://doi.org/10.1007/JHEP02(2013)032
https://doi.org/10.1103/PhysRevD.87.115018
https://doi.org/10.1007/JHEP06(2013)043
https://doi.org/10.1007/JHEP06(2013)043
https://doi.org/10.1007/JHEP08(2013)077
https://doi.org/10.1007/JHEP04(2016)095
https://doi.org/10.1007/JHEP04(2016)095
https://doi.org/10.1103/PhysRevD.90.095014
https://doi.org/10.1016/0370-2693(91)90980-5
https://doi.org/10.1016/0370-2693(91)90980-5
https://doi.org/10.1103/PhysRevD.44.817


[47] U. Amaldi, W. de Boer, and H. Furstenau, Phys. Lett. B
260, 447 (1991).

[48] M. Aaboud et al. (ATLAS Collaboration), J. High Energy
Phys. 12 (2017) 085.

[49] M. Aaboud et al. (ATLAS Collaboration), J. High Energy
Phys. 06 (2018) 108.

[50] CMS Collaboration, CERN Report No. CMS-PAS-SUS-
19-009, 2019.

[51] ATLAS Collaboration, CERN Report No. ATLAS-CONF-
2019-017, 2019.

[52] ATLAS Collaboration, CERN Report No. ATLAS-CONF-
2018-031, 2018.

[53] A. M. Sirunyan et al. (CMS Collaboration), Eur. Phys. J. C
79, 421 (2019).

[54] G. Aad et al. (ATLAS Collaboration), Phys. Rev. D 101,
012002 (2020).

[55] N. M. Coyle, B. Li, and C. E. M. Wagner, Phys. Rev. D 97,
115028 (2018).

[56] H. E. Haber and R. Hempfling, Phys. Rev. D 48, 4280
(1993).

[57] M. Carena, J. R. Espinosa, M. Quiros, and C. E. M.
Wagner, Phys. Lett. B 355, 209 (1995).

[58] R. Harnik, G. D. Kribs, D. T. Larson, and H. Murayama,
Phys. Rev. D 70, 015002 (2004).

[59] S. Chang, C. Kilic, and R. Mahbubani, Phys. Rev. D 71,
015003 (2005).

[60] A. Delgado and T. M. P. Tait, J. High Energy Phys. 07
(2005) 023.

[61] H. Georgi, A. Manohar, and G.W. Moore, Phys. Lett.
149B, 234 (1984).

[62] H. Georgi and L. Randall, Nucl. Phys. B276, 241 (1986).
[63] M. A. Luty, Phys. Rev. D 57, 1531 (1998).
[64] A. G. Cohen, D. B. Kaplan, and A. E. Nelson, Phys. Lett.

B 412, 301 (1997).
[65] G. F. Giudice and A. Masiero, Phys. Lett. B 206, 480

(1988).
[66] G. F. Giudice and R. Rattazzi, Nucl. Phys. B511, 25

(1998).
[67] D. Dicus, A. Stange, and S. Willenbrock, Phys. Lett. B

333, 126 (1994).
[68] N. Craig, F. D’Eramo, P. Draper, S. Thomas, and H. Zhang,

J. High Energy Phys. 06 (2015) 137.
[69] S. Jung, J. Song, and Y.W. Yoon, Phys. Rev. D 92, 055009

(2015).
[70] S. Gori, I. W. Kim, N. R. Shah, and K. M. Zurek, Phys.

Rev. D 93, 075038 (2016).
[71] M. Carena and Z. Liu, J. High Energy Phys. 11 (2016) 159.
[72] M. Aaboud et al. (ATLAS Collaboration), J. High Energy

Phys. 01 (2018) 055.
[73] A. M. Sirunyan et al. (CMS Collaboration), J. High Energy

Phys. 09 (2018) 007.
[74] E. Bagnaschi et al., Eur. Phys. J. C 79, 617 (2019).
[75] U. Ellwanger, J. F. Gunion, and C. Hugonie, J. High

Energy Phys. 02 (2005) 066.
[76] J. L. Hewett, Phys. Rev. Lett. 70, 1045 (1993).

[77] M. Misiak et al., Phys. Rev. Lett. 114, 221801 (2015).
[78] M. Misiak, Acta Phys. Pol. B 48, 2173 (2017).
[79] M. Misiak and M. Steinhauser, Eur. Phys. J. C 77, 201

(2017).
[80] R. Barbieri and G. F. Giudice, Phys. Lett. B 309, 86

(1993).
[81] G. Degrassi, P. Gambino, and G. F. Giudice, J. High

Energy Phys. 12 (2000) 009.
[82] M. Carena, D. Garcia, U. Nierste, and C. E. M. Wagner,

Phys. Lett. B 499, 141 (2001).
[83] A. J. Buras, P. H. Chankowski, J. Rosiek, and L.

Slawianowska, Nucl. Phys. B659, 3 (2003).
[84] F. Gabbiani, E. Gabrielli, A. Masiero, and L. Silvestrini,

Nucl. Phys. B477, 321 (1996).
[85] H. Arason, D. Castano, B. Keszthelyi, S. Mikaelian, E.

Piard, P. Ramond, and B. Wright, Phys. Rev. Lett. 67, 2933
(1991).

[86] M. Carena, S. Pokorski, and C. E. M. Wagner, Nucl. Phys.
B406, 59 (1993).

[87] W. A. Bardeen, M. Carena, S. Pokorski, and C. E. M.
Wagner, Phys. Lett. B 320, 110 (1994).

[88] B. C. Allanach and S. F. King, Phys. Lett. B 328, 360
(1994).

[89] M. Carena, S. Pokorski, and C. E. M. Wagner, Nucl. Phys.
B406, 59 (1993).

[90] R. Hempfling, Phys. Rev. D 49, 6168 (1994).
[91] L. J. Hall, R. Rattazzi, and U. Sarid, Phys. Rev. D 50, 7048

(1994).
[92] M. Carena, M. Olechowski, S. Pokorski, and C. E. M.

Wagner, Nucl. Phys. B426, 269 (1994).
[93] P. Langacker and N. Polonsky, Phys. Rev. D 49, 1454

(1994).
[94] P. Langacker and N. Polonsky, Phys. Rev. D 50, 2199

(1994).
[95] B. Schrempp, Phys. Lett. B 344, 193 (1995).
[96] C. F. Kolda, L. Roszkowski, J. D. Wells, and G. L. Kane,

Phys. Rev. D 50, 3498 (1994).
[97] W. A. Bardeen, C. T. Hill, and M. Lindner, Phys. Rev. D

41, 1647 (1990).
[98] T. E. Clark, S. T. Love, and W. A. Bardeen, Phys. Lett. B

237, 235 (1990).
[99] M. Carena, T. E. Clark, C. E. M. Wagner, W. A. Bardeen,

and K. Sasaki, Nucl. Phys. B369, 33 (1992).
[100] S. Komine and M. Yamaguchi, Phys. Rev. D 65, 075013

(2002).
[101] J. Sato, K. Tobe, and T. Yanagida, Phys. Lett. B 498, 189

(2001).
[102] C. Balazs and R. Dermisek, J. High Energy Phys. 06

(2003) 024.
[103] D. Auto, H. Baer, C. Balazs, A. Belyaev, J. Ferrandis, and

X. Tata, J. High Energy Phys. 06 (2003) 023.
[104] H. Baer, I. Gogoladze, A. Mustafayev, S. Raza, and Q.

Shafi, J. High Energy Phys. 03 (2012) 047.
[105] G. C. Branco, P. M. Ferreira, L. Lavoura, M. N. Rebelo, M.

Sher, and J. P. Silva, Phys. Rep. 516, 1 (2012).

DYNAMICAL HIGGS FIELD ALIGNMENT IN THE NMSSM PHYS. REV. D 101, 055037 (2020)

055037-13

https://doi.org/10.1016/0370-2693(91)91641-8
https://doi.org/10.1016/0370-2693(91)91641-8
https://doi.org/10.1007/JHEP12(2017)085
https://doi.org/10.1007/JHEP12(2017)085
https://doi.org/10.1007/JHEP06(2018)108
https://doi.org/10.1007/JHEP06(2018)108
https://doi.org/10.1140/epjc/s10052-019-6909-y
https://doi.org/10.1140/epjc/s10052-019-6909-y
https://doi.org/10.1103/PhysRevD.101.012002
https://doi.org/10.1103/PhysRevD.101.012002
https://doi.org/10.1103/PhysRevD.97.115028
https://doi.org/10.1103/PhysRevD.97.115028
https://doi.org/10.1103/PhysRevD.48.4280
https://doi.org/10.1103/PhysRevD.48.4280
https://doi.org/10.1016/0370-2693(95)00694-G
https://doi.org/10.1103/PhysRevD.70.015002
https://doi.org/10.1103/PhysRevD.71.015003
https://doi.org/10.1103/PhysRevD.71.015003
https://doi.org/10.1088/1126-6708/2005/07/023
https://doi.org/10.1088/1126-6708/2005/07/023
https://doi.org/10.1016/0370-2693(84)91591-0
https://doi.org/10.1016/0370-2693(84)91591-0
https://doi.org/10.1016/0550-3213(86)90022-2
https://doi.org/10.1103/PhysRevD.57.1531
https://doi.org/10.1016/S0370-2693(97)00995-7
https://doi.org/10.1016/S0370-2693(97)00995-7
https://doi.org/10.1016/0370-2693(88)91613-9
https://doi.org/10.1016/0370-2693(88)91613-9
https://doi.org/10.1016/S0550-3213(97)00647-0
https://doi.org/10.1016/S0550-3213(97)00647-0
https://doi.org/10.1016/0370-2693(94)91017-0
https://doi.org/10.1016/0370-2693(94)91017-0
https://doi.org/10.1007/JHEP06(2015)137
https://doi.org/10.1103/PhysRevD.92.055009
https://doi.org/10.1103/PhysRevD.92.055009
https://doi.org/10.1103/PhysRevD.93.075038
https://doi.org/10.1103/PhysRevD.93.075038
https://doi.org/10.1007/JHEP11(2016)159
https://doi.org/10.1007/JHEP01(2018)055
https://doi.org/10.1007/JHEP01(2018)055
https://doi.org/10.1007/JHEP09(2018)007
https://doi.org/10.1007/JHEP09(2018)007
https://doi.org/10.1140/epjc/s10052-019-7114-8
https://doi.org/10.1088/1126-6708/2005/02/066
https://doi.org/10.1088/1126-6708/2005/02/066
https://doi.org/10.1103/PhysRevLett.70.1045
https://doi.org/10.1103/PhysRevLett.114.221801
https://doi.org/10.5506/APhysPolB.48.2173
https://doi.org/10.1140/epjc/s10052-017-4776-y
https://doi.org/10.1140/epjc/s10052-017-4776-y
https://doi.org/10.1016/0370-2693(93)91508-K
https://doi.org/10.1016/0370-2693(93)91508-K
https://doi.org/10.1088/1126-6708/2000/12/009
https://doi.org/10.1088/1126-6708/2000/12/009
https://doi.org/10.1016/S0370-2693(01)00009-0
https://doi.org/10.1016/S0550-3213(03)00190-1
https://doi.org/10.1016/0550-3213(96)00390-2
https://doi.org/10.1103/PhysRevLett.67.2933
https://doi.org/10.1103/PhysRevLett.67.2933
https://doi.org/10.1016/0550-3213(93)90161-H
https://doi.org/10.1016/0550-3213(93)90161-H
https://doi.org/10.1016/0370-2693(94)90832-X
https://doi.org/10.1016/0370-2693(94)91491-5
https://doi.org/10.1016/0370-2693(94)91491-5
https://doi.org/10.1016/0550-3213(93)90161-H
https://doi.org/10.1016/0550-3213(93)90161-H
https://doi.org/10.1103/PhysRevD.49.6168
https://doi.org/10.1103/PhysRevD.50.7048
https://doi.org/10.1103/PhysRevD.50.7048
https://doi.org/10.1016/0550-3213(94)90313-1
https://doi.org/10.1103/PhysRevD.49.1454
https://doi.org/10.1103/PhysRevD.49.1454
https://doi.org/10.1103/PhysRevD.50.2199
https://doi.org/10.1103/PhysRevD.50.2199
https://doi.org/10.1016/0370-2693(94)01559-U
https://doi.org/10.1103/PhysRevD.50.3498
https://doi.org/10.1103/PhysRevD.41.1647
https://doi.org/10.1103/PhysRevD.41.1647
https://doi.org/10.1016/0370-2693(90)91435-E
https://doi.org/10.1016/0370-2693(90)91435-E
https://doi.org/10.1016/0550-3213(92)90377-N
https://doi.org/10.1103/PhysRevD.65.075013
https://doi.org/10.1103/PhysRevD.65.075013
https://doi.org/10.1016/S0370-2693(00)01395-2
https://doi.org/10.1016/S0370-2693(00)01395-2
https://doi.org/10.1088/1126-6708/2003/06/024
https://doi.org/10.1088/1126-6708/2003/06/024
https://doi.org/10.1088/1126-6708/2003/06/023
https://doi.org/10.1007/JHEP03(2012)047
https://doi.org/10.1016/j.physrep.2012.02.002

