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We consider fine-grained probes of the entanglement structure of two-dimensional conformal field
theories deformed by the irrelevant double-trace operator TT̄ and its closely related but nonetheless distinct
single-trace counterpart. For holographic conformal field theories, these deformations can be interpreted as
modifications of bulk physics in the ultraviolet region of anti-de Sitter space. Consequently, we can use the
Ryu-Takayanagi formula and its generalizations to mixed state entanglement measures to test highly
nontrivial consistency conditions. In general, the agreement between bulk and boundary quantities requires
the equivalence of partition functions on manifolds of arbitrary genus. For the single-trace deformation,
which is dual to an asymptotically linear dilaton geometry, we find that the mutual information and
reflected entropy diverge for disjoint intervals when the separation distance approaches a minimum, finite
value that depends solely on the deformation parameter. This implies that the mutual information fails to
serve as a geometric regulator which is related to the breakdown of the split property at the inverse
Hagedorn temperature. In contrast, for the double-trace deformation, which is dual to anti-de Sitter space
with a finite radial cutoff, we find all divergences to disappear including the standard quantum field theory
ultraviolet divergence that is generically seen as disjoint intervals become adjacent. We furthermore
compute reflected entropy in conformal perturbation theory. While we find formally similar behavior
between bulk and boundary computations, we find quantitatively distinct results. We comment on the
interpretation of these disagreements and the physics that must be altered to restore consistency. We also
briefly discuss the TJ̄ and JT̄ deformations.

DOI: 10.1103/PhysRevD.102.045009

I. INTRODUCTION

The renormalization group is a fundamental concept in
many-body physics and quantum field theory. It has been
central to our understanding of the validity of particle phy-
sics, the emergence of macroscopic phenomena, and the
space of quantum field theories. Starting from a fixed point
of the renormalization group (a conformal field theory), one
may perturb the action by a relevant operator, an interaction
that becomes increasingly important as one flows to the IR.
Relevant deformations compose the minority of terms that
are available to add to the action, though their flows through
theory space are generally well understood. On the contrary,
the vast majority of possible deformations are irrelevant,
describing the (generally infinite) UV directions that may

flow to the same fixed point. Such deformations are usually
difficult to understand with the infrared degrees of freedom,
computational uncontrollable, and intractable.
A surprising and deeply consequential breakthrough

came when Zamolodchikov and Smirnov showed that
a particular class of irrelevant deformations of two-
dimensional quantum field theories, in particular theories
obtained by deforming via the determinant of the stress-
energy tensor, are generally under control and “solvable” in
the sense that the energy spectrum, partition functions, and
(sometimes) the classical action may be computed exactly
[1–4]. Moreover, the UV descriptions of these theories are
not local quantum field theories. The scale where locality
breaks down is determined by the dimensionful defor-
mation parameter, μ. The understanding of this “TT̄”
deformation has seen tremendous progress including its
reinterpretations as coupling the seed quantum field theory
(QFT) to Jackiw-Teitelboim gravity [5] or a flat, random
metric [6]. Furthermore, analogous irrelevant deformations
have been put forward for theories with Uð1Þ currents that
break Lorentz symmetry, the TJ̄ and JT̄ deformations [7].
Due to the great success of the AdS3=CFT2 correspon-

dence [8,9], a natural question to ask is how these
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deformations of two-dimensional conformal field theories
are viewed or interpreted from the bulk gravity (string)
theory side. Thus far, gauge-gravity duality has mainly only
been successful for theories that are asymptotically anti-de
Sitter, corresponding to field theories that are controlled
by a UV fixed point. Thus, one may hope that these
irrelevant deformations, which alter the UV physics, may
guide us to understand holography for quantum gravity
theories with different asymptotics, in particular asymp-
totically flat spacetimes. There have been two1 explicit
proposals for how the asymptotics may be altered under the
irrelevant deformations.
The first proposal is what we refer to as “cutoff AdS”

which has a surprisingly simple description [11]. Rather
than the standard Dirichlet asymptotic boundary conditions
of the Gubser-Klebanov-Polyakov-Witten (GKPW) diction-
ary [12,13], one places Dirichlet boundary conditions at a
finite radial cutoff. An important ingredient is that the
deformation parameter is sign definite in the direction where
there always exist complex energies in the spectrum, a
puzzling feature whose physical implications must be
addressed. This conjecture has passed several tests such as
matching the energy spectrum, thermodynamics, and signal
propagation speeds [11]. However, in order to match bulk
and boundary two-point functions, one must add an addi-
tional double-trace deformation to the boundary theory [14].
The other holographic proposal regards a closely related

but distinct deformation of the conformal field theory, a
“single-trace” TT̄ [15–17]. The following is meant by
single trace. We consider a symmetric orbifold theory
MN=SN

2 (where N is an integer). Rather than deforming
the theory by the stress tensor of the full theory, we deform
each block, M, and take the symmetric product of the
resulting theories. This proposal has the deformation
parameter be sign definite opposite to “cutoff AdS.” The
energies of states (on a cylinder) are real. The bulk
description of this deformation is a truly marginal defor-
mation of the world-sheet string theory. This affects the
bulk theory by changing the asymptotics to linear dilaton.
Such asymptotics are quite close to asymptotically flat
spacetimes though the high-energy density of states exhib-
its novel Hagedorn growth (S ∝ E). Analogous to Ref. [7],
there are generalizations to the single-trace versions of the
TJ̄ and JT̄ deformations whose proposed holographic
duals have warped AdS as asymptotics [20]. Also, see
generalizations in Ref. [21].
Both of these proposals are fascinating and potentially

quite important for our understanding of holography in
generic spacetimes. It is important to both test these

conjectures and to understand the novel structure of their
dual (nonlocal) field theories. An illuminating observable is
the entanglement entropy of subregions. Understanding
entanglement structure has been central in characterizing
many-body systems such as gapped, critical, topologically
ordered, and holographic systems [22–32]. Presumably, the
entanglement structure of these TT̄ deformed theories will
elucidate their properties. In particular, entanglement
entropy has played a key role in our understanding of
the renormalization group, providing c-functions in two
and three dimensions that have clear information theoretic
meaning regarding the number of degrees of freedom at
each scale [33–35]. Generalized entropic c-functions in
arbitrary dimensions for holographic theories were shown
to hold in Ref. [36].
Several studies have been conducted for entanglement

entropy in holographic TT̄ deformed theories [37–49].
While one can nonperturbatively compute the entropy
using the Ryu-Takayanagi formula [29,30], in general,
one must use techniques from conformal perturbation
theory to compute the entropy from the field theory side.
One exception to this is for the entropy of very specific
configurations such that the replica trick may be computed
nonperturbatively. For example, for an entangling surface
consisting of two antipodal points on a sphere, it is shown
that the cutoff AdS and boundary computations precisely
agree [37]. Impressively, this technique has been general-
ized to the less symmetric case of a finite interval [38].
There aremany reasonswhy the entanglement structure of

TT̄,TJ̄, andJT̄ deformed theories deserves further attention,
though the following three are our main motivations:
(1) Thus far, only von Neumann entropy has been

studied which is only a reasonable measure of
entanglement for pure states. This is severely limit-
ing as there is deep structure in mixed state entan-
glement and multipartite entanglement, particularly
in holographic systems. For this reason, we consider
mixed state correlation measures such as the mutual
information and measures dual to the entanglement
wedge cross section, a bulk geometric object distinct
from the Ryu-Takayanagi surface [50–54]. We re-
view the relevant holographic conjectures in the
following subsection.

(2) The central input into the holographic dictionary is
the equivalence of bulk and boundary partition
functions

Zgravity½B� ¼ ZQFT½∂B�; ð1:1Þ

where B is an arbitrary bulk manifold and ∂B is its
(asymptotic) boundary. This is the main ingredient
in the derivation of the Ryu-Takayanagi formula
[55]. For the agreements in Refs. [37,38], (1.1)
only must hold for B a solid sphere. Such an
equivalence of partition functions is quite unique.

1There is actually a third, recent proposal [10] motivated by
Cardy’s random geometry interpretation. We will return to this in
the discussion section.

2CFTs in the moduli space of this theory describe the long
string sector of string theory on AdS3 [18,19]. M is the
conformal field theory of a single long string.
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On the contrary, the replica tricks used for the mixed
state correlation measures that we study implicitly
require the equivalence of partition functions for ∂B
arbitrary genus Riemann surfaces. This is a signifi-
cantly stronger check of the holographic dualities.
Surprisingly, we find that calculations on the two
sides of the duality do not agree.

(3) While entanglement in local quantum field theory
has been studied extensively, entanglement in non-
local theories is much less understood. The TT̄
deformation induces a flow that leads to nonlocality
at the UV scale. This provides us a rare tractable
testing ground for studying information theoretic
aspects of renormalization group flows and certain
concepts in algebraic quantum field theory, such as
nuclearity and the split property, which we review
later in the Introduction.

The rest of the paper is organized as follows: In Sec. II,
we introduce the asymptotically linear dilaton background
proposed to be dual to the single-trace deformation.
We generalize the results for von Neumann entropy in
Refs. [42,46] to finite temperature states and compute the
mutual information for disjoint intervals. Then, we compute
the entanglement wedge cross section for disjoint intervals.
We find that both quantities are UV divergent even when the
intervals are only a finite distance away from each other
determined by the nonlocality scale of the deformed theory.
Such divergences at finite distances signal breakdowns of the
geometric regulators of Refs. [54,56] that are used e.g., to
isolate c-functions, a consequence of the split property of
quantum field theory [57,58] ceasing to hold. Furthermore,
both the mutual information and reflected entropy are
monotonically increasing with the deformation parameter.
In Sec. III, we do the same thing but for AdS with a hard
finite radial cutoff at both zero and finite temperature. In
sharp contrast to the previous section’s results, we find the
quantities to be UV finite even when the intervals are
brought arbitrarily close together. Here, they are monoton-
ically decreasing with (the absolute value of) the deformation
parameter. In Sec. IV, we perturbatively (in the deformation
parameters) compute the reflected entropy for disjoint
intervals. We find the first order corrections from the JT̄
and TJ̄ deformations to vanish due to twist fields being
uncharged under the Uð1Þ symmetry. For double-trace TT̄,
we find formally similar, but numerically distinct, results to
the holographic calculations, showing tension in the holo-
graphic proposal. In Sec. V, we discuss physical implications
and open questions. Finally, in the Appendices, we collect
various derivations and formulas.

A. Holographic entanglement and mixed-state
correlation measures

The Ryu-Takayanagi formula has become a standard in
high-energy physics and its relation to quantum informa-
tion theory [29,30]:

SA ¼ 1

4GðdÞ
N

Z
γA

ddx
ffiffiffi
g

p
: ð1:2Þ

Here, γA is the extremal surface (with respect to the
integrand) homologous to boundary region A. Important
for our discussion is how this formula must be modified
when the dilaton is not trivial. In Ref. [30], it was posited
that in the case in which the dilaton is not constant,

SA ¼ 1

4GðdÞ
N

Z
γA

ddxe−2Φ
ffiffiffiffiffiffiffi
gðsÞ

q
; ð1:3Þ

where Φ is the dilaton and gðsÞ is the metric in string frame.
We provide a simple derivation of this modification in
Appendix A.
Various generalizations of the Ryu-Takayanagi formula

have played important roles in recent years, such as a
covariant description [32], quantum corrections [59,60],
and Rényi entropies [61], all of which have been derived
under mild assumptions [55,59,61–63].
A large generalization was proposed in the context

of entanglement of purification (EoP), a mixed state
correlation measure that reduces to the von Neumann
entropy for pure states [64]. Motivated by information-
theoretic inequalities and tensor network models of holog-
raphy, this was conjectured to be dual to the area of the
entanglement wedge cross section [50,51]. The entangle-
ment wedge of boundary region A, ΞA, is the bulk
codimension-one region whose boundary is A ∪ γA. The
entanglement wedge cross section of A ∪ B, EWðA∶BÞ, is
the extremal surface in ΞA∪B separating regions A and B
(see Fig. 1 for a depiction of EW for disjoint intervals).
While well motivated and certainly plausible, the EoP ¼
EW conjecture is unlikely to be proven using known
methods due to the large optimization procedure in the
definition of EoP.3 The entanglement wedge cross section
was later conjectured to be dual to logarithmic negativity
[52], a well-known mixed state entanglement measure that
is only sensitive to purely quantum correlations [67–69].
An important aspect of this proposal is that EW must
backreact nontrivially on the geometry akin to the Rényi
entropies [61]. This conjecture was later derived for
AdS3=CFT2 in Ref. [70]. A similar quantity, the “odd
entropy,” was conjectured to be dual to EW without back-
reaction in Ref. [53]. Finally, in Ref. [54], it was shown
that EW was equal to half of the “reflected entropy,” which
is the von Neumann entropy of a particular (not minimal)
purification ρ → jρ1=2i. This was derived under mild
assumptions in generic dimensions.
Due to the fact that the reflected entropy conjecture

does not require difficult backreaction in the bulk (like

3Related optimized correlation measures were argued to be
dual to EW in Refs. [65,66].
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negativity) and it has a convincing derivation, in this paper,
we focus on computing this quantity. However, due to its
recent introduction in the literature, little is known about its
properties i.e., what is it really measuring?4 Thus, we find it
conceptually useful to consider it as a proxy for logarithmic
negativity, whose quantum information theoretic properties
are well understood. Precisely, in holographic theories, the
negativity is equal to half of the Rényi reflected entropy at
Rényi index 1=2.
Here, we collect some properties of EW and the reflected

entropy between two subsystems, denoted AðAiÞ and BðBiÞ
below [50,54].
(1) Reduction to von Neumann entropy: when comput-

ing EW for a bipartition of a global pure state, EW
reduces to the standard Ryu-Takayanagi surface.
Likewise, the reflected entropy reduces to twice the
von Neumann entropy.

(2) Upper bound: EWðA∶BÞ is always bounded from
above by the entropies SðAÞ and SðBÞ and the
inequality is only saturated for pure states. Similarly
reflected entropy always is bounded by twice the
entropies.

(3) Lower bound: EWðA∶BÞ is always larger than half
of the mutual information IðA∶BÞ. Likewise, this
holds for reflected entropy in all quantum sys-
tems SRðA∶BÞ > IðA∶BÞ.

(4) Monotonicity: EW is monotonic under inclusions
i.e., EWðA;BÞ ≤ EWðA;B ∪ CÞ. This makes it a rea-
sonable correlation measure. While this has been
proven for the integer Rényi reflected entropies, it
has yet to be proven in the von Neumann limit,
though it is suspected to hold.

(5) Strong superadditivity: EW obeys strong super-
additivity EWðA1 ∪ A2; B1 ∪ B2Þ ≥ EWðA1; B1Þþ
EWðA2; B2Þ. Interestingly, there are counterexam-
ples to this property for the reflected entropy of
classically correlated finite dimensional systems.

To gain further intuition on EW and its relation/distinct to
mutual information, we plot the two quantities for disjoint
intervals (½x1; x2� and ½x3; x4�) in the vacuum of a conformal
field theory in Fig. 2. Both quantities only depend on the
conformally invariant cross ratio

x ¼ x21x43
x31x42

: ð1:4Þ

Much of this work is understanding how Fig. 2 changes
once we turn on the irrelevant deformations.

B. Review of the split property of QFT
and geometric regulators

In this subsection, we provide a minimal review of the
nuclearity condition and the split property of local quantum
field theory. The interested reader may consult Ref. [76] for
further details.
Unlike finite dimensional quantum systems, in quantum

field theory, the Hilbert space does not admit a tensor

FIG. 1. There are two phases of the entanglement wedge for disjoint intervals. In the connected regime (left), the Ryu-Takayanagi
surfaces (red) stretch between the boundary two subregions (purple and orange). This phase manifestly has nontrivial mutual
information and entanglement wedge cross section (green). Alternatively, when the intervals are sufficiently distant (d > d�), the
disconnected regime (right) dominates and the entanglement wedge becomes the union of the two individual entanglement wedges. This
phase has manifest zero mutual information and entanglement wedge cross section.
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FIG. 2. The entanglement wedge cross section and half the
mutual information per central charge are plotted as a function of
the conformally invariant cross ratio (1.4) in the vacuum state of a
2D CFT. The bound EW > I=2 is manifest. Notably, EW
discontinuously jumps to zero at x ¼ 1=2. At this point, the
mutual information is continuous but its first derivative is
discontinuous. These analytic breakdowns are thought to be
artifacts of the c → ∞ limit.

4See discussion and analysis of this question in
Refs. [54,71–75].
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factorization. The algebras of local observables in a
subsystem of quantum field theory are generically type
III von Neumann algebras. The partial trace of a state is
thus ill defined and consequently, the von Neumann
entropy is always infinite. Even with these setbacks, one
would like to be able to consider states localized in
subregions and have well-defined correlation measures.
While the von Neumann algebras,AðKrÞ, of subregions,

Kr, in quantum field theory are generically of type III, we
can consider two disjoint causal diamonds, K1 and K2 with
the causal complement of K2, K̄2, subsuming K1. The split
property then asserts that there exists a type I factor, N ,
such that

AðK1Þ ⊂ N ⊂ AðK̄2Þ: ð1:5Þ

Type I von Neumann algebras admit traces and are
isomorphic to the set of bounded operators in some
Hilbert space, so entropies may be well defined. To connect
with our general intuition regarding tensor factorization of
Hilbert spaces, we note that the split property equivalently
says that there exists an isomorphism between AðK1Þ ∨
AðK2Þ and the tensor factorization AðK1Þ ⊗ AðK2Þ. It is
important to note that this mapping is not unique thenceN
is not unique.
There is, however, a “canonical” choice for the split,

N ψ , that always exists and was first discussed in Ref. [58].
This is defined via the relation

N ψ ¼ AðK1Þ ∨ JψAðK1ÞJψ ; ð1:6Þ

where Jψ is the modular conjugation operator of Tomita-
Takesaki theory associated to the state ψ and algebra
AðK1Þ ∨ AðK2Þ. It is the von Neumann entropy of the
state in N ψ that is associated to the reflected entropy.
This is why the reflected entropy is so useful for us in
understanding if/how the split property holds in a given
theory for a given split distance, s. For more comprehen-
sive discussion on this point, we direct the reader to
Refs. [54,75,77].
The split property has been shown to follow from the

nuclearity condition which we describe now. Consider
the set

N β;r ¼ e−βHAð1ÞðKrÞjΩi; ð1:7Þ

where jΩi is the vacuum state, β > 0,H is the Hamiltonian,
and Að1ÞðKrÞ is the set of operators in AðKrÞ with norm
less than or equal to 1. This set is called nuclear if there
exists a positive, trace class operator, Tβ;r, such that

N β;r ⊂ Tβ;rHð1Þ; ð1:8Þ

where Hð1Þ are the elements of H with norm less than or
equal to 1. From here, we can define the nuclearity index as

νβ;r ¼ inf
Tβ;r

Tr½Tβ;r�; ð1:9Þ

which must be bounded as

νβ;r < ecr
dβ−n ; ð1:10Þ

for some c; n > 0. d is the number of spatial dimensions. It
has been shown that if (1.10) is satisfied, then the split
property holds as long as K1 and K2 are disjoint, though
they may be arbitrarily close [78].
The nuclearity index is closely related to the thermody-

namic partition function. In certain theories, the partition
function can diverge at a finite temperature, βH, called the
Hagedorn temperature. This temperature governs the high-
energy density of states. In these theories, the nuclearity
condition is not satisfied and the split property fails to
hold when K1 and K2 are at a finite distance from one
another determined by βH [defined in (2.10)]. TT̄ deformed
conformal field theories exhibit Hagedorn thermodynam-
ics, so it is natural to investigate how this split property
breaks down in these theories. This provides an opportunity
where we have a concrete example to test the dynamical
breakdown of (1.5).
As previously mentioned, the von Neumann entropies

associated to subregions in quantum field theory are
generically divergent. It is thus desirable to regulate the
entropy to extract quantities physically meaningful regard-
ing the theory or specific state. Of particular interest are
the quantities extracted from the von Neumann entropy that
provide entropic c-functions [33,34]. In particular, the von
Neumann entropy for a ball-shaped region, A, has a generic
expansion including the following terms:

SA ⊃

(
ð−1Þd2−14c0 log

h
LA
ϵUV

i
; d ∈ 2Z

ð−1Þd2−12πc0; d ∈ 2Zþ 1;
ð1:11Þ

where LA is the radius of region A and ϵUV is the ultraviolet
cutoff. The constants c0 are universal and independent of
the details of the UV regularization. The definition of c0
can be made unambiguous if the UV regulator is chosen
appropriately as to allow the divergent terms in the entropy
to be expressible as “geometric,” i.e., integrals over the
entangling surface [35,79]. The validity of the split prop-
erty hints that the mutual information and reflected entropy
of nearby, but disjoint, regions are natural geometric
regulators [54,56]. Both of these quantities may be well
defined without assuming a tensor factorization. The
regularization scheme is imposed by considering region
A and its causal complement with the region at their
interface of width ϵ excised (see Fig. 3). Then, one should
take the limit of LA=ϵ → 0, though it is important that
during this limit, one keeps ϵ ≫ ϵUV. Then, in the final
expression, all constants, e.g., c0, are physical and
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unambiguous. We will see that the ability of taking the
LA=ϵ → 0 limit disappears when we consider TT̄ deformed
theories.

II. SINGLE-TRACE TT̄ AND THE LINEAR
DILATON BACKGROUND

Let us begin by reviewing the holographic proposal of
Refs. [15–17,20]. This involves deforming the world-sheet
conformal field theory by a linear combination of truly
marginal current-current operators,

δLws ¼ λJ−SLJ̄
−
SL þ λþKJ̄−SL þ λ−K̄J−SL; ð2:1Þ

where K (K̄) are world-sheet Uð1Þ currents associated to
left(right)-moving momenta on a unit circle, and J−SLðJ̄−SLÞ
are bosonic SLð2; RÞ left(right)-moving world-sheet affine
currents.
It was shown that this deformation in the long string

sector is equivalent to deforming M by a general linear
combination of the irrelevant operators,

δL ¼ −μTT̄ − μþJT̄ − μ−J̄T; ð2:2Þ

where J and J̄ are left- and right-moving U(1) currents,
respectively, and T and T̄ are the holomorphic and anti-
holomorphic stress tensor components, respectively, of the
conformal field theory M. With our normalization, the
coupling constants of the spacetime and world-sheet
deformations are related as5

μ ¼ 6α0λ
cπ

; μ� ¼ 4

π

ffiffiffiffiffiffiffi
3α0

c

r
λ�; ð2:3Þ

where α0 is the Regge slope, and μ; μ� > 0.

Suppressing internal compact dimensions, the bulk
background induced by this deformation has string frame
metric [20,46,80]

ds2 ¼ dϕ2 þ hdγdγ̄ þ 2hλþffiffiffi
k

p dψdγ̄ þ 2hλ−ffiffiffi
k

p dψdγ̄

þ 1

k
hf−1dψ2; ð2:4Þ

where the dilaton, Φ, and Neveu–Schwartz two-form,
B, are

e2Φ ¼ g2se−2ϕh; Bγγ̄ ¼ gγγ̄; Bγψ ¼ gγψ Bψγ̄ ¼ gγ̄ψ ;

ð2:5Þ
and

h−1 ¼ e−2ϕ þ λ − 4λþλ−; f−1 ¼ h−1 þ 4λþλ−: ð2:6Þ
ψ is the coordinate on the circle S1, ψ ∼ ψ þ 2π.
The boundary is located at ϕ ¼ þ∞. The coordinates γ
and γ̄ are

lsγ ¼ tþ x; lsγ̄ ¼ −tþ x; ð2:7Þ

where ls ¼
ffiffiffiffi
α0

p
is the intrinsic string length.

We restrict to the parameter range where the energy
spectrum was shown to be real and that there are no closed
timelike curves [20],

λ

4πα0
−
ðλþ þ λ−Þ2

32α0
> 0: ð2:8Þ

Furthermore, we take λþ ¼ λ− ¼ δ
2
.

We show the corresponding geometry in Fig. 4 for the
case in which δ ¼ 0. The linear dilaton regime controls
the UV, while vacuum AdS3 controls the IR. They are
smoothly connected at a scale determined by k1=2 where k

FIG. 4. The single-trace TT̄ deformation changes the bulk
AdS3 geometry to asymptote in the UV to a linear dilaton regime
represented in yellow. This smoothly crosses over to the un-
deformed AdS3 regime in the IR. For further generality, we have
placed a black hole in the IR regime which sets the boundary
theory to finite temperature. The IR region is thus more generally
that of the Bañados-Teitelboim-Zanelli (BTZ) black hole [81].

FIG. 3. The geometric regularization scheme for the von
Neumann entropy. We take A and B to be disjoint and separated
by ϵ. Then, the regulated “entropy” is SRðA∶BÞ=2 or IðA∶BÞ=2 as
LA=ϵ → 0.

5Our μ is equal to − μ
4π2

from Ref. [11].
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is the level of the world-sheet SLð2;RÞ algebra related
to the AdS radius as lAdS ¼ ffiffiffiffiffiffiffi

kα0
p

. Crucially, there is a
radial (renormalization) scale where local physics breaks
down, Umax. This is determined by the deformation
parameter. The length scale in the spacetime CFT where
this breaks down is6

lmin ¼
π

2

ffiffiffiffiffiffiffiffi
cπμ
6

r
¼ βH

4
: ð2:9Þ

βH is the Hagedorn temperature governing the asymptotic
(E → ∞) density of states

S ¼ βHE: ð2:10Þ

Any observables in the field theory probing shorter dis-
tances than lmin cease to make sense. We will see that this
nonlocality scale plays an important role for the mutual
information and reflected entropy. We stress that all results
in this section and Sec. III are computed from the gravity
side and are thus contingent on the validity of the holo-
graphic dualities, the RT formula, and its generalizations.

A. Vacuum

1. Mutual Information

In this subsection, we study the mutual information for
two disjoint intervals of lengths lA and lB separated by a
distance d. We begin with the case in which δ ¼ 0, λ ¼ 0
corresponding to the vacuum of a conformal field theory. In
this case, the mutual information takes the well-known
form [82]

I ¼ max

�
c
3
log

�
lAlB

dðlA þ lB þ dÞ
�
; 0

�
; ð2:11Þ

where c is the Brown-Henneaux central charge [83]. The
mutual information is independent of the ultraviolet cutoff.
The critical distance where the phase transition between
connected and disconnected entanglement wedges occurs
is given by

d� ¼
1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2A þ l2B þ 6lAlB

q
− lA − lB

�
: ð2:12Þ

Under the assumption that the minimal surfaces do not
break the symmetries of the spacetime metric, the von
Neumann entropy of single intervals was evaluated using
the Ryu-Takayanagi formula in Ref. [46]. In this section,
we make the trivial generalization of these results to the
holographic mutual information of disjoint intervals,
though we find intriguing new physics.

In the rest of this subsection we consider the case in
which δ ¼ 0, λ ≠ 0. In this case, the entropy and the
interval length are given by [46]7

SðαÞ¼c
3

1

αþ1

��
2α−α2

d
dξ

�
1

ξþ1
Πðφ;n;kÞ

				
ξ¼0

þFðφ;kÞ
�
;

ð2:13Þ
l

lmin
¼ π

4

ffiffiffiffiffiffiffiffiffiffiffi
1þ α

α

r
Eðφ; kÞ; ð2:14Þ

where

φ ¼ arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
αþ 1

2αþ 1

��
1þ 3ϵ2UVα

2cπμ

�s
;

n ¼ 2αþ 1

αþ 1
·

1

ξþ 1
; k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

αþ 1
·
2αþ 1

αþ 1

r
: ð2:15Þ

Fðφ; kÞ, Πðφ; n; kÞ, and Eðφ; kÞ are the incomplete elliptic
integrals of the first, second, and third kinds respectively. In
our conventions, they are defined as

Πðφ; n; kÞ ¼
Z

φ

0

dθ

ð1 − nsin2θÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2sin2θ

p ;

Eðφ; kÞ ¼
Z

φ

0

dθ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2sin2θ

p
; ð2:16Þ

and Fðφ; kÞ ¼ Πðφ; 0; kÞ.
We have introduced the UV cutoff, ϵUV, since the

entropy S is UV divergent. The mutual information

IðA;BÞ ¼ SðlA; λÞ þ SðlB; λÞ −min½SAðlA; λÞ
þ SðlB; λÞ; SðlA þ lB þ d; λÞ þ Sðd; λÞ� ð2:17Þ

is independent of the UV cutoff ϵUV. However, we find that
a divergence emerges for the mutual information even
when the intervals are separated by a finite distance. At
short distances, for intervals of equal length l, it diverges
as I ∝ ðd − lminÞ−1 (Fig. 5). The same divergence was
also noted for the entropic c-function in [20,46] at short
distances. This provides a fascinating breakdown of the
split property of quantum field theory and the mutual
information regulator of Ref. [56].

2. Reflected entropy

In this subsection, we consider the entanglement wedge
cross section for the intervals. This has been computed, for
example, in the vacuum state of an undeformed conformal
field theory [50]

6For the special case that μ ¼ μþ þ μ−, lmin is doubled.

7We can invert the equation for the interval length to write α as
a function of l, c, μ, and we can use this in the entropy to get an
expression that only depends on l, c, μ and the UV cutoff ϵUV.
Once we get the entropy, we can use it to compute the mutual
information.
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EW ¼ c
6
log

�
1þ ffiffiffi

x
p

1 −
ffiffiffi
x

p
�
; x ¼ lAlB

ðlA þ dÞðlB þ dÞ : ð2:18Þ

This is a UV finite quantity and, as previously discussed,
has been proposed as a natural regulator for the von
Neumann entropy which is universally UV divergent in
local quantum field theory [54].8 One advantage of using
the reflected entropy as a regulator instead of the mutual
information is that it is actually an entropy. However, like
the mutual information regulator, we will see that this also
breaks down when we turn on the deformations (Fig. 5).
For simplicity, we will consider the case where lA ¼

lB ≡ l so that the minimal entanglement wedge cross
section is purely radial in the bulk metric. Taking into
account the factor of the dilaton in (1.3),

EW ¼
ffiffiffiffiffiffiffi
kα0

p

4Gð3Þ
N

Z
ϕþ

ϕ−

e2ϕ

h
dϕ ¼ c

12

�
log

�
αþ
α−

�
þ χðαþ − α−Þ

�
;

χ ¼ 1 −
δ2

λ
; ð2:19Þ

where α− and αþ are related to the turning points of the two
minimal surfaces corresponding to the intervals of lengths
(along the noncompact direction, x) 2lþ d and d respec-
tively. They are related by [46]

2lþ d
lmin

¼ π

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α−
α−

s

× E

 
arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ χα−
1þ 2χα−

s
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2χα−

ð1þ χα−Þð1þ α−Þ

s !
;

ð2:20Þ

d
lmin

¼ π

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ αþ
αþ

s

× E

 
arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ χαþ
1þ 2χαþ

s
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2χαþ

ð1þ χαþÞð1þ αþÞ

s !
:

ð2:21Þ

These equations can be inverted to obtain equations for
α− and αþ in terms of l; d; c; μ; μ�. Once we have these
equations, we can use them to compute the wedge cross
section. Note that when δ ¼ 0, λ ¼ 0, this reprodu-
ces (2.18).
The coupling δ appears as δ2 and therefore, in perturba-

tion theory, the OðδÞ term is zero. We will briefly discuss
this case in perturbation theory later tn the paper from
the boundary field theory side. In contrast, the OðλÞ
contribution is nonzero. This comes from the second,
nonlogarithmic term in (2.19) giving

EW ¼ c
6
log

�
2lþ d

d

�
þ 4α0λclðlþ dÞ

3d2ðdþ 2lÞ2 þOðλ2Þ: ð2:22Þ

Note that the nonlogarithmic term exists because the
dilaton is not a constant. Using (2.3), we find

EW ¼ c
6
log
�
2lþ d

d

�
þ 2πc2μlðlþ dÞ

9d2ðdþ 2lÞ2 þOðμ2Þ: ð2:23Þ

Because μ > 0, this signals an increase in the correlations
between the subregions. The nonperturbative result (2.19)
is depicted in (Fig. 5) with δ ¼ 0. It is nondecreasing along
the renormalization group (RG) towards the UV and it
diverges at short distances as the separation distance d
approaches the nonlocality scale lmin.
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FIG. 5. Left: the mutual information per central charge for disjoint intervals in the vacuum. Each subregion is of length 5 and we plotffiffiffiffiffiffiπcμ
6

p ¼ f0; 1
4
; 1
2
; 3
4
g (blue to red respectively). We mark, with vertical dashed lines, the corresponding values of lmin where the mutual

information intriguingly diverges. Right: the area of the entanglement wedge cross section for the same parameters. We find the same
divergences at d ¼ lmin.

8See related work in Refs. [77,84–90].

MESERET ASRAT and JONAH KUDLER-FLAM PHYS. REV. D 102, 045009 (2020)

045009-8



B. Finite temperature

It is interesting to consider the generalization of the
results obtained at zero temperature to finite temperature.
Thermal states are holographically dual to black holes.
Roughly, increasing the temperature decreases the “quan-
tumness” of the state and quantum correlations are
destroyed at length scales larger than the inverse temper-
ature β. We are able to verify this explicitly by writing the
generalization of the asymptotically linear dilaton metric
(with δ ¼ 0) to include the black hole solution. The spatial
metric is

ds2 ¼ α0fdϕ2 þ hdx2; ð2:24Þ

f−1 ¼ 1 − e2ðϕH−ϕÞ; h−1ðϕÞ ¼ λþ e−2ϕ; ð2:25Þ

where ϕH is determined by the temperature as

β ¼ 2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α0h−1ðϕHÞ

q
: ð2:26Þ

This metric describes a BTZ black hole deep in the IR and
linear dilaton asymptotics in the UVas was shown in Fig. 4.
In what follows, we generalize the computations of

Ref. [46] and Sec. II A of this paper for finite temperature
with δ ¼ 0. We leave the case in which δ ≠ 0 for future
work. In this paper, we work on the black hole back-
ground (2.24).

1. Mutual information

In this subsection, we study the mutual information for
intervals of lengths lA and lB separated by a distance d.

We first compute the von Neumann entropy for an
interval of length l. In Ref. [42], two distinct surfaces
were considered as saddle points, the “connected surface,”
which is the standard surface shown in Fig. 4, and the
“disconnected surface” which consists of two disconnected
radial geodesics that terminate on the horizon of the black
hole. The Ryu-Takayanagi prescription tells us to take the
minimum of these two saddles. While this disconnected
surface is natural to consider for confining geometries
that have compact dimensions “capping off” at the horizon
because a zero area tube may connect them (e.g.,
Refs. [91,92]), this surface does not obey the homology
constraint for the theories we study, so it should not be
considered. In particular, the λ, δ → 0 limit should repro-
duce the universal CFT result

S ¼ c
3
log

�
β

πϵUV
sinh

�
πl
β

��
; ð2:27Þ

and including the disconnected surface in this limit causes
the bulk and boundary computations to disagree. For these
reasons, we only consider the connected regime for the von
Neumann entropy.
The connected entanglement entropy is given by the

integral

SC ¼
ffiffiffiffiffiffiffi
kα0

p

4Gð3Þ
N

Z
x∞

1

dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αxþ 1

ðx − xHÞðx − 1Þðαxþ αþ 1Þ

s

× ðαxþ 1Þ; ð2:28Þ

which is UV divergent. We solve for the entanglement
entropy in closed form:

SC ¼ c
3



1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðαþ 1Þðγ þ αþ 1Þp ��

2α − α2
d
dξ

��
γ

ξγ þ α
Fðφ; kÞ þ γ þ α

ðξγ þ αÞðξþ 1ÞΠðφ; n; kÞ
�				

ξ¼0

þ Fðφ; kÞ
��

;

ð2:29Þ

where [93]

φ ¼ arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ þ αþ 1

2αþ 1
·
1þ 3L2

Λα
2cπμ

1þ 3L2
Λγ

2cπμ

vuuut ; n ¼ 2αþ 1

γ þ αþ 1
·
ξγ þ α

ξαþ α
; k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ þ 1

γ þ αþ 1
·
2αþ 1

αþ 1

s
; ð2:30Þ

and

γ ¼
�
β2

β2H
− 1

�−1
; βH ¼ 2π

ffiffiffiffiffiffiffiffi
cπμ
6

r
: ð2:31Þ

The interval length l in terms of the turning point of the minimal curve is given by the integral

l ¼
ffiffiffiffi
α0

p

U0

Z
∞

1

dx
x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ αÞð1þ αxÞ

ðx − xHÞðx − 1Þðαxþ αþ 1Þ

s
; α ¼ λU2

0; U0 ¼ eϕ0 ; xH ≤ 1; ð2:32Þ
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which solves to

l
lmin

¼ π

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α

γ þ αþ 1

r ��
1þ 1

γ

�
Fðν; qÞ þ

�
1

α
−
1

γ

�
Π
�
ν;

�
γ

γ þ αþ 1

��
2þ 1

α

�
; q

��
; ð2:33Þ

where

sin ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ þ αþ 1

2αþ 1

r
; q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðγ þ 1Þð2αþ 1Þ

ðαþ 1Þðγ þ αþ 1Þ

s
:

ð2:34Þ
We can invert the equation for the interval length to write

α in terms of l, μ, c, β. We then can use this to write the
entropy in terms of only CFT data. The interval length at
leading order in the coupling is

lffiffiffiffiffifficπμ
6

p ¼ 1ffiffiffi
γ

p
�
2arctanh

ffiffiffi
γ

α

r
þOðα2Þ

�
: ð2:35Þ

To leading order in the coupling, the entropy then becomes

SC ¼ c
6

�
2cπμ
3ϵ2UV

þ ð2þ γÞ log
�
2βH
πϵUV

ffiffiffi
γ

p
sinh

πl
ffiffiffi
γ

p
βH

��
þOðμ2Þ: ð2:36Þ

At μ ¼ 0, this reduces upon using (2.35) to (2.27).
The mutual information at finite temperature is obtained

using the entropy (2.29) in (2.17). We find that the mutual
information is UV cutoff independent. We plot the mutual
information for disjoint intervals in Fig. 6. Again, there is a
divergence in the mutual information at short distances
when d ¼ lmin, the same place where the zero temperature
mutual information result diverges. Heating up the system
causes the information shared between the disjoint regions
to monotonically decrease.

While we do not consider the disconnected regions to
contribute to the von Neumann entropy, it does contribute to
the entanglement wedge cross section of a single interval.
The contributions from the disconnected regions are

SD ¼ 2 ·

ffiffiffiffiffiffiffi
kα0

p

4Gð3Þ
N

Z
xH∞

1

dx
αHxþ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xðx − 1Þp ;

αH ¼ λU2
H; xH∞ ¼ U2

∞

U2
H
; ð2:37Þ

giving

SD ¼ c
6

�
4cπμ
3L2

Λ
þ ð2þ γÞ log

�
8cπμ
3γL2

Λ

��
: ð2:38Þ

The entanglement wedge cross section at finite temperature
for an interval of length l is then given by

EWðμ; l; γÞ ¼ min ðSDðμ; γÞ; SCðμ; l; γÞÞ: ð2:39Þ

2. Reflected entropy

In this subsection, we compute the entanglement wedge
cross section for intervals of equal length l and separation
distance d. It is given by (2.19)

EW ¼ c
12

�
log

�
αþ
α−

�
þ χðαþ − α−Þ

�
: ð2:40Þ

Here, αþ and α− are related to l and d via (2.33)
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FIG. 6. Left: the mutual information per central charge for disjoint intervals at finite temperature. Each subregion is of length 5 andffiffiffiffiffiffiπcμ
6

p
is set to 1

10
. The temperature is varied as β

2π ¼ f100; 3; 2; 1g from blue to red respectively. Right: the entanglement wedge cross
section per central charge for the same parameters. We observe the divergences at d ¼ lmin for both quantities.
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2lþ d
lmin

¼ π

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α−

γ þ α− þ 1

r ��
1þ 1

γ

�
Fðν; qÞ þ

�
1

α−
−
1

γ

�
Π
�
ν;

�
γ

γ þ α− þ 1

��
2þ 1

α−

�
; q

��
;

d
lmin

¼ π

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αþ

γ þ αþ þ 1

r ��
1þ 1

γ

�
Fðν; qÞ þ

�
1

αþ
−
1

γ

�
Π
�
ν;

�
γ

γ þ αþ þ 1

��
2þ 1

αþ

�
; q

��
: ð2:41Þ

In what follows, we study the first few leading terms in (2.40) in perturbation theory. At λ ¼ 0, we find using (2.35)

EW ¼ c
6
log

"
coth πd

β

coth πð2lþdÞ
β

#
: ð2:42Þ

The OðλÞ correction comes from the nonlogarithmic term in (2.40), and including this we get [upon using (2.35)]

EW ¼ c
6
log

� coth πd
β

coth πð2lþdÞ
β

�
þ c
6
·
λ

2
· U2

H

�
coth2

�
d

2
ffiffiffiffi
α0

p UH

�
− coth2

�
2lþ d

2
ffiffiffiffi
α0

p UH

��
þOðλ2Þ

¼ c
6
log

� coth πd
β

coth πð2lþdÞ
β

�
þ cπ2α0λ

48β2

�
coth2

�
πd
4β

�
− coth2

�
πð2lþ dÞ

4β

��
þOðλ2Þ: ð2:43Þ

Expanding the OðλÞ correction in powers of the inverse temperature β gives

λ
∂EW

∂λ ¼ 4clðdþ lÞα0λ
3d2ðdþ 2lÞ2 −

4clðdþ lÞπ4α0λ
45β4

þ 16clðdþ lÞðd2 þ 2dlþ 2l2Þπ6α0λ
567β6

þO
�
1

β8

�

¼ 2πc2lðdþ lÞμ
9d2ðdþ 2lÞ2 −

2c2lðdþ lÞπ5μ
135β4

þ 8c2lðdþ lÞðd2 þ 2dlþ 2l2Þπ7μ
1701β6

þO
�
1

β8

�
: ð2:44Þ

We note that the order μ small temperature leading
correction is negative. We plot the entanglement wedge
cross section in Fig. 6. Both the finite distance divergence
as d approaches the nonlocality scale lmin and the mono-
tonic decrease with temperature is clear.

C. Comments on the split property

We briefly comment on some interesting consequences of
the computations in this section. We have found the mutual
information and reflected entropy to generically diverge
when the distance between intervals approaches βH=4. This
means that the split property must have failed; i.e., there does
not exist a type I factor that splits AðAÞ and AðB̄Þ. In the
geometric regularization scheme, we are then unable to take
the LA=ϵ → 0 limit. This limits our ability to extract the
relevant physical constants that serve as c-functions. It is an
important question how to define c-functions for theories
like these that are nonlocal at short distances along the
renormalization group flow towards the UV.
An additional curiosity is the factor of 4 in lmin. In

theories with Hagedorn divergences, the minimum distance
for a split is βH [76], but we do not see the divergence in the
reflected entropy until d ¼ βH=4. For TT̄-deformed theo-
ries, the Hagedorn density of states only starts to dominate
at some energy scale (which depends quadratically on βH),
thus βH only acts as an upper bound for the minimum
distance needed for a split. This factor of 4 is therefore quite

nontrivial. We note that the torus partition function itself
diverges precisely at β ¼ βH.

III. DOUBLE-TRACE TT̄ AND CUTOFF AdS

We now compute extremal surfaces in the cutoff
AdS geometry proposed to be holographically dual to
the double-trace TT̄ deformation [11]. Importantly, this
prescription uses the opposite sign of the deformation
parameter9 such that the spectrum always contains complex
energies.
Starting with the metric for the BTZ black hole,

ds2 ¼ r2 − r2H
l2AdS

dt2 þ l2AdS
r2 − r2H

dr2 þ r2dx2; ð3:1Þ

where the asymptotic boundary is at r → ∞ and the
horizon is at rH, the deformation corresponds to a finite
radial cutoff with Dirichlet boundary conditions with

r2c ¼ −
6l4AdS
μπc

: ð3:2Þ

The horizon radius is related to the temperature as

9In this section, we will always take μ < 0 so the deformation
of the Lagrangian is L → L − μ

R
TT̄.
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rH ¼ 2π

β
: ð3:3Þ

The metric on the finite cutoff boundary is

ds2 ¼ r2c − r2H
l2AdS

dt2 þ r2cdx2: ð3:4Þ

Thus, we must rescale the metric such that t is a physical
time on this surface:

ds2 → dt2 þ l2AdSr
2
c

r2c − r2H
dx2: ð3:5Þ

Note that this subtlety is absent at zero temperature
(rH → 0).

A. Vacuum

1. Mutual information

At zero temperature, the von Neumann entropy of an
interval of length l can straightforwardly be computed:

Sðl; μÞ ¼ c
6
cosh−1

�
1 −

3l2

μπc

�
: ð3:6Þ

The mutual information between disjoint intervals is simply

I ¼ max½SðlA; μÞ þ SðlB; μÞ − SðlA þ lB þ d; μÞ
− Sðd; μÞ; 0�: ð3:7Þ

It is interesting to consider the adjacent intervals limit
(d → 0) of the mutual information. Interestingly, the mutual
information in this limit is UV finite for any value of μ. At
leading order in the deformation parameter, we have

I ¼ c
3
log

�
lAlB

ðlA þ lBÞ
ffiffiffiffiffiffiffiffiffiffi
− μπc

6

p �
: ð3:8Þ

This is identical to the universal value of the mutual
information for adjacent intervals in a conformal field theory

[23] if one identifies
ffiffiffiffiffiffiffiffiffiffi
− μπc

6

p
with the UV cutoff. Thus, the

deformation provides a natural cutoff for this sign of the
deformation.
We stress that this result is extremely different from that

of Sec. II where the value
ffiffiffiffiffiffiμπc
6

p ≡ lmin determined the finite
distance between the intervals where the mutual informa-
tion diverged. Clearly, the correlation structure is drasti-
cally changed in opposite ways given the sign of the
deformation. The results are plotted in Fig. 7.

2. Reflected entropy

We now investigate how this UV regulation emerges for
the reflected entropy by returning to the entanglement
wedge cross section. As previously noted, at zero temper-
ature and μ ¼ 0, the area of the entanglement wedge cross
section is a simple function of the conformally invariant
cross ratio [50]

EW ¼ c
6
log

�
1þ ffiffiffi

x
p

1 −
ffiffiffi
x

p
�
; x ¼ x̃21x̃43

x̃42x̃31
; ð3:9Þ

where the coordinates with tildes correspond to those on the
asymptotic boundary.
In the majority of parameter space, the entanglement

wedge cross section has the same area as the undeformed
theory because it lies in the IR part of the geometry which is
entirely unchanged in the cutoff AdS story. Though the area
of the geometric object remains unchanged, the dependence
of the cross ratio on the boundary positions will flow. In
particular, the cross ratio will no longer be conformally
invariant. We can map the points from the asymptotic
boundary to the finite cutoff boundary along the geodesics
(see Fig. 8), which are semicircles at zero temperature when
we work in Poincaré coordinates (r → l2AdS=z)

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 − 4x2

p

2
: ð3:10Þ
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FIG. 7. The mutual information (left) and entanglement wedge cross section (right) for zc ¼ f0; 1
4
; 1
2
; 3
4
g in descending order. When the

deformation parameter is finite (solid lines), EW and I are manifestly finite even as the intervals become adjacent. We use symmetric
intervals of length l ¼ 5.
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This leads to the following mapping of boundary coor-
dinates:

x̃1 ¼
1

2

�
x1 þ x4 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 − x4Þ2 þ 4z2c

q �
; ð3:11Þ

x̃2 ¼
1

2

�
x2 þ x3 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 − x3Þ2 þ 4z2c

q �
; ð3:12Þ

x̃3 ¼
1

2

�
x2 þ x3 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 − x3Þ2 þ 4z2c

q �
; ð3:13Þ

x̃4 ¼
1

2

�
x1 þ x4 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 − x4Þ2 þ 4z2c

q �
: ð3:14Þ

Thus, in terms of the cutoff coordinates, the cross ratio is

x ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 − x4Þ2 þ 4z2c

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 − x3Þ2 þ 4z2c

p
þ x1ðx2 þ x3 − 2x4Þ þ x4ðx2 þ x3Þ − 2x2x3 þ 4z2cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx1 − x4Þ2 þ 4z2c
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx2 − x3Þ2 þ 4z2c
p

þ x1ðx2 þ x3 − 2x4Þ þ x4ðx2 þ x3Þ − 2x2x3 þ 4z2c
: ð3:15Þ

Inserting (3.15) into (3.9), we arrive at the full non-
perturbative area of the entanglement wedge cross section.
There is a correction at leading order in μ. For e.g., equal
length intervals of length l and distance d, we find

EW ¼ c
6
log
�
1þ 2l

d

�
þ 2c2lðdþ lÞπμ

9d2ðdþ 2lÞ2 þOðμ2Þ: ð3:16Þ

Interestingly, this leading order correction is identical to the
one found for the linear dilaton geometry (2.23). However,
we again stress that we take μ < 0 such that this decreases
the correlations, the opposite effect found from the linear
dilaton analysis. The sign of the change in correlations will
crucially depend on how one “flows up the RG.”
This correction, of course, is only valid when we are

within the connected regime of the entanglement wedge
(I > 0). There is a phase transition of the entanglement
wedge to the disconnected regime which depends on the
deformation parameter. The phase transition occurs when
S½x1;x2� þ S½x3;x4� ¼ S½x1;x4� þ S½x2;x3�. In the disconnected
regime, EW ¼ 0, so ΔEW ¼ 0. We plot the corresponding
EW and mutual information in Fig. 7.

Let us now look at the adjacent intervals limit. We find
EW to be UV finite as d → 0 for any finite value of μ.
In particular, the leading order correction (in μ) is

EW ¼ c
6
log

�
2lAlB

ðlA þ lBÞ
ffiffiffiffiffiffiffiffiffiffi
− μπc

6

p �
: ð3:17Þ

Analogous to the mutual information, this is equivalent to
the adjacent intervals limit of (half of the) reflected entropy
in a conformal field theory once identifying

ffiffiffiffiffiffiffiffiffiffi
− μπc

6

p
with

the UV cutoff. The results are plotted in Fig. 7.

B. Finite temperature

We progress to finite temperature where it will be easier
to compare with boundary computations of the following
section. For finite temperature calculations, we simply set
rH > 0 in (3.1).

1. Mutual information

The von Neumann entropy for an interval can be found at
finite temperature from the Ryu-Takayanagi formula

S ¼ c
6
cosh−1

�
1þ 2

�
rc
rH

�
2

sinh2
�
rHl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2c − r2H

p
2rc

��
: ð3:18Þ

This isUV finite and transitions from logarithmic growth for l
smaller than the thermal length to lineargrowth for large l. The
linear growth signals that it operates as an extensive thermo-
dynamic entropy.Themutual information is againdetermined
by (3.7). To leading order in the deformation parameter,

I ¼ c
6
log

� sinh2ðlπβ Þ
sinhðdπβ Þ sinhðð2lþdÞπ

β Þ

�

− μ
cπ3

18β3

�
dπ coth

�
dπ
β

�
− 2lπ coth

�
lπ
β

�

þ ðdþ 2lÞπ coth
�ð2lþ dÞπ

β

�
− β

�
csch

�
dπ
β

�

þ csch

�ð2lþ dÞπ
β

�
− 2csch

�
lπ
β

���
: ð3:19Þ

FIG. 8. In the cutoff AdS approach, the standard Dirichlet
boundary conditions of holography are moved from the con-
formal boundary at r∞ to a hard Dirichlet boundary at rc. Because
the geometry within the new boundary remains the same, so do
the geodesics. In the figure, we show how the entangling surface
points of the interval are mapped from the asymptotic boundary
to the finite boundary.
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2. Reflected entropy

To solve for the entanglement wedge cross section, we
again map the coordinates on the asymptotic boundary to
the cutoff surface (Fig. 9). For this, we need to solve the
geodesic equation for a boundary anchored curve giving a
parametrization of the Ryu-Takayanagi surface,

rðxÞ ¼ rH

�
1 −

cosh2ðrHxÞ
cosh2ðrHl

2
Þ

�−1=2
: ð3:20Þ

The turning point is at

r� ¼
rH

tanh ðrH l̃
2
Þ
: ð3:21Þ

The length of the interval on the cutoff surface in terms of
the length at the asymptotic boundary is

l ¼
2rccosh−1

h
cosh ðrH l̃

2
Þ
ffiffiffiffiffiffiffiffiffi
r2c−r2H

p
rc

i
rH

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2c − r2H

p ; ð3:22Þ

or inverted

l̃ ¼
2 cosh−1

"
rc cosh

�
lrH

ffiffiffiffiffiffiffiffiffi
rc2−r2

H

p
2rc

�
ffiffiffiffiffiffiffiffiffi
r2c−r2H

p
#

rH
; ð3:23Þ

where we have made sure to be careful in rescaling the
physical length of the interval at the finite cutoff.
For simplicity, we consider disjoint intervals of equal

length, so that the entanglement wedge cross section is
purely radial:

EW ¼ c
6

Z
r�ðdÞ

r�ð2lþdÞ

drffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − r2H

p ¼ c
6
tanh−1

�
rffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 − r2H
p �				r�ðdÞ

r�ð2lþdÞ
:

ð3:24Þ

Evaluating this is straightforward but gives a complicated,
unenlightening expression for the nonperturbative correc-
tion to EW . Instead, we consider the first order correction
(linear in μ)

EW ¼ c
6
log

"
coth πd

β

coth πð2lþdÞ
β

#

−
π3c2μððπd − β cothðπdβ ÞÞcschðπdβ Þ þ ðβ cothðπðdþ2lÞ

β Þ þ πð−d − 2lÞÞcschðπðdþ2lÞ
β ÞÞ

18β3
þOðμ2Þ: ð3:25Þ

In the low temperature expansion (taking μ → 0 before β → ∞), this gives

EW ¼ c
6
log

"
coth πd

β

coth πð2lþdÞ
β

#

þ 2πc2μlðlþ dÞ
9d2ðdþ 2lÞ2 −

13c2lðdþ lÞπ5μ
540β4

þ 139c2μπ7lðdþ lÞðd2 þ 2dlþ 2l2Þ
34020β6

þOðβ−8Þ: ð3:26Þ

This has identical functional form to the linear dilaton results (2.44), though the numerical coefficients, after the zero
temperature correction, disagree. We plot the nonperturbative results in Fig. 10 where it is clear that heating up the system
destroys the quantum correlations between the subsystems. Again, EW is UV finite for all d.

FIG. 9. The analog of the mapping in Fig. 8, this time with the
additional scale, rH , representing the black hole horizon radius.
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IV. CONFORMAL PERTURBATION THEORY

It is important to check whether the predictions from
holography from the previous section agree with (per-
turbed) CFT computations. In order to nonperturbatively
understand how the entanglement structure changes under
the flow induced by the irrelevant deformations from the
field theory side, one must understand how the partition
function on arbitrary genus Riemann surfaces flows. While
there has been significant progress for sphere and torus
partition functions [3,5,20,37,94–100], little is known
about more generic higher genus partition functions.
This is why, thus far, the only nonperturbative results for
entanglement measures under TT̄ flows are for the very
special case of von Neumann entropy where the replica
Riemann surface is genus zero [37,38]. The one exception
to this is for 2D Yang-Mills theory because of its near
topological behavior [99].
We consider the partition function of the TT̄ deformed

theory from the path integral formalism,

Zn ¼
Z

½Dϕn�e−SCFTþμ
R
Mn

ddxTT̄
; ð4:1Þ

whereMn is the replica manifold of n connected copies of
the theory which generically has highly nontrivial topology.
We work perturbatively so that we can expand in the
coupling as

Zn ¼
Z

½Dϕn�e−SCFT
�
1þ μ

Z
Mn

ddxðTT̄Þ þOðμ2Þ
�
;

ð4:2Þ

¼
Z

½Dϕn�e−SCFT
�
1þ μ

Z
Mn

ddxhTT̄iMn
þOðμ2Þ

�
;

ð4:3Þ

where we have used the definition

hTT̄iMn
≡
R ½Dϕn�e−SCFTðTT̄ÞR ½Dϕn�e−SCFT

: ð4:4Þ

To leading order in μ, the change in the logarithm of the
partition function due to the deformation is

δ logZn ¼ μ

Z
Mn

hTT̄iMn
: ð4:5Þ

Generalizing to include the other irrelevant deformations,
we have

δ logZn ¼ μ

Z
Mn

hTT̄iMn
þ μþ

Z
Mn

hJT̄iMn

þ μ−

Z
Mn

hTJ̄iMn
: ð4:6Þ

A. TT̄ at finite temperature

We will focus on the reflected entropy at finite temper-
ature because there are ambiguous contact terms in the
correlation functions at zero temperature. Similar ambigu-
ities have previously been commented on in Ref. [42]. To
compute the reflected entropy directly in the field theory,
we must compute the path integral on an mn-sheeted
branched cover of the CFT:

SR ¼ lim
n;m→1

1

1 − n
log

Zn;m

ðZ1;mÞn
; ð4:7Þ

wherem ∈ 2Z is the replica index for the given purification
and n ∈ Z is the standard replica index for the Rényi
entropies. Recall that in holographic theories, the loga-
rithmic negativity is equivalent to the following path
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FIG. 10. Left: the mutual information per unit central charge for disjoint intervals of equal length (5). We set the radial cutoff to
rc ¼ 10 and vary the temperature rH ¼ f10−2; 1; 2; 3g from blue to red respectively. Right: the same configurations, but for the
entanglement wedge cross section.
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integral when taking n → 1=2 instead of n → 1. The path
integrals may be computed by a correlation function of
twist fields in the Smn orbifold theory. For example, when
we consider the reflected entropy between two disjoint
intervals, we must compute [54]

Zn;m ¼ hσgAðz1Þσg−1A ðz2ÞσgBðz3Þσg−1B ðz4Þi; ð4:8Þ

where the twist fields have conformal dimensions

hgB ¼ hg−1B ¼ hgA ¼ hg−1A ¼ cnðm2 − 1Þ
24m

: ð4:9Þ

In the operator product expansion of σg−1A and σgB , the
leading operator is another Virasoro primary field, σg−1A gB ,
with conformal dimension

hgBg−1A ¼ 2cðn2 − 1Þ
24n

: ð4:10Þ

Wewill approximate these four-point functions by taking
only the dominant conformal block in the conformal block
decomposition. This is a valid approximation in the limit of
large central charge because contributions from subdomi-
nant conformal blocks are exponentially suppressed in c
[101,102]. When considering the JT̄ and TJ̄ deformations,
we, by definition, have a conserved Uð1Þ current. We are
then required to take the dominant Vir × Uð1Þ block rather
than just the Virasoro conformal block. This extended
conformal block was shown to factorize at large c into
Virasoro and Uð1Þ blocks as [103]

VTþJðc; hi; k; qi; hp; zÞ ¼ VT

�
c − 1; hi −

q2i
2k

; hp; z

�
× VJðk; qi; zÞ; ð4:11Þ

where qi are the Uð1Þ charges and hp is the conformal
weight of the intermediate operator. VT is the Virasoro
block that may be evaluated in the heavy-heavy-light-light
limit as

VT ¼ ð1 − zÞhLðα−1Þ
�
1 − ð1 − zÞα

α

�
hp−2hL

× 2F1ðhp; hp; 2hp; 1 − ð1 − zÞαÞ;

α≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

24hH
c

r
; ð4:12Þ

and VJ is the contribution only from the Uð1Þ descendent
states:

VJ ¼ z−
q2
L
k ð1 − zÞqHqL

k : ð4:13Þ
Here, k is the level of the Uð1Þ current algebra,

½Jn; Jm� ¼ nkδnþm;0; ð4:14Þ
and in the linear dilaton story is related to the AdS radius,
lAdS, as

k ¼ l2AdS
l2s

: ð4:15Þ

Thus, in the semiclassical limit in the bulk, the level will
be large.
We now specify to two disjoint intervals where the

correlation functions on Mn;m may be computed by
correlation functions of twist fields on M:

hTT̄iMn;m
¼ 1

nm
hTðwÞT̄ðw̄ÞσgAðz1Þσg−1A ðz2ÞσgBðz3Þ

× σg−1B ðz4ÞiM; ð4:16Þ
where the stress tensors on the right-hand side live in the
orbifold theory, leading to the prefactor. A similar expres-
sion holds for the other two terms. The strategy is to apply
the Ward identities to evaluate these correlation functions
and then integrate over the thermal cylinder. The calcu-
lation is technical and involves long formulas and subtle-
ties, so we relegate some details to Appendix C.
After evaluating, we find the change in the reflected

entropy to be

ΔSR ¼
π4c2μe

πd
β ðcothðπdβ Þ − 1Þð2lðe2πd

β − 1Þe2πl
β − dðe2πl

β − 1Þðe2πðdþ1Þ
β þ 1ÞÞðcothðπðdþ2lÞ

β Þ − 1Þ
18β3

: ð4:17Þ

The zero temperature (β → ∞) limit is

lim
β→∞

ΔSR ¼ 0: ð4:18Þ

This, however, is not sensitive to the contact terms discussed earlier. Similarly, the β → ∞ limit of the von Neumann
entropy is zero even though there are finite corrections at zero temperature due to contact terms. The leading low
temperature correction comes at fourth order:

SR ¼ c
3
log

"
coth πd

β

coth πð2lþdÞ
β

#
−
2c2lðdþ lÞπ5μ

27β4
þ 7c2μπ7lðdþ lÞðd2 þ 2dlþ 2l2Þ

405β6
þOðβ−8Þ: ð4:19Þ
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Besides the zero temperature term which may arise from a
contact term,wenote that it is interesting that thishasprecisely
the same form as both holographic calculations (2.44) and
(3.26). However, the numerical coefficients are different. This
suggests that the correlation structures of the TT̄ deformed
CFTand the field theory dual to cutoffAdSgeometry arevery
similar, but not quite identical. Thus, this suggests that
modifications, perhaps similar to Refs. [14,104], must be
made to have a precise agreement for the two theories.10 We
reiterate that the cutoff AdS results assumed the validity of
holographic duality between reflected entropy and the entan-
glement wedge cross section in generic spacetimes, an
assumption that is on solid footing but not rigorously derived
[43,54]. In order to claimmodifications must be made for the
linear dilaton proposal, we would have had to compute the
single-trace correction in the CFT.

B. JT̄ at finite temperature

We can also apply the Ward identities for the currents for
the JT̄ correction,

Z
Mðn;mÞ

hJTiMðn;mÞ ¼ 1

h� � �iC

Z
M

1

nm

��
2πz
β

�Xk
j¼1

�
qj

ðz− zjÞ
��

×

��
2πz
β

�
2Xk
j¼1

�
hj

ðz− zjÞ2

þ 1

z− zj
∂zj

�
− π2nmc

6β2

�
h� � �iC:

ð4:20Þ
The twist fields are not charged under the Uð1Þ (see

Appendix B), so the leading term is trivial. The same can be
said for the TJ̄ deformation. We found this to also be the
case holographically in Sec. II.

V. DISCUSSION

In this work, we have studied the mutual information
and reflected entropy in holographic TT̄ deformed two-
dimensional quantum field theories. We also studied these
entanglement measures perturbatively in TJ̄ and JT̄ defor-
mations. The results of our calculations have led to several
notable physical phenomena. There are also several inter-
esting directions to take from here.
For μ > 0 and asymptotically linear dilaton geometries,

we have found the mutual information and reflected
entropy of disjoint intervals to diverge when the intervals
are a finite, regulator independent distance (lmin) away from
each other. Such a phenomenon never occurs in local
quantum field theory and signals a breakdown of locality,
specifically a breakdown of the split property. In particular,

the mutual information [56] and reflected entropy [54] have
been proposed as valuable regularization scheme indepen-
dent “geometric regulators” that can be studied to extract
c-functions in general dimensions. These schemes rely on
taking the ratio between the characteristic size of the
regions and the spatial distance between regions to zero.
Clearly, this breaks down when we hit the nonlocality scale
lmin. It would be fascinating to consider more carefully how
to incorporate nonlocal theories, such as the ones we have
studied, in renormalization group analysis.
For μ < 0 and cutoff AdS geometries, we have found the

opposite effect of the theory becoming nonlocal. Rather
than enhanced divergences, we have found all divergences
in the mutual information and reflected entropy to be tamed
even when the distance between intervals goes to zero. The
square root of the deformation parameter acts akin to a UV
cutoff. This phenomenon is also never seen in local
quantum field theory and is more reminiscent of finite
dimensional lattice models. We were able to compare the
bulk and boundary computations of the reflected entropy
of disjoint intervals at finite temperature perturbatively.
While we found the corrections to be formally equivalent,
the numerical coefficients were distinct. There are two
possible explanations for this tension. Either nonper-
turbative corrections save the day as in Ref. [38]11 or
modifications must be made to have a consistent duality
between the deformed field theory and cutoff AdS. Such
modifications may be analogous to the ones shown to
be necessary for the inclusion of matter fields in
Refs. [14,104]. We believe resolving this tension is an
important direction for future work.
It is also interesting to consider a recent holographic

proposal that we have largely neglected in this work where
the dual of the TT̄ deformation is proposed to be an
ensemble of AdS spacetimes with randomly fluctuating
boundary diffeomorphisms [10]. Such a proposal is a
natural combination of Cardy’s interpretation of the TT̄
deformation as random geometry [6] and the standard
GKPW dictionary of AdS=CFT [12,13]. We see no reason
why bulk and boundary computations of mutual informa-
tion and reflected entropy in this proposal should not match
exactly, though the computations may be quite technical.
Confirming this would certainly be worthwhile.
Lastly, we comment on a somewhat tangential future

direction. The twist fields needed for the computation
for Rényi entropies and reflected entropy are uncharged
under Uð1Þ, leading to somewhat mundane results in
perturbation theory for the JT̄ and TJ̄ deformations.
However, there are finer grained probes of charged states,
such as the symmetry-resolved entanglement [105], whose
corresponding twist fields are charged under Uð1Þ. The
symmetry-resolved entanglement explains the contribution

10Another logical possibility is that nonperturbative correc-
tions restore consistency.

11In this analysis, taking the correct order of limits also played
a central role.
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to the von Neumann entropy from each charge sector.
These will presumably have corrections at leading order in
μ� and it would be fascinating to understand how these
contributions are effected under the charged deformations.
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APPENDIX A: DERIVATION OF HOLOGRAPHIC
ENTANGLEMENT ENTROPY IN

STRING FRAME

Under reasonable assumptions, the Ryu-Takayanagi
formula has been derived for theories with arbitrary matter
content in Einstein frame12

S ¼ 1

4GðdÞ
N

Z
γA

dd−2x
ffiffiffiffiffiffiffiffi
gðEÞ

q
: ðA1Þ

We would like to know what the analog is in string
frame. The relation between the string and Einstein frame
metrics is

gðsÞμν ¼ eΦ=2gðEÞμν : ðA2Þ
Thus, the determinants of the metrics are related as

gðsÞ ¼ eðd−2ÞΦ=2gðEÞ: ðA3Þ
The reason why we have (d − 2) is because we are working
with the induced metrics on codimension-two surfaces.
Thus, the RT formula becomes

S ¼ 1

4GðdÞ
N

Z
γA

dd−2xe−ðd−2ÞΦ=4
ffiffiffiffiffiffiffi
gðsÞ

q
: ðA4Þ

Now, let us specify to the d ¼ 10 supergravity theory that
we are generally concerned with:

S ¼ 1

4Gð10Þ
N

Z
γA

d8xe−2Φ
ffiffiffiffiffiffiffi
gðsÞ

q
: ðA5Þ

This is the formula posited in Ref. [30]. It is important to
note that the extremal surface in (A5) is not described by
the same coordinates as the one in (A1), though it is the
same surface. In the string frame coordinates, it is extremal
with respect to the integrand including the dilaton prefactor.

APPENDIX B: U(1) CHARGES OF
TWIST OPERATORS

In order to evaluate the conformal blocks, we must
find the charges under the Uð1Þ symmetry for the twist
operators. Let us warm up by computing these for the twist
operators used for entanglement entropy, σn, labeled by a
single replica index. These have conformal dimensions

hn ¼ h̄n ¼
c
24

�
n −

1

n

�
: ðB1Þ

These can be determined by considering the n-sheeted
branched cover of the complex plane,Rn, used to compute
the nth power of the reduced density matrix of a single
interval, ðu; vÞ. We know that on the complex plane, the
one-point function of the Uð1Þ current is trivial by rota-
tional and translational invariance

hJðzÞiC ¼ 0: ðB2Þ

JðzÞ is a chiral primary field of dimension (1,0), so it
transforms covariantly under conformal maps,

JðwÞ ¼ ∂z
∂wJðzÞ: ðB3Þ

In particular, we consider the conformal map that takesRn
to C:

z ¼
�
w − u
w − v

�
1=n

: ðB4Þ

This means that hJðwÞiRn
¼ 0. We now compare this with

the Ward identity for Kac-Moody symmetries,

hJðzÞσnðw1Þσ̄nðw2Þi

¼
�

q1
z − w1

þ q2
z − w2

�
hσnðw1Þσ̄nðw2Þi: ðB5Þ

For this to equal zero for any value of w1 and w2, we must
have q1 ¼ q2 ¼ 0, so the twist fields are neutral under
the Uð1Þ.
Now let us proceed to the generalized twist operators

(4.9). The simplest to study is the two point function
hσgBg−1A σgAg−1B i because the manifold this describes decou-
ples into two copies of Rn, so running through the same
argument, we find these operators are also uncharged. This
immediately tells us that the two operators that fuse to form
them must have opposite charge. We can fix these by
considering hσgAσg−1A i which is needed for computing the
reflected entropy between A and the empty set. This
factorizes into n Rm’s, so the same argument goes through
and we conclude that all twist operators are uncharged
under the Uð1Þ. This means that the Uð1Þ contribution to
the conformal block, (4.13), is unity.

12This is because in Einstein frame, the contribution to the on-
shell bulk action for all matter fields is proportional to n (the
replica number) when performing the gravitational replica trick
while the metric term is proportional to (n − 1).
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APPENDIX C: DETAILS OF PERTURBATIVE CFT COMPUTATIONS

In this Appendix, we present a few details of the calculation leading to IVA. The conformal Ward identity implies

Z
Mðn;mÞ

hTTiMðn;mÞ ¼ 1

h� � �iC

Z
M

1

nm

��
2πz
β

�
2Xk
j¼1

�
hj

ðz − zjÞ2
þ 1

z − zj
∂zj

�
− π2nmc

6β2

�

×

��
2πz
β

�
2Xk
j¼1

�
hj

ðz − zjÞ2
þ 1

z − zj
∂zj

�
− π2nmc

6β2

�
h� � �iC: ðC1Þ

The correlation function of four twist operators may be computed using (4.12). The total integral becomes

Z
∞

−∞
dx
Z

β

0

dτ
−π4c2μðz1 − z2Þðz3 − z4Þ

9β4

×

2
64 e

4πðxþiτÞ
β

ð−z1 þ e
2πðxþiτÞ

β Þð−z2 þ e
2πðxþiτÞ

β Þð−z3 þ e
2πðxþiτÞ

β Þð−z4 þ e
2πðxþiτÞ

β Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz1−z2Þðz3−z4Þ
ðz1−z3Þðz2−z4Þ

q

þ e
4πðx−iτÞ

β

ð−z1 þ e
2πðx−iτÞ

β Þð−z2 þ e
2πðx−iτÞ

β Þð−z3 þ e
2πðx−iτÞ

β Þð−z4 þ e
2πðx−iτÞ

β Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− ðz2−z1Þðz3−z4Þ

ðz1−z3Þðz2−z4Þ
q

3
75: ðC2Þ

We first do the τ integral to find

Z
∞

−∞
dx

iπ3c2μðz1 − z2Þðz3 − z4Þ
18β3

2
64− z1 log ð−z1 þ e

2πðxþiτÞ
β Þ

ðz1 − z2Þðz1 − z3Þðz1 − z4Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz1−z2Þðz3−z4Þ
ðz1−z3Þðz2−z4Þ

q

þ z2 log ð−z2 þ e
2πðxþiτÞ

β Þ
ðz1 − z2Þðz2 − z3Þðz2 − z4Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz1−z2Þðz3−z4Þ
ðz1−z3Þðz2−z4Þ

q þ z3 log ð−z3 þ e
2πðxþiτÞ

β Þ
ðz1 − z3Þðz3 − z2Þðz3 − z4Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz1−z2Þðz3−z4Þ
ðz1−z3Þðz2−z4Þ

q

−
z4 log ð−z4 þ e

2πðxþiτÞ
β Þ

ðz1 − z4Þðz2 − z4Þðz4 − z3Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz1−z2Þðz3−z4Þ
ðz1−z3Þðz2−z4Þ

q þ z1 log ð−z1 þ e
2πðx−iτÞ

β Þ
ðz1 − z2Þðz1 − z3Þðz1 − z4Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− ðz2−z1Þðz3−z4Þ

ðz1−z3Þðz2−z4Þ
q

þ z2 log ð−z2 þ e
2πðx−iτÞ

β Þ
ðz1 − z2Þðz3 − z2Þðz2 − z4Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− ðz2−z1Þðz3−z4Þ

ðz1−z3Þðz2−z4Þ
q −

z3 log ð−z3 þ e
2πðx−iτÞ

β Þ
ðz1 − z3Þðz3 − z2Þðz3 − z4Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− ðz2−z1Þðz3−z4Þ

ðz1−z3Þðz2−z4Þ
q

þ z4 log ð−z4 þ e
2πðx−iτÞ

β Þ
ðz4 − z1Þðz4 − z2Þðz4 − z3Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− ðz2−z1Þðz3−z4Þ

ðz1−z3Þðz2−z4Þ
q

3
75
						
τ¼β

τ¼0

: ðC3Þ

Every term that either does not depend on τ or depends on τ only exponentially and not within a logarithm is trivial when
evaluating the difference of the indefinite integral at β and 0. The terms with the exponential within the logarithm must be
treated with care. This has been discussed in e.g., Ref. [39]. Due to the branch cut, we have

log ðe2πðxþiτÞ
β − e

2πl
β Þjτ¼β

τ¼0 ¼


0; x < l

2πi; x > l:
ðC4Þ

Analogously, for the complex conjugate, we run around the branch cut the opposite direction, so
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log ðe2πðx−iτÞ
β − e

2πl
β Þjτ¼β

τ¼0 ¼


0; x < l

−2πi; x > l:
ðC5Þ

After evaluating, we find IVA.

APPENDIX D: NONPERTURBATIVE CFT
CALCULATION FOR SINGLE-TRACE TT̄

In this section, we repeat the analysis done in Ref. [37]
for the entanglement entropy of a region with an entangling
surface of antipodal points on S2 except for the single-trace
deformation dual to the asymptotically linear dilaton
geometry. Here, we assume that the spacetime conformal
field theory is a symmetric product orbifoldMN=SN . Each
block has central charge c̃, so the total CFT has central
charge c ¼ Nc̃. We apply the replica trick by considering
the n-sheeted cover of the sphere of radius r:

ds2 ¼ r2ðdθ2 þ n2 sin θdϕ2Þ: ðD1Þ
The von Neumann entropy is then

S ¼
�
1 − n

∂
∂n
�
logZjn¼1: ðD2Þ

The sphere partition function responds to a change in n as

∂ logZ
∂n

				
n¼1

¼ −
1

2

Z ffiffiffi
g

p
T; ðD3Þ

where T is the trace of the stress tensor. Similarly, when
n ¼ 1, the response of the sphere partition function to a
change in radius is

d logZ
dr

¼ −
1

r

Z ffiffiffi
g

p
T; ðD4Þ

so the entropy may be rewritten as

S ¼
�
1 −

r
2

∂
∂r
�
logZ: ðD5Þ

The trace of the stress tensor flows in a known way under a
TT̄ deformation:

hTa
ai ¼ −

c̃
24π

R −
μ̃

4
ðhTabihTabi − hTa

ai2Þ: ðD6Þ

However, in the symmetric orbifold theory, we have

Tab ¼
XN
i

TðiÞ
ab; ðD7Þ

with each individual copy flowing under a TT̄ deformation.
Thus, there is an extra factor of N:

hTa
ai ¼ −

c
24π

R −
μ

4
ðhTabihTabi − hTa

ai2Þ: ðD8Þ

We have absorbed the factors of N into c and μ due to our
definitions of the central charge and deformation parameter.
By symmetry and (D8), the stress tensor must be propor-
tional to the metric as

Tab ¼
2

μ

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cμ

24πr2

r �
gab; ðD9Þ

so we have

∂ logZ
∂r ¼ 16π

μ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ cμ

24π

r
− r

�
: ðD10Þ

Imposing the boundary condition logZðr ¼ 0Þ ¼ 0, we
have the entropy

S ¼ c
3
sinh−1

 ffiffiffiffiffiffiffiffi
24π

cμ

s
r

!
: ðD11Þ

This is identical to the double-trace formula from Ref. [37].
It would be interesting to check this holographically by
finding the Euclidean compactification of (2.4) to a sphere.
However, the boundary condition for the differential
equation would need to be appropriately modified because,
for the relevant sign of μ, we expect the partition function to
diverge at a finite value of r.
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