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We extend the effective field theory of inflation to a general Lagrangian constructed from Arnowitt-
Deser-Misner variables that encompasses the most general interactions with up to second derivatives of the
scalar field whose background breaks temporal diffeomorphism invariance. Degeneracy conditions,
corresponding to 8 distinct types—only one of which corresponds to known degenerate higher-order
scalar-tensor models—provide necessary conditions for eliminating the Ostrogradsky ghost in a covariant
theory at the level of the quadratic action in unitary gauge. Novel implications of the degenerate higher-
order system for the Cauchy problem are illustrated with the phase space portrait of an explicit inflationary
example: not all field configurations lead to physical solutions for the metric even for positive potentials;
solutions are unique for a given configuration only up to a branch choice; solutions on one branch can
apparently end at nonsingular points of the metric and their continuation on alternate branches lead to
nonsingular bouncing solutions; unitary gauge perturbations can go unstable even when degenerate terms
in the Lagrangian are infinitesimal. The attractor solution leads to an inflationary scenario where slow-roll
parameters vary and running of the tilt can be large even with no explicit features in the potential far from
the end of inflation, requiring the optimized slow-roll approach for predicting observables.
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I. INTRODUCTION

Single-field scalar-tensor theories as inflationary models
can be studied in a unified way in the framework of the
effective field theory (EFT) of inflation, where the timelike
scalar field is treated as a clock that breaks the time
diffeomorphism invariance leaving spatial diffeomorphism
invariance unbroken [1,2]. In general, the EFT of inflation
with higher-derivative operators contains extra ghost
degrees of freedom, which may or may not propagate in
the regime of validity of the EFT. To consider a regime
where higher-derivative interactions also produce interest-
ing observable phenomenology, one needs to rely on the
framework where the ghost degrees of freedom are appro-
priately eliminated. Therefore, an EFT Lagrangian moti-
vated by general ghost-free theories serve as a useful
framework. In this context, the original EFT framework
has been extended in subsequent works [3–7] to include

derivative operators appearing in the Horndeski [8–13],
Gleyzes-Langlois-Piazza-Vernizzi (GLPV) [14,15] and
Horava-Lifshitz [16–18] theories.
More general theories involving additional derivative

of fields typically propagate ghost degrees of freedom.
The ghosts associated with higher-order derivatives
are known as the Ostrogradsky ghosts [19,20], which
makes the Hamiltonian unbounded due to its linear
dependence on canonical momenta. Unlike the classically
unbounded Hamiltonian of the hydrogen atom, the
Ostrogradsky Hamiltonian remains unbounded quantum
mechanically as well [21–23]. To eliminate the ghost
degrees of freedom, one needs to evade the condition of
the Ostrogradsky theorem that the Lagrangian is non-
degenerate with respect to the highest-order derivatives.
However, degeneracy with respect to the highest-order
derivative is necessary but not sufficient to evade the
unbounded Hamiltonian [24], which is the reason why
one needs to impose a certain set of degeneracy conditions
to eliminate all aspects of the Ostrogradsky ghosts [25–28].
This argument can be also understood in a broader context
in the language of constraints as a generalization of the
Ostrogradsky theorem [29].
The degeneracy conditions were applied to a construc-

tion of degenerate higher-order scalar-tensor (DHOST)
theories with quadratic [25] and cubic interactions [30]
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of second derivatives of a scalar field, which include the
derivative of the lapse function. The EFT description of the
quadratic and cubic DHOST theories was developed in
Ref. [31], where the quadratic Lagrangian around the cos-
mological background was investigated. Cosmological
evolution and the linear stability analysis were also inves-
tigated [32], focusing on the de Sitter attractor in a shift
symmetric quadratic DHOST model. In Refs. [31,32], two
assumptions on background dynamics were adopted: that
the lapse remains unity and that the scalar field is propor-
tional to time coordinate. The first can be imposed as a
gauge condition, and the second should be satisfied
dynamically. For general timelike scalar field evolution
on a given phase space trajectory, one needs to perform a
redefinition of the scalar field to make it proportional to
time, which changes all of the DHOST coefficients
(cf. Ref. [32], v2). A dynamical lapse is also taken into
account in Refs. [33,34] in the context of spatially covariant
gravity [35], where the degeneracy conditions were also
studied. However, the general EFT framework of degen-
erate theories including but not limited to quadratic and
cubic DHOST and its application to cosmology have not
been fully investigated yet.
In this paper, generalizing our previous work [7], we

develop the EFT framework of general degenerate theories,
and explore its peculiar phenomenology. This framework
includes quadratic and cubicDHOSTas a special subclass as
well as theories where the lapse is nondynamical, e.g., those
with second-order equations ofmotion for the scalar field, as
in the Horndeski case, or the spatial metric in unitary gauge,
as in the GLPV case. In Sec. II, we consider the EFT action
composed of Arnowitt-Deser-Misner (ADM) geometric
quantities including the acceleration and lapse derivative
and their couplings to intrinsic and extrinsic curvatures. This
action includes operators appearing in covariant theories
involving the most general combination of second-order
derivatives of scalar field. It also includes Lorentz-violating
theories such as Horava-Lifshitz gravity [16–18], as well as
the scordatura degenerate theory [36] weakly violating the
degeneracy condition. We derive the background and
quadratic actions for various degeneracy classes, which
include known DHOST cases, summarized in Appendix A.
In Sec. III, we investigate dynamics in degenerate higher-
order inflation, which we dub “D-inflation,” and clarify
several novel features of degenerate models for both the
background and perturbations. We provide a detailed study
of a specificmodel, for which the optimized slow-roll (OSR)
formalism [37] serves as a powerful tool as the EFT
coefficients can exhibit variation on the several e-fold
timescale. In Sec. IV, we discuss conclusions.

II. EFT OF INFLATION

In this section we adopt ADM decomposition and
consider the general EFT Lagrangian allowing the most
general combination of second-order derivatives of scalar

field. In Sec. II A, we construct the EFT Lagrangian
from geometric quantities including the acceleration and
lapse derivative and their arbitrary couplings to intrinsic
and extrinsic curvatures. In Sec. II B, we write down the
background and quadratic Lagrangians around cosmologi-
cal background. Since vector and tensor perturbations are
the same as the previous work [7], in Sec. II C we focus
on the scalar perturbations, and reduce the quadratic
Lagrangian for a specific degeneracy class. We provide
the complete analysis of the construction of degeneracy
conditions in Appendix A.

A. ADM EFT Lagrangian

We work in the 3þ 1 ADM decomposition of the metric

ds2 ¼ −N2dt2 þ hijðdxi þ NidtÞðdxj þ NjdtÞ; ð1Þ

where N, Ni, and hij are the lapse, shift, and spatial
metric, respectively. We define a timelike unit vector nμ ≡
−Nt;μ orthogonal to constant t surfaces, the acceleration
aμ ≡ nνnμ;ν, and the extrinsic curvature Kμν ¼ nν;μ þ nμaν,
where semicolons on indices here and throughout denote
covariant derivatives with respect to gμν.
For general scalar-tensor theories, we can choose

so-called unitary gauge, where ϕ ¼ ϕðtÞ as long as the
gradient of the scalar field is always timelike. In unitary
gauge, any Lagrangian with up to second derivatives in the
field can be expressed in terms of ADM quantities through

ϕ;μ ¼ −
ffiffiffiffiffiffiffi
−X

p
nμ;

ϕ;μν ¼
ffiffiffiffiffiffiffi
−X

p
ð−Kνμ þ nνaμ þ nμaν − βnμnνÞ: ð2Þ

Here, we define β by

β ¼ −
1

2
nμðlnXÞ;μ¼ −

ϕ̈

N _ϕ
þ

_N − Ni∂iN
N2

; ð3Þ

where X ≡ gμνϕ;μϕ;ν ¼ − _ϕ2=N2 is the kinetic term for the
scalar. In particular, if we take ϕ ¼ t, X ¼ −1=N2 and then
β measures the fractional change in the lapse along the
normal

β ¼ nλðlnNÞ;λ ¼
_N − Ni∂iN

N2
; ð4Þ

and more generally it determines the fractional change in
the elapsed proper time in field coordinates and so Eq. (3)
involves ϕ̈. In the gauge where ϕ ∝ t, ϕ̈ ¼ 0 and this has
been used widely for the purpose of counting the number of
degrees of freedom through the Hamiltonian analysis.
However, to keep a normal perturbation analysis where
the background lapse N̄ ¼ 1, we use ϕ ¼ ϕðtÞ, and retain
the ϕ̈ term. After solving for a given trajectory ϕðtÞ, we can
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always make a field redefinition φ ∝ tðϕÞ, which maintains
N̄ ¼ 1 at the expense of redefining the scalar field
Lagrangian, but adopting this at the outset prevents a
phase space analysis for background trajectories.
We seek to construct a general spatial diffeomorphism

invariant EFT Lagrangian involving no more than second-
order derivatives of the scalar field which a priori contains
N, Kμν, aμ, β. So long as we consider theories involving up
to ϕ;μν, ai and aj are the only quantities that have one
spatial sub or superscript. Hence, ai and aj always appear
together through

αij ≡ aiaj ¼ hikðlnNÞ;jðlnNÞ;k; α≡ αii: ð5Þ
We therefore consider the Lagrangian to be a spatially
diffeomorphism invariant function of these quantities,

S ¼
Z

d4xN
ffiffiffi
h

p
LðN;Ki

j; Ri
j; αij; β; tÞ; ð6Þ

generalizing [7] to allow it to depend on αij and β. Here Ri
j

is the Ricci 3-tensor on the spatial slice. Higher-derivative
Lagrangians typically contain Ostrogradsky ghosts, but we
shall see in the next section that for special combinations of
N, Ki

j, Ri
j, αij, β the Lagrangian only propagates one

scalar and the usual two tensor degrees of freedom.Without
the αij dependence and allowing higher-order spatial
derivatives, the Lagrangian (6) reduces to the one explored
in Refs. [33,34].
To explicitly relate this EFT Lagrangian to known ghost-

free scalar-tensor theories, we begin with the most general
covariant Lagrangian that is at most cubic in second
derivatives of the field and coupled to the metric as

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
F0 þ F1□ϕþ F2

ð4ÞRþ F3
ð4ÞGμνϕ

;μν

þ
X5
i¼1

AiL
ð2Þ
i þ

X10
i¼1

BiL
ð3Þ
i

�
; ð7Þ

where Fi, Ai, Bi are general functions of ϕ; X and ð4ÞR is the
four-dimensional Ricci scalar. The terms that are quadratic
in second derivatives are

Lð2Þ
1 ¼ ϕ;μνϕ

;μν ¼
_ϕ2

N2
ðKi

jKj
i þ β2 − 2αÞ;

Lð2Þ
2 ¼ ð□ϕÞ2 ¼

_ϕ2

N2
ð−K þ βÞ2;

Lð2Þ
3 ¼ ð□ϕÞϕ;μϕ;μνϕ

;ν ¼
_ϕ4

N4
βðK − βÞ;

Lð2Þ
4 ¼ ϕ;μϕ;μνϕ

;νρϕ;ρ ¼
_ϕ4

N4
ðα − β2Þ;

Lð2Þ
5 ¼ ðϕ;μϕ;μνϕ

;νÞ2 ¼
_ϕ6

N6
β2; ð8Þ

and those that are cubic are

Lð3Þ
1 ¼ ð□ϕÞ3 ¼

_ϕ3

N3
ð−K þ βÞ3;

Lð3Þ
2 ¼ ð□ϕÞϕ;μνϕ

;μν ¼
_ϕ3

N3
ð−K þ βÞðKi

jKj
i þ β2 − 2αÞ;

Lð3Þ
3 ¼ ϕ;μνϕ

;νρϕ;μ
;ρ

¼
_ϕ3

N3
ð−Ki

jKj
kKk

i þ 3αijKj
i þ β3 − 3αβÞ;

Lð3Þ
4 ¼ ð□ϕÞ2ϕ;μϕ;μνϕ

;ν ¼ −
_ϕ5

N5
βð−K þ βÞ2;

Lð3Þ
5 ¼ ð□ϕÞϕ;μϕ;μνϕ

;νρϕ;ρ ¼
_ϕ5

N5
ð−K þ βÞðα − β2Þ;

Lð3Þ
6 ¼ ϕ;μνϕ

;μνϕ;ρϕ;ρσϕ
;σ ¼

_ϕ5

N5
βð−Ki

jKj
i − β2 þ 2αÞ;

Lð3Þ
7 ¼ ϕ;μϕ;μνϕ

;νρϕ;ρσϕ
;σ ¼

_ϕ5

N5
ð−αijKj

i − β3 þ 2αβÞ;

Lð3Þ
8 ¼ ϕ;μϕ;μνϕ

;νρϕ;ρϕ
;σϕ;σξϕ

;ξ ¼
_ϕ7

N7
βðβ2 − αÞ;

Lð3Þ
9 ¼ □ϕðϕ;μϕ;μνϕ

;νÞ2 ¼
_ϕ7

N7
β2ð−K þ βÞ;

Lð3Þ
10 ¼ ðϕ;μϕ;μνϕ

;νÞ3 ¼ −
_ϕ9

N9
β3; ð9Þ

where we have used Eq. (2) to establish the correspondence
with the ADM variables. Similarly, we can relate the
coupling to the metric using the Gauss-Codazzi relation
and integration by parts to rewrite up to boundary terms
(see, e.g., Refs. [3,38])

Z
d4x

ffiffiffiffiffiffi
−g

p
F2

ð4ÞR¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
F2ðRþKi

jKj
i −K2Þ

− 2

�
F2ϕ

_ϕ

N
Kþ 2F2X

_ϕ2

N2
ðβK − αÞ

��
;

ð10Þ

Z
d4x

ffiffiffiffiffiffi
−g

p
F3

ð4ÞGμνϕ
;μν

¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
F 3

_ϕ

N

�
KR
2

− Ki
jRj

i

�

þ F 3ϕ − F3ϕ

2

_ϕ2

N2
Rþ F3ϕ

2

_ϕ2

N2
ðKi

jKj
i − K2Þ

þ F3X

_ϕ3

N3
ððKi

jKj
i − K2Þβ þ 2αK − 2αijKj

iÞÞ
�
; ð11Þ

where
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F3X ¼ F 3X þ F 3

2X
: ð12Þ

While in general the appearance of αij and β in the
Lagrangian signals an extra degree of freedom since the
lapse and shift no longer obey constraint equations, this
general Lagrangian (7) contains classes that propagate only
3 degrees of freedom and avoids Ostrogradsky ghosts.
First, there is the GLPV class which defines a special
relationship between the Ai, Bi, Fi coefficients

A1 ¼ −A2 ¼ 2F2X þ XF4; A3 ¼ −A4 ¼ 2F4;

B1 ¼ −
B2

3
¼ B3

2
¼ F3X

3
þ XF5;

−2B4 ¼ B5 ¼ 2B6 ¼ −B7 ¼ 6F5;

A5 ¼ B8 ¼ B9 ¼ B10 ¼ 0: ð13Þ

Note that the F4 and F5 terms are also arbitrary functions of
ϕ; X. In the Horndeski subclass of GLPV, where the scalar
field equations themselves are explicitly second order,
F4 ¼ F5 ¼ 0 and the remaining functions are more typi-
cally labeled ðG2; G3; G4; G5Þ ¼ ðF0; F1; F2; F3Þ. It is
easy to verify through Eqs. (8), (9), (10) that this relation-
ship eliminates the dependence of αij and β in the GLPV
and Horndeski Lagrangians leaving the EFT Lagrangian
of the form LðN;Ki

j; Ri
j; tÞ. More generally, αij and β

can appear in a Lagrangian which still only propagates
3 degrees of freedom if the functions Ai, Bi, Fi satisfy a
certain set of degeneracy conditions [see Eqs. (40), (41) and
Refs. [25,30]]. This is the DHOST class of models. The
Lagrangian (6) also includes the scordatura degenerate
theory [36] with a weak violation of the degeneracy
condition.
In Sec. II C we generalize these degeneracy conditions

to the full EFT Lagrangian (6). Since there the dependence
on αij; β is arbitrary it encompasses theories with fur-
ther higher-order products of ϕ;μν beyond Eq. (7). The
Lagrangian (6) thus can represent any fully covariant or
Lorentz-violating theory involving up to second derivatives
of metric and scalar field in the unitary gauge. Furthermore
in comparison to EFTs that are explicitly built to encom-
pass DHOST, it allows terms like βR that would only
appear with different couplings between the field and the
metric than represented in Eq. (7) (cf. Refs. [25,30,31]).

B. Background and quadratic Lagrangian

We next consider the expansion of the ADM EFT
Lagrangian (6) to quadratic order in metric perturbations
around a spatially flat Friedmann-Lemaître-Robertson-
Walker (FLRW) background

N̄ ¼ 1; N̄i ¼ 0; h̄ij ¼ a2δij; ð14Þ

for which

K̄i
j ¼ Hδij; R̄i

j ¼ 0; ᾱij ¼ 0; β̄ ¼ −
ϕ̈
_ϕ
;

ð15Þ

where H ≡ d ln a=dt is the Hubble parameter. Following
Ref. [7] we define the Taylor coefficients as

Ljb ¼ C;

∂L
∂Yi

j
jb ¼ CYδji;

∂2L
∂Yi

j∂Zk
l

����
b
¼ CYZδjiδlk þ

C̃YZ
2

ðδliδjk þ δikδ
jlÞ; ð16Þ

where “b” denotes that the quantities are evaluated on
the background, Y; Z ∈ fN;K;R; α; βg and the index
structure is determined by the symmetry of the background.
For notational simplicity we treat scalars and traces with
the same notation; thus implicitly Ni

i ≡ N, βii ≡ β and
C̃NZ ¼ C̃βZ ¼ 0.
We can further eliminate terms linear in δK ¼ K − 3H

through the identityZ
d4x

ffiffiffiffiffiffi
−g

p
FðtÞK ¼ −

Z
d4x

ffiffiffiffiffiffi
−g

p
nμF;μ

¼ −
Z

d4x
ffiffiffiffiffiffi
−g

p _F
N
; ð17Þ

which follows from K ¼ nμ;μ ignoring boundary terms.

The Lagrangian L ¼ N
ffiffiffi
h

p
L up to quadratic order in metric

perturbations becomes

L ¼ N
ffiffiffi
h

p
ðC − 3HCKÞ −

ffiffiffi
h

p
_CK

þ N
ffiffiffi
h

p
ðCNδN þ CRδRþ Cαδαþ CβδβÞ

þ a3

2

X
Y;Z

ðCYZδYδZ þ C̃YZδYi
jδZj

iÞ: ð18Þ

In this form δK only shows up in the quadratic-order terms,
and we need only its first-order perturbation. In contrast, we
expand δRi

j, δαij, δβ up to quadratic order

δYi
j ¼ δ1Yi

j þ δ2Yi
j þ � � � : ð19Þ

We note that δ1Ri
j, δ2Ri

j do not involve δN, δNi, whereas

δ1α
i
j ¼ 0;

δ2α
i
j ¼

1

a2
δikδN;jδN;k;

δ1β ¼ −β̄δN þ _δN;

δ2β ¼ β̄δN2 − 2δN _δN − δNiδN;i; ð20Þ
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since

nμ ≈ ð1 − δN þ ðδNÞ2;−δNið1 − δNÞÞ;
ðlnNÞ;μ ≈ δN;μð1 − δNÞ; ð21Þ

up to quadratic order. Note that for the perturbed FLRW
metric, αij is a quadratic-order quantity. The background

equations are given by varying the action with respect to N
and

ffiffiffi
h

p

C − 3HCK þ CN − ð3H þ β̄ÞCβ − _Cβ ¼ 0;

C − 3HCK − _CK ¼ 0: ð22Þ
With the background equation and integration by parts,

the quadratic Lagrangian becomes

L2 ¼ a3
�
CR

�
δ1R

δ1
ffiffiffi
h

p

a3
þ δ2R

�
− CβδN

�
δ1

ffiffiffi
h

p

a3

�
⋅
− CβδNiδN;i þ

1

2
Cββ _δN2 þ Cα

1

a2
δijδN;iδN;j

þ 1

2

�
2CN þ CNN−2β̄CβN þ β̄2Cββ þ

ða3CβÞ⋅
a3

−
ða3CβNÞ⋅

a3
þ ða3β̄CββÞ⋅

a3

�
δN2 þ ðCβKδ1K þ CβRδ1RÞ _δN

þ ½ðCNK − β̄CβKÞδ1K þ ðCNR þ CR − β̄CβRÞδ1R�δN þ 1

2

X
Y¼K;R

X
Z¼K;R

ðCYZδ1Yδ1Z þ C̃YZδ1Yi
jδ1Z

j
iÞ
�
: ð23Þ

This expansion can be continued to higher order for the
computation of non-Gaussianity (see, e.g., Ref. [39]).

C. Scalar perturbations

From the quadratic Lagrangian (23), we note that the
new terms Cα, Cβ, CβY are always accompanied by δN,
which is a natural consequence of Eq. (20). Therefore, αij
and β dependencies of the Lagrangian change the dynamics
of scalar but not vector or tensor perturbations which are
given explicitly in Ref. [7].
For scalar perturbations

N ¼ 1þ δN; Ni ¼ ∂iψ ; hij ¼ a2e2ζδij: ð24Þ

Following Ref. [7], we use

δ
ffiffiffi
h

p
¼ 3a3ζ;

δKi
j ¼ ð_ζ −HδNÞδij −

1

a2
δik∂k∂jψ ;

δK ¼ 3ð_ζ −HδNÞ − ∂2ψ

a2
;

δ1Ri
j ¼ −

1

a2
ðδij∂2ζ þ δik∂k∂jζÞ;

δ2R ¼ −
2

a2
½ð∂ζÞ2 − 4ζ∂2ζ� ∼ −

10

a2
ð∂ζÞ2; ð25Þ

where the last equality for δ2R holds up to a total derivative,
to obtain the quadratic Lagrangian in Fourier space as

L2 ¼
1

2
c1 _ζ

2 þ c2 _ζ _δNþ 1

2
c3 _δN2 þ

�
c4 þ c5

k2

a2

�
_ζδN

þ 1

2

�
c6 þ c7

k2

a2

�
k2

a2
ζ2 þ c8

k2

a2
ζδN þ 1

2

�
c9 þ c10

k2

a2

�
δN2 þ 1

2
c11

k4

a4
ψ2

þ k2

a2
ψ

�
c1
3
_ζ þ c2

3
_δN þ c4

3
δN þ c12

k2

a2
ζ

�
; ð26Þ

where

c1 ¼ 3a3ð3CKK þ C̃KKÞ; c2 ¼ 3a3CβK; c3 ¼ a3Cββ; c4 ¼ −3a3Θ;

c5 ¼ −4a3CβR; c6 ¼ 4a3Ψ; c7 ¼ 2a3ð8CRR þ 3C̃RRÞ; c8 ¼ 4a3Ξ;

c9 ¼ a3Φ; c10 ¼ 2a3Cα; c11 ¼ a3ðCKK þ C̃KKÞ; c12 ¼ 2a3ð2CKR þ C̃KRÞ; ð27Þ

and
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Φ≡ 2CN þ CNN−2β̄CβN þ β̄2Cββ þ ðCβ − CβN þ β̄CββÞ⋅
þ 3H½Cβ − CβN þ β̄Cββ − 2ðCNK − β̄CβKÞ þ _CβK� þ 3CβK _H þ 3H2½3ðCβK þ CKKÞ þ C̃KK�;

Ψ≡ CR − 3_CKR − _̃CKR −Hð3CKR þ C̃KRÞ;
Ξ≡ CNR þ CR − β̄CβR − _CβR −HðCβR þ 3CKR þ C̃KRÞ;
Θ≡ Cβ − ðCNK − β̄CβKÞ þHð3CKK þ C̃KKÞ: ð28Þ

We highlight these four combinations as they involve time
derivatives or the Hubble parameter and degeneracy con-
ditions involving them would typically need to arise from
integration by parts on the Lagrangian [see, e.g., Eq. (B1)].
In Appendix A, generalizing Ref. [31], we provide a

complete analysis of the construction of degeneracy con-
ditions imposed on the various ci coefficients which we
briefly summarize here. The result is 8 types of degeneracy
conditions, cases 1a…3c (with 3a impossible to satisfy),
each of which may be realized by the ci or equivalently the
Ci coefficients in various ways. The degeneracy conditions
we derive apply for any theory involving second-order
derivatives in any form in the Lagrangian for unitary gauge
(6). Since the Lagrangian (6) allows any dependence on
ðN;Ki

j; Ri
j; αij; βÞ, or equivalently on second derivatives

(2), this degeneracy conditions applies beyond the quad-
ratic and cubic DHOST theories. Furthermore, in general it
also applies to Lorentz-violating theories.
The first condition required for the single scalar propa-

gating degree of freedom is degeneracy in the temporal
structure of Eq. (26). Of the three possibilities, we focus on
the case 1 type where the condition c3 ¼ c2=c21 is satisfied
and the combination

ζ̃ ¼ ζ þ c2
c1

δN; ð29Þ

alone carries the temporal derivatives. The other two cases
have the lapse δN as the propagating degree of freedom and
would cause difficulties in recovering an observationally
viable theory of gravity. More generally our linear degen-
eracy conditions should be viewed as necessary, but not
necessarily sufficient, conditions for a viable nonlinear
scalar-tensor theory of gravity.
Under this c3 ¼ c2=c21 condition, the quadratic

Lagrangian (26) for scalar perturbation in unitary gauge
would appear to propagate only 1 degree of freedom. This
degeneracy condition applies to the scalar quadratic
Lagrangian in any theory involving second-order derivative
of any form in Lagrangian in the unitary gauge (6) and
includes the DHOST models as well as the Horndeski or
GLPV models where c2 ¼ 0 and ζ̃ ¼ ζ.
However, the temporal degeneracy condition alone is not

sufficient to guarantee that there is only a single degree of
freedom. In terms of the Euler-Lagrange equations, it only

removes the fourth-order derivatives and third-order deriv-
atives still need to be removed to avoid unbounded
Hamiltonian [24]. Furthermore, if unitary gauge defines
a foliation that corresponds to characteristic surfaces of the
second degree of freedom then its dynamics are hidden from
this temporal structure. Since such a degree of freedom
propagates instantaneously on this surface, it is not a Cauchy
surface upon which initial conditions can be propagated
forwards in time. Hence its temporal kinetic terms vanish.
However on a noncharacteristic surface, temporal kinetic
terms reappear and can possess a well-posed Cauchy
problem as discussed in detail in Refs. [40,41]. One should
therefore not take the apparent lack of an extra degree
of freedom in unitary gauge as a definitive absence
(cf. Ref. [35]). Of course, the counting of degrees of freedom
cannot depend on the gauge or ADM slicing and so we
expect additional degeneracy conditions that involve the
spatial derivatives of the kinetic matrix in unitary gauge.
For a 1þ 1 dimensional system of linear partial differ-

ential equations, including the plane parallel Fourier modes
considered below, one can exploit the algorithm [41] based
on the Kronecker form of a matrix pencil which includes all
possible linear combinations of temporal and spatial
derivatives to count degrees of freedom and find character-
istic curves in the presence of any hidden constraints (see
Appendix of Ref. [41]). However for the quadratic and
cubic DHOST theories, the full covariant and nonlinear
degeneracy conditions are already known. As shown in the
Appendix, we can obtain the remaining conditions for the
quadratic action by demanding that the dispersion relation
of remaining degree of freedom take their normal linear
form in unitary gauge. This logic also applies to the wider
class of degenerate theories that originate from a covariant
action and so we retain terms that are absent in the quadratic
and cubic DHOST Lagrangian in Appendix A.
We now focus in particular on the degeneracy conditions

given in Eq. (A14) in case 1a, as other branches may not
have phenomenologically viable theories of gravity asso-
ciated with them. We emphasize though that this same
procedure can be carried out for any of the branches. In this
case, the conditions on the ci coefficients are

c3 ¼
c22
c1

; c5 ¼ c7 ¼ c11 ¼ c12 ¼ 0; c10 ¼ 2c8x− c6x2;

ð30Þ
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where x ¼ c2=c1, and these conditions imply

Cββ ¼
3C2βK

3CKK þ C̃KK
; C̃KK ¼ −CKK; C̃KR ¼ −2CKR; C̃RR ¼ −

8

3
CRR; Cα ¼

2CβK
CKK

Ξ −
C2βK
2C2KK

Ψ; CβR ¼ 0: ð31Þ

This branch includes the 2N-I=Ia class of quadratic and cubic DHOST, GLPV and Horndeski theories.
Under these conditions we can simplify Eq. (26) as

L2 ¼
1

2
c1
_̃ζ
2 þ ðc4 − c1 _xÞ _̃ζδN þ 1

2
c6

k2

a2
ζ̃2 þ ðc8 − c6xÞ

k2

a2
ζ̃δN

þ 1

2
ðc9 þ _c4xþ c1 _x2 − c4 _xÞδN2 þ k2

a2
ψ

�
c1
3
_̃ζ þ c4 − c1 _x

3
δN

�
: ð32Þ

The equation of motion for ψ and δN yields the constraints

δN ¼ c1
c1 _x − c4

_̃ζ;

k2

a2
ψ ¼ 3

c1 _x − c4

�
ðc4 − c1 _xÞ _̃ζ þ ðc8 − c6xÞ

k2

a2
ζ̃ þ ðc9 þ _c4xþ c1 _x2 − c4 _xÞδN

�
; ð33Þ

where we have assumed

0 < jΩj < ∞; ð34Þ

with Ω≡ c1 _x − c4, which generalizes the condition
2HCKK ≠ CNK employed in Eq. (33) of Ref. [7] to cases
where the Lagrangian depends αij, β. Violation of this
condition makes unitary gauge perturbations ill defined.
For singular Ω, the kinetic term vanishes and hence the
system is strongly coupled. On the other hand, for Ω ¼ 0,
unitary gauge itself is ill-defined. To see this, we follow
Ref. [7] and move to a comoving gauge defined by the
condition that for the perturbed Einstein tensor δG0

i ¼ 0
for a general metric theory of gravity [42]. The gauge
transformation from unitary gauge to comoving gauge is
characterized by the time shift T ¼ −Δ= _H, where Δ≡
HδN − _ζ [see Eq. (B14) of Ref. [7]]. Using Eq. (33), we
have

Δ ¼ 1

Ω
f½c1ðHx − _xÞ þ c4�_ζ þHc1xð _̃ζ − _ζÞg; ð35Þ

so that Ω ¼ 0 makes Δ diverge, implying that the gauge
transformation between the two gauges requires an infinite
time shift and hence is ill defined. Note that this is not
necessarily a problem if the original system of equations in
ðδN; ζ̃;ψÞ possesses only regular singular points and is
hence integrable without first imposing the constraint
equation (see Ref. [43,44] for a related discussion).
Furthermore if ζ̃ freezes out but ζ̃ − ζ continues to evolve
outside the horizon, then the two gauges will differ. We
construct an explicit model where this occurs in Sec. III
(see Ref. [45] for a discussion of related cases).

Note also that if c8 ¼ c6x the k2ζ̃ term vanishes in the
Euler-Lagrange equation (33) for δN, and prevents the
recovery of Newtonian gravity for nonrelativistic matter, as
found in Ref. [31] for one of the DHOST subclasses (see
Appendix A for more details).
Substituting the constraints (33) into the Lagrangian (32)

and integrating by parts give the usual Mukhanov-Sasaki
form for the quadratic Lagrangian

L2 ¼ Aζ
_̃ζ
2 − Bζ

k2

a2
ζ̃2; ð36Þ

where

Aζ ¼
c1
2

c1ðc9 þ _c4xÞ þ c4ðc1 _x − c4Þ
ðc1 _x − c4Þ2

;

Bζ ¼ a2
�

c1
2a2

c8 − c6x
c1 _x − c4

�
⋅
−
c6
2
: ð37Þ

From these terms, we can define the scalar sound speed c2s
and the normalization parameter bs as

c2s ¼
Bζ

Aζ
; bs ¼

Bζ

a3ϵH
: ð38Þ

For a canonical scalar field c2s ¼ bs ¼ 1. These expressions
are generalizations of Eq. (37) of Ref. [7].

III. D-INFLATION WITH TIME VARYING
EFT COEFFICIENTS

In this section we consider models of degenerate
higher-order inflation (D-inflation) with time varying
EFT coefficients, specifically in the quadratic DHOST
class. In general, EFT coefficients can vary in time and
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one needs to evaluate carefully the slow-roll hierarchy of all
dynamical parameters, for which the generalized slow-roll
approximation developed in Ref. [7] provides a systematic
framework, based on the evolution of H, ϵH, bs and cs in
Eq. (38) as well as the analogous quantities for tensors

bt ¼ 2CR; c2t ¼
2CR
C̃KK

: ð39Þ

D-inflation provides an additional motivation for these
time-varying considerations in that one might seek to con-
struct models where their novel features are only present
during inflation and are absent thereafter where they would
otherwise impact cosmological and astrophysical observ-
ables. We construct our model in Sec. III A, and elucidate
the novel features on background dynamics and evolution
of perturbations in Secs. III B and III C, respectively.

A. D-inflation model

As a concrete example, let us require the inflationary
model to satisfy c2t − 1 ¼ 0 and ζ̃ − ζ ¼ 0 at the end of

inflation. The former is the requirement for tensor sound
speed to be the speed of light, imposed at least at the present
epoch by observation of gravitational waves from binary
neutron star merger and its electromagnetic counterpart
[46,47]. The latter is imposed as we would like inflation to
become fully canonical so that by reheating everything is as
usual. We shall see that enforcing this requirement for all
perturbation quantities allows us to avoid instabilities
caused by derivative couplings [48].
We can concretely implement these requirements using

the EFTof a quadratic DHOSTmodel starting with the case
1a degeneracy conditions (31). Since C̃KR ¼ CKR ¼ C̃RR ¼
CRR ¼ 0 in this case, the third and the fourth conditions in
Eq. (31) identically hold. From the second condition in
Eq. (31) we obtain

A1 ¼ −A2: ð40Þ

Plugging it into the first and fifth conditions in Eq. (31) and
solving the two equations for A4 and A5, we obtain

A4 ¼
2ðA2 þ 2F2XÞ

X
−
ð2A2 þ 4F2X þ XA3Þ½8F2

2 þ 2XA2ð5F2 − 8XF2XÞ þ X2A3F2 − 12XF2F2X�
8XðF2 þ XA2Þ2

;

A5 ¼
ð2A2 þ 4F2X þ XA3Þ½4A3F2 − A2ð2A2 þ 4F2X − 3XA3Þ�

8ðF2 þ XA2Þ2
; ð41Þ

which matches Eqs. (5.1) and (5.2) in Ref. [25]. In general a
degenerate theory in this class is identified by A2, A3, F2

and one can choose F0, F1 as free functions without
affecting the degeneracy structure. Note that if CβK ¼ 0

then

2A2 þ 4F2X þ XA3 ¼ 0; ð42Þ

so that A2 and A3 are no longer independent; this case
corresponds to Eq. (5.3) in Ref. [25] and reproduces the
GLPV restriction for quadratic terms in Eq. (13).
Next, from Eq. (8), we obtain the tensor sound speed as

c2t − 1 ¼ 2CR
C̃KK

− 1 ¼ XA1

F2 − XA1

¼ −
XA2

F2 þ XA2

; ð43Þ

where we used Eq. (40) and

ζ̃ − ζ ¼ CβK
3CKK þ C̃KK

¼ −
Xð2A2 þ 4F2X þ XA3Þ
4F2 þ 2XðA1 þ 3A2Þ

: ð44Þ

For the Horndeski theory, requiring the right-hand side of
Eq. (43) to vanish implies that F2 ¼ F2ðϕÞ. Note also that
the right-hand side of Eq. (44) identically vanishes for
Horndeski and GLPV theories.

We would like to choose the functions A2, A3, F2 to
make these two quantities Eqs. (43), (44) to be nonzero
during inflation and evolve to zero by the end of inflation.
As a simple example, we set

F0 ¼ −
X
2
− VðϕÞ; F1 ¼ 0; F2 ¼

1

2
; A3 ¼ 0;

ð45Þ

where we work in natural units MPl ≡ ð8πGÞ−1=2 ¼ 1, and
for which the degeneracy conditions (40), (41) yield

A1 ¼ −A2; A4 ¼
A2
2ð3þ 8XA2Þ
ð1þ 2XA2Þ2

;

A5 ¼ −
2A3

2

ð1þ 2XA2Þ2
; ð46Þ

and Eqs. (43), (44) read

c2t − 1 ¼ 2ðζ̃ − ζÞ ¼ 1

1þ 2XA2

− 1≡ θðϕ; XÞ: ð47Þ

Here, we are interested in a function θ such that it starts
from finite value and evolves to zero either from the
evolution of X or an appropriate form for A2ðϕ; XÞ.
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Under these assumptions, the action is given by

S ¼
Z

d4xN
ffiffiffi
h

p �
1

2
ðRþ Ki

jK
j
i − K2Þ þ

_ϕ2

2N2
− VðϕÞ

þ A2

_ϕ2

N2
ðK2 − Ki

jKj
i − 2βK þ 2αÞ

þ A2
2

1 − 2
_ϕ2

N2 A2

_ϕ4

N4

�
3 − 8

_ϕ2

N2 A2

1 − 2
_ϕ2

N2 A2

α − 3β2
��

: ð48Þ

For simplicity, we will illustrate this model with
A2 ¼ const, or at least nearly so during most of the ∼60
e-folds before the end of inflation. We shall see that in
models where the field oscillates at reheating, A2 needs to
vanish before this point to avoid gradient or ghost insta-
bilities. However, any late-time change does not affect

large-scale observables which are well outside the horizon
at that point.

B. Background dynamics

From Eq. (48) we can calculate EFT coefficients. For
instance, those which are necessary for the background
equations (22) are

C ¼
_ϕ2

2
− V − 3H2

bð1 − 2 _ϕ2A2Þ;
CK ¼ −2Hbð1 − 2 _ϕ2A2Þ;
CN ¼ − _ϕ2 − 12Hb½H −Hbð1 − _ϕ2A2Þ�;
Cβ ¼ −6A2

_ϕ2Hb; ð49Þ

and those for the perturbations are

Ξ ¼ Ψ ¼ CR ¼ 1

2
; C̃KK ¼ −CKK ¼ 1 − 2 _ϕ2A2; CβK ¼ −2 _ϕ2A2;

CβN ¼ 12 _ϕ2A2½2ð1 − _ϕ2A2ÞHb −H�
1 − 2 _ϕ2A2

; CNK ¼ 4½ð1 − 2 _ϕ2A2ÞHb − ð1þ _ϕ2A2ÞH�;

CNN ¼ 3ð1þ 12A2H2
bÞ _ϕ2 þ 36ðH −HbÞHb −

24ðH −HbÞ2
1 − 2 _ϕ2A2

; ð50Þ

where [32]

Hb ≡H −
A2ϕ̈ _ϕ

1 − 2A2
_ϕ2

: ð51Þ

The background equations (22) are then given by

6 _ϕ2A2ð _Hb −HHbÞ þ 3ð1þ 2 _ϕ2A2ÞH2
b −

1

2
_ϕ2 − V ¼ 0;

ð52Þ

2ð1 − 2 _ϕ2A2Þð _Hb −HHbÞ þ 5H2
b − 10 _ϕ2A2H2

b

þ 1

2
_ϕ2 − V ¼ 0: ð53Þ

Note that A2 ¼ 0 recovers the Einstein equations in

canonical inflation. While the system involves ϕ
…

via _Hb,
by virtue of the degeneracy conditions, it is equivalent to a
system whose evolution is determined by initial data in a
single degree of freedom e.g., for the background, the
position of the field in phase space ðϕ; _ϕÞ.
The first step in establishing this equivalence is to

eliminate _Hb from Eqs. (52) and (53) to obtain

6ð1 − 5 _ϕ2A2 þ 6 _ϕ4A2
2ÞH2

b − _ϕ2ð1þ _ϕ2A2Þ
− 2ð1 − 5 _ϕ2A2ÞV ¼ 0: ð54Þ

Hence, there are two branches for Hb. In general, if A2 ≠
const we would have a term linear inHb but here, we obtain
simple positive and negative roots

Hb ¼ σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_ϕ2ð1þ _ϕ2A2Þ þ 2ð1 − 5 _ϕ2A2ÞV

6ð1 − 5 _ϕ2A2 þ 6 _ϕ4A2
2Þ

s
; ð55Þ

where σ ¼ �1. Next, we choose one of the two branches
of Hb ¼ Hbðϕ; _ϕÞ and take its time derivative _Hb ¼
_Hbðϕ; _ϕ; ϕ̈Þ. Substituting Hb ¼ Hbðϕ; _ϕÞ and _Hb ¼
_Hbðϕ; _ϕ; ϕ̈Þ into Eq. (51) and either of Eqs. (52) or
(53), we obtain two equations for H ¼ Hðϕ; _ϕ; ϕ̈Þ.
Finally eliminating H from the two equations, we obtain
an equation for ϕ̈ ¼ ϕ̈ðϕ; _ϕÞ governing the evolution of the
system from a point in phase space. From this evolution we
can then define H ¼ Hðϕ; _ϕÞ and other background quan-
tities which define the slow-roll parameters. Note that
equations depend only on m2A2 if one rescales time to
mt. Hence, so long as m2A2 is fixed, the relative evolution
in mt is the same for various values of m with only the
amplitudes H ∝ m and _ϕ ∝ m changing. Given the infla-
tionary dynamics, we can check the condition (34) for
whether unitary gauge perturbations are well defined. In
our model,
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Ω ¼ 6a3½−Hb þ _ϕ2A2ð2H þ 3HbÞ�; ð56Þ

which should be a finite value.
Even at the background level, this procedure produces

novel behavior in phase space. First, not all phase space
positions are allowed, even for a positive potential, and
allowed positions can evolve into or from disallowed
regions. For definiteness consider the quadratic potential
VðϕÞ ¼ m2ϕ2=2. With this potential, for both branches of
Hb in (55), Hðϕ; _ϕÞ is singular at

ϕ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ _ϕ2A2 − 9 _ϕ4A2

2 þ 3 _ϕ6A3
2

m2A2ð1þ 4 _ϕ2A2 − 15 _ϕ4A2
2Þ

s
;

or
_ϕ

m
¼ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

3m2A2

p : ð57Þ

For instance, plugging
_ϕ
m ¼ 1ffiffiffiffiffiffiffiffiffiffi

3m2A2

p − δ with an infinitesi-

mal variable δ into Hðϕ; _ϕÞ and Taylor expanding around
δ ¼ 0 yields

H
m

¼ 3−5=4ðm2A2Þ−3=4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

3

2
m2A2ϕ

2

r
σffiffiffi
δ

p þOðδ1=2Þ;

ð58Þ

which is indeed singular at δ ¼ 0 for both σ ¼ �1 branches
so long as 1 − 3

2
m2A2ϕ

2 ≠ 0. For 1 − 3
2
m2A2ϕ

2 > 0, the
Hubble parameter is real for the δ > 0 side of the boundary,
and imaginary for the δ < 0 side. On the other hand H ¼
Oðδ−1Þ → �∞ on alternate sides of the ϕ values of the first
case in Eq. (57).
Also, there are boundaries across which Hðϕ; _ϕÞ

changes from real to complex value while remaining finite:

ϕ ¼ �
_ϕ

m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ _ϕ2A2

−1þ 5 _ϕ2A2

s
; or

_ϕ

m
¼ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

2m2A2

p ; ð59Þ

where Hb is zero or singular, respectively. For instance,

plugging
_ϕ
m ¼ 1ffiffiffiffiffiffiffiffiffiffi

2m2A2

p þ δ into Hðϕ; _ϕÞ and ϕ̈ðϕ; _ϕÞ and

Taylor expanding around δ ¼ 0 yields

H
m

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2m2A2

p
ϕ

1 − 2m2A2ϕ
2
þ 23=4ð7 − 10m2A2ϕ

2Þ
3ðm2A2Þ1=4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2m2A2ϕ

2
p σ

ffiffiffi
δ

p

þOðδÞ;
ϕ̈

m2
¼ 21=4

ðm2A2Þ3=4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2m2A2ϕ

2

q
σ

ffiffiffi
δ

p
þOðδÞ: ð60Þ

Therefore, for A2 > 0 and 1 − 2m2A2ϕ
2 > 0, approaching

the boundary
_ϕ
m ¼ 1ffiffiffiffiffiffiffiffiffiffi

2m2A2

p from the positive δ side, Hðϕ; _ϕÞ

changes from real to complex value for both branches.
Furthermore, as can be seen from the slope ϕ̈= _ϕ, the σ ¼
�1 trajectories form two halves of a parabola whose
minimum intersects the boundary. Taylor expansion around
another boundary in Eq. (59) also has a similar structure.
Another interesting point is that the branches of Hb are

not in general related by time reversal as they would be for
H in GR beyond the A2 ¼ const case, where there would be
terms linear in Hb in Eq. (54). This means that for a given
initial position in the field phase space, evolution is not
unique without specifying the branch choice for the metric.
This feature is shared by the class of Galileon or G-inflation
models as well [13,49].
We take an example parameter set based on the following

rough estimation. Proceeding backwards from the end of
inflation on the σ ¼ þ1 branch when the field approaches
the origin ðϕ; _ϕ=mÞ ¼ ð0; 0Þ, we see that since D-inflation
effects for the background scale as _ϕ2A2, the background
field behaves close to the canonical model with ϵH ≈ 2=ϕ2

and _ϕ=m ≈
ffiffiffiffiffiffiffiffi
2=3

p
on the slow-roll attractor. Thus for the

canonical phase to last at least ∼60 e-folds, we require
ϕ ≈ 15 to be in the canonical phase. This phase is bounded
at some maximum jϕj by encountering the first of the
boundaries (57) where H is singular. For small _ϕ=m this
occurs at ϕ ≈�ðm2A2Þ−1=2, and hence we require
jm2A2ϕ

2j < 1 or m2A2 < 1=152. Thus, as an example,
we set m2A2 ¼ 0.002.
The phase space portrait for this set of parameters is

depicted in Fig. 1 for both branches. Singularities inH from
Eq. (57) (red solid lines) separate the phase space into
disconnected regions with regions where H > 0 (yellow),
ϵH > 0 (blue) or both (green) shaded. Trajectories (blue
arrows) flowing from the boundary given by the first of the
conditions in Eq. (57) (curved solid red) with ϵH > 0 begin
at H ¼ þ∞, whereas with ϵH < 0 begin in a collapsing
phase with H → −∞ at the boundary but then bounces
without a curvature singularity when H ¼ 0 and becomes
an expanding phase H > 0 too rapidly to be resolved in
Fig. 1. The same is true for trajectories flowing into the
boundaries but with reversed signs for H. These non-
singular bounces are generally accompanied by a ghost or
gradient instability in the scalar or tensor sector of unitary
gauge. Trajectories flowing from the boundary given by the
second of the conditions in Eq. (57) (horizontal solid red)
originate from H ¼ þ∞, whereas H is complex on the
other side of the boundary.
From Fig. 1, we see several other novel features of this

model. First, physical solutions do not exist for all possible
initial phase space points: there are regions where no real
solution of H exists on either branch. This occurs outside
the boundaries [Eq. (59)] (dashed red, no trajectories),
e.g., ϕ ¼ _ϕ=m ¼ 20.
Furthermore, some trajectories in the upper and lower

disconnected regions of Fig. 1 appear to end at boundaries
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across which H becomes complex by satisfying either the
first (dashed red curves) or the second condition (horizontal
dashed red lines) in Eq. (59). Note that at these boundariesH
is finite so that they do not represent curvature singularities.
In these cases, as mentioned below [Eq. (60)], the trajectories
actually sharply turn so as to be tangent to the boundary at
intersection. At intersection, the two branches become
degenerate and so solutions continue on the opposite branch,
forming a parabola around this point. In other words,
trajectories staring on one branch rebound off the boundary
into the opposite branch so as to never enter the phase space
region where only complex solutions exist.
Additionally, near this rebound of the trajectories the

contracting solution H < 0 bounces to expansionH > 0 as
well. For the most cases, the bounce itself, H ¼ 0, occurs
within one branch before or after hitting the dashed
boundaries, whereas the branch change occurs with the
rebound of the trajectories at the boundaries with finite
(positive or negative) H, which is continuous through the
rebound. From Eq. (60), we see that there exists an
exceptional case for this boundary, which is ϕ ¼ 0, since
in this case H ¼ 0 at the boundary and hence H ¼ 0 and
branch change occurs at the same time. Again, this non-
singular bounce is generally accompanied by a ghost or
gradient instability in the scalar or tensor sector of unitary
gauge. On the other hand, the condition (34) for the well
definedness of unitary gauge perturbations is itself violated
around bounce solutions where the field transits a region
where Ω ¼ 0 or �∞. In these cases, a covariant treatment
or full numerical solution is required to assess perturbation

pathologies (see also Ref. [43,44]). For instance, on the
second boundary of Eq. (59) whereHb diverges at finiteH,
Ω ¼ �∞. Note that at this boundary, Hb and the original
higher-order equations of motion (52), (53) appear discon-
tinuous between the branches but when reduced to a
second-order system, the two branches of ϕ̈ðϕ; _ϕÞ join.
This property is unique to degenerate models. Finally, there
is also a novel feature that some trajectories have the field
roll up hill, but we shall see that in general these regions are
associated with ghost or gradient instability as well.
On the other hand, the trajectories in the central region of

Fig. 1 for σ ¼ þ1 are similar to the canonical ones. Also as
in GR, trajectories start or end on singularities (solid red
curves), albeit here at finite field values. This region also
exhibits an attractor solution which is visually apparent
from the converging flows in Fig. 2. To isolate this
trajectory we numerically integrate the reduced evolution
equation ϕ̈ ¼ ϕ̈ðϕ; _ϕÞ. For the initial condition, we adopt
ðϕ; _ϕ=mÞ ¼ ð20.3;−6Þ at t ¼ 0, which is close to the inter-
section of the singularity and the attractor and rapidly
evolves onto the attractor. The numerical solution ϕ ¼ ϕðtÞ
on the attractor (black curve, the left panel of Fig. 1) is
shown for the 60 e-folds before the end of inflation. Time t
is converted to e-folds N by plugging the numerical solu-
tion ϕ ¼ ϕðtÞ into the equation H ¼ Hðϕ; _ϕÞ and numeri-
cally integrating it. We place the zero point of e-folds at the
end of inflation, i.e. ϵH ¼ 1 at N ¼ 0. Note that N ¼ 0

at ðϕ; _ϕ=mÞ ≈ ð1.0;−0.71Þ and N ¼ −60 at ðϕ; _ϕ=mÞ≈
ð20;−3.5Þ. During inflation on the attractor unitary gauge

FIG. 1. Phase space portrait of the D-inflation model (48) with V ¼ m2ϕ2=2 and m2A2 ¼ 0.002 and branches σ ¼ þ1 (left), σ ¼ −1
(right). Shown are the general trajectories (blue arrows where H2 > 0); main attractor trajectory (black) starting from 60 e-folds before
the end of inflation; regions withH > 0 (yellow), ϵH > 0 (blue) or both (green); curves withH singular (solid red) or changing from real
to complex (dashed red). The attractor trajectory inevitably crosses into a region where ϵH < 0while spiraling around the origin after the
end of inflation.
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perturbations are well defined since Ω given in Eq. (56) is
finite and nonzero.
After inflation when N > 0, the attractor trajectory

spirals around the origin and inevitably crosses into a
region of noncanonical behavior where ϵH < 0. We shall
see next that this region is associated with gradient
instabilities.

C. Perturbations

The central region of Fig. 1, with its attractor solution on
the σ ¼ þ1 branch, provides a potentially viable infla-
tionary regime and we therefore focus on it for the pertu-
rbation analysis. From the EFT coefficients [Eqs. (49), (50)]
and their time derivatives, we can construct bs, cs, bt, ct and
their associated slow-roll parameters. First, the tensor sector
is simple. From Eq. (39), bt ¼ 1 and c2t ¼ ð1 − 2 _ϕ2A2Þ−1
and hence the stability condition bt > 0 and c2t > 0 for the
present case is satisfied if j _ϕ=mj < ð2m2A2Þ−1=2 ≈ 16 as it is
in the central region.
The scalar sector, parametrized by bs and cs, is more

complicated. Their explicit forms are too cumbersome to
provide here, but straightforward to obtain. In Fig. 2, we
show the regions where ϵHbs=c2s > 0 (yellow), c2s > 0
(blue), or both (green, instability free) near the attractor
of the central region. Note that in our example these are
invariant for ðϕ; _ϕÞ → ð−ϕ;− _ϕÞ so we only display the
lower right quadrant. The attractor itself (black line)
remains in the stable region from the end of inflation to

∼60 e-folds prior, but approaching it especially from small
velocities may require crossing from a region of gradient
instability.
At reheating, trajectories spiral around the origin and

cross _ϕ ¼ 0. Here the field will inevitably enter into an
unstable regime as we can analytically check as follows.
For both branches of Hb and a general potential, the Taylor
expansions of Hb=H and _H around _ϕ ¼ 0 are given by

H ¼ σ

ffiffiffiffi
V
3

r
½1 − σa1A2

_ϕþOð _ϕ2Þ�;

Hb ¼ σ

ffiffiffiffi
V
3

r �
1þ

_ϕ2

4V
þOð _ϕ4Þ

�
;

_H ¼ A2V
3

½a21 þ 8σa1 _ϕþOð _ϕ2Þ�;

_Hb ¼ −
A2V
3

σa1 _ϕ −
_ϕ2

2
þOð _ϕ3Þ; ð61Þ

where a1 ≡
ffiffiffi
3
V

q
V 0

1−2A2V
. Note that the Taylor expansion of

Hb does not include odd powers of _ϕ since in our modelHb

in Eq. (55) is a function of _ϕ2. The leading order behavior
of _H is a constant as _ϕ → 0 which vanishes if A2 → 0. In
our model, this is a positive constant so unlike a canonical
field ϵH < 0 as _ϕ → 0 as shown in Fig. 1.
Using Eq. (61), we can expand the sound speed and

normalization as

lim
_ϕ→0

c2s ¼
ðH −HbÞð4H þHbÞ − _Hb

6ðH −HbÞ2
;

¼ −
2σ

3a1A2
_ϕ
½1þOð _ϕÞ�;

lim
_ϕ→0

bsϵH
c2s

¼ 6ðH −HbÞ2
H2

b

;

¼ 6a21A
2
2
_ϕ2½1þOð _ϕÞ�: ð62Þ

The normalization bsϵH=c2s remains positive but
approaches zero as _ϕ → 0, while c2s diverges in amplitude.
Notice that this divergence occurs even as A2 → 0, despite
the fact that c2s ¼ 1 for A2 ¼ 0, which indicates a discon-
tinuous limit. For the potential VðϕÞ ¼ m2ϕ2=2,

lim
_ϕ→0

c2s ¼ −
ffiffiffi
2

3

r
m
_ϕ

σϕ

jϕj
1 − A2m2ϕ2

3m2A2

½1þOð _ϕÞ�: ð63Þ

Therefore, for both branches, near the origin where
1 − A2m2ϕ2 > 0 is satisfied, the sign of c2s is determined
by ϕ= _ϕ. Hence, for σ ¼ þ1 branch, c2s → −∞ at the first
and third quadrants and c2s → þ∞ in the second and fourth
quadrants, where the attractor originates. In the former,

FIG. 2. Phase space regions for the σ ¼ þ1 branch where
bsϵH=c2s > 0 (yellow), c2s > 0 (blue), or both (green), with
general trajectories (blue arrows) and attractor trajectory (black
curve). The attractor trajectory inevitably crosses into a regime of
gradient instability when spiraling around the origin [see also
Taylor expansions (63) and Fig. 3].
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c2s < 0 occurs only in a small neighborhood around _ϕ ¼ 0
as shown in Fig. 3.
Furthermore, from Eq. (56),

lim
_ϕ→0

Ω
6a3

¼ −Hb ¼ −σ
ffiffiffiffi
V
3

r
½1þOð _ϕ2Þ�; ð64Þ

and hence exactly at the origin ðϕ; _ϕÞ ¼ ð0; 0Þ of our
model, the condition (34) is violated with Ω ¼ 0 and the
unitary gauge becomes ill defined.

To avoid gradient instability and unitary gauge being ill
defined, we can relax the assumption that A2 ¼ const and
choose A2ðϕ; XÞ → 0 at the origin. Provided this occurs
only for jϕj; j _ϕ=mj≲ 1, the dynamics of perturbations
during inflation will not be affected.
Finally we can examine the evolution of bs and c2s along

the attractor during inflation. In Fig. 4 we show variation of
ϵH, bs, c2s , and corresponding slow-roll parameters [7]

δ1 ≡ 1

2

d ln ϵH
dN

− ϵH; ξs1 ≡ d ln bs
dN

; σs1 ≡ d ln cs
dN

;

ð65Þ

along the attractor. They are defined based on the quadratic
action (36) for ζ̃, but as we mentioned above in our model
ζ̃ − ζ evolves to zero so lnΔ2

ζ̃
¼ lnΔ2

ζ after inflation.

Notice that while all remain perturbative, σs1 in particular
can become moderately large around N ∼ −60 and more-
over evolves on the several e-fold timescale.
Such cases can be treated in the optimized slow-roll

(OSR) formalism [7,37], where the slow-roll (SR) result for
the curvature power spectrum after inflation when ζ̃ ¼ ζ

lnΔ2
ζ jSR ¼ ln

�
H2

8π2bscsϵH

�
; ð66Þ

is corrected by the slow-roll parameters

lnΔ2
ζ ≈ lnΔ2

ζ jSR −
10

3
ϵH −

2

3
δ1 −

7

3
σs1 −

1

3
ξs1; ð67Þ

FIG. 4. Variation of ϵH , bs, c2s , and corresponding slow-roll parameters δ1, ξs1, σs1 along the attractor.

FIG. 3. Behavior of c2s (solid black) and bsϵH=c2s (dashed blue)
and as a function of _ϕ=m near the origin at fixed ϕ ¼ −0.3. At
_ϕ ¼ 0, c2s → �∞ when approached from alternate sides. Similar
behaviors can be observed for ϕ ¼ 0.3. There exists gradient
instability near the origin, while no ghost instability.
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and evaluated at freeze-out where k
R
0
N dN cs=aH ≈ e1.06,

contrary to k
R
0
N dN cs=aH ¼ 1 in the SR approximation.

These approximations are compared in Fig. 5 for the
same k, where k0 is the mode that freezes out at N ¼ −60
in OSR. Here we additionally choose m ¼ 10−5 to fix the
normalization of H in Planck units and hence that of Δ2

ζ to
be roughly compatible with observations. Notice that there
is a significant running of the tilt pivoting around k=k0 ∼
104 or N ∼ −50 despite being far from the end of inflation
and containing no features in the potential there. In this
region, the OSR and SR results differ in shape and OSR
itself breaks down as an approximation for someN < −60
where the corrections become order unity. The OSR
approximation thus extends the regime of validity for the
calculation into the range −60≲N ≲ −50, which is
relevant for the CMB, and is useful in observationally
constraining D-inflation. We leave such a study and the
construction of an observationally viable model to a
future work.

IV. CONCLUSION

In this work, we developed the EFT of inflation for a
general Lagrangian constructed from ADM variables,
which encompasses the most general interactions with
up to second derivatives of a scalar field whose background
spontaneously breaks temporal diffeomorphism symmetry.
The Ostrogradsky ghost usually implied by such higher-
order terms is eliminated by degeneracy conditions, leading
to degenerate higher-order (or D-)inflation. We identify 8
types of degeneracy conditions, one of which corresponds
to known DHOST models. For the other cases, which
include curvature couplings not considered in DHOST, we
provide necessary conditions for a covariant scalar-tensor
theory based on the dispersion relation of the quadratic

action and leave a full assessment of their viability to
future work.
Higher-order theories imply equations of motions that

are higher than second order in the scalar field and typically
lead to an ill-posed Cauchy problem. The degeneracy
conditions, which involve the metric as well, restores a
well-defined forwards or backwards evolution from initial
field and field derivative data on a Cauchy surface but with
novel features.
We illustrate these features with an explicit example of

D-inflation. First, not all field configurations lead to
physical solutions for the metric as illustrated by values
where all solutions for the Hubble parameter become
complex even for positive potentials and timelike field
gradients. Second, evolution is only uniquely defined up to
a branch choice since the same field configurations lead to
distinct expansion histories that are not related by time
reversal as they would be in GR. This feature is present in
Horndeski theory as well. Third, trajectories can sharply
turn to avoid phase space regions where real solutions fail
to exist leading to highly complicated phase space portraits
where contraction can turn to expansion without encoun-
tering a curvature singularity. These bouncing solutions
generally traverse regions of ghost or gradient instabilities
in unitary gauge but also cross coordinate singularities in
defining its metric perturbations (see also Ref. [43,44]).
Finally, perturbations can go unstable even in the limit that
the additional degenerate terms in the Lagrangian are
infinitesimal. In our example this occurs for curvature
perturbations in the simplest model of constant, but
arbitrarily small, higher-order coefficients during reheating
when the inflaton oscillates around the minimum of its
potential.
Our D-inflation model also has novel phenomenology.

While the model possesses an attractor which leads to
nearly scale invariant fluctuations across a sufficient
number of e-folds of inflation, it also can produce sub-
stantial running of the tilt on CMB scales despite having no
features in the potential there and being far from the end of
inflation. In this case, EFT coefficients vary on the several
e-fold timescale and require an approach that goes beyond
the usual slow-roll formalism. We show that corrections
captured by the optimized slow-roll approach extends the
validity of predictions into the large running regime of
interest and should be useful in observational tests of the D-
inflation scenario.
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APPENDIX A: DEGENERACY CONDITIONS

We can determine the necessary conditions for degen-
eracy by examining the high k or high frequency limit of
the quadratic Lagrangian. We can then find the number of
propagating modes and their dispersion relation by assum-
ing solutions of the form uðx; tÞ ¼ uðkÞeiðωtþkxÞ where u ¼
ðδN; ζ;ψÞT [31].

In the limit, we can neglect evolution on the Hubble time
scale of the background and the EFT coefficients up to
corrections of order ðk=aHÞ2, which as we detail below is
sufficient to establish degeneracy conditions for most
solutions and easily supplemented in the remaining ones.
The quadratic Lagrangian (26) for scalars can be then
written as

L2 ¼
1

2
u†Ku; ðA1Þ

with the kinetic matrix

K ≡

0
BBB@

c9 þ ω2c3 þ c10
k2

a2 ω2c2 þ iωðc4 þ c5
k2

a2Þ þ c8
k2

a2 −iω c2
3
k2

a2 þ c4
3
k2

a2

ω2c2 − iωðc4 þ c5
k2

a2Þ þ c8
k2

a2 ω2c1 þ c6
k2

a2 þ c7
k4

a4 −iω c1
3
k2

a2 þ c12
k4

a4

iω c2
3
k2

a2 þ c4
3
k2

a2 iω c1
3
k2

a2 þ c12 k4

a4 c11 k4

a4

1
CCCA: ðA2Þ

For nontrivial solutions of the equation of motion Ku ¼ 0 to exist, we require detK ¼ 0, which can be written as

f1ω4 þ
�
f2

�
k
a

�
4

þ f3

�
k
a

�
2

þ f4

	
ω2 þ f5

�
k
a

�
6

þ f6

�
k
a

�
4

þ f7

�
k
a

�
2

¼ 0; ðA3Þ

where

f1 ≡ −
�
c1
9
− c11

�
ðc1c3 − c22Þ;

f2 ≡ c3ðc7c11 − c212Þ −
1

9
c22c7 −

2

3
c2c5c12 − c25c11;

f3 ≡ c6
9
ðc1c3 − c22Þ −

�
c1
9
− c11

�
ðc1c10 − 2c2c8 þ c3c6 − 2c4c5Þ;

f4 ≡
�
c1
9
− c11

�
ðc24 − c1c9Þ;

f5 ≡ c10ðc7c11 − c212Þ;

f6 ≡ c9ðc7c11 − c212Þ þ c6c10c11 −
1

9
c24c7 þ

2

3
c4c8c12 − c28c11;

f7 ≡ c6

�
c9c11 −

c24
9

�
: ðA4Þ

In general, this is a fourth order system for ω representing
two propagating modes. To remove the second propagating
mode in unitary gauge, we demand f1 ¼ 0, for which there
are several possibilities:
(1) c3 ¼ c22=c1 or equivalently Cββ ¼ 3C2βK=ð3CKK þ

C̃KKÞ. The kinetic terms organize into a single term
for ζ̃ ¼ ζ þ ðc2=c1ÞδN, which is the propagating
degree of freedom.

(2) c1 ¼ c2 ¼ 0 or equivalently 3CKK þ C̃KK ¼
CβK ¼ 0. The kinetic term for ζ vanishes and δN
is the propagating degree of freedom.

(3) c11 ¼ c1=9 or equivalently C̃KK ¼ 0. The con-
straint equation for ψ eliminates the kinetic term
for ζ and δN is again the propagating degree of
freedom.

Below we shall consider each case in Appendices A 1–A 3,
respectively.
Furthermore, retaining a higher order in spatial deriva-

tives (or k) compared with temporal derivatives (or ω) in a
fully covariant theory corresponds to the reappearance of
the second mode when changing the gauge. Therefore to
find covariant degeneracy conditions, we seek solutions of
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Eq. (A3) that correspond to a normal dispersion relation
ω2 ¼ c2sk2. The possible cases are
(a) f4f7 ≠ 0, others ¼ 0 ⇒ f4ω2 þ f7ðk=aÞ2 ¼ 0.
(b) f3f6 ≠ 0, others ¼ 0 ⇒ f3ω2 þ f6ðk=aÞ2 ¼ 0.
(c) f2f5 ≠ 0, others ¼ 0 ⇒ f2ω2 þ f5ðk=aÞ2 ¼ 0.
There are several caveats regarding this technique that

need to be borne in mind. Since we neglect Hubble scale
evolution, we work in the limit ω ≫ H and since the ci
coefficients generically carry a mass dimension Mni

i for
some ni and can vary on the Hubble timescale we assume
_ci=ci ∼H ≪ Mi as well. Whereas the former condition
corresponds to csk=aH ≫ 1 for a linear dispersion relation,
the latter need not necessarily be small in practice. Since we
are mainly interested in this technique for deriving degen-
eracy conditions and the form of the dispersion relation,
rather than the exact coefficients in the dispersion relation,
this technique suffices. The exception is when ðcsk=aHÞ−2
corrections spoil the form of the dispersion relation at
csk=aH ≫ 1. This can occur in the “a” case through
corrections to f2 and f5 which can then dominate over
the terms from f4 and f7 which form the desired linear
dispersion relation. For the “b" case these corrections can
change the coefficients but not the leading order form and for
the “c" case, the corrections from the other terms are entirely
negligible for csk=aH ≫ 1. We therefore further check for
supplemental degeneracy conditions in the “a” or f4f7 ≠ 0
case. Note that since the coefficients in the dispersion
relation can also change in the “a” and “b” cases from
those given by this static technique, the full quadratic
Lagrangian should be used to check for ghost and gradient
instabilities in those cases.
We now consider the various kinetic structures 1,2,3 and

their degeneracy conditions under a,b,c, respectively. We
treat “1a” in more detail as it serves both as an example of
the technique and includes the known DHOST models.

1. c3 = c22=c1 case

Plugging c3 ¼ c22=c1 to (A4) we have f1 ¼ 0 and
reduced forms for f2…7 which imply there is a single
propagating degree of freedom

ζ̃ ¼ ζ þ c2
c1

δN ðA5Þ

in unitary gauge. The degeneracy classes a,b,c where this
degree of freedom obeys a linear dispersion relation for
csk=aH ≫ 1 are defined by the pair of f coefficients that
remain nonzero. Therefore in each case, we have 5
degeneracy conditions between the various EFT coeffi-
cients represented by ci in the static limit. Case 1a can have
supplementary degeneracy conditions beyond the static
limit as discussed above.
(a) First, let us consider the case f4f7 ≠ 0 and all other f’s

zero. Requiring first that f5 ¼ 0 leads to two branches

c212 ¼ c7c11 or c10 ¼ 0; ðA6Þ

For each case, f2 ¼ f3 ¼ f6 ¼ 0 should be satisfied.
While in general f3 ¼ 0 has two branches, since f4 ≠
0 implies c11 ≠ c1=9, only one solution remains

c21c10 ¼ 2c1ðc2c8 þ c4c5Þ − c22c6: ðA7Þ

Also, f2 ¼ 0 yields

c25c11 þ
1

9
c22c7 þ

2

3
c2c5c12 ¼

c22
c1

ðc7c11 − c212Þ; ðA8Þ

and f6 ¼ 0 yields

c9ðc7c11 − c212Þ þ c6c10c11 − c28c11 −
1

9
c24c7

þ 2

3
c4c8c12 ¼ 0: ðA9Þ

These are the degeneracy conditions for the static, high
k limit.
More generally, this 1a case is subject to corrections

which require supplementary degeneracy conditions
as described above. Using only the first condition
c3 ¼ c22=c1, the quadratic Lagrangian (26) reduces to

L2 ¼
1

2
c1
_̃ζ
2 þ

�
c4 − c1 _xþ c5

k2

a2

�
_̃ζδN þ 1

2

�
c6 þ c7

k2

a2

�
k2

a2
ζ̃2 þ

�
c8 − c6x − c7x

k2

a2

�
k2

a2
ζ̃δN

þ 1

2

�
c̃9 þ c̃10

k2

a2
þ c7x2

k4

a4

�
δN2 þ 1

2
c11

k4

a4
ψ2 þ k2

a2
ψ

�
c1
3
_̃ζ þ c4 − c1 _x

3
δN þ c12

k2

a2
ðζ̃ − xδNÞ

�
; ðA10Þ

where x≡ c2=c1 and

c̃9 ≡ c9 þ _c4xþ c1 _x2 − c4 _x;

c̃10 ≡ c10 þ ð_c5 − 2Hc5 − 2c8Þxþ c6x2 − c5 _x: ðA11Þ
Potentially problematic terms are those where the fields have time derivatives and the coefficients carry additional
factors of k2=a2. In the static limit, these terms are arranged to cancel, but beyond the static limit the time variation of
the coefficients breaks this degeneracy relation and changes the dispersion relation even for csk=aH ≫ 1. The only
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term of this form is c5ðk=aÞ2 _̃ζδN. Therefore c5 ¼ 0 is sufficient as a supplemental degeneracy condition to ensure a
linear dispersion relation for the single propagating degree of freedom ζ̃. This condition may be generalized to
nonvanishing c5 but would then involve tuning between c5; a and the other ci coefficients. Due to the appearance of the
scale factor a in the generalized degeneracy condition this tuning is unlikely to be preserved in a fully covariant scalar-
tensor theory. We therefore take c5 ¼ 0 and the complete set of degeneracy conditions for case 1a has two branches

ðiÞ c3 ¼
c22
c1

; c212 ¼ c7c11; c21c10 ¼ 2c1c2c8 − c22c6; c22c7 ¼
9c22
c1

ðc7c11 − c212Þ;

c9ðc7c11 − c212Þ þ c6c10c11 − c28c11 −
1

9
c24c7 þ

2

3
c4c8c12 ¼ 0; c5 ¼ 0; ðA12Þ

ðiiÞ c3 ¼
c22
c1

; c10 ¼ 0; 2c1c2c8 − c22c6 ¼ 0; c22c7 ¼
9c22
c1

ðc7c11 − c212Þ;

c9ðc7c11 − c212Þ þ c6c10c11 − c28c11 −
1

9
c24c7 þ

2

3
c4c8c12 ¼ 0; c5 ¼ 0: ðA13Þ

With this complete set of degeneracy conditions, one can explicitly verify that the Euler-Lagrange equations that result
from Eq. (A10) describe a single propagating degree of freedom ζ̃ with a linear dispersion relation at csk=aH ≫ 1.
While the degeneracy conditions in Eqs. (A12) or (A13) are complete, they allow for a variety of ways that the EFT

coefficients can satisfy them. To make the connection with DHOST models, we can further examine these explicit
solutions. For instance, for 1a(i) we can have

c3 ¼
c22
c1

; c5 ¼ c7 ¼ c11 ¼ c12 ¼ 0; c10 ¼
2c1c2c8 − c22c6

c21
; ðA14Þ

or

c3 ¼
c22
c1

; c5 ¼ c7 ¼ c12 ¼ 0; c8 ¼
c2c6
c1

; c10 ¼
c22c6
c21

; ðA15Þ

and for 1a-ii

c3 ¼
c22
c1

; c5 ¼ c10 ¼ 0; c6 ¼
2c1c8
c2

; c11 ¼
c1
9
þ c212

c7
; c9 ¼

ðc4c7 − 3c8c12Þ2 þ c1c7c28
c1c27

: ðA16Þ

Models where c11 ¼ 0 on the (A15) branch are also members of the (A14) branch. On the other hand the conditions
c8 ¼ c2c6=c1, c̃10 ¼ 0 (c10 ¼ c22c6=c

2
1, c5 ¼ 0) must be satisfied for any model on the (A15) branch, including those

that are part of the (A14) branch. As pointed out by Ref. [31], this presents a problem if one wants to recover
Newtonian gravity for nonrelativistic matter. Since these conditions and c7 ¼ 0 zero out the k2ζ̃δN and k2δN2 terms in
(A10), the Euler-Lagrange equation for δN which usually provides a source to the Poisson equation through the matter
density is absent on this branch. Instead the k2ζ̃ term in its equation of motion comes from its own Euler-Lagrange
equation and has a source in matter pressure. For this reason, in the main text we focus on the (A14) branch. This
branch also includes the 2N-I/Ia class of DHOST models [31].
The case 1aðiÞ with (A14) or (A15) corresponds to DHOST class I or II, respectively, and the latter was known to

suffer from gradient instability. On the other hand, the case 1aðiiÞwith (A16) is not included in DHOST theories, as it
requires c7 ≠ 0, namely 8CRR þ 3C̃RR ≠ 0, which can originate from the existence of the quadratic curvature terms in
the covariant Lagrangian.

(b) Next, we consider f3f6 ≠ 0 and all other f’s zero. By following the same procedure as in case 1a, we obtain the
following four sets of degeneracy conditions
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ðiÞ c3 ¼
c22
c1

; c212 ¼ c7c11; c4 ¼ c9 ¼ 0; 9c25c11 þ 6c2c5c12 þ c22c7 ¼ 0;

ðiiÞ c3 ¼
c22
c1

; c212 ¼ c7c11; c6 ¼ 0; c9 ¼
c24
c1

; 9c25c11 þ 6c2c5c12 þ c22c7 ¼ 0;

ðiiiÞ c3 ¼
c22
c1

; c10 ¼ 0; c4 ¼ c9 ¼ 0; 9c25c11 þ 6c2c5c12 þ c22c7 ¼
9c22
c1

ðc7c11 − c212Þ;

ðivÞ c3 ¼
c22
c1

; c10 ¼ 0; c6 ¼ 0; c9 ¼
c24
c1

; 9c25c11 þ 6c2c5c12 þ c22c7 ¼
9c22
c1

ðc7c11 − c212Þ: ðA17Þ

In this case, corrections beyond the static approximation can change the coefficients of the dispersion relation at
csk=aH ≫ 1 but not the form and so these provide the complete conditions.
Note that the above branch is not included in DHOST theories. While (A14) and (A15) should satisfy c3 ¼ c22=c1,

c5 ¼ c7 ¼ c12 ¼ 0, c10 ¼ ð2c1c2c8 − c22c6Þ=c21, the above branch satisfies the degeneracy without requiring c5, c7, c12
to be vanishing. By definition c7 and c12 are nonvanishing in the presence of quadratic curvature terms, whereas c5 is
nonvanishing if the Lagrangian includes terms such as ðð4ÞRþ□ϕÞ2. Also, ðiÞ and ðiiÞ do not require any condition on
c10, and ðiiiÞ and ðivÞ requires a different condition c10 ¼ 0 which can be satisfied with 2c1c2c8 − c22c6 ≠ 0 as c8 does
not appear in the degeneracy conditions and hence is a free parameter.

(c) Finally, we consider f2f5 ≠ 0 and all other f’s zero. This leads to six possible cases

ðiÞ c3 ¼
c22
c1

; c4 ¼ c9 ¼ 0; c11 ¼
c1
9
; c6c10 ¼ c28;

ðiiÞ c3 ¼
c22
c1

; c4 ¼ c9 ¼ 0; c6 ¼
c1c8
c2

; c10 ¼
c2c8
c1

;

ðiiiÞ c3 ¼
c22
c1

; c6 ¼ 0; c9 ¼
c24
c1

; c11 ¼
c1
9
; c8 ¼

3c4c12
c1

;

ðivÞ c3 ¼
c22
c1

; c6 ¼ 0; c9 ¼
c24
c1

; c10 ¼
2ðc2c8 þ c4c5Þ

c1
; c28c11 ¼

c24
c1

ðc7c11 − c212Þ þ c4

�
2

3
c8c12 −

1

9
c4c7

�
;

ðvÞ c3 ¼
c22
c1

; c6 ¼ 0; c11 ¼
c1
9
; c11c28 ¼ c9

�
1

9
c1c7 − c212

�
þ c4

�
2

3
c8c12 −

1

9
c4c7

�
¼ 0;

ðviÞ c3 ¼
c22
c1

; c9 ¼
c24
c1

; c11 ¼
c1
9
; c6c10 ¼

ðc1c8 − 3c4c12Þ2
c21

: ðA18Þ

Again, note that this branch is not included in DHOST theories as the DHOST conditions c3 ¼ c22=c1,
c5 ¼ c7 ¼ c12 ¼ 0, c10 ¼ ð2c1c2c8 − c22c6Þ=c21 are not satisfied in general. Clearly, the conditions ðiÞ, ðiiÞ do not
include c5, c7, c12; the condition ðiiiÞ does not include c5, c7, c10; the condition ðvÞ does not include c5, c10; and the
condition ðviÞ does not include c5, c7. Also, the condition ðivÞ as well as ðiÞ, ðiiÞ, ðviÞ require different conditions on
c10 which do not coincide with the DHOST condition in general.

2. c1 = c2 = 0 case

In case 2, c1 ¼ c2 ¼ 0 and the kinetic term for ζ vanishes leaving f1 ¼ 0 and δN as the propagating degree of freedom.
Since models where δN and not ζ is propagating are unlikely to recover Newtonian gravity, we include this case for
completeness and pedagogical interest.
(a) Let us begin with the case f4f7 ≠ 0 and all other f’s zero. In this case we must again check for corrections to the dis-

persion relation beyond the static limit. Using only the condition c1 ¼ c2 ¼ 0, the quadratic Lagrangian (26) reduces to

L2 ¼
1

2
c3 _δN2 þ

�
c4 þ c5

k2

a2

�
_ζδN þ 1

2

�
c6

k2

a2
þ c7

k4

a4

�
ζ2 þ c8

k2

a2
ζδN þ 1

2

�
c9 þ c10

k2

a2

�
δN2

þ 1

2
c11

k4

a4
ψ2 þ ψ

�
c4
3

k2

a2
δN þ c12

k4

a4
ζ

�
: ðA19Þ
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Here, again, the problematic term is c5ðk=aÞ2 _ζδN, and hence we impose c5 ¼ 0 as a supplemental degeneracy
condition.
Requiring f2 ¼ f3 ¼ f5 ¼ f6 ¼ 0 leads to four possible cases

ðiÞ c1 ¼ c2 ¼ 0; c5 ¼ c10 ¼ 0; c3 ¼ 0; 9c9ðc212 − c7c11Þ þ 9c28c11 þ c24c7 − 6c4c8c12 ¼ 0;

ðiiÞ c1 ¼ c2 ¼ 0; c5 ¼ c10 ¼ c212 − c7c11 ¼ 0; c6 ¼ 0; 9c28c11 þ c24c7 − 6c4c8c12 ¼ 0;

ðiiiÞ c1 ¼ c2 ¼ 0; c5 ¼ c212 − c7c11 ¼ 0; c3 ¼ 0; 9c6c10c11 − 9c28c11 − c24c7 þ 6c4c8c12 ¼ 0;

ðivÞ c1 ¼ c2 ¼ 0; c5 ¼ c212 − c7c11 ¼ 0; c6 ¼ 0; 9c28c11 þ c24c7 − 6c4c8c12 ¼ 0: ðA20Þ

(b) Next we consider the case f3f6 ≠ 0 and all other f’s zero. Requiring f4 ¼ f7 ¼ 0 under f3 ¼ c11ðc3c6 − 2c4c5Þ ≠ 0
allows c4 ¼ c9 ¼ 0 only. By further requiring f2 ¼ f5 ¼ 0, we obtain three possible cases

ðiÞ c1 ¼ c2 ¼ 0; c4 ¼ c9 ¼ 0; c10 ¼ c3ðc7c11 − c212Þ − c25c11 ¼ 0;

ðiiÞ c1 ¼ c2 ¼ 0; c4 ¼ c9 ¼ 0; c5 ¼ c212 − c7c11 ¼ 0;

ðiiiÞ c1 ¼ c2 ¼ 0; c4 ¼ c9 ¼ 0; c11 ¼ c12 ¼ 0: ðA21Þ

(c) Finally, we consider f2f5 ≠ 0 and all other f’s zero. This leads to five possible cases

ðiÞ c1 ¼ c2 ¼ 0; c4 ¼ c9 ¼ 0; c3 ¼ 0; c6c10 − c28 ¼ 0;

ðiiÞ c1 ¼ c2 ¼ 0; c4 ¼ c9 ¼ 0; c6 ¼ 0; c11ðc6c10 − c28Þ ¼ 0;

ðiiiÞ c1 ¼ c2 ¼ 0; c4 ¼ c9 ¼ 0; c11 ¼ 0;

ðivÞ c1 ¼ c2 ¼ 0; c4 ¼ c6 ¼ 0; c9ðc7c11 − c212Þ − c28c11 ¼ 0;

ðvÞ c1 ¼ c2 ¼ 0; c6 ¼ c11 ¼ 0; 9c9c212 þ c24c7 − 6c4c8c12 ¼ 0: ðA22Þ

3. c11 = c1=9 case

Finally we consider the case 3 where c11 ¼ c1=9. Here the Euler-Lagrange equation for ψ provides a contribution that
cancels the kinetic term for ζ, and δN is again the propagating degree of freedom. As in case 2, this case is unlikely to
provide viable theories of gravity. While generally we expect 5 static degeneracy conditions, in this case there are fewer
since some of the f terms are identically zero once other degeneracy conditions are applied.
(a) The f4f7 ≠ 0 branch does not exist since c11 ¼ c1=9 implies f4 ¼ 0.
(b) Next, for f3f6 ≠ 0, requiring that additionally f2 ¼ f5 ¼ f7 ¼ 0 leads to two possible cases

ðiÞ c11 ¼
c1
9
; c24 ¼ c1c9; c7 ¼

c1c25 þ 6c2c5c12 þ 9c3c212
c1c3 − c22

; c10 ¼ 0;

ðiiÞ c11 ¼
c1
9
; c24 ¼ c1c9; c7 ¼

c1c25 þ 6c2c5c12 þ 9c3c212
c1c3 − c22

; c1c5 þ 3c2c12 ¼ 0: ðA23Þ

(c) Finally f2f5 ≠ 0 leads to two possible cases

ðiÞ c11 ¼
c1
9
; c24 ¼ c1c9; c22 ¼ c1c3; c1ðc6c10 − c28Þ þ 6c4c8c12 − 9c9c212 ¼ 0;

ðiiÞ c11 ¼
c1
9
; c6 ¼ 0; c9 ¼ −

6c4c8c12 − c1c28 − c24c7
c1c7 − 9c212

: ðA24Þ

APPENDIX B: RELATIONSHIP TO LITERATURE

Our approach is most similar to Ref. [31] and in this Appendix we make the explicit connection to that work and discuss
the differences. First some of the terms in Ref. [31] take a superficially different form that is related to ours through
integration by parts. Up to a total derivative
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N
ffiffiffi
h

p
C̃KRδKi

jδR
j
i ∼

a3

2

�
ð _̃CKR þHC̃KRÞ

�
δ

ffiffiffi
h

p

a3
δRþ δ2R

�
þ C̃KRδRδK þHC̃KRδNδR

�
; ðB1Þ

and hence we can rewrite our quadratic Lagrangian (23) in the form of Eq. (1.2) of Ref. [31] expose the difference between
the two

δL2 ∼−a3Cβ
�
δN

�
δ1

ffiffiffi
h

p

a3

�⋅
þ δNiδN;i

�
þ a3

�
CβRδ1R _δN þ 1

2
CRRδ1R2 þ 1

2
C̃RRδ1Ri

jδ1R
j
i þ

�
CKR þ

1

2
C̃KR

�
δKδ1R

�
: ðB2Þ

The quadratic Lagrangian (23) thus contains terms that
differ from Eq. (1.2) of Ref. [31]. Since the first term in
(B2) has δN or δN;i, it is nonvanishing only for scalar
perturbations. For scalar perturbation, it can be expressed
up to a total derivative as

− a3Cβ

�
δN

�
δ1

ffiffiffi
h

p

a3

�⋅
þ δNiδN;i

�

∼ −a3Cβ
�
3_ζ −

∂2ψ

a2

�
δN

¼ −a3CβðδK þ 3HδNÞδN; ðB3Þ

which can be absorbed into the αB and αK terms in Eq. (1.2)
of Ref. [31]. On the other hand, the third line of (B2) is not
considered in Ref. [31] as these terms have derivatives
higher than second order in total. If we assume these terms
are vanishing by imposing

CβR ¼ CRR ¼ C̃RR ¼ CKR þ 1

2
C̃KR ¼ 0; ðB4Þ

we have c5 ¼ c7 ¼ c12 ¼ 0 in Eq. (27). These conditions
hold in the 1a degeneracy subclasses defined by Eq. (A14)
and (A15). Reference [31] considered only these cases.
They furthermore assume ϕ ∝ t and so their

V ¼ −
_ϕ

N
β ðB5Þ

vanishes in the background V̄ ¼ 0 or β̄ ¼ 0 in our notation.
Generalizing this does not change the functional form of
their Lagrangian, just the mapping between the scalar field
and ADM representations and so we retain β̄ ≠ 0 in the
correspondences below. Note that if a field redefinition φ ∝
tðϕÞ is performed instead after solving for the background
ϕðtÞ, which alternately reestablishes the generality of their
expressions, then the DHOST coefficients must corre-
spondingly be redefined (cf. Ref. [32] v2).
In summary, in the subclass of (B4), the quadratic

Lagrangian (23) for scalar perturbation takes the same
functional form as Eq. (1.2) of Ref. [31] with the
correspondence

M2 ¼ C̃KK;

αK ¼ 1

H2C̃KK

�
2CN þ CNN−2β̄CβN þ β̄2Cββ þ

ða3CβÞ⋅
a3

−
ða3CβNÞ⋅

a3
þ ða3β̄CββÞ⋅

a3
− 6HCβ

�
;

αB ¼ CNK − β̄CβK − Cβ
2HC̃KK

;

αT ¼ 2CR þ _̃CKR þHC̃KR
C̃KK

− 1;

αH ¼ 2ðCNR þ CRÞ þHC̃KR
C̃KK

− 1;

αL ¼ −
3

2

�
CKK
C̃KK

þ 1

�
;

β1 ¼
CβK
2C̃KK

;

β2 ¼
Cββ
C̃KK

;

β3 ¼
2Cα
C̃KK

: ðB6Þ
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Equivalently, the inverse correspondence between notations for the subclass (B4) is given by

a−3c1 ¼ −6M2ð1þ αLÞ; a−3c2 ¼ 6M2β1; a−3c3 ¼ M2β2; a−3c10 ¼ M2β3; a−3c11 ¼ −
2

3
M2αL;

ðB7Þ

and

Θ≡ −
1

3
a−3c4 ¼ −2HM2ð1þ αB þ αLÞ;

Ψ≡ 1

4
a−3c6 ¼

1

2
M2ð1þ αTÞ;

Ξ≡ 1

4
a−3c8 ¼

1

2
M2ð1þ αHÞ;

Φ≡ a−3c9 ¼ H2M2½αK − 6ð1þ αLÞ − 12αB� þ 6a−3ða3M2Hβ1Þ_; ðB8Þ

with c5, c7, c12 vanishing in this class.
With these relations we can also translate the degeneracy conditions Eqs. (2.15), (2.16) of Ref. [31]:

CI∶ αL ¼ 0; β2 ¼ −6β21; β3 ¼ −2β1½2ð1þ αHÞ þ β1ð1þ αTÞ�; ðB9Þ

CII∶ β1 ¼ −ð1þ αLÞ
1þ αH
1þ αT

; β2 ¼ −6ð1þ αLÞ
ð1þ αHÞ2
ð1þ αTÞ2

; β3 ¼ 2
ð1þ αHÞ2
1þ αT

; ðB10Þ

into our notation to confirm that their CI and CII correspond to Eqs. (A14) and (A15), respectively. The Lagrangian for ζ̃ in
Eq. (36) is equivalent to Eq. (4.8) of Ref. [31] for CI.
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