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We discuss an isomorphism between the possible anomalies of (dþ 1)-dimensional quantum field
theories with Z2 unitary global symmetry, and those of d-dimensional quantum field theories with time-
reversal symmetry T. This correspondence is an instance of symmetry defect decoration. The worldvolume
of a Z2 symmetry defect is naturally invariant under T, and bulk Z2 anomalies descend to T anomalies on
these defects. We illustrate this correspondence in detail for ð1þ 1Þd bosonic systems where the bulk Z2

anomaly leads to a Kramers degeneracy in the symmetry defect Hilbert space and exhibits examples. We
also discuss ð1þ 1Þd fermion systems protected by Z2 global symmetry where interactions lead to a Z8

classification of anomalies. Under the correspondence, this is directly related to the Z8 classification of
ð0þ 1Þd fermions protected by T. Finally, we consider ð3þ 1Þd bosonic systems with Z2 symmetry where
the possible anomalies are classified by Z2 × Z2. We construct topological field theories realizing these
anomalies and show that their associated symmetry defects support anyons that can be either fermions or
Kramers doublets.
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I. INTRODUCTION

Global symmetries and anomalies are crucial tools in the
analysis of quantum field theory. In its most elementary
incarnation, global symmetry organizes Hilbert spaces into
representations and gives rise to selection rules. Anomalies
are more subtle characteristic invariants of symmetry in
quantum field theory and are constant along all continuous
symmetry-preserving deformations of the theory, including
scaling transformations of the renormalization group. A
rich class of phenomena are associated with systems with
discrete global symmetry. In this case the associated
anomalies are also finite order and can be carried by
gapped or gapless systems. A precise understanding of the
physics of anomalies is a central tool in many recent
developments including the theory of topological insulators

and superconductors, duality in ð2þ 1Þd, and topological
field theory.
In this paper, we discuss an interesting connection

between anomalies of Z2 unitary global symmetry in d
spacetime dimensions, and anomalies for antiunitary time-
reversal (T) symmetries in (d − 1) spacetime dimensions.
Since anomalies of d dimensional theories are determined
by inflow from (dþ 1)-dimensional symmetry-protected
topological phases (SPTs), our discussion can also be
interpreted as a connection between SPTs. Specifically,
there is an isomorphism:

Z2 anomalies in d dimensions

↔ T anomalies in ðd − 1Þ dimensions: ð1:1Þ

Mathematically, SPT phases (including interactions) are
classified by cobordism theory [1–8]. The precise math-
ematical relationship behind (1.1) is sometimes referred to
as a Smith isomorphism [9,10] (see also [4,11]), which we
review in Appendix.
Our main goal in this paper is to explore the physical

consequences of (1.1) in low-dimensional field theory
examples. In particular, we illustrate this correspondence
in a simple class of models described by ð1þ 1Þd bosonic
quantum field theories (QFTs)withZ2 global symmetry.We
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argue that this symmetry is anomalous if and only if the
ð0þ 1Þd symmetry line has states that are related by a
Kramers degeneracy. We also discuss the extension to
ð1þ 1Þd fermionic systems and give an example application
in ð3þ 1Þd bosonic systems.

A. Z2 symmetry defects and
time-reversal symmetry

Physically, the isomorphism (1.1) is mediated by sym-
metry defects. In general in QFT, the abstract meaning of
the symmetry, illustrated in Fig. 1, is that there are
codimension one topological operators that implement
the Z2 symmetry action (see, e.g., [12]). Equivalently
one can view the presence of symmetry defects in corre-
lation functions as coupling the QFT to a background Z2

gauge field.1

The key observation behind the isomorphism (1.1) is
then that in a d-dimensional QFTwith Z2 global symmetry,
the symmetry defect is a (d − 1)-dimensional quantum
system with T symmetry. This can be understood geo-
metrically. The analog of a symmetry defect for T is
a locus where the orientation of spacetime is reversed.
Equivalently, this means that a QFT has T symmetry if it
can be formulated on nonorientable manifolds. In general,
symmetry defects are defined on oriented manifolds,
and changing the orientation leads to a defect for the
inverse symmetry group element. However, in the
special case of Z2, the nontrivial group element is its
own inverse and hence the defect is invariant under
changing its orientation. As argued above, this means that
the defect theory has T symmetry. (For more details see
Appendix.)

Another useful point of view can be obtained in the
phase where the Z2 symmetry is spontaneously broken,
illustrated in Fig. 2. In that case the Z2 symmetry defect is
realized as a domain wall separating two distinct vacua.
A global Z2 transformation does not preserve this con-
figuration since it exchanges the vacua. However, if we
combine this Z2 with the universal CPT symmetry, which
acts in the Euclidean signature as a rotation by π, we indeed
find a symmetry of the original domain wall configuration.
As this combined action reverses the orientation of the Z2

symmetry defect, it descends to a T symmetry on its
worldvolume.
Thus, given any QFT with unitary Z2 global symmetry,

the symmetry defect yields a theory in one lower dimension
with antiunitary T symmetry. Moreover, if the latter is
anomalous, necessarily so is the former. In fact, because
(1.1) is an isomorphism, all nontrivial Z2 anomalies of the
bulk can be detected in this way. Using inflow, the same
arguments apply to the associated SPTs characterizing the
anomalies.
The idea that theworldvolume theory of symmetry defects

can be used to encode bulk anomalies is widely applied in
the condensed matter literature [13]. Here we see that the
isomorphism (1.1) gives an instance of this idea, where the
Z2 symmetry defects are decorated theories with anomalous
T symmetry. The novelty, however, is that the T symmetry
on the defect is not a symmetry of the bulk.
One sharp way to realize the results of this

correspondence is by circle compactification. Consider
a d-dimensional theory on a geometry S1 × L for some
(d − 1) manifold L, and let a Z2 symmetry defect
wrap L (and hence be located at a point in the S1).
Equivalently, this means that there is a nontrivial Z2

holonomy around the S1. We can describe this configu-
ration as an effective (d − 1)-dimensional QFT. According
to the analysis above, this QFT has T symmetry, with
a T anomaly that completely encodes the original Z2

anomaly of the d-dimensional theory. In particular,
thinking of L as extended along time, this means that
the defect Hilbert space HL of the original theory (again
with L localized at a point in a spatial circle) carries T
symmetry.

B. Implications for ð1 + 1Þd QFT

While the analysis above (and its generalization to spin
theories discussed below) apply in arbitrary spacetime
dimension, one focus of this paper is to understand in
detail the map between ð1þ 1Þd theories with Z2 sym-
metry, and quantum mechanics models with T symmetry.
In the ð1þ 1Þd case, the geometry of the symmetry

defects and the map (1.1) is particularly simple. The Z2

symmetry is represented by a topological line L in the
theory. The general properties of these lines have been
analyzed in [14–23]. For (bosonic) ð1þ 1Þd QFTs with Z2

symmetry there is a unique possible nontrivial ’t Hooft

FIG. 1. The action of a Z2 symmetry defect. The defect is
topological and small changes in its position do not modify
correlation functions. However, when the defect crosses a local
operator ϕ, the correlation changes by �1 depending on whether
ϕ is even or odd under the action of the symmetry.

1Mathematically, such a gauge field is a cocyclea ∈ Z1ðM;Z2Þ,
where M is the d-dimensional spacetime. The symmetry defect is
then Poincaré dual to the cocycle a. The associated gauge
equivalence class is ½a� ∈ H1ðM;Z2Þ.
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anomaly.2 Following the general analysis in [22–24], it is
easy to realize that this anomaly controls the crossing
relation of the symmetry defects illustrated in Fig. 3.
We use these results to independently argue that the line

L has a T symmetry which is anomalous if and only if the
ð1þ 1Þd theory has an anomalousZ2 symmetry. Since L is
one-dimensional, this is an anomaly in quantummechanics,
i.e., a projective representation of the global symmetry. For
T symmetry this means that the system has an anomaly if
and only if, on the Hilbert space

T2 ¼ −1: ð1:3Þ

In other words, the Hilbert space consists of Kramers
doublets. We directly investigate defect Hilbert spaces, HL

in a variety of examples of ð1þ 1Þd conformal field
theories (CFTs), and verify this conclusion.

C. Generalization to spin systems

Although much of our discussion concerns bosonic
theories. The correspondence (1.1) also holds for fermionic
systems. In this case, our system also has a ð−1ÞF
symmetry, and we must say more about the algebra of
the T symmetry in the correspondence. For spin systems,
there are two universal possibilities labeled pin� according
to the implied structure group on spacetime,3

pinþ ⇒ T2 ¼ ð−1ÞF; pin− ⇒ T2 ¼ 1: ð1:4Þ

As we review in Appendix, the precise map between Z2

anomalies in fermionic theories and T anomalies holds
when the latter is part of a pin− symmetry group.
In particular in Sec. IV, we apply these ideas to systems

of free fermions in ð1þ 1Þd. There, as we review, the effect
of interactions reduces the anomaly to a Z8 effect [26–30].
The correspondence (1.1) then implies the sharp result that
the ð0þ 1Þd fermion systems studied in [26,31] also have
mod eight periodicity. Indeed, as we review, the ground
state degeneracy of eight fermions with pin− symmetry can
be removed by a T-invariant interaction.

D. Further extensions

Although we have focused above on ð1þ 1ÞdQFTs with
Z2 symmetry, the correspondence (1.1) holds for general
dimensions. As an illustration of this, in Sec. V, we
consider ð3þ 1Þd bosonic systems with Z2 unitary global
symmetry. These theories have anomalies classified by the
group Z2 × Z2 and have recently been discussed in [32].
As predicted by the correspondence (1.1), the classification
of T anomalies in ð2þ 1Þd is also Z2 × Z2 [2].

FIG. 2. The T symmetry on the symmetry defect in a spontaneously broken phase. The defect separates two regions with degenerate
ground states labeled by �. The action of the Z2 symmetry exchanges the vacua, and combining with CPT leads to a symmetry of the
original configuration that changes the worldvolume orientation of the defect.

FIG. 3. The crossing relation of a Z2 line L (shown in black) in
a local patch of the ð1þ 1Þd geometry. The lines can be
recombined at the cost of a phase α ¼ �1. The Z2 symmetry
is anomalous (i.e., there is an obstruction to orbifolding), if and
only if α ¼ −1.

2This anomaly is characterized by inflow from the ð2þ 1Þd
SPT with classical action

exp

�
πi

Z
N
a ∪ a ∪ a

�
; ð1:2Þ

where again a ∈ H1ðN;Z2Þ is the class representing theZ2 gauge
field. Alternatively, we can view this SPT as characterizing the
nontrivial element in the group cohomology,H3ðZ2; Uð1ÞÞ ≅ Z2.

3In certain theories with additional global symmetry there can
be other possible algebras obeyed by T; see, e.g., Ref. [25].
However, these do not play a role in the correspondence (1.1).
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We construct discrete gauge theories in ð3þ 1Þd carry-
ing these anomalies and explain how the ð2þ 1Þd sym-
metry defect is decorated by an appropriate topological
field theory with anomalous T symmetry where the lines
can be either fermions or Kramers doublets.

II. BOSONIC Z2 SYMMETRY IN ð1 + 1Þd
In this section we investigate the correspondence (1.1) in

the simplest nontrivial class of examples: ð1þ 1Þd systems
with Z2 global symmetry. We show that the defect Hilbert
space HL for an anomalous Z2 line has Kramers degen-
eracy due to a time-reversal anomaly.

A. Symmetry lines and the defect Hilbert space

We start by reviewing some basic properties of the
topological defect linesL implementing a unitaryZ2 global
symmetry in ð1þ 1Þd. A more detailed discussion can be
found in [24]. Related ideas have been extensively dis-
cussed in [14–23].
A global symmetry in ð1þ 1Þd is implemented by a

topological defect line L. The defining property of a
topological defect line is that all physical observables such
as correlation functions are invariant under a small defor-
mation of the locus ofL. When the topological line is swept
past a local operator ϕðxÞ, the correlation function is
changed by the symmetry action of ϕðxÞ. For example,
as we sweep a Z2 line past a Z2 even/odd local operator
ϕðxÞ, the correlation function changes by �1. (See Fig. 1.)
Consider the theory on a cylinder S1 ×R with L running

along the time R direction (see Fig. 4). The topological line
L intersects with the spatial S1, and therefore modifies the
quantization by a twisted periodic boundary condition. This
defines a defect Hilbert space denoted by HL.

4 This is a
different Hilbert space than the Hilbert spaceHwithout the
Z2 line.
In the special case of conformal field theory, a state in the

usual Hilbert space H is mapped to a local operator via the
operator-state correspondence. A defect Hilbert space state
jψi ∈ HL, on the other hand, is mapped to a nonlocal
pointlike operator living at the end of the Z2 line. Since the
topological line commutes with the stress tensor, the states
in the defect Hilbert space HL are organized into repre-
sentations of the left and right Virasoro algebras. In
particular, the defect Hilbert space states can be diagon-
alized to have definite conformal weights ðh; h̄Þ. In general,
a state in H has integer spin s ¼ h − h̄, whereas as we will
see below, a state in the defect Hilbert space HL may have
fractional spin [23,24] (see also [33]).
We can also consider the insertion of multiple symmetry

lines extended along time. This defines a multidefect

Hilbert space HLL���L. However, in the special case of
Z2, we can fuse the symmetry lines pairwise to the trivial
line. In particular, this means that the multidefect Hilbert
spaces with an even number of Z2 symmetry lines are all
isomorphic to the Hilbert spaceH of local operators, while
those with an odd number of lines are all isomorphic to the
defect Hilbert space HL. This also means that the defect
Hilbert spaceHLL, which via the operator-state map are the
operators living on the line, is isomorphic to the spaceH of
ordinary local operators.

B. ð1 + 1Þd Bosonic Z2 anomaly

The ’t Hooft anomaly of a Z2 symmetry is encoded in a
crossing relation of the topological symmetry lines.
Consider a local patch of a general correlation function
as in the gray circle on the left of Fig. 3. In this local patch
we assume there are only two segments ofZ2 lines, without
other local operator insertions. Now imagine we replace the
configuration in the local patch by the one on the right,
without modifying the configuration outside the local gray
patch. Notice that to continuously interpolate from one
figure to another, we must pass through a singular con-
figuration where the lines cross.
We would like to compare the two correlation functions,

before and after the replacement. In a theory with a unique
vacuum, the disk geometries in Fig. 3 define states on the
circle with defect lines inserted and both states have
h ¼ h̄ ¼ 0. Therefore these two correlation functions can
at most differ by a phase α [23,24]. Applying the same
crossing rule twice,we conclude thatα2 ¼ 1. Hence α ¼ �1.
The phase α is the ’t Hooft anomaly of the Z2 global

symmetry, which is classified by the group cohomology
H3ðZ2; Uð1ÞÞ ¼ Z2. When α ¼ þ1, the Z2 is nonanom-
alous, while when α ¼ −1, the Z2 is anomalous. One way
to see this is to consider the torus partition function of the
would-be Z2 orbifold theory. The orbifold partition func-
tion involves four terms with different Z2 line configura-
tions, one of which is depicted in the center of Fig. 5. This
configuration is generally ambiguous because of the

FIG. 4. The defect Hilbert spaceHL of a Z2 line quantized on a
circle S1. A state in the defect Hilbert space is mapped to an
operator living at the end of the Z2 line via the operator-state
correspondence.

4When the Z2 is nonanomalous, the Z2 even sector Hþ
L of the

defect Hilbert space HL before gauging is the twisted sector of
the orbifold theory.
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intersection of the symmetry lines. The two possible
resolutions of the intersection (shown at the two sides of
Fig. 5) give the same answer if α ¼ þ1, but not otherwise.
Hence, the orbifold partition function is well-defined if
α ¼ þ1, but ambiguous and not modular invariant if
α ¼ −1. In the latter case α ¼ −1, there is therefore an
obstruction to gauging the Z2.
Another important consequence of the ’t Hooft anomaly

is a selection rule on the spin s ¼ h − h̄ of the state in the
defect Hilbert space. For a Z2 line, the spin of a state inHL
is constrained to be [23,24] (see also [33])

s ∈

(
Z
2
; if α ¼ þ1 ðnonanomalousÞ;

1
4
þ Z

2
; if α ¼ −1 ðanomalousÞ: ð2:1Þ

To argue for this result, we consider a 2π rotation of a state
in HL viewed in the operator picture of Fig. 6. By
definition, this encodes the spin of the operator. By
performing this operation twice and using the crossing
relation of Fig. 3 we deduce that for all states in HL, the
spin obeys expð4πisÞ ¼ α, thus reproducing (2.1).
We can also see that the anomaly controls the expect-

ation value of hLiR2 of a closed loop of symmetry line in
flat space. Indeed, using the crossing relation of Fig. 3, we
obtain Fig. 7. And therefore hLiR2 ¼ α. We describe this
equation in more detail in Sec. II C 2 below.

C. Orientation-reversal anomaly
on the symmetry line

We now discuss time-reversal symmetry on the line L.
As we will show, the L has a T anomaly if and only if the
bulk has the Z2 anomaly. As a preliminary, we must first
discuss why the line L has T symmetry to begin with. Since
T symmetry acts geometrically by reversing orientation,
this means we must discuss the orientation of the sym-
metry lines.
In general when defining correlation functions in QFTs

with global symmetry, the associated symmetry defects
must be oriented. Let L denote such an oriented defect, and
L̄ the defect with opposite orientation. The meaning of the
choice of orientation is that if L is associated with the
symmetry group element g, then L̄ is associated with
the symmetry group element g−1. From this point of view,
the reason why Z2 symmetry is special is that the nontrivial
element is its own inverse. Therefore, up to anomalies
discussed below, there is no dependence on the orientation
of L; i.e., for Z2 lines L ≅ L̄ (on flat spacetime). This in
essence is what defines the T symmetry of the defect L.
Intuitively, we can then view the result (7) that hLiR2 ¼

α as a manifestation of a T anomaly on L. Indeed, orienting
L and stretching it to be long and thin, we can view this
result as stating that even for Z2, there can be phase
ambiguities in comparing L and L̄. Our goal is now to
make these remarks more precise.

1. Symmetry lines on curved surfaces

The most transparent way to define and detect a T
anomaly on the symmetry line L is to consider its proper-
ties on curved surfaces. We discuss these ideas following
[23]. For now we let L be a symmetry line for a general
symmetry group and subsequently specialize to the case
of Z2.
As emphasized in the Introduction, on a flat manifold,

the correlation functions of symmetry lines are invariant
under any deformation of the line L as long as it does not
pass through any local operators. What about on a curved
orientable surface? In general in this situation, we should
expect that the topological nature of the symmetry lines

FIG. 5. When the Z2 is anomalous (i.e., α ¼ −1), the two resolutions (sides) of an intersection of lines (center) lead to different
configurations.

FIG. 6. The spin of an operator ϕ in HL is captured by
encircling the Z2 line around it as in the left figure.

FIG. 7. Crossing relation between the Z2 lines.
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may be modified by phases. This is because there may be a
contact term in the operator product expansion (OPE)
between the energy-momentum tensor and the topological
line,

Tðx; yÞL ∼ θLδ
0ðyÞ; ð2:2Þ

where the line is placed at y ¼ 0 and θL is a constant that
depends on the line. Equation (2.2) is fixed by (1) the right-
hand side only has support at y ¼ 0, and (2) it has mass
dimension two. In the presence of a general metric, which
acts as a source for T this leads to phase modifications
when L is deformed.
To see the consequences of (2.2), let the initial locus of

the line L be an oriented curve C1, and deform L past a
domain D to reach the final locus, another oriented curve
C2. This is illustrated in Fig. 8.
The correlation functions are then modified by a phase5

exp

�
� iθL

4π

Z
D
d2σ

ffiffiffi
g

p
R

�
; ð2:3Þ

where the sign above is positive (negative) if ∂D includes
C1 with positive (negative) orientation and R is the Ricci
scalar curvature on the surface.6 Alternatively we can also
evaluate the effects of the same deformation using L̄
starting from C̄1 (the curve C1 with opposite orientation),
and ending at C̄2. Demanding that we arrive at the same
phase implies that

θL̄ ¼ −θL: ð2:4Þ

The variation of the correlation function by the phase
(2.3) has the appearance of an anomaly, i.e., a violation of

the topological nature of the lines by a phase. However, to
check whether it is, in fact, meaningful, we must now
determine if we can modify the definition of the symmetry
line L by a suitable counterterm to remove this phase.
Indeed, phase (2.3) is not physical and can be removed

using a counterterm precisely when g ≠ g−1. Specifically,
we can redefine the line L by including

exp

�
iϕL

2π

Z
L
dsK

�
; ð2:5Þ

where K is the extrinsic curvature, normalized such that the
counterclockwise integral along the boundary of a disk is
2π, and for consistency we define ϕL̄ ¼ −ϕL. Applying the
Gauss-Bonnet theorem to the cylindrical region D that
occurs in the calculation of (2.3) we have

1

4π

Z
D
d2σ

ffiffiffi
g

p
RðgÞ þ 1

2π

Z
∂D

dsK ¼ χðDÞ ¼ 0; ð2:6Þ

where the last equality follows from the fact that D is an
annulus. Thus, the phase (2.3) is canceled by the counter-
term (2.5) if we choose ϕL ¼ θL.
In particular, we note that while the phase (2.3) is

nontrivial only on a curved manifold, the counterterm
(2.5) is generally nonzero even on R2. (In this case the
extrinsic curvature K simply integrates to the total angle 2π
around any closed curve). Therefore the counterterm (2.5)
changes the expectation value of a closed loop hLiR2 by the
arbitrary phase expðiϕLÞ. Thus, when g ≠ g−1, the expect-
ation value hLiR2 does not have intrinsic meaning.7

2. Orientation-reversal anomaly for Z2 lines

Let us now turn to the special case of most interest,
which is Z2 global symmetry. As we have discussed above,
in this case locally, the symmetry line L is invariant under
changes in orientation. This statement should be interpreted
as an equality between L and L̄ on R2. In particular, this
requirement forbids us from modifying the line by the
extrinsic curvature counterterm (2.5). Thus, precisely for
Z2 lines the expectation value hLiR2 discussed in (7) is
meaningful.8

FIG. 8. The line L, initially supported on an oriented curve C1,
is deformed past a domain D to reach the final locus C2.

5We fix conventions so that the orientation of D is the same as
the ambient surface. The boundary of the domain D is then either
∂D ¼ C1 ∪ C̄2 or ∂D ¼ C̄1 ∪ C2, depending on which direction
we move the line on the surface.

6Our normalization is such that the Gauss-Bonnet formula
reads

R
Σ d

2σ
ffiffiffi
g

p
RðgÞ ¼ 4πχðΣÞ with χ the Euler characteristic.

7Mathematically, one can think of this extrinsic curvature
counterterm as representing some of the exact elements that are
set to zero in defining the group cohomology H3ðG;Uð1ÞÞ.
Specifically, it represents those two-cochains of the form
βðg; g−1Þ=βðg−1; gÞ for g in the zero-form group G.

8The negative expectation value of theZ2 line onR2 appears to
be in tension with reflection positivity. If we had not insisted on
the orientation-reversal symmetry L ¼ L̄ of a Z2 line on R2, then
we have the freedom of adding the counterterm (2.5) to the line
and modifying the expectation value to þ1. This tension between
the reflection positivity and the orientation-reversal symmetry is
similar to the one in (2þ 1) dimensions discussed in Sec. 4.6 of
[34]. We thank the referee for pointing out this analogy to us.
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Since the counterterm (2.5) is unavailable, the phase
(2.3) is now an intrinsic physical property of the line. To
interpret its effect we reexamine Fig. 8. The boundary of
the cylindrical region D is two isotopic lines with opposite
orientation. Therefore, we can view the phase (2.3) as the
cost of changing the orientation of the symmetry lineL on a
curved manifold. In particular, a nonzero phase θL implies
that on curved manifolds, in contrast to R2, the correlation
functions of L depend on its orientation. This is an
orientation-reversal or T anomaly on the defect L.
We now show that this orientation reversal anomaly is

precisely controlled by the bulk Z2 anomaly thus demon-
strating the correspondence (1.1) in this case. First, note
that the phase θL is constrained by (7). Consider a small
loop of L on a two-sphere. Near the north pole, the
expectation value is approximated by hLiR2, while near
the south pole it is hL̄iR2 . Deforming between them using
the formula (2.3) we find

hLiR2 ¼ expð�2iθLÞhL̄iR2 : ð2:7Þ

Therefore, since hLiR2 ¼ hL̄iR2 we deduce that θL is either
zero or π. In the former case there is no T anomaly on the
line, while in the latter case there is a T anomaly.
Similarly, we can compare Lwrapping the equator of the

two-sphere to its behavior near a pole. On the equator, the
expectation value looks locally like L wrapping the non-
trivial cycle on the cylinder S1 × R. This expectation value
is easy to determine. Since there is no operator insertion, we
can view the defect L as acting on the vacuum in Hilbert
space H of states on S1. In any unitary theory, the vacuum
on the circle is unique and symmetry preserving, and
therefore hLiS1×R ¼ þ1. Therefore, deforming between the
equator and a pole (see Fig. 9) and using the formula (2.3)
we derive

hLiR2 ¼ expðiθLÞhLiS1×R: ð2:8Þ

Combining (7) and the above, we conclude that In a unitary
theory, the Z2 line L has the orientation-reversal (T)
anomaly if and only if the Z2 is anomalous,9

expðiθLÞ ¼ α: ð2:9Þ

III. KRAMERS DOUBLETS IN THE
DEFECT HILBERT SPACE

We now illustrate the conclusion of the previous section
in several examples. As discussed above, we interpret
the orientation-reversal anomaly of an anomalous Z2 line
as the time-reversal anomaly for the defect Hilbert
space HL. This gives a direct physical realization of the
isomorphism (1.1) in the special case of ð1þ 1Þd bosonic
Z2 anomalies using the language of topological defect
lines.
A ð0þ 1Þd bosonic theory with T symmetry has an

anomaly exactly when T acts projectively, i.e., T2 ¼ −1 on
HL. This results in the Kramers doublet degeneracy in the
defect Hilbert space HL. Below we will demonstrate in
examples that the defect Hilbert spaceHL has the Kramers
degeneracy if and only if the bulk Z2 symmetry is
anomalous. Most of our examples are diagonal rational
CFTs, whose defect Hilbert space HL degeneracies are
given by the fusion coefficients Ni

jk [15] (see also [23]).

A. dsuð2Þ1 WZW model

The dsuð2Þ1 Wess-Zumino-Witten (WZW) model has
two current algebra primaries, the vacuum j0; 0i and the
four spin one-half primaries j 1

4
; 1
4
i�;� of weight h ¼ h̄ ¼ 1

4
.

The� stands for the J30 and J̄
3
0 eigenvalues. This theory has

an anomalous Z2 global symmetry (α ¼ −1) which com-

mutes with the dsuð2Þ × dsuð2Þ current algebra and acts on
the primaries as

Z2∶ j0;0i↦ j0;0i;
����14;14

�
�;�

↦−
����14;14

�
�;�

: ð3:1Þ

This Z2 can be thought of as the center of the left dsuð2Þ.
The defect Hilbert space HL of this anomalous Z2 has

been studied, for example, in [24]. It consists of two current
algebra primaries with h ¼ 1

4
and h̄ ¼ 0, and another two

with h ¼ 0 and h̄ ¼ 1
4
. Each one of them is a doublet under

either the left or the right dsuð2Þ current algebra:

FIG. 9. The expectation value of an anomalous Z2 changes as
we deform it on a curved manifold. For example, the vacuum
expectation value near the north pole of a two-sphere differs from
that around the equator by a sign.

9This derivation requires unitarity. Indeed, in a nonunitary
theory, the cylinder expectation value of a symmetry line may not
be þ1. Then the above relation is modified to expðiθLÞ ¼ α

hLiS1×R
.

For example, if hLiS1×R ¼ −1 but α ¼ −1, then the anomalous
Z2 line does not have the orientation-reversal anomaly in this
nonunitary theory. Such an anomalous Z2 without an orientation-
reversal anomaly on the symmetry line can be found in, for
example, the (3,5) minimal model.
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HL∶
���� 14 ; 0

�
�
;

����0; 14
�

�
: ð3:2Þ

Note that they have fractional spin s ¼ h − h̄ ¼ � 1
4
, con-

sistent with the spin selection rule for states in HL (2.1).
Moreover, we indeed see that there is a twofold degeneracy
for every state of a given ðh; h̄Þ which is the expected
Kramers degeneracy.

B. T2 CFT with no time-reversal symmetry

In the general construction in Sec. II, the ð1þ 1Þd theory
is assumed to have a Z2 global symmetry, but is not in

general time-reversal invariant. The dsuð2Þ1 WZW model
has time-reversal symmetry, and here we discuss an
example without.10

The example we will consider is the free CFTwith target
space being a two-dimensional torus T2, with a general
metric and B field. We will follow the convention in [35]
with α0 ¼ 1. The two scalar fields of the T2 CFT are
normalized to have periodicities

X1 ∼ X1 þ 2πR; X2 ∼ X2 þ 2πR: ð3:3Þ

The metric and the B field of the T2 CFTwill be denoted as
Gmn and Bmn with m, n ¼ 1, 2, parametrizing the moduli
space of the T2 CFT. Since we have only two scalars, there
is only one B field, B≡ B12.
The metric moduli includes the overall volume and the

complex structure moduli τ. The overall volume can be
parametrized by the R above, while the complex structure τ
is encoded in Gmn as

Gmn ¼
�

1 τ1

τ1 jτj2
�
; ð3:4Þ

where τ ¼ τ1 þ iτ2 and jτj2 ¼ τ21 þ τ22.
The spectrum of local operators can be described as

follows. Let

vm ≡ nm
R

− BmnwnR; ð3:5Þ

where nm; wn ∈ Z are the momentum and winding num-
bers. Next we define

vmL ¼ vm þ wmR; vmR ¼ vm − wmR; ð3:6Þ

where the indices are raised and lowered by Gmn and Gmn.
For example, vm ¼ Gmnvn. The current algebra primaries
in the T2 CFT are labeled by four integers, ðn1; n2; w1; w2Þ,
with weights

h ¼ 1

4
GmnvmLv

n
L; h̄ ¼ 1

4
GmnvmRv

n
R: ð3:7Þ

At a generic point on the moduli space with nontrivial B
field, the ð1þ 1Þd theory does not have a time-reversal
symmetry that exchanges h and h̄.
There are various anomalous Z2 symmetries. We

will focus on the anomalous Z2 subgroup of
diagðUð1Þn1 ×Uð1Þw1Þ. The twisted sector operators are
those with n1; w1 ∈ 1

2
þ Z and n2; w2 ∈ Z (see, for exam-

ple, [24,36]). We therefore find that the defect Hilbert space
has a twofold Kramers degeneracy in states with the same h
and h̄, which is realized by the action on the mode numbers

ðn1; n2; w1; w2Þ → ð−n1 − 1;−n2;−w1 − 1;−w2Þ: ð3:8Þ

C. Ising model

Finally, let us consider an example where the ð1þ 1Þd
Z2 symmetry is nonanomalous, and show that the defect
Hilbert space has no Kramers degeneracy.
The ð1þ 1Þd Ising model has three Virasoro primaries,

the vacuum 1 with h ¼ h̄ ¼ 0, the energy operator ϵ with
h ¼ h̄ ¼ 1

2
, and the spin field σ with h ¼ h̄ ¼ 1

16
. There is a

Z2 symmetry that flips the sign of the spin field

Z2∶ 1 → 1; ϵ → ϵ; σ → −σ: ð3:9Þ

The Z2 symmetry is nonanomalous α ¼ þ1. Indeed, the
Ising CFT is self-dual under the Z2 orbifold.
The defect Hilbert space HL of the Z2 line consists of

following Virasoro primaries jh; h̄i (see, for example, [24]):

ψ̄ðz̄Þ ¼
����0; 12

�
; ψðzÞ ¼

���� 12 ; 0
�
; μðz; z̄Þ ¼

���� 116 ; 116
�
:

ð3:10Þ

Under the operator-state correspondence, they are mapped
to operators living at the end of the Z2 line. The j0; 12i and
j 1
2
; 0i states are the free Majorana fermions ψðzÞ; ψ̄ðz̄Þwith

half-integral spins. The j 1
16
; 1
16
i state in HL is the disorder

operator μðz; z̄Þ, which is not mutually local with the spin
field σðz; z̄Þ inH because the latter is Z2 odd. Note that the
spins of these states are consistent with the spin selection
rule (2.1). We see that there is no Kramers degeneracy for
the states in HL; hence there is no T anomaly in this case.

10Another example is the tensor product of the dsuð2Þ1 WZW
model with the holomorphic Monster CFT. This theory does not
have ð1þ 1Þd time-reversal symmetry, and it has an anomalous
Z2 in the dsuð2Þ1 WZW sector. Its defect Hilbert space is what we
described in the previous section tensor product with the Monster
CFT, which is not invariant under h ↔ h̄ but still has the Kramers
degeneracy in states with the same h and h̄.
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IV. FERMIONIC EXAMPLES IN ð1 + 1Þd
In this section we give an example illustrating the

correspondence (1.1) for spin theories in ð1þ 1Þd. As
we review below, in this case possible anomalies for Z2 are
classified by Z8 [4,26–30]. Similarly, in ð0þ 1Þd, T
anomalies for theories with T2 ¼ 1 (i.e., pin− structure)
are also classified by Z8 [4,6,26,31].

11 The correspondence
(1.1) then directly relates these results. We concentrate our
analysis on free fermion systems and their interactions.

A. Z2 invariant ð1 + 1Þd fermions

Consider a ð1þ 1Þd system of N free (nonchiral)
Majorana fermions χiðz; z̄Þ. We will denote their left-
and right-moving components as ψ iðzÞ and ρiðz̄Þ, respec-
tively. We define the global Z2 symmetry of interest to be
the left-moving fermion number ð−1ÞFL which acts on ψ i,
but under which the right moving fermions ρiðz̄Þ are
neutral. There is also the total fermion number symmetry
that acts diagonally on both left- and right-moving fields.
These N fermions have an SOðNÞ × SOðNÞ global sym-
metry under which ψ and ρ transform, respectively, as
ðv; 1Þ and ð1; vÞwhere v is the vector representation. Under
the diagonal SOðNÞ ⊂ SOðNÞ × SOðNÞ the Majoranas χi

are thus also in the vector representation.
The ð−1ÞFL symmetry prohibits quadratic mass terms

ψ iðzÞρjðz̄Þ, and hence, at the quadratic level, the number of
fermions N is protected. We now investigate to what extent
this statement survives interactions. Consider a quartic
interaction invariant under the diagonal SOðNÞ:

Hint ¼ q

�XN
i¼1

χ̄iχi
�2

: ð4:1Þ

Following [27–30], our goal is to see to when such
interactions can lead to a trivially gapped state preserving
the chiral symmetry. Our treatment closely parallels the
review [38].
For two fermions, the first case where this interaction is

possible, the free theory describes a c ¼ 1 model and the
quartic fermion interaction is the unique exactly marginal
operator. Therefore in this case the theory remains gapless
for all q. For N > 2, the operator (4.1) is marginal but not
exactly marginal. For one sign of q this leads again to the
gapless free fermions; however, for the other sign of q, the
interaction operator becomes important at long distances
leading to the SOðNÞ Gross-Neveu model [39]. This model
is gapped and at a strong coupling scale Λ generates an
expectation value

	XN
i¼1

χ̄iχi
�

¼ �Λ: ð4:2Þ

This expectation value spontaneously breaks the ð−1ÞFL

symmetry leading to two degenerate ground states.
Something special happens with eight fermions; how-

ever, that will enable us to find an appropriate interaction to
gap the system. The special feature that we need is triality
[40]. This allows us to present the theory of the eight
fermions in dual description where there are again eight
Majorana fermions χ̃m (m ¼ 1;…; 8) but now the left- and
right-moving parts transform under SOð8Þ × SOð8Þ as
ðs; 1Þ and ð1; sÞ where s is an eight-dimensional spinor
representation. These spinor fermions are coupled to a
dynamical Z2 × Z2 gauge theory with gauge fields x and y
coupling, respectively, to the ð−1ÞF̃ and ð−1ÞF̃L symmetries
of the fermions χ̃m. Triality has an important interplay with
operators in various sectors of the theory. In the χ theory,
there are spin fields σm;n that are ðR;RÞ sector operators of
dimension ð1=2; 1=2Þ and transform as ðs; sÞ under the
SOð8Þ × SOð8Þ global symmetry. Crucially for our pur-
poses, under triality these spin fields are exchanged
with bilinears in the χ̃ fermions.12

Since we are interested in gapping the model while
preserving the original ð−1ÞFL symmetry, we should track
how this behaves under the above triality. Let a be the
background gauge field for the ð−1ÞFL . In terms of the
original vector-valued fermion variables χ, the coupling to
a appears in the kinetic term. However, in the dual theory
with SOð8Þ spinor fermions χ̃, the symmetry ð−1ÞFL does
not couple directly to the fermions but rather couples to the
twisted sector operators that emerge from the dynamical
Z2 × Z2 gauge fields x and y. Specifically this means that a
enters the action for the dual theory as expðiπa ∪ ðxþ yÞÞ,
where x; y; a ∈ H1ðΣ;Z2Þ and Σ is spacetime.
We now return to our original goal of trivially

gapping the theory of eight fermions χ. An enlightening
attempt, which ultimately will not succeed, is to try to add
classically marginal potential which is invariant under
the diagonal SOð8Þ ⊂ SOð8Þ × SOð8Þ constructed out of
quadratic combination spin fields σm;n transforming in the

11Mathematically, the ð1þ 1Þd SPT associated with the T-
invariant fermions is the Z8-valued Arf-Brown-Kervarie cobord-
ism invariant of pin− two-manifolds. Meanwhile the ð2þ 1Þd Z2

SPT can be constructed by evaluating an SOðNÞ1 Chern-Simons
path integral coupled to a background magnetic field [37].

12In fact, the existence of the triality shows that the chiral
symmetry ð−1ÞF̃L of the χ̃ theory, itself a theory of eight fermions,
is nonanomalous in the sense that it can be gauged. Here we
simply show how to use this triality to trivially gap the original
model. To derive this triality from first principles, one can start
with eight fermions in the vector representation of SOð8Þ, and
sum over the spin structures (i.e., bosonization) to obtain the
(bosonic) Spinð8Þ1 WZW model. The latter has a nonanomalous
Z2 × Z2 global symmetry (see Appendix B of [24]). Next, the
fermionizations (in the sense of [36,41–44]) of the Spinð8Þ1
WZW model with respect to the three order two elements give
eight fermions in the vector, spinor, conjugate spinor representa-
tions of the SOð8Þ. Therefore, the triality can be realized as a
composition of bosonization and fermionization.
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ðs; sÞ. Using the triality discussed above, we can under-
stand the effects of this interaction by mapping it to a
quartic fermion operator in the dual fields χ̃:

Hint ¼ q

�X8
m¼1

σm;m

�2

↔ H̃int ¼ q

�X8
m¼1

¯̃χmχ̃m
�2

: ð4:3Þ

From the right-hand side, it is clear that for one sign of qwe
again flow to an SOð8Þ Gross-Neveu model. Since the
broken chiral symmetry ð−1ÞF̃L is gauged in the χ̃ theory,
this leads to a unique ground state in this sector. However,
there remains the unbroken ð−1ÞF̃ symmetry which is also
gauged and survives at long distances. Moreover, in the χ̃
theory a couples to the twisted sector of the surviving
dynamicalZ2 gauge field. Thus, the interaction (4.3) leads to
two grounds states and again spontaneously breaks ð−1ÞFL .
Finally, let us try an interaction preserving only the

diagonal Spinð7Þ,

Hint ¼ q

�X7
n¼1

σn;n
�2

þ p

�X7
n¼1

σn;n
�
σ8;8

↔ H̃int ¼ q

�X7
n¼1

¯̃χnχ̃n
�2

þ p

�X7
n¼1

¯̃χnχ̃n
�
¯̃χ8χ̃8: ð4:4Þ

Working in the limit jqj ≫ jpj we first flow to a Spinð7Þ
Gross-Neveu model. As above this leads to a unique ground
state among these seven fermions. What remains at low
energies is therefore the final fermion χ̃8 coupled to a
dynamical Z2 gauge field x acting on χ̃8 as the overall
fermion number ð−1ÞF. Moreover, there is also a mass term
arising from the chiral expectation value (4.2) and the
interaction controlled by p. In summary, the long-distance
effective action takes the form

Seff ¼
Z

¯̃χ8Dxχ̃
8 þm ¯̃χ8χ̃8 þ iπx ∪ a: ð4:5Þ

This is exactly the fermionic presentation of the ð1þ 1Þd
Ising model from gauging ð−1ÞF of a nonchiral, massive
Majorana fermion. In particular, the fermion mass operator
is equivalent to the energy operator ε. For one sign of the
mass, the theory spontaneously breaks the ð−1ÞFL sym-
metry. For the other sign, it is trivially gapped with a
symmetric ground state as desired.13

B. T invariant ð0 + 1Þd fermions

Consider now a ð0þ 1Þd system of N free massless real
fermions λiðtÞ. These fermions have a T symmetry that
acts as

TλiðtÞT−1 ¼ −λið−tÞ ⇒ T2 ¼ þ1: ð4:6Þ

We can try to add mass terms of the form imλiλj with realm
to gap out these fermions. However, these mass terms are
forbidden by T. Thus, including only quadratic mass terms,
the number of fermions N is protected.
To go further it is helpful to investigate the Hilbert space

in more detail. For simplicity, we consider only even
numbers of fermions and group them into complex pairs
to define fermionic creation and annihilation operators:

an ¼
1ffiffiffi
2

p ðλ2n−1 þ iλ2nÞ;

a†n ¼ 1ffiffiffi
2

p ðλ2n−1 − iλ2nÞ; fan; a†mg ¼ δnm: ð4:7Þ

Each pair of fermions thus generates a Hilbert space
spanned by states j↓i and j↑i:

aj↓i ¼ 0; a†j↓i ¼ j↑i;
aj↑i ¼ j↓i; a†j↑i ¼ 0: ð4:8Þ

T acts on these states by Tj↓i ¼ j↑i and Tj↑i ¼ −j↓i.
Thus, the free system with N fermions has a ground state
degeneracy of 2N=2.
Following [26], we now consider possible quartic

fermion interactions to determine if we can find a system
with a unique ground state. With four fermions we can add
a T invariant interaction term

Hint ¼ qλ1λ2λ3λ4 ¼ −q
�
a†1a1 −

1

2

��
a†2a2 −

1

2

�
: ð4:9Þ

Taking q to be positive, we see that this term energetically
penalizes states where the spins are not aligned. Therefore
the fourfold ground state degeneracy is broken into a
twofold degeneracy among the states j↓↓i and j↑↑i. In
particular, we still have ground state degeneracy. Similarly,
one can argue that with six fermions we cannot find
interactions to fully lift the degeneracy.
However, consider now eight fermions. We consider the

interaction Hamiltonian

Hint ¼ qðλ1λ2λ3λ4 þ λ1λ2λ5λ6 þ λ1λ2λ7λ8 þ λ3λ4λ5λ6

þ λ3λ4λ7λ8 þ λ5λ6λ7λ8Þ − pλ1λ3λ5λ7: ð4:10Þ

We work in the limit where q ≫ p > 0. First neglecting p
and reasoning as above we deduce that there is an
approximate ground state degeneracy among the two states

13To recover the same result in the fermionic description, note
that for one sign of the mass the low-energy limit of the fermions
is trivial, leading to two ground states, while for the other sign of
the mass, the fermion path-integral generates an Arfðxþ sÞ
interaction, where x is the Z2 dynamical gauge field and s is
the underlying spin structure. This leads to a trivially gapped
theory.
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where all spins are aligned j↓↓↓↓i and j↑↑↑↑i. However
now the p interaction term acts to map between these two
remaining states. This splits the degeneracy, leaving a
unique T invariant ground state

jΩi ¼ 1ffiffiffi
2

p ðj↓↓↓↓i þ j↑↑↑↑iÞ: ð4:11Þ

This shows that including interactions the number of
fermions is only invariant modulo eight, and hence the
possible T anomaly is a mod eight effect.

C. Twisted compactification

As is clear from the previous sections both ð1þ 1Þd Z2

symmetric fermions and ð0þ 1Þd T invariant fermions
have a Z8 classification. But, the derivations of these two
results appear somewhat different. The general correspon-
dence (1.1) provides a direct map between them by
considering the theory on the Z2 symmetry line.
Specifically, following our general discussion in Sec. I A,

we can access the theory of the symmetry defect by a Z2

twisted circle compactification of the free ð1þ 1Þd fermions.
This twisted compactification of free fermions was also
discussed in [28]. Since the Z2 acts chirally as ð−1ÞFL

in the ð1þ 1Þd free fermion theory, under this twisted
compactification, the left-moving fermions ψ iðzÞ are peri-
odic (R sector), while the right-moving fermions ρiðz̄Þ are
antiperiodic (NS sector). In the low energy limit,we therefore
obtain exactly N ð0þ 1Þd Majorana fermions λiðtÞ coming
from the zeromodes of the ð1þ 1Þd left-moving fermions. In
particular, this explains the fact that the classification of these
systems, including interactions, coincide.

V. AN EXAMPLE IN ð3 + 1Þd
As a final example of the correspondence (1.1), we

consider ð3þ 1Þd bosonic theories with Z2 global sym-
metry. These possible anomalies for such theories have a
Z2 × Z2 classification and have recently been discussed in
the condensed matter literature in [32]. We can characterize
both such anomalies by inflow from a five-dimensional
bulk M5. Let a ∈ Z1ðM;Z2Þ denote the Z2 background
cocycle field for the global symmetry. Then the bulk SPTs
are given by the following classical actions:

exp

�
iπ

Z
M5

a ∪ a ∪ a ∪ a ∪ a

�
and

exp

�
iπ

Z
M5

a ∪ w2 ∪ w2

�
; ð5:1Þ

where above w2 ∈ Z2ðM5;Z2Þ is the representative of the
second Stiefel-Whitney class of M5.

14 Mathematically, the

first SPT above is captured by the group cohomology
H5ðZ2; Uð1ÞÞ ≅ Z2, while the second involves the geom-
etry nontrivially and goes beyond group cohomology.
We now consider ð2þ 1Þd bosonic theories protected by

time-reversal symmetry. As expected from the general
isomorphism (1.1), the anomalies of such theories also
admit a Z2 × Z2 classification [2]. We can realize the
ð3þ 1Þd SPTs for these anomalies by performing a twisted
compactification of the SPTs in (5.1). Upon such a
reduction, one factor of the gauge field a is absorbed by
the twisted circle direction, while the remaining factors
each descend to the first Stiefel-Whitney class w1 which
can be viewed as a background gauge field for T symmetry
(see Appendix). This leads to

exp

�
iπ

Z
M4

w1 ∪ w1 ∪ w1 ∪ w1

�
and

exp

�
iπ

Z
M4

w2 ∪ w2

�
; ð5:2Þ

which are indeed the correct ð2þ 1Þd classical actions
characterizing these SPTs.

A. Discrete gauge theory construction

Let us give examples of ð3þ 1Þd theories coupled
to a Z2 global symmetry realizing these anomalies.
Consider, for instance, a version of Z2 gauge theory with
dynamical gauge field x1 ∈ C1ðM4;Z2Þ and magnetic dual
y2 ∈ C2ðM4;Z2Þ.15 Here, CpðM4;Z2Þ denotes the set of
Z2-valued p-cochains on M4. We couple this theory to the
Z2 global symmetry through the action

iπ
Z
M4

ðx1 ∪ δy2 þ x1 ∪ a ∪ a ∪ aþ y2 ∪ a ∪ aÞ: ð5:3Þ

Physically, one can think of these couplings as implying
that the worldvolume theory of the dynamical extended
operators in the theory (Wilson lines and surface operators)
carry various anomalies for the Z2 global symmetry. For
instance, x1 has nontrivial holonomy surrounding a surface
operator and the above leads to a cubic anomaly for the Z2

global symmetry inflowing onto this surface. It is straight-
forward to compute that this theory realizes the a5 type
anomaly described in (5.1).
Analogously, we can realize the aw2

2 type anomaly
by a version of Z2 gauge theory that is coupled to global
symmetry as

14The concrete representative of w2 is given in [41].

15In the terminology of [45,46], Z2 gauge theory has an
intrinsic 1-form symmetry Zð1Þ

2 and an intrinsic 2-form symmetry
Zð2Þ

2 . If A2 and B3 are the associated background fields, the
anomaly is exp ðiπ RM5

A2 ∪ B3Þ. Below we couple theZ2 0-form
global symmetry of interest to Z2 gauge theory through these
higher-form symmetries.
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iπ
Z
M4

ðx1 ∪ δy2 þ x1 ∪ a ∪ w2 þ y2 ∪ w2Þ: ð5:4Þ

The couplings to w2 now lead to worldvolume anomalies
for the extended operators which involve their spin. For
instance, y2 has a nontrivial integral on a sphere surround-
ing a Wilson line and the coupling above then implies that
in this theory such a line is a fermion.
In both theories (5.3) and (5.4) we can isolate the theory

on the Z2 symmetry defect and exhibit the correspondence
(1.1). Upon twisted compactification, in each case we find a
sector that is a version of a ð2þ 1Þd Z2 gauge theory with
dynamical fields x1 and y1 and modified quantum numbers
for the line defects. Specifically, twisted compactification
of (5.3) leads to

iπ
Z
M3

ðx1 ∪ δy1 þ x1 ∪ w1 ∪ w1 þ y1 ∪ w1 ∪ w1Þ; ð5:5Þ

which has both Wilson lines for x1 and y1 as Kramers
doublets realizing the w4

1 anomaly in (5.2). Meanwhile
twisted compactification of (5.4) results in

iπ
Z
M3

ðx1 ∪ δy1 þ x1 ∪ w2 þ y1 ∪ w2Þ: ð5:6Þ

So in this case both Wilson lines for x1 and y1 are fermions
living on the worldvolume of the bulk Z2 symmetry defect.
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APPENDIX: SMITH ISOMORPHISM
BETWEEN COBORDISM GROUPS

Here we summarize the mathematical formulation of the
isomorphism (1.1) between the Z2 SPT phases in d
dimensions and time-reversal SPTs in d − 1 dimensions,
following [4,11]. For mathematics literature, see [9,10].
We start with the isomorphism between interacting

bosonic SPT phases. The d-dimensional interacting bosonic
SPT phases with a unitaryZ2 symmetry are classified by the
following cobordism group [2,4]:

Ωd
SOðBZ2Þ ≔ HomðΩSO

d ðBZ2Þ; Uð1ÞÞ; ðA1Þ

where ΩSO
d ðBZ2Þ is the bordism group of pairs ðM; aÞ of

a d-dimensional oriented manifoldM and a Z2 background
a ∈ H1ðM;Z2Þ on M. The SPTs that can be made trivial
after breaking the symmetryG are classified by the reduced
cobordism group

Ω̃d
SOðBZ2Þ ≔ HomðΩ̃SO

d ðBZ2Þ; Uð1ÞÞ; ðA2Þ

where the reduced bordism group Ω̃d
SOðZ2Þ is the quo-

tient Ωd
SOðZ2Þ=Ωd

SOðptÞ.
On the other hand, (d − 1)-dimensional interacting

fermionic SPT phases with a time-reversal symmetry T
are classified by

Ωd−1
O ðptÞ ≔ HomðΩO

d−1ðptÞ; Uð1ÞÞ; ðA3Þ

whereΩO
d−1ðptÞ is the bordism group of (d − 1)-dimensional

unoriented manifolds to a point.
The isomorphism (1.1) relates the two bordism groups:

f∶ Ω̃SO
d ðBZ2Þ→∼ ΩO

d−1ðptÞ: ðA4Þ

Concretely, given a bordism class ½M; a� ∈ Ω̃SO
d ðBZ2Þ with

a representative pair ðM; aÞ, its image under the isomor-
phism f is the bordism class ½Y� ∈ ΩO

d−1ðptÞ where Y ⊂ M
is a submanifold of M that is Poincaré dual to a.16 The
isomorphism f induces the correspondence between SPTs
with Z2 symmetry and those with time-reversal symmetry:

f�∶ Ωd−1
O ðptÞ→∼ Ω̃d

SOðBZ2Þ: ðA5Þ

This direction of the isomorphism means that given a time-
reversal SPT in d − 1 dimensions, one can construct
ad-dimensionalZ2 SPTbydemanding that theZ2 symmetry
defect supports the given time-reversal SPT.An explicit form
of f� can be described as follows, generalizing the map
discussed in Sec. I A. The theorem in [48,49] asserts that any
cobordism invariant in Ωd−1

O ðptÞ can be represented as a
polynomial PðwiÞ, wherewi are the Stiefel-Whitney classes.
Not all of the polynomials are independent of each other as
there are relations among them. In particular, we have

16The Poincaré dual of a ∈ H1ðM;Z2Þ can be taken to be a
smooth submanifold. a defines a classifying map a∶ M → RPk

with sufficiently large k, and the Poincaré dual can be taken to be
the inverse image of RPk−1 ⊂ RPk under a. As generic a is
transverse to RPk−1, a−1ðRPk−1Þ defines a smooth submanifold
of M.
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Z
Md

w2kþ1
1 Qd−2k−1ðwi≥2Þ ¼

Z
Md

βðw2k
1 Qd−2k−1ðwi≥2ÞÞ

¼
Z
Md

w2k
1 βðQd−2k−1ðwi≥2ÞÞ;

ðA6Þ

where Md is a d-manifold, Qd−2k−1ðwi≥2Þ is a degree-
ðd − 2k − 1Þ polynomial of wi≥2, and β is the Bockstein
operation. βðQd−2k−1ðwi≥2ÞÞ can be regarded as a degree-
ðd − 2kÞ polynomial of wi≥3 because of the Wu formula.
Therefore, without loss of generality, we can take the form of
the representative PðwiÞ ∈ Ωd−1

O ðptÞ to be

PðwiÞ ¼
X
k¼0

w2k
1 Qd−2k−1ðwi≥2Þ: ðA7Þ

Similarly, a bordism invariant in Ωd
SOðBZ2Þ can be

written as a polynomial P̃ of Z2 background a and wi≥2.
Again, the polynomials are subject to relations. In particu-
lar, we haveZ
Md

a2kQd−2kðwi≥2Þ ¼
Z
Md

ðβaÞa2k−2Qd−2kðwi≥2
Þ

¼
Z
Md

a2k−1βðQd−2kðwi≥2ÞÞ; ðA8Þ

when Md is an oriented d-manifold. Then, without loss of
generality, we can pick a representative P̃ ∈ Ω̃d

SO to have
the form of

P̃ða; wi≥2Þ ¼
X
k¼1

a2k−1Qd−2k−1ðwi≥2Þ: ðA9Þ

Now, the map (A5) is

f�∶ Pðw1; wi≥2Þ ↦ P̃ða; wi≥2Þ ¼ a ∪ Pða; wi≥2Þ: ðA10Þ

If we take the representatives in the cobordism classes to
have the forms of (A7) and (A9), the explicit form of the
map f� is

f�∶
X
k¼0

w2k
1 Qd−2k−1ðwi≥2Þ ↦

X
k¼0

a2kþ1Qd−2k−1ðwi≥2Þ:

ðA11Þ

The inverse of f,

g ¼ f−1∶ΩO
d−1ðptÞ→

∼
Ω̃SO

d ðBZ2Þ; ðA12Þ

can be constructed as follows. Given an unoriented d − 1-
dimensional manifold Y representing a class of ΩO

d−1ðptÞ
with the orientation (real line) bundle detðTYÞ, we con-
struct the circle bundle M̃Y by taking the fiberwise unit

circles of the direct sum detðTYÞ ⊕ R of detðTYÞ and the
trivial real line bundle R. Further, we take the quotient of
M̃Y by the Z2 acting on the fiber as a π rotation and call it
MY . The map g is set to be gð½Y�Þ ¼ ½ðMY; aÞ�, where
a is the Z2 connection corresponding to the Z2 bundle
M̃Y → MY . The manifoldMY is oriented because when the
transition function between patches of Y is orientation
reversing, it flips the orientation of the circle fiber by
construction, so that it preserves the orientation of the total
space. The Poincaré dual of a is by construction the base Y
of the bundle, and thus we have f∘g ¼ id. For the proof of
g∘f, see [47].
The Pontryagin dual g� of (A12),

g�∶ Ω̃d
SOðBZ2Þ→∼ Ωd−1

O ðptÞ; ðA13Þ

describes the Z2 twisted compactification of the given Z2

SPT onMY to a time-reversal SPT on Y, which is the focus
of the main text. In this construction, the time-reversal
action on Y involves the flipping of the circle fiber. This
map g� can be expressed as

g�∶ P̃ða;wi≥2Þ↦Pðw1;wi≥2Þ¼∂aP̃ða;wi≥2Þja¼w1
; ðA14Þ

where ∂a is the formal partial derivative with respect to a.
If we take the representatives in the cobordism classes to
have the forms of (A7) and (A9), the explicit form of the
map g� is

g�∶
X
k¼0

a2kþ1
1 Qd−2k−1ðwi≥2Þ ↦

X
k¼0

w2k
1 Qd−2k−1ðwi≥2Þ;

ðA15Þ

which is the inverse of (A11).
There is the generalization of the isomorphism between

bosonic SPTs to the fermionic SPTs.17 Mathematically, the
corresponding isomorphism between bordism groups is

Ω̃spin
d ðBZ2Þ→∼ Ωpin−

d−1 ðptÞ; ðA16Þ

whereΩspin
� andΩpin−

� represent the cobordismgroups of spin
and pin− manifolds. Pin− structure corresponds to the time-
reversal symmetry T with T2 ¼ 1. Given a spin-manifoldM
with aZ2 background a, we take the image of the manifolds
as the Poincaré dual Y of a as before. The spin structure ofM
restricts onto thebundleTMjY ≅ TY ⊕ NY,whereNY is the
normal bundle which is isomorphic to detðTYÞ.18 Now, a
pin− structure on Y is equivalent to a spin structure on

17There are further generalized versions of homomorphisms
amongdifferent kinds ofbordisms,which are discussed in [4,10,11].

18As TMjY is oriented, we can take a local orthogonal frame so
that the determinant of the transition function is 1. Then NY ≅
detðTYÞ follows from the decomposition TMjY ≅ TY ⊕ NY.
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TY ⊕ detðTYÞ, which can naturally be induced from the spin
structure on M. Conversely, given a pin− structure on Y, it
naturally extends to a spin structure on detðTYÞ ⊕ R and

then can be restricted to a spin structure on MY . Therefore,
the maps (A4) and (A12) are generalized to the case of (s)pin
bordisms (A16).
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