
 

Anomaly constraints on gapped phases with discrete chiral symmetry
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We prove that in ð3þ 1Þd quantum field theories with ZN symmetry, certain anomalies forbid a
symmetry-preserving vacuum state with a gapped spectrum. In particular, this applies to discrete chiral
symmetries which are frequently present in gauge theories as we illustrate in examples. Our results also
constrain the long-distance behavior of certain condensed matter systems such as Weyl-semimetals and
may have applications to crystallographic phases with symmetry protected topological order. These results
may be viewed as analogs of the Lieb-Schultz-Mattis theorem for continuum field theories.
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I. INTRODUCTION

Symmetry is a universally applicable tool to constrain
the dynamics of strongly coupled quantum field theories.
At themost foundational level, a symmetry organizes energy
eigenstates into representations of the symmetry group and
provides selection rules constraining the dynamics.
Beyond these elementary considerations there are more

subtle aspects of symmetry in quantum field theory such as
’t Hooft anomalies. These are mild violations of gauge
invariance of the partition function of the theory coupled to
classical background gauge field sources. Such violations
are characterized by local functionals and are intrinsic to
the theory when they cannot be eliminated by a choice of
local counterterms.
One way to understand anomalies and their properties is

via anomaly inflow [1]. In this framework the anomaly of a
theory is characterized by a local classical action for
background gauge fields in one higher spacetime dimen-
sion. These classical actions are sometimes called invertible
field theories following [2]. The notion of locality invoked
here means that the action obeys certain cutting and gluing
rules and applies even for discrete background gauge fields
appropriate for discrete global symmetries. The classifica-
tion of invertible field theories, and in turn anomalies,
has a close connection with topology and cobordism

theory [3–10]. In condensed matter physics, the long-
distance limit of symmetry-protected topological order
(SPT) is described by such a classical action. The anoma-
lous field theory is then a set of edge modes which may
reside on the boundary of the SPT.
A crucial feature of anomalies is that they are invariant

under any continuous deformation of a quantum field
theory. This includes changing the energy scale of obser-
vation so that anomalies are invariant under renormaliza-
tion group flow [11]. Anomalies thus provide powerful
input on the possible long-distance behavior of strongly
coupled quantum field theories.
It is useful to organize the possible long-distance physics

of a given quantum field theory by the behavior of the
vacuum under the global symmetry and whether or not
there exists a gap in the energy spectrum. Anomalies
computed in a weakly coupled ultraviolet description
can then constrain which of these various behaviors is
possible at long distances. In particular, while it is believed
that any anomaly can be carried by a symmetry breaking,
or gapless vacuum, it is sometimes the case that a given
anomaly is inconsistent with a gapped and symmetry-
preserving vacuum. The fluctuations around such a low
energy phase are described by a topological quantum
field theory so one can rephrase the above by stating
that the possible anomalies of unitary topological field
theories with a unique ground state on the sphere are
restricted.
Our main result below is to illustrate an example of such

a restriction in the context of ð3þ 1Þd quantum field
theories with ZN global symmetry. This symmetry and
anomaly occurs in a wide variety of theories, in particular in
gauge theories with discrete chiral symmetry where our
result implies that a mass gap necessitates discrete chiral
symmetry breaking.
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The fact that anomalies can prohibit a gap in the energy
spectrum is in some cases well known. For instance in
ð3þ 1Þd field theories, the most familiar cubic anomalies
of continuous symmetry groups arising from triangle
diagrams in perturbative theories have this feature. One
way to argue this is that such a diagram represents a portion
of the three-point function of current operators with power-
law behavior at separated points and hence requires
massless degrees of freedom [12].
By contrast, the implications of discrete anomalies,

i.e., either discrete anomalies for continuous groups such
as parity anomalies in ð2þ 1Þd, or anomalies for finite
symmetry groups, is less clear. In particular, these anoma-
lies do not have any obvious imprint on the correlation
functions of local operators and so the above logic does not
apply. There are general constructions [13–17] showing
that large classes of anomalies for discrete symmetry
groups can be matched by a suitable symmetry preserving
topological field theory.
Converse results have also been obtained. Indeed, in

certain cases [18–21] it has been argued that a given discrete
anomaly is incompatiblewith a symmetry preserving gapped
phase in ð2þ 1Þd by investigating the physics of anyons,
and analogous results have been found using higher-form
symmetry [22]. Recently the authors of [23] derived a general
obstruction extracted from any anomaly, which must nec-
essarily vanish if the anomaly admits a symmetry preserving
gapped phase. We now apply this to anomalies for ZN
symmetry in ð3þ 1Þd theories.
Let us briefly outline the arguments to follow. We first

argue that the discrete chiral anomaly of interest implies
that the partition function vanishes on certain compact
manifolds. In a gapless phase this can be achieved
through massless fermion zero modes, but in a putative
gapped phase it is more surprising and leads us to
investigate further. Next we show that if the infrared
is a topological field theory that is symmetry preserving,
and hence has a unique ground state on the sphere, the
partition function in question can be interpreted as a
norm of a nonzero state using reflection positivity, i.e.,
unitarity. This is a contradiction with the fact that the
partition function vanishes. We thus deduce that at least
one of our assumptions must be violated: either the
symmetry is spontaneously broken at long distances or
the theory is gapless.
In the applications to gauge theories in (3þ 1) dimen-

sions, the presence of a discrete chiral symmetry acting
nontrivially on the fermions is already enough to prohibit
quadratic mass terms and hence suggest that such theories
are either gapless or spontaneously break the discrete chiral
symmetry. Our result proves that, provided an anomaly
associated with the discrete chiral symmetry is nozero, this
conclusion is still correct even taking into account the
possibility adding additional gappable degrees of freedom
or interactions preserving the symmetry.

II. THE ZN SPT FROM (4 + 1)d FERMIONS

Let us begin by describing in detail the ZN anomaly of
interest. An intuitive way to proceed is to first think of the
ZN as part of a largerUð1Þ symmetry. In that case, there are
two distinct types of anomalies, a cubic Uð1Þ anomaly and
a mixed anomaly between Uð1Þ and Poincaré symmetry
[sometimes called a mixed Uð1Þ-gravity anomaly]. When
Uð1Þ is reduced to ZN both types of anomalies survive
(though the classification becomes somewhat complicated
[24,25].) Our focus is on the discrete analog of the mixed
anomaly [26]. As we will see below, often ZN symmetries
with such an anomaly arise from chiral symmetries that act
on fermions.
More directly, we can summarize the ZN anomaly by

inflow from a ð4þ 1Þd SPT protected by the same
symmetry group. The SPT, which we call T k

N , can be
associated with the long-distance limit of k copies of a
massive ð4þ 1Þd fermion Ψ with real mass term mΨ̄Ψ.
The ZN symmetry acts on these fields as Ψ → e

2πi
N Ψ. In the

limit jmj → ∞ the theory becomes trivially gapped, but
maintains subtle information about the symmetry which
constrains the boundary physics.
We can see the imprint of the ZN symmetry by taking

space to be a compact smooth spin 4-manifold M4 with
minimal nonzero value, 48, of the Pontryagin numberR
M4

p1ðTM4Þ. On such a manifold, the Atiyah-Singer index
theorem [28] implies that the fermions have 2k complex
zero modes λi, i ¼ 1; � � � 2k. Therefore, when the size ofM4

is small compared to the mass, the system is described by
the 0þ 1d complex fermions λi which are acted on by the
ZN symmetry.
Quantization proceeds in a standard fashion. Let j−i be

the state annihilated by the operators λi: λij−i ¼ 0. We fix a
scheme such that the state j−i is invariant under the ZN

symmetry. Now set jþi ≔ Q
2k
i¼1 λ

†
i j−i. On this state the

generator, U, of the ZN symmetry acts as

Ujþi ¼ e−
4kπi
N jþi: ð1Þ

The effect of the ð4þ 1Þd fermion mass m is to break the
degeneracy between these states and leave a unique
vacuum. We set conventions so that the energy of jþi is
positively proportional to m. Then, when m is positive the
system flows to the trivial phase, with a unique ZN
invariant ground state. On the other hand, when m is
negative and N∤2k, the ground state jþi is not invariant
under the symmetry and thus defines a nontrivial SPT T k

N.
From the construction above it is clear that this SPT

always admits a simple boundary defined by a k massless
ð3þ 1Þd Weyl fermion. Such a boundary can be con-
structed by allowing the mass of the fermions Ψ to
modulate along the fifth dimension x5: we set m > 0

where x5 < 0, m < 0 where x5 > 0, and m ¼ 0 at
x5 ¼ 0. In the region x5 < 0 the system flows to the trivial
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phase, and in the region x5 > 0 the system flows to T k
N . On

the interface, x5 ¼ 0, there are localized massless ð3þ 1Þd
Weyl fermions.
The possible fermionic ZN SPTs in ð4þ 1Þd were

classified in [24,25]. Their result takes the form of ZaN ⊕
ZbN where aN , bN are integers depending on N whose
explicit form is given in the references. The SPT T 1

N
corresponds to a generator of this classification. Our
analysis above shows that if Nj2k the phase T k

N is trivial
on M4 × S1 when the ZN symmetry is not activated along
M4. This does not in general mean that T k

N is trivial as an
SPT. However, it is known [24,25] that if Nj2k, the phase
T k

N admits a gapped symmetry-preserving boundary. As
we now argue, if N∤2k no such boundary exists [29].

III. NO SYMMETRY-PRESERVING BOUNDARY
TOPOLOGICAL ORDER

We constrain the possible ð3þ 1Þd boundary theories B
following the general logic of [23]. Consider the SPT T k

N
on M4 ×Rþ, where M4 is a compact smooth spin-4-
manifold with Pontryagin number 48 as above, and Rþ ¼
fx5jx5 ≥ 0g is the half-line. The theory B lives on the
boundary x5 ¼ 0.
The path-integral on the region 0 ≤ x5 ≤ x with x > 0

defines a boundary state jBi in the Hilbert space of T k
N on

M4 × fxg. From our discussion above, we know that this
Hilbert space has dimension one and is spanned by jþi.
Therefore, jBi ¼ ZB½M4�jþi where the coefficient ZB½M4�
should be regarded as the partition function of the theory B
on M4. If the boundary B does not explicitly break the ZN
symmetry, the boundary state satisfies UjBi ¼ jBi.
However, from (1) we know that Ujþi ≠ jþi. Therefore
we conclude

ZB½M4� ¼ 0: ð2Þ
When B is the ð3þ 1Þd massless Weyl fermion, this
equation is satisfied because of the fermion zero modes.
Now we assume that the boundary is a unitary spin-

topological field theory Btop. Since we are only interested in
symmetry-preserving boundaries, we further assume that
the Hilbert space of states,HS3 , of Btop on a sphere S3 is one
dimensional. We argue that these assumptions are incom-
patible with (2).
Define the state j0i ∈ HS3 by the path integral over the

disk D4. The S4 partition function is the norm: ZBtop
½S4� ¼

h0j0i which is positive by unitarity. More generally, given a
connected compact 4-manifold X4, we define a state jX4i ∈
HS3 by the path integral over X4nD4, where D4 is a small
ball around a point in X4. The inner product hX4jY4i of two
of such states is identified with the partition function
ZBtop

½X4#Y4� on the connected sum X4#Y4. Noting also

that j0ih0j
h0j0i is the unit operator on HS3 , we have

ZBtop
½X4#Y4� ¼ ZBtop

½X4�ZBtop
½Y4�ZBtop

½S4�−1: ð3Þ

Next we make use of [30], which implies that, given a
simply connected smooth spin 4-manifold X4, there exists
an integer l such that

X4#ð−X4Þ#ðS2 × S2Þ#l ≅diffðS2 × S2Þ#ðlþχðX4Þ−2Þ; ð4Þ

where −X4 is the orientation reverse of X4, ðS2 × S2Þ#l is
the connected sum of l copies of S2 × S2, and χðX4Þ is the
Euler number of X4.[31] In general, the partition function
on X4 and −X4 are complex conjugates. Hence (3) and (4)
imply that for a simply connected spin manifold X4, the
absolute value of the partition function depends only on its
Euler number:

jZBtop
½X4�j2 ¼ ZBtop

½S2 × S2�χðX4Þ−2ZBtop
½S4�4−χðX4Þ: ð5Þ

Finally, following [23] we prove that

ZBtop
½S2 × S2� ≠ 0: ð6Þ

The path integral over D2 × S2 defines a state jϕi in the
Hilbert space on S2 × S1, and ZBtop

½S2 × S2� ¼ hϕjϕi. As
S4 can be obtained by gluing D2 × S2 and S1 ×D3 along
their boundary S1 × S2, we have ZBtop

½S4� ¼ hϕjϕ̃i where
the state ϕ̃ is defined by the path integral over S1 ×D3.
Since ZBtop

½S4� > 0 from unitarity we conclude jϕi ≠ 0 and

thus ZBtop
½S2 × S2� ¼ hϕjϕi ≠ 0.

Therefore, (5) and (6) imply that the partition function on
a simply connected X4, of any unitary spin topological field
theory with a unique state on S3 obeys

ZBtop
½X4� ≠ 0: ð7Þ

In particular, taking X4 to have Pontryagin number 48, e.g.,
the K3 manifold, this contradicts (2).
To summarize, we have shown that the ð4þ 1Þd SPT T k

N
associated with k ð4þ 1Þdmassive fermions charged under
the ZN symmetry cannot have a symmetry-preserving
gapped boundary when N∤2k. If the boundary is gapped,
the symmetry must be broken down to ZgcdðN;2kÞ at least.
On the way, we have also proven that the partition function
of a ð3þ 1Þd spin-topological field theory on a simply
connected manifold obeys the simple relation (5).

IV. APPLICATIONS TO GAUGE THEORIES

Here we apply our results to the chiralZN symmetries in a
gauge theory with simple gauge group G and Nf copies
of massless Weyl fermions ψ in a representation R. If
necessary for gauge anomaly cancellation, we also add Nf

Weyl fermions in the complex conjugate representation R̄.
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We consider the chiral symmetry acting on ψ (and not on
ψ̄) simultaneously. This classical Uð1Þ symmetry is explic-
itly broken because of the Adler-Bell-Jackiw anomaly.
However, depending on R, a discrete chiral symmetry
group remains:

Uð1Þ → ZNfIðRÞ; ð8Þ

where IðRÞ is the index of the representation R [34].
This discrete chiral ZNfIðRÞ symmetry often has the type

of anomaly discussed in the previous sections. (The
appropriate k above is simply the total number of fermions.)
We thus deduce that such theories cannot be gapped
without discrete chiral symmetry breaking when
IðRÞ∤2 dimðRÞ. When this obstruction occurs in examples
is summarized in Table I.
In particular, adjoint QCD has the obstruction. Indeed,

whenNf ¼ 1 this isN ¼ 1 super-Yang-Mills theory, and it
is well known [35] that at long distances the theory is
confining and gapped with Nc vacua arising from discrete
chiral symmetry breaking due to gaugino condensation.
The case Nf ¼ 2 has also been recently studied [15,36–

39] (see also [40,41] for foundational work). The most
plausible IR phase consists of Nc vacua each supporting a
CP1 sigma model. Although this phase is gapless, the
chiral Z4Nc

symmetry acts trivially on the CP1. Therefore,
without additional massless degrees of freedom, the
anomaly of the discrete chiral symmetry must be matched
by spontaneous symmetry breaking and the discrete vac-
uum degeneracy is inevitable.
In some examples, one can realize spontaneous sym-

metry breaking of the discrete chiral symmetry semiclassi-
cally. We add to the theory a gauge-neutral complex scalar
ϕ and include a Yukawa coupling ϕψψ , where we assume
that a gauge-neutral bilinear of ψ exists [42]. To preserve

the ZNfIðRÞ symmetry, we let ϕ transform as ϕ → e
−4πi

NfIðRÞϕ.
We now spontaneously break the discrete symmetry via a

potential condensing the scalar ϕ. Classically the phase θ of
ϕ is a periodic massless scalar. However, gauge instantons
generate a potential for θ through the Peccei-Quinn

mechanism [43]. This potential is 2π
NfIðRÞ periodic, leaving

NfIðRÞ vacua breaking ZNfIðRÞ down to Z2.

V. WEYL SEMIMETAL

The anomaly obstruction derived above also has appli-
cations to systems of interest in condensed matter physics.
Here we highlight one example.
In materials called Weyl semimetals [44–47], the low

energy physics is effectively described by two Weyl
fermions. A simple model of a Weyl semimetal is realized
by the Bloch Hamiltonian acting on two-component
functions of k⃗ [44]

Hk ¼ 2ty sin kyσy þ 2tz sin kzσz þ ð2txðcos kx − ξÞ
þmð2 − cos ky − cos kzÞÞσx; ð9Þ

where ty, tz, ξ, and m are parameters and σi are the Pauli
matrices. When −1 ≤ ξ ≤ 1, there are band crossings at
kx ¼ �k0 ¼ � cos−1ðξÞ with energy E ¼ 0 (see Fig. 1).
The dispersion around the crossings is approximately linear
and thus, when half-filled, the low energy physics can be
described by relativistic left-handed and right-handed Weyl
fermions ψ1 and ψ̄2 corresponding to the crossing points
kx ¼ �k0. The electromagnetic Uð1ÞEM is a global sym-
metry of this theory and acts on the Bloch wave function as
a uniform phase rotation. This in turn acts on the effective
relativistic fermion fields as ψ1 → eiαψ1 and ψ̄2 → eiαψ̄2

with phase α.

(a) (b)

FIG. 1. Schematic of the band structure (9). (a) When − 1 ≤
ξ ≤ 1, the band has two crossings at kx ¼ �k0 with energy E ¼ 0
which leads to the effective relativistic Weyl fermion description.
(b) When jξj > 1 the system is trivially gapped when half-filled.

TABLE I. Applications of the obstruction to gauge theories with various gauge groups G and matter
representations R. The final column lists the minimum number of vacua implied by our obstruction if the theory
is gapped. In the case with symmetric or antisymmetric tensor representations, the number of enforced vacua is Nc

2
or

Nc depending on if Nc is even or not.

G R IðRÞ dimðRÞ Obstruction? Enforced vacua

SUðNcÞ fund 1 Nc No 1
SOðNc ≥ 4Þ vec 2 Nc No 1
SUðNcÞ adj 2Nc N2

c − 1 Yes Nc

SUðNcÞ sym Nc þ 2 NcðNcþ1Þ
2

Yes Ncþ2
2

or Nc þ 2

SUðNcÞ asym Nc − 2 NcðNc−1Þ
2

Yes (Nc ≥ 5) Nc−2
2

or Nc − 2

SUð2Þ 4 10 4 Yes 5
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On the other hand, the discrete translation Tx along the x
direction acts on the effective fermions as the axial rotation
ψ1 → eik0ψ1 and ψ̄2 → e−ik0 ψ̄2, because at a general point
on the Brillouin zone it acts on the Bloch wave function as
multiplication of eikx . When the parameters in (9) are tuned
to special values, the location k0 of the crossing occurs at 2πN
for some integer N. In this case, the Tx translations give rise
to a ZN axial symmetry.
When the truncation occurs, the effective theory has aZN −

Uð1ÞEM mixed anomaly discussed in [48], as well as the ZN-
gravity mixed anomaly extensively discussed above. As
remarked in [48], these anomalies exist only in the IR effective
theory and not in the UV lattice system, and therefore the
gapless modes are not protected under arbitrary continuous
deformations of the UV Hamiltonian. Indeed, the system can
easily be gapped out by setting jξj > 1, see Fig. 1(b).
The anomalies, however, can constrain the dynamics

when the emergent Lorentz symmetry and truncation of the

translation symmetry to ZN in the IR are preserved. In
particular, our main results say that, under the assumptions
above, the ZN-gravity anomaly protects the gapless modes
even if general interactions are included [49]. For instance,
in the gapping deformation illustrated in translation
between Fig. 1(a) and Fig. 1(b), a Lorentz violating
dispersion relation develops.
It would be interesting to find applications of our

obstruction to lattice theories with crystallographic sym-
metry. For instance, in a model with point group containing
ZN , if the long-distance physics is relativistic and realizes
the anomaly, the only way to gap the system while
preserving the point group is via interactions that violate
the emergent Lorentz symmetry.
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