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Fixed target missing-momentum experiments such as LDMX and M3 are powerful probes of light dark
matter and other light, weakly coupled particles beyond the Standard Model (SM). Such experiments
involve ∼10 GeV beam particles whose energy and momentum are individually measured before and after
passing through a suitably thin target. If new states are radiatively produced in the target, the recoiling beam
particle loses a large fraction of its initial momentum, and no SM particles are observed in a downstream
veto detector. We explore how such experiments can use kinematic variables and experimental parameters,
such as beam energy and polarization, to measure properties of the radiated particles and discriminate
between models if a signal is discovered. In particular, the transverse momentum of recoiling particles is
shown to be a powerful tool to measure the masses of new radiated states, offering significantly better
discriminating ability compared to the recoil energy alone. We further illustrate how variations in beam
energy, polarization, and lepton flavor (i.e., electron or muon) can be used to disentangle the possible the
Lorentz structure of the new interactions.
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I. INTRODUCTION

Over the past decade the experimental dark matter (DM)
search effort has greatly expanded in scope to explore the
sub-GeV mass range. This push toward lower masses has
been driven by several complementary strategies, including
new direct-detection techniques (e.g., electron ionization)
[1–9] and low-energy accelerator searches [10–29]—see
Refs. [30–33] for reviews.
A particularly promising accelerator-based strategy

involves the fixed-target missing-momentum (MM) con-
cept [18]. In this setup, a low-current Oð1–10Þ GeV lepton
beam is passed through a thin target, which is surrounded
on both sides by tracking material and positioned upstream
of a veto detector; the energy and momentum of individual
beam particles are measured on both sides of the target.
If DM (or any other invisible or long-lived particle) is
produced in the target, the beam particle loses a large
fraction of its energy and momentum, and no other visible
particles are observed in the veto detector.

This technique has the following several appealing
features:

(i) Experimental control: Unlike direct detection
searches, whose sensitivity is subject to astrophysi-
cal uncertainties and environmental backgrounds,
the MM signal strength is fully calculable and
irreducible background events occur at a rate of
∼10−15 per incident beam particle [14].

(ii) Coverage breadth: Since DM production at accel-
erators is relativistic, the signal strength is largely
insensitive to the Lorentz structure of the underlying
interaction. Consequently, the same MM search
simultaneously covers a wide range of DM spin
and coupling varieties.

(iii) Parametric enhancement: Unlike beam-dump DM
searches whose signal involves DM production
followed by its scattering in a downstream detector,
the MM setup only requires DM production. Thus,
the signal rate depends only on the production rate
without the added penalty of a small scattering
probability.

The electron beam MM strategy is currently being
developed by the LDMX Collaboration [14,34] and
additional studies are underway to explore a future muon
beam MM experiment (M3) at Fermilab [16]. Collectively,
these efforts have the potential to test nearly every model
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of sub-GeV freeze-out for which the MM signal strength is
parametrically related to the DM annihilation rate in the
early Universe [12,17,23].1 In this work, we explore the
optimistic scenario in which one of these experiments
convincingly discovers a new physics signal.
The existing MM literature has largely focused on

the kinematics of signals arising from the radiative pro-
duction of massive spin-1 bosons with vector current
interactions (e.g., kinetically mixed dark photons)
[14,18,34]. In this paper, we generalize these studies to
explore the kinematics of recoiling beam leptons in fixed
target interactions,

lN → lN þ X…; ð1Þ

where l ¼ e or μ, and X represents a broad range of
possible final state particles, including single boson emis-
sion in 2 → 3 scattering and direct DM pair production in
2 → 4 processes as depicted in Fig. 1. Furthermore, we
develop novel strategies and statistical tests to distinguish
these different model hypotheses and quantify the signal
samples required for model discrimination.
This paper is organized as follows: in Sec. II, we

introduce representative phenomenological interactions
for MM signals and describe the details of our numerical
simulations; in Sec. III, we evaluate the model discrimi-
nation potential of final state kinematic variables; in
Sec. IV, we study how varying the initial state beam energy
and polarization yields new observables; in Sec. V, we
explore the additional clues that muon beams can offer; we
offer some concluding remarks in Sec. VI.

II. MODELS AND SIMULATIONS

Throughout this paper, our goal is to distinguish between
representative signal models categorized according to
how they couple to leptons or the mass of new particles
involved. In this section, we define these interactions by
their fixed-target production mode as radiative 2 → 3
reaction lN → lNX, where X is an invisibly decaying

particle, or a 2 → 4 reaction that pair produces the DM
χ directly through an off-shell mediator.2

A. Mediator production: 2 → 3 processes

The nominal LDMX=M3 signal process involves renor-
malizable interactions through which a single “mediator”
particle X is emitted in lN → lNX reactions inside the
target, where l ¼ e or μ is the lepton beam particle andN is
a target nucleus.
The renormalizable (mass dimension ≤4) interactions

with new spin-1 states are

LS¼1 ¼ eϵ ×

8>><
>>:

A0
μl̄γμl vector

Z0
μl̄γμPL;Rl chiral vector

Vμl̄γμγ5l axial vector;

ð2Þ

where we have adopted an arbitrary overall normalization
eϵ to match the interaction of a kinetically mixed dark
photon; e ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

4παEM
p

is the electric charge and ϵ para-
metrizes the strength of this interaction relative to
electromagnetism. Here PL;R ≡ ð1 ∓ γ5Þ=2 is a left (right)
projector and we consider various mass choices for each
possible scenario mA0 ; mZ0 ; mV . Constraints on light new
vector boson interactions with anomaly-free couplings
to Standard Model (SM) particles are summarized in
Refs. [36,37]; bounds on chiral and axial vector interactions
are more model dependent, but are typically very strong
because such interactions require additional SM-charged
field content for anomaly cancellation [38,39].
We also consider renormalizable spin-0 interactions,

LS¼0 ¼ eϵ ×

�
sl̄l scalar

ial̄γ5l pseudoscalar;
ð3Þ

for scalar and pseudoscalar interactions with corresponding
masses ms and ma ≲ GeV. Note that unlike the vector

FIG. 1. Schematic diagrams depicting the signal topologies outlined in Sec. II. Left: two-step DM production via 2 → 3 scattering in
which a massive mediator particle X is produced on shell and subsequently decays invisibly via X → χ̄χ. Middle: direct DM production
through virtual light mediator exchange corresponding to the ðēeÞðχ̄χÞ=q2 “millicharge” interaction in Eq. (4). Right: direct DM
production through a contact ðēeÞðχ̄χÞ=Λ2 interaction from Eq. (4) represented by the black circle.

1This conclusion only fails to hold if early Universe annihi-
lation is on resonance, corresponding to a tuned region of
parameter space [23,35].

2For our purposes, X and χ need only be “invisible” on detector
length scales of order a few meters; if they decay promptly into
visible or semivisible final states, additional model-dependent
signals may be more useful for model discrimination. However,
exploiting these features is beyond the scope of this paper.

BLINOV, KRNJAIC, and TUCKLER PHYS. REV. D 103, 035030 (2021)

035030-2



interactions in Eq. (2), which can be gauge invariant at high
energies, the Yukawa couplings in Eq. (3) are not invariant
under the SUð2ÞL × Uð1ÞY gauge group, so they must arise
from higher-dimension operators proportional to the source
of electroweak symmetry breaking. We therefore expect
ϵ ∝ v=F, where v ¼ 246 GeV is the Higgs vacuum expect-
ation value and F is the mass scale of the heavy particle
whose quantum numbers restore SM gauge invariance. As
such, the bounds on these interactions depend on the details
of the ultraviolet completion; they are summarized in
Refs. [40–45] for many representative examples.

B. DM pair production: 2 → 4 processes

If the mediators in Sec. II A are too heavy for direct
production or if their decays to DM pairs are kinematically
forbidden, the DM can still be produced directly via lN →
lNχ̄χ reactions with virtual mediator exchange. Here we
consider two representative limiting cases in which the
amplitudes for DM pair production are proportional to

ℳpair ∝ eϵ ×

8<
:

1
Λ2 ðl̄γμlÞðχ̄γμχÞ heavy mediator
1
q2 ðl̄γμlÞðχ̄γμχÞ millicharge;

ð4Þ

where Λ≳ GeV represents the mass scale of a vector
mediator that has been integrated out to generate a contact
operator and q is the momentum imparted to the χ̄χ system
in the limit Λ < 2mχ where the mediator cannot decay to
DM particles. Note that in our numerical studies the heavy
and light mediator cases are modeled using renormalizable
interactions from Sec. II A by taking the mediator mass
mA0 ≫ Ebeam or mA0 ≪ 2mχ, respectively. These two
classes of processes are represented schematically by the
middle and right diagrams in Fig. 1. We note that the list
of operators in Eq. (4) is not exhaustive and can include
different Lorentz structures [e.g., additional γ5 insertions
from integrating out the axial vector in Eq. (2)].

C. Simulation details

For the numerical studies in the remainder of this
paper, we generate signal samples for electron and muon
beams based on Eqs. (2)–(4) using version 2.6.4 of
MADGRAPH 5 aMC@NLO [46] including elastic and inelastic
atomic and nuclear form factors for the target [47,48]. The
inclusive signal production cross sections for these scenar-
ios are presented in Fig. 2 as functions of either the mass of
the radiated particle for the vector mediator in Eq. (2) or as
a function of 2mχ in Eq. (4) where appropriate.
Although our qualitative conclusions below are largely

independent of any particular experimental setup, for
electron beam studies, our simulation is designed to
match the anticipated LDMX Phase 1 design with a
4 GeV electron beam impinging on a thin tungsten target
[34]. Similarly, our muon beam simulation is motivated by

the M3 concept, which has been studied for a 15 GeV beam
energy and also with a tungsten target [16]. For our
signal samples, we select events with Ee ≤ 1.2 GeV and
Eμ ≤ 9 GeV for LDMX and M3, respectively.

III. KINEMATIC VARIABLES

This section generalizes earlier studies of dark photon
production in missing momentum experiments [14,18,34]
by using kinematic variables—Ebeam (beam energy),
Ee (electron recoil energy), and pT;e (recoil electron
transverse momentum)—as tools for distinguishing various
new physics scenarios. The differential distributions of Ee
and pT;e are shown in Figs. 3 and 4 for the on-shell
emission of spin-1 and spin-0 particles (Sec. II A) and in
Fig. 5 for direct DM production (Sec. II B) via heavy and
light mediators; in Fig. 6, we directly compare the
distributions of these models. We discuss these results in
more detail below.

A. On-shell mediators: Mass measurement

On shell mediator emission arises in 2 → 3 processes
as shown in the left panel of Fig. 1. The corresponding
kinematic distributions shown in Fig. 3 and 4 are sensi-
tive to the mass of the emitted particle. It is therefore
interesting to investigate the ability of missing momentum
experiments to distinguish different mass hypotheses.

FIG. 2. Fixed target production cross sections for a represen-
tative subset of scenarios in Eqs. (2)–(4) for 4 (solid lines) and 8
(dashed lines) GeV electron beams on a tungsten target. The
horizontal axis represents the mediator mass mA0 for the radiative
production of A0 vector mediators through the interaction in
Eq. (2) (top) and 2mχ for the DM pair production through the
interactions in Eq. (4). The heavy mediator case corresponds to
mA0 ¼ 10 GeV and exhibits a systematic increase in the cross
section as the beam energy is increased. This behavior reflects the
higher dimensionality of the operator mediating this interaction
[first line of Eq. (4)].
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We quantify this discriminating power using a simple
likelihood ratio test as described below.
We start by representing a histogram of experimental

events (either in Ee, pT;e, or both) as a vector d⃗ ¼
ðd1;…; dNÞ. We treat each bin as an independent counting
experiment with Poisson statistics; the di are then drawn
from the Poisson distribution fPðdi; νiÞ,

fPðd; νÞ ¼
νd

d!
e−ν; ð5Þ

where ν are the predicted means in each bin which define
a model hypothesis. The joint probability distribution or
likelihood for d⃗ to be observed given the means ν⃗ is [49,50]

Lðd⃗jν⃗Þ ¼
YN
i¼1

fPðdi; νiÞ: ð6Þ

Models that describe the data better have a larger like-
lihood. For computational simplicity, we work with the
logarithm of the likelihood

ln Lðd⃗jν⃗Þ ¼
XN
i¼1

ðdi ln νi − νi − ln di!Þ; ð7Þ

and define a test statistic (TS) λ to compare two different
models A and B for a given data set

λ ¼ −2½ln Lðd⃗jν⃗AÞ − ln Lðd⃗jν⃗BÞ�: ð8Þ

This test statistic is negative when model A is preferred over
B and positive otherwise (in the limit of large statistics in all
bins λ simply becomes a difference of χ2 values for the two
models). We use our Monte Carlo (MC) event samples to
generate many mock experiments and study the resulting
distribution of λ for various combinations of hypotheses.
If there are enough signal events, one can reject the A
hypothesis with a given confidence level (C.L.) compared
to B if the probability of obtaining λ < 0 is 1-C.L. In other
words, we can find the number of events Nsig such that

p ¼
Z

0

−∞
dλ fðλ;NsigÞ ¼ 1-C:L:; ð9Þ

where fðλ;NsigÞ is the distribution of the test statistic for a
given number of signal events.
Note that due to the finite size of any Monte Carlo

sample, a sufficiently fine binning of the events (or binning
in multiple variables) will result in small statistics and
significant fluctuations in individual bins. We address this
issue by using a modification of Eq. (7) based on Ref. [51]

FIG. 3. Kinematic distributions for the recoiling electron in on shell production of a massive mediator particle in eN → eNX fixed
target reactions. The models considered in the left, center, and right panels correspond to the vector, axial vector, and chiral vector
interactions in Eq. (2), respectively. The top row shows the outgoing electron’s recoil energy for the three interaction types for various
choices ofmχ , and the bottom row shows the corresponding electron pT;e distributions. In all cases, the incident electron beam energy of
4 GeV and a tungsten target are chosen to match projections for LDMX Phase 1 [34].
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as described in the Appendix. We also do not account for
detailed experimental effects such as energy and momen-
tum smearing, so our results should be viewed as an
idealized best-case scenario. However, our choices of
pT;l and El binning are motivated by the detailed simu-
lation-based detector studies of Refs. [14,34]. In particular,
we use 5 MeV pT bins and 1%El bins. While the latter is
almost certainly an overly optimistic choice, we will show
that pT spectra still offer superior model discrimination
ability compared to recoil energy.
We show an application of this TS in Fig. 7. The upper

left panel shows a histogram of a mock data set with 100
events drawn from a high-statistics MC pT;e distribution for
a 100 MeV vector mediator emitted on shell as in Fig. 1
(left). This distribution is compared to expected distribu-
tions for a set of different masses. It is clear that some
hypotheses fall outside of the gray 1σ statistical uncertainty
band of the mock data and are therefore disfavored, while
others are indistinguishable within errors. Equations (8)
and (9) allow us to quantify this observation. The result is
shown in the upper right panel of Fig. 7, which illustrates
the number of signal events needed to distinguish a test

mass hypothesis on the vertical axis from the true model
(i.e., the one that was used to generate the mock data set)
on the horizontal axis. We see that very different masses
can already be distinguished with the background-free
“discovery threshold” number of signal events Nsig ¼ 3,
while comparable masses will require Oð10 − 100Þ events
to disentangle.

B. Missing momentum versus missing energy

Armed with the statistical test introduced above, we
can now compare the model discrimination power of
missing momentum experiments like LDMX and M3

against other fixed-target lepton beam techniques that only
measure the missing energy of the beam (e.g., the NA64
experiment [52,53]).
As in the previous section, we use simulated data to

estimate the number of signal events required to distinguish
a test hypothesis from the true model using recoil energy
alone at a given confidence level, yielding a two-
dimensional histogram similar to the upper right panel
of Fig. 7. We compare this to pT;e-only discrimination by

FIG. 4. Kinematic distributions for the recoiling electron in radiative scalar and pseudoscalar emission in eN → eNs=a fixed target
reactions that utilize the interactions in Eq. (3). The top row shows the outgoing electron’s recoil energy for the two interaction types for
various choices of mχ , and the bottom row shows the corresponding electron pT;e distributions. In all cases, the incident electron beam
energy of 4 GeV and a tungsten target are chosen to match projections for LDMX Phase 1 [34].
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subtracting the two histograms. The resulting histogram is
shown in the bottom right panel of Fig. 7. This difference is
strictly positive, implying that transverse momentum ena-
bles superior model discrimination with a much smaller
sample of signal events.

For illustration, in the left column of Fig. 7, we also
show various pT;e (top) and Ee (bottom) test hypothesis
templates (colored curves) plotted alongside Nsig ¼ 100

events of simulated data drawn from a vector mediator
sample with mA0 ¼ 100 MeV (black curve). The gray band

FIG. 5. Kinematic distributions for the recoiling electron in direct pair-production of Dirac fermions in eN → eNχχ̄ fixed target
reactions. The models considered in the left and right columns correspond to the contact (heavy mediator) and millicharge (light
mediator) interactions in Eq. (4). The top row shows the outgoing electron’s recoil energy for the two interaction types for various
choices ofmχ , and the bottom row shows the corresponding electron pT;e distributions. In all cases, the incident electron beam energy of
4 GeV and a tungsten target are chosen to match projections for LDMX Phase 1 [34].

FIG. 6. Kinematic distributions for on-shell vector mediator (solid curves), off shell vector mediator with mA0 ¼ 10 GeV (dashed
curves), and off-shell massless vector mediator (dotted curves) for different masses. All distributions are for a 4 GeV electron beam
colliding with a tungsten target.
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surrounding the black curve is the statistical uncertainty of
the mock data. Visually it is clear that, relative to the Ee

distributions, the pT;e distributions span a greater variety of
shapes for the same model parameters and thereby offer
more discriminating power. For nearly the entire mass
range shown in this figure, recoil energy distributions
require Oð100Þ events to discriminate between widely
separated mass hypotheses (e.g., MeV and GeV), whereas
transverse momentum can already exclude closely spaced
choices (e.g., 10 and 100 MeV) requiring only a few
events, near the discovery threshold for a zero-background
environment.

C. Off-shell mediators

Reference [23] has shown that missing momentum
experiments are sensitive to a wide range of mediator
masses in direct DM production, including off-shell pro-
duction through heavy mediators. In this section, we
instead focus on the kinematic features of these signals
and extend the discussion to the emission of invisible
particles through a massless off-shell mediator (e.g.,
production of millicharged particles via the photon).
In Fig. 5, we show the distributions of electron recoil

energies and transverse momenta for direct DM or milli-
charged particle production for a few different masses.

FIG. 7. Mass discrimination sensitivity for vector mediators using electron transverse momentum ðpT;eÞ and electron recoil energy
ðEeÞ distributions. Top left: pT;e distributions for representative test hypotheses for different mass values (colored curves) plotted
alongside a mock data set with Nsig ¼ 100 signal events drawn from a distribution of mA0 ¼ 100 MeV; the gray shaded band
surrounding the black histogram represents the statistical uncertainty of the mock data set. Top right: two-dimensional histogram of
the number of signal events required to distinguish a given test mass hypothesis on the vertical axis from the true mass on the
horizontal axis (the one used to generate the mock data set) at 95% confidence level assuming only statistical errors. Darker colors
correspond to more signal events needed. This result makes use of the pT;e spectral information only. Bottom left: same as top left,
but showing the electron recoil energy ðEeÞ instead of transverse momentum ðpT;eÞ. Bottom right: comparison of recoil energy-only
versus transverse momentum-only analyses to discriminate between different mass hypotheses. The density plot shows the
difference between the number of signal events required to distinguish a test model from the “true” scenario using only Ee and pT;e
information. This difference is strictly positive, implying that transverse momentum enables superior model discrimination with a
much smaller number of signal events. This improvement is particularly pronounced for models with similar masses where the
recoil energy spectra are nearly identical.
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These distributions look qualitatively similar to on-shell
mediator emission. However, in the off-shell case, the
invariant mass of the emitted particles is not fixed, so one
naively expects broader distributions in pT;e compared to
the on-shell case. This is explicitly illustrated in right
plot of Fig. 6 in the heavy mediator regime. A massless
mediator leads to an enhancement of the amplitude
at invariant mass close to the kinematic minimum of
2mχ , which compensates for the expected broadening.
Consequently, the transverse momentum distributions in
the millicharge and on-shell cases look very similar.
Figure 6 illustrates another important point: the kin-

ematic distributions are somewhat degenerate in “theory
space”. That is, a given distribution can be interpreted as
coming from an on-shell mediator of a certain mass,
or from off-shell mediators and DM of different masses.
Thus, it is essential to have a complementary array of
experiments that can probe these interactions at differentffiffiffi
s

p
. For example, it is clear from Fig. 6 that a MM

experiment with a few signal events will not be able to
distinguish between the production of an on-shell mediator
with mA0 ¼ 350 MeV or direct DM or millicharge pro-
duction with 2mχ ¼ 350 MeV via an off-shell mediator.
A B-factory experiment like BABAR, Belle II, or BESIII
with

ffiffiffi
s

p ¼ 10.58 GeV, on the other hand, can potentially
observe very different signals in monophoton searches
depending on the nature of the mediator: a sharp peak
in the photon energy spectrum if the mediator is massive
and mA0 <

ffiffiffi
s

p
, or a broader excess if the mediator is

massless [3,54–57].
However, we note that if the beam energy in a MM

experiment is varied over a sufficiently broad range of
values, the energy dependence of the new-physics cross
section can be extracted, in principle, as shown in Fig. 2.
Indeed, the interaction for a sufficiently heavy mediator
arises from a higher-dimension operator, so the signal rate
grows more prominently with energy. Consequently, the
signal’s beam energy dependence can be used to distin-
guish this class of models from on-shell mediator produc-
tion or millichargelike production through a virtual light
mediator.

IV. BEAM POLARIZATION

In this section, we quantify the discriminating power of
the incident beam energy and polarization. While the
nominal LDMX setup is not designed to support polari-
zation, electron beam polarimetry for Oðfew-10 GeVÞ
beams is well established and there is no a priori impedi-
ment to the measurements we consider here [58,59].
Although detailed studies are ultimately needed to firmly
establish the feasibility of a polarized source that can satisfy
the other LDMX beam requirements (e.g., ∼100 pA
currents required to avoid pileup-related backgrounds),
such efforts are beyond the scope of the present work.

We define the differential left/right energy asymmetry in
terms of a new observable

ALRðEeÞ≡
�
dσL
dEe

−
dσR
dEe

��
dσL
dEe

þ dσR
dEe

�
−1
; ð10Þ

where σL=R are signal production cross sections for left/
right polarized beam particles. For the vector and axial
vector interactions, it can be shown that the differential
asymmetry vanishes since the amplitudes for left- and right-
handed electron beam are independent of the polarization.
On the other hand, for chiral vector interactions involv-

ing a PL operator, the cross section for a right-handed
polarized electron beam vanishes when me ≪ Ebeam. This
is can be seen in Fig. 8 where we plot the differential
left/right polarization asymmetry in signal events as a
function of electron recoil energy Ee for different chiral
vector mediator masses, and we only show statistical error
bars. We see that there is noticeable asymmetry for all
masses, making the chiral vector scenario easily distin-
guishable from the vector and axial vector scenarios, which
do not exhibit an asymmetry.
Note that all potential backgrounds from QED processes

(such as photonuclear hadron production) involve vector
Lorentz structures, so no asymmetry is expected even if
such events cannot be vetoed; electroweak “invisible”
backgrounds from direct neutrino production via off-shell
Z exchange eN → eNν̄ν will contribute to the asymmetry,
but the event rates for these processes are negligible for a
Phase 1 LDMX run [14,34].
Independently of how the asymmetry in Eq. (10) is

binned, we can also define an inclusive total asymmetry
observable

FIG. 8. Differential left/right asymmetry ALRðEeÞ from Eq. (10)
for the (left-handed) chiral vector model plotted against electron
recoil energy Ee for a beam energy of 4 GeV. Also shown are the
MC statistical uncertainties for each energy bin.
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Atot ≡ NL − NR

NL þ NR
; ð11Þ

where NL=R is the number of signal evens observed using a
left/right beam polarized beam, assuming equal luminos-
ities for the two data samples. The uncertainty on the total
asymmetry is

δAtot ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NLNR

ðNL þ NRÞ3
s

; ð12Þ

where we have used standard error propagation and Poisson
uncertainties for the signal events δNL=R ¼ ffiffiffiffiffiffiffiffiffiffi

NL=R
p

; to
claim nσ evidence of a polarization asymmetry, we require
Atot > nδAtot. Note that, while the total asymmetry defined
in Eq. (11) is related to ALRðEeÞ from Eq. (10), the former
is not the integral of the latter. Furthermore, in the limit
of a purely chiral interaction ð∝ PL or PR), signal events
will overwhelmingly be produced with only one beam

polarization, so an asymmetry can be identified with a
small number of signal events, as soon as the number of
signal events exceeds the Poisson error on the total
event count.

V. ELECTRON VERSUS MUON BEAMS

In the previous section, we have seen that the observation
of a polarization asymmetry in the electron energy dis-
tribution indicates that DM interacts with the SM via a
chiral vector mediator, while nonobservation of an asym-
metry indicates that the mediator has either vector or axial
vector interactions (similar conclusions hold for scalar
mediators). Distinguishing between vector and axial vector
interactions would require modifying the beam in a differ-
ent way. In particular, the difference between the differ-
ential energy distributions of the vector and axial vector
mediator scenarios is proportional to mass of the beam
particle m2

l. This can be easily seen by considering the
l−γ → l−A0 process for the vector and axial couplings

FIG. 9. Energy distributions for the recoiling muon in on-shell production of a massive mediator particle in μN → μNX fixed target
reactions. The top row shows the outgoing muon’s recoil energy for vector (left) and axial vector (right) interactions and the bottom row
for scalar (left) and pseudoscalar (right) interactions. In all cases, the incident muon beam energy of 15 GeV is chosen to match
projections for M3 Phase 1 [16].
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of A03; in the limit of ml=
ffiffiffi
s

p
≪ 1, the squared amplitudes

differ by

jMV j2 − jMAj2 ∝
4m2

lðm4
A0 − 8m2

A0 tþ t2Þ
m2

A0sðm2
A0 − s − tÞ ; ð13Þ

where s is the Mandelstam variable for the 2 → 2 process
(rather than the lN → lN þ A0 collision). This expression
illustrates two important points: the difference between the
axial and vector interactions is amplified for heavier beam
particles, and the axial interaction tends to produce more
events at lower l− recoil energies (this can be confirmed by
expressing t in terms of the recoil l− energy and pT). These
differences disappear at larger mA0 or beam energies, both
of which increase s. This intuition is borne out in the full
MC simulation of a muon missing momentum experiment
from Ref. [16], which features a 15 GeV muon beam
colliding with a tungsten target. We show the recoiling
muon energy distributions in Fig. 9 for various A0 masses in
the vector (upper left panel) and axial models (upper right
panel). We see that for mA0 ≲mμ, the distributions are
visibly different at low recoil energies as expected. An
analogous behavior is also shown in the recoil energy
distributions for scalar and pseudoscalar interactions in the
lower row of Fig. 9. We therefore conclude that experi-
ments utilizing muon beam and electron beams are com-
plementary for probing both the flavor and Lorentz
structure of beyond Standard Model (BSM) interactions.
Although the muon beam missing momentum concept,

as demonstrated in [16] for M3, is similar to an LDMX-
style electron beam experiment, there are some important
differences. For example, LDMX anticipates a monochro-
matic electron beam, utilizes a thin target ð≪ radiation
length), and requires ∼1014–1016 electrons on target for
phases 1 and 2, respectively. By contrast, muon beams are
typically prepared from boosted pion decays with a broader
spread of beam energies and lower luminosities; as a result,
M3 specifically is designed to run with ∼1013 total muons
delivered to the target. The optimal recoil energy cut to
suppress SM backgrounds was also found to be different.
Using theM3 setup as a benchmark, we can estimate the

number of signal events required to distinguish between
axial and vector interactions using the likelihood ratio
method described in Sec. III. As before, we generated mock
data from our MC samples for A0 of a given mass and the
vector interaction, and then studied the distribution of log-
likelihood ratios for the axial model (with A0 of the same
mass) and vector model. The result is shown in Fig. 10. As
the mediator mass becomes larger, the kinematic distribu-
tions of axial and vector interactions become more and

more similar, requiring larger event samples to disentangle.
This figure also illustrates the importance of experimental
resolution on the kinematic quantities. The solid and
dashed lines correspond to two different binnings in recoil
energy and transverse momentum. Higher resolution (i.e.,
finer binning) enables model discrimination with a fewer
number of observed events, as the spectral differences
between models are spread over a larger number of bins.

VI. CONCLUSION

Fixed target missing-momentum experiments involving
electron or muon beams are powerful dark matter (and dark
sector) discovery tools. In this paper, we have studied the
model discriminating potential of these techniques using
various simplified models categorized according to pro-
duction topology and Lorentz structure.
In our numerical studies, we have varied the masses of

BSM particles in the models above and developed
statistical tests to discriminate between different signal
hypotheses using kinematic variables and beam parame-
ters: lepton recoil energy El, transverse momentum pT;l,
and incident beam energy and polarization. We have also
studied the discriminating potential of using electron
versus muon beams. Our main conclusions can be
summarized as follows:
(1) Kinematic variables: For radiative three-body proc-

esses, we find that mediator mass can be well
determined using a combination of recoil energy
and transverse momentum variables. Using a like-
lihood analysis, we compared El and pT;l distribu-
tions against mock data to determine how many
signal events are required to distinguish various
mediator masses at given confidence levels.
We also find that, over the full MeV-GeV media-

tor mass range, pT;l is a superior kinematic variable

FIG. 10. Number of events required to discriminate between
axial and vector interactions at a muon beam experiment
described in Sec. V. The solid and dashed lines correspond to
two binnings of the kinematic variables (beam muon recoil
energy and transverse momentum), representing different exper-
imental resolutions. Higher resolution enables model discrimi-
nation with fewer signal events.

3This subprocess forms the basis of the equivalent photon
approximation for computing the kinematics of the full collision
lN → lN þ A0. The γ here is therefore the virtual photon
sourced by the target nucleus.
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and greatly enhances signal discriminating power
relative to El-only measurements (e.g., NA64
[52,53]). Indeed, for most test masses in this range,
pT;l enables clear discrimination between most
hypotheses with only Oð10Þ signal events near
the nominal discovery threshold for a zero-back-
ground experiment. In contrast, the same analysis
using only El distributions typically requires several
hundred events or more.
These conclusions hold independently of the

mediator’s identity (e.g., scalar vs vector) as the
pT;l distributions are similar across the different
particle variations studied here. Consequently, El
and pT;l are good variables for determining mass
assuming a given BSM scenario, but these alone are
not effective at discriminating between different
models. This conclusion also applies to efforts to
distinguish between on-shell mediator production in
2 → 3 processes and 2 → 4 processes that produce
DM pairs through either light or heavy mediators;
for an equivalent invariant mass of new states, the
kinematic distributions of these models are not
easily distinguished. This highlights the comple-
mentarity of different accelerator experiments that
can potentially resolve some of these ambiguities
with higher center-of-mass energies.

(2) Beam polarization: We also find that for different
electron-vector Lorentz structures, there are new
asymmetry observables that can discriminate be-
tween certain scenarios. In particular, subtracting the
energy distributions for signal events with incident
left- and right-handed electrons yields residuals for
chiral electron-mediator couplings of the form
Z0
μēγμPL;Re, where PL;R is a left/right projector; if

the interaction is a general linear combination of
vector and axial-vector couplings, these observables
only yield nonzero residuals for the chiral compo-
nent proportional to PL or PR. Although the fea-
sibility of beam polarization in missing momentum
experiments has not yet been studied, the discrimi-
nating power of this method warrants future work to
assess its compatibility with other accelerator re-
quirements (e.g., beam current and structure).

(3) Beam flavor: Finally, we find that a combination of
electron and muon beam missing-momentum
searches can be used to determine whether a
BSM interaction is parametrically enhanced by
the mass of the beam particle. As representative
examples, we consider pseudoscalar al̄γ5l and
axial-vector Vμl̄γμγ5l interactions for which
lN → lNa=V emission requires a lepton chirality
flip. Consequently, the corresponding cross sections
for these processes are proportional to m2

l and the
difference between electron and muon beam signals
can be used to distinguish these models from

scenarios that do not require a chiral flip in order
to produce the new BSM state.

Our motivation in this paper has been to study model
discrimination power of fixed target missing-momentum
experiments in a variety of well-motivated scenarios.
However, the studies should be interpreted with great care
as we only consider simulated signal distributions with
statistical uncertainties to assess the distinguishability of
various BSM scenarios assuming negligible backgrounds
from SM processes. Since such experiments are expected to
have negligible irreducible backgrounds and low levels
of reducible backgrounds from photonuclear reactions
[14,16], this is a well-motivated working assumption.
However, detailed future studies should include systematic
uncertainties, detector level smearing effects, and various
levels of background contamination to more realistically
quantify the model discrimination power of the techniques
outlined in this paper.
The fixed-target experiments discussed here are highly

complementary to the B factory facilities like Belle II.
These collider experiments operate at a higher center-of-
mass energy and therefore probe mediator and dark matter
masses above those accessible at, e.g., the nominal LDMX
setup. At the same time, they allow for precise control of
the beam particles (possibly including their polarization
[60]), enabling many searches for light dark matter analo-
gous to the fixed-target ones described here. For example,
in the minimal models studied in Ref. [17], Belle II will
provide the best sensitivity for mediator masses above
∼300 MeV using the missing mass technique. It is there-
fore imperative to pursue a broad program of searches at
both fixed target and the B factory experiments to thor-
oughly investigate the entire light dark matter window.

ACKNOWLEDGMENTS

We thank Nhan Tran, Shirley Li, Patrick Draper, Noah
Kurinsky, Antonella Palmese, and Andrew Whitbeck for
helpful conversations, and the LDMX Collaboration feed-
back on this work. Fermilab is operated by Fermi Research
Alliance, LLC, under Contract No. DE-AC02-07CH11359
with the U.S. Department of Energy. The work of D. T. was
supported in part by the U.S. Department of Energy, Office
of Science, Office of Workforce Development for Teachers
and Scientists, Office of Science Graduate Student
Research (SCGSR) program. The SCGSR program is
administered by the Oak Ridge Institute for Science and
Education for the DOE under Contract No. de-sc0014664.

APPENDIX: LIKELIHOOD FOR
FINITE MONTE CARLO

In this appendix, we describe the likelihood analysis
used in Sec III to distinguish between particle masses using
final state beam recoil energy Ee and transverse momentum
pT;e. The simple likelihood given in Eq. (7) correctly
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accounts for statistical fluctuations in the observations.
However, it assumed that each bin contains a large
number of simulated events, i.e., the relative fluctuations
in the bin counts are small. The predictions for missing
recoil energy and transverse momentum of the electrons
are obtained using finitely sized MC samples. Even if the
sample is large, if we bin it finely enough (and especially
if we bin in multiple kinematic variables at the same time)
each bin will contain a small number of events which are
subject to Poisson fluctuations due to the finite size of the
MC sample. If we are comparing two distributions that
only differ in such bins where fluctuations are important,
we miss the theoretical uncertainty due to MC statistics.
This uncertainty can be incorporated following Ref. [51]
(see also Ref. [61] for a concise description of the
problem). The idea is to introduce nuisance parameters
that encode the true expected values in each bin; the count
of MC events is then a specific random Poisson realiza-
tion of this expected value. Since we cannot evaluate the
cross section exactly in that kinematic bin, we do not
know what this true value is and therefore we must
marginalize over it. The likelihood function that takes this
effect into account is

L̃ðd; a;A; pÞ ¼
Y
i

fPðdi; pAiÞfPðai; AiÞ; ðA1Þ

¼
Y
i

ðpAiÞdi
di!

e−pAi ×
Aai
i

ai!
e−Ai ; ðA2Þ

where ai are the “raw” (unnormalized) MC bin counts
(i.e., the number of events in each kinematic bin as it
comes out of the simulation—these numbers grow as
the MC sample gets larger); Ai are the true expected
values in each bin (equal to ai in the limit of an
infinitely large MC sample and therefore not known); p
is the signal strength, such that pAi corresponds to the
theory prediction of the expected count in bin i. Ai and
p are nuisance parameters over which we must maxi-
mize the likelihood—luckily, we will be able to do this
analytically. The notation used here corresponds to that
of Ref. [51]. In other words, Eq. (A2) treats the MC
sample as another data set; both the “real” data d and
the MC data a constrain p and A. The logarithm of this
likelihood is

ln L̃ðd; a;A; pÞ ¼
X
i

di ln pAi − pAi − ln di!

þ ai lnAi − Ai − ln ai!: ðA3Þ

Next, we maximize this with respect to p and Ai,

∂ ln L̃
∂p ¼

X
i

di
p
− Ai ¼ 0; ðA4Þ

∂ ln L̃
∂Ai

¼ di þ ai
Ai

− p − 1 ¼ 0: ðA5Þ

The solutions of these equations are

p ¼
P

idiP
iai

¼ Nd

Nmc
; ðA6Þ

Ai ¼
ai þ di
1þ p

: ðA7Þ

Note that the signal strength p takes the natural value
which ensures that the predicted number of events

P
i pAi

matches the number of observed data events Nd. At the
maximum of the likelihood, Ai ≠ ai, unless ai ≫ di; this
encodes the fact that for a finite MC sample we do not
quite know what the actual expected value of the bin
counts is. Plugging these solutions into Eq. (A3), we find
ln L≡maxp;Ai

ln L̃,

ln Lðd;aÞ ¼
X
i

ðdi þ aiÞ ln
Nd

Nd þ Nmc
ðdi þ aiÞ

− ðdi þ aiÞ þ ai ln
Nmc

Nd
− ln di! − ln ai!:

ðA8Þ

The last line contains factors that are commonly dropped
when discussing real data (i.e., d); however, since ai depends
on the model, we must keep this factor such that we can
meaningfully compare the likelihoods in different models
(which generically have differently sized MC samples). di!,
however, is the same in each model, so we can drop it.
The likelihood in Eq. (A8) is not very intuitive so it is

useful to consider some illustrative limits which are as
follows:

(i) ai ≫ di ∀ i, and therefore Nmc ≫ Nd. Expanding in
small quantities, one finds

ln Lðd; aÞ ≈
X
i

di ln
Nd

Nmc
ai −

Nd

Nmc
ai; ðA9Þ

which is just the standard Poisson likelihood of
Eq. (7) with νi ¼ ðNd=NmcÞai (there are corrections
that go like ln ai from approximating ln ai!). Thus,
in the limit in which theory (MC statistical) un-
certainties are not important, we recover the naive
result.

(ii) Without taking theory uncertainties into account, if
MC predicts ai ¼ 0 events in a bin, but the data di
are not 0 there, the standard log-likelihood for that
bin is di ln 0 − di ¼ −∞, i.e., the model is immedi-
ately ruled out. Using the above log-likelihood
instead, we find that such a bin would instead
contribute
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di ln
Nd

Nd þ Nmc
di − di ðA10Þ

to the log-likelihood. The would-be infinity is
regularized by the fact that Nd=Nmc is not 0. This
is the desired behavior, since it prevents us from

overstating the discriminating power of certain bins
if we have insufficient MC statistics.

The full likelihood of Eq. (A8) is used to define
the test statistic in Eq. (8), which is then studied in the
various model discrimination examples in Secs. III
and V.
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