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Spinning loop amplitudes in anti—de Sitter space
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In this work we present a systematic study of AdS,,; loop amplitudes for gluons and gravitons using
momentum space techniques. Inspired by the recent progress in tree-level computation, we construct a
differential operator that can act on a scalar factor in order to generate gluon and graviton loop integrands:
this systematizes the computation for any given loop level Witten diagram. We then give a general
prescription in this formalism, and discuss it for bubble, triangle, and box diagrams.
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I. INTRODUCTION

The gauge gravity duality or the AdS/CFT is the
correspondence between weakly coupled theories of grav-
ity in anti—de Sitter space and conformal field theories with
large N. This correspondence provides a powerful frame-
work to study quantum gravity on anti-de Sitter space
[1-3]. Given the importance of this duality, a lot of effort
has been invested to compute tree-level AdS scattering
amplitudes in configuration space and Mellin space [4—18].
In the recent years, there has been some renewed interest in
computing conformal field theory (CFT) correlators in
momentum space [19—43].1

However, most of the progress is largely focused on tree-
level results. AdS loop amplitudes pose difficult technical
proble:ms.2 In addition to the standard loop integrals, one
performs bulk integrals whose complexity is already
comparable to loop integrals in flat space. For a long time,
there were very few loop-level results; however, some
progress has occurred in the last few years. In [11,58],
Mellin amplitudes corresponding to loop Witten diagrams
in AdS were used to study analytical properties of such
amplitudes.” These papers inspired the usage of CFT
crossing symmetry [60] which lead to progress in

'"There have also been recent results in p-adic space [44-46].
Additionally, because of translation invariance, momentum space
is a natural choice for cosmological correlators. For some related
recent papers, see [47-55].

It is interesting to note that de Sitter loops are also concep-
tually difficult. For instance it was pointed out in [56] that scale
factor a(t) enters the logarithmic divergence. For some recent
progress in de Sitter loops, see [57].
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computing loops in AdSs x S’ [61-64].* Progress in the
computation of scalar loop diagrams was performed
recently in [26,66—68]. Some progress in studying unitarity
in the context of AdS was carried out in [58] and more
recently in [69—71]. In [72], it was shown that higher-point
diagrams at one loop may be written in terms of the 6j
symbols of the conformal group. Similarly, Mellin space
preamplitudes and the pole structure of the result was
investigated in [73,74]. In [75,76], one-loop bubble dia-
gram in spectral representation for a ¢* scalar was
performed. An algorithm which computes the one-loop
Mellin amplitudes for AdS supergravity was demonstrated
in [77].° Similarly Cutkosky rules in CFT’s at both strong
and weak coupling is studied in [79].

Despite the aforementioned progress, work in loop
amplitudes is still in a developing stage. It was shown in
[23-25] that higher point gravity and gauge theory tree
amplitude takes a simplified form with the judicious use of
momentum space formalism. We view our work as the
natural extension of tree-level results in gauge and gravity
theory with the usage of momentum space. We are inspired
by the stunning progress in the study of flat space S-matrix
at loop level which has revealed powerful mathematical
structures and remarkable physical insight. Many of the
results in flat space loop calculations have shown the
connection between trees and loops [80,81] and gravita-
tional theories to gauge theories [82], and the loop
amplitudes also correspond to geometric structures [83].
Many of these deep connections and powerful mathemati-
cal structures have occurred in the context of gauge and
gravity theory and with the usage of momentum space. We
initiated this investigation as we are interested in exploring

3See also [59] for an analysis of loop Witten diagrams for two-
point functions.

*See [65] for progress in AdS, x $* as well.

Also, for string theory corrections to such one-loop ampli-
tudes, see [18,78].
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whether the AdS loop level gauge and gravity theory
scattering amplitudes encodes analogous rich structures
to flat space scattering amplitudes.

Here is the organization of the paper. In Sec. 1I, we
review the AdS momentum space formalism on tree-level
amplitudes for gauge and gravity theory and discuss the
necessary modifications to extend them beyond tree-level
computations. In particular, we manage to write any loop-
level Witten diagram as a differential operator acting on a
scalar factor. In Sec. III, we further discuss these scalar
factors by providing implicit results for gluon triangle and
box diagrams and by going over the explicit computation of
a gluon bubble diagram. We then conclude with future
directions. Many technical details are collected in the
Appendix.
|

0 k p ©
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II. MOMENTUM SPACE FORMALISM: REVIEW
OF TREE-LEVEL TECHNOLOGY AND
EXTENSION TO LOOPS

We start by defining the bulk to boundary propagators6
t(z. k) = €3 (ki 2).  tu(z k) = €7 (ki 2)
(2.1)

where i labels different external legs and where we define

Pk, z) = \/izgkgl(%(kz)

for convenience. We note that all propagators in this paper
are in axial gauge, similar to our previous work [23-25].
The bulk to bulk propagators read as

(2.2)

2,7

k,p k2 + k,p K (k> + k,p
Gupolhiz.?) =10 [ papes| 0] nizh [ pap™ 0t [0 ] i [ pap St 0 [ 2]
Z,Z P Z,Z p 2,2
(2.3)
where we define the shorthand notation
k, 22)elu(p2)Ju(p2
@ﬁ[ p} E( )2 z(pz) zfp ) (2.4)
2,7 k> + p* —ie

for brevity and where II are projectors that depend on the vector k, and the boundary metric 7,,; we refer the reader to
Appendix A 1 for the explicit form of any object without definition in this section. We also note that we are working in the
Poincaré patch of the AdS with the metric ds® = z7%(dz?* + 1, dx"dx").

The relevant three- and four-point vertex factors for gluons and three-point vertex factor for gravitons are as

follows’:

vp 1z v D 7 D v
Vi ow, = —= " (ky = k)P + 7 (ky — k3 ) + 0 (ks —ky)"),

;4
\/5
4
VHPo = 2 (2nﬂp’,ll/6 ,,l;wnpo'
8
i = S (R

2k5 K57 n°F ) + permutations]

— o),

(2.5)

where the permutations in the graviton vertex are generated by the permutation group element (k k,ks)(ikm)(jZn) in cycle

. 8
notation.

At tree level, the expression for a gluon/graviton Witten diagram of m-external, n-propagators, r three-point vertices, and

. . 9,10
s four-point vertices reads as

®The polarization vector ej, also has color dependence but we suppress it and we work with color-ordered gluon diagrams throughout

the paper.

The overall z*8 factors follow from the inverse metrics that needed to be contracted with to write V in contravariant form.

8See Sec. 3.2.1. of [20] for the full contracted expression.

At tree level, these quantities are not all independent and satisfy the equality m 4 2n —3r —4s = 0.
%One can modify the graviton Witten diagram by adding higher point interactions as well, yet in this paper we stick to three-point

graviton interactions only.
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+3(r-1) 1+4(s—1)

dz dz -
Tree _ 1 rts 5 A /)L/)1+l/)(+7
Watson = / S I Ht (Zark )Hgl’zb—lyzb(ZZb—17Z2b’qb o VPapariPanpPis - (2.6a)
( c
0 I Zr+s a= b=1 e=147.. d=159,...
1+3(r—1)
dZ dZ m n
Tree _ 1 r ~ A A ) lﬂz Pre41P2c42P2643P2c+4
Wgrawton - Cd+1t _d+ 1 Yiramitiza <Za’ kﬂ) H g”4h—3”4h—2’-’4b—]’-’4b (ZZb—l » L2b> qb V & Lq TR
0 Z Z - . r+l c+2
1 roa=1 b=1 =147,
(2.6b)
where Z;,2; € {z;,....2,,,} is determined by the topology of the diagram and where ¢; and ¢; are linear combinations of

vectors k;, again determined by the topology. Also, the sets {¢} U {v} and {p} are equivalent and they are contracted; the
way which pairs are contracted depends on the topology of the diagram too.

For loop diagrams, the only new ingredient is the integration of the loop momenta ¢ at which the propagator momenta ¢
and ¢’ are now implicitly dependent; for a Witten diagram of u loops, the expression simply reads as

n 143(r=1) 144(s—1) © dz dz
Loop PePer1PesrPe 1 r+s d PePe +1 Pe +2
gluon H H VPePeriPesabess 0 d+1 0 Zd+1 T, Za’ k ) d ffgl% 102b (Z2b 1 225 qb)vq 4.4

a=1b=1c=147,...e=159,... 3 r+s
(2.7a)
m n 1+3(r—1) . d d
ykoop HH <1 Zr " ( k )
grav1t0n d+1 Zd+1 Hoam1fizg \Za> Ka
a=1b=1c=147..70 %1
u
d 5 5 Vz 11/2 Uz +102L+2021+3V2£+4
X d ffgﬂ4h—3l44b—2ﬂ4h—lﬂ4b (ZZb—l’ Z2b’qb) 7 (27b)
i G 9

In [24,25], one insight to simplify the computation was to rewrite the propagators as differential operators acting on
simpler propagators. Indeed, we observe that

k,p k., p
Gullee) =2 [papoi3| V0] Guntlin ) = Dhy [papet| V0]
for
1)k 2)k;. 1)k 2)k . 3)k 4.
Df, = W + (W lim). Df, = Mo + (Mlim) + (Mjlimd,e) (29)

with which Egs. (2.6) become

ree m,n,r o0 le dZH»s 4ps Pb
nguon Dgluon / d+1 """ _d+1 < ) <H¢ ka, Za ) < /pbdpbq) |: :|),
0 Z Lrds  \e=1 a=1 Zop-1> 20
I m,n,r le dzr . . ~ _ dbs Pb
Wgrgsuon Dgrélx;i[on A d+1 d.H (H > (H ¢d 4(](,1, Za)) (H / pbdpbq)g 4 |: ~ ~ :|> (210)
c=1 a=1 b=1

22b—1522b

where we also used Eq. (2.1). Here the additional z*® factors come from the z dependence of three-point vertices where the
rest of the relevant factors are included in D™,

The operator D above consists of contraction of tensor structures in the Witten diagram but its details are not really
important. The real importance of this form of the Witten diagram is that it drastically reduces the number of integrations
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because it generates the full Witten diagram by acting on a
scalar factor with a differential operator whose action
simply consists of derivatives, limits, and contractions, all
of which can be easily automated in a computer algebra
program. In contrast, symbolic integrations of interest here
are computationally costly and reducing the total number of
integrations enables the computations of higher order
Witten diagrams in practice (see [23-26] for further details
with explicit results).

Once we move beyond tree level, the momenta ¢
dependence of D}, and D},,, spoils the nice separation
of the scalar factor from the rest because we cannot take the
differential operator outside the loop momenta ¢ integral
due to ¢ dependence of g. To circumvent this problem,
we present here an alternative representation for the
propagators:

(2.11)
for auxiliary polarization vectors v, where we define

D = (ﬁ,ﬁ?”nm) + (flf,?vlin}),
ﬁﬂupa = (Hﬂupahm) + ( ,wlm-hm) + (1:[,(4’2;}0-111’%)

n—

m,n,r,s

b=1

for gluons and

anr

o dZ] er
graviton — H/ddff/ d+1 d+l <
f=1

(fLor ) (%2

o 4,

LTS le er+s
gluon H/ddff/ d+1 d+1 (
(95 - vs) a5+ p

x (HTﬁ Prdpy p

4.7,...
2 ap
b d—2 dps Pp
ot [ o
22b—1>22b

in terms of the modified projectors I1. Likewise, we use
these auxiliary vectors to rewrite the tensor structure of
three-point vertex factors to be independent of g:

it &
vier = 1IN (g )
ki .k ks v v, i [ZA N
1°72°73 \/§ I

8
Vidok, = Vi [ZZ > (kv (ke -v3+l)}. (2.13)
B

We note that both v and v' are auxiliary vectors, albeit
different (e.g.. v; # v}). We use the primes to keep track of
which auxiliary vectors come from the propagators and
which ones from the vertex factors.

With these ingredients, we can rewrite (2.7a) and (2.7b)

in a form similar to (2.10):

Loop m,n,r,s m,n,r,s Loop M, " m,n,r
nguon Dgluon gluon Wgraviton Dgravnon M graviton
(2.14)

where D carries all tensor structure information and where
M is simply a scalar factor. As D consists of derivatives,
limits, and algebraic manipulations, it can be straightfor-
wardly and efficiently applied once the scalar factor is
known. On the other hand, the scalar factor has all the
integrations which are particularly challenging for sym-
bolic arguments unless carried out at specific conditions
(such as gluons in AdS,). Therefore, in the rest of the paper,
we will focus on scalar factors.

III. SCALAR FACTORS FOR SPINNING
WITTEN DIAGRAMS

The scalar factors for loop level Witten diagrams defined
in (2.14) read as

o) fioeie)

(3.1a)
143 r—l) Zs
Zc (e vlc+i)(qlc+j : V/c+j)>
e=id7.. T o1
) Jj=(i+1)mod3
4
b) /phdpb (Qb + ph> ¢Z_4[A vapAb D (3.1b)
P 20p-15 200

for gravitons, where ¢, (or ¢},) is the momenta of the propagator a whose dependence on the external momenta k, and the
loop momenta Z.. is determined by the topology of the diagram at hand. Likewise, Z,, Z,, and Z, are one of bulk points z;,

where topology determines which ones they are.
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|k:1 + k2 +E|

FIG. 1. Example of various gluon loop diagrams.
A. Examples: Bubble, triangle, and box gluon diagrams

Despite the complicated look of the general form in (3.1), the scalar factors become simple for particular Witten
diagrams; for example, for the bubble diagram in Fig. 1, we have

dz, dz, iz} iz3 6
Mg = Mool = /ddf/ mﬁ\—}f (Z(‘Iﬁ' ; )(Z 3(k, 21)¢375 (k. 22)

diagram i=4

(¢-v 1)/ 2+ p\ . L[C
d )]
X< 217 prépn p% =2 21,22

((k+f)'vZ)2/ <Ik+f|2+p2>“2 - 2[Ikﬂﬂl pZD
X [ d —=] b 3.2
( 2!|k+f|2 pa2ap»> p2 d-2 2o ( )

which can be reorganized as

1
M gluon —

bubble
diagram

/PldP1P2dP2</O Zldzlfﬁg:%(kvZI)J%(plZl)J"%(pZZI)>

8
( 22dz,p975 (k, zz)Jd-z( lzz)J%(pzzz)>
([

AP0 P LGOS e (R (KPR g
P+ P+ - ik ¢ +pi—ie)  \ 7 P |

where we can take

Similarly, we can write down the scalar factors associated with the triangle and box diagrams as follows:
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Mo — M3330 _ ( > /ddf / dz dzydz; (i q v1)>
luon — i i
gargi gluon (212223)3 \ 5 e

() () ([ e)
(gt [ ran (252 o[ 57
(
(

X

(¢-v 2+ pi\ @ £, p
2 [ paans (S5 g 72
218 1) <2523

(ky +k; +£) - v3)? / dps <|k, +hy + ¢ + p§>a3q)d_2[|k1

X

d-2

' 3.5a
2k +ky + ¢ 73,21 ]) (3.52)

p3

qi=ki. gG=q=7 g=k. @G=q¢=k+l =k gG=qg=k+k+¢ (3.5b)

\*  dzydzydz3dzy [
M gion = M4‘4’4‘0 = (L> /ddf / Rl Tatiestied Loy
"‘i)gfxam glvon V2 ! 0 (Z1Z2Z3Z4)d_3 i:zl(ql d
6 9 12 4
S (St ) (S ) (T o320
i=7

i=4 i=10 1

V)

ky+7¢)-v;)? ky + )2 a ky + ¢,

((ky +7) V;) /pldpl<|2+ 2+p1) q)g:%Pz |P1]>
2k, + 7| Pi 71,22

(
(
(G (5] o2 7]
(
(

—

£ —kj)-v3)? -k 2+p a3 |€ — ks,
G e (A1)
2-|f—k3| P3 13,24

. 2 2 2\ a k+k +fa
(%+b+@VA/4@&m+b+ﬂ+m>bﬁpl ? '”D (3.60)

X 2 2
2Uk; +k; +7) Di 24, 2]
for
q, =k, 45 =q3 =7, q, =k, ¢ =qs =k, +7, q; = ks,
95 =4q), =¢—ks, q'o = ky. ¢ =q,=k +k+7¢. (3.6b)

B. Computing bubble diagram

Let us recall the scalar factor for a bubble diagram from (3.3):

1 0 o 2
M =73 / pidpip2dp, < / 2dzgh 3 (k, Z)"%(IJIZ)J#(pzZ))
0 0 -

diagram
X</ddf(f-v1)2((k+f)'h)2( (g v) (28 a(g; - V) <f2+p%>“‘<lk+f|2+l?%>“z) (3.7)
O+ P+ p —ie)(k + £ + p2 — ie) P} P

for
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SPINNING LOOP AMPLITUDES IN ANTI-DE SITTER SPACE
9 =q,=k  gh=q5=7¢. s=qs=k+7. (3.8)
The first piece in (3.7) can be computed analytically in terms of Appell’s hypergeometric functions
o P& ( )(Plpv)% d d d 2 2
d-2 _ 2 k2 - 1= 7._& _& .
[ st iatpiaten =L R (a1 SR 69
hence we have
23&1—81"(@)2 s d d d 2 2 2
. 3 d-1-2a, _d—1-2a, . P D3
Mdgéggd&——iﬂzkw /) dpidpyp; 123 {F4<2’d_1’2’2’_k2’_k2)]
X(/va»wthwhﬂ %@ywxﬁu@wm> 510
Ok + )2 (6% + pt—ie)' = (|k + £)* + p3 — ie)' ™"
which we can rewrite using the definition of ¢’ above as
23d—8r‘(ﬂ)2 s d d d 2
o 3 d-1-2a, _d-1-2a . .. P Pps
MEE?E;__TA dpdp;,p| 'py Z[F“(E’d_l’z’i’_ﬁ’_ﬁ)}
X (T e T T
vu%v 1)1)712 " 0,0 1)11/ JUo,Us
+ {jvi,vj.bz,l}j,l}/,bl + 2‘71;1,;:.1)2,11 R + jbi.l?‘:,l}z,b?.vl, ot jll,bj.b A Lg.LG}
+ {jvlwl,bz,vz,vo,t’ A + ‘71)1,@?,1)2,12,1;’ R + jvi.vjwz,v’,i’,v’ ,1)’} + ‘71;1,121:.02‘@2,1) Vs,V ,vg) (311)
where we have defined
£+ pt—ie) = (lk + £ + p5 —ie) ™™ '

Ty by = (e-an)(k-ay) - (k '“m>/ “ Er A

for convenience.
Evaluation of 7' "}> )"
a, =0, 1 are relevant Wthh can be checked through (2.14), (2.12), and (A7). Therefore, we can make the replacement
£-by)(€by) - (£-by)
k-a))(k-ay) - (k- 5050/ddf (£ by .
= (kray-ay)- ”m)< w0 | OO P+ pi—ie)(k+ O + pA— ie)

b)) -by)---(¢-b,) (Z-by)(Z-by)---(¢-by,)
+ 89 5] /ddf( ! sl 80 /ddf u
a7 Clk+ P+ p2—ie) Pk + )2 (|k + ¢ + p3 —ie)

' for generic a; 5 is somewhat complicated; however, we can simplify it by noting that only a;,

jal-aZ ~~~~~ A
by.bs.....b,

£-by)(£-by)---(£-by)
8! &) /ddf( ! 2N 3.13
+ ay-a fz|k+f|2 ( )
therefore, the scalar factor for the gluon bubble diagram becomes the sum of 48 terms, i.e
23d-8[(d51)2
Mg, = =80, 80, (k- 4) - 22V k) ) ==
© dpydp, d dd _pi p\| (€ v1)*(Z-¥3)(£-v5)
></0 ———— |Fy E,d—l,z TR e /ddf I + other terms.  (3.14)

(P1p2)*
In Appendix A 3 we go over how to calculate such volume integrals in great generality via standard quantum field theory

(QFT) tricks; the final result in (A29) reduces such involved integrals into various products, summations, 1d definite

"please see Sec. A 2 for further details.
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integrals of rational functions, and set-partitioning, all of which can be efficiently implemented in an algorithmic way in any
computer computation software such as Mathematica. Indeed, we can rewrite (3.14) with (A33) as

_ sl
My, = =04,

ar ;v

kd—628—dﬂ.1—§’(d2 _ 1)2

diagram

where t’; _ 1s the overall tensor structure.

The other terms in the equation above are of similar form
as well; they will simply have different overall-tensor-
structure, and they may bring additional p dependent terms
inside the integration; however all of them can be computed
using the same equation, that is (A29).

The remaining computation in (3.15) is intricate which
involves integrating products of hypergeometric functions,
hence it is not sagacious to insist to work in nonspecific
dimensions. However, the expression is very simple for
specific d values; for example,

k4 >n
— 3.17
(k“ +2K2(pt + p3) + (p1 — P3)? (3.17)

with which the integration becomes doable with an appro-
priate regularization at any given n.

In summary, we observe that the loop-level computations
become tractable in momentum space in AdS, ;. Although
we only illustrated the case for the gluons, the situation is
similar for gravitons as well; what is common in both cases
though is the very technical nature of the formalism that we
unpacked above. However, the key point is that the
computations in each and every step is algorithmic and
can be efficiently implemented in a computer computation
software. In particular, momentum space formalism along
with the way we decompose the Witten diagrams into
differential operators and scalar factors effectively converts
a mathematically difficult problem into technical yet

Pts explicit form reads as

o e vk vo) (k- va) (K - vy) (k - v)

tv,-.,v:. k6

2
(w2 w0 = w2080
2w ¥4) 04 3) + 206 w0 )

+ (k-vy) (k- v5) (vy - vy)]

b 0008+ 200 )] ). (i)

g A+ D=9 +3) /m dpdp;
o (P1p2

d dd _pi _p\|
)3_d{F4<§,d—1;§,5;—p,—p + other terms

(3.15)

|
computer-friendly computation as the final result is simply
derivatives and limits acting on a scalar factor which itself
is computed via products, sums, and list partitioning, and
all of these can be efficiently computed unlike a convoluted
volume integral. The main result of the paper is therefore
the following prescription:

(1) For any given Witten diagram, rewrite it as W =
DM where the differential operator D is given in
(A7) and M in (3.1).

(2) Unpack M depending on the topology of the chosen
Witten diagram as is done in (3.5) for gluon triangle
and box diagrams.

(3) Rewrite the scalar factor such that it becomes of the
form

M Z/dpldpz...dpm</dz1--->
([t ([ )
([ o)

which can always be done in the current formalism
[see (3.3) as an example of this in case of gluon
bubble diagram].

(4) Replace radial integrals of the AdS (z integrations)
in terms of Appell’s F, functions, as is detailed in
Sec. A2.

(5) Replace ¢ integrations in M as given in (A29).13

(6) With the replacements in the steps above, M
becomes the summation of the bunch of terms which
involve products, summations, list partitioning, and
p integrations. In odd d (such as the case for AdS,),
the Appell’s F, function becomes meromorphic in
p; hence the p integrations become straightforward
(up to possible regulan'zation).14

“The u integrations in (A29) can be immediately carried out
for numeric d values, but are not generically doable if we keep
dimension symbolic.

"It is an open question how one should proceed for even d. We
believe it may be more efficient to compute the Witten diagrams
case by case for even d, contrary to our generic approach in this
paper. Of course, our formalism is perfectly fine and would be
extremely generic if one could compute (or bypass) p integra-
tions of Appell’s F, functions.

026004-8



SPINNING LOOP AMPLITUDES IN ANTI-DE SITTER SPACE

PHYS. REV. D 103, 026004 (2021)

(7) Apply the differential operator D to the scalar factor
M to obtain the full Witten diagram. As this merely
amounts to taking derivatives and limits of a factor
composed of summations, products, and list parti-
tioning, all of these steps can be efficiently done
algorithmically.

IV. CONCLUSION

In this paper, we have studied a formalism to compute
loop amplitudes in anti—de Sitter space in Fourier space for
gauge theory and gravity loops in AdS,, ;. In particular, we
have constructed a differential operator which can act on a
scalar factor to yield both Yang-Mills and gravity loop
correlators. In addition, we have presented a prescription
which can be automated in order to perform tensorial loop
computations in anti—de Sitter space. There are a myriad of
interesting directions that one can pursue and we will list
a few.

One of the main motivations of our work is to take the
first step to connect AdS loops with a cascading number of
new ideas and techniques that are emerging in flat space.
For instance, in [84], it was shown that n-particle massive
Feynman integrals in arbitrary dimensions of spacetime
have nice geometric properties such as the connections with
hyperbolic simplicial geometry and the answer respects
dual conformal symmetry. This method can be directly
applied to the computation of the above-mentioned AdS
scale factor. Furthermore, we want to stress that we are
motivated to study gluons and gravitons in AdS as many of
the extremely powerful physical insights and mathematical
structures in the last decade have occurred in the study of
the flat space S-matrix of gauge theory and gravity [83]. It
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is tempting to contemplate if there are analogous geometric
structures like the amplituhedron that exist for loop
amplitudes in anti—de Sitter space.

Similarly, as in the context of Minkowski space, AdS
loops can also be expressed in terms of the special classes
of multiple polylogarithms. In the context of flat space,
there has been progress in demonstrating that these com-
plicated polylogs can admit a much simpler analytic
expression. The technology used is called the symbol
map and this map can capture combinatorial and analytical
properties of the complicated Feynman integrals [85]. In a
related work [86], symbols were used to compute loop
amplitudes in de Sitter space. It would be natural to use
these methods in the context of AdS loops. Likewise, it
would be intriguing to incorporate cutting rules in momen-
tum space AdS in the study of gluons and gravitons, and we
are hoping to address it in a future work.
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APPENDIX: TECHNICAL DETAILS

1. Projectors and differential operators

In this Appendix, we collect some of the technical details
we skipped in the main body. We first note the definition of
the projectors IT used in (2.3):
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We likewise note the definition of the differential operators in (2.10):
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14+3(r—1) m+2n—3r-3 m n
mn,r __ ﬂu/)c+]pr.+2 a b
Diinon = < H P qﬁz) ( H V/’cpc+1pc+2/’e+3> <H€ ) <H D,,Zh,m>,
1,509,... a=1 b=1

c=147.. e=
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Dgravlton - < H Vq( R > < Mza_lﬂza> <H Dl/417 3Vap—2Vap— 1V4b> (A3)
c=1477,... a=1

where three-point vertex factors V are V with their z dependencies stripped off.
The modified projectors for gluons are given as follows:

~(ly _ . 0 0 o 0 ~(2)y __ .0 0
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and the modified projectors for gravitons are defined in terms of them:
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where we use these modified projectors in (2.12).
We finally note the tensor structure of vertex factors given in (2.13):
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with which one can define the full modified differential operator D:
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with which we write down the Witten diagrams in terms of the scalar factors in (2.14).

2. On integration of products of Bessel-type functions

We know in momentum space formalism that the bulk point integrals we need to compute take the form

A ” #7E, (az)E,(b2)E,(cz)dz (A8)

for three-point interactions, where E,(x) € {J,(x),K,(x)}. In [87] Rice uses contour manipulations to compute such

integrals in terms of Appell’s hypergeometric function if £ = J, for which the result reads as

026004-10



SPINNING LOOP AMPLITUDES IN ANTI-DE SITTER SPACE PHYS. REV. D 103, 026004 (2021)
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2 T ()
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0 AT (4 D(v + 1(1 = 2ter)
Atu+v—p A+u+v+p a’ b?
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4< > 2 u+l v+ 22
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for Re(A+p+v+p) >0, Re(/l)<§, c>a+b. (A9)

The same result has been computed independently by Bailey in [88] who first uses hypergeometric identities to derive

— 2 A —
2/1 Qaubyr( +/Hz»v+/))r( +ﬂ;u p)
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for Re(A+pu +v) > |Re(p)], Re(ctia+ib)>0 (A10)
and then uses analytic continuation from Bessell to BesselK to get (A9). The identity he uses is
ind,(z) = e"™/2K,(=iz) — e™/?K ,(iz) VYz>0 (A11)

and he argues that the transition is valid as the integrand still converges. As z“K,(z) better converges for z — oo and is still
convergent for z — 0, we can replace z%J,(z) with z°K,(z) where we can use the identity

1 . .
K,(z) = Eﬂcsc(ﬂﬂ)(em"/z.l_ﬂ(iz) - e"””/zjﬂ(iz)) Vz>0 (A12)

which means
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for Re(A+u+v) > Re(p)|, ¢>b>0, a>0. (A13)

3. Computing loop integrals via standard QFT tricks

In this Appendix we will review the solution of loop integrals via Feynman parametrization, a standard trick known from
QFT. The general form of integrals of interest are

_ @-v)--(Z-vp)
I_Ad—u ’ (al —|—(bl —|—f)2)...(an—|-(bn—|—f)2)

22 (Al14)

which can be parametrized with the Feynman trick as

1 m (f-v )ij
IT=(n-1 !/ du...du,_ / di¢ a1 “ Al5
=D fy iy o TS e + b+ 27T (A13)

for

w,=1-Y u; (A16)
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We can then use

(R = B

and shift the integration parameter to obtain

1 n u; n u; 2j
I—(n—lﬂl:dm”dm%héd”wfIﬂﬂ(( ”1%1;+15;xf’522)?) (A18)

which we can rewrite as
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We note that the integrand is a function of #2 only except for (£ - v,)%(£ - >"_, u;b;)* where the exponents are integers;
hence the Lorentz symmetry allows us to make the replacements

£
fﬂlfﬂz”'fﬂmm =0, fl‘lfﬂz"'fﬂzn - HZ:I (d— 1+ (2k— 1)”) p; {al;[ep MNab (Azl)

where the sum is over all distinct ways of partitioning {1, 2, ...,2n} into pairs {a, b}, and the product is over the pairs
contained in p. For example,

2 4
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We can now reexpress (A19) as

i E : ! Yopert lixyre,(x-y)
7= (n—1)! d”1 du,_;c° af PG‘ t i LL{xy}ED
iy ((lJrZ ia)/2
=0 4=0 451 I 2 (@ = 1+ 2k = 1)1)

im=0,1

x / o fﬁ%; : (A23)
Re-11 (2 + (01 wi(a; + 7)) = (320 uibi)?]"

is the list which has the element v, i, times, and the element > 7 | u;b; a times; for example

n n n
Pii= {VI’VZ’Z”ibi}v Plos = {VI’VS’Zuibinuibi}- (A24)
=1 i1 i1

Note that the partitioning of p € P¢

~.
]

5]

=
Il

where P¢ .
el

is only possible if P has even number of elements, hence

S I @p=o0 (A25)

peP}, {xy}ep

iy...0p
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whereas

> H(x-y):vl-v3<gu,~bi>-<guibi>+2v1-<2ub> <Zub> (A26)

pePY,, {xy}ep

This is just the realization of the fact that the integration volume is invariant under £ — —¢, hence integrands with odd
number of £ vanish.
We are now left with the ¢ integration in (A23). To proceed, we first use the well-known identity

di¢. 1 i(-1)"T(n-d/2)  m,
Adll (2”)51 [fQ _ A]n - (47-[)11/2 F(n) A4/2 (A27)

which can be generalized as
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We can now write down the final result:
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where the set P¥

Iy.dpy

is defined and detailed around (A24).
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As an example, we see that
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(A32)

dkd—2

d+4 (k- V2)2<V3 “Vy)

(kd_4(k'vz)2<k‘v3)(k'v4) -
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dk?

Tar4

(73 - 92) (v - v) + 203 - 93)(02 - vm).

(A33)
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