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F-75005 Paris, France

Fabian Ruehle †

CERN Theory Department, 1 Esplanade des Particules, CH-1211 Geneva, Switzerland
and Rudolf Peierls Centre for Theoretical Physics, University of Oxford,

Parks Road, Oxford OX1 3PU, United Kingdom

(Received 25 March 2021; accepted 30 April 2021; published 28 May 2021)

We use numerical methods to obtain moduli-dependent Calabi-Yau metrics, and from them, the moduli-
dependent massive tower of Kaluza-Klein states for the one-parameter family of quintic Calabi-Yau
manifolds. We then compute geodesic distances in their Kähler and complex structure moduli space using
exact expressions from mirror symmetry, approximate expressions, and numerical methods, and we
compare the results. Finally, we fit the moduli dependence of the massive spectrum to the geodesic distance
to obtain the rate at which states become exponentially light. The result is indeed of order 1, as suggested by
the swampland distance conjecture. We also observe level crossing in the eigenvalue spectrum and find that
states in small irreducible representations of the symmetry group tend to become lighter than states in larger
irreducible representations.
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I. INTRODUCTION

In recent years, a wealth of swampland conjectures has
been put forward (see Ref. [1] for a review). They postulate
properties that either necessarily arise or never arise in
string theory, or sometimes, more generally, in any con-
sistent quantum theory of gravity. A very intriguing
conjecture is the (finite version of the) swampland distance
conjecture (SDC) [2], which proposes a relation between
the mass of a tower of states and the position in moduli
space of the string theory compactification in question.
More precisely, it compares two theories at points p0 and
p1 in the moduli space of the theory. The conjecture then
postulates that the theory at p1, a geodesic distance
dðp0; p1Þ from p0, has an infinite tower of light particles
starting with mass of the order of e−αdðp0;p1Þ for some
α > 0. The constant α, which governs the rate at which the

tower of states becomes light and is expected to beOð1Þ, is
important when one wants to study phenomenological
implications of the SDC.
Almost simultaneously with the rekindled interest in the

swampland program, machine-learning techniques were
introduced to string theory [3–6] (see Ref. [7] for a review).
While numerical algorithms for computing Calabi-Yau
(CY) metrics have been studied before [8–11], the advent
of faster optimizers and computers has made the analysis
amenable to machine-learning CY metrics [12–15], even at
many different points in complex structure moduli space.
Once the (moduli-dependent) Calabi-Yau metric is known,
the spectrum of massive string excitations can be computed
numerically [16,17]. By varying the moduli, we can then
explicitly trace the spectrum of massive string excitations
as a function of the position in moduli space. In particular,
this will allow us to compute the coefficient α in the SDC
from first principles.
So far, fast code has mostly been developed for one-

parameter CY manifolds. In this paper, we will therefore be
studying the one-parameter family of quintics in P4 given
by the vanishing locus of

z50 þ z51 þ z52 þ z53 þ z54 − 5ψz0z1z2z3z4; ð1Þ
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where ½z0∶z1∶z2∶z3∶z4� are the homogeneous coordinates.
For such families, the rate α has been estimated in the case
where a Kaluza-Klein (KK) tower of states becomes light
from the fact that the mass of the KK tower is expected to
follow

mKKðp1Þ ∼
MPl

r2
∼mKKðp0Þe−αdðp0;p1Þ; ð2Þ

with r3 ∼ VolðXÞ and α ¼ 4=
ffiffiffi
3

p
in the large-radius limit

[18,19].1 We can compare our explicit results to this.
However, we do set up the problem such that it generalizes
to more complex situations in which the Picard-Fuchs
system does not need to be solved analytically, or in which
the geodesic trajectory through moduli space is more
complicated and thus makes it hard to determine the KK
spectrum.
We also note that according to Weyl’s law, the eigen-

values λn of the Laplacian on a real d-dimensional
Riemannian manifold X with volume V satisfy

lim
n→∞

λd=2n

n
→

ð4πÞd=2Γð1þ d=2Þ
V

; ð3Þ

and hence the eigenvalues go to zero as mKK ∼ λ1=2 ∼
V−1=6—i.e., the entire KK tower becomes massless.
Including the 1=V factor of the 4D metric in the
Einstein frame, we recover the scaling in Eq. (2).
This project requires carrying out the following steps:
(1) Compute the moduli space metric (using either

analytic [20] or numeric [21] techniques).
(2) Compute the geodesics and the geodesic distances in

moduli space.
(3) Compute the CY metric along the moduli space

geodesics.
(4) Compute the massive spectrum from the CY metric.
(5) Fit a function to the masses and compare with the

prediction from the SDC.
We describe steps 1 to 3 in Sec. II, steps 4 and 5 in Sec. III,
and we conclude in Sec. IV. We discuss the transformation
of the metric to the Einstein frame in Appendix A, and we
explain how to compute the irreducible representations of
the symmetry groups that lead to the degeneracies of the
Laplace operator in Appendix B.

II. GEODESICS IN MODULI SPACE

In order to check the SDC,we need to fix two points in the
moduli space and then find the shortest geodesic that
connects these points. We will therefore need to discuss
moduli space geodesics. Wewill start with a review [18–20]
of geodesics in complex structure moduli space and then

briefly comment on the corresponding Kähler moduli space
results. We will be following Ref. [20].

A. Geodesics in complex structure moduli space

The Kähler potential for the (Weil-Petersson) Kähler
metric of the complex structure moduli space of a CY
manifold X is

Kcs ¼− ln

�
i
Z
X
ΩðψÞ∧ Ω̄ðψ̄Þ

�
; gab̄ ¼ ∂a∂̄ b̄Kcs; ð4Þ

where Ω is the holomorphic (3,0)-form on X, ∂a ¼ ∂=∂ψa ,
a ¼ 1; 2;…h2;1ðXÞ, and ψa are the complex structure
parameters. The normalization of the Kähler potential
has been chosen such that, upon dimensional reduction
on X, the Einstein-Hilbert term is canonically normalized
[22,23]. This ensures that the geodesic distance is given in
units of the 4D effective Planck mass.
Choosing a symplectic basis of three-cycles AI; BI ∈

H3ðX;ZÞ and dual three-forms αI , βI with2 I ¼ 0, 1,
normalized such that

AI ∩ BJ ¼
Z
X
αJ ∧ βI ¼

Z
AI
αJ ¼

Z
BJ

βI ¼ δIJ; ð5Þ

and all other combinations are zero, we can define the
period vector

Π ¼
�
GI

zI

�
¼

�R
BI
Ω

R
AI Ω

�
ð6Þ

such that

Ω ∧ Ω̄ ¼ zIḠI − z̄IGI: ð7Þ

The periods have been determined analytically in Ref. [20]
as solutions to a hypergeometric system of Picard-Fuchs
equations and can be written in terms of hypergeometric
functions.
In Ref. [21], a numerical method for computing the

moduli space metric has been proposed, which we compare
with the exact results. The method proceeds by varying the
complex structure, computing a basis of (nonholomorphic)
three-forms under the variation, and evaluating the integral
appearing in the metric in Eq. (4) numerically using
Monte Carlo integration. Note that we need to perform
the Monte Carlo integral at different points in complex
structure moduli space to compute the numerical CY metric
anyway. Having obtained the moduli space metric at
different points in moduli space, we interpolate the solution
and use the interpolated function for further analysis.

1In fact, Ref. [18] asserts mKK ∼ 1=r2, and Ref. [19] asserts
mKK ∼ 1=r1=2, leading to different factors of 2 for α. We discuss
this further in the Appendix A.

2Note that there are 2h2;1ðXÞ þ 2 three-forms, which can be
divided into two pairs of h2;1ðXÞ þ 1 three-forms.
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Once we have the periods and the metric, the next step is
to compute the Christoffel connection, which, for a Kähler
metric, is

Γc
ab ¼ gcd̄∂agbd̄; Γc̄

ā b̄
¼ ¯Γc

ab; ð8Þ

with all other Christoffel symbols zero. We then solve the
geodesic equation

̈γcðτÞ þ Γc
ab _γ

aðτÞ_γbðτÞ ¼ 0 ð9Þ

numerically, where γc is a curve in complex structure
moduli space parametrized by τ, and dots denote derivatives
with respect to τ. Finding the geodesic between two points
p0 and p1 is then a boundary value problem, which can be
solved using a shooting method in Mathematica [24].
Having obtained the geodesic, the geodesic distance

along the curve γ reads

dðp1; p2Þ ¼
Z

τ2

τ1

dτ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gab̄ðγðτÞÞ_γaðτÞ_γbðτÞ

q
; ð10Þ

with γðτiÞ ¼ pi. Subsequently, the geodesic length is
computed using numerical integration via Mathematica’s
function NIntegrate.

B. Geodesics in Kähler moduli space

For the Kähler moduli, one can proceed completely
analogously. The Kähler moduli Kähler potential can be
computed from the complex structure moduli Kähler
potential of the mirror X̃ of X. In the large-volume regime,
the properly normalized Kähler moduli Kähler potential is

Kk ¼ − ln

�Z
X

−i
3!

J ðtÞ ∧ J ðtÞ ∧ J ðtÞ
�
;

gij̄ ¼ ∂i∂̄ j̄Kk; ð11Þ

where ∂i ¼ ∂=∂ti , i ¼ 1; 2;…h1;1ðXÞ. The ti’s are the
complexified Kähler parameters for the complexified
Kähler form and are defined as follows: given a basis of
two-cycles Ci and dual (1,1)-forms Ji analogous to the
three-cycles and three-forms in Eq. (5), we can write

ti ¼
Z
Ci

J ¼ i
Z
Ci

J þ
Z
Ci

B; ð12Þ

where J ¼ riJi is the (real) Kähler form of X, and B is the
Kalb-Ramond B field. Then

Z
X
J ðtÞ ∧ J ðtÞ ∧ J ðtÞ

¼ 1

6
dijkðti − t̄iÞðtj − t̄jÞðtk − t̄kÞ; ð13Þ

where

dijk ¼ Ci ∩ Cj ∩ Ck ¼
Z
X
Ji ∧ Jj ∧ Jk ð14Þ

are the triple intersection numbers on X. If one defines

ri ≔ ImðtiÞ ⇒ Kk ¼ − ln

�Z
X
dijkrirjrk

�
; ð15Þ

one still needs to take derivatives ∂=∂ti rather than ∂=∂ri

when computing the metric; otherwise, the result will differ
by an overall factor, which is essential for the proper
normalization of the Einstein-Hilbert term.

C. Geodesics for the one-parameter quintic

1. Complex structure moduli space

For the one-parameter family of quintics [Eq. (1)], the
periods are functions of ψ5 rather than ψ . This can also be
seen from the fact that ψ → e2πi=5ψ can be undone by a
coordinate redefinition—e.g., by sending z0 → e−2πi=5z0 in
Eq. (1). Hence, we need to consider the range

ψ ¼ ρeiφ; 0 ≤ ρ ≤ ∞; 0 ≤ φ < 2π=5 ð16Þ

(as we shall see below, an additional Z2 symmetry further
restricts this range to π=5). There is a conifold singularity at
ψ ¼ 1, since the hypersurface is not transverse; i.e., p ¼
∂zαp ¼ 0 has a solution in P4—e.g., zα ¼ 1 for
α ¼ 0; 1;…; 4. This singularity is at finite geodesic dis-
tance in complex structure moduli space. For ρ → ∞, the
quintic is given by the singular hypersurface

Q
α zα ¼ 0.

This degeneration is at infinite geodesic distance. In order
to move Oð1Þ in Planck units, we have to change jψ j by
several orders of magnitude, and the larger jψ j is, the larger
the change needs to be. Hence, in order to get trans-
Planckian field displacements, we will be necessarily
moving towards the infinite-distance point.
We plot the moduli space metric in the left panel of Fig. 1

for 0 ≤ ρ ≤ 3 and 0 ≤ φ < 2π=5. Note that the x and y axes
are to be identified; in particular, there is only one
(conifold) singularity at r ¼ 1, φ ¼ 0≡ 2π=5, and there
is a Z2 symmetry along the line φ ¼ π=5. Moreover, as one
can see, the metric is nearly independent of ρ for ρ ≪ 1, and
essentially independent of φ for ρ ≫ 1. Indeed, for large ρ,
the hypergeometric functions describing the periods can be
expanded to yield [20]

gψψ̄ ¼ 3

ρ2 ln2ð5ρÞ
�
1 −

48ζð3Þ
25 ln3ð5ρÞ þ � � �

�
: ð17Þ

Hence, the geodesic distance grows slowly with jψ j for
large jψ j.
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Let us next discuss the geodesics. We plot three
example geodesics onto the metric in the left panel of
Fig. 1: ðp1;p2Þ¼ð1.4;3Þ (blue), ðp1;p2Þ¼ð1.4;1.4e2πi=10Þ
(green), and ðp1; p2Þ ¼ ð1.4; 3e2πi=10Þ (red). Their geodesic
lengths are of the order 0.25 to 0.3 and are also given in the
figure. Since we want to capture the “generic” behavior of
the spectrum, we start a bit away from the conifold point. In
what follows,3 we start at jψ j ¼ 2. From solving the
geodesic equation, one finds that φ stays constant when
starting and ending at φ ¼ 0; in any case, as discussed
above, the φ dependence is mild for larger ψ.
For ease of exposition, we set φ ¼ 0 at p1 and p2, such

that we can focus on the geodesic γðτÞ ¼ ρðτÞ and compare
three different methods for computing it:
(1) The exact Weil-Petersson metric obtained from the

analytic continuation of hypergeometric functions.
(2) The large-jψ j approximation of Eq. (17) (indicated

by a tilde).
(3) The interpolated metric from numerical approxima-

tion to the metric (indicated by a hat).
For the numerical result, we use the algorithm of

Ref. [21] and compute the moduli space metric numerically
at the points ρ ∈ ½2; 12; 22;…; 202�. We use 30 000 points
for the numerical integration. After that, we interpolate the
points. Several methods seem to work here. We use our
domain knowledge that the underlying Picard-Fuchs sys-
tem leads to hypergeometric functions and fit a function

ĝðρÞ ¼ a
ρ2

þ b
ðρ ln ρÞ2 ð18Þ

using the L1 norm (since the values of g get very small,
higher norms would essentially only fit the first few data
points) and Tikhonov regularization. In cases without prior
domain knowledge, Mathematica’s FindFormula can
give an idea of which basis functions to use.

We plot the results we obtain for the metric, the
derivative of the metric, and the Christoffel symbol Γρ

ρρ

using the three different methods in the middle panel of
Fig. 1. As we can see from the plot, the results for the large-
jψ j approximation essentially agrees with the exact result
already for ρ ∼OðfewÞ, and the results from interpolating
the numerical approximation of the moduli space metric are
not too far off.
The geodesic equation cannot be solved analytically, not

even in the large-jψ j approximation (there, it can be
integrated in terms of incomplete gamma functions, but
this cannot be inverted, and we refrain from giving the
expression). We hence solve the differential equation
[Eq. (9)] numerically using Mathematica’s NDSolve with
a shooting method as explained above. Since the start and
end points are chosen at φ ¼ 0, the geodesics move radially
outward.
Finally, we compute geodesic distances for

p1 ¼ ρðτ1Þ ¼ 2;

p2 ¼ ρðτ2Þ ∈ ½2; 12; 22;…; 202�: ð19Þ

We compute this distance using a numeric integration
algorithm (Mathematica’s NIntegrate with standard
parameters) of Eq. (10). The results for the distances
obtained for the exact, approximated, and interpolated
metric are plotted in the right panel of Fig. 1. We see that
changing ψ by 200 (from 2 to 202) corresponds to almost 1
Planck distance. We also find good agreement between the
numerical and the exact methods.
The numerical results can be further improved by

including, for each choice of complex structure, more
points on the CY when performing the Monte Carlo
integral. The computation time only grows linearly with
the number of points, and finding points on the manifold is
very quick, so this is indeed feasible. It will, however,
become unfeasible in high-dimensional complex structure
moduli spaces, since the number of points at which we need
to compute the metric is exponential in the number of

FIG. 1. Left: moduli space metric for ψ ¼ ρeiφ with 0 ≤ ρ ≤ 3, 0 ≤ φ ≤ 2π=5. Middle: the quantities g, ∂ρg, Γ
ρ
ρρ for exact metric (no

decoration), large jψ j approximation (17) (tilded), and interpolated from numeric determination of the metric (hatted). Right: geodesic
distance dð2;ψÞ for 2 ≤ ψ ≤ 200.

3For plotting the geodesics, we started at ψ ¼ 1.4 for better
visibility of the geodesics in the plot.
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dimensions; the same limitation applies for computing the
moduli-dependent Calabi-Yau metric as well.

2. Kähler moduli space

Let us also discuss geodesics in Kähler moduli space.
The mirror map allows us to relate the complex structure
modulus ψ with the Kähler modulus t of the mirror via

t ¼ z1

z0
∼ −

5

2πi
lnð5ψÞ ⇒ gtt̄ ∼

3

4ImðtÞ2 ; ð20Þ

where zI are the periods [Eq. (6)], and we have used the
large-jψ j approximation. The mirror map hence shows that
the large complex structure limit is equal to the large-
volume Kähler moduli space metric. Indeed, the triple
intersection number of the quintic is d111 ¼ 5, such that we
readily find from Eq. (11)

Kk ¼ −3 lnðt − t̄Þ ⇒ gtt̄ ¼
3

4ImðtÞ2 : ð21Þ

Note that the mirror map in Eq. (20) implies that the
numerical value of the Kähler parameter is changing
exponentially with the value of the complex structure
parameter in the large-parameter limit. We can hence use
the simple form of the metric to compute the geodesics at
large volume. The geodesic length [Eq. (10)] can be
computed directly as

dðp1; p2Þ ¼
Z

τ2

τ1

dτ

ffiffiffi
3

p

2

_r
r
¼

ffiffiffi
3

p

2
ðlnp2 − lnp1Þ: ð22Þ

This, together with Eq. (2), then implies α ¼ 4=
ffiffiffi
3

p
.

Expressed in terms of ψ , we get the double logarithm

dðp1; p2Þ ¼
ffiffiffi
3

p

2
ln ½lnp2 − lnp1�: ð23Þ

Note that hypergeometric Picard-Fuchs systems and
the mirror map t ∼ lnðψÞ appear more generally in CY
compactifications [18,19,25], and similar considerations
apply there.

III. CY METRIC AND MASSIVE SPECTRUM

Having obtained the relation between moduli space
positions and the geodesic distance traversed, we now
need to compute the spectrum of massive modes in the
effective theory and observe how it varies with ψ . For what
follows, we will focus on scalar modes in four dimensions,
which correspond to eigenfunctions of the scalar Laplace
operator on the quintic. Each eigenfunction of this operator
with eigenvalue λn > 0 gives rise to a massive excitation in
four dimensions with mass m2

n ∼ λn. These modes fill out a
subset of the KK tower [with the remaining modes coming
from ðp; qÞ-forms on the quintic, and so on].

We compute the spectrum in two steps: first, we find a
numerical approximation of the Ricci-flat metric on the
quintic for a fixed value of ψ ; we then compute matrix
elements of the Laplace operator and find the eigenvalues
of the resulting matrix. Let us quickly review these ideas
before presenting our results.

A. Numerical CY metrics

There are no known analytic expressions for metrics on
nontrivial Calabi-Yau threefolds. Fortunately, there are now
many ways to obtain such metrics numerically, including
position-space methods [26] and a number of spectral
methods such as balanced metrics [9,10,27,28], optimal
metrics [11], and, more recently, machine learning and
neural networks [13–15].
We use the optimal metrics approach. The basic idea

behind this, and the other spectral methods, is to make an
ansatz for the Kähler potential of the Ricci-flat metric
which depends on some constant (but moduli-dependent)
parameters. One can then vary these parameters in order to
find an approximation to the honest Ricci-flat metric within
the space of metrics described by the ansatz.
One first picks a positive integer k and chooses a basis

fsαg for the degree-k monomials of the homogeneous
coordinates on P4 modulo the equation defining the quintic
[Eq. (1)]. The ansatz for the Kähler potential is then given
by a generalization of Fubini-Study:

K ¼ 1

πk
lnðsαhαβ̄s̄β̄Þ; ð24Þ

where α; β̄ ¼ 1;…; dimfsαg and hαβ̄ is a moduli-dependent
(but coordinate-independent) Hermitian matrix. The cor-
responding metric on X is gmn̄ ¼ ∂m∂̄ n̄K. These so-called
“algebraic metrics” give a subspace of all possible metrics
on X. The idea is then to vary the parameters hαβ̄ to find the
algebraic metric closest to the Ricci-flat metric. Note that
the integer degree k of the sections controls the size of the
basis fsαg and thus the number of parameters in hαβ̄, and so
a larger k allows for a better approximation of the Calabi-
Yau metric.
The question then is how to find the “best” choice of hαβ̄.

This can be done by noting that on a Calabi-Yau, a Kähler
metric gmn̄ is Ricci-flat if and only if η ≔ kΩk2= det gmn̄ is
constant. One can then find the optimal metric by varying
hαβ̄ to minimize the error in η ¼ constant integrated over
the manifold. The accuracy of the resulting metric is often
reported using the “σ measure,” defined in Refs. [9,10].
For examples with a large discrete symmetry, such as

our one-parameter family of quintics,4 the number of

4The Fermat quintic (ψ ¼ 0) admits a ðS5 × Z2Þ ⋉ ðZ5Þ4
symmetry, which is broken to ðS5 × Z2Þ ⋉ ðZ5Þ3 for ψ ∈ R�,
cf. Appendix B.
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independent parameters that one must minimize over is
greatly reduced [11]. The resulting optimal metrics are
highly accurate and can be computed using the
Mathematica package in Ref. [29]. We chose to compute
the numerical metrics at k ¼ 8 and used 104 points for the
minimization procedure. The resulting metric was then
evaluated for a further Np ¼ 2 × 106 points both to check
the accuracy of the approximate metrics and as inputs for
the calculation of the spectrum.
The points on X were generated using the intersecting

lines importance sampling method from Refs. [9,10]. For
large values of ψ , one finds that this greatly undersamples
some regions of X and oversamples others, leading to an
effective number of points Neff much smaller than the
desired number Np. To ameliorate this, we generate a much
larger set Ns ≫ Neff > Np of points and resample from Ns

by drawing elements with a prior given by the weights of
the points. This is known as “sequential Monte Carlo” or
“sequential importance sampling and resampling,” and it
leads to a uniform distribution of points on the CY (i.e., all
points then have weight 1).

B. The spectrum of the Laplace operator

The eigenfunctions of the Laplace operator Δ on X are
defined by

Δϕ ¼ λϕ; ð25Þ

where λ is the eigenvalue and ϕ is the corresponding
eigenfunction. The spectrum of Δ is the set of eigenvalues
fλng. The zero mode (λ1 ¼ 0) ofΔ is unique up to scale and
is simply the constant function. Since X is compact, the
eigenvalues are discrete, and the eigenspaces are finite-
dimensional. Furthermore, since the Calabi-Yau metrics for
the one-parameter family of quintics admit discrete sym-
metries, the eigenvalues can appear with multiplicities μn
given by the dimensions of the irreducible representations
(irreps) of the symmetry group [16]. We compute these
using GAP as explained in Appendix B; see Eq. (B9) for
the irreps that occur.
Since Δ ¼ δd ¼ ⋆d⋆d on scalar functions, the Laplacian

depends on the choice of metric on X, which is why we
need the Calabi-Yau metric to compute the spectrum. Note
also that the eigenvalues scale with the volume V (as
measured by g): since Δ ∼ gmn̄ and V ¼ R

X J
3=6 ∼ det gmn̄,

we find that Δ and consequently λn ∼ V−1=3. We normalize
the volume of X to 1 in what follows.
The spectrum and eigenfunctions can be computed from

the matrix elements of Δ [16]. Let fαAg∞ be some basis for
the (infinite-dimensional) space of complex functions on X.
An eigenfunction of Δ can be expanded in this basis as
ϕ ¼ ϕAαA. The eigenvalue equation (25) can then be
written as

ΔABϕ
B ¼ λOABϕ

B; ð26Þ

where ΔAB ¼ hαA;ΔαBi and OAB ¼ hαA; αBi, which mea-
sures the nonorthonormality of the basis, are computed
using the usual inner product on functions and Monte Carlo
integration over X. This is then a “generalized eigenvalue
problem,” where λ gives the eigenvalue of Eq. (25), and ϕA

describes the eigenfunction in the chosen basis.
In practice, one cannot compute with infinite-dimen-

sional matrices, so as in Refs. [16,17], we restrict to an
approximate finite-dimensional basis, which we denote by
fαAg. A natural choice are the functions

fαAg ¼
fsðkϕÞα s̄

ðkϕÞ
β̄

g
ðjz0j2 þ � � � þ jz4j2Þkϕ

; ð27Þ

where fsðkϕÞα g are the degree-kϕ monomials of the homo-
geneous coordinates on P4. The resulting basis consists of
the eigenfunctions for the first kϕ þ 1 eigenvalues of the
Laplacian on P4 restricted to X, giving it the interpretation
of a spectral expansion [26]. As with the metric, a larger
value of kϕ gives a larger basis, which leads to a better
approximation of the eigenfunctions and spectrum of Δ.
For our calculations, we choose kϕ ¼ 3, which gives

dimfαAg ¼ 1, 225, allowing us to compute the first 1225
eigenvalues in the spectrum. Note that we restrict our
discussion to the first 100 or so eigenvalues, since these
low-lying modes are well described by the kϕ ¼ 3 basis. At
the upper end of the spectrum, one expects (and observes) a
loss of accuracy due to the finite size of the approxi-
mate basis.

C. Numerical results

We computed the scalar spectrum of the Laplace
operator for the one-parameter family of quintics
[Eq. (1)] for 2 ≤ ψ ≤ 1000. The σ measure for the
approximate metrics ranged from a minimum of 3 ×
10−4 for ψ ¼ 2 to a maximum of 0.1 for ψ ¼ 1000. We
also computed both lower- and higher-accuracy metrics for
a few values of ψ and observed that the low-lying
eigenvalues were relatively insensitive to the change—
for example, at ψ ¼ 100, a lower-accuracy metric with σ ¼
0.1 gave λ2 ¼ 26.1, while a higher-accuracy metric with
σ ¼ 0.03 gave 25.8, agreeing to within 1%.
In the left panel of Fig. 2, we show the first 84

eigenvalues and their multiplicities as ψ varies over this
range. One sees that the zero mode λ1 ¼ 0 is always
present, and that the massive modes appear with multi-
plicities given by the dimensions of the irreps of the
symmetry group [Eq. (B9)], as expected. The (barely
visible) shaded area around each curve corresponds to 1
standard deviation of the eigenvalue within each set of
degenerate eigenvalues.
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We see that some eigenmodes become heavier with
larger jψ j, while others become lighter, so that the eigen-
values appear to cross as ψ is varied. We can use the
multiplicities to track the eigenvalues and find that they do
indeed cross rather than simply being too close to distin-
guish numerically.
Note that one often encounters no level-crossing or

“avoided crossing” behavior—e.g., the von Neumann–
Wigner theorem in quantum mechanics or eigenvalue level
repulsion in random matrix theory. Indeed, at crossing
points, the degeneracy of the eigenvalue is enhanced
without an underlying symmetry that would explain this
enhanced degeneracy. In the case at hand, level crossing is
not a contradiction to this. The degeneracy of the eigen-
values at codimension 0 in complex structure moduli space
does have a symmetry origin, and the multiplicities are
indeed given by the irreps of the symmetry group
ðS5 × Z2Þ ⋉ ðZ5Þ3. The crossings (and hence the increased
degeneracies) occur at codimension 1 in complex structure
moduli space and are hence nongeneric. For example,
around ψ ¼ 6, λ2 and λ3 cross; around ψ ¼ 8, the eigen-
values λ5 and λ6 cross, etc. In particular, the latter lead to a
25-fold degeneracy at the crossing point, which is not the
dimension of an irrep of the symmetry group. Moreover,
nothing special seems to be happening (either on the CYor
in the complex structure moduli space) at the crossing
values for ψ, and we are hence led to believe that these
enhancements are accidental. Concerning eigenvalue level
repulsion in random matrix theory, this then tells us that,
while the Laplacian is Hermitian, it is far from random for
our family of quintics.
We also observe heuristically that the eigenvalues with

small degeneracy (i.e., irreps with small dimensions)
become lighter, and the ones with large degeneracy become
heavier as jψ j increases. It would be interesting to under-
stand this better and to predict when level crossing will
occur (and for which levels), but we do not have a good
understanding of this at the moment.
In the right panel of Fig. 2, we show how the first two

massive modes, λ2 and λ3, vary with dð2; ρÞ, the geodesic

distance from ψ ¼ 2. In particular, we see that λ3 falls
exponentially with the distance, with the line of best fit
given by

56.4e−ð0.906�0.034Þdð2;ρÞ; ð28Þ

where the errors show the 95% confidence interval. Since
mKK ∼ λ1=2, this suggests that α ≈ 0.45. This is somewhat
smaller than the value of 4=

ffiffiffi
3

p
suggested by the analysis

around Eq. (23). Note, however, that our result comes from
a direct calculation of the Oð1Þ coefficient for
2 ≤ ψ ≤ 1000, whereas Eq. (23) is accurate only in the
large complex structure limit. Interestingly, it almost
exactly saturates (while being consistent with) the bound
α ¼ 1=

ffiffiffi
6

p
proposed in Ref. [30]. Applications of a model

with α ¼ 1=
ffiffiffiffiffi
12

p
to inflation were discussed in Ref. [31].

In particular, this means that one can move 1=α ≈ 2.22
Planck units before the tower comes down one e-fold.
Moreover, it is actually the second-lightest eigenmode that
comes down (the first eigenmode becomes heavier). This
means that, due to crossing, the lightest state in the theory
reduces by one e-fold from Oð40Þ to Oð15Þ for a geodesic
distance of 3 Planck units. Thus, in concrete cases, trans-
Planckian field excursions with a few Planck distances
might be feasible. Saying more would, however, require a
better understanding of where and when crossing occurs,
and why some eigenmodes become heavier for larger jψ j.
The discrepancy between the fitted value of approxi-

mately α ¼ 1=
ffiffiffi
6

p
and the infinite-distance prediction α ¼

4=
ffiffiffi
3

p
could have several explanations. First, it could be

that the swampland distance conjecture needs to be
modified to

mðp1Þ ¼ mðp0Þe−fðdðp0;p1ÞÞ; ð29Þ

where f is some (nonlinear) function that asymptotes to
fðdÞ ¼ αd for d → ∞. While a linear fit of d to lnðλÞ
certainly fits the data well, hints of nonlinear behavior can
be seen in Fig. 2. A second possibility is that the

FIG. 2. Left: low-lying eigenvalues varying with ψ for 2 ≤ ψ ≤ 1000. Right: first two nonzero eigenvalues of the scalar Laplace
operator varying with geodesic distance dð2; ρÞ from ψ ¼ 2. The line of best fit is 56.4e−ð0.906�0.034Þdð2;ρÞ.
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asymptotically lightest state has a slope α ¼ 4=
ffiffiffi
3

p
but

corresponds to a much higher eigenmode λn, which crosses
the other levels and becomes the lightest state only at
large ψ .

IV. CONCLUSIONS AND OUTLOOK

We have used numerical methods to compute the Calabi-
Yau metric, the moduli space metric and geodesics, and the
spectrum of massive KK modes for the one-parameter
family of quintics with varying complex structure ψ . From
this, we inferred the moduli dependence of the masses of
the KK tower and, combining this with the geodesic
distance as a function of ψ , we found that states become
light exponentially, with a coefficient that is of order 1, in
agreement with the swampland distance conjecture.
There are a number of directions for future work. We

have focused on the behavior of the scalar spectrum;
however, one can repeat this analysis for ðp; qÞ-forms.
In addition, we considered only a one-parameter family of
quintics; however, similar conclusions should hold for any
of the 101 complex structure moduli. Extending our
analysis to this more general case would again require
computing the geodesic distance, which could be obtained
using the results for moduli space Kähler potentials in
Refs. [32–34]. One could also consider the much larger
classes of complete intersection and quotient Calabi-Yau
spaces.
We observed level crossing in the eigenvalue spectrum

and a qualitatively different behavior of eigenvalues with
small or large degeneracies under the symmetry group of
the CY. It would be interesting to analyze this further. Since
the nonzero eigenvalues encode information about the
metric that seemingly cannot be captured by either alge-
braic geometry or topological data, it is unclear to the
authors if this question has an analytic answer, and so a
numerical approach seems essential.
Finally, we want to comment on the spectrum at large,

complex structure. The Strominger-Yau-Zaslow conjecture
[35] states that any Calabi-Yau threefold is fibered by a
special Lagrangian three-torus over a (rational homology)
three-sphere. In the large complex structure limit the three-
torus fiber shrinks to zero size, and so the spectrum of the
Laplace operator on the threefold should degenerate to the
spectrum of the homology sphere. Since the family of
quintics we are considering are hypersurfaces in P4, they
are simply connected, and so the base of the fibration must
also be simply connected, implying that the base is an
honest three-sphere. In principle, one should be able to
compute the spectrum restricted to this three-sphere and
compare it with the spectrum on the quintic in the large-ψ
limit.5 One should also be able to see the degeneration of

the three-torus using the numerical metric. We hope to
come back to this in a future work.
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APPENDIX A: EINSTEIN FRAME MASSES

The SDC is a statement about the behavior of mass
scales measured in the Einstein frame. In particular, the
scaling of the KK mode masses in Eq. (2) as a function of
the Kähler modulus is a consequence of some simple facts.
Taking the ten-dimensional metric on M4 × X to be

g10 ¼ V−1g4 þ g; ðA1Þ

where V is the volume of X measured by g, the four-
dimensional metric g4 is automatically in the Einstein
frame. Given a scalar field Φ in ten dimensions that
satisfies the massless Klein-Gordon equation, we can
expand it as Φ ¼ β ⊗ ϕ, where β and ϕ depend only on
the four- and six-dimensional coordinates, respectively.
The Klein-Gordon equation can then be written as

□Φ ¼ V□4β ⊗ ϕþ β ⊗ Δϕ; ðA2Þ

where □4 is defined by g4 and Δ is the Laplacian defined
by g. The mass of the scalar mode β in Einstein frame is
then simply m2 ∼ V−1λ, where λ is the corresponding
eigenvalue of Δ. However, the eigenvalues also scale with
the volume of X as λ ∼ V−1=3, so that the squared masses
actually scale as V−4=3. Combining this with the Kähler
modulus dependence of the volume, V ∼ r3, we recover the
r−2 scaling given in Eq. (2).
For the complex structure, things are simpler, as the

volume factor that takes us to the Einstein frame does not
depend on ψ . The mass scale of the scalar modes then goes
asm2 ∼ λ, where the dependence of λ on ψ is what we have
explored in the main text.

APPENDIX B: SYMMETRIES OF THE
FAMILY OF QUINTICS

The one-parameter family of quintics [Eq. (1)] still has
many symmetries: it is invariant under permutations of the
homogeneous ambient space coordinates, under complex
conjugation, and under multiplying certain combinations of
homogeneous coordinates by powers of fifth roots of unity
ξ ¼ e2πi=5. In more detail, we take the generators of the
permutation group S5 to be a transposition t and a cyclic
permutation s:

5It is somewhat amusing to observe that the first massive mode
for large ψ has multiplicity 4, which is the same as the first
massive mode of the round metric on the three-sphere.
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ðz0; z1; z2; z3; z4Þ!t ðz1; z0; z2; z3; z4Þ;
ðz0; z1; z2; z3; z4Þ!s ðz1; z2; z3; z4; z0Þ: ðB1Þ

Complex conjugation is just a Z2, and we call its generator
c. The three Z5 factors act as

ðz0; z1; z2; z3; z4Þ !
Zð1Þ

5 ðξz0; ξ−1z1; z2; z3; z4Þ;

ðz0; z1; z2; z3; z4Þ !
Zð2Þ

5 ðz0; ξz1; ξ−1z2; z3; z4Þ;

ðz0; z1; z2; z3; z4Þ !
Zð3Þ

5 ðz0; z1; ξz2; ξ−1z3; z4Þ; ðB2Þ

and we call the generators gi, i ¼ 1, 2, 3. Note that the
putatively existing “fourth” Z5 (with generator g4) is not
independent, since we also have the projective ambient
space symmetry,

ðz0; z1; z2; z3; z4Þ → λðz0; z1; z2; z3; z4Þ: ðB3Þ

Hence, by choosing λ ¼ ξ and calling the generator μ, we
find that

g−14 ¼ μg23g
3
2g

4
1: ðB4Þ

Also note that permutation and complex conjugation

commute—the individual ZðiÞ
5 phases commute among

each other—but permutation and conjugation do not
commute with the phases. Hence, the symmetry group is
the semidirect product ðS5 × Z2Þ ⋉ Z3

5. In order to specify
the semidirect product, we need to specify the twisting—
i.e., how elements e ∈ Z3

5 change under g
−1 ∘ ei ∘ g, where

g is an element of S5 × Z2. We hence have to specify the
action induced by the generators c, t, s on the generators
g1;2;3 modulo μ.
Since complex conjugation will send ξ → ξ� ¼ ξ−1, we

find that the induced morphism of c on Z3
5 is simply given

by inverting the generators:

ðg1; g2; g3Þ ⟶
c−1∘e∘c ðg−11 ; g−12 ; g−13 Þ: ðB5Þ

For the transposition, we compute the action of t on any
element e ∈ Z3

5. The element e is labeled by three integers
ðn1; n2; n3Þ ∈ Z3

5 that specify the action

ðz0; z1; z2; z3; z4Þ
↓Z3

5

ðξn1z0; ξ−n1þn2z1; ξ−n2þn3z2; ξ−n3z3; z4Þ:

Hence,

ðz0; z1; z2; z3; z4Þ
↓t−1 ∘ e ∘ t

ðξ−n1þn2z0; ξn1z1; ξ−n2þn3z2; ξ−n3z3; z4Þ;
ðB6Þ

such that the transposition acts on the generators gi as

ðg1; g2; g3Þ ⟶
t−1∘e∘t ðg−12 g1; g2; g3Þ: ðB7Þ

Analogously, we find for the action of c

ðg1; g2; g3Þ ⟶
c−1∘e∘c ðg3; g1g23; g2g33Þ; ðB8Þ

where we also use μ to remove the action of c−1 ∘ e ∘ c on
z4, as well as 5ni ≡ 0.
The resulting group is of order 2 × 5! × 53 ¼ 30000.

Now, we need to compute the irreps and their dimensions.
Note that there can be nd > 1 irreps of the same dimension
d. Given the size of the group, we do this by computing the
irreducible characters and their degrees in GAP [36] via its
SAGE interface [37]. We find a total of 40 irreps with
dimensions 1 to 60:

d 1 4 5 6 20 24 30 40 48 60

nd 4 4 4 2 8 2 8 4 2 2
ðB9Þ
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