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We explore the holographic proposal involving spacetimes with linear dilaton asymptotics in three
dimensions from a gravity perspective. The holographic dual shares some properties with a symmetric
product conformal field theory deformed by a single-trace analogue of the TT̄ deformation. We present
solutions of ten-dimensional supergravity which interpolate from BTZ black holes in the interior to either a
linear dilaton spacetime near infinity, or to flat space. This allows a precise identification of field theory
parameters with gravity parameters. The solutions manifestly exhibit the square root structure that is
characteristic of TT̄-deformed conformal field theories. We compute the mass of the spacetimes using the
covariant phase space formalism and find agreement with the square root formula for the case of black
holes without spin. We also discuss whether closed string tachyons might play a role when the deformation
parameter becomes too large and the vacuum becomes unstable.
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I. INTRODUCTION

Although holography for asymptotically anti–de Sitter
(AdS) spacetimes has been extensively studied and tested in a
variety of contexts, holography for spacetimeswith non-AdS
asymptotics is poorly understood. This certainly includes the
cases of asymptotically flat and asymptotically de Sitter
spacetimes. There are good reasons to suspect that new
structures in quantum field theory are needed to define
quantum gravity in such spacetimes, should such gravity
theories exist. If one assumes a correspondence similar in
spirit to the AdS=CFT correspondence then any holographic
description is forced to have a high-energy density of states
that grows faster than a local quantum field theory in order to
match the spectrum of large black holes. If one is in low
enough dimension, this obstruction might be avoided but it
seems hard to avoid in theories with propagating gravitons.
It seems reasonable then to suspect that a field theory dual

to a non-AdS spacetime, with a potentially rich spectrum of
black holes, might be controlled by some structure other than
a local quantum field theory at high energies. On the other
hand, we have recently learned that some special irrelevant
deformations of local quantum field theories possess exactly
the property of dramatically modifying the ultraviolet

behavior of the theory. It is an exciting prospect that the
new structures seen in quantum field theory by turning on
controlled irrelevant deformations might play a role in
defining quantum gravity on non-AdS spacetimes.
The most prominent family of controlled irrelevant

deformations, which has generated considerable recent
excitement, involves operators constructed from bilinears
of conserved currents in two-dimensional quantum field
theories. The first example in this family is the TT̄ operator
of [1]. This operator, which can be used to deform any 2d
QFT, is given by the combination detðTÞ,

TT̄ðxÞ ¼ lim
y→x

ðTμνðxÞTμνðyÞ − Tμ
μðxÞTν

νðyÞÞ; ð1:1Þ

where Tμν is the stress tensor of the theory. Although this
definition involves a coincident-point limit of local oper-
ators, all operator product expansion divergences which
arise in this limit are proportional to total derivatives. These
total derivatives do not contribute to one-point functions in
translationally invariant states. Therefore, up to fairly
harmless total derivative ambiguities, one can always
define a local irrelevant operator from the stress tensor
using (1.1). Since any 2d QFT with translation invariance
admits a stress-energy tensor, this operator is universal. We
will call this the double-trace TT̄ deformation to distinguish
it from a different deformation of interest in this work.
We define a flow in the space of theories with tangent

vector
R
TT̄ðxÞ. The flow parameter λ has length dimension

2. The stress tensor must be recomputed at each step along
the flow, and the composite operator (1.1) is constructed
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using this λ-dependent stress tensor. Quantizing this theory
on a cylinder of radius L gives an energy spectrum which
satisfies the inviscid Burgers’ equation,

∂

∂λ
EnðL; λÞ ¼

1

2

∂

∂L
ðEnðL; λÞ2Þ þ

PnðLÞ2
L

: ð1:2Þ

Here En are the energies and Pn are the quantized momenta
[1–3].
There is considerable evidence that this deformation

defines a theory at the quantum level for flat and even AdS2
spacetimes [4], and leads to a new structure beyond local
quantum field theory. For example, the high-energy density
of states exhibits a Hagedorn growth which can be inferred
from the explicit solution of (1.2) for a TT̄-deformed CFT2

on a cylinder of radius L,

EnðλÞ ¼
L
2λ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4λEn

L
þ 4λ2P2

n

L2

r
− 1

�
; ð1:3Þ

where EnðλÞ is the deformed energy, En is the undeformed
CFT2 energy and Pn is the momentum of the nth eigen-
state.1 Many of the basic questions that one might ask about
this new structure, like the nature of physical observables,
are still unsettled.
If one instead considers the symmetric product orbifold

SymNðCFT2Þ ¼ ðCFT2ÞN=SN then we could deform by the
single-trace operator

DðxÞ ¼ lim
y→x

XN
i¼1

½ðTiðxÞÞμνðTiðyÞÞμν − ðTiðxÞÞμμðTiðyÞÞνν�;

ð1:4Þ

which exists at the orbifold point [6], instead of the usual
double-trace operator

TT̄ðxÞ ¼ lim
y→x

��X
i

TiðxÞ
�

μν
�X

i

TiðyÞ
�

μν

−
�X

i

TiðxÞ
�

μ

μ

�X
i

TiðyÞ
�

ν

ν

�
: ð1:5Þ

Here Ti denotes the stress tensor for the ith copy of CFT2 in
the symmetric product.
There is a very intriguing holographic proposal for

defining quantum gravity in spacetimes with linear dilaton
asymptotics in three dimensions [6–8]. Such backgrounds
include solutions that interpolate between AdS3 spacetimes
and linear dilaton spacetimes [9–11]. The proposal is that

deforming by an operator like (1.4), although not precisely
this operator,2 provides the holographic description of this
system [6–8]. The specific backgrounds studied arise as
limits of the gravitational solution describing a collection of
type II NS5-branes and fundamental strings. Such a
gravitational solution has a holographic description
controlled in the ultraviolet by the conjectured little
string theory supported on the NS5-branes; for reviews,
see [13,14].
This example is especially interesting because an asymp-

totically linear dilaton (ALD) spacetime is structurally quite
different from an asymptotically AdS spacetime. For
instance, AdS has a timelike boundary but an ALD
spacetime has a null component in the boundary. We might
therefore expect holography in the ALD setting to differ
significantly from the familiar AdS=CFT correspondence.
Much of the progress in realizing that deformations in the
spirit of DðxÞ play a role in holography has come from
world sheet considerations. In the specific case of the
M ¼ 0 BTZ background with pure NS-flux, there is a
marginal world sheet deformation that generates the ALD
spacetime [9,10]. The effect of this world sheet deformation
on the long string excitation spectrum has been argued to
match the way DðxÞ deforms the energies of the symmetric
product orbifold [6]. This is compelling evidence that
something like a single-trace TT̄ operator, with a similar
effect on the energy spectrum, should exist in the actual
holographic CFT2 which defines AdS3 with pure NS-flux.
Our goal in the present work is to provide a comple-

mentary view of this holographic proposal: rather than
using a world sheet construction, we will work primarily in
the target spacetime and perform an analysis using only
classical general relativity. We find families of solutions
which look like AdS3 spacetimes in the interior but with
either ALD asymptotics (3.5) or flat space asymptotics
(3.8). What is striking about these solutions, which are
parametrized by the mass and spin ð eM; J̃Þ of the interior
BTZ black hole, is that the dilaton solution exhibits exactly
the square root form seen in (1.3),

e2Φ ¼
r25

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8k1

eMr2
5

R2 þ 16ðk1Þ2 J̃2r4
5

R4

r
r̂21 þ k1r2

: ð1:6Þ

The radial coordinate in (1.6) is r while the parameter k1
corresponds to λ of (1.3) via the relation,

1All of our discussion is for the “good” sign of the deforma-
tion, which corresponds to λ > 0. For this sign, all of the energies
are real for sufficiently small λ. For the “bad” sign λ < 0, most of
the energies are complex. If one considers sequential flows by
irrelevant operators then the bad sign behavior can be cured [5].

2The holographic definition of AdS3 string theory with
Neveu–Schwarz (NS)-flux cannot be the symmetric product
orbifold, aside possibly from the stringy case of a single NS5-
brane [12]. Rather the holographic theory is suspected to
correspond to a marginal deformation of the orbifold theory.
The existence of a well-defined irrelevant operator analogous to
(1.4) away from the orbifold point is in no sense obvious. For our
purpose, what is important is that an energy formula like (1.3)
exists for at least some states in the holographic description.
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λ ¼ ðα0Þ2jm5j
2R2

k1: ð1:7Þ

The constants r5 and r̂1 in (1.6) are fixed length scales
determined by the number of NS5-branes, m5, and the
number of fundamental strings,m1. The string length isls ¼ffiffiffiffi
α0

p
andR is the size of an asymptotic circlewhich is finite in

string-frame and characteristic of the ALD spacetime.
It is worth noting that the effect of the k1 deformation is

detectable even in the deep interior where r is very small. For
example, the AdS3 length scale is k1-deformed in a mass and
spin-dependent way. Alternately, the value of the dilaton at
r ¼ 0 in (1.6) is now mass and spin-dependent while it is
simply constant in the case of AdS3. Said differently—the
gravity solution “knows” about the irrelevant deformation of
the holographic conformal field theory (CFT) even in regions
of spacetime normally associated to the deep infrared of
the CFT.
Our conventions can be found in Sec. II alongwith a review

of the eM ¼ 0 brane solutions. In Sec. III we summarize the
final form of the various families of solutions with mass and
spin.Amore detailed analysis leading to these solutions canbe
found in the Appendix. In Sec. IV, we use the covariant phase
space formalism to compute the mass of the ALD solutions.
For the case without spin, we find a square root form for the
mass of the spacetime (4.28) in accord with our expectations
for a TT̄-like deformation of the holographic description. The
case with spin is more subtle because of issues with charge
integrability which we discuss in Sec. IV B. Lastly, in
Sec. IV C we briefly explore whether a closed string tachyon
might play a role in understanding the fate of the vacuum state
when the deformation parameter becomes too large.
Some generalizations of the holography discussed here

for the pure NS background to cases with ðp; qÞ 5-branes,
which really require the kind of gravity approach we have
employed, will appear elsewhere.
Note Added.— The results in this paper have been in a

state of partial completion for quite a long time. During that
period two interesting papers appeared with related results
from different approaches [15,16]. The long delay can, in
part, be attributed to the arrival of a new baby during the
COVID lockdown. After this paper appeared, we were
informed of other potentially related work [17].

II. TYPE IIB SUPERGRAVITYBRANE SOLUTIONS

We first want to find general solutions of type II super-
gravity with NS5-brane and fundamental string charge
that asymptote to flat space. There will be two decoupling
limits that play a role in our discussion and we will want to
write the solutions in convenient coordinates for exhibiting
these limits.
As a starting point, in this section we review brane

solutions of type IIB supergravity, which fully decouple
to the Poincaré patch of the M ¼ 0 BTZ background.

In Sec. III, we will find the general class of solutions with
nonzero mass and spin. Because the solutions involve a
torus, we can dualize between type IIA or type IIB string
theory; for concreteness, we will discuss solutions of the
type IIB equations of motion.

A. Constraints from flux quantization

To fix conventions, let us begin with the bosonic action
for ten-dimensional type IIB supergravity in string frame,

SIIB ¼ 1

ð2πÞ7α04
Z

d10x
ffiffiffiffiffiffi
−ĝ

p
×

�
e−2Φ

�
R̂þ 4ð∂ΦÞ2 − 1

12
jH3j2

�
−
1

2
jF1j2 −

1

12
jF3 − C0H3j2 −

1

4 · 5!
jF̃5j2

�
; ð2:1Þ

where F̃5 ¼ dC4 − 1
2
C2 ∧ H3 þ 1

2
B2 ∧ F3.

3 We define the
gravitational constant

κ210 ≔
1

2
ð2πÞ7α04e2Φ0 ; ð2:2Þ

in terms of the string length, ls ¼
ffiffiffiffi
α0

p
, and the asymptotic

value of the string coupling gs ¼ eΦ0 . The hatted variables
ĝ and R̂ refer to string-frame quantities.
The analysis of TT̄-like deformations and holography in

general flux backgrounds—when the Ramond fluxesC0,C2,
C4 may be nonzero—will be explored in futurework. For our
present purposes, we will restrict to the case of pure NS
fluxes. In this case, it is consistent to setC0 ¼ C2 ¼ C4 ¼ 0.
We will consider solutions of the form M3 × S3 × T4.

The T4 factor is a spectator which could also be replaced by
K3 without changing the analysis. Although not visible in
supergravity, in string theory flux quantization through the
S3 requires that

1

4π2α0

Z
S3
H3 ¼ m5; ð2:3Þ

where m5 is an integer corresponding to the NS5-brane
charge.
There is another quantization condition on the dual field

strength. If we define

H7 ¼ e−2Φ �H3; ð2:4Þ
then this form satisfies the following quantization condition
for any 7-cycle Σ7,

1

ð2πÞ6ðα0Þ3
Z
Σ7

H7 ¼ m1 ∈ Z: ð2:5Þ

3We use boldface to denote differential forms to conform with
the notation often found in the gravity literature and used in Sec. IV.
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B. Review of NS5-brane and F-string bound state

There is a well-known class of solutions in type IIB
supergravity which satisfy the flux quantization conditions
outlined in the previous subsection and which form the
prototype for the generalized solutions that we will con-
sider in Sec. III. These much studied solutions are inter-
preted as bound states of m1 fundamental strings and m5

NS5 branes, where m1, m5 are the integers appearing in the
quantization conditions (2.3) and (2.5), respectively.
One way of presenting these solutions [18], which is

nicely reviewed in [19], is

e−2Φ ¼ 1

g2s

f1
f5

; B05 ¼
1

f1
− 1;

Hmnp ¼ ϵmnp
q
∂qðlog f5Þ

bds2 ¼ −dt2 þ dx25
f1

þ f5ðdx21 þ � � � þ dx24Þ

þ ðdx26 þ � � �dx29Þ; ð2:6Þ

where m; n; p; q ¼ 1;…; 4, ϵmnpq is the volume form for
f5
P

4
i¼1 dx

2
i and

f1 ¼ 1þ r21
r2

¼ 1þ 16π4g2sα03m1

V4r2
;

f5 ¼ 1þ r25
r2

¼ 1þ α0m5

r2
: ð2:7Þ

In these expressions, r represents a radial coordinate in the
four-dimensional space transverse to the NS5-branes para-
metrized by x1, x2, x3, x4, while the coordinates x6, x7, x8,
x9 parametrize a torus with volume V4. The asymptotic
region corresponds to large r. The constant gs specifies the
asymptotic value of the string coupling. We have a choice
about how to treat x5. To patch to AdS3 in the interior, we
will periodically identify

x5 ∼ x5 þ 2πR: ð2:8Þ

Note that the flux H3 has two separate contributions, one
arising from the explicit Hmnp components and one arising
fromH ¼ dB with B ¼ B05dx0 ∧ dx5 and B05 as indicated
in (2.6).
The solution (2.6) contains at least two qualitatively

different asymptotic regions. For r ≫ r1; r5, the solution
approaches flat 10-dimensional Minkowski space. On the
other hand, in the near-horizon limit r ≪ r1; r5, the sphere
and torus become spectators and we recover an effective
three-dimensional gravity solution which is diffeomorphic
to a Poincaré patch of AdS3.
We will refer to the full spacetime with the asymptoti-

cally flat region retained as the undecoupled or totally
undecoupled solution, and the near-horizon solution in the
deep bulk as the decoupled or totally decoupled solution.

The process of taking the full decoupling limit may be
thought of as simultaneously sending the asymptotic string
coupling gs → 0 and sending α0 → 0, along with a re-
scaling of coordinates. Alternatively, one may think of this
decoupling limit as dropping the 1’s in the harmonic

functions f1 and f5 so that fi ¼ 1þ r2i
r2 → fi ¼ r2i

r2.

1. Partial decoupling

There is also an intermediate regime in this spacetime
which looks neither like AdS3 in the Poincaré patch nor like
flat space. To take this limit, define r ¼ gsr̂ and take gs → 0
giving

e−2Φ ¼ r̂2

r25

�
1þ r̂21

r̂2

�
;

bds2 ¼ −dt2 þ dx25
f1

þ r25
r̂2
dr̂2 þ r25dΩ2

3 þ ds2T4 ;

f1 ¼ 1þ r̂21
r̂2

¼ 1þ 16π4α03m1

V4r̂2
; r1 ¼ gsr̂1: ð2:9Þ

This amounts to replacing f5 ¼ 1þ r2
5

r2 by f5 ¼ r2
5

r2, but
retaining the full function f1 without dropping the 1 there,

since r2
1

r2 is not necessarily big.

2. Full decoupling

The fully decoupled solution is found by making r very
small and dropping the 1 in f1 [20]. To put the resulting
metric in a conventional AdS3 form, we define dimension-
less variables

r̃2 ¼ r̂2
R2

r25r̂
2
1

; φ̃ ¼ x5
R
∼ φ̃þ 2π; t̃ ¼ t

R
: ð2:10Þ

In these variables the metric takes the form

bds2 ¼ l2

�
r̃2ð−dt̃2 þ dφ̃2Þ þ dr̃2

r̃2
þ dΩ2

3

�
þ ds2T4 ;

e−2Φ ¼ r̃2r21
R2

þ r̂21
l2

⟶
decoupling r̂21

l2
; ð2:11Þ

where l ¼ r5 is the AdS3 length scale. We note that the
size, R, of the x5 circle at infinity is absorbed into a
redefinition of time and therefore energy. This will play a
role later when we compare energies in the partially
decoupled theory to energies in the AdS3 region. The last
comments on the fully decoupled case concern the value of
the gravitational coupling in the AdS3 theory which is
given by

ðκ3Þ2 ¼ 8πG3 ¼
2πls

jm1j
ffiffiffiffiffiffiffiffiffijm5j

p ; ð2:12Þ
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and the central charge of the dual holographic CFTwhich is
given by

c ¼ 3l
2G3

¼ 6jm1m5j: ð2:13Þ

We can identify the radius L of the holographic CFT by
noting that the mass of global AdS3 is − 1

8G3
. This

corresponds to the ground state of the CFT with energy
− c

12L so we identify

L ¼ l ¼
ffiffiffiffiffiffiffiffiffi
jm5j

p
ls: ð2:14Þ

This is independent of the radius R of the x5 circle which
appears in (2.8).
As we discussed in the introduction, gravity solutions of

the partially decoupled form have been argued to have field
theory duals which are obtained by deforming a conformal
field theory by an irrelevant operator related to TT̄ [6–8].
These solutions have also been shown to arise from TsT
transformations [15,16,21]. In the following section wewill
generalize these well-known solutions for the M ¼ 0 BTZ
case without spin to metrics which interpolate from a
general spinning BTZ black hole in the interior to either an
asymptotically linear dilaton spacetime or to an asymp-
totically flat spacetime.

III. GENERALIZED NS5-BRANE
AND F1-STRING SOLUTIONS

In this section we will present a class of supergravity
solutions with the desired quantized charges, symmetries
and asymptotic behavior. These solutions can be interpreted
as bound states of a system of F1 strings and NS5-branes
that interpolate between an AdS3 black hole in the deep
interior with some mass and spin to either a linear dilaton
solution in the asymptotic region, or to asymptotically flat
six dimensions at large distances. We will separately
present those two cases because the latter is a more
complicated class of solutions.
The full spacetime equations of motion are quite difficult

to solve in generality without some physically reasonable
metric ansatz as an input. Our ansatz is spelled out in the
Appendix along with the calculations of the metric and
dilaton functions, and the details of the fairly involved
asymptotic matching needed to identify the physical
parameters of the solution. The aim of this section is to
present clearly the assumptions going into the analysis and
the final solutions. There are other classes of solutions in
the Appendix, which are even more surprising; they appear
to interpolate from an AdS3 spacetime in the interior to an
asymptotic 3-dimensional spacetime with positive curva-
ture. Whether those solutions are fully sensible will be
explored elsewhere.

A. Characterizing the general solution

We will look for solutions to the equations of motion of
type IIB supergravity, written using the same coordinates
as (2.6), which satisfy the following assumptions:
(1) Asymptotics. We assume that near infinity the family

of solutions approach either the linear dilaton asymp-
totic form seen in (2.9), or the flat space asymptotic
form seen in (2.6).Wewill insist that the isometries of
T4, S3 and S1 are preserved by the solutions. This
collapses the unknown functions in the metric, fluxes
and dilaton to functions of r and possibly time t. We
assume these coordinates can be extended to global
coordinates for our spacetime solution. Lastly, we
assume the metric, dilaton, and NS-flux admit an
expansion in powers of 1

r near r → ∞.
Near r ¼ 0, we insist the solution takes the form

M3 × S3 × T4 with the dilaton Φ tending to a con-
stant. We need this form if we are to interpret the
holographic theory as some kind of deformed CFT.

(2) Symmetries.We assume that the solution is stationary
and therefore only depends on the radial coordinate r.
Because the spacetime is assumed to be stationary but
not static, the timelike Killing vector ∂t need not be
irrotational. However, we will constrain the allowed
rotation to occur only in the x5 direction. Operation-
ally, thismeans that a nonvanishingmetric component
gtx5 is allowed—corresponding to a spinning BTZ
black hole at small r—but no other off-diagonal
metric components are permitted.

(3) Fluxes. We assume that the Ramond potentials Cp
are all vanishing and that the NS flux H3 ¼ dB2

only threads the three-dimensional submanifolds S3

andM3. SoH3 is a sum of the volume forms ϵS3 and
ϵM3

on S3 and M3, respectively, with coefficients
that can in principle depend on r. Finally, we impose
the usual flux quantization conditions (2.3) and (2.5)
on H3 required by string theory.

B. Solutions with ALD asymptotics

1. The J̃ = 0 case

From the analysis presented in the Appendix, we find the
following solutions in string frame for the case where the
black hole has no spin:

ds2 ¼ −
1 − α2e

r2

k1 þ r̂2
1

r2

dt2 þ 1

k1 þ r̂2
1

r2

dx25 þ
r25

r2 − α2e
dr2

þ r25dΩ2
3 þ ds2T4 ;

e2Φ ¼
r25

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8k1

eMr2
5

R2

r
r̂21 þ k1r2

; α2e ¼ 8 eM r̂21r
2
5

R2
;

r25 ¼ α0m5; r̂21 ¼
16π4α03m1

V4

: ð3:1Þ
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These solutions depend on a dimensionless parameter k1.
The fully decoupled pure AdS3 solutions correspond to
k1 ¼ 0. We will momentarily identify k1 with the defor-
mation parameter λ of a TT̄-deformed theory. It is impor-
tant to point out that the eM ¼ 0 solutions, which match
(2.9), are sensitive to whether k1 is zero or nonzero.
However, the precise value of k1 is not important and
can be absorbed in a rescaling of coordinates. This reflects
the fact that E ¼ 0 states remain zero energy under a TT̄
deformation; namely, zero energy does not flow. Any case
with eM ≠ 0, however, is sensitive to the value of k1.
Note that the x5 circle has periodicity 2πRffiffiffiffi

k1
p at r ¼ ∞ in

string-frame. In Einstein frame, the x5 circle has a proper size
that goes to infinity as r → ∞. The dimensionless mass eM is
related to the dimensionful mass of the BTZ black hole near
r ¼ 0 via eM ¼ MG3, where G3 is specified in (2.12).
On first glance, itmight appear that the solutions (3.1) have

the wrong large r asymptotics in Einstein-frame because the
dilaton is mass-dependent. However a careful redefinition of
the radial coordinate in the large r region, discussed around
(A27), shows that these solutions have the correct asymptotic
behavior. Also notice that the value of the dilaton at r ¼ 0 is
now mass dependent and differs from the pure AdS3 case
where k1 ¼ 0. As a consequence, the AdS3 length scale is
also mass-dependent in Einstein frame.
Global AdS3 has mass eM ¼ − 1

8
. This corresponds to the

ground state of the holographic CFT which should have
dimensionless energy Ẽ ¼ EL ¼ eM L

G3
. Notice that the

dilaton solution is only real if the condition,

k1 <
R2

r25
; ð3:2Þ

is satisfied. It is important to note that this condition is
independent ofm1 but depends on the value ofm5 via r25. As
we increasem5, the maximum value of k1 decreases. It is this
asymmetry between m1 and m5 that singles out the single-
trace TT̄ deformation rather than the conventional double-
trace deformation.4 In the latter case,we should have seen the
maximum value of k1 reduce as we increase the total central
charge (2.13)which depends onbothm1 andm5.We can then
compare this bound with (1.3) which states that

λ <
3L2

cblock
¼ 3L2

6jm5j
; ð3:3Þ

where cblock ¼ 6jm5j is the central charge of a block that
would appear if the holographic dual were actually a
symmetric product [6]. Via this comparison we can identify,

λ ¼ ðα0Þ2jm5j
2R2

k1; λ̃ ¼ λ

L2
¼ α0

2R2
k1; ð3:4Þ

where we have also defined the natural dimensionless TT̄-
deformation parameter λ̃. This makes clear that the TT̄
deformation is controlled by the asymptotic size of the x5
circle in string frame. We will see further evidence for this
identification in the spinningcase. It is striking that the square
root solution of the TT̄ flow equation for a CFT emerges
directly from gravity in the structure of the dilaton solution.

2. The J̃ ≠ 0 case

The solutions for spinning black holes are similar,

ds2 ¼ −
1 − α2e

r2 þ
α4j
r4

k1 þ r̂2
1

r2

dt2 þ 1

k1 þ r̂2
1

r2

�
dx5 −

α2j
r2

dt

�2

þ r25

r2 − α2e þ α4j
r2

dr2 þ r25dΩ2
3 þ ds2T4 ;

e2Φ ¼
r25

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8k1

eMr2
5

R2 þ 16ðk1Þ2 J̃2r4
5

R4

r
r̂21 þ k1r2

;

α2e ¼ 8 eM r̂21r
2
5

R2
; α2j ¼ 4J̃

r̂21r
2
5

R2
: ð3:5Þ

Here J̃ ¼ JG3

l is a dimensionless spin, but this is not the
natural quantity to study from the perspective of the dual
CFT. The AdS=CFT correspondence maps the dimension-
less parameter J ¼ J̃ l

G3
to the dimensionless momentum

quantum number P̃ ¼ PL of the holographic CFT. With
this identification, the form of the dilaton solution again
beautifully matches the structure of the TT̄-deformed
energy formula (1.3),ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8k1

eMr25
R2

þ 16ðk1Þ2
J̃2r45
R4

s
→

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4λ̃ Ẽþ4λ̃2P̃2

p
;

ð3:6Þ

where we identify

P̃ ¼ J
m1

; Ẽ ¼ 4m5
eM ¼ 1

m1

�eM ·
l
G3

�
: ð3:7Þ

Here Ẽ and P̃ are the energy and momentum, respectively,
of a single block of the symmetric product.

C. Solutions with flat-space asymptotics

Lastly we turn to the fully undecoupled solutions that
asymptote to a flat 6-dimensional spacetime. In string
frame, the metric and dilaton take the form,

4If it were the conventional double-trace TT̄ deformation, we
would only have seen dependence on the product m1m5, which
determines the central charge from (2.13).
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ds2 ¼ −
1 − α2e

r2 þ
α4j
r4

k1 þ r̂2
1

r2

dt2 þ 1

k1 þ r̂2
1

r2

�
dx5 −

α2j
r2

dt

�2

þ
k5r2 −

k5α2e
2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r45 − k25α

4
j þ 1

4
k25α

4
e

q
r4 − r2α2e þ α4j

r2dr2

þ r2
�
k5 þ

α25
r2

�
dΩ2

3 þ ds2T4 ;

e2Φ ¼
g2s þ γα2

5

k1r2

1þ r̂2
1

k1r2

; α2e ¼ 8 eM r̂21r
2
5

R2
;

α2j ¼ 4J̃
r̂21r

2
5

R2
; k5 ¼

k1g2s
γ

;

α25 ¼
1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k25α

4
e þ 4ðr45 − k25α

4
jÞ

q
− k5α2e

�
;

γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k1α2e

r̂21
þ k21α

4
j

r̂41

s
: ð3:8Þ

This final form for the metric depends on the dimensionless
parameters ðgs; k1Þ where gs is the r ¼ ∞ value of the
string coupling. The solution also depends on the flux
quantum numbers via ðr̂1; r5Þ defined in (3.1) and the black
hole mass and spin ð eM; J̃Þ. We note that the 3-sphere now
grows as r becomes large which is why the asymptotic
theory is 6-dimensional.
The square root structure of the solution to the TT̄ flow

equation is encoded in γ which now appears both in the
metric via k5 and the dilaton. Notice that the size of the S3

at r ¼ 0 is also deformed from the pure AdS3 case by an
amount that depends on the mass and spin of the interior
black hole. Lastly we note that the parameter k1 still
controls the size of the x5 circle near infinity.

IV. MASS CALCULATION

The supergravity solutions derived in the previous
section appear to have something to do with a TT̄-deformed
theory. We made a tentative identification of the deforma-
tion parameter with k1 of the spacetime solution based on
the appearance of the square root in the dilaton solution of
(3.5). This identification assumes that the holographic CFT
is of symmetric product type and that the deformation is
purely a single-trace TT̄ deformation. The only cases where
we have formulas for the deformed energies are the single-
and double-trace TT̄ deformations, and sequential flows by
such irrelevant operators [5]. However, the undeformed
holographic CFT is not a symmetric product though it is
believed to be connected to a symmetric product by a
marginal deformation. Regardless, we can provide further
evidence for a correspondence with some kind of single-
trace TT̄-like deformation of that undeformed theory by
directly computing the mass of the solutions (3.1).

The definition of mass in general relativity is not unique.
There are a variety of proposals that depend on the
asymptotics of the background. A way to uniformly define
the mass is by using the covariant phase space formalism
[22]. This will provide an independent way of confirming
the parameter identification we made in Sec. III.

A. Surface charges in gravitational theories

The covariant phase space formalism allows us to define
conserved surface charges in generally covariant theories.
In this section we will review this formalism before using it
to compute the charges associated with the solutions in
Sec. III. Our discussion of this formalism will be very brief
and many facts will be stated without justification; for a
more comprehensive treatment, we refer the reader to a
review such as [23].
First consider a theory described by a general Lagrangian

density LðΦiÞ in a theory with n spacetime dimensions,
where Φi represents an arbitrary collection of fields.
Following common conventions in the gravity literature
we denote differential forms in spacetime by boldface
symbols, so L ¼ Ldnx is the top form associated with the
usual Lagrangian density L. In pure Einstein gravity, for
instance, the only field Φi is the metric gμν and
L ¼ 1

16πG
ffiffiffiffiffiffi−gp

R. Upon variation of the fields Φi, one sees

δL ¼ δL
δΦi δΦ

i − dΘ½δΦi;Φi�: ð4:1Þ

The form Θ½δΦi;Φi� is called the presymplectic potential
and depends both on the fields Φi and their variations δΦi.
One can think of Θ as simultaneously being an (n − 1)-
form in spacetime and a 1-form in the space of field
variations. In what follows, we will suppress the index i
when writing the functional dependence on fields and
simply write Θ½δΦ;Φ�. To define conserved charges, it is
convenient to introduce a related object ω called the
presymplectic form via

ω½δ2Φ; δ1Φ;Φ� ¼ δ2Θ½δ1Φ;Φ� − δ1Θ½δ2Φ;Φ�: ð4:2Þ

Here we write the dependence ofω on both variations δ1;2Φ
to emphasize that Θ itself depends on one variation δ1Φ of
the fields, and ω is defined by again performing a second
variation δ2 of the fields and finding how Θ varies (with
appropriate antisymmetrization). From this perspective, the
symbol δ acts as the exterior derivative in field space so that
ω is an (n − 1)-form in spacetime and a 2-form in the space
of field variations.
We will be especially interested in field variations δξΦ

that are associated with an infinitesimal diffeomorphism
generated by xμ → xμ þ ξμ. For instance, under such a
transformation any tensor field Tμ1���μp transforms via the
Lie derivative Lξ as
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δξTμ1���μp ¼ LξTμ1���μp : ð4:3Þ

We will consider the case where the field configuration Φ
satisfies the equations of motion for the theory, the first
variation δ1Φ ¼ δΦ solves the linearized equations of
motion about the solutionΦ, and the second variation δ2Φ ¼
δξΦ is generated by a diffeomorphism of this form. In this
case, one can show that ω½δξΦ; δΦ;Φ� is exact, so that

ω½δξΦ; δΦ;Φ� ¼ dkξ½δΦ;Φ�: ð4:4Þ
This differential formkξ is an (n − 2)-form in spacetime and a
1-form in the space of field variations. Note that we will also
identify the (n − 2)-form kξ with its Hodge dual, an anti-
symmetric 2-tensor with components kμν, which we write
without boldface type. This kξ can also be expressed as

kξ½δΦ;Φ� ¼ −δQξ½δΦ;Φ� þ iξΘ½δΦ;Φ�; ð4:5Þ
up to the ambiguity of adding a total (spacetime) derivative
term to kξ. This ambiguitywill not be relevant for us, sincewe
are primarily interested in the integral

δQξ ¼
I
S
kξ½δΦ;Φ�; ð4:6Þ

where S is a closed codimension-2 surface. Typically we will
thinkof a spacetimewith a radial direction r and let the surface
S be a sphere at a fixed (large) value of r and at a fixed time t.
For this case, the total derivative ambiguity of kξ will not
contribute to the integral in (4.6).
Finally, we will specialize to the case where ξ is an exact

Killing vector of the solution. In this case, the expression
δQξ in (4.6) can always be integrated in order to define a
conserved charge Qξ. Operationally, this procedure always
involves first computing the change in the charge Qξ

associated with a variation δΦ around a particular solution
Φ. In examples of interest, we usually think of a one-
parameter family of solutions ΦðαÞ which solve the
equations of motion for a continuous range of values of
α. In this case, we can consider the variation

δαΦ ¼ ∂ΦðαÞ
∂α

: ð4:7Þ

Since ΦðαÞ is a solution for any α, the variation (4.7)
always satisfies the linearized equations of motion. We can
then compute

dQξ

dα
¼
I
S
kξ½δαΦ;Φ�; ð4:8Þ

and integrate the resulting expression with respect to α
(using a suitable initial condition) to find QξðαÞ. For
example, the BTZ black hole with mass M is a solution
to the three-dimensional equations of motion for pure
gravity (with negative cosmological constant) for any value

of M. We can compute the change in the charge associated
with the exact Killing vector ξ ¼ ∂t in these backgrounds
using the known expression for kξ in Einstein gravity. The
resulting integral gives

dQξ

dM
¼
I
S
kξ½δMg; g�;¼ 1: ð4:9Þ

Using the initial condition QξðM ¼ 0Þ ¼ 0, we can then
trivially integrate to find

Qξ ¼ M; ð4:10Þ
which recovers the fact that the mass of the black hole is the
conserved charge associated with the global timelike
Killing vector ∂t.

1. Charge integrability

Given a family of spacetimes labeled by some parameter
α, and possessing some exact Killing vector ξ, we have seen
that the covariant phase space formalism allows us to

compute the quantity ∂Qξ

∂α which controls how the conserved
charge associated with ξ varies with α. If α is the only
parameter in our family of solutions, it is then trivial to

integrate ∂Qξ

∂α given an initial condition and recover the
expression QξðαÞ for the conserved charge.
Now consider a family of solutions which depend on

several parameters α1;…; αn. The formalism permits us to

compute a collection of partial derivatives ∂Qξ

∂αi
for each i. We

are not guaranteed that integrating any two of these
quantities will yield equivalent charges. For instance, in
the simple case of a solution for a black hole which depends
on a mass parameter M and a spin parameter J, we could
obtain two separate derivatives

∂Qξ

∂M
¼
I
S
kξ½∂Mg; g�;

∂Qξ

∂J
¼
I
S
kξ½∂Jg; g�: ð4:11Þ

If computing ∂J∂MQξ using the first line of (4.11) yields the
same result as computing ∂M∂JQξ using the second line of
(4.11), then we can unambiguously define the charge
QξðM; JÞ in a way which does not involve any choice
of how to perform the integration. In this case, the charge
QξðM; JÞ is said to be integrable. More generally, the
integrability condition will hold so long as

δ1

I
S
kξ½δ2Φ;Φ� ¼ δ2

I
S
kξ½δ1Φ;Φ�; ð4:12Þ

for any pair of variations δ1Φ, δ2Φ.
Charge integrability holds in many cases of physical

interest, such as the Kerr black hole inD > 3 dimensions or
the spinning BTZ black hole in D ¼ 3, both of which
possess charges that are integrable in the space of M and J
parameters. However, it was pointed out in [24] that
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solutions to the equations of motion for type IIB super-
gravity with multiple parameters αi do not, in general,
possess manifestly integrable charges. In such cases, if we
are given only the information about the gravity solution,
the definitions of conserved charges like mass and spin can
be ambiguous; one obtains different answers depending on
which quantity ∂Qξ

∂αi
one integrates.

To resolve this ambiguity, one requires additional input
which identifies a preferred notion of the surface charges.
For instance, in the cases analyzed in [24], the additional
input comes from holography; if a type IIB supergravity
solution is dual to a conformal field theory, one can use the
scale invariance of the field theory to identify particular
choices of the gravitational charges that are natural from the
perspective of the boundary theory.
However, for more general solutions that are not dual to

CFTs, there does not appear to be a general principle for
constructing unambiguous charges in the case of non-
integrable solutions. We will see shortly that the super-
gravity solutions constructed in Sec. III possess exactly this
ambiguity when J̃ ≠ 0. Because these bulk geometries are
believed to be dual to field theories which are obtained
through deforming a CFT by an irrelevant operator—
namely, something akin to a single-trace TT̄ operator—
we cannot rely on the scale invariance of the dual theory to
construct a preferred set of gravitational charges.

2. Surfaces charges in type IIB-like theories

The formalism reviewed above applies to any generally
covariant Lagrangian L. Next we will restrict attention to a
class of Lagrangians which are relevant for type IIB
supergravity theories in Einstein frame and with pure
NS flux. Consider an action of the form

S ¼ 1

16πG

Z
dDx

ffiffiffiffiffiffi
−g

p �
R −

1

2
∂μΦ∂

μΦ −
1

2
fðΦÞjHj2

�
:

ð4:13Þ

Here H ¼ dB is the field strength associated with a now
general p-form potential B ¼ Bμ1…μpdx

μ1…dxμp , jHj2 ¼
H ∧ �H, and fðΦÞ is an arbitrary function which controls
the scalar coupling to the p-form kinetic term. When
D ¼ 10, p ¼ 2, and fðΦÞ ¼ e−Φ, this gives the Einstein-
frame action for type IIB supergravity. After performing the
conformal mapping from string-frame to Einstein-frame,
the general solutions which we derived in Sec. III satisfy the
equations of motion associated with this action.
The surface charges associated with the Lagrangian

(4.13) were worked out in [25]; here we will recall the
results which are relevant for our analysis.5

The contribution from the scalar is

kΦξ ½δg; δΦ; g;Φ� ¼ iξΘΦ; ΘΦ ¼ �ðdΦδΦÞ: ð4:14Þ
In components, (4.14) is

kμν;Φξ ½δg; δΦ; g;Φ� ¼ 2ðδΦÞ · ξ½ν∂μ�Φ; ð4:15Þ

where T ½ab� ¼ 1
2
ðTab − TbaÞ denotes the usual antisymmet-

rization. Recall that the nonboldface kμνξ is the antisym-
metric 2-tensor whose Hodge dual is the (n − 2)-form kξ.
The contribution from the p-form B is more complicated

and can be expressed as

kBξ ½δg;δB;g;B;Φ� ¼−δQB
ξ þ iξΘB−EB

L½LξB;δB�; ð4:16Þ

where

QB
ξ ¼ fðΦÞðiξBÞ ∧ �H;

ΘB ¼ fðΦÞðδBÞ ∧ �H;

EB
L½LξB;δB� ¼ fðΦÞ �

�
1

2ðp− 1Þ!δBμα1���αp−1ðLξBÞνα1…αp−1

× dxμ ∧ dxν
�
: ð4:17Þ

It is convenient to separate the component expression for
kB;μνξ into its contributions from the tensor field variation δB
(and its field strength variation δH ¼ dðδBÞ), the metric
variation δgμν, and the dilaton variation δΦ:

kB;μνξ ¼ 2K½μν�
δB þ 2K½μν�

δg þ 2K½μν�
δΦ ;

Kμν
δB ¼ −fðΦÞ

�
2

p
ξμHνα1���αpðδBÞα1���αp

− ðLξBÞμα1���αp−1ðδBÞνα1 ���αp−1
þHμνα1���αp−1ξρðδBÞρα1���αp−1
þ ðδHÞμνα1���αp−1ξρBρα1���αp−1

�
;

Kμν
δg ¼ fðΦÞ

�
−
1

2
ðδgÞααHμνα1���αp−1ξρBρα1���αp−1

þ ðp − 1ÞðδgÞμρHρ
να1���αp−1ξσBσα1���αp−1

þ 2ðδgÞμρHρνα1���αp−1ξσBσα1���αp−1

�
;

Kμν
δΦ ¼ −

∂f
∂Φ

ðδΦÞHμνα1���αp−1ξρBρα1���αp−1 : ð4:18Þ

Here we write δg ¼ gμνδgμν for the trace of the metric
fluctuation.6

5These formulas have also been implemented in Mathematica
by the author of [25] in a convenient package which may be
found here.

6This differs from the usage in expressions like kgξ½δg; g�, where
δg refers to the full metric fluctuation rather than its trace, but
where we have suppressed indices for ease of notation.
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Finally, the contribution from the Einstein-Hilbert termffiffiffiffiffiffi−gp
R is

kgξ½δg; g� ¼ −δQξ½g� − iξΘ½δg; g�; ð4:19Þ

where

Θμ ¼
ffiffiffiffiffiffi−gp

16πG
ð∇νδgμν −∇μδgÞ;

Qξ ¼
ffiffiffiffiffiffi−gp

8πG
∇μξνðdD−2xÞμν: ð4:20Þ

Here we follow the conventions of [23] for differential
forms; for instance, ðdn−pxÞμ1…μp

is defined by
1

p!ðn−pÞ! εμ1…μpνpþ1…νndx
νpþ1 ∧ … ∧ dxνn where ε is the

Levi-Civita symbol with entries −1, 0, or 1 (without the
factor of

ffiffiffiffiffiffi−gp
). In components, (4.19) can be written as

kg;μνξ ¼ ξ½ν∇μ�δg − ξ½ν∇αδgμ�α þ ξα∇½νδgμ�α þ 1

2
δg∇½νξμ�

−
1

2
δgα½ν∇αξ

μ� þ 1

2
δgα½ν∇μ�ξα: ð4:21Þ

The total contribution to the change in a charge Qξ as a
parameter α of the solution is varied, therefore, is given by

∂Qξ

∂α
¼
I
S
kξ½∂αg; g�;

kξ ¼ kΦξ þ kBξ þ kgξ: ð4:22Þ

We will take the surface S to lie at a fixed time and fixed
large value R of the radial coordinate r in our solutions, and
then take the limit as R → ∞. The integral (4.22) then
extracts the component ktrξ of the antisymmetric 2-tensor
which is Hodge dual to kξ. For the purpose of computing
the integral (4.22), the compact directions S3 × T4 are
merely spectators which are integrated over to yield an
appropriate volume factor.

B. Evaluating the charge

Our goal is to compute the Noether-Wald surface charge
Qξ associated with the exact Killing vector ξ ¼ ∂t of the
solutions with ALD asymptotics ðk5 ¼ 0Þ derived in
Sec. III. We will restrict to the case given in (3.1) of a
nonrotating black hole with J̃ ¼ 0. We will comment on the
case with both mass and spin at the close of this section.
That case involves interesting subtleties related to the
nonintegrability discussed in Sec. IVA.
As is typical in the covariant phase space formalism, rather

than computing the chargeQξ directly,we first find
∂Qξ

∂α where
α is one of the parameters in these solutions. At this stagewe
have a choice, since our spacetimes dependon the parameters
ðk1; eMÞ with quantized fixed charges determined by

ðm1; m5Þ. If we vary both ðk1; eMÞ then we find that the
chargeQξ is not integrable in the space of these parameters;
that is, we obtain different expressions for the mass if we, for

instance, (1) compute ∂Qξ

∂k1
and integrate with respect to k1, or

(2) compute ∂Qξ

∂eM and integrate with respect to eM. In this case,

weview the failure of integrability as reflecting the definition
of an asymptotically linear dilaton spacetime. Namely, the
parameter k1 is a part of the definition of the asymptotic
behavior and should not be varied.
For this reason, we will consider a one-parameter family

of solutions where αe, which controls eM, is varied but all
other parameters are held fixed. Therefore we will use the
variations of the fields

δαegμν ¼
∂gμν
∂αe

; δαeBμν ¼
∂Bμν

∂αe
; δαeΦ¼ ∂Φ

∂αe
: ð4:23Þ

Under this linearized variation, the combined contribution
from kgξ, k

B
ξ , and kΦξ to the change in the charge is

δαeQξ ¼
I
S
ðkgξ þ kBξ þ kΦξ Þ ¼

r̂1αe
4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̂21 þ k1α2e

p : ð4:24Þ

Here S is a fixed time slice at large r inM3 and includes an
integral over all the compact directions. Because we have
used the variations (4.23) associated with changing αe, we

have δαeQξ ¼ ∂Qξ

∂αe
so that

∂Qξ

∂αe
¼ r̂1αe

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̂21 þ k1α2e

p : ð4:25Þ

This equation can be trivially integrated to find

Qξ ¼
r̂1
4k1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̂21 þ k1α2e

q
þ C; ð4:26Þ

where C is an integration constant which may be a function
of k1 and α1 but not of αe. We fix the integration constant
by requiring that the conserved chargeQξ have a finite limit
as k1 → 0. This is only possible if the constant C is chosen
so that the charge takes the form

Qξ ¼
r̂21
4k1

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k1

α2e
r̂21

s
− 1

!
: ð4:27Þ

To recover the undeformed black hole, we take k1 → 0.
This is an easy way to fix the overall normalization. Wewill
choose to normalize the charge, denoted Q̃ξ, so that k1 → 0

gives eM,

Q̃ξ ¼
R2

4r25k1

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k1

8 eMr25
R2

s
− 1

!
: ð4:28Þ
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This square root is identical to the expression that appears in
the dilaton solution found in (3.1). It is strong evidence for a
holographic correspondence in the spirit proposed in [6].
A straightforward extension of this analysis to the case

with mass and spin encounters the issue of nonintegrability
in the space of ð eM; J̃Þ solutions. Similar issues have been
seen in past work [24,26,27]. It would be interesting to
resolve the nonintegrability and see if one can reproduce
the mass and charge for these asymptotically linear dilaton
spacetimes expected from the form of the dilaton solution
seen in (3.5).

C. Winding tachyon

We have seen that the solution which interpolates from
global AdS3 to ALD asymptotics, presented in Sec. III witheM ¼ − 1

8
, has a spacetime mass (4.28) which becomes

complex when k1 is made too large.
What might be happening in string theory when this

ground state approaches this instability? Note that the
string-frame metric sees an approximately constant circle
for large r of size Rffiffiffiffi

k1
p and a very weak string coupling.

Global AdS in the interior corresponds to anti-periodic
boundary conditions for spacetime fermions on the x5
circle. Boundary conditions of this type tend to produce
tachyons for strings wrapping the circle if the circle
becomes too small [28]. Qualitatively, this is the kind of
phenomenon we might hope would happen prior to the
spacetime becoming unstable, although the endpoint of
condensing such a bulk closed string tachyon is often
nongeometric [29]. If the holographic theory exists for k1
beyond the value where the ground state energy becomes
complex, we will see that the more likely resolution lies in
the low-energy gravity theory.
To estimate where a tachyon might emerge, we note that

a fundamental string on a circle of radius Rffiffiffiffi
k1

p with winding

w and a twisted boundary condition breaking supersym-
metry satisfies a mass-shell condition,

m2 ¼ w2R2

k1ðα0Þ2
þ 2

α0
ðNL þ NRÞ; ð4:29Þ

for bosonic excitations with no momentum on the circle. In
the ðNS−; NS−Þ sector with odd winding and no oscil-
lators, the zero point energy is given by NL ¼ NR ¼ − 1

2
.

The first state to become tachyonic has w ¼ 1 which
happens for k1 >

R2

2α0. This is not quite right in our case
because we have not taken the linear dilaton background
into account. The linear dilaton slope is often denoted Q in
the literature on world sheet descriptions of linear dilaton
backgrounds, where in this case Q ¼ 2ffiffiffiffiffiffiffi

m5α
0

p ; see, for

example [14]. For a string with no radial momentum,
the mass-shell condition for a singly wound string is
modified slightly from the simple circle of (4.29),

m2 ¼ R2

k1ðα0Þ2
þQ2

4
−

2

α0
: ð4:30Þ

Now the condition to avoid a tachyon becomes

k1 <
R2

α0ð2 − 1
m5
Þ : ð4:31Þ

This should be contrasted with the condition (3.2) needed
to avoid a complex dilaton solution, which we repeat here
for convenience,

k1 <
R2

m5α
0 : ð4:32Þ

These conditions only agree for m5 ¼ 1. For large m5 the
gravity condition is violated first, long before one expects a
closed string tachyon, suggesting a possible resolution in the
low-energy theory without stringy ingredients. There is one
final observation which is curious: if there were a “long”
string with tension reduced by a factor of m5 so the tension
T long ¼ 1

2πα0m5
then a tachyon for this string would emerge

before the gravity solution becomes complex as k1 is
increased.7

V. THE TWO PARAMETER
FAMILY OF SOLUTIONS

Now we will explore the family of solutions that depend
on an additional parameter c1, which are derived in the
Appendix. These solutions are quite intriguing but exhibit
some surprising features so our discussion is oriented
around addressing the more basic issues with these sol-
utions. At short distances and small black hole mass, the
solutions again look like AdS3 black holes. At large
distances, these solutions exhibit positive curvature in
string frame, which is typically hard to engineer in string
theory in stationary backgrounds.
With the details of the analysis again relegated to the

Appendix, we first list the form of the string-frame metric
for the case without spin,

ds2 ¼ −
1 − α2e

r2

k1 þ α2
1

r2

dt2 þ 1

k1 þ α2
1

r2

dx25

þ r25ð1þ k1α21c1Þð1þ k1c1ðα21 þ k1α2eÞÞ
ðr2 − α2eÞð1þ k1c1ðα21 þ k1r2ÞÞ2

dr2

þ r25dΩ2
3 þ ds2T4 ; ð5:1Þ

7Such long strings are expected from the low-energy physics
of the D1-D5 system but are not expected to be visible in the
weakly coupled perturbative string spectrum of the F1-NS5
system.
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with α2e ¼ 8 eM r̂2
1
r2
5

R2 , and where the dilaton is given by

e2Φ ¼ c22

�
1þ k1c1ðα21 þ k1r2Þ

α21 þ k1r2

�
: ð5:2Þ

Notice that e2Φ given in (5.2) always decreases as r ranges
from 0 to ∞. Here the parameters c1 and c2 are related by
the algebraic constraint

c42 ¼
r45
r̂41

�
α41 þ k1α21α

2
e

ðk1c1α21 þ 1Þðk1c1ðα21 þ k1α2eÞ þ 1Þ
�
: ð5:3Þ

The curvatures for this metric are nonsingular and the
dilaton is well-behaved as long as k1 > 0 and c1 > 0.
Notice that the dilaton interpolates from a constant at small
r to a different constant for very large r.
What is quite peculiar about the metric (5.1) is the

behavior of fr which determines the grr component of the
metric. For large r,

fr ∼
1

r6
: ð5:4Þ

This means r ¼ ∞ is now a point at finite distance. How
should we treat this boundary? There are several possible
approaches which might give physically interesting
backgrounds:

(i) One can try to continue the metric beyond r ¼ ∞.
(ii) One can try to impose boundary conditions at r ¼ ∞

or at some continuation of the metric. This is similar
in spirit to the holographic proposal of [30].

(iii) One can try to include a brane source at or beyond
r ¼ ∞. If such a source has a sensible string theory
interpretation then the metric might admit a natural
continuation which takes into account the stress
energy and charge of the brane.

We will explore one of these possibilities.

A. Continuing the metric

At large r, it is natural to change to the radial variable
ρ̃ ¼ 1

r2.
8 The range of ρ̃ is ðρ̃0; 0Þ prior to any continuation.

Here ρ̃0 is a cutoff which is sufficiently small so that we can
ignore Oðρ̃Þ corrections. We are interested in the physics
for ρ̃ → 0 where the three-dimensional spacetime metric
takes the simple form,

ds2 ¼ −
1

k1
dt2 þ 1

k1
dx25 þ

1

kρ̃
dρ̃2 þOðρ̃Þ;

kρ̃ ¼
4k41c

2
1

r25ð1þ k1α21c1Þð1þ k1c1α21 þ k21c1α
2
eÞ
; ð5:5Þ

where kρ̃ is a positive constant. At this point, one could
imagine imposing a boundary condition at ρ̃ ¼ 0 in the
spirit of [30]. At this boundary, the string coupling has a
finite value,

e2Φ ¼ k1c1c22: ð5:6Þ
Or we might attempt to continue the metric by taking ρ̃
negative. The string coupling takes the form,

e2Φ ¼ c22

�
ρ̃þ k1c1ðρ̃α21 þ k1Þ

ρ̃α21 þ k1

�
: ð5:7Þ

The string coupling will either diverge or go to zero as we
make ρ̃ more negative. If k1c1α21 > 0 then the string
coupling always goes to zero before we hit a strong
coupling singularity. We want k1 positive otherwise the
dx25 term of (5.1) will flip sign at finite r introducing a
closed timelike curve. If c1 is not positive then the dilaton
will not make sense for finite r so it appears we must
encounter a point where gravity is shut off before we meet
any potential strong coupling singularity.
This is quite suggestive. Holography for linear dilaton

spacetimes is motivated, in part, by gravity shutting off at
radial infinity because the string coupling goes to zero.
Here we meet a finite value of ρ̃ at which the string coupling
vanishes given by

ρ̃ ¼ −
k21c1

1þ k1c1α21
: ð5:8Þ

B. Finding a linear dilaton coordinate

After some experimentation and with some hindsight, it
is useful to first answer the following question before
continuing the metric (5.5)—is there a new radial coor-
dinate that makes the dilaton of (5.2) look like the
expression with c1 ¼ 0? The answer turns out to be yes
in some cases,

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2ð1 − c1k1α21Þ − c1α41
1þ c1k1ðk1r2 þ α21Þ

s
; ð5:9Þ

with the dilaton taking the form,

e2Φ ¼ c22
k1r2 þ α21

: ð5:10Þ

The expression (5.9) for rmakes sense for sufficiently large

r and sufficiently small c1k1; specifically r2 ≥ c1α41
1−c1k1α21

and

c1k1α21 < 1. At this point, we can ask what bounds we
should impose on ðc1; k1Þ so that the solution for the dilaton
is real. There appears to be no upper bound on c1 > 0 and
the bound on k1 from considering (5.2) for the case of
α2e < 0 is the same as our earlier discussion with c1 ¼ 0.

8We are denoting this radial variable by ρ̃ to avoid confusion
with the ρ that appears in Eq. (A27) and surrounding discussion.
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Let us assume these conditions are satisfied. We can
always choose r to be sufficiently large but making c1k1
sufficiently small is not necessary based on what we have
seen so far. Note that the range of r is ð0; r∞Þ where

r∞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1−c1k1α21Þ

c1k21

s
; ð5:11Þ

is finite. Plotting r as a function of r shows that it is
monotonic asymptoting to the value r∞. The natural
continuation in this variable is to allow r to continue to
infinity past the finite value r∞. The metric expressed in
this radial variable takes the form,

ds2¼ α2e−c1ðα41þk1α21α
2
eÞ−r2ð1þc1k1ðα21þk1α2eÞÞ
α21þk1r2

dt2þ
�
c1α21þ

r2

α21þk1r2

�
dx25

þ r25r
2ð1þc1k1α21Þð1þc1k1ðα21þk1α2eÞÞ

ðc1α41þr2ð1þc1k1α21ÞÞðc1α41þðc1k1α21−1Þα2eþr2ð1þc1k1ðα21þk1α2eÞÞÞ
dr2; ð5:12Þ

which simplifies as r → ∞ to

ds2 ¼
�
−
�
1

k1
þ c1ðα21 þ k1α2eÞ

�
þ 1

k21r
2
ðα21 þ k1α2eÞ

�
dt2 þ

�
1

k1
þ c1α21 −

α21
k21r

2

�
dx25;þ

r25
r2

dr2 þO

�
1

r4

�
: ð5:13Þ

There are a couple of observations worth making concern-
ing (5.13). First the dr2 has precisely the form we expect
for a linear dilaton theory and the dilaton (5.10) has the
right radial dependence to define a linear dilaton spacetime.
However the r-independent term in the dt2 coefficient
appearing in (5.13) now depends on α2e. Similarly the dx25
leading metric is c1 modified so the radius of the asymp-
totic circle in string frame has changed.

C. Making the asymptotic radial metric canonical

We have just seen that finding a coordinate in which the
dilaton has the same asymptotic form as the c1 ¼ 0 case is
possible when c1k1α21 < 1. However, we have yet to see
any reason to restrict c1 to this particular case. There is
another approach we can take. Let us see if we can find a
coordinate in which the dr2 coefficient of the metric (5.1)
takes the asymptotic form

r25dr̂
2

r̂2 − α̂2e
¼ r25d

 
arctanh

 ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

α̂2e
r̂2

s !!2

∼
r25dr̂

2

r̂2

�
1þO

�
α̂2e
r̂2

��
; ð5:14Þ

for a new coordinate r̂ with a horizon at some potentially
new location α̂e. We can then see how the dilaton depends
on this new coordinate.
As a first case, let us take αe ¼ 0 and no horizon in the

extension so α̂e ¼ 0 as well.9 In this case we can take,

1

r̂
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k1c1ðα21 þ k1r2Þ

p
r

; ð5:15Þ

¼ k1
ffiffiffiffiffi
c1

p þO

�
1

r2

�
; ð5:16Þ

where the second line is expanded near r ¼ ∞. We have
picked the sign so that small r corresponds to small r̂. This
relation can be inverted giving,

r2 ¼ ð1þ k1c1α21Þr̂2
1 − c1k21r̂

2
: ð5:17Þ

The point r ¼ ∞ corresponds to r̂ ¼ 1
k1
ffiffiffiffi
c1

p . The continu-

ation corresponds to r̂ extending past this point to infinity.
The dilaton can now be expressed in terms of r̂,

Φ ¼ 1

2
log

�
c22ð1þ k1c1α21Þ

k1r̂2 þ α21

�
: ð5:18Þ

This is indeed an asymptotically linear dilaton spacetime
with a slope that is superficially determined by r5 and c1k1.
Beautifully, however, the constant c22ð1þ k1c1α21Þ appear-
ing in (5.18) becomes c1-independent for this case of
αe ¼ 0 using the relation (5.3) and we recover the same
dilaton as the c1 ¼ 0 case. We can now examine the full
metric expressed in terms of r̂,

ds2 ¼ 1þ c1k1α21

k1 þ α2
1

r̂2

ð−dt2 þ dx25Þ þ
r25
r̂2

dr̂2: ð5:19Þ

Up to a rescaling of time and a redefinition of the
asymptotic x5 circle size, this solution is now identical
to the c1 ¼ 0 case.

9We will assume that the αe of (5.1) is finite. One might also
consider the case where the coordinate patch parametrized by r is
actually inside the black hole horizon with the horizon located in
the extension past r ¼ ∞.
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Now we can turn to the case of αe > 0 with r > αe.
The change of variables in this case is given by

r̂2 ¼ α̂2e

1 − ðr2−α2eÞð1þk1c1α21Þ
r2ð1þk1c1ðα21þk1α2eÞÞ

: ð5:20Þ

This is invertible giving,

r2 ¼ α2er̂2

α̂2e þ α2ek21c1ðα̂2e−r̂2Þ
ð1þk1c1α21Þ

: ð5:21Þ

Substituting into the dilaton expression (5.2) gives,

e2ϕ¼ c22

�
α̂2eð1þk1c1α21Þð1þk1c1ðα21þk1α2eÞÞ
k1α2er̂2þð1þk1c1α21þk21c1α

2
eÞα21α̂2e

�
: ð5:22Þ

If we impose the condition that the denominator
of (5.22) take the form seen in (5.2) then we relate αe and
α̂ as follows:

αe ¼ α̂e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k1c1α21
1 − k21c1α̂

2
e

s
: ð5:23Þ

On substituting back into the dilaton wewonderfully find all
factors conspire to give,

e2Φ ¼ r25
r̂21

f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α41 þ k1α21α̂

2
e

q
g · 1

α21 þ k1r̂2
; ð5:24Þ

which is the form expected for a solution with c1 ¼ 0. At
least for these cases, analytic continuation together with a
suitable map of parameters recovers the solutions discussed
earlier with c1 ¼ 0.
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APPENDIX: DERIVATION OF
GENERAL SOLUTIONS

In this appendix we derive a general class of type IIB
supergravity solutions which satisfy the assumptions laid
out in Sec. III A. We will work in string frame with the
action (2.1), for which the associated equations of motion
for the metric, dilaton, and flux are

Rμν þ 2∇μ∇νΦ −
1

4
jHj2μν ¼ 0; ðA1Þ

Rþ 4∇2Φ − 4j∇Φj2 − 1

12
jHj2 ¼ 0; ðA2Þ

∇μðe−2ΦHμνρÞ ¼ 0; ðA3Þ

respectively. A combination of the first two equations gives
a nice equation for the dilaton. See, for example [31],

∇2e−2Φ ¼ e−2ΦjHj2: ðA4Þ

We will begin with the following general ansatz con-
sistent with the symmetry and flux assumptions stated
in Sec. III A:

ds2 ¼ −
feðrÞ
f1ðrÞ

dt2 þ 1

fxðrÞ
fdx5 þ fjðrÞdtg2 þ frðrÞdr2

þ r2f5ðrÞdΩ2
3 þ fT4ðrÞds2T4 ;

Φ ¼ ΦðrÞ; H3 ¼
2m5

ls
ϵS3 þ fM3

ðrÞe2ΦϵM3

3 : ðA5Þ

Here ϵS3 is the volume form for S3 with
R
ϵS3 ¼ 2π2l3

s .
Flux quantization through S3 is automatically satisfied.
Flux quantization through M3 requires that

fM3
ðrÞ ¼ 32m1π

4α03g2s
V4r3f5ðrÞ3=2

: ðA6Þ

That fixes one unknown function. This form for H3 also
solves (A3). One way to make Rμν vanish in the T4

directions is by setting fT4ðrÞ to a constant. It is not clear
that any other solution exists so will set fT4ðrÞ ¼ 1. This is
in accord with the torus playing no significant role in the
physics.
The choice of fr is the freedom to parametrize the radial

direction in a convenient way. At this point, we need to
understand what asymptotic conditions to impose on our
spacetime at small r and large r.

1. The partially decoupled case k5 = 0

a. Interpolating ansatz

It will simplify our analysis to take the following ansatz
for the ten-dimensional metric,

f1ðrÞ ¼ k1 þ
α21
r2

; feðrÞ ¼ 1 −
α2e
r2

; f5ðrÞ ¼
α25
r2

;

fxðrÞ ¼ kx þ
α2x
r2

; fjðrÞ ¼ 0; ðA7Þ

with fj set to 0 because J ¼ 0. We could have considered

the more general f5ðrÞ ¼ k5 þ α2
5

r2 but for this partially
decoupled case, we set k5 ¼ 0. We also demand that
k1 > 0 and kx > 0 for a sensible metric at large r.
We have chosen to absorb the constant ke that might have
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appeared in fe into a redefinition of the other parameters.
Because this is the string-frame metric rather than the
Einstein-frame metric, we will leave k1 in the ansatz until
later when we determine how to normalize the time
direction at large r.

b. Constraints from equations of motion

With this assumption, plugging our ansatz into the
Einstein and dilaton equations gives constraints,

α2x ¼
kx
k1

α21; α5 ¼ r5; ðA8Þ

and the following solution for e2Φ,

e2Φ ¼ c22

�
1þ k1c1ðα21 þ k1r2Þ

α21 þ k1r2

�
; ðA9Þ

where c1 and c2 are unknown constants. Imposing the
dilaton equation of motion relates c1 and c2 as follows:

r45
r̂41

−
ðk1c1α21 þ 1Þðk1c1ðα21 þ k1α2eÞ þ 1Þ

α41 þ k1α21α
2
e

c42 ¼ 0: ðA10Þ

Note that c2 cannot be set to zero. At this juncture, we have
not imposed either small r or large r asymptotics on the
dilaton. The constants ðc1; c2Þ determine the dilaton and fr.
Everything else is fixed by both matching onto BTZ at
small r and imposing large r asymptotics, which we have
yet to examine.
If we now demand that gs → 0 as r → ∞ then we need to

set c1 ¼ 0 in (A9) to get a dilaton,

e2Φ ¼
�

c22
α21 þ k1r2

�
: ðA11Þ

We also require c2
2

k1
≥ 0 since it is the coefficient of the large

r string coupling of (A9) so c22 ≥ 0. For a sensible value of
e2Φ in a neighborhood of r ¼ 0 we must also then require
α21 > 0. This also fixes c2 in terms of the other parameters
of the ansatz using (A10),

c42 ¼
r45
r̂41
ðα41 þ k1α21α

2
eÞ: ðA12Þ

With the dilaton determined, we can now solve for fr,

frðrÞ ¼
r25

r2 − α2e
: ðA13Þ

c. Small r asymptotics

At very small r we demand that the solution in Einstein-
frame look like a three-dimensional BTZ black hole. This

expectation is at least reasonable for low-mass black holes
whose structure should not care very much about the large r
asymptotic behavior of the metric. For simplicity let us first
consider a black hole with mass but no spin. In the notation
of the full decoupling limit presented in Eq. (2.11), the
metric of a three-dimensional BTZ black hole of mass eM
and spin J ¼ 0 is

d̂s2 ¼ l2

�
−ð−8 eM þ r̃2Þdt̃2 þ r̃2dφ̃2 þ dr̃2

−8 eM þ r̃2

�
;

ðA14Þ

where the mass parameter eM has been made dimensionless
using the effective three-dimensional Newton constant.
We will initially be noncommittal about the relation

between these dimensionless variables and the dimension-
ful variables of our ansatz (A7). Because α5 ¼ r5 by the
equations of motion, the reduction on S3 and T4 to a three-
dimensional theory is unchanged from the discussion
around (2.11). There are no mass-dependent factors from
integrating over those volumes in string frame.
The three-dimensional Einstein-frame metric is given by

ds2E ¼ e−4Φds2string: ðA15Þ

The most commonly studied backgrounds involve a con-
stant dilaton so moving between string-frame and Einstein-
frame is straightforward. This is no longer immediately the
case in backgrounds where the dilaton varies so we will
want to keep careful track of dilaton factors. For this c1 ¼ 0

case we can expand e−4Φ at small r to find,

e−4Φ ¼ α41
c42

�
1þ 2k1r2

α21

�
þOðr4Þ; ðA16Þ

where c42 is given in (A12).
How shall we fix the small r asymptotics? Let us first

note that there is no singularity in e2Φ which must be
positive for all r so the conformal factor in (A15) does not
introduce any potential singularities. On the other hand, fr
appearing in (A13) does have a singularity at r ¼ αe.
Comparing with (A14) tells us that

α2e ∼ eM: ðA17Þ

We still need to relate the coordinates of our ansatz to the
dimensionless coordinates of the BTZ solution. There is a
natural place to begin such an identification with,

e−4Φ
1

fxðrÞ
dx25 → l2r̃2dφ̃2; ðA18Þ

for small r. There is no freedom to redefine the angular
coordinate which allows us to unambiguously identify,
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e−4Φr2 ¼ l2
α2x
R2

r̃2 ¼ l2
kx
k1

α21
R2

r̃2

⇒ r2 ¼ l2
kx
k1

c42
α21R

2
r̃2 þOðr̃4Þ: ðA19Þ

Once we have this relation between the dimensionless r̃ and
r, we can determine a small r̃ regimewhere the dilaton (A11)
is approximately constant. This requires that dΦ

dr̃ be small,

kx
l2c42
α41R

2
r̃ ¼

ffiffiffiffiffiffiffiffiffi
k1kx

p lc22
α31R

r ≪ 1: ðA20Þ

In this regime we demand that the solution looks like a BTZ
black hole in approximately AdS space.
Now we can examine the metric coefficient of dr2

in (A5),

e−4ΦfrðrÞdr2 ¼
�
α41
c42

�
1þ 2k1r2

α21

�
þ…

��
r25

r2 − α2e

�
dr2:

ðA21Þ

Comparison with (A14) teaches us that

l2 ¼ α41
c42

r25; α2e ¼ 8M̃
kx
k1

α21r
2
5

R2
: ðA22Þ

As expected, α2e is related to the mass of the black hole.
Interestingly the definition of l looks mass-dependent
when k1 ≠ 0 unlike the case of constant dilaton. We can
also simplify (A19),

r2

r̃2
¼ kx

k1

α21r
2
5

R2
; ðA23Þ

and the regime where the solution will look approximately
like AdS, ffiffiffiffiffiffiffiffiffi

k1kx
p r5r

α1R
≪ 1: ðA24Þ

The remaining task is to relate t and t̃, which follows by
requiring the singularity at r2 ¼ α2e be a coordinate singu-
larity. Let us recall that e−4Φ 1

f1ðrÞ is positive and introduces

neither singularities nor changes to the signature of the time
coordinate. On the other hand, frðrÞ does change sign at
r ¼ αe and this change must be matched by the behavior of
the dt2 metric coefficient. This constrains the dt2 metric
coefficient to match BTZ,

α21
c42

ðr2 − α2eÞf1þOðr4Þgdt2 ¼ l2ðr̃2 − 8 eMÞdt̃2: ðA25Þ

From the Oðr2Þ term we conclude,

dt̃2 ¼ r2

r̃2
α21
c42l

2
dt2 ⇒ t̃ ¼ t

R

ffiffiffiffiffi
kx
k1

s
: ðA26Þ

The other r-independent condition from (A25) is then
automatically satisfied.

d. Matching large and small r asymptotics

To go further we need to examine the large r asymp-
totics. In essence, the issue is what large r criteria define
metrics which are asymptotically linear dilaton? To under-
stand the large r asymptotics, we need an appropriate large
r coordinate. From the e−4ΦfrðrÞdr2 term with the explicit
form for fr given in (A13), we see that the natural radial
coordinate for large r takes the form,

ρ ¼ r5k1
2c22

r2 ¼ r2

αρ
; αρ ¼

2c22
r5k1

: ðA27Þ

In terms of ρ, the three-dimensional asymptotic metric
takes the form:

ds2 ¼ −
4ρ2

r25

�
1

k1
þO

�
1

ρ

��
dt2

þ 4ρ2

r25

�
1

kx
þO

�
1

ρ

��
dx25 þ dρ2: ðA28Þ

What is important is that the leading term at large ρ is
completely independent of the mass eM. This defines the
vacuum to which each solution should asymptote with
mass-dependent subleading corrections.
Our remaining task is to identify α21. We have one

example of an asymptotically linear dilaton metric in
(2.9) which corresponds to eM ¼ 0 BTZ. This case turns
out to be somewhat special when compared with black
holes with eM ≠ 0. For example, any nonzero value
of k1 can be set to 1 by a redefinition of the radial
coordinate.10 This is not the case when eM ≠ 0.
Regardless, we can still try to use this case to normalize
α21 in our metric ansatz (A7). Let us examine the large ρ
behavior of our dilaton,

Φ ¼ −
1

2
log ρþ 1

2
log

r5
2
−
1

2
log

�
1þ α21r5

2c22

1

ρ

�
¼ −

1

2
log ρþ 1

2
log

r5
2
−
α21r5
4c22

1

ρ
þO

�
1

ρ2

�
: ðA29Þ

All the potential mass-dependence, which is hidden in c22, is
ρ-suppressed. If we set αe ¼ 0 and compare these expres-
sions for the dilaton and metric with the expressions found
in (2.9), we can identify α21,

10There is a similar special feature for E ¼ 0 states under a TT̄
deformation; namely the energy does not flow. This is readily
visible from (1.3).
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α21 ¼ r̂21: ðA30Þ

At this point we could redefine time to absorb the 1
k1
factor

with the replacement α21 →
α2
1

k1
. However the AdS limit

where k1 → 0 is more transparent with the explicit k1. On
the other hand, redefining the periodicity of x5 so that
kx → k1 does look natural. With this redefinition, αx → α1
using (A8). The final string-frame metric and dilaton take
the form,

ds2 ¼ −
1 − α2e

r2

k1 þ r̂2
1

r2

dt2 þ 1

k1 þ r̂2
1

r2

dx25 þ
r25

r2 − α2e
dr2

þ r25dΩ2
3 þ ds2T4 ;

e2Φ ¼
r25

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8k1

eMr2
5

R2

r
r̂21 þ k1r2

; α2e ¼ 8 eM r̂21r
2
5

R2
: ðA31Þ

Note that the x5 circle has periodicity 2πRffiffiffiffi
k1

p at r ¼ ∞ in

string frame.

e. The case of c1 ≠ 0

In solving for the dilaton, we set c1 ¼ 0 in (A9). In this
subsection we will examine whether there are any sensible
solutions with c1 > 0. The case of c1 < 0 is ruled out
because there would be a singularity in the dilaton at some
finite r. If a solution exists with c1 > 0, it would be quite
curious because it interpolates from one approximately
constant value of the dilaton near r ¼ 0 to a different
approximately constant value near r ¼ ∞.

The first step is to solve for c42 using (A10). This is just
algebraic and gives

c42 ¼
r45
r̂41

�
α41 þ k1α21α

2
e

ðk1c1α21 þ 1Þðk1c1ðα21 þ k1α2eÞ þ 1Þ
�
: ðA32Þ

The r → ∞ UV value of the dilaton is determined by
e2Φ ¼ k1c1c22 while the r → 0 IR value,

e2Φ ¼
�
1þ k1c1α21

α21

�
c22 > k1c1c22; ðA33Þ

is strictly larger. If the asymptotic solutions are both
approximately AdS solutions with the same string-frame
length scale l then this relation would be in accord with the
two-dimensional c-theorem. This suggests a potential
holographic interpretation of this class of solutions as
describing a flow from a UV two-dimensional CFT to
an IR CFT. What is particularly interesting about this
possibility is that by taking c1 very small, this background
would have a long intermediate region that looks like a
linear dilaton but which eventually becomes AdS3 again.
When c1 > 0, fr is constrained to be

frðrÞ ¼
r25ð1þ k1α21c1Þð1þ k1c1ðα21 þ k1α2eÞÞ
ðr − αeÞðrþ αeÞð1þ k1c1ðα21 þ k1r2ÞÞ2

; ðA34Þ

which diverges at r ¼ αe just like the c1 ¼ 0 solution.
Again it appears that this is only a coordinate singularity
and not a genuine curvature singularity. The full Ricci
scalar associated with this ten-dimensional solution is
given by

R ¼ 2k1
r25

ð3k1r4 þ 10r2α21 þ 2k1r2α2e − 5α21α
2
e þ 5k1c1ðk1r2 þ α21Þðr2ð2α21 þ k1α2eÞ − α21α

2
eÞÞ

ðk1r2 þ α21Þ2ð1þ k1c1α21Þð1þ k1c1ðα21 þ k1α2eÞÞ
: ðA35Þ

If k1 > 0 and α21 > 0, the Ricci scalar is finite for all values
of r. It appears to interpolate from a constant negative value
at small r to a constant positive value at large r. One finds

lim
r→0

R ¼ −
10k1α2e

r25α
2
1ð1þ k1α21c1 þ k21α

2
ec1Þ

; ðA36Þ

while

lim
r→∞

R ¼ 2ð3þ 10k1α21c1 þ 5c1k21α
2
eÞ

r25ð1þ k1c1α21Þð1þ k1α21c1 þ k21α
2
ec1Þ

: ðA37Þ

We can also compute the Ricci scalar Rð3Þ associated with
the three-dimensional spacetime M3 parametrized by
t; r; x5. This is given by

Rð3Þ ¼ 2ð1þ k1c1ðk1r2 þ α21ÞÞ
ð4k1r2α21 − 3α41 þ 2k21r

2α2e − 5k1α21α
2
e − 3k1c1α21ðk1r2 þ α21Þðα21 þ k1α2eÞÞ

r25ðk1r2 þ α21Þ2ð1þ k1c1α21Þð1þ k1c1ðα21 þ k1α2eÞÞ
: ðA38Þ
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Again we can look at the small r and large r limits,

lim
r→0

Rð3Þ ¼−
2ð3α21þ5k1α2eþ3k1c1α21ðα21þk1α2eÞÞ

r25α
2
1ð1þk1c1ðα21þk1α2eÞÞ

;

lim
r→∞

Rð3Þ ¼ 2c1ð4k1α21þ2k21α
2
e−3k21c1α

2
1ðα21þk1α2eÞÞ

r25ð1þk1c1α21Þð1þk1c1ðα21þk1α2eÞÞ
:

ðA39Þ

We see that the small r limit of Rð3Þ is negative-definite,
corresponding to an AdS3 in the deep interior, but that the
large r value of Rð3Þ has competing contributions with
opposite signs. In order to have negative curvature at large
r, we require

c1 >
2

3k1

�
1

α21
þ 1

α21 þ k1α2e

�
: ðA40Þ

Notice that this condition is easy to violate by taking k1
small. The surprising result is that we seem to be able to
construct a three-dimensional spacetime M3 with positive
scalar curvature at least in string-frame!
Our remaining task with these solutions is to determine

the parameter map following the analysis of the c1 ¼ 0
case. We will highlight the differences. For simplicity, we
assume kx ¼ k1. The relation between r2 and r̃2 given in
(A19) now becomes

r2 ¼ l2
c42

α21R
2

r̃2

ð1þ k1c1α21Þ2
þOðr̃4Þ: ðA41Þ

Also from,

e−4ΦfrðrÞdr2

¼ e−4Φ
ð1þ k1α21c1Þð1þ k1c1ðα21 þ k1α2eÞÞ

ð1þ k1c1ðα21 þ k1r2ÞÞ2
r25dr

2

r2 − α2e
;

ðA42Þ

we can read off

l2 ¼ α41r
2
5

c42

ð1þ k1c1ðα21 þ k1α2eÞÞ
ð1þ k1c1α21Þ3

; ðA43Þ

which has additional mass dependence beyond the c1 ¼ 0

case. The last step is to relate αe to eM which now gives the
following relations:

r2 ¼ α21r
2
5

R2

ð1þ k1c1ðα21 þ k1α2eÞÞ
ð1þ k1c1α21Þ5

r̃2; ðA44Þ

α2e ¼
8 eMr25α

2
1ð1þ c1k1α21Þ

R2ð1þ c1k1α21Þ5 − 8c1k21 eMr25α
2
1

: ðA45Þ

f. Adding spin J̃

Now let us return to the case c1 ¼ 0 and extend our
solutions (A31) to include spin. This will also help us
identify the relation between the deformation parameter k1
and λ of (1.3). The BTZ solution with spin takes the form,

d̂s2 ¼ l2

�
−
�
−8M̃ þ r̃2 þ 16J̃2

r̃2

�
dt̃2 þ r̃2

�
dφ̃ −

4J̃
r̃2

dt̃

�
2

þ dr̃2

−8M̃ þ r̃2 þ 16J̃2

r̃2

�
: ðA46Þ

In parallel with the mass eM ¼ MG3, we have absorbed
factors of the gravitational coupling into the angular
momentum via J̃ ¼ JG3

l with G3 defined in (2.12). This
redefinition is quite important because we have already
seen that l is mass-dependent in (A22). Soon we will see
that it also becomes spin dependent when k1 ≠ 0. We will
use the following ansatz for fj and fe which have the
expected behavior at small r,

fjðrÞ ¼ −
α2j
r2

; feðrÞ ¼ 1 −
α2e
r2

þ α̃4e
r4

: ðA47Þ

We can then try solving the equations of motion for the
dilaton, which again gives

e2Φ ¼ c22

�
1

α21 þ k1r2

�
; ðA48Þ

where c2 is an unknown constant, as in the solution (A9)
with J̃ ¼ 0. We also find the algebraic constraints

αx ¼
ffiffiffiffiffi
kx
k1

s
α1; α̃e ¼

�
k1
kx

�
1=4

αj; α5 ¼ r5: ðA49Þ

As in the discussion around Eq. (A31), we can rescale x5 to
set kx ¼ k1 which significantly simplifies the number of
parameters. In the spinning case, the relationship between
c2 and the other parameters, imposed by the dilaton
equation of motion, is modified. In this case we find

c42 ¼
r45ðα41 þ k1ðα21α2e þ k1α4jÞÞ

r̂41
: ðA50Þ

Likewise, the equations of motion determine frðrÞ to be

frðrÞ ¼
r25

r2 − α2e þ α4j
r2

: ðA51Þ

In determining the parameter map, we see that the relations,

r2

r̃2
¼ α21r

2
5

R2
; l2 ¼ α41

c42
r25; ðA52Þ
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remain unchanged from the case without spin. With this
identification, we can determine αj in terms of J̃ appearing
in the metric (A46). The final string-frame metric and
dilaton take the form,

ds2 ¼ −
1 − α2e

r2 þ
α4j
r4

k1 þ r̂2
1

r2

dt2 þ 1

k1 þ r̂2
1

r2

�
dx5 −

α2j
r2

dt

�2

þ r25

r2 − α2e þ α4j
r2

dr2 þ r25dΩ2
3 þ ds2T4 ;

e2Φ ¼
r25

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8k1

eMr2
5

R2 þ 16ðk1Þ2 J̃2r4
5

R4

r
r̂21 þ k1r2

;

α2e ¼ 8 eM r̂21r
2
5

R2
; α2j ¼ 4J̃

r̂21r
2
5

R2
: ðA53Þ

The form of the dilaton solution is eerily reminiscent of the
solution of the TT̄-deformed energy flow equation (1.3).

2. The asymptotically flat case where k5 > 0

We will now attempt to recouple the asymptotic region
by taking k5 > 0 for the general class of metrics with mass
and spin. This means that asymptotic theory will be
6-dimensional rather than 3-dimensional because the
3-sphere will decompactify as r → ∞, while the T4 remains
compact.

a. Interpolating ansatz

To simplify our analysis, we take the following ansatz for
the ten-dimensional metric which is a slight generalization
of the prior cases,

f1ðrÞ ¼ k1 þ
α21
r2

; feðrÞ ¼ 1 −
α2e
r2

þ α̃4e
r4

;

f5ðrÞ ¼ k5 þ
α25
r2

; fxðrÞ¼ kx þ α2x
r2 ; fjðrÞ ¼ − α2j

r2 :

ðA54Þ

We also demand that k1 > 0; kx > 0 and k5 > 0 for a
sensible metric at large r. We can repeat the steps of the
preceeding analysis and see what constraints emerge from
trying to solve the spacetime equations of motion. Firstly,
there are algebraic constraints generalizing what we found
in the k5 ¼ 0 case:

α̃e ¼
�
k1
kx

�
1=4

αj; αx ¼
ffiffiffiffiffi
kx
k1

s
α1;

αe ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kxðr45 − α45Þ − k1k25α

4
j

q
α5

ffiffiffiffiffiffiffiffiffi
k5kx

p : ðA55Þ

Once again it is natural to rescale the x5 circle to set kx ¼ k1
and replace both α̃e by αj and αx by α1. With these
replacements the solution for frðrÞ is given by

frðrÞ ¼
k5α25r

2ðk5r2 þ α25Þ
r2ðα45 þ k5α25r

2 − r45Þ þ k5α4jðk5r2 þ α25Þ
; ðA56Þ

while the dilaton takes the form

e2Φ ¼ k5r2þα25
r̂21ðk1r2þα21Þ

·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α41þk21α

4
j −

k1α21ðα45þk5α4j − r45Þ
k5α25

s
:

ðA57Þ

It ismore convenient to invert the relation between α5 and αe,

α25 ¼
1

2

	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k25α

4
e þ 4ðr45 − k25α

4
jÞ

q
− k5α2e



: ðA58Þ

As a check, notice that α5 → r5 when we take k5 → 0which
is the solution we found earlier in (A8). In this more general
case, α5 is mass dependent. In a small k5 expansion, we see
that

α25 ¼ r25 −
k5α2e
2

þOðk25Þ: ðA59Þ

Substituting (A58) into (A57) gives the following nicer form
for the dilaton:

e2Φ ¼ k5r2 þ α25
k1r2 þ α21

·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α41 þ k1α21α

2
e þ k21α

4
j

r̂41

s
: ðA60Þ

Let us count parameters versus expectations. First α2e and
α2j are determined by the mass and spin of the deep interior
BTZ black hole via (A53). Together with k5, these
parameters determine α25 using (A58). That leaves α1, k1,
and k5 to be identified with physical parameters of the
asymptotic solution. Now the existence of a nonzero k5 is
the statement that we have not taken the partial decoupling
limit. Therefore, it should be possible to identify k5 with the
asymptotic value of the string coupling, called gs in (2.6).
To determine the precise identifications, we can start by

examining the asymptotic value of the dilaton. This cannot be
mass or spin-dependent because it is part of the data defining
the quantum gravity Hilbert space. Unlike the prior dis-
cussion, we now need tomake a conformal transformation in
a 6-dimensional gravity theory rather than a 3-dimensional
theory. The Einstein frame metric is now given by

ds2Einstein ¼ e−ðΦ−Φ0Þds2string; ðA61Þ

where Φ0 is the now finite r → ∞ value of the dilaton. We
will require thatΦ0 be independent of mass and spin since it
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determines the gravitational constant. To determine how to
implement this condition, it is useful to examine the nicer
form of the dilaton appearing in (A60). It is not possible to
make the square root independent of mass and spin by
modifyingα1 in awayproportional tok5 soweexpect that the
relation

α1 ¼ r̂1; ðA62Þ

is unchanged. This means we must absorb the mass and spin
dependence in k5. So we define

k̂5 ¼ k5 · γ; γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k1α2e

α21
þ k21α

4
j

α41

s
: ðA63Þ

In terms of k̂5, the dilaton now takes the form

e2Φ ¼ k̂5r2 þ γα25
k1r2 þ α21

: ðA64Þ

As r → ∞ the Einstein framemetric now contains the terms,

e−ðΦ−Φ0Þds2string ¼
k̂5
γ
ðdr2 þ r2dΩ2

3Þ þ…: ðA65Þ

The natural radial coordinate at large distances is now

ρ2 ¼ k̂5
γ
r2; ðA66Þ

and the dilaton takes the form

e2Φ ¼ k̂5
k1

þ k1α25γ − k̂5α21
k21r

2
þO

�
1

r4

�
;

¼ k̂5
k1

þ k̂5
γρ2

k1α25γ − k̂5α21
k21

þO

�
1

ρ4

�
: ðA67Þ

The mass dependence is now encoded in the subleading

terms of the ρ expansion. Now we can identify g2s ¼ k̂5
k1
, or

equivalently k̂5 ¼ k1g2s. The periodicity of the x5 circle is 2πRffiffiffiffi
k1

p
at r ¼ ∞.
The final string-frame metric and dilaton take the form,

ds2¼−
1− α2e

r2 þ
α4j
r4

k1þ r̂2
1

r2

dt2þ 1

k1þ r̂2
1

r2

�
dx5−

α2j
r2
dt

�2

þ
k5r2−

k5α2e
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r45−k25α

4
j þ 1

4
k25α

4
e

q
r4− r2α2eþα4j

r2dr2

þ r2
�
k5þ

α25
r2

�
dΩ2

3þds2T4 ;

e2Φ ¼
g2s þ γα2

5

k1r2

1þ r̂2
1

k1r2

; α2e ¼ 8M̃
r̂21r

2
5

R2
; α2j ¼ 4J̃

r̂21r
2
5

R2
;

k5¼
k1g2s
γ

; α25¼
1

2

	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k25α

4
eþ4ðr45−k25α

4
jÞ

q
−k5α2e



;

γ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þk1α2e

r̂21
þk21α

4
j

r̂41

s
: ðA68Þ

This final form for themetric depends on ðgs; k1; r̂1; r5Þ along
with the mass and spin ð eM; J̃Þ of the interior BTZ black hole.
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